

--------- -------- -. ---- - - -------------,-

Virtual Machine/
System Product

eMS Macros and Functions
Reference

Release 5

SC24-52B4-0

First Edition (December 1986)

This edition, SC24-5284-0, is a revision of the macros and functions information
previously contained in VM/SP CMS Command and Macro Reference, SC19-6209-3,
and applies to Release 5 of Virtual Machine/System Product (VM/SP), program
number 5664-167, and to all subsequent versions and modifications until otherwise
indicated in new editions or Technical Newsletters. Changes are made periodically
to the information herein; before using this publication in connection with the
operation ofIBM systems, consult the latest IBM System/370, 30xx, and 4300
Processors Bibliography, GC20-0001, for the editions that are applicable and
current.

Summary of Changes

For a list of changes, see "Summary of Changes" on page 189.

Changes or additions to the text and illustrations are indicated by a vertical line
to the left of the change.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available in
all countries in which IBM operates. Any reference to an IBM
licensed program in this publication is not intended to state or
imply that only IBM's licensed program may be used. Any
functionally equivalent program may be used instead.

Ordering Publications

Requests for IBM publications should be made to your IBM representative or to
the IBM branch office serving your locality. Publications are not stocked at the
address given below_

A form for readers' comments is provided at the back of this publication. If the
form has been removed, comments may be addressed to IBM Corporation,
Information Development, Dept. G60, P.O. Box 6, Endicott, NY, U.S.A. 13760.
IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1986

Preface

Who Should Read This?

• Application Programmers

• System Programmers

• IBM System Support

What You Should be Able to Do after Reading This Book

How to Use This Book

• Use eMS macro instructions when you write assembler language
programs to execute in the eMS environment.

• Execute eMS functions from assembler language programs.

This book has two parts:

• "eMS Macro Instructions" provides detailed reference information
about most external eMS assembler language macro instructions.

• "eMS Functions" provides detailed reference information about eMS
functions.

Related VM/SP Publications

You can find more information about VMjSP publications in the VMjSP
Library Guide, Glossary, and Master Index.

For information about certain other eMS assembler language macro
instructions, refer to VMjSP eMS for System Programming or VM System
Facilities for Programming.

Preface 111

J

J

IV VMjSP eMS Macros and Functions Reference

Contents

Chapter 1. CMS Macro Instructions 1
ABNEXIT ... 3
ADDENTRY ... 8
APPLMSG .. 9
CMSDEV .. 21
COMPSWT ... 26
CONSOLE ... 27
CPRB ... 47
CSMRETCD .. 49
DELENTRY .. 50
FSCB ... 51
FSCBD .. 53
FSCLOSE .. 54
FSERASE .. 56
FSOPEN ... 58
FSPOINT .. 60
FSREAD ... 62
FSSTATE .. 65
FSWRITE .. 68
HNDEXT .. 72
HNDINT ... 74
HNDSVC .. 77
IMMCMD .. 79
LINEDIT ... 84
LINERD ... 97
LINEWRT ... 104
PARSECMD ... 111
PARSERCB .. 118
PARSERUF ... 120
PRINTL .. 121
PUNCHC ... 128
PVCENTRY ... 130
RDCARD .. 132
RDTAPE .. 134
RDTERM ... 137
REGEQU ... 140
SENDREQ .. 141
T APECTL ... 142
TAPESL .. 147
TRANTBL ... 151
WAITD ... 152
W AITECB ... 154
WAITT ... 158

Contents V

WRTAPE
WRTERM

Chapter 2. CMS Functions
ATTN
DISKID .. .
LANGADD
LANGFIND .. .
NUCEXT .. .
TODACCNT .. .
WAITRD

Bibliography

Summary of Changes

159
162

165
166
167
169
170
171
179
181

185

189

Index ',............................ 191

VI VMjSP eMS Macros and Functions Reference

J

J

J

J

eMS Macro Instructions

Chapter 1. CMS Macro Instructions

This part describes the formats of the CMS assembler language macros. Use
these macros when you write assembler language programs to execute in
the CMS environment. To assemble a program using any of these macros,
you must issue the GLOBAL command specifying MACLIB DMSSP
CMSLIB. These macro libraries are normally located on the system disk.

• DMSSP MACLIB contains macros that are new or changed in VM/SP.

• CMSLIB MACLIB contains macros from VM/370.

Note: When assembling programs that use CMS macros, both of these
libraries should be identified via the GLOBAL command. DMSSP should
precede CMSLIB in the search order.

For functional descriptions and usage examples of the CMS macros, see
VM/ SP eMS for System Programming.

CMS Macro Coding Conventions

Coding conventions for CMS macros are the same as those for all assembler
language macros. The macro format descriptions show optional operands in
the format:

[,operand]

indicating that if you are going to use this operand, it must be preceded by
a comma (unless it is the first operand coded). If a macro statement
overflows to a second line, you must use a continuation character in
column 72. No blanks may appear between operands. Incorrect coding of
any macro results in assembler errors and MNOTEs.

Where applicable, the end of a macro description contains a list of the
possible error conditions that may occur during the execution of the macro,
and the associated return codes. These return codes are always placed in
register 15. The macros that produce these return codes have ERROR =

operands, that allow you to specify the address of an error handling
routine, so that you can check for particular errors during macro
processing. If an error occurs during macro processing and no error
address is provided, execution continues at the next sequential instruction
following the macro.

Chapter 1. CMS Macro Instructions 1

eMS Macro Instructions

eMS Macro Formats

There are four types of CMS macro formats:

Standard

List

generates the parameter list inline and is not reentrant. It also
generates the code to execute the specified function as part of the
macro expansion. CMS macros that result in an SVC 202 use this
format.

generates a parameter list, but does not generate code to execute the
specified function. The parameter list is generated inline and register
notation usually cannot be used.

Complex List
generates a parameter list, but does not generate code to execute the
specified function. The parameter list is generated in an area that you
specify. For example, if the storage area is remote from your program
and obtained by GETMAIN, GETVIS, or DMSFREE, the macro can
generate reentrant code for your program by using a remote parameter
list.

Execute
generates code to execute the specified function. No parameter list is
generated by the macro. The parameter list must have previously
been created by using the list format of the macro. You may modify
parameters in the parameter list by using this format of the macro.

The parameter list passed to the function by the Execute Format must
contain a valid combination of parameters with no conflicting options.
It must contain all required parameters, without any extraneous
parameters from previous macro calls. In many cases, the parameter
list must be reinitialized before each new invocation of the Execute
Format.

Notes:

1. Please note that the Standard and Execute Formats of CMS macros alter
the contents of registers 1 and 15. The Complex List Format alters the
contents of register 1. The contents of register 0 may also be altered when
certain macrotr are invoked. Read the operand descriptions and usage
notes carefully; they contain more detail about register usage for the
individual macros.

2. Not every CMS macro instruction is available in all four formats. Each,
however, is available in a Standard Format.

3. The following CMS macros provide all four types of formats for the user:

J

ABNEXIT, CMSDEV, CONSOLE, IMMCMD, LINERD, LINEWRT,\ ..
PARSECMD, and WAITECB. J

2 VM/SP eMS Macros and Functions Reference

ABNEXIT

Standard Format

[1 abel] ABNEXIT

ABNEXIT

Use the ABNEXIT macro instruction to set or clear ABEND exit routines.
The RESET option clears the condition that indicates control was given to
an exit routine.

There are four formats of the ABNEXIT macro instruction:

• Standard
• List (MF = L)
• Complex List (MF = (L,addr[,label]))
• Execute (MF = (E,addr»

The Standard Format of the ABNEXIT macro instruction is:

{SET.EXIT~addr[.UWORo~addrJ [.ERROR~addrJ}
CLR,EXIT=addr[,ERROR=addr]
RESET[,ERROR=addr]

where:

label

addr

SET

CLR

is an optional statement labeL

is an assembler program label or an address stored in a general
register. If a register is used, it must be enclosed in parentheses.

establishes an exit routine. This exit routine is added to the list of
exit routines and becomes the current exit routine.

removes the specified exit routine from the list of exit routines. If it
was the "current" exit routine, the previous exit routine on the list
becomes the "current" exit routine. Exits can be cleared
independently of their position in the list.

RESET
clears the condition that indicates control has been given to an exit
routine. The RESET option can only be specified from within an exit
routine.

Chapter 1. CMS Macro Instructions 3

ABNEXIT

List Format

[1 abe 1]

EXIT =

You can add or delete an exit routine from the list of exits. The value
specified may be a label or a general register. The general register
must be specified between parentheses.

label

(reg)

is an assembler program label that marks the address of the exit
routine.

is a general register. Its value is the address of the exit routine.

UWORD=
is an optional fullword that can be specified for any purpose you
desire. When the exit routine gains control, this full word is available \
to the exit in the DMSABW CSECT of DMSNUC. ,."""

label

(reg)

is an assembler program label that is the address stored as the
UWORD.

is a general register. Its contents are stored as the UWORD.

ERROR=
indicates the address of an error routine to be given control if an error
occurs. If ERROR = is not coded and an error occurs, control returns
to the next sequential instruction (NSI) in the calling program, as it
does if no error occurs.

label

(reg)

is an assembler program label that is the address of the error
routine.

is a general register. Its value is the address of the error
routine.

The List Format (MF = L) of the ABNEXIT macro instruction is:

ABNEXIT MF=L

[
[,EXIT=labe1J [.UWORD=labe1J

1
,SET [.EXIT=labe1J [.UWORD=labe1J
.CLR [.EXIT=labe1J
• RESET

The parameters have the same meaning as in the Standard Format except
for the following: J

4 VM/SP eMS Macros and Functions Reference

Complex List Format

ABNEXIT

MF=L
indicates that the parameter list is created in-line. No executable
code is generated. Register notation cannot be used for macro
parameter addresses.

Note: When you use the MF = parameter, all other parameters are
optional. Before the function is executed, a valid combination of
parameters must be specified by the List and Execute Formats of the macro.

The Complex List Format (MF = (L,addr[,label])) of the ABNEXIT macro
instruction is:

[label] ABNEXIT MF=(L,addr[,label])

[
[,EXIT=addr] [,UWORD=addr]

1

Execute Format

,SET[,EXIT=addr][,UWORD=addr]
, CLR[, EXIT=addr]
,RESET

The parameters have the same meaning as in the standard format except for
the following:

MF = (L,addr[,label])
indicates that the parameter list is created in the area specified by
addr. The address may be a label or may be specified in a register. It
represents an area within your program or an area of free storage
obtained by a system service. You can determine the size of the
parameter list by coding the label operand. The macro expansion
equates label to the size of the parameter list .. This format of the
macro produces executable code to move the data into the parameter
list specified by addr. It does not generate the instruction to invoke
the function. If you use this version of the List Format, you must
execute it prior to any related invocation of the Execute Format.

Note: When you use the MF = parameter, all other parameters are
optional. Before the function is executed, a valid combination of
parameters must be specified by the List and Execute Formats of the macro.

The Execute Format (MF = (E,addr)) of the ABNEXIT macro instruction is:

[label] ABNEXIT MF=(E,addr) [[.EXIT=addrl [.UWORO=addrJ [.ERROR=addrl 1
,SET[,EXIT=addr] [,UWORD=addr] [,ERROR=addr]
,CLR[,EXIT=addr][,ERROR=addr]
,RESET[,ERROR=addr]

The parameters have the same meaning as in the Standard Format except
for the following:

Chapter 1. CMS Macro Instructions 5

ABNEXIT

MF = (E,addr)
indicates that instructions are generated to execute the ABNEXIT
function.

addr
is a label or an address stored in a register that represents the
location of the parameter list. Information in the parameter list
may be changed by specifying the appropriate operands on the
macro.

Note: When you use the MF = parameter, all other parameters are
optional. Before the function is executed, a valid combination of
parameters must be specified by the List and Execute Formats of the macro.

Usage Notes:

1. You are responsible for providing the proper entry and exit linkage for
your abend exit routine. When your routine receives control, the
register contents are as follows:

Register

1

13

14

15

Contents

Address of the DMSABW CSECT in DMSNUC. You may
use the ABWSECT macro to map the fields of DMSABW in
your exit routine. Refer to VMjSP Data Areas and Control
Block Logic Volume 2 (CMS), for a description of the fields
within ABWSECT.

Address of an 18-fullword save area (for your use).

Return address.

Entry point address of your exit routine.

2. At completion of the abend exit routine, the exit can do one of the
following:

• Return to DMSABN via a branch on register 14. DMSABN will call
any previous abend exits if they exist. If not, DMSABN will
continue with normal CMS abend recovery.

• Return elsewhere by loading the PSW, or a modified version of the
PSW, at time of abend (available in DMSABW). Prior to loading
the PSW, the exit routine should issue an ABNEXIT RESET macro.

3. Abend exits cannot be set or cleared from within an exit routine. You
can issue the ABNEXIT macro with the RESET option only from within
an exit.

4. In addition to register 1, the macro expansion for RESET uses registers J
14 and 15. Your program must have a DSECT for NUCON when

6 VM/SP eMS Macros and Functions Reference

ABNEXIT

RESET is used or when the Execute Format of the macro is used and
the function is not specified.

5. If a program check occurs in the exit (ABNEXIT RESET has not been
issued), control is given to the previous exit in the list. Note that the
information in the abend work area (ABWSECT) will reflect this
secondary error that occurred in the exit, and not the original error. If
there are no previous exits, CMS abend recovery occurs.

6. There are two ways to disable an exit routine once it is identified to the
system by the ABNEXIT SET macro:

• Issue the ABNEXIT CLR macro. This can be done at any time
except within an exit routine.

• When CMS abend recovery occurs, CMS automatically clears all
exit routines known to the system.

Abend exits are not cleared at CMS end-of-command.

Error Conditions:

If an error occurs, register 15 contains one of the following return codes:

Code
8

12
16

104

Meaning
SVC issued to clear an exit, but no exits exist for the address
ABNEXIT SET or CLR was issued from within an exit routine
ABNEXIT RESET was issued outside of an exit
Not enough storage available to establish the exit

Chapter 1. CMS Macro Instructions 7

ADDENTRV

ADDENTRY

Servers use the ADDENTRY macro to place an entry-name on a
Communications Module termination notification list. Each entry on this
list is notified (gets control) when CMSSERV communications end. The
server entry point to be put on the list of servers to receive control mayor
may not be a nucleus extension.

The format of the ADDENTRY macro instruction is:

I [1 abe 1] I ADD ENTRY I entry-name

where:

label
is an optional statement label.

entry-name
is the name of an entry to be notified when the communications
module terminates, either normally or abnormally.

The IBM System/370 to IBM Personal Computer Enhanced Connectivity
Facilities return code is returned in register 15.

The following assembly message (MNOTE) may be produced during
assembler processing of the ADDENTRY macro:

DMSMAC021S ENTRY NAME NOT SPECIFIED IN ADDENTRY MACRO

For more information on the ADDENTRY macro and how to use it with
Enhanced Connectivity Facilities on VM/SP, see the VM/SP IBM
Programmer's Guide to the Server-Requester Programming Interface for
VM/SP.

8 VM/SP eMS Macros and Functions Reference

J

J

APPLMSG

[label] APPLMSG

MF Operand

APPLMSG

Use the APPLMSG macro in an assembler program to retrieve a message
from a message repository. (A message repository contains translated
versions of system messages in the specified language.) You can optionally
display the message at your terminal. The format of the APPLMSG macro
is:

[,MF={L IE, (addr)}1 (E, (reg)]

[,CSECT= {~INAME}]

[,APPLID=appl i d]

[, BUFFA={addr I (reg))]

[,COMP={YESINO}]

[,DISP={ERRMSGINONEITYPEICPMSGIEXECOMMlvar}]

[,HEADER={YESINO}]

[,LET={Charl(reg)!~}]
,LETA={addrl(reg}

[,NUM={numl(reg)}
,NUMA={addrl(reg)}]

[,FMT={numl(reg)}
,FMTA={addrl(reg)}]

[,LINE={numl (reg) I*}]
,LINEA={addrl(reg)}

[,SUB=(sublist)] [,MAXSUBS=num]

[,TEXT='message-text']
,TEXTA={addrl(reg)}

[TYPCALL={SVCINONE}]

The APPLMSG macro operands are listed in detail below:

Use the MF operand to specify the macro format. Using different macro
formats, you can either code parameters directly in the macro call or put
them at a place in the program where they can be referenced later. The
macro format must be one of the following:

Standard Format
coded without the MF= operand, generates an in-line operand list and
invokes the message facility. This is the default format. You can
specify a maximum of 20 substitutions with this macro format.

Chapter 1. CMS Macro Instructions 9

APPLMSG

CSECT Operand

APPLID Operand

BUFFA Operand

MF=L (List Format) J
is used only together with the Execute Format of APPLMSG. MF=L
generates a storage area for the parameter list; this storage area later
gets filled in when you use the Execute Format.

The size of the parameter list area you want to reserve depends on the
number of substitutions to be made. Use the MAXSUBS operand to
specify the size of this area. For example, the following would reserve
space for a parameter list that may hold up to five substitutions.

MF=L,MAXSUBS=5, ...

MF = (E,addr) or MF = (E,(reg» (Execute Format)
generates code to fill in the parameter list at the address you specify,
and invokes the message facility. For example:

MF=(E,label), ...

Use the CSECT operand to override the default CSECT identifier that will
go in the message header. The format of the CSECT operand is:

CSECT= C~.I name}

By default, the first three characters of the module name are used, if they \
are different from the application id; if these three characters are the same...".,
as the application id, then the next three characters of the module name are
used.

Use the APPLID operand to specify the name of the application from which
the message is issued. The format of the APPLID operand is:

APPLID=applid

The three-character application id is compared with the application id in
the repository information chain to retrieve the message from the proper
repository. It is also displayed in the message header. This parameter is
required.

Use the BUFFA operand to specify the address of a buffer where the
complete message is to be copied. You can specify this buffer address
directly or in a register. The format of the BUFF A operand is:

BUFFA={addrl (reg)}

Use DISP = NONE when you only want to have the message copied to the
buffer and not displayed via the message facility.

10 VM/SP eMS Macros and Functions Reference

COMP Operand

DISP Operand

APPLMSG

When the text is copied into the buffer, the length of the message occupies
the first byte of the buffer, preceding the text. The message header (for
example, DMSxxxnnns) is also part of the copied information, unless you
specify HEADER = NO.

Note: The length of the buffer, not including the length byte, must be
placed in the first byte of the buffer before the call to APPLMSG is made.
This is done to ensure that the message processor does not overwrite any
data immediately following the buffer.

Use the COMP operand to specify whether multiple blanks in the message
text are to be removed, including those preceding and following a
substitution field. The format of the COMP operand is:

COMP={YESINO}

Use the DISP operand to specify the display format (disposition) of the
message. The format for DISP is one of the following:

DISP = ERRMSG
specifies that the line is to be checked to see if it qualifies for error
message editing. This is the default DISP value unless you specify
TEXT or HEADER=NO.

The standard header format of VM/SP error messages is:

xxxmmmnnns ~ xxxmmmnnnns

where:

• xxx is the application id
• mnun is the CSECT name
• nnn or nnnn is the message number
• s is the severity code.

The following is a list of the most commonly used severity codes:

Code
E
I
R
S
T
W

Message Type
Error
Information
Response
Severe
Terminal
Warning

The line is displayed according to the CP EMSG setting. If EMSG is
set to:

• ON - the entire message is displayed, header plus text

Chapter 1. CMS Macro Instructions 11

APPLMSG

HEADER Operand

• OFF - no message is displayed
• TEXT - only the text portion is displayed
• CODE - only the ten- or eleven-character header is displayed

DISP=NONE
specifies that no output occurs. This option is useful with the BUFFA
operand.

DISP=TYPE
specifies that the message is to be displayed on the terminaL This
would be the same as DISP ,= ERRMSG with EMSG ON. This is the
default if you specify TEXT or HEADER = NO.

Note: If the message text wraps to a second line, a split may occur in
mid-word.

DISP= CPMSG
specifies that the message is to be passed to CP to be issued as a CP
message.

DISP = EXECOMM
specifies that the message is to be returned to a variable in the calling
EXEC. The complete message is copied into the variable 'MESSAGE',
with the first line in 'MESSAGE.I', the second in 'MESSAGE.2', etc ..
The number of lines in the message is copied into 'MESSAGE.O'. This
is only used when the module issuing APPLMSG is called from an
EXEC.

DISP = variable
specifies that a variable shows the message display format to be used.
The variable must be 1 byte long and the low order 3 bits of the byte
must be set to the desired disposition as follows:

ERRMSG 000
TYPE 001
NONE 010
CPMSG all
EXECOMM 100

Use the HEADER operand to specify whether you want a header created for
the message. The format for the HEADER operand is:

HEADER={YESINO}

Note:

You may not specify

• HEADER = NO with the DISP = ERRMSG option, or
• HEADER = YES with the TEXT option.

The repository describes how many digits of the message number to display.

12 VM/SP eMS Macros and Functions Reference

J

J

J

LET and LETA Operands

NUM and NUMA Operands

FMT and FMTA Operands

LINE and LINEA Operands

APPLMSG

Use the LET or LETA operand to specify a severity letter for the message.
The formats of the LET and LET A operands are:

LET=(charl (reg) I~}

LETA=(addrl (reg)}

A default severity code letter is already provided in the message repository;
you should use this parameter only when you want to override the provided
severity. ("*" specifies that you want the default severity.)

Use the NUM or NUMA operand to specify the number of the message you
want. The formats of the NUM and NUMA operands are:

NUM=(numl (reg)}

NUMA=(addrl (reg)}

The message number is one to four digits and is used to locate its associated
message text in the repository.

If NUMA is used, then the message number should be defined as a
halfword. This parameter is required with all formats except the List
Format.

Use the FMT or FMTA operand to specify the message format number. The
format number is a one- or two-digit number that identifies different
versions of the same message which have the same message number. The
formats of the FMT and FMT A operands are:

FMT=(numl (reg)}

FMTA=(addrl (reg)}

The formats are numbered from 01 to 99. A blank format defaults to 01. A
format of 00 is not allowed.

If FMT A is used, the message format should be defined as one byte.

Use the LINE or LINEA operand to specify the line number of a message.
The line number is a one- or two-digit number which identifies each line of
a multi-line message. The formats of the LINE and LINEA operands are:

LINE=(numl (reg) I*}

LINEA=(addrl (reg)}

Chapter 1. CMS Macro Instructions 13

APPLMSG

SUB Operand

Lines are numbered from 01 to 99. An asterisk (*) indicates that all lines
for a certain message number and format are to be retrieved. You may only
specify an asterisk with the LINE option (not with LINEA), and the
asterisk must be hard-coded (not used in a register). You may not specify
an asterisk for a line number if you use the BUFFA option.

If BUFFA is not specified, then the LINE parameter is defaulted to asterisk.
If BUFF A is specified, then LINE is defaulted to 01. A line number of 00 is
not allowed. Each line may be up to 240 characters long.

If you use LINEA, you must define the line number as one byte.

Use the SUB operand to specify the type of substitution to be performed on\
those portions of the message where substitutions are indicated. The,
format of the SUB operand is:

SUB=(type,(value,length))
or

SUB=(type,value)

The information supplied with the SUB parameter must specify the type of
data, its address, and the length of the substitution, or a number which is
used to retrieve the substitution information from the repository. If you\ ..
specify a length, you must enclose the value and length in parentheses.,
Otherwise, do not enclose the value in parentheses.

You can specify both the value and length using register notation. When
you specify the length, it is interpreted to be the length of the input field,
except when used with the HEX, HEXA, DEC and DECA parameters. For
these parameters, the length represents the length of the converted result.
Following are the possible values of type.

DICT,number
indicates that the substitution is a dictionary item. The value
parameter specifies the number of the dictionary item in the
repository.

DICT,(reg)
indicates that the substitution is a dictionary item. The number of the
dictionary item is the value in the specified register.

It is recommended that you use only system keywords to specify a
dictionary item. For example, PROFILE, NOPROFILE, or XEDIT.

You cannot specify a length with DICT.

HEX,(reg)
converts the value in the specified register.

14 VMjSP eMS Macros and Functions Reference

APPLMSG

HEX,expression
converts the given expression. You can specify a length with type
HEX; the default is 8 hex digits (4 bytes).

HEXA,address
converts the full word at the specified address.

HEXA,(reg)
converts the fullword at the address indicated in the specified register.

You may specify a length with type HEXA; the default is 8 hex digits
(4 bytes).

For HEX and HEXA, the length specified indicates the number of
digits of the converted fullword to be displayed. The word is
truncated from the left.

HEX4A,address
converts the data at the specified address.

The value you specify is converted to graphic hexadecimal format and
substituted in the message text. Leading zeros are not suppressed.

For HEX4A, a blank character is inserted following every four bytes
(eight characters of output). The data to be converted does not have to
be on a full word boundary.

The length field is mandatory with type HEX4A. The length you
specify indicates the number of digits of the converted data to be
displayed. This length does not include the blanks which are inserted
following every four bytes. The data is truncated from the right.

HEX4A,(reg)
converts the data at the address indicated in the specified register.

Note: See above for explanation of HEX4A.

DEC,(reg)
converts the value in the specified register.

DEC,expression
converts the given expression.

You may specify a length with type DEC; the default is 15 digits
(excluding the sign if the number is negative).

DECA,address
converts the full word at the specified address.

DECA,(reg)
converts the fullword at the address specified in the indicated register.

The value you specify is converted to graphic decimal format and

Chapter 1. CMS Macro Instructions 15

APPLMSG

MAXSUBS Operand

substituted in the message text. Leading zeros are suppressed. If the
number is negative, a leading minus sign is inserted.

You can specify a length with type DECA; the default is 15 digits
(excluding the sign if the number is negative).

For DEC and DECA, the length specified indicates the number of
digits of the converted full word to be displayed, excluding the minus
sign. The word is truncated from the left.

CHARA,address
substitutes the character data at the specified address into the
message text.

CHARA,(reg)
substitutes the character data at the address indicated in the specified
register into the message text.

The length field is mandatory with type CHARA.

CHAR8A,address
substitutes the character data at the specified address into the
message text, and inserts a blank character following each eight
characters of output.

CHAR8A,(reg)
substitutes the character data at the address indicated in the specified
register and inserts a blank character following each eight bytes of
output

The length field is mandatory with type CHAR8A. This length
indicates the number of actual characters to be displayed, not
including the blanks which are inserted after each 8 characters.

Use the MAXSUBS operand to reserve program storage to build the
parameter list. The format of the MAXSUBS operand is:

MAXSUBS=num

The number you specify is the maximum number of substitutions, and that
determines the size of the area saved. It is used only with the MF = L
macro form.

If you specify MAXSUBS and a SUB list, APPLMSG will take the
maximum number of substitutions. That is, if you specify both MAXSUBS=l

and SUB=(TYPE, (VALUE,LENGTH) ,TYPE, (VALUE,LENGTH)), then 2 is the value
used. The number of substitutions is multiplied by the amount of space

J

J

J

required for each substitution and added to the storage required for the \
remainder of the parameter list. ..."

The maximum number of substitutions is 20.

16 VMjSP eMS Macros and Functions Reference

APPLMSG

TEXT and TEXT A Operands

TYPCALL Operand

Use the TEXT or TEXTA operand to directly specify the message text to be
used, instead of using a repository. The formats of the TEXT and TEXTA
operands are:

TEXT='text'

TEXTA={addrl (reg)}

If you specify TEXT A, the first byte at the address specified must contain
the length of the message text. For example:

APPLMSG TEXTA=MESSAGE

X'16' MESSAGE DC
DC CL22'THIS IS A LINE OF TEXT'

The substitution character defaults to '&' if you specify TEXT or TEXTA.
A header is not created for the message, so you may not specify the
DISP = ERRMSG or HEADER = YES options with TEXT or TEXT A.

NUM, FMT, LINE and LET may not be specified with TEXT or TEXTA.
When TEXT or TEXTA is specified, DISP defaults to TYPE.

Note: If you code TEXT or TEXT A to display a message, that message will
always appear in the same language, even if your current language
changes.

Use the TYPCALL operand to specify the type of call you want to generate.
The format of the TYPCALL operand is:

TYPCALL={SVCINONE}

Macro Processing: The processing that takes place in the macro depends
on the value of the MF parameter and the TYPCALL parameter.

Standard Format (MF= operand not specified): The macro generates a
series of assembler statements which declare the parameters in-line for use
by the message processor module (DMSMGM). If you use substitutions
whose values and lengths do not use registers or are not hard-coded,
non-reentrant code will be generated for this macro format. The macro
then generates a call to DMSMGM module depending on the value of the
TYPCALL parameter as follows:

TYPCALL = SVC: the macro generates an SVC 202 to call the
DMSMGM module

TYPCALL = NONE: no call to the DMSMGM module is generated

Chapter 1. CMS Macro Instructions 17

APPLMSG

MF=L: The macro generates a 'DS' assembler statement to reserve an
area of storage for later use by APPLMSG. The size of the area of storage
reserved depends on the value of the MAXSUBS parameter. No call to
DMSMGM is generated, and no parameter information is set up.

MF=E: The macro generates a series of assembler statements which build
a 'record' in the specified buffer area. This record contains the parameters
for use by DMSMGM module. The address of the buffer area is specified as
follows:

MF = (E,addr) - the buffer area is at the address specified as addr

MF = (E,(reg)) . the buffer area is at the address specified in the register
reg

The macro then generates a call to the DMSMGM module depending on the
value of the TYPCALL parameter as described for the Standard Format.

Usage Notes:

1. To learn how to make your own message repository refer to "Getting
Languages on Your System in VM/SP" in VM System Facilities for
Programming.

2. APPLMSG contains all the functions of the LINEDIT macro, but it\
allows you to specify just a message number rather than coding the ~
entire message text. This allows for more flexibility, since a different
repository can be in storage and the same message would come up, only
it would be in a different language.

3. You should have a copy of the message repository you want to access so
that you can see the message numbers, formats, lines, and substitution
slots.

Examples:

A message repository may contain the following messages:

08750101E Attempt to divide by &1 is invalid
08750201E Attempt to &2 by &1 is invalid
08760101E Error &1. rc = &3.
08770101E This is a multi-line message.
08770102E order to keep the return codes
08770103E RC 1 = &1. RC TIlilIT-- severity code
~line of message

format of message
number of message

NOCOMP must be specified in
lined up on the next line.
2 = &2.

J

J

18 VMjSP eMS Macros and Functions Reference

APPLMSG

A message repository may contain these dictionary items:

90250101 DIVIDE
90260101 reading from &2
90270101 tape

And here is a piece of assembler code that displays error messages when it
attempts to divide by zero:

SAMP CSECT
ENTRY T

*
* TRYING SOME APPLMSG MACRO CALLS

*
T DS OH

LR 10,15
USING *,10

* SET UP THE REGISTERS FOR THE DIVIDE

*

*

L 3,=F'0'
L 4,=F'10'
L 5,=F'0'

CR
BE
DR
B

3,5
ERRO
4,5
DONE

COMPARE REGISTER 5 TO 0
IF REG 5 IS 0, ISSUE AN ERROR MESSAGE
OTHERWISE, DO THE DIVIDE

issue error message; see cases below ------

Case 1: This call uses the 'TEXT' parameter to print the message directly,
without using the repository:

ERRO APPLMSG APPLID=CMS,COMP=YES,SUB=(DEC,((5),I)),
DISP=TYPE,TYPCALL=SVC,
TEXT='ATTEMPT TO DIVIDE BY &1 IS INVALID'

Case 2: This call accesses the repository to print eMS message 875, format
1. The parameter list for APPLMSG is set up in-line. (The substitution is a
one-digit decimal number in register 5.)

APPLMSG NUM=875,FMT=I,
APPLID=CMS,COMP=YES,SUB=(DEC,((5),I)),
DISP=TYPE,TYPCALL=SVC

Case 3: This call accesses the repository to print the message. The
parameter list for APPLMSG is set up at ERR1. (Again, the substitution is
a one-digit decimal number in register 5.)

APPLMSG MF=(E,ERRl),NUM=875,FMT=I,
APPLID=CMS,COMP=YES,SUB=(DEC,((5),I)),
DISP=TYPE,TYPCALL=SVC

Case 4: This call reserves enough storage for two substitutions.

ERRI APPLMSG MF=L,MAXSUBS=2

Chapter 1. CMS Macro Instructions 19

APPLMSG

Case 5: This call uses a dictionary item for the second substitution in the
message. The parameter list is set up at ERRl, the location reserved in
"Case 4."

APPLMSG MF=(E,ERR1),NUM=875,FMT=02,
APPLID=CMS,COMP=YES,SUB=(DEC,«5),1),DICT,9025) ,
DISP=TYPE, TYPCALL'=SVC

Note: In this case, the dictionary item is a system keyword.
(DICT = DIVIDE)

Messages:

DMSMGM813E repos repository not found, message nnnn cannot be
retrieved RC = 16

J

DMSMGM814E Message number nnnn, format nn, line nn, was not found;.
it was called from routine in application applid RC = 12 """'"

DMSMGM815E Invalid double-byte character string text replaced by ,**,
RC=8

Return Codes:

If an error occurs, register 15 contains one of the following return codes:

Code
4

40
104

Meaning
A message was produced, but the text was truncated either because:
(1) the user buffer to contain the message text is too short, or (2) the
final message text with substitutions is longer than 240 characters.
Execution continues.
An invalid DISP value was received; processing continues.
EXECOMM failed; processing continues.

J

J

20 VM/SP eMS Macros and Functions Reference

CMSDEV

<....,. Standard Format

CMSDEV

Use the CMSDEV macro instruction to obtain the characteristics of a
virtual device. The results are returned to a specified storage area.

There are four formats of the CMSDEV macro instruction:

• Standard
• List (MF = L)
• Complex List (MF = (L,addr[,label]))
• Execute (MF = (E,addr))

The Standard Format of the CMSDEV macro instruction is:

[1 abe 1] CMSDEV device,area[,ERROR=erraddr]

where:

label
is an optional statement label.

device
specifies the virtual device whose characteristics are to be obtained.
It may be one of the following:

CONS
is a virtual console with an unknown address.

PRT
is the virtual printer.

RDR
is the virtual reader.

PUN
is the virtual punch.

TAPn
is a tape device attached to your virtual machine. Valid values
for n are X'O' to X'F'.

vaddr
is a hexadecimal address of a virtual device that is attached to
your virtual machine.

Chapter 1. CMS Macro Instructions 21

CMSDEV

List Format

area

(reg)
is a register (2-12) containing the device address in the low-order
two bytes.

is the name of a 12-byte storage area to contain the device
information. It may be one of the following:

label

(reg)

an assembler program label that is the address of the storage
area.

a specified register (2-12) containing the storage area.

ERROR = erraddr
indicates the address of an error routine to be given control if the
specified device is not attached to your virtual machine (return code
2). If ERROR = is not coded and an error occurs, control returns to
the next sequential instruction in the calling program, as it does if no
error occurs.

label

(reg)

is an assembler program label that is the address of the error
routine.

is a general register (2-12). Its value is the address of the error
routine.

The List Format (MF = L) of the CMSDEV macro is:

[label] I CMSDEV MFoL [,device] [,area]

The parameters have the same meaning as in the Standard Format except
for the following:

MF=L
indicates that the parameter list is created in-line. No executable
code is generated. Register notation cannot be used for macro
parameter addresses.

Note: When you use the MF = L parameter, all other parameters are
optional. Before the function is executed, a valid combination of
parameters must be specified by the List and Execute Formats of the macro.

22 VM/SP eMS Macros and Functions Reference

Complex List Format

Execute Format

CMSDEV

The Complex List Format (MF = (L,addr[,label])) of the CMSDEV macro is:

[label] CMSDEV MF=(L,addr[,label]) [,device] [,area]

The parameters have the same meaning as in the standard format except for
the following:

MF = (L,addr[,label])
indicates that the parameter list is created in the area specified by
addr. The address may be a label or may be specified in a register
(2·12). It represents an area within your program or an area of free
storage obtained by a system service. You can determine the size of
the parameter list by coding the label operand. The macro expansion
equates label to the size of the parameter list. This format of the
macro produces executable code to move the data into the parameter
list specified by addr. It does not generate the instruction to invoke
the function. If you use this version of the list format, you must
execute it prior to any related invocation of the Execute Format.

Note: When you use the MF = (L,addr[,label]) parameter, all other
parameters are optional. Before the function is executed, a valid
combination of parameters must be specified by the List and Execute
formats of the macro.

The Execute Format (MF = (E,addr» of the CMSDEV macro is:

[label] CMSDEV MF=(E,addr) [,device] [,area] [,ERROR=erraddr]

The parameters have the same meaning as in the Standard Format except
for the following:

MF = (E,addr)
indicates that instructions are generated to execute the CMSDEV
function.

addr
is a label or an address stored in a register (2·12) that represents
the location of the parameter list. Information in the parameter
list may be changed by specifying the appropriate operands on
the macro.

Note: When you use the MF = (E,addr) parameter, all other parameters are
optional. Before the function is executed, a valid combination of
parameters must be specified by the List and Execute Formats of the macro.

Chapter 1. CMS Macro Instructions 23

CMSDEV

When the CMSDEV macro completes, the defined 12-byte storage area
contains the device characteristics.

If the virtual device exists, the first four bytes contain:

Bytes
o
1
2
3

Virtual Device Information
Type class
Type
Status
Flags

If the virtual device is associated with a local real device, bytes four
through seven contain:

Bytes
4
5
6
7

Local Real Device Information
Type class
Type
Model number
Current device line length for a virtual console, or the device
feature code for other devices.

If the virtual device is associated with a remote real device, bytes four
through seven contain:

Bytes
4
5
6

Remote Real Device Information
Type class
Type for a remote 3270 console
Model number for a remote 3270 console

7 Current device line length for a remote virtual console.

If the virtual device is a local virtual console or a remote 3270 virtual
console with an unknown address (device specified as CONS), bytes eight
through eleven contain:

Byte
8

9
10-11

Information
The terminal code bits defining the type of virtual console and the
translate table the console is using.
Reserved
Virtual device address

For virtual devices other than CONS, bytes eight through eleven contain:

Bytes Information
8 Reserved
9 Reserved

10-11 Virtual device address

Usage Notes:

1. Use the CMSDEV macro when printing with the PRINTL macro to
obtain the device characteristics of the virtual printer.

24 VM/SP eMS Macros and Functions Reference

J

L

CMSDEV

Return Codes:

When the CMSDEV macro completes, register 15 contains one of the
following return codes:

Code
o
1

2

Meaning
The virtual device is attached and a real device is associated with it.
The virtual device is attached and a real device is not associated
with it. This is normal for spooled devices.
The virtual device is not attached or an invalid device address was
specified.

Chapter 1. CMS Macro Instructions 25

COMPSWT

COMPSWT

Use the COMPSWT macro instruction to turn the compiler switch
(COMPSWT) flag on or off. The COMPSWT flag is in the OSSFLAGS byte
of the nucleus constant area (NUCON).

The format of the COMPSWT macro instruction is:

I [label] COMPSWT

where:

label

ON

is an optional statement label.

turns the COMPSWT flag on. When this flag is on, any program
called by a LINK, LOAD, XCTL, or ATTACH macro instruction must

J

be a nonrelocatable module in a file with a filetype of MODULE; it is \.
loaded via the CMS LOADMOD command. .."

OFF
turns the COMPSWT flag off. When this flag is off, any program
called by a LINK, LOAD, XCTL, or ATTACH macro instruction must
be a relocatable object module residing in a file with a filetype of
TEXT, LOADLIB, or TXTLIB; it is loaded via the CMS INCLUDE
command.

26 VM/SP eMS Macros and Functions Reference

CONSOLE

CONSOLE

Use the CONSOLE macro instruction to access CMS full-screen console
services. The CONSOLE macro performs 3270 I/O operations, including
building the Channel Command Word (CCW), issuing the DIAGNOSE code
X'58' or SIO instruction, waiting for the I/O to complete and checking any
error status from the device. Applications must construct a valid 3270 data
stream to write to the screen and a 3270 data stream will be returned when
a CONSOLE READ is performed.

The CONSOLE macro allows programs to open 'paths' to a display device.
The CONSOLE macro coordinates the use of the screen by indicating to an
application doing a write that another 'path' has updated the screen last
and that the screen must be reformatted. In this manner, full-screen
applications will not have to re-write the entire screen every time a write is
done.

The CONSOLE macro provides the following functions:

• OPEN/CLOSE - Opening and Closing a specific path to the console

• READ/WRITE/EXCP - Reading and Writing buffers that have 3270 data
streams built by the application. The CMS console routine issues the
DIAGNOSE code X'58' for the virtual console or a Start I/O (SIO) for
dialed devices, tests conditions after I/O, and gives indication back to
the application concerning the result of the I/O operation. The
CONSOLE function will build the CCW for Read and Write requests,
but the application must supply its own CCW when using the EXCP
function.

• WAIT - Wait for an interrupt, such as an I/O interrupt from the console
device

• QUERY - Get information about the device attributes (from DIAGNOSE
code X'24' and X'8C') or about a specific path and its associated device,
if the path is opened. The user should provide a buffer to contain this
information, which can be mapped by the CQYSECT mapping macro.
For more information about the CQYSECT macro, refer to VM/SP Data
Areas and Control Block Logic Volume 2 (CMS).

The four formats of the CONSOLE macro instruction are:

• Standard
• List (MF = L)
• Complex List (MF = (L,addr[,label]))
• Execute (MF=(E,addr»

Chapter 1. CMS Macro Instructions 27

CONSOLE

Standard Format

The Standard Format for defining a path to a device is:

[label] CONSOLE OPEN. PATH= { I name I }

(addr[.length])

[.DEVICE=dev]

[.EXIT=addr [.UWORD=addr]]

[.BUFFER=(addr[.length])]

[.ERROR=addr]

where:

label
is an optional statement label.

name
is a literal string enclosed in quotes.

addr
is an assembler label or a register (2-12) enclosed in parentheses.

length

dev

specifies the length of the addr. It may be one of the following:

(reg)
is a register containing the length.

n
is an absolute expression whose value is the length in bytes.

specifies the virtual device whose characteristics are to be obtained.
It may be one of the following:

vaddr

(reg)

is a hexadecimal address of a virtual device.

is a register (2-12) enclosed in parentheses. If you use a register,
the device number is contained in the low-order half and zeros in
the remaining bytes.

PATH
specifies the unique name assigned to a path being opened. If you use
register notation, you must specify the length of the path name. If
you use a label, you can also specify the length. If length is not
specified, the length associated with the label is used. The maximum
length for a path name is 16 characters (or 16 bytes).

28 VM/SP eMS Macros and Functions Reference

J

CONSOLE

DEVICE
specifies the virtual device number of the console or dialed device
associated with the path. You can specify decimal -lor hex constant
FFFFFFFF for the virtual console. If the DEVICE parameter is not
explicitly specified, the virtual console is assumed, except in the
Complex List and Execute Formats.

EXIT
specifies the address of a routine that gets control in the event of an
unsolicited interrupt. Control is given to the exit routine of the path
that did the last I/O. If no previous I/O was done, control is given to
the exit routine of the path that was last opened. The exit routine
receives control as an extension of CMS I/O interrupt handling. The
Program Status Word (PSW) is set up with a system storage key and is
disabled for interrupts. Register 0 contains the user word. (See
UWORD parameter description.)

The exit routine should be prepared to handle all interrupts it
receives. You are responsible for establishing proper entry and exit
linkage for your routine. When your exit routine receives control, the
significant registers contain:

Registers Contents
o UWORD (user word)
13 Address of 72-byte save area
14 Return address
15 Entry point address

Your routine must return control to the address specified in register
14 upon entry.

To obtain information about the CSW at the time of interrupt, the
interrupting device address, or other information about the path and
associated device, the exit should issue the CONSOLE QUERY
function, specifying PATH and providing a buffer. Use the CQYSECT
macro to map the information moved into the buffer. (See BUFFER
parameter description.)

Note: When using the EXIT parameter, you should not have an
HNDINT routine defined for the same device associated with this
EXIT. The use .of CONSOLE macro with the use of HNDINT should
be mutually exclusive.

UWORD
specifies an optional full word parameter that is passed to the exit
routine. It can contain any value you wish. When the exit routine
gains control, register 0 contains the UWORD parameter (see EXIT
parameter description). If you use a label, the address of the label is
passed to the routine. If you use a register, the content of the register
is passed to the routine.

Chapter 1. CMS Macro Instructions 29

CONSOLE

BUFFER
specifies where information about the opened device is returned to the
application. If you use register notation, you must specify the length
of the buffer. If you use a label, the length can also be specified. If
length is not specified, the length associated with the label is used.

The data returned in the buffer by the OPEN function is mapped by
the CQYSECT macro. For more information about the CQYSECT
macro, refer to VM/SP Data Areas and Control Block Logic Volume 2
(CMS). If the length of the buffer is less than the length of the data,
the data is truncated. You can obtain this information from the
CQYSECT length equates. Register 0 contains the length of the data
moved into the buffer by the OPEN function.

ERROR
specifies the address of an instruction where execution resumes if an
error occurs in processing the CONSOLE request. If this parameter is
omitted, execution resumes at the next sequential instruction.

The Standard Format for closing a path to a device is:

[label] CONSOLE CLOSE,PATH= {'name' }
(addr[,length])

[,ERROR=addr]

where:

The parameters are the same as before.

The Standard Format for waiting for an interrupt from a display device is:

[label] CONSOLE WAIT,PATH= {'name' }
(addr[, length])

[,ERROR=addr]

where:

The parameters are the same as before.

30 VM/SP eMS Macros and Functions Reference

J

CONSOLE

The Standard Format for obtaining information about a specific device, or a
specific path and its corresponding device is:

[label] CONSOLE QUERY {. PATH= {' name' } 1 (addr[,length])
,DEVICE=dev

[,BUFFER=(addr[,length])]

[,ERROR=addr]

Note: The PATH and DEVICE parameters are mutually exclusive. One of
these parameters must be specified. If both are specified, PATH is ignored.

where:

The parameters are the same as before except for the following:

DEVICE
specifies the virtual device number of the console or dialed device
being queried. You can specify decimal-! or hex constant FFFFFFFF
for the virtual console. Because this function is used to explicitly
query a given path or device, the virtual console is not assumed if the
DEVICE parameter is not specified.

BUFFER
specifies where information about the device and/or path is returned.

Note: If the buffer is large enough, when you specify PATH, both
path and device information are returned. If you specify DEVICE,
only information about that device is returned.

The data returned in the buffer from the QUERY parameter is mapped
by the CQYSECT macro. For more information about the CQYSECT
macro, refer to VM/SP Data Areas and Control Block Logic Volume 2
(CMS). If the length of the buffer is less than the length of the data,
the data is truncated. You can obtain this information from the
CQYSECT length equates. Register 0 contains the length of the data
moved into the buffer from the QUERY parameter.

Chapter 1. CMS Macro Instructions 31

CONSOLE

The Standard Format for writing a 3270 data stream is:

[label] CONSOLE WRITE,PATH='{'name' }
(addr[.length])

[,BUFFER=(addr[,length])]

(CLEAR[.option])
.OPTIONS= {Option }

(NOCLEAR[.option])

option:
EW
W
EWA
WSF

[,ERROR=addr]

where:

The parameters are the same as before except for the following:

BUFFER
specifies the address of an area in storage that contains the 3270 J
orders and data that is written to the display device. The buffer must
contain a complete 3270 data stream.

OPTIONS
specifies optional processing for the buffer. You can specify options in
any order. For example, (NOCLEAR,W) or (W,NOCLEAR) are both
valid.

The options include:

CLEAR
specifies that the physical screen is cleared before the buffer (if
there is one) is written. You can specify this option without the
BUFFER parameter to simply clear the screen. If you specify
both the BUFFER parameter and the CLEAR option, you should
also specify EW, EWA, or WSF.

NO CLEAR

EW

specifies that the physical screen is not cleared by the CONSOLE
macro. The operating system may require you to clear the
screen manually before the buffer is written. If you do not
specify CLEAR or NO CLEAR, NOCLEAR is assumed.

specifies the buffer is written with the Erase/Write option. This
option reformats the screen by causing a complete erasure of the J'
screen before the write operation is started. You must specify
BUFFER with this option.

32 VMjSP eMS Macros and Functions Reference

[label] CONSOLE

W

CONSOLE

specifies that the buffer is written with an ordinary Write
command, overlaying the current contents of the display screen.
You must specify BUFFER with this option. If you do not
specify W, EW, EWA, or WSF, W is assumed.

EWA

WSF

specifies the buffer is written with the Erase/Write Alternate
option to establish the alternate screen mode for the device. You
must specify BUFFER with this option.

specifies the buffer is written with the Write Structured Field
option to provide control information to the device. You must
specify BUFFER with this option.

The Standard Format for reading from a display device is:

READ,PATH= {'name' }
(addr[,length])

,BUFFER=(addr[,length])

[,OPTIONS= (WAITINOWAIT[,RDMODI,RDBUF])]

[, ERROR=addr]

where:

The parameters are the same as before except for the following:

BUFFER
specifies the address of an area in storage where the data is returned
from a display device. You must specify BUFFER for the READ
parameter. Register 0 contains the length of the data moved into the
buffer from the I/O operation.

OPTIONS
specifies optional processing for the buffer. You can specify options in
any order. For example, (WAIT,RDMOD) or (RDMOD,W AIT) are both
valid.

The options include:

WAIT
specifies that processing of the request is suspended until an I/O
interrupt is received from the device after the last write
operation is complete. If WAIT or NOW AIT is not specified,
then WAIT is the default.

Chapter 1. CMS Macro Instructions 33

CONSOLE

List Format

NOWAIT
specifies that the read request is processed immediately.

RDMOD
specifies that the request is processed as Read Modified and
transmits only the modified fields from the screen. If RDMOD or
RDBUF is not specified, RDMOD is the default.

RDBUF
specifies that the request is processed as Read Buffer and
transmits the entire contents of the screen.

The Standard Format for reading or writing by specifying your own
Channel Command Word (CCW) is:

[label] CONSOLE EXCP .PATH= {,name' }
(addr [. 1 ength])

.CCW=addr

[.ERROR=addr]

where:

The parameters are the same as before except for:

CCW
specifies the address of a channel program containing one or more
CCWs that indicate the operation(s) being performed. This parameter
is required.

Note: If you issue the EXCP request, you are responsible for generating a
valid channel program, necessitating knowledge of the virtual machine
architecture and the console support implementation. There is no attempt
made to validate the channel program or to convert it to a form appropriate J
to the implementation. The EXCP parameter is not recommended for
use with a virtual console.

The List Format (MF = L) for defining a path to a device is:

34 VM/SP eMS Macros and Functions Reference

CONSOLE

[label] CONSOLE MF=L [. OP EN]

[,PATH= {,name' }
(addr[,length]) 1

[,DEVICE=dev]

[.EXIT=addr[,UWORD=addr]]

[,BUFFER=(addr[,length])]

where:

All of the parameters have the same meaning as those in the Standard
Format except for:

MF=L
specifies that the parameter list is created in-line. No executable code
is generated. You cannot use register notation for macro parameter
addresses, and the error parameter is not allowed.

Note: When you use the MF=L parameter, all other parameters are
optional. Before the function is executed, you must specify a valid
combination of parameters in the List and Execute Formats of the macro.

The List Format for closing a path to a device is:

[label] CONSOLE MF=L [,CLOSE]

[,PATH= {,name' } 1 (addr[,length])

where:

MF = L and other parameters are the same as those mentioned before.

Chapter 1. CMS Macro Instructions 35

r
CONSOLE

The List Format for waiting for an interrupt from a display device is:

[label] CONSOLE MF=L [. WAIT]

[PATH= {'name' }]
• (addr[.length])

where:

MF = L and other parameters are the same as those mentioned before.

The List Format for getting information about a specific device, or a
specific path and its corresponding device is:

[1 abe 1] CONSOLE MF=L [.QUERY]

[{ PATH= fname' }}

1
• (addr[.length])
.DEVICE=dev

[.BUFFER=(addr[.length])]

where:

MF = L and other parameters are the same as those mentioned before.

The List Format for writing a 3270 data stream is:

[label] CONSOLE MF=L [. WRITE]

[PATH= {' name I }

• (addr[.length])]
[.BUFFER=(addr[.length])]

(CLEAR[.option]) .OPTIONS= tPti on }

(NOCLEAR[.option])

option:
EW
W
EWA
WSF

where:

MF = L and other parameters are the same as those mentioned before.

36 VMjSP eMS Macros and Functions Reference

J

J

J

J

[label]

[1 abel]

CONSOLE

The list format for reading from a display device is:

CONSOLE MF=L [.READ]

[.PATH= {,name' } 1 (addr[.length])

[.BUFFER=(addr[.length])]

[.OPTIONS= (WAITINOWAIT[.RDMODIRDBUF])]

where:

MF = L and other parameters are the same as those mentioned before.

The list format for reading or writing by specifying your own Channel
Command Word (CCW) is:

CONSOLE MF=L [.EXCP]

[.PATH= {,name' } 1 (addr[.length])

[.ccW=ccw]

where:

MF = L and other parameters are the same as those mentioned before.

Complex List Format

[label]

The Complex List Format (MF = (L,addr[,label])) for defining a path to a
device is:

CONSOLE MF=(L.addr[.labe1]) [. OPEN]

.
[.PATH= {' name' } 1 (addr[.length])

[.DEVICE=dev]

[.EXIT=addr[.UWORD=addr]]

[.BUFFER=(addr[.length])]

All of the parameters have the same meaning as those in the Standard
Format except for the following:

Chapter 1. CMS Macro Instructions 37

,

CONSOLE

[1 abe 1]

[label]

MF = (L,addr[,label])
specifies that the parameter list is created in the area specified by
addr. You can specify the address as an assembler label or a register
(2-12) enclosed in parentheses. It represents an area within a program
or an area of free storage obtained by a system service. You can
determine the size of the parameter list by coding the label operand.
The macro expansion equates label to the size of the parameter list.
This format of the macro produces executable code that moves the
data into the parameter list specified by addr. It does not generate the
instruction to invoke the function. If you use this version of the List
Format, you must execute it prior to any related invocation of the
Execute Format. The ERROR parameter is not valid for this format.

DEVICE
specifies the virtual device number of the console or dialed device J
associated with the path. You can specify decimal-lor hex constant .
FFFFFFFF for the virtual console. If the DEVICE parameter is not
explicitly specified, the virtual console is not assumed.

Note: When you use the MF = (L,addr[,labeID parameter, all other
parameters are optional. No default parameters are assumed. Each
parameter must be specified. Before the function is executed, you must
specify a valid combination of parameters in the List and Execute Format
of the macro.

The Complex List Format for closing a path to a device is:

CONSOLE MF=(L,addr[, label]) [, CLOSE]

[PATH= {' name I } 1 ' (addr[,length])

where:

MF = (L,addr[,labeID and other parameters are the same as those mentioned
before.

The Complex List Format for waiting for an interrupt from a display device
IS:

CONSOLE MF=(L,addr[,label]) [,WAIT]

[,PATH= {' name I } 1 (addr[, length])

where:

MF = (L,addr[,label]) and other parameters are the same as those mentioned
before.

J

38 VMjSP eMS Macros and Functions Reference

[label]

[1 abe l]

CONSOLE

The Complex List Format for obtaining information about a specific device,
or a specific path and its corresponding device is:

CONSOLE MF=(L.addr[.label]) [.QUERY] [rATH = {,name' t}
1

• (addr[.length])
.DEVICE=dev

[.BUFFER=(addr[.length])]

where:

MF = (L,addr[,label]) and other parameters are the same as those mentioned
before.

The Complex List Format for writing a 3270 data stream is:

CONSOLE MF=(L.addr[. label]) [. WRITE]

[PATH= {'name' }
• (addr[.length]) 1

[.BUFFER=(addr[. length])]

.OPTIONS= {option }
(CLEAR[.option])
(NOCLEAR[.option])

option:
EW
W
EWA
WSF

where:

MF = (L,addr[,label]) and other parameters are the same as those mentioned
before.

Chapter 1. CMS Macro Instructions 39

CONSOLE

[label]

[1 abe 1]

The Complex List Format for reading from a display device is:

CONSOLE MF=(L.addr[. label]) [.READ]

[PATH= {' name' } 1 • (addr[.length])

[.BUFFER=(addr[.length])]

[.OPTIONS= (WAITINOWAIT[.RDMODIRDBUF])]

where:

MF = (L,addr[,label]) and other parameters are the same as those mentioned
before.

The Complex List Format for reading or writing by specifying your own
Channel Command Word (CCW) is:

CONSOLE MF=(L.addr[.label]) [.EXCP]

[PATH= {'name' } 1 • (addr[.length])

[.CCW=ccw]

where:

MF = (L,addr[,label]) and other parameters are the same as those mentioned
before.

40 VM/SP eMS Macros and Functions Reference

J

J

Execute Format

CONSOLE

The Execute Format (MF = (E,addr» for defining a path to a device is:

[label] CONSOLE MF=(E,addr) [,OPEN]

[,PATH= {'name' }
(addr[, length])

[,DEVICE=dev]

[,EXIT=addr[,UWORD=addr]]

[,BUFFER=(addr[,length])]

[,ERROR=addr]

where:

All of the parameters have the same meaning as those in the Standard
Format except for:

MF = (E,addr)

1

specifies that instructions are to be generated to execute the
CONSOLE function. The address specifies the location of the
parameter list. You can specify it as an assembler label or a register
(2-12) enclosed in parentheses. You can change information in the
parameter list by specifying the appropriate operands on the macro.

DEVICE
specifies the virtual device number of the console or dialed device
associated with the path. You can specify decimal-lor hex constant
FFFFFFFF for the virtual console. If the DEVICE parameter is not
explicitly specified, the virtual console is not assumed.

Note: When you use the MF=(E,addr) parameter, all other parameters are
optional. No default parameters are assumed. You must specify a valid
combination of parameters in the Execute Format of the macro before the
function is executed.

Chapter 1. CMS Macro Instructions 41

CONSOLE

The Execute Format for closing a path to a device is:

[label] CONSOLE MF=(E,addr) ·[,CLOSE]

[PATH= {'name' } 1 ' (addr[,length])

[,ERROR=addr]

where:

MF = (E,addr) and other parameters are the same as those mentioned before.

The Execute Format for waiting for an interrupt from a display device is:

[1 abel] CONSOLE MF=(E,addr) [, WAIT]

[,PATH= {' name' }
(addr[,length]) 1

[,ERROR=addr]

where:

MF=(E,addr) and other parameters are the same as those mentioned before.

The Execute Format for obtaining information about a specific device, or a
specific path and its corresponding device is:

[label] CONSOLE MF=(E,addr) [,QUERY]

[{ PATH- {' name' }}

1
' (addr[,length])
,DEVICE=dev

[,BUFFER=(addr[.length])]

[,ERROR=addr]

where:

MF = (E,addr) and other parameters are the same as those mentioned before.

42 VM/SP eMS Macros and Functions Reference

J

J

CONSOLE

The Execute Format for writing a 3270 data stream is:

[label] CONSOLE MF=(E,addr) [,WRITE]

[PATH= { 'name' }
' (addr[,length]) 1

[,BUFFER=(addr[,length])]

.OPTIONS= {Option }
(CLEAR[,option])
(NOCLEAR[,option])

option:
EW
W
EWA
WSF

[,ERROR=addr]

where:

MF = (E,addr) and other parameters are the same as those mentioned before.

The Execute Format for reading from a display device is:

[label] CONSOLE MF=(E,addr) [, READ]

[,PATH= {'name' }
(addr[,length]) 1

[,BUFFER=(addr[,length])]

[,OPTIONS= (WAITINOWAIT[,RDMODIRDBUF])]
[,ERROR=addr]

where:

MF = (E,addr) and other parameters are the same as those mentioned before.

Chapter 1. CMS Macro Instructions 43

CONSOLE

The Execute Format for reading or writing by specifying your own Channel
Command Word (CCW) is:

[1 abel] CONSOLE MF=(E,addr) [,EXCP]

[PATH= {' name I }

• (addr[,length]) 1
[,CCW=addr]

[,ERROR=addr]

where:

MF = (E,addr) and other parameters are the same as those mentioned before.

Return Codes:

Upon completion of the requested function, Register 15 will contain one of
the following return codes:

For Open Function

o The path is opened. If a buffer is provided, the length of the data
stored in the buffer is returned in Register o.

1 A path has been opened to the virtual device, but no real device is
currently connected to that virtual device.

24 The plist is invalid; a path was not specified.

28 The path is already open. If a buffer is provided, the length of the
data stored in the buffer is returned in Register o.

40 The virtual device is invalid or not defined.

88 The virtual device is not supported by the Console Facility for
full-screen I/O.

104 Unable to obtain storage to process the request.

For Close Function

o The path is closed.

3 The requested path has been closed, but other paths to the associated
device are still open.

24 The plist is invalid; a path was not specified.

28 Path not found.

44 VM/SP eMS Macros and Functions Reference

J

J

J

CONSOLE

For Query Function

o If querying a path, the path is open. If querying a device, the device is
defined, connected to a real device, and supported by the Console
Facility. If a buffer is provided, the length of data stored in the buffer
is returned in Register o.

1 The virtual device is defined and supported by the Console Facility,
but it is not currently connected to a real device.

24 The plist is invalid; a path or a device must be specified.

28 Path not found.

40 The virtual device is invalid or not defined.

88 The virtual device associated with the path is not supported by the
Console Facility for full· screen I/O.

For Read/Write/Excp Functions

o I/O successful.

1 A path has been opened to the virtual device, but no real device is
currently connected to that virtual device.

2 You must issue a CONSOLE QUERY for the device before any more
I/O is requested. The device characteristics have changed because a
device was disconnected and then reconnected. l

24 The plist is invalid; the function name is unknown, a required
parameter is missing, or conflicting options were specified.

28 Path not found. This return code occurs if the path was never opened,
or if a device receives an I/O error because it was detached after the
path was opened. The Console Facility closes all paths associated
with the device, and indicates that the path no longer exists.

32 A full-screen read or write was requested, but another application
wrote to the screen. For a read request, the screen read may not
belong to your application. An Erase/Write must be issued to
reformat the screen and return ownership to the current application.

100 An I/O error has occurred. You can obtain the CSW status by issuing
a CONSOLE QUERY and specifying a buffer that will contain the
information.

If another application attempts an OPEN and the device characteristics do
not match what is currently in the device table, other paths are notified (by
return code 2) of this change the next time they attempt to do I/O using the
CONSOLE macro.

Chapter 1. CMS Macro Instructions 45

CONSOLE

For Wait Function

o The WAIT completed successfully.

2 You must issue a CONSOLE QUERY for the device before any more
I/O is requested. The device characteristics have changed because a
device was disconnected and then reconnected. (See footnote 1)

24 The plist is invalid; a path was not specified.

28 Path not found.

46 VMjSP eMS Macros and Functions Reference

CPRB

CPRB

The CPRB macro builds a CPRB DSECT (the default) or builds code to
acquire storage for and partially initialize a CPRB control block.

The CPRB control block is built on a double word boundary.

The format of the CPRB macro for assembler language is given in the
VMjSP IBM Programmer's Guide to the Server-Requester Programming
Interface for VMjSP.

When coded with DSECT = YES (or without the DSECT parameter), the
CPRB macro builds a DSECT that you should use to access CPRB fields.
You can use the label CRBCB to address the CPRB with an assembler
USING statement.

When coded with DSECT = NO, the CPRB macro builds code to acquire
storage for and partially initialize a CPRB control block. The address of
the CPRB is returned in register 1. DSECT = NO is required only for
issuing SENDREQ.

Except in the case of abend recovery, VM does not automatically release
storage allocated by DMSFREE. Therefore, the server should always
explicitly release CPRBs that it has acquired by using the DMSFRET
macro instruction. The label CRBLEN can be used to specify the length of
the CPRB when issuing a DMSFRET macro to free the CPRB storage when
the CPRB is no longer required.

The format of the CPRB macro instruction is:

I [l abe 1] I ePRS [DSECT=YESINOJ

where:

label
is an optional statement label.

DSECT=YESINO
YES is the default if the DSECT parameter is not coded. YES means
that a DSECT defining the fields in a CPRB will be included. No
CPRB control block will be built by the macro call.

NO means a CPRB control block will be built.

The following assembly message (MNOTE) may be produced during
assembler processing of the CPRB macro:

DMSMACOOIE DSECT OPERAND NOT 'YES' OR 'NO', 'NO' ASSUMED

Chapter 1. CMS Macro Instructions 47

CPRB

For more information on the CPRB macro and how to use it with Enhanced
Connectivity Facilities on VM/SP, see the VM/SP IBM Programmer's
Guide to the Server-Requester Programming Interface for VM/SP.

48 VMjSP eMS Macros and Functions Reference

J

J

CSMRETCD

CSMRETCD

Servers use this macro to define names for IBM System/370 to IBM
Personal Computer Enhanced Connectivity Facilities return codes for
VM/SP. The name of each return code value is listed in the VM/SP IBM
Programmer's Guide to the Server-Requester Programming Interface for
VM/SP.

The format for the CSMRETCD macro instruction is:

I [label] I CSMRETCD I

where:

label
is an optional statement label.

CSMRETCD does not produce an assembly message (MNOTE).

For more information on the CSMRETCD macro and how to use it with
Enhanced Connectivity Facilities on VM/SP, see the VM/SP IBM
Programmer's Guide to the Server-Requester Programming Interface for
VM/SP.

Chapter 1. CMS Macro Instructions 49

DELENTRY

DELENTRY

(

Servers use the DELENTRY macro to drop entry-names previously placed
on the Communications Module termination notification list via the
ADDENTRY macro.

The format of the DELENTRY macro instruction is:

I [1 a be 1] I DEL ENTRY lent ry-name

where:

label
is an optional statement label.

entry-name
is the name of an entry to be dropped from the notification list. This
name must be one of the entries that was registered via ADDENTRY.

The IBM System/370 to IBM Personal Computer Enhanced Connectivity
Facilities return code is returned in register 15.

The following assembly message (MNOTE) may be produced during
assembler processing of the DELENTRY macro:

DMSMAC031S ENTRY NAME NOT SPECIFIED IN DELENTRY MACRO

For more information on the DELENTRY macro and how to use it with
Enhanced Connectivity Facilities on VM/SP, see the VM/SP IBM
Programmer's Guide to the Server-Requester Programming Interface for
VM/SP.

50 VM/SP eMS Macros and Functions Reference

J

FSCB

[1 abe 1] FSCB

FSCB

Use the FSCB macro instruction to create a file system control block
(FSCB) for a CMS input or output disk file.

The format of the FSCB macro instruction is:

['fileid'] [. RECFM=format] [. BUFFER=buffer]
[. FORM=E] [. BS I Z E= 5 i ze] • [.RECNO=number]
[.NOREC=numrec]

where:

label

fileid

is an optional statement label.

specifies the CMS file identifier, which must be enclosed in single
quotation marks and separated by blanks ('filename filetype filemode').
If filemode is omitted, Al is assumed.

RECFM = format
indicates whether the records are fixed (F)- or variable (V)-length
format. The default is F.

BUFFER = buffer
specifies the address of an I/O buffer, from which records are to be
read or written.

FORM=E
specifies the extended format FSCB is to be generated. This extended
format FSCB allows you to specify a value (up to 231-1) for RECNO
and NOREC. If you do not specify FORM = E, the RECNO and
NOREC values cannot exceed 65533.

BSIZE=size
specifies the number of bytes to be read or written for each read or
write request.

RECNO = number
specifies the record number of the next record to be accessed, relative
to the beginning of the file, record 1. The default is 0, which indicates
that records are to be accessed sequentially.

NOREC = numrec
specifies the number of records to be read in the next read operation.
The default is 1.

Chapter 1. CMS Macro Instructions 51

FSCB

Usage Notes:

1. The format of the FSCB macro is as follows:

FSCBCOMM DC CL8' ,
CL8' ,
CL8' ,
CL2' ,

FSCBFN DC
FSCBFT DC
FSCBFM DC
FSCBITNO
FSCBBUFF
FSCBSIZE
FSCBFV
FSCBFLG
FSCBNOIT
FSCBNORD
FSCBAITN
FSCBANIT
FSCBWPTR
FSCBRPTR

DC H'O'
DC A'O'
DC F'O'
DC CL2'F'
EQU FSCBFV+l
DC H'I'
DC AL4(O)
DC AL4(O)
DC AL4(I)
DC AL4(O)
DC AL4(O)

File system command
Filename
Filetype
Filemode
Relative record number(RECNO)
Address of buffer(BUFFER)
Number of bytes to read or write(BSIZE)
Record format--F or V (RECFM)
Flag byte
Number of records to read or write (NOREC)
Number of bytes actually read
Extended FSCB relative record number
Extended FSCB relative number of records
Extended FSCB relative write pointer
Extended FSCB relative read pointer

2. The options RECFM, BUFFER, BSIZE, RECNO, and NOREC must all
be specified as self-defining terms.

3. You can use the same FSCB to reference several different files; you can
override the fileid, or any of the options, on the FSOPEN, FSWRITE, or
FSREAD macro instructions when you reference a file via its FSCB.
However, if the FSOPEN macro instruction is used to ready an existing
file, the BSIZE and RECFM fields in the FSCB are reset to reflect \
actual file characteristics. ~

4. You can use multiple FSCBs to reference the same file, for example, if
you wanted one FSCB for writing and a different FSCB for reading the
file. Keep in mind, however, that the file characteristics are inherent to
the file and not to the FSCB. If you establish a read or write pointer
using the RECNO option in one FSCB, that pointer remains unchanged
unless you specify the RECNO option again on the same or any other
FSCB for that file.

5. If a fileid is created with a blank filename and/or filetype, return code
28 is given.

52 VM/SP eMS Macros and Functions Reference

FSCBD

FSCBD

Use the FSCBD macro instruction to generate a DSECT for the file system
control block (FSCB).

The format of the FSCBD macro instruction is:

I [labe 1] I FSCBC

where:

label
is an optional statement label. The first statement in the FSCBD
macro expansion is labeled FSCBD.

Usage Notes:

1. The FSCBD macro instruction expands as follows:

FSCBD
FSCBD DSECT
FSCBCOMM DS CL8 File system command
FSCBFN OS CL8 Filename
FSCBFT DS CL8 Filetype
FSCBFM DS CL2 Filemode
FSCBITNO DS H Relative record number(RECNO)
FSCBBUFF DS A Address of buffer (BUFFER)
FSCBSIZE DS F Number of bytes tO,read or write(BSIZE)
FSCBFV DS CL2 Record format--F or V (RECFM)
FSCBFLG EQU FSCBFV+l Flag byte
FSCBNOIT DS H Number of records to read or write(NOREC)
FSCBNORD DS A Number of bytes actually read
FSCBAITN DS F Extended FSCB relative record number
FSCBANIT DS F Extended FSCB relative number of records
FSCBWPTR DS F Extended FSCB relative write pointer
FSCBRPTR DS F Extended FSCB relative read pointer

2. You can use the labels established in the FSCB DSECT to modify the
fields in an FSCB for a particular file. An FSCB is created explicitly by
the FSCB macro instruction, and implicitly by the FSREAD, FSWRITE,
and FSOPEN macro instructions.

3. If you specify FORM = E as the parameter of the FSCB macro
instruction, the fields FSCBITNO and FSCBNOIT are no longer used.
They are replaced with FSCBAITN and FSCBANIT. The X'20' bit of
the FSCBFLG flag is turned on. The fields FSCBWPTR and
FSCBRPTR are used by the FSPOINT function. FORM = E plists must
be used to manipulate files larger than 65,533 items.

Chapter 1. CMS Macro Instructions 53

FSCLOSE

FSCLOSE

Use the FSCLOSE macro instruction to close an open file.

The format of the FSCLOSE macro instruction is:

[labelJ FSCLOSE {fileid [,FSCB:fSCbJ}[,ERROR:erraddrJ
FSCB=fscb

where:

label

lileid

is an optional statement label.

specifies the CMS file identifier. It may be:

'In It fm'

(reg)

fileid enclosed in single quotation marks and separated by
blanks. If fro is omitted, Al is assumed.

a register other than 0 or 1 containing the address of the fileid
(18 characters). When register format is used, the fileid must be
exactly 18 characters in length; 8 for the filename, 8 for the
filetype, and 2 for the filemode. Shorter names must be filled
with blanks.

FSCB=fscb
specifies the address of an FSCB. It may be:

label
the label on the FSCB macro instruction.

(reg)
a register containing the address of an FSCB.

ERROR =erraddr
specifies the address of an error routine to be given control if an error
is found. If ERROR = is not coded and an error occurs, control returns
to the next sequential instruction in the calling program, as it does if
no error occurs.

54 VM/SP eMS Macros and Functions Reference

J

FSCLOSE

Usage Notes:

1. Although CMS routines close files when a command or program
completes execution, you must use the FSCLOSE macro instruction
when you are executing a program from within an EXEC, or when you
are going to read and write records in the same file.

2. If you specify both fileid and FSCB, the fileid is used to fill in the
FSCB.

3. Even though an FSCLOSE macro is issued for a file, the directory is not
updated on disk as long as there are other files open for output on that
disk.

Error Conditions:

If an error occurs, register 15 contains the following error code:

Code
6

Meaning
File is not open or no read or write was issued to file.

Chapter 1. CMS Macro Instructions 55

FSERASE

FSERASE

Use the FSERASE macro instruction to delete a CMS disk file.

The format of the FSERASE macro instruction is:

[label] FSERASE { fi 1 ei d [,FSCB]} [.ERROR=erraddr]
FSCB=fscb

where:

label

fileid

is an optional statement label.

specifies the CMS file identifier. It may be:

'fn ft fm'

(reg)

fileid enclosed in single quotation marks and separated by
blanks. If fm is omitted, Al is assumed.

a register other than 0 or 1 containing the address of the fileid
(18 characters). When register format is used, the fileid must be
exactly 18 characters in length; 8 for the filename, 8 for the
filetype, and 2 for the filemode. Shorter names must be filled
with blanks.

FSCB=fscb
specifies the address of an FSCB. It may be:

label
the label of an FSCB macro instruction.

(reg)
a register containing the address of an FSCB.

ERROR = erraddr
specifies the address of an error routine to be given control if an error
occurs. If ERROR = is not coded and an error occurs, control returns
to the next sequential instruction in the calling program, as it does if
no error occurs.

56 VMjSP eMS Macros and Functions Reference

J

J

J

J

FSERASE

Usage Notes:

1. On return from the FSERASE macro, register 1 points to a parameter
list. The second doubleword contains the filename; the third
doubleword contains the filetype; and the next halfword contains the
filemode of the file.

2. If fileid and FSCB = are both coded, the fileid is used to fill in the
FSCB.

Error Conditions:

If an error occurs, register 15 contains one of the following error codes:

Code
24
28
36

Meaning
Parameter list error
File not found
Disk not accessed

Chapter 1. CMS Macro Instructions 57

FSOPEN

FSOPEN

[1 abe 1] FSOPEN

Use the FSOPEN macro instruction to ready a file for either input or
output.

The format of the FSOPEN macro instruction is:

{fileid [,FSCB=fSCbJ}[,ERROR=erraddrJ
FSCB=fscb [,FORM=EJ

[,optionsJ

where:

label

fileid

is an optional statement label.

specifies the CMS file identifier. It may be:

'in it fm'

(reg)

the fileid enclosed in single quotation marks and separated by .. \
blanks. If fm is omitted, Al is assumed. ""'"

a register other than 0 or 1 containing the address of the fileid
(18 characters). When register format is used, the fileid must be
exactly 18 characters in length; 8 for the filename, 8 for the
filetype, and 2 for the filemode. Shorter names must be filled
with blanks.

FSCB=fscb
specifies the address of an FSCB. It may be:

label
the label on an FSCB macro instruction.

(reg)
a register containing the address of an FSCB.

ERROR = erraddr
specifies the address of an error routine to be given control if an error
is found. If ERROR = is not coded and an error occurs, control
returns to the next sequential instruction in the calling program, as it
does if no error occurs.

FORM=E
must be specified when the extended format is being used.

58 VM/SP eMS Macros and Functions Reference

FSOPEN

Options:

You can specify any of the following FSCB macro options on the FSOPEN
macro instruction:

BUFFER = buffer
RECNO = number
BSIZE=size
RECFM = format
NOREC = numrec

These options may be specified either as the actual value (for example,
NOREC = 1) or as a register that contains the value (for example,
NOREC = 3) where register 3 contains the value 1).

When you use any of these options, the associated field in the FSCB is
modified.

Usage Notes:

1. On return from the FSOPEN macro, register 1 points to the FSCB for
the file. If no FSCB exists, one is created in the FSOPEN macro
expansion. However, if the FSOPEN macro instruction is used to ready
an existing file, the BSIZE and RECFM fields are reset to reflect actual
file characteristics.

2. If you code both fileid and FSCB =, the fileid is used to fill in the FSCB.

3. You can use the FSOPEN macro instruction to verify the existence of a
file to be opened for reading or writing, and you can use FSOPEN to
create an FSCB for that file.

Error Conditions:

If an error occurs, register 15 contains one of the following error codes:

Code
20
28

Meaning
Invalid file identifier
File does not exist

Chapter 1. CMS Macro Instructions 59

FSPOINT

FSPOINT

[labelJ FSPOINT

Use the FSPOINT macro instruction to reset the write and/or read pointers
for a file. The format of the FSPOINT macro instruction is:

{fileid [.FSCB=fSCbJ} [.ERROR=erraddrJ
FSCB=fscb

[.WRPNT=wrpntJ [.RDPNT=rdpntJ [. FORM=EJ

where:

label

fileid

is an optional statement label.

specifies the CMS file identifier. It may be:

'fn ft fm'

(reg)

the fileid enclosed in quotation marks and separated by blanks.
If fm is omitted, Al is assumed.

a register other than 0 or 1 containing the address of the fileid
(18 characters).

FSCB=fscb
specifies the address of an FSCB. It may be:

label
the label of an FSCB macro instruction.

(reg)
a register containing the address of an FSCB.

ERROR = erraddr
specifies the address of an error routine to be given control if an error
is found. If ERROR = is not coded and an error occurs, control
returns to the next sequential instruction in the calling program, as it
does if no error occurs.

WRPNT = wrpnt
specifies the new value of the write pointer.

number
any assembler symbol or number.

60 VMjSP eMS Macros and Functions Reference

L

FSPOINT

(reg)
a register containing the binary number.

RDPNT = rdpnt
specifies the new value of the read pointer.

number
any assembler symbol or number.

(reg)
a register containing the binary number.

FORM=E
must be specified when the extended format FSCB is being used.

Usage Notes:

1. Both write and read pointers may be changed at the same time, and zero
indicates no change.

2. Minus one (-1) used for a write pointer indicates that the next item is to
be put at the end of the file.

Error Conditions:

If an error occurs, register 15 contains one of the following error codes:

Code
1
2

Meaning
File not found
Parameter list error

Chapter 1. CMS Macro Instructions 61

FSREAD

FSREAD

[labelJ FSREAD

Use the FSREAD macro instruction to read a record from a disk file into an
I/O buffer.

The format of the FSREAD macro instruction is:

{fileid [,FSCB=fSCbJ} [,ERROR=erraddr] [, FORM=EJ
FSCB=fscb [,optionsJ

where:

label

fileid

is an optional statement label.

specifies the CMS file identifier. It may be:

'fn ft fm'

(reg)

the fileid enclosed in single quotation marks and separated by
blanks. If fm is omitted, Al is assumed.

a register other than 0 or 1 containing the address of the fileid
(18 characters). When register format is used, the fileid must be
exactly 18 characters in length; 8 for the filename, 8 for the
filetype, and 2 for the filemode. Shorter names must be filled
with blanks.

FSCB=fscb
specifies the address of an FSCB. It may be:

label
the label of an FSCB macro instruction.

(reg)
a register containing the address of an FSCB.

ERROR = erraddr
specifies the address of an error routine to be given control if an error
is found. If ERROR = is not coded and an error occurs, control returns
to the next sequential instruction in the calling program, as it does if
no error occurs.

FORM=E
must be specified when the extended format FSCB is being used.

62 VM/SP eMS Macros and Functions Reference

FSREAD

Options:

You can specify any of the following FSCB macro options on the FSREAD
macro instruction:

BUFFER = buffer
NOREC = numrec
BSIZE=size
RECNO = number

These options may be specified either as the actual value (for example,
NOREC = 1) or as a register that contains the value (for example,
NOREC = (3) where register 3 contains the value 1).

When you use any of these options, the associated field in the FSCB is
modified.

Usage Notes:

1. If an FSCB macro instruction has not been coded for a file (and the
FSCB = operand is not coded), you must specify the BUFFER = and
BSIZE = options to indicate the address of the buffer and its length.
When reading variable-length records, a record that is longer than the
buffer length is truncated. FSREAD does not clear the buffer when the
record length is not the maximum.

2. On return from the FSREAD macro, register 1 points to the FSCB for
the file. If no FSCB exists, one is created following the FSREAD macro
instruction.

3. If you specify both fileid and FSCB =, the fileid is used to fill in the
FSCB.

4. Register 0 contains, after the read operation is complete, the number of
bytes actually read. This information is also contained in the
FSCBNORD field of the FSCB. Only when zero records are read is the
EOF raised on a multiple record read. EOF is not raised when a partial
read occurs because fewer records remained than were requested.

5. To read records sequentially, beginning with a particular record
number, use the RECNO option to specify the first record to be read. On
the next FSREAD macro instruction, use RECNO = 0 so that reading
continues sequentially, following the first record read.

Chapter 1. CMS Macro Instructions 63

FSREAD

Error Conditions:

If an error occurs, register 15 contains one of the following error codes:

Code
1
2
3
5

7

S
9

11
12

Meaning
File not found
Invalid buffer address
Permanent I/O error
Number of records to be read is less than or equal to zero (or
greater than 32,76S for an SOO-byte formatted disk)
Invalid record format (only checked when the file is first opened
for reading)
Incorrect length - buffer size too small for item read.
File open for output (for an SOO-byte formatted disk)
Number of records greater than 1 for variable-length file
End of file, or record number greater than the number of records in
data set

13 Variable-length file has invalid displacement in active file table
14 Invalid character in filename
15 Invalid character in filetype
19 An I/O error occurred on an FBA device. This was indicated by a

non-zero condition code from a DIAGNOSE code X'20'. Error
detected in module DMSDIO.

25 Insufficient free storage available for file management control

26
areas.
Requested item number is negative or item number plus number of
items exceeds file system capacity.

64 VM/SP eMS Macros and Functions Reference

J

J

J

J

FSSTATE

FSSTATE

Use the FSSTATE macro instruction to determine whether a particular file
exists.

The format of the FSST ATE macro instruction is:

[1 abel] FSSTATE {fi1eid [.FSCB=fSCbJ} [.ERROR=erraddrJ
FSCB=fscb [. FORM=EJ

where:

label

fileid

is an optional statement label.

specifies the CMS file identifier. It may be:

'In It 1m'

(reg)

the fileid enclosed in single quotation marks and separated by
blanks. If fm is omitted, Al is assumed.

a register other than 0 or 1 containing the address of the fileid
(18 characters). When register format is used, the fileid must be
exactly 18 characters in length; 8 for the filename, 8 for the
filetype, and 2 for the filemode. Shorter names must be filled
with blanks.

FSCB=lscb
specifies the address of an FSCB. It may be:

label
the label on an FSCB macro instruction.

(reg)
a register containing the address of an FSCB.

ERROR = erraddr
specifies the address of an error routine to be given control if an error
is found. If ERROR = is not coded and an error occurs, control
returns to the next sequential instruction in the calling program, as it
does if no error occurs.

FORM=E
must be specified when the extended format FSCB is being used.

Chapter 1. CMS Macro Instructions 65

FSSTATE

Usage Notes:

1. If the specified file exists, register 15 contains a 0 return code.

2. The FSST ATE macro creates a copy of the file status table (FST) in the
STATEFST area. Upon return, register 1 points to the input parameter
list. The address of the STATEFST is located at X'IC' within the
parameter list.

The file status table contains the following information:

Decimal
Displacement
o
8

16
18
20
22
24
26
28
30
31
32
36
38

Field Description
Filename
Filetype
Date (mmdd) last written
Time (hhmm) last written
Write pointer (number of item)
Read pointer (number of item)
Filemode
Number of records in file
Disk address of first chain link
Record format (F/V)
FST Flag Byte
Logical record length
Number of 800-byte data blocks
Year (yy) last written

For FORM = E, the following are included:

Decimal
Displacement
40
44
48
52
53
54
60

Field Description
Alternate file origin pointer
Alternate number of data blocks
Alternate item count
Number of pointer block levels
Length of pointer element
Alternate date/time (yy mm dd hh mm ss)
Reserved

3. The FSSTATE macro disregards the filemode number specified when
both the filename and filetype are explicitly specified. When the
filename or filetype (or both) are specified as asterisk (*), the filemode
number is respected.

66 VMjSP eMS Macros and Functions Reference

FSSTATE

Error Conditions:

If an error occurs, register 15 contains one of the following error codes:

Code
20
24
28
36

Meaning
Invalid character in fileid
Invalid filemode
File not found
Disk not accessed

Chapter 1. CMS Macro Instructions 67

FSWRITE

FSWRITE

[labelJ FSWRITE

Use the FSWRITE macro instruction to write a record from an I/O buffer to
a CMS disk file.

The format of the FSWRITE macro instruction is:

{fileid [,FSCB=fSCbJ} [,ERROR=erraddrJ
FSCB=fscb [, FORM=EJ [,optionsJ

where:

label

lileid

is an optional statement label.

specifies the CMS file identifier. It may be:

'In It 1m'

(reg)

the fileid enclosed in single quotation marks and separated by
blanks. If fm is omitted, Al is assumed.

a register other than 0 or 1 containing the address of the fileid
(18 characters). When register format is used, the fileid must be
exactly 18 characters in length; 8 for the filename, 8 for the
filetype, and 2 for the filemode. Shorter names must be filled
with blanks.

FSCB=lscb
specifies the address of an FSCB. It may be:

label
the label on an FSCB macro instruction.

(reg)
a register containing the address of an FSCB.

ERROR = erraddr
specifies the address of an error routine to be given control if an error
is found. If ERROR = is not coded and an error occurs, control returns
to the next sequential instruction in the calling program, as it does if
no error occurs.

FORM=E
must be specified when the extended format FSCB is being used.

68 VMjSP eMS Macros and Functions Reference

J

J

L

FSWRITE

Options:

You can specify any of the following FSCB macro options on the FSWRITE
macro instruction:

BUFFER = buffer
RECNO = number
BSIZE=size
NOREC = numrec
RECFM = format

These options may be specified either as the actual value (for example,
NOREC = 1) or as a register that contains the value (for example,
NOREC = (3) where register 3 contains the value 1).

When you use any of these options, the associated field in the FSCB for the
file is filled in or modified.

Usage Notes:

1. If an FSCB macro instruction has not been coded for a file (and the
FSCB = operand is not coded on the FSWRITE macro instruction), you
must specify the BUFFER = and BSIZE = options to indicate the
location of the read/write buffer and the length of the record to be
written. For the filemode, you must specify both a letter (A-Z) and a
number (0-6). If the file is a variable-length file, you must also specify
RECFM=V.

2. On return from the FSWRITE macro, register 1 contains the address of
the FSCB for the file. If no FSCB exists, one is created following the
FSWRITE macro instruction.

3. If you specify both fileid and FSCB =, the fileid is used to fill in the
FSCB.

4. If the RECNO option is specified (either on the FSWRITE macro
instruction or in the FSCB), that specified record is written. Otherwise,
the next sequential record is written. For new files, writing begins with
record 1; for existing files, writing begins with the first record following
the end of the file.

5. To write records sequentially, beginning with a particular record
number, use the RECNO option to specify the first record to be written.
On the next FSWRITE macro instruction, use RECNO = 0 so that
writing continues sequentially, following the first record written.

6. To write blocked records (valid for fixed-length files only), use the
BSIZE and NOREC options to specify the block size and number of
records per block, respectively. For example, to write 80-byte records
into 800-byte blocks, you should specify BSIZE = 800 and NOREC = 10.
The buffer you use must be at least 800 bytes long.

Chapter 1. CMS Macro Instructions 69

FSWRITE

7. When you use the FSWRITE macro to update an existing file of
variable-length records, the replacement record must be the same length
as the original record. An attempt to write a record shorter or longer
than the original record on a disk formatted with 512-, lK-, 2K-, or
4K-byte block size results in truncation of the file at the specified
record number with no error return codes. An attempt to write a record
shorter or longer than the original record on a disk formatted as an
800-byte block size results in no change to the file and an error code of
27.

8. The "update-in-place" facility allows you to write blocks back to their
previous location on disk. The "update-in-place" attribute of a CMS file
is indicated by the filemode number 6. This only applies to files located
on a 512-, lK-, 2K-, or 4K-byte block formatted minidisk.

Note: For a variable format file, "update-in-place" applies only if a
record is replaced by a record with the same length.

9. The CMS file system does not support zero length records. The
FSWRITE macro cannot be used to write records with a length of zero.

Error Conditions:

If an error occurs, register 15 contains one of the following error codes:

Code
2
3
4
5
6

7
8
9

10

11

Meaning
Invalid buffer address.
Permanent I/O Error.
First character of filemode is invalid or disk not accessed.
Second character of file mode is invalid.
Item number too large (more than 65,535) will not fit in a
halfword, extended PLIST not specified.
Attempt to skip over unwritten variable-length item.
Buffer size missing or invalid.
File open for input (for an 800-byte formatted disk).
Maximum number of files per minidisk reached (3400 for an
800-byte formatted disk).
Record format not F or V.

12 Attempt to write on read-only disk.
13 Disk is full.
14 Number of bytes to be written is not integrally divisible by the

number of records to be written.
15
16
17
18
19

20
21
22
25

Length of fixed-length item not the same as previous item.
Record format specified not the same as file.
Variable-length item greater than 65535 bytes.
Number of records greater than 1 for variable-length file.
Maximum number of data blocks per file reached (16060 for an
800-byte formatted disk).
Invalid character detected in filename.
Invalid character detected in filetype.
Virtual storage capacity exceeded.
Insufficient free storage available for file directory buffers.

70 VM/SP eMS Macros and Functions Reference

J

J

FSWRITE

26 Requested item number is negative or item number plus number
of items exceeds file system capacity.

27 Attempt to update variable length item with one of different
length.

Chapter 1. CMS Macro Instructions 71

HNDEXT

HNDEXT

Use the HNDEXT macro instruction to trap external interruptions and pass
control to an internal routine for processing. In a virtual machine,
external interruptions are caused by the CP EXTERNAL command. The
format of the HNDEXT macro instruction is:

I [1 abe 1] I HNO EXT { SET,address}
CLR

where:

label
is an optional statement label.

SET
specifies that you want to trap external interruptions.

address

CLR

specifies the address in your program of the routine to be given
control when an external interruption occurs.

specifies that you no longer want to trap external interruptions.

Usage Notes:

1. External interruptions (other than timer interruptions) normally place
your virtual machine in the debug environment.

2. When your interruption handling routine is given control, all virtual
interruptions, except multiplexer, are disabled. If you are using the
CMS blip function, all blips are stacked.

3. You are responsible for providing proper entry and exit linkage for your
interruption handling routine. When your routine receives control,
register 1 points to a save area in the format:

Dis121acement
Label Dec Hex

GRS 0 0
FRS 64 40
PSW 96 60
UAREA 104 68
END 176 BO

GRS, FRS, and PSW refer to the general purpose register, floating point
register, and the program status word, respectively, at the time of the

72 VM/SP eMS Macros and Functions Reference

HNDEXT

interrupt. Register 13 points to the user save area at label UAREA.
This save area is for your own use.

Register 15 contains the entry point address of your routine; it must
return control to the address in register 14.

4. If you also issue a STAX macro instruction to handle attention
interruptions while the HNDEXT macro is active, either exit may be
interrupted while the other is running. If your exits depend on data in
static areas, results are unpredictable.

5. If your program uses CMS IUCV support, IUCVexternal interrupts
drive the exits set up by the HNDIUCV and CMSIUCV macros. In this
case, the HNDEXT exit does not receive control. For more information
on CMS IUCV support, see the VM System Facilities for Programming.

6. An STIMER exit will be taken before a HNDEXT exit if both exist in
the same program and a timer interrupt occurs. The order of exits for a
TIMER interrupt is STIMER, HNDEXT, and BLIP processing.

Note: If a HNDEXT exit is coded and BLIP is SET ON, the HNDEXT
exit will trap the BLIP timer interrupt.

7. It is your responsibility to issue a HNDEXT CLR in the application that
issued a HNDEXT SET,address. Under certain environments, no
cleanup is performed by DMSINT after the execution of a program.

Chapter 1. CMS Macro Instructions 73

HNDINT

HNDINT

[label] HNDINT

Use the HNDINT macro instruction to trap interruptions for a specified 1/0
device. The format of the HNDINT macro instruction is:

rET, (dev1 .addr .cuu .ASAP) [,(deV2 ..) .. l}
0 WAIT

CLR. (dev!) [.(dev2)[...]]

[.ERROR=erraddr]

where:

label

SET

dev

addr

cuu

is an optional statement label.

specifies that you want to trap interruptions for the specified device.

specifies a four-character symbolic name for the device whose
interruptions are to be trapped.

specifies the address in your program of the routine to be given
control when the interruption occurs. An address of 0 indicates that
interruptions for the device are to be ignored.

specifies the virtual device address, in hexadecimal, of the device
whose interruptions are to be trapped.

ASAP
specifies that the routine at addr is to be given control as soon as the
interruption occurs.

WAIT

CLR

specifies that the routine at addr is to be given control after the
W AITD macro is issued for the device.

specifies that you no longer want to trap interruptions for the
specified device. HNDINT CLR should not be issued from within the
interruption handling routine.

74 VM/SP eMS Macros and Functions Reference

J

J

J

HNDINT

ERROR = erraddr
specifies the address of an error routine to be given control if an error
is found. If ERROR = is not coded and an error occurs, control returns
to the next sequential instruction in the calling program, as it does if
no error occurs.

Usage Notes:

1. 1/0 operations initiated by some forms of the DIAGNOSE instruction do
not produce 1/0 interruptions and are not trapped by HNDINT. If the
1/0 operation initiated by DIAGNOSE does produce 1/0 interrupts,
HNDINT will trap the interrupts if the device has been specified for
HNDINT. For specific information about 1/0 operations initiated by
the DIAGNOSE instruction, see the VM System Facilities for
Programming.

2. In a single HNDINT macro instruction, you can define interruption
handling routines for more than one device. The argument list for each
device must be enclosed in parentheses and separated from the next list
by a comma.

3. If you specify WAIT, the routine at the specified address in your
program receives control when a W AITD macro instruction that
specifies the same symbolic device name is issued. If the W AITD macro
instruction has already been issued for the device when the interruption
occurs, the routine at the specified address receives control
immediately.

4. You are responsible for establishing proper entry and exit linkage for
your interruption handling routine. When your routine receives
control, the significant registers contain:

Registers Contents
0-1 I/O OLD PSW
2-3 CHANNEL STATUS WORD (CSW)

4 ADDRESS OF INTERRUPTING DEVICE
14 RETURN ADDRESS
15 ENTRY POINT ADDRESS

Your routine must return control to the address in register 14, and
indicate, via register 15, whether processing is complete. A zero (0) in
register 15 means that you are through handling the interruption; any
nonzero return code indicates that you expect another interruption.

Note: Please note that register 13 does not point to a save area for your
use.

5. The interruption handling routine that you code should not perform any
1/0 operations. When it is given control, all 1/0 interruptions and
external interruptions are disabled.

Chapter 1. CMS Macro Instructions 75

HNDINT

6. New applications should use the CONSOLE macro instead of the
HNDINT macro to handle interrupts. Older applications may use
HNDINT, but not in conjunction with CONSOLE.

CONSOLE supports multiple applications for a 3270-type display device,
while HNDINT supports only one. The CONSOLE macro should be used
when doing I/O to a 3270-type device because the CONSOLE macro
supersedes an HNDINT interrupt routine for the same device. An
HNDINT interrupt routine will override a CONSOLE exit routine only
in the case of an unsolicited interrupt. (See the CONSOLE macro.)

Error Conditions:

If an error condition occurs, register 15 will contain one of the following
return codes:

Code
1

2
3

Meaning
Invalid device address (cuu) or interruption handling routine
address (addr)
Trap item replaces another of same device name
Attempting to clear a nonexisting interruption

76 VM/SP eMS Macros and Functions Reference

J

J

HNDSVC

[labelJ HNDSVC

HNDSVC

Use the HNDSVC macro instruction to trap interruptions caused by
specific supervisor call (SVC) instructions. The format of the HNDSVC
macro instruction is:

{SET. (svcnum.address) [. (svcnum.address) ..
CLR.svcnum [.svcnum ... J

. J}
[.ERROR=erraddrJ

where:

label
is an optional statement label.

SET
specifies that you want to trap SVCs of the specified number(s).

svcnum
specifies the number of the SVC you want to trap. SVC numbers 0
through 200 and 206 through 255 are valid.

address

CLR

specifies the address of the routine in your program that should
receive control whenever the specified SVC is issued.

specifies that you no longer want to trap the specified SVC(s).

ERROR = erraddr
specifies the address of an error routine to be given control if an error
is found. If ERROR = is not coded and an error occurs, control returns
to the next sequential instruction in the calling program, as it does if
no error occurs.

Usage Note:

You are responsible for providing the proper entry and exit linkage for your
SVC-handling routine. When your program receives control, the register
contents are as follows:

Register Contents
0-11 Same as when SVC instruction was issued
12 Address of your SVC-hand1ing routine
13 Address of an 18-fu11word save area (for your use)
14 Return address
15 Same as when SVC instruction was issued

Chapter 1. CMS Macro Instructions 77

HNDSVC

Your routine need not restore any registers. Your routine must return
control to the address in register 14.

Error Conditions:

If an error occurs, register 15 contains one of the following error codes:

Code
1
2
3

Meaning
Invalid SVC number, address, plist, or duplicate SVC numbers
SVC number set replaced previously set number
SVC number cleared was not set

78 VM/SP eMS Macros and Functions Reference

J

IMMCMD

Standard Format

[label] IMMCMD

L

IMMCMD

Use the IMMCMD macro instruction to declare, clear, and query Immediate
commands. The four formats of the IMMCMD macro instruction are:

• Standard

• List (MF = L)

• Complex List (MF = (L,addr[,label]))

• Execute (MF = (E,addr»

The Standard Format of the IMMCMD macro instruction is:

eET
NAME=command,EXIT=addr [,UWORD=addr] [,ERROR.addrl}

CLR NAME=command [,ERROR=addr]
QRY NAME=command [,ERROR=addr]

where:

label

addr

SET

CLR

QRY

is an optional statement label.

is an assembler program label or an address stored in a general
register. If a register is used, it must be enclosed in parentheses.

establishes an Immediate command. If an Immediate command with
the same name already exists, it is overridden in a stack-like manner.

clears an Immediate command. Any previously overridden Immediate
command with the same name is reinstated by this action.

indicates that the caller is requesting information about an Immediate
command. A return code from QRY indicates whether or not the
Immediate command exists.

NAME=
is the name of the Immediate command. The command is specified as
a 1- to 8-character word enclosed within single quotes or as an address
stored in a register enclosed within parentheses. On SET, this is the
name of the command being established. On CLR, this is the name of

Chapter 1. CMS Macro Instructions 79

IMMCMD

the command being cancelled. On QRY, this is the name of the
command that information is being sought for. This parameter is
always required.

EXIT =

label

(reg)

is an assembler program label that is the address of the exit
routine.

is a general register. Its value is the address of the exit routine.

EXIT is the routine that receives control when the command is
entered from the terminal.

UWORD=

label

(reg)

is an assembler program label that is the address that is stored as
the UWORD.

is a general register. Its contents are stored as the UWORD.

UWORD is an optional fullword that can be specified by the invoker
for any purpose desired. When the exit routine gains control,
UWORD is available to the exit.

ERROR =
specifies that the error routine receives control if an error is found. If
you do not specify ERROR =, and an error occurs, control returns to
the next sequential instruction (NSI) in the calling program, as it does J .•.
if no error occurs.

label

(reg)

is an assembler program label that is the address of the .error
routine.

is a general register. Its value is the address of the error
routine.

80 VM/SP eMS Macros and Functions Reference

List Format

[1 abe l]

IMMCMD

When MF = L is coded, the IMMCMD macro has the following format:

IMMCMD MF=L [[,NAME.command] [,EXIT.label] [,UWORO·label] 1
,SET [,NAME=command] [,EXIT=label] [,UWORD=label]
,CLR [,NAME=command]
,QRY [,NAME=command]

The parameters have the same meaning as in the Standard Format except
for the following:

MF=L
indicates that the parameter list is created in-line. No executable
code is generated. Register notation cannot be used for macro
parameter addresses.

Note: When you use the MF = parameter, all other parameters are
optional. Before the function is executed, a valid combination of
parameters must be specified by the List and Execute Formats of the macro.

Complex List Format

[1 abel]

When MF = (L,addr[,label]) is coded, the IMMCMD macro has the following
format:

IMMCMD MF=(L,~ddr[, label]) [,NAME=command] [,EXIT=addr]
[,UWORD=addr]
,SET[,NAME=command][,EXIT=addr]

[,UWORD=addr]
,CLR[,NAME=command]
,QRY[,NAME=command]

The parameters have the same meaning as in the Standard Format except
for the following:

MF = (L,addr[,label])
indicates that the parameter list is created in the area specified by
addr. The address may be a label or may be specified in a register,
and it represents an area within your program or an area of free
storage obtained by a system service. You can determine the size of
the parameter list by coding the label operand. The macro expansion
equates label to the size of the parameter list. This format of the
macro produces executable code to move the data into the parameter
list specified by addr. It does not generate the instruction to invoke
the function. If you use this version of the List Format, you must
execute it prior to any related invocation of the Execute Format.

Note: When you use the MF = parameter, all other parameters are
optional. Before the function is executed, a valid combination of
parameters must be specified by the List and Execute Formats of the macro.

Chapter 1. CMS Macro Instructions 81

IMMCMD

Execute Format

When MF = (E,addr) is coded, the IMMCMD macro has the following
format:

[1 abe 1] IMMCMD MF=(E,addr) [,NAME=command] [,EXIT=addr][,UWORD=addr]
[,ERROR=addr]
,SET[,NAME=command] [,EXIT=addr]

[,UWORD=addr] [,ERROR=addr]
,CLR[,NAME=command] [,ERROR=addr]
,QRY[,NAME=command] [,ERROR=addr]

The parameters have the same meaning as in the Standard Format except
for the following:

MF = (E,addr)
indicates that instructions are generated to execute the IMMCMD
function.

addr
is a label or an address stored in a register that represents the
location of the parameter list. Information in the parameter list
may be changed by specifying the appropriate operands on the
macro.

Note: When you use the MF= parameter, all other parameters are
optional. Before the function is executed, a valid combination of
parameters must be specified by the List and Execute Formats of the macro.

Usage Notes:

1. All Immediate commands established by the IMMCMD macro can be
explicitly cancelled. If these Immediate commands are not explicitly
cancelled by the IMMCMD macro, they are cancelled automatically,
either by returning to the CMS command environment (except when in
CMS subset mode) or CMS abend recovery.

2. Immediate commands that are established by the NUCXLOAD command
or the NUCEXT function cannot be cleared by the IMMCMD macro.
You must use the NUCXDROP command or the NUCEXT CANCEL
function.

3. The IMMCMD macro provides the capability to give control to an exit
routine whenever a specific Immediate command is invoked. These exit
routines receive control as an extension of CMS I/O interrupt handling.
Therefore, they receive control with a PSW key of 0 and disabled for
interrupts. The exit routine must not perform any I/O operations or
issue any SVC's that result in I/O operations. In addition, the exit
routine must not enable itself for interrupts. DIAGNOSE instructions
can be used within the exit, but the exit routine must not enable itself
for interruptions that may be caused by the DIAGNOSE (for example,

82 VMjSP eMS Macros and Functions Reference

J

J

IMMCMD

DIAGNOSE X'58'). On entry, the exit routine is passed the following
information:

RO Address of Immediate command line in extended PLIST
format.

Rl Address of Immediate command line in Standard PLIST
format. The high order byte of register 1 is set to X'06' to
indicate that this routine was invoked as a result of an
Immediate command.

R2 Address of the IMMBLOK. The IMMBLOK contains the
user word and other relevant information. The format of
the IMMBLOK is as follows:

Bytes Information
0·3 Address of next IMMBLOK
4· 7 User word
8· 15 Command name
16-19 Reserved
20-23 Entry point address

R12 Entry address
R13 Scratch area address (12 doublewords)
R14 Return address
R15 Entry address

Error Conditions:

If an error occurs, register 15 contains one of the following return codes:

Code Meaning
24 Invalid parameter list
44 Immediate command not found
48 Specified Immediate command is a nucleus extension and cannot be

cleared
104 Not enough storage available to initialize the Immediate command

Chapter 1. CMS Macro Instructions 83

LINEDIT

LINEDIT

[1 abe 1] LINEDIT

Use the LINEDIT macro instruction to convert decimal values into
EBCDIC or hexadecimal and to display the results at your terminal. The
format of the LINEDIT macro instruction is:

[. TEXT =' MESSAGETEXT ,] [. DOT ={ Y ES}] [. COMP= {YES}]
.TEXTA=ADDRESS NO NO

[.SUB=(substitutionlist)]

,DISP= ePE } [. BUFFA= {~~~RESS}] NONE
SIO
PRINT
CPCOMM
ERRMSG

[.MAXSUBS=NUMBER]

[MF= r } 1 ' ~{E(~~g~ESSp

[.RENT= {~6S}]

The LINEDIT macro operands are listed below, briefly. For detailed
formats, descriptions, and examples, refer to the appropriate heading
following "LINEDIT Macro Operands."

TEXT = 'MESSAGE TEXT'
specifies the text of the message to be edited. The maximum length of
the message text is 130 characters.

TEXTA = ADDRESS
specifies the address of the message text. It may be:

label
the symbolic address of the message text.

(reg)
a register containing the address of the message text.

DOT =

specifies whether a period is to be placed at the end of the line.

COMP=
specifies whether multiple blanks are to be removed from the line.

84 VMjSP eMS Macros and Functions Reference

LINEDIT

SUB=
specifies a substitution list describing the conversions to be performed
on the line.

DISP=
specifies how the edited line is to be used. When DISP is not coded,
the message text is displayed at the terminal.

BUFFA =

specifies the address of the buffer in which the line is to be copied.

MF=
specifies the macro format.

MAXSUBS=
specifies the maximum number of substitutions (MAXSUBS is used
with the list form of the macro).

RENT =
specifies whether reentrant code must be generated.

Usage Notes:

1. You should never use registers 0, 1, or 15 as address registers when you
code the LINEDIT macro instruction; these registers are used by the
macro.

2. When message text for the LINEDIT macro instruction contains two or
more consecutive periods, it indicates that a substitution is to be
performed on that portion of the message. The number of periods you
code indicates the number of characters that you want to appear as
output. To indicate what values are to replace the periods, code a
substitution list using the SUB operand.

3. When you use the standard (default) form of the LINEDIT macro
instruction, reentrant code is produced, except when you specify more
than one substitution list, or when you use register notation to indicate
an address on the TEXTA or BUFFA operands. When any of these
conditions occur, an MNOTE message is produced, indicating that the
code is not reentrant.

If you do not care whether the code is reentrant, you can specify the
RENT = NO operand to suppress the MNOTE message. Otherwise, you
can use the List and Execute Formats of the macro to write reentrant
code (see "MF Operand").

4. When the macro completes, register 15 may contain a return code of 2
or 3, indicating that a channel 9 or channel 12 punch was sensed,
respectively. You can use these codes to determine whether the end of
the page is near (channel 9), or if the end of the page has been reached
(channel 12). You might want to check for these codes if you want
particular information at the bottom or at the end of each page being
printed.

Chapter 1. CMS Macro Instructions 85

LINEDIT

Error Conditions:

Errors can only occur if DISP = CPCOMM is specified. In this case,
register 15 contains the return code from the CP command.

LlNEDIT Macro Operands

TEXT Operand

TEXTA Operand

Use the TEXT operand to specify the exact text of the message on the
macro instruction. The message text must appear within single quotation
marks, as follows:

TEXT='message text'

If you want a single quotation mark to appear within the actual message
text, you must code two of them.

Text specified on the LINEDIT macro is edited so that multiple blanks
appear as only a single blank, and a period is placed at the end of the line,
for example:

LINEDIT TEXT='IT ISN"T READY'

results in the display:

IT ISN'T READY.

Use the TEXTA operand when you want to display a line that is contained
in a buffer. You may specify either a symbolic address or use register
notation, as follows:

TEXTA= {label}
(reg)

In either case, the first byte at the address specified must contain the
length of the message text. For example:

LINEDIT TEXTA=MESSAGE

MESSAGE DC
DC

X' 16'
CL22'THIS IS A LINE OF TEXT'

If you use register notation with either the Standard or List Formats of the
macro, the code generated is not reentrant. To suppress the MNOTE that
informs you that code is not reentrant, use the RENT = NO operand.

86 VM/SP eMS Macros and F;:mctions Reference

J

J

J

J

DOT Operand

COMP Operand

SUB Operand

LINEDIT

Use the DOT operand when you do not want a period placed at the end of
the message text. The format of the DOT operand is:

DOT= {~~S}

For example, if you code:

LINEDIT TEXT='HI!' ,DOT=NO

the line is displayed as:

HI!

Use the COMP operand when you want to display multiple blanks within
your message text. The format of the COMP operand is:

COMP=

For example, if you code:

LINEDIT TEXT='TOTAL 5' ,COMP=NO

the line is displayed as:

TOTAL 5.

If COMP = YES, not only will all multiple blanks be reduced to single
blanks, but any leading blanks will be removed as well.

Use the SUB operand to specify the type of substitution to be performed on
those portions of the message that contain periods. For each set of periods,
you must specify the type of substitution and the value to be substituted or
its address. The format of the SUB operand is:

SUB= (HEX{,(re g) }
DEC ,expression

HEXA{,address}
HECA ,(reg)

HEX4A {' address } CHARA ,(reg)
CHARA8A ,({addreSS},{length)}

(reg) (reg)

Each of the possible substitution pairs is described below, followed by
discussions of length specification and multiple substitution lists.

Chapter 1. CMS Macro Instructions 87

LINEDIT

HEX,(reg) ,J
converts the value in the specified register to graphic hexadecimal
format and substitutes it in the message text. If you code fewer than
eight consecutive periods in the message text, then leading digits are
truncated; leading zeros are not suppressed.

For example, if register 3 contains the value C0031FC8, then the
macro instruction:

LINEDIT TEXT='VALUE ... ' ,SUB= (HEX, (3))

results in the display:

VALUE = FC8.

HEX,expression .~
converts the given expression to graphic hexadecimal format and ...,
substitutes it in the message text. The expression may be a symbolic
address or symbol equate; it is evaluated by means of a LOAD
ADDRESS (LA) instruction. For example, if your program has a label
BUFF1, the line:

LINEDIT TEXT='BUFFER IS LOCATED AT ' ,SUB=(HEX,BUFF1)

might result in the display:

BUFFER IS LOCATED AT 0201AC.

If you code fewer than eight periods in the message text, leading digits
are truncated; leading zeros are not suppressed.

DEC,(reg)

J

converts the value in the specified register into graphic decimal
format and substitutes it in the message text. Leading zeros are
suppressed. If the number is negative, a leading minus sign is inserted.
For example;' if register 3 contains the decimal value 10,345, then the
macro instruction: J
LINEDIT TEXT='REG 3 ',SUB=(DEC,(3»

results in the line:

REG 3 = 10345.

DEC,expression
converts the given expression to graphic decimal format and
substitutes it in the message text. The expression may be a symbolic
label in your program or a symbol equate. For example, if your
program contains the statement:

VALUE EQU 2003

then the macro instruction:

LINEDIT TEXT='VALUE IS ' ,SUB=(DEC,VALUE+5)

88 VM/SP eMS Macros and Functions Reference

L

LINEDIT

results in the display:

VALUE IS 2008.

HEXA, address
converts the fullword at the specified address to graphic hexadecimal
format and substitutes it in the message text. If you code fewer than
eight periods in the message text, leading digits are truncated; leading
zeros are not removed. For example, if you code:

LINEDIT TEXT='HEX VALUE IS ' ,SUB=(HEXA,CODE)

then the last five hexadecimal digits of the full word at the label CODE
are substituted into the message text.

HEXA, (reg)
converts the full word at the address indicated in the specified register
into graphic hexadecimal format and substitutes it in the message
text. For example, if you code:

LINEDIT TEXT='REGISTER 5 -> ' ,SUB=(HEXA,(5»

then the last six hexadecimal digits of the fullword whose address is in
register 5 are substituted in the message text.

If you code fewer than eight digits, leading digits are truncated;
leading zeros are not suppressed.

DECA, address
converts the fullword at the specified address to graphic decimal
format. Leading zeros are suppressed; if the number is negative, a
minus sign is inserted. For example, if you code:

LINEDIT TEXT='COUNT = ' ,SUB=(OECA,COUNT)

then the full word at the location COUNT is converted to graphic
decimal format and substituted in the message text.

DECA, (reg)
converts the full word at the address specified in the indicated register
into graphic decimal format and substitutes it in the message text. For
example:

LINEoIT TEXT='SUM = ',SUB=(OECA,(3»

causes the value in the fullword whose address is in register 3 to be
displayed in graphic decimal format.

HEX4A, address
converts the data at the specified address into graphic hexadecimal
format, and inserts a blank character following every four bytes (eight
characters of output). The data to be converted does not have to be on
a fullword boundary. When you code periods in the message text for
substitution, you must code sufficient periods to allow for the blanks.

Chapter 1. CMS Macro Instructions 89

LINEDIT

For example, to display 8 bytes of information (16 hexadecimal digits),
you must code 17 periods i.n the message text.

To display seven bytes of hexadecimal data beginning at the location
STOR in your program, you could code:

LINEDIT TEXT='STOR: ' ,SUB=(HEX4A,STOR)

This might result in a display:

STOR: OA23Fl15 78ACFE

Note that 15 periods were coded in the message text, to allow for the
blank following the first four bytes displayed.

HEX4A, (reg),~
converts the data at the address indicated in the specified register into """"
graphic hexadecimal format and inserts a blank character following
every four bytes displayed (eight characters of output).

When you code the message text for substitution, you must code
sufficient periods to allow for the blank characters to be inserted.

For example, the line:

LINEDIT TEXT='BUFFER: ' ,SUB=(HEX4A,(6))

results in the display of the first nine bytes at the address in register
6, in the format:

hhhhhhhh hhhhhhhh hh

CHARA, address
substitutes the character data at the specified address into the
message text. For example:

LINEDIT TEXT='NAME IS " '" ,SUB=(CHARA,NAME)

causes the 10 characters at location NAME to be substituted into the
message text. Multiple blanks are removed.

CHARA, (reg)
substitutes the character data at the address indicated in the specified
register into the message text. For example:

LINEDIT TEXT='CODE IS ' ,SUB=(CHARA,(7)

the first four characters at the address indicated in register 7 are
substituted in the message line.

CHAR8A, address
substitutes the character data at the specified address into the
message text, and inserts a blank character following each eight
characters of output.

90 VM/SP eMS Macros and Functions Reference

LINEDIT

When you code the message text, you must code enough periods to
allow for the blanks that will be substituted.

This substitution list is convenient for displaying CMS parameter
lists. For example, to display a fileid in an FSCB, you might code

LINEDIT TEXT='FILEID IS ',
SUB=(CHAR8A,OUTFILE+8)

where OUTFILE is the label on an FSCB macro. If the fileid for this
file were TEST OUTPUT AI, then the LINEDIT macro instruction
would result in the display:

FILEID IS TEST OUTPUT AI.

In the final edited line, multiple blanks are reduced to a single blank.

CHAR8A, (reg)
substitutes the character data at the address indicated in the specified
register and inserts a blank character following each eight characters
of output.

When you code the message text, you must include sufficient periods
to allow for the blanks. For example:

LINEDIT TEXT=' PLIST: ',
SUB=(CHAR8A,(7))

results in a display of four doublewords of character data, beginning
at the address indicated in register 7.

Specifying the Length for LINEDIT Macro Substitution: In all the
examples shown, the length of the argument being substituted was
determined by the number of periods in the message text. The number of
periods indicated the size of the output field, and indirectly determined the
size of the input data area.

For hexadecimal and decimal substitutions, the input data is truncated on
the left. To ensure that a decimal number will never be truncated, you can
code 10 periods (11 for negative numbers) in the message text where it will
be substituted. For hexadecimal data, code eight periods to ensure that no
characters are truncated when a full word is substituted.

When you are coding substitution lists with the CHARA, CHAR8A, and
HEX4A options, however, you can specify the length of the input data field.
You must code the SUB operand as follows:

SUB=(type,(address,length))

Both address and length may be specified using register notation. For
example:

SUB=(HEX4A,(LOC, (4)))

Chapter 1. CMS Macro Instructions 91

LINEDIT

DISP Operand

shows that the characters at location LOC are substituted into the message J
text; the number of characters is determined by the value contained in
register 4, but it cannot be larger than the number of periods coded in the
message text.

You can use this method in the special case where only one character is to
be substituted. Since you must always code at least two periods to indicate
that substitution is to be performed, you can code two periods and specify a
length of one, as follows:

LINEDIT TEXT=' INVALID MODE LETTER .. ' ,SUB=(CHARA,(PLIST+24,1))

Specifying Multiple Substitution Lists: When you want to make several
substitutions in the same line, you must enter a substitution list for each
set of periods in the message text. For example:

LINEDIT TEXT='VALUES ARE and
SUB=(DEC,(3),HEXA,LOC)

might generate a line as follows:

VALUES ARE -45 AND FFE3C2.

, ,

You should remember that if you are using the Standard Format of the
macro instruction, and you want to perform more than one substitution in a
single line, the LINEDIT macro will not generate reentrant code. If you
code RENT = NO on the macro line, then you will not receive the MNOTE
message indicating that the code is not reentrant. If you want reentrant
code, you must use the List and Execute Formats of the macro instruction.

Use the DISP operand to specify the output disposition ofthe edited line.
The format of the DISP operand is:

DISP=

where:

{

TYPE } NONE
PRINT
SIO
CPCOMM
ERRMSG

DISP = TYPE
specifies that the message is to be displayed on the terminal. This is
the default disposition.

DISP=NONE
specifies that no output oecurs. This option is useful with the BUFFA
operand.

92 VM/SP eMS Macros and Functions Reference

LINEDIT

DISP=SIO
specifies that the message is to be displayed, at the terminal, using
SIO instead of TYPLIN, which is normally used. This option is used
by CMS routines in cases where free storage pointers may be
destroyed. Since lines are not stacked in the console buffer, no
CONW AIT function is performed.

DISP=PRINT
specifies that the line is to be printed on the virtual printer. The first
character of the line is interpreted as a carriage control character and
does not appear on the printed output. (See the discussion of the
PRINTL macro for a list of valid ASA control characters.) The
maximum line size is 130 characters, including the ASA character.

When the macro completes, register 15 will contain a 2 if a channel 12
punch was sensed, or a 3 if a channel 9 punch was sensed. The
location on the page being printed and the corresponding channel
punch is defined by the current forms control buffer image being used.
For information on how to specify the forms control buffer image for a
virtual spooled printer, refer to the LOADVFCB and SPOOL
commands in the VMj SP CP Command Reference. If you are using a
virtual spooled 3800, refer to the CMS command SETPRT.

When the channel 9 or channel 12 punch is sensed, the write
operation terminates after carriage spacing, but before writing the
line. If you want to write the line without additional space, you must
modify the carriage control character in the buffer to a code that
writes without spacing (ASA code + or machine code 01).

You must issue the CP CLOSE command or the CP SPOOL PRT
CLOSE command to close the virtual printer file. Issue the command
either from your program (using an SVC 202 instruction or a LINEDIT
macro instruction) or from the CMS environment after your program
completes execution. The printer is automatically closed when you
log off or when you use the CMS PRINT command.

DISP = CPCOMM
specifies that the line is to be passed to CP and executed as a CP
command. For example:

LINEDIT TEXT='QUERY USERS' ,DISP=CPCOMM,DOT=NO

results in the CP command line being passed to CP and executed. On
return, register 15 contains the return code from the CP command that
was executed.

Note: When using the DISP = CPCOMM operand, specify DOT = NO
(the default is YES).

DISP = ERRMSG
specifies that the line is to be checked to see if it qualifies for error
message editing. If it does, it is displayed as an error message rather
than as a regular line.

Chapter 1. CMS Macro Instructions 93

LINEDIT

BUFFA Operand

MF Operand

The standard header format of VM/SP error messages is:

xxxmnunnnns

where:

• xxxmnun is the name of the module issuing the message
• nnn is the message number
• s is the severity code
You can code whatever you want for the first nine characters of the
code when you write error messages for your programs, but the tenth
character must specify one of the following VM/SP message types:

Code
I
W
E

Message Type
Information
Warning
Error

The line is displayed according to the CP EMSG setting. If EMSG is
set to:

• ON - the entire message is displayed
• TEXT - only the message portion is displayed
• CODE - only the IO-character code is displayed.

Use the BUFFA operand to specify the address of a buffer into which the
edited message is to be written. The message is copied into the indicated
buffer, as well as being used as specified in the DISP operand. The format
of the BUFFA operand is:

BUFFA= { addr }
(reg)

When the text is copied into the buffer, the length of the message text is
inserted into the first byte of the buffer, and the remainder of the text is
inserted in subsequent bytes.

If you use register notation to indicate the buffer address, the code
generated will not be reentrant. To suppress the MNOTE that informs you
that code is not reentrant, use the RENT = NO operand.

Use the MF operand to specify the macro format when you want to code
List and Execute Formats when you write reentrant programs. The format
of the MF operand is:

MF= {~E/{addr })l
(reg)

94 VMjSP eMS Macros and Functions Reference

MAXSUBS Operand

LINEDIT

where:

MF = I (Standard Format)
generates an inline operand list for the LINEDIT macro instruction,
and calls the routine that displays the message. This is the default. It
generates reentrant code, except under the following circumstances:

• When you specify more than one substitution list
• When you use register notation with the TEXT A or BUFF A

operands

MF = L (List Format)
generates a parameter list to be filled in when the Execute Format of
the macro is used.

The size of the area reserved depends upon the number of
substitutions to be made, which you can specify with the MAXSUBS
operand. For example:

LINEDIT MF=L,MAXSUBS=5

reserves space for a parameter list that may hold up to five
substitution lists. This same list may be used by several LINEDIT
macro instructions.

MF = (E,addr) (Execute Format)
generates code to fill in the parameter list at the specified address, and
calls the routine that displays the message text.

The address specified (either a symbolic address or in register
notation) indicates the location of the List Format of the macro. The
following example shows how you might use the List and Execute
Formats of the LINEDIT macro to write reentrant code:

WRITETOT LINEDIT TEXT='SUBTOTAL TOTAL ',
SUB=(DEC, (4),DEC,(5)),MF=(E,LINELIST)

LINELIST LINEDIT MF=L,MAXSUBS=6

When the Execute Format of the LINEDIT macro instruction is used,
the parameter list for the message is built at label LINELIST, where
the List Format of the macro was coded.

Use the MAXSUBS operand when you code the List Format (MF=L) form
of the LINEDIT macro instruction. The format of the MAXSUBS operand
is:

MAXSUBS=number

where number specifies the maximum number of substitutions that will be
made when the Execute Format of the macro is used.

Chapter 1. CMS Macro Instructions 95

LINEDIT

RENT Operand

Use the RENT operand when you are going to use the Standard Format of
the LINEDIT macro instruction and you do not care whether the code that
is generated is reentrant. The format of the RENT operand is:

RENT=

When RENT = YES (the default) is in effect, the LINEDIT macro expansion
issues an MNOTE message indicating that nonreentrant code is being
generated. This occurs when you use the Standard Format of the macro
instruction and you specify one of the following:

• TEXT A = (reg)

• BUFFA = (reg)

• More than one substitution pair

Note: If you do not care whether the code is reentrant, and you do not
wish to have the MNOTE appear, code RENT = NO. The RENT = NO
coding merely suppresses the MNOTE statement; it has no effect on the
expansion of the LINEDIT macro instruction.

96 VM/SP eMS Macros and Functions Reference

J

J

LINERD

Standard Format

[label] LINERD

LINERD

Use the LINERD macro instruction to read a line of input from the
terminal. The LINERD macro can be used when CMS is running in
full-screen mode (SET FULLSCREEN ON) or in linemode (SET
FULLSCREEN OFF or SET FULLSCREEN SUSPEND). The four formats
of the LINERD macro instruction are:

• Standard

• List (MF = L)

• Complex List (MF = (L,addr[,label]))

• Execute (MF = (E,addr»

The Standard Format of the LINERD macro is:

DATA=(addr[.length])

.VNAME=v;rtual screen name

.LINE=addr.COL=addr

.PROMPT=(addr[.len2th])I 'text'

.PAD=BLANK~NULLINO E

.LOGICAL=U6NO

.TRANS=YESAN

.CASE=UPPE fMIXED

.TYPE=DIREC ISTACKINOSTACKIINVISIBLE
• WAIT=YES I NO
.ATTREST=YESINO
.ERROR=addr

where:

label
is an optional label for the statement.

DATA
specifies the address of a buffer into which the data is to be read and
the length of this buffer. The address may be specified as an
assembler program label or general register (2-12), enclosed in
parentheses. This is a required parameter. When register notation is
used, the length of the data buffer must be specified. If a label is used,
the length can also be specified. If it is not specified, the length
associated with the label will be used. The length may be specified as
an absolute expression or in a general register (2-12), enclosed in
parentheses. If an absolute expression, the value of the expression is

Chapter 1. CMS Macro Instructions 97

LINERD

the length of the data to be written in the buffer. If a register,
specified in parentheses, the register holds the length of the data.

PROMPT
specifies that prompt information is to be written before the read is
performed .. The prompt data may be specified as either a string of
characters enclosed in single quotation marks or as the address and
length of an area of storage. The address may be specified as an
assembler program label or general register (2-12), enclosed in
parentheses. If the length is specified and an address is not, the
prompt information is assumed to reside in the read buffer. When
register notation is used, the length of the data must be specified. If a
label is used, the length can also be specified. If it is not specified, the
length associated with the label will be used. The length may be
specified as an absolute expression or in a general register (2-12),
enclosed in parentheses. If an absolute expression, the value of the \
expression is the length of the data to be written. If a register, .."
specified in parentheses, the register holds the length of the data.

VNAME
Specifies the virtual screen to be read. It can be specified as a literal
string, up to 8 characters, enclosed in quotes, or it may be specified as
an assembler label or a general register (2-12), enclosed in parentheses,
which contains the address of an 8-byte name. If the VNAME
parameter is not specified, the CMS virtual screen is assumed.

LINE

COL

PAD

Specifies the address of a fullword in storage where the virtual screen
line of the data read is stored. The address can be expressed as an
assembler program label or as a register (2-12), enclosed in
parentheses. This information is not available if FULLSCREEN is
OFF.

Specifies the address of a full word in storage where the virtual screen \
column of the data read is stored. The address can be expressed as an """""
assembler program label or as a register (2-12) enclosed in parentheses.
This information is not available if FULLSCREEN is OFF.

specifies if padding should be done. If padding is requested, the input
data is padded to the length of the input buffer with either nulls or
blanks. The default is BLANKS. If NONE is specified, no padding is
requested and the contents of the receiving field will equal the data
read padded with the previous contents of that field.

LOGICAL
If YES is specified, a newline character in the input data is
interpreted as a logical end-of-line. Only the logical line is returned.
If NO is specified, the newline characters are ignored and the entire
line is returned. The default is YES. J

98 VMjSP eMS Macros and Functions Reference

L

LINERD

TRANS
If YES is specified, the input data is translated according to the user
input translate table, if any, defined by the SET INPUT command.
The default is YES.

CASE
If UPPER is specified, the input data is translated to upper case. If
MIXED is specified, the input data is left as inputted. The default is
UPPER.

TYPE
Specifies how the read request can be satisfied, as follows (the default
is STACK):

DIRECT specifies that the input line is to be read directly from the
virtual machine console. The input queue associated with
the virtual screen and the stack are bypassed.

STACK specifies that the request can be satisfied by a line from the
program stack, if one is available, or from the input queue
of the specified virtual screen if it is not empty, or directly
from the console. Lines read from the program stack are
not subject to user input translation or logical line editing.

NOST ACK specifies that the program stack is bypassed. The request
will be satisfied either by a line from the virtual screen
input queue or by issuing a read.

INVISIBLE just like DIRECT but the characters entered in response
are not displayed on the console.

WAIT
If you want to differentiate between system reads and program reads
during program execution, the WAIT parameter may be used to dictate
the status area message. If WAIT is specified as NO, or allowed to
default, there will be no distinction between program or system reads.
The status area message will be: "Enter a command or press a PF/PA
key." If WAIT is specified as YES, the status area message will show
that your program has requested input (a program read). The status
area message will be: "Enter your response in vscreen VNAME." The
WAIT = YES option is ignored if either DIRECT or INVISIBLE is
specified on the TYPE parameter. The default is NO.

ATTREST
Specifies whether an attention interruption during a read should
result in a restart of a read operation. The default is YES.

ERROR
Specifies the address of an instruction where execution should resume
if an error occurs in the processing of the LINERD request, expressed
either as a label or general register (2-12), enclosed in parentheses. If
this parameter is omitted, execution will resume at the next sequential
instruction.

Chapter l. CMS Macro Instructions 99

LINERD

List Format

[label]

The List Format (MF = L) of the LINERD macro is:

LINERD MF=L ,DATA=(addr[, length])
,VNAME=virtual screen name
,LINE=addr,COL=addr
,PROMPT=(addr[,length])I 'text'
,PAD=BLANK!NULLINONE
,LOGICAL=Y SbNO
,TRANS=YES~N
,CASE=UPPE ~MIXED
,TYPE=TITREC ISTACKINOSTACKIINVISIBLE
, WAIT=YES~ NO
,ATTREST= tSlNO

where:

The parameters have the same meaning as in the Standard Format except
for the following:

MF=L
indicates that the parameter list is created in-line. No executable
code is generated. Register notation cannot be used for macro
parameter addresses.

Note: When you use the MF = parameter, all other parameters are
optional. Before the function is executed, a valid combination of
parameters must be specified by the List and Execute Formats of the
macro.

100 VMjSP eMS Macros and Functions Reference

LINERD

Complex LIst Format

The Complex List Format (MF = (L,addr[,label])) of the LINERD macro is:

[1 abe 1] LINERD MF=(L.addr[.labe1]) .DATA=(addr[.length])
.VNAME=virtua1 screen name
.LINE=addr.COL=addr
.PROMPT=(addr[.length])I 'text'
.PAD=BLANK~NULLINONE
.LOGICAL=Y SbNO
.TRANS=YES~N
.CASE=UPPE fMIXED
.TYPE=DIREC ISTACKINOSTACKIINVISIBLE
.WAIT=YESINO
.ATTREST=YESINO

where:

The parameters have the same meaning as in the Standard Format except
for the following:

MF = (L,addr[,label])
indicates that the parameter list is created in the area specified by
addr. The address may be specified as an assembler program label or
general register (2-12), enclosed in parentheses. It represents an area
within a program or an area of free storage obtained by a system
service. The size of the parameter list can be determined by coding
the label operand. The macro expansion equates label to the size of
the parameter list. This format of the macro produces executable code
to move the data into the parameter list specified by addr. It does not
generate the instruction to invoke the function. If you use this
version of the List Format, you must execute it prior to any related
invocation of the Execute Format.

Note: When you use the MF = parameter, all other parameters are
optional. No default parameters are assumed. Before the function is
executed, a valid combination of parameters must be specified by the
List and Execute Formats of the macro.

Chapter 1. CMS Macro Instructions 101

LINERD

Execute Format

The Execute Format (MF = (E,addr» of the LINERD macro is:

[label] LINERD MF=(E,addr) ,DATA=(addr[, length])
,VNAME=virtual screen name
,LINE=addr,COL=addr
,PROMPT=(addr[,length])I 'text'
,PAD=BLANK~NULLINONE
,LOGICAL=Y S~NO
,TRANS=YES~N
,CASE=UPPE fMIXED
,TYPE=DIREC ISTACKINOSTACKIINVISIBLE
, WAIT=YES I NO
,ATTREST=YESINO
,ERROR=addr

where:

The parameters have the same meaning as in the Standard Format except
for the following:

MF=(E,addr)
indicates that instructions are generated to execute the LINERD
function. The address specifies the location of the parameter list. It
can be specified as an assembler program label or general register
(2-12), enclosed in parentheses. Information in the parameter list may
be changed by specifying the appropriate operands on the macro.

Note: When you use the MF= parameter, all other parameters are
optional. No default parameters are assumed. Before the function is
executed, a valid combination of parameters must be specified by the
List and Execute Formats of the macro.

Usage Notes:

1. When the function completes, register 0 contains the number of
characters read.

2. When the virtual screen name is CMS (which is also the default virtual
screen name), the action taken by LINERD depends on the setting of
full-screen CMS. If SET FULLSCREEN is ON, LINERD waits for input
into the CMS virtual screen. When the LINERD function is executed
with CMS in linemode (SET FULLSCREEN OFF or SET
FULLSCREEN SUSPEND), LINERD calls the RDTERM function to do
the read. To support the length parameter, RDTERM must be called
with the EDIT = PHYS option. In this case, data padding is restricted to
BLANK or NULL because the RDTERM function clears the entire data
buffer prior to doing the read.

3. If SET FULLSCREEN is ON, the ATTREST operand is ignored for
CMS. If CMS is in linemode (SET FULLSCREEN OFF OR SET
FULLSCREEN SUSPEND), ATTREST=NO can only be used when

102 VM/SP eMS Macros and Functions Reference

LINERD

reading physical lines (LOGICAL=NO). When ATTREST=NO, an
attention interruption during a read operation signals the end of the
line and does not result in a restart of the read.

4. If the prompt parameters are used with LOGICAL = NO, the read buffer
may not be used for the prompt data because the read buffer may be
cleared prior to the execution of the function.

5. If LOGICAL = YES, the maximum length for a read is 240. If
LOGICAL = NO, the maximum length is 2030 bytes.

Error Message:

171T Permanent console error; re-IPL CMS

Return Codes:

Upon completion of the requested function, register 15 contains one of the
following return codes:

o Function executed successfully.

4 Attention interrupt ended the read operation (can only happen if SET
FULLSCREEN OFF for CMS and DMSCRD is called).

12 Function is not valid for the virtual screen specified.

24 The user did not specify the parameter list correctly.

28 Virtual screen does not exist.

89 Console is a 2741 typewriter terminal.

104 Insufficient storage was available to execute the requested function.

Chapter l. eMS Macro Instructions 103

LINEWRT

LINEWRT

Standard Format

[label] LINEWRT

Use the LINEWRT macro instruction to display a line of output at the
terminal. The LINEWRT macro can be used when CMS is running in
full-screen mode (SET FULLSCREEN ON) or in linemode (SET
FULLSCREEN OFF or SET FULLSCREEN SUSPEND). The four formats
of the LINEWRT macro instruction are:

• Standard

• List (MF = L)

• Complex List (MF = (L,addr[,label]))

• Execute (MF = (E,addr»

The Standard Format of the LINEWRT macro is:

DATA=(addr[,length])

,VNAME=name
,LINE=line,COL=col
,COLOR=BLUEbREDIPINK~GREEN~TURQUOISEI

YELL W~WRITEI EFAUL
,HILITE=H1GHl OHIGH
,EXTHI=BLINK REVVIDEOIUNDERLINEINONE
,PSS=A~BIC~D EbFIO
,PROTE T=Y S N
,PRIOR=YES~!L
,NOCR=YES~ 0
,ALARM=YE INO
,ERROR=addr

where:

label
is an optional label for the statement.

DATA
specifies the address and length of the text to be written. The address
may be specified as an assembler program label or general register
(2-12), enclosed in parentheses. This is a required parameter. When
register notation is used, the length of the data must be specified. If a
label is used, the length can also be specified. If it is not specified, the
length associated with the label will be used. The length may be
specified as an absolute expression or in a general register (2-12), .\
enclosed in parentheses. If an absolute expression, the value of the """'"

104 VMjSP eMS Macros and Functions Reference

LINEWRT

expression is the length of the data to be written. If a register,
specified in parentheses, the register holds the length of the data.

VNAME
specifies a previously-defined virtual screen name to which the write
is associated. It can be specified as a literal string, up to 8 characters,
enclosed in quotes, or it may be specified as an assembler label or
general register (2-12), enclosed in parentheses which contains the
address of an 8-byte name. If this parameter is omitted, the output
will be directed to the CMS message class, which will be displayed in
the eMS virtual screen by default.

LINE

COL

is an integer> = 0 representing where on the virtual screen the data
will be written. Line may be specified as an absolute expression or in
a general register (2-12), enclosed in parentheses. If in a register, the
register contains the line number. If this parameter is omitted, the
data will be written on the line following the last line previously
written.

is an integer> = 0 representing where on the virtual screen the data
will be written. Col may be specified as an absolute expression or in a
general register (2-12), enclosed in parentheses. If in a register, the
register contains the column number. If this parameter is omitted, the
data will be written in the first column of the virtual screen.

COLOR
specifies the color in which the data should be written. Only one
color may be specified. If no color is specified, the default color for
the virtual screen is used. (See DEFINE VSCREEN command) One of
the following keywords may be specified: DEFAULT BLUE RED
PINK GREEN TURQUOISE YELLOW or WHITE. The DEFAULT
keyword signifies the default color of the physical device.

HILITE
specifies the highlighting attribute for the data to be written. HIGH
indicates bright (or high intensity) and NO HIGH indicates normal
intensity. If HILITE is not specified, the default highlighting for the
virtual screen is used. (See DEFINE VSCREEN command)

EXTHI
specifies the extended highlighting attribute for the data to be written.
Only one of the following keywords for extended highlighting may be
specified:

BLINK, REVVIDEO, UNDERLINE or NONE.

If EXTHI is not specified, the default extended highlighting for the
virtual screen is used. (See DEFINE VSCREEN command)

Chapter 1. CMS Macro Instructions 105

LINEWRT

PSS
specifies which programmable symbol set is to be used for the data to
be written. Valid symbol sets may be specified as 0, A, B, C, D, E or F.
Only one PSS may be specified. If no PSS is specified, the default
character set for the virtual screen is used. (See DEFINE VSCREEN
command)

PROTECT
specifies whether or not the data to be written is protected (cannot be
typed over) or non-protected (may be typed over). The keywords
YESINO can be used. If no protect attribute is specified, the default
for the virtual screen is used. (See DEFINE VSCREEN command)

PRIOR
The keywords YESINO can be used. YES indicates a priority write. If \
PRIOR = YES, this data will be written even if CMS halt typing is in .."
effect. NO is the default.

NOCR
The keywords YESINO can be used. NOCR = YES indicates no
carriage return; the cursor is set in the column following the data
written. If NOCR = NO, the cursor is set in the line following the data
written. NO is the default.

ALARM
The keywords YESINO can be used. If ALARM = YES, the alarm is
sounded the next time I/O is performed. NO is the default.

ERROR
specifies the address of an instruction where execution should resume
if an error occurs in the processing of the LINEWRT request,
expressed either as a label or general register (2-12), enclosed in
parentheses. If this parameter is omitted, execution will resume at the
next sequential instruction ..

J

106 VM/SP eMS Macros and Functions Reference

List Format

[label]

LINEWRT

The List Format (MF = L) of the LINEWRT macro is:

r
LINEWRT MF=L .DATA=(addr[.length])

.VNAME=name

.LINE=line.COL=col

.COLOR=BLUE6REDIPINK~GREEN~TURQUOISEI
YELL W~WAITEI EFAUL

,HILITE=H1GHl OHIGH
.EXTHI=BLINK REVVIDEOIUNDERLINEINONE
.PSS=A~BIC~D E6F1O
.PROTE T=Y S N
.PRIOR=YES~!L
.NOCR=YES~ 0
.ALARM=YE I NO

where:

The parameters have the same meaning as in the Standard Format except
for the following:

MF=L
indicates that the parameter list is created in-line. No executable
code is generated. Register notation cannot be used for macro
parameter addresses.

NOTE: When you use the MF = parameter, all other parameters are
optional. Before the function is executed, a valid combination of
parameters must be specified by the List and Execute Formats of the
macro.

Chapter 1. CMS Macro Instructions 107

LINEWRT

Complex List Format

The Complex List Format (MF = (L,addr[,label])) of the LINEWRT macro is:

[label] LINEWRT MF=(L.addr[.label]) ,DATA=(addr[.length])
,VNAME=name
.LINE=line.COL=col
.COLOR=BLUEbREDIPINK~GREENfTURQUOISEI

YELL W~WRITEI EFAUL
.HILITE=H1GHl OHIGH
.EXTHI=BLINK REVVIDEOIUNDERLINEINONE
.PSS=A~BIC!D EbFIO
.PROTE T=Y S N
.PRIOR=YES~N
.NOCR=YES! 0
.ALARM=YE INO

where:

The parameters have the same meaning as in the Standard Format except
for the following:

MF = (L,addr[,label])
indicates that the parameter list is created in the area specified by
addr. The address may be specified as an assembler program label or J ...
general register (2-12), enclosed in parentheses. It represents an area .
within a program or an area of free storage obtained by a system
service. The size of the parameter list can be determined by coding
the label operand. The macro expansion equates label to the size of
the parameter list. This format of the macro produces executable code
to move the data into the parameter list specified by addr. It does not
generate the instruction to invoke the function. If you use this
version of the List Format, you must execute it prior to any related
invocation of the Execute Format.

NOTE: When you use the MF = parameter, all other parameters are
optional. No default parameters are assumed. Before the function is
executed, a valid combination of parameters must be specified by the
List and Execute Formats of the macro.

108 VM/SP eMS Macr~s and Functions Reference

LINEWRT

Execute Format

The Execute Format (MF = (E,addr» of the LINEWRT macro is:

[label] LINEWRT MF=(E,addr) ,DATA=(addr[, length])
,VNAME=name
,LINE=line,COL=col
,COLOR=BLUE~REDIPINK~GREEN~TURQUOISEI

YELL W~WRITEI EFAUL
.HILITE=H1GHl OHIGH
,EXTHI=BLINK REVVIDEOIUNDERLINEINONE
,PSS=A~BIC~D E~FIO
,PROTE T=Y S N
,PRIOR=YES~N
,NOCR=YES! 0
,ALARM=YE INO
,ERROR=addr

'where:

The parameters have the same meaning as in the Standard Format except
for the following:

MF = (E,addr)
indicates that instructions are generated to execute the LINEWRT
function. The address specifies the location of the parameter list. It
can be specified as an assembler program label or general register
(2-12), enclosed in parentheses. Information in the parameter list may
be changed by specifying the appropriate operands on the macro.

NOTE: When you use the MF = parameter, all other parameters are
optional. No default parameters are assumed. Before the function is
executed a valid combination of parameters must be specified by the
List and Execute Formats of the macro.

Usage Notes:

1. For Color, Hilite, Exthi, and PSS, the user must be using a device
which supports these characteristics; otherwise, they will be ignored.

2. When the virtual screen name is CMS (which is also the default virtual
screen name), the action taken by LINEWRT depends on the setting of
full-screen CMS. If SET FULLSCREEN is ON, LINEWRT writes the
data into the CMS virtual screen. If CMS is in linemode (SET
FULLSCREEN OFF or SET FULLSCREEN SUSPEND), LINEWRT
calls the WRTERM function to display the output. In this case (writing
to the CMS virtual screen in linemode CMS), the LINE, COL, COLOR,
HILITE, EXTHI, PSS, and PROTECT parameters will be ignored.

When the virtual screen name is not CMS, the setting of full-screen
CMS has no effect on the LINEWRT macro.

Chapter 1. CMS Macro Instructions 109

LINEWRT

3. The maximum length of data to be written is the size of the virtual
screen being written to.

4. If the data to be written contains a X'15' anywhere in the text, and you
are writing in line zero, the X'15' is treated as a linend character.
Consequently, any text following the X'15' will be written in the next
line.

Return Codes:

Upon completion of the requested function, register 15 contains one of the
following return codes:

o Function executed successfully.

12 Function is not valid for the virtual screen specified.

24 The user did not specify the parameter list correctly.

28 Virtual screen is not defined.

32 The specified line or column is outside the virtual screen.

104 Insufficient storage was available to execute the requested function.

110 VMjSP eMS Macros and Functions Reference

PARSECMD

Standard Format

PARSECMD

Use the PARSECMD macro instruction from an assembler program to parse
(and translate) the arguments of a command.

There are four formats of the PARSECMD macro instruction:

• Standard
• List (MF = L)
• Complex List (MF = (L,addr[,label]))
• Execute (MF = (E,addr»

The Standard Format of the PARSECMD macro instruction is:

[label] PARSECMD UNIQID=uniqueid
[.APPLID=['DMS'lapplid]]
[.PLIST=[Cl)!addr]]
[.EPLIST=[CO ~addr]]
[,MSGDISP=[ER MSG~NONEIEXECCOMMlvar]]
[,MSGBUFF=[O!addr]
[.TRANSL=[CM !YESINO~SAME]]
[.TYPCALL=[~IBALR]
[. ERROR=addr]

where:

label
is an optional label for the statement.

UNIQID=
is the unique identifier of the syntax definition to be used for parsing.
It has a maximum length of 16 characters and is always required.

APPLID=
is an application identifier such as DMS or OFS. It must be three
alphanumeric characters, and the first character must be alphabetic.
The default is DMS, which is the application identifier for CMS.

PLIST=
specifies the address of the tokenized plist for the command. The
value specified may be a label or a general register (2-12), enclosed in
parentheses. If the value is not specified, it is assumed that register 1
contains the address of the tokenized plist.

The high order byte of the address should indicate whether an
extended plist is available at execution time. See VMjSP eMS for
System Programming for the allowed values of this byte.

Chapter 1. CMS Macro Instructions 111

PARSECMD

EPLIST=
specifies the address of the extended plist for the command. The value
specified may be a label or a general register (2-12), enclosed in
parentheses. If the value is not specified, it is assumed that register 0
contains the address of the extended plist.

MSGDISP=
is the disposition for parsing facility error messages. The default is
ERRMSG.

ERRMSG
specifies that parser error messages will be written to the
terminal according to the current setting of CP SET EMSG.

NONE
specifies that no output occurs and is most useful when used
with the MSGBUFF option.

EXECCOMM

var

specifies that the message is to be returned to a variable in the
EXEC calling this module. The complete message is copied into
the variable 'MESSAGE', with the first line in 'MESSAGE.l', the
second in 'MESSAGE.2', and so on. The number of lines in the
message is copied into 'MESSAGE.O'. This can only be used
when. the module issuing P ARSECMD is called from an EXEC.

specifies a variable defining the message display format to be
used. The variable must be one byte long, and the low order
three bits of the byte must be set to the desired disposition as
follows:

ERRMSG = 000
NONE = 010
EXECCOMM = 100

MSGBUFF=
is the buffer for error message text. The default is zero and indicates
no buffer. When the text is copied into the buffer, the length of the
message occupies the first byte of the buffer, preceding the text.

Note: The length of the buffer, not including the length byte, must be
placed in the first byte of the buffer before the call to P ARSECMD is
made.

TRANSL=
specifies whether the parsing facility should translate any keywords
found in the parameter list.

112 VM/SP eMS Macros and Functions Reference

J

J

CMS

YES

NO

PARSECMD

specifies CMS will determine translation status for you, based on
how the module issuing PARSECMD was invoked. This is the
default; use this unless your program performs its own command
resolution.

CMS uses YES if the specified command name was a translation
(or a synonym or abbreviation of a translation) of the command
invoked. NO is used if the specified command name was a
synonym (or an abbreviation of a synonym), set with the
SYNONYM command, of the command invoked. When a
command is invoked with the same name it was specified by,
SAME is used. See the VM/SP CMS Command Reference for
additional information on how and when CMS will translate or
synonym a command name.

specifies that all keywords should be translated by the parsing
facility. In other words, only keywords defined as national
language (nl)-names in the Definition Language for Command
Syntax (DLCS) syntax definition will be recognized.

specifies keywords should not be translated by the parsing
facility. In other words, only keywords defined as system
language (sl)-names in the DLCS syntax definition will be
recognized.

SAME
specifies the parsing facility should determine translation status
from the first keyword found whose nl-name and sl-name DLCS
definitions are different. This status is then used for any
remaining keywords.

TYPCALL=
specifies how the parsing facility is to be called. The default is SVC.

SVC
indicates the parsing facility should be called via SVC 202.

BALR

ERROR =

indicates the parsing facility should be called via BALR 14,15.
Register 13 must point to an 18 full word savearea.

specifies that the error routine receives control if an error is found. If
you do not specify ERROR =, and an error occurs, control returns to
the next sequential instruction (NSI) in the calling program, as it does
if no error occurs.

Note: Some IBM-supplied commands also use the PARSFLG parameter for
special purposes. Do not use this parameter yourself.

Chapter 1. CMS Macro Instructions 113

PARSECMD

List Format

The List Format (MF = L) of the PARSECMD macro instruction is:

[labelJ PARSECMD MF=L [.UNIQID=un;~Ue;dJ
[.APPLID=['U'l appl i dJJ
[. PLI ST=addrJ
[. EPLI ST =addrJ
[.MSGDISP=[ERRMSG~NONEIEXECCOMMlvarJJ
[.MSGBUFF=[Q!addr J
[.TRANSL=[CM IYESINOISAMEJJ

The parameters have the same meaning as in the Standard Format except
for the following:

MF=L
indicates a control block for invoking the parsing facility is created
in-line. This control block is mapped by the PARSERCB macro. No
executable code is generated. Register notation cannot be used for
macro parameter addresses.

Note: When you use the MF = L parameter, all other parameters are
optional. All non-specified parameters, except UNIQID, PLIST, and
EPLIST, will default. Before the function is executed, a valid
combination of parameters must be specified by the List and Execute
Formats of the macro.

114 VM/SP eMS Macros and Functions Reference

Complex List Format

PARSECMD

The Complex List Format (MF = (L,addr[,label])) of the PARSECMD macro
instruction is:

[label] PARSECMD MF=(L,addr[,labelJ) [,UNIQID=uniqueidJ
[, APPLI D=app 1 i dJ
[, PLIST=addrJ
[,EPLIST=addrJ
[,MSGDISP=[ERRMSG~NONEIEXECCOMMlvarJJ
[,MSGBUFF=[O~addr J
[,TRANSL=[CM IYESINOISAMEJJ

The parameters have the same meaning as in the Standard Format except
for the following:

MF = (L,addr[,label))
indicates that the control block (a PARSERCB) is initialized in the
area specified by addr. The address may be specified as an assembler
program label or general register (2-12), enclosed in parentheses. It
represents an area within a program or an area of free storage
obtained by a system service. The size of the control block can be
determined by coding the label operand. The macro expansion equates
label to the size of the control block. This format of the macro
produces executable code to move the data into the control block
specified by addr. It does not generate the instruction to invoke the
function. If you use this version of the List Format, you must execute
it prior to any related invocation of the Execute Format.

Note: When you use the MF = (L,addr[,labelD parameter, all other
parameters are optional. No default parameters will be assumed.
Before the function is executed, a valid combination of parameters
must be specified by the List and Execute Formats of the macro.

Chapter 1. CMS Macro Instructions 115

PARSECMD

Execute Format

The Execute Format (MF = (E,addr» of the PARSECMD macro instruction
is:

[1 abe 1] PARSECMD MF=(E,addr) [,UNIQID=uniqueidJ
[,APPLI D=app 1 i dJ
[, PLIST=addrJ
[, EPLI ST =addrJ
[,MSGDISP=[ERRMSG~NONEIEXECCOMMlvarJJ
[,MSGBUFF=[O!addr J
[,TRANSL=[CM ~YESINOISAMEJJ
[,TYPCALL=[~IBAlRJ
[,ERROR=addrJ

The parameters have the same meaning as in the Standard Format except
for the following:

MF=(E,addr)
indicates that instructions are generated to execute the PARSECMD
function. The address specifies the location of the control block. It
can be specified as an assembler program label or general register
(2-12), enclosed in parentheses. Information in the control block may
be changed by specifying the appropriate operands on the macro.

Note: When you use the MF=(E,addr) parameter, all other J
parameters are optional. No default parameters, except
TYPCALL = SVC, will be assumed. Before the function is executed, a
valid combination of parameters must be specified by the List and
Execute Formats of the macro.

Usage Notes:

1. The uniqueid you specify in the PARSECMD macro is matched up with
the uniqueid specified in the Definition Language for Command Syntax \
(DLCS) file. See the VMjSP eMS User's Guide for a detailed ...""
description of uniqueids.

2. If you have not issued the MF = L format of this macro and you are not
using a message buffer, code MSGBUFF = O.

3. On exit from the PARSECMD function, general register 1 contains the
address of PARSERCB control block. Refer to P ARSERCB macro and
PVCENTRY macro for details on how to obtain the parsed and
translated arguments.

4. When you invoke the P ARSECMD macro (Standard and Execute
formats), the parsing facility automatically obtains storage for the
parsed (and translated) tokenized and extended plists and the
PVCENTRY table. This storage will be automatically released when
the module invoking PARSECMD returns to CMS. Do not try to free it\
yourself. ..."

116 VM/SP eMS Macros and Functions Reference

PARSECMD

Error Conditions:

If an error occurs, register 15 contains one of the following codes:

Code
24
26
28

Meaning
Syntax error found
Application not active
Syntax definition not found in the command table or user function
not found

104 Insufficient free storage

Chapter 1. CMS Macro Instructions 117

PARSERCB

PARSERCB

Use the PARSERCB macro instruction to generate a DSECT for the
PARSECMD control block.

The format of the P ARSERCB macro instruction is:

[label] PARSERCB

where:

label
is an optional label for the statement. The first statement in the
PARSERCB macro expansion is labeled PARSERCB.

Usage Notes:

1. The P ARSERCB macro instruction expands as follows:

PARSERCB
PARNAME
PARTOKIN
PARTOKPT

*
PAREPLIN
PAREPLPT

*
PARPTYPE
PARTRANS
PARTRYES
PARTRNO
PARTRSAM
PARSFLG
PARMSG
PARMSGER
PARMSGNO
PARMSGXC

PARPVCAD
PARPVCNM
PARMSGAD
PARUNQID
PARAPLID

PARLENBY
PARLENDW

DSECT
os CL8 Parser entry point 'DMSPAR'

Input tokenized plist address
Parsed (translated) tokenized
plist address

os AL4
os AL4

os
os

os
os
EQU
EQU
EQU
EQU
os
EQU
EQU
EQU
os
os
os
os
os
os
os
EQU
EQU

AL4
AL4

XLI F*l
XLI F*2
X'80'
X'40'
X'20'
X'IO'
XLI F*3
X'OO'
X'02'
X'04'
XLI F*4
AL4

Input extended plist address
Parsed (translated) extended
plist address
Plist Type-High order byte of RI
Translation flag
Translation YES (national lang)
Translation = NO (system lang)
Translation = SAME (system=national)
Parsflg specified
Message disposition
Message disposition is ERRMSG
Message disposition is NONE
Message disposition is EXECOMM
Reserved
PVC table address

F Number of entries in PVC table
AL4 Message buffer address
CLl6 Syntax definition unique id
CL3 Application identifier
XLS Reserved
*-PARSERCB Length of PARSERCB in bytes
(PARLENBY+7)/8 Length of PARSERCB in dwords

118 VM/SP eMS Macros and Functions Reference

J

PARSERCB

2. The PARPVCAD field contains the address of the Parser Validation
Code Table. Each entry in this table contains the address, length and
validation code for a token in the parsed (and translated) extended plist
(PAREPLPT). PARPVCNM gives the number of entries in this table;
the entries are contiguous. Refer to the PVCENTRY macro for the
mapping of each entry.

3. A P ARSERCB is created by the Standard and List Formats of the
PARSECMD macro and should be filled in with the other formats of the
macro.

Chapter 1. CMS Macro Instructions 119

PARSERUF

PARSERUF

Use the PARSERUF macro instruction to generate a mapping to the Parser
Interface for User Token Validation Functions.

The format of the PARSERUF macro instruction is:

[label] I PARSERUF

where:

label
is an optional label for the statement. The first statement in the
PARSERUF macro expansion is labeled PARSERUF.

Usage Notes:

1. The PARSERUF macro instruction expands as follows:

PARSERUF DSECT
PARUNAME DS CL8 Name of function
PARUTKAD DS A Address of token
PARUTKLG DS F Length of token
PARUPVC DS XLI User Function Validation Code

DS CL7 ** RESERVED **
PARUFNCE DS CLS'FF' ** RESERVED **
PARUSZBY EQU *-PARSERUF Length in bytes of this block
PARUSZDW EQU (PARUSZBY+7l/8 Length in DWORDS of this block

120 VM/SP eMS Macros and Functions Reference

J

PRINTL

[label] PRINTL

PRINTL

Use the PRINTL macro instruction to write a line or multiple lines to a
virtual printer. The format of the PRINTL instruction is:

line [,length] [,CC· H5S} 1 [,TRC' 06S} 1
LFORM=([BUFFER] [.count] [.ccwaddr])]

[LIST]

[.CMSDEV=devaddr] [.ERROR=erraddr]

where:

label
is an optional statement label.

When writing one line to a virtual printer with each PRINTL instruction
and FORM = is not specified,

line
specifies the line to be printed. It may be:

'linetext'
text enclosed in quotation marks.

lineaddr
the symbolic address of the line.

(reg)
a register (2-12) containing the address of the line.

length
specifies the length of the line to be printed. (See Usage Note 1.) It
may be:

(reg)
a register (2-12) containing the length.

n
a self-defining term indicating the length.

When writing multiple lines to a virtual printer with each PRINTL
instruction and FORM = BUFFER,

Chapter 1. CMS Macro Instructions 121

PRINTL

line
specifies the address of the buffer containing the fixed length records.
It may be:

lineaddr
the symbolic address of the BUFFER.

(reg)
a register (2-12) containing the address of the BUFFER.

length
specifies the length of the records in the BUFFER. It may be:

(reg)
a register (2-12) containing the length.

n
a self-defining term indicating the length.

When writing multiple lines to a virtual printer with each PRINTL
instruction and FORM = LIST,

line

cc=

specifies the address of the list of variable length records to be
printed. It may be:

lineaddr
the symbolic address of the LIST.

(reg)
a register (2-12) containing the address of the LIST.

When FORM = LIST, the length of each record is specified in the LIST
and the length parameter is ignored.

specifies whether or not the records to be printed contain a carriage
control character in the first byte. The carriage control character
specifies how many lines should be skipped before the next line is
printed. It may be

NO

carriage control characters are in each line to be printed. YES
is the default. See Usage Note 2.

J

J

J

Carriage control characters are not present in the lines to be
printed. If CC = NO is specified, the system will use the ASA
carriage control character (X'40') to space one line before
printing. ,.J

122 VM/SP eMS Macros and Functions Reference

c

TRC=

PRINTL

specifies an ASA carriage control character to be used for all
lines. The lines to be printed are assumed not to contain
carriage control characters. Refer to Usage Note 2 for valid ASA
carriage control characters.

specifies whether or not the current print line includes a TRC (Table
Reference Character) byte. The TRC byte indicates which 3800
translate table is selected to print a line.

YES

n

specifies that there is no TRC byte in the line to be printed. NO
is the default.

specifies that the line to be printed has a TRC byte in the line. It
is the second byte when a carriage control byte is present;
otherwise, the TRC byte is the first byte. The value of the TRC
byte determines which 3800 translate table is selected. If an
invalid value is found, translate table 0 is selected.

specifies a value for TRC to indicate which 3800 translate table
should be selected before printing the line. The line to be
printed does not contain a TRC byte. If an invalid value is
specified, translate table 0 is selected.

The value of the TRC byte corresponds to the order in which you have
loaded WCGMs (via the CHARS keyword on the SETPRT and SPOOL
commands). Valid values for TRC are 0, 1,2, and 3.

FORM = ([BUFFER I LIST] [,count] [,ccwaddr])
specifies that multiple records are to be printed with each PRINTL
instruction.

BUFFER

LIST

specifies that fixed length records are in a buffer. The address of
the buffer is specified by the line parameter and the number of
records in the buffer is specified by count. The length of the
records is specified by the length parameter. If you specify
TRC =, it applies to all records in the buffer. The linetext
parameter cannot be used. BUFFER is the default.

specifies that the addresses of variable length records are in a
list. The address of the list is specified by the line parameter and
the number of entries in the list is specified by count. The
length of each record is specified in the list and the length
parameter is ignored. If you specify TRC =, it applies to all
records in the list. The linetext parameter cannot be used.

Chapter 1. CMS Macro Instructions 123

PRINTL

Each entry in the list is on a fullword boundary and contains 8 ...)
bytes:

count

Bytes
0-3
4-5
6-7

Information
Record address
Reserved
Record length

specifies the number of records to be printed. When
FORM = BUFFER, it specifies the number of records in the BUFFER.
When FORM = LIST, it specifies the number of entries in the LIST.
The maximum number of records that can be printed with a single
PRINTL request is 32,767. It may be:

n
a self-defining term indicating the number. The default is 55.

(reg)
a register (2-12) containing the number.

countaddr
the address of a half word containing the number.

ccwaddr
specifies the address of a 4K buffer that is to be used to contain the
CCW chains required to perform the requested I/O. If this parameter
is not specified, the system will allocate a 4K buffer for you. To
achieve optimum performance, specify this parameter. It may be:

label

(reg)

a label of a register containing the symbolic address of the
buffer.

a register (2-12) containing the address.

CMSDEV = devaddr
specifies the 12-byte storage area containing the device characteristics
provided by the CMSDEV macro. If not supplied, or if the contents of
the area is zero, DIAGNOSE code X'24' is performed to determine the
device type. It may be:

(reg)

label

a register (2-12) containing the address of the 12-byte area
provided by the CMSDEV macro.

specifies the symbolic address of the 12-byte storage area
provided by the CMSDEV macro.

124 VM/SP eMS Macros and Functions Reference

...)

PRINTL

ERROR = erraddr
specifies the address of an error routine to be given control if an error
is found. If ERROR = is not coded and an error occurs, control returns
to the next sequential instruction in the calling program, as it does if
no error occurs.

label

(reg)

is an assembler program label that is the address of the error
routine.

is a general register (2-12). Its value is the address of the error
routine.

Usage Notes:

1. The maximum number of data bytes allowed is:

Virtual Printer Maximum Data
Type Bytes

1403 132

3203 132

3211 150

3800 204

4248 168

To determine the line length, add the following to your bytes of data:

• one byte for the carriage control character if CC = YES is specified,

• one byte for the TRC byte if TRC = YES is specified.

If you do not specify the length, it defaults to 133 characters, unless
'linetext' is specified. In this case, the length is taken from the length of
the line text.

Lines which are greater than the carriage size will not be printed and a
return code of 1 will be issued. However, lines with a carriage control
character of X'5A' may have lengths up to 32767 bytes. If you use
quoted data with a X'5A' carriage control, the line length must not be
greater than 256 bytes.

2. When CC = YES, the first character of the line is interpreted as a
carriage control character, which may be either ASA (ANSI) or
machine code. The valid ASA control characters are:

Chapter 1. CMS Macro Instructions 125

PRINTL

Character Hex Code Meaning

blank 40 Space 1 line before printing
0 FO Space 2 lines before printing

60 Space 3 lines before printing
+ 4E Suppress space before printing
1 F1 Skip to channel 1
2 F2 Skip to channel 2
3 F3 Skip to channel 3
4 F4 Skip to channel 4
5 F5 Skip to channel 5
6 F6 Skip to channel 6
7 F7 Skip to channel 7
8 F8 Skip to channel 8
9 F9 Skip to channel 9
A C1 Skip to channel 10
B C2 Skip to channel 11
C C3 Skip to channel 12

Hex codes X'C1' and X'C3' are used in both machine code and ASA
code. CMS recognizes these codes as ASA control characters, not as
machine control characters.

Hex code X'5A' is recognized as only a machine code character. This
code is used with a Composed Page Data Stream record.

When CC = NO, or when the line does not begin with a valid carriage
control, the line is printed with an ASA carriage control character to
space one line before printing (AS A X' 40').

3. If you specify TRC = and the virtual printer is not a 3800, the TRC byte
is stripped off before the line is printed. If the TRC byte is invalid,
PRINTL issues the following MNOTE:

MNOTE 8, 'INVALID TRC SPECIFICATION'

Translate table ° is selected if the TRC byte is invalid.

4. For the CMSDEV = parameter, use the CMSDEV macro instruction to
obtain printer characteristics and status.

5. When the macro completes, register 15 will contain a 2 if channel 12
was sensed, or a 3 if channel 9 was sensed. If the FORM = parameter
is specified, channels 9 and 12 are ignored. When channel 9 or channel
12 is sensed, the write operation terminates after carriage spacing but
before writing the line. If you want to write the line without additional
space, you must modify the carriage control character in the buffer to a
code that writes without spacing (ASA code + or machine code 01).

The location on the page being printed and the corresponding channel
is defined by the current forms control buffer image being used. For
information on how to specify the forms control buffer image for a
virtual spooled printer, refer to the LOADVFCB and SPOOL commands
in the VMj SP CP Command Reference. If you are using a virtual 3800,
also refer to the CMS SETPRT command.

126 VM/SP eMS Macros and Functions Reference

J

J

J

PRINTL

6. You must issue the CP CLOSE command to close the virtual printer
file. Issue the CLOSE command either from your program (using an
SVC 202 instruction or a LINEDIT macro instruction) or from the CMS
environment after your program completes execution. The printer is
automatically closed when you log off or when you use the CMS PRINT
command.

7. If the virtual printer is a 4248 with an extended FCB and the
duplication option specified, you should check to be sure that the
duplication offset contained in the extended FCB declaration is valid
for the line length and that the line length is short enough to be
duplicated. For more information on the extended FCB macro
instruction, see VM/SP CP for System Programming.

Error Conditions:

If an error occurs, register 15 contains one of the following error codes:

Code
1
2
3
4
5

100
104

Meaning
Line too long
Channel 12 punch detected
Channel 9 punch detected
Intervention required
Unknown error
Printer not attached
Not enough storage available to successfully complete the
program.

Chapter 1. CMS Macro Instructions 127

PUNCHC

PUNCHC

Use the PUNCHC macro instruction to write a line to a virtual punch. The
format of the PUNCHC macro instruction is:

I [1 abe 1] I PUNCHC 11 i ne [. ERROR=erraddrJ

where:

label
is an optional statement label.

line
specifies the line to be punched. It may be:

'linetext'
text enclosed in single quotation marks.

lineaddr
the symbolic address of the line.

(reg)
a register containing the address of the line.

ERROR = erraddr
specifies the address of an error routine to be given control if an error
is found. If ERROR = is not coded and an error occurs, control
returns to the next sequential instruction in the calling program, as it
does if no error occurs.

Usage Notes:

1. No stacker selecting is allowed. The line length must be 80 characters.

2. You must issue the CP CLOSE command to close the virtual punch file.
Issue the CLOSE command either from your program (using an SVC 202
instruction) or from the CMS environment when your program
completes execution. The punch is closed automatically when you log
off or when you use the CMS PUNCH command.

128 VMjSP eMS Macros and Functions Reference

L

L

PUNCHC

Error Conditions:

If an error occurs, register 15 contains one of the following error codes:

Code
2
3

100

Meaning
Unit check
Unknown error
Punch not attached

Chapter 1. CMS Macro Instructions 129

PVC ENTRY

PVCENTRY

Use the PVCENTRY macro instruction to generate a DSECT for the Parser
Validation Code Table entry. Each Parser Validation Code Table entry
contains the address, length and validation code for a token in the parsed
(and translated) extended plist.

The format of the PVC ENTRY macro instruction is:

[1 abe 1] I PVC ENTRY

where:

label
is an optional label for the statement. The first statement in the
PVCENTRY macro expansion is labeled PVCENTRY.

Usage Notes:

1. The PVCENTRY macro instruction expands as follows:

PVCENTRY DSECT
PVCNEXTA DS
PVCCODE DS

DS
PVCTTOKA DS
PVCETOKA DS
PVCETOKL DS

* EQU
PVCCNAME EQU
PVCKWORD EQU
PVCOPTST EQU
PVCOPTEN EQU
PVCCOMMT EQU
PVCALNUM EQU
PVC CHAR EQU
PVCCUU EQU
PVCFN EQU
PVCFT EQU
PVCEFN EQU
PVCEFT EQU
PVCEXECN EQU
PVCEXECT EQU
PVCFM EQU
PVCHEX EQU
PVCINT EQU
PVCNINT EQU
PVCPINT EQU
PVCMODE EQU
PVCSTRIN EQU
PVCTEXT EQU
PVCDIGIT EQU
PVCAPPID EQU

A
XLI
XL3
A
A
F
X'OO'
X' 01'
X'02'
x'03'
X'04'
X'OS'
X'06'
X'07'
X'08'
X'09'
X'OA'
X'OB'
X'OC'
X'OD'
X'OE'
X'OF'
X'10'
X'll'
X'12'
X'13'
X' 14'
X'lS'
X'16'
X' 17'
X'18'

Parser Validation Code Entry
Next PVC entry address, or 0 if last
Parser validation code
Reserved
Tokenized token address
Extended token address
Extended token length
Reserved for IBM use
Command Name
Keyword
Option start
Option end)
Comment
Alphanumeric string
A single character
Device address:X'001',X'002', ... ,X'FFF'
Filename
Filetype
Filename with '*'
Filetype with '*'
Execname
Exectype
Filemode
Hexadecimal number
Integer: ... , -2, -1, 0, 1, 2,
Negative integer: ... , -2, -1
Positive integer: 1, 2,
Alphabetic character
Any character string(no blanks)
Any string
Any unsigned integer
Application identifier

130 VM/SP eMS Macros and Functions Reference

L
PVCARBMD

*
PVCINVLD
*

EQU
EQU
EQU
EQU

PVCENTRY

X'19' Arbitrary modifier
X'lA'-X'7E' Reserved for IBM use
X'7F' Unconditionally invalid
X'80'-X'FF' Reserved for customer use

2. The parsing facility creates a table containing contiguous PVCENTRY
entries that is addressed by P ARSERCB. See the P ARSERCB macro for
details.

Chapter 1. CMS Macro Instructions 131

RDCARD

RDCARD

[1 abe 1] RDCARD

Use the RDCARD macro instruction to read a line from a virtual reader.
The format of the RDCARD macro instruction is:

buffer C. 1 en9th] [. RDAHEAD= P65 }] L ERROR=erraddr]

CANCEL

where:

label
is an optional statement label.

buffer
specifies the buffer address into which the line is to be read. It may
be:

bufaddr
the symbolic address of the buffer.

(reg)
a register (2-12) containing the address of the buffer.

length
specifies the length of card to be read. The minimum length is 80; the
maximum length is 204. The default is 80. The length may be
specified in one of two ways:

n
a self-defining term indicating the length.

(reg)
a register (2-12) containing the length.

RDAHEAD=
specifies whether or not as many lines as possible are to be read into
an internal I/O buffer before each line is read into the specified buffer.
It may be:

YES
reads multiple lines into an internal I/O buffer. See Usage Notes
5 and 6.

will not read multiple lines into an internal I/O buffer. NO is the
default.

132 VM/SP eMS Macros and Functions Reference

RDCARD

CANCEL
releases the internal I/O buffer used for RDAHEAD = YES. Any
lines in the buffer will be lost.

ERROR = erraddr
specifies the address of an error routine to be given control if an error
is found. If ERROR = is not coded and an error occurs, control returns
to the next sequential instruction in the calling program, as it does if
no error occurs.

Usage Notes:

1. No stacker selecting is allowed.

2. When the macro completes, register 0 contains the length of the card
that was read.

3. You may not use the RDCARD macro in jobs that run under the CMS
,N", batch machine.

4. If the reader file being processed contains carriage control characters,
.,' the RDCARD macro returns the records with the carriage control

characters stripped off.

5.' If you process RDCARD with RDAHEAD = YES and the virtual card
reader is closed before an error condition is detected (other than
wrong-length record, RC = 5), lines may still remain in the buffer.
Subsequent RDCARD calls return the next available lines from the
internal buffer until it is empty. Changes in the status of the virtual
card reader are not recognized until the buffer is empty and the next
physical read is performed. For most applications that read to
end-of-file, RDAHEAD = YES should be specified.

To insure that the internal I/O buffer is released and that the next
RDCARD request will read from the virtual reader, not the internal
buffer, issue RDCARD with RDAHEAD = CANCEL and a length of zero.

6. RDAHEAD = NO is forced if the logical record length is greater than
2028, or if there is insufficient storage to allocate the internal I/O
buffer.

Error Conditions:

If an error occurs, register 15 contains one of the following error codes:

Code
1
2
3
5

100

Meaning
End of file
Unit check
Unknown error
Length not equal to requested length
Device not attached

Chapter 1. CMS Macro Instructions 133

RDTAPE

RDTAPE

Use the RDTAPE macro instruction to read a record from the specified tape
drive. The format of the RDTAPE macro instruction is:

[label] RDTAPE buffer,length [,device] [,MODE==mode]
[,ERROR==erradr]

where:

label
is an optional statement label.

buffer
specifies the buffer address into which the record is to be read. It may
be specified in either of two ways:

lineaddr
the symbolic address of the buffer.

(reg)
a register (2-12) containing the address of the buffer.

length
specifies the length of the largest record to be read. A 65,535-byte
record is the largest record that can be read. It may be specified in
either of two ways:

n
a self-defining term indicating the length.

(reg)
a register (2-12) containing the length.

device
specifies the device from which the line is to be read. If omitted, TAP1
(virtual address 181) is assumed. It may be specified in either of two
ways:

134 VM/SP eMS Macros and Functions Reference

J

RDTAPE

TAPn

cuu
indicates the symbolic tape identification (T APn) or the virtual
device address (cuu) of the tape to be read. The following
symbolic names and virtual device addresses are supported.

Symbolic Virtual Symbolic Virtual
Name Address Name Address

TAPO 180 TAP8 288
TAP 1 181 TAP9 289
TAP2 182 TAPA 28A
TAP3 183 TAPB 28B
TAP4 184 TAPC 28C
TAP5 185 TAPD 28D
TAP6 186 TAPE 28E
TAP7 187 TAPF 28F

MODE = mode
specifies the number of tracks, density, and tape recording technique
options. It must be in the following form:

([track] I [density] I [trtch])

track

7 indicates a 7-track tape (implies density = 800 and trtch = 0).

9 indicates a 9-track tape (implies density = 800).

18 indicates an 18-track tape (implies density = 38K).

density

200,556, or 800 for a 7-track tape.

800, 1600, or 6250 for a 9-track tape.

38K for an 18-track tape.

trtch

indicates the tape recording technique for 7-track tape. One of the
following must be specified:

o odd parity, converter off, translator off.
OC odd parity, converter on, translator off.
OT odd parity, converter off, translator on.
E even parity, converter off, translator off.
ET even parity, converter off, translator on.

Chapter 1. CMS Macro Instructions 135

RDTAPE

ERROR = erraddr
specifies the address of an error routine to be given control if an error
is found. If ERROR = is not coded and an error occurs, control returns
to the next sequential instruction in the calling program, as it does if
no error occurs.

Usage Notes:

1. When the macro completes, register 0 contains the number of bytes
read.

2. If the MODE option is not specified, the tape drive will use the default
density of the drive. The default density for dual density drives is the
highest density. This is true even if the TAPE MODESET command is
entered right before the macro is issued.

3. You need not specify the MODE option when you are reading from a
9-track tape and using the default density of the tape drive nor when
you are reading from a 7-track tape with a density of 800 bpi, odd parity,
with the data converter and translator off.

4. You need not specify the mode option (track and/or density) when
reading from a 3480 tape.

Error Conditions:

If an error occurs, register 15 contains one of the following error codes:

Code
1
2
3
4
5
7
8

Meaning
Invalid function or parameter list
End of file or end of tape
Permanent I/O error
Invalid device address
Tape not attached
Invalid device attached
Incorrect length error

136 VM/SP eMS Macros and Functions Reference

RDTERM

[label] RDTERM

RDTERM

Use the RDTERM macro instruction to read a line from the terminal into
an I/O buffer. The format of the RDTERM macro instruction is:

buffer[,EDIT=code] [,LENGTH=length] [,PRBUFF=addr]

[, TYPE=DIRECTJ [,PRLGTH=l ength] [,ATTREST= {~6S} 1

where:

label
is an optional statement label.

buffer
specifies the address of a buffer into which the line is to be read. The
buffer is assumed to be 130 bytes long, unless EDIT = PHYS is
specified. The address may be specified as:

lineaddr
the symbolic address of the buffer.

(reg)
a register (2-12) containing the address of the buffer.

EDIT = code
specifies the type of editing, if any, to be performed on the input line.

LN

PAD

indicates that a logical line is to be read and no editing is to be
done.

requests that the input line be padded with blanks to the length
specified.

UPCASE
requests that the line be translated to uppercase.

indicates both padding and translation to uppercase. YES is the
default.

Chapter 1. CMS Macro Instructions 137

RDTERM

PHYS
indicates that a physical line is to be read. When PHYS is
specified, the LENGTH and ATTREST = NO operands may also
be entered. This option causes the input line to be translated
using the user translation table.

LENGTH = length
specifies the length of the buffer. If not specified, 130 is assumed. The
maximum length is 2030 bytes. The length may be specified only if
EDIT=PHYS (see Usage Note 2). It may be specified in either of two
forms:

n
a self-defining term indicating the length of the buffer

(reg)
a register (2-12) containing the length of the buffer.

PRBUFF = addr
Specifies the address of a buffer in which the prompt data resides. The
length of the prompt data to be written is specified by the PRLGTH
parameter. If the PRLGTH parameter is specified, but the PRBUFF
parameter is not, the prompt information is assumed to reside in the
read buffer. The PRBUFF address can be specified as follows:

addr
the symbolic address of the buffer.

(reg)
a register (2-12) containing the length of the buffer.

TYPE = DIRECT
indicates that the the input line is to be read directly from the virtual
machine console. The terminal input buffer and the program stack
are bypassed. J

PRLGTH = length
Specifies the length of the prompt information to be written prior to
the read. The prompt information is written with no carriage return.
The prompt information is written from the user's read data buffer or
from the buffer specified by the PRBUFF parameter. The length can
be specified in either of two forms:

n
a self-defining term indicating the length of the buffer

(reg)
a register (2-12) containing the length of the buffer.

138 VM/SP eMS Macros and Functions Reference

RDTERM

ATTREST = YES NO
specifies whether an attention interruption during a read should
result in a restart of the read operation. (See Usage Note 2.)

Usage Notes:

1. When the macro completes, register 0 contains the number of
characters read.

2. You can use the ATTREST = NO and LENGTH operands only when you
are reading physical lines (EDIT = PHYS). When ATTREST=NO, an
attention interruption during a read operation signals the end of the
line and does not result in a restart of the read. These operands are
used primarily in writing VS APL programs.

(.." Note: If you are using a typewriter terminal, and specify
ATTREST = NO, CMS restarts a read when an attention is generated on
a null line. The only way to terminate the read is by pressing the
carriage return.

3. The PRBUFF and PRLGTH operands are intended for use with TTY
type devices. The maximum PRLGTH is 1760 characters. These
operands are not supported for TTY devices attached via VCNA or
PASSTHRU.

4. If the prompt parameters are used with EDIT = PHYS, the read buffer
may not be used for the prompt data because the read buffer is cleared
prior to the execution of the function.

5. Use the LINERD macro instead of the RDTERM macro for increased
flexibility. The LINERD macro supports all of the functions that
RDTERM does, and it also provides enhanced input data editing and
allows the user to specify a virtual screen name. (See the LINERD
macro.)

Error Conditions:

If an error occurs, register 15 contains one of the following error codes:

Code
2
4

Meaning
Invalid parameter
Read was terminated by an attention signal (possible only when
ATTREST=NO)

Chapter 1. CMS Macro Instructions 139

REGEQU

REGEQU

Use the REGEQU macro instruction to generate a list of EQU (equate)
statements to assign symbolic names for the general, floating-point, and
extended control registers. The format of the REGEQU macro instruction
IS:

I REGEQU

Usage Note:

The REGEQU macro instruction causes the following equate statements to
be generated:

General Registers Extended Control Registers

RO EQU 0 CO EQU 0
R1 EQU 1 C1 EQU 1
R2 EQU 2 C2 EQU 2
R3 EQU 3 C3 EQU 3
R4 EQU 4 C4 EQU 4
R5 EQU 5 C5 EQU 5
R6 EQU 6 C6 EQU 6
R7 EQU 7 C7 EQU 7
R8 EQU 8 C8 EQU 8
R9 EQU 9 C9 EQU 9
R10 EQU 10 C10 EQU 10
Rll EQU 11 Cll EQU 11
R12 EQU 12 C12 EQU 12
R13 EQU 13 Cl3 EQU 13
R14 EQU 14 C14 EQU 14
R15 EQU 15 C15 EQU 15

Floating-Point Registers

FO EQU 0
F2 EQU 2
F4 EQU 4
F6 EQU 6

140 VM/SP eMS Macros and Functions Reference

J

J

SENDREQ

SENDREQ

Programs use this macro to make service requests. You must provide the
address of an initialized CPRB in a general purpose register. Control
returns to the requesting program with an appropriate CMS return code in
register 15 and the server return code field CRBSRTNC of the CPRB (see
the VM/SP IBM Programmer's Guide to the Server-Requester Programming
Interface for VM/SP).

The format of the SENDREQ macro instruction is:

I [1 abell I SENDREQ [CPRBREG=n]

where:

label
is an optional statement label.

CPRBREG=n
n is the name of a register containing the address of a properly
initialized service request CPRB. If this parameter is not specified,
register 1 (n = 1) is assumed.

Note: The SENDREQ macro always uses Register 0 and Register 1.

The following assembly message (MNOTE) may be produced during
assembler processing of the SENDREQ macro:

DMSMACOIIE CPRBREG OPERAND OMITTED IN SENDREQ MACRO

For more information on the SENDREQ macro and how to use it with
Enhanced Connectivity Facilities on VM/SP, see the VM/SP IBM
Programmer's Guide to the Server-Requester Programming Interface for
VM/SP.

Chapter 1. CMS Macro Instructions 141

TAPECTL

TAPECTL

[1 abe 1] TAPECTL

Use the TAPECTL macro instruction to position the specified tape
according to the specified function code. The format of the T APECTL
macro instruction is:

function [.device] [.MODE=mode] [.ERROR=erraddr]
[.BLKBUFF=b1kadr]

where:

label
is an optional statement label.

function
specifies the control function to be performed. It must be one of the
following codes:

Code Function

REW Rewind the tape
RUN Rewind and unload the tape
ERG Erase a defective section of the tape
BSR Backspace one record
BSF Backspace one file
FSR Forward-space one record
FSF Forward-space one file
WTM Write a tape mark
LOCBLK Locate block (3480 only)
RDBLKID Read block ID (3480 only)

device
specifies the tape on which the control operation is to be performed.
If omitted, T API (virtual address 181) is assumed. It may be:

TAPn

cuu
indicates the symbolic tape identification (TAPn) or the virtual
device address (cuu) of the tape to be positioned. The following
symbolic names and virtual device addresses are supported:

142 VM/SP eMS Macros and Functions Reference

J

J

---------..

TAPECTL

Symbolic Virtual Symbolic Virtual
Name Address Name Address

TAPO 180 TAP8 288
TAPI 181 TAP9 289
TAP2 182 TAPA 28A
TAP3 183 TAPB 28B
TAP4 184 TAPC 28C
TAP5 185 TAPD 28D
TAP6 186 TAPE 28E
TAP7 187 TAPF 28F

MODE = mode
specifies the number of tracks, density, and tape recording technique
options. It must be in the following form:

([track], [density], [trtch])

track

7 indicates a 7-track tape (implies density = 800 and trtch=O).

9 indicates a 9-track tape (implies density = 800).

18 indicates a 18-track tape (implies density = 38K).

density

200,556, or 800 for a 7-track tape.

800, 1600, or 6250 for a 9-track tape.

38K for an 18-track tape.

trtch

indicates the tape recording technique for 7-track tape. One of
the following must be specified:

o odd parity, converter off, translator off.
OC odd parity, converter on, translator off.
OT odd parity, converter off, translator on.
E even parity, converter off, translator off.
ET even parity, converter off, translator on.

Chapter 1. CMS Macro Instructions 143

TAPECTL

ERROR = erraddr

specifies the address of an error routine to be given control if an error
is found. If ERROR = is not coded and an error occurs, control returns
to the next sequential instruction in the calling program, as it does if
no error occurs.

BLKBUFF = blkadr

Use this option only when the LOCBLK or RDBLKID function is specified.

• For RDBLKID, specify BLKBUFF = blkadr, where blkadr is the
address of a location that contains O.

• For LOCBLK, specify BLKBUFF = blkadr, where blkadr is the
address of a location that contains a 4-byte block ID.

See Usage Notes 3 and 4.

Usage Notes:

1. If the MODE option is not specified, the tape drive will use the default
density of the drive. The default density for dual density drives is the
highest density. This is true even if the TAPE MODESET command is
entered right before the macro is issued. J

2. You need not specify the MODE option when you are performing any of
the following operations:

a. Manipulating a 9-track tape and you are using the default density
for the tape system.

b. Writing a 7-track tape with a density of 800 bpi, odd parity, with
data converter and translator off.

c. Reading from a 3480 tape.

3. A block ID identifies a block of data or a file mark for the Locate Block
and Read Block ID functions of the 3480 Magnetic Tape Subsystem.

4. The RDBLKID function of the 3480 tape subsystem is used to obtain:

a. The block ID to be used in the LOCBLK function. This is the ID of
the next data block that will be passed between VMjSP and the 3480
Tape Control Unit in a read or write mode.

b. The block ID of the next data block to be written to or read from
the tape in read or write mode.

c. The block ID of the data block that was last sent to VMjSP in
read-backward mode.

144 VM/SP eMS Macros and Functions Reference

J

J

TAPECTL

d. The block ID of the data block that was last read into the control
unit buffer from the tape drive in read-backward mode.

The RDBLKID function causes an 8-byte field to be returned to VM/SP.
The field contains two 4-byte block IDs. For the RDBLKID function,
specify BLKBUFF = blkadr, where blkadr is the address of a location
that contains o.

The first block ID (bytes 0-3) is called the physical block ID. The
physical block ID identifies the following:

a. The data block that is about to be passed between VM/SP and the
3480 Tape Control Unit in read or write mode. This is the block ID
usually specified by the option BLKBTJFF = blkadr for the LOCBLK
function.

b. The last data block that was sent to VM/SP in read-backward mode.

The first data block stored on the 3480 tape cartridge will have a block
ID of X'OlOOOOOO'.

The second block ID (bytes 4-7), called the logical block ID, identifies
the data block that is:

a. The next to be written to the tape drive from the control unit buffer
in write mode.

b. The next to be read from the tape drive to the buffer in read mode.

c. The last one read into the buffer from the tape drive in
read-backward mode.

The control unit buffer is in write mode, read mode, or read-backward
mode if VM/SP has been executing write, read, or read-backward
commands, respectively, and the control unit anticipates the same type
of command will continue to be executed. For example, if VM/SP
executes a write command, the control unit buffer is set to write mode
until another command, such as a read command, sets it to another
mode. If no mode set is in the buffer (that is, the control unit is not
performing any anticipatory buffering), the two block IDs returned by
the RDBLKID function will be the same.

If VM/SP does not continue with the anticipated read, write, or
read-backward commands, the first command that invalidates the
anticipated mode causes the following to happen:

a. Data in the buffer that is to be written to tape is written to tape.

b. Data in the buffer that has been read from the tape, but not passed
to VM/SP, is purged.

c. Tape is positioned to complete the command that caused the change
of mode.

Chapter 1. CMS Macro Instructions 145

TAPECTL

5. The LOCBLK function of the 3480 tape subsystem causes a 4-byte field
to be sent to the control unit to position the tape so that VM/SP may
forward-read the specified data block from the tape or write the '
specified data block to the tape. The address of the ID of the data block
is specified with the BLKBUFF = blkadr option.

For this function, the BLKBUFF = blkadr option normally contains the
address of a location that contains the physical block ID (bytes 0-3)
returned by the RDBLKID function. This is the ID of the next data
block that is to be passed between VM/SP and the 3480 Tape Control
Unit in read or write mode. In read-backward mode, it is the ID of the
last data block that was sent to VM/SP.

To position the tape at high speed to a point just past the last block
written on a tape, you may specify a block ill that does not exist. This \
action is taken to position the tape to write data to it. You are """"
responsible for knowing if a block ID exists. If a specified block ID
cannot be found by the control unit, it assumes the tape is to be
positioned for a write operation. You may search the tape for a block
ID in either direction.

Error Conditions:

If an error occurs, register 15 contains one of the following error codes:

Code
1
2
3
4
5
6
7

Meaning
Invalid function or parameter list.
End of file or end of tape
Permanent I/O error
Invalid device id
Tape is not attached
Tape is file-protected
Invalid device attached

J

146 VM/SP eMS Macros and Functions Reference

L
TAPESL

[label] TAPESL

L

TAPESL

The TAPESL macro processes IBM standard HDR1 and EOF1labeis
without using DOS or OS OPEN and CLOSE macros. This macro is used
with RDT APE, WRT APE, and T APECTL. T APESL processes only HDR1
and EOF1 labels. It does not process other labels, such as standard user
labels or HDR2 labels. It does not perform any functions of opening a tape
file other than label checking or writing. The same macro is used both to
check and to write tape labels. A LABELDEF command must be supplied
separately to use the macro. The tape must be positioned correctly (at the
label to be checked or at the place where label is to be written) before
issuing the macro. T APECTL may be used to position the tape. T APESL
reads or writes only one tape record unless SPACE = YES is specified. The
format of the TAPESL macro is:

function[.device].LABID=labeldefid[.MODE=mode]
[.BLKCNT=blkcnt] [.ERROR=erraddr]

[.SPACE= { ~6S}l [. TM= { ~6S}l

where:

label
is an optional statement label.

function
is one of the following:

HIN
HOUT
EIN
EOUT
EVOUT

device

checks input HDR1 label.
writes HDR1label.
checks input EOF1 label.
writes output EOF1 label.
writes output EOV1 label.

is one of the following:

TAPn
cuu

indicates the symbolic tape identification (TAPn) or the virtual
device address (cuu) of the tape. If omitted, 181 is assumed. The
following symbolic names and virtual devices are supported:

Chapter 1. CMS Macro Instructions 147

r

TAPESL

Symbolic Virtual Symbolic Virtual
Name Address Name Address

TAPO 180 TAP8 288
TAP1 181 TAP9 289
TAP2 182 TAPA 28A
TAP3 183 TAPB 28B
TAP4 184 TAPC 28C
TAP5 185 TAPD 28D
TAP6 186 TAPE 28E
TAP7 187 TAPF 28F

MODE = mode
specifies the number of tracks, density, and tape recording technique
options. It must be in the following form:

([track], [density], [trtch] l

track

7 indicates a 7-track tape (implies density =800 and trtch=O).

9 indicates a 9-track tape (implies density = 800).

18 indicates a 18-track tape (implies density = 38K).

density

200, 556, or 800 for a 7-track tape.

800, 1600, or 6250 for a 9-track tape.

38K for an 18-track tape.

trtch

indicates the tape recording technique for 7-track tape. One of
the following must be specified:

o odd parity, converter off, translator off.
OC odd parity, converter on, translator off.
OT odd parity, converter off, translator on.
E even parity, converter off, translator off.
ET even parity, converter off, translator on.

LABID = labeldefid
specifies the 1- to 8-character name on the LABELDEF command to be
used for the file. (A separate LABELDEF statement must be specified
for the file before the program containing TAPESL is executed.)

148 VM/SP eMS Macros and Functions Reference

J

J

TAPESL

BLKCNT = blkcnt
specifies the block count to be inserted in an EOFI or EOVI label on
output or used to check against on input. This field is only used for
functions EOUT, EIN, or EVOUT. If not specified, the output block
count is set to O. This field may also be specified as a register number
enclosed within parentheses when a general register contains the
block count.

ERROR = erraddr
specifies the address of an error routine to be given control if an error
of any kind occurs during label processing. If ERROR = is not coded
and an error occurs, control is returned to the next sequential
instruction in the calling program. If you request the EIN function
and a block count error is detected, control is transferred to your
error routine if you specify an ERROR = parameter that contains an
address different from the next sequential instruction. If no error
return is specified or the ERROR = address is the same as the normal
return, a block count error causes message 425R to be issued.

SPACE=YES
NO

may be specified for functions RIN and EIN. If YES is specified, the
tape is spaced, after processing, beyond the tapemark at the end of the
label record. If NO is specified, the tape is not moved after the label
has been processed. YES is the default.

TM=YES
NO

may be specified for functions ROUT, EOUT, and EVOUT. If YES is
specified, a single tapemark is written after a RDRI or EOVI label.
Two tapemarks are written after an EOFI label. If NO is specified, no
tapemarks are written. YES is the default.

Chapter 1. CMS Macro Instructions 149

~' -------

TAPESL

Usage Notes:

1. If the MODE option is not specified, the tape drive will use the default
density of the drive. The default density for dual density drives is the
highest density. This is true even if the TAPE MODESET command is
entered right before the macro is issued.

2. The input functions HIN and EIN read a tape label and check to see if
it is the type specified. They also check any fields in the tape label that
have been specified explicitly (no default) in the LABELDEF statement
(indicated by LABID). Any discrepancies between the fields in the
LABELDEF statement and the fields on the tape label cause an error
message to be issued and an error return to be made.

3. The output functions HOUT, EOUT, and EVOUT write a tape label of
the requested type on the specified tape. The values of fields within the J
labels are those specified or defaulted to in the LABELDEF command.
See the description of the LABELDEF command in VM/SP CMS
Command Reference for information about the default fields.

4. For a more complete discussion of tape label processing, see "eMS Tape
Label Processing" in the VM/SP CMS User's Guide.

Error Conditions:

If an error occurs, register 15 contains one of the following error codes:

Code
24
28
32
36
40

100

Meaning
Invalid device type specified or invalid device attached.
LABELDEF cannot be found.
Error in checking tape label or block count error.
Output tape is file-protected.
End of file or end of tape occurred.
Tape I/O error occurred.

150 VM/SP eMS Macros and Functions Reference

TRANTBL

L

TRANTBL

Use the TRANTBL macro instruction to generate a DSECT for the system
character set translation tables.

The format of the TRANTBL macro instruction is:

[1 abell I TRANTBL

where:

label
is an optional label for the statement. The first statement in
TRANTBL macro expansion is labeled TRANTBL.

Usage Notes:

1. The TRANTBL macro instruction expands as follows:

TRANTBL DSECT
TRANSTD os CL256 Standard uppercase table
TRAST77 os CL256 EBCDIC -> 3277 Character Set
TRAST78 OS CL256 EBCDIC -> 3278 Character Set
TRAAPL77 OS CL256 EBCDIC -> 3277 APL Character Set
TRAAPL78 OS CL256 EBCDIC -> 3278 APL Character Set
TRATXT77 OS CL256 EBCDIC -> 3277 Text Character Set
TRATXT78 OS CL256 EBCDIC -> 3278 Text Character Set
TRAPL7EC OS CL256 EBCDIC -> 3277/APL Compound Chars
TRAPL7CE OS CL256 3277/APL Compound Chars -> EBCDIC
TRAPL8EC OS CL256 EBCDIC -> 3278/APL Compound Chars
TRAPL8CE OS CL256 3278/APL Compound Chars -> EBCDIC
TRATX7EC OS CL256 EBCDIC -> 3277/Text Compound Char
TRATX7CE OS CL256 3277 /Text Compound Char -> EBCDIC
TRATX8EC OS CL256 EBCDIC -> 3278/Text Compound Char
TRATX8CE OS CL256 3278/Text Compound Char -> EBCDIC
TRATX7ES OS CL256 EBCDIC -> 3277/Text Single Char
TRATX7SE OS CL256 3277/Text Single Char -> EBCDIC

Chapter 1. CMS Macro Instructions 151

WAllO

WAITO

Use the WAITD macro instruction to cause the program to wait until the
next interruption occurs on the specified device. The format of the W AITD
macro instruction is:

[label] WAITD device ... [.devicen] [.ERROR=erraddr]

where:

label
is an optional statement label.

devicen
specifies the device(s) to be waited for. One of the following may be
specified:

symn

user

indicates the symbolic device name and number, where:

sym
is CON, DSK, PRT, PUN, RDR, or TAP.

n
indicates a device number.

is a four-character symbolic name specified a HNDINT macro
issued for the same device.

ERROR = erraddr
specifies the address of an error routine to be given control if an error
is found. If ERROR = is not coded and an error occurs, control returns
to the next sequential instruction in the calling program, as it does if
no error occurs.

Usage Notes:

1. Use the WAITD macro instruction to ensure completion of an I/O
operation. If an interruption has been received and not processed from a
device specified in the W AITD macro instruction, the interruption is
processed before program execution continues.

2. When the interruption has been completely processed, control is
returned to the caller with the name of the interrupting device in
register 1.

152 VMjSP eMS Macros and Functions Reference

L

WAllD

3. If an HNDINT macro instruction issued for the same device specified
ASAP and an interruption has already been processed for the device,
the wait condition is satisfied.

4. If an HNDINT macro instruction issued for the same device specified
WAIT and an interruption for the device has been received, the
interruption handling routine is given control.

5. The interruption routine determines if an interruption is considered
processed or if more interruptions are necessary to satisfy the wait
condition. For additional information see the discussion of the
HNDINT macro instruction.

Error Conditions:

If an error occurs, register 15 contains a 1 to indicate that an invalid device
number was specified.

Chapter 1. CMS Macro Instructions 153

WAITECB

WAITECB

Standard Format

[label] WAITECB

Use the WAITECB macro instruction to wait on an ECB (Event Control
Block) or a list of ECBs. The W AITECB macro suspends processing until a
specific ECB or the ECBs in a list have been posted. "Posting" the ECB
involves turning the "event complete" bit on. Event completion is signaled
by setting the appropriate completion bit (based on the ECB format) in an
asynchronous routine such as a .timer or interrupt handler exit.

The four formats of the W AITECB macro instruction are:

• Standard

• List (MF = L)

• Complex List (MF = (L,addr[,labelJ))

• Execute (MF = (E,addr»

The Standard Format of the W AITECB macro instruction is:

{ ECB=addr [.FORMAT=OsIVSE] }
[count] • ECBLIST=addr [. FORMAT=OS I VSE]

where:

label

count

addr

is an optional statement label.

specifies the number of ECBs to be posted before returning to the
caller. It is specified as a decimal number or a register (2-12), enclosed
in parentheses. If not specified, the value 1 is assumed.

The count operand is only valid with the ECBLIST form of the macro.
If it is specified with the ECB form of the macro, an MNOTE error
message is issued.

is an assembler program label or an address stored in a general
register (2-12), enclosed in parentheses.

addr is the address of an ECB on a fullword boundary or the address
of a virtual storage area containing one or more consecutive fullwords
on a fullword boundary. Each fullword contains the address of an
ECB. The end-of-list indicator has two forms:

154 VM/SP eMS Macros and Functions Reference

J

J

List Format

[labelJ

~--- ~--""I\

WAITECB

1. If FORMAT = OS is specified (or defaulted), the high order bit (bit
0) in the last full word must be set to 1.

2. If FORMAT = VSE is specified, the byte following the last full word
of the list must be non-zero.

FORMAT
specifies the format of the ECB(s) used. If OS is specified, the bit
tested for "event completed" is byte 0 bit 1. If VSE is specified, the bit
tested is byte 2 bit O. If this parameter is omitted, it defaults to
FORMAT = OS. With ECBLIST, ECB formats cannot be mixed.

When MF = L is coded, the W AITECB macro has the following format:

WAITECB MF=L [[,ECB=labelJ[,FORMAT=OSIVSEJ 1
[,countJ[,ECBLIST=labelJ[,FORMAT=OsIVSEJ

The parameters have the same meaning as in the Standard Format except
for the following:

MF=L
indicates that the parameter list is created in-line. No executable
code is generated. Register notation cannot be used for macro
parameter addresses.

Note: When you use the MF = parameter, all other parameters are
optional. Before the function is executed, a valid combination of
parameters must be specified by the List and Execute Formats of the macro.

Complex List Format

[labelJ

When MF=(L,addr[,label]) is coded, the WAITECB macro has the following
format:

WAITECB MF=(L,addr[,labelJ) [c.ECB=addrlc.FORMAT=OSIVSEl

1
[,countJ[,ErBLIST=addrJ
[,FORMAT=OS VSEJ

The parameters have the same meaning as in the Standard Format except
for the following:

MF = (L,addr[,label])
indicates that the parameter list is created in the area specified by
addr. The address may represent an area within your program or an
area of free storage obtained by a system service. You can determine
the size of the parameter list by coding the label operand. The macro
expansion equates label to the size of the parameter list. This format
of the macro produces executable code to move the data into the

Chapter 1. CMS Macro Instructions 155

WAITECB

Execute Format

parameter list specified by addr. However, it does not generate the .j
instructions to invoke the function. If this version of the List Format

count

is used, it must be executed before any related invocation of the
Execute Format.

If the count operand is not specified, no default is assumed so as not
to override a count that may have been specified by the List Format of
the W AITECB macro.

Note: When you use the MF= parameter, all other parameters are
optional. Before the function is executed, a valid combination of
parameters must be specified by the List and Execute Formats of the macro.

When MF=(E,addr) is coded, the WAITECB macro has the following
format:

J

[1 abe 1] WAITECB MF=(E,addr) [[,ECB=addrJ[,FORMAT=OSIVSEJ 1
[,countJ[,ECBLIST=addrJ[,FORMAT=OsIVSEJ

ECB Formats

The parameters have the same meaning as in the Standard Format except
for the following: J
MF = (E,addr)

count

indicates that instructions are generated to execute the W AITECB
function. addr represents the location of the parameter list.
Information in the parameter list may be changed by specifying the
appropriate operands on the macro.

If the count operand is not specified, no default is assumed so as not
to override a count that may have been specified by the List Format of'\
the W AITECB macro.",

Note: When you use the MF = parameter, all other parameters are
optional. Before the function is executed, a valid combination of
parameters must be specified by the List and Execute Formats of the macro.

ECBs are standard mechanisms used to synchronize multiple events. The
process of turning on the "event complete" bit is referred to as "posting"
the ECB. ECBs are full words and have the following OS or VSE format:

OS Format:

bit 0
bit 1
bit 2-7
bit 8-31

WAIT bit
Event completed bit
Completion code
Unused

156 VM/SP eMS Macros and Functions Reference

WaltConsole 1/0 Walt

VSE Format:

byte 0-1
byte 2

bit 0
bit 1-7

byte 3

Reserved

Traffic bit (Event completed bit)
Reserved
Reserved

WAITECB

Note: For an OS format ECB, the OS simulation POST macro is an
acceptable alternative to turning the event completed bit on yourself.

The CMS nucleus, DMSNUC, contains an ECB that makes it easier to wait
for a console I/O in a series of multiple events. This ECB is called
CONIECB and is defined in DEVTAB. This ECB has two "event
completed" bits. The format of CONIECB is:

byte 0
bit 0 Wait bit
bit 1 Event completed bit number 1
bit 2-7 Completion code

byte 1 Reserved
byte 2

bit 0 Event completed bit number 2
bit 1-7 Reserved

byte 3 Reserved

When the terminal input buffer contains a line, both event completed bits
in the CONIECB ECB are posted.

Usage Notes:

1. The number of ECBs specified in the macro are sequentially searched to
check if they have been "posted."

2. If the user specified a count larger than the number of ECBs in the
ECBLIST, execution of this macro results in a permanent wait.

3. If the count is negative or zero, this function results in a NOP. (NOP
means no-operation instruction; the program just proceeds to the next
instruction.)

4. The console ECB only applies to the terminal input buffer. No ECB is
associated with the program stack.

Chapter 1. CMS Macro Instructions 157

WAITT

WAITT

Use the WAITT macro instruction to cause the program to wait until all of
the pending terminal 1/0 is complete.

The format of the WAITT macro instruction is:

[label] WAITT

where:

label
is an optional statement label.

Usage Note:

1. The WAITT macro instruction synchronizes input and output to the
terminal; it ensures that the console stack is cleared before the program
continues execution. Also, you can ensure that a read or write
operation is finished before you modify an 1/0 buffer.

158 VMjSP eMS Macros and Functions Reference

J

J

WRTAPE

WRTAPE

Use the WRTAPE macro instruction to write a record on the specified tape
drive. The format of the WRTAPE macro instruction is:

[1 abe 1] WRTAPE buffer, length [,device] [,MODE=mode]
[,ERROR=erraddr] [,TRAN=tran]

where:

label
is an optional statement label.

buffer
specifies the address of the record to be written. It may be:

lineaddr
the symbolic address of the line.

(reg)
a register containing the address of the buffer.

length
specifies the length of the line to be written. It may be specified in
either of two ways:

n
a self-defining term indicating the length.

(reg)
a register containing the length.

device
specifies the device to which the record is to be written. If omitted,
T API (virtual address 181) is assumed. It may be:

TAPn
cuu

indicates the symbolic tape identification (TAPn) or the virtual
device address (cuu) of the tape you are writing to. The
following symbolic names and virtual devices are supported:

Chapter 1. CMS Macro Instructions 159

WRTAPE

Symbolic Virtual Symbolic Virtual
Name Address Name Address

TAPO 180 TAP8 288
TAP1 181 TAP9 289
TAP2 182 TAPA 28A
TAP3 183 TAPB 28B
TAP4 184 TAPC 28C
TAP5 185 TAPD 28D
TAP6 186 TAPE 28E
TAP7 187 TAPF 28F

MODE = mode
specifies the number of tracks, density, and tape recording technique.
It must be in the following form:

([track] , [density] , [trtch])

track

7 indicates a 7-track tape (implies density = 800 and trtch = 0).

9 indicates a 9-track tape (implies density = 800).

18 indicates a 18-track tape (implies density = 38K).

density

200, 556, or 800 for a 7-track tape

800, 1600, or 6250 for a 9-track tape.

38K for an 18-track tape.

trtch

indicates the tape recording technique for 7-track tape. One of the
following must be specified:

o odd parity, converter off, translator off.
OC odd parity, converter on, translator off.
OT odd parity, converter off, translator on.
E even parity, converter off, translator off.
ET even parity, converter off, translator on.

ERROR = erraddr
specifies the address of an error routine to be given control if an error
is found. If ERROR = is not coded and an error occurs, control returns
to the next sequential instruction in the calling program, as it does if
no error occurs.

160 VM/SP eMS Macros and Functions Reference

J

J

WRTAPE

TRAN=tran
specifies the tape write mode available only for the 3480 Magnetic
Tape Subsystem. The two write modes are BUFFered and
IMMEDiate. The default is the BUFF Mode. Use of the IMMED
mode causes a severe performance degradation.

BUFF
specifies that data is to be transferred from the processor to the
tape control unit. As soon as the data transfer is complete, a
"complete" signal is issued, and the processor and tape control
unit are disconnected from each other. The tape control unit
then writes the data on tape and performs error checking and
recovery procedures.

IMMED
specifies that data is to be physically written on tape and
"read-back" checked (verified) by the microprogram in the tape
control unit. A "complete" signal is issued and the processor
and tape control unit are disconnected from each other after the
data is actually on the tape.

Usage Notes:

1. If the MODE option is not specified, the tape drive will use the default
density of the drive. The default density for dual density drives is the
highest density. This is true even if the TAPE MODESET command is
entered right before the macro is issued.

2. You need not specify the MODE option when you are writing to a
9-track tape and want to use the default density, nor when you are
writing to a 7-track tape with a density of 800 bpi, odd parity, with data
converter and translator off.

3. You must specify the MODE option (track and density) when writing on
a 3480 tape.

4. The BUFF option (the default) of the TRAN parameter for the 3480,
signals CHANNEL END and DEVICE END when data has been
completely transmitted to the channel. To prevent a delayed unit check
(that occurs when the data is not correctly written to the tape
cartridge), you may issue a tape control function such as a WTM or
REW. Tape control functions can be issued with the TAPECTL macro.

Error Conditions: If an error occurs, register 15 contains one of the
following error codes:

Code
1
2
3
4
5
6
7

Meaning
Invalid function or parameter list
End of file or end of tape
Permanent I/O error
Invalid device identification
Tape not attached
Tape is file-protected
Invalid device attached

Chapter 1. CMS Macro Instructions 161

WRTERM

WRTERM

[1 abel] WRTERM

Use the WRTERM macro instruction to display a line at the terminal. The
format of the WRTERM macro instruction is:

line [.length] [.EDIT=code] [.COLOR=color]

where:

label
is an optional statement label.

line
specifies the line to be displayed. It may be one of three forms:

line text
the actual text line enclosed in single quotation marks.

lineaddr
the label on the statement containing the line.

(reg)
a register containing the address of the line.

length
specified the length of the line. If the line is specified within
quotation marks in the macro instruction, the length operand may be
omitted. The length may be specified in either of two ways:

n
a self-defining term indicating the length.

(reg)
a register containing the length.

EDIT = code
specifies whether the line is to be edited:

NO

indicates that trailing blanks are to be removed and a carriage
return added to the end of the line. YES is the default value.

indicates that trailing blanks are not to be removed and no
carriage return is to be added.

162 VMjSP eMS Macros and Functions Reference

J

J

WRTERM

LONG
indicates the line may exceed 130 bytes. No editing is performed.

COLOR = color
indicates the color in which the line is to be typed, if the typewriter
terminal has a two-color ribbon:

R

indicates that the line is to be typed in black. This is the
default.

indicates that the line is to be typed in red.

Usage Notes:

1. The maximum line length is 130 characters for a black line and 126
characters for a red line.

2. IfEDIT=LONG, COLOR must be specified as "B." In this case, you may
write as many as 1760 bytes with a single WRTERM macro instruction.
You are responsible for embedding the proper terminal control
characters in the data. (This operand is for use primarily with VS APL
programs.)

3. You may want to use the WAITT macro instruction to ensure that
terminal I/O is complete before continuing program execution.

4. When EDIT = NO or LONG is used, the same output to graphics devices
and to line terminal devices may appear inconsistent because of
differences in device characteristics.

5. Use the LINEWRT macro instead of the WRTERM macro for increased
flexibility. The LINEWRT macro supports all of the functions that
WRTERM does, and it also allows the user to specify features such such
as a virtual screen name, color, and extended highlighting. (See the
LINEWRT macro.)

Chapter 1. CMS Macro Instructions 163

WRTERM

J

164 VM/SP eMS Macros and Functions Reference

eMS Functions

Chapter 2. eMS Functions

This part describes functions that are available to the CMS user.

Execute CMS functions from application programs by setting up a
parameter list and then issuing an SVC 202. When you want to execute a
function in your program, load the address of the function parameter list
into Register 1 and issue the SVC 202 as follows:

LA l,Parameter List
SVC 202
DC AL4 (ERROR)

where:

ERROR is a routine to handle nonzero return codes returned in register 15
after execution of the SVC call.

If you want to ignore errors, you can code the sequence:

LA l,Parameter List
SVC 202
DC AL4 (1)

If the function completes normally, this sequence causes execution of the
next sequential instruction. However, if an error occurs while executing
the function and the program requires successful execution of the function,
abnormal termination of your program may result.

The following CMS functions are described in this section:

• ATTN

• DIS KID

• LANGADD

• LANG FIND

• NUCEXT

• TODACCNT

• WAITRD

Chapter 2. CMS Functions 165

'T"

ATTN

ATTN

Use the ATTN function to insert a line of input into the program stack.
ATTN may be executed from an assembler language program via sve 202
with the following parameter list:

PLIST DS OD
DC CL8'ATTN'
DC CL4'order' where order may be LIFO or FIFO.

* FIFO is the default
DC ALI (length) length of line to be stacked
DC AL3(addr) address of line to be stacked

Usage Notes:

1. The line that ATTN stacks is extracted from the program stack when
W AITRD is executed to read a line of input. (See the W AITRD function
description for details of WAITRD function.)

2. ATTN stacks lines of up to 255 characters.

Responses:

None

Return Codes:

Code Meaning

o Function successfully completed

25 No more storage

166 VM/SP eMS Macros and Functions Reference

J

J

J

DISKID

L

DISKID

Use the DISKID function to obtain information on the physical
organization of a RESERVEd minidisk. The DIS KID function obtains the
virtual address, the block size, and the offset of the minidisk.

A disk does not have to be accessed when you use the DIS KID function. If
the disk is accessed, the DIS KID function obtains the necessary information
from the Active Disk Table (ADT) for that disk. If the disk is not accessed,
CMS obtains the information from the disk's label.

You need this information in order to use the CP DASD Block I/O System
Service with a CMS formatted minidisk that was RESERVEd.

DISKID is executed from an assembler language program via SVC 202 with
the following parameter list:

PLIST DS.
DC
DC
DS
DS
DS
DS

UsaRe Notes:

OD
CL8'DISKID'
CL8'ddname'
XL2
H
F
D

ddname for the mini-disk
Virtual address
Blocksize
Offset
Reserved

1. The parameter list must begin on a double word boundary.

2. The program calling the DISKID function fills the first two double words
of the parameter list.

3. The second doubleword contains the "ddname" specified in the
FILEDEF command issued for the Block I/O disk.

4. The third doubleword is filled upon completion of the DISKID function.
It contains:

• the virtual address of the mini-disk for which a "ddname" exists

• the block size of the mini-disk

• the offset of the mini-disk. This offset associates a physical block
number to the first data block of the unique file on disk that was
previously RESERVEd. The block number represents the number of
sequential blocks used on the disk by the CMS file system to
implement its structure. Data block number one for the file is then
physical block number one plus offset.

Chapter 2. CMS Functions 167

,-

DISKIO

Return Codes:

Register 15 contains one of the following codes:

Code
o
4

12
28

100
lxx

2xx

Meaning
Return information supplied in parameter list
High order byte of register 1 is not zero
DASD not reserved with the RESERVE command
"ddname" not defined or "ddname" not filedef'ed to DISK
cuu
Disk not attached
An I/O error occurred; xx = the return code from DIAG
18 (CKD devices)
An I/O error occurred; xx = the return code from DIAG
20 (FBA devices)

168 VM/SP eMS Macros and Functions Reference

LANGADD

LANGADD

Use the LANGADD function to add a LANGBLK to the language block
chain.

LANGADD does this by:

1. making a copy of the LANGBLK pointed to in the plist, and then
2. adding it to the language block chain of LANGBLKs (if a LANGBLK

for the application is not already on the chain).

This allows an application to have one language as part of its "nucleus,"
just as CMS does.

You can execute LANGADD from a program via an SVC 202 with the
following parameter list:

DS OF
DC CL8'LANGADD'
DS A(addr of LANGBLK)
DC 8X'FF'

Usage Note:

The SET LANGUAGE command will not be able to restore the information
in the LANGBLK if another language is set and the original language is
restored. The application must request LANGADD to add the LANGBLK
again.

Return Codes:

Code
o
4

Meaning
The function was successfully completed.
A LANGBLK for the application is already on the language block
chain.

Chapter 2. CMS Functions 169

LANGFIND

LANGFIND

Use the LANGFIND function to get the address of an application's
language control block.

Each application may have a language control block (LANGBLK) which
contains pointers to all language-related information. LANGFIND allows
you to locate the LANGBLK for a specific application.

You can execute LANGFIND from a program via an SVC 202 with the
following parameter list:

DS OF
DC CL8'LANGFIND'
DS CL4'application id'
DS A(addr of LANGBLK)
DC 8X'FF'

Upon return, the four bytes following the application id will either contain:

1. the address of the LANGBLK, if the application id requested was found,
or

2. zero, if no LANGBLK contained the application id that was requested.

170 VM/SP eMS Macros and Functions Reference

J

J

NUCEXT

L

NUCEXT

The nucleus extension function (NUCEXT) allows you to identify command
entry points in programs established in free storage, so that they may be
called by a SVC 202 as if they were nucleus commands. They thus become
nucleus extensions. You can also create your own Immediate commands
with the NUCEXT function.

NUCEXT builds a chain of SCBLOCKS in storage for nucleus extensions.
The chain of nucleus extensions is reordered each time a command is found
on the chain. The reordering puts the most frequently used commands at
the beginning of the chain.

NUCEXT is a name given to a group of commands that all make use of an
internal function named NUCEXT. The actual commands provided for
manipulation of nucleus extensions are:

NUCXLOAD Loads an ADCON-free or relocatable module into free storage
and installs it as a nucleus extension.

NUCXDROP Cancels a nucleus extension and releases the corresponding
storage.

NUCXMAP Prints on the console or stacks a list of the nucleus
extensions.

Use NUCEXT to access user-written programs without having to do disk
read operations (as would be required for modules) or to avoid thrashing in
the transient or user areas when several programs are used repeatedly (the
same programs are loaded many times).

Use NUCEXT for gathering statistics, filtering commands for various
purposes, creating anchors for data kept in free storage until the next CMS
IPL, and special operations during CMS abnormal end processing.

Nucleus extensions with the IMMCMD option can receive control as
user-defined Immediate commands or as regular commands. Nucleus
extensions with the ENDCMD option, receive control at normal
end-of-command processing. The ENDCMD nucleus extensions only receive
control after a command is entered from the virtual console. They do not
receive control if the command was issued from an EXEC, a user program,
or CMS SUBSET mode. Unlike transient routines or user programs,
nucleus extensions are retained until they are unloaded explicitly, or as a
side effect of abnormal end cleanup for those using free storage of type
'user' (which is reclaimed during an abnormal end) or which are not
designated as system routines to survive abnormal end. Nucleus extensions
can have the same name as existing CMS nucleus commands or functions.
If they do have the same name, the extensions override the existing nucleus
commands or functions. Only nucleus functions invoked via SVC 202 can

Chapter 2. CMS Functions 171

-

NUCEXT

be overridden. However, two existing nucleus functions, RDBUF and
WRBUF, cannot be overridden. It is possible to create a nucleus extension
that can call another nucleus extension having the same name. This allows
a nucleus extension to "frontend" another nucleus extension. The
techniques necessary to perform this call are complex and require
assembler language programming. This override process may not be
possible in all cases.

The nucleus extension that was the last nucleus extension to be established
receives control first. This is the first nucleus extension on the SCBLOCK
chain with a name that matches the requested name.

The nucleus extension may perform whatever processing that it requires.
To pass control to another nucleus extension having the same name, it
must first change the name field of the original SCBLOCK to a unique
name.

The original nucleus extension may now issue an SVC 202 for the nucleus
extension control that is to be passed. The original nucleus extension can
restore the original contents of general registers 0 and 1 before this call.

Control is passed to the next nucleus extension with the same name on the
SCBLOCK chain. The PLIST that the nucleus extension receives is the
PLIST that was pointed to by registers 0 and 1 when the SVC 202 was
issued on the first nucleus extension.

On return from the second nucleus extension, the original nucleus
extension must now issue an SVC 202 for itself. The name used for this
SVC 202 must be the unique name that was placed in the SCBLOCK earlier.
This call reorders the SCBLOCK chain, placing the original nucleus
extension at the head of the SCBLOCK chain. The nucleus extension must
be designed to recognize these special reorder calls. Reorder calls can be
determined by checking the parameter list that is pointed to by register 1
upon entry. If the unique name is the first token in the PLIST, then this is
a reorder call. Control should only be returned to the caller; typically, no
processing should be performed.

The original nucleus extension should now restore the name field of its
SCBLOCK to its original name from the unique name. Control may now be
returned to the original caller.

Nucleus Extensions and Abnormal Ends

Types of Nucleus Extensions

There are two types of nucleus extensions, "system" and "user,"
differentiated by their behavior during a CMS abnormal end. The former
will survive an abnormal termination of a user program (abnormal end),
whereas the latter will not.

172 VM/SP eMS Macros and Functions Reference

J

L

NUCEXT

Note: Because CMS reclaims all storage of type "user" during the
abnormal end cleanup phase, any nucleus extension in "user" storage is
deleted during abnormal end, regardless of its "system" attribute. The
storage obtained for "user" type nucleus extensions code must be be
double word aligned to the next doubleword or DMSFRE errors will occur
during ABEND processing.

Because of this storage reclamation during abnormal end, programs which
build data structures in free storage of type 'user' but keep pointers in
storage of type 'system' need to know when abnormal end cleanup occurs
(e.g., after HX).

Service Calls: PURGE and RESET

A program's need to know about abnormal end cleanup is supported by the
idea of a service call. When a nucleus extension is declared (via NUCEXT),
it may request that it receive a service call under appropriate
circumstances. There are two standard service calls supported by
NUCEXT. The PURGE service call is issued during CMS abnormal end
cleanup. The RESET service call is issued by the NUCXDROP program
when a nucleus extension is explicitly unloaded. The service calls allow
programs with several entry points to cancel these at the same time, or to
free storage areas.

Note: A note on service calls during an abnormal end: Do not stack during
a service call. This causes the system to allocate storage that is not
accounted for during abnormal end. The sequence of events that occur
during an abend are documented in VM/SP CMS for System Programming.

The SYSTEM and SERVICE Attributes:

Nucleus extensions mayor may not have the "SYSTEM" attribute and/or
the "SERVICE" attribute. These attributes determine the handling of a
nucleus extension during abnormal end processing.

If a nucleus extension has the "SYSTEM" attribute, it remains active after
an abnormal end. It is your responsibility to see that such a nucleus
extension is loaded into nucleus storage, not user storage (which is
recovered after an abnormal end).

If a nucleus extension has the "SERVICE" attribute, it is called during
abnormal end processing with the parameter list:

DS OF
DS CL8'nucleus extension name'
DC CL8'PURGE'
DC 8X' FF'

The high order byte in register 1 is set to X'FF'. A nucleus extension may
have the "SYSTEM" and "SERVICE" attributes in any combination.

Chapter 2. CMS Functions 173

NUCEXT

ENDCMD Attribute

Nucleus Storage:

During abnormal end recovery, nucleus storage used by nucleus extensions
behaves as follows:

1. When a nucleus extension has the "SYSTEM" attribute, it should be in
nucleus storage and the length word is used by abnormal end recovery
to account for the amount of storage used by that program.

2. If a nucleus extension does not have the "SYSTEM" attribute but is in
nucleus storage anyway, that storage will be recovered during abnormal
end.

When a nucleus extension obtains nucleus-type free storage other than
what is accounted for by the origin and length fields in the SCBLOCK, it
should either:

1. Use the "SERVICE" flag so that it is called with the PURGE parameter
list during abnormal end, at which time it returns any nucleus-type
storage it obtained (but not that described in its SCBLOCK).

2. If it has the "SYSTEM" attribute, account for any extra nucleus storage
which is to be kept through an abnormal end by adding the length in
doublewords of such storage into the NUCXFRES field in NUCON. It's
a good idea to update this field as soon as the storage is obtained. This
is required if the nucleus extension does not have the "SERVICE"
attribute.

Nucleus extensions remain in effect until cancelled, either explicitly or
implicitly. Implicit cancellation normally occurs only for nucleus
extensions of the "user" type (during an abnormal end cleanup time when
all storage of "user" type is reclaimed). Explicit cancellation does not
release the storage (if any) occupied by the nucleus extension: that is the
responsibility of the program that issues the cancellation (usually the
program NUCXDROP).

Using the NUCEXT function affects the command resolution strategy of
DMSITS when a SVC 202 is processed. Nucleus extensions are sought
before functions in the real CMS nucleus (i.e., one which is defined by an
entry in DMSFNC). This gives the user the ability to intercept, filter,
augment, etc., the "real" nucleus functions.

A nucleus extension with the ENDCMD option receives control at normal
end-of-command processing. At end-of-command processing the CMS
console handler invokes all nucleus extensions having the ENDCMD
option. The nucleus extensions are invoked by an SVC 202. Register 1
points to the PLIST, the high order byte of register 1 is set to X'FE' to
indicate an end-of-command call. The PLIST used to invoke an ENDCMD
extension is:

174 VM/SP eMS Macros and Functions Reference

J

Linkage Conventions

DS OF
DS CL8'nucleus extension name'
DC CL8'ENDCMD'
DS F'return code'
DC 8X'FF'

where:

NUCEXT

"return code" is the value returned to CMS in register 15 by the
terminating command.

When a nucleus extension is declared, the following information must be
provided:

• The NAME of the command implemented by the nucleus extension.

• The PSW to be used when passing control to the nucleus extension.

• The address and length of the storage area occupied by the program.
The length must be rounded up to double word alignment.

• Flag bits to indicate either type "user" or "system," and indicate
whether service calls are desired.

• Flag bits should be used to indicate if the ENDCMD or IMMCMD
options are desired.

Secondary entry points are declared by indicating a storage size of zero.
The PSW specifies the system mask, the PSW key to be used, the program
mask (and initial condition code), and the starting address for execution.
The problem-state bit and machine-check bit may be set. The
machine-check bit has no effect in CMS under CPo The EC-mode bit and
the wait-state bit cannot be set (they are always forced to zero). The flag
bits are encoded in the third byte of the PSW. Also, one byte of user
defined flags and one 4-byte user-defined word can be associated with the
nucleus extension, and referred to when the entry point is subsequently
called.

Entry into a Nucleus Extension: On entry to a nucleus extension, the
register contents are:

RO

Rl

R2
R12
R13
R14
R15

Address of extended parameter list (if
one was provided by the caller).

Address of the command name (and the
tokenized parameter list).

Address of SCBLOCK with NUCEXT extension.
Entry point address.
24-word save area address.
Return address (CMSRET).
Entry point address.

This is the standard entry point convention except that R2 points to the
SCBLOCK.

Chapter 2. CMS Functions 175

NUCEXT

PLISTs

The NUCEXT function queries, declares, or cancels user nucleus
extensions. NUCEXT can be issued as a command only for its query
function. With one argument, 'name,' it returns either:

o 'name' is a user nucleus extension (found it).

or

1 'name' not found.

As a function (called from a program), NUCEXT takes the following PLIST:

Declare PLIST:

NUCX DS OF PLIST TO DECLARE NUCLEUS EXTENSION
DC CL8'NUCEXT'

NUCXNAME DC CL8'name' COMMAND NAME
NUCXPSW DC XL2'0000' ,AL2(0) SYSTEM MASK, STORAGE KEY, ETC

ENTRY ADDRESS, -1 for QUERY
USER WORD

NUCXADDR DC
DC

NUCXORG DC
NUCXLEN DC

A(*-*)
A(0)
A(*-*)
A(*-*)

LOAD ADDRESS
SIZE, IN BYTES ROUNDED TO THE NEXT
DOUBLEWORD.

This declares 'name' as a nucleus extension and puts an SCBLOCK at the
head of the NUCEXT chain. The name may already be defined, in which
case the previous declaration will be hidden until the present one is
cancelled. Return code 25 means not enough storage was available to
allocate the necessary SCBLOCK.

The third and fourth bytes of the start-up PSW (interrupt code) are used as
flag bytes. The format of the PSW is:

ALl (system mask)
AL.4(storage key)
BL.4'OMWP'
AL1(NUCEXT flags)

ALl (user flag)
A(entry point)

Cancel PLIST:

CL8'NUCEXT'
CL8 'name ,
XL4'irrelevant'

(EC-mode bit forced to 0)

System=X'80' ,
Service=X'40'
End of command=X'lO'
Immediate=X' 04 ,
May be used for private purpose.

A(O) identifies the cancel function

This cancels the nucleus extension or gives a return code of 1 if 'name' is
not found. The storage occupied by the program calling for this nucleus
extension is not freed. This is the responsibility of the cancelling program.

176 VM/SP eMS Macros and Functions Reference

L

Query PLIST:

CLS'NUCEXT'
CLS'name'
XL4'irrelevant'
XL4'FFFFFFFF'

NUCEXT

Receives A(SCBLOCK).
identifies the query function

This form returns the address of the SCBLOCK if 'name' is found, otherwise
it changes nothing and gives a return code of 1.

Note that if 'NUCEXT name' is called from a command level or from an
EXEC file, the Query PLIST is the form of PLIST which will be issued.

Get Anchor PLIST:

CLS'NUCEXT'
CLS'irrelevant'
A(*-*)

A(1)

Nucleus Extensions as Immediate Commands

Receives value (not address)
of NUCEXT list anchor or 0 if
there are no nucleus extensions.

Indicates request for anchor.

When a nucleus extension is established with the IMMCMD option, it can
be invoked as a regular command or as an Immediate command. In
addition to having an SCBLOCK, a nucleus extension with IMMCMD
attribute also has a similar control block, called an IMMBLOK, associated
with it.

Nucleus extensions with the IMMCMD attribute are entered as Immediate
commands when they are invoked by the CMS console interrupt handler.
This occurs when a particular command that has been established as an
Immediate command is entered by the terminal user while CMS is busy.

Nucleus extensions with the IMMCMD attribute can be overridden by an
identically named nucleus extension (for example, NUCXLOAD with the
PUSH option). If the new nucleus extension does not have the IMMCMD
attribute but does have the same name as an existing nucleus extension
with the IMMCMD attribute, the nucleus extension with the IMMCMD
attribute is disabled as an Immediate command.

Entry conditions to a nucleus extension as an Immediate command are
identical to the entry conditions that occur when a nucleus extension is
invoked via SVC 202, except for the following conditions:

• The high order byte ofregister 1 contains X'06'. This indicates that the
nucleus extension was invoked as an Immediate command. When
invoked via SVC 202, the high order byte of register 1 is normally X'Ol'
or X'OB'.

• Register 2 contains the address of an IMMBLOK.

• Register 14 contains the return address that is located in the CMS
console interrupt handler (DMSCIT).

Chapter 2. CMS Functions 177

NUCEXT

With respect to common information (for example, command name and user
word), displacements within the IMMBLOK are identical to those in an
SCBLOCK). These displacements are as follows:

Displacement
o
4
8

20

Offset Information
Pointer to next IMMBLOK
User word
Command name
Entry point address

For a general discussion of Immediate commands in CMS, see VMjSP eMS
for System Programming.

178 VM/SP eMS Macros and Functions Reference

TODACCNT

TODACCNT

Use the TODACCNT function to issue a DIAGNOSE 70 for activating the
time-of-day clock accounting interface. Using the TODACCNT function
helps to avoid DIAGNOSE 70 calls (a specification exception).

The TODACCNT function has two subfunctions, ENABLE and QUERY.

•

•

ENABLE tells CMS to issue a DIAGNOSE 70 instruction to indicate to
CP that the virtual machine wishes to receive timing information. Each
time the virtual machine is dispatched, CP provides the accumulated
processor time the virtual machine has used and the time-of-day that
the virtual machine was dispatched. This information is stored in a
I6-byte area in page zero.

QUERY function returns the 16 bytes of timing information supplied by
CP as a result of the enable function.

TODACCNT is executed from a program via SVC 202 with the following
parameter list:

PLIST

*
*

*
*
*
*
*
*
*
*

DS OD
DC CL8'TODACCNT'
DC CL8'function'

DC Bx(addrufield)

Usage Notes:

function is ENABLE or QUERY.
ENABLE or QUERY should be an
8-byte field.
for ENABLE, a 4-byte address
field where the timing
information is to be stored
(provided the return code is
o or 4). For QUERY, a l6-byte
field where CMS will return
the l6-bytes of timing
information that is transferred
transferred from page zero
(provided the return code is 0).

1. The parameter list must be on a double·word boundary.

2. AN error return address must be supplied in the 4 bytes immediately
following the SVC 202 instruction. If the return code (register 15)
contains a nonzero value after returning from the SVC call, control
passes to the address specified unless the address is equal to 1. If the
address is 1, return is made to the next instruction after the "DC
AL4(I)" instruction.

3. For the TODACCNT function to be utilized, either the command SET
ECMODE ON must have been issued in the virtual machine prior to
IPLing CMS, or the EMMODE operand must be specified on the
OPTION directory control statement of the issuing virtual machine.

Chapter 2. CMS Functions 179

TODACCNT

Responses: None

Return Codes:

Register 15 contains one of the following codes.

Return Codes for the ENABLE subfunction:

Code

o

4

8

20

Meaning

ENABLE function successfully completed. The address of the
16-byte area in page zero is returned in the parameter list.

ENABLE function has already been issued. The address of
the 16-byte area in page zero is returned in the parameter list.

ECMODE is not set on.

DIAGNOSE 70 has already been issued. CMS is not able to
return the timer area address.

Return Codes for the QUERY subfunction:

Code

o

12

Meaning

QUERY function successfully completed. The 16 bytes of
timer information has been transferred from page zero to the
parameter list.

ENABLE function has not been issued.

Return Codes for the ENABLE and QUERY functions:

Code

16

24

Meaning

Invalid function specified. Valid functions are 'ENABLE '
or 'QUERY'. This should be an 8-byte field.

Function failed because CMS free storage is not available.

180 VM/SP eMS Macros and Functions Reference

J

WAITRD

code1

WAITRD

Use the W AITRD function to read a line of input from the virtual machine
console, the program stack or the terminal input buffer. W AITRD may be
executed from an assembler language program via SVC 202 with the
following parameter list:

PLIST DS OF
DC CL8'WAITRD'
DC ALl(l)
DC AL3(input buffer address)
DC CLl' codel'
DC CLl'code2'
DC AL2(length of buffer)
DC AL4(prompt buffer address)
DC AL4(prompt buffer length)

W AITRD first reads from the program stack. If the program stack is empty,
W AITRD reads from the terminal input buffer. If the terminal input buffer
is empty, WAITRD reads from the virtual machine console. However, if you
desire, W AITRD can bypass the contents of the program stack and the
terminal input buffer and read directly from the virtual machine console.

After W AITRD reads a line of input, the line is stored in your input buffer.
The input buffer address specifies the address of this buffer.

The prompt buffer address and prompt buffer length are optional
parameters. If they are used, the prompt information is written from either
the buffer specified by the prompt buffer address or your input buffer (if the
prompt buffer address is not specified). The prompt buffer length specifies
the length of the prompt information to be written prior to the read.
Prompt information is written with no carriage return and is used with
TTY type devices.

Note: If the prompt parameters are used with code1 = W, Z, *, or $, the
read buffer may not be used for the prompt data because the read buffer is
cleared prior to the execution of the function.

The following codes specify what kind of processing W AITRD performs on
lines read from the terminal input buffer. With these codes you must
specify a buffer length of 130 bytes in the 'length of buffer' field in the
W AITRD parameter list.

Code

U

Meaning

Reads a logical line, pads it with blanks, and translates it to
uppercase.

Chapter 2. CMS Functions 181

WAITRD

code2

v

S

T

x

y

Reads a logical line and translates it to upper case; does not
pad with blanks.

Reads a logical line and pads it with blanks.

Reads a logical line; does not pad with blanks.

Reads a physical line.

Reads a logical line, pads with blanks to 130, does no
uppercase translation and does not do SET INPUT
translation.

The following codes specify what kind of processing W AITRD performs on
lines read from the program stack. The length of the input buffer may be
up to 255 bytes. J
Code

W

z

Meaning

Reads a physical line; performs no uppercase translation or
padding with blanks.

Reads a physical line and translates it to upper case; does not
pad with blanks.

Use the following codes when you use APL under CMS. The length of the J
buffer may be up to 2030 bytes.

Code

*

$

Code

B

D

P

Meaning

Reads a physical line into the caller's buffer. (See Usage
Note 4.)

Reads a physical line into the caller's buffer. (See Usage
Note 4.)

Meaning

Write the prompt information before the read, and read a line
of input directly from the virtual machine console.

Read a line of input directly from the virtual machine
console.

Write prompt information before the read.

binary zeros There is no prompt information, and do not read a line of
input directly from the virtual machine console.

182 VMjSP eMS Macros and Functions Reference

WAITRD

The prompt buffer address and the prompt buffer length are specified only if
"code2" is B or P.

Usage Notes:

1. Specify the input buffer length as the last parameter in the WAITRD
parameter list. Upon completion of the WAITRD function, the 'number
of bytes' field contains the number of bytes read.

2. WAITRD does not perform logical line editing when reading a physical
line.

W AITRD performs line editing on lines read from the terminal input
buffer (lines typed at the terminal), unless code X is specified; W AITRD
does not perform logical line editing when you specify code X.
WAITRD does not perform line editing (except uppercase translation, if
requested) on lines read from the program stack.

3. Lines typed at the terminal (and stacked in the terminal input buffer)
are scanned by CP for logical line editing characters. Logical line
editing characters are set by the CP TERMINAL command. The line
editing characters may be set for:

Chardel
Linedel
Linend
Escape

In addition, CMS scans the lines for the following two hexadecimal
characters:

X'OO' -

X'15' -

interpreted as the end of the physical line. Any
character(s) to the right of this hexadecimal character
is ignored.

interpreted as the end of the logical line. Any
character(s) to the right of this hexadecimal character
is interpreted as a new line.

4. For code $, an attention interrupt during a read operation signals the
end of the line and does not result in a restart of the read. For code *,
an attention interrupt during a read results in a restart of the read
operation.

Responses: None

Return Codes:

Code
o
2
4

Meaning
Function completed successfully.
Invalid code. Read not completed.
Code = $. An attention interruption ended the read operation.

Chapter 2. CMS Functions 183

J

J

184 VMjSP eMS Macros and Functions Reference

Bibliography

Bibliography 185

The YM/8P Library (Part 1 of a)

Evaluation Index

General Introduction Library
Information Guide,

Glossary, and
Master Index

GC20-1838 GC19-6200 GC19-6207

Planning I nsta "ation
v

Planning Running Release 5 Distributed Installation
Guide and Guest Guide Data Guide
Reference Operating Processing

Systems Guide

SC19-6201 GC19-6212 SC24-5290 SC24-5241 SC24-5237

Applications Operation

Application Programmer's Operator's
Development Guide to the Guide
Guide SRPI

forVM/SP

SC24-5247 SC24-5291 SC19-6202

Reference Summaries To order all of the Reference Summaries. use order number SBOF-3242

Commands
(General User)

SX20-4401

CMS Primer
Summary of
Commands

SX24-5151

Commands
(Other than
General User)

SX20-4402

CMS Primer
Line-Oriented
Summary of
Commands

SX24-5159

SP Editor
Command
Reference
Summary

SX24-5122

Problem
Reporting
Summary
(Poster)

SX24-5171

186 VMjSP eMS Macros and Functions Reference

EXEC 2 Sys.Prod
Reference Interpreter
Summary Reference

Summary

SX24-5124 SX24-5126

Summary of
End Use
Tasks and
Commands
(Poster)

SX24-5173

J

J

L The YM/SP Library (Part 2 of 3)

End Use

Terminal CMS CMS Primer CMS CMS CMS
Reference Primer for Line- User's Command Macros and

Oriented Guide Reference Functions
Terminals Reference

GC19-6206 SC24-S236 SC24-S242 SC19-6210 SC19-6209 SC24-S284

System System System System EXEC 2 CP
Product Product Product Product Reference Command
Editor Editor Interpreter Interpreter Reference
User's Guide Command and User's Guide Reference

~
Macro
Reference

SC24-S220 SC24-S221 SC24-S238 SC24-S239 SC24-S219 SC19-6211

Quick
Reference

SX20-4400

Diagnosis

System System Service Problem VM GCS
Messages Messages Routines Reporting Diagnosis Diagnosis
and Codes Cross- Program Guide Guide Reference

Reference Logic

SC19-6204 SC24-S264 LY20-0890 SC24-S282 LY24-S241 LY24-S239

Problem Data Areas Problem Data Areas OLTSEP VM
Determ i na t ion and Control Determination and Control and Error Problem
Vol. 1 (CP) Blocks Vol. 2 (CMS) Blocks Recording Determination

Vol. 1 (CP) Vol. 2 (CMS) Guide Reference
Information

LY20-0892 LY24-S220 LY20-0893 LY24-S221 SC19-620S LX23-0347

VM
CP Internal
Trace Table
(Poster)

LX24-S202

Bibliography 187

The YM/8P Library (Part 3 of 3)

Administration

VM
System
Facilities
for
Programming

SC24-5288

CP for
System
Programming

SC24-5285

CMS for
System
Programming

SC24-5286

Auxiliary Communication Support

VTAM VTAM VTAM
Installation Customization Operation
and Resource
Definition

SC23-0111 SC23-0112 SC23-0113
V

VTAM VTAM VTAM
Programming Diagnosis Diagnosis

Guide Reference

SC23-0115 SC23-0116 LY30-5582
V

RSCS RSCS RSCS
Networking Networking Networking
Version 2 Version 2 Version 2
General Planning and Operation
Information Installation and Use

GH24-5055 SH24-5057 SH24-5058

VM/Pass- VM/Pass- VM/Pass-
Through Through Through
Facility Facility Facility
General Guide and Logic
Information Reference

GC24-5206 SC24-5208 LY24-5208

188 VM/SP eMS Macros and Functions Reference

TSAF
Reference

SC24-5287

VTAM
Messages
and Codes

SC23-0114

VTAM
Data
Areas (VM)

LY30-5583

RSCS
Networking
Version 2
Diagnosis
Reference

LY24-5228

GCS
Command
and Macro
Reference

SC24-5250

VTAM
Reference
Summary

SC23-0135

RSCS
Networking
Version 2

Ref. Summary

SX24-5135

J

Summary of Changes

Summary of Changes
for SC24-5284-0
for VM/SP Release 5

This edition, SC24-5284-0, is a revision of the macros and functions information
previm,lsly contained in VM/SP CMS Command and Macro Reference, SC19-6209-3,
and applies to Release 5 of Virtual Machine/System Product (VM/SP).

New eMS Macros for Release 5 of VM/SP

The following CMS macros are new for this release:

ADDENTRY
Places an entry name on a Communications Module termination notification
list.

APPLMSG
Retrieves messages from a message repository.

CMSDEV
Returns virtual device characteristics to a specified storage area.

CONSOLE
Accesses CMS full-screen console services.

CPRB
Builds a CPRB DSECT or builds code to acquire storage for and partially
initialize a CPRB control block.

CSMRETCD
Defines names for IBM Cooperative Processing return codes for VM/SP.

DELENTRY
Drops entry names previously placed on the Communications Module
notification list via the ADDENTRY macro.

LINERD
Reads a line of input from a terminal.

LINEWRT
Displays a line of input at a terminal.

PARSECMD
Parses and translates the arguments of a command.

PARSERCB
Generates a DSECT for the P ARSECMD control block.

Summary of Changes 189

PARSERUF
Generates a mapping to the Parser Interface for User Token Validation
Functions.

PVCENTRY
Generates a DSECT for the Parser Validation Code Table entry.

SENDREQ
Processes service requests.

TRANTBL
Generates a DSECT for the system character set translation tables.

Changed CMS Macros for Release 5 of VM/SP

The following CMS macros have been modified for this release:

PRINTL
The following new operands have been added:

CMSDEV=
Addition of the CMSDEV = operand allows you to specify the type of
printer being used.

FORM =
Addition of the FORM = operand allows you to print multiple lines with
the execution of a single PRINTL macro.

CC=
Addition of the CC = operand allows you to specify whether or not the data
to be printed contains a carriage control character in the first byte of the
record.

RDCARD
Addition of the RDAHEAD operand allows you to specify whether or not as
many lines as possible are to be read into an internal I/O buffer before each
line is read into the specified buffer.

New CMS Functions for Release 5 of VM/SP

The following CMS functions are new for this release:

LANGADD
Adds a language control block to the LANGBLK chain.

LANGFIND
Gets the address of an application's language control block.

190 VM/SP CMS Macros and Functions Reference

Index

ABEND exit routines, clearing or setting 3
ABNEXIT macro

CLR operand 3, 4, 5
complex list format 5
ERROR = operand 4, 5
execute format 5
EXIT = operand 4, 5
list format 4
RESET operand 3, 4, 5
SET operand 3, 4, 5
standard format 3
UWORD = operand 4, 5

ADDENTRY macro
assembly message (MNOTE) 8
Communications Module termination
notification list 8

entry-name placed on Communications Module
termination notification list 8

APPLMSG macro
APPLID operand 10
BUFFA operand 10
building parameter list 16
COMP operand 11
creating a header for messages 12
CSECT operand 10
DISP operand 11
display format of message 11
execute format 10, 18
FMT operand 13
FMTA operand 13
generating code to fill parameter list 10
generating storage area for parameter list 10
HEADER operand 12
invoking message facility 10
LET operand 13
LETA operand 13
LINE operand 13
LINEA operand 13
list format 10, 17
MAXSUBS operand 10, 16
message format 13
message line number 13
message number 13
message repository 9
message severity 13
MF operand 9
NUM operand 13
NUMA operand 13
processing 17
reserving program storage 16
retrieving messages from message repository 9
specifying buffer address 10
specifying call type 17

specifying macro format 9
specifying message text 17
standard format 9, 17
SUB operand 14
substitutions 14, 16
TEXT operand 17
TEXT A operand 17
TYPCALL operand 17

ASA carriage control characters 122
ASA carriage control characters 125
specified using PRINTL macro 122

ATTN function
stacking an input line 166
usage 166

CCW (Channel Command Word) 27
Channel Command Word (CCW) 27

building using CONSOLE macro 27
checking tape labels using TAPESL 147
closing files in EXEC procedures 54
CMS functions described 165

invoking 165
CMS macro formats described 2

complex list format 2
execute format 2
list format 2
standard format 2

CMS macro instructions described 1
coding conventions 1
register usage 2
return code placement 1

CMSDEV macro
complex list format 23
ERROR = operand 22
execute format 23
list format 22
obtaining virtual device characteristics 21
standard format 21
using with PRINTL macro 24

Communications Module termination notification
list 8,50

adding entry-names 8
deleting entry-names 50

compiler switch flag 26
COMPSWT macro

OFF operand 26
ON operand 26
turning compiler switch flag on or off 26

CONSOLE macro
accessing CMS full-screen console services 27
BUFFER operand 30,31,32,33

Index 191

building the CCW (Channel Command
Word) 27

CCW operand 34
checking device error status 27
complex list format 37

closing a path 38
defining a path 37
obtaining device information 39
obtaining path information 39
reading from display device 40
specifying own CCW (Channel Command

Word) 40
waiting for an interrupt 38
writing a 3270 data stream 39

DEVICE operand 29, 31
ERROR operand 30
execute format . 41

closing a path 42
defining a path 41
obtaining device information 42
obtaining path information 42
reading from display device 43
specifying own CCW (Channel Command

Word) 44
waiting for an interrupt 42
writing a 3270 data stream 43

EXIT operand 29
issuing DIAGNOSE code X'58' 27
issuing SIO instructions 27
list format 34

closing a path 35
defining a path 34
obtaining device information 36
obtaining path information 36
reading from display device 37
specifying own CCW (Channel Command

Word) 37
waiting for an interrupt 36
writing a 3270 data stream 36

OPEN/CLOSE function 27
OPTIONS operand 32,33
PATH operand 28
performing 3270 I/O operations 27
QUERY function 27
READ/WRITE/EXCP function 27
standard format 28

closing a path 30
defining a path 28
obtaining device information 31
obtaining path information 31
reading from display device 33
specifying own CCW (Channel Command

Word) 34
waiting for an interrupt 30
writing a 3270 data stream 32

UWORD operand 29
WAIT function 27

console services 27
accessing, using CONSOLE macro 27

192 VM/SP CMS Macros and Functions Reference

CMS full-screen 27
CON1ECB format 157
CPRB DSECT, building 47
CPRB macro

building CPRB DSECT 47
DSECT= operand 47
messages (MNOTES) 47

CSMRETCD macro
return codes, defining names for 49

Definition Language for Command Syntax
(DLCS) 113, 116

DELENTRY macro
assembly message (MNOTE) 50
Communications Module termination
notification list 50

entry-name dropped from Communications
Module termination notification list 50

deleting CMS disk files 56
device error status 27

checking, using CONSOLE macro 27
DIAGNOSE 70 issued by TODACCNT function 179

using ENABLE subfunction 179
using QUERY subfunction 179

disk file 62, 68
reading records from 62
writing records to 68

DISKID function
obtaining minidisk information 167
PLIST 167
usage 167
using CP DASD Block I/O System Service 167

DSECT for file system control block (FSCB) 53
DSECT generated for PARSECMD control

block 118
using PARSERCB macro 118

DSECT generated for Parser Validation Code Table
entry 130

using PVCENTRY macro 130

ECB (event control block) format 156
EQU (equate) statements 140

generating for registers, using REGEQU
macro 140

event control block (ECB) format 156
existence of files, determining 65
external interruptions, handling 72

caused by CP EXTERNAL command 72
handling external interruptions

caused by CP EXTERNAL command 72

file status table (FST) 66
creating a copy of using FSSTATE macro 66

FSCB macro
BSIZE operand 51
BUFFER operand 51
creating 51
file system control block 51
FORM= operand 51
multiple FSCBs 52
NOREC operand 51
RECFM operand 51
RECNO operand 51

FSCBD macro
DSECT for file system control block (FSCB) 53
macro expansion 53

FSCLOSE macro
closing open files 54
ERROR = operand 54
FSCB operand 54

FSERASE macro
deleting CMS disk files 56
ERROR= operand 56
FSCB operand 56

FSOPEN macro
ERROR = operand 58
FORM = E operand . 58
FSCB macro options on FSOPEN macro 59
FSCB operand 58
readying files for input or output 58

FSPOINT macro
ERROR = operand 60
FORM = E operand 61
FSCB operand 60
RDPNT operand 60
resetting write and read pointers 60
WRPNT operand 60

FSREAD macro
ERROR= operand 62
FORM = E operand 62
FSCB macro options on FSREAD macro 63
FSCB operand 62
reading records from CMS disk file to I/O

buffer 62
FSSTATE macro

creating a copy of FST (file status table) 66
determining existence of files 65
ERROR= operand 65
FORM=E operand 65
FSCB operand 65

FST (file status table) 66
creating a copy of using FSST ATE macro 66

FSWRITE macro
ERROR = operand 68
FORM = E operand 68
FSCB macro options on FSWRITE macro 69
FSCB operand 68

update-in-place facility 70
updating existing files of variable-length

records 70
writing records from I/O buffer to CMS disk

file 68

HNDEXT macro
CLR operand 72
handling external interruptions 72
SET operand 72

HNDINT macro
See also CONSOLE macro
ASAP operand 74
CLR operand 74
ERROR = operand 74
handling I/O interruptions 74
handling interruptions during program

execution
caused by supervisor call (SVC)

instructions 77
SET operand 74
WAIT operand 74

HNDSVC macro
CLR operand 77
ERROR = operand 77
handling interruptions during program

execution 77
SET operand 77

I/O buffer 62, 68, 137
reading lines to 137
reading records to 62
writing records from 68

I/O devices, handling interruptions for 74
IBM System/370 to IBM Personal Computer

Enhanced Connectivity Facilities 8, 47, 49, 50,
141

IMMCMD macro
clearing Immediate commands 79
CLR operand 79
complex list format 81
declaring Immediate commands 79
ERROR = operand 80
execute format 82
EXIT = operand 80
list format 81
NAME = operand 79
QRY operand 79
querying Immediate commands 79
SET operand 79

Index 193

standard format 79
UWORD = operand 80

LANGADD function
adding LANGBLKs to language block

chain 169
language control block 169

LANGFIND function
language control block 170
locating LANGBLKs on language block

chain 170
language control block 169

LANGADD function 169
LANGFIND function 170

LINEDIT macro
BUFFA operand 85, 94
COMP operand 84, 87
converting decimal values to EBCDIC 84
converting decimal values to hexadecimal 84
DISP operand 85, 92
displaying conversion results at terminal 84
displaying lines contained in buffer 86
displaying multiple blanks 87
displaying parameter lists 91
DOT operand 84, 87
execute format 95
indicating message substitution 91
list format 95
MAXSUBS operand 85, 95
MF operand 85, 94
multiple substitution lists 92
passing lines to CP 93
period placement 87
RENT operand 85, 96
specifying message text 86
specifying substitution length 91
specifying substitutions 87
standard format 95
SUB operand 84, 87
TEXT operand 86
TEXT = operand 84
TEXTA operand 84,86

LINERD macro
See also RDTERM macro
ATTREST operand 99
CASE operand 99
COL operand 98
complex list format 101
DATA operand 97
ERROR operand 99
execute format 102
LINE operand 98
list format 100
LOGICAL operand 98
PAD operand 98

194 VM/SP CMS Macros and Functions Reference

PROMPT operand 98
reading lines of input from terminal 97
specifying buffer address 97
standard format 97
TRANS operand 99
TYPE operand 99
VNAME operand 98
WAIT operand 99
writing prompt information 98

LINEWRT macro
ALARM operand 106
COL operand 105
COLOR operand 105
complex list format 108
DATA operand 104
displaying lines of output at terminal 104
ERROR operand 106
execute format 109
EXTHI operand 105
HILITE operand 105
LINE operand 105
list format 107
NOCR operand 106
PRIOR operand 106
PROTECT operand 106
PSS operand 106
standard format 104
VNAME operand 105

message facility, invoking 10
using APPLMSG macro 10

message repository 9
retrieving a message from 10

minidisk information, obtaining 167

nonreentrant code 85
generating, using LINED IT macro 96

NUCEXT function
ENDCMD attribute 174
linkage conventions 175
nucleus extensions 171
nucleus storage 17 4
NUCXDROP command 171
NUCXLOAD command 171
NUCXMAP command 171
PLiSTs 176
PURGE and RESET service calls 173
register contents upon entry 175
SYSTEM and SERVICE attributes 173

nucleus extensions 171, 172

ENDCMD option 171
IMMCMD option 171,177
system 172
user 172

NUCXDROP command 171
NUCXLOAD command 171
NUCXMAP command 171

P ARSECMD macro
APPLID operand . 111
complex list format 115
EPLIST operand 112
ERROR operand 113
execute format 116
list format 114
MSGBUFF operand 112
MSGDISP operand 112
parsing command arguments 111
PLIST operand 111
standard format 111
TRANSL operand 112
translating command arguments 111
TYPCALL operand 113
UNIQID operand 111

Parser Validation Code Table 119, 130
PARSERCB macro

expansion 118
generating a DSECT for P ARSECMD control

block 118
PARSERUF macro

expansion 120
generating a mapping to parser interface 120

parsing command arguments 111
PRINTL macro

CC = operand 122
CMSDEV = operand 124
ERROR = operand 125
FORM = operand 123
printing multiple records 123
specifying device characteristics 124
TRC = operand 123
writing lines to virtual printer 121

PUNCHC macro
ERROR = operand 128
writing a line to a virtual punch 128

PVCENTRY macro
See also P ARSERCB macro
expansion 130
generating DSECT for Parser Validation Code

Table entry 130

RDCARD macro
ERROR = operand 133
RDAHEAD = operand 132
reading a line from virtual reader 132

RDTAPE macro
ERROR = operand 136
MODE = operand 135
reading records from tape drive 134

RDTERM macro
See also LINERD macro
ATTREST = operand 139
EDIT = operand 137
LENGTH = operand 138
PRBUFF = operand 138
PRLGTH = operand 138
reading a line from terminal into I/O buffer 137
TYPE = DIRECT operand 138

read pointers, resetting 60
reading records sequentially 63
readying files for input or output 58
record number, specifying next record to be

accessed 51
records to be read or written, specifying 51
reentrant code 85

generating, using LINEDIT macro 85,96
REGEQU macro

generating a list of EQU statements 140
register usage 2

SENDREQ macro
assembly messages (MNOTEs) 141
CPRBREG operand 141
making service requests 141

service requests, making 141
Summary of Changes 189
supervisor call (SVC) instructions 77
supervisor call instructions, handling 77
SVC (supervisor call) instructions 77
system character set translation tables 151

generating a DSECT for using TRANTBL 151

Table Reference Character (TRC) 123
specified using PRINTL macro 123

TAPECTL macro
BLKBUFF = operand 144
ERROR = operand 144
MODE = operand 143

Index 195

positioning tape 142
TAPESL macro

BLKCNT = operand 149
checking and writing tape labels 147
ERROR = operand 149
LABID= operand 148
MODE = operand 148
processing IBM standard HDR1 and EOF1

labels 147
SPACE = operand 149
TM = operand 149
used with RDTAPE, WRTAPE, and

TAPECTL 147
terminal I/O, waiting to complete 158
TODACCNT function

clock accounting interface 179
ENABLE subfunction 179, 180
issues DIAGNOSE 70 179
QUERY subfunction 179, 180
usage 179

trailing blanks 162
removing using WRTERM macro 162

translating command arguments 111
translation tables, system character set 151

generating a DSECT for using TRANTBL 161
TRANTBL macro

expansion 161
generating a DSECT for system character set

translation tables 151
TRC (Table Reference Character) 123

specified using PRINTL macro 123

virtual device characteristics 21
obtaining using CMSDEV macro 21

virtual printer 121
writing lines to using PRINTL macro 121

virtual printer files 127
closing using CP CLOSE command 127

virtual punch 128
closing after PUNCHC macro 128

196 VM/SP CMS Macros and Functions Reference

writing a line to 128
virtual reader 132

reading a line from 132

WAITD macro
See also HNDINT macro
ERROR = operand 152
waiting for next interruption 162

W AlTECB macro
complex list format 155
Console I/O wait 157
ECB format 156
execute format 156
FORMAT operand 155
list format 156
OS format, of ECB 156
standard format 154
VSE format, of ECB 167
waiting on Event Control Blocks (ECBs) 154

W AlTRD function
logical line editing 183
reading a line of input via W AITRD 181
usage 183

WAITT macro
waiting for terminal I/O to complete 158

write pointers, resetting 60
writing blocked records 69
writing records sequentially 69
writing tape labels using TAPESL 147
WRTAPE macro

ERROR = operand 160
MODE = operand 160
TRAN= operand 161
writing records on tape 159

WRTERM macro
See also LINEWRT macro
COLOR = operand 162
displaying lines at terminal 162
EDIT= operand 162

International Buslne ..
Machines Corporation
P.O. Box 6
Endicott, New York 13760

File No. 5370/4300-39
Printed In U.S.A.

SC24-5284-0

--..- ------ - - .-.----- ~ ---- - - --------______ 't'_
®

VM/SP CMS Macros and
Functions Reference
Order No. SC24-5284-0

Is there anything you especially like or dislike about this book? Feel free to
comment on specific errors or omissions, accuracy, organization, or
completeness of this book.

If you use this form to comment on the online HELP facility, please copy the
top line of the HELP screen.

____ Help Information line of

READER'S
COMMENT
FORM

IBM may use or distribute whatever information you supply in any way it believes appropriate without
incurring any obligation to you, and all such information will be considered nonconfidential.

Note: Do not use this form to report system problems or to request copies of publications. Instead,
contact your IBM representative or the IBM branch office serving you.

Would you like a reply? _YES _NO

Please print your name, company name, and address:

IBM Branch Office serving yOU:

Thank you for your cooperation. You can either mail this form directly to us or give this
form to an IBM representative who will forward it to us.

SC24-5284-0

Reader's Comment Form

Fold and tape Please Do Not Staple

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NY

POSTAGE WILL BE PAID BY ADDRESSEE:

--------- -------- - ---- - - ----------_.-
INTERNATIONAL BUSINESS MACHINES CORPORATION
DEPARTMENT G60
PO BOX 6
ENDICOTT NY 13760-9987

1111111111111111,11"1111,111,,111,,1111,1'1,111,,,1

Fold and tape Please Do Not Staple

--...- ------ -------- -. ---- - - ---------
-~-,-

®

CUT
OR

FOLD
ALONG

LINE

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

J

VM/8P CM8 Macros and
Functions Reference
Order No. 8C24-5284-0

Is there anything you especially like or dislike about this book? Feel free to
comment on specific errors or omissions, accuracy, organization, or
completeness of this book.

If you use this form to comment on the online HELP facility, please copy the
top line of the HELP screen.

READER'S
COMMENT
FORM

____ Help Information line __ of __

IBM may use or distribute whatever information you supply in any way it believes appropriate without
incurring any obligation to you, and all such information will be considered nonconfidential.

Note: Do not use this form to report system problems or to request copies of pUblications. Instead,
contact your IBM representative or the IBM branch office serving you.

Would you like a reply? _YES _NO

Please print your name, company name, and address:

IBM Branch Office serving you:

Thank you for your cooperation. You can either mail this form directly to us or give this
form to an IBM representative who will forward it to us.

SC24-5284-0

Reader's Comment Form

Fold and tape Please Do Not Staple

IIII
BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK. NY

POSTAGE WILL BE PAID BY ADDRESSEE:

--------- -------- - ------ --. -------_.-
INTERNATIONAL BUSINESS MACHINES CORPORATION
DEPARTMENT G60
PO BOX 6
ENDICOTT NY 13760-9987

1 •• ,11"11,1",1,11,,11,,,1.1,,1.1,,1 •• 1,1.,,111.,,1

Fold and tape Please Do Not Staple

-~------- - - ------- -.. ---- - - ---------~-,-
®

CUT
OR

FOLD
ALONG

LINE

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

