

—
Virtual Machine/
System Product

Group Control System
Command and Macro Reference

Release 5
SC24-5250-1

|

Second Edition (December 1986)

This edition applies to Release 5 of the IBM Virtual Machine/System Product,
program number 5664-167, and to all subsequent releases and modifications, until
otherwise indicated in new editions or Technical Newsletters. Changes are made
periodically to the information herein; before using this publication in connection
with the operation of IBM systems, consult the latest IBM System/370, 30xx, and
4300 Processors Bibliography, GC20-0001, for the editions that are applicable and
current.

Summary of Changes

Technical changes and additions to the text or illustrations are indicated by a
vertical bar to the left of the change.

A cumulative Summary of Changes begins on page 511.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available in
all countries in which IBM operates. Any reference to an IBM
licensed program in this publication is not intended to state or
imply that only IBM’s licensed program may be used. Any
functionally equivalent program may be used instead.

Ordering Publications

Requests for IBM publications should be made to your IBM representative or to
the IBM branch office serving your locality. Publications are not stocked at the
address below.

A form for readers’ comments is provided at the back of this publication. If the
form has been removed, comments may be addressed to IBM Corporation,
Information Development, Department G60, PO Box 6, Endicott, New York, U.S.A.
13760. IBM may use or distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1984, 1986

Preface

The Virtual Machine/System Product Group Control System Command and
Macro Reference provides its reader with detailed information on the
purpose and use of all Group Control System (GCS) macro instructions.

This publication presents the format, syntax rules, and parameter
descriptions, plus factual and feedback information on all GCS macro
instructions. In select cases, this book also gives an example of exactly
how a programmer might issue the instruction.

In general, IBM provides this book as reference material for people who
wish to write programs designed to run under GCS. More specifically, this
readership includes system programmers and application programmers in
both customer and IBM development environments.

This book is divided into several sections, these sections are:

Introduction :
Gives an overview of GCS and how it relates to VM/SP.

GCS Commands
Lists the GCS commands, formats, and descriptions.

Task Management Service Macros
Help the programmer coordinate the activity of several tasks that
operate within a virtual machine.

Program Management Service Macros
Help the programmer coordinate the activity of several programs that
operate within a task.

Timer Service Macros
Help the programmer to regulate the activity of a task along certain
parameters of time.

Console I/O Service Macros
Promote communication between a program and the virtual machine
console.

Unauthorized GCS Service Macros
Perform functions useful to most programs running under GCS.

Authorized GCS Service Macros

Perform a wide-range of functions useful to supervisor state programs
running under GCS.

Preface 111

Storage Management Service Macros
Allow tasks running under GCS to dynamically obtain and free virtual N
storage. 7

Serviceabilitvy Macros
Allow a programmer to accumulate and display information useful in
diagnostics and program problem solving.

QSAM and BSAM Data Management Service Macros
Allow a programmer to use the QSAM and BSAM access methods to
manage and manipulate file data.

VSAM Data Management Service Macros
Allow a programmer to use the VSAM access method to manage and
manipulate file data.

IUCV Service Macros
Manage communication among virtual machine groups, virtual
machines, tasks, and programs operating in the GCS environment.

Build Macros
Allow an installation to define and tailor its virtual machine group(s)
to fulfill its own particular needs.

Data Areas Macros
Allow a programmer to simulate or access certain low storage data
areas. TN

Summary of Changes
Gives a brief description of recent changes to the publication.

Glossary of Terms and Definitions
Gives a definition of terms used in this publication.

Bibliography
Lists the prerequisite and corequisite publications for this publication.

Index
Lists specific topics and the page numbers that these topics can be
found on.

™

1V VM/SP GCS Command and Macro Reference

Contents

Chapter 1. Introduction ¢ttt ieeenneeen. 1
A Quick Definitiont e 2
The Whole Picture At AGlance 0., 3
A Scenario for GCS e 5
Linkage Registers it 10
Establishing a Base Register 10
Providing a Save Areaot e 11
Summary of Conventions for Passing and Receiving Control 13
GCS Macro Instruction Formats 14
GCS Macro Formatting Conventionsc.couu.... 15
Parameter Notation Conventionsc.0uiiirnin.. 18
Chapter 2. Group Control System Commands 19
GCS Commandsot ii i e 20
ACCESS . e e 21
DL BL .. e e e 23
BT RACE .. 29
FILEDEF .. e e e e 33
GDUM P .. e 37
GLOBAL . .. e e e 41
HX e e e 42
IR ACE .. e e e 43
LOADCMD .. e 46
OSRUN ...ttt e 51
QUERY I 52
RELEASE e 58
REPLY .. 59
SE T . e 61
Chapter 3. Task Management Service Macros 63
ABEND .. e 64
AT T ACH ... e 67
CH AP .. e 77
DEQ .. e e 80
DET ACH .. e 86
ENQ .. e e 88
ES T AR . e 96
THASDW A e 104
POST . 106
SE T R o 110
W AT e e 114
Chapter 4. Program Management Service Macros 117
BLD L .. 118
CALL .. e 122
DELETE ... e 127

Contents V

Vi

IDENTIFY . e e e i 130

LINK e e e 133
LOAD . e e e 140
RETURN .. e e e e i e e 144
SAVE e e e 146
SYNCH ... e e e e 149
04 N 154
Chapter 5. Timer Service Macroscooveeveesencnen 161
STIME R ... e 162
TIME P 166
TTIMER . . e e 168
Chapter 6. Console I/O Service Macrosc.oeeeveeeeess 171
1 172
WO R .. e e e 176
Chapter 7. Unauthorized GCS Service Macros 181
AUTHCALL ..o e e e e e e e e 182
CM ST .. e 185
EXECCOMM .. e e e e e 192
GENIO ... e 194
Chapter 8. Authorized GCS Service Macros 207
AUTHNAME .. e e e 208
LOCKWD ... e e e 215
MACHEXIT ... e e e e 219
PGLOCK ... e e e 226
PGULOCK .. e 228
SCHEDE X . e 230
TASKEXIT .. e e e e e e e 233
VALIDATE ..ot e e e 240
Chapter 9. Storage Management Service Macros 243
FREEMAIN ... e e 244
GETMAIN .. e e 251
Chapter 10. Serviceability Macrosc..c0ivvenn. 261
GTRACE ... e 262
SDUM P ... e 267
Chapter 11. QSAM and BSAM Data Management Service Macros 273
CHECK (BSAM) ... i e e e 274
CLOSE (BSAM/QSAM) e e e 276
DCB (BSAM/QSAM) e 280
DCBD (BSAM/QSAM) e 290
GET (QSAM) .. e 292
NOTE (BSAM) .ottt e e e e e e e 294
OPEN (BSAM/QSAM) e 296
POINT (BSAM) ... ii it e e e e e et 301
PUT (QSAM) ... e 304
READ (BSAM) ... o e e 306
SYNADAF (BSAM/QSAM) e e 311

VM/SP GCS Command and Macro Reference

&

SYNADRLS (BSAM/QSAM)t 314

WRITE (BSAM) ... e e e e 316
Chapter 12. VSAM Data Management Service Macros 321
Using VSAM under GCS i e e 322
ACB . e 338
CHECK e e 346
CLOSE .. e 348
ENDREQ .. e 351
ERASE .. e 354
0 7 1 356
GENCB ... e 361
GENCB ... e 370
GENCB ... 374
GET . e 383
MODCB ... e 385
MODCB ..o e 394
MODCB ... 398
OPEN . e 406
POINT .. e 409
PUT e e 412
RPL . e 414
SHOWOCB ... e 420
SHOW CB .. e e 427
SHOWCB .. e 431
TEST CB .. e 435
TESTCB .. e 445
TEST CB .. e 450
Chapter 13. TUCV Service Macrosccitieenennann 459
TUCVCOM .. e e e 460
TUCVINI .. e e e e 477
Chapter 14. Build Macrosc.tt ittt eennenn 487
AUTHUSER e e e e 488
CONFIG ... e e e 491
CONTENTS .. e e e 496
SEGMENT ... e 500
Chapter 15. Data Areas Macrosc.c.oiieteeeeneennns 503
CV T e 504
LS 506
GCSLEVEL 508
Summary of Changesiuiiiiiiittinnneanenas 511
Glossary of Terms and Abbreviationscc0000u.. 513
Bibliographyttt i e e e e 519
Prerequisite Publications 519
Corequisite Publications 519
Index ... i e e e e e e 525

Contents V11

viii

VM/SP GCS Command and Macro Reference

™

(‘ Figures

1. Group Control System (GCS), an Interface between Program
Products and CP i 2
2. GCSIn VM/SP e e 4
3. Initializing CMS from a SNA Terminal 5
4. CP Intercepts Instructions from the Virtual Machine 6
5. Transferring Data to the Machine Running VSCS Lol T
6. Path of Data Moving through the VTAM Machine 8
7. Data Traveling from VTAM to the Virtual Console 9
8. Determining Which VSAM CatalogtoUse 26
(9. Directory Entry List Basic Format 119
10. ExitList Table 283
11. ErrorRoutine i 287

Figures 1X

X VM/SP GCS Command and Macro Reference

-

Chapter 1. Introduction

A Quick Definition e e e e e e 2
The Whole Picture At AGlance00 iieiiieennn.. 3
A Scenario for GCS e 5
Linkage Registersttt 10
Establishing a Base Register 0., 10
Providing a Save Area e 11
Summary of Conventions for Passing and Receiving Control 13
GCS Macro Instruction Formats e e 14
GCS Macro Formatting Conventionscivenno... 15
Parameter Notation Conventions, 18

Chapter 1. Introduction 1

A Quick Definition

The Group Control System (GCS) is:

e A component of VM/SP

® A virtual machine supervisor

e An interface between program products, like Virtual
Telecommunications Access Methods (VTAM) and Remote Spooling
Communi cations Subsystem (RSCS) and CP, the system’s Control
Program (Figure 1).

Program Products
(VTAM, RSCS, NCCF,...)

Group Control System

Control
Program

SNA
(Network)

Figure 1. Group Control System (GCS), an Interface between Program
Products and CP

GCS’s specific function for VM/SP is to support a native VM/SNA network
— a network that functions as part of your VM/SP system without help
from a second operating system. This System Network Architecture (SNA)
network relies on ACF/VTAM, VSCS (Vtam Sna Console Support), and
other network applications to manage its collection of links between
terminals, controllers, and processors. In turn, ACF/VTAM, VSCS, and the
others rely on GCS to provide services for them. This arrangement
eliminates your need for VM/VCNA (VTAM Communications Network
Application) and a second operating system like VS1 or VSE.

2 VM/SP GCS Command and Macro Reference

TN

"

, The Whole Picture At A Glance

Figure 2 on page 4 shows a conceptual view of how the Group Control
System can fit into your VM/SP environment. Familiar elements in the
picture include:

e (P, at the bottom, a base for the rest of the system to build on
e Virtual machines, at the top, running various applications
e CMS, at the left, an interactive VM/SP component that runs on CP

® A route to the SNA network, lower right, a network that connects

virtual machines with remote consoles. (This is just one application of
GCS.)

GCS, with its common and private areas, forms a base for a particular
group of virtual machines. It runs parallel to CMS as a VM/SP component
on CP.

GCS may appear to offer some of the services offered by IBM’s Multiple
Virtual System (MVS). Granted, there are similarities between the two, but
there are also some very significant differences in function and use. If an
application is to run successfully under GCS, it must conform to GCS as
discussed in this book.

Chapter 1. Introduction 3

A

c

F

/

\

T

A

M R
E
C
o
\%
E
R
Y
#5

Shared ACF/VTAM

GCS Common

CMS
Virtual
Machine
#1

GCS
Private

GCS
Private

GCS
Private

GCS
Private

LT e o o o o o o o —— TO SNA NETWORK

| Figure 2. GCS in VM/SP

| This diagram illustrates only the conceptual relationships among the
| applications and saved segments in storage. Actual storage layout is

4 VM/SP GCS Command and Macro Reference

N

different for every installation. The application space might even include
two or more separate areas.

A Scenario for GCS

The following scenario shows how GCS helps support native SNA
communications.

First, you log on from a SNA terminal! and IPL CMS (Figure 3). Neither
you, as a user, nor CMS needs to know that it is a SNA terminal.

* (Virtual Machine)

(SNA Terminal)

IPL CMS

Figure 3. Initializing CMS from a SNA Terminal. On the right, you IPL
CMS from your virtual console, a SNA terminal. On the left, CMS
begins running in your virtual machine.

CMS responds to your commands. Being an interactive system, it
communicates back and forth with you via this terminal. The information
exchange seems to happen easily enough. But because you have a SNA

1 For instructions, see “Logging on With a SNA Terminal” in the VM/SP
Terminal Reference.

Chapter 1. Introduction

5

terminal, the path from your console to CMS is a complex one, involving
GCS, ACF/VTAM, and SNA somewhere in between.

The Path between System and Console

Let’s say CMS begins communicating with your console by issuing:

Start I/0 (SIO)

Or, a CMS application like XEDIT issues:

DIAGNOSE code x'58'

The instruction leaves your virtual machine, and CP intercepts it
(Figure 4).

Control Program

Figure 4. CP Intercepts Instructions from the Virtual Machine
After decoding and extracting the instruction’s pertinent information, CP

prepares to send data out on the network. A component in CP called
Console Communications Service (CCS) does the actual sending.

6 VM/SP GCS Command and Macro Reference

(From CCS, the data passes to a virtual machine running VSCS. (In the
' Figure 5 example, the VTAM machine runs VSCS.2) The transfer from CCS
to VSCS takes place via another CP facility, Inter-User Communications
Vehicle (IUCV).

(Virtual Machine #2)

(Virtual Machine #1)

GCS Supervisor &
Common Storage

GCS
Private

| Figure 5. Transferring Data to the Machine Running VSCS. Using IUCV, CCS sends information to
| the virtual machine where VSCS is running. In this case, it is the VTAM machine.

(/' 2 VSCS also may run in its own virtual machine.

Chapter 1. Introduction 7

Figure 5 shows the VTAM virtual machine running on GCS. In a VM/SP
system with SNA terminals, this machine must be running ACF/VTAM
Version 3 because:

o ACF/VTAM allows a VSCS component to run in the VTAM virtual
machine (as in this example).

o ACF/VTAM provides a SHARED VTAM interface that lets all other
machines running in this GCS group communicate with ACF/VTAM
and the rest of the network.

Figure 6 shows what happens after CCS sends data to the VTAM machine.
VSCS receives it, processes it into a physical screen image, and issues a
SEND macro. The SEND macro finally gives control to VTAM.

Shared VTAM

Figure 6. Path of Data Moving through the VTAM Machine. The VSCS
component receives data from CCS, processes it, and sends it into
VTAM’s control.

From VTAM, the information travels toward your terminal (Figure 7 on
page 9). Output instructions are relayed from VTAM to GCS, from GCS to
CP, and from CP to the network or local control unit. The control unit has
charge of sending the data through the SNA network to your virtual
console.

8 VM/SP GCS Command and Macro Reference

VR

((VTAM Virtual Machine) (SNA Terminal/Virtual Console)

GCS
Private

————

Local
or Network
Control
Unit

| Figure 7. Data Traveling from VTAM to the Virtual Console. VTAM, at the top, sends data to GCS.
| GCS relays it out to the SNA network and finally to the console.

Chapter 1. Introduction 9

AN

Linkage Registers "

The general registers 0, 1, 13, 14, and 15 are also known as linkage
registers. By convention, each register has a specific purpose as follows:

Register | Conventional Purpose

0Oand 1 Used to pass parameters to the supervisor or to a
called program. Some system macro instructions
expand to include instructions that load a value into
one or both of these registers. Others load the
address of a parameter list into register 1. At times,
the supervisor will load a parameter value into
register 1 and pass it to a program that you have
called.

13 Used to hold the address of the register save area
provided by the calling program. 7

14 Used to hold the return address within the calling
program. That is, the address of the executable
statement just after the instruction that passed
control to another program. Once the calling
program regains control, it is at this point that
execution resumes.

15 Used to hold the entry point address of the called
program. Some macro instructions expand to

include instructions that load a parameter list .
address into register 15, which is then passed to the Lo
supervisor. Programs also use register 15 to pass N~
return codes to the programs that called them.

Establishing a Base Register

In VM/SP, addresses are resolved by adding a displacement to a base
address. Therefore, you must establish a base register using one of the /
registers 2 through 12 or register 15. If your program does not use GCS .~
macro instructions and does not pass control to another program, then you

can establish a base register using the entry point address contained in

register 15. Otherwise, since both the supervisor and your program may use

register 15 for other purposes, you must establish a base using one of the

registers 2 through 12. This should be done immediately after saving the

calling program’s registers.

Note: Choose your base register carefully. Remember that some
instructions (GCS macro instructions included) change the contents of some
registers.

10 VM/SP GCS Command and Macro Reference

Providing a Save Area

If one of your programs passes control to another, then the former must
provide a save area in which the contents of its registers are saved by the
program it calls. A register save area is eighteen fullwords long, beginning
on a fullword boundary. The following table describes the save area’s
structure and content.

Word| Contents

0 Used by PL/I, if applicable. Otherwise, unused.

1 If applicable, the address of the calling program’s
register save area.

2 The address of the current program’s next register save
area.

3 The contents of register 14 (the return address within the
calling program).

4 The contents of register 15 (the address of the called
program).

5 The contents of register 0.

6 The contents of register 1.

7 The contents of register 2.

8 The contents of register 3.

9 The contents of register 4.

10 The contents of register 5.

11 The contents of register 6.

12 The contents of register 7.

13 The contents of register 8.

14 The contents of register 9.

15 The contents of register 10.

16 The contents of register 11.

17 The contents of register 12.

A called program can save the registers belonging to the program that
called it by issuing either the STM (STORE MULTIPLE) assembler
instruction or the SAVE macro instruction. The

STM 14,12,12(13)
assembler instruction places the contents of all registers, except register 13,

in the proper words of the save area. The SAVE macro instruction is
described in detail in the entry titled “SAVE” on page 146.

Chapter 1. Introduction 11

An Example of Chaining Save Areas in a Nonreenterable Program

PROGRAM1 CSECT
STM 14,12,12(13)

LR 12,15

USING PROGRAM1,12
ST 13, SAVEAREA+4
LR 2,13

LA 13, SAVEAREA

ST 13,8(2)

SAVEAREA DC 18F'0"

The program uses the STM instruction to store the contents of the registers
in the save area provided by the calling program. Then, the program
establishes register 12 as its base register. The program goes on to save the
address of the calling program’s save area in the second word of another
save area that it established via the DC instruction. Then, the program
loads the address of the calling program’s save area into register 2. Finally,
it loads the address of the new save area into register 13, then stores the
same address in the third word of the calling program’s save area.

An Example of Chaining Save Areas in a Reenterable Program

PROGRAM2 CSECT
SAVE (14,12)
LR 12,15
USING PROGRAM2,12
GETMAIN R,LV=72

ST 13,4(1)
ST 1,8(13)
LR 13,1

This program uses the GCS SAVE macro instruction to save the contents of
its registers. (It could also have used an STM instruction.) The program
loads the entry point address into register 12, establishing it as the base
register. It then issues an unconditional GCS GETMAIN macro
instruction, requesting the supervisor to allocate 72 bytes of virtual storage
for the save area from outside the program. The supervisor returns the
address of this 72-byte area in register 1. The program stores the address of
the old and new save areas in the customary locations and loads the
address of the new save area into register 13.

12 VM/SP GCS Command and Macro Reference

Summary of Conventions for Passing and Receiving Control

Before it passes control (return required), a calling program should:

Place the address of its register save area in register 13.
Place its return address in register 14.

Place the entry point address of the program it wishes to call in register
15.

If applicable, place the address of a parameter list in register 1.

Before it passes control (return not required), a calling program
should:

Restore to registers 2 through 12 and register 14 the values that were
present when it received control.

Place the address of the save area provided by the program that called
it in register 13.

Place the entry point address of the program it wants to call in register
15.

As applicable, place the addresses of parameter lists in registers 0 and 1.

Immediately after receiving control, a called program should:

Save the contents of registers 0 through 12 and registers 14 and 15 in
the save area, whose address is in register 13.

Establish a base register.

Provide a save area of its own, unless of course it plans to call no other
program.

If it is a reentrant program, then it must obtain storage for its save area
outside of its own storage via the GETMAIN macro instruction. If it is
a nonreentrant program, then its save area can be located with the rest
of its storage.

Store the save area addresses in the assigned locations.

Just before returning control, a called program should:

Restore to registers 0 through 12 and register 14 the values that were
present when it received control originally.

Place in register 13 the address of the save area belonging to the
program to which it is returning control.

Chapter 1. Introduction 13

e If required, place the appropriate return code in register 15. Otherwise,
restore to register 15 its original value.

e If it is a reenterable program that obtained storage for its save area via
the GETMAIN macro instruction, then it must release that storage via
the FREEMAIN instruction.

GCS Macro Instruction Formats

Generally, there are four possible formats in which macro instructions are
available, the:?

Standard Format
List Format

List Address Format
Execute Format.

Note: Not every GCS macro instruction is available in each of these
formats. However, each is available in a standard format. Several are also
available in list and execute formats. A few are available in all four
formats.

The entry in this book devoted to each macro instruction tells you exactly
which of these formats applies and provides more detailed information. In |
general, the significance of each format is as follows:

The Standard Format
Generates an in-line parameter list to the macro. It also generates
non-reentrant code that executes the function as part of the macro
expansion.

The List Format
Generates an in-line parameter list to the macro but generates no code
that executes the function.

The List Address Format
Generates no code that executes the function. However, it does
generate executable code that moves the parameter values that you
specify in the instruction to a parameter list at some designated
address.

The Execute Format
Generates code that executes the function. Optionally, it generates
executable code that moves parameter values into a parameter list.
The execute format requires that you specify the address of a
parameter list that you previously created.

3 The VSAM macro instructions listed in this book differ from this somewhat.

Before you use these instructions, be certain to review the entry titled “Using
VSAM under GCS” on page 322.

14 VM/SP GCS Command and Macro Reference

///—»\\

\\&. 7/,‘

V4

GCS Macro Formatting Conventions

You will notice that each macro instruction entry is accompanied by a box
that defines the proper format of the instruction.

As you examine these format boxes more closely, the first thing that you
notice is the lack of blank spaces in the instructions. Generally speaking,
there are only two places where a blank space can appear in a macro
instruction. These are between the label and the instruction, and between
the instruction and its first parameter. Moreover, you probably notice that
the parameters themselves are not delimited by blanks, but by commas. In
these respects, macro instructions resemble assembler language instructions
rather closely.

Let us illustrate this by looking at a fictitious macro instruction called
DUCK. The DUCK macro instruction takes three parameters: A, B, and C.

And, like most other instructions, an optional label can be applied.

Its format box looks like this:

[label] DUCK A,B,C=some number

Therefore, you might code something like this:

QUACK DUCK A,B,C=7

You coded the mnemonic label QUACK and left one blank space (though
more than one is permissible). Then, mindful that macro instructions
cannot be abbreviated, you followed with the full name of the macro itself,
DUCK. You left another blank space, though you could have left more
than one, and followed with the parameters. Notice that only commas
delimit the parameters.

Few macro instructions are this trivial. Many instructions have
parameters that are optional. Whether you choose them sometimes depends
on your own needs, and sometimes on circumstances. Another fictitious
macro instruction, GOOSE, has two parameters, one of which is optional.

Its format box looks like this:

[label] GOOSE [A=some number,]Bés‘ome other number

You could code GOOSE like this:

GOOSE B=77
This is perfectly valid since the brackets ([]) around the A parameter

indicate that you can omit it if you choose. Note that you did not supply a
comma before the B parameter, since there is no other parameter present

Chapter 1. Introduction 15

from which to separate it. Notice too that you did not supply a label this
time. :

You could also code GOOSE like this:

HONK GOOSE A=34,B=77

This time you supplied the A parameter because, for some reason, it suited
your purpose.

The format boxes of some macro instructions stack optional parameters in a
list.

The fictitious HORSE macro format box looks like this:

[labell |HORSE | A8

Notice the large set of brackets around the C, D, and E parameters. These
brackets mean two things. First, all three of the parameters are optional.
You can ignore the bracketed list entirely, if it suits your purpose, or
choose from the list. Second, if you choose from the list, then you can
choose either C, or D, or E. You cannot choose two or three of them, but
only one.

So, if you code

HORSE A,B,C,D

it is an error because you chose two optional parameters from the same
bracketed list, namely C and D.

HORSE A,B,C

is correct because you chose only one optional parameter. Of course,

HORSE A,B
is also correct, since you chose to omit all of the optional parameters.

Some macro instructions force you to make a choice from among a stacked
list of options.

16 VM/SP GCS Command and Macro Reference

N

PN

The MOOSE macro format box looks like this:

[labell |MOOSE "H,P,M, {§}
z

Notice the large braces ({ }) around the X, Y, and Z parameters. The
braces mean that you have one choice among the three parameters. But,
this is not an optional choice, it is a choice that you must make. So,

MOOSE H,P,M

is incorrect, since you did not select from among the list enclosed by braces.
Likewise,

MOOSE H,P,M,X,Z

is incorrect because you selected more than one parameter from the list.
But,

MOOSE H,P,M,Z

is correct because you made your choice and it was only one parameter.
Sometimes brackets and braces are used together. Usually, though not
always, they involve parameters that take effect by default if something is

not specified.

The MACKEREL macro format box looks like this:

[labell |MACKEREL
' J,L9Q[,S={%§}]

Notice that a set of braces surrounds the parameters YES and NO. Then, a
set of brackets embraces these, as well as the S parameter. To further
complicate matters, the YES parameter is underlined.

It is not that difficult to figure this out if you just remember that brackets
mean you have an option to choose or not choose and that braces mean you
must choose. The brackets here simply mean that you can choose the S
parameter or ignore it. However, if you do choose the S parameter, then
the braces mean that you must choose either the YES parameter or the NO
parameter. And the line under the YES parameter means that if you ignore
the S parameter, then S=YES will be in effect by default. So,

MACKEREL J,L,Q,S

is incorrect, because you chose the S parameter but did not choose either

YES or NO.

Chapter 1. Introduction 17

MACKEREL J,L,Q

is correct, since you omitted the S parameter altogether, allowing S=YES
to take effect by default. Likewise, both

MACKEREL J,L,Q,S=YES
MACKEREL J,L,Q,S=NO

are correct, since you specified the S parameter correctly in each.

Parameter Notation Conventions

You will notice that under each parameter description there is a statement
on how that parameter can be expressed in the macro instruction. Several
terms appear frequently in this context. They are defined as follows:

Symbol
Any symbol that is valid in the assembler language. That is, an
alphabetic character followed by 0 through 7 alphameric characters.
A symbol cannot contain any special characters or imbedded blanks.

Register (2) through (12)
One of the general registers 2 through 12. Presumably, the register
you specify contains a right-justified value or address that pertains in
some way to the parameter in question. Any unused high-order bits in
the register should be re-set to zero.. You can express the register
number symbolically or via an absolute expression. Unless otherwise
specified, parentheses must surround the register expression.

RX-type address
Any address that is valid in an RX-type assembler language
instruction.

18 VM/SP GCS Command and Macro Reference

(

Chapter 2. Group Control System Commands

GCS Commands . .o v ittt e e e e 20
ACCESS . 21
DL BL .. e e 23
ETRACE . . o e e 29
FILEDEF .. e e 33
GDUM P oo 37
GLOBAL . .o e e e 41
X o e 42
IR ACE .. 43
LOAD CMD ..o e e 46
OSRUN .o e 51
QUERY ..o e 52
RELEASE .o e 58
REPLY o e e 59
SE T oot e e e 61

Chapter 2. Group Control System Commands 19

GCS Commands

Command Formats

Braces { }
Indicate that you must choose one of the items inside.

Brackets []
Indicate that you may opt to choose any one or none of the items
inside.

Capital letters
Represent letters that you must type.

Lowercase letters
Either finish spelling a keyword or else represent variable values
that are explained in the accompanying text.

Underlined values
Represent defaults. If you enter nothing in their places, they
automatically become the effective values.

Immediate Commands

An immediate command is one that gets executed as soon as you issue it. It
does not get stacked, nor does it have to wait for the current command to
finish. The immediate GCS commands are:

ETRACE (see page 29)
GDUMP (see page 37)
HX (see page 42)

ITRACE (see page 43)
QUERY (see page 52)
REPLY (see page 59).

Note: If you enter several commands on the command line and separate
them with “#” characters:

cmdl#cmd2#immed cmd#cmd3

your system will process any immediate commands first. In this case, you
would receive results from “immed cmd” before the results from “cmdl.” If
an exec or routine is named the same name as an immediate command, the
immediate command is executed. This differs from the way CMS processes
commands.

20 VM/SP GCS Command and Macro Reference

¢

ACCESS

ACCESS

Identify the CMS or VSAM Disks that an Application Will Use

Applications that use files on CMS or VSAM disks must first identify those
disks with the ACCESS command. The disk you identify must be either a:

e VSAM disk or (Make sure you issue ACCESS before you issue the
DLBL command.)

e CMS disk formatted with a block size of 512, 1K, 2K, or 4K bytes. (You
cannot have an 800-byte block size.)

Unlike the CMS ACCESS command, you cannot specify options.

The format of the ACCESS command is:

— O
O C
—

ACcess [moge[/ext [fn [ft [fml1113]

cuu
Makes available the disk at the specified virtual address. The default
value is 191. Valid addresses are X’001” through X’FFF’.

mode
Assigns a one-character filemode letter to all files on the disk being
accessed. You must specify this field if you specified the cuu
parameter. The default value is A.

ext
Indicates the mode of the parent disk. Files on the disk being
accessed (cuu) are logically associated with files on the parent disk;
the disk at cuu is a read-only extension. A parent disk must be
accessed in the search order before its extension gets accessed. Do
not put a blank space before or after the slash (/).

fn ft fm
Defines a subset of files residing on the disk to be accessed. These are
the only files that will go into your user file directory, and these are
the only files you’ll be able to read. Entering an asterisk (*) in any
one of these fields indicates that you want all filenames or filetypes or
filemode numbers (except 0) to be in your user file directory. You can
specify filename, filetype, and filemode fields only for CMS-formatted
disks that you’ve accessed as read-only extensions. For example, to
specify a filemode, use a letter and a number:

Chapter 2. Group Control System Commands 21

ACCESS

access 333 b/a * gcs bl

Note: You should issue the RELEASE command when your application no
longer needs access to the disk.

Messages

CSIACC005S Virtual storage capacity exceeded RC=104

CSIACCOOGE Invalid parameter 'parameter' RC=24

CSIACCO12E No options allowed RC=24

CSIACCO21E Invalid mode 'mode' RC=24

CSIACC414E Disk vdef not properly formatted for ACCESS. RC=16

CSIACC415E Invalid device address 'vdev' RC=24

CSIACC422E vdev already accessed as Read/Write 'mode' disk
RC=36

CSIACC423I mode (vdev) {R/O | R/W}

CSIACC424I vdev mode released

CSIACC4251 vdev replaces mode (vdev)

CSIACC426I vdev also = mode disk

CSIACC427S mode (vdev) device error RC=100

CSIACC428S mode (vdev) not attached RC=100

CSIACC429E File fn [ft [fm]] not found. Disk mode (vdev)
will not be accessed RC=28

CSIACC430W OS disk - Fileid specified is ignored RC=4

CSIROS005S Virtual storage capacity exceeded

CSIROS423I mode (vdev) {R/O | R/W} {-0S | -DOS}

CSIROS426I vdev also = mode {-0OS | =-DOS} disk

For more information on messages see the VM/SP System Messages and
Codes.

22 VM/SP GCS Command and Macro Reference

DLBL

Define VSAM Files Used for Program Input/Output

Application programs usually require some “setting up” before you try to
start and run them. The DLBL command is one of the preliminary
commands normally issued to prepare a program for execution. You issue
the DLBL command to define VSAM input/output files needed by the
program. Be sure you issue the ACCESS command for the disk containing
your VSAM files before you issue DLBL.

Note: For non-VSAM file definitions, you use the “FILEDEF” on page 33.
VSAM itself does not always require file definition statements. To learn
when file definitions are necessary, see the VSE/VSAM Programmer’s
Reference.

The format of the DLBL command is:

DLBL ddname mode [Bgﬁ qua11[[.]QUa12...,qualhj] [(dptidnB optith 0131
? ;

ddname CLEAR
*

L . § o

Bt1onB 6t1onC
r ERMJ [VSAM] :

[MULT],
CHANGE

[CAT catddl
[BUFSP nnnnnn]

NOCHANGE

ddname
A one- to seven-character program ddname. This ddname must be the
same as the ACB DDNAME parameter (or the ACB name if DDNAME
is omitted). An asterisk (*) entered, along with the CLEAR operand,
indicates that all DLBL definitions, except those that are entered with
the PERM option, are to be cleared.

If you have ddnames over seven characters long, be aware that only
the first seven characters get processed. Should you have two
different files with the same first seven letters and try to execute them
both, you’ll receive an error message when GCS opens the second file.

Chapter 2. Group Control System Commands 23

DLBL

mode :

TN

A letter representing the filemode of a VSAM disk and, optionally, a e
filemode number. You must specify a letter, and it must refer to a
disk that’s already accessed. The filemode number, however, is
optional. If you don’t provide one, the default is 1. VSAM disks do
not require this number anyway, but GCS will accept one without
error.

If a mode is specified, the associated disk must already be accessed.

CLEAR

DSN

Removes any existing conditions for the specified ddname. Clearing a
ddname before defining it ensures that a file definition does not exist
and that any options previously defined for that ddname no longer
have any effect.

If you release a disk that has a DLBL definition in effect, you should
clear that DLBL before executing a VSAM program. If a disk has a
DLBL in effect, but the disk is not accessed, GCS will issue the
message:

Disk ' ' not accessed

Specifies that this is a VSAM file.

? (question mark) R

Indicates that you will enter the ddname interactively. GCS will
prompt you with the message:

Enter data set name:

When prompted, you must enter the data set name in its exact form,
including embedded blanks, hyphens, or periods. If you enter it as a
command at the console or from a REXX command file, you may use
its exact form. DLBL will replace any blanks between qualifiers with
periods.

quall.qual2....qualn

A unique name associated with the file on the volume. It can be from
one to 44 characters of alphameric data. If fewer than 44 characters
are used, the field is left-justified and padded with blanks.

For VSAM, DSN must be specified when an existing (input) file is
being processed. The name (qual) is identical to the name of the file,
specified in the DEFINE command and listed in the VSAM catalog.
For VSAM, the name (qual) must be coded according to the following
rules:

e One to 44 alphameric (A-Z, 0-9, @, $, or #) characters or hyphen (-)
or plus zero (+0).

24 VM/SP GCS Command and Macro Reference

DLBL

Option B:

Option C:

e After each group of eight or fewer characters, a period (.) must be
inserted.

e Embedded blanks are not allowed.

e The first character of the name (qual) and the first character
following a period must be alphabetic or national (A-Z, @, $, #).

If this operand is omitted, ddname is used.

PERM
Specifies that this DLBL definition can be cleared only by an explicit
CLEAR request. It cannot be cleared when dlbl * clear is entered.

CHANGE
Specifies that any existing definition for this ddname is not to be
canceled, but conflicting options are to be overridden and new options
merged into the existing definition. Both the ddname and the DSN
file identifier must be the same for the definitions to be merged.

NOCHANGE
Indicates that a new definition for the specified ddname is to be
created if none exists, but if a definition already exists, it is not to be
changed.

VSAM
Indicates that the file is a VSAM data set. If not specified, VSAM is
assumed.

MULT
Indicates that you want to enter volume specifications that refer to an
existing multivolume VSAM data set. Often, VSE/VSAM requires no
MULT information; see the VSE/VSAM Programmer’s Reference to
find out when it’s required.

When you specify MULT, the GCS supervisor sends a message asking
you for additional disk mode letters. You provide the mode letters
using the REPLY command (“REPLY” on page 59) and the following
rules apply:

e All the disks you r