


--------- -------- - ---- ------------_.-
Virtual Machine/ 
System Product 

Application Development Guide 

Release 5 

SC24-5247 -2 



Third Edition (December 1986) 

This edition, SC24-5247-2, applies to Release 5 of the IBM Virtual Machine/System 
Product, (VM/SP), Program Number 5664-167, and to all subsequent releases and 
modifications until otherwise indicated in new editions or Technical Newsletters. 
Changes are made periodically to the information herein; before using this 
publication in connection with the operation of IBM systems, consult the la test 
IBM System/370, 30xx, and 4300 Processors Bibliography, GC20-000l, for the 
editions that are applicable and current. 

In this manual are illustrations in which names are used. These names are fanciful 
and fictitious; they are used solely for illustrative purposes and not for 
identification of any person or company. 

References in this publication to IBM products, programs, or 
services do not imply that IBM intends to make these available in 
all countries in which IBM operates. Any reference to an IBM 
licensed program in this publication is not intended to state or 
imply that only IBM's licensed program may be used. Any 
functionally equivalent program may be used instead. 

Summary of Changes 

For a list of changes, see page 287. 

Ordering Publications 

Requests for publications should be made to your IBM representative or the IBM 
branch office serving your locality. Publications are not stocked a t the address 
given below. 

A form for reader's comments is provided in this publication. If the form has been 
removed, comments may be addressed to IBM Corporation, Information 
Development, Dept. G60, P.O. Box 6, Endicott, NY, U.S.A. 13760. IBM may use or 
distribute whatever information you supply in any way it believes appropriate 
without incurring any obligation to you. 

© Copyright International Business Machines Corporation 1984, 1986 



Preface 

This manual is an introduction to developing and running COBOL and 
FORTRAN application programs under VMjSP. 

This manual is designed for experienced COBOL or FORTRAN 
programmers who are unfamiliar with VMjSP. 

Before reading this book you may want to read VMjSP eMS Primer, 
SC24·5236. 

After studying the material in this manual, you'll be able to: 

• Log on to VMjSP. 

• Use the editor to enter and modify program source statements. 

• Save the statements in a file . 

• Use a language compiler. 

• View, print, and save the output from the compiler as LISTING and 
TEXT files. 

• Run and test a program using the test tools of VMjSP and the language 
processor. 

This book tells how to: 

• Use ISPF or DMSjCMS to design and manage dialogs and dialog 
screens. 

• Use the data base management system facilities of SQLjDS in an 
application program or in an EXEC. 

• Prototype applications using the System Product Interpreter. 

• Use the Vector Facility support furnished by VMjSP HPO. 

• Debug your application program. 

This is not a reference manual. After working through this book, you are 
expected to consult appropriate manuals for more information on specific 
subjects. For a list of books, see "Bibliography" on page 289. 

Preface 111 



In Chapters 1 through 11, you'll learn: 

Chapter 1 

Chapter 2 

Chapter 3 

Chapter 4 

Chapter 5 

Chapter 6 

Chapter 7 

Chapter 8 

Chapter 9 

Chapter 10 

Chapter 11 

How to log on and off the system, and enter VM/SP 
commands. 

How to develop programs using CMS. 

How to create source programs and other files. 

How to compile, link-edit, and execute your programs. 

How to make use of the various CMS libraries. 

How to invoke dialog management from within the 
application. 

How to invoke data base facilities from within the 
application. 

How to use the System Product Interpreter (the 
Restructured Extended Executor Language). 

How to use special features in CMS that can make certain 
programming tasks easier. 

How to test and debug your programs in CMS. 

How to use the VM/SP HPO Vector Facility support with 
FORTRAN programs. 

See "Introducing VM/SP" on page 1 for a general overview of VM/SP. 

IV VM/SP Application Development Guide 



I 
I 
I. 

Contents 

Introducing VM/SP ...... ..... . ... .... . . . . ... . . .. . . . ... 1 
More About CMS .. . . . . .. . . . . . ... .. . . .. .. . .. . ...... . ... . .... 4 

System Services . . . ... . ... . .......... . . . . ... .. .... . . .. .... 5 
Utility Commands ........................... .. . ...... . . . 5 
The System Product Editor .................. .... ... . .. .. . . 6 
The System Product Interpreter .. . .. . ...... . .... . . .. ... . . .. 7 

The File System .... .. . .. . .... .. .. . ....... . ....... . .. . . . .. 7 
Summary .................. . .................. . .. . . . .. .. . .. 9 

Chapter 1: Getting Started with VM/SP . . .... . ........... . . 11 
Your Keyboard ....... . ....... . .............. ... ...... . ... . 11 
Beginning Your Terminal Session .......... . ............. .. . . . 12 
How to Log On to VMjSP ...... .. . . .. . .......... . . . ..... . ... . 13 

Logging On from a 3270-type Terminal . . ........ . ........ . .... 13 
Logon Exceptions .. . ........ . ... .. . . .. . ... . .......... . . .. 14 
Loading CMS ... . .... . . . . . ... . . .... .. . .... . . ...... . . . . .. 15 

How to Log Off .. . ....... . ... . .......... . .................. 15 
Terminal Status Notices ......... . ...... . . ............. .. .... 16 
Summary .. . ...... .. . . . .. . . . .. . ........ . .. . .............. . 17 

Chapter 2: Developing Programs Using CMS . . . . .. . ......... 19 
Step 1: Create a File ... . ... . ..... . ..... . ................... . 19 

Creating a COBOL File .... ... . ... . .. .... . . .. . ......... . .. 19 
Creating a FORTRAN File . .......... .. .. . .. . .. . ...... .. ... 24 
Saving Your File ...................................... . . 29 

Step 2: Compile The Program . . . . .... . ...... .. ........ . ....... 30 
Compiling Your COBOL Program . .... . .. . .. . ..... . .......... 31 
Compiling Your FORTRAN Program . .... . ................. . . 34 

Step 3: Run The Program .. .. ... . ....... . ................. . .. 37 
If You Have Problems.. . . .. . .. . . .. . . . .. .. . . . . . ............ . 38 

How to Get Out of an Infinite Loop . . .. . .. .. . . .. ... . ... . ... 38 
How to Get Back to CMS from CP ....... . ... . ... . .. .. ... . . 38 

Summary . .. . ........ . ... . ...... . ............... . .... . . . .. 38 

Chapter 3: Using the System Product Editor . . ..... . . . ...... 39 
What Is a CMS File? ... . .......... .. . . . . .. . .. .. . . .. .. ..... . . 39 
Using the Edit and Input Modes ...... ... . .. .. .. .. . . .. ... . ... .. 40 
Manipulating the Display . . ... . ... . . ........... . ..... .. ...... 44 

Examples .. . . . . .. . . . .... . ......... . .... . .. . .. . .. .. ... 45 
Using the Prefix Subcommands . . .... . . ... . . . . . . . .... .. .. . . . 56 

Examples .... . .................... . .. . . . .. . ...... .. .. 57 
Manipulating Data . . ....... . .... . .. . . . . .. . ... . . . .. . . ....... 60 

Using the Prefix Subcommands .. . .. ... . . . .... . ..... . ...... . 61 
Examples ...... .. .. . .. ... . . ... . ... . . .. . . ......... .. . . 61 

Manipulating Blocks of Lines . .............. . . . . .. .. . . ... .. . 64 
Examples ................ . .. . . ........... . ... .. ... . .. 65 

Contents V 



Using the Command Line Subcommands ..................... . 67 
Using the Change Subcommand .... . . .. .......... . .......... 68 

Examples ........ . ............ . ........ . ........... .. 69 
Using the PUT, PUTD, and GET Subcommands ............ . .. . . 70 

Examples .... .. .......... . ...... .. .. .. ............... 71 
Using Split and Join ....... . ......... . . . . . ................ 75 

Examples . . . . ....... .. ... .. .......................... 76 
Using the Sort Subcommand ...... . ... . ..................... 77 

Example ..................... . . . ........... . ....... . . 78 
Editing Multiple Files . . ...... . . . ....... .. .. . .......... . .... 79 

Spli tting the Screen ........ . ....................... . . . ... 83 
Using Tabs with the Editor ...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 
The QUIT and QQUIT Subcommands .................. .. ....... 89 

The QUIT Subcommand ................................... 89 
The QQUIT Subcommand . ....... . . . ..................... .. 89 

Ways to End an Editing Session ..... . .... . ................ .. .. 89 
Using the AUTOSAVE Function .............................. 90 
Using the CMS Update Facility .. ............ . .. .. ...... ... . . . 93 

The Update File ... . .. . ... .. .......... . .................. 94 
The UPDATE Command ... ....................... .... ..... 95 
Updating a COBOL Source File ................ . ..... .. ..... 96 
Updating a FORTRAN Source File .......................... 100 

Summary .... . ... .. ...................................... 103 

Chapter 4: More about Compiling and Running a Program 105 
Files Created by the COBOL Compiler ... . ..................... 105 
More about FORTRAN Compilers .... .. .......... . ........ ... 107 

The VS FORTRAN Compiler . . ... . ......... .. .......... .. . 107 
Copying OS Files from CMS MACLIBS ........... . ......... . .. 109 
Defining Input and Output Files . . ........... .. .. .. ... . . .. .... 109 

Specifying the DDNAME in COBOL ................... . .... 110 
Specifying the DDNAME in FORTRAN ............. . ... . .... 110 
Specifying the Device Type .. . ............................. 111 
Specifying CMS Files for Input and Output ................... 112 
Specifying FILEDEF Options .. . ........... .. ........... . . . 112 

Loading Object Modules ....... . .... . ...... . .......... ... ... 113 
Determining Program Entry Points ................ . . ... .... 115 
Issuing Dynamic Loads with OS Macros ........... . .. . ...... 115 

Summary .... . ........... . . .. .. . . ... ....... ... ....... .. .. 116 

Chapter 5: Using CMS Libraries . . . .. . ... . .... . ... . .. . ... 117 
Using Macro Libraries .... ............ . .................... 119 

Creating a New MACLIB .......... ..... ............. . .... 120 
Adding, Deleting, and Replacing Members . .. .. . ............ . . 121 
Compressing a MACLIB ........ . ........ . ................ 123 
Examining Contents of a MACLIB ........... . .............. 123 
Using CMS Commands to Manipulate Members ................ 124 
Extracting a Maclib Member ........ . ............. . . . ..... 124 
More about MOVEFILE . ... .................... .. ...... . . 125 
Printing and Displaying MACLIB Members . . .. . .......... . . . . 126 
System MACLIBs ........ ... ............ .. .............. 126 

Text Libraries ... .. ...................... ...... ...... . . ... 127 
Loading an Object Module ............. . .................. 130 

VI VM/SP Application Development Guide 



The GENMOD Command ............ .. .......... .. ....... 132 
The CMS Loadlib ... .... ........... . .......... . .. . . . ...... 133 

The LKED Command .. ......... . .. ... ....... . .. ... ...... 133 
The OSRUN Command ......... .. .......... . ........ .... . 135 
The LOADLIB Command ..... . . .. ....................... . 135 

ISPF/PDF Libraries ....... . ..... . ........ . ............. .. . 135 
Specifying ISPF/PDF Libraries and Their Members ............. 136 
Guidelines for Library Specifications .. . ..................... 137 
ISPF/PDF Library Record Format and Length ................. 138 
Location ofISPF/PDF Libraries . .. .. . .............. . .. . . . .. 138 
Concatenating ISPF/PDF Libraries ........................ . 139 
ISPF/PDF Library Statistics ................... .. ........ . . 139 

Summary ............................... . ... .. .......... . 140 

Chapter 6: Using Dialog Managers . . . .... . ....... . .. . . . .. 141 
Using ISPF for Dialogs .. . .. . ............. . ................. 141 

Developing an ISPF Dialog ..... . ...................... . ... 142 
How to Begin Using ISPF .... . ............... . ............ 144 
ISPF Dialog Organization .... . ............... . ............ 147 
Controlling Dialog Flow with the SELECT Service ............. 148 
ISPF Panel Definition .................................... 149 
ISPF Message Definition .............. .. ............ . .... 152 
ISPF Variable Definition ............ . ...... . .... .. ....... 152 

ISPF Panel Services ........ .. ............ .. ........... 153 
ISPF Variable Pools ........ .. ............ . .. .. ........ 154 
ISPF Variable Services . . .. . ........ .. ......... . .. . .. . .. 155 
Other ISPF Services . .. ............. . ................. . 156 

Table Services ........ . ............. .. .................. 156 
File Tailoring Services . ................. .. ........... .. 156 
Miscellaneous Services ..................... . ........... 156 

Using DMS/CMS for Dialogs ..... . ... . .......... . ........... 157 
Using the Panel Formatter ..... . .. . ................ . . . .... 158 
Designing Fields in DMS/CMS Panels ..... ... .......... ... . . 159 
U sing the Panel Manager .............. . ............ .. .... 161 
Using EXECS to Prototype DMS/CMS Applications ............ 163 

Summary .... . . ... ... . . . ......... . ............... . ....... 165 

Chapter 7: Using SQL/DS . . . .... . ....... . . . .. . ... . ..... 167 
How SQL Handles Data .......... . ............ . ............ 168 
SQL Commands .......... ... . .. ........ . . .. .. . ............ 169 
Using the SQL/DS Preprocessors ... ...... ... ........... . .. . .. 170 

Declaring Host Variables to SQL . . ... . ... . .. .. .... . .. ... ... 171 
Main Variables .... . ........ ... ........... .. . ... ...... 171 
Indicator Variables . ........... .. ........... . .......... 172 

Data Types Supported by SQL/DS .. . .. . . . . . ....... ... .... . . 173 
Coding SQL Commands ................. ... . . ......... .. . . . 174 
Logical Units of Work and Error Handling ...... . . . ............ 175 
Creating SQLjDS Tables ........ . ....................... . . . . 177 
Querying SQL/DS Tables .......... . ........... .... .. .... ... 179 
Defining Search Conditions ...... . .. . ....... ..... .. .. .. ..... 180 
Additional Predicates ..... ... ....... . ............... .. ..... 181 
Built-In SQL Functions ..... . ... .. .. . ..... .... . .. ....... ... 182 
Excluding Duplicates ........................ . ......... . . . . 183 
Manipulating Data in SQL/DS .. .. . ........... . .............. 183 

Contents Vll 



Creating Views in SQL/DS . ..... . .......... .... ............. 184 
Using SQL in COBOL Programs ..... . ....... .. . ... .. .. .... . .. 184 

Placement and Continuation of SQL statements .. . ... . . . ... . . . . 185 
Delimiting SQL Statements . . ..... . . . . ... .. . . ........ . .... 185 
U sing the Quote Parameter .. ..... ... . . . . . . .. . .... . . . ..... 185 
Using the INCLUDE Command ........ . . .... . . . . . . . . .. .. . . 185 

Using SQL in FORTRAN Programs . .. ... . ... . ...... . .. . . .. . . . 186 
The FORTRAN SQL Preprocessor . ... .. .. . ................. 186 
Placement and Continuation of SQL Statements .... ... . ...... . 186 
Embedding SQL Statements .. . .. ...... .. . . ... . .. . . ... .... . 186 
Using the INCLUDE Command . .... ..... . ..... . . . . . ...... . 186 

Preparation and Preprocessing a Program With SQL/DS .... . ..... . 187 
Summary . . .. .. . ...... . . . ...... . . . . ..... . .... . . . . . ... .. . . 190 

Chapter 8: EXECs ...... ... . . . . . . . . ... •. ... . .... ... ..• 191 
A Basic Exec ... . .. ...... . . ... ... . . . . . ... . .... .... . . . .. . .. 191 
Profile Execs ..... . ..... .. . ... .... . ... . . . . . . . ..... .. .. .. .. 192 
Exec Arguments . . . . . ............... . . . . .. . ... . .. ... . .. .. . 192 
The CMS EXEC File ........ . ........ . . . . . ....... . . ... . . . . . 193 
The EXEC 2 Processor . . .... . . . ........ .... ........ .. . ... .. 194 
The Restructured Extended Executor Language .. . .. . . ... . .. .. . .. 196 

A Sample REXX Program .... . . . ............. . ... . ...... . . 197 
Issuing VM Commands ..... .. . . ... . ... .. . . .......... .. ... 198 

Creating a System Product Editor Macro . . . ............. .. . . . .. 200 
Prototyping Interactive Applications . . ............ ... . . ....... 201 
Using Execs with SQL/DS . . . ........ . ............. . . . ... . .. 204 
More Features of the Restructured Extended Executor Language .. .. 205 

Substitution Rules . ... . . . ....... .. ..... . ..... . ...... . . . . 205 
Compound Symbols ...... . . . .................. . ..... . .... 206 
Subroutines ... . ....... .. . . ...... . ..... . . . . .. ..... .. .. . . 207 
Functions . ............ . ..... . . .... .. . . . . . ... . . .. .. . . .. 208 

Basic EXEC Language Facilities .. . .... . .. . . . .. . ....... . ..... 212 
Using FILEDEF in EXECs .... . ......... . ..... . ... . ... . ..... 213 
Use of MACLIBS and TXTLIBS in EXECs . . . . . . . .. . . .. ... . ..... 214 
Prototyping 'with REXX ...... .. ... . .. . . . . . . . .. .. .. .. .. . . ... 216 
Summary .... . . . ... . ... . . .... . . . .. . . . .. . . .... . . .. .. . . .... 216 

Chapter 9: Passing Commands and Data ... . ...... . .. . . . . . 219 
Stacks . . . . .. . . . . . ... ... . . .... . ....... . ........... . ..... . 219 

Using a Program Stack Globally .. . ....................... . 220 
Using a Local Stack ... . . . .. . ................. . ......... . . . 221 

Manipulating the Program Stack ............. . . . . . ..... . .. . 223 
Using Program Stacks . . .... . .. .. ........... . .. . ... . . .. . . 224 

Program Linkages and Return Codes ............ . ... . ........ . 224 
Linkage Registers . . . .......... . . . . . . . .... .. . . . . ... . .... . 225 
Return Codes ... . .. . ....... . ....... . .... . ............. . 225 
Using Parameter Lists to Issue CMS Commands . . ... . ......... 227 

Using CMS Macros ... . ... . ... . ...... .... . . .. . . . ....... . ... 228 
Summary .. . ...... . .. . .. ............. . ..... . ...... . . . .... 231 

Chapter 10: Testing and Debugging Programs under VM/SP .. . 233 
Interactive Debug ...... .. ... . . . .. . . .. . . .. . . ............... 233 

COBOL Interactive Debug ........ ... .... .. ... ... . . ....... 234 

Vlll VM/SP Application Development Guide 



Example ............................................ 235 
VS FORTRAN Interactive Debug ........................... 238 

Using VS FORTRAN Interactive Debug in Line Mode ......... 238 
Using VS FORTRAN Interactive Debug in Full-Screen Mode 239 
Other VS FORTRAN Interactive Debug Facilities ............ 239 

VS FORTRAN Version 2 Interactive Debug ................... 240 
FORTRAN Interactive Debug ......... . ................ .... 241 

Example ............................................ 243 
Dialog Testing Using ISPF .................. ........ ...... . . 245 
Data Base Testing Using SQL/DS ... ... .. ............. .. . ..... 250 
Using CMS Debugging Facilities ............ .. ..... . ......... 252 

Using the DEBUG Command .............................. 252 
Using the COMPARE Command ............................ 252 
Using the SET and STORE Commands .......... ..... ....... . 253 
Using the SVCTRACE Command ........................... 253 
U sing the PER Command ............ . .. . ................. 253 

Summary .............................................. .. 254 

Chapter 11. Using the VM/SP HPO Vector Facility Support with 
FORTRAN Programs ... .. . . . . . . .... . . . . . ............. 255 

Vector Facility Overview ... ........... ..... ................ 255 
Displaying Vector Facility Registers .......................... 257 

Examples .. ........... ................................ 257 
Displaying the Contents of a Vector Register ................ 257 
Displaying the Contents of a Specific Element ............... 259 
Displaying the Contents of a Range of Elements ............. 259 
Displaying the Contents of All Elements in a Range of Registers 260 
Displaying the Contents of a Number of Consecutive Elements .. 261 
Displaying the Contents of a Vector Register Pair ........ .. .. 262 
Displaying the Contents of a Range of Vector Register Pairs .... 262 
Displaying the Contents of a Range of Elements in a Number of 

Consecutive Vector Register Pairs .. ...... ............. .. 263 
Displaying the Vector Activity Count, Vector Status Register, and 

Vector Mask Register ..................................... 264 
Examples . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 264 

Displaying the Vector Activity Count ... ... ...... ......... 264 
Displaying the Contents of the Vector Mask Register . . ....... 264 
Displaying the Contents of the Vector Status Register ......... 264 

Changing the Contents of Your Vector Facility's Registers ......... 265 
Examples ............... . .. ....... .. .... ... ... ........ 265 

Storing into a Specific Element .......................... 265 
Storing into a Number of Consecutive Elements .. ........... 266 
Storing into an Element of a Vector Register Pair .... ........ 266 
Storing into the Vector Status Register .................... 267 
Storing into the Vector Activity Count ................... . 267 
Storing into the Vector Mask Register ................ . .... 267 

Error Messages ........................................... 268 
Displaying How Much Vector Facility Resource Your Virtual Machine 

is Using .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 269 
Vector Instruction Tracing .. . ....... ....................... . 270 

Appendix A. Complete COBOL Program Examples 271 
Simple COBOL Program .................................... 271 
Complete COBOL Program .................................. 271 

Contents IX 



EXEC for Complete COBOL Program .......................... 272 
COBOL Program .................................. .. ...... 273 
Complete COBOL Program Using ISPF ........................ 275 

Appendix B. Complete FORTRAN Program Examples .... . ... 277 
Simple FORTRAN Program ................................. 277 
Complete FORTRAN Program ............... .. ........ ... ... 277 
EXEC for Complete FORTRAN Program ....................... 278 
FORTRAN Program ....................................... 279 
Complete FORTRAN Program Using ISPF ........... ... ........ 281 

Appendix C. ISPF Panels . .... ... . . . .. ........ . .. .. . . .. 283 

Summary of Changes .. . .... .. ......... .. . . . . .... . . . . .. 287 

Bibliography . . . . ..... . .. . . . ..... . .... . .... .. ........ 289 

Index ... . .. . ... . . .... .. ... ..... . . .. . . . . . . .. . ... . . . . 295 

x VMjSP Application Development Guide 



Figures 

1. CP and CMS Allow VM/SP Users to Share One System ......... 2 
2. The CMS System Structure .. . . . ... . . .. . . .. . .. . . .... .. .... 4 
3. Users Can Share Disks in the "Read Only" Mode and Own Disks in 

the "Read/Write" Mode . . . .............. . .......... . ..... 8 
4. An Example of a Keyboard Layout ... . . . . . . . . . . . . . . . . . . . . .. 11 
5. Compiling a COBOL Program ... . .. . ..... . ............... 33 
6. Compiling a FORTRAN Program . . ............... . ........ 36 
7. Files Used by the COBOL Compiler . . . . . . . ... . ..... . .... . . 106 
8. Files Used by the FORTRAN Compiler . . .................. 108 
9. The CMS Loader . . .. . ... . .. . . . . . . ................ . ... 113 

10. CMS Libraries ...... . .... . ... . .......... . .. . .. . . . . . .. 118 
11. A Typical Dialog Starting with a Menu .. ... . .. .. .. .... . . .. 147 
12. SELECT Service Used to Invoke and Process a Dialog . ... . ... 149 
13. Sample ISPF Panel Definition .... .. ... . .. . ..... .... . ... . 151 
14. Sample ISPF Panel, When Displayed .... . ......... . ... ... . 151 
15. Creating an Executable SQL Program . . .. . . .. . . . ....... . . . 187 
16. Elements of a Console Stack .. ... . . . .. . .... . ............ 220 
17. Example of Local Stack Usage . ... . . . .. . .. .. ... ....... .. . 223 

Figures Xl 



xu VM/SP Application Development Guide 



This section is an overview of the VMjSP system from an application 
programmer's point of view. When you finish, you should have an 
understanding of what VMjSP is, how it's structured, and its major features 
and facilities. 

Virtual Machine/System Product (VM/SP), or just VM, is an operating 
system that lets you and many other users each appear to have a complete 
computing system environment at your disposal. This means that the 
computer system itself (the hardware - CPU, disk drives, tape drives, 
printers, etc.) can support a large number of users who all need the 
machine at the same time. 

VM allocates machine resources (hardware, storage and processing time) so 
that you appear to have control over an entire self-contained, private 
computing system, as in Figure 1 on page 2. 

Introducing VMjSP 1 



Introducing VM/SP 

Figure 1. CP and CMS Allow VM/SP Users to Share One System 

Because you don't really have direct control over the real machine, your 
configuration is known as a virtual machine. Each virtual machine 
operates in the real computer under control of a part of the VM 
environment known as the Control P r ogram (CP). The Control Program 
is the resource manager for the real computer. It ensures that each virtual 
machine is allocated the resources it n eeds to perform its own jobs. 

Among the operating systems that can run in a virtual machine are 
DOS/VS, MVS, and CMS. This means, for example, that an entire MVS 
system can run within the VM environment. It runs exactly as it would on 
a real machine, complete with support for multiple TSO users, batch jobs, 

2 VM/SP Application Development Guide 



Introducing VM/SP 

etc. VM can support multiple virtual MVS machines, virtual DOS/VS or 
VSEjAF machines, and a large number of users each running VM's own 
interactive operating system, Conversational Monitor System (CMS). 

CMS is a virtual machine operating system that provides functions for you 
to use at the terminal. It's specifically designed to run in the VM 
environment and depends on CP for its execution. Thus, CMS can't operate 
independently on a real machine as can other operating systems. 

CMS provides an individually tailored computing environment. The CMS 
environment is complete with commands, a file system, and terminal 
communication facilities. CMS is an interactive environment. You invoke 
CMS functions through commands entered at your terminal. Because it's 
an operating system, you can also run programs written in standard 
programming languages such as Assembler, FORTRAN and COBOL. CMS 
is designed to make the whole programming process easier: program design, 
development, testing, and implementation. . 

You enter the CMS environment from the CP environment automatically (if 
your system has automatic IPL), or by issuing the IPL command (see 
Loading CMS on page 15.) The IPL command loads CMS into your virtual 
machine. If you're planning to use CMS for your entire terminal session, 
you shouldn't have to IPL again unless a program failure forces you into 
the CP environment. 

You can tell which environment you're in (with the exception of the input 
mode of the edit environment) by pressing the RETURN or ENTER key on 
a null line (that is, a line that has nothing keyed in on it). If the system 
responds by displaying the prompt "CMS" it means that you're in the CMS 
environment. If the system responds by displaying the prompt "CP" it 
means that you're in the CP environment. If the system responds by 
displaying the prompt "GCS" it means that you're in the GCS environment. 

When your virtual machine is in the CMS environment, you can issue any 
CMS command or CP command valid for your user privilege class. 

You can execute many language processors under CMS, including: 

The Assembler 
IBM BASIC 
VS BASIC 
VSAPL 
OS FORTRAN 
VS FORTRAN 
VS FORTRAN Version 2 
OS/VS COBOL 
OS PLjI Optimizing and Checkout Compilers 

The HELP command displays information on how to use CP commands and 
CMS commands, subcommands, EXECs, and explanations of VM messages. 

Introducing VM/SP 3 



Introducing VM/SP 

More About eMS 

Like all operating systems, CMS has a well-defined system structure. The 
three parts of CMS (Terminal System, File System, and CMS System 
Services) are shown in Figure 2. 

CMS 
SYSTEM 

SERVICES 

-LIBRARY 
r:::: 

.... 
SERVICES ~ 

TERMINAL FILE ~ 
..... 

SYSTEM -EDITOR SYSTEM 
.... 

SERVICES ~ ...... 
..... ~ i-" 

~ -COMMAND 
LANGUAGE 

~ I--' 

INTERPRETER ..... ~ 

-UTILITIES 

Figure 2. The eMS System Structure. This consists of the Terminal System, 
eMS System Services, and File System. 

Terminal System 
This is a portion of the CMS system that supports your 
terminal. It reads commands entered at the keyboard and 
displays system responses to those commands. 

System Services 

File System 

This is a portion of CMS that constitutes the basic user 
interface. It consists of a number of distinct facilities, 
such as: 

- Library Services 

- Utility Commands 

- The System Product Editor 

- The System Product Interpreter. 

This provides basic input and output services, such as read 
and write operations. These I/O functions are used by the 
system services and also by user: programs running in the 
CMS virtual machine. 

Each of these has a number of commands that invoke particular CMS 
features. Each makes use of the terminal system and file system portions of 
CMS. Simply enter the various commands at the keyboard and you'll see 
the results displayed on the terminal. 

We'll discuss the File System and System Services in a little more detail. 

4 VM/SP Application Development Guide 



System Services 

Utility Commands 

Introducing VM/SP 

Most operating systems provide library facilities. These help you develop 
programs and maintain an orderly environment for managing your files. A 
library is a special type of CMS file that groups files (known as members) 
of a similar nature and function. To manipulate libraries and their 
members, you can use the library facilities, which are operating system 
functions. For example, you can use the following commands: 

MAC LIB creates or changes a library of assembly language macros or 
high-level language COpy code. 

TXTLIB creates or changes a library of program object code. 

GLOBAL defines certain kinds of libraries used by compilers or by CMS 
itself when loading a program before running it. 

Besides the commands you use for handling files and manipulating 
libraries, there are a number of commands that let you reconfigure your 
virtual machine, communicate with other users, and control program 
development and implementation. For example, you can use the following 
commands to reconfigure your minidisks: 

ACCESS changes the order in which CMS searches minidisks for files or 
gains access to a minidisk not yet available to CMS. 

RELEASE makes a minidisk unavailable without affecting its contents. 

You can use the following commands to communicate with other users: 

SENDFILE lets you send one or more files to another user. 

RECEIVE lets you receive a file sent to you by another user. 

TELL lets you send a one-line message to another user. 

NOTE lets you send a longer message to another user. 

TELL and NOTE make use of a special file containing the userids of the 
virtual machines of other VM users. It also contains other information, 
such as their first and last names and even nicknames. You can create this 
file by using the NAMES command. 

Introducing VM/8P 5 



Introducing VM/SP 

The System Product Editor 

Other utility commands let you control program development and 
implementation. For example, after you have written your program using 
the System Product Editor, you'll need to compile it. Then, you'll want to 
run the program and maybe debug it. You can use the following utility 
commands to accomplish these tasks: 

COBOL compiles a COBOL program, using the COBOL/VS compiler. 

FORTVS2 compiles a FORTRAN program, using the VS FORTRAN 
Version 2 compiler. 

LOAD 

START 

DEBUG 

link-edits a program and loads it into storage, ready for 
execution. 

initiates execution of a program loaded into storage. 

lets you debug a running program by displaying and altering 
part of storage. 

TESTCOB lets you debug a COBOL program interactively. 

TESTFORT lets you debug a FORTRAN program interactively. 

With the System Product Editor (or just "the editor") you can enter and 
create files that will reside on a CMS minidisk. Use the XEDIT command 
to call the editor and create source programs, data files, documentation 
files, or special files (for example, source program update files, message 
files, and display panel definitions). The editor lets you insert, delete, copy, 
and relocate lines of code or data, alter character strings on a single line or 
throughout a file or portion of a file, search for character strings, sort lines 
within a data file, and the like. 

You can also: 

• Edit more than one file at a time. 

• Display more than one image or file on the terminal screen. 

• Restrict the display to selected lines (for example, only those with a 
certain character string). 

• Display key portions of the screen in various colors (on terminals 
supporting multiple-color displays). 

You can display more than one image at a time to compare two files 
(displayed side-by-side) or debug a source program. In debugging, you can 
set up a split screen with the source program displayed on the top of the 
screen and a listing of compilation errors on the bottom. You can then 
debug your program by noting the list of errors on the bottom and 

6 VMjSP Application Development Guide 



Introducing VM/SP 

correcting them in the source displayed on top. Thus, you may not need a 
hardcopy listing. 

You can also use the CMS editor to develop edit macros, groups of edit 
subcommands executed sequentially in a known sequence but invoked by 
one command. For example, you can write an edit macro to insert an EXIT 
statement in a COBOL program whenever invoked or at key places in a file, 
such as following the character string -EXIT every time it occurs. For 
details on how to use XEDIT and its subcommands, see "Step 1: Create a 
File" on page 19. For further information, see VM/SP System Product 
Editor Command and Macro Reference. 

The System Product Interpreter 

The File System 

The System Product Interpreter is another powerful CMS tool that lets you 
execute sequences of CMS commands in the same way the CMS Editor 
macro facility lets you execute a sequence of XEDIT subcommands. Using 
the interpreter, you can, for example, create a single command (called, in 
this case, an EXEC) that compiles, link-edits, and executes an existing 
COBOL or FORTRAN program. You can further enhance such an EXEC to 
first invoke the CMS editor. And, if compilation errors occur, you can 
reenter the editor to correct them, only going on to link edit and run the 
program if no compilation errors occur. 

You can use the Restructured Extended Executor language, which is 
processed by the interpreter to write EXECs to prototype applications. 
With the interpreter, you can develop and test algorithms before coding 
them in a high-level language. Since standard programming structures 
such as If-Then-EIse, Do-While, SELECT-WHEN, and Do-Until are 
included in the executor language, you can easily translate one of its 
routines into a high-level language. "Chapter 8: EXECs" on page 191 gives 
more information on how to write an EXEC. 

One unique feature of the VM file system is the minidisk. A diagram of 
this is shown in Figure 3 on page 8. Through the use of mini disks, Direct 
Access Storage Device (DASD) space is allocated to you without having to 
dedicate an entire DASD pack to you (unless all its space is needed). At the 
same time, CMS maintains a secure and integral file system for the virtual 
machine. When a virtual machine is defined to VM, disk space is allocated 
in contiguous cylinders or blocks (depending on device type). Thus, there 
can be on or more cylinder (or blocks) of DASD space allocated for the 
exclusive use of your virtual machine. 

Introducing VMjSP 7 



Introducing VM/SP 

USER 1 USER 2 
;;! 

,/READ ONLY , , , , 

Figure 3. Users Can Share Disks in the "Read Only" Mode and Own Disks 
in the "Read/Write" Mode 

CMS support is totally responsible for file management, including blocking 
and deblocking. You manipulate files by name. Individual file space is not 
preallocated. It is obtained and deleted dynamically from your block of 
allocated space. You can query the disk at any point to determine the 
amount of free space. 

Once disk space has been allocated, it's formatted to comply with the 
blocking structure of CMS and may then be used to contain CMS files that 
you have created. Actually, your virtual machine may have several 
minidisks defined to it. You can access up to 26 minidisks at a time. 

The number 26 suggests letters of the alphabet, and this is in fact the way 
in which CMS identifies your minidisks. This letter, known as the 
filemode, becomes part of the identifier for each file on a given minidisk. 

Each file is uniquely identified by this file identifier, which consists of 
three parts: filename, filetype, and filemode. When you create a file, the 
filename, filetype, and filemode are assigned by you. The filename and 
file type can be up to eight characters long. 

Except for some standard conventions (such as the CMS system disk), 
you're in complete control of the filename and filetype of a minidisk file 
and how CMS should access them. 

COBOL and FORTRAN compilers require corresponding filetypes for their 
respective programs. Use COBOL or FORTRAN as the filetypes of 
programs you write in these languages. 

CMS has many commands that address files through the file identifier or 
fileid. For example, you can COpy a file from one minidisk to another (or 
to the same minidisk, using a new fileid), or RENAME a file, changing the 

8 VM/SP Application Development Guide 



Summary 

Introducing VM/SP 

filename, the filetype, the filemode or all three. You can also create a new 
file or modify an old one by using the XEDIT command, which invokes the 
standard CMS editor. You can ERASE a file you don't need. You can 
PRINT a file. If you want to see all or part of a file without invoking the 
editor, you can TYPE the file, which displays the contents on your 
terminal. To see the files you have on one or more of your minidisks, you 
can use the FILE LIST command. 

Each command has a syntax corresponding to its function. You can find all 
CMS commands listed in alphabetic order in VMjSP CMS Command 
Reference, along with their rules and associated messages. 

The basic three-part structure of the CMS operating system simplifies your 
programming process by providing you with: 

• A terminal interface for line-edit and full-screen operation. 

• A file access method to ensure the security and integrity of your files. 

• A set of system services with utility commands, library services, an 
editor, and the Command Interpreter. 

We have examined the VMjSP system from an application programmer's 
point of view. VM manages the resources of a real machine so that you 
have the functional equivalent of a computing system complete with 
terminal, unit record, and DASD devices as needed. (VMjSP also supports 
tape devices and other special devices that may be used occasionally.) 

We've also looked briefly at VM's unique operating system, CMS. This 
system provides terminal support, a file system, and a conversational 
command interface with a wide variety of functions. They range from 
program design, coding, testing, debugging, implementation, and 
documentation to such special features as screen dialog management and 
data base access. 

Finally, we have seen that VM lets you share data with other users as well 
as communicate with them. 

Introducing VMjSP 9 



Introducing VM/SP 

10 VMjSP Application Development Guide 



Your Keyboard 

This chapter tells how to log on to VMjSP, begin your terminal session, and 
log off. It discusses your keyboard and shows you how to recognize the 
terminal status your system may be in. 

Figure 4. An Example of a Keyboard Layout 

The keyboard you are using is composed of the following: 

Character Keys, which include: 

• Alphabetic (A through Z) 

• Numeric (0 through 9) 

• Punctuation characters such as !, " :, ;, and ? 

• Special characters such as @, $, %, and *. 

888 
888 
8~8 
888 

• Text characters - if your keyboard is operating in the text mode, press 
and hold the CODE key, then press a character key to obtain the text 
character that is engraved on its front face. For more information, see 
VMjSP Terminal Reference. 

Control Keys, which include: 

• Program Function (PF) Keys. 

You can define these keys to have either command or data-input 
capability by using the SET PFnn command. For information on this 
command, see VMjSP CP Command Reference. 

Chapter 1: Getting Started with VM/SP 11 



GeHing Started with VM/SP 

• Cursor Control Keys. 

• Screen Management Keys, which include: 

CLEAR clears the entire screen--output area, input area, and 
status area. 

ERASE INPUT erases the user-input area. 

ERASE EOF erases from the cursor to the end of the line. 

PAl posts an attention interruption pending to the CP 
command environment. 

PA2 or CNCL 

INS MODE 

DEL 

When working in full-screen CMS (with SET 
FULLSCREEN ON), the PAl key no longer serves as 
an ATTENTION key, it performs a windowing 
function. 

clears the output display area. 

Press this key to enter the insert mode. 

deletes the character indicated at the cursor and 
shifts the data line one space to the left. 

Beginning Your Terminal Session 

To establish contact with VMjSP, switch your terminal on. VMjSP should 
respond with a screen displaying a message: 

VIRTUAL MACHINE/SYSTEM PRODUCT 

This lets you know that VMjSP is running and that you can use it. If you 
don't receive the VM/SP ONLINE message, see VMjSP Terminal Reference 
for further instructions. 

Before you can use VMjSP, you must identify yourself by giving your 
userid and password: 

userid a symbol (eight characters or less) that identifies your virtual 
machine to VMjSP and lets you gain access to the system. 

password a symbol (eight characters or less) that functions as a 
protective device. No one can use your virtual machine unless 
they know your password. 

To get a userid and password, see your supervisor. 

Note: Different installations have somewhat different ways of establishing 
contact with VMjSP. The procedure at your installation may vary from the 

12 VM/SP Application Development Guide 



GeHing Started with VM/SP 

procedure described here. Check with your supervisor or system 
administrator. 

How to Log On to VM/SP 

Note: If your terminal is not a 3270-type, use the logon procedure described 
in "Logon Exception." 

Logging On from a 3270-type Terminal 

When you have the VM/SP logo screen displayed, you are ready to initiate 
logon processing. 

If your terminal is a 3270-type, you may log on directly from the logo 
screen. Below the actual VM/SP logo are two lines instructing you to fill 
in your userid and password. Following these instructions are three input 
lines labeled USERID, PASSWORD, and COMMAND. The cursor is placed 
at the input line for USERID. 

You may now type your userid and password in the USERID and 
PASSWORD input areas and press ENTER. 

Note: In the rest of this manual, we'll use enter to mean that you should 
type in the line or lines indicated and then press the ENTER key. 

If all of the information is entered correctly, the logo is cleared from the 
screen, no further prompts will appear, and you will be logged onto the 
system. If an invalid userid or password is entered, the logo is cleared from 
the screen, and the following message and prompt will appear: 

DMKLOGOSOE LOGON UNSUCCESSFUL - INCORRECT PASSWORD 
or 
DMKLOGOS3E userid NOT IN CP DIRECTORY 

Enter one of the following commands on the COMMAND line below: 

LOGON userid 
DIAL userid 

(Example: LOGON VMUSERl) 
(Example: DIAL VMUSER2) 

MSG userid message 
LOGOFF 

(Example: MSG VMUSER2 GOOD MORNING ) 

If you enter only your PASSWORD in the input area, the following error 
message will be issued, followed by the LOGON prompts: 

DMKCFM288E LOGON FROM THE INITIAL SCREEN WAS UNSUCCES SFUL 

If your USERID, as entered, contains one or more blanks (V MUSERl), the 
following error message will be issued, followed by the LOGON prompts: 

DMKLOGOS3E V NOT IN CP DIRECTORY 

Chapter 1: Getting Started with VMjSP 13 



GeHing Started with VM/SP 

Logon Exceptions 

You may also enter your userid in the USERID input area without your 
password or enter the LOGON command, followed by your userid, in the 
COMMAND input area. The following prompt will appear: 

ENTER PASSWORD (IT WILL NOT APPEAR WHEN TYPED): 

If your installation permits, you may enter the LOGON command followed 
by your USERID and PASSWORD in the COMMAND input area. 

COMMAND ===>Logon VMUSERI password 

If you have entered the information correctly, the logo is cleared from the 
screen and you will be logged onto the system. 

If your terminal is not a 3270-type, and you have the VMjSP logo screen 
displayed, you can now press the ENTER key on your terminal to clear the 
screen and initiate logon processing. 

Now enter the LOGON command. If, for example, your use rid is SMITH, 
then type: 

logon smith 

and press the ENTER key. The short form of LOGON is L, so you can just 
enter 1 smith. 

Note: You can enter commands using any combination of upper-case and 
lower-case characters; VMjSP translates your input to upper-case. 
Examples in this publication show all user-entered input lines in lower-case 
characters and all system responses in upper-case characters. 

If VMjSP accepts your userid, it responds by asking for your password: 

ENTER PASSWORD 

Carefully type your password, and then press the ENTER key. For reasons 
of security you won't see your password as you type it. If you receive the 
message: 

PASSWORD INCORRECT 

you'll have to start over, beginning with the LOGON command. 

After you key in the proper identification, press the RETURN or ENTER 
key. 

If the logon procedure has been successful, VM establishes a virtual 
machine in the system for your use. While doing so, it displays progress 
messages on the screen. 

14 VMjSP Application Development Guide 



I Loading eMS 

How to Log Off 

Getting Started with VM/SP 

If your virtual machine has been set up to automatically Initial Program 
Load (IPL) CMS for you, you'll get a message that looks something like 
this: 

VM/SP CMS - 05/16/84 11:45 

The terminal status displayed is VM READ. When you press ENTER, the 
remainder of your virtual machine facilities are set up and a message like 
this is displayed: 

Ready; T=0.01/0.01 11:15:30 

This is called the ready message. If AUTOCR is specified in your 
directory entry, you do not have to press ENTER. 

If your terminal status shows: 

CP READ 

after you enter your password, CMS has not been loaded. This can happen 
after a CMS system failure, or because your userid has not been properly 
set up by the system administrator. You'll have to IPL CMS yourself. 
Enter: 

ipl ems 

When VM READ appears as the terminal status, press ENTER again. VM 
responds with a ready message, as shown above, indicating that CMS is 
ready to receive commands. 

Note: If you get the message: 

DMSACC112S A(191) DEVICE ERROR 

you must format your virtual disk for use with CMS files. To help you do 
this, see your supervisor or system administrator. 

To end your terminal session, use the LOGOFF command. Enter: 

logoff 

The short form for LOGOFF is LOG. 

Chapter 1: Getting Started with VM/SP 15 



Getting Started with VM/SP 

Terminal Status Notices 

The following is explanation of all the terminal status messa ges that may 
appear at the lower right corner of your screen. 

CP READ 

VM READ 

RUNNING 

MORE ... 

HOLDING 

16 VMjSP Application Development Guide 

The Control Program issued a read request to your 
terminal and is waiting for a reply. After you log on, 
this is the first status notice you see. It also occurs, for 
example, after a message that requires a response. If 
you type in your reply and press ENTER, processing 
will continue. If you see this message when you don't 
expect it, enter: 

B 

If this doesn't work, IPL the system again by typing: 

ipl ems 

then press enter, wait for the system response, and then 
press enter again. 

The operating system running in your virtual machine 
issued a read request to your terminal and is waiting for 
a reply. If you type in your reply and press ENTER, 
processing will continue. 

CP or your virtual machine is working on something, or 
is waiting for you to enter a command. RUNNING can 
also occur if the screen is filled and there are no 
additional lines to display. Once you've loaded CMS 
and are using the CMS environment, this status is 
almost continually in effect. 

CP or your virtual machine is running, but the output 
display area is full and there are more lines of output to 
be displayed. When you see the screen is in this status, 
you can do one of the following: 

• Press the CLEAR, CANCEL, or P A2 keys to clear 
the screen and see the next screen. 

• Press the ENTER k ey to hold the screen in its 
present status. This changes the status to 
HOLDING. 

If you don't do either, after 60 seconds, the screen is 
cleared and the next screen is displayed. 

This status appears when the screen displayed a 
MORE ... notice and you pressed the ENTER key. CP 
or your virtual machin e is running and the screen is 
full. This notice can also appear when another user 



Summary 

Getting Started with VM/SP 

sends you a message. To end the hold, press the CLEAR 
key. 

NOT ACCEPTED You typed a command or a line of data and pressed 
ENTER, but the terminal buffer is full and can't accept 
it. VM/SP locks the keyboard for about three seconds 
while it displays the NOT ACCEPTED status, then 
reverts to the previous status. 

The rejected data stays in the user input area of the 
screen so you can retry the operation without typing it 
again. Just press ENTER after the NOT ACCEPTED 
notice goes away. 

When you are working in full-screen CMS (with SET FULLSCREEN ON), 
the following status messages will be displayed. 

Note: For a complete explanation of the SET FULLSCREEN ON command, 
refer to the CMS Command Reference. 

Executing a command: The system is processing your command. 

Enter your response in vscreen 'uname': The system is waiting for you to 
reply to a request. 

Note: In this message vname will be replaced by the name of the virtual 
screen in which you are to enter your response. 

Scroll for more information in vscreen 'uname': To see the waiting 
information you must scroll forward a window that is showing the specified 
vscreen. 

Enter a command or press a PF or PA key: The system is waiting to 
process your next input. 

Note: In this message vname will be replaced by the name of a virtual 
screen. You must scroll forward a window connected to the virtual screen 
in order to see the waiting information. 

In this chapter, you learned how to log on to VM and begin your terminal 
session, and how to log off. You became familiar with your keyboard and 
learned how to recognize the terminal status of your system. 

Chapter 1: Getting Started with VM/SP 17 



Getting Started with VM/SP 

18 VMjSP Application Development Guide 



In this chapter, you'll learn how to create a file, invoke the System Product 
Editor, enter a COBOL or FORTRAN source program, save the program, 
compile the program, and execute it. 

We'll do this in three steps: 

1. Create a file containing a program. 

2. Compile the program. 

3. Run the program. 

If you're not already logged on, do so now. The log on procedure is 
described in "How to Log On to VM/SP" on page 13. 

Step 1: Create a File 

The System Product Editor, which we'll also refer to simply as. the 
editor, is a full-screen editor that creates or modifies files. 

In this chapter you're going to use the System Product Editor to create a 
file, enter a program, and then file it. Modifying the file and manipulating 
various options are discussed in "Chapter 3: Using the System Product 
Editor" on page 39. 

If you're programming in FORTRAN, skip to "Creating a FORTRAN File" 
on page 24. 

Creating a COBOL File 

You invoke the System Product Editor by entering the XEDIT command, 
followed by the file identifier of the file you want to create or edit. If there 
are options you want to apply to this session, put them next, after an open 
parenthesis. 

Chapter 2: Developing Programs Using CMS 19 



Developing Programs Using eMS 

For example, your XEDIT command might look like this: 

xedit testprog cobol a (noprof 

I [ ~ ~ This invokes the no profile option. 
as explained below. 

This indicates that you are invoking 
XEDIT options. 

'------.This is the filemode 
of the file. 

'-----This is the filetype 
of the file. 

L----.This is the filename of 
the file you are editing 
or creating. 

L-----.. This is the name of the command that invokes the 
System Product Editor. 

Note: If you plan to go through this book doing both the COBOL and 
FORTRAN examples, make sure you give the two files you create different 
filenames (that is, you must change testprog to something else for the 
second language). 

In our example we'll use a file with the file identifier TESTPROG COBOL 
A. The filename (TESTPROG), and the filetype (COBOL), are parts of the 
identifier you assign when you create the file. The file mode (A) is 
automatically assigned by CMS. 

Issue the XEDIT command now. Enter: 

xedit testprog cobol a (noprof 

(You can use X as an abbreviation for XEDIT.) 

Note: We're using the noprof (no profile) option to make sure that your 
screen looks as shown in this manual, no matter how your installation has 
customized the programmer environment. Normally you'd enter the 
command: 

x e di t t e stprog cobol a 

or just 

x te stp rog cobol a 

20 VM/SP Application Development Guide 



Developing Programs Using eMS 

Your display screen should look like this: 

TESTPROG COBOL 
Creating new file: 

Al F 80 Trunc=72 Size=O LINE=O Col=l Alt=O 

====> 

* * * Top of File * * * 
I ..• + .... 1 .•.. + .... 2 .... + .... 3 .... + .... 4 •... + •... 5 •... + .... 6 .... + .... 7.> 
* * * End of File * * * 

XED I T 1 File 

Here are what the various parts of the screen mean: 

TESTPROG 
is the filename. 

COBOL is the fi letype. 

Al is the filemode. 

F is the type of fil e format, where: 

• F = fixed length records 

• V = variable length records 

80 is the record length. 

Trunc = 72 indicates when truncation begins. If the number is less than 
the record length, data entered at this column or beyond is 
ignored. 

S ize = 0 is the number of records in th e file. 

Line = 0 indicates the line number of the current line. 

Col = 1 indicates the position of the column pointer. The column 
pointer is the vertical bar (i) in column 1 of the sca le. 

Chapter 2: Developing Programs Using eMS 21 



Developing Programs Using eMS 

TESTPROG COBOL 
Input mode: 

Alt=O indicates the number of alterations that have been made to the 
file since the file has been saved. 

= = = = = is the prefix area of each display line. 

====> 
points to the command area. Next to the arrow is the cursor. 
The cursor indicates where the next character you key in will 
appear. 

XED I T 1 File 
is the session identifier message. It indicates the number of 
files you're editing. 

The editor operates in two basic modes: the edit mode and the input mode. 
We'll use the input mode of the editor to create, and add to, the file. For 
more information about the editor, see "Chapter 3: Using the System 
Product Editor" on page 39. 

To get into the input mode, enter: 

i 

to invoke the editor and receive the initial input mode display: 

Al F 80 Trunc=72 Size=9 Line=O Col=1 Alt=O 

* * * Top of File * * * 
1 ••• + .... 1 .. : .+ ..•. 2 .... + .... 3 ...• + ..•. 4 •... + •... 5 .... + .... 6 .... + .... 7.> 

====> * * * Input Zone * * * 
Input-mode 1 File 

The cursor is now positioned at the first character of the first line. You're 
ready to enter a source program into the file. (See Appendix A, "Complete 
COBOL Program Examples" on page 271 for a complete listing of this 
program.) Press PF4 or PF16 to tab over to column 8. If you don't have PF 
keys on your keyboard, space over to column 8. 

22 VMjSP Application Development Guide 



\. 

Developing Programs Using eMS 

Enter: 

identification division. 

The cursor is now at the first data position of the second line. 

Your display screen looks like this: 

TESTPROG COBOL 
Input mode: 

Al F 80 Trunc=72 Size=10 Line=l Col=l Alt=l 

k * * Top of File * * * 
IDENTIFICATION DIVISION. 

I ... + .••• 1 .... + .... 2 .... + •.•. 3 .... + ..•. 4 .... + .... 5 .... + .•.. 6 .... + .... 7.> 

====> * * * Input Zone * * * 
Input-mode 1 File 

Continue entering the following lines in this manner until the full program 
has been entered. To enter several lines at a t ime, use the RETURN key 
rather than the ENTER key. You don't have to press the ENTER key until 
you've filled up the input area. 

PROGRAM-ID. MYPROG. 
ENVIRONMENT DIVISION. 
DATA DIVISION. 
WORKING-STORAGE 
77 FNAME 

SECTION. 

77 LNAME 
PIC X(22) VALUE "ENTER YOUR FIRST NAME.". 
PIC X(23) VALUE "AND NOW YOUR LAST NAME.". 

01 ANSWR. 
05 ANSLT PIC 
05 AFRST PIC 
05 FILLER PIC 
05 ALAST PIC 

PROCEDURE DIVISION . 
DISPLAY FNAME UPON 
ACCEPT AFRST FROM 
DISPLAY LNAME UPON 
ACCEPT ALAST FROM 
DISPLAY ANSWR UPON 
STOP RUN. 

X(16) 
X(8) 
X 
X(8) 

VALUE 
VALUE 
VALUE 
VALUE 

CONSOLE. 
CONSOLE. 
CONSOLE. 
CONSOLE. 
CONSOLE. 

"WELCOME 
SPACES. 
SPACES. 
SPACES . 

TO CMS, " 

Chapter 2: Developing Programs Using CMS 23 



Developing Programs Using eMS 

\. 

Your display now looks like this: 

TESTPROG COBOL Al F 80 Trunc=72 Size=28 Line=19 Col=l Alt=19 

05 
05 
05 

AFRST PIC X(8) 
FILLER PIC X 
ALAST PIC X(8) 

PROCEDURE DIVISION. 

VALUE SPACES. 
VALUE SPACES . 
VALUE SPACES. 

DISPLAY FNAME UPON CONSOLE. 
ACCEPT AFRST FROM CONSOLE. 
DISPLAY LNAME UPON CONSOLE. 
ACCEPT ALAST FROM CONSOLE . 
DISPLAY ANSWR UPON CONSOLE. 
STOP RUN. 

I .. . + •..• 1 .... + •.•• 2 .... + .... 3 .... + ... • 4 .... + ••.• 5 .... + .... 6 .... + .... 7.> 

==== > * * * Input Zone * * * 
Input-mode 1 File 

Now press ENTER to put the cursor on the command line. 

If you are programming in COBOL, skip to "Saving Your File" on page 29. 

Creating a FORTRAN File 

You invoke the System Product Editor by entering the XEDIT command, 
followed by the file identifier of the file you want to create or edit . If there 
are options you want to apply to this session, put them next, after an open 
parenthesis. 

For example, your XEDIT command might look like this: 

24 VMjSP Application Development Guide 



Developing Programs Using eMS 

xedit testprog fortran a (noprof 

I I.. This invokes the no profile option, 
as explained below. 

This indicates that you are invoking 
XEDIT options. 

L....---.This is the filemode 
of the file. 

L....--.This is the filetype 
of the file. 

1-__ ........ This is the filename of 
the file you are editing 
or creating. 

L..----~.This is the name of the command that invokes the 
System Product Editor. 

Note: If you plan to go through this book doing both the COBOL and 
FORTRAN examples, make sure you give the two files you create different 
filenames (that is, you must change testprog to something else for the 
second language). 

In our example we'll use a file with the file identifier TESTPROG 
FORTRAN A. The filename (TESTPROG), and the filetype (FORTRAN), 
are parts of the identifier assigned by you when you create the file. The 
filemode designates on which disk the file is to reside. CMS assigns A if 
the filemode is not specified for a new file. 

Issue the XEDIT command now. Enter: 

xedit testprog fortran a (noprof 

(You can use X as an abbreviation for XEDIT.) 

We're using the noprof (no profile) option to make sure that your screen 
looks as shown in this manual, no matter how your installation has 
customized the programmer environment. Normally you'd enter the 
command: 

xedit testprog fortran a 

or just 

x testprog fortran 

Chapter 2: Developing Programs Using CMS 25 



Developing Programs Using eMS 

Your display screen should look like this: 

TESTPROG FORTRAN Al F 80 Trunc=72 Size=O Line=O Col =l Alt=O 
Creating new file: 

====> 

* * * Top of File * * * 
I ... + .•.. 1 .... + .... 2 .... + .... 3 .... + .... 4 .... + .... 5 .... + .... 6 .... + .... 7.> 
* * * End of File * * * 

XED I T 1 File 

Here are what the various parts of the scr een mean: 

TESTPROG 

FORTRAN 

Al 

F 

80 

Tr unc= 72 

Size =0 

Line = O 

Col=I 

is the filename. 

is the filetype. 

is the filemode. 

is the type of file format, where: 

• F = fixed length records 

• V = variable length records 

is the record length. 

indicates when truncation begins. If the number is less 
than the record length, data entered at this column or 
beyond is ignored. 

is the number of records in the file. 

indicates the line number of the current line. 

indicates the position of the column pointer . The 
column pointer is the ver tical bar (I) in column 1 of the 
scale. 

26 VM/SP Applicat ion Development Guide 



Developing Programs Using eMS 

Alt = 0 indicates the number of alterations that have been 
made to the file since the file has been saved. 

= = = = = is the prefix area of each display line. 

= = = = > points to the command area. Next to the arrow is the 
cursor. The cursor indicates where the next character 
you key in will appear. 

XED I T 1 File is the session identifier message. It indicates the 
number of files you're editing. 

The editor operates in two basic modes: the edit mode and the input mode. 
We'll use the input mode of the editor to create, and add to, the file. For 
more information about the editor, see "Chapter 3: Using the System 
Product Editor" on page 39. 

To get into the input mode, enter: 

i 

to invoke the editor and receive the initial input mode display: 

TESTPROG FORTRAN A1 F 80 Trunc=72 Size=9 Line=O Col=1 Alt=O 
Input mode: 

* * * Top of File * * * 
I ... + .... 1 .... + .... 2 .... + .... 3 .... + .... 4 .... + .... 5 .... + .. . . 6 . •.. + .... 7.> 

====> * * * Input Zone * * * 
Input-mode 1 File 

The cursor is now positioned at the first character of the first line. You're 
ready to enter a source program into the file. (See Appendix B, "Complete 
FORTRAN Program Examples" on page 277 for a complete listing of this 
program.) Press PF4 or PF16 to tab over to column 7. If you don't have PF 
keys on your keyboard, space over to column 7. 

Chapter 2: Developing Programs Using CMS 27 



Developing Programs Using eMS 

Enter: 

program myprog 

The cursor is now at the first data position of the second line. 

Your display screen looks like this: 

TESTPROG FORTRAN A1 F 80 Trunc=72 Size=10 Line=l Co1=1 Alt=l 

* * * Top of File * * * 
PROGRAM MYPROG 

I ... + .... 1 .... + .... 2 .... + .... 3 .... + .... 4 .... + .•.• 5 .... + ... ,.6 .... + .•.. 7. > 

====> * * * Input Zone * * * 
Input-mode 1 File 

Con tinue entering the following lines in this manner until the complete 
program has been entered. To enter several lines at a time, use the 
RETURN key ( < -- ) rather than the ENTER key. You don't have to press 
the ENTER key until you've filled up the input area. 

CHARACTER*8 F,S 
WRITE (6,5) 
READ (5,2) F 
WRITE (6,10) 
READ (5,2) S 
WRITE (6,15) F,S 

2 FORMAT (A8) 
5 FORMAT (' ENTER YOUR FIRST NAME. ') 
10 FORMAT ( ' AND NOW YOUR LAST NAME . ') 
15 FORMAT ( ' WELCOME TO CMS, ',A8,lX,A8) 

STOP 
END 

28 VMjSP Application Developme:;:} t Guide 



Developing Programs Using eMS 

Your display now looks like this: 

TESTPROG FORTRAN A1 F BO Trunc=72 Size=22 Line=13 Col=l Alt=13 

READ (5,2) F 
WRITE (6,10) 
READ (5,2) S 
WRITE (6,15) F,S 

2 FORMAT (AB) 
5 FORMAT (' ENTER YOUR FIRST NAME. ') 
10 FORMAT (' AND NOW YOUR LAST NAME. ') 
15 FORMAT (' WELCOME TO CMS, ',AB,lX,AB) 

STOP 
END 

1 ••• + .... 1 .... + ...• 2 .... + .... 3 .... + .... 4 .... + •••• 5 .... + . ..• 6 .... + .... 7.> u 

====> * * * Input Zone * * * 

Saving Your File 

Input-mode 1 File 

Now press ENTER to put the cursor on the command line. 

At this point, let' s save the file. This can be done in one of two ways: 

• SA VE and continue the session 

• FILE and end the session 

To do either you must leave the input mode and issue a command from the 
command line. To leave the input mode press the ENTER key twice, if you 
haven't already done so. 

Now that the cursor is at the command line, enter: 

save 

The file is saved and we're still in our editing session. The screen has not 
been cleared and we can continue working. 

It's a good idea to issue the SAVE command periodically while working on 
a file. This ensures that your work is not lost in the event of a system 
problem. 

The FILE command saves the file , and also ends the session. Because 
you've just issued the SAVE command, you're no longer in the input mode 

Chapter 2: Developing Programs Using CMS 29 



Developing Programs Using eMS 

and can issue the FILE command now. To see this, enter the FILE 
command (the cursor should still be in the command line): 

file 

The editor session is over, and the file has been saved. The editor screen no 
longer appears and the standard CMS ready message is displayed. 

Step 2: Compile The Program 

We're now going to compile the program you've written. To compile a 
program, you need: 

• Sufficient storage. 

• The appropriate CMS command for the compiler you want to use 
(COBOL or FORTVS2). 

• The filename of the source file. You created the source program using 
the editor. 

• Any compiler options that you want. These options are equivalent to 
the options you'd specify on the PARM parameter of an EXEC job 
control statement. 

If you're compiling in COBOL, you probably have enough storage for the 
compiler. If you're using the VS FORTRAN Version 2 compiler, you'll need 
at least 3M to compile your program. 

To find out how much storage you have, enter: 

query storage 

The system responds with a message like: 

STORAGE = 512K (or 1024K or 2048K or 3060K) 

Get more storage, by entering: 

define storage 2048K 

or 

define storage 2M 

Then type IPL CMS , and press enter t wice. 

After invoking the compiler and after the compiler finishes executing, it 
displays compilation error messages on your terminal, and writes them into 
the LISTING file. 

30 VM/SP Application Development Guide 



Developing Programs Using eMS 

The diagnostic messages displayed during compilation help you identify 
problems in the source program. You may not have to examine the 
LISTING file at all. 

If necessary, you can review the LISTING file by using the editor. The 
editor lets you edit multiple files and display multiple screen images. You 
can display both the source program and the listing at the same time (the 
source program on the top half of the screen, the listing on the bottom 
half.). If your diagnostic messages indicate errors in the source program, 
you can examine the messages in the listing and correct the corresponding 
source statements during the same editor session. 

To print a copy of the listing on your virtual printer, you use the PRINT 
command. For some installations, you may have to also transfer from your 
virtual printer to the specific printer that you want your output to be 
printed on. 

Along with diagnostic messages and the LISTING file, the compiler 
produces a relocatable object module with a file type of TEXT. You can 
load the TEXT file into storage when you want to execute your program. 

If you're programming in FORTRAN, skip to "Compiling Your FORTRAN 
Program" on page 34. 

Compiling Your COBOL Program 

The CMS command that invokes the OSjVS COBOL Compiler is simply 
COBOL. 

Enter the following line on your terminal: 

cobol testprog 

The OSjVS COBOL compiler is now compiling your program. When the 
program has compiled correctly, it displays a message: 

Chapter 2: Developing Programs Using CMS 31 



Developing Programs Using eMS 

\. 

Ready; 
cobol testprog 

REL2.4 OSjVS COBOL IN PROCESS 
Ready; T=0.13jO.26 15:30:04 

RUNNING 

If you had any errors in your program: 

• Edit the source program. 

• Correct th e errors and enter a FILE command. 

• Compile the program again. 

When the compiler is finished, enter: 

filelist testprog 

This lists all the files on your A-disk with th e filename TESTPROG. 

Th e TEXT fil e created by the COBOL compiler contains the 
machine-language object code. This file is only executable in the CMS 
environment. (See "Step 3: Run The Program" on page 37.) The LISTING 
file contains the compilation listing for the source file you're compiling. 

To print a copy of the LISTING file, use the PRINT command: (For some 
installations, you may have to also transfer from your virtual printer to the 
specific printer that you want your output to be printed on.) 

print testprog listing 

Figure 5 on page 33 illustrates what h appens in your system when you 
compile your progr am. 

32 VMjSP Application Development Guide 



Programmer 

COBOL 
Complier 

COBOL 
SOURCE 

PROGRAM 

Developing Programs Using eMS 

COBOL TESTPROG 

r-------------
I 
I 
I 
I 

: COBOL 
: Compiler 
I 
I 
I 
I 

COBOL 
SOURCE 

PROGRAM 

ASSEMBLER 
FORTRAN 
COBOL 
BASIC 
PL 1 

I TESTPROG I 

Figure 5. Compiling a COBOL Program 

If you're programming in COBOL, skip to "Step 3: Run The Program" on 
page 37. 

Chapter 2: Developing Programs Using CMS 33 



Developing Programs Using eMS 

Compiling Your FORTRAN Program 

fortvs2 testprog 

Several FORTRAN compilers are available to you. We'll use the VS 
FORTRAN Version 2 compiler. The file must contain 80-byte, fixed-length 
records. The filetype must be FORTRAN. 

Enter the following line: 

fortvs2 testprog 

The compiler is now compiling your program. 

Figure 6 on page 36 shows what happens in the VM system when you 
compile a FORTRAN program. 

When the program has compiled correctly, you will see the following 
message on your screen: 

VS FORTRAN VERSION 2 COMPILER ENTERED. 15:33:48 

****** END OF COMPILATION 1 ****** 
VS FORTRAN VERSION 2 COMPILER EXITED. 15:33:48 

Ready; T=O.06jO.02 15:33:49 

RUNNING 

If you had any errors in your program: 

• Edit the source program. 

• Correct the errors and enter a FILE command. 

• Compile the program again. 

34 VM/SP Application Development Guide 



Developing Programs Using eMS 

When the compiler is finished, enter: 

filelist testprog 

This lists all the files on your A-disk with the filename TESTPROG. 

The TEXT file created by the FORTRAN compiler contains the 
machine-language object code. This file is executable in the OS and CMS 
environment. The entry point name for a main program in a TEXT file is 
the name you specified for the NAME option of the compiler command or 
its default name, MAIN. Subprograms have the entry point name that you 
specified in the FORTRAN SUBROUTINE statement. 

The copy of the TEXT file pseudo-assembler listing included in your 
LISTING file contains an identification for the programs in it. Columns 
73-76 of each line of code contain four characters that identify whether that 
code was generated for a main program or subprogram. 

For main programs, the first four characters of the name specified in the 
PROGRAM statement, or the letters MAIN appear in columns 73-76. For 
subprograms, these columns contain the first four characters of the name 
specified in the SUBROUTINE statement. You can load and execute the 
TEXT file by issuing the LOAD command (see "Step 3: Run The Program" 
on page 37). 

The LISTING file contains the compilation listing for the source file you're 
compiling. 

To print a copy of the LISTING file, use the PRINT command: (For some 
installations, you may have to also transfer from your virtual printer to the 
specific printer that you want your output to be printed on.) 

print testprog listing 

Figure 6 on page 36 illustrates what happens in your system when you 
compile your program. 

Chapter 2: Developing Programs Using CMS 35 



Developing Programs Using eMS 

FORTVS2 TESTPROG 

Programmer 

,-------------~ I 
I 
I 
I 

FORTRAN : 
Compiler : 

FORTRAN 
SOURCE 

PROGRAM 

CP 

I 
I 

1-------------
I 

FORTRAN 
Compiler 

FORTRAN 
SOURCE 

PROGRAM 

CP 

Figure 6. Compiling a FORTRAN Program 

36 VMjSP Application Development Guide 

ASSEMBLER 
FORTRAN 
COBOL 
BASIC 
PL/1 
APL 
ETC. 

TESTPROG I 

Programmer 



Developing Programs Using eMS 

Step 3: Run The Program 

Before you can run your program, you must tell VM the name of certain 
libraries. You can do this with the GLOBAL command. The exact 
GLOBAL commands you need depends on your installation. Ask your 
supervisor or system administrator for the exact GLOBAL command for 
your language and your installation. 

Note: The order in which you specify library names in a GLOBAL 
command is very important. Be sure to use the exact order of names given 
to you. 

A GLOBAL command to do this for COBOL programs might be: 

global txtlib coblibvs 

GLOBAL commands to do this for FORTRAN programs might be: 

global txtlib vsf2fort ems lib 
global loadlib vsf2load 

After you've compiled your program, you can execute the TEXT files that 
were produced by the compiler. The TEXT files produced by the COBOL 
and FORTRAN compilers are relocatable and can be executed simply by 
loading them into virtual storage. 

If you compiled your TESTPROG program with one of the COBOL or 
FORTRAN compilers mentioned in Step 2, you'll have a file on one of your 
disks called TESTPROG TEXT. 

Since TESTPROG is a simple program that doesn't call subprograms or 
need to be linked with other modules, you can load and start the program 
with one command. You use the LOAD command with the START option: 

load testprog (start 

You also can do this in two steps. First, you issue the command: 

load testprog 

Then, to run the program, you issue the command: 

start 

Use one of these two methods to start the program. It displays the prompt: 

ENTER YOUR FIRST NAME. 

For this example, enter: 

lee 

The program responds by displaying the prompt: 

AND NOW YOUR LAST NAME. 

Chapter 2: Developing Programs Using CMS 37 



Developing Programs Using eMS 

Enter: 

green 

The program responds by displaying: 

WELCOME TO CMS, LEE GREEN 

The program has completed processing. If you like, you can run it again 
(with your own name, this time). 

If You Have Problems ... 

If you're using this manual as a guide to creating programs, you might run 
into various problems you won't encounter with our sample programs. 
Here are solutions to two problem situations: 

How to Get Out of an Infinite Loop 

If this happens, you can use the HX command to halt execution of the 
program that is looping. You may not be able to "break in" with the HX 
command if your screen fills up with messages (as part of the loop). In this 
case enter: 

#ep ext 

This should cause the words VM READ to appear in the screen status area. 
You can then enter HX. If this still doesn't work, contact your 
programming supervisor for additional help. 

How to Get Back to CMS from CP 

Summary 

If you find yourself in CP, and you need to get back to CMS, just type: 

ipl ems 

and press enter twice. You'll see the Ready; which lets you know that 
you're back in CMS. 

In this chapter, you learned how to create a file, use the System Product 
Editor to enter a COBOL or FORTRAN source program, save the program, 
compile the program, and run it. 

38 VM/SP Application Development Guide 



, 

In this chapter we'll discuss, in some detail, how to use the System Product 
Editor. We'll discuss what a CMS File is, how to use the EDIT and INPUT 
mode of the editor, how to manipulate data and the display of data, and how 
to use the CMS Update Facility. 

What Is a eMS File? 

Your CMS file is a collection of data. Each file has a unique identifier. 
The file identifier consists of a filename, a filetype, and a filemode. For 
example, in the case of a file called TESTFILE COBOL A, the filename is 
TESTFILE, the filetype is COBOL, and the filemode is A. 

When you specify certain filetypes (such as COBOL, FORTRAN, and 
FREEFORT), the editor sets up default characteristics for the file. You can 
override these defaults during the editor session, but you'll probably not 
want to do so. The parameters governing these defaults are: 

Case 

Tabs 

controls whether or not characters entered are translated into 
upper case. All program language filetypes are translated to 
uppercase. 

controls where characters are placed in a record if preceded by a 
tab character. 

Trunc controls the columns within which the editor accepts changes to 
records in the file. Changes made outside the zones are ignored. 

Verify controls the columns that the editor displays on the screen. This is 
sometimes shorter than the length of a record. For example, when 
space has been reserved for sequence numbers in column 73-80, 
only columns 1-72 are displayed. 

Chapter 3: Using the System Product Editor 39 



Using the System Product Editor 

If you're editing a COBOL file, the default characteristics are: 

Parameter COBOL Default 

Tabs 1 8 12 20 28 36 44 68 72 80 

Trunc 72 

Serial On 10 10 

RECFM F 

Width 80 

Zone 1 72 

If you're editing a FORTRAN file, the default characteristics are: 

Parameter FORTRAN Default 

Tabs 1 7 10 15 20 25 30 80 

Trunc 72 

Serial On 10 10 

RECFM F 

Width 80 

Zone 1 72 

If you're editing a FREE FORT file, the default characteristics are: 

Parameter FREEFORT Default 

Tabs 9 15 18 23 28 33 38 81 

Trunc 81 

Serial Off 10 10 

RECFM V 

Width 81 

Zone 9 81 

For the default characteristics of other filetypes, see VMjSP System 
Product Editor Command and Macro Reference. 

Using the Edit and Input Modes 

The editor h as two basic modes of operation: 

• Edit Mode 

• Input Mode. 

When you issue the XEDIT command, you enter the edit mode. In this 
mode, the editor initializes the edit session by taking control of the display 
screen and displaying the contents of the file you are about to edit. If you 
are creating a new file, the editor simply displays an empty file, to which 

40 VMjSP Application Development Guide 



TEST FILE 

Using the System Product Editor 

you can add new records. If the file already exists, you can add new 
records and change or delete existing records. You do this by using editor 
subcommands, which we will refer to simply as subcommands. 

In "Step 1: Create a File" on page 19, you issued the INPUT subcommand, 
and then entered data to create a program. When you issue the INPUT 
subcommand (with no operands), you enter the input mode. (REPLACE 
and POWERINP also put the editor in the input mode; for information on 
these commands, see VM/SP System Product Editor Command and Macro 
Reference.) 

Input is just one of many editor subcommands. You can use some of the 
editor subcommands for changing data in the file you are editing. Others 
you can use for changing the way the data is displayed on the screen. In 
this chapter, we'll examine some of the other subcommands and see how 
you can use them to ease the task of coding programs and data files. 

Before we begin to use these commands, let's create a file to use just for 
demonstration. We'll call this TEST FILE AI. Enter the following line at 
the terminal: 

xed it test file a (noprof 

Since this file hasn't existed before, it's empty. Your screen should look 
like this: 

Al F 80 Trunc=80 Size=O Line=O Col=1 Alt=O 
Creating new file: 

* * * Top of File * * * 
1 ••• + •••• 1 .•.. + •..• 2 .... + .... 3 •••. + ..•• 4 .... + .... 5 •..• + .... 6 .••. + .... 7.> 
* * * End of File * * * 

====> 
XED I T I File 

The cursor is on the command line. Enter: 

input 

Chapter 3: Using the System Product Editor 41 



Using the System Product Editor 

Your screen should look like this: 

TEST FILE Al F 80 Trunc=80 Size=9 Line=O Col=1 Alt=O 
I nput mode: 

* * * Top of File * * * 
I ... + .... 1 .... + .... 2 .... + • •. . 3 .•.. + .... 4 ... • + .... 5 .... + .... 6 •.. • + . • •• 7 .... +.> 

====> * * * Input Zone * * * 
Input-mode 1 File 

Now enter the following lines of data (see note): 

AAAAABBBBBCCCCC 
BBBBBCCCCCDDDDD 
CCCCCDDDDDEEEEE 
DDDDDEEEEEFFFFF 
EEEEEFFFFFGGGGG 
FFFFFGGGGGHHHHH 
GGGGGHHHHHII I II 
HHHHHIIIIIJJJJJ 
IIIIIJJJJJKKKKK 
JJJJJKKKKKLLLLL 
KKKKKLLLLLMMMMM 
LLLLLMMMMMNNNNN 
MMMMMNNNNNOOOOO 
NNNNNOOOOOPPPPP 
OOOOOPPPPPQQQQQ 
PPPPPQQQQQRRRRR 
QQQQQRRRRRSSSSS 
RRRRRSSSSSTTTTT 
SSSSSTTTTTUUUUU 
TTTTTUUUUUVVVVV 
UUUUUVVVVVWWWWW 
VVVVVWWWWWXXXXX 
WWWWWXXXXXYYYYY 
XXXXXYYYYYZZZZZ 
YYYYYZZZZZAAAAA 
ZZZZZAAAAABBBBB 

Note: When you r each the bottom of the screen, press PF8 or the enter 
key. Either will move the display FORWARD. Then you can enter the 
remaining lines. 

42 VMjSP Applicat ion Development Guide 



TEST 

====> 

FILE 

Using the System Product Editor 

When you've entered the last line, press the ENTER key once more to leave 
the INPUT mode and return to the EDIT mode. The cursor automatically 
returns to the command line. Now enter the subcommand: 

top 

which changes the display so that the current line is at the top of the file, 
just before the first line of text. 

In this case, the current line is the file line in the middle of the screen 
(above the scale). Most commands you type in the command line perform 
their functions starting with the current line. Naturally, the line that is 
current will change as you move up and down in the file. 

Your screen should look like this: 

Al F 80 Trunc=80 Size=26 Line=O Col=l Alt=26 

* * * Top of File * * * 
I •.• + .... 1 .... + .... 2 .... + .... 3 .... + .... 4 .... + .... 5 .... + .... 6 .... + .... 7.> 
AAAAABBBBBCCCCC 
BBBBBCCCCCDDDDD 
CCCCCDDDDDEEEEE 
DDDDDEEEEEFFFFF 
EEEEEFFFFFGGGGG 
FFFFFGGGGGHHHHH 
GGGGGHHHHHIIIII 
HHHHHIIII IJJJJJ 
I II II J J J J JKKKKK 

XED I T 1 File 

Some editor subcommands are invoked by typing them on the command 
line, which is the next to last line on your screen. It's easily identified by 
the character string ==== >. This is displayed in high intensity on your 
terminal (if your terminal supports high and low intensity). When you 
begin an editor session, the cursor is two spaces beyond the command line 
symbol. This is the beginning of the command line itself. 

Chapter 3: Using the System Product Editor 43 



Using the System Product Editor 

In addition to the command line indicator, you will notice that each of the 
records you entered into the file has a string of five equal signs (=====) 
beside it. This is the prefix subcommand area. If you're using a full-screen 
terminal, you'll find this area more convenient, especially to manipulate 
data in a file. 

Manipulating the Display 

You can use some of the edit subcommands for manipulating the display. 
For example, in the previous section, you entered the subcommand top to 
change the display so that the current line was at the top of the file, just 
before the first line of text. Other subcommands let you move forward and 
backward in the file. That is, they let you move toward the last line 
(forward) or the first line (backward). Others allow you to move forward 
and back a specific number of lines. 

Here are some of the command line subcommands you can use to 
manipulate the display: 

TOP 

Bottom 

FOrward 

BAckward 

Upn 

Downn 

Next n 

RIght n 

LEft n 

Locate 

Find 

:n 

Move line pointer to null Top of File line. 

Go to the last line of the file. 

Move the display one screen toward the bottom of the file. 

Move the display one screen toward the top of the file. 

Move the line pointer n lines toward the top of the file. 

Move the line pointer n lines toward the end of the file 
(same as NEXT) 

Move the line pointer n lines toward the end of the file 
(same as DOWN) 

Move the display to the right n characters. 

Move the display to the left n characters. 

Find a specified string of characters anywhere on a line. 

Find a specified string of characters at the beginning of a 
line. 

Make line n the current line. 

Each of these subcommands affects the image of your file presented by the 
editor; the data in the file itself is not changed by them in any way. 

44 VM/SP Application Development Guide 



Using the System Product Editor 

Examples 

TEST 

====> 

Let's see how the display changes when we use these subcommands. We've 
already used the top subcommand, and we saw that the display was 
changed so that the current line preceded the first line of the file. Now 
enter the subcommand 

bottom 

which changes the display so that the current line is the last line of the file. 

Your screen should now look like this: 

FILE Al F 80 Trunc=80 Size=26 Line=26 Col=l Alt=26 

QQQQQRRRRRSSSSS 
RRRRRSSSSSTTTTT 
SSSSSTTTTTUUUUU 
TTTTTUUUUUVVVVV 
UUUUUVVVVVWWWWW 
VVVVVWWWWWXXXXX 
WWWWWXXXXXYYYYY 
XXXXXYYYYYZZZZZ 
YYYYYZZZZZAAAAA 
ZZZZZAAAAABBBBB 
I ••• + ..•. 1 .... + .... 2 .... + .... 3 .... + .... 4 .... + .... 5 .... + .... 6 .... + .... 7.> 
* * * END OF FILE * * * 

XED I T 1 File 

Chapter 3: Using the System Product Editor 45 



Using the System Product Editor 

TEST 

====> 

The subcommands FORWARD and BACKWARD are used to scroll 
through a file - that is, move toward the bottom or top of the file one 
screen at a time. PF7 and PF8 are preset by the editor to execute the 
BACKW ARD and FORWARD commands. You can use these keys in 
place of the commands to scroll through your file. First, enter 

top 

to return to the top of the file. Now press PF8. 

Your screen should now look like this: 

FILE A1 F 80 Trunc=80 Size=26 Line=18 Col=1 Alt=26 

II II I J J J J JKKKKK 
JJJJJKKKKKLLLLL 
KKKKKLLLLLMMMMM 
LLLLLMMMMMNNNNN 
MMMMMNNNNNOOOOO 
NNNNNOOOOOPPPPP 
OOOOOPPPPPQQQQQ 
PPPPPQQQQQRRRRR 
QQQQQRRRRRSSSSS 
RRRRRSSSSSTTTTT 
I ..• + .... 1 .... + .... 2 .... + .... 3 .... + .... 4 .... + .... 5 .... + .... 6 .... + .... 7.> 
SSSSSTTTTTUUUUU 
TTTTTUUUUUVVVVV 
UUUUUVVVVVWWWWW 
VVVVVWWWWWXXXXX 
WWWWWXXXXXYYYYY 
XXXXXYYYYYZZZZZ 
YYYYYZZZZZAAAAA 
ZZZZZAAAAABBBBB 
* * * End of FIle * * * 

XED I T 1 File 

46 VM/SP Application Development Guide 



TEST 

====> 

Using the System Product Editor 

N ow press PF7. 

Your screen should now look like this: 

FILE A1 F 80 Trunc=80 Size=26 Line=O Co1=1 A1t=26 

* * * Top of File * * * 
I ... + ..•. 1 •..• + ..•. 2 .... + .... 3 .... + ...• 4 .•.. + .... 5 ...• + .... 6 .... + .... 7.> 
AAAAABBBBBCCCCC 
BBBBBCCCCCDDDDD 
CCCCCDDDDDEEEEE 
DDDDDEEEEEFFFFF 
EEEEEFFFFFGGGGG 
FFFFFGGGGGHHHHH 
GGGGGHHHHHIIIII 
HHHHHIIIIIJJJJJ 
IIIIIJJJJJKKKKK 

XED I T 1 File 

Chapter 3: Using the System Product Editor 47 



Using the System Product Editor 

r TEST 

====> 

If you want to move the display forward or backward less than a screen or 
more than a screen, you can use the UP and DOWN subcommands. (You 
can use the NEXT subcommand instead of DOWN.) For example, enter 

down 10 

to move the display 10 lines towards the bottom of the file . 

Your screen should now look like this: 

FILE Al F 80 Trunc=80 Size=26 Line=IO Col=l Alt=26 

AAAAABBBBBCCCCC 
BBBBBCCCCCDDDDD 
CCCCCDDDDDEEEEE 
DDDDDEEEEEFFFFF 
EEEEEFFFFFGGGGG 
FFFFFGGGGGHHHHH 
GGGGGHHHHHIIIII 
HHHHHIIIIIJJJJJ 
II I II J J J J JKKKKK 
JJJJJKKKKKLLLLL 

-

I ••. + .... 1 .... + .... 2 .... + .... 3 .... + .... 4 .... + .... 5 ...• + .... 6 .... + •.•• 7.> 
KKKKKLLLLLMMMMM 
LLLLLMMMMMNNNNN 
MMMMMNNNNNOOOOO 
NNNNNOOOOOPPPPP 
OOOOOPPPPPQQQQQ 
PPPPPQQQQQRRRRR 
QQQQQRRRRRSSSSS 
RRRRRSSSSSTTTTT 
SSSSSTTTTTUUUUU 

XED I T 1 File 

48 VM/SP Application Development Guide 



TEST 

====> 

Using the System Product Editor 

Another way to move the display down toward the bottom of the file is to 
simply use the number of lines, without the keyword down. 

To move the display 5 lines toward the top of the file, enter 

up 5 

Your screen should now look like this: 

FILE Al F 80 Trunc=80 Size=26 Line=5 Col=l Alt=26 

* * * Top of File * * ~ 
AAAAABBBBBCCCCC 
BBBBBCCCCCDDDDD 
CCCCCDDDDDEEEEE 
DDDDDEEEEEFFFFF 
EEEEEFFFFFGGGGG 
I ... + ...• 1 .... + ...• 2 .... + .... 3 .... + .... 4 .... + .... 5 . ... + .... 6 .... + .•.. 7.> 
FFFFFGGGGGHHHHH 
GGGGGHHHHHIIIII 
HHHHHIIIIIJJJJJ 
II II I J J J J JKKKKK 
JJJJJKKKKKLLLLL 
KKKKKLLLLLMMMMM 
LLLLLMMMMMNNNNN 
MMMMMNNNNNOOOOO 
NNNNNOOOOOPPPPP 

XED I T 1 File 

Chapter 3: Using the System Product Editor 49 



Using the System Product Editor 

TEST 

====> 

Moving the display to the right or left n columns is called horizontal 
scrolling. For example, enter the subcommand: 

right 3 

to shift the display three characters to the right. 

Your screen should now look like this: 

FILE Al F 80 Trunc=80 Size=26 Line=5 Co1=1 Alt=26 

* * * Top of File * * * 
AABBBBBCCCCC 
BBCCCCCDDDDD 
CCDDDDDEEEEE 
DDEEEEEFFFFF 
EEFFFFFGGGGG 
.+ .... 1 .... + .... 2 .... + .... 3 .... + .... 4 .... + .... 5 .... + .... 6 .... + •... 7 .. > 
FFGGGGGHHHHH 
GGHHHHHIIIII 
HHIIIIIJJJJJ 
IIJJJJJKKKKK 
JJKKKKKLLLLL 
KKLLLLLMMMMM 
LLMMMMMNNNNN 
MMNNNNNOOOOO 
NNOOOOOPPPPP 

XED I T 1 File 

50 VMjSP Application Development Guide 



TEST 

====> 

Using the System Product Editor 

To move the display 3 characters to the left, enter: 

left 3 

Your screen should now look like this: 

FILE A1 F 80 Trunc=80 Size=26 Line=5 Col=1 Alt=26 

* * * Top of File 
AAAAABBBBBCCCCC 
BBBBBCCCCCDDDDD 
CCCCCDDDDDEEEEE 
DDDDDEEEEEFFFFF 
EEEEEFFFFFGGGGG 

* * * 

I ••. + .... 1 .... + .... 2 .... + .... 3 .... + .... 4 .... + ...• 5 .... + .... 6 .... + .... 7.> 
FFFFFGGGGGHHHHH 
GGGGGHHHHHIIIII 
HHHHHIIIIIJJJJJ 
II II IJ J J JJKKKKK 
JJJJJKKKKKLLLLL 
KKKKKLLLLLMMMMM 
LLLLLMMMMMNNNNN 
MMMMMNNNNNOOOOO 
NNNNNOOOOOPPPPP 

XED I T 1 File 

Chapter 3: Using the System Product Editor 51 



Using the System Product Editor 

r TEST 

====> 

To position the file display so that a particular line becomes the current 
line, you can use the :n subcommand. The n represents the number of the 
line relative to the beginning of the file. To make the sixth line the current 
line, enter 

: 6 

Your screen should now look like this: 

FILE Al F 80 Trunc=80 Size=26 Line=6 Col=1 Alt=26 

* * * Top of File 
AAAAABBBBBCCCCC 
BBBBBCCCCCDDDDD 
CCCCCDDDDDEEEEE 
DDDDDEEEEEFFFFF 
EEEEEFFFFFGGGGG 
FFFFFGGGGGHHHHH 

* * * 

I ... + .... 1 .... + .... 2 . . .. + .... 3 .... + •... 4 .... + •... 5 •... + .•.. 6 •••• + ..•• 7. > 
GGGGGHHHHHIIIII 
HHHHHIIIIIJJJJJ 
II II IJJJJJKKKKK 
JJJJJKKKKKLLLLL 
KKKKKLLLLLMMMMM 
LLLLLMMMMMNNNNN 
MMMMMNNNNNOOOOO 
NNNNNOOOOOPPPPP 
OOOOOPPPPPQQQQQ 

XED I T 1 File 

52 VMjSP Application Development Guide 



TEST 

====> 

Using the System Product Editor 

Use the LOCATE subcommand to locate a given character string. On the 
command line, enter: 

locate/ jjjjj / 

The editor shows you the first line in which the string jjjjj appears. 

Your screen should now look like this: 

FILE Al F 80 Trunc=80 Size=26 Line=8 Co1=1 A1t=26 

* * * Top of File 
AAAAABBBBBCCCCC 
BBBBBCCCCCDDDDD 
CCCCCDDDDDEEEEE 
DDDDDEEEEEFFFFF 
EEEEEFFFFFGGGGG 
FFFFFGGGGGHHHHH 
GGGGGHHHHHII I II 
HHHHHIIII IJJJJJ 

* * * 

1 •• • + .... 1 .. • • + ..•. 2 ..•. + ... • 3 .... + ..•• 4 ..•. + ..•. 5 ...• + ..•. 6 • ... + .... 7.> 
IIIIIJJJJJKKKKK 
JJJJJKKKKKLLLLL 
KKKKKLLLLLMMMMM 
LLLLLMMMMMNNNNN 
MMMMMNNNNNOOOOO 
NNNNNOOOOOPPPPP 
OOOOOPPPPPQQQQQ 
PPPPPQQQQQRRRRR 
QQQQQRRRRRSSSSS 

XED I T 1 File 

Chapter 3: Using the System Product Editor 53 



Using the System Product Editor 

r TEST 

====> 

Let's say that this isn't the particular line you wanted. To repeat the 
command, enter: 

This directs the editor to repeat the previous command, from this point in 
the file. 

Your screen should now look like this: 

FILE Ai F 80 Trunc=80 Size=26 Line=9 Col=l Alt=26 

* * * Top of File 
AAAAABBBBBCCCCC 
BBBBBCCCCCDDDDD 
CCCCCDDDDDEEEEE 
DDDDDEEEEEFFFFF 
EEEEEFFFFFGGGGG 
FFFFFGGGGGHHHHH 
GGGGGHHHHHIIIII 
HHHHHIIIIIJJJJJ 
IIIIIJJJJJKKKKK 

* * * 

I ... + .... 1 .... + ...• 2 .... + . • .. 3 .... + ..•. 4 .... + .... 5 .... + .... 6 .... + .•.. 7. > 
JJJJJKKKKKLLLLL 
KKKKKLLLLLMMMMM 
LLLLLMMMMMNNNNN 
MMMMMNNNNNOOOOO 
NNNNNOOOOOPPPPP 
OOOOOPPPPPQQQQQ 
PPPPPQQQQQRRRRR 
QQQQQRRRRRSSSSS 
RRRRRSSSSSTTTTT 

XED I T 1 File 

54 VMjSP Application Development Guide 



TEST 

====> 

Using the System Product Editor 

You can use the FIND and FINDUP subcommands to locate character 
strings that occur at the beginning of a line. For example, to find the first 
occurrence in the file of a line beginning with the string MMMMM, enter: 

f mmmrnrn 

Your screen should now look like this: 

FILE Al F 80 Trunc=80 Size=26 Line=13 Col=1 Alt=26 

DDDDDEEEEEFFFFF 
EEEEEFFFFFGGGGG 
FFFFFGGGGGHHHHH 
GGGGGHHHHHII II I 
HHHHH II II I J J J J J 
II II IJJJJJKKKKK 
JJJJJKKKKKLLLLL 
KKKKKLLLLLMMMMM 
LLLLLMMMMMNNNNN 
MMMMMNNNNNOOOOO 
, ... + .... 1 .... + .... 2 .... + .... 3 ... • + .... 4 .... + ... • 5 .... + .... 6 ...• + .... 7.> 
NNNNNOOOOOPPPPP 
OOOOOPPPPPQQQQQ 
PPPPPQQQQQRRRRR 
QQQQQRRRRRSSSSS 
RRRRRSSSSSTTTTT 
SSSSSTTTTTUUUUU 
TTTTTUUUUUVVVVV 
UUUUUVVVVVWWWWW 
VVVVVWWWWWXXXXX 

XED I T 1 File 

Chapter 3: Using the System Product Editor 55 



Using the System Product Editor 

TEST 

=== => 

To find a previous occurrence of a string, use the findup subcommand. For 
example, to find the line beginning with GGGGG, enter 

findu ggggg 

Your screen should now look like this: 

FILE A1 F 80 Trunc=80 Size=26 Line=7 Col=l Alt=26 

* * * Top of File * * * 
AAAAABBBBBCCCCC 
BBBBBCCCCCDDDDD 
CCCCCDDDDDEEEEE 
DDDDDEEEEEFFFFF 
EEEEEFFFFFGGGGG 
FFFFFGGGGGHHHHH 
GGGGGHHHHHIIIII 
I .•. + ...• 1 .... + ...• 2 .... + .•.. 3 .... + ..•. 4 .... + ••.. 5 .... + .... 6 .... + ..•. 7 . > 
HHHHHIIII IJJJJJ 
II II I J J J J JKKKKK 
JJJJJKKKKKLLLLL 
KKKKKLLLLLMMMMM 
LLLLLMMMMMNNNNN 
MMMMMNNNNNOOOOO 
NNNNNOOOOOPPPPP 
OOOOOPPPPPQQQQQ 
PPPPPQQQQQRRRRR 

XED I T 1 File 

The FINDUP subcommand locates the character string preceding the 
current line; FIND locates the string following the current line. 

Using the Prefix Subcommands 

Besides the subcommands that can be entered on the command line, there 
are some that you enter into the prefix area of specific lines you want to 
manipulate in the file. 

There are three prefix subcommands that can be used to manipulate the 
display without altering the data. These are: 

/ Make this line the current line. 

X Inhibit the display of one or more lines. 

S Restore the display of one or more inhibited lines. 

56 VM/SP Application Development Guide 



Using the System Product Editor 

Examples 

TEST FILE 

Let's see how these work. Using the cursor movement keys, position the 
cursor in the prefix area of the line beginning with the character string 
DDDDD, and type the slash character. You can enter prefix subcommands 
anywhere in the prefix area, but for now type the slash ( / ) in column l. 
Don't press ENTER yet, but check your screen with the following example. 

Your screen should now look like this: 

Al F 80 Trunc=80 Size=26 Line=7 Col=1 Alt=26 

* * * Top of File 
AAAAABBBBBCCCCC 
BBBBBCCCCCDDDDD 
CCCCCDDDDDEEEEE 

* * * 

1==== DDDDDEEEEEFFFFF 

====> 

EEEEEFFFFFGGGGG 
FFFFFGGGGGHHHHH 
GGGGGHHHHHIIIII 
I ..• + .... 1 .... + ...• 2 .... + .... 3 .... + .... 4 .... + .... 5 .... + .... 6 .... + .... 7.> 
HHHHHIIIIIJJJJJ 
IIIIIJJJJJKKKKK 
JJJJJKKKKKLLLLL 
KKKKKLLLLLMMMMM 
LLLLLMMMMMNNNNN 
MMMMMNNNNNOOOOO 
NNNNNOOOOOPPPPP 
OOOOOPPPPPQQQQQ 
PPPPPQQQQQRRRRR 

XED I T 1 File 

Chapter 3: Using the System Product Editor 57 



Using the System Product Editor 

r TEST 

====> 

Now press ENTER. 

Your screen should now look like this: 

FILE A1 F 80 Trunc=80 Size=26 Line=4 Co1=1 Alt=26 

* * * TOp of File * * * 
AAAAABBBBBCCCCC 
BBBBBCCCCCDDDDD 
CCCCCDDDDDEEEEE 
,QDDDDEEEEEFFFFF 
, ..• + . ... 1 .... + .... 2 ...• + .... 3 .... + .... 4 .... + .... 5 .... + .... 6 .... + .... 7.> 
EEEEEFFFFFGGGGG 
FFFFFGGGGGHHHHH 
GGGGGHHHHH II II I 
HHHHHIIIIIJJJJJ 
IIIIIJJJJJKKKKK 
JJJJJKKKKKLLLLL 
KKKKKLLLLLMMMMM 
LLLLLMMMMMNNNNN 
MMMMMNNNNNOOOOO 

XED I T 1 File 

Notice that the cursor is positioned in the first column of the line 
beginning DDDDD. 

The x (and xx) subcommand is used to exclude lines from the display 
without deleting them from the file. Use the prefix subcommand S, to 
restore the lines to the display. This is useful when you want to compress a 
file to make it more readable. Also, changes made to a file are not made to 
excluded lines. This is useful if you want to make global changes in a file, 
except for specific lines. 

58 VM/SP Application Development Guide 



r TEST 

====> 

Using the System Product Editor 

For example, to inhibit the display of the lines containing the character 
string, JJJJJ move the cursor to the prefix area next to the first occurrence 
of that line and enter: 

xx 

Now move the cursor to the prefix area next to the last line in which the 
string JJJJJ occurs and enter: 

xx 

Your screen should now look like this: 

FILE A1 F 80 Trunc=80 Size=26 Line=4 Col=1 Alt=26 

* * * Top of File * * * 
AAAAABBBBBCCCCC 
BBBBBCCCCCDDDDD 
CCCCCDDDDDEEEEE 
DDDDDEEEEEFFFFF 
1 • • • + .... 1 .... + .... 2 .... + .... 3 .... + .... 4 .... + .... 5 .... + ... . 6 .... + .... 7.> 
EEEEEFFFFFGGGGG 
FFFFFGGGGGHHHHH 
GGGGGHHHHHIIIII 

KKKKKLLLLLMMMMM 
LLLLLMMMMMNNNNN 
MMMMMNNNNNOOOOO 
NNNNNOOOOOPPPPP 
OOOOOPPPPPQQQQQ 

3 line(s) not displayed 

XED I T 1 File 

Chapter 3: Using the System Product Editor 59 



Using the System Product Editor 

TEST 

====> 

A shadow line of dashes and a message appears where the excluded lines 
were. The message tells you how many lines were excluded. 

To restore the display of the excluded lines, enter in the prefix area of the 
line where the message appears: 

s 

Your screen should now look like this: 

FILE Ai F 80 Trunc=80 S ize=2 6 Lin e=4 Col = l Al t=26 

* * * Top of File 
AAAAABBBBBCCCCC 
BBBBBCCCCCDDDDD 
CCCCCDDDDDEEEEE 
DDDDDEEEEEFFFFF 

* * * 

I ... + ••.. 1 ..•• + •. • • 2 •.•• + •..• 3 . • • • + •••. 4 ..• • + . . •. 5 •.•. + .. . . 6 • ••. + •.• . 7 . > 
EEEEEFFFFFGGGGG 
FFFFFGGGGGHHHHH 
GGGGGHHHHH II I II 
.!iHHHHIII IIJJJJJ 
II II IJJJJJKKKKK 
JJJJJKKKKKLLLLL 
KKKKKLLLLLMMMMM 
LLLLLMMMMMNNNNN 
MMMMMNNNNNOOOOO 

XED I T 1 F i l e 

Manipulating Data 

The simplest way to change data while editing is to move the cursor to the 
character that you want to change and type directly over it. For example, 
suppose you want to change the line beginning HHHHH so that it begins 
AHAHA. You could position the cursor at the start of the string HHHHH 
and simply type over it. The line would then read 

AHAHAIIIIIJJJJJ 

You can also insert characters into a line between two other characters, or 
delete characters from the line, by using the insert and delete keys. 

This method of editing a file is simple and direct, and is probably the best 
way to make simple changes. Some changes you will want to make are less 
simple, and the direct method of editing may not be appropriate. 

60 VM/SP Application Development Guide 



Using the System Product Editor 

In addition to the subcommands which manipulate the display, the editor 
has a number of subcommands for manipulating data. Some of these can be 
executed from the prefix area, others from the command line. 

Using the Prefix Subcommands 

Examples 

The following list gives the edit subcommands for changing data which can 
be executed from the prefix area. 

A Add one or more blank lines (equivalent to I). 

c Copy one or more lines to another place in the file. 

D Delete one or more lines from a file . 

I Insert one or more blank lines (equivalent to A). 

M Move one or more lines to another place in the file . 

" Duplicate one or more lines in a file . 

> Shift the data one or more lines n positions to the right. 

< Shift the data one or more lines n positions to the left. 

Supplementing the MOVE and COPY prefix subcommands are two 
additional subcommands that designate the location where moved or copied 
lines are to be placed. These are: 

F Designates the line FOLLOWING which the lines are to be placed. 

P Designates the line PRECEDING which the lines are to be placed. 

The following examples are all valid ways for you to enter prefix 
subcommands: 

= = = = A Adds one line following the one on which the command is 
entered. 

a3 = = = Adds three lines 

= = D = = Deletes a line 

> = = = = Shifts the line one space to the right. 

= = < 12 Shifts the line twelve spaces to the left. 

Chapter 3: Using the System Product Editor 61 



Using the System Product Editor 

r TEST 

====> 

FILE 

In the last two examples, these subcommands cause the data itself to be 
shifted, not just the display. So, data may be lost when you do a shift. Now 
execute the following prefix subcommands by typing the subcommands 
indicated below, one after the other. (The full prefix area is shown in each 
example, together with the line on which the subcommand is to be entered.) 
Don't press the ENTER key until you've typed all the examples. 

• On the line beginning DDDDD, type the prefix subcommand =d=== 

• On the line beginning HHHHH, type the prefix subcommand ==> 5= 

• On the line beginning lIllI, type the prefix subcommand a3=== 

Press ENTER. 

Your screen should now look like this: 

Al F 80 Trunc=80 Size=28 Line=4 Col=1 Alt=28 

* * * Top of File * * * 
AAAAABBBBBCCCCC 
BBBBBCCCCCDDDDD 
CCCCCDDDDDEEEEE 
EEEEEFFFFFGGGGG 
I ... + .... 1 .... + .... 2 .... + .... 3 ..•. + .... 4 .... + .... s .... + .... 6 .... + .... 7 . > 
FFFFFGGGGGHHHHH 
GGGGGHHHHH I II II 

HHHHHIIIIIJJJJJ 
IIIIIJJJJJKKKKK 

JJJJJKKKKKLLLLL 
KKKKKLLLLLMMMMM 

XED I T 1 File 

Corresponding to each of the examples given, you'll notice the following: 

1. The line beginning DDDDD has been deleted (prefix subcommand d). 

2. The line beginning HHHHH has been indented 5 spaces to the right 
(prefix subcommand». 

3. Three blank lines have been added following the line beginning IIIII 
(prefix subcommand a). 

62 VM/SP Application Development Guide 



r 
TEST 

====> 

Using the System Product Editor 

You can use the C and M prefix subcommands (for COPY and MOVE) to 
move or copy lines in the file to another place in the file. For example, 
type the following prefix subcommand on the line beginning AAAAA (the 
first line of the file), but don't press ENTER: 

=m=== AAAAABBBBBCCCCC 

Now move the cursor to the line beginning EEEEE and type the following 
prefix subcommand, and press ENTER: 

f==== EEEEEFFFFFGGGGG 

Your display should now look like this: 

FILE Al F 80 Trunc=80 Size=28 Line=3 Col=l Alt=29 

* * * Top of File * * * 
BBBBBCCCCCDDDDD 
CCCCCDDDDDEEEEE 
EEEEEFFFFFGGGGG 
I •.• + •... 1 ..•. + .... 2 .... + .... 3 ..•• + .... 4 .... + .... 5 •..• + .... 6 •... + ..•. 7.> 
~BBBBBCCCCC 

FFFFFGGGGGHHHHH 
GGGGGHHHHHI II II 

HHHHHIIII IJJJJJ 
II II I J J J J JKKKKK 

JJJJJKKKKKLLLLL 

XED I T 1 File 

Chapter 3: Using the System Product Editor 63 



Using the System Product Editor 

TEST 

====> 

.. 
The first line of the file has been moved to follow the fourth line. Now 
position the cursor on the (new) second line of the file and type the 
following prefix subcommand (don't press ENTER yet): 

c==== CCCCDDDDDEEEEE 

Now move the cursor to the fourth line of the file, type the following prefix 
subcommand, and press ENTER: 

==f== AAAAABBBBBCCCCC 

Your display should now look like this: 

FILE Al F 80 Trunc=80 Size=29 Line=3 Col=1 Alt=30 

* * * Top of File * * * 
BBBBBCCCCCDDDDD 
CCCCCDDDDDEEEEE 
EEEEEFFFFFGGGGG 
I •.. + .... 1 .... + .... 2 .... + .... 3 .... + .... 4 .... + .... 5 •... + ..•. 6 ...• + .... 7.> 
AAAAABBBBBCCCCC 
~CCCCDDDDDEEEEE 

FFFFFGGGGGHHHHH 
GGGGGHHHHHIIIII 

HHHHHIIIIIJJJJJ 
IIIIIJJJJJKKKKK 

XED I T 1 Fil e 

The second line of the file has been copied to follow the fourth line. 

Manipulating Blocks of Lines 

One of the most powerful aspects of the prefix subcommands is that you can 
use them to move, copy, duplicate, delete and shift blocks of lines. 

If you enter a single c, m, ", d, < or > in the prefix area of a specific line, 
only that line will be affected. If you want to move, copy, duplicate, delete 
or shift a specific number of lines, you can type the command in the prefix 
area, followed by a number designating the number of lines to be affected. 

You may find that you want to move a very large block of lines, and that 
counting the number of lines in the block is tedious or impractical. In the 
section describing the x and xx prefix subcommands, you saw that a block 
of lines could be hidden by placing a double-x on the first line of the block, 

64 VM/SP Application Development Guide 



Using the System Product Editor 

and another double-x on the last line of the block. The c, m, ", < and> 
prefix subcommands work the same way. 

Examples 

TEST FILE 

For example, to duplicate the block of lines starting with the line beginning 
GGGGG and ending with the line beginning LLLLL, move the cursor to the 
line beginning GGGGG and type "" in the prefix area: 

""=== GGGGGHHHHHIIIII 

Then move the cursor to the line beginning IIIII and do the same thing; 
don't press ENTER yet, but check to make sure your screen looks like this: 

Al F 80 Trunc=80 Size=29 Line=3 Col=l Alt=30 

* * * Top of File * * * 
BBBBBCCCCCDDDDD 
CCCCCDDDDDEEEEE 
EEEEEFFFFFGGGGG 
I •.. + .... 1 .... + .... 2 .... + .... 3 .... + .... 4 .... + .... 5 .... + .... 6 .... + .... 7.> 
AAAAABBBBBCCCCC 
CCCCCDDDDDEEEEE 
FFFFFGGGGGHHHHH 

""=== GGGGGHHHHHIIIII 
HHHHHIIIIIJJJJJ 

""=== IIIIIJJJJJKKKKK 

====> 
XED I T 1 File 

Chapter 3: Using the System Product Editor 65 



Using the System Product Editor 

TEST 

====> 

Now press enter. 

Your screen should now look like this: 

FILE Al F 80 Trunc=80 Size=32 Line=3 Col=1 Alt=31 

* * * Top of File * * * 
BBBBBCCCCCDDDDD 
CCCCCDDDDDEEEEE 
EEEEEFFFFFGGGGG 
, .•• + .••. 1 ..•• + .... 2 .•.. + .... 3 •..• + ..•. 4 .... + . . •. 5 .... + .... 6 .... + .... 7.> 
AAAAABBBBBCCCCC 
CCCCCDDDDDEEEEE 
FFFFFGGGGGHHHHH 
GGGGGHHHHHII II I 

HHHHHIIIIIJJJJJ 
II II IJJJJJKKKKK 
gGGGGHHHHHIIIII 

HHHHHIIIIIJJJJJ 
II I IIJJJJJKKKKK 

XED I T 1 File 

66 VMjSP Application Development Guide 



TEST 

====> 

Using the System Product Editor 

To delete the new block of lines, move the cursor to the first line of the new 
block and type dd. Then move the cursor to the last line of the new block 
and type dd. After pressing ENTER, your screen should look like this: 

FILE Al F 80 Trunc=80 Size=29 Line=3 Co1=1 A1t=32 

* * * Top of File * * * 
BBBBBCCCCCDDDDD 
CCCCCDDDDDEEEEE 
EEEEEFFFFFGGGGG 
1 ••• + .... 1 .... + .... 2 .... + .... 3 .... + .... 4 .•.. + .•.. 5 .... + .... 6 •..• + •..• 7.> 
AAAAABBBBBCCCCC 
CCCCCDDDDDEEEEE 
FFFFFGGGGGHHHHH 
GGGGGHHHHHII II I 

HHHHHIIIIIJJJJJ 
I II II JJJJJKKKKK 

XED I T 1 File 

The other block prefix subcommands work the same way. 

Using the Command Line Subcommands 

Together with the full-screen capabilities of the editor - the ability to make 
changes to your file directly on the screen image - the prefix subcommands 
are one of the most powerful tools of the editor. 

There are additional subcommands for changing data that can only be 
entered on the command line. In the list below, some of the subcommands 
for changing data are given. (Where an abbreviation of a subcommand is 
permitted, the shortest acceptable version of the name is indicated by 
upper-case letters.) 

Add Add n lines after the current line. 

ALter Change a single character to another. 

Change Change one string to another. 

COpy Copy one or more lines from one location to another. 

DELete Delete one or more lines. 

DUPlicate Duplicate one or more lines. 

Chapter 3: Using the System Product Editor 67 



Using the System Product Editor 

GET Insert lines from another file or from a special buffer (see 
PUT). 

Join Join two lines. 

LOWercase Change upper-case letters to lower case. 

MErge Combine two sets of lines. 

MOve Move one or more lines to another place in the file. 

Overlay Replace characters in the current line. 

PUT Insert lines into another (new or existing) file. 

PUTD Insert lines into another (new or existing) file and also 
delete lines from the original file. 

RECover Recover deleted lines. 

Replace Replace the current line with text following; or delete the 
current line and enter input mode. 

SHift Move data right or left (data loss possible). 

SORT Sort all or part of a file in ascending or descending order. 

SPlit Split a line into two or more lines. 

UPPercase Translates all lower-case characters into upper case. 

Some of these are the LINE MODE equivalent of the prefix subcommands. 
For example, the ADD, COPY, DELETE, DUPLICATE, MOVE, and 
SHIFT subcommands in the list above are all equivalent to the a, c, d, ", 
m, < and > prefix subcommands. The other command line subcommands 
have no prefix equivalents. 

All command line subcommands take effect starting with the current line. 
The editor also has other subcommands that you can use in relation to the 
position of the cursor on the display screen. For a full description of these, 
see VMjSP System Product Editor Command and Macro Reference. 

Using the Change Subcommand 

We will now make some changes using the command line subcommands. 
We'll begin with the CHANGE subcommand. The syntax of the CHANGE 
subcommand requires that you specify: 

1. The subcommand 

2. The string to be changed 

68 VMjSP Application Development Guide 



Using the System Product Editor 

3. The string you want it to be changed to. 

The default for the CHANGE subcommand gives you one change on the 
current line. You can also specify the number of lines to be affected 
(including the current line) and the number of occurrences on each line. 

Each of the three required elements must be separated by a delimiter. The 
most common delimiter is the slash (f). The slash occurs infrequently in 
programs and data files and is conveniently placed on the keyboard. You 
can, however, use any other character as a delimiter, as long as it doesn't 
appear in either the string to be changed or the replacement string. 

As shown in the list above, the abbreviation for CHANGE is C. 

Examples 

On the command line enter the following subcommand: 

c / eeeee/zzzzz/ 

You've changed the string EEEEE to ZZZZZ. Although you entered the 
subcommand in lower case, the default CASE setting (U) caused the data to 
be translated into upper case. 

Your screen should now look like this: 

TEST FILE Al F 80 Trunc=80 Size=29 Line=3 Co1=1 Alt=33 
1 occurrence(s) changed on 1 1ine(s). 

* * * Top of File * * * 
BBBBBCCCCCDDDDD 
CCCCCDDDDDEEEEE 
ZZZZZFFFFFGGGGG 
I ... + •••• 1 .... + ••.. 2 ..•. + •.•. 3 •.•• + .•.• 4 .... + •••• 5 .••. + ...• 6 .•.. + .••. 7.> 

====> 

AAAAABBBBBCCCCC 
CCCCCDDDDDEEEEE 
FFFFFGGGGGHHHHH 
GGGGGHHHHH II II I 

HHHHHIIIIIJJJJJ 
IIIIIJJJJJKKKKK 

XED I T 1 File 

Chapter 3: Using the System Product Editor 69 



Using the System Product Editor 

To change the string FFFFF on the current line to XXXXX, you can use the 
form of command: 

c/f/x/1 5 

Your screen should now look like this: 

~ TEST FI LE A1 F 80 Trunc=80 Size=29 Li ne=3 Col=l Alt=34 
5 occurrence (s) changed on 1 line(s ) . 

====> 

* * * Top of Fi l e * * * 
BBBBBCCCCCDDDDD 
CCCCCDDDDDEEEEE 
ZZZZZXXXXXGGGGG 
1 • •• + .... 1 ..•. + .... 2 .• . . + ••.. 3 .... + .... 4 .. •. + ... • 5 ... • + .... 6 .... + .•. . 7 .> 
AAAAABBBBBCCCCC 
CCCCCDDDDDEEEEE 
FFFFFGGGGGHHHHH 
GGGGGHHHHH I II II 

HHHHHIIIIIJJJJ J 
IIIIIJJJ JJKKKKK 

XED I T 1 File 

If you want to make a change that affects all the remaining lines in a file (a 
global change), you can use the asterisk (*) instead of the number-of-lines 
parameter. The asterisk means "all" . You can also use the asterisk to 
specify all the occurrences on the lines to be affected. The command 
c/stringl/string2/* * would change all occurrences of "stringl" into 
"string2" throughout each line of the file, starting with the current line. 

Using the PUT, PUTD, and GET Subcommands 

The PUT and GET subcommands are two of the most powerful of the 
command line subcommands. You can use the PUT subcommand to copy 
lines from your file into a special buffer, and later retrieve them by using 
the GET subcommand. You can also use PUT to copy lines directly into a 
file on disk, and GET to retrieve all or part of a file. The PUTD 
subcommand performs the same function as PUT but also deletes the lines 
from the file. 

70 VM/SP Application Development Guide 



Using the System Product Editor 

Examples 

TEST 

====> 

We'll now PUT five lines into a special buffer. Enter: 

put 5 

You've now copied five lines into a temporary buffer in the editor. The 
lines are also present in the file. You will notice that the current line 
pointer has moved to the line following the block. 

Your screen should now look like this: 

FILE Al F 80 Trunc=80 Size=29 Line=8 Col=1 Alt=34 

* * * TOp of File * * * 
BBBBBCCCCCDDDDD 
CCCCCDDDDDEEEEE 
ZZZZZXXXXXGGGGG 
AAAAABBBBBCCCCC 
CCCCCDDDDDEEEEE 
FFFFFGGGGGHHHHH 
GGGGGHHHHHI II II 

HHHHHIII IIJJJJJ 
1 ••• + .... 1 .... + .... 2 .•.. + .... 3 ••.• + .... 4 .... + ...• 5 .... + ..•. 6 ..•• + ..•. 7.> 
IIIIIJJJJJKKKKK 

JJJJJKKKKKLLLLL 
KKKKKLLLLLMMMMM 
LLLLLMMMMMNNNNN 
MMMMMNNNNNOOOOO 
NNNNNOOOOOPPPPP 

XED I T 1 File 

Now enter the following subcommand: 

get 

The five lines you PUT have been retrieved from the special buffer and 
have been inserted into your file following the current line. 

Chapter 3: Using the System Product Editor 71 



Using the System Product Editor 

TEST 

====> 

Your screen should now look like this: 

FILE Al F 80 Trunc=80 Size=34 Line=13 Col=l Alt=35 

AAAAABBBBBCCCCC 
CCCCCDDDDDEEEEE 
FFFFFGGGGGHHHHH 
GGGGGHHHHH II II I 

HHHHHIIIIIJJJJJ 
ZZZZZXXXXXGGGGG 
AAAAABBBBBCCCCC 
CCCCCDDDDDEEEEE 
FFFFFGGGGGHHHHH 
GGGGGHHHHHIIIII 
I ••• + •... 1 .... + .... 2 .... + .... 3 ..•. + •.•• 4 ...• + •. • . 5 .•.. + •... 6 .... + .... 7.> 
II II IJJJ J JKKKKK 

JJJJJKKKKKLLLLL 
KKKKKLLLLLMMMMM 
LLLLLMMMMMNNNNN 
MMMMMNNNNNOOOOO 
NNNNNOOOOOPPPPP 

XED I T 1 File 

By the way, the lines copied via the PUT subcommand are still in the 
special buffer. If you wanted to retrieve a second copy of the lines, you 
would simply issue the GET subcommand again at the appropriate place. 

72 VM/SP Application Development Guide 



TEST 

====> 

Using the System Product Editor 

If you want to delete the block of lines as well as make a copy of them in 
the special buffer or a file on disk, use the PUTD subcommand. Let's 
delete two blank lines from the file and write them to a file on the A-disk. 
First, issue the following command to position the current line at the first 
of the blank lines. 

down 2 

Your screen should now look like this~ 

FILE Al F 80 Trunc=80 Size=34 Line=15 Col=l Alt=35 

FFFFFGGGGGHHHHH 
GGGGGHHHHH II II I 

HHHHHIIIIIJJJJJ 
ZZZZZXXXXXGGGGG 
AAAAABBBBBCCCCC 
CCCCCDDDDDEEEEE 
FFFFFGGGGGHHHHH 
GGGGGHHHHHII II I 
IIIIIJJJJJKKKKK 

I ... + .••. 1 .•.. + .... 2 .... + .... 3 .... + .•.. 4 •... + ...• 5 ...• + .... 6 ...• + .... 7.> 

JJJJJKKKKKLLLLL 
KKKKKLLLLLMMMMM 
LLLLLMMMMMNNNNN 
MMMMMNNNNNOOOOO 
NNNNNOOOOOPPPPP 
OOOOOPPPPPQQQQQ 
PPPPPQQQQQRRRRR 

XED I T 1 File 

Chapter 3: Using the System Product Editor 73 



Using the System Product Editor 

In the next example, we'll make a deliberate "mistake" in order to 
demonstrate another aspect of the GET subcommand. Instead of deleting 
only the two blank lines, we'll delete five lines, and then GET back three of 
them. Now issue the PUTD command to copy five lines from the file being 
edited to a new file called 'TEMP FILE A': 

putd 5 temp file a 

Your screen should now look like this: 

TEST FILE Al F 80 Trunc=80 Size=29 Line=15 Col=1 Alt=36 
Creating new file: 

====> 

FFFFFGGGGGHHHHH 
GGGGGHHHHHII II I 

HHHHHIII IIJJJJJ 
ZZZZZXXXXXGGGGG 
AAAAABBBBBCCCCC 
CCCCCDDDDDEEEEE 
FFFFFGGGGGHHHHH 
GGGGGHHHHHII II I 
II I IIJJJJJKKKKK 
LLLLLMMMMMNNNNN 
I ... + •... 1 •.•• + •••• 2 •••. + •... 3 •.•. + .... 4 .... + ..•. 5 •••• + .... 6 •..• + .•.. 7.> 

MMMMMNNNNNOOOOO 
NNNNNOOOOOPPPPP 
OOOOOPPPPPQQQQQ 
PPPPPQQQQQRRRRR 
QQQQQRRRRRSSSSS 
RRRRRSSSSSTTTTT 
SSSSSTTTTTUUUUU 
TTTTTUUUUUVVVVV 
UUUUUVVVVVWWWWW 

XED I T 1 File 

We have deleted the two blank lines, but also three lines following it. To 
recover the three lines from the file TEMP FILE A, we could issue the 
subcommand GET TEMP FILE A, which would retrieve the entire file, and 
then delete the two blank lines, using the d prefix subcommand or the 
delete subcommand from the command line. Instead, we'll GET only the 
three lines deleted by mistake. First, we'll position the current line so that 
the lines we'll be GETting will occur in the right place in the file. Then, 
we'll issue a variation of the GET subcommand. Issue the following 
subcommands from the command line: 

up 1 
get temp file a 3 3 

in order to retrieve three of the five lines (that is, lines 3 through 5 of 
TEMP FIL~ A). The first number following the filemode is the starting 
number of the line in the file you specified, relative to the beginning of the 
file. The second number specifies the number of lines you wish to GET. 

74 VM/SP Application Development Guide 



TEST 

====> 

Using the System Product Editor 

Your screen should now look Fke this: 

FILE A1 F 80 Trunc=80 Size=32 Line=17 Col=1 Alt=37 

HHHHHIIIIIJJJJJ 
ZZZZZXXXXXGGGGG 
AAAAABBBBBCCCCC 
CCCCCDDDDDEEEEE 
FFFFFGGGGGHHHHH 
GGGGGHHHHHII I II 
IIIIIJJJJJKKKKK 

JJJJJKKKKKLLLLL 
KKKKKLLLLLMMMMM 
\ .•• + •.•• 1 .... + ...• 2 ..•. + .... 3 .... + •... 4 .... + ..•• 5 .... + •••• 6 .... + •... 7.> 

LLLLLMMMMMNNNNN 
MMMMMNNNNNOOOOO 
NNNNNOOOOOPPPPP 
OOOOOPPPPPQQQQQ 
PPPPPQQQQQRRRRR 
QQQQQRRRRRSSSSS 
RRRRRSSSSSTTTTT 
SSSSSTTTTTUUUUU 
TTTTTUUUUUVVVVV 

XED I T 1 File 

By using similar techniques, you can build programs, documents, and data 
files from files containing standard routines and paragraphs that you expect 
to use more than once. 

Using Split and Join 

Three useful commands, especially when you're writing documentation, are 
SPLIT, JOIN, and the combined version SPLTJOIN. 

These subcommands let you divide a line at a given point or join the next 
line to the current line at a given point. We'll now SPLIT the current line, 
which is the last line of the block you just retrieved with the GET 
subcommand. Suppose you want to split the line at the string LLLLL, 
making the current line read KKKKK and the next line LLLLLMMMMM. 
One way you could do this would be to enter the SPLIT subcommand on 
the command line, specifying the string at which the split is to take place. 
If we were going to use a subcommand to do this, it would look like this. 

Note: Don't enter this. 

split/lllll/ 

The SPLTJOIN subcommand lets you split a line, and then rejoin it again 
if you wish. Your PFll key has been preset by the editor to execute the 
SPLTJOIN subcommand. 

Chapter 3: Using the System Product Editor 75 



Using the System Product Editor 

Examples 

TEST 

====> 

To use this form of the subcommand, use the cursor movement keys to 
position the cursor below the first L of the string LLLLL on the current 
line. Then press PFll. 

Your screen should now look like this: 

FILE A1 F 80 Trunc=80 Size=33 Line=17 Col= l Alt=41 

HHHHHIIIIIJJJJJ 
ZZZZZXXXXXGGGGG 
AAAAABBBBBCCCCC 
CCCCCDDDDDEEEEE 
FFFFFGGGGGHHHHH 
GGGGGHHHHHII II I 
I II IIJ J J JJKKKKK 

JJJ J J KKKKKLLLLL 
KKKKK_ 
1 ••• + • .•• 1 ... . + .... 2 .... + ..•• 3 ... . + . • .• 4 . .• . + •• •• 5 ... . + . .•• 6 . .. . + • • .. 7.> 
LLLLLMMMMM 
LLLLLMMMMMNNNNN 
MMMMMNNNNNOOOOO 
NNNNNOOOOOPPPPP , 
OOOOOPPPPPQQQQQ 
PPPPPQQQQQRRRRR 
QQQQQRRRRRSSSSS 
RRRRRSSSSSTTTTT 
SSSSSTTTTTUUUUU 

XED I T 1 File 

Notice that the cursor remains in the same place it was before you pr essed 
the PFll key. 

The JOIN command joins the current line with the line following. To 
JOIN the split line up again you could use the command line subcommand. 

Note: Don't enter this. 

j o in 

Instead, you can simply press PFll a second time. Do so now. 

76 VM/SP Application Development Guide 



TEST 

====> 

Using the System Product Editor 

Your screen should now look like this: 

FILE A1 F 80 Trunc=80 Size=32 Line=17 Col=1 Alt=44 

HHHHH II II I J J J J J 
ZZZZZXXXXXGGGGG 
AAAAABBBBBCCCCC 
CCCCCDDDDDEEEEE 
FFFFFGGGGGHHHHH 
GGGGGHHHHHII II I 
IIIIIJJJJJKKKKK 

JJJJJKKKKKLLLLL 
KKKKK~LLLLMMMMM 

, ... + .••• 1 .... + .... 2 .... + .... 3 .... + .... 4 .... + ..•. 5 .... + .... 6 .... + .... 7.> 
LLLLLMMMMMNNNNN 
MMMMMNNNNNOOOOO 
NNNNNOOOOOPPPPP 
OOOOOPPPPPQQQQQ 
PPPPPQQQQQRRRRR 
QQQQQRRRRRSSSSS 
RRRRRSSSSSTTTTT 
SSSSSTTTTTUUUUU 
TTTTTUUUUUVVVVV 

XED I T 1 File 

Using the Sort Subcommand 

Before we go on to discuss the next set of subcommands, there's one 
powerful subcommand that is especially useful in working with data files. 
This is SORT, which can be used to reorder all or some of the records in a 
file. 

Chapter 3: Using the System Product Editor 77 



Using the System Product Editor 

Example 

TEST 

====> 

\ 
We'll sort only the first ten records in the file. To do this, press ENTER 
and enter the subcommand: 

: 1 

to reposition the current line at the first line of the file. 

Your screen should now look like this: 

FILE Al F 80 Trunc=80 Size=32 Line=l Col=l Alt=44 

* * * Top of File * * * 
BBBBBCCCCCDDDDD 
I ... + .... 1 .... + .... 2 ... • + .... 3 .... + .... 4 •... + .•.. 5 .... + .... 6 .... + . . .. 7.> 
CCCCCDDDDDEEEEE 
ZZZZZXXXXXGGGGG 
AAAAABBBBBCCCCC 
CCCCCDDDDDEEEEE 
FFFFFGGGGGHHHHH 
GGGGGHHHHHII II I 

HHHHHIIIIIJJJJJ 
ZZZZZXXXXXGGGGG 
AAAAABBBBBCCCCC 

XED I T 1 File 

78 VM/SP Application Development Guide 



TEST 

====> 

Using the System Product Editor 

Now enter: 

sort 10 1 5 

This sorts the first 10 lines of the file, using columns 1 through 5 as the sort 
key. 

Your screen should now look like this: 

FILE A1 F 80 Trunc=80 Size=32 Line=l Co1=1 A1t=45 

* * * Top of File * * * 
HHHHHIIIIIJJJJJ 

I ... + .... 1 ...• + .... 2 .... + .... 3 .... + •... 4 .... + .... 5 .... + .... 6 .... + .... 7.> 
AAAAABBBBBCCCCC 
AAAAABBBBBCCCCC 
BBBBBCCCCCDDDDD 
CCCCCDDDDDEEEEE 
CCCCCDDDDDEEEEE 
FFFFFGGGGGHHHHH 
GGGGGHHHHH I II II 
ZZZZZXXXXXGGGGG 
ZZZZZXXXXXGGGGG 

XED I T 1 File 

If you had wanted to sort the entire file, you could have used an asterisk 
('*') instead of the 10. If you had wanted to sort on more than one key, you 
could have specified additional column pairs. 

Editing Multiple Files 

Using the editor, you can edit more than one file at a time. This can be 
very useful, for instance, if you want to examine a compiler listing and 
compare it with the source code, or if you want to compare two versions of 
a source program. 

Chapter 3: Using the System Product Editor 79 



Using the -System Product Editor 

TEST 

====> 

We'll do some editing of multiple files. Enter the subcommand: 

save 

This writes the file TEST FILE A to the A-disk, at the same time keeping a 
copy in storage for the editor. Now enter the subcommand: 

ft file2 

The FT subcommand changed the fi letype of the file in storage to FILE2. 

Your screen should now look like this: 

FILE2 Al F 80 Trunc=80 Size=32 Line=1 Col=1 Alt=O 

* * * Top of File * * * 
HHHHHIIIIIJJJJJ 

I ... + ... . 1 .•.. + .... 2 .... + . . . . 3 . .. . + . •. . 4 . ... + .. .. 5 .... + .... 6 •... + .. . . 7. > 
AAAAABBBBBCCCCC 
AAAAABBBBBCCCCC 
BBBBBCCCCCDDDDD 
CCCCCDDDDDEEEEE 
CCCCCDDDDDEEEEE 
FFFFFGGGGGHHHHH 
GGGGGHHHHH I II II 
ZZZZZXXXXXGGGGG 
ZZZZZXXXXXGGGGG 

XED I T 1 F ile 

The original file (TEST FILE A) has been written to disk. 

80 VM/SP Application Development Guide 



TEST 

====) 

Using the System Product Editor 

Now let's edit both TEST FILE A and TEST FILE2 A. To bring TEST FILE 
A into the edit sessiO:Ll, enter the following subcommand on the command 
line: 

x test file a (noprof 

Your screen should now look like this: 

FILE Al F 80 Trunc=80 Size=32 Line=O Col=l Alt=O 

* * * Top of File * * * 
I ... + .•.. 1 .... + .... 2 .... + •... 3 .... + •... 4 •... + .... 5 ..•. + .... 6 •..• + .••. 7.> 

HHHHHIIIIIJJJJJ 
AAAAABBBBBCCCCC 
AAAAABBBBBCCCCC 
BBBBBCCCCCDDDDD 
CCCCCDDDDDEEEEE 
CCCCCDDDDDEEEEE 
FFFFFGGGGGHHHHH 
GGGGGHHHHHI II II 
ZZZZZXXXXXGGGGG 

XED I T 2 Files 

Chapter 3: Using the System Product Editor 81 



Using the System Product Editor 

TEST 

====> 

To verify that you still have TEST FILE2 A in the editor, enter the 
subcommand: 

x 

Your screen should now look like this: 

FILE2 Al F 80 Trunc=80 Size=32 Line=l Col=l Alt=O 

* * * Top of File * * * 
HHHHHIIIIIJJJJJ 

I .•• + .... 1 .... + .•.. 2 .... + .... 3 .... + .... 4 .... + .... 5 • •.. + .... 6 ... • + .... 7.> 
AAAAABBBBBCCCCC 
AAAAABBBBBCCCCC 
BBBBBCCCCCDDDDD 
CCCCCDDDDDEEEEE 
CCCCCDDDDDEEEEE 
FFFFFGGGGGHHHHH 
GGGGGHHHHHI II II 
ZZZZZXXXXX~GGGG 

ZZZZZXXXXXGGGGG 

XED I T 2 Files 

You can switch (or toggle) between the two files by entering the X 
subcommand whenever you want to turn your attention to one file or the 
other. 

82 VM/SP Application Development Guide 



Using the System Product Editor 

Splitting the Screen 

TEST 

====> 

It is often useful to be able to examine both files at once. The editor lets 
you to do this with the SET SCREEN subcommand. If you have been 
experimenting with the X subcommand, toggling back and forth between 
files, use it now if necessary so that TEST FILE A is on the screen. 

Your screen should now look like this: 

FILE Al F 80 Trunc=80 Size=32 Line=O Col=l Alt=O 

* * * Top of File * * * 
1 ••• + .... 1 ••.. + ••.• 2 ••.• + .••. 3 •... + .... 4 .... + .... 5 .•.. + .... 6 .... + ...• 7.> 

HHHHHIIIIIJJJJJ 
AAAAABBBBBCCCCC 
AAAAABBBBBCCCCC 
BBBBBCCCCCDDDDD 
CCCCCDDDDDEEEEE 
CCCCCDDDDDEEEEE 
FFFFFGGGGGHHHHH 
GGGGGHHHHHI II II 
ZZZZZXXXXXGGGGG 

XED I T 2 Files 

Chapter 3: Using the System Product Editor 83 



Using the System Product Editor 

TEST 

====) 

TEST 

====) 

Now enter the subcommand: 

set screen 2 

Your screen should now look like this: 

FILE Al F 8 0 Trunc=80 Size=32 Line=O Col=l Alt=O 

* * * Top of File * * * 
1 ••• + .• .. 1 ..•. + .. .. 2 . . .. + .... 3 .•.. + • .• • 4 .•. . + .• . . 5 •.•. + . .. • 6 . ..• + . ... 7.) 

HHHHHIIIIIJJJJJ 
AAAAABBBBBCCCCC 
AAAAABBBBBCCCCC 

FILE2 
XED I T 2 FILES 

Al F 80 Trunc=80 Size=32 Line=l Col=l Alt=O 

* * * Top of File * * * 
HHHHHIIIIIJJJJJ 

I . .. + . . .. 1 ...• + .• • . 2 .. . . + . ... 3 .. •. + • . •• 4 .•.• + .. •. 5 .•• • + ••.• 6 .... + ..•. 7.> 
AAAAABBBBBCCCCC 
AAAAABBBBBCCCCC 
BBBBBCCCCCDDDDD 

XED I T 2 Files 

84 VM/SP Application Development Guide 



TEST 

====> 

Using the System Product Editor 

If you had entered SET SCREEN 2 when TEST FILE2 A was on the screen, 
TEST FILE2 A would be on the top half of the screen and TEST FILE A 
would be on the bottom half. The SET portion of the subcommand isn't 
required; you could also have enter the subcommand SCREEN 2. Now 
enter the subcommand: 

screen 1 

Your screen should now look like this: 

FILE Al F 80 Trunc=80 Size=32 Line=O Col=l Alt=O 

* * * Top of File * * * 
I .•• + .... 1 .•.. + .... 2 .... + •.•. 3 .... + .... 4 •... + .•.. 5 ..•. + .... 6 .... + .... 7.> 

HHHHHIIIIIJJJJJ 
AAAAABBBBBCCCCC 
AAAAABBBBBCCCCC 
BBBBBCCCCCDDDDD 
CCCCCDDDDDEEEEE 
CCCCCDDDDDEEEEE 
FFFFFGGGGGHHHHH 
GGGGGHHHHH II II I 
ZZZZZXXXXXGGGGG 

XED I T 2 Files 

If you were editing three files and wanted to see all three of them on the 
screen, you would enter SCREEN 3 and so on. 

Chapter 3: Using the System Product Editor 85 



Using the System Product Editor 

TEST 

====> 

Horizontal screen images are useful in providing complete lines of data for 
comparison. If the lines of data are very short (as in our examples), you 
might find it more useful to be able to compare screen images side by side. 
The editor lets you to do this by inserting the character V following the 
number of screen images. Now enter the subcommand: 

screen 2 v 

Your screen should now look like this: 

FILE Al F 80 Trunc=80 S TEST FILE2 Al F 80 Trunc=80 S 

* * * Top of File * * * 
I ..• + ••.. 1 .... + ...• 2 ••.. + .... 3.> 

HHHHH II I II J J J J J 
AAAAABBBBBCCCCC 
AAAAABBBBBCCCCC 
BBBBBCCCCCDDDDD 
CCCCCDDDDDEEEEE 
CCCCCDDDDDEEEEE 
FFFFFGGGGGHHHHH 
GGGGGHHHHHI II II 
ZZZZZXXXXXGGGGG 
ZZZZZXXXXXGGGGG 

===== * * * Top of File * * * 
HHHHHIIIIIJJJJJ 

===== I ••. + .... 1 .... + .... 2 .. . . + •.•• 3. > 

====> 

AAAAABBBBBCCCCC 
AAAAABBBBBCCCCC 
BBBBBCCCCCDDDDD 
CCCCCDDDDDEEEEE 
CCCCCDDDDDEEEEE 
FFFFFGGGGGHHHHH 
GGGGGHHHHHII I II 
ZZZZZXXXXXGGGGG 
ZZZZZXXXXXGGGGG 
CCCCCDDDDDEEEEE 

Many people find it easier to compare two files side by side rather than top 
to bottom. 

Each of the displays has its own status line and also its own command line. 
This is because each file can be manipulated independently of the other. 

86 VM/SP Application Development Guide 



TEST 

====> 

Using the System Product Editor 

Before continuing with the next section, return the screen t o a single 
Image: 

screen 1 

Your screen should now look like this: 

FILE Al F 80 Trunc=80 Size=32 Line=O Col= l Alt=O 

* * * Top of File * * * 
I ••• + •.•• 1 ••.. + •••• 2 .•.• + •.•• 3 •.•• + •••. 4 •••• + •••• 5 •••. + •••• 6 .... + •••• 7.> 

HHHHHIIIIIJJJJJ 
AAAAABBBBBCCCCC 
AAAAABBBBBCCCCC 
BBBBBCCCCCDDDDD 
CCCCCDDDDDEEEEE 
CCCCCDDDDDEEEEE 
FFFFFGGGGGHHHHH 
GGGGGHHHHHII I II 
ZZZZZXXXXXGGGGG 

XED I T 2 Files 

Using Tabs with the Editor 

The tabulation (tab) feature lets you align columns accurately and 
automatically. This is because the normal tab settings for certain filetypes 
are known to the editor. In this section we'll discuss tab settings and how 
you can use th em to correctly format data in programs, documents, and 
data fi les. 

As you may remember, t ab settings are linked by the editor to the filetype 
being edited. If the filetype isn't one of the st andard fi letypes recognized by 
the editor, tabs are set as follows: 

I Tabs 11 5 10 15 20 25 30 ... 

To verify this, en ter the following subcommand: 

q tabs 

Chapter 3: Using the System Product Editor 87 



--------------- --- -

Using the System Product Editor 

Your screen should now look like this: 

TEST FILE A1 F 80 Trunc=SO Size=32 Line=O Col=l Alt=O 
TABS 1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 SO 85 90 95 100 105 110 
115 120 

====> 

* * * Top of File * * * 
\ ... + .... 1 .... + .... 2 .... + .... 3 .... + .... 4 .... + .... 5 .... + .... 6 .... + .... 7.> 

HHHHH I I I II J J J J J 
AAAAABBBBBCCCCC 
AAAAABBBBBCCCCC 
BBBBBCCCCCDDDDD 
CCCCCDDDDDEEEEE 
CCCCCDDDDDEEEEE 
FFFFFGGGGGHHHHH 
GGGGGHHHHHIIIII 
ZZZZZXXXXXGGGGG 

XED I T 2 Files 

The tables below indicate default tab settings for these filetypes. 

If the file type is COBOL the tab settings are: 

I Tabs 11 8 12 20 28 36 44 68 72 80 

If the filetype is FORTRAN, the settings are: 

I Tabs 11 7 10 15 20 25 30 80 

If the filetype is FREEFORT the settings are: 

I Tabs I 9 15 18 23 28 33 38 81 

Before proceeding to the next session, enter the file subcommand twice: 

file 
file 

to write the current files to your A-disk. 

88 VMjSP Application Development Guide 



Using the System Product Editor 

The QUIT and QQUIT Subcommands 

Both the QUIT and QQUIT subcommands let you end the current editor 
session and leave the previous copy of the file, if any, intact. The difference 
between the two subcommands is that QUIT only works on an unchanged 
file , while QQUIT works on a file even if it has been changed. 

The QUIT Subcommand 

If you look at a file but make no modifications to it, you can QUIT the 
editor without updating the disk file. Assume that after looking at the file, 
you now have the information you want. You don't need to SAVE the file 
since no data has been changed. This is the time to use the QUIT 
subcommand. This terminates the session without saving the file. 

The QQUIT Subcommand 

Use the QQUIT subcommand during an edit session if you've made a 
mistake and want to recover the original version of the file. 

Let's assume that you want to delete 2 lines but make an error and enter 
d22 (as you know, D means delete.). In this case you have inadvertently 
deleted 22 lines of data. Clearly we don't want to FILE or SAVE this data. 
However, if you try to QUIT the file, the subcommand is rejected. Your 
screen appears with a message: 

File has been changed; use QQUIT to quit anyway 

This is because QUIT only functions on an unchanged file. Since our 
present file has been changed, and the change was unintentional, we should 
use QQUIT. With QQUIT, you can leave the session on a changed file, but 
the file won't be written to disk. When you enter QQUIT the session is 
terminated. Be sure you understand the difference between QUIT and 
QQUIT. 

Ways to End an Editing Session 

The table below indicates five ways to end an editing session: 

Subcommand Leave Edit Write to Disk Remarks 

FILE yes yes all changes saved 

SAVE no yes all changes saved 

QUIT yes no if no changes made 

QQUIT yes no unconditional 

CANCEL yes no if no changes made 

The CANCEL subcommand oan 'be used to terminate the edit session on 
multiple files. 

Chapter 3: Using the System Product Editor 89 



---------------------------------- -

Using the System Product Editor 

Using the AUTOSAVE Function 

TEST 

====> 

The AUTOSA VE function lets you specify how often the editor should 
write a copy of the file you are editing to a special work file on disk. First, 
begin a new edit session by entering: 

x test file (noprof 

Your screen should look like this: 

FILE Al F 80 Trunc=80 Size=32 Line=O Col=1 Alt=O 

* * * Top of File * * * 
1 ••• + •.•• 1 .... + •... 2 .... + ••.. 3 .... + .... 4 .... + ..•. 5 .... + •••. 6 .... + .... 7.> 

HHHHHIIIIIJJJJJ 
AAAAABBBBBCCCCC 
AAAAABBBBBCCCCC 
BBBBBCCCCCDDDDD 
CCCCCDDDDDEEEEE 
CCCCCDDDDDEEEEE 
FFFFFGGGGGHHHHH 
GGGGGHHHHHI II II 
ZZZZZXXXXXGGGGG 

XED I T 1 File 

Now set the autosave function by entering the subcommand: 

set autosave 10 

No message is returned. Confirm the setting by entering the subcommand: 

query autosave 

90 VM/SP Application Development Guide 



Using the System Product Editor 

Your screen should now look like th is: 

TEST FILE Al F 80 Trunc=80 Size=32 Line=O Col=1 Alt=O 
Autosave 10; Filename 100001; Alterations: O. 

====> 

* * * Top of File * * * 
I ... + .... 1 .•• • + • .•. 2 .... + .... 3 .... + •••. 4 • • •• + .••. 5 •... + .••• 6 • • •• + . • .• 7.> 

HHHHHIIIIIJJJJJ 
AAAAABBBBBCCCCC 
AAAAABBBBBCCCCC 
BBBBBCCCCCDDDDD 
CCCCCDDDDDEEEEE 
CCCCCDDDDDEEEEE 
FFFFFGGGGGHHHHH 
GGGGGHHHHHIIIII 
ZZZZZXXXXXGGGGG 

XED I T 1 File 

The elements of the autosave status message are: 

Autosave 10 

Filename n 

means that the file is saved as a special autosave file after 
ten or more modifications of a certain magnitude (for 
example, a line added, changed, or a GET subcommand 
issued) have been made. 

is the file name of the autos ave file , assigned by the editor 
for this session. The file type is AUTOSAVE and the file 
mode is A. 

Alterations: 0 means that no alterations have been made since the last 
autosave. 

Insert five lines to follow the top of the file. Do th is by entering the prefix 
subcommand A5 on the Top of File line. Pr ess ENTER to put the cursor on 
the command line. 

Enter the subcommand: 

query autosave 

The alterations field n ow reads 1. The autos ave function considers adding 
lines one alteration. Return the cursor to the added lines and key in the 
letter A on each line. Don't press the ENTER k ey until all five lines have 
the letter A on them. Again, enter the subcommand: 

query autosave 

Chapt er 3: Using the System Product Editor 91 



Using the System Product Editor 

The alterations field now reads 6. A changed line counts as one alteration, 
even if the ENTER key isn't pressed for each line. Now change the first 
three lines by entering the subcommands 

next 
c//ggggg/3 

on the command line. Issue the QUERY AUTOSAVE subcommand again. 

The alterations field now contains 7. 

If you delete a block of lines or use GET to copy several lines, each action 
counts as one alteration. Enter the following subcommands, one after the 
other: 

next 
del 2 
query autosave 

The alterations field now contains 8. Now enter the subcommands: 

dup 
query autosave 

The alterations field now contains 9. Following the next command that 
changes the file, the editor will AUTOSAVE the file. Enter the following 
subcommand: 

dup 

Your screen should now look like this: 

TEST FILE2 A1 F 80 Trunc=80 Size=37 Line=6 Col=l Alt=O 
Autosaved as '100001 Autosave A1'. 

* * * Top of File * * * 
GGGGGA 
GGGGGA 
GGGGGA 

HHHHHIIIIIJJJJJ 
HHHHHIIIIIJJJJJ 
HHHHHIIIIIJJJJJ 

1 ••• + .... 1 .... + .... 2 .... + .... 3 .... + .... 4 .... + .... 5 .... + .... 6 .... + ...• 7.> 

====> 

AAAAABBBBBCCCCC 
AAAAABBBBBCCCCC 
BBBBBCCCCCDDDDD 
CCCCCDDDDDEEEEE 
CCCCCDDDDDEEEEE 
FFFFFGGGGGHHHHH 
GGGGGHHHHHI II II 
ZZZZZXXXXXGGGGG 
ZZZZZXXXXXGGGGG 

92 VM/SP Application Development Guide 

XED I T 1 File 



Using the System Product Editor 

The file has been automatically saved. The name of the autosave file is 
shown on the message line. 

Note: The autos ave file is erased when a FILE is done to the source file. 

You can use autos ave to recover lost work. You can use the autosave file 
as you would any CMS file. You can edit it, or rename it by using the 
RENAME command in CMS, and then work with the renamed file. The 
alterations number (specified when you set autos ave on) limits the 
alterations that can be lost. If you set the alterations number to 1, the file 
is saved after any alteration. 

Using the eMS Update Facility 

Another feature of the editor is the UPDATE option, which makes use of 
the CMS update facility to control changes made to your files. 

The UPDATE option is useful because: 

• The original source file isn't directly changed. 

• All changes are recorded in separate update files. 

• The changes are time-stamped and identified. 

• Changes can be applied and removed on a selective and controlled basis. 

• A separate log is automatically generated to maintain a record of the 
changes. 

Let's return to the sample program that you created in the previous 
chapter. Enter one of the two following CMS commands: 

x testprog cobol (update noprof 

or 

x testprog fortran (update noprof 

depending on whether the program you created in the previous chapter was 
written in COBOL or FORTRAN. 

The result of specifying the update option is the following: 

1. The editor gets the source file TESTPROG COBOL or TESTPROG 
FORTRAN. 

2. The editor looks for an updated file called TESTPROG UPDATE. 

3. If the editor can't find TESTPROG UPDATE, it creates TESTPROG 
UPDATE and displays the contents of TESTPROG COBOL or 
TESTPROG FORTRAN on the screen, but with the file name of 

Chapter 3: Using the System Product Editor 93 



Using the System Product Editor 

The Update File 

TESTPROG UPDATE at the top of the screen. Any changes that are 
to be made to the source are now recorded in the file TESTPROG 
UPDATE for later application to the source file with the CMS 
UPDATE command. 

4. If the editor does find a file called TESTPROG UPDATE, it gets the file 
and applies all updates recorded in it to TESTPROG COBOL or 
TESTPROG FORTRAN. It then displays the updated file on the screen. 
New updates are recorded in the TESTPROG UPDATE file. 

The update file consists of two types of records: 

• New or changed source statements 

• Update control statements. 

Some update control statements are automatically generated by the editor, 
while others must be entered manually. 

Three kinds of update control statements are generated by the editor: 

Statement Type 

.f I Insert 

.f D Delete 

.f R Replace 

These three control statements, along with the appropriate new or changed 
source statements, are recorded in the update file by the editor when you're 
updating a source program. Each update control statement also carries a 
time and date stamp in columns 52 through 71, reflecting when you created 
or changed the update statement. 

The layout of the control cards is as follows: 

Columns Contents 

1-2 .f 
4 I, D, or R 

6-13 Sequence number of source statement 

24 $ (or other delimiter) 

26-29 Starting statement number value, if this card 
applies to more than one statement in the 
source file. 

94 VM/SP Application Development Guide 



Using the System Product Editor 

Columns Contents 

31-33 Incrementing statement number value, if this 
card applies to more than one statement in 
the source file. 

The following two update control statements are never automatically 
generated by the update facility. If you use them, add them manually into 
the update file using the editor. 

Statement Type 

./ S Cause Resequencing 

./ * Comment 

Resequencing affects columns 73 through 80. It should be added to the 
update file using the editor if you want the source sequence to be 
resequenced. .f * is a comment statement using the editor. You can add 
comments to document the updates. 

The UPDATE Command 

You use the UPDATE command (UPDATE fn ft) to apply update changes 
from the update file to the source file. Four files are involved in the 
process: two for input, with which you're already familiar, and two output 
files. 

The input files are the source file (our example, TESTPROG COBOL or 
TESTPROG FORTRAN) and the update file (our example, TESTPROG 
UPDATE). 

Two files are created by the update process. They're an updated source file, 
$TESTPRO COBOL or $TESTPRO FORTRAN, and an update log file, 
TESTPROG UPDLOG. 

Note: When the update facility creates a workfile, it uses the filename of 
the source file, and prefixes it with the dollar sign ($). Since the filename 
can only be 8 characters long, this means that the last character of an 
8-character source file name will be dropped from the workfile. This is why 
the workfile for the TESTPROG filename is called $TESTPRO. 

The file $TESTPRO COBOL or $TESTPRO FORTRAN is the updated 
source for your next compilation. File TESTPROG UPDLOG has a detailed 
record of the updates to the TESTPROG source. The leading $ in the 
$TESTPRO COBOL or $TESTPRO FORTRAN file name is used to indicate 
that the file has been created using the UPDATE command. 

If you're programming in FORTRAN, skip to "Updating a FORTRAN 
Source File" on page 100. 

Chapter 3: Using the System Product Editor 95 



Using the System Product Editor 

Updating a COBOL Source File 

\. 

The following is an example using the COBOL source file you created in 
the previous chapter . Now enter the command: 

type testprog cobol 

The result should look like this: 

I DENTIFICATION DIVIS ION. 
PROGRAM-ID. MYPROG . 
ENVIRONMENT DIVI SION. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 

TES00010 
TES00020 
TES00030 
TES00040 
TES00050 
TES00060 
TES00070 
TES00080 
TES00090 
TES00100 
TES00110 
TES00120 
TES00130 
TES00140 
TES00150 
TES00160 
TES00170 
TES00180 
TES00190 

77 FNAME PIC A(22) VALUE "ENTER YOUR FIRST NAME.". 
77 LNAME PIC A(2 3 ) VALUE "AND NOW YOUR LAST NAME.". 
0 1 ANSWR . 

05 ANSLT 
05 AFRST 
05 FILLER 
05 ALAST 

PROCEDURE DI VISION. 

PI C X(l6 ) VALUE 
PIC X( 8 ) VALUE 
PIC x VALUE 
PIC X(8) VALUE 

"WELCOME 
SPACES. 
SPACES. 
SPACES . 

TO CMS, .". 

DI SPLAY FNAME UPON 
ACCEPT AFRST FROM 
DISPLAY NAME UPON 
ACCEPT ALAST FROM 
DISPLAY ANSLT UPON 

CONSOLE. 
CONSOLE. 
CONSOLE. 
CONSOLE . 
CONSOLE. 

STOP RUN . 

There are sequence numbers in columns 73 through 80. These were 
au tomatically generated by the editor. Each sequence number is prefixed 
with the letters TES, the first three letters of the filename. The editor 
generates the sequence numbers in this form because the default file 
characterist ics are in effect: 

• TRUNC was set to 72, allowing serialization in columns 73 to 80. 
• SERIAL was set to ON 10 10, meaning that: 

The first three positions of the sequence number would be filled 
with the first three characters of the filename. 

The numerical portion of the sequence number (columns 76 through 
80) would begin with 10. 

Each subsequent sequence number would be incremented by 10. 

To make use of the update option of the editor , you'll have to convert the 
sequence numbers to all numerics - that is, all eight characters of the 

96 VM/SP Applica tion Development Guide 



Using the System Product Editor 

sequence number must be used. The editor makes this task very simple. 
First, bring the program into the editor by entering the command: 

x testprog cobol (noprof 

Now enter the following subcommands, one after the other: 

serial all 10 10 
file 

Serial ALL means that all eight characters of the sequence field are used 
for numeric sequencing. Type the file on the terminal again using the 
TYPE command. The file should look like this: 

IDENTIFICATION DIVISION. 
PROGRAM-ID. MYPROG. 
ENVIRONMENT DIVISION. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 

00000010 
00000020 
00000030 
00000040 
00000050 
00000060 
00000070 
00000080 
00000090 
00000100 
00000110 
00000120 
00000130 
00000140 
00000150 
00000160 
00000170 
00000180 
00000190 

77 FNAME PIC A(22) VALUE "ENTER YOUR FIRST NAME ... . 
77 LNAME PIC A(23) VALUE "AND NOW YOUR LAST NAME ... . 
01 ANSWR. 

05 ANSLT 
05 AFRST 
05 FILLER 
05 ALAST 

PROCEDURE DIVISION. 

PIC 
PIC 
PIC 
PIC 

X(16) 
X(8) 
x 
X(8) 

VALUE 
VALUE 
VALUE 
VALUE 

"WELCOME 
SPACES. 
SPACES. 
SPACES. 

TO CMS I .". 

DISPLAY FNAME UPON CONSOLE. 
ACCEPT AFRST FROM CONSOLE. 
DISPLAY NAME UPON 
ACCEPT ALAST FROM 
DISPLAY ANSLT UPON 

CONSOLE. 
CONSOLE. 
CONSOLE. 

STOP RUN. 

Now the sequence numbers are all numeric. 

N ow we'll make these changes: 

• Add a line between the second and third record of the file (that is, 
between the PROGRAM-ID statement and the ENVIRONMENT 
DIVISION statement. This line will contain the AUTHOR statement. 

• Move line 6 to follow line 7. 

First, call the editor with the update option using the command: 

x testprog cobol (update noprof 

and notice that the filetype is now UPDATE. We're now ready to make the 
changes indicated above. 

Chapter 3: Using the System Product Editor 97 



Using the System Product Editor 

1. Position the cursor in the prefix area of line 2 (the PROGRAM-ID 
statement), and enter: 

==a== 

to add a new line. The cursor is now at the beginning of the new line. 

2. Since the AUTHOR statement should begin in column 12, press the PF4 
key (the TAB key) twice to position the cursor in column 12. 

3. Now type in the AUTHOR line: 

author. sam jones. 

4. Now move the cursor down to the seventh line, which reads: 

77 FNAME PIC A(22) VALUE IS "ENTER YOUR FIRST NAME.". 

and enter the following prefix subconunand: 

m==== 

but don't press ENTER. We'll need a target to move the line to, so 
move the cursor to the next line, which reads: 

77 LNAME PIC A(23) VALUE IS "AND NOW YOUR LAST NAME.". 

and enter the following prefix subcommand: 

f==== 

and press ENTER. The result will be that lines 7 and 8 have swapped 
position. We have now made the changes described above. Press 
ENTER. 

5. Now, close out the editing session by entering the command: 

file 

If you now type the original program, TESTPROG COBOL, you'll see that 
none of the changes you made have taken place in the source file. This is 
because the update option has created a new file called TESTPROG 
UPDATE, which contains the changes you made, together with the control 
statements necessary to implement the changes again. Now type the 
TESTPROG UPDATE fi1p. Tt. ~hould look like this: 

. / I 00000020 $ 25 5 03/08/84 11:24:11 
AUTHOR. SAM JONES . 

. / D 00000060 03/08/84 11:24:11 

./ I 00000070 $ 75 5 03/08/84 11:24 : 11 
77 FNAME PIC X(22) VALUE "ENTER YOUR FIRST NAME .... 
00000060 

98 VMjSP Application Development Guide 



r 

Using the System Product Editor 

Note: The date and time stamp values reflect the time you issued the file 
subcommand. 

Now we'll use the CMS UPDATE command and to update the source. 
Enter the following CMS command: 

update testprog cobol 

to update the source and create a new file called $TESTPRO COBOL and 
an update log called TESPTOR UPDLOG. The source file $TESTPRO 
COBOL should look like this: 

IDENTIFICATION DIVISION. 
PROGRAM-ID. MYPROG. 
AUTHOR. SAM JONES. 
ENVIRONMENT DIVISION. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 
77 LNAME PIC X(23) VALUE "AND NOW YOUR LAST NAME.". 
77 FNAME PIC X(22) VALUE "ENTER YOUR FIRST NAME.". 
01 ANSWR. 

05 ANSLT 
05 AFRST 
05 FILLER 
05 ALAST 

PROCEDURE DIVISION. 

PIC 
PIC 
PIC 
PIC 

DISPLAY FNAME UPON 
ACCEPT AFRST FROM 
DISPLAY NAME UPON 
ACCEPT ALAST FROM 
DISPLAY ANSLT UPON 
STOP RUN. 

X(l6) 
X(8) 
x 
X(8) 

VALUE 
VALUE 
VALUE 
VALUE 

CONSOLE. 
CONSOLE. 
CONSOLE. 
CONSOLE. 
CONSOLE. 

"WELCOME 
SPACES. 
SPACES. 
SPACES. 

TO CMS, .". 

00000010 
00000020 
******** 
00000030 
00000040 
00000050 
00000070 
******** 
00000080 
00000090 
00000100 
00000110 
00000120 
00000130 
00000140 
00000150 
00000160 
00000170 
00000180 
00000190 

The update log file TESTPROG UPDLOG should look like this: 

1UPDATING 'TESTPROG COBOL Al' WITH 'TESTPROG UPDATE A1 I UPDATE 
LOG -- PAGE 1 
o ./ I 00000020 $ 25 5 03/08/84 11:24:11 

INSERTING... AUTHOR. SAM JONES. 
******** 

./ D 00000060 
DELETING ... 

00000060 
./ I 00000070 

INSERTING ... 
******** 

03/08/84 11:24:11 
77 FNAME PIC X(22) VALUE "ENTER YOUR FIRST NAME.". 

$ 75 5 03/08/84 11:24:11 
77 FNAME PIC X(22) VALUE "ENTER YOUR FIRST NAME.". 

For more information about the update option, see the VM/SP eMS User's 
Guide. 

If you're programming in COBOL, skip to "Chapter 4: More about 
Compiling and Running a Program" on page 105. 

Chapter 3: Using the System Product Editor 99 



Using the System Product Editor 

Updating a FORTRAN Source File 

2 
5 
10 
15 

The following is an example using the FORTRAN source file you created in 
the previous chapter. Now enter the command: 

type testprog fortran 

The result should look like this: 

PROGRAM MYPROG 
CHARACTER*8 F,S 
WRITE (6,5) 

TES00010 
TES00020 
TES00030 
TES00040 
TES00050 
TES00060 
TES00070 
TES00080 
TES00090 
TES00100 
TESOOllO 
TES00120 
TES00130 

READ (5,2) F 
WRITE (6,10) 
READ (5,2) S 
WRITE (6,15) F,S 
FORMAT (A8) 
FORMAT ( ' ENTER YOUR FIRST NAME. ') 
FORMAT (' AND NOW YOUR LAST NAME. ') 
FORMAT (' WELCOME TO eMS, ',A8,lX,A8) 
STOP 
END 

There are sequence numbers in columns 73 through 80, which were 
automatically generated by the editor. Each sequence number is prefixed 
with the letters TES, the first three letters of the filename. The editor 
generated the sequence numbers in this form because the default file 
characteristics were in effect: 

• TRUNC was set to 72, allowing serialization in columns 73 to 80. 

• SERIAL was set to ON 10 10, meaning that: 

The first three positions of the sequence number would be filled 
with the first three characters of the filename. 

The numerical portion of the sequence number (columns 76 through 
80) would begin with 10. 

Each subsequent sequence number would be incremented by 10. 

In order to make use of the update option of the editor, you'll have to 
convert the sequence numbers to all numerics - that is, all eight characters 
of the sequence number must be used. The editor makes this task very 
simple. First, bring the program into the editor by entering the command: 

x testprog fortran (noprof 

Now enter the following subcommands, one after the other: 

serial all 10 10 
file 

100 VM/SP Application Development Guide 



2 
5 
10 
15 

Using the System Product Editor 

SERIAL ALL means that all eight characters of the sequence field will be 
used for numeric sequencing. Type the file on the terminal again using the 
TYPE command. The file should look like this: 

PROGRAM MYPROG 
CHARACTER*8 F,S 
WRITE (6,5) 

00000010 
00000020 
00000030 
00000040 
00000050 
00000060 
00000070 
OOOOOOSO 
00000090 
00000100 
00000110 
00000120 
00000130 

READ (5,2) F 
WRITE (6,10) 
READ (5,2) S 
WRITE (6,15) F,S 
FORMAT (AS) 
FORMAT (' ENTER YOUR FIRST NAME. ') 
FORMAT (' AND NOW YOUR LAST NAME.') 
FORMAT (' WELCOME TO CMS, ',AS,lX,AS) 
STOP 
END 

Now the sequence numbers are all numeric. 

Now we'll make these changes: 

• Add a line between the second and third record of the file (that is, 
between the CHARACTER*8 statement and the WRITE (6,5) statement. 
This line will contain a comment line giving the programmer's name. 

• Move line 9 to follow line 10. 

First, call the editor with the update option, using the command: 

x testprog fortran (update noprof 

and notice that the filetype is now UPDATE. We're now ready to make the 
changes indicated above. 

1. Now position the cursor in the prefix area of line 2 (the CHARACTER*8 
statement), and enter: 

==a== 

to add a new line. The cursor is now at the beginning of the new line. 

2. Since the comment must begin in column 1, you can now type the 
comment line: 

c author. sam jones. 

3. Press ENTER and issue the DOWN 5 command. Now move the cursor 
to the tenth line, which reads: 

5 FORMAT (' ENTER YOUR FIRST NAME. ') 

and enter the following prefix subcommand: 

m==== 

Chapter 3: Using the System Product Editor 101 



Using the System Product Editor 

./ I 00000020 
C AUTHOR. SAM JONES 
./ 0 00000090 
./ I 00000100 

but don't press ENTER. We'll need a target to move the line to, so 
move the cursor to the next line, which reads: 

10 FORMAT (' AND NOW YOUR LAST NAME. ') 

and enter the following prefix subcommand: 

f==== 

and press ENTER. The result will be that lines 9 and 10 have swapped 
position. We've now made the changes described above. 

4. Press ENTER. Now, close out the editing session by entering the 
command: 

file 

If you now type the original program, TESTPROG FORTRAN, you'll see 
that none of the changes you made have taken place in the source file. 
This is because the update option has created a new file called TESTPROG 
UPDATE, which contains the changes you made, together with the control 
statements necessary to implement the changes again. Now type the 
TESTPROG UPDATE file. It should look like this: 

S 25 5 03/08/84 11:24:11 

03/08/84 11: 24: 11 
$ 105 5 03/08/84 11:24:11 

5 FORMAT ( , ENTER YOUR FIRST NAME.' ) 
00000090 

Note: The date and time stamp values reflect the time you issued the file 
subcommand. 

Now we'll use the UPDATE command and to update the source. Enter the 
following command: 

update testprog fortran 

to update the source and create a new file called $TESTPRO FORTRAN 
and an update log called TESPTOR UPDLOG. The source file $TESTPRO 
FORTRAN should look like this: 

102 VM/SP Application Development Guide 



Using the System Product Editor 

PROGRAM MYPROG 
CHARACTER*8 F,S 

C AUTHOR. SAM JONES. 
WRITE (6,5) 
READ (5,2) F 
WRITE (6,10) 
READ (5,2) S 
WRITE (6,15) F,S 

2 FORMAT (A8) 
10 FORMAT (' AND NOW YOUR LAST NAME. ') 
5 FORMAT (' ENTER YOUR FIRST NAME. ') 
15 FORMAT (' WELCOME TO CMS, ',A8,lX,A8) 

STOP 
END 

00000010 
00000020 
******** 
00000030 
00000040 
00000050 
00000060 
00000070 
00000080 
00000100 
******** 
00000110 
00000120 
00000130 

The update log file TESTPROG UPDLOG should look like this: 

1UPDATING 'TESTPROG FORTRAN AI' WITH 'TESTPROG UPDATE AI' UPDATE 
LOG -- PAGE 1 
o . / I 00000020 $ 25 5 03 / 08 / 84 11:24:11 
INSERTING... C AUTHOR. SAM JONES. 

******** 
. / D 00000090 03 / 08/ 84 11:24:11 

DELETING... 5 FORMAT (' ENTER YOUR FIRST NAME. ') 
00000090 

. / I 00000100 $ 105 5 03 / 08 / 84 11:24:11 
INSERTING... 5 FORMAT (' ENTER YOUR FIRST NAME. ') 

******** 

Summary 

This completes the example of how to use the update facility in CMS. 

For more information about the update option, see the VMjSP eMS User's 
Guide . 

In this chapter we've discussed, in some detail, how to use the System 
Product Editor, including how to use the EDIT and INPUT mode, how to 
manipulate data and the display of data , and how to use the CMS Update 
Facility. 

Chapter 3: Using the System Product Editor 103 



Using the System Product Editor 

104 VMjSP Application Development Guide 



This chapter provides more information about compiling, loading, and 
executing COBOL and FORTRAN programs under VM. It discusses various 
VM commands that are useful and necessary for running your programs. It 
also tells you how to run multiple object modules. 

Note: If you're programming in FORTRAN, skip to "More about 
FORTRAN Compilers" on page 107. 

Files Created by the COBOL Compiler 

While executing, the COBOL compiler makes use of unused space on your 
A-disk for its intermediate workfiles. These files are assigned a filename 
equal to that of the source program, with filetypes of SYSUTl, SYSUT2, 
SYSUT3, SYSUT4, and SYSUT6. (The SYSUT5 filetype is produced when 
the SYMDMP option is specified on the command line.) These workfiles 
(except SYSUT5) are erased at the normal end of compilation. If the 
compiler is halted prematurely, some or all of these files may still reside on 
the A-disk. If this is the case, you should erase them before invoking the 
compiler again. 

Figure 7 on page 106 illustrates what happens in your system. 

Chapter 4: More about Compiling and Running a Program 105 



Compiling and Running a Program 

YOUR A-DISK 
......................... 

i..... .. ..• 
I ............... ... 
I I 

: TESTPROG : 
! LISTING l 
... _-............ -... . 

YOUR A-DISK 

Figure 7. Files Used by the COBOL Compiler 

THE SYSTEM DISK 
(LIBRARY 

FUNCTIONS) 

............. - ... (: ~) .... ~ .... .,-.... .,.:. ...... :. : 
• • I 
I.. ..; 6 1 

.... ! .. :::-........ ....:::: ....... : : 
i.... .. •. i4: .... ·· 

.... !.. ••• ": ........ w::.::~ : : 
i... ..43:----
1 ............. -......... I I 

:0"'- .... ; : .! 
. •• __ .......... ~ ••. : 2 :., 

I I I 

: TESTPROG : •••. 
: SYSUT 1 : YOUR A-DISK 
•..•• __ ••..•.•.•.••••. (WORKFILES) 

YOUR A-DISK 

When the compiler writes an output disk file, it's placed on a read/write 
CMS disk. This is usually your A-disk. However, if the source program is 
on another disk also accessed in read/write mode, the compiler output files 
are written to that disk. If the source program is on a read-only disk that is 
an extension of a read/write disk (for example, a disk accessed as C/B), the 
files are written to that read/write disk (in this case, the B-disk). If the 
read-only disk is not an extension of another disk, the files are written to 
the first read/write disk in the CMS search order. 

TEXT files contain the machine-language object code generated by the 
COBOL compiler. In addition to TEXT files, the compiler produces a 
compilation listing for each COBOL source file that you compile. The 
listing is placed on your A-disk (unless LISTING was assigned to some 
other read/wr ite disk) in a file with a filetype of LISTING. 

Depending on how your installation is set up, you may get some or all of 
the following: 

• A formatted source listing. 

• Diagnostic messages. 

• Cross references (if the XREF option is used). 

106 VMjSP Application Development Guide 



Compiling and Running a Program 

• A glossary, global tables, literal pools, and register assignments (if the 
DMAP option is used). 

• Global tables, literal pools, register assignments, and assembler 
language expansion of the source program (if the PMAP option is used). 

• A condensed listing of the compiler generated object code (if the CLIST 
option is used). 

More about FORTRAN Compilers 

In "Chapter 3: Using the System Product Editor" on page 39, we used the 
VS FORTRAN Version 2 compiler to compile your program. It's one of 
several FORTRAN compilers available under VM. 

The VS FORTRAN Compiler 

You can invoke the VS FORTRAN Version 2 compiler and library in CMS 
with the FORTVS2 command. 

The VS FORTRAN Version 2 Compiler and Library program product is 
designed according to the specification of the following industry standards, 
as understood and interpreted by IBM as of May, 1982. 

The following two standards are technically equivalent. 

• American National Standard Programming Language FORTRAN, ANSI 
X3.9-1978 (also known as FORTRAN 77) 

• International Organization for Standardization ISO 1539-1980 
Programming Language-FORTRAN 

The following two standards are technically equivalent. 

• American Standard FORTRAN, X3.9-1966 (also known as FORTRAN 66) 

• International Organization for Standardization ISO R (1539-1972 
Programming Languages-FORTRAN) 

IBM has implemented FORTRAN 77 and FORTRAN 66 with IBM 
extensions. 

It is especially useful for scientific and engineering applications involving 
mathematical computations and other manipulations of numeric data. 

Some features are: 

• VSAM sequential and direct file processing through VSAM data sets. 

Chapter 4: More about Compiling and Running a Program 107 



Compiling and Running a Program 

• More flexible and direct control of character variables and arrays 
through the character data type. 

• Structured programming aids, such as the block IF statement. 

• Symbolic dumps of variables at abnormal termination. 

Figure 8 illustrates what happens in your system. 

YOUR A-DISK 

YOUR A-DISK 
................... _- ... . 
f··· ..................... · 
I I 

: TESTPROG : 
! LISTING ! 
... _- .................. . 

VS 
FORTRAN 
COMPILER 

YOUR A-DISK 

Figure 8. Files Used by the FORTRAN Compiler 

When the compiler writes an output disk file, it's placed on a read/write 
CMS disk. This is usually your A-disk. However, if the source program is 
on another disk also accessed in read/write mode, the compiler output files 
are written to that disk. If the source program is on a read-only disk that is 
an extension of a read/write disk (for example, a disk accessed as C/B), then 
the files are written to that read/write disk (in this case, the B-disk). If the 
read-only disk is not an extension of another disk, the files are written to 
the first read/write disk in the CMS search order. 

The LISTING file contains the compilation listing for the source file you're 
compiling. 

Depending on how your installation is set up, you may get some or all of 
the following: 

• A compilation listing for the source file you're compiling. 

• Diagnostic messages. 

• Cross references (if the XREF option is used). 

108 VM/SP Application Development Guide 



Compiling and Running a Program 

• Storage map (if the MAP option is used). 

Copying OS Files from CMS MACLIBS 

If you use the OS COBOL or VS FORTRAN Version 2 compiler COPY 
statement, and have frequently-used files that contain COBOL and 
FORTRAN code, you can place them in a CMS file called MACLIB. Then, 
you can identify the MACLIB to be searched during compilation. 

Use the GLOBAL or FILEDEF command to make the MACLIB available 
to the COBOL and FORTRAN compiler. You can use the following 
commands, for example, to make a library called COPYLIB MACLIB 
available to the compiler: 

global maclib copylib 

The GLOBAL command identifies the library to be searched during the 
compilation. The FILEDEF command connects the CMS filename to the 
compiler ddname SYSLIB and points to the medium (disk) on which the file 
resides. You can also use multiple MACLIBs, as well as PDS libraries on 
OS disks, concatenating these libraries under the single ddname SYSLIB. 
See "Using Macro Libraries" on page 119 for more information. 

Defining Input and Output Files 

When you execute an OS program under CMS that has input or output 
files, you must first identify the files to CMS with the FILEDEF command. 
The FILEDEF command in CMS performs the same functions as the data 
definition (DD) card in OS JCL: it describes the input and output files. 

When you enter the FILEDEF command, you specify the following 
information: 

• The ddname. 

• The device type. 

• A file identifier, if the device type is DISK. 

• The type of label on your tape file, if tape label processing is specified. 

• One or more options, as necessary. 

The FILEDEF command connects the logical I/O control statements 
(LIOCS) in your program with the physical I/O control statements 
(PIOCS) that define the input/output files outside the program. 

If you're programming in FORTRAN, skip to "Specifying the DDNAME in 
FORTRAN" on page 110. 

Chapter 4: More about Compiling and Running a Program 109 



Compiling and Running a Program 

Specifying the DDNAME in COBOL 

If you're writing a COBOL program, the ddname is specified with the 
SELECT or ASSIGN clause in the FILE CONTROL paragraph. For 
example, your program could contain the following FILE CONTROL 
paragraph and FD statements: 

FILE-CONTROL. 
SELECT INFILE ASSIGN TO UR-3505-S-CARDIN. 
SELECT OUTFILE ASSIGN TO DA-3330-S-0UTDD. 

FD INFILE 

FD OUTFILE 

In this case the ddname for infile is cardin, and the ddname for outfile is 
outdd. These are the names you would use in the ddname portion of the 
FILEDEF command. 

Note: If you're programming in COBOL, skip to "Specifying the Device 
Type" on page 111. 

Specifying the DDNAME in FORTRAN 

In FORTRAN, (if there is no OPEN statement or if the OPEN statement 
does not specify a ddname) the ddname has the following default format: 

FTxxFyyy 

where: 

xx is the FORTRAN data set reference number specified in an I/O verb 
(READ, WRITE) in your program. 

yyy is a sequence number (from 001 to 999) that identifies multiple files 
under the same data set reference numbers. For direct access files, 
this number is always 001. For sequential files, the number varies 
depending on the order in which the file is referred to in your 
pr ogram. 

For example, if your FORTRAN program contains the following I/O 
statements: 

110 VM/SP Application Development Guide 



Compiling and Running a Program 

WRITE (6,10) 
10 FORMAT (' A=?') 

READ (5,20) A 
20 FORMAT (F8.3) 

A=A**2 
WRITE (6,10) A 

30 FORMAT ('A=' ,F8.3) 

the ddname for the file referenced by the data set reference number 5 
(defined in the READ statement) would be: 

FT05F001 

The ddname for data set reference number 6 (defined in the WRITE 
statements) would be: 

FT06F001 

Data set reference number 5 causes a read from the keyboard; data set 
reference number 6 causes a write to the screen unless you issue a 
FILEDEF to override these default assignments. 

See VS FORTRAN Version 2 Application Programming: Guide for more 
information. 

Specifying the Device Type 

For input files, the device type you enter on the FILEDEF command line 
indicates the device from which you want records read. The device type 
can be: 

DISK for files on CMS or as disks. 

TERMINAL for keyboard input. 

READER for input from your virtual reader. 

TAPn for tape. The n is used to designate multiple tape drives. 

For output files, the device you specify can be: 

DISK for files on CMS or as disks. 

TERMINAL for terminal output. 

PRINTER for the virtual printer. 

TAPn for tape. The n is used to designate multiple tape drives. 

PUNCH for the virtual punch. 

Sometimes you'll specify a FILEDEF, but won't need the output. This 
happens, for example, when you want to test a program, and are concerned 
more with its logic than with the correctness of the output. In this case, 

Chapter 4: More about Compiling and Running a Program 111 



Compiling and Running a Program 

you can specify the device type DUMMY. FILEDEF will provide the 
necessary linkage between LIOCS and PIOCS, but no actual data will be 
produced. You can also use the DUMMY device type for input FILEDEFs 
if your program can run without input. 

Specifying eMS Files for Input and Output 

Sometimes you need to specify a CMS file identifier as part of the device 
type specification. Do this if the device type you specify is DISK, and the 
input or output file is to be on a CMS disk. For example, suppose your 
TESTPROG COBOL program has an input ddname of TDATA, and this file 
resides on your A-disk in a file called TEST DATA Al. You'd enter the 
following command to identify the file to CMS prior to running your 
program: 

filedef tdata disk test data 

For a program written in FORTRAN, the ddname might be FT05FOOl, if the 
data set reference number 5 is associated with a READ statement. In this 
case, the command: 

filedef ftOSfOOl disk test data 

or 

f i ledef 05 disk test data 

enables the program to read data from the CMS file TEST DATA AI. 

Specifying FILEDEF Options 

The FILEDEF command provides several options to control file 
specifications: 

• BLOCK (or BLOCKSIZE), LRECL, RECFM, and DSORG specify and 
describe the file format and organization. 

• PERM specifies whether the file definition is to be permanent (until 
CHANGE, or IPL (next session)). 

• MEMBER specifies if the file is a member of an OS partitioned data set 
or CMS MACLIB or TXTLIB. 

• You can specify whether output is to be in upper case or mixed case. 

• There are several controls for tape I/O. 

See VM/SP CMS Command Reference for a complete description of each 
option. 

112 VM/SP Application Development Guide 



Compiling and Running a Program 

Loading Object Modules 

When you've issued the necessary FILEDEFs to resolve LIOCS/PIOCS 
linkage, you can issue the LOAD and END commands (or the LOAD 
command with the START). If you have multiple modules to be loaded, you 
may need to issue the INCLUDE command. The CMS loader loads files 
into storage as a result of the LOAD and INCLUDE commands, as shown 
below. 

YOUR A-DISK 

CMS 
LOADER 

TESTPROG 
(EXECUTABLE 

CODE) 

MAIN STORAGE 

Figure 9. The eMS Loader 

SYSTEM DISK 

When a file is loaded, the loader checks for unresolved references. If there 
are any (as a result of a CALL to a subprogram, for example), the loader 
searches your disks for TEXT files with filenames that match the external 
entry name. When it finds a match, it loads the TEXT file into storage. 
The loader searches your A-disk for a file called GETDATE TEXT. As soon 
as it finds the first file with that filename and filetype, the loader loads the 
file and resolves references between the two programs. 

If the loader can't find a file, it issues a message followed by a list of 
unresolved entry point names. This occurs, for example, if the CSECT 
name for a module is different from the CMS filename. In this case, you 
can use the INCLUDE command to resolve the reference. 

Chapter 4: More about Compiling and Running a Program 113 



Compiling and Running a Program 

For example, suppose that TESTPROG issues a call to a subprogram named 
GETDATE. Suppose that GETDATE exists with a CMS file identifier of 
DA TERTN TEXT AI. After you issue the command: 

load testprog 

the loader issues the message: 

THE FOLLOWING NAMES ARE UNDEFINED: 
GETDATE 

Ready; 

You issue the following command to resolve the reference: 

include datertn 

The INCLUDE command has the same format and option list (with one 
exception) as the LOAD command. The main difference between them is 
that when you issue the INCLUDE command, the loader tables aren't reset. 

If you issue two LOAD commands in succession, the second LOAD 
command cancels the effect of the first, and the pointers to the files are 
lost. 

You can specify as many INCLUDE commands as necessary to load files 
into storage. Don't use the INCLUDE command unless you've just issued a 
LOAD command. 

You can issue a GLOBAL command between LOAD and INCLUDE (or 
between two INCLUDEs) if a TXTLIB is to be searched for unresolved 
entry points. 

When the LOAD and INCLUDE commands execute, they produce a load 
map. The load map indicates entry points loaded and their virtual storage 
locations. You may find the load map useful in debugging your programs. 
If you don't specify the NOMAP option, the load map is written onto your 
A-disk as LOAD MAP A5. Each time you issue the LOAD command, the 
old load map is replaced by a new one. 

In addition to the options provided by the LOAD and INCLUDE 
commands, you can also use loader control statements. You can insert 
these statements in TEXT files using the editor. These statements allow 
you to: 

• Set the location counter to control the load address of the next TEXT 
file. 

• Modify instructions and constants in a TEXT file (patch a program). 

• Change the entry point. 

• Nullify an external reference. 

114 VM/SP Application Development Guide 



Compiling and Running a Program 

See VM/SP eMS command Reference for a description of these statements 
(as well as the standard loader statements produced by the compiler). 

Determining Program Entry Points 

When you load a single TEXT file into storage, the default entry point is 
the first CSECT name loaded in the object file. Use the RESET option (on 
either the LOAD or INCLUDE command line) to specify a different entry 
point at which to start execution. 

For example, if TESTPROG has an entry point TEST02, start execution at 
that point with the command line: 

load testprog (reset test02 start 

If you don't specify an entry point, the loader searches for an entry point in 
the following order, selecting the first line it finds: 

1. An entry point specified on the command line. 

2. The last entry point specified with the RESET option on a LOAD or 
INCLUDE command. 

3. The name on the last ENTRY statement read by the loader. 

4. The name on the last LDT statement that contained an entry name read 
by the loader. The LDT statement is produced by the compiler. 

5. The name on the first compiler-produced END statement read by the 
loader. 

6. The first byte of the first CSECT loaded. 

Issuing Dynamic Loads with OS Macros 

An area of concern to OS programmers is resolution of external references 
when various OS macros are used for dynamic loading (LINK, LOAD, or 
XCTL macros). If you use these to call members of CMS TXTLIBs (see 
"The CMS Loadlib" on page 133), the CMS loader determines the entry 
point of the called program and returns the entry point to your program. 

If you load a TXTLIB member that has a VCON to another TXTLIB 
member, the LDT card from the second member may be the last LDT card 
read by the loader. If this LDT card specifies the name of the second 
member, CMS may return that entry point address to your program, rather 
than the address of the first member. 

Chapter 4: More about Compiling and Running a Program 115 



Compiling and Running a Program 

Summary 

This chapter discussed compiling, loading, and executing COBOL and 
FORTRAN programs under VM. It described some VM commands that are 
useful and necessary for running your programs, and told you how to run 
multiple object modules. 

116 VMjSP Application Development Guide 



All the CMS library types have a similar structure. Each one contains one 
or more members and has an internal directory. The library facilities use 
this directory to locate members. Since libraries are unlike other CMS 
files, you create, update, and use them differently than you do other CMS 
files. The three types of libraries are: 

1. Macro Files (of filetype MACLIB) that contain one or more macros 
written in assembler language, or copy files written in other languages. 
These files are referenced when you invoke either the Assembler or one 
of the compilers to process a program. Some MACLIBs are provided 
with the COBOL or FORTRAN compilers and contain subroutines used 
during the compilation process. By using the MACLIB command, you 
can create or change the contents of MACLIBs. You can use the 
GLOBAL command to define a MACLIB; this tells the compiler where 
to find routines needed when processing source code. 

2. Text or Program Files (of filetype TXTLIB) created and altered by the 
TXTLIB command. These files are defined for the compiler and linkage 
editor or loader by the GLOBAL command. They are libraries of code 
already compiled or assembled for use during program execution. As 
with MACLIBs, some TXTLIBs with run-time subroutines are provided 
with the COBOL and FORTRAN compilers. You can also create your 
own TXTLIBs with subroutines or entire programs written for use in 
one or more applications. 

3. Load Files (of filetype LOADLIB) that contain absolute or core image 
modules, compiled and link-edited. LOADLIBs differ from TXTLIBs, 
which contain relocatable code that is not yet link-edited. 

Figure 10 on page 118 shows the relationships among the various filetypes 
and the System Product Editor, the compilers, and the linkage editor or 
loader. 

Chapter 5: Using CMS Libraries 117 



Using eMS Libraries 

YOUR INPUT 

SYSTEM 
PRODUCT 

EDITOR 

COBOL OR 
FORTRAN 
COMPILER 

LINKAGE 
EDITOR OR 

LOADER 

YOUR A-DISK 

YOUR A-DISK 

YOUR A-DISK 

Figure 10. eMS Libraries 

This chapter examines the structure of macro and text libraries. Load 
libraries are discussed in "The LOADLIB Command" on page 135. 

118 VM/SP Application Development Guide 



Using eMS Libraries 

Using Macro Libraries 

A CMS macro library has a filetype of MACLIB. You can create a 
MACLIB from files with MACRO and COpy filetypes by using the 
MACLIB command. When used in an assembler language program, macro 
definitions in a MACRO file generate code in line by referencing the macro 
name. A COpy file contains predefined source statements that are included 
in a source program when the COpy statement is encountered. 

A MACLIB is similar to an OS PDS. It has individual members, which you 
can create using the editor, or which you can copy from other source files. 
For a member to be added to a MACLIB, it must be in a CMS file with a 
filetype of COPY or MACRO. Use the filetype COpy for files containing 
source code to be included in a MACLIB. The filetype MACRO is usually 
used for Assembler Language macros. 

Internally a CMS MACLIB consists of three parts: 

l. The LIBPDS Statement - contains information about the library itself. 

2. The Library Members - separated from one another by a delimiter. 

3. The Directory - contains pointers to each of the library members. 

Here's an example of how a MACLIB called TESTMAC is represented 
internally: 

LIBPDS 
TESTl 

/ / 
TEST2 

/ / 
TEST3 

/ / 
TEST4 

/ / 
TESTl 

MACRO 

MEND 

MACRO 

MEND 

MACRO 

MEND 

DSECT 

TEST2 TEST3 TEST4 

In this example, the TESTMAC MACLIB contains four members: three 
macros (TESTl, TEST2, and TEST3) and a COPY file that contains a 
DSECT program called TEST4. 

Chapter 5: Using CMS Libraries 119 



Using eMS Libraries 

You use the MACLIB command to: 

• Create a macro library 

• Add or delete members 

• List or compress the members in a library. 

Creating a New MACLIB 

The GEN parameter of the MACLIB command generates a CMS macro 
library from input files specified on the command line. The input files must 
have a filetype of either MACRO or COPY. 

For example, if you want to create the TESTMAC MACLIB used above, 
enter the command: 

maclib gen testmac testl test2 test3 test4 

This creates a macro library with the file identifier TESTMAC MACLIB Al 
from the following files: 

TESTl MACRO Al 
TEST2 MACRO Al 
TEST3 MACRO Al 
TEST4 COPY Al 

Note: If a library named TESTMAC MACLIB Al already exists, it's 
replaced by this new library. 

When macros are in a macro library, the name of the library member is 
taken from the macro prototype statement in the file. If a file contains 
more than one macro, the MAC LIB command gets the library member 
names from the macro prototype statements of each macro in the file. For 
example, suppose that several macro definitions, including one for TEST3 
MACRO, are in the TESTI MACRO file. 

The file might look like this: 

TESTl 

TEST1A 

TEST3 

MACRO 

MEND 
MACRO 

MEND 
MACRO 

MEND 

120 VMjSP Application Development Guide 



Using eMS Libraries 

If you create the TESTMAC MACLIB given in the example, the library now 
has the following members in this order: 

TESTl From TESTl MACRO Al 
TEST1A From TESTl MACRO Al 
TEST3 From TESTl MACRO Al 
TEST2 From TEST2 MACRO Al 
TEST3 From TEST3 MACRO Al 
TEST4 From TEST4 COPY Al 

The TEST3 macro, which appears in both the TESTI and the TEST3 
MACRO files, now exists as two members in TESTMAC MACLIB. But 
there's only one entry in the MACLIB directory. The MACLIB command 
doesn't check for duplicate macro names. Later, when a program requests 
TEST3 macro from TESTMAC MACLIB, it uses the first TEST3 macro it 
meets (from the TESTI MACRO file). 

Adding, Deleting, and Replacing Members 

The ADD function of the MACLIB command adds members to a macro 
library. No checking is done for duplicate names, entry points, or CSECTs. 
The new member is added at the end of the library. 

Suppose you want to add TEST5 COpy to a TESTMAC MACLIB. The 
command for this action looks like this: 

maclib add testmac testS 

TESTMAC MACLIB now contains the following members: 

TESTl From TESTl MACRO Al 
TEST1A From TESTl MACRO Al 
TEST3 From TESTl MACRO Al 
TEST2 From TEST2 MACRO Al 
TEST3 From TEST3 MACRO Al 
TEST4 From TEST4 COpy Al 
TEST4A From TEST4 COpy Al 
TESTS From TESTS COPY Al 

The REP function replaces members in a macro library by deleting the 
directory entry for the macro definition in the specified library. It adds 
new macro definitions to the library and creates new directory entries. 

Suppose you want to replace the TEST2 macro with a later debugged 
version or one with new features or code. The command line: 

mac lib rep testmac test2 

causes the following actions: 

1. The latest version of the TEST2 macro (in the file TEST2 MACRO AI) 
is added to the library. 

2. The old directory entry for the last version of TEST2 is deleted from the 
library. 

Chapter 5: Using CMS Libraries 121 



Using eMS Libraries 

3. A new directory entry is created. 

The physical order of members in the library is arranged so that the new 
version of TEST2 appears after the old version. The logical order (the one 
in which requests for macros are satisfied) is determined by the directory 
entry - not by the physical position of the member in the library. The REP 
function causes the directory entry rather than the source code to be 
replaced. 

The DEL function deletes members from a macro library. What it does is 
remove the member name from the library directory so there are no unused 
entries. The macro or copy code still takes up space in the library but can't 
be accessed because it's been deleted in the directory entry. 

Deleting the last remaining member of a MACLIB erases the entire 
MACLIB. 

If a library contains two members with the same name, only the first 
member is deleted from the directory. 

Suppose you create TESTMAC MACLIB with the command: 

maclib gen testmac test 1 test2 test3 test4 

Next you replace TEST2 MACRO using: 

maclib rep testmac test2 

Now you want to back out (that is, make unavailable) the first version of 
TEST3 macro, the one from the TESTl file . You do this by using the 
command: 

maclib del testmac test3 

The result is this: 

TESTI From TESTI MACRO Al 
TESTIA From TESTI MACRO Al 

(TEST3 From TESTl: present 
(TEST2 From TEST2: present 
TEST3 From TEST3 MACRO Al 
TEST4 From TEST4 COpy Al 
TEST4A From TEST4 COpy Al 
TEST2 From TEST2 MACRO AI, 

but unavailable) 
but replaced) 

later version 

If you have MACRO and COPY files (on any accessed disk) with the same 
filename, the MACRO version is used when you invoke the MACLIB 
command. 

122 VMjSP Application Development Guide 



Using eMS Libraries 

Compressing a MACLIB 

When you use the ADD, DEL, and REP functions repeatedly, the library 
ends up with "dead entries" or "nonmembers." These are macros and copy 
code that remain in the library but are no longer used since they have no 
directory entries. You can use the COMP function to compress a library by 
deleting any macros or copy blocks that don't have directory entries. 

The MACLIB command does this by copying each member of the file to a 
new file, using the directory. The new file now has the temporary name of 
MACLIB CMSUTl. This name is always used, regardless of the original 
macro library filename. After all valid library members are copied to 
MACLIB CMSUTl, the old library is erased and the temporary CMSUTI 
file is renamed with the old library name. 

To continue our example, the results above show that TESTMAC MACLIB 
now contains two nonmembers. One is the TEST2 macro that was replaced 
by a later version. The other is the TEST3 macro that was deleted. To save 
DASD space, you may want to compress TESTMAC to eliminate the two 
nonmembers. You issue the command: 

maclib comp testmac 

The resulting library contains the same valid members as those listed 
above. However, the ones in parentheses (the first version of TEST3 and 
the earlier version of TEST2) no longer occupy space in the MACLIB. 
Thus, the new TESTMAC MACLIB is smaller than the old one. It lost the 
two files plus two delimiter records. The directory size remains the same, 
since it was already compressed. The result is this: 

TESTl 
TEST1A 
TEST3 
TEST4 
TEST4A 
TEST2 

Examining Contents of a MACLIB 

From TESTl MACRO Al 
From TESTl MACRO Al 
From TEST3 MACRO Al 
From TEST4 COpy Al 
From TEST4 COpy Al 
From TEST2 MACRO Al 

You can use the MAP function to list certain information about members in 
a macro library. This information includes: 

• Member name 

• Size of the member 

• Sequential position in the library. 

You can obtain this information in three different ways: 

• As a file on your A-disk (the DISK option, the default) 

• As a file and as a spooled printer file (the PRINT option) 

Chapter 5: Using CMS Libraries 123 



Using eMS Libraries 

• As a display on your terminal (the TERM option). 

The DISK and PRINT options create a file with the filetype MAP and 
filemode A5. The filename is the same as the MACLIB being mapped. All 
three options erase any existing MAP file for the specified MACLIB. 

Using CMS Commands to Manipulate Members 

The macro library facilities in CMS include a number of CMS commands 
that can address particular members of a MACLIB. By using these 
commands, you can manipulate MACLIB members without altering the 
MACLIB itself. 

These commands can address MACLIB members by name: 

FILEDEF sets up a file definition for a member. 

PRINT prints a MACLIB member. 

TYPE displays a member on the terminal. 

The MAC LIST command displays a list of information about all members 
in a specified macro library. MACLIST provides you with an easy way to 
select and edit CMS maclib members. CMS commands can be issued 
against the members directly from the displayed list. The commands 
execute when you press the enter key (which is set to the EXECUTE 
command). 

In the MAC LIST environment, information that is normally provided by 
the MACLIB command (with the MAP option) is displayed under the 
control of the System Product editor. You can use XEDIT subcommands to 
manipulate the list itself. See the CMS Command Reference for more 
information on the MACLIST command. 

You can also use the MOVEFILE command with an appropriate FILEDEF 
to extract a member from a library. The MACLIB member you specify is 
copied directly from the MACLIB to your A-disk. 

Extracting a Maclib Member 

If you copy a member from a given MACLIB onto your A-disk (for example, 
to make changes to it), you can use the MOVEFILE command. You must 
first issue a file definition for: 

• The member name that is input to the MOVEFILE command 

• The output file that is written to your A-disk 

Let's say you want to make some changes to TEST DSECT in our example 
of TESTMAC MACLIB. When you added TEST to the TESTMAC 

124 VMjSP Application Development Guide 



Using eMS Libraries 

MACLIB, you may have erased the source copy to save some disk space. 
So, the original is no longer available to you. 

The following command sequence extracts the TEST DSECT from 
TESTMAC MACLIB. It then copies it to your A-disk with the file identifier 
of TEST COPY AI: 

filedef inmove disk testmac maclib (member test 
filedef outmove disk test copy al 
movefile 

Now you can edit TEST COPY and make the changes you want. Then you 
can do a MACLIB REP to replace TEST in TESTMAC MACLIB. 

Note: All CMS files you created by this method include the MACLIB 
delimiter statement / / as the last record in the file. So the first change you 
should make to a MAC LIB member extracted in this way is to delete this / / 
delimiter record. 

More about MOVEFILE 

The MOVE FILE command in the example above is a simple application 
that makes use of the existing FILEDEFs. But with the PDS option, you 
can use MOVE FILE to extract every member of a macro library. 

For example: 

filedef testl disk testmac maclib a 
filedef macro disk 
movefile testl macro (pds 

This sequence defines TESTMAC MACLIB as the input file for the 
MOVEFILE command, and assigns a temporary logical name of test! to 
the file. The second FILEDEF command identifies the filetype of the 
resulting files. It specifies that they're to be written to disk. The 
MOVE FILE command then causes test! (that is, TESTMAC MACLIB AI) 
to be moved into separate files with a filetype of macro. 

Note: Each member in this example has a filetype of MACRO, including 
those with the original filetype of COPY. You must rename those back to 
their original filetype of COpy by using the CMS RENAME command. 
Each CMS file resulting from a MOVEFILE command from a MACLIB has 
the delimiter (/ /) statement as the last record of the file. To replace any 
member of the library, first delete the delimiter record from the input 
MACRO or COpy file. 

Chapter 5: Using eMS Libraries 125 



Using eMS Libraries 

Printing and Displaying MACLIB Members 

System MACLIBs 

The PRINT and TYPE commands both accept the option MEMBER as a 
means of specifying a single MACLIB member, or all the members. The 
format of these commands is similar. 

For example, this command line causes TEST! to be printed: 

print testmac maclib (member testl 

If you code the MEMBER option with an asterisk (*), all the members are 
printed. 

If you enter the following command line: 

type testmac maclib {member * 

all the members of MACLIB are displayed. 

One spool file is produced for each member printed. To print all the 
members of a library continuously without separator pages between them, 
issue the SPOOL PRINT CONT command. Then, if you want to return to 
printing files with separator pages between them, use the SPOOL PRINT 
NOCONT CLOSE command. 

So far we've looked at macro libraries as your own private libraries. But 
some macro libraries are supplied as part of the CMS system. These 
contain various CMS and OS Assembler Language macros that you may 
want to use in your programs. 

Two of the system macro libraries supplied are specific to the CMS 
environment. They contain macros used by CMS itself. Many of these are 
useful in manipulating CMS files or in displaying data or messages on the 
terminal. 

These libraries are: 

CMSLIB MACLIB contains CMS macros from VM/370. 

DMSSP MAC LIB contains macros that are new or changed in VM/SP. 

When assembling programs that use CMS macros, be sure to specify these 
libraries in the GLOBAL command. On the command line, use DMSSP 
before CMSLIB. 

global maclib dmssp cmslib 

Two other system MACLIBs contain OS macros: 

126 VM/SP Application Development Guide 



Text Libraries 

Using eMS Libraries 

OSMACRO MACLIB contains OS macros that CMS supports or simulates 
or those that require no CMS support. 

OS MACRO 1 MACLIB contains macros that CMS doesn't support or 
simulate. 

You can assemble programs in CMS that contain these macros. However, 
they can only be executed in OS, not in CMS. 

Two system MACLIBs support subsets of specific OS functions: 

OSVSAM MAC LIB contains the subset of supported OSjVSAM macros. 

TSOMAC MACLIB contains TSO macros. 

To get a list of any of these library macros, use the MAP function of the 
MACLIB command. 

TXTLIBs contain relocatable object modules that can be referenced in two 
ways: 

• You can use CMS commands such as LOAD and INCLUDE to create 
nonrelocatable modules. 

• Programs can reference TXTLIBs at run time. 

TXTLIBs, like MACLIBs, have directories and members. You create them 
by using the TXTLIB command. The TXTLIB command has a similar 
format to the MACLIB command, except for the absence of the REP and 
COMP functions: 

G EN creates the TXTLIB. 

ADD adds members to the TXTLIB. 

The total number of members in any given TXTLIB can't exceed 1000. 
When this number is reached, an error message is displayed. 

The total number of entry points in members can't exceed 254 if the 
filename option is specified, 255 if not. An error message is displayed when 
this limit is reached and processing has begun on a new file. When 
processing terminates, the TXTLIB created includes all the text files 
entered up to, but not including, the one that caused the overflow. 

DEL deletes members from the TXTLIB. If you delete the last remaining 
member of a TXTLIB, the TXTLIB is erased. 

MAP lists the members of the TXTLIB. 

Chapter 5: Using CMS Libraries 127 



Using eMS Libraries 

LIBPDS 
ESD 
TXT 
END 
LDT 

/ / LDT 
LIBPDS 

ESD 
TXT 
END 
LDT 

/ / LDT 
LIBPDS 

ESD 
TXT 
END 
LDT 

/ / LDT 
TESTPRG1 

Since there is no REP function, you must use the DEL function followed by 
ADD to replace an existing TXTLIB member. Each function is discussed in 
greater detail below. 

When a TEXT file is added to a library, its membername or membernames 
are taken from the CSECT names or statements in the TEXT file unless the 
filename option is specified. If the filename option is specified, the 
membername is equal to the filename. Deletions and LOAD and INCLUDE 
command references must be made on these membernames; they may be 
different from the CMS filename from which they originated. 

If the FILename option is specified and you have a TEXT file with the 
filename TESTPROG and a CSECT named CHECK, when you issue the 
TXTLIB command: 

txtlib add testlib testprog (filename 

the TESTLIB TXTLIB has a new member called TESTPROG with CHECK 
as an entry point in that member. 

If the FILename option is not specified and you have a TEXT file with the 
FILename TESTPROG and a CSECT named CHECK, when you issue the 
TXTLIB command: 

txtlib add testlib tesprog 

the TESTPROG TXTLIB has a new member called CHECK. 

You must delete members by their initial entry in the dictionary (that is, 
their name or the first ID name). Any attempt to delete a specific alias or 
entry point within a member results in a NOT FOUND message. 

The internal structure of a TXT LIB is similar to that of a MACLIB: 

TESTPRG1 00000001 
00000002 

15741SC103 020183297 00000003 

TESTPRG2 00000001 
00000002 

15741SC103 020183297 00000003 

TESTPRG3 00000001 
00000002 

15741SC103 020183297 00000003 

TESTPRG2 TESTPRG3 

In this example, the TXTLIB (which we'll call TSTLIB TXTLIB AI) has 
three members: TESTPRGI, TESTPRG2, and TESTPRG3. The delimiter for 
TXTLIB has the additional characters LDT following the I I characters. 

128 VM/SP Application Development Guide 



Using eMS Libraries 

Its function is to separate library members from one another: it works in 
the same way as the MACLIB delimiter. The last records in the file are the 
directory, which has the same structure as the MACLIB directory. 

The members of a TXTLIB consist of files with a filetype of TEXT. These 
are generated from assemblies and compilations. When you compile a 
COBOL or FORTRAN program, the resulting relocatable object module is 
gIven: 

• a filename corresponding to the source program 

• a filetype of TEXT. 

The TEXT file can't be executed directly because it's relocatable; the 
addresses are all relative to location zero. This is the standard form for all 
assembler and compiler output. Each TEXT file is made up of at least one 
each of the following types of records: 

ESD is an External Symbol Dictionary statement. This is the 
first statement in the module (and therefore the first 
statement in each member of a TXTLIB). The ESD 
statement contains the name of the entry point (CSECT) of 
the module. 

TXT is a statement that contains the actual machine code of the 
program generated by the assembler or the compiler. 

LDT is a Loader Termination statement. It contains data 
required by the loader program when the module is loaded 
into storage before execution or the creation of a 
nonrelocatable module. 

TXTLIB functions operate in a similar way to MACLIB functions: 

GEN creates a TXTLIB on your A-disk. If a TXTLIB with the 
same name already exists, it's replaced by the new one. The 
filename option can be used on this version of the TXT LIB 
command. 

ADD adds TEXT files to the end of an existing TXTLIB on a 
read/write disk. No checking is done for duplicate names, 
entry points, or CSECTs. The filename option can be used 
on this version of the TXTLIB command. 

FILENAME indicates that all of the filenames specified will be used as 
the membernames for their respective entries in the TXTLIB 
file instead of the first CSECT in the file's text deck. 

DEL deletes members from a TXTLIB on a read/write disk and 
compresses the library itself to remove unused space. If 
more than one member exists with the same name, only the 
first entry is deleted. 

Chapter 5: Using CMS Libraries 129 



Using eMS Libraries 

MAP 

Notes: 

Note: Unlike as in the MACLIB, there is no separate 
command to compress the library. 

lists the names (entry points) of TXTLIB members, their 
location in the library, and the size of each entry. 

The DISK, PRINT, and TERM options of the MAP function 
operate the same way as for the MACLIB command: 

DISK (the default) writes the listing to the A-disk with the 
filename corresponding to the name of the library 
and a filetype of MAP. 

PRINT writes the listing to the A-disk with the filename 
corresponding to the name of the library and a 
filetype of MAP. It then prints the map on the 
spooled virtual printer. 

TERM displays the TXTLIB map on the terminal. 

All three options cause any existing MAP of the same name 
to be erased, but only the DISK and PRINT options create a 
new map. 

1. You may add linkage editor control statements such as NAME, ALIAS, 
ENTRY, and SETSSI to a TEXT file before adding it to a TXTLIB. 
You must follow linkage editor conventions concerning format (column 1 
must be blank) and placement within the TEXT file. The specified entry 
point must be located within the CSECT. See "Chapter 4: More about 
Compiling and Running a Program" on page 105 for a more complete 
discussion of the link-editing process and these statements. 

2. The FILename option overrides any name card found in a text file. The 
name card functions as before, but the specified file name becomes the 
membername in the TXTLIB. The name card is the only entry point 
within that membername of the TXTLIB. If a name card is not found in 
the text file and you specify the FILename option, the file's name is the 
membername. The first CSECT in the text file is the first entry point (the 
remaining entry points in the text file follow) within that member. 

Loading an Object Module 

Compiler output consists of relocatable object modules with a file type of 
TEXT. The code in these modules reference addresses relative to the start 
of an entry point. The reference point is always taken as zero. 

130 VM/SP Application Development Guide 



Using eMS Libraries 

When you want to run this kind of module, load it into storage at an 
address other than zero. In CMS, there are two main user ar6as of storage 
in which your programs execute: 

user transient area This is located starting at X'EOOO.' The transient area 
is fairly small (8K). 

main user area This are is used for larger programs. It begins at 
X'20000' in CMS storage and extends upwards to an 
area in high storage called Loader Tables. 
Generally speaking, the user area is large enough to 
hold very large programs or multiple programs 
constituting an application system. 

To load an object module into storage, use the LOAD command. This loads 
the TEXT file into storage beginning at X'20000' unless otherwise specified. 
As the program is loaded, all address references within the module are 
resolved relative to the load point. Thus, if an object module references an 
address at X'30A' in the relocatable (TEXT) version, after issuing the 
LOAD command, all references to that address are changed to X'2030A'. 

Once the program has been loaded into storage this way, it begins 
execution if you issue the LOAD command with the START option or issue 
the START command itself. 

This directs CMS to pass control to your program, which continues until 
execution is completed. When finished, control returns to CMS. The 
LOAD command operates either on TEXT files or on individual members of 
TXTLIBs. 

The TXTLIB command reads the object files as it writes them into the 
library. It creates a directory entry for each entry point or CSECT name or 
filename if the filename option is specified. Issue a GLOBAL command to 
define the library for the loader program, and specify the member name (the 
entry point) in the LOAD command. 

Suppose you have an object module named TESTPROI TEXT that was 
added to a TXTLIB TESTLIB with the FILename option. At run time, you 
can issue the following command sequence: 

global txtlib testlib 
load testprol (start 

Since the FILename option was specified in this example, the entry point 
and membername is TESTPROl. So, the LOAD command specifies this 
entry point. 

Suppose the FILename option was not specified and you have an object 
module named TESTPROI TEXT that contains an entry point named 
TESTDATE. At run time you can issue the following command sequence: 

global txtlib testlib 
load testdate (start 

Chapter 5: Using CMS Libraries 131 



Using eMS Libraries 

In the latter example, the GLOBAL command defines the TXTLIB called 
TESTLIB TXTLIB. Your object module having the file identifier 
TESTPROI TEXT is added to it. Since the entry point is TESTDATE 
instead of TESTPROl, the member name is TESTDATE. The LOAD 
command specifies this entry point. The option start passes control to that 
program once all address references are resolved by the loader. 

If you want your TXTLIBs to be searched for missing subroutines during 
CMS loading processing, issue the GLOBAL command to identify the 
TXTLIB (just as you would for macro libraries): 

global txtlib testlib 

The LOAD command recognizes one entry point at a time. If more than 
one entry point is referenced, the INCLUDE command is used to reference 
additional entry points. 

For example, suppose a program called PROG024 issues a CALL to another 
program called SUBCHECK. In this case you'd issue the command 
sequence: 

load prog024 
include subcheck 

External references in PROG024 are resolved and the SUBCHECK module 
is loaded into storage. See "Loading Object Modules" on page 113 for 
further discussion of the loader module. 

If the entry points exist in different TXTLIBs, the GLOBAL command must 
specify all the libraries that are required to resolve external references. 

The GENMOD Command 

When you have debugged and tested your programs, use the GLOBAL, 
LOAD, and INCLUDE commands together with the GENMOD command 
to create nonrelocatable object modules. These are executable modules 
whose external references have been resolved. 

We'll continue our example from the previous section. The program 
PROG024 calls one subroutine module called SUBCHECK and another 
called TESTDATE. PROG024 and SUBCHECK exist as relocatable modules 
on your A-disk. They have filetypes of TEXT. TESTDATE is in a TXTLIB 
called TESTLIB. The command sequence: 

global txtlib testlib 
load prog024 
include subcheck 
include testdate 
genmod prg24 

This command sequence does the following: 

• Brings all three modules into storage. 

132 VM/SP Application Development Guide 



Using eMS Libraries 

• Resolves all external references and addresses among them. 

• Creates a nonrelocatable module called PRG24 MODULE AI. 

The new module created by the GENMOD command can be executed 
directly in the CMS environment without having first to load it into 
storage. In our example, you can run the program simply by entering the 
following on the command line: 

prg24 

If PRG24 requires input and/or output files, you may have to define these 
files (using the FILEDEF command) before PRG24 can execute properly. If 
PRG24 expects arguments to be passed to it as parameters during execution, 
you can enter them on the command line following the MODULE name: 

prg24 02/23/85 

The GENMOD command always produces a file with a filetype of 
MODULE. It will replace any existing module of the same name. 

The eMS Loadlib 

The LKED Command 

LOADLIB is another type of library available to you. LOADLIBs, like 
MACLIBs and TXTLIBs, are in CMS simulated partitioned data set format. 
The members of LOADLIBs are link-edited programs that make use of 
certain OS macros such as LINK, LOAD, ATTACH, and XCTL. These 
macros require special handling by CMS at execution time, which is 
provided by the OSRUN command. 

You create and manipulate LOADLIBs differently than you would 
MACLIBs and TXTLIBs. Use the LKED command to create a LOAD LIB or 
LOADLIB member. Use the LOADLIB command to manipulate load 
libraries. This functions in a way similar to the MACLIB and TXTLIB 
commands. 

Use the LKED command to create a CMS LOADLIB or add members to an 
existing library. For example: 

lked prog025 (list term disk 

Use the XREF, MAP, and LIST options to cause the linkage editor to 
produce different types of documentary output. 

XREF produces an external symbol cross-reference for the modules being 
processed. 

MAP produces only a module map for the processed module. 

Chapter 5: Using CMS Libraries 133 



Using eMS Libraries 

LIST (the default) includes only linkage editor control messages in the 
printed output file. 

The TERM and NOTERM options cause the linkage editor to display 
diagnostic messages (the default) or to suppress such messages at the 
terminal. 

Use the PRINT, DISK, and NOPRINT options to direct the linkage editor 
printed output to specific medium. 

PRINT 

DISK 

spools the linkage editor printed output to the printer. 

(the default) stores the linkage editor output in a eMS disk 
files with a filetype of LKEDIT. 

NOPRINT suppresses all printed output. 

You can use other options with the linkage editor to specify characteristics 
of the load module: 

LET the module is marked as executable, even in the event of some 
linkage editor error condition. 

NE the module is noneditable. This means that it cannot be processed 
again by the linkage editor. 

OL the module is only loadable. The module cannot be accessed via 
any command except an OS LOAD. 

RENT the module is reentrant. The same copy of the module can be 
used concurrently by two or more tasks. 

REUS the module is reusable. The same copy of the routine can be used 
by two or more tasks (but not concurrently). 

REFR the module is refreshable. The module cannot be modified by 
itself or by any other module during execution. 

OVL Y the module contains an overlay structure. 

The linkage editor produces two permanent files on your A-disk (unless you 
specify PRINT or NOPRINT, in which case only one file is produced). The 
filename of both files is the name specified in the LKED command. The 
printed output of the linkage editor is given the filetype LKEDIT. The 
other file contains the load module(s) created by the linkage editor. It's 
given the filetype LOADLIB. 

134 VM/SP Application Development Guide 



Using eMS Libraries 

The OSRUN Command 

With a knowledge of the linkage editor and its control statements, you can 
manipulate LOADLIBs to provide an organized library of executable OS 
modules. To make a load library ready for the OSRUN command, use the 
GLOBAL command, as with MACLIBs and TXTLIBs. For example, to 
execute a module called OSTESTl, use the command sequence 

global loadlib oststlib 
osrun ostestl 

The GLOBAL command specifies the library to be searched. The OSRUN 
command performs the search, loads and relocates the member, and 
executes it. The OSRUN command searches only the libraries specified in 
the LOADLIB global list, unless you have a system library named $SYSLIB 
LOADLIB. In this case, OSRUN will search if it can't find the member 
name specified on the command line. 

The LOADLIB Command 

The LOADLIB command is a utility to maintain CMS LOADLIBs. Use 
this command to list the members of a LOADLIB, copy members from one 
LOADLIB to another, merge complete LOADLIBs, or compress a LOADLIB. 

ISPF/PDF Libraries 

Application programmers often work in groups to develop application 
programs. In many cases, a programmer is a specialist in certain areas of 
application programming, such as writing Assembler Language subroutines 
to be called by programs in high-level languages. You may be responsible 
for creating certain file structures for use in multiple applications. 

For example, you may be asked to create and maintain the Data Division 
statements that define certain file structures to be used by a number of 
COBOL programs, written by other programmers. Or you may need to 
write certain FORTRAN subprograms to be called by main programs during 
the course of processing. 

To help share source and object code, the Interactive System 
Productivity Facility (ISPF) has a companion product called Program 
Development Facility (PDF) that you can use to create and maintain 
libraries of shared source code, object code, data or documentation. These 
libraries may be sets of CMS files, MACLIBs, or TXTLIBs. They're 
identified by project name, group name, and type of information in the 
library. 

An ISPF/PDF library is a collection of code or data units, called members. 
Each library generally contains members with the same type of information. 
For example, all the members of one library may consist of Assembler 
source code. Another could contain COBOL Data Division definitions, or 
documentation files written in SCRIPT. ISPF/PDF libraries are maintained 

Chapter 5: Using CMS Libraries 135 



Using eMS Libraries 

internally as CMS files. Each library may consist of a set of CMS 
sequential files, or it may be a MACLIB or (for TEXT libraries only) 
TXTLIB. The particular organization is designated when the library is 
specified to PDF via the file utility (option 3.2). 

Each ISPFjPDF library is identified by the following: 

Project name is the common identifier for all libraries belonging to the 
same project. 

Group name is the identifier for a particular set of libraries. 

Type is the identifier for the type of information in the library. 

These characteristics are usually represented by PDF the same wayan as 
partitioned data set is represented: you'd join them with a period. For 
example, if your project name is PERSONNEL, the group name is 
TESTLIB, and the information type is COBOL, the library would be 
specified as: 

PERSONNEL.TESTLIB.COBOL 

Most projects use a hierarchy of related libraries to maintain effective 
version control over the programming development process and to reduce 
contention in library usage. For example, there may be three levels of 
library for a given project: a master library for production, a test library, 
and multiple development libraries. The master library designator could be 
PRODLIB, the test library TESTLIB, and the development library DEVLIB. 
The development library could also be given the name of the CMS user who 
owns the particular library. 

For the PERSONNEL project, you could have the following library names: 

PERSONNEL.PRODLIB.COBOL 

PERSONNEL.TESTLIB.COBOL 

PERSONNEL.DEVLIB.COBOL 

Each library is uniquely named. This gives great flexibility in accessing 
various members contained in them. 

Specifying ISPF/PDF Libraries and Their Members 

To specify a member of an ISPFjPDF library, you must enter a project 
name, group name, type qualifier, and member name. Each of these items 
may contain up to eight alphanumeric characters. For the project name, 
group name, and type name, the first character must be alphabetic; for a 
member name, the name must follow CMS filename naming conventions. 
PDF automatically issues the appropriate LINK and ACCESS commands 
necessary to access the minidisk on which the library resides. 

136 VM/SP Application Development Guide 



Using eMS Libraries 

PDF panels prompt you for each component of the library identification as 
follows: 

ISPF LIBRARY: 
PROJECT ===> 
GROUP ===> 
TYPE ===> 
MEMBER ===> 

To gain access to a member called TESTPROG, residing in the 
PERSONNEL.DEVLIB.COBOL library, for example, you would respond to 
the PDF panel prompts as follows: 

ISPF LIBRARY: 
PROJECT ===> personnel 
GROUP ===> devlib 
TYPE ===> cobol 
MEMBER ===> testprog 

If you don't specify the member name, PDF displays a list of members of the 
library, which you can browse before selecting a specific member. Member 
lists are provided for PDF functions such as BROWSE (to examine a file), 
EDIT (to make changes to a file), MOVE, COPY, and so on. 

Guidelines for Library Specifications 

You must specify each ISPF library with the ISPF/PDF file utility (option 
3.2) before it can be used. The name of the library along with the following 
information must be specified: 

ISPF/PDF Library Attributes 
organization, record format, and record length. 

ISPF/PDF LIBRARY Location 
owner's id and device address. 

Link Access Mode 

Filetype 

Filename 

for update (write and multi-write, among others). See 
ISPF/PDF for VM/SP Program Reference. 

for organization S (set of files). 

for organization M or T (MACLIB or TXTLIB) 

An ISPF/PDF library takes one of three forms: 

S is a set of CMS sequential files, all with the same filetype. The 
CMS filenames are the same as the ISPF/PDF library member 
names. The CMS filetype can be anything that uniquely identifies 
the set of files on a minidisk, such as COBOL, DATA, or TEXT. 

Chapter 5: Using CMS Libraries 137 



Using eMS Libraries 

M is a CMS MACLIB, with a filename that uniquely identifies the 
MACLIB on the disk. The member names in the MACLIB are the 
same as the ISPF library member names. 

T is a CMS TXTLIB, with a filename that uniquely identifies the 
TXTLIB on the disk. The member names in the TXTLIB are the 
same as the ISPF library member names. 

ISPF/PDF Library Record Format and Length 

Libraries with an organization of M or T must have a record format of F 
(for fixed-length records) and a record length of 80. Libraries with S 
organizations may have F or V (variable length) formats, with record 
lengths from 1 to 32,767 bytes. (However, the PDF editor can only process 
records that are longer than 9 bytes and shorter than 256.) 

Location of ISPF/PDF Libraries 

Each ISPF library must be completely contained on one minidisk. You 
specify this with the userid of the owner, and the virtual address of the 
device on which the library resides. 

You can have more than one ISPF/PDF library on the same minidisk. 
ISPF/PDF libraries can also exist on the same minidisk with other CMS 
files that aren't ISPF/PDF libraries. Usually, the lowest level libraries in a 
project (the DEVLIBs in our example) are private libraries, owned by the 
principal or only user. These should have an organization of S to eliminate 
the need for compressions. Higher level libraries are usually common 
libraries accessed for reading by anyone on the project, but maintained by 
one designated individual. 

For example, if your responsibility is to maintain test data for a given 
project, you would have write access to the PERSONNEL.TESTLIB.DATA 
library. Everyone else on the project would only have read access. This 
kind of restriction helps protect the integrity of the data. It helps ensure 
that everyone is using the same files. 

If you want to protect higher level libraries against unauthorized access by 
those outside the project, mini disks on which they reside can be protected 
with read passwords. You can, for example, assign the same read password 
to all minidisks containing libraries for the PERSONNEL project. This lets 
people working on the project to access any library, but prevents those 
outside the project from gaining access. 

138 VM/SP Application Development Guide 



Using eMS Libraries 

Concatenating ISPF/PDF Libraries 

PDF lets you specify up to four libraries during source editing, compilation, 
assembly, or SCRIPTjVS processing (plus additional MACLIBs for 
compilations and assemblies). Generally, the lowest level library is 
specified ahead of the next higher level library, and so on, in bottom-to-top 
order. The following example shows how you could specify three libraries 
using the PDF library (member) specification panel: 

ISPF LIBRARY: 
PROJECT ===> personnel 
LIBRARY ===> devlib ===> testlib ===> prodlib ===> 
TYPE ===> cobol 
MEMBER ===> testprog 

In this example, three libraries are specified in this order for TESTPROG 
COBOL: 

PERSONNEL.DEVLIB.COBOL 

PERSONNEL. TESTLIB.COBOL 

PERSONNEL.PRODLIB.COBOL 

Specifying libraries this way during editing lets you copy members to your 
development library. Use the specification sequence to search the libraries 
for the member you want to edit. The edited member is saved in your 
development library (the first library in the concatenation sequence), while 
the unchanged version remains in the test or master library. When you 
have finished testing the new version, you can promote it to a higher level 
library using the move/copy utility, PDF option 3.3. 

Library concatenation during language processing makes it easy to include 
source segments via INCLUDE or COpy statements (or SCRIPT imbed 
controls). You can debug new or modified programs without altering the 
contents of the test or master libraries. The output from a compilation or 
assembly (object module) is stored in the lowest level TEXT library (the 
first library in the concatenation sequence). 

ISPF/PDF Library Statistics 

When a list of library members is displayed (for example, when you leave 
the MEMBER field blank on the PDF library selection panel), various 
statistics associated with each member are displayed, including: 

Name of the member 

Version number 

Modification level 

Creation date 

Chapter 5: Using CMS Libraries 139 



Using eMS Libraries 

Summary 

Date last modified 

Size. 

These statistics help you keep track of files. Next to the name of the 
library member there's a blank field that you can use to SELECT a member 
for editing, browsing, or other PDF functions. You do this by placing the 
letter S in the blank letter field. 

See ISPF/PDF for VM/SP Program Reference for additional information on 
ISPF/PDF libraries and the PDF functions. 

Most operating systems provide library facilities. These help you develop 
programs and maintain an orderly environment for managing your files. A 
library is a CMS file that groups files (known as members) of a similar 
nature and function. To manipulate libraries and their members, you can 
use these library facilities, which are operating system functions. 

All the CMS library types have a similar structure. Each one contains one 
or more members and has an internal directory. The library facilities use 
this directory to locate members. Since libraries are unlike other CMS 
files, you create, update, and use them differently than you do other CMS 
files. 

There are three types of library facilities available in CMS. Load libraries 
are discussed in "The LOADLIB Command" on page 135. In this chapter 
we discussed the structure of macro and text libraries: 

Macro are files (of filetype MACLIB) that contain one or more 
macros written in assembler language, or copy files written 
in other languages. By using the MACLIB command, you 
can create or change the contents of MACLIBs. 

Text or program 
are files (of filetype TXTLIB) created and altered by the 
TXTLIB command. They are libraries of code already 
compiled or assembled for use during program execution. 

140 VM/SP Application Development Guide 



Up to now, we've managed communication with the terminal simply by 
writing one line at a time, and reading one data item at a time. In many 
applications, this is all you need. Applications using several data items, 
however, are greatly simplified using dialogs between the user and the 
computer. 

A common way to create dialogs is using full-screen displays, or panels. 
Although it's possible to create panels as data areas in programs, and write 
them to the terminal one line at a time, this uses a lot of storage and is 
time-consuming. Also, the task of dialog management itself - that is, 
controlling the flow from one panel to the next -~ can be very complex. 

That's why it's better to use a standard data communications interface, or 
dialog management system. Two such systems are the Interactive 
System Productivity Facility (ISPF) and Display Management System 
for CMS (DMS/CMS). 

Using ISPF for Dialogs 

The Interactive System Productivity Facility (ISPF) is an extension to 
VM/SP. It provides services that complement standard VM services, and 
that are designed just to implement interactive processing. 

ISPF provides services to interactive applications that run under its 
control. As an application developer, you can use ISPF to: 

• Display messages or predefined full-screen images (panels) 

• Originate and maintain tables of user information 

• Generate output files to be processed by other applications 

• Define and control symbolic variables 

• Control the various kinds of operational modes during processing 

• Interface to Edit and Browse facilities (via ISPF/PDF). 

Chapter 6: Using Dialog Managers 141 



Using Dialog Managers 

An application that runs under ISPF is called a dialog. You can code your 
dialog in COBOL or FORTRAN. (For FORTRAN, you must use the VS 
FORTRAN Version 2, the VS FORTRAN, or the FORTRAN IV G1 
compiler). You can even use more than one language in a dialog. There 
are also facilities that let you use the System Product Interpreter. 

Each dialog is made up of various programs and data elements. There are 
five types of dialog elements, some of which are optional. These are the 
three most commonly used elements: 

1. Functions are command procedures or programs that perform 
processing requested by you, such as display of panels and messages, 
building of tables, generation of output files, and control of operational 
modes. 

2. Panels are predefined display images, such as menus, data entry panels, 
and information-only panels. 

3. Messages are comments that provide special information to you, such 
as confirmation that a user-requested action is in process or completed, 
or a report of an error in the user's input. 

There are two elements that aren't as commonly used: 

1. Tables are two-dimensional arrays used to maintain data. Tables can 
be temporary or retained across sessions and shared among several 
applications. 

2. File Tailoring Skeletons are generalized images of sequential data 
that can be customized during a dialog to produce an output file. 

Panel definitions, message definitions, and skeletons are stored in libraries 
prior to execution of the dialog. You create them by editing directly into 
the panel, message, or skeleton libraries. No compiling or preprocessing 
step is required. Tables are generated and updated during dialog execution. 
Functions are programs or sequences of commands that you write to invoke 
and control the various ISPF elements and services. 

In the following sections, we'll show you how to use ISPF to develop a 
dialog. In "Complete COBOL Program Using ISPF" on page 275, we give a 
complete COBOL program using ISPF. In "Complete FORTRAN Program 
Using ISPF" on page 281, we give a complete FORTRAN program using 
ISPF. 

Developing an ISPF Dialog 

To develop a dialog, you use an editor to enter the various components. 
You can use either the System Product Editor, or the edit option of the 
ISPF/Program Development Facility (ISPF/PDF). 

142 VM/SP Application Development Guide 



Using Dialog Managers 

You create panels by editing a file panel, defining the panel by means of 
keywords and options, and then saving the file as a member of an ISPF 
library. 

A panel definition closely resembles the 3270 screen image that appears 
when the panel is displayed. Each character position in the panel 
definition is mapped to the same relative position on the display screen. 
You control where variable and literal data will appear by entering the 
variable name or literal itself on the panel definition exactly where you 
want it to appear. 

You create messages in the same way, but they're saved in a message 
library. Each member of a message library can contain several messages, 
each one referenced by a unique message id. You specify the message text, 
the name of the corresponding HELP panel (to be displayed if the user 
requests help when the message is displayed), and an indication whether an 
audible alarm will be sounded. You can also specify a short message text 
to be displayed in the upper right-hand corner of the screen or some other 
position you specify. 

You also create functions with the editor. Your COBOL or FORTRAN 
program can invoke ISPF services by calling an ISPF service interface 
routine called ISPLINK (in COBOL programs) or ISPLNK (in FORTRAN 
programs). On the call statement, you describe the services required. For 
example, suppose you have a panel called USRNAME in your panel library. 
To display USRNAME from a COBOL program you code: 

WORKING STORAGE SECTION. 
77 DISPSERV PICTURE A(8) VALUE 'DISPLAY' 
77 PANEL PICTURE A(8) VALUE 'USRNAME ' 

PROCEDURE DIVISION 
CALL 'ISPLINK' USING DISPSERV PANEL 

From a FORTRAN program, you invoke the same service like this: 

INTEGER DSPSRV(2),PANEL(2) 
DATA DSPSRVj'DISP' ,'LAY 'j 
DATA PANELj'USRN', 'AME 'j 

LASTRC=ISPLNK(DSPSRV,PANEL) 

The same panel can be displayed from an EXEC by invoking the ISPEXEC 
command: 

ISPEXEC DISPLAY USRNAME 

The ISPEXEC command lets you develop prototypes of functions using the 
System Product Interpreter. You can develop and test a dialog from an 
EXEC without writing a COBOL or FORTRAN application program. After 
you are satisfied with the dialog, you can simply translate your EXEC 
program into application language. 

Chapter 6: Using Dialog Managers 143 



Using Dialog Managers 

How to Begin Using ISPF 

To use ISPF, certain requirements must be met. First of all, ISPF must be 
available to you, usually by means of a CMS system disk such as the S-disk 
or the Y-disk. If you are not sure where the ISPF program product resides, 
ask your supervisor. Each installation can install ISPF to suit their own 
needs, which can vary considerably. You will need the various libraries 
distributed with the ISPF program product. 

The ISPF libraries distributed are: 

ISPPLIB MACLIB Panel Libraries 

ISPMLIB MACLIB Message Libraries 

ISPSLIB MAC LIB Skeleton Libraries 

ISPTLIB MACLIB Table Input Libraries 

You will also need the ISPST ART command to begin dialog processing. If 
these commands and libraries aren't available to you, consult your 
supervisor or system administrator. 

Before you invoke ISPF, your virtual device 191 must be accessed as the 
A-disk. During operation, ISPF assumes that this minidisk is always in 
read/write mode and that no other user has write access to it. (In some 
cases, ISPF permits multiple write access to minidisks other than 191, 
provided that such access is performed under the control of ISPF.) 

The libraries distributed with ISPF are system libraries. To make these as 
well as your own libraries available to applications running under ISPF 
control, you need to issue some FILEDEF commands, which should remain 
in effect throughout your ISPF session. Suppose you have a panel library 
called USRPANEL, and a message library called USRMESGS. You need to 
concatenate these libraries with the corresponding distributed libraries, and 
you want your libraries accessed ahead of the distributed libraries. The 
next sequence of commands (which can be included in your PROFILE 
EXEC or in another EXEC) make these libraries available to ISPF 
functions: 

FILEDEF ISPPLIB DISK USRPANEL MACLIB * (PERM CONCAT) 
FILEDEF ISPPLIB DISK ISPPLIB MACLIB * (PERM CONCAT) 
FILEDEF ISPMLIB DISK USRMESGS MACLIB * (PERM CONCAT) 
FILEDEF ISPMLIB DISK ISPMLIB MACLIB * (PERM CONCAT) 

Notice that the ddname in each pair of FILEDEFs is the same as the file 
name of the distributed ISPF library. Other ISPF libraries follow the same 
pattern: 

ISPSLIB is the ddname for all skeleton libraries 

ISPTLIB is the ddname for all the table input libraries. 

144 VM/SP Application Development Guide 



Using Dialog Managers 

There are three optional libraries that are user-defined: 

Skeleton library ddname ISPSLIB 

Table Output library ddname ISPT ABL 

File Tailoring Output library ddname ISPFILE 

The PERM option ensures that the FILEDEF remains in effect throughout 
an ISPF session. The CONCAT option concatenates two or more libraries 
under the same ddname. The order in which libraries are searched is the 
same as the order in which the FILEDEFs are issued. (You don't have to 
issue a GLOBAL MACLIB command before invoking ISPF.) 

If the ISPF commands and libraries aren't on a system disk, but are 
available by means of the LINK command, you might want to write an 
EXEC to link the ISPF system disk and issue the FILEDEFs you need. If 
the ISPF system disk is on a minidisk with a virtual address of 591, owned 
by a user called ISPMAINT, with a read password of ALL (that is, not 
requiring a password to link), the following statements in Restructured 
Extended Executor language do this: 

/* ACCESS ISPF SYSTEM */ 
CP LINK ISPMAINT 591 591 RR 
ACCESS 591 Z/A 
FILEDEF ISPPLIB DISK USRPANEL MACLIB * (PERM CONCAT) 
FILEDEF ISPPLIB DISK ISPPLIB MACLIB * (PERM CONCAT) 
FILEDEF ISPMLIB DISK USRMESGS MACLIB * (PERM CONCAT) 
FILEDEF ISPMLIB DISK ISPMLIB MACLIB * (PERM CONCAT) 

Note: See "Chapter 8: EXECs" on page 191 for a discussion of EXECs. 

You can create panel and message libraries by using the System Product 
editor together with the MACLIB command. Create each panel with the 
editor first, then build the panel library with the MACLIB command. 

Note: The panels and groups of messages must have a CMS filetype of 
COPY. When using the editor to create a panel and to specify a file 
type of COPY, be sure to enter the editor sub-command SERIAL OFF 
to prevent the editor from inserting serial numbers in the panel file in 
columns 73 - 80. If these numbers are present, they will cause ISPF 
errors. You can also use a different filetype (for example, PANEL or 
MSG) and then rename the file before building the library. 

The following steps outline a method of building a panel or message library: 

1. XEDIT MENUPAN PANEL 

2. (Create Panel) 

3. FILE MENUPAN COpy 

4. XEDIT NAMEPAN PANEL 

Chapter 6: Using Dialog Managers 145 



Using Dialog Managers 

5. (Create Panel) 

6. FILE NAME PAN COPY 

7. MACLIB GEN USERPAN MENUPAN NAMEPAN 

In steps 1 and 4, the panel members are created by using a filetype of 
PANEL to bypass serialization. In steps 2 and 5, edit sub-commands are 
used to create the panel members. In steps 3 and 6, a form of the FILE 
sub-command is used to write the files to disk with a file type of COpy. In 
step 7, the MACLIB command is used to create USERPAN MACLIB. This 
library contains the two members MENUPAN COpy and NAMEPAN 
COPY. 

After you create the panels and messages you need, you can develop a 
prototype application using the System Product Interpreter language to 
invoke the ISPEXEC command, or you can develop COBOL or FORTRAN 
applications. 

Once your programs are compiled and exist either as text or load modules, 
you need to make them available to ISPF by issuing the appropriate 
FILEDEF command. For example, if you write a program called 
TESTPROG and compile it, you have a file called TESTPROG TEXT Al on 
you A-disk. If you want to include TESTPROG in a TXTLIB called 
DEVLIB TXTLIB AI, issue the TXTLIB GEN or TXTLIB ADD command 
to insert the TEXT file into the library. This command makes the library 
available to ISPF: 

FILEDEF ISPXLIB DISK DEVLIB TXTLIB * (PERM) 

If you've included the module in a LOADLIB, use: 

FILEDEF ISPLLIB DISK DEVLIB LOADLIB * (PERM) 

When a text module is invoked (either as a TEXT file or as a member of a 
TXTLIB), any other text modules that it calls are loaded automatically by 
automatic call reference. The modules must also be TEXT files on a 
ISPF-accessible minidisk or members of the TXTLIB allocated to ddname 
ISPXLIB. If you have more than one TXTLIB, use the CONCAT option of 
the FILEDEF command to concatenate the libraries under the same 
ddname, ISPXLIB. 

If your program is in a LOADLIB, use the ddname ISPLLIB. You can also 
specify a concatenated sequence for LOADLIBs. No automatic call 
referencing occurs with load modules. All load module references must be 
resolved prior to invocation by ISPF. Load modules can be used only for 
programs that are reenterable. 

Note: Avoid using nonrelocatable (MODULE) files whenever possible. 
User MODULEs can create a very complex operational environment, since 
CMS subset mode is turned on to prevent MODULE files from overlaying 
relocatable programs already in storage. When using split screen mode, 

146 VM/SP Application Development Guide 



Using Dialog Managers 

CMS subset mode isn't turned off until all relocatable programs associated 
with logical screens have completed execution. 

When you've created the dialog functions you need, you can invoke the 
ISPF environment by means of the ISPSTART command, using the 
appropriate PANEL, CMD, or PGM parameter. 

• The PANEL parameter causes the panel specified to be displayed, and 
passes any options to it that are specified on the ISPST ART command 
line. 

• The CMD parameter specifies the name of an EXEC to be invoked as 
the first dialog function. 

• PGM is used to specify the program name to be invoked as the first 
dialog function. 

ISPF Dialog Organization 

You can organize dialogs in a number of ways to suit the needs of the 
application. A typical dialog, for example, starts with a display of the 
highest menu in a hierarchy. This is the primary option menu. User 
options selected from this menu can invoke a dialog function, or display a 
lower level menu. The lower level menu can also cause functions to receive 
control, or pass control on to still other lower level menus. This 
hierarchical organization (tree structure) might look like Figure 11: 

DIALOG 
FUNCTION 

DIALOG 
FUNCTION 

Figure 11. A Typical Dialog Starting with a Menu 

Chapter 6: Using Dialog Managers 147 



Using Dialog Managers 

Eventually, a dialog function receives control. When it does, it can use any 
of the dialog services provided by ISPF, including panel display for data 
entry. When the function completes execution, control is passed back up 
the tree to the panel from which the function was selected. Control 
eventually returns to the primary option menu. The process can now begin 
again with a different dialog path. 

Controlling Dialog Flow with the SELECT Service 

Your first major task ill developing a dialog application is to design the 
dialog itself. That is, you have to define the structure and flow of panels, 
services and functions that make it up. Controlling the flow in a dialog is 
made possible by the SELECT service. The SELECT service is used by 
ISPF itself during its initialization to invoke a function or selection panel 
that begins a dialog. During dialog processing, SELECT can be used to 
display menus and invoke program or command procedure functions. 

The same parameters used on the ISPSTART command line (PANEL, CMD, 
and PGM) can be passed to the SELECT service to specify the next action 
to be taken. If the CMD parameter is used, the EXEC it invokes can in 
turn invoke other EXECs, without requiring use of the SELECT service. 
When the PGM parameter is specified, the function it invokes can call 
other programs, which are considered part of the same function. If you call 
a function from within a program, use the SELECT service. Figure 12 on 
page 149 illustrates how the SELECT service is used to invoke and process 
a dialog. 

148 VM/SP Application Development Guide 



ISPF Panel Definition 

Using Dialog Managers 

ISPSTART (iSPSTART IS A COMM AND) 

~ 
BEGIN 
ISPF 

~. 
.. SELECT , SERVICE 

... I ... 
SELECT LOWER INVOKE 

LEVEL MENU FUNCTION 

~~ 

... DIALOG ... .. DISPLAY 
... SELECT LOWER FUNCTION ... DISPLAY r SERVICE 

LEVEL MENU DATA 
OR FUNCTION ENTRY 

PANEL 

Figure 12. SELECT Service Used to Invoke and Process a Dialog 

You define a panel in ISPF using up to seven sections, of which only two 
(the BODY and END sections) are required for all panels. The PROC 
section is required for all selection panels. The seven sections are: 

1. Attribute section defines the special characters used in the body of the 
panel definition to represent attribute (start-of-field) bytes, such as high 
intensity, low intensity, and input field. 

2. Body section defines the format of the panel as seen by the user, and 
defines the name of each variable field on the panel. 

3. Initialization section specifies the processing that will occur before 
the panel is displayed. You usually use this section to define how 
variables are to be initialized. 

4. Reinitialization section specifies the processing that will occur prior 
to redisplay of a panel. 

Chapter 6: Using Dialog Managers 149 



Using Dialog Managers 

5. Processing section specifies the processing that will occur after the 
panel is displayed. You usually use this section to define how variables 
are verified and translated. 

6. Model section (required for table display only; not allowed for other 
types of panels) specifies the format for displaying each row of the table. 

7. End section consists of only the )END statement. ISPF ignores any 
data that appears on lines following the )END statement. 

The panel display service recognizes these default field attribute characters: 

+ text (protected) field, low intensity 

% text (protected) field, high intensity 

input (unprotected) field, high intensity. 

Each panel definition section begins with a statement that indicates the 
section being defined. There are seven statements, one for the start of each 
of the sections. The statements are: 

)ATTR attribute section 

)BODY body section 

)INIT initialization section 

)REINIT reinitialization section 

)PROC processing session 

)MODEL model section (table displays only) 

)END end of panel definition 

You can define all data entry panels of a dialog using only the )BODY and 
)END statements and the default field attributes. The screen definition 
below does not contain the other statements. 

150 VM/SP Application Development Guide 



Using Dialog Managers 

)BODY 
%--------------------------- EMPLOYEE RECORDS ------------------------------
%COMMAND ===> ZCMD 
% 
%EMPLOYEE SERIAL: &EMPSER 
+ 
+ TYPE OF CHANGE%===>_TYPECHG + (NEW, UPDATE, OR DELETE) 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
)END 

EMPLOYEE NAME: 
LAST %===>_LNAME 
FIRST %===>_FNAME 
INITIAL%===> 1+ 

HOME ADDRESS: 
LINE 1 %===>_ADDRl 
LINE 2 %===>_ADDR2 
LINE 3 %===>_ADDR3 
LINE 4 %===>_ADDR4 

HOME PHONE: 
AREA CODE %===>_PHA+ 
LOCAL NUMBER%===>_PHNUM 

Figure 13. Sample ISPF Panel Definition 

+ 

+ 
+ 

+ 
+ 
+ 
+ 

When this panel is displayed to the user, it looks like this: 

p ------------------------.:--
COMMAND ===> 
EMPLOYEE SERIAL: 

TYPE OF CHANGE ===> 
EMPLOYEE NAME: 

LAST ===> 
FIRST ===> 
INITIAL ===> 

HOME ADDRESS: 
LINE 1 ===> 
LINE 2 ===> 
LINE 3 ===> 
LINE 4 ===> 

HOME PHONE: 
AREA CODE ===> 
LOCAL NUMBER ===> 

EMPLOYEE RECORDS 

(NEW, UPDATE, OR DELETE) 

Figure 14. Sample ISPF Panel, When Displayed 

For detailed information on how to define panels, see ISPF Dialog 
Management Services and Examples and ISPFjPDF for VMjSP Guide. 

Chapter 6: Using Dialog Managers 151 



Using Dialog Managers 

ISPF Message Definition 

You create message definitions using an editor, such as the System Product 
Editor. They're saved in a member of the message library. As with panel 
definitions, no compilation is required. Each message in the message 
library consists of two lines. The first line contains the message id 
(required), short message text (optional), name of corresponding HELP 
panel (optional), and audible alarm indicator (optional). The second line 
contains the full message text. 

The following message definitions contain all the fields: 

MSGOOl 'OPERATION COMPLETED' .HELP=MSGOKOl .ALARM=YES 
'THE OPERATION SPECIFIED HAS BEEN COMPLETED.' 
MSG002 'INVALID OPERATION' .HELP=MSGNGOl .ALARM=YES 
'ENTER A NUMBER FROM 1 TO 5 IN THE SPACE PROVIDED.' 

If you want this message to be issued during a dialog, you refer to the 
message by the identifier MSGOOl. The panel MSGOKOI can be invoked by 
the user with the HELP service. When the message is displayed, the 
audible alarm sounds. Finally, a short form of the message is provided for 
display in the upper right hand corner of a panel, in case you don't want 
the full message displayed right away. 

ISPF Variable Definition 

Variable services let you define and use dialog variables. Dialog variables 
are the main communication vehicle between dialog functions (program 
modules or EXECs) and ISPF services. Program modules, EXECs, panels, 
messages, tables and skeletons can all reference the same data through the 
use of dialog variables. 

The value of a dialog variable is a character string from zero to 32K bytes 
long. Some services restrict the length of dialog variable data; you can 
control the valid length of any dialog variable during panel and function 
definition. 

You reference dialog variables by name. The name is composed of 1 to 8 
characters (6 for FORTRAN). Alphanumeric characters (A-Z, 0-9, #, $, or 
@) can be used in the name, but the first character must be non-numeric. 
In the sample panel definition given above the names TYPECHG, LNAME, 
FNAME I, ADDRl, ADDR2, ADDR3, and ADDR4 are all names of dialog 
variables. 

If you write a function in a language like FORTRAN or COBOL, identify 
the internal variables to be used as dialog variables to ISPF with the ISPF 
variable service VDEFINE. The program can also access and update dialog 
variables using VCOPY and VREPLACE. These services don't apply to 
EXECs. 

152 VMjSP Application Development Guide 



ISPF Panel Services 

Using Dialog Managers 

You can use two ISPF panel services to manipulate panels. 

DISPLAY is used to display data entry panels. 

SELECT is used to display a hierarchy of selection panels (menus). 

Use the DISPLAY service to control the display of individual panels, such 
as data entry, informational, or HELP panels. The SELECT service is used 
in a dialog to create a hierarchy of functions and menus that determine the 
sequence in which those functions and menus are processed. 

The DISPLAY service reads a panel definition from the panel library, 
initializes variable panel fields from corresponding dialog variables, and 
displays the panel on the screen. A message can also be displayed with the 
panel. 

The user can enter information in fields specified on the panel definition as 
input fields. After the user presses ENTER, the contents of the input fields 
are stored in dialog variables specified on the panel definition. Then, any 
processing specified on the panel definition using the )PROC statement is 
performed. The DISPLAY service returns to the calling function. 
Optionally, the cursor can be positioned at the start of any field in the 
panel definition. 

If you want to invoke the DISPLAY service from your COBOL program, do 
so by defining the panel name, message-id, and field name in the Working 
Storage Section. For example, to display a panel called USRNAME, plus a 
message in the message library called PERXllO, and to position the cursor 
at the field called LNAME, use this code: 

WORKING-STORAGE SECTION. 
77 DISPSERV PICTURE A(8) VALUE 'DISPLAY , 
77 PANEL PICTURE A(8) VALUE 'USRNAME ' 
77 PERX110 PICTURE A(8) VALUE 'PERX110 ' 
77 CURX110 PICTURE A(8) VALUE 'LNAME 

PROCEDURE DIVISION. 
CALL 'ISPLINK' USING DISPSERV PANEL PERX110 CURXllO. 

From a FORTRAN program, the calling sequence is: 

INTEGER 
DATA 
DATA 
DATA 
DATA 

DSPSRV(2) ,PANEL(2) ,PRXllO(2),CRXllO(2) 
DSPSRVj'DISP', 'LAY 'j 
PANELj'USRN', 'AME 'j 
PRXllOj'PERX', '110 'j 
CRXllOj'LNAM', 'E 'j 

LASTRC=ISPLNK(DSPSERV,PANEL,PRXllO,CRXllO) 

Chapter 6: Using Dialog Managers 153 



Using Dialog Managers 

ISPF Variable Pools 

From an EXEC, the command is: 

ISPEXEC DISPLAY PANEL (USRNAME) MSG(PRXllO) CURSOR(CRXllO) 

You can also use the DISPLAY service to display messages, independently 
of panels. Do this by omitting the PANEL parameter; this causes the 
)REINIT section to be processed, and the current panel is overlaid with the 
message specified in the MSG parameter. 

If you don't specify the panel-name or message-id, the )REINIT section is 
processed, and the current panel is redisplayed without a message. 

You use the SELECT service to display and control a hierarchy of selection 
panels. Menus (selection panels) make up a special class of panels. A 
menu must have an input field to be used for the entry of selection options 
by the user of the application. This field, the standard name of which is 
ZCMD, is usually the first input field on line two of the panel. 
Corresponding to the ZCMD variable there must be a processing section in 
the panel definition in which ZCMD is translated and stored in the variable 
ZSEL. ZSEL is used by ISPF as input to the SELECT services. This 
parameter can be used to select a still lower panel definition. In this way, a 
path from the primary option menu can be defined down to the lowest level. 

To maintain multiple levels of control, dialog variables are organized into 
groups called variable pools, according to the dialog function and 
application with which they're associated. 

A variable pool is basically a list of variable names that lets ISPF access 
the associated variables. When an ISPF service encounters a dialog 
variable name (in a panel, message table, etc.), it searches these pools to 
access the value of the dialog variable. There are three types of variable 
pool: 

Function pool 
contains variables only accessible by a given function. 

Shared pool allows functions and selection panels to share access to 
dialog variables. 

Shared pools are created by the SELECT service when it 
processes the ISPST ART or ISPF command and when the 
NEWAPPL or NEWPOOL keywords are specified with the 
SELECT service. When SELECT returns, the shared pool 
is deleted and the previous shared pool (if any) is 
reinstated. 

Application profile pool 
contains variables retained for the user from one ISPF 
session to another. Profile variables are automatically 
available when an application begins and are automatically 
saved when it ends. 

154 VMjSP Application Development Guide 



ISPF Variable Services 

Using Dialog Managers 

A number of services are available in ISPF to control dialog variables: 

VGET retrieves variables from a shared pool. 

VPUT updates variables in a shared pool or profile pool. 

VDEFINE defines function variables. 

VDELETE removes definition of function variables. 

VRESET resets function variables. 

VCOpy copies data from a dialog variable to the program. 

VREPLACE copies data from the program to a dialog variable. 

VGET and VPUT can be invoked from any function. The other variable 
services are for use from program modules only. 

Like the panel and message services, you can invoke variable services from 
your COBOL program via the ISPLINK command, or from your FORTRAN 
program via ISPLNK. You can use the following COBOL statements to 
invoke the VDEFINE service. This defines the function variable LNAME, 
before displaying a panel containing the variable. 

WORKING-STORAGE SECTION. 
01 VDEFINE PIC X(18) VALUE "VDEFINE". 
01 NLNAME PIC X(7) VALUE "(LNAME)". 
01 LNAME PIC X(16) VALUE SPACES. 
01 CHAR PIC X(8) VALUE "CHAR 
01 LLNAME PIC 9 (6) VALUE 16 COMPo 

PROCEDURE DIVISION. 
CALL 'ISPLINK' USING VDEFINE NLNAME LNAME CHAR LLNAME 

In this example, NLNAME is the name of the function variable - that is, 
LNAME. The level-Ol name LNAME is the field to contain the value of the 
variable function. LNAME is initialized to spaces. CHAR is the literal 
CHAR, which indicates the format of the variable. LLNAME is the length 
of the variable field, 16 bytes. 

In FORTRAN, these statements define the LNAME variable and initialize 
it: 

IMPLICIT INTEGER (A-Z) 
DIMENSION LNAME(4) 
LASTRC = ISPLNK( 'VDEFINE', '(LNAME)' ,LNAME, 'CHAR' ,16) 

Chapter 6: Using Dialog Managers 155 



Using Dialog Managers 

Other ISPF Services 

Table Services 

File Tailoring Services 

Miscellaneous Services 

Other services are available in ISPF for dialog management. You can 
invoke each service from a program as shown for ISPLINK (COBOL) or 
ISPLNK (FORTRAN). 

ISPF table services let you maintain and access sets of dialog variables. A 
table is a 2-dimensional array of information in which each column 
corresponds to a dialog variable. Each row contains a set of values for 
those variables. 

A table can be either temporary or permanent. Temporary tables exist only 
in virtual storage and can't be written to disk storage. Permanent tables 
are created in virtual storage, but can be saved on disks. 

Another type of ISPF service is the file tailoring service. These services 
read skeleton files from a library and write tailored output that can be used 
to drive other functions. The file tailoring output can be directed to a 
library and/or a sequential file that's been specified by the ISPF function. 
It can also be directed to a temporary sequential file provided by ISPF. 

Each skeleton file is read record-by-record. Each record is scanned to find 
any dialog variable by name. When a variable name is found, its current 
value is substituted from a variable pool. 

The file tailoring services are: 

FTOPEN prepares the file tailoring process. It specifies whether the 
temporary file will be used for output. 

FTINCL specifies the skeleton to be used, and starts the tailoring 
process. 

FTCLOSE ends the file tailoring process. 

FTERASE erases (deletes) an output file created by file tailoring. 

In addition to display, variable, table and file tailoring services, ISPF 
provides EDIT, BROWSE, LOG, and CONTROL services. 

The EDIT and BROWSE services are available only if PDF is installed. 
These services let you invoke the PDF edit or browse programs from a 
dialog function, specifying a CMS file. 

The LOG service lets a dialog function write a message to the ISPF log file, 
which can be used as an audit or tracking mechanism. 

156 VM/SP Application Development Guide 



Using Dialog Managers 

The CONTROL service lets a dialog function condition ISPF to expect 
certain kinds of display output, or to control the disposition of errors 
encountered by ISPF services. The CONTROL service lets you: 

• LOCK the terminal keyboard during a display 

• Split a display screen if required (or inhibit screen splitting) 

• REFRESH the entire screen on the next display 

• Permit panels to be processed without displaying them. 

Error-handling CONTROL parameters lets you terminate the dialog 
function upon receipt of a return code of 12 or higher (CANCEL 
parameter), or to RETURN control to the dialog function on all errors. 

See ISPF Dialog Management Services and Examples for additional 
information on ISPF. 

Using OMS/eMS for Dialogs 

The Display Management System for CMS (DMS/CMS) is an extension to 
VM/SP that provides a way to implement interactive processing in VM. 
DMS/CMS lets you design full screen images (called panels) that can be 
displayed from applications written in Restructured Extended Executor 
(REXX) language, COBOL, or EXEC 2. Data entered into the various fields 
of a given panel are passed to the program using special interfaces 
available with EXEC 2. 

DMS/CMS has three functional parts: 

l. Panel Formatter used by panel designers to design the content and 
format of panels. 

2. Panel Manager used by programmers to associate their REXX, 
COBOL, or EXEC 2 applications with defined panels. 

3. Write Full Screen used by Assembler Language programmers to take 
advantage of the full screen I/O capabilities of DMS/CMS for 3270-type 
graphics devices. If you aren't coding in Assembler Language, you can 
ignore this. 

Chapter 6: Using Dialog Managers 157 



Using Dialog Managers 

Using the Panel Formatter 

DDDDD 
D D 
D D 
D D 
DDDDD 

M M 
M M M M 
M M M 
M M 
M M 

SSSSSS 
S 
sssss 

S 
ssssss 

The Panel Formatter is the part of DMSjCMS you use to design panels. 
You invoke the Panel Formatter with the CMS command PANEL. When 
you do, this screen image will appear: 

PANEL NAME 

TYPE THE NAME OF THE PANEL AND PRESS ENTER 

PF7-HELP 

c 

ccccc 
c 

c 
CCCCC 

M M 
M M M M 
M M M 
M M 
M M 

SSSSSS 
S 
sssss 

S 
ssssss 

On this panel, you assign a name to the panel you'll be designing in the 
screens that follow. When you press the ENTER key, you move to the 
Panel Size screen. Here, you specify character width and the number of 
lines for the screen. When you press the ENTER key, you see the Design 
Grid screen. This is where you design the layout and content of your 
panel. The next screen is the Field Definition screen, where you define 
the characteristics of the fields you specified in your panel design. Finally, 
you go to the Completion Options screen, from which you store your 
panel for later use. 

Here's a summary of the screens you use to design and store a panel: 

Panel Name This screen is displayed when you enter the command 
PANEL. You can name your panel on this screen in the 
field indicated. The cursor is positioned at the start of this 
field when the panel is first displayed. When you press the 
ENTER key, you go the Panel Size screen. 

Panel Size This screen is displayed after the Panel Name screen. You 
can also press the PF1 key at any time during a DMSjCMS 
session to review or modify the panel size definitions. You 
can specify the width of display lines (80 or 132 characters) 
and the number of lines on the screen. The default is 80 
characters by 24 lines. 

158 VM/SP Application Development Guide 



'Using Dialog Managers 

Design Grid This screen is displayed when you press PF2. You design 
your panel on this screen by entering and positioning text 
and data fields. This screen provides a grid giving row and 
column numbers to help you. 

Field Definition 
This screen is displayed when you press the PF3 key. You 
use this screen to define the characteristics of the fields you 
put in your panel on the Design Grid screen. The field 
characteristics you can define are: 

• Intensity or color 

• Extended highlighting 

• Whether the field is protected (display only) or 
unprotected (able to receive data) 

• Whether the field should be checked for alphanumeric 
or numeric values 

• Whether the cursor should skip to the next field when 
the last character of the current field is reached. 

Completion Options 
This screen is displayed when you press the PF5 key. Use 
this screen to tell DMS/CMS whether to save your panel for 
later use and whether you want to design another panel at 
this time. 

Designing Fields in OMS/eMS Panels 

When you're preparing your field using the Design Grid screen, type a field 
wherever you want it displayed. You can then describe it to the panel 
formatter by preceding it with a character that identifies it as one of three 
types: 

1. Text Field is preceded by the logical not character (I) or by the 
exclamation point (!). Text fields are used as titles, identifiers, or 
instructions. Text fields preceded by the logical not character (I) are 
displayed in normal intensity with no extended highlighting. Text 
fields preceded by the exclamation point (!) can have the default 
definitions changed, if you want, from the Field Definition Screen. 

2. Data Field is preceded by the underscore character ( ). Data fields are 
used for the passage of data. These are the fields where the panel user 
will type information. Data fields may also be filled in with data 
supplied by a program or EXEC procedure when displayed to the panel 
user. 

Chapter 6: Using Dialog Managers 159 



Using Dialog Managers 

3. Selector Field is preceded by a percent sign (%). Selector fields are 
fields that are light-pen selectable. The panel user can touch a 
light-pen to the selector field to indicate a selection. 

Each field you specify on the Design Grid screen must be preceded by one 
of the delimiters, which are specified on the bottom of the Design Grid 
screen. You can change any of these listed delimiters simply by typing the 
new delimiter over it. You'd do this, for example, if you were going to use 
one of the default delimiters (the exclamation point, for instance) in the 
text. 

You indicate blanks or nulls in a field by using the appropriate characters. 
The at sign (@) is used to indicate blanks, and the number sign (#) is used 
to indicate nulls. 

DMSjCMS provides a number of commands for your use only on the Design 
Grid screen. You type these commands on the command line (the bottom 
line) of the screen, right after the arrow ( = = = ». To position the cursor 
at the command line, press PF6. Type the command you want and press 
ENTER or PF2 to execute the command. Here are the commands you can 
use: 

DISPLAY Display the screen as the user would see it. 

ADD Add blank lines to the screen. 

DELETE Delete lines from the screen. 

DUPLICATE Duplicate lines. 

MOVE Delete and move lines. 

COPY Duplicate and move lines. 

LEFT Move typed entries to the left. 

RIGHT Move typed entries to the right. 

CENTER Center entries on the screen. 

TOP Position starting with top line. 

BOTTOM Position starting with bottom line. 

FORW ARD Move display toward bottom. 

BACKWARD Move display toward top. 

NULLS Blanks become nulls or vice versa. 

CASE Display as upper case or mixed case. 

160 VMjSP Application Development Guide 



Using Dialog Managers 

To find out more about these commands, see Display Management System 
for eMS: Guide and Reference. 

When you've finished designing your panel layout using the Design Grid 
screen, you pass on to the Field Definition screen. One Field Definition 
screen contains the specifications for one field. The line that contains the 
field being considered is shown at the top of this screen, with the field itself 
intensified. On the next line, information is provided about the field: where 
it is (row and column), its length, what type it is, and its sequence in the 
panel. 

Specify all fields on one line of the Design Grid screen before making any 
entries for any of them on the Field Definition screen. 

There are no Field Definition screens for text fields preceded by a logical 
not (,) character. This character indicates that the field is to be displayed 
at normal intensity without extended highlighting. For all other field 
types, you can specify intensity, color, and whether extended highlighting is 
to be used. This includes text fields preceded by an exclamation point (!). 
For data fields, you can also specify whether the field is to be protected or 
not. Unprotected fields can be used to accept data from the user. Protected 
fields won't accept any user data entry. The AUTOSKIP AT FIELD END 
attribute of data fields defaults to Y (yes). This causes the cursor to skip to 
the next data field when the end of the current field is reached during data 
entry. 

Using the Panel Manager 

The Panel Manager is the part of DMS/CMS you use to associate your 
COBOL, REXX, or EXEC 2 application with defined panels. 

After you've designed and stored your panel, you can use it in your 
application program. To pass information to DMS/CMS from your COBOL 
program, you need to include this statement in the Working-Storage 
Section of your program: 

COPY EUDCOBOL 

When you need to display a panel, you can code statements in the 
Procedure Division as in the following example: 

ENTER LINKAGE. 
CALL 'EUDCOBOL' USING EUDCNTRL Dl D2 D3 D4 D5 D6 FIELDS CASE 

ALPHA-JUST ALPHA-FILL NUM-JUST NUM-FILL 
RETURN-KEY RETURN-CURSOR 
RETURN-CURSOR-OFFSET 
DMASKS TMASKS SMASKS SFIELDS. 

ENTER COBOL. 

If you inserted the COpy EUDCOBOL statement in your Working-Storage 
Section, The CONTROL parameter will be EUDCNTRL. There's a listing 
of EUDCNTRL, which consists of a level-Ol structure plus a number of 

Chapter 6: Using Dialog Managers 161 



Using Dialog Managers 

level-77 data definitions, in Display Management System for eMS: Guide 
and Reference. 

The parameter list consists of a number of directions to DMSjCMS for 
managing the panel specified in the control section. Using these 
parameters, you can specify these items; 

load list 

unload list 

datamask 

textmask 

selectmask 

Areas in your program containing data to be loaded in the 
panel. The LOAD-LIST field in EUDCNTRL must be set 
to Y, and the number of areas specified in the load list 
must be equal to the value in the 
NUMBER-DATA-FIELDS field in EUDCNTRL. 

Areas in your program where data from the panel is to be 
unloaded. The UNLOAD-LIST field of EUDCNTRL must 
be set to Y, and the number of areas specified in the load 
list must be equal to the value in the 
NUMBER-DATA-FIELDS in EUDCNTRL. 

A structure in your program containing an entry for each 
data field that indicates how the field is to be displayed. 
The datamask field must be defined as; 

PIC 999 COMPo 

The EUDCNTRL section includes a number of level-77 
values that you can use to set masks for color, intensity, 
highlighting, and protection. If a datamask parameter is 
to passed in the calling sequence, the DATA-MASK field 
of EUDCNTRL must be set to Y. 

A structure in your program containing an entry for each 
text field indicating how the field is to be displayed. The 
textmask field must be defined as; 

PIC 999 COMPo 

The EUDCNTRL section includes a number of level-77 
values that you can use to set masks for color, intensity, 
highlighting, and protection. If a textmask parameter is to 
passed in the calling sequence, the TEXT-MASK field of 
EUDCNTRL must be set to Y. 

A structure in your program containing an entry for each 
select field indicating how the field is to be displayed. The 
selectmask field must be defined as; 

PIC 999 COMPo 

The EUDCNTRL section includes a number of level-77 
values that you can use to set masks for color, intensity, 
highlighting, and protection. If a selectmask parameter is 
to passed in the calling sequence, the SELECT-MASK field 
of EUDCNTRL must be set to Y. 

162 VM/SP Application Development Guide 



select-items 

Using Dialog Managers 

If you specify a selectmask and 
NUMBER-SELECT-FIELDS is greater than zero, you must 
pass a structure to DMS/CMS that contains one entry for 
each selector pen field. 

If a panel is to be displayed, before issuing a call to EUDCOBOL, your 
program must move the panel name to the PANEL-NAME field in 
EUDCNTRL and set the DISPLAY-CODE to D. 

The Panel Manager can hold control information for up to ten panels 
concurrently. If a display of more than ten panels is required of an 
application, your program can request that the Panel Manager release a 
currently active panel. A call to EUDCOBOL without a parameter list, 
specifying the panel to be released, does this. This is an example of how to 
release a panel named PERS001: 

MOVE 'PERS001' TO PANEL-NAME. 
MOVE 'P' TO DISPLAY-CODE. 
ENTER LINKAGE. 
CALL 'EUDCOBOL' USING EUDCNTRL. 
ENTER COBOL. 

The P in DISPLAY-CODE tells the Panel Manager to release the panel 
specified in PANEL-NAME. If PANEL-NAME is blank, the Panel Manager 
releases all currently active panels. 

You can find more coding rules for COBOL in Display Management System 
for eMS: Guide and Reference. 

Using EXECS to Prototype OMS/CMS Applications 

You can use EXECs written in EXEC 2 or Restructured Extended Executor 
to prototype DMS/CMS applications to be written in COBOL. You do this 
using the EUDEXEC2 command. 

To invoke DMS/CMS panel display services from an EXEC, you code 
DMS/CMS EXEC 2 commands in your EXEC and then invoke the EXEC by 
issuing EUDEXEC2. For example, if you code DMS/CMS EXEC 2 
commands in an EXEC named TSTPROGX, use a command to invoke the 
EXEC, as in the following example: 

EUDEXEC2 TESTPROGX EUDXPANL 

The parameters you specify, if any, are passed to your TSTPROGX. 

Chapter 6: Using Dialog Managers 163 



Using Dialog Managers 

&TRACE 

You can also invoke EUDEXEC2 from within an EXEC, using the EXEC 2 
subcommand environment. To do this from TSTPROGY EXEC, for example, 
you code: 

&STACK LIFO T1 T2 T3 T4 T5 T6 D1 D2 D3 D4 D5 D6 Sl S2 S3 S4 S5 S6 
&READ STRING &ALL 
EUDEXEC2 
&PRESUME &SUBCOMMAND DISPLAY 
MSGMODE OFF 
USE PANEL EUDXPANL 

The DMS/CMS EXEC 2 commands are as follows: 

USE Indicates the panel being used. 

DISPLAY Causes the panel to be displayed. 

MAP Associates a name with a panel field. 

SET Dynamically changes field attributes. 

RESET Resets any changed attributes. 

CURSOR Positions the cursor on the displayed panel. 

SIGNAL Sounds alarm when the panel is displayed. 

COMMENT Places a comment on the bottom line. 

CASE Specifies upper or lower case of data entered by the user. 

NUMBER Determines the handling of numeric fields. 

ALPHANUM Determines the handling of alphanumeric fields. 

MSGMODE Suppresses DMS/CMS error messages. 

TERMINATE Indicates that panel processing is completed. 

For detailed descriptions of these commands, see Display Management 
System for eMS: Guide and Reference. 

164 VM/SP Application Development Guide 



Summary 

Using Dialog Managers 

In this chapter we've t1.iscussed a way to create dialogs using full-screen 
displays, or panels. The task of dialog management itself - that is, 
controlling the flow from one panel to the next - can be very complex. 
That's why it's better to use a standard data communications interface, or 
dialog management system. Two such systems discussed in this chapter 
are the Interactive System Productivity Facility (ISPF) and Display 
Management System for CMS (DMS/CMS). 

The Interactive System Productivity Facility (ISPF) is an extension to 
VM/SP. It provides services that complement standard VM services, and 
that are designed just to implement interactive processing. 

ISPF provides services to interactive applications that run under its 
control. The Display Management System for CMS (DMS/CMS) is an 
extension to VM/SP that provides a way to implement interactive 
processing in VM. DMS/CMS lets you design full screen images (called 
panels) that can be displayed from applications written in REXX, EXEC 2, 
or COBOL. Data entered into the various fields of a given panel are passed 
to the program using special interfaces available with EXEC 2. 

For the complete COBOL program example using ISPF, see "Complete 
COBOL Program Using ISPF" on page 275. For the complete FORTRAN 
program example using ISPF, see "Complete FORTRAN Program Using 
ISPF" on page 281. For examples of complete ISPF screen definitions, see 
Appendix C, "ISPF Panels" on page 283. 

Chapter 6: Using Dialog Managers 165 



Using Dialog Managers 

166 VM/SP Application Development Guide 



Another useful facility is the data base, a centrally controlled, integrated 
collection of data, along with a Data Base Management System (DBMS) 
that controls the storing and retrieval of data. Data base systems are 
useful because they can be used to: 

• Reduce redundancy 

• A void inconsistencies 

• Share data among many users 

• Enforce data processing standards 

• Apply and maintain data integrity and security 

• Resolve conflicting application requirements. 

The Structured Query Language/Data System (SQL/DS), a full scale 
data base management system completely integrated into the VMjSP 
environment, is available for CMS users. 

Structured Query LanguagejData System (SQLjDS) is a relational data base 
management system designed for end users. SQLjDS simplifies data 
handling by offering facilities for querying and manipulating data and 
writing reports. It also contains data recovery and data security measures. 

This chapter is intended to provide a general introduction to the 
programming facilities of SQLjDS. It is not intended to be a complete 
description of the use of SQLjDS. For more complete information on 
SQLjDS, see SQLjDS Application Programming. 

In the sections that follow, we'll discuss how to use SQL in FORTRAN and 
COBOL programs. For a more complete COBOL program and FORTRAN 
program using SQLjDS statements, see the appropriate appendixes in 
SQLjDS Application Programming. 

In addition to using SQLjDS in programs, you can use it directly from your 
terminal via the ISQL facility of SQLjDS. This is particularly useful for 
one-time, set-up, and administrative functions. It is also useful for 
prototyping commands that you plan to use in your programs. 

Chapter 7: Using SQL/DS 167 



Using SQl/DS 

How SQl Handles Data 

In SQLjDS, the data is addressed by content, rather than by its location or 
organization in storage. It takes the form of tables in row and column 
format. SQLjDS also keeps catalogs that serve as an integrated data 
dictionary and directory. These catalogs always reflect the current status 
of the data base and are automatically updated. 

Data is defined and accessed in terms of tables and operations on tables. A 
table is defined to SQLjDS by identifying the columns in the table and 
their characteristics. All values in a column have the same characteristics. 
A table row is the smallest unit of insertion and deletion in SQLjDS. An 
insert operation adds one or more rows to a table. A delete operation 
removes one or more rows from a table. The smallest unit of data update in 
SQLjDS is the field, which is the point where a specific row and column 
meet. A field contains a single data item. 

You can do the following table operations: 

• Create or delete tables. 

• Retrieve data by table, row, or field. 

• Update, insert, or delete data. 

• Add new columns to a table. 

• Copy data from one table into another. 

• Perform utility operations, such as bulk data loading, data 
reorganization, and printing. 

SQLjDS can also store indexes to particular columns in a table. You don't 
need indexes to access stored data, but they help SQLjDS optimize its 
performance. When you request an index, SQLjDS creates and maintains 
it. When you write a program to access data, you don't refer to the index 
explicitly, but SQLjDS decides which index to use. 

SQLjDS can also store view definitions. A view is a logical or virtual 
table derived from one or more tables. It's like a stored table with rows and 
columns. You can use views as if they were tables. However, some 
operations are not valid on views. Others are restricted, depending on how 
the view was defined. You can use views mainly to simplify data retrieval 
commands and to limit access to data or its manipulation. 

Using SQL, you specify only the results you want. When you reference the 
data, you don't specify data paths, access methods, or the organization of 
the physical file. 

168 VMjSP Application Development Guide 



SQl Commands 

Using SQl/OS 

An SQL command contains a verb with one or more optional clauses, 
language keywords, and parameter operands. The structured use of verbs 
and keywords in the SQL syntax lets you request data in readable form. 

The SQL commands most commonly used are the QUERY command, the 
DATA MANIPULATION commands, and the DATA DEFINITION 
commands. When used in a program, the QUERY command is used inside a 
DECLARE CURSOR command so that you can FETCH rows of the QUERY 
result individually. 

The QUERY command is: 

SELECT Retrieves data from one or more tables. 

The DATA MANIPULATION commands are: 

INSERT Places a new row in a table. 

UPDATE Changes field level data. 

DELETE Removes one or more rows from a table. 

The DATA DEFINITION commands are: 

CREATE TABLE Defines a new table and its columns. 

DROP TABLE Erases a table. 

ALTER TABLE Adds new columns to a table. 

CREATE INDEX Defines an index that lets you access rows of a table in a 
specific sequence. 

DROP INDEX Erases an index. 

CREATE VIEW Defines a logical table from one or more tables or views. 

DROP VIEW Erases a view definition. 

Chapter 7: Using SQL/DS 169 



Using SQL/OS 

SQL/DS operates in three modes: 

1. Single User Mode lets a single application or utility perform in the 
same virtual machine as SQL/DS. It is used primarily for development 
and testing. This mode is also intended for dedicated functions like 
bulk loading and unloading data bases, and other situations that may 
require a dedicated SQL/DS data base. 

2. Multiple User Mode lets you and other users or operations access the 
same data base at the same time. It's the most common operational 
mode. The advantages are shared access and SQL/DS isolation from 
individual applications through isolation of virtual machines. 

3. Multiple Data Base Mode Lets several SQL/DS data bases run at the 
same time in either multiple or single·user mode. 

Using the SQl/DS Preprocessors 

COBOL or FORTRAN programs can issue SQL commands by imbedding 
them in line with standard language statements. For example, in a COBOL 
program you can define data areas in W orking·Storage to receive data 
accessed by SQL commands imbedded in the Procedure Division: 

WORKING-STORAGE SECTION. 
EXEC SQL BEGIN DECLARE SECTION END-EXEC. 

01 EMPSER PIC X(6) VALUE SPACES. 
01 FNAME PIC X(16) VALUE SPACES. 
01 LNAME PIC X(16) VALUE SPACES. 

EXEC SQL END DECLARE SECTION END-EXEC. 

PROCEDURE DIVISION. 
EXEC SQL DECLARE CRSR CURSOR FOR 
SELECT FRSTNAME, LASTNAME 
FROM NAMELIST 
WHERE SERIALNO :EMPSER 
END-EXEC. 

In FORTRAN, you code the following statements to imbed the SQL 
SELECT command: 

EXEC SQL BEGIN DECLARE SECTION 
CHARACTER*6 EMPSER 
CHARACTER*16 FNAME,LNAME 
EXEC SQL END DECLARE SECTION 

EXEC SQL DECLARE CRSR CURSOR FOR 
*SELECT FRSTNAME, LASTNAME 
*FROM NAMELIST 
*WHEHE SERIALNO = :EMPSER 

170 VMjSP Application Development Guide 



Using SQl/DS 

Note: The asterisks (*) in the above example are required continuation 
characters. 

In these examples you can access a table called NAME LIST in the SQL 
data base. FRSTNAME (first name) and LASTNAME (last name) are 
columns. Data is selected from these columns when an EMPSER defined in 
the program is matched with a serial number value in the table. SQL brings 
in the the data and inserts it into the fields defined in the program. 

SQLjDS analyzes and converts the embedded SQL commands to SQLjDS 
calls before the normal COBOL or FORTRAN compilation. The keyword 
EXEC isn't defined for either the COBOL or FORTRAN compiler. SQL 
commands are converted to equivalent language statements before they're 
compiled. This is done using a SQLjDS Preprocessor. 

Preprocessing does two things: First, it modifies the source program by 
replacing SQL statements with standard host language code. (SQL 
statements are kept as comments.) The source program is then ready for 
normal processing. Second, it optimizes and compiles the SQL statements 
by defining them to SQLjDS and creating an access module that efficiently 
executes the SQL requests that the program makes. 

After the SQLjDS Preprocessor has processed your program, you can use 
the FORTRAN or COBOL compiler to produce an executable object module. 

When you run a program, the access module created by the SQLjDS 
Preprocessor is called to handle each SQL command. The access module 
resides in the SQLjDS data base. At preprocessing, SQLjDS chooses the 
best access path for each SQL command in the program, based on available 
indices, data statistics, etc., and stores the access information in the access 
module. When SQLjDS loads the access module, it checks that the module 
is still valid. An access module may be invalid, for example, if a path is 
based on an index that is no longer available. 

Declaring Host Variables to Sal 

Main Variables 

A host variable is a variable referenced by SQL in your program. SQLjDS 
recognizes two types of host variables: main variables and indicator 
variables. 

Main variables are normal program variables used in SQL statements. To 
get SQL to recognize these variables, you must place them in a SQL 
Declare Section. This is a special area in your program that's delimited by 
two SQL statements: 

• BEGIN DECLARE SECTION 

• END DECLARE SECTION 

Chapter 7: Using SQLjDS 171 



Using SQl/DS 

IndIcator Variables 

Main variable names can have as many as 18 characters in COBOL and 6 in 
FORTRAN. This can consist of A-Z, 0-9, the three national characters (@, 
#, $), and the underscore. (You can also use the hyphen in COBOL, where 
the preprocessor treats it internally as an underscore.) In COBOL, don't 
give any variable a name beginning with SQL or RD!. In FORTRAN, don't 
give any variable a name beginning with SQ. These are reserved for 
SQL/DS use. 

You can't use a number or the underscore as the first character of a 
variable name. Other naming restrictions apply to specific languages. 
When you reference variables in SQL statements, preface them with a 
colon. For example, a variable named DBDESC is referenced as :DBDESC 
in a SELECT command. 

By using optional indicator variables, you can indicate null values on input 
to SQL/DS (the UPDATE and INSERT statements) or output from SQL/DS 
(the INTO clause of a FETCH statement). You must declare indicator 
variables in the SQL Declare Section .. They must be of a host language 
data type equivalent to the SQL data type SMALLINT. In COBOL, this is 
S9(4) COMP; in FORTRAN it's INTEGER*2. When used in an SQL 
statement, the indicator variable names must follow the corresponding main 
variable name and must be preceded with a colon. For example, if the main 
variable name is DBDESC and the corresponding indicator name is 
DESCIND, in a SQL statement you'd refer to it with the expression 
:DBDESC:DESCIND. 

After an SQL request involving an output variable is satisfied, a value is 
returned to your program in the indicator variable. 

• When the indicator variable value is zero, the value returned into the 
main variable isn't null. 

• When the indicator variable value is negative, the main variable is null 
and should not be used for processing by the host program. 

• When the indicator variable value is positive, SQL/DS has truncated 
the value of the main variable. The returned value was larger than the 
declared value. 

172 VM/SP Application Development Guide 



Using SQl/OS 

Data Types Supported by SQLlDS 

SQL Datatype 

INTEGER 

SMALLINT 

FLOAT 

CHAR(n) 

DECIMAL(m,n) 

GRAPHIC(n) 

VARCHAR and 
LONG 
VARCHAR 

V ARGRAPH and 
LONG 
VARGRAPHIC 

SQLjDS supports the following data types in the corresponding COBOL or 
FORTRAN formats: 

COBOL Equivalent Remarks 

PIC S9(9) COMPo 

PIC S9(4) COMPo 

COMP-2. 

PIC X(n). n is the number of 
characters. 

PIC S9(p)ffiV9(n)" COMP-3. m is the precision. n is 
the scale (the number of 
digits to the right of the 
decimal). p is the 
number of digits to the 
left of the decimal. 

PIC G(n) DISPLAY-l. n is the number of 
graphic characters. 

01 S-VAR. 
49 S-LENGTH PIC S9(4) COMPo 
49 S-VALUE PIC X(n). 

01 G-VAR. 
49 G-LENGTH PIC S9(4) COMPo 
49 G-VALUE PIC G(n) DISPLAY-l. 

In COBOL, V ARCHAR and LONG V ARCHAR have the same format. 
VARCHAR and LONG VARCHAR are used for character data that varies 
in length. For V ARCHAR, the maximum number of characters is 254. For 
LONG V ARCHAR, the maximum number of characters is 32,767. You can 
define all data types at level 77 or level 01 except V ARCHAR and 
V ARGRAPHIC and their LONG variants. They must be at level 01 with 
sublevels 49, as shown above. GRAPHIC is used for Double Byte Character 
Set data. 

SQLjDS supports the following data types in the FORTRAN format: 

SQL Datatype FORTRAN Equivalent 

INTEGER INTEGER 
INTEGER*4 

SMALLINT INTEGER*2 

FLOAT REAL 
REAL*4 
REAL*8 
REAL*16 
DOUBLE PRECISION 

CHAR(n) CHARACTER 
CHARACTER*n 

FORTRAN doesn't support the DECIMAL or GRAPHIC data types. 
However, it does support INTEGER, REAL, and DOUBLE PRECISION 

Chapter 7: Using SQLjDS 173 



Using SQl/DS 

main variables for conversion to and from DECIMAL columns. FORTRAN 
doesn't support V ARCHAR or LONG V ARCHAR. However, it supports 
fixed-length CHARACTER main variables for conversion to and from 
V ARCHAR and LONG V ARCHAR columns. FORTRAN doesn't support 
VARGRAPHIC or LONG VARGRAPHIC at all. 

Coding SQl Commands 

At the start of every SQL program, you must place SQL statements that: 

• Declare an SQL Communication Area (SQLCA). 

• Declare special variables that SQL uses to interact with the host 
program. 

The generalized COBOL structures you need to imbed SQL commands in 
your program take this form: 

WORKING-STORAGE SECTION. 
EXEC SQL BEGIN DECLARE SECTION END-EXEC. 

(Variable definitions used by SQL go here.) 

EXEC SQL END DECLARE SECTION END-EXEC. 
EXEC SQL INCLUDE SQLCA END-EXEC. 

PROCEDURE DIVISION. 

EXEC SQL command-name ... . .. END-EXEC. 

The generalized FORTRAN structures you need to imbed SQL commands in 
your program take this form: 

174 VM/SP Application Development Guide 



Using SQl/DS 

EXEC SQL BEGIN DECLARE SECTION 

(Variable definitions used by SQL go here.) 

EXEC SQL END DECLARE SECTION 
EXEC SQL INCLUDE SQLCA 

EXEC SQL command-name ... 

Place the data description entries for all variables referenced in SQL 
statements in the SQL declare section. You can use the variables 
appearing in these SQL declare sections in regular COBOL or FORTRAN 
statements as well as in SQL statements. When referencing variables in 
SQL statements, the variable name must be preceded by a colon (:). When 
the same variable is referenced in an ordinary COBOL or FORTRAN 
statement, omit the colon. 

Variables used in SQL statements can't be any of the following: 

• Vector or array declarations 

• A constant defined by a PARAMETER statement 

• Any declarations that use expression to define the length of the 
variables 

• Character variables declared with an undefined length such as 
CHARACTER*(*). 

Logical Units of Work and Error Handling 

The term logical unit of work means a sequence of SQL commands that 
SQLjDS views as a unit of consistency and recovery. (These commands can 
be mixed with non-SQL statements.) This concept is useful because SQLjDS 
can ensure the integrity of the data base. It does this by making sure that 
either all or none of the updates in a logical unit of work are done. For 
example, for system errors SQLjDS automatically restores all changes made 
during a logical unit of work. You can achieve this explicitly by using the 
ROLLBACK WORK command. 

A logical unit of work begins with any SQL command and ends with a 
COMMIT WORK or ROLLBACK WORK command. If a system failure 
occurs before the explicit end of a logical unit of work, SQL automatically 
does a rollback of all the work from the start of the logical unit up to the 
point of system failure. 

Chapter 7: Using SQL/DS 175 



Using SQl/OS 

You must tell SQLjDS what to do for SQL errors. First you declare SQLCA 
through the INCLUDE SQLCA command. Then you code the appropriate 
WHENEVER commands at critical points in your program. The scope of 
the WHENEVER command is determined by its position in the program 
rather than its execution sequence. This is illustrated in an example below. 

The SQLCA has two especially important fields: the SQLCODE and 
SQLWARN. 

SQLCODE contains a code that indicates the result of each SQL statement. 
The value in SQLCODE summarizes the execution of your SQL statements: 

• When the value is zero, the command has executed successfully. 

• When the value is negative, an error condition has occurred. 

• When the value is positive, a normal condition (for example, 
End-Of-File), or a warning condition is indicated. 

You can test SQLCODE with the WHENEVER statement, which also 
indicates the action to take. The syntax of this statement is: 

WHENEVER SQLERROR action 

Possible actions are CONTINUE or GO TO label. When SQLCODE is 100, 
it indicates a NOT FOUND condition, which you can test by: 

WHENEVER NOT FOUND action 

SQLW ARNING indicates a warning condition. SQLW ARNING occurs 
when SQLCODE is greater than ° but not equal to 100, or the SQL warning 
indicator, SQLWARNO, contains the value W. The syntax is: 

WHENEVER SQLWARNING action 

The normal action specified for SQLW ARNING is CONTINUE or GO TO 
label. 

In this COBOL example, the WHENEVER command causes a branch to 
ERRCHK when an error condition occurs (SQLERROR becomes negative) 
throughout the program. At ERRCHK, the WHENEVER is reset to 
CONTINUE during execution of the ROLLBACK WORK to prevent a 
failure during ROLLBACK from causing a program loop. After the branch 
back to DISPMENU the WHENEVER branch to ERRCHK is in effect 
agam. 

176 VM/SP Application Development Guide 



Using SQl/OS 

PROCEDURE DIVISION. 

EXEC SQL WHENEVER SQLERROR GO TO ERRCHK END-EXEC. 

DISPMENU. 

ERRCHK. 
EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC. 
EXEC SQL ROLLBACK WORK END-EXEC. 
GO TO DISPMENU. 

In this FORTRAN example, the WHENEVER command causes a branch to 
statement 90 when an error condition occurs (SQLERROR becomes 
negative) throughout the program. At statement 90, the WHENEVER is 
reset to CONTINUE during execution of the ROLLBACK WORK to prevent 
a failure during ROLLBACK from causing a program loop. After the 
branch back to statement 10, the WHENEVER branch to 90 is in effect 
agam. 

EXEC SQL WHENEVER SQLERROR GO TO 90 

10 LASTRC ISPLNK ('DISPLAY' ,'MENUPAN ') 

90 CONTINUE 

Creating SQl/DS Tables 

EXEC SQL WHENEVER SQLERROR CONTINUE 
EXEC SQL ROLLBACK WORK 
GO TO 10 

The table creation authority is RESOURCE. If you aren't sure that you 
have RESOURCE authority, speak to your data base administrator. You 
can create tables without RESOURCE authority in a PRIVATE DBSPACE 
created for you by a data base administrator. 

A DBSPACE is a portion of the data base that can contain one or more 
tables and any associated indexes. Each table stored in SQLjDS is placed 
in some particular DBSPACE chosen by the creator of the table. The data 
base administrator defines DBSPACEs when the data base is generated. 
Additional spaces can be added later via the ADD DBSPACE function. 
Each DBSPACE remains as an unnamed "available" DBSPACE until it is 
"acquired" by means of an ACQUIRE DBSPACE statement. The acquiring 

Chapter 7: Using SQL/DS 177 



Using SQl/DS 

user gives a name to the DBSPACE and defines certain characteristics for 
it (or allows default characteristics). 

With SQL/DS you define new objects in the data base without stopping the 
system or calling special utilities. Your application program can create 
tables for storing and manipulating temporary results. It can then drop the 
table when it's no longer needed. You can also create indexes and drop 
table indexes as well as synonyms for table names. By using SQL Data 
Definition statements, you can accomplish these functions. 

The table-id part of the CREATE TABLE statement specifies the table 
name. As a default, your table name is prefixed with your userid. The 
specifications for the table are pairs of column-names and data types with 
or without the qualifier NOT NULL. This qualifier tells SQL/DS not to 
allow null values in a particular column. 

Any statement that later tries to put a null value in that column is rejected 
. with an error code. The optional DBSPACE parameter lets you choose a 
specific data base space in which to create the table. 

For example, the following statement can help you create a table called 
NAMELIST: 

CREATE TABLE NAMELIST 
(FRSTNAME CHAR(16) NOT NULL, 
LASTNAME CHAR(16) NOT NULL, 
SERIALNO CHAR(6) NOT NULL, 
AREACODE CHAR(3), 
ZIPCODE CHAR(5) , 
PHNUMBER CHAR(7)) 

IN TEST.DBSP 

Once a table is created, you can't change the data types of its columns or 
drop a column from the table. However, you can add new rows to the table 
using the INSERT command. For example: 

INSERT INTO NAMELIST 
VALUES ('LEE', 'GREEN', '123456') 

The command adds Lee to the first column, Green to the second column and 
123456 to the third column. 

You can also add new columns to a table using the ALTER TABLE 
command, or drop or delete a table using the DROP TABLE command. 
You must be the creator of the table or have data base administrator 
authority to delete a table. 

For more information on data base spaces and SQL/DS, see SQL/DS 
Application Programming. 

178 VM/SP Application Development Guide 



Using SQl/OS 

Querying SQl/OS Tables 

When accessing SQL/DS tables, use cursor management routines. In 
general terms, a cursor is a pointer to the data base. The SQL DECLARE 
statements define a cursor by associating a name you choose with a query. 
The query may cause many rows to be returned from the data base. These 
rows are called the active set of the cursor. For example: 

DECLARE CRSR CURSOR FOR 
SELECT FRSTNAME, LASTNAME 
FROM NAMELIST 
WHERE SERIALNO = :EMPSER 
ORDER BY ZIPCODE 

<---cursor-clause 
<---SELECT-clause 
<---FROM-clause 
<---WHERE-clause 
<---ORDER-BY-clause 

In order to retrieve SQL data, you declare (name) a cursor (CRSR in this 
example) and associate with it a SELECT statement that describes the 
conditions and tables required for the retrieval. The SELECT statement 
must include a SELECT-list that specifies the columns (FRSTNAME, 
LASTNAME) required and a FROM-list that specifies the table(s) 
(NAMELIST) that contains those columns. 

Optionally, a WHERE-clause may be used to filter the results. If it is not 
provided, all rows will qualify for the retrieval. Refer to "Defining Search 
Conditions" below for more detail. 

The optional ORDER-BY-clause permits ordering the results of the query. 
Without it, the ordering is unpredictable. 

After you issue the DECLARE CURSOR statement, you must open the 
cursor with an OPEN statement. For example: 

OPEN CRSR 

using the same cursor-name you specified in the DECLARE CURSOR 
statement. 

Next you issue the FETCH statement. This tells SQL/DS to advance the 
cursor to the next row of the active set (result) and deliver the data into the 
main variables you specify on the FETCH statement. 

The syntax of the FETCH statement is simple: 

FETCH CRSR INTO :FNAME 

In the FETCH statement, you must follow certain punctuation rules. 
Separate the main variables from each other with commas and precede each 
one with a colon. For example: 

FETCH CRSR INTO :FNAME, :LNAME 

When you're finished with a cursor, issue the CLOSE statement. For 
example: 

CLOSE CRSR 

Chapter 7: Using SQL/DS 179 



Using SOLIDS 

Defining Search Conditions 

To find particular items of data in SQL data bases effectively, you need to 
define search conditions in the WHERE-clause. These let you control row 
selection. A search condition is a collection of predicates. Each one 
specifies a test that SQL/DS applies to the rows of the table. 

For example: 

WHERE SERIALNO = :EMPSER 

causes SQLjDS to test the values in the SERIALNO column of each row of 
the NAMELIST table. SQL returns rows to the active set only when the 
SERIALNO value equals the value in the main variable EMPSER. 

The criterion: 

SERIALNO :EMPSER 

is a predicate. 

Along with column names, you can also use constants, variables, and any 
combination of these connected by arithmetic operators. 

There are four arithmetic operators: 

+ Addition 

Subtraction 

* Multiplication 

/ Division 

You can use parentheses in an expression if you want to establish 
precedence among the operators. The default order of precedence is: 
negation, multiplication, division, addition, subtraction. 

In addition to the equal sign, you can use: 

-, = Not equal to. 

> Greater than. 

> = Greater than or equal to. 

< Less than. 

< = Less than or equal to. 

For example: 

PARTNO > 105 

180 VMjSP Application Development Guide 



Using SQl/OS 

If you use variables in an expression, you must precede the variable name 
with a colon. This distinguishes it from a column name. Thus, the 
predicate: 

SERIALNO > :EMPSER 

means the value in column SERIALNO is greater than the value in variable 
EMPSER. 

Conversely the predicate: 

:EMPSER > SERIALNO 

means the value in variable EMPSER is greater than the value in column 
SERIALNO. 

You can also use constants within expressions, using any data types the 
language supports, but with some exceptions. See SQL/DS Application 
Programming. 

You can also use the logical operator NOT to negate a predicate. For 
example: 

AREACODE = 213 AND NOT ZIPCODE = 90023 

You can connect predicates with the logical operators AND and OR: 

AREACODE = 213 AND ZIPCODE = 90021 OR ZIPCODE = 90022 

You can use this precedence rule with these operators: Apply the NOT first, 
followed by AND, followed by OR. In this above example the statement is 
true when AREACODE = 213 and ZIPCODE = 90021 or when ZIPCODE 
90022 (regardless of the value of AREACODE). 

By using parentheses, you can override this order. If you want to select 
data only when AREACODE equals 213 and ZIPCODE equals either 90021 
or 90022, you can code: 

AREACODE = 213 AND (ZIPCODE = 90021 OR ZIPCODE = 90022) 

Since the AND is evaluated before the OR, this is equivalent to: 

ZIPCODE = 90021 OR ZIPCODE = 90022 AND AREACODE = 213 

Additional Predicates 

SQL provides four additional types of predicates you can use in search 
conditions. You can use them in addition to the standard ones that 
compare two expressions. These predicates are: 

BETWEEN Determines if the value of an expression lies between the values 
of two other expressions. For example: 

Chapter 7: Using SQL/DS 181 



Using SOLIDS 

ZIPCODE BETWEEN :LIM1 AND :LIM2 

This is equivalent to: 

:LIM1 <= ZIPCODE <= :LIM2 

IN Lets you compare the value of an expression with a list of items. 
The predicate is satisfied if the expression equals any item listed. 
For example: 

ZIPCODE IN (90021, :P2, :P3, :P4) 

IS NULL Lets you explicitly look for null values in tables (empty fields) or 
exclude null values from consideration. For example: 

ZIPCODE IS NULL 

LIKE Lets you search for character string data that partially match a 
given string. For example: 

FRSTNAME LIKE "%ANNE%" 

This example is met by VALUES SUCH AS "ROXANNE," 
"ANNETTE," and "JANNER" as well as by "ANNE." The 
percent sign (%) represents a wild-card character and means any 
string of zero or more characters. 

You can prefix any of these predicates with the logical operator NOT. 

Built-In SQl Functions 

SQL has built-in functions that you can use in expressions. All four 
functions have this format. For example, you can get the average of 
QUANTITY with the expression: 

DECLARE CRSR CURSOR FOR 
SELECT AVG(AGE) 
FROM NAMELIST 

These are the functions: 

AVG Computes the average value of the items specified. 

MAX Computes the maximum value of the items specified. 

MIN Computes the minimum value of the items specified. 

SUM Computes the sum of the values specified. 

COUNT Returns a count of the items specified. 

182 VMjSP Application Development Guide 



Using SQl/OS 

Excluding Duplicates 

The keyword ALL causes every value that satisfies the expression to be 
selected. This is the default. The keyword DISTINCT limits the selection 
to a single match. 

For example, to get a list of different surnames, you'd use an expression 
such as: 

DECLARE CRSR CURSOR FOR 
SELECT DISTINCT LASTNAME 
FROM NAMELIST 

Manipulating Data in SQl/DS 

There are SQL data manipulation statements that let you insert new rows 
into tables. You can also delete or update existing rows. Here are the 
three data manipulation statements: 

1. INSERT lets you insert one new row into a given table. Also, by using 
the SELECT clause, you can insert several new rows selected or 
computed from other tables. You can insert data into any table you 
create. You can also insert data into another user's table if the table 
creator or your data base administrator gives you the INSERT 
privilege. 

2. DELETE lets you delete one or more rows from a given table. 
However, first you must specify a selection criterion (WHERE clause). 
Otherwise, the DELETE statemen.t deletes all table rows and sets a 
warning indicator (SQLW ARN4J.- You can test the value of 
SQLWARN4 and, in case of error, issue the ROLLBACK WORK 
command. 

You can also delete the row that the current cursor points to by 
specifying WHERE CURRENT OF cursor-name. You can delete rows 
from any table you create and in another user's table. All you need is 
the DELETE privilege on that table. 

3. UPDATE lets you change the value of one or more fields in one or 
more rows of a table. You can also change the value of one or more 
fields in one or more rows of a table by specifying WHERE CURRENT 
OF cursor-name. You can also update rows of a table you created. You 
can update other user's tables if you have the UPDATE privilege on the 
columns. 

For more information on the INSERT, DELETE, and UPDATE 
statements, see SQL/DS Application Programming. 

Chapter 7: Using SQL/DS 183 



Using SQl/OS 

Creating Views in SOLIDS 

SQL/DS can create views of a table. This is one of its most useful 
facilities. Views let you and other users see different presentations of the 
same data. 

For example, if your NAMELIST table contains employee salaries, you'll 
want to restrict access to that data. Other users may need to see salaries 
but not addresses, and so on. Each user can have a different view of the 
data in the NAMELIST table. Each view appears to be a table and has its 
own name. 

Views are based on tables, but views are not stored as physical tables. As 
such, they have some restrictions that real tables do not have. For 
example, some types of views cannot be updated. Refer to "Modifying 
Tables Through a View" in SQL/ DS Application Programming. 

You can create views by using the CREATE VIEW statement. (You must 
have SELECT privilege for the underlying table.) 

In the following example we're selecting names and phone numbers of 
employees living in area code 707 for the view from the NAMELIST table: 

CREATE VIEW AREA213 (FNAME, LNAME, EMPSER, PHONE) AS 
SELECT FRSTNAME, LASTNAME, SERIALNO, PHNUMBER 
FROM NAMELIST 
WHERE AREACODE = 213. 

The resulting view (which looks exactly like a table), is called AREA213. 
Its four columns have names distinct from the corresponding names in the 
NAMELIST table. If these names are not specified, SQL/DS takes them 
from the original table. 

When you finish with a view, you can drop it: 

DROP VIEW AREA213 

There are certain restrictions on views. See SQL/ DS Application 
Programming. 

If you're programming in FORTRAN, skip to "Using SQL in FORTRAN 
Programs" on page 186. 

Using Sal in COBOL Programs 

This section briefly describes some rules you must follow for embedding 
SQL statements within a COBOL program. There are additional rules. For 
more information, see SQL/ DS Application Programming. 

184 VM/SP Application Development Guide 



Using SQl/DS 

Placement and Continuation of SQl statements 

Place all SQL statements in columns 12 to 72. Place all declarative 
statements (like variable definitions) in the Data Division, within the File 
Section, Linkage Section or Working-Storage Section. All other SQL 
statements go into the Procedure Division. Continuation rules are the 
same for SQL statements as for all other COBOL statements. 

Delimiting SQl Statements 

Use delimiters to help SQLjDS distinguish SQL statements from COBOL 
statements. You must precede each SQL statement with EXEC SQL and 
terminate each one with END-EXEC. To conform with COBOL rules, you 
can place certain punctuation (like a period) after END-EXEC. 

For example: 

IF FNTYPE = 1 THEN 

ELSE 

EXEC SQL INSERT INTO NAMELIST 
(SERIALNO, FRSTNAME, LASTNAME) 
VALUES (:EMPSER, :FNAME, :LNAME) END-EXEC 

EXEC SQL UPDATE NAMELIST 
SET FRSTNAME = : FNAME , LASTNAME = :LNAME 
WHERE SERIALNO = :EMPSER END-EXEC. 

SQL WHENEVER and DECLARE CURSOR statements shouldn't be the 
only contents of COBOL IF or ELSE clauses. 

Using the Quote Parameter 

If you use the COBOL compiler QUOTE option, you must also use the 
QUOTE option of the SQLjDS Preprocessor. Use a single quote (') to 
delineate string constants used in embedded SQL statements, regardless of 
the COBOL compiler QUOTE option. 

Using the INCLUDE Command 

When you want to include external secondary input, specify an INCLUDE 
statement at the point in the source code where you want to include the 
secondary input. For example: 

EXEC SQL INCLUDE SOURCEl END-EXEC. 

Here SOURCEI is the filename of a CMS file that is to be copied into the 
source program. It must have a filetype of COBCOPY. For a further 
discussion of the rules for using SQL statements in COBOL programs, see 
SQLjDS Application Programming. 

If you're programming in COBOL, skip to "Preparation and Preprocessing a 
Program With SQLjDS" on page 187. 

Chapter 7: Using SQL/DS 185 



Using SQl/OS 

Using SQl in FORTRAN Programs 

This section shows some of the rules you must follow for embedding SQL 
statements within a FORTRAN program. 

The FORTRAN SQl Preprocessor 

The FORTRAN SQL Preprocessor supports programs written for the VS 
FORTRAN compiler with the LANGLVL (77) option specified. Only FIXED 
FORM source statements are supported. 

For a summary of the SQL statements supported by the FORTRAN 
Preprocessor, see SQLjDS Application Programming. 

Placement and Continuation of SQl Statements 

All SQL statements must be placed in columns 7 to 72. Columns 1 to 5 can 
also contain statement numbers, and columns 73 to 80 can contain 
sequence numbers and information. 

The rules for the continuation of SQL keywords from one line to the next 
are the same as the FORTRAN rules for the continuation of words and 
constants. However, a SQL statement can use up to 124 continuation lines 
(for a total of 125 lines). 

Embedding SQl Statements 

You must precede each SQL statement in your program with EXEC SQL. 
No delimiter should be used at the end of any statement. 

FORTRAN source statements can't be contained on the same line or within 
the same continued statement, except when a SQL statement is used as the 
imperative statement of a logical IF. Also, only one SQL statement can be 
contained in a single line, or within the same continued statement. 

Using the INCLUDE Command 

To include the external secondary input, use the SQL INCLUDE command 
and specify the filename of the file to be included. It must have a filetype 
of FORT COPY. The file replaces the INCLUDE command in the source 
program. For example: 

EXEC SQL INCLUDE SOURCEl 

For more information about using SQL statements in FORTRAN programs, 
see SQLjDS Application Programming. 

186 VM/SP Application Development Guide 



Using SQl/OS 

Preparation and Preprocessing a Program With SQL/DS 

(9 YOUR INPUT 

When your program contains SQL statements, it must be preprocessed by a 
SQL/DS preprocessor before it can be compiled. The preprocess step 
utilizes one of the SQL/DS preprocessors (a separate one is ~rovided for 
each language) to convert your SQL/DS statements into valid (COBOL or 
FORTRAN) programming language statements. 

After preprocessing and compiling, you must pr~ide for linking your 
program with some special SQLjDS provided programs that are needed at 
the time of execution. This is done when you LOAD your application 
program. These SQL/DS provided programs, along with the SQL/DS EXECs 
that are needed to identify the SQL/DS data base and start the SQL/DS 
preprocessors, are stored on the SQL/DS "production" minidisk. You must 
access this disk in order to use SQL/DS in these procedures. 

The procedures are illustrated in Figure 15. Following is more specific 
information on the steps identified: 

<D UNK SOLDBA 195 195 RR 
ACCESS 195 0 

----------------0 SOUNIT ... ..... --i 

~-+-+~ ... --------). 
ARIRVSTC ARIPADR ARIPEIFA 

YOUR A-DISK 
{ COBOL } 5 SOLPREP FORTRAN .... 

TXTUB 
SYSTEM 
PRODUCT r--------tI TESTPROG 
EDITOR 

® GLOBAL MACUB .... 
FILEDEF .... 

TESTPROG 

TESTPROG TEXT 

TEST01 MODULE 

{~8~-?kAN} TESTPROG .... 

LOAD TESTPROG 
GENMOD TEST01 ® GLOBAL TXTUB PREPUB 

r--------4t10 FILEDEF .... 

Figure 15. Creating an Executable SQL Program 

1. Access the SQL/DS production minidisk: 

LINK SQLDBA 195 195 RR 
ACCESS 195 Q 

TEST01.... 

Chapter 7: Using SQLjDS 187 



Using SQl/DS 

The production mini-disk is established during the SQL/DS installation 
process. It contains the SQL/DS EXECs and programs required at 
execution time. These programs must be linked with your program in a 
later step. 

2. Identify the SQL/DS data base. To do this, you will use the SQL/DS 
EXEC, SQLINIT. It names the data base and stores bootstrap 
information for that data base on your A-disk. Since this information is 
on your A-disk, you need only do this step once (even if you logoff), 
unless you subsequently need to change to another SQL/DS data base. 
An example of the use of this EXEC is: 

SQLINIT DBNAME(DBASE01) 

DBASEOl, in this example, is the name of the SQL/DS data base 
selected. 

3. Step 8 below requires that you have established a CMS TXTLIB that 
contains the execution time SQL/DS programs for linking with your 
program. This step builds that TXTLIB, containing the SQL/DS 
programs ARIRVSTC, ARIPADR, and ARIPEIFA. ARIPADR is 
required for COBOL, ARIPEIFA is required for FORTRAN, and 
ARIRVSTC is required for both languages. This step need only be done 
once (even if you logoff), since the TXTLIB is stored on your A-disk. 

TXTLIB GEN PREPLIB ARIRVSTC ARIPADR (for COBOL) 
or 

TXTLIB GEN PREPLIB ARIRVSTC ARIPEIFA (for FORTRAN) 

4. You can use the System Product Editor to build your program. Give it 
a filetype of "COBSQL," if it is written in COBOL, or "FORTSQL," if it 
is written in FORTRAN. These are the filetypes that are required for 
the SQL/DS preprocessors in the next step. 

5. The SQL/DS preprocessors are invoked through the SQL/DS EXEC, 
"SQLPREP." Following are examples of invoking the SQLPREP EXEC: 

SQLPREP COBOL PREPPARM(PREPNAME=TESTPROG,QUOTE) 
SYSIN(TESTPROG) SYSPUNCH(TESTPROG) SYSPRINT(PRINTER) 

(or) 
SQLPREP FORTRAN PREPPARM(PREPNAME=TESTPROG) 

SYSIN(TESTPROG) SYSPUNCH(TESTPROG) SYSPRINT(PRINTER) 

• The language is specified as the first parameter. This selects the 
particular preprocessor and is followed by the parameters to that 
preprocessor. 

• PREPPARM has several subparameters. The main subparameter is 
PREPNAME. This is generally the same as the name that you have 
assigned to your program. For COBOL, you may want to use the 
keyword subparameter, QUOTE, to indicate that you are going to 
use the QUOTE option for the COBOL compiler. The QUOTE 
parameter (or APOST, the default) has no affect on the coding of 
SQL statements in the COBOL program, but informs the SQL 
preprocessor what to expect as delimiters for COBOL strings. These 

188 VM/8P Application Development Guide 



Using SQl/DS 

and other PREPPARM subparameters are explained more 
thoroughly in SQL/DS Application Programming. 

• The SYSIN parameter specifies the filename of the input source 
program. 

• The SYSPUNCH parameter specifies the filename of the output of 
the preprocess step, which is normally the same as specified for 
SYSIN. The default file type assigned by SQL/DS is COBOL or 
FORTRAN, as required by the associated compiler. 

• The SYSPRINT parameter specifies the filename (default filetype is 
LISTPREP) for receiving the printed output of the preprocessor. In 
this example, it is directed to the virtual printer, rather than a CMS 
file. 

6. This step establishes the MACLIB and workfiles required by the 
particular compiler, for example: 

GLOBAL MACLIB COBOLVS CMSLIB 
(or) GLOBAL MACLIB FORTVS2 CMSLIB 

FILEDEF ...... (work files) 

7. This step starts the appropriate compiler. Its input requires the filetype 
COBOL or FORTRAN and it produces a TEXT file. 

COBOL TESTPROG 
FORTVS2 TESTPROG 

8. This step establishes PREPLIB as the GLOBAL TXTLIB for the LOAD 
step that follows. Step 3 created the PREPLIB that is used here. 

GLOBAL TXTLIB PREPLIB 

9. LOAD TESTPROG brings the new application text file into storage and 
links it with the required SQL/DS programs from PREPLIB. GENMOD 
TEST01 establishes a module on the A-disk for the application program 
and assigns to it the name "TESTOl." 

LOAD TESTPROG 
GENMOD TESTOl 

10. After FILEDEFs, that may be required for the application program, the 
final step invokes the new program for execution. 

TESTOl 

Chapter 7: Using SQLjDS 189 



Using SQl/DS 

Summary 

The Structured Query Language/Data System (SQL/DS) is a full scale data 
base management system integrated into the VM/SP environment. The 
Structured Query Language (SQL) handles SQL/DS data. SQL/DS also 
includes the ISQL facility that lets you enter SQL commands directly from 
your terminal. This lets you prototype applications that are to use SQL. 
ISQL also simplifies data handling by offering facilities for querying and 
manipulating data and writing reports. SQL/DS includes facilities for 
bulk-loading new data or data from existing systems into its relational data 
base. 

190 VMjSP Application Development Guide 



A Basic Exec 

An EXEC is a file of statements that are executed when you enter a single 
statement. You'll often need to perform a set sequence of VM commands, 
for example, when compiling and link editing a source program. You can 
group such sequences of commands in an EXEC file and control the 
execution of these statements by using additional EXEC statements. 

In its simplest form, an EXEC file may contain only one record. In its most 
complex form it can contain thousands of records and resemble a complete 
program written in a high-level programming language. 

There are three types of EXECs: CMS EXECs, EXEC 2 EXECs, and 
Restructured Extended Executor EXECs. All three types of EXECs are 
processed by the System Product Interpreter (or just "the interpreter"). 
We'll discuss each type of EXEC in order. 

Here's an example of a simple EXEC procedure that you might use to relate 
file names in your application programs to their CMS file identifiers. 

FILEDEF INPFLl DISK INPUT DATA A 
FILEDEF INPFL2 DISK MASTER DATA C 
FILEDEF UPDTOl DISK TSTMSTR DATA A 
FILEDEF CON SOL TERM 

If you needed an EXEC like this, you'd create it using the editor. Let's say 
you stored it in a file with the file identifier DEFS EXEC A. Then, if you 
enter the command: 

defs 

each command line in the file is executed. 

You must specify the filetype of all EXEC procedures as EXEC. CMS 
searches the disks currently accessed for a filetype of EXEC with a 
corresponding filename (DEFS in this case). 

In an EXEC, CP commands are prefixed with CP, while the CMS commands 
are not prefixed at all. You can also call another EXEC from within an 
EXEC. In this case the prefix EXEC must be used. This is discussed in 
"Exec Arguments" on page 192. You can create EXEC files using CMS 
editors, by punching cards, or using CMS commands or programs. 

Chapter 8: EXECs 191 



EXECs 

Profile Execs 

Exec Arguments 

The interpreter, which handles the execution of EXEC file contents, 
processes only the first 72 characters of each record in a fixed-length file 
and only the first 130 characters of each record in a variable-length file. 

The following EXEC links to a disk and defines its access order, sets up 
some characteristics for the terminal, and initializes some macro libraries. 

CP LINK DEWEY 193 193 RR 
ACC 193 B/A 
CP SET EMSG ON 
CP TERM HILIGHT ON 
GLOBAL MACLIB OSMACRO CMSLIB 

Such commands are typically issued at the start of every terminal session. 
If you give the EXEC a filename of PROFILE, it's automatically executed 
the first time you press the ENTER key after CMS is loaded. 

An argument in an EXEC procedure is one of the special variable symbols 
&1 through &30 that are assigned values when an EXEC is invoked. For 
example, suppose the file COMPILE EXEC contains the following simple 
EXEC to compile a COBOL program: 

CP LINK COBLIB 195 295 RR PASWD 
ACC 295 E 
COBOL &1 
PRINT &1 LISTING 

If you invoke the EXEC specifying the name of a COBOL source file: 

compile testprog 

the following procedure is executed: 

LINK COBLIB 195 295 RR PASWD 
ACC 295 E 
COBOL TESTPROG 
PRINT TESTPROG LISTING 

The variable &1, which represents the first argument, is replaced by the 
token TESTPROG and is passed to the COBOL compiler. You can use up 
to 30 arguments by specifying &1 through &30. 

192 VM/SP Application Development Guide 



EXECs 

the CMS EXEC File 

You can create a special EXEC file called CMS EXEC by using the 
LISTFILE command with the EXEC option. Let's suppose you have a 
series of files on your disk with filenames beginning with the characters 
"PAY" and filetypes beginning with the character "D." If you enter: 

listfile pay* d* a (exee 

the usual LISTFILE display is placed in a file CMS EXEC. It has the 
format: 

&1 &2 filename filetype filemode 

Let's assume that after you issued the LISTFILE command shown, the 
CMS EXEC file contains: 

&1 &2 PAYROLL 
&1 &2 PAYDATE 
&1 &2 PAYSLIP 
&1 &2 PAY23UPD 

If you now enter: 

ems disk dump 

DATA 
DOCUMENT 
DETAIL 
D831102 

A 
A 
A 
A 

the interpreter would execute the following commands: 

DISK DUMP PAYROLL DATA A 
DISK DUMP PAY DATE DOCUMENT A 
DISK DUMP PAYSLIP DETAIL A 
DISK DUMP PAY23UPD D831102 A 

The arguments DISK and DUMP replace &1 and &2 when the file is 
executed. If only one argument is passed to an EXEC, the succeeding 
variables are set to nulls. For example, if you enter: 

ems erase 

these commands are executed: 

ERASE PAYROLL DATA A 
ERASE PAYDATE DOCUMENT A 
ERASE PAYSLIP DETAIL A 
ERASE PAY23UPD D831102 A 

The CMS EXEC file is like any other CMS file. You can edit it, print it, 
sort it, and rename it. Each time you use LISTFILE with the EXEC 
option, a new CMS EXEC is created and an old one erased. 

Chapter 8: EXECs 193 



EXECs 

The EXEC 2 Processor 

EXEC 2 programs and processing are broadly similar to CMS EXECs, with 
the following differences: 

• There's no 8-byte restriction on token length. The words that comprise 
EXEC 2 statements can be up to 255 characters long. 

• You can use EXEC 2 to issue commands to specified subcommand 
environments, such as the editor macro facility, as well as CMS and CPo 

• EXEC 2 has extended string manipulation and arithmetic functions. 

• You can define EXEC 2 subroutines and functions. 

• EXEC 2 provides extensive debugging facilities. 

• CMS user programs can manipulate EXEC 2 variables. 

Although basic CMS EXECs can call EXEC 2 procedures and vice versa, 
the language statements can't be mixed within one EXEC. EXEC 2 coexists 
with the CMS EXEC processor program, and CMS examines the first 
statement of an EXEC file to determine which processor is required. If the 
first statement is &TRACE, the EXEC 2 processor is called to handle it. 

With EXEC 2, you can assign variables, perform calculations, and control 
execution flow. Let's assume we have a set of files FILEl TESTA, FILE2 
TESTA, FILE3 TEST A, and so on. The following EXEC, called 
MULTIPRT, prints a specified range of these files a specified number of 
times. Printing starts and ends at specified files. 

&TRACE 
&ERROR &EXIT &RETCODE 
* MULTIPRT EXPECTS THREE ARGUMENTS. 
* IT DEFAULTS OTHERWISE. 
&IF &N EQ 3 &GOTO -TSTARG 
&TYPE INCORRECT NO OF ARGUMENTS SUPPLIED. 
&TYPE DEFAULT VALUES HAVE BEEN ASSUMED 
&ARGS 3 10 1 
&GOTO -START 
-TSTARG 
&IF &2 ,< &1 &GOTO -START 
&PRINT INVALID ARGUMENT VALUES - PLEASE RESUPPLY 
&READ ARGS 
&GOTO -TSARG 
-START &Y = &1 
-DONEYET 
&IF &Y > &2 &EXIT 0 
&X = 1 
&LOOP 2 UNTIL &X > &3 
PRINT FILE&Y TEST A 
&X = &X + 1 
&Y = &Y + 1 
&GOTO -DONE YET 
&EXIT 

194 VMjSP Application Development Guide 



EXECs 

If the user issues: 

rnultiprt 11 14 3 

the EXEC would execute three print commands for each of the following 
files: 

FILE11 TEST A 
FILE12 TEST A 
FILE13 TEST A 
FILE14 TEST A 

This is the sequence of execution: 

• The &TRACE control statement indicates to the system that this EXEC 
is written in EXEC 2. 

• The ERROR control statement specifies that if any VM command 
results in a nonzero return code, the &EXIT statement is executed. In 
this example, the return code, indicated by the control word 
&RETCODE, is passed upon exit. 

• An * indicates that a comment follows. 

• &N is a special variable containing the number of arguments supplied. 
If the correct number is provided, then the EXEC procedure is routed to 
the label -TSTARG. Otherwise, &TYPE is issued. In EXEC 2, the 
restriction on word length is raised to 255. In CMS EXEC, you'd use 
the &BEGTYPE control word here. 

• The &ARGS control statement is used to redefine any arguments that 
were entered. Thus, the default request is one copy of each of the files 
3 through 10. 

• At the label -TSTARG, the possibility of inconsistent arguments is 
tested using I < , which means not less than. The &PRINT command 
means the same as the &TYPE command. The statement &READ 
ARGS issues a read to the terminal and assigns the tokens received to 
&1, &2, and so forth. 

• The variable &Y is assigned the value of argument &1, in this case II. 
You can include code statements (in this case &Y = &1) on the same 
line as labels. 

• When &Y becomes greater than &2 (14), the EXEC is ended with a 
return code of zero. This is the default and need not be specified. 

• The variable &X, which counts the copies of each printed file, is set to 
1. 

Chapter 8: EXECs 195 



EXECs 

• The &LOOP control statement specifies that the following two 
commands are to be executed until &X is greater than the third 
argument (3). 

• The VM PRINT command is issued. The file number &Y is joined with 
the word FILE to form the filename. 

• When &X is incremented to 4, processing drops through to increment 
&Y. Also, the &GOTO control word jumps back to -DONEYET to 
check the value of &Y. 

Note: If any of the files specified in the range to be printed do not exist, an 
error message will result. 

Many EXEC 2 facilities are like those of a basic EXEC. Some control 
statements and special variables haven't been covered here. For full details 
on the EXEC 2 processor facilities, see VMjSP EXEC 2 Reference. 

The Restructured Extended Executor Language 

The third and most powerful language for use in EXECs is the Restructured 
Extended Executor language (REXX). It's a general-purpose, high-level 
language, not unlike PLjI, which is especially suited for proto typing and 
personal computing as well as handling EXEC command procedures. 

REXX is a free-format language that can be coded to emphasize its 
structure, making it easier to read. There's no practical limit to the length 
of variable values, but variable names are limited to 250 characters. You 
can construct arrays using compound symbols such as: 

NAME.Xl.Yl 

where Xl and YI can be the names of variables. 

Although REXX is easy to use, its programs are executed using the 
interpreter; thus, it tends to use more computer time than an equivalent 
compiled language. 

196 VM/SP Application Development Guide 



EXECs 

A Sample REXX Program 

The following program illustrates some of the features of the REXX 
language: 

/* The first line of the REXX EXEC 
must always 

credits == 0 
do until credits > 5 

a == random(1,9) 

be a comment 

a "plus" b "?" 

*/ 

b == random(1,9) 
say "What is " 
pull answer /* 
if answer == a + 
then do 

Place user's reply into answer */ 
b 

end 
exit 

else 

credits == credits + 1; say "Correct." 
say "Your score is" credits 
end 

say a "+" b "is" a+b 

This program repeatedly asks for the sum of two random numbers until it 
has accumulated six correct answers. Its processing is explained below: 

• The comment delimiter /* on the first line indicates to CMS that this is 
a REXX program. This causes CMS to call the interpreter. The last 
comment line must end with */. 

• A value of 0 is assigned to the variable credits. 

• The lines from do until to end are repeatedly executed as long as the 
value of credits doesn't exceed 5. 

• Variables a and b are assigned random values in the range 1 to 9. The 
term random(m,n) is a built-in function of the interpreter; its 
arguments are the desired range in which the random number is to be 
generated. The interpreter has over fifty built·in functions, which are 
listed in VM/SP System Product Interpreter Reference. 

• The instruction say writes the values of a and b to the console along 
with the literals "What is," "plus," and "?" in the order specified. The 
interpreter automatically inserts one space in the display between 
separate literals and/or variables. If more than one space is required, it 
must be incorporated into a literal (as, for example, in "What is"). 

• The instruction pull accepts the console reply into the variable answer. 
Comments in the executor language can be included on the same lines 
as program statements. 

Chapter 8: EXECs 197 



EXECs 

There are two forms of the pull instruction: 

the form parse upper pull, which is normally abbreviated to pull, 
translates everything read from the keyboard to upper case in the 
program. 

the form parse pull should be used if everything is required as is, 
without any translation. 

• In the statement if answer = a + b, the item to the right of the = sIgn 
can be an expression, in this case a + b. 

• When the test is true, more than one statement is to be executed. The 
do ... end delimits these statements. If only one statement is to be 
executed, the delimiters are not required. 

• So far there has been only one REXX language statement per line. A 
line-end is considered to be an implied delimiter. However, if more than 
one statement is to be placed on a line, the delimiter; can be used. 

• If a correct answer requires no action, if ... then ; else ... would be 
incorrect. A semicolon doesn't cause a null instruction to be executed; 
the no-operation instruction nop would have to be used, as in if ... then 
nop else .... 

• When the test fails, the else portion is executed. You can include the 
value of expressions (for example, a + b) in the data to be displayed on 
the console. 

For full details on interpreter instructions, see VM/ SP System Product 
Interpreter Reference. 

Issuing VM Commands 

Although the program above contains only the REXX language statements, 
you can also use the language to control the execution of VM commands. 
The following program is an improved version of COMPILE EXEC, which 
was given in "Exec Arguments" on page 192. This EXEC accepts the file 
name as its argument. (The filetype is assumed to be COBOL.) Thus, if you 
had a COBOL program named TESTPROG on your A-disk to compile, you'd 
issue the statement: 

compile testprog 

198 VM/SP Application Development Guide 



EXECs 

For clarity, the VM commands are shown in upper case; the interpreter, 
however, doesn't differentiate between upper and lower case (except within 
strings, literals, etc.). 

/* the executor language version of COMPILE EXEC */ 
SET CMSTYPE HT 
arg a 
Mainpart: 

signal on error 
COBOL a 
PRINT a LISTING 
SET CMSTYPE RT 
say a "Listing now printing." 
exit 
Error: 
rcsave = rc 
SET CMSTYPE RT 
say 
say 

"Unexpected Return Code" rcsave "from command:" 

say "at 
exit 

" sourceline(sigl) 
line number" sigl " " 

Let's examine some of the features in this program: 

• The SET command is used to halt typing (HT) of all details during the 
program's execution. 

• The executor language command arg assigns the value of the argument 
supplied when the program is called to the program's variable a. 

• The return code from commands is placed in the special REXX variable 
re. 

• In the executor language, a clause consisting of a single symbol 
followed by a colon is considered a label. The colon acts as an implicit 
terminator, so no semicolon is required, even when the label is followed 
on the same line by another statement. (In the example, the label 
Mainpart: is capitalized. It is not indented for clarity.) 

• The instruction signal on error switches on a detector in the 
interpreter that tests the return code from every command. If a nonzero 
return code is encountered, the normal sequence of clauses is 
abandoned and execution transferred to a special label Error:. This 
detector can be switched off by issuing the instruction signal off error. 

• The call to COBOL doesn't need to be prefixed by EXEC. This is true 
even when COBOL is an EXEC or EXEC 2 file, rather than another 
REXX EXEC. However, the interpreter won't implicitly let an executor 
language program EXEC call itself. If such a recursive call is 
necessary, the EXEC command can be invoked. 

Chapter 8: EXECs 199 



EXECs 

• In the COBOL, PRINT and say statements, the program variable a is 
evaluated to obtain the name of the COBOL program. 

• When the signal on error detector encounters a nonzero return code, 
the interpreter assigns the line number of the failing command to the 
special program variable sigl and then transfers processing to the label 
Error:. 

• The executor language function sourceline (n) returns the nth line in 
the source file. Here it's used with sigl to display the failing line of 
code. Its position in the display is indented by prefixing it with a literal 
of six spaces. 

• The exit path from the program contains the CMS SET RT (resume 
typing command. This prevents the program from suppressing 
subsequent console displays. 

Creating a System Product Editor Macro 

You can write EXECs to be used with the System Product Editor that make 
creating or editing a file easier. These EXECs have a filetype of XEDIT 
rather than EXEC. Otherwise, they're like ordinary EXECs. 

For example, this macro places continuation characters on specified lines in 
the correct column of COBOL or FORTRAN files. These EXECs are known 
as System Product Editor macros. You use them when you use the editor to 
create or edit a file. (For clarity, XEDIT commands are in upper case.) 

/* Cant char macro */ 
Mainpart: 

SET MSGMODE OFF 
PRESERVE 
linlen = 1 
if arg() > 0 then linlen arg(l) 
TRANSFER FTYPE 
pull filtype 
col = 72 
if filtype = 'COBOL' then col 7 
if filtype = 'FORTRAN' then col 6 
SET TRUNC col 
SET ZONE col col 
C"/ /*/" linlen 
RESTORE 
SET MSGMODE ON 
exit 

This is what the macro does: 

• The message display option of the Editor is set off when you use the 
macro. Thus, its execution appears like a regular XEDIT subcommand. 

200 VMjSP Application Development Guide 



EXECs 

• The PRESERVE command ensures that the settings of the various 
XEDIT variables, such as line length, are retained until the RESTORE 
command is executed. 

• If an argument is supplied, the variable linlen is set to its value. 
Otherwise it remains equal to 1. 

• The XEDIT subcommand TRANSFER makes the filetype of the file 
being edited available on the console stack. Using the pull instruction, 
you can then assign the filetype to the variable filtype. 

• The variable col is set variously to 6,7, or 72. This value is used to 
define the truncation column and then to set the zone. 

• The CHANGE subcommand causes continuation characters to be 
included. The macro ends by resetting the environment to its original 
state. 

Prototyping Interactive Applications 

As mentioned in "Chapter 6: Using Dialog Managers" on page 141, you 
can conveniently use EXECs with ISPF applications. 

EXEC 2 gives you the facility to call ISPF panel and variable services. 
Thus, you can write EXECs to invoke sequences of DISPLAY and SELECT 
services, and to handle related variables, before implementing the 
application in COBOL or FORTRAN. In EXEC 2, the format of a call to an 
ISPF service is as follows: 

ISPEXEC service-name parameterl parameter2 ... 

EXEC 2 variables can be used anywhere in the statement as the service 
name or as a parameter. Each variable is replaced with its current value 
before execution of the ISPEXEC command. You can use parameter 
keywords wherever they apply. Otherwise, the parameters are positional. 
Here are some examples: 

&SUBCOMMAND ISPEXEC DISPLAY PANEL( &PNAME) 
&SUBCOMMAND ISPEXEC DISPLAY PANEL (MENUPAN) 

In the first example, the EXEC 2 variable &PNAME is passed as a 
parameter. It's assumed to have a value MENUPAN. In the second 
example, this value is passed directly. You don't have to incorporate the 
keyword PANEL, since the parameter is in the first position. EXEC 2 
requires that you precede ISPEXEC with a &SUBCOMMAND unless the 
statement: 

&PRESUME &SUBCOMMAND ISPEXEC 

is included in the procedure before executing the first ISPEXEC command. 
Some ISPF services allow dialog variables names to be passed as 

Chapter 8: EXECs 201 



EXECs 

parameters. If you pass such names, don't precede them with an 
ampersand. For example: 

ISPEXEC VGET XYZ 

Here XYZ is the name of the dialog variable to be passed. The VGET 
service can also accept a list of variables passed as a single parameter. If 
you pass such a list, you must enclose it in parentheses. You must also 
separate the items with blanks or commas. For example: 

ISPEXEC VGET (AAA,BBB,CCC) 
ISPEXEC VGET (XXX YYY zzz) 

ISPEXEC operations end with a return code in the same way as other 
routines do. Thus, you can use &RETCODE or &RC in EXEC 2 to test the 
success of the calls. 

Here's an example of using ISPEXEC in an EXEC 2 procedure: 

&TRACE OFF 
&PRESUME &SUBCOMMAND ISPEXEC 
CONTROL ERRORS RETURN 
TBOPEN EMPLTBL 
&IF &RC EQ 0 &GOTO -CONTl 
TBCREATE EMPLTBL (EMPSER) (LNAME F~AME) 
-CONTl 
&F = 
&EMPSER 
VPUT (F EMPSER) 
DISPLAY PANEL (MENUPAN) 
&IF &RC EQ 8 &GOTO -EXIT 
&IF &F GT 4 &GOTO -EXIT 
TBGET EMPLTBL 
&IF &F EQ 1 &IF &RC NE 0 &GOTO -CONT2 
&IF &F GT 1 &IF &RC EQ 0 &GOTO -CONT3 
SETMSG MSG (MSG002 ) 
&GOTO -CONTl 
-CONT2 
&FNAME 
&LNAME 
-CONT3 
SETMSG MSG (MSGOOl ) 
&IF &F EQ 3 &GOTO -CONT4 
DISPLAY PANEL (NAMEPAN) 
&IF &F EQ 1 &GOTO -CONTS 
&IF &F EQ 2 &GOTO -CONT6 
&GOTO -CONTl 
-CONT4 
TBDELETE EMPLTBL 
&GOTO -CONTl 
-CONTS 
TBADD EMPLTBL 
&GOTO -CONTl 
-CONT6 
TBPUT EMPLTBL 
&GOTO -CONTl 
-EXIT 
TBCLOSE EMPLTBL 
&EXIT 

202 VM/SP Application Development Guide 



EXECs 

This EXEC invokes a number of ISPF functions. 

• CONTROL ERRORS RETURN tells ISPF to return to dialog 
processing when an error condition occurs (instead of terminating). 

• TBOPEN tells ISPF to open the table EMPLTBL, if it exists. If the 
table doesn't exist, a non-zero return code is issued. The EXEC tests the 
return code, and if it is non-zero, the EMPLTBL table is created using 
the TBCREATE function. 

• VPUT tells ISPF to initialize the panel variables specified (in this case, 
variables F and EMPSER). They are initialized to blanks prior to the 
panel display. 

• DISPLA Y tells ISPF to display the specified panel (MENUP AN or 
NAME PAN) on the screen. 

• TBGET tells ISPF to retrieve values from the EMPLTBL table. 

• SETMSG tells ISPF to display the specified message on the next panel. 

• TBDELETE tells ISPF to delete the current record (the one specified 
on the panel) from the EMPLTBL table. 

• TBADD tells ISPF to add the current record to the EMPLTBL table. 

• TBPUT tells ISPF to update the current record in the EMPLTBL table. 

• TBCLOSE tells ISPF to close the EMPLTBL table. 

If you want to run this EXEC, you will have to do the following: 

1. Issue various FILEDEF commands to specify the ISPF libraries to be 
used. The necessary FILEDEFs to run the exec are listed in Appendix 
C. 

2. Create a panel library called USERPAN MAC LIB containing the 
MENUPAN COPY and NAMEPAN COpy files. 

3. Create a message library, EXAMMSG MACLIB, containing definitions 
of messages MSGOOI and MSG002. All panels and messages are 
described in Appendix C. 

4. Invoke ISPF with the CMD parameter, instead of PGM when using an 
exec. 

For more details on the use of EXECs with ISPF, see ISPF Dialog 
Management Services ~ ~ MVS, VM, and VSE. 

Chapter 8: EXECs 203 



EXECs 

Using Execs with SQl/OS 

You can easily use ISQL (Interactive SQL) when you access or update 
portions of tables on an ad hoc basis. When you do accesses or updates 
more routinely, you may want to group sets of ISQL commands into EXECs. 
An efficient way to execute these commands is to collect all the data you 
need, call ISQL, do the necessary commands, and re-exit to VM/SP. 

VM/SP provides a stack for commands to be executed on a first-in first-out 
basis. You can place items onto the stack using the REXX command 
QUEUE. 

Here's an example of an EXEC to change an entry in a phone list: 

/* changnum exec */ 
say 'Supply last name' 
pull lnam 
say 'And now the initial' 
pull init 
say 'Enter new phone number' 
pull nnum 
queue COMMIT WORK 
queue "UPDATE PHONELIST -" 
queue "SET PHNUM = "nnum" -" 
queue "WHERE LNAME ='"lnam''' AND FINTL 
queue COMMIT WORK 
queue EXIT 
exec ISQL 

In this example: 

I II initll I II 

• When the necessary details are supplied to the EXEC, the interpreter 
puts the sequence of ISQL commands onto the command stack, using 
the queue command. 

• The EXEC variables set to the supplied details are contained within the 
ISQL commands inside an inner set of quotes. (For clarity, the example 
shows them in lower case.) 

• When the list is updated, the work is committed. Since we want to 
return to VM/SP after the operation, the ISQL command EXIT is 
stacked. 

• Finally, the EXEC calls ISQL to start processing the commands queued 
on the stack. 

Since the interpreter executes in the CMS environment, it isn't available 
while you're running ISQL. The stack gives you a way to transfer 
commands from one to the other. In this case you begin and end in CMS. 

You can also build EXECs you expect to execute during ISQL sessions. 
Inside the EXEC you set a RETURN command as the first query in the 
stack. You no longer need the QUEUE EXIT and EXEC ISQL commands 
at the end of the EXEC. To start the EXEC during an ISQL session, you 

204 VMjSP Application Development Guide 



EXECs 

can enter "eMS" to get back into the CMS mode. You can then enter 
"CHANGNUM" (the name of the EXEC.) 

When you supply the data and the EXEC ends, the RETURN command in 
the stack is executed. This takes you from CMS back into the ISQL 
environment. The rest of the stacked items (ISQL commands) are then 
processed. Since there's no EXIT at the end of the stack, you remain in the 
ISQL environment. Besides using this type of EXEC for less complex SQL 
table operations, you can use it for prototyping data base operations during 
design and development stages. 

For more details on SQL, see "Chapter 7: Using SQLjDS" on page 167. 

For more details on the use of EXECS with SQL, see SQLjDS Planning and 
Administration - VMjSP. 

More Features of the Restructured Extended Executor Language 

Substitution Rules 

This section describes other REXX features that can help you to write more 
complex programs. We'll discuss substitution rules, compound symbols, and 
subroutines and functions. 

When replacing the names of program variables with their assigned values, 
the interpreter doesn't check the substituted words to see if they're also 
variable names. 

For example, the sequence: 

food = meat 
meat = steak 
steak = sirloin 
say "Buy" food 

results in the display: 

Buy MEAT 

If the interpreter has not yet assigned a value to a program variable, it 
assigns the (capitalized) name of the program variable to be its value. 
Thus, in this example, the value of the variable meat is MEAT. The first 
instruction causes the variable food to have the same value. In the say 
instruction, food is evaluated and the result displayed. 

If we rewrite the sequence using the REXX value( ) function: 

food = meat 
meat = steak 
steak = "sirloin" 
say "Buy" value (food) I I", that is," value (value (food) ) 

Chapter 8: EXECs 205 



EXECs 

Compound Symbols 

the resulting display is: 

Buy STEAK, that is, sirloin 

Here the first call of the value( ) function finds that meat has been 
assigned the value STEAK. In the second call, this value produces the 
literal "sirloin". (The display would have capitalized "sirloin" if it were 
not assigned to the variable steak in the form of a literal.) 

The II symbol causes concatenation without an intervening space; a comma 
follows the word STEAK. (You can insert a space before and after II 
without changing its effect.) 

You can use compound symbols to build collections of variables, for 
example, to handle arrays of data. 

Here is an example: 

/* DAY exec */ 
day.1 "Sunday" 
day.2 "Monday" 
day.3 "Tuesday" 
day.4 "Wednesday" 
day.S "Thursday" 
day.6 "Friday" 
day.7 "Saturday" 
do dayofmonth = 1 to 31 

dayofweek = (dayofmonth + 6)//7 + 1 
select 

when day of month 1 then th list II 

when dayofmonth 2 then th "nd" 
when dayofmonth 3 then th "rd" 
when dayofmonth 21 then th "st" 
when dayofmonth 22 then th "nd" 
when dayofmonth 23 then th "rd" 
when dayofmonth 31 then th "st" 
otherwise th "th" 

end 
say day. dayofweek dayofmonth I I th "January 1984" 

end 
exit 

In this example: 

• Day·names are set up as an array called day. The do instruction 
repeatedly executes the entire program while incrementing the variable 
dayofmonth from 1 to 31. 

• The variable dayofweek (used to select the array elements) is cyclically 
assigned the values 1 through 7. This calculation uses the operator II. 
(It means divide and return the remainder.) It has higher precedence 
than the symbol +, so the numerator is parenthesized to force it to be 
evaluated first. For a complete list of the Restructured Extended 
Executor language operators (comparative, arithmetic, etc.), see the 

206 VM/SP Application Development Guide 



Subroutines 

EXECs 

Syntax section of the VMjSP System Product Interpreter Reference. The 
Numerics and Arithmetic section contains full details of the arithmetic 
facilities of the interpreter. 

• The select instruction evaluates each expression after the when 
keywords until it finds one to be true. It then executes the 
corresponding instruction. In the above example the value of the 
variable th is assigned appropriately. (If none of the when expressions 
is valid, the otherwise instruction is executed.) 

• In the say instruction, the interpreter substitutes the value of 
dayofweek (for example, 1) into the compound symbol day.dayofweek 
to produce the derived name (day.1 for example). The result of the 
evaluation is the word "Sunday". 

The values of variables dayofmonth and th are concatenated (without an 
intervening blank) so that on the first pass the resultant display is: 

Sunday 1st January 1984 

You can use the compound symbol mechanism for arrays of more than one 
dimension by including extra periods. For example, the segments of a 
Rubik's cube (a three-dimensional array) might be called 
cube.slice.row.column, where slice, row, and column are variables 
having values 1 to 3. 

The interpreter can call subroutines that are either in the same file as the 
main program or in a separate EXEC file. The program can pass up to ten 
arguments, and the subroutine can optionally pass back a result. 

When the interpreter encounters the following instruction: 

call mysubaa argument1 argument2 

it searches the program for a label mysubaa, marking the start of the 
subroutine. If it doesn't find such a label, it continues searching for an 
external routine of the same name (since mysubaa isn't the name of a 
routine built in to the interpreter). To find more details on the interpreter's 
built-in and external functions, see VMjSP System Product Interpreter 
Reference. 

Within the subroutine, you can retrieve the arguments by using the arg or 
parse instructions, which function in a parallel manner to the pull 
instruction described in "A Sample REXX Program" on page 197. 
Alternatively, you can use the built-in argO function. For a full 
description of the parse, arg, and pull instructions, see the Parsing for 
PARSE, ARG, and PULL section in the VMjSP System Product Interpreter 
Reference. 

Chapter 8: EXECs 207 



EXECs 

Funetions 

The subroutine ends by executing either: 

return 

or: 

return answervariable 

The contents of the variable called answervariable are made available to 
the main program in a special variable called result. 

Thus, the next instruction after a call might be: 

If result > 0 then ... 

The variable result is one of the three special REXX variables that the 
interpreter can set; the other two are rc and sigl, which have been covered 
under "Issuing VM Commands" on page 198. 

Functions are handled in a similar way to subroutines, with the following 
differences: 

• They're executed as a function call instead of a call instruction. 

• They must always return a result, even if only by issuing return" ". 

• They don't use the special variable result. 

Thus, the following instruction could execute the above subroutine as a 
function: 

if mysubaa(argumentl,argument2) > 0 then .... 

The following engineering program illustrates these items and some other 
points about subroutines and functions. The program is used to calculate 
the minimum amount of material needed to construct a closed box of fixed 
height and volume. 

208 VM/SP Application Development Guide 



EXECs 

/* calculate minimum material required for box */ 
Mainpart: 

say "Enter required height" 
pull h 
if h <= 0 then 

do 
say "Invalid argument" 
exit 
end 

say "Enter required volume" 
pull volume 
if datatype(h,num) = 0 then 

do 
say "Invalid argument" 
exit 
end 

if datatype(volume,num) 0 then 
do 
say "Invalid argument" 
exit 
end 

width = h 
oldm = boxmat(h,width,volume) 
width = width + 1 
call boxmat h,width,volume 
m = result 
if m > oldm then 

do until oldm <= m 
oldm = m 
oldlen = I 
oldwidth = width 
width = width - 1 
if width > 0 then 

m = boxmat(h,width,volume) 
end 

else 
do until oldm <= m 

oldm = m 
oldlen = I 
oldwidth = width 
width = width + 1 
m = boxmat(h,width,volume) 
end 

say "Required width =" oldwidth 
say "Required Length =" oldlen 
say "Minimum material =" oldm 
exit 

Boxmat: 
procedure expose I 
arg h,w,v 
m v/h 
I m/w 
a = 2 * I * w, 

+ 2 * I * h, 
+ 2 * h * w 

return a 

Chapter 8: EXECs 209 



EXECs 

Here's an explanation of the above example: 

• The label Mainpart is used to make the program more readable. 

• The height and volume parameters are requested, and the values are 
accepted using the pull instruction. 

They're checked for validity by the built-in function datatype. The 
argument num indicates to the function that we're checking for 
numeric values other than zero. Datatype responds with 1 for numeric 
values. Otherwise 0 is returned. The result of the function is 
incorporated directly into the expression following the word if. 

• As a starting point for the calculation, the variable width is estimated 
as equal to the height, h . The routine boxmat, which calculates the 
area of material required for a box of the given size, is now used to set 
the value of the variable oldm. 

• The value of the variable width is increased by 1, and boxmat is 
executed again. In this case, boxmat is called as a subroutine. Its 
result is placed in the special variable, result. This contrasts with its 
previous use as a function when its result was directly incorporated 
into the expression. 

• The variable m is now set equal to the value of result. Thus, we could 
just as easily have written: 

m = boxmat(h,width,volume) 

and not used the special variable result at all. 

• Since we're calculating the minimum area of material required for a 
box, we must determine whether it's correct to increase the estimated 
width by 1. If the new area of material m is larger than the older value 
oldm, we're incorrect. We now repeatedly reduce the width estimate 
until a minimum value for the material is found. 

• On the other hand, if we're correct in increasing the estimated width, 
the minimum area of material can be found by repeatedly calculating 
the area for increasing widths. 

In both cases, the do until ... end instruction is used. In the case where 
the width decreases, a zero check for width is incorporated to prevent a 
zero value being passed to boxmat. 

• When the new value of the area of material m starts increasing above 
oldm: 

The minimum valu~ has been found. 

The do until loop terminates. 

The required data is displayed. 

210 VM/SP Application Development Guide 



EXECs 

• In Mainpart, boxmat is called, either as a function or as a subroutine, 
using the arguments h, width, and volume. By using an arg 
instruction, these values are assigned to the local variables h, w, and v 
within the routine. 

A procedure instruction is used to mask the variable names in the 
main program from those in the routine. This is necessary, as the 
variable m in the routine is not the same as m in the main program. 
However, the variable I (length) is required. The procedure expose I is 
used to let the main program "see" 1, and only 1. 

• In calculating the area of material required, the expression for the 
value of a spills over onto more than one line. The comma is used to 
signify this to the interpreter. 

• The return command indicates to the interpreter that a is to be 
assigned to the special variable result (if called as a subroutine), or 
inserted into the calling expression (if a function call was used). 

Functions and subroutines that are in separate EXEC files don't have 
access to any of the main program's variables; thus, you don't need to use 
the procedure instruction above. However,you must pass all the required 
values as arguments. 

You don't have to write subroutines in REXX. You can use EXEC, EXEC 
2, or modules of code written in other languages, but they must all support 
the system interfaces that the executor language uses. For full details of 
these data, see VMjSP System Product Interpreter Reference. 

Since the procedure instruction masks previous usage of variable names in 
the calling routine, you must use it when you make a recursive routine call. 

For example, the following EXEC calculates the factorial of a number. You 
invoke the EXEC with a single argument, which is the number whose 
factorial is to be calculated. 

/* calculate factorial */ 
START: 

arg x 
say 'x! =' factorial(x) 
exit 

FACTORIAL: 
procedure 
arg n 
if n = 0 

then return 1 
return factorial(n-l) * n 

The main routine calls the function FACTORIAL, which in turn calls 
itself, each time reducing n until it becomes zero. With each recursive call, 
the procedure instruction ensures that a new variable n is created. 

Chapter 8: EXECs 211 



EXECs 

Basic EXEC Language Facilities 

Basic EXECs, can contain not only VM commands and calls to other 
EXECs, they can also contain keywords that begin with the character &. 
Many VM/SP systems have routines written in basic EXECs. It may 
therefore help you to understand some elements of basic EXECs. These can 
indicate control statements, built-in functions, and special variables, as well 
as the arguments covered in "Issuing VM Commands" on page 198. 

Consider the following version of COMPILE EXEC, which was covered in 
"Exec Arguments" on page 192. 

&CONTROL OFF NOMSG 
&IF &INDEX LT 1 &GOTO -ERR1 
GLOBAL MACLIB COBOLVS CMSLIB OSMACRO OSMACR01 
GLOBAL TXTLIB COBOLVS COBLIBVS CMSLIB 
&IF &RETCODE NE 0 &EXIT &RETCODE 
COBOL &1 
&RC = &RETCODE 
PRINT &1 LISTING 
&TYPE &1 LISTING NOW PRINTING 
&TYPE COMPILE EXEC COMPLETE 
&EXIT &RC 
-ERR1 
&TYPE PROGRAM NAME NOT GIVEN 
&EXIT 

This CMS EXEC works as follows: 

• The control statement &CONTROL sets the type of execution 
information displayed at the console. No execution messages or return 
codes are to be displayed here. 

• The control statement &INDEX is a special variable that contains the 
number of arguments entered by the caller. (The control statement &N 
has the same function.) If no arguments are supplied, execution is to go 
to the label -ERR1. 

• If the GLOBAL command fails, it results in a nonzero return code. The 
special variable &RETCODE contains the return code from the most 
recently executed CMS command. If it's nonzero, the control statement 
&EXIT is executed. This causes an immediate exit from the EXEC. 

• When COBOL has been executed and the PRINT command issued, the 
COM1?LETE and PRINTING messages are displayed on the console. 
The &TYPE statement isn't affected by the earlier &CONTROL, which 
only suppresses the display of the command lines being processed. The 
first &TYPE message contains the source program name in the form of 
the variable &1. When the second line has been typed, &EXIT is 
encountered and the EXEC terminates. 

• If too few arguments are supplied, execution is routed to the label 
-ERRl, where the warning message is typed. No &EXIT is required 
here, since processing ends at the end of the EXEC. 

212 VMjSP Application Development Guide 



EXECs 

In this section, some of the basic uses and facilities of EXECs have been 
explained. See VM/SP CMS User's Guide for tables of control statements 
and special variables and for more details on the CMS EXEC Processor and 
suggestions on writing EXECs. For the complete format and usage rules of 
each EXEC statement or variable, see VM/SP CMS Command Reference. 

Using FILEDEF in EXECs 

You can use the FILEDEF command to identify to VM the input and/or 
output files of an OS program. FILEDEF can be used in EXECs just like 
other VM commands, and can eliminate multiple lines of typing before a 
program is executed. 

The following example demonstrates this by using the FILEDEF command 
inside a loop. This is possible because the ddnames and file types each 
contain a unique number as the last character. 

/* set up payroll files */ 
Mainpart: 

say "Payroll Files - Weekly or Monthly (W/M)?" 
pull runtype 
say "How many Overtime files?" 
pull otime 
signal on error 
if runtype = 'w' then 

do 
FILEDEF INFILA Cl DSN STAFF.WEEKLY.PAYFILEA 
FILEDEF INFILB Cl DSN STAFF.WEEKLY.PAYFILEB 
end 

else if runtype = 'M' then 
do 
FILEDEF INFILA Cl DSN STAFF.MONTHLY.PAYFILEA 
FILEDEF INFILB Cl DSN STAFF.MONTHLY.PAYFILEB 
end 

else do 
say "Invalid reply - must be W or M - please restart" 
exit 
end 
do while otime > 0 

FILEDEF OTFILI lotime DISK OVERTIME DATAl lotime B4 
otime = otime - 1 
end 

FILEDEF MASINP DISK STAFF MASTERl B4 
FILEDEF MASOUT DISK STAFF MASTER2 A4 
FILEDEF CON SOL TERM 
exit 

Error: 
say "Failure to execute FILEDEF command at" 
say "line number" sigl "Return code" rc 

This EXEC first requests the type of PA YFILE and then the number of 
overtime files to be processed. Depending on the type, either weekly or 
monthly data sets are identified on the OS disk (in this example, the C 
disk). 

The EXEC then uses FILEDEF to relate the internal ddnames of the form 
OTFILn (where n is a number) to the overtime files. These are in OS 

Chapter 8: EXECs 213 



EXECs 

simulated data set format (on the B disk) and have CMS identifiers 
OVERTIME DATAn B4 (where n is the same number used in the ddname). 

The next three FILEDEF commands identify the master input and output 
files with ddnames MASINP and MAS OUT respectively, and the VM 
terminal with the ddname CONSOLo 

Use of MACLIBS and TXTLIBS in EXECs 

CMS MACLIBs contain macro definitions and/or copy files. When you 
compile a source program with macro or copy definitions, you must be sure 
to identify the library containing the code before you invoke the compiler. 
Otherwise, the library isn't searched. The GLOBAL command identifies 
the libraries to be accessed and the order in which the compiler makes the 
search. 

Here's an example of part of an EXEC. 

214 VMjSP Application Development Guide 



/* compile a cobol prog */ 
Mainpart: 

signal on error 

arg progname privlib 

FILEDEF 

EXECs 

GLOBAL MACLIB privlib OSMACRO OSMACROl TSOMAC 

COBOL progname COBOL 

say 'Any extra TXTLIBs required?' 
pull textlibr 

if arg () = 0 then 
GLOBAL TXTLIB STDTXLIB 

else 

exit 
ERROR: 

GLOBAL TXTLIB textlibr STDTXLIB 

• The EXEC processes the compilation, link editing, and execution of a 
COBOL program. First you must supply two parameters: the program 
name (progname) and the programmer's private MACLIB (privlib). 
The GLOBAL command parameters are ordered so that the compiler 
searches the private library before the standard OS and TSO libraries. 

• The signal on error command ensures that a nonzero return code from 
the call to COBOL causes execution to be routed to the label ERROR:. 
Otherwise, you must request any additional TXTLIBs. 

• The GLOBAL command handles text libraries in a similar fashion to 
macro libraries. If you specify a private TXTLIB, it's incorporated in 
the GLOBAL command with the installation's library STDTXLIB. 

Chapter 8: EXECs 215 



EXECs 

Prototyping with REXX 

Summary 

REXX makes it easy for you to prototype algorithms before they're included 
in a larger compiled program. This procedure leads to faster program 
development, since design bugs are more quickly trapped without the need 
for multiple compilations. As mentioned in "The Restructured Extended 
Executor Language" on page 196, although the interpreter isn't executed as 
efficiently as compiled code, it takes less time to develop a program. 
Therefore, sizable savings result. 

Here is an example: 

/* Square Root Exec */ 
arg val 
tal 0.0001 
old = 0 
new = 1 
count 0 
do while abs(old - new) > tal 

old = new 
work1 = old ** 2 + val 
work2 = 2 * old 
new = work1/work2 
say new 
count = count + 1 
end 

say 'RESULT =' new 'CYCLES =' count 
exit 

This routine tests an algorithm for calculating square roots. Before 
incorporating it into a final compiled program (for example, in COBOL or 
FORTRAN), you can conveniently test its accuracy using a REX X 
procedure. 

The procedure accepts the value whose root is required as an argument. As 
the main loop is executed, the current approximation to the root is 
displayed. At the end, the result is displayed, together with the number of 
cycles required to calculate it. 

In prototyping, be careful when calling functions and subroutines. The 
mechanism the interpreter uses to pass arguments and results may not 
correspond to the mechanism of the compiled language that will eventually 
be used. 

You often need to perform a set sequence of VM commands. You can group 
such sequences of commands in an EXEC file and control the execution of 
these statements by using additional EXEC statements. In its simplest 
form, an EXEC file may contain only one record. In its most complex form 
it can contain thousands of records and resemble a complete program 
written in a high-level programming language. 

216 VM/SP Application Development Guide 



EXECs 

There are three types of EXECs: CMS EXECs, EXEC 2 EXECs, and System 
Product Interpreter EXECs. 

For full details on the EXEC 2 processor facilities, see VM/ SP EXEC 2 
Reference. 

Chapter 8: EXECs 217 



EXECs 

218 VM/SP Application Development Guide 



Stacks 

This chapter describes: 

• What a stack is and how it's used. 

• What program linkages and return codes are provided by CMS. 

• What parameter lists you use to issue CMS commands. 

• What CMS macro structure is available to you. 

The CMS program stack is used to pass data between commands and 
programs. 

CMS has storage area for terminal entries that exists for the life of the 
CMS session and is external to any programs or EXECs. This is called the 
console stack. The data elements within it include entries made from the 
terminal when the system isn't in VM read or CP read. These elements 
comprise the terminal input buffer. Other data elements within it are 
placed there deliberately by programs or EXECs. These are 
indistinguishable from terminal entries except by their placement; they 
reside in buffers within the program stack. Figure 16 on page 220 shows 
the elements of a console stack. 

Terminal entries are always read on a FIFO (first in/first out) basis. If you 
make two separate entries, the first is processed first. 

Program stack entries are under the control of the program or the EXEC. 
They may be queued FIFO or LIFO (last in/first out). If a program stacks 
two elements LIFO, the second one stacked is presented the next time that 
a read command is issued. 

The buffers within the program stack are also in control of the program or 
EXEC. They can be used locally by one program, or globally to pass entries 
to another program. 

Chapter 9: Passing Commands and Data 219 



Passing Commands and Data 

EXEC BUFFER 
B r n 

PROGRAM ----i> BUFFER 
A 0 

.. 
r 

~ ~ 
TERMINAL 

Figure 16. Elements of a Console Stack 

Using a Program Stack Globally 

PROGRAM 
STACK 

} 
TERMINAL 
INPUT 
BUFFER 

CONSOLE 
STACK 

Let's change the program you wrote so that it will automatically print out 
the time of day when it greets you by name. You can do this within the 
program, or you can do it externally. 

You can use an EXEC (see "Chapter 8: EXECs" on page 191) to do this 
with no modifications to the program itself. You can also streamline the 
function by passing the parameters from the EXEC to the program using 
the program stack. If you do this, you don't have to respond to program 
prompts. When the program issues the read commands, it receives the 
stacked lines. 

This EXEC performs such a function. 

Use the editor to create this file on your disk as GREET EXEC. 

&CONTROL OFF NOMSG 
&STACK &1 
&STACK &2 
CP QUERY TIME 
EXEC RUN TESTPROG 
&EXIT 

Then enter: 

greet lee green 

220 VMjSP Application Development Guide 



Passing Commands and Data 

The system responds with the display: 

TIME IS 11:45:38 

WELCOME TO CMS, LEE GREEN 

This is the time of day message from CMS, followed by the familiar program 
output. The queueing function of the program stack passes data from the 
EXEC to your program. 

Note: Sometimes you'll get the time message after the welcome message. 

To see how the LIFO option works, modify the EXEC file so it looks like 
this: 

&CONTROL OFF NOMSG 
&STACK &1 
&STACK LIFO &2 
CP QUERY TIME 
EXEC RUN TESTPROG 
&EXIT 

Make the same entry as before: 

greet lee green 

The system responds with: 

TIME IS 11:49:57 

WELCOME TO CMS, GREEN LEE 

The greeting now has the last name first. 

Using a Local Stack 

You use a local stack when your stacked messages apply only to your 
program. Assume you want to sort a file in nickname order before it's 
printed, but you don't want to change the original file. You can do this 
with the SORT command. This command is different from the editor SORT 
command you learned in "Manipulating Data" on page 60. The SORT 
command creates a new, and temporary, file. It also prompts for sort fields. 
You stack the answer in advance, therefore you don't have to respond to 
the prompt. However, the SORT command can fail before it issues the read 
for this information, so you'll clear out the buffer before exiting. 

Note: This EXEC expects to find a file called DATA FILE A. 

Chapter 9: Passing Commands and Data 221 



Passing Commands and Data 

This is the code: 

/* Sort and print */ 
MAKEBUF 
QUEUE "I 8" 
SORT DATA FILE A WORKDATA TEMP A 
if rc ,=0 then do 

say "unexpected return code", 
rc "from sort command" 
end 

else PRINT WORKDATA TEMP A 
DROPBUF 
exit 

This program sorts the file DATA FILE A to a workfile, and prints it. If a 
problem occurs in the SORT command, it deletes its own stacked message. 
It doesn't affect any following stack activity. 

Figure 17 on page 223 illustrates how local buffers affect the system when 
you do the local stack example. The following takes place: 

1. Your program gets controL 

2. You stack the message for the CMS sort. 

3. You issue the SORT command, transferring control. 

4. Sort reads from the console stack, and performs the sort. 

5. Your program performs the final steps, then exits. 

6. CMS regains control. 

222 VM/SP Application Development Guide 



Passing Commands and Data 

CMS YOUR PROGRAM CONSOLE 
(I 

1 
STACK 

CD 

® 
I 

IMAKEBUF , 
IC:=J STACK 

0S0RT 

® I H ~READI c:J 

® 
I 

DROPBUF _",' 

" 
® 

1 ______________ 

--
."HEAD 
"" I 

Figure 17. Example of Local Stack Usage 

Manipulating the Program Stack 

Some commands that put data into a program stack are: 

• For REXX: 

QUEUE The data is queued FIFO. 

PUSH The data is pushed LIFO. 

• For EXEC or EXEC2: 

&STACK FIFO The data is queued FIFO. 

&STACK LIFO The data is pushed LIFO. 

Some commands that read data from a program stack are: 

• For Restructured Extended Executor language: 

PULL The next item is read. 

• For EXEC or EXEC2: 

&READ The next item is read. 

The order in which stacked items are retrieved is determined at the time 
they're placed in the stack. 

I 
• • .! 

I 

Chapter 9: Passing Commands and Data 223 



Passing Commands and Data 

Using Program Stacks 

The best way to make use of the program stack is to maintain control of it 
with the MAKEBUF and DROPBUF commands. The MAKEBUF 
command creates a new buffer within the program stack. The buffer 
number for the new buffer is returned in register 15 by CMS. 

Note: If an &ERROR statement is in effect in an EXEC that invokes this 
command, the return code causes it to execute. Therefore, it's important to 
ensure that no &ERROR statement is in effect at the time. 

After the MAKEBUF command is issued, you can determine how many 
entries are already on the program stack by issuing the QUEUEDO 
function. This instruction returns the number of entries in the stack. (A 
similar function is available with the SENTRIES command.) Here again, 
the value is returned in register 15. Be careful not to create an invalid 
execution of the SIGNAL ON ERROR statement. The result of the 
QUEUED or SENTRIES command can be used by the program as a 
processing cutoff to avoid using any stack elements from another program 
or the terminal input buffer. 

Place entries in the stack with the QUEUE, PUSH, or STACK commands. 
Retrieve them with the PULL or PARSE PULL commands, or any CMS 
commands that access the stack elements. 

Program Linkages and Return Codes 

If you write an assembler language subroutine, you need to know about the 
CMS linkage conventions, and the CMS parameter communication 
architecture. The linkages provided are the base address of your program, 
the return address, and the return code. The passed parameters can be in 
two formats: 

1. Tokenized Parameters These are left justified, blank-padded, and 
truncated to eight bytes each. Each of the strings you enter, including 
the name of the module, is considered a parameter. A parenthesis is 
also considered a parameter. Blanks and parentheses are the 
delimiters. Tokenized parameters are always passed to the program, 
regardless of the method by which it's called. 

2. Extended Parameter Lists These supply the data exactly as entered. 
Extended parameters are only passed to the program if it's called from 
the terminal or by an EXEC2, or Restructured Extended Executor 
Language EXEC file. You can use this form if more than one argument 
string is to be passed to the EXEC, or the EXEC is being called as a 
function. 

Certain registers are reserved for this specific usage in CMS. These are: 

224 VM/SP Application Development Guide 



Linkage Registers 

Return Codes 

Register 0 

Register 1 

Register 13 

Register 14 

Register 15 

Passing Commands and Data 

is a pointer to data describing the extended parameter list 
(Plist). 

is a pointer to the tokenized parameter list. 

is a pointer to the register save area. 

is a return address to be branched to at exit. 

is a return code given to you, or set by you before return. 

Your program gets control with its base and return addresses set up in 
registers. These are the most important of the linkage registers. You don't 
need to set up your own base register; it's provided. You must return to the 
return address or the CMS session will end. 

The base address is passed to your program in each of two registers: 
register 12 and register 15. CMS calls destroy the contents of register 15. 
To maintain addressability, use register 12 as a base. CMS routines restore 
register 12 before returning control to you. Save register 14 on entry into 
your program, and restore it on exit. CMS routines use register 14 but 
don't restore it. 

This is a program that conforms to these linkage conventions. It's provided 
here as a sample of the minimum structure that a program should have: 

PROGRAM CSECT 
USING PROGRAM,R12 
ST R14,SAVRET 

ESTABLISH ADDRESSABILITY 
SAVE RETURN ADDRESS IN R14 

L 
BR 

SAVRET 

R14,SAVRET LOAD RETURN ADDRESS 
R14 RETURN 

OS F 

Your program sends status information to the caller using a return code. 
This return code is in register 15. Other programs and EXECs inspect this 
register when control returns to them, and take appropriate action. If a 
terminal input calls you, the return code is displayed by CMS. Be sure to 
conform to the return code conventions. On normal exit, set register 15 to 
zero. On an error exit, set register 15 to some non-zero value. 

Various return codes have taken on special meanings through usage. (See 
VM/SP CMS Command Reference for a further discussion of these codes.) 
If you plan to test for one of these errors, it's better to conform to the 
established code. This makes it easier for others to understand your 
program's ending status . 

Chapter 9: Passing Commands and Data 225 



Passing Commands and Data 

Let's assume that your program has a special error exit that it uses if a 
certain file isn't found. The standard error return code for this condition is 
28. Modify the program to look like this: 

PROGRAM CSECT 
USING PROGRAM,R12 
ST R14,SAVRET 

EXITOK DS OH 
L R14,SAVRET 

ESTABLISH ADDRESSABILITY 
SAVE RETURN ADDRESS IN R14 

LOAD RETURN ADDRESS 
LA R15,O 
BR R14 

SET NON-ERROR RETURN CODE IN R15 
RETURN 

SPACE 1 
EXITNG DS OH 

L R14,SAVRET LOAD RETURN ADDRESS 
LA R15,28 
BR R14 

SET NON-ERROR RETURN CODE IN R15 
RETURN 

SAVRET DS F 

If this program had executed without errors and returned to CMS through 
the label EXITOK, the CMS ready message would have read: 

Ready; 

If it hadn't found the file and exited through EXITNG, the ready message 
would read: 

Ready(00028) ; 

This is recognized as an unsuccessful program ending, caused by a file not 
found. 

In "Chapter 3: Using the System Product Editor" on page 39, you invoked 
the editor to create your test program. The command you entered was: 

xedit testfile fortran a (noprof 

This entry is made from your terminal, so both the extended and tokenized 
forms of the parameter list were passed to the module called XEDIT. This 
is an example of what the data looked like to that module: 

• Register 1 contained the address of CMNDLIST. 

• CMNDLIST had been set up like this: 

CMNDLIST 
DC 
DC 
DC 
DC 
DC 
DC 
DC 

226 VMjSP Application Development Guide 

DS OD 
CL8'XEDIT' 
CL8'TESTFILE' 
CL8'FORTRAN' 
CL8'A' 
CL8' ( , 
CL8'NOPROF' 
XL8'FF' 



Passing Commands and Data 

This is the tokenized parameter list: 

• Register 0 pointed to EPLIST. 

• EPLIST had been set up like this: 

EPLIST 
DC 
DC 
DC 

DC A(CMDSTART) 
A(ARGSTART) 
A(ARGEND) 
A(O) 

The extended parameter list referenced by EPLIST is: 

CMDSTART DC 
ARGSTART DC 
ARGEND 

C'xedit' 
C'testfile fortran a (noprof' 

EQU * 

The module XEDIT used this data to initiate your session with the file and 
options you wanted. You can use the Plist in the same way, when you want 
your program to process a similar input list. 

Using Parameter Lists to Issue CMS Commands 

You can issue a CMS command from your program by using a parameter 
list (Plist). Let's assume that this program updates a CMS file. You want 
to print the file (in upper case), and you don't care about errors in the CMS 
routine. You can issue the CMS print command from your program. 

To do this you would set up the parameter list, load its address into RI, and 
call CMS with an SVC 202 that is followed by an adcon '1'. The program 
looks like this: 

Chapter 9: Passing Commands and Data 227 



Passing Commands and Data 

PROGRAM CSECT 
USING PROGRAM,R12 
ST R14,SAVRET 

EXITOK DS OH 
LA Rl,PRINTIT 
SVC 202 
DC AL4(1) 
L R14,SAVRET 
LA R1S,0 
BR R14 
SPACE 1 

EXITNG DS OH 
L R14,SAVRET 
LA R1S,28 
BR R14 

SAVRET DS F 
PRINTIT DS OD 

DC CL8'PRINT' 
DC CL8'DATA' 
DC CL8'FILE' 
DC CL8'*' 
DC CL8' ( , 
DC CL8'UPCASE' 
DC 8X'FF' 

ESTABLISH ADDRESSABILITY 
SAVE RETURN ADDRESS IN R14 

LOAD PLIST ADDRESS 
CALL CMS 
IGNORE ERRORS 

LOAD RETURN ADDRESS 
SET NON-ERROR RETURN CODE IN R1S 
RETURN 

LOAD RETURN ADDRESS 
SET NON-ERROR RETURN CODE IN R1S 
RETURN 

ALIGN PLIST TO DOUBLEWORD BOUNDARY 
COMMAND 
FILENAME 
FILETYPE 
FILEMODE 
OPTION DELIMITER 
UPPERCASE OPTION 
FENCE END OF PLIST 

This program issues a CMS print command when the job is successfully 
completed. 

Using eMS Macros 

You can invoke CMS services from the assembler program using Plists or 
macros. Heavily formatted Plists can be cumbersome. To streamline such 
transactions, CMS provides a group of macros. These macros let you 
manipulate files, perform I/O functions, and communicate with VM in a 
simple way. 

• The file control macros permit you to access CMS files easily. Most of 
the file definition information is provided by defaults or is retrieved 
from the file by CMS itself. 

• The CMS file management function uses a file system control block 
(FSCB). This block contains all the information necessary to CMS. It 
serves as a repository for record pointers and other like data. CMS can 
automatically create the FSCB from data you provide in the form of 
macro options. Or, you can create the FSCB and refer to it by label in 
your macros. 

• VM provides two macros for creating an FSCB: 

FSCB creates a file system control block for a CMS disk file. 

FSCBD creates a DSECT for th e file system control block. 

228 VMjSP Application Development Guide 



Passing Commands and Data 

• Two macros can be used to open and close CMS files. While it isn't 
always necessary to use these macros, it's good practice. Future 
changes in the way the program is invoked, or in its internal file 
manipulation, may make them necessary. To track down their omission 
at that time is time-consuming. These macros are: 

FSOPEN opens a CMS disk file for input or output. 

FSCLOSE closes a CMS disk file. 

• Reading from and writing to a CMS file is done using the following 
macros. They can be coded to point to a FSCB, or to provide the file 
identifying information within themselves. They have standard defaults 
for the various options, which let you code them easily. 

FSREAD reads from a CMS file into the program I/O buffer. 

FSWRITE writes to a CMS file from the program I/O buffer. 

• Three macros perform various functions using the FSCB and standard 
defaults: 

FSSTATE retrieves information about the status and format of a CMS 
file. 

FSERASE erases a CMS file . 

FSPOINT resets the write or read pointers for a file. 

• The I/O control macros cover all the normally needed operations for 
unit record, terminal and tape devices. Three macros perform unit 
record device I/O: 

PRINTL writes a line to a virtual printer. 

RDCARD reads a card from a virtual reader. 

PUNCHC punches a card on the virtual punch. 

• The macro for full-screen I/O: 

CONSOLE performs 3270 I/O operations, including building the CCW, 
issuing the DIAGNOSE code X'58' or SIO instruction, 
waiting for the I/O to complete and checking any error status 
from the device. 

• Four macros read and write to terminals one line at a time: 

LINERD alows users to read from a specified virtual screen. 

LINEWRT allows users to write to a specified virtual screen. 

Chapter 9: Passing Commands and Data 229 



Passing Commands and Data 

RDTERM reads a line of output from a terminal. 

WRTERM writes a line of output on a terminal. 

• This macro lets you suspend program execution until the terminal 
activity has been completed. 

WAITT causes the program to wait until pending terminal I/O is 
finished. 

• Four tape macros perform normal I/O operations and provide certain 
label processing: 

T APECTL positions the tape (rewind, backspace, etc.). 

T APESL processes HDRI and EOFI tape labels. 

RDTAPE reads a record from the tape drive. 

WRTAPE writes a record to the tape'drive. 

• LINEDIT is used to communicate CP commands to VM: 

LINED IT compiles, formats, and displays a message on your terminal, 
or presents it to CP as a CP command. 

• The following macros are used for interrupt trapping: 

HNDEXT traps external interrupts for internal program handling. 

HNDINT traps interrupts for a specified I/O device. 

HNDSVC traps interrupts for a specified supervisor call. 

W AITD causes the program to wait until the next interruption occurs 
on the specified device. 

• This macro selects relocatable and nonrelocatable members of the called 
files at linkage exit time: 

COMPSWT directs the CMS LOAD command to load non-relocatable 
modules. 

• The following macro provides register equates. 

REGEQU generates a standard equate list for general, floating point, 
and extended control registers. 

See CMS Command Reference for further information about the use of 
macros and their formats. 

230 VM/SP Application Development Guide 



Summary 

Passing Commands and Data 

In this chapter , we discussed what a program stack is and how it is used. 
We discussed program linkages, return codes, and how to use 
parameter lists to issue e M S commands. We also discussed using eMS 
macros to manipulate fi les, perform 1/0 functions, and to communicate 
with VM. 

Chapter 9: Passing Commands and Data 231 



Passing Commands and Data 

232 VMjSP Application Development Guide 



This chapter describes testing and debugging facilities that VM provides. It 
covers the TESTCOB and TESTFORT commands, VS FORTRAN 
Interactive Debug, VS FORTRAN Version 2 Interactive Debug, the 
dialog and testing service of ISPF, and the use of SQL/DS for data base 
prototyping and testing. It also summarizes the run-time debugging 
facilities of VM, which provide access to general registers, main storage, 
and control words, as well as trace options and dump control. 

The use of TESTCOB and TESTFORT VS FORTRAN Interactive 
Debug, and VS FORTRAN Version 2 Interactive Debug, under CMS is 
broadly similar to their use elsewhere (for example, TSO), although, there 
are some differences under CMS. 

Certain low-level facilities of VM/SP require you to be familiar with the 
structure of the system. If you wish to use them, you should have IBM 
System/370 Principles of Operation available for use as a reference. 

Note: If you are testing and debugging a program that issues vector 
instructions, refer to Chapter 11 for more information. 

Interactive Debug 

The Interactive Debug products contain a command and a set of 
subcommands that aid you in diagnosing and solving problems in your 
programs. 

The facility lets you: 

• Stop and start the program as it runs. 

• Examine and change values of variables. 

• Trace program transfers. 

• Track frequency of execution of statements. 

• Locate errors and correct them. 

• Test the code and improve its efficiency. 

Chapter 10: Testing and Debugging Programs under VMjSP 233 



Testing and Debugging Programs 

COBOL Interactive Debug 

You can use COBOL Interactive Debug under CMS to debug any COBOL 
program compiled with the TEST option. Although with the RUN 
command, you can compile, load, and execute a program in one step, to use 
Interactive Debug you should use the COBOL command with the keyword 
TEST to compile your program. You can use other COBOL command 
parameters. However, some of them may have a slightly different effect. 
For details, see IBM OS COBOL Interactive Debug Terminal User's Guide 
and Reference. 

After you've compiled the program, you have a stored, TEST-compiled 
TEXT file ready to be processed with Interactive Debug. Before proceeding, 
however, you must issue a GLOBAL command for the TXTLIB files with 
the COBOL library routines and any previously compiled routines called by 
your program. 

When running under Interactive Debug, you must define all files by using 
the FILEDEF command. This includes SYSIN, SY$OUT, and SYSPUNCH, 
if needed, and any input or output files your program uses. The Interactive 
Debug also requires a debug file for its own use. 

You can define this file by issuing a command of the form: 

filedef d disk mycobfil sysutS 

The use of the CMS commands GLOBAL and FILEDEF are described in 
"Chapter 4: More about Compiling and Running a Program" on page 105. 

You can now issue the TESTCOB command. It's like EDIT in the way it 
lets you enter subcommands to manipulate data and monitor the execution 
of your program. 

TESTCOB provides several subcommands that let you control the execution 
of your program: 

GO starts the execution of the program. Until you actually issue the GO 
subcommand, TESTCOB waits. 

If you want to return to TESTCOB (rather than continuing with the 
execution of the program), press ATTN twice. The system displays 
TESTCOB to indicate that you can enter subcommands. 

AT specifies a line number where program execution is to stop. When 
you specify AT, you can specify variables whose values are to be 
displayed. 

LIST specifies a variable whose value you want to be displayed. 

END ends the execution of TESTCOB. (Pressing the ATTN key twice does 
the same thing.) 

234 VMjSP Application Development Guide 



Example 

010 
020 
030 
040 
050 
060 
070 
080 
090 
100 
110 
120 
l30 
140 
150 
160 
l70 
180 
190 

Testing and Debugging Programs 

Here's an example of the use of TESTCOB. Compile the following program 
mycobfil for testing using the TEST option. 

Note: This is like the program we entered in "Creating a COBOL File" on 
page 19, but it contains an intentional mistake. The word AFRST in line 
170 should be ALAST. 

IDENTIFICATION DIVISION. 
PROGRAM-ID. MYPROG. 
ENVIRONMENT DIVISION. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 
77 FNAME PIC X(22) VALUE "ENTER YOUR FIRST NAME. " 
77 LNAME PIC X(23) VALUE "AND NOW YOUR LAST NAME." . 
01 ANSWR. 

05 ANSLT PIC X (16) VALUE "WELCOME TO CMS, " 
05 AFRST PIC X(8) VALUE SPACES. 
05 FILLER PIC X VALUE SPACES. 
05 ALAST PIC X(8) VALUE SPACES. 

PROCEDURE DIVISION. 
DISPLAY FNAME UPON CONSOLE. 
ACCEPT AFRST FROM CONSOLE. 
DISPLAY LNAME UPON CONSOLE. 
ACCEPT AFRST FROM CONSOLE. 
DISPLAY ANSWR UPON CONSOLE. 
STOP RUN. 

Now you issue this command: 

testcob mycobfil (myprog d) 

where: 

MYCOBFIL is the name of the TEXT file resulting from the COBOL 
compilation. 

MYPROG is the name of the program (as specified in the PROGRAM-ID 
statement). 

D is the ddname of the debug file set up in the FILEDEF 
command. 

After you enter this command, the system displays TESTCOB. This means 
that the system is ready to accept a command from you. Now you can, for 
example, say that you want to see the value of AFRST at line 190. Once 
you set this, you can start your program executing. 

Chapter 10: Testing and Debugging Programs under VMjSP 235 



Testing and Debugging Programs 

The subcommands go like this: 

TESTCOB 
at 160 (list afrst) 
TESTCOB 
go 

The effect of this is to continue execution of the program to line 160. The 
system then displays a message in the following form: 

AT MYPROG.160.1 
07A855 100 

TESTCOB 
02 AFRST 

You can interpret the response as follows: 

A FRED 

• TESTCOB halts the program at the first verb on source line number 
160. 

• The variable AFRST, defined on source line number 100, has a main 
storage location of 7A855 and a (normalized) level number of 02. 

• AFRST is alphabetic (A) and currently has a value of "FRED." 

You can request display of more than one variable and enter multiple 
subcommands. For example, if you enter: 

at 190 (list afrst;list alast;go) 

the display might look like this: 

AT MYPROG.190.1 
07A855 100 02 AFRST A SMITH 
07A870 120 02 ALAST A 

PROGRAM UNDER TESTCOB ENDED NORMALLY 
TESTCOB 

In this example, the following occurs: 

• The system displays the values of both variables. The value of ALAST 
remains unmodified (i.e., spaces). 

• The program starts executing again and it displays the welcome and 
request messages again. 

When you find that ALAST is still set to spaces, you might need to alter its 
value before proceeding with the test. You can use the SET subcommand 
to do this: 

set alast jones 

236 VM/SP Application Development Guide 



Testing and Debugging Programs 

You might, however, want to examine the error by looking at the source 
line that was supposed to change it. In TESTCOB mode, issuing the 
subcommand: 

source 170 

displays the line you want. 

Since the program loops back, you might want to use the NEXT 
subcommand. This causes one COBOL verb to be executed and then 
returns control to the TESTCOB user. Thus, at each step of the program, 
you can display variables, source lines, and so on. This is useful for 
following COBOL transfers out of sequence, such as GO, CALL, or 
PERFORM. 

If you issue the subcommand: 

list answr 

you get a display of the structure of the group variable ANSWR, as defined 
in the Data Division. Since it's a group item rather than an elementary 
item, the values of the variables are not displayed. However, you might 
find this helpful in debugging the error in the program. 

The breakpoints that you set up during testing are in effect throughout the 
session. The LISTBRKS subcommand lets you display breakpoints. The 
OFF subcommand lets you remove them one by one. With the RUN 
subcommand you can continue execution and ignore all the breakpoints. 
At any point you can use the END subcommand to end the debugging 
session and return to VM/SP. 

TESTCOB offers you other useful debugging facilities. For example, you 
can: 

• Get a system dump of the region in which your program is executing by 
entering DUMP instead of END. 

• Take conditional debugging actions during program execution by using 
the IF and WHEN subcommands. 

• Determine the current status of files specified in your source program 
by using the LISTFILE command. 

• Trace the program execution (paragraph by paragraph and calls to 
other programs) by using the TRACE subcommand. 

For more information on TESTCOB, see IBM as COBOL Interactive 
Debug Terminal User's Guide and Reference. 

Chapter 10: Testing and Debugging Programs under VM/SP 237 



Testing and Debugging Programs 

VS FORTRAN Interactive Debug 

This section describes the VS FORTRAN Interactive Debug product. If 
you're using the FORTRAN Interactive Debug product, skip to "FORTRAN 
Interactive Debug" on page 241. 

You can invoke VS FORTRAN Interactive Debug by specifying an 
execution-time parameter when a VS FORTRAN program is executed. It is 
available for use in a CMS environment, with or without ISPF. 

If the following conditions are met, you can use VS FORTRAN Interactive 
Debug to debug a program: 

• The program was compiled with a release of VS FORTRAN prior to 
Release 3.0 and you specified the TEST option at compile time. 

• The program was compiled with VS FORTRAN Release 3.0 or later and 
you didn't specify the NOSDUMP option at compile-time unless you 
also specified TEST. 

In either case, Release 3.1 or later of the VS FORTRAN Library must be 
made available by using the GLOBAL TXTLIB command when the 
compiler-produced TEXT file is LOADed or LKEDed. 

After the program has been compiled, you may execute the program in line 
mode (without ISPF) or in full-screen mode (with ISPF). 

Using VS FORTRAN Interactive Debug in Line Mode 

Suppose you compiled the following program (the same one you entered in 
"Creating a FORTRAN File" on page 24) in accordance with the discussion 
above. 

010 
020 
030 
040 
050 
060 
070 
OSO 
090 
100 
llO 
120 
130 

2 
5 
10 
15 

PROGRAM MYPROG 
CHARACTER*S F,S 
WRITE (6,5) 
READ (5,2) F 
WRITE (6,10) 
READ (5,2) S 
WRITE (6,15) F,S 
FORMAT (AS) 
FORMAT (' ENTER YOUR FIRST NAME. ') 
FORMAT (' AND NOW YOUR LAST NAME. ') 
FORMAT (' WELCOME TO CMS, ',AS,lX,AS) 
STOP 
END 

If you execute this program in line mode with the DEBUG execution-time 
option, Interactive Debug suspends execution before beginning the program. 
This lets you set breakpoints or issue other Interactive Debug commands. 
When you respond with a GO command, execution begins. 

Whenever execution is suspended and VS FORTRAN Interactive Debug is 
waiting for you to enter a command, you see the following prompt: 

238 VM/SP Application Development Guide 



Testing and Debugging Programs 

FORTIAD 

Suppose you want to stop the program at .statement number 7, to look at the 
variables which are about to be written. Use the AT command to specify 
breakpoints. You can now specify a list of commands to be executed when 
the breakpoint is encountered. For example, the command: 

at 7 (list f%list s%go) 

causes this to happen: whenever statement 7 is reached, the values of F and 
S are listed and execution immediately resumes (without giving you a 
chance to enter further commands from the terminal). 

When you issue the GO command, the program executes and you'll see the 
following display (lower case indicates your response): 

FFT06FOOl ENTER YOUR FIRST NAME 
FFT05FOOl INPUT: PRECEDE INPUT WITH % OR ENTER lAD COMMAND 
%bill 
FFT06FOOl AND NOW YOUR LAST NAME 
FFT05FOOl INPUT: PRECEDE INPUT WITH % OR ENTER lAD COMMAND 
%smith 
AT: 7 IN SAMPLE 
F = BILL 
S = SMITH 
FT06FOOl WELCOME TO CMS, BILL 
PROGRAM TERMINATED, RC= 0 

SMITH 

At this point, the program has finished executing. You can still issue some 
Interactive Debug commands, but you cannot restart the program. You 
have to issue the QUIT command when you want to end the debugging 
seSSlOn. 

It is good practice to establish a breakpoint before the end of the program 
(perhaps on the STOP statement). Then, if you want to change some 
variable values and return to a statement in the program, you can do so. 

Using VS FORTRAN Interactive Debug in Full-Screen Mode 

The same operations as shown in the line mode example are valid in the 
full-screen mode. The primary difference is that you're executing under 
ISPF, and have a more "friendly" presentation of output. A scroll able log 
of all input and output is provided as well as a log file of all debugging 
activities. See VS FORTRAN Interactive Debug Reference for further 
explanation and examples. 

Other VS FORTRAN Interactive Debug Facilities 

VS FORTRAN Interactive Debug offers many useful debugging facilities. 
For example, you can: 

• Use the ERROR command to specify the level of remedial action to be 
taken, if any, when a program error is detected by the VS FORTRAN 
library. 

Chapter 10: Testing and Debugging Programs under VM/SP 239 



Testing and Debugging Programs 

• Use the FIXUP command to provide corrected values for the arguments 
that caused the error. 

• Use the IF and WHEN command to take conditional debugging actions 
when your program is being executed. 

• List the the number of times statements were executed by issuing the 
LISTFREQ command. 

• Use the TRACE command to trace the execution of the program. 

• Use the WHERE command to find out what statement number will be 
executed next, and optionally show information about how the program 
got there. 

• Use the SYSCMD command to issue CMS commands without leaving 
Interactive Debug. 

• Use commands like ENDFILE, CLOSE, REWIND, and BACKSPACE 
to manipulate external VS FORTRAN files. 

• Use the HELP command to ask for information concerning any 
command, or about common debugging tasks. 

• Use the TERMIO command to request that all input and output 
operations requested by the VS FORTRAN program are to be handled 
using the standard VS FORTRAN Library I/O routines rather than the 
special routines provided by Interactive Debug. 

VS FORTRAN Version 2 Interactive Debug 

VS FORTRAN Version 2 has an Interactive Debug facility as part of the 
product. This is very similar to VS FORTRAN Interactive Debug as 
described above, with some additional features: 

• It supports VS FORTRAN Version 2 programs. 

• It provides subroutine timing facilities to help find which parts of your 
program are taking the most CPU time. 

• If run under ISPF V2, it can display FORTRAN source listings in a 
special window, without having to split the screen. Color and extended 
highlighting are also supported. 

• It can be run in batch mode as well as interactively. 

240 VM/SP Application Development Guide 



Testing and Debugging Programs 

FORTRAN Interactive Debug 

The FORTRAN Interactive Debug product may be used to debug FORTRAN 
Gl and Code and Go FORTRAN programs, as well as VS FORTRAN 
programs. However, you cannot successfully compile FORTRAN Gl or 
Load and Go programs if they contain a FORTRAN language debug packet. 
If the debug packet is removed, such programs become eligible for 
FORTRAN Interactive Debug (with VS FORTRAN programs, debug packet 
statements are simply ignored). 

Normally, you can compile, load, and run a FORTRAN program in one step 
using the CMS RUN command. When using Interactive Debug, you need to 
compile the program, then load and run it. You must include the parameter 
TEST with the other parameters you use in the compile command for your 
particular version of FORTRAN. 

For example, the following command compiles a FORTRAN program for 
debugging under CMS. 

fortvs myvsprg (print source list map test) 

The CSECT name of the main program is always set to MAIN, regardless of 
what was otherwise specified. 

There are other minor differences when the TEST parameter is used. For 
more details, see FORTRAN Interactive Debug for eMS and TSO Guide 
and Reference. 

After you've compiled your program, you'll have a stored, test-compiled 
TEXT file ready for processing. Before issuing the TESTFORT command, 
you must make sure that the library with the FORTRAN Interactive Debug 
routines is made available. This library has the default name TFORTLIB 
and should precede the other libraries normally specified in the GLOBAL 
command. Since TESTFORT needs to communicate with the terminal, you 
should also specify the communications routines library (default name 
TSOLIB). 

For example, you might enter: 

global txtlib tfortlib tsolib vfortlib cmslib fortmod2 mod2lib 

if your program required the FORTRAN Mod II libraries FORTMOD2 and 
MOD2LIB. The VFORTLIB and CMSLIB are required to run VS 
FORTRAN. 

The GLOBAL command remains in effect for the rest of the session. If you 
run a program under direct system control (instead of TESTFORT control), 
issue a new GLOBAL command without TFORTLIB or TSOLIB. 

You can now issue the TESTFORT command. It's like EDIT in the way 
that it lets you enter subcommands to manipulate data and monitor the 
execution of your program. 

Chapter 10: Testing and Debugging Programs under VMjSP 241 



Testing and Debugging Programs 

TESTFORT provides several subcommands that let you control the 
execution of your program: 

GO starts the execution of the program. Until you actually issue 
the GO subcommand, TEST FORT waits. 

If you want to return to TESTFORT (rather than continuing 
with the execution of the program), press ATTN twice. The 
system displays TESTFORT to indicate that you can enter 
subcommands. 

AT specifies a line number where program execution is to stop. 
This is called a breakpoint. You can specify as many 
breakpoints as you-like. When you specify AT, you can also 
specify variables whose values are to be displayed, as well as 
other subcommands (such as GO). 

LISTBRKS provides a list of breakpoints. 

OFF turns off a breakpoint. 

LIST specifies a variable whose value you want to be displayed. 

SET assigns the value of a program variable. 

NEXT steps through the source program one line at a time. 

RUN functions like GO, but ignores breakpoints it meets. 

SOURCE displays a line of the source program. 

FIXUP alters the value of a variable which has caused an execution 
error, and then resumes the execution of the program. 

END ends the execution of TESTFORT. (Pressing the ATTN key 
twice does the same thing.) 

The only required parameter for TESTFORT in CMS is the name of the 
program you're debugging. You can use the keywords DISK, PRINT, and 
NOPRINT to reroute the output (which is normally at your terminal). 
TESTFORT locates two files from your filename: the TEXT file produced by 
the compilation, and the original source program file (filetype FORTRAN). 

Suppose you compiled the TESTPROG program (the same one you entered 
in "Creating a FORTRAN File" on page 24), you would receive a listing 
similar to the following: 

242 VMjSP Application Development Guide 



Example 

010 
020 
030 
040 
050 
060 
070 
080 2 
090 5 
100 10 
110 15 
120 
130 

Testing and Debugging Programs 

PROGRAM MYPROG 
CHARACTER*8 F,S 
WRITE (6,5) 
READ (5,2) F 
WRITE (6,10) 
READ (5,2) S 
WRITE (6,15) F,S 
FORMAT (A8) 
FORMAT (' ENTER YOUR FIRST NAME. ') 
FORMAT (' AND NOW YOUR LAST NAME. ') 
FORMAT (' WELCOME TO CMS, ',A8,lX,A8) 
STOP 
END 

N ow you issue this command: 

testfort testprog (disk debugfll 

where: 

TESTPROG is the name of the textfile resulting from the FORTVS 
compilation. 

DISK indicates that the debug output goes to a disk file. 

DEBUGFL is the name of the debug disk file. 

After you enter this command, the system displays TESTFORT. This 
means that the system is ready to accept a command from you. Now you 
can. for example, say that you want to see the values of F and S at line 70. 
Once you set this, you can start your program executing. The commands go 
like this: 

TESTFORT 
at 70 (list f;list s;go) 
TESTFORT 
go 

When the program execution reaches line 70, this is displayed: 

AT:70 IN MAIN 
F = JOHN 
S = SMITH 
WELCOME TO CMS, JOHN SMITH 
PROGRAM HAS FINISHED EXECUTION NORMALLY 
TESTFORT 

After displaying the line number, TESTFORT executes each subcommand in 
turn. In this example, execution of the program resumed as the GO 
subcommand was included. If GO is omitted, Interactive Debug displays 
TESTFORT again, and a reply of GO lets the session continue. 

However, if you want to end the debugging session, reply with END to the 
last TESTFORT message. 

Chapter 10: Testing and Debugging Programs under VMjSP 243 



Testing and Debugging Programs 

In the TESTFORT environment the SOURCE subcommand lets you view a 
program statement. For example: 

source 50 

causes the display of line 50 of the program. 

You can just as easily use SOURCE to display a line by preceding the 
FORTRAN statement number with a slash: 

source 90 

and 

source /5 

both result in a display of the same line. 

When you reach line 70 again, you might want to change the value of a 
program variable. You can do this, as follows, with a SET subcommand: 

TESTFORT 
set s = 'jones' 
TESTFORT 
run 
WELCOME TO CMS, JOHN JONES 

If you receive control because of an error in execution, use the FIXUP 
subcommand to make a correction and resume the execution of the 
program. For example, if you had the following in your test program: 

X -46 
A SQRT(X) 

you're returned to TESTFORT. This is because the argument of SQRT 
must be a positive number. You can change the argument of the 
mathematical function and continue processing. Thus: 

f ixup argl (64) 

applies the value 64 (instead of ·46) to the square root function. The change 
is made only for the purposes of this function. The value of variable X 
remains ·46, although the value of A becomes 8 (square root of 64). 

TESTFORT offers many other useful debugging facilities. For example, you 
can: 

• Specify the level of automatic remedial action to be taken, if any, when 
a program error is found by using the ERROR subcommand. 

244 VMjSP Application Development Guide 



Testing and Debugging Programs 

• Use the IF and WHEN subcommands to take conditional debugging 
actions when your program is being executed. 

• List the number of times statements were executed (or were not 
executed) by issuing the LISTFREQ subcommand. 

• Trace the execution of the program (branch by branch and including 
calls to subroutines) by using the TRACE subcommand. 

• Get a trace of events that occurred before the last attention interrupt 
by using the WHERE subcommand. 

For more information on the TESTFORT command, see FORTRAN 
Interactive Debug for eMS and TSO Guide and Reference. 

Dialog Testing Using ISPF 

If you're not using ISPF, skip to "Data Base Testing Using SQL/DS" on 
page 250. 

Four testing modes of ISPF provide processing actions to help you debug a 
dialog. You can specify only one of these keywords on the ISPST ART 
command: TEST, 'rESTX, TRACEX, or TRACE. This controls the 
operational mode of ISPF during dialog testing. 

Here's how the testing modes of ISPF differ from the normal mode: 

• Panel and message definitions are refetched from the libraries each time 
you specify one in an ISPF service. Normally, frequently used panels 
and messages are retained in virtual storage and fetched from there 
rather than from the library. If you've modified the panel or message 
library, the testing mode ensures that the latest version is accessed 
during a test run. 

• Tutorial panels are displayed with the current and previous panel 
names and the previous message id on the bottom line of the screen. 
This helps you identify the position of the panel in the tutorial flow. 
When you use the PRINT or PRINT -HI commands, the screen 
printouts show similar diagnostic data. 

• If you make an error, you can force the dialog to continue. However, 
results from that point on are unpredictable. All other ISPF-detected 
errors, ABENDs, or program interrupts force an ABEND of ISPF. 

If you issue the TRACE keyword with ISPSTART, the testing mode also 
writes a message to the ISPF log file. It does so whenever you invoke any 
ISPF service and whenever the service detects an error. 

Issuing one of the extended mode keywords TESTX or TRACEX causes all 
messages written to the ISPF log file (including trace messages) to be 
displayed at the terminal as well. 

Chapter 10: Testing and Debugging Programs under VMjSP 245 



Testing and Debugging Programs 

For more details of ISPF testing mode, see ISPF Dialog Management 
Services and Examples. If your installation has ISPFjProgram Development 
Facility (ISPFjPDF), you should use its dialog test option instead of the 
testing modes described above. 

The dialog test option provides you with aids for testing ISPF dialog parts 
(functions, panels, variables, messages, tables, skeletons) and complete ISPF 
applications. For example, you can: 

• Invoke selection panels, command procedures, programs and shared 
segments 

• Display panels 

• Add new variables and modify variable values 

• Display a table's structure and status 

• Display, add, modify, and delete table rows 

• Browse the ISPF log 

• Execute dialog services 

• Add, modify, and delete function and variable trace definitions 

• Add, modify, and delete breakpoint definitions. 

When you enter dialog test, you enter a new user application with an 
application ID of ISR. All the options operate in this context. 

Dialog test is itself a dialog and, therefore, uses the dialog variables. Since 
it is important to allow your dialog to operate without interference (as 
though in a production environment), dialog test accesses and updates 
variables independently of your dialog variables. 

If your dialog encounters a severe error when it invokes a dialog service, 
that error is handled as requested by a dialog. The current CONTROL 
service ERRORS setting (CANCEL, or RETURN; the default is CANCEL) 
determines what is done. If CANCEL is in effect, when the error message 
panel is displayed you may choose whether to continue dialog testing. 

We'll now discuss several of these options. 

The functions option lets you test a dialog function (panel, command 
procedure, or program). You don't have to write supporting code or panels. 
The name of the dialog function and the parameters that may be passed are 
the same as those that you can specify (from a dialog function) when you 
invoke the SELECT service. When you press the ENTER key, a SELECT is 
done. When you select this option, a panel is displayed that lets you 
identify the dialog function that you want to test. 

246 VM/SP Application Development Guide 



Testing and Debugging Programs 

During panel development, the panels option lets you test newly created or 
modified panels and messages. You don't need to write supporting code to 
display them. Any variables referenced and set during panel processing are 
handled according to standard ISPF protocol. 

The variables option lets you: 

• Display all ISPF variables defined in the dialog application you're 
testing. 

• Change the value of a variable. 

• Define new variables. 

When you select this option, a scrollable display indicates all the current 
variables for the dialog being tested. The rows of the display are ordered by 
the pool containing the variables, then alphabetically by variable name 
within each pool. The function variable pool is listed first, followed by the 
shared variable pool, and then the profile variable pool. Insertions are left 
where they are entered on the display. 

Modifications to the display are processed when you press the ENTER key. 
Updating of the variable pools occurs when you enter the END command. 

You can create new dialog variables, but you can't create two variables 
with the same name in the variable pool. You can't delete a variable, but 
you can set its value to nulls. 

The tables option lets you: 

• Display the contents of an existing row in an open table. 

• Remove an existing row from an open table. 

• Change the contents of an existing row of an open table. 

• Add a new row after a selected row of an open table. 

• Display the structure of a table. 

• Display a data information panel reflecting all operations using a 
specified table. 

The log option lets you display and browse data recorded in the ISPF log. 
You can use all the browse command, except BROWSE, while looking at 
the ISPF log. The ISPF log contains the following types of trace output: 

• Trace header entries. 

• Function trace entries. 

• Variable trace entries. 

Chapter 10: Testing and Debugging Programs under VM/SP 247 



Testing and Debugging Programs 

The dialog services option lets you execute a dialog service by entering 
the service command invocation with or without the ISPEXEC characters. 
You can call any dialog service that is valid in the command environment 
except CONTROL at a breakpoint or before invoking a function. 

The traces option lets you define, change, and delete trace specifications. 
You can trace executed dia log services, except for the VPUT ser vice issued 
to a pan el, and referenced dia log variables dur in g dialog execution. Trace 
data is placed in the transaction log. From here you can browse it (using 
the LOG option), or prin t it when you exit from ISPF. 

Since tracin g may degr ade dialog performance and cr eate large amounts of 
ou tput, care sh ould be taken in setting th e scope of trace definitions. 

When you select this option, you're shown a selection panel on which you 
can indicate the type of trace (function or variable) you wish to define. 

Use the funct ion trace opt ion to establish crit er ia for recording the 
names of dialog service calls, th e service parameters, and return code in the 
ISPF log. Service calls made by the dialog or during test pr ocessing are 
recorded. Whenever a new application or function has data recorded, a 
header is placed in the trace. When you select the function t race option, a 
scrollable panel displays all current ly defined function traces. You may 
add, delete, and modify function trace definitions using this panel before 
invoking a function . 

The variable trace option is used to establish criteria for recording 
variable usage. The usage of a variable is recorded: 

• If an ISPF service is direct ly asked to operate on the variable (for 
example, VGET, VPUT, VCOPY). 

• If an ISPF service is indirectly asked to oper ate on th e variable (for 
example, DISPLAY). 

Variables changed under the variables option are a lso r ecor ded if the trace 
specifications ar e met. 

When you select the variable trace option, a scrollable display lists all 
curr ently defined variable traces. You may add, delete, or modify variable 
trace definitions by using this panel before invok ing a function . 

A breakpoint is a locat ion at which the execution of a dialog is suspended 
so that dialog test facilities may be used. The breakpoint option lets you 
indicate wh ere such temporary suspensions should occur. At a breakpoint, 
you're given control. You may now examine and manipulate dialog data 
(tables, variables, etc.) using various test options. You can also specify new 
test options, such as traces and other breakpoints. 

Breakpoin ts are located immediately before a dialog service receives 
con trol or after i t relinquishes control. Breakpoint definitions cause 

248 VM jSP Applica tion Development Guide 



Testing and Debugging Programs ' 

specia l handling within the I8PLINK and I8PEXEC interfaces to dialog 
services. No user dialog is modified. 

When you select the breakpoint option, a scroll able display shows all 
currently defined breakpoints for this session. You may add, delete, or 
modify breakpoint definitions using this panel before invoking a function or 
a breakpoint . All breakpoints exist until you delete them or you end or 
cancel your dialog test session . If you invoke a dialog function or a 
selection panel and encounter a breakpoin t, the dialog test breakpoint 
primary option menu is displayed. 

Like th e dialog test primary option menu, the breakpoint primary option 
menu lets you use the RETURN command from anyone of the selected test 
option s to process a redisplay of the breakpoint primary option menu. You 
must use: 

• The GO option to terminate processing at this breakpoint and continue 
executing the dialog being tested. 

• Th e CANCEL option to cancel the dialog test option. This protects 
against inadvertent loss of data. 

The breakpoint primary option menu contains a ll options of the dialog test 
pr imary options menu. It therefore presents all of the dialog test functions 
to you. 

Wh en a user dialog encounters a breakpoint, the current dialog 
environment is saved. When you select the GO option, the envir onment is 
restored, except for the following: 

• If you change variable, table, and fi le t ailoring data at a breakpoint, 
these actions are performed as an extension of the su spended dialog. It 
is as if the dialog takes all the actions itself during execution . 

• If you modify the service return code (on the breakpoint primary option 
menu), the new return code is passed back to the dialog. It is as if the 
service sets the new code itself. 

• If you execute the PANE LID command at the breakpoin t, the last 
setting for displaying panel identifiers is retained. 

• If any CONTROL service settings for DI8PLA Y LINE or DI8PLA Y 8M 
are in effect before the breakpoint, such settings are lost. 

The manipulation of one dialog part may cause a ch ange to another dialog 
part. 

The dia log test option also lets you manipulate a table, to display its 
structure and status, and to browse the I8PF log. 

For further information on these functions and a ll dialog test functions see 
ISPF/PDF for VM/SP Program Reference. 

Chapter 10: Testing and Debugging Programs under VM jSP 249 



Testing and Debugging Programs 

Data Base Testing Using SQl/OS 

If you're not using SQL/DS, skip to "Using CMS Debugging Facilities" on 
page 252. 

You can use SQL/DS as a tool for prototyping data designs and 
implementations during the application development process. For example, 
the ability to CREATE, ALTER, and DROP tables dynamically from an 
online, interactive environment lets you experiment with different designs. 

SQL/DS facilities support these data prototyping functions: 

• Online definition of model designs. 

• Generation/loading of test data. 

• Design documentation and analysis. 

You can use ISQL to enter table, view; and index definitions for validating 
and testing data design. The interactive definition through ISQL offers you 
direct feedback on definitional errors. This feedback addresses both syntax 
and data mapping errors. 

If you enter SQL definitional commands using ISQL, then it can save them 
as stored queries for later recall, modification, or rerun. You can also save 
statements in CMS files used as input (SYSIN) to the DBS utility. 

You can load tables created for design purposes with test data using these 
SQL/DS facilities: 

• Item by item, using the ISQL INPUT command. 

• From existing SQL/DS tables within the data base, using the SQL 
INSERT command. 

• From existing SQL/DS tables in another data base, using the DBS 
UNLOAD and RELOAD commands. 

For more information on this topic, see SQL/DS Planning and 
Administration - VM/SP. 

By usin g the SQL/DS explanation tables and EXPLAIN command, you can 
analyze how a given design will perform. You can issue the EXPLAIN 
command via ISQL, the DBS utility, or an application program. EXPLAIN 
lets you get information about the structure and execution performance of a 
SQL command. 

You can see how well a SELECT command performs by using the ISQL 
query cost estimate. ISQL displays this at the end of every SELECT result. 
This estimate of the resources used during command execution is related to, 
but isn't the same as, that obtained via EXPLAIN. 

250 VMjSP Application Development Guide 



Testing and Debugging Programs 

For full details on how SQLjDS performs, see SQLjDS Planning and 
Administration - VMjSP. 

You can use ISQL facilities to test and debug SQL commands for 
application development. The ISQL support of routines lets you develop 
logical sequences of SQL commands for this purpose. You can produce 
different routines using parameters to simulate program variables for 
various paths through the application logic. This tests the functional 
results of an application against various inputs. 

In these situations you can use the ISQL command SET RUNMODE, 
which lets you stop or continue the execution of an ISQL routine when an 
error occurs. 

This command offers these options: 

• Continue to the next command even if an error occurs. (You can use 
this option to bypass unconnected errors or examine later ones.) 

• Stop processing when you make an error. But don't perform 
ROLLBACK WORK (that is, leave the data in its processed state). 

• Stop processing when you make an error. But perform ROLLBACK 
WORK (that is, erase all changes the routine made and preserve the 
integrity of the data base). 

For more details on this subject, see SQLjDS Terminal User's Guide -
VMjSP. 

When you're developing programs, you may want to use the SQL 
INCLUDE command. This is useful when many applications use the same 
host variables or SQL command sequence. This command causes the 
preprocessors to include source lines from other CMS files in your source 
code. For example, you might place a lengthy SELECT command in a 
separate CMS file and use it in various programs by coding INCLUDE 
commands. 

For example, in a COBOL or FORTRAN program, you'd do this by coding 
the filename of the CMS file: 

EXEC SQL INCLUDE SOURCEI END-EXEC. 

at the point in the source code where you include the SELECT command. 

When developing a program with embedded SQL commands, you can run 
the SQLjDS preprocessors with a CHECK option. This causes the 
preprocessor to generate diagnostics on the SQL in the program but not an 
access module or compiler input. You can thus use a skeleton of the final 
program to do a lot of initial code development and debugging. 

If you'd like more details on the preprocessors, see SQLjDS Application 
Programming. 

Chapter 10: Testing and Debugging Programs under VM/SP 251 



Testing and Debugging Programs 

Using eMS Debugging Facilities 

CMS provides a number of commands that are useful in debugging 
programs. These include DEBUG, GO, BREAK, COMPARE, SET, STORE, 
SVCTRACE, and PER. We'll discuss each of these below. 

Using the DEBUG Command 

When you use the DEBUG command, you can enter the VM debug 
environment. If you need to debug programs at this level, you may want to 
have on hand the VMj370 Principles of Operation. 

Once you enter the debug environment, VM saves the contents of all 
general registers, the channel status word (CSW), and the channel address 
word (CAW). When you leave the environment, you can examine and 
change the contents before restoring them. When a program ends 
abnormally (abends), VM checks if the next command entered is DEBUG. 
If it is, it saves the contents of the general registers, the CSW, and the 
CAW, plus the old program status word (PSW) from the time of the abend. 

You can enter the DEBUG subcommands CAW, CSW, and PSW to display 
the contents of the corresponding words. GPR n displays the contents of 
general purpose register n. X hh displays the contents of main storage at 
hex address hh. (Note that the start address of the program you were 
running is X'20000'.) 

Debug provides you with certain environment commands. For example, 
RETURN lets you return to CMS, and HX ends the debug session 
completely. You can also restart your program from a specific address with 
GO XXXXX, or set up breakpoints for reentering the debug environment 
with the BREAK command. 

Note: You may use debug to complement the dialog test option of 
ISPFjPDF. If, however, you need to examine ISPF storage areas, you can't 
use DEBUG. 

See VMjSP CMS Command Reference for full details on these and other 
debug environment subcommands. Also, you can find further hints on the 
usage of the debug environment in VMjSP CMS User's Guide. 

Using the COMPARE Command 

COMPARE is a useful command. You can use it to compare the contents 
of two disk files of fixed or variable-length format on a record-for-record 
basis. Different records are displayed on the terminal. The command has 
the option of restricting the comparison to specific columns. This means 
that you could, for example, check for differences only in a key field. 

252 VMjSP Application Development Guide 



Testing and Debugging Programs 

Using the SET and STORE Commands 

You can alter locations by using the SET and STORE commands. The 
format of the SET command is one of the following: 

SET xxx hhhhhhhh 
SET GPR n hhhhhhhh 

where: 

xxx is CAW, CSW, or PSW. 

hhhhhhhhh is the data to be stored. 

n is the number of the general register. 

The format of the STORE command is as follows: 

STORE xxxxx hhhhhhhh 

where: 

xxxxx is the main storage address to be altered in hexadecimal. 

hhhhhhhhh is the data to be stored. 

Using the SVCTRACE Command 

SVCTRACE provides you with a record of all supervisor calls in your VM. 

The information, which is routed to your printer, includes: 

• Call and return address information. 

• GPR and floating-point register contents before, during, and after the 
call. 

If you use more than one printer on your VM, you may want to route the 
trace information to a separate printer from your program output. 
Depending on the type of problem, sometimes it's more informative to 
intermix the two outputs. See VM/SP CP Command Reference for a full 
description of SVCTRACE. 

Using the PER Command 

You can use the PER command for monitoring the following lower level 
events during execution: 

• Fetching and exe~ution of a machine code instruction. 

• Execution of successful branch instructions. 

Chapter 10: Testing and Debugging Programs under VM/SP 253 



Testing and Debugging Programs 

Summary 

• Alterations of a specific general purpose register. 

• Access to a particular area of main storage. 

Here are some options that PER provides: 

• Routing trace information to the terminal or printer. 

• Reporting only every nth event monitored. 

• Letting you step through the code instruction by instruction. 

For more information about the PER instruction, see VMjSP CP Command 
Reference for General Users. 

VM and CMS provide a number o(testing and debugging facilities. 
Interactive Debug contains a command and a set of subcommands that aid 
you in diagnosing and solving problems in your programs. You can use 
COBOL Interactive Debug under CMS to debug any COBOL program 
compiled with the TEST option. You can invoke VS FORTRAN Interactive 
Debug by specifying an execution-time parameter when a VS FORTRAN 
program is executed. You can also use the FORTRAN Interactive Debug 
for VS FORTRAN programs. There are four testing modes of ISPF provide 
processing actions to help you debug a dialog. You can use SQLjDS as a 
tool for prototyping data designs and implementations during the 
application development process. You can use ISQL facilities to test and 
debug SQL commands for application development. 

When you use the DEBUG command, you can enter the VM debug 
environment. Once you enter the debug environment, VM saves the 
contents of all general registers, the channel status word (CSW), and the 
channel address word (CAW). When you leave the environment, you can 
examine and change the contents before restoring them. 

254 VM/SP Application Development Guide 



Chapter 11. Using the VM/SP HPO Vector Facility Support with 
FORTRAN Programs 

This chapter describes the VM/SP HPO Vector Facility support and how to 
use the associated commands. The following topics are discussed: 

• A brief overview of the Vector Facility is given with references to 
documentation where additional information on the Vector Facility can 
be found. 

• How to display the Vector Facility registers at your terminal. 

• How to display at your terminal other Vector Facility values such as 
the vector activity count, vector statuB register, and vector mask 
register. 

• How to change the contents of the Vector Facility registers and values. 

• Error messages that you may receive using the Vector Facility 
commands. 

• How to display how much Vector Facility resources your virtual 
machine is using. 

• A brief discussion on vector instruction tracing. 

Vector Facility Overview 

VM/SP HPO supports the Vector Facility in System/370 mode. The Vector 
Facility is an instruction processor that can manipulate values at a high 
speed, usually floating-point values. 

The Vector Facility consists of: 

• Additional registers: 

16 vector registers, each of which contains a number of 32-bit 
elements. 

A vector mask register, which is used by various vector 
instructions. 

A vector status register, which contains information that describes 
the current status of the Vector Facility. 

Chapter 11. Using the VM/SP HPO Vector Facility Support with FORTRAN Programs 255 



Using Vector Facility Support 

A vector activity count, which provides a means of measuring the 
t ime required to execute instructions of the Vector Facility. 

• 171 vector instructions 

For mor e information about the Vector Facility, refer to System/370 Vector 
Operations. 

To execute progr ams the contain vector instructions, VM/SP HPO must be 
run on a processor with a real Vector Facility. CP does not simulate a 
Vector Facility when an actual Vector F acility is not configured. 

If a Vector Facility is available on your system, your compiled FORTRAN 
object programs can use its array processing capabilities. Note that the 
Vector Facility is supported by the VS FORTRAN Version 2 program. For 
specific options and other additional information on this support, refer to 
VS F ORTRAN Application Programming Guide. 

Your use of the Vector Facility starts when either your program issues a 
vector instruction or you enter a DISPLAY or STORE command associated 
with the Vector Facility such as DISPLAY VR (display vector register). 
You can use the DISPLAY and STORE commands to display and change 
the various register sets in the Vector Facility. 

If you receive the followin g message, 

VECTOR FACILITY NOT AVAILABLE 
Ready; 

ask the system operator to issue the VARY ONLINE VECTOR command. 

Note: You would also get th is message if no Vector Facility is on your 
system. 

If your progr am executes a vector instruction and the Vector Facility is not 
available, it will receive a program check. 

Your use of the Vector Facility ends when: 

• You enter the LOGOFF command 

• You enter the SYSTEM CLEAR command. (Note that if you issue this 
command, you will have to IPL again.) 

• The system operator issues a FORCE command, forcing your virtual 
machin e off the system, or 

• You enter IPL xxx CLEAR or IPL a n amed system (for example, CMS). 

256 VM jSP Application Development Guide 



Using Vector Facility Support 

When your use of the Vector Facility ends, CP releases the vector register 
save areas for your virtual machine. 

Displaying Vector Facility Registers 

Examples 

You can use the DISPLAY command to display the contents of your virtual 
machine's vector registers. To do this, set a breakpoint at the place in your 
program where you want to test the Vector Facility's registers. (See 
"Chapter 10" for information on how to set breakpoints.) When execution of 
your program stops, enter the DISPLAY command to view the contents of 
the registers. 

Note: The first time a vector instruction is executed in an application, the 
vector environment has been disabled and a vector operation exception 
occurs. CMS enables the vector environment, clears the vector status 
register and then reissues the instruction. If you have set a BREAK 
point at this instruction, the contents of the vector status register you 
display may not represent what your program will see. 

To determine whether CMS will clear the vector status register when it 
encounters this inst ruction, display control r egister O. If the vector control 
bit is on (CRO, bit 14, 00020000 bit), CMS has already determined that this is 
a vector application and the clearing will not occur. 

Note: CMS resets the Vector Status Register ,between commands. EXEC2 
and System Product Interpreter (REXX) users must do this themselves 
by issuing the EXECOS command (OS and VSAM reset). 

The following examples show the format of messages the system will display 
in response to different variations of the DISPLAY command. 

Displaying the Contents of a Vector Register 

To display the contents of vector register 0, enter: 

d vrO 

Since, in this example, you did not specify an element, the system assumes 
element O. Your screen should look like this: 

Chapter 11. Using the VM/SP HPO Vector Facility Support with FORTRAN Programs 257 



Using Vector Facility Support 

VRO,OO = 459CCCAB 125AB300 98720000 34092500 

L ~--.~Contents of elements 1-3 
in hexadecimal (the display command 
displays at least 4 elements) 

Contents of 
element 0 in 
hexadecimal 

~--.El ement 
number in hexadecimal 

I...---.Regi ster 

Ready; 

number in hexadecimal 
(although registers can be entered in decimal) 

If you did not use the Vector Facility or your program did not use vector 
register 0, your screen will look like this: 

VRO,OO ZEROS (IN-USE BIT OFF) 

Note: The in-use bits, when on, show that the register has been used 
previously. When off, they mean no vector instructions or STORE VR 
commands have changed that register. 

258 VM/SP Application Developmen t Guide 



Using Vector Facility Support 

Displaying the Contents of a Specific Element 

To display the contents of vector register 0 element 6, enter: 

d vrO,6 or d vr,6 (register 0 is the default) 

Note: Elements must be specified in hexadecimal. If this were element 24 
decimal, for example, you would have to specify it as 18. 

Your screen should look now like this: 

VRO,04 = 543ABOOO 90050ABO 070605DO 1307000F 

~------~--... Contents of element 6 

~--------------------,----.Contents of elements 
4, 5, and 7 are also 
displayed 

~---.First element 

Ready; 
actually displayed 

Displaying the Contents of a Range of Elements 

VRO,OO 
VRO,04 
VRO,08 
Ready; 

To display vector r egister 0 elements 2 to 10 (hexadecimal A), enter: 

d vrO,2-A or d vr,2-A 

Your screen should now look like this: 

45689001 ABC10000 OF020000 OF030000 
045400CO OC050000 09060035 OA070000 
OA080000 0529000F 040B0003 050DOFFF 

Note that elements 0, 1, and 11 are also displayed. 

Chapter 11. Using the VM/SP HPO Vector Facility Support with FORTRAN Programs 259 



Using Vector Facility Support 

Displaying the Contents of All Elements in a Range of Registers 

VRO,OO 00000000 
VRO,04 0504000C 

VRO,7C OF7COOOO 
VR1,OO 13000000 

VRF,7C F07COOOE 
Ready; 

To display the contents of all elements in registers 0 to 15 (F hexadecimal), 
enter: 

d vrO-F,O-end 

Note: The END operand shows that you want to look at all of the elements 
in the specified registers starting with the first element specified. Our 
example says display all elements from 0 to the end of the elements. 
You can also use the END operand to specify all registers after the 
first one specified (for example, d vrO-end). 

Your screen should now look like this (the dots represent data that is 
displayed but not shown in this book): 

OF010000 08920003 OF030000 
05050000 00060002 03070000 

06700000 007EOOOF 037F0400 
13010000 13020000 13030000 

FE700000 F07EOO02 F47F0200 

Note: Since 128 elements are shown, the last line starts with element 124 (7e 
hexadecimal). 

260 VMjSP Application Development Guide 



- - ----------. 

Using Vector Facility Support 

Displaying the Contents of a Number of Consecutive Elements 

VR3,10= 
VR3,14= 
VR3,18= 
VR4,10= 
VR4,14= 
VR4,18= 
VR5,10= 
VR5,14= 
VR5,18= 
Ready; 

3F1300EO 
00170030 
00170030 
90000000 
4F130000 
46170070 
04130050 
12907586 
12907586 

To display the contents of six consecutive elements starting from element 19 
(13 hexadecimal) in vector registers 3 to 5, enter: 

d vr3-5,13.6 

Note: The dot (.) specifies the number of elements including element 19 (13 
hexadecimal) that are to be displayed (that is elements 19 (13),20 (14), 
21(15),22(16),23(17), and 24(18) are to be displayed). 

Your screen should now look like this: 

FC140333 3D153456 3616FFFF 
30180000 3E190400 38180091 
301800DO 3E190400 38180091 
00000000 00000000 00000000 
4E140000 43150000 49160020 
4A180000 4A180000 4A1AOFFO 
55140030 551500AA BB160004 
481800AB 5F190989 59989429 
481800AB 5F190989 59989429 

Note: The system displays twelve elements although only six were requested; 
element 19 (13 hexadecimal) is the fourth element in the first, fourth, 
and seventh lines while element 24 (18 hexadecimal) is the first 
element in lines three, six, and nine. 

Chapter 11. Using the VMjSP HPO Vector Facility Support with FORTRAN Programs 261 



Using Vector Facility Support 

Displaying the Contents of a Vector Register Pair 

To display the contents of vector register pair 4 and 5 (register pairs are 
always even/odd) elements 84 to 86 (54 to 56 hexadecimal), enter: 

d vp4,54-56 

y our screen~QJlld Ilowlopk like this: 

VP4,54= 000000A9764B230E .87231583661407174 E-82 
VP4,55= 0000000000000005 .59925457340060138 E-93 
VP4,56= 15999ABCDEF00005 . 10023157676117273 E-51 

Ready; 

L 
:

SCientifiC notation 

~--------------~-decimal equivalent 

~-----.hexadecimal 

Note: The register pair is displayed in hexadecimal followed by the decimal 
equivalent in scientific notation (E-82 means 10 to the minus 82nd 
power). (The contents of the elements are considered to be in 
floating-point format.) 

Displaying the Contents of a Range of Vector Register Pairs 

VPO,54 
VP2,54 
VP4,54 
Ready; 

To display the contents of element 84 (54 hexadecimal) in three register 
pairs starting with register pair 0 and 1, enter: 

d vpO.3,54 

Your screen should now look like this: 

F0000000000689A5 -.37323520244320472 E 47 
8000000000000019 -.29962728670030069 E-92 
F000000000001000 -.35681192317648997 E 45 

262 VM/SP Application Development Guide 



Using Vector Facility Support 

Displaying the Contents of Ii Range of Elements in a Number of Consecutive Vector Register Pairs 

VPO,54 
VPO,55 
VPO,56 
VP2,54 
VP2,55 
VP2,56 
VP4,54 
VP4,55 
VP4,56 
Ready; 

To display the contents of elements 84 to 86 (54 to 56 hexadecimal) in three 
register pairs starting with register pair 0 and 1, enter: 

d vpO.3,54-56 

Your screen should now look like this: 

0419269319908698 .55604615576442853 E-73 
F419269319908698 -.40415587850529355 E 62 
FFOOOOOOOOOOOOOA .10043362776618689 E 61 
E000000001000000 .79228162514264337 E 29 
0000000000000001 .11985091468012027 E-93 
A000000000000345 .34135498998217281 E-52 
D000000000000008 .20479999999999999 E-04 
FFFFFFFFFFFFFFFF .72370055773322621 E 76 
0000000000000001 .11985091468012027 E-93 

Chapter 11. Using the VM/SP HPO Vector Facility Support with FORTRAN Programs 263 



Using Vector Facility Support 

Displaying the Vector Activity Count, Vector Status Register, and 
Vector Mask Register 

Examples 

You can also display your virtual machine's vector activity count, vector 
status register, and vector mask register. To do this, set a breakpoint at 
the place in your program where you want to test one of these. (See 
"Chapter 10" for information on how to set breakpoints.) When execution of 
your program stops, enter the DISPLAY command to view the contents of 
the item. 

Displaying the Vector Activity Count 

To display the vector activity count, enter: 

d vac 

Your screen should now look like this: 

VAC = 00000004 00000000 
Ready; 

Displaying the Contents of the Vector Mask Register 

To display the contents of the vector mask register, enter: 

d vmr 

Your screen should now look like this (assuming 128 elements): 

VMR = FFFFFFFF FFFFOOOO 00000000 00000000 
Ready; 

Note that, in the example, the mask bits for elements 0 through 47 are on. 

Displaying the Contents of the Vector Status Register 

To display the contents of the vector status register, enter: 

d vsr 

264 VMjSP Application Development Guide 



Using Vector Facility Support 

Your screen should now look like this: 

VSR = 00000001 OOOOFFFF 
Ready; 

For the meaning of the fields in the vector status register, refer to 
System/370 Vector Operations. 

Changing the Contents of Your Vector Facility's Registers 

Examples 

You can use the STORE command to change the contents of your virtual 
machine's vector registers, vector activity count, vector status register, and 
vector mask register. To do this, set a breakpoint at the place in your 
program where you want to change the Vector Facility's registers. (See 
"Chapter 10" for information on how to set breakpoints.) When execution of 
your program stops, enter the STORE command to change the contents of 
the registers. 

Note: The STORE command is different from the DISPLA Y command in 
that you can only store in one register or one register pair in a single 
invocation of the command. 

Note: If you are running in CMS, refer to the note under "Displaying Vector 
Facility Registers." If the vector facility has not been used previously, 
the values you store may be changed. 

Storing into a Specific Element 

For example, to store hexadecimal FEDCBA98 in element 32 (20 
hexadecimal) of register 3, enter: 

st vr3,20 FEDCBA98 

Note: The STORE command will accept less than eight digits as a data 
word. For example, you could enter st vr3,20 FEDCBA9. Here, the 
seven digits you enter would be placed in the rightmost seven bytes 
of element 20 (hex) of register 3 and the leftmost byte would be set to O. 
Hence, the element's contents would be changed to OFEDCBA9. 
However, if you enter more than eight digits without an intervening 
blank (for example, st vr3,20 FEDCBA987), you will receive an error 
message. 

Chapter 11. Using the VMjSP HPO Vector Facility Support with FORTRAN Programs 265 



Using Vector Facility Support 

ST VR3,20 FEDCBA98 
STORE COMPLETE 
Ready; 

When the store operation is complete, your screen will look like this: 

Storing Into a Number of Consecutive Elements 

For example, to store hexadecimal FEDCBA98 in elements 32 (20 
hexadecimal) and the next three elements of register 3, enter: 

st vr3,20 FEDCBA98 FEDCBA98 FEDCBA98 FEDCBA98 

When the store is complete, your screen will look like this: 

ST VR3,20 FEDCBA98 FEDCBA98 FEDCBA98 FEDCBA98 
STORE COMPLETE 
Ready; 

Storing Into an Element of a Vector Register Pair 

To store hexadecimal FEDCBA98FEDCBA98 in element 32 (20 hexadecimal) 
of register pair 2,3; enter: 

st vp2,20 FEDCBA98FEDCBA98 

Note: The STORE command will accept less than 16 digits as a data word. 
For example, you could enter st vp2,20 FEDCBA9. Here, the seven 
digits you enter would be placed in the leftmost seven bytes of 
element 20 (hex) of register pair 2 and 3 and the remainder of the 
doubleword would be filled with zeroes. Hence, the element's contents 
would be changed to FEDCBA9000000000. However, if you enter more 
than sixteen digits without an intervening blank (for example, st 
vp2,20 FEDCBA98712345678), you will receive an error message. 

When the store is complete, your screen will look like this: 

ST VP2,20 FEDCBA98FEDCBA98 
STORE COMPLETE 
Ready; 

266 VMjSP Application Development Guide 



Using Vector Facility Support 

Storing into the Vector Status Register 

To store 00200080 0080FFFF in the vector status register, enter: 

st vsr 00200080 0080FFFF 

When the store is complete, your screen will look like this: 

ST VSR 00200080 0080FFFF 
STORE COMPLETE 
Ready; 

Note: Refer to System/370 Vector Operations for the meaning and format of 
the vector status register fields. 

Storing into the Vector Activity Count 

ST VAC FEDCBA98 
STORE COMPLETE 
Ready; 

To store FEDCBA98 in the first full word of the vector activity count, enter: 

st vac FEDCBA98 

When the store is complete, your screen will look like this: 

Storing into the Vector Mask Register 

ST VMR FEDCBA98 
. STORE COMPLETE 
Ready; 

To store FFFFOOOO in the first fullword of the vector mask register, enter: 

st vmr FEDCBA98 

When the store is complete, your screen will look like this: 

Chapter 11. Using the VM/SP HPO Vector Facility Support with FORTRAN Programs 267 



Using Vector Facility Support 

Error Messages 

If you enter one of the DISPLAY or STORE command vector subcommands 
and: 

• Your virtual machine has no vector register save area and CP cannot 
create one because the Vector Facility is not in the configuration or 
offline, the system displays the message: 

VECTOR FACILITY NOT A V AILABLE 
Ready; 

• You specified an invalid element, the system displays the message: 

INVALID ELEMENT - nn 
Ready; 

• You specified an invalid register or element range, the system displays 
the message: 

INVALID RANGE - nn-nn 
Ready; 

• If you specified an invalid register, the system responds: 

INV ALID REGISTER - n 
Ready; 

• If you specified an invalid operand, the system responds: 

INVALID OPTION - option 
Ready; 

• If you specified invalid hexdata in the STORE command, the system 
responds: 

INVALID HEXDATA - hexdata 
Ready; 

268 VM/SP Application Development Guide 



Using Vector Facility Support 

Displaying How Much Vector Facility Resource Your Virtual 
Machine is Using 

You can use the INDICATE USER command to display, along with other 
system values, how much Vector Facility resource your virtual machine is 
using. If your virtual machine has a virtual Vector Facility and you enter 
the INDICATE USER command, besides the usual system values, the 
system displays: 

• The total time your virtual machine used a Vector Facility since the 
last logon or ACCOUNT command (VVECTIME), and 

• The total time your virtual machine used a Vector Facility plus the 
time CP has used the Vector Facility for your virtual machine since the 
last logon or ACCOUNT command (TVECTIME). 

For the meaning of the other fields of the INDICATE USER command, refer 
to VM/SP HPO CP Command Reference for General Users. 

To use the INDICATE USER command, enter: 

INDICATE USER 

A sample of what the system might display is: 

PAGES: RES-0073 WS-0073 READS =000347 WRITES = 000135 PG -0000 PP -0029 
VTIME =001:00 TTIME =001:50 S10 = 000426 RDR-OOOOOO PRT-OOOOOO PCR-OOOOOO 
SW APS: SW APOUT = 000362 SWAPIN = 000362 SW-OOOO 
VVECTIME = 000:12 TVECTIME = 000:20 
Ready; 

where: 

VVECTIME is the total time in minutes:seconds your virtual machine used 
a Vector Facility since the last logon (or ACNT command). 

TVECTIME is the total time in minutes:seconds your virtual machine used 
a Vector Facility plus the time CP has used the Vector Facility 
for your virtual machine since the last logon (or ACNT 
command). 

Chapter 11. Using the VM/SP HPO Vector Facility Support with FORTRAN Programs 269 



Using Vector Facility Support 

Vector Instruction Tracing 

When single stepping through a program using the TRACE or PER 
command, the instructions return their mnemonic. Some vector 
instructions have two mnemonics for the same opcode, one for binary 
operands and one for short floating-point operands. Instructions that have 
two mnemonics for a single opcode return the mnemonic for the binary 
version of the opcode. 

For additional information on testing and debugging your program and on 
using the TRACE and PER commands, refer to "Chapter 10. Testing and 
Debugging Programs under VM/SP." 

270 VMjSP Application Development Guide 



Appendix A. Complete COBOL Program Examples 

Simple COBOL Program 

The following is the simple COBOL program used in "Chapter 2: 
Developing Programs Using CMS" on page 19, as well as in "Chapter 10: 
Testing and Debugging Programs under VMjSP" on page 233 

IDENTIFICATION DIVISION. 
PROGRAM-ID. MYPROG. 
ENVIRONMENT DIVISION. 
DATA DIVISION. 

SECTION. WORKING-STORAGE 
77 FNAME 
77 LNAME 

PIC X(22) VALUE "ENTER YOUR FIRST NAME.". 
PIC X(23) VALUE "AND NOW YOUR LAST NAME.". 

01 ANSWR. 
05 ANSLT PIC 
05 AFRST PIC 
05 FILLER PIC 
05 ALAST PIC 

PROCEDURE DIVISION. 
DISPLAY FNAME UPON 
ACCEPT AFRST FROM 
DISPLAY LNAME UPON 
ACCEPT ALAST FROM 
DISPLAY ANSWR UPON 
STOP RUN . 

Complete COBOL Program 

X(16) 
X(8) 
x 
X(8) 

VALUE "WELCOME TO CMS, " 
VALUE SPACES. 
VALUE SPACES. 
VALUE SPACES. 

CONSOLE. 
CONSOLE. 
CONSOLE. 
CONSOLE. 
CONSOLE. 

The following COBOL program (called COBOL1) lets the user add, change, 
delete, or display records in a file of peoples' names, by serial number. 
Records must be added before they can be changed, deleted or displayed. 

COBOL1 should be compiled and put in module form, created by the 
GENMOD command: 

GLOBAL TXTLIB COBLIBVS 
LOAD COBOL1 
GENMOD COBOL1 

Appendix A. Complete COBOL Program Examples 271 



EXEC for ·Complete COBOL Program 

The following EXEC called DRIVEl, is an example of the type of procedure 
that you might use to drive the program given in "COBOL Program" on 
page 273. 

&TRACE 
STATE WORK DATA A 
&IF &RETCODE GT 0 &GOTO -OK 
&TYPE FILE 'WORK DATA A' EXISTS. ERASE AND TRY AGAIN 
&EXIT 
-OK 
FILEDEF NAMES DISK NAMES DATA 
FILEDEF WORK DISK WORK DATA 
COBOLI 
&IF &RETCODE NE 0 &GOTO -NG 
STATE WORK DATA A 
&IF &RETCODE GT 0 &GOTO -NF 
ERASE NAMES DATA A 
RENAME WORK DATA A NAMES DATA A 
-NF 
&EXIT 
-NG 
ERASE WORK DATA A 
&EXIT 

DRIVEl invokes the program COBOLl. It does the file management for 
COBOLI using CMS commands. The program creates a temporary work 
file, so DRIVEl checks if the file already exists. If so, it issues an error 
message, and does not call the program. Otherwise it issues the FILEDEF 
commands and calls COBOLl. Upon return, DRIVEl tests the return code 
set by COBOLl. If the return code indicates an incomplete work file, it is 
erased. If the return code indicates a completed work file, the old master 
file is erased and the work file renamed as the new master file. 

272 VMjSP Application Development Guide 



COBOL Program 

IDENTIFICATION DIVISION. 
PROGRAM-ID. COBOL1. 
ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT INFILE ASSIGN TO DA-3330-S-NAMES 
ACCESS MODE IS SEQUENTIAL. 
SELECT OUTFILE ASSIGN TO DA-3330-S-WORK 
ACCESS MODE IS SEQUENTIAL. 

DATA DIVISION. 
FILE SECTION. 
FD INFILE 

RECORDING MODE IS F 
LABEL RECORDS OMITTED 
DATA RECORD IS EMPRECIN. 

01 EMPRECIN. 
03 SERIALNIN 
03 FRSTNMIN 
03 LASTNMIN 

PIC X(6). 
PIC X(16). 
PIC X(16). 

FD OUTFILE 
RECORDING MODE IS F 
LABEL RECORDS OMITTED 
DATA RECORD IS EMPRECOUT. 

01 EMPRECOUT. 
03 SERIALNOUT PIC X(6). 
03 FRSTNMOUT PIC X(16). 
03 LASTNMOUT PIC X(16). 

WORKING-STORAGE SECTION. 
01 FNAME PIC X(16) VALUE SPACES. 
01 LNAME PIC X(16) VALUE SPACES. 
01 INPLINE1. 

01 
01 
01 
01 
01 
01 
01 
01 
01 

03 FNTYPE 
03 FILLER 
03 EMPSER 
ERRMSG PIC 
GOODMSG PIC 
MENULINEl PIC 
MENULINE2 PIC 
MENULINE3 PIC 
MENULINE4 PIC 
RECFRSTNM PIC 
RECLASTNM PIC 
RECFLAG PIC 
88 REC-FOUND 
88 SKIP-REC 

PIC X 
PIC X. 

VALUE SPACES . 

PIC X(6) VALUE SPACES. 
X(20) VALUE "INCORRECT SERIAL NO.". 
X(20) VALUE "OPERATION COMPLETED.". 
X(2l) VALUE "ENTER FUNCTION NUMBER". 
X(27) VALUE "(l-ADD, 2-CHANGE, 3-ERASE, " 
X(17) VALUE "4-DISPLAY, 5-END)". 
X(2l) VALUE "& REQUIRED SERIAL NO.". 
X(18) VALUE "ENTER FIRST NAME: ". 
X (17) VALUE "ENTER LAST NAME: " 
X VALUE "I". 

VALUE "F". 

88 END-OF-FILE 
VALUE "S". 
VALUE SPACES. 

PROCEDURE DIVISION. 
DISPLAY MENULINEl UPON CONSOLE. 
DISPLAY MENULINE2 MENULINE3 UPON CONSOLE. 
DISPLAY MENULINE4 UPON CONSOLE. 
ACCEPT INPLINEl FROM CONSOLE. 
IF FNTYPE > 0 AND FNTYPE < 5 THEN 
OPEN INPUT INFILE OUTPUT OUTFILE 
PERFORM FINDREC UNTIL END-OF-FILE 
CLOSE INFILE 
CLOSE OUTFILE. 

STOP RUN. 
(Continued on next page) 

Appendix A. Complete COBOL Program Exampleil 273 



FINDREC. 
PERFORM READREC. 
IF EMPSER = SERIALNIN THEN 

MOVE "F" TO RECFLAG 

ELSE 

DISPNAME. 

IF FNTYPE NOT = 1 THEN 

ELSE 

IF FNTYPE = 3 THEN 

ELSE 

DISPLAY GOODMSG UPON CONSOLE 
MOVE "S" TO RECFLAG 
PERFORM COPYREST UNTIL END-OF-FILE 

MOVE FRSTNMIN TO FNAME 
MOVE LASTNMIN TO LNAME 
PERFORM DISPNAME 

DISPLAY ERRMSG UPON CONSOLE 
PERFORM COPYREST UNTIL END-OF-FILE 

IF NOT END-OF-FILE THEN 

ELSE 

MOVE EMPRECIN TO EMPRECOUT 
PERFORM WRITEREC 

IF FNTYPE = 1 THEN 

ELSE 

MOVE SPACES TO FNAME 
MOVE SPACES TO LNAME 
PERFORM DISPNAME 

DISPLAY ERRMSG UPON CONSOLE. 

DISPLAY FNAME LNAME UPON CONSOLE. 
IF FNTYPE = 4 THEN 

ELSE 

COPYREST. 

DISPLAY GOODMSG UPON CONSOLE 
PERFORM COPYREST UNTIL END-OF-FILE 

MOVE EMPSER TO SERIALNOUT 
DISPLAY RECFRSTNM UPON CONSOLE 
ACCEPT FRSTNMOUT FROM CONSOLE 
DISPLAY RECLASTNM UPON CONSOLE 
ACCEPT LASTNMOUT FROM CONSOLE 
DISPLAY GOODMSG UPON CONSOLE 
PERFORM WRITEREC 
IF FNTYPE = 2 THEN 

MOVE "S" TO RECFLAG 
PERFORM COPYREST UNTIL END-OF-FILE. 

IF SKIP-REC THEN 

ELSE 
MOVE "F" TO RECFLAG 

IF NOT END-OF-FILE THEN 
MOVE EMPRECIN TO EMPRECOUT 
PERFORM WRITEREC. 

IF NOT END-OF-FILE THEN 
PERFORM READREC. 

READREC. 
READ INFILE AT END 

MOVE SPACES TO RECFLAG. 
WRITEREC. 

WRITE EMPRECOUT. 

274 VM/SP Application Development Guide 



Complete COBOL Program Using ISPF 

The following COBOL program does the same things as the program in the 
previous section, but it uses ISPF. 

IDENTIFICATION DIVISION. 
PROGRAM-ID. SCOBOL2. 
ENVIRONMENT DIVISION. 
DATA DIVISION. 
WORKING-STORAGE 
01 EMPSER 

SECTION. 

01 LEMPSER 
01 NEMPSER 
01 FNAME 
01 LFNAME 
01 NFNAME 
01 LNAME 
01 LLNAME 
01 NLNAME 
01 FNTYPE 
01 LFNTYPE 
01 NFNTYPE 
01 SETMSG 
01 ERRMSG 
01 GOODMSG 
01 DISPSERV 
01 MENUPAN 
01 NAME PAN 
01 EMPLTBL 
01 VDEFINE 
01 VRESET 
01 CHAR 
01 TBCREATE 
01 TBGET 
01 TBADD 
01 TBPUT 
01 TBDELETE 
01 TBOPEN 
01 TBCLOSE 
01 TABVARS 
PROCEDURE DIVISION. 

PIC X(6) VALUE SPACES. 
PIC 9(6) VALUE 6 COMPo 
PIC X(8) VALUE "(EMPSER)". 
PIC X(16) VALUE SPACES. 
PIC 9(6) VALUE 16 COMPo 
PIC X(7) VALUE "(FNAME)". 
PIC X(16) VALUE SPACES. 
PIC 9(6) VALUE 16 COMPo 
PIC X(7) VALUE" (LNAME)". 
PIC X VALUE SPACES. 
PIC 9(6) VALUE 1 COMPo 
PIC X(3) VALUE "(F)". 
PIC X(6) VALUE "SETMSG". 
PIC X(8) VALUE "MSG002 
PIC X(8) VALUE "MSG001 
PIC X(8) VALUE "DISPLAY 
PIC X(8) VALUE "MENUPAN 
PIC X(8) VALUE "NAMEPAN 
PIC X(8) VALUE "EMPLTBL 
PIC X(8) VALUE "VDEFINE 
PIC X(8) VALUE "VRESET 
PIC X(8) VALUE "CHAR 
PIC X(8) VALUE "TBCREATE 
PIC X(8) VALUE "TBGET " 
PIC X(8) VALUE "TBADD 
PIC X(8) VALUE "TBPUT 
PIC X(8) VALUE "TBDELETE". 
PIC X(8) VALUE "TBOPEN 
PIC X(8) VALUE "TBCLOSE " 
PIC X(13) VALUE" (FNAME LNAME)". 

CALL "ISPLINK" USING VDEFINE NFNAME FNAME CHAR LFNAME. 
CALL "ISPLINK" USING VDEFINE NLNAME LNAME CHAR LLNAME. 
CALL "ISPLINK" USING VDEFINE NEMPSER EMPSER CHAR LEMPSER. 
CALL "ISPLINK" USING VDEFINE NFNTYPE FNTYPE CHAR LFNTYPE. 
CALL "ISPLINK" USING TBOPEN EMPLTBL. 
IF RETURN-CODE NOT = 0 THEN 

CALL "ISPLINK" USING TBCREATE EMPLTBL NEMPSER TABVARS. 
CALL "ISPLINK" USING DISPSERV MENUPAN. 
PERFORM DISPMENU UNTIL RETURN-CODE = 8 OR FNTYPE > 4. 
CALL "ISPLINK" USING TBCLOSE EMPLTBL. 
CALL "ISPLINK" USING VRESET. 
STOP RUN. 

(Continued on next page) 

Appendix A. Complete COBOL Program Examples 275 



DISPMENU. 
CALL "ISPLINK" USING TBGET EMPLTBL. 
IF FNTYPE = 1 AND RETURN-CODE NOT EQUAL 0 THEN 

MOVE SPACES TO FNAME 
MOVE SPACES TO LNAME 
PERFORM CONTRUN 

ELSE IF FNTYPE > 1 AND RETURN-CODE EQUAL 0 THEN 
PERFORM CONTRUN 

ELSE 
CALL "ISPLINK" USING SETMSG ERRMSG. 

CALL "ISPLINK" USING DISPSERV MENUPAN. 
CONTRUN. 

CALL "ISPLINK" USING SETMSG GOODMSG. 
IF FNTYPE = 3 THEN 

CALL "ISPLINK" USING TBDELETE EMPLTBL 
ELSE 

CALL "ISPLINK" USING DISPSERV NAME PAN 
IF FNTYPE = 1 THEN 

CALL "ISPLINK" USING TBADD EMPLTBL 
ELSE IF FNTYPE = 2 THEN 

CALL "ISPLINK" USING TBPUT EMPLTBL. 

276 VMjSP Application Development Guide 



Appendix B. Complete FORTRAN Program Examples 

Simple FORTRAN Program 

The following is the simple FORTRAN program used in "Chapter 2: 
Developing Programs Using CMS" on page 19, as well as in "Chapter 10: 
Testing and Debugging Programs under VMjSP" on page 233. 

PROGRAM MYPROG 
CHARACTER*S F,S 
WRITE (6,5) 
READ (5,2) F 
WRITE (6,10) 
READ (5,2) S 
WRITE (6,15) F,S 

2 FORMAT (AS) 
5 FORMAT (' ENTER YOUR FIRST NAME. ') 
10 FORMAT (' AND NOW YOUR LAST NAME. ') 
15 FORMAT (' WELCOME TO CMS, ',AS,lX,AS) 

STOP 
END 

Complete FORTRAN Program 

The following FORTRAN program lets the user add, change, delete, or 
display records in a file of peoples' names, by serial number. Records must 
be added before they can be changed, deleted or displayed. 

FORTI should be compiled and put in MODULE form, created by the 
GENMOD command: 

GLOBAL TXTLIB VSF2FORT CMSLIB 
GLOBAL LOADLIB VSF2LOAD 
LOAD FORT1 
GENMOD FORT1 

Appendix B. Complete FORTRAN Program Examples 277 



EXEC for Complete FORTRAN Program 

The following EXEC called DRIVE2, is an example of the type of procedure 
that you might use to drive the program given in "FORTRAN Program" on 
page 279. 

&TRACE 
STATE WORK DATA A 
&IF &RETCODE GT 0 &GOTO -OK 
&TYPE FILE 'WORK DATA A' EXISTS. ERASE AND TRY AGAIN 
&EXIT 
-OK 
FILEDEF NAMES DISK NAMES DATA 
FILEDEF WORK DISK WORK DATA 
FORTI 
&IF &RETCODE NE 0 &GOTO -NG 
ERASE NAMES DATA A 
RENAME WORK DATA A NAMES DATA A 
&EXIT 
-NG 
ERASE WORK DATA A 
&EXIT 

DRIVE2 invokes the program FORTI. It does the file management for 
FORTI using CMS commands. The program creates a temporary work file, 
so DRIVE2 checks if the file already exists. If so, it issues an error 
message, and does not call the program. Otherwise it issues the FILEDEF 
commands and calls FORTI. Upon return, DRIVE2 tests the return code 
set by FORTI. If the return code indicates an incomplete work file, it is 
erased. If the return code indicates a completed work file, the old master 
file is erased and the work file renamed as the new master file. 

The program FORTI creates a master employee file. It reads the old master 
file and uses it as a base. It writes the modified file as a temporary work 
file. If there is an input error, this file will be incomplete, so it passes the 
status of it as a return code when it returns to the caller. A return code of 
20 indicates an error condition, and therefore an incomplete file. You can 
manage these files manually. To do this, you must make sure that no file 
named WORK FILE A exists before you invoke the program. You must 
also issue the FILEDEF commands. Then, after the program has executed, 
you must inspect the return code. If it is 10 or 20, you must erase the work 
file. If it is 0, you must erase the master data file, and rename the work file 
as the master data file. 

278 VM/SP Application Development Guide 



FORTRAN Program 

IMPLICIT INTEGER (A-Z) 
CHARACTER*6 EMPSER,SERNO 
CHARACTER*16 FNAME,LNAME,BNAME 
CHARACTER*21 MSGOK,MSGNG 
DATA BNAME I' 'I 
DATA MSGOK 1'10PERATION COMPLETED. 'I 
DATA MSGNG l'lINCORRECT SERIAL NO. 'I 
FOUND = 0 
ENDSW = 0 

100 FORMAT ('lENTER FUNCTION NUMBER ') 
200 FORMAT (' (l-ADD, 2-CHANGE, 3-ERASE, 4-DISPLAY, 5-END) ') 
300 FORMAT (' & REQUIRED SERIAL NO. ') 
400 FORMAT (I1,lX,A6) 
500 FORMAT (A16,A16,A6) 
600 FORMAT (A16) 
700 FORMAT (' ENTER FIRST NAME: ') 
800 FORMAT (' ENTER LAST NAME: ') 
900 FORMAT (' I,A16,lX,A16) 
1000 FORMAT (A21) 

WRITE (6,100) 
WRITE (6,200) 
WRITE (6,300) 
READ (6,400) FNTYPE,EMPSER 
IF (FNTYPE.GT.4) GO TO 70 
OPEN (UNIT=ll, FILE='NAMES') 
OPEN (UNIT=12, FILE='DATA') 

10 READ (11,500,ERR=75,IOSTAT=INT,END=15) SERNO,FNAME,LNAME 
IF (INT.NE.O) GO TO 75 
IF (EMPSER.EQ.SERNO) GO TO 20 
WRITE (12,500,ERR=75,IOSTAT=INT) SERNO,FNAME,LNAME 
GO TO 10 

15 FOUND = 0 
ENDSW = 1 
GO TO 25 

20 FOUND = 1 
25 IF (FNTYPE.EQ.1.AND.FOUND.EQ.0) GO TO 30 

IF (FNTYPE.GT.1.AND.FOUND.EQ.1) GO TO 35 
WRITE (6,1000) MSGNG 
IF (FOUND.EQ.O) GO TO 65 
GO TO 55 

30 FNAME = BNAME 
LNAME = BNAME 

(Continued on next page) 

Appendix B. Complete FORTRAN Program Examples 279 



GO TO 45 
35 IF (FNTYPE.EQ.3) GO TO 40 

GO TO 45 
40 WRITE (6,1000) MSGOK 

GO TO 60 
45 WRITE (6,900) FNAME,LNAME 

IF (FNTYPE.EQ.4) GO TO 50 
SERNO = EMPSER 
WRITE (6,700) 
READ (5,600) FNAME 
WRITE (6,800) 
READ (5,600) LNAME 

50 WRITE (6,1000) MSGOK 
55 WRITE (12,500,ERR=75,IOSTAT=INT) SERNO,FNAME,LNAME 

IF (ENDSW.EQ.1) GO TO 65 
60 READ (11,500,ERR=75,IOSTAT=INT,END=65) SERNO,FNAME,LNAME 

IF (INT.EQ.O) GO TO 55 
65 CLOSE (UNIT=ll) 

CLOSE (UNIT=12) 
STOP 

70 STOP 10 
75 STOP 20 

END 

280 VM/SP Application Development Guide 



Cemplete FORTRAN Program Using ISPF 

The following FORTRAN program (FORT2) does the same things as the 
program in the previous section, but it uses ISPF. 

IMPLICIT INTEGER (A-Z) 
CHARACTER*l FNTYPE,FBLNK 
CHARACTER*6 EMPSER,EMPBLK 
CHARACTER*16 FNAME,LNAME,NAMEBL 
DATA NAMEBL /' '/ 
DATA EMPBLK /' '/ 
DATA FBLNK /' '/ 
LASTRC ISPLNK ('VDEFINE',' (FNAME)' ,FNAME,'CHAR' ,16) 
LASTRC ISPLNK ('VDEFINE',' (LNAME)' ,LNAME,'CHAR' ,16) 
LASTRC ISPLNK ('VDEFINE',' (EMPSER)' ,EMPSER,'CHAR' ,6) 
LASTRC ISPLNK ('VDEFINE',' (F)' ,FNTYPE, 'CHAR' ,1) 
LASTRC ISPLNK ('TBOPEN', 'EMPLTBL ') 
IF (LASTRC.EQ.O) GO TO 10 
LASTRC = ISPLNK ('TBCREATE', 'EMPLTBL ',' (EMPSER)', 

* '(LNAME FNAME) ') 
10 FNTYPE FBLNK 

EMPSER = EMPBLK 
LASTRC = ISPLNK ('DISPLAY' ,'MENUPAN ') 
IF (LASTRC.EQ.8) GO TO 70 . 
IF (FNTYPE.GT. '4') GO TO 70 
LASTRC = ISPLNK ('TBGET', 'EMPLTBL ') 
IF (FNTYPE.EQ. '1' .AND.LASTRC.NE.O) GO TO 20 
IF (FNTYPE.GT. '1' .AND.LASTRC.EQ.O) GO TO 30 
LASTRC = ISPLNK ('SETMSG', 'MSG002 ') 
GO TO 10 

20 FNAME = NAMEBL 
LNAME = NAMEBL 

30 LASTRC = ISPLNK ('SETMSG', 'MSG001 ') 
IF (FNTYPE.EQ. '3') GO TO 40 
LASTRC = ISPLNK ('DISPLAY' ,'NAMEPAN ') 
IF (FNTYPE.EQ. '1') GO TO 50 
IF (FNTYPE . EQ. '2') GO TO 60 
GO TO 10 

40 LASTRC = ISPLNK ('TBDELETE', 'EMPLTBL ') 
GO TO 10 

50 LASTRC = ISPLNK ('TBADD', 'EMPLTBL ' ) 
GO TO 10 

60 LASTRC = ISPLNK ('TBPUT', 'EMPLTBL ' ) 
GO TO 10 

70 CONTINUE 
LASTRC ISPLNK ('TBCLOSE', 'EMPLTBL ' ) 
LASTRC ISPLNK ( 'VRESET ' ) 
STOP 
END 

Appendix B. Complete FORTRAN Program Examples 281 



282 VM/SP Application Development Guide 



Appendix C. ISPF Panels 

This is the ISPF specification of MENUPAN: 

) BODY 
%------------------------------SELECTION------------------------
%COMMAND ===> ZCMD + 
+ 
+ 
%SELECT REQUIRED FUNCTION AND ENTER SERIAL NUMBER BELOW 
+ 
+ 
+ 1 - ADD, 2 - CHANGE, 3 - ERASE, 4 - DISPLAY, 5 - END 
+ 
+ 
+ FUNCTION NUMBER%===>_FNTYPE+ 
+ 
+ 
+ 
+ 
+ 

SERIAL NUMBER%===>_EMPSER+ 

+ 
)INIT 

.CURSOR = F 
)PROC 

VER (&F, NONBLANK) 
VER (&F, PICT,N) 
IF (&F -, =5) 

VER (&EMPSER, NONBLANK) 
VER (&EMPSER, PICT,NNNNNN) 

)END 

(MUST BE 6 NUMERIC DIGITS) 

Appendix C. ISPF Panels 283 



This is the way it's displayed on the screen: 

------------------------------SELECTION------------------------
COMMAND ===> 
SELECT REQUIRED FUNCTION AND ENTER SERIAL NUMBER BELOW 

1 - ADD, 2 - CHANGE, 3 - ERASE, 4 - DISPLAY, 5 - END 
FUNCTION NUMBER ===> 

SERIAL NUMBER ===> (MUST BE 6 NUMERIC DIGITS) 

This is the ISPF specification of NAMEPAN: 

)BODY 
%----------------------------NAME PANEL--------------------------
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

SERIAL NUMBER%===>_EMPSER+ 

FIRST NAME%===>_FNAME 

LAST NAME%===>_LNAME 

)PROC 
.CURSOR = FNAME 
VER (&FNAME,ALPHA) 
VER (&LNAME,ALPHA) 

)END 

284 VM/SP Application Development Guide 

+ 

+ 



This is the way it's displayed on the screen: 

-----------------------------NAME PANEL--------------------------

!I 

SERIAL NUMBER ===> 

FIRST NAME ===> 

LAST NAME ===> 

These are the ISPF specifications of the two messages issued by the COBOL 
and FORTRAN programs: 

MSGOOl 'OPERATION COMPLETED' .ALARM=NO 
'THE OPERATION SPECIFIED HAS BEEN COMPLETED.' 
MSG002 'INVALID OPERATION' .ALARM=YES 
'ENTER A NUMBER FROM 1 TO 5 IN THE SPACE PROVIDED.' 

Appendix C. ISPF Panels 285 



These are the filedefs to be issued prior to running the example programs 
COBOL2 and FORT2. 

FILEDEF ISPPROF DISK ISPPROF MACLIB A (PERM 
FILEDEF ISPPLIB DISK USERPAN MACLIB * (PERM CON CAT 
FILEDEF ISPPLIB DISK ISRPLIB MACLIB * (PERM CON CAT 
FILEDEF ISPPLIB DISK ISPPLIB MACLIB * (PERM CONCAT 
FILEDEF ISPMLIB DISK EXAMMSG MACLIB * (PERM CON CAT 
FILEDEF ISPMLIB DISK ISRMLIB MACLIB * (PERM CON CAT 
FILEDEF ISPMLIB DISK ISPMLIB MACLIB * (PERM CON CAT 
FILEDEF ISPSLIB DISK ISRSLIB MACLIB * (PERM CON CAT 
FILEDEF ISPTABL DISK MYTABLE MACLIB A (PERM 
FILEDEF ISPTLIB DISK MYTABLE MACLIB * (PERM CONCAT 
FILEDEF ISPTLIB DISK ISRTLIB MACLIB * (PERM CON CAT 
FILEDEF ISPTLIB DISK ISPTLIB MACLIB * (PERM CON CAT 
FILEDEF ISPXLIB DISK FORTVS2 TXTLIB * (PERM CON CAT 
FILEDEF ISPXLIB DISK COBOLVS TXTLIB * (PERM CON CAT 
FILEDEF ISPXLIB DISK COBLIBVS TXTLIB * (PERM CON CAT 
FILEDEF ISPXLIB DISK MYLIB TXTLIB * (PERM CONCAT 

286 VMjSP Application Development Guide 



Summary of Changes 
for SC24-5247-2 
for VM/SP Release 5 

Miscellaneous 

Summary of Changes 

Minor changes have been made to this publication to reflect changes caused by 
the following VM/SP Release 5 enhancements: 

• Addi tion of the Session Manager 

• 3270 Usability Enhancement 

• Central Message Facility for NLS 

• TXTLIB Enhancement 

This major revision also incorporates other minor technical and editorial 
changes. 

Summary of Changes 
for SC24-5247-1 
for VM/SP Release 4 

VS FORTRAN Version 2 Compiler Support 
Changes have been made to this publication to reflect support for the VS 
FORTRAN Version 2 Compiler. 

HPO Vector Facility Support 
Changes have been made to this publication to reflect support for the HPO 
Vector Facility. The VM/SP HPO Vector Facility is an instruction processor 
that can manipulate values (usually floating-point values) at a high speed. The 
HPO Vector Facility is supported by the VS FORTRAN Version 2 program. 

Miscellaneous 
Minor technical and editorial changes have also been made to this publication. 

Summary of Changes 287 



288 VM/SP Application Development Guide 



Bibliography 

Consult the following books for more information on specific subjects: 

• General 

IBM System/370 Principles of Operation, GA22-7000 

• VM/SP 

VM/SP General Information, GC20-1838 

VM/SP CP Command Reference, SC19-6211 

VM/SP Introduction, GC19-6200 

VM/SP Terminal Reference, GC19-6206 

• CMS 

VM/SP CMS Command Reference, SC19-6209 

VM/SP Macros and Functions Reference, SC24-5284 

VM/SP CMS User's Guide, SC19-6210 

• COBOL 

IBM OS COBOL Interactive Debug Terminal User's Guide and Reference, 
SC28-6465 

CMS User's Guide for COBOL, SC28-6469 

• FORTRAN 

VS FORTRAN Version 2 Interactive Debug Guide and Reference, 
SC26-4223 

VS FORTRAN Version 2 Application Programming Guide, SC26-4222 

• System Product Editor 

VM/SP System Product Editor Command and Macro Reference, SC24-5221 

• ISPF 

ISPF Dialog Management Services and Examples, SC34-4010 

ISPF Dialog Management Guide, SC34-4009 

ISPF/PDF for VM/SP Guide, SC34-4011 

• DMS/CMS 

Bibliography 289 



Display Management System for CMS: Guide and Reference, GC24-5198 

• SQL/DS 

SQL/DS Application Programming, SH24-5068 

SQL/ DS Concepts and Facilities, SH24-5065 

SQL/DS Planning and Administration - VM/SP, SH24-5043 

SQL/DS Terminal User's Guide - VM/SP, SH24-5045 

• System Product Interpreter 

VM/SP System Product Interpreter User's Guide, SC24-5238 

VM/SP System Product Interpreter Reference, SC24-5239 

• EXEC2 

VM/SP EXEC2 Reference, SC24-5219 

• VM/SP HPO 

VM/SP HPO General Information, GC19-6221 

VM/SP HPO CP Command Reference for General Users, SC19-6227 

VM/SP HPO Operator's Guide, SC19-6225 

Note: This manual assumes that VS FORTRAN Version 2 or COBOL VS is used, 
except where explicitly stated otherwise. 

290 VM/SP Application Development Guide 



The VM/SP Library (Part 1 of 3) 

Evaluation Index 
y 

General Introduction Library 
Information Gu ide, 

Glossary, and 
Master Index 

GC20-1838 GC19-6200 GC19-6207 

Planning Installation 

Planning Running Release 5 Distributed Installation 
Guide and Guest Guide Data Guide 
Reference Operating Processing 

Systems Guide 

SC19-6201 GC19-6212 SC24-5290 SC24-5241 SC24-5237 V 

Applications 
. 

Operation 
y 

Application Programmer's Operator's 
Development Guide to the Guide 
Guide SRPI 

for VM/SP 

SC24-5247 SC24-5291 SC19-6202 

Reference Summaries To order all of the Reference Summaries. use order number SBOf-3242 

Commands 
(General User) 

SX20-4401 

CMS Primer 
Summary of 
Commands 

SX24-5151 

Commands 
(Other than 
General User) 

SX20-4402 

CMS Primer 
Line-Oriented 
Summary of 
Commands 

SX24-5159 

SP Editor 
Command 
Reference 
Summary 

SX24-5122 

Problem 
Reporting 
Summary 
(Poster) 

SX24-5171 

EXEC 2 Sys.Prod 
Reference Interpreter 
Summary Reference 

Summary 

SX24-5124 SX24-5126 

Summary of 
End Use 
Tasks and 
Commands 
(Poster) 

SX24-5173 

Bibliography 291 



The VM/SP Library (Part 2 of 3) 

End Use 

Terminal CMS CMS Primer CMS CMS CMS 
Reference Primer for Line- . User's Command Macros and 

Oriented Guide Reference Functions 
Terminals Reference 

GC19-6206 SC24-5236 SC24-5242 SC19-6210 SC19-6209 SC24-5284 

System System System System EXEC 2 CP 
Product Product Product Product Reference Command 
Editor Editor Interpreter Interpreter Reference 
User's Guide Command and User's Guide Reference 

Macro 
Reference 

SC24-5220 SC24~5221 SC24-5238 SC24-5239 SC24-5219 SC19-6211 

Quick 
Reference 

SX20-4400 

Diagnosis 
'7 

System System Service 
Messages Messages Routines 
and Codes Cross- Program 

Problem VM GCS 
Reporting Diagnosis Diagnosis 
Guide Guide Reference 

Reference Logic 

SC19-6204 1/ 
SC24-5264 1I LY20-0890 1/ SC24-5282 II LY24-5241 II LY24-5239 II 

Problem Data Areas Problem Data Areas OLTSEP VM 
Determination and Control Determination and Control and Error Problem 
Vol. 1 (CP) Blocks Vol. 2 (CMS) Blocks Recording Determination 

Vol. 1 (CP) Vol. 2 (CMS) Guide Reference 
Information 

LY20-0892 LY24-5220 LY20-0893 LY24-5221 SC19-6205 LX23-0347 

VM 
CP Internal 
Trace Table 
(Poster) 

LX24-5202 

292 VM/SP Application Development Guide 



The VM/SP Library (Part 3 of 3) 

Administration 
z '/ f 

VM CP for CMS for TSAF GCS 
System System System Reference Command 
Facilities Programming Programming and Macro 
for Reference 
Programming 

SC24-5288 V SC24-5285 SC24-5286 SC24-5287 
V 

SC24-5250 
V 

Auxiliary Communication Support 
,/ 

VTAM VTAM VTAM VTAM 
VTAM Installation Customization Operation Messages 

Reference and Resource and Codes Summary Definition 

SC23-0135 

SC23-0111 SC23-0112 SC23-0113 SC23-0114 
V 

'/ 

VTAM VTAM VTAM VTAM 
Programming Diagnosis Diagnosis Data 

Guide Reference Areas (VMl 

SC23-0115 SC23-0116 LY30-5582 
V 

LY30-5583 
V 

'/ 

RSCS RSCS RSCS RSCS RSCS 
Networking Networking Networking Networking Networking 
Version 2 Version 2 Version 2 Version 2 Version 2 
General Planning and Operation Diagnosis Ref . Summary 
Information Installation and Use Reference 

SX24-5135 
GH24-5055 SH24-5057 V SH24-5058 LY24-5228 V 

VM/Pass- VM/Pass- VM/Pass-
Through Through Through 
Facility Facility Facility 
General Guide and Logic 
Information Reference 

GC24-5206 V SC24-5208 
V LY24-5208 V 

Bibliography 293 



294 VM/SP Application Development Guide 



I Special Characters I 

< prefix subcommand of XEDIT command 61 
&ERROR statement 224 
&READ 223 
&READ command (for EXEC or EXEC2) 223 
&STACK FIFO 223 
&STACK FIFO command 223 
&STACK LIFO 223 
&STACK LIFO command 223 
j prefix subcommand of XEDIT command 56 
> prefix subcommand of XEDIT command 61 
= subcommand of XEDIT command 54 
" prefix subcommand of XEDIT command 61 

A prefix subcommand of XEDIT command 61 
ABEND 245 
ACCESS command 5 
ADD command of DMSjCMS 160 
ADD function of MACLIB command 121 
ADD function of TXTLIB command 127, 128, 129 
ADD subcommand of XEDIT command 67 
algorithms, prototyping 216 
ALPHANUM command of DMSjCMS 164 
ALTER subcommand of XEDIT command 67 
ALTER TABLE command of SQL 169, 178 
application profile pools of ISPF 154 
assembler language subroutine 224 
AT command of VS FORTRAN interactive 

debug 239 
AT subcommand of TESTCOB command 234 
AT subcommand of TESTFORT command 242 
ATTACH (OS macro) 133 
ATTR statement in ISPF panels 150 
A UTOSA VE function 90-93 
A VG function of SQL 182 

Index 

BACKSPACE command 240 
BACKWARD command of DMSjCMS 160 
BACKW ARD subcommand of XEDIT command 46 
BEGIN DECLARE SECTION statement in COBOL 

and SQL 171 
BETWEEN predicate of SQL 181 
bibliography 287 
BLOCK option of FILEDEF command 112 
BLOCKSIZE option of FILEDEF command 112 
BODY statement in ISPF panels 150 
BOTTOM command of DMSjCMS 160 
BREAK command 252 
breakpoints 248-249 
browse option in ISPF 248 
BROWSE service of ISPF 156 

C prefix subcommand of XED IT command 61 
CALL subcommand of TESTCOB command 237 
CANCEL option of RETURN command 249 
CANCEL parameter of ISPF 157 
CANCEL subcommand of XEDIT command 89 
case 39 
CASE command of DMSjCMS 160, 164 
CAW (channel address word) 252 
CAW subcommand of DEBUG command 252 
CENTER command of DMSjCMS 160 
CHANGE subcommand of XEDIT command 67, 68 
changes, summary of 287 
channel address word (CAW) 252 
channel status word (CSW) 252 
CHAR data type in SQL 

COBOL 173 
FORTRAN 173 

character keys 11 
CHECK option of SQL 251 
CLEAR key 12 
CLOSE command 240 
CMD parameter of ISPSTART command 147 
CMS (Conversational Monitor System) 

commands 8 
definition 3 
environment 3 
file system 4, 7 
libraries 

Index 295 



See libraries 
MACLlBs 

See MACLIBS 
System Product Interpreter 7 
system services 4, 5 
terminal system 4 
UPDATE option 93-103 

COBOL 96-99 
FORTRAN 100-103 

CMS commands in EXECs 191 
CMS editor 

See System Product Editor 
CMS file management function 228 
CMS files 

See files 
CMS load library 

See load libraries 
CMS loader 113 
CMSLIB MACLIB 126 
CNCL key 12 
COBOL 31 

compilers 8 
files created by 105-107 

compiling 31-33 
data types 173 
ddnames in 110 
file type 8, 39, 40 

tab settings 88 
INCLUDE statement of SQL 185 
OS COBOL files 109 
OS/VS COBOL Compiler 31 
SQL 

data types 173 
invoking 184 

SQL commands 174 
updating source fi les 96-99 

COBOL command 6, 31 
COBOL in teractive debug 234-237 
COBOL workfi les 105 
command stack 204 
commands 

DISPLAY 257 
INDICATE USER 269 
issuing from a program 227 
STORE 265 
utility 4-6 
XEDIT 

prefix subcommands 56-67 
QQUIT subcommand 89 
QUIT subcommand 89 

COMMENT command of DMS/CMS 164 
COMMIT WORK command of SQL 175 
COMPARE command 252 
compilers 

COBOL 8 
FORTRAN 8 

compiling 6 

296 VM/SP Application Development Guide 

completion options screen 159 
completion opt ions screen in DMS/CMS 158 
COMPSWT macro 230 
CONCAT option of FILEDEF command 145, 146 
CONSOLE macr o 229 
console stack 219 
CONTINUE in SQL 176 
control keys 11 
CONTROL parameter of ISPF 157 
Control Program (CP) 

See also CP (Control Program) 
definition 2 
environment 3 

CONTROL service setting 249 
CONTROL services of ISPF 156 
Conversational Monitor System (CMS) 

See a lso CMS (Conversationa l Monitor System) 
commands 8 
definition 3 
environment 3 
file system 4, 7 
libraries 

See libraries 
MACLlBs 

See MACLIBS 
System Product Interpreter 7 
system services 4, 5 
t erminal system 4 
UPDATE option 93-103 

COBOL 96-99 
FORTRAN 100-103 

COPY command 8 
COp y command of DMS/CMS 160 
COpy EUDCOBOL statement of DMS/CMS 161 
COpy fil es 119 
COp y filetype 119 
COPY subcommand of XEDIT command 67 
COUNT function of SQL 182 
CP (Control Program) 

definition 2 
environmen t 3 

CP (Control Program) commands 
DISPLAY 257 
INDICATE USER 269 
STORE 265 

CP commands in EXECs 191 
CP READ (terminal status) 16 
CREATE INDEX command of SQL 169 
CREATE TABLE command of SQL 169,178 
CREATE VIEW 

command of SQL 169 
statement in SQL 184 

CSW (channel status word) 252 
CSW subcommand of DEBUG command 252 
CURSOR command of DMS/CMS 164 
cursor control keys 12 



D prefix subcommand of XEDIT command 61 
data base testing 250-251 
data field 159 
datamask in DMSjCMS 162 
ddnames 

in COBOL 110 
in FORTRAN 110 

DEBUG command 6, 252 
debugging facilities 252 
DECIMAL data Type in SQL and COBOL 

COBOL 173 
DECLARE CURSOR statement of SQL 179 
DEL function of MACLIB command 122 
DEL function of TXTLIB command 127, 129 
DEL key 12 
DELETE command of DM SjCMS 160 
DELETE command of SQL 169 
DELETE statement of SQL 183 
DELETE subcommand of XEDIT command 67 
design grid screen 159 
device types 111-112 

DISK 111 
PRINTER 111 
PUNCH 111 
READER 111 
TAPn 111 
TERMINAL 111 

dialog elements 142 
dialog managment system 141 
dialog test option 246 
dialog testing 245 
dialog variables in ISPF 152 

variable pools 154 
dialogs 141-164 
directories 117 
disk 111 
DISK device type 111 
DISK option of LKED command 134 
DISK option of MACLIB command MAP 
function 123 

DISK option of TXT LIB command 130 
disks 

See minidisks 
DISPLAY command 257 
DISPLAY command of DMSjCMS 160, 164 
DISPLAY LINE 249 
Display Management System for CMS 

(DMS/CMS) 141, 157-164 
COpy EUDCOBOL statement 161 
EXEC 2 commands 163-164 
panel formatter 157, 158 
panel manager 157, 161 
parameter list 162 
prototyping with EXECs 163 
write full screen 157 

DISPLA Y service of ISPF 153-154 

DISPLAY SM 249 
displaying 

how much Vector Facility resource your virtual 
machine is using 269 

vector activity count 264 
vector mask register 264 
vector status register 264 

DISTINCT keyword of SQL 183 
DMS/CMS (Display Management System for 

CMS) 141, 157-164 
COPY EUDCOBOL statement 161 
EXEC 2 commands 163-164 
panel formatter 157, 158 
pan el manager 157, 161 
parameter list 162 
prototyping with EXECs 163 
write full screen 157 

DMS/CMS commands 160-161 
DMSSP MACLIB 126 
DROP INDE X command of SQL 169 
DROP TABLE command of SQL 169 
DROP VIEW· command of SQL 169 
DROPBUF command 224 
DSORG option of FILEDEF command 112 
DUMP subcommand of TEST COB command 237 
DUPLICATE command of DMS/CMS 160 
DUPLICATE subcommand of XEDIT command 67 
dynamic loading 115 

EDIT command 
prefix subcommands 56-67 

edit mode 40 
EDIT service of ISPF 156 
editor 

See also System Product Editor 
invoking 9 

element 255 
END command 113 
END DECLARE SE CTION statement in COBOL 

and SQL 171 
END statement in ISPF panels 150 
END subcommand of TESTCOB command 234, 237 
END subcommand of TESTFORT command 242 
ENDFILE command 240 
entry points 115 
ERASE command 9 
ERASE EOF key 12 
ERASE INPUT k ey 12 
ERROR command 239 
error handling in ISPF 246 
error h andling in SQL 175 
error messages 

Vector Facility 268 
ERROR subcommand of TESTFORT command 244 
ESD statement of TXTLIB member 129 

Index 297 



EUDCNTRL 161 
EUDCOBOL 161 
EUDEXEC2 command 163 
EXEC 

filetype 191 
option of LIST FILE command 193 

EXEC 2 194-196 
EXECs 191-216 

arguments 192 
CMS (Conversational Monitor System) 193 
EXEC 2 194-196 
FILEDEF command in 213-214 
ISPEXEC 201 
MACLIBs 214-215 
profile 192 
Restructured Extended Executor language 

(REXX) 196-211 
compound symbols 206 
FILEDEF commands in 213-214 
functions 208 
MACLIBs in 214-215 
prototyping algorithms 216 
subroutines 207 
substitution rules 205 
TXTLIBs in 214-215 

TXTLIBs 214-215 
with System Product Editor 200 

executor language 
See Restructured Extended Executor language 

EXPLAIN command of SQL 250 
extended parameter lists 224 
External Symbol Dictionary statement of TXTLIB 

member 129 

F prefix subcommand of XEDIT command 61 
FETCH statement of SQL 179 
field definition screen 159 
field definition screen in DMS/CMS 158 
FIFO (first in/first out) 219, 223 
FILE 29 
file control macros 228 
file identifier 8, 39 
FILE subcommand of XEDIT command 89 
file system 7 
file system control block, in CMS 

See FSCB 
file tailoring skeletons 142 
FILEDEF command 109-112, 125, 146, 234 

and MACLIB members 124 
for ISPF 144-146 
in EXECs 213-214 
options 112 

fileid 
See file identifier 

FILE LIST comman d 9, 32 

298 VM/SP Application Development Guide 

filemode 8, 20, 39 
filename 8, 39 
files 39 

accessing 5 
COBOL 109 

updating 96-99 
COBOL workfiles 105 
COpy 119 
created by COBOL compiler 105-107 
created by FORTRAN compiler 107-109 
creating 9, 19-27 

COBOL 19-24 
FORTRAN 24-27 

displaying 9 
editing 39-103 

multiple 79-87 
erasing 9 
executing 37-38 
FORTRAN 109 

updating 100-103 
input 109, 112 
libraries 5, 117 
listing 9, 30, 32 
LISTING (FORTRAN) 35 
modifying 9 
multiple 79-87 
OS COBOL 109 
OS FORTRAN 109 
output 109, 112 
printing 9 
saving 29 
sorting 77 
spool 126 
TEXT 31,114 

executing 37-38 
TEXT (COBOL) 32, 37 
TEXT (FORTRAN) 35, 37 
transferring 5 
update 94 
workfiles, COBOL 105 

filetype 8, 39 
COBOL 8, 39, 40 
COpy 119 
EXEC 191 
FORTRAN 8, 39, 40 
FREEFORT 39, 40 
LKEDIT 134 
LOADLIB 117,133,134,135 
MACLIB 117, 119-127 

compressing 123 
displaying members of 126 
examining contents of 123 
extracting a member of 124 
manipulating members of 124 
printing members of 126 
system 126 

MACRO 119 
MAP 124 
TXTLIB 117, 127-130 



adding members to 128 
deleting members of 128 
replacing members of 128 

XEDIT 200 
FIND subcommand of XED IT command 55 
FIND UP subcommand of XEDIT command 55 
first in/first out 

See FIFO 
FIXUP command 240 
FIXUP subcommand of TESTFORT command 242, 

244 
FLOAT data type in SQL 

COBOL 173 
FORTRAN 173 

FORTRAN 
and ISPF 142 
compilers 8, 107-109 

VS FORTRAN 107 
VS FORTRAN Version 2 107 

compiling 34-36 
ddnames in 110 
filetype 8, 39, 40 

tab settings 88 
FORTRAN IV Gl compiler 

and ISPF 142 
INCLUDE statement of SQL 186 
interactive debug 241-245 
main variables (exceptions) 175 
OS FORTRAN files 109 
SQL 

data types 173 
invoking 186 
preprocessor 186 

SQL commands 174 
updating source files 100-103 
using the VM/SP HPO Vector Facility 
support 255 

VS FORTRAN interactive debug 238-240 
VS FORTRAN Version2 Compiler 34 

FORTRAN IV Gl compiler 142 
and ISPF 142 

FORTVS2 command 6, 34 
FORWARD command of DMS/CMS 160 
FORW ARD subcommand of XEDIT command 46 
FREEFORT 

filetype 39, 40 
tab settings 88 

FROM clause of SQL 179 
FSCB 228 
FSCB macro 228 
FSCBD macro 228 
FSCLOSE macro 229 
FSERASE macro 229 
FSOPEN macro 229 
FSPOINT macro 229 
FSREAD macro 229 
FSST A TE macro 229 
FSWRITE macro 229 
FTCLOSE 156 
FTERASE 156 

FTINCL 156 
FTOPEN 156 
function pools of ISPF 154 
function trace option in ISPF 248 

GEN function of TXTLIB command 127 
GEN parameter of MACLIB command 120 
general registers 252 
GENMOD command 132 
GET subcommand of XEDIT command 68, 70 
GLOBAL command 5, 109, 114, 117, 234, 241 

in EXECs 214 
GLOBAL command for ISPF 145 
GO command 252 
GO command of VS FORTRAN interactive 

debug 239 
GO option of RETURN command 249 
GO subcommand of TESTCOB command 234, 237 
GO subcommand of TESTFORT command 242, 243 
GOTO in SQL 176 
GRAPHIC data type in SQL 

COBOL 173 

HELP command 3, 240 
HELP panels (ISPF) 143 
HNDEXT macro 230 
HNDINT macro 230 
HNDSVC macro 230 
HOLDING (terminal status) 16 

I prefix subcommand of XEDIT command 61 
identifier 

See file identifier 
IF command 240 
IF subcommand of TESTCOB command 237 
IF subcommand of TEST FORT command 245 
IN predicate of SQL 182 
INCLUDE command 113-115 
INCLUDE SQLCA command of SQL 176 
INCLUDE statement of SQL 

COBOL 185 
FORTRAN 186 

INDICATE USER command 269 
infinite loop 38 
INIT statement in ISPF panels 150 
initial program load 

Index 299 



See IPL 
INPUT command of ISQL 250 
input mode 22, 40, 41 
INPUT subcommand of XEDIT command 41 
INS MODE key 12 
INSERT command of SQL 169, 250 
INSERT statement of SQL 172, 183 
instruction 

tracin g 
vector 270 

INTE GER data type in SQL 
COBOL 173 
FORTRAN 173 

interactive applications 201-205 
interactive debug 233 

COBOL 234-237 
debug file 234 
FORTRAN 241-245 
VS FORTRAN 238-240 

Interactive System Productivity Facility 
(ISPF) 135, 141 

br eakpoints 249 
br owse opt ion 248 
commands 143-147 

ISPSTART 245 
PRINT 245 
PRINT-HI 245 

dialog test option 246 
dialog testing 245 
dialogs 147-154 
error handling 246 
ERRORS setting 246 
EXE Cs and 201 
file tailoring output libraries 145 
file tailoring services 156 
file tailoring skeletons 142 
function trace option 248 
functions 142 
functions option 246 
HELP panels 143 
invoking 143 
ISPEXEC 201 
libraries 135-140 
LOADLIBs 146 
log option 247 
message definition 142, 152 
message libraries 143-144 
messages 142, 143 
panel libraries 144 
panel option 247 
panel services 153 
panels 142, 143, 149-150 
PDF 135 

libraries 135 
prototyping applications 201 
requiremen ts using 144 
SELECT service 246 
services 155-157 
skeleton libraries 144, 145 
skeletons 142 

300 VM/SP Application Development Guide 

table input libraries 144 
table ou tput libraries 145 
table services 156 
tables 142 
tables option 247 
traces option 248 
TXTLIBs 146 
variable services 152-155 
variable trace option 248 
variables option 247 

internal directories 117 
interpreter 

See System Product Interpreter 
INTO statement of SQL 172 
IPL 3 

automatic 3, 15 
command 3 

IS NULL predicate of SQL 182 
ISPEXEC 201 
ISPEXEC command 143, 146 
ISPF (Interactive System Productivity 

Facility) 135, 141-157 
breakpoin ts 249 
browse option 248 
commands 143-147 

ISPSTART 245 
PRINT 245 
PRINT-HI 245 

dialog test option 246 
dialog testing 245 
dialogs 147-154 
error handling 246 
ERRORS setting 246 
EXECs and 201-203 
file tailoring output libraries 145 
file tailoring services 156 
file tailoring skeletons 142 
function trace option 248 
functions 142 
functions option 246 
HELP panels 143 
invokin g 143 
ISPEXEC 201 
libraries 135-140 
LOADLIBs 146 
log option 247 
message definition 142, 152 
message libraries 143-144 
messages 142, 143 
panel libraries 144 
panel option 247 
panel services 153 
panels 142, 143, 149-150 
PDF 135 

libraries 135 
prototyping applications 201-203 
r equirements using 144 
SELECT service 246 
services 155-157 



skeleton libraries 144, 145 
skeletons 142 
table input libraries 144 
table output libraries 145 
table services 156 
tables 142 
tables option 247 
traces option 248 
TXTLIBs 146 
variable services 152-155 
variable trace option 248 
variables option 247 

ISPF panels 142 
ISPFILE libraries 145 
ISPLINK 143 
ISPLLIB 146 
ISPLNK 143 
ISPMLIB libraries 144 
ISPPLIB libraries 144 
ISPSLIB libraries 144, 145 
ISPSTART command 147, 245 
ISPTABL libraries 145 
ISPTLIB libraries 144 
ISPXLIB 146 
ISQL 204-205 

commands 
INPUT 250 

testing 250-251 

JOIN subcommand of XEDIT command 68, 75 

keyboard 11 
keys 

character 11 
CLEAR 12 
CNCL 12 
control 11 
cursor control 12 
DEL 12 
ERASE EOF 12 
ERASE INPUT 12 
INS MODE 12 
PAl 12 
PA2 12 
PF (program function) 11 
screen management 12 

last in/last out 
See LIFO 

LDT statement of TXTLIB member 129 
LEFT command of DMS/CMS 160 
LET option of LKED command 134 
LIBPDS statement of MACLIBs 119 
libraries 117, 140 

creating 5 
defining 5 
ISPF/PDF 135-140 
load 117, 130-133 
LOADLIB 117 
MACLIBs in EXECs 214-215 
macro 117,119-127 

compressing 123 
displaying members of 126 
examining contents of 123 
extracting a member of 124 
manipulating members of 124 
pri'nting members of 126 
system 126 

members 5, 117 
PDF 135 
text 114, 115, 117, 127-130 

adding members to 128 
deleting members of 128 
replacing members of 128 

TXTLIBs 114, 115 
in EXECs 214-215 

libraries (ISPF) 
concatena ting 144 
ISPFILE 145 
ISPMLIB 144 
ISPPLIB 144 
ISPSLIB 144, 145 
ISPTABL 145 
ISPTLIB 144 
message 143, 144 
panel 144 
skeleton 144 
table input 144, 145 
table output 145 

library services 4 
LIFO (last in/first out) 219, 221, 223 
LIKE predicate of SQL 182 
LINEDIT macro 230 
LINERD macro 229 
LINEWRT macro 229 
LINK (OS macro) 133 
linkage conventions 224 
linkage r egisters 225 
LIST option of LKED command 134 
LIST subcommand of TEST COB command 234 
LIST subcommand of TESTFORT command 242 
LISTBREAKS subcommand of TESTFORT 

command 242 

Index 301 



LISTBRKS subcommand of TESTCOB 
command 237 

LISTFILE command 237 
EXEC option 193 

LISTFREQ command 240 
LISTFREQ subcommand of TESTFORT 

command 245 
LISTING file 30 
LISTING file (FORTRAN) 35 
LKED command 133-134 
LKEDIT (filetype) 134 
LOAD (OS macro) 133 
LOAD command 6,37, 113-115, 131 

ST ART option 37 
load libraries 117, 130-133 
load list in DMS/CMS 162 
load maps 114 
loader 113 
loader control statements 114 
Loader Termination statement of TXTLIB 

member 129 
loading, dynamic 115 
LOAD LIB (filetype) 117, 133, 134, 135 
LOADLIB command 135 
LOADLIBs 117,133,135,146 
LOADLIBs for ISPF 146 
local stack 221 
LOCATE subcommand of XEDIT command 53 
log option in ISPF 247 
LOG service of ISPF 156 
logging off 15 
logging on 14 
logical units of work in SQL 175 
LOGOFF command 15 
LOGON command 14 
LONG V ARCHAR data type in SQL 

COBOL 173 
LONG V ARGRAPH data type in SQL 

COBOL 173 
LOWERCASE subcommand of XEDIT command 68 
LRECL option of FILEDEF command 112 

M prefix subcommand of XEDIT command 61 
MACLIB (filetype) 117, 119-127 

compressing 123 
displaying members of 126 
examining contents of 123 
extracting a member of 
manipulating members of 124 
printing members of 126 
system 126 

MACLIB command 5,117,120-124 
MACLIBs 109, 117, 119-127 

compressing 123 

302 VM/SP Application Development Guide 

copying OS COBOL files from 109 
displaying members of 126 
examining contents of 123 
extracting a member of 124 
in EXECs 214-215 
LIBPDS statement 119 
manipulating members of 124 
printing members of 126 
system 126 

MACLIBs for ISPF 144-145 
MACRO filetype 119 
macro libraries 117, 119-127 

compressing 123 
displaying members of 126 
examining contents of 123 
extracting a member of 124 
manipulating members of 124 
printing members of 126 
system 126 

macros 120 
OS 115 
System Product Editor 200 

main user area 131 
main variables exceptions in SQL FORTRAN 175 
MAKEBUF command 224 
MAP (filetype) 124, 127 
MAP command of DMS/CMS 164 
MAP function of MACLIB command 123 

DISK option 123 
PRINT option 123 
TERM option 124 

MAP function of TXTLIB command 130 
DISK option 130 
PRINT option 130 
TERM option 130 

MAP option of LKED command 133 
MAX function of SQL 182 
MEMBER option of FILEDEF command 112 
MEMBER option of PRINT and TYPE 

commands 126 
menu input field (ZCMD) 154 
MERGE subcommand of XEDIT command 68 
message libraries (ISPMLIB) 144 
messages 5 

error 
Vector Facility 268 

MIN function of SQL 182 
minidisks 7 

accessing 8 
formatting 15 

MODEL statement in ISPF panels 150 
modes of input 22 
MODULEs with ISPF 146 
MORE. .. (terminal status) 16 
MOVE command of DMS/CMS 160 
MOVE subcommand of XEDIT command 68 
MOVEFILE command 124, 125 

and MACLIB members 124 
MSGMODE command of DMS/CMS 164 



NE option of LKED command 134 
NEXT subcommand of TESTCOB command 237 
NEXT subcommand of TESTFORT command 242 
NOMAP option of INCLUDE and LOAD 

commands 114 
NOPRINT option of LKED command 134 
noprof 20 
NOT ACCEPTED (terminal status) 17 
NOTE command 5 
NOTERM option of LKED command 134 
NULLS command of DMS/CMS 160 
NUMBER command of DMS/CMS 164 

object modules 115 
loading 113-115 
nonrelocatable 132 
relocatable 127, 130, 131 

OFF subcommand of TESTCOB command 237 
OFF subcommand of TESTFORT command 242 
OL option of LKED command 134 
OPEN statement of SQL 179 
ORDER BY clause of SQL 179 
OS macros 115 
OS/VS COBOL Compiler 31 
OSMACRO MACLIB 127 
OSMACR01 MACLIB 127 
OSRUN command 133, 135 
OSVSAM MACLIB 127 
OVERLA Y subcommand of XEDIT command 68 
OVL Y option of LKED command 134 

P prefix subcommand of XEDIT command 61 
PANEL command of DMS/CMS 158 
panel definitions (ISPF) 142, 143 
panel formatter in DMS/CMS 158 
panel formatter in DMS/CMS 157 
panel libraries (ISPPLIB) 144 
panel manager in DMS/CMS 157 
panel name in DMS/CMS 163 
panel name screen 158 
panel option in ISPF 247 
PANEL parameter of ISPSTART command 147 
panel size screen 158 
P ANELID command 249 
panels 

See ISPF 
parameter communication architecture 224 

parameters 
extended 224 
tokeniz'ed 224 

password 12, 14 
PAl program function key 12 
PA2 key 12 
PER command 253, 254 
PERFORM subcommand (of TESTCOB 

command 237 
PERM option of FILEDEF command 112, 145 
PF (program function) keys 11 
PGM parameter of ISPSTART command 147 
Plist 227, 228 
POWERINP subcommand of XEDIT command 41 
prefix area 44 
prefix subcommands of XEDIT command 56, 67 
PRINT command 9 

and MACLIB members 124 
MEMBER option 126 

PRINT command for ISPF 245 
PRINT option of LKED command 134 
PRINT option of MACLIB command MAP 
function 123 

PRINT option of TXTLIB command 130 
PRINT-HI command for ISPF 245 
PRINTER device type 111 
PRINTL macro 229 
PROC statement in ISPF panels 150 
profile EXECs 192 
program debugging 6 
Program Development Facility 

See ISPF, PDF 
program execution 6 
program function (PF) keys 11 
program libraries 117 
program stack 219, 220, 223 

&ERROR statement 224 
&READ command for EXEC or EXEC2 223 
&STACK FIFO command 223 
&STACK LIFO command 223 
DROPBUF command 224 
MAKEBUF command 224 
PULL command 223 
PUSH command 223, 224 
QUEUE command 223, 224 
QUEUED command 224 
SENTRIES command 224 
STACK command 224 
using 224 

program status word (PSW) 252 
programs, executing 37-38 
prototyping 

algorithms 216 
interactive applications 201-205 

PSW (program status word) 252 
PSW subcommand of DEBUG command 252 
PULL command 223 
PUNCH device type 111 
PUNCHC macro 229 
PUSH command 223, 224 

Index 303 



PUT subcommand of XEDIT command 68, 70 
PUTD subcommand of XEDIT command 68, 70 

QQUIT subcommand of XEDIT command 89 
QUERY subcommand of XEDIT command 91 
QUEUE command 204,223,224 
QUEUED command 224 
QUIT command of VS FORTRAN interactive 

debug 239 
QUIT subcommand of XEDIT command 89 
QUOTE parameter of SQL 185 

RDCARD macro 229 
RDTERM macro 230 
read password for ISPF 145 
READER device type 111 
ready message 15 
RECEIVE command 5 
RECFM option of FILEDEF command 112 
RE COVER subcommand of XEDIT command 68 
REFR option of LKED command 134 
REGEQU macro 230 
registers 252 

linkage 225 
reserved in CMS 224 
return code 225 
Vector Facility 

changing the conten ts of 265 
displaying 257 

vector mask 
displaying 264 

vector status 
displaying 264 

REINIT statement in ISPF panels 150 
RELEASE command 5 
RELOAD command of SQL 250 
RENAME command 8 
RENT option of LKED command 134 
REP function of MACLIB command 121 
REPLACE subcommand of XEDIT command 41, 68 
RESET command of DMS/CMS 164 
RESET option of INCLUDE and LOAD 

commands 115 
RESOURCE (SQL table creat ion authority) 177 
Restructured Extended Executor language 

(REXX) 7, 196-211 
compound symbols 206 
FILEDEF commands in 213-214 
functions 208 
MACLIBs in 214-215 
prototypin g algorithms with 216 

304 VM/SP Application Development Guide 

subroutines 207 
substitution rules 205 
TXTLIBs in 214-215 

RETAPE macro 230 
return codes 225 
RETURN command 249, 252 
return to CMS from CP 38 
REUS option of LKED command 134 
REWIND command 240 
REXX (Restructured Extended Executor 

language) 7, 196-211 
compound symbols 206 
FILEDEF commands in 213-214 
functi ons 208 
MACLIBs in 214-215 
proto typing algorithms with 216 
subrou tines 207 
substitution ru les 205 
TXTLIBs in 214-215 

RIGHT command of DMS/CMS 160 
ROLLBACK WORK command 251 
ROLLBACK WORK command of SQL 175 
RUN command 241 
RUN subcommand of TESTCOB command 237 
RUN subcommand of TESTFORT command 242 
RUNNING (terminal status) 16 

S prefix subcommand of XEDIT command 56 
SAVE command 29 
SA VE subcommand of XEDIT command 89 
screen images 

horizontal 86 
vertical 86 

screen mana gment keys 12 
SCREEN subcommand of XEDIT command 83 
screens in DMS/CMS 

completion options 158, 159 
data fi eld 159 
design grid 159 
field characteristics of 159 
field definition 158, 159 
panel name 158 
panel size 158 
selector field 160 
text field 159 

scrolling 46 
horizontal 50 

SELECT command of SQL 169, 179, 250 
SELECT service of ISPF 148, 153-154, 246 
select-items in DMS/CMS 163 
selectmask in DMS/CMS 162 
selector field screens (ISPF) 160 
SEND FILE command 5 
SENTRIES command 224 
SET command 253 



SET command of DMS/CMS 164 
SET PFnn command 11 
SET RUNMODE command of ISQL 251 
SET SCREEN subcommand of XEDIT command 83 
SET subcommand of TESTCOB command 236 
SET subcommand of TEST FORT command 244 
shared pools of ISPF 154 
SHIFT subcommand of XEDIT command 68 
SIGNAL command of DMS/CMS 164 
skeleton libraries, ISPSLIB 144 
SMALLINT data type in SQL 172 

COBOL 173 
FORTRAN 173 

SORT 221 
SORT command 221 
SORT subcommand of XEDIT command 68, 77 
SOURCE subcommand of TESTFORT 

command 242, 244 
SPLIT subcommand of XEDIT command 68, 75 
splitting the screen 83 
SPLTJOIN subcommand of XEDIT command 75 
spool files 126 
SPOOL PRINT CONT command 126 
SPOOL PRINT NOCONT CLOSE command 126 
SQL (Structured Query Language) 

COBOL 170 
data types 173 
invoking 184 

commands 169-170 
ALTER TABLE 169, 178 
COBOL 174 
coding 174-175 
COMMIT WORK 175 
CONTINUE 176 
CREATE INDEX 169 
CREATE TABLE 169, 178 
CREATE VIEW 169 
DELETE 169 
DROP INDEX 169 
DROP TABLE 169 
DROP VIEW 169 
EXPLAIN 250 
FORTRAN 174 
GOTO 176 
INCLUDE SQLCA 176 
INSERT 169, 172, 250 
query 169 
RELOAD 250 
ROLLBACK WORK 175 
SELECT 169, 179, 250 
UNLOAD 250 
UPDATE 169, 172 
WHENEVER 176 

creating table views 184 
creating tables 177, 178 
data definition commands 169 

ALTER TABLE 169, 178 
CREATE INDEX 169 
CREATE TABLE 169 
CREATE VIEW 169 

DROP INDEX 169 
DROP TABLE 169 
DROP VIEW 169 

data manipulation commands 169 
DELETE 169 
INSERT 169 
UPDATE 169 

data types 173 
COBOL 173 
FORTRAN 173 

data types for COBOL 
SMALLINT 172 

data types for FORTRAN 
SMALLINT 172 

DBSPACE 177 
DECLARE CURSOR statement 179 
DE CLARE statement in COBOL 171 
DE CLARE statements 179 
duplicates , DISTINCT keyword 183 
error handling 175 
excluding duplicates 183 
EXECs 204-205 
FETCH statement 179 
FORTRAN 170 

data types 173 
invoking 186 
preprocessor 186 

FROM clause 179 
functions 182 

AVG 182 
COUNT 182 
MAX 182 
MIN 182 
SUM 182 

host variables 171 
INCLUDE statement in COBOL 185 
index 168 
INTO statement 172 
ISQL 204-205 

testing 250-251 
logical units of work 175 
main variables, exceptions 175 
manipulating data 183 
multiple data base mode 170 
multiple user mode 170 
OPEN statement 179 
ORDER BY clause 179 
predicates 180-182 

BETWEEN 181 
IN 182 
IS NULL 182 
LIKE 182 

preprocessor 171, 187 
SQLSTART EXEC (FORTRAN) 186 

prototyping applications 204-205 
query command 179 
QUOTE parameter 185 
RESOURCE (tabl e creation authority) 177 
search conditions 180 
single user mode 170 

Index 305 



SQLCA (SQL communication area) 174 
SQLCODE 176 
SQLWARN 176 

SQLCODE 176 
SQLWARN 176 
SQLWARNING 176 
statements 

CREATE VIEW 184 
DECLARE 179 
DECLARE CURSOR 179 
FETCH 179 
in FORTRAN 186 
INSERT 172 
INTO 172 
OPEN 179 
UPDATE 172 

table components 
columns 168 
fields 168 
rows 168 

testing 250-251 
variables 

indicator 171, 172 
main 171-172 

view definitions 168 
WHERE clause 179 
WHERE CURRENT OF 183 

SQLCA (SQL communication area) 174, 176 
SQLCODE 176 
SQLWARN 176 
SQLWARNING 176 
ST ACK command 224 
stacks 219-224 

console 219 
console stack 219 
local 221 
local stack 221 
programstack 219, 220,223,224 
used globally 220 

START command 6,37,131 
START option (of LOAD command) 37, 113 
STORE command 253, 265 
Structured Query Language (SQL) 

COBOL 170 
data types 173 
invoking 184 

commands 169-170 
ALTER TABLE 169,178 
COBOL 174 
coding 174-175 
COMMIT WORK 175 
CONTINUE 176 
CREATE INDEX 169 
CREATE TABLE 169, 178 
CREATE VIEW 169 
DELETE 169 
DROP INDEX 169 
DROP TABLE 169 
DROP VIEW 169 
EXPLAIN 250 

306 VM/SP Application Development Guide 

FORTRAN 174 
GOTO 176 
INCLUDE SQLCA 176 
INSERT 169, 172, 250 
query 169 
RELOAD 250 
ROLLBACK WORK 175 
SELECT 169, 179, 250 
UNLOAD 250 
UPDATE 169, 172 
WHENEVER 176 

creating table views 184 
creating tables 177,178 
data definition commands 169 

ALTER TABLE 169,178 
CREATE INDEX 169 
CREATE TABLE 169 
CREATE VIEW 169 
DROP INDEX 169 
DROP TABLE 169 
DROP VIEW 169 

data manipulation commands 169 
DELETE 169 
INSERT 169 
UPDATE 169 

data types 173 
COBOL 173 
FORTRAN 173 

data types for COBOL 
SMALLINT 172 

data types for FORTRAN 
SMALLINT 172 

DBSPACE 177 
DECLARE CURSOR statement 179 
DECLARE statement in COBOL 171 
DECLARE statements 179 
duplicates, DISTINCT keyword 183 
error handling 175 
excluding duplicates 183 
EXECs 204-205 
FETCH statement 179 
FORTRAN 170 

data types 173 
invoking 186 
preprocessor 186 

FROM clause 179 
functions 182 

AVG 182 
COUNT 182 
MAX 182 
MIN 182 
SUM 182 

host variables 171 
INCLUDE statement in COBOL 185 
index 168 
INTO statement 172 
ISQL 204-205 

testing 250 
logical units of work 175 



main variables, exceptions 175 
manipulating data 183 
multiple data base mode 170 
multiple user mode 170 
OPEN statement 179 
ORDER BY clause 179 
predicates 180-182 

BETWEEN 181 
IN 182 
IS NULL 182 
LIKE 182 

p~eprocessor 171, 187 
SQLSTART EXEC (FORTRAN) 186 

prototyping applications 204-205 
query command 179 
QUOTE parameter 185 
RESOURCE (table creation authority) 177 
search conditions 180 
single user mode 170 
SQLCA (SQL communication area) 174 

SQLCODE 176 
SQLWARN 176 

SQLCODE 176 
SQLWARN 176 
SQLWARNING 176 
statements 

CREATE VIEW 184 
DECLARE 179 
DECLARE CURSOR 179 
FETCH 179 
in FORTRAN 186 
INSERT 172 
INTO 172 
OPEN 179 
UPDATE 172 

table components 
columns 168 
fields 168 
rows 168 

testing 250-251 
variables 

indicator 171, 172 
main 171-172 

view definitions 168 
WHERE clause 179 
WHERE CURRENT OF 183 

SUM function of SQL 182 
summary of changes 287 
SVCTRACE command 253 
SYMDMP option with COBOL compiler 105 
SYSCMD command 240 
system MACLIBs 126 
System Product Editor 4, 6-7, 8, 19, 39-103 

edit mode 40 
EXECs 200 
input mode 40 
macros 200 
tabs with 87 

System Product Interpreter 4,7, 191 
and ISPF 142 

system services 5 

tab settings 
COBOL file type 88 
FORTRAN filetype 88 
FREEFORT filetype 88 

table creation authority in SQL 177 
table input libraries 

ISPFILE 145 
ISPTLIB 144 

table output libraries, ISPSLIB 145 
table output libraries, ISPTABL 145 
table views in SQL 184 
tables option in ISPF 247 
tabs 39,87 
tabulation 87 
T APECTL macro 230 
T APESL macro 230 
T APn device type 111 
TELL command 5 
TERM option of LKED command 134 
TERM option of MACLIB command MAP 

function 124 
TERM option of TXTLIB command MAP 

function 130 
TERMINAL device type 111 
terminal input buffer 219 
terminal status 16-17 
TERMINATE command of DMSjCMS 164 
TERMIO command 240 
TEST keyword of ISPST ART command 245 
TEST parameter 241 
TESTCOB command 6, 234-237 

subcommands 
AT 234 
CALL 237 
DUMP 237 
END 234, 237 
GO 234,237 
IF 237 
LIST 234 
LISTBRKS 237 
NEXT 237 
OFF 237 
PERFORM 237 
RUN 237 
SET 236 
TRACE 237 
WHEN 237 

TESTFORT command 6,241-245 
subcommands 

AT 242 
END 242 
ERROR 244 
FIXUP 242, 244 

Index 307 



GO 242,243 
IF 245 
LIST 242 
LISTBREAKS 242 
LISTFREQ 245 
NEXT 242 
OFF 242 
RUN 242 
SET 244 
SOURCE 242, 244 
TRACE 245 
WHEN 245 
WHERE 245 

TESTX keyword of ISPST ART command 245 
text field 159 
TEXT file 31, 114 
TEXT file (COBOL) 32, 37 
TEXT fil e (FORTRAN) 35, 37 
text libraries 114, 115, 117, 127-130, 133 

adding member s to 128 
deleting members of 128 
r eplacing members of 128 

text modules with ISPF 146 
textmask in DMS/CMS 162 
tokenized parameters 224 
TOP command of DMS/CMS 160 
TOP subcommand of XEDIT command 43 
TRACE command 240 
TRACE keyword of ITSPSTART command 245 
TRACE subcommand of TESTCOB command 237 
TRACE subcommand of TESTFORT command 245 
traces option in ISPF 248 
TRACEX keyword of ISPSTART command 245 
tracing 

vector instructions 270 
Trunc 21, 39 
truncation 21 
TSOLIB library 241 
TSOMAC MACLIB 127 
TVECTIME 269 
TXT statement of TXTLIB member 129 
TXTLIB (file type) 117,127 

adding members to 128 
deleting members of 128 
replacing members of 128 

TXTLIB command 5,117,127-130 
TXTLIB command for ISPF 146 
TXTLIBs 114,115,117, 127-130,146 

adding member s to 128 
deleting members of 128 
in EXECs 214-215 
replacing members of 128 

TYPE command 9 
and MACLIB members 124 
MEMBER option 126 

308 VM/SP Applica tion Development Guide 

UNLOAD command of SQL 250 
unload list in DMS/CMS 162 
UPDATE command of SQL 169 
UPDATE commands 95 
UPDATE option 93-103 

COBOL 96-99 
FORTRAN 100-103 

UPDATE statement of SQL 172, 183 
UPPERCASE subcommand of XEDIT command 68 
USE command of DMS/CMS 164 
user areas 131 
user MODULEs with ISPF 146 
user transient area 131 
userid 12 
utility commands 4-6 

V ARCHAR data type in SQL 
COBOL 173 

V ARGRAPH data type in SQL 
COBOL 173 

variable pools of ISPF 
application profile pools 154 
dialog variables 154 
function pools 154 
shared pools 154 

variable services of ISPF 
invoking from COBOL program 155 
invoking from FORTRAN program 155 

variable trace option in ISPF 248 
variables option in ISPF 247 
VCOPY 152, 155 
VDEFINE 152, 155 
VDELETE (lSPF) variable service 155 
vector 255 

activity count 255 
instruction tracing 270 
instructions 256 
mask r egiste r 255 
r egisters 255 

vector activity count 
displaying 264 

Vector Facility 255 
error messages 268 
registers 

changing the contents of 265 
displaying 257 

r esource 
displaying how much your virtual machine is 

using 269 
vector mask register 

displaying 264 



vector status register 
displaying 264 

verification 39 
VGET 155 
viewing two files at the same time 83 
views of a table in SQL 184 
Virtual Machine/System Product (VM/SP) 1 
virtual machines 2 

disk space for 7 
VM debug environment 252 
VM READ (terminal status) 16 
VM/SP (Virtual Machine/System Product) 1 
VPUT 155 
VREPLACE 152, 155 
VRESET 155 
VS FORTRAN interactive debug 238-240 

commands 
AT 239 
BACKSPACE 240 
CLOSE 240 
ENDFILE 240 
ERROR 239 
FIXUP 240 
GO 239 
HELP 240 
IF 240 
LISTFREQ 240 
QUIT 239 
REWIND 240 
SYSCMD 240 
TERMIO 240 
TRACE 240 
WHEN 240 
WHERE 240 

FORTRAN interactive debug 241 
full-screen mode 239 

VS FORTRAN Version 2 compiler 
VS FORTRAN Version2 Compiler 34 
VVECTIME 269 

W AITD macro 230 
WAITT macro 230 
WHEN command 240 
WHEN subcommand of TESTCOB command 237 
WHEN subcommand of TESTFORT command 245 
WHENEVER command of SQL 176 
WHERE clause of SQL 179 
WHERE command 240 
WHERE CURRENT OF statement of SQL 183 
WHERE subcommand of TESTFORT command 245 
workfiles, COBOL 105 
write full screen in DMS/CMS 157 

WRTAPE macro 230 
WRTERM macro 230 

X prefix subcommand of XEDIT command 56 
XCTL (OS macro) 133 
XEDIT (filetype) 200 
XEDIT command 6, 9, 19, 24, 40 

&I2@xedcmd. 
QQUIT subcommand 89 
QUIT subcommand 89 

prefix subcommands 56-61 
subcommands 

= 54 
ADD 67 
ALTER 67 
BACKWARD 46 
CANCEL 89 
CHANGE 67, 68 
COpy 67 
DELETE 67 
DUPLICATE 67 
FILE 89 
FIND 55 
FINDUP 55 
FORWARD 46 
GET 68,70 
INPUT 41 
JOIN 68,75 
LOCATE 53 
LOWERCASE 68 
MERGE 68 
MOVE 68 
OVERLAY 68 
POWERINP 41 
PUT 68,70 
PUTD 68,70 
QQUIT 89 
QUERY 91 
QUIT 89 
RECOVER 68 
REPLACE 41, 68 
SAVE 89 
SCREEN 83 
SET SCREEN 83 
SHIFT 68 
SORT 68,77 
SPLIT 68,75 
SPLTJOIN 75 
TOP 43 
UPPERCASE 68 

XREF option of LKED command 133 

Index 309 



ZCMD 154 

310 VMjSP Application Development Guide 



International Business 
Machines Corporation 
P.O. Box 6 
Endicott, New York 13760 

File No. 5370/4300-50 
Printed in U.S.A. 

SC24-S247-2 

------- ------ ---
. - - - --­-------- , 

® 



VM/SP 
Application Development Guide 
Order No. SC24-5247-2 

Is there anything you especially like or dislike about this book? Feel free to 
comment on specific errors or omissions, accuracy, organization, or 
completeness of this book. 

If you use this form to comment on the online HELP facility, please copy the 
top line of the HELP screen. 

____ Help Information line of 

READER'S 
COMMENT 
FORM 

IBM may use or distribute whatever information you supply in any way it believes appropriate without 
incurring any obligation to you, and all such information will be considered nonconfidential. 

Note: Do not use this form to report system problems or to request copies of publications. Instead, 
contact your IBM representative or the IBM branch office serving you. 

Would you like a reply? _YES _NO 

Please print your name, company name, and address: 

IBM Branch Office serving you: 

Thank you for your cooperation. You can either mail this form directly to us or gIve this 
form to an IBM representative who will forward it to us . 



SC24-5247-2 

Reader's Comment Form 

Fold and tape Please Do Not Staple 

BUSINESS REPLY MAIL 
FIRST- CLASS MAIL PERMIT NO. 40 ARMONK, NY 

POSTAGE WILL BE PAID BY ADDRESSEE: 

--------- ----- --- - ---- - - ----------_.-

INTERNATIONAL BUSINESS MACHINES CORPORATION 
DEPARTMENT G60 
PO BOX 6 
ENDICOTT NY 13760-9987 

1 ••• 11 •• 11.1 ••• 1.11 •• 11 ••• 1.1 •• 1.1 •• 1 •• 1.1 ••• 11111.1 

Fold and tape Please Do Not Staple 

--..- ------- -------. ---- - --------
-~- ... -

® 

CUT 
OR 

FOLD 
ALONG 

LINE 

Fold and tape 

NO POSTAGE 
NECESSARY 
IF MAI LED 

IN THE 
UNITED STATES 

Fold and tape 



VM/SP 
Application Development Guide 
Order No. SC24-5247-2 

Is there anything you especially like or dislike about this book? Feel free to 
comment on specific errors or omissions, accuracy, organization, or 
completeness of this book. 

If you use this form to comment on the online HELP facility, please copy the 
top line of the HELP screen. 

____ Help Information line of 

READER'S 
COMMENT 
FORM 

IBM may use or distribute whatever information you supply in any way it believes appropriate without 
incurring any obligation to you, and all such information will be considered nonconfidential. 

Note: Do not use this form to report system problems or to request copies of publications. Instead, 
contact your IBM representative or the IBM branch office serving you. 

Would you like a reply? _YES _NO 

Please print your name, company name, and address: 

IBM Branch Office serving you: 

Thank you for your cooperation. You can either mail this form directly to us or give this 
form to an IBM representative who will forward it to us. 



SC24-5247-2 

Reader's Comment Form 

Fold and tape Please Do Not Staple 

BUSINESS REPLY MAIL 
FIRST- CLASS MAIL PERMIT NO. 40 ARMONK, NY 

POSTAGE WILL BE PAID BY ADDRESSEE: 

--------- -------- - ---- -- ----------_.-
INTERNATIONAL BUSINESS MACHINES CORPORATION 
DEPARTMENT G60 
PO BOX 6 
ENDICOTT NY 13760-9987 

I" , II, , 11,1, " I,ll, , II " , 1,1 " I, I, ,I " I, I, , ,III, , , I 

Fo'd and tape Please Do Not Staple 

--..- ------ -------- -.. ---- - - -~------------ -,-
® 

CUT 
OR 

FOLD 
ALONG 

LINE 

Fold and tape 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

Fold and tape 








