

--..- ------- -------- -. ---- -- -------------,- . .. i., I, /,.' ,,,,: '~,~~ ... J ... ", .'~.,..':. _ ,-;:

Virtual Machine/
System Product

EXEC 2 Reference

Release 5

SC24-5219-3

Fourth Edition (December 1986)

This edition, SC24·5219·3, is a major revision of SC24·5219·2, and applies to release
5 of the Virtual Machine/System Product, (VM/SP), program number 5664·167, and
to all subsequent versions and releases until otherwise indicated in new editions or
Technical Newsletters. Changes are continually made to the information
contained herein; before using this publication in connection with the operation of
IBM systems, consult the IBM System/370, 30xx and 4300 Processors Bibliography,
GC20·0001, for the editions that are applicable and current.

Summary of Changes

For a list of changes, see page 119.

Changes or additions to the text and illustrations are indicated by a vertical line
to the left of the change.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available in
all countries in which IBM operates. Any reference to an IBM
licensed program in this publication is not intended to state or
imply that only IBM's licensed program may be used. Any
functionally equivalent program may be used instead.

Publications are not stocked at the address given below. Requests for IBM
publications should be made to your IBM representative or to the IBM branch
office serving your locality.

A fonn for readers' comments is provided at the back of this publication. If the
form has been removed, comments may be addressed to IBM Corporation,
Information Development, Dept. G60, P.O. Box 6, Endicott, NY, U.S.A. 13760. IBM
may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

<C Copyright International Business Machines Corporation 1980, 1981, 1982, 1983,
1986

Preface

The purpose of this publication is to define the EXEC 2 language. It is to
be used primarily as a reference manual; it contains all of the formats,
syntax rules, and descriptions of the arguments for EXEC 2 statements.

For tutorial information on using the EXEC 2 language, refer to "Appendix
C: EXEC 2 Primer for New Users." The material contained therein may be
used in conjunction with the reference section.

The reference section of this publication contains these parts:

• "Chapter 1: Introduction" summarizes what the EXEC 2 language is and
what it is capable of. It introduces and defines some of the terminology
used throughout this manual. EXEC 2 statements and the rules for
interpreting them are also discussed.

• "Chapter 2: EXEC 2 Statements" discusses in detail the different types
of EXEC 2 statements. This discussion is followed by illustrations of
the syntax of each EXEC 2 statement and a description of the function
of each statement. "User-Defined Functions" are also discussed.

o "Chapter 3: Notes on EXEC 2" contains detailed discussions on
particular aspects of EXEC 2 that do not fit into a category by
themselves.

• "Chapter 4: BNF Description of the EXEC 2 Syntax" contains a
description of the main features of the EXEC 2 syntax in Backus-Naur
Form (BNF). This section presents an alternative description of the
EXEC 2 syntax for those familiar with this type of notation. This is not
essential reading.

• "Chapter 5: EXEC 2 Errors" lists the error messages and return codes
issued by the EXEC 2 interpreter.

This publication also has these appendixes:

• "Appendix A: Sample EXEC 2 Files" gives two examples of EXECs
written in the EXEC 2 language.

• "Appendix B: EXEC 2 in CMS." This appendix discusses how CMS
identifies EXEC 2 files, the limits CMS imposes on using EXEC 2,
examples of using EXEC 2 with assembler language programs, and the
execution of XEDIT macros in EXEC 2. Appendix B also contains a
discussion of variable sharing through the EXECCOMM interface.

Preface 111

• "Appendix C: EXEC 2 Primer for New Users" provides a tutorial aid for
users who are unfamiliar with the EXEC 2 language. This primer is
intended for the person who has a modest amount of CMS experience
and enough familiarity with a text editor so that the mechanics of
creating a disk file present no serious difficulty. Users who have
already mastered a command programming language for some other
system, or who have experience with the earlier CMS EXEC facility,
may prefer to read the EXEC 2 reference material instead of the primer.

• "Appendix D: Writing Editor Macros" describes how to write XEDIT
macros and XEDIT prefix macros. This Appendix also contains
examples of XEDIT macros and XEDIT prefix macros.

• "Appendix E: Useful EXEC 2 Techniques" shows some solutions to some
common EXEC 2 programming problems.

If you are unfamiliar with writing EXEC files or need tutorial information,
you may find it helpful to read "Appendix C: EXEC 2 Primer for New
Users" before reading the reference section of this manual.

Note: Although EXEC 2 is designed to be system independent, the
implementation requirements of CMS (the host system) impose certain
limits on using EXEC 2. See Appendix B for details.

Notational Conventions Used in this Book

The conventions used in this publication to illustrate EXEC 2 statements
follow:

• Uppercase letters and punctuation marks (except as described below)
represent information that must be given exactly as shown.

• Lowercase letters represent information that must be supplied by the
user.

• Information contained within brackets [] represents an option that can
be included or omitted.

• Vertical lists that are not enclosed in brackets represent alternatives,
one of which must be given. For example:

A
B

• Vertical lists that are enclosed in brackets represent alternatives, one of
which may be given. For example:

• An ellipsis (...) indicates that a variable number of items may be
included.

• Underlined elements represent an assumed (default) value in the event a
parameter is omitted.

1 V VM/SP EXEC 2 Reference

Contents

Chapter 1: Introduction 1
Executing EXEC 2 Programs 1
Introduction to the EXEC 2 Language 1
Types of Executable Statements 3
Rules for Interpreting Executable Statements 4

Chapter 2: EXEC 2 Statements 5
Predefined Variables ... 5
Control Statements .. 8
Predefined Functions 40
User-Defined Functions 57

Chapter 3: Notes on EXEC 2 59
Name Substitution ... 59
Recursive Execution .. 61
Termination of an EXEC 2 File 61
Program Stack .. 61
Assignment Statement 62
Evaluation of &DATE and &TIME 62
Size and Treatment of Numbers 62
Removing Plus Signs and Leading Zeros 63
Syntax of Conditional Phrases 63
Em bedded Blanks .. 64
&LOOP Statement ... 65
Closing of Loops ... 65
Search for Labels .. 66
Performance of Label Searches 66
EXEC 2 Words are Not Reserved Words 66
Example of &TRACE ALL 67
Truncation Column ... 68

Chapter 4: BNF Description of the EXEC 2 Syntax 69

Chapter 5: EXEC 2 Errors 73

Appendix A. Sample EXEC 2 Files 75

Appendix B. EXEC 2 in CMS 77
Identifying EXEC 2 Files 77
Calling EXEC 2 Programs from CMS Command Level 77
Summary of Limits for EXEC 2 Files in CMS 78
Using EXEC 2 Parameter Lists with Assembler Language Programs 79

Contents V

Executing XEDIT Macros in EXEC 2 83
EXECCOMM - Sharing EXEC 2 Variables with Assembler Language

Programs ... 83

Appendix C. EXEC 2 Primer for New Users 87
EXEC 2 Variable Names 89
Return Codes and EXEC 2 Variables 89
EXEC 2 File Arguments 90
Conditional Interpretation of Statements 91
Statement Labels .. 92
Assignment Statements 92
EXEC 2 Variable Evaluation 93

An Example of Generating EXEC 2 Variable Names 93
The &LOOP Control Statement 95
Making EXEC 2 Files Interact with Users 95
Using the &CASE Control Statement 99

Appendix D. Writing Editor Macros 101
What is an XEDIT Macro? 101
Creating a Macro File 102
Using XEDIT Subcommands in a Macro. .. 102
Handling Embedded Blanks 104
Avoiding Name Conflicts 105
Walking Through An XEDIT Macro 105

Using the XEDIT EXTRACT Subcommand 110
Writing Prefix Macros 110

What Information is Passed to the Macro? 110
Creating a Sample Prefix Macro 111

Appendix E. Useful EXEC 2 Techniques•.......•..... 113

Summary of Changes 119

Bibliography - • • .. 121
Prerequisite Publications: 121
Corequisite Publications: 121

Index•... 125

VI VM/SP EXEC 2 Reference

Figures

1. A Sample Macro: GLOBCHG 106
2. A Sample Prefix Macro: U 111

Figures Vll

V1l1 VM/SP EXEC 2 Reference

\~.

Introduction
M ,-

Chapter 1: Introduction

EXEC 2 is intended for manipulating English-like words as they appear in
computer command languages. It is also capable of performing integer
arithmetic and simple string manipulation.

The notational conventions used in this publication to illustrate EXEC 2
statements are discussed in the Preface.

Executing EXEC 2 Programs

EXEC 2 programs reside in EXEC files, and are executed by the EXEC 2
interpreter. The EXEC 2 interpreter can be invoked by issuing a command
such as:

EXEC filename [argl [arg2 ...]]

where "filename" is the name of the EXEC 2 file to be executed and "argl",
"arg2", ... , are arguments that are passed to it. In some command
environments (such as XEDIT) the word "EXEC" is omitted, and in others

,(such as eMS console command mode) it is optional. (See
Appendix B, "EXEC 2 in CMS" on page 77 for the rules on how EXEC 2
files are distinguished from other EXEC files in CMS.)

EXEC 2 files can have any filename. EXEC 2 files have the filetype EXEC
for files that are invoked from CMS command mode, and the filetype XEDIT
for files used as XEDIT macros. Other file types may be used for EXEC 2
files that are invoked from other environments.

EXEC 2 files can have either "F" (fixed) or "V" (variable) format.

Introduction to the EXEC 2 Language

EXEC 2 files contain EXEC 2 statements. An EXEC 2 statement occupies
one line, and may be a comment or an executable statement. A comment is a
line in which the first nonblank character is an asterisk. This line is
ignored during execution. An executable statement consists of a sequence
of words, the first of which does not begin with an asterisk. A word is a
string of contiguous nonblank characters. Words are separated from each

Chapter 1: Introduction 1

Introduction

other by one or more blanks. (Refer to Appendix B, "EXEC 2 in CMS" on
page 77 for implementation limits on EXEC 2 statements and words.)

An executable statement may be:

• A null statement (which has no effect),

• A command (which is issued to a command interpreter),

• An assignment (which manipulates EXEC 2 variables), or

• A control statement (which manipulates EXEC 2 variables, controls
execution or flow through the file, or performs console input or output).

Assignments start with the name of an EXEC 2 variable, and control
statements start with an EXEC 2 control word. EXEC 2 variables and
control words begin with an ampersand. Variables are local to the current
EXEC 2 file. Most variables are initially unset, and they have an apparent
null value. The variables &1 &2 ... , are special and are initialized to the
arguments "arg1", "arg2", ... , that are passed to the EXEC 2 file. For
example, if an EXEC named "TEST" was invoked as "TEST X Y Z", &0
would contain "TEST" and the arguments &1, &2, and &3 would contain X,
Y, and Z, respectively.

The following are examples of variables:

&X
&3.1415927
&UPPER LIMIT
&(X) -

The following are examples of control words:

&TYPE
&LOOP
&EXIT

A label, appearing as the first word of a line, may be attached to an
executable statement (including a null statement) but does not form part of
the statement. A label is distinguished by its first character, which is a
hyphen.

The following are examples of labels:

-x

-&A
-(TYPE)

When an EXEC 2 file is invoked, execution starts at line number 1 and
proceeds sequentially, except when otherwise directed by control
statements.

2 VM/SP EXEC 2 Reference

Introduction
•• **Me H*

Types of Executable Statements

• Null statement

A null statement is an executable statement in which the number of
words is zero.

o Commands

An executable statement is deemed to be a command if it contains at
least one word, and its first word does not start with an ampersand. It
is issued immediately to the host system (CMS) or to a subcommand
environment (for example, XEDIT). When it is finished, control returns
to the EXEC 2 file, and its return code can be obtained from the
predefined EXEC 2 variable &RC. (See the section "EXECCOMM -
Sharing EXEC 2 Variables with Assembler Language Programs" on
page 83 for possible side-effects of command execution.)

• Assignments

An executable statement is an assignment statement if the first word
starts with an ampersand and the second word is an equal sign. The
first word is taken as the name of an EXEC 2 variable, and it is
assigned the value of the expression that follows the equal sign.

The expression may be any of the following:

null

a single word, for example:

ABC

an arithmetic expression, consisting of a sequence of words that
represent positive or negative integers, separated by plus or minus
signs, for example:

3 - 4 + -11 - 00

a function invocation, for example:

&PIECE OF &1 2 1

an arithmetic expression (as above) in which the last term is
replaced by a function invocation that yields a numeric value, for
example:

-1 + &LENGTH OF &1

A variable of the form &j, where "j" is an unsigned integer without
leading zeros, cannot be set with an assignment statement if "j" exceeds
the number of EXEC 2 arguments that are currently set.

Chapter 1: Introduction 3

Introduction
'MiA M¥WMF; Wi

The value of the variable on the left-hand side of the assignment
statement is not modified until the expression on the right-hand side
has been evaluated. If an assignment statement is syntactically invalid,
or if evaluation of the expression results in numeric overflow, execution
stops abnormally with an error message, without further evaluation.

• Control statements

An executable statement is a control statement if the first word is an
EXEC 2 control word and the second word either is absent or is not an
equal sign. Examples of control words are &GOTO, &EXIT, &IF, and
&PRINT.

Rules for Interpreting Executable Statements

Executable statements are interpreted, one at a time, according to the
following general rules (There are a few explicit exceptions, which are
noted elsewhere.):

1. The statement is scanned. This discards leading, trailing, and other
surplus blanks, leaving a sequence of words separated from each other
by a single blank.

2. The words forming the statement are searched for the names of any
EXEC 2 variables. These variables are replaced by their values, unless
the variable is the target of an assignment. Then its name is retained.
(A precise description is given later in "Name Substitution" on
page 59.) During this process, the words may grow or shrink in length.

3. If, as a result of step 1, a word is reduced to the null string, it is
discarded from the statement so that the next word is deemed
immediately to follow the previous one. With this exception, the words
retain their identity. For example, if the value of a variable contains an
embedded blank, the word containing it is still treated as one word,
although when printed it might appear as two. For more details, see
"Chapter 3: Notes on EXEC 2" on page ~641 on embedded blanks.

4. The statement is analyzed syntactically. Note that, except for
identifying the targets of assignment, the syntax analysis is done after
steps 1, 2, and 3 above.

4 VM/SP EXEC 2 Reference

EXEC 2 Statements

Chapter 2: EXEC 2 Statements

Predefined Variables

The following EXEC 2 variables are initialized or maintained automatically:

& is initialized to its own name (the value "&").

&0 is initialized to the first word of the command string that is passed to
the EXEC 2 interpreter. The first word may be delimited according to the
parsing rules of the host system. In CMS, &0 may be delimited by a blank
or a parenthesis. Normally, this variable has the same value as
&FILENAME, but it may be different if the EXEC 2 file is invoked via a
synonym.

1&1 &2 ...

&1 &2 ... are the EXEC 2 arguments. They are initialized to the arguments
"argl", "arg2", ... that are passed to the EXEC 2 file. EXEC 2 identifies
individual arguments passed to it by the presence of a blank character
which delimits each argument. The arguments are reset by the control
statement &ARGS and &READ ARGS. The arguments are temporarily
reset by invocation of user-defined subroutines and functions. EXEC 2
arguments beyond the last that is set have an apparent null value, and they
cannot be set explicitly (for example, with an assignment statement). (See
the description of &N and &INDEX.)

Chapter 2: EXEC 2 Statements 5

EXEC 2 Statements

I &ARGSTR I NG

&ARGSTRING is initialized to the argument string that is passed to the
EXEC 2 file. It is treated as a single literal string starting with the
character immediately following the blank used to delimit &0 (see above),
or if the delimiter is a character rather than a blank, &ARGSTRING starts
with the delimiter character itself. It includes any leading, embedded, or
trailing blanks. The initial value includes the EXEC 2 arguments &1 &2 ... ,
but &ARGSTRING is not affected by changes to them.

I &BLANK

&BLANK is a word that has the value of a single blank.

I &CMDSTR I NG

&CMDSTRING is initialized to the untranslated command string that is
passed to the EXEC 2 file. It is treated as a single literal string starting
with the first word of the command string and including any embedded or
trailing blanks.

I &COMLINE

&COMLINE is maintained as the number of the line from which the last
command (or subcommand) was issued from the EXEC 2 file. &COMLINE
is initialized to zero.

I &DATE

&DATE is the true date on the primary meridian (Greenwich Mean Time
(GMT» in the form YY/MM/DD. &DATE is evaluated when the statement
containing it is executed. (See the description of &TIME.)

I &DEPTH

&DEPTH is maintained as the number of user-defined functions and
subroutine invocations to which return has not yet been made.

I &FILEMODE

&FILEMODE is initialized to the filemode (third qualifier) of the EXEC 2
file.

6 VM/SP EXEC 2 Reference

EXEC 2 Statements
t

I &FILENAME

&FILENAME is initialized to the filenarpe (first qualifier) of the EXEC 2
file.

I &FILETYPE

&FILETYPE is initialized to the filetype (second qualifier) of the EXEC 2
file (for example, "EXEC").

I &FROM

&FROM is maintained as the number of the line in the EXEC 2 file from
which the last &GOTO statement was executed. &FROM is initialized to
zero.

I &LINE
~LINENUM

&LINE or &LINENUM is maintained as the number of the current line in
the EXEC 2 file. If &LINE or &LINENUM is the target of an assignment
statement, the value of the other variable is not affected.

I &L I NK

&LINK is maintained as the number of the line from which the currently
executing user-defined function or subroutine was invoked. &LINK has the
value 0 if there are no user-defined functions or subroutines in execution.

&N or &INDEX is maintained as the number of EXEC 2 arguments that are
set. Initially, this is the number of arguments that are passed to the EXEC
2 file. It is reset if &ARGS or &READ ARGS is executed. &N or &INDEX
is temporarily reset by invocation of user-defined subroutines and functions.
(See the description of &1 &2) If &N or &INDEX is the target of an
assignment statement, the value of the other variable is not affected.

Chapter 2: EXEC 2 Statements 7

EXEC 2 Statements

I &RC &RETCODE

&RC or &RETCODE is maintained as the return code from the last
command (or subcommand) issued from the EXEC 2 file. &RC. and
&RETCODE are initialized to zero. If &RC or &RETCODE is the target of
an assignment statement, the value of the other variable is not affected.

I &TIME

&TIME is the true time-of-day on the primary meridian (Greenwich Mean
Time (GMT» in the form HH:MM:SS. &TIME is evaluated when the
statement containing it is executed. (See the description of &DATE.)

Control Statements

Control statements begin with a control word, which is usually followed by
one or more additional words. The following are the control words and the
rules for their use.

8 VM/SP EXEC 2 Reference

&ARGS
-'4, AM

I &ARGS I [word 1 [word2...]]

Assign "word1", "word2", ... , to the arguments. &1 &2 ... , and discard any
other EXEC 2 arguments that were previously set. The number of
arguments now set (&N or &INDEX) is the number of words given in the
&ARGS statement. This number may be less than or greater than the
number of arguments previously set.

For example:

&TRACE
&TYPE &1 &2 &3 &4
&TYPE THE NUMBER OF ARGUMENTS SET IS: &N
&ARGS FOUR FIVE SIX SEVEN
&TYPE &1 &2 &3 &4
&TYPE NOW, THE NUMBER OF ARGUMENTS SET IS: &N
&EXIT

Suppose the name of the above EXEC is NUMBER. If you issue the
following command:

NUMBER RED WHITE BLUE

the result of the EXEC is:

RED WHITE BLUE
THE NUMBER OF ARGUMENTS SET IS: 3
FOUR FIVE SIX SEVEN
NOW, THE NUMBER OF ARGUMENTS SET IS: 4

(See the description of &READ ARGS; also see the predefined variables &N,
&INDEX, and &1 &2)

Chapter 2: EXEC 2 Statements 9

&BEGPRINT, &BEGTYPE

&BEGPRINT

[label [~]l &BEGTYPE

line!
line2
...
.. .
. . .

Print at the console "line1", "line2", ... without removing surplus blanks or
replacing any EXEC 2 variables. Columns 1-k are printed if "k" is
specified. If the truncation column, "k", is not given, or is· given as "*", the
lines are not truncated by the EXEC 2 interpreter. (CMS truncates at 130
characters. See Appendix B, "EXEC 2 in CMS" on page 77.)

The number of lines to be printed is determined by the first argument,. as
follows:

n
1

*

Print the given number of lines; or if there are insufficient lines in the
file, print all lines to the end of the file.

Print all lines to the end of the file.

label
Print down to, but not including, a line that contains the given label
and nothing else; or if such a line does not exist, print all lines to the
end of the file. The label must be wholly contained within the columns
that would otherwise be printed, and it must be the only word within
these columns. The first character of a label must be a hyphen.

After the lines have been printed, execution continues on the line following
the last one printed. If printing is terminated by a label, execution
continues on the line following the label.

These and &BEGSTACK are the only statements that occupy more than
one line. They are also the only statements that permit the lines of an
EXEC 2 file to be handled literally, that is, without removing surplus
blanks or replacing EXEC 2 variables.

For example:

&TRACE
&BEGPRINT -END
ROSES ARE RED
VIOLETS ARE BLUE
-END
&EXIT

10 VM/SP EXEC 2 Reference

A

The result of the above EXEC is:

ROSES ARE RED
VIOLETS ARE BLUE

&BEGPRINT, &BEGTVPE

(See the description and example of &PRINT and &TYPE.)

Chapter 2: EXEC 2 Statements 11

&BEGSTACK

&BEGSTACK

[iabel [~ [mg]]]

linel
line2
· ..
· ..
· ..

Place in the program stack "linel", "line2", ... without removing surplus
blanks or replacing any EXEC 2 variables. Columns l-k are stacked if "k"
is specified. If the truncation column is not given or is given as "*", the
lines are not truncated. The lines are by default stacked "FIFO" (first in,
first out), but this can be changed by specifying "LIFO" (last in, first out)
as the third argument.

The number of lines to be stacked is determined by the first argument, as
follows:

n
1

*

Stack the given number of lines; or if there are insufficient lines in
the file, stack all lines to the end of the file.

Stack all lines to the end of the file.

label
Stack down to, but not including, a line that contains the given label
and nothing else; or if such a line does not exist, stack all lines to the
end of the file. The label must be wholly contained within the
columns which would otherwise be stacked, and it must be the only
word within these columns. The first character of a label must be a
hyphen.

After the lines have been stacked, execution continues on the line following
the last one stacked. If stacking is terminated by a label, execution
continues on the line following the label.

This, &BEGPRINT, and &BEGTYPE are the only statements that occupy
more than one line. They are also the only statements that permit the lines
of an EXEC 2 file to be handled literally, that is, without removing surplus
blanks or replacing EXEC 2 variables.

12 VM/SP EXEC 2 Reference

I
~-

For example:

&TRACE
&BEGSTACK 2 * LIFO
THE FIRST COLOR IS RED
THE SECOND COLOR IS BLUE
&READ STRING &ONE
&READ STRING &TWO
&TYPE &ONE
&TYPE &TWO
&EXIT

The result of the above EXEC is:

THE SECOND COLOR IS BLUE
THE FIRST COLOR IS RED

&BEGSTACK

The last line stacked is the first line read since the LIFO option was
specified.

(See the description of &STACK.)

Chapter 2: EXEC 2 Statements 13

&BUFFER

I &BUFFER

Discard the lookaside buffer (if any) together with its contents. Then, if
"n" is given and is positive, or if "*,, is given, create a new lookaside buffer.
If "n" is given and is zero, a new lookaside buffer is not created. The value
of "n" must not be negative. (In CMS, the initial buffer size is 32 lines. See
Appendix B, "EXEC 2 in CMS" on page 77.)

The lookaside buffer is a device that enables the EXEC 2 interpreter to
remember the location of labels that have already been referenced and to
keep a private copy of some of the more recently executed lines of the file.
The look aside buffer can thereby improve the performance of EXEC 2 loops,
where the same labels and lines are used repeatedly.

If "n" is given, it defines the maximum number of lines that can be kept in
the buffer. If "*,, is given, there is no fixed limit. For maximum effect, the
buffer should be capable of keeping the longest loop in its entirety and
should be set up before entering the loop. An even larger buffer may be
advantageous if user-defined functions or subroutines are invoked from
within a loop.

A lookaside buffer should not be used if the EXEC 2 file is subject to
modification during execution. Ifit is used, the results are unpredictable.

14 VMjSP EXEC 2 Reference

\ '-- .

I

~-

&CALL
line-number [argl
label

&CALL

[arg2 ...]]

Create a new generation of the EXEC 2 arguments &1 &2 ... , initialized to
"arg1", "arg2", ... , and invoke the specified subroutine by transferring
control to the given line or to the line starting with the given label.
Control is returned to the line following the &CALL statement via the
&RETURN statement.

The new generation of arguments supersedes the arguments that were
previously set. The previous value of the arguments and the number of
arguments previously set are temporarily inaccessible. On entry to the
subroutine, the value of the arguments and the number of arguments set
are determined by the arguments specified in the &CALL statement. Their
values and the number of arguments set can be changed inside the
subroutine in the same way as outside - by assignment or with the &ARGS
or &READ statement.

On return, the new generation of arguments is discarded, and the previous
values and the number of arguments previously set are again accessible.
Execution resumes on the line following the &CALL statement.

The first character of a label must be a hyphen. The search for a label
starts on the line following the &CALL statement. If a match is not found
before the end of the file, the search resumes at the top. If a matching label
does not exist, execution stops abnormally with an error message.

Suppose the following EXEC is named A VG:

&TRACE
&TYPE THE INITIAL VALUES OF THE ARGUMENTS ARE:
&DUMP ARGS
&CALL -AVG &2 &1
&TYPE THE AVERAGE IS: &ANSWER
&EXIT
-AVG
&TYPE THE VALUES OF THE ARGUMENTS IN THE -AVG SUBROUTINE ARE:
&DUMP ARGS
&SUM = &1 + &2
&ANSWER = &DIV OF &SUM 2
&RETURN
&EXIT

If you issue the command

AVG 76 98

Chapter 2: EXEC 2 Statements 15

&CALL

the result is:

THE INITIAL VALUES OF THE ARGUMENTS ARE:
&1 = 76
&2 = 98
THE VALUES OF THE ARGUMENTS IN THE -AVG SUBROUTINE ARE:
&1 = 98
&2 = 76
THE AVERAGE IS: 87

Initially, &1 = 76 and &2 = 98. The &CALL statement transfers control to
the label -AVG and passes the arguments 98 and 76. (Notice that the
arguments in this example are passed to the -AVG subroutine in a different
order than they were received.) Now, in the -AVG routine, &1 = 98 and &2
= 76.

The &RETURN statement then transfers control to the line following the
&CALL statement. The initial values of &1 and &2 are accessible again -
&1 = 76 and &2 = 98.

(See the description of &RETURN; also see "User-Defined Functions" on
page 57.)

16 VM/SP EXEC 2 Reference

\

'--

MM'

&CASE

I &CASE

Translate to uppercase "U" any lowercase alphabetic characters that are
read in response to subsequent &READ statements, or do not translate
them (allow mixed "M" cases), or (if no argument is given) do not change
the setting. Initially, the translation is set to "U".

For example:

&TRACE
&TYPE ENTER YOUR NAME:
&CASE M
&READ VARS &NAME
&TYPE &NAME
&EXIT

The above EXEC prompts you to enter your name. If you enter your name
using uppercase and lowercase characters, such as:

Sue

the result is:

Sue

However, if the "&CASE M" control statement is removed, the result is:

SUE

(See the description of &UPPER.)

Chapter 2: EXEC 2 Statements 17

&COMMAND

I &COMMAND I wordl [word2. ~.]

Issue to the host system (CMS) the command comprising of "wordl",
"word2", ... , separated from each other by a single blank. When the
command is finished, its return code is obtainable from the predefined
EXEC 2 variables &RC and &RETCODE. The &COMMAND statement
normally has the same effect as:

wordl word2

There are, however, the following differences:

• A command, the first word of which begins with an asterisk, a hyphen,
or an ampersand can be issued by specifying it as an argument of
&COMMAND; otherwise, it is interpreted as a comment, a labeled
statement, an assignment, or a control statement. (Note, however, that
these characters are not acceptable to CMS command mode. See
Appendix B, "EXEC 2 in CMS" on page 77.)

• &COMMAND overrides any presumption of a subcommand environment
and always issues the command to the host system (CMS).

(See the description of &SUBCOMMAND and &PRESUME; see the
predefined variables &COMLINE, &RC, and &RETCODE. Refer to
"EXECCOMM - Sharing EXEC 2 Variables with Assembler Language
Programs" on page 85 for possible side-effects of command execution.)

18 VM/SP EXEC 2 Reference

i
"'--

&DUMP
ME ;4 * , -~-i!AU "M

I &DUMP l ARGS
VAR[S] [varl [var2 ...]]

Print lines at the console in the form:

var = VALUE

where var is &1, &2, ... or "var1", "var2",

ARGS
Print one line for each EXEC 2 argument &1 &2 ... that is set.

VAR[S]
Print one line for each of the variables "var1", "var2",

The lines are truncated if their length exceeds the implementation limit for
printed output. (In CMS, the line is truncated if its length exceeds 130. See
Appendix B, "EXEC 2 in CMS" on page 77.)

For example:

&TRACE
&ARGS ROSES ARE RED
&TYPE &1 &2 &3
&ONE = &1
&TWO = &2
&THREE = &3
&DUMP ARGS
&DUMP VARS &ONE &TWO &THREE
&EXIT

The result of the above EXEC is:

ROSES ARE RED
&1 ROSES
&2 = ARE
&3 = RED
&ONE ROSES
&TWO ARE
&THREE = RED

Chapter 2: EXEC 2 Statements 19

&ERROR
A4i4 • 9&' @

I &ERROR I act; on

Set the action which, until further notice, is to be invoked automatically on
return from any commands (and subcommands) that yield an error return
code (a return code that is not zero). The action may be any executable
statement, including a null statement.

The action is not inspected at the time the &ERROR statement is executed.
Instead, the search for and replacement of any EXEC 2 variables takes
place each time the action is executed. The action is executed as if it
occupied the same line in the EXEC 2 file as the command (or subcommand)
that yielded the nonzero return code. The &ERROR control statement must
come before any statement that may give an error return code. If it does
not, the action specified will not occur.

What happens after the action depends upon the type and consequences of
the action. If it is itself a command (or subcommand) which also yields an
error return code, execution stops abnormally with an error message;
otherwise (unless the action causes a transfer of control), execution
resumes on the line following the command that caused the action to be
invoked.

Initially, the error action is set to the null statement.

Suppose the name of the following EXEC is MEMOLIST:

&TRACE
&ERROR &TYPE THE RETURN CODE IS &RC
CMDCALL LISTFILE &1 MEMO A
&EXIT

If you want to see if the file POEM MEMO exists on your A disk, issue the
command:

MEMOLIST POEM

If POEM MEMO does not exist, you will receive the message:

FILE NOT FOUND
THE RETURN CODE IS 28

However, if the file POEM MEMO does exist, you will receive the following
message:

POEM MEMO Al

20 VM/SP EXEC 2 Reference

'-.

I

~--

&EXIT
A IMW -

I &EXIT [&eturn-COde [comment]]

Stop execution of the EXEC 2 file, and yield the given return code. If the
return code is specified, it must be numeric. If the given return code is not
within the range of return codes acceptable to the host system, the result is
defined by the implementation. (In CMS, the range is -2,147,483,648 to
+ 2,147,483,647. See Appendix B, "EXEC 2 in CMS" on page 77.)

For example:

&TRACE
&SUM = a
&TYPE ENTER A NUMBER:
&READ ARGS
&IF &1 < a &EXIT 100
&SUM = &SUM + &1
&TYPE THE SUM IS: &SUM
&EXIT

The above EXEC prompts you to enter a number. If a negative number is
entered, the &IF statement is true. Therefore, the &EXIT control statement
is executed and the result is:

R(00100)i

If you enter the number 12, the result is:

THE SUM IS: 12

Chapter 2: EXEC 2 Statements 21

&GOTO

I &GOTO 11; ne-number
label

Transfer control to the given line or to the line starting with "label".

The first character of a label must be a hyphen. The search for a label
starts on the line following the &GOTO statement. Then, if a match is not
found before the end of the file, the search resumes at the top. If a
matching label does not exist, execution stops abnormally with an error
message.

For example:

&TRACE
&P = 1
&SUM = 0
-START &IF &P > 3 &GOTO -END
&TYPE ENTER A NUMBER:
&READ ARGS
&IF &1 < 0 &EXIT 100
&SUM = &SUM + &1
&P = &P + 1
&GOTO -START
-END
&TYPE THE SUM IS: &SUM
&EXIT

At the first &IF statement, the EXEC 2 interpreter compares the variable P
to 3. (&P counts how many numbers have been entered.) If the comparison
is true, then the &GOTO statement is executed. If the comparison is false,
the &GOTO statement is ignored and execution continues with the next
statement.

If you enter the numbers 10, 500, and 100 when you are prompted, the result
is:

THE SUM IS: 610

(See the description of &SKIP and &CALL; also see the predefined variable
&FROM.)

22 VM/SP EXEC 2 Reference

\ '-- /

I

"'--- .

&IF

&IF ~ .
word! =IEQ word2 executable-stmt

""=INE
<I[T
<=I"">ILEING
>IGT
>=I""<IGEINL

If the condition is satisfied, execute the given executable statement;
otherwise, proceed to the next statement. The comparative may be given in
any of the forms shown (for example, "=" or "EQ"). If "word2" is absent, a
null string is used in its stead. The comparison is numeric if both
comparatives are numeric; otherwise, both comparatives are treated as
character strings, and the shorter one is (for the purpose of the comparison)
padded on the right with blanks.

For example:

&TRACE
&P = 1
&SUM = 0
-START &IF &P > 3 &GOTO -END
&TYPE ENTER A NUMBER:
&READ ARGS
&IF &1 < 0 &EXIT 100
&SUM = &SUM + &1
&P = &P + 1
&GOTO -START
-END
&TYPE THE SUM IS: &SUM
&EXIT

At the first &IF statement, the EXEC 2 interpreter compares the variable P
to 3. (&P counts how many numbers have been entered.) If the comparison
is true, then the &GOTO statement is executed. If the comparison is false,
the &GOTO statement is ignored and execution continues with the next
statement.

If you enter the numbers 10, 500, and 100 when you are prompted, the result
is:

THE SUM IS: 610

Chapter 2: EXEC 2 Statements 23

&LOOP

&LOOP n m
1 abe 1 *

WHILE condition
UNTIL condition

Loop through the following "n" lines, or loop down to (and including) the
first line starting with "label". Execute the loop "m" times, indefinitely
"*", or "WHILE" (or "UNTIL") the given ~ondition is satisfied.

The values of "n" and "m" (if given) must be numeric; also "n" must be
positive and "m" must not be negative. If "m" is zero, the entire loop is
ignored.

The first character of the label (if given) must be a hyphen. The label must
be attached as the first word of the line to an executable statement that lies
below the &LOOP statement.

The form of the condition (if given) is similar to that of the &IF statement
previously described, namely:

wordl =IEQ
-,=INE
<llT
<=I-'>ILEING
>IGT
>=I-'<IGEINL

word2 comment

The condition is evaluated before each iteration of the loop, including the
first. If "word2" is absent, a null string is used in its stead. The
comparison is numeric if both comparatives are numeric; otherwise, both
comparatives are treated as character strings, and the shorter one is (for
the purpose of the comparison) padded on the right with blanks.

If the condition is invalid, execution stops abnormally with an error
message that identifies the line containing the &LOOP statement.

For example:

&TRACE
&SUM = a
&LOOP -END 3
&TYPE ENTER A NUMBER:
&READ ARGS
&IF &1 < a &EXIT 100
&SUM = &SUM + &1
-END
&TYPE THE SUM IS: &SUM
&EXIT

This &LOOP statement tells the EXEC 2 interpreter to execute the next five
lines (up to and including the line beginning with the -END label) three
times.

24 VM/SP EXEC 2 Reference

I

~.

&LOOP

If you enter the numbers 10, 500, and 100 when you are prompted, the result
is:

THE SUM IS: 610

Chapter 2: EXEC 2 Statements 25

&PRESUME

&PRESUME

[
&COMMAND
&SUBCOMMAND env; ronment]

Presume that any executable statements that have the syntax of a command
(that is, the first word of the statement does not begin with an ampersand)
are to be issued to the host system (CMS), or presume that they are to be
issued to the given subcommand environment.

The name of the subcommand environment is not checked when the
&PRESUME statement is executed. If the environment does not exist when
a subcommand is subsequently issued, the only effect is to set a special
return code. (In CMS, it is -3.)

The &PRESUME control statement with no arguments is equivalent to
"&PRESUME &COMMAND".

By convention, the presumption is initially set to "&COMMAND" if the
EXEC 2 file has a filetype of EXEC; otherwise, it is set to
"&SUBCOMMAND filetype", where "filetype" is the filetype of the EXEC 2
file.

The presumption has no effect on &COMMAND or &SUBCOMMAND
statements since they do not have the syntax of a command.

(See the description of &COMMAND and &SUBCOMMAND.)

26 VM/SP EXEC 2 Reference

,/

I

"-

I &PRINT &TYPE [wordl [WOrd2 ...]]

&PRINT, &TYPE

Print at the console a line containing "word1", "word2", ... , or print a blank
line if there are no words given. Each word is separated from each other by
a single blank. The line is truncated if necessary. (In CMS, the line is
truncated if its length exceeds 130. See Appendix B, "EXEC 2 in CMS" on
page 77.)

Unlike &BEGPRINT and &BEGTYPE, surplus blanks are removed and the
words to be printed are searched for EXEC 2 variables. Then these
variables are replaced by their values.

For example:

&TRACE
&COLORl = RED
&COLOR2 = BLUE
&TYPE ROSES ARE &COLORl
&PRINT VIOLETS ARE &COLOR2
&EXIT

The result of the above EXEC is:

ROSES ARE RED
VIOLETS ARE BLUE

(See the description of &BEGPRINT and &BEGTYPE.)

Chapter 2: EXEC 2 Statements 27

&READ

&READ r" .
n
1
*
ARGS
STRING var

VAR [SJ [V~rl [var2 ...]]
[* ...]

Read from the console stack (program stack and terminal input buffer), or
read from the console (otherwise). Then execute or assign what is read
according to the following rules:

n
1

*

ARGS

Read "n" lines, read "I" line, or read an indefinite number of lines "*".
Execute the lines individually as if they had been part of the EXEC 2
file. Reading stops (and normal execution resumes) when "n" lines are
read, or when a &BEGPRINT, &BEGTYPE, &BEGSTACK, &EXIT,
&GOTO, &LOOP, or &SKIP statement is encountered. Reading is
suspended if a user-defined function or subroutine is invoked and is
continued when control returns from that invocation.

If a "&READ n" statement is read in response to a previous "&READ
n" statement, the new value of n is added to the number of lines that
remain from the previous statement. Reading stops if the number
remaining becomes zero or less. The value of "n" may be negative.

If a "&READ *" statement is read in response to a previous "&READ
n" or "&READ *" statement, or if a "&READ n" statement is read in
response to a previous "&READ *" statement, an indefinite number of
lines remain to be read.

Read a single line, assign the words in it to the EXEC 2 arguments &1
&2 ... , and discard any other EXEC 2 arguments that were previously
set. The number of arguments now set is the number of words in the
line, which may be less or greater than the number of arguments
previously set. (See the description of &ARGS, and the predefined
variables &N, &INDEX, and &1 &2 ...)

STRING

VARS

Read a single line and assign it as a literal string to "var". Surplus
blanks are not removed, and EXEC 2 variables are not replaced.

Read a single line and assign the words in it to the variables "varI",
"var2", If the number of words in the line read exceeds the number
of variables given in the statement, the surplus words are discarded. ,/
If the number of variables exceeds the number of words, the remaining
variables are set to the null string. Therefore, "&READ VARS"

28 VM/SP EXEC 2 Reference

&READ

(without any variables) can be used to read a line and discard it.
Asterisks (*) may be used in lieu of variable names to indicate that the
corresponding words in the line read are to be discarded.

In the case of &READ ARGS and &READ V ARS ... , the line that is read is
scanned for words (leading, trailing, and other surplus blanks are
discarded), but the words are treated as literals (there is no replacement of
EXEC 2 variables).

The names of the variables in &READ V ARS and &READ STRING are
treated in the same way as the variables on the left-hand sid~ of an
assignment statement. (See "Name Substitution" on page59~) A variable
of the form &j, where "j" is an unsigned integer without leading zeros,
cannot be set with &READ VARS or &READ STRING if "j" exceeds the
number of EXEC 2 arguments that are currently set.

Lines that are read mayor may not be translated to uppercase. The case is
determined by the translation mode that is set by the &CASE control
statement. The &CASE control statement is issued prior to the &READ
control statement. (See the description of &CASE.) However, if no case is
specified, the lines read in default to uppercase.

Lines that are read are not truncated by the EXEC 2 interpreter; they are
unaffected by the setting of &TRUNC. (See the description of &TRUNC.)

(In CMS, the maximum length of a line read from the console is 130, and
the maximum length of a line read from the program stack is 255. See
Appendix B, "EXEC 2 in CMS" on page 77,)

Suppose you have the following EXEC named QUALIFY:

&TRACE
&TYPE ENTER YOUR NAME PLEASE (FIRST AND LAST):
&READ STRING &NAME
&TYPE ENTER YOUR SOCIAL SECURITY NUMBER PLEASE:
&READ VARS &NUM
&TYPE NOW, TELL US YOUR AGE:
&READ ARGS
&IF &1 < 21 &TYPE &NUM ---- &NAME IS TOO YOUNG
&IF &1 >= 21 &TYPE &NUM ---- &NAME IS OLD ENOUGH
&EXIT

First you are prompted to enter your name:

SUE SMITH

Then, the &READ STRING &NAME statement reads the line from the
console and assigns the literal string to &NAME. Now, &NAME equals
"SUE SMITH". Next you need to enter your social security number

111-11-1111

The next &READ statement assigns the word, 111-11-1111, to the variable
&NUM.

Chapter 2: EXEC 2 Statements 29

&READ

If you enter 24 as your age, the EXEC 2 interpreter assigns 24 to the
variable &1. Since &1 is greater than or equal to 21, the result of this
EXEC, with the above data, is:

111-11-1111 ---- SUE SMITH IS OLD ENOUGH

30 VM/SP EXEC 2 Reference

-

&RETURN

I &RETURN [word] [comment]

Return control to the most recent subroutine invocation (&CALL
statement) to which return has not yet been made; or return "word" (or the
null string) to the most recent user-defined function invocation to which a
value has not yet been returned.

The generation of EXEC 2 arguments that was created at subroutine
invocation is discarded. The previous values and the number of arguments
previously set become accessible again. The number of lines (if any) that
remain to be read from the console stack or console in response to a
previous "&READ n" statement is reset to the number outstanding at the
time of the invocation. Any loops that have been left opened in the
subroutine or function are aborted; and any loops that were open at the
time of invocation are reinstated.

If there is both a subroutine invocation and a function invocation to which
return has not yet been made, return is to the more recent point of
invocation. If there is neither, execution stops abnormally with an error
message.

(See the description and example of &CALL; also see "User-Defined
Functions" on page 57.)

Chapter 2: EXEC 2 Statements 31

&SKIP

I &SKIP

If n > 0, skip the next "n" lines of the EXEC 2 file. If n < 0, transfer
control to the line that is "-n" lines above the current line. If n = 0,
transfer control to the next line.

If an attempt is made to transfer control to a line number that is zero or
negative, execution stops abnormally with an error message. If control is
transferred to a line below the last in the EXEC 2 file, execution stops
normally with a return code of zero.

For example:

&TRACE
&SKIP 3
&TYPE THREE
&TYPE FOUR
&EXIT
&TYPE ONE
&TYPE TWO
&SKIP -5
&EXIT

The result of the above EXEC is:

ONE
TWO
THREE
FOUR

(See the description of &GOTO.)

32 VM/SP EXEC 2 Reference

& H#-4

I

"----

&STACK
m

&STACK

[[F I Fa]
LIFO

[word! [word2 ...]]]

Place a line in the program stack containing "wordl", "word2", ... , or stack
a null line if there are no words. Each word is separated from each other
by a single blank. (In CMS, stacked lines are truncated at 255. See
Appendix B, "EXEC 2 in CMS" on page 77.)

The line is by default stacked "FIFO" (first in, first out), but this can be
changed by giving "LIFO" (last in, first out) as the first argument. If
"wordl" is itself FIFO or LIFO, then it must be preceded by the FIFO or
LIFO stacking choice.

Unlike &BEGSTACK, surplus blanks are removed and the words to be
stacked are searched for EXEC 2 variables. Then these variables are
replaced by their values.

For example:

&TRACE
&COLORl = RED
&COLOR2 = BLUE
&STACK LIFO THE FIRST COLOR IS &COLORl
&STACK LIFO THE SECOND COLOR IS &COLOR2
&READ STRING &ONE
&READ STRING &TWO
&TYPE &ONE
&TYPE &TWO
&EXIT

Since the data is stacked LIFO (last-in, first-out) the result is:

THE SECOND COLOR IS BLUE
THE FIRST COLOR IS RED

(See the description of &BEGSTACK.)

Chapter 2: EXEC 2 Statements 33

&SUBCOMMAND

I&SUBCOMMANOI environment [wordl [word2 ...]]

Issue to the given subcommand environment the subcommand comprising of
"wordl", "word2", Each word is separated from each other by a single
blank. When the subcommand is finished, its return code is obtainable
from the predefined EXEC 2 variable &RC.

If the given environment does not exist, the only effect is to set a special
return code. (In CMS, it is -3.)

Normally, it is convenient to "presume" the environment so that this
control statement does not have to be issued for every subcommand (see the
description of &PRESUME, above). The explicit use of the
&SUBCOMMAND statement does, however, allow sub commands that start
with an asterisk, a hyphen, or an ampersand to be issued. (Compare with
the description of &COMMAND.) Also note that the statement
"&SUBCOMMAND environment" (without any additional arguments) is the
only way of issuing a null subcommand.

(See the description of &COMMAND; also see the predefined variables
&COMLINE, &RC, and &RETCODE. Refer to "EXECCOMM - Sharing
EXEC 2 Variables with Assembler Language Programs" on page 83 for
possible side-effects of command execution.)

34 VM/SP EXEC 2 Reference

&TRACE

&TRACE

[

ON
[Output_acti on 11 ERR

ALL
OFF
*

where "output-action", if given, is:

&PRINT [wordl [word2 ...]]
or:

& COMMAND wordl [word2 ...]
or:

& SUBCOMMAND environment [wordl [word2 ...]]

Trace commands (and subcommands) that are issued from the EXEC 2 file;
or trace commands (and subcommands) that yield an error return code (a
return code that is not zero); or trace all executable statements; or do not
trace any statements; or (if "*,, is given) do not change the setting. The
setting remains in effect until reset. The initial setting is OFF.

Trace information can be printed at the console, or passed to a command
(or subcommand) for processing. The trace destination is determined by the
output action, as described below.

Suppose you have the following EXEC named TEST EXEC:

&TRACE
CP NMES
CP Q USERS
&TYPE HELLO
&EXIT

ON

ERR

When tracing is ON, each command is traced before it is executed.
Subsequently, the return code is traced if it is not zero. The return
code is traced on a line by itself in the form" + + + E(nnn) + + +".

The result of the above EXEC with "&TRACE ON" specified is:

CP NMES
+++ E(l) +++
CP Q USERS
096 USERS, 010 DIALED, 000 NET
HELLO

When ERR is in effect, commands that yield a nonzero return code are
traced after execution, followed by the return code. The return code
is traced on a line by itself in the form "+ + + E(nnn) + + +".

Chapter 2: EXEC 2 Statements 35

&TRACE
•

ALL

OFF

*

%*)_.;&11 FAA NMiM+'i N+I'

The result of the above EXEC with "&TRACE ERR" specified is:

CP NMES
+++ E(l) +++
096 USERS, 010 DIALED, 000 NET
HELLO

When ALL is in effect, every executable statement is traced before it
is executed, and every executable statement is preceded by its line
number. Nonzero return codes are traced (as for ON and ERR). Loop
conditions and lines that are read from the console stack or console
are also traced. The statement following an &IF clause, the action
given in an &ERROR statement, and the conditional phrase in a
&LOOP statement are traced as literal words (that is, without
replacement of any variables). These statements and phrases are
traced again, with the normal replacement of variables, at the time of
their execution. A statement that is executed as a consequence of a
satisfied &IF clause is preceded in the trace by an ellipsis. Words that
exceed 24 characters in length are truncated in the trace at 21
characters and followed by an ellipsis. Statements that exceed 80
characters in length (with the line number and preceding ellipsis, if
present) are truncated in the trace at an integral number of words and
followed by an ellipsis.

The result of the above EXEC with "&TRACE ALL" specified is:

2. CP NMES
+++ E(l) +++
3. CP Q USERS
096 USERS, 010 DIALED, 000 NET
4. &TYPE HELLO
HELLO
5. &EXIT

Do not trace any statements. This is the initial setting.

The result of the above EXEC with "&TRACE OFF" specified is:

096 USERS, 010 DIALED, 000 NET
HELLO

Do not change the setting. "&TRACE" without arguments is
equivalent to "&TRACE *".

output-action

36 VM/SP EXEC 2 Reference

The output action gives the destination of the tracing information.
The words in it are searched in the normal way for the names of
EXEC 2 variables. These variables are replaced by their values, and
the resulting sequence of words is set aside. When a trace line is
produced, it is prefixed with the sequence of words, and the resulting
EXEC 2 statement is executed without tracing. (See the description of
&PRINT, &TYPE, &COMMAND, and &SUBCOMMAND). If the

I

"'---

&TRACE
ee ;;PifMi*@ i ;'riM

return code from the command or subcommand is nonzero, execution
stops abnormally with an error message.

Initially the output action is set to "&PRINT", which causes the trace
to be printed at the console. If the output action is not given, the
previous action remains in effect. Let's change the output-action of
the &TRACE statement in the above TEST EXEC so the trace
information is printed somewhere other than at the console. If the
&TRACE statement is changed to:

&TRACE ALL &COMMAND EXECIO 1 DISKW INFO SCRIPT A (STRING

the trace information is written to the CMS file INFO SCRIPT A. The
INFO SCRIPT A file contains:

3. CP NMES
+++ E(l) +++
4. CP Q USERS
5. &TYPE HELLO
6. &EXIT

See VMj SP CMS Command Reference for details on the EXECIO
command.

Chapter 2: EXEC 2 Statements 37

&TRUNC

I &TRUNC I [~ [comment]]

Set the truncation column for EXEC 2 statements to "k", or set it to the
maximum value "*", or (if no argument is given) do not change it. Initially,
it is set to the maximum value. (In CMS, the maximum value is 255. See
Appendix B, "EXEC 2 in CMS" on page 77.)

This setting affects only the reading of EXEC 2 statements from a file and
the search for labels. &TRUNC does not affect lines read from the console
(these lines are never truncated) or lines appearing within a &BEGPRINT,
&BEGTYPE, or &BEGSTACK statement (these lines are not truncated
unless the statements specify a truncation column). This setting does not
affect the length to which a statement can grow during or after replacement
of EXEC 2 variables.

Changing the truncation column has the side-effect of purging the lookaside
buffer (if there is one), and may consequently degrade performance if done
within a loop.

Suppose you had the following EXEC:

&TRACE
&TRUNC 19
&TYPE TYPE YOUR NAME:
&READ STRING &NAME
&TYPE YOUR NAME IS:
&TYPE &NAME
&TYPE
&BEGPRINT
THIS IS AN EXAMPLE OF THE TRUNC STATEMENT
&EXIT

The line "&TYPE TYPE YOUR NAME:" is truncated at column 19 and
appears on the screen as:

TYPE YOUR NAM

However, if you enter the name:

MARGARET SMITHSONIAN

the result is:

YOUR NAME IS:
MARGARET SMITHSONIAN

THIS IS AN EXAMPLE OF THE TRUNC STATEMENT

The lines read from the console are not truncated. Also, the message
following the &BEGPRINT statement is not truncated.

(See the description of &BUFFER.)

38 VM/SP EXEC 2 Reference

&UPPER

I &UPPER I ARGS
VAR[S] [varl [var2 ...]]

Translate to uppercase any lowercase alphabetic characters in the values of
the EXEC 2 arguments &1 &2 ... , or translate to uppercase any lowercase
alphabetic characters in the values of "var1", "var2",

For example:

&TRACE
&TYPE ENTER YOUR FIRST NAME:
&CASE M
&READ ARGS
&TYPE &1
&UPPER ARGS
&TYPE &1
&EXIT

The above EXEC prompts you to enter your name. Suppose you enter your
name as follows:

Sue

Because of the control statement "&CASE M", "Sue" is not translated to
uppercase. However, when the &UPPER ARGS statement is interpreted,
the value of &1 is translated to uppercase.

The result of the above EXEC is:

Sue
SUE

A variable of the form &j, where "j" is an unsigned integer without leading
zeros, cannot be translated with &UPPER VARS if "j" exceeds the number
of EXEC 2 arguments that are currently set.

(See the description of &CASE.)

Chapter 2: EXEC 2 Statements 39

EXEC 2 Statements

Predefined Functions

A predefined function can be invoked only in the last term on the
right-hand side of an assignment statement. The invocation takes the form:

function-name OF [argl [arg2 ...]]

The following are names of the predefined functions and the rules for their
use.

40 VMjSP EXEC 2 Reference

/'

&CONCATENATION OF, &CONCAT OF

&CONCATENATION OF
&CONCAT OF [wordl [word2 ...]]

Concatenates "word!", "word2", ... , into a single word, without intervening
blanks; or yields the null string if there are no words.

Example:

&A = **

&B = &CONCAT OF xx &A 45
&PRINT &B

This results in the printed line:

XX**45

Chapter 2: EXEC 2 Statements 41

&DATATYPE OF, &TYPE OF

I. &DATATYPE OF
&TYPE OF

Yields the value NUM if "word" represents a valid (signed or unsigned)
number; otherwise, yields the value CHAR.

Example:

&TRACE
&X = &DATATYPE OF -2
&Y = &TYPE OF 1
&Z = &DATATYPE OF 123HELLO

This sets &X to "NUM", & Y to "NUM", and &Z to "CHAR".

42 VM/SP EXEC 2 Reference

'''----

\
"---

I &DIVISION OF
.&DIVOF

I di vi dend

&DIVISION OF, &DIV OF

divisor

Yields a numeric value that results from dividing the dividend by the
divisor. Both the dividend and the divisor must be numeric and the divisor
must not be zero.

If the dividend and divisor are both positive, or if they are both negative,
the result is positive; if the dividend is positive and the divisor is negative,
or vice versa, the result is negative; if the dividend is zero, then the result
is zero.

In precise terms, the value is the integral part of the division of the
absolute value of the dividend by the absolute value of the divisor, or minus
this value if the dividend is not zero and the sign of the dividend differs
from that of the divisor.

Examples:

&W &DIV OF 7 2
&X &DIV OF -7 -2
&Y &DIV OF -7 2
&Z &DIV OF o -2

This sets &W to 3, &X to 3, &Y to -3, and &Z to O.

Chapter 2: EXEC 2 Statements 43

&LEFT OF

I &LEFT OF I word j

Yields a string of length "j" in which "word" is left-justified and either
padded with blanks or truncated on the right.

Example:

&TRACE
&X = &LEFT OF HELLO 3
&EXIT

This sets &X to "HEL".

(See the description of &RIGHT OF.)

44 VM/SP EXEC 2 Reference

•
&lENGTH OF

I &LENGTH OF I [word]

Yields a numeric value representing the length of the word (that is, the
number of characters in it); or yields zero if the word is absent.

Example:

&TRACE
&X = &LENGTH OF BOOKS
&EXIT

The value of &X is 5.

Chapter 2: EXEC 2 Statements 45

&LITERAL OF

I &LITERAL OF I [stri ngJ

Yields the literal string that begins with the character following the blank
that terminates "OF" and ends with the last nonblank character before or
at the truncation column. Any leading or embedded blanks are retained,
and the search for and replacement of any EXEC 2 variables that may
appear in the string is suppressed.

Example:

& = &LITERAL OF &X
&X = **
&PRINT & &X

This results in the printed line:

&X = **

(See the description of &STRING OF.)

46 VMjSP EXEC 2 Reference

&LOCATION OF

I &LOCATION OF I needle [haystack]

Searches "haystack" for the first occurrence of "needle", and yields a
number indicating its starting position, or yields zero if there is no
occurrence (or if the length of "needle" exceeds that of "haystack").

Example:

&X = &LOCATION OF ANN LIZANNE

This sets &X to 4.

(See the description of &PIECE OF, &SUBSTR OF, and &POSITION OF.)

Chapter 2: EXEC 2 Statements 47

&MULTIPLICATION OF, &MUL T OF

I
&MULTIPLICATION OF I

_ &MULT OF i j

Yields a numeric value representing the result of multiplying the given
words. There must be at least two words given (i and j), and each word
must be numeric (signed or unsigned).

Example:

&X = &MULT OF 4 5 6

This sets &X to 120.

48 VM/SP EXEC 2 Reference

A.

&PIECE OF, &SUBSTR OF
cMMf.¥ aWiN; "@iBm A 'MM'tiMilY .)Si@$ e_~;wwm;!W'A F

I&PIECE OF &SUBSTR OF

Extracts that piece of "word" that starts at character "i", with length "j";
or that starts at character "i" and runs to the end of the word "*".

The value of "i" (and "j" if given) must be numeric; also "i" must be
positive, and "j" must not be negative.

If the value of "i" exceeds the length of the word, the value of the function
is the null string. If "j" is given, but exceeds the remaining length of the
word, the remaining length is used instead.

Example:

&A = &PIECE OF ABCDE 2 3
&B = &PIECE OF ABCDE 2 999
&C = &PIECE OF ABCDE 33 2
&PRINT &A &B &C ***

This results in the printed line:

BCD BCDE ***

(See the description of &LOCATION OF.)

Chapter 2: EXEC 2 Statements 49

&POSITION OF

I &POSITION OF I word [wordl [word2...]]

Compares "word" with "wordl", "word2", ... , looking for a match, and yields
a numeric value representing the position of the, first matching word, or
yields zero if "word" does not match any of the other words (or if there are
no other words given).

Example:

&X = &POSITION OF TWO ONE TWO THREE

This sets &X to 2.

Note: "wo»dl", "word2" ... must be listed individually. If a variable
contains a string of words, the &POSITION OF predefined function will not
find "word", since the variable will be treated as one word.

For example, suppose you passed an EXEC the argument string "ONE TWO
THREE":

&X = &POSITION OF TWO &ARGSTRING

This will set &X to 0, since "TWO" is only part of the whole word, "ONE
TWO THREE".

(See the description of &LOCATION OF and &WORD OF.)

50 VM/SP EXEC 2 Reference

I ."--.

&RANGE OF
'il

I &RANGE OF I stem j

Yields a string consisting of the words that are composed by appending to
the given stem the numbers i, i + 1, ... , j, the words being separated from
each other by a single blank; or yields the null string if i > j.

The stem is treated as a literal until after the composition is performed.
The numbers that are appended to it are stripped of any plus sign or
redundant leading zeros.

1M

The composed names are searched for any EXEC 2 variables, which are
replaced by their values in the usual way. If, as a result of this, a word is
reduced to the null string, it is discarded from the result, and the next word
is deemed immediately to follow the previous one.

Examples:

1. Irrespective of the values of &A, &A3, &A4, and &A5, the sequence:

&X = &RANGE OF &A 3 5
&PRINT &X

produces the same result as:

&PRINT &A3 &A4 &A5

2. The sequence:

&ARGS A BC DEF GHIJ KLMNO

&X = &RANGE OF & 1 &N
&PRIN'l' &X

produces the same result as:

&PRINT &1 &2 &3 &4 &5

and this yields the printed line:

A BC DEF GHIJ KLMNO

3. The sequence:

&X = &RANGE OF AB -2 +2
&PRINT &X

yields the printed line:

AB-2 AB-1 ABO AB1 AB2

Chapter 2: EXEC 2 Statements 51

&RIGHT OF

I &RIGHT OF I word j

Yields a string of length "j" in which "word" is right-justified and either
extended with blanks or shortened on the left.

Example:

&TRACE
&X = &RIGHT OF HELLO 3
&EXIT

This sets &X to "LLO".

(See the description of &LEFT OF.)

52 VM/SP EXEC 2 Reference

'''---

I .",----

&STRING OF
M¥W

I&STRING OF [string]

Yields the string that begins with the character following the blank that
terminates "OF" and ends with the last nonblank character before, or at,
the truncation column, suppressing the removal of any leading or embedded
blanks in the string.

Each word in the string is searched in the usual way for the names of
EXEC 2 variables. These variables are replaced by their values. However,
blanks are not removed from the string, even if they are adjacent to a word
that is reduced to the null string.

Example:

&A STRING
&B = ENDS
&X = &STRING OF A PIECE OF &A
&PRINT &X

This yields the printed line:

A PIECE OF STRING HAS TWO ENDS

(See the description of &LITERAL OF.)

HAS TWO &B

Chapter 2: EXEC 2 Statements 53

& TRANSLATION OF, & TRANS OF

&TRANSLATION OF
&TRANS OF wordl

Makes a copy of "wordl", modifies the characters in it as directed by
"word2" and "word3", and yields the resulting string.

The rules for modification are as follows. Each character of the copy is
considered in turn, and:

1. If "word2" does not contain a matching character, the character in the
copy is left unchanged; or

2. If "word2" contains a matching character, in position "i" (or if it
contains several matching characters, the first of which occupies
position "i"), the character in the copy is replaced by the ith character
of "word3", or by a blank if "word3" is not given or contains fewer than
"i" characters.

The result has the same length as "wordl".

Example:

&TRACE
&X = &TRANS OF 85BBE 1234567890ABCDE ABCDEFGHIJKLMNOP
&PRINT &X
&EXIT

"wordl" is "85BBE", "word2" is "l234567890ABCDE", and "word3" is
"ABCDEFGHIJKLMNOP" .

The first character in "wordl" is "8". "word2" is scanned for the character
"8". "8" is the eighth character in "word2". Now, look at the eighth
character in "word3" - this character is "H". Do the same for "5" in
"wordl". "5" is the fifth character in "word2"; and, the fifth character in
"word3" is "E". Continue this for the remaining characters in "wordl".

The result is:

HELLO

54 VM/SP EXEC 2 Reference

"'---..

""---

(

"'----

&TRIM OF

I &TRIM OF I [word]

Yields a string consisting of "word" with any trailing blanks removed, or
yields the null string if "word" is not given.

Chapter 2: EXEC 2 Statements 55

&WORDOF

I &WORD OF I [word 1 [word2...]]

Yields the ith word from the given list of words, or yields the null string if
"i" is zero or exceeds the number of words that are given. The value of "i"
must be numeric, and "i" must not be negative.

Example:

&TRACE
&X = &WORD OF ONE TWO THREE FOUR FIVE 3
&EXIT

This sets &X to "THREE".

(See the description of &POSITION OF.)

56 VM/SP EXEC 2 Reference

EXEC 2 Statements
$''tM4i4Q+iiMSiUM'@·K@#i·!iMWWMSU:W @MMiii@PJfGi2HM'¥·riWSMj

User-Defined Functions

A user-defined function can be invoked only in the last term on the
right-hand side of an assignment statement. The invocation takes the form:

line-number OF
label OF [argl [arg2 ..]]

The effect is to create a new generation of the EXEC 2 arguments &1 &2 ... ,
initialized to "arg1", "arg2", ... , and to invoke the given function; that is, to
transfer control to the given line, or to a line starting with the given label,
in such a way as to allow a value to be returned with the &RETURN
statement.

The new generation of arguments supersedes the arguments that were
previously set, making the previous values and the number of arguments
previously set temporarily inaccessible. Op entry to the body of the
function, the values of the arguments, and the number of arguments set, are
as given in the function invocation. Their values, and the number of
arguments set, can be changed in the body of the function in the same way
as outside, such as by assignment or with the &ARGS or &READ statement.
On return, the new generation of arguments is discarded, and the previous
values, and the number of arguments previously set, become accessible
again.

The first character of a label must be a hyphen. The search for a label
starts on the line following the function invocation. Then, if a match is not
found before the end of the file, the search resumes at the top. If a
matching label does not exist, execution stops abnormally with an error
message.

(See the description of the &CALL and &RETURN control statements.)

Examples:

1. The user-defined function

-OVERLAY OF layee. layer

is to return the string "layee" overlaid by "layer". (The result will be
different from "layer" only if "layee" is longer than "layer".) Here is
the body of the function, preceded by an example of its invocation:

&S = -OVERLAY OF &S *

* THIS FUNCTION USES 11&11 AS A TEMPORARY VARIABLE
-OVERLAY & = 1 + &LENGTH OF &2
&1 = &PIECE OF &1 &
&1 = &CONCAT OF &2 &1
&RETURN &1

Chapter 2: EXEC 2 Statements 57

EXEC 2 Statements

2. Suppose there is an external program TIME that stacks the CPU time
consumed in (say) microseconds. The user-defined function -TIME OF
is to return this number as its value, relieving its caller of the need to
issue the external command, check the return code, and read the
answer. Here is the body of the function, preceded by an example of its
use:

&T = -TIME OF
(sequence to be timed)

&T = 0 - &T + -TIME OF
&PRINT TIME CONSUMED WAS &T

-TIME &COMMAND TIME
&IF &RC ,= 0 &GOTO -UNEXPECTED
&READ ARGS
&RETURN &1
-UNEXPECTED &PRINT UNEXPECTED ERROR FROM TIME
&EXIT &RC

58 VM/SP EXEC 2 Reference

'-

Notes on EXEC 2

Chapter 3: Notes on EXEC 2

The following is a list of topics contained in this chapter:

• Name Substitution

• Recursive Execution

• Termination of an EXEC 2 File

• Program Stack
0 Assignment Statement
0 Evaluation of &DATE and &TIME
0 Size and Treatment of Numbers

• Removing Plus Signs and Leading Zeros

• Syntax of Conditional Phrases
0 Embedded Blanks
0 &LOOP Statement

• Closing of Loops
0 Search for Labels
0 Performance of Label Searches

• EXEC 2 Words are Not Reserved Words

• Example of &TRACE ALL

• Truncation Column.

Name Substitution

The words that form an executable statement are searched for the names of
EXEC 2 variables. These variables are replaced by their values. This is
done according to the following steps:

1. Each word is inspected for ampersands, starting with the rightmost
character of the word and proceeding to the left.

2. If an ampersand is found, then it, with the rest of the word to the right,
is taken as the name of an EXEC 2 variable and replaced (in the word)
by its value. This may increase or decrease the length of the word.
Initially, all variables have a null value, except:

a. The variables that represent the EXEC 2 control words and
predefined functions; they are initialized to their own names (for
example, the value of "&IF" is "&IF"); and

Chapter 3: Notes on EXEC 2 59

Notes on EXEC 2

b. The EXEC 2 arguments, and the other predefined variables, that
have the values specified in the section "Predefined Variables" on
page 5.

3. Inspection resumes at the next character to the left, and the procedure
is repeated from step 2 above, until the word is exhausted.

There is an exception if the word is the target of an assignment. In this
case, inspection for ampersands stops on the second character of the word.

Note that any characters that are substituted are not themselves inspected
for ampersands. They are, however, included in the name of the next
variable if another ampersand is found to the left.

These rules make it possible to construct arrays of subscripted variables.

Examples:

1. The sequence:

(Original file) (After Substitution)

&X = 123 2. &X = 123

&PRINT ABC &X ABC&X OOO&X 3. &PRINT ABC 123 ABC123 000123

yields the printed line:

ABC 123 ABC123 000123

2. The sequence:

(Original file) (After Substitution)

&1 = 2 2. &1 = 2

&X&I 5 3. &X2 = 5

&1 = &1 - 1 4. &1 = 2 - 1

&X&I = &1 + 1 5. &X1 = 1 + 1

&X = &X&I + &X&X&I 6. &X = 2 + 5

&PRINT ANSWER IS &X 7. &PRINT ANSWER IS 7

yields the printed line: ANSWER IS 7

60 VM/SP EXEC 2 Reference

Notes on EXEC 2

3. The sequence:

(Original file) (After Substitution)

&X = &CONCAT OF X &BLANK X2. &X = &CONCAT OF X X

&&X = 7

&DUMP VARS &X &&X

yields the printed line:

&X X X
&X X 7

3. &X X = 7

4. &DUMP VARS &X &X X

Recursive Execution

An EXEC 2 file may invoke itself recursively, or may invoke other EXEC 2
files, by issuing the appropriate command or subcommand. EXEC 2 files
may also invoke files written in CMS EXEC language and Restructured
Extended Executor (REXX) language. EXEC 2 files that have the filetype
EXEC can, for example, be invoked by means of the statement:

& COMMAND EXEC filename [argl [arg2 ...]]

Termination of an EXEC 2 File

Program Stack

An EXEC 2 file stops execution and returns to its caller:

1. When an &EXIT statement is executed; or

2. When an attempt is made to pass control to a line beyond the last (for
example by "falling off' the end of the file), in which case a return code
of zero is used; or

3. When an EXEC 2 error is encountered, in which case a message is
printed and execution stops abnormally.

EXEC 2 can use the CMS program stack. This is a conceptual area in
which lines can be deposited FIFO (first in, first out), or LIFO (last in, first
out), and subsequently retrieved by attempts to read from the program
stack. It provides a simple mechanism for communicating between
programs. In EXEC 2 files, lines can be deposited in the program stack
with the &STACK or &BEGSTACK statements, and can be retrieved with
the &READ statement.

Chapter 3: Notes on EXEC 2 61

Notes on E}{EC 2
H tM GJs9M'¥W6*MftM@iw,wSAM2

Assignment Statement

The word immediately following the target of an assignment must be a
literal equal sign. It cannot be an EXEC 2 variable that has the value of an
equal sign nor an EXEC 2 variable that is discarded from the statement due
to having a null value. Conversely, if an equal sign is to be the first word
following a control word, either it must be given as an EXEC 2 variable
that has the value of an equal sign, or there must be an intervening word
that reduces to the null string; otherwise, the statement is interpreted as an
assignment, and (if it is valid as such) the control word is assigned a new
value (see "EXEC 2 Words are Not Reserved Words" on page 66). With this
exception, a word that is discarded due to having a null value has no effect
on whether a statement is interpreted as an assignment, even if it occurs at
the beginning of the statement. For example, in the sequence:

&X =
&LOOP 2 2

&X &Y = 2 + 1
&X = &PRINT

the first statement in the loop is executed as an assignment to &Y, and then
(the second time) as a &PRINT statement, resulting in the line:

3 = 2 + 1

Evaluation of &DATE and &TIME

The time is taken once for each execution of a statement that refers to the
predefined variable &DATE or &TIME. Therefore, multiple references to
these variables within a statement yield the same values. If consistency
(rather than currentness) is required over a range exceeding one statement,
then the values of &DATE and &TIME must be assigned to ordinary
variables. For example:

&STACK LIFO &DATE &TIME
&READ VARS &D &T

Size and Treatment of Numbers

Words that are treated as numbers must represent integers. No limit is
imposed on the size of a number that appears in a comparison, or as an
argument to the predefined function &DATATYPE OF. In contexts that
require numeric values, numbers must lie within a range that is defined by
the implementation. (In CMS, the range is -2,147,483,648 to + 2,147,483,647.
See Appendix B, "EXEC 2 in CMS" on page 77.) An attempt to interpret a
number outside the allowable range, or to derive such a number by
arithmetic, causes numeric overflow. This overflow causes execution to
stop abnormally with an error message.

62 VMjSP EXEC 2 Reference

Notes on EXEC 2
w;gsfMtilPtS,·~'M'iM*,,*&IfI!IId_·tt,t"t,.A·WM*dA"'_·JM "'WPM ee

Removing Plus Signs and Leading Zeros

A plus sign, and any redundant leading zeros, can be stripped from a
numeric quantity by performing an arithmetic operation on it.

Example:

&X = 0000000000000000000012
&Y = &X + 0
&PRINT &X &Y

This yields the printed line:

0000000000000000000012 12

Syntax of Conditional Phrases

In the conditional phrases that occur in the &IF and conditional &LOOP
statements, a missing second comparand is regarded as a null string. The
first comparand and the comparator must always be present; otherwise
execution stops abnormally with an error message. If there is a risk of the
first comparand having a null value, syntactic validity can be ensured by
prefixing both comparands with the same character. For example, the
clause:

&IF /&1 = /

is satisfied if, and only if, &1 is null or blank; and

&IF /&1 = /PRINT

is syntactically valid even if &1 is null.

A similar technique can be used to force character-string comparisons even
if both of the comparands are numeric. (In this case, the prefix must not be
numeric.) For example, if it is known that &1 has a numeric value, the
clause:

&IF /&1 < /0

is satisfied if and only if &1 begins with a plus or minus sign. If &1 is equal
to "I", the clause is false. However, if &1 is equal to "+ I", the clause is
true, since" +" is less than "0" in a character-string comparison .. (For the
relative values of characters, refer to the internal codes for the EBCDIC
character set, given in System/370 Reference Summary.)

Chapter 3: Notes on EXEC 2 63

Notes on EXEC 2

Embedded Blanks

With a few exceptions, EXEC 2 does not embed blanks in the values of
variables. The exceptions are as follows:

1. &ARGSTRING is initialized to the string containing the EXEC 2
arguments, and &CMDSTRING is initialized to the command string
exactly as passed to the EXEC 2 file. Therefore, these variables may
contain embedded blanks.

2. The" &READ STRING var" statement assigns to the given variable the
complete line exactly as read; this variable may contain embedded
blanks.

3. . The predefined variable &BLANK can be used to embed blanks in the
value of a variable, for example:

&Y = &CONCAT OF A &BLANK B

4. The predefined function &RANGE OF inserts a blank between each
word; the predefined functions &LITERAL OF and &STRING OF retain
embedded blanks that are given in their arguments; and the predefined
functions &LEFT OF, &RIGHT OF, and &TRANSLATION OF can yield
leading, embedded, or trailing blanks.

5. Embedded blanks can be transmitted from one variable to another with
the assignment statement, and to the EXEC 2 arguments &1 &2 ... with
the &ARGS statement or by invocation of user-defined subroutines and
functions.

Embedded blanks are always significant. For example, "&IF " is not
recognized as "&IF"; and "10 " and " 10" cannot be used as numbers.

Embedded blanks can be removed from the value of a variable by stacking
it and rereading it as a sequence of words. Suppose, for example, that a
line to be read from the console is required both in its literal form (with
embedded blanks, if any) and as a series of normal words (without embedded
blanks). The following sequence achieves this:

&READ STRING &S
&STACK LIFO &S
&READ ARGS

Now &S contains the literal string, and the EXEC 2 arguments &1 &2 ... ,
contain the constituent words.

64 VM/SP EXEC 2 Reference

/

I

~-

Notes on EXEC 2

&LOOP Statement

Closing of Loops

The first three words of the &LOOP statement are searched for EXEC 2
variables (in the normal way) when the &LOOP statement is executed.
However, the remainder of the statement (which is present only if "WHILE"
or "UNTIL" is given) is saved without inspection. This saved phrase is
then interpreted as a condition each time around the loop (including the
first time). For example:

&J = 3
&LOOP 2 UNTIL &J = 5

&J = &J + 1
&PRINT &J

This results in the printed lines:

4
5

A loop may be in any of three mutually exclusive states: active, suspended,
or closed. A loop becomes active when execution of its defining &LOOP
statement begins. It is suspended if another loop becomes active before the
first is closed or if a user-defined subroutine or function is invoked. It
becomes active again when the second loop is closed or when a
corresponding &RETURN statement is executed. A loop is closed when it is
active, and when either:

1. The requirement for termination, given in the &LOOP statement, is met;
or

2. Control is transferred to a line outside the scope of the loop by any
means other than invocation of a user-defined function or subroutine.

In addition, the &EXIT statement closes all loops, and the &RETURN
statement closes any loops that have been opened during execution of a
user-defined subroutine or function.

Examples:

1. In the following sequence, the &SKIP statement closes the loop after
ten iterations, since it transfers control to a line below the last line in
the loop.

&J = 0
&LOOP 2 *

&J = &J + 1
&IF &J > 9 &SKIP 0

2. In the following sequence, the second loop closes the first loop since it
causes control to be transferred to a line outside the scope of the first
loop.

Chapter 3: Notes on EXEC 2 65

Notes on EXEC 2

Search for Labels

&LOOP 1 *
&LOOP 1 1

& =

"I g;

The first loop would similarly be closed, for the same reason, if the
second loop statement were replaced by a &BEGPRINT, &BEGTYPE, or
&BEGSTACK statement which occupied more than one line.

The search for a label to which reference is made in a &CALL, &GOTO, or
&LOOP statement, or in the invocation of a user-defined function, involves
examination of the first word on each line, without regard to its context or
what follows it. It is, therefore, necessary to avoid using labels that would
be matched by the first word of a line within a &BEGPRINT, &BEGTYPE,
or &BEGSTACK statement.

Labels that are attached to statements are treated literally; they are not
searched for EXEC 2 variables. Labels need not be unique.

Performance of Label Searches

1. &CALL, &GOTO, and user-defined functions

A &CALL statement, a &GOTO statement, or an invocation of a
user-defined function that transfers to a label above the current
statement tends to be inefficient, especially in long EXEC 2 files. It is
preferable to use the &LOOP statement in place of an upward "&GOTO
label" statement.

2. &LOOP label ...

A "&LOOP label ... " statement is converted, at the time of its execution,
into the equivalent "&LOOP n ... " statement. Therefore, the overhead
for finding the label is incurred only once, when the loop is entered,
irrespective of the number of iterations.

EXEC 2 Words are Not Reserved \'\fords

EXEC 2 control words, predefined functions, and predefined variables are
known as EXEC 2 words. EXEC 2 words begin with an ampersand; but,
unlike ordinary variables, they have an initial value that is not null.

The initial value of EXEC 2 control words and predefined functions is the
word itself (for example, the value of &IF is "&IF"). If one of these words is
assigned a different value (for example, &IF = ABC), then the feature that
it represents in the language is lost to the EXEC 2 file unless it, or another

66 VM/SP EXEC 2 Reference

No~es on EXEC 2
'WW4l''\IjC;P,iwgf·d'!tIwm, Zlft\>i:·dN, . ';Et,.t?!t·!r

variable, is reset to the old value (for example &IFX = &LITERAL OF &IF)
and used appropriately.

In the case of predefined variables other than the EXEC 2 arguments, the
special properties of a variable disappear if an explicit assignment is made
to it. For example, the statement:

&TIME = &TIME

inhibits further automatic updating of the variable &TIME.

Words of the form &j, where "j" is an unsigned integer without leading
zeros, are reserved for the EXEC 2 arguments. They can be set explicitly
(for example, &2 = 1) only if they are within the range of arguments that
are currently set. With this exception, EXEC 2 words are not reserved
words, and can, if desired, be used like ordinary variables.

&READ VARS, &READ STRING, and &UPPER VARS are treated as
explicit assignments to the variables given; &ARGS, &READ ARGS, and
&UPPER ARGS are not treated as explicit assignments to &N or &INDEX.

If a feature, function, or value is accessible through more than one name
(for example, &PIECE OF and &SUBSTR OF), an assignment to one of the
names does not affect the other name or names.

With the exception of the arguments &1 &2 ... , there are no EXEC 2 words
that end with a numeral, and it is intended that no such words will ever be
introduced. Therefore, variables such as &A1, &A2, ... , can be relied upon
to have an initial value of null. However, the names of variables that do
not end with a numeral should not be used in a way that relies upon their
initial value being null.

Example of & TRACIE ALL

Assume that an editor accepts the requests NEXT (which moves down the
file, and yields a return code of zero unless the end of file is reached),
EXTRACT LENGTH (which returns the length of the current line), and
TOP (which moves to the first line in the file). The following sample
XEDIT macro (called LONGER) searches for the next line that is longer
than the given length (passed to the EXEC file as an argument).

&TRACE ALL
NEXT
&IF &RC -,= 0 TOP
NEXT
&LOOP 3 WHILE &RC = 0

EXTRACT /LENGTH
&IF &LENGTH.1 > &1 &EXIT
NEXT

&EXIT &RC

If the macro is invoked at the end of the file, the search starts from the top.

Chapter 3: Notes on EXEC 2 67

Notes on EXEC 2

Suppose that the macro is invoked with the parameter 40 at the end of a file
containing two lines, both of length 30. This is the trace:

2. NEXT
+++ E(l) +++
3. &IF 1 ,= 0 TOP
3 TOP
4. NEXT
5. &LOOP 3 WHILE &RC 0
--- LOOP WHILE 0 = 0
6. EXTRACT /LENGTH
7. &IF 30 > 40 &EXIT
8. NEXT
--- LOOP WHILE 0 = 0
6. EXTRACT /LENGTH
7. &IF 30 > 40 &EXIT
8. NEXT
+++ E(l) +++
--- LOOP WHILE 1 = 0
9. &EXIT 1

Truncation Column

A truncation column may be specified with the &BEGSTACK, &BEGTYPE,
&BEGPRINT, and &TRUNC statements.

In all cases the truncation column is the last column in which characters
are sigriificant. Characters in columns that are beyond the truncation
column are ignored.

Example:

----:----1----:----2
&TRUNC 10
&X = ABCDEFGHIJK

This sets &X to ABCDE.

68 VM/SP EXEC 2 Reference

",- .

~--

EXEC 2 Syntax

Chapter 4: BNF Description of the EXEC 2 Syntax

<statement>

<comment>

<comment_string>

<label>

<executable_stmt>

<word>

<unconditional_stmt>

<character_string>

What follows is a description of the EXEC 2 syntax in Backus-Naur Form
(BNF). This is an alternative to the other descriptions in this manual and
is not essential reading.

The items enclosed in the angular brackets" <" and" >" are variables
(nonterminal symbols). These items are replaced by the items to the right
of ":: =". (":: =" means "is to be replaced by.") The items to the right of
":: =" may give exact replacements, other variables to be replaced, or the
final step of the syntax breakdown. Itemsl in capital letters are exact
replacements. Items in lowercase, not surrounded by the angular brackets,
are the final step (terminals) of the syntax breakdown.

: : =

<statement>
<exec_file> <statement>

<comment>
<label> <executable_stmt>
<executable_stmt>

* * <comment_string>

00= <character_string>
<comment_string> <character_string>

::= -<word>

00= <unconditional_stmt>
<if_clause> <executable_stmt>

00= <number>
<character_string>
<variable>

00= <assignment>
<control_stmt>
<command>
null

00= &IF <word> <comparator>
&IF <word> <comparator> <word>

o 0 = <char acter>
<charaGter_string><character>

Chapter 4: BNF Description of the EXEC 2 Syntax 69

EXEC 2 Syntax

<number>

<variable>

<assignment>

<control_stmt>

::= <unsigned_integer>
+<unsigned_integer>
-<unsigned_integer>

00= &<character_string>
<predefined_variable>

00= <variable> = <rhs>

00= &ARGS
&ARGS <arg_string>
&BEGPRINT
&BEGPRINT <arg_string>
&BEGTYPE
&BEGTYPE <arg_string>
&BEGSTACK
&BEGSTACK <arg_string>
&BUFFER <unsigned_integer>
&BUFFER *
&BUFFER <unsigned_integer> <arg_string>
&BUFFER * <arg_string>
&CALL <unsigned_integer>
&CALL <label>
&CALL <unsigned_integer> <arg_string>
&CALL <label> <arg_string>
&CASE
&CASE <arg_string>
&COMMAND <arg_string>
&DUMP ARGS
&DUMP VARS <arg_string>
&ERROR <arg_string>
&EXIT
&EXIT <arg_string>
&GOTO <unsigned_integer>
&GOTO <label>
&GOTO <unsigned_integer> <comment_string>
&GOTO <label> <comment_string>
&IF <arg_string>
&LOOP <unsigned_integer> <arg_string>
&LOOP <label> <arg_string>
&PRESUME
&PRESUME <arg_string>
&PRINT
&PRINT <arg_string>
&READ
&READ <arg_string>
&RETURN
&RETURN <arg_string>
&SKIP
&SKIP <arg_string>
&STACK
&STACK <arg_string>
&SUBCOMMAND <arg_string>
&TRACE
&TRACE <arg_string>
&TRUNC
&TRUNC <arg_string>
&TYPE
&TYPE <arg_string>
&UPPER ARGS
&UPPER VARS <arg_string>

70 VM/SP EXEC 2 Reference

<command>

<comparator>

<character>

<unsigned_integer>

.. = CP command
CMS command
XEDIT command (if working with

an XEDIT macro)

::= = I EQ
-,=INE
<ILT
<= 1-,> I LE I NG
>IGT
>= 1-, < I GE I NL

.. = <letter>
<unsigned_integer>
symbol

: : = <digit>
<unsigned_integer><digit>

<predefined_variable> .. = &
&0

<rhs>

<letter>

<digit>

&1 &2 ...
&ARGSTRING
&BLANK
&CMDSTRING
&COMLINE
&DATE
&DEPTH
&FILEMODE
&FILENAME
&FILETYPE
&FROM
&INDEX
&LINE
&LINENUM
&LINK
&N
&RC
&RETCODE
&TIME

::= <word>
<function invocation>
<arithmetic_rhs>
null

::= <word>
<arg_string> <word>

::= alblcl ... IxlylzlAIBIC

•. = 0111213141516171819

EXEC 2 Syntax

Chapter 4: BNF Description of the EXEC 2 Syntax 71

EXEC 2 Syntax
;g 4

<function_invocation> ::= &CONCAT OF
&CONCAT OF <arg_string>
&CONCATENATION OF
&CONCATENATION OF <arg_string>
&DATATYPE OF
&DATATYPE OF <arg_string>
&DIV OF <arg_string>
&DIVISION OF <arg_string>
&LEFT OF <arg_string>
&LENGTH OF
&LENGTH OF <arg_string>
&LITERAL OF
&LITERAL OF <arg_string>
&LOCATION OF <arg_string>
&MULT OF <arg_string>
&MULTIPLICATION OF <arg_string>
&PIECE OF <arg_string>
&POSITION OF <arg_string>
&RANGE OF <arg_string>
&RIGHT OF <arg_string>
&STRING OF
&STRING OF <arg_string>
&SUBSTR OF <arg_string>
&TRANS OF <arg_string>
&TRANSLATION OF <arg_string>
&TRIM OF
&TRIM OF <arg_string>
&TYPE OF
&TYPE OF <arg_string>
&WORD OF
&WORD OF <arg_string>
<user_function>

<arithrnetic_rhs> ::= <arithrnetic_expr>
<arithmetic_expr> + <function_invocation>
<arithrnetic_expr> - <function_invocation>

<user_function> ::= <unsigned_integer> OF <arg_string>
<label> OF <arg_string>

<arithrnetic_expr> ::= <number>

72 VM/SP EXEC 2 Reference

<arithmetic_expr> + <number>
<arithrnetic_expr> - <number>

I

\
'----

EXEC 2 Errors
Wi

Chapter 5: EXEC 2 Erroi4s

1. If the EXEC 2 interpreter finds an error, it issues the following message:

ERROR IN EXEC FILE fn ft fro, LINE nnn - description of error

(In CMS, this is message DMSEXE085E.)

Execution of the EXEC 2 file then stops abnormally with one of the
following return codes:

Return Description
Code of Error

10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10019
10020
10021
10097
10098
10099

FILE NOT FOUND
WRONG FILE FORMAT
WORD TOO LONG
STATEMENT TOO LONG
INVALID CONTROL WORD
LABEL NOT FOUND
INVALID VARIABLE NAME
INVALID FORM OF CONDITION
INVALID ASSIGNMENT
MISSING ARGUMENT
INVALID ARGUMENT
CONVERSION ERROR
NUMERIC OVERFLOW
INVALID FUNCTION NAME
END OF FILE FOUND IN LOOP
DIVISION BY ZERO
INVALID LOOP CONDITION
ERROR RETURN DURING &ERROR ACTION
ASSIGNMENT TO UNSET ARGUMENT
STATEMENT OUT OF CONTEXT
INSUFFICIENT STORAGE AVAILABLE
FILE READ ERROR nnn
TRACE ERROR nnn

2. The EXEC 2 interpreter also issues the following messages:

INVALID EXEC COMMAND

(In CMS, this is message DMSEXE175E.)

Return Code: 10000

INSUFFICIENT STORAGE FOR EXEC INTERPRETER

Chapter 5: EXEC 2 Errors 73

EXEC 2 Errors
e 'MM'

(In CMS, this is message DMSEXE255T.)

Return Code: 10096

74 VM/SP EXEC 2 Reference

I

~-

Appendix A. Sample EXEC 2 Files

1. This sample EXEC 2 file, called GRAB EXEC, copies a file from any
CMS disk to the user's A-disk.

&TRACE
* * THIS EXEC COPIES A FILE FROM ANY
* CMS DISK TO THE USER'S A-DISK
* * CHECK THE NUMBER OF ARGUMENTS, AND USE FILEr.lODE
* OF "*11 IF IT IS NOT GIVEN ...

*
&IF &N 0 &GOTO -TELL
&IF &N < 2 &GOTO -BAD
&IF &N > 3 &GOTO -BAD
&IF &N 2 &ARGS &1 &2 *
* * COpy THE FILE SPECIFIED ONTO THE USER'S A-DISK,
* AND EXIT WITH THE RETURN CODE FROM THE
* COPYFILE COMMAND
*
COPYFILE &1 &2 &3
&EXIT &RC
*

&1 &2 A

* SEND THE USER A MESSAGE THAT THE GRAB COMMAND WAS
* INVALID, AND EXIT WITH A RETURN CODE OF 101
*
-BAD &PRINT INVALID GRAB COMMAND
&EXIT 101
*
* TELL THE USER HOW TO ISSUE THE GRAB COMMAND,
* AND EXIT WITH A RETURN CODE OF 100
*
-TELL &PRINT COMMAND IS: GRAB FN FT FM
&PRINT COpy THE GIVEN FILE TO THE A-DISK,
&PRINT AND PASS BACK THE RETURN CODE FROM
&PRINT 'COPYFILE ' .
&EXIT 100

Appendix A. Sample EXEC 2 Files 75

2. This sample EXEC 2 file, called SHIP EXEC, sends a specified CMS file
to a specified user. The comments are included for tutorial purposes.

&TRACE
* * COMMAND IS: SHIP USER FILENAME FILETYPE [FILEMODE]
* IF THERE ARE NO ARGUMENTS GIVEN, TELL USER HOW 000

* * CHECK THE NUMBER OF ARGUMENTS, AND USE FILEMODE
* OF "*" IF IT IS NOT GIVEN 000

*
&IF &N a &GOTO -TELL
&IF &N < 3 &GOTO -BAD
&IF &N > 4 &GOTO -BAD
&IF &N 3 &ARGS &1 &2 &3 *
* * SPOOL PUNCH TO USER'S CARD-READER, OR
* COMPLAIN IF THE USER IS NOT KNOWN TO THE SYSTEM 000

*
CP SPOOL PUNCH TO &1
&IF &RC ,= a &GOTO -BADUSER
* * PUNCH THE FILE, OR COMPLAIN IF FAILURE 000

*
PUNCH &2 &3 &4
&IF &RC ,= a &GOTO -ERROR
*
*
*
*

TELL THE USER WHAT HAS BEEN DONE; THEN UNSPOOL
THE PUNCH, AND RETURN WITH SUCCESS 000

CP MSG &1 I HAVE PUNCHED YOU MY FILE &2 &3 &4
CP SPOOL PUNCH TO *
&EXIT
*
*
*
*

SEND THE USER A MESSAGE THAT THE SHIP COMMAND
WAS INVALID, AND RETURN WITH AN ERROR

-BAD &PRINT INVALID SHIP COMMAND
&EXIT 101
* * SEND THE USER A MESSAGE THAT THE USERID IS NOT
* VALID, AND RETURN WITH AN ERROR 000

*
-BADUSER &PRINT &1 IS NOT A VALID USERID
&EXIT 102
*
*
*
*
*

SEND THE USER A MESSAGE THAT THERE WAS AN
ERROR WHEN PUNCHING THE FILE; THEN UNSPOOL
THE PUNCH, AND RETURN WITH AN ERROR 000

-ERROR &PRINT ERROR &RC FROM II PUNCH II (WHILE IN SEND)
CP SPOOL PUNCH TO *
&EXIT 103
*
* TELL THE USER HOW TO ISSUE THE SHIP COMMAND
*
-TELL &PRINT COMMAND IS: SHIP USER FN FT [FM]
&EXIT 100

76 VM/SP EXEC 2 Reference

"'---

Appendix B. EXEC 2 in CMS

Identifying EXEC 2 Files

Since all EXEC files are called in the same way, CMS examines the first
statement of the EXEC file to determine which EXEC interpreter must
handle it. If the first statement of the EXEC file is &TRACE, CMS calls the
EXEC 2 interpreter to handle it.

Calling EXEC 2 Programs from CMS Command Level

When EXEC 2 programs are called from command level, the command verb
(which becomes &0) and the arguments (which individually become &1 &2
... and collectively become &ARGSTRING) are translated to uppercase.
&CMDSTRING contains the untranslated command string.

When EXEC 2 programs are invoked from another EXEC 2 program, no
translation takes place, and &CMDSTRING is the same as the &STRING
OF &0 &ARGSTRING (if &0 was delimited by a blank) or &CONCAT OF &0
&ARGSTRING (if &0 was delimited by a parenthesis).

It is possible to "pretend" a command-level call by using the CMS
command, CMDCALL. CMDCALL converts EXEC 2 extended plist
function calls to CMS extended plist command calls. The use of CMDCALL
in an EXEC 2 EXEC allows the message 'FILE NOT FOUND' to be
displayed for the ERASE, LISTFILE, RENAME, and STATE commands.
Also, an EXEC 2 program invoking another EXEC 2 program will have the
same results as an EXEC 2 program being called from command level. &0,
&1 &2 ... , and &ARGSTRING will be translated as stated above.

In either case, calling an EXEC 2 program from command level or invoking
an EXEC 2 program from another EXEC 2 program, the CMS convention
that parentheses are token delimiters is applied to separate &0 from
&ARGSTRING, but it is not applied to delimit &1, &2, ... from each other.

Appendix B. EXEC 2 in CMS 77

Summary of limits for EXEC 2 Files in eMS

Some CMS limits that apply to EXEC 2 files are:

o EXEC 2 files used as CMS command files must have the word &TRACE
as the first word in the first record of the file. In subcommand
environments, such as XEDIT for XEDIT macros, the word &TRACE is
optional.

(I> The maximum length of an EXEC 2 line is 255.

o The maximum length of a statement, after replacement of variables, is
511. (This limit is enforced only as needed by the interpreter; some
statements can grow to a greater length.)

o The maximum length of a word, after replacement of variables, is 255.

o The maximum length of a line read from the console is 130, and from
the program stack is 255.

o The maximum length of a printed line is 130.

o An EXEC 2 filename can be from one to eight characters long. The
valid characters are A-Z, 0-9, $, #, @, +, : (colon), - (hyphen), and_
(underscore). The filetype must be EXEC for files that are invoked from
CMS command mode and XEDIT for files used as XEDIT macros.

o All EXEC 2 files have an initial lookaside buffer of 32 lines (see the
&BUFFER description in "Control Statements" on page 8). The
&BUFFER 0 statement must be issued to delete the look aside buffer if
the file is to be modified while being executed.

o In a context that requires numeric values, numbers must be in the
range -2,147,483,648 to + 2,147,483,647.

o In CMS, return codes for the &EXIT control statement are limited to
the range -2,147,483,648 to + 2,147,483,647. Attempts to exceed these
limits causes the EXEC 2 file to stop abnormally with an error message
(NUMERIC OVERFLOW).

o CMS commands issued from EXEC 2 files are invoked in such a way
that most information and error messages issued by the following CMS
commands are not typed: ERASE, LISTFILE, RENAME, STATE, and
FILEDEF. (See the description of CMDCALL, in "Calling EXEC 2
Programs from CMS Command Level" on page 77 for an exception to
this statement.) This is also true for any other system or user command
that makes a distinction in its operation based on flags passed in
register 1. However, note that a nonzero return code from any of these
commands is reflected in the predefined variables &RETCODE and
&RC.

o EXEC 2 is designed to maintain a complex program environment. For
this reason, automatic clean-up is not invoked at the completion of each

78 VM/SP EXEC 2 Reference

"'- ...

command within the EXEC. It is the programmer's responsibility to
ensure that any necessary clean-up functions (i.e. STRINIT, OS RESET,
VSAM CLEAN-UP, etc.) are invoked when needed.

Note: The CMS EXECOS command can be used for OS reset and
VSAM clean-up.

o The length limit for values assigned via the EXECCOMM facility is 255.
If the limit is exceeded, the return code from the EXECCOMM facility
is 16 (INVALID VALUE).

• The length limit for the external name of a shared variable is 254. If
the limit is exceeded, the return code from the EXECCOMM facility is S
(INVALID NAME).

o If a "STORE" reference is made to an unset EXEC 2 argument (i.e. a
variable of the form &i where "i" is an unsigned number without
leading zeros that exceeds the number of EXEC 2 arguments that are
currently stored), no assignment is performed, and the return code from
the EXECCOMM facility is S (INVALID NAME).

o If a "FETCH" reference is made to &ARGSTRING (or &CMDSTRING)
via the EXECCOMM facility and the length of &ARGSTRING (or
&CMDSTRING) exceeds 255, a length of 256 is recorded. If the length
of the caller's area exceeds 255, the value is truncated without any
error indication.

o If a "FETCH" reference is made to &TIME or &DATE via the
EXECCOMM facility, the time-of-day returned is the same for all
references from a given program invocation, since (as far as the EXEC 2
interpreter is concerned) the same statement is still in execution (see
"Evaluation of &DATE and &TIME" on page 62 in Chapter 3).

Using EXEC 2 Parameter lists with Assembler Language Programs

The calls illustrated below are made via CMS SVC 202 calls.

1. EXEC 2 interpreter calling another program:

For & COMMAND wardO wardl ... wardn

RO = A(NPLIST)
Rl = A(tokenized CMS plist)
High-order byte of Rl is X, 01 ' .

For &SUBCOMMAND war dO wardl ... wardn

RO = A(NPLIST)
Rl = A(= CLS'wordO')
High-order byte of Rl is X ' 02 ' .

Appendix B. EXEC 2 in CMS 79

where:

NPLIST DS OF
DC A (COMVERB)
DC A(BEGARGS)
DC A(ENDARGS)
DC A(O)

COMVERB EQU * the command verb
DC C'wordO'
DC C' , optional blanks

BEGARGS EQU *
DC C'wordl'
DC C' ,
DC C'word2'
DC C' ,

DC C'wordn'
ENDARGS EQU *

the argument string

2. Calling the EXEC 2 interpreter with a tokenized plist only:

RO = irrelevant
Rl = A(CMS tokenized plist)
High-order byte of Rl as from LA, BAL, or BALR.

The value of &ARGSTRING in this case is set as if by the EXEC 2
statement:

&ARGSTRING = &RANGE OF & 1 &INDEX

3. The EXEC 2 interpreter can be passed an extended plist, that specifies
an untokenized argument string. In addition, the parameter list may
precisely identify the EXEC file to be executed (and thereby specify a
filetype other than EXEC, or an explicit filemode); or it may identify an
"in-memory file." An "in-memory file" is similar in concept to a file on
disk, but it is resident in memory.

80 VM/SP EXEC 2 Reference

RO = A(NPLIST)
Rl = A(CMSPLIST)
High-order byte of Rl is X, 01' .

'--

"'--

NPLIST OS OF
DC A(O) (ignored by EXEC 2)
DC A(BEGARGS)
DC A(ENDARGS)
DC A(O) or A(FBLOCK)

CMSPLIST OS OF

*
*
*

*
*
*
*
*

DC CLS'EXEC '
DC CL8 l filename ' (Ignored if file block is

given)
(Always ignored by EXEC 2
interface)

If no FBLOCK is given for the above instruction in the
NPLIST (i. e. A(FBLOCK) is zero), the filename of the
EXEC file is taken from the second 8-byte token of the
area addressed by register 1. This will be the value
after synonym resolution so it may be different from &0.

BEGARGS EQU * the argument string
DC
DC

*
DC

C 1 ampO 1
C1 1

C'argstring'

no embedded blanks, becomes &0
single blank separates &0 from

&ARGSTRING
becomes &ARGSTRING

ENDARGS EQU *

FBLOCK OS OF ** File Descriptor **

*

*

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*

*

*

DC CL8 l filename ' if blank, &0 will be used -
see &0

DC CLS'filetype ' may be blanks for &PRESUME
& COMMAND

DC CL2 l filemode ' should be given as 1*1, or
blanks for in-memory files

IMPORTANT NOTE: The default &PRESUME setting is as
follows:

No file block given:
File block given, filetype blank:

& COMMAND
& COMMAND

File block given, filetype non-blank: &COMMAND filetype

Thus, if a filetype of EXEC is explicitly specified
in the file block, the default presumption will be
&SUBCOMMAND EXEC, and not & COMMAND , even though an
EXEC file of filetype EXEC will be executed.

The following is an FBLOCK extension block. The first
halfword specifies how many words are in the extension
block. CMS requires a value of either zero or two.

DC XL2 1 0002 1 Number of full words
that follow

DC AL4(PGMFILE) Address of the in-memory
EXEC 2 descriptor

DC AL4(PGMEND-PGMFILE) Number of bytes in
the descriptor

Appendix B. EXEC 2 in CMS 81

*
*
*

If no "in-memory file" is provided, the values in
the extension must either both be zero, or be
omitted by changing the XL2'0002' to XL2'OOOO'.

PGMFILE os OF in-memory EXEC 2 Program

*

*

*

*

DC A(line 1),F'len I' Address and length of
file line 1

DC A(line 2) ,F' len 2' Address and length of
file line 2

DC A(line 3),F'len 3' Address and length of
file line 3

DC A(line n) ,F'len n' Address and length of
file line n

PGMEND os OH

*
*
*
*
*

The above fields are not checked by the interpreter,
but they are used in error messages and in the
predefined variables &FILENAME, &FILETYPE, and
&FILEMODE. If they contain embedded blanks,
the results are unpredictable.

4. Using the EXEC 2 Interpreter as a Macro Processor.

The use of EXEC 2 programs as macros or command files for user
specified command processors requires functions provided by the CMS
SUBCOM function.

The following paragraphs describe how to use SUBCOM and the EXEC
2 interpreter to implement a macro facility.

Issue SUBCOM SVC 202 to set up an entry point in the command
processor. (For information on how to do this, refer to VM/ SP System
Programmer's Guide under SVC 202 and SUBCOMjDYNAMIC
LINKAGE.)

Call EXEC 2 as in example 3 above. The filetype from the file
descriptor block becomes the default &PRESUME &SUBCOMMAND
environment except when it is blank, in which case the default filetype
is EXEC, and the default presumption is &PRESUME &COMMAND.

When subcommands are encountered in the macro, the EXEC 2
interpreter will call the entry point specified in the SUBCOM call. This
entry point may then take whatever action is necessary with the
command.

Upon return, the EXEC 2 interpreter continues with the next statement
or command.

When the EXEC 2 file terminates, control is returned to the initiating
program at the calling point.

82 VM/SP EXEC 2 Reference

Executing XEDIT Macros in E}(EC 2

The basic subcommand language of the XEDIT editor can be extended by
writing macros that are executed by the EXEC 2 interpreter.

These XEDIT macros are CMS files with the filetype of XEDIT.

When the EXEC 2 interpreter encounters an XEDIT subcommand, it sends
the command to XEDIT for execution. XEDIT processes the command and
returns to the XEDIT macro with a return code. The XEDIT macro then
continues execution with the next statement or command. When the
XEDIT macro completes, control returns to XEDIT.

See Appendix D, "Writing Editor Macros" on page 101 for further
information on XEDIT macros.

EXECCOMM ". Sharing EXEC 2 Variables with Assembler Language
Programs

EXEC 2 permits programs called from an EXEC 2 file to access all EXEC
variables used within that EXEC file. Variables accessed in this manner
are called "shared variables." The EXECCOMM facility of EXEC 2
provides this variable sharing environment. Using the "FETCH" and
"STORE" functions of EXECCOMM, programs can directly access and
manipulate EXEC 2 variables. Also, the execution of commands or
subcommands can result in assignments to some of these variables as a
side-effect of their execution. It is also possible to create new variables in
the called program.

When variables are stored by a program, their names are checked for
validity, but no substitution is carried out by EXEC 2. In other words,
names passed through EXECCOMM are taken exactly as is, and embedded
ampersands (&) do not cause multiple substitution.

Variables are identified by an "external name," which is the same as their
"internal name," but without the leading ampersand. For example, to
"fetch" a value contained in the internal variable "&VALUE", a program
should use the external name "VALUE".

The facility works as follows:

When EXEC 2 starts to interpret a new EXEC or XEDIT macro, it first sets
up a subcommand entry point called EXECCOMM. When a program
(command or subcommand) is called by EXEC 2, it may in turn use the
current EXEGCOMM entry point to Store or Fetch variable values.

To access variables, the EXECCOMM entry point is invoked using both the
normal and the extended Plist (see below; also see the VM/ SP System
Programmer's Guide). SVC 202 should be issued with register 1 pointing to
the normal Plist and the top flag byte of register 1 set to X I 02 I •

Appendix B. EXEC 2 in CMS 83

On return from the SVC, register 15 contains a summary return code for the
entire Plist. The possible return codes are:

Return Code Meaning

o or positive Entire Plist was processed. Register 15 is the
composite OR-ing of the SHVRET flags (see
below).

-1 Invalid entry conditions.

-2 Insufficient storage was available for the
requested operation. Processing was
terminated.

-3 from No EXECCOMM entry point found (i.e. not
SUBCOM called from inside a EXEC 2 EXEC).

The register 1 PUst: Register 1 should point to a Plist which consists of the
eight character string "EXECCOMM".

The register 0 PUst: Register 0 should point to the SUBCOM Plist. The
first word of the SUBCOM plist should also point to the word
"EXECCOMM". No argument string should be given, so the second and
third words should be the same (e.g. point to the same address or both 0).
The fourth word of the Plist should point to the first of a chain of one or
more request blocks.

The call is made via CMS supervisor call SVC 202, with the Plist registers
set up as follows:

RO A(NPLIST)
Rl = A(CL8'EXECCOMM')

(see below)
high-order byte X'02'

where:

NPLIST

*
*

*

*

84 VM/SP EXEC 2 Reference

DS
DC

DC
DC

DC

OF
A (CL8 ' EXECCOMM')

A(ARGS)
A(ARGS)

A(SHRLIST)

subcommand Plist
same as register 1,
but with 0 in the
high-order byte

null argument string
end address of null

argument string
pointer to first variable

access request block

/

I
~

The request block: Each request block in the chain must be laid out as
follows:

**
* SHVBLOCK: Layout of shared-variable Plist element.
**
*
SHRLIST DS
SHVNEXT DS
SHVUSER DS
*
SHVCODE DS
SHVRET DS

DC
SHVBUFL DS
SHVNAMA DS
SHVNAML DS
SHVVALA DS
*
SHVVALL DS

OF
A
F

CLI
XL1
H'O'
F
A
F
A

F

Variable Access Request Block
Chain pointer (0 if last block)
Not used, available for private

use
Individual function code
Individual return code flag
Not used, should be zero
Length of 'FETCH' value buffer
Address of external variable name
Length of external variable name
Address of value buffer

(0 = 'none)
Length of value (set by 'FETCH')

*
*
*

Function Codes (SHVCODE)

SHVFETCH EQU
SHVSTORE EQU
*

C'F'
CIS'

FETCH - Copy value to caller's area
STORE - Store from value supplied by

caller
*
*
*

Return Code Flags (SHVRET)

SHVCLEAN EQU
SHVTRUNC EQU
*
SHVBADN EQU
*
SHVBADV EQU
*

X'OO'
X'04'

X'08'

X'10'

(Decimal 0)
(Decimal 4)

(Decimal 8)

(Decimal 16)

Execution was OK
Truncation occurred
during 'FETCH'

Invalid variable name
(e.g. too long)

Value too long - 'STORE'
not performed

SHVBADF EQU
*

X'80' (Decimal 128) Invalid function code
(SHVCODE)

*
*

A typiCal calling sequence for the EXECCOMM facility might be:

*

*

*

*

LA
LA

ICM

SVC
DC
LTR

BM

RO,NPLIST
R1,=CL8'EXECCOMM'

R1,B'1000' ,=X'02'

202
AL4(1)
R15,R15

DISASTER
Execution was okay

Subcom Plist as shown
Name of Sub com entry
point

Insert 'subcommand call'
flag

Issue SVC
Sequential return
Check for a negative
return code

If yes, quit

Appendix B. EXEC 2 in CMS 85

The specific actions for each function code are as follows:

S Store variable. SHVNAMA contains the address of the external
variable name, and SHVNAML contains the length of this name.
SHVV ALA contains the address of the buffer where the "value" of
SHVNAMA is stored, and SHVV ALL contains the length of the
"value." The external name (SHVNAMA) is checked (e.g. length
limitations), and the corresponding internal variable (same name as
the external name, only with a leading ampersand (&» is set to the
value of the external variable. If a "STORE" reference is made to an
unset EXEC 2 argument (i.e. a variable of the form &i where "i" is an
unsigned number without leading zeros that exceeds the number of
EXEC 2 arguments that are currently stored), no assignment is
performed. The SHVBADN bit is set to X'08' (INVALID NAME).

F Fetch variable. SHVNAMA contains the address of the external
variable name, which is the same as the internal variable name that
you want to fetch, but without the leading ampersand (&).
SHVNAML contains the length of this external name. SHVV ALA
contains the address of a buffer where the fetched variable value will
be copied, and SHVBUFL contains the length of the buffer. The
external variable nam~ (SHVNAMA) is checked (e.g. length
limitations), and the internal variable is located and copied into the
buffer. The total length of the fetched variable is placed in

86 VM/SP EXEC 2 Reference

SHVV ALL, and if the fetched value was truncated because the buffer
was not big enough, the SHVTRUNC bit is set to X, 04 '. If the
referenced variable is shorter than the length of the buffer, no padding
is done.

If there is insufficient storage (return code -2), some of the SHRLIST
elements may not have been processed. These elements (including the
SHVRET field) are left unchanged.

Note: The value returned by a FETCH operation is a snapshot of the
internal variable at the time the operation is done. The returned
value is therefore unaffected by subsequent STORE operations to the
same internal variable (even within the same list).

Appendix C. EXEC 2 Primer for New Users

The function of a command programming language such as EXEC 2 is to
improve the effectiveness of a programming system by matching the
available commands to the particular needs and applications of each user.
As a CMS user, you probably have observed that some commands are
needed more frequently than others. Some of the commands you used are
short and easy to type, while others involved several arguments and are
more difficult to issue. There may be instances when you have to look up
the correct command format or issue several commands in succession to
perform an operation that would be much more convenient if it were done
by only one command. Command procedures, written in the EXEC 2
language, can adapt existing commands to user needs by storing commands
that are issued frequently, and in the sequence that you wish them
executed, in a disk file. Within this file, the validation of arguments can be
checked and default values can be supplied. (A default value is a specific
value assumed when an argument has not been explicitly specified.
Usually, default values are the most frequently used argument values, so
that the convenience of not having to write that particular value is realized
as many times as possible.) The name of the file containing these
commands becomes a new command name, and hence, a new CMS
command. The format of this new command can be tailored to the
individuals needs.

To illustrate this, assume you have the files listed in the first column of the
following table and you wish to rename them as indicated in the second
column:

Current Name Desired Name

X MEMO
NEW MEMO
OLD MEMO

NEW MEMO
OLD MEMO
(erased)

The commands used to perform this operation are straightforward, though
they are a bit lengthy because two of the three fileids must be repeated and
filemodes are required for the RENAME commands:

ERASE OLD MEMO
RENAME NEW MEMO A OLD MEMO A
RENAME X MEMO A NEW MEMO A

EXEC 2 makes it easy for the user to issue a sequence of commands. The
desired commands are stored in a disk file, and then they are invoked by
typing the file's name as the command name.

Appendix C. EXEC 2 Primer for New Users 87

Such files of stored commands must have a filetype of EXEC. Note that
other filetypes are possible, but they cannot be called directly by a
command that you type at your console; they can be invoked from a
program, such as a text editor. When CMS reads a command typed by the
user, it searches for a disk file having the same filename as the typed
command name and a filetype of EXEC. If such a file is found, the EXEC 2
interpreter processes the command statements read from the disk file.

If you use a text editor to create the following file named RIPPLE EXEC:

&TRACE ON
ERASE OLD MEMO·
RENAME NEW MEMO A OLD MEMO A
RENAME X MEMO A NEW MEMO A

you can rename the files described above by typing the line:

RIPPLE

The first line of the RIPPLE EXEC file is an EXEC 2 control statement.
Such statements affect the operation of the EXEC 2 interpreter instead of
performing some operation in the CMS environment. The &TRACE ON
statement tells the EXEC 2 interpreter to display on your console any
commands that it issues before they are executed. A &TRACE OFF
statement suppresses this display of executed commands. A &TRACE ALL
statement displays EXEC 2 control statements as well as commands that are
executed.

In the CMS environment, where the EXEC 2 interpreter coexists with the
CMS EXEC interpreter and the System Product interpreter, a second
purpose is served by the &TRACE statement. Whenever an EXEC file is to
be interpreted, the first record of the file is read and scanned. If the first
word of the file is &TRACE, the EXEC 2 interpreter processes the file. If
the first record of the file begins with a /*, the System Product interpreter
processes the file. If neither case occurs, the CMS EXEC interpreter
processes the file.

EXEC 2 control statements make it possible to conditionally interpret
statements in an EXEC 2 file, to repeat the interpretation of statements,
and to control the working of the EXEC 2 interpreter in various ways. The
control statements make it possible to write EXEC 2 files that perform
different operations depending on the arguments entered on the EXEC 2
command line or the results of commands issued from the EXEC 2 file. This
is a very important concept, for it is this ability to modify the commands
issued from an EXEC 2 file (and the order in which they are issued) which
underlies the most useful features of EXEC 2 files.

88 VM/SP EXEC 2 Reference

,/

EXEC 2 Variable Names

EXEC 2 variables and EXEC 2 control words always start with an
ampersand. The ampersand may be followed by any other characters, up to
a maximum length of 256 characters (including the initial ampersand). This
is the maximum length allowed for any word; it is also the maximum length
allowed for any line in an EXEC 2 file.

The characters ampersand and blank have special meanings. They cannot
be made part of a variable name by simply writing them as part of a word.
A blank denotes the end of a word, so it can not be included as part of the
word. An ampersand denotes the beginning of an EXEC 2 variable name.
That name (including the ampersand) is replaced with the value of the
variable when the word containing it is evaluated during statement
interpretation. Value substitution for variable names makes it possible to
put blanks or ampersands (or any other characters) into names, but it's
principal benefit is to manipulate an indefinite number of variables by
modifying the words in a few statements instead of writing all of the
variable names explicitly.

Return Codes and EXEC 2 Variables

Every command executed in CMS issues a return code indicating the
success or failure of the operation requested. This return code is a numeric
value that is passed back to the caller of the command. If a command is
issued from an EXEC 2 file, the return code generated by that command can
be examined and used to control the subsequent interpretation of
statements in the EXEC 2 file. For example, the ERASE command
displayed above in RIPPLE EXEC yields a return code of: 0 (zero) if it
succeeds in erasing a file, 28 if the file to be erased does not exist, 36 if the
file exists but is on a read-only disk, and other values for less common
conditions.

A command's return code is saved by the EXEC 2 interpreter as the value of
the EXEC 2 variable &RC. EXEC 2 variables are symbols used to refer to
values that may change during the interpretation of an EXEC 2 file. You
can use the symbol &RC in an EXEC 2 statement to refer to the return code
generated by the most recent command issued from the EXEC 2 file. One
way the &RC variable might be used in the RIPPLE EXEC file is to force
termination of the EXEC 2 file (before renaming any files) if the X MEMO
file does not exist. To do this, use the CMS command STATE to determine
whether X MElviO exists on the A-disk. STATE generates a return code of
o if the designated file exists, or a return code greater than 0 if it does not.

&TRACE OFF
STATE X MEMO A
&IF &RC > 0 &EXIT 1
ERASE OLD MEMO
RENAME NEW MEMO A OLD MEMO A
RENAME X MEMO A NEW MEMO A

The third statement in this file (&IF ...) tests the return code from STATE,
and uses the &EXIT control statement to force immediate termination of

Appendix C. EXEC 2 Primer for New Users 89

the EXEC 2 file if the value of &RC is greater than zero. Like CMS
commands and user programs, EXEC 2 files also generate return codes. If
an EXEC 2 file terminates because an end-of-file is reached and there are no
more statements to interpret, the return code is zero. However, various
errors detected by the EXEC 2 interpreter (invalid EXEC control word,
nonexistent file, and so on) causes termination with a return code greater
than 10000. Or, you may write the &EXIT control statement to terminate
the EXEC 2 file with a specific return code, as shown above.

The ampersand character is used at the beginning of a word to signal the
EXEC 2 interpreter that this word is an EXEC 2 variable or an EXEC 2
control word. When the EXEC 2 interpreter processes a statement from an
EXEC 2 file, it begins by examining each word and replacing any EXEC 2
variables with their current values. (Later, we'll see exactly how this is
done.) EXEC 2 control words are like EXEC 2 variables, except their
values are initialized to their names by the EXEC 2 interpreter (that is, the
value of &TRACE is &TRACE, the value of &IF is &IF, etc.).

&RC is one of a group of variables that is handled in a special manner by
the EXEC 2 interpreter. They are called "predefined variables" because the
EXEC 2 interpreter assigns values to them automatically. Some of these
predefined variables are given values only once, when the EXEC 2
interpreter starts processing a file (&FILENAME is such a variable, whose
value is the name of the EXEC 2 file being processed). Other predefined
variables are assigned values whenever some specific action occurs.
Examples are &RC, which is set to the return code value whenever a
command is issued, and &N, which is initially set to the number of
arguments present on the EXEC 2 command line and is updated when an
EXEC 2 control statement redefines the set of argument variables.

EXEC 2 File Arguments

The EXEC 2 variables &1 &2 &3 ... are used to refer to the arguments in the
EXEC 2 command invoking the file. The value of &1 is the first word
following the name of the EXEC 2 file in the command line, &2 is the
second word, etc. If you refer to an argument that is not present in the
command line (such as &1, if no operands were written), its value is null,
and that word disappears from any statement in which it is used. The same
is true for a reference to any other EXEC 2 variable that has not been
assigned a value, or has been explicitly assigned the null value.

Let's modify the RIPPLE EXEC again so that it accepts the name of any
MElVIO file as an argument instead of always using the file X MEMO:

&TRACE OFF
STATE &1 MEMO A
&IF &RC > 0 &EXIT &RC
ERASE OLD MEMO
RENAME NEW MEMO A OLD MEMO A
RENAME &1 MEMO A NEW MEMO A

Here the return code from STATE is used as the return code from the
RIPPLE EXEC file. A nonzero value indicates failure of the RIPPLE

90 VM/SP EXEC 2 Reference

/'

command and provides a little more information than simply returning a
value of 1. (Refer to V!.tJISP CMS Command Reference for the Responses,
the Error Messages, and the Return Codes issued by CMS for the STATE
command.)

With this RIPPLE EXEC file, you could have any number of current or
working MEMO files, each with a different filename., Whenever you wish
to rename one of them (RWR MEMO, for example), you could use the
command:

RIPPLE RWR

There will always be copies of the last two files renamed, in case a need
arose to use one of them again. Files more than two iterations old are
automatically erased.

There is no limit (other than disk capacity) to the number of files that can
be kept. By adding more RENAME commands to the EXEC 2 file, you can
keep as many old files as you desire. By using some additional EXEC 2
control statements, you could rename any number of files using only one
RENAME statement, interpreting it as many times as necessary, each time
with different arguments.

Conditional ~n~erpretation of Staiemenis

Before looking at more sample EXEC 2 files, let's examine the structure of
the conditional (&IF) statement more closely and introduce some other
EXEC 2 control statements. The &IF statement is actually a compound
statement. The first part defines a condition; the second part may be any
executable statement, which is interpreted only when the condition is true.
(An executable statement is any statement except a comment. Comment
statements have an asterisk as their first nonblank character, and are
ignored by the EXEC 2 interpreter.) The complete &IF statement has the
format:

&IF wordl comparator word2 statement

where "comparator" is =, '=, >, <, >=, <=,EQ,NE,GT,LT,GE,NL,
LE, or NG. The comparison is performed numerically if both word1 and
word2 are numeric data items; it is performed on a character basis if either
is not numeric. Thus, "&IF 2 = +2" is true and "&IF 000 = 0" is true, but
"&IF 1. = I" and "&IF + A = 10" are false. A numeric data item consists
of decimal digits, optionally preceded by a plus or minus sign. EXEC 2 does
not support fractional numbers as numeric data.

The "statement" part of an &IF statement may be another &IF statement.
Therefore, several conditions may be written in one conditional statement,
with the last "statement" interpreted only when all of the conditions are
true. Thus,

&IF &1 = A &IF &2 = B &EXIT

terminates an EXEC 2 file only if both conditions are true.

Appendix C. EXEC 2 Primer for New Users 91

Statement Labels

You may attach a label to an EXEC 2 statement (including the null
statement, which has no words in it) so that an EXEC 2 control statement
can reference the labeled statement. The label must be the first word of the
statement, and it must start with a hyphen. EXEC 2 does not consider a
label to be part of a statement, so it is not inspected for EXEC 2 variables.
References to labels, however, may involve EXEC 2 variables. The most
frequent references to statement labels are &GOTO control statements,
which modify the regular, sequential processing of an EXEC 2 file. A
typical &GOTO statement is:

&GOTO -END

which means continue interpretation of statements with the next statement
having the label -END.

When a &GOTO statement is interpreted, EXEC 2 searches for the specified
label by reading successive statements from the disk file and examining the
first word of each statement to determine if it is the desired label. If it finds
the label, sequential interpretation of statements resumes with that
statement. If the end of the disk file is encountered without finding the
specified label, EXEC 2 continues to read statements starting at the
beginning of the file until either the desired label is found or all statements
before the one being interpreted have been examined. You will receive a
message if the label is not found.

Assignment Statements

The EXEC 2 assignment statement is a special case, in that it is recognized
when the second word of the statement (not counting a label) is an equal
sign and the first word starts with an ampersand. (This is a simplification
of the actual rule, which is discussed in "Chapter 3: Notes on EXEC 2" on
page 59.) The function of the assignment statement is to make the EXEC 2
variable, specified by the first word, have the value specified by the
expression following the equal sign. Thus,

&OPTION = GESUNDHEIT

assigns the value GESUNDHEIT to the EXEC 2 variable &OPTION.

&ITEM = &ITEM + 2

increments the value of &ITEM by 2, assuming the value of &ITEM was
numeric to start with (if it was not numeric, EXEC 2 considers it an error
and terminates interpretation of the EXEC 2 file). The following statement:

&L = &LENGTH OF &OPTION

uses the predefined function &LENGTH OF to compute the number of
characters in the value of the variable &OPTION; that number is then
assigned to the variable &L. If &OPTION has the value GESUNDHEIT,

92 VM/SP EXEC 2 Reference

/'

(

"'---

then &L would be assigned the value 10. The right side of an expression in
an assignment statement is the only place to use a predefined (or
user-defined) function in EXEC 2. There are several predefined functions
used in the EXEC 2 files discussed later.

It is possible to set a variable to the null value by using an assignment
statement:

&NOTHING

and it is possible, of course, to have labels on assignment statements:

-SETONE &ONE = 1

EXEC 2 Variable Evaluation

It is time to explain in detail how EXEC 2 examines a word for variable
names and replaces them with values. Inspection for EXEC 2 variables is
performed by examining the characters in a word from right to left.
Whenever an ampersand is detected, the ampersand and all characters to
the right of it are taken as the name of an EXEC 2 variable, which is then
replaced by the variable's current value. After a value has replaced a
variable name in a word, the inspection process resumes with the next
character to the left. So, it is possible to use EXEC 2 variables to build the
names of other EXEC 2 variables.

To illustrate, if &X = 1 and &1 = FIRST, the word &&X means &1, which
is replaced by the value FIRST. Suppose the value of &1 is an ampersand
instead of FIRST; then, &&X = = > &1 = = > &. No further substitution
occurs, since there are no more characters of the original word to be
inspected.

In the case of an assignment statement, the inspection of the first word for
ampersands is stopped just before the first character of the line (remember
that characters are examined from right to left). Therefore, the first word
keeps its initial ampersand and remains an appropriate EXEC 2 variable
name. Retention of the initial ampersand of a word also occurs in other
contexts where a variable name is required (the &READ VARS and
&UPPER V ARS statements, for example).

Recall that there are no undefined EXEC 2 variables. If an EXEC variable
has no default or explicitly assigned value, its value is taken to be null (the
character string that has no characters in it, and whose length is zero).

An Example of Generating EXEC 2 Variable Names

Weare now ready to look at an EXEC 2 file that depends on this ability to
use an EXEC 2 variable to build the names of other variables. The
following EXEC, named LFN, uses the CMS command LISTFILE to display
information about all of the files on all accessed disks that have the
filenames (arguments) specified on the command line invoking the EXEC 2
file. Because the number of filename arguments may differ from one use to

Appendix C. EXEC 2 Primer for New Users 93

the next, the EXEC 2 variable &J is used to select the next argument to use
in the LISTFILE command.

&TRACE
&J = 1
-LOOP LISTFILE &&J * * (LABEL
&J = &J + 1
&IF &J <= &N &GOTO -LOOP

Suppose this EXEC 2 file were invoked by the command

LFN NEW OLD

The first time the LISTFILE command is issued, the EXEC 2 variable &J
has the value 1, so &&J = = > &1 = = > NEW and the command passed to
eMS is

LISTFILE NEW * * (LABEL

After the first LISTFILE command, the value of &J is incremented from 1
to 2, and the &IF statement is interpreted. Since there are two arguments,
NEW and OLD, the value of &N is 2, the condition part of the &IF control
statement is true, and the &GOTO statement is executed. Interpretation of
EXEC 2 statements continues with the LISTFILE statement again, but this
time &&J = = > &2 = = > OLD and the command issued is

LISTFILE OLD * * (LABEL

After &J is incremented to 3, the &IF condition is false. So, the &GOTO
statement is not interpreted, and the EXEC 2 file terminates with a return
code of zero. If more than one of the specified filenames is found on a disk,
the output generated by this EXEC 2 is not as pretty as it could be. This is
because the LISTFILE command with the LABEL option produces a title
line each time it is invoked and finds at least one file meeting its argument
pattern. The LABEL option includes further information you may want
about the file specified, for example, the label of the disk on which the file
resides.

The following elaboration of LFN EXEC uses the return code generated by
the LISTFILE command to detect when the title line is first displayed and
uses the NOHEADER option in subsequent LISTFILE commands to prevent
duplicate title lines from being displayed.

&TRACE
&J = 1
-LOOP LISTFILE &&J * * (LABEL &NOHEADER
&IF &RC = 0 &NOHEADER = NOHEADER
&J = &J + 1
&IF &J <= &N &GOTO -LOOP

Since the initial value of &NOHEADER is null, it disappears the first time
the LISTFILE command is interpreted. When the command is successful
(that is, it produces a return code of zero), the EXEC 2 variable
&NOHEADER is given the value NOHEADER, and all subsequent
LISTFILE commands have the NOHEADER option following the LABEL
option.

94 VM/SP EXEC 2 Reference

The &LOOP Control Statement

There is another way of writing the LFN EXEC. The &LOOP control
statement eliminates the need for repetitively interpreting the &IF
statement and searching the file for the label -LOOP:

&TRACE
&J = 1
&LOOP 3 &N

LISTFILE &&J * * (LABEL &NOHEADER
&IF &RC a &NOHEADER = NOHEADER
&J = &J + 1

The &LOOP statement can take several forms. Here, it specifies that the
three lines following the &LOOP statement are to be repeated &N times;
that is, for as many times as there are arguments to the EXEC 2 file. The
statements to be repeated (the scope of the loop) were indented to make it
easier to read the EXEC 2 file.

It is often more convenient to use a label reference in a &LOOP statement
instead of an absolute count of the number of statements to be repeated. In
this case, the label is written in place of the count and the EXEC 2
interpreter determines how many statements to repeat:

&TRACE
&J = 1
&LOOP -END &N

LISTFILE &&J * * (LABEL &NOHEADER
&IF &RC 0 &NOHEADER NOHEADER
-END &J = &J + 1

The label defining the scope of the loop must occur before the end of the
EXEC 2 file or an error is reported. If there is a statement on the same line
as the label, the statement is executed. In this case, the assignment
statement, &J = &J + 1, is the last line of the loop. It is valid to have a
loop count of zero, in which case no statements within the loop are
interpreted. This would happen in the above EXEC if it were invoked with
no arguments.

A loop statement that defines its scope through the use of a label reference
is more resistant to errors than a loop statement that specifies an absolute
number of lines. The label reference avoids a common error: forgetting to
update the line count in a &LOOP statement when a change is made that
alters the number of statements within the scope of the loop.

Making EXEC 2 Files Interact with Users

The more EXEC 2 files you write, the more difficult it is to remember the
correct formats of these new user commands. You can solve this difficulty
by making these EXEC 2 files self-documenting; that is, whenever they are
invoked with incorrect arguments, or with a question mark as an argument,
the EXEC 2 files display a description of the correct command format and
whatever additional description the writer deems appropriate. Such
additional information might be a description of what the file does and how

. Appendix C. EXEC 2 Primer for New Users 95

to use it, or perhaps a reference to a MEMO file or a publication containing
more information. Here is a version of LFN EXEC that is self-documenting:

&TRACE
&IF &N 0 &GOTO -TELL
&IF &N 1 &IF &1 = ? &GOTO -TELL
&J = 1
&LOOP -x &N

LISTFILE &&J * * (LABEL &NOHEADER
&IF &RC = 0 &NOHEADER = NOHEADER
-X &J = &J + 1

&IF /&NOHEADER = / &EXIT 28
&EXIT
-TELL &PRINT FORMAT IS: &FILENAME FN1 FN2 ...
&PRINT USES LISTFILE TO DISPLAY INFORMATION ABOUT
&PRINT ALL FILES WITH FILENAMES FN1, FN2, ETC.
&EXIT 100

The &PRINT control statement directs the EXEC 2 interpreter to display
the words following &PRINT as a line on the user's console. The EXEC 2
interpreter substitutes the appropriate values into the EXEC 2 variables
before displaying the information.

The above version of LFN EXEC generates a nonzero return code, 28, in
any instance where no files were found. Since the EXEC 2 variable
&NOHEADER is already being used to detect a successful invocation of
LISTFILE, you can use &NOHEADER to determine whether any files were
found. If the value of &NOHEADER is null after all the LIFT FILE
commands have been issued, no files were found. It is not possible to
simply write

&IF &NOHEADER ,= NOHEADER &EXIT 28

to determine the value of &NOHEADER. If &NOHEADER is null, a syntax
error in the &IF statement occurs because the &NOHEADER word would
disappear and you are left with

&IF ,= NOHEADER &EXIT 28

A solution for testing the value of an EXEC 2 variable that might be null is
to use some prefix character on both the variable and the value compared
with it. In the case of LFN EXEC, the slash is that prefix, and the two
statements that can result after substituting for the variable &NOHEADER
are:

&IF /NOHEADER / &EXIT 28

or

&IF / = / &EXIT 28

For success, &NOHEADER = NOHEADER; for failure, &NOHEADER is
null.

All of the previous EXEC 2 files have used only the arguments provided on
the command line to determine what function they would perform.

96 VM/SP EXEC 2 Reference

/

You can also write an EXEC that interacts with you - displaying prompting
messages on the console and reading instructions or values that are typed
in. Before showing an example with this interaction, let's discuss the
&READ control statements.

Data is read from the console using the &READ control statement. A
&READ statement may read one input line and assign it to a single EXEC 2
variable:

&READ STRING &S

&S contains the entire text of the input line, including all blanks.

Alternatively, the input line can be separated into words and each word
assigned to an EXEC 2 variable:

&READ VARS &FIRST &SECOND &THIRD &FOURTH

The first word of the input line is assigned to the variable &FIRST, the
second word is assigned to the variable &SECOND, etc. If there are more
variables than words in the input line, those variables remaining after all
words have been used are assigned the null value. If there are more words
than variables, the extra words are ignored.

If you don't know how many words will be on an input line, it is often
convenient to use the statement:

&READ ARGS

This statement assigns the words in the input line to the EXEC 2 variables
&1 &2 &3 ... etc. The predefined variable &N is assigned to the number of
words (arguments) in the input line. All of the prior values for &1 &2 ...
etc. are lost when this is done. So, remember to assign any EXEC 2
argument variables that may be needed later to other EXEC 2 variables
before interpreting a &READ ARGS statement. The predefined variable
&ARGSTRING is not affected by a &READ ARGS statement. Its value
continues to be the original argument string passed to the EXEC 2 file, or
whatever value the user last gave it in an assignment statement.

It is possible to read lines from the console and interpret them as EXEC 2
statements using the form:

&READ n

"n" is the number of lines to read. If no explicit number of lines is given,
only one line is read. An asterisk (*) may be used in place of a number to
denote that statements are to be 'read from the console until a statement
which modifies sequential processing of lines is interpreted (&EXIT,
&GOTO, &SKIP, etc.).

It is easy to test the effect of various EXEC 2 statements by using th~ file:

&TRACE ALL
&READ *

Appendix C. EXEC 2 Primer for New Users 97

which reads statements from your console and traces their interpretation.

Here is a modified version of the LFN EXEC. It interacts with you and
contains the &READ control statement.

&TRACE
&PRINT ENTER THE FILENAME YOU ARE INTERESTED IN
&PRINT OR PRESS ENTER TO EXIT.
&PRINT
&READ ARGS
-LOOP

&PRINT
LISTFILE &1 * * (LABEL
&PRINT
&IF &RC = 28 &PRINT THIS FILE DOES NOT EXIST.
&PRINT ENTER ANOTHER FILENAME YOU ARE INTERESTED IN
&PRINT OR PRESS ENTER TO EXIT.
&PRINT
&READ ARGS
&IF &N ,= a &GOTO -LOOP

&EXIT

The first two print statements tell you what information you must input.
The statement, &PRINT, just leaves a blank space on the console. This is
just to make the screen neater.

&READ ARGS reads the filename you entered and assigns it to the variable
&1.

-LOOP is a label signalling the beginning of the loop.

The CMS LIST FILE command displays information about the file that is
specified in variable &1. The LABEL option includes further information
you may want to know about the file specified, for example, the label of the
disk on which the file resides.

The statement, &IF &RC = 28, checks the return code from the LISTFILE
command. If the return code equals 28, you receive a message that the file
entered does not exist.

The next two &PRINT statements ask you if you want to inquire about any
other file.

&READ ARGS again reads the filename or null character you entered and
assigns it to &1.

The statement, &IF &N I = 0 &GOTO -LOOP, checks if you entered
another filename or a null character. &N is the number of arguments set.
Therefore, if &N = 0, no filename was entered and you exit the EXEC.

98 VM/SP EXEC 2 Reference

/

',,--- .

Using the &CASE Control Statement

When CMS or CP reads a command line, it translates the command line
into uppercase before interpreting it. When a program, such as the EXEC 2
interpreter, reads a console input line, it chooses whether or not to
translate to uppercase. The EXEC 2 control statement

&CASE M

instructs the EXEC 2 interpreter to read subsequent input lines in mixed
case (uppercase and lowercase combined) while

&CASE U

requests translation into upper case. &CASE U is the initial setting when
the EXEC 2 interpreter starts processing an EXEC 2 file.

Here is an example to show you how the &CASE control statement works.

&TRACE
&TYPE ENTER YOUR NAME:
&CASE M
&READ VARS &NAME
&TYPE &NAME
&EXIT

The above EXEC prompts you to enter your name. If you enter your name
using uppercase and lowercase characters, such as:

Sue

the result is:

Sue

However, if the "&CASE M" control statement is removed and you enter
your name:

Sue

the result is:

SUE

Appendix C. EXEC 2 Primer for New Users 99

/'

100 VM/SP EXEC 2 Reference

(
"'-----

Appendix D. Writing Editor Macros

The macro language is one of the most powerful facilities that the editor
provides. By writing macros, you can:

• Expand the basic subcommand language
• Expand the prefix subcommand language
• Tailor the language to your own application
• Eliminate repetitive tasks.

This chapter explains how to write an XEDIT macro using the EXEC 2
language.

What is an XEDIT Macro?

An XEDIT macro is an EXEC file that is invoked from the XEDIT
environment.

(A macro may also be written using the Restructured Extended Executor
(REXX) language. However, all examples in this chapter use the EXEC 2
language.)

You execute a macro the same way you execute XEDIT subcommands: type
the macro name on the command line (or the prefix area) and press the
ENTER key. A macro may be executed by entering only its name (or
synonym). The execution of the macro may also depend on arguments you
enter when it is invoked.

A macro file can contain:

• XEDIT subcommands
• EXEC 2 control statements
• CMS and CP commands.

Appendix D. Writing Editor Macros 101

Creating a Macro File

Because an XEDIT macro is a normal CMS file, it may be created in any of
the ways that CMS provides for file creation. It can even be created
dynamically, by using the XEDIT multiple file editing capability (see
VM/SP System Product Editor User's Guide). As soon as a FILE
subcommand is executed for the macro file, the macro can be used.

Like any CMS file, a macro file is identified by filename, filetype, and
filemode. The file identifier for a macro file must follow certain rules:

• For macros entered from the command line, the filename is a string of
one to eight alphameric characters. This name is used to invoke the
macro. For example, if the filename is SEND, entering "SEND" during
an editing session causes the macro to be executed.

Prefix macro filenames may be one to eight characters, but they may
not contain numbers. (Because the prefix area is only five positions
long, you can define a synonym for a prefix macro filename that is
longer than five characters. For more information on defining
synonyms for prefix macros, see VM/ SP System Product Editor
Command and Macro Reference.)

G The filetype must be XEDIT.

• The filemode can specify any of your accessed disks, for example, AI.

Using XEDIT Subcommands in a Macro

A macro can contain any XEDIT subcommand, with the following
exceptions: prefix macros cannot contain READ, QUIT, FILE, and
LPREFIX. However, some subcommands perform functions that are
meaningful only in the context of a macro, for example, one that passes
information to the EXEC 2 interpreter.

When EXEC 2 interprets a file not having a filetype of EXEC, it starts with
a &SUBCOMMAND presumption of the filetype, in this case XEDIT.
Therefore, you do not have to preface XEDIT subcommands in an XEDIT
macro with "&SUBCOMMAND XEDIT", unless the default
&SUBCOMMAND presumption has been explicitly changed. It is
necessary, however, to preface regular CMS commands with
"&COMMAND" if they are not to be passed to XEDIT. XEDIT macros do
not require an initial &TRACE statement to indicate that they should be
interpreted by the EXEC 2 interpreter because that is indicated by the way
in which XEDIT invokes the EXEC 2 program.

To illustrate just how simple an XEDIT macro can be, consider the case
where it is desired to replace lines that currently contain:

.SK 3

102 VM/SP EXEC 2 Reference

',,----

with the three lines:

.SK

.CE ----------

.SK

This can be done using the XEDIT commands:

FIND .SK 3
REPLACE .SK
INPUT .CE ---------­
INPUT .SK

If those commands are put into a file named REPSK XEDIT, they may be
executed by simply entering the command

REPSK

in the XEDIT environment. Of course, this only affects the next occurrence
of the ".SK 3" line. All occurrences could be changed by writing a loop in
the XEDIT macro:

FIND .SK 3
&LOOP 4 UNTIL &RC ,= 0

REPLACE .SK
INPUT .CE ---------­
INPUT .SK
FIND .SK 3

Note that you can take advantage of the fact that XEDIT sub commands
generate return codes indicating their success or failure much like regular
CMS commands. In this example, the FIND command generates a return
code of zero if it succeeds in finding the specified text, and a return code of
one if it fails.

The above example contains all uppercase data, but it may be necessary to
process mixed case data in XEDIT macros. EXEC 2 statements may be
written in whatever case you desire, but control words such as &LOOP and
predefined variables such as &RC must be in uppercase. Variables to which
you assign values, such as &X or &ZILCH, may be written in uppercase or
lowercase, but remember that &ZILCH and &zilch are two distinct
variables. Likewise, &LOOP is an EXEC 2 control word, but &loop is a
variable. You can use variables such as &JuGGerNauT if you like pressing
the shift key.

Suppose you want to use the REPSK XEDIT file for lines starting with .SK
2, or .SK 3, or .sp 3, etc. You can use two arguments to define the lines you
are interested in finding, as follows:

FIND &1 &2
&LOOP 4 UNTIL &RC ,= 0

REPLACE .SK
INPUT .CE ---------­
INPUT .SK
FIND &1 &2

This works fine, but the question of case rises again. If the editor is
operating in CASE U, it translates input commands into uppercase before

Appendix D. Writing Editor Macros 103

invoking an XEDIT macro. Therefore, if a REPSK .sp 3 command is to
work properly (meaning it is to look for ".sp 3," not ".SP 3"), it must be
entered while XEDIT is in mixed case mode. XEDIT allows a second
argument on a CASE subcommand, indicating whether locate and find
operations may "RESPECT" or "IGNORE" the case when comparing
characters. Using the "IGNORE" value produces a different effect than the
above macro, because REPSK .sp 3 would find lines starting with any of
these: ".sp 3," ".sP 3," ".Sp 3," ".SP 3."

Handling Embedded Blanks

If you wanted to find a line starting with the, words" .SK" and "3" separated
by two blanks, the above macro would fail. When EXEC 2 prepares a
command, it builds a parameter list by concatenating all the words of the
command (after variable substitution) with a single blank between words.
If a word is null (that is, it has zero characters in it), the word and its
delimiting blank disappear from the command.

To handle a case having two blanks between words, rewrite REPSK XEDIT
using the predefined variable &ARGSTRING. This variable has an initial
value of the entire string of arguments passed to the EXEC file. This string
does not include the command name used to invoke the EXEC file, nor the
blank separating it from the argument string. It does include all blanks
separating the argument words, plus any additional blanks preceding or
following those words.

&C = &CONCAT OF FIND &BLANK &ARGSTRING
&C
&LOOP 4 UNTIL &RC ~= a

REPLACE .SK
INPUT .CE ---------­
INPUT .SK
&C

The idea here is to build the XEDIT command you want, with blanks
exactly where you want them, as the value of an EXEC 2 variable. Then,
the FIND command is represented as a single word, and you avoid any
difficulties stemming from the combination of several words to form a
command. To build the FIND command, use the predefined function
&CONCAT OF, whose value is the string obtained by placing all of its
argument values (after variable substitution) side by side without any
intervening blanks. Since you need one blank to separate the FIND XEDIT
command from its operand, that blank is included by explicitly using the
predefined variable &BLANK, whose value is a single blank character.

Actually, it really wasn't necessary to build the FIND command quite so
carefully. It would work equally well using FIND &ARGSTRING, but the
method displayed above is more general, and can be used to build any
possible command.

104 VM/SP EXEC 2 Reference

\
"'--- -

Avoiding Name Conflicis

Use the MACRO subcommand to cause the editor to execute a specified
macro without first checking to see if a subcommand of the same name or a
synonym exists. (This cannot be used for prefix macros.)

When a subcommand has a number as its operand, a blank is not required
between the subcommand name and the operand. For example, both
"NEXTS" and "NS" are interpreted by the editor as being the subcommand
"NEXT S". Therefore, if a macro name were also "NS", the macro would
not be executed; the subcommand "NEXT S" would be executed instead. To
execute the macro, you could enter the following:

MACRO N8

The macro whose name is "NS" would then be executed.

The SET MACRO subcommand can be used to control the order in which
the editor searches for subcommands and macros. SET MACRO ON tells
the editor to look for macros before it looks for subcommands; SET MACRO
OFF reverses the order.

Walking Through An){IED~l Macro

The following XEDIT macro, whose filename is GLOBCHG, is an example of
a macro you may write to make life a little easier. The application is
typical of a text processing file arrangement, where many SCRIPT files are
imbedded in a master file, via the SCRIPT control word" .IM".

The problem with this type of setup is that if you have to make a global
change throughout all the files, you have to edit each file, make the
change, and then file each file.

When issued from the master file, the GLOBCHG macro edits each file,
performs a global change, and files it.

The macro is invoked by entering the macro name, GLOBCHG; the
arguments passed to the macro are the old data and the new data, enclosed
in delimiters:

GLOBCHG /stringl/string2/

For example, if a file called MASTER SCRIPT contains:

.IM FILEl

.lM FlLE2

.lM FlLE100

and the following commands are issued:

Appendix D. Writing Editor Macros 105

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037

XEDIT MASTER SCRIPT
GLOBCHG /WAR AND PEACE/SENSE AND NONSENSE/

"WAR AND PEACE" is changed to "SENSE AND NONSENSE" each time
it occurs in every file. (In this macro, no attempt is made to execute the
change on files that may be imbedded at the next level.)

The GLOBCHG macro can also be used to delete data throughout the files,
by changing a string to a null string. For example:

GLOBCHG /bad data//

The following is a listing of the macro, whose fileid is GLOBCHG XEDIT
AI. After the listing, each line in the macro is explained.

** ENTER THE OLD STRING YOU WANT CHANGED AND THE **
** STRING YOU WANT IT CHANGED TO. ENTER IT IN **
** THE FORM: **
** /STRING1/STRING2/ **

&IF &N = 0 &GOTO -MISSING
&OPERAND = &ARGSTRING
PRESERVE
SET MSGMODE OFF
TOP
FIND .IM
&IF &RC ,= 0 &GOTO -NO IMBED
-LOOP
STACK 1
&READ ARGS
&COMMAND STATE &2 SCRIPT *
&IF &RC = 0 &SKIP 2

&TYPE IMBEDDED FILE ' &2 SCRIPT ' DOES NOT EXIST; BYPASSED
&GOTO -ENDLOOP

XEDIT &2 SCRIPT (NOPROFILE
EXTRACT /FNAME/FTYPE/FMODE/
&TYPE PROCESSING FILE' &FNAME.l &FTYPE.l &FMODE.l '
CHANGE &OPERAND * *
&IF &RC ,= 0 &TYPE NO CHANGES OCCURRED IN ' &FNAME.1 &FTYPE.l '
FILE
-ENDLOOP FIND .IM
&IF &RC = 0 &GOTO -LOOP
RESTORE
&EXIT
-NO IMBED
RESTORE
EMSG NO IMBED FOUND.
&EXIT
-MISSING EMSG EXE545E MISSING OPERAND(S)
CMSG 0
&EXIT

Figure 1. A Sample Macro: GLOBCHG

00001 ***
00002 ** ENTER THE OLD STRING YOU WANT CHANGED AND THE **
00003 ** STRING YOU WANT IT CHANGED TO. ENTER IT IN **
00004 ** THE FORM: **
00005 ** /STRING1/STRING2/ **
00006 ***

106 VM/SP EXEC 2 Reference

I

~/

Statements 1 through 6 are comments describing the arguments to this
EXEC.

00007 &IF &N = 0 &GOTO -MISSING

If the number of arguments you passed to the macro (&N) is zero, go to the
statement labeled "-MISSING" where an error message is issued.
Obviously, this macro cannot work unless you tell it what to change.

00008 &OPERAND = &ARGSTRING

The user-defined variable (&OPERAND) is assigned the value of the
argument string (&ARGSTRING) passed to the macro. (The argument
string contains the old data string you want changed and the new data
string you want it changed to.)

The next four statements in the macro are XEDIT subcommands:

00009 PRESERVE

This subcommand saves the editor settings until a subsequent RESTORE
subcommand is issued (statement 32).

00010 SET MSGMODE OFF

No messages will be displayed. By turning the message mode on and off,
you can select which messages you want displayed. Message mode is set
OFF here to prevent messages from the FIND subcommand (statement 12)
from being displayed, because the macro issues its own message (statement
33) if no imbedded files are found.

00011 TOP

Moves the line pointer to the top of the master file - the file where the
macro was invoked.

00012 FIND .IM

Searches forward in the master file for the first line that contains" .IM" in
column 1; that is, locate the first line that imbeds a file.

00013 &IF &RC ,= 0 &GOTO -NOIMBED

If there is a non-zero return code from the FIND subcommand (statement
12), go to the statement labeled "-NOIMBED". This situation occurs if no
".IM" statements are found in the master file.

Statements 14 through 26 are the major loop in the macro. The global
change is made on each imbedded file in this loop.

00014 -LOOP

This is the statement label that begins the loop.

00015 STACK 1

Appendix D. Writing Editor Macros 107

When the FIND subcommand (statement 12) locates a ".IM filename"
statement in the master file, it makes that line the current line. This
STACK subcommand places the current line in the program stack, so that
its contents can be read by the following statement.

00016 &READ ARGS

This statement reads a line from the program stack and assigns the
arguments to &1, &2, &3,

00017 &COMMAND STATE &2 SCRIPT *

The STATE command is a CMS command that verifies the existence of a
file. This statement checks to see if the file named in the ".1M filename"
statement exists. (EXEC 2 transmits the STATE command directly to
CMS.)

00018 &IF &RC = 0 &SKIP 2

If the return code from the STATE command is zero, the file exists.
Therefore, skip down to statement 21. If it is not zero, execute the next two
statements (19-20), which comprise "file not found" processing.

00019
00020

&TYPE IMBEDDED FILE ' &2 SCRIPT ' DOES NOT EXIST; BYPASSED.
&GOTO -ENDLOOP

Statement 19 issues a message - the file, &2 SCRIPT, imbedded in the
master file does not exist. Statement 20 branches to the statement label
that begins the FIND loop again.

00021 XEDIT &2 SCRIPT (NOPROFILE

The XEDIT subcommand brings the imbedded file into virtual storage. The
NOPROFILE option forces the editor not to execute the default PROFILE
XEDIT macro.

00022 EXTRACT /FNAME/FTYPE/FMODE/

This form of the EXTRACT command places the filename, filemode, and
filetype of the imbedded file into variables: &FNAME.1, &FTYPE.1,
&FMODE.1, respectively. See "Using the XEDIT EXTRACT Subcommand"
for further information on the EXTRACT subcommand.

00023 &TYPE PROCESSING FILE' &FNAME.1 &FTYPE.1 &FMODE.1 '

Displays a message to let you know which file is being processed.

00024 CHANGE &OPERAND * *

The global change on one of the imbedded files. (The argument string you
entered when the macro was invoked was assigned to &OPERAND in line 8.
The change statement is in the form: CHANGE /string1/string2/ * *)

00025 &IF &RC ,= 0 &TYPE NO CHANGES OCCURRED IN ' &FNAME.1 &FTYPE.1 '

108 VMjSP EXEC 2 Reference

I

~-_/

If the change occurs, the return code from the CHANGE subcommand is O.
This statement checks the return code. If the return code is 0, a message is
printed.

00026 FILE

The changed file is written to disk.

00027 -ENDLOOP FIND .IM

Then, the editor resumes editing the master file, searching for the next" .IM
filename" statement.

00028 &IF &RC = 0 &GOTO -LOOP

If the FIND (statement 27) is successful, go through the loop again.

00029 RESTORE

If the FIND (statement 27) is not successful, restore the settings of XEDIT
variables to the values they had when the PRESERVE subcommand was
issued (statement 9).

00030 &EXIT

Return control to the editor; you can then issue a QUIT subcommand for
the master file.

00031 -NO IMBED
00032 RESTORE
00033 EMSG NO IMBED FOUND.
00034 &EXIT

Statements 31 through 34 are executed if no ".IM" statements were found in
the master file.

00035 -MISSING EMSG EXE545E MISSING OPERAND(S)

This message is displayed in the message line if no arguments, which are
required, were entered when the macro was invoked. It is a branch from
statement 7.

00036 CMSG 0

In addition, the macro name (GLOBCHG) is displayed in the command line,
so that you can type the arguments (string1 string2) and press the ENTER
key to invoke the macro again.

00037 &EXIT

The end.

Appendix D. Writing Editor Macros 109

Using the XEDIT EXTRACT Subcommand

Notice in line 23 of Figure 1 on page 106 the variables &FNAME.1,
&FTYPE.1, and &FMODE.1 appear. These variables are created as a result
of the XEDIT EXTRACT subcommand. The EXTRACT subcommand is an
extended form of the XEDIT TRANSFER subcommand. Let's compare the
two subcommands.

The statement

TRANSFER FNAME FTYPE FMODE

puts the filename, filetype, and filemode of the file being edited into the
program stack.

The statement

EXTRACT /FNAME/FTYPE/FMODE/

puts the filename, filetype, and filemode of the file being edited into the
newly created variables &FNAME.1, &FTYPE.1, and &FMODE.1,
respectively.

The EXTRACT subcommand creates similar variables for all operands
available to the subcommand. See VM/ SP System Product Editor Command
and Macro Reference for more details on the EXTRACT subcommand.

Writing Prefix Macros

You can write prefix macros for a variety of purposes - from performing a
function from the prefix area that is normally accomplished by entering a
subcommand .on the command line to creating an entirely new function.

What Information is Passed to the Macro?

An argument string is automatically passed to a prefix macro when it is
invoked. It can supply a macro with information critical to its execution,
like the line number of the prefix area in which the macro was entered.

The format of the argument string is as follows:

PREFIX SETISHADOWICLEAR pline [opl[op2[op3]]]

where:

PREFIX

SET
indicates that this is a prefix call.

indicates that the prefix macro was entered on some line in the file
displayed.

110 VM/SP EXEC 2 Reference

/'

I
I

\
"--

SHADOW
indicates that a prefix macro was entered on a shadow line (see SET
SHADOW in the VM/ SP System Product Editor Command and Macro
Reference).

CLEAR
indicates that a new prefix subcommand or macro or new blank area
replaces a previously pending prefix subcommand or macro on the
same line, or the RESET subcommand was entered. In this case, this
macro is invoked with "PREFIX CLEAR pline".

pline
is the line number on which the prefix macro was entered.

op1 op2 op3
are the optional operands of the macro, entered either to its left or
right (for example, 5M or M5).

Creating a Sample Prefil{ Macro

Let's create a prefix macro, with filename U and filetype XEDIT, that
translates one or more lines in a file to uppercase, which normally is
accomplished by issuing the UPPER CAS subcommand in the command line.
When U is entered in the prefix area of a line, that line is translated to
uppercase. A number may be specified before or after the U to translate
more than one line; for example, 3U = = = or = U5 = =.

The U prefix macro may look like this:

00001 &PLINE = &3
00002 &OP = &4
00003 &IF .&OP =. &OP = 1
00004 COMMAND :&PLINE UPPERCAS &OP
00005 &EXIT

Figure 2. A Sample Prefix Macro: U

00001 &PLINE &3
00002 &OP &4

Lines 1 and 2 assign the arguments to specific variables. &3 is set to the
line number the prefix macro was entered on, and &4 is set to any operand
that is passed.

00003 &IF .&OP &OP = 1

Line 3 determines if an operand was entered. If the operand is null, a
default of 1 is assumed.

00004 COMMAND :&PLINE UPPERCAS &OP

Line 4 uses :&PLINE to make the line in which the prefix macro was
entered (&PLINE) the new current line, and then issues the UPPER CAS
subcommand with the operand, &OP. &OP is the number of lines to be put
in uppercase.

Appendix D. Writing Editor Macros 111

Current Line Positioning

For example, if "U8" was entered in the prefix area of line 3 of a file, &0
would be "U", &PLINE would be "3", and &OP would be "8". Then, the
next eight lines, including the current line, would be put in uppercase.

Note that in line 6, &PLINE is an absolute line number target. It is used to
make the prefix line the current line because the UPPER CAS subcommand
translates all lowercase characters to uppercase, starting at the current
line.

When a prefix macro is finished executing, the current line is returned
automatically to the line that was current when it began execution.
Therefore, even though line &PLINE is made current for the UPPER CAS
subcommand, the macro need not restore the current line.

112 VM/SP EXEC 2 Reference

'-

I
\
"-----

AppendiJ! IE. Useful lE){lEC 2 Techniques

The following illustrations exhibit solutions to some EXEC programming
problems. There has been no attempt to present a comprehensive catalog of
solutions. The objective is to give the reader some insight into the
possibilities inherent in the EXEC 2 functions.

1. The statement

& = &DATATYPE OF +&1

sets & to 'NUM' if, and only if, &1 contains an unsigned integer.

2. If &J is an unsigned integer not exceeding 99999999, the statement

&J = &RIGHT OF OOOOOOO&J 8

extends it with leading zeros to a total length of 8.

3. A string of any number of blanks, 23 for example, can be created by:

&B23 = &LEFT OF &BLANK 23

A string of some character other than blanks, asterisks for example, is
easily obtained from the string of blanks by using the &TRANSLATION
OF predefined function:

&*23 = &TRANSLATION OF &B23 &BLANK *

4. Suppose a multi-way branch is desired, based on an argument value
supplied by the caller and currently in &1. However, the value of &1
must first be tested to verify it is valid -- that is, its value is either A, B,
or C. (You can expand this example to handle more than three cases.)

Appendix E. Useful EXEC 2 Techniques 113

&TRACE
& = &POSITION OF &1 ABC
&IF & ,= a &GOTO -&1
&TYPE INVALID CASE: &1
&EXIT
-A &TYPE THIS IS CASE A

&EXIT
-B &TYPE THIS IS CASE B

&EXIT
-C &TYPE THIS IS CASE C

&EXIT

5. The statement

& = &LOCATION OF /&1 //PRINT

sets & to 2 if, and only if, &1 contains the word "PRINT" or an
abbreviation for it. Note that & would have the value 1 if &1 is null.

6. Suppose &1 is as given on entry, and is, therefore, known not to contain
any blanks. Then the following sequence transfers control to the label
-BLUE if &1 contains the word "BLUE" or an abbreviation for it, to the
label -GREEN if &1 contains the word "GREEN" or an abbreviation for
it, ... , or to the label -ERR if &1 is null or does not contain a color or an
abbreviation therefore.

&X = &LITERAL OF ERR /ERR /BLUE /GREEN /RED /YELLOW
& = 1 + &LOCATION OF /&1 &X
& = &PIECE OF &X &
&STACK LIFO &GOTO -&
&READ

The first statement assigns to &X the string containing all of the
expected labels prefaced with / and separated by blanks. In addition,
the first word (ERR) is included in case the value of &1 does not appear
in &X, and the second word (fERR) is included in case the value of &1 is
null. The third statement assigns to & that part of &X starting with the
desired label. A &GOTO statement is then stacked. This statement is
read and interpreted by the last, &READ statement. When the stacked
line is read, it is broken into words and examined in the ordinary way,
so the desired label becomes the &GOTO operand, and any surplus data
from the original value of &X is treated as a comment.

7. The argument values are to be assigned to the variables &Xi, for i = 1,
2, ... , &N. The object of this is to make it possible to reuse the numeric
variables without losing access to the current arguments. Calling a
user-defined function which needs the argument values that existed
before the function was invoked illustrates such a need.

114 VMjSP EXEC 2 Reference

&S = &RANGE OF & 1 &N
&STACK LIFO &S
&S = &RANGE OF *X 1 &N
&S = &TRANS OF &S * &
&STACK LIFO &READ VARS &S
&READ

The first line constructed a string from the argument values &1 &2 ...
&&N that are separated by blanks, and the second line stacks the
string. A corresponding string of variable names is then created in two
steps. First, a string of words *X1 *X2 ... *X&N. is built, then all of the
asterisks in that string are translated to ampersands. The string of
variable names is used when stacking a &READ V ARS statement. The
final statement causes the just stacked &READ VARS statement to be
read and interpreted by EXEC 2. When executing this statement, the
previously stacked argument values are read and assigned to &X1, &X2,
... , &X&N. Note that use of & as a temporary variable is avoided so
that its predefined value (ampersand) will be available as an argument
to &TRANS OF.

If only a (contiguous) subset of the current arguments are to be
transferred to the variables &Xi, the arguments to &RANGE OF may be
adjusted as required. If the values of the original arguments, instead of
the current argument values, were desired, the first two lines could be
replaced with:

&STACK LIFO &ARGSTRING

8. To verify that a value is a valid hexadecimal number (contains no
characters other than the digits 0-9 and the letters A-F):

& = &TRANS OF &HEXNUM 0123456789ABCDEF
&IF 1& ,= I &GOTO -BADHEX

The first statement uses &TRANSLATION OF to translate all valid
characters in &HEXNUM into blanks. Then, the &IF condition
succeeds only if the translation contained something other than blanks
(since the shorter word is extended with blanks for purposes of
comparing the two strings). This corresponds to the presence of one or
more untranslated (that is, invalid) characters in &HEXNUM.

This scheme works only if it is known that there are no blanks
embedded in &HEXNUM, or if blanks are acceptable characters. The
following modification detects embedded blanks as invalid characters:

&Z = &CONCAT OF &BLANK 0123456789ABCDEF
& = &TRANS OF &HEXNUM &Z *
&IF /& ,= I &GOTO -BADHEX

Here, a blank in &HEXNUM is explicitly translated into an asterisk so
that it forces the subsequent comparison to fail.

9. The following EXEC file is useful when it is necessary to extract
information delimited by parentheses within a string. Blanks and
nested parentheses are retained, so P AREN EXEC may be invoked
multiple times when there are nested parentheses. The result is two

Appendix E. Useful EXEC 2 Techniques 115

lines put into the program stack. The first line in the program stack
contains all characters of the original argument string except the first
left parenthesis, the characters following it to the matching right
parenthesis, and that right parenthesis. The 'second line in the program
stack contains the data excised from the first line without the
delimiting parentheses, but includes any nested parentheses.

&TRACE
&A = &ARGSTRING
& = -1 + &LOCATION OF (&ARGSTRING
&IF & < a &GOTO -END
&A = &PIECE OF &ARGSTRING 1 &
& = & + 2
&B = &PIECE OF &ARGSTRING &
&IF .&B EQ. &GOTO -END
& = 1 + -NESTED OF 1
&Z = &PIECE OF &B &
&A = &CONCAT OF &A &Z
& = & - 2
&B = &PIECE OF &B 1 &
-END &STACK LIFO &A
&STACK LIFO &B
&EXIT
* Recursive subroutine to balance parentheses.
* &1 = index into string &B where search is to start.
* Returns index into &B of matching).
-NESTED &ARGS &1 a a a
&LOOP -x *

&2 &PIECE OF &B &1
&3 = &LOCATION OF) &2
&4 = &LOCATION OF (&2
&IF &4 ,= a &IF &4 < &3 &SKIP 3

&IF &3 = a &3 = 1 + &LENGTH OF &2
&3 = &1 + &3 - 1
&RETURN &3

&2 = &1 + &4
-x &1 = 1 + -NESTED OF &2

This implementation of P AREN illustrates the use of a recursive
user-defined function. Notice the &ARGS statement at the beginning of
-NESTED which creates three local variables (&2, &3 and &4) each time
the function is entered. This automatically associates a unique group
of EXEC variables with every invocation of the function (in addition to
the function's explicit arguments). Because these variables are unique
to an individual invocation of the user-defined function, they are
guaranteed not to conflict with any other EXEC variable name.
Actually, in this instance the technique is not necessary. The &ARGS
statement could be eliminated, and the variables &2, &3, and &4
renamed &S, &L, and &R, without introducing an error. An error
would occur only if a subsequent modification of the EXEC file
introduced one of those variable names outside of the -NESTED
function.

116 VM/SP EXEC 2 Reference

/

The following version of P AREN EXEC illustrates an alternative
implementation which doesn't use a user-defined function:

&TRACE
&A = &ARG8TRING
& = -1 + &LOCATION OF (&ARG8TRING
&IF & < 0 &GOTO -END
&A = &PIECE OF &ARG8TRING 1 &
& = & + 2
&B = &PIECE OF &ARG8TRING &
&IF .&B EQ. &GOTO -END
&LP = 1
& = 1
&LOOP -x UNTIL &LP = 0

&8 = &PIECE OF &B &
&R = &LOCATION OF) &8
&IF &R = 0 &GOTO -END
&L = &LOCATION OF (&8
&IF &L ,= 0 &IF &L < &R &SKIP 3

& = & + &R
&LP = &LP - 1
&GOTO -x

& & + &L
&LP = &LP + 1
-x

&Z = &PIECE OF &B &
&A = &CONCAT OF &A &Z
& = & - 2
&B = &PIECE OF &B 1 &
-END &STACK LIFO &A
&8TACK LIFO &B
&EXIT

Appendix E. Useful EXEC 2 Techniques 117

/'

118 VM/SP EXEC 2 Reference

Summary of Changes

Summary of Changes
for SC24-5219-3
for VM/SP Release 5

M isce llaneous
No technical changes have been made to this book.

The contents of the front and back matter of this book has been changed to
make it compatible with the rest of the VMjSP library (for example, the Table
of Contents now begins on page v throughout the library).

Summary of Changes
for SC24-5219-2
for VM/SP Release 3

EXECOS
The CMS EXECOS command can be invoked within an EXEC for OS reset and
VSAM clean-up.

M isce llaneous
The appendix comparing the CMS EXEC language and the EXEC 2 language
has been removed.

Examples have been added to the "Control Statements" section and the
"Predefined Functions" section.

A new appendix, "Appendix D: Writing Editor Macros," has been added. It
describes how to write XEDIT macros and XEDIT prefix macros.

"Chapter 4: BNF Description of the EXEC 2 Syntax," has been expanded.

Minor technical and editorial changes have been made throughout this
publication.

Sumnlary of Changes
for SC24-5219-1
for VM/SP Release 2

Variable Sharing
Programs called from an EXEC 2 file can now directly access and manipulate
all variables contained in that EXEC 2 file through an EXEC 2 facility called
EXECCOMM. Variables can also be assigned values as a side-effect of
command or subcommand execution.

Summary of Changes 119

New Pre-defined Variable
The pre-defined variable &CMDSTRING is initialized to the untranslated
command string available from the command line.

120 VM/SP EXEC 2 Reference

Bibliography

Prerequisite Publications:

Virtual Machine/System Product: Introduction, GC19-6200

Corequisite Publications:

Virtual Machine/ System Product: System Messages, SC19-6204

Virtual Machine/System Product: CMS User's Guide, SC19-6210

Virtual Machine/ System Product: CMS Command Reference, SC19-6209

Virtual Machine/System Product: System Product Editor User's Guide,
SC24-5220

Virtual Machine/ System Product: System Product Editor Command and Macro
Reference, SC24-5221

System/370 Reference Summary, GX20-1850

Bibliography 121

The vrv~/SP Library (Pert 11 of 3)

Evaluation Index
'/ '/ '/

General Introduction Library
Information Guide.

Glossary. and
Master Index

GC20-1838 GC19-6200 GC19-6207 I I I

Planning Installation
'/ / '/ / ~/

Planning Running Release 5 Distributed Installation
Guide and Guest Guide Data Guide
Reference Operating Processing

Systems Guide

SC19-6201
I

SC19-6212 V SC24-5290 V SC24-5241 V SC24-5237 V

Applications Operation
'/ '/ '/

Application Programmer's Operator's
Development Guide to the Guide
Guide SRPI

for VM/SP

SC24-5247 / SC24-5291 V SC19-6202 I

Reference Summaries To order all of the Reference Summaries. use order number SBOF-3242

Commands
(General User)

SX20-4401

CMS Primer
Summary of
Commands

SX24-5151

Commands
(Other than
General User)

SX20-4402

CMS Primer
Line-Oriented
Summary of
Commands

SX24-5159

122 VM/SP EXEC 2 Reference

SP Editor
Command
Reference
Summary

SX24-5122

Problem
Solving and
Reporting
Summary
(Poster)

SX24-5171

EXEC 2 Sys.Prod
Reference Interpreter
Summary Reference

Summary

SX24-5124 SX24-5126

Summary of
End Use
Tasks and
Commands
(Poster)

SX24-5173

Tha "M/SP Library (Part 2 of 3)

End Use
'/ '/ '/ '/ '/ '/

Terminal CMS CMS Primer CMS CMS CMS
Reference Primer for Line- User's Command Macros and

Oriented Guide Reference Functions
Terminals Reference

GC19-6206 I SC24-5236 1I SC24-5242 1I SC19-6210 1I SC19-6209 V SC24-5284 V

;' ;' / ;' "/ "/

System System System System EXEC 2 CP
Product Product Product Product Reference Command
Editor Editor Interpreter Interpreter Reference
User's Guide Command and User's Guide Reference

Macro
Reference

SC24-5220
I

SC24-5221
1I SC24-5238

I
SC24-5239

I
SC24-5219

V
SC19-6211

V

';'

Quick
Reference

SX20-4400
IL--____ ---'V

Diagnosis
L ;' ;' ;' '/ /

System System Service Problem VM GCS
Messages Messages Routines Reporting Diagnosis Diagnosis
and Codes Cross- Program Guide Guide Reference

Reference Logic

SC19-6204 I
SC24-5264

'V LY20-0890 1I SC24-5282 I LY24-5241 I LY24-5239 I

';' "/ CL ;' '/

Problem Data Areas Problem Data Areas OLTSEP VM
Determination and Control Determination and Control and Error Problem
Vol. 1 (CP) Blocks Vol. 2 (CMS) Blocks Recording Determination

Vol. 1 (CP) Vol. 2 (CMS) Guide Reference
Information

LY20-0892 LY24-5220 LY20-0893 LY24-5221 SC19-6205 LX23-0347
V 'V 'V 'V 'V

VM
CP Internal
Trace Table
(Poster)

LX24-5202

Bibliography 123

The VM/SP Library (Part 3 of 3)

Administration
'/ '/ '/ Z /'

VM CP for CMS for TSAF GCS
System System System Reference Command
Facilities Programming Programming and Macro
for Reference
Programming

SC24-5288 I SC24-5285 I SC24-5286 V' SC24-5287
I

SC24-5250
I

Auxiliary Communication Support
/' /' /' L

VTAM VTAM VTAM VTAM VTAM Installation Customization Operation Messages
and Resource and Codes Reference

Definition Summary

SC23-0135

SC23-0111
I

SC23-0112 I
SC23-0113 I SC23-0114

I

v '/ '/ '/

VTAM VTAM VTAM VTAM
Programming Diagnosis Diagnosis Data

Guide Reference Areas (VM)

SC23-0115 II
SC23-0116 y LY30-5582 II LY30-5583

I

'/ '/ '/ '/

RSCS RSCS RSCS RSCS RSCS
Networking Networking Networking Networking Networking
Version 2 Version 2 Version 2 Version 2 Version 2
General Planning and Operation Diagnosis Ref. Summary
Information Installation and Use Reference

SX24-5135
GH24-5055 1/ SH24-5057 I SH24-5058 1/ LY24-5228 V

/' '/ '/

VM/Pass- VM/Pass- VM/PASS-
Through Through Through
Facility Facility Facility
General Guide and Logic
Information Reference

GC24-5206 I SC24-5208 V LY24-5208 I

124 VM/SP EXEC 2 Reference

Index

I Special Characters I
& 5
&0 5
&ARGS EXEC2 control statements 5, 9

embedded blanks 64
&ARGSTRING EXEC2 control statement 5, 77

embedded blanks 64
&BEGPRINT EXEC2 control statement 10

truncation column 10, 68
&BEGSTACK EXEC2 control statement 12

first-in/first-out (FIFO) 12
last-in/first-out (LIFO) 12
truncation column 12, 68

&BEGTYPE EXEC2 control statement 10
truncation column 10, 68

&BLANK EXEC2 control statement 6
embedded blanks 64

&BUFFER EXEC2 control statement 14
&CALL EXEC2 control statement 15

label search 66
&CASE EXEC2 control statement 17
&CMDSTRING 6, 77
&COMLINE 6
&COMMAND EXEC2 control statement 18

&PRESUME 18, 26
&CONCAT OF 41
&CONCATENATION OF 41
&DATATYPE OF 42
&DATE 6

evaluation 62
Greenwich Mean Time (GMT) 6

&DEPTH 6
&DIV OF 43
&DIVISION OF 43
&DUMP EXEC2 control statement 19
&ERROR 20
&EXIT 21
&FILEMODE 6
&FILENAME 7
&FILETYPE 7
&FROM 7
&GOTO 22

label search 66
&IF 23

comparands 23
comparatives 23
conditional statements 91

&INDEX 7
&LEFT OF 44

embedded blanks 64
&LENGTH OF 45
&LINE 7
&LINENUM 7

&LINK 7
&LITERAL OF 46

embedded blanks 64
&LOCATION OF 47
&LOOP 24,95

closing 65
label search 66

&MULT OF 48
&MULTIPLICATION OF 48
&N 7
&PIECE OF 49
&POSITION OF 50
&PRESUME 26

&COMMAND 18, 26
&SUBCOMMAND 26, 34

&PRINT 27
&RANGE OF 51

embedded blanks 64
&RC 8
&READ 28

&TRUNC 29, 38
ARGS 28
embedded blanks 64
examples 97
n,l,* 28
STRING 28
VARS 28

&RETCODE 8
&RETURN 31
&RIGHT OF 52

embedded blanks 64
&SKIP 32
&STACK 33

first-in/first-out (FIFO) 33
last-in/first-out (LIFO) 33

&STRING OF 53
embedded blanks 64

&SUBCOMMAND 34
&PRESUME 26, 34

&SUBSTR OF 49
&TIME 8

evaluation 62
Greenwich Mean Time (GMT) 8

&TRACE 35
* 36
ALL 36,67
ERR 35
example 67
OFF 36
ON 35
output-action 36

&TRANS OF 54
embedded blanks 64
rules for modification 54

&TRANSLATION OF 54
embedded blanks 64

I',

:~,'

.~

Index 125

rules for modification 54
&TRIM OF 55
&TRUNC 29, 38

truncation column 38,68
&TYPE 27
&TYPE OF 42
&UPPER 39
&WORD OF 56
&1 &2 ... 5

&ARGS 5, 9, 28
&READ ARGS 5,28
arguments 2, 5, 9, 90
embedded blanks 64

"in memory files" 80

arguments 90
&1 &2... 2,5,9

assembler language programs 79-82
SVC 202 calls 79, 82
tokenized plist 80
untokenized plist 80

assigning arguments 9
assignment statements

description of 2, 62, 92
example 62, 92

assignments
See assignment statements

bibliography 121
BNF syntax 69

calling subroutines 15
case translation 17, 39
changes, summary of 119
CHAR data type 42
CMDCALL 77
CMS (Conversational Monitor System) 77-86
CMS (Conversational Monitor System) limits 78

&EXIT return codes 78
&TRACE 78
console 78
console stack 78
filename 78
line length 78
lookaside buffer 78
NUMERIC OVERFLOW 78

126 VMjSP EXEC 2 Reference

numeric values 78
printed line length 78
statement length 78
word length 78

column location 47
combining words 41, 53
commands 2, 3, 89
comments 1
concatenating words 41
conditional statements 91

&IF control statement 23, 63
&LOOP control statement 63
example 63
syntax 63

console stack
See program stack

control statements
&ARGS 9
&BEGPRINT 10
&BEGSTACK 12
&BEGTYPE 10
&BUFFER 14
&CALL 15
&CASE 17
&COMMAND 18
&DUMP 19
&ERROR 20
&EXIT 21
&GOTO 22
&IF 23
&LOOP 24
&PRESUME 26
&PRINT 27
&READ 28
&RETURN 31
&SKIP 32
&STACK 33
&SUBCOMMAND 34
&TRACE 35
&TRUNC 38
&TYPE 27
&UPPER 39
description of 2, 4, 8

control words
examples 2

conventions iv
Conversational Monitor System (CMS) 77-86
Conversational Monitor System (CMS) limits 78

&EXIT return codes 78
&TRACE 78
console 78
console stack 78
filename 78
line length 78
lookaside buffer 78
NUMERIC OVERFLOW 78
numeric values 78
printed line length 78
statement length 78

(

~--

word length 78
current line positioning 112

datatype of a word 42
debugging the EXEC 2 interpreter 74
delimiters

parenthesis 5
space 5

dividing numbers 43
DMSEXE085E 73
DMSEXE175E 73
DMSEXE255T 74

editor macros 83, 101-104
executing 83
filetype 83
implementation 101

embedded blanks
discussion of 64
examples 64, 104
exceptions 64
handling 104
variables 64

errors
DMSEXE085E 73
DMSEXE175E 73
DMSEXE255T 74
messages 73
setting the action taken 20

evaluation of &DATE and &TIME 62
examples

&BLANK 64
assembler language programs 79-82
assignment statement 62
conditional statements 63
control words 2
generating EXEC 2 variable names 93
labels 2
leading zeros 63
name substitution 60
plus signs 63
programming techniques 113-117
SVC 202 79
tokenized plist 80
untokenized plist 80
user-defined functions 57

variable 2
exceptions

embedded blanks 64
EXEC 2 words 67

EXEC 2 errors 73
EXEC 2 files

filename, valid character for 78
filetype 1, 83
format 1
identifying 77
recursive execution 61
sample of 75
terminating 61

EXEC 2 in eMS 77-86
assembler language programs 79-82
EXECCOMM 83
identifying EXEC 2 files 77
limits in CMS 78
XEDIT macros 83

EXEC 2 interpreter
as a macro processor 82
invoked 1

EXEC 2 language 1
EXEC 2 parameter lists 79
EXEC 2 programs

assembler language programs 79-82
calling 77
EXEC 2 file 1
EXEC 2 interpreter 1
executing 1
interaction with users 95

EXEC 2 statements
comment 1
executable statement 1

EXECCOMM 83
FETCH 79
length limit for external names of shared

variables 79
length limit for values assigned by 79
sharing EXEC 2 variables with assembler

programs 83
STORE 79

EXECOS 79
executable statements

assignment statement 2
assignments 3
commands 2, 3
control statements 2, 4
description of 1
interpreting 4
null statement 2, 3
types 3

exit from an EXEC 2 file 21
extracting words from a string of words 56
extracting words from other words 49

Index 127

FIFO (first-in/first-out) 33
function invocation

predefined function 40
user-defined functions 56

functions
predefined 40-56
user-defined 56

interpreting executable statements 4
introduction 1
issuing commands to the given subcommand

environment 26, 34
issuing commands to the host system 18, 26

justified words
left-justified 44
right-justified 52

label
description of 92
example 2
performance 66
search 66

leading zeros
example 63
removing 63

left-justified 44
length limits 78
length of words, finding 45
LIFO (last-in/first-out) 33
limits for EXEC 2 files in CMS 78
literal string, evaluating 46
locating

a word in a string of words 50
starting column of a word in another word 47

lookaside buffer 14
looping 24, 65

128 VM/SP EXEC 2 Reference

messages
DMSEXE085E 73
DMSEXE175E 73
DMSEXE255T 74
return codes 73

mixed case data 17, 99, 103
multiplying numbers 48

name substitution
examples 60
steps 59

notational conventions iv
notes on EXEC 2 59-68

&LOOP statement 65
&TRACE ALL 67
assignment statement 62
closing loops 65
conditional phrases 63
embedded blanks 64
evaluation of &DATE and &TIME 62
label search 66
leading zeros 63
numbers 62
plus signs 63
program stack 61
recursive execution 61
reserved words 66
termination 61
truncation column 68

null statement 2, 3
NUM data type 42
numbers

dividing 43
multiplying 48
range 78
size and treatment 62

parameter list 79
passing arguments 9
plus signs

example 63
removing 63

position of a word in a string of words 50
predefined functions 40-56

&CONCAT OF 41
&CONCATENATION OF 41
&DATATYPE OF 42

I

~-

&DIV OF 43
&DIVISION OF 43
&LEFT OF 44
&LENGTH OF 45
&LITERAL OF 46
&LOCATION OF 47
&MULT OF 48
&MULTIPLICATION OF 48
&PIECE OF 49
&POSITION OF 50
&RANGE OF 51
&RIGHT OF 52
&STRING OF 53
&SUBSTR OF 49
&TRANS OF 54
&TRANSLATION OF 54
&TRIM OF 55
&TYPE OF 42
&WORD OF 56
format of 40
reserved words 66

predefined variables
& 5
&0 5
&ARGSTRING 5
&BLANK 6
&CMDSTRING 6
&COMLINE 6
&DATE 6
&DEPTH 6
&FILEMODE 6
&FILENAME 7
&FILETYPE 7
&FROM 7
&INDEX 7
&LINE 7
&LINENUM 7
&LINK 7
&N 7
&RC 8
&RETCODE 8
&TIME 8
&1 &2 ... 2,5
description of 90
reserved words 66

prefix macros
current line positioning 112
description of 110
sample of 111
writing 110

Primer 87
&CASE control statement 99
&LOOP control statement 95
assignment statements 92
conditional statements 91
embedded blanks 104
file arguments 90
function of EXEC 2 language 87

implementation of editor macros . 101
labels 92
looping 95
return codes 89
translating to uppercase 99
user interaction 95
variables

evaluation 93
names 89

printing lines 10, 19, 27
program stack

&BEGSTACK 12
&STACK 33
description of 61
using 61

programming techniques
examples 113-117

reading lines 28
recursive execution 61
removing plus signs and leading zeros 63
repeating lines 24
reserved words

predefined functions 66
predefined variables 66

return codes 73, 89-90
right-justified 52

sample EXEC 2 files 75
searching for a word in a string or words 50
searching for a word in another word 47
sharing EXEC 2 variables with assembler language

programs 83
skipping lines 32
stacking lines 12, 33
stopping execution 21
subroutines

calling 15
returning 31

substituting variables 59
summary of changes 119
SVC 202 call

example 79
SUB COM function 82

syntax
BNF description 69
conditional statements 63
predefined functions 40
user-defined functions 56

Index 129

terminating EXEC 2 file 61
tokenized plist

example 80
tracing 35

commands 35
commands that yield nonzero return codes
every executable statement 36

transferring control 15, 22, 31, 32
translating characters to other characters 54
translating to uppercase 17, 39, 77, 99
truncating

limits 78
lines 38,68

types of executable statements
assignments 2, 3
commands 2, 3
control statements 2, 4
null statement 2, 3

typing lines 10, 19, 27

UNTIL keyword 24
untokenized plist

"in-memory file" 80
example 80

uppercase data 17, 77, 99
user interaction 95-99
user-defined functions

description of 57
examples 57, 58
form of 57
invocation 57
label search 57

130 VM/SP EXEC 2 Reference

35

returning to 31

~
variables

embedded blanks 64
evaluation 93
examples 2
EXEC 2 variables 89
names 89, 93

~
WHILE keyword 24
word

definition of 1
reserved 66

[!]
XEDIT macros in EXEC 2

avoiding name conflicts 105
creating 102
defining 83, 101
executing 83
filetype 83
sample XEDIT macro 105
using 102
XEDIT EXTRACT subcommand 110

XEDIT prefix macros
current line positioning 112
description of 110
sample of 111
writing 110

International Business
Machines Corporation
P.O. Box 6
Endicott, New York 13760

File No. 5370/4300-39
Printed In U.S.A.

SC24-5219-3

--------- - ------ ---- - - ----------_.-
®

!
"'---

VMjSP EXEC 2 Reference
Order No. SC24-5219-3

Is there anything you especially like or dislike about this book? Feel free to
comment on specific errors or omissions, accuracy, organization, or
completeness of this book.

If you use this form to comment on the online HELP facility, please copy the
top line of the HELP screen.

____ Help Information line of

READER'S
COMMENT
FORM

IBM may use or distribute whatever information you supply in any way it believes appropriate without
incurring any obligation to you, and all such information will be considered nonconfidential.

Note: Do not use this form to report system problems or to request copies of publications. Instead,
contact your IBM representative or the IBM branch office serving you.

Would you like a reply? _YES _NO

Please print your name, company name, and address:

IBM Branch Office serving you:

Thank you for your cooperation. You can either mail this form directly to us or give this
form to an IBM representative who will forward it to us.

SC24-5219-3

Reader's Comment Form

Fold and tape Please Do Not Staple

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NY

POSTAGE WILL BE PAID BY ADDRESSEE:

--------- -------- - ---- -- ----------_.-
INTERNATIONAL BUSINESS MACHINES CORPORATION
DEPARTMENT G60
PO BOX 6
ENDICOTT NY 13760-9987

1 ••• 11 •• " .111.1.11 •• " ••• 1.1 •• 1.1 •• 1111.1 ••• 1 " 11.1

Fold and tape Please Do Not Staple

--------- - ------- - ---- -- -----------,-®

CUT
OR

FOLD
ALONG

LINE

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

.. ...

SC24-S219-3

SC24-S219-03

