

J

r------------ ------------------- --- -- -- - - -

====> xedit balloon

This file now appears on the screen. Notice that the status area indicates
that you are editing two files, that is, two files are in virtual storage.

You're going to insert lines two and three into the INVENTOR file. Enter:

====> down 2

Enter:

====> put 2

Enter:

====> quit

The INVENTOR file now appears on the screen. Enter:

====> get

Lines two and three from the BALLOON file are inserted; the new current
line is the last line that was inserted.

Now you're going to insert the entire MAR GARIN file. Enter:

====> get margarin

The entire file is inserted.

Checkpoint: Your file should look like this:

Telescope 1608
Hot air balloon 1783
Margarine 1869
Tranquilizer 1952

One day in 1608 a Dutch spectacle maker named Lippershey
held a lens in each hand and peered through both at
once, accidentally discovering that two lenses placed in line would
magnify an image.
He mounted a lens at each end of a tube and invented the telescope.
They realized hot air's ability to float a balloon by accident.
Jacques' wife washed a petticoat and hung it over a fire to dry.
Butter was expensive and in short supply.
Napoleon sought a substitute for butter that wasn't bitter.
He needed something like butter that would store well on ships.
He held a contest and offered a prize for the best butter substitute.

You have inserted two whole files and one partial file into another file.
This is a good place to practice prefix subcommands. Using the "A" prefix
subcommand, add lines between the different inventions, and then type
headings in those lines. You c'an also rearrange the inventions by using
the "M" and "P" (or "F") prefix subcommands. When you are finished,
enter:

Chapter 2. A Practice Exercise 59

====> quit

A warning message tells you the file has been changed and to enter QQUIT
if you want to quit anyway. Enter:

====> qquit

60 VMjSP System Product Editor User's Guide

[

[~

r

,--

l

\.

-l
-.J

J
-1
,J

J
]

]

]

J

J

J

J
]

,]

]

:J

~J

~J

'J

J
,- J

~. J

. J

:J

=J
'" J

,. J

~J
.. ,. J

~J
\

~
'-

~

=J

~,ln'~rgJG@r], Il\n) >~I~lmnU ~'!!'f~"@n:
U@5Z\U l~r~~lrn~1 @m @ lJ\¥~WYAY~ilfj@:r lJ@rif~~.~]

Chapter 3. An XEDIT Subset: Text Processing on a Typewriter
Terminal

Editing a File

XEDIT Command

This chapter is written primarily for the person who has limited data
processing experience; however, some VM/SP eMS experience is assumed.
For example, you must know how to log on to VM/SP and enter the eMS
environment. You should also be familiar with the concept of a eMS file.

When you finish this chapter, you should have a working knowledge of the
editor. The subcommands presented here comprise a subset of XEDIT
subcommands, with which you can create a file, enter data, make changes
to the file, and transfer data between files. The editor has many additional
capabilities, which are described in the rest of this book and in the
publication VM/SP System Product Editor Command and Macro Reference.

This subset has been selected for text processing on a typewriter terminal.

To edit a file means to make changes, additions, or deletions to a eMS file
that is on a disk, and to make these changes interactively: you instruct the
editor to make a change, the editor makes it, and then you request another
change .

You can edit a file that does not exist; when you do so, you are creating a
file.

After you log on to VM/SP and enter the eMS environment, you are ready
to enter the edit environment.

The editor is invoked with the eMS command XEDIT, whose format is as
follows:

XEDIT filename filetype

If the file already exists on your A-disk, a copy of that file is brought into
virtual storage; then you can use XEDIT subcommands to make changes or

Chapter 3. An XEDIT Subset: Text Processing on a Typewriter Terminal 61

Entering Data

INPUT Subcommand

corrections to lines in that file. You enter an XEDIT subcommand by
typing the subcommand and then pressing the RETURN key. (XEDIT
subcommands, like CMS commands, can be typed in either uppercase or
lowercase, or a combination of both.)

If the file is not found on disk, the editor creates it in virtual storage.

When a subcommand changes a line, the editor displays, or "verifies," the
changed line. The editor also communicates with you by displaying error
or information messages. For purposes of illustration in this chapter,
anything displayed by the editor is enclosed in a box. Subcommands or
data that you would enter are not.

Now let's create a simple file. Its filename and filetype will be POEMl
SCRIPT. The following command is entered to begin creating the file:

XEDIT POEMI SCRIPT

Because the file is new, the editor responds with the following messages:

Creating new file:
XEDIT:

The following subcommands are discussed in this section:

INPUT
QUERY LRECL

After you enter the XEDIT command, you are in edit mode. You must be in
edit mode to enter XEDIT subcommands.

However, to enter data in the file, you must be in input mode. Type the
following subcommand and press the RETURN key to enter input mode:

INPUT

The editor displays the following message:

I Input mode:

You can then type in the data. Each line that you enter while in input
mode is considered to be a data line and will be written in the file. To end
a line, press the RETURN key; the line will then be inserted into the copy
of the file in virtual storage.

62 VM/SP System Product Editor User's Guide

r
l

r
l
[-,

r~

r
r
r
r
l

r
[

r
I

J

J
-1
~

J

]

J

]

J

J
]

=:J

~

~

~

~

=]
---1

:=J

=.J

~J

:=J

:=J

=.1

D

D

~J

'I

~

=J
=.J "

=:J

~

r::=:=

No line may be longer than the logical record length of the file, which
varies according to filetype. To find out the logical record length of any
file, you can enter the following subcommand (in edit mode):

QUERY LRECL

In the examples used here, the filetype is SCRIPT, which has a logical
record length of 132. If you type more than 132 characters in a line before
pressing the RETURN key, the editor truncates the extra characters.

N ow let's start typing lines to be entered in the file:

"THE OCTOPUS," by Ogden Nash
Tell me, 0 Octopus, I begs,
Is those things arms, or is they legs?
I marvel at thee, Octopus;
If I were thou, I'd call me Us.

When you are finished typing data and want to return to edit mode (either
to make changes to the file or to end the editing session), press the
RETURN key on a null line.

The editor comes back with

I XEDIT:

During an editing session, you can enter input mode at any time to insert
new lines of data in the file. After the INPUT subcommand is entered, the
editor inserts the lines you type after the current line. In this example,
since the file is new, the lines are inserted at the beginning of the file.
Later, you will see how to make any line the current line, so that you can
insert lines between any two existing lines in a file.

This is how the data looks in the file. The following two subcommands,
which will be discussed later, are used to display the data that was entered
in input mode:

TOP

I TOF:

TYPE *

Chapter 3. An XEDIT Subset: Text Processing on a Typewriter Terminal 63

Column Pointer

TOF:
"THE OCTOPUS," by Ogden Nash
Tell me, 0 Octopus, I begs,
kS t~ose things arms, or is they legs?
k marvel at thee, Octopus;
kf I were thou, I'd call me Us.
EOF:

Notice that the first letter in each line is underscored. Underscores will
only show on terminals that allow underscoring (like a 2741). This
underscore character L) is not contained in the file, and it will not appear
on a printed copy of the file. It represents the column pointer.

Various subcommands perform their editing functions within a line starting
at the column pointer, which you can move to different column positions by
using XEDIT subcommands that will be discussed later. The column under
which the column pointer is positioned is called the current column. In the
example above, the current column is column one.

Moving through a File

Line Pointer

The following subcommands are discussed in this section:

TYPE
UP
DOWN
TOP
BOTTOM

When you use the XEDIT command to create a new file, the file is created
in virtual storage. When the XEDIT command is used to call out an
existing file, a copy is brought into virtual storage. In either case, you can
picture the file as a series of records, or lines; these lines are available for
you to change or delete. You can also insert new lines following any line
that is already in the file.

The line that you are currently editing is called the current line.

Naturally, the line that is current changes as you move up and down in the
file to edit various lines. When the line that is current changes, we say
that the line pointer has moved. Many XEDIT subcommands perform their

64 VM/SP System Product Editor User's Guide

r
[

,--
l

[

]

J
"I
-.J [

]

]

J

J
]

J

J

J
]

TYPE Subcommand

J
]

]

]

J

J

J

=J
J

]

=-J

]

J

J

J

J

J
I

~J '", .-

-1
--.J

J

I ~ j000QaDLlDDO~'~ oaaoaOOOGG
Q ~GG

functions starting with the current line and move the line pointer when
they are finished.

You can change which line is current, that is, you can move the line
pointer, by using the sub commands discussed in this section.

What you do during an editing session is:

" Position the line pointer at the line you want to edit.

o Edit the line (change characters in it, delete it, or insert new lines
following it).

o Position the line pointer at the next line you want to edit.

Many XEDIT subcommands operate either on, or starting with, the current
line. For example, the INPUT subcommand inserts new lines of data after
the current line. Therefore, you often, need to determine which line is
current so that you can move the line pointer, if necessary.

To display the current line, enter the TYPE subcommand, whose format is:

TYPE

To display more than one line, enter the TYPE subcommand with the
number of lines you want to see. For example, the following subcommand
displays 5 lines, beginning with the current line:

TYPE 5

To display the entire file, you must first position the line pointer at the top
of the file. The following subcommands move the line pointer to the top of
the file and then display the entire file:

TOP

(moves the line pointer to the top of the file and displays "TOF:")

'rYPE *

(displays all the lines in the file)

After the TYPE subcommand is executed, the line pointer is positioned at
the last line that was displayed. For example, if you type the entire file, the
null "EOF" line will become the new current line. Of course, if you type
only one (the current) line, the line pointer will not move.

Chapter 3. An XEDIT Subset: Text Processing on a Typewriter Terminal 65

UP an~ DOWN Subcommands

You can move the line pointer up or down one or more lines.

The UP subcommand moves the line pointer toward the beginning of the
file and displays the new current line. Its format is:

UP n

where "n" is the number of lines you want to move the line pointer. If
the number is omitted, "I" is assumed.

The DOWN subcommand moves the line pointer toward the end of the file
and displays the new current line. Its format is:

DOWN n

where "n" is the number of lines you want to move the line pointer. If
the number is omitted, "I" is assumed.

Let's look at the poem file again:

TOP

(move the line pointer to the top of the file)

TOF:

TYPE *

(display the whole file)

TOF:
':'THE OCTOPUS," by Ogden Nash
Tell me, 0 Octopus, I begs,
~s those things arms, or is they legs?
~ marvel at thee, Octopus;
~f I were thou, lid call me Us.
EOF:

The TYPE * subcommand was used to display the entire file; since the last
line displayed by a TYPE subcommand is the new current line, the "EOF"
line is now the current line.

The following subcommands show how the UP and DOWN subcommands
are used to move the line pointer up and down in the file. Each time the
line pointer is moved, the editor displays the new current line.

66 VM/SP System Product Editor User's Guide

r
,-

l

r-'

r-

l
l-

L
[,

l
[-

l-

r. .

[- -.

r
l
r-

r
r
r
[

[-

r
/' l

l
I
L

[-

]

J
-,
---.J

J

J

J

J

J

:J

=-1

J

:J

~

:J

:J

=:J

:J

:J

:J

=J
~

~

:J

~

0

~

=:J

~

:J
\

:=J '- --

:J

~J

UP 2

(move the line pointer up two lines from the EOF line)

I marvel at thee, Octopus;

DOWN

(move the line pointer down one line)

If I were thou, I'd call me Us.

To insert new lines of data after any existing file line, you can do the
following:

• Issue the UP or DOWN subcommand to move the line pointer to the
line after which you want the data to be inserted.

• Then enter the INPUT subcommand.

TOP and BOTTOM Subcommands

You can also move the line pointer to the the beginning or end of the file.

To move the line pointer to the null "TOF" line that precedes the first line
of the file, issue the following subcommand:

TOP

To move the line pointer to the last file line, issue the following
subcommand:

BOTTOM

To begin entering new lines either at the beginning or the end of a file, you
can use the following sequence of subcommands:

TOP (or BOTTOM)

INPUT

Then you enter new data lines.

Chapter 3. An XEDIT Subset: Text Processing on a Typewriter Terminal 67

Making Changes in a File

The following subcommands are discussed in this section:

CLOCATE
CFIRST
CINSERT
CDELETE
CAPPEND
CHANGE

Often, you need to insert or delete characters in a line or change one word
to another. The subcommands discussed in this section enable you to
insert, delete, or change characters based on the position of the column
pointer, which is represented as an underscore character C) when a line is
displayed.

CLOCATE Subcommand

The CLOCATE subcommand is used to move the column pointer to the
column where you want to insert, delete, or change characters.

The CLOCATE subcommand searches a file, beginning with the current line,
for a character string that you specify. Its format is as follows:

CLOCATE/string/

The character string should be enclosed in delimiters. The diagonal (/) is
the delimiter used in these examples, but it may be any character (except
for a plus (+), minus (-), not ("-,), or period (.» that does not also appear in
the character string (for example, CLOCATE?VM/CMS?).

If the string is found, two things happen: the line that contains the string
becomes the new current line (and is displayed); and the column pointer
moves under the first character of the string.

For example, in the file shown above, the subcommands:

TOP

(move the line pointer to the top of the file)

CLOCATE/legs/

(locate the string)

cause the following line to be displayed:

68 VM/SP System Product Editor User's Guide

/

r
r

r-

C-

r- -:

r-·'

[-'

r-
i-'

l

C- ~

r'
L.

r--:
l

l:
C-

r--

l
r-
l

l
r-

I

r-

[

J

J
-,
---1

]

J
]

J

J

J

~]

J

J

=J

~J

"- J

J

J

~

~J

=J
~]

~

=.J

~

~

~J

~

:J

~
\

:J

:J

:J

"'-,

CFIRST Subcommand

Is those things arms, or is they legs?

Notice that the line pointer moved to the line containing the string "legs,"
and the column pointer moved under the first character of the string.

After using subcommands that move the column pointer, it's a good idea to
reset the column pointer to the beginning of the line. The following
subcommand moves the column pointer to the beginning of the line:

CFIRST

For example, in the line shown above, where the column pointer is under
the "1" in "legs," issuing a CFIRST subcommmand results in:

~s those things arms, or is they legs?

CINSERT Subcommand

The CINSERT subcommand is used to insert characters immediately before
the column pointer.

For example, a file contains the following line:

I ~t. Everest is high.

Note the position of the column pointer, in column one. To insert the
phrase "exactly 29,000 feet" before the word "high," first move the column
pointer to the first character in "high," by using the following
subcommand:

CLOCATE/high/

The editor moves the column pointer and displays the line:

I Mt. Everest is high.

Now you can insert the phrase:

CINSERT exactly 29,000 feet

Chapter 3. An XEDIT Subset: Text Processing on a Typewriter Terminal 69

The editor inserts whatever you type in the operand of the CINSERT
subcommand. In the subcommand above, the spacebar was pressed once
after the word "feet" so that a blank would separate "feet" and "high".

The resulting line is displayed:

I Mt. Everest is gxactly 29,000 feet high.

Let's look at another example. The CLOCATE subcommand is used to
move the column pointer; then the CINSERT subcommand is used to insert
characters immediately before the column pointer position.

A file contains the following line:

I Xf anything can go, it will.

CLOCATE/,/

(move the column pointer)

If anything can gOL it will.

CINSERT wrong

(insert "wrong" before the column pointer)

If anything can go_wrong, it will.

(In the CINSERT subcommand above, note that there are two spaces
between "CINSERT" and "wrong": one is the required space between the
subcommand name and the operand; one is the blank space needed between
"go" and "wrong".)

If only one blank space were used, the result would be the following:

I If anything can go~rong, it will.

The editor allows you to insert blanks with the CINSERT subcommand­
simply type the required number of blanks (by pressing the spacebar) in the
operand. For example:

70 VM/SP System Product Editor User's Guide

r

.-

I.

f

r" .
t. '

r .

I

[

[

J

J
-1
--.J

-,
_J

]

J

J

J

J
]

J
I
_-.l

J
~]

--]

=-J

J
--]

J

~J

~

~

=:J

=:J

:=-J

=.J

:J

~

:J
.~ '- -

~

=.J

If anything can go~rong, it will.

CINSERT

CDELETE Subcommand

(Press the spacebar twice: once to separate the subcommand name and
operand; once for the operand.)

If anything can go_wrong, it will.

The CDELETE subcommand is used to delete one or more characters from
the current line, starting at the column pointer.

A file contains the following line:

To be or not to be or not to be - that is the question.

The line contains one too many "or not to be". Since deletion starts at the
column pointer, first move the column pointer with the following
subcommand:

CLOCATE/or/

To be Qr not to be or not to be - that is the question.

Then, you can use the CDELETE subcommand to specify the number of
characters to be deleted. Count the number of characters to be deleted,
starting with the current column:

CDELETE 13

The resulting line looks like this:

I To be Qr not to be - that is the question.

The CDELETE subcommand issued above specified a "13" as the operand; it
means, "delete 13 characters, starting at the column pointer."

Chapter 3. An XEDIT Subset: Text Processing on a Typewriter Terminal 71

'.,',','i?),:""',
:d

i®

If you did not want to count the number of characters, you could have
specified the operand of the CDELETE subcommand as a character string.
For example:

CDELETE/or/

When this form of the CDELETE subcommand is used, it means, "delete
characters from the column pointer to the first character of the string
specified in the operand." The result would be the same as the line shown
above; the extra "or not to be" would be removed.

In summary, the CDELETE subcommand removes characters from a line,
from the column pointer to the column position specified in the operand.
The operand may be specified as the number of characters to be removed, or
it may be specified as a character string. After the CDELETE subcommand
is executed, the editor displays the changed line.

CAPPEND Subcommand

Use the CAPPEND subcommand to append words to the end of the current
line.

The format of the CAPPEND subcommand is:

CAP PEND text

where "text" represents the data you want to add to the end of the line.

For example, a file contains the following line:

I Xt is an ancient mariner,

However, the line should read:

It is an ancient mariner, and he stoppeth one of three.

The following subcommand adds the desired text:

CAPPEND and he stoppeth one of three.

(Two blanks separate the subcommand name and the operand.)

The resulting line looks like this:

It is an ancient mariner,_and he stoppeth one of three.

72 VM/SP System Product Editor User's Guide

r -

l

r

,-

I

J
]

-1
-.J

J
-l
-l

]

J
]

J

J
]

]

=J
]

J
-1
--..J

J

~J

J

J

J

J

J

J

J

:J

~

:J

~
(

:J

~

=.J

Notice that the column pointer has moved to the first character of the
appended text, which was a blank.

CHANGE Subcommand

Changing One Word to Another

Making a Global Change

Replacing one word with another is the simplest type of change. Use the
following form of the CHANGE subcommand to change the first occurrence
of a word in the current line:

CHANGE/oldword/newword/

For example, the current line in a file contains the following:

I ~ rose is a rose is a rose.

CHANGE/rose/daisy/

The resulting line looks like this:

I ~ daisy is a rose is a rose.

Note that the editor automatically makes room in the line for "daisy," even
though it is longer than "rose". Conversely, a word can be replaced by a
shorter word; the editor removes extra blanks.

You can use the CLOCATE and CHANGE subcommands to locate and
change any string in a file. If the line containing the string is the current
line, you don't have to use a CLOCATE subcommand; the CHANGE
subcommand both locates the string and changes it.

If you want to make a global change, that is, change every occurrence of a
word, first move the line pointer to the line where you want the change to
begin, and use the following form:

CHANGE/oldword/newword/ * *

In the following example, the word "rose" is changed to "daisy" every time
it appears. (The line pointer is already positioned at the first line shown.)

Chapter 3. An XEDIT Subset: Text Processing on a Typewriter Terminal 73

11 rose is a rose is a rose.
11 rose is a rose is a rose.
11 rose is a rose is a rose.
11 rose is a rose is a rose.

CHANGE/rose/daisy/ * *

produces the following changes in the file (the editor displays only those
lines that have been changed):

11 daisy is a daisy is a daisy.
11 daisy is a daisy is a daisy.
11 daisy is a daisy is a daisy.
11 daisy is a daisy is a daisy.

Another variation of the CHANGE subcommand can be used when you
want to change a word throughout the file, but you want to change only the
first occurrence in each line:

CHANGE/oldword/newword/ *

Making a Selective Change

Suppose that you want to change one word to another only some of the
time. You can use repeated executions of the CLOCATE subcommand to
scan the file, issuing a CHANGE subcommand only when you want to make
the change.

Instead of typing the same CLOCATE subcommand over and over, you can
use the = subcommand, which repeats the last subcommand you' entered.
U sing the = subcommand saves you the time it takes to retype the
subcommand. To enter the = subcommand, simply type an equal sign (=)
and press the RETURN key.

Inserting and Deleting Lines

The following subcommands are discussed in this section:

INPUT line
DELETE
RECOVER
REPLACE

74 VM/SP System Product Editor User's Guide

r -

r
l

r

r
l

l
r-'

[~

I
L .'

r- -.
l

C-

r- ,
[

['.~

r-
l

[-.

C-

[-

[

r-
[
,-
l

r

l

r

l.

l
r

l.

J

J
-'I

---1

J
Inserting a Line

J

J
J

J

J
j

J

=:J

~

J

.J

~

~
.. _]

~

~

=.J

~

=J
'-]

,......·1
_J

~J

CJ

~

:J

:.J '- '.

=:J

:='J

You can insert a single line of data between existing lines by using the
INPUT subcommand followed by the line of data you want inserted. One
blank must separate the subcommand name and the data line.

For example:

INPUT this is the line I want to insert

inserts a single line following the current line, without leaving edit mode.
(If you want t,O insert more than one line, you would issue the INPUT
subcommand with no operand to enter input mode.)

To insert a blank line in the file, enter the INPUT subcommand and press
the spacebar at least twice before pressing the RETURN key. A blank line
will be inserted after the current line.

For example, if a file contains the following lines:

TOF:
~ome primal termite knocked on wood
~nd tasted it, and found it good,
~nd that is why your Cousin May,
Eell through the parlor floor today.

The current line is the last line displayed above. To insert a title line, issue
the following subcommand:

INPUT "The Termite," by Ogden Nash

Now the file looks like this (TOP and TYPE 6 are used to display the whole
file):

TOF:
~ome primal termite knocked on wood
~nd tasted it, and found it good,
~nd that is why your Cousin May,
Eell through the parlor floor today.
~The Termite," by Ogden Nash

To insert a blank line between the poem and the title line, you could issue
the following subcommands:

UP

(move the line pointer up one line)

INPUT

(press the spacebar twice before pressing the RETURN key)

Chapter 3. An XEDIT Subset: Text Processing on a Typewriter Terminal 75

~•
~==:;l

Deleting Lines

Now the file looks like this:

TOF:
§ome primal termite knocked on wood
~nd tasted it, and found it good,
~nd that is why your Cousin May,
Kell throu9h the parlor floor today.

~The Termite," by Ogden Nash

Use the DELETE subcommand to delete one or more lines from a file,
beginning with the current line.

To delete only the current line, use the form:

DELETE

To delete more than one line, specify the number of lines in the operand:

DELETE 5

deletes five lines, including the current line.

To delete the rest of the file, use the form:

DELETE *

If you want to delete a number of lines, and you don't want to bother
counting how many, you can use the form:

DELETE/string/

Lines will be deleted, starting with the current line, up to (but not
including) the line containing the specified string.

For example, if a file contains the following lines, and the first line shown
is the current line:

£ portable television
a transistor radio
a frisbee
a loaf of bread
~ jug of wine
,thou

The following subcommand:

DELETE/bread/

76 VM/SP System Product Editor User's Guide

[

[

r

[

r'
'l,

r '
l

r
l

r
l.

r

l

J

J

J

J
-]

J

j

J
j

J

J
]

J

J

J

J

]

~J

J

.J

J

J
---)

.J

J

=-:J

~

=.J

~

~J

deletes all lines from the current line up to, but not including, the line
containing "bread". Therefore, all that's left is:

a loaf of bread
~ jug of wine
.:thou

Lost and Found Department

Replacing a Line

If you delete one or more lines and change your mind, all is not lost. You
can recover the lines at any time during an editing session with the
RECOVER subcommand.

The following subcommand returns lines deleted in an editing session:

RECOVER n

where n represents the number of lines you wish to recover.

The last lines that were deleted are the first lines to be recovered. For
instance, in our previous example of deleting lines, if you entered:

RECOVER 2

you would get the radio and frisbee back:

~ transistor radio
~ frisbee
~ loaf of bread
~ jug of wine
.:thou

The recovered lines are inserted starting at the current line. If the lines
were deleted from different places in the file, you have to put them back
where they belong by using the MOVE subcommand, discussed below.

If you want to recover all lines that have been deleted during an editing
session, use the form:

RECOVER *

You've seen how to insert a new line and delete a line, using INPUT line
and QELETE. The REPLACE subcommand does both; it deletes the
current line and replaces it with the text you specify.

The format of the REPLACE subcommand is:

Chapter 3. An XEDIT Subset: Text Processing on a Typewriter Terminal 77

REPLACE text

However, if you enter the REPLACE subcommand with no text, the editor
deletes the current line and automatically places you in input mode.

Moving and Copying Lines

MOVE Subcommand

The following subcommands are discussed in this section:

MOVE
COpy

Suppose you want to remove some lines from their current location and
insert them in another part of the file. You can use the MOVE
subcommand to move one or more lines, beginning with the current line, to
a different location in the file. The format of the MOVE subcommand is as
follows:

MOVE from to

The first operand represents the number of lines to be moved, starting with
the current line. The second operand represents the destination; the line(s)
is inserted after the destination line and is deleted from its original
location.

For example, to move the current line three lines down in the file, you can
use the following subcommand:

MOVE 1 3

To move the current line and the two lines following it three lines down in
the file, you can use the following subcommand:

MOVE 3 3

To move a line backward in the file, you can specify a minus (-) sign in
front of the "to" operand. For example:

MOVE 1 -3

moves the current line up two lines in the file. Remember, the "to" operand
represents the line after which a line is to be moved; therefore, if the
destination is - 3, the line is inserted after that line, or two lines up.

To eliminate the need for counting lines, you can specify the "to" operand
as a character string. The editor searches the file for a line that contains
the string and moves the "from" line(s) after that line.

78 VM/SP System Product Editor User's Guide

l.

[

r
l

r
l.

r·· .

I ...

]

]

-1
-)

J

J

J

J

J

J

J

J

=-J

~J

=J

=J
=-J

J

=J
--J

~

~

=-J

:J

~

~
-- .,
_J

~

~

=.J

~
'.

:=J

=-'1

COpy Subcommand

For example:

MOVE 1 /string/

moves the current line after the line containing the string.

Similarly, you can move a line backward in the file by specifying a minus
(-) sign before the string. For example:

MOVE 1 -/string/

moves the current line backward in the file after the line that contains the
string.

Let's look at an example:

filberts
almonds
cashews
£hestnuts
2,ecans
~alnuts

The following subcommands would each move the line containing "filberts"
(the current line) after the line containing "chestnuts".

MOVE 1 3 or MOVE 1 /chestnuts/

almonds
cashews
chestnuts
filberts
2,ecans
~alnuts

The procedure for copying lines is the same as for moving lines. The COpy
subcommand leaves the originalline(s) in place and makes a duplicate at
the indicated destination.

The format of the COpy subcommand is:

COpy from to

One or more lines, beginning with the current line, are copied after the
destination line.

Chapter 3. An XEDIT Subset: Text Processing on a Typewriter Terminal 79

~0 J I _ c:::.. %§DaDClClOOClC>Cl~ U ODQODDDt:lOO
o - --- 0

'-----------_._---

LPREFIX Subcommand

You can use the LPREFIX subcommand to simulate writing in the prefix
area of the current line, even though the prefix area is not available on a
typewriter terminal. LPREFIX can be used to perform some of the
functions (for example, moving or copying lines) provided by prefix
subcommands and macros on display terminals.

For a description of the LPREFIX subcommand, see the VMjSP System
Product Editor Command and Macro Reference.

Ending an Editing Session

FILE Subcommand

QUIT Subcommand

The following subcommands are discussed in this section:

FILE
QUIT
SET AUTOSAVE

When you use the XEDIT command to create a new file, the file is created
in virtual storage. When you make changes to an existing file, those
changes are made to a copy of the file that is brought into virtual storage
(when the XEDIT command is entered). However, virtual storage is
temporary. To write a new or modified file on disk, which is permanent
storage, you must enter the following subcommand:

FILE

When the FILE subcommand 1S executed, the file is written on disk and
control is returned to eMS.

Use the QUIT subcommand to end an editing session and leave the
permanent copy of the file intact on the disk. If the file is new, it is not
written on disk.

The format of the QUIT subcommand is as follows:

QUIT

You would use the QUIT subcommand instead of the FILE subcommand
when you edit a file merely to examine, but not to change, its contents, or if
you discover you have made errors in changing a file and do not want them
to be recorded.

80 VM/SP System Product Editor User's Guide

r

,..
\

r .

L.

[

J

J

J

]

J

J

J
]

J

J

J

J

=J
]

J

J

J

J

J

J

J

J

J

J
:J'

J

~

~

When a file is new or has been changed, the editor gives you a warning
message to prevent the inadvertent use of a QUIT instead of a FILE. The
message is as follows:

File has been changed. Use QQUIT to quit anyway.

If you really don't want to save the file, enter "QQUIT" (abbreviated as
"QQ"). If you wish to save the changes, enter "FILE".

SET AUTOSAVE Subcommand

Files on disk are not affected if the system malfunctions, or "goes down."
However, a new file that you're creating or the changes you're making to
an existing file might be lost if the system fails. You can minimize this
danger by using the SET AUTOSAVE subcommand, whose format is as
follows:

SET AUTOSAVE n

The SET AUTOSA VE subcommand causes your file to be written to disk
automatically, after you've typed in or changed a certain number of lines.
You specify what. that number will be with the "n" operand of the SET
AUTOSAVE, subcommand. If you want the file written to disk, or "saved,"
every time you've changed ten lines, enter the following subcommand:

SET AUTOSAVE 10

The SET AUTOSAVE subcommand can be issued at any time during an
editing session. It's a good idea, however, to issue the subcommand right
after you issue an XEDIT command to create a new file or to call an
existing file from disk.

When a file is saved on disk by AUTOSAVE, it is written into a new file.
The filename of this file is a number and its filetype is "AUTOSAVE." If
the system goes down while you're editing a file, you can change the fileid
back to its original filename and filetype by issuing the CMS command
ERASE to erase the original file and then by issuing the eMS command
RENAME.

For example, if your AUTOSAVE file is labeled "100001 AUTOSAVE AI"
and the original file is "POEM 1 SCRIPT AI", use the following CMS
commands to rename it:

ERASE POEMI SCRIPT
RENAME 100001 AUTOSAVE Al POEMI SCRIPT Al

Then you'll be back in business and can use the XEDIT command to start
editing the file again.

Chapter 3. An XEDIT Subset: Text Processing on a Typewriter Terminal 81

If you issue a SET AUTOSAVE subcommand while you're creating a new
file, and then issue a QUIT subcommand, the file is not saved .. However,
the AUTOSAVE file is still available on disk. If you issue a SET
A UTOSA VE subcommand while you're revising an existing file and then
you issue a QUIT subcommand, no revisions are saved. However, the
AUTOSA VE file is still available on disk.

Inserting Data from Another File

Inserting a Whole File

To insert all or part of one file into another, you can use the GET
subcommand. The chapters in this book were created as separate files and
then combined into one file by using the GET subcommand. (A file that
you "get" is not destroyed; a copy of that file is inserted.)

The GET subcommand inserts a file after the current line. Therefore, you
must move the line pointer to the line after which you want to insert a file.
If you want to insert another file at the end of your file, you can use the
BOTTOM subcommand to make the last line current. If you want to insert
another file somewhere in the middle of your file, you can use the UP or
DOWN subcommands to make the desired line current.

Suppose you were writing a book of poetry, and you created a separate file
for each poem. To combine two of the poems into one file, you would use
the following form of the GET subcommand:

GET filename filetype

When the entire second file has been inserted, the editor displays the
following message:

I EOF Reached.

For example, if you were editing a file called POEMl SCRIPT and wanted
to insert another file called POEM2 SCRIPT, you would enter the following
subcommands:

BOTTOM

(move the line pointer to the end of the file)

GET POEM2 SCRIPT

(insert the whole file)

82 VMjSP System Product Editor User's Guide

r

,"

r- ,
l

i' .

l.

r .

'l

]

]

--I
_.J

]

J

J

J
]

Inserting Part of Another File

To insert part of another file, you can specify in the GET subcommand the
line number of the first line and the number of lines you want to insert.
The following GET subcommand inserts the first ten lines of a second file:

GET FILE2 DATA 1 10

If you don't know the line numbers, you can: call out a second file without
ending your current editing session; put the lines you want to insert into a
temporary file; and insert them into your current file.

This might sound complicated, but all you need to learn is one more
subcommand - PUT.

First, let's identify the steps you would take to insert part of another file
and then illustrate them with an example.

1. While editing the first file, enter an XEDIT subcommand to call out the
second file. You do not have to end your current editing session,
because the editor allows you to edit multiple files simultaneously.

2. Use the PUT subcommand to indicate which lines are to be inserted in
the first file. The PUT subcommand stores lines in a temporary holding
area, starting with the current line, up to an ending, or target, line. Its
format is as follows:

PUT target

where "target" identifies the end of a group of lines to be inserted. It is
a signal to the editor to stop "putting" lines.

A target operand may be specified in various ways, which are described
in detail in "Chapter 4: Using Targets." A brief description of two
ways to specify a target follows. They are equivalent; you can choose
whichever type you prefer.

One way to specify the target is to count the number of lines you want
to insert, starting with the current line. For example, if a file contains:

a loaf of bread
a jug of wine
thou
a portable television

and the line containing" a loaf of bread" is current, the following
subcommand stores all the above lines:

PUT 4

Another way to specify the target is with a character string; the editor
will "put" all the lines, beginning with the current line, up to, but not
including, the line containing the string.

Chapter 3. An XEDIT Subset: Text Processing on a Typewriter Terminal 83

For example, the following subcommand will "put" the first three lines,
but it will not "put" the line containing "a portable television".

PUT/television/

3. Enter a QUIT subcommand to return to your original file.

4. Make sure that the current line is the line after which you want to
insert lines from the second file. Then enter the following subcommand:

GET

No operands are required. The lines that were stored by the PUT
subcommand are inserted; the last line inserted becomes the new
current line.

The following example illustrates how the PUT and GET subcommands are
used to insert part of a file into another file:

A file, DESSERT COOKBOOK, is being compiled. It contains many
recipes, among which is a recipe for cream puffs with chocolate sauce. The
author of the cookbook keeps a separate file, called SAUCES COOKBOOK,
which contains recipes for sauces. Whenever a recipe requires an
accompanying sauce, the author can select a sauce recipe from the second
file and insert it in the first. In this example, the recipe for chocolate sauce
will be inserted after the recipe for cream puffs.

XEDIT DESSERT COOKBOOK

(Call out the first file.)

CLOCATE/CREAM PUFFS/

(Locate the recipe.)

TYPE 10

(Display the recipe. You could have displayed the whole file by using
TYPE *, but it's not necessary.)

QREAM PUFFS WITH CHOCOLATE SAUCE

2 OUNCES BUTTER
1/2 TEASPOON SUGAR
1/2 CUP FLOUR
1 PINCH OF SALT
2 EGGS
2 CUPS HEAVY CREAM, WHIPPED

~LMOND COOKIES

84 VM/SP System Product Editor User's Guide

'l.

(-

r
r

-J

]

-")
-)

J

J

J

J
-1
-.l

J
-)

_J

J

]

]

J

~J

~J

]

J

=J

.J

J

J

=J
-·1
_.J

~J

J

=J
-1
-.J

J

.J '-

:J

J

UP 1

(Move the line pointer to the line after which you want to insert the
sauce recipe. The editor displays the new current line, which is the
blank line between "REA VY CREAM" and "ALMOND COOKIES".)

XEDIT SAUCES COOKBOOK

(Edit the second file.)

CLOCATE/CHOCOLATE SAUCE/

(Locate the sauce recipe.)

TYPE 10

(Display 10 lines.)

QHOCOLATE SAUCE

12 OUNCES SEMI-SWEET CHOCOLATE
2 OUNCES UNSWEETENED CHOCOLATE
1 CUP HEAVY CREAM
2 OUNCES COGNAC

YINAIGRETTE SAUCE

1/2 CUP OLIVE OIL

UP 10

(Move the line pointer to the beginning of the recipe)

PUT/VINAIGRETTE/

Lines are stored, beginning with the line containing "CHOCOLATE
SAUCE" and ending with the line preceding the one containing
"VINAIGRETTE". The PUT subcommand could also be entered as PUT 7.

QUIT

The original file is now being edited.

GET

The sauce recipe is inserted.

The resulting file looks like this:

Chapter 3. An XEDIT Subset: Text Processing on a Typewriter Terminal 85

QREAM PUFFS WITH CHOCOLATE SAUCE

2 OUNCES BUTTER
1/2 TEASPOON SUGAR
1/2 CUP FLOUR
1 PINCH OF SALT
2 EGGS
2 CUPS HEAVY CREAM, WHIPPED

~HOCOLATE SAUCE

12 OUNCES SEMI-SWEET CHOCOLATE
2 OUNCES UNSWEETENED CHOCOLATE
1 CUP HEAVY CREAM
2 OUNCES COGNAC

8LMOND COOKIES

Using Special Characters

Tab Characters

The following subcommands are discussed in this section:

SET IMAGE
SET TABS
QUERY TABS

The SET IMAGE subcommand controls how special characters, once
entered on an input line, are going to be represented in a file. The special
characters affected by the SET IMAGE subcommand are:

• Tab characters (X'05')

• Backspace characters (X'16').

The format of the SET IMAGE subcommand is:

SET IMAGE ON
OFF
CANON

The important thing to remember about tab settings is that there are two
kinds: physical and logical.

Physical tab settings are set manually on the typewriter; each time you
press the TAB key, the type ball moves to the column you set up as the
physical tab stop.

86 VM/SP System Product Editor User's Guide

r-

l

r

l

r
\.

r
r -

]

]

- 1
__ J

J

J
-,
_J

J

J
]

J
]

J
-,
_J

J
'--l

I _J

-,
__ J

~J
._--\

_J

~
---)

I
----'

--J

_.1

~

:J
~]

--I
_J

~

~

=:J

~

~

~

r--

Setting Tabs

(
'-

Logical tab settings indicate the column positions where fields within a
record begin. They are defined by the SET TABS subcommand, whose
format is:

SET TABS nl n2 n3 ...

where nl. .. represents the column numbers for the logical tab settings.

These logical tab settings do not necessarily correspond to the physical tab
settings.

How the data is entered in the file when you pr:ess the TAB key depends on
whether the SET IMAGE subcommand has been issued with ON or OFF as
the operand. (SET nvtAGE ON is the initial setting for all filetypes except
SCRIPT, MACLIB, MODULE, and TEXT.)

If SET IMAGE ON is in effect when you press the TAB key, the logical tab
settings determine how the data will be entered in the file. The editor
replaces the tab characters with an appropriate number of blanks, starting
at the column where you pressed the TAB key, and ending at the last
column before the next logical tab setting. The next character entered after
the tab becomes the first character of the next field.

For example, if you enter:

SET TABS 1 15

and then enter a line that begins with a tab character, the first data
character following the tab is written into the file in column 15, regardless
of the physical tab stop on the terminal.

If SET IMAGE OFF is in effect, a tab character is inserted in the record,
just as any other data character is inserted. No blanks are inserted.

If you want to insert a tab character (X'05') into a record and SET IMAGE
ON is in effect, you can issue a SET IMAGE OFF subcommand before
entering the line, and then use the TAB key as a character key. Pressing
the TAB key causes a tab character to be inserted in a line.

When you create a file, default logical tab settings are in effect; therefore,
you do not need to set them. To determine the default tab settings for a
particular filetype, you can use the following subcommand:

QUERY TABS

If you want to change the default tab settings, you can use the SET TABS
subcommand. Then, regardless of what physical tab stops have been set up
on your terminal, when you press the TAB key with SET IMAGE ON in
effect, the data you enter is spaced to the columns you defined.

Chapter 3. An XEDIT Subset: Text Processing on a Typewriter Terminal 87

~---------------

Backspace Characters

Note: When the INPUT subcommand is used to enter one line, and SET
IMAGE ON is in effect, the specified line is placed in the file starting in the
first tab column defined by the SET TABS subcommand. For example, if
you enter:

SET TABS 5 10 15 20

and then enter an input line:

INPUT This is the input line

columns 1, 2, 3, and 4 contain blanks; the text begins in column 5.

Therefore, make sure that the first number specified in the SET TABS
subcommand is the column in which you want the data to begin.

If you use backspaces and underscores in your file, you should issue SET
IMAGE OFF or SET IMAGE CANON. SET IMAGE CANON is the initial
setting for SCRIPT files.

SET IMAGE OFF means that backspace characters (as well as tab
characters) are left as they are entered.

SET IMAGE CANON means that regardless of how the characters are
typed in (characters, backspaces, underscores), the editor orders the
characters in the file as: character - backspace - underscore, character -
backspace - underscore, and so forth. If, for example, you want an input
line to look like this:

You could enter it as:

ABC, 3 backspaces, 3 underscores

- or -

3 underscores, 3 backspaces, ABC

A typewriter types out the line in the following order:

A, backspace, underscore
B, backspace, underscore
C, backspace, underscore

which results in:

If you need to modify a line that has backspaces, and you do not want to
rekey all of the characters, you can use the ALTER subcommand to alter

88 VM/SP System Product Editor User's Guide

,
I.

,-
l

r -,

l

r -
L __ .

r- '
I ..

r -,

[
r-- -,

[

r'
l

r

L

I ..

]

J
--I
__ J

]

j

J
.]

J
]

J
]

--1
..J

]

]

]

]

]

=J

J

J

J
- 1
-j

-]

J
--1
__ ..J

.J

~J

=.J

~
(
\

~
"-

=.J

~

1-'

~ -----=:::;>~ j{§LJDuuCJclununs;: ODODUDllOo.O
Q~aa\

~c_--_--_-_-_-_---__ ~

all of the backspaces to some other character. The following sequence
shows how you can delete all of the backspace characters in a line:

ALTER 16 + 1 *

(alter all X'16's to +'s in this line)

CHANGE/_+// 1 *

(change all occurrences of" _ +" to null in this line)

AAAAA

Summary of XEDIT Subset

This table summarizes the subcommands that have been presented in this
chapter. When a subcommand can be abbreviated, its minimum
abbreviation is shown in uppercase letters.

Function Subcommand

To create or edit a file Xedit

To enter data Input

To control case setting SET CASE

To display file lines Type

To move the line pointer Down
Up
TOP
Bottom

To move the column pointer CLocate
CFirst

To locate data CLocate

To make changes to the file Change
CInsert
CDelete
CAppend

To recover deleted data RECover

To insert one line Input line

To delete lines DELete

To replace a line Replace

To move lines MOve

To copy lines COpy

Chapter 3. An XEDIT Subset: Text Processing on a Typewriter Terminal 89

--l

Function Subcommand
To repeat a subcommand =

To control special characters SET IMage

To define logical tabs SET TABS
To display tab settings Query TABS
To display the logical record length Query LRecl

To alter special character ALter

To end an editing session without QUIT
saving the changes

To save automatically after SET AU tosave
changing a specified number of
lines

To save the changed file when you FILE
have finished working on it

To store lines in temporary file for PUT
subsequent imbed~n another

To imbed a complete or a partial GET
copy of one file in another

To simulate writing in the prefix LPrefix
area of the current line

l
(

I.

[-

,-
l

r-

r

[

l-
t·-

L

,-
I,

[

r-
I,

./ l

l

90 VM/SP System Product Editor User's Guide
[

, ..

]

:]

--'I
-)

J

J
- "\

-.J

---J

J

~J
--]

-J

J
_.J

-J
--]

~J

J

.J
-J

~J

~J

_J
-]

~

---J

~

=J
~

=J
(

~

~

~J

" --

What Is a Target?

The ability to locate a line from a target is one of the editor's most versatile
functions.

Very simply, a target is a way that you identify a line to the editor. Targets
are used to identify lines for two basic reasons:

1. To change which line is the current line

2. To define the operating range of a subcommana's execution.

A target may be entered in the following ways:

o By itself

• As the operand of the LOCATE subcommand

• Before any XEDIT subcommand

o As the operand(s) in many other XEDIT subcommands.

When a target is entered either by itself or as the operand of a LOCATE
subcommand, the editor makes the target line the new current line. Entered
before a subcommand, a target causes the editor to make the target line the
new current line before it executes the subcommand.

When a target is entered as the operand of various other XEDIT
subcommands, it defines the range of that subcommand's execution. Most
XEDIT subcommands begin their operation with the current line; the target
operand is used to specify where the operation is to end.

The following XEDIT subcommands have target operands:

ALL EXPAND REPEAT

Chapter 4. Using Targets 91

ALTER
CHANGE
COMPRESS
COpy
COUNT
DELETE
DUPLICAT

EXTRACT
HEXTYPE
LOWERCAS
MERGE
MOVE
PUT
PUTD

SET RANGE
SET SELECT
SHIFT
SORT
STACK
TYPE
UPPERCAS

Refer to the publication VM/ SP System Product Editor Command and
Macro Reference for a complete description of the subcommand formats.

There are various ways to specify any given target; all achieve the same
result. How fancy you want to be depends on you. If you are a new user,
you can specify targets in a simple way. As you become more experienced,
you can take advantage of the flexibility that targets offer.

A target can be expressed in the following ways:

• An absolute line number

• A relative displacement from the current line

• A line name

• A simple string expression

• A complex string expression.

You can use one or all of the above kinds of targets during an editing
session; you can even use different kinds of target operands in the same
subcommand.

lJ~inn ::. T::.rnpt tn ~h~nn~ Whi~h I in~ I~ ~lIrr~nt - ----~ - • -- :;, :I~ ••••• ,.., •• _ ••• "'" ,..., •••

A Target Entered By Itself

Look at Figure 21. When entered on the command line, any of the targets
listed below would change the current line to the one shown in the bottom
screen. (The current line is the line above the scale.) All the targets shown
below are equivalent; which kind you use depends only on personal
preference. How to use each kind of target is discussed throughout this
chapter; the purpose of Figure 21 is to show you that there are various
ways to identify any given line to the editor.

====> :11
(absolute line number)

92 VMjSP System Product Editor User's Guide

I~

r
L ..

[

l

I

J

J
-1
-.J

J

]

J
]

J
I
-.J

J
]

]

]

]

J

]

]

J

]

J

J

J
]

]

]

]

I

~

]
(

J

]

]

"-

====> +6
(relative displacement from the current line)

====> . CLAUDE
(line name previously assigned by SET POINT)

====> /egg/
(string)

The editor begins searching for the target with the line following the
current line; if the target line is located, it becomes the new current line.

Notice that in the file identification line at the top of the screen, the
"Line =" indicator shows that the current line has changed from line 5 (top
screen) to line 11 (bottom screen).

Chapter 4. Using Targets 93

TARGET1 SCRIPT A1 V 132 Trunc=132 Size=14 Line=5 Col=l Alt=O

00000 * * * Top of File * * *
00001 THE PHOENIX
00002
00003 Deep in the study
00004 Of eugenics
00005 We find that fabled

I .•. + 1 ..•. + 2 + 3 + 4 •••• + 5 .••• + 6 •••• + 7 •.•
00006 Fowl, the Phoenix.
00007 The wisest bird
00008 As ever was,
00009 Rejecting other
00010 Mas and Pas,
00011 It lays one egg,
00012 Not ten or twelve,
00013 And when it's hatched,
00014 Out pops itselve.
====> /egg/

XED I T 1 File

TARGET1 SCRIPT A1 V 132 Trunc=132 Size=14 Line=ll Co1=1 A1t=0

00002
00003 Deep in the study
00004 Of eugenics
00005 We find that fabled
00006 Fowl, the Phoenix.
00007 The wisest bird
00008 As ever was,
00009 Rejecting other
00010 Mas and Pas,
00011 It lays one egg,

I ••• + 1 + 2 + 3 ..•. + 4 + 5 + 6 + 7 ...
00012 Not ten or twelve,
00013 And when it's hatched,
00014 Out pops itselve.
00015 * * * End of File * * *

====>

Figure 21. Using a Target to Move the Line Pointer

94 VM/SP System Product Editor User's Guide

XED I T 1 File

l

r
l

]

]

-1
~

J

J
]

]

J

J
- '1
-..J

J
-,
--.J

]

J

J
]

=J
J
]

=J
J

J

J

J
]

]

J

J

J f
/'

(
~

"-

J

J

r::=--------'

A Target as the Operand of a LOCATE Subcommand

The targets listed aboye could have been specified as operands of the
LOCATE subcommand, like this:

====>
====>
====>
====>

LOCATE :11
LOCATE +6
LOCATE .CLAUDE
LOCATE /egg/

You do not need to type "LOCATE" unless you want to. A target specified
by itself implies the LOCATE subcommand; the name "LOCATE" is
optional.

A Target Preceding a Subcommand

A target can be entered in the command line before any XEDIT
subcommand. The editor first makes the target line the new current line,
and then executes the subcommand. For example:

====> :10 ADD 5

The editor makes line 10 the new current line and then adds five lines to
the file.

This method is equivalent to entering a target, pressing the ENTER key,
entering the subcommand, and pressing the ENTER key. Typing both the
target and the subcommand in the command line and pressing the ENTER
key only once saves you time.

Using a Target as a Subcommand Operand

When a subcommand format shows that an operand may be specified as a
target, the target is usually used to tell the editor how many lines the
subcommand is to execute upon; in other words, it defines the range of that
subcommand's operation. For example, a format of the UPPER CAS
subcommand is:

====> UPPERCAS target

This format means, "starting with the current line, translate all lowercase
characters to uppercase, up to, but not including, the target line." The
translation is not executed on the target line itself. After execution, the
last line translated becomes the new current line.

Figure 22 is a before-and-after example of an UPPERCAS subcommand.
When entered on the command line, any of the following subcommands
would effect the translation shown in the bottom screen:

Chapter 4. Using Targets 95

====> UPPERCAS :14
(absolute line number)

====> UPPERCAS +4
(relative displacement from current line)

====> UPPERCAS .STOP
(line name previously assigned)

====> UPPERCAS Isonl
(string)

96 VM/SP System Product Editor User's Guide

r'
L J

r
l

]

J

J

J
]

]

]

J

J

J

J

J

J

J

J

J

J

J
]

J

J

J

J
]

J

J

J
]

J

]

J

TARGET2 SCRIPT A1 V 132 Trunc=132 Size=17 Line=10 Col=l Alt=O

00001 WINTER COMPLAINT
00002 Now when I have a cold
00003 I am careful with my cold,
00004 I consult my physician
00005 And I do as I am told.
00006 I muffle up my torso
00007 In woolly woolly garb,
00008 And I quaff great flagons
00009 Of sodium bicarb.
00010 I munch on aspirin,

1 ••• + 1 + 2 •... + 3 + 4 + 5 + 6 + 7 ...
00011 I lunch on water,
00012 And I wouldn't dream of osculating
00013 Anybody's daughter,
00014 And to anybody's son
00015 I wouldn't say howdy,
00016 For I am a sufferer
00017 Magna cum laude.
00018 * * * End of File * * *
====> UPPERCAS/son/

XED I T 1 File

TARGET2 SCRIPT A1 V 132 Trunc=132 Size=17 Line=13 Col=l Alt=l

00004 I consult my physician
00005 And I do as I am told.
00006 I muffle up my torso
00007 In woolly woolly garb,
00008 And I quaff great flagons
00009 Of sodium bicarb.
00010 I MUNCH ON ASPIRIN,
00011 I LUNCH ON WATER,
00012 AND I WOULDN'T DREAM OF OSCULATING
00013 ANYBODY'S DAUGHTER,

I ••• + 1 .•.• + 2 + 3 ..•. + 4 + 5 ..•• + 6 •.•. + 7 ..•
00014 And to anybody's son
00015 I wouldn't say howdy,
00016 For I am a sufferer
00017 Magna cum laude.
00018 * * * End of File * * *

====>

Figure 22. Using a Target as a Subcommand Operand

XED I T 1 File

Chapter 4. Using Targets 97

Types of Targets

Let's take a closer look at each of the ways to specify targets.

A Target as an Absolute Line Number

You can display line numbers in the prefix area by issuing the following
subcommand:

====> SET NUMBER ON

An absolute line number is represented as a colon (:) followed by the line
number, for example, :10.

The following examples illustrate targets specified as absolute line
numbers:

====> :50
Make file line number 50 the new current line.

====> CHANGE /A/B/ :20
Beginning with the current line, change" A" to "B" in every line up
to, but not including, line 20.

Figure 23 is a before-and-after example of a COUNT subcommand whose
target operand is specified as an 'absolute line number. The COUNT
subcommand (top screen) means, "beginning with the current line, count
how many times the string 'cone' appears in all lines up to but not
including line 14." The string is counted only if it appears in the file
exactly the way it is specified in the subcommand (in lowercase).

When the ENTER key is pressed (bottom screen), notice that the last line
searched (line 13) becomes the new current line, and the editor displays the
message, "2 occurrences," in the message line.

98 VM/SP System Product Editor User's Guide

r
r-

l

r­
l. '

]

]

--,
_J

J

J

~]

J

J

~J

J

J

:J

J
-J

J

~

J

~
--,
.-J

J

:J

~]

~

~

~

=:J

~

~

~

~ '---- -

:J

=.J

TARGET3 SCRIPT A1 V 132 Trunc=132 Size=16 Line=8 Col=l Alt=O

00000 * * * Top of File * * *
00001 TABLEAU AT TWILIGHT
00002
00003 I sit in the dusk, I am all alone.
00004 Enter a child and an ice cream cone.
00005 A parent is easily beguiled
00006 By sight of this coniferous child.
00007 The friendly embers warmer gleam,
00008 The cone begins to drip ice cream.

I ••• + .. ' .. 1 + 2 + 3 + 4 ...• + 5 + 6 + 7 ..•
00009 Cones are composed of many a vitamin.
00010 My lap is not the place to bitamin.
00011 Although my raiment is not chinchilla,
00012 I flinch to see it become vanilla ...
00013 Exit child with remains of cone.
00014 I sit in the dusk. I am all alone,
00015 Muttering spells like an angry Druid,
00016 Alone, in the dusk, with the cleaning fluid.
00017 * * * End of File * * *
====> COUNT Iconel :14

XED I T 1 File

TARGET3 SCRIPT A1 V 132 Trunc=132 Size=16 Line=13 Col=l A1t=0
2 occurrences.
00004 Enter a child and an ice cream cone.
00005 A parent is easily beguiled
00006 By sight of this coniferous child.
00007 The friendly embers warmer gleam,
00008 The cone begins to drip ice cream.
00009 Cones are composed of many a vitamin.
00010 My lap is not the place to bitamin.
00011 Although my raiment is not chinchilla,
00012 I flinch to see it become vanilla ...
00013 Exit child with remains of cone.

I .•. + 1 + 2 + 3 + 4 + 5 + 6 + 7 ...
00014 I sit in the dusk. I am all alone,
00015 Muttering spells like an angry Druid,
00016 Alone, in the dusk, with the cleaning fluid.
00017 * * * End of File * * *

====>

Figure 23. A Target as an Absolute Line Number

XED I T 1 File

Chapter 4. Using Targets 99

A Target as a Relative Displacement from the Current Line

A relative displacement from the current line is an integer that means the
target is a number of lines, either forward or backward, from the current
line. The number may be preceded by a plus or minus sign, which indicates
a forward (+) or backward (-) displacement from the current line. If the
sign is omitted, a plus (+) is assumed.

A relative displacement may also be specified as an asterisk (*), which
means the Top of File (- *) or End of File (+ * or *) line. When an asterisk
is specified as the target operand of a subcommand, the subcommand
executes to the end (or top) of the file.

Examples:

====> +3
The target is three logical lines down (toward the end of the file)
from the current line.

====> -5
The target is five logical lines up (toward the top of the file) from
the current line.

====> +*
The target is the null End of File (or End of Range) line.

====> -*
The target is the null Top of File (or Top of Range) line.

====> COpy +3 :25
Copy three lines, starting with the current line, after line number
25.

In this example, two targets are specified. The first (+ 3) is a
relative displacement from the current line; the second is an
absolute line number.

====> DELETE *
Delete all lines from the current line to the end of the file.

Figure 24 is a before-and-after example of a target specified as a relative
displacement. The target typed in the command line, + 9, means, "move the
current line nine logical lines forward, toward the end of the file." Notice
that line numbers do not have to be displayed in the prefix area to use this
kind of target. However, the "Line =" indicator in the file identification
area shows the old (Line = 10) and new (Line = 19) numbers of the current
line.

100 VM/SP System Product Editor User's Guide

r- -

l

r

,.--

l

r··

l

[

L •

l.

r

]

]

J
]

J

J

J
-]

]

J

J

J

J
]

J

J

J
~]

J

=J
J

J

J
]

:J

J

.J

J

J

p------------------------------------_._--_. __ ._._------._. __ ._--------.-._--._-_. __ ._---_._.-... _-_ _._--_.---_. __ ._ _.--. __ . __ ._._-

TARGET4 SCRIPT A1 V 132 Trunc=132 Size=28 Line=10 Col=l Alt=O
THE PANTHER

THE PANTHER IS LIKE A LEOPARD,
EXCEPT IT HASN'T BEEN PEPPERED.
SHOULD YOU BEHOLD A PANTHER CROUCH,
PREPARE TO SAY OUCH.
BETTER YET, IF CALLED BY A PANTHER,
DON'T ANTHER.

THE CANARY
I ••• + 1 + 2 + 3 + 4 + 5 + 6 + 7 ...

THE SONG OF CANARIES
NEVER VARIES.
AND WHEN THEY'RE MOULTING
THEY'RE PRETTY REVOLTING.

THE GIRAFFE

I BEG YOU, CHILDREN, DO NOT LAUGH
====> +9

XED I T 1 File

TARGET4 SCRIPT A1 V 132 Trunc=132 Size=28 Line=19 Col=l Alt=O

THE CANARY

THE SONG OF CANARIES
NEVER VARIES.
AND WHEN THEY'RE MOULTING
THEY'RE PRETTY REVOLTING.

THE GIRAFFE

I BEG YOU, CHILDREN, DO NOT LAUGH
I •.. + 1 + 2 + 3 + 4 + 5 + 6 + 7 ...

====>

WHEN YOU SURVEY THE TALL GIRAFFE.
IT'S HARDLY SPORTING TO ATTACK
A BEAST THAT CANNOT ANSWER BACK.
HE HAS A TRUMPET FOR A THROAT,
AND CANNOT BLOW A SINGLE NOTE.
IT ISN'T THAT HIS VOICE HE HOARDS;
HE HASN'T ANY VOCAL CORDS.
I WISH FOR HIM, AND FOR HIS WIFE,
A VOLUBLE GIRAFTER LIFE.

Figure 24. A Target as a Relative Displacement

XED I T 1 File

Chapter 4. Using Targets 101

A Target as a Line Name

Any line in a file can be assigned a name of one to eight characters
preceded by a period (.), for example, .PART2.

You can use either the SET POINT subcommand or the .xxxx prefix
subcommand to define a name(s) for a line. The SET POINT subcommand
is 'used to define a name of one to eight characters, preceded by a period, to
the current line. Using the .xxxx prefix subcommand allows you to define a
name for any line in whose prefix area the name is entered; the name is one
to four characters, preceded by a period.

Assigning a name to a line makes it unnecessary for you to look up its line
number or determine its relative displacement. Although the absolute line
number of any given line can change during an editing session as lines are
added or deleted from the file, a name stays with a line for the entire
editing session.

A line name is particularly useful if you plan to refer to a line many times
during an editing session. You need assign the name only once; the line
can then be referenced by its name at any time. It remains in effect only
for the current editing session. Remember to type the line name exactly as
it was when originally assigned to the line; the editor always pays attention
to uppercase and lowercase characters when looking for a line name.

Examples:

1. U sing the SET POINT subcommand to name a line:

====> SET POINT .PART2
Assign the name ".PART2" to the current line.

====> TOP
I'.'Iove the line pointer to the Top of File line.

====> CHANGE /A/B/ .PART2
Change "A" to "B" in every line, starting with the current line
(in this case, the Top of File line) up to the line named
".PART2."

2. U sing the .xxxx prefix subcommand to name a line:

To use the .xxxx prefix subcommand, type a name preceded by a period
in the prefix area of any line on the screen, as illustrated below:

data
data
data

.STOP This is the line I want to name.
data

102 VM/SP System Product Editor User's Guide

r.

r-
l •

,-- .,

r-

r-

l

l

l

J

J
-,
...J

J

J

J

J

J
]

J
]

]

J

J

J

J

J

J

J

J

=-1

]

J
:J

~]

J

~

:J

:J

~

~

.J

C

/"

You can name any line on the screen with the .xxxx prefix
subcommand; the line does not have to be the current line, as it does
with the SET POINT subcommand. After the ENTER key is pressed the
assigned name disappears from the prefix area and is replaced by equals
signs or line numbers (depending on whether SET NUMBER OFF or
SET NUMBER ON is in effect). Then, you can refer to the line by
using its assigned name.

Examples of using lines that have been already named:

====> .STOP
Make the line named" .STOP" the new current line.

====> MOVE 1 .STOP
Move the current line after the line named ".STOP".

Note: After a name is assigned to a line, you must keep track of it. You
can issue the subcommand QUERY POINT to display the name(s) of the
currerit line, or you can use QUERY POINT * to display all names that
have been defined during the editing session.

Figure 25 is a before-and-after example of a DELETE subcommand that has
its target operand specified as a line name. The line that contains "THE
PARSNIP" was previously named ".STOP". The subcommand typed in the
command line means, "beginning with the current line, delete lines up to
but not including the line that has been assigned the name '.STOP'."

Chapter 4. Using Targets 103

TARGETS SCRIPT Al V 132 Trunc=132 Size=13 Line=l Col=l Alt=O

* * * Top of File * * *
CELERY
I ••• + 1 + 2 + 3 + 4 + 5 + 6 + 7 ...

CELERY, RAW,
DEVELOPS THE JAW,
BUT CELERY, STEWED,
IS MORE QUIETLY CHEWED.

THE PARSNIP

THE PARSNIP, CHILDREN, I REPEAT,
====> DELETE .STOP

XED I T 1 File

TARGETS SCRIPT Al V 132 Trunc=132 Size=6 Line=l Col=l Alt=l
7 liners) deleted.

* * * Top of File * * *
THE PI\RSNIP
I •.• + 1 + 2 + 3. ",'+'" .4 + 5 + 6 + 7 ...

THE PARSNIP, CHILDREN, I REPEAT,
IS SIMPLY AN ANEMIC BEET.
SOME PEOPLE CALL THE PARSNIP EDIBLE;
MYSELF, I FIND THIS CLAIM INCREDIBLE.
* * * End of File * * *

r

,-

l

r­
l

r

l.

r

r-

====> r
XED I T 1 File

r -

I,

Figure 25. A Target as a Line Name r
l,

104 VMjSP System Product Editor User's Guide
[-

J

J
-1
..-J

J

J

J
]

J

J

J
j

]

J
]

]

]

]
-")

-.J

J

J

J

J

J

J

J

J

J
]

J
\

J

J

J

, ,

[

A Target as a Simple String Expression

A target can be specified as one or more characters, that is, a string,
contained in a file line. The editor looks for the string, making the first
line that contains it the target line.

If the string target is specified alone or as the operand of a LOCATE
subcommand, the line containing the string becomes the new current line.
If the string target is an operand of one of the other XEDIT subcommands,
the line that contains the string determines the range of the subcommand's
execution.

The string must be enclosed in delimiters, which can be any character that
does not appear in the string itself. However, if you use one of the
following special characters as a delimiter, you must also specify a search
direction (+ or -): plus (+), minus (-), not ("I), or period (.). The search
direction is explained below.

For example, the following is a string target, entered alone on the command
line:

====> /whatever/

This means, "beginning with the line following the current line, search for
the string 'whatever' and make the line that contains it the new current
line."

The following is an example of a string target used as the operand of a
subcommand:

====> DELETE /whatever/

This means, "delete all lines from the current line up to, but not including,
the line that contains 'whatever'."

The simplest way to specify a string target, as shown above, is one or more
characters surrounded by delimiters. You can also:

• Determine the direction of the search
• Search for a line that does not contain a given string
• Search for any of several strings.

Specifying a Search Direction

By typing a plus (+) or minus (-) sign before a string target, you can tell
the editor to search for a string in either a forward or backward direction
from the current line.

A plus sign in front of a string target means that the search for the string
starts at the line following the current line in a forward direction, toward
the end of the file. If the string is found, the line that contains it becomes

Chapter 4. Using Targets 105

the new current line. If a sign is omitted, a plus is assumed. The following
targets are equivalent:

====> /whatever/ and ====> +/whatever/

You can also specify that the search occur backward in the file by typing a
minus sign before the string target.

For example:

====> -/whatever/

means, "search backward in the file, starting with the line preceding the
current line, and make the line containing the string the new current line."

Let's look at some more examples:

====> DELETE /rosebud/
Delete lines beginning with the current line, up to but not including
the line containing "rosebud".

====> COpy /daisy/ -/petunia/
Copy lines starting with the current line, up to the line containing
"daisy", and insert them after the line containing "petunia", which
is located in a backward direction from the current line.

====> PUT /Chapter2/
Put lines from the current line, up to the line that contains
"Chapter2".

Using a "NOT" Symbol (-,)

Using an "OR" Symbol (I)

You can precede any string target with a NOT symbol (-,), which means
that the target is a line that does not contain the specified string. For
example:

====> i/Part Number/
Beginning with the line following the current line, locate a line that
does not contain "Part Number" and make it the new current line.

====> MOVE 1 i/Part Number/
Move the current line after the first line that does not contain "Part
Number".

A string target can comprise multiple strings, separated by an "OR" symbol,
each enclosed in delimiters. The editor searches the file one line at a time.
The first line that contains one of the specified strings becomes the current
line. For .example:

If a file contains the following lines:

106 VM/SP System Product Editor User's Guide

[

[

l

r
r
l

C
[

r
l,

r'

r­
L

r
L

r-

l

r
l

r
L

]

J

--,
~

apples
peaches
plums
pears
oranges

The following subcommand:

====> Locate /oranges/I/pears/I/peaches/

will make the following line current:

peaches

Using an "AND" Symbol (&)

You may use an "AND" symbol in the same way that you use the "OR"
symbol. The editor searches the file one line at a time and the first line
that contains all of the strings specified becomes the current line. For
example:

If a file contains the following lines:

Truffles, Leg of Lamb, Chocolate Mousse
Turkey eggs, Leg of Lamb, Savarin
Escargot, Leg of Lamb, Bombe

the following subcommand:

====> Locate /Leg of Lamb/&/Bombe/

will make the following line current:

===== Escargot, Leg of Lamb, Bombe

A Summary of Simple String Targets

You've seen how to specify a target as a single string, enclosed in
delimiters. You've also seen how a plus or minus sign, a NOT symbol, an
OR symbol, and an AND symbol can be used to further define a string.

In addition, all of these features can be combined to define a single target,
that is, a single string, enclosed in delimiters, can be preceded by a plus or
minus sign and a NOT symbol. Two or more strings may be separated by OR
and/or AND symbols.

Furthermore, if the subcommand SET HEX ON is in ~ffect, a string may be
specified in hexadecimal notation, for example, /X'C3D4E2' /.

The following chart summarizes the format of a simple string expression:

Chapter 4. Using Targets 107

4

[+ 1-] [-,] /stringl [/& [-1] /string2/ [1 [-,] /string3/]] ...
1 2 345

The search direction is toward the end of the file (+) or toward the top
of the file (-). If the sign is omitted, a plus (+) is assumed.

"NOT" symbol (locate something that is not the specified string)

Character (or hexadecimal) string.

"AND" symbol (ampersand)(Locate the line containing stringl and
string2.)

"OR" symbol (vertical bar)(Locate the line containing stringl and
string2 or string3.)

Examples:

====> /horse/
searches downward in the file, beginning after the current line, for
the first line that contains "horse" and makes it the current line.

====> -,/house/
searches downward in the file for the first line that does not contain
"house" and makes it the current line.

====> /horse/ & /house/ 1 /hay/
searches downward in the file for the first line that contains both
"horse" and "house" or that contains "hay," whichever occurs first.

====> /horse/I-,/house/
searches downward in the file for the first line that contains "horse"
or does not contain "house".

====) -/x'cl'/I/x'C2'/
searches upward for the first line containing either or both of the
strings specified here in hexadecimal (if SET HEX ON has been
issued).

If SET HEX ON is in effect, the editor locates a line containing "A"
or "B." If SET HEX OFF is in effect, the editor locates a line
containing "X'Cl'" or "X'C2'."

Figure 26 is a before-and-after example of a target specified as a simple
string expression. The target typed in the command line means, "beginning
with the line following the current line, search for a line that either does
not contain 'Experience' or for a line that does contain 'experience', and
make it the new current line."

108 VM/SP System Product Editor User's Guide

l

r

l

[

r
l

r
l

J

J

- 1
-1

]

]

]

]

]

:J

J
]

J

J

J

J

J

:]

~

J

.J

=--J

J

:J

---1

-.J

TARGET6 SCRIPT A1 V 132 Trunc=132 Size=8 Line=O Col=l Alt=O

====>

* * * Top of File * * *
I·· .+ 1 + 2 + 3 + 4 + 5 + 6 + 7 ...
Experience is a futile teacher,
Experience is a prosy preacher,
Experience is a fruit tree fruitless,
Experience is a shoe-tree bootless ...
For sterile wearience and drearience,
Depend, my boy, upon experience.
I'd trade my lake of experience
For just one drop of common sense.
* * * End of File * * *
./Experience/I/experience/

XED I T 1 File

TARGET6 SCRIPT A1 V 132 Trunc=132 Size=8 Line=5 Col=l Alt=O

* * * Top of File * * *
Experience is a futile teacher,
Experience is a prosy preacher,
Experience is a fruit tree fruitless,
Experience is a shoe-tree bootless ...
For sterile wearience and drearience,
I· .. + 1 + 2 •... -t ••..• 3 + 4 + 5 + 6 + 7 ...

====>

Depend, my boy, upon experience.
I'd trade my lake of experience
For just one drop of common sense.
* * * End of File * * *

Figure 26. A Target as a Simple String Expression

XED I T 1 File

Chapter 4. Using Targets 109

A Target as a Complex String Expressio'n

A complex string expression has the same format as a simple string
expression (see above), but any string can be expressed as a "complex
string," which is a string associated with one or more of the following SET
subcommand options:

SET ARBCHAR
allows you to specify only the beginning and end of a string, using
an arbitrary character to represent all characters in the middle.

SET CASE
allows you to specify whether or not the difference between
uppercase and lowercase is to be significant in locating a string
target.

SET SPAN
allows you to specify if a string target must be included in one file
line or if it may span a specified number of lines.

SET V ARBLANK
allows you to control whether or not the number of blank
characters between two words is significant in a target search.

You can use one or more of these options to suit your individual text
processing needs. Each of the options is assigned an initial setting by the
editor. You can alter the setting one or more times during an editing
session by issuing the appropriate SET subcommand. (See the publication
VMj SP System Product Editor Command and Macro Reference for a
complete description of these SET subcommand options.)

Using a Target with SET ARBCHAR

When SET ARBCHAR ON is in effect, you can use a dollar sign ($), which
is the default arbitrary character, to represent all characters between the
beginning and end of a string target.

Examples:

====> /air$plane/

The beginning of the string is "air"; the end of the string is "plane". The
dollar sign is the arbitrary character and represents any characters
between "air" and "plane". This string target causes the editor to locate
either of the following file lines, and makes current whichever line comes
first:

The airplane landed.

Cold air surrounded the plane.

110 VM/SP System Product Editor User's Guide

r
r
C"

l.
r

L

i'
l

r -
l

r­
l,

r
l

]

]

-,
--.J

J

]

J

J
]

]

J
-,
.-J

]

J

=J
--,

I
-.J

J

~]

--J

~

~J

~

J

:J

=J
:J

:J

:J

~

:J
(

~

~

~

'--

L----____________________ -_-_---_ _--_-_----__ ~~

Using a Target with SET CASE

You can specify whether the editor is to respect or ignore the difference
between uppercase and lowercase representations of alphabetic letters by
using the SET CASE subcommand.

The following subcommand tells the editor that uppercase and lowercase
representations of the same letter do not match:

====> SET CASE MIXED RESPECT

For example, if a file contains the following line:

===== The Text Editor

The following string target will not locate that line:

====> /the text editor/

On the other hand, the following subcommand tells the editor to ignore the
difference between uppercase and lowercase:

====> SET CASE MIXED IGNORE

With this setup, in the example above, the line would be located.

Using a Target with SET SPAN

Usually, a string must be included in a single file line in order to be
located. You can use the SET SPAN subcommand to specify that a string
target may span a specified number of lines and still be located. The line
that contains the beginning of the string becomes the new current line.

In a text file, like a SCRIPT file, a blank separates each file line. The
following subcommand tells the editor that a string target may span two
lines, separated from each other by a blank:

====> SET SPAN ON BLANK 2

The string target:

====> /twigs to probe/

would locate in the file:

Woodpecker finches of the Galapagos Islands use twigs
===== to probe holes in tree trunks for edible insects.

The string "twigs to probe" begins on one line and ends on the next.

Chapter 4. Using Targets 111

Using a Target with SET VARBLANK

The SET V ARBLANK subcommand can be used to control whether or not
the number of blank characters between two words is significant in a target
search.

SET V ARBLANK ON means that the number of blanks between two words
can vary; the number of intervening blanks specified in a string target does
not have to be equal to the number in the file.

For example:

====> /the house/

would locate either of the following lines in the file:

the house

the house

If SET V ARBLANK OFF is in effect (the initial setting), the number of
blanks between two words is significant in a target search. In the above
example, only the second line would be located.

. Combining the SET Options

You can tailor the SET options, ARBCHAR, CASE, SPAN, and
V ARBLANK to meet your particular text processing needs. For example,
with SET ARBCHAR ON, SET CASE MIXED IGNORE, SET SPAN ON
BLANK 2, and SET VARBLANK ON, you can:

• Specify only the beginning and end of a string target

• Locate a string whether it is in uppercase or lowercase

• Allow the string target to locate a string that starts on one line and
ends on another

• Disregard the number of intervening blanks between two words.

Figure 27 is a before-and-after example of using a target specified as a
complex string expression.

The following subcommands were issued:

====> SET ARBCHAR ON $
====> SET CASE MIXED IGNORE
====> SET SPAN ON BLANK 2

The string target typed in the command line locates the line shown in the
bottom screen. The ARBCHAR option allows the beginning and end to be
specified; the CASE option allows the string to be specified in lowercase
even though it appears in the file in both uppercase and lowercase; the

112 VM/SP System Product Editor User's Guide

r

l

r

L

r
[

r

r

r

l

r·
\

]

j

]

J
]

J

J
]

]

]

]

]

SPAN option allows the beginning and end of the string to be located on
two consecutive lines.

TARGET7 SCRIPT Al V 132 Trunc=132 Size=19 Line=10 Col=1 Alt=O

MORE ABOUT PEOPLE

When people aren't asking questions
They're making suggestions
And when they're not doing one of those
They're either looking over your shoulder or stepping on your toes
And then as if that weren't enough to annoy you

----- They employ you.
----- Anybody at leisure

Incurs everybody's displeasure.
I •.• + 1 + 2 + 3 + 4 + 5 + 6 + 7 ...
It seems to be very irking

----- To people at work to see other people not working.
----- So they tell you that work is wonderful medicine,

Just look at Firestone and Ford and Edison,
----- And they lecture you till they're out of breath or something

And then if you don't succumb they starve you to death or something.
All of which results in a nasty quirk:
That if you don't want to work you have to work to earn enough money

----- so that you won't have to work.
====> +/fire$breath/

XED I T 1 File

TARGET7 SCRIPT Al V 132 Trunc=132 Size=19 Line=14 Col=1 Alt=O

====>

And when they're not doing one of those
They're either looking over your shoulder or stepping on your toes
And then as if that weren't enough to annoy you
They employ you.
Anybody at leisure
Incurs everybody's displeasure.
It seems to be very irking
To people at work to see other people not working.
So they tell you that work is wonderful medicine,
Just look at Firestone and Ford and Edison,
I ••• + 1 + 2 + .•.. 3 + 4 + 5 + 6 + 7 ...
And they lecture you till they're out of breath or something
And then if you don't succumb they starve you to death or something.
All of which results in a nasty quirk:
That if you don't want to work you have to work to earn enough money
so that you won't have to work.
* * * End of File * * *

XED I T 1 File

Figure 27. A Target as a Complex String ExpreSSIOn

Chapter 4. Using Targets 113

Using Column-Targets

Current Line:

The targets discussed so far effect line pointer movement, that is, if the
editor locates the target, the line pointer is moved. However, the column
pointer is not moved. Furthermore, if a target is expressed as a string, only
the first occurrence of the string is located in a line.

The CLOCATE subcommand operates on a specialized operand called a
column-target. This subcommand is used to locate all occurrences of a
string throughout a file and to move the column pointer. The format of the
CLOCATE subcommand is as follows:

====> CLOCATE column-target

where the column-target can be expressed as an absolute column number, a
relative displacement from the current column, or a string expression.

The following examples show the various ways to express a column-target.
Notice how the column pointer moves after each subcommand is executed.

John Keats studied medicine and practiced as an apothecary.
I ••• + .•.• 1 + ..•. 2 + ..•• 3 .••. + •... 4 ..•. + .••. 5 ..•• + •.•. 6 •••• + •.•• 7 ..•

====> CLOCATE :6

(absolute column number)

John Keats studied medicine and practiced as an apothecary.
< •.. +1 ... 1 + •..• 2 + •..• 3 .••• + •... 4 ...• + •.•• 5 .•.• + •.•. 6 •••. + ..•• 7 •..

Current Line:

James Joyce was a school teacher in Dublin.
I ••. + •.•• 1 + ••.• 2 ••.. + ••.. 3 •••• + ...• 4 .•.• + •... 5 ••.• + •.•• 6 •.•• + .••• 7 ••.

====> CLOCATE +6

(relative column number)

James Joyce was a school teacher in Dublin.
< ••• +.1 .. 1 + •..• 2 •••. + •..• 3 ..•• + •.•. 4 .•.• + •..• 5 .••• + •••. 6 .••• + •.•• 7 .••

Current Line:

Herman Melville worked as a customs inspector in N.Y.C.
I ••• + .•.. 1 + .•.. 2 •... + ..•• 3 .•.. + 4 .•.• + •.•• 5 ••.• + •.•. 6 •••. + ..•• 7 ••.

====> CLOCATE /customs/

Herman Melville worked as a customs inspector in N.Y.C.
< ... + ••.• 1 + ..•. 2 •..• + .•• 13 .••. + ..•• 4 .•.• + •.•• 5 .•.• + •.•. 6 •••. + ..•• 7 •••

114 VM/SP System Product Editor User's Guide

r

l

,-
l

c
r
L

[

I

l

r

]

--1
-J

J

J

--1
-..l

.. -,
~

---,

Current Line:

Charles Dickens served as a law clerk and was a reporter.
I ... + 1 + 2 + 3 + 4 + 5 + 6 + 7 ...

====) CLOCATE /reporter/I/clerk/

Charles Dickens served as a law clerk and was a reporter.
< ... + 1 + 2 .•.. + 3 + 4 + ... 15 •••• + 6 + 7 ...

The CLOCATE subcommand scans the file, starting with the column
following (or preceding, depending on the search direction) the column
pointer in the current line, for the specified column target, and moves the
column pointer to the target, if it is located. In addition, the line pointer is
moved (if necessary), so that CLOCATE can be used successively to locate
all occurrences of a string in a file.

CLOCATE is also necessary because various subcommands perform their
operations based on the position of the column pointer. The CLOCATE
subcommand is first used to position the column pointer; then another
subcommand that operates based on the position of the column pointer can
be used.

The following is a list of all subcommands that operate based on the
position of the column pointer.

CAPPEND
Appends text to the end of the current line, and moves the column
pointer under the appended text.

CDELETE
Deletes one or more characters from the current line, starting at the
column pointer, up to a column-target.

CFIRST
Moves the column pointer to the beginning of the line.

CINSERT
Inserts character(s) in a line, starting at the column pointer.

CLAST
Moves the column pointer to the end of the line.

CLOCATE
Moves the column pointer to a specified column-target.

COVERLAY
Replaces characters in the current line, starting at the column
pointer; blanks in the operand do not overlay characters in the file
line .

CREPLACE

Chapter 4. Using Targets 115

Replaces characters in the current line, starting at the column
pointer; characters can be replaced with blanks.

These subcommands are discussed in detail in the publication VM/SP
System Product Editor Command and Macro Reference. Column-targets are
discussed in that book in the "Usage Notes" section of the CLOCATE
subcommand.

The following examples illustrate how to use the CLOCATE and CDELETE
subcommands to delete a word:

If anything can go wrong, it will.
I ••• + 1 + 2 ...• + 3 + 4 + 5 + 6 + 7 ...

====> CLOCATE I wrongl

(Move column pointer under first character of string to be deleted.)

If anything can go wrong, it will.
< ... + 1 .•.. + ... 12 •••• + 3 + 4 + 5 + 6 + 7 ...

====> CDELETE 1,1

(Delete from column pointer up to the comma.)

If anything can go, it will.
< ... + 1 + ... 12 •••• + 3 •••• + 4 •••• + 5 •••• + 6 •••• + 7 •••

116 VM/SP System Product Editor User's Guide

r

r
L

r

l

]

]

-j
_J

J

J
]

-,
-.J

-1
--.J

]

]

~J

~J
- ,
_.J

-=-J
-_OJ
--.J

J
-,
-)

-1
_J

~J
-- ,
---.J

~J

~J

~J

=-:J
---,
_J

-]

:J
--1

:=J

:J

:J

.=-.J

(
'-,

The }(EDIT Subcommand

When you issue the eMS command XEDIT, a copy of the specified file is
brought into virtual storage, where it remains until you issue a FILE or
QUIT subcommand. In other words, the XEDIT command brings one file at
a time into storage. By entering the XEDIT subcommand during an editing
session, you can bring more than one file into virtual storage at a time.

The format of the XEDIT subcommand is identical to that of the XEDIT
command and is as follows:

====> Xedit [fn [ft [fm]]] [(options ... [)]]

For a complete description of the XEDIT subcommand operands, refer to
the publication VMj SP System Product Editor Command and Macro
Reference.

Creating a Ring of Files in Storage

Multiple files are kept in virtual storage in a "ring." Each time you issue
an XEDIT subcommand with a new fileid, a file is added to the ring and
becomes the current file, which is the file that is displayed.

A file remains in the ring until a FILE or QUIT subcommand is issued for
that file; then the preceding file in the ring is displayed. The number of
files you can edit simultaneously is limited only by your virtual storage
SIze.

Figure 28 illustrates a ring of files in storage.

Chapter 5. Editing Multiple Files 117

Figure 28. A Ring of Files in Storage

By issuing the following subcommand, you can display the number of files
in the ring and the file identification line of each file:

====) QUERY RING

Editing the Files in the Ring

The order in which you can edit the files in the ring depends on how you
specify the XEDIT subcommand:

• If you issue the XEDIT subcommand without operands, the next file in
the ring appears on the screen. (See Part 1 of Figure 29.) Therefore, a
series of XEDIT subcommands issued without operands allows you to
switch from the first file to the second, the second to the third, and so
forth, all the way around the ring and back to the first file.

• You can alter this sequence by issuing the XEDIT subcommand with
the fileid of a file in the ring. The specified file becomes the current file
and appears on the screen, regardless of it::; relaLive position in the ring.
(See Part 2 of Figure 29.)

• If you issue an XEDIT subcommand with a fileid of a file that is not
already in the ring, that file is added to the ring just after the current
file and is displayed. (See Part 3 of Figure 29.)

• If the XEDIT subcommand is issued with a fileid and the file does not
exist, that file is created, added to the ring just after the current file,
and displayed.

118 VMjSP System Product Editor User's Guide

r
I.

(

l.

r ~

l

r

l.

r

l

[

r
l

[

J
]

.'J

J

'-1

r' --.. ------- .-----.-----.. -------------------.-----.--.------:::J

Current File (*) XEDIT Subcommand New Current File (*)

===> XEDIT

===> XEDIT FILES

===> XEDIT FI LED

Figure 29. Editing Files in the Ring

Ending an Editing Session

When you are finished editing a particular file, you can issue a FILE or
QUIT subcommand for that file. The file is removed from the ring, and the
previous file in the ring is displayed.

To end .the editing session for all of the files and return control to CMS, use
the CANCEL macro, whose format is as follows:

====> CANCEL

Issuing the CANCEL macro is equivalent to issuing a QUIT subcommand
for each file in the ring. If any of the files were modified, the usual
warning message is displayed for each of those files:

Chapter 5. Editing Multiple Files 119

File has been changed. Use QQUIT to quit anyway.

You can then issue either QQUIT or FILE.

If none of the files being canceled were modified, control is immediately
returned to CMS.

Multiple Logical Screens

Up unfil now, we have been discussing editing multiple files with one file,
the current file in the ring, displayed at a time. By using the SET SCREEN
subcommand, you can divide the physical screen into multiple logical
screens. The screen can be split vertically, horizontally, or in a
combination of vertical and horizontal segments. You can display a
different file from the ring in each logical screen, or you can display
multiple views of the same file.

Each logical screen looks and functions like the physical screen. Each one
becomes, in effect, an independent terminal with its own file identification
line, command line, and message line. For more information about multiple
logical screens, refer to the publication VM/SP System Product Editor
Command and Macro Reference.

SET SCREEN Subcommand

Issuing the command, SET SCR 2, will split the screen horizontally into two
screens, one on top of the other.

The command SET SCR 2 V, will split the screen vertically into two
screens, one beside the other.

U sing the SIZE option with the SET SCREEN subcommand allows you to
create horizontal screens with the number of lines that you specify. For
example, SET SCR SIZE 14 10, will create two screens, one with 14 lines,
and another with 10 lines.

Likewise, the WIDTH option is used to specify the number of columns each
vertical screen will contain. If SET SCR WID 25 25 30 is issued, 3 vertical
screens are created, the first with 25 columns, the second with 25 columns,
and the third with 30 columns.

The initial setting of the SCREEN option is SCREEN SIZE n, where n is
the physical screen size.

To return to the initial setting, issue the following subcommand:

====> SET SCREEN 1

120 VM/SP System Product Editor User's Guide

l.

, -

r

r

I

I.

]

]

-l
•. J

~J

J
]

]

]

]

~J

~J

~J

-]

']

]

=J

. J
-]

,- J

]

:J
.]

-]

~J

,]

'J

']

:J
J

~J

~J

~J

I
I

~

c=: ___ --_-~~~_-_-~_,

For more information about this command, refer to the publication, VM/SP
System Product Editor Command and Macro Reference.

Multiple Views of the Same File

If only one file is in virtual storage and you issue a SET SCREEN
subcommand, identical views of the file appear on the screen.

Figure 30 is a before-and-after example of a SET SCREEN subcommand
that creates two views of the same file.

Making Changes from Multiple Views of the Same File

You can edit a file by typing over the data in any of the views, and by
entering subcommands in any of the command lines and prefix areas. You
can type related prefix subcommands in different views of a file, even when
different parts of the file are displayed. For example, you can type a "C"
(copy) prefix subcommand in one view, and a "P" (preceding) prefix
subcommand in another view. Changes made to the file from one logical
screen are reflected immediately in all screens.

However, subcommands that control the screen display, for example,
FORWARD, affect only that screen from which they were issued.
Therefore, you can see different parts of a file at the same time .

Similarly, PF keys assigned to screen movement subcommands are executed
only on the view that contains the cursor when the PF key is pressed.

Chapter 5. Editing Multiple Files 121

L--___ ._::J

NASH SCRIPT Al V 132 Trunc=132 Size=6 Line=6 Col=l Alt=O

* * * Top of File * * *
THE OCTOPUS

TELL ME, 0 OCTOPUS, I BEGS,
IS THOSE THINGS ARMS, OR IS THEY LEGS?
I MARVEL AT THEE, OCTOPUS:
IF I WERE THOU, I'D CALL ME US.
I •.• + 1 + 2 + 3 + 4 + 5 + 6 + 7 ...
* * * End of File * * *

====> SET SCREEN 2

NASH

====>

NASH

====>

XED I T 1 File

.sCRIPT Al V 132 Trunc=132 Size=6 Line=6 Col=l Alt=O

TELL ME, 0 OCTOPUS, I BEGS,
IS THOSE THINGS ARMS, OR IS THEY LEGS?
I MARVEL AT THEE, OCTOPUS:
IF I WERE THOU, I'D CALL ME US.
I ••• + 1 •••• + 2 .••• + 3 .•.. + 4 •... + 5 ...• + 6 + 7 ..•
* * * End of File * * *

SCRIPT
XED I T 1 File

Al V 132 Trunc=132 Size=6 Line=6 Col=l Alt=O

TELL ME, 0 OCTOPUS, I BEGS,
IS THOSE THINGS ARMS, OR IS THEY LEGS?
I MARVEL AT THEE, OCTOPUS:
IF I WERE THOU, I'D CALL ME US.
I ••• + 1 + 2 + 3 + 4 + 5 + 6 + 7 ...
* * * End of File * * *

XED I T 1 File

Figure 30. Multiple Horizontal Views of the Same File

122 VMjSP System Product Editor User's Guide

c

l

l.

[

C

l

C

l

I~

f

l

J

J

Multiple Views of Different Files

Order of Processing

When multiple files are being edited and you issue a SET SCREEN
subcommand that increases the number of logical screens, the additional
screens are immediately filled with files selected from the ring.

Figure 31 illustrates how additional logical screens are filled with files
from the ring. The ring of files contains files named FILE1 and FILE2; the
current file is FILEl. The SET SCREEN subcommand shown in the top
screen causes another file to be displayed.

If a SET SCREEN subcommand decreases the number of logical screens,
files are displayed as long as logical screens are available. Those files for
which logical screens are not available are removed from the display.

Issuing an XEDIT subcommand from one of multiple screens is just like
issuing it when there is only one screen. It does not affect the other logical
screens. In all cases, the file is displayed only on the screen from which the
XEDIT subcommand was issued.

The status area of all the screens displays the number of files in virtual
storage, not the number of screens.

You can type over the data, type subcommands on the command line, and
type prefix subcommands and macros in the prefix area of all views of a
file(s) before pressing a key (like the ENTER key) that effects the changes.

The editor processes requests typed on different views in the following
order:

1. Changes typed over the data in all the views are made first. Changes
are processed in the order that the data lines appear on the physical
screen, from the top, moving left to right, to the bottom.

2. Prefix subcommands and macros are executed next, as follows:

All prefix subcommands and macros are placed in a "pending list"
before they are executed. Only one pending list is executed for each
file, regardless of the number of views of that file. However, the other
views of a file are updated to reflect the changes.

The pending list is executed from the first view of each file or from the
view that contains the cursor, if any view does. This means that all
messages from prefix subcommands and macros will be displayed in the
screen from which the pending list was executed. Cursor positioning
for prefix subcommands and macros is determined by what lines are
displayed in the screen with the cursor. Note that when multiple files
are displayed, one pending list is executed for each file, and all views
reflect the changes. See other CURSOR considerations below.

Chapter 5. Editing Multiple Files 123

For more information on the pending list, see Chapter 7 in this book.

3. Subcommands typed on the command lines are executed last and in the
following order:

Cursor Considerations

With multiple horizontal screens, the command lines are processed from
the top view to the bottom view. With multiple vertical screens, the
command lines are processed left to right. With a combination of
horizontal and vertical screens, the command lines are processed in the
same order that the screens were defined in the SET SCREEN DEFINE
subcommand.

The cursor remains in the view that contained it when the ENTER key (or
P A/PF key) was pressed. This is true even if a CURSOR subcommand is
issued in another view. If no view of a file contained the cursor (for
example, if part of the physical screen was left undefined and your cursor
was positioned there), then the cursor is placed in the first logical screen on
the physical screen (the top-most screen for horizontal views, the left-most
screen for vertical views, or the first view defined via SET SCREEN
DEFINE).

You can move the cursor from one logical screen to another by issuing SOS
TABCMDF or SOS TABCMDB.

For more information on the SET SCREEN subcommand, refer to the
publication VM/SP System Product Editor Command and Macro Reference.

124 VM/SP System Product Editor User's Guide

r'
L

I"
l

J
j

-1
.-..J

J

]

J

J
]

J

J

J

]

J

=J
J

=J
J

J

:J

=]

:=J

~

~]

~

=:J

~]

:J

~

=J
~ "-

=J
=J

r:

FILE1

SCRIPT A1 V 132 Trunc=132 Size=7 Line=O Col=l Alt=O

* * * Top of File * * *
I •.• + 1 + 2 + 3 + .•.. 4 ..•. + •... 5 + 6 + 7 ...
THE PANTHER
THE PANTHER IS LIKE A LEOPARD,
EXCEPT IT HASN'T BEEN PEPPERED.
SHOULD YOU BEHOLD A PANTHER CROUCH,
PREPARE TO SAY OUCH.
BETTER YET, IF CALLED BY A PANTHER,
DON'T ANTHER.
* * * End of File * * *

====> set screen 2 v

FILE1

====>

SCRIPT A1 V 132 Trunc=132 FILE2

* * * Top of File * * *
I ••• + 1 + 2 + 3 ...
THE PANTHER
THE PANTHER IS LIKE A LEOPARD,
EXCEPT IT HASN'T BEEN PEPPERED.
SHOULD YOU BEHOLD A PANTHER CROUC
PREPARE TO SAY OUCH.
BETTER YET, IF CALLED BY A PANTHE
DON'T ANTHER.
* * * End of File * * *

====>

Figure 31. Multiple Vertical Views of Different Files

XED I T 2 Files

SCRIPT A1 V 132 Trunc=132

* * * Top of File * * *
I ••• + 1 + 2 .••. + 3 ...
THE CANARY
THE SONG OF CANARIES
NEVER VARIES.
AND WHEN THEY'RE MOtiLTING
THEY'RE PRETTY REVOLTING.
* * * End of File * * *

Chapter 5. Editing Multiple Files 125

126 VM/SP System Product Editor User's Guide

r- -
l

,-
l

r --,
,- .

r-- ,

L..

]

J
-,
~

J
]

J

J
]

]

j

J

J

J

~]

~

=-J

:J
. ~

~

=J
~

:J

~

~

~J

:J
'··-1

:=J

~

~

:=J
--=.J

Prefix Area

Command Line

/"

I

\
............ _--

By using the following SET subcommand options, you can tailor the
full-screen layout to suit your preferences:

SET PREFIX
SET CMDLINE
SET MSGLINE
SET CURLINE
SET SCALE
SET TABLINE
SET COLOR
SET NUMBER

For a complete description of these options, refer to the SET subcommand
description in the publication VMjSP System Product Editor Command and
Macro Reference .

The areas of the screen that can be changed are discussed below.

Use the SET PREFIX subcommand to control the display of the prefix area.
You can display the prefix area on the left or the right side of the screen, or
you can remove the prefix area from the display or you can set NULLS in
the prefix area. Initially, the prefix area is displayed on the left.

Use the SET CMDLINE subcommand to move the command line to the
same line as the message line (the second line of the screen), to the last line
of the screen, or remove the command line from the screen. Initially, the
command line is the last two lines of the screen. If you move the command
line to the message line or the last line, the status area is not displayed.

With SET CMDLINE TOP (command line on line 2) and the default SET
MSGLINE setting (line 2), a message overlays the command line, including
the arrow. You must press the ENTER. or CLEAR key to recover the
command line. To avoid this situation, assign the message line to line 1 or
line 3 when using CMDLINE TOP.

Chapter 6. Tailoring the Screen 127

Message Line

Current Line

Scale

Tab Line

Color

Use the SET MSGLINE subcommand to define the location of the message
line on the screen, and the number of lines the message may expand to, to
avoid clearing the screen to display the message. It may also be used to
override the blank line that is normally displayed on the screen for
messages.

Use the SET CURLINE subcommand to define a specified line of the screen
as the current line. Initially, the current line is in the middle of the screen.

Remember that the editor uses the first line of the screen for the file
identification line. Therefore, if you want the current line to be the first
available screen line, use the subcommand SET CURLINE ON 2.

One reason you might want to change the position of the current line is to
vary the size of the input zone. When you issue an INPUT subcommand,
the editor provides an input zone between the current line and the
command line. To get a larger input zone, move the current line higher on
the screen; to get a smaller input zone, move it lower on the screen.

Use the SET SCALE subcommand to move the scale to a specified line, or
to remove the scale from the display. Initially, the scale is positioned under
the current line. If you move the current line, you probably also will want
to move the scale.

Use the SET TABLINE subcommand to display, on a specified line, a "T" in
every tab column, according to the current tab settings (as defined by the
SET TABS subcommand). Initially, a tab line is not displayed. If you
change the tab settings during an editing session, the tab line will reflect
that change, that is, the "T"s will be placed in the new tab columns.

Depending on the features supported by your terminal, you can use the SET
COLOR subcommand to associate specific colors, highlighting, extended
highlightings, and programmed symbol set feaLures with various physical
locations on the screen. The physical locations include the arrow, current
line, file area, prefix area, command line, scale line, tab line, file
identification line, pending message display area, shadow line, status area,
top of file and end of file lines, and the message line. Colors associated
with those areas can be: blue, red, pink, green, turquoise, yellow, white, or
your default terminal display color. You can accentuate this capability by
using programmed syn:bo1 sets or extended highlighting features such as
blinking, reverse video, and underlining.

128 VM/SP System Product Editor User's Guide

[- -

(- -

r --­
I

r----

r --~

r---
l

r

r-

]

J
-1
_J

J

J

J

J
]

]

J

J

J

J

=J
=J

=-1

~]

~

=:J

=.]

=:J

~

:J

=:J

J
:J

:J

=.J

=J
=.J

:=J

~

c---

Number

" "

--~ ,

For a complete explanation of this function refer to the publication, VM/SP
System Product Editor Command and Macro Reference.

Use the SET NUMBER subcommand to specify whether the prefix area
should contain line numbers. Initially, equal signs are used.

Figure 32 through Figure 37 illustrate how some of the sub commands
discussed above are used to tailor the screen. Notice how the screen
changes when the subcommand shown in the command line of each screen
is executed.

Chapter 6. Tailoring the Screen 129

TAILOR SCRIPT Al V 132 Trunc=132 Size=28 Line=9 Co1=1 Alt=O

* * * Top of File *
THE PANTHER

* *

THE PANTHER IS LIKE A LEOPARD,
EXCEPT IT HASN'T BEEN PEPPERED.
SHOULD YOU BEHOLD A PANTHER CROUCH,
PREPARE TO SAY OUCH.
BETTER YET, IF CALLED BY A PANTHER,
DON'T ANTHER.

I ••• + 1 + 2 + 3 .••• + 4 .•.. + 5 •..• + 6 .•.. + 7 ..•
THE CANARY

THE SONG OF CANARIES
NEVER VARIES.
AND WHEN THEY'RE MOULTING
THEY'RE PRETTY REVOLTING.

THE GIRAFFE

====> SET PREFIX ON RIGHT
XED I T 1 File

TAILOR SCRIPT Al V 132 Trunc=132 Size=28 Line=9 Col=l Alt=O

* * * Top of File
THE PANTHER

* * *

THE PANTHER IS LIKE A LEOPARD,
EXCEPT IT HASN'T BEEN PEPPERED.
SHOULD YOU BEHOLD A PANTHER CROUCH,
PREPARE TO SAY OUCH.
BETTER YET, IF CALLED BY A PANTHER,
DONiT ANTHER.

I ••• + 1 + 2 + 3 + 4 + 5 •... + 6 .•.. + 7 •..
THE CANARY

THE SONG OF CANARIES
NEVER VARIES.
AND WHEN THEY'RE MOULTING
THEY'RE PRETTY REVOLTING.

THE GIRAFFE

====>

Figure 32. The SET PREFIX Subcommand - "Before" and "After"

130 VMjSP System Product Editor User's Guide

XED I T 1 File

r- .
l

r_-

J

J
-1
~J

j

J

J

J
]

=J

~J

J

J

J

J

~

~]

~

~

~

~-]

~J

:J

~

:J

:J
=:J

~J

~
._]

:=J "-

:J

~

TAILOR SCRIPT A1 V 132 Trunc=132 Size=28 Line=9 Col=l Alt=O

* * * Top of File
THE PANTHER

* * *

THE PANTHER IS LIKE A LEOPARD,
EXCEPT IT HASN'T BEEN PEPPERED.
SHOULD YOU BEHOLD A PANTHER CROUCH,
PREPARE TO SAY OUCH.
BETTER YET, IF CALLED BY A PANTHER,
DON'T ANTHER.

I •.. + 1 + 2 + 3 + 4 + 5 •... + 6 + 7 .•.
THE CANARY

THE SONG OF CANARIES
NEVER VARIES.
AND WHEN THEY'RE MOULTING
THEY'RE PRETTY REVOLTING.

THE GIRAFFE

====> SET CMDLINE TOP
XED I T 1 File

TAILOR SCRIPT A1 V 132 Trunc=132 Size=28 Line=9 Col=l Alt=O
====>
* * * Top of File
THE P,A.NTHER

* * *

THE PANTHER IS LIKE A LEOPARD,
EXCEPT IT HASN'T BEEN PEPPERED.
SHOULD YOU BEHOLD A PANTHER CROUCH,
PREPARE TO SAY OUCH.
BETTER YET, IF CALLED BY A PANTHER,
DON'T ANTHER.

I ••• + 1 + 2 .•.. + 3 ...• + 4 ...• + 5 + 6 + 7 ..•
THE CANARY

THE SONG OF CANARIES
NEVER VARIES.
AND WHEN THEY'RE MOULTING
THEY'RE PRETTY REVOLTING.

THE GIRAFFE

I BEG YOU, CHILDREN, DO NOT LAUGH
WHEN YOU SURVEY THE TALL GIRAFFE.

Figure 33. The SET CMDLINE Subcommand - "Before" and "After"

Chapter 6. Tailoring the Screen 131

TAILOR SCRIPT Al V 132 Trunc=132 Size=28 Line=9 Col=l Alt=O
====> SET CURLINE ON 3
* * * Top of File * * *
THE PANTHER

THE PANTHER IS LIKE A LEOPARD,
EXCEPT IT HASN'T BEEN PEPPERED.
SHOULD YOU BEHOLD A PANTHER CROUCH,
PREPARE TO SAY OUCH.
BETTER YET, IF CALLED BY A PANTHER,
DON'T ANTHER.

I ••• + 1 .••. + 2 ••.• + 3 ...• + 4 •••• + 5 .•.. + 6 .•.. + 7 •••
THE CANARY

THE SONG OF CANARIES
NEVER VARIES.
AND WHEN THEY'RE MOULTING
THEY'RE PRETTY REVOLTING.

THE GIRAFFE

I BEG YOO, CHILDREN, DO NOT LAUGH
WHEN YOU SURVEY THE TALL GIRAFFE.

TAILOR SCRIPT Al V 132 Trun6=132 Size=28 Line=9 Col=l Alt=O
====>

THE CANARY

THE SONG OF CANARIES
NEVER VARIES.
AND WHEN THEY'RE MOULTING
THEY'RE PRETTY REVOLTING.

THE GIRAFFE

I •.• + 1 + 2 +.!' .3 + 4 + 5 + 6 + 7 ...
I BEG YOU, CHILDREN, DO NOT LAUGH
WHEN YOU SURVEY THE TALL GIRAFFE.
IT'S HARDLY SPORTING TO ATTACK
A BEAST THAT CANNOT ANSWER BACK.
HE HAS A TRUMPET FOR A THROAT,
AND CANNOT BLOW A SINGLE NOTE.
IT ISN'T THAT HIS VOICE HE HOARDS;
HE HASN'T ANY VOCAL CORDS.
I WISH FOR HIM, AND FOR HIS WIFE,
A VOLUBLE GIRAFTER LIFE.
* * * End of File * * *

Figure 34. The SET CURLINE Subcommand - "Before" and "After"

132 VM/SP System Product Editor User's Guide

r-
l

r
[

r-

l

]

J

r-------------------------------- ----------------------

TAILOR SCRIPT Al V 132 Trunc=132 Size=28 Line=9 Col=l Alt=O
====> SET SCALE OFF

THE CANARY

THE SONG OF CANARIES
NEVER VARIES.
AND WHEN THEY'RE MOULTING
THEY'RE PRETTY REVOLTING.

THE GIRAFFE

I ••• + 1 + 2 + 3 + 4 + 5 + 6 + 7 ...
I BEG YOU, CHILDREN, DO NOT LAUGH
WHEN YOU SURVEY THE TALL GIRAFFE.
IT'S HARDLY SPORTING TO ATTACK
A BEAST THAT CANNOT ANSWER BACK.
HE HAS A TRUMPET FOR A THROAT,
AND CANNOT BLOW A SINGLE NOTE.
IT ISN'T THAT HIS VOICE HE HOARDS;
HE HASN'T ANY VOCAL CORDS.
I WISH FOR HIM, AND FOR HIS WIFE,
A VOLUBLE GIRAFTER LIFE.
* * * End of File * * *

TAILOR SCRIPT Al V 132 Trunc=132 Size=28 Line=9 Col=l Alt=O
====>

THE CANARY

THE SONG OF CANARIES
NEVER VARIES.
AND WHEN THEY'RE MOULTING
THEY'RE PRETTY REVOLTING.

THE GIRAFFE

I BEG YOU, CHILDREN, DO NOT LAUGH
WHEN YOU SURVEY THE TALL GIRAFFE.
IT'S HARDLY SPORTING TO ATTACK
A BEAST THAT CANNOT ANSWER BACK.
HE HAS A TRUMPET FOR A THROAT,
AND CANNOT BLOW A SINGLE NOTE.
IT ISN'T THAT HIS VOICE HE HOARDS;
HE HASN'T ANY VOCAL CORDS.
I WISH FOR HIM, AND FOR HIS WIFE,
A VOLUBLE GIRAFTER LIFE.
* * * End of File * * *

Figure 35. The SET SCALE Subcommand - "Before" and "After"

--------,

Chapter 6. Tailoring the Screen 133

TAILOR SCRIPT Al V 132 Trunc=132 Size=28 Line=9 Col=1 Alt=O
====> SET TABLINE ON 4

THE CANARY

THE SONG OF CANARIES
NEVER VARIES.
AND WHEN THEY'RE MOULTING
THEY'RE PRETTY REVOLTING.

THE GIRAFFE

I BEG YOU, CHILDREN, DO NOT LAUGH
WHEN YOU SURVEY THE TALL GIRAFFE.
IT'S HARDLY SPORTING TO ATTACK
A BEAST THAT CANNOT ANSWER BACK.
HE HAS A TRUMPET FOR A THROAT,
AND CANNOT BLOW A SINGLE NOTE.
IT ISN'T THAT HIS VOICE HE HOARDS;
HE HASN'T ANY VOCAL CORDS.
I WISH FOR HIM, AND FOR HIS WIFE,
A VOLUBLE GIRAFTER LIFE.
* * * End of File * * *

TAILOR SCRIPT Al V 132 Trunc=132 Size=28 Line=9 Col=l Alt=O
====>

T T T
THE CANARY

T T

THE SONG OF CANARIES
NEVER VARIES.

T

AND WHEN THEY'RE MOULTING
THEY'RE PRETTY REVOLTING.

THE GIRAFFE

T

I BEG YOU, CHILDREN, DO NOT LAUGH
WHEN YOU SURVEY THE TALL GIRAFFE.
IT'S HARDLY SPORTING TO ATTACK
A BEAST THAT CANNOT ANSWER BACK.
HE HAS A TRUMPET FOR A THROAT,
AND CANNOT BLOW A SINGLE NOTE.
IT ISN'T THAT HIS VOICE HE HOARDS;
HE HASN'T ANY VOCAL CORDS.
I WISH FOR HIM, AND FOR HIS WIFE,
A VOLUBLE GIRAFTER LIFE.
* * * End of Fil~ * * *

T T T T T

Figure 36. The SET TABLINE Subcommand - "Before" and "After"

134 VM/SP System Product Editor User's Guide

T T T

r

[

[-:

r­
l

r­
L

r-
L

J

J
-1
_..J

J

J

J
]

]

J

~J

J

:J

J

:J
-1

-.J

~

~

=.J

:J

~

=.J

~

:J

=:J

:J
.J

.J

=:J

=J "

~ "-- -

~]

~

c

TAILOR SCRIPT Al V 132 Trunc=132 Size=28 Line=9 Col=1 Alt=O
====> SET MSGLINE ON 3 15 OVERLAY

T T T
THE CANARY

T T

THE SONG OF CANARIES
NEVER VARIES.

T

AND WHEN THEY'RE MOULTING
THEY'RE PRETTY REVOLTING.

THE GIRAFFE

T

I BEG YOU, CHILDREN, DO NOT LAUGH
WHEN YOU SURVEY THE TALL GIRAFFE.
IT'S HARDLY SPORTING TO ATTACK
A BEAST THAT CANNOT ANSWER BACK.
HE HAS A TRUMPET FOR A THROAT,
AND CANNOT BLOW A SINGLE NOTE.
IT ISN'T THAT HIS VOICE HE HOARDS;
HE HASN'T ANY VOCAL CORDS.
I WISH FOR HIM, AND FOR HIS WIFE,
A VOLUBLE GIRAFTER LIFE.
* * * End of File * * *

T T T T T T T

TAILOR SCRIPT Al V 132 Trunc=132 Size=28 Line=9 Col=1 Alt=O
====> QUERY COLOR *
T T T
THE CANARY

T T

THE SONG OF CANARIES
NEVER VARIES.

T

AND WHEN THEY'RE MOULTING
THEY'RE PRETTY REVOLTING.

THE GIRAFFE

T

I BEG YOU, CHILDREN, DO NOT LAUGH
WHEN YOU SURVEY THE TALL GIRAFFE.
IT'S HARDLY SPORTING TO ATTACK
A BEAST THAT CANNOT ANSWER BACK.
HE HAS A TRUMPET FOR A THROAT,
AND CANNOT BLOW A SINGLE NOTE.
IT ISN'T THAT HIS VOICE HE HOARDS;
HE HASN'T ANY VOCAL CORDS.
I WISH FOR HIM, AND FOR HIS WIFE,
A VOLUBLE GIRAFTER LIFE.
* * * End of File * * *

T T T T T

Figure 37 (Part 1 of 2). SET MSGLINE on Multiple Lines with Overlay

T T

T

T

Chapter 6. Tailoring the Screen 135

'!,.'\,.'.I".:.'.,'::i.I)J,;::,:.!';,'::".":':'.' ,'.:.'."'·'Bt· .
";"®:'."':"

\ ' ~

'" ,

: .. ,: 0·"""
~

TAILOR SCRIPT
====>
COLOR ARROW
COLOR CMDLINE
COLOR CURLINE
COLOR FILEAREA
COLOR IDLINE
COLOR MSGLINE
COLOR PENDING
COLOR PREFIX
COLOR SCALE
COLOR SHADOW
COLOR STATAREA
COLOR TABLINE
COLOR TOFEOF

THE CANARY

Al V 132

DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT
RED
DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT

THE SONG OF CANARIES
NEVER VARIES.
AND WHEN THEY'RE MOULTING
THEY'RE PRETTY REVOLTING.

THE GIRAFFE

Trunc=132 Size=28 Line=9

NONE HIGH PSO
NONE NOHIGH PSO
NONE HIGH PSO
NONE NOHIGH PSO
NONE HIGH PSO
NONE HIGH PSO
NONE HIGH PSO
NONE NOHIGH PSO
NONE HIGH PSO
NONE NOHIGH PSO
NONE HIGH PSO
NONE HIGH PSO
NONE NOHIGH PSO

Figure 37 (Part 2 of 2). SET MSGLINE on Multiple Lines with Overlay

136 VM/SP System Product Editor User's Guide

Col=l Alt=O

, ..

l

r'
l

I

r:

l

r
~-

r-
I

~

J

J
-'1
_.J

J

J

J
J

J
j

J

J

J
]

~J

]

--'1
-1

-1

=J

J

J

J

J
]

:=J

~]

-J

:J

::J

~] "

~

J

=.J ~

The macro language is one of the most powerful facilities that the editor
provides. By writing macros, you can:

• Expand the basic subcommand language

• Expand the prefix subcommand language

• Tailor the language to your own application

o Eliminate repetitive tasks.

This chapter explains how to write an XEDIT macro, discusses those XEDIT
subcommands designed for use in macros, describes' an XEDIT macro
written for a text processing application, explains a profile macro, and
explains how to write prefix macros. You should be familiar with the
Restructured Extended Executor (REXX) language, which is described in
the publications VM/ SP System Product Interpreter User's Guide and
VM/ SP System Product Interpreter Reference before you read this chapter.

What Is an XEDIT Macro?

An XEDIT macro is a REXX file that is invoked from the XEDIT
environment.

(A macro may also be written using the EXEC 2 language. However, all
examples in this chapter are based on the REXX language.)

You execute a macro the same way you execute XEDIT subcommands; type
the macro name on the command line (or the prefix area) and press the
ENTER key. A macro may be executed by entering only its name (or
synonym), or its execution may also depend on arguments you enter when
the macro is invoked.

A macro file can contain:

• XEDIT subcommands
• REXX instructions
• CMS and CP commands.

Chapter 7. The Macro Language 137

Creating a Macro File

Because an XEDIT macro is a normal CMS file, it may be created in any of
the ways that CMS provides for file creation. It can even be created
dynamically, by using the XEDIT multiple file editing capability (see
"Chapter 5. Editing Multiple Files"). As soon as a FILE subcommand is
executed for the macro file, the macro can be used.

Like any CMS file, a macro file is identified by filename, filetype, and
filemode. The file identifier for a macro file must follow certain rules:

o For macros entered from the command line, the filename is a string of
one to eight alphameric characters. This name is used to invoke the
macro. For example, if the filename is SEND, entering "SEND" during
an editing session causes the macro to be executed. (For information on
the search order and handling filenames that contain numbers, see
"Avoiding Name Conflicts" later in this chapter.)

Prefix macro filenames may be one to eight characters, but they may
not contain numbers. (Because the prefix area is only five positions
long, you can define a synonym for a prefix macro filename that is
longer than five characters. For more information on defining
synonyms for prefix macros, see "Writing Prefix Macros," later in this
chapter, and the SET PREFIX subcommand description in the VM/SP
System Product Editor Command and Macro Reference.)

o The filetype must be XEDIT.

• The filemode can specify any of your accessed disks, for example, AI.

Using XEDIT Subcommands in a Macro

A macro can contain any XEDIT subcommand, with the following
exceptions: prefix macros cannot contain READ, QUIT, FILE, SET
RANGE, SORT, and LPREFIX. However, some subcommands perform
functions that are meaningful only in the context of a macro, for example,
one that passes information to the System Product Interpreter.

The following list summarizes these subcommands; some are then discussed
according to function. For detailed information on all of these
subcommands, refer to the publication VM/SP System Product Editor
Command and Macro Reference.

CMS
CMSG

RESTORE
SET CTLCHAR

138 VM/SP System Product Editor User's Guide

r-

l

r
[

[

r
l

r
l

l.

J

J
-1
_J

J

]

J

J

J

=J

J

~

=:J
-,
-----.J

~]

=.J

=.J

~

~

:J

=J
:J

=:J

:=J

~

:J
=:J

=.J

::J

:=J
\

:=J ,-

:J

=.J

COMMAND
CP
CURSOR
EMSG
EXTRACT
MACRO
MSG
PRESERVE
READ

SET COLOR
SET DISPLAY
SET MSGLINE
SET MSGMODE
SET PENDING
SET RESERVED
SET SCOPE
SET SELECT
STACK

Communicating between the Editor and the Interpreter

READ Subcommand

The following subcommands are discussed in this section:

READ
EXTRACT

Both READ and EXTRACT can supply a macro with information.

The READ subcommand is used to find out what the user has entered on
the screen. It places fields that have been changed on the screen in the
console stack. Once something is in the console stack, it cannot be used by
the macro until it has been taken out of the console stack. The REXX PULL
instruction is used to take information out of the console stack and assign
it to program variables, which can then be examined by the macro.

The EXTRACT subcommand can supply a macro with information about
internal XEDIT variables or about file data. The information is returned in
one or more variables, which can then be examined or used by the macro.

The following sections provide examples of using READ and EXTRACT.

When a READ subcommand is issued from a macro, the editor displays
"Macro-read" in the status area of the user's screen and waits for the user
to enter data and/or press a key. (The file image remains on the screen.)
After a key is pressed, the data is placed in the console stack.

Operands of the READ subcommand can be used to specify how much
information is placed in the console stack. The READ subcommand can be
used to place either the command line or all changed lines in the console
stack. In addition, you can request that a tag identifying the origin of the
line(s) be inserted at the beginning of each line stacked.

A subsequent REXX PULL instruction assigns the data to program
variable(s), and the macro continues executing.

The READ subcommand has the following format:

Chapter 7. The Macro Language 139

READ Cmdline Tag I Notag
All Number Tag I Notag
Nochange Number Tag I Notag

Where:

Cmdline
only the command line is stacked.

All
anything changed on the screen is stacked.

Nochange
same as ALL, but the copy of the file in storage is not updated.

Number

Tag

changed file lines are prefixed by their line numbers.

tags that identify the origin of changed lines precede lines placed in
the stack.

Notag
no tags are stacked.

No~mally, a macro displays a message requesting that you enter data on the
command line before it issues a READ.

For example:

MSG ENTER FILENAME FILE TYPE FILEMODE
("ENTER fILENAME FILETYPE FILEMODE" is displayed.)

READ CMDLINE
(User enters MYFILE SCRIPT A in the command line and READ puts
it in the console stack.)

PULL FN FT FM:

The EXTRACT Subcommand

(Takes the fileid out of the stack and assigns MYFILE, SCRIPT, and A
to FN, FT, and FM, respectively.)

The EXTRACT subcommand returns information about editing options
(options defined by the SET subcommand) as well as other file data that is
not explicitly "set." The information is returned as one or more variables in
the form "name.n", where "name" is the same as the variable requested and
"n" is a subscript that distinguishes the different values returned for each
option requested.

140 VM/SP System Product Editor User's Guide

r

r
r

L

[

r
L .,

' ..

J

J
1

_J

-,
---1

J
]

J

J
]

J

J

J

J
]

J

=J
~]

-1
-.J

-J

::J

.J

~

~

=.J

:J
~

=.J

~

:J '"
(

=.J '-----

=.J

~

r-----------··-----------

For example, if a macro wants inform~tion apout,the case setting it can
Issue:

EXTRACT ICASEI

This returns information about the contents of the case setting in the
following variables:

CASE.O
CASE.l
CASE.2

number of variables returned
MIXEDIUPPER
RESPECT I IGNORE

The macro could use this information as follows:

msg "The current case setting is" case.l case.2

Displaying Data on the Editor's Screen

The following subcommands are discussed in this section:

MSG
EMSG
CMSG
SET MSGMODE
SET RESERVED
SET CTLCHAR
CURSOR

MSG, EMSG, and CMSG Subcommands

A macro can communicate with the user by displaying messages in the
message line of the screen. Messages are used for various reasons, for
example, requesting the user to enter data, telling a user that an error has
occurred during processing, and so forth .

The following two subcommands display a message in the message line of
the screen:

MSG
displays a message in the message line.

EMSG
displays a message in the message line and sounds the alarm.

For example:

MSG ENTER FILE NAME
Displays "ENTER FILE NAME" in the message line.

EMSG MISSING OPERANDS
Displays "MISSING OPERANPS" in the message line and sounds the
alarm.

Chapter 7. The Macro Language 141

Note: REXX also provides an instruction, SAY, that displays one line of
data at the terminal. However, the SAY instruction causes the screen to be
cleared before the data is displayed.

The XEDIT subcommands MSG and EMSG keep the file image on the
screen and display the data in the message line. Therefore, you should use
them instead of SAY in a macro.

The following subcommand displays a message in the command line of the
screen:

CMSG

When issued from a macro, the CMSG subcommand can be used to
redisplay input that the user has entered incorrectly, so that it can be
corrected and reentered.

SET MSGMODE Subcommand

The SET MSGMODE subcommand is used to cqntrol whether or not
messages are displayed:

SET MSGMODE ON All messages are displayed.
SET MSGMODE OFF No messages are displayed.

By turning the message mode on and off during a macro, you can select
when you want messages to be displayed.

SET RESERVED Subcommand

When issued from a macro, the SET RESERVED subcommand reserves a
specified line on the screen for use by the macro, thereby preventing the
editor from using that line. The line can be used for displaying blank or
specified information, which can optionally be displayed in various ways for
emphasis. For example, depending on the features supported by your
terminal, the line can be displayed highlighted, using a programmed symbol
set, in various colors, or with extended highlighting features (blinking,
reverse video, or underlining).

For example, the following subcommand:

SET RESERVED 10 HIGH YOU CAN'T USE THIS LINE.

displays, on the tenth line of the screen, "You can't use this line." The line
is highlighted.

Another example of SET RESERVED is shown with SET CTLCHAR,
discussed below.

142 VMjSP System Product Editor User's Guide

/

r

l

[

:'

[

r
l

l

r
[

,-

r-
l

!

-.

-l
-1

J
- 1
__ J

- 1
~

J
]

=-J

]

=J

J

=-J

=J
~J

~

~J

~J

~

~

=:J

=J
----I
-.J

~

=.J

=.J

=J
~

=.J

~

:=J
\

~

=.J

=.J

c

SET CTLCHAR Subcommand

The SET CTLCHAR subcommand is used to specify attributes for fields
within a reserved line. Depending on the features supported by your
terminal, these fields may be displayed highlighted, protected, invisible, in
various colors, using different programmed symbol sets, or with extended
highlighting features (blinking, reverse video, or underlining).

In the following example, note how SET RESERVED and SET CTLCHAR
are used to control exactly how the reserved lines are displayed.

/* This XEDIT macro will show examples of using SET CTLCHAR */
'SET CTLCHAR % ESCAPE'
'SET CTLCHAR + PROTECT BLUE REVVIDEO NOHIGH'
'SET CTLCHAR J NOPROTECT GREEN UNDERLINE NOHIGH'
'SET RESERVED 3 YEL HIGH This is Yellow%+And this is Blue and Reversed.'
'SET RESERVED 5 RED BLINK NOH Red and Blinking%JGreen and Underlined.'

CURSOR Subcommand

The CURSOR subcommand can be used to move the cursor to a specified
position on the screen, and optionally, to assign a priority to that position.
For example, the editor has a macro called SCHANGE, which looks for a
string and moves the cursor under the string if it is found. For an example
of using the CURSOR subcommand, see "Positioning the Cursor," later in
this chapter.

Saving and Restoring Editing Variables

The PRESERVE subcommand is used to save the settings of various editing
variables until a subsequent RESTORE subcommand is issued. For
example, you might want to preserve a setting so that you can change it for
the duration of the macro, and restore it before the macro finishes
executing. For a complete list of the variables affected, refer to the
PRESERVE subcommand description in the publication VM/ SP System
Product Editor Command and Macro Reference.

Issuing CMS and CP Commands

As you have seen, an XEDIT macro can contain XEDIT subcommands,
REXX instructions, and CMS and CP commands. CMS and CP commands
can be issued as operands of the XEDIT subcommands CMS and CP,
respectively.

For example:

CMS ERASE FILEA SCRIPT

Chapter 7. The Macro Language 143

(CMS and CP commands can also be issued by using the REXX
instructions, ADDRESS CMS or ADDRESS COMMAND.)

Avoiding Name Conflicts

The following subcommands are discussed in this section:

COMMAND
MACRO
SET MACRO
SET SYNONYM

Use the COMMAND subcommand to cause the editor to execute a specified
subcommand without first checking to see if a synonym or macro with the
same name exists. This subcommand overrides SET SYNONYM ON or SET
MACRO ON (discussed below).

For example:

COMMAND PRESERVE

executes the PRESERVE subcommand, even if a synonym or macro with
the same name exists.

Similarly, use the MACRO subcommand to cause the editor to execute a
specified macro without first checking to see if a subcommand of the same
name or a synonym exists. (Of course, this cannot be used for prefix
macros.)

The MACRO subcommand can also be used to avoid name conflicts, in the
following manner. When a subcommand has a number as its operand, a
blank is not required between the subcommand name and the operand. For
example, both "NEXT8" and "N8" are interpreted by the editor aR being the
subcommand "NEXT 8". Therefore, if a macro name were also "N8," the
macro would not be executed; the subcommand "NEXT 8" would be
executed instead. To execute the macro, you could enter the following:

The macro whose name is "N8" would then be executed.

The SET MACRO subcommand can be used to control the order in which
the editor searches for subcommands and macros. SET MACRO ON tells
the editor to look for macros before it looks for subcommands; SET MACRO
OFF reverses the order.

In addition, SET SYNONYM can be used to specify whether or not the
editor looks for synonyms.

144 VM/SP System Product Editor User's Guide

l.

r

l ..

r
l.

r
l

r

L

r

r

l

r

-j
___ J

J
-1
__ J

j

J

J

J
- -1
....J

]

~J
- 1
_J

J

=J
:J
--)

-)

~
-1
------'

-1
_J

=:J

~

:J
--,
.-J

=:J

:J

~:]

~

=.J

~

~
(

~

~

~

"------,

Walking through an XEDIT Macro

The following XEDIT macro is an example of the type of macro you might
write to make life a little easier. The application is typical of a text
processing file arrangement, where many SCRIPT files are imbedded in a
master file, via the SCRIPT control word" .im".

The problem with this type of setup is that if YOt-l have to make a global
change throughout all the files, you have to edit each file, make the
change, and then file each file.

When issued from the master file, this macro edits each file, performs a
global change, and files it.

The macro is invoked by entering the macro name, GLOBCHG; the
arguments passed to the macro are the old data and the new data, enclosed
in delimiters:

GLOBCHG /string~/string2/

For example, if a file called MASTER SCRIPT contains:

.irn FILEI

.irn FILE2

.irn FILEIOO

and the following commands are issued:

XEDIT MASTER SCRIPT

GLOBCHG/WAR AND PEACE/SENSE AND NONSENSE/

"WAR AND PEACE" is changed to "SENSE AND NONSENSE" each time
it occurs in every file. (In this macro, no attempt is made to execute the
change on files that may be imbedded at the next level.)

The GLOBCHG macro can also be used to delete data throughout the files,
by changing a string to a null string, for example:

GLOBCHG /bad data//

The following is a listing of the macro, whose fileid is GLOBCHG XEDIT
AI. After the listing, each line in the macro is explained. For more
information on the System Product Interpreter statements used in the
macro, see the publication VM/ SP System Product Interpreter Reference.

Chapter 7. The Macro Language 145

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040

/* Do a global change on imbedded Script files */
/* Input to this macro is the CHANGE command to be executed on */
/* the file currently being xedited and on any files it imbeds. */
parse arg operand /* Get passed CHANGE cmd */
if operand = " then do /* If omitted, then error */

emsg 'EXE545E Missing operand(s) , /* Give error message */
parse source me /* Get this macros name */
cmsg me /* Put it on command line */
exit /* Leave this macro * /
end /* End of DO loop * /

preserve /* Save current status */
set wrap off /* Set wrap off * /
set msgmode on /* Set message mode on */
set case mixed ignore /* Set proper case */
top /* Go to TOP of file * /
find .im /* Find first imbed file */
if rc ,= 0 then do /* If none found, give msg */

restore /* Restore previous status */
emsg 'No IMBED found.' /* Give message */
exit /* Leave this macro * /
end /* End of DO loop * /

do while rc=O /* Imbed found, process it */
extract '/curline/' /* Get current line */
parse upper var curline.3 fname /* Separate out file name */
address command state fname 'SCRIPT *'/* Does this file exist? */
if rc ,= 0 then do /* If not, issue message */

msg 'IMBEDed file' fname 'SCRIPT does not exist, bypassed.'
find .im /* Search for next imbed */
iterate /* Cause next loop iterat'n*/
end /* End of inner DO loop */

xedit fname 'SCRIPT (NOPROFILE' /* File exists, XEDIT it */
extract '/fname/ftype/fmode/' /* Get name, type, mode */
msg 'Processing file' fname.1 ftype.l fmode.l /* Issue message */
change operand '* *' /* Issue CHANGE command */
file /* Save the file & quit * /
find .im /* Find the next imbed */

end /* End of outer DO loop */
restore /* Loop ends, restore */
msg 'No more .imbeds found, global change completed.' /* Give msg */
exit /* All done, leave macro */

Figure 38. A Sample Macro

Now, let's walk through the macro, a line at a time.

00001 /* Do a global change on imbedded Script files * /
System Product Interpreter comment line. This is a required line and
tells the Interpreter this is a REXX file.

00004 parse arg operand
Place the passed arguments into the variable called OPERAND.

00005 if operand = " then do
If no arguments were entered when the macro was invoked, execute
the following statements until an END is reached (DO loop).
(OPERAND was set to a null in line 4.)

146 VM/SP System Product Editor User's Guide

~-

l.

(

L.

[

l_ . J

r
I

L

r

l.

r
r
l

r

r-

l

J

.j

J
1

_.-1

J

J

J
]

J

]

J

J

J

J

J

~J

J

J

J

=J
J

~

J

J

J

00006 emsg 'EXE545E Missing operand(s)'
Display this message.

00007 parse source .. me .
Look at the source string and place the name of this macro into the
variable ME.

00008 cmsg me
The macro name (in the variable ME) is displayed on the command
line.

00009 exit
Return control to the editor.

00010 end
This statement signals the end of the DO loop that began in line 5.

00011 preserve
This subcommand saves the editor settings until a subsequent
RESTORE subcommand is issued (line 37).

00012 set wrap off
Wrapping during the target search is turned off. When the end of the
master file is reached the macro will end, rather than wrapping
around, searching for ".im," and getting caught in a loop.

00013 set msgmode on
Messages will be displayed. By turning the message mode on and off,
you can select which messages you want displayed.

00014 set case mixed ignore
In target searches, uppercase and lowercase representations of the
same letter will match.

00015 top
Move the line pointer to the top of the master file, which is the file
from which the macro was invoked.

00016 find .im
Search forward in the master file for the first line that contains" .im"
in column 1, that is, locate the first line that imbeds a file.

00017 if rc 1= 0 then do
If there is a non-zero return code from the FIND subcommand
(previous statement), then do the following statements up to the END
(another DO loop).

00018 restore
Restore the settings of XEDIT variables to the values they had when
the PRESERVE subcommand was issued (line 11).

Chapter 7. The Macro Language 147

00019 emsg 'No IMBED found.'
Display this message.

00020 exit
Return control to the editor.

00021 end
This statement signals the end of the DO loop that was started in line
16.

00022 do while rc = 0
Repeat the following statements (up to the END in line 36), as long as
the return code (RC) is 0. The initial value for RC is set by the FIND
subcommand in line 15; we reach this point only if RC was set to 0,
which means an imbedded file was found. The last statement in this
loop is also a FIND subcommand, and RC will be reset to the return
code for that FIND subcommand just before we return to this point to
execute the statements again. When the return code is not 0, this
macro will continue with the statement following the END (line 36).

00023 extract '/curlinel'
Return information about the current line in macro variables, in the
form "curline.n," where the subscript distinguishes among the
variables.

00024 parse upper var curline.3 . fname .
CURLINE.3 contains the contents of the current line (as returned by
the EXTRACT subcommand above). In this case the current line is
the .im statement that was found via a "find .im". This statement
takes the second blank delimited word from the variable CURLINE.3
and puts it into the variable FNAME.

00025 address command state fname 'SCRIPT *,
The 8T ATE command is a CIvIS command that verifies the existence of
a file. This statement checks to see if the file named in the .im
statement exists. The quotes are needed around the asterisk to avoid
confusion with the REXX multiplication operator. Enclosing the word
SCRIPT and the asterisk in quotation marks makes it a literal string.

00026 if rc I = 0 then do
If the return code from the ST ATE command is not zero, then do the
following statements up to the END statement in line 29 (DO loop).

00027 msg 'IMBEDed file' fname 'SCRIPT does not exist, bypassed.'
Display this message. REXX will substitute the value of "fname" in
the message before it is displayed.

00028 find .im
This locates the next imbed control word in the file.

148 VMjSP System Product Editor User's Guide

r

,--
l

,- -

L

r- -

,- -
l

,
L

r
\

r-
l

r

]

J

]

J

J

J

00029 iterate
This statement tells REXX to go to the END statement and complete
the processing for this iteration of the DO loop.

00030 end
This statement signals the end of the DO loop that was started in line
25 above.

00031 xedit fname 'SCRIPT (NOPROFILE'
This statement will invoke the editor (XEDIT) for the file specified.
REXX will substitute the value of "fname" in this line before passing
it to XEDIT.

00032 extract' /fname/ftype/fmode/'
Returns the filename, filetype, and filemode in macro variables.

00033 msg 'Processing file' fname.1 ftype.1 fmode.1
Displays the message, with the file identification as returned by
EXTRACT.

00034 change operand '* *'
The global change is executed. OPERAND contains the arguments
entered when the macro was invoked (see line 4).

00035 file
The changed file is written to disk.

00036 find. im
The editor resumes editing the master file, searching for the next".im
filename" statement.

00037 end
This statement signals the end of the DO loop that was started in line
21.

00038 restore
Restore the settings of XEDIT variables to the values they had when
the PRESERVE subcommand was issued (line 11).

00039 msg 'No more .imbeds found, global change completed.'
Display this message.

00040 exit
Return control to the editor. You can then issue a QUIT subcommand
for the master file.

Chapter 7. The Macro Language 149

A Profile Macro for Editing

As a CMS user, you are familiar with a PROFILE EXEC macro, which
contains the CMS and CP commands you normally issue at the start of a
terminal session and is executed automatically after you issue the IPL CMS
command.

The editor offers a similar profile capability with a PROFILE XEDIT macro,
which contains XEDIT subcommands that tailor each editing session to suit
your needs and is executed automatically after you issue an XEDIT
command (or subcommand).

Executing a Profile Macro

The filetype of a profile macro must be "XEDIT". If the fileid is PROFILE
XEDIT, the macro is executed automatically when an XEDIT command (or
subcommand) is issued. You can write a PROFILE XEDIT macro, file it,
and forget about it. It will be executed before each file is brought into
storage.

If you do not want a PROFILE XEDIT macro to be executed for a particular
editing session, you can issue the following XEDIT command:

XEDIT fn ft (NOPROFILE

The PROFILE XEDIT macro is bypassed, and the file is brought into
storage.

Although the file type of a profile macro must be "XEDIT," the filename
does not have to be "PROFILE". If your profile macro has a name other
than "PROFILE," you must indicate its filename in the PROFILE option of
the XEDIT command.

For example, if the fileid is MYPROF XEDIT, you must issue the following
XEDIT command:

XEDIT fn ft (PROFILE MYPROF

The macro labelled MYPROF XEDIT is executed, even if a macro labelled
PROFILE XEDIT exists.

Writing a Profile Macro

A profile macro can be as simple or complex as you wish. Like any macro,
it can contain System Product Interpreter statements, CMS and CP
commands, and any XEDIT subcommands or macros. It usually contains
one or more SET subcommands that create an editing environment to your
liking.

150 VMjSP System Product Editor User's Guide

r

l

r

r
l

r
l

[

c
r
[

r
[

r
l

]

]

J

I(JI'

It can also contain a LOAD subcommand, which can be issued only from a
profile macro. When the profile macro begins execution, a copy of the file
has not yet been brought into virtual storage. Therefore, a LOAD
subcommand, which has the same format and options as the XEDIT
command, can be used to supply editing options that are not specified in the
XEDIT command itself.

Within the profile macro, the LOAD subcommand must be the first XEDIT
subcommand. If it is not, a LOAD subcommand is automatically issued by
the editor; its operands are the same as those issued in the XEDIT
command. (System Product Interpreter statements and CMS commands can
be issued before the LOAD.)

The profile macro can be used to prompt the user for XEDIT command
options or to assign values to editing variables before issuing the LOAD
subcommand. For example, a SCRIPT user might program his profile to use
a LOAD subcommand that does defaulting of filetype.

The options specified in the LOAD subcommand have a lower priority than
those specified in an XEDIT command. For example, an UPDATE option
specified in the LOAD subcommand would be overridden by a NOUPDATE
option specified in the XEDIT command.

When the LOAD subcommand is executed, the file is brought into virtual
storage.

If the LOAD fails, a non-zero return code is generated. All subsequent
subcommands in the profile macro are rejected with a unique "6" return
code.

For detailed information on the LOAD subcommand, refer to the
publication VM/ SP System Product Editor Command and Macro Reference.

An Example of a Profile Macro

An example of a profile macro is shown in Figure 39.

Chapter 7. The Macro Language 151

00001 /* Sample XEDIT profile */
00002 parse arg fn ft ' (, options /* put arguments into variables */
00003 if ft= ' , then ft= 'SCRIPT' /* if no filetype, use SCRIPT */
00004 load fn ft ' (' options /* issue LOAD statement */
00005 set tabline on 22 /* put tab line on line 22 */
00006 set scale on 22 /* put scale on line 22 */
00007 set fullread on /* full-screen read on */
00008 set nulls on /* end of line nulls on */
00009 set number on /* line numbers to be used */
00010 set pf10 save /* PF10 to SAVE */
00011 set synonym fiel 4 file /* when my fingers don't work */
00012 exit /* exit this macro */

Figure 39. A PROFILE XEDIT Macro

00001 /* Sample XEDIT profile */
Identifies the macro as a System Product Interpreter file.

00002 parse arg fn ft '(' options
Puts argument into variables.

00003 if ft = "then ft = 'SCRIPT'
If there is no filetype assigned, this will assign a filetype of SCRIPT.

00004 load fn ft '(' options
Loads the file.

00005 set tabline on 22
Sets the tabline on line 22 of the screen.

00006 set scale on 22
Superimposes the scale on line 22 of the screen.

00007 set fullread on
Sets the full-screen read on to allow recognition by XEDIT of 3270
null characters in the middle of the screen lines.

00008 set nulls on
Sets NULLS ON to replace all trailing blanks with nulls.

00009 set number on
Sets NUMBER ON to assign a line number to each line in the file.

00010 set pflO save
Sets PFIO to save the file.

00011 set synonym fiel 4 file
Sets a synonym "fiel" for the subcommand "file".

00012 exit

152 VMjSP System Product Editor User's Guide

[
~

l

[

[-

l'

r ..

[-

l
[

C

r
l ..

r

r-
I

l

r
I

[

l

r:

r-

C

[

[
,r

[

r
r

/' I..

r

J

J

J

J

J

]

J

:J

J

J

]

J

J

J
]

.- J

J

J

J

.J
]

J

=J

]

J

J
]

\

J "--- -

J

J

p'-- ••. " _.- •• -.,~ •.• ,,-~ •. -.-,--.--.~--~.-.-, ..• -------.-.".--.--, ... ----,-_._----_._-._-------_._----------_.,-----L __ ._. ___________ _

Exit the macro.

Writing Prefix Macros

You can write prefix macros for a variety of purposes, from performing a
function from the prefix area th,at is normally accomplished by entering a
subcommand on the command line, to creating an entirely new function.

You must be familiar with the REXX language before reading this section.
More information on REXX can be found in the publications cited at the
beginning of this chapter.

Creating a Sample Prefix Macro

The U prefix macro gives the user the ability to translate one or more lines
in a file to uppercase, which normally is accomplished by issuing the
UPPER CAS subcommand in the command line. When U is entered in the
prefix area of a line, that line is translated to uppercase. A number may be
specified before or after the U to translate more than one line; for example,
3U= = = or =U5= =.

The file is created with the XEDIT command:

XEDIT U XEDIT

The U prefix macro looks like this:

00001 /* This macro translates a line(s) to uppercase. */
00002 arg . . pline op .
00003 If op = "then op = 1
00004 'COMMAND: 'pline 'UPPERCAS' op
00005 Exit 0

What Information Is Passed to the Macro?

An argument string is automatically passed to a prefix macro when it is
invoked. It can supply a macro with information critical to its execution,
like the line number of the prefix area in which the macro was entered.

LIne 2 (above) is a REXX statement that parses (splits up) the string,
according to the template shown. (The argument string is described in
greater detail later in this chapter.) Pline represents the line number of the
prefix area, and op represents the optional operand. These variable names
provide the macro with answers to the following questions:

Chapter 7. The Macro Language 153

On which line was the macro entered?
How many lines are to be translated to uppercase?

Line 3 determines if an operand was entered. If the operand is null, a
default of 1 is assumed.

Line 4 makes the line in which the prefix macro was entered (pline) the new
current line and then issues the UPPER CAS subcommand, with the
operand.

Current Line Positioning

Note that in line 4, :pline is an absolute line number target. It is used to
make the prefix line (pline) current for the UPPERCAS subcommand, which
operates on the current line.

After the pending list is finished executing, the current line is returned
automatically to the line that was current when it began execution.
Therefore, even though pline is made current for the UPPERCAS
subcommand, the macro need not restore the current line.

For information on overriding this automatic current line return, see the
SET PENDING subcommand in the VM/ SP System Product Editor
Command and !J1acro Reference.

Creating a Second Prefix Macro

Let's create another prefix macro called L, which gives the user the ability
to translate one or more lines in a file to lowercase, which normally is
accomplished by issuing the LOWERCAS subcommand in the comrriand
line. This macro is simjlar in function to the U macro described above;
however, we will give the user the additional ability of specifying a block of
lines to be translated, by entering LL on both the first and last lines of the
block.

This macro is presented in segments, to illustrate various concepts. The
entire macro is shown at the end of this chapter.

Examining the Source String

You have already seen that an argument string is passed to a prefix macro
when it is invoked. A source string is also passed.

00007 parse source name .
00008 arg pref func pline op extra

154 VM/SP System Product Editor User's Guide

L

.J

Line 7 parses the source string according to the template shown. In this
example, we're using the source string to get the name of the prefix macro
as the user entered it (without operands). Later, you will see how the
macro uses name to determine if it was invoked in its simple form (L) or
block form (LL).

The source string is described in detail in the VM/SP System Product
Interpreter Reference, under "Parse Source."

In line 8, the argument string is parsed. For now, note that pline is the line
number of the prefix area, and op is the optional operand.

The rest of the argument string is described later in this chapter, under
"Examining the Argument String."

In this example, if L8 were entered in the prefix area of line 3 of a file,
name would be L, pline would be 3, and op would be 8.

Using the Information That Is Passed

The following part of the macro shows how some of the information derived
from the strings is used.

00007 parse source name .
00008 arg pref func pline op extra

00019
00020
00021
00022
00023
00024

when length(name)=l then do
If op = " then op = 1
If datatype(op,'W') then,

'COMMAND: 'pline 'LOWERCAS' op
else call error "Invalid operand :" op
end

In lines 19 through 24, you can see that the source and argument strings
supply the answers to these questions:

What name was used to invoke the macro?
On which line was it entered?
How many lines are to be changed to lowercase?

U sing the variable names assigned in the templates, lines 19 through 24
perform the following functions:

1. See if the macro was entered in its simple form (L). When the length of
name is one, the macro was entered in its simple form.

2. If no operand was entered, assign a default of 1 or determine if the
operand (if any) is a valid whole number (lines 20 and 21). Otherwise,
go to an error routine (line 23).

Chapter 7. The Macro Language 155

3. Make the line in which the prefix macro was entered (pline) current
and issue the LOWER CAS subcommand, with the operand (line 22).

Handling Blocks

00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035

select

A block is a group of consecutive lines. Several XEDIT prefix
subcommands and macros (for example, D and » allow you to specify
blocks by doubling the name and entering it on both the first and last lines
of the block (for example, DD entered on the first and last lines of a block
deletes the entire block of lines). Let's expand the L prefix macro to accept
blocks (specified by entering LL on the first and last lines of the block).

This section explains the following:

• How to assign a synonym for a prefix macro

o How to examine the pending list of prefix subcommands and macros for
a matching block entry

• How to display a pending notice in the status area of the screen.

when length(name)=l then do
If op = " then op = 1
If datatype(op,'W') then,

'COMMAND: 'pline 'LOWERCAS' 9P
else call error "Invalid operand :" op
end

when length(name)=2 then do
If op ,= " then call error,

'Invalid operand:' op
'COMMAND EXTRACT IPENDING BLOCK' name ':0 : 'pline 'I'
if oendina.O,=O then do

'COMMAND: 'pending.1 'SET PENDING OFF'
'COMMAND: 'pending.1 'LOWERCAS : 'pline+1
end

else 'COMMAND: 'pline 'COMMAND SET PENDING BLOCK' name
End

Assigning a Synonym for a Prefix Macro

The user must issue the following subcommand in order to be able to
specify the block form of the L macro. You can enter this subcommand in
the PROFILE XEDIT file:

SET PREFIX SYNONYM LL L

Now, the user can invoke the L prefix macro by entering either L (with an
optional numeric operand) or LL. In line 19, the macro checks for its

156 VMjSP System Product Editor User's Guide

J

J

J

1

J

J

J
]

]

=.1

J

J

J

~J

]

- 1
-.J

]

J

=-l
J

J

]

J

simple form (when the length of name is 1). In line 26, the macro checks for
its block form (when the length of name is 2).

Synonyms can also be assigned for other reasons. For example:

o A prefix macro filename can be up to eight alphabetic characters long,
but the prefix area is only five positions long. You can use SET
PREFIX SYNONYM to assign a synonym that is up to five characters
long.

o The synonym can be a special character that is not permitted as part of
a CMS filename. For example, the filename for the XEDIT prefix macro
> is PRFSHIFT.

o A macro can perform different functions, depending on how it is
entered. Different synonyms can signify different functions to the
macro. For example, the XEDIT prefix macro PRFSHIFT shifts the
screen right if > is entered and left if < is entered. The synonyms
assigned to this macro are:

SET PREFIX SYNONYM > PRFSHIFT
SET PREFIX SYNONYM < PRFSHIFT
SET PREFIX SYNONYM > > PRFSHIFT
SET PREFIX SYNONYM < < PRFSHIFT

o Prefix macros can also use the names of prefix subcommands such as F
(following) or P (preceding). To use a prefix subcommand in a prefix
macro, you should ei.ther define a synonym (see SET PREFIX in the
VM/SP System Product Editor Command and Macro Reference) or
override the prefix subcommand by using SET MACRO ON.

To determine what prefix macro synonyms are in effect, use the QUERY
PREFIX SYNONYM subcommand, which is described in detail in the
VM/SP System Product Editor Command and Macro Reference.

Using the "Pending List"

You have seen that the source and argument strings are two sources of
information upon which a prefix macro can base decisions. Another is the
"pending list."

The "pending list" is a list of prefix subcommands and macros that have not
yet been executed. Every time the editor reads the screen, the pending list
is updated (automatically) with any new prefix subcommands and macros
that have been entered, each of which causes an entry to be added to the
list. Each entry is associated with a specific line in the file.

The pending list is executed when it is changed. If a prefix macro returns a
non-zero return code, execution of the pending list stops and all entries not
executed remain pending, until the user presses the ENTER (or PF/or PA)
key.

Chapter 7. The Macro Language 157

An entry is deleted .from the pending list when it is executed or overtyped
on the user's screen with a new prefix subcommand, prefix macro, or
blanks. For example, when the L prefix macro is invoked, it is removed
from the pending list.

A prefix macro can control its execution and display or remove the pending
notice from the status area of the screen by examining information in the
pending list (EXTRACT/QUERY PENDING) and by adding or deleting
entries in it (SET PENDING). Refer to the VM/SP System Product Editor
Command and Macro Reference for detailed information on these
subcommands.

The pending notice is displayed in the status area as follows:

'value' pending ...

where "value" is the name of the prefix subcommand or macro that was
entered in the prefix area, as derived from the source string (see line 34).
(If multiple prefix subcommands or macros are pending, the first one,
starting from the top of file, is displayed in the pending notice.)

In our example, suppose that the user entered the block form (LL), which is
determined by line 26. First, the macro needs to know if another LL has
been entered, that is, if the pending list contains a matching block entry.

To determine this, the macro examines the pending list by issuing the
EXTRACT subcommand shown in line 29. This subcommand searches the
pending list for a matching block entry, which must be located in the file
within the range specified by the targets, that is, between the top of file (:0)
and the prefix line (:pline), inclusive. If no matching entry is found, the
screen is placed in a pending status (line 34).

If a second LL was entered, the pending status of the screen will not be
seen because the macro is automaticallj?' involtcd again as the pending list
is executed. This time, the EXTRACT subcommand (line 29) finds the
matching block entry, the pending notice is removed (line 31) and the
LOWER CAS subcommand is executed for the block of lines (line 32).

Examining the Argument String

The argument string is as follows:

PREFIX SETI SHADOW I CLEAR pline [opl[op2[op3]]]

Where:

PREFIX
indicates that this is a prefix call.

158 VMjSP System Product Editor User's Guide

l.

1

J

J

J

J

J

J

J

J

J

]

J
]

J

J
]

J

]

J

J

J

J

J

J

:]

J

J

=J
J

J

J

SET
indicates that the prefix macro was entered on some line in the file
displayed.

SHADOW
indicates that a prefix macro was entered on a shadow line (see SET
SHADOW in the VMj SP System Product Editor Command and Macro
Reference).

CLEAR
indicates that a new prefix subcommand or macro or new blank area
replaces a previously pending prefix subcommand or macro on the
same line, or the RESET subcommand was entered. In this case, this
macro is invoked with "PREFIX CLEAR pline".

pline
is the line number on which the prefix macro was entered.

opl op2 op3
are the optional operands of the macro, entered either to its left or
right (for example, 5M or M5). (Operands are recognized according to
the rules explained in "Section 4: Prefix Subcommands and Macros" in
the VMjSP System Product Editor Command and Macro Reference.)

Let's see how this macro uses the argument string for validity checking.

00008
00009
00010
00011
00012
00013
00014
00015
00016
00017

arg pref func pline op extra
If pref ,= 'PREFIX' then call error1,

'This macro must be invoked from the PREFIX area.'
If func = 'CLEAR' then exit
If func = 'SHADOW' then call error1,

'Invalid on shadow line.'
If func ,= 'SET' then call error1,

'This macro must be invoked from the PREFIX area.'
If extra ,= " then call error,

'Extraneous parameter:' extra

00042 /* error routines */
00043 error: 'COMMAND: 'pline 'SET PENDING ERROR' name I lop
00044 error1: parse arg t
00045 'COMMAND EMSG' t
00046 Exit

Lines 9 through 17 verify that the macro is a prefix call and was entered on
a valid prefix line, that is, not on a shadow line. Lines 42 through 45 are
the associated error routines.

Line 43 is a form of the SET PENDING subcommand used to notify the user
the macro was entered incorrectly. In this case, if an extra operand was
entered (determined in line 16), the incorrect macro is displayed highlighted
in the prefix area, prefixed by a question mark. For example, if the user

Chapter 7. The Macro Language 159

____ ,::::J

entered L3 4, the prefix area displays ?L3 and the user gets the message
'Extraneous parameter: 4'.

SET PENDING ERROR does not cause a pending notice to be displayed.
When the user presses the ENTER key again, the prefix area is reset. This
prevents subsequent attempts to execute an incorrectly-entered macro.

Positioning the Cursor

The cursor is positioned in the line in which the prefix macro was entered
by using the following subcommand:

00039 'COMMAND CURSOR FILE' pline 'PRIORITY 30'

By using the CURSOR subcommand, user-written prefix macros can specify
a priority that is associated with cursor positioning. The cursor is
positioned at the location specified that has the highest priority when all
pending prefix subcommands and any macros are executed.

For more information on the CURSOR subcommand and various priorities
associated with prefix subcommands and macros, see the VMjSP System
Product Editor Command and Macro Reference, the CURSOR subcommand
and "Section 4: Prefix Subcommands and Macros."

The rest of this chapter presents additional information which may be
useful in writing prefix macros or tells you where the information can be
found.

How the Prefix Area Is Decoded

See the VMj SP System Product Editor Command and Macro Reference,
"Section 4: Prefix Subcommands and Macros" for a description of how the
editor interprets what is entered in the prefix area.

Using the XEDIT Subcommand

A prefix macro can issue the XEDIT subcommand to edit a different file in
the ring. However, when the macro finishes executing, control
automatically returns to the file from which it was invoked.

160 VM/SP System Product Editor User's Guide

[-

r

l

r.

r

J

J

J

J

J

J

J
J

J

J

]

J
]

]

J

J

J

J

J
]

]

J

J

J
]

J

J

J

J

\

"'--.- -

[" ..•..•. _._._ .. _----_.-. __ . --------_._-- --_•. __ . __ .. _ ... _ .. __ .. _. __ ._--_.]

Additional Examples

For additional examples of prefix macros, you can examine the
IBM-supplied prefix macros, which are as follows:

Macro synonym(s)

X,XX
8
<, >, »,«

File Identifier

PREFIXX XEDIT
PRF8HOW XEDIT
PRF8HIFT XEDIT
81 XEDIT

Chapter 7. The Macro Language 161

The L Prefix Macro

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046

1* Use this macro to translate a line or lines in a file *1
1* to lowercase. *1
1* You may specify nL, Ln, L-n or L to lowercase a line. *1
1* If you add the following prefix synonym to your *1
1* profile, you may also use LL for specifying blocks: *1
1* SET PREFIX SYNONYM LL L *1
parse source name .
arg pref func pline op extra
If pref ,= 'PREFIX' then call error1,

'This macro must be invoked from the PREFIX area.'
If func = 'CLEAR' then exit
If func = 'SHADOW' then call error1,

'Invalid on shadow line.'
If func ,= 'SET' then call error1,

'This macro must be invoked from the PREFIX area.'
If extra ,= " then call error,

'Extraneous parameter:' extra
select

End

when length(name)=l then do
If op = " then op = 1
If datatype(op,'W') then,

'COMMAND: 'pline 'LOWERCAS' op
else call error "Invalid operand :" op
end

when length(name)=2 then do
If op ,= " then call error,

'Invalid operand:' op
'COMMAND EXTRACT IPENDING BLOCK' name ':0 :'pline 'I'
if pending.O,=O then do

'COMMAND: 'pending.1 'SET PENDING OFF'
'COMMAND:' pending.1 'LOWERCAS : 'pline+1
end '

else 'COMMAND :'pline 'COMMAND SET PENDING BLOCK' name
End

Otherwise call error "Invalid macro synonym."

'COMMAND CURSOR FILE' pline 'PRIORITY 30'
Exit

1* error routines *1
error: 'COMMAND: 'pline 'SET PENDING ERROR' name I lop
error1: parse arg t

'COMMAND EMSG' t
Exit

Figure 40. A Sample Prefix Macro.

162 VM/SP System Product Editor User's Guide

r
l

- -1

J

~J

~l

]

- 1

"- 1
_J

Appendix A. A Summary of XEDIT Subcommands and Macros

Subcommand Purpose

Add Add n lines after current line.

ALL Select a collection of lines for display/editing.

ALter Change a single character to another (character or
hex).

BAckward Scroll backward n frames.

Bottom Go to last line of file.

CANCEL Terminate all files.

CAppend Add text to end of current line.

CDelete Delete characters, starting at column pointer.

CFirst Move column pointer to beginning of line (zone).

Change Change one string to another.

CInsert Insert text in the current line.

CLAst Move the column pointer to the end of the line
(zone).

CLocate Locate a string; move the column pointer and the
line pointer.

CMS Pass a command to CMS, or enter CMS subset
mode.

CMSG Display message in command line of user's screen.

COMMAND Execute a subcommand without checking for
synonym or macro.

COMPress Prepare line(s) for realignment by replacing blanks
with tab characters.

COpy Copy line(s) at specified location.

COUnt Display the number of times a string appears.

COVerlay Replace characters, starting at column pointer.

CP Pass command to VM/SP control program.

CReplace Replace characters, starting at the column pointer.

CURsor Move the cursor to specified position on the
screen, and optionally assign a priority for this
position.

DELete Delete line(s).

Down Move line pointer n lines toward end of file (same
as NEXT).

DUPlicat Duplicate line(s).

EMSG Display a message and sound the alarm.

EXPand Reposition data according to new tab settings.

Appendix A. A Summary of XEDIT Subcommands and Macros 163

Subcommand Purpose

EXTract Return information about internal XEDIT
variables and file data.

FILE Write file on disk.

Find Search for line that starts with specified text.

FINDUp Search for a line that starts with specified text;
searches in a backward direction.

FOrward Scroll forward n frames.

GET Insert lines from another file.

Help Request online display of XEDIT subcommands
and macros; invoke the CMS HELP facility.

HEXType Display line(s) in hexadecimal and EBCDIC.

Input Insert a single line, or enter input mode.

Join Join lines.

LEft View data to the left of column one.

LOAD Read file into storage; use in profile macro only.

Locate Move line pointer to specified target.

LOWercas Change uppercase letters to lowercase.

LPrefix Simulate writing in the prefix area of the current
line and pressing the ENTER key.

MACRO Execute macro without checking for subcommand
or synonym.

MErge Combine two sets of lines.

MODify Display a SET subcommand current values in the
command line, so it can be overtyped and
reentered.

MOve Move line(s) to another place in the file.

MSG Display message in message line.

Next Move line pointer n lines toward end of file (same
as DOWN).

l\.TV~~..1 Search for first line that does not match ope<.;ified J..,.L' .u~u

text.

NFINDUp Search backward for first line that does not match
specified text.

Overlay Replace characters in current line.

PARSE Scan a line of a macro to check the format of its
operands.

POWerinp Enter an input mode for continuous typing.

PREServe Save settings of variables until RESTORE.

PURge Remove macro from virtual storage.

PUT Insert lines into another file (new or existing), or
into a buffer (to be retrieved by GET from another
file).

PUTD Same as PUT, but delete original lines.

164 VM/SP System Product Editor User's Guide

Subcommand Purpose

Query Display the current value of editing options.

QUIT End an editing session without saving changes.

READ Place information from the terminal in the console
stack.

RECover Replace deleted lines.

RENum Renumber VSBASIC or FREEFORT file.

REPEat Advance line pointer and reexecute last
subcommand.

· J
Replace Replace current line, or delete current line and

enter input mode.

.1 RESet Remove prefix subcommands or macros when
screen is in "pending" status.

.J RESTore Restore settings of XEDIT variables to values they
had when PRESERVE was issued.

] RGTLEFT Shift display to the right; reissue to shift back to
original display.

·1
_J RIght View data to the right of the last (right-most)

column.
J SAVE Write file on disk and remain in edit mode.

J SCHANGE Make a selective change, using PF keys.

SET ALT Change the number of alterations that have been
1

_.J
made to the file since the last AUTOSAVE and/or
since the last SA VE.

~J SET APL Inform the editor if APL keys are used.

-1

_J
SET ARBchar Define an arbitrary character, which allows you to

specify only the beginning and the end of a
character string that is the object of a target

'-1
_J

search.

- 1
_.J

SET AUtosave Automatically issue a SAVE subcommand at
specified intervals.

~J
SET BRKkey Specifies whether or not CP should break in when

the "BRKKEY " (defined by CP TERMINAL
BRKKEY) is pressed.

-
'1

_.J SET CASE Uppercase or lowercase control; specify if case is

J
significant in target searches.

SET CMDline Move the position of the command line.

=-J SET COLOR Associate specific colors and attributes with
various fields on the XEDIT screen.

~J SET COLPtr Specify if column pointer is displayed (typewriter
terminals only).

~J SET CTLchar Define a control character(s), which associate
parts of a reserved line with highlighting,

- 1
--.1

protection, visibility, various colors, extended
highlighting, and Programmed Symbol Sets.

~J SET CURLine Define the position of the current line on the
screen.

=J
":'J "-

--1
_J

Appendix A. A Summary of XEDIT Subcommands and Macros 165

J

Subcommand Purpose

SET DISPlay Indicate which selection levels of lines will be
displayed on the screen.

SET ENTer Define a meaning for the ENTER key.

SET ESCape Define a character that allows you to enter a
subcommand while in input mode (typewriter
terminals only).

SET Define an arbitrary character within a file
ETARBCH containing Double-Byte Character Set (DBCS)

characters. Allows you to specify only the
beginning and end of a character string that is the
object of a target search.

SET ETMODE Inform the editor that there are Double-Byte
Character Set strings in the file.

SET FILler Define a character that is used when a line is
expanded.

SET FMode Change the filemode of the current file.

SET FName Change the filename of the current file.

SET FType Change the filetype of the current file.

SET FULLread Determine whether or not the editor recognizes
null characters in the middle of screen lines.

SET HEX Allows string targets to be specified in
hexadecimal. l.

SET IMage Control how tabs and backspaces are handled.

SET IMPcmscp Control whether subcommands not recognized by
the editor are transmitted to CMS andCP.

SET Define the contents of the last locate or change
LASTLorc buffer.

SET LINENd Define a line end character.

SET LRecl Define a new logical record length.

SET MACRO Control the order in which the editor searches for
subcommands and macros.

QV,..-, 1\"" A ClTT Define a new mask, which is the contents of added IJ.J..:J ~ .I.f~r1.:J.U ..

lines and the input zone.

SET Define position of message line and the number of
MSGLINE lines a message may expand to.

SET Control the message display.
MSGMode

SET NONDisp Define a character that is used in place of
non-displayable characters.

SET NULls Specify whether trailing blanks are replaced with
nulls to allow character insertion.

SET NUMber Specify whether file line numbers are displayed in
the prefix area.

SET PAn Define a meaning for a P A key.

SET PACK Specify if the file is to be written to disk in packed
format.

166 VM/SP System Product Editor User's Guide

J

Subcommand Purpose

SET PENDing Add an entry to the pending list and display a
pending notice in the status area, or notify the
user that a prefix macro was entered incorrectly.

SET PFn Define a meaning for a PF key.

J SET Point Define a symbolic name for the current line.

J
SET PREfix Control the display of the prefix area; define a

synonym for a prefix subcommand.

J SET RANge Define anew "top" and "bottom" for the file.

SET RECFm Define the record format.
. 1

SET REMote Control the way data transmission is handled.

_1
SET Reserve a line, which cannot be used by the editor.
RESERved

J SET SCALe Control the display of the scale line.

SET SCOPE Specify whether the editor operates on the entire
-'1
-.J

file or on only those lines displayed.

SET SCReen Divide the screen into logical screens, for multiple

J views of the same or of different files.

J
SET SELect Assign a selection level to a line or group of lines

in a file.

J
SET SERial Control file serialization.

SET SHADow Specify whether the file is to be displayed with or

J
without shadow lines indicating where lines have
been excluded from the display.

- 1 SET SIDcode Specify a character string that is to be inserted
-J into every line of an update file.

J SET SPAN Allows a string target to span a number of lines.

SET SPILL Control whether or not truncation will occur for
J certain subcommands.

~J
SET STAY Specify for certain subcommands whether the line

pointer moves when searching for a string.

J
SET STReam Specify whether the editor searches only the

current line or the whole file for a column-target.

J SET SYNonym Specify whether the editor looks for synonyms;
assign a synonym.

J SET TABLine Control the display of the tab line.

SET TABS Define the logical tab stops.
] SET Specify whether a terminal is used in line mode or

TERMinal full-screen mode .
.J SET TEXT Inform the editor if TEXT keys are used.

J SET TOFEOF Control the display of TOF/EOF lines.

SET Control user-defined uppercase translation.

~ TRANSLat

SET TRunc Define the truncation column.
~

~

~ '--

J Appendix A. A Summary of XEDIT Subcommands and Macros' 167

J

Subcommand Purpose

SET Specify whether the number of blanks between two
VARblank words is significant in a target search.

SET Verify Control whether lines changed by subcommands
are displayed; define the columns displayed and
whether displayed in EBCDIC or hexadecimal or
both.

SET WRap Control whether the editor wraps around the file if
EOF (or TOF for backwards searches) is reached
during a search.

SET Zone Define new limits within each line for target
searches.

SET = Insert string into the equal buffer.

SHift Move data right or left (data loss possible).

SI Continuously add lines and position cursor for
indented text.

SORT Sort all or part of a file, in ascending or
descending order.

SOS Specify functions for screen operation simulation.

SPlit Split a line into two or more lines.

SPLTJOIN Split a line or join two lines at the cursor.

STAck Place line(s) from the file into the console stack.

STATus Display SET subcommand current settings; create
a macro that contains these settings.

TOP Move line pointer to null TOP OF FILE line.

TRAnsfer Place editing variable(s) in the console stack, for
use by a macro.

Type Display lines.

Up Move line pointer toward top of file.

UPPercas Translate all lowercase characters to uppercase.

Xedit Edit multiple files.

& Use before a subcommand for repeated execution.

= Reexecute the last subcommand or macro.

? Display the last subcommand executed.

Prefix Subcommands

A Add line(s).

C Copy line(s).

D Delete line(s).

E Extend a line.

F Move or copy following this line.

I Insert line(s).

M Move line(s).

168 VM/SP System Product Editor User's Guide

r
l.

r-- -
L

r-

l

l

[

J

Prefix Subcommands

J p Move or copy preceding this line.

SI Continuously add lines and position cursor for
indented text.

II Duplicate line(s).

/ Make this line the current line. J

J SCALE Display the scale on this line.

TABL Display the tab line on this line.

. xxxx Assign symbolic name to this line . _ J

J X Exclude line(s) from display.

S Show excluded line(s).

-] < Shift line(s) to the left.

J > Shift line(s) to the right.

J

J
]

-)
-l

J

J
:]

J

]

J

J

J
]

J

J
--,
-.J

=.J
-1

.-J

~ '----

J Appendix A. A Summary of XEDIT Subcommands and Macros 169

J

170 VM/SP System Product Editor User's Guide

r
l.

r .
L

r
r
r
I
l

r

L

·1

]

1
_.J

.~ J

~)

. 1
_.-'

··1,

I Special Characters I

.xxxx prefix subcommand 102
< SHIFT LEFT MACRO 48
$ (as arbitrary character) 110
/ prefix subcommand 24

practice exercise using 53
> SHIFT RIGHT MACRO 48
? subcommand 13
(as line end character) 8, 9
' ' pending 20
""" pending 23
'DD' pending 16
= subcommand 14

" prefix subcommand 22
'C' or 'CC' pending 23
'F' pending 23
'M' or 'MM' pending 23
'P' pending 23

A prefix subcommand 15
practice exercise using 55

absolute column number 34
absolute line number, target as 98

example of 99
adding lines

continuously 19
of indented text 19
using A prefix subcommand 15
using SI 19

adding subcommands 137
adding text to end of line 115

in typewriter mode 72
alarm, sounding 141
ALL 47
Alt= 3
ALTER 47

in typewriter mode 88
alteration count 3, 39
altering a character 47

in typewriter mode 88
AND symbol, used in string target 107
appending text to line 115

in typewriter mode 72
arbitrary character 110
assigning a name to a line 102
automatic save 3, 39

in typewriter mode 81

backspace characters in typewriter mode 86, 88
BACKWARD 26
backward search 30, 105
blank characters in targets, significance of 112
block of lines

copying 23
deleting 16
duplicating 23
moving 23

BOTTOM 26
in typewriter mode 67
practice exercise using 53

bypassing profile macro 150

C prefix subcommand 23
CANCEL 119
CAPPEND 115

in typewriter mode 72
case

changing 48
specifying 110

CDELETE 115
in typewriter mode 71

CFIRST 36, 115
in typewriter mode 69

CHANGE 30
in typewriter mode 73
practice exercise using 56
with absolute line number as target 98

changing data
globally 34

in typewriter mode 73
selectively 31

in typewriter mode 74
using CHANGE 30

in typewriter mode 73
using COVERLA Y 115
using CREPLACE 115

changing data position 48
changing definition of a character 47

in typewriter mode 88
changing tab settings 37

in typewriter mode 87
changing the screen layout 127
character delete, using CDELETE 115
character insert, using CINSERT 34, 115
character overlay, using COVERLAY 115
character replace, using CREPLACE 115

Index 171

CINSERT 34, 115
in typewriter mode 69

CLAST 115
CLEAR key, to remove prefix subcommands 24
CLOCATE 29,114

in typewriter mode 68
CMS commands, issuing from a macro 143
CMS subcommand 143
CMSG 142
Col= 3
color, defining

with SET COLOR 128
with SET CTLCHAR 143
with SET RESERVED 142

column pointer
defined 5
displayed in the scale 5
displayed on typewriter terminal 64
indicator in file identification line 3
moving 29, 114

in typewriter mode 68
to beginning of line 115
to end of line 115

resetting 36, 115
in typewriter mode 69

sub commands based on position of 68, 115
column-target 114
columns, specifying for viewing 48
combining files 40

in typewriter mode 82
combining SET options 112
command input area 3
command line

changing location 127
example of 131

defining display features 128
displaying message in 142
location on screen 3

commands, issuing from a macro 143
complex,~tring expression as target 110

exa~ple of 113
COMPRESS 48
concantenating files 40

in typewriter mode 82
con~ole stack 139
COpy in typewriter mode 79
copying lines

in typewriter mode 79
using C prefix subcommand 23

COUNT 98
example of 99

COVERLA Y 115
CP commands, issuing from a macro 143
CP subcommand 143
creating a file 1

in typewriter mode 61
creating a macro file 138
CREPLACE 115
current column 5

in typewriter mode 64

172 VMjSP System Product Editor User's Guide

current line
appending words to 115

in typewriter mode 72
as starting place for subcommands 4
changing

using j 24
using a target 92
using Q~PCATE 29
using DOWN 27
using UP 27

changing location on screen 128
example of 132

defining display features 128
displaying in typewriter mode 65
indicator in file identification line 3
location on screen 4
replacing, in typewriter mode 77
using target as displacement from 100

CURSOR 143
cursor placement in multiple screens 124
cursor, moving

to command line 3
to specified location 143

D prefix subcommand 16
practice exercise using 55

data, changing
globally 34

in typewriter mode 73
selectively 31

In typewriter mode 74
using CHANGE 30

in typewriter mode 73
using COVERLA Y 115
using CREPLACE 115

data, entering
on display terminal 5
on, typewriter terminal 62

data, locating
using a target 105
using CLOCATE 2~

in typewriter mode 68
defining screen size 120
DELETE in typewriter mode 76
deleting characters 115

in typewriter mode 71
deleting lines

block of lines 16
recovering 18

in typewriter mode 77
using D prefix subcommand 16
using DELETE in typewriter mode 76

delimiters, using 29
in typewriter mode 68

destination line

L

J
OJ

J

° 1

_J

~J

-]

~J

~)

J

J

F prefix subcommand 23
for copied lines 23
for moved lines 23
P prefix subcommand 23

display features 128
display screen layout 2
displaying data from a macro 141
displaying help menus 47
displaying line numbers 44
displaying lines on typewriter terminal 63
displaying messages on editor screen 141
displaying more than one file 121
displaying tab settings 37

in typewriter mode 87
dividing screen 120
DOWN 27

example of 28
in typewriter mode 66
practice exercise using 53

duplicating lines 22

edit environment 1
in typewriter mode 61

edit mode 5
in typewriter mode 62

editing multiple files 117
illustration of 119

editing one file 1
in typewriter mode 61

edi ting options
See editing variables

editing variables
preserving 143
restoring 143
transferring 140

editing, defined 1
in typewriter mode 61

editor, invoking 1
in typewriter mode 61

EMSG 141
ending editing session 38, 119

in typewriter mode 80
entering data 5

using INPUT 5
in typewriter mode 62

using POWERINP 8
entering prefix subcommands 4, 15
entering subcommands 3
entering XEDIT subcommands 5

on typewriter terminal 61
EOF 65
error message display 3

in typewriter mode 62
EXEC 2 file used as XEDIT macro 137

executing a subcommand 3
exercises, practice 51
exiting the editor 38, 119

in typewriter mode 80
EXPAND 48
extended highlighting, defining

with SET COLOR 128
with SET CTLCHAR 143
with SET RESERVED 142

EXTRACT 139

F prefix subcommand 23
FILE 38

in typewriter mode 80
practice exercise using 51

file area on screen 4
file identification line 2
file, inserting 40

in typewriter mode 82
filemode 3
filemode of XEDIT macro 138
filename of XEDIT macro 138
filename of XEDIT prefix macro 138
filetype of XEDIT macro 138
finding data

using a target 105
using CLOCATE 29

in typewriter mode 68
FORWARD 26
forward search 105
full-screen mode 1

GET 4o,44;,~;
in typewH ter mode 82
practice exercise using 57

global change 34
in typewriter mode 73

HELP 47
help display 47
highlighting, defining

with SET COLOR 128
with SET CTLCHAR 143
with SET RESERVED 142

horizontal screens, multiple 120

Index 173

information message display 3
in typewriter mode 62

initial setting of PF keys 11
INPUT

practice exercise using 51
to enter input mode 5

on typewriter terminal 62
to enter line in typewriter mode 75

INPUT line 75
input mode 5

on typewriter terminal 62
input zone 5

changing size 128
insert mode key 9, 14

practice exercise using 53
inserting a blank line 75
inserting a file

in typewriter mode 82, 83
part of 43

example of 46
whole file 40

example of 42
inserting characters

in input mode 14
in power typing mode 9, 14
using CINSERT 34, 115

in typewriter mode 69
using P A2 key 14
using SET NULLS 14
using the insert mode key 14

inserting data
from another file 40

in typewriter mode 82
using CINSERT 34, 115

in typewriter mode 69
inserting lines using INPUT 6

in typewriter mode 63, 67, 75
inserting words

using CINSERT 34, 115
in typewriter mode 69

invoking the editor 1
in typewriter mode 61

joining files 40
in typewriter mode 82

joining lines 11

174 VM/SP System Product Editor User's Guide

labelling a line 102
LEFT 48
line end character 8
line name, target as 102

example of 104
line number, displaying 44
line pointer 4

in typewriter mode 64
moved by target 92

Line= 3
LOAD 150
LOCATE 95
locating data

using a target 105
using CLOCATE 29

in typewriter mode 68
logical record length 62
logical screens, multiple 120
LOWERCAS 48
LPREFIX in typewriter mode 80

M prefix subcommand 23
practice exercise using 55

MACRO 144
macro language 137
macro, XEDIT

argument string 158
avoiding name conflicts 144
creating 138, 153
cursor position 160
definition of 137
examples of 143, 145, 151, 153, 162
executing 137
file identifier 138
handling blocks 156
information passed 139, 153, 155
prefix 153
profile 150
search order, specifying 144
source string 154
subcommands used in 138
XEDIT prefix macro 160

MERGE 48
message

controlling display of 142
displaying in command line 142
displaying on editor screen 141
error 3
in typewriter mode 62
information 3
issued from a macro 141

r
,-

l

J

i
~

J

J

J

J

J

J

J

J

J
-,
-.J

]

J

~J

]

J

J

J

J

J

J

J
]

J

]

]

warning, example 39
message line

changing location 128
defining display features 128
location on screen 3

MODIFY TABS 37
modifying tab settings 37
MOVE in typewriter mode 78
moving cursor to command line 3
moving cursor to specified location 143
moving display right or left 48
moving lines 78

in typewriter mode 78
using M prefix subcommand 23

moving through a file
using BAeKW ARD 26
using BOTTOM 26

in typewriter mode 67
using DOWN 27

in typewriter mode 66
using FORWARD 26
using PF keys 13
using TOP 26

in typewriter mode 67
using UP 27

in typewriter mode 66
MSG 141
multiple files

displaying 117
editing 118

illustration of 119
ending editing sessions for 119
on one screen 123

example of 125
multiple logical screens

defining 120
example of 122

multiple views
of different files 123

example of 125
of same file 121

example of 122
making changes in 121

order of processing in 123

names, avoiding conflicts of macro 144
naming a line 48, 102
NOT symbol, used in string target 106
NULLKEY 14
number of files being edited 3

operand, target as 95
OR symbol, used in string target 106
order of processing with multiple screens 123

P prefix subcommand 23
practice exercise using 55

PA2 key 14
practice exercise using 53

pending list 123, 157
pending notice

' ' pending 20
""" pending 23
'DD' pending 16
'e' or 'ee' pending 23
'F' pending 23
'M' or 'MM' pending 23
'P' pending 23
cancelling 24
defining display features 128
location on screen 3

PF keys
changing settings of 11
displaying settings of 11
initial settings of 11, 50
using 11

power typing mode
example of 9
inserting characters in 9
typing data in 5, 8
using line end character in 8

POWERINP 8
practice exercise using 53

practice exercise 51
prefix area

changing location or display 127
example of 130

defining display features 128
location on screen 4
simulate in typewriter mode 80

prefix macro
assigning a synonym 156
examples of 153
writing 153

prefix subcommands
.xxxx 102
I 24
A 15

example of 17
e 23
canceling 24
D 16

example of 17

Index 175

defined 15
F 23

example of 25
list of 15, 49
M 23

example of 25
P 23
practice exercise using 55
SI 19

example of 19
where to enter 4

PRESERVE 143
preserving editing variables 143
processing with multiple screens, order of 123
profile macro, XEDIT

definition of 150
example of 151

programmed symbol sets, defining
with SET COLOR 128
with SET CTLCHAR 143
with SET RESERVED 142

PUT 43
in typewriter mode 83
practice exercise using 57

QQUIT 39
in typewriter mode 81

QUERY LRECL 63
QUERY PF 11
QUERY POINT 103
QUERY RING 118
QUERY TABS 37

in typewriter mode 87
practice exercise using 51

QUIT 39
in typewriter mode 80

range of operation of subcommands, defining 95
READ 139
record format 3
record length 3

in typewriter mode 62
RECOVER 18

example of 18
in typewriter mode 77
practice exercise using 55

recovering deleted lines 18
in typewriter mode 77

redefining a character 47
in typewriter mode 88

176 VM/SP System Product Editor User's Guide

redisplaying a subcommand 13
reexecuting a subcommand 14
referring to a line 102
relative displacement, target as 100

example of 101
repeating the display of a subcommand 13
repeating the execution of a subcommand 14
REPLACE in typewriter mode 77
replacing a line in typewriter mode 77
replacing data

globally 34
in typewriter mode 73

selectively 31
in typewriter mode 74

using CHANGE 30
in typewriter mode 73

using COVERLA Y 115
using CREPLACE 115

reposition data 48
reserving a screen line for use by a macro
RESET 24
RESET key 14

to end insert mode 9
RESTORE 143
restoring editing variables 143
REXX file used as XEDIT macro 137
RIGHT 48
ring of files 117

editing 118
illustration of 118

save, automatic 39
in typewriter mode 81

saving editing variables 143
scale

changing location or display 128
defining display features 128
example of 133
location on screen 4

screen layout 2
changing 127

screen size, defining 120
scrolling the screen

using BACKWARD 26
using FORWARD 26
using PF keys 13

search direction, specifying 105
search order of macros and subcommands,

specifying 144
searching for data

using a target 105
using CLOCATE 29

in typewriter mode 68
selective change 31

example of 33

r-

l

r
\.

r
l

J

J

J
]

J
]

)

J

1
.J

J

J

J
. ,
..J

J

J

J

J
j

]

J

J
]

]

J

J
]

j

]

J

in typewriter mode 74
SET ARBCHAR 48, 110
SET AUTOSAVE 39

in typewriter mode 81
practice exercise using 51

SET CASE 48, 111
SET CMDLINE 127

example of 131
SET COLOR 128
SET CTLCHAR 143
SET CURLINE 128

example of 132
SET HEX 108
SET IMAGE in typewriter mode 86,88
SET MACRO 144
SET MSGLINE 128

example of 135
SET MSGMODE 142
SET NULLS 14
SET NUMBER 44, 98, 129
SET options, combining 112
SET PFn 11
SET POINT 48, 102
SET PREFIX 127

example of 130
SET RESERVED 142
SET SCALE 128

example of 133
SET SCREEN 48, 120

example of 122, 125
SET SPAN 110,111
SET SYNONYM 144
SET TAB LINE 128
SET TABS 37

example of 134
in typewriter mode 87
practice exercise using 51

SET V ARBLANK 110, 112
SET VERIFY 48
setting tabs 37

in typewriter mode 87
shifting display right or left 48
SI prefix subcommand 19
simple string expression as target

example of 109
format of 107

size of file 3
size of logical screen 120
Size= 3
SORT 48
sorting 48
spanning lines 111
special characters in typewriter mode

altering 88
using 86

splitting lines 11
splitting screen 120
status

" , , , ,'pending 20
lilli' pending 23

'DD' pending 16
'C' or 'CC' pending 23
'F' pending 23
'M' or 'MM' pending 23
'P' pending 23

status area
defining display features 128
during macro processing 139
location on screen 3

status of editing session 3
string expression

complex
target as 110

simple
target as 105

string target 105
string, locating

using a target 105
using CLOCATE 29

in typewriter mode 68
structured input 19
subcommands, XEDIT

, defining range of operation 95
entering on display terminal 3
entering on typewriter terminal 61
used in macros, list of 138
wi th target operands 9,1
writing your own 137

summary
of initial PF key settings 50
of prefix sub commands 168
of subset for full-screen 49
of subset for typewriter terminals 89
of XEDIT subcommands and macros 163

symbolic name, assigning 48
synonym

assigning 156
not checking for 144

System Product Interpreter 137

tab characters in typewriter mode 86
tab key

in typewriter mode 86
using PF key as 37

example of 38
tab line

defining display features 128
displaying 128
example of 134

tab settings 37
in typewriter mode 86

tabbing
using PF key 37

tabs
displaying 37

Index 177

example of 38
in typewriter mode 87
setting 37

in typewriter mode 87
tailoring the screen 127
target

as absolute line number 98
example of 99

as complex string expression 110
example of 113

as line name 102
example of 104

as operand of LOCATE 95
as relative displacement 100

example of 101
as simple string expression 105

example of 109
format of 107

as subcommand operand 95
example of 97

definition of 91
entered alone 92
entered before subcommand 95
how to express 91
types of 98
used in PUT 83
used in subcommands 91
used to change current line 92
used to move line pointer 92

example of 94
TOF 65
TOP 26

in typewriter mode 67
practice exercise using 53

translating characters 48
Trunc= 3
truncation column 3
TYPE 65
typewriter mode 61
typing lines to terminal 65

178 VM/SP System Product Editor User's Guide

UP 27
in typewriter mode 66
practice exercise using 53

UPPERCAS 48
example of 97

variables, XEDIT
See editing variables

vertical screens, multiple 120
example of 125

wri ting file on disk 38
in typewriter mode 80

writing macros 137
writing your own subcommands 137

XEDIT command 1
in typewriter mode 61
practice exercise using 51
used to bypass profile macro 150
used to specify profile macroname 150

XEDIT macro
See macro, XEDlT

XEDIT subcommand 117,121
issued from a logical screen 121

XEDIT subcommands 5
XEDIT variables

See editing variables

r

r-

l

:]

._-,
--.J

SC24-5220-2

------- - --- ~ ------- - - ------
-~-.

< ::;:
............
(f)
"'U

(f)
-< en
r-+
CD
3
"'U
o
Q.
c::
(")
r-+

m
Q.
~:
o
C
en
CD
en
G)
c::
Q.
CD

"T1

CD
z
9,
c.
u..
•• ... L o

............
+::>
w
o
o
I

W
to

"'U
:::::!.
:::J
r-+
CD
Q.

::l

C
(f)

~

(f)
()
N
+::>
I

Ul
N
N
o
I

N

J

J

J

J

J

J
]

J

- 1
__ J

I
--.J

J

J

~J
- - ~I

J

J

~ g
c:: 0
OJ '+-

E CI)

.::- :.c
::I -
C" -
OJ ~
C) CI) .= 0 t­
O OJ
CI) c..
:=;3
co
E~

"C E
~ E
co ::I
E C)

o
- OJ ::I .c
COo

::§ 5
:s: OJ

CI) .:::

E .'!:::
OJ CI)

::c § e CI)

c..e
OJ ::I
CI) CI)
::I CI)
CO Q.) (..) c..
c::
CO Q.)
(..) CI)

::I
CI)
Q.) Q.)

c..~
CO Q.)

Ci5c::

VM/SP System Product
Editor User's Guide
Order No. SC24-5220-2

READER'S
COMM~NT

FORM

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. You may use this form to communicate your
comments about this publication, its organization, or subject matter, with the understanding
that IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you. ' ,

Your comments will be sent to the author's department for whatever review and action, if
any, are deemed appropri,fe. Comments may be written in your Qwn language; English is
not required. .

Note: Copies of IBM publications are n.ot stocked at the location to which this form is
addressed. Please direct any requests for copies of publications, 'or for assistance in using your
IBM system, to your IBM representative or to the IBM branch office serving your locality.

• Does the publication meet your needs?

• Did you find the material:

Easy to read and understand?

Organized for convenient use?

Complete?

Well illustrated?

Written for your technical level?

• What is your occupation?

How do you use this publication:

As an introduction to the subject?

For advanced knowledge of the subject?

To learn about operating procedures?

Your comments:

Yes

o

o
o
o
o
o

o
o
o

No

o

o
o
o
o
o

As an instructor in class?

As a student in class?

As a reference manual?

o
o
o

If you would like a reply, please supply your name and address on the reverse side of this form.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or
you may mail directly to the address in the Edition Notice on the back of the title page.)

SC24- 5220- 2

Reader's Comment Form

Fold and Tape Please Do Not Staple Fold and Tape

(")

S
Q
"T1
0 a:
~
0
::J

co
c:
::J
CP

<
~

...........
CJ)
-u

I~
C/l
r-+
CD
3
-u
"'" o
c.
c

." .. , ..• (")
r-+

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Department G60
P. O. Box 6
Endicott, New York 13760

I NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

...

Fold Fold

If you would like a reply, please print:

Your Name ____ ..,.--______________________ _
Company Name ________________ Department _____ _

Street Address __________________ _
Cuy ___________________________________ __

State ________________ Zip Code _____ _
IBM Branch Office serving you ___________________________ _

------- -- - ~---- -... -~-- - - ---
®

m
c.
;:=+:
o
"'" c
C/l
CD
""'.
C/l

G)
C

~
CD

:!'!
CD

z
o
CJ)
W
-......I
o

...........
~
w
o
o
I

W
~

-u
::!,
;::t.
CD
c.
5'
c
CJ)

~

CJ)
("')
N
~
I

Ul
N
N o
I

N

.-,
~)

. ~

I

J

J

J

J
]

J

J

J

J

J

J

~J

J

J

_J

~

J

~

J

~J

J

.J

~

J

~J

]

J

J

J

...; g
c 0
Q) -E en
.~:..c:
:::J -g-ro

Q)
C) en .= 0 t­
O Q)
en c..
.- ~
ttl

E~
"'C E
~ E
ttl :::J E C)

o
- Q) :::J ..c:
ttl -o

..c:
;: 0

;;a Q)

en .:=: .- !ii'~
:c ~
o en
c..e
Q) :::J
en en
:::J en
ttl Q)

U c..
C
ttl Q)
U en

:::J en
Q) Q)

c..~
ttl Q)

U5a::

VM/SP System Product
Editor User's Guide
Order No. SC24-5220-2

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. You may use this form to communicate your
comments about this publication, its organization, or subject matter, with the understanding
that IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

Your co~ments will be sent to the author's department for whatever review and action, if
any, are deemed appropriate. Comments may be written in your own language; English is
not required.

Note: Copies of IBM publications are not stocked at the location to which this form is
addressed. Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your IBM representative or to the IBM branch office-serving your locality .

• Does the publication meet your needs?

• Did you find the material:

Easy to read and understand?

Organized for convenient use?

Complete?

Well illustrated?

Written for your technical level?

What is your occupation?

• How do you use this publication:

As an introduction to the subject?

For advanced knowledge of the subject?

To learn about operating procedures?

Your comments:

Yes

D

o
D
D
D
D

D
D
D

No

D

D
D
D
o
D

As an instructor in class?

As a student in class?

As a reference manual?

D
D
D

If you would like a reply, please supply your name and address on the reverse side of this form.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or
you may mail directly to the address in the Edition Notice on the back of the title page.)

SC24-5220-2

Reader's Comment Form

Fold and Tape Please Do Not Staple Fold and Tape

(")

s

cr
0:
l> o
::::I

a:l

c: <
~ :5:

...........
Ul
""0

Ul
-< ·en
.-+
(1)

3
""0 ...,
o
0-
c

... , (')
.-+

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Department G60
P. O. Box 6
Endicott, New York 13760

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

...

Fold Fold

If you would like a reply, please print:

Your Name __ ___

Company Name _____________________________ Department _____ _
Street Address ____________________ __
Ciry ____________________________________ _

State _______________________ Zip Code ______ _
IBM Branch Office serving you _________________________________ _

------- ---- -..-~ - -... -------- - _._----
®

m
0-
;:;:
o ...,

en
G)
c
~
CD

~
(1)

z
9
Ul
W
--...J
o
...........
+::.
w
o
o
I

W
~

""0
~.
::J
.-+
(1)

0-

::J

C
Ul

~

Ul
(')
N
+::.
I

01
N
N
o
I

N

SC24-5220-2

