

Virtual Machine/
System Product

System Programmer's
Guide

Release 4

SC 19-6203-3

Fourth Edition (December 1984)

This edition, SCI9,6203-3, applies to Release 4 of IBM Virtual Machine/System Product
(VM/SP) unless otherwise indicated in new editions or Technical Newsletters. Changes
are continually made to the information contained herein; before using this publication in
connection with the operation of IBM systems, consult the IBM System/3 70 and 4300
Processors Bibliography, GC20-0001, for the editions that are applicable and current.

Technical changes and additions to the text and illustrations are indicated by a vertical bar
to the left of the change.

Summary of Changes

For a detailed list of changes, see page iii.

References in this publication to IBM products, programs, or services do not imply that
IBM intend/i to make these available in all countries in which IBM operates. Any
reference to an IBM program product in this publication is not intended to state or imply
that only IBM's program product may be used. Any functionally equivalent program may
be used instead.

Publications are not stocked at the address given below; request for copies of IBM
publications should be made to your IBM representative or to the IBM branch office
serving your locality.

A. form for readers' comments is provided at the back of this. publication; if the form has
been removed, comments may be addressed to IBM Programming Publications, Dept.
G60, P.O. Box 6, Endicott, Ne:w York, U.S.A. 13760. IBM may use or distribute any of
the information you supply in any way it believes appropriate without incurring any
obligation whatever.

© Copyright International Business Machines Corporation 1980, 1981, 1982, 1983, 1984

('

c

Summary of Changes

To obtain editions of this publication pertaining to earlier releases of VM/SP, you
must order using the pseudo-number assigned to the respective edition. For:

Release 3, order STOO-1352

Release 2, order SQ19-6203

Release 1, order ST19-6203.

Summary of Changes
for SC19-6203-3
for VM/SP Release 4

Group Control System (VM/SP GCS)

This new component of VM/SP is a virtual machine supervisor that provides
simulated MVS services and supports a multitasking environment. For more
information on the Group Control System (GCS), refer to the VM/SP Group
Control System Guide, SC24-5249.

Signal System Service

This new CP system service allows virtual machines in a Virtual Machine
Group to signal each other. The Signal System Service can only be used by
virtual machines in a Virtual Machine Group.

Saved System 8M Byte Limit Removal

With the addition of this support, the SA VESYS, VMSA VB, and IPL functions
have been enhanced to allow a page image copy of up to a 16M byte virtual
machine to be saved and restored.

CP FRET Trap

The CP FRET Trap can be used as an aid in solving problems caused by
improper use of CP storage and to solve many storage overlay problems.

VMDUMP Enhancements

DIAGNOSE Code X'94' is available to allow a virtual machine to request
dumping of its virtual storage. Also, the three address range restriction has
been removed from the VMDUMP command.

Summary of Changes iii

DIAGNOSE Code X'98'

Using DIAGNOSE Code X'98', a virtual machine can lock and unlock virtual
pages, and execute its own real channel programs.

The Programmable Operator Facility

The Programmable Operator Facility has been enhanced to support distributed
operations in an SNA network through an interface, the Programmable
Operator/NCCF Message Exchange (PMX), with the Network
Communications Control Facility (NCCF). The VM/SP Release 4
programmable operator:

• Allows an NCCF operator to be identified to the programmable operator
so that any messages intended for the logical operator may be routed to
that NCCF operator.

• Allows an NCCF operator to issue programmable operator commands and
receive responses.

• Provides the LGLOPR command for assigning, releasing and replacing the
logical operator during operation.

CPTRAP Enhancements

CPTRAP is a major service aid used in problem determination. Enhancements / ",
to the CPTRAP command provide two additional functions, GROUPID and
WRAP, and one additional entry type, X'3D'.

Enhancements to TRAPRED makes reviewing the trap data easier by
providing more selectivity for X'3D', X'3E', and X'3F' entries and by
providing a way to display formatted output of the trapped data.

Information on CPTRAP has been rewritten and reorganized for ease-of-use.
It has also been moved to the Part 3, the debugging section, since it is a
debugging tool.

Interactive Problem Control System (VM/ SP IPCS)

VM/SP Release 4 has been enhanced to include IPCS as a component of
V}y1/SP. VM/SP IPCS iii equivalent to tht: vlv1/Interactive Probiem Controi
System Extension (VM/IPCS/E) Licensed Program Product (5748-SAl).

Inter-User CommuniCtltiom Vehicle (IUCV) Enhancements

lUCV now supports the movement of data on the SEND, RECEIVE, and
REPLY functions frm discontiguous buffers. The modified lUCV macro
handles the new BUFLIST= parameter on SEND and RECEIVE functions
and the new ANSLIST= parameter on the SEND and REPLY functions.

iv VM/SP System Programmer's Guide

c

Expamion of User Claws

The DIRECT command has been enhanced and the OVERRIDE command
has been added to provide the user with more than the seven IBM defined user
classes. You can now choose from 32 user classes, A - Z, and 1 - 6.

Remote Spooling Communicafiom Subsystem Networking Version 2

With the release of the Remote Spooling Communications Subsystem
Networking Version 2 Program Product (5664-188), any reference to RSCS in
this manual applies to RSCS Version 2. Information pertaining to RSCS can
be found in the VM / SP Remote Spooling Communications Subsystem Version 2
General Information, GH24-5055.

MiscellfllleOllS changes

IOCP Support Enhancements

This support adds new MSSF command words to DIAGNOSE code X'80'.

Integration of Functional Enhancements to VM / SP Release 3

Information has been added to support:

• The 3290 Information Panel

• The 3370 Direct Access Storage Model

• The 4248 Printer

• The 4361 Model Groups 3, 4, and 5 Processor

• The 4381 Model Groups 1 and 2 Processor

• VM/SP 3800 Model 3 Compatibility Support

Compatibility support allows VM/SP users to access the 3800 Model
3 Printing Subsystem. Existing programs designed to produc~'3800
Modell printer output may produce output for the 3800 M6del 3
printer with little or no program change. Use of this sUPP9rt provides
improved print quality (240 x 240 pel resolution) and t4e addition of a
10 lines-per-inch (LPI) vertical space option. /

DIAGNOSE Code X'BC'

DIAGNOSE code X'8C' has been enhanced to allow a user to access all of the
data returned by CP's WRITE STRUCTURED FIELD QUERY.

DMKFRE/DMKFRT Split

The module DMKFRE has been split into two modules, DMKFRE and
DMKFRT. DMKFRE handles all requests for free storage as well as calls to

Summary of Changes V

))

\
)

DMKFRET to release free storage. DMKFRT handles all requests to return
free storage.

Minor technical and editorial changes have been made throughout this publication.

Summary of Changes
for SC19-6203-2
for VM/SP Release 3

Programmable Operator Facility

\

Several enhancements to the programmable operator facility added are:

• Message routing with nicknames

• Remote node availability

• Enhanced text comparison

• EXEC action routines

• LOG recording and error handling

PER

Problem determination capability is greatly extended and enhanced by the new
CP command, PER.

DASD Block I/O System Service

The DASD Block I/O System Service allows a virtual machine fast,
device-independent asynchronous access to fixed size blocKs on CMS
formatted virtual DASD I/O devices.

IUCV

Inter-User Communication Vehicle (IUCV) extensions provide:

• SEND and REPLY extensions

• An extended mask capability lur controi interrupts

• An expanded trace capability to record all IUCV operations

• A macro option to initialize the parameter list

• Support for the DASD block I/O system service.

The IBM 3088 Multisystem Communications Unit

The mM 3088 Multisystem Communications Unit interconnects multiple
systems using block multiplexer channels. The 3088 uses an unshared

vi VM/SP System Programmer's Guide

(.\
subchannel for each unique address and is fully compatible with existing
channel-to-channel adapter protocol.

CMS IUCV support

Support for IUCV communication has been introduced into CMS. This
support allows mUltiple programs within a virtual machine to use IUCV
functions. Included is the ability to initialize a CMS machine for IUCV
communication and to invoke IUCV functions via new CMS macros. These
macros also allow the user to specify path-specific exits for IUCV external
interrupts.

CM S abend exits

A general CMS abnormal exit capability is provided so that user programs may
specify the address of a routine to get control before CMS abend recovery
begins. An exit is established and cleared through a new CMS macro.

Enhanced immediate command support

The immediate command capability of CMS is extended by allowing users to
define their own immediate commands.

Enhanced VSAM support

CMS supports VSE/VSAM Release 3 which includes significant enhancements
designed to improve catalog reliability and integrity while providing additional
serviceability and usability. VSE/VSAM Release 2 is not supported.

Miscellaneous

Changes to the DIAGNOSE code X'OO' interface provide the time zone
differential from Greenwich Mean Time.

DIAGNOSE code X'8C' allows a virtual machine to access device dependent
information without having to issue a WRITE STRUCTURE FIELD QUERY
REPLY.

CMSSEG has been eliminated and the code was merged into the eMS
Nucleus.

The Remote Spooling Communications Subsystem (RSCS) section of this
manual has been removed as it pertained to RSCS as a component of
VM/370. Now, any reference to RSCS in this manual applies to the RSCS
Networking Programming Product., and information can be found in the
VM / SP Remote Spooling Communications Subsystem Networking Program
Reference and Operations Manual, SH24-S00S.

A newly added appendix lists and describes the CMS macros applicable to
VM/SP.

Minor technical and editorial changes have been made throughout this
publication.

Summary of Changes vii

Summary of Changes
for SC19-6203-1
as Updated by SN24-5736

Missing Interrupt Handler

The missing interrupt detector has been extended so that CP not only detects
missing interrupt conditions, but also attempts to correct them. CP informs the
system operator whether or not the corrective action was successful.

To help give you optimum system availability, the missing interrupt handler
allows you to vary the time interval allowed for I/O completion for the
supported devices.

3880 Speed Matching Buffer (Feature #6560)

The 3880 Speed Matching Buffer Feature for the IBM 3375 uses a 16K-byte
storage buffer to modify the direct access data transfer path between the 3375
and the multiplexer channel. The feature allows attachment of the 3375 Direct
Access Storage Device, with its 1.859 megabytes per second data rate, to block
multiplexer channels with data rates as low as 1.5 megabytes per second, as
well as to high speed multiplexer channels.

Miscellaneous

The Programmable Operator Facility section of this publication has been
rewritten to include minor technical and editorial changes.

Summary of Changes
for SC19-6203-1
for VM/SP Release 2

Programmable Operator Facility

This facility provides the capability to: log messages, suppress messages,
redirect messages, execute messages, or preprogram message responses. The
capabilities are under control of an editable message routine table in a CMS
file.

Inter-User Communication Vehicle (IUCV) enhancements for message
ho:lnrtl1nn ." a. ."lc-n ~_"l..,~o.,.:t
................. -..... 0 - ~-1.""'.1.""~""u.

CMS Nucleus Restructure, and Removal of the CMS Tokenization Eight-Byte
Restriction

The restructured nucleus provides a CMS system that is more flexible. and
extendable for development, serviceability, and maintenance purposes.

The eight-byte tokenized restriction has been removed for parameter passing.

viii VM/SP System Programmer's Guide

Trace Table Recording Facility

This facility allows service personnel and system programmers to create a
chronological READER spool file of CP trace entries by type, VMBLOK
address, interrupt code, and device address.

Miscellaneous

Minor technical and editorial changes have been made throughout this
publication.

Summary of Changes ix

x VM/SP System Programmer's Guide

Preface

This publication describes how to debug VM/SP and how to modify, extend, or
implement the functions of two of the components of VM/SP:

• Control Program (CP)
• Conversational Monitor System (CMS).

This information is intended for system programmers, system analysts, and
programming personnel.

The primary source of information for the third component of VM/SP, Group
Control System (GCS), is the VM/SP Group Control System Guide. Any
additional reference information outside the scope of this book can be found in the
VM/SP Group Control System Guide. The order numbers for the GCS books can
be found under "Corequisite Publications" in this preface.

This publication consists of three parts, three appendixes, and a glossary of terms.

"Part 1. Control Program (CP)" contains an introductory and functional
description of CP, as well as, guidance in using some CP features.

"Part 2. Conversational Monitor System (CMS)" contains an introductory and
functional description of CMS including how CMS handles interrupts and SVCs,
structures its nucleus and its storage, and manages free storage. Information on
saving the CMS system and implementing the Batch Facility is also included.

"Part 3. Debugging with VM/SP" discusses the CP and CMS debugging tools and
procedures to follow when debugging. This part is logically divided into three
sections.

1. "Introduction to Debugging" tells you how to identify a problem and lists
guidelines to follow to find the cause.

"Debugging with CP" describes the CP debugging commands and utilities,
debugging CP in a virtual machine, the internal trace table, and restrictions. A
detailed description of CP dump reading is also included.

3. "Debugging with CMS" describes the CMS debugging commands and utilities,
load maps, and restrictions and tells you what fields to examine when reading a
CMSdump.

"Appendix A: System/370 Information" describes the System/370 extended PSW
and extended control register use.

Preface xi

Definition of Terms

"Appendix B: VM Monitor Tape Format and Contents" describes the format and
contents of data records for classes and codes of MONITOR CALL.

"Appendix C: CMS Macro Library" lists and describes the CMS macros
applicable to VM/SP.

"Glossary" lists and defines technical terms and abbreviations.

Some of the following terms and abbreviations are used throughout this publication
for convenience:

Unless otherwise noted,

VM/SP refers to the VM/SP program package when you use it in conjunction with
VM/370 Release 6.

CP refers to the VM/370 Control Program component enhanced by the
functions included in the VM/SP package.

CMS refers to the VM/370 Conversational Monitor System component
enhanced by the functions included in the VM/SP package.

GCS refers to the Group Control System component of VM/SP. See the
VM/SP Group Control System Guide, SC24-5249, for details of GCS.

IPCS refers to the VM/370 Interactive Problem Control System component
enhanced by the functions included in the VM/SP package.

The IPCS component of VM/SP replaces the unmodified VM/370
interactive problem control system. Details describing this component are
found in the VM / SP Interactive Problem Control System Guide, SC24-5260.

RSCS unless otherwise noted, refers to the RSCS Networking Version 2 Program
Product (5664-188).

When you install and use VM/SP in conjunction with the VM/370 Release
6 System Control Program (SCP), it becomes a functional operating system
t.hat provide.s extended features to the Control Program (CP) and
Conversational Monitor System (CMS) components of VM/370 Release 6.
VM/SP adds no additional functions to the Remote Spooling
Communications Subsystem (RSCS) component of VM/370. However,
you can appreciably expand the capabilities of this component in a VM/SP
system by installing RSCS Networking Version 2 (5664-188).

VSE refers to the combination of the DOS/VSE system control program and the
VSE/ Advanced Functions program product. "DOS", in certain cases, is
still used as a generic term. For example, disk packs initialized for use with
VSE or any predecessor DOS or DOS/VSE system may be referred to as
DOS disks.

xii VM/SP System Programmer's Guide

/

:(

CMS/DOS refers to the DOS-like simulation environment provided under the
CMS component of the VM/System Product.

EXEC refers to EXECs using the System Product Interpreter, EXEC 2, or CMS
EXEC languages.

System/370 applies to the 4300 and 303X processors.

The following terms in this publication refer to the indicated support devices:

• "2305" refers to IBM 2305 Fixed Head Storage, Models 1 and 2.

• "2741" refers to the IBM 2741 and the IBM 3767, unless otherwise specified.

• "3066" refers to the IBM 3066 System Console.

"3081" refers to the IBM 3081 Processor Unit model D16.

• "3088" refers to the IBM 3088 Multisystem Communications Unit (MCU)
Models 1 and 2.

"3262" refers to the IBM 3262 Printer, Models 1,5, and 11.

• "3270" refers to a series of display devices, namely, the IBM 3275, 3276
(referred to as a Controller Display Station), 3277, 3278, and 3279 Display
Stations, and the 3290 Information Panel. A specific device type is used only
when a distinction is required between device types.

Information about display terminal use also applies to the IBM 3138,3148,
and 3158 Display Consoles when used in display mode, unless otherwise noted.

Any information pertaining to the IBM 3284 or 3286 Printer also pertains to
the IBM 3287, 3288, and 3289 printers, unless otherwise noted.

• "3330" refers to the IBM 3330 Disk Storage, Models 1, 2, or 11; the IBM
3333 Disk Storage and Control, Models 1 or 11; and the 3350 Direct Access
Storage operating in 3330 compatibility mode.

• "3340" refers to the IBM 3340 Direct Access Storage Facility and the 3344
Direct Access Storage.

• "3350" refers to the IBM 3350 Direct Access Storage Device when used in
native mode.

I. "3370" refers to the IBM 3370 Direct Access Storage Model.

• "3375" refers to the IBM 3375 Direct Access Device.

"3380" refers to the IBM 3380 Direct Access Storage. The Speed Matching
Buffer Feature (No. 6550) for the 3380 supports the use of extended
count-key-data channel programs.

I. "3480" refers to the IBM 3480 Magnetic Tape Subsystem.

Preface xiii

• "3430" refers to the IBM 3430 Magnetic Tape Subsystem.

• "370X" refers to IBM 3704 and 3705 Communications Controllers.

• "3705" refers to the 3705 I and the 3705 II unless otherwise noted.

• "3800" refers to the IBM 3800 Printing Subsystems, Models 1,3, and 8. A
specific device type is used only when a distinction is required between device
types. References to the 3800 Model 3 apply to both Models 3 and 8 unless
otherwise explicitly stated. The IBM 3800 Model 8 is available only in selected
world trade countries.

• "4245" refers to the IBM 4245 Line Printer.

• "4248" refers to the IBM 4248 Printer.

• "4250" refers to the IBM 4250 Printer.

• "4361" refers to the IBM 4361 Model Groups 3, 4, and 5 Processor.

• "4381" refers to the IBM 4381 Model Groups 1 and 2 Processor.

An expanded glossary is available in the Virtual Machine/System Product: Library
Guide, Glossary, and Master Index, GC19-6207.

Knowledge of Assembler Language and experience with programming concepts
and techniques are prerequisite to using this publication.

References to a program that produces a standalone dump occur in several places
in this publication. One such program is the BPS Storage Print program, Program
No. 360P-UT-056.

Changes to Command and DIAGNOSE Instruction Privilege Classes

1
If you change the privilege class for commands or DIAGNOSE instructions, the
privilege classes mentioned in this and other VM/SP publications for commands
and DIAGNOSE instructions may no longer be correct for your installation.

Prerequisite Publications

IBM System/360 Principles of Operation, GA22-6821

IBM System/3 70 Principles of Operation, GA22-7000

Virtual Machine/System Product: Running Guest Operating Systems, GC19-6212

xiv VM/SP System Programmer's Guide

c

Corequisite Publicatio,ns

Knowledge of the commands and system functions of CP, CMS, IPCS, and RSCS
is corequisite.

Virtual Machine/System Product:

Application Development Guide, SC24-5247

CMS Command and Macro Reference, SC19-6209

CMS User's Guide, SC19-6210

CP Command Reference for General Users, SC19-6211

Group Control System Guide, SC24-5249

Group Control System Macro Reference, SC24-5250

Installation Guide, SC24-5237

Interactive Problem Control System Guide, SC24-5260

Planning Guide and Reference, SC19-6201

Operator's Guide, SC19-6202

Release 4 Guide, SC24-5248

System Messages and Codes, SC19-6204

System Messages Cross-Reference, SC24-5264

Terminal Reference, SC19-6206

Supplemental Publications

OS/VS Data Management Macro Instructions, GC26-3793

OS/VS Supervisor Service and Macro Instructions, GC27-6979

IBM 2821 Control Unit Component Description, GA24-3312

IBM 3211 Printer, 3216 Interchangeable Train Cartridge, and 3811 Printer Control
Unit Component Description and Operator's Guide, GA24-3543

IBM 3262 Printers 1 and 11 Component Description, GA24-3733

IBM 3270 Information Display System Library User's Guide, GA23-00S8

OS/VS Linkage Editor and Loader, GC26-3813

Preface XV

Introduction to the IBM 3704 and 3705 Communications Controllers, GA27-30S1

IBM 3704 and 3705 Communications Controllers Operator's Guide, GA27-30SS

I ACF/VTAM Version 3 General Information (for VM/SP), GC30-3246

IBM 3725 Communication Controller Operator's Guide, GA33-0014

IBM 3725 Operator Console Reference and Problem Analysis Guide, GA33-001S

IBM Virtual Machine Facility/370: Performance/Monitor Analysis Program,
SB21-2101

VM/SP OLTSEP and Error Recording Guide, SC19-620S

This publication contains a description of CPEREP. CPEREP is a CMS
command that invokes OS/VS EREP operands to produce statistical reports
from error recording data of hardware and software errors.

Environmental Recording Editing and Printing Program User's Guide and Reference,
GC28-1378

This publication contains a detailed description of the CPEREP operands, and
is required to make use of CPEREP.

VM/SP Data Areas and Control Block Logic,

Volume 1 Control Program (CP), L Y24-S220

Volume 2 Conversational Monitor System (CMS), LY24-S221

VM/SP System Logic and Problem Determination,

Volume 1 Control Program (CP), L Y20-0892

Volume 2 Conversational Monitor System (CMS), L Y20-0893

VM/SP Remote Spooling Communications Subsystem Networking Version 2:

Planning and Installation, SH24-S0S7

Operation and Use, SH24-S0S8

Diagnosis Reference, L Y24-S228

IBM 3767 Operator's Guide, GA18-2000, is also a corequisite publication if the
IBM 3767 Communication Terminal is used by the system programmer as a virtual
machine console.

xvi VM/SP System Programmer's Guide

If the IBM 3850 Mass Storage System is attached to the VM/SP system, the
following are corequisite publications:

IBM 3850 Mass Storage System (MSS):

Introduction and Preinstallation Planning, GA32-0038

Principles of Operation: Theory, GA32-0035

Principles of Operation: Reference, GA32-0036

OS/VS Mass Storage System (MSS) Services:

General Information, GC35-0016

Reference Information, GC35-0017

OS/VS Message Library: Mass Storage System (MSS) Messages, GC38-1000

Operator's Library: IBM 3850 Mass Storage System (MSS) Under OS/VS,
GC35-0014.

Note: References in text to titles of corequisite VM/SP publications are given in
abbreviated form.

Preface xvii

The VM/SP Library

Evaluation

GENERAL
INFORMATION

GC20-1838

Planning

PlANNING
GUIDE AND
REfERENCE

SC18-8201

Administration

SYSTEM
PROGRAM-
MER'S
GUIDE

SC18-8203

End Use

TERMINAL
REfERENCE

GC18-8208

CM19
COMMAND
AND MACRO
REfERENCE

SC18-8208

8P
INTERPRETER
USER'S GUIDE

ISC24-5238 U

~
bJ

RUNNING
GUEST
OPERATING
SYSTEMS

GC19-8212

OOS
GUIDE

SC24-6248

CM19
PRIMER

SC24-523&

SP EDITOR
USER'S GUIDE

8C24-5220

6P
INTERPRETER
REfERENCE

ISC24-5238 U

Reference Summaries

DISlRIBUTED
DATA
PROCESSING
GUIOE

8C24-5241

GCS
MACRO
REfERENCE

SC24-5250

CMS PRIMER
FOR
LINE
ORIENTED
TERMINALS

BC24-5242

SP EDITOR
COMMAND
AND MACRO
REfERENCE

8C24-5221

~ I REFERENCE '1
I SC24-5219 U

RB..EA6E 4
GUIDE

SC24-5248

Operation

OPERATOR'S
GUIDE

SC19-6202

CM8
USER'S
GUIDE

8C19-6210

CP
COMMAND
REFERENCE

8C19-8211

Installation

INSTAllATION
GUIDE

SC24-5237

Applications

APPUCATION
DEVELOPMENT
GUIDE

SC24-5241

Index

LIBRARY
GUIDE,
GL086ARY,
AND
MASTER INDEX

GC18-6207

SYSTEM
DEFINITION
FILES

SC24-5258

To order all the Reference Summaries, use order number SBOF 3221

--I I.. I
I I
II OUICK I

R~ENCE I
I I
I I

I -~ I
I I
1 ______ ---_

'\
)

l-
/

Diagnosis

SYSTEM SYSTEM
MESSAGES MESSAGES
AND CODES CROSS-

REFERENCE

SC19-8204 SC24-52&4

PROBLEM DATA AREAS
DETERMINA- AND CONTROL
TION BLOCKS
VOL 1 (CP) VOL. 1 (CP)

LY20-0892 LY24-5220

Auxiliary Service Support

DEVICE
SUPPORT
FACILmES
USER'S GUIDE
AND
REFERENCE

GC35-0033

EREP
USER'S GUIDE
AND
REFERENCE

GC28-1378

Device Support FaclllUaa
5748-XXe

Environmental Reoordlng
=endP~lIIIng

OLTSEP
AND ERROR
RECORDING
GUIDE

SC19-8205

PROBLEM
DETCRIoINA-
TION
VOL. 2 (CMS)

LY20-0893

Auxiliary Communication Support

RSCS
NETWORKING
VERSION 2
GENERAL
INFORMATION

GH24-5055

VTAM
GENERAL
INFORMATION
FOR VWSP

GC30-3248

VMJPASS-
THROUGH
FACILITY
GENERAL
INFORMATION

GC24-5208

RSCS
NETWORKING
VERSION 2
PLANNING
AND
INSTALLATION

SH24-5057

VTAM
INSTALLATION
AND
RESDURCE
DEFlNI110N

SC2S-0111

VMJPASS-
THROUGH
FACILITY
GUIDE AND
REFERENCE

SC24-5208

RSCS
NElWORI<ING
VERSION 2
OPERATION
AND USE

SH24-5058

VTAM
MESSAGES
AND
CODES
FORVWSP

SC30-3275

VM/PASS-
THROUGH
FACILITY
LOGIC

LY24-52OB

IPCS SERVICE
GUIDE ROl1T1NES

PROGRAM
LOGIC

SC24-5280 LY20-0890

DATA AREAS
AND CONTROL
BLOCKS
VOL. 2 (CMS)

LY24-5221

RSCS Networking
Veralon 2
5884-188

RSCS
NElWORI<ING
VERSION 2
DIAGNOSIS
REFERENCE

LY24-5228

Advanced
Communication

VTAM VTAM VTAM
Function

DATA AREAS DIAGNOSIS DIAGNOSIS For VTAM
FORVWSP GUIDE REFERENICE (ACFNTAMJ

58&4-280

SCS0-3249 SC23-0118 SC23-0117

WlplI88-
Through
Faclilly
5748-RCl

Preface xix

xx VM/SP System Programmer's Guide

Contents

Part 1. Control Program (CP)•................ 1

Chapter 1. Introduction to the VM/SP Control Program .•...•...........•. 3

Chapter 2. Program States ...••....•..•••......•...•..•....•••••••.• 5

Chapter 3. Using Processor Resources•.....................•.•• ~. 7
Virtual Machine Time Management 7

Selecting a Virtual Machine to Run 7
Queue 1 ... 8
Queue 2 ... 8
Queue 3 ... 9
Deadline Priority ... 10

('
Dispatch Request Queue and Run List 10
CMS BLIP Facility .. 11

Virtual Machine Storage Management 11

Chapter 4. Storage Protection ..•.•..•..•...••...•..•.•••.•...•••••• 13
Storage Keys .. _... 14
Storage and Processor Use .. 15

Chapter 5. Virtual Storage Preservation•.•..••.•..••...•.•.••••• 17
VMSA VE Option ... 17

Termination ... 18
IPL .. 18
Priority ... 18
VMSA VB Areas .. 19
Target Areas ... 19
Overlapping Areas .. 19
Other Saved Systems .. 20

Chapter 6. Virtual Machine I/O Management •...•..••..•.••.....••..•. ZI
Dedicated Channels ... 22

Chapter 7. Spooling Functions ...•.....•.•.•.•...•..•.•.•.•••••••••. 23
Spool File Recovery ... 24

Warm Start .. 24
Checkpoint Start ... 24
Force Start .. 25

Chapter 8. CP Commands•....••.••..•...••••...•••....•.••• 27

Contents xxi

Command Privilege Classes and Types 27
Tailoring the Class Structure to Your Installation's Needs 29

How to Change Command Classes and Virtual Machine Class Access to
Commands .. . 29

Planning the Command Authorization for the System 31
How to Assign Privilege Classes to Commands and DIAGNOSE Codes .. . 35
How to Change the Definition of Privilege Classes fora Virtual Machine ..

How to Change the Privilege Class of Certain Internal CP Fun~tions
40
43

How to Add a Command to CP 45

Chapter 9. Interruption Handling ...•.........••.••.••••.••..•.•...•. 49
I/O Interrupts 49
Missing Interrupt Handler .. . 49

Using the Missing Interrupt Handler 50
Devices Monitored 50
Default Time Interval Values 51
Changing the Time Interval 51
Determining Time Interval Settings 52
Diagnostic Aids 53

Program Interrupt .. . 54
Machine Check Interrupt .. . 54
SVC Interrupt 55
External Interrupt .. . 55
Synchronous Interrupts in an Attached Processor or Multiprocessor System .. 55
Real I/O Interrupts 56

Chapter 10. Performance Guidelines •...•.......•....••.•.....•....•. 57
General Information .. . 57
Reducing the Number of Virtual Machine SIOs Handled by CP 58
Reducing Paging Activity .. . 60

Using the SYSCOR Macro to Control Free Storage Allocation 60
Paging Performance Options 61

Locking Pages into Real Storage 61
Reserving Page Frames 62
Eliminating CP Paging for a Selected Virtual Machine 62
Managing Page Migration 65
Displaying, Changing, or Setting System Resource Management Variables . 65
Displaying and Setting Paging Variables 66

VM/SP Performance Options 66
Forcing the System to Devote More Processor Resources to a Virtual

Machine .. . 67
Setting Virtual Machine Priority 68
Selecting Attached Processor or Multiprocessor Affinity for a Program 69
Virtual Relocation and Shadow Table 69
Reducing Purges When the Virtual Machine Dispatches New Address Space 72
Eliminating and Reestablishing Shadow Table Bypass 72
Eliminating Queue Drop Overhead for a Virtual Machine 74
Improving Performance With the Virtual Machine Assist Feature 75
Using the Virtual Machine Assist Feature 75
Restricted Use of the Virtual Machine Assist Feature 76

Extended Control-Program Support:VM/370 (ECPS)
Using the Extended Control-Program Support: VM/370

Improving Channel Use , '.

76 . ,,-
I

79 I

80 ~/

xxii VM/SP System Programmer's Guide

Using the Virtual Block Multiplexer Channel Option 80
Using the 3088 Multisystem Communications Unit 80
Alternate Path Support ... 83

MVS/System Extensions Support 84
Low Address Protection Facility 85
Common Segment Facility 85
Special MVS Instruction Operation Handling Facilities 85
Enabling MVS/System Extensions Support 85
Improving Throughput of an OS/VS2 MVS AP or MP System 86
Dynamic System Control Programming (SCP) Transition to or from Native

Mode ... 86

Chapter 11. Performance Observation and Analysis•....•...•..•....• 89
Using the INDICATE Command 89

TheINDICATEFAVOREDCommand 91
Using the QUERY SRM and SET SRM Commands 91
The MONITOR Command .. 91

Implemented Classes .. 93
Monitor Response to Special Tape Conditions 95
Monitor Considerations .. 96
Monitor Data Volume and Overhead 97
Load Environments of VM/SP 99

Chapter 12. Accounting Records•.•.•..•.•.........•.... 101

(
Accounting Records for Virtual Machine Resource Use 101
Accounting Records for Dedicated Devices and Temporary Disk Space 102
Accounting Records for LOGON, AUTOLOG, and LINK Journaling 102
Accounting Records Created by the User 104
User Accounting Options .. 105

Chapter 13. Saved Systems, Discontiguous Saved Segments, and Shared
Segments•......•....•..•....•..•.......•...••....•... 107

Loading and Saving Discontiguous Saved Segments 107
CP DIAGNOSE Code Interface With A DCSS 108
Shared Segment Protection 110

Virtual Machine Operation with Protected Segments 110

Chapter 14. The Virtual Machine Communication Facility •..•............ 113
Using the Virtual Machine Communication Facility 114

VMCF Applications .. 115
Security and Data Integrity 116
Performance Considerations 117
General Considerations 117

VMCF Protocol ... 118
The SEND Protocol .. 118
The SEND /RECV Protocol 119
The SENDX Protocol. .. 120
The IDENTIFY Protocol : 121

Descriptions of VMCF Functions ... '. .. 122
The Control Functions .. 122 c.···

I

The Data Transfer Functions 125
Invoking VMCF Functions '.' .. 128

Diagnose Code X'68' ... 128

Contents xxiii

The VMCPARM Parameter List 129 \..)

External Interrupt Code X'4001' 134
VMCF User Doubleword 137
DIAGNOSE Code X'68' Return Codes 137
Data Transfer Error Codes 140

Chapter 15. Inter-User Communications Vehicle 141
IUCV Paths .. 141
IUCV Messages ... 142

Message Queues ... 143
Message Data Transfer .. 144
Message Identification .. 144

Pending IUCV Communications. .. 145
CP Communications .. 148
Second Level Support ... 149
Trace Table Entries .. 149
Audit Trail ... 150
Restrictions ... 151
Security Considerations 151
Performance Considerations 152

Using IUCV Functions .. 152
ACCEPT .. 152
CONNECT .. 152
DECLARE BUFFER 152
DESCRIBE .. 153
PURGE ... 153
QUERy ... 153
QUIESCE ... 153
RECEIVE ... 154
REJECT ... 154
REPLy .. 154
RESUME .. 155
RETRIEVE BUFFER .. 155
SEND ... 155
SET CONTROL MASK 155
SET MASK .. 155
SEVER .. 156
TEST COMPLETION ~ .. 156
TEST MESSAGE .. 156
Virtual Machine to Virtual Machine Communication 156
lUCY Communications Using Parameter List Data 159
InvokinglUCV Functions 160
Invoking Communications Between CP and a Virtual Machine 176
Requests Initiated by the Virtual Machine 176
CP Initiated Requests ... 178

IUCV Parameter List Formats 178
ACCEPT Parameter List Format 179
CONNECT Parameter List Format 180
DECLARE BUFFER Parameter List Format 181
DESCRIBE Parameter List Format 182
PURGE Parameter List Format 183
QUERY Parameter List Format 184
QUIESCE Parameter List Format 185

L· . ~
xxiv VM!SP System-}:rrogrammer's 6liide

RECEIVE Parameter List Format 186
REJECT Parameter List Format 187
REPLY Parameter List Format 188
RESUME Parameter List Format 190
RETRIEVE BUFFER Parameter List Format 191
SEND Parameter List Format 191
SET CONTROL MASK Parameter List Format 192
SET MASK Parameter List Format 193
SEVER Parameter List Format 194
TEST COMPLETION Parameter List Format 195
TEST MESSAGE Parameter List Format 196

IUCV External Interrupt Formats 196
External Interrupt for Pending Connection 196
External Interrupt for Complete Connection 197
External Interrupt for Pending Messages 197
External Interrupt for Complete Messages 198
External Interrupt from SEVER, QUIESCE, RESUME 198
Parameter List and External Interrupt Fields 199

IUCV Trace Table Entry Formats 216
Trace Table Entry Field Definitions 217

Chapter 16. SNA Virtual Console Communication Services ..•.....••..... 219
System Structure ... 220
Environments Supported ... 221
Processing Descriptions ... 222
SNA CCS Entries in CP Internal Trace Table 231

Trace Table Entry Formats 232
Trace Table Entry Field Definitions 233

Chapter 17. The Message System Service•.................. 237
Establishing Communications 237

Chapter 18. The DASD Block I/O System Service•........ 239
Establishing Communications with DASD Block I/O Service 239

IUCV CONNECT to the DASD Block I/O System Service 240
IUCV SEND to the DASD Block I/O System Service 241

Chapter 19. The Signal System Service ..•...•.......•....•........•. 243
Communications with the Signal System Service 243
IUCV CONNECT to the Signal System Service 243
Sending Signals .. 245
Receiving Signals .. 246
Leaving the Signal System Service 247

Chapter 20. The Special Message Facility 249

Chapter 21. Single Console Image Facility .••...•..•.•.••.•••....•.••• 251
Using the Single Console Image Facility 251

Chapter 22. VM/SP Use of the IBM 3850 MSS •.•....•..•..•......... 253
VM/SP Access to the MASS Storage Control 253
Asynchronous MSS Mount Processing 254
VM/SP Processing of MSS Cylinder Faults 254

Contents XXV

Backup and Recovery of MSS Volumes 255

Chapter 23. Logical Device Support Facility ..•...•.•..•.•..•.......... 257

Chapter 24. Timers in a Virtual Machine •.•..•...•.•...•......•..•.•• 259
Interval Timer ... 259
Processor Timers ... 260
TOD Clock ... 261
Clock Comparator ... 261
Pseudo Timer ... 261

Pseudo Timer Start I/O 262
Pseudo Timer DIAGNOSE 262

Chapter 25. CP in Attached Processor and Multiprocessor Modes•...• 263
Multiprocessor Environment 263
Attached Processor Environment 264
Advantages of the AP /MP Environment 264
Facilitating an AP /MP Environment 264

Prefixing ... 265
Identifying a Processor Address 266
Signaling ... 266
Time-of-Day (TOD) Clock Synchronization Check 268
Fetching and Storing ... 269
Locks and Serialization of Functions 270
Affinity .. 274
Shared Segments in an AP/MP Environment 275 ~
SWTCHVM Macro .. 275 ~/

Configuring and Debugging MP Systems 275
Configuring I/O Devices for an MP System. .. 276
Debugging an AP/MP System 276

Chapter 26. The DIAGNOSE Instruction in a Virtual Machine ..•......... 279
DIAGNOSE Code X'OO' -- Store Extended-Identification Code 280
DIAGNOSE Code X'04' -- Examine Real Storage 281
DIAGNOSE Code X'08' -- Virtual Console Function 282
DIAGNOSE Code X'OC' -- Pseudo Timer 285
DIAGNOSE Code X'tO' -- Release Pages 285
DIAGNOSE Code X'14' -- Input Spool File Manipulation 286

Subcode X'OOOO' .. 287
Subcode X'0004' .. 287
Subcode X'OOOg'
Subcode X'OOOC'
Subcode X'0010'
Subcode X'0014'
Subcode X'0018'
Subcode X'OOIC'
Subcode X'0020'
Subcode X'0024'
Subcode X'OFFE'
Subcode X'OFFF'

DIAGNOSE Code X'18' -- Standard DASD I/O
DIAGNOSE Code X'lC' -- Clear Error Recording Cylinders
DIAGNOSE Code X'20' -- General I/O

xxvi VM/SP System Programmer's Guide

288
288
288
288
289
289
289
289
289
290
291
293
294

(

c~,

DIAGNOSE Code X'24' -- Device Type and Features 295
DIAGNOSE Code X'28' -- Channel Program Modification 298
DIAGNOSE Code X'2C' -- Return DASD Start of LOGREC 299
DIAGNOSE Code X'30' -- Read One Page of LOGREC Data 300
DIAGNOSE Code X'34' -- Read System Dump Spool File 301
DIAGNOSE Code X'38' -- Read System Symbol Table 301
DIAGNOSE Code X'3C' -- VM/SP Directory 302
DIAGNOSE Code X'40' -- Clean-Up after Virtual IPL by Device 302
DIAGNOSE Code X'48' -- Issue SVC 76 from a Second Level VM/370 or

VM/SP Virtual Machine 303
DIAGNOSE Code X'4C' -- Generate Accounting Records for the Virtual

User ... 303
DIAGNOSE Code X'50' -- Save the 370X Control Program Image 305
DIAGNOSE Code X'54' -- Control The Function of the PA2 Function Key 306
DIAGNOSE Code X'58' -- 3270 Virtual Console Interface 306

Displaying Data ... 307
Full Screen Mode .. 308

DIAGNOSE Code X'5C' -- Error Message Editing 314
DIAGNOSE Code X'60' -- Determining the Virtual Machine Storage Size .. 314
DIAGNOSE Code X'64' -- Finding, Loading, and Purging a Named Segm("nt 315
DIAGNOSE Code X'68' -- Virtual Machine Communication Facility

(VMCF) .. 318
DIAGNOSE Code X'6C' -- Special DIAGNOSE for Shadow Table

Maintenance ... 319
DIAGNOSE Code X'70' -- Activating the Time-of-Day (TOD) Clock

Accounting Interface .. 319
DIAGNOSE code X'74' -- Saving or Loading a 3800 Named System 321
DIAGNOSE Code X'78' -- MSS Communication 322
DIAGNOSE Code X'7C' -- Logical Device Support Facility 323

Descriptions of Logical Device Support Facility Functions 325
External Interrupt Code X'2402' 327
Logical Device Restrictions 328

DIAGNOSE Code X'80' -- MSSFCALL 328
MSSF Command Words 329

DIAGNOSE Code X'84' -- Directory Update-In-Place 331
DIAGNOSE code X'8C' -- Access Certain Device Dependent Information.. 337
DIAGNOSE code X'94' -- VMDUMP Function 339

Supported Parameters ... 340
Dump Address Parameter List 342

DIAGNOSE Code X'98' -- Real Channel Program Support 345

Chapter 27. CP Conventions ..•.•........•....•...........•.•..... 349
CP Coding Conventions ... 349
CP Loadlist Requirements 352

Chapter 28. Print Buffers and Forms Control .•...•....•.•...••.•....•. 353
Adding New Print Buffer Images 356

UCS Buffer Images for the 1403 Printer 356
UCSB Buffer Images for the 3211 Printer 358
FOB Buffer Images for the 3289 Model 4 Printer 361
UCC Buffer Images for the 3203 Printer 362
pm Buffer Images for the 3262 Model I and II Printers 364

Forms Control Buffer ... 365

Contents xxvii

I Extended FCB Macro Instruction
'\

368 \, ;

Chapter 29. WM 3800 Printing Subsystem ••.•.•.•.•........••....... 371
Using the 3800 Printer as a Dedicated Device 372
Using 3800 Modell and Model 3 Printers as Virtual Spooling Devices 372

Defining a Virtual 3800 Printer 373
Using the SPOOL and CHANGE Commands 373
Using the SETPRT Command 374

Using the 3800 Printer as a Real Spooling Device 374
Specifying Printer Options 375
The GENIMAGE Command 375
Maintaining the Image Library 375
Recovering from II 0 Errors 376

Chapter 30. JournaJing Logon, Autolog, and Link Commands •••..••...•..• 377

Chapter 31. Suppressing Passwords Entered on the Command-Line .•.•••.•• 379

Part 2. Conversational Monitor System (CMS)•.•..•. 381

Chapter 32. Introduction To CMS •.•••....•••..•.•..••.••.••.••.••• 383
The CMS Command Language 383
The File System ... 384

Preferred Filetypes ... 385
Migration from the 800-byte File System to the Extended File System 385

Migration Considerations 387
Coexistence of VM/SP CMS and Earlier Versions of CMS 390
Converting CMS Files .. 391

Program Development ; 392
Abend Processing .. 392

Abend Exit Routine Processing 393
CMS Abend Recovery .. 393

Chapter 33. Interrupt Handling In CMS ..•..••.••..•.•••••.••.•..•••• 395
SVC Interruptions .. 395

Internal Linkage SVCs .. 395
Input/Output Interruptions. .. 396
Terminal Interruptions .. 397
Reader/Punch/Printer Interruptions 397
User-Controlled Device Interruptions 397
Program Interruptions ... 398
External Interruptions ... 398
Machine Check Interruptions 398

Chapter 34. Functional Information •.••••••.....•••.•.••............ 399
Register Use .. 399
Structure of DMSNUC .. 400

USERSECT (User Area) 400
DEVTAB (Device Table) 400

Structure of CMS Storage .. 402
Free Storage Management 407

GETMAIN Free Storage Management 407
DMSFREE Free Storage Management 409

xxviii VM/SP System Programmer's Guide

Releasing Allocated Storage 414
DMSFRE Service Routines 415
Error Codes from DMSFREE, DMSFRES, and DMSFRET 417

CMS Handling of PSW Keys 418
The DMSKEY Macro ... 418
The DMSEXS Macro ... 419

CMS SVC Handling .. 420
SVC Types and Linkage Conventions 420
Search Hierarchy for SVC 202 426
User and Transient Program Areas 430
Called Routine Start-Up Table 431
Returning to the Calling Routine 432

Dynamic Linkage -- SUBCOM 434
System Product Editor Interface to Access Files in Storage 437
CMS Interface for Display Terminals 439

Chapter 35. Using the DASD Block I/O System Service from CMS ..•..•.. 441

Chapter 36. CMS IUCV Support•.....................•... 445
HNDIUCV Macro ... 445
CMSIUCV Macro ... 450
Exits .. 455
Using CMS IUCV to Communicate Between Two Virtual Machines 456
Guidelines and Limitations of the CMS IUCV Support 459

Chapter 37. OS Macro Simulation Under CMS .•..•..•......•••..•.••. 461
OS Data Management Simulation 461

Handling Files that Reside on CMS Disks 461
Handling Files that Reside on OS or DOS Disks 462
Simulation Notes .. 464
Access Method Support 471

Reading OS Data Sets and VSE Files Using OS Macros 476

Chapter 38. VSE Support Under CMS•....•.•..•....•.....••. 481
Hardware Devices Supported 482
CMS Support of VSE Functions 482

Logical Unit Assignment 485
VSE Supervisor and I/O Macros Supported by CMS/DOS 487

Supervisor Macros ... 488
Sequential Access Method -- Declarative Macros 496
Sequential Access Method -- Imperative Macros 506

VSE Transient Routines ... 506
EXCP Support in CMS/DOS 508
VSE Supervisor Control Blocks Simulated by CMS/DOS 508
User Considerations and Responsibilities 509
VSE System Generation and Updating Considerations 509
VM/SP Directory Entries .. 510
When the VSE System Must Be Online 510
Performance .. 511
Execution Considerations and Restrictions 511

Chapter 39. CMS Support for OS and VSE/VSAM Functions•.•.•. 513
Hardware Devices Supported 514

Contents xxix

~.
VSE Supervisor Macros and Logical Transients Support for VSAM 514 '. ~
Data Set Compatibility Considerations 515
ISAM Interface Program (lIP) 515

Chapter 40. Saving the CMS System
Saved System Restrictions for CMS

Chapter 41. The CMS Batch Facility .•.•.....•..••.•...•••.•..••.•.•
Installing the CMS Batch Machine
Resetting the CMS Batch Facility System Limits
Writing Routines To Handle Special Installation Input

BATEXITl: Processing User-Specified Control Language
BATEXIT2: Processing the Batch Facility /JOB Control Card

EXEC Procedures for the Batch Facility Virtual Machine
Data Security under the Batch Facility
Improved IPL Performance Using a Saved System

Chapter 42. The Programmable Operator Facility ...•.......•.•...•.•.•
Overview .. .
The Routing Table .. .

How the Programmable Operator Facility Uses the Routing Table
Routing Table Entry Formats
Tailoring the Routing Table

Action Routines .. .
Description of Supplied Action Routines

The Log File
Ensuring a Complete Log

The Feedback File .. .
Installing the Programmable Operator Facility
Routing Table Conversion
Invoking the Programmable Operator Facility

Manual Invocation .. .
Automatic Invocation .. .
Using the LGLOPR Command

Communications Checking
How the Programmable Operator Establishes Communications with IUCV ..
Message Output Format .. .
Exit EXECs

Exit EXEC Interface .. .
Communication Error Exit
T An D __ _ n~ .. !4.
.L..I'-''-' UJ.1V.1 DAJL •••••••••••.•.•••.•.•.••••.••.••••.••••••..••

Problem Determination - Debug Mode
The Action Routine Interface

Action Routine Call Interface
Action Routine Parameter Interface
EXEC Action Routines
Writing Action Routines
Action Routine Response Handling
Handling Console I/O in an Action Routine
Stopping the Programmable Operator Facility
Running the Programmable Operator Facility from NCCF
The Programmable Operator/NCCF Message Exchange

xxx VM/SP System Programmer's Guide

517
517

519
520
520
521
521
521
522
522
522

523
523
528
528
528
536
543
544
547
549
549
550
551
552
552
554
555
557
558
560
560
560
560
5bl
562
563
563
563
566
566
567
567
568
569
571 ;:' "-

I

~j

Chapter 43. Auxiliary Directories ••......•.....••...............•... 575
Adding an Auxiliary Directory 575

Generating the Auxiliary Directory 575
Initializing the Auxiliary Directory 576
Establishing the Proper Linkage 576

Creating an Auxiliary Directory 577

Chapter 44. Assembler Virtual Storage Requirements .•...•.............. 581
Overlay Structures ... 581

Prestructured Overlay ... 582
Dynamic Load Overlay .. 583

Part 3. Debugging with VM/SP 585

Chapter 45. Introduction to Debugging•......•......•.• 587
How To Start Debugging .. 587

Does a Problem Exist? .. 588
Identifying the Problem 591
Analyzing the Problem .. 591

How To Use VM/SP Facilities To Debug 597
Abend ... 597
Unexpected Results .. 604
Loop .. 606
Wait .. 607

Summary of VM/SP Debugging Tools 611
Comparison of CP and CMS Facilities for Debugging 617

Chapter 46. Debugging with CP•...............•..•..... 619
Commands that Display or Dump Virtual Machine Data 619
Commands that Set and Query System Features, Conditions, and Events . 620
Commands to Collect and Analyze System Information 621
Commands that Trace Events in Virtual Machines 622
Commands that Alter the Contents of Storage 623

Debugging CP in a Virtual Machine 624
CP Internal Trace Table ... 624
Abend Dumps ... 629

How to Print a CP Abend Dump from Tape 629
Reading CP Abend Dumps 629

Reason for the Abend .. 630
Collect Information .. 631
Register Use .. 632
Save Area Conventions 632
Virtual and Real Control Block Status 634
Identifying and Locating a Pageable Module 645
VMDUMP Records: Format and Content 645

Trapping Improper Use of CP Free Storage 649
CP FRET Trap Examples 650

Debugging with the CPTRAP Facility 652
Activating CPTRAP .. 652
Recording CP Trace Table Entries in the CPTRAP File 652
Recording Virtual Machine Data in the CPTRAP File 653
Recording CP Data in the CPTRAP File 655

Contents xxxi

Additional CPTRAP Considerations 657
Using the TRAPRED Facility 659

Viewing Entries in the CPTRAP File 659
CPTRAP Examples .. 663

How to Collect CP Data in CPTRAP File 663
How to Collect Virtual Machine Data in a CPTRAP File 667
Displaying Formatted CPTRAP Output 669

Chapter 47. Debugging With CMS ...•.....••....•...•.•...•..••••. 671
CMS Debugging Commands 671

DEBUG ... 672
&CRASH command .. 673

Nucleus Load Map ... 675
Load Map .. 676
Reading CMS Abend Dumps 676

Reason for the Abend .. 679
Collect Information .. 679
Register Use .. 681

Chapter 48. Appendixes•..•......•.....•....•.•..••••••..••• 683

Appendix A. System/370 Information•.•......... 685
Control Registers .. 685

Appendix B. VM/SP Monitor Tape Format and Content •.•...•••.••...•• 691
Header Record .. 691
Data Records ... 692

Appendix C. CMS Macro Library •..................•..•......•.••. 707

Glossary ..•...•.•••••••••.••..••..•..••...••.•.•.......•.•.•.. 713

Index ...•..........•....•.••..•..••.......••..•..•..•..•.•.•. 717

xxxii VM/SP System Programmer's Guide

(-\

Figures

1. 2K Storage Protection Key 14
2. Relationship of Privilege Class, Type, and Administrative Function 28
3. Different System Users and Their Responsibilities. 31
4. DIAGNOSE Instructions That Can Be Respecified on an OVERRIDE

Control Statement .. 37
5. Storage Layout in a Virtual=Real Machine 63
6. Functions and Instructions that ECPS Supports 78
7. CP commands and 3088 Support 82
8. Virtual Machine Communication Facility (VMCF) Functions 114
9. The SEND Protocol .. 119

10. The SEND/RECV Protocol 120
11. The SENDX Protocol 121
12. The IDENTIFY Protocol 122
13. VMCF Functions, Parameters, and Return Codes 133
14. DIAGNOSE Code X'68' Return Codes i38
15. DIAGNOSE Code X'68' Data Transfer Error Codes 140
16. IUCV Queues .. 143
17. IUCVDataTransfer 144
18. CP System Services and Their Userids 149
19. Sequence of Functions 157
20. IUCV Macro Instruction Format 162
21. IUCV Function and IUCV Macro Parameter Relationships 175
22. Pending Connection External Interrupt Format 197
23. Connection Complete External Interrupt Format 197
24. Incoming Message External Interrupt Format 198
25. Message Complete External Interrupt Format 198
26. SEVER, QUIESCE, RESUME External Interrupt Format 199
27. IUCV Return Codes and Completion Codes 212
28. Virtual Console Support in CP 220
29. SNA Virtual Console Support Interfaces 223
30. Summary of Logical Device Support Facility Functions. 258
31. Formats of Pseudo Timer Information 262
32. Storage Layout in a Virtual=Real Machine 265
33. Sample of the Correct Way to Set a Flag in an AP/MP Environment .. 269
34. Hierarchy of VM/SP Locks 271
35. Addressable Storage Before and After a LOADSYS Function 316
36. UCSB Associative Field Chart. .. 359
37. Devices Supported by a CMS Virtual Machine 401
38. CMS Storage Map 1 404
39. CMS Storage Map 2 405
40. CMS Storage Map 3 406
41. SVC 202 High-Order Byte Values of Register 1 421
42. CMS Command (and Request) Processing 428

Figures xxxiii

43. PSW Fields When Called Routine Starts 431
44. Register Contents When Called Routine Starts 431
45. Sequence of Instructions in Virtual Machine to Virtual Machine

Communication ... 457
46. Simulated OS Supervisor Calls 462
47. Summary of Changes to CMS Commands to Support CMS/DOS 484
48. Physical IOCS Macros Supported by CMS/DOS 488
49. SVC Support Routines and Their Operation 489
50. CMS/DOS Support of DTFCD Macro 497
51. CMS/DOS Support of DTFCN macro 499
52. CMS/DOS Support of DTFDI Macro 500
53. CMS/DOS Support of DTFMT Macro 501
54. CMS/DOS Support of DTFPR Macro 502
55. CMS/DOS Support of DTFSD Macro 504
56. The Programmable Operator Facility in a Distributed System 532
57. Partial routing table .. 535
58. Routing Entries to Filter Responses to Routine Commands 540
59. Uncontrolled Authorization 541
60. Restricting Authorization by Nodeid 542
61. Restricting Authorization by Userid and Nodeid 542
62. Restricting Command Use to Specific Users 543
63. Sample LGLOPR Command Entries in a Routing Table 556
64. Register Conventions for Invoking an Action Routine 565
65. QUERY Command Authorization for an NCCF Operator 569
66. Routing Entries to Send Messages to an NCCF Operator 571
67. LGLOPR Command Authorization for an NCCF Operator 572
68. An Overlay Structure 582
69. Abend Messages .. 588
70. VM/SP Problem Types 592
71. Does a Problem Exist? 594
72. Debug Procedures for Waits and Loops 595
73. Debug Procedures for Unexpected Results and an Abend 596
74. Summary of VM/SP Debugging Tools 611
75. Comparison of CP and CMS Facilities for Debugging. 617
76. CP Trace Table Entries 627
77. CP Control Block Relationships 635
78. CP Device Classes, Types, Models, and Features 640
79. VMDUMP Record Format 648
80. CMS Control Blocks 678
81. Control Register Allocation 686
82. Control Register ASSignments 687
83. The Extended Control PSW (Program Status Word) 690

~'\

~j

xxxiv VM/SP System Programmer's Guide

Part 1. Control Program (CP)

Part 1 contains the following information:

• Introduction to VM/SP CP
• Program States
• Using Processor Resources
• Virtual Machine Time Management
• Virtual Machine Storage Management
• Storage Protection
• Virtual Storage Preservation
• Virtual Machine II 0 Management
• Spooling Functions
• CP Commands
• Interruption Handling
• Functional Information
• Performance Guidelines
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•

Virtual Machine Assist Feature
VM/370 Extended Control-Program Support
VM/VS Handshaking
Performance Observation and Analysis
Accounting Information
Generating Saved Systems
The Virtual Machine Communication Facility
The Inter-User Communications Vehicle
SNA Virtual Console Support
The Message System Service
The DASD Block I/O System Service
The Signal System Service
The Special Message Facility
The Single Console Image Facility
VM/SP Use of the IBM 3850 MSS
The Logical Device Support Facility
Timers

•
•

CP in Attached Processor and Multiprocessor Modes
DIAGNOSE Instruction

Part 1. Control Program (CP) 1

• CP Conventions
• Print Buffers and Forms Control
• The mM 3800 Printing Subsystem
• Journaling Logon, Autolog, and Link Commands
• Suppressing Passwords Entered on the Command-Line

2 VM/SP System Programmer's Guide

Chapter 1. Introduction to the VM/SP Control Program

The VM/SP Control Program, CP, manages the resources of a single computer so
that multiple computing systems appear to exist. Each "virtual" computing system,
or virtual machine, is the functional equivalent of an IBM System/370.

A virtual machine is configured by recording appropriate information in the
VM/SP directory. The virtual machine configuration includes counterparts of the
components of a real IBM System/370:

• A virtual operator's console
• Virtual storage
• A virtual processor

Virtual I/O devices.

CP makes these components appear real to the operating system controlling the
work flow of the virtual machine.

When a user logs on, a virtual machine is created based on information stored in
the user's directory. The entry for each userid includes:

• A list of the virtual I/O devices associated with the particular virtual machine.
• The command privilege class
• Accounting data
• Normal and maximum virtual storage sizes
• Dispatching priority
• Optional virtual machine characteristics (such as, extended control (EC)

mode).

The virtual machines operate concurrently via multiprogramming techniques. CP
overlaps the idle time of one virtual machine with execution in another.

Each virtual machine is managed at two levels. The work to be done by the virtual
machine is scheduled and controlled by some System/360 or System/370
operating system. The concurrent execution of multiple virtual machines is
managed by CPo

VM/SP performs some functions differently when running in attached processor or
multiprocessor mode. For more information on attached processor and
multiprocessor support see "CP in Attached Processor and Multiprocessor Modes".

The Control Program supervises the execution of virtual machines by permitting
only problem state execution except in its own routines, and receiving control after
all real computing system interrupts. CP intercepts each privileged instruction and
simulates it if the current program status word (PSW) of the issuing virtual machine

Chapter 1. Introduction to the VM/SP Control Program 3

indicates a virtual supervisor state. H the virtual machine is executing in virtual
problem state, the attempt to execute the privileged instruction is reflected to the
virtual machine as a program interrupt. All virtual machine interrupts (including
those caused by attempting privileged instructions) are first handled by CP, and are
reflected to the virtual machine if a similar interrupt would have occurred on a real
machine.

4 VM/SP System Programmer's Guide

(

I
C

Chapter 2. Program States

When instructions in the Control Program are being executed, the real computer is
in the supervisor state; at all other times, when running virtual machines, the real
computer is in the problem state. Therefore, privileged instructions cannot be
executed by the virtual machine. Programs running on a virtual machine can issue
privileged instructions; but such an instruction either

1. Causes an interruption that is handled by the Control Program, or

2. Is intercepted and handled by the processor, if the virtual machine assist
feature or VM/370 Extended Control-Program Support is enabled and
supports that instruction.

CP examines the operating status of the virtual machine PSW. If the virtual
machine indicates that it is functioning in supervisor mode, the privileged
instruction is simulated according to its type. If the virtual machine is in problem
mode, the privileged interrupt is reflected to the virtual machine.

Only the Control Program may operate in the supervisor state on the real machine.
All programs other than CP operate in the problem state on the real machine. All
user interrupts, including those caused by attempted privileged operations, are
handled by either the control program or the processor (if the virtual machine assist
feature or VM/370 Extended Control-Program Support is available). Only those
interrupts that the user program would expect from a real machine are reflected to
it. A problem program executes on the virtual machine in a manner identical to its
execution on a real System/370 processor, as long as the problem program does
not violate the CP restrictions. CP restrictions are documented in the VM / SP
Planning Guide and Reference.

Chapter 2. Program States 5

6 VM/SP System Programmer's Guide

(1'
,~/

Chapter 3. Using Processor Resources

CP allocates the processor resource to virtual machines according to their operating
characteristics, priority, and the system resources available. The CP functions
described in this section are:

• Virtual Machine Time Management

• Virtual Machine Storage Management.

Virtual Machine Time Management

The real processor simulates multiple virtual processors. Virtual machines that
execute in a conversational manner are considered interactive and given access to
the real processor more frequently than those that are not. Interactive machines
are assigned the smaller of two possible time slices. CP determines execution
characteristics of a virtual machine at the end of each time slice on the basis of the
recent frequency of its console requests or terminal interrupts. The virtual machine
is queued for subsequent processor use according to whether it is an interactive or
non-interactive user of system resources.

A virtual machine can gain control of the processor only if the virtual machine is
not waiting for some activity or resource. The virtual machine itself may enter a
virtual wait state after an input/output operation has started. The virtual machine
cannot gain control of the real processor if it is waiting for a page of storage, if it is
waiting for an input/output operation to be translated and started, or if it is waiting
for a CP command to finish execution.

A virtual machine can be assigned a priority of execution. Priority, a parameter in
the virtual machine's directory entry, affects the execution of a particular virtual
machine as compared with other virtual machines that have the same general
execution characteristics. The system operator can reset the priority parameter
with the privilege class A SET PRIORITY command.

Selecting a Virtual Machine to Run

CP uses several queues to determine which CP task or virtual machine to execute
next. The relationship of these queues follows:

• The queue 1 (Ql) and queue 2/queue 3 (Q2/Q3) are eligible lists, which are
lists of virtual machines waiting to be added to the run list. Virtual machines
on the eligible list are considered not in queue.

Chapter 3. Using Processor Resources 7

Queue 1

Queue 2

• The run list is a list of virtual machines that are considered in queue, but not
necessarily runnable.

• The dispatch request queue(s) contain pointers to CP tasks that are awaiting
execution.

CP selects the next CP task or virtual machine to run from the dispatch request
queue or the run list, respectively.

Virtual machines are dynamically categorized at the end of each time slice as
interactive or noninteractive, depending on the frequency of operations to or from
either the virtual system console or a terminal controlled by the virtual machine,
and are placed on an eligible list. The eligible list contains the virtual machines that
can compete for processor resources but are not now in-queue virtual machines
because of the current system load.

The Q1 and Q2/Q3 eligible lists are sorted by deadline priority. A particular
deadline priority depends on:

• The time-of-day the virtual machine was last dropped from a queue.
• The virtual machine's user priority
• The current load and number of virtual machines on the system
• The current resource utilization of the virtual machine.

Virtual machines in Queue 1 (Ql) are conversational or interactive, and enter this
queue when an interrupt from a terminal is reflected to the virtual machine. The
Ql virtual machines are ordered by their deadline priorities. A deadline priority is a
value calculated every time a user is dropped from a queue (queue drop time). This
value is based on paging activity, processor use, the system load, and virtual
machine priority. Deadline priority determines when the virtual machine receives
its next time slice.

Depending on the deadline priority, a Q2 virtual machine may occasionally have a
better priority than Q 1.

Virtual machines are dropped from the run list (dropped from queue) and placed in
an eligible list when they complete their time slice. Virtual machines entering CP
command mode are also dropped from the run list.

Virtual machines enter Q2 from a list of eligible virtual machines (the eligible list).
The order of virtual machines in the eligible list and the run list is determined by
each virtual machine's deadline priority.

A virtual machine enters Q2 if its projected working set size is less than or equal to
the number of real page frames available for allocation. The working set of a
virtual machine is calculated and saved each time a user is dropped from Q2. The
working set size is a function of the number of virtual pages referred to by the

8 VM/SP System Programmer's Guide

c

(

Queue 3

virtual machine while in Q2, and the number of its virtual pages in real storage
when it is dropped from the queue.

If the projected working set of the highest priority virtual machine in the eligible list
is greater than the available number of page frames for allocation, CP continues to
search the eligible list for a virtual machine whose working set is less than or equal
to the number of available page frames. CP searches both Ql and Q2 eligible lists
in deadline priority order, starting with the Ql eligible list first.

A virtual machine that completes its time slice is dropped from queue and placed in
the eligible list according to its deadline priority. A virtual machine in Q2 that
enters CP command mode is removed from Q2.

To cause the virtual machine to leave CP command mode and return to the eligible
list for queue, the user issues a CP command that transfers control to the virtual
machine operating system for execution (for example, BEGIN, IPL, EXTERNAL,
and RESTART).

Virtual machines in Q2 are usually considered noninteractive. In CP mode,
interactive virtual machines (those in Ql), if any, are normally dispatched before
noninteractive virtual machines (Q2). This means that CMS users entering
commands that do not involve disk or tape I/O operations should get fast
responses from the VM/SP system even with many active virtual machines. Some
virtual machines in Q2 are dispatched before virtual machines in Ql because of
their user priority, current resource use level, or for other reasons.

Q3 is an extension of Q2 scheduling. It helps to distinguish between noninteractive
virtual machines and those that frequently switch back and forth between Q2 and
Q1. Virtual machines that have cycled through at least eight consecutive Q2
processor time slices without a Ql interaction are labeled Q3. Q3 virtual machines
are kept in the same lists (or queues) as Q2 virtual machines and for most purposes
are treated identically. The differences between Q2 and Q3 virtual machines are
reflected in their deadline priority calculations and the amounts of such processor
time they are allowed in queue. Q3 virtual machines are allowed eight consecutive
Q2 processor time slices before they are dropped from queue. Because of the
eight-fold increase in processor time allowed each time in queue, the scaled bias is
multiplied by eight before adding to the current time-of-day to form the deadline
priority. Q3 virtual machines should receive eight times as much processor time
each time in queue as Q2 virtual machines, but only one-eighth as often.

To reiterate the Ql/Q2 statement, which is also true for Q2/Q3: Operating
constantly in any queue, a virtual machine should receive the same amount of
processor time over an extended period. This does not necessarily mean that a
virtual machine performs the same when operating in Q3 mode as when operating
in standard Q2 mode. An amount of overhead (roughly proportional to the small
number of resident pages) is used for each virtual machine when it drops from
queue. When operating in Q3 mode, a virtual machine may perform much better
than in normal Q2 mode because it is undergoing fewer queue drops. For some
large virtual storage programs, operating in Q3 mode rather than Q2 mode reduces
the total use of the processor resources by half.

Chapter 3. Using Processor Resources 9

Deadline Priority

CP calculates the deadline priority at queue drop time by the following formula:

deadline priority = TOD + Virtual machine queue delay factor

where:

TOO
is the current time of day.

Virtual machine queue delay factor
is the User bias ratio * prioritized Q2 delay factor.

User bias ratio
depends on the amount of specified resources the particular virtual machine
is currently receiving. It is the weighted average of the paging and
processor resource ratios.

Q2 delay factor
is calculated dynamically based on configuration and load, and is the
average elapsed time required by a virtual machine to receive an amount of
processor time equal to one Q2 time slice.

For Ql virtual machines, the scaled bias is divided by 8 (since the Ql time slice is
one-eighth the Q2 time slice). The difference between scheduling a virtual
machine in Ql instead of Q2 is that it receives one-eighth the amount of processor
time, eight times as often. Operating constantly in either queue, a virtual machine
should receive the same amount of processor resources over an extended period of
time. When Q 1 virtual machines are moved from the eligible list to the run list,
they are moved ahead of Q2 virtual machines with the same or even slightly better
deadline priorities. For more information on calculating the deadline priority, see
VM/SP System Logic and Problem Determination Guide Volume 1 (ep).

Dispatch Request Queue and Run List

The dispatcher is the program in CP that places virtual machines or tasks into
execution. The dispatcher (DMKDSP) selects the next virtual machine to run and
prepares the virtual machine for problem state execution.

The dispatcher selects the next virtual machine to run from a list of in-queue virtual
machines. The run list contains all virtual machines competing for processor
resources (both runnable and not runnable).

The dispatch request queue contains CPEXBLOKs, IOBLOKs, and TRQBLOKs.
CPEXBLOKs are control blocks that designate CP tasks to be run, IOBLOKS
contain information on I/O operations, and TRQBLOKs are used to manage
system timing facilities. The tasks associated with these blocks are given priority
over VMBLOKs (user virtual machines).

10 VM/SP System Programmer's Guide

(-- ..

../-

eMS BLIP Facility

To be dispatched from a queue, a virtual machine must be runnable (that is, not
waiting for some activity or for some other system resource). A virtual machines is
not dispatched if it:

• Enters a virtual wait state after an I/O operation has begun.
• Is waiting for a page frame of real storage.

Is waiting for an I/O operation to be translated by CP and started.
• Is waiting for CP to simulate its privileged instructions.
• Is waiting for a CP console function to be performed.

The CMS BLIP facility causes CMS to perform a write operation to the terminal
after every 2 seconds of virtual processor use. This feature effectively cancels
Queue 3 use for normal, connected CMS virtual machines, regardless of what types
of programs they are running. The CMS BLIP facility can be turned off with the
CMS SET BLIP OFF command or it can be disabled with the CP SET TIMER
OFF command.

Virtual Machine Storage Management

The normal and maximum storage sizes of a virtual machine are defined as part of
the virtual machine configuration in the VM/SP directory. You may redefine
virtual storage size to any value that is a multiple of 4K and not greater than the
maximum value defined in the directory. VM/SP implements this storage as virtual
storage. The storage may appear as paged or unpaged to the virtual machine,
depending upon whether or not the extended control mode option was specified for
that virtual machine. This option is required if operating systems that control
virtual storage, such as OS/VSl, VM/370 or VM/SP are run in the virtual
machine.

Virtual machine storage is logically divided into 4096-byte areas called pages.
Segments are contiguous 64K areas of virtual storage. Segment and page tables
describe the storage of each virtual machine. A page table shows whether a page is
in real storage and correlates virtual addresses with real storage addresses. A
segment table is used with dynamic address translation to control user access to
virtual storage segments. Each entry shows the length, location, and availability of
a corresponding page table. These tables are updated by CP and reflect the
allocation of virtual storage pages to blocks of real storage. These page and
segment tables allow virtual storage addressing in a System/370 machine.

To optimize real storage use, CP keeps only referenced virtual storage pages in real
storage. Further, CP can bring a page into any available page frame. During
program execution, a combination of VM/SP and the dynamic address translation
feature on the System/370 relocates the page. The active pages from all logged on
virtual machines and from the page able routines of CP compete for available page
frames. When the number of page frames available for allocation falls below a
threshold value, CP determines which virtual storage pages currently allocated to
real storage are relatively inactive and starts suitable page-out operations for them .

Chapter 3. Using Processor Resources 11

CP keeps track of where each virtual machine's page zero resides. Normally, CP
does this by issuing a TRANS macro that checks for page residency (LRA) and
demands a page-in if the page is not in real storage. However, if an in-storage
pointer in the VMBLOK contains the address of the virtual machine's page zero,
the page is resident and CP bypasses issuing the TRANS macro. Thus,
unnecessary LCTL and LRA instructions are eliminated.

Inactive pages are kept on a direct access storage device (DASD). If an inactive
page has been changed during virtual machine execution, CP assigns it to a paging
device, selecting the fastest such device with available space. If the page has not
changed, it remains allocated in its original direct access location and is paged into
real storage when the virtual machine next references that page. A virtual machine
program can use the DIAGNOSE instruction to tell CP that the information from
specific pages of virtual storage is no longer needed. CP then releases the paging
devices areas which were assigned to hold the specified pages.

Paging is done on demand by CPo This means that a page of virtual storage is not
read (paged) from the paging device to a real storage block until it is actually
needed for virtual machine execution. CP makes no attempt to anticipate what
pages might be required by a virtual machine. During paging for one virtual
machine, another virtual machine can be executing. Any paging operation started
by CP is transparent to the virtual machine.

If the virtual machine is executing in extended control mode with translate on, two
additional sets of segment and page tables are kept. The virtual machine operating
system must map the virtual storage created by it to the storage of the virtual
machine. CP uses these of tables and the pagc and segment tables created for the ,~

virtual machine at logon time to build shadow page tables for the virtual machine.
These shadow tables map the virtual storage created by the virtual machine
operating system to the storage of the real computing system. The tables created
by the virtual machine operating system may describe any page and segment size
permissible in the IBM System/370.

12 VM/SP System Programmer's Guide

Chapter 4. Storage Protection

VM/SP provides both fetch and store protection for real storage. The contents of
real storage are protected from destruction or misuse caused by erroneous or
unauthorized storing or fetching by the program.

When protection applies to a storage access, the key in storage is compared with
the protection key associated with the request for storage access. A store or fetch
is permitted only when the key in storage matches the protection key. Storage keys
are discussed more in the next section.

When a store access is prohibited because of protection, the contents of the
protected location remain unchanged. On fetching, the protected information is
not loaded into an addressable register, moved to another storage location, or
provided to an I/O device.

When a processor access is prohibited because of protection, the operation is
suppressed or terminated, and a program interruption for a protection exception
takes place. When a channel access is prohibited, a protection-check condition is
indicated in the channel status word (CSW) stored as a result of the operation.

When the access to storage is inhibited by the processor, and protection applies, the
protection key of the processor occupies bit positions 8-11 of the PSW. When the
reference is made by a channel, and protection applies, the protection key
associated with the I/O operation is used as the comparand. The protection key
for an I/O operation is specified in bit positions 0-3 of the channel-address word
(CAW) and is recorded in bit positions 0-3 of the channel status word (CSW)
stored as a result of the I/O operation.

To use fetch protection, a virtual machine must execute the Set Storage Key (SSK)
instruction referring to the data areas to be protected, with the fetch protect bit set
on in the key. VM/SP subsequently:

1. Checks for a fetch protect violation in handling privileged and nonprivileged
instructions.

2. Saves and restores the fetch protect bit (in the virtual storage key) when
writing and recovering virtual machine pages from the paging device.

3. Checks for a fetch protection violation on a write CCW (except for spooling or
console devices).

The CMS nucleus resides in a shared segment. This presents a special case for
storage protection since the nucleus must be protected and still shared among many

Chapter 4. Storage Protection 13

Storage Keys

eMS users. To protect the eMS nucleus in the shared segment, user programs and
disk-resident eMS commands run with a different key than the nucleus code.

Real
Storage

...

Storage Key

2K 2K

Key

3

Key - 4-bit protect key

2K

Figure 1. 2K Storage Protection Key

2K 2K

Storage keys protect information in real storage from unauthorized use. A storage
key contains a four bit control field that is associated with an area of real storage.
When VM/SP is executing natively, each 2K area of storage is protected by one
storage key.

VM/SP contains support that allows it to execute as a guest virtual machine on a
processor that uses single key real storage frames. Single key storage frames
associate one storage key for each 4K area of storage. VM/SP does not run
natively on processors that have single key storage frames; however, under control
of the VM/SP High Performance Option program product, VM/SP executes as a
guest virtual machine operating system.

When VM/SP High Performance Option (Release 2 or subsequent release) is
controlling the processor equipped with single key storage frames, the program
product simulates for the guest, virtual storage that resembles the type of real
storage installed on the processor. If the storage simulated for the VM/SP guest

14 VM/SP System Programmer's Guide

(

requires 4K storage protection keys, VM/SP issues two key instructions to the
I referenced storage frame.

1 Storage and Processor Use

The system operator can assign the reserved page frames option to a single virtual
machine. This option, specified by the SET RESERVE command, reserves real
storage for the virtual machine. If a virtual machine has this option set, during its
execution CP dynamically builds up a set of reserved real storage page frames until
the maximum number "reserved" is reached. Active pages up to the reserve count
of the selected virtual machine remain in real storage.

During CP system generation, the installation may specify an option called
virtual=real. With this option, the virtual machine's storage is allocated directly
from real storage at the time the virtual machine logs on (if it has the
VIRT=REAL option in its directory entry). All pages except page zero are
allocated to the corresponding real storage locations. CP normally controls real
page zero. Consequently, the real storage size must be large enough to
accommodate the CP nucleus, the entire virtual=real virtual machine, and the
remaining page able storage requirements of CP and the other virtual machines.

The virtual=real option improves performance in the selected virtual machine since
it removes the need for CP paging operations for the selected virtual machine. The
virtual=real option is necessary whenever programs that contain dynamically
changed channel programs (excepting those of as ISAM and OS/VS TCAM Level
5) are to execute under control of CPo

During CP system generation, the installation can specify an option called the
"Small CP Option". The Small CP option removes some of the normally resident
CP nucleus functions that support remote CPo This effectively reduces the size of
the resident CP nucleus, making more storage available for the area where virtual
machine pages reside.

The Small CP option improves performance in environments where the real
processor storage size is 512K bytes or less.

Chapter 4. Storage Protection 15

16 VM/SP System Programmer's Guide

Chapter 5. Virtual Storage Preservation

CP tries to preserve the contents of a virtual machine (up to 16M bytes) under
these conditions:

The system operator forces the machine off the system.

The virtual machine is abnormally terminated by VM/SP.

• The contents of the virtual machine is only saved if no shared pages of data to
be saved are present in the virtual machine.

VM/SP itself abnormally terminates.

When coding the NAMESYS macro at system generation time, the system
programmer must specify which virtual machines are to be saved, the number of
pages to be saved (up to 4096), and the DASD where it will be saved.

The user can force a priority for the order in which multiple virtual machines are
saved through the SA VBSEQ operand of the NAMESYS macro. The saved virtual
machine is restored to the user via the IPL command. Normal recovery procedures
or problem analysis for the saved virtual machine may then be initiated by the user.
To preserve its privacy and security, the automatically saved virtual machine is
made available only to previously specified users. This saved virtual machine can
be loaded into either a V=R or a normal non-V=R machine.

VMSAVE Option

Subject to certain restraints, the user can dynamically control the option to save or
not to save the contents of the virtual machine (VMSA VB), and in which DASD
area to save them (if there is more than one DASD area). If the user has a single
DASD area defined, VMSA VB can be enabled either by the VMSA VB directory
option or by the SET VMSA VB ON command. A single VMSA VB area can be
designated for use by multiple virtual machines. However, the area is allocated to
only one user at a time; the user who first enables VMSA VB has priority. Normal
logoff, or invoking the SET VMSA VE OFF command relinquishes this VMSA VB
area.

The user with multiple DASD areas allocated must issue the SET VMSA VB name
command to enable the VMSA VE option. The SET VMSA VB OFF command
disables the VMSA VB option. Also, to relinquish the VMSA VB area, the user
may issue the SET VMSA VE OFF command, or logoff, or issue the SET
VMSA VB name command specifying another area. The DASD save area can only

Chapter 5. Virtual Storage Preservation 17

Termination

IPL

Priority
- .

\
be relinquished by the owner of the data of the save area if data is stored in it. If \,_ j
there is a saved system in the DASD area, the way to relinquish the area is for the
owner of the saved area to logon and issue the SET VMSA VB name command for
that area, then issue SET VMSA VE OFF command or LOGOFF.

The current status of the VMSAVE option (ON or OFF) can be obtained from the
QUERY SET command. The QUERY VMSA VB command displays the current
status of the VMSA VB option, the names of the areas allocated for the user, the
page frames of each area, and the date and time that their contents were saved.

If the VMSA VE option is enabled when conditions of termination other than
normal LOGOFF occur (such as a VM/SP abend and restart), the pages of the
virtual machine specified are saved in the previously allocated DASD area in the
order specified at system generation time by NAMESYS macro values in
DMKSNT.

After a virtual machine termination or a VM/SP abend in which virtual machine
contents were saved by the VMSA VB option, the IPL command initiated for the
designated VMSA VBd system by a logged-on user brings a page image copy of a
saved virtual machine into an active virtual machine, but does not give the saved
virtual machine control. The copy can always be dumped; however, it mayor may
not be executable.

The V=R area of the real machine (if active) is preserved if the system is
performing a warm start. The V =R area is cleared if the system terminates to a
hard wait state or if a different V =R user logs on.

The SA VBSEQ operand of the NAMESYS macro allows the user to force a
priority in the saving order of multiple virtual machines. (The NAMESYS macro is
described in detail in the J~~f/S~D .l.D/alining Guide and l1..efeience.) The priority is
determined by number. The lower the number, the higher the priority. If two
virtual machines have the same priority, and both have the VMSAVE option
enabled, they are saved in the order in which they enabled VMSA VE. A sequence
of VMSA VB disable followed by a VMSA VE enable causes a virtual machine to
be the last one on the chain -- that is, last among the other virtual machines that
have the same SA VESEQ priority value.

If a high priority of SA VBSEQ is specified for the production virtual machine, and
lower or equal priorities are specified for other virtual machines, the production
machine is saved first; other virtual machines are saved in the order in which the
virtual machines logged onto the system.

18 VM/SP System Programmer's Guide

If different values of SAVESEQ are specified for each user (the range is 0-255),
the priority of saving order for each virtual machine is predictable, depending on
which users are logged on when an abend occurs.

VMSAVE Areas

Target Areas

The VM/SP FORMAT / ALLOCATE program must format DASD space used for
VMSA VE areas before any user can store into the area. Detailed information on
using the FORMAT/ALLOCATE program is contained in the VM / SP Operator's
Guide.

You can specify multiple VMSA VB target areas for a single user; you do this by
including in the DMKSNT module more than one NAMESYS macro with the same
USERID = operand. Different target areas are required if a user wishes to IPL a
VMSA VE system and have the VMSA VB option enabled at the same time. Once
the VMSA VE is enabled, the area referred to cannot be referenced by the IPL
command until a recovery operation has been effected. Similarly, if a VMSAVE
area currently contains a saved system, it can be released only by the user who
caused the system to be stored there. That area cannot be the VMSA VB target
area referred to by a VMSA VB enable from another user until the stored system
has been released.

Overlapping Areas

The system programmer, at his option, can specify overlapping DASD areas for
VMSA VB target areas through NAMESYS macro specifications. However, if two
areas overlap, they must start at the same physical cylinder and page. They can
end at different locations if the areas are of different lengths. Overlapping areas
are useful for different environments of the same user, and they are also valid as
VMSA VE target areas for different users.

Only one user can be using the area (for IPL or for a VMSA VB target area) at any
one time. In addition, if one user has caused a virtual machine to be stored into an
area, no other user can access that area. The user also cannot issue the SET
VMSA VE command with that area as the VMSA VE target area, until the user who
caused the virtual machine to be stored does the following:

• Enables VMSA VB to that area via the SET command, which effectively clears
the area.

• Releases the area by issuing a SET VMSA VE command to another area, a SET
VMSA VB OFF, a DEFINE STORAGE, or a normal LOGOFF process.

Only when the area has been cleared and released in this manner is it available for
other users.

Chapter 5. Virtual Storage Preservation 19

For overlapping target areas, the user must load a system that has the same name
that it was saved under. This ensures that the page range returned with the load is
the same as the one stored by VMSA VB.

Only when the complete page range specified has been saved does the area become
valid and available. If an error occurs in the middle of a save operation, the area is
not valid, and therefore is not retrievable.

The user cannot force a save directly. The MESSAGE command may be used to
ask the operator to force the user off the system. The FORCE command causes an
automatic save, assuming that VMSA VB is enabled. The user can also disconnect
with a READ pending. After 15 minutes the system logs off the user, causing an
automatic save if VMSA VB is enabled.

Other Saved Systems

Systems loaded by name under VM/SP must be saved by the SA VESYS command
under VM/SP. Because of control block changes, systems saved under other
releases of VM/370 are not loaded properly on VM/SP. Conversely, systems
saved on VM/SP will not load properly on a system that does not have this product
installed.

20 VM/SP System Programmer's Guide

\. /

(

Chapter 6. Virtual Machine I/O Management

A real disk device can be shared among multiple virtual machines. Virtual device
sharing is specified in the VM/SP directory entry or by a user command. If
specified by the user, an appropriate password may have to be supplied before
gaining access to the virtual device. A particular virtual machine may be assigned
read-only or read/write access to a shared disk device. CP checks each virtual
machine input/output operation against the parameters in the virtual machine
configuration to ensure device integrity.

Virtual Reserve/Release support can be used to further enhance device integrity
for data on shared minidisks. Reserve/Release operation codes are simulated on a
virtual basis for minidisks, including full-extent minidisks. For details on
Reserve/Release support, refer to the VM/SP System Logic and Problem
Determination Guide Volume 1 (ep).

The virtual machine operating system is responsible for the operation of all virtual
devices associated with it. These virtual devices may be defined in the VM/SP
directory entry of the virtual machine, or they may be attached to (or detached
from) the virtual machine's configuration, dynamically, for the duration of the
terminal session. Virtual devices may be dedicated, as when mapped to a fully
equivalent real device; shared, as when mapped to a minidisk or when specified as
a shared virtual device; or spooled by CP to intermediate direct access storage.

In a real machine, input/output operations are normally initiated when a problem
program requests the operating system to issue a START I/O instruction to a
specific device. Device error recovery is handled by the operating system. In a
virtual machine, the operating system can perform these same functions, but the
device address specified and the storage locations referenced are both virtual. It is
the responsibility of CP to translate the virtual specifications to real.

In addition, the interrupts caused by the input/output operation are reflected to the
virtual machine for its interpretation and processing. If input/output errors occur,
CP records them but does not initiate error recovery operations. The virtual
machine operating system must handle error recovery, but does not record the error
(if SVC 76 is used).

In an attached processor environment, virtual I/O can be initiated by either
processor; however, all real I/O requests must be ,executed by the main processor,
and all I/O interrupts must be received on the main processor (the processor with
I/O capability). Any I/O requests by the attached processor (the processor
without I/O capability) are transferred to the main processor.

In a multiprocessor environment, both processors have real I/O capability. If
either processor receives an I/O request, that processor attempts to initiate I/O

Chapter 6. Virtual Machine I/O Management 21

operations. If none of the online paths from the executing processor to the
required device ate available, that processor queues the I/O request on all busy and
scheduled paths to the device; both its own and the alternate paths to the device
from the second processor. If there is no online path from the executing processor,
that processor queues the I/O request on the first online and available path for the
second processor, as well as on all busy or scheduled paths from that processor.

Input/output operations initiated by CP for its own purposes (paging and
spooling), are performed directly and are not subject to translation.

Virtual machines may access data on MSS mass storage volumes using that virtual
machine's standard 3330 device support. MSS cylinder faults, and associated
asynchronous interruptions, are transparent to the virtual machine in this situation.

Dedicated Channels

In most cases, the I/O devices and control units on a channel are shared among
many virtual machines as minidisks and dedicated devices, and shared with CP
system functions such as paging and spooling. Because of this sharing, CP has to
schedule all the I/O requests to achieve a balance between virtual machines. In
addition, CP must reflect the results of the subsequent I/O interruption to the
appropriate storage areas of each virtual machine.

By specifying a dedicated channel (or channels) for a virtual machine via the Class
BAIT ACH CHANNEL command, the CP channel scheduling function is
bypassed for that virtual machine. A virtual machine assigned a dedicated channel
has that channel and all of its devices for its own exclusive use. CP translates the
virtual storage locations specified in channel commands to reallocations and
performs any necessary paging operations, but does not perform any device address
translations. The virtual device addresses on the dedicated channel must match the
real device addresses; thus, a minidisk cannot be used.

22 VM/SP System Programmer's Guide

Chapter 7. Spooling Functions

CP spooling facilities allow multiple virtual machines to share real unit record
devices. Since virtual machines controlled by CMS ordinarily have low
requirements for unit record input/output devices, real device sharing is
advantageous, and is the standard mode of system operation.

CP, not the virtual machine, controls the unit record devices that are designated as
spooled in the virtual machine directory entry. When the virtual machine issues a
START I/O instruction to a spooled unit record device, CP intercepts the
instruction and changes it. CP moves data into page-size records (4096-byte
blocks) in a disk area that serves as intermediate storage between the real unit
record device and the virtual machine.

A virtual unit record device which is mapped directly to a real unit record device is
said to be dedicated. The real device is then controlled completely by the virtual
machine's operating system. A virtual machine should not issue a clear channel to
any dedicated channel. If the CLRCH instruction is issued, the results are
unpredictable.

Spooling operations cease if the direct access storage space assigned to spooling is
depleted, or the virtual unit record devices appear in a not-ready status. The
system operator or the spooling operator can make additional spooling space
available by purging existing spool files or by assigning additional direct access
storage space to the spooling function. The spooling operator can use the class D
SPT APE command to retrieve spool files from tape for output processing when
spooling space requirements are not critical. See the description of the SPT APE
command in the VM/SP Operator's Guide for further information.

Specific files can be transferred from the spooled card punch or printer of a virtual
machine to the card reader of the same or another virtual machine. Files
transferred between virtual unit record devices by the spooling routines are not
physically punched or printed. With this method, files can be made available to
multiple virtual machines, or to different operating systems executing at different
times in the same virtual machine.

Files may also be spooled to remote stations via the Remote Spooling
Communications Subsystem (RSCS) Networking Version 2, a program product of
VM/SP.

CP spooling includes many desirable options for the virtual machine user and the
real machine operator. These options include printing multiple copies of a single
spool file, backspacing any number of printer pages, and defining spooling classes
for the scheduling of real output. Each output spool file has, associated with it, a
136-byte area known as the spool file tag. The information contained in this area

Chapter 7. Spooling Functions 23

--------------.----~~-----

and its syntax are determined by the originator and receiver of the file. For
example, whenever an output spool file is destined for transmission to a remote
location via the Remote Spooling Communications Subsystem Networking Version
2, RSCS expects to find the destination identification in the file tag. Tag data is
set, changed, and queried using the CP TAG command.

It is possible to spool terminal input and output. All data sent to the terminal,
whether it be from the virtual machine, the control program or the virtual machine
operator, can be spooled. Spooling is particularly desirable when a virtual machine
is run with its console disconnected. Console spooling is usually started via the
command

SPOOL CONSOLE START

An exception to this is when a system operator logs on using a graphics device. In
this instance, console spooling is automatically started and continues in effect even
if the system operator should disconnect from the graphics device and log on to a
nongraphic device. To stop automatic console spooling, the system operator must
issue the command

SPOOL CONSOLE STOP

Spool File Recovery

Warm Start

Checkpoint Start

If the system should suffer an abnormal termination, there are three degrees of
recovery for the system spool files; warm start (WARM), checkpoint start (CKPT),
and force start (FORCE). Warm start is automatically invoked if SET DUMP
AUTO is in effect. Otherwise, the choice of recovery method is selected when the
following message is issued:

START ((WARMICKPTIFORCEICOLD) (DRAIN)) I (SHUTDOWN):

Note that a cold (COLD) start does not recover any spool files.

After a system failure, the warm start procedure copies spool file, accounting, and
system message data to the warm start area on the IPLed system residence volume.
When the system is reloaded, this information is retrieved and the spool file chains
and other system data are restored to their original status. If the warm start
procedure cannot be implemented because certain required areas of storage are
invalid, the operator is notified to take other recovery procedures.

Any new or revised status of spool file blocks, spooling devices, and spool hold
queue blocks is dynamically copied to the checkpoint area on the IPLed system
residence volume as it occurs. When a checkpoint (CKPT) start is requested, this
is the information that is used to recreate the spool file chains. It differs from
warm start data in that only spool file data is restored; accounting and system

24 VM/SP System Programmer's Guide

Force Start

messages information is not recovered. Also, the order of spool files on any
particular restored chain is not the original sequence but a random one.

A force start is required when checkpoint start encounters I/O errors while reading
files, or invalid data. The procedure is the same as for checkpoint start except that
unreadable or invalid files are bypassed.

Chapter 7. Spooling Functions 25

26 VM/SP System Programmer's Guide

(,
.....

Chapter 8. CP Commands

The CP commands allow you to control the virtual machine from the terminal,
much as an operator controls a real machine. You can stop virtual machine
execution at any time by using the 3066 terminal's attention key or the 3270
terminal's ENTER or PAl key. To restart execution, enter the CP BEGIN
command. You can also simulate external, attention, and device ready interrupts
on the virtual machine and inspect and change virtual storage, virtual machine
registers, and status words such as the PSW and the CSW. You can use extensive
trace facilities for the virtual machine, a single-instruction mode, and commands
that invoke the spooling and disk sharing functions of CP.

Command Privilege Classes and Types

Each CP command has one or more privilege classes assigned to it. Each user is
also assigned one or more privilege classes. The privilege class(es) for each user
are stored in the VM/SP directory. If a user tries to issue a CP command, but the
classes assigned to the command do not include a class that was assigned to the
user, the system will not process the command. This prevents users from altering
system functions for which they are not authorized.

The privilege class(es) assigned to administrative personnel are determined by the
size and configuration of the system and by the installation's particular
circumstances. For example, in a small installation one individual may be assigned
all privilege classes to allow that individual to handle all administrative tasks. In
larger installations several individuals may be assigned different privilege classes
depending on the commands they need to access to do their assigned tasks.

Each version of each CP command is assigned a type code that corresponds to the
level of system control that is provided (operations, resource, programming,
spooling, analyst, general and CE).

IBM defines privilege classes for each command according to administrative tasks
that a typical installation might want to assign to the functions of that command. It
also assigns a type to each command that corresponds to the IBM-defined privilege
class. The IBM-defined privilege classes can be changed by an installation but the
type is permanent. Figure 2 shows the relationship of privilege class, type, and
administrative function. This relationship is discussed in the text that follows .

Chapter 8. CP Commands 27

IBM
Defined IBM
Class User Defined

Functional Types User Class

Primary
System Operations Spooling Spool
Operator Type=O Type=S Operator

System
Resource Resource Analyst System
Operator Type=R Type=A Analyst

Virtual
System Programmer General Machine
Programmer Type=P Type=G Users

Service
CE Represent-
Type=C ative (CD

Note: The IBM-defined class ANY has no type and cannot be changed.

Figure 2. Relationship of Privllege Class, Type, and Administrative Function

The Operations administrative function (type 0) is assigned to those commands
used for primary system operations. The IBM-defined privilege class for these
commands is class A.

The Resource administrative function (type R) is assigned to those commands used
for the distribution of real system resources (such as channels and devices) as they
are requested by virtual machine users. The IBM-defined privilege class for these
commands is class B.

The Programmer administrative function (type P) is assigned to those commands
used to control trace table information or to locate, display, print, or change the
information in specific storage locations to aid in trouble analysis. The
IBM-defined privilege class for these commands is class C.

The Spooling administrative function (type S) is assigned to those commands used
to control the spool files and certain aspects of the real card readers, punches, and
printers. The IBM-defined privilege class for these commands is class D.

The Analyst administrative function (type A) is assigned to commands used for
monitoring the system resources to ensure that enough resources are available for
the virtual machine users. The IBM-defined privilege class for these commands is
class E.

The CE administrative function (type C) is assigned to commands used for problem
determination and problem isolation. These commands allow the service
representative (customer engineer) to get data about the VM/SP system. The
IBM-defined privilege class for these commands is class F.

28 VM/SP System Programmer's Guide

\
"-

(

The General function (type G) is assigned to commands used to control the
functions associated with a particular virtual machine. The IBM-defined privilege
class for these commands is class G.

Some commands have an IBM-defined privilege class of ANY. These commands
do not have a type associated with them and may be used by any user. The
privilege class for these commands cannot be changed.

For descriptions of all the CP commands, see the VM / SP CP Command Reference
for General Users and the VM/SP Operator's Guide. Both publications also list all
commands with their types and IBM-defined privilege classes. For descriptions of
DIAGNOSE codes, refer to "DIAGNOSE Instruction in a Virtual Machine" in this
publication.

Tailoring the Class Structure to Your Installation's Needs

An installation can optionally change the IBM-defined privilege classes to meet its
individual needs. (This applies to all IBM-defined privilege classes except class
ANY which cannot be changed.) You can define up to 32 classes, A through Z
and 1 through 6. This ability to change the IBM-defined class structure provides
additional flexibility and control over each user's access to CP commands. Thus,
you have greater control over your installation's resources and information.

In addition, new commands can be added to the system. This section describes
how to change command and DIAGNOSE code classes, how to change virtual
machine class access to commands and DIAGNOSE codes, how to change class
access to certain internal CP functions, and how to add new commands.

How to Change Command Classes and Virtual Machine Class
Access to Commands

To change the IBM-defined privilege classes, you must prepare a file that contains
the commands and DIAGNOSE codes for which you want to change the privilege
classes. This file is called the class override file. Each control statement in the class
override file shows the installation supplied class for that particular command.

Because you are changing the existing class structure, you must also change the
VM/SP directory to include the newly defined classes.

In general to redefine the class authorization for your system, you must do the
following steps (each step is described more fully later in this section):

1. Plan for the effect of the changes.

• Determine the different kinds of users of your system and what types of
administrative functions they should be able to do. .

• List the commands that you want each kind of user to be able to access. If
a command is assigned to more than one type, be sure to include the type
or types of that command that you want the user to access.

Chapter 8. CP Commands 29

• From this you should be able to determine how many and which privilege
classes you want to associate with each command and type and with each
kind of user. Note that if you do not change the class on a command, the
class remains the ffiM-defiried class. For example, if the ffiM-defined
class for a particular command is A and you do not change it in the
override file, it will remain class A.

• Make sure you will not compromise system integrity or system security
with these changes.

• Plan for updates to any HELP files caused by the changes.

• Check whether you need to change the classes of any internal functions
using the SYSFCN macro (see "How to Change the Privilege Class of
Certain Internal CP Functions").

2. Make any required class changes to commands:

a. Create it class override source file on a CMS formatted minidisk to which
only the system administrator or other authorized person has access. This
same user should have WRITE access to the system resident disk.

b. A class override file consists of:

• A DESTINATION control statement followed by,

• OVERRIDE control statements for those commands and DIAGNOSE
codes for which you want to change the IBM-defined classes.

The DESTINATION statement must be the first control statement in the
override file.

c. Enter the OVERRIDE command with the EDIT operand to validate the
class override file.

d. When you are satisfied that the class override file is correct, enter the
OVERRIDE command without the EDIT operand to convert the class
override file to an internal format.

e. To activate the ~la:ss overrides, IPL the system. (But don't forget to set up
a matching CP directory before you IPL.)

3. Make any required class definition changes to the virtual machine directory:

• Normally to assign additional or different classes to a virtual machine,
change the CLASS field on the USER control statement.

• If the other parameters on the USER control statement do not leave
sufficient space for all of the new classes, place an * in the CLASS field on
the USER control statement for that virtual machine and add a CLASS
control statement on the next line.

30 VM/SP System Programmer's Guide

;£--~,

~_J

(

When you want to make additional changes to the class overrides, make the
changes or additions to the class override file and enter the OVERRIDE command
to convert the changes to internal format as described above. Then IPL the
system.

To revert to the IBM-defined classes, enter the OVERRIDE command with the
FREE operand and then IPL the system. If your directory was updated specifically
for your new class structure, you need to install your original directory when you
issue the OVERRIDE command with the FREE operand.

Note: If extensive changes are made in the command structure, you must arrange
to update the directory immediately before you IPL with your new override file.
Extensive changes in the use of classes A - F might also require an update to the
SYSFCN macro in DMKSYS.

Planning the Command Authorization for the System

Before changing the classes of commands, carefully consider the effect of the
changes on users and on system integrity. Such changes to the existing command
structure will either limit or extend access to system commands. The key elements
of this planning are system integrity, system security, and how well these changes
enhance your installation's organization and requirements.

Determining Functions to be Done by Users

Job Title

System Administrator

System Programmer 1

System Programmer 2

The first step in restructuring your command classes is to determine the different
kinds of users of your system and what types of functions each of these users need
to do the tasks associated with their job. You must consider the existing structure
and the users' needs and requirements. This can best be shown in an example.

Consider an Insurance Company where several individuals' job responsibilities and
tasks vary. The installation has decided to implement a new class structure. First
the users of the system are closely examined to determine their requirements. The
system administrator has determined that the users fall into the following
categories:

Abbrev Duties

SAD Responsible for general management of the system and for
determining how the system will be structured and used.

SPl Responsible for planning, generating, maintaining, extending,
and controlling the use of the operating system with the aim
of improving the general productivity of the installation.

SP2 Same responsibilities as System Programmer 1 except that
since the system is large handles a different portion of the
system.

Figure 3 (Part 1 of 2). Different System Users and Their Responsibilities

Chapter 8. CP Commands 31

Job Title Abbrev Duties

System Analyst 1 SAl Responsible for analyzing the system to determine what new
applications, system programs, and devices are needed by the
installation.

System Analyst 2 SA2 Responsible for analyzing the system performance.

Primary System SO For each shift, there is a primary system operator who is
Operators responsible for ensuring the smooth running of the system

and carrying out such duties as changing tapes and disk
packs.

Data Base DBA Responsible for resources associated with and access to the
Administrator main data base of the system. Also responsible for resources

associated with spooling, printing, and archiving.

Service CE Obtains and examines certain data about input and output
Representative devices connected to the system. Also, controls intensive

error recording and some machine check error recording.

Experienced EP Responsible for developing, testing, and supporting
Application applications to do the work of the company.
Programmers

Inexperienced IP Same as Experienced Application Programmers except that
Application they develop less sophisticated application programs and
Programmers therefore do not require access to some functions needed by

the more experienced application programmers.

Non-DP Users Ul, U2 Two different types of non-DP users with different
requirements were identified.

Figure 3 (Part 2 of 2). Different System Users and Their Responsibilities

Assigning Commands to Kinds of Users

So far you have determined the kinds of users you have on your system and what
types of system functions each user will need to access. Now for each kind of user
list all commands that each user will need to do the indicated function. Do not list
commands the user does not need or commands whose mM-defined class is ANY.
For those commands that do different functions depending on their assigned type,
list the type that corresponds to the functions that you want the user to able to do.
For some users, you may want to list more than one type for a particular command.

In our example of the insurance company, one way of doing this is to make a chart
like the following one that lists all the commands along the side and the types of
users across the top. (Note that, for sake of brevity, the example chart only lists a
few commands. In reality, all CP commands should be listed.) It will help you to
list user types in order by level of system control. You should also include a
column for Type (especially if a command has more than one Type) and a column
for the new classes to be assigned. The next step is to decide which commands you
want each user to be able to use. For the example, asterisks (*) were placed under
each user if that user could access the command in the left column.

32 VM/SP System Programmer's Guide

(r-""

~/

(......•..
,. J

New
Command Type Class SAD SPt SP2 SAt SA2 SO DBA CE EP IP vt V2

ACNT 0
ADSTOP G
ATTN G
AUTOLOG 0
CHANGE S
CHANGE G
DCP P
DEFINE R
DEFINE G
INDICATE 0
INDICATE A
INDICATE G
IPL G
MESSAGE 0
QUERY 0
QUERY R
QUERY P
QUERY A
QUERY S
QUERY C
QUERY G
SAVESYS A
SPOOL G
DIAG04
DIAGIC
DIAG30
DIAG38
DIAG74
DIAG84

*

*

*
*
*

*

*

*

*

*
*
*

*

*

*

*

*
*
*

*

*

*

*

*

*
*

*

*

*

*
*

* *
* *

*

*

*
*
*

* *

*

*

*
*

*
*
*

*

*

*
*

*

*

*
*

*

*

*
*

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

Note: DIAGNOSE code X'84' is not marked in any column. This is an example
of a function that might be restricted to one or two users.

Associating Privilege Classes with Commands and Users

Once you have associated particular commands and command types with particular
users, you should be able to determine how many and which privilege classes you
want to associate with each command and type and with each kind of user.

In our insurance company example, the system administrator could assign a
different user class to each type of user. Then, each command could be assigned
the list of classes that corresponds to the users who need access. In the chart, each
asterisk can be changed to the appropriate user class and copied to the "New
Class" field as indicated below:

Chapter 8. CP Commands 33

Command Type

ACNT 0
ADSTOP G
ATTN G
AUTOLOG 0
CHANGE S
CHANGE G
DCP P
DEFINE R
DEFINE G
INDICATE 0
INDICATE A
INDICATE G
IPL G
MESSAGE 0
QUERY 0
QUERY R
QUERY P
QUERY A
QUERY S
QUERY C
QUERY G
SAVESYS A
SPOOL G
DIAG04
DIAGIC
DIAG30
DIAG38
DIAG74
DIAG84

New
Class SAD SPI SP2 SAl SA2 SO DBA CE EP IP UI U2

K L ABC DE F G HI J

D
UK
UK
FGI
FG
UKL
BCDH
F
UKL
F
DE
UK
UKL
F
F
F
BC
DE
FG
H
UKL
ABC A
UKL
ABCDE A
H
ABCDEH A
ABCDE A
ABC A
1

B

B

B

B

B
B
B

C

C

C

C

C
C
C

D

D

D

D

D

D
D

E

E

E

E
E

F G
F G

F

F

F
F
F

F G

H

H

H
H

I
I
I

I

I

I
I

I

I

J K
J K

J K L

J K L

J K
J K L

J K L

J K L

As you can see, DIAGNOSE code X'84' is still not available to any of these user
groups. However, a few individuals could be given access to this function by
assigning class 1 in addition to their normal privilege classes.

You will probably notice that the users with access to system functions and
resources (classes A-H) do not have any of the commands that would be useful in
controlling their own virtual machine (e.g. SPOOL). Users with classes I - L have

the system administrator to independently control a user's access to system
commands as well as virtual machine commands.

With a change as extensive as this, it is necessary to redefine the privilege classes
that control certain internal CP functions. For this example, SYSFCNshould be
coded:

SYSFCN OPER=F,CPRD=BC,CPWT=B,SERV=H,PRIV=ABCF,DFLT=K

For an explanation of the parameters to SYSFCN, see "How to Change the
Privilege Class of Certain Internal CP Functions" later in this section.

34 VM/SP System Programmer's Guide

Security and System Integrity

I Help Files

With the ability to define the command access to suit your installation's security
and system integrity requirements, you have great flexibility and control over each
user's access to CP commands. This can be used to enhance security and system
integrity at your installation by restricting access to system resources and
information controlled by commands or DIAGNOSE codes. However, when you
change the privilege class of commands and make changes to user access, be
careful not to inadvertently compromise security or system integrity by allowing
users to access commands that could provide access to unauthorized information or
that could affect system operation.

You may also want to update the HELP files if changes to the command classes
affect a type G command. Refer to the VM / SP eMS User's Guide for information
on tailoring the HELP facility.

Documentation Considerations

If you change the privilege class for commands or DIAGNOSE codes, the privilege
classes documented in this and other publications for commands and DIAGNOSE
codes might not be correct for your installation.

Migration Considerations

\
Altering the VM/SP directory to take advantage of the 32 class command access
support will make your directory incompatible with earlier releases of the system.

\ How to Assign Privilege Classes to Commands and DIAGNOSE Codes

If you want to assign privilege classes other than the IBM-defined classes to certain
commands or DIAGNOSE codes (that is, override the IBM-defined privilege
classes) you must:

1. Allocate DASD space for the override file. Refer to VM/SP Planning Guide
and Reference for information on allocating DASD space for the override file.

2. Create a class override file.

3. Verify the syntax of the control statements in the class override file by issuing
the OVERRIDE command with the EDIT option.

4. Issue the OVERRIDE command without the EDIT option.

5. IPL the system.

Chapter 8. CP Commands 35

Creating a Class Override File

To override the IBM-defined privilege classes for commands and DIAGNOSE
codes, you must first create a class override file. Since VM/SP does not assign a
filename to this file, you must assign the name. The default filetype is
OVERRIDE. You will specify the name on the OVERRIDE command, which is
used to process the class override file and convert it to internal format.

The class override file consists of one DESTINATION control statement followed
by an OVERRIDE control statement for each command or DIAGNOSE code
whose IBM-defined privilege class is to be overridden. The first statement in this
file (the DESTINATION control statement) gives the location of the CP-owned
volume that contains the internal override information. The DESTINATION
statement has the same syntax as the DIRECTORY statement in the CP directory
file. The override space should be on the same volume as the directory, so you
could copy the DIRECTORY statement, changing the first term from
DIRECTORY to DESTINATION, and use it in the override file.

In the class override file, follow the DESTINATION control statement with the
OVERRIDE control statements for the commands and DIAGNOSE codes to be
overridden. The format of the OVERRIDE control statement is:

I command [Type=c] Class= ~ cla:ses

where:

command
specifies the command or DIAGNOSE code name. It must be the first
parameter on the control statement.

Note: VM/SP CP Command Reference for General Users and VM/SP
Operator's Guide list the CP commands that you can specify on the
OVERRIDE control statement. Figure 4 lists the DIAGNOSE codes that
you can specify on the OVERRIDE control statement. Only the commands
and DIAGNOSE codes listed can have their classes changed. Commands or
DIAGNOSE codes defined by the system as class ANY are not valid on the
OVERRIDE control statement.

CIass= J classes t
l * J

specifies the classes to be assigned to this command. This parameter is
required. The minimum abbreviation of the keyword is C. classes can be
from 1 to 32 alphanumeric characters (with no intervening spaces) from A
Z and 1 - 6. Duplicate characters are not allowed and the characters may be
in any order. An asterisk (*) specifies that this command or DIAGNOSE
code can be executed regardless of the class defined for the virtual machine.

Type=c
specifies the functional type to which the command belongs. (The types

,/

_7

correspond to the IBM-defined privilege classes. The classes can be changed rf--'\

but type is permanently associated with the command.) The minimum 0
abbreviation of the keyword is T. This parameter is required only when a

36 VM/SP System Programmer's Guide

(

C-

command belongs to more than one functional type. For example, QUERY
belongs to seven types (0, R, P, S, A, C, and G). c specifies one of the
following functional types:

o Operations
R Resource
P Programmer
S Spooling
A Analyst
C Customer engineer
G General

The TYPE field is invalid for DIAGon or DIAGnon.

DIAGNOSE IBM-Defined
Code Class

DIAG04 CE

DIAGIC F

DIAG2C CEF

DIAG30 CEF

DIAG34 CE

DIAG38 CE

DIAG3C ABC

DIAG50 ABC

DIAG74 ABC

DIAG84 B

Figure 4. DIAGNOSE Instructions That Can Be Respecified on an OVERRIDE Control
Statement

Closs Ove"ide File Example: Using the example of the insurance company from the
section on planning, the override file would contain the following entries:

DESTINATION 250 3350 VMSRES

* * CP COMMAND OVERRIDES FOR 'OUR INSURANCE COMPANY'

*
* USER

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

CLASSES REPRESENT:

A SYSTEM ADMINISTRATOR (SAD)
B SYSTEM PROGRAMMER - LEVEL 1 (SP1)
C SYSTEM PROGRAMMER - LEVEL 2 (SP2)
o SYSTEM ANALYST - LEVEL 1 (SA1)
E SYSTEM ANALYST - LEVEL 2 (SA2)
F SYSTEM OPERATOR (SO)
G DATA BASE ADMINISTRATOR (DBA)
H IBM SERVICE REPRESENTATIVE (IBM)
I EXPERIENCED APPLICATION PROGRAMMER (EP)
J INEXPERIENCED APPLICATION PROGRAMMER (IP)
K COMPLEX USERS (U1)
L SIMPLE USERS (U2)

SPECIAL CLASS ASSIGNED TO DIAGNOSE CODE X'84'

Chapter 8. CP Commands 37

* * COMMANDS ARE ARRANGED IN BROAD CATEGORIES:

*
*
*
*
* * NOTES:

* * (1)

*
*
* * (2)

*
*
ACNT
ADS TOP
ATTN
AUTO LOG
CHANGE
CHANGE
DCP
DEFINE
DEFINE
INDICATE
INDICATE
INDICATE
IPL
MESSAGE
QUERY
QUERY
QUERY
QUERY
QUERY
QUERY
QUERY
SAVESYS
SPOOL
DIAG04
DIAG1C
DIAG30
DIAG38
DIAG74
DIAG84

SYSTEM CONTROLS OR INFORMATION REQUESTS
IBM SERVICE REPRESENTATIVE

A-G
H
I-L VIRTUAL MACHINE OPERATION

MOST SYSTEM USERS NEED PRIVILEGE CLASS 'I' IN ADDITION TO
THEIR PRIMARY FUNCTIONAL CLASS. THIS ENABLES THE SYSTEM
USER TO FULLY CONTROL A VIRTUAL MACHINE.

USER CLASS '1' SHOULD BE RESTRICTED TO REDUCE THE POTENTIAL
FOR MISUSE OF DIAGNOSE CODE X'84'.

TYPE=O
TYPE=G
TYPE=G
TYPE=O
TYPE=S
TYPE=G
TYPE=P
TYPE=R
TYPE=G
TYPE=O
TYPE=A
TYPE=G
TYPE=G
TYPE=O
TYPE=O
TYPE=R
TYPE=P
TYPE=A
TYPE=S
TYPE=C
TYPE=G
TYPE=A
TYPE=G

CLASS=D
CLASS=IJK
CLASS=IJK
CLASS=FGI
CLASS=FG
CLASS=IJKL
CLASS=BCDH
CLASS=F
CLASS=IJKL
CLASS=F
CLASS=DE
CLASS=IJK
CLASS=IJKL
CLASS=F
CLASS=F
CLASS=F
CLASS=BC
CLASS=DE
CLASS=FG
CLASS=H
CLASS=IJKL
CLASS=ABC
CLASS=IJKL
CLASS=ABCDE
CLASS=H
CLASS=ABCDEH
CLASS=ABCDE
CLASS=ABC
CLASS=l

Note that the TYPE operand must be coded for the DEFINE and QUERY
commands because they are associated ';.vith mere than one type. ~lcte also that to
assign more than one class to a command or command type, all new classes are
placed on the same override control statement (see the QUERY TYPE=S
statement in the above example).

Verifying that the Class Override File is Syntactically Correct

To verify that the control statements in the class override file have the correct
syntax, issue the OVERRIDE command with the EDIT option:

OVERRIDE fn ft fm (EDIT

38 VM/SP System Programmer's Guide

\
j

~j

{_ ..

where the filename (fn), filetype (ft), and filemode (fm) identify the class override
file. (Note that the default filetype is OVERRIDE.) If an error is detected, the
statement in error is displayed and a message informs you what the error is.

For information on messages, refer to VM/SP System Messages and Codes.

Making the Class Assignments in the Class Override File Effective

After you create the class override file and verify the syntax of the control
statements in it, issue the OVERRIDE command with no options to make the new
privilege classes effective for the specified commands:

OVERRIDE fn ft fm

where the filename (fn), filetype (ft), and filemode (fm) identify the class override
file. If an error is detected, the statement in error is displayed, a message informs
you what the error is, and processing of the class override file continues in edit
mode but does not write the class override data. (Refer to "How to Verify that the
Class Override File is Syntactically Correct" for a list of messages that could be
issued.)

If no errors are detected, the OVERRIDE command converts the class override file
to an internal format. This command is similar to the DIRECT command used for
converting an external directory source to internal format. If an internal override
file already exists, issuing the OVERRIDE command replaces the existing override
file with the new one. At this time, however, the new class overrides do not take
effect.

To make the new class overrides effective after issuing the OVERRIDE command,
IPL the system.

Warning: Restricting the user class on a console command (for
example, IPL) does not restrict the function of the analogous
directory control statement (in this case, IPL). Thus, a command
(such as IPL or LINK) may work at IPL time but not work when
issued by the user during his session.

Reverting to the IBM-Defined User Classes

If you want to cause the commands to be assigned their IBM-defined privilege
classes again, issue the OVERRIDE command with the FREE option:

OVERRIDE fn ft fm (FREE

and IPL the system.

If, after reverting to the IBM-defined classes, you want to return to the classes you
defined in the override file:

1. Enter the OVERRIDE command without the FREE option:

OVERRIDE fn ft fm

Chapter 8.CP Commands 39

2. IPL the system.

Note: If your changes are quite extensive, you may need to install a different
directory and/or build a new nucleus with an updated SYSFCN.

How Users Can Find Which Commands They Can Issue

To find out which ffiM-defined and user-defined commands are available, the user
can issue the COMMANDS command. For example, if the ffiM-defined classes
are in effect for all commands, a user whose virtual machine is assigned privilege
classes E and F would receive the response:

LOGON DIAL DISCONN LOGOFF MESSAGE SLEEP

* CP COMMANDS DCP DMCP INDICATE
MONITOR PER QUERY SAVESYS SET
DIAGOO DIAG04 DIAG08 DIAGOC DIAG10 DIAG14
DIAG18 DIAG1C DIAG20 DIAG24 DIAG28 DIAG2C
DIAG30 DIAG34 DIAG38 DIAG40 DIAG48 DIAG4C
DIAG54 DIAG58 DIAG5C DIAG60 DIAG64 DIAG68
DIAG6C DIAG70 DIAG78 DIAG7C DIAG80 DIAG8C
DIAG94 DIAG98

Remember, this would include any commands of class E or F added by the user's
installation.

How to Change the Definition of Privilege Classes for a Virtual Machine

The VM/SP directory contains the entries of all potential virtual machines
permitted to logon to the VM/SP system. The VM/SP directory is set up during
system generation and contains, among other items about each virtual machine, the
privilege class or classes of commands that a user of each virtual machine can
successfully execute. (For additional information about the VM/SP directory and
how to generate it, refer to VM/SP Planning Guide and Reference.) The control
statements in the VM/SP directory that define the command privilege classes for a
virtual machine are the USER control statement and the CLASS control statement.

The USER control statement defines a virtual machine and creates a VM/SP
directory entry. It identifies the directory entry for one user. You must prepare a
separate USER statement for each virtual machine in your system. The format of
the USER statement is described in VM / SP Planning Guide and Reference. Use
the cl operand of the USER statement or the CLASS control statement to define
privilege c1a:s:st::s fur the virtuai machine. (Coding this operand is described later in
this section.) You can define up to 32 classes.

Warning: Make sure you have enough free disk space before editing
and making changes to the existing directory so that you can file the
updated directory. Refer to VM/SP Planning Guide and Reference
for information on how to allocate DASD space for the directory.

For the example of the insurance company that we used before the directory might
include the following USER and CLASS control statements:

40 VM/SP System Programmer's Guide

(-\

(

DIRECTORY 250 3350 VMSRES

*
* CP DIRECTORY FOR 'OUR INSURANCE COMPANY'

*
* NOTES:

*
* (1)

*
*

MOST SYSTEM USERS NEED PRIVILEGE CLASS 'I' IN ADDITION TO
THEIR PRIMARY FUNCTIONAL CLASS. THIS ENABLES THE SYSTEM
USER TO FULLY CONTROL A VIRTUAL MACHINE.

*
*
*

(2) USER CLASS '1' SHOULD BE RESTRICTED TO REDUCE THE POTENTIAL
FOR MISUSE OF DIAGNOSE CODE X'84'.

*
* (3)
*
*
*

USERID ALTMAINT IS SET ASIDE FOR EMERGENCY USE. THIS USER
HAS ACCESS TO ANY CP COMMAND NO MATTER WHAT OVERRIDE FILE
IS APPLIED. THE PASSWORD SHOULD ONLY BE KNOWN TO A
VERY FEW KEY PEOPLE.

*
USER ALTMAINT SECRET 2M 8M *

CLASS ABCDEFGHIJKLMNOPQRSTUVWXYZ123456
(other control statements)

*
USER ADM XXXXXXXX 2M 8M AI1

(other control statements)
*
USER SP1 XXXXXXXX 1M 2M BI

(other control statements)
*
USER SP2 XXXXXXXX 1M 2M CI

(other control statements)
*
USER SA1 XXXXXXXX 1M 2M DI

(other control statements)
*
USER SA2 XXXXXXXX 1M 2M EI

(other control statements)
*
USER SO XXXXXXXX 1M 2M FI

(other control statements)

*
USER DBA XXXXXXXX 1M 4M GI

(other control statements)

*
USER IBM XXXXXXXX 1M 4M HI

(other control statements)

*
USER EP XXXXXXXX 1M 4M I

(other control statements)

*
USER IP XXXXXXXX 1M 2M J

(other control statements)
*
USER U1 XXXXXXXX 1M 2M K

(other control statements)
*
USER U2 XXXXXXXX 512K 1M L

(other control statements)

I If no user named "OPERATOR" is defined, DMKSYS should be upda!ed to
identify "SO" as the system operator.

Chapter 8. CP Commands 41

Defining Privilege Classes for a Virtual Machine

To change the definition of privilege classes for a virtual machine do the following
steps. Step 3 will differ depending on whether you are defining eight or less
privilege classes, or more than eight privilege classes.

1. Use the XEDIT command to edit the VM/SP directory. This file will have a
fileid of USER DIRECT or, if you defined a different file name,filename
DIRECT.

2. Find the USER control statement for the virtual machine whose privilege
classes you want to change.

3. This next step is dependent on whether you are defining eight or less classes or
more than eight classes.

To define eight or less privilege classes for a virtual machine, do the following:

a. Change the cl operand to the classes that you want this virtual machine to
have. The cl operand consists of one to eight EBCDIC characters (with no
intervening blanks) that can be A - Z, and 1 - 6. These characters define
privilege classes for the virtual machine. If cl is not coded, the default is G.
For example, if you want the user whose virtual machine userid is
DATABASE to be able to use commands with the privilege classes D, E,
L, and M, code the USER control statement as:

USER DATABASE pass star mstar DEL~ pri le ld cd es

Note: For information on coding other operands of the USER control
statement, refer to Planning Guide and Reference.

If your list of privilege classes will not fit on your USER control statement, do
the following:

a. Change the cl operand to an asterisk (*).

b. Immediately following the USER control statement, insert a CLASS
control statement. The format of the CLASS control statement is:

I CLASS I classes

where:

classes
specifies up to 32 privilege classes that can consist of any letters
from A - Z and any numbers from 1 - 6 with no intervening blanks
or commas. Duplicate characters are not allowed. The characters
may appear in any order.

For example, if you want to assign privilege classes A through Q to a
virtual machine that belongs to a user whose userid is SYSADM, code the
USER control statement and the CLASS control statement as follows:

42 VM/SP System Programmer's Guide

USER SYSADM pass star mstar * pri le ld cd es
CLASS ABCDEFGHIJKLMNOPQ

Note: For information on coding other operands of the USER control
statement, refer to VM/SP Planning Guide and Reference.

4. After you make all the desired changes to the directory, file the directory file.

5. To verify that the CMS file can be used as a directory file, issue the DIRECT
command with the EDIT option. (For the format of the DIRECT command,
refer to VM/SP Planning Guide and Reference.) If you made a syntax error,
an error message informs you of the error.

6. When you have verified that the directory file is correct, to replace the old
directory with the updated directory, issue the command:

DIRECT filename

Note: The virtual machine that issues the DIRECT command must have write
access to the volume that will contain the new directory. If you create a
directory that is to be written on the active VM/SP system residence volume,
your virtual machine's current directory entry must have write access to the
volume that contains the current VM/SP directory.

7. Once the directory is updated, directory changes for a virtual machine currently
logged on to the system do not take effect until the user logs off the system and
then logs back on.

8. If the new directory is written for a new system residence volume, to have the
new directory take effect, IPL the system. This causes the new system resident
volume to be loaded.

How to Change the Privilege Class of Certain Internal CP
Functions

Certain internal functions are preset and need the SYSFCN macro the change
them. You can use the SYSFCN macro to change the privilege classes of the
following internal CP functions:

Authorization to logon during CP initialization

• Authorization for intensive recording

• Authorization to issue Diagnostic Load/Write or Sense/Read commands

• Authorization to issue diagnostic reads to a non-dedicated control unit

• Authorization to issue the Buffer Unload command

• Authorization for IOCP Read

Chapter 8. CP Commands 43

• Authorization for IOCP Write

A default SYSFCN macro is supplied in the DMKSYS macro. If you want to
change some or all the privilege classes assigned to internal CP functions, you must
include a SYSFCN macro statement in DMKSYS that specifies the changes you
want to make. The macro format is:

[label] SYSFCN [PRIV= i ABCDEF ~.]
classes

[,OPER= l ~lasses ~]

[,CPRD= ~ ~~asses }
]

[,CPWT= l ~lasses }
]

[,SERV= ~ ~lasses ~]

[,DFLT= l~lasses }
]

where:

PRIV
specifies the classes authorized to issue X'42' CCW on a 37xx emulation
line that is not dedicated to the user. The default classes are A through F.

OPER
specifies the classes authorized to logon during initialization. The default
class is A.

CPRD
specifies the classes authorized to issue IOCP READ. The default classes
are C andE.

CPWT

SERV

DFLT

specifies the classes authorized to issue IOCP WRITE. The default class is
C.

specifies the classes authorized to issue Diagnostic Load/Write and
Sense/Read CCW commands. The default class is F.

specifies the default class or classes for a user who does not have a class
defined. The default class is G.

For an example of how our insurance company used the SYSFCN macro, refer
back to "Associating Privilege Classes with Commands and Users".

44 VM/SP System Programmer's Guide

-- ----_. __ ._----

('

(

(/

How to Add a Command to CP

Note: If your installation had added commands to CP in a release before Release
4, when you install Release 4 or following releases, you must recode any changes to
the command table in DMKCFC. You must recode the changes by replacing the
COMND macros with appropriate COMMD macros, as described below. You
must then reassemble DMKCFC before building your system.

You can add your own commands to your VM/SP system. To do so, follow the
steps described in this section:

1. Code the module to handle the command processing. Follow the CP coding
conventions outlined under" CP Coding Conventions."

2. Second, add an entry for the command in the CP DMKCFC module.
DMKCFC has two entry points: one for users who are logged on and another
for users that are not logged-on. If the command is for logged-on users, be
sure its entry is beyond the label COMNBEG 1. If the command has
subcommands, add entries for the subcommands in DMKCMD.

To place an entry for the command in the DMKCFC module, insert a line with the
following format:

[label] CoMMD CoMMAND=(command,abbrev)
,CLASS=classes
[, TYPE=t]
{,SUBCMD=sublabel }
{,EP=eplabel }
[, LAST=YES]

To place an entry for a subcommand in the DMKCMD module, insert a line with
the following format:

[label] CoMMD CoMMAND=(command,abbrev)
, TYPE=types
{,SUBCMD=sublabel}
{,EP=eplabel }
[, LAST=YES]

To place an alias entry in either module, insert a line with the following format:

[label] CoMMD COMMAND = (command,abbrev)
,ALIAS=cmdlabel
[, LAST=YES]

where:

label
used to reference command entry (for example, for an alias).

command
specifies the command or subcommand name. Null specifies no
subcommand validation. This operand can be 1 to 8 alphameric characters.

Chapter 8. CP Commands 45

abbrev
specifies the length of the shortest abbreviation allowed for this command.

CLASS=cIasses
specifies the installation-defined privilege classes for this command. Up to
32 classes are allowed, from A - Z and 1 - 6.

TYPE=t (in DMKCFC) .
is the command type designation used by OVERRIDE to differentiate
between commands with the same name, and to identify subcommands that
are valid for this version of the command. "t" must be a single character
(O,R,P,S,A,C, or G).

TYPE = types (in DMKCMD)
lists the functional types that can use this particular subroutine. An optional
plus (+) sign may be used to delimit mUltiple functional type codes.

ALIAS = cmdlabel
specifies the address of the command for which this command is an alias.

SUBCMD=sublabel
specifies the entry point label in DMKCMD that corresponds to the
subcommand.

EP=eplabel
specifies the entry point label to the command processing routine.

LAST=YES
delimits the command table or the subcommand list.

The procedure for a simple command entry (no subcommands) is:

1. Update (via XEDIT) DMKCFC to include a new COMMD entry for the
command.

COMMD COMMAND=(NEWCMD,3) ,CLASS=ABC123,EP=DMKNEWCM

2. Reassemble (VMFASM) DMKCFC. If the EXTERNAL SYMBOL
DICTIONARY (page 1 of the ASSEMBLER listing) shows DMKCFC has a
length greater than X' 1000', then you must move DMKCFC to the resident
portion of the load list (before DMKCPE) to avoid an abend.

3. Assemble (VMFASM) the module that contains the entry point named in the
COMMD macro (for example, DMKNEW).

4. Add your module to the load list before DMKCPE if it is a resident module, or
after DMKCPE if it is a pageable module.

&1 &2 &3 DMKNEW

5. Load (VMFLOAD) a new CP nucleus.

46 VM/SP System Programmer's Guide

(

Notes:

1. You cannot OVERRIDE this command because DMKOVR contains a table of
command names and DIAGNOSE codes for which an OVERRIDE statement is
valid.

2. If this command is listed in DMKCFC, it will appear with the COMMANDS
command.

Chapter 8. CP Commands 47

48 VM/SP System Programmer's Guide

f

Chapter 9. Interruption Handling

I/O Interrupts

Input/output interrupts from completed I/O operations initiate various completion
routines and the scheduling of further I/O requests. The I/O interrupt handling
routine also gathers device sense information.

Missing Interrupt Handler

An I/O operation, such as a minidisk operation or a paging operation, that does
not complete in a specified time period causes a missing interrupt condition. An
incomplete minidisk operation can lock out a virtual machine user or an incomplete
paging I/O operation can degrade the performance of the system. The missing
interrupt handler detects incomplete I/O conditions by monitoring I/O activity
and, in addition, it takes action to correct incomplete I/O conditions without
operator intervention. The missing interrupt handler, therefore, is designed to
improve the availability of the system by preventing user lockout and system
degradation.

The missing interrupt handler scans the real device blocks (RDEVBLOKs) at
specified time intervals. If the device is busy (RDEVBUZY flag is on) a bit
(RDEVMID) is set that indicates a possible missing interrupt condition. The first
level interrupt handler, DMKIOT, resets RDEVBUZY and RDEVMID when the
device causes an interrupt at the completion of an I/O operation. Therefore, if
RDEVMID is on at the end of the next time interval, a missing interrupt condition
exists.

The installation may use the default time interval for each distinct device category
or may specify a time value. For example, if the default time interval value of ten
minutes for tape devices is not appropriate for an installation's configuration, the
installation may change this value. See "Default Time Interval Values" and
"Changing the Time Interval" for a list of the default time interval values and how
you can change these values.

Chapter 9. Interruption Handling 49

Using the Missing Interrupt Handler

Devices Monitored

To use the Missing Interrupt Handier, DMKDID must be included in the load list
during system generation. MIH can be set on either by including it as an option in
the directory or by issuing the SET command. The default is MIH OFF. With
MIH on, when a missing interrupt is detected, CP simulates the interrupt. With
MIH off, when a missing interrupt is detected, message DMKDIDS46I is issued but
CP does not simulate the interrupt. If DMKDID is deleted from the load list during
system generation, support for the Missing Interrupt Handler is removed and no
messages are written to notify the operator of a missing interrupt.

If you want to change the interval time value, you must include the optional macro
SYSMIH in the system control file (DMKSYS). You must place this macro before
the SYSLOCS macro.

When a missing interrupt occurs, the control program attempts to correct the
condition and issues a message that either:

• The condition is cleared

- or-

• The condition is pending

This message warns the system operator or system programmer that a problem may
exist. The system operator or the system programmer can reset the hardware and
schedule maintenance for the device that caused the missing interrupt condition. If
the same device class caused frequent interruptions, the system programmer may
want to set a larger time interval for that particular device class.

The class G SET command can be used to turn MIH on and off. Use either

SET MIH ON or SET MIH OFF

To determine the status of MIH use

QUERY SET

The system responds either

MIH ON or MIH OFF

Each device group has an expected time interval during which an I/O operation
should be completed. This interval varies widely among devices. Therefore, the
missing interrupt handler provides a means to specify a time interval for the
following distinct categories of I/O devices:

• Count-key-data devices (CLASDASD) and FB-S12 devices (CLASFBA)

• Tape devices (CLASTAPE)

SO VM/SP System Programmer's Guide

(~

(

• Graphic devices (CLASGRAF) except TYP1053 and TYP328X

Unit record devices (CLASURI and CLASURO) except TYP3800 and
TYP3289E

• Miscellaneous devices (MISC) include: Mass storage system (MSS) devices
(specified at system generation as CLASSPEC TYP3851, and CLAS];)ASD
FEATURE=VIRTUAL or FEATURE=SYSVIRT), graphics devices
TYP1053 and TYP328X, and UR output devices TYP3800 and TYP3289E.

Note: The missing interrupt handler does not support terminal devices, remote
graphic devices, SNA devices, pass-through virtual machine (logical) devices, and
special class devices (with the exception of MSS).

Default Time Interval Values

Default time interval values are assembled in DMKSYS. The following table gives
the default time interval values for the devices monitored:

Device Class Default
Class Parameter Time Interval

CLASDASD or CLASFBA DASD 15 seconds

CLASGRAF GRAF 30 seconds

CLASTAPE TAPE 10 minutes

CLASURI/CLASURO UR 1 minute

MISCELLANEOUS MISC 12 minutes

An installation may want to change the default time intervals because of their
particular configuration. For example, an installation that generates a large number
of devices might want to set the time interval value to a larger number to prevent
frequent timer interruptions.

Changing the Time Interval

The system programmer or the system operator can change the time interval in the
following ways:

Regenerate the system and, using the SYSMIH macro, specify a time interval
value in the system control file (DMKSYS) for the specific device class to be
changed. Specify the time interval value in minutes and seconds:

SYSMIH GRAF=OO:15,UR=OO:OO,TAPE=05:00

This example changes the time interval for graphic devices from the default
value of thirty seconds to fifteen seconds. In this example, no further
monitoring takes place for unit record devices since the user specified a time
value of zero for that class. In addition, the example changes the time interval
value for tape devices from ten minutes to five minutes. This example does not
change the time interval value for DASD and MISC devices. If you do not

Chapter 9. Interruption Handling 51

specify a device class, or if you do not include the SYSMIH macro in
DMKSYS, the missing interrupt handler uses the default value for that class.

• To change the value specified in DMKSYS for a particular device class, issue
the class B CP command specifying the new time interval value for that class in
minutes and seconds:

SET MITIME GRAF 00:10

This example changes the time interval for graphic devices to ten seconds.
This change is in effect until the system is reinitialized, or until a class Buser
issues another SET MITIME command. If the user specifies a time value of
zero for a specific device class, no further monitoring takes place for that
device class.

Note: If you set the time interval for a device class below its default value, be
careful not to shorten the time interval too much. This may cause unnecessary
missing interruption handler processing for devices that are functioning
properly.

• To set all time values to zero and to prevent any monitoring for missing
interrupts for any devices, issue the class B CP command:

SET MITIME OFF

Monitoring for missing interrupts does not take place until the system is
reinitialized, or until the class B user issues another SET MITIME command.

Determining Time Interval Settings

The class B user can determine the current missing interrupt handler time intervals
by issuing the following CP command:

QUERY MITIME

The system issues:

• The time interval setting for each device group in minutes and seconds

• The response MITIME OFF

• An error message if the user specified an invalid parameter.

• The response that the missing interrupt handler is not available if DMKDID is
not in the load list during system generation.

52 VM/SP System Programmer's Guide

-~-----.--~~~~-

Diagnostic Aids

System Messages

Missing interrupt handler support provides aids so that the system programmer can
determine the frequency and status of interrupts and also know when he has made
an error in using the support. Diagnostic aids available when using the missing
interrupt handler include:

• System messages
• Macro notes
• VM/SP system's error recording area
• Trace table.

Messages inform the system operator when a missing interrupt occurs and indicate
if the condition has been cleared or if the interrupt is still pending. Other messages
indicate that the module DMKDID is not in the load list or that the user specified
an invalid parameter on the QUERY or SET MITIME command. See VM/SP
System Messages and Codes for a complete discussion of messages that the missing
interrupt handler issues.

The system programmer can use message information to increase the availability of
the system. If a particular device class causes frequent interrupts even if the system
clears the condition, the system programmer may want to change the time interval.
Changing the time interval prevents the overhead of frequent timer interrupts,
frequent trips through the detector routine, and rescheduling of timer request
queues. On the other hand, if the control program did not clear the condition, the
messages make the system programmer or system operator aware of the condition
and one of them can reset the hardware either physically or using CP commands.

Macro notes (MNOTES) inform the user that SYSMIH is not present in DMKSYS
or that the user specified an invalid time value in the SYSMIH macro. The system
uses the default interval time values and informs the user.

System's Error Recording Area

Trace Table

Whether or not CP succeeds in correcting a missing interrupt situation, it creates a
record of the event in the system's error recording area (LOGREC).

CP also traces the simulated interrupt and records it as trace table entry X' 19' .
Refer to Figure 76, "CP Trace Table Entries", for the format of the entry. The
system programmer uses the trace table to determine the events that preceded a CP
system failure.

Chapter 9. Interruption Handling 53

Program Interrupt

Program interrupts can occur in two states. If the processor is in supervisor state,
the interrupt indicates a system failure in the CP nucleus and causes the system to
abnormally terminate. If the processor is in problem state, a virtual machine is
executing. CP takes control to perform any required paging operations to satisfy
the exception, or to simulate the instruction. The fault is transparent to the virtual
machine execution. Any other program interrupt is a result of the virtual machine
processing and is reflected to the machine for handling.

Machine Check Interrupt

When a machine check occurs, the CP Recovery Management Support (RMS)
gains control to save data associated with the failure for the Field Engineer. RMS
analyzes the failure to determine the extent of damage.

Damage assessment results in one of the following actions being taken:

• System termination (CP disabled wait state)

• Attached processor disabled (system continues in uniprocessor mode)

• One processor of a multiprocessor configuration disabled (system continues in
uniprocessor mode)

• One or more failing channels disabled (system continues in same mode as at
time of the error)

• Selective virtual user termination

Selective virtual machine reset

• Refreshing of damaged information with no effect on system configuration

• Refreshing of damaged information with the defective storage page removed
from further system use

• Error recording oniy for certain soft machine checks.

The system operator is informed of all actions taken by the RMS routines. When a
machine check occurs during VM/SP startup (before the system is sufficiently
initialized to permit RMS to operate successfully), the processor goes into a
disabled wait state and places a completion code of X'OOB' in the leftmost bytes of
the current PSW.

54 VM/SP System Programmer's Guide

SVC Interrupt

When an SVC interrupt occurs, the SVC interrupt routine is entered. If the
machine is in problem mode, the type of interrupt (if it is other than an SVC 76 or
ADSTOP SVC) is reflected to the pseudo-supervisor (that is, the supervisor
operating in the user's virtual machine). Control is transferred to the appropriate
interrupt handler for ADSTOP SVCs and all SVC 76s.

If the machine is in supervisor mode, the SVC interrupt code is determined, and a
branch is taken to the appropriate SVC interrupt handler.

External Interrupt

If a timer interrupt occurs, CP processes it according to type. The interval timer
indicates time slice end for the running user. The clock comparator indicates that a
specified timer event occurred, such as midnight, scheduled shutdown, or user
event reached.

The external console interrupt invokes CP processing to switch from the 3210 or
3215 to an alternate operator's console.

A service signal is a class 24 external interrupt that is generated when either a
logical device or the Maintenance and Service Support Facility (MSSF) signals
completion of an operation initiated by a program (in the case of the logical device
DIAGNOSE X'7C') or CP, (in the case of the MSSFCALL DIAGNOSE X'80').

See the expanded descriptions of DIAGNOSE codes X'7C' and X'80' in "Part l.
Control Program (CP)". Also refer to IBM System/370 Principles of Operation,
GA22-7000, for a general description of external interrupts.

Synchronous Interrupts in an Attached Processor or
Multiprocessor System

Generally, when synchronous interrupts (such as program and SVC interrupts)
occur in an attached processor or multiprocessor system, the processing of the
interrupt can proceed without the global system lock for mainline, nonerror paths.
Otherwise, the global system lock is required. If the global system lock is needed
and it is already in use, the processing of the interrupt is deferred until the global
system lock is available. In this case, the interrupted processor attempts to run
another user.

Chapter 9. Interruption Handling 55

Real I/O Interrupts

In an attached processor configuration, only the main processor can receive real
I/O interrupts. To ensure this, the channel masks in control register 2 on the main
processor are initialized to ones to enable interruptions from any available channel.
On the attached processor, the channel masks in control register 2 are initialized to
zeroes. In a multiprocessor configuration, both processors can receive realI/a
interruptions. The channel masks in control register 2 on both processors are
initialized to ones to enable interruptions from any available channel.

56 VM/SP System Programmer's Guide

----~---

/ ---\

(

Chapter 10. Perfonnance Guidelines

General Information

The performance characteristics of an operating system, when it is run in a virtual
machine environment, are difficult to predict. Several factors make this result
unpredictable:

• The System/370 model used.

I · The characteristics of the operating system and its work level.

• The total number of virtual machines executing.

• The type of work being done by each virtual machine.

• The speed, capacity, and number of the paging devices.

• The order in which devices are selected for preferred paging and spooling.

• The amount of real storage available.

• The degree of channel and control unit contention, as well as arm contention,
affecting the paging device.

• The type and number of VM/SP performance options in use by one or more
virtual machines.

• The degree of MSS 3330 volume use.

The amount of fixed head paging storage (drum, 3340, 3344, 3350, 3380).

Performance of any virtual machine may be improved by the choice of hardware,
operating system, and VM/SP options. The topics discussed in this section
address:

1. The performance options available in VM/SP to improve the performance of a
particular virtual machine.

2. The system options and operational characteristics of operating systems
running in virtual machines that affect their execution in the virtual machine
environment.

Chapter to. Performance Guidelines 57

The performance of a specific virtual machine may never equal that of the same
operating system running standalone on the same System/370, but the total
throughput obtained in the virtual machine environment may equal or better that
obtained on a real machine.

When a function executing in a virtual machine, cannot be performed completely
by the hardware, the virtual machine's performance is degraded to some degree.
As the control program for the real machine, CP initially processes all real
interrupts. A virtual machine operating system's instructions are always executed
in problem state. Any privileged instruction issued by the virtual machine causes a
real privileged instruction exception interruption. The amount of work to be done
by CP to analyze and handle a virtual machine-initiated interrupt depends on the
type and complexity of the interrupt.

The simulation effort required of CP may be trivial, as for a supervisor call (SVC)
interrupt (which is generally reflected back to the virtual machine), or may be more
complex, like a Start I/O (SIO) interrupt, which starts extensive CP processing.

When you plan the virtual machine environment, consider the number and type of
privileged instructions to be executed by the virtual machines. Reducing the
number of privileged instructions issued by the virtual machine's operating system
reduces the amount of extra work CP must do to support the machine.

Before deciding which performance options to apply to your system, you should
monitor the current performance of your system to decide which options would
most likely give the system a performance gain and where performance bottlenecks
are occurring. Refer to "Performance Observation and Analysis" for guidelines
and functions you can use to observe the present system performance.

Reducing the Number of Virtual Machine SIOs Handled by CP

Handling of SIOs for virtual machines can be one of the most significant causes of
reduced performance in virtual machines. To support I/O processing in a virtual
machine, CP must translate all virtual machine channel command word (CCW)
sequences to refer to real storage and real devices and, for minidisks, real cylinders.
When a virtual machine issues an SIO, CP must:

1. Intercept the virtual machine SIO interrupt.

2. Allocate real storage space to hold the real CCW list to be created.

3. Translate the virtual data addresses to real data addresses.

4. Translate the virtual device addresses referred to in the virtual CCWs to real
device addresses.

5. Page into real storage and lock, for the duration of the I/O operation, all
virtual storage pages required to support the I/O operation.

6. Generate a new CCW sequence building a Channel Indirect Data Address list
if the real storage locations cross page boundaries.

58 VM/SP System Programmer's Guide

c· •• ·
..

7. If the real device is a 3330V, append an MSS cylinder fault prefix to the CCW
prefix to prevent the channel from doing channel command retry.

8. Schedule the I/O request.

9. Present the SIO condition code to the virtual machine.

10. Recognize an MSS cylinder fault, queue the I/O request, and reschedule the
request when the subsequent interruption is received (indicating staging is
complete).

11. Intercept, retranslate, and present the channel end and device end interrupts to
the appropriate virtual machine, where they must then be processed by the
virtual machine operating system.

The number of SIO operations required by a virtual machine can be significantly
reduced by:

• Using large blocking factors (up to 4096 bytes) for user data sets to reduce the
total number of SIOs needed.

• Using preallocated data sets.

• Using virtual machine operating system options (such as chained scheduling in
OS) that reduce the number of SIO instructions.

• Substituting a faster resource (virtual storage) for I/O operations, by building
small temporary data sets in virtual storage rather than using an 1/ a device.

Frequently, performance is improved when CP paging is substituted for virtual
machine I/O operations. To improve the performance of an operating system,
such as as, specify frequently-used as functions (transient subroutines, ISAM
indexes, and so forth) as resident in second level storage if possible. In this way,
paging I/O is substituted for virtual machine-initiated I/O. Thus, CP only needs to
place the page that contains the desired routine or data into real storage.

CP performance options you can use to reduce the CP overhead associated with
virtual machine I/O instructions or other privileged instructions used by the virtual
machine's I/O Supervisor:

1. The virtual = real option in VM/SP removes the need for CP to translate
storage references and to do paging before each I/O operation for a specific
virtual machine.

2. The virtual machine assist feature reduces the real supervisor state time used by
VM/SP. For a detailed description of the feature, see "Virtual Machine Assist
Feature" later in this section. For a list of processors on which the feature is
available, see the VM/SP Planning Guide and Reference.

3. VM/370 Extended Control-Program Support (ECPS) further reduces the real
supervisor state time used by VM/SP. For a detailed description of ECPS, see
"VM/370 Extended Control-Program Support (ECPS)" later in this section .

Chapter 10. Performance Guidelines 5 9

For a list of processors on which ECPS is available, see the VM / SP Planning
Guide and Reference.

Assignment and use of these options are discussed in "VM/SP Performance
Options".

Reducing Paging Activity

When virtual machines refer to virtual storage addresses not currently in real
storage, they cause a paging exception and associated CP paging activity.

The addressing characteristics of programs executing in virtual storage significantly
affect the number of page exceptions for that virtual machine. Routines with
widely scattered storage references tend to increase the paging load of a particular
virtual machine. When possible, place modules of code that depend on each other
in the same page. Place reference tables, constants, and literals near the routines
that use them. Do not place infrequently used exception or error routines in main
routines, put them elsewhere.

When an available page of virtual storage contains only reenterable code, paging
activity can be reduced, since the page, although referred to, is never changed, and
thus does not cause a write operation to the paging device. The first copy of that
page is written on the paging device when that frame is needed for some other
more active page. Only inactive pages that have changed must be paged out.

Virtual machines that reduce their paging activity by controlling their use of
addressable space improve resource management for that virtual machine, the
VM/SP system, and all other virtual machines. The total paging load handled by
CP is reduced, and more time is available for productive virtual machine use.

Using the SYSCOR Macro to Control Free Storage Allocation

The more dynamic paging storage available, the less paging activity occurs. To
gain additional dynamic paging storage, control the amount of free storage
allocated at VM/SP initialization time. When you generate the system, use the
FREE operand of the SYSCOR macro statement to specify the number of free
storage pages to be allocated at system load time.

At IPL time, if the amount of storage that these pages represent is greater than 25
percent of the VM/SP storage size (not including the V=R area, if any), a default
number of pages is used. The default value is 3 pages for the first 256K bytes of
storage plus 1 page for each additional64K bytes (not including the V=R size, if
any).

The SYSCOR macro definition can be found in VM / SP Planning Guide and
Reference.

60 VM/SP System Programmer's Guide

rr--"
V

(' I Paging Perfonnance Options

(

To reduce the paging requirements of virtual machines, CP provides locked pages,
reserved page frames, and a virtual=real area. Generally, these facilities require
some dedication of real storage to the chosen virtual machine and, therefore,
improve its performance at the expense of other virtual machines.

Locking Pages into Real Storage

To permanently fix or lock specific pages of virtual storage into real storage, use
the LOCK command (privilege class A). Inbso doing, all paging I/O for these page
frames is eliminated.

Since the LOCK command reduces total real storage resources (real page frames)
available for other virtual machines, lock only frequently used pages into real
storage. Since page zero (the first 4096 bytes) of a virtual machine storage is
referred to and changed frequently (for example, whenever a virtual machine
interrupt occurs or when a CSW is stored), consider locking page zero of a
particular virtual machine first. Also consider locking virtual machine interrupt
handler pages.

Other pages to be locked depend upon the work being done by the particular
virtual machine and its use of virtual storage.

The normal CP paging mechanism selects unreferenced page frames in real storage
for replacement by active pages. Page frames belonging to inactive virtual
machines are normally all selected eventually and paged out if the real storage
frames are needed to support active virtual machine pages.

When virtual machine activity is started on an infrequent or irregular basis, such as
from a remote terminal in a teleprocessing inquiry system, some or all of its virtual
storage may have been paged out before the time the virtual machine begins
processing. Some pages then have to be paged in so that the virtual machine can
respond to the teleprocessing request. This paging activity might increase the time
to respond to the request compared with running the same teleprocessing program
on a real machine. Further response time is variable, depending upon the number
of paging operations that must occur. Locking specific pages of the virtual
machine's program into real storage may ease this problem, but you may not be
able to identify which specific pages are required.

Once a page is locked, it remains locked until either the user logs off or the system
operator (privilege class A) issues the UNLOCK command for that page. If the
"locked pages" option is in effect and the user loads his system again (via IPL) or
loads another system, the virtual machine's locked pages are unlocked by the
system. When a user issues the SYSTEM CLEAR command, virtual machine
storage is cleared, and the user's locked pages are unlocked.

Note: In a system generated for attached processor or multiprocessor operation,
no shared pages are locked. If the system operator attempts to lock a shared page
or an address range containing one or more shared pages, he receives the message:

DMKCPV1651 PAGE (hexloc) NOT LOCKED, SHARED PAGE

Chapter 10. Performance Guidelines 61

for each of the shared pages within the range.

Reserving Page Frames

The reserved page frames option is a more flexible approach than locked pages. To
provide a specified virtual machine with an essentially private set of real page
frames, use the CP SET RESERVE command. If the program code or data
required to satisfy the request was in real storage at the time the virtual machine
became inactive, paging is not required for the virtual machine to respond.

This option is usually more efficient than locked pages since the pages with the
most references at that moment remain in real storage, as determined automatically
by the system. Although multiple virtual machines may use the LOCK option, only
one virtual machine at a time may have the reserved page frames option active.
Assignment of this option is discussed further in "VM/SP Performance Options".

The reserved page frames option provides performance that is generally consistent
from run to run with regard to paging activity. This can be especially valuable for
production-oriented virtual machines with critical schedules, or those running
teleprocessing applications where response times must be kept as short as possible.
The SET RESERVE command can be used to increase the efficiency of certain
noninteractive virtual machines such as system control programs and special service
machines. You can use the SET RESERVE command to reserve page frames for
multiple virtual machines.

To specify the maximum number of reserved page frames, use the class A
command:

SET RESERVE userid nnnn

where nnnn is the maximum number required (1-4096). The number of frames
held is nnnn or the working set size whichever is smaller. You can specify SET
RESERVE for multiple virtual machines at anyone time.

Note: nnnn should never approach the total available pages, since CP overhead is
substantially increased in this situation, and excessive paging activity is likely to
occur in other virtual machines.

Eliminating CP Paging for a Selected Virtual Machine

To eliminate CP paging for the selected virtual machine, use the VM/SP
virtual=real option. All pages of virtual machine storage, except page zero, are
locked in the real storage locations they would use on a real computer. CP controls
real page zero, but the remainder of the CP nucleus is relocated and placed beyond
the virtual=real machine in real storage.

Since the entire address space required by the virtual machine is locked, these page
frames are not available for use by other virtual machines except when the
virtual = real area is unlocked. This option often increases the paging activity for
other virtual machine users, and sometimes for VM/SP. (Paging activity on the
system may increase substantially, since all other virtual machine storage
requirements must be managed with fewer remaining real page frames.)

62 VM/SP System Programmer's Guide

(

(

The virtual=real option may be desirable or mandatory in certain situations. The
virtual=real option is desirable when running a virtual machine operating system
(like DOS/VS or OS/VS) that does paging of its own because the possibility of
double paging is eliminated. You must use the option to allow programs that
execute self-modifying channel programs or have a certain degree of hardware
timing dependencies to run under VM/SP.

For this option, the VM/SP nucleus is reorganized to provide an area in real
storage large enough to contain the entire virtual=real machine. In the selected
virtual machine, each page from page 1 to the end is in its true real storage
location; only its page zero is relocated. The virtual machine is still run in dynamic
address translation mode, but since the virtual page address is the same as the real
page address, no CCW translation is required.

For information about generating a virtual=real system, see the VM / SP
Installation Guide.

Figure 5 shows an example of a real storage layout with the virtual=real option.
The V=R area is 128K and real storage is 512K.

Virtual Storage
Addresses

Absolute Page 0 (Module DMKPSA)
4K~------------------------------------~

/
/

Virtual ruga I

Virtual=Real Area

Size = 128K bytes
(Minimum size is 32K bytes.)

/
/

128K~-------------------------------------1

OK Virtual Pag(:! 0
4K~--------------------------------------

132K
/ Remuinder of cr Resident Nucleus /
/ /

RanI Storage
Addresses

OK

4K

12BK

132K (D~'KSLC)

11-----------------------11 End of CP Huc I eus
(Dr'1KCPE)

/
/

Dynamic Paging Area
and

Free Storilgo

PSA for Attached or non-IPL Processor

PSA for MAIN or IPl Processor

Figure 5. Storage Layout in a Virtual = Real Machine

/
/

<----.
< ____ ~r___ DMKPSA

512K (End of real
storaga)

Consider the following when planning to use the virtual=real option because of the
effect on overall system operation:

1. The area of contiguous storage built for the virtual=real machine must be large
enough to contain the entire addressing space of the largest virtual=real
machine. During system generation when the virtual=real option is selected,
define the virtual=real storage size for the VM/SP system.

Chapter 10. Performance Guidelines 63

2. Only a virtual machine with the virtual = real option specified in its directory
entry can use the storage reserved for a virtual=real machine. This storage is
not available to other users for paging space, nor for VM/SP use until released
from virtual=real status by a system operator via the CP UNLOCK command.
Once this storage is released, VM/SP must be loaded again before the
virtual=real option can become active again.

3. The virtual machine with the virtual=real option operates in the preallocated
storage area with normal CCW translation in effect until the CP SET
NOTRANS ON command is issued. At that time, with several exceptions, all
subsequent I/O operations are performed from the virtual CCWs in the
virtual=real space without translation. The exceptions occur when:

• SIO tracing is active
• The first CCW is not in the V =R region
• I/O operation is a sense command
• I/O device is a dial-up terminal
• I/O is for a device that is not dedicated (spooled unit record console

virtual CTCA or minidisks that are less than a full volume)
• I/O device has an alternate path
• Device status is pending.

Anyone of the above conditions forces CCW translation. Since minidisks are
nondedicated devices, they may be used by programs running in the V =R
region even though CP SET NOTRANS ON is in effect.

4. If the virtual=real machine performs a virtual reset or !PL, the normal CCW
translation goes into effect until the CP SET NOTRANS ON command is
again issued. This permits simulation of an IPL sequence by CPo Only the
virtual=real virtual machine can issue the command. A message is issued if
normal translation mode is entered.

5. A virtual=real machine must not IPL a named or shared system. It must IPL
by device address.

6. When NOTRANS is in effect for a virtual=real machine, no significant SEEK
data is collected by MONITOR operations for the V =R machine.

7. If you define a V=R area on a 3081 processor, the reliability and availability
of the V =R machine can be improved if the V =R machine issues the TEST
BLOCK instruction to yalidate storage in the V =-R area. t~ote that the uiily
two SCPs that issue TEST BLOCK are MVS/SP and VM/SP. The hardware
system area (HSA) on a 3081 processor can reside in the middle of the V =R
area; these two control programs mark the HSA as invalid and continue
validating storage. Any other system control program, such as OS/VS,
validates storage via the MYCL instruction. When OS/VS encounters the
beginning of the HSA, it assumes that it has reached the end of storage.
Therefore, such a control program running in the V=R area of VM/SP on a
3081 processor may not have access to the full V =R area.

8. If your system runs in single processor mode on a 3081 processor, the system
operator must issue a VARY OFF PROCESSOR nn VLOG command.

64 VM/SP System Programmer's Guide

-----"-------"------" " "-"-"" -"---- ---

(

(/

9. A V=R machine running in extended control mode on a 3081 processor can
issue a MSSFCALL (DIAGNOSE X'80') for VARY PROCESSOR
commands, MSSF SCPINFO commands, and Input/Output Configuration
Program (IOCP) commands. MSSF processes these commands.

Managing Page Migration

To keep 12% of the preferred paging area available, CP migrates inactive pages
from preferred to nonpreferred paging areas. The preferred paging area includes a
fixed-head area and a moveable-head area. The fixed-head paging area is paging
space on a drum and/or space under the fixed heads of a DASD volume that has
the fixed head feature installed. The moveable-head paging area is paging space on
a DASD volume that is accessed by a moveable arm. Normally, CP dynamically
invokes page migration, based on calculated load levels, once every ten minutes.

Inactive pages in the fixed-head preferred paging area are migrated every time CP
invokes migration. For pages in the moveable-head preferred paging area, you can
decide at what point inactive pages are selected for migration. Use the SET SRM
MHFULL command to set moveable-head page migration limits.

If a percentage for MHFULL has been specified, CP migrates pages from
moveable-head preferred paging areas only when that percentage is reached and
ten minutes has elapsed, rather than whenever fixed-head areas are full. Thus,
migration from moveable-head preferred paging areas and fixed-head preferred
paging areas can take place separately.

In addition, you can use the MIGRATE command to invoke page and swap table
migration immediately. Page migration can also be invoked only for a specific
virtual machine. The format of the MIGRATE command is described in the
VM/SP Operator's Guide.

Displaying. Changing. or Setting System Resource Management Variables

To display internal system activity counters or parameters, use the QUERY SRM
command. To set or change internal system activity counters or parameters, use
the SET SRM command. Formats for the QUERY SRM and SET SRM commands
are contained in the VM/SP Operator's Guide.

Use the class A or class E QUERY SRM command to display the following
information:

•
•
•
•
•
•
•
•
•

Current number of pageable pages
Size of the dispatching time slice
Setting of the maximum working set estimate
Maximum drum page allocation limit
Current page migration counters
Unused segment elapsed time as criteria for page migration
Current PCI flag setting mode for 2305 page requests
Maximum page bias value
Current interactive shift bias value
Moveable head page migration limit.

Chapter 10. Performance Guidelines 65

Use the class E SET SRM command to set some of the system variables that can
affect the values displayed by the QUERY SRM command.

Displaying and Setting Paging Variables

The paging variable is used in the working set size algorithm. The current paging
load is constantly compared with the paging variable. CP adjusts the working set
size estimates based on how the actual load compares with the paging load variable.

Use the QUERY PAGING command to display the paging variable used in the
working set size estimate control algorithm. Information on the paging rate per
second is available as a response to the INDICATE LOAD command.

Use the SET PAGING command to change the paging variable used in the working
set size estimate.

Information about the formats of the QUERY PAGING and SET PAGING
commands is contained in the VM/SP Operator's Guide.

VMjSP Perfonnance Options

VM/SP provides a number of options you may use to improve the performance of

()

virtual machines and VM/SP. Several options improve the performance of i-'
installation specified virtual machines; other options improve the performance of all
virtual machines and VM/SP. The options described in the following discussion
are:

•
•
•
•
•
•
•
•
•
•

Favored execution
Virtual machine priority
Affinity
Multiple shadow table support
Shadow table bypass
Single processor mode
Dynamic SCP transition to or from native mode
Queue drop elimination
Virtual machine assist
Extended Control-Program Support
"'nnn __ 1"-~ __ ,,_." ,.... .. ___ .. ,.... .~. TT·, •

.)voo IV.lUHl:sy:ntaIl \.Ali:1Illltli ~VIIlIIlUIll~i:1LlUIl UIIlL :suppun

MVS extensions support.

When you specify a performance option, you may be improving the performance of
one virtual machine at the expense of VM/SP and other virtual machines. For
example, after an operator specifies favored execution for a virtual machine, that
virtual machine receives more processor time than other virtual machines.
Therefore, before specifying any performance option, identify the option's
performance trade-offs and assess their impact on system performance. (See
"Performance Observation and Analysis".)

The favored execution option and virtual machine priority option change the
normal scheduler algorithm. The virtual machine priority option tends to take

66 VM/SP System Programmer's Guide

,(- .".

o

('

(

(/

precedence over the favored execution option even when you specify a percentage.
For example, suppose a user with the required privilege class issues a SET
FAVORED command for USERIDA. If USERIDA was assigned a lower priority
than USERIDB, USERIDA may get a smaller percentage of processor time than
was specified with the favored option.

Forcing the System to Devote More Processor Resources to a Virtual Machine

To change the normal CP deadline priority calculations in the fair share scheduler
to force the system to devote more of its processor resources to a given virtual
machine, use the favored execution options. The options are:

• The basic favored execution option
• The favored execution percentage option.

To specify that a virtual machine is to remain in the run list at all times, unless it
becomes nonexecutable, use the basic favored execution option. When the virtual
machine is executable, it is placed in the run list at its normal priority position.
However, any active virtual machine represents either an explicit or implicit
commitment of main storage. You can specify an explicit storage commitment by
either the virtual = real option or the reserved page frames option. An implicit
commitment exists if neither of these options is specified, and the scheduler
recomputes the virtual machine's projected work set at what it would normally have
been at queue-drop time. You can set multiple virtual machines for the basic
favored execution option. However, if their combined main storage requirements
exceed the system's capacity, performance can suffer since the system can do little
useful work because of excessive paging.

If the favored task is highly compute-bound and must compete for the processor
with many other tasks of the same type, you should define how much time the
favored task should get. In this case, you can use the favored execution percentage
option. This option specifies that the selected virtual machine, besides remaining in
queue, is requesting a specified minimum percentage (from 1 to 100 percent) of the
total processor time, if it can use it. If a virtual machine requests 100 percent of
the processor time, CP keeps that virtual machine at the top of the run list. This
ensures that the virtual machine always has first priority when CP dispatches a
virtual machine to the processor. To select the favored execution option, specify
the FAVORED operand on the class A SET command. The description of the
SET command is in the VM/SP Operator's Guide. After the option is invoked,
VM/SP provides processor time for the selected virtual machine as follows:

1. The in-queue time slice is multiplied by the specified percentage to arrive at the
virtual machine's requested processor time.

2. The scheduler tries to place the virtual machine, when it is executable, at the
top of the run list until it has obtained its requested processor time.

I 3.
If the virtual machine obtains its requested processor time before the end of its
in-queue time slice, it is placed in the run list according to its calculated
dispatching priority.

4. In either case (2 or 3), at the end of the in-queue time slice the requested
percentage is recomputed as in step 1 and the process is repeated.

Chapter 10. Performance Guidelines 67

If a percentage is not specified, a virtual machine with the favored execution option
active is kept in the run list except under the following conditions:

• Entering CP console function mode
• Loading a disabled PSW
• Loading an enabled PSW with no active 1/ 0 in process
• Logging on or off.

When the virtual machine becomes executable again, it is put back on the run list in
Q 1. If dropped from Q 1, the virtual machine is placed directly in the Q2 dispatch
list. If you specified the percentage option of the SET FAVORED command, the
deadline priority is calculated at queue drop time by:

current time-of-day + length of allowed processor in-queue time slice
favored percentage

For example, if the processor in-queue time slice is 1 second, and the specified
percentage is 10 percent, then 10 seconds are added to the current time-of-day.
The virtual machine should receive one processor time slice (1 second) once every
10 seconds.

Note, however, that these options can affect response times of other virtual
machines. To provide a virtual machine with both options, basic and percentage,
issue both forms of the command for that virtual machine. You can use the
percentage form of the SET FAVORED command to specify any number of
logged-on virtual machines.

Although the SET FAVORED command prevents specifying more than 100% for
a particular virtual machine, nothing prevents you from allocating more than 100%
to several virtual machines. Where more than 100% has been allocated, the
favored virtual machines compete for the available resources on a pro-rata basis.
An individual virtual machine's allocation is roughly proportional to the percentage
allocated to it, divided by the total percentage allocated to all virtual machines.
The effect of allocating more than 100% of the system on interactive (Ql)
responses is unpredictable.

Note: The percentage of the processor time actually received by the favored user
normally remains close to the percentage specified in the command. However, it is
not an absolute value, and varies depending on the total load and type of load on

bound (that is, are not queue dropped before the end of their in-queue time slice),
the favored user may not receive its requested percentage of the total processor
time.

Setting Virtual Machine Priority

The VM/SP operator can assign specific priority values to different virtual
machines. A virtual machine with higher priority is allocated a larger share of the
system resources than a virtual machine with lower priority. To assign sp,ecific
priority values to different virtual machines, use the following class A command:

SET PRIORITY userid nn

68 VM/SP System Programmer's Guide

C'" . '

",j

(

where userid is the user's identification and nn is an integer value from 1 to 99. nn
affects the user's dispatching priority with respect to other users in the system. The
priority value (nn) is considered when the deadline priority is calculated. The
deadline priority is the basis on which all virtual machines in the system are ordered
on both the eligible list and the run list. The deadline priority calculation assumes
that the average or normal (default) user priority is 64.

Selecting Attached Processor or Multiprocessor Affinity for a Program

To allow virtual machines that operate on attached processor or multiprocessor
systems to select the processor of their choice for program execution, use the
affinity option. To select the affinity option, use the directory OPTION statement,
or specify the AFFINITY operand on the class A or G SET command. The
directory OPTION statement is described in the VM / SP Planning Guide and
Reference. The class A SET command is described in the VM/SP Operator's Guide
and the class G SET command is described in the VM / SP CP Command Reference
for General Users.

The affinity setting of a virtual machine implies a preference of operation to either
(or neither) processor. Affinity of operation for a virtual machine means the
program of that virtual machine is executed on the selected or named processor. It
does not imply that supervisory functions and CP housekeeping functions
associated with that virtual machine are handled by the same processor.

In attached processor systems, all real I/O operations and associated interrupts are
handled by the main processor. Virtual I/O started on the attached processor that
is mapped to real devices must transfer control to the main processor for real I/O
execution. Therefore, your system can benefit in a virtual machine "mix" if you
relegate those virtual machines that have a high I/O-to-compute ratio to the main
processor, and those virtual machines that have a high compute-to-I/O ratio to the
attached processor. Weigh such decisions carefully as every virtual machine is
contending with other virtual machines for system resources.

To improve a virtual machine's performance on a multiprocessor where the path(s)
to a user's primary minidisks are from one processor only, set the user's affinity to
that processor.

More importantly, use of the affinity setting in applications where a virtual machine
program requires special hardware features available on one processor and not the
other. Such features could be a performance enhancement such as virtual machine
assist (described later) or a special RPQ required for a particular program's
execution.

Virtual Relocation and Shadow Table

CP allows the virtual machine to use the DAT (dynamic address translation)
feature of the real System/370. Programming simulation and hardware features
are combined to allow the virtual machine to use the available features in the real
hardware (2K or 4K pages, 64K segments).

For clarification, some definitions of terms follow:

Chapter 10. Performance Guidelines 69

First-level storage
The physical storage of the real processor, in which CP resides.

Second-level storage
the virtual storage available to any virtual machine. This storage is
maintained by CP.

Third-level storage
The virtual storage space defined by the system operating in
second-level.

Page and segment tables
Logical mapping between first-level and second-level storage.

Virtual page and segment tables
Logical mapping between second-level and third-level storage.

Shadow page and segment tables
Logical mapping between first-level storage and third-level storage.

A standard, nonrelocating virtual machine is provided with a single control register,
control register 0, that can be used for:

• Extended masking of external interruptions

• Special interruption traps for SSM

• Enabling of virtual block multiplexing.

A virtual machine that is allowed to use the extended control feature of
System/370 is provided with a full complement of 16 control registers, allowing
virtual monitor calls, PER, extended channel masking, and dynamic address
translation.

An extension to the normal virtual machine VMBLOK is built in when an extended
control virtual machine logs on to CPo This ECBLOK contains the 16 virtual
control registers, two shadow control registers, and several words of information
for maintenance of the shadow control tables, virtual processor timer, virtual TOD
clock comparator, and virtual PER event data.

''1"11 _________ ",- ___ ...J_...1 ____ _, __ ! ___ 1 _____ 1.! ___ !_ I!!. __ ..I. __ .l.! ___ !L ,. ____ .,._ .t..1. ____ , ___ _

n 110;;11 ",11 o;;A~o;;l1Uo;;U-,",UUUUl VIHU",1 111",,",UIUo;; 1>S lU>S~ "',",UVO;;, U u"'>s UIUY UIC lC"'1 V"'!;C

and segment tables provided by CP and operates entirely in second-level storage.
CP determines when the virtual machine enters or leaves extended control or
translate mode. CP also determines any changes in the virtual machine's operating
mode. The virtual machine can load or store any control register, enter or leave
extended control mode, take interruptions, and so forth without invoking the
address translation feature.

If the virtual machine, already in extended control mode, turns on the translate bit
in the EC mode PSW, CP examines the virtual control registers and builds the
required shadow tables. (Shadow tables are required because the real DAT
hardware can only map first-level storage.) CP determines whether control
registers 0 and 1 contain valid information for use in constructing the shadow

70 VM/SP System Programmer's Guide

(~

-- ----_ .. _----------

tables. Control register 0 specifies the size of the page and segment the virtual
machine is using in the virtual page and segment tables. The shadow tables
constructed are always in the same format as the virtual tables.

This shadow segment table is constructed in first-level storage and initialized to
indicate that all segments are unavailable. CP also constructs the shadow control
registers 0 and 1. Shadow control register 0 contains the external interruption
mask bits used by CP, mixed with the hardware controls and enabling bits from
virtual control register o. Shadow control register 1 contains the segment table
origin address of the shadow segment table.

When the virtual machine is operating in virtual translate mode, CP loads the
shadow control registers into the real control registers and dispatches the virtual
machine. The immediate result of trying to execute an instruction is a segment
exception. CP examines the virtual segment table in second-level storage. If the
virtual segment is marked available, CP:

1. Allocates a segment of the shadow page table in the format specified by virtual
control register o.

2. Sets the page table entries to indicate that the page is not in storage.

3. Marks the segment available in the shadow segment table.

4. Dispatches the virtual machine again.

The immediate result is an interruption, which is a paging exception and references
the virtual page table in second-level storage to determine whether the virtual page
is available. If the page is not available, the paging interruption is reflected to the
virtual machine. However, if the virtual page is marked in storage, the virtual page
table entry determines which page of second-level storage is being referenced by
the third-level storage address provided. CP next determines whether that page of
second-level storage is resident in first-level storage at that time. If so, the
appropriate entry in the shadow page table is filled in and marked in storage. If
not, the required page is brought into the first-level storage and the shadow table
filled in as above.

As the virtual machine continues execution, more shadow tables are filled in or
allocated as the third-level storage locations are referenced. Whenever a new
segment is referenced, another segment of shadow page tables is allocated.
Whenever a new page is referenced, the appropriate shadow table entry is
validated. No changes are made in the shadow tables if the virtual machine leaves
translate mode unless it also leaves extended control mode. Dropping out of EC
mode is the signal for CP to release all shadow page and segment tables and the
copy of the virtual segment table.

Some situations require invalidating the shadow tables constructed by CP or even
releasing and allocating them. Whenever CP pages out a page that belongs to a
virtual relocating machine, it selectively invalidates the shadow page tables. If the
stolen page is below the high-water mark, the shadow page table entry for the
stolen page is invalidated. (The high-water mark is the highest contiguous address,
starting from location zero, where the virtual system's real address equals the
virtual system's virtual address.) If the stolen page is above the high-water mark

Chapter 10. Performance Guidelines 71

and virtual machine assist is on, all of the shadow page tables above the high-water
mark are invalidated when the virtual machine is about to be dispatched. The
shadow tables are scanned to selectively invalidate shadow page table entries that
map to the real page being stolen.

Reducing Purges When the Virtual Machine Dispatches New Address Space

To reduce the number of purges when the virtual machine dispatches a new address
space (changes control register (CRl) values), VM/SP maintains a queue of
segment table origins (STO) and associated shadow tables for the virtual machine.

To specify multiple shadow table support, use the SET STMUL TI command. This
command adds the segment table origin control block (STOBLOK) pointed to by
the ECBLOK to the STO queue. The STOBLOK contains the the shadow
segment table, information pertaining to it, and the virtual CRI value. It also
provides forward and backward queue pointers to the next STOBLOK on the
queue. The first STOBLOK on the queue contains the shadow STO to be loaded
into CRI when the virtual machine is dispatched in translation mode. CP
maintains the queue of STOBLOKs in the following manner:

1. If a virtual machine loads a new CRI value, CP searches the queue of
STOBLOKs for the virtual CRI value.

2. If CP finds the proper STO, it places that STOBLOK first on the queue.

3. If CP does not find proper STO, it checks the maximum STO count.

a. If the number of STOBLOKs equals the maximum STO count, CP steals
the last STOBLOK, purges the shadow tables, and initializes the
STOBLOK. The STOBLOK is reused by being chained first on the queue
with the new virtual CRI value.

b. If the number of STOBLOKs is less than the maximum STO count, CP
obtains free storage from VM/SP, and initializes the free storage area as
the STOBLOK and chains it first on the queue.

Multiple shadow table support is controlled by the SET STMULTI command. The
default minimum number of shadow tables is 3 and the maximum is 6 per virtual
machine.

Eliminating and Reestablishing Shadow Table Bypass

Shadow table bypass, invoked by the SET STBYP ASS command, allows CP to
eliminate the shadow tables for an operating system running in the V =R area.
When CP runs a V=R virtual machine, the shadow table for the V=R machine is
identical to the virtual system's own page and segment tables, except for page zero.
CP relocates the virtual machine's page zero (via the shadow table) to the highest
real address within the V=R area. When STBYPASS is turned on, CP modifies the
virtual operating system's page table to relocate virtual page zero to the highest real
address. It can then dispatch the virtual machine with control register 1 pointing to
the virtual page and segment tables.

72 VM/SP System Programmer's Guide

c:

To eliminate and reestablish shadow table bypass, use the SET STBYP ASS
command.

Note: If virtual machine assist is enabled on the system, the virtual machine must
have the STFIRST directory option to issue the SET STBYPASS nnM/nnnnK
command.

For the V= V User: This technique is based on several characteristics of VS
systems:

1. VS systems have a large area of addressing space starting with location zero
where the virtual address is equal to the real address.

2. This addressing space is common to each segment table when multiple segment
tables are used (MVS or SVS address space).

3. The VS system never pages within this fixed area.

Thus, you can establish an area starting at location zero where the second-level
address equals the third-level address or virtual-virtual=virtual-real (VV=VR). A
second-level address is the virtual address specified by the operating system
operating in a first-level virtual machine; a third-level address is the address
specified by a program running under control of the virtual machine guest. You
can then establish the highest VV = VR address for a VS system. Because the
second-level address is the same as the third-level address, a reverse translation
allows the shadow tables to be indirectly indexed. Then, whenever VM/SP steals a
page from the VV = VR area, it invalidates the shadow page table entry and
executes a real PTLB (purge-translation-Iookaside buffer) before redispatching the
VS system's virtual machine.

In addition, whenever a shadow table is purged because a page frame is stolen from
above the highest VV = VR address or the virtual machine executed a PTLB or
LCTL, the invalidation starts above the highest VV = VR address. Thus, purge and
revalidation time is reduced.

For the V=R User: You can use a V=R shadow table bypass technique to
eliminate both the shadow tables and the overhead associated with maintaining
them. This can be done by VM/SP changing the virtual operating system's page
table to relocate virtual page zero to the highest real address in the V =R area. The
virtual machine can then be dispatched pointing to its own page and segment
tables.

Notes:

\
1. With MVS single processor mode enhancement support, absolute page zero is

made available to the MVS guest when single processor mode is set on.

2. If the MVS guest in single processor mode issues the SET STBYPASS VR
command, CP issues an invalid option error.

Chapter 10. Performance Guidelines 73

Eliminating Queue Drop Overhead for a Virtual Machine

VM/SP tries to optimize system throughput by monitoring the execution status of
virtual machines. When a virtual machine becomes idle, VM/SP drops it from the
run list. The virtual machine's page and segment tables are scanned, and resident
pages are invalidated and put on the flush list.

VM/SP determines that a virtual machine is idle when it voluntarily suspends
execution (by loading a virtual PSW with the wait state bit on, for example), and
no high-speed I/O operation is active. Normally, this is an adequate procedure.

However, in certain special cases, an idle virtual machine that is dropped from a
queue becomes active again sooner than expected. If this cycle of queue dropping
and reactivation is executed repeatedly, the overhead of invalidating and
revalidating the virtual machine's pages may become large.

The SNA VT AM service machine is an example of this special case. The VT AM
service machine operates by processing an rucv message (or queue of messages),
and then suspending execution until the next message arrives. VM/SP queue drops
the VT AM service machine from the queue when it suspends execution. When the
next message arrives, all the VTAM service machine's pages must be revalidated.
If the message rate is moderate to high, the repeated queue dropping causes
excessive overhead.

To control this situation, use the CP class A command SET QDROP userid
ON/OFF [USERS], If SET QDROP OFF is in effect for a virtual machine, the
virtual machine is dropped from the queue and its pages are not scanned or flushed.

If you specify SET QDROP OFF for a service virtual machine, system performance
and throughput may improve when queue dropping would otherwise occur rapidly.
But applying SET QDROP OFF indiscriminately may degrade system throughput
by defeating the page flush mechanism and forcing page stealing to take place.

A large overhead may be associated with a virtual machine being dropped from its
queue during communications with a service machine for which the QDROP OFF
specification is in effect. This can occur in small systems in which a high degree of
virtual machine intercommunications occurs. If you specify SET QDROP userid
OFF USERS, the QDROP OFF status is temporarily extended to any virtual
machine communicating via VMCF or IUCV to the service virtual machine
specified. The QDROP status for the "served" virtual machine remains in effect
only while messages are ouisianding beiween it and the service machine. Thus you
can improve performance in systems that heavily use products such as IFS or PVM
(invoked via the CMS PASSTHRU command). This option will not improve
performance in systems in which PVM is invoked via CP DIAL or with the SNA
VT AM service machine, since the communication is with CP rather than another
virtual machine.

To list the userids for which SET QDROP OFF and the USERS parameter have
been specified, use the QUERY QDROP command (CP class A and E).

74 VM/SP System Programmer's Guide

(--'" Improving Performance With the Virtual Machine Assist Feature

The Virtual Machine Assist Feature is a processor hardware feature that improves
the performance of VM/SP. Virtual storage operating systems, which run in
problem state under the control of VM/SP, use many privileged instructions and
SVCs that cause interruptions that VM/SP must handle. When the virtual machine
assist feature is used, many of these interrupts are intercepted and handled by the
processor. Consequently, VM/SP performance is improved.

The virtual machine assist feature intercepts and handles interruptions caused by
SVCs (other than SVC 76), invalid page conditions, and several privileged
instructions. An SVC 76 is never handled by the hardware; it is always handled by
CPo The processing of the following privileged instructions is handled by this
feature:

LRA
STCTL
RRB
ISK
SSK
IPK
STNSM
STOSM
SSM
LPSW
SPKA

(load real address)
(store control)
(reset reference bit)
(insert storage key)
(set storage key)
(insert PSW key)
(store then AND system mask)
(store then OR system mask)
(set system mask)
(load PSW)
(set PSW key from address).

Although the assist feature was designed to improve the performance of VM/SP,
virtual machines may see a performance improvement because more resources are
available for virtual machine users. For a list of processors on which the Virtual
Machine Assist Feature is available, see the VM/SP Planning Guide and Reference.

Using the Virtual Machine Assist Feature

When you IPL VM/SP on a processor with the virtual machine assist feature, the
feature is available for all VM/SP virtual machines. However, the class A or E
SET command can make the feature unavailable to VM/SP and, subsequently,
available again for all users. If you do not know whether the virtual machine assist
feature is available to VM/SP, use the class A and E QUERY command. For a
complete description of the class A and E QUERY and SET commands, see the
VM / SP Operator's Guide.

If the virtual machine assist feature is available to VM/SP when you log on to your
virtual machine, it is also supported for your virtual machine unless you are running
a second-level VM/370 or VM/SP system in your virtual machine. If your
directory entry has the SVCOFF option, the SVC handling portion of the assist
feature is not available when you log on. Use the class G SET command to disable
the assist feature (or only disable SVC handling), or to enable the assist feature, or
if the assist feature is available, to enable the SVC handling. Use the class G
QUERY SET command to find whether you have full, partial, or none of the assist
feature available. For details on the class G QUERY and SET commands, see the
VM / SP CP Command Reference for General Users.

Chapter 10. Performance Guidelines 75

Restricted Use of the Virtual Machine Assist Feature

Certain interrupts must be handled by VM/SP. Consequently, VM/SP
automatically turns off the assist feature in a virtual machine that:

• Has set an instruction address stop
• Is tracing SVC and program interrupts.

Since an address stop is recognized by an SVC interrupt, VM/SP must handle SVC
interrupts while address stops are set. When you issue the ADSTOP command,
VM/SP automatically turns off the SVC handling portion of the assist feature for
your virtual machine. The assist feature is turned on again after the instruction is
encountered and the address stop removed. If you issue the QUERY SET
command while an address stop is in effect, the response shows that the SVC
handling portion of the assist feature is off.

When a virtual machine issues a TRACE command with the SVC, PRIV,
BRANCH, INSTRUCT, or ALL operands, the virtual assist feature is
automatically turned off for that virtual machine. The assist feature is turned on
again when the tracing is completed. If the QUERY SET command line is issued
while SVCs or program interrupts are being traced, the response indicates the assist
feature is off.

The virtual machine assist feature is not available to a second-level virtual machine,
that is, a virtual machine that is running in a virtual machine.

Extended Control-Program Support:VM/370 (ECPS)

Extended Control-Program Support:VM/370 (ECPS) extends, for specific
privileged instructions, the hardware assistance that the virtual machine assist
feature provides. ECPS also provides hardware assistance for frequently used
VM/SP functions. ECPS improves VM/SP performance beyond the performance
gains that the virtual machine assist feature provides.

ECPS consists of three functions:

• CP assist
• Expanded virtual machine assist
• Virtuai intervai timer assist.

CP assist provides hardware assistance for frequently used paths of specific CP
functions.

Expanded virtual machine assist extends the hardware assistance that the virtual
machine assist feature provides for the instructions LPSW, STNSM, STOSM, and
SSM. In addition, expanded virtual machine assist provides hardware assistance for
certain other privileged instructions.

Virtual interval timer assist provides hardware updating of the virtual interval timer
at virtual address X' 50'. Timer updating occurs only while the virtual machine is
in control of the real processor. Virtual interval timer assist updates the virtual

76 VM/SP System Programmer's Guide

~-----"~~~-

..-..-/

(4""

~J

(

J

(
~

/

timer at the same frequency hardware updates the real timer, 300 times per second.
Thus, virtual interval timer assist updates the virtual timer more frequently than CP
updates it. Because the timer is updated more frequently, accounting routines might
provide more accurate accounting data.

ECPS does not support the same functions and instructions on all processors.
Figure 6 lists the processors on which ECPS is available, and identifies, by
processor, the functions and instructions ECPS supports.

Chapter 10. Performance Guidelines 77

135-3,138,
145-3,148, 3031 4331

Functions and Instructions 4341,4381 3031AP 4361

CP Assist X X

• Get free space (DMKFREE) X X
• Release free space (DMKFRET) X X
• Lock a page (DMKPTR) X X
• Unlock a page (DMKPTR) X X
• Test page status (DMKCCW) X X
• Test page status and lock (DMKCCW) X X
• Store ECPS identification X X X
• SVC 8 (LINK) X X X
• SVC 12 (RETURN) X X X
• Scan for changed shared pages (DMKVMA) X X
• Locate virtual I/O control block (DMKSCN) X X
• Invalidate page table (DMKV AT) X X
• Invalid segment table (DMKVAT) X X
• Untranslate CSW (DMKUNT) X
• Free CCW storage (DMKUNT) X
• Locate real I/O control block (DMKSCN) X
• Common CCW command processing (DMKCCW) X
• Decode first CCW (DMKCCW) X
• Decode following CCW (DMKCCW) X
• Main entry to dispatch (DMKDSP) X

· Dispatch a block or a virtual machine (DMKDSP) X

Expanded Virtual Machine Assist

• LPSW X X
• STNSM X X
• STOSM X X
• SSM X X
• PTLB X X
• SIO (SIOF) X X
• SPT X X
• SCKC X X
• STPT X X X
• TCH X X X
~ DIAGNOSE X X

I Virtual Interval Timer Assist X X X

Figure 6. Functions and Instructions that ECPS Supports

78 VM/SP System Programmer's Guide

(\

---~---------

Using the Extended Control-Program Support: VM/370

Restricted Use of ECPS

You can control Extended Control-Program Support: VM/370 (ECPS) at two
levels: the VM/SP system and the virtual machine.

At the VM/SP system level, ECPS is automatically enabled when the system is
loaded (except for AP and MP systems in which ECPS is always disabled). You
can use the class A command:

SET CPASSIST OFF

to disable both CP assist and expanded virtual machine assist. You can use the
class A command:

SET SASSIST OFF

to disable only the expanded virtual machine assist facility and the virtual interval
timer assist function of ECPS.

At the virtual machine level, whenever ECPS is enabled on the system, both
expanded virtual machine assist and virtual interval timer assist are automatically
enabled when you log on. If you issue the class G command:

SET ASSIST OFF

expanded virtual machine assist, virtual interval timer assist, and the existing virtual
machine assist are disabled. If you issue:

SET ASSIST NOTMR

only the virtual interval timer assist is disabled. If CP assist is disabled for the
system, and you issue the class A command:

SET SASSIST ON

the virtual machine assist is enabled. To enable virtual machine assist and virtual
interval timer assist for your virtual machine, issue the class G command:

SET ASSIST ON TMR

The restrictions on the use of ECPS are the same as those described for the virtual
machine assist feature with one addition. When a virtual machine traces external
interrupts, the virtual interval timer assist is automatically disabled. When external
interrupt tracing is completed, virtual interval timer assist is reenabled.

Chapter 10. Performance Guidelines 79

Improving Channel Use

Using the Virtual Block Multiplexer Channel Option

Virtual machine SIO operations are simulated by CP in three ways:

• Byte-multiplexer
• Selector
• Block multiplexer channel mode.

Virtual byte-multiplexer mode is reserved for I/O operations that apply to devices
allocated to channel zero.

In virtual selector channel operations, CP reflects a busy condition (condition code
2) to the virtual machine's operating system if the system tries a second SIO to the
same device, or another device on the same channel, before the first SIO is
completed.

Block multiplexer channel mode is a CP simulation of real block multiplexer
operation; it allows the virtual machine's operating system to overlap SIO requests
to multiple devices connected to the same channeL If you select block multiplexer
mode of operation, the virtual machine's throughput may increase, particularly for
systems or programs designed to use the block multiplexer channels.

Note: CP simulation of block multiplexer processing does not reflect channel
available interruptions (CAIs) to the user's virtual machine.

You can select the channel mode of operation for the virtual machine by a system
generation DIRECTORY OPTION operand or by the CP DEFINE command.
Enter the DEFINE command as:

DEFINE CHAN BMX

Using the 3088 Multisystem Communications Unit

The IBM 3088 Multisystem Channel Communication Unit (MCU), an
input/ output device, interconnects as many as eight systems using block
multiplexer channels. The 3088 Modd 1 interconnects up to iour systems, while
the 3088 Model 2 interconnects up to eight systems.

With the 3088, you can use the PREPARE channel command to prevent attention
interrupts on the side issuing the PREP ARE command. See "Channel Command
Words" for a description of 3088 channel command words.

The 3088 is compatible with existing channel-to-channel usage. Also, 3088
support extends existing CTCA addressing and scheduling by:

• Allowing multiple unit addresses per control unit

80 VM/SP System Programmer's Guide

C,,-,,-
,I' "

• Implementing block multiplexer channel scheduling for both real and virtual
CTCAs and 3088.

System Programmer Considerations

Virtual 3088 Support

At system generation time, code parameters in the RDEVICE macro and the
RCTLUNIT macro to define the 3088 to the control program. See the VM/SP
Planning Guide and Reference for the format of these macros.

RDEVICE MACRO: When you code the RDEVICE macro, specify the address
and device type. For example, to define a maximum of 32 sequential unit
addresses at AOO, code the RDEVICE macro as follows:

RDEVICE ADDRESS=(AOO,32),DEVTYPE=3088

RCTLUNIT MACRO: When you code the RCTLUNIT macro, specify the address
and the control unit type. Also, since the 3088 supports a maximum of 32 or 64
devices, specify the number of sequential unit addresses using the
FEATURE=xxx-DEVICE operand. For example, if you want to generate 32
devices at channel address AOO, code the RCTLUNIT macro as follows:

RCTLUNIT ADDRESS=AOO,CUTYPE=3088,FEATURE=32-DEVICE

SPECIAL DIRECTORY CONTROL STATEMENT: The 3088 is a valid device for
the SPECIAL directory control statement. For example, to specify a 3088 at
virtual address AOO, code the SPECIAL directory control statement as follows:

SPEcial AOO 3088

Use the class G DEFINE command to define a virtual 3088 device, with or without
a real equivalent. The system simulates all functions of the real 3088, except for
the online testing functions, for each virtual 3088 that you define. Define each
virtual 3088 unit address with a single DEFINE command. Defining each virtual
unit address is different from the dedicated 3088 support where you can define
multiple unit addresses using a single RDEVICE macro. Refer to VM / SP Running
Guest Operating Systems for examples of virtual machine usage of
channel-to-channel devices.

Command Use and 3088 Support

Support for the 3088 recognizes the 3088 as a valid device. Figure 7 outlines
commands affected by 3088 support. See the VM/SP Operator's Guide and the
VM / SP CP Command Reference for General Users for details on these commands.

Chapter 10. Performance Guidelines 81

Command Class 3088 Support

DEFINE G The 3088 is a valid device type on
this command. The control unit
address for a CTCA and a 3088 need
not end in zero. Once you define the
control unit, you may define other
virtual devices for the same CTCA or
3088.

ATTACH B The response to these commands is
COUPLE G the same for channel-to-channel
DETACH G,B adapters (CTCAs) and 3088s.
QUERY B

Figure 7. CP commands and 3088 Support

Channel Command Words

Diagnostic Aids

In addition to the channel commands supported in System/360 and System/370
modes, the 3088 supports the following two channel commands:

• PREPARE -- Use the PREPARE channel command to receive a channel
program without causing an attention interrupt to the side issuing the
command.

• SENSE ID -- Use the SENSE ID channel command to transfer model and
control unit identification to the system issuing the command.

3088 support offers online testing facilities, and messages and MNOTES as
diagnostic aids when using the support. See VM/SP System Messages and Codes
for the complete text of the messages.

Online Testing: The last address in the group of 32 or 64 addresses for each
interface attached to the 3088 is available as a dedicated diagnostic unit address.
The diagnostic unit address provides a communication path between diagnostic
programs and the 3088 microprocessor for online testing. For example, a system
attached to the 3088 may use the diagnostic unit address to read the 3088 logout
and error information.

Messages and MNOTES To Support 3088 Devices: The system issues a message or
MNOTEif:

• You try to define a 3088 for a unit address previously defined

• The virtual channel-to-channel device specified in the COUPLE command is
busy on the receiving userid's virtual machine

• You try to couple a 3088 to a channel-to-channel adapter

• You specify a model on the RDEVICE macro.

82 VM/SP System Programmer's Guide

"'~ ,I/' ,

(---' Alternate Path Support

With the Two-Channel Switch and Two-Channel Switch Additional Features,
alternate path support for DASD or tape provides for up to four channels on one
control unit to be attached to VM/SP (up to 2 channels per control unit in
multiprocessing configurations). In addition, one device can be attached to two
logical control units, providing support for the String Switch feature. This allows
the control program up to eight paths to a given device when the maximum number
of alternate channels and alternate control units are specified.

When an I/O request is received for a device that has alternate paths defined, and
the primary path is unavailable, VM/370 searches for the first available path
beginning with the first alternate path. It examines successive alternate paths, if
required, until an available path is found. If no available path to the device exists,
alternate path I/O scheduling queues the request on multiple busy/scheduled
paths, and the first path to become available is the path the I/O request is started
on.

The VM/370 I/O Scheduler determines that a path is available by analyzing the
busy and scheduled software indicators in the RDEVBLOK, RCUBLOK, and
RCHBLOK as well as the chains of pending I/O requests that are queued from the
RCUBLOK and RCHBLOK. This processing is performed prior to issuing the
SIO.

The search for an available path begins with the RDEVBLOK. If the
RDEVBLOK is marked busy or scheduled, the I/O request is queued on the
RDEVBLOK. No alternate path scheduling is performed at the device level. If the
RDEVBLOK is not busy or scheduled, the IOBLOK for this I/O request is
promoted upward to the RCUBLOK. If the RCUBLOK is marked busy, the
10BLOK is queued on the RCUBLOK and a search is made for an alternate
control unit path. If the RCUBLOK is marked scheduled and the present request
will not release the control unit (example: TAPE FSF and TAPE BSF), the
10BLOK is queued off the RCUBLOK and a search is made for an alternate
control unit path. If the RCUBLOK is marked scheduled and the present request
will release the control unit, the search continues for a channel path. If the
RCUBLOK is not marked scheduled or busy but there are other I/O requests
queued on the RCUBLOK, the check is again made to see if the present request
will release the control unit. If the present request will not release the control unit,
the request is queued and a search is made for an alternate control unit path.
Otherwise, the search continues for a channel path.

The RCUBLOK "busy" and "scheduled" indicators are only turned on for shared
control units. The busy and scheduled indicators are turned on in the RCUBLOK
for tape and 2314 DASD control units. The non-shared DASD RCUBLOKS never
have the busy and scheduled indicators in the "on" status. For this reason,
alternate control unit path selection rarely takes place for non-shared control units.
The one exception occurs when the channel path through the first control unit
appears busy (because a real channel busy condition was encountered). If an
alternate path exists through a second control unit, the control blocks associated
with the second control unit path are examined.

Finding an available channel path is the final step before issuing the SIO. If the
RCHBLOK is marked busy, a search is made for an alternate channel path. If the

Chapter 10. Performance Guidelines 83

RCHBLOK has other requests queued on the RCHBLOK, a search for an
alternate channel path is made. VM/370 never marks a byte multiplexor
RCHBLOK busy. The only time a byte multiplexor is marked busy is after a
condition code 2 has been encountered. The I/O load on byte multiplexor
channels must be sufficient to cause channel busy conditions before path selection
on an alternate channel can take place.

MVS/System Extensions Support

The MVS/System Extensions support in VM/SP allows an MVS system running in
a virtual machine to use the enhancements available in the MVS/System
Extensions Program Product (Program No. 5740-XEl) if the System/370
Extended Facility or System/370 Extended Feature is present on the hardware.

Included in the MVS/System Extensions Program Product enhancement is the use
of:

1. The System/370 Extended Facility for the 303x and the 308x processors, or

2. The System/370 Extended Feature for the System/370 Model 158 and 168
processors, or

3. ECPS:MVS for the 4341.

Note: An RPQ (MK3272) is available for the 158-3 processor that allows the
coexistence of virtual machine assist and System/370 Extended Facility (S370E)
and VM/370 Extended Feature. Thus, an MVS/SE virtual machine can run under
VM/SP with virtual machine assist active on a 158-3 processor. ECPS:MVS and
ECPS:VM/370 are mutually exclusive in the 4341 Model Group 1 and 4341
Model Group 2. The control storage expansion feature of the Model Group 2
allows coexistence of ECPS:MVS and ECPS:VM/370.

The System/370 Extended Facility and System/370 Extended Feature, and
ECPS:MVS are enabled by the MVS/System Extensions support as defined by the
directory OPTION statement or via the CP SET command. For details, refer to the
VM/SP Operator's Guide, and the VM/SP CP Command Reference for General
Users, respectively.

MVS/SYSLt:IIl EXLt:IlSiollS support includeS:

• Low address protection facility!
• Common segment facilityl
• Special MVS instruction operation facilities.

ECPS:MVS is identical to the Extended Facility, except that the Low Address
Protection Facility and the Common Segment Facility are not included.

84 VM/SP System Programmer's Guide

--- -~ .. ~-- ----- --_._----

(

(/

Low Address Protection Facility

Low address protection protects against improper storing by instructions using
logical storage addresses in the range 0-511. It prevents inadvertent program
destruction of those storage locations that the processor uses to fetch new PSWs
during interruption processing. Low address protection does not apply to the
storing of status by the processor (for example, old PSWs, logout data), nor does it
apply to any channel stores (for example, CSW or LCL).

Bit 3 of control register 0 is the low address protection bit, and controls whether or
not store instructions using logical addresses in the range 0 to 511 are permitted.
When this bit is zero in real control register zero, stores are permitted; when this
bit is one, stores are not permitted. When an instruction attempts to store at an
address in the range 0 to 511 and low address protection applies, the contents of
the storage area addressed by the instruction are not modified. Execution of the
current instruction is terminated or suppressed, and a protection exception occurs.

Common Segment Facility

The common segment facility allows addressing segments to be classified as private
or common. If bit 30 of the segment table entry for a given segment is 1, the
segment is a common segment; otherwise it is private. A private segment table
entry and the page table it designates can be used with only the segment table
origin (STO) that designates the segment table in which the segment table entry
resides. A common segment table entry and the page table it designates may
continue to be used for translating addresses even though a different STO is
specified by changing control register 1.

Special MVS Instruction Operation Handling Facilities

Special operations and instructions in the MVS/System Extensions Program
Product that enhance MVS operations are handled by System/370 Extended
Facility or System/370 Extended Feature, and are described in System/370
Extended Facility, GA22-7022. Invalidate Page Table Entry (!PTE) and Test
Protection (TPROT) instructions described in this publication are simulated in
VM/SP.

Enabling MVS/System Extensions Support

To enable the MVS/System Extensions support for all virtual machines, use the
class A SET S370E ON command. The general user uses he class G SET 370E
ON command (or 370E option on the directory OPTION control statement), to
enable the support for a particular virtual machine.

Chapter 10. Performance Guidelines 85

[Improving Throughput of an OS/VS2 MVS AP or MP System

When an OS/VS2 MVS system runs on a multiprocessor under VM/SP, without
using single processor mode, MVS runs in uniprocessor mode. That is, MVS
programs do not execute simultaneously on both processors. Therefore, MVS does
not attain the level of throughput it could attain were it running in multiprocessor
mode.

To improve the throughput of an OS/VS2 MVS system in an AP or MP system,
run MVS in the V =R machine and use single processor mode. In this mode, MVS
has exclusive use of one processor while VM/SP and the V =R machine (running
MVS) use the other processor. In other words, MVS runs on two processors
instead of one. This improves MVS's throughput.

The throughput of an OS/VS2 MVS system in an AP or MP system running under
VM/SP and using single processor mode is higher than the throughput would be
were single processor mode not used. However, single processor mode may reduce
the throughput of VM/SP and virtual machines not using the V =R area.

Single processor mode cannot improve the throughput of a VM/SP attached
processor or multiprocessor system. A VM/SP AP or MP system initialized (by
IPL) in the V =R machine with single processor mode on runs in uniprocessor
mode.

Two commands provide operator control of single processor mode. SPMODE, a
class A command, turns single processor mode on or off. QUERY, a class A or G
command, indicates whether single processor mode is on or off.

For detailed instructions on how to turn single processor mode on or off, see
VM/SP Running Guest Operating Systems.

Dynamic System Control Programming (SCP) Transition to or from Native Mode

Sometimes an installation benefits from switching an SCP to or from native mode.
For example, when obtaining the best possible performance from an SCP is
important, switch it to native mode. To do different kinds of work simultaneously,
switch the SCP from native mode to the VM/SP environment.

Installations have always had the capability to switch an SCP to or from native
mode, but to do so has been time consuming. Switching an SCP to native mode
meant quiescing the SCP and VM/SP and then initial program loading the SCPo
To return the SCP to the VM/SP environment meant quiescing the SCP and then
initial program loading VM/SP and the SCPo

Dynamic SCP transition to or from native mode enables an operator to dynamically
switch an SCP to or from native mode. Switching to native mode, there is no
longer a need to quiesce or reinitialize (via IPL) the SCPo The SCP continues to
run and can do productive work. Switching back to the VM/SP environment, there
is no longer a need to quiesce the SCP or IPL VM/SP or the SCPo

Before switching an SCP to or from native mode, an operator must prepare
VM/SP and the SCP for the switch: for example, all users except the VM/SP

86 VM/SP System Programmer's Guide

(

operator and the operator on the V=R machine must logoff VM/SP. Detailed
instructions on preparing the systems and on switching to or from native mode are
in VM / SP Running Guest Operating Systems. The following discussion highlights
the switching process and defines precautions that must be observed.

To switch an SCP to native mode, it must be running in the V =R machine. The
VM/SP operator then prepares VM/SP and the SCP for the switch. To complete
the switch, the operator issues the QVM command (quiesce VM).

After the switch to native mode is completed, there are two areas of real storage
that must not be altered. Addresses 0-7 contain the restart PSW (program status
word) used to make the transition back to the VM/SP environment. Storage above
the upper limit of the V =R area contains the VM/SP nucleus. Altering either area
may make it impossible to return to the VM/SP environment.

To return the SCP to the VM/SP environment, an operator uses the System/370
restart facility. After stopping the processor, the operator stores the value X'FF'
into the real storage address located eight bytes prior to the address pointed to by
the restart PSW. To complete the switching process, the operator restarts the
processor. Caution: This process does not work unless the SCP was switched to
native mode via the QVM command.

The performance of an SCP switched to native mode depends on the size of the
V=R area. The SCP's performance will be identical to the performance it would
attain were it initialized (via IPL) directly on a hardware configuration identical to
the V =R machine's configuration with a real storage size equal to the storage size
of the V =R area. In other words, the larger the V =R area, the better the SCP
performs.

You can can switch to or from native mode using the procedures just described for:

OS/VSl running without VM VSl Handshaking

• OS/VS2 SVS

OS/VS2MVS.

Chapter 10. Performance Guidelines 87

88 VM/SP System Programmer's Guide

C'· ..
I

Chapter 11. Performance Observation and Analysis

You can use the INDICATE, QUERY SRM, and MONITOR commands, to
measure system performance dynamically.

INDICATE command: Provides a method to observe the load conditions on the
system while it is running.

QUERY SRM command: Provides expanded observation facilities for analyzing
internal activity counters and parameters.

MONITOR command: Provides a data collection tool designed that samples and
records a wide range of data. The collection of data is divided into functional
classes that can be performed separately or concurrently. Keywords in the
MONITOR command enable the collection of data and identify the various data
collection classes. Other keywords control the recording of collected data on tape
for later examination and reduction.

Using the INDICATE Command

Use the INDICATE command to check the system for persistently heavy loads, to
judge when it is best to apply additional scheduling controls (if appropriate).

Use the INDICATE command to display the basic uses of and contentions for
major system resources (possible bottleneck conditions) and characteristics of the
active users and the resources that they use.

Virtual machine users can use the INDICATE command to observe the basic
smoothed conditions of contention and use of the primary resources of processor
and storage. The INDICATE command allows them to base their use of the
system on an intelligent guess of what the service is likely to be. Over a period of
time, virtual machine users relate certain conditions of service to certain utilization
and contention figures, and know what kind of responses to expect when they start
their terminal session.

The INDICATE command lets general users and the system analyst display on a
console at any time the use of and contention for major system resources. They
can also display the total amount of resources used during the terminal session and
the number of I/O requests. If they use the INDICATE command before and
after the execution of a program, users can determine the execution characteristics
of that program in terms of resource use .

Chapter 11. Performance Observation and Analysis 89

The system analyst can identify active users, the queues they are using, their I/O
activity, their paging activity, and many other user characteristics and use data.

The system analyst can use the data on system resource usage and contention to
monitor the performance of the system. The analyst can thus be aware of heavy
load conditions or low performance situations that may require the use of more
sophisticated data collection, reduction, and analysis techniques for resolution.

The VM/SP Scheduler maintains exponentially smoothed values for data provided
by the LOAD option. Specifically, at intervals (in seconds) depending on the
processor model, the scheduler calculates the total activities for variables such as
CP and storage use for the most recent interval, and factors them into a smoothed
wait value in the following way:

(3 * old smoothed
New smoothed value = value + current interval)

--- 4

Thus, only one-fourth of the most recent interval is factored into the new smoothed
value which makes it predominantly the old smoothed value.

The remaining INDICATE components are sampled prior to a user being dropped
from a queue. Because of the frequency of this event, the remaining components
are subject to a heavier smoothing than the wait time. A general expression for the
smoothing follows:

nsv = ((rate - int) (osv) / rate) + civ

where:

nsv is the new smoothing value

osv is the old smoothing value

civ is the current interval value (results found during the current interval (int))

int is the current interval (time period being tested)

rate is either the history interval (hrate) of 8 minutes, or data interval (drate) of
75 seconds

Other operands of the command allow users to obtain other performance
information that enables them to understand the reasons for the observed
conditions. For the format of the class G INDICATE command, see the VM/SP
CP Command Reference for General Users. For the format of the class E
INDICATE command, see the VM/SP Operator's Guide.

90 VM/SP System Programmer's Guide

(,/

The INDICATE FAVORED Command

The section "Preferred Virtual Machine Options" in this publication contains
detailed information on favored execution. For information on the setting of
favored execution options, refer to the VM / SP Operator's Guide.

Using the QUERY SRM and SET SRM Commands

Use the QUERY SRM and SET SRM commands to query and/or change internal
system activity counters or parameters. Formats for the QUERY SRM and SET
SRM commands are contained in the VM/SP Operator's Guide.

Use the Class E QUERY SRM command to display the following information:

• Current number of pageable pages
• Size of the dispatching time slice
• Setting of the maximum working set estimate

Maximum drum page allocation limit
• Current page migration counters
• Unused segment elapsed time as criteria for page migration
• Current PCI flag setting mode for 2305 page requests
• Maximum page bias value
• Current interactive shift bias value

Moveable head page migration limit.

Use the class E SET SRM command to set some of the system variables that can
affect the values displayed by the QUERY SRM command.

The MONITOR Command

VM/SP Monitor collects data by:

Handling interruptions caused by executing MONITOR CALL (MC)
instructions.

• Using timer interruptions to give control periodically to samphr.g routines.

MONITOR CALL instructions with appropriate classes and codes are embedded in
strategic places throughout the main body of VM/SP code (CP). When a
MONITOR CALL instruction executes, a program interruption occurs if the
particular class of MONITOR CALL is enabled. The classes of MONITOR CALL
that are enabled are determined by the mask in control register 8. For the format
and function of the MONITOR CALL instruction, refer to the System/3 70
Principles of Operation. The format of control register 8 is as follows:

Chapter 11. Performance Observation and Analysis 91

1 xxxx 1 xxxx 1 xxxx 1 xxxx 1 0123 14567 189AB I CDEF I
where:

x indicates unassigned bits.

O-F (hexadecimal) indicates the bit associated with each class of the
MONITOR CALL.

When a MONITOR CALL interruption occurs, the CP program interruption
handler (DMKPRG) transfers control to the VM/SP monitor interruption handler
(DMKMON) where data collection takes place.

Sixteen classes of separately enabled MONITOR CALL instructions are possible,
but only eight are implemented in the VM/SP Monitor.

Monitor output consists of event data and sampled data. MONITOR CALL
instructions in the VM/SP code obtain data. Sampled data is collected following
timer interruptions. All data is recorded as though it were obtained through a
MONITOR CALL instruction. This simplifies the identification of the records.

The following table shows the type of collection mechanism for each Monitor class:

Monitor Class Collection
Class Name Mechanism

0 PERFORM Timer requests
1 RESPONSE MC instructions
2 SCHEDULE MC instructions
32

4 USER Timer requests
5 INSTSIM MC instructions
6 DASTAP Timer requests
7 SEEKS MC instructions
8 SYSPROF Collected via class 2

Another function, separate from the VM/SP Monitor, is also handled by the
MONITOR command. The MONITOR command can stop and start collecting CP
internal trace table data, which is not initiated by MONITOR CALLs.

Note: The VM/SP Monitor record format and contents are shown in "Appendix
B. Monitor Tape Format and Content."

The class A and E MONITOR command:

• Stops and starts CP internal trace table data collection.

Displays the status of the internal trace table and each implemented class of
VM/SP Monitor data collection.

2 There is no class name for monitor class 3, but it is reserved.

92 VM/SP System Programmer's Guide

o

/~- -"

".~_7

--~ - -- ---- --------------------------

, (;

• Displays the specifications for automatic monitoring defined by the SYSMON
macro in DMKSYS.

Displays those specifications for automatic monitoring that are overridden by
Monitor commands.

• Displays whether the tape or spool file is the recording medium.

• Starts and stops VM/SP data collection using tape or spool file. It also closes
the spool file, if desired.

• Specifies VM/SP monitor classes of data collection enabled, number of buffers
used, and time of data collection. It also specifies other options which override
the specifications for automatic monitoring on the SYSMON macro contained
inDMKSYS.

• Specifies the interval to be used for timer driven data collection.

• Specifies direct access devices to be included or excluded from a list of devices.
The list defines direct access devices for which CP is to collect data for the
SEEKs class.

See the VM/SP Operator's Guide for the format and details of the MONITOR
command.

Implemented Classes

Monitor
Class

0

1

2

Keyword

PERFORM

RESPONSE

The following MONITOR CALL classes correlate with the corresponding classes
in control register 8. Refer to the System/3 70 Principles of Operation for details of
the MC instruction and the bits in control register 8.

Data Collection Function

Samples system resource usage data by accessing system counters of interest
to system performance analysts.

Collects data on terminalI/O. Simplifies analyses of command usage, user,
and system response times. It can relate user activity to system
performance. This class is invalid and no data can be collected for it unless
the system programmer changes the LOCAL COPY file and reassembles
DMKMCC.

SCHEDULE Collects data about scheduler queue manipulation, monitors flow of work
through the system, and indicates the resource allocation strategies of the
scheduler.

Chapter 11. Performance Observation and Analysis 93

Monitor
Class Keyword Data CoUection Function

3 ------- Reserved.

4 USER Periodically scans the chain of VMBLOKs in the system, and extracts user
resource utilization and status data.

5 INSTSIM Records every virtual machine privileged instruction handled by the control
program (CP) standard simulation routines (DMKPRV, DMKPRW).
Because simulation of privileged instructions is a major source of overhead,
this data may lead to methods of improving performance.

The fast path simulation routines (DMKFPS) result in significantly less
control program overhead than the standard paths. Therefore, privileged
instructions simulated by DMKFPS are not recorded.

If the VMA feature is active, the number of privileged instructions that are
handled by the control program is reduced for those virtual machines that
are running with the feature activated.

6 DASTAP Periodically samples device I/O activity counts (SlOs), for tape and DASD
devices only. DAST AP samples only those tapes and DASD devices that
are online when the MONITOR START command is issued.

It is possible that the number of DASD and tape devices defined in
DMKRIO may exceed 291 (the maximum number of MONITOR DASTAP
records that fit in a MONITOR buffer). The following algorithm
determines which devices are monitored:

l. If the total number of DASD and tape devices that are on-line is less
than or equal to 291, all on-line DASD and tape devices are monitored.

2. If the total number of on-line DASD devices is less than or equal to
291, all on-line DASD devices are monitored.

3. Otherwise, the first 291 on-line DASD devices are monitored.

(,-"
./

94 VM/SP System Programmer's Guide

(

Monitor
Class Keyword Data Collection Function

7 SEEKS Collects data for every I/O request to DASD. Reveals channel, control
unit, or device contention and arm movement interference problems.

Note: When NOTRANS is in effect for a virtual=real machine, no
meaningful data is collected.

No data is collected for TIO or HIO operations. For SIO operations, data is
collected when the request for the I/O operation is initially handled and
again when the request is satisfied.

This means that a single SIO request could result in two MONITOR
CALLs. For example, if the request gets queued because the device is
already busy, then a MONITOR CALL would be issued as the request is
queued. Later, when the device becomes free and is restarted, a second
MONITOR CALL is issued.

In general, the data collected is the same except that in the first case
nonzero counts are associated with queued requests.

If the request for I/O is satisfied when it is initially handled without being
queued, only one MONITOR CALL results. In both this case and the
second of the two data collections mentioned above, the count of I/O
requests queued for the device is zero.

8 SYSPROF Collects data complementary to the DASTAP and SCHEDULE classes to
provide a more detailed "profile" of system performance through a closer
examination of DASD utilization.

Monitor Response to Special Tape Conditions

Suspension

When I/O to the tape is requested, the device may still be busy from the previous
request. If this occurs, two data pages are full and data collection must be
temporarily suspended. Control register 8 is saved and then set to zero to disable
MONITOR CALL program interruptions and timer data collection. A running
count is kept of the number of times suspension occurs. The current Monitor event
is disregarded. When the current tape I/O operation ends, the next full data page
is scheduled for output. MONITOR CALL interruptions are reenabled (control
register 8 is restored), a record containing the time of suspension, the time of
resumption, and the suspension count is recorded and data collection continues.
The suspension count is reset to zero when the MONITOR STOP TAPE is issued.
If a MONITOR command is issued when monitor is suspended, a message is
displayed to the invoker of the command stating:

SEEK, STOP, OR CLOSE CMD IN PROGRESS, RETRY

Chapter 1l. Performance Observation and Analysis 95

Unrecoverable Tape Error

End-of-Tape Condition

When an unrecoverable error occurs, DMKMON receives control and attempts to
write two tape marks, rewind, and unload the tape. The use of the tape is
discontinued and data collection stops. The operator is informed of the action
taken. Whether or not the write-tape-marks, rewind, and unload are successful, the
tape drive is released.

When an end-of-tape condition occurs, DMKMON receives control. A tape mark
is written on the tape and it is rewound and unloaded. The monitor is stopped and
the operator is informed of the action taken.

Monitor Considerations

Initial Program Load

System Shutdown

System Failure

The system programmer may want to set the TRACE(1) bit to a 1 in the LOCAL
COPY file and reassemble DMKMCC to allow RESPONSE data (MONITOR
class 1) to be collected. Refer to the VM/SP Installation Guide for details.

MONITOR START CPTRACE is active after real system IPL (manual or
automatic). The monitor tape data collection is off after IPL. If automatic
performance monitoring is specified in the SYSMON macro and IPL occurs within /
the range of the TIME operand of the SYSMON macro, monitor data collection to
a spool file is started.

If the monitor data collection to a spool file is taking place, a system shutdown
causes closing of the file and termination of monitoring. If data collection is to
tape, a system shutdown implies a MONITOR STOP TAPE command. Normal
command processing for the MONITOR STOP TAPE function is performed by the
system.

If the VM/SP system fails and data collection to a spool file is active, the spool file
is closed and preserved, except for the last buffeT_ Tf the VM/SP system fails and
data collection is active on tape, an attempt is made to write two tape marks,
rewind, and unload the tape. If the tape drive fails to rewind and unload, be sure to
write a tape mark before rewinding and unloading the tape. Monitor data
collection is terminated by the system failure.

96 VM/SP System Programmer's Guide

I/O Devices

I Monitor Output

If monitor data collection is active using tape, a supported tape drive must be
dedicated to the system for the duration of the monitoring. For accounting
purposes, all 110 is charged to the system.

Monitor spooled output requires that you have the IBM field-developed program
called VMAP (Virtual Machine Analysis Program, 5798-CPX) or some other user
application program to read the file and process it.

Monitor Data Volume and Overhead

Use of the monitor usually requires that three pages be locked in storage for the
entire time the monitor is active; however, only two pages are required if the single
buffer option is used with only the PERFORM class of data collection enabled.
This reduces by three the number of page frames available for paging. This
significantly affects the performance of the rest of the system when there is a
limited number of page frames available for paging.

PERFORM
This class of data collection is activated once every 60 seconds (or as defined
by the MONITOR INTERVAL command), and records system counters
relevant to performance statistics. It is, therefore, a very low overhead data
collection option.

RESPONSE
This class collects terminal interaction data and, because of the human factor,
has a very low rate of occurrence relative to processor speeds. Consequently,
this class causes negligible overhead and produces a low volume of data.

SCHEDULE
This class records the queue manipulation activity of the scheduler and
generates a record every time a user is added to the eligible list, added to
queuel, queue2, or queue3, or removed from queue. The recording overhead is
very low.

USER
This class of data collection is active once every 60 seconds (or as defined by
the MONITOR INTERVAL command). Data is extracted from each user's
VMBLOK, including the system VMBLOK. The overhead incurred is
comparable with that of the statistical data of the PERFORM class; however, it
increases with the number of users logged onto the system.

INSTSIM
This class of data collection can give rise to large volumes of data because of
the frequency of privileged instructions in some virtual machines. This may
incur significant overhead. It should be activated for short periods of time and
preferably, though not necessarily, when other classes of data collection are
inactive. If the Virtual Machine Assist feature is active for the virtual machine,
the data volume and, consequently, the CP overhead may be reduced.

Chapter 11. Perfonnance Observation and Analysis 97

DASTAP
This class of data collection samples device activity counts once every 60
seconds (or as defined by the MONITOR INTERVAL command) and is a very
low source of overhead, similar to the PERFORM and USER classes.

SEEKS
This class of data collection can give rise to large volumes of data because
every start I/O request to DASD is recorded via a MONITOR CALL.

SYSPROF
This class of data collection is complementary to the SCHEDULE and
DAST AP classes and results in a small amount of additional overhead. It
obtains more refined data on DASD resource usage.

Performance for Time-Shared Multibatch Virtual Machines

First you must determine how many similar users can be run concurrently on a
given configuration before the throughput of individual users becomes
unacceptable.

Monitoring Recommendations

To simplify and automate the collection of performance data, use the automatic
monitoring facilities. You should also set up a virtual machine to analyze and
report the collected data. The VM/370 Performance/Monitor Analysis Program
(VMAP) does such a task. For more information about this program and for
details about ordering it, see the publication Virtual Machine Facility/370
Performance/Monitor Analysis Program. You should run this program or
user-written analysis programs on a daily basis to analyze the collected data. Run
such analysis programs preferably at off-peak hours to minimize the effect on the
performance of the system doing data reduction. Initially, analyze the data
collected with MONITOR default options to establish a familiarity with the load
environment and performance profile of each virtual machine system and its effect
onCP.

Once you establish a performance profile for each system and associated virtual
machines, you should be able to detect points of contention between processor(s)
storage, I/O, and paging subsystems.

Normally, use the spool file monitoring options. However, if large volumes of trace
data are to be collected, then use monitoring to tape. Tape is also useful if
benchmarking is set up frequently and all of the new monitor trace and sampled
data must be archived for possible future use. The default mode of operation of
the Performance/Monitor Analysis Program is to keep the condensed ACUM files
and not the raw data.

If you need SEEKs data, use a sampling technique. One technique is to use a CMS
EXEC procedure to enable SEEKs for ten seconds every ten minutes. This would
produce SEEKs data while limiting the volume of data collected. An alternative is
to create a list of devices for which data for the SEEKs class is to be collected. CP
collects data for only those devices in the list. To create the list, use the INCLUDE
or EXCLUDE options of the MONITOR command's SEEK operand. If data is
collected for only a few devices, consider collecting data for longer periods of time.

98 VM/SP System Programmer's Guide

(

Load Environments of VM/SP

Two distinct uses of VM/SP can be readily identified: The system may be required
to time share multiple batch-type virtual machines with interactive machines
performing minor support roles; or, the system may be primarily required to
provide good interactive time-sharing services in the foreground, with a batch
background absorbing spare resources of real storage and processor. Because of
these distinct uses, there may be some differences in criteria for acceptable
performance.

After determining the minimum acceptable performance, perform external
observations of turnaround time on benchmarks and specify a point beyond which
adding more users would be unacceptable. However, when that point is reached,
you must do more sophisticated internal measurement to determine the scarcest
resource and how the bottleneck can be relieved by additional hardware.

Several conditions can result from different bottlenecks. They are:

• Real storage levels of multiprogramming are low compared with the number of
contending users. Hence, each user is dispatched so infrequently that running
time or response time may become intolerable.

• Storage may be adequate to contain the working sets of contending users, but
the processor is being shared among so many users that each is receiving
inadequate attention for good throughput.

• Real storage space may be adequate for the processor, and a high speed drum
is used for paging; however, some virtual storage pages of some users have
spilled onto slower paging devices because the drum is full. With low levels of
multiprogramming, user page wait can become a significant portion of system
wait time. Consequently, processor utilization falls and throughput
deteriorates.

• Storage, processor, and paging resources are adequate, yet several users are
heavily I/O-bound on the same disk, control unit, or channel. In these
circumstances, real storage may be fully committed because the correct level of
multiprogramming is selected, yet device contention is forcing high I/O wait
times and unacceptable processor use.

Obtain estimates of typical working set sizes to determine how well an application
may run in a multiprogramming environment on a given virtual storage system. A
measure of the application's processor requirements may be required for similar
reasons. Measurements may be required on the type and density of privileged
instructions a certain programming system may execute, because, in the virtual
machine environment, privileged instruction execution may be a major source of
overhead. If the virtual machine environment is used for programming
development, where the improvement in programmer productivity outweighs the
disadvantages of extra overheads, the above points may not be too critical.
However, if throughput and turnaround time are important, then the converse is
true, and the points need close evaluation before allocating resources to a virtual
machine operation.

Chapter 11. Performance Observation and Analysis 99

High levels of mUltiprogramming and over-commitment of real storage space lead
to high paging rates. High paging rates can indicate a healthy condition; but be
concerned about page stealing and get evidence that this rate is maintained at an
acceptable level. A system with a high rate of page stealing is probably thrashing.

Performance -- Mixed Mode Foreground/Background Systems with Emphasis on
Good Interactive Response

Most of the conditions for good performance, established for the time-shared batch
systems, apply equally well to mixed mode systems. However, two major factors
make any determination more difficult to make. First, get evidence to show that, in
all circumstances, priority is given to maintaining good interactive response, and
that nontrivial tasks truly take place in the background. Second, background tasks,
no matter how large, inefficient, or demanding, should not be allowed to dominate
the overall use of the time-sharing system. In other words, in mixed mode
operation, get evidence that users with poor characteristics are discriminated
against for the sake of maintaining a healthy system for the remaining users.

A number of other conditions are more obvious and straightforward. You need to
measure response and determine at what point it becomes unacceptable and why.
Studies of time-sharing systems have shown that a user's rate of working is closely
correlated with the system response. When the system responds quickly, the user is
alert, ready for the next interaction, and thought processes are uninterrupted.
When the system response is poor, the user becomes sluggish.

For interactive environments, analyze command use. Average execution time of
the truly interactive commands can provide data for validation of the Queue 1
execution time.

100 VM/SP System Programmer's Guide

(-,

(

('~.

Chapter 12. Accounting Records

The accounting data gathered by VM/SP can help in analysis of overall system
operation. Also, accounting data can be used to bill VM/SP users for time and
other system resources they use.

There are three types of accounting records: the virtual machine user records,
records for dedicated devices as well as T -disk space assigned to virtual machine
users, and accounting records generated as a result of user initiated DIAGNOSE
X' 4C' instruction. A CMS batch virtual machine creates an accounting record
with the userid and account number of the user who sent his job to the batch
machine. Accounting records are prepared as 80-character card images and
spooled to disk.

When the user wishes, the data can be sent to the punch for punched output, or
spooled to the virtual machine's reader for additional processing. By using the
SYSACNT macro, the user can do this when a specified number of records are
accumulated. By invoking the ACNT CLOSE command, the user does it
immediately.

Accounting Records for Virtual Machine Resource Use

The information stored in the accounting record in card image form when a user
ends his terminal session (or when the ACNT command is invoked) is as follows
(columns 1-28 contain character data; all other data is in hexadecimal form, except
as noted):

Column
1- 8
9-16
17-28
29-32
33-36

37-40
41-44
45-48
49-52
53-56
57-60

Contents
Userid
Account number
Date and Time of Accounting (mmddyyhhmmss)
Number of seconds connected to VM/SP System
Milliseconds of processor time used, including time for VM/SP
supervisor functions
Milliseconds of virtual processor time used
Number of page reads
Number of page writes
Number of virtual machine SIO instructions for nonspooled I/O
Number of spool cards to virtual punch
Number of spool lines to virtual printer (This includes one line for
each carriage control command)

Chapter 12. Accounting Records 101

61-64

65-78
79-80

Total number of spool records from virtual reader
(This is not the number of records read, rather it is the total number
of records in the spool file (SFBRECNO) when the file is open for
processing.)
Reserved
Accounting record identification code (01)

Accounting Records for Dedicated Devices and Temporary
Disk Space

Accounting records are recorded and spooled to disk when a previously dedicated
device and temporary disk space is released by a user via DETACH, LOGOFF, or
releasing from DIAL (dedicated device only). A dedicated device is any device
assigned to a virtual machine for that machine's exclusive use. These include
devices dedicated by the ATTACH command, those being assigned at logon by
directory entries, or by a user establishing a connection (via DIAL) with a system
that has virtual 2702 or 2703 lines. The information on the accounting record in
card image form is as follows (columns 1-28 contain character data; all other data
is in hexadecimal form, except as noted):

Column
1- 8
9-16
17-28
29-32

33
34
35
36

37-38

39-78
79-80

Contents
Userid
Account number
Date and Time of Accounting (mmddyyhhmmss)
Number of seconds connected to VM/SP system
Device class
Device type
Model (if any)
Feature (if any)
Number of cylinders of temporary disk space used (if any) or number
of blocks used (columns 37-40) for fixed-block devices. This
information appears only in a code 03 accounting record.
Unused (columns 41-78 unused for fixed-block devices)
Accounting record identification code (02,03)

The device class, device type, model, and feature codes in columns 33-36 are
shown in Figure 78.

Accounting Records for LOGON, AUTOLOG, and LINK
Journaling

When LOGON, AUTOLOG, and LINK journaling is on, VM/SP may write type
04, type 05, type 06, or type 07 records to the accounting data set. These records
are written under the following circumstances:

• Type 04 records are written when VM/SP detects that a user has issued ,;1-'

enough LOGON or AUTOLOG commands with an invalid password to reach ~'
or exceed an installation defined threshold value.

102 VM/SP System Programmer's Guide

---------_._-_.

• Type 05 records are written when VM/SP detects that a user has successfully
issued a LINK command to a protected minidisk not owned by that user.

• Type 06 records are written when VM/SP detects that a user has issued
enough LINK commands with an invalid password to reach or exceed an
installation defined threshold value.

• Type 07 records are written when a user logs off a device controlled by the
VTAM Service Machine (VSM). The records indicate the user's share of the
VSM resources used.

These records have the following formats:

Type 04

Column
1- 8
9-16
17-28
29-32
33-40
41-48
49-51
52-53
54-55
56-70
71-78
79-80

Type 05

Column
1- 8
9-16
17-28
29-32
33-40
41-48
49-51
52-70
71-78
79-80

Type 06

Column
1- 8
9-16
17-28
29-32
33-40
41-48
49-51

Contents
USERID specified on the command
Reserved for IBM use
Date and time of accounting (mmddyyhhmmss)
Terminal address (see Note 1)
Invalid password (see Note 2)
USERID that issued the AUTOLOG command
Reserved for IBM use
Current invalid password count
Accounting record limit (JPSLOGAR)
Reserved for IBM use
LUNAME for SNA terminal
Accounting card identification code (04)

Contents
USERID that issued the command
Account number
Date and time of accounting (mmddyyhhmmss)
Terminal address (see Note 1)
Reserved for IBM use
USERID of user that owns the minidisk
Minidisk address for which the LINK command was issued
Reserved for IBM use
LUNAME for SNA terminal
Accounting card identification code (05)

Contents
USERID that issued command
Account number
Date and time of accounting (mmddyyhhmmss)
Terminal address (see Note 1)
Invalid password (see Note 2)
USERID of user that owns the minidisk
Minidisk address for which the LINK command was issued

Chapter 12. Accounting Records 103

52-53
54-55
56-70
71-78
79-80

Type 07

Column
1- 8
9-16
17-78
79-80

Notes:

Invalid password count
Invalid password limit (JPSLNKAR)
Reserved for IBM use
LUNAME for SNA terminal
Accounting card identification code (06)

Contents
USERID or terminal identification
Accounting number or 0000
VT AM Service Machine accounting data
Accounting card identification (07)

1. For the terminal address, columns 29-32 may contain one of the following:

• 'NONE' - if no terminal is found
• resource id - for remote bisynchronous terminals
• real device addr - for all other cases.

2. For the invalid password, columns 33-40 may contain one of the following:

• incorrect password
• 'TERM/ERR' - if the line dropped during password entry
• 'TOO LONG' - if entered password is more that eight characters.

Accounting Records Created by the User

A virtual machine user can initiate the creation of an accounting record that
contains up to 70 bytes of information of his own choosing. To do this, he issues a
DIAGNOSE code X'4C' instruction with the following operands:

• The address ofa data area in virtual storage containing the information, in the
actual format, that he wishes to have recorded in columns 9 through 78 of the
card image record.

• A hexadecimal function code of X! 10!

• The length of the data area in bytes

The information on the accounting record is as follows:

Column
1- 8
9-78

79-80

Contents
Userid
User formatted data
Accounting record identification code (CO)

For information on using DIAGNOSE code X'4C' see "DIAGNOSE Instruction (.. ';
in a Virtual Machine" in this section. ~

104 VM/SP System Programmer's Guide

(

c/

.. ---_ ... ------

For SNA users, VM/VTAM Communications Services (VCNA) uses the VM/SP
user accounting record. See the veNA Installation and Terminal Use Guide for the
format of this record.

User Accounting Options

You may insert your own accounting procedures in the accounting routines. See
the "CP Conventions" section for information on CP coding conventions and load
list requirements. Operator responsibilities in such cases should be defined by the
installation making the additions. When designing such accounting procedures, you
should understand that:

1. The accounting routines are designed to be expanded. The entry point
provided in the accounting module for installation use is called DMKACON.
If you want to perform additional accounting functions, you should modify the
following copy files:

ACCTON (account on) -- for action at logon time. This is provided as a null
file. It can be expanded to provide additional functions at logon time. The
ACCTON routine can request the system to force the user off by returning a
nonzero value in SA VER2. However, if the operator is automatically logged
on during system initialization, the nonzero return code has no effect.

Note: The ACCTON COpy file distributed with VM/SP contains the basic
logic required to enhance system security based on the 3277 Operator
Identification Card Reader feature. Additional checking may be added to
examine or validate the data read from the identification card.

ACCTOFF (account off) -- for action at logoff time. This section contains the
code that fills in the account card fields. It does not reset any internal data.
This file exists in both DMKACO and DMKCKF (checkpoint). If the
ACCTOFF copy file is changed, both modules should be reassembled.

2. In addition to CP accounting, your installation can use the accounting routines
to supply virtual machine operating system accounting records. This provides a
means of job accounting and operating system resource use accounting.

3. If you specify, in the SYSACNT system generation macro, that your spooled
accounting records are to be sent to the reader of a virtual machine, you can
process the accounting data directly with your own accounting routines.

Chapter 12. Accounting Records 105

o

,'''' -"",

1 06 VM/SP System Programmer's Guide

---- -~--- .-.. ~--.~-.----

(

Chapter 13. Saved Systems, Discontiguous Saved Segments,
and Shared Segments

Saved Systems are systems you can IPL in a virtual machine, initialize, and save on
a disk along with all information you need to resume execution at the point where
you save the system. Saved systems provide an efficient means of IPLing systems
by bypassing many system initialization steps.

Discontiguous saved segments (DCSS) are areas of virtual storage outside the
address range of a virtual machine. These segments can contain read-only data or
reentrant code. Discontiguous saved segments provide an efficient means of
fetching programs by merely connecting discontiguous segments to a virtual
machine's address space.

Shared segments are segments within a saved system or DCSS. These segments can
contain read-only data or reentrant code that many users can share. Many users
can share all or portions of a saved system or DCSS. This reduces the demand for
real storage for the overall system.

A segment of storage is 64K bytes long on a 64K byte boundary.

The VM / SP Planning Guide and Reference contains more information on:

• Saved systems, discontiguous saved segments, and shared segments

• Loading and saving discontiguous saved segments

• Creating a system name table

• Using the GENERATE EXEC to reassemble DMKSNT

• Coding the NAMESYS, NAMENCP, and NAME3800 macros.

Loading and Saving Discontiguous Saved Segments

Before a discontiguous saved segment can be attached and detached by name, it
must be loaded and saved. The procedure for loading and saving discontiguous
saved segments is in the VM/SP Planning Guide and Reference. The discontiguous
saved segment must be loaded at an address that is beyond the highest address of
any virtual machine to which it will be attached. The system programmer should
make sure the named segment is loaded at an address that does not overlay the
defined virtual machine or any other named segment that may be attached at the

Chapter 13. Saved Systems, Discontiguous Saved Segments, and Shared Segments 107

same time. But, if the load address is unnecessarily high, real storage is wasted
because CP must have segment table entries for storage that is never used.

For example, assume you have five CMS virtual machines in your installation. Also
assume that all five use the CMS support for DOS program development and
testing which is in a 32K segment named CMSDOS. If each of your five CMS
virtual machines has a machine size of 320K you should load the CMSDOS
segment just beyond 320K. If you load CMSDOS at a much higher address, for
example 512K, you are wasting real storage. In this case, whenever one of your
CMS virtual machines attaches the CMSDOS segment, CP creates segment table
entries for a 544K (512K + 32K) virtual machine. Although the virtual machine
cannot refer to storage addresses beyond 320K or below 512K, CP still must have
segment table entries in nonpageable real storage for those virtual addresses.

Once the named segment is loaded at the correct address, you can save it by issuing
the CP SA VESYS command. (See the VM / SP Planning Guide and Reference for
the format of the SA VESYS command. To be sure that the CMS discontiguous
saved segment has segment protection, set the storage key for the segment to
something other than X'F' before you save it. Use the CMS SETKEY command
to change the storage key.

The format of the CMS SETKEY command is:

I SETKEY

where:

key

I key systemname [startadrJ

is the storage protection key, specified in decimal. Valid keys are
0-15.

systemname is the name of the saved system or segment for which the storage
protection is being assigned.

startadr is the starting address (in hexadecimal) at which the keys are to be
assigned. The address must be within the address range defined for
the saved system or discontiguous saved segments. Using the
startadr operand, you can issue the SETKEY command several
times and, thus, assign different keys to various portions of the
saved system or segment.

CP DIAGNOSE Code Interface With A DCSS

The linkage to attach and detach discontiguous saved segments is supported
through several CP DIAGNOSE codes.

The virtual machine is responsible for insuring that the discontiguous saved
segment it is attaching does not overlay other programming code. To do this, the
virtual machine must know how much virtual storage it has. By issuing
DIAGNOSE code X'60' during its initialization process, the virtual machine can
determine its virtual machine storage size.

108 VM/SP System Programmer's Guide

: (. /
, .

When the virtual machine needs to attach a discontiguous saved segment, it must
first ensure that the segment is available and that it does not overlay existing
storage. By issuing the DIAGNOSE code X' 64' with subcode X' OOOC', the
virtual machine can verify that a loadable copy of the discontiguous saved segment
exists on a CP-owned volume. This DIAGNOSE code is called the FINDSYS
function. FINDSYS returns the starting address of the segment. The virtual
machine should compare the starting address of the segment to its own ending
address; if the segment does not overlay existing storage, it can be loaded.

CP DIAGNOSE code X'64' with subcode X'OOOO' or X'0004' provides a
LOADSYS function. Subcode X'OOOO' loads a named segment in shared mode,
and subcode X' 0004' loads a named segment in nonshared mode. The section
"The DIAGNOSE Instruction in a Virtual Machine" contains a complete
description of the DIAGNOSE codes used in the discontiguous saved segment
interface.

If you want CMS to load the named segment in nonshared mode, you may do so by
issuing the CMS command:

SET NONS HARE segmentname

before CMS attaches the named segment. If the segment is loaded in nonshared
mode you can test and debug it using the CP TRACE, STORE, and ADSTOP
commands and the CMS DEBUG subcommands BREAK and STORE.

When CMS loads a named segment in shared mode, it issues the CP DIAGNOSE
code X' 64' with subcode X' 0000'. CMS issues the same code with subcode
X'0004' to load the named segment in nonshared mode.

When a discontiguous saved segment is loaded (or attached) to a virtual machine,
CP expands its segment table entries for that virtual machine to reflect the highest
address of the virtual machine.

When a named segment is successfully loaded, all of its storage is addressable by
the virtual machine. For example, when CMS attaches a named segment, it can
execute the routines contained in that segment. All of the commands that are
executable for CMS are also executable for the attached named segment, with the
following exceptions:

• The response for the CP QUERY VIRTUAL STORAGE command does not
reflect the storage occupied by the named segment.

• If you execute a command that alters storage (such as STORE), you are given
a nonshared copy of the named segment.

When the named segment is no longer needed, it can be detached. The CP
DIAGNOSE code X'64' subcode X'0008' is called the PURGESYS function; it
detaches named segments. When a named segment is detached, its storage is no
longer addressable by the virtual machine and CP updates its segment tables. The
entries for segments beyond the original virtual machine size are deleted and the
associated real storage is released.

Chapter 13. Saved Systems, Discontiguous Saved Segments, and Shared Segments 109

Shared Segment Protection

VM/SP protects shared segments by default. However, at system generation time,
the system programmer can designate whether a shared segment is to be protected
or not. To do this, the programmer uses the PROTECT operand of the NAMESYS
MACRO. (See "Coding the NAMESYS MACRO" in the VM/SP Planning Guide
and Reference for details).

Generally, the information contained in a protected shared segment should not be
modified. When segments are protected, CP ensures that one virtual machine does
not access a shared segment that another virtual machine has changed. In addition,
CP does not allow any user to change the storage keys on the protected page, thus
preventing other users from accessing the information on that page.

Unprotected shared segments differ from protected shared segments in that they
contain data that can be modified by any user that accesses the shared segment.
CP takes no action to protect either the contents or accessibility of these pages.
When segments are not protected, CP lets one virtual machine access a page in the
shared segment that may have been changed by another virtual machine. As a
result, all the virtual machines that share that storage must be aware of the change
activity that can occur and must act accordingly.

In addition, CP allows a user to change the storage keys on an unprotected page by
using the privileged instruction SSK. Changing the storage keys can prevent users
from accessing storage on the shared page; however, CP only simulates a privileged
instruction for a user in virtual supervisor state. Therefore, only a user in virtual
supervisor state is able to change the keys on unprotected shared pages.

Virtual Machine Operation with Protected Segments

When dealing with protected shared segments, CP determines if the current virtual
machine altered any pages within a segment before it dispatches another virtual
machine. Altering a page causes CP to take additional action before dispatching
the next virtual machine. The action that CP takes depends on what the virtual
machine did to alter the protected page.

The current virtual machine may have altered a protected shared page by issuing
one of the following commands:

• CPTRACE

• CPADSTOP

• CP STORE

In this instance CP gives exclusive use of the modified page to the virtual machine
that modified it. The user is given his own copy of the shared system that
contained the altered page. The user who issued the command receives the
message:

DMKATS181E SHARED SYSTEM name REPLACED WITH NON-SHARED COPY

110 VM/SP System Programmer's Guide

(

This user's virtual machine continues to execute using the private copy of the
shared system which contains the changes that were made to the page. CP
provides an unmodified copy of the page for other virtual machines to share.

The current virtual machine may have altered a protected shared page as a result of
issuing the STCP command. When STCP is issued, CP does not assign the
modified page to the user issuing the STCP command. Instead, the page changed
by the STCP command is written to the paging volumes. As a result, the change
made by the single user reflects to all the virtual machines using, that shared page.

If operations overlap and a STCP command is issued for a shared page that is
about to be assigned to a particular user (because that user just altered it), the user
that issued the STCP command receives the following message:

DMKCDS161E SHARED PAGE hex lac ALTERED BY userid

It should be noted that it is invalid to issue the STCP command to a shared segment
in attached processor systems. The store function is not performed and the user
receives the following message:

DMKCDS004E INVALID HEXLOC - xxxxxx

If the current virtual machine alters a protected shared page in any other way, then
the following happens:

1. CP sends the following message to the current virtual machine to identify the
altered page.

DMKVMA456W CP ENTERED; name-SHARED PAGE hex lac ALTERED

2. CP frees the storage occupied by the page, thus making it inaccessible. Later,
when a virtual machine references the page, CP brings a fresh copy of the page
into storage.

3. CP places the current virtual machine into console function mode thus stopping
the virtual machine. (To resume execution, the operator of this virtual machine
must issue the class G BEGIN command. The virtual machine then continues
to execute the unaltered system in shared mode.)

4. CP then dispatches another virtual machine.

I/O activity into protected shared segments is monitored by channel program
translators. As a result, a channel protection error occurs if a virtual machine
attempts to read data into a protected page. A virtual machine is able to write from
a page in a protected segment. Shared systems contain segments that are either
protected or non-protected. No distinction is made between shared and nonshared
systems for storage key fetch instruction simulation, DISPLAY command
execution, and page key handling. In addition, the Extended Control Program
Support (ECPS) and the Virtual Machine Assist feature (VMA) are available to
users running shared systems with the following exception:

The SSK instruction is not microcode assisted for a user who is running a
shared system.

Chapter 13. Saved Systems, Discontiguous Saved Segments, and Shared Segments 111

This exception is necessary because VMA updates the key on SSK instructions
(including SWPTABLE fields), but the new value is not detected by the hardware
change bit monitoring. A single bit in control register 6 controls whether or not the
ISK (Insert Storage Key) and SSK (Set Storage Key) instructions are handled by
the VMA feature. As a result, the dispatcher sets up control register 6 based on
the type of system that the virtual machine is running. If the virtual machine is
running a shared system of any kind (either protected or unprotected) then the
control registers are set up so that the SSK instruction is not microcode assisted.
Otherwise, the dispatcher sets up control register 6 so that the SSK instruction is
performed by the VMA feature.

112 VM/SP System Programmer's Guide

(

(

Chapter 14. The Virtual Machine Communication Facility

The Virtual Machine Communication Facility (VMCF) is part of the CP
component of VM/SP. VMCF provides virtual machines with the ability to send
~ata ~o and receive data from any other virtual machine.

VMCF is made up of five data transfer functions, seven control functions, a special
external interrupt (code X'4001 ') to asynchronously alert virtual machines to
pending messages, and an external interrupt message header to pass control
information (and data, at times) to another user.

VMCF is implemented by means of functions invoked using the DIAGNOSE
instruction code X'68' and a special40-byte parameter list called VMCPARM. A
VMCF function is indicated by a particular function subcode in the VMCPFUNC
field in the parameter list.

Note: Before you can use any other VMCF function, you must use the
AUTHORIZE function for communications. Before you can communicate with
another user, that user must also have used the AUTHORIZE function.

A special external interrupt (code X'4001 ') is used by module DMKVMC to
notify one virtual machine of a pending transfer of data. This interrupt is also used
to synchronize sending and receiving of data.

Along with this interrupt, the virtual machine receives a message header that is
logged into a preassigned virtual storage area. This message header is used to
define the type of request and to provide data transfer information, such as length
of data. The message header is also used to notify the originator of a transaction
of the success or failure of the transaction. In this case, the message header
includes such information as residual counts and data transfer return codes.

Figure 8 lists the VMCF functions and gives a brief description of each. The
functions are described in detail in the section "Descriptions of VMCF Functions".

Messages and data are directed to other virtual machines logically via the use rid.
Data is transferred in up to 2048-byte blocks from the sending virtual machine's
storage to the receiving virtual machine's storage. The amount of data that can be
moved in a single transfer is limited only by the sizes of virtual machine storage of
the respective virtual machines. Use of real storage is minimal. Only one real
storage page per virtual machine (a total of two pages, one for the sender and one
for the receiver) need to be locked during the data transfer.

The special message facility uses VMCF to send messages from one virtual
machine storage area to another virtual machine storage area. For a description of

Chapter 14. The Virtual Machine Communication Facility 113' .

Function

AUTHORIZE

UNAUTHORIZE

SEND

SEND/RECV

SENDX

RECEIVE

CANCEL

REPLY

QUIESCE

RESUME

IDENTIFY

REJECT

the special message facility and how it uses VMCF, see "Special Message Facility"
in this section.

Code* Comments

Control Initializes VMCF for a given virtual machine. Once
AUTHORIZE is executed, the virtual machine can execute
other VMCF functions and receive messages or requests from
other users.

Control Terminates VMCF activity.

Data Directs a message or block of data to another virtual machine.

Data Directs a message or block of data to another virtual machine,
and requests a reply.

Data Directs data to another virtual machine on a faster but more
restrictive protocol than the SEND function.

Data Allows you to accept selective messages or data sent via a
SEND or SEND /RECV function.

Control Cancels a message or data transfer directed to another user but
not yet accepted by that user.

Data Allows you to direct data back to the originator of a
SEND/RECV function, simulating full duplex communication.

Control Temporarily rejects further SEND, SENDX, SEND/RECV, or
IDENTIFY requests from other users.

Control Resets the status set by the QUIESCE function and allows
execution of subsequent requests from other users.

Control Notifies another user that your virtual machine is available for
VMCF communication.

Control Allows you to reject specific SEND or SEND/RECV requests
pending for your virtual machine.

Figure 8. Virtual Machine Communication Facility (VMCF) Functions

* The word "Data" in this column indicates a data transfer function whereas the
word "Control" indicates a VMCF control function.

11_= __ .a.L_ ,,:_ 1 ftll,. : I"-..- •• "i,..~+in" I:~,..ili+"
U:)IIIY lll~ v .. Lual IVla",I .. 1 I'::;; '""VI I II I lUI II""U ... " "" J

The following discussion presents ideas and suggestions for using the Virtual
Machine Communication Facility (VMCF).

114 VM/SP System Programmer's Guide

',,- ./

(""--" VMCF Applications

(

The VM/SP system with VMCF provides the user with the potential to apply new
and different techniques to current applications.

Multitasking Programming

Resource Sharing

The VMCF functions may be used to multitask virtual machines. Each virtual
machine can become a subtask (parallel or otherwise) of another virtual machine.
A virtual machine task can be a simple program or a large processor. The VMCF
functions provide the WAlT/POST, serialization and communication facilities to
control such an environment. The existing VM/SP functions provide efficient
scheduling, dispatching, and basic resource controls. The advantage of such an
environment is that a user is less restricted by operating system (software)
limitations and gains the flexibility of machine languages and hardware.

VMCF provides a clear and concise method for sharing and serializing resources
between virtual machines. The resources can range from multi-write minidisks to
entire processors. The control functions for resource sharing (such as, resource
management, serialization) can be contained in a virtual machine.

Virtual Extensions to VM/SP

Program Testing

It is conceivable that functions could be added to VM/SP without altering the
control program (CP). A special privilege class virtual machine could be used to
provide additional functions to non-privilege class users using the VMCF interface.
Similarly, CMS capabilities could be expanded (or at least appear to be expanded)
by linking CMS with other virtual machines.

The program testing capabilities offered by VMCF can range from device
simulation to teleprocessing network simulation. In particular, VMCF can be used
to provide external interactions from one virtual machine to another. A simulated
teleprocessing network could be constructed with virtual machines. Each virtual
machine would effectively become a node within the network. The network
structure could range from a simple tree type structure to a complicated multi-path
mesh type structure. The program logic within each node virtual machine would be
the same logic as required for a real teleprocessing node. In theory, a reasonably
complicated structure could be simulated without requiring the physical hardware.

The significant testing capability provided by VMCF is the ability to link the test
system with test/simulation routines in another virtual machine.

Chapter 14. The Virtual Machine Communication Facility 115

INTRA Virtual Machine Communication

Virtual Multiprocessing

Although the VMCF interface is intended for communication from one virtual
machine to another it can also be used to communicate within a single virtual
machine (wrap connection). The VMCF interface could conceivably be used to
link one or more operating system tasks that are logically separated by the
software. This would allow task to task communication rather than virtual machine
to virtual machine communication.

The VMCF interface could possibly be used to simulate a virtual multiprocessing
environment.

Security and Data Integrity

The VMCF interface provides the following security aids:

The user doubleword in the external interrupt message header can be used to
contain a security code to prevent unwarranted users from accessing a shared
data base or other confidential information.

• The AUTHORIZE SPECIFIC option allows a user to restrict messages sent to
his virtual machine. This option is useful when slave machines are to
communicate only with a host machine. The slave machines can AUTHORIZE
SPECIFIC with the host and prevent unwarranted users from clogging their
message queues.

• The design of VMCF prevents malicious users from intercepting transactions
in process for other users (for example, user D cannot execute a RECEIVE,
REPLY, REJECT or CANCEL to a message sent to user B from user A).

The VMCF support module is designed such that a user is always informed of
conditions that could threaten the integrity of his own data. The user is notified
either with a DIAGNOSE code X'68' return code or data transfer error code.
There is no internal buffering of user data within the control program (CP), a
message is always retained by either the SOURCE or SINK virtual machine. If a
SEND type request fails, the SOURCE still has a copy of the original message. If a
SINK REPLY fails, the SINK user still has a copy of the REPLY data. The
DIAGNOSE return code or data transfer error code can indicate to a user that a
transaction failed. It is up to the user to preserve the associated transaction data.
A VMCF user should consider the following notes:

1. The buffer used for SOURCE data in a SEND, SENDX or SEND/RECV
request should not be freed or reused until the final response external interrupt
is received by the SOURCE.

2. The buffer used for SINK data in a REPL Y function can be reused by the
SINK after the DIAGNOSE instruction (REPLY) has successfully completed.

3. The user parameter list (VMCPARM) may be re-used upon completion of the /',
DIAGNOSE instruction. At that point the VMCP ARM data has been copied "-j

116 VM/SP System Programmer's Guide

(

to a VMCF control block (VMCBLOK) by the control program. A user
should, however, maintain queues of VMCPARM data to associate an external
interrupt message header (VMCMHDR) with a particular request.

4. A user should always interrogate the DIAGNOSE return code or data transfer
error code for possible error conditions. It is the user's responsibility to
determine the types and extent of error recovery. The DIAGNOSE return
code 19 for a SOURCE SEND, SEND/RECV or SENDX request indicates
that an error was associated with the SINK user and for a SINK RECEIVE or
REPLY request indicates that an error was associated with the SOURCE user.
The user who receives this return code does not have to invoke error recovery
for himself but only be aware that the transaction did not complete successfully
because of an error associated with the other user.

Performance Considerations

There are several factors that can affect the performance of VMCF:

• The VMCF support module, DMKVMC, is a pageable CP module. If a user
has significant paging activity, it may be advantageous to either lock the
module in real storage (CP LOCK command) or alter the CP LOADLIST to
make DMKVMC resident.

• It is to a user's benefit to have the user parameter list, VMCP ARM, in the
same 4K page as the DIAGNOSE code X'68' instruction. This may eliminate
a paging operation.

• User support modules using the VMCF interface should be written as reentrant
modules and be contained within a CP shared segment whenever possible.
This helps reduce CP paging overhead.

For applications that involve serial message processing, the SENDX function is
the most efficient. The SENDX function eliminates the need for the SINK to
do a RECEIVE operation.

Note: Overall system VM/SP performance is not affected when VMCF is not
being used by an installation.

General Considerations

The SENDX function is a fast way to transfer messages or data and can be used in
place of the CP MSG command where the message length exceeds the capacity of
the terminal input line. Its use is somewhat restricted in that the maximum data
length must be agreed upon by all VMCF users and then remains fixed unless
renegotiated.

The SEND and SEND/RECV functions are better suited to transfer high volume
data base type information. This type of data transfer requires the flexibility of a
wide range of data lengths along with rigorous management and control techniques.

The QUIESCE function allows a virtual machine to discontinue receiving messages.
The virtual machine can process those messages already stacked and then use the

Chapter 14. The Virtual Machine Communication Facility 117

VMCF Protocol

The SEND Protocol

RESUME function to continue reception. The QUmSCE function also allows a
virtual machine to process all queued messages prior to terminating VMCF
operation.

The user parameter list, VMCPARM, is designed such that it can be used for any
function by simply varying the contents of its fields.

Users should keep copies of VMCPARMs for all requests made via the SEND,
SEND!RECV, or SENDX functions. When a final response interrupt is received
and the interrupt message header indicates no data transfer errors, the
corresponding VMCP ARM copy can be released. If a data transfer error is
indicated, the copy can be used to reinitiate the transaction.

VMCF provides four types of protocol: SEND, SEND!RECV, SENDX, and
IDENTIFY. The protocol used to communicate between two virtual machines
depends on the application of VMCF and conventions established by virtual
machine users authorized to use VMCF. A virtual machine must invoke the
AUTHORIZE function before it is allowed to use any of the other functions.

The types of transactions that virtual machines can be involved in are described by
a series of VMCF protocols. In these protocols the originating virtual machine is
called the "source" virtual machine. The destination virtual machine is called the
"sink" virtual machine.

The protocol for a transaction remains in effect for the duration of the transaction.

The SEND protocol defines a one-way transfer of data from source virtual machine
storage to sink virtual machine storage. The SEND protocol uses the SEND and
RECEIVE functions, as described in Figure 9. The source virtual machine first
transfers data to the sink virtual machine. This is done by executing the SEND
function which specifies the userid of the sink virtual machine, a message ID, and
the address and length of the data being sent. The sink virtual machine receives an
external interrupt from CP notifying it of the data transfer request. The sink
vhtua! machine can then re~pond via the RECEIVE function. The RECEIVE
request specifies the address and the length of the SINK buffer that is to receive
the data and causes the data to be transferred from source virtual machine storage
to sink virtual machine storage. When the data transfer is complete, the source . I
virtual machine receives an external interrupt from CP, indicating that the
transaction is complete and that the sink virtual machine has received the data.

All virtual machines authorized to use VMCF can send data using this protocol.

The amount of data transferred is limited only by virtual machine storage size.
Data is transferred in blocks of up to 2K (when necessary) and only one real page
frame is locked during the data transfer operation. r--"

~j

118 VM/SP System Programmer's Guide

(

CONTROL PROGRAM

m1KVMC

VMCF
Intp.rface

Module

Source Sink
V i dual Virtual
r1achi ne Machine

SEND > >

External Interrupt >

< < RECEIVE

>Data Transfer

<-External Interrupt-
(Final Response)

Figure 9. The SEND Protocol

The SEND/RECV Protocol

The SEND/RECV protocol defines a transaction calling for two-way transfer of
data, as described in Figure 10. The SEND/RECV protocol uses the
SEND/RECV, RECEIVE, and REPLY functions.

>

The source virtual machine initiates the transaction using the SEND/RECV
function. Using an external interrupt, CP notifies the sink virtual machine that
there is a message waiting. The sink virtual machine uses the RECEIVE function
to cause the data to be transferred from the source virtual machine's storage to the
sink virtual machine storage. The sink virtual machine now uses the REPLY
function to cause data to be transferred from its storage to the source virtual
machine's storage. When the REPLY function completes processing, CP causes an
external interrupt in the source virtual machine, notifying it that the transaction is
complete.

The SEND/RECV request requires that the source virtual machine specify the
address and length of the data to be transferred and the address where data is
expected from the REPLY function. (Both addresses are in source virtual machine
storage.) These addresses, along with the length of the data to be transferred, are
specified via the VMCPARM parameter list, described below.

When RECEIVE is issued by the sink virtual machine in response to the
SEND/RECV request, VMCPARM contains the address in sink virtual machine
storage where data is to be received. Finally, when the REPLY request is issued,

Chapter 14. The Virtual Machine Communication Facility 119

VMCPARM contains the address in the sink virtual machine storage from which
data is to be transferred.

Source
Virtual
Machine

SEND/RECV->--

CONTROL PROGRAM

DMKVMC

Vf1CF
Interface
Module

>

t--Extern

I
<

Sink
Virtual
Machine

al Interrupt >

-< RECEIVE

------------>Data Transfer------------->

/ /<-------<------REPLY

<---------------Data Transfer <--------

<--External Interrupt
(Final Response)

Figure 10. The SEND/RECV Protocol

The SENDX Protocol

The SENDX protocol defines a transaction calling for an expedited one-way
transfer of data. Figure 11 shows the SENDX protocol graphically. SENDX
differs'from the SEND protocol in that the sink virtual machine need not issue the
RECEIVE function; data is transferred from source virtual machine storage to sink
virtual machine storage at the same time the external interrupt from CP notifies the
sink virtual machine of the transaction. Data sent by the source virtual machine is
placed in the external interrupt buffer of the sink virtual machine.

Virtual machines using the SENDX protocol are responsible for specifying the
userid for the sink virtual machine, a message]D, the address and length of the
data being sent, and the external interrupt buffer address and data length for the
sink virtual machine. A virtual machine to be used as a sink virtual machine with
the SENDX protocol must specify this information via VMCPARM when that
virtual machine issues the AUTHOruZE function. The data length specified must
be at least as long as the maximum amount of data to be transferred during a
transaction; it need not be limited to the usual40-byte external interrupt buffer.
Effective use of the SENDX protocol requires that VMCF users agree on a
maximum size for SENDX data and then issue the AUTHORJZE function with the
appropriate external interrupt buffer size.

120 VM/SP System Programmer's Guide

]f the sink virtual machine has not provided enough SENDX buffer area in the
external interrupt buffer, CP notifies the source virtual machine that the
transaction was not completed.

When a SENDX data transfer is complete, CP directs a response external interrupt
to the source virtual machine, notifying it that the transaction is complete.

CONTROL PROGRAM

Source
Virtual
Machine

SENDX--->--

DrIK Vt1C

V~lCF
Interface

Module

>

Sink
Virtual
Machine

---------->Data Transfer------~--->

<-External Interrupt
(Final Response)

External Interrupt--->
(Buffer Contains Data)

Figure 11. The SENDX Protocol

The IDENTIFY Protocol

The IDENTIFY protocol defines a means for virtual machines to identify
themselves to other virtual machines by passing user-defined control information
via a standard VMCF message header. Figure 12 shows the IDENTIFY protocol
graphically.

When the IDENTIFY function is issued, CP directs an external interrupt to the
sink virtual machine. Along with the external interrupt, the sink virtual machine
receives a standard VMCF message header that contains user-defined information.
The IDENTIFY protocol does not cause a response external interrupt to be
directed to the source virtual machine.

Chapter 14. The Virtual Machine Communication Facility 121

------------~~-~-~~-

CONTROL PROGRAM

Source
Vi dual
Machine

DMKVMC

VMCF
Interface

Module

Sink
Virtual
Machine

IDENTIFY--->---------->

r-External Interrupt >
(IDENTIFY Sequence Complete)

Figure 12. The IDENTIFY Protocol

Descriptions of VMCF Functions

There are two types of VMCF functions: control and data transfer.

The Control Functions

The VMCF control functions allow efficient management of data transfer
operations from your virtual machine console. The control functions are:
AUTHORIZE, UNAUTHORIZE, CANCEL, QUIESCE, RESUME, IDENTIFY,
and REJECT.

AUTHORIZE: DIAGNOSE Code X'68' Subcode X'OOOO'

AUTHORIZE enables VMCF for a virtual machine; once AUTHORIZE has been
executed, the virtual machine can execute other VMCF functions and receive
messages and data from other authorized VMCF virtual machines. It is possible to
specify three options with the AUTHORIZE function: Sl'bCIFIC, PRIORITY,
and VMCPSMSG.

The SPECIFIC option authorizes communication with a specific virtual machine.
Any messages sent to the virtual machine from other than the specified virtual
machine will be rejected. The SPECIFIC option can be used in an application
where virtual machines desire to communicate with a master controller but not
among themselves. Under the special message facility, CP is authorized with every
virtual machine that is to receive messages sent with the SMSG command. Virtual
machines that are to receive messages must authorize themselves.

The PRIORITY option allows a virtual machine to authorize the receipt of priority C· -'.
messages. A virtual machine is allowed to send priority messages to another virtual .. ,,/'

122 VM/SP System Programmer's Guide

(

(.".

-'

machine only if the other virtual machine is authorized to receive priority messages.
A priority message is one that is queued ahead of nonpriority messages and
therefore accepted first.

When you execute the AUTHORIZE function, you must specify the address and
length of the external interrupt buffer for your virtual machine. The buffer must be
large enough to contain a fixed message header (40 bytes). The message header
identifies messages sent by other virtual machines or responses to messages you
might send to your own virtual machine.

If you are going to accept SENDX-type communications, you must specify the size
of the external interrupt buffer as 40 plus the maximum size of SENDX data that
you plan to accept. This has the effect of authorizing SENDX protocol. That is, a
virtual machine may receive data along with the external interrupt in its external
interrupt buffer. When a virtual machine sends data to another virtual machine via
the SENDX function the data must fit in that virtual machine's external interrupt
buffer or the function is rejected. Messages sent through the special message
facility require a buffer length of 169 bytes.

Any AUTHORIZE options in effect can be reset or changed by executing the
AUTHORIZE function again. If there are errors during execution of the
AUTHORIZE function, a virtual machine's authorization status is not changed.

UNAUTHORIZE: DIAGNOSE Code X'68' Subcode X'0001'

UNAUTHORIZE terminates VMCF activity for a virtual machine. The
UNAUTHORIZE function causes any stacked or queued messages associated with
the virtual machine to be purged. A virtual machine should execute the QUIESCE
function before executing UNAUTHORIZE if messages that are already queued
are to be handled. When a virtual machine executing UNAUTHORIZE has
pending final response external interrupts, the interrupts are purged. If a virtual
machine has pending SEND external interrupts from another source virtual
machine, a RESPONSE interrupt is reflected to the source indicating that the
virtual machine is no longer available.

CANCEL: DIAGNOSE Code X'68' Subcode X'0006'

CANCEL cancels a message or data transfer pending for but not accepted by
another VMCF virtual machine. A virtual machine can CANCEL messages it
originates with SEND, SENDX, or SEND/RECV functions. A message cannot be
canceled if any of the following conditions exist:

• The request was SENDX or IDENTIFY and the sink had already received the
SEND external interrupt.

The request was SEND and the sink had already executed the RECEIVE or
REJECT functions.

• The request was SEND/RECV and the sink had already executed the REPLY
or REJECT functions.

If the original request was SEND /RECV and the sink virtual machine had
executed the RECEIVE function but not the REPLY, the REPL Y can be canceled.

Chapter 14. The Virtual Machine Communication Facility 123

("i
A virtual machine is notified of this condition with a DIAGNOSE return code. (For ",-_j
a description of the return codes, see Figure 13.)

QUIESCE: DIAGNOSE Code X'68' Subcode X'0008'

QUIESCE temporarily rejects SEND, SENDX, SEND/RECV, or IDENTIFY
requests from other virtual machines. QUIESCE allows a virtual machine to
receive any stacked or queued messages but reject further SEND, SENDX,
IDENTIFY, or SEND/RECV requests from other virtual machines. QUIESCE
can be used to indicate to other virtual machines that the virtual machine is in
QUIESCE status, authorized for communication but not able to accept messages at
this time (e.g., entering slowdown, my buffers are full, try again later). The
IDENTIFY function could be used to inform other virtual machines that a
particular user is no longer in QUIESCE status. You should execute the QUIESCE
function before executing the UNAUTHORIZE function to avoid losing messages
(see "UNAUTHORIZE: DIAGNOSE Code X'68' Subcode X'OOOI '''.) A virtual
machine can reset the QUIESCE status (exit slowdown) by executing the
RESUME function. (See "RESUME: DIAGNOSE Code X'68' Subcode
X'0009'''). A virtual machine in QUIESCE status may continue to send messages
to other virtual machines. QUIESCE status for a virtual machine only affects
messages sent from other virtual machines.

RESUME: DIAGNOSE Code X'68' Subcode X'0009'

RESUME cancels the QUIESCE status, allowing your virtual machine to resume
reception of VMCF requests from other virtual machines. You can use the
IDENTIFY function to inform other virtual machines that your virtual machine is
no longer in QUIESCE status. (See "IDENTIFY: DIAGNOSE Code X'68'
Subcode X' OOOA '''.)

IDENTIFY: DIAGNOSE Code X'68' Subcode X'OOOA'

IDENTIFY notifies another virtual machine that your virtual machine is available
for VMCF communication. Use the IDENTIFY function after issuing the
AUTHORIZE function or after your virtual machine has been in the VMCF
QUIESCE state and you have issued the RESUME function. IDENTIFY causes
an external interrupt to be stacked for a specified virtual machine. The virtual
machine executing the IDENTIFY function specifies the userid of the user to
receive the external interrupt. The external interrupt identifies the virtual machine
executing the IDENTIFY function. The IDENTIFY function is provided to inform
a host or controller virtual machine that a virtual machine is activated (logged on)
and ready for VMCF communication. The IDENTIFY function can also be used
to inform other virtual machines that your virtual machine has exited QUIESCE
state. There is no response external interrupt associated with the IDENTIFY
function.

The IDENTIFY function can also be used to pass virtual machine defined control
information. The fields in the VMCF parameter list (VMCPARM) not used by the
IDENTIFY function may be used to contain additional virtual machine data.

124 VM/SP System Programmer's Guide

REJECT: DIAGNOSE Code X'68' Subcode X'OOOB'

REJECT selectively rejects pending SEND or SEND/RECV requests from other
VMCF virtual machines. REJECT causes a response external interrupt to be
reflected to the originator of a message. The external interrupt indicates to the
originator that the message was rejected. The user doubleword within the external
interrupt header may tell a user why the message was rejected. When the user of a
virtual machine executes the REJECT function, he specifies within the VMCF
parameter list (VMCP ARM) the message ID of the message to be rejected. A
virtual machine cannot reject a message sent with the SENDX function since the
message is received at the same time the external interrupt is received. The
REJECT function can be executed as response to either SEND or SEND/RECV
requests.

The Data Transfer Functions

The data transfer operations are SEND, SEND/RECV, SENDX, RECEIVE, and
REPL Y. These operations involve the movement of data from one virtual machine
storage to another virtual machine storage.

SEND: DIAGNOSE Code X'68' Subcode X'0002'

SEND directs a message or block of data to another virtual machine. Specify the
virtual address and length of data to be sent within the user parameter list
(VMCPARM). Also, specify in the parameter list a message ID to be associated
with the message and the userid of the user to receive the message (data). You can
also send a doubleword of data to be transmitted within the external interrupt
message header (refer to the section "VMCF User Doubleword"). If the SEND
function is executed with a data length of zero, only the user doubleword is
transmitted to the sink virtual machine. The sink virtual machine can then respond
with a RECEIVE function (zero length) and pass back a doubleword of data to the
source virtual machine. The external interrupt message header identifies the SEND
request. When the sink virtual machine executes a RECEIVE function, the
message is transmitted from the source virtual machine storage to the sink virtual
storage. There is no internal buffering of data within the control program (CP).
All data is transferred in 2K blocks from virtual storage to virtual storage. Data is
transferred in 2K blocks to test for STORE/FETCH protection violations. When
the data transfer function is complete, the source virtual machine receives a
response external interrupt indicating that the SEND request is complete. The sink
virtual machine receives a DIAGNOSE code X'68' return code indicating that the
RECEIVE function is complete. The return code can indicate error conditions
associated with the RECEIVE function or normal completion.

The sink virtual machine has the option to reject a message rather than execute the
RECEIVE function (See "REJECT: DIAGNOSE Code X'68' Subcode
X'OOll '''.) The source virtual machine may cancel a SEND request before the
sink virtual machine has executed a RECEIVE function or REJECT function (See
"CANCEL: DIAGNOSE Code X'68' Subcode X'0006'''.)

If you are executing the SEND function, you may specify the PRIORITY option.
The PRIORITY option causes the external interrupt for the sink virtual machine to
be queued ahead of all other nonpriority external interrupts. If there are other
PRIORITY external interrupts pending for the sink virtual machine, the queuing is

Chapter 14. The Virtual Machine Communication Facility 125

done in a first in first out manner. That is, PRIORITY interrupts are queued FIFO
among themselves but ahead of all nonpriority interrupts.

SEND/RECV: DIAGNOSE Code X'68' Subcode X'0003'

SEND/RECY provides the capability to both send and receive data in a single
VMCF transaction. The SEND/RECY function causes an external interrupt to be
queued for the sink virtual machine. When the sink virtual machine receives the
external interrupt, it can respond with the RECEIVE function. The RECEIVE
function causes data to be transferred from the source virtual storage to sink virtual
storage. The sink virtual machine can then respond with a REPL Y function. The
REPLY function causes data to be transferred from specified sink virtual storage to
a REPL Y buffer in the source virtual storage. The source virtual machine then
receives a response external interrupt indicating that the SEND/RECY request is
complete.

When the source virtual machine executes the SEND /RECV function it specifies
the address and length of both the SEND buffer and REPLY buffer. The address
and length specifications are contained within the user parameter list
(YMCPARM). The user parameter list also contains a message ID and userid of

-the user to receive the data (See the "YMCPARM Parameter List".)

The source virtual machine can cancel a previously executed SEND/RECY request
provided the sink virtual machine has not yet executed the REPL Y or REJECT
function. If the sink virtual machine has already executed the RECEIYE function,
only the REPLY can be canceled (see "CANCEL: DIAGNOSE Code X'68'
Subcode X'0006''').

The sink virtual machine can execute the REJECT function in response to the
SEND /RECY request and cause the entire operation to be terminated (See
"REJECT: DIAGNOSE Code X'68' Subcode X'OOll '''.)

The sink virtual machine can respond to a SEND/RECY request with the REPLY
function without executing the RECEIYE function. This has the effect of
informing the source virtual machine that the sink virtual machine cannot accept
data but that it can send data. The source virtual machine could have executed the
SEND /RECY function only as a means to solicit data from the sink virtual
machine. The application of this protocol is up to VMCF users. The user
doubleword can be used as a means to control such an application (See "VMCF
User Doubleword".)

You can execute a SEND /RECY request using the PRIORITY option. The
PRIORITY option causes the sink external interrupt for the SEND/RECY request
to be queued ahead of any other nonpriority external interrupts. Response external
interrupts directed to the source of a PRIORITY message are also queued in
priority order.

126 VM/SP System Programmer's Guide

- --- ------------

(~

\,~_J

(--

(/

SENDX: DIAGNOSE Code X'68' Subcode X'0004'

SENDX directs data to another virtual machine via a faster but more restrictive
protocol than the SEND function. SENDX function data reaches the sink virtual
machine at the same time the SEND external interrupt reaches the sink. To use the
SENDX function, the sink virtual machine must have an external interrupt buffer
large enough to contain both the standard message header and the data. The size
of the external interrupt buffer is specified when you execute the AUTHORIZE
function. Attempts to execute SENDX are rejected when the sink virtual
machine's external interrupt buffer is not large enough to contain the data. After
the sink virtual machine receives the SEND external interrupt and data, a response
external interrupt is directed to the source virtual machine. The SENDX function
eliminates the need for a sink virtual machine to execute a RECEIVE function.

A SENDX request can be canceled by the source virtual machine provided the
SENDX external interrupt has not yet been reflected to the sink virtual machine
(See "CANCEL: DIAGNOSE Code X'68' Subcode X'0006'''.)

Specify the SENDX buffer address and length in the user parameter list
(VMCPARM). The message ID and userid of the sink virtual machine are also
specified in VMCPARM.

The SENDX function can be executed with the PRIORITY option allowing the
SEND external interrupt to be queued ahead of all nonpriority external interrupts
for the sink virtual machine.

A SENDX request cannot be rejected by the sink virtual machine since the
message is received at the same time the external interrupt is received.

You can execute the SENDX function with a zero data length causing only the
message header and user doubleword to be transmitted.

RECEIVE: DIAGNOSE Code X'68' Subcode X'0005'

RECEIVE allows you to selectively accept messages or data sent via the SEND or
SEND /RECV functions. You must specify in the user parameter list
(VMCPARM) the virtual address and length of the RECEIVE buffer. The
parameter list also contains the message ill of the message to be received and
userid of the virtual machine that originated the SEND or SEND /RECV request.
When a virtual machine has more than one message pending, the RECEIVE
function can be executed to select messages in any order by message ID.

You can execute the REJECT function to reject messages sent by other virtual
machines. The REJECT function terminates the SEND or SEND/RECV request
(see "REJECT: DIAGNOSE Code X'68' Subcode X'OOOB'''.)

You can execute the RECEIVE function in response to a SEND/RECV request
and then- execute a REJECT function rather than a REPLY. The user doubleword
passed back with the REJECT function could indicate "RESEND", for example, if
the original data was not received correctly (depending on how you want to use the
protocol).

Chapter 14. The Virtual Machine Communication Facility 127

REPLY: DIAGNOSE Code X'68' Subcode X'OO07'

REPLY allows you to direct data back to the sender of a SEND /RECY function.
(This simulates full duplex communication.) The REPLY function is used with the
SEND /RECY function. A user who receives a SEND /RECY external interrupt
normally responds by executing the RECEIVE function. The RECEIVE function
causes data to be transferred from the source virtual storage to the sink virtual
storage. The sink virtual machine can then respond with the REPL Y function
causing data to be transferred from specified sink virtual storage to the source
virtual storage. The REPL Y function causes a response external interrupt to be
reflected to the source virtual machine.

The user parameter list (YMCPARM) identifies the virtual buffer address and
length of reply data. When the REPLY function is executed, the user parameter
list (VMCP ARM) also contains the message ID and the userid of the virtual
machine to receive the reply.

The REPL Y function can be executed with a zero data length indicating no
response. You can transmit a reply (zero length or otherwise) using the user
doubleword.

A reply can be executed in response to a SEND /RECY request without executing
the RECEIYE function. This indicates that you do not want to receive the
message but may want to send a reply. A reply of zero length could be executed
simply to terminate the SEND/RECY request. The application of the REPLY
function is a user decision. It must be used to terminate a SEND/RECY request,
however, unless the REJECT function is executed (See "REJECT: DIAGNOSE
Code X ' 68 1 Subcode X'OOll I".) The reply is complete when the source virtual
machine receives the external interrupt response.

A REPLY function cannot be executed in response to a SEND request (this is a
protocol violation).

Invoking VMCF Functions

VMCF functions are invoked by means of:

• DIAGNOSE code X ' 68 1 subcodes
The yNiCPARM parameter list
External interrupt code X I 400 1 I
The external interrupt message header.

Diagnose Code X'68'

All VMCF functions are invoked from within assembler language programs by
means of DIAGNOSE code X ' 68 1 :

o 2 3

83 Rx Ry CODE

128 VM/SP System Programmer's Guide

(-

(-

where:

83 is X'83' and interpreted by the assembler as the DIAGNOSE
instruction.

Rx

Ry

CODE

Note: There is no mnemonic for DIAGNOSE.

specifies a register containing the address of the VMCPARM
parameter list.

is a register that contains a return code.

is X' 0068' and specifies that you are requesting execution of a
VMCF.

The VMCPARM Parameter List

The Rx register of DIAGNOSE code X'68' contains the address of a parameter
list (VMCPARM). This parameter list is used to specify the VMCF function to be
executed, along with other information required by VMCF to execute that
function. The address of VMCPARM must be doubleword-aligned. The following
is the format of the VMCP ARM parameter list and a description of each of the
fields in that list.

0 V*1 I V*2 I VMCPFUNC VMCPMID

8 VMCPUSER

10 VMCPVADA VMCPLENA

18 VMCPVADB VMCPLENB

20 VMCPUSE

where:

V* 1 (VMCPFLG 1)
is a flag byte used to specify options associated with a particular
function.

This flag byte can be set to the following values:

VMCPAUTS (X'80')
Indicates, for the AUTHORIZE function, an AUTHORIZE
SPECIFIC request. When this bit is set, the VMCPUSER field
must contain the userid of the sink virtual machine. The status of
the specified sink virtual machine is not checked by the control
program (CP) at this time.

VMCPPRTY (X'40')
Indicates, for SEND, SEND/RECV, SENDX, and IDENTIFY
requests, a PRIORITY message request. For an AUTHORIZE
request, it indicates an AUTHORIZE PRIORITY request. You

Chapter 14. The Virtual Machine Communication Facility 129

cannot send PRIORITY messages to another virtual machine
unless that virtual machine has been authorized for PRIORITY
messages. The SEND and RESPONSE external interrupts for a
PRIORITY message are queued ahead of pending nonpriority
external interrupts.

VMCPSMSG (X'20')
Indicates that the virtual machine accepts messages sent via the
SMSG command.

Bits 3 through 7 are reserved for IBM use.

V*2 (VMCPFLG2)
Reserved for mM use.

VMCPFUNC
Contains the halfword DIAGNOSE code X'68' subcode that defines
the VMCF function being requested as follows:

Hexadecimal
Command Subcode Function

VMCPAUTH X'OOOO' AUTHORIZE
VMCPUAUT X'OOOl' UNAUTHORIZE
VMCPSEND X'OOO2' SEND
VMCPSENR X'OOO3' SEND/RECV
VMCPSENX X'OOO4' SENDX
VMCPRECV X'OOO5' RECEIVE
VMCPCANC X'OOO6' CANCEL
VMCPREPL X'OOO7' REPLY
VMCPQUIE X'OOO8' QUIESCE
VMCPRESM X'OOO9' RESUME
VMCPIDEN X'OOOA' IDENTIFY
VMCPRJCT X'OOOB' REJECT

VMCPMID
Contains a unique message identifier associated with a transaction.
The source virtual machine must originate the message ID for SEND,
SEND/RECV, and SENDX requests. The message ID is used by the
sink virtual machine (along with VMCPUSER) to respond to the
source request with a RECEIVE, REPLY, or REJECT request. The
message ID allows the sink virtual machine to selectively RECEIVE,
REPL Y, or REJECT messages when more than one message is
enqueued. The message ID is used by both the source and sink as a
unique identification for all messages. You may send messages with
the same message ID to multiple users; you cannot send multiple
messages with the same message ID to one user. Once a transaction is
completed, however, the message ID may be reused.

VMCPUSER
Specifies the userid of the sink virtual machine for SEND,
SEND/RECV, SENDX, IDENTIFY, and CANCEL requests and the (r~
userid of the source virtual machine for RECEIVE, REPLY, and "-j

130 VM/SP System Programmer's Guide

!,
~ ~~ " .. ~
'I'
'r. -- -~.------ ------'

(

(~/

REJECT requests. The sink virtual machine uses this field in
combination with the message ID (VMCPMID) to respond to source
requests. When the original source parameter list VMCPARM is
passed to the sink as the message header VMCMHDR, the userid is
changed from sink to source.

This field is also used to specify the SPECIFIC userid for an
AUTHORIZE SPECIFIC request.

VMCPVADA
Contains one of four addresses, depending upon which VMCF
function is requested.

For SEND, SEND/RECV, and SENDX requests, VMCPVADA
contains the address of the source virtual machine data. For
RECEIVE requests, VMCPV ADA contains the address of a sink
virtual machine RECEIVE buffer. For REPLY requests,
VMCPV ADA contains the address in sink virtual machine storage
where REPLY data is located. For an AUTHORIZE request,
VMCPV ADA specifies the address of the virtual machine external
interrupt buffer.

The length of the associated data or buffer is specified in the
VMCPLENA field.

VMCPLENA
Contains the length of the data sent by a user, the length of a
RECEIVE buffer, or the length of an external interrupt buffer,
whichever is specified in the field VMCPV ADA. The size of the value
specified in VMCPLENA is restricted only by virtual machine storage
size.

The sink virtual machine can use the value in this field as the data
length for RECEIVE operations.

VMCPVADB
Contains the address of a source virtual machine's REPLY buffer for
a SEND /RECV request. When the sink virtual machine issues a
REPLY in response to a SEND /RECV from the source virtual
machine, the REPLY data is moved in this buffer. The length of the
REPLY buffer is contained in the field VMCPLENB.

VMCPLENB
Specifies the length of the source virtual machine's REPLY buffer.
The sink virtual machine uses this field to determine the maximum
length of the REPLY. A corresponding field within the response
message header contains a residual data count. The source virtual
machine uses this residual count to determine the length of the sink
reply. The original REPLY buffer length (less the residual count) is
the length of the REPL Y from the sink virtual machine.

Chapter 14. The Virtual Machine Communication Facility 131

VMCPUSE
Contains the VMCF user doubleword. The user doubleword is
transmitted to the sink virtual machine in the SEND message header
for SEND, SEND/RECV, SENDX, and IDENTIFY requests. For
RECEIVE, REPLY, and REJECT requests, the user doubleword is
transmitted to the source virtual machine within the RESPONSE
message header. The sink virtual machine can transmit the user
doubleword to the source virtual machine with REJECT or REPLY
requests only if the original request was a SEND /RECV. The user
doubleword is transmitted only with requests that result in SEND or
RESPONSE external interrupts.

The following chart summarizes the VMCPARM fields required for
execution of each of the VMCF functions. Possible return codes
associated with each function are also listed. A discussion of the
return codes and their meanings can be found in the section
"DIAGNOSE Code X'68' Return Codes".

132 VM/SP System Programmer's Guide

C)

VMCF
Function Applicable VMCP ARM Parameters . Return Codes

AUTHORIZE VMCPFLG 1 - SPECIFIC/PRIORITY option 0,1,2,6,15
VMCPFUNC - X'OOOO' - subcode
VMCPUSER - SPECIFIC userid
VMCPV ADA - external interrupt buffer address
VMCPLENA - external interrupt buffer length

UNAUTHORIZE VMCPFUNC - X'OOOl' - subcode 0,2,4,15

SEND VMCPFLG 1 - PRIORITY option 0,1,2,4,5,8,9,
VMCPFUNC - X'0002' - subcode 10,15,18
VMCPMID - message identifier
VMCPUSER - sink userid
VMCPV ADA - SEND data address
VMCPLENA - SEND data length
VMCPUSE - user doubleword

(See Note)

SEND/RECV VMCPFLG 1 - PRIORITY option 0,1,2,4,5,8,9,
VMCPFUNC - X'0003' - subcode 10,15,18
VMCPMID - message identifier
VMCPUSER - sink userid
VMCPV ADA - SEND data address
VMCPLENA - SEND data length

(VMCPV ADB - REPLY buffer address
VMCPLENB - REPLY buffer length
VMCPUSE - user doubleword

SENDX VMCPFLG 1 - PRIORITY option 0,1,2,4,5,7,8,
VMCPFUNC - X'0004' - subcode 9,10,15,18
VMCPMID - message identifier
VMCPUSER - sink userid
VMCPV ADA - SEND data address
VMCPLENA - SEND data length
VMCPUSE - user doubleword

(See Note)

RECEIVE VMCPFUNC - X'0005' - subcode 0,1,3,2,4,5,6,
VMCPMID - message identifier 12,13,15,16,17
VMCPUSER - source userid
VMCPV ADA - RECEIVE buffer address
VMCPLENA - RECEIVE buffer length
VMCPUSE - user doubleword

CANCEL VMCPFUNC - X'0006' - subcode 0,2,3,4,5,11,
VMCPMID - message identifier 12,14,15,20
VMCPUSER - sink userid

Figure 13 (Part 1 of 2). VMCF Functions, Parameters, and Return Codes

(-/

Chapter 14. The Virtual Machine Communication Facility 133

VMCF
Function Applicable VMCPARM Parameters Return Codes

REPLY VMCPFUNC - X'0007' - subcode 0,1,2,3,4,5,6,
VMCPMID - message identifier 12,13,15,16,
VMCPUSER - source userid 17,19
VMCPV ADA - REPLY data address
VMCPLENA - REPLY data length
VMCPUSE - user doubleword

QUIESCE VMCPFUNC - X'0008' - subcode 0,2,4,15

RESUME VMCPFUNC - X'0009' - subcode 0,2,4,15

IDENTIFY VMCPFLG 1 - PRIORITY option 0,2,4,5,9,10
VMCPFUNC - X'OOOA' - subcode 15,18
VMCPUSER - sink userid
VMCPUSE - user doubleword

(See Note)

REJECT VMCPFUNC - X'OOOB' - subcode 0,2,3,4,12,13,
VMCPMID - message identifier 15
VMCPUSER - source userid
VMCPUSE - user doubleword

Figure 13 (Part 2 of 2). VMCF Functions, Parameters, and Return Codes

Note: Fields within the user parameter list that are not used by a particular
function may be used to contain additional user data. The data, however, can only
be passed to the sink virtual machine by the source virtual machine. The REPLY
buffer address and length fields (VMCPV ADB+ VMCPLENB) may be used to
transmit additional user data for SEND and SENDX requests. All fields except
VMCPFLGl, VMCPFLG2, VMCPFUNC, and VMCPUSER may be used to pass
control information with an IDENTIFY request.

External Interrupt Code X'4001'

External interrupt code X' 400 l' is a special interrupt code recognized by CP as
part of a VMCF transaction. Just as virtual machines use the DIAGNOSE
instruction to communicate with CP, so too CP uses this interrupt code to
communicate with virtual machines. External interrupt code X'4001' and
DIAGNOSE code Xi 68 i provide the mechanism VMCF uses io synchronize
message processing.

The External Interrupt Message Header

Associated with external interrupt code X'4001' is a storage area referred to as the
external interrupt message header. The external interrupt message header
(VMCMHDR) contains the control information required to SEND and RECEIVE
messages. The fields withln the message header are, for the most part, a copy of
VMCPARM parameter list fields.

Before the receiving virtual machine can receive special messages via VMCF, it
must

134 VM/SP System Programmer's Guide

o

(
~ .. '

/

• Enable itself to receive external interrupts

Set bit 31 of control register 0 to a value of 1

I. Authorize itself by issuing DIAGNOSE code X' 68' , AUTHORIZE.

The parameter list, VMCPARM, specified with DIAGNOSE code X'68' must

• Contain a pointer to an external-interrupt buffer

• Specify a buffer length of 169 bytes

• Have the special message flag (VMCPSMSG) turned on.

The receiving virtual machine may tum on this flag by setting VMCPSMSG to a
value of B'l'. Optionally, the receiving virtual machine may tum on the special
message flag by issuing the class G command, SET SMSG ON. For information on
using DIAGNOSE code X' 68' , see "Description of VMCF Functions" and
"Invoking VMCF Functions."

CP passes the external interrupt buffer (containing the external interrupt message
header) to the user's interrupt handler for processing. The user must specify the
address and length of this buffer when he executes the AUTHORIZE function.
Then, when the user sends or receives messages, CP knows the address of the
buffer and passes it to the appropriate interrupt handler routine.

Fields VMCMFUNC through VMCMUSE correspond to the fields VMCPFUNC
through VMCPUSE in the VMCPARM parameter list transmitted by the source
virtual machine. The format of the message header and optional SENDX data
buffer is:

o V*1 I V*2 I VMCMFUNC VMCMMID

8 VMCMUSER

10 VMCMVADA VMCMLENA

18 VMCMVADB VMCMLENB

20 VMCMUSE

28 VMCMBUF
Optional Message Buffer

where:

V*l (VMCMSTAT)
is a status byte associated with the message header. The bits within
the status byte are defined as follows:

VMCMRESP (X'80')
Indicates final external interrupt (transaction complete). This bit
is set for all RESPONSE external interrupts and the SEND
external interrupt resulting from an IDENTIFY request.

Chapter 14. The Virtual Machine Communication Facility 135

VMCMRJCT (X'40')
This bit is set in a RESPONSE external interrupt to indicate that
the sink virtual machine rejected the message via the REJECT
function.

VMCMPRTY (X'20')
This bit is set in both SEND and RESPONSE external interrupts
to indicate a priority message. A virtual machine must be
authorized for priority messages before it can receive them.

V*2 (VMCMEFLG)
Contains a data transfer error code indicating success or errors
associated with a data transfer operation. (Refer to the section "Data
Transfer Error Codes".)

VMCMFUNC

VMCMMID

Contains the function subcode of the original request. The sink virtual
machine uses this field to determine the type of request. The possible
subcodes are:

VMCPSEND X'0002' - SEND
VMCPSENR X'0003' - SEND/RECV
VMCPSENX X'0004' - SENDX
VMCPIDEN X'OOOA' - IDENTIFY

Contains the message ID associated with the original source request.

VMCMUSER
Contains the userid of the source virtual machine for SEND external
interrupts and the userid of the sink virtual machine for RESPONSE
external interrupts. If a SMSG command was issued, "SYSTEM"
appears in this field.

VMCMVADA
Contains the address of the original SEND data for SEND requests.
This field would normally have no meaning to the sink virtual
machine.

VMCMLENA
Indicates the length of SEND data for SENU external interrupts. It
indicates a data transfer residual count for RESPONSE external
interrupts.

VMCMVADB
Contains the virtual address of the REPLY buffer for SEND /RECV
requests. This field has no meaning to the sink virtual machine.

VMCMLENB

136 VM/SP System Programmer's Guide

Contains the length of the source virtual machine REPLY buffer for
SEND/RECV external interrupts; contains the residual REPLY count
for RESPONSE external interrupts. The sink virtual machine uses this
field to determine the maximum length of the REPL Y; the source

------- --------------

VMCMUSE

VMCMBUF

VMCF User Doubleword

virtual machine uses this field to determine the length of the sink
virtual machine REPLY data.

Contains the user doubleword, which is transmitted to the sink virtual
machine with SEND external interrupts and to the source virtual
machine with RESPONSE external interrupts. If a SMSG command
was issued, this field contains the virtual machine identifier of the
issuer of that command.

This is the optional data buffer used by the SENDX function. The
data sent with the SENDX function is moved into this buffer. The
buffer size is specified when a virtual machine executes the
AUTHORIZE function.

VMCF provides a doubleword for user data that can be transmitted within the
external interrupt message header. A user supplies the doubleword of data within
the parameter list (VMCPARM) for certain VMCF requests (that is, SEND,
SENDX, SEND/RECV, RECEIVE, REPLY, IDENTIFY, and REJECT). You
can use the user doubleword in any manner you desire. The doubleword is
transmitted within the external interrupt message header for both SEND and
RESPONSE type external interrupts.

The user doubleword can be used for control information in a user-defined higher
level protocol. That is, you could have your own message headers defined within
the data transmitted from one virtual machine to another. The user doubleword
could be used to control such a protocol.

The user doubleword can also be used as a security code or provide additional
information for functions such as IDENTIFY and REJECT. You can specify a
zero data length for any VMCF transaction. The effect of this is that only the
external interrupt message header with user doubleword is transmitted or received.

DIAGNOSE Code X'6S' Return Codes

The virtual machine initiating a VMCF request receives a return code in the
general register specified as "Ry" in the DIAGNOSE instruction. The return code
indicates successful completion of the request or error conditions associated with
the request. Figure 14 is a description of all possible return codes returned to a
virtual machine executing DIAGNOSE code X' 68' .

Chapter 14. The Virtual Machine Communication Facility 137

Return
Code Meaning

0 The normal response. Indicates successful completion of a request or successful initiation of a
request. For example, for an AUTHORIZE request, 0 indicates that the AUTHORIZE
function is complete; for a SEND request, 0 indicates that the SEND was successfully initiated.
The SEND request, of course, would not be complete until the final RESPONSE external
interrupt was received by the source virtllal machine.

1 Invalid virtual buffer address or length. A virtual machine attempted to execute a VMCF
function but specified an invalid address or length:

• External interrupt buffer not within virtual storage.
• External interrupt buffer address not doubleword aligned.
• Message data or buffer not within virtual storage.
• External interrupt buffer less than the standard message header length.

2 Invalid function code. A virtual machine attempted to execute a VMCF function but specified
an unsupported subcode.

3 Protocol violation. A virtual machine attempted to execute a function which would violate the
defined protocol:

• Cancel a message it did not originate.
• Reply to a message not sent via SEND/RECV.
• Executed more than one RECEIVE to a SEND or SEND /RECV request.

4 Source virtual machine not authorized. A virtual machine attempted to execute a function
(other than AUTHORIZE) but was not authorized to use VMCF (had not successfully
executed the AUTHORIZE function).

5 User not available. A virtual machine attempted to execute a function and specified a virtual
machine currently not available for VMCF communication:

• Not logged on.
• Not authorized for VMCF communication. .
• Virtual machine authorized SPECIFIC for some other virtual machine.

6 Protection violation. A virtual machine attempted to execute a VMCF function that would
result in a STORE or FETCH protection violation. The virtual machine specified a data or
buffer address that contained a storage key other than its current PSW key (assume the key
was nonzero). This return code is also set if a virtual machine attempts to receive data in a
CP-owned shared segment.

7 SENDX data too large. A virtual machine attempted to execute a SENDX request but
:spt:cifit:u a SENDX uala it:n!;lh iar!;t:f lhan lht: :sink virluai machint: t:xlt:rnai inlt:rrupl bufft:r.

8 Duplicate message. A virtual machine attempted to execute a SEND-type function and
specified a message ID and virtual machine userid for which there was already an active
message.

9 Target virtual machine in QUIESCE status. A virtual machine attempted to execute a
SEND-type function and specified a sink virtual machine userid of a virtual machine in
QUIESCE status.

Figure 14 (Part 1 of 2). DIAGNOSE Code X'6S' Retutn Codes

138 VM/SP System Programmer's Guide

(Return
Code Meaning

10 Message limit exceeded. A virtual machine attempted to execute a SEND function but already
had 50 messages active. The virtual machine should clear any pending RESPONSE external
interrupts or CANCEL previously sent messages to continue processing.

11 REPLY canceled. The source virtual machine executed a CANCEL to a previous
SEND/RECV request. The sink virtual machine had already RECEIVED the message but had
not yet executed a REPL Y. The sink virtual machine REPL Y in this case is canceled. The sink
virtual machine receives return code 12 (message not found) when it executes the REPLY
function.

12 Message not found. A virtual machine attempted to execute a function and specified a message
ID and virtual machine userid for a message that does not exist. The message may have existed
at one time but could have been cancelled by the originator.

13 Synchronization error. The sink virtual machine attempted to respond to a message for which it
had not yet received the SEND external interrupt. This condition can occur if the sink virtual
machine is anticipating certain messages but does not wait for the SEND external interrupt.

14 CANCEL too late. A virtual machine attempted to CANCEL a message that had already been
processed. The sink virtual machine had already responded with RECEIVE or REJECT
(SEND request) or REPLY or REJECT (SEND/RECV request). This return code is also set
if a virtual machine attempts to CANCEL a SENDX request for which the sink virtual machine
had already received the SEND external interrupt.

15 Paging I/O error. A virtual machine attempted to execute a function which resulted in an
uncorrectable paging I/O error. This is a hardware failure.

16 Incorrect length. A virtual machine executed a RECEIVE or REPL Y function and specified a
RECEIVE buffer length less than the source virtual machine SEND data length or a REPL Y
data length larger than the source virtual machine REPL Y buffer length. The source virtual
machine receives a data transfer return code identifying the condition.

17 Destructive overlap. A virtual machine executed a RECEIVE or REPL Y function and
specified a RECEIVE buffer address which overlapped the source virtual machine SEND data
address or a REPLY data address that overlapped the source virtual machine REPL Y buffer
address. This condition can occur only when a virtual machine is sending messages to itself (a
"wrap connection").

18 User not authorized for PRIORITY messages. A virtual machine attempted to send a
PRIORITY message to a virtual machine that was not authorized to accept PRIORITY
messages (that is, had not executed the AUTHORIZE function with the PRIORITY option).

19 Data transfer error. A virtual machine executed a request that resulted in a data transfer error
condition associated with the other virtual machine. The return code is returned to the sink
virtual machine to indicate that the transaction did not complete successfully.

20 CANCEL - busy. A virtual machine attempted to cancel a message being processed. If this is
a SEND/RECV request and the RECEIVE function is in process, repeated retries may cancel
the REPL Y function.

Figure 14 (Part 2 of 2). DIAGNOSE Code X'68' Return Codes

C.'"
/

Chapter 14. The Virtual Machine Communication Facility 139

Data Transfer Error Codes

Error
Code

0

1

5

6

7

15

16

17

19

When a virtual machine executes a SEND, SENDX, or SEND/RECV function, the
normal DIAGNOSE return code is zero, indicating that the request was
successfully initiated. However, when the actual data transfer takes place, errors
can occur. All errors occurring at data transfer time are communicated to the
source virtual machine in the RESPONSE external interrupt message header,
VMCMHDR. Figure 15 shows error codes indicating conditions that are possible
after the SENDX, SEND, or SEND/RECV request is initiated. The error codes
correspond to DIAGNOSE return code numbers.

Meaning

The normal response (no errors).

Invalid buffer address or length. The SEND and/or RECEIVE buffers used for a data
transfer operation are not within the virtual machine's virtual storage. The beginning and
ending addresses were valid when a request was initiated but all addresses are not valid.

User not available. The sink virtual machine executed the UNAUTHORIZE function,
executed the AUTHORIZE SPECIFIC function again, or implicitly reset his virtual
machine after the source virtual machine request was initiated.

Protection violation. The storage key for a virtual machine's SEND or RECEIVE buffer
did not match its PSW key at the time the transfer was initiated (assume the key was
nonzero). This error code is also set if a virtual machine attempts to RECEIVE data into
a CP-owned shared segment.

SENDX data is too large. The sink virtual machine executed AUTHORIZE again and
specified an external interrupt buffer size less than the buffer size at the time a SENDX
function was executed. The SENDX data no longer fits in the sink virtual machine
buffer.

Paging I/O error. An uncorrectable paging I/O error occurred during the data transfer
operation attempting to fetch a virtual machine SEND or RECEIVE buffer. This is a
hardware failure.

Incorrect length. The sink virtual machine executed a RECEIVE function with a data
length (VMCPLENA) smaller than the original SEND data length or a REPLY function
with a REPLY data length larger than the source virtual machine REPLY buffer length.

Destructive overlap. A virtual machine was communicating with itself in a "wrap
connection" and his SEND or RECEIVE buffers overlapped one another (intra-virtual
machine communication).

Data transfer error. A data transfer error occurred which was associated with the other
virtual machine. The transaction did not complete successfully.

Figure 15. DIAGNOSE Code X'68' Data Transfer Error Codes

140 VM/SP System Programmer's Guide

C)

(

Chapter 15. Inter-User Communications Vehicle

IUCV Paths

The Inter-User Communications Vehicle (IUCV) is a communications facility that
allows users to pass any amount of information. IUCV enables a program running
in a virtual machine to communicate with other virtual machines, with a CP system
service, and with itself.

An IUCV communication takes place between a source communicator and a target
communicator. The communication takes place over a predefined linkage called a
path. Each communicator can have multiple paths, and each communicator can
receive or send multiple messages on the same path simultaneously.

IUCV provides functions, through the IUCV macro instruction, to:

• Create and dismantle paths
• Send and reply to messages
• Determine if messages are pending and describe a pending message

Selectively receive or reject messages.

Each message is represented to CP by a control block called a MSGBLOK. This
MSGBLOK is moved among different queues at different stages in a
communication. Communicators can receive information about pending messages
either by interrogating the queues of MSGBLOKs or by receiving an external
interruption for each message.

The IUCV directory control statement authorizes the establishment of a path
between one virtual machine and another, or between a virtual machine and a CP
system service. The number of possible paths for a communicator is limited to
65,535 (via the MAXCONN keyword of the OPTION directory statement). If a
maximum number of paths is not specified in the directory, a communicator can
establish a maximum of four paths. For CP system services, the maximum number
of possible paths is 4096.

Once authorized, users establish a path when the source communicator invokes the
CONNECT function and the target communicator invokes the ACCEPT function.
Either communicator can terminate an established path via the SEVER function.
The target communicator can also prevent the establishment of a path by invoking
the SEVER function. In addition, communication over a path can be temporarily
suspended when a communicator invokes the QUIESCE function; the quiesced
path can be reactivated when a communicator invokes RESUME.

Chapter 15. Inter-User Communications Vehicle 141

A single communicator can have multiple paths defined, and two virtual machines
may have multiple paths between them. The communicator could be a source
communicator on some of its defined paths, a target communicator on other paths,
and both a source and a target communicator on still other paths. Communication
over any and all paths can occur simultaneously.

Every path has two ends: the source communicator's end and the target
communicator's end. Each end of a path is described by a path description. There
are two path descriptions for each defined path. The source communicator has a
description of the path from the source's perspective and the target communicator
has a description of the same path from the target's perspective.

Each of the two path descriptions for a path has a path identification that is unique
for each communicator. Path identifications are assigned by IUCV when
communicators invoke the CONNECT and ACCEPT functions. When invoking
IUCV functions, the source communicator identifies the path by using the source's
path identification. The target communicator identifies the same path to IUCV by
using the target's path identification. The only relationship that exists between a
path's identifications is that the two identifiers are names for the two descriptions
of the same path.

IUCV groups path descriptions for all the paths defined for a communicator into a
single construct called a Communication Control Table.

IUCV Messages

An IUCV communication is called a message. Communication is initiated and a
message created when the source communicator invokes the SEND function. The
target communicator acknowledges and accepts the message by invoking the
RECEIVE function.

The target communicator can optionally request information about messages sent
to it by invoking the DESCRmE function, and can refuse a message sent to it by
invoking the REJECT function. The target communicator can respond to a
message via the REPLY function.

Communication is terminated and the message is destroyed when the source
communicator issues the TEST COMPLETION function or handles an IUCV
_ __ 1 4- 4- __ ",1.:_4- --. .. _4-
J.1.l~i:)J:)a.ov \"..oVU.ly.l ,,\:I t.;;;oAl.\:.I.1Ha..l .1U"'-'J.J. up".

An IUCV message is represented within CP by a control block called a
MSGBLOK. IUCV creates a MSGBLOK when a communication is initiated and
destroys the MSGBLOK when a communication is terminated.

142 VM/SP System Programmer's Guide

(" - Message Queues

(

Source
Communlcator

1) SEND moves a
message:! to

the

REPLY QUEUE<-

I
4Y TEST COMPLETION

terminates the
communicatlon

Figure 16. IUCV Queues

During its lifetime, an lUCY message (MSGBLOK) moves among three lUCY
queues. The lUCY queues are:

Send queue - contains information about messages sent to a target
communicator that the target communicator has not yet received.

Receive queue - contains information about messages received by a target
communicator that the target communicator has not yet replied to.

Reply queue - contains information about messages replied to by a target
communicator that the source communicator has not yet terminated.

lUCY moves the messages among the queues when a user issues the SEND,
RECEIVE, REPLY, or TEST COMPLETION function. When a source
communicator issues the SEND function, lUCY creates a message (MSGBLOK)
and moves it to the target communicator's SEND queue. When the target invokes
the RECEIVE function, the message is moved to the target's own RECEIVE
queue. lUCV moves the message to the source communicator's REPLY queue
when the target communicator invokes the REPLY function. When the source
communicator issues the TEST COMPLETION function, lUCY removes the
message from the REPLY queue, destroys the message, and completes- the
communication.

Figure 16 illustrates the movement of messages between the lUCY queues.

PATH

S T
0 P A
U A I R
R T D G
C H E
E T

P
A I
T D
H

Target
Communicator

-> SEND QUEUE

I
2) RECEIVE moves

a message to
the

I
RECEIVE QUEUE

-3) REPLY moves
a message to

the

Chapter 15. Inter-User Communications Vehicle 143

Message Data Transfer

While a message (MSGBLOK) moves among the IUCV queues, IUCV moves the
actual data associated with the message only twice during a complete
communication. IUCV moves data when the target communicator issues the
RECEIVE and REPLY functions.

IUCV moves data twice during a complete communication. When the target
communicator issues the RECEIVE function, IUCV moves the message data from
the source communicator's SEND virtual address space to the target
communicator's RECEIVE virtual address space. When the target communicator
issues the REPLY function, IUCV moves data from the target communicator's
REPL Y virtual address space to the source communicator's ANSWER virtual
address space.

Figure 17 illustrates the movement of message data during an IUCV
communication.

SOURCE COMMUNICATOR
VIRTUAL flACHHlE

SEt1D
{,REA

ANSt>JER
AREA

RECEIVE

REPL Y
<

>

TARGET COMMUNICATOR
VIRTUAL r1ACHINE

RECEIVE
AREA

REPLY
AP-EII

Figure 17. IUCV Data Transfer

The MSGBLOK representing the message contains the addresses and lengths of
the source communicator's SEND and ANSWER areas. These locations may
overlap.

CP performs storage protection checking for all data moved during an IUCV
communication. IUCV stores the source communicator's PSW key in the
MSGBLOK. When the target communicator executes a RECEIVE or REPLY
function, IUCV uses the PSW key for protection checking in the source virtual
machine.

IUCV uses the target communicator's PSW key at the time of the RECEIVE or
REPLY to check data accesses in the target virtual machine.

Message Identification

A message is fully identified to a virtual machine by values that are recorded in the
MSGBLOK.

Message identification - a single fullword value that identifies a message.
IUCV assigns a message id when the source communicator invokes the SEND
function. The message identification is generated by a sequential counter value
and is unique for the system IPL.

144 VM/SP System Programmer's Guide

o

(• Message class - identifies the source message class and target message class.
The message classes are arbitrary fullword values that the source
communicator specifies when invoking the SEND function. The meaning of
the message classes is agreed to in advance by the two communicators. lUCY
places no restrictions on the values specified for message class. The
communicators can use the message class to dequeue messages selectively.

• Path description and the target path description. lUCY assigns these path ids
when a path is established via the CONNECT and ACCEPT functions.

There is no defined relationship between the values of the source and target path
ids lUCY assigns, or between the message classes the source and the target
communicators use. None of these values need be the same although they refer to
the same message. Only the message identification has the same value for both
target and source communicators.

Thus, when invoking lUCY functions, the source communicator refers to a
message by a combination of its source path id, source message class, and message
id. The target communicator refers to the same message by a combination of its
target path id, target message class, and message id. When the target
communicator issues the DESCRIBE function, lUCY provides the target's
identifiers.

In addition, lUCY provides another message identifier for the source
communicator. When invoking the SEND function, the source communicator may
specify a message tag. lUCY does not assign a value or meaning to the tag; its use
is determined solely by the source communicator. For example, the source
communicator can use the message tag to tie a completed message to the original
SEND request. lUCY presents the tag to the source communicator when the
message completes.

Finally, a message can be identified as a priority message when the source
communicator invokes the SEND function. lUCY enqueues a priority message
ahead of any nonpriority messages on the target communicator's SEND queue and
behind any earlier priority messages. The installation must authorize a path to
handle priority messages in the lUCY directory control statement.

Pending IUCV Communications

A communicator can receive notification of pending lUCY messages in two ways:
by receiving external interruptions or by interrogating the SEND and REPL Y
queues.

IUCV External Interrupts

To enable lUCY external interruptions, communicators must:

Invoke the DECLARE BUFFER function to indicate to lUCY where to store
data associated with an external interruption.

Chapter 15. Inter-User Communications Vehicle 145

------_ .. _. --------------------

• Set bit 7 in the virtual machine's PSW to one; set submask bit 30 of control
register 0 to one.

In addition, communicators can invoke the SET MASK function to enable
selectively the virtual machine to receive external interruptions for IUCV messages,
replies, and functions.

IUCV functions generate a type X'4000' external interruption. When a virtual
machine in EC mode receives an IUCV external interruption, IUCV places the
interruption code in locations X'86' and X'87' of the virtual machine's storage.
For a virtual machine in BC mode, IUCV places the code in the external old PSW.
In addition, IUCV stores an external interrupt buffer containing information about
the message or IUCV function at the address specified when the communicator
invoked the DECLARE BUFFER function. One field of this buffer is an external
interrupt subtype that indicates why the external interrupt occurred. The possible
values of this field are:

• 01 - Connection pending
• 02 - Connection complete
• 03 - Path severed
• 04 - Path quiesced

05 ,- Path resumed
• 06 - Incoming priority reply

07 - Incoming nonpriority reply
• 08 - Incoming priority message

09 - Incoming nonpriority message.

See "IUCV External Interrupt Buffers" for the formats of the buffers.

A virtual machine can use the SET MASK function to enable or disable selectively
external interrupts for IUCV communications. The SET MASK function has mask
bits that enable or disable external interruptions for:

• Priority messages
N onpriority messages

• Priority replies
N onpriority replies

• IUCV control functions.

To further divide and handle the control type interrupts, the SET CONTROL
MASK function may be used on the lUCY macro. The type~ of control interrupts
may be separately enabled and disabled. These control type interrupts are:

• Connection pending
• Connection complete
• Path severed
• Path quiesced
• Path resumed.

The SET MASK function is interrogated before the SET CONTROL MASK
function. If you specify that all control interrupts are disabled using the SET
MASK function, then the SET CONTROL MASK settings are not interrogated. If
you specify that all control interrupts are enabled using the SET MASK function,

146 VM/SP System Programmer's Guide

then the SET CONTROL MASK settings will be interrogated to determine how to
handle the individual types of control interrupts.

After IUCV initialization and until you issue the SET MASK or SET CONTROL
MASK function, all IUCV submask bits are on, enabling all IUCV external
interrupts.

Interrogating IUCV Queues

A virtual machine can only be notified of pending CONNECT, ACCEPT, SEVER,
QUIESCE, and RESUME functions by receiving an external interruption.
However, a virtual machine can field incoming messages or replies either by being
enabled for external interruptions, or by interrogating the SEND queue (via the
DESCRIBE function) or the REPLY queue (via the TEST COMPLETION
function).

IUCV also provides the TEST MESSAGE function to determine the presence of
any messages on a communicator's SEND queue or REPLY queue. If no messages
are present, the virtual machine goes into a wait state until a message comes in.

For example, if a source communicator sends a priority message, IUCV queues an
external interruption (subtype 08) for the target communicator. If the target
virtual machine is both enabled for external interruptions (bit 7 in the virtual PSW
and submask bit 30 in control register zero are set to one), and enabled for priority
messages (via the SET MASK function), then the target virtual machine receives
an external interruption. If the target virtual machine is not enabled for external
interruptions or is not enabled for priority messages, the message remains queued
on the target's SEND queue. If the target virtual machine is not enabled for
external interrupts or priority messages, it can issue the DESCRIBE function to
obtain information about the message, and the pending external interrupt for that
message is cleared. The target virtual machine can store the information and can
later RECEIVE or REJECT the message.

Note: If a communicator is enabled for external interruptions and issues the
DESCRIBE or TEST COMPLETION function, results are unpredictable. It can
not be determined whether information about a particular message is received via
external interruption or by the completion of DESCRIBE or TEST
COMPLETION. However, IUCV supplies information about a message only
once.

When a communicator has completed all communications, the virtual machine may
invoke the RETRIEVE BUFFER to

• Cause IUCV to stop using the external interruption buffer created by the
DECLARE BUFFER function

• Prevent further IUCV communication.

Note: IUCV external interruptions are not reflected to CP system code. See the
section, "CP Communications" for details.

Chapter 15. Inter-User Communications Vehicle 147

CP Communications

IUCV communications with CP system services treat CP as a single virtual
machine. For this reason, a distributing mechanism in IUCV (the communication
processor) gathers initial information about a message and routes it to the proper
module in CP for processing.

Thus, IUCV provides:

• Routing of connections from virtual machines to CP system services

• Routing of messages received via IUCV to CP system services

• Routing of REPLYs received via IUCV to the CP system service that issued
the SEND

• Severing of virtual machines from system services.

External interrupts are not reflected to CP system code. For communications to
CP services, external interrupts are replaced with one of two possible linkages
depending on whether the function was initiated outside CP or whether it was
initiated from within CPo For data targeted for a CP service that was initiated in a
virtual machine, there is a table of entry points which tell IUCV where to pass
control. For replies targeted for a CP system service, virtual machines use a
control block called an IXBLOK. The structure and use of an IXBLOK is similar
to a CPEXBLOK.

Each CP system service that interfaces with virtual machines is uniquely defined to
the IUCV communication processor. For each CP service defined to use IUCV
communications, five entry points can gain control from IUCV:

• One to get control for incoming connections

• One to get control for incoming messages

• One to get control when a connection to the particular service is severed

One to get control when a QUIESCE is issued for a path

• One to get control when a RESUME is issued for a path.

When anyone of these entry points is given control, Register 1 points to a buffer.
This buffer contains the same information in the same format as an IUCV external
interrupt buffer used in virtual machine-to-virtual machine communications.

The CP system services that IUCV currently supports are the Console
Communication Services, the Message System Service, the DASD Block I/O
System Service, and the Signal System Service. The following table shows the
corresponding userid for each of the CP system services. This userid must be
specified on the USERID= parameter when invoking the IUCV CONNECT
function.

148 VM/SP System Programmer's Guide

C)

c

(

(

System
Service
Userid System Service

*CCS Console Communication Services

*MSG Message System Service

*BLOCKIO DASD Block I/O System Service

* SIGNAL Signal System Service

Figure 18. CP System Services and Their Userids

Second Level Support

Trace Table Entries

An SCP that supports lUCY communications functions correctly in a virtual
machine generated by a CP system that supports lUCY.

The lUCY macro instruction generates an operation exception in the real
hardware.

When a virtual machine invokes an lUCY function, it must be in a virtual
supervisor state.

A virtual machine must invoke the DECLARE BUFFER function before other
lUCY functions except the QUERY function. Failure to do so causes an operation
exception to be reflected to the virtual machine.

Thus, an SCP can support lUCY in a virtual machine exactly as it does on real
hardware.

CP system code invokes lUCY functions through a CALL linkage rather than the
lUCY macro instruction.

lUCY support generates a trace table entry for each lUCY function. There is one
trace table entry type for lUCV entries (XI 15 I). Each entry contains a subtype
field to indicate the exact lUCY function a communicator invoked.

Whether invoked from a virtual machine or from CP system code, all uses of lUCY
are recorded in the CP trace table. The address portion of the old PSW is recorded
as part of the entry. The X ' 80 ' bit in the RCODE byte indicates that this address
is a real address (when invoked from CP) rather than a virtual address (when
invoked from a virtual machine). For virtual machine addresses, the address of the
associated VMBLOK can be obtained from preceding trace table entries.

The lUCY trace facilities can be suppressed at assembly time by setting
&TRACE(9) to 0 or at execution time by setting the X 180 I bit to 0 in TRACFLG3
in PSA.

Chapter 15. Inter-User Communications Vehicle 149

Audit Trail

lUCY functions invoked by other functions are also recorded as if they had been
invoked from CPo These secondary functions include:

• The RETRIEVE BUFFER function generates a SEVER for all established
paths.

• The SEVER function generates a REJECT for each incoming outstanding
message and a PURGE for each outgoing outstanding message.

• A CONNECT issued to a CP system service passes control to that service.
The selected CP system service usually invokes the ACCEPT function.

• The CP dispatcher invokes the DESCRIBE and TEST COMPLETION
functions to dequeue messages intended for the CP system.

lUCY maintains an audit trail for each message. The audit trail is a bit significant
value that records the status of the message. The value is maintained in the
MSGBLOK that represents the message. The audit trail is presented to the source
communicator during execution of the PURGE and TEST COMPLETION
functions and when the source receives a message-complete lUCY external
interrupt.

The audit trail for a message indicates:

• If the message caused a protection or addressing exception on the source
communicator's send or answer buffer

~ If the message caused a protection or addressing exception on the target's
receive or reply buffer

• If a reply was too long for the source's reply buffer

• If an invalid length was specified in a SEND buffer or answer list

• If the BUFLEN = and/or ANSLEN = field is not the total of the lengths in the
SEND buffer and/or answer list

• Ii an invalid iength was spe~ified in the target's receive buffer list or reply
answer list

• If the BUFLEN = or ANSLEN = field is not the total of the lengths in the
target's buffer or answer list

• If a message was rejected by the target

• If a path was severed.

150 VM/SP System Programmer's Guide

(

Restrictions

The following areas of lUCY are limited:

• The use of lUCY is supported for a second level CP system. The lUCY
functions are not simulated, but are reflected to the second level system.

• Each virtual machine is limited to less than 65,536 outstanding connections at
one time.

• lUCY does not recognize anything smaller than a virtual machine. If two
communicators choose to establish multiple communication paths, it is the
responsibility of these communicators to manage these paths.

A CP system service cannot establish communication with itself.

• CP system services are limited to a total of 4,096 outstanding connections.

Security Considerations

Installations control the use of lUCY through the virtual machine directory entries.
If the installation has not authorized a user for lUCY communications in the
directory, all requests for lUCY communications to virtual machines other than his
own are denied. The installation must specifically authorize each virtual machine
which is to communicate with a CP system service.

lUCY moves data from one virtual machine address space to another. At no time
does a virtual machine have access to the storage or registers of CP or another
virtual machine. When the user invokes the RECEIYE or REPLY functions, the
data to be moved is described by a starting address and a length, or a list of starting
addresses and lengths. The length specified in the parameter list is the maximum
amount of data moved. No requirements are placed on a virtual machine as to the
location of these buffers.

lUCY assigns path ids and records the path id in each communicator's
communication control table (CCT). lUCY sets up one CCT for each virtual
machine and one for the CP system. A given communicator can reference only the
paths recorded in its own CCT. Other references are not possible.

lUCY assigns the message id for each message. Although this message identifier
may be reused, at any given time, it identifies only one message. lUCY does not
use this identifier as a direct reference, but only as an operand in a comparison. It
is conceivable that a virtual machine could generate a valid message identifier and
use this to request a message. However, when a message id is used to request a
message, a user must also specify a message class and a path id. If the specified .
message is not associated with the specified path id, and message class, the user
cannot access the messages. If the message id, path id, and message class do
match, the user could legitimately access it by specifying simply path id and/or
message class without the generated message id.

The installation can limit the number of connections for a particular virtual
machine in the virtual machine directory.

Chapter 15. Inter-User Communications Vehicle 151


~~~~~~~-----~-- --------

Performance Considerations 

The overhead involved in reflecting lUCY external interrupts to the virtual 
machine can be reduced if the buffer declared on the DECLARE BUFFER 
function is entirely within one page. Overhead can be reduced further if the buffer 
is entirely within page 0 of the virtual machine. 

Modules DMKIUA and DMKIUE can be made resident to improve the 
performance of lUCY. 

Using IUCV Functions 

ACCEPT 

CONNECT 

Communicators invoke all IUCV functions through the lUCV macro instruction. 
When using the IUCV macro instruction, communicators specify which function 
they wish to perform. Most functions also require the address of a parameter list to 
contain inputs to and outputs from the requested function. Communicators can 
store inputs directly in the parameter list or they can specify inputs with keyword 
parameters. lUCV moves the values specified on the keyword parameters into the 
specified parameter list. For details on how to use the IUCV macro, see the 
section "Invoking IUCV Functions." 

I Use the ACCEPT function to respond to a pending connection. When a target 
communicator invokes the ACCEPT function, IUCV completes the connection and 
enables the path for use. A target communicator can refuse a pending connection 
by invoking the SEVER function. 

Use the CONNECT function to request the establishment of a communications 
path with another communicator. When a source communicator invokes the 
CONNECT function, lUCV establishes a pending connection. The path is not 
complete until the target communicator invokes the ACCEPT function. 

Use the DECLARE BUFFER function to specify the address of a buffer into 
which IUCV can store external interrupt information. If a virtual machine receives 
an IUCV external interruption, IUCV stores in this buffer information about the 
message, reply, or control function that caused the the interruption. Each virtual 
machine must declare a buffer prior to establishing any connections. 

Note: When a communicator invokes the DECLARE BUFFER function, IUCV 
automatically enables the virtual machine for all five types of IUCV external 
interrupts. Use the SET MASK function to change these initial settings. CP 
system code does not declare a buffer. 

152 VM/SP System Programmer's Guide 

C-") 
-../ 



DESCRIBE 

PURGE 

( 

QUERY 

QUIESCE 

Use the DESCRIBE function to determine the presence of any messages on the 
SEND queue that have not been previously described or reflected in a 
message-pending IUCV external interruption. If a previously undescribed and 
unreflected MSGBLOK is on the SEND queue, IUCV returns pertinent 
information about the MSGBLOK in the parameter list. The information stored by 
IUCV consists of the path id, the target message class, the message id, the message 
flags, the length of the message, and the length of the source's answer area. This 
information allows the target communicator to receive the message using the 
RECEIVE function. IUCV describes a particular message once. It is the 
responsibility of the target communicator to remove described messages from the 
SEND queue. Messages can be removed by invoking the RECEIVE or REJECT 
function. The DESCRIBE function clears the pending-message external 
interruption for the described message. CP system code (outside of IUCV 
support) cannot use the DESCRIBE function. 

Use the PURGE function to terminate a specified message sent to a target virtual 
machine. If the source virtual machine purges a message before the target has 
described or received it, the target is never aware that the message was sent. If the 
message is already on the source's REPLY queue, IUCV terminates the message 
immediately. If the message has been described to the target, IUCV notifies the 
target that the message has been purged. IUCV indicates that the message has 
been purged when the target issues the RECEIVE or REPL Y function for the 
message. IUCV then destroys the message. When invoking the PURGE function, 
you must identify which message you wish to purge. You can specify only a path 
identifier, or a path id, message identifier, and message class. If you do not specify 
a message identifier, the message class is optional. 

Use the QUERY function to determine how large a buffer IUCV requires to store 
external interrupt information. IUCV returns the number of bytes required in 
general register zero. In addition, use the QUERY function to determine the 
maximum number of communication paths that can be established for your virtual 
machine. IUCV returns the maximum number of paths in general register one. 
The QUERY function does not use a parameter list. CP system code cannot use 
the QUERY function. 

Use the QUIESCE function to temporarily suspend incoming messages on an 
IUCVpath. A communicator may reactivate a path by invoking the RESUME 
function or may leave the path quiesced, making it a one-way path. The QUIESCE 
is performed on the PATHID specified unless the ALL= YES option is used, then 
all paths are affected. . 

Chapter 15. Inter-User Communications Vehicle 153 



RECEIVE 

REJECT 

REPLY 

Use the RECEIVE function to accept messages sent via the SEND function. When 
a target virtual machine issues the RECEIVE function, IUCV moves the actual 
message data from the source virtual machine's send area(s) to the target virtual 
machine's receive area(s). If the complete message has been moved from the send 
area(s) to the specified receive area(s), IUCV moves the MSGBLOK for the 
specified message from the SEND queue to the RECEIVE queue. If the receive 
area(s) cannot completely contain the message, the MSGBLOK remains on the 
SEND queue and the length of the remaining data is stored in the parameter list. 
The target virtual machine can obtain the remainder of the message with a 
subsequent RECEIVE. The RECEIVE function completes a one-way 
communication. When invoking the RECEIVE function, you can identify the 
message you wish to receive. Identify the message completely by specifying the 
message id, path id, and target message class. If you do not specify the message id, 
you can identify the message by path id, target message class, or both. If you do 
not specify any identifiers when invoking the RECEIVE function, you receive the 
first message that has not been partially received. Note that if a message has been 
partially received, you must identify the message completely to receive the 
remainder. 

Use the REJECT function to refuse a specified message sent by a source 
communicator. After invoking the DESCRIBE or RECEIVE function, a target 
communicator can choose not to process a message. The REJECT function moves 
the MSGBLOK representing the specified message from the target's SEND queue 
or RECEIVE queue to the source communicator's REPLY queue. IUCV updates 
the message's audit trail to indicate that the message has been rejected. No 
message data is moved when the REJECT function is invoked. When invoking the 
REJECT function, you must identify which message you wish to reject. You can 
identify the message completely by specifying the message id, path id, and target 
message class. If you do not specify the message id, you must identify the message 
by path id, target message class, or both. 

Use the REPLY function to respond to a message sent by a source communicator. 
When a target virtual machine invokes the REPLY function, IUCV IIlUVes the 

I·· MSGBLOK for the specified message from the target communicator's RECEIVE 
queue to the source communicator's REPL Y queue. Data in the target's reply 
,area(s) is moved to the source communicator's answer area(s). The target 
communicator can specify that a reply is a priority reply. IUCV queues a priority 
reply ahead of any nonpriority replies and after any earlier priority replies. When 
invoking the REPLY function, you must identify completely the message to which 
you wish to reply. Identify the message completely by specifying the message id, 
path id, and target message class. 

154 VM/SP System Programmer's Guide 



( .. 
. . -' 

RESUME 

RETRIEVE BUFFER 

SEND 

Use the RESUME function to restore communications over a previously quiesced 
path. The RESUME is performed on the PATHID specified unless the ALL = YES 
option is used, then all paths are affected. 

Use the RETRIEVE BUFFER function to terminate all outstanding messages and 
communications paths, and to end IUCV communications. CP system code 
(outside IUCV support) cannot use the RETRIEVE BUFFER function. 

Use the SEND function to initiate a communication with another virtual machine 
or CP system service. When a source communicator invokes the SEND function, 
IUCV creates a MSGBLOK for the message and enqueues it on the target 
communicator's SEND queue. The message text is not transmitted to the target 
virtual machine until the target communicator invokes the RECEIVE function. If 
the installation has authorized the path for priority messages, you may indicate that 
the message is a priority message. IUCV queues priority messages ahead of 
nonpriority messages on the target communicator's SEND queue (and after any 
priority messages that have not yet been received). In addition, you may specify 
that a message is a one-way communication. When the target communicator 
receives a one-way communication, he cannot send a reply . 

SET CONTROL MASK 

SET MASK 

Use the SET CONTROL MASK function to enable or disable external interrupts 
for the IUCV control functions: connection pending, connection complete, path 
severed, path quiesced, and path resumed. A virtual machine must first be enabled 
for external interruptions by setting both bit 7 in the virtual PSW and submask bit 
30 in control register zero to one. The SET MASK IUCV control bit must also be 
set on or the SET CONTROL MASK settings are ignored. The SET CONTROL 
MASK function cannot be used from CP system code. 

Use the SET MASK function to enable or disable IUCV external interruptions for 
priority messages, nonpriority messages, priority replies, nonpriority replies, and 
IUCV control functions. A virtual machine must also be enabled for external 
interruptions by setting both bit 7 in the virtual PSW and submask bit 30 in control 
register zero to one. The SET MASK function cannot be used from CP system 
code. 

Chapter 15. Inter-User Communications Vehicle 155 



SEVER 

----- ---------_.-

Use the SEVER function to reject a pending connection or to terminate a 
completed lUCY path. If the path is complete, both communicators must issue the 
SEVER function for the path to be terminated. After one communicator invokes 
the SEVER function, all messages outstanding on the path are terminated and 
lUCY notifies the communicating partner (via a SEVER external interruption). 
The communicating partner then can dequeue and process the terminated messages 
if it chooses. The communicating partner invokes the SEVER function when it 
finishes processing messages on the path. 

If the path is a pending connection, either communicator may invoke the SEVER 
function. If the originator of the connection invokes SEVER and the target has 
received the pending-connection external interruption, the target must also invoke 
the SEVER function. If the target invokes SEVER first, the originator must do so 
as well. The SEVER is performed on the P ATHID specified unless the ALL = YES 
option is used, then all paths are affected. 

TEST COMPLETION 

TEST MESSAGE 

Use the TEST COMPLETION function to determine if any messages have been 
completed. When a source virtual machine invokes the TEST COMPLETION 
function, lUCY removes the MSGBLOK representing the specified message from 
the REPL Y queue and destroys that MSGBLOK. When invoking the TEST 
COMPLETION function, you may identify which message you wish to complete. 
You can identify the message completely by message id, path id, and source 
message class. If you do not specify the message id, you can identify the message 
by path id, source message class, or both. If you do not specify any identifiers 
when invoking the TEST COMPLETION function, lUCY completes the first 
message on the REPLY queue. CP system code (outside of lUCY support) cannot 
use the TEST COMPLETION function. 

Use the TEST MESSAGE function to determine whether any messages or replies 
are pending on a communicator's SEND queue or REPL Y queue. When a virtual 
machine invokes the TEST MESSAGE function, the virtual machine enters a wait 
state if neither messages nor replies are pending. If an lUCY message or reply 
becomes pending while the virtual machine is in the wait state, the virtuai machine 
begins execution by re-executing the TEST MESSAGE function (which returns a 
condition code). By using the TEST MESSAGE function, a virtual machine avoids 
the necessity of external interrupt handling. 

Virtual Machine to Virtual Machine Communication 

Figure 19 on page 157 illustrates the sequence of functions invoked when a 
virtual machine communicates with another virtual machine. The functions include 
initialization, connection to another virtual machine, sending and receiving 
messages, replying to and waiting for messages, severing communications with the o' .""""""\. __ : 
other virtual machine, and termination. 

156 VM/SP System Programmer's Guide 



(-

(/ 

Virtual Machine X Communicating to Virtual Machine Y 

(VIRTUAL MACHINE X) (VIRTUAL MACHINE Y) 

1 DECLARE BUFFER 1 DECLARE BUFFER 
2 CONNECT to Y 

3 Get External Interrupt 
4 ACCEPT 

5 Get External Interrupt 
6 SEND to Y 

7 Get External Interrupt 
lorl 

DESCRIBE 
8 TEST COMPLETION 

9 RECEIVE 
10 REPLY 

11 Get External Interrupt 
lorl 

TEST COMPLETION 
12 SEVER 

13 Get External Interrupt 
14 SEVER 

15 RETRIEVE BUFFER 15 RETRIEVE BUFFER 

Figure 19. Sequence of Functions 

1. Virtual machine X wishes to communicate with virtual machine Y. Both virtual 
machines must independently invoke the DECLARE BUFFER function. The 
buffer is used to provide the virtual machine with information about incoming 
external interrupts concerning IUCV functions. 

2. Virtual machine X invokes the CONNECT function, indicating Y as the target. 
IUCV checks the directory to determine if this connection is authorized. If it 
is, IUCV queues an external interrupt for Y indicating that there is a pending 
connection for it. IUCV returns control to X at the next instruction after the 
CONNECT; a return code indicates that a partial connection has been 
established. 

3. The external interrupt queued by step 2 is reflected to Y indicating a pending 
connection. IUCV places the external interrupt information in the buffer that 
Y provided in step 1. IUCV passes control to the external interrupt handler of 
Y. 

4. Virtual machine Y interprets the external interrupt and responds with an 
ACCEPT to complete the connection. IUCV then completes the connection 
and queues a connection-complete external interrupt for X. IUCV returns 
control to Y at the next instruction after the ACCEPT; a return code indicates 
that the connection is complete. 

5. The external interrupt queued by step 4 is reflected to X, indicating that the 
connection is complete and the communication path is available for use. IUCV 

Chapter 15. Inter-User Communications Vehicle 157 



r places the external interrupt information in the buffer that X provided in step 
1. IUCV passes control to the external interrupt handler of X. 

6. Virtual machine X issues a SEND. The SEND function queues an external 
interrupt for Y indicating that there is a message pending. Control returns in X 
at the next instruction after the SEND; a return code indicates that the 
message has been sent. 

7. If virtual machine Y is enabled for external interrupts and for IUCV messages 
(via SET MASK), the external interrupt queued by step 6 is reflected to Y, 
indicating that a message is pending. IUCV places external interrupt 
information in the buffer specified in step 1. IUCV passes control to the 
external interrupt handler of Y. If virtual machine Y is disabled for external 
interrupts or IUCV messages and invokes the DESCRIBE function, IUCV 
places the information identifying the message in the DESCRIBE parameter 
list and the pending-message external interrupt for this message is cleared. 
IUCV passes control to the next instruction after the DESCRIBE. 

8. While virtual machine Y is processing the message, virtual machine X can 
. decide to check if the communication has been completed by issuing the TEST 

COMPLETION function. The condition code indicates that (in this example) 
the communication is not complete. 

9. With the message description from step 7, virtual machine Y starts to process 
the message and issues a RECEIVE. The parameter list associated with 
RECEIVE specifies where the message data is stored in virtual machine Y. 

10. When processing the message is complete, virtual machine Y responds to X by 
invoking the REPL Y function. The REPL Y function queues an external 
interrupt for X indicating that there is a reply pending. Control returns to Y at 
the next instruction after the REPLY; a return code indicates that the reply has 
been transferred. 

11. If virtual machine X is both enabled for external interrupts and enabled for 
IUCV replies, the external interrupt queued by step 10 is reflected to X, 
indicating a reply pending. To identify the reply, the external interrupt 
information is placed in the buffer specified in step 1. IUCV passes control to 
the external interrupt handler of X. If virtual machine X is disabled for 
external interrupts and issues a TEST COMPLETION, IUCV places the 
information identifying the reply in the TEST COMPLETION parameter list 
and clears the queued external interrupt concerning this reply. lUCY passes 
control to the next instruction after the TEST COMPLETION. 

12. Virtual machine X has now completed its communications with virtual machine 
Y and issues a SEVER to break the communications path. The SEVER 
function queues an external interrupt for Y indicating that the communication 
link has been broken. Control returns in X at the next instruction after the 
SEVER; a return code indicates the path has been broken. 

13. The external interrupt queued by step 12 is reflected to Y indicating that the 
path has been broken by virtual machine X. Virtual machine Y can now do 
any clean up needed in its storage. 

158 VM/SP System Programmer's Guide 



(-

(-

14. After virtual machine Y has completed processing, the virtual machine issues a 
SEVER to notify IUCV that it also is finished with the communication link. 
IUCV can then clean up the control blocks. 

15. When all communications are complete and all communication paths have been 
severed, both virtual machines independently invoke the RETRIEVE BUFFER 
function. 

IUCV Communications Using Parameter List Data 

To better understand how data specified in the parameter list is handled, the IUCV 
functions are covered in a typical user scenario: 

1. The IUCV DECLARE BUFFER, CONNECT, and ACCEPT sequence must 
be invoked to establish the user's external interrupt buffer and a path to the 
target virtual machine (or CP). If you expect to receive data in the parameter 
list, you must authorize such communication on the CONNECT or ACCEPT 
by specifying PRMDAT A= YES. The external interrupt information to the 
target communicator includes a bit indicating if PRMDAT A= YES was chosen. 

2. Issue an IUCV SEND request. When the data is to be passed in the parameter 
list, the DATA=PRMMSG option is used on the IUCV macro, and the 
PRMMSG= option is used to move the data into the parameter list. Or you 
can avoid using the macro options by initializing the parameter list yourself. 
The sender of the message should be prepared to handle a return code 
indicating that DATA=PRMMSG is not allowed if the target communicator 
has not specified PRMDATA=YES at connection time. A message block 
(MSGBLOK) is created to represent the message within CP and contains the 
message data until presented to the target. The message is queued on the target 
send queue. 

3. If the target is enabled for IUCV pending-message external interrupts, the 
target virtual machine receives an IUCV pending-message external interrupt as 
a result of the SEND request in the previous step. The message data is stored 
in the external interrupt buffer. A flag is set in the IPFLAGSI field of the 
buffer to indicate that the data is in the parameter list. Since the message data 
has been presented to the target, the target does not have to issue an IUCV 
RECEIVE for this message .. If the message was a one-way message, the 
MSGBLOK is destroyed and the communication is complete. There is no 
asynchronous return of message completion given to the source (sending) 
virtual machine on a one-way message. 

4. If the target is disabled for IUCV pending-message external interrupts and 
issues the IUCV DESCRIBE or RECEIVE functions, the message data is 
stored in the parameter list. A flag is set in the IPFLAGSI field of the 
parameter list to indicate that the data is in the parameter list. Since the 
message data is presented to the target on a DESCRIBE, the target does not 
have to issue an IUCV RECEIVE for this message. If the message was a 
one-way message, the MSGBLOK is destroyed, and the communication is 
complete. There is no asynchronous return of message completion given to the 
source (sending) virtual machine on a one-way message. 

Chapter 15. Inter-User Communications Vehicle 159 



5. If the communication in the previous steps was a two-way message, a REPLY 
is issued by the target virtual machine. When the REPL Y data is to be passed 
in the parameter list, the DATA=PRMMSG option is used on the IUCV 
macro, and the PRMMSG= option is used to move the data into the parameter 
list. Or, you can avoid using the macro options by initializing the parameter list 
yourself. The REPL Yer of the message should be prepared to handle a return 
code indicating that DATA=PRMMSG is not allowed if the source 
communicator has not specified PRMDATA= YES at connection time. The 
message block (MSGBLOK) contains the message data until presented to the 
source communicator. The message block is queued on the sender's reply 
queue. 

6. If the source communicator is enabled for IUCV message complete external 
interrupts, the source virtual machine receives an IUCV message-complete 
external interrupt as a result of the REPL Y in the previous step. The message 
data is stored in the external interrupt buffer. A flag is set in the IPFLAGSI 
field of the buffer to indicate that the data is in the parameter list. The 
MSGBLOK is destroyed and the communication is complete. 

7. If the target is disabled for lUCY message-complete external interrupts, and 
issues the lUCY TEST COMPLETE function, the message data is stored in 
the parameter list. A flag is set in the IPFLAGSI field of the parameter list to 
indicate that the data is in the parameter list. The MSGBLOK is destroyed, 
and the communication is complete. 

8. SEYER and RETRIEVE BUFFER cause any pending messages (MSGBLOK) 
to be destroyed for that virtual machine. Since no asynchronous 
message-complete interrupt is returned to the source communicator, for 
one-way messages using the DATA=PRMMSG option, the source 
communicator must realize upon receiving an lUCY SEVER external interrupt 
from the target communicator, that messages may not have been received by 
the target. 

Invoking IUCV Functions 

Invoke all IUCV functions through the IUCV macro instruction. In general, 
specify the name of the IUCV function you wish to perform, the address of a 
parameter list to contain input to the function, and keyword parameters. lUCY 
moves the values specified on the keyword parameters into the specified parameter 
list. Most functions require a parameter list as input to the IUCV macro 
instruction. Use the PRMLIST= parameter to specify the address of the parameter 
list. The parameter list must begin on a doubleword boundary or a specification 
exception results. When invoked from a virtual machine, specify the address of the 
parameter list as a guest real address (that is, it must be an address that is real to 
the virtual machine). When invoked from CP system code, the address of the 
parameter list must be a real address. 

Supply input to lUCY functions in two ways: 

• By coding keyword parameters on the lUCY macro instruction. IUCV stores 
values in the function parameter list based on values you specify on the macro. 

160 VM/SP System Programmer's Guide 

/ 



( 

By storing required input to the function in the function parameter list before 
invoking the lUCY macro instruction. To store input in an lUCY parameter 
list, use labels generated by the IPARML DSECT. 

You may use a combination of these methods to supply input to a single lUCY 
function. If you specify any optional parameters on the lUCY macro, you are 
responsible for providing the USING for the IP ARML DSECT when the macro is 
invoked. If you do not specify an optional parameter to initialize the parameter 
list, the macro assumes that you have stored,a value in the parameter list prior to 
invoking the lUCY macro. 

One advantage of using the lUCY macro instruction is that lUCY provides 
extensive error checking of parameter combinations when input is supplied on the 
macro. Many invalid parameter combinations can be detected by lUCY when you 
assemble the program. 

You can specify several parameters either as relocatable labels or a register 
specification. Specify these parameters in one of the following ways: 

• An addressable label in a program 
• A label in the IP ARML DSECT 
• A register number in parentheses - (register) 
• An explicit base-displacement notation -- displacement (register). 

Figure 20 shows the format of the IUCV macro. 

Chapter 15. Inter-User Communications Vehicle 161 



label IUCV r-ACCEPT, ..., ALL= 
CP= {YES} CONNECT, PRTY= I NO 
PRMDATA= 

DCLBFR, QUIESCE= 

DESCRIBE, ANSLIST: p~S} 
PURGE, BUFLIST= YES 

NO 
QUIESCE 

RECEIVE, ANSBUF= 
BUFFER= 

REJECT, 
MSGID= 

RESUME, MSGLIM= {label} 
MSGTAG= (reg) 

SEND, PRMMSG= 
PRMLIST= ~label,f PATHID= 

-SETCMASK, (reg) SRCCLS= 
TRGCLS= 

SETMASK, USERDTA= 
USERID= 

SEVER, 

TESTCMPL, ASNLEN= 

r~el ( I- -_ 
BUFLEN= (reg) 

(label,2) 
((reg) , 2) 
(label,4) 
( (reg) ,4) 

FCNCD= {term} 
MASK= (reg) 

TYPE= {1WAY} 
2WAY 

VMBLOK= {USER } 
SYSTEM 

MF= L 

DATA= {BUFFER} 
PRMMSG 

~CP= {~~S} l 
[RTRVBFR, ] ? VMBLOK= ~ {USER } 

SYSTEM 

[QUERY] 
[TESTMSG] 

Figure 20. IUCV Macro Instruction Format 

162 VM/SP System Programmer's Guide 



( where: 

ACCEPT 
CONNECT 
DCLBFR 
DESCRIBE 
PURGE 
QUIESCE 
RECEIVE 
REJECT 
REPLY 
RESUME 
RTRVBFR 
SEND 
SETCMASK 
SETMASK 
SEVER 
TESTCMPL 
QUERY 
TESTMSG 

ALL = 

</ 

ANSBUF= 

is the ACCEPT function 
is the CONNECT function 
is the DECLARE BUFFER function 
is the DESCRIBE function 
is the PURGE function 
is the QUIESCE function 
is the RECEIVE function 
is the REJECT function 
is the REPLY function 
is the RESUME function 
is the RETRIEVE BUFFER function 
is the SEND function 
is the SET CONTROL MASK function 
is the SET MASK function 
is the SEVER function 
is the TEST COMPLETION function 
is the QUERY function 
is the TEST MESSAGE function 

(Used on QUIESCE, RESUME, SEVER) 

ALL = YES specifies that the function requested is to be applied to 
all paths for this virtual machine. 

The valid values for ALL= are YES and NO. 

If ALL = YES is specified, PATHID= is not allowed. 

(Used on REPLY, SEND) 

This parameter specifies the address of the area or list of areas to 
contain the reply text of the message. 

Specify either the relocatable label of the buffer or buffer list or the 
number of a register that contains the address of the buffer or 
buffer list. IUCV stores the address of the buffer or buffer list in 
the function parameter list. 

For SEND, this parameter identifies the area into which IUCV 
places the reply text when ANSLIST = YES is not specified. 

For REPLY, this parameter identifies the area from which IUCV 
takes the reply text when ANSLIST = YES is not specified. 

For SEND and REPLY, if ANSLIST= YES is specified, ANSBUF= 
provides the address of a list of addresses and lengths of 
discontiguous buffers to contain the message reply text. 

ANSBUF = is not valid on SEND if TYPE= 1 WAY is specified. 

Chapter 15. Inter-User Communications Vehicle 163 



:' -~, 

If this parameter is not specified, the macro assumes that either the ~_// 
parameter is not needed (such as SEND when TYPE= 1 WAY) or 
the invoker has stored a value in the parameter list prior to invoking 
the lUCY macro. 

ANSLEN = (Used on REPLY, SEND) 

This parameter specifies the length of the area specified on the 
ANSBUF parameter if ANSLIST = YES is not specified. 

If ANSLIST = YES is specified, the value specified with ANSLEN = 
is the total of the individual buffer lengths in the list pointed to by 
ANSBUF=. 

Specify either (1) the relocatable label of the location containing 
the buffer length, or (2) the number of a register that contains the 
length of the buffer. The macro assumes a halfword value for the 
length at the storage location specified, or in the low-order halfword 
of the register specified. If a length modifier of 4 is used, the macro 
uses the fullword value for the length at the storage location or in 
the register specified. lUCY stores the buffer length in the function 
parameter list. If this parameter is not specified, the macro assumes 
that either the parameter is not needed (such as on a SEND with 
TYPE= 1 WAY) or the invoker has stored a value in the parameter 
list prior to invoking the lUCY macro. 

ANSLEN= may be specified even though ANSBUF= is not. If 
ANSBUF = has not been specified, the macro assumes that the 
invoker has moved the address of the answer buffer into the 
parameter list prior to invoking the IUCV macro. 

ANSLEN= is not valid on SEND if TYPE = 1 WAY is specified. 

ANSLIST= (Used on SEND, REPLY) 

164 VM/SP System Programmer's Guide 

Specify ANSLIST=NO (default value) if a single area, defined by 
the ANSBUF = and ANSLEN = parameters, is to be used to hold 
message reply text. 

Specify ANSLIST=YES if the values on the ANSBUF= and 
ANSLEN = parameters identify respectively: 

• The address of a list of addresses and lengths of discontiguous 
buffers to hold the message reply text. 

• The total of the individual buffer lengths in the list pointed to 
by ANSBUF=. 

If ANSLIST=YES is specified for the REPLY function, 
DATA=PRMMSG and PRMMSG= cannot be specified. 

/ --, 



( 

:( 

BUFFER = 

If you specify ANSLIST=YES or BUFLIST=YES, you must 
construct the corresponding buffer address/length list on a 
doubleword boundary in the following format. 

address1 length1 

address2 length2 

. 
. 

. 
addressn lengthn 

Each address+length entry in this list must be doubleword aligned. 
The first fullword contains the address of the data area to be 
transferred. The second fullword contains the number of bytes to 
be transferred. A list of one entry is valid. 

These entries are updated during IUCV processing and therefore, 
may not be reused by the application. 

Any CP service using the list should lock and unlock any pageable 
storage in the list. IUCV locks and unlocks pageable storage for the 
virtual machine. 

The length specified on the ANSLEN = or BUFLEN = parameter 
must be the total of the individual lengths in the corresponding 
answer or buffer list. If ANSLEN = or BUFLEN = is an invalid 
value, an IUCV error code is returned. 

(Used on DCLBFR, RECEIVE, SEND) 

When you invoke DCLBFR, this parameter identifies the external 
interrupt buffer. When an external interrupt is reflected to the 
virtual machine, IUCV stores information concerning the IUCV 
message or a control interrupt in this buffer. 

When you invoke SEND, this parameter identifies the area from 
which IUCV takes the message text if BUFLIST= YES is not 
specified. 

When you invoke RECEIVE, this parameter identifies the area into 
which IUCV places the message text if BUFLIST= YES is not 
specified. 

For SEND and RECEIVE, if BUFLIST=YES is specified, 
BUFFER= provides the address of a list of addresses and lengths 
of discontiguous buffers to contain the message text. 

Specify either the relocatable label of the buffer or buffer list or the 
number of a register that contains the address of the buffer or 

Chapter 15. Inter-User Communications Vehicle 165 



buffer list. IUCV stores the address of the buffer or buffer list in 
the function parameter list. 

If this parameter is not specified, the macro assumes that the 
invoker has stored a value in the parameter list prior to invoking the 
IUCVmacro. 

BUFLEN= (Used on RECEIVE, SEND) 

This parameter specifies the length of the area specified on the 
BUFFER= parameter if BUFLIST= YES is not specified. 

If BUFLIST=YES is specified, the value specified with BUFLEN= 
is the total of the individual buffer lengths in the list pointed to by 
BUFFER=. 

Specify either (1) the relocatable label of the location containing 
the buffer length, or (2) the number of a register that contains the 
length of the buffer. The macro assumes a halfword value for the 
length at the storage location specified, or in the low-order halfword 
of the register specified. If a length modifier of 4 is used, the macro 
uses the fullword value for the length at the storage location or in 
the register specified. IUCV stores the buffer length in the function 
parameter list. 

If this parameter is not specified, the macro assumes that the 
invoker has stored a value in the parameter list prior to invoking the 
IUCVmacro. 

BUFLEN = may be specified even though BUFFER= is not. If 
BUFFER= has not been specified, the macro assumes that the 
invoker has moved the address of the buffer into the parameter list 
prior to invoking IUCV macro. 

Do not use BUFLEN = for the DECLARE BUFFER function. By 
default, the buffer declared on the DECLARE BUFFER is 40 bytes 
long. 

I BUFLIST= (Used on SEND, RECEIVE) 

166 VM/SP System Programmer's Guide 

Specify BUFLIST=NO (default value) if a single area, defined by 
the BUFFER= and BUFLEN = parameters, is to be used to hold 
message text. 

Specify BUFLIST = YES if the values on the BUFFER= and 
BUFLEN = parameters identify respectively: 

• The address of a list of addresses and lengths of discontiguous 
buffers to hold the message text. 

• The total of the individual buffer lengths in the list pointed to 
byBUFFER=. 



( 

( 

C"" 

If BUFLIST= YES is specified for the SEND function, 
DATA=PRMMSG and PRMMSG= cannot be specified. 

See ANSLIST= for a description of the address/length list. 

CP= (Used on ACCEPT, CONNECT, DESCRIBE, PURGE, 
QUIESCE, RECEIVE, REJECT, REPLY, RESUME, RTRVBFR, 
SEND, SEVER, TESTCMPL) 

DATA= 

Specify CP=NO when invoking an IUCV function from a virtual 
machine. lUCY generates the lUCV instruction. The code 
generated when you specify CP=NO modifies general register zero. 
The virtual machine must be in supervisor state when the lUCY 
macro executes. 

CP= YES specifies that the function is being invoked from the CP 
system code. A CALL linkage to CP module DMKIUACP is 
generated instead of the lUCV instruction. The macro modifies 
general registers 0, 1, and 15. The invoker is responsible for 
providing an EXTRN statement for module DMKIUACP. General 
register 11 is assumed to contain the address of the VMBLOK on 
whose behalf the specified function is to be performed. See the 
section "Communication Between CP and a Virtual Machine" for 
details on lUCY communications initiated from CP system code. 

The valid values for CP= are YES and NO. If not specified, the 
default is NO. 

CP= YES is required to invoke lUCY functions from CP system 
code. 

If CP=YES is specified, MSGTAG= is not allowed. 

The DESCRIDE and TEST COMPLETION functions cannot be 
used in CP outside of lUCY support. 

(Used on SEND, REPLY) 

This parameter specifies the location of your message data for this 
lUCY communication. 

If you specify DATA=PRMMSG, your message or reply data is 
contained in the parameter list. You may use the PRMMSG= 
parameter to have the message or reply data moved into the 
parameter list. When DATA= PRMMSG is specified, the lUCY 
macro parameters BUFFER, BUFLEN, and BUFLIST=YES may 
not be used on the SEND function and the parameters ANSBUF, 
ANSLEN, and ANSLIST= YES may not be used on the REPLY 
function. 

If you specify DATA=BUFFER, your messages or reply is 
contained in a buffer. The lUCY macro parameter of PRMMSG= 
may not be used when DATA=BUFFER. 

Chapter 15. Inter-User Communications Vehicle 167 



FCNCD= 

MASK= 

The DATA= option on SEND and REPLY are independent of each 
other. The protocol used is at the discretion of the communicators. 
You may define a protocol such that: 

• A message specified in the parameter list using the DATA= 
option is REPL Yed to via a message in the answer buffer 
specified on the SEND. 

• A message sent in a buffer may be REPL Yed to by the target 
via a message in the parameter list using the DATA= option. 

(Used on CONNECT) 

This parameter indicates which CP system service is invoking the 
CONNECT function. Each supported CP system service is 
identified by a one-byte numerical code. 

Specify either the code itself or the number of a register that 
contains the code in its low-order byte. IUCV moves the code into 
the function parameter list. 

If this parameter is not specified, the macro assumes that the 
invoker has stored a value in the parameter list prior to invoking the 
IUCVmacro. 

This parameter is valid only if CP= YES is specified. 

(Used on SETMASK and SETCMASK) 

This parameter specifies the mask byte to determine which, if any, 
of the IUCV external interrupts a virtual machine is to be enabled 
for. Specify either the relocatable label of a byte containing the 
mask, or the number of a register that contains the mask in its 
low-order byte. IUCV moves the mask into the function parameter 
list. 

If this parameter is not specified, the macro assumes that the 
invoker has stored a value in the parameter list prior to invoking the 
IUCVmacro. 

The SET MASK and SET CONTROL MASK functions cannot be 
invoked from CP system code. 

MF= (Used on ACCEPT, CONNECT, DCLBFR, DESCRIBE, PURGE, 
QUIESCE, RECEIVE, REJECT, REPLY, RESUME, SEND, 
SETMASK, SETCMASK, SEVER, TESTCMPL) 

168 VM/SP System Programmer's Guide 

The MF=L option is allowed as a keyword parameter on any IUCV 
function that uses a parameter list. 

This parameter lets you initialize an IUCV parameter list without 
issuing the IUCV instruction (from a virtual machine) or the SVC 
(from CP system code). This parameter allows programs to 



MSGID= 

( 

MSGLIM= 

initialize an IUCV parameter list and to pass that parameter list to 
an operating system which provides an IUCV interface (for 
example, CMS). 

(Used on PURGE, RECEIVE, REJECT, REPLY, TESTCMPL) 

This parameter specifies the message identifier of the message to 
search for. The message identifier uniquely identifies a particular 
message. IUCV generates the message id and returns it in the 
SEND parameter list when a message is created. 

Specify either the relocatable label of a fullword containing the 
message identifier, or the number of a register that contains the 
message identifier. IUCV stores the message identifier in the 
function parameter list. 

If this parameter is not specified, the IUCV macro assumes that 
either the parameter is not needed (for example, when you specify a 
message by path id only), or the invoker has stored a value in the 
parameter list prior to invoking the IUCV macro. 

MSGID= is an optional input to the functions listed above. When a 
MSGID is specified, you must also supply the path id, and message 
class (SRCCLS for PURGE and TESTCMPL, TRGCLS for 
RECEIVE, REJECT and REPLY). 

If you specify the MSGID= parameter on the IUCV macro, the 
IPFGMID flag in IPFLAGSI is set when you invoke the PURGE, 
RECEIVE, REJECT or TEST COMPLETION functions. 

(Used on ACCEPT, CONNECT) 

This parameter specifies the limit of outstanding messages to be 
allowed from this side of the path. A message limit can also be 
specified on the IUCV directory control statement. If a message 
limit has been specified in the directory, the value you specify with 
this parameter of the IUCV macro must not exceed that limit. 

Specify either the relocatable label of a halfword containing the 
message limit, or the number of a register that contains the message 
limit in the low-order halfword. IUCV stores the message limit in 
the function parameter list. 

If this parameter is not specified, the macro assumes that either the 
parameter is not needed (the value from the directory or the default 
is to be used) or the invoker has stored a value in the parameter list 
prior to invoking the IUCV macro. 

If the message limit is not specified on the IUCV macro or directory 
control statement, or if the value has not been stored in the function 
parameter list, ten is the default message limit. 

Chapter 15. Inter-User Communications Vehicle 169 



The maximum value that can be specified for the message limit is 
255. For CP system code, (CP= YES specified), there is no 
overriding directory value. If MSGLIM is not specified, a default of 
10 is assumed by IUCV. 

MSGTAG= (Used on SEND) 

PATHID= 

170 VM/SP System Programmer's Guide 

This parameter specifies the tag of the message created by invoking 
the SEND function. IUCV returns the message tag when the 
message completes. 

Specify either a relocatable label for a fullword containing the tag or 
the number of a register that contains the tag. lUCY stores the tag 
in the function parameter list. 

If you specify CP=YES, MSGTAG= is not needed. CP system 
code uses the MSGTAG field in the parameter list for internal 
linkage. 

If this parameter is not specified, the macro assumes that either it is 
not valid (for example, if CP= YES is specified) or that the invoker 
has stored a value in the parameter list prior to invoking the lUCY 
macro. 

(Used on ACCEPT, PURGE, QUIESCE, RECEIVE, REJECT, 
REPLY, RESUME, SEND, SEVER, TESTCMPL) 

This parameter specifies the path identification associated with a 
message. lUCY assigns a path identification and returns the value 
in the CONNECT parameter list. 

All further communications on a path must specify the path id that 
was returned from CONNECT. Path ids are sequential from 
X'OOOO' to the maximum number of connections allowed for this 
virtual machine. As paths are severed, the lUCY reuses vacated 
path ids. 

Specify either the relocatable label of a halfword that contains the 
path id or the number of a register that contains the path id in the 
low-order halfword. lUCY stores the path identifier in the lUCY 
parameter list. 

If this parameter is not specified, the macro assumes that either the 
parameter is not needed (for example, if you invoke the SEVER 
function with ALL=YES) or the invoker has stored a value in the 
parameter list prior to invoking the lUCY macro. 

If you specify MSGID on the PURGE, RECEIVE, REJECT, 
REPLY, or TEST COMPLETION functions, lUCY requires that 
you specify path id and message class (SRCCLS or TRGCLS, as 
appropriate) . 

PATHID= is not valid if ALL=YES is also specified. 
i'" , \ o 



( If you specify the PATHID= parameter on the IUCV macro, the 
IPFGPID flag in IPFLAGS 1 is set for PURGE, RECEIVE, 
REJECT, and TEST COMPLETION functions. 

PRMDATA= (Used on ACCEPT, CONNECT) 

I PRMLIST-

This parameter specifies whether the communicator wishes to allow 
messages that contain the message data in the parameter list (for 
example, messages sent via the DATA=PRMMSG option). 

Specify PRMDAT A= YES if you are willing to receive messages via 
the DATA=PRMMSG option in your parameter list. 

Specify PRMDATA=NO if you are not willing to receive messages 
sent into your parameter list and only accept messages sent using a 
buffer. 

(Used on ACCEPT, CONNECT, DCLBFR, DESCRIBE 
PURGE, QUIESCE, RECEIVE, REJECT, REPLY, RESUME, 
SEND, SETMASK, SETCMASK, SEVER, TESTCMPL) 

This parameter identifies the IUCV parameter list, which is input to 
the actual IUCV instruction or CALL to DMKIUACP. This 
parameter list must be a real address if CP= YES (invoked from CP 
system code) or a guest real address (real to the virtual machine) if 
invoked from a virtual machine. The parameter list must be on a 
doubleword boundary. 

Specify either a relocatable label or the number of a register. If a 
label is specified, the macro assumes it is the label of the parameter 
list. The address of the parameter list is loaded into general register 
1 if CP= YES, or the IUCV instruction is generated to reference the 
label if CP=NO. If a register is specified, the macro assumes it 
contains the address of the parameter list; the address is loaded into 
general register 1 if CP= YES, or the IUCV instruction is generated 
to reference the register if CP=NO. 

This parameter is required for all IUCV functions except QUERY, 
RETRIEVE BUFFER, and TEST MESSAGE. 

If CP system code issues a SEND or CONNECT, the area specified 
on this parameter must be the address of an IXBLOK instead of a 
parameter list. See the section, "Invoking Communications 
Between CP and a Virtual Machine" for details. 

PRMMSG= (Used on SEND, REPLY) 

This parameter specifies the eight bytes of message data that are 
moved into the parameter list. 

Specify either the relocatable label of the eight bytes of message 
data or the number of a register that contains the address of the 
data. 

Chapter 15. Inter-User Communications Vehicle 171 



------. ------

PRTY= 

ANSLIST = YES or BUFLIST = YES cannot be specified with the 
PRMMSG= option. 

(Used on ACCEPT, CONNECT, REPLY, SEND) 

When you invoke the CONNECT and ACCEPT functions, 
PRTY = YES indicates that you want this side of the path to handle 
priority communications. When invoked from a virtual machine, 
PRIORITY must be authorized in the IUCV directory entry. When 
invoked from CP system code (CP=YES), PRTY=YES is always 
valid. 

When you invoke the SEND and REPLY functions, PRTY = YES 
indicates that this message or reply is a priority message. 
PRTY = YES is only valid if this path can handle priority 
communications. 

Valid values for PRTY= are YES and NO. 

QUIESCE= (Used on ACCEPT, CONNECT) 

SRCCLS= 

172 VM/SP System Programmer's Guide 

QUIESCE= YES indicates that you want to quiesce the path being 
established; the other communicator cannot send messages on a 
quiesced path. 

The valid values for QUIESCE= are YES and NO. 

You can restore the path to full communication capability by 
invoking the RESUME function. 

(Used on PURGE, SEND, TESTCMPL) 

This parameter specifies the source message class associated with a 
message. 

When you invoke the PURGE function, this parameter optionally 
specifies the source message class of the message to be purged. If 
omitted, IUCV does not use the source message class in the search 
for the message. 

When you invoke the SEt .... !) fUlictiun, tills parameter specifies the 
source message class that IUCV stores in the MSGBLOK that 
represents the message. 

When you invoke the TEST COMPLETION function, this 
parameter optionally specifies the source message class of the 
message to be dequeued. If omitted, IUCV dequeues the first 
message encountered on the specified path regardless of its source 
message class. 

Specify either the relocatable label of a fullword containing the 
source message class or the number of a register containing the 

/ .------



(-

TRGCLS= 

( 

TYPE = 

source message class. IUCV stores the source message class in the 
function parameter list. 

If this parameter is not specified, the macro assumes either that the 
parameter is not needed (for example, if you invoke a PURGE by 
path id alone), or that the invoker has stored a value in the 
parameter list prior to invoking the IUCV macro. 

If you specify the SRCCLS= parameter on the IUCV macro for the 
PURGE and TEST COMPLETION functions, the IPFGMCL flag 
in IPFLAGS 1 is set. 

(Used on RECEIVE, REJECT, REPLY, SEND) 

This parameter specifies the target message class associated with 
this message. 

When you invoke the RECEIVE and REJECT functions, this 
parameter optionally specifies the target message class of the 
message to be received for rejected. If omitted, IUCV does not use 
the target message class in the search for the message. 

When you invoke the SEND function, this parameter specifies the 
target message class that IUCV stores in the MSGBLOK that 
represents the message. 

When you invoke the REPL Y function, this parameter specifies the 
target message class of the message being responded to. 

Specify either the relocatable label of a fullword containing the 
target message class, or the number of a register containing the 
target message class. IUCV stores the target message class in the 
function parameter list. 

If this parameter is not specified, the macro assumes that either the 
parameter is not needed (for example if you issue a RECEIVE by 
path id alone) or the invoker has stored a value in the parameter list 
prior to invoking the IUCV macro. 

If you specify the TRGCLS= parameter on the IUCV macro for 
the RECEIVE and REJECT functions, the IPFGMCL flag in 
IPFLAGS 1 is set. 

(Used on SEND) 

TYPE= 1 WAY specifies that this is a one-way transaction. No 
REPL Y by the receiver is needed or valid. IUCV moves the 
MSGBLOK representing the message to the source communicator's 
REPL Y queue when the target communicator issues a RECEIVE 
for the message. TYPE=2W A Y specifies that this is a two-way 
transaction. IUCV moves the message to the source's REPLY 
queue only when the target invokes a REPLY for this message. 

Chapter 15. Inter-User Communications Vehicle 173 



Two way transactions are useful for returning data in response to a 
specific request. 

The valid values for TYPE= are lWAY and 2WAY. 

USERDTA= (Used on ACCEPT, CONNECT, QUIESCE, RESUME, SEVER) 

USERID= 

This parameter specifies the 16-byte user data area that is to be 
reflected to the target. 

Specify either (1) the relocatable label of the storage area, or (2) 
the number of a register that contains the address of the user data 
storage area. lUCV moves the address of the storage area into the 
function parameter list. 

If this parameter is not specified, the macro assumes that the 
invoker has stored a value in the parameter list prior to invoking the 
lUCVmacro. 

(Used on CONNECT) 

This parameter specifies the eight-character userid of the virtual 
machine or CP system service to which you want to establish this 
path. 

Specify either the relocatable label of the storage area containing 
the userid, or the number of a register that contains the address of 
the userid. IUCV stores the userid in the function parameter list. 

If this parameter is not specified, the IUCV macro assumes that the 
invoker has stored a value in the parameter list prior to invoking the 
lUCVmacro. 

VMBLOK= (Used on ACCEPT, CONNECT, DESCRIBE, PURGE, 
QUIESCE, RECEIVE, REJECT, REPLY, RESUME, RTRVBFR, 
SEND, SEVER, TESTCMPL) 

VMBLOK= USER specifies that the lUCV control blocks 
associated with the current VMBLOK are to be used for this IUCV 
request. 

VMBLOK=SYSTEM specifies that the IUCV control blocks 
associated with the system VMBLOK are to be used for this IUCV 
request. 

The valid. values for VMBLOK= are USER and SYSTEM. If not 
specified, the default is SYSTEM. 

VMBLOK= is only valid if CP= YES is specified. 

See Figure 21 for a reference to the relationships between the lUCV functions the 
IUCV macro instruction keyword parameters. 

174 VM/SP System Programmer's Guide 



( 
A C D D P Q R R R R R 5 5 5 S T 
C 0 C E U U E E E E T E E E E E 
C N L S R I C J P S R N T T V 5 
E N B C G E E E L U V D C M E T 

IUCV P E F R E S I C Y M B M A R C 
Milcro T C R I C V T E F A S M 
Param- T B E E R S K P 
eters E K L 

ALL X X X 

ANSBUF X X 

ANSLEN X X 

I ANSLIST X X 

BUFFER X X X 

BUFLEN X X 

BUFLIST X X 

CP X X X X X X X X X X X X X 

DATA X X 

FCIlCD X 

MASK X X 

( MF X X X X X X X X X X X X X X X 

MSGID X X X X X 

MSGLIM X X 

MSGTAG X 

Pf,THID X X X X X X X X X X 

PRMDATA X X 

PR~'LIST X X X X X X X X X X X X X X X 

PRMMSG X X 

PRTY X X X X 

QUIESCE X X 

SRCCLS X X X 

TRGCLS X X X X 

TYPE X 

USERDTA X X X X X 

USERID X 

V~1BLOK X X X X X X X X X X X X V 
A 

Figure 21. IUCV Function and IUCV Macro Parameter Relationships 

Chapter 15. Inter-User Communications Vehicle 175 



Notes: 

1. PRMLIST is a required parameter (others are optional). 

2. The QUERY and TEST MESSAGE functions do not use parameters. 

Invoking Communications Between CP and a Virtual Machine 

Specify CP=NO when invoking an lUCY function from a virtual machine. The 
lUCY instruction is generated. If a label is specified for the parameter list, it must 
be relocatable and addressable. The code generated by CP=NO modifies general 
register o. When the function is executed, the virtual machine must be in 
supervisor state. CP=NO is the default. 

CP system services invoke the lUCV macro instruction specifying CP= YES. 
CP= YES generates a CALL linkage directly to the lUCV processing module 
(DMKIUACP). If a label is specified for the parameter list, it must be relocatable 
and addressable. The code generated by CP= YES modifies general registers 0, 1 
and 15. The invoker must supply an EXTRN statement for the entry point 
DMKIUACP. 

If VMBLOK= USER is specified with CP= YES, then a CALL linkage is generated 
directly to the lUCY processing module (DMKIUACU). The invoker must supply 
an EXTRN statement for the entry point DMKIUACU. 

Requests Initiated by the Virtual Machine 

When a virtual machine wishes to establish communications with a CP system 
service, it invokes the CONNECT function specifying the name of the desired CP 
service as the target virtual machine ID. 

The lUCY communication processor receives control from the CONNECT 
function, gathers the external interrupt information and determines which service is 
desired. The communication processor then locates the CONNECT entry point for 
that service and, using CALL linkage, passes control to that entry point. 

The CONNECT entry point for the requested CP system service inspects the 
external interrupt data. It must either accept the connection or reject the 
connection. To accept the connection, it invokes the ACCEPT function, specifying 
CP= YES. To reject the connection, it invokes the SEVER function specifying 
CP= YES. When the service module has finished responding to the incoming 
connection request, it issues an EXIT (SVC 12) to return control to the 
communications processor. 

When an incoming message for a CP system service is encountered, the 
communications processor gathers the external interrupt information and 
determines which service is desired. The communication processor locates the 
entry point that processes incoming messages for the desired service and, using 
CALL linkage, passes control to it. 

The message processing module of the CP service then inspects the external 
interrupt data. The CP service module must invoke the RECEIVE function, 

176 VM/SP System Programmer's Guide 

--- --_.- --"-

c 



( 

(' 

specifying CP= YES, to obtain the actual message. When the RECEIVE function 
completes, the message data will have been moved to the address specified in the 
RECEIVE parameter list. The CP service module then interprets the message data 
and services the request. When the request has been satisfied, the CP service 
module invokes the REPLY function to satisfy the two-way message protocol. 
When the REPL Y function completes, the reply has been queued back to the 
source communicator. When the CP service module completes processing of the 
message, it issues an EXIT (SVC 12) to return to the communications processor. 

When a virtual machine wishes to terminate a communications path, it invokes the 
SEVER function via the IUCV macro. The communication processor receives 
control from the SEVER function, gathers the external interrupt information, and 
determines which service was connected. The communication processor locates the 
SEVER entry point for that service and, using CALL linkage, passes control to it. 

The SEVER entry point for that CP system service then inspects the external 
interrupt data. The CP system service module issues a SEVER if the connection 
was complete. When the CP service module finishes processing, it issues an EXIT 
(SVC 12) to return control to the communication processor. 

If a virtual machine wishes to quiesce a communications path, it invokes the 
QUIESCE function of the IUCV macro. The communications processor receives 
control from the QUIESCE function, gathers the external interrupt information, 
and determines which service was connected. The communications processor 
locates the QUIESCE entry point for that service and, using CALL linkage, passes 
control to it. 

The QUIESCE entry point for the CP system service then inspects the external 
interrupt data. The CP service records the fact that the path has been quiesced. 
When the CP service module has finished processing, it issues an EXIT (SVC 12) 
to return control to the communication processor. 

After invoking QUIESCE for a path, the virtual machine may eventually invoke the 
RESUME function for the path. 

The communication processor receives control from the RESUME function, 
gathers the external interrupt information, and determines which service was 
connected. The communication processor locates the RESUME entry point for 
that service and, using CALL linkage, passes control to it. 

The RESUME entry point for that CP system service then inspects the external 
interrupt data. The CP service records the fact that the path has been RESUMEd. I : 

When the CP service module has finished processing, it issues an EXIT (SVC 12)i I 
to return control to the communication processor. 

If BUFLIST=YES and/or ANSLIST=YES is specified, the user must provide the 
necessary list(s). The format of this list is shown in the description of the 
ANSLIST parameter of the IUCV macro instruction earlier in the section. 

Chapter 15. Inter-User Communications Vehicle 177 



CP Initiated Requests 

When a CP module initiates a CONNECT or SEND to a virtual machine, it must 
do the following: 

• Get storage (via DMKFREE) in which to build an IXBLOK. 

• Build the parameter list in the IXBLOK for the function that it wishes to 
invoke. 

• Store the general registers in the IXBLOK. 

• Store the address of the routine that gets control when a connection completes 
or when a reply is received. The CP module must store the routine's address in 
the "interrupt return address" field of the IXBLOK (label DORA). 

• Invoke the CONNECT or SEND function via the IUCV macro, specifying 
CP= YES and specifying the address of the IXBLOK or the 
PRMLIST = parameter . 

When the function has been initiated, control returns to the next sequential 
instruction after the lUCY macro instruction. When the function completes (that 
is, when the target communicator invokes the ACCEPT or REPLY function), the 
communications processor gets control. The communications processor loads the 
general registers from the IXBLOK and passes control to the routine at the 
"interrupt return address". The communications processor restores all registers 
except register 15 from the IXBLOK. Register 15 is used in passing control and is 
loaded with the interrupt return address. 

The CP module that builds the IXBLOK is responsible for the following: 

• Restoring the base register for the module that invoked the function (pass the 
base register in general register 12 following CP conventions). 

• Releasing (via DMKFRET) the IXBLOK upon completion of the 
asynchronous portion of the function (pass the address of the IXBLOK in one 
of the general registers). 

• Lock the processing module in real storage if it is not resident. In addition, 
when the routine at the interrupt return address gets control, the processing 
module must be unlocked. 

IUCV Parameter List Formats 

This section illustrates the formats of the parameter lists required for lUCY 
functions. Descriptions of the parameter list fields are included in the section, 
"Parameter List and External Interrupt Fields." 

1 7 8 VM/SP System Programmer's Guide 



( ACCEPT Parameter List Format 

o 

o 

8 

10 

18 

20 

( 

2 3 4 5 6 7 

IPPATHID I IPFLAGS 1 IIPRCODE I IPMSGLIM 1/////////// 

/////////////////////////////////////////////////////////////// 

IPUSER 

IPUSER 

/////////////////////////////////////////////////////////////// 

• INPUTs to this function (built in the parameter list by the IUCV macro or by 
the invoker): 

IPFLAGSI IPMSGLIM IPPATHID IPUSER 

• OUTPUTs from this function returned in the parameter list: 

IPMSGLIM IPRCODE IPFLAGSI 

• Input flags for this function (set by the IUCV macro or by the invoker in 
IPFLAGSl): 

IPQUSCE 

IPPRTY 

IPRMDATA 

Connect in quiesce mode (the originator of the connection 
will be unable to issue SENDs). 

The connection established can handle priority messages. 

The communicator is prepared to handle message data in 
his parameter list. 

• Output flags for this function (returned by IUCV in IPFLAGSl): 

IPPRTY Priority messages are allowed for this connection. 

• Exceptions generated by this function (abends generated for CP system code): 

Specification 

Operation 

Addressing 

Protection 

Parameter list not on a doubleword boundary. 

An external interrupt buffer has not been declared via the 
DECLARE BUFFER function, or the invoker is not in 
supervisor state. When the function is invoked by CP 
system code, an operation exception cannot occur because 
an external interrupt buffer has not been declared. 

Invalid parameter list address. The specified address is 
outside the virtual machine or, for CP system code, is an 
invalid real address. 

Invalid parameter list address. The storage key of the 

Chapter IS. Inter-User Communications Vehicle 179 



specified address does not match the key of the user. 

CONNECT Parameter List Format 

o 

o 

8 

10 

18 

20 

2 3 4 5 6 7 

IPPATHID IIPFLAGS1 I IPRCODE I IPMSGLIM I IPFCNC9 ///// 

IPVMID 

IPUSER 

IPUSER 

//////////////////////////////////////////////////////////////// 

• INPUTs to this function (built in the parameter list by the IUCV macro or by 
the invoker): 

IPFCNCD IPFLAGSI IPMSGLIM IPUSER IPVMID 

OUTPUTs from this function returned in the parameter list: 

IPMSGLIM IPPATHID IPRCODE IPFLAGSI 

• Input flags for this function (set by the IUCV macro or by the invoker in 
IPFLAGSl): 

IPPRTY 

IPQUSCE 

IPRMDATA 

The connection established can handle priority messages. 

Connect in Quiesce mode. (The target communicator 
cannot issue SENDs). 

The communicator is prepared to handle message data in 
his parameter list. 

• Output flags for this function (returned by IUCV in IPFLAGSl): 

IPPRTY Priority messages are allowed for this connection. 

• Exceptions generated by this function (abends generated for CP system code): 

Specification 

Operation 

Parameter list not on a doubleword boundary. 

An external interrupt buffer has not been declared via the 
DECLARE BUFFER function, or the invoker is not in 
supervisor state. When the function is invoked by CP 
system code, an operation exception cannot occur because 
an external interrupt buffer has not been declared. 

180 VM/SP System Programmer's Guide 

o 



( 

( 

(-

Addressing 

Protection 

Invalid parameter list address. The specified address is 
outside the virtual machine or, for CP system code, is an 
invalid real address. 

Invalid parameter list address. The storage key of the 
specified address does not match the key of the user. 

DECLARE BUFFER Parameter List Format 

o 

o 

8 

10 

18 

20 

2 3 4 5 6 7 

///////////////////// I IPRCODE /////////////////////////// 

////////////////////////////// IPBFADR1 

////////////////////////////////////////////////////////////// 

////////////////////////////////////////////////////////////// 

////////////////////////////////////////////////////////////// 

• 

• 

INPUTs to this function (built in the parameter list by the IUCV macro or by 
the invoker): 

IPBFADRI 

OUTPUTs from this function returned in the parameter list: 

IPRCODE 

• Exceptions generated by this function (abends generated for CP system code): 

Specification 

Addressing 

Operation 

Protection 

Parameter list not on a doubleword boundary. 

Invalid parameter list address. The specified address is 
outside the virtual machine or, for CP system code, is an 
invalid real address. 

Invalid buffer address. 

Invoker not in supervisor state. 

Invalid parameter list address. The storage key of the 
specified address does not match the key of the user. 

Chapter 15. Inter-User Communications Vehicle 181 



DESCRIBE Parameter List Format 

o 

o 

8 

10 

18 

20 

2 3 4 5 6 7 

IPPATHID I IPFLAGS1 I IPRCODE IPMSGID 

IPTRGCLS IPRMMSG1 

IPBFLN1F / IPRMMSG2 /////////////////////////// 

////////////////////////////////////////////////////////////// 

IPBFLN2F /////////////////////////// 

• INPUTs to this function (built in the parameter list by the IUCV macro or by 
the invoker): 

NONE 

• OUTPUTs from this function returned in the parameter list: 

IPBFLNI IPPATHID IPRCODE IPBFLNIF IPRMMSGI 
IPBFLN2 IPMSGID IPTRGCLS IPBFLN2F IPRMMSG2 
IPFLAGSI 

• Output flags for this function (returned in IPFLAGS 1): 

IPFGMCL 

IPFGMID 

IPFGPID 

IPNORPY 

IPPRTY 

IPRMDATA 

Always returned as 1 so that the resulting parameter list is 
valid input to the next function (normally RECEIVE or 
REPLY). 

Always returned as 1 so that the resulting parameter list is 
valid input to the next function (normally RECEIVE or 
REPLY). 

Always returned as 1 so that the resulting parameter list is 
valid input to the next function (normally RECEIVE or 
REPLY). 

This is a one-way type message. 

This is a priority message. 

The message data is in the IPRMMSGx fields of the 
parameter list. 

• Exceptions generated by this function (abends generated for CP system code): 

Specification 

Operation 

Parameter list not on a doubleword boundary. 

An external interrupt buffer has not been declared via the 
DECLARE BUFFER function, or the invoker is not in 
supervisor state. When the function is invoked by CP 

182 VM/SP System Programmer's Guide 



( 

Addressing 

Protection 

system code, an operation exception cannot occur because 
an external interrupt buffer has not been declared. 

Invalid parameter list address. The specified address is 
outside the virtual machine or, for CP system code, is an 
invalid real address. 

Invalid parameter list address. The storage key of the 
specified address does not match the key of the user. 

PURGE Parameter List Format 

o 

o 

8 

10 

18 

20 

2 3 4 5 6 7 

IPPATHID I IPFLAGS1 IPRCODE IPMSGID 

IPAUDIT //////////////////////////////////////// 

//////////////////////////////// IPSRCCLS 

IPMSGTAG ////////////////////////////// 

///////////////////////////////////////////////////////////////// 

• INPUTs to this function (built in the parameter list by the lUCY macro or by 
the invoker): 

IPFLAGSI IPMSGID IPPATHID IPSRCCLS 

• OUTPUTs from this function returned in the parameter list: 

IP AUDIT IPMSGID IPPATHID IPRCODE IPSRCCLS 
IPFLAGSI IPMSGTAG 

Input flags for this function (set by the lUCY macro or by the invoker in 
IPFLAGSl): 

IPFGMCL 

IPFGMID 

IPFGPID 

A message class identifier (SRCCLS) has been supplied in 
the parameter list. 

A message identifier has been supplied in the parameter 
list. 

A path identifier has been supplied in the parameter list. 

• Output flags for this function (returned by lUCY in IPFLAGSl): 

IPNORPY This is a one-way type message. 

IPPRTY This is a priority message. 

• Exceptions generated by this function (abends generated for CP system code): 

Chapter 15. Inter-User Communications Vehicle 183 



Specification 

Operation 

Addressing 

Protection 

QUERY Parameter List Format 

Parameter list not on a doubleword boundary. 

Invalid search flags. Either the path id has not been 
specified,. Or the message id has been specified without a 
message class. 

An external interrupt buffer has not been declared via the 
DECLARE BUFFER function, or the invoker is not in 
supervisor state. When the function is invoked by CP 
system code, an operation exception cannot occur because 
an external interrupt buffer has not been declared. 

Invalid parameter list address. The specified address is 
outside the virtual machine or, for CP system code, is an 
invalid real address. 

Invalid parameter list address. The storage key of the 
specified address does not match the key of the user. 

The QUERY function does not take a parameter list. 

The QUERY function is used to obtain lUCV information about a virtual machine. 

QUERY Results: The size of the IUCV external interrupt buffer is returned in 
general register O. 

The maximum number of connections that can be outstanding for this virtual 
machine is returned in general register 1. 

Exceptions generated by this function: 

Operation Invoker not in supervisor state. 

184 VM/SP System Programmer's Guide 



(-

QUIESCE Parameter List Format 

o 

o 

8 

10 

18 

20 

2 3 4 5 6 7 

IPPATHID I IPFLAGS 1 IIPRCODE I / / / / / / / / / / / / / / / / / / / / / / / / / / / / / 

//////////////////////////////////////////////////////////////// 

IPUSER 

IPUSER 

//////////////////////////////////////////////////////////////// 

• INPUTs to this function (built in the parameter list by the IUCV macro or by 
the invoker): 

• 

IPFLAGS 1 IPPA THID IPUSER 

OUTPUTs from this function returned in the parameter list: 

IPRCODE 

Input flags for this function (set by the IUCV macro or by the invoker in 
IPFLAGSl): 

IPALL Quiesce all paths for this virtual machine. 

• Exceptions generated by this function (abends generated for CP system code): 

Specification 

Operation 

Addressing 

Protection 

Parameter list not on a doubleword boundary. 

An external interrupt buffer has not been declared via the 
DECLARE BUFFER function, or the invoker is not in 
supervisor state. When the function is invoked by CP 
system code, an operation exception cannot occur because 
an external interrupt buffer has not been declared. 

Invalid parameter list address. The specified address is 
outside the virtual machine or, for CP system code, is an 
invalid real address. 

Invalid parameter list address. The storage key of the 
specified address does not match the key of the user. 

Chapter 15. Inter-User Communications Vehicle 185 



RECEIVE Parameter List Format 

o 

o 

8 

10 

18 

20 

2 3 4 5 6 7 

IPPATHID I IPFLAGS1 I IPRCODE IPMSGID 

IPTRGCLS IPBFADR1 / IPRMMSG1 

IPBFLN1F / IPRMMSG2 ///////////////////////////// 

//////////////////////////////////////////////////////////////// 

IPBFLN2F ///////////////////////////// 

• INPUTs to this function (built in the parameter list by the lUCY macro or by 
the invoker): 

IPBFADRI IPFLAGSI IPMSGID IPPATHID IPTRGCLS 
IPBFLNI IPBFLNIF 

• OUTPUTs from this function returned in the parameter list: 

IPBFLNI IPBFADRI IPMSGID IPRCODE IPTRGCLS 
IPBFLN2 IPFLAGSI IPPATHID IPRMMSGI IPRMMSG2 
IPBFLNIF IPBFLN2F 

• Input flags for this function (set by the lUCY macro or by the invoker in 
IPFLAGSl): 

IPBUFLST 

IPFGMCL 

IPFGMID 

IPFGPID 

BUFLIST = YES has been specified. 

A message class identifier (TRGCLS) has been supplied in 
the parameter list. 

A message id has been supplied in the parameter list. 

A path id has been supplied in the parameter list. 

• Output flags for this function (returned in IPFLAGSl): 

IPFGMCL 

IPFGMID 

IPFGPID 

Always returned as 1 so that the resulting parameter list is 
valid input to the next function (normally RECEIVE or 
REPLY). 

Always returned as 1 so that the resulting parameter list is 
valid input to the next function (normally RECEIVE or 
REPLY). 

Always returned as 1 so that the resulting parameter list is 
valid input to the next function (normally RECEIVE or 
REPLY). 

186 VM/SP System Programmer's Guide 

I~ 
I\....J! 



( 

IPNORPY 

IPPRTY 

IPRMDATA 

This is a one-way type message. 

This is a priority message 

The message data is in the IPRMMSGx fields of the 
parameter list. 

• Exceptions generated by this function (abends generated for CP system code): 

Specification 

Operation 

Addressing 

Protection 

Parameter list not on a doubleword boundary. 

Invalid search flags. Message id has been specified 
without path id and message class. 

An external interrupt buffer has not been declared via the 
DECLARE BUFFER function, or the invoker is not in 
supervisor state. When the function is invoked by CP 
system code, an operation exception cannot occur because 
an external interrupt buffer has not been declared. 

Invalid parameter list address. The specified address is 
outside the virtual machine or, for CP system code, is an 
invalid real address. 

Invalid buffer address either in the parameter list or the 
buffer list. 

Invalid buffer list address. 

Invalid parameter list address. The storage key of the 
specified address does not match the key of the user. 

Invalid buffer address either in the parameter list or the 
buffer list. 

Invalid buffer list address. 

REJECT Parameter List Format 

o 

o 

8 

10 

18 

20 

2 3 4 5 6 7 

IPPATHID I IPFLAGS 1 IIPRCODE IPMSGID 

IPTRGCLS ///////////////////////////// 

//////////////////////////////////////////////////////////////// 

//////////////////////////////////////////////////////////////// 

//////////////////////////////////////////////////////////////// 

• INPUTs to this function (built in the parameter list by the IUCV macro or by 
the invoker): 

Chapter 15. Inter-User Communications Vehicle 187 



IPFLAGSI IPMSGID IPPATHID IPTRGCLS 

• OUTPUTs from this function returned in the parameter list: 

IPMSGID IPPATHID IPRCODE IPTRGCLS 

• Input flags for this function (set by the IUCV macro or by the invoker in 
IPFLAGSl): 

IPFGMCL 

IPFGMID 

IPFGPID 

A message class identifier (TRGCLS) has been supplied in 
the parameter list. 

A message id has been supplied in the parameter list. 

A path id has been supplied in the parameter list. 

• Exceptions generated by this function (abends generated for CP system code): 

Specification 

Operation 

Addressing 

Protection 

Parameter list not on a doubleword boundary. 

Invalid search flags. Message id has been specified 
without path id and message class. 

An external interrupt buffer has not been declared via the 
DECLARE BUFFER function, or the invoker is not in 
supervisor state. When the function is invoked by CP 
system code, an operation exception cannot occur because 
an external interrupt buffer has not been declared. 

Invalid parameter list address. The specified address is 
outside the virtual machine or, for CP system code, is an 
invalid real address. 

Invalid parameter list address. The storage key of the 
specified address does not match the key of the user. 

REPLY Parameter List Format 

o 

o 

8 

10 

18 

20 

2 3 4 5 6 7 

IPPATHID I IPFLAGS1 I IPRCODE IPMSGID 

IPTRGCLS IPRMMSG1 

IPRMMSG2 ///////////////////////////// 

//////////////////////////////// IPBFADR2 

IPBFLN2F ///////////////////////////// 

INPUTs to this function (built in the parameter list by the IUCV macro or by 
the invoker): 

188 VM/SP System Programmer's Guide 



( IPBFADR2 IPBFLN2 IPFLAGSI IPMSGID IPPATHID 
IPTRGCLS IPBFLN2F IPRMMSG 1 IPRMMSG2 

( 

( 

• OUTPUTs from this function returned in the parameter list: 

IPRCODE IPBFADR2 IPBFLN2 IPBFLN2F 

• Input flags for this function (set by the IUCV macro or by the invoker in 
IPFLAGSl): 

IPPRTY 

IPANSLST 

IPRMDATA 

This is a priority reply. 

ANSLIST= YES has been specified with the REPLY 
function. 

The message data is in the IPRMMSGx fields of the 
parameter list. 

• Exceptions generated by this function (abends generated for CP system code): 

Specification 

Operation 

Addressing 

Protection 

Parameter list not on a doubleword boundary. 

An external interrupt buffer has not been declared via the 
DECLARE BUFFER function, or the invoker is not in 
supervisor state. When the function is invoked by CP 
system code, an operation exception cannot occur because 
an external interrupt buffer has not been declared. 

Invalid parameter list address. The specified address is 
outside the virtual machine or, for CP system code, is an 
invalid real address. 

Invalid answer list address. 

Invalid answer address either in the parameter list or the 
answer list. 

Invalid parameter list address. The storage key of the 
specified address does not match the key of the user. 

Invalid answer list address. 

Invalid answer address either in the parameter list or the 
answer list. 

Chapter 15. Inter-User Communications Vehicle 189 



RESUME Parameter List Format 

o 

o 

8 

10 

18 

20 

2 3 4 5 6 7 

IPPATHID I IPFLAGS1 IIPRCODE r///////////////////////////// 

////////////////////////1/////////////////////////////////////// 

IPUSER 

IPUSER 

//////////////////////////////////////////////////////////////// 

• INPUTs to this function (built in the parameter list by the lUCY macro or by 
the invoker): 

IPFLAGS 1 IPPATHID IPUSER 

• OUTPUTs from this function returned in the parameter list: 

IPRCODE 

• Input flags for this function (set by the lUCY macro or by the invoker in 
IPFLAGSl): 

IPALL Resume all paths for this virtual machine. 

• Exceptions generated by this function (abends generated for CP system code): 

Specification 

Operation 

Addressing 

Protection 

Parameter list not on a doubleword boundary. 

An external interrupt buffer has not been declared via the 
DECLARE BUFFER function, or the invoker is not in 
supervisor state. When the function is invoked by CP 
system code, an operation exception cannot occur because 
an external interrupt buffer has not been declared. 

Invalid parameter list address. The specified address is 
outside the virtual machine or, for CP system code, is an 
invalid real address. 

Invalid parameter list address. The storage key of the 
specified address does not match the key of the user. 

190 VM/SP System Programmer's Guide 



( RETRIEVE BUFFER Parameter List Format 

( 

The Retrieve Buffer function does not take a parameter list. 

• Exceptions generated by this function (abends generated for CP system code): 

Operation An external interrupt buffer has not been declared via the 
DECLARE BUFFER function. 

Invoker not in supervisor state. 

SEND Parameter List Format 

o 

o 

8 

10 

18 

20 

2 3 4 5 6 7 

IPPATHID I IPFLAGS1 I IPRCODE IPMSGID 

IPTRGCLS IPBFADR1 / I PRMMSG 1 

IPBFLN1F / IPRMMSG1 IPSRCCLS 

IPMSGTAG IPBFADR2 

IPBFLN2F 1///////////////////////////// 

• INPUTs to this function (built in the parameter list by the lUCY macro or by 
the invoker): 

IPBFADRI IPBFLNI IPPATffiD IPBFLNIF IPRMMSGI 
IPBFADR2 IPBFLN2 IPMSGTAG IPBFLN2F IPRMMSG2 
IPTRGCLS IPFLAGSI IPSRCCLS 

• OUTPUTs from this function returned in the parameter list: 

IPMSGID IPRCODE 

• Input flags for this function (set by the lUCY macro or by the invoker in 
IPFLAGSl): 

IPBUFLST 

IPANSLST 

IPNORPY 

IPPRTY 

IPRMDATA 

BUFLIST= YES has been specified. 

ANSLIST = YES has been specified. 

This is a one-way type message. 

This is a priority message. 

The message data is in the IPRMMSGx fields of the 
parameter list. 

• Exceptions generated by this function (abends generated for CP system code): 

Chapter 15. Inter-User Communications Vehicle 191 



Specification 

Operation 

Addressing 

Protection 

Parameter list not on a doubleword boundary. 

An external interrupt buffer has not been declared via the 
DECLARE BUFFER function, or the invoker is not in 
supervisor state. When the function is invoked by CP 
system code, an operation exception cannot occur because 
an external interrupt buffer has not been declared. 

Invalid parameter list address. The specified address is 
outside the virtual machine or, for CP system code, is an 
invalid real address. 

Invalid parameter list address. The storage key of the 
specified address does not match the key of the user. 

SET CONTROL MASK Parameter List Format 

o 2 3 4 5 6 7 

o IPCMASKl //////////////////////////////////////////////////// 

8 ///////////////////////////////////////////////////////////// 

10 ///////////////////////////////////////////////////////////// 

18 ///////////////////////////////////////////////////////////// 

20 ///////////////////////////////////////////////////////////// 

• INPUTs to this function (built in the parameter list by the IUCV macro or by 
the invoker): 

IPCMASK 

• OUTPUTs from this function returned in the parameter list: 

NONE 

• The bits defined in the IPCMASK field are: 

IPCLPC - X' 80' - Enable for Type 01 - Pending connection 

IPCLCC - X'40' - Enable for Type 02 - Connection complete 

IPCLPS - X'20' - Enable for Type 03 - Path severed 

IPCLPQ - X'10' - Enable for Type 04 - Path quiesced 

IPCLPR - X' 08' - Enable for Type 05 - Path resumed 

X'04' - Reserved (Should be set to zero) 

192 VM/SP System Programmer's Guide 



( 

X' 02' - Reserved (Should be set to zero) 

X'Ol' - Reserved (Should be set to zero) 

• Exceptions generated by this function (abends generated for CP system code): 

Operation 

Protection 

An external interrupt buffer has not been declared via the 
DECLARE BUFFER function. 

Invoker not in supervisor state. 

Invalid parameter list address. The storage key of the 
specified address does not match the key of the user. 

SET MASK Parameter List Format 

o 

o 

8 

10 

18 

20 

2 3 4 5 6 7 

IPMASK I //////////////////////////////////////////////////// 

////////////////////////////////////////////////////////////// 

////////////////////////////////////////////////////////////// 

////////////////////////////////////////////////////////////// 

////////////////////////////////////////////////////////////// 

• INPUTs to this function (built in the parameter list by the lUCY macro or by 
the invoker): 

IPMASK 

• OUTPUTs from this function returned in the parameter list: 

NONE 

• Mask bits defined in the IPMASK field are: 

IPSNDN - X'80' - Enable for nonpriority message interrupts. 

IPSNDP - X'40' - Enable for priority message interrupts. 

IPRPYN - X'20' - Enable for nonpriority reply interrupts. 

IPRPYP - X'10' - Enable for priority reply interrupts. 

IPCTRL - X'08' - Enable for lUCY control interrupts. 

X'04' - RESERVED (Should be set to zero) 

X'02' - RESERVED (Should be set to zero) 

Chapter 15. Inter-User Communications Vehicle 193 



X'Ol I - RESERVED (Should be set to zero) 

• Exceptions generated by this function (abends generated for CP system code): 

Operation 

Protection 

An external interrupt buffer has not been declared via the 
DECLARE BUFFER function. 

Invoker not in supervisor state. 

Invalid parameter list address. The storage key of the 
specified address does not match the key of the user. 

SEVER Parameter List Format 

o 

o 

8 

10 

18 

20 

2 3 4 5 6 7 

IPPATHID I IPFLAGS1 I IPRCODE V / / / / / / / / / / / / / / / / / / / / / / / / / / / / / 
//////////////////////////////////////////////////////////////// 

IPUSER 

IPUSER 

//////////////////////////////////////////////////////////////// 

• INPUTs to this function (built in the parameter list by the IUCV macro or by 
the invoker): 

IPFLAGSl IPPATHID IPUSER 

• OUTPUTs from this function returned in the parameter list: 

IPRCODE 

• Input flags for this function (set by the IUCV macro or by the invoker in 
IPFLAGSl): 

IPALL Sever all paths for this virtual machine. 

• Exceptions generated by this function (abends generated for CP system code): 

Specification 

Operation 

Parameter list not on a doubleword boundary. 

An external interrupt buffer has not been declared via the 
DECLARE BUFFER function, or the invoker is not in 
supervisor state. When the function is invoked by CP 
system code, an operation exception cannot occur because 
an external interrupt buffer has not been declared. 

194 VM/SP System Programmer's Guide 



( 

( 

Addressing 

Protection 

Invalid parameter list address. The specified address is 
outside the virtual machine or, for CP system code, is an 
invalid real address. 

Invalid parameter list address. The storage key of the 
specified address does not match the key of the user. 

TEST COMPLETION Parameter List Format 

o 

o 

8 

10 

18 

20 

2 4 5 6 7 

IPPATHID I IPFLAGS1 IPRCODE IPMSGID 

IPAUDIT 

IPRMMSG2 

IPMSGTAG 

IPBFLN2F 

• 

• 

////// IPRMMSG1 

IPSRCCLS 

v///////////////////////////// 

v///////////////////////////// 

INPUTs to this function (built in the parameter list by the lUCY macro or by 
the invoker): 

IPFLAGSI IPMSGID IPPATHID IPSRCCLS 

OUTPUTs from this function returned in the parameter list: 

IPAUDIT IPFLAGSI IPMSGTAG IPRCODE 
IPBFLN2 IPMSGID IPPATHID IPBFLN2F 
IPSRCCLS IPRMMSG 1 IPRMMSG2 

• Input flags for this function (set by the lUCY macro or by the invoker in 
IPFLAGSl): 

IPFGMCL 

IPFGMID 

IPFGPID 

A message class identifier (SRCCLS) has been supplied in 
the parameter list. 

A message id has been supplied in the parameter list. 

A path id has been supplied in the parameter list. 

• Output flags for this function (returned in]PFLAGSl): 

IPNORPY 

IPPRTY 

IPRMDATA 

This is a one-way message. 

This is a priority message. 

The message data is in the IPRMMSGx fields of the 
parameter list. 

• Exceptions generated by this function (abends generated for CP system code): 

Chapter 15. Inter-User Communications Vehicle 195 



Specification 

Operation 

Addressing 

Protection 

Parameter list not on a doubleword boundary. 

Invalid search flags. Message id has been specified 
without path id and message class. 

An external interrupt buffer has not been declared via the 
DECLARE BUFFER function, or the invoker is not in 
supervisor state. When the function is invoked by CP 
system code, an operation exception cannot occur because 
an external interrupt buffer has not been declared. 

Invalid parameter list address. The specified address is 
outside the virtual machine or, for CP system code, is an 
invalid real address. 

Invalid parameter list address. The storage key of the 
specified address does not match the key of the user. 

TEST MESSAGE Parameter List Format 

The TEST MESSAGE function does not use a parameter list. 

• Exceptions generated by this function: 

Operation Buffer has not been declared via the DECLARE BUFFER 
function. 

Invoker not in supervisor state. 

IUCV External Interrupt Formats 

The following figures represent the content and format of the data presented on 
each of the IUCV external interrupts. 

External Interrupt for Pending Connection 

When a virtual machine or CP system service invokes the CONNECT function, an 
external interrupt is reflected to the target virtual machine or passed by the IUCV 
communications processor to the CONNECT entry point of the requested CP 
system service. 

The format and content of the external interrupt data is: 

196 VM/SP Syste:rn Progrrunmer's Guide 



( 

:(. 
" 

( 

o 2 3 4 5 6 7 

o IPPATHID I IPFLAGS1 I IPTYPE I IPMSGLIM I IPFCNCD 1////// 

8 IPVMID 

10 IPUSER 

18 IPUSER 

20 //////////////////////////////////////////////////////////////// 

Figure 22. Pending Connection External Interrupt Format 

External Interrupt for Complete Connection 

o 

o 

8 

10 

18 

20 

IPPATHID 

2 

When CONNECT invoked by a virtual machine or CP system service has been 
responded to by the target virtual machine or CP system service, the external 
interrupt data has the following format: 

3 4 5 6 7 

I IPFLAGS 1 I IPTYPE I IPMSGLIM 1///////////// 

///////////////////////////////////////////////////////////////// 

IPUSER 

IPUSER 

///////////////////////////////////////////////////////////////// 

Figure 23. Connection Complete External Interrupt Format 

External Interrupt for Pending Messages 

When a message is pending for a communicator, the external interrupt data has the 
following format. Note that the format of this data is the same as the output of the 
DESCRIBE function. 

Chapter 15. Inter-User Communications Vehicle 197 



o 2 3 4 5 6 7 

o IPPATHID I IPFLAGS1 IIPTYPE IPMSGID 

8 IPTRGCLS IPRMMSG1 

10 IPBFLN1F / IPRMMSG2 V///////////////////////////// 

18 ////////////////////////////////// 11///////////////////////////// 

20 IPBFLN2F V///////////////////////////// 

Figure 24. Incoming Message External Interrupt Format 

External Interrupt for Complete Messages 

o 

o IPPATHID 

8 

10 

18 

20 

When a message is complete for a communicator, the external interrupt data has 
the following format. Note that the format of this data is the same as the output of 
the TEST COMPLETION function. 

2 3 4 5 6 7 

I IPFLAGS1 IPTYPE IPMSGID 

IPAUDIT /////// IPRMMSG1 

IPRMMSG2 IPSRCCLS 

IPMSGTAG ///////////////////////////// 

IPBFLN2F ///////////////////////////// 

Figure 25. Message Complete External Interrupt Format 

External Interrupt from SEVER, QUIESCE, RESUME 

When a SEVER, QUIESCE, or RESUME function has been invoked for a path to 
a virtual machine or CP system service, an external interrupt is generated. No 
action need be taken by a virtual machine or CP sysstem service on a QUIESCE or 
RESUME. The interrupt is reflected so that the status of the path can be recorded. 

When the SEVER function has been invoked by the communicating partner, this 
communicator must also invoke SEVER. 

198 VM/SP System Programmer's Guide 

\ j 

~../ 



( 

:( 

o 2 3 4 5 6 7 

o IPPATHID 1/////// IIPTYPE t///////////////////////////// 

8 //////////////////////////////////////////////////////////////// 

10 IPUSER 

18 IPUSER 

20 //////////////////////////////////////////////////////////////// 

Figure 26. SEVER, QUIESCE, RESUME External Interrupt Format 

Parameter List and External Interrupt Fields 

The following paragraphs define the fields of the IUCV parameter lists and 
external interrupts. Not every field has meaning for every function. This section 
explains, for each field, the functions for which this field is valid, and the meaning 
or use of the field. 

IPAUDIT (Output from PURGE, TEST COMPLETION) 

(Reflected in the message-complete IUCV external interrupt) 

IUCV returns the audit trail of the message in this field. If no message 
was found, this field is not modified. One output of the TEST 
COMPLETION function, a condition code of 3, occurs when this field 
contains any nonzero bits. This indicates that IUCV has stored a 
nonzero audit trail. 

The meanings of the bits in the audit trail are: 

IPADRPLE 
IPADSNPX 
IPADSNAX 
IPADANPX 
IPADANAX 
IPADRJCT 
IPADPRMD 

IPADRCPX 
IPADRCAX 
IPADRPPX 
IPADRPAX 
IPADSVRD 
IPADRLST 

X'800000' 
X'400000' 
X'200000' 
X'lOOOOO' 
X'080000' 
X '040000 , 
X'020000' 

X'OlOOOO' 
X'008000' 
X'004000' 
X'002000' 
X'OOlOOO' 
X'000800' 
X'000400' 
X'000200' 

Reply too long for buffer 
Protection exception on send buffer 
Addressing exception on send buffer 
Protection exception on answer buffer 
Addressing exception on answer buffer 
Mess;:tge was rejected 
Reply data was specified using DATA=PRMMSG 
and originator did not allow this option. 
Reserved 
Protection exception on receive buffer 
Addressing exception on receive buffer 
Protection exception on reply buffer 
Addressing exception on reply buffer 
Path was severed 
Invalid receive/reply list 
Reserved 

Chapter 15. Inter-User Communications Vehicle 199 



IPADBLEN 
IPADALEN 
IPADBTOT 
IPADATOT 

IPBFADRl 

X'OOOlOO' 
X'000080' 
X'000040' 
X'000020' 
X'OOOOlO' 
X'000008' 
X'000004' 
X'000002' 
X'OOOOOl' 

Reserved 
Bad length in SEND buffer list 
Bad length in SEND answer list 
Invalid total SEND buffer length 
Invalid total SEND answer length 
Reserved 
Reserved 
Reserved 
Reserved 

(Input to DECLARE BUFFER, RECEIVE, SEND) 

(Output from RECEIVE) 

As input to SEND, this field identifies the address of the area or list of areas 
from which IUCV takes the message text. 

As input to RECEIVE, this field identifies the address of the area or list of 
areas into which IUCV places the message text. 

As input to DECLARE BUFFER, this field identifies the area into which 
IUCV stores information concerning an IUCV external interrupt. 

The contents of this field are updated by the RECEIVE function. When the 
function is finished, the address has been increased by the length of the data 
received when BUFLIST= YES is not specified. When BUFLIST= YES is 
specified, the address points to the current list entry IUCV is working on. 

IPBFADR2 
(Input to REPLY, SEND) 

(Output from REPLY) 

As input to SEND, this field identifies the address of the area or list of areas 
into which IUCV places the reply text. 

As input to REPLY, this field identifies the address of the area or list of 
areas from which IUCV takes the reply text when ANSLIST=NO is 
specified or defaulted. 

The REPLY function updates the contents of this field. REPLY increases 
the buffer address by the length of the REPLY moved when ANSLIST=NO 
is specified or defaulted. When ANSLIST= YES is specified, the address 
points to the current list entry IUCV is working on. 

IPBFLNl 
IPBFLN1F 

(Input to RECEIVE, SEND) 

(Output from DESCRIBE, RECEIVE) 

(Reflected in the pending-message IUCV external interrupt) 

200 VM/SP System Programmer's Guide 



( 

( 

As an input, this field specifies the length of the input buffer or buffers 
(IPBFADRI field). The label IPBFLNI is used by the IUCV macro 
whenever a halfword value is desired, and IPBFLNIF is used whenever a 
fullword value is desired. The high-order halfword of the IPBFLNIF field is 
cleared to zeroes by the IUCV macro when halfword values are desired. If 
the macro is not used, it is the user's responsibility to clear this field when 
using halfword lengths. 

As an output, this field indicates the length of the message as follows: 

For DESCRIBE, IUCV stores the actual length of the message in this 
field. 

For RECEIVE: 

If the total length of the RECEIVE buffer(s) is the same length as 
the message, IUCV stores a zero in this field. 

If the total length of the RECEIVE buffer(s) is longer than the 
length of the message, IUCV stores the number of bytes unused in 
this field and sets a return code of O. 

If the total length of the RECEIVE buffer(s) is shorter than the 
length of the message, IUCV stores the number of bytes remaining 
in the message that would not fit into the buffer(s) in this field and 
sets a nonzero return code. 

When an external interrupt occurs, this field contains the actual length of the 
message. 

IPBFLN2 
IPBFLN2F 

(Input to REPLY, SEND) 

(Output from DESCRIBE, RECEIVE, REPLY, TEST COMPLETION) 

(Reflected in these IUCV external interrupts: pending message, message 
complete.) 

As an input, this field specifies the total length of the input answer buffer or 
buffers (IPBFADR2 field). The label IPBFLN2 is used by the IUCV macro 
whenever a halfword value is desired, and IPBFLN2F is used whenever a 
fullword value is desired. The high-order half word of the IPBFLN2F field 
is cleared to zeroes by the IUCV macro when halfword values are desired. If 
the macro is not used, it is the user's responsibility to clear this field when 
using halfword lengths. 

As an output, this field indicates the length of the message as follows: 

For DESCRIBE, IUCV stores the actual total length of the answer 
area(s) in this field. 

Chapter 15. Inter-User Communications Vehicle 201 



IPFCNCD 

For RECEIVE, IUCV stores the actual total length of the answer 
area(s) in this field. 

For REPLY: 

If the total length of the REPLY buffer(s) is the same length as the 
message, IUCV stores a zero in this field. 

If the total length of the REPLY buffer(s) is longer than the length 
of the message, IUCV stores the number of bytes unused in this 
field and sets a return code of O. 

If the total length of the REPLY buffer(s) is shorter than the length 
of the message, IUCV stores the number of bytes remaining in the 
message that would not fit into the buffer(s) in this field and sets a 
nonzero return code. 

For TEST COMPLETION: 

If the total length of the buffer(s) is the same length as the message, 
IUCV stores a zero in this field. 

If the total length of the buffer(s) is longer than the length of the 
message, IUCV stores the number of bytes unused in this field and 
sets a return code of O. 

If the total length of the buffer(s) is shorter than the length of the 
message, IUCV stores the number of bytes remaining in the message 
that would not fit into the buffer in this field and sets the 
IP ADRPLE bit in the audit trail. 

On a sending message external interrupt, this field contains the actual 
length of the answer area. 

For a complete message external interrupt: 

If the total length of the buffer(s) is the same length as the message, 
IUCV stores a zero in this field. 

If the total length of the buffer(s) is longer than the length of the 
message, IUCV stores the number of bytes unused in this field and 
sets a return code of O. 

If the total length of the buffer(s) is shorter than the length of the 
message, IUCV stores the number of bytes remaining in the message 
that would not fit into the buffer in this field and sets the 
IP ADRPLE bit in the audit trail. 

(Input to CONNECT) 

(Reflected in the pending-connection IUCV external interrupt.) 

202 VM/SP System Programmer's Guide 



(, 

As an input, this field indicates which CP system service is invoking the 
CONNECT function. Each supported CP service is identified by a one-byte 
numerical code. 

On an external interrupt, this field is valid only when the IUCV function is 
invoked from CP system code. (The IPVMID field contains 'SYSTEM'.) 

IPFLAGSI 
(Input to ACCEPT, CONNECT, PURGE, QUIESCE, RECEIVE, 
REJECT, REPLY, RESUME, SEND, SEVER, TEST COMPLETION) 

(Output from ACCEPT, CONNECT, DESCRIBE, RECEIVE, REPLY, 
PURGE, TEST COMPLETION) 

(Reflected in these IUCV external interrupts: pending connection, 
connection complete, pending message, message complete.) 

As an input, this field specifies options for the function requested. As output 
or on an external interrupt, this field returns specific information about the 
message or connection. Each bit is treated separately. 

Bits not defined as input for a particular function are reserved for that 
function and should be set to zero. 

IPFGMCL 
(X'Ol ') 

(Input to PURGE, RECEIVE, REJECT, TEST COMPLETION) 

(Output from DESCRmE, RECEIVE) 

As an input, this bit indicates that a message class (source message class for 
PURGE and TEST COMPLETION, target message class for RECEIVE and 
REJECT) has been specified in field IPSRCCLS or IPTRGCLS. This bit is 
set by the IUCV macro when the SRCCLS= or TRGGCLS= parameter is 
specified on the macro. 

lUCV sets this bit to 1 as output from the DESCRmE function so the 
resulting parameter list is valid input to the next function (normally 
RECEIVE or REJECT). 

When only part of the message data could be received, IUCV sets this bit to 
1 as output from the RECEIVE function. IUCV sets this bit so that the 
resulting parameter list is valid input to a subsequent RECEIVE. 

IPFGPID 
(X'02') 

(Input to PURGE, RECEIVE, REJECT, TEST COMPLETION) 

(Output from DESCRIBE, RECEIVE) 

Chapter 15. Inter-User Communications Vehicle 203 



As an input, this bit indicates that a path ID has been specified in field 
IPPATHID. This bit is set by the IUCV macro when the PATHID= 
parameter is specified on the macro. 

IUCV sets this bit to 1 as output from the DESCRIBE function so the 
resulting parameter list is valid input to the next function (normally 
RECEIVE OR REJECT). 

IUCV sets this bit to 1 as output from the RECEIVE function when only 
part of the message data could be received. IUCV sets this bit so that the 
resulting parameter list is valid input to a subsequent RECEIVE. 

IPFGMID 
(X'04') 

(Input to PURGE, RECEIVE, REJECT, TEST COMPLETION) 

(Output from DESCRmE, RECEIVE) 

As an input, this bit indicates that a message id has been specified in field 
IPMSGID. This bit is set by the IUCV macro when the MSGID= parameter 
is specified on the macro. 

IUCV sets this bit to 1 as output from the DESCRmE function so the 
resulting parameter list is valid input to the next function (normally 
RECEIVE or REJECT).· 

When only part of the message data could be received, IUCV sets this bit to 
1 as output from the RECEIVE function. IUCV sets this bit so that the 
resulting parameter list is valid input to a subsequent RECEIVE. 

IPANSLST 
(X'08') 

(Input to REPLY, SEND) 

This bit set to one indicates that the address specified in IPBF ADR2 is 
actually the address of a list of answer buffers and their respective lengths. 
It also indicates that IPBFLN2/IPBFLN2F is the total length in the list. The 
format of the list is shown in the description of the ANSLIST parameter of 
the IUCV macro instruction. 

IPNORPY 
(X'lO') 

(Input to SEND) 

(Output from DESCRmE, PURGE, RECEIVE) 

(Reflected in the pending-message IUCV external interrupt.) 

As an input, this bit indicates, when set to one, that this is a one-way 
transaction. When the target invokes the RECEIVE function for this 

204 VM/SP System Programmer's Guide 

/ 



( 

message, lUCY queues the MSGBLOK representing this message on the 
source communicator's reply queue. No reply by the target is allowed. If 
this bit is zero, it indicates a two-way transaction. The message is queued on 
the source's reply queue only when the target invokes the REPLY function 
for this message. 

As an output or on an external interrupt, this bit indicates, when set to one, 
that this message does not take a reply. 

IPPRTY 
(X'20') 

(Input to ACCEPT, CONNECT, REPLY, SEND) 

(Output from ACCEPT, CONNECT, DESCRIBE, PURGE, RECEIVE, 
TEST COMPLETION) 

(Reflected in these lUCY external interrupts: pending connection, 
connection complete, pending message, message complete.) 

As an input to CONNECT, this bit indicates, when set to one, that the 
source wishes to establish a path that can handle priority communications. 
When invoked from a virtual machine, priority must also be authorized in the 
lUCY directory control statement. When invoked from CP system code, this 
bit is always set to one. 

As an input to ACCEPT, this bit indicates, when set to one, that the target 
wishes to establish a path that can handle priority communications. When 
invoked from a virtual machine, priority must also be authorized in the 
lUCY directory control statement. When invoked from CP system code, this 
bit is always set to one. 

As an input to SEND and REPLY, this bit indicates, when set to one, that 
this message or reply, is a priority message or reply. If this path was 
established to handle priority communications, the message is handled as a 
priority message. If the path cannot handle priority messages, lUCY 
generates a nonzero return code. 

As an output for DESCRIBE, PURGE, RECEIVE, TESTCMPL, or on an 
external interrupt for pending message or message complete, this bit 
indicates that the message is a priority message. As an output for ACCEPT 
and CONNECT or on an external interrupt for pending connections and 
connection complete, this bit indicates that the path is authorized for priority 
messages. 

IPQUSCE 
(X'40') 

(Input to ACCEPT, CONNECT) 

(Reflected in these lUCY external interrupts: pending connection, 
connection complete.) 

Chapter 15. Inter-User Communications Vehicle 205 



1 

As an input, this bit indicates, when set to one, that the communicator 
wishes to establish a quiesced path. The other communicator is not able to 
send messages on a quiesced path. The path can be restored to full 
communication capability by invoking the RESUME function. 

On an external interrupt, this bit indicates, when set to one, that the path is 
quieseed. The path must be resumed by the communicating partner before 
messages can be initiated by this user. 

IPBUFLST 
(X'40') 

(Input to RECEIVE, SEND) 

This bit set to one indicates that the address specified in IPBFADRI is 
actually the address of a list of buffers and their respective lengths. It also 
indicates that IPBFLNI/IPBFLNIF is the total length in the list. The 
format of the list is shown in the description of the ANSLIST parameter of 
the IUCV macro instruction. 

IPALL 
(X'80') 

(Input to QUIESCE, RESUME, SEVER) 

When this bit is one, IUCV performs the specified function on all paths for 
this virtual machine. 

If this bit is specified, IUCV ignores the IPPATHID field. 

IPRMI)ATA 
(X'80') 

(Input to ACCEPT, CONNECT, SEND, REPLY) 

(Output from DESCRIBE, RECEIVE, TEST COMPLETION) 

This option cannot be used with BUFLIST = YES on the SEND function or 
with ANSLIST= YES on the REPLY function. 

As an input, or a connection-pending or connection-complete external 
interrupt, this bit set to 1 indicates the communicator is prepared to handle 
inessages using the DAT A=PRMMSG option. 

When used with a SEND, a REPLY, a message-pending external interrupt, 
or message-complete external interrupt, this bit set to 1 indicates that the 
buffer/parmlist contains the message data in the IPRMMSGx fields. 

IPCMASK 
(Input to SETCMASK) 

This field specifies the mask byte to determine which of the IUCV control 
interrupts a virtual machine is to be enabled for. 

206 VM/SP System Programmer's Guide 

.,,-- .. 



( The SET CONTROL MASK function cannot be invoked from CP system 
code. 

The bits defined for IUCV are: 

IPCLPC 
IPCLCC 
IPCLPS 
IPCLPQ 
IPCLPR 

IPMASK 

X'80' 
X'40' 
X'20' 
X'lO' 
X'08' 

Enable for pending connection interrupts 
Enable for connection complete interrupts 
Enable for path severed interrupts 
Enable for path quiesced interrupts 
Enable for path resumed interrupts 

(Input to SETMASK) 

This field specifies the mask byte to determine which, if any, of the IUCV 
interrupts a virtual machine is enabled for. 

The SET MASK function cannot be invoked from CP system code. 

The bits defined for IUCV are: 

IPSNDN 
IPSNDP 
IPRPYN 
IPRPYP 
IPCTRL 

IPMSGID 

X'80' 
X'40' 
X'20' 
X'lO' 
X'08' 

Enable for nonpriority messages 
Enable for priority messages 
Enable for nonpriority replies 
Enable for priority replies 
Enable for IUCV control interrupts 
(CONNECT, SEVER, ACCEPT, QUIESCE, 
RESUME) 

(Input to PURGE, RECEIVE, REJECT, REPLY, TEST COMPLETION) 

(Output from DESCRIBE, PURGE, RECEIVE, REJECT, SEND, TEST 
COMPLETION) 

(Reflected in these IUCV external interrupts: pending message, message 
complete.) 

As an input, this field specifies the message identifier of the message to 
search for. The message identifier uniquely identifies a particular message. 
It is generated by IUCV and returned by the SEND function when the 
message is created. 

This field is an optional input to the functions listed above. When this field 
is specified, the path id and message class (IPSRCCLS for PURGE and 
TEST COMPLETION, IPTRGCLS for RECEIVE, REJECT and REPLY) 
must also be supplied. 

When this field is used for the above functions, the bit IPFGMID field of 
IPFLAGS 1 must be set to 1. 

As an output or on an external interrupt, this field indicates the message id 
of the message associated with this function or interrupt. 

Chapter 15. Inter-User Communications Vehicle 207 



IPMSGLIM 
(Input to ACCEPT, CONNECT) 

(Output from ACCEPT,CONNECT) 

(Reflected in the pending connection and connection complete lUCY 
external interrupts.) 

As an input, this field specifies the limit of outstanding messages to be 
allowed on the path established by this CONNECT. A message limit can 
also be specified on the lUCY directory control statement. If message limit 
has been specified in the directory for this user, you may not specify a value 
larger than the directory specification with this parameter of the lUCY 
macro. 

The maximum value that can be specified is 255. For CP system code, there 
is no overriding directory value. If this field contains a zero, lUCY assumes 
a default of 10. 

As an output or on an external interrupt, this field contains the message limit 
for this path. 

IPMSGTAG 
(Input to SEND) 

(Output from PURGE, TEST COMPLETION) 

(Reflected in the message-complete IUCV external interrupt.) 

This field specifies the tag data of the message created by invoking the 
SEND function. lUCY returns the message tag when the message 
completes. The source communicator can use this field to tie an incoming 
message-complete interrupt or output of TEST COMPLETION to the 
original SEND request. 

As an output or on an external interrupt, this field indicates the message tag 
of the message associated with this function or interrupt. 

IPPATHID 
(Input to ACCEPT, PURGE, QUIESCE, RECEIVE, REJECT, 
REPLY, RESUME, SEND, SEVER, TEST COMPLETION) 

(Output from CONNECT, DESCRIBE, PURGE, RECEIVE, REJECT, 
TEST COMPLETION) 

(Reflected in these lUCY external interrupts: pending connection, 
connection complete, pending message, message complete, sever, quiesce, 
resume.) 

This field specifies the path identifiers associated with a message. lUCY 
assigns a path identification and returns the value in the CONNECT 
parameter list. All further communications on a path must specify the 
PATHID that was returned from CONNECT. PATHIDs are sequential 

208 VM/SP System Programmer's Guide 



( from X'OOOO' to the maximum connections allowed for this virtual machine. 
As paths are severed, IUCV reuses the vacated P ATHIDs. 

If you specify MSGID on the PURGE, RECEIVE, REJECT, or TEST 
COMPLETION functions, IUCV requires that you specify PATHID and 
message class (IPSRCCLS or IPTRGCLS, as appropriate). 

This field is ignored if the IPALL bit in IPFLAGSl is set to one. 

When this field is used on the PURGE, RECEIVE, REJECT, and TEST 
COMPLETION functions, the IPFGPID bit must be set to 1 in the 
IPFLAGSl field. This bit is set by the IUCV macro when the PATHID= 
function is specified on the macro. 

As an output or on an external interrupt, this field indicates the pathid of the 
message associated with this function or interrupt. 

IPRCODE 
(Output from ACCEPT, CONNECT, DECLARE BUFFER, DESCRIBE, 
PURGE, QUIESCE, RECEIVE, REJECT, REPLY, RESUME, SEND, 
SEVER, TEST COMPLETION) 

IUCV places a value in this field only when an error is encountered in 
processing a function. The contents of this field are function dependent. 
The possible values for this field are listed in Figure 27, "IUCV Return 
Codes and Completion Codes." 

Only one error is returned from any function. IUCV terminates the function 
when the first error is encountered. 

IPRMMSGx 
(Input to SEND, REPLY) 

(Output from DESCRffiE, RECEIVE, TEST COMPLETION) 

(Reflected in these IUCV external interrupts: message-pending, message 
complete.) 

For SEND and REPLY, these fields specify the parameter list data. 
IPRMMSG is two fullwords in length, shown as IPRMMSG 1 and 
IPRMMSG2. 

IPSRCCLS 
(Input to PURGE, SEND, TEST COMPLETION) 

(Output from PURGE, TEST COMPLETION) 

(Reflected in the message-complete IUCV external interrupt.) 

This field specifies the source message class associated with a message. 

Chapter 15. Inter-User Communications Vehicle 209 



r", 
For PURGE andlTESTf ChOMPLETIONb, this fie did optionalll y sdPelcfifies .thed \,'~? 
source message c ass 0 t e message to e purge or comp ete. otnltte, 
IUCV does not use the source message class in the search for the message. 

For SEND, this field specifies the source message class that IUCV stores in 
the MSGBLOK that represents the message. 

As an input to the PURGE and TEST COMPLETION functions, the 
IPFGMCL bit must be set in the IPFLAGSI field. This bit is set by the 
IUCV macro when the SRCCLS= parameter is specified on the macro. 

As an output or on an external interrupt, this field indicates the source 
message class of the message associated with this function or interrupt. 

IPTRGCLS 
(Input to RECEIVE, REJECT, REPLY, SEND) 

(Output from DESCRIBE, RECEIVE, REJECT) 

(Reflected in the pending-message IUCV external interrupt.) 

This field specifies the target message class associated with this message. 

For RECEIVE and REJECT, this field optionally specifies the target 
message class of the message to be received or rejected. If omitted, IUCV 
does not use the target message class in the search for the message. 

For SEND, this field specifies the target message class that IUCV stores in 
the MSGBLOK representing the message. 

For REPLY, this field specifies the target message class of the message being 
responded to. . 

As input to the RECEIVE or REJECT functions, the IPFGMCL bit in the 
IPFLAGSI field must be set to 1. This bit is set by the IUCV macro when 
the TRGCLS= parameter is specified on the macro. 

As an output or on an external interrupt, this field indicates the target 
message class of the message associated with this function or interrupt. 

IPTYPE 
(Reflected in these IUCV external interrupts: pending connection, 
connection complete, pending message, message complete, sever, quiesce, 
resume.) 

This field indicates the type of external interrupt that is being reflected. The 
values that are found in this field and their meanings are: 

01 - Pending connection 

02 - Connection complete 

210 VM/SP System Programmer's Guide 



( 

{ 

03 - Path has been severed 

04 - Path has been quiesced 

05 - Path has been resumed 

06 - Pending priority message completion 

07 - Pending nonpriority message completion 

08 - Pending priority message 

09 - Pending nonpriority message 

IPUSER 
(Input to ACCEPT, CONNECT, QUIESCE, RESUME, SEVER) 

(Reflected in these IUCV external interrupts: pending connection, 
connection complete, sever, quiesce, resume.) 

As an input, this field specifies the 16 byte user data IUCV reflects to the 
target. 

On an external interrupt, this field contains the data specified by the 
communicating partner. 

IPVMID 
(Input to CONNECT) 

(Reflected in the pending connection IUCV external interrupt.) 

As an input, this field specifies the eight-character userid of the virtual 
machine or CP system service to which you want to establish this path. 

On an external interrupt, this field contains the ID of the virtual machine that 
issued the CONNECT. This field contains 'SYSTEM' if the CONNECT 
was issued by CP system code. 

Chapter 15. Inter-User Communications Vehicle 211 



IUCV RETURN CODES CONDmON CODES 
FUNCTION (Returned in IPRCODE) CC= 

ACCEPT 00 - Normal return 0- Normal completion-
01 - Invalid path id - not a external interrupt 

pending connection queued to notify 
18 - Value in IPMSGLIM originator 

exceeds 255 1 - Nonzero value stored at 
20 - Connection cannot be IPRCODE 

completed - originator 
has invoked SEVER 

CONNECT 00 - Normal return 0- Normal completion-
11 - Target communicator is partial connection 

not logged on established. External 
12 - Target communicator has interrupt queued to 

not invoked the DECLARE notify target of pending 
BUFFER function connection 

13 - Maximum number of con- I - Nonzero value stored at 
nections for this IPRCODE 
communicator exceeded 

14 - Maximum number of con-
nections for target 
exceeded 

15 - No authorization found 
16 - Invalid CP system 

service name 
17 - Invalid function code 

in IPFCNCD 
18 - Value in IPMSGLIM 

exceeds 255 

DECLARE 00 - Normal return o - Normal completion 
BUFFER 1 - Nonzero value stored 

19 - A buffer has been at IPRCODE 
previously declared 3 - Errors encountered in 

reading directory 

DESCRIBE 00 - Normal return 0- Normal completion 

- 2 - No message found 

PURGE 00 - Normal return o - Normal completion 
01 - Invalid path id 1 - Nonzero value stored 
08 - Message found but at IPRCODE 

message class invalid 2 - No message found 

QUERY None 0- Normal completion 
3 - Errors were encountered 

reading directory 

Figure 27 (Part 1 of 4). IUCV Return Codes and Completion Codes 

212 VM/SP System Programmer's Guide 



(- -

IUCV RETURN CODES CONDITION CODES 
FUNCTION (Returned in IPRCODE) CC= 

QUIESCE 00 - Nonnal return 0- Normal completion 
01 - Invalid path id 1 - Nonzero value stored at 

specified IPRCODE 

RECEIVE 00 - Nonnal return 0- Normal completion 
01 - Invalid path id 
05 - Receive buffer too short 1 - Nonzero value stored at 

to contain message IPRCODE 
06 - Fetch protection excep-

tion on send buffer 2 - No message found 
07 - Addressing exception on 

send buffer 
08 - Message id found but 

message class or path id 
invalid 

09 - Message has been purged 
10 - Message length is 

negative 
22 - SEND list invalid 
23 - Negative length in list 
24 - Incorrect total length 
26 - Buffer list not on a 

doubleword boundary 

REJECT 00 - N onnal return 0- Normal completion 
01 - Invalid path id 
08 - Message id found but 1 - Return code stored 

message class or path 
id invalid 2 - No message found 

Figure 27 (Part 2 of 4). IUCV Return Codes and Completion Codes 

Chapter 15. Inter-User Communications Vehicle 213 



IUCV RETURN CODES CONDITION CODES 
FUNCTION (Returned in IPRCODE) CC= 

REPLY 00 - Normal return 0- Normal completion 
01 - Invalid path id 
05 - Answer buffer too short 1 - Nonzero value stored in 

to contain message IPRCODE 
06 - Storage protection ex-

ception on answer buffer 2 - No message found 
07 - Addressing exception on 

answer buffer 
08 - Message id found but 

message class or path 
id invalid 

- 09 - Message has been purged 
10 - Message length is 

negative 
21 - Parameter list data not 

allowed on this path 
22 - SEND list invalid 
23 - Negative length in list 
24 - Incorrect total length 
25 - PRMMSG invalid with 

ANSLIST option 
27 - Answer list not on a 

doubleword boundary 

RESUME 00 - Normal return 0- Normal completion 
01 - Invalid path id 1 - Nonzero value stored at 

specified IPRCODE 

RETRIEVE None o - Normal completion 
BUFFER 

Figure 27 (Part 3 of 4). IUCV Return Codes and Completion Codes 

214 VM/SP System Programmer's Guide 



( 
IUCV RETURN CODES CONDITION CODES 
FUNCTION (Returned in IPRCODE) CC= 

SEND 00 - Normal return 0- Normal completion 
01 - Invalid path id 
02 - Path quiesced - no sends 1 - Nonzero value stored at 

allowed IPRCODE 
03 - Message limit exceeded 
04 - Priority message not 

allowed on this path 
10 - Message length is 

negative 
21 - Parameter list data not 

allowed on this path 
25 - PRMMSG invalid with 

BUFLIST option 
26 - Buffer list not on a 

doubleword boundary 
27 - Answer list not on a 

doubleword boundary 

SET MASK 00 - Normal return 0- Normal completion 

SET CONTROL 00 - Normal return 0- Normal completion 
MASK 

SEVER 00 - Normal return o -Normal completion 

( 01 - Invalid path id 1 - Nonzero value stored at 
specified IPRCODE 

TEST 00 - Normal return 0- Normal completion 
COMPLETION 01 - Invalid path id 1 - Nonzero value stored at 

08 - Message id found but IPRCODE 
message class or path 2 - No message found 
id invalid 3 - Nonzero audit trail 

stored 

TEST None 1 - Messages queued on the 
MESSAGE Send queue 

2 - Messages queued on the 
Reply queue 

3 - Both messages and 
replies are queued 

Figure 27 (Part 4 of 4). IUCV Return Codes and Completion Codes 

Chapter 15. Inter-User Communications Vehicle 215 



IUCV Trace Table Entry Fonnats 

ACCEPT, CONNECT, DESCRIBE, PURGE, QUIESCE, RECEIVE, REJECT, 
REPLY, RESUME, SEND, SEVER, TEST COMPLETION 

o 2 3 4 5 6 7 

o X'15' FCODE I PATH IUCVBLOK 

8 RCODE MSGBLOK FLAGS I INSTRUCTION 

DECLARE BUFFER, RTRVBFR 

o 2 3 4 5 6 7 

o X'15' FCODE I I I I I I I I I I I I I I IUCVBLOK 

8 RCODE BUFFER FLAGS I INSTRUCTION 

QUERY 

o 2 3 4 5 6 7 

o X' 15' I FCODE PARMSIZE IUCVBLOK 

8 1111111111111 MAXCONN IIIII I INSTRUCTION 

SETMASK, SETCMASK 

o 2 3 4 5 6 7 

o X'15' FCODE I MASK II I II I IUCVBLOK 

8 RCODE 111111//1//1////////// FLAGS I INSTRUCTION 

TESTMSG 

o 2 3 4 5 6 7 

o X'15'J FCODE I CCODE J///// I IUCVBLOK 

8 ///////////////11//////////////////// I INSTRUCTION 

216 VM/SP System Programmer's Guide 



Trace Table Entry Field Definitions 

This section explains, for each IUCV trace table field, the functions for which this 
field is valid, and the meaning of the field. 

BUFFER 

CCODE 

FCODE 

FLAGS 

(Used on DECLARE BUFFER, RTRVBFR) 

This field contains the virtual buffer address specified by the user 
for IUCV external interrupt information. 

(Used on TESTMSG) 

This field contains the condition code returned to the invoker of 
the TEST MESSAGE function if a message was pending at the 
time the TEST MESSAGE function was issued. If no message is 
pending when the TEST MESSAGE is issued, this field contains 
zero. Bits 6 and 7 of this CCODE field are used for the condition 
code. 

(Used on all entries) 

This field indicates the exact function executed. One of the 
following function codes is found in this field. 

'00' - QUERY '09' - PURGE 
, 01 ' - TESTMSG 'OA' - ACCEPT 
'02' - RTRVBFR 'OB' - CONNECT 
'03' - DESCRIBE 'OC' - DECLARE BUFFER 
'04' - SEND '00' - QUIESCE 
'05 ' - RECEIVE 'OE' - RESUME 
'06 ' - REPLY 'OF' - SEVER 
'07' - TEST COMPLETION ' 10' - SET MASK 
'08' - REJECT ' 11 ' - SETCMASK 

(Used on ACCEPT, CONNECT, DECLARE BUFFER, 
DESCRIBE, PURGE, QUIESCE, RECEIVE, REJECT, REPLY, 
RESUME, SEND, SETCMASK, SETMASK, SEVER, TEST 
COMPLETION) 

This field is a copy of the input flags specified by the user in the 
field IPFLAGSI of the parameter list. Note that the use of these 
flags varies by function and that the user may have set flags that 
are not used by the function. 

INSTRUCTION (Used on all entries) 

IUCVBLOK 

This field contains the address of the instruction following where 
the function was invoked. This address is a real address if CP 
initiated this function. Otherwise, the address is an address in a 
virtual machine. 

(Used on all entries) 

This field contains the address of the IUCVBLOK associated with 
the invoker. For the QUERY function, this field may be zero if no 

Chapter 15. Inter-User Communications Vehicle 217 



MASK 

(-, 

IUCVBLOK currently exists for the invoker. For the DECLARE ~j 
BUFFER function, this field contains the address of the 
IUCVBLOK created by this function. 

(Used on SETMASK, SETCMASK) 

This field contains a copy of the mask field that was specified by 
the virtual machine. 

MAXCONN (Used on QUERY) 

MSGBLOK 

PARMSIZE 

PATH 

RCODE 

218 VM/SP System Programmer's Guide 

This field contains the maximum number of connections allowed 
by the virtual machine issuing this request. 

(Used on DESCRIBE, PURGE, RECEIVE, REJECT, REPLY, 
SEND, TEST COMPLETION) 

This field contains the real address of the MSGBLOK processed 
by this request. 

(Used on QUERY) 

This field contains the size of IUCV parameter list returned to the 
invoker of the QUERY function. 

(Used on ACCEPT, CONNECT, DESCRIBE, PURGE, 
QUIESCE, RECEIVE, REJECT, REPLY, RESUME, SEND, 
SEVER, TEST COMPLETION) 

This field contains the path id of the path associated with this 
request. For the CONNECT function, this is the path id 
associated with the path being created. For the other functions, 
this is the path id used to process the request. 

(Used on ACCEPT, CONNECT, DECLARE BUFFER, 
DESCRIBE, PURGE, QUIESCE, RECEIVE, REJECT, REPLY, 
RESUME, SEND, SETCMASK, SETMASK, SEVER, TEST 
COMPLETION) 

This field contains the code returned in the field IPRCODE of the 
parameter list. If this return code field is non-zero, only the 
TYPE, FCODE, INSTRUCTION, FLAGS, and IUCVBLOK 
fields are valid. The other fields may be invalid due to the nature 
of the return code. Invalid fields always contain zeroes. 

If CP issued this function, the high-order bit of this field will be 
on. Therefore, if the return code on this function is X'05' and the 
entry is from CP, this field will contain a X' 85 ' . 



( 

( 

Chapter 16. SNA Virtual Console Communication Services 

SNA Virtual Console Support provides full VM/SP console capabilities to terminal 
operators on SNA terminal devices and allows the VM/SP user to use SNA 
terminals as virtual operator consoles. 

SNA Virtual Console Communications Services support the following console 
functions: 

• CP / CMS command processing capabilities 

• System product or CMS editor processing mode 

• Full screen support for 3270 type terminal devices 

• Support for 3290 type terminal devices 

• Data stream processing for TWX devices, including APL/ ASCII support and 
display roll-over presentation. 

This support is provided through a VT AM service machine (VSM) that acts as an 
interface between an SNA network and CPo The VSM passes data between the 
SNA network and the SNA Console Communications Services (CCS) feature of 
VM/SP. CCS passes data between existing non-SNA CP system console services 
and the VSM. 

The VSM can be a virtual machine running either the VT AM SNA Console 
Support component (VSCS) of the Advanced Communication Function/Virtual 
Telecommunications Access Method (ACF /VT AM) or the VM/VT AM 
Communications Network Application (VM/VCNA). 

The screen management services are divided between the SNA CCS and either 
VSCS or VCNA. VSCS or VCNA is responsible for the physical screen 
management and therefore, the device dependent characteristics. Thus, VSCS or 
VCNA handles such things as screen size and redisplay of the input line at the 
terminal. SNA CCS is responsible for logical screen management and thus remains 
relatively device independent in most cases. SNA CCS also passes the terminal 
input to CP and reflects status and actions to and from the rest of the CP system. 

Chapter H). SNA Virtual Console Communication Services 219 



System Structure 

Figure 28 illustrates a VM/SP system with the SNA virtual console support. The 

I VT AM service machine (VSM) consists of VT AM and VSCS running under the 
control of VM/SP's Group Control System (GCS) facility. 

Guest Guest VTAM Service 
Virtual Virtual Machine 
Machine Machine I ACF/ 

VSCS (2) VTAM 
A B X 

(11) 
....-* 

(3) 

OP SYS OP SYS 
or or 

CMS Cf1S 

X X 
(5)1(6) I 
-X X-

CP CONSOLE 
SERVICES 

-( 4 )-JoE 

SNA CONSOLE (7) (3) 
cmmUNICA nONS i SERVICES (SHA CCS) 

X - EXISTING INTERFACE * - SHA VIRTUAL COHSOLE 
SUPPORT INTERFACE 

CP 

(10 ) 
1--* X-

GCS 

* X-

I ( 9) 
I 

(1) 

r* 
-* 

I IUCV 
(8) 

i 
'-X 

370X I 
LUl--wHCP X 
LU2 --X 

·X 
PEP 

Figure 28. Virtual Console Support in CP 

1. SNA CCS supports the SNA terminals (LUI, LU2) as virtual consoles. These 
SNA terminals are attached to a 3705 or 3725 communications controller 
dedicated to the VT AM service machine. 

I 2. 

Data entered at the terminal goes through its normal path of the NCP, CP, 
GCS, and VTAM. The guest virtual machine interface to CP is the S/370 
architecture provided by virtual machine simulation. 

VSCS interfaces to VT AM via the standard Application Program Interface 
(API) to perform physical I/O to/from the SNA devices. 

3. The terminal input is communicated to the SNA CCS via the Inter-User 
Communication Vehicle (lUCV) SEND, RECEIVE, and REPLY protocols. 

220 VM/SP System Programmer's Guide 



(-

4. SNA CCS receives the interface control block (Work Element Block) with the 
terminal input data. It interprets the control information that describes the 
screen environment and the user's actions, and determines the action to be 
reflected to CPo SNA CCS edits the input line, and passes it to CP along with 
the action required. 

5. SNA CCS either processes the line or sends it to the guest virtual machine for 
processing. 

I 6. Guest virtual machines request console I/O via the Start I/O interface (SIO) 
or via DIAGNOSE code X'58'. 

I 7. SNA CCS intercepts the I/O request and performs logical screen management. 
A Work Element Block is built to inform VSCS of the action to be initiated on 
the screen and to hold the output line. 

8. SNA CCS uses the IUCV SEND, RECEIVE, and REPLY protocols to 
communicate the work transaction to VSCS. 

9. The IUCV request from SNA CCS to VSCS in the VTAM Service Machine is 
intercepted by GCS. 

10. GCS notifies VSCS of the incoming message. 

11. VSCS receives the Work Element Block, interprets the orders, and performs 
the physical screen management for the SNA terminal. 

Environments Supported 

I SNA CCS and either VSCS or VCNA handle three 'environments' for the purposes 
of screen management: console mode, CMS mode, and full screen support mode. 
These environments represent the interfaces that CP supports for console services 
to a virtual user terminal and a guest virtual machine (GYM). 

1. Console mode is communications between a display operator and either CP or 
an operating system in a virtual machine (CMS or another operating system). 
In this mode, the screen is divided into three areas, (input, output, and status), 
and data to the output area is always directed to the next available line. 
Console mode I/O is generated when a guest virtual machine issues an SIO to 
the 3215 user console or CP generates console I/O requests internally in 
response to CP commands. 

2. CMS mode is DIAGNOSE code X'58', CCW op code X' 1'. transactions. In 
this mode, the CMS editor or an application program directs output to specific 
lines on the screen. As with console mode, the screen is divided into three 
areas (input, output, and status). 

3. Full screen support mode (FSSM) is the environment where the display screen 
is under control of a full screen application program. In this mode, the format 
of the screen is under application program control and the application program 
provides all 3270 orders. The interface to CP from a guest virtual machine is 

Chapter 16. SNA Virtual Console Communication Services 221 



DIAGNOSE code X'58', CCW op code X'29' or X'2A', for a full screen 
write or read. 

Processing Descriptions 

Screen Management 

In non-SNA processing, DMKGRF handles the console support for local 327x, 
3066, and 3290 devices. DMKRGA, DMKRGB, DMKRGC, DMKRGD, and 
DMKRGE contain the support for remote devices. These modules perform both 
the logical and physical screen management needed for the graphic display and 
printer keyboard terminals. 

In SNA processing, to support a virtual console for a VTAM service machine 
terminal user, virtual console support has been divided between the SNA CCS and 
either VSCS or VCNA. 

SNA CCS handles this SNA environment for CP via modules DMKVCP, 
DMKVCR, DMKVCT, DMKVCV, and DMKVCX. Either VSCS or VCNA 
handles the physical, device-dependent characteristics of the screen, setting up the 
I/O, and maintaining the current state of the screen. VSCS or VCNA uses VTAM 
to perform the I/O. SNA CCS handles the logical control of the screen, directs the 
VSCS or VCNA actions, and serves as the interface between the VTAM machine / 
and the existing CP console function support. SNA CCS communicates with VSCS 
or VCNA via IUCV. 

Modules DMKVCP, DMKVCQ, DMKVCR, DMKVCS, DMKVCT, DMKVCV, 
and DMKVCX perform the logical functions for CP that are described above. As 
with non-SNA processing, DMKGRF processes the local 327x/3066 and 3290 
devices, and DMKRGA, DMKRGB, DMKRGC, DMKGRD, and DMKRGE 
support the remote devices. 

Note that the logical units supported by VSCS or VCNA are independent of CP; 
they cannot be mapped to any real device defined to CP (that is, they are not 
defined in the RDEVICE macro). SNA CCS provides the necessary interface to 
make the SNA terminal appear to be a real CP device. 

Communication Interfaces 

To communicate, SNA CCS and VSCS or VCNA pass a work element block 
(WEBLOK) between them. The WEBLOK contains the transaction orders for the 
other component (SNA CCS or either VSCS or VCNA), the environment, and the 
data for the CP system or the user's terminal. See the section "Work Element 
Block" that follows or see VM/SP Data Areas and Control Block Logic Volume 1 
(CP) for a detailed description of the WEBLOK. 

SNA CCS and either VSCS or VCNA communicate via the Inter-User 
Communication Vehicle (lUCV). Figure 29 on page 223 illustrates the interfaces 
used in SNA processing. DMKQCN presents requests from CP, CMS or, a guest 
virtual machine for terminal writes to SNA CCS via CONTASKS. DMKQCO 

222 VM/SP System Programmer's Guide 

=-,,/ 



( 

presents requests from CP, CMS or, a guest virtual machine for terminal reads to 
SNA CCS via CONTASKS. SNA CCS passes input from the SNA terminal to CP 
and the virtual machines via DMkCFM and DMKVCN. This is the same way 
DMKGRF handles local terminal support. 

In SNA processing, CP handles terminal input and interfaces normally with one 
exception: CP must use logical unit names, instead of real addresses, to reference 
SNA terminals. 

< 
< 

SNA user 
terminals 

> 
> 

VM/VTAM 
Communications 

Network Application 
(VM/VCNA) 
or VSCS 

Virtual Machine 

CP 

Inter User Communications 
Vehicle (IUCV) 

SNA Console 
Communi c<:lti onst------I 

Services ~--~ 
(SNA CCS) 

THE REST OF VM/SP 

Figure 29. SNA Virtual Console Support Interfaces 

Functions 

SNA CCS handles the following functions in support of the console, CMS, and full 
screen triode environments for SNA terminals: 

• Connect VT AM service machine and Logical Units 
• Logon a Logical Unit 
• Request a read 
• Request a write 
• Process an enter key 
• Process a PAl key 

Chapter 16. SNA Virtual Console Communication Services 223 



• Process a P A2 key 
• Process a P A3 key 
• Process a PF key 
• Process an Attention Interrupt 
• Process a Cursor Back One 
• Logoff a Logical Unit 
• Process error conditions 
• Sever a communications path 

Process data streams from TTY devices 
Pass VSCS the system identification for the status area. I : 

Enabling SNA Terminals 

CP operator must issue the ENABLE SNA command. The SNA parameter on the 
ENABLE command enables all SNA devices and has no effect on non-SNA 
devices. The ENABLE ALL command enables both non-SNA and SNA devices. 

In the multiple VT AM service machine environment, the operator may selectively 
enable or disable any given VT AM service machine by using the userid option on 
the ENABLE/DISABLE SNA command. The operator cannot enable and disable 
individual logical units, although the VT AM operator may. 

Establishing Communications Links 

The VT AM service machine issues an IUCV CONNECT under two separate 
conditions: 

• VT AM Service Machine CONNECT 

• VSCS or VCNA issues a CONNECT via IUCV to establish an initial global 
connection between VSCS or VCNA and SNA CCS. This CONNECT 
notifies SNA CCS that a new VTAM service machine has logged on and is 
ready to service logical units. If the VM/SP operator has issued the ENABLE 
SNA or ENABLE ALL command, SNA CCS accepts the CONNECT, and 
authorizes VSCS or VCNA to allow users to logon to SNA terminals. SNA 
CCS creates a VT AM Service Machine Block (VSMBLOK) for that VT AM 
service machine. In a multiple VT AM service machine environment, the 
VSMBLOK allows SNA CCS to associate the logged on SNA user with the 
correct VSCS or VCNA. See VM/SP Data Areas and Control Block Logic 
Volume 1 (CP) for a detailed description of the VSMBLOK. 

• Logical Unit CONNECT 

To logon to VM/SP, the SNA terminal user must first logon to VSCS or 
VCNA running in the VTAM service machine. To logon to VSCS or VCNA, 
the user issues the ACF /VT AM LOGON command. When logging on, the 
terminal user may optionally specify the userid (or the userid and password) of 
his virtual machine in the DATA portion of the ACF/VTAM LOGON 
command. Specifying information in DATA allows you to reach VM/SP in 
one step. The commands for logging on differ slightly between VSCS and 
VCNA. The examples below show VM/SP information included on a VSCS 
or VCNA logon: .~ 

o 
224 VM/SP System Programmer's Guide 



LOGON APPLID(VM) 
LOGON APPLID(VM) DATA (userid) 
LOGON APPLID(VM) DATA ('userid options') 

If you specify VM in the APPLID field, ACF /VT AM queues a logon request 
to VSCS. 

The syntax for LOGON commands with VCNA is similar, but the APPLID 
name must be "VCNA" instead of "VM". VSCS also allows a shorter form of 
the LOGON command: 

VM 

The userid and password may be included on the "VM" form. 

VSCS also allows terminals it supports to use the CP DIAL command. It can 
be included as DATA on a "LOGON" or "VM" command. Examples are: 

LOGON APPLID(VM) DATA ('DIAL userid') 
VM DIAL userid 

Any CP command valid before a CP logon can be used as data. Only display 
terminals can use the DIAL command; keyboard/printer terminals may not. 

If no logon data (VM/SP userid and password) is specified, the system writes a 
VM/370 logo to the terminal under the control of VSCS or VCNA. From this 
point on, the user logs on to VM much the same as he does with a local 
terminal. The attention interrupt generated when the user clears the logo from 
the screen causes VSCS or VCNA to issue an IUCV CONNECT SVC on 
behalf of the terminal. If 'SNA' is still enabled, CCS builds an RDEVBLOK 
and a SNA Resource Block (SNARBLOK) and chains them to the VSMBLOK 
built during the VSCS or VCNA connect described above. This ties the user's 
control block (SNARBLOK) to the VT AM service machine the user is logged 
onto. The system must tie these blocks together since the logical unit's 
'LUNAME', which is represented by the SNARBLOK, is unique only to its 
own VT AM service machine. That is, it is possible to have duplicate lunames 
among two or more VT AM service machines. 

After the connection is established, VSCS or VCNA and SNA CCS exchange 
initialization information. VSCS or VCNA sends luname, device class, device 
type, line length, pace value (for controlling the number of writes to the 
screen), model number, and its IUCV path ID for this logical unit and then 
waits for LOGON processing to complete. SNA CCS initializes the 
SNARBLOK and RDEVBLOK with the data supplied by VSCS or VCNA. 
VSCS also exchanges some additional information with SNA CCS. It passes 
the information from a Write Structured Field Query to SNA CCS and receives 
the VM system id from SNA CCS. 

If the user specified a userid and password on the ACF /VT AM LOGON, the 
VM/370 logo is not displayed. VM/VCNA sends the logon data to SNA CCS 
in response to the first CP read request to enter userid. If the user specified 
only the userid, CP prompts the terminal user for the password. 

The installation may specify "automatic" logon to VSCS or VCNA for SNA 
terminals. This can be accomplished in two ways: 

Chapter 16. SNA Virtual Console Communication Services 225 



1. The installation can specify LOGAPPL=(VM) or LOGAPPL=(VCNA) 
in the logical unit definition. This causes :A.CF /VT AM to queue a logon 
request to the appropriate program when the logical unit is activated. 

2. The ACF/VTAM operator may issue a VARY ACTNATE command for 
the logical unit, specifying VSCS or VCNA on the LOGON= parameter. 

For further information concerning ACF/VTAM LOGON refer to the 
ACF/VTAM System Programmer's Guide or the VM/SP Terminal Reference. 

DIAL Command Processing 

A VM/SNA user whose display is controlled by VSCS may issue the CP DIAL 
command to establish communication with an IPLed guest virtual machine. When 
the DIAL command is issued, DMKDIA attempts to locate the VMBLOK in the 
target virtual machine. If unsuccessful, DMKDIA issues a message to the user 
indicating that the target virtual machine is not logged on. A VM/VT AM terminal 
is not allowed to dial to the virtual machine running VT AM. The user receives an 
error message when the user tries to dial the VT AM virtual machine. 

) 

If DMKDIA does locate the desired VMBLOK, it examines the VDEVBLOKs to 
determine if the virtual machine has defined a local virtual graphic terminal. If not, 
DMKDIA issues a message to the user indicating that no lines are available. When 
a user attempts to connect to a specific virtual address and DMKDIA cannot locate 
a VDEVBLOK for that address, the user receives a message indicating that the 
specified address does not exist. / .. , 

When the necessary conditions are satisfied, DMKDIA sets flags in the target 
virtual machine control blocks to indicate the following: 

• VDEVBLOK - dialed SNA device 

• SNARBLOK - dialed SNA terminal 

• RDEVBLOK - dedicated device. 

DMKDIA then stacks an IOBLOK for the virtual machine on behalf of the device 
to signal a DEVICE END from a virtual power on. 

DMKDIA issues a message to the user giving the virtual address of the dialed 
virtual machine. It also sends a message to the operator saying that this user is 
dialed to the target virtual machine. 

The 'DIAL' session is terminated when the virtual terminal device is reset by the 
virtual machine. DMKDIB then drops the device from the virtual machine, and 
issues a related message to the user and to the operator. CCS (Console 
Communications Services) cleans up SNA control blocks and CP resets all flags set 
during session initiation. This frees the virtual device to be used by another user. 

226 VM/SP System Programmer's Guide 



( Real Device Simulation 

Command Handling 

Work Element Block 

When VSCS or VCNA connects to SNA CCS for a logical unit, it identifies the 
SNA logical unit to SNA CCS. In addition, VSCS or VCNA identifies any device 
characteristics that CP or CMS need to perform their functions. SNA CCS 
simulates a real device by dynamically building a Real Device Block 
(RDEVBLOK) and assigning this RDEVBLOK to the SNA user's virtual machine. 

SNA CCS initializes the fields for the RDEVBLOK instead of DMKRIO. In 
addition, SNA CCS builds a control block for SNA, a SNARBLOK. The 
SNARBLOK contains the status and control fields for SNA CCS. See VM/SP 
Data Areas and Control Block Logic Volume 1 (CP) for a detailed description of the 
SNARBLOK. 

The RDEVBLOK is chained to the VSMBLOK belonging to the VSM that issued 
the IUCV CONNECT for it, and the RDEVBLOK points to the SNARBLOK for 
that LU. The RDEVBLOK and SNARBLOK are, however, contiguous in storage. 
CP references to the RDEVBLOK are still valid in the SNA environment. 

As in non-SNA processing, the VMTERM field of the VMBLOK and the 
VDEVREAL field of the VDEVBLOK point to the RDEVBLOK. 

When special SNA processing is necessary, an indicator in the RDEVBLOK 
(RDEVSNA) denotes that this is a SNA type RDEVBLOK. The RDEVSNA field 
is an alternate definition for the current RDEV ADD field. The real device address 
has no meaning for SNA logical units. 

After VSCS or VCNA completes the initial processing for the SNA logical unit, it 
passes the user's LOGON request to SNA CCS. SNA CCS edits the LOGON 
command and all subsequent commands and passes them to CP console services 
using CP interfaces. CP processes the commands the same way it processes 
non-SNA commands. However, VSCS or VCNA, rather than CP, manages 
redisplay of the input line. 

The work element block serves as the interface between SNA CCS and VSCS or 
VCNA. Both SNA CCS in CP and VSCS or VCNA in the VTAM service machine 
create work element blocks. In SNA CCS, the work element block is known as the 
WEBLOK. In VSCS or VCNA, the work element block is known as the DTIWEB. 
SNA CCS and VSCS or VCNA pass the WEBLOK between them and use it as the 
interface for all requests for work from the other component. The data portion of 
the work element block contains input or output lines to be passed and the control 
portion contains transaction orders and environment data. See VM / SP Data Areas 
and Control Block Logic Volume 1 (CP) for a detailed description of the WEBLOK. 

Chapter 16. SNA Virtual Console Communication Services 227 



Work Element Indicator Block 

SNA I/O Processing 

Redisplay of Input Line 

SNA CCS creates the work element indicator block (WEmLOK) as a header for 
the WEBLOK. Its function is to identify a unit of work that is in progress or that 
has not yet been processed. The WEmLOK points to the WEBLOK and 
CONTASK associated with a given user. See VM/SP Data Areas and Control 
Block Logic Volume 1 (CP) for a detailed description of the WEmLOK. 

For non-SNA processing, CP console services build channel programs, lOBs, and 
use DMKIOS to perform their I/O. SNA processing moves the physical device 
management to VSCS or VCNA. Instead of calling DMKIOS, CP then passes 
control to SNA CCS. SNA CCS does not build any channel programs or lOBs. It 
determines what action must be taken for the console and sends the transaction to 
VSCS or VCNA instead of to DMKIOS. VSCS or VCNA and VTAM set up the 
I/O operations to the terminal and issue an SIO. CP intercepts this SIO and 
performs the I/O the same way it does for non-SNA processing. 

Input line redisplay for SNA terminals is handled by VSCS or VCNA. 

VSCS or VCNA redisplay of input line 

To reduce the number of VTAM SENDs to the terminal, VSCS or VCNA does 
not immediately redisplay the input line. Instead, it holds the I/O operation 
until SNA CCS requests more I/O to that terminal; for example, the response 
to the input or a message. When VSCS or VCNA receives a write to the 
device, it sends the input line to be redisplayed and the information from SNA 
CCS to be written to the device in one VT AM send. 

VSCS or VCNA clears the input area, updates the status field, and redisplays 
the line using the same VT AM SEND. 

CCS Redisplay Timer 

VSCS or VCNA passes a timer variable to SNA CCS when it invokes the 
IUCV CONNECT function. This value indicates to SNA CCS how long it 
should wait for a command to complete before SNA CCS issues an IUCV 
SEND to the VTAM service machine to request input line redisplay. 

SNA CCS sets a timer to tell it how long to wait before requesting redisplay of 
the line. This is necessary since some commands do not produce any output, 
and CP or CMS might require a significant amount of time to finish the 
command processing. H the timer expires before CP has output to write to that 
terminal, SNA CCS issues an IUCV SEND to VSCS or VCNA requesting a 
write for the redisplay. 

228 VM/SP System Programmer's Guide 



( TRQBLOK 

( 

I/O REQUESTS 

In non-SNA processing, DMKGRF builds a Timer Request Block (TRQBLOK) 
that it uses 

• For its status flags 
• For an interrupt return address after an I/O operation 
• After a timer expires and 
• As a header to chain CONT ASKS when in FSS mode. 

In SNA processing, SNA CCS does not use TRQBLOK for the above functions 
because: 

1. Status fields are kept by VSCS or VCNA for each SNA terminal user 

2. IUCV mechanisms are used to return control after SEND requests to VSCS or 
VCNA 

The timer support for the alarm, MORE/HOLDING state, and NOT 
ACCEPTED has been moved to VSCS or VCNA 

4. SNA CCS has its own control block structure to associate a user with its 
related CONTASKS, IUCV control blocks, and the work element block. Since 
the processing of CONTASKs has been streamlined to help performance, the 
TRQBLOK is no longer needed for queueing CONTASKs. 

However, in SNA processing, a TRQBLOK is still created, since a timer is required 
for the input line redisplay processing described above. 

DMKGRF, the module that manages I/O to a real 3270, performs requests for I/O 
from DMKQCN synchronously. When DMKQCN requests a response, DMKGRF 
schedules an lOB for the I/O operation and waits for the I/O to complete before 
sending the response. SNA CCS takes the virtual machine out of SIO wait state as 
soon as the I/O to the real device is started. For a write, SNA CCS sends the write 
request to VSCS or VCNA, takes the virtual machine out of the SIO wait state, and 
returns immediately to the caller with a successful completion response as if the 
I/O had completed successfully. 

In some situations, SNA CCS waits for a response from VSCS or VCNA before 
responding with a return code to the CP system. This is governed by a 'pacing 
value' equivalent to the number of lines for a full screen. In this way, VSCS or 
VCNA can reach SNA CCS with a PAl key indicator to stop processing; SNA 
CCS does not flood IUCV and VSCS or VCNA with output from some commands 
(for example, DISPLAY). SNA CCS always waits for a response from VSCS or 
VCNA for DIAGNOSE code X'58' writes for CMS and full screen support modes 
before returning to the caller with a response. 

SNA CCS queues a CONT ASK if it is waiting for a response on either a write or a 
read request. It does not split CONTASKs for multiple line writes but passes the 
entire write buffer to VSCS or VCNA, thus reducing IUCV SENDs and 
RECEIVEs. 

Chapter 16. SNA Virtual Console Communication Services 229 



VTAM I/O Reduction 

SNA CCS batches console function and virtual machine SIO output lines in a lK 
byte buffer. The batch lines are sent to VSCS or VCNA when the buffer is full, a 
read is initiated by a virtual machine or CP to a SNA terminal, the pace value 
reaches zero, the redisplay timer expires, a DIAGNOSE code X'58.' operation 
takes place, or the virtual machine is dropped from the dispatch queue. 

The batching technique and priority structure ensures that either a full screen of 
information is presented to VSCS or VCNA for each CP or CMS console 
transaction or the transaction is complete (for those transactions with less than a 
full screen of data) prior to control being given to the VSM. 

MORE/HOLDING Condition 

SNA Accounting 

NCP and PEP Sharing 

To reduce the number of IUCV transactions, VSCS or VCNA resolves the 
MORE/HOLDING condition when it occurs on the screen. VSCS or VCNA 
takes whatever action is appropriate and avoids notifying SNA CCS of the screen 
status in most cases. In cases when a mode change may take place (PAl key) or an 
interrupt must be reflected to a user's virtual machine (PAl or PA2 key), VSCS or 
VCNA resolves the MORE/HOLDING condition, then notifies SNA CCS of 
which key was pressed and the screen status at the time. VSCS or VCNA resolves 
pressing of the clear key or enter key in MORE/HOLDING status without 
notifying SNA CCS. 

VSCS or VCNA records accounting data on a terminal user basis. When the SNA 
user logs off, VSCS or VCNA passes a maximum of 62 bytes of accounting data, in 
the WEBLOK, to SNA CCS. SNA CCS uses the CP accounting module, 
DMKACO to write a VTAM accounting record (type X'07') in the CP accounting 
file. Neither SNA CCS nor DMKACO are aware of the contents of the VTAM 
accounting record. 

SNA CCS accrues processor time for a terminal user while it is processing for that 
user. This time is added to the time CP already accumulated for the user. The time 
appears in the accounting record produced when the user logs off. 

Note: Refer to ACF /VTAM Planning and Installation for details of VSCS records 
and VM/VCNA Installation, Operation, and Terminal Use, for details of VCNA 
records. 

Since CP supports only a back level of NCP that does not support SNA and 
VTAM loads ACF/NCP, you must prevent CP from loading/reloading the 
back-level NCP at initialization and at restart. Refer to VM/SP Planning Guide 
and Reference for information on how to accomplish this. 

230 VM/SP System Programmer's Guide 



(~' 

User Termination 

Shut Down 

When a user issues the VM/SP LOGOFF or a ACF/VTAM LOGOFF, the 
control blocks related to the user's virtual machine and SNA terminal are released 
to free storage. When VSCS or VCNA issues the SEVER indicating that a user 
has logged off, SNA CCS need only issue a SEVER for its path. If a SEVER 
reaches SNA CCS and there is a SNARBLOK that indicates the user is 
disconnected, the path is severed. The control blocks are released when the user is 
eventually logged off. If SNA CCS gets the SEVER and there is a SNARBLOK 
but the user is not disconnected, then SNA CCS disconnects the virtual machine 
associated with the SNARBLOK. 

To shut down the system, the VM/SP system operator should notify users that the 
system is shutting down. If the SNA operator has the proper class, he can force off 
any SNA user that did not log off. In this way, VSCS or VCNA can collect 
accounting data for its users and record it in CPo The DISABLE SNA (userid) 
command can be used to prevent additional users from logging on. In this way, 
VSCS or VCNA can be stopped without bringing down the VT AM service 
machine that it is running in. Any other application in the VT AM service machine 
may continue to run unaffected. 

Operator Considerations 

While it is possible for the operator of the VT AM service machine to disconnect 
from a 'local' terminal, extreme care must be exercised. The VSCS or VCNA 
operator must 'SET RUN ON' prior to disconnecting from the 'local' terminal. If 
the operator does not do this, unpredictable results occur and a deadlock of the 
VSCS or VCNA is likely. 

The operator of the VT AM service machine (VSM) cannot disconnect from the 
service machine and then reconnect from a SNA logical unit controlled by that 
service machine, using the same operator userid that was used for the service 
machine. That is, the operator cannot logon as the VSCS or VCNA operator at a 
terminal managed by VSCS or VCNA. The operator of one VSM (Le. VSMl) 
may disconnect from that VSM and reconnect as operator (of VSMl) from a 
terminal controlled by a second VSM (VSM2). The restriction means that the 
operator of VSMI may not have as his terminal, one which is controlled by VSMl. 
Also, the userid that is running VT AM cannot logon at a terminal controlled by the 
virtual machine running VT AM. 

SNA CCS Entries in CP Internal Trace Table 

SNA Console Communications Services (SNA CCS) creates trace table entries in 
the CP Internal Trace Table to leave an audit trail of its activities. 

SNA CCS places an entry in the CP trace table for each inbound transaction; SNA 
CCS creates a trace table entry for each outbound transaction after going to IUCV 
to communicate the entry to VSCS or VCNA. 

Chapter 16. SNA Virtual Console Communication Services 231 



The entry identifies the type of IUCV transaction, the SNA user that initiated the 
transaction, and the pertinent characteristics of the transaction environment itself. 
The transaction can be correlated throughout the system by the use of the CCS and 
VSCS or VCNA path id's and the IUCV message id. These fields can be matched 
with corresponding or similar fields in the IUCV trace elements in CP and VSCS or 
VCNA trace elements in VTAM. 

For an error trace, SNA CCS places an entry in the CP trace table for logical errors 
and errors on IUCV transmissions. If the WEBLOK that is passed between SNA 
CCS and VSCS or VCNA is invalid, the data in the trace element pertains to the 
invalid WEBLOK. 

Trace Table Entry Formats 

The following tables show the formats of trace table entries created by SNA CCS. 

ACCEPT (00) (VTAM service machine and Logical Unit) 
CONNECT for Logical Unit (12) 

o 2 3 4 5 

o X' 16' !TRATNTYP J / / / / / / / / I TRAVCSPA 

8 TRAUDATA 

6 7 

1// / / / / 

RECEIVE (04), REPLY (06), SEND lWAY (08), SEND 2WAY (09), LOGIC 
ERROR in CCS WEBLOK (OB), LOGIC ERROR in VCNA or VSCS WEBLOK (13) 

o 2 3 4 5 6 7 

o X' 16' TRATNTYP [rRAMODE TRALGAID TRAVCSPA 
! 

TRAVSAPA 

8 TRAFUNCT TRACPSAF [rRAEDCHR TRACHAR TRAIXBLK 

SEVER (OA) 

o 2 3 4 5 6 7 

o x'16' !TRATNTYP FRAUSER1!/ / / / ! TRAVCSPA ! / / / / / / 
8 TRAUDATA 

REPLY from VSCS or VCNA (OC) 

o 2 3 4 5 6 7 

o X'16' TRATNTYP TRAMODE TRALGAID TRAVCSPA 
! 

TRAVSAPA 

8 TRAFUNCT TRACPSAF TRAUDIT1 TRAUDIT2 TRAIXBLK 

232 VM/SP System Programmer's Guide 



( 

( 

( 

CONNECT for VTAM service machine (OE) 

0 2 3 4 5 6 7 

0 x'16' ITRATNTYP I TRATIMER 
I 

TRAVCSPA 
I 

TRAMSGLM 

8 TRAUDATA 

SEVER from VSCS or VCNA (10) 

0 2 3 4 5 6 7 

0 X'16' ITRATNTYP FRAUSER1 1/ / / / 
I 

TRAVCSPA 
I 

TRAVSAPA 

8 TRAUDATA 

MESSAGE COMPLETE (11) 

0 2 3 4 5 6 7 

o X'16' ITRATNTYP / / / / / / / / TRAVCSPA 
I 

TRAVSAPA 

8 / / / / / / / / !rRAUDIT1 TRAUDIT2 TRAIXBLK 

ABEND 02 (15) 

o 2 3 4 5 6 7 

o X' 16 ' I TRATNTYP I / / / / / / / / / / / / / / / / / / / / / / 

8 TRAINSTR I TRAVMADR 

Trace Table Entry Field Definitions 

TRATNTYP 
Indicates the type of transaction that the trace table entry is for. 

Values Defined for TRATNTYP 

Note: If the high-order bit is on, this indicates that there was a nonzero 
return code from IUCV on this transaction. DMKVCXFU writes the trace 
table entry. The IUCV return code (IPRCODE) is in TRAIPRCD, a 
one-byte field in the fourth byte of the trace entry. 

TRACCEPT X'OO' 
TRACNECT X'Ol' 
TRAQUISC X'02' 

ACCEPT 
CONNECT (not used) 
QUIESCE (not used) 

Chapter 16. SNA Virtual Console Communication Services 233 



TRAPURGE X'03' PURGE (not used) 
TRARCEIV X'04' RECEIVE 
TRAREJCT X'05' REJECT (not used) 
TRAREPLY X'06' REPLY 
TRARESUM X'07' RESUME (not used) 
TRASENDl X'08' SEND 1 WAY 
TRASEND2 X'09' SEND 2 WAY 
TRASEVER X'OA' . SEVER 
TRAVCSLE X'OB' LOGIC ERROR IN CCS WEBLOK 
TRAVSARP X'OC' REPLY FROM VSCS OR VCNA 
TRAVSAQS X'OD' QUIESCE (not used) 
TRAVSMCN X'OE' CONNECT FOR VT AM service machine 
TRAVSARM X'OF' RESUME (not used) 
TRAVSASV X'lO' SEVER FROM VSCS OR VCNA 
TRAVSAMC X'll' MESSAGE COMPLETE FROM VSCS OR VCNA - 1 WAY 

SEND 
TRALUCON X'12' CONNECT FROM VSCS OR VCNA FOR LU 
TRAVSALE X'13' LOGIC ERROR IN VSCS OR VCNA WEBLOK 
TRAERRSV X'14' ERROR IN USER ENVIRONMENT -SEVER USER (not 

used) 
TRACTLBK X'15' SNA CONTROL BLOCK CHAIN INVALID 

TRAMODE 
Mode for the transaction (see WEBLOK (WEBMODE». 

TRALGAID 
Logical mapping of the Attention Identifier (AID) for inbound transactions to 
CCS (see WEBLOK (WEBLAID». The field does not have meaning for 
outbound transactions to VSCS or VCNA. 

TRAUSERl 
First byte from the IUCV user data field 

TRATIMER 
Two bytes of timer value from the VSM CONNECT 

TRAVCSPA 
The IUCV path id that identifies the CCS side of the IUCV path for this 
transaction. 

TRAVSAPA 
The IUCV path id that identifies the VCNA side of the IUCV path for this 
transaction. 

TRAFUNCT 
Transaction to be performed (see WEBLOK (WEBFUN» 

TRACPSAF 
This field is WEBSAFLG on inbound transactions to CCS and WEBCPFLG 
on outbound transactions to VSCS or VCNA. (see WEBLOK (WEBFUN». 

234 VM/SP System Programmer's Guide 



TRAEDCHR 
Editing characteristics (see WEBLOK (WEBEDIT» 

TRACHAR 
Character set (see WEBLOK (WEB CHAR) ) 

TRAIPRCD 
JPRCODE from IUCV IPARML for IUCV return code processing 

TRAIXBLK 
Address of the IXBLOK constructed for this transaction 

TRAMSGLM 
IUCV message limit to be specified for CONNECT 

TRAUDATA 
IPUSER from IUCV external interrupt buffer 
For inbound: QUIESCE, RESUME, CONNECT for LU 
For outbound: ACCEPT 

VM userid 
For inbound: CONNECT for VTAM service machine 
For outbound: SEVER 

LUNAME 
For inbound: SEVER 

TRAUDITl 
IUCV IPAUDITl flags from IXBLOK (used for TRA VSARP,TRA VSAMC) 

TRAUDIT2 
IUCV IPAUDIT2 flags from IXBLOK (used for TRAVSARP,TRA VSAMC) 

TRAINSTR 
Address of last instruction issued before invoking abend routine (TRACTLBK) 

TRAVMADR 
Current VMBLOK address-used for abend situations (TRACTLBK) 

Chapter 16. SNA Virtual Console Communication Services 235 



236 VM/SP System Programmer's Guide 



-, (
'~ 

Chapter 17. The Message System Service 

The Message System Service is a CP system service. It allows a virtual machine to 
read incoming messages and responses from CP, as opposed to displaying them on 
the terminal. 

Establishing Communications 

"*MSG" is the assigned Message System Service userid. Communications are 
established with the Message System Service (*MSG) via lUCY. The lUCY 
DECLARE BUFFER function is invoked by the virtual machine to allow 
communications with lUCY, and the lUCY CONNECT function is invoked to 
establish the communications path to the Message System Service. 

The types of messages that the virtual machine can receive are controlled by 
specifying the lUCY parameter on the CP SET command. For example, if a user 
has specified "CP SET MSG lUCY", all messages received via the CP MESSAGE 
command are sent to the virtual machine via lUCY. lUCY signals the receiving 
virtual machine with an external interrupt. The message may be retrieved by using 
the lUCY RECEIYE function and may be used by a program running in the virtual 
machine. 

Note: For a complete list of the CP SET commands that can use the lUCY 
parameter, see VM/SP CP Command Reference for General Users.) 

The Message System Service identifies the source of the message it intercepts by a 
code in the lUCY message class field. The message source is interpreted as 
follows: 

Class Message Source 

1 Message sent using CP MESSAGE (MSG) or CP MSGNOH 

2 Message sent using CP WARNING (WNG) 

3 Asynchronous CP messages, CP responses to a CP command executed 
by a virtual machine using *MSG, and any other console I/O initiated by 
CPo 

4 Message sent using CP SMSG command 

Chapter 17. The Message System Service 237 



5 Any data directed to the virtual console by the virtual machine 
(WRTERM, LINEDIT, etc.) 

6 Error message from CP (EMSG) 

7 Information messages for CP (IMSG) 

8 Single Console Image Facility (SCIF) message from CPo 

Error and information messages (classes 6 and 7) are types of CP messages and are 
included in class 3 when EMSG and IMSG are not specifically set to lUCY via the 
CP SET commands. 

The format of the data received from lUCY is as follows: 

coil col 9 
I I 
Y Y 
userid text 

The userid portion of the data identifies the sender. If the data is not received by 
means of a MSG, WNG, SMSG, or using SCIF, then the userid is that of the 
recipient. 

If a virtual machine has both a valid path to the *MSG System Service and a 
secondary user specified in the CONSOLE directory control statement (enabling 
that virtual machin~ to use SCIF), then incoming messages (except for SMSGs, 
which are not console messages) are directed to the secondary user instead of the 
lUCY *MSG system service. If the secondary user is not available, the message is 
queued on the *MSG System Service path. 

Note: The following types of data are not placed in the console spool file for the 
indicated conditions: 

• CP command output -- if this is being received in a buffer via DIAGNOSE 
code X'08'. 

• Messages and Warnings -- if they are being trapped via the lUCY and *MSG 
System Service. 

238 VM/SP System Programmer's Guide 



(-' 

Chapter 18. The DASD Block I/O System Service 

The DASD Block I/O System Service is a CP system service. It provides a virtual 
machine with device-independent access to its virtual DASD devices. Device types 
supported are the Count Key Data (CKD) devices: 2314,2319,3330,3333, 
3340, 3344, 3350, 3375, and 3380, and the Fixed Block Architecture (FBA) 
devices: 3310 and 3370. (Device 2319 is formatted as a 2314, device 3333 is 
formatted as a 3330, and device 3344 is formatted as a 3340.) This service 
supports logical block sizes of 512, 1024,2048, and 4096 bytes. 

Notes: 

1. The CMS 4K block structure on the first track of a 3340 disk is formatted 
differently than the other tracks of a 3340 CMS disk. The first track of the 
mini-disk contains three blocks. The first block has a length of 80 bytes, the 
second, 4096 bytes, and the third, 80 bytes. The remainder of the mini-disk is 
formatted as usual, two 4096-byte blocks on each track. 

2. Multiple I/O requests can be outstanding, and you may continue with 
asynchronous processing or choose to wait for the completion of an I/O request. 
Although multiple I/O requests may be requested in a FIFO manner, be aware 
that queuing within CP may result in the I/O completion in a different sequence. 

Establishing Communications with DASD Block I/O Service 

The CMS RESERVE command and the CMS DISKID function should be issued 
before using the DASD Block I/O System Service. These two facilities enable you 
to create a uniquely organized CMS file on a DASD and obtain information about 
the file needed to use the DASD Block I/O System Service. For further 
information, see "Using the DASD Block I/O System Service from CMS" in Part 2 
of this manual, or see the VM/SP CMS Command and Macro Reference. 

DASD Block I/O uses lUCY to set up communication between itself and a virtual 
machine. The lUCY macro checks the validity of all the lUCY parameters. Any 
IUCVerrors are handled according to lUCY specifications. The DASD Block I/O 
System Service checks the validity of all the parameters it requires. Any errors 
resulting from this check are handled as described in the following sections. 

lUCY requires that the virtual machine issues a DECLARE BUFFER command to 
initialize the virtual machine for IUCV communication. This command also 
specifies a buffer where IUCV can store external interrupt information. After 
communications is established with lUCY, the virtual machine must issue a 
CONNECT command to establish a path between itself and the target 

Chapter 18. The DASD Block I/O System Service 239 



communicator. The target communicator, in this case, is the DASD Block I/O 
System Service. Only one CONNECT may be issued to userid *BLOCKIO for 
each virtual device that is intended to receive I/O requests. 

No special authorization is required for a virtual machine to use DASD Block I/O. 
The MAXCONN (maximum connection) limit in the directory can be enlarged to 
satisfy the user's requirements. The'DASD Block I/O System Service allows 
connections from any user. 

IUCV CONNECT to the DASD Block I/O System Service 

An lUCY CONNECT is issued by the virtual machine with USERID=*BLOCKIO 
and PRMDATA=YES specified in the lUCY CONNECT parameter list. In this 
case, IPUSER, the user data field in the lUCY parameter list, must have the 
following format. These values are obtained by the CMS DISKID function. 

o 2 3 4 5 6 7 

o BLKSIZE I OFFSET 

8 VDEVADDR 1//////////////////////////////////////// 

where: 

BLKSIZE '" 
is the block size of the specified disk. The block size may be 512, lK, 2K, or ~ / 
4K bytes. 

OFFSET 
associates a physical block number to the first user data block of on the disk. 
Note that this number represents the number of sequential blocks used on the 
disk by the CMS file system to implement its structure. The DASD Block I/O 
System Service does not check the validity of this number. Therefore, the 
application may change this number if desired, but you could overlay files used 
byCMS. 

VDEVADDR 
is the virtual device address of the disk where the Block I/O is to be performed. 

All reserved fields must be set to zero. 

If all the parameters required by DASD Block I/O are valid, DASD Block I/O 
issues an lUCY ACCEPT on the path specifying PRMDATA=YES. The 
following information is returned in the IPUSER field of the lUCY 
Connection-Complete external interrupt buffer: 

240 VM/SP System Programmer's Guide 



( 

(' 

o 2 3 4 5 6 7 

o START BLOCK I END BLOCK 

8 FLAGS 1//////////////////////////////////////// 

where: 

START BLOCK 
1 minus the OFFSET specified on the lUCY CONNECT. This value along 
with END BLOCK is the range of block numbers allowable on the DASD 
Block I/O request. 

END BLOCK 
The number of blocks on the specified virtual device minus the OFFSET 
specified on the lUCY CONNECT. This value along with START BLOCK is 
the range of block numbers allowable on the DASD Block I/O request. 

FLAGS 
A set of bits defining the status of the virtual device. One bit is defined and the 
others are reserved. 

RDONLY X'0001' 
Unused X'FFFE' 

Virtual device is read only 
Zero 

All reserved fields are returned as zero. 

If any of the parameters passed to DASD Block I/O are invalid, DASD Block I/O 
issues an lUCY SEVER on the path and flags the error. The first byte of the 
IPUSER field contains one of the following error codes: 

X' 01' 
X'02' 
X'03' 
X'04' 
X'05' 
X'06' 

Virtual device is not defined 
Virtual device is not supported 
Block size is not supported 
IUCV path already exists for this device 
Connection is not using PRMDATA=YES 
Reserved field is not set to zero 

IUCV SEND to the DASD Block I/O System Service 

--~"~- -.- -~ - -_. 

When the connection to the device is ACCEPTed by DASD Block I/O, you can 
start sending I/O requests to DASD Block I/O. You can specify TRGCLS=, 
DATA=PRMMSG, and the PRMMSG= options on the lUCY SEND or you can 
move the necessary data into the lUCY parameter list yourself. The TRGCLS= 
option sets the type of I/O requested, read or write. The DATA=PRMMSG 
option sets a flag in IPFLAGSl, and the PRMMSG= option moves the block 
number and virtual buffer address into the lUCY parameter list. The following list 
defines the input necessary for the DASD Block I/O System Service on an IUCY 
SEND command: 

IPRMMSG1 Block number 
IPRMMSG2 Virtual buffer address 
IPTRGCLS Block I/O service requested 

F'01' Write request (CMS formatted) 
F'02' Read request (CMS formatted) 

Chapter 18. The DASD Block I/O System Service 241 



DASD Block I/O tries to perform the request. It issues an IUCV REPLY to return 
the results of the I/O requests. One of the following return codes is returned in the 
IPRMMSG 1 field of the IUCV parameter list: 

F'OO' 
F' 01' 
F'02' 
F'03' 
F'04' 
F'OS' 
F'06' 
F'07' 

I/O completed successful 
Invalid block number 
Invalid data buffer address 
Write on read/only DASD 
Incorrect block size - format error 
Unrecoverable I/O error 
Invalid service requested 
Protection exception on virtual buffer 

If you have misused IUCV protocol set up for this system service, DASD Block 
I/O issues an IUCV SEVER on the path and flags the error. The first byte of the 
IPUSER field contains one of the following error codes: 

X'07' 
X'OS' 

IUCV communication was not sent using DATA=PRMMSG 
No one-way messages are allowed on the path 

If the device is reset, the path is QUIESCEd and no more requests are allowed. 
When there are no I/O requests outstanding, DASD Block I/O issues an IUCV 
SEVER on the path and flags the error. The first byte of the IPUSER field 
contains the following return code: 

X'09' Virtual device has been reset 

When all communications with the DASD Block I/O System Service are 
completed, you can terminate communications by issuing either an IUCV SEVER 
or/and IUCV RETRIEVE BUFFER. 

242 VM/SP System Programmer's Guide 



( 

Chapter 19. The Signal System Service 

The Signal System Service is a CP system service. It allows virtual machines in a 
Virtual Machine Group to signal each other. The Signal System Service can only 
be used by virtual machines in a Virtual Machine Group. Each virtual machine in a 
group is identified by a unique 16 bit signal ID. When a virtual machine connects 
to the Signal System Service, it may request that a particular signal ID be assigned 
to it. If you have not set up the virtual machine to request a specific signal ID, the 
Signal System Service automatically assigns one to your virtual machine. 

All members of a Virtual Machine Group can send 8 bytes of signal data (user 
information) to any member in the group using IUCV SEND, specifying the signal 
ID of the virtual machine they want to receive the signal data. A virtual machine 
can also signal all members in a group using a Broadcast signal. Group members 
can request notification of members entering and leaving the group by specifying 
Signal-In and Signal-Out flags when they connect to the Signal System Service. 

No directory authorization is required to use the Signal System Service. The Signal 
System Service allows only one connection per virtual machine. 

Communications with the Signal System Service 

The Signal System Service uses IUCV to communicate between itself and a virtual 
machine. The IUCV macro checks the validity of all the IUCV parameters and any 
errors are handled according to IUCV specifications. The Signal System Service 
checks the validity of all the parameters it requires. Any errors resulting from this 
check are handled as described in the following sections. 

Your first step in establishing IUCV communications with the Signal System 
Service is to issue an IUCV DECLARE BUFFER command. This initializes the 
virtual machine for IUCV communication. This command also specifies a buffer 
where IUCV can store external interrupt information. 

IUCV CONNECT to the Signal System Service 

After you establish communications with IUCV, you must issue an IUCV 
CONNECT with USERID=*SIGNAL and PRMDATA=YES in the *SIGNAL 
IUCV CONNECT parameter list. The user data field must have the following 
format: 

Chapter 19. The Signal System Service 243 



o 2 3 4 5 6 7 

o SIGNAL DATA 

8 FLAGS I / / / / / I SIGNAL ID I / / / / / / / / / / / / / / / / / / / / / / / / / / / / / 
where: 

SIGNAL DATA 
is the eight bytes of user information or signal you want passed to other 
members of the group. Only group members that have specified the Signal-In 
flag when they connected will receive the data. 

FLAGS 
is a set of bits defining the signal options chosen by you for your virtual 
machine. The first three bits are defined and the others are reserved. The 
defined bits are: 

X'80' Signal-In 
X'40' Signal-Out 
X'20' Signal ID has been specified 
X'lF' Reserved 

SIGNALID 
is the signal ID you want assigned to your virtual machine. This signal ID is 
used by other group members to communicate with your virtual machine. This 
field is only used if you set the signal ID flag bit (X'20') in the FLAGS field. 

You must set all reserved fields and flags to zero. 

If you specify the Signal-In flag, your virtual machine is signaled when future group 
members enter your group by connecting to the Signal System Service. 

If you specify the Signal-Out flag, your virtual machine is signaled when group 
members in your group break their connection (via IUCV SEVER) with the Signal 
System Service. 

The IUCV CONNECT function returns a P ATHID to your virtual machine. You 
must specify this P ATHID in the lUCY SEND parameter list for all subsequent 
communication to the Signal System Service. 

When you issue IUCV CONNECT to the Signal System Service, the connection is 
either accepted (the Signal System Service issues an IUCV ACCEPT) or severed 
(the Signal System Service issues an IUCV SEVER). 

If the connection is accepted, the user data field on the rucv connection complete 
external interrupt will have the following format: 

244 VM/SP System Programmer's Guide 



(-
o 2 3 4 5 6 7 

o SIGNAL DATA 

8 FLAGS I ///// I SIGNAL ID I ///////////////////////////// 

o 2 

where: 

SIGNAL DATA 
is unchanged from the IUCV CONNECT. 

FLAGS 
are unchanged from the IUCV CONNECT. 

SIGNALID 
is the signal ID you assigned to your virtual machine. If you did not assign a 
signal ID, the Signal System Service assigns a unique signal ID for you and 
stores it in this field. 

All unused fields remain unchanged from the IUCV CONNECT. 

If the connection is rejected, the user data field on the IUCV SEVER external 
interrupt will have the following format: 

3 4 5 6 7 

( 0 ReaDE I ///////////////////////////////////////////////////// 
8 ///////////////////////////////////////////////////////////// 

where: 

RCODE 

Sending Signals 

is the return code indicating the reason the connection was severed. 

Return codes resulting from connection errors: 

X'Ol' You are not a member of a Virtual Machine Group. 
X'02' You are already connected to the Signal System Service. 
X'03' You did not specify PRMDATA=YES in the IUCV CONNECT 

parameter list. 
X'04' The reserved fields were not set to zero. 
X'OS' The signal ID you specified was not unique. 

Upon notification of a successful connection, your virtual machine is ready to send 
signals. You may now issue IUCV SEND requests to the Signal System Service 
specifying the eight byte signal (parameter list data), the target's signal ID, and the 
flag settings. The target's signal ID and the flag settings are specified by you in the 
target class (TRGCLS=) with the following format: 

Chapter 19. The Signal System Service 245 



o 2 3 

FLAGS IIIII SIGNAL ID 

where: 

FLAGS 
is a set of bits defining the the handling of the signal. Only two bits are defined 
and the others are reserved. The defined bits are: 

X'lO' 
X'08' 
X'E7' 

SIGNALID 

Broadcast Signal 
Invalid Signal ID 
Reserved 

is the target's signal 10. 

If you specify the Broadcast Signal (X' 10') flag, a signal is sent to all of the other 
users in your group that are connected to the Signal System Service. 

If you send a signal using an invalid Signal 10, the Signal System Service returns 
the signal to you with an error indicator (X'08') in the FLAGS field. The target 
class and the signal data remain unchanged. 

If the parameter list data option is not used, or if the signal is not one-way, then the 
connection is severed. ~-

Return codes resulting from send errors: 

X'06' The signal was sent without the OATA=PRMMSG option specified. 
X'07' The signal sent was not a one-way signal. 

Receiving Signals 

As a member of a Virtual Machine Group, your virtual machine can receive three 
types of signals. These are Signal-In, Signal-Out, and a normal signal sent by 
another group member via an IUCV SEND. The Signal System Service passes 
these signals to your virtual machine via an IUCV SEND using a one-way message 
with the signal specified in the parameter list data. 

The source's signal ID and the flag settings are specified in the target class 
(TRGCLS=) with the following format: 

o 2 3 4 

FLAGS IIIII SIGNAL ID 

where: 

246 VM/SP System Programmer's Guide 

o 



( 

( --"-

. -

FLAGS 
is a set of bits defining the type of signal sent. Only three bits are defined and 
the others are unused. The defined bits are: 

X'80' Signal-In 
X'40' Signal-Out 
x'tO' Broadcast signal 
X'2F' Unused 

SIGNALID 
is the source's signal ID. 

The Signal System Service sets all unused fields to zero. 

If the Signal-In flag is on, this signal was specified in the user data of the user's 
IUCV CONNECT to the Signal System Service. 

If the Signal-Out flag is on, this signal was specified in the user data of the user's 
IUCV SEVER to the Signal System Service. 

If the Broadcast flag or no flags are on, this signal was specified in the parameter 
list data of the user's IUCV SEND to the Signal System Service. 

If you want to stop receiving signals from the Signal System Service, you can use 
the IUCV QUIESCE command. However, the Signal System Service does not 
queue signals, and the signals from other members of the group will be lost until 
you issue an IUCV RESUME. 

Leaving the Signal System Service 

a 2 

When all communications with the Signal System Service are completed, you can 
terminate communication by issuing either an IUCV SEVER or an IUCV 
RETRIEVE BUFFER. The user data field on a SEVER must have the following 
format: 

3 4 5 6 7 

a SIGNAL DATA 

8 ///////////////////////////////////////////////////////////// 

where: 

SIGNAL DATA 
is the eight byte signal you want passed to other members of the group. Only 
group members that have specified the Signal-Out flag when they connected to 
the Signal System Service will receive the data. 

If a SEVER is generated by the CP system, as on a RETRIEVE BUFFER or a 
virtual machine reset, the SIGNAL DATA is set to all zeroes . 

Chapter 19. The Signal System Service 247 



248 VM/SP System Programmer's Guide 



( 

( 

Chapter 20. The Special Message Facility 

The Special Message Facility enables a virtual machine to send messages to another 
virtual machine by issuing the CP SMSG command. The Special Message Facility 
may be used with the Virtual Machine Communication Facility (VMCF) or with 
the Inter-User Communication Vehicle (IUCV). However, the sending virtual 
machine does not need to perform the initialization required by VMCF or IUCV. 
Initialization is handled by CP and is described later in this topic. 

To send a message, a virtual machine need only prepare the message text -- up to 
129 bytes -- and issue the class G command, SMSG. Parameters on the SMSG 
command identify the USERID of the receiving virtual machine and specify the 
message text. The format of the message text must be acceptable to the receiving 
virtual machine. The SMSG command is described in the VM / SP CP Command 
Reference for General Users. 

Before the receiving virtual machine can receive special messages via VMCF, it 
must: 

• Enable itself to receive external interrupts. 

• Set bit 31 of control register 0 to a value of 1. 

• Authorize itself by issuing DIAGNOSE code X' 68' ,AUTHORIZE. The 
parameter list, VMCPARM, specified with DIAGNOSE code X'68' must 
contain a pointer to an external-interrupt buffer, must specify a buffer length 
of 169 bytes, and must have the special message flag (VMCPSMSG) turned 
on. 

• Turn on this special message flag (VMCPSMSG) by setting VMCPSMSG to a 
value of B'l' or by issuing the class G command, SET SMSG ON. For 
information on using DIAGNOSE Code X' 68' , see "Description of VMCF 
Functions" and "Invoking VMCF Functions." 

To understand how a special message is presented to the receiving virtual machine 
via VMCF, see "The SENDX Protocol" in the section "VMCF Protocol". 

Before the receiving virtual machine can receive special messages via IUCV, it must 
do the following: 

• Enable itself to receive external interrupts 

• Set bit 30 of control register 0 to a value of 1 

• Issue the IUCV DECLARE BUFFER function 

Chapter 20. The Special Message Facility 249 



• Issue the lUCY CONNECT function to the CP Message System Service 

• Turn on the special message flag by issuing the class G command SET SMSG 
mCY. 

When a virtual machine no longer wishes to accept special messages, it may turn 
off the special message flag by issuing the command SET SMSG OFF. To resume 
receiving messages, the virtual machine may issue the command SET SMSG ON or 
SET SMSG lUCY. CP sends an error message to any virtual machine that 
attempts to send a special message to another virtual machine that is not accepting 
special messages. 

CP handles VMCF fmCY initialization and special message processing as follows. 
When the SMSG command is issued, CP verifies that no invalid options were 
specified and that a valid USERID was specified. CP also verifies that the 
receiving virtual machine is accepting special messages. CP then obtains storage 
for the message, builds the appropriate parameter list, and sends the message to the 
receiving virtual machine. 

250 VM/SP System Programmer's Guide 



(-' 

Chapter 21. Single Console Image Facility 

The Single Console Image Facility allows one user logged on to a single virtual 
machine to control multiple disconnected virtual machines. CP prefixes any output 
coming to the controlling virtual machine, from or on behalf of the originating 
virtual machine, with the userid of the originating virtual machine. The controlling 
virtual machine communicates with the virtual machines it is controlling via the CP 
class G SEND command. 

The user whose virtual machine is being controlled is the primary user. The user 
whose virtual machine controls the primary user's virtual machine is the secondary 
user. The secondary user may run disconnected if he has a valid path to the IUCV 
Message System Service. Refer to the "The Message System Service" section of 
this publication for more information. 

Using the Single Console Image Facility 

To enable a virtual machine to use the Single Console Image Facility, the 
installation must specify the userid of the secondary user on the CONSOLE 
directory control statement of the primary user. See VM/SP Planning Guide and 
Reference for a description of the CONSOLE directory control statement. 

When the primary user disconnects his virtual machine and the secondary user is 
logged on, the secondary user receives control of the primary user's virtual 
machine. Even if the secondary user is not logged on when the primary user 
disconnects, the secondary user receives control of the disconnected virtual 
machine whenever he does logon. The primary user can regain control of his 
virtual machine at his own terminal by entering the LOGON command. 

After the primary user disconnects, all console output from the disconnected virtual 
machine appears on the console of the secondary user if he is logged on. Output 
from the primary user's disconnected virtual machine is prefixed with the userid of 
the primary user. 

The secondary user uses the CP SEND command to communicate with the primary 
user's disconnected virtual machine. See VM / SP CP Command Reference for 
General Users for a description of the SEND command. 

Chapter 21. Single Console Image Facility 251 



Notes: 

1. When the message, 'DMKQC0150A USER userid HAS ISSUED A CP READ' 
is received by the secondary user, the secondary user must reply with a SEND 
command, sending a CP command to the disconnected user named in the message. 

2. When the message, 'DMKQC0150A USER userid HAS ISSUED A VM 
READ' is received by the secondary user, the secondary user must reply with a 
SEND command, sending a virtual machine command or a virtual machine reply 
to the disconnected user named in the message. 

3. The console attributes of the secondary user are used for the display of messages. 
For example, if the primary user console is spooled TERM and the secondary user 
console is spooled NOTERM, only the messages that would normally be displayed 
with the NOTERM option are displayed at the secondary user's console. 

252 VM/SP System Programmer's Guide 



( 

f 

Chapter 22. VM/SP Use of the IBM 3850 MSS 

Virtual machines operating CMS, OS/VSl, or OS/VS2 (MVS) may access mass 
storage volumes containing VM/SP minidisks or entire mass storage volumes 
dedicated to the virtual machine. These volumes appear to the virtual machine as 
3330 volumes and are accessed using 3330 device support in the virtual machine. 
VM/SP controls allocation, volume mounting, and volume demounting. Virtual 
machines that run OS/VSl or OS/VS2 (MVS) with MSS support can also access 
mass storage volumes using dedicated device support. 

VM/SP Access to the MASS Storage CO,ntrol 

Whenever an MSS 3330V volume must be mounted or demounted, the VM/SP 
control program first selects an appropriate device address. If a volume mount is 
required, the device is selected from the pool of available 3330V devices created at 
system generation time. If a volume must be demounted, CP selects the address of 
the device on which the volume is currently mounted. 

To pass mount and demount orders, the virtual machine must have an MSC port 
dedicated to it via the ATTACH command or the DEDICATE directory statement. 
An application program named DMKMSS is distributed as part of VM/SP; it acts 
as an interface between CP and the MSC. After DMKMSS is started in an 
OS/VSl or OS/VS2 (MVS) virtual machine, it uses a special virtual I/O device 
and the VM/SP DIAGNOSE interface to communicate with the VM/SP control 
program. 

If the MSC request was for a volume mount, the MSC ending status indicated that 
the MSC was processed. If the MSC accepts the mount order, the MSC orders the 
staging adapter to generate a pack change interrupt (an unsolicited device end) on 
the device when that device has been mounted. CP receives the pack change 
interrupt, the RDEVBLOK is set to indicate that the volume is mounted, and any 
VM/SP task waiting for the volume is marked dispatchable. If the mount order 
was rejected, no further processing of the mount occurs. The previously allocated 
RDEVBLOK is marked free and processing continues with the next MSS request. 

Chapter 22. VM/SP Use of the mM 3850 MSS 253 



Asynchronous MSS Mount Processing 

When an MSS volume mount is required to satisfy a LINK or ATTACH command 
or an MDISK or DED directory statement, CP returns control to the virtual 
machine as soon as MSC accepts the mount request3• The virtual machine may 
continue to execute before the virtual device specified on the MDISK, DED, LINK, 
or ATTACH is available. 

The reasons for asynchronous MSS mount processing are the relatively long time 
required to complete the mount, and the chance that an error may occur in the 
MSS after the mount order is accepted. The virtual device to be mounted may not 
be vital to the specific task to be accomplished. Also, if an error occurs iIi the MSS 
(such as a permanent read error on a cartridge) after the mount is accepted, the 
error indication is passed from the MSC to the virtual machine. VM/SP cannot 
determine that an error has occurred and that the mount will not complete. If the 
virtual machine were not dispatchable until the mount completed, it would be 
locked out until the MSS error was corrected. 

With asynchronous mount processing, the virtual machine has the flexibility to 
either continue processing without the affected virtual device, or wait until the MSS 
mount completes. If the virtual machine issues an SIO instruction to a virtual 
device that is defined on the volume being mounted, VM/SP queues the I/O 
request until the mount completes. The virtual machine is marked I/O wait 
nondispatchable until the mount completes and the SIO is started. 

VM/SP Processing of MSS Cylinder Faults 

VM/SP supports 3330V cylinder fault processing in two ways: real channel 
programs directed to 3330Vs are constructed so that cylinder faults can be 
recognized and the channel program restarted; and the attention interruption 
(indicating that the cylinder fault has been satisfied) is recognized and any I/O for 
that device restarted. 

When the VM/SP processor issues a seek CCW to a 3330V device, the staging 
adapter must translate the seek argument to the correct cylinder of staging space. 
If the cylinder referenced in the seek is staged, then the SIO is passed to the 
associated staging DASD drive. If the referenced cylinder is not staged, the staging 
adapter initiates cylinder fault processing. The staging adapter first passes a 
cylinder fault indication to the MSC, requesting the cylinder of data to be staged. 
It then returns a status modifier to the channel in response to the seek, which 
causes the channel to skip one CCW in its CCW fetch processing. That is, the 
channel does not fetch the next CCW after the seek. 

3 However, the central server cannot issue these CP commands. The central server is 
the MSS communicator virtual machine which acts as an interface between CP and the 
MSC. CP commands issued to the central server are ignored and a message is issued. 

254 VM/SP System Programmer's Guide 



f 

As a result of the cylinder fault, the MSC allocates staging space for the requested 
data and causes it to be staged. The staging adapter then generates a channel 
end/ device end interruption to indicate that the cylinder has been staged. 

It is possible in error situations that the attention interruption may not be received. 
Each time an I/O request is queued by VM/SP as a result of a cylinder fault, a 
timer is set. If the timer expires before the interruption is received, a message 
(DMKSSS074I) is written to the VM/SP system operator and the request is 
retried. 

Backup and Recovery of MSS Volumes 

The process of creating backup copies of MSS volumes, and restoring from those 
backup copies, can be controlled through the OS/VS access methods services 
COPYV command. This command can operate without system operator 
intervention. 

For each active volume in the MSS, there may be one or more copy volumes. At 
any time, the active volume may be copied to a copy volume with the access 
method services COPYV command. All volume mounts and data transfer are 
controlled by this command. If at any time it is necessary to restore the level of a 
volume to that of a copy, the OS/VS access methods services RECOVERV 
command is used. 

All the OS/VS access methods services commands can be run from either a real 
processor or a VS virtual machine. If the MSS communicator virtual machine is in 
operation, these commands can be run from that virtual machine while it is acting 
as the communicator. 

Chapter 22. VM/SP Use of the mM 3850 MSS 255 



256 VM/SP System Programmer's Guide 

(~' 

~,/ 



(-

(~: 

Chapter 23. Logical Device Support Facility 

The Logical Device Support Facility allows an application running in a virtual 
machine to create within CP one or more non-extended (i.e. no extended color, 
extended highlighting, or programmed symbols) logical 3270 display devices. 
Except for the logical device support facility, CP is unaware of the fact that this 
terminal has no real existence and is driven by the application program. In 
particular, the CP display terminal support sees it as a local 3270. Any output 
directed to a logical device is redirected to the virtual machine for which the device 
was created. The virtual machine can also transfer data to CP to be entered as 
input from a specific logical device, as if it were interactively produced on a real 
terminal. 

The logical device support facility is made up of two data transfer functions, three 
control functions, a special external interrupt (code X' 2402'), and an external 
control word for passing control information with the external interrupt. 

To implement this facility, functions are invoked using the DIAGNOSE instruction 
(code X'7C'). Registers Rx, Rx+1, Ry, and Ry+1 are used to indicate the 
function, logical device identification, and other function-dependent information. 

A special interrupt code (X'2402') is used by module DMKHPS to notify a virtual 
machine of pending logical device status for a logical device created for that virtual 
machine. Along with this interrupt, the virtual machine receives a control word at a 
virtual storage location indicating the ID of the associated logical device and the 
reason for the interrupt. 

Figure 30 is a summary of logical device support facility functions. More complete 
information about each of these functions is included under "Descriptions of 
Logical Device Support Facility Functions." 

Data is directed to a logical device using the logical device ID. This ID is assigned 
by CP during execution of the INITIATE function. Data transfer takes place 
within CP at a channel command level. I/O directed to a logical device proceeds 
within CP via the normal path for a local 3270 terminal up to the point that 
DMKIOS is normally called to start I/O. At that point, control passes to 
DMKHPS to process the CCW string. Channel commands requiring interaction 
cause external interrupts to the virtual machine for which the associated logical 
device was created. 

The format of data from the virtual machine must conform to 3270 architecture for 
local display stations. Extended data streams are not supported. 

Up to eight virtual machines may simultaneously create logical devices, and each 
virtual machine can create up to 512 of these devices. 

Chapter 23. Logical Device Support Facility 257 



Function Description 

INITIATE Initiate logical device communications 

ACCEPT Transfer data written to logical device to virtual machine 
storage. 

PRESENT Transfer data from virtual machine to CP as input from 
logical device. 

TERMINATE Drop a specific logical device. 

TERMINATE ALL Drop all logical devices created for this virtual machine. 

Figure 30. Summary of Logical Device Support Facility Functions 

VM/Pass-Through Facility program product is an example of an application using 
the logical device support facility. Through the combined support of these two 
facilities, a VM/SP user attached to system A via a 3270 Display Station can 
access VM/SP system B as though the display station were locally attached to 
system B. 

258 VM/SP System Programmer's Guide 



( 

Chapter 24. Timers in a Virtual Machine 

Interval Timer 

This section describes the results obtained in using timers in a virtual machine 
created by CP. 

Virtual location 80 (X'50'), the interval timer, contains different values than 
would be expected when operating in a real machine. On a real machine, the 
interval timer is updated 300 times per second when enabled and when the real 
machine is not in manual state. The interval timer on a real machine thus reflects 
system time and wait state time. In a virtual machine, the interval timer reflects 
only virtual processor time, and not wait time. It is updated by CP whenever a 
virtual machine passes control to CP, and this one updating reflects the entire time 
the virtual machine had control. Note that during the time a virtual machine has 
control, the virtual interval timer does not change; the virtual processor time used is 
added to the virtual interval timer when CP regains control. 

For some privileged instructions, CP may be able to simulate the instruction and 
still return control to the virtual machine before the end of that virtual machine's 
time slice. In such cases, the virtual interval timer is updated but only for those 
privileged instructions that require normal or fast reflect entry into the dispatcher. 
For those privileged instructions that do not require entry into the dispatcher, the 
virtual interval timer is not updated until CP gets control at the end of the time 
slice. 

If the virtual machine assist feature or Extended Control Program Support (ECPS) 
is ON, more time is charged to the virtual interval timer than if the feature is OFF. 
When the virtual machine assist feature is OFF, the time spent by CP to simulate 
privileged instructions is not charged to the virtual interval timer; whereas, with the 
feature ON, the time spent is charged to the virtual interval timer. 

Virtual Interval Timer Assist 

The virtual interval timer assist feature is the updating of the virtual interval timer 
and presentation of timer interrupts to the virtual machine by the hardware. When 
the software simulates the interval timer, updating occurs only when CP takes over 
control. This usually results in an update frequency of once per time slice and 
repeatability of timed intervals suffers greatly under these conditions. When the 
virtual interval timer assist feature is active, the update frequency is the same for 
both virtual and real interval timers, 300 times a second. 

Chapter 24. Timers in a Virtual Machine 259 



For the virtual interval timer assist feature to be active, the following conditions 
must be met: 

• VM/SP must be running on a Model 135-3, 138, 145-3, 148,3031, 3031AP, 
4321,4331,4341,4361, or 4381. 

• The virtual machine must have enabled the virtual machine assist and the 
virtual interval timer (SET TIMER {ON I REAL}). 

• The virtual machine must have enabled both the virtual machine assist and the 
virtual interval timer assist (SET ASSIST ON TMR). 

VM/SP provides an option, called the REAL TIMER option, which causes the 
virtual interval timer to be updated during virtual wait state as well. With the 
REAL TIMER option in effect, a virtual interval timer reflects virtual processor 
time and virtual wait time, but not CP time used for services for that virtual 
machine, such as privileged instruction execution. The more services a virtual 
machine requires from CP, the greater the difference between the time represented 
by the interval timer and the actual time used by and for the virtual machine. The 
larger the number of active virtual machines contending for system resources, the 
greater the difference between virtual machine time and actual elapsed (wall clock) 
time. 

Processor Timers 

A virtual machine must have the ECMODE directory option to use the 
System/370 processor (CPU) timer. 

The CPU timer is decremcpited when the virtual machine is in the running state, 
and in a virtual PSW wait 'state. It is not decremented when runnable but 
undispatched, or when in a CP function. The CPU timer is unaffected by the 
setting of SET TIMER (whether OFF, ON, or REAL). 

The interval timer is decremented when the virtual machine is in the running state 
if SET TIMER is ON or REAL. It is decremented in virtual PSW wait state if and 
only if SET TIMER is REAL. It is not decremented when runnable but 
undispatched, or when in a CP function, regardless of the setting of SET TIMER. 
It is never decremented if TIMER is OFF. 

The method of sampling the value in the CPU timer causes it to appear to a virtual 
machine to be updated more often than an interval timer. The privileged 
instructions Set Processor Timer (SPT) and STore Processor Timer (STPT) are 
used to set a doubleword value in the CPU timer and to store it in a doubleword 
location of virtual storage. When a virtual machine samples the value in the virtual 
processor timer by issuing a STPT instruction, CP regains control to execute the 
privileged instruction, and updates the time. The act of sampling the CPU timer 
from a virtual machine causes it to be brought up to date. 

260 VM/SP System Programmer's Guide 



( 

( 

TOO Clock 

The System/370 time-of-day (TOD) clock does not require simulation in a virtual 
machine. The System/370 in which CP is operating may have one real TOD clock 
for each processor, and aU virtual machines can interrogate the real TOD clock. 
The Store Clock (STCK) instruction is nonprivileged; any virtual machine can 
execute it to store the current value of the TOD clock in its virtual storage. The Set 
Clock (SCK) instruction, which is used to set the TOD Clock value, can be issued 
from a virtual machine, but CP always returns a condition code of zero and does 
not actually set the clock. Note that the TOD clock is the only true source of 
actual elapsed time information for a virtual machine. The base value for the TOD 
clock in VM/SP is 00:00:00 GMT, January 1,1900. 

4361 processors are offered with an Auto Start feature. Using a battery operated 
clock, this feature maintains the time while the power is off. For these processors, 
if you shut down the system using the SHUTDOWN command with the 
POWEROFF parameter, then during the next IPL, you will not be prompted to set 
the time-of-day clock. 

In an attached processor or multiprocessor environment, the TOD clocks are 
synchronized using the procedure described in the IBM System/3 70: Principles of 
Operation. 

Clock Comparator 

Pseudo Timer 

The clock comparator associated with the TOD clock is used in virtual machines for 
generating interrupts based on actual elapsed time. The ECMODE option must be 
specified for a virtual machine to use the clock comparator feature. The Set Clock 
Comparator (SCKC) instruction specifies a doubleword value that is placed in the 
clock comparator. When the TOD clock passes that value, an interrupt is 
generated. 

The pseudo timer is a special VM/SP timing facility. It provides 24 or 32 bytes of 
time and date information in the format shown in Figure 31 on page 262. 

Chapter 24. Timers in a Virtual Machine 261 



Start I/O 
<--- 8 bytes 

MM/DD/YY 

HH:MM:SS 

----> 

VIRTCPU I TOTCPU 
or 

DIAGNOSE 
<--- 8 bytes ----> 

MM/DD/YY 

VIRTCPU 

TOT CPU 

Figure 31. Formats of Pseudo Timer Information 

The first eight-byte field is the date, in EBCDIC, in the form Month/Date/Year. 
The next eight-byte field is the Time of Day in Hours:Minutes:Seconds. The 
VIRTCPU and TOTCPU fields contain virtual processor and total processor time 
used. The units in which the processor times are expressed and the length of the 
fields depend upon which of two methods is used for interrogating the pseudo 
timer. 

Pseudo Timer Start I/O 

The pseudo timer can be interrogated by issuing a START I/O to the pseudo timer 
device, which is device type TIMER, and is usually at device address OFF. No I/O 

c/ 

interrupt is returned from the SIO. The address in virtual storage where the timer I 

information is to be placed is specified in the data address portion of the CCW ~~j 
associated with the SIO. This address must not cross a page boundary in the user's 
address space. If this method is used, the virtual processor and the total processor 
times are expressed as fullwords in high resolution interval timer units. One unit is 
13 microseconds. 

Pseudo Timer DIAGNOSE 

The pseudo timer can also be interrogated by issuing DIAGNOSE with an 
operation code of C, as described under "DIAGNOSE Instruction in a Virtual 
Machine." If this method is used, the virtual and total processor times are 
expressed as doublewords in microseconds. 

262 VM/SP System Programmer's Guide 



( 

Chapter 25. CP in Attached Processor and Multiprocessor 
Modes 

This chapter enables you to: 

• Define attached processor (AP) mode 

• Define multiprocessor (MP) mode 

• Understand the use of the channel set switching instructions when available 

• Understand the use of the privileged instructions that set and inspect the 
processor's prefix register 

• Understand the use of the privileged instruction that determines the address of 
the processor that is executing 

• Understand the use of hardware signaling to communicate between processors 

• Understand the use of a TOD clock synchronization check 

• Code fetch and store sequences that can be safely used in the AP IMP 
environment 

• Use locks for serialization of functions 

• Set processor affinity 

• Change processors using the SWTCHVM macro 

Configure I/O devices to obtain maximum availability and recovery potential 

• Debug an AP IMP system. 

Multiprocessor Environment 

In a tightly coupled multiprocessor (MP) environment two processors share real 
storage under the control of a single control program. Both processors have I/O 
capability in an MP environment. See the section "Configuring I/O Devices" for a 
discussion on how to configure I/O devices for maximum availability and recovery 
potential. 

Chapter 25. CP in Attached Processor and Multiprocessor Modes 263 



In a dyadic environment two processors share real storage under the control of a 
single control program. Both processors have I/O capability. However, unlike an 
MP complex, a dyadic processor cannot be partitioned into two distinct 
uniprocessor systems. 

Attached Processor Environment 

In an attached processor (AP) environment two processors share real storage under 
the control of a single control program. However, unlike a multiprocessing 
environment, only one processor in an AP environment has I/O capability. If you 
are running on a 3033 or a 3081, the channel set switching feature is available. If a 
severe hardware error occurs on the first processor in an AP environment, the 
control program may be able to use the channel set switching feature to 
dynamically switch the channels of one processor to the other processor. The 
channel set switching instructions that the control program can use to connect and 
disconnect a channel set to a processor are: 

CONCS 
DISCS 

connect channel set 
disconnect channel set 

Note: When you generate VM/SP as an MP system it does not use the channel set 
switching facility even if the facility is installed on the hardware. 

Advantages of the AP IMP Environment 

An AP /MP environment provides additional processing capability when compared 
to a uniprocessor environment. An AP /MP environment also provides increased 
availability. In case of hardware malfunction on one processor, the other processor 
can frequently continue operating. Serviceability is enhanced because it is possible 
to use the VARY ON/OFF PROCESSOR command to vary a processor off-line 
for system repair or to upgrade the system. 

Facilitating an AP IMP Environment 

In an AP or MP environment, two processors share main storage. To facilitate this 
sharing, VM/SP provides for the unique features and requirements of this 
environment: prefixing, processor address identification, processor signaling, 
time-of-day clock synchronization, interlocks on certain fetch and store 
instructions, locks, and affinity setting. The system programmer should be familiar 
with the instructions used to accomplish these tasks. 

264 VM/SP System Programmer's Guide 

~. 
i,-~ 



( 

Prefixing 

When VM/SP is executing in an AP IMP environment both processors cannot use 
absolute page zero for status information. Instead, each processor has its own 
prefixed storage area (PSA) in the high end of real storage. However, if the system 
operator varies a processor on-line after CP initialization completes, the processor's 
PSA may be located in any page of the dynamic paging area. See Figure 32 for a 
storage map of the V =R machine after CP initialization. 

Virtual Storage Real Storage 
Addresses Addresses r------------------------------------, OK 

ABSOLUTE PAGE 0 
4Kr-----------------------------------~ 4K 

Virtual Page 1 

VIRTUAL=REAL AREA 

SIZE = l28K BYTES 

l28K-l (Minimum size is 32K bytes.) 
OKr-----------------------------------~ l28K 

Virtual page 0 
4K-lr-----------------------------------~ l32K (DMKSLC) 

REMAINDER OF CP Resident Nucleus 

r-----D-Y-N-AM-I-C--P-A-G-I-N-G--A-RE-A--------------~I ~ End of CP Nucleus 

(DMKCPE) 

and 

FREE STORAGE 
<----, 

PSA FOR ATTACHED OR NON-IPL PROCESSOR 

PSA FOR MAIN OR IPL PROCESSOR 

< ____ -'~ DMKPSA 

512K End of 
real storage 

Figure 32. Storage Layout in a Virtual=Real Machine 

Prefix Registers 

The control program puts the addresses of the PSAs in the prefix registers of the 
two processors during system initialization. The control program can set and 
inspect the contents of the processor's prefix register by using the privileged 
instructions: 

• SPX - set prefix 

• STPX - store prefix. 

If you are operating in AP IMP mode, VM/SP uses the prefix registers. When 
code executing on either processor references an address from Oto 4095, the 
referenced address is added to the contents of the prefix register for that processor 
to produce the absolute address that will be accessed. In this way, each processor 

Chapter 25. CP in Attached Processor and Multiprocessor Modes 265 



can independently control its operations with separate channel address words and 
channel status words. Prefixing is described in detail in System/3 70 Principles of 
Operation. 

Identifying a Processor Address 

Signaling 

SIGNAL Macro 

The hardware assigns the processor address during system installation. To 
determine the address of the processor that is executing, the control program issues 
the privileged instruction: 

• ST AP store CPU address. 

VM/SP stores both processor addresses in both PSAs in the following fields: 

• IPUADDR CPU address of this processor 

• IPUADDRX CPU address of the other processor. 

The system uses this information for interprocessor communication. 

During certain critical periods, such as when a processor malfunctions or when a 
processor synchronization must occurs, one processor must signal the other 
processor. There are three types of program-controlled signals possible under 
VM/SP. They are: 

• Emergency signals 

• Direct signals 

• External call signals. 

Use the SIGNAL macro to issue the signal processor (SIGP) instruction. If you 
have generated the system as an AP IMP system, the control program expands the 
macro. The macro expansion code destroys the contents of registers 0, 1, 14, and 
15. The macro expansion loads register 0 with the signalled processor address, 
loads register 1 with the function code, and uses registers 14 and 15 for linkage. 

Note: If you have not generated the system as an AP IMP system, the control 
program treats the SIGNAL macro as a no-operation. 

The SIGNAL macro causes all signaling requests to be sent to the external 
interruption handler so that error analysis and recovery attempts are centralized. 

The format of the SIGNAL macro and the functions that you can perform using 
each type of signal are: 

266 VM/SP System Programmer's Guide 

-------_.--_.,. ----

I··'~'" 

",j 



( 

label SIGNAL CLKCHK [,CONTROL=SERIAL] 
EXTEND 
QUIESCE 
SHUTDOWN 
SYNC 
XTNDEXIT . ~ ...••.•..•...• •.......••........•.......••..........••.•• 
APR [CONTROL: [PARALLEL] ] 
DISPATCH AUTO 
RESUME 
WAKEUP . •..•.•.•..•.... ~ .......................................... 
RESTART [CONTROL: [PARALLEL] ] 
START . AUTO 
STOP 
SSS 

where: 

label 
is any desired label. 

first operand 
is the function to be performed and is a required positional parameter. This 
parameter can be an emergency signal, an external call signal, or a direct 
signal. 

Emergency Signals 

When one processor wants the other processor to perform an action 
immediately, it executes an emergency signal instruction. Since emergency 
signals can only be serial, control is not returned to the issuing processor until 
the other processor performs the function. The emergency signals are: 

• CLKCHK which indicates that the high order bits of the time-of-day 
clocks are not synchronized. 

• EXTEND which indicates that free storage extend processing is to take 
place. 

• QUIESCE which indicates that the receiving processor is to halt all 
execution until a RESUME signal is received. 

• SHUTDOWN which indicates that the system is about to shutdown. 

• SYNC which indicates that the low order bits of the time of day clocks are 
no longer synchronized. 

• XTNDEXIT which indicates that free storage extend process is complete 
and virtual machines can be dispatched again. 

Chapter 25. CP in Attached Processor and Multiprocessor Modes 267 



External Call Signals 

When one processor wants to call the other processor's attention to an event or 
condition, it executes an external call order. The external call functions are: 

• APR which causes automatic processor recovery to be invoked to attempt 
to remove a failing processor from the configuration. 

• DISPATCH which indicates that a CPEXBLOX is on the dispatcher's 
queue for the receiving processor. 

• RESUME which cancels a previous QUIESCE signal. 

• WAKEUP which indicates that the processor is to resume operations after 
having stopped processing. 

Direct Signals 

Direct signals correspond to physical buttons on the real processor. These 
signals are controlled by the hardware, and cannot be masked off. The direct 
signals are: RESTART, START, STOP, and SSS (stop and store status). 

CONTROL= 
is the second operand. 

• CONTROL=SERIAL specifies that control returns to the 
sender after the function is complete. CONTROL=SERIAL 
is the only parameter that you can use with the emergency 
signals. You cannot specify CONTROL=SERIAL for the 
external calls and direct signals. 

• CONTROL=P ARALLEL specifies that control returns to the 
sender even though the function may not be complete. You 
can use CONTROL=P ARALLEL with the external calls and 
direct signals; it is the default for these signals. 

• CONTROL = AUTO specifies that the signal is sent to the 
issuing processor. You can use CONTROL=AUTO with the 
external calls and direct signals. 

Time-of-Day (TOO) Clock Synchronization Check 

If more than one TOD clock exists in a tightly-coupled configuration, the clocks 
must be synchronized. If the time-of-day (TOD) clocks are not in high order 
synchronization during system initialization of an AP IMP system, the system issues 
a message to the system operator to enable the TOD clock set key. If the clocks 
are out of low order synchronization, that is bits 32 to 63 of the two clocks do not 
match, the system receives a time-of-day-clock-sync-check when external 
interruptions are enabled. Then the system synchronizes the clocks. 

268 VM/SP System Programmer's Guide 

o 



,( 

(' 

Fetching and Storing 

RETRY 

Since main storage is shared, there is a possibility that both processors may be 
accessing the same location in storage simultaneously. The control program must 
prevent simultaneous updates to the same storage location. In a tightly-coupled 
multiprocessor environment certain instructions cannot safely execute if there is a 
chance that their execution might change storage that the other processor is also 
using. Fetch and store instructions such as 01, NI, and NC could cause one 
processor to update storage that the other processor is also using. To prevent this 
type of error in a multiprocessing environment, the following fetch and store 
instructions have interlocks: 

• CDS - compare double and swap 

• CS - compare and swap 

• TS - test and set. 

The following example shows how you could use the compare and swap instruction 
to set a flag in a multiprocessing environment. 

Processor A 

LA RX,FLAGS load Rx with address of FLAGS byte 
LA Ry,X'80' load Ry with byte to set FLAGS 
SLL Ry,24 line up fields 
L Rz,O(Rx) load Rz with FLAGS byte 
LR Rw,Rz load Rw with contents of Rz 
OR Rw,Ry load Rw with reset value of FLAGS 
CS Rz,Rw,O(Rx) reset FLAGS byte if =; otherwise load Rz from FLAGS 
BNE RETRY if contents of Rz + FLAGS, branch to RETRY 

FLAGS DC X'20' initial setting of field 

Processor B 

LA Ra,FLAGS load Ra with address of FLAGS byte 
LA Rb,X'40' load Rb with byte to set FLAGS 
SLL Rb,24 line up fields 
L Rc,O(Ra) load Rc with FLAGS byte 

RETRY LR Rd,Rc load Rd with contents of Rc 
OR Rd,Rb load Ra with reset value of FLAGS 
CS Rc,Rd,O(Ra) reset FLAGS byte if =; otherwise load Rc from FLAGS 
BNE RETRY if contents of Rc + FLAGS, branch to RETRY 

FLAGS DC X ' 20 ' 

Figure 33. Sample of the Correct Way to Set a Flag in an AP/MP Environment 

Chapter 25. CP in Attached Processor and Multiprocessor Modes 269 



Locks and Serialization of Functions 

Locking Hierarchy 

If VM/SP is executing in AP /MP mode, critical sections of code must be 
serialized. A critical section of code is code that is executing on one processor and 
must appear as one indivisible operation to the other processor. An example of a 
critical section of code would be code that updates a queue. The other processor 
should not have access to the queue until the element is either added or deleted and 
all pointers are updated.VM/SPuses locks to accomplish serialization of critical 
functions. A lock is an area of storage. It is initialized to a value, usually zero, to 
signify that the lock is not held. Before entering a critical section of code, the 
processor requests the lock to serialize the operation. The operating system 
determines if a lock is free and gives it to the processor requesting the lock by 
means of a hardware interlocked update operation such as compare and swap (CS). 
When exit is made from the critical section of code, the system releases the lock by 
changing its value back to zero. 

The introduction of a locking structure makes the avoidance of processor deadlock 
a prime concern. A deadlock occurs if both processors each have a different lock 
and want to obtain the lock that the other processor holds. VM/SP uses a locking 
hierarchy to avoid these deadlock situations. A locking hierarchy provides for the 
ordering of the set of locks. If a processor holds a given lock, it can only request a 
lock that is lower in the locking hierarchy. For example if a processor holds the free 

. storage lock, the processor cannot perform input/output. On the other hand, if a 
processor holds the I/O lock, the processor can obtain free storage. 

Figure 34 shows the hierarchy of locks under VM/SP where the global system 
lock is the highest lock. The real storage management lock and the I/O lock are on 
the same level. There are no situations which require simultaneous ownership of 
the I/O lock and the real storage management lock. If such a need arises, the 
system will define a hierarchy between these locks. 

270 VM/SP System Programmer's Guide 

- ---_ ... _- . ------------



( 

c 

Global System Lock 

Real Storage Management Lock I I/O lock 

Note: 

V 
Run List Lock 

I 
V 

Timer Request Queue Lock 
I 
V 

Dispatcher Stack Lock 

RDEVBLOK Lock I 
V 

Private Locks 

Free Storage lock 

Spin Locks 

The VMBlOK is a defer lock and is not shown in 
hierarchy. 

this 

Figure 34. Hierarchy of VM/SP Locks 

Types of Locks 

Locking Structure 

There are two basic types of locks: 

• Defer locks 

• Spin locks. 

If a function requests a defer lock and it is not available, control is returned to the 
caller with a condition code that indicates that the lock is not available. However, 
if a function requests a spin lock and it is not available, the lock manager loops 
until the lock becomes available. 

To provide system integrity, VM/SP attached processor and multiprocessor 
support is designed around one global lock, a VMBLOK local lock, and several 
system local locks for specifically identified queues or modules. 

Global System Lock: Much of CP runs under the global system lock, which is a 
defer lock. For example, all command processing requires the global system lock. 
Also, all code executed via an IOBLOK, TRQBLOK, or CPEXBLOK is protected 
by the global system lock. Certain basic system functions, however, are able to 
execute without the global system lock on the mainline, non-error paths. These 
functions include virtual page fault processing, the simulation of virtual I/O 
requests and some other privileged operations, and the processing of a real I/O 
interruption. 

Chapter 25. CP in Attached Processor and Multiprocessor Modes 271 



If a processor needs the global system lock and cannot obtain it, the processor 
must defer the function until the global system lock is available. The function is 
deferred by either stacking the VMBLOK appendage (called the deferred interrupt 
block) or a CPEXBLOK for later processing. The processor that could not obtain 
the global system lock then uses the unlocked dispatcher entry to dispatch a new 
virtual machine. 

In some situations, a function cannot be deferred even though the global system 
lock is not available. In these cases, the dispatcher spins on the global system lock 
until it becomes available. The dispatcher requires the system lock to unstack 
CPEXBLOKs, IOBLOKs, and TRQBLOKs. 

To ensure system integrity along the paths that do not require the global system 
lock, other local locks have been defined. With the exception of the VMBLOK 
lock, these locks are all spin locks and are held for relatively short periods of time. 

VMBLOK Lock: The VMBLOK lock, which is a defer lock, is obtained by the 
dispatcher before dispatching a virtual machine in problem program state or before 
performing any system service for that virtual machine. This lock prevents a virtual 
machine from being serviced by CP while it is running in problem program state. 

Real Storage Management Lock (RM Lock): The real storage management lock 
(called the RM lock) is a spin lock that serializes functions within the paging 
subsystem. This lock controls all accesses to the free and flush lists, the page read 
and write request queues, the deferred allocation queue, the active paging queue, 
CPEXBLOKs chained via CPEXMISC, and certain nonreentrant fields within 
DMKPTR and DMKPAG. 

I/O Lock: The I/O lock is a spin lock that serializes access to I/O devices by 
serializing access to fields in the real I/O control blocks: RCHBLOK, 
RCUBLOK, and RDEVBLOK. 

Run List Lock: The run list lock is a spin lock that controls all additions to and 
deletions from the run list. 

Timer Request Queue Lock: The timer request queue lock is a spin lock that allows 
the external first-level interruption handler to process a timer interruption without 
the global system lock. 

Dispatcher Stack Lock: The dispatcher stack lock is a spin lock that controls all 
additions to or deletions from the IOBLOK/TRQBLOK queue or the CPEXBLOK 
queue. 

RDEVBLOK Lock: The RDEVBLOK lock is a private spin lock that the paging 
subsystem uses to serialize the IOBLOK queue. 

Free Storage Lock: The free storage lock is a spin lock obtained by DMKFRE and 
DMKFRT for FREE and FRET requests for free storage. All of the locks that CP 
uses are described in further detail in VM / SP System Logic and Problem 
Determination Guide Volume 1 (ep). 

272 VM/SP System Programmer's Guide 



LOCK Macro 

label LOCK 

f· 

Use the LOCK macro to obtain or release a lock. The format of the LOCK macro 
is: 

~OBTAIN f , TYPE= SYS [,SPIN= l ~~S f [,SAVE] ] 
RELEASE VMBLOK 

FREE [ ,0PTion=NOUPDT] 
RL 
TR 
DS 
10 
RM 
PRIVATE 

where 

label 
is any desired label 

{ OBTAIN } 
RELEASE 

is a required positional operand indicating whether the lock is to be obtained 
or released. 

TYPE = 
is a required keyword parameter. The possible values are: 

SYS for the global system lock 

VMBLOK for the VMBLOK 

FREE for the free storage lock 

RL for the runlist lock 

TR for the timer request queue lock 

DS for the dispatch lock 

10 for the I/O lock 

RM for the real storage management lock 

PRIV ATE for a private user-defined lock If you have user-defined areas that 
are used by more than one virtual machine, you will need to 
define your own locking conventions. You can use the LOCK 
macro to obtain and release a private lock. 

The system programmer must specify the address of the lockword 
in register 1 and the lockword must be a fullword aligned on a 
fullword boundary. Spin time for private locks is kept in the 
DMKLOKSI timer value for all non-DMKLOK locks. 

Chapter 25. CP in Attached Processor and Multiprocessor Modes 273 



Affinity 

How to Set Affinity 

SPIN= {~S} 

SAVE 

specifies whether control is to be returned without the lock being held. The 
default is SPIN=YES. 

is an optional keyword that indicates register 0, 1, 14, and 15 are to' be saved 
before the rest of the macro expansion. These registers are saved in the PSA 
of the processor that is executing this macro. The registers are restored 
before exit from the macro expansion. 

OPTION = NOUPDT 
indicates that the VMBLOK should be locked without checking for shared 
segments. 

Condition Codes 

The condition code (cc) is set as a result of the invocation of the LOCK macro. 

Condition 
Code 

Parameter Meaning 

cc=O OBTAIN lock obtained 
RELEASE lock released 

cc=l OBTAIN,SPIN=NO lock owned by another 
processor 

For various abend codes related to lock use, see VM/SP System Messages and 
Codes. 

When you specify the affinity option for a virtual machine, the program of that 
virtual machine is executed only on the specified processor. You might want to 
specify affinity in the following cases: 

• If one processor has a special hardware feature or a special RPQ that is 
required for a particular program, set affinity to this processor. 

If a virtual machine has a high I/O-to-conipute ratio, you might want to set 
affinity to the I/O processor. On the other hand, if a virtual machine has a 
high compute-to-I/O ratio, you could set affinity to the attached processor. 

You request affinity either in the directory or with a SET AFFINITY command. 
See the VM / SP CP Command Reference for General Users for details on the class 
G SET AFFINITY command. See the VM / SP Operator's Guide for other privilege 
classes of the SET AFFINITY command. 

274 VM/SP System Programmer's Guide 

/. 



( 

Shared Segments in an AP/MP Environment 

SWTCHVM Macro 

When two processors are executing simultaneously, it is necessary to know when a 
user changes a shared page. In attached processor or multiprocessor mode, there 
are two sets of page tables and swap tables maintained for each shared segment 
unless a user is running unprotected. If a user is running unprotected shared 
segments, there is only one copy. 

Routines that must lock a virtual machine other than the current virtual machine 
use the SWTCHVM macro. The SWTCHVM macro unlocks the VMBLOK 
specified in register 11 and locks the VMBLOK specified in register 1. Time 
charging is also switched. The format of the SWTCHVM macro is: 

SWTCHVM OPT=~[STAYl [NOUPDTlt 
1 UNLOCK ~ 

where: 

label 
is any desired label 

STAY 
indicates that if the VMBLOK lock is not available, a CPEXBLOK will be 
stacked for the current processor. 

NOUPDT 
indicates that the VMBLOK should be locked without checking for shared 
segments. 

UNLOCK 
indicates that the current VMBLOK is unlocked, register 11 is updated to point 
to VMBLOK specified in register 1, the timer is switched to start charging 
supervisor time to the new VMBLOK, but the new VMBLOK is not locked. 
Note: The UNLOCK option cannot be specified with either of the other 
options. 

Configuring and Debugging MP Systems 

The user should keep the following things in mind when configuring I/O devices 
for an MP system and when debugging an AP IMP System. 

Chapter 25. CP in Attached Processor and Multiprocessor Modes 275 



Configuring I/O Devices for an MP System 

When you configure I/O devices, you should consider the following: 

• The possibility of a hardware failure 

• Smooth transition when you reconfigure between MP and uniprocessor (UP) 
modes for maintenance. 

In either of these cases to ensure maximum system availability, you should provide 
paths from both processors to I/O devices. You can do this in several ways: 

• Configure symmetrically as many channels and I/O devices as possible. 

• Install channel-switching and string-switching features on control units where 
possible. A channel switch is a feature on a control unit that enables two real 
processors to share a symmetric device. A symmetric device is a device that 
can be accessed by both processors, while an asymmetric device cannot be 
shared. A string switch enables you to attach a symmetric I/O device to two 
separate control units. These features provide access to I/O devices from both 
processors. This increased access reduces the possible loss of access to critical 
I/O devices because of hardware malfunctioning. 

• Symmetric devices are also defined as alternate path devices. Reserve/release 
support is mutually exclusive with alternate path support. 

• Configure asymmetric devices through a manual switching unit. Then the 
operator can physically attach these devices to either processor, one processor 
at a time. Asymmetric devices include printers, card readers, punches, and 
information display systems. 

• Provide redundant control units for critical I/O devices. 

Debugging an AP/MP System 

PSA 

When you debug an AP /MP problem, the following areas provide pertinent 
information: 

A dump for a program operating in AP or MP mode contains three PSAs -- the 
absolute PSA, one for the IPL processor and one for the other processor. In a 
formatted dump the PSA for the IPL processor is displayed first and the PSA for 
the other processor is displayed second. The PSA contains important information 
about the status of each processor. See Data Areas and Control Block Logic 
Volume 1 (CP) for an explanation of the fields in the PSA. 

276 VM/SP System Programmer's Guide 



Trace Table 

( 

Lockwords 

c 

In an AP IMP system, the trace table entries for both processors are intermixed. 
However, you can identify which processor made a particular entry by looking at 
the trace code in the first byte of the trace table entry. If bit 1 of the trace code 
contains a zero, the entry was made by the IPLed processor; while if bit 1 of the 
trace code contains aI, the entry was made by the other processor. Processor 
identification information is implemented for an AP IMP system at system 
initialization when the system assigns each processor a trace identifier. The system 
assigns the IPLed processor a trace identifier of X'OO' and the non-IPLed 
processor a trace identifier of X' 40'. The identifier is ORed with the trace code 
when an entry is made in the trace table thus providing an easy way of determining 
which processor made a particular entry. 

The following trace table entries appear in an AP IMP environment: 

X'12' indicates that the processor is spinning on a lock 
X' 13 ' indicates that a processor issued a signal processor (SIGP) instruction 
X'OI' may reflect multiprocessing-related external interruption codes (also 

appears in a uniprocessor environment) 

When you are debugging an AP IMP system, you must relate the entries made by 
one processor to the entries made by the other processor in the same time period. 
For example, a signal processor (code X' 13') entry by one processor should be 
followed closely by an external interruption (code X'OI ') for the other processor. 
See the "CP Internal Trace Table" section and Figure 76 in this publication. 
Trace table pointers (the address of trace table start, the address of trace table end, 
and the address of the next available trace entry) are in absolute page zero. 

You can look in the DMKLOK module to find the status of the various VM/SP 
locks except the VMBLOK lock and the RDEVBLOK lock. Each of the locks in 
DMKLOK contains four fullwords of information. The first fullword contains the 
logical processor address of the owning processor. This will be zero if the lock is 
not held. The second fullword contains the value in the lock owner's register 12. 
The third and fourth fullwords contain the total amount of time spent spinning on 
this lock and the total number of spins respectively. 

The VMBLOK lock is located in the VMBLOK at VMLOCK. When the 
VMBLOK lock is held, VMLOCK contains the logical processor address of the 
owning processor. 

The RDEVBLOK lock is located in the RDEVBLOK at RDEVIOBL. When the 
lock is held, RDEVIOBL contains the logical processor address of the owning 
processor. 

Chapter 25. CP in Attached Processor and Multiprocessor Modes 277 



278 VM/SP System Programmer's Guide 

----_. ----._----



( 

,( 

Chapter 26. The DIAGNOSE Instruction in a Virtual Machine 

The DIAGNOSE instruction cannot be used in a virtual machine for its normal 
function. If a virtual machine attempts to execute a DIAGNOSE instruction, a 
program interrupt returns control to CPo Since a DIAGNOSE instruction issued in 
a virtual machine results only in returning control to CP and not in performing 
normal DIAGNOSE functions, the instruction is used for communication between 
a virtual machine and CPo The machine language format of DIAGNOSE is: 

0 

83 

where: 

83 

RX,Ry 

CODE 

2 3 

Rx Ry CODE 

is X'83' and interpreted by the assembler as the DIAGNOSE 
instruction. 

Note: There is no mnemonic for DIAGNOSE. 

are general purpose registers that contain operand storage addresses or 
return codes passed to the DIAGNOSE interface. If the registers 
contain addresses, those addresses must be real to the virtual machine 
issuing the DIAGNOSE. 

is a two-byte hexadecimal value that CP uses to determine what 
DIAGNOSE function to perform. The codes defined for the general 
VM/SP user are described in this section. The code must be a 
multiple of four. Codes X'OO' through X'FC' are reserved for mM 
use, and codes X' 100' through X' lFC' are reserved for users. The 
privilege class for each code is indicated. 

Because DIAGNOSE operates differently in a virtual machine than it does in a real 
machine, a program should determine that it is operating in a virtual machine 
before issuing a DIAGNOSE instruction, and prevent execution of a DIAGNOSE 
when in a real machine. The Store Processor ID (STIDP) instruction provides a 
program with information about the processor in which it is executing, including 
the processor version number. If STIDP is issued from a virtual machine, the 
version code, which precedes the CPUID field, will be X' FF' . 

A virtual machine issuing a DIAGNOSE instruction should run with interrupts 
disabled. This prevents loss of status information pertaining to the DIAGNOSE 
operation such as condition codes and sense data. 

Chapter 26. The DIAGNOSE Instruction in a Virtual Machine 279 



Note: A DIAGNOSE instruction with invalid parameters may in some cases result 
in a specification exception or protection exception. 

DIAGNOSE Code X'OO' -- Store Extended-Identification Code 

Privilege class ANY 

Execution of DIAGNOSE code X'OO' allows a virtual machine to examine the 
VM/SP extended-identification code. For example, an OS/VSl virtual machine 
issues a DIAGNOSE code X'OO' instruction to determine if the version of VM/SP 
under which it is executing supports the VM/VS Handshaking feature. If the 
extended-identification code is returned to VS1, VM/SP supports handshaking; 
otherwise, it does not. 

Entry Values: The register specified as Rx contains the doubleword aligned virtual 
storage address where the VM/SP extended-identification code is to be stored. 
The Ry register contains the number of bytes to be stored entered as an unsigned 
binary number. 

Exit Values: If the VM/SP system currently executing does not support the 
DIAGNOSE code X'OO' instruction, no data is returned to the virtual machine. If 
it does support the DIAGNOSE code X'OO' instruction, the following data is 
returned to the virtual machine (at the location specified by Rx): 

Field 
System 
Name 

Description 
"VM/SP" 

Characteristics 
8 bytes, EBCDIC 

RESERVED (for mM use) 3 bytes, zeroes 

Version 
Code 

MCEL 

Processor 
Address 

Userid 

280 VM/SP System Programmer's Guide 

VM/SP executes the STIDP (Store 1 byte, hexadecimal 
Processor ID) instruction to determine the 
version code. 

VM/SP executes the STIDP instruction to 2 bytes, hexadecimal 
determine the maximum length of the 
MCEL (Machine Check Extended Logout) 
area. 

VM/SP executes the STAP (Store Processor 2 bytes, hexadecimal 
Address) instruction to determine the 
processor address. 

The userid of the virtual machine issuing the 8 bytes, EBCDIC 
DIAGNOSE. 

--~ ~---- ---



Description Characteristics Field 
Program 
Product Bit 
Map 

Identifies the program products that are 
installed. Valid values and the program 
products each identifies are: 

8 bytes, hexadecimal 

Value Program Product 
X'8000000000000000' Basic System Extensions 2 
X'COOOOOOOOOOOOOOO' System Extensions, Release 2 
X'EOOOOOOOOOOOOOOO' VM/System Product, Release 1 
X'FOOOOOOOOOOOOOOO' VM/System Product, Release 2 
X'F800000000000000' VM/System Product, Release 3 
X'FCOOOOOOOOOOOOOO' VM/System Product, Release 4 

Time Zone 
Value 

Represents the time zone differential in 4 bytes, hexadecimal 

Version 
Number 

seconds from Greenwich Mean Time. 

The first byte is the release number, the 4 bytes, hexadecimal 
second byte is the release modification level, 
the third and fourth bytes are the PLC 
(Program Level Change) number. 

Note: The Time Zone Value is a signed hexadecimal fullword value in seconds. 
Negative values represent differentials west of Greenwich Mean Time and positive 
values represent differentials east of Greenwich Mean Time. If VM/SP is 
executing in a virtual machine, another 40 bytes, or less, of extended identification 
data is appended to the first 40 bytes described above. Up to five nested levels of 
VM/SP virtual machines are supported by this DIAGNOSE instruction resulting in 
a maximum of 200 bytes of data that can be returned to the virtual machine that 
initially issued the DIAGNOSE instruction. 

Upon return, Ry contains its original value less the number of bytes that were 
stored. 

Return and Condition Codes: No return code is received, and the condition code 
remains unchanged. 

DIAGNOSE Code X I 04' -- Examine Real Storage 

Privilege class C or E 

Entry Values: Execution of a DIAGNOSE code X'04' allows a user to examine 
real storage. The register specified as Rx contains the virtual address of a list of 
CP (real) addresses to be examined. The Ry register contains the count of entries 
in the list. Ry + 1 contains the virtual address of the result field. The result field 
contains the values retrieved from the specified reallocations. 

Chapter 26. The DIAGNOSE Instruction in a Virtual Machine 281 



Exit Values: For each address in the list of CP addresses, VM/SP provides a 
fullword of data obtained from the specified address in real storage. VM/SP stores 
this data into the result field identified by the Ry+ 1 register. 

There is a one-to-one correspondence between entries in the list of addresses and 
entries in the result field. For example, data obtained from the address in the first 
entry of the address list is stored in the entry of the result field, data obtained from 
the second entry of the address list is stored in the second entry of the result field, 
and so forth. 

Notes: 

1. The request and result tables must be in the same page of virtual storage, and that 
page must be resident in real storage, at the time the DIAGNOSE is executed. 
This is guaranteed if the instruction itself is also in the same page. 

2. In the attached processor or multiprocessor environment, each processor has a 
prefix register to relocate addresses between 0 and 4095 to another page frame in 
main storage. The prefix register enables each processor to use a different page 
frame to avoid conflict with the other processor for such activity as interrupt code 
recording. Thus, the range 0 through 4095 refers to different areas of storage, 
depending upon which processor generates the address. 

In attached processor mode, all references to main storage from either processor 
are handled as if they were made on the main processor. In multiprocessor mode, 
references to main storage from either processor are handled as if they were made 
on the IPL processor. Existing user programs remain valid for performance data; 
they receive the statistics for the main (or IPL) processor. 

References to the PSA of the attached processor (or non-IPL processor, in 
multiprocessor mode) may be made as follows: first, retrieve the value of 
PREFIXB, the value of the prefix register for the other processor (the attached 
processor in this case). Next, specify addresses that are the sum of the value of 
PREFIXB and the PSA displacement. References to 0 through 4095 are made 
by summing the value of PREFIXA and the PSA displacement to form the request 
address. Several system values that are processor independent are maintained in 0 
through 4095, such as the restart PSWand the trace table vectors. 

3. If a reference is made to a real page frame that CP has determined to be disabled, 
results cannot be predicted. The CORETABLE entry corresponding to the real 
page address is checked and, if a disabled condition is found, the operation is 
terminated and a program check for a specification exception is presented to the 
virtual machine. 

DIAGNOSE Code X'OS' -- Virtual Console Function 

Privilege class ANY 

DIAGNOSE code X'08' enables a virtual machine running in supervisor state to 
issue CP commands. The virtual machine must specify the command, the 
command parameters, and whether CP is to return the command response to the 

282 VM/SP System Programmer's Guide 

./\ 
U 



( 

f 

user's terminal or to a buffer. In addition to returning the command response, CP 
sets a return code in the Ry register and may set a condition code. 

Entry values: When DIAGNOSE code X'08' is issued, the Rx and Ry registers 
must be set up as follows: 

Rx -- Rx must point to the character string in virtual storage that contains the 
CP commands and parameters. If the character string contains multiple 
commands, each command and its associated parameters must be separated 
from adjacent commands by the value X'15'. 

Ry -- The high-order byte contains flag bits; the other three bytes specify, in 
bytes, the length of the CP commands and parameters. The maximum 
allowable length is 240 characters. 

Set the flag bits as follows. If CP is to reject a password entered on the same line 
as a LINK command, set the high-order bit to a value of one (X'80'). CP rejects 
passwords only if the installation specified password suppression during system 
generation. If CP is to return the command response in a buffer, set the second 
flag bit to a value of one (X '40' ). 

Exit values: If the Ry register contains the value X'OOOOOOOO', the DIAGNOSE 
code acts as a no-operation (NOP) instruction. As a consequence, the issuing 
virtual machine is placed into a CP-READ state. 

If the command response is to be returned in a buffer, Rx and Ry cannot be 
consecutive registers nor can either be register 15. In addition, the Rx + 1 and 
Ry+ 1 registers must be setup as follows: 

Rx+ 1 -- Rx+ 1 must point to the buffer in virtual storage where CP is to return 
the command response. 

Ry+ 1 -- Ry+ 1 must specify, in bytes, the length of the buffer. This value 
must not exceed 8192. 

Condition Codes: If the command response is to be returned in a buffer, CP sets a 
condition code and returns information as follows: 

CC=O The request was successful. The Rx+l register points to the buffer that 
contains the command response. The Ry+ 1 register specifies the length 
of the response. 

CC= 1 The request was unsuccessful. The response does not fit into the buffer. 
The Ry+ 1 register contains a value that specifies how many bytes of the 
response would not fit into the buffer. 

Return Codes: When CP returns to a program executing a DIAGNOSE code 
X' 08' instruction, the length value that was supplied in register Ry is replaced by 
the CP return code value. This value is zero if the CP console function was 
successfully executed. If an error occurred, the return code is the numeric value 
expressed in the message describing the error. For example, if error message 
DMKCFM045E is issued, CP sets a return code of 45. 

Chapter 26. The DIAGNOSE Instruction in a Virtual Machine 283 



If the user has not specified a command response buffer, error messages and 
informational messages are generated according to the current values established 
by SET EMSG, SET IMSG, and SET MSG commands. 

If a command response buffer is used, error and informational messages are always 
put into the buffer instead of being written to the console. Each line of the 
response is followed by a new line character (X' 15'). If the buffer is not long 
enough to contain all of the response lines, only as many complete lines as can fit 
into the buffer are supplied, so the last character written into the response buffer 
by CP is always a new line character. Any unused portion of the response buffer is 
not changed. The setting of IMSG is ignored (it is considered always to be ON) 
and the setting of EMSG determines only whether the error message code is 
retained. (SET EMSG OFF is treated the same as SET EMSG ON; SET EMSG 
TEXT suppresses error message codes.) Messages controlled by SET MSG (such 
as "PUN file nnnn to ... ") are not put into the command response buffer unless 
SET MSG ON is in effect. 

The return code values returned by CP are not affected by the values of EMSG 
and IMSG, or by the use of a command response buffer. 

If CP is executing multiple commands and encounters an invalid command, 
processing stops and CP ignores the remaining commands. 

Following are two examples showing how to specify DIAGNOSE code X' 08'. The 
first example shows how a program issues the QUERY FILES command. In this 
example the response is returned to the user's terminal. Note that in virtual storage ., 
environment, a load real address (LRA) instruction must be used to load the Rx ~ 

register. 

CMMD 
CMMDL 

LA* 6,CMMD 
LA 10,CMMDL 
DC X'B3',X'6A' ,XL2'OOOB' 

DC 
EQU 

C'QUERY FILES' 
*-CMMD 

The second example shows how to specify a string of commands when multiple 
commands are to be issued. 

CMMD 

CMMDL 

284 VM/SP System Programmer's Guide 

LA* 6,CMMD 
LA 10,CMMDL 
DC X'B3',X'6A',XL2'OOOB' 

DC 
DC 
DC 
EQU 

C'QUERY FILES' 
X' 15' 
C'PURGE PRINTER' 
*-CMMD 



( 

f 

Notes: 

1. If you are in EC mode you must code a LRA instruction instead of a LA 
instruction if you are running a virtual storage system (for example, MVS) in a 
virtual machine and want to specify the address of the CMMD parameter. 

2. The logical line editing characters (described in the VM/SP Terminal Reference 
and under the TERMINAL command in the VM/:;P CP Command Reference 
for General Users) are only recognized by CP when entered from a terminal, not 
when passed to CP via DIAGNOSE code X'OB'. Therefore a command such as 
#CP is not recognized by CP when issued via DIAGNOSE code X'08' and results 
in error message "DMKCFC001E ?CP: COMMAND". 

DIAGNOSE Code X'OC' -- Pseudo Timer 

Privilege class ANY 

Execution of DIAGNOSE code X'OC' causes CP to store four doublewords of 
time information in the user's virtual storage. 

Entry Values: The register specified as Rx contains the address of the 32 byte area 
where the time information is to be stored. The address must be on a doubleword 
boundary. The information returned is in the format shown in Figure 31. 

The first eight bytes contain the Month/Day-of-Month/Year. The next eight 
bytes contain the time of day in Hours:Minutes:Seconds. The last 16 bytes contain 
an unsigned binary number that represents the virtual and total processor time (in 
microseconds) of the virtual machine that issued the DIAGNOSE. 

Retum and Condition Codes: No return code is received, and the condition code 
remains unchanged. 

DIAGNOSE Code X 1 10' -- Release Pages 

I Privilege class ANY 

Pages of virtual storage can be released by issuing a DIAGNOSE code X' 10'. 
When a page is released, it is considered all zero. 

Entry values: The register specified by Rx contains the address of the first page to 
be released, and the Ry register contains the address of the last page to be released. 
Both addresses must be on page boundaries. A page boundary is a storage address 
whose low order three digits, expressed in hexadecimal, are zero. 

Return and Condition Codes: No return code is received, and the condition code 
remains unchanged. 

Note: Do not use DIAGNOSE code X' 10' to release noncontiguous storage; use 
DIAGNOSE code X'64' for this purpose. 

Chapter 26. The DIAGNOSE Instruction in a Virtual Machine 285 



DIAGNOSE Code X l 141 --Input Spool File Manipulation 

f Privilege class ANY 

Execution of DIAGNOSE code X' 14' causes DMKDRDER to perform input 
spool file manipulation. 

Entry Values: Depending upon the value of the function specified, Rx contains a 
buffer address, a copy count, or a spool file identifier. The Ry register, which must 
be an even register, contains either the virtual address of a spool input card reader 
or, if Ry+ 1 contains X'OFFF', a spool file ID number. Ry+ 1 contains a 
hexadecimal code indicating the file manipulation to be performed, and a flag with 
the optional size of the spool file block. The function subcodes are: 

Code 
0000 
0004 
0008 
OOOC 
0010 
0014 
0018 
001C 
0020 
0024 
OFFE 
OFFF 

Notes: 

Function 
Read next spool buffer (data record) 
Read next print spool file block (SFBLOK) 
Read next punch spool file block (SFBLOK) 
Select a file for processing 
Repeat active file nn times 
Restart active file at beginning 
Backspace one record 
Read next monitor spool file block 
Read next monitor spool record 
Read last spool buffer (active file) 
Select next file not previously selected 
Retrieve subsequent file descriptor 

1. Subcodes X'OOIC' and X'0020' are the only subcodes of DIAGNOSE code X'14' 
that can be used for monitor files. 

2. For subcodes X'OOOO', X'0004', X'0008', X'OOOC', X'OOIC', andX'0020', held 
files are skipped. 

Condition Codes: On return Ry + 1 may contain error codes that further define a 
returned condition code of 3. 

Condition 
Code 

o 
1 

2 
3 
3 

286 VM/SP System Programmer's Guide 

Ry+l 

4 
8 

Error 
Data transfer successful 
End of file or if subcode X' 00 18' and file is 
at first record 
File not found 
Device address invalid 
Device type invalid 



r-

Subcode X'OOOO' 

Subcode X'0004' 

Condition 
Code 

3 

3 
3 
3 

Ry+l 
12 

16 
20 
24 

Error 
Device busy, reader not ready, or device is a 
real device 
Fatal paging I/O error 
Page already locked for I/O 
File in use by system; probable paging or 
spooling error. 

Rx = start address of fullpage virtual buffer 
Ry = virtual spool reader address 
Ry + 1 = function subcode 

The specified device is checked for a file activated via DIAGNOSE. If one is 
found, the next fullpage buffer is made available to the virtual machine via a call to 
DMKRPAGT. If a file is not found, the chain of reader files is searched for a file 
for the calling user and connected to the virtual device for further reading. If no file 
is found, virtual condition code 2 is set. When the end of an active file is reached, 
the device status settings are tested for "spool continuous." If not set, virtual 
condition code 1 is set, indicating end of file. If the device is set for continuous 
input, the active file is examined to determine whether or not it is a multiple-copy 
file. If it is, reading is restarted at the beginning of the file. If it is not, the file is 
closed via DMKVSUCR and the reader chain is searched for another input file. If 
no other file is found, virtual condition code 1 is set. A specific DIAGNOSE code 
X'14' subcode X'OOOO' must be issued to get the first spooled page again. 

Notes: 

1. Subcode X'OOOO' returns a 3 condition code if an active monitor file or CP dump 
file is found. 

2. Issuing DIAGNOSE code X'14' subcode X'OOOO' against a locked page causes 
the page to become unlocked. 

Rx = virtual address of an SFBLOK buffer 
Ry = virtual spool reader address 
Ry+ 1 = flag, optional size of SFBLOK in doublewords, and function subcode. 

If the specified device is in use via DIAGNOSE, the VSPLCTL block is checked to 
see whether or not this is a repeated call for printer SFBLOKs. If it is, then the 
chain search continues from the point where the last SFBLOK was given to the 
virtual machlne. In this case, cc = 1 is set when there are no more print files. If 
this is the first call for an SFBLOK, or if there have been intervening calls for file 
reading, the spool input chain is searched from the beginning, and cc=2 is set if no 
files are found. 

Chapter 26. The DIAGNOSE Instruction in a Virtual Machine 287 



Subcode X 1 0008' 

Subcode X'OOOC' 

Subcode X'0010' 

Subcode X'0014' 

If the high-order byte of the subcode register (Ry+1) is zero, then only 13 
doublewords of the SFBLOK are returned and the rest could be truncated. 
However, if bit zero of the register is on, then bits 2 to 7 specify the amount of 
data to be returned (in doublewords). If the actual SFBLOK is shorter, the extra 
space is filled with zeroes. 

Note: The virtual buffer specified via Rx must not cross a page boundary or a 
specification exception results. 

Rx = virtual address of an SFBLOK buffer 
Ry = virtual spool reader address 
Ry+1 = flag, optional size of SFBLOK in doublewords, and function subcode. 

Processing for subcode X'0008' is the same as for subcode X'0004', except that 
only punch files are processed. 

Note: For both subcode X' 0004' and subcode X' 0008', the format definition for 
a VM/SP SFBLOK can be found in the system macro library. 

Rx = file identifier of requested file 
Ry = virtual spool reader address 
Ry + 1 = function subcode 

The spool input chain is searched for the file specified. If it is not found, cc=2 is 
set. If it is found, the file is moved to the head of the chain so that it is the next file 
processed by any of the other functions. 

Rx = new copy count for the active file 
Ry = virtual spool reader address 
Ry+ 1 = function subcode 

The specified device is checked for an active file. If no file is active, cc=2 is set. 
Otherwise, the copy COUNT for the file is set to the specified value, with a 
maximum of 255. If the specified count is not positive, a specification exception is 
generated. 

Ry = virtual spool reader address 
Ry+ 1 = function subcode 

The specified device is checked tor an active file. If no active file is found, cc=2 is 
set. Otherwise, the VSPLCTL pointers are reset to the beginning of the file. 

288 VM/SP System Programmer's Guide 



r- Subcode X'0018' 

Subcode X'001 C' 

Subcode X'0020' 

( 

Subcode X'0024' 

Subcode X'OFFE' 

~~----------------------

-- --------------------

Rx = start address of virtual fullpage buffer 
Ry = virtual spool reader address 
Ry + 1 = function subcode 

The specified device is checked for an active file. If no active file is found, cc=2 is 
set. Otherwise, the file is backspaced one record and the rttcord is given to the user 
as in subcode X'OOOO'. If the file is already positioned at the first record, the first 
record is given to the user. 

Rx = virtual address of an SFBLOK buffer 
Ry = virtual spool reader address 
Ry+ 1 = flag, optional size of SFBLOK in doublewords, and function subcode. 

Processing is the same as subcode X' 0008 ' , except that only monitor spool files, as 
identified by the SFBMON flag is SFBFLAG2, can be handled. 

Rx = start address of virtual fullpage buffer 
Ry = virtual spool reader address 
Ry+ 1 = function subcode 

Processing is the same as subcode X' 0000' , except that only monitor spool files, as 
identified by the SFBMON flag in SFBFLAG2, can be handled. 

Rx = start address of virtual fullpage buffer 
Ry = virtual spool reader address 
Ry+ 1 = function subcode 

The specified device is checked for an already active file. If there is one, the last 
fullpage buffer is made available to the virtual machine via a call to DMKRPAGT. 
If there is no active file, CC=2 is set. 

Rx = virtual address of a 252 byte buffer 
Ry = code to further determine function 
Ry+ 1 = flag, optional size of SFBLOK in doublewords, and function subcode. 

4 The data for the X'OFFE' and X'OFFF' subcodes of the DIAGNOSE code X' 14' are 
SFBLOK, 40 bytes of the 3800 data from the first SPUNK (if requested), the first 
CCW, the following TIC, and up to 136 bytes of associated data. 

Chapter 26. The DIAGNOSE Instruction in a Virtual Machine 289 



Subcode X10FFFI 

If Ry code = 0, the next reader spool file that was not previously seen is selected 
and returns data4 to the user's buffer. 

r If Ry code = 1, the bit in the SFBLOK is be reset to indicate that the spool file was 
previously selected and data4 from the first spool file is returned to the user. 
CC= 1 is returned if no file is found. 

I If Ry is neither 0 or 1, a specification exception error is reflected. 

Subcode X'OFFE' waits for a file being used by a system function. If, however, 
the file is not available within the 250 millisecond time limit, a condition code of 3, 
RC of 24 is returned. This condition indicates system problems due to 
performance or errors in the spooling area. 

Rx = virtual address of a 252 byte buffer 
Ry = spool file ID number 
Ry+ 1 = flag, optional size of SFBLOK in doublewords, and function subcode. 

If Ry is nonzero, the spool input chain is searched for a file with a matching ID 
number: If none is found or if one is found that is owned by a different virtual 
machine, cc=2 is set. The chain search is continued from the file that was found, 
or from the anchor if Ry is zero, for the next file owned by the caller, independent 
of file type, class, etc. If none is found, cc= 1 is set. If a file is found but it has the 
INUSE flag on, cc = 3 (rc = 12) is returned. Otherwise, the data4 is returned to 
the user's buffer. 

As with subcode X'OFFE', subcode X'OFFF' also waits for a file being used by a 
system function. If, however, the file is not available within the 250 millisecond 
time limit, a condition code of 3, RC of 24 is returned. This condition indicates 
system problems due to performance or errors in the spooling area. 

Note: Data chaining may occur when 3800 load CCW's are present in a spool file. 
If the data following a 3800 load CCW is more than 4080 bytes long, that data 
cannot be contained in one DASD spool file buffer. Instead, the CCW is 
data-chained to succeeding DASD buffers until all the data has been entered into 
the spool file. If the file contains 3800 load CCW's, either the SFBLDBEG or the 
SFBLDMID flags are set in the SFBLOK. 

The amount of SFBLOK data returned is calculated as described under subcode 
X' 0004'. In addition, if bit zero of the subcode register (Ry + 1) is on, 40 bytes of 
3800 data is returned immediately following the SFBLOK and preceding the TAG 
data. The data returned is described in the SPUNK DSECT starting at label 
SPCHAR. 

290 VM/SP System Programmer's Guide 



( 

( 

c 

DIAGNOSE Code X'18' -- Standard DASD I/O 

I Privilege class ANY 

Input/ output operations to a direct access device, of the type used by CMS, can be 
performed from a virtual machine using DIAGNOSE code X' 18'. No I/O 
interrupts are returned by CP to the virtual machine; the DIAGNOSE instruction is 
completed only when the READ or WRITE commands associated with the 
DIAGNOSE are completed5• 

Entry Values: The Rx register contains the virtual device address of the direct 
access device. The Ry register contains the address of a chain of CCWs. The user 
must load Register 15 with the number of READs or WRITEs in the CCW chain. 
The CCW chain must be in a standard format that CP expects when DIAGNOSE 
code X' 18' is used, as shown below. 

Use: DIAGNOSE code X' 18' checks that the byte count from the user's read or 
write CCW does not exceed 4096 bytes. If the byte count exceeds 4096 bytes, CP 
flags it as an error. If the byte count is less than or equal to 4096 bytes, 
DIAGNOSE code X' 18' makes an additional check for valid CMS standard 
block-sizes. The standard CMS block-sizes are 512, 800, lK, 2K, or 4K bytes. 
The latter check is necessary and only pertinent in the event that the user's channel 
program is directed to a device that is capable of executing extended 
count-key-data channel commands (for example, a 3380 attached to a 3880 
Control Unit equipped with the Speed Matching Buffer Feature). 

CP converts user's channel programs to the extended count-key-data (CKD) 
format when they: 

• Are directed to a 3380 attached to a 3880 Control Unit equipped with the 
Speed Matching Buffer (Feature #6550) 

• Or are directed to a 3375 attached to a 3880 Control Unit equipped with the 
Speed Matching Buffer (Feature #6560) 

• And contain READ or WRITE CCW's with valid CMS block-sizes 

• And contain no READs chained to READs or WRITEs which are, themselves, 
chained to WRITEs. 

An example of a channel program converted to an extended count-key-data 
channel program is shown below. 

DIAGNOSE code X' 18' must not be used to read or write 
record-overflow-formatted data. 

A typical CCW string to read or write two 800-byte records is as follows: 

5 For non-standard channel programs (more than one consecutive READ or WRITE 
CCWs chained together), no extended CCW is transformed if this is directed to a 3380 
with the Speed Matching Buffer. 

Chapter 26. The DIAGNOSE Instruction in a Virtual Machine 291 



SEEK,A,CC,6 
SET SECTOR (not used for 2314/2319) 
SRCH,A+2,CC,5 
TIC,*-8,O,O 
RD or WRT,DATA,CC+SILI,800 
SEEK HEAD,B,CC,6 (omitted if HEAD number unchanged) 
SET SECTOR 
SRCH,B+2,CC,5 
TIC,*-8,O,O 
RD or WRT,DATA+800,SILI,800 

A SEEK and SRCH arguments for first RD/WRT 
B SEEK and SRCH arguments for second RD/WRT 

If you are reading from or writing to either a 3380 or 3375 attached to a 3880 
Control Unit equipped with the respective Speed Matching Buffer, the above 
sample channel program would be converted to the following extended 
count-key-data CCWs: 

DEFINE EXTENT,C,CC,16 
LOCATE RECORD,D,CC,16 
RD OR WRT,DATA,CC+SILI,800 
LOCATE RECORD,E,CC,16 
RD OR WRT,DATA+800,SILI,800 

C DEFINE EXTENT argument 
D LOCATE RECORD argument for first RD/WRT 
E LOCATE RECORD argument for second RD/WRT 

Note: The second LOCATE RECORD CCW shown in this example is not 
generated in all cases. That is, LOCATE RECORD CCWs, after the first one, are 
generated only when one of the following is encountered: 

A READ is followed by a WRITE, or vice versa, with the normal SEEK, SET 
SECTOR, SRCH in between them. 

The length of a READ or WRITE is not the same as the length of the 
preceding READ or WRITE. 

The READ or WRITE that follows a previous READ or WRITE is not for the 
next sequential record on the track. 

Return and Condition Codes: The codes returned are as follows: 

CC=o I/O complete with no errors 

CC= 1 Error condition. Register 15 contains one of the following return codes: 

R 15 = 1 Device not attached 

R15=2 Device not 2319, 2314, 3330, 3340, 3350, 3375, or 3380 

R15=3 Attempt to write on a read-only disk 

R15=4 Cylinder number not in range of user's disk 

292 VM/SP System Programmer's Guide 



r 

{ 

I CC=2 

CC=3 

R15=5 Virtual device is busy or has an interrupt pending 

R15=6 Device halted; I/O mayor may not have completed. 

Error condition. Register 15 contains one of the following return codes: 

R15=5 Pointer to CCW string not doubleword-aligned. 

R15=6 SEEK/SEARCH arguments not within range of user's storage. 

R15=7 CCW is not a SEEK, SEEK HEAD, SET SECTOR, SEARCH 
ID, TIC*-8, READ, or WRITE or an invalid CCW string was 
submitted. 

R15=8 READ/WRITE byte count=O 

R15=9 READ/WRITE byte count greater than 4096 

R15=10 READ/WRITE buffer not within user's storage 

R15=11 The value in R15, at entry, was not a positive number from 1 
through 15, or was not large enough for the given CCW string. 

R15= 12 Cylinder number on seek head was not the same number as on 
the first seek. 

Uncorrectable I/O error: 

R15=13 CSW (8 bytes) returned to user Sense bytes are available if the 
user issues a SENSE command. 

Note: This code does not support fixed-block DASD devices. If a program issues 
a DIAGNOSE code X' 18' to a fixed-block DASD device, CP sets cc= 1 and places 
a return code of 2 in register 15. 

DIAGNOSE Code X l 1 CI -- Clear Error Recording Cylinders 

. Privilege class F 

Execution of DIAGNOSE code x' 1 C' allows a user to clear the error recording 
data on disk. The DMKIOEFM routine performs the clear operation. 

Entry Values: The register specified as Rx contains a one-byte code value in the 
low-order byte as follows: 

Code Function 

X'OI' Clear and reformat all error recording, leaving any frame records intact 

X'02' Clear and reformat all error recording cylinders, erasing both frame 
records and error records 

Chapter 26. The DIAGNOSE Instruction in a Virtual Machine 293 



DIAGNOSE Code X l 201 
-- General I/O 

1 Privilege class ANY 

With DIAGNOSE code X'20', a virtual machine user can specify any valid CCW 
chain to be performed on a tape, disk (including FBA) or unit record device. (An 
exception: DIAGNOSE must not be used to read or write 
record-overflow-formatted data on DASD devices.) No I/O interrupts are 
reflected to the virtual machine; the DIAGNOSE instruction is completed only 
when all I/O commands in the specified CCW chain are finished. 

Note: Virtual spooled devices, such as, card readers and punches, are not 
supported for this DIAGNOSE. That is, unless the virtual device is a minidisk, a 
real device must be attached to the virtual machine. 

Entry Values: The register specified as Rx contains the virtual device address. The 
Ry register contains the address of the CCW chain, and CP uses the high-order 
byte of the register as a storage key for accessing the user's virtual storage. 

The CCWs are processed via DMKCCWTR through DMKGIOEX, providing full 
virtual I/O in a synchronous fashion (self-modifying CCWs are not permitted, 
however) to any virtual machine specified. Control returns to the virtual machine 
only after the operation is completed or a fatal error condition is detected. EREP 
support is provided for tape and DASD devices only; all other devices present an 
error condition in the PSW to the virtual user. Condition codes and return codes 
are returned to the virtual system. 

Completion and Condition Codes: The condition codes and return codes are as 
follows: 

cc=O I/O completed with no errors 

cc= 1 Error condition. Register 15 contains the following return codes: 

R15=1 Device is either not attached or the virtual channel is dedicated, 
the device is virtual and not DASD (minidisk). 

R 15 = 5 Virtual device is busy or has an interrupt pending. 

R15=6 Device halted; I/O mayor may not have completed. 

cc=2 Exception conditions. Register 15 contains onebof the following return 
codes': 

R15=2 Unit exception bit in device status byte = 1 

R15=3 Wrong length record detected. 

cc=3 Error Condition: 

294 VM/SP System Programmer's Guide 



r 

(' 

R15=13 A permanent I/O error occurred or an unsupported device was 
specified. The user's Ry register contains four sense bytes. 
Sense bytes 2 and 3 are in the two leftmost positions in the Ry 
register; sense byte 0 and 1 are in the two rightmost positions in 
the Ry register. 

RyRegister 

Sense Byte 
2 

Sense Byte 
3 

Sense Byte 
o 

Sense Byte 
1 

DIAGNOSE Code X '24' -- Device Type and Features 

I Privilege class ANY 

DIAGNOSE code x' 24' requests CP to provide a virtual machine with identifying 
information and status information about a specified virtual device. The virtual 
machine must specify the virtual device for which information is requested. CP 
returns information about the virtual device and associated real device in the Rx, 
Ry, and Ry+ 1 registers. CP also provides a condition code identifying the specific 
device information returned to the virtual machine. 

Entry Values: When a virtual machine issues DIAGNOSE code X'24', the Rx 
register must contain the virtual device address for which information is requested 
or the value negative 1 (-1). Specify -1 when the device is a virtual console whose 
address is unknown to the virtual machine. 

Exit Values: When CP returns control to the virtual machine, the Ry, Ry+l, and 
Rx registers contain device information. The Ry register contains information 
about the virtual device and the Ry+ 1 register information about the real device. 
If -1 was specified and CP located the virtual console, the Rx register contains the 
address of about the virtual console. 

CP obtains device information from three control blocks: virtual device information 
from the virtual device block (VDEVBLOK), and real device information from the 
real device block (RDEVBLOK) and from NICBLOK. The following diagrams 
identify specific information returned by CP and show how to locate this 
information in the Rx, Ry, and Ry+ 1 registers. The symbolic names used in these 
diagrams are the symbolic names used with VDEVBLOK, RDEVBLOK, and 
NICBLOK in VM/SP Data Areas and Control Block Logic Volume 1 (CP). For 
more device information see Figure 78, "CP Device Classes, Types, Models, and 
Features" in this publication. 

Note: For a DIAGNOSE code X'24' to an SNA device though VCNA, the model 
(RDEVMDL) information is correct, however, the RDEVTYPE may not be 
reliable. 

Chapter 26. The DIAGNOSE Instruction in a Virtual Machine 295 



Byte 0 Byte 1 Byte 2 1 Byte 3 

RDEVTMCD virtual 
- or - device 

NICTMCD address 

Symbolic Name Meoning 
RDEVTMCD 
- or-

NICTMCD Terminal code bits defining the type of console and the translate 
table the console is using. RDEVTMCD is for a local virtual 
console; NICTMCD for a remote 3270 virtual console. 

RyRegister 

Byte 0 Byte 1 Byte 2 Byte 3 

VDEVTYPC VDEVTYPE VDEVSTAT VDEVFLAG 

Symbolic Name Meoning 

VDEVTYPC Virtual device type class 

VDEVTYPE Virtual device type 

VDEVSTAT Virtual device status 

VDEVFLAG Virtual device flags 

Ry+ 1 Register 

Byte 0 Byte 1 Byte 2 Byte 3 

RDEVTYPC RDEVTYPE RDEVMDL RDEVFTR 
- or- - or- - or-

i 

NICDTYPE NICMDL RDEVLLEN 
- or-

NICLLEN 

Symbolic Name Meaning 

RDEVTYPC Real device type class 

RDEVTYPE Real device type 

RDEVMDL Real device model number. To determine if the speed matching 
buffer for the 3380 or 3375 is present, check if bits 0 and 1 are 
set on. 

296 VM/SP System Programmer's Guide 

" 



If the condition 

RDEVFTR 

RDEVLLEN 

NICDTYPE 

NICMDL 

NICLLEN 

Notes: 

Real device feature code for a device other than a virtual 
console 

Current device line length for a local virtual console 

Real device type for a remote 3270 virtual console 

Real device model number for a remote 3270 virtual console 

Current device line length for a remote virtual console 

1. RDEVTYPE may not be reliable for SNA devices through VCNA. 

2. Remote dialed terminals and remote dedicated printers appear to be local devices 
as RDEVTYPC will contain the value CLASGRAF. 

3. Also note that a remote dialed 3275 appears as a local 3277 and a remote dialed 
3276 appears as a local 3278. 

4. Remote dedicated printers internally carry a virtual device class and type of 
CLASGRAF and TYP3277 to follow code for remote dialed terminals. 
DIAGNOSE code X'24' returns VDEVTYPC = CLASGRAF and VDEVTYPE 
= TYP3284 for remote dedicated printers. 

Condition Codes: The following chart lists the condition codes CP can return for 
DIAGNOSE code X'24', the meaning of each condition code, and the registers 
where data is returned. 

This register Comments 
code equals contains information 

Rx Ry Ry+1 
(Note 1 ) (Note 2) 

0 X X X Normal completion 

1 Undefined 

2 X X The virtual device 
exists but is not 
associated with a 
real device 

3 Invalid device 
address or the 
virtual device 
does not exist 

Notes: 
1. The Rx register contains information only when DIAGNOSE code 

X' 24' specifies a virtual console whose address is unknown. 
2. If Ry is register 15, CP returns only virtual device 

information; no information is returned in register Ry+1. 

Chapter 26. The DIAGNOSE Instruction in a Virtual Machine 297 



DIAGNOSE Code X 128' -- Channel Program Modification 

I Privilege class ANY 

DIAGNOSE code X'28' allows a virtual machine to correctly execute some 
channel programs modified after the Start I/O (SIO) instruction is issued and 
before the input/output operation is completed. The channel command word 
(CCW) modifications allowed are: 

• A Transfer in Channel (TIC) CCW modified to a No Operation (NOP) CCW 

• A TIC CCW modified to point to a new list of CCWs 

• A NOP modified to a TIC CCW. 

When a virtual machine modifies a TIC CCW, it is modifying a virtual channel 
program. CP has already translated that channel program and is waiting to execute 
the real CCWs. The DIAGNOSE instruction, with DIAGNOSE code X' 28' , must 
be issued to inform CP of the change in the virtual channel program, so that CP 
can make the corresponding change to the real CCW before it is executed. In 
addition, when a NOP CCW is modified to point to a new list of CCWs, CP 
translates the new CCWs. 

To be sure that the DIAGNOSE instruction is recognized in time to update the real 
CCW chain, the virtual machine issuing the DIAGNOSE instruction should have a 
high favored execution value and a low dispatching priority value. The CP SET 
command should be issued: 

SET FAVORED xx 

SET PRIORITY nn 

where xx has a high numeric value and nn has a low numeric value. The virtual 
machine issuing the DIAGNOSE code X'28' must be in the supervisor mode at the 
time it issues the DIAGNOSE instruction. 

Entry Values: When DIAGNOSE code X'28' is issued, the Rx register contains 
the address of the TIC or NOP CCW that was modified by the virtual machine. 
The Ry register contains the device address in bits 16 through 31. Rx and Ry 
cannot be the same register. The addresses specified in the Rx register, the new 
address in the modified TIC CCW, and the new CCW list to which the modified 
TIC CCW points must all be addresses that appear real to the virtual machine: CP 
knows these addresses are virtual, but the virtual machine thinks they are real. 

Return and Condition Codes: The condition codes (cc) and return codes are as 
follows: 

CC=O The real channel program was successfully modified; register 15 contains 
a zero. 

298 VM/SP System Programmer's Guide 

---- ... _---_. __ .. _---



r-

( 

CC=1 The channel program was not modified. There was probably an error in 
coding the DIAGNOSE instruction. Register 15 (RI5) contains one of 
the following return codes: 

R15=1 The same register was specified for Rx and Ry. 

R15=2 The device specified by the Ry register was not found. 

R15=3 The address specified by the Rx register was not within the user's 
storage space. 

R15=4 The address specified by the Rx register was not doubleword 
aligned. 

R15=5 A CCW string corresponding to the device (Ry) and address 
(Rx) specified was not found. 

R15=6 The CCW at the address specified by the Rx register is not a TIC 
nor a Nap, or the CCW in the channel program is not a TIC nor 
a Nap. 

R15=7 The new address in the modified TIC CCW is not within the 
user's storage space. 

R15=8 The new address in the modified TIC CCW is not doubleword 
aligned. 

R15=11 The new virtual CCW is a Nap, but the corresponding real 
CCW is a TIC with command chaining and is at the end of the 
real channel program. 

CC=2 The real channel program cannot be modified because of the state of the 
system or the device. A channel end or device end has already occurred. 
Register 15 (RI5) contains the following: 

R 15 = 9 The virtual machine should restart the modified channel program. 

DIAGNOSE Code X I 2C' -- Return DASD Start of LOGREC 

Privilege class c, E, or F 

Execution of DIAGNOSE code X'2C' allows a user to find the location on the 
disk of the error recording area, the number of error recording cylinders, and the 
location of the first error record. 

Entry Values: The register specified as Rx contains a one-byte code in the 
low-order byte, indicating the function to be performed: 

X'OI' Return the DASD location of the start of the error recording area, and 
the number of error recording cylinders. 

Chapter 26. The DIAGNOSE Instruction in a Virtual Machine 299 



X'02' 

X'04' 

Return the HDRSTART value (DASD location of first error record). 

Return indication of whether there are frame records on the error 
recording cylinders. 

Exit Values: On return to the issuer of DIAGNOSE code X'2C': 

If code '01' is specified: Register Rx contains the DASD location (in VM/SP 
control program internal format) of the start of the error recording area. Ry 
contains, in the low-order halfword, the number of error recording cylinders. 

If code '02' is specified: Register Rx contains the DASD location of the first 
error record (in CCPD format). The value actually points to the last frame 
record written, or record 2 if no frame records present. 

If code '04' is specified: Register Ry contains a X'02' in the low-order byte if 
frame records are present on the error recording cylinders; X'OO' if no frame 
records present. 

Note: Codes '02' and '04' may both be specified (code '06') on invoking 
DIAGNOSE. Both an Rx and Ry value must be specified. 

DIAGNOSE Code X 130' -- Read One Page of LOGREC Data 

Privilege class C, E, or F 

Execution of DIAGNOSE code X'30' allows a user to read one page of the system 
error recording area. 

Entry Values: The register specified as Rx contains the DASD location (in VM/SP 
control program internal format) of the desired record. The Ry register contains 
the virtual address of a page-size buffer to receive the data. The DMKRP AGT 
routine supplies the page of data. 

Condition Codes: The condition codes returned are: 

Condition 
Code 

o 
1 
2 
3 

Meaning 
Successful read, data available 
End of area, no data 
I/O error 
Invalid location, outside recording area 

I Note: lssuing DIAGNOSE code X'30' against a locked page unlocks the page. 

300 VM/SP System Programmer's Guide 

------~ --~---~--- --~ 



( .... ) 
./ 

DIAGNOSE Code X l 341 
-- Read System Dump Spool File 

Privilege class C or E 

A user can read the system spool file by issuing a DIAGNOSE code X'34' 
instruction. However, this DIAGNOSE code cannot read spool files that contain 
VMDUMP records -- use DIAGNOSE code X' 14' for this purpose. If a program 
tries to use DIAGNOSE code X'34' to read VMDUMP records, CP returns a 
condition code of 2. 

Entry Values: The register specified as Rx contains the virtual address of a 
page-size buffer to receive the data. The Ry register, which must not be register 
15, contains the virtual address of the spool input card reader. 

Condition Codes: Ry + 1, on return, may contain error codes as follows: 

Condition 
Code 
o 
1 
2 
3 
3 
3 
3 

Ry+l 
Error Code 

4 
8 
12 
16 

Meaning 
Data transfer successful 
End of file 
File not found 
Device address invalid 
Device type invalid 
Device busy 
Fatal paging I/O error 

The DMKDRDMP routine searches the system chain of spool input files for the 
dump file belonging to the user issuing the DIAGNOSE instruction. The first (or 
next) record from the dump file is provided to the virtual machine via 
DMKRP AGT and the condition code is set to zero. The dump file is closed via 
VM/SP console function CLOSE. 

Note: Issuing DIAGNOSE code X'34' against a locked page unlocks the page. 

DIAGNOSE Code X I 381 
-- Read System Symbol Table 

Privilege class C or E 

Execution of DIAGNOSE code X'38' causes the routine DMKDRDSY to read the 
system table into storage. 

Entry Values: The register specified as Rx contains the address of the page buffer 
to contain the symbol table. 

Condition Codes: When complete, the Ry register, which must not be register 15, 
contains a condition code. On return, Ry+ 1 may contain an error code. 

Chapter 26. The DIAGNOSE Instruction in a Virtual Machine 301 



Condition 
Code 
o 
1 
3 
3 

Notes: 

Ry+l 
Error Code 

16 

Meaning 
Full page of data available to virtual machine 
No symbol table is available 
Page buffer is locked for an I/O operation 
Fatal paging I/O error 

1. The format of the symbol table entries is described in CP macro SYM. 

I 2. Issuing DIAGNOSE code X'38' against a locked page unlocks the page. 

DIAGNOSE Code X l 3CI --VM/SP Directory 

Privilege class A, B, or C 

Execution of DIAGNOSE code X'3C' allows a user to dynamically update the 
VM/SP directory. The routine DMKUDRDS dynamically updates the directory. 

Entry Values: The register specified as Rx contains the first 4 bytes of the volume 
identification. The first two bytes of Ry contain the last two bytes of the volume 
identification. The last two bytes of Ry contain the volume address. 

Condition Codes: The PSW condition code is set depending on the success of the 
operation or the meaning of the condition code. The condition codes are set as 
follows: 

Condition 
Code 
o 
2 

3 

Meaning 
Operation is successful. 
Volume not found, not mounted, or not a valid directory 
volume. 
Fatal I/O error trying to read the directory 

DIAGNOSE Code X I 401 
-- Clean-Up after VirtuallPL by Device, i 

I Privilege class ANY 

This code is valid only during virtual IPL. Clean-up restores the user's page and 
frees the real page if it is not in the V =R machine. If the real page is in the V =R 
machine, the real page is not freed. The PSW from location zero of the virtual 
machine is loaded and made the current PSW. 

Entry Values: Register Rx must contain a zero. Register Ry must point to the 
virtual machine registers to be loaded. 

302 VM/SP System Programmer's Guide 

----- - --------



( Use: If the user issues a DIAGNOSE code X'40' outside of its use in DMKVMI, 
a specification exception is returned. 

DIAGNOSE Code X l 481 
-- Issue SVC 76 from a Second Level 

VM/370 or VM/SP Virtual Machine 

I Privilege class ANY 

A second level VM/370 or VM/SP operating system issues SVC 76 using this 
DIAGNOSE. SVC 76 handles I/O error recording for virtual operating systems. 
For instance, a virtual machine issues SVC 76 to record data about hardware errors 
that occur on devices dedicated to it. 

Entry Values: Rl is the Rx register. The Ry register is not used in this 
DIAGNOSE. Rl must contain either of two values: 

X'04' indicates an SVC 76 request from a VM/370 or VM/SP virtual machine 

X'08' indicates that a VM/370 or VM/SP virtual machine issued DIAGNOSE 
codeX'48'. 

Use: CP checks first for the X'04' value. If it is present, CP sets VMSPMFLG in 
the virtual machine's VMBLOK to X'04' and processes the SVC 76 request on 
behalf of the virtual machine. 

If Rl contains a X'08' value, CP sets VMSPMFLG in the virtual machine's 
VMBLOK to X'08'. It then reflects the SVC 76 back to the virtual machine. The 
virtual machine then handles its own error recording. 

For more information on SVC 76 and I/O error recording procedures, refer to 
VM/SP OLTSEP and Error Recording Guide. 

DIAGNOSE Code XI4CI -- Generate Accounting Records for 
the Virtual User 

Privilege class ANY 

This code can be issued only by a user with the account option (ACCT) in his 
directory. 

Entry Values: Rx contains the virtual address of either a 24-byte parameter list 
identifying the "charge to" user, or a variable length data area that is to be stored 
in the accounting record. The interpretation of the address is based on a 
hexadecimal code supplied in Ry. If the virtual address represents a parameter list, 
it must be doubleword aligned; if it represents a data area, the area must not cross 
a page boundary. If Rx is interpreted as pointing to a parameter list and the value 
in Rx is zero, the accounting record is spooled with the identification of the user 
issuing the DIAGNOSE instruction. 

Chapter 26. The DIAGNOSE Instruction in a Virtual Machine 303 



Ry contains a hexadecimal code interpreted by DIAGNOSE code X'4C' as 
follows: 

Code Rx points to: 

0000 a parameter list containing only a userid. 

0004 a parameter list containing a userid and account number. 

0008 a parameter list containing a userid and distribution number. 

OOOC a parameter list containing a userid, account number, and distribution 
number. 

0010 a data area containing up to 70 bytes of user information to be transferred 
to the accounting card starting in column 9. 

Notes: 

1. For code X'0010', the only valid accounting record identification code 
(ACNTCODE field of the ACNTBLOK) is "CO". For the other four codes listed 
above, the accounting record identification code can be "C 1 ", "C02 ", etc. For 
more information on accounting record identification codes, see VM / SP Data 
Areas and Control Block Logic Volume 1 (CP). 

2. If Ry contains X'OOJO', Ry cannot be register 15. 

Ry+ 1 contains the length of the data area pointed to by Rx. If Rx points to a 
parameter list (Ry not equal to X'0010'), Ry+ 1 is ignored. 

DIAGNOSE code X'4C' checks the VMACCOUN flag in VMPSTAT to verify 
that the user has the account option and if not, returns control to the user with a 
condition code of one. 

If Ry contains a code of X'OOlO', DIAGNOSE code X'4C' performs the 
following checks: 

• If the address specified in Rx is negative or greater than the size of the user's 
virtual storage, an addressing exception is generated. 

• If the combination of the address in Rx and the length in Ry + 1 indicates that 
the data area crosses a page boundary, a specification exception is generated. 

• If the value in Ry+ 1 is zero, negative, or greater than 70, a specification 
exception is generated. 

When Ry contains a code of X'0010', and if both the virtual address and the 
length are valid, DMKFREE is called to obtain storage for an account buffer 
(ACNTBLOK) which is then initialized to blanks. The userid of the user issuing 
the DIAGNOSE instruction is placed in columns 1 through 8 and an accounting 
record identification code of "CO" is placed in columns 79 and 80. The user data 
pointed to by the address in Rx is moved to the accounting record starting at 
column 9. for a length equal to the value in Ry + 1. A call to DMKACOQU collects 

304 VM/SP System Programmer's Guide 



[ 

( .. \ 
\ 

4 
./ 

the accounting records on the system accounting chain (DMKRSPAC) and puts 
them in spool format. DIAGNOSE code X'4C' then returns control to the user 
with a condition code of zero. 

If Ry contains other than a X'OOlO' code, control is passed to DMKCPV to 
generate the record. DMKCPV passes control to DMKACO to complete the 
"charge to" information; either from the User Accounting Block (ACCTBLOK), if 
a pointer to it exists, or from the user's VMBLOK. DMKCPV passes control back 
to DIAGNOSE code X'4C' to release the storage for the ACCTBLOK, if one 
exists. DIAGNOSE code X'4C' then checks the parameter list address for the 
following conditions: 

• If zero, control is returned to the user with a condition code of zero. 

• If invalid, an addressing exception is generated. 

• If not aligned on a doubleword boundary, a specification exception is 
generated. 

For a parameter list address that is nonzero and valid, the userid in the parameter 
list is checked against the directory list and if not found, control is returned to the 
user with a condition code of two. If the function hexadecimal code is invalid, 
control is returned to the user with a condition code of three. If both userid and 
function hexadecimal code are valid, the User Accounting Block (ACCTBLOK) is 
built and the userid, account number, and distribution number are moved to the 
block from the parameter list or the User Machine Block belonging to the userid in 
the parameter list. Control is then passed to the user with a condition code of zero. 

DIAGNOSE Code X I 501 
-- Save the 370X Control Program 

Image 

Privilege class A, B, or C 

This section applies only to EP (Emulator Program) generations as defined, 
created, and loaded by VM/SP. 

DIAGNOSE code X'50' invokes the CP module DMKSNC to validate the 
parameter list and write the page-format image of the 370X control program to the 
appropriate system volume. 

When a 370X control program load module is created, the CMS service program 
SA VENCP builds a communications controller list (CCPARM) of control 
information. It passes this information to CP via a DIAGNOSE code X'50'. 

Entry Values: The register specified as Rx contains the virtual address of the 
parameter list (CCPARM). The Ry register is ignored on entry. 

Chapter 26. The DIAGNOSE Instruction in a Virtual Machine 305 



Exit Values: Upon return, the Ry register contains the following error codes: 

Code Meaning 

044 'ncpname' was not found in system name table. 

171 System volume specified not currently available. 

178 Insufficient space reserved for program and system control information. 

179 System volume specified is not a CP-owned volume. 

435 Paging error while writing saved system. 

DIAGNOSE Code X l 541 
-- Control The Function of the PA2 

Function Key 

Privilege class ANY 

DIAGNOSE code X'54' controls the function of the PA2 function key. The PA2 
function key can be used either to simulate an external interrupt to a virtual 
machine or to clear the output area of a display screen. 

Entry Values: The function performed depends upon how Rx is specified when 
DIAGNOSE code X'54' is issued. If Rx contains a nonzero value, the PA2 key 
simulates an external interrupt to the virtual machine. If Rx contains a value of 
zero, the P A2 key clears the output area of the display screen. 

Use: The external interrupt is simulated only when the display screen is in the VM 
READ, HOLD, or MORE status and the TERMINAL APL ON command has 
been issued. 

DIAGNOSE Code X I 581 
-- 3270 Virtual Console Interface 

I Privilege class ANY 

DIAGNOSE code X'58' enables a virtual machine to communicate with 3270 
display stations. Using DIAGNOSE code X'58', a virtual machine may:, 

• Display up to a full screen of data using only one write operation. 

• Provide attribute characters along with data that is sent to the display station. 
An attribute character provides control information for the data, for example, a 
request to intensify the data when it is displayed. 

• Place a 3270 display station under control of the virtual machine (full screen 
mode). 

306 VM/SP System Programmer's Guide 

1'\, 
I , 

''0 



(" 

Displaying Data 

( 

( " 

.... / 

Entry Values: When a virtual machine issues DIAGNOSE code X'58', the virtual 
machine must provide one or more channel command words (CCWs). These 
CCWs specify the 3270 operation to be performed, provide control information for 
the display station, and specify the address of data to be displayed during a write 
operation or the address of a buffer where data is to be stored during a read 
operation. If only one CCW is used, the Rx register must contain its address. If 
CCWs are chained, the Rx register must contain the address of the first CCW in 
the chain. The Ry register must contain the virtual address of the display station 
where the operation is to be performed. This value must be right-justified. 

To display up to a full screen of data, code a CCW using the following assembler 
language instructions: 

DS OD 
DC ALl (CCWCODE) ,AL3 (DATADDR) ,ALl (FLAGS) ,ALl (CTL) ,AL2 (COUNT) 

where: 

CCWCODE is the command code X'19'. 

DATADDR is the virtual storage address of the first byte of data to be displayed. 

FLAGS are standard CCW flags. The suppress-incorrect-Iength indicator, bit 
34, must be set to a value of one. Set other bits as needed. 

CTL is a control byte defined as follows: 

The high-order bit (0), if set on, enables the screen "MORE" 
status to be active before the displaying of data. 

Bits 2-7 identify the line on the display screen where the display is 
to start. A value of 0 (B'xxOO 0000') corresponds to the first or 
top line, a value of 1 (B'xxOO 0001') corresponds to the second 
line and so forth. " 

If the control byte contains the value X' FF', CP erases the display 
station's screen. No new data is displayed. 

CCW's may be command chained to combine several operations in 
one DIAGNOSE. When CP builds the real CCW string, it will 
data chain as many CCW's as possible to reduce the number of 
real I/O operations. If the control byte contains a value of 
X'FE', CP will: 

Not data chain this operation to any previous CCW in the real 
CCW string. 

Erase the entire screen. 

Rewrite the attribute bytes for the CP screen format . 

Chapter 26. The DIAGNOSE Instruction in a Virtual Machine 307 



Full Screen Mode 

COUNT 

Reset the cursor to the beginning of the input area. 

specifies the number of bytes of data to be displayed. The maximum 
that can be specified for this command code is 2032 bytes. The 
maximum amount of data that can be displayed at one time depends 
upon the 3270 model of the display station: 

A model 2 can display up to 1760 bytes 
A model 3 can display up to 2400 bytes 
A model 4 can display up to 3280 bytes 
A model 5 can display up to 3300 bytes 

To provide attribute characters for the data, place the attribute character in the 
data stream immediately following a 3270 start-field order. The start-field order, a 
one-byte value, notifies the 3270 display system that the next byte in the data 
stream is an attribute character. For a description of how the 3270 display system 
uses attribute characters, and to determine the values to specify for attribute 
characters and the start-field order, see the IBM 3270 Information Display System 
Library User's Guide. 

Note: Through the use of the attribute character, it is possible to define a display 
field as selector-pen detectable. However, when the selector pen is used to select 
the field, CP does not return data from the field to the virtual machine. 

Condition Codes: After processing DIAGNOSE code X'58', CP sets a condition 
code. If the operation was successful- that is, no I/O errors occurred - CP sets a 
condition code of zero. If an I/O error occurred, CP sets a condition code of one. 

If an I/O error occurred, the application program can check the I/O status and the 
error type by: 

• Issuing a TEST I/O (TIO) instruction 
• Examining the returned condition code 
• Examining the virtual CSW 

The returned condition codes and CSW status are the standard condition codes and 
status defined in the IBM System/3 70 Principles of Operation. 

You must also make sure that the interrupt for the virtual device is enabled by 
setting the appropriate bit and channel mask in the PSW. For example, if the 
virtual address of your console is 009, bit 0 in the channel mask must be set to one 
(that is, bit 0 must be on). This may be the case if you are loading programs in the 
transient area. 

DIAGNOSE code X'58' provides a means by which a virtual machine may share, 
with CP, control of a 3270 display station. Two CCW operations, X'29' and 
X'2A', in addition to performing the requested I/O, notify CP that the display 
station is operating under the control of the virtual machine. 

308 VM/SP System Programmer's Guide 

c 



( CCW code X'29' performs a WRITI:, :ERASE/WRITE, :ERAS:E/WRIT:E 
ALTERNATI:, or WRITI: STRUCTURED FIELD operation, depending on the 
value of the control field. For the WRITE, ERASE/WRITE, and :ERAS:E/WRIT:E 
ALTERNATE, the virtual machine must provide appropriate control information 
beginning with the Write Control Character (WCC) and including 3270 orders 
following the WCC. Data may be written anywhere on the screen. The virtual 
machine must provide the address where the write is to begin; it uses a S:ET 
BUFFER ADDRESS (SBA) order to do this. Writing can also start at the current 
cursor address. 

CCW code X'29' performs a WRIT:E STRUCTURED FIELD operation when the 
value of the control field is X'20'. The WRITE STRUCTURED FI:ELD 
instruction sends control information to a 3274 controller. The application 
program must provide the control information in the data stream in the format 
required by the instruction. (See the 3270 Component Description for more 
information on WRITE STRUCTURED FIELD operation.) 

CCW code X' 2A' performs a READ BUFFER or a READ MODIFIED 
operation, depending on the value of the control field. 

To specify the full screen mode CCW, use the following assembler language 
instructions: 

DS OD 
DC ALl (CCWCODE) ,AL3(DATADDR),ALl (FLAGS),ALl (CONTROL),AL2(COUNT) 

where: 

CCWCODE is a CCW code (X'29' or X'2A') 

DAT ADDR for a write operation, specifies the first byte of the data stream 
(WCC) to be written. For a read operation, specifies the address of 
the read buffer. 

FLAGS is the standard CCW flag field. 

CONTROL for a write operation (CCW code of X'29') the following control field 
values cause the following operations to be performed: 

Value 
X'80' 
X'CO' 
X'20' 
all other 
values 

Operation Performed 
ERASE/WRITE 
ERASE/WRITE ALTERNATE 
WRITE STRUCTURED FIELD 
WRITE 

For a read operation (CCW code of X'2A') the following control 
field values cause the following operations to be performed: 

Chapter 26. The DIAGNOSE Instruction in a Virtual Machine 309 



Full Screen Interactions 

COUNT 

Value 
X'80' 
all other 
values 

Operation Performed 
READ MODIFIED 
READ BUFFER 

By adding X' 10' to the CONTROL field values for ERASE/WRITE 
or ERASE/WRITE ALTERNATE, making them X'90' or X'DO' 
respectively, the PAl key interrupt is reflected to the virtual machine. 
This replaces the normal PAl key function of returning the virtual 
machine to CP mode, and allows a virtual machine to have full control 
of the keyboard. Normal PAl key function is restored when full 
screen mode is reset. 

for a write operation, specifies the number of bytes to be displayed 
plus the number of bytes of control information. For a read operation, 
specifies the number of display characters to be read plus the number 
of bytes of control information. The maximum number of bytes that 
can be specified is 65503. The maximum number of displayable 
positions for the support;ed devic::es is: 

3277 and 3275 Model 2 - 1920 bytes 
3278,3276 and 3279 Model 2 - 1920 bytes 
3278, 3276 and 3279 Model 3 - 2560 bytes 
3278 and 3276 Model 4 - 3440 bytes 
3278 Model 5 - 3564 bytes 

The virtual machine console exists in either of two modes, CP mode and full screen 
mode. CP mode is the default screen mode and is indicated by the screen status 
field in the lower right-hand corner of the screen. When in CP mode, the screen 
format is controlled by CP, and the data that appears on the screen is provided by 
CP and the programs running in the virtual machine. Full screen mode is initiated 
by the application program running in the virtual machine. When in full screen 
mode, the screen format and data are under complete control of the program 
running in the virtual machine. 

If TERMINAL BREAKIN GUESTCTL is specified, the screen mode changes only 
when the break-in key is used. An audible alarm is sounded when CP messages are 
queued. Priority CP messages and DIAGNOSE code X'08' output take over the 
full screen. 

CP II).ode is terminated and full screen mode is initiated when the application 
program issues an ERASE/WRITE instruction. Full screen mode may be 
terminated by a CP mode type I/O to the screen any time the keyboard is in a 
locked state. 

Interactions between CP and the application program in the virtual machine using 
full screen support are listed below. The application programmer must be familiar 
with the operation of the mM 3270 display station. For detailed information on its 
operation, see the appropriate 3270 Information Display System Description and 
Programmer's Guide listed in the Preface. Also listed below are general 

310 VM/SP System Programmer's Guide 



( 

programming considerations that must be followed to effectively use the 
DIAGNOSE code X'58' instruction for full screen I/O. 

1. A full screen ERASE/WRITE or ERASE/WRITE ALTERNATE operation 
establishes full screen mode. 

2. The application program is responsible for all I/O status and error checking, 
just as if START I/O (SIO) were being used instead of DIAGNOSE. This is 
done by using the TEST I/O (TIO) instruction and examining the returned 
condition code, and by examining the virtual CSW. The returned condition 
codes and CSW status are the standard condition codes and status as defined 
in the IBM System/3 70 Principles of Operation, with one exception noted 
below in number 5. 

3. When in full screen mode, all CP messages are queued. The entire queue of 
CP messages is processed after each of the following operations: 

a. A full screen READ operation (any READ operation that locks the 
keyboard). 

b. A full screen WRITE operation that does not place the keyboard in the 
active status. 

c. The expiration of a 60 second timer for CP priority messages. 

4. If a priority CP message (such as a warning message from the system operator) 
is to be displayed while in full screen mode, an attention interruption is posted 
to the application program and a 60 second timer is set. This informs the 
application program that a READ operation should be initiated. If a READ is 
not issued before the 60 seconds have expired, CP erases the screen and 
displays all queued messages. 

The only exception is if the application program has issued a Full Screen 
Support WRITE STRUCTURED FIELD instruction. CP does not take over 
the screen if the user has issued a WRITE STRUCTURED FIELD. This 
exception does not apply to terminals controlled by VM/VT AM. 

5. When a mode switch has occurred and the screen is in CP mode, the 
application program is notified by an X' 8E' in the CSW unit status byte 
following a full screen I/O operation. An ERASE/WRITE or 
ERASE/WRITE ALTERNATE instruction should be issued to reestablish full 
screen mode and reformat the screen. If control of the PAl key interrupt had 
been transferred to the virtual machine via the CONTROL option, it must be 
specified again to return PAl key control back to the virtual machine. 
Otherwise, pressing the PAl key places the display in CP mode. 

An X'8E' in the CSW unit status byte following an ERASE/WRITE or 
ERASE/WRITE ALTERNATE instruction indicates that non-full screen data 
(CP mode) is waiting to be read. The application program should issue a 
non-full screen READ and then reissue the ERASE/WRITE instruction. 

6. Other non-full screen virtual machine messages are displayed immediately 
when in full screen mode. 

Chapter 26. The DIAGNOSE Instruction in a Virtual Machine 311 



7. The application program must establish an environment to handle attention 
interruptions. This could be done using the CMS macros HNDINT and 
W AlTD. There are two conditions when CP posts an attention interruption to 
the application program: 

a. When CP receives an attention interruption indicating that the virtual 
machine console operator has caused an interruption. (For example, 
depressed the ENTER or a PF key on the display keyboard). 

b. When a CP priority message is to be displayed. In either case the 
application program should respond by issuing a READ. 

8. The application program must also establish an environment to handle I/O 
interruptions and must ensure that channel end and device end have been 
received before processing continues. 

9. If the test request key is depressed from a local 3270 when in full screen mode, 
X'604040' is returned to the application program in the read buffer. The test 
request key is not supported for remote 3270 terminals. 

10. If you press the PAl key in full screen mode, CP posts an attention interrupt to 
your virtual machine. If the virtual machine does not respond with a READ 
and you press the PAl key a second time, your virtual machine is put in CP 
mode and "CP READ" is displayed in the screen's status area. However, if 
you set bit X' 10' of the control option on before the initial ERASE/WRITE or 
ERASE/WRITE ALTERNATE, and press the PAl key, the interrupt is 
reflected to your virtual machine for handling. If you have not set bit X' 10' of 
the CONTROL option on and you press the PAl key, your virtual machine is 
put in CP mode and "CP READ" is displayed in the screen's status area. 

11. The application programmer must be aware that long data streams may result in 
very high CP storage use and possible system degradation. In addition, long 
data streams sent over BSC lines may cause degradation of response time on 
other terminals on the same BSC line. 

Full Screen Interactions (3270 SIO) 

Full screen console (3270 SIO) support enables a guest virtual machine and CP to 
share a locally attached display terminal controlled by CPo The virtual machine can 
use the display terminal as a graphics device in full screen mode; CP can use the 
same terminal as a line device. When the terminal is in full screen mode, the screen 
format, data checking, and error checking are under the complete control of the 
application program running in the virtual machine. A guest virtual machine can 
use either the DIAGNOSE code X'S8' or the SIO instruction to initiate full screen 
mode, but not both. 

Before the guest virtual machine can issue 3270 SIO commands, it must first issue 
the CP TERMINAL command with the CONMODE 3270 option to be able to 
issue 3270 SIO commands. In addition, the SCRNSA VB ON option of the CP 
TERMINAL command gives a virtual machine (that has also specified 
CONMODE 3270) the ability to save the full screen display when the screen 
enters CP mode. If SCRNSA VB ON is specified, the screen is automatically 
displayed again when the console returns to full screen mode. If SCRNSA VB OFF 

312 VM/SP System Programmer's Guide 

./ 



( 

has been specified by a virtual machine that has specified CONMODE 3270 and 
CP takes over a screen, CP presents a CLEAR attention interrupt to the virtual 
machine when CP is ready to give up control of the screen. It is the responsibility 
of the application program to issue an ERASE/WRITE to refresh the screen. If 
the virtual machine issues only a WRITE that does not cover the entire screen, 
information that CP displayed can remain on the screen. To use the CP 
TERMINAL SCRNSA VE OFF: 

1. Always issue a WRITE after a READ. 

2. CP can break into a CCW chain containing WRITEs (with the WCC byte 
making the keyboard locked) and take over the screen. Upon return to full 
screen mode, the next CCW in the chain is processed as if it is the first CCW. 
The guest system must provide a means to handle this situation. 

3. Refresh the screen with an ERASE/WRITE when CP issues a CLEAR 
attention interrupt. 

4. When ATTENTION from the console is received, the guest program must 
issue a READ. 

The TERMINAL BREAKIN GUESTCTL option allows a guest operator to 
control break-ins (when CP takes over the full screen). Each time a CP 
request is received, it is put on a defer queue and an audible alarm sounds. The 
guest operator can switch to CP mode by hitting the break-in key. 

The TERMINAL BRKKEY option allows the user to specify a PF key as the 
break-in key in full screen mode. The default break-in key is PAL PAl 
attentions are sent to the virtual machine when PAl is not defined as the 
BRKKEY. Some applications may interpret this PAl attention as a user 
request to enter the CP environment. 

Notes: 

1. DIAGNOSE code X'58' is a 3215 command and causes command rejects if 
executed with CON MODE 3270. 

2. DIAGNOSE code X'58' can be used with BREAKIN and BRKKEY. 

3. CON MODE must be 3215 to run CMS. If CMS sets CON MODE to 3270 
while CMS is running, results are unpredictable. 

4. SCRNSA VE ON must be specified if running a guest SCP such as MVS with 
CON MODE 3270. Otherwise results are unpredictable. 

5. Since the only devices known to a virtual machine appear to the virtual machine as 
local, the CCW strings built for DIAGNOSE code X'58' should be constructed 
for local devices. 

6. When IPLing the loader from your virtual machine to create a CP nucleus, 
CON MODE should be set to 3215 mode. Otherwise, console messages generated 
by the loading process are not displayed at the terminal. 

Chapter 26. The DIAGNOSE Instruction in a Virtual Machine 313 



7. CONMODE 3270 is not supported/or disconnected users. 

DIAGNOSE Code X l 5CI -- Error Message Editing 

I Privilege class ANY 

Executing DIAGNOSE code X'5C' causes the editing of an error message 
according to the user's setting of the EMSG function. 

Entry Values: Rx contains the address of the message to be edited. Ry contains 
the length of the message to be edited. 

Exit Values: DMKHVC tests the VMMLEVEL field of the VMBLOK and returns 
to the caller with Rx and Ry modified as follows: 

VMMLEVEL Registers on Return 

VMMCODE VMMTEXT Rx Ry 

ON ON no change no change 

ON OFF no change 10 (length of 
code) 

OFF ON pointer to text length of text 
part of message alone 

OFF OFF N/A 0 

Note: DIAGNOSE code X'5C' does not write the message; it merely rearranges 
the starting pointer and length. For CMS error messages, a console write is 
performed following the DIAGNOSE unless Ry is returned with a value of O. 

DIAGNOSE Code X I601 
-- Determining the Virtual Machine 

Storage Size 

Privilege class ANY 

Execution of DIAGNOSE code X'60' allows a virtual machine to determine its 
size. On return, the register specified as Rx contains the virtual machine storage 
size. 

314 VM/SP System Programmer's Guide 



( 

( 

( 

DIAGNOSE Code X l 641 
-- Finding, Loading, and Purging a 

Named Segment 

I Privilege class ANY 

The LOADSYS Function 

Executing DIAGNOSE code x' 64' controls the linkage of discontiguous saved 
segments. 

Entry Values: The type of linkage that is performed depends upon the function 
subcode in the register specified as Ry. 

Subcode Function 

X'OOOO' LOADSYS -- Loads a named segment in shared mode 

X'0004' LOADSYS -- Loads a named segment in nonshared mode 

X'0008' PURGESYS -- Releases the named segment from virtual storage 

X' OOOC' FINDSYS -- Finds the starting address of the named segment 

The register $ecified as Rx must contain the address of the name of the segment. 
The segment name must be 8 bytes long, on a doubleword boundary, left justified, 
and padded with blanks. 

When the LOADSYS function is executed, CP finds the system name table entry 
for the segment and builds the necessary page and swap tables (two sets one for 
each processor, when running in attached processor mode). CP releases all the 
virtual pages of storage that are to contain the named segment and then loads the 
segment in those virtual pages. When the LOADSYS function is executed, CP 
expands the virtual machine size dynamically, if necessary. CP also expands the 
segment tables to match any expansion of virtual storage. 

Note: If the named saved system is designated as Virtual Machine Group via the 
VMGROUP= YES option on the NAMESYS macro, it cannot be loaded using the 
LOADSYS function. 

When LOADSYS executes successfully, the address of where the named segment 
was loaded is returned in the register specified as Rx. When the LOADSYS 
function loads a segment in shared mode, it resets instruction and branch tracing if 
either was active. 

After a LOADSYS function executes, the storage occupied by the named segment 
is addressable by the virtual machine, even if that storage is beyond the storage 
defined for the virtual machine. However, any storage beyond that defined for the 
virtual machine and below that defined for the named segment is not addressable. 
Figure 35 shows the virtual storage that is addressable before and after the 
LOADSYS function executes. 

Chapter 26. The DIAGNOSE Instruction in a Virtual Machine 315 



Before the LOADSYS 
Function Executes 

320Kr----------------, 

I 
All Storage 
Addressable by 
VirtuallMachine 

OK~----------------~ 
eMS Virtual Machine 
without a Named Segment 
Attached 

After LOADSYS Function 
Executes 

448Kr-----------------------~ 
Discontiguous Storage 
Addressable by Virtual 

Machine 
384K~--------------------~ 

.///////////////////////// . 

. /Storage Not Addressable/ . 

. ///by Virtual Machine//// . . /////////////////////////. 
320K.----------------------, 

I 
Storage Still 
Addressable by 
Virtual ~'achine 

I 
OK~----------------------~ 

eMS Virtual Machine with 
a Named Segment Attached 

Figure 35. Addressable Storage Before and After a LOADSYS Function 

When you save a named segment that is later loaded by the LOADSYS function, 
you must be sure that the addresses at which segments are saved are correct and 
that they do not overlay required areas of storage in the virtual machine. This is 
crucial because the LOADSYS function invokes the PURGESYS function before it 
builds the new page and swap tables. CP purges all saved systems that are 
overlayed in any way by the saved system it is loading. 

Return Codes and Condition Codes: A condition code of 0 in the PSW indicates that 
the named segment was loaded successfully; the Rx register contains the load 
address. 

A condition code of 1 in the PSW indicates the named segment was loaded 
successfully within the defined storage of the virtual machine. The Rx register 
contains the address at which the named segment was loaded. The Ry register 
contains the ending address of the storage released before the named segment was 
loaded. 

Note: CMS only allows named segments to be attached beyond the defined size of 
the virtual machine. A condition code of 2 in the PSW indicates the LOADSYS 
function did not execute successfully. Examine the return code in the Ry register 
to determine the cause of the error. 

Return Code 
1 

44 
174 
179 

203 

316 VM/SP System Programmer's Guide 

Meaning 
Named segment defined as a VMGROUP 
Named segment does not exist 
Paging II 0 errors 
The DASD volume specified by "SYSVOL" in the NAMESYS 
macro is not a CP-owned volume. 
User in V=R area 

;/ ~, 



( The PURGESYS Function 

The FINDSYS Function 

( 

(-, 

When the PURGESYS function is executed; CP releases the storage, and 
associated page and swap tables, that were acquired when the corresponding 
LOADSYS function was executed. If the storage occupied by the named segment 
was beyond the defined virtual machine storage size, that storage is no longer 
addressable by the virtual machine. 

When a PURGESYS function is executed for a segment that was loaded in 
nonshared mode, the storage area is cleared to binary zeroes and the keys are reset 
to zeroes. If PURGESYS is invoked for a named segment that was not previously 
loaded via LOADSYS, the request is ignored. 

Return Codes and Condition Codes: A condition code of 0 in the PSW indicates 
successful completion. 

A condition code of 1 in the PSW indicates that the named segment was not found 
in the virtual machine. 

A condition code of 2 in the PSW and a return code of 44 in the Ry register 
indicate that the named segment either does not exist or was not previously loaded 
via the LOADSYS function. 

When the FINDSYS function is executed, CP checks that the named segment exists 
and that it has not been loaded previously. If the named saved segment is 
designated as Virtual Machine Group, the FINDSYS function cannot be used. 

Return Codes and Condition Codes: A condition code of 0 in the PSW indicates that 
the named segment is already loaded. The address at which it was loaded is 
returned in the register specified as Rx and its highest address is returned in the Ry 
register. 

A condition code of 1 in the PSW indicates that the named segment exists but has 
not been loaded. In this case, the address at which the named segment is to be 
loaded is returned in the register specified as Rx and the highest address of the 
named segment is returned in the Ry register. 

A condition code of 2 in the PSW indicates the FINDSYS function did not execute 
successfully. Examine the return code in the Ry register to determine the error that 
occurred. 

Return Code 
1 

44 
174 
203 

Meaning 
Named segment defined as a VMGROUP 
Named segment does not exist 
Paging 110 errors 
User in V=R area 

Chapter 26. The DIAGNOSE Instruction in a Virtual Machine 317 



DIAGNOSE Code X l 681 
-- Virtual Machine Communication 

Facility (VMCF) 

I Privilege class ANY 

The DIAGNOSE code X'68' is used by a virtual machine to initiate a function of 
the Virtual Machine Communication Facility (VMCF). 

Entry Values: Rx contains the virtual address of a parameter list (VMCPARM). 
The address of VMCP ARM is doubleword aligned. One of the entries in this 
parameter list is a function subcode, specifying the particular request being 
initiated. The functions and their subcodes are: 

Subcode Function 
X'OOOO' AUTHORIZE 
X'OOOI' UNAUTHORIZE 
X'OOO2' SEND 
X'OOO3' SEND/RECV 
X'OOO4' SENDX 
X'OOO5' RECEIVE 
X'OOO6' CANCEL 
X'OOO7' REPLY 
X'OOO8' QUIESCE 
X'OOO9' RESUME 
X'OOOA' IDENTIFY 
X'OOOB' REJECT 

A description of all the fields of the VMCPARM is contained in the section "The 
Virtual Machine Communication Facility." 

Return Codes: Ry contains the return code upon completion of DIAGNOSE code 
X'68' or the detection of an error condition. 

Return Code 
o 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

318 VM/SP System Programmer's Guide 

Meaning 
The normal response, successful completion 
Invalid virtual buffer address or length 
Invalid function subcode 
Protocol violation 
Source virtual machine not authorized 
User not available 
Protection violation 
SENDX data too large 
Duplicate message 
Target virtual machine in QUIESCE status 
Message limit exceeded 
REPLY canceled 
Message not found 
Synchronization error 
CANCEL too late 
Paging 110 error 
Incorrect length 

~ 

, 
/ 



( 

17 
18 
19 
20 

Destructive overlap 
User not authorized for PRIORITY messages 
Data transfer error 
CANCEL - busy 

For more detail of the return codes, see the section "The Virtual Machine 
Communication Facility." 

Note: Rx and Ry can be any general register, RO through R15. They may also be 
the same register. 

DIAGNOSE Code X I 6C' -- Special DIAGNOSE for Shadow 
Table Maintenance 

Privilege class ANY 

DIAGNOSE code X'6C' is an internal DIAGNOSE instruction issued by MVS to 
VM/SP that is used only to pass the virtual address of a page table entry that maps 
to real page zero for the low storage protection facility. 

Entry Values: The virtual address passed in the Rx register is stored in the 
EXTVPORL field of the ECBLOK. The VMVPOREL flag in the VMBLOK is set 
on. The Ry register is not used. 

Use: The DIAGNOSE code X'6C' information is used when a V=R user issues a 
SET STBYPASS VR command, and also when a V = V user sets a high-water mark. 

Condition Codes: If a BC mode virtual machine attempts to issue a DIAGNOSE 
code X'6C' a condition code of 3 is reflected in the BC mode PSW. 

DIAGNOSE Code X 170' -- Activating the Time-of-Day (TOD) 
Clock Accounting Interface 

I Privilege class ANY 

DIAGNOSE code X'70' enables an operating system that is running in a virtual 
machine to request timing information from CPo Each time the virtual machine is 
dispatched, CP provides the accumulated processor time the virtual machine has 
used and the time of day the virtual machine was dispatched. Programs that are 
running in the virtual machine may use the timing information to calculate the 
amount of processor time used by each job, by each job step, and so forth. 

DIAGNOSE code X'70' should be used by operating systems that use the store 
clock (STCK) instruction to obtain the time of day to calculate processor use. 
Because there is no virtual TOD clock, calculations that use multiple STCK 
instructions may not reflect the time used by just one virtual machine. They may 
also include th~ time used by all virtual machines and by CPo 

Chapter 26. The DIAGNOSE Instruction in a Virtual Machine 319 



A virtual machine should issue DIAGNOSE code X'70' only one time. Once 
issued, it is effective until the virtual machine is reset. 

Entry Values: When DIAGNOSE code X'70' is issued, the Rx register must 
contain the address of a 16-byte area, the communication area. The Ry register is 
not used. 

The communication area must be aligned on a doubleword boundary and must be 
in the virtual machine's real storage, preferably in page zero. Page zero is 
preferred because CP always locks page zero and must also lock the page that 
contains the communication area. Thus, when page zero is used, CP does not have 
to lock an additional page. 

Use: After DIAGNOSE code X'70' is issued, CP updates the communication area 
each time the virtual machine is dispatched. The first eight bytes of the 
communication area contain the total processor time the virtual machine has used. 
The last eight bytes contain the time of day CP last dispatched the virtual machine. 
Programs running in the virtual machine should not alter the communication area. 

To use the information that CP has stored in the communication area, perform the 
following steps: 

1. Obtain the current time of day by issuing the STCK instruction. 

2. Compute the difference between the tome of day obtained in step 1 and the 
time of day stored in the communication area. This difference is the amount of /. -~ 
processor time the virtual machine has used since it was last dispatched. ~. / 

3. To calculate the total amount of processor time the virtual machine has used up 
to the present time, add the processor time that is stored in the communication 
area to the difference obtained in step 2. 

4. Ensure that the TOD value stored in the communication area has not changed 
since step 2 was performed. If it has changed, repeat the procedure from step 
1. 

Specification Exception: CP returns a specification exception if DIAGNOSE code 
X'70' is issued and: 

The virtual machine does not have the ECMODE option. 

• The communication area is not aligned on a doubleword boundary. 

• The address in the Rx register is not within the virtual machine's real address 
range. 

• DIAGNOSE code X'70' has already been issued for the virtual machine. 

• Communication area crosses a page boundary. 

Note: This specification exception can be avoided by using the SVC 202 
TODACCNT function. For more information on the TODACCNT function, refer 
to the VM/SP CMS Command and Macro Reference. 

320 VM/SP System Programmer's Guide 

c 



( 

( 

DIAGNOSE code X 174' -- Saving or Loading a 3800 Named 
System 

Privilege class A, B, or C 

DIAGNOSE code X'74' is invoked to save an image library as a 3800 named 
system or to load a named system into virtual storage when that named system is 
required by the 3800 printer. 

Entry Values: When the DIAGNOSE code X'74' is invoked, the Rx, Rx+l, Ry, 
and Ry+ 1 registers must contain the following: 

• Registers Rx and Rx+ 1 - must contain the eight-character name of the system 
to be saved or loaded, left-justified and padded with blanks. 

• Register Ry - must contain the virtual address at which to start saving or 
loading the named system. Ry must start on a page boundary. 

• Register Ry+l - must contain a X'OO' in the high order byte if a LOAD 
operation is required, and a X'04' for a SAVE operation. The remainder of 
the register must contain the number of bytes to be saved or loaded into virtual 
storage. CP rounds the byte count up to the nearest whole page before the 
pages are saved or loaded. Partial pages are not saved or loaded. 

Error Conditions: A specification exception occurs if Register 15 is specified in 
either Rx or Ry, or if the virtual address specified in Ry is not on a page boundary. 
If the area to be saved or loaded extends beyond the user's virtual storage, an 
addressing exception occurs. Finally, a privileged operation exception results if the 
user does not have privileged class A, B, or C. These exceptions cause abnormal 
termination (abend) and the user is notified. 

Return Codes: When DIAGNOSE code X'74' processing completes, one of the 
following return codes is placed into register Ry and returned to CP: 

Return Code 
X'OO' 
X'04' 
X'08' 
X'OC' 
X'10' 
X'14' 
X'18' 
X'IC' 

Meaning 
Load/save successfully performed 
Named system not found 
Named system currently active 
Volid for system not CP owned 
Volid for system not mounted 
Too many bytes to load/save; residual byte count is in Ry+ 1 
Paging error during load/save 
Too few bytes to LOAD/SA VB. Needed byte count is in Ry+ 1. 

Chapter 26. The DIAGNOSE Instruction in a Virtual Machine 321 



DIAGNOSE Code X 178' -- MSS Communication 

Privilege class ANY 

DIAGNOSE code X'78' is used to communicate with the VM/SP control program 
about MSS volume mounts and demounts. 

Entry Values: The Ry register contains a function subcode. The valid subcodes 
and their meanings are: 

Subcode Meaning 

X'OO' The virtual machine issuing the DIAGNOSE instruction is running OS/VS 
with MSS support and the DMKMSS program for MSS communication. 
The Rx register contains the device address of the virtual machine's MSS 
communicator virtual device. 

X' 04' The virtual machine is ready to process an MSS request. The MSSCOM 
block representing the request should be placed at the virtual machine 
address indicated by the Rx register. 

X'08' An MSS request represented by the MSSCOM block located at the virtual 
machine address indicated by the Rx register has been accepted by the 
MSC. 

X'OC' An MSS request represented by the MSSCOM block located at the virtual \ ___ -' 
machine address indicated by the Rx register has been rejected by the 
MSC. 

X'lO' The DMKMSS program is no longer available to process MSS requests. 

X'14' The DMKMSS program has created a list of all VUAs associated with this 
processor (cpuid) and requests CP to build its shared and non-shared 
SDG tables from that list. 

El7'Or Conditions: If the DIAGNOSE code X'78' is specified incorrectly, CP 
terminates the user program with one of the following exceptions: 

Error Return (DMKHVC) 

Protection Exception No DMKSSV module exists 

Specification Exception MSSCOM crosses a page boundary 

Return and Condition Codes: DIAGNOSE code X'78' condition codes and return 
codes are: 

Condition and 
Return Codes 

CC=O 

322 VM/SP System Programmer's Guide 

Meaning 

Successful completion. o 



( 

c 

I CC=I(DMKSSV) Error Condition. Register 15 contains one of the following 
return codes: 

RC=4 Subcode was either less than zero or greater than 16. 

RC=8 Subcode was within the valid range, but not a multiple of 4. 

RC=12 Addressing exception trying to bring in the buffer page. 

RC=16 Issuer is not the issuer of subfunction zero. 

DIAGNOSE Code X I 7C' -- Logical Device Support Facility 

I Privilege class ANY 

DIAGNOSE code X'7C' allows an application running in a virtual machine to 
drive a logical 3270 as if it were a real display station locally attached to the 
VM/SP system. Communication between the application and the logical device is 
done via the DIAGNOSE interface and a new external interrupt code. 

Entry Values: Rx is a user-specified register (not GR15) containing the logical 
device number that is used to coordinate CP and local system operations. It is not 
used for the INITIATE function. 

Rx+l, for the INITIATE function, contains in the low-order three bytes the device 
model, class, and type for the logical device to be created. For example, a 3277 
Model 2 is represented as X'00024004'. Valid device types are: 3277 Model 2, 
and 3278 Models 2, 3, 4, and 5. 

For the ACCEPT function, Rx+ 1 contains the address of a data buffer. 

For the PRESENT function, Rx+ 1 contains either an address or a complemented 
address. If an address, it is the address of a single buffer of data 4096 bytes or less 
in length. If a complemented address, it is the address of a list that describes a data 
stream occupying multiple data buffers and/or greater than 4096 bytes in length. 

Ry is a user-specified register (not GR15) containing the subcode of the logical 
device function to be executed: 

Subcode 
X'OOOI' 
X'0002' 
X'0003' 
X'0004' 
X'0005' 

Function 
INITIATE 
ACCEPT 
PRESENT 
TERMINATE 
TERMINATE (all) 

On completion of an ACCEPT function, Ry contains the length of the data. 

Ry+ 1, for the ACCEPT and PRESENT functions, contains the length of the data 
buffer when Rx+ 1 specifies a buffer address. On completion of any DIAGNOSE 
operation, Ry+ 1 contains the return code. 

Chapter 26. The DIAGNOSE Instruction in a Virtual Machine 323 



(~ 

Return and Condition- Codes: Return codes are received from this facility in register i\,.., J 

Ry+ 1. PSW condition codes and return codes are described below. Functions that 
apply specifically to given combinations of condition and return codes are shown in 
parentheses. 

CC=O Function completed with no errors. 

RC=O (any) 

RC= 1 (ACCEPT) 

RC=2 (ACCEPT) 

CC= 1 Error condition. 

RC=1 (any) 

RC=2 (ACCEPT) 

RC=3 (ACCEPT) 

Normal completion. 

Indicates another ACCEPT required for another data 
stream. 

Indicates another ACCEPT required for next segment 
of current data stream. 

Invalid function used in register Ry. 

No data available. 

Buffer too short. No data transferred. Another 
ACCEPT is required to retrieve the data. Register 
Ry contains the required data length. 

RC=4 (ACCEPT or PRESENT) 
One of the following: 

• Buffer is greater than 4096 bytes. 
• Buffer length is not positive. 
• Buffer not in user's address space. 
• Paging I/O error. 

RC=5 (INITIATE) 
Already have eight virtual machines that have created 
logical devices. Logical devices can be created for a 
maximum of eight concurrently active virtual 
machines in a VM/SP system. 

RC=9 (INITIATE) 
Maximum of 512 logical devices per virtual machine 
reached. 

RC=10 (ACCEPT or PRESENT) 
FETCH or STORE protection violation. 

CC=2 Busy condition 

324 VM/SP System Programmer's Guide 

-------- ---- --------------------



( 

CC=3 

RC= 1 (PRESENT) 
CP has pending data that must be accepted first. The 
PRESENT is not performed. 

RC=2 (PRESENT) 
A previous PRESENT has not completed execution. 
The current PRESENT is not performed. An external 
interrupt is issued to indicate when this PRESENT 
should be reissued. 

RC=3 (PRESENT) 
CP has an active READ BUFFER command. The 
PRESENT issued is for READ MODIFIED data. 

RC=4 (PRESENT) 
The data presented is from a READ BUFFER. No 
CP READ is outstanding, or the READ is a READ 
MODIFIED. 

a. (INITIATE) Logical device type, class, or model is invalid. 

b. (Other functions) Logical device number in register Rx is 
invalid. 

RC=l (ACCEPT, PRESENT, TERMINATE) 
CP is in the process of terminating the logical device. 

RC=2 (ACCEPT, PRESENT, TERMINATE) 
The logical device number does not exist. 

RC=3 (INITIATE) 
The logical device class, type, or model is invalid. 

Descriptions of logical Device Support Facility Functions 

Logical device functions manage communications and the transfer of data between 
CP and the virtual machine for which the logical device was created. 

INITIATE: DIAGNOSE CODE X'7C' SUB CODE X'OOOl' 

The INITIATE function opens a logical communications path between the calling 
virtual machine issuing the DIAGNOSE and the VM/SP Control Program. It 
causes a logical device to be created and the VM/370 logo to be directed to it. 
This results in an external interrupt to the issuing virtual machine to indicate that 
CP has data to be processed. 

Register Rx+1 must contain the model number in byte 1, and the device class and 
type in bytes 2 and 3. Register Rx is riOt used for input. 

The address of the logical device is placed in register Rx. This value is used on 
subsequent DIAGNOSE operations to indicate the logical device being used. This 

Chapter 26. The DIAGNOSE Instruction in a Virtual Machine 325 



address is also provided with the exremai interrupt so that the issuing virtual 
machine can associate the interrupt with a specific logical device. 

ACCEPT: DIAGNOSE CODE X'7C' SUBCODE X'0002' 

The ACCEPT function reads data that CP has directed to a logical device. It is 
invoked after the virtual machine that created the logical device is notified via 
external interrupt that output data is to be processed. Upon invocation register 
Rx+ 1 must contain the data buffer address and register Ry+ 1 the buffer length. If 
the data buffer supplied was too short to contain the data, the function returns the 
required buffer size in register Ry and no data is moved. This action can be 
overridden by setting an indicator in the length register (bit zero in Ry + 1 set to 1) 
when the function is invoked. In this case, the data is be moved to the short buffer 
and a CC=O, RC=2 is sent. The system moves the next portion of the data on the 
next ACCEPT. Upon successful completion of function processing, the data length 
is returned in Ry, and the data buffer contains the CCW OP code in its first byte 
and data in the remaining buffer space. 

PRESENT: DIAGNOSE CODE X'7C' SUBCODE X'0003' 

The PRESENT function passes input data to CPo The location of the data is 
described by an address or a complemented address inregister Rx+ 1. If the 
register contains an address, it is the address of a data buffer 4096 bytes or less in 
length. In this case, register Ry+ 1 contains the length of that data buffer. If 
register Rx+ 1 contains a complemented address, it is the address of a list that 
describes a data stream occupying multiple data buffers and/or greater than 4096 
bytes in length. In this case, register Ry+ 1 is not used to describe the data length. 
However, in either case, a high-order bit of 1 in register Ry+ 1 indicates that the 
response is to a READ BUFFER command. Data format is the same as that 
produced by a local display control unit in response to a READ MODIFIED 
channel command. 

If a list is used to describe the data, the list must be in the format: 

Length SEGl Address SEGl 

Length SEG2 Address SEG2 

Length SEGn* Address SEGn 

*Last entry indicated by a 1 in bit zero of its length field. 

The list must start on a fullword boundary. Each entry consists of two fullword 
fields that describe the length and location of sequential segments of a data stream. 
A single entry list may be used to describe a single data buffer greater than 4096 
bytes in length. Neither the list nor the data may be modified before transfer of 
the data has completed. An external interrupt signals completion of data transfer. 

TERMINATE: DIAGNOSE CODE X'7C' SUB CODE X'0004' 

326 VM/SP System Programmer's Guide 

-_._- - ---



( 

The TERMINATE function notifies CP to drop a specific logical device. If the 
logical device is the console of a virtual machine, the virtual machine is placed in 
FORCE DISCONNECT state. If the logical device is DIALed to a virtual 
machine, it is detached from that virtual machine. If an input or output operation is 
being processed, it is terminated with a unit check and intervention required. 

TERMINATE (ALL): DIAGNOSE CODE X'7C' SUB CODE X'0005' 

The TERMINATE (all) function notifies CP to terminate all logical devices created 
for the issuing virtual machine. 

External Interrupt Code X'2402 1 

The logical device support uses a service signal interrupt, (class 24 external 
interrupt) to notify the virtual machine of a change in status for a specific logical 
device. The external interrupt code is X' 2402'. This interrupt causes a full word 
of data to be stored at location 128 (decimal) in the virtual machine. The interrupt 
is masked on and off by bit 22 of control register O. 

The format of the stored fullword is: 

128-129 

130 

logical device address 

flag byte 
bit zero - PRESENT function purged 
bit one - error in transmission or list 

131 interrupt reason code 

The logical device address is returned to the user after an INITIATE, and must be 
specified by the user for an ACCEPT, PRESENT, or TERMINATE. 

Flag byte, bit zero is set to 1 if the data from the last PRESENT has been 
discarded by the system (subsequent I/O to the logical device was a WRITE 
instead of a READ). Flag byte, bit one is set to 1 if an error was encountered in 
the address list describing multiple buffers of a data stream, or one of the specified 
addresses in the list was not accessible. Otherwise, the flag byte remains zero. 

The reason codes are: 

01 

02 

03 

CP is terminating the connection. 

A WRITE has been issued, so an ACCEPT must be done. (External 
interrupt flag byte, bit zero also indicates whether previous PRESENT 
data has been discarded.) 

A previous PRESENT is now finished (user received CC=2 and RC=2 
after a PRESENT). 

A PRESENT has been suspended because of a transmission error. 
(External interrupt flag byte, bit one indicates this.) 

Chapter 26. The DIAGNOSE Instruction in a Virtual Machine 327 



04 A READ BUFFER has been issued. 

05 A READ MODIFIED has been issued. 

Reason code 1 indicates that the logical device no longer exists. The user receives 
a condition code 3 if he attempts to perform another function with this device. 

Logical Device Restrictions 

The only devices supported are the local 3277 Model 2, and the local 3278 Models 
2, 3, 4, and 5. 

DIAGNOSE Code X 180' -- MSSFCALL 

Privilege class ANY 

DIAGNOSE code X'80' is the VM/SP interface for communicating between CP 
and the Monitoring and Service Support Facility (MSSF). MSSF is a hardware 
component of the processor controller of the 3081 processor complex; it provides 
system configuration and storage information for the 3081 processor complex. 

Entry Values: Rx is a user-specified register that contains the address of the MSSF 
data block (MSFBLOK). MSFBLOK is defined in increments of 8 bytes to a 
maximum of 2048 bytes. It must be aligned on a 2K boundary. MSFBLOK is 
locked in storage during the MSSFCALL request. 

Ry is a user-specified register that contains the MSSF command word representing 
the function that MSSF is to perform. (See MSSF command words below.) 

Use: The CP module DMKMHC issues a real DIAGNOSE code X'80' and 
services all MSSF external interruptions. DMKMHC issues a real DIAGNOSE 
code X'80' when: 

1. The operator issues a VARY ONLINE PROCESSOR nn command or a 
VARY OFFLINE PROCESSOR nn VPHY command. (These commands 
modify the real processor configuration to bring the processor physically 
on-line or off-line.) 

2. A V =R virtual machine running in EC mode issues the MSSF command word 
SCPINFO.6 (Operating systems running in a virtual machine use the MSSF 
SCPINFO command to get information about a system configuration and 
storage allocation. 

6 When a V = V virtual machine issues SCPINFO, DMKMHV does not pass control to 
DMKMHC. CP does not issue the DIAGNOSE code X'80' but simulates the MSSF 
response and returns predefined data and status codes to the user. See VM/SP System ("'\ 
Logic and Problem Determination Guide Volume 1 (ep) for a description of the ~./ 
pre-defined data. 

328 VM/SP System Programmer's Guide 

~-- ---~. -~ ---- ~-~- ~--



( 

(~' 

3. A user with privilege class C or E runs the IOCP program to read from or write 
to the Input/Output Configuration Data Set (IOCDS). 

When CP issues DIAGNOSE code X'80', the hardware call block that is created 
(HCBLOK) contains the MSFBLOK address, the MSSF command word, and the 
address to return to after the MSSF has processed the request. See VM / SP Data 
Areas and Control Block Logic Volume 1 (CP) for the format of the MSFBLOK and 
HCBLOK. 

MSSF Command Words 

X'OOllnnOl ' 

X'0010nnOl ' 

X'00020001 ' 

X' 00400002' 

X'00400102' 

X' 00400202' 

X' 00400302' 

X' 00401002' 

X'00401102' 

X'00401202' 

X'00401302' 

X'00410002' 

X'00410102' 

X' 0041 0202' 

X'00410302' 

X' 00411002' 

X'00411102' 

X'00411202' 

X'00411302' 

VARY ONLINE PROCESSOR nn where nn is the ID of the 
processor to be varied on-line. CP use only. 

VARY OFFLINE PROCESSOR nn VPHY where nn is the ID 
of the processor to be physically varied off-line. CP use only. 

SCPINFO command. Virtual machine use only. 

IOCP WRITE to Level 0 IOCDS Side A 

IOCP WRITE to Levell IOCDS Side A 

IOCP WRITE to Level 2 IOCDS Side A 

IOCP WRITE to Level 3 IOCDS Side A 

IOCP WRITE to Level 0 IOCDS Side B 

IOCP WRITE to Level I IOCDS Side B 

IOCP WRITE to Level 2 IOCDS Side B 

IOCP WRITE to Level 3 IOCDS Side B 

IOCP READ from Level 0 IOCDS Side A 

IOCP READ from Level 1 IOCDS Side A 

IOCP READ from Level 2 IOCDS Side A 

IOCP READ from Level 3 IOCDS Side A 

IOCP READ from Level 0 IOCDS Side B 

IOCP READ from Levell IOCDS Side B 

IOCP READ from Level 2 IOCDS Side B 

IOCP READ from Level 3 IOCDS Side B 

Chapter 26. The DIAGNOSE Instruction in a Virtual Machine 329 



Retum and Condition Codes: Two possible condition codes returned for 
DIAGNOSE code X'80' are: 

CC=O MSSF is processing the MSSFCALL request. 

CC=2 MSSF is busy. 

Note: If CP issued the MSSFCALL request, and MSSF was already processing a 
previous MSSFCALL request, abend MHCOO 1 occurs. If a V =R user issued the 
request, CP reflects the condition code (2) to the virtual machine's PSW. 

At the completion of an MSSFCALL, the following actions occur: 

• MSSF generates a service signal interrupt, external interrupt X' 2401' (class 24 
external interrupt). This interrupt stores the absolute address of the MSSF 
data block (MSFBLOK) at decimal locations 128-131 in the virtual machine's 
PSA. Bit 22 of control register 0 controls masking of the service signal. 

• MSSF passes a completion status code back in the MSFBLOK. 

• CP returns control to the address specified in HCBLOK. 

If tracing is on, trace table entry X' 17' traces all MSSFCALL requests. Refer 
to Figure 76 "CP Trace Table Entries" for the format and content of the 
entry. In addition, trace table entry X'OI' reflects external interrupt X'2401' 
when the MSSF generates the service signal interrupt to CP. 

Successful MSSF completion status codes are: 

0010 SCPINFO complete. 

0020 The processor is varied on-line/ off-line. 

0120 The processor is already varied on-line/off-line. IOCP operation 
complete. 

8020 An IOCP READ is invalid because the file is open for writing. 

4020 The IOCP read or write operation was performed on the active lOCOS. 

2020 The active lOCOS has been written to. 

Reject status codes are: 

01FO Invalid command code or identification byte. 

41FO Attempt to read closed lOCOS. 

0100 Data block not aligned on a 2K boundary. 

0200 Data block length not a multiple of 8. 

0300 The data block length is not adequate for the amount of information 

330 VM/SP System Programmer's Guide 

\ 



( 

(" 

requested. 

DIAGNOSE Code X l 841 
-- Directory Update-In-Place 

Privilege class B 

DIAGNOSE code X'84' enables a class B user to replace certain data in any entry 
of the VM/SP directory. The user must specify the directory entry and may 
replace the following data: 

• Logon password 
• Virtual machine storage size 
• Maximum virtual machine storage size 
• Privilege classes 
• Dispatching priority 
• Logical editing symbols 
• Initial program load (IPL) system 
• IPL parameter data 
• Account number 
• Distribution word 
• User options 
• Minidisk access mode 
• Minidisk read, write, or multiple password 
• Options of the SCREEN directory control statement 

With the exception of the account number, all changes to the entry take effect the 
next time the USERID associated with the entry logs onto VM/SP. The account 
number may be updated such that the change 

• takes effect immediately, 

• takes effect immediately but is temporary lasting only until the USERID is 
logged off, or 

• takes effect the next time the USERID associated with the entry is logged on. 

DIAGNOSE code X'84' cannot add new entries to the directory, cannot delete 
existing entries, nor can it alter directory user-description statements. It can only 
replace existing directory data. Data is replaced in the form of the directory 
created by the directory service program, that is, in VM/SP control blocks. 

For a detailed description of the directory data, see the VM/SP Planning Guide and 
Reference. 

Entry Values: When DIAGNOSE code X'84' is issued, the Rx register must point 
to a variable length parameter list and the Ry register must specify, in bytes, the 
length of the list. The list cannot be greater than 112 bytes long or less than zero 
bytes. The parameter list contains an area of fixed length followed by an area of 
variable length. Data in the fixed-length area identifies the directory entry to be 
updated, the password of the USERID associated with the entry, and the data field 
to be replaced in the directory entry. The variable-length area contains 

Chapter 26. The DIAGNOSE Instruction in a Virtual Machine 331 



replacement data for the directory entry. All entries in the parameter list must 
contain unpacked, EBCDIC data. 

The parameter list is organized as follows: 

USERID 

password fixed-length area 

operation 

/ / 
variable-length area 

( f 
Fixed-length area 

USERID 

password 

operation 

The USERID of the user whose directory entry is updated. This is an 
eight-character, left-justified value and must be padded with blanks. 

The current password of the USERID whose directory entry is 
updated. This is an eight-character, left-justified value and must be 
padded with blanks. 

If this field is blank, the update-in-place function is processed in 
'testmode'. When the DIAGNOSE is issued in this fashion, the 
directory is not updated. 'Testmode' lets you check the syntax of the 
directory statements without accessing the directory disk. 

An eight-byte, left-justified character string that identifies the data in 
the directory entry that is to be replaced. Valid values and the data 
that each identifies for replacement are defined in the description of 
the variable-length area which follows. 

Variable-length area 

The following diagram shows for each value of the operation field, the data that 
must be in the variable-length area of the parameter list, and the format and 
characteristics of the data. 

332 VM/SP System Programmer's Guide 

------- ---------



( Operation 
Field 
Value Data Characteristics/Format 

LOGPASS logon password An eight-byte, left-justified value padded with blanks. 

STORAGE virtual machine storage An eight-byte, left-justified decimal value followed by 
size the letter K. Pad with blanks following the letter K. 

MAXSTOR maximum virtual An eight-byte, left-justified decimal value followed by 
machine storage size the letter K. Pad with blanks following the letter K. 

PRIVLEGE privilege classes A 32-byte value where each byte represents a privilege 
class. Valid values for each byte are A through Z, and 1 
through 6. All existing classes in the directory entry are 
replaced. Therefore, specify existing classes that are to 
be retained as well as classes that are to be changed. 
The data must be left-justified and padded with blanks. 
This field can be aU blanks in which case the specified 
virtual machine will always have the default classes 
(defined via SYSFCN) each time the user logs on. 

PRIORITY dispatching priority An eight-byte, left-justified value where the first two 
bytes, counting from the left, specify the dispatching 
priority. Valid values for these bytes are 1 - 99. Values 
1 through 9 must be padded with a blank. The other six 
bytes are reserved for IBM use. 

EDIT CHAR logical editing symbols An eight-byte value where the first four bytes, counting 
from the left, are line edit symbols. The first or 
high-order byte is the "line-end" symbol, the second 
byte is the "line-delete" symbol, the third byte is the 
"character-delete" symbol, and the fourth byte is the 
"escape-character" symbol. All existing symbols in the 
directory are replaced. Therefore, specify existing 
symbols that are to be retained as well as symbols that 
are to be changed. Unspecified symbols must contain 
blanks. The last four bytes of the eight-byte value are 
reserved for IBM use. 

IPL system name or virtual A one-to-eight character value, left-justified and padded 
device address and with blanks, followed by the keyword P ARM and up to 
variable data 48 characters of variable data. All existing values are 

replaced in the directory entry; therefore, specify values 
that are to be retained as well as values that are to be 
changed. Trailing blanks are not truncated but passed. 

ACCOUNT account number A one-to-eight character value, left justified and padded 
with blanks. (This change takes effect the next time the 
USERID is logged on.) 

IACCOUNT account number A one-to-eight character value left-justified and padded 
with blanks. (This change takes effect immediately.) 

Chapter 26. The DIAGNOSE Instruction in a Virtual Machine 333 



Operation 
Field 
Value Data <JharacterUnics/J?orntat 

TACCOUNT account number A one-to-eight character value, left-justified and padded 
with blanks. (This change takes effect immediately but is 
temporary, lasting only until the USERID is logged off.) 

Note: DIAGNOSE X'84' with TACCOUNT or 
IACCOUNT does not update the account number in the 
user accounting block (ACCTBLOK). DIAGNOSE 
X'84' is for the directory update which updates the 
account number in the user's VMBLOK if change is to 
take effect immediately. The user accounting block 
(ACCTBLOK) is created by DIAGNOSE X'4C' and the 
'charge to' information in the ACCTBLOK can only be 
changed via DIAGNOSE X'4C'. DIAGNOSE X'84' 
options TACCOUNT and IACCOUNT have no effect 
on the accounting information in the ACCTBLOK. 

DISTRm distribution identification A one-to-eight character value, left-justified and padded 
word with blanks. 

OPTIONS user options An eighty-byte, left-justified value padded with blanks. 
Specify each option as a character string with a blank 
character between options. For a description of each 
option and a list of valid values, see VM / SP Planning 
Guide and Reference. All existing options except for 
'CPUID' and 'AFFINITY', are replaced in the directory 
entry. Therefore, specify existing options (except for 
'CPUID' and 'AFFINITY') that are to be retained, as 
well as options that are to be changed. The options field 
must be followed by the value X'FFFFFFFF' or by at 
least two blanks (X' 4040'). 

334 VM/SP System Programmer's Guide 



Operation 
Field 
Value Data Characteristics/Format 

MDISK minidisk address, access A thirty-byte field defined as follows. All values must be 
mode, read password, left justified and padded with blanks. Valid values for 
write password, and the access mode and for passwords are defined in 
multiple password VM/SP Planning Guide and Reference. 

Bytes 1-3, counting from the left, specify a minidisk 
address. This is the minidisk whose mode and passwords 
will be changed. The address must already exist in the 
directory entry. 

Bytes 4-6 specify the access mode. 

Bytes 7-14 specify the read password. 

Bytes 15-22 specify the write password. 

Bytes 23-30 specify the multiple password. 

The access mode, the read password, the write password, 
and the mUltiple password are replaced in the directory 
entry. Therefore, specify existing values that are to be 

( 
retained as well as values that are to be changed. 

SCREEN display screen options An eighty-byte area composed of ten doubleword fields. 
The ten fields are paired into five sets corresponding to 
the five display areas of the screen. You must specify 
these areas in the following order: 

• CP output 
• VM output 
• input redisplay 
• input area 
• status area. 

Each of the five doubleword sets has a color field and an 
extended highlight field. (See the SCREEN option 
description in the VM / SP Planning Guide and Reference 
for the valid color and extended highlight values.) 
Within each doubleword set you must specify the color 
first followed by the extended highlight value. You must 
specify all fields, including those you don't want to 
change. All of the options you specify must also be left 
justified in their eight-byte field. 

Chapter 26. The DIAGNOSE Instruction in a Virtual Machine 335 



~~ 
I 

Return and Condition Codes: Before control is returned to the virtual machine, ~ / 
DIAGNOSE code X'84' sets a condition code and, if errors were detected, a 
return code in the Ry register. The condition codes and return codes are defined as 
follows: 

Condition Code 

° 
1 

Return Code 

10,11 

20 - 27, 90, 112, 113 

26 

28 

30 

31 

40,41 

42,43 

50,51 

52,53 

60,61,62 

336 VM/SP System Programmer's Guide 

Meaning 

The directory was successfully updated. 

DIAGNOSE code X'84' detected an error. The directory is 
unchanged. The return code defines the error. 

Meaning 

An error occurred writing the directory to a direct access 
device. To update the directory, use the directory service 
program described in the VM / SP Planning Guide and 
Reference. 

DIAGNOSE code X'84' encountered a processing error. To 
update the directory, use the directory service program 
described in the VM / SP Planning Guide and Reference. 

Specified minidisk address does not exist in directory entry, 
or specified userid does not have any devices defined in the 
directory entry. 

The value in the OPERATION field of the parameter list is 
invalid. 

The specified USERID could not be found. 

The password specified in the fixed-length area of the 
parameter list does not match the current password of the 
USERID being updated. 

The value specified for the virtual machine storage size or for 
the maximum virtual machine storage size is too large. The 
maximum allowable size is 16 megabytes. 

The value specified for the virtual machine storage size or for 
the maximum virtual machine storage size contains a syntax 
error or an invalid character. 

The specified privilege classes are invalid. 

The specified privilege classes contain a syntax error or an 
invalid character. 

The specified priority contains a syntax error or an invalid 
character. 



(-

( 

63 The priority value is too large. The maximum allowable value 
is 99. 

65,66 Parameter list size error; if return code = 65, the list exceeds 
112 bytes; if return code = 66, the list size is less than zero 
bytes long. 

70 A specified option is invalid. The invalid options are 
VMSA VB, STFIRST, 370E, and MAXCONN nnnnn. 

71 The value X' FFFFFFFF' was not coded after the list of 
options. 

72 The option value contains a syntax error or an invalid 
character. 

80 The parameter list contains an invalid minidisk address. 

81 The parameter list specifies an invalid access mode for a 
minidisk. 

82,83 The minidisk read, write, or multiple password specified in 
the parameter list requires a change in the size of the 
directory entry. 

91 No attributes were found on the SCREEN command. 

92 Invalid attributes were found on the SCREEN command. 

101 The parameter list is too large. 

102 The parameter list is less than 1. 

110 No parameter data currently exists in the directory entry. 

111 The parameter length is invalid. 

DIAGNOSE code X l 8CI -- Access Certain Device Dependent 
Information 

Privilege class ANY 

DIAGNOSE code x' 8C' allows a virtual machine to obtain certain 
device-dependent information without issuing a WRITE STRUCTURED FIELD 
QUERY (WSF QUERY). DIAGNOSE code X'8C' retrieves this information 
from the RDEVBLOK or NICBLOK and a page able buffer and creates a diagnose 
interface to enable the virtual machine to access it. 

Entry Values: DIAGNOSE code X'8C' is invoked as follows: 

Rx is the address of user-provided data buffer. 

Chapter 26. The DIAGNOSE Instruction in a Virtual Machine 337 



Byte 0 

Flags 

Byte 1 

Ry is the length of user-provided data buffer. 
Rx+l is the virtual device address, or the value negative 1 (-1). 

Specify -1 for Rx + 1 when the device is the virtual console of the user issuing the 
DIAGNOSE code X'8C'. 

Exit Values: The data returned by DIAGNOSE code X'8C' is in the following 
format: 

Byte 2 and 3 Byte 4 and 5 Byte 6-n (n<502) 

Number of Screen width Screen height WSF Query Reply 
partitions in cells in cells data 

Flags 
80 = extended color 
40 = extended highlight 
20 = Programmable Symbol Sets (PSS) available 
01 = 14-bit addressing 

Return Codes: Upon completion, Rx+ 1 contains the following return codes: 

o if the DIAGNOSE completes successfully. 

4 if an I/O error occurs. 

Residual Count: If the user receives less data than he requested, the difference 
between the amount of data requested and the amount received is returned in Ry. 

Program Exceptions: The user receives a specification exception if 

• The length specified is negative 
• The virtual device address specified is invalid 
• The buffer address is not on a doubleword boundary. 

The user receives an addressing exception if 

• An invalid buffer address is specified. 

Notes: 

1. If a NETWORK ENABLE is issued to a device with advanced features and a 
NETWORK ATTACH is issued prior to turning on the device, the advanced 
features are non-operational. The data returned by DIAGNOSE code X'8C' 
reflects this status. 

2. Devices for which the write structured field is not applicable return zeroes in bytes 
o and 1, and screen width and height in the remaining bytes. 

3. For the 3290 Information Panel, dynamic changes in the characteristics of the 
terminal are obtained by the virtual machine when the user disconnects or logs off 
from the logical terminal. This change, therefore, is reflected in the data returned 
by DIAGNOSE code X'8C'. 

338 VM/SP System Programmer's Guide 



( 

4. If a paging error occurs when paging in the pageable buffer, six bytes of 
information are returned in the user-provided data buffer, and the residual count 
is returned in the user's Ry. 

DIAGNOSE code X 194' -- VMDUMP Function 

Privilege class ANY 

DIAGNOSE code X'94' allows a virtual machine to request dumping of its virtual 
storage to a spool file for use with IPCS. Upon completion of DIAGNOSE code 
X' 94' execution, control is returned to the invoker with a condition code set 
indicating the status of the DIAGNOSE function. DIAGNOSE code X'94' uses 
the VMDUMP command dump processor to produce the dump. 

Only storage that the user is authorized to access will be dumped. Any storage 
which is fetch protected (via storage keys and the fetch protection bit) will: 

• Be replaced by the mask value of X'EE' if only 2K of the 4K page violated 
fetch protection 

• Not be dumped if the page is a single-key 4K block. 

Only second level storage (storage that is created for the guest virtual machine) is 
dumped. Certain operating systems running in a guest virtual machine such as 
OS/VS and DOS/VSE have virtual storage (third level) of their own. CP cannot 
dump this third level storage directly. 

Entry Values: When DIAGNOSE code X'94' is issued, the Rx and Ry registers 
must be set up as follows: 

Rx contains the pointer to the parameter list in the virtual machine storage. 

Ry contains the length of the parameter list. 

The parameter list cannot span a 4K page boundary, cannot exceed 240 bytes (30 
doublewords), and must not reside in fetch protected storage. 

Chapter 26. The DIAGNOSE Instruction in a Virtual Machine 339 



Supported Parameters 

The parameters supported by DIAGNOSE code X'94' are: 

[DUMP list-addr] 

[NORETURN] 

~TO * ~ TO userid 
SYSTEM 

{-} [hexloc21 
{:} END J 

{.} [bytecountJ 
END 

[FORMAT vrntype] 

[DSS] 

[*durnpid] 

DUMP Iist-addr 
indicates that the dump address ranges are in hexadecimal within a separate 
parameter list. 

list-addr is the address of the dump address list. It is expressed as a 
hexadecimal fullword immediately following the DUMP keyword with a 
blank separating list-addr from the DUMP keyword. Additional information 
about the dump address parameter list can be found in "Dump Address 
Parameter List." 

NORETURN 
indicates that the invoker may not transfer the file back to himself. This 
parameter must be used with the "TO userid" or "SYSTEM" operand where 
"userid" is not the invoker of the DIAGNOSE command. 

[~eXloc~ H [~~C2J I:} 

I.} [~~ountJ 
hexloc1 

is the first or only hexadecimal virtual storage address dumped. If you 
omit the hexloc1 operand, the default is zero, the beginning of virtual 
machine storage. 

340 VM/SP System Programmer's Guide 

/ 



( 

hexloc2 
is the last hexadecimal virtual storage address dumped. If you do not 
specify the hexloc2 operand, the default is END, and CP dumps the 
contents of virtual machine storage starting from hexlocl to the end of 
virtual storage. 

bytecount 
is the hexadecimal number of bytes dumped. If you do not specify 
bytecount, the default is END, and CP dumps the contents of virtual 
machine storage from the first byte at hexlocl to the end of virtual 
storage. 

~TO* J 
TO userid 
SYSTEM 

defines where the dump is to be transferred. 

If you enter an asterisk (*) with the TO, CP transfers the dump to your 
virtual card reader. 

If you enter a userid with the TO, CP transfers the dump to that user's 
virtual card reader. 

If you enter SYSTEM, CP transfers the dump to the virtual card reader of 
the userid specified on the SYSDUMP operand of the SYSOPR system 
generation macro instruction. You must not specify TO preceding the 
keyword SYSTEM. 

FORMAT vmtype 

DSS 

provides VM/SP IPCS with the virtual machine type (vmtype) which IPCS 
uses to format the dump. 

vmtype is a one-to-eight byte name of the operating system running in a 
virtual machine (for example, CMS). CP also uses the specified vmtype as 
the virtual card reader filetype, CP does not validity check the vmtype. Any 
vmtype longer than eight bytes generates an error message and halts further 
VMDUMP processing. The dump header record includes your specific 
vmtype and IPCS uses the vmtype information to format the dump. If you 
enter FORMAT, you must also specify a vmtype. If you do not specify 
FORMAT, the default vmtype is FILE. 

specifies that CP take a dump of all discontiguous saved segments in use by 
your virtual machine. When "DSS" is specified, only the discontiguous 
saved segments will be dumped unless you explicitly specify other locations. 
If "DSS" is specified, it overrides the hexlocl-hexloc2 defaults of 0 and end. 

*dumpid 
is a line of user input up to 100 characters long including imbedded blanks 
and asterisks which you can enter for your own benefit (that is, for 
descriptive purposes, such as the time and date of the dump, or what was 

Chapter 26. The DIAGNOSE Instruction in a Virtual Machine 341 



Notes: 

being processed at the time of the dump). If you specify this operand, it 
becomes the DMPDMPID field in the dump file information record 
(DMPINREC) data area. If specified, you must enter *dumpid as the last 
operand in the parameter area. 

If you use the FORMAT CP operand, the dumpid information is not saved. 
While using IPCS, the dumpid information is not available when requested. 
CP dumps do not contain dumpid information. 

1. The DUMP operand and the in line hexadecimal ranges may not be specified 
together on the same invocation (e.g. DUMP xxxx 4-5). 

2. Absence of the DSS (Discontiguous Saved Segments) when DSS is specified will 
cause an error only if DSS is the only dump address range specified. 

3. Except for the *dumpid operand, you can specify the operands of the DIAGNOSE 
code X'94' in any order. However, if you specify the *dumpid operand, it must be 
the last operand on the command line. 

4. The first asterisk of the dumpid is not included in the 100 characters for the user 
input. 

5. The DUMP address list must contain a minimum of one range. 

Dump Address Parameter List 

o 

o 

8 

10 

2 

You must create your own dump address parameter list. An example of a dump 
address parameter list showing the format and content follow. In the example, field 
names are given for reference purposes only. As you create your dump address 
parameter list, you can use names of your own choice. 

3 4 5 6 7 

ADSDNXTP I ADSDNUMN 

ADSDFLAGIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
ADSDDATA 

where: 

ADSDNXTP 
(Displacement 0, Length 4) Address of the next list. This field is zero if there 
is no additional list needed. The condition under which such a list would be 
used is where the invoker has built multiple lists of storage ranges to be 
dumped. 

ADSDNUMN 
(Displacement 4, Length 4) Number of address ranges in this list. 

342 VM/SP System Programmer's Guide 



( 

( 

ADSDFLAG 
(Displacement 8, Length 1) Flag field for dump list data. 

Bit 0 = 0 - the dump list has the starting address and length of the area to be 
dumped. 

Bit 0 = 1 - the dump list has the starting and ending address of the area to be 
dumped. 

All other bits are reserved and should be set to zero. 

ADSDDATA 
(Displacement 10, Length is variable) Start of variable number of entries. 
Beginning at ADSDDATA, the following structure is repeated for the number 
of times equal to the value given in ADSDNUMN. 

ADSDSTRT 
(Displacement 0, Length 4) Starting address of storage to be dumped. 

ADSDSTOP 
(Displacement 4, Length 4) Length of storage area to be dumped or address of 
last storage byte to be dumped, as determined by ADSDFLAG setting. 

Retum Codes and Condition Codes: Upon completion of DIAGNOSE code X'94' 
execution, control is returned to the invoker with a condition code set to indicate 
the status of the DIAGNOSE. The condition codes returned to the invoker are: 

Condition 
Code Result 

0 Function completed successfully. All requested ranges 
have been dumped. 

1 Function completed unsuccessfully. Portions of the 
requested ranges have been dumped. The Ry register 
contains a numeric value (the return code) which 
indicates the reason for the failure. 

2 Unsuccessful completion. No dump has been created. 
The Ry register contains a numeric value (the return 
code) which indicates the reason for the failure. 

The return codes returned to the invoker are: 

Return Condition 
Code Code Description 

0 0,1 Successful completion. 

4 2 Parameter list exceeds 240 bytes (30 
doublewords) 

8 1,2 System I/O error 

Chapter 26. The DIAGNOSE Instruction in a Virtual Machine 343 



Return Condition 
Code Code Description 

C 1,2 Violation of fetch protection 

10 2 Invalid range 

14 2 Conflicting option 

18 2 U serid missing or invalid 

lC 2 Hexloc missing or invalid 

20 2 Parameter missing 

24 2 U serid not in directory 

28 2 Spooling error 

2C 2 Hexloc exceeds storage 

30 2 List spans page boundary 

34 2 Invalid address pointer 

Detailed Description of Return Codes 

Return 
Code Meaning 

o Successful completion. 

CC=O indicates that a dump of all the requested area has been created. 

CC= 1 indicates that a dump of only a portion of the requested area has 
been created. This can occur when a valid address range and DSS 
(discontiguous saved segments) are requested but no discontiguous saved 
segments are loaded for the user. 

4 The parameter list exceeds 240 bytes (30 doublewords). No dump has 
been created. 

8 System I/O error. 

CC= 1 indicates that the system failed to bring in a 4K page within and 
address range. This causes a partial dump to be created. 

Note: No dump is created if the 4K page is the only page requested. 

CC=2 indicates that the system failed to bring in the parameter list or 
the dump address list. These conditions do not create a dump. 

C Violation of fetch protection; the storage keys do not match. 

CC= 1 indicates that the system found a 4K page within an address 
range. A partial dump is created. 

Note: No dump is created if the 4K page is the only page requested. 

344 VM/SP System Programmer's Guide 



( 

10 

14 

18 

lC 

20 

24 

28 

2C 

30 

CC=2 indicates that a parameter list or dump address list is fetch 
protected. No dump is created. 

Invalid range. The ending address is less than the starting address or the 
maximum number of ranges (2,049) was exceeded. No dump has been 
created. 

Conflicting option. No dump has been created. 

Userid is missing or invalid. Userid consists of more than eight 
characters. No dump has been created. 

Hexloc missing or can not be converted into hexadecimal, or the value 
specified for the number of address ranges in the address list is zero. No 
dump has been created. 

Required parameter missing. No dump has been created. 

Userid not in directory. No dump has been created. 

Spooling error. No dump has been created. 

Hexloc exceeds storage size. No dump has been created. 

Parameter list or dump list spans the page boundary. No dump has been 
created. 

34 Invalid address pointer. Pointer points to storage outside of the user 
defined storage area. No dump has been created. 

DIAGNOSE Code X l 981 
-- Real Channel Program Support 

Privilege class ANY 

Using DIAGNOSE code X'98', a virtual machine can lock and unlock virtual 
pages, and it can execute its own real channel programs. 

Entry Values: The Rx register contains a hexadecimal code indicating the operation 
to be performed. The possible codes are: 

Code Function 
0000 Lock a virtual page 
0004 Unlock a virtual page 
0008 Perform I/O on a real CCW string 

The Ry register contains either the virtual address of a user's page to be locked or 
unlocked, or else, if Rx contains X' 0008', a virtual device address. 

Chapter 26. The DIAGNOSE Instruction in a Virtual Machine 345 



I Subcode X'OOOO' 

Notes: 

1. The Ry register cannot be equal to 15, and the Rx register cannot be equal to 
register Ry or Ry+ 1. If this is so, you will receive a specification error. 

2. The page address in Ry must fall within the virtual machine's storage size. 
DIAGNOSE code X'98' does not support operations on pages in saved segments 
which lie outside of the virtual machine's storage size. 

Exit Values: Ry+ 1 contains a return code if the operation was unsuccessful 
(indicated by condition code 3). If a lock operation was successful, Ry+ 1 contains 
the real address of the successfully locked page. 

Notes: 

1. DIAGNOSE code X'98' is provided to only those users defined as being 
authorized in the system directory by the DIAG98 option. Any users attempting to 
use DIAGNOSE code X'98 , without being authorized by the DIAG98 directory 
option will receive an operation exception. 

2. A virtual machine should only use the real addresses returned by DIAGNOSE 
code X'98' in its real channel programs. The virtual machine is responsible for 
any security violations it may cause from using any other real addresses. 

Rx = function subcode 
Ry = virtual address of a page to be obtained and locked 
Ry+ 1 = real address of the user's page if the lock attempt was successful; a return 

code if the locking operation was unsuccessful (indicated by condition 
code three). 

Return Code 
1 
2 
3 
4 

Error 
user is running virtual=real 
invalid virtual address 
page unavailable in dynamic page area 
page already locked 

This subfunction locks in real storage a selected page of a user's virtual storage, 
thus excluding the page from future paging activity. Locking pages can enhance 
the efficiency of a particular virtual machine by keeping frequently-used pages in 
real storage. 

If too many pages of real storage are locked, other virtual machines may not have 
enough available remaining pages to operate efficiently. This can severely degrade 
the throughput in all virtual machines because of excessive contention for the 
remaining available page frames. So, if the amount of page frames available for 
paging is limited, DIAGNOSE code X'98' subcode X'OOOO' should not be used 
without the system programmer's approval. 

O~ce a ~ge is locked, it remains locked until the user either logs off the system or 
issues the UNLOCK command for that page. If a user with the locked pages 
option in effect re-IPLs the system by device address and specifies the clear option, 

346 VM/SP System Programmer's Guide 



I Subcode X'0004' 

1 Subcode X'OOOS' 

the locked pages are unlocked and available to the system being loaded. If a user 
with the locked pages option in effect re-IPLs the system by device address and 
doesn't specify the clear option, all locked pages remain locked except the page 
given to DMKVMI for IPL. If a user with the locked pages option in effect 
re-IPLs the system by name (shared system), the locked pages are unlocked only if 
the locked pages are not in the shared segment or if the page is in the shared 
segment and the user who is re-IPLing is the last user of the shared segment. In 
addition, issuing DIAGNOSE codes X'14', X'30', X'34', or X'38' against a 
locked page causes the page to become unlocked. Shared pages cannot be locked 
in a system generated for AP or MP operation. 

The virtual pages locked in processor storage are blocks of 4K (4096) bytes. This 
block of storage need not represent all of the user's virtual storage. DIAGNOSE 
code X '98' subcode X' 0000' may be issued as many times as required for one 
virtual machine to lock noncontiguous pages of storage. The remaining virtual 
machine storage blocks may remain pageable. 

Note: For a user's virtual storage, DIAGNOSE code X'98' subcode X'OOOO' 
operates exactly like the CP LOCK command. 

Rx = function subcode 
Ry = virtual address of page to be unlocked 
Ry+ 1 = return code if the operation was unsuccessful (indicated by condition code 

three). 

Return Code 
1 
2 
3 

Error 
user is running virtual=real 
invalid virtual address 
page already unlocked 

DIAGNOSE code X'98' subcode X'0004' unlocks a page of a virtual machine 
that was previously locked by a DIAGNOSE code X'98' subcode X'OOOO' or a 
CP LOCK command. Once pages are unlocked, they are available to CP for other 
virtual machine paging operations. 

Note: For a user's virtual storage, DIAGNOSE code X'98' subcode X'0004' 
operates exactly like the CP UNLOCK command. 

Rx = function subcode 
Ry = virtual device address (bits 16-31) 
Ry+ 1 = return code if the operation was unsuccessful (indicated by condition code 

three). 

Return Code 
1 
2 
3 

Error 
device not operational 
device not dedicated 
virtual CAW key is zero 

Chapter 26. The DIAGNOSE Instruction in a Virtual Machine 347 

--.. -.---. ---~~- ~- -----



Condition codes zero, one, and two are compatible with normal virtual I/O so that 
conditions can be consistently reflected to the virtual machine. 

This function executes the real channel program built by the virtual machine. To 
do this, it interfaces with the current virtual I/O support to perform actual I/O. 

Notes: 

1. This performs identically to the virtual SIOF instruction, except that all I/O 
addresses are real addresses and channel program translation can be bypassed. 

2. The user must coordinate locking of pages containing CCWs and data areas by 
using the lock and unlock subfunctions. 

348 VM/SP System Programmer's Guide 



( 

Chapter 27. CP Conventions 

CP Coding Conventions 

The following are coding conventions used by CP modules. This information 
should prove helpful if you debug, modify, or update CPo 

1. 

2. 

FORMAT: 

Column Contents 
1 Labels 

10 Op Code 
16 Operands 
31,36,41, etc. Comments (see Item 2) 

COMMENT: 

Approximately 75 percent of the source code contains comments. Sections of 
code performing distinct functions are separated from each other by a 
comment section. 

3. CONSTANTS: 

Constants follow the executable code and precede the copy files and/or 
macros that contain DSECTs or system equates. Constants are defined in a 
section followed by a section containing initialized working storage, followed 
by working storage. Each of these sections is identified by a comment. 
Wherever possible for a module that is greater than a page, constants and 
working storage are within the same page in which they are referenced. 

4. No program modifies its own instructions during execution. 

5. No program uses its own unlabeled instructions as data. 

6. REGISTER USE: 

For CP, in general 

Register 
6 
7 
8 

Use 
RCHBLOK, VCHBLOK 
RCUBLOK,VCUBLOK 
RDEVBLOK,VDEVBLOK 

Chapter 27. CP Conventions 349 



10 
11 
12 
13 
14 
15 

IOBLOK 
VMBLOK 
Base register for modules called via SVC 
SA VEAREA for modules called via SVC 
Return linkage for modules called via BALR 
Base address for modules called via BALR 

For Virtual-to-Real address translation 

Register 
1 
2 

Use 
Virtual address 
Real address 

When describing an area of storage in mainline code, a copy file, or a macro, 
DSECT is issued containing DS instructions. 

Meaningful names are used instead of self-defining terms: for example, 
5,X'02' ,C'I' to represent a quantity (absolute address, displacement, length, 
should be symbolic and defined by an equate (EQU) listing. For example: 

VMSTATUS EQU X'02' 

To set a bit, use: 

01 BYTE,B1T 

where BYTE = name of field, BIT is an EQU symbol. 

To reset a bit, use: 

N1 BYTE,X'FF'-B1T 

To set multiple bits, use: 

01 BYTE,B1T1+B1T2 

All registers are referred to as: 

RO, R1, ... , R15. 

All lengths of fields or control blocks are symbolic, that is, length of VMBLOK 
is: 

VMBLOKSZ EQU *-VMBLOK 

9. Avoid absolute relative addressing in branches and data references, (that is, 
location counter value (*) or symbolic label plus or minus a self-defining term 
used to form a displacement). 

10. When using a single operation to reference multiple values, specify each value 
referenced, for example: 

350 VM/SP System Programmer's Guide 

/ "-, 



( 

( 

LM R2,R4,CONT SET R2=CON1 
SET R3=CON2 
SET R4=CON3 

CON 1 DC F'1' 
CON2 DC F'2' 
CON3 DC F'3' 

11. Do not use PRINT NOGEN or PRINT OFF in source code. 

12. MODULE NAMES: 

Control Section Names and External References are as follows: 

Control Section or Module Name 

Thefirst three letters of the module name are the assigned component code. 

Example: DMK 

The next three letters of the module name identify the module and must be 
unique. 

Example: DSP 

This three-letter, unique module identifier is the label of the TITLE card. 

Each entry point or external reference must be prefixed by the six letter unique 
identifier of the module. 

Example: DMKDSPCH 

13. TITLE CARD: 

DSP TITLE 'DMKDSP (CP) * VIRTUAL MACHINE PRODUCT * 5664-167' 

14. ERROR MESSAGES: 

There should be no insertions into the message at execution time and the 
length of the message should be resolved by the assembler. If insertions must 
be made, the message must be assembled as several DC statements, and the 
insert positions must be individually labeled. 

15. For all Rx instructions use a comma (,) to specify the base register when 
indexing is not being used, that is: 

L R2 ,AB (,R4) 

16. To determine whether you are executing in a virtual machine or in a real 
machine, issue the Store Processor ID (STIDP) instruction. If STIDP is issued 
from a virtual machine, the version code, which precedes the CPUID field, will 
be X'FF'. 

Chapter 27. CP Conventions 351 



CP Loadlist Requirements 

The CP loadlist EXEC contains a list of CP modules used by the VMFLOAD 
procedures when punching the text decks that will make up the CP system. All 
modules following DMKCPE in the list are pageable CP modules. Each 4K page 
in this area may contain one or more modules. The module grouping is governed 
by the order in which they appear in the loadlist. An SPB7 (Set Page Boundary) 
card, a loader control card placed in the text file, forces the loader to start this 
module at the next higher 4K boundary. The loader automatically moves a module 
to the next higher 4K boundary if it cannot fit in with its predecessors on the load 
list. In this case a message is placed on the load map: 

"SPB INSERTED" 

as part of the line 

"**EXTERNAL SYMBOL DICTIONARY FOR DMKXXX" 

An SPB card is required only for the first module following DMKCPE. If more 
than one module is to be contained in a 4K page, only the first can be assembled 
with an SPB card. The second and subsequent modules for a multiple module 4K 
page must not contain SPB cards. 

The position of several modules in the loadlist is critical. All modules following 
DMKCPE must be reenterable and must not contain any address constants 
r~ferring to anything in the pageable CP area. DMKCKP, DMKCKD, DMKCKF, 
DMKCKH, DMKCKM, and DMKCKN must be the last six modules in the loadlist 
and they must appear in this order. It is also recommended that DMKPSA be the 
first module in the CP resident nucleus. 

No change should be made to the sequence of modules in the resident or pageable 
portion of the loadlist. 

7 A 12-2-9 multipunch must be in column 1 of an SPB card and the characters SPB in 
columns 2, 3, and 4 respectively. 

352 VM/SP System Programmer's Guide 

-- -- --- ---------



( 

( "-., 

Chapter 28. Print Buffers and Fonns Control 

The 3203, 3262, 3289 Model 4, 4245, and 4248 use the same type Forms Control 
Buffer as the 3211 Printer. The 4248 can also use the extended FCB. Please note 
that the FCB loaded in a virtual 3203, 3211, or 3262 should be compatible with 
the FCB loaded in the real counterpart. Otherwise, the results can be 
unpredictable. The 3203 and 3262 use the Universal Character Set (UCS) used by 
the 1403 Printer. 

The 3203 and 3262 attach a 64-byte associative field to the end of the UCS to 
check, during print line buffer (PLB) loading, that each character loaded into the 
PLB for printing is also on the print train. The 3203 associative field is exactly like 
the 3211 associative field described in Figure 36 on page 359, with the exception 
that the addresses begin at 240. You also need an associative field when making 
use of the UCS buffer. Refer to your printer's Components Description Manual 
for a detailed layout of the associative field. 

For the 4245 and 4248, the UCS image is loaded by the printer. 

Buffer images are supplied for the UCS (Universal Character Set) buffer, the 
UCSB (Universal Character Set Buffer), the FOB (Font Offset Buffer), and the 
FCB (Forms Control Buffer). The VM/SP-supplied buffer images are: 

• UCS - for the 1403 and 3203 Printers 

Name 
AN 
HN 
PCAN 
PCHN 
QN 
QNC 
RN 
YN 
TN 
PN 
SN 

Meaning 
Normal AN arrangement 
Normal HN arrangement 
Preferred character set, AN 
Preferred character set, HN 
PL/I - 60 graphics 
PL/I - 60 graphics 
FORTRAN, COBOL commercial 
High speed alphanumeric 
Text printing 120 graphics 
PL/I - 60 graphics 
Text printing 84 graphics 

• UCSB - for the 3211 Printer 

Name 
All 
Hll 
Gll 
Pll 

Meaning 
Standard Commercial 
Standard Scientific 
ASCn 
PLI 

Chapter 28. Print Buffers and Forms Control 353 



TIl Text Printing 

• UCSB - for the 3262 Printer 

Name Meaning 
P48 48 character print image 
P52 52 character print image (Austria/Germany) 
P63 63 character print image, optimized 
P64 64 character print image 
P96 96 character print image 
P116 116 character print image (French/Canadian) 
P128 128 character print image (Katakana) 

• FOB - for the 3289 Model 4 printer 

Name Meaning 
F48 Font Offset Buffer for the 48-character print belt 
F64 Font Offset Buffer for the 64-character print belt 
F94 Font Offset Buffer for the 94-character print belt 
F127 Font Offset Buffer for the 127-character print belt 

I. FCB - for the 3203, 3211, 3262, 3289 Model 4, 4245, and 4248 Printers 

Two names are provided for an FCB image. 

Name 

FCBl 

354 VM/SP System Programmer's Guide 

Meaning 

Space 6 lines/inch 
Length of page -- 66 lines 
Paper size -- 11 inches 

Line 
Represented 

1 
3 
5 
7 
9 
11 
13 
15 
19 
21 
23 
64 

Channel 
Skip 

Specification 
1 
2 
3 
4 
5 
6 
7 
8 
10 
11 
12 
9 



( 

( 

Name Meaning 

FCB8 Space 8 lines/inch 
Length of page 68 lines 
Paper size -- 8.5 inches 

Line 
Channel 
Skip 

Represented 
1 

Specification 
1 

4 2 
8 3 
12 4 
16 5 
20 6 
24 7 
28 8 
32 10 
36 11 
63 12 
66 9 

For the exact contents of the buffer images, see the 

IBM 2821 Control Unit Component Description 

IBM 3211 Printer 

IBM 3216 Interchangeable Train Cartridge 

IBM 3811 Printer Control Unit Component Description and Operator's Guide 

IBM 3289 Line Printer Model 4 and Component Description 

IBM 3262 Printers I and II Component Description. 

The following table indicates in which module you should code the images for each 
printer: 

Data Module 
DMKFCB 
DMKDCS 
DMKDCC 
DMKPIA 
DMKPm 
DMKDCB 

Printer 
All 3211 type printers 
DCS image for the 1403 printer 
DCS image for the 3203 printer 
DCS image for the 3289E printer 
DCS image for the 3262-1/11 printer 
DCS image for the 3211 printer 

For further information refer to the Component Description of the printer for 
which the image is being coded. 

If you find that the supplied buffer images do not meet your needs, you can alter a 
buffer image or create a new buffer image. Be careful not to violate the VM/SP 

Chapter 28. Print Buffers and Forms Control 355 



coding conventions if you add a new buffer image; buffer images must not cross 
page boundaries. 

Adding New Print Buffer Images 

To add a new print buffer image to VM/SP, you must: 

1. Provide a buffer image name and 12-byte header for the buffer load. 

2. Provide the exact image of the print chain. 

3. Provide a means to print the buffer image if VER is specified on the 
LOADBUF command. 

4. Rebuild the CP nucleus so that it includes the changed modules. 

Macros are available that make the process of adding buffer images relatively easy 
and should be used to avoid errors. 

UCS Buffer Images for the 1403 Printer 

The Universal Character Set (UeS) buffer contains up to 240 characters and 
supports the 1403 printer. To add a new UCS buffer image, first code the ues 
macro. This creates a 12-byte header for the buffer load that is used by ep. The ~j 
format of the UCS macro is: 

I UCS I ucsname 

where: 

ucsname is a 1- to 4-character name that is assigned to the buffer load. 

Next, supply the exact print image. The print image is supplied by coding DCs in 
hexadecimal or character format. The print image may consist of several DCs, the 
total length of the print image cannot exceed 240 characters. 

The ucseew macro must immediately follow the print image. This macro creates 
a cew string to print the buffer load image when VER is specified by the operator 
on the LOADBUF command. The format of the ucseew macro is: 

. where: 

ucsname 

I uescew I ucsname[,(print1,print2, ... ,print12)] 

is a 1- to 4-character name that is assigned to the buffer load by the 
UCS macro. 

356 VM/SP System Programmer's Guide 



( 

( 

[(printl , ... ,printl2) ] 
is the line length (or number of characters to be printed by the 
corresponding eeW) for the verify operation. Each count specified 
must be between 1 and 132 (the length of the print line on a 1403 
printer) and the default line length is 48 characters. Up to 12 print 
fields may be specified. However, the total number of characters to 
be printed may not exceed 240. 

Finally, insert the macros just coded, ues and ueseew, into the DMKUeS 
module. This module must be reloaded. DMKUeS is a page able module with no 
executable code. DMKUeS must be on a page boundary and cannot exceed a full 
page in size. If DMKUeS exceeds a page boundary (4K), an error message is 
issued. 

Examples of New UCS Buffer Images 

Example 1: You do not have to specify the line length for verification of the buffer 
load. Insert the following code in DMKUeS: 

UCS EX01 
DC 5CL'1234567890A ... Z1234567890*/' 
UCSCCW EX01 

The buffer image is 5 representations of a 48-character string containing: 

• The alphabetic characters 
The numeric digits, twice 
The special characters: * and / 

Since the line length for the print verification is not specified on the ueseew 
macro, it defaults to 48 characters per line for 5 lines. 

Example 2: Insert the following code in DMKUeS: 

UCS NUM1 
DC 24CL'1234567890' 
UCSCCW NUM1, (60,60,60,60) 

The NUMI print buffer consists of twenty-four 10-character entries. If, after 
DMKUeS is reloaded, the command 

LOADBUF OOE UCS NUM1 VER 

is specified, 4 lines of 60 characters (the lO-character string repeated 6 times) are 
printed to verify the buffer load). 

Example 3: The print image can be specified in character or hexadecimal notation, 
or a combination of the two. The code in DMKUeS to support the preferred 
character set, AN, is as follows: 

Chapter 28. Print Buffers and Forms Control 357 



UCS PCAN 
DC C'1234567890,-PQR#$@/STUVWXYZ',X'9C' LOZENGE (9C) 
DC C' . *1234567890,-JKLMNOABCDEFGHI+. * , 
DC C'1234567890,-PQR&&$%/STUVWXYZ',X'9C' LOZENGE (9C) 
DC C' . *1234567890,-JKLMNOABCDEFGHI+. * , 
DC C'1234567890,-PQR#$@/STUVWXYZ',X'9C' LOZENGE (9C) 
DC C'.*1234567890,-JKLMNOABCDEFGHI+.*' 
DC C'1234567890,-PQR&&$%/STUVWXYZ' ,X'9C' LOZENGE (9C) 
DC C'.*1234567890,-JKLMNOABCDEFGHI+.*' 
UCSCCW PCAN, (60,60,60,60) 

The DCs are coded in both character and hexadecimal notation. The hexadecimal 
. code for the lozenge ('9C') follows the character notation on 4 of the DCs. The 
DCs, when taken in pairs, represent 60 characters. When print verification of a 
buffer load is requested, 4 lines of 60 characters are printed. 

UCSB Buffer Images for the 3211 Printer 

The Universal Character Set Buffer (UCSB) contains up to 512 characters and 
supports the 3211 printer. To add a new UCSB image, first code the UCB macro. 
This macro creates a 12-byte header record for the buffer load that is used by CPo 
The format of the UCB macro is: 

IUCB I ucbname 

where: 

ucbname is a 1- to 4-character name that is assigned to the buffer load. 

Next, supply the exact print image. The print image is supplied by coding DCs in 
hexadecimal or character notation. The total length of the print image cannot 
exceed 512 characters. 

The format of the UCSB is: 

Position 

1-432 

433-447 

448-511 

512 

358 VM/SP System Programmer's Guide 

Contents 

Print train image. 

Reserved for IBM use. Must be all zeroes. 

Associative field. See Figure 36 on page 359 for an explanation of 
the contents of this field. The associative field is used to check 
(during print line buffer (PLB) loading) that each character loaded 
into the PLB for printing also appears in the train image field of the 
UCSB and, therefore, is on the print train. Any character loaded 
into the PLB without its associated code in the train image field of 
the UCSB is nonprintable, and causes a "print data check" to be set 
immediately. The associativebfield also contains dual control bits. 

Reserved for IBM use. Must be zero. 

-- - -------

/ 



Bit 0 Bit 1 Bit 2 Bit 3 

UCSB Hexa- Graphic & Control Hexa- Graphic & Control Hexa- Graphic & Control Haxa- Graphic & Control 
Address decimal Symbols EBCDIC decimal Symbols EBCDIC decimal Symbols EBCDIC decimal Symbols EBCDIC 

( 448 00 NUL 40 SP 80 CO J 
449 01 41 81 a C1 A 
450 02 42 82 b C2 B 
451 03 43 83 c C3 C 
452 04 PF 44 84 d C4 D 

453 05 HT 45 85 e C5 E 
454 06 LC 46 86 f C6 F 
455 07 DEL 47 87 9 C7 G 
456 08 48 88 h C8 H 
457 09 49 89 i C9 I 

458 OA 4A I 8A { CA 
459 OB 4B 8B CB 
460 OC 4C < 8C ~ CC J1 
461 OD 40 ( 80 ( CD 
462 OE 4E + 8E + CE Y 
463 OF CU1 4F I 8F CF } 464 10 50 & 90 DO 
465 11 51 91 j D1 J 
466 12 52 92 k 02 K 
467 13 53 93 I D3 L 

468 14 RES 54 94 m 04 M 
469 15 NL 55 95 n D5 N 
470 16 BS 56 96 a D6 0 
471 17 IL 57 97 p 07 P 
472 18 58 98 q D8 0 

473 19 59 99 r D9 R 
474 1A CC 5A ! 9A } OA 
475 1B 5B $ 9B OB 
476 lC 5C . 9C 0 DC 
477 1D 5D ) 90 ) DD 

478 lE 5E ; 9E ± DE 
479 IF CU2 5F ., 9F • DF 
480 20 60 - AO 

0 
EO \ 

481 21 61 / Al E1 
482 22 62 A2 5 E2 S 

483 23 63 A3 t E3 T 
484 24 BYP 64 A4 u E4 U 
485 25 LF 65 A5 v E5 V 
486 26 EOB 66 A6 w E6 W 
487 27 PRE 67 A7 x E7 X 

488 28 68 A8 Y E8 Y 
489 29 69 A9 z E9 Z 
490 2A SM 6A I AA EA I 

491 2B 6B AB L EB 
492 2C 6C % AC r- EC rI 

493 2D 60 :> AD [ ED 
494 2E 6E AE 2- EE 
495 2F CU3 6F ? AF • EF 
496 30 70 BO 0 FO 0 
497 31 71 Bl 1 F1 1 

498 32 72 B2 2 F2 2 
499 33 73 B3 3 F3 3 
500 34 PN 74 B4 4 F4 4 
501 35 RS 75 B5 5 F5 5 
502 36 UC 76 B6 6 F6 6 

503 37 EOT 77 B7 7 F7 7 
504 38 78 B8 8 F8 8 
505 39 79 \ B9 9 F9 9 
506 3A 7A BA FA 
507 3B 7B # BB .J FB 

508 3C 7C @ BC ..., FC 
509 3D 70 BO 1 FD 
510 3E 7E = BE =F FE 
511 3F 7F " BF - FF 

(-
Figure 36. UCSB Associative Field Chart 

Chapter 28. Print Buffers and Forms Control 359 



The UCBCCW macro must immediately follow the print image. This macro 
creates a CCW string to print the buffer load image when the operator specifies 
VER on the LOADBUF command. The format of the UCBCCW macro is: 

I UCBCCW I ucbname[,(printl,print2, ... printl2)] 

where: 

ucbname is 1- to 4-character name that is assigned to the buffer load by the 
UCBmacro. 

[(printl , ... ,printl2)] 
specifies the line length of each line (up to 12) printed to verify the 
buffer load. The line length must be between 1 and 150 (the length of 
a print line on a 3211 printer). The default specification for 
verification is 48 characters per line for nine lines. The total number 
of characters to be printed must not exceed the size of the print train 
image, 432 characters. 

Finally, insert the two macros just coded, UCB and UCBCCW, into the DMKUCB 
module. This module must be reloaded before the new buffer image can be used. 
DMKUCB is a pageable module with no executable code. DMKUCB must be on a 
page boundary and cannot exceed a full page in size. If DMKUCB exceeds a page 
boundary (4K), an error message is issued. 

Examples of UCSB Images 

The code for the All UCSB is as follows: 

* A11 STANDARD COMMERCIAL 48 GRAPHICS 3211 
UCB A 11 
DC 9C'1<.+IHGFEDCBA*$-RPQONMLKJ%,&&ZYXWVUTS/@098765432' 
DC X'OOOOOO' 433-435 
DC X'000000000000000000000000101010' 436-450 
DC X'101010101010100040404240004010' 451-465 
DC X'101010101010101000404041000040' 466-480 
DC X'401010101010101010004040000000' 481-495 
DC X'101010101010101010100040404448' 496-510 
DC X'OOOO' 511-512 
UCBCCW A11, (48,48,48,48,48,48,48,48,48) 
EJECT 

Note that the DC specification contains 49 characters and the UCBCCW macro 
specifies 48 characters. The ampersand (&) must be coded twice to be accepted by 
the assembler. The single quote (') must also be specified twice to be accepted. 

It would have been acceptable to code the UCBCCW as: 

UCBCCW A11 

since the default is what was coded. 

360 VM/SP System Programmer's Guide 

.. / 



( . FOB Buffer Images for the 3289 Model 4 Printer 

(. 

The Font Offset Buffer (FOB) contains 256 font offset bytes and supports the 
3289 Model 4 printer. A font offset byte defines a character by specifying its 
location on a print belt. The location of the character is specified in terms of its 
distance (offset) from a fixed reference point. 

To add a new FOB, create a header for the buffer, supply the contents of the new 
buffer, and provide a means to print the buffer image if the operator must verify its 
contents. 

First, code the FOB macro instruction to create a 12-byte header record to be used 
by the CPo The format of the FOB macro instruction is: 

I fobname 

where: 

fobname is a 1- to 4-character name that is assigned to the buffer. 

Next supply the exact contents of the Font Offset Buffer by coding DCs in 
hexadecimal format. Several DCs can be coded, but the total buffer length must be 
256 bytes. (If the buffer does not contain 256 bytes, the load check bit is set.) 

The FOBCCW macro instruction must be coded immediately following the DCs 
that define the buffer contents. This macro instruction creates a CCW string to 
print the buffer data when the operator specifies VER on the LOADBUF 
command. The format of the FOBCCW macro instruction is: 

I FOBCCW I fobname [(printl,print2, ... printI2)] 

where: 

fobname is the 1- to 4-character name assigned to the buffer by the FOB macro 
instruction. 

[(printl , ... print12)] 
specifies the length of each line (up to 12 lines) printed to verify the 
buffer contents. The line length must be between 1 and 132 (the line 
length of a 3289 Model 4 printer). The default specification for 
verification is eight 64-byte lines of hexadecimal formatted data. The 
total number of hexadecimal bytes to be printed must not exceed 512. 
(There are two printed bytes for each of the 256 bytes of data in the 
buffer.) 

Finally, insert the two macros just coded, FOB and FOBCCW, into the DMKPIA 
module. This module must be reloaded before the new buffer image can be used. 
DMKPIA is a pageable module with no executable code. DMKPIA must be on a 
page boundary and cannot exceed a full page in size. If DMKPIA exceeds a page 
boundary (4K), an error message is issued. 

Example: The F64 Buffer 

Chapter 28. Print Buffers and Forms Control 361 



FOB F64 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
FOBCCW 

X'7F' ,63X'80' 
X'7F' ,9X'80' ,X'302E31322D3315' 
9X'80' ,X'342223353637210C',9X'80' 
X'1617393A3B' ,9X'80','3F3COAOB2F303E' 
65X'80' ,X'2425262728292A2B2C' 
7X'80' ,X'18191A1B1C1D1E1F20' 
6X'80' ,X'38800DOEOF1011121314' 
6X'80' ,X'09000102030405060708' 
6X'80' 
F64, (64,64,64,64,64,64,64,64) 

UCC Buffer Images for the 3203 Printer 

The uee buffer contains up to 240 characters and supports the 3203 printer. To 
add a new uee buffer image, first code the uee macro. This creates a 12-byte 
header for the buffer load that is used by ep. The format of the uee macro is: 

luee I uccname 

where: 

uccname is a 1- to 4-character name that is assigned to the buffer load. 

Next, supply the exact print image. The print image is supplied by coding Des in 
hexadecimal or character format. The print image may consist of several Des, the 
total length of the print image cannot exceed 240 characters. 

The ueeeew macro must immediately follow the 64-byte associative field, which 
must follow the print image. (See Note 3.) This macro creates a eew string to 
print the buffer load image when VER is specified by the operator on the 
LOADBUF command. The format of the ueeeew macro is: 

I ueeeew I uccname[,(printl,print2, ... ,printl2)] 

where: 

uccname is a 1- to 4-character name that is assigned to the buffer load by the 
Ueemacro. 

[(printl, ... ,printl2) ] 
is the line length (or number of characters to be printed by the 
corresponding eeW) for the verify operation. Each count specified 
must be between 1 and 132 (the length of the print line on a 3203 
printer) and the default line length is 48 characters. Up to 12 print 
fields may be specified. However, the total number of characters to 
be printed may not exceed 240. 

Finally, insert the macros just coded, uee and ueeeew, into the DMKUee 
module. This module must be reloaded. DMKUee is a pageable module with no 
executable code. DMKUee must be on a page boundary and cannot exceed a full 
page in size. If DMKUee exceeds a page boundary (4K), an error message is (~---" 
issued. ~/ 

362 VM/SP System Programmer's Guide 



( Examples of New UCC Buffer Images 

Example 1: You do not have to specify the line length for verification of the buffer 
load. 

Note: This example is only a representation, and not an actual buffer image. 
Insert the following code in DMKUee: 

UCC EX01 
DC 5CL'1234567890A ... Z1234567890*/' 
DC X'C0101010101010101010004000404000' 
DC X'40101010101010101010004040400000' 
DC X'40401010101010101010004000000000' 
DC X'10101010101010101010000000404000' 
UCCCCW EX01 

240-255 
256-271 
272-287 
288-303 

The buffer image is 5 representations of a 48-character string containing: 

• The alphabetic characters 
• The numeric digits, twice 
• The special characters: * and / 

Since the line length for the print verification is not specified on the ueeeew 
macro, it defaults to 48 characters per line for 5 lines. 

Example 2: Insert thE'> following code in DMKUee: 

I Note: This example is only a representation, and not an actual buffer image. 

UCC NUM1 
DC 24CL'1234567890' 
DC X'C0101010101010101010004000404000' 
DC X'40101010101010101010004040400000' 
DC X'40401010101010101010004000000000' 
DC X'10101010101010101010000000404000' 
UCCCCW NUM1, (60,60,60,60) 

240-255 
256-271 
272-287 
288-303 

The NUMI print buffer consists of twenty-four 10-character entries. If, after 
DMKUCC is reloaded, the command 

LOADBUF OOE UCS NUM1 VER 

is specified, 4 lines of 60 characters (the 10-character string repeated 6 times) are 
printed to verify the buffer load. 

Note: The ues buffer for the 3203 MODEL 4 and MODEL 5 printers is 
programmed essentially the same as for the 1403 printer. You should follow the 
same procedures for programming this buffer, noting the differences listed below. 

1. Instead of the ues macro, code the uee macro (which is equivalent to the 
ues macro for the 1403). 

2. The print train image should be 240 bytes long. 

Chapter 28. Print Buffers and Forms Control 363 



3. Immediately after the print image, the DUAL and UNCOMPARABLE 
TABLE (DUCT) should appear. The DUCT should be 64 bytes long and start 
at byte 240 in the UCS buffer. 

4. Following the DUCT should be the UCCCCW macro (which is equivalent to 
the UCSCCW macro). 

5. Finally, the completed macros and UCS data should be inserted into the 
DMKUCC module. 

Note that when the UCCCCW macro is coded, you may specify that a maximum of 
240 bytes is to be printed. 

Also, the UCS buffer for the 3203 MODEL 5 printer must be 304 bytes long, 
while the UCS buffer for the 3203 MODEL 4 printer may be less (however, if the 
LOADBUF command is issued, the buffer must be 304 bytes long). For 
information on the effects of the lower UCS buffer length, you should consult the 
3203 Component Description and Operator's Guide, GS33-1515. 

For more information on coding the DUCT, consult the IBM 3203 MODEL 5 
Component Description and Operator's Guide, (GA33-1529), or the IBM 3203 
Component Description and Operator's Guide, (GA33-1515). 

PIB Buffer Images for the 3262 Modell and II Printers 

The pm buffer contains up to 132 characters and supports the 3262 printer. To 
add a new pm buffer image, first code the pm macro. This creates a 12-byte 
header for the buffer load that is used by CPo The format of the pm macro is: 

I PIB I pibname 

where: 

pibname is a 1- to 4-byte character name that is assigned to the buffer load. 

Next, supply the exact print image. The print image is supplied by coding DCs in 
hexadecimal or character format. The print image may consist of several DCs, the 
total length of the print image cannot exceed 288 characters. 

The pmccw macro must immediately follow the print image. This macro creates 
a CCW string to print the buffer load image when VER is specified by the operator 
on the LOADBUF command. The format of the pmccw macro is: 

I pmccw I pibname [,(printl,print2, ... , print12)] 

where: 

pibname is a 1- to 4-character name that is assigned to the buffer load. 

364 VM/SP System Programmer's Guide 

./ 



[,(printl,print2, ... ,printl2)] 
specifies the length of each line (up to 12 lines) printer to verify the 
buffer contents. The line length must be between 1 and 132 (the 
length of the print line on a 3262 printer) and the default line length is 
24 characters. Up to 12 print fields can be specified. However, the 
total number of characters to be printed may not exceed 288. 

Finally, insert the macros just codes, PIB and PIBCCW, into the DMKPIB module. 
This module must be reloaded. DMKPIB is a page able module with no executable 
code. DMKPIB must not exceed a full page in size. If DMKPIB exceeds a page 
boundary (4K), an error message is issued. 

Examples of New pm Buffer Images 

Example 1: You do not have to specify the line length for verification of the buffer 
load. Insert the following in DMKPIB: 

PIB EX01 
DC 8CL36'1234567890 ... WXYZ' 
PIBCCW EX01 

The buffer image is 8 representations of a 24-character string containing: 

• The numeric digits 
• The alphabetic characters 

Since the line length for the print verification is not specified on the PIBCCW 
macro, it defaults to 24 characters p~r line for 8 lines. 

Example 2: Insert the following code in DMKPIB: 

PIB EX02 
DC 8CL36'1234567890 ... WXYZ' 
PIBCCW EX02, (36,36,36,36,36,36,36,36) 

The EX02 print buffer consists of eight 36-character entries. If, after DMKPIB is 
reloaded, the command: 

LOADBUF OOE UCS EX02 VER 

is specified, 8 lines of 36 characters are printed to verify the buffer load. 

Forms Control Buffer 

IUs possible to have a forms control buffer with both a virtual and real 3211-type 
(3203,3211,3262-1/5/11,3289 Model 4, 4245, 4248) printer. A virtual 
32U-type printer file can be printed on a real 1403; in fact, one way to provide 
forms control for a 1403 is to define it as a virtual 3211. The 4248 can also use 
the extended forms control buffer. 

There is an FCB macro to support 3211-type forms control. The format of the 
FCB macro is: 

Chapter 28. Print Buffers and Forms Control 365 



where: 

fcbname 

space 

length 

fcbname,space,length,(line,channel. .. ) ,index 

is the name of the forms control buffer. "fcbname" can be one to 
four alphameric characters. 

is the number of lines/inch. Valid specifications are 6 or 8. This 
operand may be omitted: the default is 6 lines/inch. When the space 
operand is omitted, a comma (,) must be coded. Spacing has no 
meaning for a virtual printer. 

is the number of print lines per page or carriage tape (1 to 255). 

(line,channel. .. ) 
shows which print line (line) prints in each channel (channel. .. ). 
"channel" values range from 1 to 12. Refer to the previous "Print 
Buffers and Forms Control" section for the VM/SP supplied buffer 
images for the FOB. The entries can be specified in any order. 

index is an index value (from 1 to 31). "index" specifies the print position 
that is to be the first printed position. "index" is valid only for the 
3211 printer. The "index" specification is not accepted for other 
printers. (The "index" specification can be overridden with the 
LOADBUF command). 

VM/SP provides two real FCB images, FCB1 and FCB8. These FCBs are in 
pageable module DMKFCB. Installations may add additional FCB images to 
DMKFCB as long as the size of DMKFCB does not exceed the size of two pages. 

A default virtual FCB image is provided for virtual 3211-type printers (3203, 3211, 
3262-1/5/11,3289 Model 4, 4245, and 4248). The image is used for the virtual 
printer if no FCB has been previously loaded for that virtual device. The image 
(66 bytes long with a channel 1 code at FCB position 1 with all other channels 
defined) is not stored in the spool file but only used for virtual processing of the 
print commands. 

Notes: 

1. The Forms Control Buffers must have compatibility of channel one; that is, 
channel one and line one must be the same physical line for all FCBs that are 
built, or forms misalignment results. 

2. If the FCB macro is coded to have more than one channel designated for one print 
line, the macro includes only the last channel in the buffer for that print line. 
This is because a buffer byte can only be loaded with one channel code. 

3. When an operator loads a default FCB, it is recommended that all channels be 
defined to prevent an undefined channel error. 

Example 1: If you wanted your printer to print: 

366 VM/SP System Programmer's Guide 



( 
• 8 lines/inch 
• 60 lines/page 
• print line 3 in channel 1 
• print line 60 in channel 9 
• print line 40 in channel 12 
• print position 10 the first print position 

you would code the FCB macro (with a name, SPEC) as: 

FCB SPEC,8,60, (3,1,40,12,60,9),10 

If you want another forms control buffer, called LONG, to be exactly the same as 
SPEC (except that only 6 lines print per inch) you could code either of the 
following: 

FCB LONG, 6,60, (3,1 ,40,12,60,9) ,10 

FCB LONG" 60, (3, 1 ,40, 12,60,9) , 10 

Example 2: You could have your special forms control buffer (SPEC) loaded for 
either a virtual or real 3203, 3211, 3262, 3289 Model 4, 4245, or 4248 printer. 
The LOADVFCB command is for the virtual printer and the LOADBUF command 
is for the real printer. 

The INDEX parameter is only valid for a 3211 printer. If INDEX is not specified 
for the 3211 printer, no indexing is done. If INDEX is specified without a value, 
the value coded in the FCB macro is used and if INDEX is specified with a value, 
the specified value overrides the value coded in the FCB macro. 

If you specify INDEX for the virtual 3211 printer and again for the real 3211 
printer, the output is indexed using the sum of the two specifications minus 1. For 
example, the command 

LOADVFCB OOF FCB SPEC INDEX 

indexes the virtual print file 10 positions because 10 was specified in the FCB 
macro for the SPEC forms control buffer. When this file is sent to the real printer, 
the operator issues the command 

LOADBUF OOE FCB SPEC INDEX 20 

which indexes the file an additional 20 positions. The value specified on the 
command line (20) overrides the value in the FCB macro (10). The output starts 
printing in print position 29 (10+20-1=29). 

Because the 3203, 3262, 3289 Model 4, 4245, and 4248 printers do not have 
indexing capabilities, the LOADVFCB and LOADBUF commands with the 
INDEX option cause an invalid option error message from CPo 

The 4248 printer is supported in extended function mode as a virtual, dedicated, or 
system printer. 

The 4248 accepts the FCB (Forms Control Buffer) format for the 3211 printer, 
and also accepts a new FCB format that supports the printer when it is running in 

Chapter 28. Print Buffers and Forms Control 367 



extended function mode. Maximum output line lengths of 132 or 168 bytes are 
supported depending upon the number of hammer positions installed on the printer. 

A spool file containing the extended FCB can be printed only on: 

• a printer that supports the FCB type 

• a 1403 printer 

• a 3800 printer 

• a 3211-type printer started with the DEFFCB option. 

A 4248 printer should have one of the system output spool defined uniquely to it. 
This will allow a user to send spool files containing extended FCBs to a printer that 
supports the FCB. 

Extended FeB Macro Instruction 

The 4248 accepts either a 3211-type FCB or the new extended FCB. If you want 
the new features of the extended FCB, code the FCB macro as follows. Note that 
the 4248 allows you to specify the print speed and stacker rate. 

fcbname,speed,length,fcbdata,offset,levels,rates 

where: 

fcbname is a 4-character alphameric name to be used when issuing the 
LOADBUF or LOADVFCB commands. 

speed specifies the print speed of your choice. 

U - unchanged 
L - low 
M - medium 
H - high 

(2200 lines per minute) 
(3000 lines per minute) 
(3600 lines per minute) 

length is the length of the FCB data; number of print lines on the page 
(between 2 and 256 inclusive). 

fcbdata is the data defining the FCB. The data must be in the following format: 

( line, channel, spacing ... ) 

where: 

line represents the numeric position in FCB data. (May be 
omitted or specified as a number between 1 and the FCB 
data length.) 

channel specifies channel codes 1 through 12, or omitted. 

368 VM/SP System Programmer's Guide 

-' --", 



( 

(-\ 

offset 

levels 

spacing is specified as: 

6 - 6 lines per inch 
8 - 8 lines per inch 
if omitted - lines per inch unchanged 

Note: Spacing can be changed on every line, not just once 
per page. 

is the position where the duplicate copy (if desired) should begin. 

specifies the stacker level control. 

A - automatic stacker level control 
1 - tray lowered 1 inch below automatic position 
2 - tray lowered 2 inches below automatic position 
3 - tray lowered 3 inches below automatic position 
omitted - automatic stacker level control 

rates specifies the stacker drop rate. 

7 - drop tray after 7 sheets 
13 - drop tray after 13 sheets 
19 - drop tray after 19 sheets 
25 - drop tray after 25 sheets 
omitted - drop tray after 7 sheets 

Note: If automatic stacker level control is specified, the stacker drop rate is 
ignored. 

Example: If you coded this FCB macro as: 

FCB EXTE, M, 179, (3, 1 ,8,40,2, , 179, 12, ) ,90, 1 ,25 

You would be requesting 

Extended FCB 

printer speed - medium 
page length - 179 

at line 3: 

channel 1 code 
spacing changed to 8 lines per inch 

at line 40: 

channel 2 code 
spacing unchanged 

at line 179: 

channel 12 code 
spacing unchanged 

Duplicate copy function -- duplicate copy is to begin at print position 90 

Chapter 28. Print Buffers and Forms Control 369 



stacker level -- tray lowered 1 inch below automatic position 

stacker rate -- drop tray after 25 sheets 

370 VM/SP System Programmer's Guide 



( 

Chapter 29. IBM 3800 Printing Subsystem 

The IBM 3800 Printing Subsystem is a high-speed, non-impact printer that 
combines electro-photographic and laser technology. The 3800 printer can achieve 
speeds of up to 20,040 lines/minute, while several unique features give the user the 
ability to control the characteristics of printed output. 

VM/SP users have access to the 3800 Modell and Model 3 Printing Subsystems. 
Existing programs designed to produce 3800 Modell printer output may produce 
output for the 3800 Model 3 printer with little or no program change. This is also 
true of programs designed for a 3800 Model 3 printer. 

Use of a 3800 Model 3 printer allows for improved print quality (240 x 240 pel 
resolution compared with the 3800 Modell pel resolution of 180 x 144) and the 
addition of a 10 lines/inch vertical space option. 

The features of the 3800 printer include: 

• Forms control buffer - controls the amount of vertical space between printed 
lines. The user can specify vertical spacing of 6, 8, or 12lines/inch. Users 
formatting on the 3800 Model 3 printer have an additional option of 10 
lines/inch. 

• Multiple copy printing - allows the user to request multiple copies without the 
use of carbon paper. The 3800 uses its high speed to repeat-print the specified 
number of originals. 

• Copy modification - allows the user to print or suppress predefined information 
on specified copies of a page. For example, a different name and address can 
be printed on each copy of a page. 

• Forms overlay - allows the user to specify a form or grid to be printed (flashed) 
from a negative while output is being printed inside the form. 

• Character arrangement tables - allow the user to specify which predefined 
character set to use for printing a data set. Each character set contains up to 
64 printable characters. 

• Character modification - allows character sets to be modified or extended to 
meet the user's needs. 

The 3800 modules control the specified printer control information. These 
modules are: 

• Character Arrangement Tables (CAT) 

Chapter 29. mM 3800 Printing Subsystem 371 



• Library Character Sets (LCS) 

• Graphic Modification Modules (GRAPHMOD) 

• Forms Control Buffers (FCB) 

• Copy Modification Modules (COPYMOD). 

Note: Because of the change in pel density, customized 3800 Modell character 
sets are not interchangeable with the 3800 Model 3 character sets. Users may 
recode customized 3800 Modell character sets and build new modules using the 
GENIMAGE command. The MVS Character Conversion Aid may also be used to 
convert existing customized character sets to the 3800 Model 3 pel density. 

For detailed information on the 3800 Printing Subsystems, Modell and 3, see: 

• Introducing the IBM 3800 Printing Subsystem and Its Programming 

• Concepts of the IBM 3800 Printing Subsystem 

• IBM 3800 Printing Subsystem Programmer's Guide, OS/VSI, OS/VS2 

I · IBM 3800 Printing Subsystem Model 3 Programmer's Guide: Compatibility 

• Reference Manual for the IBM 3800 Printing Subsystem. 

• Reference Manual for the IBM 3800 Printing Subsystem Model 3. 

VM/SP supports the 3800 Modell and Model 3 printer as a dedicated device, as a 
real spooling device, and as a virtual spooling device. 

Using the 3800 Printer as a Dedicated Device 

VM/SP allows a virtual machine that is configured to support a real 3800 printer to 
attach the 3800 printer for that machine's exclusive use. When used as a dedicated 
device, VM/SP supports all of the facilities of the 3800 printer. 

Using 3800 Model 1 and Model 3 Printers as Virtual Spooling 
Devices 

VM/SP enables a user to create printer spool files on a virtual 3800 printer defined 
for his virtual machine. VM/SP provides full support for the copy modifications, 
forms overlay, character modifications, and mUltiple copy features. The user can 
specify the character arrangement tables, copy modifications, and forms control 
buffers used to print a file. 

VM/SP makes these 3800 features available both to CMS users and to virtual 
machines running an operating system with full 3800 printer support. When a 

372 VM/SP System Programmer's Guide 

~~- ------ ~- ---- -----



( 

virtual machine running an operating system with full 3800 printer support issues 
commands that generate 3800 load commands, the virtual machine operating 
system passes these load commands and their associated data to CPo CP includes 
these load commands in the virtual spool file. 

The CP SPOOL and CHANGE commands and the CMS SETPRTcommand 
specify 3800 control information. The class G QUERY command displays 
characteristics of the virtual printer including 3800 control information. It also 
displays control information associated with specific spool files. 

Defining a Virtual 3800 Printer 

To. use the features of the 3800 printers as virtual spooling devices, the installation 
or user must define a virtual 3800 Modell or a virtual 3800 Model 3 for the user's 
virtual machine. The class G DEFINE command lets a user specify a virtual 3800 
model number and its characteristics, including how many WCGMs (Writable 
Character Generation Modules) the virtual printer has, and whether CP reflects all 
data checks to the virtual machine. (See the VM / SP CP Command Reference for 
General Users for details on the DEFINE command.) 

The SPOOL control statement allows an installation to define a virtual 3800 Model 
1 or a virtual 3800 Model 3 in the directory. (See the VM/SP Planning Guide and 
Reference for details on the SPOOL control statement.) 

Using the SPOOL and CHANGE Commands 

Use the SPOOL and CHANGE commands to specify 3800 control information. 
When a file is printed on a real 3800, necessary modules are located in the image 
library and loaded into the printer. 

Five parameters on the SPOOL and CHANGE commands support the 3800 
printers. (See the VM / SP CP Command Reference for General Users for detailed 
command descriptions.) 

• FLASH - identifies the form overlay, if any, to be used when printing the file 

• CHARS - names the character arrangement table to be used to print the file 

• MODIFY - indicates the copy modification module, if any, to be used when 
printing the file 

• FCB - specifies the name of the forms control buffer to be used for the file 

• COpy - indicates the number of copies to be printed. 

Chapter 29. IBM 3800 Printing Subsystem 373 



Using the SETPRT Command 

The eMS SETPRT command imbeds 3800 modules in a spool file. When the file 
prints on a real 3800 Modell or Model 3, these modules are loaded into the 
printer. The SETPRT command also allows a user to specify copy groups and the 
number of copies to print. (See the VM/SP CMS Command and Macro Reference 
for details on the SETPRT command.) 

The TRC option of the PRINT command lets you print each line with a different 
character set. The TRC option causes the second byte in each line to select a 
character arrangement table. 

Note that files created on a virtual 3800 can print on any real spooling device 
supported by VM/SP. However, if a file that was created on a virtual 3800 is 
printed on another real printer (for example, a 1403 or a 3211) all 3800 unique 
control information is ignored by the real printer. When files created on a 3800 
Modell (or 3) and printed on the 3800 Model 3 (or 1, respectively) character set 
control information is ignored and the default specified by the operator on the 
ST ART command is used. 

While the 3800 printer allows print lines of 204 bytes, lines are truncated if printed 
on a real printer with a smaller maximum line length (for example, a 1403 or a 
3211). 

For CMS users running OS programs, coding the OPTCD J parameter of the 
FILEDEF command indicates to the QSAM PUT macro and the BSAM WRITE 
macro that each output line contains a TRC byte. 

Using the 3800 Printer as a Real Spooling Device 

VM/SP allows users of spool files to print their files on an IBM 3800 Modell or 
Model 3 Printing Subsystem. The copy modification modules, forms overlay, 
graphic character modification modules, and multiple copy features are fully 
supported. 

The operator specifies control information for separator pages using the START 
command. The control information acts as the default for a user's print files if the 
user doesn't specify CHARS or FCB. 

The GENIMAGE command constructs the 3800 modules -- the character 
arrangement tables, graphic modifications, copy modifications, and forms control 
buffers used by the 3800. The IMAGELIB and IMAGEMOD commands load this 
control information into the image library. 

The NAME3800 macro instruction allows the system programmer to create the 
image library that contains the control information needed to print a spool file. 

374 VM/SP System Programmer's Guide 



( 

~~~-.--- -------

Specifying Printer Options'

The START command includes parameters that enable the VM/SP operator to
name the character arrangement table and the forms control buffer to be used for
the separator page. The operator can also identify, via the FLASH operand of the
START command, the forms overlay currently loaded in the 3800. In addition, the
operator uses the IMAGE parameter to specify which image library is to be used
for that 3800. Finally, by specifying the PURGE parameter, the operator can
purge all spool files that cause errors when loaded into the 3800.

The class B QUERY command displays this 3800 printer information. See the
VM/SP Operator's Guide for further information on the class B QUERY command
and the START command.

The GENIMAGE Command

The GENIMAGE command, which uses the OS/VS utility IEBIMAGE, creates
library character sets, copy modifications, graphic modifications, and forms control
buffers.

Note: Because of the change with pel density, customized 3800 Modell character
sets are not interchangeable with the 3800 Model 3 character sets. Users may
recode customized 3800 Modell character sets and build new modules using the
IEBIMAGE utility program. The MVS Character Conversion Aid may also be
used to convert existing customized character sets to the 3800 Model 3 pel density.

See the VM/SP Operator's Guide for more information on the GENIMAGE
command. Also see IBM 3800 Printing Subsystem Programmer's Guide OS/VSl,
OS/VS2 and IBM 3800 Printing Subsystem Model 3 Programmer's Guide:
Compatibility for more information on coding 3800 modules.

Maintaining the Image Library

The 3800 modules -- character arrangement tables, library character sets, copy
modifications, graphic modifications, and forms control buffers are stored in an
image library. IBM 3800 Modell and Model 3 modules can coexist in the same
image library.

The NAME3800 macro instruction establishes the image library at system
generation. See the VM / SP Planning Guide and Reference for further information.

The VM/SP operator specifies an image library on the IMAGE parameter of the
START command. The 3800 modules specified for a file (via the SPOOL and
CHANGE commands) are loaded into the 3800 from that image library and the
file is printed.

The IMAGELIB command initializes and loads an image library. IMAGELIB
loads the TEXT files created by GENIMAGE into virtual storage. When all the
files are loaded, DIAGNOSE code X'74' is invoked to save these files as an image
library.

Chapter 29. IBM 3800 Printing Subsystem 375

The IMAGEMOD command makes selective modifications to an existing 3800
image library without completely regenerating the image library. While
IMAGELm creates a new image library each time it is invoked, IMAGEMOD
allows users to add, delete, replace, and list members of a 3800 image library.
IMAGEMOD uses DIAGNOSE code X'74' to load and save the image library.

See the VM / SP Operator's Guide for more information on the IMAGELIB and
IMAGEMOD commands. DIAGNOSE code X'74' is explained in an earlier
section of this publication.

Recovering from I/O Errors

Because the actual printing of lines on the page is slower than the output of lines
from the processor, spool files are placed into a delayed purge queue to await
printing by the 3800. Certain errors on the 3800 cause the print file to be
requeued. Only when the maximum number of files are in the queue does the first
one actually get purged. The size of the queue can be specified at system
generation time via the DPMSIZE parameter on the RDEVICE macro instruction.
DPMSIZE can have a maximum value of nine.

376 VM/SP System Programmer's Guide

(

(

Chapter 30. Journaling Logon, Autolog, and Link Commands

LOGON, AUTOLOG, and LINK Journaling attempts to detect and record certain
occurrences of the LOGON, AUTOLOG, or LINK commands. Using the
recorded information, an installation may be able to identify attempts to logon to
VM/SP by users that issue invalid passwords. Also, the installation may be able to
identify users that successfully issue the LINK command to protected minidisks not
owned by that user.

Briefly, LOGON, AUTOLOG, and LINK journaling works like this. While
journaling is turned on, CP monitors all occurrences of the LOGON, AUTOLOG,
and LINK commands. CP keeps count of the number of times a user issues one of
these "commands with an invalid password. When this count exceeds an installation
defined threshold value, CP optionally:

Writes a record to the accounting data set to record the incident

Rejects subsequent LOGON, AUTOLOG, or LINK commands issued by the
user

Sends a message to an installation-defined user identification to alert the
installation to the incident

Also, each time CP detects that a user has successfully issued a LINK command to
a protected minidisk not owned by that user, CP optionally records the incident by
writing a record to the accounting data set. A protected minidisk is a minidisk
whose password is anything but ALL for the type of LINK attempted.

For a description of the accounting records that CP writes for LOGON,
AUTOLOG, and LINK journaling, see the section "Accounting Records."

The SYSJRL macro instruction, the SET command, and the QUERY command
enable an installation to control LOGON, AUTOLOG, and LINK journaling. To
make journaling available and to specify options, code the SYSJRL macro
instruction in module DMKSYS. Instructions for coding this macro instruction are
in the VM/SP Planning Guide and Reference. To turn journaling on or off, use the
class A SET command. To determine whether journaling is on or off, use the class
A QUERY command.

Chapter 30. Journaling Logon, Autolog, and Link Commands 377

378 VM/SP System Programmer's Guide

(

Chapter 31. Suppressing Passwords Entered on the
Command-Line

CP optionally rejects LOGON or LINK commands that have the password entered
on the same line as the command. Rejecting these commands prevents passwords
from being displayed or from being printed without masking -- masking a password
means overprinting the password so it cannot be read.

This capability is also available to virtual machines that issue LINK commands via
DIAGNOSE code X'08'. For a description of DIAGNOSE code X'08', see the
section "DIAGNOSE Instruction in a Virtual Machine."

To request password suppression, specify it as an option on the SYSJRL macro
instruction in module DMKSYS during system generation of VM/SP. Once
requested, password suppression is always on; an operator cannot turn it off. Refer
to the VM / SP Planning Guide and Reference for information on how to use and
code SYSJRL in DMKSYS.

Chapter 31. Suppressing Passwords Entered on the Command-Line 379

380 VM/SP System Programmer's Guide

(

Part 2. Conversational Monitor System (CMS)

Part 2 contains the following information:

• Introduction to CMS

• Interrupt Handling

• Functional Information (How CMS Works)

Register use
DMSNUC structure
Storage structure
Free storage management
SVC handling

• CMS IUCV Support

Using the DASD Block I/O System Service from CMS

• OS Macro Simulation

• VSE Support Under CMS

• CMS Support for OS and DOS VSAM Functions

• Saving the CMS system

• Batch Monitor

• The Programmable Operator Facility

Auxiliary Directories

• Assembler Virtual Storage Requirements.

Part 2. Conversational Monitor System (CMS) 381

382 VM/SP System Programmer's Guide

Chapter 32. Introduction To CMS

The Conversational Monitor System, CMS, the major subsystem of VM/SP,
provides a comprehensive set of conversational facilities to the user. Several copies
of CMS may run under CP, thus providing several users with their own time
sharing system. CMS is designed specifically for the VM/SP virtual machine
environment.

Each copy of CMS supports a single user. This means that the storage area
contains only the data pertaining to that user. Likewise, each CMS user has his
own machine configuration and his own files. Debugging is simpler because the
files and storage area are protected from other users.

Programs can be debugged from the terminal. The terminal is used as a printer to
examine limited amounts of data. After examining program data, the terminal user
can enter commands on the terminal that will alter the program. This is the most
common method used to debug programs that run in CMS.

CMS, operating with the VM/SP Control Program, is a time sharing system
suitable for problem solving, program development, and general work. It includes
several programming language processors, file manipulation commands, utilities,
and debugging aids. Additionally, CMS provides facilities to simplify the operation
of other operating systems in a virtual machine environment when controlled from
a remote terminal. For example, CMS capabilities are used to create and modify
job streams, and to analyze virtual printer output.

Part of the CMS environment is related to the virtual machine environment created
by CPo Each user is completely isolated from the activities of all other users, and
each machine in which CMS executes has virtual storage available to it and
managed for it. The CP commands are recognized by CMS. For example, the
commands allow messages to be sent to the operator or to other users, and virtual
devices to be dynamically detached from the virtual machine configuration.

The CMS Command Language

The CMS command language offers terminal users a wide range of functions. It
supports a variety of programming languages, service functions, file manipulation,
program execution control, and general system control. The CMS commands that
are useful in debugging are discussed in the "Debugging with CMS" section of
"Part 3. Debugging with VM/SP". For detailed information on all other CMS
commands, refer to the VM/SP CMS Command and Macro Reference.

Figure 38 describes CMS command processing.

Chapter 32. Introduction To CMS 383

The File System

The Conversational Monitor System interfaces with virtual disks, tapes, and unit
record equipment. The CMS residence device is kept as a read-only, shared, .
system disk. Permanent user files may be accessed from up to 25 active disks.
Logical access to those virtual disks is controlled by CMS, while CP facilities
manage the device sharing and virtual-to-real mapping.

User files in CMS are identified with three designators. The first is filename. The
second is a filetype designator that may imply specific file characteristics to the
CMS file management routines. The third is a filemode designator that describes
the location and access mode of the file.

User files can be created directly from the terminal with the System Product Editor
(XEDIT). XEDIT provides extensive context editing services. File characteristics
such as record length and format, tab locations, and serialization options can be
specified. The system includes standard definitions for certain filetypes. The size
of user files is determined by the blocksize (BLKSIZE). When a blocksize of 800
bytes is specified, a single user file is limited to a maximum of 65533 records and
must reside on one virtual disk. The file management system limits the number of
files on the virtual disk to 3400. When a blocksize of 1024,2048, or 4096 bytes is
specified, a single user file is limited to a maximum of 231-1 CMS records and must
reside on one virtual disk. The maximum number of data blocks available in a
variable format file on a 512-byte blocksize minidisk is about 15 times less than
231-1. The file management system does not limit the number of files on the disk.
The number of files on a disk is limited by the capacity of the disk. \.

The compilers available under CMS default to particular input filetypes, such as
ASSEMBLE, but the file manipulation and listing commands do not. Files of a
particular filetype form a logical data library for a user; for example, the collection
of all COBOL source files, or of all object (TEXT) decks, or of all EXEC
procedures. This allows selective handling of specific groups of files with minimum
input by the user.

When you access a read-only disk, a hyperblock mapping table (HYPMAP) is built.
When you access a read/write disk, a hash table complex (HASHTAB) is built.
(For further details on HYPMAP and HASHT AB, see VM / SP Data Areas and
Control Block Logic Volume 2 (CMS).) These two tables decrease the paging
overhead when searching for files. However, the hyperblock mapping table is not
built if the hyperblocks for the disk do not span three or more pages, and the hash
table is not built if the hyperblocks for the disk do not span two or more pages.

CMS automatically allocates compiler work files at the beginning of command
execution on whichever active disk has the greatest amount of available space, and
deallocates them at completion. Compiler object decks and listing files are
normally allocated on the same disk as the input source file or on the primary
read/write disk, and are identified by combining the input filename with the
filetypes TEXT and LISTING. These disk locations may be overridden by the
user.

Virtual disks may be shared by CMS users; the facility is provided by VM/SP to all
virtual machines, although a user interface is directly available in CMS commands.

384 VM/SP System Programmer's Guide

(

('

/
/

Preferred Filetypes

Specific files may be spooled between virtual machines to accomplish file transfer
between users. Commands allow such file manipulations as writing from an entire
disk or from a specific disk file to a tape, printer, punch, or the terminal. Other
commands write from a tape or virtual card reader to disk, rename files, copy files,
and erase files. Special macro libraries and text or program libraries are provided
by CMS, and special commands are provided to update and use them. CMS files
can be written onto and restored from unlabeled tapes via CMS commands.

Caution: Multiple write access under CMS can produce unpredictable results.

Problem programs that execute in CMS can create files on unlabeled tape in any
record and block size; the record format can be fixed, variable, or undefined.

CMS has a list of preferred filetypes. This list consists of filetypes that are
frequently searched for, but rarely found on your disk. The list of preferred
filetypes is as follows:

EXEC
MODULE
CMSUT1
AUTOSAVE
XEDTEMP
XEDIT
SYSUT1
TEXT

The Active Disk Table (ADT) contains a byte signalling which preferred filetypes
are on the disk. Before scanning the file management tables for a file, this byte is
examined to see if any files of the desired type are present on the disk. This
process avoids searching for a file that is not on disk; therefore, improving system
performance.

For example, if you are looking for a file with one of the preferred filetypes and the
byte in the ADT indicates that the filetype is not on the disk, then you will avoid
searching the disk for the file.

Performance may be improved by keeping preferred filetypes together on separate
disks.

Migration from the SOO-byte File System to the Extended File
System

This section discusses the points to consider when migrating to the VM/SP file
system from VM/370 Release 6 or earlier versions of CMS. Note that the VM/SP
file system is directly compatible with the VM/370 System Extensions and the
Basic System Extensions, Release 2 file system. The VM/SP file system provides
greater file capacities, four disk blocksizes for minidisks, and improved
performance over most earlier versions of CMS.

Chapter 32. Introduction To CMS 385

The VM/SP file system contains support for the traditional eMS disk format and
for an enhanced format of eMS disk. It is with this enhanced or extended format
that additional functions and capacities are available. The VM/SP extended file
format has a completely revised internal file structure. The extended format
structure is highly compatible with previous versions of eMS and retains the
strengths of earlier eMS file systems.

The VM/SP file system provides the following for extended format disks:

• The logical disk capacity has been increased. There is no effective limit to the
size of a eMS minidisk except for the size of the physical device.

• The logical file capacity has been increased. There is no effective limit on the
size of a file except for the amount of space on the minidisk. (The record
number must be less than 231_1.)

Performance when randomly accessing variable length records has been
improved.

• The number of minidisks that can be accessed at anyone time by a single user
has been increased from 10 to 26.

• In VM/370, the number of files per minidisk was limited to 3400. With the
VM/SP file system extensions, there is no effective limit except for the
constraints of storage and disk space.

• In VM/370, the minimum number of physical disk blocks needed to hold very
small files was two; it is now one. Note that this mayor may not cause a
saving of disk space depending on the physical blocksize chosen and the exact
size of the small file.

• Internal algorithms controlling the updating of blocks on disk when files are
closed have been redesigned. The redesign provides a significant increase in
performance for most eMS users.

• The physical blocksize of the VM/370 file system was 800. The VM/SP file
system supports four additional sizes:

512 bytes
1024 bytes
2048 bytes
4096 bytes

386 VM/SP System Programmer's Guide

(Migration Considerations

Disk Formats

The in-storage control structures of the VM/SP file system are considerably
different than those of the VM/370 800-byte file system. However, because
backward compatibility has been maintained in the VM/SP file system, disks that
are formatted under earlier versions of CMS can be used with VM/SP. Disks that
are formatted with a blocksize of 800-bytes under VM/SP can be used with earlier
versions of CMS. Note, however, that the default blocksize for VM/SP is 1024
bytes when minidisks are formatted using the VM/SP FORMAT command.

Although the internal blocksize is transparent to most users and programs,
installation utilities that dump and restore disks may depend upon the physical disk
blocksize and the internal disk control block structure.

MACLIB and TXTLIB Files

TAPE Command

DISK Command

The internal format of MACLIB and TXTLffi files has been augmented by the
addition of a new format to allow larger libraries. Earlier CMS library formats are
supported by VM/SP whether they exist on 800-byte or extended format disks.
Updating an old format MACLIB or TXTLIB on an extended disk does not change
the internal format. The creation of a library on an extended format disk causes
the construction of a library with the new format.

Under VM/SP, new format libraries are supported on 800-byte format disks. This
condition can only occur if a new format library is copied (via COPYFILE,
MOVEFILE, and so on) from an extended format disk to an 800-byte format disk.
Note, however, that the new format libraries are not supported by earlier versions
of CMS even if on 800-byte disks.

The format of tapes created by the TAPE command has been augmented by the
addition of a larger blocksize of 4096-bytes. Tapes created by earlier versions of
CMS are properly read onto any disk format by VM/SP. Tapes created by
VM/SP are not readable by earlier versions of CMS unless they are dumped with
blocksize of 800. The default blocksize is 4096 when minidisks are dumped using
the VM/SP TAPE command.

The format of spool files created by the DISK command differs slightly from earlier
versions of CMS. However, files dumped by previous versions of eMS are
properly read by VM/SP and files dumped by VM/SP are properly read by earlier
versions of CMS provided that the file meets the size constraints of the 800-byte
disk (especially, the dumped file must not be greater than 65,533 records).

Chapter 32. Introduction To CMS 387

Program I/O

Programs that do I/O to eMS disks fall into three categories:

• Those that do eMS I/O (for example, FSOPEN, FSREAD, FSWRITE)

• Those that do OS I/O (for example, OPEN DeB, READ, GET)

• Those that do VSE I/O (for example, OPEN DTF, READ, GET).

Only programs that do eMS disk I/O directly have any compatibility or migration
considerations. Programs that issue OS or VSE I/O calls can immediately take
advantage of the capacity of the extended file system as soon as the files are put on
a VM/SP extended format disk.

Programs that issue eMS I/O macros or calls continue to work on both the
800-byte and the VM/SP extended file systems but are not able to take advantage
of all of the VM/SP file capabilities without conversion. This includes the use of
the FSST ATE macro, which returns the correct format File Status Table (FST)
whatever the disk format.

However, it should be noted that, in general, programs that deal with internal
system control blocks, (such as File Status Table (FST) blocks, Active Disk Table
(ADT) blocks, or Active File Table (AFT) blocks) should not be used under
VM/SP without careful examination of the program, and conversion or elimination
of program references to the internal blocks.

See the VM / SP CMS Command and Macro Reference for information on how to
use file system macros with the extended file system. See the VM / SP System Logic
and Problem Determination Guide Volume 2 (CMS) to learn about the structure of
the VM/SP file system.

Programs That Reference System Information

Existing programs that reference internal eMS file system control information will
probably not function correctly under VM/SP.

Note: Unconverted programs that run with the SYSTEM attribute (privileged) or
do direct I/O (DIAGNOSE) can destroy data on (or the logical structure of) a
minidisk, making part or all of the data on that minidisk inaccessible.

Before running them on VM/SP examine any programs that perform functions
similar to the TAPE and DISK commands, programs that copy files, programs that
copy minidisks, and programs that are used to dump and restore files for backup.

Areas to be examined include:

• The format of the File Status Table (FST) has been changed in several ways
including its length. Programs that reference FST copies returned by the
STATE command or FSSTATE/FSOPEN macros continue to function
because new format FSTs are converted to old formats in the copy returned to
the user.

388 VM/SP System Programmer's Guide

(

('

Programs that reference fields in real FSTs (those in the FST hyperblocks or
AFTs) may not function properly. Programs that change fields in FSTs can
destroy the integrity of the file system.

Note that careful evaluation of both the program and CMS file system internal
processes may be necessary to determine what must be done with such
programs.

• The format and contents of the Active File Table (AFT) control block have
been significantly changed for extended format disks. The order of fields in
the AFT for SOO-byte block disks has been changed. Programs referencing the
AFT should be carefully examined and must at least be reassembled before
running them even with SOO-byte format disks.

The format of the Active Disk Table (ADT) has been significantly altered.
Many fields with new meaning have been added, and many existing fields have
been relocated. One such field is the disk volume label VOLlD, which has
moved.

• The format of most other VM/370 file system control information is different
from the VM/SP format file system. Programs that reference such data should
be carefully examined and altered before running them.

• Programs that install auxiliary directories by changing the SST AT field in
NUCON will not function properly if the S-disk is an extended format disk.
The CMS routine DMSLADAD should be used to install all auxiliary
directories.

• All programs that reference VM/370 CMS control block macros should be
reassembled under VM/SP. If the only control block referenced is NUCON,
the assembly is not necessary. The DMSSP and CMSLlB MACLlBs should be
specified as the macro libraries to be searched for CMS macro references with
the CMS GLOBAL command. The DMSSP MACLIB should precede the
CMSLlB MACLlB, followed by any other MACLlBs needed for the
assembly.

Auxiliary Directories (AUXDIRTS)

Auxiliary directories are logical extensions of file system directories that reside as a
part of certain programs. User programs containing auxiliary directories continue
to function on extended format disks provided that the module containing the
auxiliary directory is regenerated in the manner normal for any movement of such a
module. CMS correctly converts internal formats so that auxiliary directories
function properly as long as they are installed by calling the CMS routine
DMSLADAD.

Chapter 32. Introduction To CMS 389

LlSTFILE Command

QUERY DISK Command

I DMSROS Module

The LISTFILE command is compatible with previous versions except that the
columns in which information is placed have been moved. Programs that use the
CMS EXEC file produced by LISTFILE should be examined, especially, those that
sort CMS EXEC files by data; or file size.

The QUERY DISK command has been completely changed. See the QUERY
command in the VM / SP CMS Command and Macro Reference manual for more
information.

The DMSROS module is part of the shared CMS nucleus and is no longer loaded
into private storage. Programs that specifically rely on this module residing in free
storage must be modified. The DMSROS module uses the 16-word BALRSA VB
area in DMSNUC. Your programs should not rely on the contents of this area
when invoking DMSROS.

Other Command ChanJes

Several other commands have been changed. Programs that examine spooled
console output for the typed results of certain commands might require changes.

The following CMS commands are nucleus-resident and are no longer loaded into
the transient area to execute: ACCESS, DLBL, FILEDEF, RELEASE, and SET.
The invocation of these commands does not change. Programs that specifically
relied on these commands residing in the transient area must be modified.

Coexistence of VM/SP CMS and Earlier Versions of CMS

During conversion from an earlier version of CMS to VM/SP it might be desirable,
depending on local conditions, to run both versions of CMS for a period of time.
However, it is important to remember that system modules from earlier systems
should never be executed on the VM/SP system and vice-versa. Such modules are
incompatible and will damage system and/or user data if run in the incorrect
environment. Among others, consider the following points to allow easier
switching back and forth between versions:

• All disks should be formatted with earlier versions of CMS or by specifying a
blocksize of 800. No extended format disks should be used.

• All use of the TAPE command should be from the earlier version of CMS or
should specify a blocksize of 800.

• Programs or EXEC files that reference CMS EXEC files, or programs that
reference or change system control blocks, require special handling. One of
the following actions should be taken:

390 VM/SP System Programmer's Guide

/' ~,

(

(Segregate such programs or EXEC files onto separate disks (one per CMS
version) and access the one that corresponds to the CMS version you are
currently using, or

Make the programs or EXEC files aware of the difference in format so
that they can properly execute under either system.

Converting eMS Files

Although VM/SP can be run with only the 800-byte file system, as previously
discussed, CMS disk formats and files must be converted to take advantage of the
performance and capacity enhancements of VM/SP.

Converting Disk Formats

The conversion of disk formats can be achieved in several ways. The two main
ways are:

Allocate a second minidisk, format it under VM/SP using the FORMAT
command with the desired blocksize, and use the COpy command to copy files
from the old format disk to the extended format disk. The old format disk can
then be deallocated.

• Dump the files from the old format disk to tape using the TAPE DUMP
command. Format the disk under VM/SP with the desired blocksize. Load
the files from the tape using the TAPE LOAD command.

Converting MACLIB and TXTLIB Files

Program Conversions

MAC LIB and TXTLIB files must be re-created to get them into the new library
formats. Under VM/SP, use the VMFMAC EXEC procedure as described in the
VM / SP Installation Guide. However, there is no need to do so unless the library
needs the expanded capacity provided by the new format.

Programs that do CMS I/O do not need to be converted (except, as previously
discussed, for those referencing internal control blocks) to be run against files on
extended format disks. All performance advantages are achieved by merely moving
the files to an extended format disk. In addition, the maximum size of the file is
limited only by the 65,533 record limit and not by the old 16,060 block limit.

Existing programs that need to access files larger than 65,533 records must be
converted to take advantage of the greater capabilities of the VM/SP file system.
See the VM / SP eMS User's Guide for more information.

Chapter 32. Introduction To CMS 391

Auxiliary Directories

Programs that use auxiliary directories must be regenerated when moved to an
extended format disk. This regeneration would be required anyway because of
movement from one disk to another.

Program Development

The Conversational Monitor System includes commands to create and compile
source programs, to modify and correct source programs, to build test files, to
execute test programs and to debug from the terminal. The commands of CMS are
especially useful for as and VSE program development, but also may be used in
combination with other operating systems to provide a virtual machine program
development tool.

CMS uses the as and VSE compilers via interface modules; the compilers
themselves normally are not changed. To provide suitable interfaces, CMS
includes a certain degree of as and VSE simulation. For as, the sequential, direct,
and partitioned access methods are logically simulated; the data records are
physically kept in the chained fixed-length blocks, and are processed internally to
simulate as data set characteristics. For VSE, the sequential access method is
supported. CMS supports VSAM catalogs, data spaces, and files on as and DOS
disks using the Access Method Services portion of the VSE/VSAM program
product. as Supervisor Call functions such as GETMAIN/FREEMAIN and
TIME are simulated. The simulation restrictions concerning what types of as '- /
object programs can be executed under CMS are primarily related to the as/pcP,
MFT, and MVT Indexed Sequential Access Method (ISAM) and the
telecommunications access methods, while functions related to multitasking in as
and VSE are ignored by CMS. For more information, see "aS Macro Simulation
under CMS" and "VSE Support under CMS".

Abend Processing

When CMS abnormally terminates, the following steps are taken:

1. After checking for any SPIE, STXIT PC, STAB, or STXIT AB exits that apply,
CMS calls DMSABN, the abend recovery routine.

2. Before typing out any abend message at the terminal, DMSABN checks for
any abend exit routines, set via the ABNEXIT macro.

3. If a list of exit routines exists, the current abend exit routine (that is, the last
one set) gains control. If no abend exit routines exist, CMS abend recovery
occurs.

392 VM/SP System Programmer's Guide

("

(

Abend Exit Routine Processing

An abend exit routine may be established to intercept abends before CMS abend
recovery begins. An abend exit routine receives control with the nucleus protect
key and is disabled for interrupts. Information about the abend is available to the
exit routine in the DMSABW CSECT in DMSNUC. The address of this area is
passed to the exit routine via register 1.

An abend exit routine may choose to avoid CMS abend recovery and continue
processing normally. To do this, the exit must issue the ABNEXIT RESET macro.
This tells CMS to clear the abend condition. The exit routine may also return to
CMS to continue abend processing.

If the exit routine returns to CMS and another abend exit routine exists, it is given
control next. Each exit on the list is given control in sequence until all the exits
have been given control or until an exit chooses to avoid CMS abend recovery, by
issuing ABNEXIT RESET, and continues processing.

If a program check occurs in an exit routine, and ABNEXIT RESET was not issued
in this exit routine, DMSABN gives control to the next exit routine on the list. If
no other exit routine exists, CMS abend recovery occurs.

You cannot set or clear abend exit routines in an abend exit routine. You can reset
an abend exit routine only in an exit routine.

eMS Abend Recovery

If no abend exit routine exists, or if the abend exit routine returns to CMS to
continue abend processing, DMSABN types out the abend message followed by the
line:

eMS

This line indicates to the user that the next command can be entered.

Options available to the user are:

• Issue the DEBUG command. DMSABN passes control to DMSDBG to make
the facilities of DEBUG available. DEBUG's PSW and registers are as they
were at the time the recovery routine was invoked. In DEBUG mode, you may
alter the PSW or registers. Then, type GO to continue processing, or type
RETURN to return to DMSABN. DMSABN continues the abend recovery.

• Issue any command (other than DEBUG). DMSABN performs its abend
recovery function, and then passes control to DMSINT to execute the
command that was typed in.

Chapter 32. Introduction To CMS 393

394 VM/SP System Programmer's Guide

Chapter 33. Interrupt Handling In CMS

CMS receives virtual SVC, input/output, program, machine, and external
interruptions and passes control to the appropriate handling program.

SVC Interruptions

The Conversational Monitor System is SVC (supervisor call) driven. SVC
interruptions are handled by the DMSITS resident routines. Two types of SVCs
are processed by DMSITS: internal linkage SVC 202 and 203, and any other
SVCs. The internal linkage SVC is issued by the command and function programs
of the system when they require the services of other CMS programs. (Commands
entered by the user from the terminal are converted to the internal linkage SVC by
DMSINT). The OS SVCs are issued by the processing programs (for example, the
Assembler) .

Internal Linkage SVCs

When DMSITS receives control as a result of an internal linkage SVC (202 or
203), it saves the contents of the general registers, floating-point registers, and the
SVC old PSW, establishes the normal and error return addresses, and passes
control to the specified routine. (The routine is specified by the first 8 bytes of the
parameter list whose address is passed in register 1 for SVC 202, or by a halfword
code following SVC 203.)

For SVC 202, if the called program is not found in the internal function table of
nucleus (resident) routines, then DMSITS attempts to call in a module (a CMS file
with filetype MODULE) of this name via the LOAD MOD command.

If the program was not found in the function table, nor was a module successfully
loaded, DMSITS returns an error code to the caller.

To return from the called program, DMSITS restores the calling program's
registers, and makes the appropriate normal or error return as defined by the
calling program.

Chapter 33. Interrupt Handling In CMS 395

OtherSVCs

The general approach taken by DMSITS to process other SVCs supported under
CMS is essentially the same as that taken for the internal linkage SVCs. However,
rather than passing control to a command or function program, as is the case with
the internal linkage SVC, DMSITS passes control to the appropriate routine. The
SVC number determines the appropriate routine.

In handling non-CMS SVC calls, DMSITS refers first to a user-defined SVC table
(if one has been set up by the DMSHDS program). If the user-defined SVC table
is present, any SVC number (other than 202 or 203) is looked for in that table. If
it is found, control is transferred to the routine at the specified address.

If the SVC number is not found in the user-defined SVC table (or if the table is
nonexistent), DMSITS either transfers control to the CMSDOS shared segment (if
SET DOS ON has been issued), or the standard system table (contained in
DMSSVT) of OS calls is searched for that SVC number. If the SVC number is
found, control is transferred to the corresponding address in the usual manner. If
the SVC is not in either table, then the supervisor call is treated as an abend call.

The DMSHDS initialization program sets up the user-defined SVC table. It is
possible for a user to provide his own SVC routines.

Input/Output Interruptions

All input/output interruptions are received by the I/O interrupt handler, DMSm.
DMSITI saves the I/O old PSW and the CSW (channel status word). It then
determines the status and requirements of the device causing the interruption and
passes control to the routine that processes interruptions from that device.
DMSITI scans the entries in the device table until it finds the one containing the
device address that is the same as that of the interrupting device. The device table
(DEVTAB) contains an entry for each device in the system. Each entry for a
particular device contains, among other things, the address of the program that
processes interruptions from that device.

When the appropriate interrupt handling routine completes its processing, it returns
control to DMSITI. At this point, DMSITI tests the wait bit in the saved I/O old
PSW. If this bit is off, the interruption was probably caused by a terminal
(asynchronous) I/O operation. DMSITI then returns control to the interrupted
program by loading the I/O old PSW.

If the wait bit is on, the interruption was probably caused by a nonterminal
(synchronous) I/O operation. The program that initiated the operation most likely
called the DMSIOW function routine to wait for a particular type of interruption
(usually a device end). In this case, DMSITI checks the pseudo-wait bit in the
device table entry for the interrupting device. If this bit is off, the system is waiting
for some event other than the interruption from the interrupting device; DMSITI
returns to the wait state by loading the saved I/O old PSW. (This PSW has the
wait bit on.)

396 VM/SP System Programmer's Guide

(

(

If t\le pseudo-wait bit is on, the system is waiting for an interruption from that
particular device. If this interruption is not the one being waited for, DMSITI loads
the saved I/O old PSW. This again places the machine in the wait state. Thus, the
program that is waiting for a particular interruption is kept waiting until that
interruption occurs.

If the interruption is the one being waited for, DMSITI resets both the pseudo-wait
bit in the device table entry and the wait bit in the I/O old PSW. It then loads that
PSW. This causes control to be returned to the DMSIOW function routine, which,
in turn, returns control to the program that called it to wait for the interruption.

Terminal Interruptions

Terminal input/output interruptions are handled by the DMSCIT module. All
interruptions other than those containing device end, channel end, attention, or unit
exception status are ignored. If device end status is present with attention and a
write CCW was terminated, its buffer is unstacked. An attention interrupt causes a
read to be issued to the terminal, unless attention exits have been queued via the
ST AX macro. The attention exit with the highest priority is given control at each
attention until the queue is exhausted, then a read is issued. Device end status
indicates that the last I/O operation has been completed. If the last I/O operation
was a write, the line is deleted from the output buffer and the next write, if any, is
started. If the last I/O operation was a normal read, the buffer is put on the
finished read list and the next operation is started. If the read is caused by an
attention interrupt, the line is first checked to see if it is an immediate command
(user-defined or built-in). If it is a user-defined immediate command, control is
passed to a user specified exit, if one exists. Upon completion, the exit returns to
DMSCIT. If it is a built-in immediate command (HX, for example), appropriate
processing is performed by DMSCIT. Unit exception indicates a canceled read.
The read is reissued, unless it had been issued with ATIREST=NO, in which case
unit exception is treated as device end.

Reader/Punch/Printer Interruptions

Interruptions from these devices are handled by the routines that actually issue the
corresponding I/O operations. When an interruption from any of these devices
occurs, control passes to DMSITI. Then DMSITI passes control to DMSIOW,
which returns control to the routine that issued the I/O operation. This routine can
then analyze the cause of the interruption.

User-Controlled Device Interruptions

Interrupts from devices under user control are serviced the same as CMS devices
except that DMSIOW and DMSITI manipulate a user-created device table, and
DMSITI passes control to any user-written interrupt processing routine that is
specified in the user device table. Otherwise, the processing program regains
control directly.

Chapter 33. Interrupt Handling In CMS 397

Program Interruptions

The program interruption handler, DMSITP, receives control when a program
interruption occurs. When DMSITP gets control, it stores the program old PSW
and the contents of the registers 14, 15,0, 1, and 2 into the program interruption
element (PIE). (The routine that handles the SPIE macro instruction has already
placed the address of the program interruption control area (PICA) into PIE.)
DMSITP then determines whether or not the event that caused the interruption was
one of those selected by a SPIE macro instruction. If it was not, DMSITP passes
control to the DMSABN abend recovery routine.

If the cause of the interruption was one of those selected in a SPIE macro
instruction, DMSITP picks up the exit routine address from the PICA and passes
control to the exit routine. Upon return from the exit routine, DMSITP returns to
the interrupted program by loading the original program check old PSW. The
address field of the PSW was modified by a SPIE exit routine in the PIE.

External Interruptions

An external interruption causes control to be passed to the external interrupt
handler DMSITE. If CMS IUCV support is active in the virtual machine and an
IUCV external interrupt occurs, control is passed to the user exit specified on the
HNDIUCV or CMSIUCV macro. If the user has issued the HNDEXT macro to
trap external interrupts, DMSITE passes control to the user's exit routine. If the
interrupt was caused by the timer, DMSITE resets the timer and types the BLIP
character at the terminal. The standard BLIP timer setting is two seconds, and the
standard BLIP character is uppercase, followed by the lowercase (it moves the
typeball without printing). Otherwise, control is passed to the DEBUG routine.

Machine Check Interruptions

Hard machine check interruptions on the real processor are not reflected to a CMS
virtual user by CP. A message prints on the console indicating the failure. The
user is then disabled and must IPL CMS again to continue.

398 VM/SP System Programmer's Guide

(

Chapter 34. Functional Information

Register Use

The most important thing to remember about CMS, from a debugging standpoint,
is that it is a one-user system. The supervisor manages only one user and keeps
track of only one user's file and storage chains. Thus, everything in a dump of a
particular machine relates only to that virtual machine's activity.

You should be familiar with register use, save area structuring, and control block
relationships before attempting to debug or alter CMS.

When a CMS routine is called, Rl must point to a valid parameter list (PLIST) for
that program. On return, RO mayor may not contain meaningful information. For
example, on return from a call to FILEDEF with no change, RO contains a negative
address if a new FCB (File Control Block) has been set up; otherwise, a positive
address of the already existing FCB. R15 contains the return code, if any. The use
of Registers 0 and 2 through 11 varies.

On entry to a command or routine called by SVC 202 the following are in effect:

Register
1

12
13
14
15

Contents
The address of the PLIST supplied by the caller.
The address entry point of the called routine.
The address of a work area (12 doublewords) supplied by SVCINT.
The return address to the SVCINT routine.
The entry point (same as register 12).

On return from a routine, Register 15 contains:

Return
Code
o
<0
>0

Meaning
No error occurred
Called routine not found
Error occurred

If a CMS routine is called by an SVC 202, registers 0 through 14 are saved and
. restored by CMS.

Most CMS routines use register 12 as a base register.

Chapter 34. Functional Information 399

Structure of DMSNUC

DMSNUC is the portion of storage in a CMS virtual machine that contains system
control blocks, flags, constants, and pointers.

The CSECTs in DMSNUC contain only symbolic references. This means that an
update or modification to CMS, which changes a CSECT in DMSNUC, does not
automatically force all CMS modules to be recompiled. Only those modules that
refer to the area that was redefined must be recompiled.

USERSECT (User Area)

The USERSECT CSECT defines space that is not used by CMS. A modification
or update to CMS can use the 18 fullwords defined for USERSECT. There is a
pointer (AUSER) in the NUCON area to the user space.

DEVTAB (Device Table)

I

The DEVTAB CSECT is a table describing the devices available for the CMS
system. The table contains the following entries:

• 1 console
• 26 disks

1 reader
• 1 punch
• 1 printer
• 16 tapes
• 1 dummy.

You can change some existing entries in DEVTAB. Each device table entry
contains the following information:

• Virtual device address
• Device flags
• Device types
• Symbol device name
• Address of the interrupt processing routine (for the console).

The virtual address of the console is defined at logon time. The symbolic names of
the user disks can be altered dynamically with the ACCESS command. Figure 37
describes the devices supported by CMS.

400 VM/SP System Programmer's Guide

-----_."- ._-"_ .. _-"-_. --- --~--- ---- ---------

Virtual Virtual Symbolic
IBM Device Type Address· Name (default) Device Use

3210,3215, 1052, cuu· CONI System console
3066,3270

2314,2319,3310, 190 DSKO CMS System disk (read-only)
3330, 3340, 3350, 1912 DSK1 Primary disk (user files)
3370,3375,3380 cuu DSK2 Minidisk (user files)

cuu DSK3 Minidisk (user files)
192 DSK4 Minidisk (user files)
cuu DSK5 Minidisk (user files)
cuu DSK6 Minidisk (user files)
cuu DSK7 Minidisk (user files)
19E DSK8 Minidisk (user files)
cuu DSK9 Minidisk (user files)
cuu DSKH Minidisk (user files)
cuu DSKI Minidisk (user files)
cuu DSKJ Minidisk (user files)
cuu DSKK Minidisk (user files)
cuu DSKL Minidisk (user files)
cuu DSKM Minidisk (user files)
cuu DSKN Minidisk (user files)
cuu DSKO Minidisk (user files)
cuu DSKP Minidisk (user files)
cuu DSKQ Minidisk (user files)
cuu DSKR Minidisk (user files)
cuu DSKT Minidisk (user files)
cuu DSKU Minidisk (user files)
cuu DSKV Minidisk (user files)
cuu DSKW Minidisk (user files)
cuu DSKX· Minidisk (user files)

2540,2501,3505 OOC RDR1 Virtual reader

2540,3525 OOD PCR1 Virtual punch

1403, 1443,3203, OOE PRN1 Line printer
3211, 3262, 3800,
4245,4248,3289-4

2401,2402,2403, 180-187, TAPO -TAP7, Tape drives
2415,2420,3410, 288 - 28F TAP8-TAPF
3411,3420,3430,
3480,8809

Figure 37. Devices Supported by a CMS Virtual Machine

* The device addresses shown are those that are preas sembled into the CMS
resident device table. These need only be modified and a new device table made
resident to change the addresses.

• The virtual address of the system console may be any valid multiplexer address.

2 191 is the default user-accessed A-disk unless it is dynamically changed by an
ACCESS at CMS initial program load (IPL).

Chapter 34. Functional Information 401

--~-------

Structure of eMS Storage

Figures 38, 39, and 40 describe how CMS uses its virtual storage. The pointers
indicated (MAINSTRT, MAINHIGH, and FREELOWE) are all found in NUCON
(the nucleus constant area).

The sections of CMS storage have the following uses:

• DMSNUC (X'OOOOO' to X'05000j. This area contains pointers, flags, and
other data updated by the various system routines.

• Low-Storage DMSFREE User Free Storage Area (X'05000' to X'OEOOO'). This
area is a free storage area, from which user requests to DMSFREE are
allocated.

• Transient Program Area (X'OEOOO' to X'J OOOO/. Since it is not essential to
keep all nucleus functions resident in storage all the time, some of them are
made "transient". This means that when they are needed, they are loaded
from the disk into the transient program area. Such programs may not be
longer than two pages, because that is the size of the transient area. (A page is
4096 bytes of virtual storage.) All transient routines must be serially reusable
since they are not read in each time they are needed.

• Low-Storage DMSFREE Nucleus Free Storage Area (X'J 0000' to X'20000j.
This area is a free storage area from which nucleus requests to DMSFREE are
allocated. The top part of this area contains the dummy hyperblocks for the
"s" and "Y" disk with each block 48 bytes long. This area may be followed
by the file status tables for the "S2" filemode files of the system disk and/or
the "Y2" filemode files of the system disk extension.

The following table shows the approximate number of file status tables of
given length that formatted disks can accommodate.

System disk Length of each Disk holds
formatted in FST (in bytes) (approximately)

512-, 1K-, 2K-, 64 (X'40') 318 FSTs
4K-byte blocks

800-byte blocks 40 (X'28') 509 FSTs

If there is enough room, the FREET AB table also occupies this area, just
below the file status tables, if they are there. Each entry in the FREETAB
table is one byte long and each byte represents one page (4K or 4096 bytes) of
defined storage.

• User program Area (X'20000' to Loader Tables or CMS Nucleus, whichever has
the lower value). User programs are loaded into this area by the LOAD
command for text decks or the LOADMOD command for modules. Storage
allocated by means of the GETMAIN macro instruction is taken from this
area, starting from the high address of the user program. In addition, this
storage area can be allocated from the top down by DMSFREE, if there is not
enough storage available in the low DMSFREE storage area. Thus, the usable

402 VM/SP System Programmer's Guide

(.. ".
-'

•

I ·

size of the user program area is reduced by the amount of free storage that has
been allocated from it by DMSFREE.

Loader Tables (top pages of storage). The top of storage is occupied by the
loader tables, which are required by the CMS loader. These tables indicate
which modules are currently loaded in the user program area (and the transient
program area after a LOAD command). The size of the loader tables can be
varied by the SET LDRTBLS command. However, to successfully change the
size of the loader tables, the SET LDRTBLS command must be issued
immediately after IPL.

eMS Nucleus (suggested location: 'X'MB-X'70000'to 'X'MB). Segments 29,
30, and 31 of storage contain the reentrant code for the CMS Nucleus
routines, shared copies of the system S-STAT and Y-STAT, and the S-disk and
Y -disk FST tables. If there is not sufficient room to contain these tables in this
area, they are placed in low-storage DMSFREE Nucleus free storage area. In
shared CMS systems, these are the "protected segments," which must consist
only of reentrant code, and may not be modified under any circumstances.

If the size of the user's virtual machine is defined below the end of the CMS
nucleus (refer to label NUCSIGMA in Figure 38, CMS Storage Map 1), it is not
possible to IPL by device name. This is because the CMS nucleus is too large to be
loaded into the user's virtual storage. Therefore, the user can only IPL by system
name (e. g. IPL CMS). The loader table is placed immediately below the CMS
nucleus.

On the other hand, if the size of the user's virtual machine is defined above the
ending location of the CMS nucleus (refer to Figure 39, CMS Storage Map 2 and
Figure 40, CMS Storage Map 3), the user may IPL by either device name or
system name.

IPLing by device name:

The Sand Y -STAT, and the loader table are placed above the CMS nucleus.
If there isn't enough room to contain the Sand Y-STAT, they are placed in low
storage. Likewise, if there is insufficient room for the loader table above the
CMS nucleus (NUCSIGMA), it is placed below the nucleus. Any leftover free
space above the nucleus is placed on the high DMSFREE chain.

IPLing by system name:

The shared copy of the Sand Y -STAT and nucleus is used. The loader table is
placed above the Sand Y-STAT (NUCOMEGA) if there is sufficient room. If
there is insufficient room to place the loader table above the Sand Y-STAT, it
is placed below the nucleus. Any leftover free space above the Sand Y -STAT
(NUCOMEGA) is placed on the high DMSFREE chain.

Chapter 34. Functional Information 403

'X'MB
NUCOMEGA

NUCSIGMA

'X'MB
X'70000'
NUCALPHA

VIRTUAL STORAGE

T
S-STATand Y-STAT

(Shared)

CMS Nucleus
(Shared)

OS Simulation, EXEC, EXEC 2, REXX, XED IT, CMS
interrupt handlers, file system, free storage
management, loader, device I/O, debug.

Storage Key - X'F' or X'O'

END OF STORAGE
VMSIZE

FREELOWE

MAINHIGH

MAINSTRT

X'20000'

X'10000'

X'EOOO'

X'5000'

X'O'

System Loader Table
(Size Determined by SET LDRTBLS commandl

Storage Key - X'F'

DMSFR EE requests when no more low storage is available

Unused portion of User Program Area

GETMAIN requests

Storage Key = X'E'

The User's Program
(Program i. locatad via the LOAD command)

Low Storage DMSFREE Nucleus Free Storage
Area. The upper part of this area may contain the
S-STAT and/or the Y-STAT, followed by the
FREETAB, if there is enough room.

Storage Key = X'F'

Transient Program Area

Storage Key = X' E'

Low Storage DMSFR EE User Free Storage Area

Storage Key = X'E'

DMSNUC

System Control Blocks, flags constants, and pointers

Storage Key = X'F' •

* The page starting at X'4000' containing OPSECT, SUBSECT,
DBGSECT, DMSERL, TSDBLKS, USERSECT,and free
storage has a Storage Key = X'E'.

Figure 38. eMS Storage Map 1. CMS virtual storage usage when the CMS nucleus is larger than the user's virtual
storage. In this case, you must IPL by system name (VMSIZE is less than NUCSIGMA).

Note: MAINHIGH is extended upward and FREELOWE is extended downward.

404 VM/SP System Programmer's Guide

VM SIZE
'X'MB
NUCOMEGA

NUCSIGMA

'X'MB
X'10000'
NUCALPHA

FREELOWE

MAINHIGH

MAl NSTRT

X'20000'

X'l0000'

X'EOOO'

X'5000'

X'O'

VI RTUAL STORAGE

S-STAT and Y-STAT
(Shared - if IPL'd bV system name)

CMS Nucleus
(Shared - if I PL'd bV system name)

OS simulation, EXEC, EXEC 2, REXX, XEDIT, CMS
interrupt handlers, file svstem, free storage
management,loader, device 1/0, debug.

Storage KeV = X'F' or X'O'

Svstem Loader Table
(Size Determined bV SET LDRTBLS command)

Storage KeV = X'F'

DMSFR EE requests when no more low storage is available

Storage Kev = X'E' or X'F'

[
- - ::d~O:iO~ o~ u~er~r:r:' :re~ - - -

Storage Kev = X'E' ------------------
GETMAIN requests

Storage Kev = X'E'

The User's Program
(Program is located via the LOAD command)

Low Storage DMSFREE Nucleus Free Storage
Area. The upper part of this area mav contain the
S-STAT and/or the Y-STAT, followed bv the
FREETAB, if there is enough room.

Transient Program Area

Storage Kev = X'E'

Low Storage DMSFREE User Free Storage Area

Storage Kev = X'E'

DMSNUC
System Control Blocks, flags, constants, and pointers

Kev= X'F' *

* The page starting at X'4QOO' containing OPSECT,
SUBSECT, DBGSECT, DMSERL, TSOBLKS,
USERSECT, and free storage has a Storage Key =
X'E'.

CONTROL BLOCKS IN FREE STORAGE

DECB II LDRST II AFT II ADT

CMSCB II FSTB I

Figure 39. eMS Storage Map 2. Virtual storage usage when the user's virtual storage is larger than the CMS nucleus.
The user may IPL by system name or device. In addition, this figure shows the case where there is insufficient
room to place the loader table above S-STAT and Y-STAT.

(" Note: MAINHIGH is extended upward and FREELOWE is extended downward.

Chapter 34. Functional Information 405

\/M SIZE

'X'MB
NUCOMEGA

NUCSIGMA

'X'MB-
X '70000'
NUCALPHA

FREELOWE

MAINHIGH

MAINSTRT

X'20000'

X'10000'

X'EOOO'

X'SOOO'

X'O'

VIRTUAL STORAGE

System Loader Table
(Size Determined by SET LDRTBLS command)

Storage Key = X'F' -------------------
DMSFREE requests

Key = X'E' or X'F'

S-STATand Y -STAT
(Shared - if IPL'd by system name)

CMS Nucleus
(Shared - if IPL'd by system name)

OS simulation, EXEC, EXEC 2, REXX, XEDIT, CMS
interrupt handlers, file system, free storage
management, loader, device 1/0, debug.

DMSFREE requests when no more low storage is available

Storage Key = X'E' or X'F'

[

~n~se~ p:ti~n ~f ~se~ p:g:: A:a - - - -

____________ ~0~9.:. K.:.y,:,X~'
GETMAIN requests

The User's Program
(Program is located via the LOAD command)

Transient Program Area

=X'E'

Low Storage DMSFREE User Free Storage Area

Storage Key = X'E'

DMSNUC
System Control Blocks, flags, constants, and pointers

Storage Key = X'.F' •

• The page starting at X' 4000' containing OPSECT,
SUBSECT, DBGSECT, DMSERL, TSOBL~S,
USERSECT, and free storage has a Storage Key =
X·E'.

CONTROL BLOCKS IN FREE STORAGE

DECB II LDRST II AFT II ADT

CMSCB II FSTB I

Figure 40. eMS Storage Map 3. CMS Virtual storage usage when the user's virtual storage is larger than the CMS
nucleus. The user may IPL by system name or device. In addition, this figure shows the case where there is
sufficient room to place the loader table above S-STAT and Y-STAT.

Note: MAINHIGH is extended upward and FREELOWE is extended downward.

406 VM/SP System Programmer's Guide

(

Free Storage Management

Free storage can be allocated by issuing the GETMAIN or DMSFREE macros.
Storage allocated by the GETMAIN macro is taken from the user program area,
beginning after the high address of the user program.

Storage allocated by the DMSFREE macro can be taken from several areas.

If possible, DMSFREE requests are allocated from the low address free storage
area. Otherwise, DMSFREE requests are satisfied from the storage above the user
program area.

There are two types of DMSFREE requests for free storage: requests for USER
storage and NUCLEUS storage. Because these two types of storage are kept in
separate 4K pages, it is possible for storage of one type to be available in low
storage, while no storage of the other type is available.

GETMAIN Free Storage Management

All GETMAIN storage is allocated in the user program area, starting after the end
of the user's .actual program. Allocation begins at the location pointed to by the
NUCON pointer MAINSTRT. The location MAINHIGH in NUCON is the "high
extend" pointer for GETMAIN storage.

The STRINIT function initializes pointers used by CMS for simulation of OS
GETMAIN/FREEMAIN storage management. In the usual CMS environment,
that is, when execution is initiated by the LOAD and ST ART commands, CMS
calls the STRINIT macro as part of the LOAD preparation for execution. In an OS
environment established by CMS, such as OSRUN, the STRINIT function has
been performed by CMS and should not be done by the user program. In any case,
the STRINIT macro should be issued only once in the OS environment, preceding
the initial GETMAIN request. The format of the STRINIT macro is:

I [label] I STRINIT

where:

TVPCALL= r.SVC]
LBALR

indicates how control is passed to DMSSTG, the routine that processes the
STRINIT macro. Since DMSSTG is a nucleus-resident routine, other
nucleus-resident routines can branch directly to it (TYPCALL=BALR)
while routines that are not nucleus-resident must use linkage SVC
(TYPCALL=SVC). If no operands are specified, the default is
TYPCALL=SVC.

Chapter 34. Functional Information 407

When the STROOT macro is executed, both MAINSTRT and MAINHIGH are
initialized to the end of the user's program, in the user program area. The end of
the user's program is the upper boundary of the load module created by the CMS
LOAD and INCLUDE commands. This upper boundary value is stored in the
NUCON field LOCCNT. When execution of the user's program is started and the
STRINIT macro is executed, the LOCCNT value is used to initialize MAINSTRT
and MAINHIGH. During execution of the user's program the LOCCNT field is
used within CMS to pass starting and ending addresses of files loaded by OS
simulation (see Notes below). As storage is allocated from the user program area
to satisfy GETMAIN requests, the MAINHIGH pointer is adjusted upward. Such
adjustments are always in multiples of doublewords, so that this pointer is always
on a doubleheader boundary. As the allocated storage is returned, the
MAINHIGH pointer is adjusted downward.

The pointer MAINHIGH can never be higher than FREELOWE, the "low extend"
pointer for DMSFREE storage allocated in the user program area. If a GETMAIN
request cannot be satisfied without extending MAINHIGH above FREELOWE,
then GETMAIN takes an error exit, indicating that insufficient storage is available
to satisfy the request.

The area between MAINSTRT and MAINHIGH may contain blocks of storage
that are not allocated and that are, therefore, available for allocation by a
GETMAIN instruction. These blocks are chained together, with the first one
pointed to by the NUCON location MAINLIST. Refer to Figures 38,39, and 40
for a description of CMS virtual storage use.

Notes:

1. Reissuing the STRINIT macro during execution of an os program, or issuing the
STRINIT macro without having done a CMS LOAD is not advised because the
value in LOCCNT will not have been appropriately set, possibly causing a
subsequent storage management failure.

2. A high level language may issue a STRINIT. In this case, a user should not issue
an additional STRINIT.

The format of an element on the GETMAIN free element chain is as follows:

FREPTR -- pointer to next free
o element in the chain, or a

if there is no next element

FRELEN -- length, in bytes, of
4 this element

Remainder of this free element

When CMS issues the GETMAIN macro instruction for a variable amount of
storage, the following formula determines the amount of storage obtained:

408 VM/SP System Programmer's Guide

~~-- ~---... --.---~~~~~~~~-

.(~

Amount of storage = 6 pages + 1 additional page for each 256K bytes obtained in
excess of 512K bytes.

DMSFREE Free Storage Management

The DMSFREE macro allocates CMS free storage. The format of the DMSFREE
macro is:

[label] DMSFREE DWORDS= ~ n t
(0) [MIN= ~(~) fJ

[TYPE= [NU;CEL~US]] [ERR= [la*ddr]]

[AREA= [~~~H] J [TYPCALL= [S;{LRJJ

where:

label
is any valid assembler language label.

DWORDS= {n }
(0)

is the number of doublewords of free storage requested. DWORDS=n
specifies the number of doublewords directly and DWORDS=(O) indicates
that register 0 contains the number of doublewords requested. Do not
specify any register other than register O.

CMS returns, in register 0, the number of doublewords allocated and, in
register 1, the address of the first byte of allocated storage.

MIN= {~1)}
indicates a variable request for free storage. If the exact number of
doublewords indicated by DWORDS operand is not available, then the
largest block of storage that is greater than or equal to the minimum is
requested. MIN =n specifies the minimum number of doublewords of free
storage directly while MIN = (1) indicates that the minimum is in register 1.
Do not specify any register other than register 1.

TYPE= [USER 1
NUCLEUSJ

indicates the type of CMS storage with which this request for free storage is
filled: USER or NUCLEUS.

Chapter 34. Functional Information 409

is the return address if any error occurs. "laddr" is any address that can be
referred to in an LA (load address) instruction. The error return is taken if
there is a macro coding error or if there is no enough free storage available
to fill the request.· If the asterisk (*) is specified for the return address, the
error return is the same as a normal return. There is no default for this
operand. If it is omitted and an error occurs, the system abends.

AREA=fLOW]
LHIGH

indicates the area of CMS free storage from which this request for free
storage is filled. LOW indicates any free storage below the user areas,
depending on the storage requested. HIGH indicates DMSFREE storage
above the user area. If AREA is not specified, storage is allocated wherever
it is available.

TYPCALL= [svc 1
BALRJ

indicates how control is passed to DMSFREE. Because DMSFREE is a
nucleus-resident routine, other nucleus-resident routines can branch directly
to it (TYPCALL=BALR) while routines that are not nucleus-resident must
use linkage SVC (TYPCALL=SVC).

The FREELOWE pointer in NUCON indicates the amount of storage that
DMSFREE has allocated from the high portion of the user program area. These
pointers are initialized to the beginning of the loader tables.

The pointer FREELOWE is the "low extend" pointer of DMSFREE storage in the
user program area. As storage is allocated from the user program area to satisfy
DMSFREE requests, this pointer is adjusted downward. Such adjustments are
always in multiples of 4K bytes, so that this pointer is always on a 4K boundary.
As the allocated storage is returned, this pointer is adjusted upward and the freed
pages are released by issuing a DIAGNOSE code X' 10' to CPo

The pointer FREELOWE can never be lower than MAINIDGH, the "high extend"
pointer for GETMAIN storage. If a DMSFREE request cannot be satisfied
without extending FREELOWE below MAINIDGH, then DMSFREE takes an
error exit, indicating that storage is insufficient to satisfy the request. Figures 38,
39, and 40 show the relationship of these storage areas.

The FREET AB free storage table is usually kept in nucleus low FREE storage.
However, the FREETAB may be located at the top of the user program area. This
table contains a code indicating the use of that page of virtual storage. The codes
in this table are as follows:

410 VM/SP System Programmer's Guide

~:-" ,

USERCODE (X'Ol ') The page is assigned to user storage.

NUCCODE (X'02') The page is assigned to nucleus storage.

TRNCODE (X'03') The page is part of the transient program area.

USARCODE (X' 04') The page is an unassigned page in the user program area.

SYSCODE (X' 05') The page is none of the above. The page is assigned to
system storage, system code, or the loader tables.

Other DMSFREE storage pointers are maintained in the DMSFRT CSECT, in
NUCON. The four chain header blocks are the most important fields in DMSFRT.
The four chains of unallocated elements are:

• The low storage nucleus chain
• The low storage user chain
• The high storage nucleus chain
• The high storage user chain

For each of these chains of unallocated elements, there is a control block consisting
of four words, with the following format:

POINTER -- pointer to the first
0 free element in the chain, or

zero, if the chain is empty.

NUM -- the number of elements on
4 the chain.

MAX -- a value equal to or
8 greater than the size of the

largest element.

12 FLAGS- SKEY- TCODE- Unused
Flag Storage FREETAB
byte key code

where:

POINTER points to the first element on this chain of free elements. If there are no
elements on this free chain, then the POINTER field contains all
zeroes.

NUM

MAX

contains the number of elements on this chain of free elements. If there
are no elements on this free chain, then this field contains all zeroes.

is used to avoid searches that will fail. It contains a number not
exceeding the size, in bytes, of the largest element on the free chain.
Thus, a search for an element of a given size is not made if that size
exceeds the MAX field. However, this number may actually be larger
than the size of the largest free element on the chain.

Chapter 34. Functional Information 411

FLAGS The following flags are used:

SKEY

FLCLN (X'80') -- Clean-up flag. This flag is set if the chain must be
updated. This is necessary in the following circumstances:

• If one of he two high storage chains contains a 4K page to which
FREELOWE points, then that page can be removed from the
chain, and FREELOWE can be increased.

All completely unallocated 4K pages are kept on the user chain, by
convention. Thus, if one of the nucleus chains (low storage or high
storage) contains a full page, then this page must be transferred to
the corresponding user chain.

FLCLB (X' 40') -- Destroyed flag. Set if the chain has been destroyed.

FLHC (X'20') -- High storage chain. Set for both the nucleus and
user high storage chains.

FLUN (X' 10') -- Nucleus chain. Set for both the low storage and high
storage chains.

FLPA (X'08') -- Page available. This flag is set if there is a fu114K
page available on the chain. This flag may be set even if there is no
such page available.

contains the one-byte storage key assigned to storage on this chain.

TCODE contains the one-byte FREETAB table code for storage on this chain.

Allocating User Free Storage

When DMSFREE with TYPE=USER (the default) is called, one or more of the
following steps are taken in an attempt to satisfy the request. As soon as one of
the following steps succeeds, then the user free storage allocation processing
terminates.

1. Search the low storage chain for a block of the required size.

2. Search the high storage user chain for a block of the required size.

3. Extend high storage user storage downward into the user program area,
modifying FREELOWE in the process.

4. For variable request, put all available storage in the user program area into the
high storage user chain, and then allocate the largest block available on either
the high storage user chain or the low storage user chain. The allocated block
is not satisfactory unless it is larger than the minimum requested size.

412 VM/SP System Programmer's Guide

(Allocating Nucleus Free Storage

Releasing Storage

When DMSFREE with TYPE=NUCLEUS is called, the following steps are taken
in an attempt to satisfy the request, until one succeeds:

1. Search the low storage nucleus chain for a block of the required size.

2. Search the high storage nucleus chain for a block of the required size.

3. Get free pages from the high storage user chain, if they are available, and put
them on the high storage nucleus chain.

4. Extend high storage nucleus downward into the User Program Area, modifying
FREELOWE in the process.

5. For variable requests, put all available pages from the user chain and the user
program area onto the high storage nucleus chain, and allocate the largest
block available on either the low storage nucleus chain, or the high storage
nuCleus chain.

The DMSFRET macro releases free storage previously allocated with the
DMSFREE macro. The format of the DMSFRET macro is:

[label] DMSFRET DWORDS= ~ n f ,LOC= ~ laddr f
(0) (1)

~ERR=[la~drJ] [TYPCALL=[~~~RJJ

where:

label
is any valid assembler language label.

DWORDs={n }
(0)

is the number of doublewords of storage to be released. DWORDS=n
specifies the number of doublewords directly and DWORDS=(O) indicates
that register 0 contains the number of doublewords being released. Do not
specify any register other than register O.

LOC= { laddr}
(1)

is the address of the block of storage being released. "laddr" is any address
that can be referred to in an LA (load address) instruction. LOC=laddr
specifies the address directly while LOC=(1) indicates the address is in
register 1. Do not specify any register other than register 1.

Chapter 34. Functional Information 413

is the return address if any error occurs. "laddr" is any address that can be
referred to in an LA (load address) instruction. The error return is taken if
there is a macro coding error or if there is a problem returning the storage.
If the asterisk (*) is specified for the return address, the error return is the
same as a normal return. There is no default for this operand. If it is
omitted and an error occurs, the system abends.

TYPCALL= [SVC J
BALR

indicates how control is passed to DMSFRET. Since DMSFRET is a
nucleus-resident routine, other nucleus-resident routines can branch directly
to it (TYPCALL=BALR), while routines that are not nucleus-resident must
use SVC linkage (TYPCALL=SVC).

When DMSFRET is called, the block being released is placed on the appropriate
chain. At that point, the final update operation is performed, if necessary, to
advance FREELOWE, or to move pages from the nucleus chain to the
corresponding user chain.

Similar update operations are performed, when necessary, after calls to
DMSFREE, as well.

Releasing Allocated Storage

Storage allocated by the GETMAIN macro instruction may be released in either of
the following ways:

1. A specific block of such storage may be released by means of the FREEMAIN
macro instruction.

2. Whenever any user routine or CMS command abends (so that the routine
DMSABN is entered), and the abend recovery facility of the system is invoked,
all GETMAIN storage pointers are reset.

Storage allocated by the DMSFREE macro instruction may be released in either of
the following ways:

1. A specific block of such storage may be released by means of the DMSFRET
macro instruction.

2. Whenever any user routine or CMS command abnormally terminates (so that
the routine DMSABN is entered), and the abend recovery facility of the system
is invoked, all DMSFREE storage with TYPE = USER is released
automatically.

414 VM/SP Syst~m Programmer's Guide

- ""--" --"----"----

(

(

Except in the case of abend recovery, storage allocated by the DMSFREE macro is
never released automatically by the system. Thus, storage allocated by means of
this macro instruction should always be released explicitly by means of the
DMSFRET macro instruction.

DMSFRE Service Routines

The DMSFRES macro instruction is used by the system to request certain free
storage management services.

The format of the DMSFRES macro is:

[label] DMSFRES INIT1

[TYPCALL= [~~i~]

where:

label

INITI

INIT2
CHECK
CKON
CKOFF
UREC
CALOC

is any valid Assembler language label.

invokes the first free storage initialization routines, so that free storage
requests can be made to access the system disk. Before INiTl is invoked, no
free storage requests may be made. After INITl has been invoked, free
storage requests may be made, but these are subject to the following
restraints until the second free storage management initialization routine has
been invoked:

All requests for USER type storage are changed to requests for
NUCLEUS type storage.

• Error checking is limited before initialization is complete. In particular,
it is sometimes possible to release a block that was never allocated.

• All requests that are satisfied in high storage must be of a temporary
nature, since all storage allocated in high storage is released when the
second free storage initialization routine is invoked.

When CP's saved system facility is used, the CMS system is saved at the
point just after the A-disk has been made accessible. It is necessary for
DMSFRE to be used before the size of virtual storage is known, since the
saved system can be used on any size virtual machine. Thus, the first
initialization routine initializes DMSFRE so that limited functions can be
requested, while the second initialization routine performs the initialization
necessary to allow the full functions of DMSFRE to be exercised.

Chapter 34. Functional Information 415

INIT2
invokes the second initialization routine. This routine is invoked after the
size of virtual storage is known, and it performs initialization necessary to
allow all the functions of DMSFRE to be used. The second initialization
routine performs the following steps:

• Releases all storage that has been allocated in the high storage area.

• Allocates the FREET AB free storage table. This table contains one
byte for each 4K page of virtual storage, and so cannot be allocated until
the size of virtual storage is known.

• The FREET AB table is initialized, and all storage protection keys are
initialized.

CHECK
invokes a routine that checks all free storage pointer chains for consistency
and correctness. Thus, it checks to see whether or not any free storage
pointers have been destroyed. The option can be used at any time for
system debugging.

CKON
turns on a flag that causes the CHECK routine to be invoked each time a
call is made to DMSFREE or DMSFRET. This can be useful for debugging
purposes (for example, when you wish to identify the routine that destroyed
free storage management pointers). Care should be taken when using this
option, since the CHECK routine is coded to be thorough rather than '",_/
efficient. Thus, after the CKON option has been invoked, each call to
DMSFREE or DMSFRET will take much longer to be completed than
before.

CKOFF
turns off the flag that was turned on by the CKON option.

UREC
is used by DMSABN during the abend recovery process to release all user
storage.

CALOC
is used by DMSABN after the abend recovery process has been completed.
It invokes a routine which returns, in register 0, the number of doublewords
of free storage that have been allocated. This number is used by DMSABN
to determine whether or not the .abend recovery has been successful.

TYPCALL= rSVC J
LBALR

indicates how control is passed to DMSFRES. Since DMSFRES is a
nucleus-resident routine, other nucleus-resident routines can branch directly
to it (TYPCALL=BALR), while routines that are not nucleus-resident must
use SVC linkage (TYPCALL=SVC).

416 VM/SP System Programmer's Guide

(

Error Codes from DMSFREE, DMSFRES, and DMSFRET

A nonzero return code upon return from DMSFREE, DMSFRES, or DMSFRET
indicates that the request could not be satisfied. Register 15 contains this return
code, indicating which error occurred. The following codes apply to the
DMSFREE, DMSFRES, and DMSFRET macros.

Code Error

1 (DMSFREE) Insufficient storage space is available to satisfy the request
for free storage. In the case of a variable request, even the minimum
request could not be satisfied.

2 (DMSFREE or DMSFRET) User storage pointers destroyed.

3 (DMSFREE, DMSFRET, or DMSFRES) Nucleus storage pointers
destroyed.

4 (DMSFREE) An invalid size was requested. This error is taken if the
requested size is not greater than zero. In the case of variable requests, this
error exit is taken if the minimum request is greater than the maximum
request. (However, the latter error is not detected if DMSFREE is able to
satisfy the maximum request.)

5 (DMSFRET) An invalid size was passed to the DMSFRET macro. This
error exit is taken if the specified length is not positive.

6 (DMSFRET) The block of storage that is being released was never
allocated by DMSFREE. Such an error is detected if one of the following
errors is found:

• The block does not lie entirely inside either the low storage free storage
area or the user program area between FREELOWE and FREEUPPR.

• The block crosses a page boundary that separates a page allocated for
USER storage from a page allocated for NUCLEUS type storage.

• The block overlaps another block already on the free storage chain.

7 (DMSFRET) The address given for the block being released is not
doubleword aligned.

8 (DMSFRES) An invalid request code was passed to the DMSFRES routine.
Since all request codes are generated by the DMSFRES macro, this error
code should never appear.

9 (DMSFREE, DMSFRET, or DMSFRES) Unexpected and unexplained
error in the free storage management routine.

Chapter 34. Functional Information 417

eMS Handling of PSW Keys

The CMS nucleus protection scheme protects the CMS nucleus from inadvertent
destruction by a user program. This mechanism, however, does not prevent you
from writing in system storage intentionally. Because you can execute privileged
instructions, you can issue a LOAD PSW (LPSW) instruction and load any PSW
key you wish. If this occurs, there is nothing to prevent your program from:

• Modifying nucleus code
• Modifying a table or constant area
• Losing files by modifying a CMS file directory

In general, user programs and disk-resident CMS commands are executed with a
PSW key of X'E', while nucleus code is executed with a PSW key of X'O'.

There are, however, some exceptions to this rule. Certain disk-resident CMS
commands run with a PSW key of X' 0', since they have a constant need to modify
nucleus pointers and storage. The nucleus routines called by the GET, PUT,
READ, and WRITE macros run with a user PSW key of X'E', to increase
efficiency.

Two macros, DMSKEY and DMSEXS, are available to any routine that wishes to
change its PSW key for some special purpose.

The DMSKEY Macro

The DMSKEY macro may be used to change the PSW key to the user value or the
nucleus value. The format of the DMSKEY macro is:

[label] DMSKEY {NUCLEUS [,NOSTACK] I
USER [, NOSTACK] I
LASTUSER[,NOSTACK] I
RESET}

where:

NUCLEUS

USER

causes the nucleus storage protection key to be placed in the PSW, and the
old contents of the second byte of the PSW are saved in a stack. This option
allows the program to store into system storage, which is ordinarily
protected.

causes the user storage protection key to be placed in the PSW, and the old
contents of the second byte of the PSW are saved in a stack. This option
prevents the program from inadvertently modifying nucleus storage, which is
protected.

LASTUSER
The SVC handler traces back through its system save areas for the active C
user routine closest to the top of the stack. The storage key in effect for that ... -./

418 VM/SP System Programmer's Guide

(

routine is placed in the PSW. The old contents of the second byte of the
PSW are saved in a stack. This option should be used only by system
routines that should enter a user exit routine. (OS macro simulation routines
use this option when they want to enter a user-supplied exit routine. The
exit routine is entered with the PSW key of the last user routine on the SVC
system save area stack.)

NOSTACK
This option may be used with any of the above options to prevent the system
from saving the second byte of the current PSW in a stack. If this is done,
then no DMSKEY RESET need be issued later.

RESET
The second byte of the PSW is changed to the value at the top of the
DMSKEY stack, and removed from the stack. Thus, the effect of the last
DMSKEY NUCLEUS, DMSKEY USER, or DMSKEY LASTUSER request
is reversed. However, if the NOSTACK option was specified on the
DMSKEY macro, the RESET option should not be used. A DMSKEY
RESET macro must be executed for each DMSKEY NUCLEUS, DMSKEY
USER, or DMSKEY LASTUSER macro that was executed and that did not
specify the NOST ACK option. Failure to observe this rule results in
program abnormal termination. CMS requires that the DMSKEY stack be
empty when a routine terminates.

Note: The DMSKEY key stack has a current maximum depth of seven for each
routine. In this context, a "routine" is anything invoked by an SVC call.

The DMSEXS Macro

The DMSEXS, "execute in system mode", macro allows a routine executed with a
user PSW key, to execute a single instruction with a nucleus PSW key. The single
instruction may be specified as the argument to the DMSEXS macro, and that
instruction is executed with a nucleus PSW key. This macro can be used instead of
two DMSKEY macros. The format of the DMSEXS macro is:

I [label] I DMSEXS lop-code, operands

The op-code and the operands of the Basic Assembler Language instruction to be
executed must be given as arguments to the DMSEXS macro.

For example, execution of the sequence,

USING NUCON,O
DMSEXS OI,OSSFLAGS,COMPSWT

causes the 01 instruction to be executed with a zero protect key in the PSW. This
sequence turns on the COMPSWT flag in the nucleus. It is reset with

DMSEXS NI,OSSFLAGS,255-COMPSWT

The instruction to be executed may be an EX instruction.

Chapter 34. Functional Information 419

Note: Programs that modify or manipulate bits in CMS control blocks, however,
may hinder the operation of CMS, causing it to function ineffectively.

Register 1 cannot be used in any way in the instruction being executed.

Whenever possible, CMS commands are executed with a user protect key. This
protects the CMS nucleus in cases where there is an error in the system command
that would otherwise destroy the nucleus. If the command must execute a single
instruction or small group of instructions that modify nucleus storage, then the
DMSKEY or DMSEXS macros are used, so that the system PSW key is used for as
short a period of time as is possible.

CMS SVC Handling

DMSITS (INTSVC) is the CMS system SVC handling routine. The general
operation of DMSITS is as follows:

1. The SVC new PSW (low storage location X'60') contains, in the address field,
the address of DMSITS1. The DMSITS module is entered whenever a
supervisor call is executed.

2. DMSITS allocates a system and user save area. The user save area is used as a
register save area (or work area) by the called routine.

3. The called routine is called (via a LPSW or BALR).

4. Upon return from the called routine, the save areas are released.

5. Control is returned to the caller (the routine that originally made the SVC
call).

SVC Types and Linkage Conventions

SVC202

SVC conventions are important to any discussion of CMS because the system is
driven by SVCs (supervisor calls). SVCs 202 and 203 are the most common CMS
SVCs.

SVC 202 is used for calling nucleus-resident routines, and for calling routines
written as commands (for example, disk resident modules). SVC 202 can also be
used for calling nucleus extensions.

A typical coding sequence for an SVC 202 call is the following:

LA R1,PLIST
SVC 202
DC AL4(ERRADD)

The "DC AL4(address)" instruction following the SVC 202 is optional, and may
be omitted if the programmer does not expect any errors to occur in the routine or

420 VM/SP System Programmer's Guide

(

Value

X'OO'

X'Ol'

X'02'

X'05'

X'06'

Meaning

command being called. If included, an error return is made to the address specified
in the DC unless the address is equal to 1. If the address is 1, return is made to the
next instruction after the "DC AL4(1)" instruction. DMSITS determines whether
this DC was inserted by examining the next byte following the SVC call. A
nonzero byte indicates an instruction, a zero value indicates that "DC
AL4(address)" or "DC AL4(l)" follows.

If you want to ignore errors, you can use the following sequence:

LA R1,PLIST
SVC 202
DC AL4 (1)

Whenever an SVC 202 is issued, the contents of general purpose register 0 and 1
(GPRO and GPRl) are passed intact to the called routine. GPR1 must point to an
eight-character string, which may be the start of a tokenized PLIST. This character
string must contain the symbolic name of the routine or command being called.
The SVC handler only examines the name and the high-order byte of GPRl. The
called routine decides whether to use the extended PLIST or the tokenized PLIST
by examining the high-order byte of GPRl.

Note: Although an extended PLIST is provided, the called routine might not be set
up to use the extended PLIST.

When a program gets control, it may find the values in Figure 41 in the high-order
byte of register 1. The program may interrogate the high-order byte to determine
what eJlvironment (EXEC, command line, etc.) it was called from and if an
extended PLIST is available. It is up to the program being called to interrogate the
high-order byte and take appropriate action. CMS only places them in the
high-order byte for the convenience of the program.

The following values may be found in the high-order byte of register 1:

Extended PLIST
pointer in
register 01

The call did not originate from an EXEC file or a command typed at the No
terminal. I

The call is from an EXEC 2 EXEC or the System Product Interpreter Yes
when "ADDRESS COMMAND" is specified.

See "Dynamic Linkage/SUBCOM" in this manual. Yes

Used by the System Product Interpreter for external function calls. Yes

The command was invoked as an immediate command. This setting Yes
should never occur with SVC 202.

Figure 41 (Part 1 of 2). SVC 202 High-Order Byte Values of Registerl

Chapter 34. Functional Information 421

Extended PLIST
pointer in

Value Meaning register O?

X'OB' The command was called as a result of its name being typed at the Yes
terminal, by the "CMDCALL" command to invoke the command from
EXEC 2, or from a System Product Interpreter EXEC when
"ADDRESS CMS" is specified.

X'OC' The call is the result of a command invoked from a CMS EXEC file with No
"&CONTROL" set to something other than "NOMSG" or "MSG".

X'OD' The call is the result of a command invoked from a CMS EXEC file with No
"&CONTROL MSG" in effect (indicates that messages are to be
displayed at the terminal).

X'OE' The call is the result of a command invoked from an CMS EXEC file No
with "&CONTROL NOMSG" in effect.

X'FE' This is an end-of-command call from DMSINT (CMS console command No
handler). See the NUCEXT function in the VM/SP CMS Command
and Macro Reference for further details.

X'FF' This is a service call from DMSABN (abend) or from NUCXDROP. No
See the NUCEXT function in the VM/SP CMS Command and Macro
Reference for details.

Figure 41 (Part 2 of 2). SVC 202 High-Order Byte Values of Register 1

Some CMS commands work differently when called from different environments.
An assembler language program can simulate the various environments as listed in
Figure 41 under "Meaning" by using the high order byte associated with each
meaning.

For example, to call the ERASE command from an assembler program and
suppress error messages, the program would use a high-order byte of X' OE'. This
would simulate a call from CMS EXEC with "&CONTROL NOMSG" in effect.

Some CMS commands can take advantage of an extended PLIST if it is supplied.
For example, the extended parameter list is used by the FILEDEF command when
processing the DSN qual1[.qual2 ...] parameter. The following complete program
shows how to set up an extended parameter list and call FILEDEF.

422 VM/SP System Programmer's Guide

(' PUBTEST CSECT

*
*
*

ISSUE 'FILEDEF SYSIN DISK A A A DSN G. TEMP. DATA. LIBRARY ,

REGEQU
USING *,R12

PLIST

*
*

LA
LA
ICM
SVC
DC
BR
DS
DC
DC
DC
DC
DC
DC
DC
DC

DC
EPLIST DC

DC
DC
DC

CMDSTART DC
STARTARG EQU

DC
ENDARG EQU

*
END

RO,EPLIST
R1,PLIST
R1,B'1000' ,=X'Ol'
202
AL4(1)
R14
OF
CL8'FILEDEF '
CL8'SYSIN'
CL8'DISK'
CL8'A'
CL8'A'
CL8'A'
CL8'DSN'
CL8'G.TEMP.D'

2F'-1'
A (COMVERB)
A (BEGARGS)
A (ENDARGS)
A(O)
C'FILEDEF '

*

NOTICE THAT THIS IS TRUNCATED
BUT FILDEF WILL USE THE EXTENDED
PARAMETER LIST BELOW.

C'DISK A A A DSN G.TEMP.DATASET.LIBRARY ,
* ENDARG POINTS TO THE BLANK AFTER THE

CHARACTER.

The high-order byte used in the program example simulates a call from an EXEC2
EXEC or the System Product Interpreter when "ADDRESS COMMAND" is
specified.

Tokenized PUST: For a tokenized parameter list, the symbolic name of the
function being called (8 character string, padded with blank characters on the right
if needed) is followed by extra arguments depending on the actual routine or
command being called. These arguments must be "tokenized"; that is, every
parenthesis is considered an individual argument, and each argument may have a
maximum length of eight characters.

Extended PUST: For an extended parameter PLIST, no restriction is put on the
structure of the argument list passed to the called routine or command. Register 0
points to the following consecutive words:

fa) DC A(COMVERB)
(b) DC A(BEGARGS)
(c) DC A(ENDARGS)
(d) DC A(O)

where the first three addresses are defined as in the following example:

Chapter 34. Functional Information 423

COMVERB EQU *
DC C'testprog'

BEGARGS EQU *
DC C' (file 2)'

ENDARGS EQU *

COMVERB EQU *
BEGARGS EQU *
ENDARGS EQU *

-indicates the beginning of the command name.
-indicates the beginning of the argument list.
-indicates the end of the argument list.

a. The first word is the beginning address of the command.

b. The second gives the beginning address of the argument list.

c. The third gives the address of the byte immediately following the end of
the argument list.

d. The fourth word may be used to pass any additional information required
by individual called programs. If not used to pass additional information,
this word should be zero so that programs which can receive optional
information via this word may detect that none is provided in this call.

Notes:

1. It is specifically allowed that these four words be moved to some location
convenient for the command resolution routines, or convenient for some other
program executed between the caller's SVC 202 and entry to the program for
which the parameter list is intended. For this reason, the called program may not
assume additional words follow word 4, or that the storage address of these 4
words bears any relationship to other data addresses.

2. For function calls in the System Product Interpreter, two additional words are
available. See the VM / SP System Product Interpreter Reference, for more
information on function calls and the two additional words.

SVC 203: sve 203 is called by eMS macros to perform various internal system
functions. It is used to define sve calls for which no parameter list is provided.
For example, DMSFREE parameters are passed in registers 0 and 1.

A typical calling sequence for an sve 203 call is as follows:

SVC 203
DC H'code'

\

The halfword decimal code following the sve 203 indicates the specific routine
being called. DMSITS examines this halfword code, taking the absolute value of
the code by an LPR instruction. The first byte of the result is ignored, and the
second byte of the resulting halfword is used as an index to a branch table. The
address of the correct routine is loaded, and control is transferred to it.

It is possible for the address in the sve 203 index table to be zero. In this case,
the index entry contains an 8-byte routine or command name, which is handled in
the same way as the 8-byte name passed in the parameter list to an sve 202.

424 VM/SP System Programmer's Guide

c

User-Handled SVCs

The programmer indicates an error return by the sign of the halfword code. If an
error return is desired, then the code is negative. If the code is positive, then no
error return is made. The sign of the halfword code has no effect on determining
the routine that is to be called, since DMSITS takes the absolute value of the code
to determine the routine called.

Since only the second byte of the absolute value of the code is examined by
DMSITS, seven bits (bits 1-7) are available as flags or for other uses. Thus, for
example, DMSFREE uses these seven bits to indicate such things as conditional
requests and variable requests.

When an SVC 203 is invoked, DMSITS stores the halfword code into the NUCON
location CODE203, so that the called routine can examine the seven bits made
available to it.

All calls made by means of SVC 203 should be made by macros, with the macro
expansion computing and specifying the correct halfword code.

The programmer may use the HNDSVC macro to specify the address of a routine
that will handle any SVC call other than for SVC 202 and SVC 203. In this case,
the linkage conventions are as required by the user-specified SVC-handling
routine.

OS and VSE Macro Simulation SVC Calls

CMS supports selected SVC calls generated by OS and VSE macros, by simulating
the effect of these macro calls. DMSITS is the initial SVC interrupt handler. If the
SET DOS command has been issued, a flag in NUCON indicates that VSE macro
simulation is to be used. Control is then passed to DMSDOS. Otherwise, OS
macro simulation is assumed and DMSITS passes control to the appropriate OS
simulation routine.

Invalid SVC Calls

There are several types of invalid SVC calls recognized by DMSITS.

1. Invalid SVC number. If the SVC number does not fit into any of the four
classes described above, then it is not handled by DMSITS. An appropriate
error message is displayed at the terminal, and control is returned directly to
the caller.

2. Invalid routine name in SVC 202 parameter list. If the routine named in the
SVC 202 parameter list is invalid or cannot be found, DMSITS handles the
situation in the same way as it handles an error return from a legitimate SVC
routine. The error code is -3.

3. Invalid SVC 203 code. If an invalid code follows SVC 203 inline, then an
error message is displayed, and the abend routine is called to terminate
execution.

Chapter 34. Functional Information 425

Search Hierarchy for SVC 202

When a program issues sve 202, passing a routine or command name in the
parameter list, then DMSITS searches for the specified routine or command. (In
the case of sve 203 with a zero in the table entry for the specified index, the same
logic must be applied.)

Figure 42, Part 2, shows the search logic following and sve 202 call.

The search algorithm is as follows:

1. A check is made to determine if the specified name is known dynamically to
eMS through the SUBeOM function.

2. A check is made to see if the specified name is a nucleus extension routine. If
this is the case, the control goes to the specified nucleus extension routine.

Note: This step is skipped if the high-order byte of register 1 contains X'3' or
X' 04'. X' 03' indicates that an extended PLIST is provided .. X' 04' indicates
that a tokenized PLIST is provided. For both X' 03' and X' 04' , values are
translated to X'OI' and X'OO', respectively, by the sve interrupt handler
before the called program is entered.

3. A check is made to see if there is a routine with the specified name currently
occupying the system transient area. If this is the case, then control is
transferred there.

4. The system function name table is searched, to see if a command by this name
is a nucleus-resident command. If the search is successful, control goes to the
specified nucleus routine.

5. A search is then made for a disk file with the specified name as the filename,
and MODULE as the filetype. The search is made in the standard disk search
order. If this search is successful, then the specified module is loaded (via the
LOADMOD command), and control passes to the storage location now
occupied by the command.

6. If all searches so far have failed, then DMSINA (ABBREV) is called, to see if
the specified routine name is a valid system abbreviation for a system
command or function. User-defined abbreviations and synonyms are also
checked. If this search is successful, then steps 2 through 5 are repeated with
the full function name.

7. If all searches fail, then an error code of -3 is issued.

Commands Entered from the Terminal

When a command is entered from the terminal, DMSINT processes the command
line, and calls the scan routine to convert it into a parameter list consisting of
eight-byte entries.

See Figure 42 for a description of this search for a command name. The following
search is performed:

426 VM/SP System Programmer's Guide

(1. DMSINT searches for a EXEC in storage with the specified command name.
If an EXEC with this filename is found, it is executed.

2. If there is no EXEC in storage with the specified command name, all accessed
disks are searched for an EXEC with the specified command name. If an
EXEC with this filename is found, it is executed.

If not found, the command name is considered to be an abbreviation and the
appropriate tables are examined. If found, the abbreviation is replaced by. its
full equivalent and steps 1 and 2 are repeated.

3. If there is no EXEC file, DMSINT executes SVC 202, passing the scanned
parameter list, with the command name in the first eight bytes. DMSITS
performs the search described for SVC 202 in an effort to execute the
command.

4. If DMSITS returns to DMSINT with a return code of -3, indicating that the
search was unsuccessful, then DMSINT uses the CP DIAGNOSE facility to
attempt to e;1tecute the command as a CP command.

5. If all of these searches fail, then DMSINT displays the error message
UNKNOWN CP /CMS COMMAND.

Chapter 34. Functional Information 427

I

Name is now the
real name from a
Synonym Table

Notes:

1. If the command SET IMPEX OFF
has been executed, implied EXEC
is not in effect.

2. This EXEC must exist in storage
or on DASD.

User enters name
at terminal

Read line from·
terminal
(.. name)

Issue SV E 202
(See the SVC 202
Subroutine

No

3. A ·3 return code indicates SVC 202
processing did not find the command.

4. If the command SET IMPCP OFF
has been executed, implied CP is
not in effect.

Expand Line by
inserting tHe com·
mand name EXEC
to: EXEC name

No

Display
UNKNOWN
CP/CMS
COMMAND

Display Ready
me~sage, with error
code if RC *0

Figure 42 (Part 1 of 2). CMS Command (and Request) Processing

428 VM/SP System Programmer's Guide

No

Pass Line to CP
for processi ng

Yes

/

/

'~

(

Name is now the Yes
nama from the
Synonym Table

Attempt to execute
LOADMOD name
module from disk

Retu rn to routine
that issued the
SVC 202

Pass control to
routine in
transient area

Upon completion
return to SVC
routine

Figure 42 (Part 2 of 2). CMS Command (and Request) Processing

Pass con-rro' to the
routine (in the
nucleus or user area)
to execute the
command

Chapter 34. Functional Information 429

I Command Search Function

SUBCOM provides a function that iets the user invoke a command (from a
program) that is resolved according to the CMS command search hierarchy. That
is, the command is resolved just as though the command was entered from the
terminal. This command search function regards the IMPEX and IMPCP settings
ofCMSSET.

The SUBCOM is named CMS and is defined during system initialization at IPL.
This SUBCOM remains defined during the entire CMS session.

To pass a command to the CMS SUBCOM the user should define PLISTs as
follows:

PLIST DS OF
DC CL8'CMS

EXPLIST DS OF
DC A(PLIST)
DC A (BEGARGS)
DC A (ENDARGS)
DC A(O)

BEGARGS DS OF
DC C'command to be invoked'

ENDARGS EQU *

Register 1 must contain the address of PLIST and a high order byte of X' 02' .
Register 0 must contain the address of the extended PLIST. Having established the
PLIST and register information the user issues a SVC 202. The X' 02' in the high
order byte of register 1 indicates that this is a call to a previously defined
SUBCOM.

User and Transient Program Areas

Two areas hold programs that are loaded from disk. These areas are called the user
program area and the transient program area. (See Figures 38, 39, and 40, for a
description of CMS storage use.)

The user program area starts at location X '20000'. and extends upward to the
loader tables. Generally, all user programs and certain system commands (such as
EDIT, and COPYFILE) are executed in the user program area. Since only one
program can be executing in the user program area at anyone time, it is impossible
(without unpredictable results) for one program being executed in the user program
area to invoke, by means of SVC 202, a module that is also intended to be
executed in the user program area.

The transient program area is two pages long, extending from location X'EOOO' to
location X'PFFP'. It provides an area for system commands that may also be
invoked from the user program area by means of an SVC 202 call. When a
transient module is called by an SVC, it is normally executed with the PSW system
mask disabled for I/O and external interrupts.

A program being executed in the transient program area may not invoke another
nrmrram intended fnr exe~l1tinn in the tr::m~ient nrnPT:lm :lre:l.
,;;. ; - .;..- ~ - - --

430 VM/SP System Programmer's Guide

(DMSITS starts the programs to be executed in the user program area enabled for
all interrupts but starts the programs to be executed in the transient program area
disabled for all interrupts. The individual program may have to use the SSM (Set
System Mask) instruction to change the current status of its system mask.

Called Routine Start-Up Table

Figure 43 and Figure 44 show how the PSW and registers are set up when the
called routine is entered.

"Called" Type System Mask Storage Key Problem Bit

SVC 202 or 203 - Disabled System Off
Nucleus resident

SVC 202 - Nucleus User Defined User Defined Off
Extension Module

SVC 202 or 203 - Disabled User Off
Transient area
MODULE

SVC 202 or 203 - Enabled User Off
User area

User-handled Enabled User Off

OS - VSE Nucleus Disabled System Off
resident

OS - VSE Transient Disabled System Off
area module

Figure 43. PSW Fields When Called Routine Starts

Registers Registers Register Register Register Register
Type 0-1 2 -11 12 13 14 15
SVC Same as Unpredictable Address User save Return Address of
202 or caller of called area Address called
203 routine to routine

DMSITS

Other Same as Same as caller Address User save Return Same as
caller of caller area address to caller

DMSITS

Figure 44. Register Contents When Called Routine Starts

Chapter 34. Functional Information 431

Returning to the Calling Routine

Return Location

Register Restoration

When the called routine finishes processing, control is returned to DMSITS, which
in turn returns control to the calling routine.

The return is accomplished by loading the original SVC old PSW (which was saved
at the time DMSITS was first entered), after possibly modifying the address field.
The address field modification depends upon the type of BVC call, and upon
whether or not the called routine indicated an error return.

For SVC 202 and 203, the called routine indicates a normal return by placing a
zero in register 15 and an error return by placing a nonzero code in register 15. If
the called routine indicates a normal return, then DMSITS makes a normal return
to the calling routine. If the called routine indicates an error return, DMSITS
passes the error return to the calling routine, if one was specified, and abnormally
terminates if none was specified.

For an SVC 202 not followed by "DC AL4(address)" or "DC AL4(l)," a normal
return is made to the instruction following the SVC instruction, and an error return
causes an abend. For an SVC 202 followed by "DC AL4(address)", a normal
return is made to the instruction following the DC, and an error return is made to
the address specified in the DC, unless the address is equal to 1. If the address is 1,
both normal and error, return is made to the next instruction after the "DC
AL4(1)" instruction. In either case, register 15 contains the return code passed
back by the called routine. " /

For an SVC 203 with a positive halfword code, a normal return is made to the
instruction following the halfword code, and an error return causes an abend. For
an SVC 203 with a negative halfword code, both normal and error returns are
made to the instruction following the halfword code. In any case, register 15
contains the return code passed back by the called routine.

For macro simulation SVC calls, and for user-handled SVC calls, no error return is
recognized by DMSITS. As a result, DMSITS always returns to the calling routine
by loading the SVC old PSW, which was saved when DMSITS was first entered.

Upon entry to DMSITS, all registers are saved as they were when the SVC
instruction was first executed. Upon exiting from DMSITS, all registers are
restored from the area in which they were saved at entry.

The exception to this is register 15 in the case of SVC 202 and 203. Upon return
to the calling routine, register 15 always contains the value that was in r~gister 15
when the called routine returned to DMSITS after it had completed processing.

432 VM/SP System Programmer's Guide

(Called Routine Modifications to System Area

If the called routine has system status, so that it runs with a PSW storage protect
key of 0, then it may store new values into the System Save Area.

If the called routine wishes to modify the location to which control is to be
returned, it must modify the following fields:

• For SVC 202 and 203, it must modify the NUMRET and ERRET (normal and
error return address) fields.

For other SVCs, it must modify the address field of OLDPSW.

To modify the registers that are to be returned to the calling routine, the fields
EGPR1, EGPR2, through EGPR15 must be modified.

If this action is taken by the called routine, then the SVCTRACE facility may print
misleading information, since SVCTRACE assumes that these fields are exactly as
they were when DMSITS was first entered. Whenever an SVC call is made,
DMSITS allocates two save areas for that particular SVC call. Save areas are
allocated as needed. For each SVC call, a system and user save area are needed.

When the SVC-called routine returns, the save areas are not released, but are kept
for the next SVC. At the completion of each command, all SVC save areas
allocated by that command are released.

The System Save Area is used by DMSITS to save the value of the SVC old PSW
at the time of the SVC call, the calling routine's registers at the time of the call, and
any other necessary control information. Since SVC calls can be nested, there can
be several of these save areas at one time. The system save area is allocated in
protected free storage.

The user save area contains 12 doublewords (24 words), allocated in unprotected
free storage. DMSITS does not use this area at all, but simply passes a pointer to
this area (via register 13.) The called routine can use this area as a temporary work
area, or as a register save area. There is one user save area for each system save
area. The USA VEPTR field in the system save area points to the user save area.

The exact format of the system save area can be found in the VM / SP Data Areas
and Control Block Logic Volume 2 (CMS). The most important fields, and their
uses, are as follows:

Field

CALLER

CALLEE

Usage

(Fullword) The address of the SVC instruction that resulted in
this call.

(Doubleword) Eight-byte symbolic name of the called routine.
For OS and user-handled SVC calls, this field contains a
character string of the form SVC nnn, where nnn is the SVC
number in decimal.

Chapter 34. Functional Information 433

CODE

OLDPSW

NRMRET

ERRET

EGPRS

EFPRS

SSAVENXT

SSAVEPRV

USAVEPTR

(Halfword) For SVC 203, this field contains the halfword code
following the SVC instruction line.

(Doubleword) The SVC old'PSW at the time that DMSITS was
entered.

(Fullword) The address of the calling routine to which control is
to be passed in the case of a normal return from the called
routine. " .

(Fullword) The address of the calling routine to which control is
to be passed in the case of an error return from the called
routine.

(16 Fullwords, separately labeledEGPRO, EGPRl, EGPR2,
EGPR3, ... , EGPR15) The entry registers. The contents of the
general registers at entry to DMSITS are stored in these fields.

(4 Doublewords, separately labeled EFPRO, BFPR2, BFPR4,
BFPR6) The entry floating-point registers. The contents of the
floating-point registers at entry to DMSITS are stored in these
fields.

(Fullword) The address of the next system save area in the
chain. This points to the system save area that is being used, or
will be used, for anySVC call nested in relation to the current
one.

(Fullword) The address of the previous system save area in the
chain. This points to the system save area for the SVC call in
relation to which the current call is nested.

(Fullword) Pointer to the user save area for this SVC call.

Dynamic Linkage -- SUBCOM

It is possible for a program that has already been loaded from disk to become
known by name to CMS for the duration of the current command; such a program
thus can be called viaSVC 202. In addition, a program that has become known
dynamically can make other programs known dynamically (if the first program can
supply the entry points of the other programs),

To become known dynamically to CMS, a program or routine invokes the create
function of SUB COM. To invoke SUB COM, issue the following calling sequence
from an assembler language program:

434 VM/SP System Programmer's Guide

(

PLIST

SUBCNAME
SUBCPSW

LA R1,PLIST
SVC 202
DC AL4(ERROR)

DS OF
DC CL8'SUBCOM'
DC CL8'name'
DC XL2'OOOO'
DC AL2(0)

COMMAND NAME
SYSTEM MASK, STORAGE KEY, ETC.
INTERRUPTION CODE

SUBCADDR DC A(*-*) ENTRY ADDRESS, -1 FOR QUERY
DC A(O) USER WORD

SUBCOM creates an SCBLOCK control block containing the information
specified in the SUBCOM parameter list. SVC 202 uses this control block to
locate the specified routine. All non-system SUBCOM SCBLOCKS are released at
the completion of a command (that is, when CMS displays the ready-message). A
SUBCOM environment may be defined as a system SUBCOM by setting a X'80'
in the first byte of the interruption code field of the PLIST. See VM / SP Data
Areas and Control Block Logic Volume 2 (CMS) for a description of the SCBLOCK
control block.

When a program issues an SVC 202 call to a program that has become known to
CMS via SUBCOM, it places X'02' in the high-order byte of register one. Control
passes to the called program at the address specified by the called program when it
invoked SUB COM.

The PSW specifies the system mask, the PSW key to be used, the program mask
(and initial condition code), and the starting address for execution. The
problem-state bit and machine-check bit may be set. The machine-check bit has
no effect in CMS under CP. The EC-mode bit and wait-state bit cannot be set;
they are always forced to zero. Also, one 4-byte user-defined word can be
associated with the SUB COM entry point, and referred to when the entry point is
subsequently called.

Note: When control passes to the specified entry point, the register contents are:

R2 Address of SCBLOCK for this entry point.

R12 Entry point address.

R13 24-word save area address.

R14 Return address (CMSRET).

R15 Entry point address.

You can also use SUBCOM to delete the potential linkage to a program or
routine's SCBLOCK, or to determine if an SCBLOCK exists for a program or
routine. To delete a program or routine's SCBLOCK, issue:

DC CL8'SUBCOM'
DC CL8'program or routine name'
DC 8X'OO'

Chapter 34. Functional Information 435

To determine if an SCBLOCK exists for a program or routine, issue:

DC CL8'SUBCOM'
DC CL8'program or routine name'
DC A(O) SCBLOCK addressed as a returned value
DC 4X'FF'

Note that if 'SUBCOM name' is called from an EXEC file, the Query PLIST is the
form of PLIST which will be issued.

To query the chain anchor issue:

DC CL8'SUBCOM'
DS CL8
DS AL4

DC AL4(1)

(contents not relevant)
Will receive chain anchor
contents from NUCSCBLK.
Indicates request for anchor.

Note that the anchor will be equal to F'O' if there are no SCBLOCKs on the chain.

Return codes from SUBCOM are:

Return Meaning
Code

o Successful completion. A new SCBLOCK was created, the specified
SCBLOCK was deleted, or the specified program or routine has an
SCBLOCK.

I No SCBLOCK exists for the specified program or routine. This is the
return code for a delete or a query.

2S No more free storage available. SCBLOCK cannot be created for the
specified program or routine.

Note: If you create SCBLOCKS for several programs or routines with the same
name, they will all be remembered, but only the last one to be created will be used.
A SUBCOM delete request for that name will eliminate only the most recently
created SCBLOCK, making active the next most recently created SCBLOCK with
the same name.

When control returns to CMS after a console input command has terminated, the
entire SUBCOM chain of SCBLOCKs is released; none of the subcommands
established during that command are carried forward to be available during
execution of the next console command.

436 VM/SP System Programmer's Guide

/

(-'

System Product Editor Interface to Access Files in Storage

CMS uses the SUBCOM facility to allow a number of CMS commands to use an
XEDIT interface to access files in storage. Applications can read or write specific
records without having to go to disk or use the program stack to transfer the data
to or from XEDIT. This improves performance.

CMS uses the XEDIT interface for processing the FILELIST, HELP, MACLIST,
PEEK, and SEND FILE commands. The interface is invoked by specifying the
XEDIT option on the LISTFILE, MACLIB, or NAMEFIND commands. This
option may only be specified from the XEDIT environment.

When using this interface from an application program, only the extended
Parameter List can be used, and the high-order byte of of Register 1 must contain
X' 02' to indicate SUBCOM is being used.

The application can invoke this interface via SVC 202 or via a BALR instruction.
Because XEDIT is a nucleus-resident routine, other nucleus-resident routines can
branch directly to it while routines that do not resides in the nucleus use SVC
linkage. When using an SVC 202, register 1 must point to the FSCB where the
name of the routine being invoked is the first token. The high-order byte of
register 1 must also be X' 02'. When using BALR, the calling program can
determine the entry point it wants by using SUBCOM. In this case, register 1
points to the FSCB and register 2 points to the SCBLOCK. The address of the the
SCBLOCK has been returned from SUBCOM.

The routines available, their entry point names, and error return codes are:

• DMSXFLST - This routine returns the characteristics of a file (RECFM,
LRECL, etc). It also ensures that the file is in the XEDIT ring. The return
codes are:

•

o File is in the XEDIT ring
24 Incomplete fileid specified
28 File is not in the XEDIT ring

Note: Return codes are similar to those for ESTATE.

DMSXFLRD - This routine transfers one record from XEDIT storage to the
calling program. If RECFM=F, it may transfer more than one record. The
return codes are:

o READ performed
1 File is not in the XEDIT ring
2 Invalid buffer address
5 Number of items equals zero
7 RECFM is not 'F' or 'V'
8 Buffer is too small (Records truncated)

11 Number of items is not equal to one for V-file
12 End of file

Note: Return codes are similar to those for FSREAD.

Chapter 34. Functional Information 437

• DMSXFL WR - This routine transfers one record from the calling program to
XEDIT storage. If RECFM=F, it may transfer more than one record. The
return codes are:

o WRITE performed
2 User buffer address equals zero
7 Skip over unwritten records
8 Number of bytes is not specified
11 RECFM is not 'F' or 'V'
13 No more space is available -::,
14 Number of bytes is not integrally divisible by the number of item
15 Item length is not the same as previous
16 RECFM of 'F' or 'V' is not the same as previous
18 Number of items is not equal to one for V-file
28 File is not in the XEDIT ring

Note: Return codes are similar to those for FSWRITE.

• DMSXFLPT - This routine moves the current line pointer to a record specified
by the calling program. The return codes are:

o POINT performed
1 File not found
2 Invalid FSCB

Note: Return codes are similar to those for FSPOINT.

When the interface is used, XEDIT determines if a file is in the XEDIT ring (active
in storage) and does the processing required. The files in the XEDIT ring are
always open. New files may be added to the ring with the XEDIT subcommand.
Files in the ring may be closed with the FILE or QUIT subcommands.

The current line pointer serves the function of both the read and write pointers of
the CMS file system. If RECNO=O is specified in a call to DMSXFLRD, then the
data will be transferred to the calling program starting at the current line pointer.
Transfer is stopped when the specified number of lines has been transferred or
when end-of-file is reached. The current line pointer is advanced by one for each
record transferred to the calling program. If the current line pointer was at the
end-of-file when DMSXFLRD was called, no data is transferred and an end-of-file
condition is returned.

If RECNO=O is specified in a call to DMSXFLWR, the new records are written
starting at the line pointed to by the current line pointer, replacing any existing
records, or adding new records if at the end-of-file. The current line pointer is
advanced to the line following the last line written at the end of the operation.
Note that writing to a record in the middle of a V-format file does not result in
truncation of the file from that point, as it would in the CMS file system.
Truncation (or spilling when SET SPILL ON I WORD) may occur if the file is in
V-format and the LRECL of the file is less than the length of the record(s) being
written. No message is issued and the return code is O.

438 VM/SP System Programmer's Guide

----------- --- ------_.---

eMS Interface for Display Tenninals

CMS has an interface that allows it to display large amounts of data in a very rapid
fashion. This interface for 3270 display terminals (also 3138, 3148, and 3158) is
much faster and has less overhead than the normal write because it displays up to
1760 characters in one operation, instead of issuing 22 individual writes of 80
characters each (that is one write per line on a display terminal). Data that is
displayed in the screen output area with this interface is not placed in the console
spool file.

The DISPW macro allows you to use this display terminal interface. It generates a
calling sequence for the CMS display terminal interface module, DMSGIO.
DMSGIO creates a channel program and issues a DIAGNOSE instruction (code
X' 58') to display the data. DMSGIO is a TEXT file which must be loaded to use
DISPW. The format of the CMS DISPW macro is:

[label]" DISPW bufad [,LINE=n] [,BYTES=bbbb]

where:

label

bufad

,LINE=O , BYTES=1760

[ERASE=YES] [CANCEL=YES]

is an optional macro statement label.

is the address of a buffer containing the data to be written to the display
terminal.

rLINE=nl
LLINE=OJ

is the number of the line, 0 to 23, on the display terminal that is to be
written. Line number 0 is the default.

r BYTES=bbbb]
LBYTES=1760

is the number of bytes (0 to 1760) to be written on the display terminal.
1760 bytes is the default.

ERASE=YES
specifies that the display screen is to be erased before the current data is
written. The screen is erased regardless of the line or number of bytes to be
displayed. Specifying ERASE = YES causes the screen to go into "MORE"
status.

CANCEL=YES
causes the CANCEL operation to be performed; the output area is erased.

Chapter 34. Functional Information 439

Note: It is advisable for the user to save registers before issuing the DISPW macro
and to restore them after the macro, because the modules called by DISPW macro
do not save the user's registers. The DISPW macro saves and restores register 13.

440 VM/SP System Programmer's Guide

(

Chapter 35. Using the DASD Block I/O System Service from
CMS

The DASD Block I/O System Service provides a virtual machine with
device-independent access to its virtual DASD devices. Programs using the DASD
Block 1/ 0 System Service bypass the CMS file system, and they read or write
directly from CP.

Before using the DASD Block I/O System Service, you should issue the CMS
RESERVE command and the CMS DISKID function.

The CMS RESERVE command allocates all available blocks of a 512-, lK-, 2K-,
or 4K-byte block formatted minidisk to a unique CMS file. The file created has the
following format:

• filename, filetype, and filemode letter the user specified

filemode number 6, if the filemode number was not specified in the command

• logical record length equal to the CMS disk block size

• fixed (F) record format

• the number of records is the total number of blocks available on the disk minus
the number of blocks used by CMS. The number of blocks used by CMS is
referred to as the offset. This CMS overhead varies with the size of the
minidisk. The data blocks physically follow the blocks used by CMS.

The file created can be read or written via the DASD Block I/O System Service or
the CMS file system. Because a CMS file structure has been created on the disk,
the file may be accessed using the CMS file system. Let's consider the following
example:

If you have a 3330 device with one cylinder formatted with 1024-byte block size,
209 blocks are available. After you issue the RESERVE command, the file created
has the following format:

11 1 :2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 110 111 1 ••• 120712081209

where:

Chapter 35. Using the DASD Block I/O System Service from CMS 441

Physical block
number(s)

1 and 2
3
4 or 5
6
7
8
9 through 209

Description

Contain the IPL records
Contains the volume label
Contain the CMS directory file
Contains the allocation map
Contains the alternate allocation map
CMS level 1 pointer block
Data blocks

Physical blocks 1 through 8 are the blocks used by the CMS file system. Physical
blocks 9 through 209 are the data blocks. Next, issue the following format of the
FILEDEF command:

FILEDEF ddname DISK vaddr

This command associates the name of the virtual minidisk referred to in your
program, "ddname", to the virtual address of the minidisk, "vaddr". The
"ddname" is input to the DISKID function.

The DISKID function obtains the necessary information on the physical
organization of the RESERVEd minidisk that will be used by the DASD Block I/O
Service. The DISKID function obtains the virtual address, the block size, and the
offset of this minidisk. (In the above example, the block size is 1024 bytes and the
offset is 8.)

Before using the DASD Block I/O System Service, you must initialize your virtual
machine for lUCY communications. lUCY enables a program running in your
virtual machine to communicate with DASD Block I/O. Use the lUCY
DECLARE BUFFER function or the CMS HNDIUCY SET macro to initialize
your virtual machine for lUCY communications. You should use the CMS lUCY
support since this support allows other programs running in the virtual machine to
use lUCY.

To establish a path between your virtual machine and the DASD Block I/O System
Service, your program must issue either the lUCY CONNECT function or the
CMSIUCY CONNECT macro. The USERID parameter on the lUCY
CONNECT macro must be "*BLOCKIO" and the PRMDATA parameter must be
"YES". PRMDATA=YES indicates, in this case, that the your program will
receive messages in its parameter list. Information about the minidisk returned by
the DISKID function -- the virtual address, blocksize, and offset -- must be moved
into the IPUSER field of the lUCY CONNECT parameter list.

If all the parameters required by DASD Block I/O are valid, DASD Block I/O
issues the lUCY ACCEPT function with the PRMDATA=YES parameter
specified. In this case, PRMDAT A= YES indicates that the DASD Block I/O
System Service will receive messages in its parameter list. If invalid parameters are
passed from the CONNECT toDASD Block I/O, DASD Block I/O issues an
lUCY SEVER on the path.

If DASD Block I/O issued an lUCY ACCEPT, your virtual machine receives an
lUCY Connection Complete external interrupt. The IPUSER field of the

442 VM/SP System Programmer's Guide

\

f Connection Complete external interrupt buffer contains the starting and ending
block numbers allowable on the DASD Block I/O requests, and contains flags
describing the status of the virtual device. The starting block number (START
BLOCK) is 1 minus the offset. The ending block number (END BLOCK) is the
total number of available blocks minus the offset.

Since DASD Block I/O bypasses the CMS file system, START BLOCK can
contain a negative value (1 - OFFSET) and these blocks can be used by DASD
Block I/O. In the example above, START BLOCK would be -7 (1- 8) and END
BLOCK would be 201 (209 - 8). The range -7 to 201 equals 209 - the number of
available blocks on the device. Data block 1 is actually physical block 9, data block
2 is actually physical block 10, ... , and the last block (data block 201) is actually
physical block 209. Programs using DASD Block I/O should only write data
blocks; therefore, a block number less than 1 should never be written. This would
destroy a block that was used to implement the CMS file structure.

You can now start sending I/O requests to DASD Block I/O by issuing the IUCV
SEND function. You must specify the block number, virtual buffer address, and
type of request desired in the IUCV SEND parameter list. Blocks are read or
written randomly as requested.

If no error occurred in the IUCV SEND, DASD Block I/O issues an IUCV
REPLY to return the results of the I/O requests. If an error occurred in the IUCV
SEND, DASD Block I/O issues an IUCV SEVER.

When you want to terminate communications with the DASD Block I/O System
Service, issue the IUCV SEVER function, CMS CMSIUCV SEVER macro, IUCV
RETRIEVE BUFFER function, or CMS HNDIUCV CLR macro.

(For a further description of the DASD Block I/O System Service, see "DASD
Block I/O System Service".)

Chapter 35. Using the DASD Block I/O System Service from CMS 443

444 VM/SP System Programmer's Guide

/'
/

\.

~./

(

Chapter 36. CMS IUCV Support

The Inter-User Communications Vehicle (IUCV) is a communications facility. It
enables a program running in a virtual machine to communicate with other virtual
machines, with a CP system service, and with itself. (See "Inter-User
Communication Vehicle" in "Part 1: Control Program (CP)".) CMS support of
IUCV makes it easier for multiple programs, operating within one virtual machine,
to use IUCV functions.

You can invoke IUCV functions via the CMS macros, HNDIUCV and CMSIUCV.
These macros enable you to:

Initialize and terminate a program's IUCV environment

• Begin or terminate communications with another virtual ~achine or with CP

• Specify specific exits for IUCV external interrupts.

HNDIUCV Macro

Standard Format

Use the HNDIUCV macro to identify an IUCV program to CMS. HNDIUCV
initializes or terminates the virtual machines IUCV ,(ommunications. No CMS
IUCV function is permitted by a particular program unless the program has first
issued the HNDIUCV macro and identified itself to CMS.

The four formats of the HNDIUCV macro are:

• standard,

• MF=L

• MF=(L,addr[,label])

• MF=(E,addr).

The standard format of the, HNDIUCV macro is:

Chapter 36. CMS IUCV Support 445

[label] HNDIUCV I SET, NAME=addr , EXIT=addr [, UWORID=addr] [, ERROR=addr]

I {,EXIT=addr} ,
) REP,NAME=addr[,ERROR=addr] ,UWORD=addr

, EXIT=addr,UWORD=addr I
f CLR, NAME=addr [, ERROR=addr] , I

where:

addr

label

SET

eLR

REP

is an assembler program label or an address stored in a general register. If a
register is used, it must be enclosed in parentheses. Also, the register must
contain a non-zero value. A zero value is treated as though the parameter
was not specified, and any defaults are used. If the parameter is required by
the macro function, a non-zero return code is generated.

is an assembler program label.

identifies the program to CMS. It must be issued before doing any CMS
IUCV communications. Upon error free completion, register 0 contains the
maximum number of possible connections for the virtual machine.

removes the program from the list of active CMS IUCV programs. This
function should be issued when the program no longer wishes to do any more
CMS IUCV communications. Any paths associated with this program are
SEVERed when this function is requested (the IPUSER field of the IUCV
SEVER parameter list is set to binary ones to indicate the SEVER was done
'byCMS).

replaces the currently defined exit address and/or UWORD field for a
specified program. Only the parameters specified are replaced.

NAME =

label is an assembler program label that is the address of an 8 character
symbolic name.

(Rn) is a general register. Its value is the address of an 8 character
symbolic name.

This symbolic name is used as the CMS IUCV program's identity. When this
program issues the CMSIUCV macro to perform an IUCV function, the
NAME parameter specified on the CMSIUCV macro must be the same as
the one specified here. This parameter is required to execute the.HNDIUCV
function.

446 VM/SP System Programmer's Guide

-- -~-- --- ------------_._-----

(EXIT=

label is an assembler program label that is the address of the exit
routine.

(Rn) is a general register. Its value is the add~ess of the exit routine.

The exit routine receives control whenever an IUCV external interrupt of the
type "PENDING CONNECT" occurs for this program. To activate this
exit, the connecting virtual machine 'must specify the same symbolic name in
the first 8 bytes of the IPUSER field of its CONNECT parameter list as the
NAME parameter here. This exit address is the default address associated
with any path owned by this program. If an IUCV external interrupt occurs
on a path where no specific exit has been established (a pending connect
external interrupt has previously occurred on this path and no CMSIUCV
ACCEPT has been issued yet, or the EXIT parameter was not specified on
the CMSIUCV CONNECT or ACCEPT that established the path), this
address receives control. This parameter must be specified on the SET
function, but it is optional on the REP function.

UWORD=

label is an assembler program label that is the address stored as the
UWORD.

(Rn) is a general register. Its contents are stored as the UWORD.

UWORD is an optional fullword that can be specified by the invoker for any
purpose desired. When the exit routine receives control, register 0 contains
either an address if a label was used or the value of the register if a register
was used. If this parameter is not specified, the UWORD is set to zero. (If
the UWORD value is not specified when a CMSIUCV ACCEPT or
CONNECT is issued, it defaults to the UWORD value specified on this
HNDIUCV macro.)

ERROR=

label is an assembler program label that is the address of the error
routine.

(Rn) is a general register. Its value is the address of the error routine.

The error routine receives control if an error is found. If this parameter is
not specified and an error occurs, control returns to the next sequential
instruction in the calling program.

Chapter 36. eMS IUCV Support 447

MF=L Format

[label]

When MF=L is coded, the format of the HNDIUCV macro is:

HNDIUCV MF=L
[,NAME= labell I, EXI T= label] I, UWORD= label]]

,SET[,NAME=label] [,EXIT=label] [,UWORD=label]
. ,REP [,NAME=label] [,EXIT=label] [, UWORD=label]

,CLR[,NAME=label]

All parameters have the same meaning as the standard format with the following
difference:

MF=L
indicates that the parameter list is created in-line. No executable code is
generated. Register notation cannot be used for macro parameter addresses.

Note: When using the MF= parameter, all other parameters are optional. When
the function is executed, however, a valid combination of parameters must have
been specified by the LIST and EXECUTE formats of the macro.

M F=(L,addr[,label]) Format

[label]

When MF=(L,addr[,label]) is coded, the format of the HNDIUCV macro is:

HNDIUCV MF=(L,addr[label])
[1,NAME=addr] I,EXIT=addr] I,UWORD=addr]]

,SET[,NAME=addr] [,EXIT=addr] [,UWORD=addr]
,REP[,NAME=addr] [,EXIT=addr] [,UWORD=addr]
, CLR [, NAME=addr]

All parameters have the same meaning as the standard format with the following
difference:

MF = (L,addr[,label])
indicates that the parameter list is created in the area specified by "addr".
The address may represent an area within your program or an area of free
storage obtained by a system service. You can determine the size of the
parameter list by coding the "label" operand. The macro expansion equates
"label" to the size of the parameter list. This format of the macro produces
executable code to move the data into the parameter list specified by "addr".
However, it does not generate instructions to invoke the function. If this
version of the LIST format is used, it must be executed before any related
invocation of the EXECUTE format.

Note: When using the MF= parameter, all other parameters are optional., When
the function is executed, however, a valid combination of parameters must have
been specified by the LIST and EXECUTE formats of the macro.

448 VM/SP System Programmer's Guide

----- ------------ ------

(

(\

MF=(E,addr) Format

When MF=(E,addr) is coded, the format of the HNDIUCY macro is:

[label] HNDIUCV MF=(E,addr) r [,NAME=addr] [,EXIT=addr] [,UWORD=addr]

Error Conditions

[, ERROR=addr]
,SET[,NAME=addr] [,EXIT=addr] [,UWORD=addr]

[, ERROR=addr]
,REP [,NAME=addr] [,EXIT=addr] [,UWORD=addr]

[, ERROR=addr]
~,CLR[,NAME=addr] [,ERROR=addr] -

All parameters have the same meaning as the standard format with the following
difference:

MF=(E,addr)
indicates that instructions are generated to execute the HNDIUCY function.
"addr" represents the location of the parameter list. Information in the
parameter list may be changed by specifying the appropriate operands on the
macro.

Note: When using the MF= parameter, all other parameters are optional. When
the function is executed, however, a valid combination of parameters must have
been specified by the LIST and EXECUTE formats of the macro.

If an error occurs, register 15 contains one of the following return codes:

Code Meaning

4 A program with this name has previously issued a HNDIUCY SET
(SET)

8 No HNDIUCY SET has been issued for this program (REP,CLR)
16 The NAME parameter was not specified or its address is equal to zero

(SET,REP,CLR)
20 The EXIT parameter was not specified or its address is equal to zero

(SET)
32 An lUCY DECLARE BUFFER has already been issued by a

non-CMS lUCY program. CMS lUCY support cannot be initialized
(SET)

36 Errors were encountered reading the directory for the virtual machine
during CMS lUCY initialization (SET)

40 Unrecognized function
2xx An error was encountered in getting CMS free storage. "xx" = the

return code from DMSFREE. (SET)
1 xxx While trying to SEVER all of the program's paths, an lUCY SEVER

error occurred. "xxx" is the IPRCODE field that was returned by
lUCY to aid in diagnosing the error. (CLR)

Chapter 36. eMS ruCY Support 449

i

CMSIUCV Macro

Standard Format

[label] CMSIUCV

Use the CMSIUCV macro to begin or terminate IUCV communications with
another IUCV program or with CP.

The four formats of the CMSIUCV macro are:

• standard,

MF=L

• MF = (L,addr[,labeI])

• MF=(E,addr).

The standard format of the CMSIUCV macro is:

CONNECT,NAME=addr,PRMLIST=addr[,EXIT=addr])
1 [,UWORD=addr] [,ERROR=addr] !

ACCEPT,NAME=addr,PRMLIST=addr[,EXIT=addr] >
j [,UWORD=addr] [,ERROR=addr] ,
f SEVER,NAME=addr,PRMLIST=addr[,ERROR=addr] ,

[,CODE={ALLIONE}]

where:

addr

label

is an assembler program label or an address stored in a general register. If a
register is used, it must be enclosed in parentheses. Also, the register must
contain a non-zero value. A zero value is treated as though the parameter
was not specified, and defaults are used. If the parameter was required by
the macro function, a non-zero return code is generated.

is an assembler program label.

CONNECT
requests CMS to perform an IUCV CONNECT. A CONNECT parameter
list must be set up by the program and passed to CMS.

ACCEPT
requests CMS to perform an IUCV ACCEPT. An ACCEPT parameter list
must be set up by the program and passed to CMS.

SEVER
requests CMS to perform an IUCV SEVER. A SEVER parameter list must
be set up by the program and passed to CMS. Any EXIT established for the
path being SEVERed is terminated. A SEVER with the IP ALL bit turned
on, which would cause a SEVER of all paths for the virtual machine, is not
permitted.

450 VM/SP System Programmer's Guide

(EXIT=

label is an assembler program label that is the address of the exit
routine.

(Rn) is a general register. Its value is the address of the exit routine.

The exit routine receives control whenever an IUCV external interrupt
occurs on this IUCV path. If this parameter is not specified, the exit address
defaults to the address specified in the HNDIUCV macro for this program.
Any time an IUCV external interrupt occurs for the specific IUCV path, the
address is given control.

UWORD=

label is an assembler program label that is the address that is stored as
theUWORD.

(Rn) is a general register. Its contents are stored as the UWORD.

UWORD is an optional fullword that can be specified by the invoker for any
purpose desired. When the exit routine receives control, register 0 contains
the value of the UWORD associated with the path on which the IUCV
external interrupt occurred. Register 0 contains the address if a label was
used, or the value of the register if a register was used. If this parameter is
not specified, the UWORD value defaults to the value specified on the
HNDIUCV macro for this program.

PRMLIST=

label is an assembler program label. It is the address of the program's
IUCV PRMLIST.

(Rn) is a general register. Its value is the address of the program's
IUCV PRMLIST.

This address is the block of storage that contains the IUCV parameter list for
the IUCV function desired. This parameter list must be previously prepared
by the program. It is suggested that the program use the LIST form of the
IUCV macro to prepare the parameter list. By using this form, the program
may set up the IUCV parameter list by using KEYWORD parameters on the
IUCV macro instead of storing information using the IPARML DSECT.
This parameter is required.

CODE=
is only valid when the SEVER function is requested. If CODE=ALL, all
paths owned by the program are SEVERed. If CODE=ONE, only the one
path specified via the pathid is SEVERed. If this parameter is not specified,
CODE=ONE is used as the default.

Chapter 36. CMS IUCV Support 451

MF=L Format

NAME=

label is an assembler program label. It is the address of an 8 character
symbolic name.

(Rn) is a general register. Its value is the address of an 8 character
symbolic name.

This symbolic name identifies the program associated with this path. A
program with this name must have previously issued an HNDIUCV macro to
identify itself as a CMS IUCV program to CMS. This parameter must be
specified.

ERROR =

label is an assembler program label that is the address of the error
routine.

(Rn) is a general register. Its value is the address of the error routine.

The error routine receives control if an error is found. If this parameter is
not specified and an error occurs, control returns to the next sequential
instruction in the calling program.

When MF=L is coded, the format of the CMSIUCV macro is:

-[label] CMSIUCV MF=L r [,NAME=label] [,PRMLIST=label] [,EXIT=label]
[,UWORD=label] [,CODE={ALLIONE}]

,CONNECT[,NAME=label] [,PRMLIST=label] [,EXIT=label]
[, UWORD=label]

,ACCEPT[,NAME=label] [,PRMLIST=labelJ [,EXIT=label]
[, UWORD=label]

__ ' SEVER [,NAME=labelJ [,PRMLIST=label] [,CODE= {ALL lONE}] _

All parameters have the same meaning as the standard format with the following
difference:

MF=L
indicates that the parameter list is created in-line. No executable code is
generated. Register notation cannot be used for macro parameter addresses.

Note: When using the MF= parameter, all other parameters are optional. When
the function is executed, however, a valid combination of parameters must have
been specified by the LIST and EXECUTE formats of the macro.

452 VM/SP System Programmer's Guide

(MF={L,addr[,label]) Format

[label]

When MF = (L,addr[,label]) is coded, the format of the CMSIUCV macro is:

CMSIUCV MF=(L,addr[,label]) ~ [,NAME=addr] [,PRMLIST=addr] [,EXIT=addr] -
[,UWORD=addr] [,CODE={ALLIONE}]

,CONNECT[,NAME=addr] [,PRMLIST=addr]
[,EXIT=addr] [,UWORD=addr]

,ACCEPT[,NAME=addr] [,PRMLIST=addr]
[,EXIT=addr] [,UWORD=addr]

,SEVER[,NAME=addr] [,PRMLIST=addr]
- [,CODE={ALLIONE}] -

All parameters have the same meaning as the standard format with the following
difference:

MF = (L,addr[,label])
indicates that the parameter list is created in the area specified by "addr".
The address may represent an area within your program or an area of free
storage obtained by a system service. You can determine the size of the
parameter list coding the "label" operand. The macro expansion equates
"label" to the size of the parameter list. This format of the macro produces
executable code to move the data in the parameter list specified by "addr".
However, it does not generate instructions to invoke the function. If this
version of the LIST format is used, it must be executed before any related
invocation of the EXECUTE format.

Note: When using the MF = parameter, all other parameters are optional. When
the function is executed, however, a valid combination of parameters must have
been specified by the LIST and EXECUTE formats of the macro.

MF=(E,addr) Format

[label]

When MF=(E,addr) is coded, the format of the CMSIUCV macro is:

CMSIUCV MF=(E,addr) - [,NAME=addr] [,PRMLIST=addr] [,EXIT=addr] -
[,UWORD=addr] [,ERROR=addr] [,CODE={ALLIONE}]

,CONNECT [,NAME=addr] [,PRMLIST=addr] [,EXIT=addr]
[,UWORD=addr] [,ERROR=addr]

,ACCEPT[,NAME=addr] [,PRMLIST=addr] [,EXIT=addr]
[,UWORD=addr] [,ERROR=addr]

,SEVER[,NAME=addr] [,PRMLIST=addr] [,CODE={ALLIONE}]
- [, ERROR=addr]

All parameters have the same meaning as the standard format with the following
difference:

MF=(E,addr)

-

indicates that instructions are generated to execute the CMSIUCV function.
"addr" represents the location of the parameter list.' Information in the
parameter list may be changed by specifying the appropriate operands on the . ,
macro.

Chapter 36. CMS IUCV Support 453

Usage Notes:

Error Conditions:

Note: When using the MF= parameter, all other parameters are optional. When
the function is executed, however, a valid combination of parameters must have
been specified by the LIST and EXECUTE formats of the macro.

1. To insure that no program tries to SEVER a path that another program
established, each individual IUCV path has a NAME associated with it. When
a program requests a CONNECT or ACCEPT function, the NAME specified
becomes the owner of this path. If the program requests a SEVER or an
ACCEPT for a specific path and the NAME specified does not correspond
with the owner of that path, the SEVER or ACCEPT is not permitted.

2. The HNDIUCV macro must be issued to identify the program to CMS before
issuing the CMSIUCV macro.

3. If the program requests a SEVER function with CODE=ALL, all IUCV paths
owned by that program are SEVERed. The IPUSER field of the IUCV
SEVER PRMLIST is set to binary ones.

4. The IUCV communication facility generates exceptions for some error
conditions. If IUCV generates an operation, specification, or addressing
exception while a HNDIUCVor CMSIUCV macro is executing, control does
not directly return to the next sequential instruction. Instead, a program check
is generated.

5. The HNDIUCV REP function will only replace the general exit address and/or
UWORD set up by your program via the HNDIUCV SET function. If your
program had previously issued any CMSIUCV CONNECTs and had the EXIT
address or UWORD default to the HNDIUCV SET's EXIT and UWORD, the
HNDIUCV REP function does not replace the path specific EXIT or UWORD
set up via the CMSIUCV function. The EXIT and UWORD remain as
established when the CMSIUCV function was issued.

If an error occurs, register 15 contains one of the following return codes:

Code Meaning

8 No HNDIUCV SET has been issued for this program
(CONNECT,ACCEPT,SEVER)

12 The program doesn't own the path (ACCEPT,SEVER)
16 The NAME parameter was not specified or its address is equal

to zero (CONNECT,ACCEPT,SEVER)
24 The PRMLIST parameter was not specified or its address is

equal to zero (CONNECT,ACCEPT,SEVER)
28 An IUCV SEVER with the IPALL bit on is not allowed

(SEVER)

454 VM/SP System Programmer's Guide

Exits

Usage Notes

(~

Code Meaning

40 Unrecognized function
lxxx Indicates that an lUCY error occurred. "xxx" is the IPRCODE

field that was returned by lUCy to aid in diagnosing the error.
(CONNECT,ACCEPT,SEVER)

When the program's lUCy external interruption routine is given control, all
interruptions are disabled. The exit routine is responsible for providing proper
entry and exit linkage for its lUCy external interruption handling routine. The exit
routine has the following requirements:

• The routine should not enable itself for any type of interrupts.

• The routine should not perform any I/O operations, since all interruptions are
disabled.

• The routine must return control to the address in register 14.

When the routine receives control, the significant registers contain:

Register

o
1

Contents

UWORDField
Points to a SA YEAREA in the format:

Label

GRS
FRS
PSW
UAREA
END

Displacement
Dec Hex

o 0
64 40
96 60

104 68
176 80

2 Address of the lUCy External Interrupt Buffer
13 Points to the save area at label UAREA for use by the exit

routine
14 Return address
15 Entry point address

1. If the CMS lUCy support is active, the external interrupt handler recognizes
two error conditions.

An lUCY pending-connect external interrupt occurs and the first eight
bytes of the IPUSER field does not match any currently active CMS lUCy
program's identity.

Chapter 36. CMS IUCV Support 455

• Any other type of IUCV external interrupts occurs and the path that it
occurs on is not owned by any active CMS IUCV programs in the virtual
machine.

In either condition, CMS issues an IUCV SEVER for the path in error. The 16
bytes in the IPUSER field contain binary ones (X' F').

2. If a CMS abend occurs, the CMS IUCV environment is terminated. An IUCV
RETRIEVE BUFFER is issued, and any exits set up by the CMSIUCV or
HNDIUCV macros are cancelled.

3. CMS IUCV clean up does not occur at end-of-command processing.

4. A program must be ready to handle any incoming external interrupts as soon as
a HNDIUCV or CMSIUCV macro has finished execution. A program may
even be interrupted before the next sequential instruction after the macro in
the program is executed.

Using CMS IUCV to Communicate Between Two Virtual
Machines

Figure 45 on page 457 illustrates the sequence of macro instructions issued when
a virtual machine communicates with another virtual machine using CMS IUCV.

The functions performed by these instructions include:

• Initializing IUCV communications

• Connecting to another virtual machine

• Sending and receiving messages

• Replying to and waiting for messages

Severing connections with the other virtual machine

Terminating IUCV communications.

456 VM/SP System Programmer's Guide

{
Virtual Machine X Virtual Machine Y

1. HNDIUCV SET,NAME=ONE,EXIT=A 1. HNDIUCV SET,NAME=TWO,EXIT=1
2. Set up the IUCV parameter list
3. CMSIUCV CONNECT,NAME=ONE,EXIT=B

4. CONNECT-pending external
interrupt

5. EXIT 1 receives control
6. CMSIUCV ACCEPT,NAME=TWO,EXIT=2

7. CONNECT-complete external
interrupt

S. EXIT B receives control

9. CMSIUCV SEVER,NAME=ONE
10. SEVER external interrupt
11. EXIT 2 receives control
12. CMSIUCV SEVER,NAME=TWO

13. HNDIUCV CLR,NAME=ONE 13. HNDIUCV CLR,NAME=TWO

14. ONE DC CLS'RED'
15. TWO DC CLS'BLUE'

Figure 45. Sequence of Instructions in Virtual Machine to Virtual Machine Communication

The following list is an explanation of the sequence of instructions used above.

1. A program running in virtual machine X wishes to communicate with a
program running in virtual machine Y. Each program must independently issue
the HNDIUCV macro to begin IUCV communications. By issuing HNDIUCV
SET, CMS invokes the IUCV DECLARE BUFFER function. The EXIT
parameter establishes a general exit to handle IUCV CONNECT PENDING
external interrupts.

2. Before issuing a CMSIUCV CONNECT, an IUCV CONNECT parameter list
must be set up by the program. The IPVMID field of the IUCV parameter list
contains the userid of the virtual machine you are connecting to (virtual
machine Y). The first 8 bytes of the IPUSER field of the IUCV parameter list
contains the eight-character identifying name of the program that issued a
HNDIUCV SET in virtual machine Y. This name must match the name
specified on the HNDIUCV macro issued by the program in virtual machine Y.
In this example, the first eight bytes of the IPUSER field equals BLUE.

3. The program in virtual machine X issues a CMSIUCV CONNECT to initiate a
communication link with virtual machine Y. By issuing CMSIUCV
CONNECT, CMS invokes the IUCV CONNECT function. This associates
the exit address, "B", with the IUCV pathid.

4. Virtual machine Y receives a CONNECT -pending external interrupt as a result
of the CMSIUCV CONNECT issued by the program in virtual machine X.

Chapter 36. CMS IUCV Support 457

5. "EXIT 1" receives control as a result of the external interrupt. ("EXIT 1"
receives control because it was specified on the EXIT parameter of the
HNDIUCV macro.)

6. To complete the connection, the program in virtual machine Y issues a
CMSIUCV ACCEPT. By issuing CMSIUCV ACCEPT, CMS invokes the
IUCV ACCEPT function. This completes the lUCY communication link with
virtual machine X. TheCMSIUCV ACCEPT also associates the exit address,
"2", with the pathid.

7. Virtual machine X receives a connection-complete external interrupt as a result
of the CMSIUCV ACCEPT issued by the program in virtual machine Y.

8. "EXIT B" receives control as a result of the external interrupt. ("EXIT B"
receives control because it is specified on the EXIT parameter of the
CMSIUCV macro.)

9. Virtual machine X completed its communications with virtual machine Y and
terminates the lUCY communication link. The program in virtual machine X
issues an CMSIUCV SEVER to terminate this link. By issuing CMSIUCV
SEVER, CMS invokes the lUCY SEVER function and clears the exit
associated with the communication link.

10. Virtual machine Y receives a SEVER external interrupt as a result of the
CMSIUCV SEVER issued by virtual machine X.

11. "EXIT 2" receives control as a result of the external interrupt. ("EXIT 2"
receives control because it was specified on the EXIT parameter of the
CMSIUCV macro.)

12. The program in virtual machine Y issues a CMSIUCV SEVER to terminate the
communication link. By issuing CMSIUCV SEVER, CMS invokes the lUCY
SEVER function and clears the exit associated with the communication link.

13. After all communications are complete and all communication paths have been
SEVERed, the program in virtual machine X and the program in virtual
machine Y independently issue HNDIUCV CLR. HNDIUCV CLR terminates
lUCY communications and clears the general exit for lUCY PENDING
CONNECTs. CMS invokes the IUCV RETRIEVE BUFFER function if there
are no other programs in the virtual machine using lUCY.

14. This is the label specified in the NAME parameter. This location contains the
identifying name of the program in virtual machine X. The name of this
prograin is RED.

15. This is the label specified in the NAME parameter. This location contains the
identifying name of the program in virtual machine Y. The name of this
program is BLUE.

458 VM/SP System Programmer's Guide

I

\-

Guidelines and Limitations of the CMS I UCV Support

Some of the existing IUCV functions affect the IUCV environment of the entire
virtual machine. Since CMS cannot intercept any IUCV functions directly issued
by a program, any program using the CMS IUCV support has certain limitations on
its use of IUCV functions. The program must not issue any IUCV function that
alters the virtual machine's IUCV environment.

The following is a list of IUCV functions. The list describes their relationship to
the CMS IUCV support and some guidelines for their usage. If any functions listed
as "Should not be used" are indeed used, other programs using CMS IUCV
functions in the virtual machine may be affected. For information on coding the
following functions, see the "Inter-User Communications Vehicle" earlier in this
manual.

ACCEPT
is invoked by a program via the CMSIUCV macro. It should not be issued
directly by a program.

CONNECT
is invoked by a program via the CMSIUCV macro. It should not be issued
directly by a program.

DECLARE BUFFER
is used by HNDIUCV to initialize the virtual machine's IUCV environment.
It should not be issued directly by a program.

DESCRIBE
should not be used because this function clears the pending-message external
interruption for the described message. This interrupt may not belong to the
issuer of the DESCRmE function. Thus, other programs running in the
same virtual machine may be affected since the message is lost and never
reflected to the true target.

PURGE
is issued directly by a program.

QUERY
is used by HNDIUCV to determine the size of the external interrupt buffer
and the maximum number oJ connections for this virtual machine. It may be
issued directly by an application program.

QUIESCE
is ,issued directly by a program to quiesce a specific path. However, the
issuer must be careful that the IPALL bit is not turned on in the IPFLAGS 1
byte of the parameter list. This would quiesce all paths in the virtual
machine.

RECEIVE
is issued directly by the application program. However, the issuer must be
careful that a specific message id or path id is specified in the IUCV
parameter list. If it is not, IUCV RECEIVEs the first m~ssage that has not

Chapter 36. CMS IUCV Support 459

yet been partially received for the entire virtual machine. This message may
not belong to the program that issued the rucv RECEIVE.

REJECT
is issued directly by a program.

REPLY
is issued directly by a program.

RESUME
is issued directly by a program in order to resume a specific path. However,
the issuer must be careful that the IP ALL bit is not turned on in the
IPFLAGS 1 byte of the parameter list. This would resume all paths in the
virtual machine.

RETRIEVE BUFFER

SEND

is used by HNDIUCV and CMS abend processing to terminate the virtual
machine's lUCY environment. It should not be issued directly by a program.

is issued directly by a program.

SETMASK
should not be used because this function disables certain lUCY external
interrupts for the entire virtual machine. Thus, other programs running in
the same virtual machine may be affected.

"1 SET CONTROL MASK
should not be used because this function disables certain lUCY external
interrupts for the entire virtual machine. Thus, other programs running in
the same virtual machine may be affected.

SEVER
is invoked by a program via the CMSruCV macro. This rucv function may
be invoked to SEVER all existing paths for the CMS lUCY program that has
issued the HNDIUCV CLR macro. This lUCY function should not be
issued directly by a program.

TEST COMPLETION
is issued directly by a program. However, the issuer must be careful that a
specified message id or path id is specified in the lUCY parameter list. If it
is not, lUCY completes the first message on the REPLY queue for the entire
virtual machine. This message may not belong to the application that issued
the TEST COMPLETION.

TEST MESSAGE
should not be used because this function places the entire virtual machine in
a wait state if no incoming messages or replies are pending. Thus, other
programs running in the same virtual machine may be affected.

460 VM/SP System Programmer's Guide

f

Chapter 37. OS Macro Simulation Under CMS

When a language processor or a user-written program is executing in the CMS
environment and using OS-type functions, it is not executing as code. Instead,
CMS provides routines that simulate the as functions required to support as
language processors and their generated object code.

CMS functionally simulates the as macros in a way that presents equivalent results
to programs executing under CMS. The as macros are supported only to the
extent stated in the publications for the supported language processors, and then
only to the extent necessary to successfully satisfy the specific requirement of the
supervisory function.

The restrictions for COBOL and PL/I program execution, listed in "Executing a
Program that Uses as Macros" in the VM/SP Planning Guide and Reference, exist
because of the limited CMS simulation of the as macros.

Figure 46 shows the as macro functions that are partially or completely simulated,
as defined by SVC number.

OS Data Management Simulation

The disk format and data base organization of CMS are different from those of
as. A CMS file produced by an as program running under CMS and written on a
eMS disk, has a different format from that of an as data set produced by the same
as program running under as and written on an as disk. The data is exactly the
same, but its format is different. (An as disk is one that has been formatted by an
as program, such as the Device Support Facility.) CMS does not support
multi-buffering for unit record devices. There is one DCB per device, not per file.

Handling Files that Reside on eMS Disks

eMS can read, write, or update any as data that resides on a CMS disk. By
simulating as macros, eMS simulates the following access methods so that as
data organized by these access methods can reside on CMS disks:

direct

partitioned

sequential

identifying a record by a key or by its relative position within
the data set.

seeking a named member within the data set.

accessing a record in a sequence in relation to preceding or

Chapter 37. OS Macro Simulation Under CMS 461

following items in the data set.

Refer to Figure 46 and the "Simulation Notes," then read "Access Method
Support" to see how CMS handles these access methods.

Since CMS does not simulate the indexed sequential access method (ISAM), no OS
program that uses ISAM can execute under CMS. Therefore, no program can
write an indexed sequential data set on a CMS disk.

Handling Files that Reside on OS or DOS Disks

Macro
Name
XDAP

WAIT

POST

EXIT/RETURN

GETMAIN

FREEMAIN

GETPOOL

FREEPOOL

LINK

XCTL

LOAD

DELETE

SVC

By simulating OS macros, CMS can read, but not write or update, OS sequential
and partitioned data sets that reside on OS disks. Using the same simulated OS
macros, CMS can read VSE sequential files that reside on DOS disks. The OS
macros handle the VSE data as if it were OS data. Thus, a VSE sequential file can
be used as input to an OS program running under CMS.

However, an OS sequential or partitioned data set that resides on an OS disk can
be written or updated only by an OS program running in a real OS machine.

CMS can execute programs that read and write VSAM files from OS programs
written in the VS BASIC, COBOL, PL/I, VS/ APL, and VS FORTRAN
programming languages. CMS also'supports VSAM for use with DOS/VS
SORT /MERGE. This CMS support is based on the VSE/VSAM program product
and, therefore, the OS user is limited to those VSAM functions that are available
under VSE/VSAM.

Number Function

00 Read or write direct access volumes

01 Wait for an I/O completion

02 Post the I/O completion

03 Return from a called phase

04 Conditionally acquire user storage

05 Release user-acquired storage

- Simulate as SVC 10

- Simulate as SVC 10

06 Link control to another phase

07 Delete, then link control to another load phase

08 Read a phase into storage

09 Delete a loaded phase

Figure 46 (Part 1 of 3). Simulated OS Supervisor Calls

462 VM/SP System Programmer's Guide

Macro SVC
Name Number Function

GETMAIN/ 10 Manipulate user free storage
FREEMAIN

TIME 11 Get the time of day

ABEND 13 Terminate processing

SPIE 14 Allow processing program to handle program interrupts.

RESTORE 17 Effective NOP

BLDL/FIND 18 Manipulate simulated partitioned data files

OPEN 19 Activate a data file

CLOSE 20 Deactivate a data file

STOW 21 Manipulate partitioned directories

OPENJ 22 Activate a data file

TCLOSE 23 Temporarily deactivate a data file

DEVTYPE 24 Get device-type physical characteristics

TRKBAL 25 NOP

FEOV 31 Set forced EOV error code

WTO/WTOR 35 Communicate with the terminal

EXTRACT 40 Effective NOP

IDENTIFY 41 Add entry to loader table

ATTACH 42 Effective LINK

CHAP 44 Effective NOP

TTIMER 46 Access or cancel timer

STIMER 47 Set timer

DEQ 48 Effective NOP

SNAP 51 Dump specified areas of storage

ENQ 56 Effective NOP

FREEDBUF 57 Release a free storage buffer

STAB 60 Allow processing program to decipher abend conditions

DETACH 62 Effective NOP

CHKPT 63 Effective NOP

RDJFCB 64 Obtain information from FILEDEF command

SYNAD 68 Handle data set error conditions

BSP 69 Back up a record on a tape or disk

GET/PUT - Access system-blocked data

READ/WRITE - Access system-record data

Figure 46 (Part 2 of 3). Simulated OS Supervisor Calls

Chapter 37. as Macro Simulation Under CMS 463

Macro SVC
Name Number Function

NOTE/POINT - Manage data set positioning

CHECK - Verify READ/WRITE completion

TGET/TPUT 93 Read or write a terminal line

TCLEARQ 94 Clear terminal input queue

STAX 96 Update a queue of CMTAXs

PGRLSE 112 Release storage contents

Figure 46 (Part 3 of 3). Simulated OS Supervisor Calls

Simulation Notes

Because CMS has its own file system and is a single-user system operating in a
virtual machine with virtual storage, there are certain restrictions for the simulated
OS function in CMS. For example, IDARCHY options and options that are used
only by OS multitasking systems are ignored by CMS.

Due to the design of the CMS loader, an XCTL from the explicitly loaded phase,
followed by a LINK by succeeding phases, may cause unpredictable results.

Listed below are descriptions of all the OS macro functions that are simulated by
CMS as seen by the programmer. Implementation and program results that differ
from those given in OS Data Management Macro Instructions and OS Supervisor
Services and Macro Instructions are stated. HIARCHY options and those used only
by OS multitasking systems are ignored by CMS. Validity checking is not
performed within the simulation routines. The entry point name in LINK, XCTL,
and LOAD (SVC 6, 7, 8) must be a member name or alias in a TXTLm directory
unless the COMPSWT is set to on. If the COMPSWT is on, SVC 6, 7, and 8 must
specify a module name. This switch is turned on and off by using the COMPSWT
macro. See the VM / SP CMS Command and Macro Reference for descriptions of
all CMS user macros.

Macro-SVC No. Differences in Implementation

XDAP-SVC 0 The TYPE option must be R or W; the V, I, and K options are
not supported. The BLKREF-ADDR must point to an item
number acquired by a NOTE macro. Other options associated
with V, I, or K are not supported.

WAIT -SVC 1 All options of WAIT are supported. The WAIT routine waits
for the completion bit to be set in the specified ECBs.

POST -SVC 2 All options of POST are supported. POST sets a completion
code and a completion bit in the specified ECB.

EXIT /RETURN-SVC 3
Post ECB, execute end of task routines, release phase storage,
unchain and free latest request block, and restore registers

464 VM/SP System Programmer's Guide

(

/

(

depending upon whether this is an exit or return from a linked
or an attached routine. Do not use EXIT/RETURN to exit
from an explicitly LOADed phase. If EXIT/RETURN is used
for this purpose, CMS issues abend code AOA.

GETMAIN-SVC 4
All options of GETMAIN are supported except SP, BNDRY=,
and HIARCHY, which are ignored by CMS, and LC and LV,
which result in abnormal termination if used. GETMAIN gets
blocks of free storage.

FREEMAIN-SVC 5

I LINK-SVC 6

I XCTL-SVC 7

I LOAD-SVC 8

All options of FREEMAIN are supported except SP, which is
ignored by CMS, and L, which result in abnormal termination if
used. FREEMAIN frees blocks of storage acquired by
GETMAIN.

The DCB and HIARCHY options are ignored by CMS. All
other options of LINK are supported. LINK loads the specified
program into storage (if necessary) and passes control to the
specified entry point.

The DCB and HIARCHY options are ignored by CMS. All
other options of XCTL are supported. XCTL loads the
specified program into storage (if necessary) and passes control
to the specified entry point.

The DCB and HIARCHY options are ignored by CMS. All
other options of LOAD are supported. LOAD loads the
specified program into storage (if necessary) and returns the
address of the specified entry point in register zero. If loading a
subroutine is required when SVC 8 is issued, CMS searches
directories for a TXTLffi member containing the entry point or
for a TEXT file with a matching filename. An entry name in an
unloaded TEXT file will not be found unless the filename
matches the entry name. After the subroutine is loaded, CMS
attempts to resolve external references within the subroutine,
and may return another entry point address. To insure a correct
address in register zero, the user should bring such subroutines
into storage either by the CMS LOAD/INCLUDE commands
or by a VCON in the user program.

GETPOOL/FREEPOOL

I DELETE-SVC 9

All the options of GETPOOL and FREEPOOL are supported.
GETPOOL constructs a buffer pool and stores the address of a
buffer pool control block in the DCB. FREEPOOL frees a
buffer pool constructed by GETPOOL.

All the options of DELETE are supported. DELETE decreases
the use count by one and, if the result is zero, frees the
corresponding virtual storage. Code 4 is returned in register 15
if the phase is not found.

Chapter 37. as Macro Simulation Under CMS 465

GETMAIN/FREEMAIN-SVC 10

I TIME-SVC 11

I ABEND-SVC 13

I SPIE-SVC 14

All the options of GETMAIN and FREEMAIN are supported
except SP and HIARCHY, which are ignored by CMS.

CMS supports only the DEC, BIN, TU, and MIC parameters of
the TIME macro instruction. However, the time value that
CMS returns is only accurate to the nearest second, and is
converted to the proper unit.

The completion code parameter is supported. The DUMP
parameter is not. If a ST AE request is outstanding, control is
given to the proper ST AE routine. If a ST AE routine is not
outstanding, a message indicating that an abend has occurred is
printed on the terminal along with the completion code.

All the options of SPIE are supported. The SPIE routine
specifies interruption exit routines and program interruption
types that cause the exit routine to receive control.

RESTORE-SVC 17

I BLDL-SVC 18

The RESTORE routine in CMS is a NOP. It returns control to
the user.

BLDL is an effective NOP for LINKLms and JOBLIBs. For
TXTLms and MACLIBs, item numbers are filled in the TTR
field of the BLDL list; the K, Z, and user data fields, as
described in OS/VS Data Management Macro Instructions, are
set to zeroes. The "alias" bit of the C field is supported, and
the remaining bits in the C field are set to zero.

FIND-SVC 18 All the options of FIND are supported. FIND sets the
read/write pointer to the item number of the specified member.

STOW-SVC 21 All the options of STOW are supported. The "alias" bit is
supported, but the user data field is not stored in the MACLIB
directory since CMS MACLIBs do not contain user data fields.

When using the STOW macro's ADD directory function without
closing and reopening the data set after each new member is
added, the CLOSE macro must be issued within each multiple
of 256 new members. The existing number of entries does not
need to be known before the ADD function is started.

OPEN/OPENJ-SVC 19jz2
All the options of OPEN and OPENJ are supported except for
the DISP, EXTEND, and ROBACK options, which are ignored.
OPEN creates a CMSCB (if necessary), completes the DCB,
and merges necessary fields of the DCB and CMSCB.

CLOSE/TCLOSE-SVC 20/23

466 VM/SP System Programmer's Guide

All the options of CLOSE and TCLOSE are supported except
for the DISP option, which is ignored. The DCB is restored to
its condition before OPEN. If the device type is disk, the file is

I
\

'"

f closed. If the device type is tape, the REREAD option is
treated as a REWIND. For TCLOSE, the REREAD option is
REWIND, followed by a forward space file for tapes with
standard labels.

DEVTYPE-SVC 24
With the exception of the RPS option, which CMS ignores,
CMS accepts all options of the DEVTYPE macro instruction.
In supporting this macro instruction, CMS groups all devices of
a particular type into the same class. For example, all printers
are grouped into the printer class, all tape drives into the tape
drive class, and so forth. IIi response to the DEVTYPE macro
instruction, CMS provides the same device characteristics for all
devices in a particular class. Thus, all devices in a particular
class appear to be the same device type. ,J

The device type characteristics CMS returns for each class are:

Class
Printer
Virtual reader
Console
Tape drive
DASD
Virtual punch
DUMMY
unassigned

Device Characteristics
1403
2540
1052
2400 (9 track)
2314
2540
2314
2314

FEOV -SVC 31 Control is returned to CMS with an error code of 4 in register
15.

WTO/WTOR-SVC 35
All options of WTO and WTOR are supported except those
options concerned with multiple console support. WTO displays
a message at the operator's console. WTOR displays a message
at the operator's console, waits for a reply, moves the reply to
the specified area, sets a completion bit in the specified ECB,
and returns. There is no check made to determine if the
operator provides a reply that is too long. The reply length
parameter of the WTOR macro instruction specifies the
maximum length of the reply. The WTOR macro instruction
reads only this amount of data.

EXTRACT -SVC 40
The EXTRACT routine in CMS is essentially a NOP. The
user-provided answer area is set to zeroes and control is
returned to the user with a return code of 4 in register 15.

IDENTIFY -SVC 41
The IDENTIFY routine in CMS adds a RPQUEST block to the
load request chain for the requested name and address.

Chapter 37. as Macro Simulation Under CMS 467

ATTACH-SVC 42

r CHAP-SVC 44

I TTIMER-SVC 46

I STIMER-SVC 47

DEQ-SVC 48

·1 SNAP-SVC 51

I ENQ-SVC 56

468 VM/SP System Programmer's Guide

All the options of ATTACH are supported in CMS as in OS
PCP. The following options are ignored by CMS: DCB,
LPMOD, DPMOD, mARCHY, GSPV, GSPL, SHSPV,
SHSPL, SZERO, PURGE, ASYNCH, and TASKLIB.
ATTACH passes control to the routine specified, fills in an
ECB completion bit if an ECB is specified, passes control to an
exit routine if one is specified, and returns control to the
instruction following the ATTACH.

Since CMS is not a multitasking system, a phase requested by
the ATTACH macro must return to CMS.

The CHAP routine in CMS is a NOP. It returns control to the
user.

All the options of TTIMER are supported.

All options of STIMER are supported except for TASK and
WAIT. The TASK option is treated as if the REAL option had
been specified, and the WAIT option is treated as a NOP; it
returns control to the user. The maximum time interval allowed
is X' 7FFFFFOO' timer units (or 15 hours, 32 minutes, and 4
seconds in decimal). If the time interval is greater than the
maximum, it is set to the maximum.

Note: If running in the CMSBATCH environment, issuing the
STIMER or TTIMER macro affects the CMSBATCH time
limit. Depending on the frequency, number, and duration of
STIMERs and/or TTIMERs issued, the CMSBATCH limit may
never expire.

The DEQ routine in CMS is a NOP. It returns control to the
user.

Except for SDATA, PDATA, and DCB, all options of the
SNAP macro are processed normally. SDATA and PDATA are
ignored. Processing for the DCB option is as follows. The
DBC address specified with SNAP is used to verify that the file
associated with the DCB is open. If it is not open, control is
returned to the caller with a return code of 4. If the file is open,
then storage is dumped (unless the FCB indicates a DUMMY
device type). SNAP always dumps output to the printer. The
dump contains the PSW, the registers, and the storage specified.

The ENQ routine in CMS is a NOP. It returns control to the
user.

FREEDBUF-SVC 57
All the options of FREEDBUF are supported. FREEDBUF
returns a buffer to the buffer pool assigned to the specified
DCB.

I STAE-SVC 60 All the options of STAB are supported except for the XCTL
option, which is set to XCTL= YES; the PURGE option, which
is set to HALT; and the ASYNCH option, which is set to NO.
STAB creates, overlays, or cancels a STAB control block as
requested. ST AE retry is not supported.

DETACH-SVC 62
The DETACH routine in CMS is a Nap. It returns control to
the user.

CHKPT-SVC 63 The CHKPT routine is a Nap. It returns control to the user.

RDJFCB-SVC 64
All the options of RDJFCB are supported. RDJFCB causes a
Job File Control Block (JFCB) to be read from a CMS Control
Block (CMSCB) into real storage for each data control block
specified. CMSCBs are created by FILEDEF commands.

Additional information regarding CMS 'as Simulation' of
RDJFCB follows:

•

•

The DCBs specified in the RDJFCB PARAMETER LIST
are processed sequentially as they appear in the parameter
list.

On return to the caller, a return code of zero is always
placed in register 15. If an abend occurs, control is not
returned to the caller.

Abend 240 occurs if zero is specified as the address of the
area into which the JFCB is to be placed.

Abend 240 occurs if a JFCB EXIT LIST ENTRY (Entry
type X'07') is not present in the DCB EXIT LIST for any
one of the DCBs specified in the RDJFCB PARAMETER
LIST.

• If a DCB is encountered in the parameter list with zero
specified as the DCB EXIT LIST ('EXLST') address, the
RDJFCB immediately returns with return code zero in
register 15. Except for this situation, all of the DCBs
specified in the RDJFCB PARAMETER LIST are
processed, unless an abend occurs.

• . For a DCB that is not open, a search is done for the
corresponding FILEDEF or DLBL. If one is not found, a
test is done to determine if a file exists with a filename of
'FILE', a filetype of the DDNAME from DCB, and a

Chapter 37. as Macro Simulation Under CMS 469

filemode of 'AI'. If such a file does exist, then X'40' is
placed in the JFCB at displacement X'57' (FLAG
'JFCOLD IN FIELD 'JFCBIND2'). If such a file does not
exist then X'CO' (FLAG 'JFCNEW') will be in field
'JFCBIND2'.

• For a file that-is not open, but for which a DLBL has been
specified, X' 08' is placed in the JFCB at displacement
X'63' (field 'JFCDSORG' byte 2) to indicate that it is a
VSAMfile.

SYNADAF-SVC 68
All the options of SYNADAF are supported. SYNADAF
analyzes an I/O error and creates an error message in a work
buffer.

SYNADRLS-SVC 68

BSP-SVC 69

All the options of SYNADRLS are supported. SYNADRLS
frees the work area acquired by SYNAD and deletes the work
area from the save area chain.

All the options of BSP are supported. BSP decrements the item
pointer by one block.

TGET !TPUT -SVC 93
TGET and TPUT operate as if EDIT and WAIT were coded.
TGET reads a terminal line. TPUT writes a terminal line.

TCLEARQ-SVC 94

I STAX-SVC 96

TCLEARQ in CMS clears the input terminal queue and returns
control to the user.

The only option of ST AX that is supported is EXIT ADDRESS.
ST AX updates a queue of CMT AXEs each of which defines an
attention exit level.

PGRLSE-SVC 112

NOTE

POINT

CHECK

DCB

470 VM/SP System Programmer's Guide

Release all complete pages (4K bytes) associated with the area
of storage specified.

All the options of NOTE are supported. NOTE returns the
relative position of the last block read or written.

All the options of POINT are supported. POINT causes the
control program to start processing the next read or write
operation at the specified item number. The TTR field in the
block address is used as an item number.

All the options of CHECK are supported. CHECK tests the
I/O operation for errors and exceptional conditions.

The following fields of a DCB may be specified, relative to the
particular access method indicated:

(

{

Operand BDAM BPAM BSAM QSAM
BFALN F,D F,D F,D F,D
BLKSIZE n(number) n n n
BUFCB a(address) a a a
BUFL n n n n
BUFNO n n n n
DDNAME s(symbol) s s s
DSORG DA PO PS PS
EODAD a a a
EXLST a a a a
KEYLEN8 n n
LIMCT n
LRECL n n n
MACRF R,W R,W R,W,P G,P,L,M
OPTCD A,E,F,R J J
RECFM F,V,U F,V,U F,V,B,S,A,M,U F,V,B,U,A,M,S
SYNAD a a a a
NCP n n

A~cess Method Support

The manipulation of data is governed by an access method. To facilitate the
execution of OS Code under CMS, the processing program must see data as OS
would present it. For instance, when the processors expect an access method to
acquire input source cards sequentially, CMS invokes specially written routines that
simulate the OS sequential access method and pass data to the processors in the
format that the OS access methods would have produced. Therefore, data appears
in storage as if it had been manipulated using an OS access method. For example,
block descriptor words (BD~), buffer pool management, and variable records are
updated in storage as if an OS access method had processed the data. The actual
writing to and reading from the I/O device is handled by CMS file management.
Note that the character string X'61FFFF61' is interpreted by CMS as an end of
file indicator.

The essential work of the volume table of contents (VTOC) and the data set
control block (DSCB) is done in CMS by a master file directory (MFD) which
updates the disk contents, and a file status table (FST) (one for each data file). All
disks are formatted in physical blocks of 512, 800, 1024, 2048, or 4096 bytes.

CMS continues to update the OS format, within its own format, on the auxiliary
device, for files whose filemode number is 4. That is, the block and record
descriptor words (BDW and RDW) are written along with the data. If a data set
consists of blocked records, the data is written to, and read from, the I/O device in
physical blocks, rather than logical records. CMS also simulates the specific
methods of manipulating data sets.

8 If an input data set is not a BDAM data set, zero is the only value that should be
specified for KEYLEN. This applies to the user exit lists as well as to the DCB macro
instruction.

Chapter 37. as Macro Simulation Under CMS 471

/'

When the OPEN macro instruction is executed, the CMS simulation of the OS l
OPEN routine initializes the Data Control Block (DCB). The DCB fields are filled .~

in with information from the DCB macro instruction, the information specified on
the FILEDEF command, or, if the data set already exists, the data set label.
However, if more than one source specifies information for a particular field, only
one source is used.

The DCB fields are filled in in this order:

1. The DCB macro instruction in your program.

2. The fields you had specified on the FILEDEF command.

3. The data set label if the data set already exists.

The DCB macro instruction takes precedence over the FILEDEF and the data set
label. Data set label information from an existing CMS file is used only when the
OPEN is for input or update, otherwise the OPEN routine erases the existing file.

You can modify any DCB field either before the data set is opened or through a
Data Control Block open exit. CMS supports only the Data Control Block exit of
the EXIT LIST (EXLST) options.

When the data set is closed, the Data Control Block is restored to its original
condition. Fields that were merged in at OPEN time from the FILEDEF and the
data set label are cleared.

To accomplish this simulation, CMS supports certain essential macros for the
following access methods:

• BDAM (direct) -- identifying a record by a key or by its relative
position within the data set.

• BP AM (partitioned) -- seeking a named member within data set.

• BSAM/QSAM (sequential) -- accessing a record in a sequence in relation to
preceding or following records.

• VSAM (direct or sequential) -- accessing a record sequentially or
directly by key or address.

Note: CMS support of OS VSAM files is based on
VSE/VSAM. Therefore, the OS user is restricted to those
functions available under VSE/VSAM. See the section "CMS
Support for OS and VSE/VSAM Functions" for details.

CMS also updates those portions of the OS control blocks that are needed by the
OS simulation routines to support a program during execution. Most of the
simulated supervisory OS control blocks are contained in the following two CMS
control blocks:

472 VM/SP System Programmer's Guide

(CMSCVT
simulates the communication vector table. Location 16 contains the address
of the CVT control section.

CMSCB
is allocated from system free storage whenever a FILEDEF command or an
OPEN (SVC 19) is issued for a data set. The CMS Control Block consists
of a file control block (FCB) for the data file, and partial simulation of the
job file control block (JFCB), input/output block (lOB), and data extent
block (DEB).

The data control block (DCB) and the data event control block (DECB) are used
by the access method simulation routines of CMS.

Note: The results may be unpredictable if two DCBs access the same data set at
the same time. The GET and PUT macros are not supported for use with spanned
records except in GET locate mode. READ, WRITE, and GET (in locate mode)
are supported for spanned records, provided the filemode number is 4 and the data
set is in physical sequential format.

GET (QSAM)
All the QSAM options of GET are supported. Substitute mode is handled
the same as move mode. If the DCBRECFM is FB, the filemode number is
4, and the last block is a short block, an EOF indicator (X'61FFFF61 ')
must be present in the last block after the last record. Issue an explicit
CLOSE prior to returning to CMS to obtain the last record when LOCATE
mode is used with PUT.

GET (QISAM)
QISAM is not supported in CMS.

PUT (QSAM)
All the QSAM options of PUT are supported. Substitute mode is handled
the same as move mode. If the DCBRECFM is FB, the filemode number is
4, and the last block is a short block, an EOF indicator is written in the last
block after the last record. When LOCATE mode is used with PUT, issue
an explicit CLOSE prior to returning to CMS to obtain the last record.

The GET and PUT macros are not supported for use with spanned records
except in GET locate mode. READ, WRITE, and GET (in locate mode) are
supported for spanned records, provided the filemode number is 4, and the
data set is physical sequential format.

PUT (QISAM)
QISAM is not supported in CMS.

PUTX
PUTX support is provided only for data sets opened for QSAM-UPDATE
with simple buffering.

READ/WRITE (BISAM)
BISAM is not supported in CMS.

Chapter 37. as Macro Simulation Under CMS 473

READ/WRITE (BSAM and BPAM)
All the BSAM and BP AM options of READ and WRITE are supported
except for the SB option (read backwards).

READ (Offset Read of Keyed BDAM dataset)
This type of READ is not supported because it is used only for spanned
records.

READ/WRITE (BDAM)
All the BDAM and BSAM (create) options of READ and WRITE are
supported except for the Rand RU options.

When an input or output error occurs, do not depend on OS sense bytes. An error
code is supplied by CMS in the ECB in place of the sense bytes. These error codes
differ for various types of devices and their meaning can be found in VM / SP
System Messages and Codes, under DMS message 120S.

eMS tape volume switching

DMSTVS is the nucleus resident module that performs tape volume switching
operations for OS multivolume tape support. All tape volume switch requests are
processed by this module.

The DMSTVS function can be overridden by a nucleus extension with the name
DMSTVS. The nucleus extension must follow the same entry and exit conventions
asDMSTVS.

DMSTVS uses the TVSP ARMS macro to set various values used by DMSTVS.
These values include:

• The userid of the virtual machine that all CMS tape volume switching messages
are sent.

• The time interval DMSTVS waits between issuing sense commands to
determine the tapedrive's "ready" /"notready" status.

• The number of sense operations processed before issuing an additional tape
volume switching prompt message.

• The number of prompt messages issued before message DMSTVS270I is
issued.

• The number of prompt messages issued before message DMSTVS2711 is
issued.

The decision to check for a write ring when NORING is requested.

Please note that DMSTVS sets the CP timer to real and uses the OS STIMER
simulation. This paces the proIIJ.Pting messages.

474 VM/SP System Programmer's Guide

(. BDAM Restrictions

The four methods of accessing BDAM records are:

1. Relative Block RRR

2. Relative Track TTR

3. Relative Track and Key TTK

4. Actual Address MBBCCHHR

The restrictions on these access methods are as follows:

• Only the BDAM identifiers underlined above can be used to refer to records,
since CMS files have a two-byte record identifier.

• CMS BDAM files are always created with 255 records on the first logical
track, and 256 records on all other logical tracks, regardless of the block size.
If BDAM methods 2, 3, or 4 are used and the RECFM is U or V, the BDAM
user must either write 255 records on the first track and 256 records on every
track thereafter, or he must not update the track indicator until a NO SPACE
FOUND message is returned on a write. For method 3 (WRITE ADD), this
message occurs when no more dummy records can be found on a WRITE
request. For methods 2 and 4, this does not occur, and the track indicator is
uppated only when the record indicator reaches 256 and overflows into the
tra~k indicator.

• The user must create variable length BDAM files (in PL/I they are Regional 3
files) entirely under CMS. He must also specify, on the XTENT option of the
FILEDEF command, the exact number of records to be written. When reading
variable length BDAM files, the XTENT and KEYLEN information specified
for the file must duplicate the information specified when the file was created.
CMS does not support WRITE ADD of variable length BDAM files; that is,
the user cannot add additional records to the end of an already existing
variable length BDAM file.

• Two files of the same filetype, both of which use keys, cannot be open at the
same time. If a program that is updating keys does not close the file it is
updating for some reason, such as a system failure or another IPL operation,
the original keys for files that are not fixed format are saved in a temporary file
with the same filetype and a filename of $KEYSA VB. To finish the update,
run the program again.

• Variable length BDAM files must be created under CMS in their entirety, with
the XTENT option of FILEDEF specifying the exact number of records to be
written. When reading variable BDAM files, the XTENT and key length
information specified must duplicate that created at file creation time. CMS
does not support adding variable length records to BDAM files.

• Once a file is created using keys, additions to the file must not be made without
using keys and specifying the original length.

Chapter 37. OS Macro Simulation Under CMS 475

Note that there is limited support from the CMS file system for BDAM-created \..
files (sparse). Sparse files are manipulated with CMS commands but are not
treated as sparse files by most CMS commands. The number of records in the
FST are treated as a valid record number.

The number of records in the data set extent must be specified using the
FILEDEF command. The default size is 50 records.

• The minimum LRECL for a CMS BDAM file with keys is eight bytes.

Reading OS Data Sets and VSE Files Using OS Macros

CMS users can read OS sequential and partitioned data sets that that reside on OS
disks. The CMS MOVEFILE command can be used to manipulate those data sets,
and the OS QSAM, BP AM macros can be executed under CMS to read them.

The CMS MOVEFILE command can be used to manipulate and read VSE
sequential files that reside on DOS disks. OS macros, however, can only be used to
read sequential files from DOS formatted CKD disks. OS macros are not supported
for reading sequential files on DOS formatted FB-512 disks.

The following OS Release 20.0 BSAM, BPAM, and QSAM macros can be used
with CMS to read OS data sets and DOS files:

BLDL
BSP
CHECK
CLOSE
DEQ
DEVTYPE

ENQ
FIND
GET
NOTE
POINT
POST

RDJFCB
READ
SYNADAF
SYNADRLS
WAIT

CMS supports the following disk formats for the OS and OS/VS sequential and
partitioned access methods:

Split cylinders
User labels
Track overflow
Alternate tracks.

As in OS, the CMS support of the BSP macro produces a return code of 4 when
attempting to backspace over a tape mark or when a beginning of an extent is
found on an OS data set or a VSE file. If the data set or file contains split
cylinders, an attempt to backspace within an extent, resulting in a cylinder switch,
also produces a return code of 4.

476 VM/SP System Programmer's Guide

(. The ACCESS Command

The FILEDEF Command

Before CMS can read an OS data set or VSE file that resides on a non-CMS disk,
you must issue the CMS ACCESS command to make the disk on which it resides
available to CMS. The format of the ACCESS command can be found in the
VM/SP CMS Command and Macro Reference. You must not specify options or
file identification when accessing an OS or DOS disk.

You then issue the FILEDEF command to assign a CMS file identification to the
OS data set or VSE file so that CMS can read it. The complete format of the
FILEDEF command is found in the VM/SP CMS Command and Macro Reference.
If you are issuing a FILEDEF for a VSE file, note that the OS program that will
use the VSE file must have a DCB for it. For "ddname" in the FILEDEF
command line, use the ddname in that DCB. With the DSN operand, enter the
file-id of the VSE file.

Sometimes, CMS issues the FILEDEF command for you. Although the CMS
MOVEFILE command, the supported CMS program interfaces, and the CMS
OPEN routine each issue a default FILEDEF, you should issue the FILEDEF
command yourself to ensure the appropriate file is defined.

After you have issued the ACCESS and FILEDEF commands for an OS sequential
or partitioned data set or OS sequential file, CMS commands (such as ASSEMBLE
and STATE) can refer to the OS data set or VSE file just as if it were a CMS file.

Several other CMS commands can be used with OS data sets and VSE files that do
not reside on CMS disks. See the VM/SP CMS Command and Macro Reference
for a complete description of the CMS ACCESS, FILEDEF, LISTDS,
MOVEFILE, QUERY, RELEASE, and STATE commands.

For restrictions on reading OS data sets and VSE files under CMS, see the VM/SP
Planning Guide and Reference.

The CMS FILEDEF command allows you to specify the I/O device and the file
characteristics to be used by a program at execution time. In conjunction with the
OS simulation scheme, FILEDEF simulates the functions of the data definition
JCL statement.

FILEDEF may be used only with programs using OS macros and functions. For
example:

filedef file 1 disk proga data a 1

After issuing this command, your program referring to FILEt would access
PROGA DATA on your A-disk.

If you wished to supply data from your terminal for FILEl, you could issue the
command:

filedef file 1 terminal

Chapter 37. as Macro Simulation Under CMS 477

and enter the data for your program without recompiling.

fi tapein tap2 (recfm fb lrec150 block 100 9track den 800)

After issuing this command, programs referring to T APEIN will access a tape at
virtual address 182. (Each tape unit in the CMS environment has a symbolic name
associated with it.) The tape must have been previously attached to the virtual
machine by the VM/SP operator.

The AUXPROC Option of the FILEDEF Command

The AUXPROC option can only be used by a program call to FILEDEF and not
from the terminal. The CMS language interface programs use this feature for
special I/O handling of certain (utility) data sets.

The AUXPROC option, followed by a fullword address of an auxiliary processing
routine, allows that routine to receive control from DMSSEB before any device
I/O is performed. At the completion of its processing, the auxiliary routine returns
control to DMSSEB signaling whether or not I/O has been performed. If it has not
been done, DMSSEB performs the appropriate device I/O.

When control is received from DMSSEB, the general-purpose registers contain the
following information:

The auxiliary processing routine must provide a save area in which to save the
general registers; this routine must also perform the save operation. DMSSEB does
not provide the address of a save area in general register 13, as is usually the case.
When control returns to DMSSEB, the general registers must be restored to their
original values. Control is returned to DMSSEB by branching to the address
contained in general register 14.

GPR15 is used by the auxiliary processing routine to inform to DMSSEB of the
action that has been or should be taken with the data block as follows:

478 VM/SP System Programmer's Guide

Register
Content Action

GPRlS=O No I/O performed by AUXPROC routine; DMSSEB will perform
I/O.

GPRlS<O I/O performed by AUXPROC routine and error was encountered.
DMSSEB will take error action.

GPRlS>O I/O performed by AUXPROC routine with residual count in
GPRlS; DMSSEB returns normally.

GPRlS=64K I/O performed by AUXPROC routine with zero residual count.

Chapter 37. OS Macro Simulation Under CMS 479

c
480 VM/SP System Programmer's Guide

(

"

*
',<

Chapter 38. VSE Support Under CMS

CMS supports interactive program development for VSE. This includes creating,
compiling, testing, debugging, and executing commercial application programs.
The VSE programs can be executed in a CMS virtual machine or in a CMS Batch
Facility virtual machine.

VSE files and libraries can be read under CMS. VSAM data sets can be read and
written under CMS.

The CMS/DOS environment (called CMS/DOS) provides many of the same
facilities that are available in VSE. However, CMS/DOS supports only those
facilities that are supported by a single (background) partition. The VSE facilities
supported by CMS/DOS are:

• VSE linkage editor

• Fetch support

• VSE Supervisor and I/O macros

• VSE Supervisor control block support

• Transient area support

• VSE/VSAM macros.

This environment is entered each time the CMS SET DOS ON command is issued;
VSAM functions are available in CMS/DOS only if the SET DOS ON (VSAM)
command is issued. In the CMS/DOS environment, CMS supports many VSE
facilities, but does not support OS simulation. When you no longer need VSE
support under CMS, you issue the SET DOS OFF command and VSE facilities are
no longer available.

CMS/DOS can execute programs that use the sequential access method (SAM)
and virtual storage access method (VSAM), and can access VSE libraries.

CMS/DOS cannot execute programs that have execution-time restrictions, such as
programs that use teleprocessing access methods or multi-tasking. DOS/VS
COBOL, DOS PL/I, DOS/VS RPG II, and Assembler language programs are
executable under CMS/DOS.

All of the CP and CMS on-line debugging and testing facilities (such as the CP
ADSTOP and STORE commands and the CMS DEBUG environment) are

Chapter 38. VSE Support Under CMS 481

supported in the CMS/DOS environment. Also, CP disk error recording and
recovery is supported in CMS/DOS.

With its support of a CMS/DOS environment, CMS becomes an important tool for
VSE application program development. Because CMS/DOS is designed as a VSE
program development tool, it assumes in many cases that a VSE system exists, and
uses it. The following sections describe what is supported, and what is not.

Hardware Devices Supported

CMS/DOS routines can read real DOS disks containing VSE data files and VSE
private and system libraries. This read support is limited to the following disks
supported by VSE:

• mM 2314 Direct Access Storage Facility
• mM 2319 Disk Storage
• mM 3310 Direct Access Storage
• IBM 3330 Disk Storage, Models 1 and 2
• mM 3330 Disk Storage, Model 11
• . IBM 3340 Direct Access Storage Facility
• mM 3344 Direct Access Storage
• mM3350 Direct Access,Storage I · mM 3370 Direct Access Storage, Models AI, A2, B1, and B2
• mM 3375 Direct Access Storage.

The following devices, which are supported by VSE, are not supported by
CMS/DOS:

• Card Readers: 1442, 2560P, 2560S, 2596, 3504, 5425P, and 5425S

• Printers: 2560P, 2560S, 3203 Models 1 and 2,3525,5203, 5425P, and 5425S

• Disks: 2311.

Also, CMS uses the CP spooling facilities and does not support dedicated unit
record devices. Each CMS virtual machine supports only one virtual console, one
reader, one punch, one printer, four tapes, and 26 disks. Programs that are
executed in CMS/DOS are limited to the number of devices supported by CMS.

eMS Support of VSE Functions

In addition to the CMS SET command used to invoke the CMS/DOS environment,
there are a number of CMS/DOS commands and CMS commands with special
CMS/DOS operands that provide CMS support of the following VSE functions:

J

• Assignmen.t of logical units to particular physical devices.

• Associating VSE files with particular logical units.

482 VM/SP System Programmer's Guide
\

(~

/

• VSE librarian services.

• Compilation and testing of DOS/VS COBOL, DOS PL/I and RPGII
programs.

• Execution of DOS/VS COBOL, DOS PL/I, and RPGII programs.

Figure 47 on page 484 summarizes these commands and operands. A detailed
description and command format can be found in the VM / SP CMS Command and
Macro Reference.

Chapter 38. VSE Support Under CMS 483

Command Operand Comments

ASSGN Executable only in the CMS/DOS environment.
Assigns CMS/DOS system or programmer logi-
cal units to a virtual device.

DLBL Defines a VSE or VSAM ddname and relates
the ddname to a disk file.

DOSLIB Deletes, compacts, or lists information
about the phases in a C~1S/DOS phase
library.

DOSLKED Executable only in the C~lS/DOS environment.
Link-edits CMS text file, or object modules
from a VSE relocatable library, and
places them in executable forms in a
015/005 phase library.

DOSPLI Executable only in the C~ls/DOS environment.
Compiles DOS PL/I source programs.

DSERV Executable only in the C~lS/DOS environment.
Displays information about VSE core
image, relocatable, source statement, and
procedure and/or transient directories.

ESERV Executable only in the CMS/DOS environment.
Displays, updates, punches, or prints
edited (E sublibrary) VSE source statement
books.

FCOBOL Executable only in the Cf1s/DOS environment.
Compiles DOS/VS COBOL source programs.

FETCH Executable only in the C~lS/DOS environment.
Fetches a CMS/DOS executable phase.

GENMOD OS Speci fi es the type of macro support needed
DOS to execute a module. The ALL operand is
ALL intended for CMS internal use.

GLOBAL DOSLIB The GLOBAL command can now specify CMS/DOS
phase libraries, as l.Jell as text and macro
libraries.

LISTIO Executable only in the C~lS/DOS environment.
Display information about C~lS/DOS system
and programmer logical units.

LOADMOD Checks that a module generated to
execute in a specific macro simulation
environment (CMS/DOS or CMS) is in the
correct environment.

Figure 47 (Part 1 of 2). Summary of Changes to CMS Commands to Support CMS/DOS

484 VM/SP System Programmer's Guide

f
l

('~
./

Command Operand Comments

OPTION Executable only in the eMS/DOS environment.
Sets compiler options for DOS/VS COBOL.

PSERV Executable only in the eMS/DOS environment.
Copies and displays procedures in the
VSE procedure libraries and/or spools the
procedures to the CMS virtual printer and/
or punch.

QUERY UPSI Executable only in the eMS/DOS environment.
Displays current setting of C1'1S/DOS UPSI
byte.

OPTION Executable only in the eMS/DOS environment.
Displays CMS/DOS compiler options.

DOSLNCNT Displays the current number of
SYSLST lines per page.

DOS Displays the current status (active or not
active) of CMS/DOS.

DOSlIB Displays the names of all CI'1S/DOS phase
libraries currently being searched for
executable phases.

LIBRARY Displays the names of all CMS/DOS phase
libraries to be searched, in addition to
the text and macro libraries.

RSERV Executable only in the eMS/DOS environment.
Copies and/or displays modules in a VSE
relocatable library. Output can also be
directed to the virtual printer or punch.

SET DOS Makes the CMS/DOS environment active or not
active.

DOSlNCNT nn Speci fi es the number of SYSLST lines
per page.

UPS I Executable only in the C~'S/DOS environment.
Sets the CMS/DOS UPS I byte.

SSERV ExecutClble only in the C~lS/DOS environment.
Copies or displays books from the VSE
source statement libran/. Output can also
be directed to the virtual printer or
punch.

Figure 47 (Part 2 of 2). Summary of Changes to CMS Commands to Support CMS/DOS

Logical Unit Assignment

A logical unit is a symbolic name by which a program may refer to a real I/O
device without knowing the device address. Two examples of logical units iu'e
SYSRDR and SYSPCH.

The VSE supervisor uses two control blocks, the logical unit block (LUB) and the
physical unit block (PUB), to map the symbolic name to the real device address.
An entry in the LUB table for a particular logical unit, such as SYSRDR, contains a
pointer to a PUB table entry. The PUB entry contains the address of the reader,

Chapter 38. VSE Support Under CMS 485

.. '---' ,-.-----.--.-----------~-- ---

X'OOC'. Thus, all programs that read from the logical unit SYSRDR actually read
from the device at address X' OOC' .

On a real VSE machine, logical unit assignments are made dynamically via the
ASSGN job statement or the ASSGN operator command. When using CMS/DOS,
the CMS ASSGN command performs a similar function.

The ASSGN command in CMS/DOS assigns (or unassigns) a system or
programmer logical unit to (or from) a virtual I/O device. If a disk is being
assigned to a logical unit, the disk must have been previously accessed via the
ACCESS command. As in VSE, you are not allowed to assign the system
residence volume via the ASSGN command.

SYSLOG is the default value assigned to the terminal when SET DOS ON is
issued.

The valid system logical units that can be assigned are:

SYSRDR
SYSIPT
SYSPCH
SYSLST

SYSLOG
SYSIN
SYSOUT
SYSSLB

SYSRLB
SYSCAT
SYSCLB

Other VSE system logical units cannot be assigned. The following VSE system
logical units cannot be assigned to a VSE formatted FB-512 device:

SYSIN SYSIPT SYSRDR SYSLST SYSPCH

An error message is issued and the command terminated if any of the unsupported
system logical units are specified in the ASSGN command. If SYSIN is specified,
both the SYSIPT and SYSRDR LUB and PUB entries are filled in. If SYSOUT is
specified, both the SYSLST and SYSPCH LUB and PUB entries are filled in.

If you wish to use VSE private relocatable, core image or source statement
libraries, you must assign SYSRLB, SYSCLB or SYSSLB, respectively.

You can assign programmer units SYSOOO through SYS241 with the ASSGN
command. This deviates from VSE where the number of programmer logical units
varies according to the number of partitions.

ASSGN creates a VSE Logical Unit Block (LUB) and Physical Unit Block (PUB)
entry if the device is unassigned or alters the existing LUB/PUB relationship if the
device is already assigned. ASSGN fills in a one-byte index in the LUB, which
points to the proper PUB entry. This PUB entry contains the channel, unit, and
device type information.

When a system or programmer logical unit is assigned to READER, PUNCH, or
PRINTER, the reference is to a spooled unit record device. Card reader and
terminal I/O data must not be blocked.

The ASSGN command is also used to ignore (IGN) or unassign (UA) a logical
unit. An I/O operation for a logical unit that is in IGN status is effectively a NOP.
When a logical unit is unassigned, its pointer to the PUB table is removed.

486 VM/SP System Programmer's Guide

r-
Compiler Input/Output Assignments

The compilers supported by CMS/DOS expect input/output to be assigned to the
following devices:

• SYSIN/SYSIPT must be assigned to the device where the input source file
resides. Valid device types are reader, tape, or disk.

• The user should assign the following logical units to any of the indicated device
types:

SYSPCH to tape, punch, disk, or IGN

SYSLST to tape, printer, disk, or IGN

SYSLOG to terminal

SYSOO 1, SYS002, and SYS006 to disk.

SYS003-SYS005 to tape or disk.

The maximum number of work files is six for DOS/VS COBOL Compiler
(FCOBOL) and two for DOS PL/I Optimizing Compiler (DOSPLI).

You must assign SYSIN/SYSIPT. If it is unassigned at compilation time, an error
message is issued and the FCOBOL or DOSPLI command is terminated.

If SYSPCH or SYSLST are unassigned at compilation time, the FCOBOL or
DOSPLI EXEC file directs output to the disk where SYSIN resides if SYSIN is
assigned to a read/write CMS disk. Otherwise, output is directed to the CMS
read/write disk with the most read/write space. If SYSLOG is unassigned, it is
assigned to the terminal. If SYSOO 1 through SYSnnn are unassigned, output is
directed to the CMS disk with the most read/write space.

Interrogating I/O Assignments

The current I/O assignments may be displayed on the terminal by entering the
CMS/DOS LISTIO command. You can selectively display the system and/or
programmer logical units as a group or as a specific unit. With the EXEC option of
the LISTIO command you can create a disk file containing the list of assignments.

VSE Supervisor and I/O Macros Supported by eMS/DOS

CMS/DOS supports the VSE Supervisor macros and the SAM and VSAM I/O
macros to the extent necessary to execute the DOS/VS COBOL Compiler, the
DOS PL/I Optimizing Compiler, and DOS/VS RPG n Compiler under
CMS/DOS. CMS/DOS supports VSE Supervisor macros described in the
publication VSE Macro Reference.

Chapter 38. VSE Support Under CMS 487

Supervisor Macros

Macro

CCB (command control
block)

IORB (Input/Output
Request Block)

EXCB (execute channel
program)

WAIT

SECTV AL (sector
value)

OPEN/OPENR

LBRET (label processing
return)

FEOV (forced end of
volume)

SEOV (system end of
volume)

CLOSE/CLOSER

Since CMS is a single-user system executing in a virtual machine with virtual
storage, VSE operations, such as multi-tasking, that cannot be simulated in CMS
are ignored.

The following information deals with the type of support that CMS/DOS provides
in the simulation of VSE Supervisor and Sequential Access Method I/O macros.
For a discussion of VSAM macros, see the section "CMS Support for OS and
VSE/VSAM Functions."

CMS/DOS supports physical IOCS macros and control program function macros
for VSE. Figure 48 lists the physical IOCS macros and describes their support.
Figure 49 lists the control program function macros and their support. Refer to
VM/SP System Logic and Problem Determination Guide Volume 2 (eMS) for
details of the macros' operation.

Support

The CCB is generated.

Supported for DASD I/O.

The REAL operand is not supported; all other operands are
supported.

Supported. Issued whenever your program requires an I/O
operation (started by an EXCP macro) to be completed before
execution of program continues.

Supported for VSAM. See Figure 50

Supported. Activates a data file.

Not supported.

Not supported.

Not supported.

Supported. Deactivates a data file.

Figure 48. Physical IOCS Macros Supported by CMS/DOS

488 VM/SP System Programmer's Guide

Function/ SVC. No.
Macro Dec Hex Support

EXCP 0 0 Used to read from CMS or DOS/OS formatted
Disks.

FETCH 1 1 Used to bring a problem program phase into user
storage and to start execution of the phase if the
phase was found. Operand SYS= YES is not
supported.

FETCH 2 2 Used to bring a $$B-transient phase into the CMS
transient area (or if the phase is in the CMSDOS
segment, not to load it), and start execution of the
phase if the phase was found. Operand SYS= YES
is not supported.

FORCE DEQUEUE 3 3 Not supported, see note 2.

LOAD 4 4 Used to bring a problem program phase into user
storage, and return the caller the entry point
address of the phase just loaded. Operand
SYS= YES is not supported.

MVCOM 5 5 Provides the user with a means of altering
positions 12 through 23 of the partition
communications region (BGCOM).

CANCEL 6 6 Cancels a VSE session either by a VSE program
request, or by request from any of the CMS
routines handling CMS/DOS.

WAIT 7 7 Used to wait on a CCB, IORB, ECB, or TECB.
(Note that CMS/DOS does not support ECB's or
TECB's). In the case of CCB's, they are always
posted by the DMSXCP routine before returning
to the caller.

The WArT support under CMS/DOS will
effectively be a branch to the CMS/DOS POST
routine.

CONTROL 8 8 Temporarily return control from a $$B-transient to
the problem program.

LBRET 9 9 Return to the $$B-transient after an SVC 8 was
issued to give control to the problem program.

SET TIMER 10 A No operation, successful return code of 0 is given
in R15. See note 1.

TRANS. RETURN 11 B Return from a $$B-transient to the calling problem
program.

Figure 49 (Part 1 of 8). SVC Support Routines and Their Operation

Chapter 38. VSE Support Under CMS 489

Function/ SVC.No.
Macro Dec Hex Support

JOB CONTROL 12 C Resets flags to 0 in the linkage control byte in
'AND' BGCOM (communication region). If Rl = 0,

SVC 12 has another meaning. Bit 5 of JCSW4
(CONREG byte 59) is turned off.,

JCFLAGS 13 D Not supported, see note 2.

EOJ 14 E Normally terminates execution of a problem
.-

program.

SYSIO 15 F Not supported, see note 2.

PC STXIT 16 10 Establish or terminate linkage to a user's program
check routine.

PC EXIT 17 11 Used to provide supervisory support for the EXIT
macro. SVC 17 provides a return from the user's
PC routine to the next sequential instruction in the
program that was interrupted due to a program
check.

IT STXIT 18 12 No operation, successful return code of 0 is given
in R15. See note 1.

IT EXIT 19 13 Not supported, see note 2.

OC STIXIT 20 14 No operation, successful return code of 0 is given
in R15. See note 1.

OCEXIT 21 15 Not supported, see note 2.

SEIZE 22 16 No operation, successful return code of 0 is given
in R15. See note 1.

LOAD HEADER 23 17 Not supported, see note 2.

SETIME 24 18 No operation, successful return code of 0 is given
in R15. See note 1.

HALT I/O 25 19 Not supported, see note 2.

26 1A Validate address limits. The upper address must
be specified in general register 2 and the lower
address must be specified in general register 1.

TP HALT I/O 27 1B Not supported, see note 2.

MREXIT 28 lC Not supported, see note 2.

WAITM 29 1D Not supported, see note 2.

QWAIT 30 IE Not supported, see note 2.

QPOST 31 IF Not supported, see note 2.

32 20 Reserved

Figure 49 (Part 2 of 8). SVC Support Routines and Their Operation

490 VM/SP System Programmer's Guide

f Function/ SVC.No.
Macro Dec Hex Support

COMRG 33 21 Used to provide the caller with the address of the
partition communications region.

DMSDOS provides the caller with the address of
the partition communications region, in the user's
register l.

GETIME 34 24 Provides support for the GETIME macro. SVC
34 updates the date field in the communications
region. The GMT operand is not supported. _.

HOLD 35 23 No operation, successful return code of 0 is given
in R15. See note l.

FREE 36 24 No operation, successful return code of 0 is given
in R15. See note l.

ABSTXIT 37 25 Establish or terminate linkage to a user's abnormal
termination routine. Supported for
OPINION=DUMP or NODUMP.

ATTACH 38 26 Not supported, see note 2.

DETACH 39 27 Not supported, see note 2.

POST 40 28 Used to post an ECB, IORB, TECB, or CCB.
Byte 2, bit 0 of the specified control block are
turned 'on' by DMSDOS.

DEQ 41 29 No operation, successful return code of 0 is given
in R15. See note l.

ENQ 422A No operation, successful return code of 0 is given
in R15. See note l.

43 2B Reserved

UNIT CHECKS 442C Not supported, see note 2.

EMULATOR INTERF. 452D Not supported, see note 2.

OLTEP 46 2E Not supported, see note 2.

WAITF 47 2F Not supported, see note 2.

CRT TRANS 48 30 Not supported, see note 2.

CHANNEL PROG. 49 31 Not supported, see note 2.

LIOCSDIAG. 50 32 Issued by a logical IOCS routine when the LIOCS
is called to perform an operation for which the
LIOCS was not generated to perform.

The error message "unsupported function in a
LIOCS routine" is issued, and the session is then
terminated.

Figure 49 (Part 3 of 8). SVC Support Routines and Their Operation

Chapter 38. VSE Support Under eMS 491

Function/ SVC.No.
Macro Dec Hex Support

RETURN HEADER 51 33 Not supported, see note 2.

TTIMER 52 34 No operation, successful return code of 0 is given
in R15. See note 1. RO is also cleared.

VTAMEXIT 53 35 Not supported, see note 2.

FREEREAL 54 36 Not supported, see note 2.

GETREAL 55 37 Not supported, see note 2.

POWER 56 38 Not supported, see note 2.

POWER 57 39 Not supported, see note 2.

SUPVR. INTERF. 583A Not supported, see note 2.

EOJINTERF. 59 3B Not supported, see note 2.

GETADR 603C Not supported, see note 2.

GETVIS 61 3D Used to obtain free storage for scratch use or for
obtaining an area into which a relocatable program
may be loaded. The PAGE, POOL, and SV A
GETVIS options are ignored.

FREEVIS 62 3E Used to return the free storage obtained via an
earlier GETVIS call.

USE 63 3F The USE/RELEASE function has been replaced
by SVC 110 (LOCK/UNLOCK) for serially
controlling system resources. All SVC 63 and 64
requests are mapped into SVC 110 requests
respectively. Return codes previously associated
with USE/RELEASE under CMS/DOS are
maintained.

RELEASE 64 40 Reference SVC 63.

CDLOAD 65 41 Used to load a relocatable phase into storage,
unless the program has already been loaded.

RUNMODE 66 42 Used by a problem program to find out if the
program is running in real or virtual mode. The
caller's register 0 is zeroed to indicate that the
program is running in virtual mode.

PFIX 67 43 No operation, successful return code of 0 is given
in R15. See note 1.

PFREE 68 44 No operation, successful return code of 0 is given
in R15. See note 1.

REALAD 69 45 Not supported, see note 2.

VIRTAD 70 46 Not supported, see note 2.

Figure 49 (Part 4 of 8). SVC Support Routines and Their Operation

492 VM/SP System Programmer's Guide

('

l Function/ SVc. No.
Macro Dec Hex Support

SETPFA 71 47 No operation, successful return code of 0 is given
in R15. See note 1.

GETCBUF/FREECBUF 72 48 Not supported, see note 2.

SETAPP 73 49 Not supported, see note 2.

PAGE FIX 744A Not supported, see note 2.

SECTVAL 75 4B Used by I/O routines to obtain a sector number
for a 3330,3330-11,3340, or 3350 device.

SYSREC 764C Not supported, see note 2.

TRANSCCW 77 4D Not supported, see note 2.

CHAP 78 4E Not supported, see note 2.

SYNCH 79 4F Not supported, see note 2.

SETT 80 50 Not supported, see note 2.

TESTT 81 51 Not supported, see note 2.

LINKAGE 82 52 Not supported, see note 2.

ALLOCATE 83 53 Not supported, see note 2.

SET LIMIT 84 54 Not supported, see note 2.

RELPAGE 85 55 Provides support for the RELP AG macro. At
entry register 1 points to a list of 8-byte area.
Each entry contains the beginning address and the
length-l of an area to be released. A non-zero
byte following an entry indicates the end of the
list. An area is released only if it contains at least
a full CP page (4k bytes). Pages are released
when the virtual machine calls CP via DIAGNOSE
code X' 10'. On return R 15 holds return code as
follows:
R15 = 0 all areas have been released
R 15 = 2 one or more negative area

lengths were specified
R 15 = 4 one or more pages to be

released were outside the user
storage area

R15 =16 at least one entry contains a
beginning address outside the
user storage area.

FCEPGOUT 86 56 No operation, successful return code of 0 is given
in R15. See note 1.

PAGEIN 87 57 No operation, successful return code of 0 is given
in R15. See note 1.

Figure 49 (Part 5 of 8). SVC Support Routines and Their Operation

c
Chapter 38. VSE Support Under CMS 493

Function/ SVC.No.
Macro Dec Hex Support

TPIN 88 58 Not supported, see note 2.

TPOUT 89 59 Not supported, see note 2.

PUTACCT 905A Not supported, see note 2.

POWER 91 5B Not supported, see note 2.

XECBTAB 92 5C Not supported, see note 2.

XPOST 935D Not supported, see note 2.

XWAIT 94 5E Not supported, see note 2.

ABEXIT 95 51 Exit from abnormal task termination routine and
continue the task.

TTEXIT 96 60 Not supported, see note 2.

TT STXIT 97 61 Not supported, see note 2.

EXTRACT 98 62 Support for EXTRACT macro of VSE. The caller
requests PUB information, CPUID, or storage
boundary information. Register 1 on entry points
to a parameter list. Output is placed in an area
provided by caller.

GETVCE 99 63 Support for GETVCE macro. Caller requests
device information about specific DASD.
Information is returned in an output area pointed
to from the parameter list. Register 1 contains a
pointer to the parameter list on entry.

100 64 Reserved

MODVCE 101 65 No operation, successful return code of 0 is given
in R15. See note 1.

102 66 Reserved.

SYSHL 103 67 Not supported, see note 2.

EXTENT 104 68 No operation, successful return code of 0 is given
in R15. See note 1.

SUBSID 105 69 SUBSID .. the 'INQUIRY' function is supported
for the supervisor sub-system. Information
returned is described by the SUPSSID control
block. The SUBSID 'NOTIIY' and 'REMOVE'
functions are not supported.

LINKAGE 1066A Not supported, see note 2.

Figure 49 (Part 6 of 8). SVC Support Routines and Their Operation

494 VM/SP System Programmer's Guide

----- - ---------- ---

f
l. Function/ SVC.No.

Macro Dec Hex Support

TASK INTERF. 107 6B Provides macro interface support for system
information retrieval. The parameters supported
are:
GETFLD:

Field=ppsavar returns problem program
save area address.

=savar returns current save area
address.

=maintask returns maintask TID in Rl.

=aclose return in R1 1 if in process,
o if not.

=pcexit returns the pcexit routine
address and save area in RO
and Rl respectively. If the
exit routine is currently
active, bit 0 in RO is set ON.
If no exit is defined, it
returns a 0 in both RO and
Rl.

MODFLD:

=vsamopen set bit X' 08' in tab tabflags
byte if R1 =0

=aclose set bit X' 10' in tab tabflags
byte if R1 =0

The MODFLD requests for fields CNCLALL and
OPENSV A are treated as a NOP with a return
code of O.

All other GETFLD/MODFLD requests as well as
all other SVC 107 macro calls are unsupported.
The error message DMSGMF121S is issued and
the request cancelled. See note 2.

DATA SECURE 108 6C Not supported, see note 2.

PAGESTAT 109 6D Not supported, see note 2.

Figure 49 (Part 7 of 8). SVC Support Routines and Their Operation

Chapter 38. VSE Support Under eMS 495

Function/ SVC.No.
Macro Dec Hex Support

LOCK/UNLOCK 110 6E Used to control access to resources. Access is
maintained in either a 'shared' or 'exclusive'
control environment. Counters are maintained as
well as the type of control for each resource in a
table (LOCKTAB) built in free storage when DOS
is SET ON. All entries not unlocked by the
program are cleared at both normal and abnormal
end-of-job.
All requests for resource control are passed to
SVC 110 through the DTL macro (Define the
Lock). SVC 63 requests are mapped into a
dummy DTL and processed by SVC 110.

Figure 49 (Part 8 of 8). SVC Support Routines and Their Operation

Notes:

1. No operation:
In each case, register 15 is cleared to simulate successful operation, and all other
registers are returned unchanged, unless otherwise noted.

2. Not supported:
For unsupported SVCs, an error message is given, and the SVC is treated as a
"cancel".

Sequential Access Method -- Declarative Macros

eMS/DOS supports the following declarative macros:

• DTFCD - Types X'02' and X'04'
• DTFCN - Types X'03'

DTFDI - Types X'33'
DTFMT - Types X'10', X'l1', X'12', and X'14'
DTFPR - Types X' 08'

• DTFSD - Types X' 20'

The CDMOD, DIMOD, MTMOD, and PRMOD, macros generate the logical
lacs routines that correspond with the declarative macros. For files on disk, the
logical lacs routines used during program execution reside in the CMSBAM
DCSS and are not generated within the program. The operands that CMS/DOS
supports for the DTF are also supported for the xxMOD macro. In addition,
CMS/DOS supports three internal macros that the COBOL and PL/I compilers
require: DTFCP (types X'31' and X'32'), CPMOD, and DTFSL.

496 VM/SP System Programmer's Guide

(
1 DTFCD Macro -- Defines the File for a Card Reader

Operand

DEV ADDR=SYSxxx

IOAREA1 =xxxxxxxx

ASOCFLE=xxxxxxxx

BLKSIZE=nnn

CONTROL= YES

CRDERR=RETRY

CTLCHR=xxx

DEVICE=nnnn

EOFADDR=xxxxxxxx

ERROPT=xxxxxx

FUNC = xxx

IOAREA2= xxxxxxxx

IOREG=(nn)

MODE=xx

MODNAME= xxxxxxxx

OUBLKSZ=nn

RDONLY=YES

RECFORM=xxxxxx

CMS/DOS does not support the ASOCFLE, FUNC, TYPEFILE=CMBND, and
OUBLKSZ operands of the DTFCD macro. CMS/DOS ignores the SSELECT
operand and any mode other than MODE=E. Figure 50 describes the DTFCD
macro operands and their support under CMS/DOS. An asterisk (*) in the status
column indicates that CMS/DOS support differs from VSE support.

Status Description

Symbolic unit for reader-punch used for this file.
... Name of the first I/O area.
... Not supported .
... Length of one I/O area, in bytes. If omitted, 80 is

assumed. If CTLCHR= YES is specified, BLKSIZE
defaults to 8l.

CNTRL macro used for this file. Omit CTLCHR for
this file. Does not apply to 250l.

... Retry if punching error is detected. Applies to 2520
and 2540 only. However, this situation is never
encountered under CMS/DOS because hardware errors
are not passed to the LIOCS module.

(YES or ASA). Data records have control character.
YES for S/370 character set; ASA for American
National Standards Institute character set. Omit
CONTROL for this file.

... (2501,2520,2540, 3505, or 3525). If omitted, 2540 is
default.

Name of your end-of-file routine.
... IGNORE, SKIP, or name. Applies to 3505 and 3525

only.
... Not supported.

* If two output areas are used, name of second area.

Register number if two I/O areas were used and GET
or PUT does not specify a work area. Omit WORKA.

* Only MODE=E is supported.

Name of the logic module that is used with the DTF
table to process the file.

... Not supported.

... Causes a read-only module to be generated.

(FIXUNB, VARUNB, UNDEF). If omitted, FIXUNB
is default.

Figure 50 (Part 1 of 2). CMS/DOS Support of DTFCD Macro

Chapter 38. VSE Support Under CMS 497

Operand Status Description

RECSIZE= (nn) * Register number if RECFORM=UNDEF.

SEPASMB= YES DTFCD is to be assembled separately.

SSELECT=n * Ignored.

TYPEFLE= * Input or output.

WORKA=YES I/O records are processed in work areas instead of the
I/O areas.

Figure 50 (Part 2 of 2). CMS/DOS Support of DTFCD Macro

498 VM/SP System Programmer's Guide

DTFCN Macro - Define the File for a Console

Operand

DEV ADDR=SYSxxx

IOAREAl =xxxxxxxx

BLKSIZE=nnn

INPSIZE=nnn

MODNAME= xxxxxxxx

RECFORM= xxxxxx

RECSIZE= (nn)

TYPEFLE= xxxxxx

WORKA=YES

CMS/DOS supports all of the operands of the DTFCN macro. Figure 51
describes the operands of the DTFCN macro and their support under CMS/DOS.
The status column is blank: because the CMS/DOS and VSE support of DTFCN
are the same.

Status Description

Symbolic unit for the console used for this file.

Name of I/O area.

Length in bytes of I/O area (for PUTR macro usage,
length of output part of I/O area). If
RECFORM=UNDEF, maximum is 256. If omitted,
80 is default.

Length in bytes for input part of I/O area for PUTR
macro usage.

Logic module name for this DTF. If omitted, IOCS
generates a standard name.

The logic module is generated as part of the DTF.

(FIXUNB or UNDEF). If omitted, FIXUNB is
default.

Register number if RECFORM=UNDEF. General
registers 2 through 12, enclosed in parentheses.

(INPUT, OUTPUT, or CMBND). Input processes
both input and output. CMBND must be specified
for PUTR macro usage. If omitted, INPUT is
default.

GET or PUT specifies work area.

Figure st. CMS/DOS Support of DTFCN macro

DTFDI MACRO - Define the File for Device Independence for System Logical Units

CMS/DOS supports most operands of the DTFDI macro. Figure 52 describes the
operands of the DTFDI macro and their support under CMS/DqS. An asterisk
(*) in the status column indicates that CMS/DOS support differs from VSE
support.

Chapter 38. VSE Support Under CMS 499

DEV ADDR=SYSxxx (SYSIPT, SYSLST, SYSPCH, or SYSRDR). System
logical unit. CMS/DOS issues an error message if
the logical unit specified on the DTF does not match
the logical unit specified on the corresponding DLBL
command.

10AREAl =XXXXXXXX Name of the first I/O area.

CISIZE=n ... This operand specifies the control interval size for a
DOS formatted FB-512 device assigned to a
nonsystem file logical unit. This operand is ignored
for count-key-data devices and CMS formatted disks.

EOFADDR=xxxxxxxx Name of your end-of-file routine.

FBA=YES This operand is not required and is ignored if
specified.

ERROPT=xxxxxxxx (IGNORE, SKIP, or name of your error routine).
Prevents termination on errors.

IOAREA2=xxxxxxxx If two I/O areas are used, name of second area.

IOREG2=(nn) Register number. If omitted and two I/O areas are
used, register 2 is default. General registers 2
through 12, enclosed in parentheses.

MODNAME=xxxxxxxx DIMOD name for this DTF. If omitted, 10CS
generates a standard name. This operand is ignored
with DASD. The SAM OPEN routines within the
CMSBAM DCSS always load an IBM supplied logic
module and link it to the DTF.

RDONLY=YES Generates a read-only module. Requires a module
save area for each routine using the module.

RECSIZE=nnn Number of characters in record. Default values: 121
(SYSLST), 81 (SYSPCH), 80 (other).

SEPASMB= YES DTFDI to be assembled separately.

TRC=YES ... Not supported.

WLRERR=xxxxxxxx Name of your wrong-length record routine.

Figure 52. eMS/DOS Support of DTFDI Macro

DTFMT Macro -- Define the File for a Magnetic Tape

CMS/DOS does not support the ASCII, BUFOFF, HDRINFO, LENCHK, and
READ=BACK operands of the DTFMT macro. Tape I/O operations are limited
to reading in the forward direction.

You may use the FILABL operand in the DTFMT macro to specify that you have a
standard tape label file, a nonstandard tape label file, or an unlabeled tape. The
type of tape label processing depends on the option selected. See "Tape Labels in
CMS" in the VM / SP eMS User's Guide for a complete description of tape label
processing in CMS/DOS.

500 VM/SP System Programmer's Guide

(
l

(~

Operand

BLKSIZE= nnnnn

DEV ADDR=SYSxxx

EOFADDR=xxxxxxxx

FILABL=xxxx

10AREAl =xxxxxxxx

ASCII=YES

BUFOFF=nn

CKPTREC= YES

ERREXT=YES

ERROPT= xxxxxxxx

HDRINFO= YES

IOAREA2=xxxxxxxx

10REG=(nn)

LABADDR=xxxxxxxx

LENCHK=YES

MODNAME= xxxxxxxx

NOTEPNT=xxxxxx

RDONLY=YES

READ = xxxxxxx

Figure 53 describes the DTFMT macro operands and their support under
CMS/DOS. An asterisk (*) in the status column indicates that CMS/DOS support
differs from VSE support.

Status Description

Length of one I/O area in bytes (maximum =
32,767.

Symbolic unit for tape drive used for this file.

Name of your end-of-file routine.

(NO, STD, or NSTD). If NSTD specified, include
LABADDR.

Name of first I/O area.

* Not supported.

* Not supported.

Checkpoint records are interspersed with input data
records. 10CS bypasses checkpoint records.

Additional errors and ERET are desired.

(IGNORE, SKIP, or name of error routine).
Prevents job termination on error records.

* Not supported.

If two I/O areas are used, the name of the second
area.

Register number. Use only if GET or PUT does not
specify a work area or if two I/O areas are used.
Omit WORKA. General registers 2 through 12,
enclosed in parentheses.

Name of your label routine if FILABL=NSTD, or if
FILABL=STD and user-standard labels are
processed.

* Not supported.

Name of MTMOD logic module for this DTF. If
omitted, 10CS generates standard name.

(YES or POINTS). YES if NOTE, POINTW,
POINTR, or POINTS macro used. POINTS if only
POINTS macro used.

Generate read-only module. Requires a module save
area for each routine using the module.

* CMS/DOS only supports READ=FORW ARD.

Figure 53 (Part 1 of 2). CMS/DOS Support of DTFMT Macro

Chapter 38. VSE Support Under eMS 501

Operand Status Description

RECFORM=xxxxxx (FIXUNB, FIXBLK, V ARUNB, V ARBLK,
SPNUNB, SPNBLK, or UNDEF). For work files
use FIXUNB or UNDEF. If omitted, FIXUNB is
assumed.

RECSIZE=nnnn If RECFORM=FIXBLK, number of characters in
the record. If RECFORM=UNDEF, register
number. Not required for other records. General
registers 2 through 12, enclosed in parentheses.

REWIND=xxxxxx (UNLOAD or NORWD). Unload on CLOSE or
end-of-volume, or prevent rewinding. If omitted,
rewind only.

SEPASMB= YES DTFMT is to be assembled separately.

TPMARK=NO Prevent writing a tapemark ahead of data records if
FILABL=NSTD or NO.

TYPEFLE= xxxxxx (INPUT, OUTPUT, or WORK). If omitted, INPUT
is default.

V ARBLD=(nn) Register number, if RECFORM= V ARBLK and
records are built in the output area. General registers
2 through 12 are enclosed in parentheses.

WLRERR=xxxxxxxx Name of wrong-length record routine.

WORKA=YES GET or PUT specifies a work area. Omit IOREG.

Figure 53 (Part 2 of 2). CMS/DOS Support of DTFMf Macro

DTFPR Macro - Define the File for a Printer

Operand

DEV ADDR=SYSxxx

IOAREAl =XXXXXXXX

ASOCFLE=xxxxxxxx

BLKSIZE=nnn

CONTROL=YES

eMS/DOS does not support the ASOCFLE, ERROPT=IGNORE, and FUNC
operands of the DTFPR macro. Figure 54 describes the operands of the DTFPR
macro and their support under CMS/DOS. An asterisk (*) in the status column
indicates that CMS/DOS support differs from VSE support.

Status Description

Symbolic unit for the printer used for this file.

Name for the first output area.

* Not supported.

* Length of one output area, in bytes. If omitted, 121
is default.

CNTRL macro used for this file. Omit CTLCHR for
this file.

Figure 54 (Part 1 of 2). CMS/DOS Support of DTFPR Macro

502 VM/SP System Programmer's Guide

r
L

c

Operand Status Description

CTLCHR=xxx (YES or ASA). Data records have control character.
YES for S/370 character set; ASA for American
National Standards Institute character set. Omit
CONTROL for this file.

DEVICE=nnnn * (1403, 1443,3203, or 3211). If omitted, 1403 is
default.

ERROPT=xxxxxxxx * RETRY or the name of your error routine for 3211.
Not allowed for other devices. IGNORE is not
supported.

FUNC=xxxx * Not supported.

IOAREA2=xxxxxxxx If two output areas are used, name of second area.

IOREG=(nn) Register number; if two output areas used and GET
or PUT does not specify a work area. Omit
WORKA.

MODNAME=xxxxxxxx Name of PRMOD logic module for this DTF. If
omitted, IOCS generates standard name.

PRINTOV = YES PRTOV macro used for this file.

RDONLY=YES Generate a read-only module. Requires a module
save area for each routine using the module.

RECFORM=xxxxxx (FIXUNB, V ARUNB, or UNDEF). If omitted,
FIXUNB is default.

RECSIZE= (nn) Register number if RECFORM= UNDEF.

SEPASMB= YES DTFPR is to be assembled separately.

STLIST=YES Use 1403 selective tape listing feature.

TRC=YES * Not supported.

UCS=xxx (ON) process data checks. (OFF) ignores data
checks. Only for printers with the UCS feature or
3203 or 3211. If omitted, OFF is default.

WORKA=YES PUT specifies work area. Omit IOREG.

Figure 54 (Part 2 of 2), eMS/DOS Support of DTFPR Macro

DTFSD Macro - Define the File for a Sequential DASD

CMS/DOS does not support the FEOVD, HOLD, and LABADDR operands of
the DTFSD macro. Figure 55 describes the operands of the DTFSD macro and
their support under CMS/DOS. An asterisk (*) in the status column indicates that
CMS/DOS support differs from VSE support.

Chapter 38. VSE Support Under CMS 503

/-,

Operand Status Description

BLKSIZE= nnnn Length of one I/O area, in bytes.

CISIZE=n * This operand specifies the control interval size for a
DOS formatted FB-S12 device assigned to a
nonsystem file logical unit. This operand is ignored
for count-key-data devices and CMS formatted disks.

EOF ADDR = xxxxxxxx Name of your end-of-file routine.

IOAREAl =xxxxxxxx Name of first I/O area.

CONTROL=YES This operand is ignored. CONTROL= YES is always
included.

DELETFL=NO * If DELETFL=NO is specified, the work file is not
erased. Otherwise, when the work file is closed,
CMS/DOS erases it.

DEV ADDR=SYSnnn * Symbolic unit. This operand is optional. If
DEV ADDR is not specified, all I/O requests are
directed to the logical unit identified on the
corresponding CMS/DOS DLBL command.

If a valid logical unit is specified with the
DEV ADDR operand of the DTF and a different, but
also valid, logical unit is specified on the DLBL
command, the unit specified on the DLBL command
overrides the unit specified in the DTF. However,
CMS/DOS issues an error message if a valid logical
unit is specified in the DTF and no logical unit is
specified on the corresponding DLBL command.

DEVICE = nnnn * This operand is ignored. The actual device type is
determined by OPEN.

ERREXT=YES Additional error facilities and ERET are desired.
This operand is ignored. ERREXT=YES is always
included.

ERROPT= xxxxxxxx (IGNORE, SKIP, or name of error routine.)
Prevents job termination on error records. Do not
use SKIP for output files.

FEOVD=YES * Not supported.

HOLD=YES * Not supported. HOLD=YES is specified for DTFSD
update or work files to provide a track hold
capability. However, the CMS/DOS open routine
sets the track hold bit off and bypasses track hold
processing.

IOAREA2=xxxxxxxx If two I/O areas are used, name of second area.

Figure 55 (Part 1 of 3). eMS/DOS Support of DTFSD Macro

504 VM/SP System Programmer's Guide

(

l Operand Status Description

IOREG=(nn) Register number. Use only.if GET or PUT does not
specify work area or if two 110 areas are used. Omit
WORKA.

LABADDR= xxxxxxxx * Not supported.

MODNAME= xxxxxxxx This operand is not required. If specified, it is
ignored. The SAM OPEN routines within the
CMSBAM DCSS always load an IBM supplied logic
module and link it to the DTF.

NOTEPNT=xxxxxxxx Indicates that NOTE, POINTR, POINTW, and
POINTS are used. This operand is ignored.
NOTEPNT=YES is always included.

RDONLY=YES This operand is not required and is ignored if
specified. RDONL Y = YES is always included.

PWRITE=YES * For a DOS formatted FB-512 disk, this operand
specifies that for output operations a physical write
occurs for every logical block. This operand is
ignored for count-key-data devices and CMS
formatted disks. DOS formatted FB-512 disks are
not supported for output.

RECFORM=xxxxxx (FIXUNB, FIXBLK, VARUNB, SPNUNB,
SPNBLK, V ARBLK, or UNDEF). If omitted,
FIXUNB is assumed.

For work files use FIXUNB or UNDEF. Although
work files contain fixed-length unblocked records,
the CMS file system handles work UNDEF files as
variable-length record files. If you specify FIXBLK,
V ARBLK, or UNDEF when creating a CMS file on
a CMS CMS disk, CMS writes the file in
variable-length format. The LISTFILE command
would show the file as V format. If you specify
FIXUNB when creating a CMS file on a CMS disk,
CMS writes the file in fixed-length format.

RECSIZE=nnnnn If RECFORM=FIXBLK, number of characters in
record. If RECFORM=SPNUNB, SPNBLK, or
UNDEF, register number. Not required for other
records.

SEPASMB= YES DTFSD is to be assembled separately.

TRUNCS = YES RECFORM=FIXBLK or TRUNC macro used for
this file.

TYPEFLE=xxxxxx (INPUT, OUTPUT, or WORK). If omitted, INPUT
is assumed.

Figure 55 (Part 2 of 3). CMS/DOS Support of DTFSD Macro

Chapter 38. VSE Support Under eMS 505

Operand Status Description

UPDATE = YES Input file or work file is to be updated.

V ARBLD= (on) Register number if RECFORM= V ARBLK and
records are built in the output area. Omit if
WORKA=YES.

VERIFY=YES Check disk records after they are written.

WLRERR=xxxxxxxx Name of your wrong-length record routine.

WORKA=YES GET or PUT specifies work area. Omit IOREG.
Required for RECFORM=SPNUNB or SPNBLK.

Figure 55 (Part 3 of 3). eMS/DOS Support of DTFSD Macro

Sequential Access Method -- Imperative Macros

CMS/DOS supports the following imperative macros:

• Initialization macros: OPEN and OPENR

• Processing macros: GET, PUT, PUTR, RELSE, TRUNC, CNTRL, ERET,
andPRTOV.

Note: No code is generated for the CHNG macro.

• Work file macros for tape and disk: READ, WRITE, CHECK, NOTE,
POINTR, POINTW, and POINTS.

• Completion macros: CLOSE and CLOSER.

CMS/DOS supports workfiles containing fixed-length unblocked records and
undefined records. Disk work files are supported as single volume, single pack
files. Normal extents and split extents are both supported.

VSE Transient Routines

CMS/DOS simulates the VSE transients that are fetched by macro expansion or by
the LIOCS modules. These simulation routines contain enough of the transient's
function to support the DOS/VS COBOL compiler and DOS PL/I Optimizing
compiler. These routines that simulate the VSE transients execute in the
CMS/DOS discontiguous saved segment.

The following VSE transients are simulated by CMS/DOS.

506 VM/SP System Programmer's Guide

(

l Transient Function under eMS/DOS

$$BOPEN Fetched by the VSE OPEN macro expansion or by the VSE LIOCS
modules. $$BOPEN performs DTF initialization, dependent upon the
device type, to ready the file for I/O operations. At entry to
$$BOPEN, register 0 points to a list of fullword addresses containing
a pointer to the DTFs. $$BOPEN checks for supported DTF types,
and initializes DTFs in accordance with the device type. In the case of
tape data files, default DLBLs with the NO CHANGE option are
issued. (The CMS STATE command is issued to verify the existence
of the input files on disk.)

If a VSAM file is being opened (Byte 20 = X'28' in the ACB),
control is passed to the VSAM OPEN routine. When opening DTFSD
files for output or DTFCP /DTFDI disk files for output, if a file exists
on a CMS disk with the same filename, filetype, and filemode, the file
is erased. If a SAM disk file is being opened, DTF initialization is
performed by involving the simulated VSE OPEN routines that reside
in the CMSBAM DCSS.

$$BOPNLB Fetched by COBOL Compiler Phase 00 to read the appropriate
system or private source statement library directory record and to
determine whether or not active members are present for the library.

$$BCLOSE Fetched by VSE CLOSE macro expansion to deactivate a file.

$$BDUMP Fetched when an abnormal termination condition is encountered.
Control is not passed to a STXIT routine. CMS/DOS performs a CP
dump to a virtual printer. The routine is canceled.

$$BOPENR Fetched by a VSE OPENR macro expansion. The function of
$$BOPENR is to relocate all DTF table address constants from the
assembled addresses to executable storage addresses. At entry to
$$BOPENR, register 0 points to an assembled address constant
followed by a list of DTF addresses tables that require address
modification.

$$BOPNR3 Fetched by $$BOPENR to relocate all DTF table address constants
for unit record DTFs.

$$BOPNR2 Fetched by $$BOPNR3 to relocate all DTF table address constants
for DTFDI or DTFCP.

$$BOSVLT Fetched via SVC 2 by the simulated VSE OPEN/CLOSE routines in
the CMSBAM DCSS. $$BOSVLT performs clean-up and transition
functions upon completion of processing by the simulated VSE
routines in the CMSBAM DCSS.

Chapter 38. VSE Support Under eMS 507

EXCP Support in CMS/DOS

CMS/DOS simulates the EXCP (execute channel program) routines to the extent
necessary to support the LIOCS routines described in the preceding section, "VSE
Supervisor and I/O Macros Supported by CMS/DOS."

Because CMS/DOS uses the VSE LIOCS routines, it must simulate all I/O at the
EXCP level. The EXCP simulation routines convert all the I/O that is in the CCW
format to CMS physical I/O requests. That is, CMS macros (such as
RDBUF/WRBUF, CARDRD/CARDPH, PRINTIO, and WAITRD/TYPLIN)
replace the CCW strings. If CMS/DOS is reading from DOS disks, I/O requests
are handled via the DIAGNOSE interface.

When an I/O operation completes, CMS/DOS posts the CCB or 10RB with the
CMS return code. Partial RPS (rotational position sensing) support is available for
I/O operations to CMS disks because CMS uses RPS in its channel programs.
However, RPS is not supported when real DOS disks are read.

VSE Supervisor Control Blocks Simulated by CMS/DOS

CMS/DOS supports VSE program development and execution for a single
partition: the background partition. Because CMS/DOS does not support
foreground partitions, it also does not simulate the associated control blocks and
fields for foreground partitions. CMS/DOS does simulate the following VSE
supervisor control blocks:

• ABT AB -- Abnormal Termination Option Table
• BBOX -- Boundary Box
• BGCOM -- Background Partition Communication Region
• EXCPW -- Work area for module DMSXCP
• FICL -- First in Class
• LUB -- Logical Unit Block
• NICL -- Next in Class
• PCT AB -- Program Check Option Table
• PIBT AB -- Program Information Table
• PID2TAB -- Program Information Block Table Extension
• PUB -- Physical Unit Block
• PUBOWNER -- Physical Unit Block Ownership Table
• SYSCOM -- System Communication Region
• TCB -- Task Control Block
• LOCT AB -- LOCK/UNLOCK Resource Table
• DID -- Disk Information Block.

For detailed descriptions of CMS/DOS control blocks, refer to the VM/SP Data
Areas and Control Block Logic Volume 2 (CMS).

508 VM/SP System Programmer's Guide

/'--

(--

t User Considerations and Responsibilities

A critical design assumption of CMS/DOS is that installations that use CMS/DOS
for VSE program development also use and have available a VSE system.
Therefore, if you want to use CMS/DOS for VSE program development, you
should order and install a VSE system. Also, if you want to use the DOS/VS
COBOL and DOS PL/I Optimizing compilers under CMS/DOS, you must order
them and install them on your VSE system.

You should consider several other facts if you plan to use CMS/DOS. The
following sections describe some of the user considerations and responsibilities.

VSE System Generation and Updating Considerations

The CMS/DOS support in CMS may use a real VSE system pack. CMS/DOS
provides the necessary path and then fetches VSE logical transients and system
routines directly as well as the DOS/VS COBOL and DOS PL/I Optimizing
compilers directly from the VSE system or private core image libraries.

It is your responsibility to order a VSE system and then generate it. Also, if you
plan to use DOS compilers, you must order the current level of the DOS/VS
COBOL compiler and DOS PL/I Optimizing compiler and install them on the
same VSE system.

When you install the compilers on the VSE system, you must link-edit all the
compiler modules as relocatable phases using the following linkage editor control
statement:

ACTION REL

You can place the link-edited phases in either the system or the private core image
library.

When you later invoke the compilers from CMS/DOS, the library (system or
private) containing the compiler phases must be identified to CMS. You identify
all the system libraries to CMS by coding the filemode letter that corresponds to
that VSE system disk on the SET DOS ON command when you invoke the
CMS/DOS environment. You identify a private library by coding ASSGN and
DLBL commands that describe it. The VSE system and private disks must be
linked to your virtual machine and accessed before you issue the commands to
identify them for CMS.

CMS/DOS has no effect on the update procedures for VSE, COBOL, or DOS
PL/1. Normal update procedures for applying mM-distributed coding changes
apply.

For detailed information on how to generate VM/SP with CMS/DOS, refer to the
publication VM/SP Planning Guide and Reference and the VM/SP Installation
Guide.

Chapter 38. VSE Support Under eMS 509

--

VM/SP Directory Entries

The VSE system and private libraries are accessed in read-only mode under
CMS/DOS. If more than one CMS virtual machine is using the CMS/DOS
environments you should update the VM/SP directory entries so that the VSE
system residence volume and the VSE private libraries are shared by all the
CMS/DOS users.

The VM/SP ,directory entry for one of the CMS virtual machines should contain
the MDISK statements defining the VSE volumes. The VM/SP directory entries
for the other CMS/DOS users should contain LINK statements.

For example, assume the VSE system libraries are on cylinders 0 through 149 of a
3330 volume labeled DOSRES. And, assume the VSE private libraries are on
cylinders 0 through 99 of a 2314 volume labeled DOSPRl. Then, one CMS
machine (for example, DOSUSERl) would have the MDISK statements in its
directory entry.

USER DOSUSER1 password 320K 2M G

MDISK 331 3330 0 150 DOSRES R rpass
MDISK 231 2314 0 100 DOSPRI R rpass

All the other CMS/DOS users would have links to these disks. For example

LINK DOSUSER1 331 331 R rpass
LINK DOSUSER1 231 231 R rpass

When the VSE System Must Be Online

Most of what you do in the CMS/DOS environment for VSE program
development requires that the VSE system pack and/or the VSE private libraries
be available to CMS/DOS. In general, you need these VSE volumes whenever:

You use the DOS/VS COBOL compiler or DOS/PLI Optimizing compiler.
The compilers are executed fro~ the system or private core image libraries.

Your source programs contain COPY, LIBRARY, %INCLUDE, or CBL
statements. These statements copy books from your system or the private
source statement library.

You invoke one of the library programs: DSERV, RSERV, SSERV, PSERV,
or ESERV.

• You execute VSE programs that use LIOCS modules. CMS/DOS fetches
most of the LIOCS routines for non-disk files directly from VSE system or
private libraries.

A VSE system pack is usable when it is:

510 VM/SP System Programmer's Guide

/
I

(

Perfonnance

• Defined for your virtual machine
• Accessed
• Specified, by mode letter, on the SET DOS ON command.

A VSE private library is usable when it is:

• Defined for your virtual machine
• Accessed
• Identified via ASSGN and DLBL commands.

Although you can use the CMS/DOS library services to place the DOS/VS
COBOL compiler, DOS PL/I compiler, and ESERV program in a CMS DOSLIB,
it is recommended that you do not use this method with 800-byte format CMS
disks. CMS/DOS can fetch these directly from the VSE system or private libraries
faster than from a DOSLIB on 800-byte format CMS disks. Fetch time from
DOSLIBs on 512, lK-, 2K-, or 4K-byte format CMS disks is approximately
equivalent to that of VSE system or private libraries.

Execution Considerations and Restrictions

The CMS/DOS environment does not support the execution of VSE programs that
use:

• Teleprocessing or indexed sequential (ISAM) access methods. CMS/DOS
supports only the sequential (SAM) and virtual storage (VSAM) access
methods.

• Multi-tasking. CMS/DOS supports only a single partition, the background
partition.

CMS/DOS can be executed in a CMS Batch Facility virtual machine. If any of the
VSE programs that are executed in the batch machine read data from the card
reader, you must ensure that the end-of-data indication is recognized. Be sure that
(1) the program checks for end of data and (2) a /* record follows the last data
record.

If there is an error in the way you handle end of data, the VSE program could read
the entire batch input stream as its own data. The result is that jobs sent to the
batch machine are never executed and the VSE program reads records that are not
part of its input file.

Chapter 38. VSE Support Under CMS 511

,

J

(

512 VM/SP System Programmer's Guide

(

Chapter 39. CMS Support for as and VSE/VSAM Functions

CMS supports interactive program development for OS and VSE programs using
VSAM. CMS supports VSAM macros for OS and VSE programs. The complete
set of VSE/VSAM macros and options and a subset of OS/VSAM macros are
supported.

CMS also supports Access Method Services to manipulate OS and VSE VSAM and
SAM data sets.

Under CMS, VSAM data sets can span up to 10 volumes. CMS does not support
VSAM data set sharing; however, CMS already supports the sharing of minidisks
or full pack minidisks.

VSAM data sets created in CMS are not in the CMS file format. Therefore, CMS
commands currently used to manipulate CMS files cannot be used for VSAM data
sets that are read or written in CMS. A VSAM data set created in CMS (using
VSE/VSAM) has a file format that is compatible with OS VSAM data sets as long
as the physical record size of the data set is .5K, lK, 2K, or 4K. For complete
information on OS/VS VSAM and VSE/VSAM data set compatibility, see the
VSE/VSAM General Information Manual.

Because VSAM data sets in CMS are not a part of the CMS file system, CMS file
size, record length, and minidisk size restrictions do not apply. The VSAM data
sets are manipulated with Access Method Services programs executed under CMS,
instead of with the CMS file system commands. Also, all VSAM minidisks and full
packs used in CMS must be initialized with the Device Support Facility; the CMS
FORMAT command must not be used.

CMS supports VSAM control blocks with the GENCB, MODCB, TESTCB, and
SHOWCB macros.

In its support of VSAM data sets, CMS uses RPS (rotational position sensing)
wherever possible. CMS does not use RPS for 2314/2319 devices, or for 3340
devices that do not have the feature.

I Chapter 39. CMS Support tor OS and VSE/VSAM Functions 513

Hardware Devices Supported

CMS support of VSAM data sets is based on VSE/VSAM. Except for the 3380,
only disks supported by VSE can be used for VSAM data sets in CMS. These
disks are:

•
•
•
•
•
•
•

•
•

mM 2314 Direct Access Storage Facility
mM 2319 Disk Storage
mM 3310 Direct Access Storage
mM 3330 Disk Storage, Models 1 and 2
IBM 3330 Disk Storage, Model 11
IBM 3340 Direct Access Storage Facility
IBM 3344 Direct Access Storage
mM 3350 Direct Access Storage
mM 3370 Direct Access Storage, Models AI, A2, B1, and B2
mM 3375 Direct Access Storage
IBM 3380 Direct Access Storage (OS/VSAM environment of CMS only).

CMS disk files used as input to or output from Access Method Services may reside
on any disk supported by CMS.

VSE Supervisor Macros and Logical Transients Support for
VSAM

CMS supports VSAM for OS and VSE users. However, the CMS support of
VSAM is based on VSE/VSAM. VSE supervisor macros required by VSE/VSAM
are supported by CMS. See Figure 49 for a complete list of supervisor macros
supported.

CMS distributes the VSE transients that are needed in the VSAM support. Thus,
OS users do not need to have the VSE system pack on-line when they are
compiling and executing VSAM programs.

CMS uses all of the VSE B-transients except those that build and release extent
blocks. The extent block is not supported in CMS and, thus, neither are the
B-transients that control extent blocks.

The CMSDOS shared segment contains the B-transients that are simulated for VSE
support in CMS. The B-transients that pertain only to VSAM are included in the
VSAM saved segment. Other VSE routines required by VSE/VSAM are
contained in the CMSBAM shared segment. This includes the common VTOC
handler routines, SAM data management, and the VSAM look-aside function.

514 VM/SP System Programmer's Guide

(n. ~_ ... ,.,. ___ :a...:I: ,.,. ___ : __ : __ _
ua La .;;Jill:; L ,",UIl1t.la LIUIII Ly ,",UII.:»IUII:;I a LIUII~

CMS can read and update VSAM data sets that were created under VSE or
OS/VS. In addition, VSAM data sets created under CMS can be read and updated
by VSE or OS/VS as long as the physical record size of the data set is .5K, lK,
2K, or 4K.

However, if you perform allocation on a minidisk in CMS, you cannot use that
minidisk in an OS virtual machine in any manner that causes further allocation.
VSE/VSAM (and, thus, CMS) ignores the format-5, free space, DSCB, on VSAM
disks when it allocates extents. If allocation later occurs in an OS machine, OS
attempts to create a format-5 DSCB. However, the format-5 DSCB created by OS
does not correctly reflect the free space on the minidisk. In CMS, allocation occurs
whenever data spaces or unique data sets are defined. Space is released whenever
data spaces, catalogs, and unique data spaces are deleted.

For complete information on OS/VS VSAM and VSE/VSAM data set
compatibility, see the VSE/VSAM General Information.

ISAM Interface Program (lIP)

CMS does not support the VSAM ISAM Interface Program (lIP). Thus, any
program that creates and accesses ISAM (indexed sequential access method) data
sets cannot be used to access VSAM key sequential data sets. There is one
exception to this restriction. If you have (1) OS PL/I programs that have files
declared as ENV(INDEXED) and (2) if the library routines detect that the data set
being accessed is a VSAM data set, your programs will execute VSAM II 0
requests.

Chapter 39. CMS Support for as and VSE/VSAM Functions 515

516 VM/SP System Programmer's Guide

(-

(

Chapter 40. Saving the CMS System

Only named systems can be saved. The NAMESYS macro must be used to name a
system. A discussion on creating a named system is found in the VM/SP Planning
Guide and Reference.

The DMKSNT file must have been configured (by coding the NAMESYS macro)
when CP was generated. The DMKSNT file contains the system name, size of the
system, and its real disk location. The CMS system may be saved by issuing the
command "SA VESYS systemname" as the first command after the IPL command
(that is, after the CMS version identification is displayed). The "systemname" is
the name to be assigned to the saved system. This is the same system name
specified in the DMKSNT file.

The CMS Sand Y-disks (if the Y-disk is defined) must be mounted and attached to
the virtual machine, creating the saved system before the SA VESYS command is
issued. This ensures that CMS file directories are saved correctly.

Any updates to the CMS S-disk or Y -disk requires saving the CMS system again.

The IPLing of the saved CMS system is similar to IPLing by device except that the
directories for the Sand Y-disk are part of the nucleus instead of being built in
DMSFREE storage.

In VM/SP, the CMS system is designed to be used as a saved system. Its location
may be modified by an installation for its particular requirements, but should be
shared among CMS users.

Saved System Restrictions for CMS

Several coding restrictions must be imposed on CMS if it is to run as a saved
system.

If the key specified in the CAW for a SIO instruction is zero, then the data area for
input may not cross the boundary between two pages with different storage keys.

If you intend to modify a shared CMS system, be sure that all code that is to be
shared resides in the shared segments of the CMS Nucleus (suggested location:
X' 1 DOOOO , to X'200000'). You can use the USERSECT area of DMSNUC to
contain nonshared instructions.

Chapter 40. Saving the CMS System 517

518 VM/SP System Programmer's Guide

(

..
(

~ ...

Chapter 41. The CMS Batch Facility

The CMS Batch Facility is a VM/SP programming facility that runs under the
CMS subsystem. It allows VM/SP users to run their jobs in batch mode by
sending jobs either from their virtual machines or through the real (system) card
reader to a virtual machine dedicated to running batch jobs. The CMS batch
facility then executes these jobs, freeing user machines for other uses.

If both CMS batch facility and the Remote Spooling Communications Subsystem
Networking Version 2 (RSCS) are being executed under the same VM/SP system,
job input streams can be transmitted to the batch facility from remote stations via
communication lines. Also, the output of the batch processing can be transmitted
back to the remote station.

The CMS batch facility virtual machine is generated and controlled on a userid
dedicated to execution of jobs in batch mode. The system operator generates the
"batch machine" by loading (via IPL) the CMS subsystem, and then issuing the
CMSBATCH command. The CMSBATCH module loads the DMSBTP TEXT S2
file, which is the actual batch processor. After each job is executed, the batch
facility IPLs itself, thereby providing a continuously processing batch machine.
The batch processor IPLs itself by using the P ARM option of the CP IPL
command, followed by a character string that CMS recognizes as peculiar to a
batch virtual machine performing its IPL. Jobs are sent to the batch machine's
virtual card reader from users' terminals and executed sequentially. When there are
no jobs waiting for execution, the CMS batch facility remains in a wait state ready
to execute a user job. See the VM/SP Operator's Guide for more information
about controlling the batch machine.

The CMS batch facility is particularly useful for compute-bound jobs such as
assemblies and compilations and for execution of large user programs, since
interactive users can continue working at their terminals while their
time-consuming jobs are run in another virtual machine.

The system programmer controls the batch facility virtual machine environment by
resetting the CMS batch facility machine's system limits, by writing routines that
handle special installation input to the batch facility, and by writing EXEC
procedures that make the CMS Batch Facility easier to use.

Chapter 41. The CMS Batch Facility 519

Installing the CMS Batch Machine

Before using the CMS batch facility, an entry must exist in the user's directory.
This entry specifies the userid of the CMS Batch machine.

Following is an example of a user directory entry granting authorization to use the
CMS batch facility.

USER CMSBATCH BATCH 1M 2M BG
ACCOUNT 13 SYSTEM
OPTION ACCT
IPL CMS
CONSOLE 009 3215
SPOOL OOC 2540 READER *
SPOOL OOD 2540 PUNCH A
SPOOL OOE 1403 A
LINK MAINT 190 190 RR
MDISK 195 3330 xxx 010 'paswrd' W 'rdpswd' 'wrtpswd' 'allpswd'

Consult the VM / SP Planning Guide and Reference for the proper coding of the
directory macro parameters.

Note: There is no 191 MDISK for the CMS Batch Machine.

To have the CMS Batch Machine automatically logged on, you should have the
following entry in the autolog virtual machine's (AUTOLOG 1) PROFILE EXEC:

AUTOLOG CMSBATCH BATCH CMSBATCH

Otherwise, the operator logs on to the CMS Batch Machine and enters
"CMSBATCH" followed by "DISCONNECT" (if the CMS Batch Machine is to
run in DISCONNECT status). Refer to the VM/SP Operator's Guide for more
information on the AUTOLOG command.

Resetting the CMS Batch Facility System Limits

Each job running under the CMS batch facility is limited by default to the
maximum value of 32,767 seconds of virtual processor time, 32,767 punched cards
output, and 32,767 printed lines of output. You can reset these limits by modifying
the BATLIMIT MACRO file, which is found in the CMSLm macro library, and by
reassembling DMSBTP.

520 VM/SP System Programmer's Guide

- --- ----- ---- - --------

/

(

(

(

\A/ri+inn Dn .. +ino~ Tn l-I~n~lo ~no i~1 In~+~II~+inn Inn .. + • •••••• -::J ••,,..., •,, ,..,...,...." ""'

The eMS batch facility can handle user-specified control language and special
installation batch facility fJOB control cards. These handling mechanisms are built
into the system in the form of user exits from batch; you are responsible for
generating two routines to make use of them. These routines must be named
BATEXITI and BATEXIT2, respectively, and must have a filetype of TEXT and a
filemode number of 2 if placed on the system disk or an extension of the system
disk. (See the VMfSP eMS User's Guide for information on how to write and use
eMS batch facility control cards.) The routines you write are responsible for saving
registers, including general register 12, which saves address ability for the batch
facility. These routines (if made available on the system disk) are included with the
eMS batch facility each time it is loaded.

BATEXIT1: Processing User-Specified Control Language

BATEXITI is an entry point provided so that users may write their own routine to
check non-eMS control statements. For example, a routine could be written to
scan for the OS job control language needed to compile, link edit, and execute a
FORTRAN job. BATEXITl receives control after each read from the eMS batch
facility virtual card reader is issued. General register 1 contains the address of the
batch facility read buffer, which contains the card image to be executed by the
batch facility. This enables BATEXITI to scan each card it receives as input for
the type of control information you specify.

If, after the card is processed by BATEXITl, general register 15 contains a
nonzero return code, the eMS batch facility flushes the card and reads the next
card. If a zero is returned in general register 15, the batch facility continues
processing by passing the card to eMS for execution.

BATEXIT2: Processing the Batch Facility /JOB Control Card

BA TEXIT2 is an entry point provided so that users can code their own routine to
use the fJOB card for additional information. BATEXIT2 receives control before
the VMfSP routine used to process the batch facility fJOB card begins its
processing, but after eMS has scanned the fJOB card and built the parameter list.
When BATEXIT2 is processing, general register 1 points to the eMS parameter
list buffer. This buffer is a series of 8-byte entries, one for each item on the fJOB
card. If the return code found in general register 15 resulting from BATEXIT2
processing of this card is nonzero, an error message is generated and the job is
flushed. If general register 15 contains a zero, normal checking is done for a valid
userid and the existence of an account number. Finally, execution of this job
begins.

Chapter 41. The CMS Batch Facility 521

----"-----'"-~-~----

EXEC Procedures for the Batch Facility Virtual Machine

You can control the CMS batch facility virtual machine using EXEC procedures.
For example, you can use an EXEC:

• To produce the proper sequence of CP /CMS commands for users who do not
know CMS commands and controls.

• To provide the sequence of commands needed to execute the most common
jobs (assemblies and compilations) in a particular installation.

For information on how to use the EXEC facility to control the batch facility
virtual machine, see the VM/SP eMS User's Guide.

Data Security under the Batch Facility

After each job, the CMS batch facility loads (via IPL) itself, destroying all nucleus
data and work areas. All disks to which links were established during the previous
job are detached.

At the beginning of each job, the batch facility work disk is accessed and then
immediately erased, preventing the current user job from accessing files that might
remain from the previous job. Because of this, execution of the PROFILE EXEC
is disabled for the CMS Batch Facility machine. You may, however, create an
EXEC procedure called BATPROF EXEC and store it on any system disk to be
used instead of the ordinary PROFILE EXEC. The batch facility then executes
this EXEC at each job initialization time.

Improved I PL Performance Using a Saved System

Since the CMS Batch processor goes through an IPL procedure after each user job,
an installation may experience a more efficient IPL procedure by using a saved
CMS system when processing batch jobs.

This can be accomplished by passing the name of the saved system to the CMS
batch facility via the optional "sysname" operand in the CMSBATCH command
line.

The batch facility saves the name of the saved system until the end of the first job,
at which time it stores the name in the IPL command line both as the "device
address" and as the P ARM character string. The latter entry informs the CMS
initialization routine (DMSINS) that a saved system has been loaded and that the
name is to be saved for subsequent IPL procedures.

Note: When using the CMS SET command, the BLIP operand is ignored when
issued from the eMS batch machine.

522 VM/SP System Programmer's Guide

,-:r"'

(

Chapter 42. The Programmable Operator Facility

Overview

Use in a Single System

The Programmable Operator Facility is designed to increase the efficiency of system
operation and to allow remote operation of systems in a distributed data processing
environment. It does this by intercepting all messages/requests directed to its
virtual machine and by handling them according to preprogrammed actions. It
determines whether a message is to be simply recorded for future reference,
whether the message is to be acted upon, or whether the message is to be sent on
to the operator to handle.

When the programmable operator facility is operational in a single-system
environment, it can:

• Ease message traffic to the system operator, by:

Filtering (logging) non-essential, information-only messages

Routing messages (for example, I/O intervention requests) to someone
else for specialized action.

• Increase productivity, by freeing the system operator from certain routine
responses or tasks. Such responses (whether they consist of one or a series of
commands, whether VM/SP or guest operating system) may be
preprogrammed to execute automatically upon receipt of a given message.

Thus, only essential, non-routine messages (that is, those requiring the skill and
experience of a system operator to handle) are sent on to the operator for
response or action.

Use in Distributed VM/SP Systems

The capabilities of the programmable operator, outlined above, also allow for the
remote operation of systems in a distributed VM/SP environment. Wben the
programmable operator facility is operational in a distributed VM/SP system, it
can:

• Issue responses and perform tasks that do not require an on-site operator

Chapter 42. The Programmable Operator Facility 523

• Filter (log) non-essential, information-only messages

• Route messages requiring on-site (that is, manual) intervention to someone,
not necessarily an operator, at the distributed site for action

• Route messages that require the skill and experience of a system operator to
handle to the operator at the host system. The operator at the host site can
also send commands to the programmable operator facility to control its
operation, as well as commands to execute on the distributed system to control
the system itself.

By running the programmable operator facility on VM/SP systems distributed at
several different locations (network nodes), one operator at a host site can control
a network of systems.

Use in a Mixed Environment

The Logical Operator

The programmable operator facility also provides for distributed data processing in
an SNA environment with mixed VM, OS/VS, and VSE distributed systems and
host systems. We will call this a "mixed environment". The Programmable
Operator/NCCF Message Exchange (PMX) provides an interface with the
Network Communications Control Facility (NCCF) so that an NCCF operator can
operate a VM/SP distributed system, whether the operator is on a VM, OS/VS, or
VSEsystem.

Notes:

1. The. Group Control System (GCS) is a requirement for this support. The
Programmable Operator/NCCF Message Exchange (PMX) uses facilities unique
to GCS, and therefore cannot run on any other supervisor. For more information
on GCS, see the VM/SP Group Control System Guide.

2. NCCF is a VTAM application. For NCCF to run, it requires the Advanced
Communications Function/Virtual Telecommunications Access Method
(ACF/VTAM) Version 3 for VM/SP.

Occasionally the programmable operator must send messages to another virtual
machine. To ensure that the programmable operator will function properly, a user
(other than.the programmable operator virtual machine on the local system, in a
distributed system, or in a mixed environment) is identified to the programmable
operator to receive these messages. This user is called the logical operator, as
opposed to the CP system operator. When the programmable operator starts (in
the CP system operator virtual machine, for example), the logical operator receives
an initiation message. The logical operator also receives error messages for severe
errors,such as logging errors, and receives all messages routed to the logical
operator explicitly or by default.

In a mixed environment, an NCCF operator can be assigned as the logical operator
to control a VM/SP distributed system. For more information, see "The NCCF
Logical Operator" later in this section.

524 VM/SP System Programmer's Guide

A·~" n' \ '/

(

How it Works

Flow of Operation

(

The logical operator can be assigned in the LGLOPR statement of the routing
table, and dynamically assigned, released, or replaced using the LGLOPR
command of the programmable operator facility. Both methods of assigning logical
operators are described in detail later in this section.

The programmable operator facility runs in a CMS virtual machine. Although it
can run in any virtual machine, because of its programmed capability to log, handle,
or redirect messages, it is most commonly run in the CP system operator's virtual
machine.

The programmable operator facility compares all messages directed to it against
entries listed in a routing table (a CMS file). When a match occurs, the prescribed
action is performed. Any messages requiring a real operator's response or action
are sent on to the defined operator (system, network, NCCF, etc.) at another
console, a "logical" operator console. If the logical operator is on a virtual machine
in the same system, the programmable operator sends the messages with either the
CP MESSAGE or CP MSGNOH command. If the logical operator is on a virtual
machine in a different VM/SP system (network node), a host system for e~ample,
it sends the messages via RSCS Networking.

Consider this example:
The SYSOPR macro in DMKSYS specifies the userid OPERI for the CP system
operator. Set up the programmable operator to run in the OPERI virtual machine
and establish another virtual machine with userid OPERX. In the routing table
file(s), specify OPERX as the logical operator. Now any CP or user messages sent
to the system operator virtual machine can be handled or filtered by the
programmable operator or routed to userid OPERX.

If the logical operator is an NCCF (Network Communication Control Facility)
operator, the programmable operator sends messages primarily though the
Programmable Operator/NCCF Message Exchange (PMX) portion of the
programmable operator facility.

When the programmable operator facility is running in a virtual machine, CP
intercepts all messages intended for that virtual machine console. CP then passes
these messages to the programmable operator facility via IUCV. The messages are
logged in a CMS file. The programmable operator facility then uses the active
routing table to analyze the message and determine if further action is needed.
Based on the contents of the routing table (such as message texts, message types,
and user authorizations), the message can be passed to some specified action
routine for further action.

If the message is to be routed to the logical operator, and that person is on another
virtual machine in the same physical machine, the programmable operator facility
routes the message directly to the logical operator. To do this, it uses the CP
MSGNOH or CP MESSAGE command depending on the classification of the
programmable operator virtual machine. If the logical operator is on a different
physical machine, the programmable operator facility prefaces the message with the
appropriate tag information and sends the message to RSCS Networking using the

Chapter 42. The Programmable Operator Facility 525

--- -- -- ------.~

CP SMSG command. If the logical operator is an NCCF operator, the
programmable operator facility sends the message through the Programmable
Operator/NCCF Message Exchange (PMX) which passes the message on to the
NCCF logical operator.

The programmable operator facility usually operates in a disconnected virtual
machine. If someone logs on to this disconnected virtual machine with the
programmable operator facility running, no messages are displayed (unless the
programmable operator facility is running in DEBUG mode). All messages are
being intercepted or received by the programmable operator program from lUCY.
If that person should enter a command, the programmable operator facility gets
control and reads the command entered. Only two commands are accepted from
this environment; the STOP command and the SET command. The programmable
operator facility rejects any other commands. However, in some situations the
redisplay of the entered command is CP console I/O and is presented to the
programmable operator facility as a type-3 message. If the text of this command
matches a record in the active routing table, the programmable operator facility
may invoke an action routine.

If a CMS abend occurs while the programmable operator facility is executing, all
files are closed and abend error messages are sent to the logical operator. A dump
of the virtual machine storage is taken using the CP VMDUMP command and the
last system or device that was IPLed is re-IPLed. If the abend occurs while an
action routine is executing, abend error messages are sent to the logical operator
and the requester (if any). Control is returned to the point in the programmable
operator facility immediately following the action routine call.

Relationship to RSCS Networking

When the programmable operator facility is running in a VM network environment,
it is a normal user of RSCS Networking. This means that the programmable
operator facility communicates to RSCS using the CP SMSG command. Any
configuration of systems and networks supported by RSCS Networking can use the
programmable operator facility. The time needed for a message to go from the
system at a distributed site to the logical operator at the host system, or vice versa,
depends on the number and type of communications links between the message
sources and destinations.

When the logical operator is an NCCF operator, the programmable operator will
not use RSCS to route messages to the logical operator. It will, instead, pass the
messages to NCCF through the NCCF Message Queueing Service so that NCCF
will present the messages at the appropriate NCCF operator console.

A programmable operator can check on its ability to communicate with a host or
distributed system. See "Communications Checking" later in this section.

526 VM/SP System Programmer's Guide

Initialization

:(

The programmable operator routing table identifies the programmable operator
facility environment, including the logical operator's userid and nodeid. It also
specifies the action to take for each message, and authorizes certain users to invoke
specific programmable operator commands. For a complete description of the
information contained in a routing table, see "The Routing Table" later in this
section.

The routing table is a separate CMS file that must be tailored for a specific use.
The first routing table to be used is specified when the programmable operator
facility is invoked. If no routing table name is specified, the default filename
"PROP" is used.

The installation may define multiple routing tables to cover varying situations. For
example, multiple routing tables can be defined to cover shift changes. Only one
routing table can be active at a time. The active routing table may be replaced by
issuing the LOADTBL command. Any person authorized in the active routing
table may issue this command.

The programmable operator facility is initiated by IPLing a CMS virtual machine of
at least 512K in size and invoking the programmable operator facility. When the
programmable operator facility gets control, it locates the specified or default
routing table and loads it into virtual storage. For each action routine specified in
the routing table, an EXEC file or a corresponding member in a CMS simulated OS
load library named PROPLIB LOADLIB must exist. If an EXEC does not exist,
the LOADLIB member is loaded as a nucleus extension via the NUCXLOAD
command. If both exist, the EXEC takes precedence.

If upon invocation, the programmable operator facility cannot find an action
routine named in the routing table, an error message is issued, and the
programmable operator facility terminates operation. Otherwise, the
programmable operator facility is fully initialized, and writes a message to the
programmable operator's console, to the logical operator, and to the LOG file,
indicating that the programmable operator facility has started. The programmable
operator facility then waits for either an interrupt indicating an incoming message
or an interrupt from the console.

When the programmable operator facility is automatically restarted following an
abend, it, if possible, uses the routing table in effect at the time of the abend rather
than that specified at invocation. Also, if a logical operator had been assigned, that
assignment is restored.

Note: If the user enters a nodeid into the SYSTEM NETID file that is invalid as a
CMS filetype, the programmable operator cannot start because it is not able to
open the log file.

Chapter 42. The Programmable Operator Facility 527

The Routing Table

The routing table is a CMS file that contains the information used to control the
operation of the programmable operator facility. The routing table enables the
programmable operator facility to recognize a message as a command, to determine
the action to take when a message comes in, and to recognize the authorized users
of programmable operator functions.

How the Programmable Operator Facility Uses the Routing Table

When the programmable operator facility receives an IUCV interrupt with an
incoming message, the active routing table is searched to find a matching entry.
When the routing table is searched, all fields are checked. For a match to occur,
each field must either match or be blank. If a matching entry is found, that entry
contains information pertaining to any action to be taken. The action routine name
tells the programmable operator facility which action routine to invoke when a
routing table entry matches the incoming message. If no matching entry is found in
the active routing table, no action is taken besides logging the message.

The order that the entries are placed in the routing table affects the way the
programmable operator facility performs. The routing table is searched from top to
bottom until a match is found. As the table is searched, lines that begin with an
asterisk (*) in column 1 are ignored, and therefore may be used to place comments
in the routing table. Also, lines that are completely blank are ignored in the routing
table search and can be used to separate lines of text for easier reading. All entries , /
must be made in upper case.

Note: The routing table format is different from the format in the initial version of
the programmable operator facility in VM/SP Release 2. The original format from
Release 2 is not compatible with later versions of the programmable operator
facility. The routing tables must be converted to reflect this change. See "Routing
Table Conversion" later in this section.

Routing Table Entry Formats

Every routing table must have specific configuration information in the first records
of the routing table file (filetype RTABLE) that are not comments or blank lines.
These statements are in free format, meaning that they need not be positioned in
any particular columns. See Figure 57 for an example of a partial routing table.
The statements and their parameters are as follows:

1. The LGLOPR statement identifies the logical operator. The user specified in
this statement is the default logical operator. The logical operator assignment
can be changed using the LGLOPR command, but if a logical operator is
released but not replaced the user specified in this statement resumes logical
operator responsibilities. This userid or nickname must be on a VM/SP
system.

528 VM/SP System Programmer's Guide

(

I LGLOPR userid rnodeid]
nickname I

where:

userid is a valid userid on the specified VM/SP node.

nodeid is a valid id of a VM/SP system in the network. If no nodeid is
specified, the local system's nodeid is used.

nickname is a nickname defined in the programmable operator facility virtual
machine eMS NAMES file.

Note: If a nickname is used to identify the logical operator, the
nickname cannot be a list of nicknames. The programmable
operator must have one nodeid to associate with the logical
operator.

Either a nickname or a userid must be specified. If a userid is specified, a
nodeid may be specified. If both a userid and a nodeid are specified, they must
be separated by one or more blanks. If the name specified is both a local
userid and a nickname, the programmable operator regards it as a nickname.

IMPORTANT NOTE: The programmable operator virtual machine should not
be identified as the logical operator. This causes the programmable operator to
go into a loop in the event it tries to do the routing. This includes specifying a
userid of OPERATOR (or any abbreviation thereof) in the LGLOPR
statement. This also causes the message to be sent to the system operator
virtual machine, even if the system operator virtual machine has a different
userid.

2. The optional TEXTSYM statement specifies the characters that the
programmable operator facility interprets as special symbols in the text field of
the routing table entries. All three parameters must be specified if the
statement is specified.

I TEXTSYM

where:

blank-sep

arbchar-sep

I blank-sep arbchar-sep not-symbol

is a separator character indicating that blanks are to be
skipped over when scanning the message. A message is
scanned for the next non-blank character string. This
non-blank character string is then compared to the text in the
routing table entry following this separator character. The
default character is "/".

is a separator character indicating that aU non-matching
characters are to be skipped over when scanning the message.
A message is scanned for the text specified in the routing

Chapter 42. The Programmable Operator Facility 529

(

not-symbol

table entry until it is found or until the end of the message is
reached. The default character is "$".

when it immediately follows a separator is the character
indicating that the text should not be found in the message.
If the text following the not-symbol is found in the message,
then the message does not match that routing table entry.
The default character is ".,".

See "Filtering Messages" for the use of TEXTSYM characters in routing table
entries.

3. The optional PROPCHK statement identifies the distributed nodes that the
host system is to check on. The RSCS nodeids of these distributed systems
must be specified in this statement. A programmable operator must be running
in the system operator virtual machine on the distributed systems being
checked. Specify as many nodes on one statement as fit in an 80-column
record. The programmable operator facility only reads the first 80 columns.
Enter any number of PROPCHK statements to specify different checking or
response wait intervals for different RSCS nodes. The PROPCHK statement
must be after the LGLOPR statement.

Note: Nodes to be checked with PROPCHK must be systems running VM/SP
Release 3 or above, with a programmable operator in the system operator
virtual machine. " /

IPROPCHK

where:

ccc

ww

nodeid

Notes:

I ccc ww nodeid [nodeid ...]

is the checking interval. This interval, in minutes, indicates how
often acknowledgment requests are sent out to the specified
nodes.

is the response wait interval. This interval is the number of
minutes permitted to pass before a response must be received
from the specified node(s).

is a valid id of a system in the network.

a. The checking interval specified must be greater than the response wait
interval.

b. The nodeid of the logical operator must not be specified as a nodeid on this
statement.

530 VM/SP System Programmer's Guide

4. The optional HOSTCHK statement specifies the time interval for checking
communication with the R8CS virtuai machine at the iogi\,;ai. UptaaLUl llude aiid
the wait time for a response. The HOSTCHK statement must be after the
LGLOPR statement.

I HOSTCHK I ccc ww

where:

ccc is the checking interval. This interval, in minutes, indicates how
often acknowledgment requests are sent out to the specified
nodes.

ww is the response wait interval. This interval is the number of
minutes permitted to pass before a response must be received
from the specified node(s).

Notes:

a. The checking interval specified must be greater than the response wait
interval.

b. The HOSTCHK function is suspended when an NCCF operator or a local
VM user is assigned as the logical operator. It is resumed when a remote
VM / SP user is assigned as the logical operator.

S. The optional LOGGING statement specifies whether messages or messages
and command responses are to be logged or not logged. If the LOGGING
statement is not in the routing table, messages are logged and LOGGING is
ON. If the LOGGING statement is in the routing table, one of the three
operands must also be specified, because there is no default operand.

I LOGGING j ~~L i
1 OFF ~

where:

ON indicates that messages are to be logged while this RTABLE is
active, unless it is explicitly turned off using the SET LOGGING
command.

ALL indicates that messages and programmable operator command
responses are to be logged while this RTABLE is active, unless it
is explicitly turned off using the SET LOGGING command.

OFF indicates that messages are not to be logged while this RTABLE is
active, unless it is explicitly turned on using the SET LOGGING
command.

Chapter 42. The Programmable Operator Facility 531

6. The ROUTE statement indicates the end of the configuration statements and
the start of the routing entries.

I ROUTE

This statement must follow the other statements specified in this section.

The LGLOPR and ROUl'E statements are required in every routing table. The
TEXTSYM, LOGGING, PROPCHK, and HOSTCHK statements are optional.
An example of these statements in a routing table is as follows:

LGLOPR OPERATNS HOSTNODE
TEXTSYM / $..,
PROPCHK S 1 NODE 1 NODE2 NODE3
PROPCHK 3 1 NODE4 NODES
HOSTCHK 2 1
LOGGING ALL
ROUTE

These special statements may be specified for each routing table in any order (as
long as LGLOPR is first and ROUTE is last) and with at least one blank separating
each parameter. The statements depend on the installation and, therefore, must be
supplied by the installation for each routing table. These entries are processed only
when the routing table is loaded, so they are not searched during programmable
operator message handling.

The configuration shown in Figure 56 can be described in a routing table with the
first few lines like those in Figure 57.

Local System
Nodeid = NODEl

Distributed System
Nodeid = NOOE2

RSCS Virtual RSCS Vi dual
Machine Machine

ID = NET! 10 = HET2

logical Programmable
User Operator User Operator
Virtual Vi dual Virtual Virtual
Machine Machine Machine Machine

Userid = Userid = Userid = Userid =
USERll LGLOPR USER21 OPERATOR

Figure 56. The Programmable Operator Facility in a Distributed System. The logical operator is situated at the Host
system and the programmable operator is running in a different system at a distributed site.

I The routing table entries to be searched must be in the following fixed format. The
contents of the fields described below may appear anywhere in the defined columns ,:1 -\

~

532 VM/SP System Programmer's Guide

(.

(.

FIELD

for that field (unaligned) unless the description for that field explicitly states that
alignnrrentisrequrred.

Note: The words in parentheses correspond to the vertically aligned words in the
comment records in Figure 57 through Figure 61, and also in the IBM sample
routing table file.

EXAMPLE
FIELD

COLUMNS
LENGTH

OFFIELD

COMPARISON TEXT (TEXT)
STARTING COLUMN (SCOL)
ENDING COLUMN (ECOL)
MESSAGE CLASS (TYPE)
USERID (USER)

/FEEDBACK/
1
9
1
USER21
NODE2
DMSPOR
TOFB

1-25
27-29
31-33
35-36
38-45
47-54
56-63
65-72

25
3
3
2
8
8
8
8

NODEID (NODE)
ACTION ROUTINE NAME (ACTN)
PARAMETER TO ACTION ROUTINE
(PARM)

where:

COMPARISON TEXT
is a particular character string that the programmable operator facility searches
for in the incoming message. If this field is left blank, any text compared with
this field is considered a match. Multiple texts may be specified, with the
capability to skip over intervening blank or non-blank characters.

STARTING COLUMN
is the column in the incoming message where the programmable operator
facility starts looking for the character string mentioned in the COMPARISON
TEXT field. If this field is left blank, the programmable operator facility starts
scanning at the beginning of the message.

ENDING COLUMN
is the column in the incoming message where the programmable operator
facility stops looking for the character string(s) mentioned in the
COMPARISON TEXT field. If this field is left blank, the programmable
operator facility continues scanning until the end of the message.

MESSAGE CLASS
identifies the origin of the incoming message according to the message type.
Classes 1-9 are IUCV message types; class 30 is strictly a programmable
operator facility message type for NCCF messages. For more details on IUCV
message types, see the Message System Service section of this manual. If this
field is left blank, any value compared with this field is considered a match.

The message types available to the programmable operator facility are:

Class Message Types

1
2

Message sent using CP MESSAGE and CP MSGNOH.
Message sent using CP WARNING.

Chapter 42. The Programmable Operator Facility 533

3 Asynchronous CP messages, CP responses to a CP command
executed by the programmable operator facility virtual machine,
and any other console 110 initiated by CP.

4 Message sent using CP SMSG command.
5 Any data directed to the virtual console by the virtual machine

(WRTERM, UNEDIT, etc.).
6 Error messages from CP (EMSG).
7 Information messages from CP (IMSG).
8 Single Console Image Facility (SCIF) message from CP.

30 Message coming from the Network Communication Control
Facility (*NCCF).

Note: CP responses that are trapped in a buffer using the extended
DIAGNOSE code X'08' do not become type-3 messages. For example, CP
responses from the programmable operator CMD command are not type-3
messages, and therefore are not logged when LOGGING is set to "ON".

USERID
is the character string compared to the userid of the user that sent the incoming
message to the programmable operator facility. It determines the authority of
the user to cause an action to be performed. The identifiers for all NCCF
operators, who may use the programmable operator, must be unique. If this
field is left blank, all userids compared with this field are assumed to match. If
this field is not left blank, the userid must be left-justified in the field or you
will receive an error message.

NODEID
is the character string compared to the nodeid of the user that sent the
incoming message to the programmable operator facility. Again, it determines
the authority of the user to cause an action to be performed. To authorize an
NCCF operator, '*NCCF' or blanks must be in the nodeid field of the routing
table. Also, the identifiers for all NCCF operators, who may use the
programmable operator, must be unique. If this field is left blank, all nodeids
compared with this field are assumed to match. If this field is not left blank,
the nodeid must be left-justified in the field or you will receive an error
message.

ACTION ROUTINE NAME
is the name of the LOADUB member (a Basic Assembler Language routine)
that the programmable operator facility is to NUCXLOAD when the
LOADTBL function is performed, or the name of an EXEC, and subsequently,
the routine that the programmable operator is to call when a match occurs on
the entry in which the name is specified. If this field is left blank, no action is
performed. If this field is not left blank, the action routine name must be
left-justified in the field or you will receive an error message.

PARAMETER TO ACTION ROUTINE
is a character string of up to eight bytes passed as a parameter to the action
routine by way of the programmable operator P ARMLIST for a Basic
Assembler Language routine or by way of a program stack for an EXEC.
Often, this is used to specify a particular subroutine in the action routine. If
this field is left blank, no parameter is passed. If this field is not left blank, the

534 VM/SP System Programmer's Guide

(

:{.
\

(-

action routine parameter must be left-justified in the field or you will receive an
error message.

Column 73 and beyond are reserved for future use.

* THIS IS THE DEFINITION OF THE PROP CONFIGURATION.
* LOGICAL OPERATOR IS NICKNAME "LOP". SEE "OPERATOR NAMES" FILE.
* LOGICAL OPERATOR (NICKNAME "LOP") IS "OPERATOR" AT NODEID "NODE1".
LGLOPR LOP
* THE TEXT SEPARATOR CHARACTERS.
TEXTSYM / $ -,
* WHICH NODES TO CHECK, AND AT WHAT INTERVAL.
HOSTCHK 5 1
* THE ROUTING ENTRIES START
ROUTE
*------------------------
*T S
*E C
*X 0
*T L
*------------------------

E
C
0
L

T U
Y S
P E
E R

N
0
D
E

* SEND PROP FEEDBACK COMMAND TO FEEDBACK ACTION ROUTINE
*------------------------ -------- --------
/FEEDBACK / 9 USER21 NODE2
*------------------------ --- -------- --------

A
C
T
N

DMSPOR

* AUTHORIZE NCCF OPERATORS TO CHANGE LGLOPR WITH LGLOPR COMMAND
*------------------------ -------- -------- --------
/LGLOPR / 7 30 DMSPOR
*------------------------ --- --- -- -------- -------- --------

P
A
R
M

TOFB

LGLOPR

* FILTER OUT LOGON AND LOGOFF MESSAGES SO OPERATOR NEEDN'T SEE THEM
* BUT LET "FORCED" LOGOFF MESSAGES THROUGH
*------------------------
$ LOGON
$LOGOFF$-,FORCED
*------------------------

18 24 3
18 3

* FILTER OUT COMMANDS THAT WE DON'T WANT ISSUED.
*------------------------
/CMD/SYSTEM
/CMD/SET/EC
*------------------------
* ALLOW ONLY OPERATOR ON HOST TO ISSUE SHUTDOWN.
*------------------------

WARNING
WARNING

/CMD/SHUTDOWN OPERATOR NODE1 DMSPOR TOVM
*------------------------ ---
* ROUTE ALL MESSAGES ABOUT DEVICE ODE TO THE SPOOL OPERATOR.
*------------------------
$ ODE 3 DMSPOS SPOOLOP

where:

"WARNING"
represents a user action routine which may send a warning message to the user issuing that command.

"SPOOLOP"
represents a nickname or userid of the spool operator.

Figure 57. Partial routing table

Chapter 42. The Programmable Operator Facility 535

Tailoring the Routing Table

Routing table entries determine what messages the programmable operator facility
ignores (filtering), who is authorized to issue a particular command (authorization),
and what action routines to invoke for a given circumstance. You can tailor the
routing table to suit your system's individual needs by adding or changing entries in
the routing table.

The programmable operator facility comes with a general purpose routing table
named "PROP RTABLE". (See the section on "Installing the Programmable
Operator Facility" to locate the "PROP RTABLE".) You can only use this
supplied routing table after the LGLOPR, HOSTCHK, and PROPCHK statements
are modified. You may also have to modify the routing table entries. Make these
changes using the VM/SP System Product Editor. The programmable operator
facility operates satisfactorily with no further changes. However, if you choose,
you can modify the supplied routing table to change the operation of the
programmable operator facility. You can also create different routing tables to
cover varying circumstances. These tables can be dynamically loaded using the
LOADTBL command. Only one routing table may be active at a time.

Specifying Routing Texts

Here are more examples of text comparisons for the programmable operator
facility. "$" is the arbitrary character separator, "I" is the blank separator, and
" " is the not-symbol. In all of these examples, it is assumed that the starting and
ending columns do not interfere with the matching.

1. The RT ABLE entry

$ LOGOFF

is matched by any message containing the word "LOGOFF". If one text is
preceded by the arbitrary character separator ($), the text can appear
anywhere in the message to be a match.

2. The RTABLE entry

/LOGOFF

matches the message

LOGOFF USER1 IN 5 minutes

as there are no non-blank characters preceding the word "LOGOFF", but the
entry does not match the message

11:20:15 GRAF OAO LOGOFF AS USER1 USERS = 020

If only one text is preceded by the blank character separator (/), the text must
be the first non-blank string in the message order to be a match.

3. The RTABLE entry

536 VM/SP System Programmer's Guide

--- - ------- ----

(.

(

$AUTO$LOGON$AUTOLOG

matches the message

11:09:02 AUTO LOGON *** USER2 USERS 021 BY AUTOLOGl

and the message

11:09:02 AUTO LOGON *** AUTOLOG2 USERS 021 BY SYSTEM

but not the message

11:09:02 GRAF OAO LOGON AS AUTOLOG1 USERS 023

or the message

AUTO LOG WON'T LOGON TOMORROW

A text with two or more texts preceded by arbitrary character separators ($), is
matched by a message with all those texts appearing in that order.

The texts in the message are scanned in the order that they appear in the routing
table entry. One text is searched for at a time. If the arbitrary character separator
($) precedes the text in the entry, a message is scanned until a rnatch is found or
the end of the message is reached. If the blank character separator (/) precedes
the comparison text, blanks are skipped over and the first non-blank string of
characters is compared to the comparison text, which mayor may not match.

Routing table entries and messages are also affected if the text is preceded by a
not-symbol (...). The not symbol is always used with one of the other separator
characters; it never stands alone. If a matching text is found and the text in the
routing table is preceded only by a "$" or a "/", the position following the last
matched text is remembered. If there are no more RTABLE texts to be searched
for, the entry is a match. If there is another text in that RTABLE entry to be
searched for, the scan continues from the position following the last matched text.
A match depends on the rest of the message text and the routing table entry. If a
matching text is found but the text in the routing table is preceded by the
not-symbol (...), the entry is not a match and checking goes no further. Similarly, if
a matching text is not found but the text in the routing table is not preceded by the
not-symbol, the entry is not a match. If a match is not found and the text is
preceded by the not-symbol (.,), and if there are no more texts, the entry matches
the message. If there are more texts to scan for, the scan continues as above
starting with the character following the last match. A match depends on the rest
of the message text and the routing table entry.

Consider the following example:

4. The RTABLE entry

$-llmTO$LOGON

does match the message

12:04:28 GRAF OAO LOGON AS USER1 USERS = 027

Chapter 42. The Programmable Operator Facility 537

(~
Because the first text in the RTABLE entry (AUTO) is preceded by the :~j
arbitrary character separator ($), the entire text is searched for "AUTO". No
match is found. Because the text is preceded by the not-symbol (...), the text is
still a match at this point. The scan for the next text (LOGON) begins at the
end of the last match. Because there was no previous match, the scan begins
again at the start of the message. The LOGON text is preceded by the
arbitrary character separator ($), so the search proceeds through the message
until "LOGON" is matched. Because "LOGON" appears in the message, this
RTABLE entry and message do match.

Now consider this example:

5. The RTABLE entry

$-,AUTO/LOGON

does not match the same message

12:04:28 GRAF OAO LOGON AS USER1 USERS = 027

The message is scanned for "AUTO" as above. The search for "LOGON"
again begins at the beginning of the message. In this case, however, the
LOGON text is preceded by the blank separator (/), so only blanks are
skipped prior to the comparison. No blanks are found, so the comparison is
made at the beginning of the text and "LOGON" is compared with "12:04:".
This is not a match. Because this text was not preceded by the not-symbol,
this RTABLE entry and message do not match.

Another example:

6. The RTABLE entry

$-,AUTO/LOGON

does not match the message

12:04:28 AUTO LOGON *** USER1 USERS = 027 BY AUTOLOG1

Because "AUTO" is found in the message and is preceded in the RTABLE
entry by the arbitrary character separator ($) and the not-symbol (...), the
RTABLE entry and message do not match.

Here is another example:

7. The RTABLE entry

$LOGOFF$-,O3 O/FORCED

does not match the message

12:04:28 USER DSC LOGOFF AS USER1 USERS = 026 FORCED

The first text, "LOGOFF", is preceded by the arbitrary character separator ($)
and is scanned for through the text. "LOGOFF" is found. Because
"LOGOFF" is not preceded by the not-symbol, the next text is scanned. The

538 VM/SP System Programmer's Guide

/ '" \
I
I,

I

" /'

Filtering Messages

(

(

scan continues from the end of the previous match, which is the character
following the LOGOFF text. Since the arbitrary character separator ($),
precedes "030", the entire remaining text is searched for "030". It is not
found but because "030" is preceded by the not-symbol, the message and
RTABLE entry still match. Finally, "FORCED" is scanned for. It is preceded
by the blank separator (/). Blanks are skipped, and starting with the character
following the last matched string (which was "LOGOFF"), "FORCED" is
compared to "AS USE". This is not a match. Because "FORCED" is not
matched and is not preceded by the not-symbol, this RT ABLE entry and
message do not match.

Here are routing table entries that do match this message:

$LOGOFF$,030$FORCED

would match because arbitrary characters would be skipped before comparison
for "FORCED" and

$LOGOFF$,030j,FORCED

would match because the first nonblank string after "LOGOFF" is not
"FORCED".

This is the simplest application of the programmable operator facility. Entries can
be placed in the routing table to filter informational messages. The messages are
filtered because no action routine is specified in the routing table entries. For
example, when the programmable operator facility is running in the system
operator's virtual machine, informational messages resulting from commands such
as, LOGON, LOGOFF, and DISCONN, can be prevented from being displayed at
the logical operator's console. Although the messages are not displayed at the
operator's console, they can be logged in the current day's log file. The routing
table entries must identify the text(s) in the message that makes it unique and
identify the columns between which the text(s) should be found in the message.
With single or multiple texts, TEXTSYM characters should be selected accordingly.
Figure 58 shows an example of how entries may be placed in the routing table to
filter unwanted responses directed to the logical operator. For example, using
Figure 58 below as the routing table, the message

12:04:50 GRAF 055 LOGON AS USER1

would match the second routing table entry (/ .,AUTO$LOGON). This RTABLE
specification means that, starting in column 9 (SCOL) of the message, "AUTO"
cannot be the first non-blank string and that "LOGON" must appear somewhere
in the message. The message would be filtered out but logged in the current day's
log file.

However, the message

12:04:28 AUTO LOGON *** USER BY AUTOLOG1

would not match the second routing table entry (/., AUTO$LOGON) because
"AUTO" is the first non-blank string in the message appearing in the columns
between the SCOL and ECOL fields. Thus, the message would not be filtered out

Chapter 42. The Programmable Operator Facility 539

and would be routed to the logical operator, as specified in the last entry in
Figure 58.

* THIS IS THE DEFINITION OF THE PROP CONFIGURATION.
* LOGICAL OPERATOR IS NICKNAME "LOP". SEE "OPERATOR NAMES" FILE.
LGLOPR LOP
* THE TEXT SEPARATOR CHARACTERS.
TEXTSYM / $ •
* WHICH NODES TO CHECK, AND AT WHAT INTERVAL.
PROPCHK 5 1 NODE2A NODE2B
PROPCHK 2 1 NODE1A NODE1B
* THE ROUTING ENTRIES START
ROUTE
*------------------------
*T
*E
*X
*T
*------------------------

S
C
o
L

E
C
o
L

T U
Y S
P E
E R

-------- -------- --------
N A P
0 C A
D T R
E N M
-------- -------- --------

* FILTER OUT LOGON AND LOGOFF MESSAGES SO OPERATOR NEEDN'T SEE THEM
*------------------------
$OUTPUT/OF 19 36 3
/.AUTO $ LOGON 9 33 3
$ LOGOFF 19 34 3
$DSCONNECT 19 36 3
$RECONNECT 19 36 3
$DIAL 19 32 3
$DROP 19 32 3
*------------------------ -------- -------- --------
* SEND REMAINING ASYNCHRONOUS CP MESSAGES TO LOGICAL OPERATOR
*------------------------ ---

3 DMSPOS LGLOPR

Figure 58. Routing Entries to Filter Responses to Routine Commands

In Figure 58, the entries that appear in the "TEXT" field (OUTPUT OF,
LOGON, etc.) are the texts contained in the messages that are to be trapped by the
programmable operator facility when they are issued by CPo

No userids and nodeids are specified for these entries because they are issued by
CPo Because no action routine is specified, the only action taken is the logging of
the messages in the current day's log file.

Looking at the last line in Figure 58, you can see that if a type-3 IUCV message is
received that does not have a corresponding entry in the routing table, action
routine DMSPOS together with the LGLOPR parameter routes the message to the
logical operator. In this case, this entry has to be placed after the specific text
entries that you want filtered from the message stream. If this entry appeared
before the text entries in Figure 58, all type-3 IUCV messages would be routed to
the logical operator.

540 VM/SP System Programmer's Guide

(Controlling Authorization

The routing table determines who is authorized to issue specific commands in the
programmable operator facility. Programmable operator authorization is based
entirely on the contents of the routing table. Therefore, controlling authorization is
a relatively simple procedure. Authorization checking uses either the userid,
nodeid, the command text, or any combination of these fields in a routing table
entry. A change to any of these fields can result in a change in authorization. You
can easily tailor the authorization structure to your particular needs by changing
only these fields in the routing table entries, without changing the action routines.

When a userid and nodeid are not specified for a routing table entry, all users are
authorized to match that entry and to use the function that it describes. Figure 59
shows an example of unrestricted authorization for the FEEDBACK command. A
message sent with the FEEDBACK command is passed to module DMSPOR,
which supports most of the programmable operator commands. The TOFB
parameter invokes the proper action routine contained in module DMSPOR that
writes the message to the FEEDBACK file. (See "The Feedback File" later in this
section or the VM / SP Operator's Guide for more information on the FEEDBACK
command.)

Note: In the following examples, the TYPE (message class) field is left blank to
allow the FEEDBACK (or FB) command to be issued with any class of IUCV
message. The ECOL fields are 9 and 3 because the character string being looked
for is FEEDBACK or FB followed by a blank, for example, "FEEDBACK" or
"FB " would match.

*------------------------ -------- -------- -------- --------
*T S E T U N A P
*E C C Y S 0 C A
*x 0 0 P E D T R
*T L L E R E N M
*------------------------ -------- -------- -------- --------
* PLACE A FEEDBACK MESSAGE IN THE PROP FEEDBACK FILE
*------------------------
/FEEDBACK /
/FB /

9 DMSPOR TOFB
3 DMSPOR TOFB

Figure 59. UncontroUed Authorization

Authorization can be restricted to users at a particular network node by specifying
only the nodeid. In Figure 60, only users at NODEl are authorized to issue the
FEEDBACK command.

Chapter 42. The Programmable Operator Facility 541

*------------------------
*T S E
*E C C
*X 0 0
*T L L
*------------------------
* PLACE A FEEDBACK MESSAGE IN THE
*------------------------
/FEEDBACK /
/FB /

Figure 60. Restricting Authorization by Nodeid

9
3

-------- --------
T U N
Y S 0
P E D
E R E

-------- --------
PROP FEEDBACK FILE
-- -------- --------

NODE1
NODE 1

-------- --------
A P
C A
T R
N M
-------- --------

-------- --------
DMSPOR TOFB
DMSPOR TOFB

When a userid and nodeid are specified, only that user at the specified node is
authorized to match that entry. In Figure 61, only JOHNDOE at NODE1 and
JANEDOE at NODE2 are authorized to place messages in the feedback file.

*------------------------ -------- -------- -------- --------
*T S E T U N A P
*E C C Y S 0 C A
*x 0 0 P E D T R
*T L L E R E N M
*------------------------ -------- -------- -------- --------
* PLACE A FEEDBACK MESSAGE IN THE PROP FEEDBACK FILE
*------------------------ -------- -------- -------- --------
/FEEDBACK / 9 JOHNDOE NODE 1 DMSPOR TOFB
/FEEDBACK / 9 JANEDOE NODE2 DMSPOR TOFB
/FB / 3 JOHNDOE NODE1 DMSPOR TOFB
/FB / 3 JANEDOE NODE2 DMSPOR TOFB

*------------------------ -------- -------- --------
* SEND REMAINING REQUESTS AND COMMANDS TO THE LOGICAL OPERATOR
*------------------------ --- -- -------- -------- --------

DMSPOS LGLOPR

Figure 61. Restricting Authorization by Userid and Nodeid

Since the user must explicitly issue the FEEDBACK or FB command to have a
message placed in the feedback file, action routine DMSPOR TOFB must be
specified in the routing table to carry out the required action. Any user attempting
to issue the FEEDBACK command that is not authorized by the routing table in
Figure 61 will have their command sent to the logical operator as a message via
action routine DMSPOS LGLOPR, as specified by the last record of the routing
table.

Additional userids and nodeids may be added to the table to grant authorization to
issue these commands. Conversely, userids and nodeids may be removed to revoke
authorization.

542 VM/SP System Programmer's Guide

(Restricting Command U~: You can easily restrict command use to a specific group
of users. You can specify first entries for those users who should be allowed to use
the command, then specify an entry to trap the use of that command by any other
user. Finally have an entry for any users who should have general command usage
except for the restriction. The following example demonstrates command
restriction.

*------------------------ -------- -------- -------- --------
*T S E T U N A P
*E C C y S 0 C A
*X 0 0 P E D T R
*T L L E R E N M
*------------------------ -------- -------- -------- --------
/CMD /SHUTDOWN / 12 LGLOPR HOSTNODE DMSPOR TOVM
/CMD /SHUTDOWN / ACTlONX
/CMD /NETWORK /SHUTDOWN / 25 NETOP1 HOSTNODE DMSPOR TOVM
/CMD /NETWORK /SHUTDOWN / ACTlONX
/CMD /NETWORK / 20 NETOP1 HOSTNODE DMSPOR TOVM
/CMD /NETWORK / 20 NETOP RMTNODE DMSPOR TOVM
/CMD /NETWORK / ACTlONX
/CMD / 4 LGLOPR HOSTNODE DMSPOR TOVM
/CMD / 4 MAl NT HOSTNODE DMSPOR TOVM
/CMD / 4 MAlNT PROPNODE DMSPOR TOVM
*------------------------ -------- -------- -------- --------

Figure 62. Restricting Command Use to Specific Users

An RT ABLE containing these entries allows LGLOPR at HOSTNODE to use the
SHUTDOWN command, but anyone else trying to use it invokes ACTIONX.
ACTIONX could be DMSPOS sending the offending command to the logical
operator or it could be a user-written action routine taking some other action
against the issuer, depending of the severity of the offense. The same description
applies to the NETWORK SHUTDOWN and NETWORK commands. So, routing
table coding provides considerable flexibility in granting or restricting command
authority.

Action Routines

Action routines are programs or EXECs that receive control in response to the
match of a message and a routing table entry. They handle a particular type of
message or command intercepted by the programmable operator facility. A set of
action routines is provided with the programmable operator facility. These need no
tailoring to provide you with the control and function needed to operate the
programmable operator facility. You can extend the programmable operator
facility by writing a new action routine and adding it to the appropriate routing
table. (Basic Assembler Language routines must also be added to the PROPLm
LOADLIB. You can do this by invoking CMSGEND PROP.)

If an action routine abends, abend error messages are sent to the logical operator
and the requester (if any). Control is returned to the point in the programmable
operator facility immediately following the action routine call.

Chapter 42. The Programmable Operator Facility 543

Note: Programs written in Basic Assembler Language can access the parameter list
built by the programmable operator facility. The programmable operator
parameters are available in a different fashion for EXEC action routines9• For
information on the action routine interface, see "The Action Routine Interface"
later in this section.

Description of Supplied Action Routines

The action routines supplied with the programmable operator facility are
DMSPOR, DMSPOS, and DMSPOL. A parameter must be supplied for module
DMSPOR. This parameter is the name of the function or action that DMSPOR is
to perform. DMSPOS may be invoked along with a parameter, which, in this case,
is a userid or nickname. DMSPOL may be invoked with a parameter, which is a
routing table name.

Note that new action routines are not required to be in this format. The
programmable operator facility supports any desired number of action routines.
Each one is loaded separately when the programmable operator facility is
initialized, or when a LOADTBL command is issued.

The following sections describe the action routines that are supplied with the
programmable operator facility. These action routines (or subroutines in the case
of DMSPOR) correspond to the programmable operator commands described in
the VM/SP Operator's Guide.

DMSPOR - Miscellaneous supplied action routines

GET - Send the indicated file to an authorized user

This routine sends programmable operator files, such as log and feedback files,
to requesting user. The files are sent using the CMS DISK DUMP command.

LGLOPR - Process the LGLOPR command

This routine processes the LGLOPR command to assign (ASN), release
(RLS), or replace (RPL) the logical operator as specified by an authorized user
of the LGLOPR command.

QUERY - Return a response to a user query

This routine returns the fileid of the currently active routing table, returns the
userid of the current logical operator, or returns the status of programmable
operator node-checking or logging to the user who issued the command.

SET - Change the status of specific functions

9

This routine stops or resumes the periodic checking of the distributed systems
or the host system, or the logging of messages in the log file.

EXECs may be written using the System Product Interpreter, EXEC 2, or CMS EXEC
languages.

544 VM/SP System Programmer's Guide

(

STOP - Stop the programmable operator facility

This routine stops the programmable operator operation after processing
currently queued messages. The programmable operator virtual machine
returns control to CMS.

TOFB - Write a message to the feedback file

This routine attaches the date and time received to the head of the incoming
message and writes it to the feedback file. See "The Feedback File" below for
more information.

TOVM - Execute a CP / CMS command

This routine is invoked when the programmable operator CMD command is
issued. The text following "CMD" is regarded as the CP or CMS command to
be executed in the programmable operator virtual machine. The command is
treated as if it were entered at a CMS console (that is, such things as synonyms
and the IMPCP and IMPEX settings apply to its interpretation as supported by
the CMS COMMAND SUBCOMM environment). The response to the
executed CP or CMS command is returned to the authorized user who invoked
the CMD command.

Authorized users of the CMD command should be aware of the following:

• Issuing commands that alter or overlay CMS storage, such as CP DEFINE
STORAGE, CP IPL CMS, CP SHUTDOWN, and so on, has an adverse
effect on the operation of the programmable operator facility.

• Reissuing the PROP command once the programmable operator facility is
running causes the programmable operator facility to stop operating
correctly. The user must re-IPL CMS and restart the programmable
operator facility using the procedure described under "Invoking the
Programmable Operator Facility".

• Issuing commands that cause a VM READ or CP READ (interactive
commands such as the DDR command) stop the operation of the
programmable operator facility. The programmable operator facility must
then be restarted in the manner described under "Invoking the
Programmable Operator Facility".

• Line editing characters (pound sign (#), for example), as defined by the
CP TERMINAL command, are not recognized as line editing characters
by the programmable operator facility.

• The CMS immediate commands (e.g. HB, HI, HO, HT, HX, RO, RT, SO,
TE, and TS) are not recognized by the programmable operator facility. If
a user issues any of these commands, he receives an "UNKNOWN
CP / CMS COMMAND" response from the programmable operator
facility.

In general, the programmable operator facility does no checking to ensure or
prevent any of the above circumstances from occurring.

Chapter 42. The Programmable Operator Facility 545

-----------~~""~"".= .. =".,~"~-.. ~~"-"--""--""-"--"""~~~-""".--

DMSPOS ~ Route a message

DMSPOS sends (routes) a message to the user specified in the RTABLE
PARAMETER field. The user is identified by a nickname from the CMS userid
NAMES file or by a userid. If the user is on another system, identification must be
through a nickname. LGLOPR may be specified in the PARAMETER field of the
routing table, which would indicate that DMSPOS uses the value of the currently
assigned logical operator. If no logical operator has been explicitly assigned,
DMSPOS uses the value specified in the LGLOPR statement in the routing table.
This is the default if the parameter field is left blank.

A message longer than 94 characters (including the 19-character programmable
operator origin id) is split and sent as multiple messages. The first piece is no more
than 94 characters. The remaining pieces are no longer than 91 characters, and
preceded by a continuation mark (" .. "). This splitting ensures that the message is
small enough to be sent through an RSCS network.

If an error occurs because of an invalid target id, for example, the nickname was
not in the "userid NAMES" file, the programmable operator attempts to send the
message to the logical operator.

Messages are sent with the CMS TELL facility. If the programmable operator
virtual machine is authorized (class B), the CP MSGNOH command is used. If the
virtual machine is not authorized to use the CP MSGNOH command, then the CP
MESSAGE command is used. For more information on the CMS TELL facility,
see the VM/SP CMS Command and Macro Reference. " ,

Notes:

1. Using the CMS TELL facility requires the user to have a SYSTEM NETID file
set up.

2. DMSPOS must not be invoked if the logical operator virtual machine is the same
as the programmable operator virtual machine. Also, a parameter should not be
specified that directs the message to the programmable operator virtual machine.

To prevent a LOOP condition, a message being handled may not be sent on to the
routing target by the DMSPOS routine. A message is not sent if it falls into any
one of the following categories:

1. The preceding message could not be sent, and the current message is the same
as the preceding message. In other words, the programmable operator receives
an error return code when trying to send consecutive identical messages.

2. The programmable operator tries to route a message that originated from the
networking virtual machine on the programmable operator's node. The
message is identical to the last message from that virtual machine that the
programmable operator tried to route. For example, a local network machine
detects that a link is down.

3. The programmable operator tries to route a message that originated from the
networking virtual machine on another system (node), and that message is
identical to the last message that the programmable operator tried to route.

546 VM/SP System Programmer's Guide

,1--'\

\,-~

(

For example, messages are being routed from system A to the logical operator
who is supposed to be on another system (B), but is not logged on. The
networking virtual machine on system B sends the programmable operator an
error message each time it tries to route a message to the logical operator. This
could cause a loop if not detected.

If the DMSPOS routine tries to send a message to the logical operator, but for
some reason the logical operator's network node is unavailable for messages (NOT
LOGGED ON, SMSG and/or MSG OFF), DMSPOS detects this condition and
stops any further attempts to send that message. The unsent message, although
logged in the current day's log file, is not displayed at the logical operator's console.

DMSPOL - Load a routing table

The Log File

This routine dynamically loads the routing table indicated by the programmable
operator LOADTBL command. The routing table name must be "filename
RTABLE", where "filename" can be any name that conforms to CMS file naming
conventions. Although the routing table name specified with the LOADTBL
command takes precedence, it is also possible to specify in a routing table the
filename of the table to be loaded as a parameter to the action routine. (This can
be used as a default.) Therefore, any message selected by the system programmer
can cause a new RTABLE to be loaded. Also, the programmer can change the
LOADTBL default of "PROP" to whatever is desired without changing the
LOADTBL action routine.

Note: With the loading of the routing table done by a separate action routine, it is
possible for the other routines, DMSPOR and DMSPOS and any user-written
routines, to be replaced when a LOADTBL occurs. This permits changes to action
routines other than DMSPOL to be made dynamically without stopping the
programmable operator.

If LOGGING is set to ON or ALL, every incoming message that the
programmable operator facility receives is put into a CMS file referred to as the log
me. If LOGGING is set to ALL, all error messages and command responses
generated by the programmable operator facility are also put in the log file. If
LOGGING is set ON, responses from CP, CMS, and programmable operator
facility commands are not logged; messages are.

Each message is identified by the date and time received. The userid and nodeid
appear only if the text was sent by a CP MSG, SMSG, WNG, or sent using SCIF
(Single Console Image Facility). The userid and nodeid are blank for a message
sent by CPo A message sent by a remote RSCS network virtual machine has a
nodeid, but no userid. A message sent from an NCCF operator console has
'*NCCF' as the nodeid. Log entries generated and logged by the programmable
operator have a userid of PROP. The log file has the following format:

col 1
I
V
yy/mm/dd

col 10
I

col 19
I

V V
hh:mm:ss[userid

col 28
I
V
nodeidl:

col 39
I
V
text

Chapter 42. The Programmable Operator Facility 547

i"-----",

The log file contains variable length records. The maximum record length that the ~_~
programmable operator facility can place in the log file is 132 characters. Because
the prefix uses 38 of the 132 characters, the text can be only 94 characters long.
Therefore if the text of a message exceeds the maximum length of 94 characters
the overflow is continued on the next record. This continued record has the same
prefix as the preceding record, with no colon preceding the text.

A separate log file is started for each day. The name of the file is:

LGyymmdd nodeid A5

where:

yy

mm

dd

nodeid

is the current year

is the current month

is the current day

is the current RSCS nodeid of the system on which the programmable
operator facility is running.

When the programmable operator facility is started, stopped, or debug mode is
changed, a record is written to the log file. The messages written to the file have
the normal log prefix and a text corresponding to the changed function. Generally,
responses to the programmable operator console commands are written to the log
file when LOGGING is set to ON or ALL. It is also possible to have responses
from the programmable operator commands written to the log file. See the
LOGGING statement of the routing table or the programmable operator SET
command for more information. Note that when LOGGING is set to ALL, the log
file may be used as an alternative to spooling the virtual console. When
node-checking is in effect, by having PROPCHK or HOSTCHK statements in the
RTABLE, if a node changes status from UP to DOWN or vice versa, a message is
also written to the log file.

If a virtual machine resource limit is reached, such as "disk-full", it may not be
possible to write another record to the programmable operator facility log file. If
this happens, a user-written EXEC is invoked to perform whatever recovery action
the user thinks is deSirable or necessary. The user EXEC must have the filename
of PROPLGER. See "LOG Error Exit" later in this section.

Any user authorized in the active routing table except an NCCF operatorlO can
obtain the log file as a reader spool file by using the programmable operator GET
LOG command. Messages can be placed in the log file by authorized users by
using the programmable operator LOG command with no other action being taken.
(See the VM/SP Operator's Guide for information on the programmable operator
facility commands.)

10 An NCCF operator cannot use the GET command to obtain the log file. Use CMS
commands (and the programmable operator CMD command) to type the file or
portions of the file or to send the file to a userid where you can process it.

548 VM/SP System Programmer's Guide

;(- ".
~J

(

(

An old log file can be purged by any user authorized in the active routing table to
use the programmable operator CMD command by issuing the CMS ERASE
command.

Ensuring a Com.plete Log

When the programmable operator facility routes a message to the logical operator,
the message contains the userid of the sender. The operator, in responding to the
message, may choose to send a message directly to the user without going through
the programmable operator facility. However, if this is done, the message is not
logged in the log file. To ensure that these messages are logged, the operator
should send the message to the user through the programmable operator facility by
using the programmable operator facility CMD command. See the "Programmable
Operator Facility Commands" section of the VM/SP Operator's Guide for
information on the CMD and other programmable operator facility commands.

Whether the message was sent through the programmable operator or not has little
significance to the user. However, so that the messages received by the user always
have the same id (the programmable operator facility id), the message should
always be sent from the logical operator through the programmable operator
facility.

The Feedback File

The feedback file is another CMS disk file (named FEEDBACK nodeid AS) that
the programmable operator facility manages. The feedback file, unlike the log file,
is not automatically written by the programmable operator facility. Authorized
users can write time stamped notes and complaints about the operation of the
system to this feedback file. To write a notice to the feedback file, you, as a user,
must explicitly use the FEEDBACK (or FB) command. An example of such a
message is

M OP FEEDBACK RESPONSE TIME WAS SLOW DURING MORNING SHIFT.

Because the feedback file is normally smaller than the log file, it is easier for the
personnel in charge of the programmable operator facility's maintenance to review
the users' comments and identify when and where particular problems occurred.

Each record in the feedback file is prefixed with the date and time the message was
logged along with the sender's userid and nodeid. The feedback file has the
following format:

col 1
I
v
yy/mm/dd

col 10
I
v

col 19
I

V
hh:mm:ss userid

col 28
I
v
nodeid:

col 39
I
v
text

The feedback file contains variable length records. The maximum record length
that the programmable operator facility can place in the feedback file is 132
characters. Because the prefix uses 38 of the 132 characters, the text can be only
94 characters long. Therefore if the text of a message exceeds the maximum length
of 94 characters the overflow is continued on the next record. This continued

Chapter 42. The Programmable Operator Facility 549

record has the same prefix as the preceding record, with no colon preceding the
text.

Any user authorized in the active routing table except an NCCF operator11 can
obtain the feedback file as a reader spool file by using the programmable operator
GET FEEDBACK or GET FB command. (See the VM / SP Operator's Guide for
information on the programmable operator commands.)

An old feedback file can be purged by any user authorized in the active routing
table to use the programmable operator CMD command by issuing the CMS
ERASE command.

Installing the Programmable Operator Facility

The VM/SP product contains the file PROPLIB LOADLIB which is the basis for
the programmable operator facility. After receiving and installing VM/SP, take the
following steps before running the programmable operator facility.

1. Reserve enough minidisk space to contain the log file(s) and feedback file for
the virtual machine that the programmable operator facility will be running in.
The amount of space needed depends on the amount of message traffic that
will be going through the programmable operator facility, and on the number
of comments you expect users to place in the log and feedback files.

2. The sample routing table is located on the CMS 190 minidisk. To use the
sample PROP RTABLE, take the following steps:

ACCESS 190 CIA
COPYFILE PROP RTABLE C = = A

This places the sample routing table on a read/write minidisk accessed by the
virtual machine. Edit the sample routing table (PROP RTABLE) to include
the functions and authorizations to meet the various needs of the installation as
described in the previous section, "The Routing Table". Place the edited file
on a minidisk accessed by the programmable operator facility virtual machine.

3. Optionally, if you have made any changes to the supplied action routines, link
the TEXT file to the PROPLm LOADLIB. The CMSGEND EXEC, using the
CMSGEND PROP function, allows user-modified routines to be replaced in
the PROPLm LOADLIB.

If you have written any additional action routines, use the CMS LKED
command to add these routines to the PROPLm LOADLm. Copy the
PROPLm LOADLm from the CMS system disk to a read/write disk because
any changes would invalidate the directory entry on the system disk. For
example, to link a user-written action routine named ACTIONA to the
PROPLIB LOADLIB, you would issue:

'-- ./

11 An NCCF operator cannot use the GET command to obtain the feedback file. Use (~ "
CMS commands (and the programmable operator CMD command) to type the file or\',
portions of the file or to send the file to a userid where you can process it.

550 VM/SP System Programmer's Guide

(LKED ACTIONA (LET LIBE PROPLIB

Action routines written in Basic Assembler Language must be put in the
PROPLIB LOADLIB. EXEC action routines need not be put in the
PROPLIB LOADLIB, but can reside on any minidisk accessible to the
programmable operator.

If you are operating in a mixed environment and need the Programmable
Operator/NCCF Message Exchange (PMX) to route messages to the NCCF
logical operator, you must first install the PMX. Details on this installation
procedure can be found in "Installing the PMX" later in this section.

Routing Table Conversion

The format of the routing table is different from the format in the initial version of
the programmable operator facility documented in VM/SP Release 2. This format
makes the specifications easier and the information clearer. VM/SP Release 2
routing tables are not compatible with the current format and must either be
re-generated by hand or converted using PROPRTCV. PROPRTCV is a utility
provided to convert old routing tables to the current format. This utility is written
using the System Product Interpreter. Using an old RTABLE as input,
PROPRTCV creates a new RTABLE, leaving the old one unchanged. When you
execute PROPRTCV, it converts routing tables in the following order.
PROPRTCV

1. Generates the appropriate configuration statements at the beginning of the
new routing table file. See "Routing Table Entry Formats" earlier in this
section.

• A LGLOPR statement is added using the existing logical operator userid
and nodeid. PROPRTCV prompts you to change this information, if you
wish.

• A TEXTSYM statement is added. Select the TEXTSYM characters to be
used. The text fields of the file are scanned for these characters. If any of
these characters are found, PROPRTCV informs you and then prompts
you for different characters. You can also exit and change the texts that
caused the conflict.

• PROPCHK statements are added, if desired. PROPRTCV prompts you
for this information.

• A HOSTCHK statement is added, if desired. PROPRTCV prompts you
for this information.

• A ROUTE statement is placed after all the above statements have been
completed.

• An entry for the SET command is added with text "/SET /", message
type 1, action routine DMSPOR, and parameter SET. PROPRTCV
prompts you for any authorization desired for this entry. See "DMSPOR -

Chapter 42. The Programmable Operator Facility 551

Miscellaneous supplied action routines" for more information on the SET
command.

Note: The SET entry is simply placed after the ROUTE statement. This
is probably not where you want it. Move the entry when the routing table
conversion is completed.

For each routing table entry, PROPRTCV

2. Encloses the specified text with the blank-separator, (/), for the specified
length of the text.

3. Generates a starting column value and an ending column value from the
existing displacement and length values.

4. Converts an entry with action routine DMSPOR and parameter TOLGLOPR
to the action routine name DMSPOS. PROPRTCV prompts you for the
routing target information to be used as the parameter.

5. Converts an entry with action routine DMSPOR and parameter LOADTBL to
the action routine name DMSPOL and no parameter.

Invoking the Programmable Operator Facility

Manual Invocation

Before loading and invoking the programmable operator facility, load CMS in the
virtual machine that will be running the programmable operator facility.

Use the PROPST EXEC to invoke the programmable operator facility manually.
The PROPST EXEC drops any mM-supplied programmable operator routines that
are currently loaded as a nucleus extension, and loads the programmable operator
as a nucleus extension. It then invokes the programmable operator facility with the
specified RTABLE. If you do not specify a routing table, the RTABLE name
defaults to "PROP". You may specify a disconnect parameter to disconnect the
programmable operator before it is invoked. The format of the invocation EXEC
is as follows:

PROPST rtable-name
PROP

[DISConn]

Optionally, you can take the following steps each time you invoke the
programmable operator facility:

1. Issue a FILEDEF command to assign a CMS filename to the PROPLm
LOADLm file so CMS can read and load from it. Do this with the following
command:

FILEDEF PROPLIB DISK PROPLIB LOADLIB *

552 VM/SP System Programmer's Guide

, ,/

(

(

2. Next, load the programmable operator program as a CMS nucleus extension
via the NUCXLOAD command. Issue the command as follows:

NUCXLOAD PROP DMSPOP PROPLIB

(See the VM/SP CMS Command and Macro Reference for more details on the
NUCXLOAD command.) These first two steps may be omitted for
subsequent invocations as long as you do not:

• IPL CMS or

• Have a CMS abend from which the programmable operator does not
automatically recover.

Following its loading as a CMS nucleus extension, invoke the programmable
operator facility as if it were a CMS command. The format of the invocation is:

PROP rtable-name
PROP

where:

rtable-name is the filename of the routing table that is to be used for the
programmable operator facility. "PROP" is the default filename
of the routing table if no other is specified at invocation.

The action routines named in the default or specified routing table are in turn
loaded as CMS nucleus extensions. If the programmable operator facility cannot
find an action routine that is named in the routing table, the user receives an error
message and is informed of all detectable routing table errors before the
programmable operator facility terminates operation. When all of the required
action routines have been loaded, a message is typed on the programmable
operator's console indicating that the programmable operator facility has started.
The programmable operator facility then waits for either an incoming message or a
programmable operator console command (STOP and SET are the only valid
commands). The operator can disconnect at this point by having specified the
DISConn parameter for the PROPST EXEC or by entering CP (pressing the PAl
key or equivalent) and typing CP DISCONN. After the DISCONNECTED
message has been written to the console, indicating that the system operator virtual
machine is disconnected, the operator can log on to whatever virtual machine is
normally used, for example, the logical operator virtual machine specified in the
routing table.

When the programmable operator starts, it executes an EXEC called PROPPROF
EXEC, if it can be located. This is a user-written EXEC. PROPPROF is called
after the programmable operator initialization is complete, that is, after the
programmable operator message environment has been set up. PROPPROF tailors
the programmable operator message environment to your specific needs. For
example, to prevent the programmable operator from trapping warning messages,
PROPPROF could look like this:

&TRACE
SET WNG ON
&EXIT

Chapter 42. The Programmable Operator Facility 553

~~------

PROPPROF can be used for any special programmable operator start processing
desired without having to rewrite the PROPST EXEC or create a new EXEC to
invoke the programmable operator facility. Mter executing PROPPROF, the
programmable operator then begins routing messages as defined by the routing
table entries and the LGLOPR statement in the specified routing table.

When the programmable operator facility is automatically restarted following an
abend, it, if possible, uses the routing table in effect at the time of the abend rather
than that specified at invocation. Also, if a logical operator had been assigned, that
assignment is restored.

Automati~ Invocation

If you wish, you can set up the programmable operator facility to start running
when the system is IPLed and to restart automatically in the event of CP system
restart. This can be done as follows:

• Place an "IPL CMS P ARM AUTOCR" entry for programmable operator's
virtual machine in the CP directory. You can do this even if the programmable
operator virtual machine is the CP system operator.

• Place the following entry in the PROFILE EXEC of the programmable
operator's virtual machine:

EXEC PROPST rtable-name [DISConn]

You can precede or follow the invocation of the PROPST EXEC by the
invocation of any virtual machine commands that you wish to have executed
before or after the programmable operator facility is invoked. Virtual machine
commands that are placed after the invocation of the PROPST EXEC are not
executed until the programmable operator facility is stopped.

• If you want the programmable operator to run in other than the operator's
virtual machine, place an AUTOLOG entry for the programmable operator's
virtual machine in the PROFILE EXEC of the system operator or the
AUTOLOG user.

• Once this is complete, if the logical operator is not already logged on, he should
do so on the appropriate system.

The following example shows how to place entries in the CP Directory and the
PROFILE EXEC of operator's virtual machine. These entries automatically
invoke the programmable operator facility in the operator's virtual machine when
the system is IPLed. The userid of the programmable operator virtual machine is
"OPERATOR". The default, "PROP RTABLE", is the name of the routing table
being used.

CP directory entries:

554 VM/SP System Programmer's Guide

(""
USER OPERATOR password 512K 1024K ABCDEFG
IPL CMS PARM AUTOCR

Entries in the PROFILE EXEC of the Operator's virtual machine:

EXEC PROPST DISCONN

Once these changes (or similar ones) have been made, IPLing the system causes
the programmable operator to be invoked automatically in the disconnected system
operator virtual machine. After the DISCONNECTED message has been written
to the console, indicating that the system operator virtual machine is disconnected,
the operator can log on to whatever virtual machine is normally used, for example,
the 10gica1 operator virtual machine specified in the routing table.

Using the LGLOPR Command

The LGLOPR command provides three options for assigning and releasing logical
operators. These three options allow the role of logical operator to be passed back
and forth between VM/SP users and/or NCCF operators. To authorize operators
to use the LGLOPR command, place an entry for" /LGLOPR I" in the routing
table to be used. Specify DMSPOR as the action routine, and LGLOPR as the
parameter to DMSPOR. The format of the LGLOPR command is found in the
VM/SP Operator's Guide.

Using the ASN (assign) and RLS (release) options is sufficient for many
installations where perhaps there is only one VM/SP operator or key operator
(specified as the default logical operator) and one NCCF operator.

When more than one NCCF operator is capable of controlling the system or when
a combination of multiple VM and NCCF logical operators are capable, the
installation might want to allow some or a1l of the logical operators to use the RPL
(replace) option. RPL forces the issuer of the command to be assigned as the
logical operator, whether or not a logical operator is already assigned. This ensures
that no messages are lost while changing logical operators because no messages are
handled during the change.

For example, in establishment X, two NCCF operators on an MVS host system
share responsibility for control of a set of VM/SP distributed systems. The role of
10gica1 operator is passed back and forth between them depending on their
individual workload. These operators pass control using the RPL option of the
LGLOPR command so that no messages are routed to the default logical operator
between releasing the old logical operator and assigning the new one.

The RPL option is also useful for forcing the assignment of a logical operator when
the current logical operator is for some reason cut off from communication with the
programmable operator and cannot do a RLS (release).

Chapter 42. The Programmable Operator Facility 555

For example,a communications line connecting the terminal for an NCCF logical
operator to the NCCF subsystem has gone down. The NCCF logical operator
informs a local VM/SP operator by telephone that the VM/SP operator will have
to take over as logical operator until the communications line can be brought back
up. The VM/SP operator, if authorized, can issue a LGLOPR RPL command to
take over the role of logical operator.

When the logical operator is re-assigned, the programmable operator tries the
HOSTCHK. function, if specified, following the re-assignment. However, if the
new logical operator is an NCCF operator or a VM/SP user on the same system as
the programmable operator, the HOSTCHK. function is suspended until a remote
VM/SP user is again assigned as the logical operator.

If a user is assigned as the logical operator by the LGLOPR command, the
assignment is accepted. The user specified on the LGLOPR statement remains a
default logical operator in the event that the assigned logical operator is released.
The user specified on the LGLOPR statement is always maintained as the default,
and can never be released.

Here are some sample uses of the LGLOPR command. In the samples, ACTIONX
is an action routine that is executed each time an unauthorized user issues some
form of the LGLOPR command. ACTIONX could be DMSPOS sending the
offending command to the logical operator or it could be a user-written routine
taking some other action against the issuer.

*------------------------ -------- -------- --------
*T S
*E C
*x 0
*T L

E
C
o
L

T U
Y S
P E
E R

*------------------------ --------
* GENERAL AUTHORIZATION FOR LGLOPR COMMAND --
*------------------------ --------
/LGLOPR / 7 NCCFOP1
*------------------------ --- --- -- --------
* EXPLICIT AUTHORIZATION FOR LGLOPR REPLACE
*------------------------
/LGLOPR /RPL/ 16 OPER2
/LGLOPR /RPL/
*------------------------ --------
* EXPLICIT AUTHORIZATION FOR LGLOPR ASSIGN
*------------------------

N
0
D
E

ASN, RLS,

*NCCF

HOSTSYS

/LGLOPR /ASN/
/LGLOPR /ASN/

16 NCCFOP4 *NCCF

An entry or entries could also be added as follows:

*------------------------ --- --- -- --------
* AUTHORIZATION FOR LGLOPR ASSIGN AND RELEASE
*------------------------

A P
C A
T R
N M
-------- --------

AND RPL
-------- --------
DMSPOR LGLOPR
-------- --------
-------- --------
DMSPOR LGLOPR
ACTIONX
-------- --------

DMSPOR LGLOPR
ACTIONX

/LGLOPR /-.RPL/ NCCFOP5 *NCCF DMSPOR LGLOPR

Figure 63. Sample LGLOPR Command Entries iii a Routing Table

556 VM/SP System Programmer's Guide

,,'/

(Communications Checking

In a VM-only environment, the programmable operator facility can operate either
from the host system or from a distributed system in a network or from both sides.
Special functions can be performed depending on the ability of the programmable
operators to communicate through RSCS Networking. The purpose of these
functions is:

• To provide the host operator (logical operator) with timely information and/or
action in the event of a break in communication with the programmable
operator on one of the network's distributed systems.

To provide a distributed system with timely information and/or capability for
action in the event of a break in communication with the host system.

A programmable operator can periodically check on the link with another system to
determine whether it is possible to communicate with that system. The systems to
be checked must be identified in the routing table of the programmable operator
doing the checking. This may be either the programmable operator at the host
system checking on specified distributed systems or a distributed programmable
operator checking on communications with its host system. When the
programmable operator at the host system is checking on the distributed systems,
the programmable operator needs another programmable operator running in the
system operator virtual machine on the distributed system. This is not required
when a distributed system is checking on the host system. In other words, for
"host checking", no programmable operator is required at the host system, but for
"distributed system checking" programmable operators must be running at the
distributed systems. These various types of checking may be collectively referred
to as "node-checking".

Note that the roles of the 'host' and 'distributed' systems need not be strictly
defined. For example, a programmable operator may use the PROPCHK function
to check communication with any other system (node) running a programmable
operator in its system operator virtual machine in the network. With the
HOSTCHK function, the system being checked is simply the system defined as the
checking system's logical operator, and not necessarily 'the' host system for the
network.

The programmable operator facility that has been instructed to check on its
distributed system(s) periodically attempts to communicate with those systems by
sending a message that causes a response. The programmable operator then waits
a specified time for a response. For checking the host system (HOSTCHK), the
acknowledgement request goes to the RSCS on the logical operator node. For
checking the distributed systems (PROPCHK), it goes to the programmable
operator on the distributed system. No response indicates that something has
prevented communication between the host and the distributed system(s). Getting
a response after being delinquent for a time indicates that communication between
the programmable operators has been restored. With the SET command, the user
is able to set the checking function ON or OFF.

Chapter 42. The Programmable Operator Facility 557

Any time that the programmable operator detects that a node has exceeded the
time allowed for responding, that fact is recorded in the programmable operator
log. Also logged is the fact that a node has resumed responding.

When one of these conditions, no response or a late response, is detected, the
programmable operator facility invokes one of two EXECs supplied by mM for
this purpose. For checking a distributed system, the PROPPCHK EXEC is
invoked. For checking on the host, the PROPHCHK EXEC is invoked.

The programmable operator doing the checking invokes the EXEC. For example,
if a programmable operator on a distributed system has a HOSTCHK statement in
its routing table, the PROPHCHK EXEC would be invoked if communication with
the host system were lost for a long enough period that the request or the response
were prevented from getting through. Similarly, if a programmable operator on a
host system has a PROPCHK statement in its routing table, that programmable
operator would invoke the PROPPCHK EXEC if communication with one of the
specified distributed nodes were lost for such a period. These EXECs are supplied
as samples only and may be modified or replaced with user-written EXECs,
allowing the user to tailor the resulting action(s).

The mM-supplied PROPHCHK EXEC operates as follows:

• When the logical operator's node fails to respond or resumes responding, type
a message on the programmable operator console and send a message to the
userid MAINT indicating that communication with the host system has been
broken or restored.

The mM-supplied PROPPCHK EXEC operates as follows:

• For each node that has failed to respond, notify the logical operator that the
programmable operator facility is unable to communicate with that particular
node (distributed system).

• For each node that has resumed responding from a failed state, notify the
logical operator that communication with that node (distributed system) has
been reestablished.

Note: PROPPCHK does not try to send a message to the logical operator if the
logical operator is an NCCF operator.

How the Programmable Operator Establishes
Communications with IUCV

The programmable operator facility automatically establishes communications with
CPthrough the Inter-User Communications Vehicle (lUCV). When the
programmable operator facility is initialized, a CMSIUCV CONNECT, specifying
*MSG and an application id of PROP, is issued to establish the communications
path with the Message System Service (See the "Message System Service" section
earlier in this manual). This allows the programmable operator program to read
and evaluate messages directly from CP.

558 VM/SP System Programmer's Guide

Several CP command settings determine the types of messages that the
programmable operator facility can receive. The programmable operator facility
issues these SET commands when initializing, and resets them when terminating.
The commands issued during initialization are:

SET MSG IUCV
SET WNG IUCV
SET SMSG IUCV
SET EMSG IUCV
SET IMSG IUCV
SET CPCONIO IUCV
SET VMCONIO OFF

VMCONIO is set OFF so that any messages produced by CMS or the
programmable operator during initialization of the programmable operator facility
are typed on its virtual machine console. If VMCONIO was set to lUCY, such
data would be trapped by lUCY and not displayed.

When the programmable operator STOP command is issued, the following SET
commands are issued:

SET MSG ON
SET WNG ON
SET SMSG OFF
SET EMSG ON
SET IMSG ON
SET CPCONIO OFF
SET VMCONIO OFF

Then, after the existing messages are handled, the lUCY connection is severed
using the lUCY SEVER function.

Some other virtual machine settings that the programmable operator facility
modifies are "SET RUN ON", "SET TIMER REAL", and "TERMINAL MODE
VM" at initialization, and "SET RUN OFF" and "SET TIMER ON" at
termination. "SET RUN ON" is issued to ensure that the programmable operator
is not held up in CP console function mode for excessive periods of time, either
because of some operator command entry or because of logging on to a
disconnected programmable operator virtual machine. "TERMINAL MODE VM"
is to ensure that programmable operator console commands are handled correctly.

Note: SCIF (Single Console Image Facility) operation supersedes lUCY Message
System Service operation. If the programmable operator virtual machine has a
SCIF secondary user, messages would be sent via SCIF to the secondary user
rather than handled by the programmable operator virtual machine through the
lUCY Message System Service. However, the programmable operator facility may
be a SCIF secondary user for another virtual machine. For example, this can be
used to control the operation of a guest operating system running in another virtual
machine. In this case, SCIF messages are presented to the programmable operator
virtual machine as IlJCY message-type 8.

Chapter 42. The Programmable Operator Facility 559

Message Output Fonnat

Exit EXECs

Exit EXEC Interface

The messages and responses from the programmable operator facility are sent via
the CP MSGNOH command if the programmable operator virtual machine has user
class B authorization. Otherwise, the CP MESSAGE command is used.
Regardless of which message command is used the messages from another user that
are routed to the logical operator are prefixed with the userid and nodeid of the
originating user.

The format of these messages appears as follows:

col 1
I
v
userid

col 10
I
v
nodeid:

col 20
I
v
text

Messages that the programmable operator facility sends as responses to the issuer
of a programmable operator command or an asynchronous message to the CP
operator originating at the programmable operator virtual machine have no such
prefix.

The programmable operator facility exit EXECs have the same parameter list
provided as an EXEC action routine, with the exception that no RT ABLE
parameter field value and no message text are stacked for the EXEC. When an
exit EXEC is called, contents of the program stack depend upon which exit is being
invoked. Descriptions of the stack contents for the different types of exits follow:

Notes:

1. Some of the parameter values have no meaning for a particular exit EXEC and
their use is left to the discretion of the EXEC writer. For example, the requester's
userid and nodeid have no meaning for the communication error EXECs,
PROPPCHK and PROPHCHK.

2. The programmable operator facility does not trap VMCONIO-type or CP EMSGs
produced by exit EXECs as it does for action routines.

Communication Error Exit

The PROPPCHK EXEC is invoked when the programmable operator facility
determines that communication with a node that is being checked has changed
status. When this occurs, the following information is stacked, LIFO, for the
EXEC.

1. Entries having the format

560 VM/SP System Programmer's Guide

(

LOG Error Exit

(--- --

"nodeid UP" or "nodeid DOWN"

where:

nodeid is the RSCS nodeid of a node that has changed communication
status.

UP indicates that the node had not been responding and has resumed
responding to acknowledgement requests.

DOWN indicates that the node had been responding and has ceased
responding.

2. Total number of nodeid entries stacked.

The PROPHCHK EXEC is invoked when the programmable operator determines
that communication with the logical operator node (if it is being checked) has
changed status. If the status has changed, a line is _stacked LIFO for the EXEC.
The line is either "nodeid UP" or "nodeid DOWN", where "nodeid" is the RSCS
nodeid of the logical operator and "UP" and "DOWN" have the same meaning as
for PROPPCHK.

If a virtual machine resource limit is reached, such as "disk-full", it may not be
possible to write another record to the programmable operator facility log file. If
this happens, a user-written EXEC is invoked to perform whatever recovery action
the user thinks is desirable or necessary. The user EXEC must have the filename
of PROPLGER. The programmable operator facility stacks (LIFO) the error code
received from the CMS FSWRITE function. The programmable operator performs
the following actions depending on the return code from the EXEC.

RC = 0 recovered from error. The programmable operator facility should retry
logging. If it is still unable to log, an error message is sent.

RC = 4 unable to do recovery. The programmable operator facility should send
an error message.

The error message is sent to the logical operator. If the PROPLGER EXEC
cannot be found, the programmable operator facility acts as if RC = 4 has been
returned thus, an error message is sent to the logical operator. Whatever action is
taken, the programmable operator facility continues operation. The mM-supplied
sample PROPLGER EXEC:

• Closes the current log file

• Sends the last two log files to the logical operator

• Erases the last two log files.

Note: PROPLGER does not try to send the log files to the logical operator if the
logical operator is an NCCF operator. The files are instead sent to the

Chapter 42. The Progl-ammable Operator Facility 561

programmable operator's virtual reader. You can change the EXEC to have the
files sent elsewhere, if you wish.

If the same logging error occurs on two successive logging attempts, (for example,
two consecutive incoming messages cause the same logging error) the
programmable operator sets LOGGING to "OFF". This prevents unpredictable
looping in some situations. Note, though, that the logical operator may receive
only two error messages when logging errors occur.

Problem Determination - Debug Mode

Debug mode is used to perform problem determination on the programmable
operator program itself. It allows responses to commands issued from the
programmable operator virtual machine console to be returned back to the console
without being intercepted by the programmable operator program. This permits
any CP command (for example, CP TRACE and ADSTOP commands), to be
issued without having its response trapped by the programmable operator program.

SET DEBUG ON may be used after the programmable operator facility responds
with the message:

PROP RUNNING - ENTER ' STOP , TO TERMINATE

indicating that the programmable operator facility is running and operational. The
programmable operator facility then responds with the message:

PROP IS RUNNING IN DEBUG MODE

which is also written to the log file. Once in debug mode, the programmable
operator facility waits to receive messages from another virtual machine, or for the
system programmer to enter input from the console. Since only two commands are
accepted from the programmable operator virtual machine console (STOP and
SET), to issue any CP commands the System Programmer must enter the CP
environment (using the PAl key). Otherwise, the commands are intercepted and
rejected as invalid programmable operator commands.

Conversely, pressing the PAl key or issuing the "BEGIN" command returns
control to the programmable operator facility. From this environment, issuing SET
DEBUG OFF causes the programmable operator facility to return to its normal
function of trapping messages.

562 VM/SP System Programmer's Guide

("

The Action Routine Interface

Action Routine Call Interface

Action routines are loaded by the programmable operator facility as CMS nucleus
extensions. As a result, they must be invoked by the programmable operator
facility as CMS commands via SVC 202. Also, addresses cannot be resolved
between separate nucleus extensions; they must be passed dynamically if they are
desired.

Action Routine Parameter Interface

An installation can write additional action routines in Basic Assembler Language.
Action routines may also be written as EXECs. Programs written in Basic
Assembler Language can access the parameter list built by the programmable
operator facility. (The programmable operator parameters are available in a
different fashion for EXEC action routines--see below.) The parameter list
contains a list of addresses pointing to data that may be significant to the action
routine invoked. The programmable operator facility then passes the address of the
list as a parameter when it invokes the required action routine. See VM / SP Data
Areas and Control Block Logic Volume 2 (CMS) for descriptions of the DSECTs
mentioned below.

The register conventions used for invoking an action routine are:

• Register 1 points to a list of eight-byte tokens (CMS PLIST) containing the
following information:

TOKEN 1 Contains the command name (action routine name).

TOKEN 2 Contains two fullwords. These fullwords contain the following:

Fullword 1 -

Fullword 2-

Contains the address of the PROP common area
as described by the PROPCOM DSECT.

Contains the address of a list of addresses that
point to data that may be needed by the action
routine. This list is described by the P ARMLIST
DSECT.

TOKEN 3 Contains eight X'FF's to mark the end of the parameter list.

• Register 13 points to a standard as eighteen word save area.

• Register 14 points to the address that receives control when the action routine
completes processing, that is, the address to which the action routine must
return control.

• Register 15 points to the action routine entry point and may be used as a base
register.

Chapter 42. The Programmable Operator Facility 563

Figure 64 offers a graphic representation of the previous discussion. It illustrates
the data areas that can be accessed through Register 1.

564 VM/SP System Programmer's Guide

r'- "
(' \

\",- ./

e
((,

(" ..

o r---------, <-TOKEN 1
Register 1 r----->

Fullword 1 --> 8

Fullword 2 --> C

10

Command Name
(Action
Routine Name)

r---------, <-TOKEN 2
programmable

operator
common area

pointer

address list
pointer

r---------------->
programmable

operator
common
area

8X'FF' I<-TOKEN 3

Described by PROPCOM DSECT

18 ~------------~
PLIST of three
8-byte tokens

Data It~m Length
0 V I

,> Message text 240 bytes
4

,> Message length 4 bytes
8

,>lMessage text (tokenized) 256 bytes
C

,> 1D of network machine 8 bytes
10

,> Requester's userid 8 bytes
14

,> Requester's nodeid 8 bytes
18

,> Programmable operator's userid 8 bytes
lC

,> Programmable operator's nodeid 8 bytes
20

,> Logical operator's userid 8 bytes
24

r> Logical operator's nodeid 8 bytes
28 f>filename

~:
Routing table fileid 18 bytes >filetype

2C >filemode
Parameter from Routing Table 8 bytes

30
,> Message type (message class) 1 byte

34
,>2Action routine name 8 bytes

38

Address List described by PARML1ST DSECT

lIn addition to the original message text. the message text is also
provided in CMS tokenized form (eight-byte tokens followed by 8X'FF').

2The high order bit (X'80') of the last fullword of this list of
addresses is set to one to indicate that it is the last entry
in the list according to standard as linkage conventions.

Figure 64. Register Conventions for Invoking an Action Routine

8
8
2

bytes
bytes
b~/tes

Chapter 42. The Programmable Operator Facility 565

EXEC Action Routines

Action routines may also be written as EXECS12. The programmable operator
parameters are available in a different fashion for EXEC action routines. The
method is described below.

1. Having determined that the action routine is an EXEC, the programmable
operator facility calls the action routine accordingly.

2. The following information is passed as parameters (arguments) on the EXEC
invocation, in this order:

• Requester's userid

• Requester's nodeid

• Logical operator's userid

• Logical operator's nodeid

• Message type code

• The programmable operator facility's userid

• The programmable operator facility's nodeid

• Networking machine userid

• RTABLE filename.

3. The following parameters are stacked LIFO for the EXEC in this order:

• RTABLE PARAMETER field contents

• Message text.

To ease handling by an EXEC, if the requester is CP, the requester's userid and
nodeid are "CP".

Writing Action Routines

How an action routine is written using Basic Assembler Language depends on the
function(s) that the action routine performs and the conditions under which it runs.
Since the programmable operator can use message content and message origin to
determine which action routine to call, it may not be necessary for the action
routine to check any further conditions. However, by using the P ARMLIST
supplied by the programmable operator facility, the action routine may obtain
additional information about the message. Each entry in the P ARMLIST points to

./

12 EXECs may be written using the System Product Interpreter, EXEC 2, or CMS EXEC \,_/
languages.

566 VM/SP System Programmer's Guide

(

(

some item of data about the message just received or about the programmable
operator environment.

As described in the preceding section, "Action Routine Parameter Interface," the
information initially provided to the action routine is in the form of a CMS
tokenized PLIST. By loading the second fullword of the second token of that
PLIST into a register, the user can establish addressability to the PROP
PARMLIST. For example,

SAVE
LR
USING
L
USING

(14,12)
R12,R15
ROUTINEX,R12
R2, 12 (,R 1)
PARMLIST,R2

SAVE REGISTERS
LOAD BASE REGISTER
ESTABLISH ADDRESSABILITY
LOAD PROP PARMLIST ADDRESS
PARM ADDRESSABILITY

These instructions would be sufficient for many action routines to establish
addressability for the action routine and the PROP PARMLIST. The following
instructions could then be used to obtain the addresses of the requester's (message
originator's) userid and nodeid.

L
L

R4,PARMRUSR
R6,PARMRNOD

GET REQUESTER'S USERID ADDRESS
GET REQUESTER'S NODEID ADDRESS

The Programmable Operator DSECTs, such as PARMLIST, define the above
labels. To include the PROP DSECT in the action routine insert the following
assembler instruction in the source file for the routine:

COpy PROP

In addition, it may be desirable to include the CMS REGEQU macro instruction
for register equates. When the action routine is complete, it is necessary to restore
registers and branch to the address in register 14, or use the OS RETURN macro.

Action Routine Response Handling

It is sometimes necessary to issue messages and/or responses from an action
routine that is to be sent to the message originator (requester). To do this, the
action routine should simply TYPE the messages/responses (via LINEDIT,
DMSERR, or WRTERM for action routines written in BAL, and &TYPE or SAY
for EXEC action routines). The programmable operator facility traps these
messages/responses and routes them to the requester, which could be either a
VM/SP user or an NCCF operator.

Handling Console I/O in an Action Routine

The installation must determine how an action routine is to handle console I/O
generated by the virtual machine and CPo Normal operation of the programmable
operator facility sets VMCONIO to IUCV (by default) before calling an action
routine and sends the VMCONIO to the message originator (requester). If it is
desired that console I/O (VMCONIO) produced by the action routine be typed on
the programmable operator virtual machine console, the action routine must SET
VMCONIO OFF. However, because there would not normally be an operator at
the programmable operator virtual machine console, an installation can code an
action routine to receive and handle VMCONIO instead of allowing the

Chapter 42. The Programmable Operator Facility 567

programmable operator to receive it and send it to the requester (message
originator). To accomplish this, the action routine can receive the VMCONIO that
was generated by using the IUCV RECEIVE function with message type 5
specified as the IUCV target class (TRGCLS). For details on using IUCV, refer to
the section on IUCV earlier in this manual.

An example of this may be found in the subroutine CALLARTN of the
ffiM-supplied module DMSPOP. To use IUCV, including the CP COpy files
IP ARML and EQU is necessary.

CP generated console I/O (CPCONIO) should be handled differently than above.
The CPCONIO setting should not be changed because this could cause the
programmable operator facility to miss some asynchronous CP messages.

If the action routine is to receive the responses from CP commands that it issues, it
should use the DIAGNOSE code X'08' support with a command response buffer,
rather than attempting to receive it with IUCV. (See "DIAGNOSE Code X'08' -
Virtual Console Function".) The reason for this is that other CP messages can be
mixed in with the command response, and therefore the program cannot be assured
of receiving its response in consecutive IUCV messages.

If the CP command response is to be typed on the programmable operator's virtual
machine console, the action routine should use a CMS function, such as
WRTERM, to write the lines in the program's CP command response buffer to the
terminal.

Stopping the Programmable Operator Facility

The programmable operator facility is easily stopped with the programmable
operator STOP command. The programmable operator facility completes
processing of all pending messages before stopping and returning control to CMS.
Before the programmable operator facility terminates completely, it executes an
EXEC called PROPEPIF EXEC. PROPEPIF is a user-written EXEC. It lets you
restore any virtual machine settings that the programmable operator may have
modified during operation. For example, when the programmable operator stops, it
issues the command SET EMSG ON. If you want the final setting of EMSG to be
something other than ON, simply put a command in the PROPEPIF EXEC, such
as:

&TRACE OFF
CP SET EMSG TEXT
&EXIT

PROPEPIF, along with PROPPROF, simply gives you more control over the
changes that the programmable operator makes to a virtual machine while
operating.

568 VM/SP System Programmer's Guide

/'

.~ .. /

(-- Running the Programmable Operator Facility from NCCF

(

To enhance the use of the programmable operator, it can be controlled by an
NCCF (Network Communications Control Facility) operator, thus giving this
operator control over mixed VM, OS/VS, and VSE distributed systems and host
systems.

The NCCF Logical Operator

To run a VM/SP system from NCCF, an NCCF operator must be assigned as the
logical operator of the programmable operator in that particular system. This
operator is the NCCF logical operator. The routing table should specify which
NCCF operators may be assigned as logical operators. The network installation
through NCCF and VTAM defines where such NCCF operators may be logged on.
This is independent of the programmable operatorfacility.

An NCCF operator may be authorized to be the logical operator by allowing him
to issue the programmable operator LGLOPR command. An NCCF operator can
also be authorized to issue other programmable operator commands (QUERY,
SET, CMD, etc.) without being authorized to use the LGLOPR command. That is,
an NCCF operator can issue programmable operator commands without being
authorized to be a logical operator. For example, assume the following record was
in the active routing table.

*------------------------ -------- -------- -------- --------
*T S E T U N A P
*E C C Y S 0 C A
*x 0 0 P E D T R
*T L L E R E N M
*------------------------ -------- -------- -------- --------
/QUERY / 6 30 NCCFOP1 *NCCF DMSPOR QUERY
*------------------------ -------- -------- -------- --------

Figure 65. QUERY Command Authorization for an NCCF Operator

The entry above allows the NCCF operator, NCCFOPl, to issue the
programmable operator QUERY command and receive the responses, even if he is
not authorized to use the programmable operator LGLOPR command to assign
himself as logical operator.

Communication Between the Programmable Operator and NCCF

An NCCF operator (not necessarily the logical operator) and the programmable
operator interact through both the NCCF PROP command and the Programmable
Operator/NCCF Message Exchange (PMX). The NCCF PROP command is the
NCCF operator's only means of sending data (commands) to the programmable
operator. The PMX mediates all messages intended for the NCCF logical
operator.

An NCCF operator issues a programmable operator command by using PROP, an
NCCF command, like this:

PROP CMD DETACH OOA FROM USER1

Chapter 42. The Programmable Operator Facility 569

The NCCF PROP command and programmable operator commands are found in
the VM/SP Operator's Guide.

In a different domain, the operator must first establish an NCCF cross-domain
session with the NCCF START command. Then, any programmable operator
commands to be issued in that domain must be encapsulated in an NCCF ROUTE
command. For example,

START DOMAIN=DOMN2

ROUTE DOMN2,PROP CMD SET LOGMSG 1 SHUTDOWN IS AT 7PM TONIGHT

Refer to the NCCF documentation for further information on domains and
cross-domain sessions.

Logging NCCF messages in the Log File

A message from an NCCF operator is logged just as any other message sent to the
programmable operator. When logging a message or command from an NCCF
operator, the keyword "*NCCF" is placed in the nodeid field of the log record.
You must ensure that the identifiers for all of the NCCF operators who may access
the programmable operator facility are unique. This is also an NCCF requirement.
As a result, the operator identifier with the "*NCCF" nodeid is sufficient to
identify the issuer of the programmable operator command. Also, messages
received by the programmable operator facility from NCCF will have the message
type of '30'.

Specifying Routing Texts

To route a message to an NCCF logical operator, that NCCF operator must have
issued a LGLOPR ASN or LGLOPR RPL command. Be sure that the appropriate
NCCF operators are authorized in the active routing table to issue the command.

For example, to route the message

12:04:15 GRAF OAO LOGOFF AS USER1 USERS = 020 FORCED

to the NCCF logical operator, the routing table should have the following entries:

570 VM/SP System Programmer's Guide

.,C " I .

_/

(

*------------------------ -------- -------- -------- --------
*T S E T U N A P
*E C C Y S 0 C A
*x 0 0 P E D T R
*T L L E R E N M
*------------------------ -------- -------- -------- --------
* AUTHORIZE OPERATORS TO CHANGE LGLOPR ASSIGNMENT
*------------------------ -------- -------- -------- --------
/LGLOPR / 7 30 DMSPOR LGLOPR
*------------------------ --- --- -------- -------- -------- --------
* FILTER OUT SPECIFIC MESSAGES
*------------------------ -------- -------- -------- --------
$GRAF$LOGOFF AS$FORCED$ 03 DMSPOS LGLOPR
*------------------------ -------- -------- -------- --------

Figure 66. Routing Entries to Send MeS/lllges to an NCCF Operator

DMSPOR LGLOPR specifies that the programmable operator LGLOPR command
can be executed. Message type 30 says that the user executing the LGLOPR
command must be an NCCF operator. DMSPOS LGLOPR specifies that the
desired action is to send the matching message to the logical operator. First, the
NCCF logical operator must have issued LGLOPR ASN or'LOLOPR RPL
command to the programmable operator facility. Then, when the above message
arrives at the programmable operator virtual machine, it is routed to the assigned
NCCF logical operator.

If you wish to put an id in the nodeid field of the routing table entries for the
NCCF operator, it must be "*NCCF". .

The Programmable Operator/NCCF Message Exchange

I Installing the PMX

The Programmable Operator/NCCF Message Exchange (PMX) serves as a
pipeline to transfer programmable operator commands from NCCF to the
programmable operator virtual machine and to transfer routed messages and
programmable operator responses to NCCF. The PMX executes in a GCS virtual
machine with NCCF thus making GCS a requirement for programmable operator
and NCCF communication. PMX uses IUCV to communicate with the
programmable operator facility. The PMX also uses an NCCF command processor
and the NCCF DSIMQS macro to communicate with the NCCF logical operator.
See NCCF Customization, Version 2, Release 1, SC27-0662.

To use the Programmable Operator/NCCF connection, the user must:

1. Authorize the programmable operator virtual machine and the GCS virtual
machine in which the PMX will execute to obtain IUCVconnections With each
other. The maximum number of IUCV connections allowed forthe
programmable operator must be at least three. For thePMX it must be at least
two.

Chapter 42. The Programmable Operator Facility 571

Make this authorization by adding IUCV stathemcentsdi~or each of I these ufsers to ~~/
the CPdirectory. For more information on t e P rectory, pease re er to
the VM/SP Planning Guide and Reference.

2. Set up the GCS virtual machine in which the PMX will run as an unauthorized
GCS virtual machine. That is, the PMX (along with NCCF) should run in
problem state rather than supervisor state.

3. Specify in the GCS PROFILE (filename filetype, PROFILE GCS) that the
PMX should start when GCS is IPLed. The format of the GCS command
provided by NCCF for invoking the PMX is:

NCCF START PMX PARM userid

where 'userid' is the userid of the programmable operator virtual machine. Do
this by modifying the EXEC NCCFSTRT GCS that is provided with NCCF.

If you do not specify this in the GCS PROFILE or NCCFSTRT GCS EXEC,
then the PMX must start manually after the programmable operator is started
by issuing the same GCS command. When started, the PMX ATTACHes
NCCF; that is, NCCF runs as a subtask of the PMX in the same GCS virtual
machine.

4. Run the VMFLKED EXEC with input file PROPMX LKEDCTRL to build
the PROPMX LOADLIB from which the PMX module is loaded by the NCCF
command. The PROPMX LOADLIB must then be placed on a minidisk which
is accessed by the virtual machine running PMX and NCCF. For example, it
could be placed on the same minidisk as the NCCF LOADLm. The
PROPMX LOADLm must also be "GLOBALed" (that is, GLOBAL
LOADLm PROPMX), along with the NCCF LOADLm prior to invoking the
NCCF command. This GLOBAL command can also be issued in the
NCCFSTRT GCS EXEC provided with NCCF. The commentary in the
EXEC describes how this can be done.

5. Ensure that an entry is added to the appropriate routing table files to authorize
one or more NCCF operators to be assigned as the logical operator; that is,
authorize them to issue the programmable operator LGLOPR command. For
more uses of the LGLOPR command, see the section on "Using the LGLOPR
Command".

*------------------------ -------- -------- -------- --------
*T
*E
*x
ilcT

*------------------------

S
C
o
L

* AUTHORIZE NCCF OPERATORS TO
*------------------------
/LGLOPR /
*------------------------ ---

E T
C Y
0 P
L E

CHANGE

7 30

U N
S 0
E D
R E
-------- --------
LGLOPR ASSIGNMENT
-------- --------

*NCCF
-------- --------

Figure 67. LGLOPR Command Authorization for an NCCF Operator

572 VM/SP System Programmer's Guide

A P
C A
T R
N M
-------- --------

-------- --------
DMSPOR LGLOPR
-------- --------

."
;I

(Figure 67 would authorize any NCCF operator to issue the LGLOPR
command. Restricted or specific authorization would be provided by putting
the desired NCCF operator id in the user field of the RTABLE entry.

6. A PROP command name must be supplied to NCCF through the CMDMDL
statement in the member DSICMD in the data set described by the DSIPARM
file definition

PROP CMDMDL MOD=CSIPNP

For more information on NCCF or GCS, please read the appropriate
documentation for each product.

PMX Communication Protocol

This section describes the protocol to be used by the programmable operator
facility and PMX application programs in establishing and breaking the IUCV
communications path between them. Also described are other actions relating to
this communication protocol.

Starting up:

Programmable operator: If PMX and the programmable operator have
previously been active, CONNECT to the PMX using the previously saved
userid. If a non-zero return code is received, reset any saved information
relating to the PMX. If the PMX was not previously active then the
programmable operator waits for a CONNECT PENDING interrupt from
the PMX. The programmable operator ACCEPTs only the first PMX
CONNECT.

PMX: CONNECT to the programmable operator (having obtained the
userid from the input parameters). If necessary, retry 10 times with a
1S-second wait preceding each retry.

Stopping the programmable operator:

Programmable operator: Perform a CMSIUCV SEVER, in addition to the
normal STOP processing.

PMX: Reset the saved LGLOPR identification and wait for a CONNECT
PENDING from the programmable operator.

A programmable operator abend occurs:

Programmable operator: For a programmable operator mainline abend or a
CMS system abend, CP does an implicit SEVER when the virtual machine
is re-IPLed.

PMX: Notify the NCCF logical operator, if any, and wait for a
CONNECT PENDING from the programmable operator.

A PMX abend occurs:

Chapter 42. The Programmable Operator Facility 573

I

I Stopping the PMX

Programmable operator: A SEVER is received from the PMX. Reset any
saved information relating to the PMX and if the current logical operator is
an NCCF operator, enqueue a "LGLOPR RLS" command for that
operator at the top of the programmable operator message queue. The
programmable operator then continues normal operation and waits for a
CONNECT PENDING interrupt from the PMX. When it is received, the
old PMX path is SEVERed and the new one ACCEPTed.

PMX: Notify the NCCF logical operator, if any, perform a SEVER and
wait for NCCF to terminate. (Note: NCCF will have to be CLOSEd to
restart the PMX.)

Stopping the PMX, or stopping the NCCF operator session that is controlling the
programmable operator, causes the NCCF logical operator (if any) to be implicitly
released. The programmable operator continues with the default logical operator
specified on the LGLOPR statement.

Several things could cause the PMX to stop:

• Termination of GCS
• Termination of NCCF
• Abnormal termination (abend) of the PMX.

There are no PMX commands, per se; stopping the PMX will normally be done by
stopping NCCF.

Stopping the PMX does not necessarily cause termination of NCCF (the PMX
attempts to wait until NCCF has terminated), but NCCF must be terminated
before the PMX is restarted.

574 VM/SP System Programmer's Guide

f.'\
I

"J

(

Chapter 43. Auxiliary Directories

When a disk is accessed, each module that fits the description specified on the
ACCESS command is included in the resident directory. An auxiliary directory is
an extension of the resident directory and contains the name and location of certain
CMS modules that are not included in the resident directory. These modules, if
added to the resident directory, would significantly increase its size, thus increasing
the search time and storage requirements. An auxiliary directory can reference
modules that reside on the system (S) disk; or, if the proper linkage is provided,
reference modules that reside on any other read-only CMS disk. To take
advantage of the saving in search time and storage, modules that are referenced via
an auxiliary directory should never be in the resident directory. The disk on which
these modules reside should be accessed in a way that excludes these modules.

Adding an Auxiliary Directory

To add an auxiliary directory to CMS, the system programmer must generate the
directory, initialize it, and establish the proper linkage. Only when all three tasks
are completed, can a module described in an auxiliary directory be properly
located.

Generating the Auxiliary Directory

An auxiliary directory TEXT deck is generated by assembling a set of DMSFST
macros, one for each module name. The format of the DMSFST macro is:

S (filename [,filetype]) t [,aliasnamel [,FORM=El
1 ,MODULE f

where:

filename, filetype is the name of the module whose File Status Table (FST)
information is to be copied.

aliasname is another name by which the module is to be known.

FORM=E specifies that 64-byte FST entries are to be generated
rather than 40-byte entries. Either length FST entry will
operate correctly on basic CMS. However, the 40-byte
form will not contain such information as date/time after
initialization by GENDIRT.

Chapter 43. Auxiliary Directories 575

Initializing the Auxiliary Directory

After the auxiliary directory is generated via the DMSFST macro, it must be
initialized. The CMS GENDIRT command initializes the auxiliary directory with
the name and location o(the modules to reside in an auxiliary directory. By using
the GENDIRT command, the file entries for a given module are loaded only when
the module is invoked. The format of the GENDIRT command is:

I GENDIRT I directoryname [targetmode [sourcem()de]]

where

directoryname
is the entry point of the auxiliary directory.

targetmode
is the mode of the disk containing the modules referenced in the auxiliary
directory. The letter is the mode of the disk containing the modules at
execution time, not the mode of the disk at the initialization of the
directory. At directory creation, all modules named in the directory being
generated must be on either the A-disk on a read-only extension or on the
disk specified in the sourcemode parameter. The default value for
targetmode is S, the system disk. It is your responsibility to determine the
usefulness of this operand at your installation and to inform users of
programs using auxiliary directories of the proper method(s) of access.

sourcemode
is the mode of the disk that contains the modules or files when the
GENDIRT command is issued. If not specified, 'A' is the default.

Establishing the Proper Linkage

The CMS module, DMSLAD, entry point DMSLADAD, must be called by a user
program or interface to initialize the directory search order. The subroutine,
DMSLADAD, must be called via an SVC 202 with register 1 pointing to the
appropriate PLIST. The disk containing the modules listed in the auxiliary
directory must be accessed as the mode specified, or implied, by the GENDIRT
command before the call is issued. If the GENDIRT command has not been used,
the user receives the message: "File not found" or "Error reading file."

The coding necessary for the call is:

LA Rl,PLIST
SVC 202
DC AL4(error return)

This call must be executed before the call to any module that is to be located via an
auxiliary directory.

The PLIST should be:

576 VM/SP System Programmer's Guide

(PLIST DS
DC
DC
DC

OF
CLB'DMSLADAD'
V (directoryname)
F'O'

The auxiliary directory is copied into nucleus free storage. The Active Disk Table
(ADT) for the targetmode expressed or implied by the GENDIRT command is
found and its file directory address chain (ADTFDA) is modified to include the
nucleus copy of the auxiliary directory. A flag, ADTPSTM, in ADTFLG2 is set to
indicate that the directory chain has been modified.

The address of the nucleus copy of the auxiliary directory is saved in the third word
of the input parameter list and the high order byte of the third word is set to X' 80'
to indicate that the directory search chain was modified and that the next call to
DMSLADAD is a clear request.

To reset the directory search chain, a second call is made to DMSLADAD using
the modified PLIST. DMSLADAD removes the nucleus copy of the auxiliary
directory from the chain and frees it. This call to DMSLADAD removes all
auxiliary blocks from the directory chain; there is no linkage to delete selective
auxiliary directory blocks from the chain. DMSLADAD does not, however, restore
the caller's PLIST to its initial state.

Error Handling and Return Codes

An error handling routine should be coded to handle nonzero return codes in
register 15. When register 15 contains 1 and the condition code is set to 2, the disk
specified by the targetmode operand of the GENDIRT command was not accessed
as that mode.

When register 15 contains 2 and the condition code is set to 2, the disk specified by
the targetmode operand of the GENDIRT command has not previously had its file
directory chains modified; therefore, a call to DMSLADAD to restore the chain is
invalid.

Creating an Auxiliary Directory

In this example, consider an application called PA YROLL consisting of several
modules. It is possible to put these modules in an auxiliary directory rather than in
the resident directory. It is further possible to put the auxiliary directory on a disk
other than the system disk. In this example, the auxiliary directory is placed on the
Y-disk.

First, generate the auxiliary directory TEXT deck for the payroll application using
the DMSFST macro:

Chapter 43. Auxiliary Directories 577

PAYDIRT START
DC
DC

DIRTBEG EQU
DMSFST
DMSFST
DMSFST
DMSFST
DMSFST
DMSFST
DMSFST
DMSFST
DMSFST
DMSFST
DMSFST
DC

DIRTEND EQU
END

o
F'40' LENGTH OF FST ENTRyl
A (DIRTEND-DIRTBEG) SIZE OF DIRECTORY
•
PAYROLL 1
PAYROLL 2
PAYROLL 3
PAYFICA
PAYFEDTX
PAYSTATE
PAYCITY
PAYCREDU
PAY OVERT
PAYSICK
PAYSHIFT
2A(0) POINTER TO NEXT FST BLOCK
•

1 Note: F'64' should be used if FORM=E is specified on DMSFST macro.

In this example, the payroll control program (PAYROLL), the payroll auxiliary
directory (PA YDIRT) , and all the payroll modules reside on the 194 disk.

In the payroll control module (PAYROLL), the subroutine DMSLADAD must be
called to establish the linkage to the auxiliary directory. This call must be executed
before any call is made to a payroll module that is in the PA YDIRT auxiliary
directory.

LA R1, PLIST
SVC 202
DC AL4(ERRTN)

PLIST DS . OF
DC CL8'DMSLADAD'
DC V (PAYDIRT)
DC F'O'

Next, all payroll modules must have their absolute core-image files generated and
the payroll auxiliary directory must be initialized. In the example, the payroll
control module (PAYROLL) is given a mode number of 2 while the other payroll
modules are given a mode number of 1. When the PAYROLL program is finally
executed, only the files on the 194 disk with a mode number of 2 are accessed.
This means only the PAYROLL control program (which includes the payroll
auxiliary directory) will be referenced from the resident directory. All the other
payroll modules, because they have mode numbers of 1, are referenced via the
payroll auxiliary directory.

The following sequence of commands create the absolute core-image files for the
payroll modules and initialize the payroll auxiliary directory.

578 VM/SP System Programmer's Guide

(ACCESS 194 A
LOAD PAYROLL PAYDIRT
GENMOD PAYROLL

LOADMOD PAYROLL
INCLUDE PAYROLL1
GENMOD PAYROLL1

LOADMOD PAYROLL
INCLUDE PAYSHIFT
GENMOD PAYSHIFT

LOADMOD PAYROLL
GENDIRT PAYDIRT Y

(now the auxiliary directory is included
in the payroll control module, but it is
not yet initialized.)

(this sequence of three commands is
repeated for each payroll module called
by PAYROLL.)

GENMOD PAYROLL MODULE A2

When it is time to execute the PAYROLL program, the 194 disk must be accessed
as the Y-disk (the same mode letter as specified on the GENDIRT command).
Also, the 194 disk is accessed in a way that includes the PAYROLL control
program in the resident directory but not the other payroll modules. This is done
by specifying a mode number of 2 on the ACCESS command.

ACCESS 194 Y/S * * Y2

Now, a request for a payroll module, such as PAYOVERT, can be successfully
fulfilled. The auxiliary directory will be searched and PA YOVERT will be found
on the Y -disk.

Note: A disk referred to by an auxiliary directory must be accessed as a read-only
disk.

Chapter 43. Auxiliary Directories 579 i
I

I

\~/

580 VM/SP System Programmer's Guide

Chapter 44. Assembler Virtual Storage Requirements

The minimum size virtual machine required by the assembler is 256K bytes.
However, better performance is generally achieved if the assembler is run in 320K
bytes of virtual storage. This size is recommended for medium and large
assemblies.

If more virtual storage is allocated to the assembler, the size of buffers and work
space can be increased. The amount of storage allocated to buffers and work space
determines assembler speed and capacity. Generally, as more storage is allocated
to work space, larger and more complex macro definitions can be handled.

You can control the buffer sizes for the assembler utility data sets (SYSUTl,
SYSUT2, and SYSUT3), and the size of the work space used during macro
processing, by specifying the BUFSIZE assembler option. Of the storage given, the
assembler first allocates storage for the ASSEMBLE and CMSLIB buffers
according to the specifications in the DD statements supplied by the FILEDEF for
the data sets. It then allocates storage for the modules of the assembler. The
remainder of the virtual machine is allocated to utility data set buffers and macro
generation dictionaries according to the BUFSIZE option specified:

BUFSIZE(STD):
37 percent is allocated to buffers, and 63 percent to work space. This is the
default if you do not specify any BUFSIZE option.

BUFSIZE(MIN):
Each utility data set is allocated a single 790-byte buffer. The remaining
storage is allocated to work space. This allows relatively complex macro
definitions to be processed in a given virtual machine size, but the speed of the
assembly is substantially reduced.

Overlay Structures

An overlay structure can be created in CMS in two different ways, although eMS
has no overlay supervision. For descriptions of all the CMS commands mentioned,
see the VM/SP CMS Command and Macro Reference.

Chapter 44. Assembler Virtual Storage Requirements 581

Prestructured Overlay

A prestructured overlay program is created using the LOAD, INCLUDE, and
GENMOD commands. Each overlay phase or segment is a nonrelocatable
core-image module created by GENMOD. The phases may be brought into
storage with the LOADMOD command.

A (Root Phase)

r---------~---------,<-------------Location xxxxxx

c
B

I:-------Location yyyyyy

Figure 68. An Overlay Structure

The overlay structure shown in Figure 68 could be prestructured using the
following sequence of commands (Programs A, B, C, D, and E are the names of
TEXT files; the overlay phases will be n'amed Root, Second, Third, etc.):

LOAD A B
GENMOD ROOT . (FROM A TO B STR)
GENMOD SECOND (FROM B)
LOADMOD ROOT
INCLUDE C D
GENMOD THIRD (FROM C TO D)
GENMOD FOURTH (FROM D)
LOADMOD THIRD
INCLUDE E
GENMOD FIFTH (FROM E)

The programmer need not know the storage address where each phase begins. A
TEXT file can be made to load at the proper address by reloading earlier phases.
In the foregoing example, the command sequences, "LOADMOD
ROOT/INCLUDE CD" and "LOADMOD THIRD/INCLUDE E," cause TEXT
files C, D, and E to load at the proper addresses.

If the root phase contains address constants to the other phases, one copy of the
root must be kept in storage while each of the other phases is brought in by the
LOAD or INCLUDE commands without an intervening GENMOD. The root
phase is then processed by GENMOD after all address constants have been
satisfied. In this case, the programmer must know the address where non-root
phases begin (in Figure 68, locations xxxxxx and yyyyyy). The following sequence
of commands could be used:

582 VM/SP System Programmer's Guide

.~ /

(

(

LOAD A B
GENMOD SECOND (FROM B)
INCLUDE C D (ORIGIN xxxxxx)
GENMOD THIRD (FROM C TO D)
GENMOD FOURTH (FROM D)
INCLUDE E (ORIGIN yyyyyy)
GENMOD FIFTH (FROM E)
LOAD A B
INCLUDE C D (ORIGIN xxxxxx)
INCLUDE E (ORIGIN yyyyyy)
GENMOD ROOT (FROM A TO C STR)

The ORIGIN option of the INCLUDE command is used to cause the included file
to overlay a previously loaded file. The address at which a phase begins must be a
doubleword boundary. For example, if the root phase were X'2BD' bytes long,
starting at virtual storage location X' 20000', then location xxxxxx would be the
next doubleword boundary, or X'202CO'.

The STR option, which is specified in the GENMOD of the root phase, specifies
that whenever that module is brought into storage with the LOADMOD command,
the Storage Initialization routine should be invoked. This routine initializes user
free storage pointers.

At execution time of the prestructured overlay program, each phase is brought into
storage with the LOADMOD command. The phases can call LOADMOD. The
OS macros LINK, LOAD, and XCTL normally invoke the INCLUDE command,
which loads TEXT files. These macros will invoke LOADMOD if a switch, called
COMPSWT,bin the CMS Nucleus Constant area, NUCON, is turned on.

With COMPSWT set, overlay phases that use LINK, LOAD, and XCTL must be
prestructured MODULE files.

Dynamic Load Overlay

The dynamic load method of using an overlay structure is to have all the phases in
the form of relocatable object code in TEXT files or members of a TEXT library,
filetype TXTLIB. The OS macros, LINK, LOAD, and XCTL may then be used to
pass control from one phase to another. The XCTL macro causes the calling
program to be overlayed by the called program except when it is issued from the
root phase. When issued from the root phase, CMS treats XCTL as it would a
LINK macro, adding the new code at the end of the root phase.

The COMPSWT flag in OSSFLAGS must be off when the dynamic load method is
used.

Chapter 44. Assembler Virtual Storage Requirements 583

I 584 VM/SP System Programmer's Guide
!

Part 3. Debugging with VM/SP

This section describes tools for debugging programs written to run under control of
the CMS operating system. Both CP and CMS debugging facilities can be used to
debug these types of programs.

Programs that are written to run under the GCS supervisor must be debugged in
the GCS environment. GCS provides a unique set of debugging facilities that are
described in the VM / SP Group Control System Guide. A subset of CP debugging
commands can also be used to debug programs in the GCS environment. These
are also listed in the VM/SP Group Control System Guide. Their syntax and
descriptions are in this book.

Part 3, the debugging section, contains the following information:

Introductory Information

How to start debugging
• How to use VM/SP facilities to debug abends, unexpected results, loops, and

waits
• Summary of VM/SP debugging tools

Comparison of CP and CMS debugging tools.

Control Program (CP) Information

•
•
•
•

\ :

Debugging CP on a virtual machine
Commands useful in debugging
CP internal trace table
Restrictions
Abend dumps
Reading CP abend dumps
CP Control block summary
Trapping improper use of CP free storage
Using CPTRAP to debug.

Part 3. Debugging with VM/SP 585

I Conversational Monitor System (CMS) Information

• Debugging commands
• Nucleus load map
• Reading CMS abend dumps
• CMS Control block summary.

586 VM/SP System Programmer's Guide

(

Chapter 45. Introduction to Debugging

The VM/SP Program Product manages the resources of a single computer such
that multiple computing systems appear to exist. Each "virtual computing system",
or virtual machine, is the functional equivalent of an IBM System/370. Therefore,
the person trying to determine the cause of a VM/SP software problem must
consider three separate areas:

1. The Control Program (CP), which controls the resources of the real machine.

2. The virtual machine operating system running under the control of CP, such as
CMS, RSCS, as, or DOS.

3. The problem program, which executes under the control of a virtual machine
operating system.

Information explaining how to debug CP or CMS is contained in this book;
information explaining how to debug applications programs is in the VM / SP CMS
User's Guide. For information explaining how to use IPCS (Interactive Problem
Control System) for debugging, refer to the VM / SP Interactive Problem Control
System Guide.

If an IPCS problem is caused by a virtual machine operating system (other than CP
or CMS), refer to the publications pertaining to that operating system for specific
information. However, use the CP debugging facilities, such as the CP commands,
to perform the recommended debugging procedures discussed in the other
publication.

If it becomes necessary to apply a PTF (Program Temporary Fix) to a component
of VM/370 or VM/SP, refer to the VM/SP Installation Guide for detailed
information on applying PTFs.

How To Start Debugging

Before you can correct any problem, you must recognize that one exists. Next, you
must identify the problem, collect information, and determine the cause so that the
problem can be fixed. When running VM/SP, you must also decide whether the
problem is in CP, the virtual machine, or the problem program.

A good approach to debugging is:

1. Recognize that a problem exists.

Chapter 45. Introduction to Debugging 587

2. Identify the problem type and the area affected.

3. Analyze the data you have available, collect more data if you need it, then
isolat~ the data that pertains to your problem.

4. Finally, determine the cause of the problem and correct it.

Does a Problem Exist?

There are four types of problems:

1. Loop
2. Wait state
3. Abend (abnormal end)
4. Incorrect results.

The most obvious indication of a problem is the abnormal termination of a
program. Whenever a program abnormally terminates, a message is issued.
FigUre 69 lists the possible abend messages and identifies the type of abend for
these messages.

Message· Type of Abend
(A~arm rings) CP abend, system dumps to disk. Restart is

DMKDMP9081 SYSTEM FAILURE CODE xxxxxx automatic.
DMKCKP90QW SYSTEM RECOVERY FAILURE; If the checkpoint program encounters a

PROGRAM CHECK program check, a machine check, a fatal I/O DMKCKP901W SYSTEM RECOVERY FAILURE;
MACHINE CHECK, RUNSEREP: error, or an error relating to a certain warm

DMKCKP902W SYSTEM RECOVERY FAILURE; start ar~a or warm start data conditions, a
FATAL I/O ERROR - NUCL AREA message is issued indicating the error and CP

- WARM AREA enters the wait state with code 007 in the DMKCKF924W SYSTEM RECOVERY FAILURE;
INVALID SPOOLING DATA PSW.

DMKCKH910W SYSTEM RECOVERY FAILURE;
INVALID WARM .START CYLINDER

DMKCKH911W SYSTEM RECOVERY FAILURE;
WARM START AREA FULL

Figure 69 (Part 1 of 3). Abend Messages

588 VM/SP System Programmer's Guide

(

(....

Message
DMKCKT903W SYSTEM RECOVERY FAILURE;

VOLID xxxxxx ALLOCATION ERROR
CYLINDER xxx

DMKCKT912W SYSTEM RECOVERY FAILURE;
VOLID xxxxxx NOT MOUNTED

DMKCKV912W SYSTEM RECOVERY FAILURE;
VOLID xxxxxx NOT MOUNTED

DMKCKS91SE PERMANENT I/O ERROR ON
CHECKPOINT AREA

DMKCKT916E ERROR ALLOCATING SPOOL FILE
BUFFERS

DMKCKV916E ERROR ALLOCATING SPOOL FILE
BUFFERS

DMKCKV917E CHECKPOINT AREA INVALID;
CLEAR STORAGE AND COLD START

DMKWRM921W SYSTEM RECOVERY FAILURE;
UNRECOVERABLE I/O ERROR

DMKWRM903W SYSTEM RECOVERY FAILURE;
VOLID xxxxxx ALLOCATION ERROR
CYLINDER xxx OR PAGE xxxxxx

DMKWRM904W SYSTEM RECOVERY FAILURE;
INVALID WARM START DATA

DMKWRM912W SYSTEM RECOVERY FAILURE;
VOLID xxxxxx NOT MOUNTED

DMKWRM920W NO WARM START DATA; CKPT
START FOR RETRY

DMKDMP9081 SYSTEM FAILURE, CODE xxx xxx
DMKCKP9601 SYSTEM WARM START DATA SAVED
DMKCKP961W SYSTEM SHUTDOWN COMPLETE

OPTIONAL MESSAGES:

DMKDMP90SW SYSTEM DUMP FAILURE;
PROGRAM CHECK

DMKDMP906W SYSTEM DUMP FAILURE;
MACHINE CHECK, RUN SEREP

DMKDMP907W SYSTEM DUMP FAILURE; FATAL
I/O ERROR

DMKMCH610W MACHINE CHECK SUPERVISOR
DAMAGE

DMKMCT610W MACHINE CHECK SUPERVISOR
DAMAGE

DMKMCH611W MACHINE CHECK SYSTEM
INTEGRITY LOST

DMKMCT611W MACHINE CHECK SYSTEM
INTEGRITY LOST

Figure 69 (Part 2 of 3). Abend Messages

Type of Abend

If the checkpoint start program encounters a
severe error, a message is issued indicating
the error and CP enters the wait state with
code OOE in the PSW.

If the warm start program encounters a
severe error, a message is issued indicating
the error and CP enters the wait state with
code 009 in the PSW.

CP abend, system dumps to tape or printer.
The system stops; the operator must IPL the
system to start again.

If the dump program encounters a program
check, a machine check, or a fatal I/O error,
a message is issued indicating the error. CP
enters the wait state with code 003 in the
PSW.

If the dump cannot find a defined dump
device and if no printer is defined for the
dump, CP enters a disabled wait state with
code 004 in the PSW.

CP termination with wait state.

The machine check handler encountered an
unrecoverable error with the VM/SP control
program.

The machine check handler encountered an
error that cannot be diagnosed; system
integrity, at this point, is not reliable.

Chapter 45. Introduction to Debugging 589

Message Type of Abend
DMKMCH612W MACHINE CHECK; TIMING An error has occurred in the timing facilities.

FACILITIES DAMAGE; RUN SEREP Probable hardware error.
DMKMCT620I MACHINE CHECK; ATTACHED A malfunction alert, clock error or instruction

PROCESSOR NOT BEING USED processing error occurred on the attached
processor. The system continues to run in
uniprocessor mode.

DMKMCH622W MACHINE CHECK; MULTIPLE CP termination without automatic restart.
CHANNEL ERRORS

DMKACR622W MACHINE CHECK; MULTIPLE
CHANNEL ERRORS

DMKCCH603W CHANNEL ERROR, RUN SEREP, On a 303x processor, an error affecting one
RESTART SYSTEM or more channels in a channel group has

occurred. CP enters a disabled wait state
with code 001 in the PSW.

DMKACR603W CHANNEL ERROR, RUN SEREP, There was a channel check condition from
RESTART SYSTEM which the channel check handler could not

recover. CP enters the wait state with code
002 in the PSW.

DMKOPE955W INSUFFICIENT STORAGE FOR The generated system requires more real
VM/SP storage than is available. CP enters the

disabled wait state with code OOD in the
PSW.

DMKMCH622W MACHINE CHECK; MULTIPLE There was a group error machine check from
CHANNEL ERRORS which the machine check handler could not

recover. CP enters a wait state with code
001 in the PSW.

DMSABN148T SYSTEM ABEND xxx CMS abend, system will accept commands
CALLED FROM xxxxxx from the terminal. Enter the DEBUG

command and then the DUMP subcommand
to have CMS dump storage on the printer.

Others When OS or DOS abnormally terminates on a
Refer to OS and DOS publications virtual machine, the message issued and the
for the abnormal termination messages. dumps taken are the same as they would be if

OS or DOS abnormally terminated on a real
machine.

Figure 69 (Part 3 of 3). Abend Messages

Another obvious indication of a problem is unexpected output. If your output is
missing, incorrect, or in a different format than expected, some problem exists.

Unproductive processing time is another symptom of a problem. This problem is
not easily recognized, especially in a time-sharing environment.

590 VM/SP System Programmer's Guide

(Identifying the Problem

Two types of problems are easily identified: abnormal termination is indicated by
an error message, and unexpected results become apparent once the output is
examined. The looping and wait state conditions are not as easily identified.

When using VM/SP, you are normally sitting at a terminal. You may have a
looping condition if your program takes longer to execute than you anticipated.
Also, check your output. If the number of output records or print lines is greater
than expected, the output may really be the same information repeated many times.
Repetitive output usually indicates a program loop.

Another way to identify a loop is to periodically examine the current PSW. If the
PSW instruction address always has the same value, or if the instruction address
has a series of repeating values, the program probably is looping.

The wait state is also difficult to recognize when at the terminal. If your program is
taking longer than expected to execute, the virtual machine may be in a wait state.
Display the current PSW on the terminal. Periodically, issue the CP command

QUERY TIME

and compare the elapsed processing time. When the elapsed processing time does
not increase, the wait state probably exists.

Figure 70 helps you to identify problem types and the areas where they may occur.

Analyzing the Problem

Once the type of problem is identified, its cause must be determined. There are
recommended procedures to follow. These procedures are helpful, but do not
identify the cause of the problem in every case. Be resourceful. Use whatever data
you have available. If the cause of the problem is not found after the
recommended debugging procedures are followed, it may be necessary to
undertake the tedious job of desk-checking.

The section "How To Use VM/SP Facilities To Debug" describes procedures to
follow in determining the cause of various problems that can occur in the Control
Program or in the virtual machine. See the VM/SP eMS User's Guide for
information on using VM/SP facilities to debug a problem program.

If it becomes necessary to apply a Program Temporary Fix (PTF) to a VM/370 or
VM/SP component, refer to the VM/SP Installation Guide for detailed information
on applying PTFs. Figure 71, Figure 72, and Figure 73 summarize the debugging
process from identifying the problem to finding the cause.

Chapter 45. Introduction to Debugging 591

Problem
Type

Abend

Unexpected
Results

Wait

Loop

Where
Abend Occurs

CP abend
CMS abend

Virtual
machine
abend (other
than CMS)

CP

Virtual
machine

CP
LOADER
RSCS

CP disabled
loop

Virtual
machine
disabled loop

Distinguishing Characteristics

For a complete discussion of reasons for abends and system
programmer's actions, see the CP and CMS abend codes charts in
VM/SP System Messages and Codes.

When OS or DOS abnormally terminates on a virtual machine, the
messages issued and the dumps taken are the same as they would be if
OS or DOS abnormally terminated on a real machine.

VM/SP may terminate or reset a virtual machine if a nonrecoverable
channel check or machine check occurs in that virtual machine. One
of the following messages:

DMKMCH616I MACHINE CHECK; USER userid TERMINATED
DMKCCH604I CHANNEL ERROR; DEV XXX; USER

userid; MACHINE RESET

is sent to the system operator at the processor console. Also, the
virtual user is notified by one of the following messages that his
virtual machine was terminated or reset:

DMKMCH619I MACHINE CHECK; OPERATION TERMINATED
DMKCCH6061 CHANNEL ERROR; OPERATION TERMINATED

If an operating system, other than CMS, executes properly on a real
machine, but not properly with CP, a problem exists. Inaccurate data
on disk or system files (such as spool files) is an error.

If a program executes properly under the control of a particular
operating system on a real machine, but does not execute correctly
under the same operating system with VM/SP, a problem exists.

For a complete discussion of CP, and loader wait state codes, see
VM/SP System Messages and Codes. For RSCS wait state codes, see
the RSCS manual, Operation and Use.

The processor console wait light is off. The problem state bit of the
real PSW is off. No I/O interrupts are accepted.

The program is taking longer to execute than anticipated. Signaling
attention from the disabled loop terminal does not cause an interrupt
in the virtual machine. The virtual machine operator cannot
communicate with the virtual machine's operating system by signalling
attention.

Figure 70 (Part 1 of 2). VM/SP Problem Types

592 VM/SP System Programmer's Guide

/

(Problem Where
Type Abend Occurs Distinguishing Characteristics

Virtual Excessive processing time is often an indication of a loop. Use the
machine CP QUERY TIME command to check the elapsed processing time.
enabled loop In eMS, the continued typing of the blip characters indicates that

processing time is elapsing. If time has elapsed, periodically display
the virtual PSW and check the instruction address. If the same
instruction, or series of instructions, continues to appear in the PSW,
a loop probably exists.

Figure 70 (Part 2 of 2). VM/SP Problem Types

Chapter 45. Introduction to Debugging 593

Is there an ABAND condition?

a If the message
DMKDMP9081
SYSTEM FAILURE, CODE
XXXXXX appears on the console
and the alarm rings, this is a CP
ABEND. The system dumps to disk
or to the printer if the set dump E
command has been issued, and
automatically performs IPL.~'

II If the messages
DMKDMP9081
SYSTEM FAILURE CODE
XXXXXX
DMKCKP9601 SYSTEM
WARMSTART DATA SAVED
DMKCKP961W SYSTEM SHUT
DOWN COMPLETE appear on the
console, this is a CP ABEND. The
system dumps to tape or printer r5.:l
and stops. • V

II If the message
DMSABN148T SYSTEM ABEND
XXX, CALLED FROM YYYYYY
appears on the terminal, this is a ["5;:;l
CMS ABEND. • '0

a If an ABEND message from the
• virtual machine appears on the ter

minal, this is a ABEND in the oper-
ating system controlling this virtual rs;;;l
machine. .~

II Otherwise, an ABEND condition
does not exist. GO TO

Does a problem exist?

YES

No problem exists

Unexpected Results?

II If an operating system which executes
properly on a real machine fails to execute·
properly under VM/SP, there are J'5:l
unexpected results in CPo ~

Figure 71. Does a Problem Exist?

II If a program which executes under the
control of an operating system on a real
machine fails to ex"cute correctly with
the same operating system under VM/SP,
there are unexpected results in the ['5:l
virtual machine. P~

II If the program's output is inaccurate or
missing, there are unexpected results in
the problem program.

If the output is redu ndant check
for a loop.,---------.-{

II Otherwise, check for a wait or loop.

594 VM/SP System Programmer's Guide

Excessive time has elapsed.

II If pressing the REQUEST key on the
operator's console leaves the REQUEST
PENDING light on, a CP disabled wait
state exists. The CPU console light f'4':1
will be on. .~

II If the CPU console wait light is on t~
system is in a CP enabled wait state, ~

II If the real PSW problem bit is OFF, r:;:l
there is a CP loop. • ~

II If any of the following messages
DMKDSP450W CP ENTERED;
DISABLED WAIT PSW, DMKDSP451W
CP ENTERED; INVALID PSW,
DMKDSP452W CP ENTERED;
EXTERNAL INTERRUPT LOOP
DMKPRG453W CP ENTERED;
PROGRAM INTERRUPT LOOP
appears on the terminal, there is a
disabled wait or an interrupt loop ~
in the virtual machine. ..V

II If pressing the ATTN key once does not
cause an interrupt, there is a~
loop in the virtual machine. . ~ .If processing has ceased in the virtual

ail machin" without reaching end of job,
the virtual machine is in an enabled
wait state and no I/O interrupt r4.:l
has occurred. .v

a If processing time exceeds normal
expectations the virtual ma~
may have an enabled loop. . ~

.. Otherwise, '

Debug Procedures for a Wait

CP Disabled Wait

Use ALTER/DISPLAY console mode (if available), to display real PSW.
Also, display general and extended control registers and storage
locations X'OO'- X'1 0'.

II Force a SYSTEM RESTART to cause a CP ABEND dump to be taken.

II IPL.

II

11

CP Enabled Wait

Force a SYSTEM RESTART to cause a CP ABEND dump to be taken.

Use the dump to check the status of each VMBLOK. Also, check
RCHBLOK, RCUBLOK, and RDEVBLOK for each device.

Virtual Machine Disabled Wait

Use CP commands (CMS users may use the CMS DEBUG command) to
display the PSW, CSW, general registers, and control registers.

Use the CP DUMP or CP VMDUMP command (or CMS DUMP subcommand)
to take a dump.

Virtual Machine Enabled Wait

Take a dump using the CP DUMP or CP VMDUMP command.

Debug Procedures for a Loop

CP Loop

II
II

II
II
II

Use AL TER/DISPLA Y console mode (if available) to display real PSW,
general registers, control registers, and storage locations X'OO- X'1 0'.

Force a SYSTEM RESTART to cause a CP ABEND dump to be taken.

Examine the CP internal trace table to see where the loop is.

Virtual Machine Disabled Loop

Use the CP TRACE or CP PER command to trace the loop.

Display the general registers and control registers via the CP DISPLAY
command.

Take a dump using the CP DUMP or CP VMDUMP command.

Examine the source code.

Virtual Machine Enabled Loop

L.... __ + ... II Trace the loop, using CP TRACE or CP PER.

II Display the PSW, general registers, and extended control registers.

II Take a dump. using CP DUMP or CP VMDUMP command.

II Examine the source code.

Figure 72. Debug Procedures for Waits and Loops

Chapter 45. Introduction to Debugging 595

Debug Procedures for Unexpected Results

Unexpected Results in CP

Check that the program is not violating any CP restrictions.

Check that the program and operating system running on the virtual.
machine are exactly the same as those that ran on the real machine.

Use the CP TRACE command to trace CCWS, SIOs, and interrupts. Look
for an error in CCW translation or interrupt reflection.

If disk I/O error, use the CP DDR (DASD Dump Restore) program to
print the contents of any disk.

Unexpected Results in a Virtual Machine ---------------1
Check that the program executing on the virtual machine is exactly the
same as the one that ran on the real machine.

II Make sure that operating system restrictions are not violated.

II Use CP TRACE to trace all I/O operations.

Debug Procedures for an ABEND

CPABEND

II
II

~~ill

II
II

Find out why CP abnormally terminated. Examine the PROPSW, INTPR,
SVCOPSW, and CPABEND fields in the PSA from the dump.

Identify the module that caused the ABEND. Examine the SAVEAREA,
BALRSAVE, and FREESAVE areas of the dump.

If I/O operation, examine the real and virtual I/O control blocks.

CMSABEND

Determine reason for ABEND from code in ABEND message DMSABN148T.

Enter debug environment or CP console function mode to use the
commands, to display the PSW, and to examine low storage areas:

LASTLMOD and LASTTMOD
LASTCMND and PREVCMND
LASTEXEC and PREVEXEC and DEVICE

Look at the last instruction executed. Take dump if need be.

Virtual Mach'ine ABEND (other than CMS)

Examine dump, if there is one.

Use CP commands to examine registers and control words.

Use CP TRACE or CP PER to trace the processing up to the point where
the error occurred.

Figure 73. Debug Procedures for Unexpected Results and an Abend

596 VM/SP System Programmer's Guide

\'" ."./

(
How To Use VM/SP Facilities To Debug

Abend

CPAbend

Once the problem and the area where it occurs are identified, you can gather the
information needed to determine the cause of the problem. The type of
information you want to look at varies with the type of problem. The tools used to
gather the information vary depending upon the area in which the problem occurs.
For example, if the problem is a loop condition, you will want to examine the PSW.
For a CP loop, you have to use the operator's console to display the PSW, but for a
virtual machine loop you can display the PSW via the CP DISPLAY command.

The following sections describe specific debugging procedures for the various error
conditions. The procedures tell you what to do and what debug tool to use. For
example, the procedure may say dump storage using the CP DUMP command.
The procedure does not tell you how to use the debug tool. Refer to "An
Overview of VM/SP Commands That Can Be Used for Debugging" and "CMS
Debugging Commands" sections for a detailed description of each debug tool,
including how to invoke it.

Three types of abnormal terminations (abend) can occur on VM/SP: CP abends,
CMS abends, or virtual machine abends. The following description provides
guidelines for debugging each type of abend.

When the VM/SP Control Program abnormally terminates, a dump is taken. This
dump can be directed to tape or printer, or dynamically allocated to a direct access
storage device. The output device for a CP abend dump is specified by the CP
SET DUMP command. See the "Abend Dumps" section for a description of the
SET DUMP command.

Use the dump to determine why the control program terminated and then
determine how to correct the condition. See the "Reading CP Abend Dumps"
discussion for detailed information on reading a CP abend dump. You can view
the dump interactively, using IPCS.

Reason for the Abend: CP will terminate and take an abnormal termination dump
under three conditions:

1. Program Check in CP

Examine the PROPSW and INTPR fields in the prefix storage area (PSA) to
determine the failing module.

2. Module Issuing an SVC 0

Examine the SVC old PSW (SVCOPSW) and abend code (CPABEND) fields
in the Prefix Storage Area to determine the module that issued the SVC 0 and
the reason it was issued.

Chapter 45. Introduction to Debugging 597

CMSAbend

CP ABEND contains an abnormal termination code. The first three characters
identify the failing module (for example, abend code TRCOOI indicates
DMKTRC is the failing module).

3. Operator forcing a CP system restart on Processor Console

Examine the old PSW at location X' 08' to find the location of the instruction
that was executing when the operator forced a CP system restart. The
operator forces a CP system restart when CP is in a disabled wait state or loop.
(Refer to your processor manual for the appropriate method to force a CP
system restart.) procedure

Note: The same conditions that cause an abnormal termination on a
uniprocessor configuration cause an abnormal termination on an attached
processor.

Examine Low Storage Areos: The information in low storage specifies the status of
the system at the time CP terminated. Status information is stored in the PSA.
You should be able to tell the module that was executing by looking at the PSA.
Refer to the appropriate save area (SA VEAREA, BALRSA VE, or FREESA VB)
to see how that module started to execute. The PSA is described in VM / SP Data
Areas and Control Block Logic Volume 1 (CP).

Examine the real and virtual control blocks to find the status of I/O operations.
Figure 76 shows the relationship of CP control blocks.

If you are using IPCS to view the dump, you can use the the IPCS TRACE
subcommand. For details, see the VM / SP Interactive Problem Control System
Guide.

Examine the CP internal trace table. This table can be extremely helpful in
determining the events that preceded the abend. The "CP Internal Trace Table"
description tells you how to use the trace table.

The values in the general registers can help you to locate the current IOBLOK and
VMBLOK and the save area. Refer to "Reading CP Abend Dumps" for detailed
information on the contents of the general registers.

If the program check old PSW (PROPSW) or the SVC old PSW (SVCOPSW)
points to an address beyond the end of the resident nucleus, the module that caused
the abend is a pageable module. Refer to "Reading CP Abend Dumps" to find out
how to identify that pageable module. Use the CP load map that was created when
the VM/SP system was generated to find the address of the end of the resident
nucleus.

When CMS abnormally terminates, any abend exit routines established via the
ABNEXIT macro receive control. These exit routines allow you to bypass CMS
abend recovery and continue processing elsewhere. If no routine exists or the exit
routine returns to CMS, the following error message appears on the terminal:

DMSABN148T SYSTEM ABEND xxx CALLED FROM yyyyyy

598 VM/SP System Programmer's Guide

;i

(-

where xxx is the abend code and yyyyyy is the address of the instruction causing
the abend. The DMSABN module issues this message. Then, CMS waits for a
command to be entered from the terminal.

Because CMS is an interactive system, you will probably want to use its debug
facilities to examine status. You may be able to determine the cause of the abend
without taking a dump.

The debug program is located in the resident nucleus of CMS and has its own save
and work areas. Because the debug program itself does not alter the status of the
system, you can use its options knowing that routines and data cannot be overlaid
unless you specifically request it. Likewise, you can use the CP commands in
debugging knowing that you cannot inadvertently overlay storage because the CP
and CMS storage areas are completely separate.

Reason for the Abend: First determine the reason CMS abnormally terminated.
There are four types of CMS abnormal terminations:

1. Program Exception

Control is given to the DMSITP routine whenever a hardware program
exception occurs. If a routine other than a SPIE exit routine is in control,
DMSITP issues the message

DMSITP141T xxxxxxxx EXCEPTION OCCURRED AT xxxxxx IN
ROUTINE xxxxxxxx

and invokes DMSABN (the abend routine). The abend code is OCx, where x is
the program exception number (0 through F). The possible programming
exceptions are:

Code Meaning
o Imprecise
1 Operation
2 Privileged operation
3 Execute
4 Protection
5 Addressing
6 Specification
7 Decimal data
8 Fixed-point overflow
9 Fixed-point divide
A Decimal overflow
B Decimal divide
C Exponent overflow
D Exponent underflow
E Significance
F Floating-point divide

2. ABEND Macro

Control is given to the DMSSAB routine whenever a user routine executes the
ABEND macro. The abend code specified in the ABEND macro appears in
the abnormal termination message DMSABNI48T.

Chapter 45. Introduction to Debugging 599

3. Halt Execution command (HX)

Whenever the virtual machine operator signals attention and types HX, CMS
terminates and types "CMS".

4. System Abend

A CMS system routine can abnormally terminate by issuing the DMSABN
macro. The first three hexadecimal digits of the system abend code appear in
the CMS abend message, DMSABN148T. The format of the DMSABN macro
is:

[label]

where:

label

code

(reg)

DMSABN code [TYPCALL= [~~iR]] (reg)

is any valid Assembler language label.

is the abnormal termination code (0 through FFF) that appears in the
DMSABN148T system termination message.

is the register containing the abnormal termination code.

TYPCALL= [SVC]
BALR

specifies how control is passed to the abnormal termination routine,
DMSABN. Routines that do not reside in the nucleus should use
TYPCALL=SVC to generate CMS SVC 203 linkage. Nucleus-resident
routines should specify TYPCALL=BALR so that a direct branch to
DMSABN is generated.

If a CMS SVC handler abnormally terminates, that routine can set an abend flag
and store an abend code in NUCON (the CMS nucleus constant area). After the
SVC handler has finished processing, the abend condition is recognized. The
DMSABN abend routine types the abend message, DMSABN148T, with the abend
code stored in NUCON.

What to do when eMS Abnormally Terminates: After an abend, two courses of
action are available in CMS. In addition, by signalling attention, you can enter the
CP command mode and use CP's debugging facilities.

Two courses of action available in CMS are:

1. Issue the DEBUG command and enter the debug environment. After using all
the DEBUG subcommands that you wish, exit from the debug environment.

600 VM/SP System Programmer's Guide

~j

(

Then, either issue the RETURN command to return to DMSABN so that
abend recovery will occur, or issue the GO command to resume processing at
the point the abend occurred.

2. Issue a CMS command other than DEBUG, and the abend routine, DMSABN,
performs its abend recovery and then passes control to the DMSINT routine to
process the command just entered.

The abend recovery function performs the following functions, in sequence:

1. Clears the console input buffer and program stack.

2. Terminates all VMCF activity.

3. Reinitializes the SVC handler, DMSITS, and frees all stacked save areas.

4. Clears the auxiliary directories, if any. Invokes "FINIS * * *", to close all files,
and to update the master file directory.

5. Zeroes out EXECFLAG and frees CMS EXEC global storage.

6. Zeroes out the MACLm directory pointers.

7. Frees the CMS work area, if the CMS subset was active.

8. Issues the STAB, SPIE, TTIMER, and STAX macros to cancel any outstanding
OS exit routines. Frees any TXTLm, MACLIB, or LINK tables.

9. Calls with a purge PLIST, all nucleus extensions that have the "SERVICE"
attribute defined.

10. Drops all nucleus extensions that do not have the "SYSTEM" attribute. Also
drops any nucleus extensions that are in type user storage.

11. Frees all non-system SCBLOCKs associated with SUBCOM.

12. Frees all non-system EXISBLKs.

13. Clears all immediate commands that are not nucleus extensions with the
"SYSTEM" attribute. Returns all associated free storage.

14. Frees all storage of type user.

15. Zeroes out all interrupt handler pointers in IOSECT.

16. Turns the SVCTRACE command off.

17. Closes the virtual punch and printer. Closes the virtual reader with the HOLD
option.

18. Zeroes out all FCB, DOSCB, and LABSECT pointers.

19. Reinitializes the VSE lock table used by CMS/DOS and CMS/VSAM.

Chapter 45. Introduction to Debugging 601

20. Zeroes out all OS loader blocks, and frees the FETCH work area.

21. Disables the CMS IUCV environment, and frees CMS IUCV system storage.

22. Clears all ABNEXIT set and frees storage.

23. Computes the amount of system free storage that should be allocated and
compares this amount with the amount of free storage actually allocated.
Types a message to the user if the two amounts are unequal.

24. Issues a STRINIT if all storage is accounted for.

After abend recovery has been completed, control passes to DMSINT at entry
point DMSINT AB to process the new command that was typed in.

When the amount of storage actually allocated is less than the amount that should
be allocated, the message

DMSABN149T xxx x DOUBLEWORDS OF SYSTEM STORAGE
HAVE BEEN DESTROYED

appears on the terminal. If the amount of storage actually allocated is greater than
the amount that should be allocated, the message

DMSABN150W nnn (HEX xxx) DOUBLEWORDS OF SYSTEM STORAGE
WERE NOT RECOVERED

A Debugging Procedure: When a CMS abend occurs, use the DEBUG
subcommands or CP commands to examine the PSW and specific areas of low
storage. For instructions on how to use the CMS debug commands, see "CMS
Debugging Commands" in this section. For instructions on how to use the CP
commands, see "An Overview of VM/SP Commands that can be Used for
Debugging" in this section. See Figure 75 for a comparison of the CP and CMS
debugging facilities.

The following procedure may be useful in determining the cause of a CMS abend:

1. Display the PSW. (Use the CP DISPLAY command or CMS DEBUG PSW
subcommand.) Compare the PSW instruction address with the current CMS
load map trying to determine the module that caused the abend. The CMS
storage-resident nucleus routines reside in fixed storage locations.

Also check the interruption code in the PSW.

2. Examine areas of low storage. The information in low storage can tell you
more about the cause of the abend.

Field

LASTLMOD

602 VM/SP System Programmer's Guide

Contents

Contains the name of the last module loaded into storage
via the LOADMOD command.

(LASTTMOD

LASTCMND

PREVCMND

LASTEXEC

PREVEXEC

DEVICE

Contains the name of the last module loaded into the
transient area.

Contains the name of the last command issued from the
CMS or XEDIT command line. If a command issued in a
CMS EXEC abnormally terminates, this field contains the
name of the command. When a CMS EXEC completes,
this field contains the name 'EXEC'. EXEC 2 and System
Product Interpreter do not update this field.

Contains the name of the next-to-Iast command issued from
the CMS or XEDIT command line. If a command issued in
a CMS EXEC abnormally terminates, this field contains the
name 'EXEC'. When a CMS EXEC completes, this field
contains the last command issued from the CMS EXEC.
EXEC 2 and System Product Interpreter do not update this
field.

Contains the name of the last CMS EXEC procedure.
EXEC 2 and System Product Interpreter do not update this
field.

Contains the name of the next-to-last CMS EXEC
procedure. EXEC 2 and System Product Interpreter do not
update this field.

Identifies the device that caused the last I/O interrupt. The
low storage areas examined depend on the type of abend.

3. Once you have identified the module that caused the abend, examine the
specific instruction. Refer to the listing.

4. If you have not identified the problem at this time, take a dump by issuing the
debug DUMP subcommand. Refer to "Reading CMS Abend Dumps" for
information on reading a CMS dump. If you can reproduce the problem, try
the CP or CMS tracing facilities.

Virtual Machine Abend (Other than eMS)

The abnormal termination of an operating system (such as OS or DOS) running
under VM/SP appears the same as termination of the operating system on a real
machine. Refer to publications for that operating system for debugging
information. However, all of the CP debugging facilities may be used to help you
gather the information you need. Because certain operating systems (OS/VSl,
OS/VS2, and DOS/VS) manage their virtual storage themselves, CP commands
that examine or alter virtual storage locations should be used only in virtual=real
storage space with OS/VSl, OS/VS2, and DOS/VS.

The VMDUMP command dumps virtual storage to a specified virtual machine's
reader spool file. The IPCS component of VM/SP may be used to process the file
created by the VMDUMP command. For details, see the VM / SP Interactive
Problem Control System Guide.

Chapter 45. Introduction to Debugging 603

/,,,----....

If you choose to run a stand-alone dump program to dump the storage in your \,-j
virtual machine, be sure to specify the NOCLEAR option when you issue the CP
IPL command. At any rate, a portion of your virtual storage is overlaid by CP's
virtual IPL simulation.

If the problem can be reproduced, it may be helpful to trace the processing using
the CP TRACE or CP PER commands. Also, you can set address stops, and
display and alter registers, control words (such as the PSW), and data areas. The
CP commands can be very helpful in debugging because you can gather
information at various stages in processing. A dump is static and represents the
system at only one particular time. Debugging on a virtual machine can often be
more flexible than debugging on a real machine.

VM/SP may terminate or reset a virtual machine if a non-recoverable machine
check occurs in that virtual machine. Hardware errors usually cause this type of
virtual machine termination. The following message:

DMKMCH616I MACHINE CHECK; USER userid TERMINATED

appears on the processor console.

If the message:

DMKMCT621I AFFINITY SET OFF

Unexpected Results

appears, then a machine check has occurred on the attached processor, and the
attached processor is no longer being used. The virtual machine is placed into
console function mode and can be made to continue processing on the main
processor by the entry of a BEGIN command.

Channel checks no longer cause the virtual machine to be reset as they did in early
releases of VM/370. If the problem appears to be associated with attempts to
recover from a channel check, see the channel model-dependent functions
described in the VM / SP Planning Guide and Reference.

The type of errors classified as unexpected results vary from operating systems
improperly functioning under VM/SP to printed output in the wrong format.

Unexpected Results in CP

If an operating system executes properly on a real machine but does not execute
properly with VM/SP, a problem exists. Also, if a program executes properly
under control of a particular operating system on a real machine but does not
execute correctly under the same operating system with VM/SP, a problem exists.

First, there are conditions (such as time-dependent programs) that CP does not
support. Be sure that one of these conditions is not causing the unexpected results
in CPo Refer to the VM/SP Planning Guide and Reference for a list of the
restrictions.

604 VM/SP System Programmer's Guide

/

,-

~. ,

(

Next, be sure that the program and operating system running on the virtual
machine are the same as those that ran on the real machine. Check for:

• The same job stream
• The same copy of the operating system (and program)
• The same libraries.

If the problem still is not found, look for an I/O problem. Try to reproduce the
problem, while tracing all CCWs, SIOs, and interrupts via the CP TRACE or CP
PER commands. Compare the real and virtual CCWs from the trace. A
discrepancy in the CCWs may indicate that one of the CP restrictions was violated,
or that an error occurred in the Control Program.

Unexpected Results in a Virtual Machine

When a program executes correctly under control of a particular operating system
on a real machine but has unexpected results executing under control of the same
operating system with VM/SP, a problem exists. Usually you will find that
something was changed. Check that the job stream, the operating system, and the
system libraries are the same.

If unexpected results occur (such as TEXT records interspersed in printed output),
you may wish to examine the contents of the system or user disk files. Non-CMS
users may execute any of the utilities included in the operating system they are
using to examine and rearrange files. Refer to the utilities publication for the
operating system running in the virtual machine for information on how to use the
utilities.

CMS users should use the DASD Dump Restore (DDR) service program to print or
move the data stored on direct access devices. The VM/SP DASD Dump Restore
(DDR) program can be invoked by the CMS DDR command in a virtual machine
controlled by CMS. The DDR program has the following functions:

• DUMP -- dumps part, or all, of the data from a DASD device to magnetic tape.

• RESTORE -- transfers data from tapes created by DDR DUMP to a direct
access device. The direct access device to which the data is being restored
must be the same type of device as the direct access device originally
containing that data.

• COpy -- copies data from one device to another device of the same type. Data
may be reordered by cylinder (or by block number for fixed-block DASDs)
when copied from disk to disk. To copy one tape to another, the original tape Ii
must have been created by the DDR DUMP function.

• PRINT -- selectively prints the hexadecimal and EBCDIC representation of
DASD and tape records on the virtual printer.

• TYPE -- selectively displays the hexadecimal and EBCDIC representation of
DASD and tape records on the terminal.

CMS users should refer to the VM / SP CMS Command and Macro Reference for
instructions on using the DDR command.

Chapter 45. Introduction to Debugging 605

Loop

CP Disabled Loop

The real cause of a loop usually is an instruction that sets or branches on the
condition code incorrectly. The existence of a loop can usually be recognized by
the ceasing of productive processing and a continual returning of the PSW
instruction address to the same address. If I/O operations are involved, and the
loop is a very large one, it may be extremely difficult to define, and may even
comprise nested loops. Probably, the most difficult case of looping to determine is
entry to the loop from a wild branch. The problem in loop analysis is finding either
the instruction that should open the loop or the instruction that passed control to
the set of looping instructions.

The processor operator should perform the following sequence when gathering
information to find the cause of a disabled loop.

1. Use the alter/display console mode to display the real PSW, general registers,
control registers and storage locations X 100 I - X I 100 I .

On an attached processor or multiprocessor system, to display, dump, or alter
low core storage for the problem processor, add the prefix value for the PSA of
the problem processor (that is, the processor whose console you are not using),
or use the M or N operand prefixes described under the DCP, DMCP, and
STCP commands.

2. Force a CP system restart to cause an abend dump to be taken.

3. Save the information collected for the system programmer or system support
personnel.

After the processor operator has collected the information, the system programmer
or system support personnel examine it.

1. If the cause of the loop is not apparent, examine the CP internal trace table to
determine the modules that may be involved in the loop.

2. If the cause is not yet determined, assume that a wild branch caused the loop
entry and search the source code for this wild branch.

Virtual Machine Disabled Loop

When a disabled loop in a virtual machine exists, the virtual machine operator
cannot communicate with the virtual machine's operating system. That means that
signalling attention does not cause an interrupt.

Enter the CP console function mode.

1. Use the CP TRACE or CP PER commands to trace the entire loop. Display
general and extended control registers using the CP DISPLAY command.

2. Take a dump via the CP DUMP or CP VMDUMP command. The IPCS
component of VM/SP may be used to process the file created by the

606 VM/SP System Programmer's Guide

(

,,-
it

VMDUMP command. For details, see the VM/SP Interactive Problem Control
System Guide.

3. Examine the source code.

Use the information just gathered, along with listings, to try to find the entry into
the loop.

If the operating system in the virtual machine itself manages virtual storage, it is
usually better to use that operating system's dump program. CP does not retrieve
pages that exist only on the virtual machine's paging device.

Virtual Machine Enabled Loop

Wait

CP Disabled Wait

The virtual machine operator should perform the following sequence when
attempting to find the cause of an enabled loop:

1.

2.

3.

4.

Use the CP TRACE or CP PER commands to trace the entire loop. Display
the PSW and the general registers.

If your virtual machine has the Extended Control (EC) mode and the EC
option, also display the control registers.

Use the CP DUMP or CP VMDUMP command to dump your virtual storage.
CMS users can use the debug DUMP subcommand. The IPCS component of
VM/SP may be used to process the file created by the VMDUMP command.
For details, see the VM / SP Interactive Problem Control System Guide.

Consult the source code to search for the faulty instructions, examining
previously executed modules if necessary. Begin by scanning for instructions
that set the condition code or branch on it.

5. If the manner of loop entry is still undetermined, assume that a wild branch has
occurred and begin a search for its origin.

No processing occurs in the virtual machine when it is in a wait state. When the
wait state is an enabled one, an I/O interrupt causes processing to resume.
Likewise, when the Control Program is in a wait state, its processing ceases.

A disabled wait state usually results from a hardware malfunction. During the IPL
process, normally correctable hardware errors may cause a wait state because the
operating system error recovery procedures are not accessible at this point. These
conditions are recorded in the current PSW.

CP may be in an enabled wait state with channel 0 disabled when it is attempting
to acquire more free storage. Examine EC register 2 to see whether or not the
multiplexer channel is disabled. A severe machine check could also cause a CP
disabled wait state.

Chapter 45. Introduction to Debugging 607

Three types of severe machine checks can cause the VM/SP Control Program to
terminate or cause a CP disabled wait state.

• An unrecoverable machine check in the control program
• A machine check that cannot be diagnosed
• Timing facilities damage.

A machine check error cannot be diagnosed if either the machine check old PSW or
the machine check interrupt code is invalid. These severe machine checks cause
the control program to terminate.

If a severe machine check or channel check caused a CP disabled wait state, one of
the following messages appears:

DMKCCH603W CHANNEL ERROR, RUN SEREP, RESTART SYSTEM

DMKMCH612W MACHINE CHECK TIMING FACILITIES DAMAGE; RUN SEREP

DMKMCT612W MACHINE CHECK TIMING FACILITIES DAMAGE; RUN SEREP

If an unrecoverable machine check occurs in the control program, the message:

DMKMCH610W MACHINE CHECK SUPERVISOR DAMAGE

-- or --

DMKMCT610W MACHINE CHECK SUPERVISOR DAMAGE

appears on the processor console. The control program is terminated and enters a
wait state 001 or wait state 013.

If the machine check handler cannot diagnose a certain machine check, the
integrity of the system is questionable. The message:

DMKMCH611W MACHINE CHECK SYSTEM INTEGRITY LOST

-- or --

DMKMCT611W MACHINE CHECK SYSTEM INTEGRITY LOST

appears on the processor console. The control program is terminated and enters
wait state 001 or wait state 013.

Hardware errors are probably the cause of these severe machine checks. The
system operator should run the CPEREP program and save the output for the
installation hardware maintenance personnel.

If the generated system cannot run on the real machine because of insufficient
storage, CP enters the disabled wait state with code OOD in the PSW. The
insufficient storage condition occurs if:

• The generated system is larger than the real machine size

-- or --

608 VM/SP System Programmer's Guide

(

CP Enabled Wait

(~

• A hardware malfunction occurs which reduces the available amount of real
storage to less than that required by the generated system.

The message:

DMKOPE955W INSUFFICIENT STORAGE FOR VM/SP

appears on the processor console.

If CP cannot continue because consecutive hardware errors are occurring on one or
more VM/SP paging devices, the message:

DMKPAG415E CONTINUOUS PAGING ERRORS FROM DASD xxx

appears on the processor console and CP enters the disabled wait state with code
OOF in the PSW.

If more than one paging device is available, disable the device on which the
hardware errors are occurring and IPL the system again. If the VM/SP system is
encountering hardware errors on its only paging device, move the paging volume to
another physical device and IPL again.

Note: This error condition may occur if the VM/SP paging volume was not
properly formatted.

The following procedure should be followed by the processor operator to record
the needed information.

1. Using the alter/display mode of the processor console, display the real PSW
and CSW. Also, display the general registers and the control registers.

2. Force a CP system restart to get a system abend dump.

3. IPL the system.

Examine this information and attempt to find what caused the wait. If you cannot
find the cause, attempt to reconstruct the situation that existed just before the wait
state was entered.

If you determine that CP is in an enabled wait state, but that no I/O interrupts are
occurring, there may be an error in the CP routine or CP may be failing to get an
interrupt from a hardware device. Force a CP system restart at the operator's
console to cause an abend dump to be taken. Use the abend dump to determine
the cause of the enabled (and noninterrupted) wait state. After the dump is taken,
IPL the system.

Using the dump, examine the VMBLOK for each user and the real device, channel,
and control unit blocks. If each user is waiting because of a request for storage and
no more storage is available, there is an error in CPo There may be looping in a
routine that requests storage. Refer to "Reading CP Abend Dumps" for specific
information on how to analyze a CP dump.

Chapter 45. Introduction to Debugging 609

Virtual Machine Disabled Wait

The VM/SP Control Program does not allow the virtual machine to enter a
disabled wait state or certain interrupt loops. Instead, CP notifies the virtual
machine operator of the condition with one of the following messages:

DMKDSP45OW CP ENTERED; DISABLED WAIT PSW

DMKDSP451W CP ENTERED; INVALID PSW

DMKDSP452W CP ENTERED; EXTERNAL INTERRUPT LOOP

DMKPRG453W CP ENTERED; PROGRAM INTERRUPT LOOP

and enters the console function mode. Use the CP commands to display the
following information on the terminal.

PSW
CSW
General registers
Control registers.

Then use the CP DUMP or VMDUMP command to take a dump. The IPCS
component of VM/SP may be used to process the file created by the VMDUMP
command. For details, see the VM/SP Interactive Problem Control System Guide.

If you cannot find the cause of the wait or loop from the information just gathered,
try to reproduce the problem, this time tracing the processing via the CP TRACE
or CP PER commands. .

If CMS is running in the virtual machine, the CMS debugging facilities may also be
used to display information, take a dump, or trace the processing. The CMS
SVCTRACE, CP TRACE, and CP PER commands record different information.
Figure 75 compares the CP and CMS facilities for debugging.

Virtual Machine Enabled Wait

If the virtual machine is in an enabled wait state, try to find out why no I/O or
external interrupts have occurred to allow processing to resume.

The Control Program treats one case of an enabled wait in a virtual machine the
same as a disabled wait. If the virtual machine does not have the "real timer"
option, CP issues the message:

DMKDSP450W CP ENTERED; DISABLED WAIT STATE

Since the virtual timer is not decreased while the virtual machine is in a wait state,
it cannot cause the external interrupt. A "real timer" runs in both the problem
state and wait state and can cause an external interrupt which allows processing to
resume. The clock comparator can also cause an external interrupt.

610 VM/SP System Programmer's Guide

(Summary of VM/SP Debugging Tools

Function

Stop
execution
at a
specified
location

Resume
execution

Dump
data

Figure 74 summarizes the VM/SP commands that are useful for debugging
programs in a virtual machine. The CP and CMS commands are classified by the
function they perform.

Comments CPCommand CMSCommand

Set the ADS TOP hexloc DEBUG

address stop PER Instruct Range single-addr BREAK id symbol
before the hexloc
program
reaches the
specified
address. For
CP,ADSTOP
allows 1
active address
stop; PER
allows
multiple
address stops.
CMS allows
16 active
address stops.

Resume BEGIN DEBUG

execution GO

where
program was
interrupted

Continue BEGIN hexloc DEBUG

execution at a
GO { Symbol} specific hexloc

location

Dump the DEBUG

contents of DUMP jhexloc1 ![t !~heX10c2] 1 Lhexloc1 : END DUMP [SymbOl '] [ymbOl] specific
hex~oc1 he~;:c2 storage {. } ~bytecount]

locations END

[*dumpid] [ident]

Figure 74 (Part 1 of 6). Summary of VM/SP Debugging Tools

Chapter 45. Introduction to Debugging 611

Function Comments CPCommand CMSCommand

Dump VMDUMP
VMDUMPJheX~OCln~IOC2]] data provides the

same
'information { . } [bytecount]
that DUMP END
provides but

~o • ~ in a different TO userid
format; The SYSTEM
format is also
compatible [FORMAT vrntype]

with VM/SP [DSS]
IPCS.

[*dumpid]

Display Display
DEBUG I data contents of DISPLAY hexIoc1 [n[~~~IOC2]]
X tmbOI

[n 1 storage
length

locations (in { . } [bytecountJ
hexloc [~J hexadecimal END

and
EBCDrC)

Display
DISPLAY TheXIOCC1[J~![~~~IOC2]] contents of

storage
locations (in { .} [bytecoun~
hexadecimal END

and
EBCDIC)

Display DISPLAY KhexIoc 1 ~ ~ ! [iQ'OC2]]
storage key
of specific {.} [bytecountJ
storage END
locations in
hexadecimal

Display DEBUG

general DISPLAY Greg1(l~!~2]]
GPR reg1 [reg2]

registers
{.} [regcountJ

END '

Figure 74 (Part 2 of 6). Summary of VM/SP Debugging Tools

612 VM/SP System Programmer's Guide !

(
Function Comments CPCommand CMSCommand

Display
DISPLAY YregT~ 1[~:g2]] floating point

registers

{.} [regcountJ
END

Display
DISPLAY xregrl~2]] control

registers

{.} ~regcountJ
END

Display DISPLAY PSW DEBUG

contents of
psw

current
virtual PSW
in
hexadecimal
format

Display DISPLAY CAW DEBUG

contents of CAW

CAW

Display DISPLAY CSW DEBUG

contents of csw
CSW

Store data Store
specified STORE Shexloc hexdata ... DEBUG

STORE ~ symbol ~ information hexloc
into
consecutive hexinfo[hexinfo[hexinfo]]

storage
locations
without
alignment

,

Store
specified STORE {hexloc ~

words of
Ihexloc

information {hexword1 [hexword2 ...]}
into
consecutive
fullword
storage
locations

Figure 74 (Part 3 of 6). Summary of VM/SP Debugging Tools

(

Chapter 45. Introduction to Debugging 613

/

Function Comments CPCommand CMSCommand

Store STORE Greg hexwordl DEBUG

specified [hexword2 ...] SET GPR reg

words of
hexinfo[hexinfo]

information
into
consecutive
general
registers

Store STORE Yreg hexwordl

specified [hexword2 ... 1

words of
information
into
consecutive
floating-
point
registers

Store STORE Xreg hexwordl

specified [hexword2 ... 1

words of data
into
consecutive
control
registers

Store STORE [PSW hexwordl1 hexword2 DEBUG

information SET PSW hexinfo [hexinfol

into PSW

Store DEBUG

information SET CSW hexinfo [hexinfol

inCSW

Store DEBUG

information SET CAW hexinfo

in CAW

Trace Trace all TRACE ALL

execution instructions,
interrupts,
and branches

Trace Trace SVC TRACE SVC SVCTRACE ON

execution interrupts PER Instruct DATA OAxx

Trace I/O TRACE I/O

interrupts

Figure 74 (Part 4 of 6). Summary of VM/SP Debugging Tools

614 VM/SP System Programmer's Guide

(Function Comments CPCommand CMSCommand

Trace TRACE PROGRAM

program
interrupts

Trace TRACE EXTERNAL

external
interrupts

Trace TRACE PRIV

privileged PER Instruct DATA xx
(PER can trace specific

instructions privileged instructions.)

Trace all user TRACE SIO

I/O PER Instruct DATA xx

operations

Trace virtual TRACE SIO

and real TRACE CCW

CCWs

Trace all usel TRACE BRANCH

interrupts and
successful
branches

Trace PER BRANCH [[INTO]

successful into-addr-range]

branches

Trace TRACE INSTruct

instructions PER Instruct
[Range instruction-addr-range]

Trace PER STORE

instructions ~INTO] storage-addr-range]
that alter [INTO] addr [DATA] hex-data
storage

Trace PER G[reg1] [1 ~ ! [reg21 J
instructions
that alter {.} [regcountl
general
registers

Trace PER MASK

instructions [INTO] addr [DATA] mask-field

that alter
specific bits
at specific
storage
locations

Figure 74 (Part 5 of 6). Summary of VM/SP Debugging Tools

(

Chapter 45. Introduction to Debugging 615

Function Comments CPCommand CMSCommand

Trace End tracing TRACE END SVCTRACE OFF

execution activity PER END

tL ~ CUrrent
(cont.) element-number

event-type
traceset name

Trace real Trace events MONITOR START CPTRACE

machine in real
events machine

Stop tracing MONITOR STOP CPTRACE

events in the
real machine

Enable a CPTRAP ALLOwid userid

virtual GRoupid group-name

machine to
enter data in
CPTRAP file

Specify CPTRAP ALL [ON]

selectivity in [OFF]

collecting CPTRAP typenum UmblOk add~ CPTRAP DEVaddr cuu
data COde code

OFF

Figure 74 (Part 6 of 6). Summary of VM/SP Debugging Tools

616 VM/SP System Programmer's Guide

Comparison of CP and CMS Facilities for Debugging

Function

Setting address
stops

Dumping
storage
contents to the
printer

Displaying the
contents of
storage and
control
registers at the
terminal

Storing
information

If you are debugging problems while running CMS, you can choose the CP or CMS
debugging tools. Refer to Figure 75 for a comparison of the CP and CMS
debugging tools.

CP CMS
The CP ADSTOP command can set only Can set up to 16 address stops at a time.
one address stop at a time. The PER
command can be used to set up multiple
address stops.

The dump is printed in hexadecimal format The dump is printed in hexadecimal
with EBCDIC translation. The storage format. The storage address of the first
address of the first byte of each line is byte of each line is identified at the left.
identified at the left. The control blocks are The contents of general and
formatted. floating-point registers are printed at the

beginning of the dump.

The display is typed in hexadecimal format The display is typed in hexadecimal
with EBCDIC translation. The CP format. The CMS commands do not
command displays storage keys, display storage keys, flo~ting-point
floating-point registers and control registers. registers, or control registers, as the CP

I command does.

The amount of information stored by the The CMS command stores up to 12
CP command is limited only by the length of bytes of information. CMS stores data
the input line. The information can be in the general registers but not in the
fullword aligned when stored. CP stores floating-point or control registers. CMS
data in the PSW, but not in the CAW or stores data in the PSW, CAW, and
CSW. However, data can be stored in the CSW.
CSW or CAW by specifying the hardware
address in the STORE command. CP also
stores the status of the virtual machine in
the extended log out area.

Figure 75 (Part 1 of 2). Comparison of CP and CMS Facilities for Debugging

Chapter 45. Introduction to Debugging 617

Function CP CMS
Tracing CP TRACE traces: CMS traces all SVC interrupts. CMS
information displays the contents of general and

• All interrupts, instructions, and floating-point registers before and after
branches a routine is called. The parameter list is

• SVC interrupts recorded before a routine is called.
• I/O interrupts
• Program interrupts
• External interrupts
• Privileged instructions
• All user I/O operations
• Virtual and real CCWs
• All instructions.

CP PER provides increased selectivity in
tracing the execution of instructions that:

• Cause successful branches
• Alter specific storage locations
• Alter specific general registers
• Are fetched and executed.

The CP tracing is interactive. You can stop
and display other fields.

Figure 75 (Part 2 of 2). Comparison of CP and eMS Facilities for Debugging
/

618 VM/SP System Programmer's Guide

(

Chapter 46. Debugging with CP

The VM/SP Control Program provides interactive commands that control the
VM/SP system and enable the user to control his virtual machine and associated
control program facilities. The virtual machine operator using these commands can
gather much the same information about his virtual machine as the,operator of a
real machine gathers using the processor console.

Several of these commands (for example, STORE or DISPLAY) examine or alter
virtual storage locations. When CP is in complete control of virtual storage (as in
the case of DOS, MFT, MVT, PCP, CMS, and RSCS) these commands execute as
expected. However, when the operating system in the virtual machine itself
manipulates virtual storage (as in the case of OS/VSl, OS/VS2, or DOS/VS)
these CP commands should not be used.

This section presents an overview of the VM/SP commands used for debugging. It
supplements the preceding section which discussed debugging procedures and
techniques. Instructions for using the commands discussed in this section are in the
following publications:

• VM / SP CP Command Reference for General Users
• VM / SP Operator's Guide
• VM/SP Interactive Problem Control System Guide.

The following categories of commands are discussed:

• Commands that display VM/SP control information
• Commands that set and query system features, conditions, and events
• Commands that collect and analyze system information
• Commands that trace events in virtual machines
• Commands that alter the contents of storage.

Commands that Display or Dump Virtual Machine Data

Commands that display or dump virtual machine data lll'e: DUMP, VMDUMP,
DISPLAY, DCP, and DMCP.

The DUMP and DISPLAY commands of CP are privilege class G commands and
are used to display control information describing the status of virtual machines.

The DUMP command spools the following information to your virtual printer:

• Virtual program status word (PSW)
• General registers

Chapter 46. Debugging with CP 619

I

-I

• Floating-point registers
• Control registers (if your VM/SP directory has the ECMODE option)
• Storage keys
• Virtual storage locations (first-level storage only).

The DISPLAY command displays at your terminal the following kinds of control
information:

• Virtual storage locations (first-level storage only)
• Storage keys
• General registers
• Floating-point registers
• Control registers
• Program status word (PSW)
• Channel address word (CAW)
• Channel status word (CSW).

ThebDCP and DMCP commands of CP are privilege class C and E commands and
are used to display real storage locations. The DMCP command spools the
contents of real storage to your virtual printer. The DCP command displays at
your terminal the contents of real storage locations.

The class G VMDUMP command dumps virtual storage to a specified reader spool
file. VMDUMP provides the same dump information that the DUMP command
provides but in a different format. For example, if a byte of storage contains
X'OO', DUMP records it in printable format, X'FOFO'; VMDUMP records it as it
appears in storage, X'OO'. The IPCS component of VM/SP may be used to
process the file created by the VMDUMP command. For details, see the VM/SP
Interactive Problem Control System Guide. For a description of the format and
contents of the VMDUMP records, see "VMDUMP Records: Format and
Content" in this section.

Commands that Set and Query System Features, Conditions, and Events

The SYSTEM and SET commands set system-controlled functions and events; the
QUERY command allows you to determine the status of those settings.

The SYSTEM command is a privilege class G command that simulates the RESET
and RESTART buttons on a real computer console. It can also be used to clear
storage.

The functions of the SET command are described in detail in the VM / SP CP
Command Reference for General Users. For debugging, the SET command provides
the MSG, WNG, and EMSG operands. These provide messages that may be useful
while you are debugging.

The SET MSG function determines whether you receive messages sent by other
users via the MSG command. Also, the MSG operand determines whether you
receive messages from CP when other users spool reader, printer, or punch files to
your virtual machine.

620 VM/SP System Programmer's Guide

- --~--~ --_.---------

(

(

The SET SMSG command turns on or off a virtual machine's special message flag.
If the virtual machine has issued DIAGNOSE code X'68' (AUTHORIZE), this
flag determines whether the virtual machine accepts or rejects messages sent via
the SMSG command -- when the flag is on, messages are accepted.

The SET WNG function determines whether you receive warning messages from
the system operator.

The SET EMSG function controls error message handling. The EMSG operand
gives you the ability to specify that you want message code, message text, or both
to be displayed at your terminal. You can also specify that no messages be
displayed (except in the case where you have spooled your console output).

When you are debugging, it is useful to have all messages displayed at your
terminal.

The QUERY command displays the status of features and conditions set by the
SET command for your virtual machine. When you logon, the MSG and WNG
operands of the SET command are set ON; the EMSG operand is set to TEXT;
and the SMSG operand is set OFF. To verify these settings, use the QUERY SET
command.

Commands to Collect and Analyze System Information

This section discusses six commands to collect and analyze system information
when you are debugging. These are the ADSTOP and BEGIN commands and the
LOCATE, MONITOR, PER, and TRACE commands.

Stopping Virtual Machine Execution at a Specific Address

The ADSTOP command stops the execution of a virtual machine at a specific
address; BEGIN causes the virtual machine to resume execution.

Execution halts when the instruction at the address specified in the ADSTOP
command is reached. At this point, you may invoke other CP debugging
commands.

The address stop should be set after the program is loaded but before it executes.
When the specified location is reached during program execution, execution halts
and the CP command environment is entered. You may then enter other CP
commands to examine and alter the status of the program.

Set an address stop at a location where you suspect the error in the program. You
can then display the registers, control words, and data areas to check the program
at that point in its execution. This procedure helps you locate program errors. You
may be able to alter the contents of storage in such a way that the program will
execute correctly. You can then correct the error you have detected and, if
necessary, compile and execute the program again.

To successfully set an address stop, the virtual instruction address must be in real
storage at the time the ADSTOP command is issued.

Chapter 46. Debugging with CP 621

The RANGE keyword of the CP PER command can be used to set multiple
address stops. However, unlike the CP ADSTOP command, the program execution
halts after the execution of the instruction at the given address. Note ,also that
address stops set using the PER command remain in effect until you turn off the
trace element set up by the PER command. There is no need for the program to
already be in storage before setting address stops with the CP PER command.

Setting up multiple address stops with PER is accomplished by using RANGE as an
option to the INSTRUCT keyword. The instruction-addr-range, in this case, is a
single value corresponding to the address of the instruction where program
execution is to be halted.

For example,

PER INSTRUCT RANGE 20000

causes program execution to halt after the instruction at location 20000 executes.

PER INSTRUCT RANGE 20000 RANGE 20400

causes a program to halt after an instruction at either location 20000 or 20400
executes.

Note: Although output is produced only after the instruction at 20000 or 20400
executes, the hardware causes a PER interrupt for every instruction executed in the
range 20000 to 20400. This may degrade the performance of the virtual machine.

Locating CP Control Blocks in Storage

Use the LOCATE command to find the address of CP control blocks associated
with a particular user, a user's device, or a real system device. The control blocks
and their functions are described in the VM/SP Data Areas and Control Block
Logic Volume 1 (CP).

Once you know the location of the control blocks, you can examine the block you
want to look at. When you want to examine specific control blocks, use the
LOCATE and the DCP command to display or the DMCP command to print the
control blocks. A discussion of the most important fields of the VMBLOK,
VCUBLOK, VDEVBLOK, RCHBLOK, RCUBLOK, and RDEVBLOK are
included in "Reading CP Abend Dumps."

Commands that Trace Events in Virtual Machines

Use the TRACE command to trace the following virtual machine events:

• SVC interruption
• 110 interruption
• Program interruption
• External interruption
• Non-I/O privileged instructions
• SIO, SIOF, no, CLRIO, HIO, HDV, and TCH instructions
• Branch instructions
• CCW and CSW instructions.

622 VM/SP System Programmer's Guide

/

(

The results collected by the TRACE command are spooled to your virtual printer
and to your terminal and/or real printer.

Use the PER command to selectively trace the execution of the instructions that
cause specific events. The specific events that can be traced are:

• Successful branches
• The fetching and execution of instructions
• The execution of instructions in the virtual machine that alter storage
• The execution of instructions that alter general purpose registers.

The trace output produced by the PER command can be recorded on the terminal,
the virtual printer, or on both the terminal and the printer.

Commands that Alter the Contents of Storage

You can use the STORE, STCP, and ZAP commands to alter the contents of
storage.

Altering the Contents of Virtual Machine Storage

Use the STORE command to alter the contents of specified registers and locations
in virtual machine storage. The contents of the following can be altered:

• Virtual machine storage locations (first-level virtual storage only)
• General registers
• Floating-point registers
• Control registers (if available)
• Program Status Word.

The STORE STATUS command can save certain information contained in low
storage.

When debugging, you may find it advantageous to alter storage, registers, or the
PSW and then continue execution. This is a good procedure for testing a proposed
change. Also, you can make a temporary correction and then continue to ensure
that the rest of execution is trouble-free. A procedure for using the STORE
STATUS command when debugging is as follows:

• Issue the STORE STATUS command before entering a routine you wish to
debug.
When execution stops (because an address stop was reached or because of
failure), display the extended logout area. This area contains the status that
was stored before entering the routine.

• Issue STORE STATUS again and display the extended logout area again. You
now have the status information before and after the failure. This information
should help you solve the problem.

Chapter 46. Debugging with CP 623

Altering the Contents of Real Storage

Use the STCP command to alter the contents of real storage. The STCP command
cannot alter the real PSW or real registers.

Modifying or Dumping CMS MODULE, LOADLIB, TXTLIB Files, or Individual Text Files

Use the ZAP command to modify or dump MODULE, LOADLm, or TXTLIB
files. ZAP can be used to modify either fixed- or variable-length MODULE files.

ZAP makes use of control records to control processing. These records can be
submitted either from the terminal or from a disk file. Using the VER and REP
control records, you can verify and replace records or instructions in a control
section (CSECT). Using the DUMP control record, you can dump all or part of a
CSECT, an entire member of a LOADLm or TXTLIB file, or an entire module
file. For a complete description of the ZAP command, see the VM I SP Operator's
Guide.

With the ZAPTEXT command, you can apply corrective service to individual text
files. ZAPTEXT uses the same control information as ZAP and also can use the
EXPAND ZAP control record. For a complete description of the ZAPTEXT
command, see VMISP Operator's Guide.

Debugging CP in a Virtual Machine

Many CP problems can be isolated without standalone machine testing. It is
possible to debug CP by running it in a virtual machine. In most instances, the
virtual machine system is an exact replica of the system running on the real
machine. To set up a CP system on a virtual machine, use the same procedure that
is used to generate a CP system on a real machine. However, remember that the
entire procedure of running service programs is now done on a virtual machine.
Also, the virtual machine must be described in the real VM/SP directory. See
Running Guest Operating Systems for directions on how to set up the virtual
machine.

CP Internal Trace Table

CP has an internal trace table that records events that occur in the real machine.
The events that are traced are:

• External interruptions
• SVC interruptions
• Program interruptions
• Machine check interruptions
• 110 interruptions
• Free storage requests
• Release of free storage
• Entry into scheduler
• Queue drop

624 VM/SP System Programmer's Guide

/

(-

(

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Run user requests
Start I/O
Unstack I/O interruptions
Storing a virtual CSW
Test I/O
Halt Device
Unstack 10BLOK or TRQBLOK
NCP BTU (Network Control Program Basic Transmission Unit)
Spinning on a lock (attached processor or multiprocessor environment)
SIGP (X'13')
Clear Channel instruction
IUCV comwunications
SNA console communication services
DIAGNOSE code X'80'
Start I/O fast release
Simulated I/O interruptions
Clear I/O.

An installation may optionally specify the size of the CP trace table. To do so, use
the SYSCOR macro instruction in module DMKSYS. Information on using this
macro instruction is in the VM / SP Planning Guide and Reference.

If an installation does not specify the trace table size or the size specified is smaller
than the default size, CP assigns the default size.

For each 256K bytes (or part thereof) of real storage available at IPL time, one
page (4096 bytes) is allocated to the CP trace table. Each entry in the CP trace
table is 16 bytes long. There are trace table entries for each type of event
recorded. The first byte of each trace table entry, the identification code, identifies
the type of event being recorded. Figure 76 describes the format of each type of
trace table entry. The entry shown in Figure 76 for IUCV communications
illustrates the general format of an IUCV entry. See the section "IUCV Trace
Table Formats" for the formats of trace table entries for each IUCV function, and
for a description of each field in the trace table entry.

In addition, some trace table entries are generated by ECPS:VM/370. The first bit
of these entries is set to 1 to indicate the entry was generated by the hardware
assist. For example, a trace table entry of type X' 86' (FREE) is the same as an
entry of type X' 06'. The only difference is that the first entry was generated by
the hardware assist.

The trace table is allocated by DMKST A which is called by the main initialization
routine, DMKCPI. The first event traced is placed in the lowest trace table
address. Each subsequent event is recorded in the next available trace table entry.
Once the trace table is full, events are recorded at the lowest address (overlaying
the data previously recorded there). Tracing continues with each new entry
replacing an entry from a previous cycle.

Use the trace table to determine the events that preceded a CP system failure. An
abend dump contains the CP internal trace table and the pointers to it. The
address of the start of the trace table, TRACSTRT, is at location X'OC'. The
address of the byte following the end of the trace table, TRACEND, is at location
X' 10'. And the address of the next available trace table entry, TRACCURR, is at

Chapter 46. Debugging with CP 625

location X' 14'. Subtract 16 bytes (X' 10') from the address stored at X' 14'
(TRACCURR) to obtain the trace table entry for the last event completed.

The CP internal trace table is initialized during IPL. If you do not wish to record
events in the trace table, issue the MONITOR STOP command to suppress
recording. The pages allocated to the trace table are not released and recording
can be restarted at any time by issuing the MONITOR START command. If the
VM/SP system should abnormally terminate and automatically restart, the tracing
of events on the real machine will be active. After a VM/SP IPL (manual or
automatic), CP internal tracing is always active.

626 VM/SP System Programmer's Guide

(

{

TVpe of Event

External Interrupt

SVC Interrupt

Program Interrupt

Machine Check
Interrupt

I/O Interrupt

Free Storage
(FREE)

Return Storage
(FRET)

Enter Scheduler

Queue Drop

Run User

Start 1/0

Unstack 1/0
Interrupt

Virtual CSW store

Test I/O

Halt Device

Module

DMKEXT

DMKSVC

DMKPRG

DMKMCH

DMIOT

OMKFRE

OMKFRE
DMKFRT

DMKSCH

DMKSCH

DMKDSP

DMKCNS
DMKIOS
DMKMNT

OMKOSP

DMKVSJ

DMKMNT
OMKIOS

DMKCNS
DMKIOS
DMKVSJ
DMKMNT

Identification·
Code
(hexadecimal)
(See Not. I)

01

02

03

04

05

06

07

08

09

OA

OB

DC

00

OE

OF

x'oc'l o 1

X'OOODOOOOOO'

GR14 or GR15
IS •• Not. 2)

First 3 Bytes of VMPSW

Address of VMBLOK

Address of VMBLOK

Address of VMBLOK

Addr ... of VMBLOK

Address of VMBLOK

X'OOODOD'

12

Virtual
X'OO' Device

Address
4

Format of Trace Tabla Entry

First 4 bytes of 8-byte
Interrupt Code

I/O Old PSW +4

GR 0 at entry

GR 0 at entry

Valu. of VMRSTAT,
VMDSTAT, VMOSTAT,
and VMOSTAT

R UNUSER Valu.
from PSA

Address of IOBLOK

Address of VMBLOK

Address of VMBLOK

Address of IOBLOK

Address of IOBLOK

External Old PSW

SVC Old PSW

Program Old PSW

Machine Check Old PSW

CSW

GR 1 at exit

GR 1 at entry

RUNPSW Value from PSA

CAW

Virtual CSW

8

Virtual CSW

8

CAW

8

CAW

8

GR 14

For CC =:; 1, CSW + 4
otherwise this field is

12 not used

15

ForCC= I,CSW+4
otherwise this field is

12 not used

For CC = I, CSW+4
otherwise this field is

12 not used

Notes: 1. If the installation is running in attached processor mode, the identification code will be OR'd with an X'40' if the activity occurred on the attached processor.
If the installation is running ECPS, the identification code is OR'd with an X'SO' if the activity occurred in microcode.

2' If the interrupt code (bytes 6 and 7) is OC, the contents of GR 14 are displayed. For all other interrupt codes, the contents of GR 15 are displayed.

3. Bytes 2 through 15 of a code 11 trace record represent a Basic Transmission Unit, sent or received by a 3704/3705. It CONSYSR/CONEXTR are zero, the
BTU was transmitted to the 3704/3705. If they are non-zero, the BTU was received. If CONTeMO equals X'7700', this is an unsolicited BTU response.

Figure 76 (Part 1 of 2). CP Trace Table Entries

Chapter 46. Debugging with CP 627

Type of Event

Unltack 10BLOK
orTRQBLOK

NCP BTU
(Soo Note 31

Spinning on lock

SIGP iuued

Clear Channel
issued

IUCV
Communication

SNA CCS

DIAGNOSE X'80'

Start 1/0 Folt
Release

Simulated I/O
Interrupt

CLEAR 1/0

Identification

Module Code
(hexadecimal)
(S .. Notoll

DMKDSP 10 Address of VMBLOK

DMKRNH 11

DMKLOK 12 AddreSl of VMBLOK

DMKEXT 13 Return Address

DMKVSJ 14

DMKIUA 15

DMKVCV 16

DMKMHC 17

DMKIOS 18

DMKIOT 19

lA

DMKIOS lB

Format of Trace Table Entry

Value of VMRSTAT,
VMDSTAT, VMOSTAT,
and VMQSTAT

Address of VMBLOK

Addr ... of IUCVBLOK

HCBLOK Address

Address of 10BLOK

Address of either
DMKDIO or DMKACR
in GR 12 at entry

Address of IOBLOK

8

8

8

8

Addr ... of 10BLOK
orTRQBLOK

Virtual CSW

Usage varies by function code

12

Interrupt Return Address

Lockword Contents

Status of Condition
Code c 1

(See "'UCV Trace Table Formats" for details)

MSSF Command Word

CAW

CSW

CAW

MSFBLOK Addr •• s

12

ForCC- I,CSW+4
otherwise this field is

12 not used

For CC - I, CSW+4
otherwise this field is

12 not used.

Notfls: 1. If the installation Is running in attached processor mode, the identification coda will be OR'd with an X'40' if the activity occurred on the attached procestor.
If the Installation is running ECPS, the identification code is OR'd with an X'SO' if the activity occurred in microcode.

2. If the interrupt code (bytes 6 and 7) is OC, the contents of GR 14 are displayed. For all other Interrupt codes, the contents of GR 15 are displayed.

3. Bytes 2 through 15 of a code 11 trace record represent a Basic Transmission Unit, sent or received by a 3704/3705. If CONSYSRICONEXTR are zero, the
BTU was transmitted to the 370413705. If they are non-zero, the BTU was received. If CONTCMD equals X'7700', this is an unsolicited BTU response.

Figure 76 (Part 2 of 2). CP Trace Table Entries

628 VM/SP System Programmer's Guide

"
/

,-

("C

Abend Dumps

There are three kinds of abnormal termination dumps possible when using CPo If
the problem program cannot continue, it terminates and in some cases attempts to
issue a dump. Likewise, if the operating system for your virtual machine cannot
continue, it terminates and, in some cases, attempts to issue a dump. In the
VM/SP environment, the problem program dump always goes to the virtual
printer. Depending on installation operating procedures, the virtual machine
operating system dump may also go to the virtual printer. A CLOSE must be
issued to the virtual printer to have either dump print on the real printer.

The third type of dump occurs when the CP system cannot continue. The CP
abnormal termination dumps can be directed to a printer or tape or be dynamically
allocated to DASD. If the dump is directed to a tape, the dumped data must fit on
one reel of tape. Multiple tape volumes are not supported by VM/SP. The
historical data on the tape is in print line format and can be processed by
user-created programs or via CMS commands. Specify the output device for CP
abend dumps with the CP SET DUMP command. Refer the VM / SP Operator's
Guide for the format of the SET DUMP command.

How to Print a CP Abend Dump from Tape

When the CP abend dump is sent to a tape, the records are 131 characters long,
unblocked, and contain carriage control characters.

To print the tape, first make sure the tape drive is attached to your system. Next,
define the printer and tape file.

FILEDEF ddname1 PRINTER (RECFM FM LRECL 131)

FILEDEF ddname2 {TAP2} (DEN 1600 RECFM U LRECL 132)
{TAP 1 }

Then use the MOVEFILE command to print the tape:

MOVEFILE ddname2 ddname1

Reading CP Abend Dumps

Two types of printed dumps occur when CP abnormally ends, depending upon the
options specified in the CP SET DUMP command. When the dump is directed to a
direct access device, IPCS (Interactive Problem Control System) must be used to
format and print the dump. For IPCS use, see the VM / SP Interactive Problem
Control System Guide. IPCS commands format and print:

•
•

•
•

Control blocks
General registers
Floating-point registers
Control registers
TOD (Time-of-Day) Clock
Processor Timer

Chapter 46. Debugging with CP 629

• Storage
• If in attached processor or multiprocessor mode, formats and prints both PSAs'

storage.

Storage is printed in hexadecimal notation, eight words to the line, with EBCDIC
translation at the right. The hexadecimal address of the first byte printed on each
line is indicated at the left.

If the CP SET DUMP command directed the dump to tape or the printer, the
printed format of the printed dump will not contain formatted control blocks. If
the system was an attached processor or multiprocessor, all of the registers, etc.,
are printed for the abending processor. Also, each PSA is printed before printing
main storage.

When the Control Program can no longer continue and abnormally terminates, you
must first determine the condition that caused the abend, and then find the cause of
that condition. You should know the structure and function of the Control
Program. "Part 1: Control Program (CP)" contains information that will help you
understand the major functions of CPo The following discussion on reading CP
dumps includes many references to CP control blocks and control block fields.
Refer to VM/SP Data Areas and Control Block Logic Volume 1 (CP) for a
description of the CP control blocks. Figure 77 shows the CP control block
relationships. Also, you will need the current load map for CP to be able to
identify the modules from their locations. The load map is created at initial CP
generation time. See the VM / SP Installation Guide for obtaining the original copy
of the CP load map.

Reason for the Abend

Determine the immediate reason for the abend. You need to examine several fields
in the PSA (Prefix Storage Area), to find the reason for the abend. In a
uniprocessor system, the PSA is in locations 0 to 4095. In an attached processor or
multiprocessor system, each processor has its own PSA in addition to the absolute
PSA in locations 0 to 4095.

1. Examine the program old PSW and program interrupt code to find whether or
not a program check bccurred in CPo The program old PSW (PROPSW) is
located at X' 28' and the program interrupt code (INTPR) is at X' 8E'. If a
program check has occurred in supervisor mode, use the CP system load map
to identify the module. If you cannot find the module using the load map, refer
to "Identifying a Pageable Module." Figure 83 in "Appendix A: System/370
Information" describes the format of an Extended Control PSW.

2. Examine the SVC old PSW, the SVC interrupt code, and the abend code to
find whether or not a CP routine issued an SVC O. The SVC old PSW
(SVCOPSW) is located at X'20', the SVC interrupt code (INTSVC) is at

. X'8A', and the abend code (CPABEND) is at X'374'.

The abend code (CPABEND) is a fullword. The first three bytes identify the
module that issued the SVC 0 and the fourth byte is a binary field whose value
indicates the reason for issuing an SVC O.

630 VM/SP System Programmer's Guide

Collect Information

Use the CP system load map to identify the module issuing the SVC O. If you
cannot find the module using the CP system load map, refer to "Identifying a
Pageable Module". Figure 83 in Appendix A describes the format of an
Extended Control PSW.

3. Examine the old PSW at X' 08'. If an abnormal termination occurs because
the operator caused a system restart, the old PSW at location X' 08' points to
the instruction that was executing when CP recognized the abnormal
termination. Figure 83 in Appendix A describes the format of an Extended
Control PSW.

4. For a machine check, examine the machine check old PSW and the logout area.
The machine check old PSW (MCOPSW) is found at X'30' and the fixed
logout area is at X' 100'. Also examine the machine check interrupt code
(INTMC) at X' E8' .

Examine several other fields in the PSA to analyze the status of the system. As you
progress in reading the dump, you may return to the PSA to pick up pointers to
specific areas (such as pointers to the real control blocks) or to examine other
status fields. For specific fields within the PSA control block, refer to VM/SP
Data Areas and Control Block Logic Volume 1 (CP).

The following areas of the PSA may contain useful debugging information.

1. CP Running Status Field

The CP running status is stored in CPST AT at location X' 348'. The value of
this field indicates the running status of CP since the last entry to the
dispatcher.

2. Current User

The PSW that was most recently loaded by the dispatcher is saved in
RUNPSW at location X'330', and the address of the dispatched VMBLOK is
saved in RUNUSER at location X' 338'. Also, examine the contents of control
registers 0 and 1 as they were when the last PSW was dispatched. See
RUNCRO (X'340') and RUNCRI (X'344') for the control registers.

Also, examine the CP internal trace table to determine the events that preceded the
abnormal termination. Start with the last event recorded in the trace table and read
backward through the trace table entries. The last event recorded is the last event
that was completed.

The TRACSTRT field (location X'OC') contains the address of the start of the
trace table. The TRACEND field (location X' 10') contains the address of the
byte following the end of the trace table. The address of the next available trace
table entry is found in the TRACCURR field (location X' 14'). To find the last
recorded trace table entry, 'subtract X' 10' from the value at location X' 14'. The
result is the address of the last recorded entry. Figure 76 describes the format of
each type of trace table entry.

Chapter 46. Debugging with CP 631

Register Use

Note: If the system was in attached processor or multiprocessor mode, the trace
table pointers are in absolute page zero.

To trace control blocks and modules, it is necessary to know the CP register-use
conventions.

The 16 general registers have many uses that vary depending upon the operation.
The following table shows the use of some of the general registers.

Register

GR 1
GR2
GR 6,7,8

GR 10
GR 14, 15

Contents

The virtual address to be translated.
The real address or parameters.
The virtual or real channel, control unit, and device
control blocks.
The address of the active IOBLOK.
The external branch linkage.

The following general registers usually contain the same information.

Register

GR 11
GR 12
GR 13

Contents

The address of the active VMBLOK.
The base register for the module executing.
The address of the current save area if the module
was called via an SVC.

Use these registers along with the CP control blocks and the data in the prefix
storage area to determine the error that caused the CP abend.

Save Area Conventions

The save areas that may be helpful in debugging CP are: SA VEAREA,
BALRSA VE, FREESA VB, FREEWORK, and DUMPSA VE. If a module was
called by an SVC, examine the SA VBAREA storage area. SA VEAREA is not in
the PSA; the address of the SA VBAREA is found in general register 13. If a
module was called by a branch and link, the general registers are saved in the PSA
in an area called BALRSA VB (X' 240'). The work area and save area for
DMKFRE and DMKFRT are also in the PSA; these areas are used only by the
DMKFRE and DMKFRT routines. The save area (FREESA VE) for DMKFRE
and DMKFRT can be found at location X'280' and the work area (FREEWORK)
follows at location X'2CO'.

Save areas used by attached processor and multiprocessor support are SIGSA VB,
LOKSAVE, MFASAVE, SWTHSAVE, LOCKSA VB, and SVCREGS. These save
areas are all in the PSA. All except LOCKSA VB and SVCREGS are 16 words in
size.

Use the save areas to trace backwards and find the previous module executed.

632 VM/SP System Programmer's Guide

/

(1. SAVEAREA

An active save area contains the caller's return address in SA VERETN
(displacement X' 00'). The caller's base register is saved in SAVER 12
(displacement X'04'), and the address of the save area for the caller is saved
trace backwards again.

2. BALRSAVE

All the general registers are saved in BALRSA VE after branching and linking
(via BALR) to another routine. Look at BALR14 for the return address
saved, BALR13 for the caller's save area, and BALR12 for the caller's base
register, and you can trace module control backwards.

3. FREESAVE

All the general registers are saved in FREESA VB before entries in DMKFRE
or DMKFRT execute. Use this address to trace module control backwards.

Field

FREER15
FREER 14
FREER13

FREER12
FREER 1
FREERO

Contents

The entry point (in DMKFRE or DMKFRT).
The saved return address.
The caller's save area (unless the caller was called via
BALR).
'{he caller's base register.
Points to the block returned (for FRET entries).
Contains the number of doublewords requested or
returned.

4. DUMPSAVB

All the general registers at the time of the error are saved in DUMPSA VB
(displacement X'500') before DMKDMP is called. They are saved by
DMKPSA after a restart, by DMKSVC after an SVC 0, and by DMKPRG.
The registers are stored in DUMPSA VB in the order GRO through GRI5.
GR12 usually contains the base register for the module executing at the time of
the error.

5. SIGSAVB

SIGSA VB (displacement X'540') is used as a save/work area by DMKEXT, a
multiprocessor/attached processor-only module that handles all signaling
requests. When a signal request is issued, DMKEXTSP is called. On entry,
DMKEXTSP stores GR12 through GRI5, and GRO through GR6. GR7
through GRII are not saved. The remainder of SIGSA VB is used as a work
area. GR14 contains the caller's return address.

6. LOKSAVE

All the general registers are stored in LOKSA VB (displacement X'580')
before DMKLOK executes. DMKLOK is a multiprocessor/attached

Chapter 46. Debugging with CP 633

i-"
processor-only module that manipulates certain locks. The registers are stored ~,j
in the order GRO through GRI5. GR14 contains the caller's return address.

7. MFASAVB

All the general registers are stored in MF ASA VB (displacement X' 5CO')
before DMKMCTMA executes. DMKMCTMA is the entry into DMKMCT, a
multiprocessor/attached processor-only module, that handles malfunction alert
interrupts. The registers are stored space in the order GRO through GR15.
GR14 and GR15 contain the caller's return address.

8. SWTHSAVB

All the general registers are stored in SWTHSA VB (displacement Xi 600') by
DMKSTK and DMKVMASW. DMKVMASW is an entry that is used only in
multiprocessor/attached processor systems to switch a user's page table
pointers. The registers are stored in the order GRO through GR15. GR14
contains the caller's return address. All entries to DMKSTK store registers
GRO through GR15 in SWTHSA VB.

9. LOCKSAVB

LOCKSA VB (displacement X'640') is a four-word save area used by the
LOCK macro to save GR14, GR15, GRO, and GRI if the SA VB option of the
LOCK macro is specified.

10. SVCREGS

SVCREGS (displacement X'650') is a four-word save area used to save GR12
through GR15 at the time of an SVC interrupt.

Virtual and Real Control Block Status

Examine the virtual and real control blocks for more information on the status of
the CP system. Figure 77 describes the relationship of the CP control blocks;
several are described in detail in the following paragraphs. For even more detail on
the following control blocks, refer to VM/SP Data Areas and Control Block Logic
Volume 1 (CP).

634 VM/SP System Programmer's Guide

;--',
,-

"_./

(')
::r

i
~

9"-
o
(I)

1 eg.
(JQ

~
(')
'"0

0\
w
Ul

.~

i
/I>

-..I
~

~
~
~

I
= , ,
go

i

~~". .~

PSA (Prefix Storage Area)

ASYSVM VMBLOK

,----------1 ARDCBLOK CORTABLE VM~ VM~
r-- ARIOCH I ~
r- ARIOCU I ____-~ V~ VMECEXT

r ARIODV ACORETBL ~ ~ SWPTABLE --

l' ~ g~~~~NT CQRBPNT SWPVM PAGTABlE ~BlE!,~ VMSEG T
DMKPTR -..... ~ ,tSEGTJ!

DMKPTRF, SWPPAG]1 PAGSWP SEGPAGE h VMCHSTRT VMCUSTRT
'1-1----L-----.

'
DMKPTRU' IJ. .J.' ..L. ...L' A •

CPEXBLDK CPEXBLOK'I . .>C.. CDRFPNT CDRBPNT -=-" ,- I

~
- - DMKPTRFL ~ _ _, ~. VMDVSTRT

CPEXFPNT I CPEXBPNT If . 1------,,------1
COR FPNT COR BPNT •

IOBFPNT I IOBBPNT -- - T; VMPERCTL VMMICRO 1---_----
1------'------1 MICBLOK

_______ ~~~~~~T - ~~ ~

RDCBLOK ~ECBLOK ALQCBLQK M""""o fr VMTRQBlK VMPXINT

I ----+- Main I/O Link XINTBLOK
-+- ALOCPGFH
FH PAGING ALOCPGMH { VMTREXT VMDFTPND

~ L.... ___ -' (; ALOCRECS /
ALOCRECP ROEVBLOKs TRQBLOK IOBLOK

RECBLDK / F----,
---- ;J 1\ RECBLOK ;;; :~~~~~LBN d IQBCAW I I I Deferred I TEMP/PAGING IDBMISC2 TROBLDK TREXT Int."upt

----.. 'OBLOK Task
MH PAGING ~ _ RDEVCUA TROBGPO t\

r RDEVCUB ") CONTASK

\
RCUCHA --. (I CQNTASK RCWTASK '-. VOEVREAL
RCUCHB SPOOLING RDEVIOER ~ . I I VOEVIOB
RCUCHC I~ CONTASK --... EXTSIOF r.-..
RCUCHD , V' RDEVRDC CCWs I .,

~::~~~~=-----__ ----------~.f?cL~~~~~~~~---{~V~D~E~V~ID~E~R~ ,I RDEVNICL r-..... - _f,OERBLOK EXTCPTRO 1 EXTCCTRO

RCHFIOB GRTBLOK I NICBLOK 0 J VOEVRRB / /'

I ;- RDEVDQN ~:~~~~: t GRTBLOK "\ ~LDC VDEVEXTN. VSPXBLO:- I If-1 __ --,
.,{ (RDEVAIRA NICOPNT ~ I I I VRRBLOK I

" IOBLOK TROBLQK TROBLOK

MIDBLOK - I RCUFIOB { CONTASK ~ RDEVBSC J VDEVCON 1'-.1 L ___ -'
IOBUNK / r IOBLOK ,

_ _ (tCONPNT.1 RDEVSPL...- - CCW. VCONCTL ./
......-- CONDATA~ RDEVFIOB ~ ..-- CONTASK VDEV$PL

CCWs RDEVCTRs CONPNT I VCONBUF STOPBLOK

r,OBLOK l CONDATA -I.
CONBUF RSPLCTL SDRBLOK CCWs ~I""""

iO'BLiNK I MIOBlOK I d Statistical VSPlCTl CONBUF - J"'- RSPSFBLK Data CONTASK I
~ Counters J VSPSFBLK CCW SHADOW

-0- $ SEGTABLE
PERBLOK SFBlOK

SEGPAGE, SHADOW

PERCHAIN NICBLOK CONTASK TRQBLOK SFBLOK PAGTABLE

(
PERSAVED I ~ BSCBLDK ~ I I

BSCAUSER NIC8LOK
TROSLOK BSCUCOPY

1....... BSCTMRO
PEXBLOK I .- BSCSPTR CONTASK TRQBGPO

'-------' IOBLOK I
IOBCAW L --IOBMISC2 u...... ALOFBLOK ALOTBLOK ALOSBLOK

[I CONTASK I r--1 r--1 I
PESBLDK PEXBLOK ~

'rn,",,, C-O '- ::.::

VMBLOK

VCHBLOK

The address of the VMBLOK is in general register 11.

Examine the following VMBLOK fields:

1. VMRSTAT (displacement X'58') contains the virtual machine running status.

2. VMDSTAT (displacement X'59') contains the virtual machine dispatching
status.

3. VMPSW (displacement X'A8') saves the virtual machine PSW.

4. VMINST (displacement X'98') saves the virtual machine privileged or tracing
instruction.

5. VMCOMND (displacement X'148') contains the name of the last CP
command that executed.

6. For checking the status of I/O activity, the following fields contain pertinent
information.

a. VMPEND (displacement X' 63') contains the interrupt pending summary
flag. The value of VMPEND identifies the type of interrupt.

b. VMFSTAT (displacement X'68') contains the virtual machine features.

c. VMIOINT (displacement X'6A') contains the I/O interrupt pending flag.
Each bit represents a channel (0 through 15). An interrupt pending is
indicated by a 1 in the corresponding bit position.

d. VMIOACTV (displacement X'36') is the active channel mask. An active
channel is indicated by a 1 in the corresponding bit position.

The address of the VCHBLOK table is found in the VMCHSTRT field
(displacement X' 18') of the VMBLOK. General register 6 contains the address of
the active VCHBLOK. Examine the following fields:

1. VCHADD (displacement X'OO') contains the virtual channel address.

2. VCHSTAT (displacement X'06') contains the status of the virtual channel.

3. VCHTYPE (displacement X'07') contains the virtual channel type.

636 VM/SP System Programmer's Guide

/

VCUBLOK

VDEVBLOK

{

The address of the VCUBLOK table is found in the VCUSTRT field (displacement
X 'I C') of the VMBLOK. General register 7 contains the address of the active
VCUBLOK. Useful information is contained in the following fields:

1. VCUADD (displacement X'OO') contains the virtual control unit address.

2. VCUSTAT (displacement X'06') contains the status of the virtual control
unit.

3. VCUTYPE (displacement X'07') contains the type of the virtual control unit.

The address of the VDEVBLOK table is found in the VMDVSTRT field
(displacement X'20') of the VMBLOK. General register 8 contains the address of
the active VDEVBLOK. Useful information is contained in the following fields:

1.

2.

3.

4.

5.

6.

7.

8.

9.

VDEV ADD field (displacement X' 00') contains the virtual device address.

VDEVSTAT (displacement X'06') contains the status of the virtual device.

VDEVFLAG (displacement X'07') contains the device-dependent
information.

VDEVCSW (displacement X'08') contains the virtual channel status word for
the last interrupt.

VDEVREAL (displacement X'24') is the pointer to the real device block,
RDEVBLOK.

VDEVIOB (displacement X'34') is the pointer to the active IOBLOK.

VDEVCFLG (displacement X'26') describes the virtual console flags for
console devices.

VDEVSFLG (displacement X'27') describes the virtual spooling flags for
spooling devices.

VDEVEXTN (displacement X'lO') is the pointer to the virtual spool
extension block, VSPXBLOK, for output spooling devices.

10. VDEVFLG2 (displacement X'38') describes the Reserve/Release flags and
other miscellaneous conditions.

11. VDEVRRB (displacement X'3C') contains the address of the VRRBLOK for
Reserve/Release minidisks.

Chapter 46. Debugging with CP 637

RCHBLOK

RCUBLOK

RDEVBLOK

The address of the first RCHBLOK is found in the ARIOCH field (displacement
X'3B4') of the PSA (Prefix Storage Area). General register 6 contains the address
of the active RCHBLOK. Examine the following fields:

1. RCHADD (displacement X'OO') contains the real channel address.

2. RCHSTAT (displacement X'04') describes the status of the real channel.

3. RCHTYPE (displacement X'OS') describes the real channel type.

4. RCHFIOB (displacement X'08') is the pointer to the first IOBLOK in the
queue and RCHLIOB (displacement X'OC') is the pointer to the last IOBLOK
in the queue.

The address of the first RCUBLOK is found in the ARIOCU field (displacement
X'3B8') of the PSA. General register 7 points to the current RCUBLOK.
Examine the following fields:

1. RCUADD (displacement X'OO') contains the real control unit address.

2. RCUSTAT (displacement X'04') describes the status of the control unit.

3. RCUCHA (displacement X' 10') is the pointer to the Primary RCHBLOK.

4. RCUCHB (displacement X' 14') is the pointer to the first alternate
RCHBLOK.

S. RCUCHC (displacement X'18') is the pointer to the second alternate
RCHBLOK.

6. RCUCHD (displacement X' 1C') is the pointer to the third alternate
RCHBLOK.

-7. RCUTYPE (displacement X'OS') describes the type of the real control unit.

8. RCUFIOB (displacement X'08') points to the first IOBLOK in the queue and
the RCULIOB field (displacement X'OC') points to the last IOBLOK in the
queue.

The address of the first RDEVBLOK is found in the ARIODV field (displacement
X'3BC') of the PSA. General register 8 points to the current RDEVBLOK. Also,
the VDEVREAL field (displacement X'24') of each VDEVBLOK contains the
address of the associated RDEVBLOK. Examine the following fields of the
RDEVBLOK:

1. RDEVADD (displacement X'OO') contains the real device address.

638 VM/SP System Programmer's Guide

(

(..

2. RDEVSTAT (displacement X'04'), RDEVSTA2 (displacement X'45'), and
RDEVSTA4 (displacement X'60') describe the status of the real device.

3. RDEVFLAG (displacement X'05') indicates device flags. These flags are
device-dependent.

4. RDEVTYPC (displacement X'06') describes the device type class and the
value of the RDEVTYPE field (displacement X'07') describes the device type.
Refer to -- Fig 'flO' unknown -- for the list of possible device type class and
device type values.

5. RDEVAIOB (displacement X'24') contains the address of the active
IOBLOK.

6. RDEVUSER (displacement X'28') is the pointer to the VMBLOK for a
dedicated user.

7. RDEVATT (displacement X'2C') contains the attached virtual address.

8. RDEVIOER (displacement X'48') contains the address of the IOERBLOK
for the last CP error.

9. For spooling unit record devices, RDEVSPL (displacement X' 18') is the
pointer to the active RSPLCTL block.

10. For real 370X Communications Controllers, several pointers are defined.
RDEVEPDV (displacement X' 1C') is the pointer to the start of the free
RDEVBLOK list for EP lines. RDEVNICL (displacement X'38') is the
pointer to the network control list and RDEVCKPT (displacement X'3C') is
the pointer to the CKPBLOK for re-enable. Also, RDEVMAX (displacement
X'2E') is the highest valid NCP resource name and RDEVNCP (displacement
X'30') is the reference name of the active 3705 NCP.

11. For terminal devices, additional flags are defined. RDEVTFLG (displacement
X'3A') describes the additional flags.

12. For terminals, an additional flag is defined. RDEVTMCD (displacement
X' 34') describes the line code translation to be used.

Chapter 46. Debugging with CP 639

_-
DEVICE CLASS CODES

Code Device Class
X'80' Terminal Device
X'40' Graphics Device
X'20' Unit Record Input Device
X'1O' Unit Record Output Device
X'08' Magnetic Tape Device
X'04' Direct Access Storage Device
X'02' Special Device
X'01' Fixed-Block Storage

DEVICE TYPE CODES

• For Terminal Device Class

Code Device Type
X'80' Binary Synchronous Line for Remote
X'40' 2700 Binary Synchronous Line
X'40.' 2955 Communication Line
X'30' Start/Stop Console
X'20' Telegraph Terminal Control Type II
X'20' Teletype Terminal
X'1C' Undefined Terminal Device
X'18' IBM 2741 Communication Terminal
X'14' IBM 1050 Data Communication System /

X'1O' IBM Terminal Control Type I
X'08' Synchronous Data Link Control
X'OO' IBM 3210 Console
X'OO' IBM 3215 Console
X'OO' IBM 2150 Console
X'OO' IBM 1052 Console

Figure 78 (Part 1 of 6). CP Device Classes, Types, Models, and Features

640 VM/SP System Programmer's Guide

f ,
• For Graphics Device Class

Code Device Type
X'CO' High Function Graphics Device
X'80' IBM 2250 Display Unit
X'40' IBM 2260 Display Station
X'20' IBM 2265 Display Station
X'lO' IBM 3066 Console
X'08' IBM 1053 Printer
X'04' IBM 313 8 System Console
X'04' IBM 3148 System Console
X'04' IBM 3158 System Console
X'04' IBM 3277 Display Station
X'OI' IBM 3278 Display Station
X'OI' IBM 3279 Display Station
X'OI' IBM 3290 Information Panel
X'02' IBM 3284 Printer
X'02' IBM 3286 Printer
X'02' IBM 3287 Printer
X'02' IBM 3288 Printer
X'02' IBM 3289 Printer
X'02' IBM 4250 Printer

• For Unit Record Input Device Class
.. :f"

t Code Device Type
X'90' IBM 2520 Card Reader/Punch
X'88' IBM 1442 Card Reader/Punch
X'84' IBM 3505 Card Reader
X'82' IBM 2540 Card Reader
X'81' IBM 2501 Card Reader
X'80' Card Reader
X'40' Timer
X'24' IBM 1017 Paper Tape Reader
X'22' IBM 2671 Paper Tape Reader
X'21' IBM 2495 Magnetic Tape Cartridge Reader
X'20' Tape Reader

Figure 78 (Part 2 of 6). CP Device Classes, Types, Models, and Features

Chapter 46. Debugging with CP 641

I -
!
,

(\
~--/'

• For Unit Record Output Device Class

Code Device Type
X'90' IBM 2520 Card Punch
X'88' IBM 1442 Card Punch
X'84' IBM 3525 Card Punch
X'82' IBM 2540 Card Punch

I
X'80' Card Punch
X'4D' IBM 3800 Model 8 Printing Subsystem
X'4B' IBM 4248 Printer

J
X'4A' IBM 4245 Printer
X'49' IBM 3800 Model 3 Printing Subsystem
X'47' IBM 3262 Printer
)('46' IBM 3289 Printer
X'45' IBM 3800 Modell Printing Subsystem
X'44' IBM 1443 Printer
X'43' IBM 3203 Printer
X'42' IBM 3211 Printer
X'41' IBM 1403 Printer
X'40' Printer
X'24' IBM 1018 Paper Tape Punch
X'20' Tape Punch

• For Magnetic Tape Device Class

Code Device Type
X'80' IBM 2401 Tape Drive
X'40' IBM 2415 Tape Drive
X'20' IBM 2420 Tape Drive
X'10' IBM 3420 Tape Drive
X'08' IBM 3410/3411 Tape Drive
X'04' IBM 8809 Tape Drive
X'02' IBM 3430 Tape Drive
X'Ol' IBM 3480 Tape Drive

Figure 78 (Part 3 of 6). CP Device Classes, Types, Models, and Features

642 VM/SP System Programmer's Guide

(

" t

• For Direct Access Storage Device Class

Code Device Type
X'80' IBM 2301 Parallel Drum
X'80' IBM 2303 Serial Drum
X'80' IBM 2311 Disk Storage Drive
X'80' IBM 2321 Data Cell Drive
X'40' IBM 2314 Disk Storage Facility
X'40' IBM 2319 Disk Storage Facility
X'20' IBM 3380 Disk Storage Facility
X'10' IBM 3330 Disk Storage Facility
X'10' IBM 3333 Disk Storage and Control
X'08' IBM 3350 Disk Storage Facility
X'04' IBM 3375 Disk Storage Facility
X'02' IBM 2305 Fixed Head Storage Device
X'OI' IBM 3340 Disk Storage Facility

• For Special Device Class

Code Device Type
X'80' Channel-to-Channel Device (CTCA or 3088)
X'40' 370X Programmable Communications Controller
X'20' 3851 Mass Storage Controller
X'04' SRF (7443) device
X'OI' Device unsupported by VM/SP

For Fixed-Block Storage Device Class

Code Device Type
X'02' 3370, Model At, A2, Bl, and B2
X'OI' 3310
X'OO' Generic Fixed-Block (see Note)

Note:
Code X'OO' applies to a device whose specific type CP has
not yet determined. The proper bit value is assigned when
a 'Read Device Characteristics' command is issued at IPL.

MODEL CODES (Column 35 in Accounting Card)

As specified in the RDEVICE macro at system generation.

Note:
FB-SI2 device model codes are specified as:

Code
X'OO'
X'04'

Device Type
3310,3370 Models Al and Bl
3370 Models A2 and B2

Figure 78 (Part 4 of 6). CP Device Classes, Types, Models, and Features

Chapter 46. Debugging with CP 643

--- --- ------.------

FEATURE CODES (Column 36 in Accounting Card)

• For Printer Devices

Code
X'80'
X'40'
X'01'

Feature
3800 has four Writable Character Graphic Modifications (WCGM)
Extended Sense Bytes
UCS

• For Magnetic Tape Devices

Code Feature
X'80' 7 Track
X'40' Dual Density
X'20' Translate
X'lO' Data Conversion

• For Direct Access Storage Devices

Code
X'80'
X'80'
X'40'
X'20'
X'20'
X'lO'
X'08'
X'04'
X'02'
X'01'
X'01'

Feature
Rotational Position Sensing (RPS)
Fixed Head Device
Extended Sense Bytes (24 bytes)
Top Half of 2314 Used as 2311
Device is a 3330V system virtual machine
Bottom Half of 2314 Used as 2311
35MB Data Module (mounted)
70MB Data Module (mounted)
Reserve/Release are valid CCW operation codes
3330V Virtual MSS volume
3330 Virtual MSS volume

For special devices

Code
X'80'
X'40'
X'20'
X'10'

Feature
Type Five Channel Adapter
Channel-to-Channel is type 3088
Type II channel adapter for 370X
Type I channel adapter for 370X

• For terminal devices

Code
X'02'
X'01'

Feature
3270 Mode, Virtual 3215 Device
Dial Feature

Figure 78 (Part 5 of 6). CP Device Classes, Types, Models, and Features

644 VM/SP System Programmer's Guide

--- - -----------_ ..

• For Graphic Devices

Feature Code
X'80'
X'OI'

Operator Identification Card Reader
Device Supports WRITE STRUCTURED FIELD QUERY

Figure 78 (Part 6 of 6). CP Device Classes, Types, Models, and Features

Identifying and Locating a Pageable Module

If a program check PSW or SVC PSW points to an address beyond the end of the
CP resident nucleus, the failing module is a pageable module. The CP system load
map identifies the end of the resident nucleus.

Go to the address indicated in the PSW. Backtrack to the beginning of that page
frame. The first eight bytes of that page frame (the page frame containing the
address pointed to by the PSW) contains the name of the first pageable module
loaded into the page. If multiple modules exist within the same page frame,
identify the module using the load map and failing address displacement within the
page frame. In most cases, register 12 points directly to the name.

To locate a pageable module whose address is shown in the load map, use the
system VMBLOK segment and page tables. For example, if the address in the load
map is 55000, use the segment and page tables to locate the module at segment 5,
page 5.

VMDUMP Records: Format and Content

When a user issues the VMDUMP command, CP dumps virtual storage of the
user's virtual machine. CP stores this dump on the reader spool file of a virtual
machine that the user specified as an operand on the VMDUMP command.

CP writes the storage dump to the spool file as a series of logical records. Each
spool file record and each logical dump record is 4096-bytes long. However,
because each spool file record contains a header, one logical dump record does not
fit into one spool file record. For this reason, CP splits a logical dump record into
two parts. CP writes one part to one spool file record and the other part to an
adjacent spool file record. The size of each part varies depending upon the amount
of space remaining in the spool file record that CP is currently using. Thus, each
logical dump record spans two spool file records. Figure 79 shows the format of
spool file records, the format of logical dump records, and how logical dump
records span spool file records.

The first spool file record contains a spool page buffer linkage block (SPUNK)
followed by a TAG area followed by dump information. All other spool file
records contain only a SPUNK followed by dump information.

Chapter 46. Debugging with CP 645

A SPUNK, which contains data needed to locate information in the associated
spool file record, has the following format:

hexadecimal
offset

o

4

8
C

length

4 bytes

4 bytes

4 bytes
4 bytes

content

the DASD location (DCHR) of the next page
buffer
the DASD location (DCHR) of the previous
page buffer
binary zeroes
the number of data records in the buffer

The TAG area contains either binary zeroes or user supplied data. If a virtual
machine program or the user has issued the TAG command, the TAG area contains
the information provided via this command. Otherwise it contains binary zeroes.

The first logical dump record contains a dump file information record
(DMPINREC). The second and third logical dump records each contain a dump
file key storage record, DMPKYRECI and DMPKYREC2 respectively. The dump
file key storage records contain the value of the storage keys assigned to each page
of virtual storage. The remaining logical dump records contain the virtual machine
storage dump.

CP records the storage dump sequentially starting with the lowest address dumped
and ending with the highest address dumped. CP records each byte as an
untranslated 8-bit binary value.

For a description of the format and contents of DMPINREC, see VM / SP Data
Areas and Control Block Logic Volume 1 (CP). For a description of DMPKYRECI
and DMPKYREC2, see DMPKYREC also in VM / SP Data Areas and Control
Block Logic Volume 1 (CP).

The VMDUMP command dumps virtual storage that VM/SP created for the
virtual machine user. VMDUMP creates a file that provides IPCS with header
information to identify the owner of the dump. Once VMDUMP creates the file,
IPCS may process it to debug errors, as well as to store and maintain error
information about the virtual machine. For additional information, see the VM/SP
Interactive Problem Control System Guide.

Locating Logical Dump Records

To locate a specific logical dump record, use the algorithm:

lac = 240+16n+4096n
4096

where:

Q is a number that identifies the dump record. For example, to locate the first
dump record, assign Q a value of 1; to locate the second record, assign Q a value of
2, and so forth. (~~

.",,- /

646 VM/SP System Programmer's Guide

loc is the quotient and remainder of the algorithm. Together these values specify a
spool file record and an offset into that record where logical dump record!! begins.
The quotient specifies the spool file record, and the remainder specifies the offset
into the spool file record.

The following example shows how to locate the third logical dump record:

loc = 240+(16x3)+(4096x3)

loc 12576
4096

quotient = 3

4096

remainder = 288

Thus, the third dump record starts 288 bytes into the third spool file record.

Chapter 46. Debugging with CP 647

header

first spool
10 SPUNK 1

16 file record TAG

second spool
file record

third spool
file record

fourth spoo'·
file record

fifth logical
dump record

0

16
bytes

header

SPUNK

16
bytes

header

0
SPUNK

16
bytes

header

0
SPUNK

16
bytes

hf'ader

0
SPUNK

16
bytes

Figure 79. VMDUMP Record Format

240
bytes

first logical
dump record
(continued)

16
m1PINREC
(continued)

second logical
dump record
(continued)

16
DMPKYRECl
(continued)

272
bytes

third logical
dump record
(continued)

16
DMPKYREC2
(continued)

288
bytes

fourth logical
dump record
(continued)

16
virtual
storage

304
bytes

machine
dump

648 VM/SP System Programmer's Guide \

1
256

272

288

304

320

first logical
dump record

4095
DMPINREC

3840
bytes

second logical
dump record

DMPKYRECl

3824
bytes

4095

third logical
dump record

4095
DMPKYREC2

3808
bytes

fourth logical
dump record

4095
virtual machine
storage dump

3792
bytes

fifth logical
dump record

virtual
storage

3776
bytes

4095
machine
dump

----- ------ -- - - -~--

(
\,,--

f [Trapping Improper Use of CP Free Storage

(

Installations with UP and AP IMP generated systems can install the CP FRET Trap
as an aid in solving problems caused by improper use of CP free storage and to
solve many storage overlay problems. The design of the CP FRET Trap allows it
to produce "tracks" in storage associated with each free storage request. The trap
detects the release of areas of free storage that were not assigned, previously
released, or outside the boundaries of the storage given.

The trap code is conditionally assembled in the DMKFRE, DMKFRT, and
DMKCPI modules based on the value of the option &FRETRAP. &FRETRAP can
be found in OPTIONS COpy and has a default value of 0 for normal operations
without the trap.

The CP FRET Trap does the following:

• Disables CP Assist FREE, FRET, DSPl, DSP2, and UNTFR instructions.

• Expands each request for free storage by a three doubleword extension
containing:

The status of the request. The status consists of the tag ALLO when the
storage is allocated by DMKFRE or the tag FRET when the storage is
released by DMKFRT.

The saved size (in doublewords) of the requested free storage area.

The address of the assigned free storage block.

The return address of the module requesting the storage.

The last three bytes of the calling module's name (if it is pageable).

The user's VMBLOK address.

The rest of the extension is cleared with zeroes and remains unused until
the storage is released. The content at that time is as follows:

The return address of the module releasing the storage.

The last three bytes of the calling module's name (if it is pageable).

Note: For the exact format of the extension, refer to the FREEXT control
block in the VMISP Data Areas and Control Block Logic Volume 1 (CP).

Checks each request to release free storage for the expected tag. Checks the
size of the free storage area to be released against the saved size in the
extension area, and abends in illegal situations. The ALLO tag is replaced with
the FRET tag if the trap detects no problems with the FRET request.

When the CP FRET Trap is installed, performance for systems using CP Assists is
degraded due to the disabling of the DSPl, DSP2, UNTFR, FREE, and FRET

Chapter 46. Debugging with CP 649

instructions. Also, performance for storage constrained systems having many users
is degraded due to the expansion of each free storage request to include the trap
extension area. The performance degradation is not likely to be a problem while
suspected free storage problems are being trapped. The overall performance of the
system remains the same when the trap is not installed.

The trap may be installed at system generation time. Refer to the VM / SP
Installation Guide for installation instructions and the VM / SP System Logic and
Problem Determination Guide Volume 1 (CP) for specifics on the logic.

CP FRET Trap Examples

The following two examples demonstrate how the trap may be used to solve
problems caused by improper use of CP free storage.

Example 1: Destruction of the free storage pointer.

Symptom:

Module X obtains a 36 doubleword block of storage from DMKFREE. The
data in the storage block is being overlaid by data that has no resemblance to
the data expected to be there. .

The CP FRET Trap is installed and it abends with code FRTO 15.

Analyzing the Available Data:

The trap found the ALLO tag at FREERI + the value of FREERO in bytes. It
abended with code FRT015 because the saved size of the original request (in
the trap extension area) did not match the size of the block to be released in
FREERO. Examination of FREERI2, FREERI4, FREERO, and FREERl
reveals that module Y called DMKFRET to release 40 doublewords of storage
at the address contained in FREERl. Further examination of the trap
extension area shows that module X made the original request for the free
storage and that the requested size was 36 doublewords.

Conclusion:

If the free storage pointer in FREERl and the size in FREERO were correct,
the size would have matched the saved size in the extension area. If the free
storage pointer in FREERI were correct and the size in FREERO incorrect,
then the trap would not have found the ALLO tag at FREERI + FREERO.
The trap would have abended with code FRT013 instead of FRTOI5.
Therefore, the free storage pointer in FREER 1 was incorrect when module Y
tried to release the storage block.

The free storage block of module X could have been overlaid by module Y
when its free storage pointer was destroyed. Or, when the trap was not
installed, the storage block could have been released by module Y, recycled by
DMKFREE and reissued to module Z, causing an overlay of the storage
obtained by module X.

650 VM/SP System Programmer's Guide

Example 2: Release of more storage than was given.

Symptom:

Module Y obtains a 9 doubleword block of storage from DMKFREE. The
data in the storage block is being overlaid by data that has no resemblance to
the data expected to be there.

The CP FRET Trap is installed and it abends with code FRTOl3.

Analyzing the A vailable Data:

The trap abended with code FRTOl3 because it could not find the ALLO tag
at FREERl + the value of FREERO in bytes. Examination of FREERI2,
FREERl4, FREERO, and FREER 1 shows that module X called DMKFRET
to release 15 doublewords of storage at the address contained in FREERl.
Examining the storage at FREERI reveals that an ALLO tag can be found at
FREER 1 + 9 doublewords, and that the saved size in the extension is 9
doublewords. The VMBLOK address in the extension matches that in
FREERII. Further examination of the storage for the next ALLO tag shows
that the storage block obtained by module Y overlaps the storage being
released by module X by 3 doublewords.

Conclusion:

Module X attempted to release more storage than was actually given. The free
storage block of module Y could have been overlaid when the size for the
storage block being released by module X was incorrect. Or, when the trap
was not installed, the storage block could have been released by module X,
recycled by DMKFREE and reissued to module Z, causing an overlay of the
storage obtained by module Y.

Chapter 46. Debugging with CP 651

""1
I

1 Debugging with the CPTRAP Facility

Activating CPTRAP

The CPTRAP Facility provides field engineers and system programmers with
problem determination capability. The facility is used to create a reader spool file
of selected trace table entries, CP data, and virtual machine data in the order they
happen. This data is collected in 4K blocks and placed in the CPTRAP spool file
(CPTRAP FILE). Each 4K block, called a CPTRAP record, is time stamped.
Each record has multiple entries.

The TRAPRED command can be used to access the CPTRAP reader file and the
data collected in the file. TRAPRED output can be either a spooled print file or an
interactive terminal display.

To activate CPTRAP, issue the CPTRAP START subcommand. The type of spool
file produced depends on whether the WRAP option is specified with the CPTRAP
START subcommand. See the VM/SP Operator's Guide for more details on the
CPTRAP command and its options.

A wrap spool file reuses spool space. The user indicates the number of CPTRAP
records (4K blocks of data) to be maintained in the spool file. After this number
of 4K records has been collected, new CPTRAP records overlay the older records
already in the file. This makes it possible to limit the total amount of spool space
used by CPTRAP.

A non-wrap spool file does not reuse spool space. The spool space used by the file
is limited only to the spool space available on the system. When the CPTRAP file
has filled 15M of spool space, the file is closed automatically and a new file is
opened. Since CPTRAP records are not overlaid in a non-wrap file, the available
spool space is used very quickly, if the entries are not chosen selectively.

Recording CP Trace Table Entries in the CPTRAP File

The internal CP trace table is maintained in real storage. It is a 'wrap' table that
continuously overlays previously stored information with new trace table entries.
As a result, all the information needed to determine the cause of a problem may
not be present in the trace table. CPTRAP allows selected CP trace table entries
to be recorded in a spool file. Thus it is possible to save CP trace table entries that
would be lost when the internal trace table wraps.

Collecting Entries in the CPTRAP file: To collect trace table entries, the system
programmer must ensure that CPTRAP is started and the appropriate selectivity is
specified. Once this is done, the selected CP trace table entries are moved from the
internal trace table to the spool file without changing their format or length.

652 VM/SP System Programmer's Guide

(Specifying Selectivity: The CP trace table entries that are collected in the spool file
are selected by trace type (typenum). For a list of the defined trace types see
Figure 76 "CP Trace Table Entries". CPTRAP allows further selection of input
based on specific fields in the trace table entry. The three allowed fields are
VMBLOK address (VMBLOK), real or virtual device address (DEV ADDR), and
various code fields (CODE). Please see the VM/SP Operator's Guide for more
details on the CPTRAP command and its option for selectivity.

Recording Virtual Machine Data in the CPTRAP File

The virtual machine interface lets a virtual machine send a data entry to CPTRAP
to be added to the CPTRAP file. Any program running in VM/SP (application
program, CMS, GCS etc.) can contain the interface to CPTRAP. The data
gathered in the CPTRAP file by this interface could help determine the problem in
your program.

Collecting Entries in the CPTRAP File: To collect virtual machine entries in the
CPTRAP file, the system programmer must ensure that:

• CPTRAP is activated.

• Selectivity is specified for the kind of virtual machine entry to be collected.

• The virtual machine is enabled to enter data into the CPTRAP file.

• The program running in the virtual machine contains the virtual machine
interface to CPTRAP.

Once this is done, CPTRAP can construct the virtual machine entries and put them
into the spool file.

Specifying Selectivity: Use the CPTRAP typenum subcommand to specify the type
of entry to be collected in the CPTRAP file. The two types of entries for virtual
machines are:

• X'3D' for group virtual machine data

• X'3E' for individual virtual machine data.

Enabling a Virtual Machine: A virtual machine must be enabled to enter data in a
CPTRAP file. Any number of virtual machines can be enabled on the system. A
virtual machine remains enabled until it is logged off, or until CPTRAP is
terminated.

Two commands are available to enable virtual machines. CPTRAP ALLOWID
enables only the virtual machine specified by the command. Reissue the command
to enable other virtual machines. This machine must be logged on or disconnected
when the command is issued. CPTRAP GROUPID enables all virtual machines
that are currently in the group specified by the command. Later, any new members
entering the group are automatically enabled. For more details on these CPTRAP
subcommands, see the VM / SP Operator's Guide.

Chapter 46. Debugging with CP 653

Setting up the Interface: The virtual machine interface to CPTRAP is a parameter"-.j
list and a class 1 0 monitor call instruction. There is no restriction on the number of
interfaces that may be active at one time, or on the number of virtual machines that

. can use them.

You can insert the interface into a program in two ways:

1. Use the CP STORE command to store the interface into a program problem
area.

2. Modify your program to include the interface, then reassemble the program.

Set up register 1 with the address of the parameter list. The parameter list
identifies the data to be included in the CPTRAP file. It contains the length of the
data, an individualizing code, and the address of the data to be added to the
CPTRAP file.

The format of the 8-byte parameter list is as follows:

Disp Field Length Description

o Length 2
2 Code 2
4 Address 4

Length of virtual machine data
Individualizing code
Virtual address of data in user's

storage

The data must be 280 bytes or less, and must reside in the virtual machine. If the
length is greater than 280 bytes, only the first 280 are taken with no indication that
the data has been truncated.

The individualizing code is used to look selectively at the virtual machine entry in
the CPTRAP file when you use TRAPRED. This individualizing code will be
present in each entry. If the individualizing code is unique for each interface that is
set up, it will be easy to review data selectively in the CPTRAP file that came from
a particular virtual machine interface.

The interface also uses a class 10 monitor call instruction. A monitor call
instruction can be executed in virtual supervisor or virtual problem state, BC mode
or EC mode, and in multi-level environments. Multi-level is defined as VM/SP
running a guest virtual machine (GVM) of a VM/SP system.

The supported monitor codes are 0 and 1. All other monitor codes are ignored and
control returns to the invoker with no indication that the virtual machine data was
ignored.

The format of the monitor call instruction is as follows:

MC x,10

654 VM/SP System Programmer's Guide

x=O indicates that the data to be added to the CPTRAP file is
general virtual machine data. Any virtual machine can
use a monitor code O.

:,
•

x = 1 indicates that the data to be added to the CPTRAP file is
virtual machine group data. Only a virtual machine that
belongs to a group can use a monitor code 1.

The following chart shows the type of entry (if any) made in the CPTRAP file for
the six possible situations that can arise:

Virtual Machine is Virtual Machine is
in a Group not in a Group

Monitor Code 0 is 3E 3E
issued

Monitor Code 1 is 3D no entry is made
issued

Any other monitor no entry is made no entry is made
code is issued

Virtual Machine Entries in the CPTRAP File

CPTRAP constructs the virtual machine entry that is placed in the CPTRAP file.
An 8-byte header is appended to the front of the data that is passed to the virtual
machine. The header, which identifies the virtual machine entry in the file, has the
following format:

0 code length IIIIIIIIIIIII

Disp Field Length Description

0 Typenum 3E for individual virtual machine entries
3D for group virtual machine entries

1 1 Reserved byte
2 Code 2 Individualizing code
4 Length 2 Length of virtual machine entry
6 2 Reserved

The individualizing code that CP puts in the third and fourth bytes of the header is
the same code the user specified in the parameter list. The individualizing code is
necessary to look selectively at the virtual machine entry in the CPTRAP file when
you use TRAPRED. The length of the virtual machine entry in the CPTRAP file is
variable. It includes the length of the virtual machine data plus eight for the length
of the header.

Recording CP Data in the CPTRAP File

A CP interface to CPTRAP lets CP send information to be recorded in the
CPTRAP file. This data collected is used to solve a problem in CP code.

Chapter 46. Debugging with CP 655

Collecting Entries in the CPTRAP file: To collect CP entries in the CPTRAP file,
the system programmer must ensure that:

• CPTRAP is activated.

• Selectivity is specified for CP entries.

• The interface is contained in the CP code.

Once this is done, CPTRAP can construct the CP entries and put them into the
spool file.

Specifying Selectivity: Use the CPTRAP typenum subcommand to specify that CP
entries are to be collected in the CPTRAP file. CP entries have a typenum of
X'3F'.

Setting up the CP Interface: The CP interface to CPTRAP is a parameter list and a
BALR 14,15 instruction. There are no restrictions on the number of interfaces
that may be active at the same time. You can insert the CP interface into the CP
code in two ways:

1. Use the CP STCP command to store the interface into the problem area in the
CP code.

2. Modify the CP module to include the interface, reassemble the particular
source module, and regenerate the system.

Be careful where you insert the interface in the CP code. There may b~ a condition
code setting that has not yet been interrogated by the CP code. Any code inserted
as part of the interface must not change that condition code setting. If the inserted
code changes the condition code, it also must save and restore this setting.
CPTRAP preserves the condition code setting in effect at the time the BALR
14,15 instruction executes.

Set up register 1 with the address of the parameter list. The parameter list
identifies the data to be included in the CPTRAP file. It contains the length of the
data, an individualizing code, and the address of the data to be added to the
CPTRAP file.

The format of the 8-byte parameter list is as follows:

Disp Field Length

o Length 2
2 Code 2
4 Address 4

Description

Length of CP data
Individualizing code
Address of CP data

The data must be 280 bytes or less, and must reside in real storage. If the length is
greater than 280 bytes, only the first 280 are taken with no indication that the data
length has been truncated.

The individualizing code is used to look selectively at the CP entry in the CPTRAP
file when you use TRAPRED. This individualizing code will be present in each
entry. If the individualizing code is unique for each interface that is set up, it will

656 VM/SP System Programmer's Guide

- ------- --- ---

./

f

"!

* "

(

be easy to review data selectively in the CPTRAP file that came from a particular
CP interface.

The interface also uses a BALR 14,15 instruction. Register 15 must be set up with
the address of TRAPOK in the PSA before the BALR instruction is issued. This is
the address of the logic within module DMKPSA which determines if CPTRAP is
active. When the BALR 14,15 instruction is issued, register 14 gets the return
address to the caller. The status of the CPTRAP facility determines what happens
next. If CPTRAP is active, control goes to CPTRAP. If CPTRAP is not active,
control returns to the caller immediately.

CP Entries in the CPTRAP File

CPTRAP constructs the CP entry that is placed in the CPTRAP file. An 8-byte
header is appended to the front of the data that is passed by CPo The header
identifies the CP entry in the file with the following format:

0 code length IIIIIIIIIIIII

Disp Field Length DescriQtion

0 Typenum 1 3F for CP data
1 1 Reserved byte
2 Code 2 Individualizing code
4 Length 2 Length of CP entry
6 2 Reserved

The individualizing code that CP puts in the third and fourth bytes of the header is
the same code the user specified in the parameter list. The individualizing code is
necessary to look selectively at the CP entry in the CPTRAP file when you use
TRAPRED. The length of the CP entry in the CPTRAP file is variable. It
includes the length of the CP data plus eight for the length of the header.

Additional CPTRAP Consideration.s

Checkpointing

I AP and M P Support

Closed CPTRAP reader files are checkpointed just like any other spool files. In
addition, if the system abends and the CPTRAP file is still open, the file will be
closed and checkpointed.

Attached processors and multiprocessors are supported by the CPTRAP facility.
When the facility is actively processing the CP trace table, the AP IMP lock
becomes active. The control method is a word within the module which is tested
with a TS (TEST and SET) instruction. This word also holds the CPU
identification of the latest CPU through the CPTRAP logic.

Chapter 46. Debugging with CP 657

Running with Microcode Assist Active

LOGOFF Considerations

The CPTRAP facility deactivates the dispatcher assists in ECPS:VM/370 to
support the monitor call interface for virtual machines. Deactivation occurs only
when CPTRAP is active.

I The CPTRAP facility is stopped if the user who invoked CPTRAP logs off.

Spool Space Considerations

\ Lost Data

The CPTRAP facility is stopped if there is no spool space available on the system.
When the system is using 90% of its spool space, and again when it is using 100%,
CP sends a message to the user. When no space is available CPTRAP closes the
file, creates a READER file, and stops processing.

A data lost message is issued when the system creates output faster than it can be
transferred to the spool. When this happens, the output file also indicates that data
has been lost. The amount of data lost can be 4K of CP trace table and/or
CP /virtual data records. The possibility of a data lost situation is:

1. Directly proportional to the rate of transfer of trace table data to spool

2. Directly proportional to the frequency and size of interface data

3. Inversely proportional to speed of the spool DASD. This is a potential problem
with the faster CPUs and/or with heavy use of the interface.

A reduced selection of trace types and CP or virtual machine data helps reduce lost
data problems.

CP/Virtual Machine Interface Errors

Two specific problems can occur in the following situations:

• Any byte of the parameter list or any byte of the data field lies outside of the
virtual machine or CP storage due to an invalid address

• An I/O error occurs while attempting to read a page.

When these errors occur:

1. The system sends an informational message to the virtual machine user who
started CPTRAP.

2. CP puts a special indicator, ADDR BAD, into the file.

3. The system ignores the data sent by VM or CPo

658 VM/SP System Programmer's Guide

(

(

Release Level Conflicts

Problems may arise if you are using different VM/SP release levels of CPTRAP
and TRAPRED.

Using TRAP RED at VM/SP Release 3 level to process a CPTRAP file from
VM/SP Release 4 can provide unpredictable results. This level of TRAPRED
cannot handle X'3D' entries, but it can handle CP trace table entries.

Using TRAPRED at VM/SP ~.e1ease 4 level to process a CPTRAP file from
VM/SP Release 3 works correctly for hexadecimal output. Formatted output gives
unpredictable results if the contents of VM/SP Release 3 trace table entries differ
from the contents of VM/SP Release 4 entries.

Using the TRAPRED Facility

Viewing Entries in the CPTRAP File

The spool file created by the CPTRAP facility has a filename of CPTRAP and a
filetype of FILE. It is made up of noncontiguous 4K spool records which contain
many individual entries. The records contain only data. No CCWs are within
them. The file cannot be accessed as a normal spool file. The TRAPRED
command must be used to access the file and review the entries.

The TRAPRED program is a CP module shipped with the CMS modules. It resides
on the CMS S-disk with an S2 filemode. TRAPRED writes CP error messages to
the terminal, and writes line mode data to the terminal and to the printer.
Although TRAPRED issues CP messages, the program runs in the CMS user area.
You must be in CMS to use TRAPRED.

Use the TRAPRED command to access the CPTRAP reader file and review the
entries contained in that file. Once TRAPRED has been invoked, you may execute
TRAPRED subcommands. You can also execute the CMS immediate commands
HT and HX, and CP commands (if prefaced with 'CP'). Return control to the
CMS environment by issuing the TRAPRED subcommand QUIT.

The format of the TRAPRED command is:

I TRAPRED I filenum

where:

filenum is the number of the reader file that is the output of CPTRAP
processing. The filename and filetype are 'CPTRAP FILE'.

The spool file specified must belong to the user invoking the program.
It also must be of a class which can be read and must not be held.

Chapter 46. Debugging with CP 659

1
After you enter 'TRAPRED filenum', the CPTRAP reader file is accessed and
interactive processing may begin. When the TRAPRED command is invoked, the
message 'ENTER SELECTIVITY OPTION(S) OR SUBCOMMAND' is issued.

TRAPRED Subcommands

The TRAPRED subcommands are as follows:

Note: The TRAPRED subcommands must be entered on separate command lines.

typenum r'Ok

address J DEVaddr cuu
COde code-value
OFF

ALL [g~FJ
Hex

FOrmat

TOP

BOTtom

Up
[*J

Down
[*J

Type
[*J

TYPEBack
[*J

Printer
[*J

QUIT

where:

typenum [vmblOk address J
DEVaddr cuu
COde code-value
OFF

660 VM/SP System Programmer's Guide

"

f" typenum
identifies the type of entry to be selected. Selectivity defaults to ALL
ON when the TRAPRED command is invoked. If ALL ON is in effect
when typenum is issued, all other typenums are reset to OFF. Possible
input for typenum is:

01 - 1B for CP trace table entries
3D for group virtual machine data
3E for general virtual machine data
3F for CP data

Typenum cannot be specified on the same command line with other
TRAPRED subcommands. However, multiple typenum subcommands
can be issued on the same command line.

Vmblok address
specifies additional selectivity based on a VMBLOK address. This
option is only valid for entries in the file that have a VMBLOK field.
See the VM j SP Operator's Guide for a chart of the typenums that can
specify the Vmblok option.

DEVaddr cuu
specifies additional selectivity based on a device address. This option is
only valid for entries in the file that have a real or virtual device address
field. See the VMjSP Operator's Guide for a chart of the typenums that
can specify the DEVaddr option.

COde code-value
specifies additional selectivity based on a code. This option is only valid
for entries in the file that contain a code field. See the VMjSP
Operator's Guide for a chart of the typenums that can specify the COde
option. This option is also valid for 3D, 3E, and 3F entries. For these
typenums, the selectivity is based on the individualizing code in the
entry.

OFF
deletes all selectivity set up for the specified typenum.

ALL [ON]
OFF

Hex

ON
turns the selection of all typenums on. ON is the default setting.

OFF
turns the selection of all typenums off.

indicates that hexadecimal output is requested for the entries that will be
displayed. Hex is the default and is in effect until FOrmat is issued.

Chapter 46. Debugging with CP 661

FOrmat

TOP

indicates that formatted output is requested for the entries that will be
displayed. FOrmat is in effect until HEX is issued.

Note: 3E and 3F entries are user-defined data and are not formatted.

positions you at the top of the CPTRAP reader file. The null entry at the
top of the file becomes the new current entry. It contains

* * * TOP OF FILE * * *

BOTtom

Up

positions you at the bottom of the CPTRAP reader file. The last entry of the
file becomes the current entry. The last entry displayed is

* * * END OF FILE * * *

[!]
scrolls a specified number of entries toward the top of the file and displays
the new current entry. The specified number indicates the number of entries
to be skipped. It may be any positive decimal integer up to eight digits. One
is the default value. Wrapping is not allowed, and the subcommand ends
prematurely if the top of the file is reached.

Down [!]

Type

scrolls a specified number of entries toward the end of the file and displays
the new current entry. The specified number indicates the number of entries
to be skipped. It may be any positive decimal integer up to eight digits. One
is the default value. Wrapping is not allowed, and the subcommand ends
prematurely if the end of the file is reached.

[!]
displays the specified number of selected entries at the terminal starting with
the current entry and moving toward the end of the file. The number may be
any positive decimal integer up to eight digits. One is the default value. The
subcommand ends prematurely if the end of the file is reached.

662 VM/SP System Programmer's Guide

-- -- ------

/

TYPEBack [!]
displays the specified number of selected entries at the terminal starting with
the current entry and moving toward the top of the file. The number may be
any positive decimal integer up to eight digits. One is the default value. The
subcommand ends prematurely if the top of the file is reached.

Printer [!]

QUIT

spools selected entries to the printer starting with the current entry and
moving toward the end of the file. The number of entries may be any
positive decimal integer up to eight digits. One is the default value. The
subcommand ends prematurely if the end of the file is reached.

ends TRAPRED and returns you to the CMS environment. The accessed
reader file is not purged. To purge the file, you must explicitly issue the CP
PURGE cbmmand.

CPTRAP Examples

How to Collect CP Data in CPTRAP File

Generating the CP Data

Logic in CP Code: A CP interface to CPTRAP lets CP send information to be
recorded in the CPTRAP file. This lets the system programmer collect problem
determination data for solving problems that may be related to CP code. The CP
interface to CPTRAP could be used to trace CP control blocks at various points in
the CP code. For example, code in the module DMKQCN releases the storage
used for CONTASKs. If you needed to record the information in a CONTASK for
problem determination before it is released, you could include the following code at
the appropriate location in DMKQCN:

Chapter 46. Debugging with CP 663

ALLDONE

*
DATALEN

DATADDR
AROUND

DS OH HERE TO RELEASE THE CONTASK
USING CONTASK,R6 GET ADDRESSABILITY TO CONTASK
LH R2,CONTSKSZ GET CONTASK LENGTH IN DWORDS
SLL R2,3 CONVERT THE LENGTH INTO BYTES
STH R2,DATALEN PUT LENGTH OF CONTASK IN PLIST
ST R6,DATADDR PUT ADDRESS OF CONTASK IN PLIST
USING PSA,RO NEED ADDRESSABILITY TO PSA
BAL R1,AROUND SET UP POINTER TO PLIST

PARAMETER LIST:
DS AL2 2 BYTES FOR LENGTH
DC AL2 (3) 2 BYTES FOR CODE .. (THIS IS 3)
DS AL4 4 BYTES FOR ADDRESS
DS OH
LA R15,TRAPOK GET ADDRESS OF TRAPOK
BALR R14,R15 SEND DATA TO CPTRAP FILE

<existing code in DMKQCN to release the CONTASK>

Now, to use this trap in DMKQCN, the module has to be reassembled and the
system programmer has to rebuild the system using the modified version of
DMKQCN. Then, every time a CONTASK is released, a parameter list is set up
and control goes to CPTRAP.

The system programmer can set-up any number of traps in CP code at the same
time. By making the individualizing code unique in each case, the CP entries can
be reviewed selectively in the CPTRAP file. In the example, the CP entries that
are created have an individualizing code of 3.

r Collecting the CP Data in the CPTRAP File

When CPTRAP is not active, control immediately returns to the caller, DMKQCN.

When CPTRAP is active, control is given to the CPTRAP module (DMKTRT). If
X'3F' entries are being collected, the data identified by the parameter list is
recorded in the CPTRAP file.

To activate CPTRAP and collect only records that CP sends, issue the following
set of commands:

cptrap start
R;

cptrap 3f
CPTRAP SELECTIVITY RESET
R;

Now, whenever any CONTASK in the system is released, this is recorded in the
CPTRAP file.

664 VM/SP System Programmer's Guide

--- ~.--~--- -----_.-_. -----

./

(Suppose a user issued the following 2 messages:

m op are you logged on today
Ri

m op did i catch this contask in the cptrap file?
Ri

This would have created 2 CONT ASKS and when these are released, you would
expect to find both of them in the CPTRAP file.

Stop the CPTRAP facility and create the reader file by issuing:

cptrap stop
RDR FILE 0002 TO WILL
CPTRAP COMMAND COMPLETE
Ri

COPY 001 NOH OLD

Displaying the CPTRAP Output

q rdr all

Look at the CPTRAP file using the TRAPRED facility. By spooling your reader to
the same class as the CPTRAP file you can access the reader file that was created.

ORIGINID FILE CLASS RECORDS CPY HOLD DATE TIME NAME TYPE
FILE

DIST
WILL WILL 0002 P DMP 00000001 001 NONE 02/10 14:23:06 CPTRAP

Ri

trapred 2
ENTER SELECTIVITY OPTION(S) OR SUBCOMMAND:

Since the parameter list set up in DMKQCN used "3" for an individualizing code,
you can use the TRAPRED subcommand, 3F CODE 3, to indicate that only CP
data entries that came from the trap in DMKQCN should be selected.

ENTER SELECTIVITY OPTION(S) OR SUBCOMMAND:
3f code 3
TRAPRED SELECTIVITY RESET
ENTER SELECTIVITY OPTION(S) OR SUBCOMMAND:

Using the TRAPRED subcommand TOP, you can position yourselves at the top of
the file.

Chapter 46. Debugging with CP 665

ENTER SELECTIVITY OPTION(S) OR SUBCOMMAND:
top
* * * TOP OF FILE * * *
ENTER SELECTIVITY OPTION(S) OR SUBCOMMAND:

Using the TRAPRED subcommand TYPE, you can display the entries you want to
see at the terminal.

ENTER SELECTIVITY OPTION(S) OR SUBCOMMAND:
type 2
14:23:06

3FOOOO03 00800000 00000000 00000000 * *
8003000F 000411CO 00440000 00000000 * *
001E4128 00000037 00000000 00000000 * *
00000000 00000000 00000000 00000000 * *
F1F47AF2 F37AF2F2 151515D4 E2C740C6 *14:23:22 ... MSG F*
D9D6D440 E6C9D3D3 40404040 7A40C1D9 *ROM WILL : AR*
C540E8D6 E440D3D6 C7C7C5C4 40D6D540 *E YOU LOGGED ON *
E3D6C4C1 E8151500 00000000 00000000 * TODAY *
3FOOOO03 00980000 00000000 00000000 * *
80030012 000411CO 00440000 00000000 * *
001E3EB8 0000004B 00000000 00000000 * *
00000000 00000000 00000000 00000000 * *
F1F47AF2 F37AF3F5 151515D4 E2C740C6 *14:23:35 ... MSG .F*
D9D6D440 E6C9D3D3 40404040 7A40C4C9 *ROM WILL : DI*
C440C940 C3C1E3C3 C840E3C8 C9E240C3 *D I CATCH THIS C*
D6D5E3C1 E2D240C9 D540E3C8 C540C3D7 *ONTASK IN THE cp*
E3D9C1D7 40C6C9D3 C5151500 00000000 *TRAP FILE *
00000000 00000000 00000000 00000000 * *

ENTER SELECTIVITY OPTION(S) OR SUBCOMMAND:

Since you are positioned at the top of a CPTRAP record, the time stamp for that
record is displayed. Next, notice that the two entries in the CPTRAP file are from
CP (3F) and came from your trap in DMKQCN, that is, they have an
individualizing code of 3. These entries are displayed in hex on the left with the
EBCDIC translation on the right. The first 3F entry displayed has an
individualizing code of 3. The entire entry is X'80' (128) bytes long. The first 8
bytes are the CP header. The 120 bytes following the CP header contain the
CONTASK for the first message issued. In the next 3F entry displayed, notice that
the 144 bytes following the CP header contain the CONTASK for the second
message issued.

666 VM/SP System Programmer's Guide

How to Collect Virtual Machine Data in a CPTRAP File

Generating the Virtual Machine Data

DOTHIS CNOP

*

STH
ST
BAL

DATALEN DS
DC

DATADDR DS
AROUND DS

MC

Logic in a Program: A virtual machine interface to CPTRAP lets a virtual machine
send information to be recorded in the CPTRAP file. This lets the system
programmer collect information for solving problems that may be related to a
program running in the virtual machine.

Two types of virtual machine data can be recorded in the CPTRAP file.

The data is general virtual machine data if it is sent by any virtual machine that
is enabled and uses a monitor code 0 when passing the data to CPTRAP.

• The data is group virtual machine data if it is sent by a virtual machine that is
enabled, uses a monitor code 1 when passing the data to CPTRAP, and
belongs to a group.

One way that the virtual machine interface to CPTRAP might be used is to capture
some data being changed incorrectly by the program. For example, you could
include the following code at the appropriate location in the program:

0,4
R2,DATALEN
R6,DATADDR
R1,AROUND

AL2
AL2(5)
AL4
OH
0,10

HERE TO RECORD ENTRY IN CPTRAP FILE
PUT LENGTH OF DATA YOU WANT IN PLIST
PUT ADDRESS OF DATA YOU WANT IN PLIST
SET UP POINTER TO PLIST
PARAMETER LIST:

2 BYTES FOR LENGTH
2 BYTES FOR CODE .. (THIS IS 5)
4 BYTES FOR ADDRESS

SEND GENERAL VM (3E) DATA TO CPTRAP

<existing code in program to continue doing something>

Now, to use this trap in the program, this program has to be reassembled. The
system programmer has to do whatever is required to run this new version of the
program. Then, every time something causes the code in the trap to execute, the
parameter list would be set up and control would go to CPTRAP.

The system programmer can set up any number of these traps in the code at the
same time. By making the individualizing code unique in each case, the virtual
machine entries can be reviewed selectively in the CPTRAP file. In the example
here, the virtual machine entry created is for general virtual machines (type 3E)
and has an individualizing code of 5.

Chapter 46. Debugging with CP 667

Collecting the Virtual Machine Data in the CPTRAP File

When CPTRAP is activated, the monitor code interface gives control to CPTRAP.
If X' 3E' entries are being collected then the data identified by the parameter list is
recorded in the CPTRAP file.

To activate CPTRAP and collect only general virtual machine data, issue the
following set of commands:

cpt rap start
R;

cpt rap 3e
CPTRAP SELECTIVITY RESET
R;

Now, whenever the code in your trap executes, an entry should be made in the
CPTRAP file. You can stop the CPTRAP facility and cause the reader file to be
created by issuing:

cptrap stop
RDR FILE 0003 TO WILL
CPTRAP COMMAND COMPLETE
R;

COpy 001 NOHOLD

Displaying the CPTRAP Output

Look at the CPTRAP file using the TRAPRED facility.

q rdr all
ORIGINID FILE CLASS RECORDS CPY HOLD DATE TIME NAME
WILL 0003 P DMP 00000001 001 NONE 02/10 15:30:06 CPTRAP
R;

trapred 3
ENTER SELECTIVITY OPTION(S) OR SUBCOMMAND:

TYPE
FILE

DIST
WILL

Since the parameter list set up in the program used "5" for an individualizing code,
you can use the TRAPRED subcommand, 3E CODE 5, to indicate that only virtual
machine data entries that came from the trap in your program should be selected.

ENTER SELECTIVITY OPTION(S) OR SUBCOMMAND:
3e code 5
TRAPRED SELECTIVITY RESET
ENTER SELECTIVITY OPTION(S) OR SUBCOMMAND:

668 VM/SP System Programmer's Guide

\

~j I

{

(

Using the TRAPRED subcommand TOP, you can position yourself at the top of
the file.

ENTER SELECTIVITY OPTION(S) OR SUBCOMMAND:
top
* * * TOP OF FILE * * *
ENTER SELECTIVITY OPTION(S) OR SUBCOMMAND:

Using the TRAPRED subcommand TYPE, you can display the entries you want to
see at the terminal.

ENTER SELECTIVITY OPTION(S) OR SUBCOMMAND:
type
15:01:35

3EOOOO05 OOBOOOOO E3C8C9E2 40C4C1E3 * THIS DAT*
C140C9E2 40C6D9D6 D440E3C8 C540E3D9 *A IS FROM THE TR*
C1D740C3 D6C4C5C4 40C9D540 E3C8C540 *AP CODED IN THE *
C1D7D7D3 C9C3C1E3 C9D6D540 D7D9D6C7 *APPLICATION PROG*
D9C1D44B 40E3C8C5 40E2E8E2 E3C5D440 *RAM. THE SYSTEM *
D7D9D6C7 D9C1D4D4 C5D940E2 C8D6E4D3 *PROGRAMMER SHOUL*
C440E2C5 E340E3C8 C9E240E4 D740E3D6 *D SET THIS UP TO*
40C3D6D5 E3C1C9D5 40E3C8C5 40D7D9D6 * CONTAIN THE PRO*
C2D3C5D4 40C4C5E3 C5D9D4C9 D5C1E3C9 *BLEM DETERMINATI*
D6D540C9 D5C6D6D9 D4C1E3C9 D6D540E3 *ON INFORMATION T*
C8C1E340 C9E240D9 C5D8E4C9 D9C5C44B *HAT IS REQUIRED.*

ENTER SELECTIVITY OPTION(S) OR SUBCOMMAND:

Since you are positioned at the top of a CPTRAP record, the time stamp for that
record is displayed. Next, notice the entry (3E) in the CPTRAP file that would
have come from the trap set in the program running in the virtual machine (a
CODE of 5). The entry is displayed in hex on the left with the EBCDIC
translation on the right.

Displaying Formatted CPTRAP Output

All CPTRAP entries can be displayed in hexadecimal. It is possible to obtain
formatted output for CP trace table entries and X'3D' entries in the CPTRAP file.
The X'3E' and X'3F' entries, which contain variable or user-defined data, cannot
be formatted.

Following is an example of both hexadecimal output and formatted output for some
CP trace table entries in a CPTRAP file. Use the TRAPRED subcommands TOP,
HEX, and TYPE 5 to display the first five entries in the CPTRAP file in
hexadecimal.

Chapter 46. Debugging with CP 669

ENTER SELECTIVITY OPTION(S) OR SUBCOMMAND:
top
* * * TOP OF FILE * * *
ENTER SELECTIVITY OPTION(S) OR SUBCOMMAND:
hex
ENTER SELECTIVITY OPTION(S) OR SUBCOMMAND:
type 5
10:37:18

OAOOOOOO 00043820 070DOOOO 00195D04
03000400 00040010 070D3000 00194264
020216EO 00020008 OOOCOOOO 0001FB22
0201FB22 0002000C OOOCOOOO 00021AAE
02000001 000200CA 070D2000 00196000

RUN USER
PROGRAM INTERRUPT
SVC INTERRUPT (CALL)
SVC INTERRUPT (RETURN)
SVC INTERRUPT (USER)

Now, to obtain formatted output of the same information, use the TRAPRED
subcommands TOP, FORMAT, and TYPE 5 as follows:

ENTER SELECTIVITY OPTION(S) OR SUBCOMMAND:
top
* * * TOP OF FILE * * *
ENTER SELECTIVITY OPTION(S) OR SUBCOMMAND:
format
ENTER SELECTIVITY OPTION(S) OR SUBCOMMAND:
type 5
10:37:18
OA RUN USER **MP** OAOOOOOO 00043820 070DOOOO 00195D04

VMBLOK = 043820
RUN PSW = 070DOOOO 00195D04

03 PROGRAM INTERRUPT **MP** 03000400 00040010 070D3000 00194264
ILC = 04, CODE = 0010 = SEG TRANS
OLD PSW = 070D3000 00194264

02 SVC INTERRUPT **MP** 020216EO 00020008 OOOCOOOO 0001FB22
CALL TO 0216EO FROM 01FB22

02 SVC INTERRUPT **MP** 0201FB22 0002000C OOOCOOOO 00021AAE
RETURN TO 01FB22 FROM 021AAE

02 SVC INTERRUPT **MP** 02000001 000200CA 070D2000 00196000
USER SVC (DEC) = 202, OLD PSW = 070D2000 00196000

ENTER SELECTIVITY OPTION(S) OR SUBCOMMAND:

For examples of the hexadecimal and formatted CP trace table entries and a full
explanation of the individual entries, see the VM/SP Interactive Problem Control
System Guide. Please note that the formatted output produced by CPTRAP does
not contain the following fields found in the formatted output produced by IPCS:

1. The trace entry address

2. The userid corresponding to a VMBLOK address

3. The module names and displacement within the module.

For examples of the hexadecimal and formatted version of the X'3D' entries, see
the VM/SP Group Control System Guide.

670 VM/SP System Programmer's Guide

--_/

\"----_/

(

(-

Chapter 47. Debugging With CMS

This section describes the debug tools that CMS provides. These tools can be used
to help you debug CMS or a problem program. In addition, a CMS user can use
the CP commands to debug. Information that is often useful in debugging is also
included. The following topics are discussed in this section:

• CMS debugging commands
• Load maps
• Reading CMS dumps

Control block summary.

CMS Debugging Commands

CMS provides two commands that are useful in debugging: DEBUG and
SVCTRACE. Both commands execute from the terminal.

The debug environment is entered whenever:

• The DEBUG command is issued
• A breakpoint is reached
• An external or program interrupt occurs.

CMS will not accept other commands while in the debug environment. However,
while in the debug environment, subcommands of the DEBUG command can be
used to:

• Set breakpoints (address stops) that stop program execution at specific
locations.

• Display the contents of the CAW (channel address word), CSW (channel
status word), old PSW (program status word), or general registers at the
terminal.

• Change the contents of the control words (CAW, CSW, and PSW) and general
registers.

• Dump all or part of virtual storage at the printer.

• Display the contents of up to 56 bytes of virtual storage at the terminal.

• Store data in virtual storage locations.

Chapter 47. Debugging With CMS 671

!DEBUG

• Allow an origin or base address to be specified for the program.

• Assign symbolic names to specific storage locations.

• Close all open files and I/O devices and update the master file directory.

• Exit from the debug environment.

The SVCTRACE command records information for all SVC calls. When the trace
is terminated, the information recorded up to that point is printed at the system
printer.

In addition, several CMS commands produce or print load maps. These load maps
are often used to locate storage areas while debugging programs.

The DEBUG command provides support for debugging programs at a terminal.
The virtual machine operator can stop the program at a specified location to
examine and alter virtual storage, registers, and various control words. Once CMS
is in the debug environment, the virtual machine operator can issue the various
DEBUG subcommands. However, in the debug environment, all of the other CMS
commands are considered invalid.

Any DEBUG subcommand may be entered if CMS is in the debug environment
and the keyboard is unlocked. The following rules apply to DEBUG
subcommands:

1. No operand should be longer than eight characters. All operands longer than
eight characters are left-justified and truncated on the right after the eighth
character.

2. The DEFINE subcommand must be used to create all entries in the DEBUG
symbol table.

3. The DEBUG subcommands can be truncated. The following is a list of all
valid DEBUG subcommands and their minimum truncation.

Subcommand

BREAK
CAW
CSW
DEFINE
DUMP
GO
GPR

Minimum
Truncation

BR
CAW
CSW
DEF
DU
GO
GPR

672 VM/SP System Programmer's Guide

/

,
l

& CRASH command

(

Minimum
Subcommand Truncation

HX HX
ORIGIN OR
PSW PSW
RETURN RET
SET SET
STORE ST
X X

One way to enter the debug environment is to issue the DEBUG command. The
message

DMSDBG728I DEBUG ENTERED

appears at the terminal. Any of the DEBUG subcommands may be entered. To
continue normal processing, issue the RETURN subcommand. Whenever a
program check occurs, the DMSABN routine gains control. Issue the DEBUG
command at this time if you wish CMS to enter the debug environment.

Whenever a breakpoint is encountered, a program check occurs. The message

DMSDBG728I DEBUG ENTERED
BREAKPOINT YY AT XXXXX

appears on the terminal. Follow the same procedure to enter subcommands and
resume processing as with a regular program check.

An external interrupt, which occurs when the CP EXTERNAL command is issued,
causes CMS to enter the debug environment. The message

DMSDBG728I DEBUG ENTERED
EXTERNAL INTERRUPT

appears on the console. Any of the DEBUG subcommands may be issued. To exit
from the debug environment after an external interrupt, use GO.

While CMS is in the debug environment, the control words and low storage
locations contain the debug program values. The debug program saves the control
words and low storage contents (X'OO' through X' 100') of the interrupted routine
at location X' CO' .

The &CRASH command is used as an aid in debugging the EXEC 2 interpreter
DMSEXE and is intended to be used by system support people only. It is generally
only useful when used in conjunction with a current listing of module DMSEXE.

The &CRASH command is not used for debugging programs or EXEC files written
in the EXEC 2 language. For information on debugging programs and EXECs
written in the EXEC 2 language, see the &TRACE command in the VM / SP EXEC
2 Reference.

Chapter 47. Debugging With CMS 673

The format of the &CRASH command is:

I &CRASH I [text]

where:

text if specified, is the character string contained in memory just prior to
the instruction that caused the &CRASH command to be executed.

WARNING: Unless this command is used as described, CMS may abend and data
may be lost.

Notes:

1. &CRASH should be used only after issuing the CP TRACE PROG command.

2. Execution of the &CRASH command causes entry to CP command mode. One
of the following statements should be issued to continue execution:

BEGIN intaddr+2

where:

intaddr+2

BEGIN r14addr

where:

r14addr

to continue execution

is the address of the interrupt plus two

-or-

to terminate the EXEC file with a return code as given in
register 15

is the address in register 14

Simply issuing the BEGIN command causes abnormal termination of CMS.

3. The registers contain the following information when CP command mode is
entered:

Rl = address of the unsubstituted &CRASH arguments.

RIO, Rll = main base registers (the address of the label "MAIN" and
"MAIN+4096") .

R12 = the address of the label "EXEC"

R13 = the address of DSECT ''AREA''

R14 = the address of where to resume if termination is needed

R15 = 0

674 VM/SP System Programmer's Guide

('

If execution is resumed at the next instruction in memory, the EXEC file will
continue execution at the next EXEC statement.

If execution is resumed at the location addressed by register 14, the EXEC file
will terminate and yield a return code given by the value of register 15.

Example Using &CRASH

&ERROR &IF &RC < 0 &IF &LINENUM > 50 &CRASH UNKNOWN COMMAND

This statement causes the &CRASH command to execute when a command error
occurs that returns a return code less than zero and on a line above line 50. If the
&CRASH command is executed, the results might look like this:

*** 2CF158 PROG 0001 ==> 01F1C8

D G
GPR 0
GPR 4
GPR 8
GPR 12

«<-- Show
FFFFD798 001BAE48
00006885 001BAF57
001BAF57 001BAF5E
002CC690 00 1 BACE8

all the registers
00000006 00000038
002CC8EC 002CCF8C
002CC8E2 002CD8E2
002CF162 00000000

D T1BAE48.20
lBAE40 E20F50C3
lBAE50 D44000C5
lBAE60 40404040

«<-- Display the &CRASH arguments
D9C1E2C8 4050D3C9 D5C5D5E4 *S.&CRASH UNKNOWN*
40C1D3D3 40004040 40404040 * COMMAND sse.<> *
40404040 40404040 40404040 * *

D T1BACE8.10 «<-- Display which EXEC file was interrupted
lBACEO 00011618 12E81BFF C1C2C3C3 40404040 * ABCD *
lBACFO 40404040 C5E9C5C3 40404040 40404040 * EXEC *

D T2CF158.10 «<-- Display where the interrupt happened
2CF150 C01858CO DOF81BFF 000007F6 50C3D9C1 * 8 6&CRA*
2CF160 E2C8189F 47FOC1E2 45EOAAB8 078745EO *SH ... OAS *

B 2CF15A «<-- Continue as if no interrupt happened

Nucleus Load Map

Each time the CMS resident nucleus is loaded on a DASD and an IPL can be
performed on that DASD, a load map is produced as a printer spool file. Save this
load map. It lists the virtual storage locations of nucleus-resident routines and
work areas. Transient modules are not included in this load map. When debugging
CMS, you can locate routines using this map. For information on obtaining a load
map, see "Generating a CMS Nucleus" in the VM/SP Installation Guide.

Chapter 47. Debugging With CMS 675

Load Map

The load map of a disk-resident command module contains the location of control
sections and entry points loaded into storage. It may also contain certain messages
and card images of any invalid cards or replace cards that exist in the loaded files.
The load map is contained in the third record of the MODULE file.

This load map is useful in debugging. When using the Debug environment to
analyze a program, use the program's load map to help in displaying information.

There are two ways to get a load map.

1. When loading relocatable object code into storage, make sure that the MAP
option is in effect when the LOAD command is issued. Since MAP is the
default option, just be sure that NOMAP is not specified. A load map is then
created on the primary disk each time a LOAD command is issued.

2. When generating the absolute image form of files already loaded into storage,
make sure that the MAP option is in effect when the GENMOD command is
issued. Since MAP is the default option, just be sure that NOMAP is not
specified. Issue the MODMAP command to type the load map associated with
the specified MODULE file on the terminal. The format of the MODMAP
command is:

I MODmap I filename

where:

filename is the module whose map is to be displayed. The filetype must be
MODULE.

Reading eMS Abend Dumps

If an abend dump is desired when CMS abnormally terminates, the terminal
operator must enter the DEBUG command and then the DUMP subcommand.
The dump formats and prints:

General registers
Extended control registers

• Floating-point registers
• Storage boundaries with their corresponding storage protect key

CurrentPSW
• Selected storage.

Storage is printed in hexadecimal representation, eight words to the line, with
EBCDIC translation at the right. The hexadecimal storage address corresponding
to the first byte of each line is printed at the left.

When CMS can no longer continue, it abnormally terminates. To debug CMS, first
determine the condition that caused the abend and then find why the condition

676 VM/SP System Programmer's Guide

-- --- ------.~--

(.

occurred. To find the cause of a CMS problem, you must be familiar with the
structure and functions of CMS. Refer to "Part 2: Conversational Monitor
System (CMS)" for functional information. The following discussion on reading
CMS dumps refers to several CMS control blocks and fields in the control blocks.
Refer to the VM/SP Data Areas and Control Block Logic Volume 2 (CMS) for
details on CMS control blocks. Figure 80 shows the CMS control block
relationships. You also need a current CMS nucleus load map to analyze the
dump.

VM/SP Interactive Problem Control System (VM/SP IPCS) provides installations
with expanded facilities for reporting and diagnosing software failure. The file
created by the CMS DEBUG DUMP subcommand may be processed by IPCS to
debug errors, as well as to store and maintain error information about the virtual
machine. IPCS then can display this information interactively at the user's
terminal, in either a hexadecimal display or in a formatted display. For additional
information, see the VM/SP Interactive Problem Control System Guide.

Chapter 47. Debugging With CMS 677

SYSREF
600 ("7;;;:;';:;--T,~=:::;:;---'

608

610

618

620

628

630

638

640

648

650

658

660

668

670

678

680

688

690

698

6AO

6A8

6BO

6BS

6CO

6C8

~--------~-----r----~"

r----------+----~-----

r----------r----------

600 ~~~~_+~~~~

60S ~~~~__l_~~~~_I%II::II:
6EO

6ES

6FO

6FS

Figure 80. CMS Control Blocks '

678 VM/SP System Programmer's Guide

DMSNUC

FREELIST

MAINLIST

TXTOIRC

MACOIR

PRECMNO

SYSNAME

I NSTALI 0

SYSEMID

Free Storage ---....

CMSCB

I CMSAVE II LORST I

NUCON
(See Legend)

Legend:

The projection of SYSREF is a
sampling of areas within NUCON.

/
i

~

(

(

Reason for the Abend

Collect Information

Determine the immediate reason for the abend and identify the failing module.
The abend message DMSABN148T contains an abend code and failing address.
The VM/SP System Messages and Codes manual lists all the CMS abend codes,
identifies the module that caused the abend, and describes the action that should be
taken whenever CMS abnormally terminates.

You may have to examine several fields in the nucleus constant area (NUCON) of
low storage.

1. Examine the program old PSW (PGMOPSW) at location X' 28'. Using the
PSW and current CMS load map, determine the failing address.

2. Examine the SVC old PSW (SVCOPSW) at location X'20'.

3. Examine the external old PSW (EXTOPSW) at location X' 18'. If the virtual
machine operator terminated CMS, this PSW points to the instruction
executing when the termination request was recognized.

4. For a machine check, examine the machine check old PSW (MCKOPSW) at
location X'30'. Refer to Figure 83 in "Appendix A: System/370
Information" for a description of the PSW.

Examine several other fields in NUCON to analyze the status of the CMS system.
As you proceed with the dump, you may return to NUCON to pick up pointers to
specific areas (such as pointers to file tables) or to examine other status fields. The
complete contents of NUCON and the other CMS control blocks are described in
the VM/SP Data Areas and Control Block Logic Volume 2 (CMS). The following
areas of NUCON may contain useful debugging information.

• Save Area for Low Storage

Before executing, DEBUG saves the first 160 bytes of low storage in a
NUCON field called LOWSA VB. LOWSA VB begins at X' CO' .

• Register Save Area

DMSABN, the abend routine, saves the user's floating-point and general
registers.

Field

FPRLOG
GPRLOG
ECRLOG

• Device

Location Contents

X'160' User floating-point registers
X' 180 ' User general registers
X'lCO' User extended control registers

Chapter 47. Debugging With CMS 679

,/ -
I

The name of the device causing the last I/O interrupt is in the DEVICE field ~

atX'26C'.

• Last Two Commands or Procedures Executed

Field Location Contents

LASTCMND X'2AO' Last command issued from the CMS or XEDIT
command line. If a command issued in a CMS
EXEC abnormally terminates, this field contains
the name of the command. When a CMS
EXEC completes, this field contains the name
'EXEC.' EXEC 2 and System Product
Interpreter do not update this field.

PREVCMND X'2A8' Next-to-Iast command issued from the CMS or
XEDIT command line. If a command issued in
a CMS EXEC abnormally terminates, this field
contains the name 'EXEC'. When a CMS
EXEC completes, this field contains the last
command issued from the CMS EXEC. EXEC
2 and System Product Interpreter do not update
this field.

LASTEXEC X'2BO' Last EXEC procedure invoked. EXEC 2 and
System Product Interpreter do not update this
field.

PREVEXEC X'2B8' Next to last EXEC procedure invoked. EXEC
2 and System Product Interpreter do not update
this field.

Last Module Loaded into Free Storage and the Transient Area

The name of the last module loaded into free storage via a LOADMOD is in
the field LASTLMOD (location X'2CO'). The name of the last module loaded
into the transient area via a LOADMOD is in the field LASTTMOD (location
X'2C8').

Pointer to CMSCB

The pointer to the CMSCB is in the FCBT AB field located at X' 5 CO' .
CMSCB contains the simulated OS control blocks. These simulated OS
control blocks are in free storage. The CMSCB contains a PLIST for CMS
I/O functions, a simulated Job File Control Block (JFCB), a simulated Data
Event Block (DEB), and the first in a chain of I/O Blocks (lOBs).

The Last Command

The last command entered from the terminal is stored in an area called
CMNDLINE (X'7AO'), and its corresponding PLIST is stored at CMNDLIST
(X'848').

680 VM/SP System Programmer's Guide

Register Use

• External Interrupt Work Area

EXTSECT is a work area for the external interrupt handler. It contains:

The PSW, EXTPSW
Register save areas, EXSAVEI
Separate area for timer interrupts, EXSA VB

• 1/ 0 Interrupt Work Area

IOSECT is a work area for the I/O interrupt handler. The oldest and newest
PSW and CSW are saved. Also, there is a register save area.

• Program Check Interrupt Work Area

PGMSECT is a work area for the program check interrupt handler. The old
PSW and the address of register 13 save area are stored in PGMSECT.

• SVC Work Area

SVCSECT is a work area for the SVC interrupt handler. It also contains the
first four register save areas assigned. The SFLAG indicates the mode of the
called routine. Also, the SVC abend code, SVCAB, is located in this CSECT.

• Simulated CVT (Communications Vector Table)

The CVT, as supported by CMS, is CVTSECT. Only the fields supported by
CMS are filled in.

Active Disk Table and Active File Table

For file system problems, examine the ADT (Active Disk Table), or AFT
(Active File Table) in NUCON.

See a CMS nucleus map for the location of these CSECTs.

To trace control blocks and modules, it is important to know the CMS register
usage conventions.

Register

GRl
GRl2
GRl3
GRl4
GRlS

Contents

Address of the PLIST
Program's entry point
Address of a 12-doubleword work area for an SVC call
Return address
Program entry point or the return code

The preceding information should help you to read a CMS dump. If it becomes
necessary to trace file system control blocks, refer to Figure 80 for more
information. With a dump, the control block diagrams, and a CMS load map, you
should be able to find the cause of the abend.

Chapter 47. Debugging With CMS 681

Tips for debugging after receiving a program check abend (e.g. DMSITPI41) are
as follows:

• DMSITP, the CMS program interrupt handler, issues error messages when a
program check occurs. If a SPIE or a ST AE has been issued, control is passed
to the specified routine; otherwise control passes to DMSABN to attempt to
recover from the error. If the message DMSITP144T is issued, the UFDBUSY
byte is not zero and control is halted after the message is typed. If the wait
state bit is turned off in the ps.W,control continues as above. Also, if the error
occurred during the execution of a system routine, control is halted until the
wait state bit is turned off or CMS is re-IPLed.

• To determine the registers and PSW at the time of the abend, get the address
of PGMSECT in the nucleus constant area (NUCON X'654'). The old PSW
is stored 12 (X'C') bytes into the DSECT, immediately followed by registers
14, 15,0, 1, and 2. The program interrupt element (PIE), needed by SPIE,
primarily uses these areas. Registers 0 through 15 are stored at location X'3C'
into the DSECT. The SPIE/STAE routine or the DMSSAR routine uses the
other areas within the DSECT.

• Another aid to debugging is the SVC save area (SVCSA VE) for the virtual
machine. Location X'528' in NUCON points to these areas. The save areas
are easily recognizable by the check words 'ABCD' and 'EFGH' contained
within them. The address of the SVC caller is stored at location 4 and the
name of the routine being called is saved at location 8. At location X' 10', the
old PSW is stored, followed by the addresses for the normal return and the
error return. The registers 0 through 15 are stored at location X'20', followed
by the floating point register at X'60'. After the first check word ('ABCD'),
the address of the next SVCSA VB area is stored, followed by the address of
the previous SVCSA VE area and the address of the user's area. If the address
of the next or previous SVCSA VB area is zero, the chain is terminated.

682 VM/SP System Programmer's Guide

(

Chapter 48. Appendixes

• Appendix A: System/370 Information

• Appendix B: VM Monitor Tape Format and Content

• Appendix C: CMS Macro Library

Chapter 48. Appendixes 683

684 VM/SP System Programmer's Guide

(,-'

Appendix A. System/370 Information

Control Registers

The control registers are used to maintain and manipulate control information that
resides outside the PSW. There are sixteen 32-bit registers for control purposes.
The control registers are not part of addressable storage.

At the time the registers are loaded, the information is not checked for exceptions,
such as invalid segment-size or page-size code or an address designating an
unavailable or a protected location. The validity of the information is checked and
the errors, if any, indicated at the time the information is used.

Figure 81 is a summary of the control register allocation and Figure 82 lists the
facility associated with each control register.

Figure 83 is a description of the EC (Extended Control) PSW.

Appendix A. System/370 Information 685

o
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

<------------------------ 32 bits ------------------------>
SYSTEM CONTROL TRANSl. CONTROL EXTERNAL-INTERRUPTION MASKS

SEGM-TBl lENGTH SEGMENT-TABlE-ORIGIN-ADDRESsl

CHAt-mEl MASKS

HARDWARE ASSIST CONTROLS

MONITOR MASKS

PER EVENT MASKS PER GR ALTERATION MASKS

PER STARTING ADDRESS

PER ENDING ADDRESS

ERROR-RECOVERY CONTROL & M\SKS

MCEL ADDRESS

Figure 81. Control Register Allocation

686 VM/SP System Programmer's Guide

(
Word Bits Name of Field Associated with Initial Value

0 0 Block-Multiplex Mode Block-Multiplex Control 1
0 1 SSM Suppression Extended Control 0
0 2 TOD Clock Synchronous Ctrl. Attached Processing 0
0 8-9 Page Sizel Dynamic Addr. Trans. 10
0 10 Reserved Dynamic Addr. Trans. 0
0 11-12 Segment size1 Dynamic Addr. Trans. 00
0 16 Malfunction Alter Mask Attached Processing 1
0 17 Emergency Signal Mask Attached Processing 1
0 18 External Call Mask Attached Processing 1
0 19 TOD Synchronous Check Mask Attached Processing 1
0 20 Clock Comparator Mask Clock Comparator 1
0 21 Processor Timer Mask Processor Timer 0
0 22 MSSFMask External Interruption 1
0 24 Interval Timer Mask External Interruption 1
0 25 Interrupt Key Mask External Interruption 1
0 26 External Signal Mask External Interruption 0
0 30 IUCV External Interruption 0
0 31 VMCF External Interruption 0

1 The initial value varies
depending upon whether virtual
storage is supported in the
virtual machine.

1 0-7 Segment Table Length Dynamic Addr. Trans. Set by CPo Value
1 8-25 Segment Table Address Dynamic Addr. Trans. varies with the

type of virtual
machine.

2 0-31 Channel Masks I/O Interruptions FFFFFFFF. Set
to
zero on the
attached
processor
in attached
processor
systems.

Figure 82 (Part 1 of 3). Control Register Assignments

(-

Appendix A. System/370 Information 687

Word Bits Name of Field Associated with Initial Value

6 0 VM Assist Hardware Assist Value depends
upon virtual
machine

6 1 VM Problem State Hardware Assist Value depends
upon virtual
machine

6 2 ISK & SSK Hardware Assist Value depends
upon virtual
machine

6 3 S/360 or S/370 instructions Hardware Assist Value depends
upon virtual
machine

6 4 Virtual SVC Interrupts Hardware Assist Value depends
upon virtual
machine

6 5 Shadow Table Fixup Hardware Assist Value depends
upon virtual
machine

6 6 CP Assist Hardware Assist Value depends
upon virtual
machine

6 7 Virtual Interval Timer Hardware Assist Value depends
upon virtual
machine

6 8-28 Real address of VM pointer list Hardware Assist Value depends
upon virtual
machine

8 16-31 Monitor Masks Monitoring Value depends
upon virtual
machine

9 0-3 PERl Event Masks Program-Event Recording Value depends
9 16-31 PER GPR Alteration Masks Program-Event Recording upon

IPER means program-event virtual machine.
recording.

10 8-31 PER Starting Address Program-Event Recording Value depends
upon
virtual machine.

11 8-31 PER Ending Address Program-Event Recording Value depends
upon
virtual machine.

Figure 82 (Part 2 of 3). Control Register Assignments

688 VM/SP System Programmer's Guide

Word Bits Name of Field Associated with Initial Value

14 0 Check-Stop Control Machine-Check Handling Value depends
14 1 Synchronous MCEL2 Control Machine-Check Handling upon
14 2 I/O Extended Logout Control Channel-Check Handling machine check
14 4 Recovery Report Mask Machine-Check Handling handler for the
14 5 Degradation Report Mask Machine-Check Handling virtual machine.
14 6 External Damage Report Mask Machine-Check Handling
14 7 Warning Mask Machine-Check Handling
14 8 Asynchronous MCEL Control Machine-Check Handling
14 9 Asynchronous Fixed Log Ctrl. Machine-Check Handling

2MCEL means machine-check
extended logout.

15 8-28 MCEL Address Machine-Check Handling Points to extend
I/O logout area

Figure 82 (Part 3 of 3). Control Register Assignments

Explanation:

The fields not listed are unassigned.
The initial value of unassigned register positions is unpredictable.

(

Appendix A. System/370 Information 689

System Mask Program
Mask

o

o 7 8 11 12 15 16 17 18 19 20 23 24

o Instruction Address

32 39 40

The fields of the PSW are:

o
1
2-4
5
6
7
8-11

12
13

contents

Must be zero.
PER (Program Event Recording) enabled.
r1ust be zero.
Address translation.
Summary I/O mask.
Summary extension.
The protection key determines if information can be stored
or fetched from a particular location.
Extended control mode.
The machine check flag is set to 1 if machine check
interruptions are enabled.

31

63

14
15

The k',' it state flag is set to 1 when the CPU is in the wai t state.
The problem state flag is set to 1 when the CPU is

16-17
18-19

20-23

24-39
40-63

operating in the problem rather than the supervisor state.
Must be zero.
The condition code reflects the result of a previous
arithmetic, logical, or I/O operation.
The program mask indicates whether or not various program
exceptions are allowed to cause program interrupts.
Must be zero.
The instruction address gives the location of the next
instruction to be executed for program interrupts or of
the instruction last executed for external interrupts.

Figure 83. The Extended Control PSW (Program Status Word)

690 VM/SP System Programmer's Guide

r-

Appendix B. VM/SP Monitor Tape Format and Content

Header Record

Each time a monitor call interrupt occurs, VM/SP Monitor receives control and
collects data appropriate for the particular class and code of MONITOR CALL.
(Or, for USER, PERFORM, or DASTAP classes, VM/SP Monitor gets control at
periodic intervals to collect data.) The data is formatted into records that are
collected sequentially in the order that each interrupt occurred. The tape data
format is standard Variable Blocked (VB) format. Data is written at the default
tape drive density. Maximum block and record lengths are 4096 bytes. The
formats and contents of all the kinds of data records for the currently implemented
classes and codes of MONITOR CALL are listed below.

All values described in the following records are binary unless otherwise noted.

Indicates that the field is EBCDIC.

2 Indicates that the field is in special timer format described below.

See VM/SP Data Areas and Control Block Logic Volume 1 (CP) for field format
definition.

Every data record is preceded by the following 12-byte header:

Number DSECT
of Variable

Data Item Bytes Name

Total bytes in record 2 MNHRECSZ
Zeroes (standard V format record) 2
MONITOR CALL class number 1 MNHCLASS
MONITOR CALL code number 2 MNHCODE
Time of Day 5 MNHTOD

Note: Time of day occupies 2 fullwords in storage, with the rightmost 12 bits
zeroes. The rightmost 2 bytes and the leftmost byte are ignored, giving
16-microsecond accuracy instead of I-microsecond.

The first 4 bytes of this header are the standard variable-format record field.

Appendix B. VM/SP Monitor Tape Format and Content 691

Data Records

Class Zero - Codes for Tape Header, Trailer, and Data Suspension Records

Number CP DSECT
Monitor Data of Variable Variable
Code Item Bytes Name Name

97 Tape header record
CPU serial/model number 8 CPUID MN097CPU
Software version numberl 8 DMKCPEID MN097LEV
Date of data collection session1 8 TOD clock MN097DAT
Time of data collection session1 8 TOD clock MN097TIM
Userid of monitor controller1 8 VrvlUSER MN097UID
CR8 mask of enabled classes 4 DMKPRGC8 MN097CR8
Size of CP nucleus 4 Derived by CP MN097NUC
Size of Free/Fret pools 4 Derived by CP MN097FSS
Size of dynamic paging area 4 Derived by CP MN097DPA
Size of trace table 4 Derived by CP MN097TTS
Size of V=R area (if any) 4 Derived by CP MN097VR
CPU logical address 2 LPUADDR MN097CPL
APU logical address 2 LPAUDDRX MN097APL
Generated system mode 2 DMKSYSAP MN097MOD
Unused 2
PPmap 8 DMKCPEPP MN097CPP

98 Tape trailer record
Userid of user shutting down monitor1 8 VMUSER MN098UID

99 Tape write suspension record
TOD at suspension2 5 MN099TOD
Count of write suspensions 4

MN099CNT

Indicates that the field is EBCDIC.

2 Indicates that the field is in special timer format described below.

692 VM/SP System Programmer's Guide

(Class Zero - PERFORM

Number CP DSECT
Monitor Data of Variable Variable
Code Item Bytes Name Name

00 Interval statistics
Total main processor idle time2 8 IDLEWAIT MNOOOWID
Total main processor page wait2 8 PAGEWAIT MNOOOWPG
Total main processor time I/O waiF 8 10NTWAIT MNOOOWIO
Total main processor problem time2 8 PROBTIME MNOOOPRB
Total paging start I/Os 4 DMKPAGPS MNOOOPSI
Total page I/O requests 4 DMKPAGCC MNOOOCPA
Current page frames on free list 4 DMKPTRFN MNOOONFL
Pages being written, due for free list 4 DMKPTRSW MNOOOPSN
Total pages flushed, but reclaimed 4 DMKPTRPR MNOOOPRC
Number of reserved pages 4 DMKPTRRC MNOOORPC
Number of shared system pages 4 DMKPTRSC MNOOOSPC
Total number of times free list empty 4 DMKPTRFO MNOOOFLF
Total number of calls to DMKPTRFR 4 DMKPTRFC MNOOOCPT
Total pages stolen from in-queue users 4 DMKPTRSS MNOOOSS
Number of pages swapped from the flush list 4 DMKPTRFF MNOOOPFF
Number of pages examined in stealing pages 4 DMKPTRRF MNOOOPRF
Number of full scans done in stealing pages 4 DMKPTRCS MNOOOPCS
Total real external interrupts to main processor 4 DMKPSANX MNOOONXR
Total calls to DMKPRVLG 4 DMKPRVNC MNOOOCPR
Total calls to DMKVIOEX 4 DMKVSICT MNOOOCVI
Total calls to CCWTRANS from DMKVIO 4 DMKVSICW MNOQOCCW'
Total virtual interval timer interrupts reflected 4 DMKDSPIT MNOOOITI
Total virtual CPU timer interrupts reflected 4 DMKDSPPT MNOOOPTI
Total virtual clock comparator interrupts reflected 4 DMKDSPCK MNOOOCKI
Total virtual SVC interrupts simulated by main 4 PSASVCCT MNOOOCSV
processor
Total virtual program interrupts handled 4 DMKPRGCT MNOOOCPG
Total I/O interrupts handled 4 DMKIOSCT MNOOOCIO
Total calls to dispatch (main) 4 DMKDSPCC MNOOOCDS
Total fast reflects in dispatch 4 DMKDSPAC MNOOOCDA
Total dispatches for new PSW 4 DMKDSPBC MNOOOCDB
Total calls to schedule 4 DMKSCHCT MNOOOCSC
Count of virtual machine SSK simulated 4 DMKPRVEK MNOOOEK
Count of virtual machine ISK simulated 4 DMKPRVIK MNOOOIK
Count of virtual machine SSM simulated 4 DMKPRVMS MNOOOMS
Count of virtual machine LPSW simulated 4 DMKPRVLP MNOOOLP
Count of virtual machine diagnose instructions 4 DMKPRVDI MNOOODI
Count of virtual machine SIO simulated 4 DMKVSISI MNOOOSI
Count of virtual machine SIOF simulated 4 DMKVSISF MNOOOSF
Count of virtual machine TIO simulated 4 DMKVSITI MNOOOTI

2 See VM/SP Data Areas and Control Block Logic Volume 1 (CP) for field format
definition.

{c'

Appendix B. VM/SP Monitor Tape Format and Content 693

~,

Number CP DSECT ~_/
Monitor Data of Variable Variable
Code Item Bytes Name Name

Count of virtual machine CLRIO simulated 4 DMKVSICI MNOOOCI
Count of virtual machine HIO simulated 4 DMKVSIHI MNOOOHI
Count of virtual machine HDV simulated 4 DMKVSIHD MNOOOHD
Count of virtual machine TCH simulated 4 DMKVSITC MNOOOTC
Count of virtual machine STNSM simulated 4 DMKPRVMN MNOOOMN
Count of virtual machine STOSM simulated 4 DMKPRVMO MNOOOMO
Count of virtual machine LRA simulated 4 DMKPRVLR MNOOOLR
Count of virtual machine STIDP simulated 4 DMKPRVCP MNOOOCP
Count of virtual machine STIDC simulated 4 DMKPRVCH MNOOOCH
Count of virtual machine SCK simulated 4 DMKPRVTE MNOOOTE
Count of virtual machine SCKC simulated 4 DMKPRVCE MNOOOCE
Count of virtual machine STCKC simulated 4 DMKPRVCT MNOOOCT
Count of virtual machine SPT simulated 4 DMKPRVPE MNOOOPE
Count of virtual machine STPT simulated 4 DMKPRVPT MNOOOPT
Count of virtual machine SPKA simulated 4 DMKPRVEP MNOOOEP
Count of virtual machine IPK simulated 4 DMKPRVIP MNOOOIP
Count of virtual machine PTLB simulated 4 DMKPRVPB MNOOOPB
Count of virtual machine RRB simulated 4 DMKPRVRR MNOOORR
Count of virtual machine STCTL simulated 4 DMKPRVTC MNOOOTCL
Count of virtual machine LCTL simulated 4 DMKPRVLC MNOOOLCL
Count of virtual machine CS simulated 4 DMKPRVCS MNOOOCS
Count of virtual machine CDS simulated 4 DMKPRVCD MNOOOCD
Count of virtual machine diagnose disk I/O 4 DMKHVCDI MNOOOHDI
Number of users dialed to virtual machines 4 DMKSYSND MNOOONDU
Number of users logged on 4 DMKSYSNM MNOOONAU
Number of page reads by main processor 4 PGREAD MNOOOPRD
Number of page writes by main processor 4 PGWRITE MNOOOPWR
Number of system pageable pages 4 DMKDSPNP MNOOONPP
Sum of working sets of in-queue users 4 DMKSCNPU MNOOOSWS
Number of users in interactive queue (Ql) 4 DMKSCHNl MNOOOQIN
No. of users in compute-bound queue (Q2) 4 DMKSCHN2 MNOOOQ2N
Number of users eligible to enter Ql 2 DMKSCHWl MNOOOQlE
Number of users eligible to enter Q2 2 DMKSCHW2 MNOOOQ2E
Monitor sampling interval (seconds) 2 DMKPRGTI MNOOOINT
Count of cylinders allocated on primary paging 2 ALOCUSED MNOOOPPA
device
Cylinder capacity of primary paging device 2 ALOCMAX MNOOOPPC
Reserved 2 MNORSVl
Count of mini lOB stack depletes 2 DMKIOSNM MNOOOISD
Count of mini lOB enqueues 4 MNOOOGTM
Count of mini lOB dequeues 4 MNOOODQM
Count of SIOs on alternate paths 4 MNOOOSWP
Count of FREE/FRET extends 4 DMKFRENP MNOOOEXT
Count of FREE/FRET unextends 4 MNOOONXT
Count of attempts to split subpool 4 MNOOOATT

(~'

[
,>/

694 VM/SP System Programmer's Guide

r Number CP DSECT
Monitor Data of Variable Variable
Code Item Bytes Name Name

Count of SUBPOOL SPLITS 4 MNOOOCNT

Appendix B. VM/SP Monitor Tape Format and Content 695

,',....-. -,
/

Number CP DSECT
Monitor Data of Variable Variable
Code Item Bytes Name Name

01 Internal statistics for attached processor
Total attached processor idle wait time 8 IDLEWAIT MNOO 1 WID
Total attached processor page wait time 8 PAGEWAIT MN001WPG
Total attached processor I/O wait time· 8 10NTWAIT MNOO1 WIO
Total attached processor problem time 8 PROBTIME MN001PRB
Total real external interrupts for attached 4 DMKPSANX MNOO1 NXR
processor
Total SVCs reflected by attached processor 4 PSASVCCT MN001CSV
Page reads by attached processor 4 PGREAD MNOO1 PRD
Page writes by attached processor 4 PGWRITE MN001PWR
Total time spin on system lock 4 DMKLOKSY+8 MN001SSY
Number of spins on system lock 4 DMKLOKSY + 12 MN001NSY
Total time spin on DMKFRE lock 4 DMKLOKFR+8 MN001SFR
Number of spins on DMKFRE lock 4 DMKLOKFR+12 MN001NFR
Total time spin on RUNLIST lock 4 DMKLOKRL+8 MN001SRN
Number of spins on RUNLIST lock 4 DMKLOKRL+ 12 MN001NRN
Total time spin on timer request lock 4 DMKLOKTR+8 MN001STM
Number of spins on timer request lock 4 DMKLOKTR+12 MN001NTM
Total time spin on dispatcher queue lock 4 DMKLOKDS+8 MN001SDP
Number of spins on dispatcher queue lock 4 DMKLOKDS+ 12 MN001NDP
Number of times CPFRELK set 4 MN001NFL
Number of times CPFRESW set 4 MN001NFS
Number of times system lock deferred 4 LOKSYSCT MN001NSD '.
Number of times VMBLOK lock deferred 4 LOKVMCT MNOOINVD
Number of DMKDSPRU entries 4 MNOOINRU
Total time spin on I/O lock 4 DMKLOKIO MNOO1 SIO
Total no. spins for I/O lock 4 DMKLOKIO MNOOINIO
Total time spin on RM lock 4 DMKLOKRM MNOO1 SRM
Total no. spins for RM lock 4 DMKLOKRM MNOOINRM
No. quiesce ems on IPL proc 4 DMKEMSCT MNOOINQl
No. quiesce ems on non-IPL proc 4 DMKEMSCT MNOOINQ2
No. extend ems on IPL proc 4 DMKEMSCT MNOOlNE1
No. extend ems on non-IPL proc 4 DMKEMSCT MNOOINE2
No. resume XC on IPL proc 4 DMKXCCTS MNOOINR1
No. resume XC on non-IPL proc 4 DMKXCCTS MNOOINR2
No. dispatch XC on IPL proc 4 DMKXCCTS MNOOINDI
No. dispatch XC on non-IPL proc 4 DMKXCCTS MN001N02
No. dispatch XC on non-IPL proc 4 DMKXCCTS MNOOIND2
No. wakeup XC on IPL proc 4 DMKXCCTS MN001NWl
No. wakeup XC on non-IPL proc 4 DMKXCCTS MNOOINW2

696 VM/SP System Programmer's Guide

(
\ Number CP DSECT

Monitor Data of Variable Variable
Code Item Bytes Name Name

02 Average queue delay 4 DMKSCHQT MN002SQT
Average eligible list time 4 DMKSCHET MN002SET
Average utilization 4 DMKSCHFS MN002SFS
Average resident page request 4 DMKSCHAP MN002SAP
Average desired processor/page read 4 DMKSCHKA MN002SKA
Average processor overhead/page read 4 DMKSCHUC MN002SUC
Calculated paging bias 4 DMKSCHPB MN002SPB
Paging bias limit 4
Interactive bias 4 DMKSCHIB MN002SIB
Count of Q3 users 4 DMKSCHQ3 MN002SQ3
Q 1 in-queue count 8 VMQTOD MN002Qll
Q 1 in-queue time 8 VMQELP MN002Q12
Q 1 eligible list time 8 VMQWT MN002Q13
Q 1 in-queue processor time 8 VMQCPU MN002Q14
Q 1 estimated average pages per second 8 VMQPGS MN002Q15
Q 1 count of queue drops 4 VMQCNT MN002Q16
Ql in-queue page reads 4 VMQPRD MN002Q17
Ql in-queue page steals 4 VMQSTL MN002Q18
Reserved 4 MNOORSVI
Q2 in-queue count 8 VMQTOD MN002Q21
Q2 in-queue time 8 VMQELP MN002Q22
Q2 eligible list time 8 VMQWT MN002Q23
Q2 in-queue processor time 8 VMQCPU MN002Q24
Q2 estimated average pages per second 8 VMQPGS MN002Q25
Q2 count of queue drops 4 VMQCNT MN002Q26
Q2 in-queue page reads 4 VMQPRD MN002Q27
Q2 in-queue page steals 4 VMQSTL MN002Q28
Reserved 4 MNOORSV2

Appendix B. VM/SP Monitor Tape Format and Content 697

Number CP DSECT
Monitor Data of Variable Variable
Code Item Bytes Name Name

03 No. of calls to migrate 4 DMKSCHQl MNOO3CMG
Times migration limit halved 4 DMKSCHQl MNOO3TLH
Times limit was quartered 4 DMKSCHNI MNOO3TLQ
Times a user was selected 4 DMKSCHWI MNOO3TUS
No. migrations by command 4 MNOO3MBC
No. calls resulting in migration 4 MNOO3CRM
No. users moved 4 MNOO3NUM
No. segments moved 4 MNOO3NSM
No. pages moved 4 MNOO3NPM
No. full disks moved 4 MNOO3NDM
Calls to restore swaptable 4 MNOO3CSR
Calls to migrate swaptable 4 MNOO3CSM
No. of tables migrated 4 MNOO3NTM
No. of tables restored 4 MNOO3NTR
Calls to pseudo translator 4 MNOO3CPT
Reserved 4 MNOO3RSV
Total test protect ins simulated 4 DMKPRVTP MNOO3CTP
Total IPTE instructions simulated 4 DMKPIPTE MNOO3CIP
No. preferred FH pages available 4 DMKPGTDM MNOO3CDM
No. preferred MH pages available 4 DMKPGTDK MNOO3CDK
No. preferred MH pages allocated 4 DMKPGTPC MNOO3CPC
Limit of preferred MH pages 4 DMKPGTPL MNOO3CPL
% value for SET SRM MHFULL 4 DMKPGTPN MNOO3CPN ,

'c,

Unused 4 MNOO3CUN

Note: Privileged instructions simulated by the fast path simulation routines
(DMKFSP) are not recorded.

698 VM/SP System Programmer's Guide

r

(-'

Class One - RESPONSE

Monitor
Code

00

01

02

03

04

05

Data
Item

Read command sent to terminal
Userid
Line address

Terminal output line
userid
Line address
Byte count
Line of data

Edited terminal input line
Userid
Line address
Byte count
Line of datal

Sleep issued with time out
Userid
Line address

Terminal logged on
Userid
Line address

Terminal logged off
Userid
Line address

Number
of
Bytes

8
2

8
2
1
Variable

8
2
1
Variable

8
2

8
2

8
2

CP
Variable
Name

VMUSER

VMUSER

VMUSER

VMUSER

VMUSER

VMUSER

DSECT
Variable
Name

MNlOXUID
MNI0XADD

MNIOXUID
MNI0YADD
MNI0YCNT
MNlOYIO

MNIOXUID
MNI0XADD
MNlOYCNT
MNlOYIO

MNlOXUID
MNIOXADD

MNI0XUID
MNIOXADD

MNIOXUID
MNI0XADD

Note that the line addresses for the 370X in NCP mode appear as the base address.

These records are created at the time that DMKQCN handles the console I/O
request. This may reflect a slightly different time than that of the SIO or the I/O
interrupt. If DMKQCN is called to write a line that is longer than Terminal line
size, more than one MC is issued, resulting in more than one record. Input and
output terminal data collected is limited to 128 bytes. Longer lines are truncated.

Indicates that the field is EBCDIC.

Appendix B. VM/SP Monitor Tape Format and Content 699

Class Two - SCHEDULE

Number CP DSECT
Monitor Data of Variable Variable
Code Item Bytes Name Name

02 User dropped from dispatch queue
Userid1 8 VMUSER MN20XUID
Number of system page able pages 4 DMKDSPNP MN20XNPP
Sum of working sets of in-queue users 4 DMKSCHPU MN20XSWS
No. of users in interactive queue (Ql) 4 DMKSCHNI MN20XQIN
No. of users in compute-bound queue (Q2) 4 DMKSCHN2 MN20XQ2N
Number of users eligible for Ql 2 DMKSCHWI MN20XQIE
Number of users eligible for Q2 2 DMKSCHW2 MN20XQ2E
User new projected working set size 2 VMWSPROJ MN20XWSS
Queue being dropped from (1 or 2) 1 QIDROP MN20XQNM
Processor address 1 MN20XPRC

Accumulated user CP simulation time2 8 VMTTIME MN20YTTI
Accumulated user virtual time2 8 VMVTIME MN20YVTI
Eligible list priority 4 VMQPRIOR MN204PRI
Pages read while in queue 2 VMPGREAD MN202PGR
Sum of pages resident at all reads 2 VMPGRINQ MN202APR
No. of pages referenced while in queue 2 MN202REF
Current number of pages resident 2 VMPAGES MN202RES
Number of pages stolen while in queue 2 VMSTEALS MN202PST
User total virt non-spool device SIO 4 VMIOCNT MN202IOC
count

User total virtual cards punched 4 VMPNCH MN202PNC
User total virtual lines printed 4 VMLINS MN202LIN
User total virtual cards read 4 VMCRDS MN202CRD
User last executed on this processor 1 VMLSTPRC MN202LPR

Indicates that the field is EBCDIC.

2 See VM/SP Data Areas and Control Block Logic Volume 1 (CP) for field format
definition.

700 VM/SP System Programmer's Guide

~.

r
\

"'-

(
l Number CP DSECT

Monitor Data of Variable Variable
Code Item Bytes Name Name

03 User added to dispatch queue
Userid 8 VMUSER MN20XUID
Number of system pageable pages 4 DMKDSPNP MN20XNPP
Sum of working sets of in-queue users 4 DMKSCHPU MN20XSWS
Number of users in interactive queue (Ql) 4 DMKSCHNI MN20XQIN
No. of users in compute-bound queue (Q2) 4 DMKSCHN2 MN20XQ2N
Number of users eligible for Ql 2 DMKSCHWI MN20XQIE
Number of users eligible for Q2 2 DMKSCHW2 MN20XQ2E
User's projected working set size 2 VMWSPROJ MN20XWSS
Queue being added to 1 gen reg 15 MN20XQNM
Processor address (main or attached) 1 MN20XPRC

04 User added to eligible list
Userid 8 VMUSER MN20XUID
Number of system pageable pages 4 DMKDSPNP MN20XNPP
Sum of working sets of in-queue users 4 DMKSCHPU MN20XSWS
Number of users in interactive queue (Ql) 4 DMKSCHNI MN20XQIN
No. of users in compute-bound queue (Q2) 4 DMKSCHN2 MN20XQ2N
Number of users eligible for Ql 2 DMKSCHWI MN20XQIE
Number of users eligible for Q2 2 DMKSCHW2 MN20XQ3E
User's projected working set size 2 VMWSPROJ MN20XWSS
Queue being added to 1 VMQl MN20XQNM

i Processor address (main or attached) 1 MN20XPRC
Accumulated user CP simulation time 8 VMTTIME MN20YTTI
Accumulated user virtual time 8 VMVTIME MN20YVTI
Eligible list priority 2 VMEPRIOR MN20YPRI

Appendix B. VM/SP Monitor Tape Format and Content 701

Class Four - USER
('
~/

Number CP DSECT
Monitor Data of Variable Variable
Code Item Bytes Name Name

00 Interval user resource utilization statistics
Userid1

Accumulated user CP simulation time 8 VMUSER MN400UID
Accumulated user virtual time 8 VMTTIME MN400TTI
Total page reads 8 VMVTIME MN400VTI
Total page writes 4 VMPGREAD MN400PGR
Total non-spooled I/O requests 4 VMPGWRIT MN400PGW
Total cards punched 4 VMIOCNT MN400I0C
Total lines printed 4 VMPNCH MN400PNC
Total cards read 4 VMLINS MN400LIN
User running status 4 VMCRDS MN400CRD
User dispatch status 1 VMRSTAT MN400RST
User operating status 1 VMDSTAT MN400DST
User queuing status 1 VMOSTAT MN4000ST
User processing status 1 VMQSTAT MN400QST
User control status 1 VMPSTAT MN400PST
User tracing control 1 VMESTAT MN400EST
User message level 1 VMTRCTL MN400TST
User queue level 1 VMMLEVEL MN400MLV
User command level 1 VMQLEVEL MN400QLV
User timer level 1 VMCLEVEL MN400CLV
Interrupt pending summary 1 VMTLEVEL MN400TLV
User's externally assigned priority 1 VMPEND MN400PND
Reserved 1 VMUPRIOR MN400UPR

1 MN4RSVl

00 Current number of pages resident 2 VMPAGES MN400RES
Current working set size estimate 2 VMWSPROJ MN400WSS
Page frames allocated on drum 2 VMPDRUM MN400PDR
Page frames allocated on disk 2 VMPDISK MN400PDK
Monitor sampling interval (seconds) 2 DMKPRGTI MN400INT
User last executed on this processor 1 VMLSTPRC MN400LPR

Indicates that the field is EBCDIC.

702 VM/SP System Programmer's Guide

r Class Five -INSTSIM

Monitor
Code

00

Number CP DSECT
Data of Variable Variable
Item Bytes Name Name

Start of PRIVOP simulation
Userid1 8 VMUSER MN500UID
The privileged instruction 4 VMINST MN500INS
Virtual storage address of PRIVOP 4 VMPSW MN500VAD
Total user CP simulation time at start

of simulation 8 CPU timer MN5000VH

Note: Privileged instructions simulated by the fast path simulation routines
(DMKFSP) are not recorded.

Indicates that the field is EBCDIC.

Appendix B. VM/SP Monitor Tape Format and Content 703

Class Six - DASTAP

Number CP DSECT
Monitor Data of Variable Variable
Code Item Bytes Name Name

00,01 Device activity data for all Tape and
DASD devices

Number of device blocks recorded 2 MN600NUM

For each device -
Device address RDEVADDR

RCUADDR
2 RCHADDR MN600ADD

Type codes 2 RDEVTYPC MN600TY
Volume serial numberl 6 RDEVSER MN600SER
Device accumulated I/O count 4 RDEVIOCT MN600CNT

Note: The monitor code 0 record is collected when the MONITOR START
TAPE command is entered. Thereafter, all DASTAP records are collected with a
monitor code of 1.

Indicates that the field is EBCDIC.

Number CP DSECT
Monitor Data of Variable Variable
Code Item Bytes Name Name

02 No. samples for interval IPL proc 2 MNCHSAMI MN602SAM
No. samples for interval non-IPL proc 2 MNCHSAM2 MN602SA2
Device address 2 RDEVADD MN602ADD
No. times control unit busy 2 MNCUBSY MN602CUB
No. times device busy IPL proc 2 MNDVBSY MN602DVB
1/ 0 tasks queued on control unit 2 RCUQCNT MN602CUQ
I/O tasks queued on device 1 RDEVQCNT MN602DVQ
No. times device busy non-IPL proc 1 MDVBSY2 MN602DV2

03 Channel busy counts IPL proc 32 MCHDATl MN603CBI
I/O tasks queued on channel IPL proc 32 RCHQCNT MN603CQI
Channel busy counts non-IPL proc 32 MCHDAT2 MN603CB2
I/O tasks queued on channel non-IPL 32 RCHQCNT MN603CQ2

proc

704 VM/SP System Programmer's Guide

(-.

l Class Seven - SEEKS

Number CP DSECT
Monitor Data of Variable Variable
Code Item Bytes Name Name

00 DASD I/O request record
Userid1 8 VMUSER MN700UID
Device address RDEVADDR

RCUADDR
2 RCHADDR MN700ADD

Seek cylinder address 2 IOBCYL MN700CYL
Current arm position 2 RDEVCYL MN700CCY
Number of queued I/O tasks on device 1 RDEVQCNT MN700QDV
Number of queued I/O tasks on control

unit 1 RCUQCNT MN700QCU
Number of queued I/O tasks on channel 1 RCHQCNT MN700QCH
Current seek direction 1 RDEVFLAG MN700DIR
Processor address 2 RCHPROC MN700PRO

Note: Current seek direction value is:

• X'OO' seeking to lower cylinder address

X'Ol' seeking to higher cylinder address

Indicates that the field is EBCDIC.

(•..

Appendix B. VM/SP Monitor Tape Format and Content 70S

Class Eight - SYSPROF -- Additional data for system profile class

Number CP DSECT
Monitor Data of Variable Variable
Code Item Bytes Name Name

02 Additional data at add queue, drop queue
times

Number of 4-byte device block counts
which follow 2 MN802NUM

For each device ... count of I/O's 4 RDEVIOCT

After device counts ...
Current number of users logged on 4 DMKSYSNM MN802NAU
Total system page reads 4 PGREAD MN802PGR
Total system page writes 4 PGWRITE MN802PGW
Current number of page able pages 4 DMKDSPNP MN802NPP
Total system idle time 8 IDLEWAIT MN802WID
Total system page wait time 8 PAGEWAIT MN802WPG
Total system I/O wait time 8 10NTWAIT MN802WIO
Total system problem time 8 PROBTIME MN802PRB

706 VM/SP System Programmer's Guide

(

Appendix C. CMS Macro Library

CMSMacro

ABNEXIT

*ADT

*ADTGEN

*ADTSECT

*AFT

*AFTSECT

BATLIMIT

BBOX

BGCOM

BGTCB

*CMSAVE

*CMSCB

*CMSCVT

*CMSLEVEL

COMPSWT

*CORG

*DBGSECT

DESTYP

*DEVGEN

*DEVSECT

*DEVTAB

The following is a list and brief description of the CMS macros applicable to
VM/SP.

Asterisk (*) indicates that the macro is reserved for IBM use.

Function

Sets or clears abend exit routines.

Generates a CSECT or DSECT for an active disk table.

Generates an active disk table (ADT) for a disk; used by ADTSECT.

Generates all the ADTs for CMS.

Generates a DSECT for an active file table.

Generates all the AFTs for CMS.

Table of CPU, punch, and printer limits for user jobs running under CMS batch.

DSECT of boundary box; contains beginning and ending addresses of background
communication region.

DSECT of background communication region.

Task Control Block.

Equivalent to SVCSA VE macro.

Generates a list of simulated OS control blocks.

Generates the communication vector table as supported by CMS.

Defines the value of 'release number' of the feature or program product returned by
QUERY CMSLEVEL. Refer to the CMSLEVEL macro for more information.

Sets the compiler switch on or off. Refer to the VM/SP CMS Command and Macro
Reference.

Sets the origin for CSECT.

Generates a CSECT or DSECT for DEBUG environment variables.

Used by the XEDIT module DMSXIN to determine filetype default settings. The
DESTYP block is defined in DMSXTF.

Generates a device table for a given device; used by the DEVTAB macro.

DSECT for a device table.

Generates the device tables for the CMS nucleus.

Appendix C. CMS Macro Library 707

CMSMacro Function

*DIAG Issues a specified CP Diagnose instruction.

DIB Disk Information Blocks.

*DIOSECT Generates a CSECT or DSECT for all I/O information.

DISPW Generates the calling sequence for the display terminal interface. Refer to the
VM / SP System Programmer's Guide.

DMSABN Abend the virtual machine. Refer to the VM / SP System Programmer's Guide.

*DMSCCB DSECT describes field of DOS command control block (CCB). Refer to VM/SP
Data Areas and Control Block Logic Volume 2 (CMS).

*DMSABW Allocates a work area for DMSABN.

*DMSDM Reserved for IBM use.

*DMSERR Sets up parameter list to type out a CMS error message; Refer to the LINEDIT
macro.

*DMSERT DMSERR work area DSECT.

DMSEXS Execute an instruction without nucleus protection. Refer to the VM / SP System
Programmer's Guide.

DMSFREE Gets free storage. Refer to the VM/SP System Programmer's Guide.

*DMSFRES Calls system free storage service routines. Refer to the VM / SP System
Programmer's Guide.

DMSFRET Releases free storage. Refer to the VM / SP System Programmer's Guide.

*DMSFREX Calls system free storage service routines.

*DMSFRT Generates a DSECT for free storage management work area.

*DMSFRX Submacro called by DMSFRET.

DMSFST Sets up a file status table for a given file. Refer to the VM / SP System
Programmer's Guide.

DMSKEY Sets nucleus protection on or off. Refer to the VM / SP System Programmer's Guide.

*DMSLN Called by DMSERR, LINEDIT macros.

*DMSLNC Called by DMSERR, LINEDIT macros.

*DMSLND Called by DMSERR, LINEDIT macros.

*DMSLNP Called by DMSERR, LINEDIT macros.

*DMSLNU Called by DMSERR, LINEDIT macros.

*DMSLNY Called by DMSERR, LINEDIT macros.

*DMSLNZ Called by DMSERR, LINEDIT macros.

*DMSPID Passes a fileid in quotes into separate filename, filetype, filemode, used by FSCB,
and FSPOINT.

*DMSTMS Used by RDTAPE, WRTAPE, and TAPECTL.

DOSAVE DSECT, describes fields in the logical transient area (LTA).

DOSCB DOS simulation control block used for simulation of the CMS file control block
(FCB).

708 VM/SP System Programmer's Guide

f
l

(

CM;S Macro

DOSCON

DTFSD

DTFX

*EDCB

*EPLIST

*EQUATES

*EXCP

*EXTSECT

*FCB

FSCB

*FSCBD

FSCLOSE

*FSENTR

FSERASE

FSOPEN

*FSPOINT

FSREAD

FSSTATE

*FSTB

*FSTD

FSWRITE

*FVS

*GETADT

*GETFST

HNDEXT

HNDINT

HNDSVC

IJJHCPL

IJJHDLST

IJJHMFTI

IMMCMD

*10

Function

Creates CMS/DOS control blocks for DMSNUC.

DTFSD DSECT.

DTF extension DSECT.

Frees storage control blocks initialized by DMSEDX for CMS edit modules.

DSECT to map .extended PLIST passed in register O.

Generates CMS equates for symbolic names.

Issues an SVC O.

Defines storage for the timer interrupt.

Generates a file control block (FCB) DSECT.

Sets up a file system control block. Refer to the VM/SP CMS Command and
Macro Reference.

DSECT that describes fields in CMS PLIST for related commands.

Closes a file. Refer to the VM/SP CMS Command and Macro Reference.

Used by CMS file system routines at entry.

Erases a file. Refer to the VM/SP CMS Command and Macro Reference.

Opens a file. Refer to the VM / SP CMS Command and Macro Reference.

Executes the CMS POINT function.

Reads a record from a file. Refer to the VM / SP CMS Command and Macro
Reference.

Checks for an existing file. Refer to the VM/SP CMS Command and Macro
Reference.

Generates a file status table (file directory) block.

Entry to the file status table (file directory) block.

Writes a record into a disk file. Refer to the VM / SP CMS Command and Macro
Reference.

Defines storage for file system variables.

Gets a specified active disk table.

Gets a specified file status table.

Handles external and timer interrupts. Refer to the VM / SP CMS Command and
Macro Reference.

Handles interrupt on devices. Refer to the VM/SP CMS Command and Macro
Reference.

Handles SVCs. Refer to the VM/SP CMS Command and Macro Reference.

Common VTOC handler input PLIST.

Common VTOC handler descriptor list DSECT.

Format 1 VTOC label DSECT.

Declares, clears, and queries Immediate commands.

Contains PLISTs needed to access CMS I/O routines.

Appendix C. CMS Macro Library 709

--------------------,--- -,-------,--------

CMSMacro Function

*IOSECT Defines miscellaneous I/O variables.

*KEYSECT Contains variables necessary for storage key handling.

*KXCHK Checks to see if HX has been entered by the user.

LABREC DLBL/EXTENT record.

*LDM Loads double multiple (for floating point registers).

*LDRST CMS Loader work area.

LINEDIT Types a line to the termina1. Refer to the VM/SP CMS Command and Macro
Reference.

LOCKTAB LOCK/UNLOCK resource table.

LPLDCT LABEL macro PLIST.

LSCREEN Used by XEDIT modules to describe the layout of a logical screen on the physical
screen. LSCREEN is built by module DMSXSD.

*NUCON Generates a DSECT CMS nucleus constant area.

OCTS OPEN/CLOSE transient SVA PLIST.

*OVSECT DMSOVS work area.

*OSFST Defines an OS file status table for OS ACCESS.

*PDSSECT DSECT used for processing MACLIB files.

*PGMSECT Defines work area for DMSITP. .
PIBTAB DSECT, program information block.

PIB2TAB DSECT, program information block extension.

PRINTL Prints a line on the printer. Refer to the VM/SP CMS Command and Macro
Reference.

PRSCB Used by the XEDIT subcommands PRESERVE and RESTORE. It is built by
module DMSXCT.

PUNCHC Punches a card. Refer to the VM / SP CMS Command and Macro Reference.

RDCARD Reads a card from the reader. Refer to the VM / SP CMS Command and Macro
Reference.

RDTAPE Reads a record from tape. Refer to the VM / SP CMS Command and Macro
Reference.

RDTERM Reads a record from the termina1. Refer to the VM / SP CMS Command and Macro
Reference.

RECSAVE Used by XEDIT modules to describe the address list for nested macro calls. It is
built by DMSXMA.

REGEQU Generates symbolic register equates. Refer to the VM/SP CMS Command and
Macro Reference.

*RELPAGES Sets the release pages flag.

REQDES Used by XEDIT modules to describe all XEDIT subcommands and their operands
and syntax. The REQDES block is defined in DMSXTB.

710 VM/SP System Programmer's Guide

f
l

(

CMSMacro

SAVEREG

*STDM

STRINIT

*SUBSECT

*SVCENT

*SVCSAVE

*SVCSECT

SYNSUB

SYSCOM

*SYSLOAD

*SYSNAMES

TAPECTL

*TSOBLKS

*TSOGET

*USE

*USERSECT

WAITD

WAITECB

WAITT

WRTAPE

WRTERM

ZDESC

ZFONC

ZMACST

ZPACK

-----_._-----

Function

Used by XEDIT modules to save register contents during subroutine calls.

Storage for multiple floating-point registers.

Initializes storage. Refer to the VM/SP CMS Command and Macro Reference.

CSECT or DSECT for CMS SUBSET use.

Issues a DMSKEY macro before calling an instruction.

System save area.

Defines work area for DMSITS.

Used by XEDIT modules to describe the synonyms defined for XEDIT
subcommands. A SYNSUB block is built dynamically by DMSXDC each time a
synonym is defined.

DSECT of system communication region.

Puts in a specified register the address of a specified routine in NUCON.

Saves system names table loaded via CMS routines.

Positions a tape. Refer to the VM / SP CMS Command and Macro Reference.

Contains CPPL, UPT, PSCB, and the ECT for TSO service routines.

Gets the address of the TSO command processor parameter list (CPPL).

Generates assembler USING and DROP instructions, as needed.

Creates user work area.

Waits until the next interrupt occurs for the specified device. Refer to the VM / SP
CMS Command and Macro Reference.

Waits on an ECB or a list of ECBs.

Waits until all pending I/O to the terminal has completed. Refer to the VM / SP
CMS Command and Macro Reference.

Writes a record to tape. Refer to the VM/SP CMS Command and Macro
Reference.

Writes a record to the terminal. Refer to the VM/SP CMS Command and Macro
Reference.

Used by XEDIT modules to describe file characteristics.

Used by XEDIT modules as a common work area. It is built by DMSXBG only
once in an editing session.

Used by XEDIT modules to describe an XEDIT macro in storage. A ZMACST
block is built dynamically by DMSXMA each time a macro is invoked.

Used by XEDIT modules when a file is being packed or unpacked. It is built by
DMSXIN or DMSXFD.

Appendix C. CMS Macro Library 711

c

712 VM/SP System Programmer's Guide

f
l

Glossary

This glossary defines new terms and all-capitals
abbreviations related to the VM/SP. This glossary is
especially oriented for readers of the VM / SP System
Programmer's Guide Therefore, some terms already
defined in the VMISP Library Guide, Glossary, and Master
Index do not appear here or may be defined slightly
differently. Another glossary you may want to reference
is the IBM Data Processing Glossary.

AP AR. Authorized program analysis report.

AP IMP mode. A mode of VM/SP used when running in
an attached processor or multiprocessor system.

attached processor. A processor with no I/O capability.
An attached processor is always linked to the processor
initialized for I/O handling.

authorized program analysis report. A report of a problem
caused by a suspected defect in a current unaltered release
of a program accepted by IBM support for further action.

auxiliary storage. Data storage other than main storage; in
VM/SP, auxiliary storage is usually a direct access device.

basic control (BC) mode. A mode in which a virtual
machine resumes execution after an I/O interrupt, a page
fault, or a DIAGNOSE code X'18'.

CAW. channel address word

CCW. channel command word

channel address word (CAW). An area in storage that

specifies the location in main storage at which a channel
program begins.

channel command word (CCW). A doubleword at the
location in main storage specified by the channel address
word. One or more CCWs make up the channel program
that directs data channel operations.

channel status word (CSW). An area in storage that
provides information about the termination of
input/ output operations.

Channel-to-Channel Adapter. A hardware device that can
be used to connect two channels on the same computing
system or on different systems.

CKD. Count-Key-Data

concurrently. Concerning a mode of operation that
includes the performance of two or more operations within
a given interval of time.

Count-Key-Data. Those DASD devices whose
architecture defines variable size records consisting of
count, key, and data fields.

CPTRAP. This facility is a CP debugging toO/I. It is used
to create a reader spool file of selected trace t~ble entries,
CP data, and virtual machine data in the order that they
happen. The TRAPRED command can help you access
and use this collected data

CSW. channel status word

DAT. Dynamic address translation.

DCSS. Discontiguous shared segments.

deadline priority. An algorithm for detemlining when a
virtual machine receives the next time sliJe.

directory. For VM/SP, a CP disk file that defines each
virtual machine's normal configuration: the userid,

Glossary 713

password, normal and maximum allowable virtual storage,
CP command privilege class or classes allowed,
dispatching priority, logical editing symbols to be used,
account number, and CP options desired.

discontiguous shared segments (DCSS). Synonymous with
discontiguous segment.

discontiguous segment. A 64K segment of storage that
was previously loaded and saved and assigned a unique
name. The segment(s) can be shared among virtual
machines if the segment(s) contain reentrant code.

dispatch list. A list of those virtual machines that are
executable and currently competing for a time slice of
processor resources.

dispatcher. The program in CP that places virtual
machines or CP tasks into execution. The dispatcher
selects the next virtual machine to run and prepares the
virtual machine for problem state execution.

dispatch request queue. A queue of executable CP tasks,
I/O tasks, and timer requests that are ready to be
dispatched.

dispatcher/scheduler favoring scheme. A set of criteria
used by the dispatcher and scheduler to create a bias in
favor of queue 1 (01) users. 01 users are usually highly
interactive users.

DPA. dynamic paging area

dyadic. A system having two processors that cannot be
configured into two independent uniprocessors that use
separate control programs. For example, the 3081
Processor Complex contains two processing units that
share central storage.

dynamic address translation. In System/370 virtual storage
systems, the change of a virtual address to a real storage
address during execution of an instruction.

dynamic paging area (DPA). An area of real storage that
CP uses for virtual machine pages and pageable CP
modules.

extended control (EC) mode. Extended control mode, a
System/370 mode for formatting and use of control and
status information. Contrast with "basic control (BC)
mode."

eligible list. A queue that contains the virtual machines
that can compete for processor resources but are not now

714 VM/SP System Programmer's Guide

in-queue virtual machines because of the current system
load.

FHA. Fixed-block architecture.

Fixed-Block Architecture (FHA). Those DASD devices
whose architecture uses fixed blocks or records of 512
bytes.

flush list. A set of pages available to replenish the free
list.

free list. A list maintained by CP that points to a set of
pages that can be allocated to satisfy both virtual machine
and system page requests.

global system lock. A defer lock that provides system
integrity for AP and MP support of command processing
and code executed via IOBLOK, TROBLOK, or
CPEXBLOK.

guest virtual machine. A virtual machine in which an
operating system is running.

in-queue virtual machines. A virtual machine on the run
list waiting to be dispatched. A virtual machine is added
to the run list if its projected working set size is less than
or equal to the number of real page frames available for
allocation in the dynamic paging area. An in-queue virtual
machine may be, but is not necessarily, runnable.

interactive. (1) An application in which each user entry
calls forth a response from a system or program. (2) The
classification given to a virtual machine depending on this
virtual machine's processing characteristics. When a
virtual machine uses less than its allocated time slice
because of terminal I/O, the virtual machine is classified
as being interactive. See also non-interactive.

Interactive Problem Control System (IPCS or VM/SP
IPCS). A component of VM/SP that permits on-line
problem management, interactive problem diagnosis,
on-line debugging for disk-related CP or virtual machine
abend dumps, problem tracking, and problem reporting.

Inter-User Communication Vehicle (IUCV); A VM/SP
generalized CP interface that aids the transfer of messages
either among virtual machines or between CP and a virtual
machine.

IPCS. Interactive Problem Control System.

IUCV. Inter-User Communication Vehicle.

logical operator. The name given to the virtual machine
from which OPERATOR functions requested by the
programmable operator facility virtual machine are
performed. This name also may describe the person who
normally operates the logical operator virtual machine. In
a mixed environment, an NCCF operator can be assigned
as the logical operator to control a VM distributed system.

logon. The procedure by which a user begins a terminal
session.

logoff. The procedure by which a user ends a terminal
session.

MIH. Missing interrupt handler

minidisk. Synonym for virtual disk.

missing interrupt handler (MIH). A facility of VM/SP that
detects incomplete I/O conditions by monitoring I/O
activity. It also tries to correct incomplete I/O conditions
without operator intervention.

MSSF. monitOIing and service support facility

named system. A collection of saved pages a user can IPL
or load by name.

native mode. A mode in which an operating system is run
stand-alone on the real machine instead of under VM/SP.

noninteractive. The classification given to a virtual
machine depending on this virtual machine's processing

characteristics. When a virtual machine usually uses all its
allocated time slice, it is classified as being noninteractive
or compute bound. See also interactive.

non-resident pages. Pages whose contents are on DASD
but not in real storage. A page is considered nonresident
when an attempt to load its real address returns a nonzero
condition code.

page frame. A block of 4096 bytes of real storage.

page table. A table in CP that indicates whether a page is
in real storage and matches virtual addresses with real
storage addresses.

preferred paging area. A special area of auxiliary storage
where frequently used pages are paged out. It provides
high speed paging.

prefix storage area (PSA).· a page zero of real storage that
contains machine-used data areas and CP global data.

programmable operator facility. A facility that allows
automatic filtering and routing of messages from a
specified virtual machine (for example, the system
operator's virtual machine) to a logical operator virtual
machine. The logical operator virtual machine is in a
local, distributed, or mixed environment. The
programmable operator facility also permits installation
defined actions to be carried out automatically.

program status word (PSW). An area in storage used to
indicate the order in which instructions are executed, and
to hold and indicate the status of the computer system.
Synonymous with processor status word.

program temporary fix (PTF). A temporary solution or
by-pass of a problem diagnosed by IBM field engineering
as the result of a defect in a current unaltered release of
the program.

projected working set. The sum of referenced pages and
pages stolen from the virtual machine which is used to
determine whether the virtual machine can be added to the
run list.

PSA. Prefix storage area.

PSW. Program status word, or processor status word.

PTF. Program temporary fix.

Glossary 715

queue-add. The action by the system scheduler,
DMKSCH, of placing a runnable virtual machine on the
list of virtual machines that can be given control of a
processor.

queue-drop. The action by the system scheduler,
DMKSCH, of removing a virtual machine from the list of
virtual machines that can be given control of a processor.

real machine. The actual processor, channels, storage, and
I/O devices required for operation of VM/SP.

routing table. A CMS file that contains the information
used to control the operation of the programmable
operator facility. It lets the programmable operator
facility recognize a message as a command, determine the
action to take when a message comes in, and recognize the
authorized users of programmable operator functions.

run list. A queue that contains in-queue virtual machines
that are competing for processor resources. These virtual
machines are sorted by deadline priority.

segment. A contiguous 64K area of virtual storage (not
necessarily contiguous in real storage) that is allocated to
virtual machine or CP.

segment table. A table used in dynamic address
translation to control user access to virtual storage
segments. Each entry indicates the length, location, and
availability of a corresponding page table.

shadow page table. A table that maps real storage
allocations (first level storage) to a virtual machine's
virtual storage (third level storage) for use by the real
machine in its paging operations.

spool, spooled, spooling. Relates to the reading of input
data streams and the writing of output data streams on
auxiliary storage devices.

standalone dump. A program used to print the contents of
storage that runs in a virtual machine not under control of
an operating system such as CMS.

716 VM/SP System Programmer's Guide

time sharing. Sharing of computer time and resources.

TRAPRED. This command accesses the CPTRAP reader
file and the data collected in the file.

virtual address. An address that refers to virtual storage or
a virtual I/O device address. It must, therefore, be
translated into a real storage or 110 device address when
it il ued.

virtual disk. A logical subdivision (or all) of a physical
disk storage device that has its own address, consecutive
storage space for data, and an index or description of the
stored data so that the data can be accessed. A virtual
disk is also called a minidisk.

virtual machine. A functional simulation of a computer
and its associated devices.

virtual machine assist (VMA). A hardware feature
available on certain VM/SP-supported processors that
causes a significant reduction in the real supervisor state
time used to control the operation of virtual machine
systems such as VSE, DOS/VS, and OS/VS and to a
lesser extent CMS, DOS, and OS when executing under
VM/SP.

Virtual Machine Communication Facility (VMCF). A CP
function that provides a method of communication and
data transfer between virtual machines operating under
the same VM/SP systems.

virtual storage. Storage space that can be regarded as
addressable main storage by the user of a computer system
in which virtual addresses are mapped into real addresses.
The size of virtual storage is limited by the addressing
scheme of the computing system and by the amount of
auxiliary storage available, and not by the actual number
of main storage locations.

VMCF. Virtual Machine Communication Facility.

VM/VCNA. VM/VTAM Communication Network
Application

VM/VT AM Communication Network Application
(VM/VCNA). A VT AM application which allows a SNA
terminal user to logon to VM/SP though OS/VSl or
VSE.

f
\

(

Index

I Special Characters I

&CRASH command 673
$$BCLOSE transient 507
$$BDUMP transient 507
$$BOPEN transient 507
$$BOPENR transient 507
$$BOPNLB transient 507
$$BOPNR2 transient 507
$$BOPNR3 transient 507
$$BOSVL T transient 507
*BLOCKIO 239
*MSG 237
*NCCF 534, 570
*SIGNAL 243
/JOB control cards 521

abend
See abnormal termination (abend)

ABEND macro 466
ABNEXIT macro 393
abnormal termination (abend)

See also problem, types
CMS abend

debugging 598
exit routine processing, CMS 393
processing 392
reason for 679
reasons for 599
recovery 393,601

collect information 631, 679
CP abend i

debugging 597
reason for 597,630
recovery 630

CP dump 629
CP system restart 598
dump 629,630,676

See also CMS (Conversational Monitor System),
dump

See also CP (Control Program), dump
attached processor 630
multiprocessor 630

in CMS 590
in CP 588
inDOS 590
in OS 590
internal trace table 631
messages 588
of system routine 600

OS (operating system), debugging 603
program check in CP 597
program interrupt 54
programmable operator facility 526, 543
reason for 597, 599, 679
register use 632
SVC 0 597, 630
system 600
virtual machine abend, debugging 603

ACCEPT, IUCV function 141
logical device support facility function 258,323,326
parameter list format 179
using 152

ACCESS command, accessing OS data sets 477
access method, OS, support of 471
account number, replacing directory entry 333
accounting

ACCTOFF routine 105
ACCTON routine 105
records 101

created by user 104
for AUTOLOG, LOGON, and LINK

journaling 102
format for dedicated devices 102
format for temporary disk space 102
format for virtual machines 101
generating 303
when to punch 101

user options 105
VM/SP SNA support 230

ACCTOFF routine 105
ACCTON routine 105
ACF/VTAM, VM/SP SNA support 219
action routines

See programmable operator facility
activating the TOD-clock accounting interface 319
Active Disk Table (ADT) 577,681
Active File Table (AFT) 681
adding a console function 45
address, stop 621
ADSTOP command 109, 110,621

summary 611
ADT 577,681
affinity 274

in attached processor or multiprocessor mode 69
AFT 681
allocating storage, eMS 412
altering storage 623
alternate path support 83
APmode

See attached processor mode (AP)
assembler virtual storage requirements 581-583
ASSGN command 486
assigning, dedicated channels to virtual machine 22
assist, CP 76

Index 717

.~~-~~~~~--------.------.----------

ATTACH macro 467
attached processor mode (AP)

abnormal termination, dump 630
advantages 264
affinity 69,274
debugging

lockwords 277
PSA 276
trace table 277

fetching and storing 269
identify processor address 266
improving performance of 86
locking 270
locks
prefixing 265
real I/O interrupts 56
shared segments 275
signaling 266

SIGNAL macro 266
special code in CP 263
storage 265
synchronous interrupts 55
time-of -day clock 268
TOD clock 261
virtual machine 1/ 0 management 21

attaching, virtual devices 21
audit trail, IUCV 150
AUTHORIZE, VMCF function 122
AUTOLOG command, journaling 377
auxiliary directories 389, 392,575-579

adding 575
creating 576
DMSLADAD entry point 576
establishing linkage 576
GENDIRT command 576
generating 575
initializing 575
saving resources 575

BALRSA VE (BAL register save area) 598, 633
batch facility 519

See also CMS batch facility
BATmaTl routine 521
BATEXIT2 routine 521
BATLIMIT MACRO file 520
BDAM

restrictions on 474
support of 472

BEGIN command 621
summary 611

BLDL macro 466
BLIP facility 11
blocks, control

CMS 678
CP 635

718 VM/SP System Programmer's Guide

BP AM, support of 472
BSAM/QSAM, support of 472
BSP macro 470
buffers

forms control 353
print 353

calculating, dispatching priority 10
CANCEL, VMCF function 123
CAT (character arrangement tables) 371
CAW (Channel Address Word)

displaying 613
operand of DISPLAY command 613
subcommand of DEBUG command 613

CHANGE command, 3800 printer support 373
parameters 373

changing storage keys 110
changing, displaying, and setting SRM variables 65
Channel Address Word -

See CAW (Channel Address Word)
channel check 604
channel program support, real 345
channel program, modification 298
Channel Status Word

See CSW (Channel Status Word)
channel use, improving 80
CHAP macro 468
character arrangement tables (CAT) 371
character arrangement tables, 3800 printer 371
character modification, 3800 printer 371
CHECK macro 470
CHKPT macro 469
class

class override file
create 36
example 37
making class assignments effective 39
verifying that syntax is correct 38

privilege 27
CLASS control statement 40, 42
clock, comparator 261
CLOSE command 629
CLOSE/TCLOSE macro 466
CMNDLINE (command line) 680
CMS (Conversational Monitor System)

See also virtual machine
ABEND macro 599
ABNEXIT macro 393
abnormal termination 392, 592, 598

collect information 679
exit routine processing 393
messages 590
procedure 598, 600, 679
processing 392
reason for 679

recovery 393,601
auxiliary directories 389, 392, 575
Batch Facility 519

See also CMS batch facility
BLIP facility 11
called routine modifications to system area 433
called routine table 431
command language 383
command processing 427
command search function 430
commands

See CMS commands
control blocks, relationships 678
devices supported 400
DEVTAB (Device Table) 400
display PSW 602
DISPW macro 439
DMSABN macro description 600
DMSEXS 419
DMSFREE 402

free storage management 409
macro description 409
service routines 415

DMSFRES macro description 415
DMSFRET macro description 413
DMSFST macro description 575
DMSINA 426
DMSINT 426
DMSIOW 396
DMSITE 398
DMSITI 396
DMSITP 398
DMSITS 395, 420
DMSKEY 418
DMSNUC 402
DMSROS module 390
dump 676

at abnormal termination 676
examine low storage 679
format 676
message 679

examine low storage 602
file system 384

migration from 800-byte to VM/SP 385
filemode 384
filename 384
file type 384
free storage management 407

DMSFREE macro 409
GETMAIN 407

functional information 399
GETMAIN macro instruction 402
halt execution (HX) 600
how to approach problems 587
how to save it 517
interface with display terminals 439
interrupt handling 395
introduction 383
IUCV support 445

between two virtual machines 456
CMSIUCV 450
guidelines and limitations 459
HNDIUCV 445

load map 602,675
loader tables 403
low storage 602
MACLIB files 387,391
macro library 707
managing files 384
nucleus 403
nucleus load map 675
overlay structures 581
program development 392
program exception 599
PSW keys 418
register restoration 432
register use 399,681
releasing allocated storage 414
releasing storage 413
returning to called routine 432
saved system restrictions 517
simulation of VSE functions 481
storage

dump 603,676
map 403
structure 402

STRINIT macro 407
structure of DMSNUC 400
SUBCOM function 434
support for OS 513
support for VSAM 513
SVC handling 420
symbol references 400
system abend 600
system save area modification 433
transient area 402
transient program area 430
TXTLIB files 387,391
user

area 400
program area 402

USERSECT (User Area) 400
XEDIT 384

interface to access files in storage 437
CMS batch facility 519-522

IJOB control cards 521
BATEXITl routine 521
BATEXIT2 routine 521
BATLIMIT MACRO file 520
data security 522
EXEC procedures 522
installation input 520
installing 520
IPL performance 522
system limits 520

resetting 520
user-specified control language 521

CMS BLIP facility 11

Index 719

CMS commands
ACCESS 477
ASSGN 486
DDR 605
DEBUG 600, 671
DISK 387
FILEDEF 477, 629
GENDIRT 576
GENlMAGE 374, 375
HX 600
lMAGELIB 374, 375
IMAGEMOD 374
IMAGEMOD command 376
immediate commands 545
LISTFILE 390
MODMAP 676
MOVEFILE 629
PRINT 374

TRC option 374
QUERY

DISK 390
RESERVE 441
SETKEY 108
SETPRT 373, 374

loading virtual 3800 printer modules 374
SVCTRACE 610,614,671
TAPE 387
ZAP 624

CMSIUCV 445
CMS macro library 707
CMS/DOS

command summary 483
considerations for execution 511
control blocks used by 508
environment, defined 481
generating 509
libraries 509
library volume directory entries 510
performance 511
restrictions 511
support

for declarative macros 496
for DTFCD macro 497
for DTFCN macro 499
for DTFDI macro 499
for DTFMT macro 501
for DTFPR macro 502
for DTFSD macro 503
forEXCP 507
for imperative macros 506
for transient routines 506
hardware devices 482
of physical 10CS macros 488
of VSE supervisor and I/O macros 487
SVC support routines 488-496
VSE macros under CMS 487

user responsibilities 508
VSE volumes needed 510

CMSCB (OS control blocks) 680

720 VM/SP System Programmer's Guide

CMSIUCV macro 450
MF=(E,addr) Format 453
MF=(L,addr[,label]) Format 452
MF=L Format 452
standard format 450

coding conventions
addressing 350
constants 349
CP 349
error messages 351
format 349
loadlist requirements 351
module names 351
register use 349
title card 351

command access
changing for virtual machines 29
migration considerations 35
security and system integrity 35

command authorization
planning 31

command privilege classes
changing 29

commands
See also CMS commands, and CP commands
assigning privilege classes 35
COMMANDS 40
how a user can display which can be used 40
language

CMS 383
OVERRIDE 39
search function 430

COMMANDS command 40
COMMD macro 45
common segment facility 85
communication

between virtual machines 113, 141
IUCV 148

example 156
with CP system services 148
with CP system services, CP entry points 176
with CP system services, initiated by CP 178
with CP system services, initiated by virtual

machine 176
with CP system services, invoking 176

compiler input/output assignments 486
completion code X'OOB' 54
condition codes

DIAGNOSE code X'OC' 285
DIAGNOSE code X'OO' 281
DIAGNOSE code X'08' 283
DIAGNOSE code X'lO' 285
DIAGNOSE code X'14' 286
DIAGNOSE code X'18' 292
DIAGNOSE code X'28' 298
DIAGNOSE code X'3C' 302
DIAGNOSE code X'30' 300
DIAGNOSE code X'34' 301
DIAGNOSE code X'38' 301

(
l DIAGNOSE code X'4C' 305

DIAGNOSE code X'58' 308
DIAGNOSE code X'6C' 319
DIAGNOSE code X'64'

FINDSYS function 317
LOADSYS function 316
PURGESYS function 317

DIAGNOSE code X'7C' 324
DIAGNOSE code X'78' 322
DIAGNOSE code X'80' 330
DIAGNOSE code X'84' 336
DIAGNOSE code X'94' 343
IUCV 211

CONNECT, IUCV function 141
parameter list format 180
using 152

console function, adding 45
console, single 251
control

block
locating 622
used by CMS/DOS routines 508

registers, displayed by DISPLAY command 613
Control Program

See CP (Control Program)
control statement

CLASS 42
OVERRIDE 36

control tables
conventions of coding 349

See also coding conventions
Conversational Monitor System

See CMS (Conversational Monitor System)
copy modification modules (COPYMOD) 372
copy modification, 3800 printer 371
COPYMOD (copy modification modules) 372
COPYV command, for MSS volumes 255
CP (Control Program)

abnormal termination
messages 588
procedure 597,598,629

assist 76
attached processor mode 263
coding conventions 349
commands

See CP commands
concurrent execution of virtual machines 3
console functions

how to add one 45
control block relationships 635
debugging CP on a virtual machine 624
disabled loop 592

procedure 606
disabled wait

procedure 596, 598, 607
dump 629

at abnormal termination 629
attached processor 630
examine abend code 630

examine low storage 630
format 630
multiprocessor 630
on printer 629
on tape 629
printing tape dump 629

enabled wait
procedure 596,607,609

errors encountered by warm start program 588
examine low storage 598
FRET trap 649
how to approach problems 587
I/O management on virtual machine 21
identifying and locating pageable module 645
in attached processor and multiprocessor modes 263
internal trace table 92, 598, 624, 631, 652

See also CP trace table
introduction 3
load map 598
loadlist requirements 351
looping condition 596
low storage 598
machine check 604
multiprocessor mode 263
page zero handling 15
Prefix Storage Area (PSA) 598
privileged instruction simulation 3
problem state execution 3
program check 597

in checkpoint program 588
in dump program 588

PSA (Prefix Storage Area) 598
real control blocks 598
register use 632
restrictions 604
RMS (Recovery Management Support) 54
save areas 632
small CP option 15
spooling 23
storage dump 597, 630
SVC 0 597
system restart 598, 609
system service

DASD block I/O 239
message 237
signal 243
SN A virtual console communication 219

trace record types 653
trace table entries 625,626

See also CP trace table
unexpected results 592, 595

procedure 604
virtual control blocks 598
virtual machine interrupt handling 4
wait state status messages 588

CP commands 27, 606
ADSTOP 109, 110,611,621
assigning privilege classes 35
BEGIN 621

~.--~--~------... ----

Index 721

CHANGE, 3800 printer support 373
CLOSE 629
COMMANDS 40
DCP 620
DEFINE, 3800 printer support 373
DISPLAY 602, 620
DMCP 620
D~ 109,606,610,611,619
how a user can display which can be used 40
how to add command 45
INDICATE 89

FAVORED operand, E privilege class 91
LOCATE 622
MIGRATE 65
MONITOR 89,91
OVERRIDE 39
PER 604,605,606,607,610
QUERY 621

for 3800 printer support 375
PAGING 66
SRM 65
SRM operand 89

SEND, use with single console image facility 251
SET 620,629

MIH 50
PAGING 66
SRM MHFULL 65

SMSG 249
SPOOL, 3800 printer support 373
SRM 91
SRM operand 91
START, 3800 printer support 374,375
STCP 111, 624
STORE 109, 110,613,623
SYSTEM 620
TERMINAL

BREAKIN GUESTCTL 313
BRKKEY 313
CONMODE 3270 312
SCRNSAVE OFF 312,313
SCRNSAVE ON 312

TRACE 109,110,604,605,606,607,610,614,
622

VMDUMP 606,610,620
CP FRET trap 649

examples 650
CP trace table 598

allocation 625
entries 625
restarting tracing 626
size 625
terminating tracing 626
use 625,631

CPABEND (abend code) 630
CPEREP program 608
CPSTAT (CP running status) 631
CPTRAP facility 652, 670

activating 652
AP and MP support 657

722 VM/SP System Programmer's Guide

checkpointing 657
command examples 616
CP data example 663
CP interface 656
CPTRAP FILE 659
enabling a virtual machine 653
example of collecting CP data 663
example of collecting virtual machine data 667
lost data 658
non-wrap file 652
recording entries in CPTRAP FILE 652

collecting CP data 655,656
collecting trace table entries 652
collecting virtual machine data 653
format of CP entries 657
format of virtual machine entries 655
specifying selectivity 653,656

running with microcode assist active 658
trace types 653
TRAPRED facility 659

command format 659
subcommands 660
viewing entries in the CPTRAP file 659

virtual machine data example 667
virtual machine entry types 653
virtual machine interface 654
with CPTRAP 670
wrap file 652

CPU timer 260
CSW (Channel Status Word)

displaying 613
operand, of DISPLAY command 613
subcommand, of DEBUG command 613

CVTSECT (CMS Communications Vector Table) 681
cylinder faults, MSS, VM/SP processing 254

DASD Block I/O System Service 239-242,441
establishing communications 239
from CMS 441
lUCY communication 442
lUCV CONNECT 240
lUCV SEND 241

DASD Dump Restore (DDR) program 605
DASD I/O function 291
data

records, VM Monitor 692
security, batch 522

data set control block (DSCB) 471
data sets

OS
accessing 477
defining 477
reading 476

VSAM, compatibility considerations 514
DCB macro 470

DCP command 620
DDR command, use 605
deadline priority 8

definition 8
eligible list 8
run list 10

deadline priority, calculating 10
DEBUG command

BREAK subcommand, summary 611
CAW subcommand, summary 613
CSW subcommand, summary 613
DUMP subcommand 607

summary 611
use 607

GO subcommand, summary 611
GPR subcommand, summary 612
messages 673
PSW subcommand

summary 613
use 602

rules for using 672
SET CAW subcommand, summary 614
SET CSW subcommand, summary 614
SET GPR subcommand, summary 614
SET PSW subcommand, summary 614
STORE subcommand, summary 613
use 600
X (Examine) subcommand, summary 612

debugging
analyzing problem 591
applying PTF 591
comparison of CP and CMS facilities 617
CP commands for debugging 619

ADSTOP 621
BEGIN 621
CPTRAP 652
DCP 620
DISPLAY 620
DMCP 620
DUMP 619
LOCATE 622
MONITOR 621,626
PER 622,623
QUERY 621
SET 620
STCP 111, 624
STORE 623
SYSTEM 620
TRACE 622
VMDUMP 620
ZAP 624

CP FRET trap 649
how to start 587
identifying

abnormal termination 596
looping condition 595
looping condition in virtual machine 591
problem 591
unexpected results 596

wait 595
wait state in virtual machine 591

introduction 587
on virtual machine 603
procedure

for abnormal termination 597
for CMS abend without dump 599
for CMS abnormal termination 598
for CP abnormal termination 597
for CP disabled loop 606
for CP disabled wait 607
for CP enabled wait 609
for CP unexpected results 604
for looping condition 596
for unexpected results 596
for virtual machine abnormal termination 603
for virtual machine disabled loop 606
for virtual machine disabled wait 610
for virtual machine enabled loop 607
for virtual machine enabled wait 610
for virtual machine unexpected results 605
for wait 596

recognizing problem 588
summary of VM/SP debugging tools 611
trapping improper us of CP free storage 649
unproductive processing time 590
with CPTRAP 652
with VM/SP facilities 597

declarative macros 496
DECLARE BUFFER, IUCV function

parameter list format 181
using 152

dedicated, channel, assigning to virtual machine 22
DEFINE command, 3800 printer support 373
defining

privilege classes 40
changing for a virtual machine 40

virtual 3800 printer 373
DELETE macro 465
demand paging 12
DEQ macro 468
DESCRIBE, IUCV function 142

parameter list format 182
using 153

DETACH macro 469
detaching, virtual devices 21
determining, virtual machine storage size 314
DEVICE (last I/O interrupt) 603
devices

CMSsupported 400
feature codes 644
I/O 50

changing the time interval 51
default time intervals 51
determining time interval settings 52

model codes 643
sense information 49
supported, for VSAM under CMS 514
type codes 640

Index 723

DEVTAB (Device Table) 400
DEVTYPE macro 467
DIAGNOSE code 279

assigning privilege classes 35
interface with a discontiguous saved segment 108
X'OC', pseudo timer 285
X'OO', store extended-identification code 280

program product identification bits 281
X'04', examine real storage 281
X'08', virtual console function 282
X'lC', clear error recording cylinders 293
X'10', release pages 285
X'14', input spool file manipulation 286
X'18', standardDASD I/O 291
X'2C', start of LOGREC area 299
X'20', general I/O 294
X'24', device type and features 295
X'28', channel program modification 298
X'3C', VM/SP directory 302
X'30', read LOGREC data 300
X'34', read system dump spool file 301
X'38', read system symbol table 301
X'4C', generate accounting records for the virtual

user 303
X'40', clean-up after virtual IPL by device 302
X'48', issue SVC 76 from a second level

machine 303
X'5C', error message editing 314
X'50', save the 370X control program image 305
X'54', control function of the PA2 function key 306
X'58' 306

display data on 3270 console screen 307
3270 virtual console interface, full screen

interactions 310
3270 virtual console interface, full screen

interactions (3270 SIO) 312
3270 virtual console interface, full screen

mode 308
X'6C', special diagnose for shadow table

maintenance 319
X'60', determine virtual machine storage size 314
X'64', finding, loading, purging named

segments 315
FINDSYS function 109, 317
LOADSYS function 109,315
PURGESYS function 317

X'64', FINDSYS function 109,317
X'64', LOADSYS function 109,315
X'64', PURGESYS function 317
X'68', VMCFfunction 318
X'7C', logical device support facility 323
X'70', activating TOD-clock accounting

interface 319
X'74', saving or loading a 3800 named system 321
X'78', MSS communication 322
X'8C', access device dependent information 337
X'80', MSSFCALL 328
X'84', directory update in-place 331
X'94', VMDUMP Function 339

724 VM/SP System Programmer's Guide

X'98', real channel program support 345
DIAGNOSE code privilege classes

changing 29
DIAGNOSE instruction 279

access device dependent information 337
activating the TOD-clock accounting interface 319
assigning privilege classes 35
channel program modification 298
clean-up after virtual IPL by device 302
clear error recording 293
control function of the P A2 function key 306
determine virtual machine storage size 108,314
device type and features 295
directory update in-place 331
display data on 3270 console screen 307
error message editing 314
examine real storage 281
find address of discontiguous saved segment 109
finding, loading, purging named segments 315
FINDSYS function 109,317
format 128,279
general I/O 294
generate accounting records for the virtual user 303
input spool file manipulation 286
issue SVC 76 from a second level virtual

machine 303
load discontiguous saved segment 109
LOADSYS function 109,315
logical device support facility 323
MSS communication 322
MSS mount and demount processing 253
MSSFCALL 328
page release function 285
pseudo timer 285
purge discontiguous saved segment 109
PURGESYS function 109, 317
read LOGREC data 300
read system dump spool file 301
read system symbol table 301
real channel program support 345
save the 370X control program image 305
saving or loading a 3800 named system 321
special diagnose for shadow table maintenance 319
standard DASD I/O 291
start of LOGREC area 299
store extended-identification code 280
update VM/SP directory 302
virtual console function 282
VMCF function 113,128,318

data transfer error codes 140
return codes 13 7
VMCPARM parameter list 129

VMDUMP Function 339
3270 virtual console interface

full screen interactions 310,323
full screen interactions (3270 SIO) 312
full screen mode 308

directory
authorization for IUCV 151

(

('

auxiliarly
See auxiliary directories

control statement for IUCV 141, 145, 157, 169
entries for CMS/DOS library volumes 510
entries in IUCV 151, 172
replacing entries 331
update in-place 331

discontiguous saved segments 107
definition 107
finding 109
loading 109,315
loading and saving 107
purging 109, 317

DISK command 387
dispatch request queue 10
dispatcher (DMKDSP) 10
dispatcher stack lock 272
dispatching

interactive users 8
noninteractive users 8
priority, calculating 10
scheme, for virtual machines 11
virtual machines 8

from queue 2 8
dispatching priority, replacing directory entry 333
DISPLAY command 606

command 620
summary 612
use 602

display terminals, CMS interface 439
displaying

and setting paging variables 66
changing and setting SRM variables 65
commands available to a user 40
data on a 3270 console screen 307
floating-point registers, DISPLAY command 613
general registers

DISPLAY command 612
GPR subcommand of DEBUG command 612

PSW
DISPLAY command 613
PSW subcommand of DEBUG command 613

storage
DISPLAY command 612
X subcommand of DEBUG command 612

DISPW macro display terminals, DISPW macro 439
distribution word, replacing directory entry 334
DMCP command 620
DMKCFC (console function) support 45
DMKDDR

See DASD Dump Restore (DDR) program
DMKDSP (dispatcher) 10
DMKSNT (system name table) 112
DMSABN (abend routine) 679
DMSABN macro 600

operands 600
DMSEXS macro 419
DMSFREE 402

allocating nucleus free storage 413

allocating user free storage 412
error codes 417
macro format 409
service routines 415
storage management 409

DMSFRES macro 415
error codes 417
format 415
operands 415

DMSFRET macro 413
error codes 417
operands 413
releasing storage 413

DMSFST macro 575
DMSINA 426
DMSINT 426
DMSIOW 396
DMSITE 398
DMSITI 396
DMSITP 398
DMSITS 395, 433
DMSITS module, SVC handling routine 420
DMSKEY macro 418
DMSNUC 400,402
DMSROS module 390
DMSXFLPT XEDIT routine 438
DMSXFLRD XEDIT routine 437
DMSXFLST XEDIT routine 437
DMSXFLWR XEDIT routine 438
DOS (Disk Operating System)

abnormal termination
messages 590
procedure 603

DSCB (data set control block) 471
DTFCD macro 496, 497
DTFCN macro 496, 499
DTFDI macro 496, 499
DTFMT macro 496, 500
DTFPR macro 496, 502
DTFSD macro 496, 503
dump

See CP (Control Program), dump and CMS
(Conversational Monitor System), dump

dump address parameter list 342
DUMP command 610

summary 611
use 607

dump, used in problem determination 597
dumping

storage
at printer 617
at terminal 617

to real printer 629
DUMPSA VB (DMKDMP save area) 633
dynamic linkage, SUBCOM function 434
dynamic load overlay 583
dynamic SCP transition to or from native mode

advantages of 86
command used for 87

Index 725

overview of how to use 86
performance impact of 87
precautions when using 87
purpose of 86
systems supported 87

EC (Extended Control) mode 607
EC (Extended Control) PSW 685
ECMODE option 260, 607
ECPS (Extended Control-Program Support) 76

CP assist 76
expanded virtual machine assist 76
restricted use 79
using 79
virtual interval timer assist 76,259

ECRLOG (extended control registers) 679
editing, error messages 314
efficiency, of VM/SP performance options 57
eligible list 8
eligible list, use in deadline priority 8
eliminating queue drop overhead 74
end, abnormal

See abnormal termination (abend)
ENQ macro 468
environment, of VM/SP, system load 99
error codes

DMSFREE 417
DMSFRES 417
DMSFRET 417

error messages, editing 314
error recording cylinders, clear 293
EXCP, CMS/DOS support for 507
EXEC action routines 566
EXEC procedures for CMS Batch 522
EXIT /RETURN macro 464
expanded virtual machine assist 76
Extended Control mode 607

See also EC (Extended Control) mode
extended control registers (ECRLOG) 679
Extended Control-Program Support (ECPS)

See ECPS (Extended Control-Program Support)
extended PLIST, SVC 202 423
extended-identification code 280
external interrupt

BLIP character 398
external console interrupt 55
HNDEXT macro 398
in CMS 398
in VMCF 113, 134

message header 134
interval timer 55
IUCV 145

field definitions 199
formats 196

timer 398

726 VM/SP System Programmer's Guide

EXTOPSW (external old PSW) 679
EXTRACT macro 467
EXTSECT (external interrupt work area) 681

faults, MSS cylinder, VM/SP processing 254
favored execution option 67
FCB

See forms control buffer, FCB
FCB (File Control Block) 399
FCBTAB (file control block table) 680
features, device 644
feedback file

See programmable operator facility
FEOV macro 467
fetch protected storage, not dumped 339
fetch storage protection 13
file

CPTRAP 652
management, CMS 384
non-wrap 652
wrap 652

file control block 399
File Status Table 575
file system, CMS, migrating from 800-byte to

VM/SP 385
FILEDEF command 477

AUXPROC option 478
defining OS data sets 477
to invoke the programmable operator 552
use 629

filemode 384
filename 384
files, support of OS format 471
filetype 384
FIND macro 466
finding

address of discontiguous saved segment 109
saved systems 317

FINDSYS function 109,317
fixed-head preferred paging area, migration 65
flashing, forms overlay, 3800 printer 371
FOB (font offset buffer)

FOBCCW macro instruction 361
3289 Model 4 354,361

adding FOBs 361
macro instruction 361
purpose 361

FOBCCW macro instruction 361
font offset buffer

See FOB (font offset buffer)
forms control buffer 353-370

FCB 353
examples 366
index feature 366
macro 365

3203,3211,3262,3289 Model 4, 4245,
4248 354

3800 printer 371,372
forms overlay (flashing), 3800 printer 371
FPRLOG (floating-point registers) 679
free storage

management
CMS 407

free storage lock 272
FREEDBUF macro 468
FREEMAIN macro 465
FREESA VE (DMKFRE register save area) 598, 633
FRET trap, CP 649

examples 650

GCS (Group Control System)
and the programmable operator facility 524,571

GENDIRT 576
command 576
creating auxiliary directories 577
format 576

generating, CMS/DOS 509
GENIMAGE command 374, 375

IEBIMAGE utility program 375
GET macro 473
GETMAIN

free element chain 408
GETMAIN/FREEMAIN macros 465
macro 465
simulation 407
storage management 407

GETPOOL/FREEPOOL macro 465
GPRLOG (general registers) 679
graphic modification modules (GRAPHMOD) 372
GRAPHMOD (graphic modification modules) 372
Group Control System

See GCS (Group Control System)
group, virtual machine 243

halt execution (HX) in CMS 600
handling

OS files
on CMS disks 461
on OS or DOS disks 462

hardware assist 76
header record, VM Monitor 691
help files, updating

considerations when changing command classes 35
HNDIUCV macro 445

MF=(E,addr) Format 448
MF=(L,addr[,label]) Format 448

MF=L format 447
standard format 445

HOSTCHK statement 531

I/O

See also programmable operator facility

assignments
compiler 486
interrogating 487

errors, recovery from 376
function

DASD 291
general 294

interrupt 49
in eMS 396

lock 272
management 21
overhead in CP, reducing 59
virtual machines 58
VM/SP SNA support

processing 228, 229
IBM 3800 Printing Subsystem 371,376

See also 3800 printer
IBM-defined user classes

reverting to 39
identification bits for program products 281
IDENTIFY

VMCF function 124
VMCF protocol 121

IDENTIFY macro 467
identify processor address

AP /MP environment 266
IEBIMAGE utility program 375
lIP (ISAM Interface Program) 515

CMS 517
image library, 3800 printer support 375
IMAGELIB command 374,375
IMAGEMOD command 374,375
immediate commands 600
immediate commands, CMS 545
imperative macros 506
improving channel use 80
INDICATE command 89

FAVORED operand, E privilege class 91
indicators, of system load 89
Initial Program Load (IPL)

See IPL (Initial Program Load)
INITIATE, logical device support facility function 258,

323,325
input/output

See I/O
installing

CMS batch machine 520
PMX 571
programmable operator 550

Index 727

instruction
See DIAGNOSE instruction

integrity, system
when changing command access 35

Inter-User Communications Vehicle
See IUCV (Inter-User Communications Vehicle)

internal CP functions
changing privilege classes 43

interrogating input/output assignments 487
interrupt handling

attached processor
real I/O interrupts 56
synchronous interrupts 55

CMS 395
input/output CMS 396
SVC interrupts 395
terminal interrupts 397

CP 4
DMSITS 395
external interrupts 55, 398
I/O interrupts 21
machine check interrupts 54,398
missing interrupt handler 49
multiprocessor

real I/O interrupts 56
synchronous interrupts 55

program interrupts 54, 398
reader/punqh/printer interrupts 397
SVC interrupts 54
user-controlled device interrupts 397

interval timer 76, 259, 260
introduction to VM/SP Control Program 3
INTSVC, SVC handling routine 420
invoking

IUCV functions 160
programmable operator facility 552
VMCF functions 128

10BLOK 598
10SECT (I/O interrupt work area) 681
IPL (Initial Program Load)

device, replacing directory entry 333
performance using saved system 522

IUCV (Inter-User Communications Vehicle) 141
audit trail 150
CMS, between two virtual machines 456
communication using parameter list data 159
communication with CP system services 148

CP entry points 176
initiated by CP 178
initiated by virtual machine 176
invoking 176
IXBLOK 178

communication with DASD Block I/O 442
communication, example 156
external interrupt 145

field definitions 199
formats 196

functions
See IUCV functions

728 VM/SP System Programmer's Guide

introduction 141
invoking 160
macro instruction 160

format 161
messages 141, 142

data transfer 144
identification 144
one-way 155
priority 155
queues 143

MSGBLOK, definition 142
one-way messages 155
parameter list

field definitions 199
formats 178

parameters, specifying 160
paths 141
priority messages 155
queues, interrogating 147
restrictions 151
return codes and completion codes 211
security considerations 151
support, CMS 445
trace table entries 149

field definitions 217
formats 216
suppressing 149

use with Message System Service 237
use with Signal System Service 243
using 152
VM/SP use in SNA environment 222

IUCV functions
ACCEPT 141

parameter list format 179
using 152

CONNECT 141
parameter list format 180
using 152

DECLARE BUFFER 145
parameter list format 181
using 152

DESCRIBE 142
parameter list format 182
using 153

invoking 160
PURGE

parameter list format 183
using 153

QUERY, using 153
QUIESCE 141

parameter list format 185
using 153

RECEIVE 142
parameter list format 186
using 154

REJECT 142
parameter list format 187
using 154

REPLY 142

, , parameter list format 188
using 154

RESUME 141
parameter list format 190
using 155

RETRIEVE BUFFER, using 155
SEND 142

parameter list format 191
using 155

SET CONTROL MASK
parameter list format 192
using 155

SET MASK
parameter list format 193
using 155

SEVER 141
parameter list format 194
using 156

TEST COMPLETION 142
parameter list format 195
using 156

TEST MESSAGE, using 156
IXBLOK, for IUCV communication with CP system

services 178

job control cards (fJOB) 521
journaling

accounting records 102
LOGON, AUTOLOG, LINK commands 377

keys
changing storage 108, 110
PSW 418
storage 14

LASTCMND (last command) 603, 680
LASTEXEC (last exec procedure) 603, 680
LASTLMOD (last module loaded) 602, 680
LASTTMOD (last transient loaded) 603,680
LCS (library character sets) 372
LGLOPR

See also programmable operator facility
action routine 544
command 544
statement 528

library

CMS macro 707
CMS/DOS 509
programs, CMS/DOS 510
volumes, CMS/DOS directory entries 510

library character sets (LCS) 372
LINK command

journaling 377
password suppression 379

LINK macro 465
LIOCS routines supported by CMS/DOS 506
LISTFILE command 390
load 89

environments of VM/SP 99
indicators 89

LOAD macro 465
load map 676

CMS 675
how to get a load map 676

loader tables, CMS 403
loading 107

and saving discontiguous saved segments 107
discontiguous saved segments 109, 315

loading virtual 3800 printer modules 374
loadlist

requirements
CP 351
SPB card 352

LOADSYS function 109,315
LOCATE command 622
LOCK macro 273
locked pages option 61
locks

dispatcher stack 272
free storage 272
I/O 272
RDEVBLOK 272
real storage management (RM Lock) 272
run list 272 .
timer request queue 272
user-defined 273
VMBLOK 272

LOCKSA VE (LOCK macro save area) 634
log file

See programmable operator facility
LOGGING statement 531

See also programmable operator facility
logical device support facility 257, 258

description 257
implementing via DIAGNOSE 323

logical editing symbols, replacing directory entry 333
logical operator

See programmable operator facility
logical units

assignment of 485
defined 485
programmer assigned 486
system assigned 486

LOGON command
journaling 377

Index 729

--~-------. --_._------

password suppression 379
LOGREC area

getting starting address 299
reading 300

LOKSA VE (DMKLOK save area) 633
loop 606

See also problem, types
disabled

CP 606
virtual machine 606

enabled, virtual machine 607
low address protection 85
LOWSA VE (debug save area) 679
LUB (Logical Unit Block) 486

machine check
CP 604
during start-up 54
interrupt 54

in CMS 398
not diagnosed 604
on attached processor 604
unrecoverable 604

MACLIB files 387, 391
macro instruction

IUCV 160
format 161

macro library, CMS 707
macros

CMS

CP

ABNEXIT 393
CMSIUCV 450
DISPW 439
DMSEXS 419
DMSFREE 409
DMSFRES 415
DMSFRET 413
DMSFST 575
DMSKEY 418
GETMAIN 402
HNDIUCV 445

COMMD 45
FCB 365
FOB 361
FOBCCW 361
IUCV 161
LOCK 273
PIB 364
PIBCCW 364
SIGNAL 266
SWITCHVM 275
UCB 358
UCBCCW 360
UCC 362

730 VM/SP System Programmer's Guide

UCCCCW 362
UCS 356
UCSCCW 356

declarative 496
imperative 506
OS

See OS (Operating System), macros
supervisor 488
VSAM, supported under CMS 514
VSE macros supported by CMS/DOS 487

Mass Storage System
See MSS (Mass Storage System)

MCKOPSW (CMS machine check old PSW) 679
Message System Service 237-238

establishing communications 237
messages

controlling 620
data transfer, IUCV 144
identification, IUCV 144
IUCV 141, 142

one-way 155
priority 155

queues, IUCV 143
MFASA VE (DMKMCT save area) 634
MIGRATE command 65
migration

from 800-byte to VM/SP 385
page, managing 65

migration consideration
when changing command access 35

minidisk link mode, replacing directory entry 335
minidisk multiple password, replacing directory

entry 335
minidisk read password, replacing directory entry 335
minidisk write password, replacing directory entry 335
minidisks 21
missing interrupt handler 49

description 49
devices monitored 50
diagnostic aids 53
error recording area 53
messages 53
use of 50

model, device 643
modifying modules 624
MODMAP command 676
MONITOR CALL instruction 91
MONITOR command 89, 91

format 93
implemented classes 93

monitoring, recommendations 98
moveable-head preferred paging area, managing

migration 65
MOVEflLE command 629
MPmode

See multiprocessor mode (MP)
MSGBLOK, IUCV definition 142
MSS (Mass Storage System)

communication 322

i-

(
~'

-.-./

cylinder faults, VM/SP processing 254
mount and demount processing 253,322
mount processing, asynchronous 254
VM/SP access 253
volumes 22,57

backup copies 255
I/O management 22

MSSF SCPINFO command 328
MSSFCALL 328

SCPINFO command 328
multiple channel errors 590
multiple copy printing, 3800 printer 371
multiple shadow table support 72
multiprocessing systems, improving performance of 86
multiprocessor

examine real storage 282
virtual machine I/O management 21

multiprocessor mode (MP)
abnormal termination, dump 630
advantages 264
affinity 69,274
configuring I/O 275
debugging 275

lockwords 277
PSA 276
trace table 277

fetching and storing 269
identify processor address 266
locking 270
locks
prefixing 265
real I/O interrupts 56
shared segments 275
signaling 266

SIGNAL macro 266
special code in CP 263
storage 265
synchronous interrupts 55
time-of-day clock 268
virtual machine I/O management 21

multisystem communication unit, 3088 80
MVS/system extensions support 84

common segment facility 85
enabling 85
low address protection 85
special operations and instructions 85

named segments, finding, loading, purging 315
NAMENCP macro

for 37XX control program 112
NAMESYS macro
native mode, switching to or from 86
NCCF (Network Communications Control Facility)

and the programmable operator facility 524, 569
logging NCCF messages 570

--~----- ------------

logical operator 569
operator 569

command authorization 573
QUERY command authorization 569
routing messages to 571

PMX 524,571
Network Communications Control Facility (NCCF)

See NCCF (Network Communications Control
Facility)

non-wrap file 652
NOTE macro 470
nucleus (CMS) 403
NUCON (nucleus constant area) 679

OPEN/OPENJ macro 466
options

performance
affinity 69
favored execution 67
locked pages 61
multiple shadow table support 72
priority 68
queue drop elimination 74
reserved page frames 62
shadow table bypass 72
small CP 15
virtual machine 66
virtual machine assist feature 75
virtual=real 15, 62

OS (Operating System)
abnormal termination

messages 590
procedure 603

access method, support of 471
CMS support for 513
data management simulation 461
data sets

accessing 477
defining 477
reading 476

formatted files 471
handling

files on CMS disks 461
files on OS or DOS disks 462

macro simulation 461
macros 461

ABEND 466
ATIACH 467
BLDL 466
BSP 470
CHAP 468
CHECK 470
CHKPT 469
CLOSE/TCLOSE 466
DCB 470

Index 731

DELETE 465
DEQ 468
descriptions of 464
DETACH 469
DEVTYPE 467
ENQ 468
EXIT/RETURN 464
EXTRACT 467
FEOV 467
FIND 466
FREEDBUF 468
FREEMAIN 465
GET 473
GETMAIN 465
GETMAIN/FREEMAIN 465
GETPOOL/FREEPOOL 465
IDENTIFY 467
LINK 465
LOAD 465
NOTE 470
OPEN/OPENJ 466
PGRLSE 470
POINT 470
POST 464
PUT 473
PUTX 473
RDJFCB 469
READ 473,474
RESTORE 466
SNAP 468
SPIE 466
STAE 469
STAX 470
STIMER 468
STOW 466
SYNADAF 470
SYNADRLS 470
TCLEARQ 470
TGET/TPUT 470
TIME 466
TTIMER 468
under CMS 461
WAIT 464
WRITE 473,474
WTO/WTOR 467
XCTL 465
XDAP 464

simulated OS supervisor calls 462
overhead, CP, reducing for I/O 59
overlay structures in CMS 581
overlaying

dynamic load 583
example· 582
pre structured 581
structUres 581

OVERRIDE command 39
OVERRIDE control statement 36

732 VM/SP System Programmer's Guide

page
contiguous storage

discontiguous storage 317
exceptions, effects of 60
frames 11

reserved 15, 62
locking 61
migration, managing 65
SPB (Set Page Boundary) card 352
table 11
zero, restrictions 15

pageable module
identifying 645
locating 645

paging 12
by demand 12
considerations 60

paging variables, displaying and setting 66
parameter list

formats, IUCV 178
IUCV, field definitions 199

parameters, IUCV, specifying 160
password

replacing directory entry 331,332,333
suppressing on command line 379

paths, IUCV 141
PAl program function key 27,313

with DIAGNOSE code X'58' 310,311,313
with the programmable operator facility 553,562
with VSCS or VCNA 229

PA2 program function key, defining function of 306
PER command 605,606,607,610

description 618
summary 614
use 604

performance 57
CMS/DOS 511
dynamic SCP transition to or from native mode 86
for mixed mode foreground/background

systems 100
for time-shared multibatch virtual machines 98
High Performance Option 14
measurement 89
options

affinity 69
favored execution 67
locked pages 61
multiple shadow table support 72
priority 68
queue drop elimination 74
reserved page frames 62
shadow table bypass· 72
small CP ·15
virtual machine 66
virtual machine assist feature 75
virtual=real 15,62

'. single processor mode 86
PGMOPSW (program old PSW) 679
PGMSECT (program check interrupt work area) 681
PGRLSE macro 470
PIB buffer images

examples 365
macro format 364
PIBCCW macro format 364

PIBCCW macro 364
PLIST (parameter list) 399
PMX (Programmable Operator/NCCF Message

Exchange)
See programmable operator facility

POINT macro 470
POST macro 464
Prefix Storage Area

See PSA (Prefix Storage Area)
prefixing in an AP /MP environment 265
PRESENT, logical device support facility function 258,

323,326
preservation, virtual storage 17
pre structured overlays 581
PREVCMND (previous command) 603,680
PREVEXEC (previous exec procedure) 603,680
print buffers

adding new images 356
LOADBUF command 356
PIB buffer images 364
PIBCCW macro 364
print chain image 356
UCB macro 358
UCBCCW macro 360
UCC examples 362
UCC macro 362
UCCCCW macro 362
UCS

examples 357
macro. 356
1403 and 3203 353

UCSB
associative field 358
examples 360
3211 353,358
3262 354

UCSCCW macro 356
PRINT command 374

TRC option 374
printer

IBM 3800
See 3800 printer

interruptions 397
printing virtual 3800 spool files 374
priority 7

deadline 10
messages 122, 126
of execution 7
performance option 68

privilege classes 27
assigning to commands and DIAGNOSE codes 35

changing for internal CP functions 43
changing the definition of 40
defining eight or fewer 42
defining more than eight 42
replacing directory entry 333

privileged instructions 58
problem

programs, unexpected results 596
types

abnormal termination 592
loop 592
unexpected results 592
wait 592

processor
attached

machine check 604
resources 7
timer 260
use 15
utilization 7

program
check

in checkpoint program
in dump program

interruption 53
in CMS 398
problem state 54
supervisor state 54

states 5
program product identification bits 281
Program Status Word

See PSW (Program Status Word)
programmable operator facility 523-574

abend 526,543
action routine interface

call interface 563
parameter interface 563

action routines 543
DMSPOL 547
DMSPOR 544
DMSPOS 546
EXEC 544, 566
handling console I/O 567
response handling 567
supplied 544
writing 566

and NCCF 571
command authorization 573
routing messages to 571

authorization 541
communication

checking 557
with the network 526

Debug mode 562
exit EXECs

communication error 560
interface 560
log error 561
PROPHCHK EXEC 558, 561

Index 733

PROPLGER EXEC 548,561
PROPPCHK EXEC 558, 560

feedback file 549
initialization 527
installing 550

CMSGEND PROP function 550
PMX 571

invoking 552
automatically 554
manually 552
PROPPROF EXEC 553
PROPST EXEC 552

LGLOPR
action routine 544
command 544, 555
sample command entries in RTABLE 556
statement 525, 528

log file 547
logical operator 525

action routine 544
assigning, releasing, replacing 555
command 544,555
NCCF 569
statement 528

message output format 560
NCCF logical operator 569
overview 523

flow of operation 525
how it works 525
in a distributed VM/SP system 523
in a mixed environment 524
in a single system 523
logical operator 524

partial routing table 535
PMX 524,571

installing 571
stopping 574

QUERY command authorization for an NCCF
operator 569

register conventions for invoking an action
routine 565

relationship with RSCS Networking 526
restricting 542

authorization by nodeid 542
authorization by userid and nodeid 542
command use 543

routing entries to filter responses to commands 540
routing table 528, 532

conversion 551
tailoring 536

routing table (RTABLE) 527
routing table entries 532

specifying routing texts 536
routing table statements

HOSTCHK 531
LGLOPR 528
LOGGING 531
order of 532
PROPCHK 530

734 VM/SP System Programmer's Guide

ROUTE 531
TEXTSYM 529

stopping 568
PROPEPIF EXEC 568

uncontrolled authorization 541
use in a distributed VM/SP system 523,532
use in a mixed environment 524
use in a single system 523
with IUCV 558
with NCCF 524, 569

Programmable Operator/NCCF Message Exchange
(PMX)

See programmable operator facility
programmer logical units 486
PROPCHK statement 530

See also programmable operator facility
PROPSW (program old PSW) 630
protected shared segment 110
protection keys 13
PSA (Prefix Storage Area) 598

ARIOCH (address of first RCHBLOK) 638
ARlOCU (address of first RCUBLOK) 638
ARlODV (address of first RDEVBLOK) 638
in attached processor mode 276
in multiprocessor mode 276

pseudo timer 261,285
PSW (Program Status Word) 630

displaying 602, 607, 613
interruption code 602
keys, CMS 418
SET PSW subcommand of DEBUG 614
storing information in 614
subcommand of DEBUG 602,613

PTFs (program temporary fixes), applying 587,591
PUB (Physical Unit Block) 486
punch, interruptions 397
PURGE, IUCV function

parameter list format 183
using 153

PURGESYS function 109,317
purging discontiguous saved segments 109,317
PUT macro 473
PUTX macro 473

QUERY command 620,621
DISK operand 390
PAGING operand 66
SRM operand 65,91
3800 printer support 373,375

QUERY, IUCV function 153
querying and setting SRM variables 91
queue drop elimination 74
queue 1 8
queue 2 8
queue 3 9

:TT"

QUIESCE
IUCV function 141

parameter list format 185
using 153

VMCF function 124
Q1 8
Q2 8
Q3 9

RCHBLOK 638
RCHADD (address) 638
RCHFIOB (first 10BLOK pointer) 638
RCHLIOB (last 10BLOK pointer) 638
RCHSTAT (status) 638
RCHTYPE (type) 638

RCTLUNIT macro 81
coding 81

RCUBLOK 638
RCUADD (address) 638
RCUCHA (primary RCHBLOK) 638
RCUCRB (first alternate RCHBLOK) 638
RCUCHC (second alternate RCRBLOK) 638
RCUCHD (third alternate RCHBLOK) 638
RCUFIOB (first 10BLOK pointer) 638
RCULIOB (last 10BLOK pointer) 638
RCUSTAT (status) 638
RCUTYPE (type) 638

RDEVBLOK 638
RDEV ADD (address) 638
RDEV AIOB (IOBLOK pointer) 639
RDEVATT (attached virtual address) 639
RDEVCKPT (address of enable CKPBLOK) 639
RDEVEPDV (address of EP free list) 639
RDEVFLAG (device dependent flags) 639
RDEVIOER (address of 10ERBLOK) 639
RDEVMAX (highest valid NCP name) 639
RDEVNCP (reference name of active 3705

NCP) 639
RDEVNICL (address of network control list) 639
RDEVSPL (RSPLCTL pointer) 639
RDEVSTAT (status) 639
RDEVTFLG (flags) 639
RDEVTMCD (terminal flags) 639
RDEVTYPC (class) 639
RDEVUSER (dedicated user) 639

RDEVBLOK lock 272
RDEVICE macro 81

coding 81
RDJFCB macro 469
READ macro 473,474
reader, interruptions 397
reading, OS data sets 476
real channel program support 345
real device simulation, VM/SP SNA support 227
real printer, dumping to 629

real storage
examine 281

in attached processor environment 282
in multiprocessor environment 282

optimizing use of 11
real storage management lock (RM Lock) 272
REAL TIMER option 260
RECEIVE

IUCV function 142
parameter list format 186
using 154

VMCF function 127
recording, real machine system events 622
records, accounting

created by user 104
for AUTOLOG, LOGON, and LINK journaling 102
format for dedicated devices 102
format for temporary disk space 102
format for virtual machines 101

RECOVERV command, for MSS volumes 255
Recovery Management Support (RMS) 54
recovery, CMS abend 393
reducing purges 72
reduction

of CP overhead, for virtual machine I/O 59
of paging activity 60
of SIO operation 59

reenterable code, usage 60
register use in CMS 399
REJECT 125

IUCV function 142
parameter list format 187
using 154

VMCF function 125
releasing

allocated storage 414
storage 413

REPLY
IUCV function 142

parameter list format 188
using 154

VMCF function 128
RESERVE

command 441
operand of SET 15

reserved page frames 15
performance option 62

resources, processor 7
responses, VM Monitor, to unusual tape conditions 95
responsibilities, user, for CMS/DOS 508
RESTORE macro 466
restrictions

BDAM 474
CMS/DOS 511
CMS, saved system 517
IUCV 151

resume
IUCV function 141

parameter list format 190

Index 735

using 155
VMCF function 124

resume execution 611
BEGIN command 611
GO subcommand of DEBUG command 611

RETRIEVE BUFFER, IUCV function 155
return codes

CMSIUCV 454
DASD Block I/O System Service 242
detailed description 344
DIAGNOSE code X'OC' 285
DIAGNOSE code X'OO' 281
DIAGNOSE code X'08' 283
DIAGNOSE code X'10' 285
DIAGNOSE code X'18' 292
DIAGNOSE code X'28' 298
DIAGNOSE code X'64'

FINDSYS function 317
LOADSYS function 316
PURGESYS function 317

DIAGNOSE code X'68' 318
DIAGNOSE code X'7C' 324
DIAGNOSE code X'74' 321
DIAGNOSE code X'78' 322
DIAGNOSE code X'8C' 338
DIAGNOSE code X'80' 330
DIAGNOSE code X'84' 336
DIAGNOSE code X'94' 343

quick reference 343
DIAGNOSE code X'98'

subcode X'OOOO' 346
subcode X'0004' 347
subcode X'0008' 347

DMSFREE 417
DMSFRES 417
DMSFRET 417
DMSXFLPT 438
DMSXFLRD 437
DMSXFLST 437
DMSXFLWR 438
HNDIUCV 449
IUCV 211
Signal System Service 245
SUB COM 436
VMCF 133

RM lock (real storage management lock) 272
RMS (Recovery Management Support) 54
ROUTE statement 531

See also programmable operator facility
routing table (RTABLE) 527

See also programmable operator facility
RSCS (Remote Spooling Communications Subsystem)

Networking Version 2
programmable operator facility relationship 526,

557
RTABLE (routing table) 527
run list 10
run list lock 272
RUNUSER (current user) 631

736 VM/SP System Programmer's Guide

save area
BALRSA VE 598, 633
CMS system 433
CMS system save area format 433
DUMPSA VE 633
FREESA VE 598, 633
LOCKSA VE 634
LOKSAVE 633
MFASAVE 634
SA VEAREA 598, 632
SIGSAVE 633
SVCREGS 634
SWTHSA VE 634
user save area 433

SA VEAREA (active save area) 598, 632
saved system

definition 107
restrictions for CMS 517

SAVENCP command 112
for 37XX control program 112

SA VESEQ priority value 18
saving

CMS 517
storage information 623

SCBLOCK, created by SUBCOM 435
SCIF (Single Console Image Facility) 251-252

controlling multiple virtual machines 251
using 251

SCPINFO command 328
screen management, VM/SP SNA support 222
second level storage, dumping of 339
secondary user 251
security

when changing command access 35
security considerations, IUCV 151
segment table 11
segments, shared

See shared segments
SEND

command with single console image facility 251
IUCV function 142

parameter list format 191
using 155

VMCF function 125
VMCF protocol 118

SEND/RECV
VMCF function 126
VMCF protocol 119

SENDX
VMCF function 127
VMCF protocol 120

SET command 620, 629
MIH operand 50
PAGING operand 66

c

RESERVE option 15
SRM MHFULL operands 65
SRM operand 65, 91
TIMER operand 260

SET CONTROL MASK, IUCV function
parameter list format 192
using 155

SET MASK, IUCV function
parameter list format 193
using 155

SETKEY command 108
SETPRT command 373,374

loading virtual 3800 printer modules 374
setting and displaying paging variables 66
setting, address stops 617
setting, changing, and displaying SRM variables 65
SEVER, IUCV function 141

parameter list format 194
using 156

shadow table bypass 72
shared segments

definition 107
protected 110
unprotected 110
virtual machine operation 110

SIGNAL macro 266
Signal System Service 243-247

communications with 243
connecting with 243
leaving 247
receiving signals 246
sending signals 245

signaling in an AP /MP environment 266
SIGSA VB (DMKEXT save area) 633
simulation 58

CP 58
of VSE functions by CMS 481
OS macro 461

Single Console Image Facility
See SCIF (Single Console Image Facility)

single processor mode
advantages of 86
commands used with 86
performance impact of 86
purpose of 86
systems supported 86
use of the V =R machine 86

single-instruction mode 27
SIO

See Start I/O (SIO) instruction
smaIl CP option

effect on performance 15
purpose of 15

SMSG command 249
SNA

console communication services 219
VM/SP support 219

accounting 230
CMS mode 221

command handling 227
communication interfaces 222
console mode 221
environments supported 221
establishing connections 224
full screen support mode 221
I/O processing 228, 229
NCP and PEP sharing 230
real device simulation 227
screen management 222
system structure 220
trace table entries 231
TRQBLOK 229
WEBLOK 222, 227
WEIBLOK 228

VM/SP virtual console support 219
VT AM service machine 220

SNAP macro 468
spanned records, usage 473
SPB (Set Page Boundary) card 352
special diagnose for shadow table maintenance 319
Special Message Facility 249,250

buffer length 249
description 249
introduction 249
receiving messages 249
sending messages 249
SMSG command 249

special message flag (VMCPSMSG) 249
turning on or off 250

SPIE macro 466
SPOOL command, 3800 printer support 373

parameters 373
spool file

manipulation 286
recovery

spooling

after checkpoint start 24
after force start 25
after warm start 24

described 23
terminal input 24
terminal output 24
via RSCS 23

SRM variables, setting, changing, and displaying 65
STAB macro 469
START command, 3800 printer support 374,375
Start I/O (SIO) instruction

handling 58
initiating full screen mode 312
reducing 59

ST AX macro 470
STCP command 111, 624
STIMER macro 468
stop execution

ADSTOP command 611
BREAK subcommand of DEBUG command 611

stop tracing
SVCTRACE command 616

index 737

TRACE command 616
storage

allocation, CMS 412
AP /MP environment 265
dump

CMS 603
CP 597

dynamic paging 60
keys 14, 108

changing 11 0
changing with the SETKEY command 108
displaying 612

map, CMS 403
processor use 15
protection 13

fetch 13
storing 13

releasing 413
requirements, assembler 581-583

storage size
maximum, replacing directory entry 333
virtual machine, replacing directory entry 333

STORE command 109,110,623
summary 613

storing
data

into CAW, SET CAW subcommand of DEBUG
command 614

into control registers, STORE command 614
into CSW, SET CSW subcommand of DEBUG

command 614
into floating-point registers, STORE

command 614
into general registers, SET GPR subcommand of

DEBUG command 614
into general registers, STORE command 614
into PSW, SET PSW subcommand of DEBUG

command 614
into PSW, STORE command 614
STORE command 613
STORE subcommand of DEBUG

command 613
information 617
storage protection 13

STOW macro 466
STRINIT macro 407
structure

of CMS storage 402
SUBCOM function 421

calling routines dynamically 434
command search function 430

SVC
handling

738

by user 425
commands entered from terminal 426
invalid SVCs 425
linkage 420
as and VSE SVC simulation 425

VM/SP System Programmer's Guide

routine, DMSITS 420
types of SVC 420

interrupt
CMS intemallinkage SVC 395
other CMS SVCs 395
problem state 55
supervisor 55

support routines, CMS/DOS supported 488
SVC 202 420

extended PLIST 423
search hierarchy 426
tokenized PLIST 423

SVC 203 424
SVCOPSW (SVC old PSW) 679
SVCREGS (SVC interrupt save area) 634
SVCSECT (SVC interrupt work area) 681
SVCTRACE command 672

summary 614
use 610

SWITCHVM macro 275
SWTHSA VE (DMKSTK save area) 634
SYNADAF macro 470
SYNADRLS macro 470
SYSJRL macro instruction 377
system

abend 600
dump spool file, reading 301
logical units 486
performance 89

for mixed mode foreground/background
systems 100

measurement 89
routine, abnormal termination of 600
symbol table, reading 301

SYSTEM command 620
system integrity

when changing command access 35
system name table (DMKSNT) 112
System Network Architecture

See SNA
System Product Editor (XEDIT) 384

DMSXFLPT 438
DMSXFLRD 437
DMSXFLST 437
DMSXFLWR 438
interface to access files in storage 437

system resource management variables 65
system service

DASD block I/O 239
message 237
signal 243
SNA virtual console communication 219

System/370
control registers

allocation 685
assignments 687

extended control (EC) PSW 685
information 685

TAPE command 387
TCLEARQ macro 470
TERMINAL command

BREAKIN GUESTCTL 313
BRKKEY 313
CONMODE 3270 312
SCRNSAVE OFF 312,313
SCRNSAVE ON 312

terminal interruptions in CMS 397
TERMINATE ALL, logical device support facility

function 258,323,327
TERMINATE, logical device support facility

function 258,323, 326
termination, abnormal

See abnormal termination (abend)
TEST COMPLETION, IUCV function 142

parameter list format 195
using 156

TEST MESSAGE, IUCV function 156
TEXTSYM statement 529

See also programmable operator facility
TGET/TPUT macro 470
third level storage, not dumped 339
TIME macro 466
time management 7
time slice 7
time-of-day (TOD) clock 261

in attached processor environment 261
TIMER operand of SET 260
timer request queue lock 272
timers 259,262

clock comparator 261
interval timer 76,259
processor (CPU) timer 260
pseudo timer 261
Time of Day (TOD) clock 261

TOD-clock accounting interface 319
tokenized PLIST, SVC 202 423
TRACCURR (current trace table entry) 631

refid=abend.save area conventions 632
TRACE command 605,606,607,610,622

description 618
protected shared page 110
summary 614
testing nonshared segments 109
use 604

TRACE subcommand of IPCS 598
trace table

CP 53
IUCV entry formats 216
IUCV field definitions 217
trace table entries 53, 627

entries, SNA CCS entries 231
TRACEND (end of trace table) 631

tracing 622
all user I/O operations, TRACE command 615
branches, TRACE command 614
CCWs, TRACE command 615
clear channel instruction 625
CP trace table 624
external interrupts, TRACE command 615
halt device 625
I/O 625
information 618
instructions, TRACE command 614
interrupts 624

TRACE command 614
interrupts, TRACE command 614
IUCV 625
IUCV functions 149
NCPBTU 625
privileged instructions, TRACE command 615
program interrupts, TRACE command 615
queue drop 624
real machine events, MONITOR command 616
run user requests 625
scheduling 624
SIGP instruction 625
SNA Console Communication services 231, 625
spinning on a lock 625
storage management 624
storing a virtual CSW 625
SVC interrupts

SVCTRACE command 614
TRACE command 614

unstacking 10BLOK or TRQBLOK 625
user operations, TRACE command 615

TRACSTRT (start of trace table) 631
transient

area (CMS) 402
program area 430
routines supported by CMS/DOS 506

$$BCLOSE 507
$$BDUMP 507
$$BOPEN 507
$$BOPENR 507
$$BOPNLB 507
$$BOPNR3 507
$$BOSVL T 507

trapping improper use of CP free storage 649
TRAPRED facility 652, 659

See also CPTRAP facility
command format 659
subcommands 660
viewing entries in the CPTRAP file 659

TRQBLOK, VM/SP SNA support 229
TTIMER macro 468
TXTLIB files 387,391
type (device) 640
types of locks

defer 271
spin 271

Index 739

UCS (Universal Character Set)
adding buffer images 356
supplied images 353

UCSB (Universal Character Set Buffer)
supplied images 353

UNAUTHORIZE, VMCF function 123
unexpected results 590

See also problem, types
reason for 604

unit record, devices, sharing 23
Universal Character Set

See UCS (Universal Character Set)
unproductive processing time 590
unprotected shared segment 110
user classes

reverting to IBM-defined 39
USER control statement 40
user directory

reading 302
updating 302

user doubleword, VMCF function 137
user options, replacing directory entry 334
user-controlled device interrupts 397
user-defined lock 273
USERSECT (User Area) 400
using processor resources 7

V =R machine, used with single processor mode 86
VCHBLOK 636

VCHADD (virtual channel address) 636
VCHSTAT (status) 636
VCHTYFE (type) 636

VCUBLOK 637
VCUADD (virtual channel address) 637
VCUSTAT (status) 637
VCUTYFE (type) 637

VDEVBLOK 637
VDEV ADD (virtual device address) 637
VDEVCFLG (virtual console flags) 637
VDEVCSW (virtual CSW) 637
VDEVEXTN (virtual spool extension) 637
VDEVFLAG (device dependent information) 637
VDEVFLG2 (Reserve/Release flags) 637
VDEVIOB (active IOBLOK pointer) 637
VDEVREAL (real device block address) 637
VDE:YRRB (address of VRRBLOK) 637
VDEVSFLG (virtual spooling flags) 637
VDEVSTAT (status) 637

verifying existence of saved systems 317
virtual

block multiplexer channel option 80

740 VM/SP System Programmer's Guide

console functions, DIAGNOSE instruction 282
operator's console 3
processor 3

virtual console, operator 3
virtual devices, I/O 3
virtual interval timer assist 76,259
virtual machine

abend dump 603
abnormal termination 592, 597, 604
changing access to commands 29
changing the definition of privilege classes 40
creation 3
defining eight of fewer privilege classes 42
defining more than eight privilege classes 42
described 3
DIAGNOSE instruction use 279
directory 3
disabled loop 592,595

procedure 606
disabled wait

procedure 596,610
dispatching scheme 11
enabled loop 593, 595

procedure 607
enabled wait

procedure 596,610
with real timer option 610
without real timer option 610

group 243
I/O management

attached processor 21
dedicated devices 21
directory 21
mass storage volumes 22
multiprocessor 21
shared devices 21
spooled devices 21

I/O operation 58
interrupt, handled by CP 4
multiple, controlling from a single console 251
operating system 3
performance

for time-shared multibatch virtual machines 98
Monitor Analysis Program (VMAP) 98
options 66

PSW 5
shared segment operation 110
storage management 11

directory 11
virtual storage 11

time management 7
interactive user 7
noninteractive user 7
priority of execution 7

timers 259
unexpected results 592, 595

procedure 605
Virtual Machine Analysis Program (VMAP) 97
virtual machine assist feature

(-- ... /
~

described 75
restrictions for use of 76
use 75

Virtual Machine Communication Facility (VMCF)
See VMCF (Virtual Machine Communication

Facility)
Virtual Machine Facility/370 (VM/370)

using ECPS 79
virtual machine storage size

maximum, replacing directory entry 333
replacing directory entry 333

Virtual Machine/System Product (VM/SP)
See VM/SP (Virtual Machine/System Product)

Virtual Reserve/Release support, virtual machine I/O
management 21

virtual storage 11
management

CP 11
preservation 17

virtual storage preservation
purpose of 17
SA VBSEQ priority value 18
VMSA VB option 17

virtual=realoption 15,62
VM MONITOR 89

collection mechanism 92
considerations 96
data records 692
data volume and overhead 97
header record 691
monitor classes 92
output 97
responses to unusual tape conditions 95
tape format and contents 691
VMAP 97

VM/SP (Virtual Machine/System Product)
CMS 383
CP 3
device types in 295
DIAGNOSE instruction 279
directory 3
directory entries, for VSE 510
load environment 99
program states 5

VM/VCNA, VM/SP SNA support 219
VM/VTAM, VM/SP SNA support 219
VM/370

See Virtual Machine Facility /370 (VM/370)
VMAP (Virtual Machine Analysis Program) 97
VMBLOK 598, 609, 636

VCUSTRT (address of VCUBLOK table) 637
VMCHSTRT (address of VCHBLOK table) 636
VMCOMND (last command) 636
VMDSTAT (dispatching status) 636
VMDVSTRT (address of VDEVBLOK table) 637
VMFSTAT (virtual machine features) 636
VMINST (privileged instruction) 636
VMIOACTV (active channel mask) 636
VMIOINT (I/O interrupts) 636

VMPEND (interrupts pending) 636
VMPSW (virtual PSW) 636
VMRSTAT (running status) 636

VMBLOK lock 272
VMCF (Virtual Machine Communication

Facility) 113-140
DIAGNOSE instruction 113,128,318

data transfer error codes 140
return codes 137

external interrupt 134
functions 122

AUTHORIZE 122
CANCEL 123
IDENTIFY 124
PRIORITY option 122,126
QUIESCE 124
RECEIVE 127
REJECT 125
REPLY 128
RESUME 124
SEND 125
SEND/RECV 126
SENDX 127
special message facility 122
SPECIFIC option 122
UNAUTHORIZE 123

introduction to 113
invoking functions 128
protocol 118

IDENTIFY 121
SEND 118
SEND/RECV 119
SENDX 120

return codes 13 7
special message facility 113
table of functions 114
user doubleword 137
using 114

applications 115
general considerations 117
performance considerations 117
security 116

VMCPARM parameter list 129
VMDUMP command 620
VMDUMP command, summary 612
VMDUMP enhancements 339
VMSA VB areas 19
VMSA VE option 17
Volume Table of Contents (VTOC) 471
VSAM

CMS support for 513
data sets, compatibility considerations 514
devices supported under CMS 514
macros supported under CMS 514
support of 472

VSCS, VM/SP SNA support 219
VSE CMS support

control blocks simulated 508
functions simulated by CMS 481

Index 741

functions supported 482
hardware supported 482
macros, supervisor 488
supervisor and I/O macros supported 488
VM/SP directory entries 510
VSAM macros supported 514

VSE transient routines 506
VSE, macros, supported under CMS 487
VTAM, service machine, VM/SP SNA support 220

WAIT macro 464
wait state 607

CP
disabled wait 607
enabled wait 609

virtual machine
disabled wait messages 610
enabled wait procedure 610

WEBLOK, VM/SP SNA support 222, 227
WEIBLOK, SNA, VM/SP support 228
wrap file 652
Writable Character Generation Modules (WCGM) 373
WRITE macro 473,474
WTO/WTOR macro 467

XCTL macro 465
XDAP macro 464
XEDIT (System Product Editor) 384

DMSXFLPT 438
DMSXFLRD 437
DMSXFLST 437
DMSXFLWR 438
interface to access files in storage 437

ZAP command 624

I Numerics I

1403 UCS buffer images 353
1403 USC buffer images 356
3081 processor, MSSFCALL - DIAGNOSE code

X'80' 328
3088 multisystem channel communication unit 80

742 VM/SP System Programmer's Guide

3203
forms control and print buffer 353

3211 UCSB buffer images 353, 358
3262

FCB 365
PIB buffer images 364
UCSB buffer images 354

3270
logical, creating via logical device support

facility 257
virtual console interface

3289

attribute bytes, how to supply 307
full screen interactions 310
full screen interactions (3270 SIO) 312
full screen mode 308
selector-pen limitations 308

font offset buffer
adding FOBs 361
FOB macro instruction 361
purpose of 361

37XX Control Program
system name table 112
using the NAMENCP macro 112
using the SA VENCP command 112

370X control program, saving 305
3800 printer

as a dedicated device 372
as a real spooling device 374
as a virtual spooling device 376
CHANGE command 373
features 371

character arrangement tables 371
character modification 371
copy modification 371
forms control buffer (FCB) 371
forms overlay (flashing) 371
mUltiple copy printing 371

GENlMAGE command 374,375
image library 375

maintaining 375
IMAGELIB command 374, 375
IMAGEMOD command 374,376
load CCWs in spool file 290
modules 371

constructing 374
creating 375

printing a spool file 374
PRINT command, TRC option 374

SETPRT command 373, 374
SPOOL command 373
START command 374,375
virtual

defining 373
displaying control information 373
loading modules via SETPRT command 374
recovery from I/O errors 376

SC19-6203-3

<
~
(f)
'"'C

en
'<
CJl
.-+
CD
3
'"'C ...,
0
co ...,
Cl

3
3
CD ..., .
en
G)
c:
0.:
CD

:!!
CD
z
9
en \

CAl "--
-...J
0
........
.j::>.
CAl
0
0
I

CAl
~

'"'C
:::!.
::J
.-+
CD
C.

::J

C
en
?>

en
()

(0
I

0)
N
0
CAl
I

CAl

-------- - ----- ----- -. ----- - - ------_ .. -____ 9_
®

(~

.... E
c 0
"'-
E '" .!2- :.E
::::I -

lif~
en '" .5O 0
-:::
o '" '" "'=-=!9
E13

"'CO E
.l!l E
CO ::::I
E en
o ~ - '" ::::I -C
CO'S

E 0
s: '" '" .::: E .~
~ ~
.c '" e en
"'-e
CD ::::I

'" en ::::I en

~ ~
c
CO CD
c..> '" ::::I

'" '" '" c..;
!S~ en a..

CD -o
Z

VM/SP
System Programmer's Guide
Order No. SC19-6203-3

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. You may use this form to communicate your
comments about this publication, its organization, or subject matter, with the understanding
that IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if
any, are deemed appropriate. Comments may be written in ·your own language; English is
not required.

Note: Copies of IBM publications are not stocked at the location to which this form is
addressed. Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your IBM representative or to the IBM branch office serving your locality.

• Does the publication meet your needs?

• Did you find the material:

Easy to read and understand?

Organized for convenient use?

Complete?

Well illustrated?

Written for your technical level?

• What is your occupation?

• How do you use this pUblication:

As an introduction to the subject?

For advanced knowledge of the subject?

To learn about operating procedures?

Your comments:

Yes

o

o
o
o
o
o

o
o
o

No

o

o
o
o
o
o

As an instructor in class?

As a student in class?

As a reference manual?

o
o
o

If you would like a reply, please supply your name and address on the reverse side of this form.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or
you may mail directly to the address in the Edition Notice on the back of the title page.)

SC19-6203-3 .

Reader's Comment Form

Fold and Tape Please Do Not Staple Fold and Tape

... [.. .

IIIIII
BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK. N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Department G60
P. O. Box 6
Endicott. New York 13760

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

... ,
Fold Fold

If you would like a reply, please print:

YourlVame ___________________________ ~ __ _

Company lVame _______________ Department ____ _
StreetAddre~ _________________ ___
Cuy ____________________________________ _

State ___________________ Zip Code _________ _
IBM Branch Office serving you ______________________________ _

n
~
SI
~ c.

f ..
c:
" ..

•
•
•
•
•
•
•
•

•

o.

--..- ---- .-..-.. ---.---........ ---- -- _ ... ---- -____ 't'_
®

/'

"-

< s: -CJ)
'"C
CJ)
-< en ...
CD
3
'"C -.
0

CO -.
III

3
3
CD
-'.
en
G)
t:

c.:
CD

:!!
CD
z
9 r
CJ)
w

" '-0
0 -t;
0
0
I

W
~

'"C
~.
::I ...
CD
a.
::I

C
CJ)

~

CJ)
()
-'
<.0
I

en
N
0
W
I

W

• • •

SC19-6203-3

