

System Programmer’s

System Product
Guide

Virtual Machine/
SC19-6203-3

Release 4

"“—-.

Fourth Edition (December 1984)

This edition, SC19-6203-3, applies to Release 4 of IBM Virtual Machine/System Product
(VM/SP) unless otherwise indicated in new editions or Technical Newsletters. Changes
are continually made to the information contained herein; before using this publication in
connection with the operation of IBM systems, consult the IBM System/370 and 4300
Processors Bibliography, GC20-0001, for the editions that are applicable and current.

Technical changes and additions to the text and illustrations are indicated by a vertical bar
to the left of the change.

Summary of Changes
For a detailed list of changes, see page iii.

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM program product in this publication is not intended to state or imply
that only IBM’s program product may be used. Any functionally equivalent program may
be used instead.

Publications are not stocked at the address given below; request for copies of IBM
publications should be made to your IBM representative or to the IBM branch office
serving your locality.

A form for readers’ comments is provided at the back of this publication; if the form has
been removed, comments may be addressed to IBM Programming Publications, Dept.
G60, P.O. Box 6, Endicott, New York, U.S.A. 13760. IBM may use or distribute any of
the information you supply in any way it believes appropriate without incurring any
obligation whatever.

© Copyright International Business Machines Corporation 1980, 1981, 1982, 1983, 1984

Summary of Changes

To obtain editions of this publication pertaining to earlier releases of VM/SP, you
must order using the pseudo-number assigned to the respective edition. For:

Release 3, order ST00-1352 l
Release 2, order SQ19-6203
Release 1, order ST19-6203.

Summary of Changes

for SC19-6203-3

for VM/SP Release 4

Group Control System (VM/SP GCS)
This new component of VM/SP is a virtual machine supervisor that provides
simulated MVS services and supports a multitasking environment. For more
information on the Group Control System (GCS), refer to the VM/SP Group
Control System Guide, SC24-5249.

Signal System Service
This new CP system service allows virtual machines in a Virtual Machine
Group to signal each other. The Signal System Service can only be used by
virtual machines in a Virtual Machine Group.

Saved System 8M Byte Limit Removal
With the addition of this support, the SAVESYS, VMSAVE, and IPL functions
have been enhanced to allow a page image copy of up to a 16M byte virtual
machine to be saved and restored.

CP FRET Trap

-The CP FRET Trap can be used as an aid in solving problems caused by
improper use of CP storage and to solve many storage overlay problems.

VMDUMP Enhancements
DIAGNOSE Code X‘94’ is available to allow a virtual machine to request

dumping of its virtual storage. Also, the three address range restriction has
been removed from the VMDUMP command.

Summary of Changes iii

DIAGNOSE Code X‘98’

Using DIAGNOSE Code X‘98’, a virtual machine can lock and unlock virtual
pages, and execute its own real channel programs.

The Programmable Operator Facility

The Programmable Operator Facility has been enhanced to support distributed
operations in an SNA network through an interface, the Programmable
Operator/NCCF Message Exchange (PMX), with the Network
Communications Control Facility (NCCF). The VM/SP Release 4
programmable operator:

« Allows an NCCF operator to be identified to the programmable operator
so that any messages intended for the logical operator may be routed to
that NCCF operator.

« Allows an NCCF operator to issue programmable operator commands and
receive responses.

o Provides the LGLOPR command for assigning, releasing and replacing the
logical operator during operation.

CPTRAP Enhancements

CPTRAP is a major service aid used in problem determination. Enhancements
to the CPTRAP command provide two additional functions, GROUPID and
WRAP, and one additional entry type, X‘3D’.

Enhancements to TRAPRED makes reviewing the trap data easier by
providing more selectivity for X‘3D’, X‘3E’, and X‘3F’ entries and by
providing a way to display formatted output of the trapped data.

Information on CPTRAP has been rewritten and reorganized for ease-of-use.
It has also been moved to the Part 3, the debugging section, since it is a
debugging tool.

Interactive Problem Control System (VM/SP IPCS)

VM/SP Release 4 has been enhanced to include IPCS as a component of
VM/SP. VM/SP IPCS is equivaleii to ihe VM/Inieraciive Probiem Coniroi

System Extension (VM/IPCS/E) Licensed Program Product (5748-SA1).
Inter-User Communications Vehicle (IUCV) Enhancements

TUCYV now supports the movement of data on the SEND, RECEIVE, and

REPLY functions frm discontiguous buffers. The modified IUCV macro

handles the new BUFLIST= parameter on SEND and RECEIVE functions
and the new ANSLIST= parameter on the SEND and REPLY functions.

iv VM/SP System Programmer’s Guide

Expansion of User Classes

The DIRECT command has been enhanced and the OVERRIDE command
has been added to provide the user with more than the seven IBM defined user
classes. You can now choose from 32 user classes, A -Z,and 1 - 6.

Remote Spooling Communications Subsystem Networking Version 2

With the release of the Remote Spooling Communications Subsystem
Networking Version 2 Program Product (5664-188), any reference to RSCS in
this manual applies to RSCS Version 2. Information pertaining to RSCS can
be found in the VM /SP Remote Spooling Communications Subsystem Version 2
General Information, GH24-5055.

Miscellaneous changes

IOCP Support Enhancements

This support adds new MSSF command words to DIAGNOSE code X‘80’.

Integration of Functional Enhancements to VM /SP Release 3

Information has been added to support:

L]

camein,
.

The 3290 Information Panel

The 3370 Direct Access Storage Model

The 4248 Printer

The 4361 Model Groups 3, 4, and 5 Processor

The 4381 Model Groups 1 and 2 Processor

VM/SP 3800 Model 3 Compatibility Support
Compatibility support allows VM/SP users to access the 3800 Model
3 Printing Subsystem. Existing programs designed to produce 3800
Model 1 printer output may produce output for the 3800 Model 3
printer with little or no program change. Use of this support provides

improved print quality (240 x 240 pel resolution) and ?e addition of a
10 lines-per-inch (LPI) vertical space option.

DIAGNOSE Code X‘8C’

DIAGNOSE code X‘8C’ has been enhanced to allow a user to access all of the
data returned by CP’s WRITE STRUCTURED FIELD QUERY.

DMKFRE/DMKFRT Split

- The module DMKFRE has been split into two modules, DMKFRE and
(DMKFRT. DMKFRE handles all requests for free storage as well as calls to

Summary of Changes V

DMKFRET to release free storage. DMKFRT handles all requests to return
free storage.

‘» Minor technical and editorial changes have been made throughout this publication.
/ Summary of Changes . -

for SC19-6203-2

for VM/SP Release 3

Programmable Operator Facility
Several enhancements to the programmable operator facility added are:
e Message routing with nicknames
+ Remote node availability
« Enhanced text comparison
« EXEC action routines
¢ LOG recording and error handling
PER

Problem determination capability is greatly extended and enhanced by the new
CP command, PER.

DASD Block 1/0 System Service
The DASD Block I/0 System Service allows a virtual machine fast,
device-independent asynchronous access to fixed size blocks on CMS
formatted virtual DASD I/0 devices.
ocv
Inter-User Communication Vehicle (IUCV) extensions provide:
o SEND and REPLY extensions
s An cxtended mask capability {or coniroi interrupts
« An expanded trace capability to record all IUCV operations
e A macro option to initialize the parameter list
« Support for the DASD block I/O system service.

The IBM 3088 Multisystem Communications Unit

The IBM 3088 Multisystem Communications Unit interconnects multiple
systems using block multiplexer channels. The 3088 uses an unshared

Vi VM/SP System Programmer’s Guide

subchannel for each unique address and is fully compatible with existing
channel-to-channel adapter protocol.

CMS TUCYV support

Support for IUCV communication has been introduced into CMS. This
support allows multiple programs within a virtual machine to use IUCV
functions. Included is the ability to initialize a CMS machine for TIUCV
communication and to invoke IUCV functions via new CMS macros. These
macros also allow the user to specify path-specific exits for IUCV external
interrupts.

CMS abend exits

A general CMS abnormal exit capability is provided so that user programs may
specify the address of a routine to get control before CMS abend recovery
begins. An exit is established and cleared through a new CMS macro.

Enhanced immediate command support

The immediate command capability of CMS is extended by allowing users to
define their own immediate commands.

Enhanced VSAM support

CMS supports VSE/VSAM Release 3 which includes significant enhancements
designed to improve catalog reliability and integrity while providing additional
serviceability and usability. VSE/VSAM Release 2 is not supported.

Miscellaneous

Changes to the DIAGNOSE code X‘00’ interface provide the time zone
differential from Greenwich Mean Time.

DIAGNOSE code X‘8C’ allows a virtual machine to access device dependent
information without having to issue a WRITE STRUCTURE FIELD QUERY
REPLY.

CMSSEG has been eliminated and the code was merged into the CMS
Nucleus.

The Remote Spooling Communications Subsystem (RSCS) section of this
manual has been removed as it pertained to RSCS as a component of
VM/370. Now, any reference to RSCS in this manual applies to the RSCS
Networking Programming Product, and information can be found in the
VM /SP Remote Spooling Communications Subsystem Networking Program
Reference and Operations Manual, SH24-5005.

A newly added appendix lists and describes the CMS macros applicable to
VM/SP.

Minor technical and editorial changes have been made throughout this
publication.

Summary of Changes Vii

Summary of Changes o
for SC19-6203-1)
as Updated by SN24-5736

Missing Interrupt Handler

The missing interrupt detector has been extended so that CP not only detects
missing interrupt conditions, but also attempts to correct them. CP informs the
system operator whether or not the corrective action was successful.

To help give you optimum system availability, the missing interrupt handler
allows you to vary the time interval allowed for 1/O completion for the
supported devices.

3880 Speed Matching Buffer (Feature #6560)

The 3880 Speed Matching Buffer Feature for the IBM 3375 uses a 16K-byte
storage buffer to modify the direct access data transfer path between the 3375
and the multiplexer channel. The feature allows attachment of the 3375 Direct
Access Storage Device, with its 1.859 megabytes per second data rate, to block
multiplexer channels with data rates as low as 1.5 megabytes per second, as
well as to high speed multiplexer channels.

Miscellaneous

The Programmable Operator Facility section of this publication has been
rewritten to include minor technical and editorial changes. N

Summary of Changes
for SC19-6203-1
for VM/SP Release 2

Programmable Operator Facility

This facility provides the capability to: log messages, suppress messages,
redirect messages, execute messages, or preprogram message responses. The
capabilities are under control of an editable message routine table in a CMS
file.

Inter-User Communication Vehicle (IUCV) enhancements for message

. N
handling are alsc included.

CMS Nucleus Restructure, and Removal of the CMS Tokenization Eight-Byte
Restriction

The restructured nucleus provides a CMS system that is more flexibie and
extendable for development, serviceability, and maintenance purposes.

The eight-byte tokenized restriction has been removed for parameter passing.

viii VM/SP System Programmer’s Guide

e

Trace Table Recording Facility

This facility allows service personnel and system programmers to create a
chronological READER spool file of CP trace entries by type, VMBLOK
address, interrupt code, and device address.

Miscellaneous

Minor technical and editorial changes have been made throughout this
publication.

Summary of Changes

iX

X VMY/SP System Programmer’s Guide

Preface

o

This publication describes how to debug VM/SP and how to modify, extend, or
implement the functions of two of the components of VM/SP:

o Control Program (CP)
« Conversational Monitor System (CMS).

This information is intended for system programmers, system analysts, and
programming personnel.

The primary source of information for the third component of VM/SP, Group
Control System (GCS), is the VM /SP Group Conirol System Guide. Any
additional reference information outside the scope of this book can be found in the
VM/SP Group Control System Guide. The order numbers for the GCS books can
be found under “Corequisite Publications” in this preface.

This publication consists of three parts, three appendixes, and a glossary of terms.

“Part 1. Control Program (CP)” contains an introductory and functional
description of CP, as well as, guidance in using some CP features.

“Part 2. Conversational Monitor System (CMS)” contains an introductory and
functional description of CMS including how CMS handles interrupts and SVCs,
structures its nucleus and its storage, and manages free storage. Information on
saving the CMS system and implementing the Batch Facility is also included.

“Part 3. Debugging with VM/SP” discusses the CP and CMS debugging tools and
procedures to follow when debugging. This part is logically divided into three
sections.

1. “Introduction to Debugging” tells you how to identify a problem and lists
guidelines to follow to find the cause.

2. “Debugging with CP”” describes the CP debugging commands and utilities,
debugging CP in a virtual machine, the internal trace table, and restrictions. A
detailed description of CP dump reading is also included.

3. “Debugging with CMS” describes the CMS debugging commands and utilities,
load maps, and restrictions and tells you what fields to examine when reading a
CMS dump.

“Appendix A: System/370 Information” describes the System/370 extended PSW
and extended control register use.

Preface Xi

Definition of Terms

“Appendix B: VM Monitor Tape Format and Contents” describes the format and
contents of data records for classes and codes of MONITOR CALL.

“Appendix C: CMS Macro Library” lists and describes the CMS macros
applicable to VM/SP.

“Glossary” lists and defines technical terms and abbreviations.

Some of the following terms and abbreviations are used throughout this publication
for convenience:

Unless otherwise noted,

VM/SP refers to the VM/SP program package when you use it in conjunction with

CcpP

CMS

GCS

IPCS

RSCS

VSE

VM/370 Release 6.

refers to the VM/370 Control Program component enhanced by the
functions included in the VM/SP package.

refers td the VM/370 Conversational Monitor System component
enhanced by the functions included in the VM/SP package.

refers to the Group Control System component of VM/SP. See the
VM/SP Group Control System Guide, SC24-5249, for details of GCS.

refers to the VM /370 Interactive Problem Control System component
enhanced by the functions included in the VM/SP package.

The IPCS component of VM/SP replaces the unmodified VM /370
interactive problem control system. Details describing this component are
found in the VM/SP Interactive Problem Control System Guide, SC24-5260.

unless otherwise noted, refers to the RSCS Networking Version 2 Program
Product (5664-188).

When you install and use VM/SP in conjunction with the VM/370 Release
6 System Control Program (SCP), it becomes a functional operating system
that provides extended features tc the Control Program {CFP) and
Conversational Monitor System (CMS) components of VM/370 Release 6.
VM/SP adds no additional functions to the Remote Spooling
Communications Subsystem (RSCS) component of VM/370. However,
you can appreciably expand the capabilities of this component in a VM/SP
system by installing RSCS Networking Version 2 (5664-188).

refers to the combination of the DOS/VSE system control program and the
VSE/Advanced Functions program product. “DOS”, in certain cases, is
still used as a generic term. For example, disk packs initialized for use with
VSE or any predecessor DOS or DOS/VSE system may be referred to as
DOS disks.

Xii VM/SP System Programmer’s Guide

A

CMS/DOS refers to the DOS-like simulation environment provided under the
CMS component of the VM/System Product.

EXEC refers to EXECs using the System Product Interpreter, EXEC 2, or CMS
EXEC languages.

System/370 applies to the 4300 and 303X processors.

The following terms in this publication refer to the indicated support devices:

e “2305” refers to IBM 2305 Fixed Head Storage, Models 1 and 2.

e 2741 refers to the IBM 2741 and the IBM 3767, unless otherwise specified.
e« “3066” refers to the IBM 3066 System Console.

« “3081” refers to the IBM 3081 Processor Unit model D16.

o “3088” refers to the IBM 3088 Multisystem Communications Unit (MCU)
Models 1 and 2.

. “3262”‘refers to the IBM 3262 Printer, Models 1, 5, and 11.

e« “3270” refers to a series of display devices, namely, the IBM 3275, 3276
(referred to as a Controller Display Station), 3277, 3278, and 3279 Display
Stations, and the 3290 Information Panel. A specific device type is used only
when a distinction is required between device types.

Information about display terminal use also applies to the IBM 3138, 3148,
and 3158 Display Consoles when used in display mode, unless otherwise noted.

Any information pertaining to the IBM 3284 or 3286 Printer also pertains to
the IBM 3287, 3288, and 3289 printers, unless otherwise noted.

o “3330” refers to the IBM 3330 Disk Storage, Models 1, 2, or 11; the IBM
3333 Disk Storage and Control, Models 1 or 11; and the 3350 Direct Access
Storage operating in 3330 compatibility mode.

e ““3340” refers to the IBM 3340 Direct Access Storage Facility and the 3344
Direct Access Storage.

e ““3350” refers to the IBM 3350 Direct Access Storage Device when used in
native mode.

I o “3370” refers to the IBM 3370 Direct Access Storage Model.

e “3375” refers to the IBM 3375 Direct Access Device.
o “3380” refers to the IBM 3380 Direct Access Storage. The Speed Matching
Buffer Feature (No. 6550) for the 3380 supports the use of extended

count-key-data channel programs.

| e “3480” refers to the IBM 3480 Magnetic Tape Subsystem.

Preface Xiii

e “3430” refers to the IBM 3430 Magnetic Tape Subsystem.

e “370X” refers to IBM 3704 and 3705 Communications Controllers.

o “3705” refers to the 3705 I and the 3705 II unless otherwise noted.

o ‘3800 refers to the IBM 3800 Printing Subsystems, Models 1, 3, and 8. A
specific device type is used only when a distinction is required between device
types. References to the 3800 Model 3 apply to both Models 3 and 8 unless
otherwise explicitly stated. The IBM 3800 Model 8 is available only in selected
world trade countries.

o ‘4245 refers to the IBM 4245 Line Printer.

. “4248” refers to the IBM 4248 Printer.

o ““4250” refers to the IBM 4250 Printer.

e “4361” refers to the IBM 4361 Model Groups 3, 4, and 5 Processor.

e “4381” refers to the IBM 4381 Model Groups 1 and 2 Processor.

An expanded glossary is available in the Virtual Machine/System Product: Library
Guide, Glossary, and Master Index, GC19-6207.

Knowledge of Assembler Language and experience with programming concepts
and techniques are prerequisite to using this publication. N

References to a program that produces a standalone dump occur in several places

in this publication. One such program is the BPS Storage Print program, Program
No. 360P-UT-056.

Changes to Command and DIAGNOSE Instruction Privilege Classes
If you change the privilege class for commands or DIAGNOSE instructions, the

privilege classes mentioned in this and other VM/SP publications for commands
and DIAGNOSE instructions may no longer be correct for your installation.

Prerequisite Publications
IBM System/360 Principles of Operation, GA22-6821
IBM System/370 Principles of Operation, GA22-7000

Virtual Machine/System Product: Running Guest Operating Systems, GC19-6212

Xiv VM/SP System Programmer’s Guide

Corequisite Publications

Knowledge of the commands and system functions of CP, CMS, IPCS, and RSCS
is corequisite.

Virtual Machine/System Product:

Application Development Guide, SC24-5247

CMS Command and Macro Reference, SC19-6209
CMS User’s Guide, SC19-6210

CP Command Reference for General Users, SC19-6211

Group Control System Guide, SC24-5249
Group Control System Macro Reference, SC24-5250
Installation Guide, SC24-5237

Interactive Problem Control System Guide, SC24-5260

Planning Guide and Reference, SC19-6201
Operator’s Guide, SC19-6202

I Release 4 Guide, SC24-5248
System Messages and Codes, SC19-6204

| System Messages Cross-Reference, SC24-5264

Terminal Reference, SC19-6206

Supplemental Publications
0S/VS Data Management Macro Instructions, GC26-3793
OS/VS Supervisor Service and Macro Instructions, GC27-6979
IBM 2821 Control Unit Component Description, GA24-3312

IBM 3211 Printer, 3216 Interchangeable Train Cartridge, and 3811 Printer Control
Unit Component Description and Operator’s Guide, GA24-3543

IBM 3262 Printers 1 and 11 Component Description, GA24-3733
IBM 3270 Information Display System Library User’s Guide, GA23-0058

OS/VS Linkage Editor and Loader, GC26-3813

Preface XV

Introduction to the IBM 3704 and 3705 Communications Controllers, GA27-3051
IBM 3704 and 3705 Communications Controllers Operator’s Guide, GA27-3055

ACF/VTAM Version 3 General Information (for VM/SP), GC30-3246

IBM 3725 Communication Controller Operator’s Guide, GA33-0014

IBM 3725 Operator Con.§01e Reference and Problem Analysis Guide, GA33-0015

IBM Virtual Machine Facility/370: Performance/Monitor Analysis Program,
SB21-2101

VM/SP OLTSEP and Error Recording Guide, SC19-6205
This publication contains a description of CPEREP. CPEREP is a CMS
command that invokes OS/VS EREP operands to produce statistical reports

from error recording data of hardware and software errors.

Environmental Recording Editing and Printing Program User’s Guide and Reference,
GC28-1378

This publication contains a detailed description of the CPEREP operands, and
is required to make use of CPEREP.

VM/SP Data Areas and Control Block Logic,
Volume 1 Control Program (CP), 1.Y24-5220
Volume 2 Conversational Monitor System (CMS), 1.Y24-5221
VM/SP System Logic and Problem Determination,
Volume 1 Control Program (CP), LY20-0892
Volume 2 Conversational Monitor System (CMS), LY20-0893
VM/SP Remote Spooling Communications Subsystem Networking Version 2:
Planning and Installation, SH24-5057
Operation and Use, SH24-5058
Diagnosis Reference, 1.Y24-5228
IBM 3767 Operator’s Guide, GA18-2000, is also a corequisite publication if the

IBM 3767 Communication Terminal is used by the system programmer as a virtual
machine console.

XVi VM/SP System Programmer’s Guide

If the IBM 3850 Mass Storage System is attached to the VM/SP system, the
following are corequisite publications:

IBM 3850 Mass Storage System (MSS):
Introduction and Preinstallation Planning, GA32-0038
Principles of Operation: Theory, GA32-0035
Principles of Operation: Reference, GA32-0036
OS/VS Mass Storage System (MSS) Services:
General Information, GC35-0016

Reference Information, GC35-0017

OS/VS Message Library: Mass Storage System (MSS) Messages, GC38-1000

Operator’s Library: IBM 3850 Mass Storage System (MSS) Under OS/VS,
GC35-0014.

Note: References in text to titles of corequisite VM/SP publications are given in
abbreviated form.

Preface XVii

The VM/SP Library

Evaluation
‘GENERAL INTRODUCTION
INFORMATION
GC20-1838 GC19-6200 GC18-6207
Planning Installation
PLANNING RUNNING DISTRIBUTED RELEASE 4 INSTALLATION SYSTEM
GUIDE AND GUEST DATA GUIDE GUIDE DEFINITION
REFERENCE OPERATING PROCESSING FILES
SYSTEMS GUIDE
§C19-6201 GC19-6212 8C24-5241 8C24-5248 §C24-5237 §C24-5256
Administration Operation Applications
OPERATOR'S APPLICATION
GUIDE DEVELOPMENT
GUIDE
§C24-5249 §C24-5250 6C19-6202 S§C24-5247
End Use
TERMINAL cMs CMS PRIMER cMs
REFERENCE PRIMER FOR USER'S
LINE- GUIDE
ORIENTED
TERMINALS
GC19-6206 8C24-5236 8C24-5242 SC19-6210
§P EDITOR §P EDITOR cP
USER'S GUIDE COMMAND COMMAND
AND MACRO REFERENCE
REFERENCE
§C24-5220 §C24-5221 §C18-6211
sP EXEC 2
INTERPRETER INTERPRETER REFERENCE
USER'S GUIDE REFERENCE
8C24-5238 U §C24-5230 U §C24-5219 U

Reference Summaries

To order all the Reference Summaries, use order number SBOF 3221

COMMANDS COMMANDS SP EDITOR
(Other than COMMAND

General User) REFERENCE
SUMMARY

SX20-4401 £X20-4402 SX24-5122

EXEC 2

SP
INTERPRETER EN

REFERENCE
REFERENCE SUMMARY RN

UMMARY
§X24-5126 6X24-5138 EX24-5124
§X20-4400

Xviii ~ VM/SP System Programmer’s Guide

Diagnosis
SYSTEM SYSTEM OLTSEP
MESSAGES MESSAGES AND ERROR
AND CODES CROSS- RECORDING
REFERENCE GUIDE
5C19-6204 6C24-5284 $C19-6205

§C24-5260

PROBLEM PROBLEM
DETERMI

DATA AREAS
AND CONTROL

DETERMINA~

TION BLOCKS TION

VOL. 1(CP) VoL. 1 (CP) VOL. 2 (CMS)
LY20-0892 LY24-5220 LY20-0883

DATA AREAS
AND CONTROL
BLOCKS

VoL, 2 (CMs)

LY24-5221

Auxiliary Service Support

Device Support Faclities
5748-XX9

DEVICE
SUPPORT
FACILITIES
USER'S GUIDE
REFERENCE
GC35-0033

- Environmental Recording
g!tln and Printing

EREP
USER'S GUIDE
REFERENCE

GC28-1378

Auxiliary Communication Support

RECS Networking
Version 2
5664-188
R&CS RSCS
Elgae) | B
GENERAL PLANNING OPERATION DiAGNoSia
INFORMATION AND L ATION REFERENCE
GH24-5055 SH24-5057 8H24-5058 LY24-5228
Advanced
Covmuﬂlclﬂon
VTAM VTAM VTAM oo
GENERAL INSTALLATION MESSAGES DATA AREAS DAGNosIs AL
INFORMATION AND AND FOR VM/SP REFERENCE
FOR VM/SP RESOURCE CODES 5664280
DEFINITION FOR VW/SP
GC30-3248 8C23-0111 8C30-3275 §C30-3249 §C23-0118 §C23-0117
- : VM/Paso-
VM/PASS- VM/PASS- o
THROUGH TH[IQQUGH Facility
FACILITY FACILITY 5748-RCY
GENERAL Logic
INFORMATION
GC24-5208 §C24-5208 LY24-5208

Preface

Xix

XX VM/SP System Programmer’s Guide

Contents

= T8

Part 1. Control Program (CP) P |
Chapter 1. Introduction to the VM/SP Control Program 3
Chapter 2. Program Statescceiviiiiinnnrereccsssnenonenns oo 5
Chapter 3. Using Processor Resourcesccititiiieiennnneenns .7
Virtual Machine Time Management iituruuunnnen. 7
Selecting a Virtual MachinetoRun 7
QUeEUE 1 o e e 8
QUEUE 2 oottt e 8
QUEUE 3 . e 9
Deadline Priority e e 10
Dispatch Request Queue and Run List 10
CMSBLIP Facility00ttt i, 11
Virtual Machine Storage Managementc..ccviiuueen.. 11
Chapter 4. Storage Protectionc.ciitiiiirinneennneensss 13
Storage Keyst 14
Storage and Processor USettt 15
Chapter 5. Virtual Storage Preservationciiiitivinnernns 17
VMSAVE Optionottt et et e e e e e 17
Termination e 18
TP e e 18
5 T 4 1P 18
VMSAVE Ar1€aS ..ottt e e e e 19
Target Areasottt e 19
OVerlapping Areasttt e 19
Other Saved SYStemsttt e e 20
Chapter 6. Virtual Machine I/O Managementc.ccovevenrneennes 21
Dedicated Channels ittt 22
Chapter 7. Spooling Functionscciiiiiiiietiineceronnnns 23
Spool File ReCOVEIY . ..ottt ittt e e 24
Warm Start e 24
Checkpoint Startt 24
Force Start i e e 25
Chapter 8. CPCommandsccoitiiiinernneronennrasnnnnss 27

Contents XXIi

Command Privilege Classes and Typesc..cuuiiieinrinenn.n.
Tailoring the Class Structure to Your Installation’s Needs
How to Change Command Classes and Virtual Machine Class Access to
Commandsiuinii e e e e
Planning the Command Authorization for the System
How to Assign Privilege Classes to Commands and DIAGNOSE Codes . ..
How to Change the Definition of Privilege Classes for-a Virtual Machine ..
How to Change the Privilege Class of Certain Internal CP Functions
Howto Adda Commandto CP iiiiiiiinnnnan..

Chapter 9. Interruption Handling0 iiiiiiiiiniieenrnnn
I/OINtEITUPLS . .ot v ettt ettt et e et e e
Missing Interrupt Handler
Using the Missing Interrupt Handler
Devices Monitored i e
Default Time Interval Values i
Changing the Time Interval i eerinnnn..
Determining Time Interval Settingsot vuio...
Diagnostic Aids e
Program Interrupt e
Machine Check Interrupt i e
SVCINterruptot e e e
External Interrupt e
Synchronous Interrupts in an Attached Processor or Multiprocessor System . .
Real I/O INterrupts oottt e e et e et e

Chapter 10. Performance Guidelinesc0iiiiitiiiennnnnns
General Information
Reducing the Number of Virtual Machine SIOs Handled by CP
Reducing Paging Activityt
Using the SYSCOR Macro to Control Free Storage Allocation
Paging Performance Optionsttt
Locking Pages into Real Storage
Reserving Page Frames i,
Eliminating CP Paging for a Selected Virtual Machine
Managing Page Migrationttt
Displaying, Changing, or Setting System Resource Management Variables .
Displaying and Setting Paging Variables
VM/SP Performance Optionsiuinintnnenrnnnnanennn.
Forcing the System to Devote More Processor Resources to a Virtual
Machine e e
Setting Virtual Machine Priority i,
Selecting Attached Processor or Multiprocessor Affinity for a Program
Virtual Relocation and Shadow Table
Reducing Purges When the Virtual Machine Dispatches New Address Space
Eliminating and Reestablishing Shadow Table Bypass
Eliminating Queue Drop Overhead for a Virtual Machine
Improving Performance With the Virtual Machine Assist Feature
Using the Virtual Machine Assist Feature
Restricted Use of the Virtual Machine Assist Feature
Extended Control-Program Support:VM/370 (ECPS)
Using the Extended Control-Program Support: VM/370
Improving Channel Use i, e P

XXii VM/SP System Programmer’s Guide

67
68
69
69
72
72

Using the Virtual Block Multiplexer Channel Option 80
Using the 3088 Multisystem Communications Unit 80
Alternate Path Support 83
MVS/System ExXtensions SUPPOItttt iiineaen. 84
Low Address Protection Facility 85
Common Segment Facility i, 85
Special MVS Instruction Operation Handling Facilities 85
Enabling MVS/System Extensions Supportc.ovuen.. 85
Improving Throughput of an OS/VS2 MVS AP or MP System 86
Dynamic System Control Programming (SCP) Transition to or from Native
MoOde . e 86
Chapter 11. Performance Observation and Analysis 89
Using the INDICATE Command tiiieiann... 89
The INDICATE FAVORED Commandcoovn... 91
Using the QUERY SRM and SET SRM Commands 91
The MONITOR Commandttt 91
Implemented Classes ittt 93
Monitor Response to Special Tape Conditions 95
Monitor Considerations it 96
Monitor Data Volume and Overhead 97
Load Environments of VM/SP . ..o 99
Chapter 12. Accounting Recordscctitiiiininerrrnnoannns 101
Accounting Records for Virtual Machine Resource Use 101
Accounting Records for Dedicated Devices and Temporary Disk Space 102
Accounting Records for LOGON, AUTOLOG, and LINK Journaling 102
Accounting Records Created by the User 104
User Accounting Optionsttt e e i 105

Chapter 13. Saved Systems, Discontiguous Saved Segments, and Shared

SegMENtScviiiiiitiiiiitiitiii ittt 107
Loading and Saving Discontiguous Saved Segments 107
CP DIAGNOSE Code Interface With ADCSS 108
Shared Segment Protection iiiiiiiennnnnn.. 110

Virtual Machine Operation with Protected Segments 110
Chapter 14. The Virtual Machine Communication Facility 113
Using the Virtual Machine Communication Facility 114

VMCEF Applicationsiiiiiii e 115

Security and Data Integrity i 116

Performance Considerationsvittiiirneennnenn. 117

General Considerationsuiiiiit it 117
VMO CF Protocolttt e e e 118

The SEND Protocol ittt 118

The SEND/RECV Protocolc.iiiiiiininnnnnnnn. 119

The SENDX Protocol e e e 120

The IDENTIFY Protocolo.oueeuenraneanennennennnn. . 121
Descriptions of VMCF Functions0 ... 122

The Control FUNCONSoouuii ittt 122

The Data Transfer Functions iiiiiinnin.. 125
Invoking VMCF Functions e e e e e 128

Diagnose Code X687 it e 128

Contents XXiii

The VMCPARM Parameter List
External Interrupt Code X‘4001°
VMCF User Doubleword

Chapter 15. Inter-User Communications Vehicle
IUCV Paths i
TUCV MESSaZES . . vt vttt ittt ie e eeaens
Message QUEUESiiitttiii
Message Data Transfer
Message Identification
Pending JUCV Communications
CP Communicationsc.ciuinnene....
Second Level Supportot
Trace Table Entries
Audit Trail e
Restrictions i,
Security Considerationscuovinn..
Performance Considerations
Using [IUCV Functionsccuiiuiiineann..
ACCEPT .. e
CONNECT .. e e
DECLAREBUFFER
DESCRIBE
PURGE i e
QUERY ... e
QUIESCE ... e e e
RECEIVE e
REJECT ... e
REPLY ... e
RESUME e
RETRIEVEBUFFER
SEND .. e
SET CONTROL MASK i,
SETMASK ... e
SEVER ...
TEST COMPLETIONc0iiiiiinennnn..
TESTMESSAGE i

Virtual Machine to Virtual Machine Communication
1UCYV Communications Using Parameter List Data

Invoking ITUCV Functions
Invoking Communications Between CP and a Virtual Machine
Requests Initiated by the Virtual Machine
CP Initiated Requestscciiiiinnen.
IUCV Parameter List Formats
ACCEPT Parameter List Format
CONNECT Parameter List Format
DECLARE BUFFER Parameter List Format
DESCRIBE Parameter List Format
PURGE Parameter List Format
QUERY Parameter List Format
QUIESCE Parameter List Format

N

' XXiV ~ VMY/SP System Programmer’s Guide

RECEIVE Parameter List Format 186
REJECT Parameter List Format 187
REPLY Parameter List Format 188
RESUME Parameter List Format 190
RETRIEVE BUFFER Parameter List Format 191
SEND Parameter List Format 191
SET CONTROL MASK Parameter List Format 192
SET MASK Parameter List Format 193
SEVER Parameter List Format 194
TEST COMPLETION Parameter List Format 195
TEST MESSAGE Parameter List Format 196
IUCV External Interrupt Formats 196
External Interrupt for Pending Connection 196
External Interrupt for Complete Connection 197
External Interrupt for Pending Messages 197
External Interrupt for Complete Messagescovuuuee... 198
External Interrupt from SEVER, QUIESCE, RESUME 198
Parameter List and External Interrupt Fields 199
IUCV Trace Table Entry Formats e, 216
Trace Table Entry Field Definitions 217
Chapter 16. SNA Virtual Console Communication Services 219
System SEruCtUI®ottt e e 220
Environments Supported e 221
Processing Descriptionsco ittt e 222
SNA CCS Entries in CP Internal Trace Table 231
Trace Table Entry Formatsc.0viitiiineennnnn.. 232
Trace Table Entry Field Definitions 233
Chapter 17. The Message System Servicec.ovtiiietiiinnn.n 237
Establishing Communications 00ttt iiinnnnnan. 237
Chapter 18. The DASD Block I/O System Servicecoevuvenn.. 239
Establishing Communications with DASD Block I/O Service 239
IUCV CONNEUCT to the DASD Block I/O System Service 240
IUCV SEND to the DASD Block I/O System Service 241
Chapter 19. The Signal System Serviceciiiiiiiiiireeennnns 243
Communications with the Signal System Service 243
IUCV CONNECT to the Signal System Service 243
Sending Signals e 245
Receiving Signals e 246
Leaving the Signal System Service, 247
Chapter 20. The Special Message Facility 249
Chapter 21. Single Console Image Facility 251
Using the Single Console Image Facility 251
Chapter 22. VM/SP Use of the IBM 3850 MSSciivvuvennnnn. 253
VM/SP Access to the MASS Storage Control 253
Asynchronous MSS Mount Processingcoiiiiinneennnn. 254
VM/SP Processing of MSS Cylinder Faults 254

Contents XXV

Backup and Recovery of MSS Volumes 255
Chapter 23. Logical Device Support Facilityc00eeiiin... 257
Chapter 24. Timers in a Virtual Machinec00itiiiiinnnenens 259
Interval Timer ot et 259
Processor Timers e 260
TOD Clock . ..o e e e 261
Clock Comparatorttt ettt et e 261
Pseudo Timerttt e e e 261
Pseudo Timer Start [/O i e 262
Pseudo Timer DIAGNOSE i, 262
Chapter 25. CP in Attached Processor and Multiprocessor Modes 263
Multiprocessor Environmentt 263
Attached Processor Environment0iuittiiunennnennn 264
Advantages of the AP/MP Environmentc.oueuon... 264
Facilitating an AP/MP Environmentc.co0uuenon... 264
Prefixing e 265
Identifying a Processor Address 266
Signaling 266
Time-of-Day (TOD) Clock Synchronization Check 268
Fetching and Storing i 269
Locks and Serialization of Functions 270
Affinity . ..o 274
Shared Segments in an AP/MP Environment 275
SWTCHVM MaCrO ..ottt it et e et e e e 275
Configuring and Debugging MP Systems 275
Configuring I/O Devices foran MP System 276
Debugging an AP/MP Systemvtiriininennneanns 276
Chapter 26. The DIAGNOSE Instruction in a Virtual Machine 279
DIAGNOSE Code X‘00’ -- Store Extended-Identification Code 280
DIAGNOSE Code X‘04’ -- Examine Real Storage 281
DIAGNOSE Code X‘08’ -- Virtual Console Function 282
DIAGNOSE Code X‘0C’ -- Pseudo Timercouvvn... 285
DIAGNOSE Code X‘10’ -- Release Pages 285
DIAGNOSE Code X‘14’ -- Input Spool File Manipulation 286
Subcode X000’t 287
Subcode X 0004 e 287
Subcode X000 L e 233
Subcode X‘000C> J 288
Subcode X0010™ e 288
Subcode X0014” e 288
Subcode X0018” e 289
Subcode X001 C ... e 289
Subcode X 00207 289
Subcode X 0024 e 289
Subcode X OFFE’ i e e e 289
Subcode X OFFF e e e 290
DIAGNOSE Code X‘18’ -- Standard DASDI/O 291
DIAGNOSE Code X‘1C’ -- Clear Error Recording Cylinders 293
DIAGNOSE Code X20’ -- General /O0 iiiiiiinnnnnn.. 294

VM/SP System Programmer’s Guide

DIAGNOSE Code X‘24’ -- Device Type and Features
DIAGNOSE Code X‘28’ -- Channel Program Modification
DIAGNOSE Code X‘2C’ -- Return DASD Start of LOGREC
DIAGNOSE Code X‘30’ -- Read One Page of LOGREC Data
DIAGNOSE Code X‘34’ -- Read System Dump Spool File
DIAGNOSE Code X‘38’ -- Read System Symbol Table
DIAGNOSE Code X‘3C’ -- VM/SP Directoryvouveununnn..
DIAGNOSE Code X‘40’ -- Clean-Up after Virtual IPL by Device
DIAGNOSE Code X‘48’ -- Issue SVC 76 from a Second Level VM/370 or
VM/SP Virtual Machineco i
DIAGNOSE Code X‘4C’ -- Generate Accounting Records for the Virtual
L8 13
DIAGNOSE Code X‘50’ -- Save the 370X Control Program Image
DIAGNOSE Code X‘54’ -- Control The Function of the PA2 Function Key
DIAGNOSE Code X‘58’ -- 3270 Virtual Console Interface
Displaying Data SR
Full Screen Mode0 i
DIAGNOSE Code X‘5C’ -- Error Message Editing
DIAGNOSE Code X‘60’ -- Determining the Virtual Machine Storage Size ..
DIAGNOSE Code X‘64’ -- Finding, Loading, and Purging a Named Segment
DIAGNOSE Code X‘68’ -- Virtual Machine Communication Facility
(VMG CEF) . e e e e
DIAGNOSE Code X‘6C’ -- Special DIAGNOSE for Shadow Table
Maintenancettt e
DIAGNOSE Code X‘70’ -- Activating the Time-of-Day (TOD) Clock
Accounting Interface
DIAGNOSE code X‘74’ -- Saving or Loading a 3800 Named System
DIAGNOSE Code X‘78’ -- MSS Communication
DIAGNOSE Code X‘7C’ -- Logical Device Support Facility
Descriptions of Logical Device Support Facility Functions
External Interrupt Code X‘2402° e
Logical Device Restrictions i,
DIAGNOSE Code X80’ -- MSSFCALL,
MSSF Command Wordsutiiiiit ey
DIAGNOSE Code X‘84’ -- Directory Update-In-Place
DIAGNOSE code X‘8C’ -- Access Certain Device Dependent Information . .
DIAGNOSE code X‘94’ -- VMDUMP Function
Supported Parameters
Dump Address Parameter List iuiinn...
DIAGNOSE Code X‘98’ -- Real Channel Program Support

Chapter 27. CP Conventionsccoeeeveuennnsonosassssscasss
CP Coding Conventionsouuttenmueennneeeeaneeeannn
CP Loadlist Requirements 0.t iiiiennnne...

Chapter 28. Print Buffers and Forms Control
Adding New Print Buffer Images
UCS Buffer Images for the 1403 Printer
UCSB Buffer Images for the 3211 Printer
FOB Buffer Images for the 3289 Model 4 Printer
UCC Buffer Images for the 3203 Printer
PIB Buffer Images for the 3262 Model I and II Printers
Forms Control Buffer i

Contents

XXVii

Extended FCB Macro Instruction 368
Chapter 29. IBM 3800 Printing Subsystemccc0veeenneennnnn. 371
Using the 3800 Printer as a Dedicated Device 372
Using 3800 Model 1 and Model 3 Printers as Virtual Spooling Devices 372

Defining a Virtual 3800 Printer, 373

Using the SPOOL and CHANGE Commands 373

Using the SETPRT Commandccciuiirunnn... 374
Using the 3800 Printer as a Real Spooling Device 374

Specifying Printer Options 375

The GENIMAGE Commandcc0itiiiiiinnnnnnnn.. 375

Maintaining the Image Library 375

Recovering from I/O BITOISuvuritetnn i iieeinenanannn 376
Chapter 30. Journaling Logon, Autolog, and Link Commands 377
Chapter 31. Suppressing Passwords Entered on the Command-Line 379
Part 2. Conversational Monitor System (CMS) I 1.3 |
Chapter 32. Introduction TOCMS ittt iinnirnrenraeanses 383
The CMS Command Languagec.iiititvnennennnnn. 383
The File Systemttt e it e e 384

Preferred Filetypesttt 385
Migration from the 800-byte File System to the Extended File System 385

Migration Considerationscciuuttirirennnennnennnns 387

Coexistence of VM/SP CMS and Earlier Versionsof CMS 390

Converting CMS Files ...ttt i, 391
Program Developmentoutiiirernnirennnennneenan. 392
Abend Processing e e 392

Abend Exit Routine Processinguiitirinnnnnnnnnn 393

CMS Abend RecovVeryciuiiiiintentinniinnnnnns 393
Chapter 33. Interrupt HandlingInCMSc0iiiiiiiirnnn. 395
SVCINterruptionsttt e 395

Internal Linkage SVCs it e 395
Input/Output Interruptionsoovt ittt e 396
Terminal Interruptions e e 397
Reader/Punch/Printer Interruptionsc.coiiuiinrienenon.. 397
User-Controlled Device Interruptionscoiitiueen... 397
Program Interruptionsttt e 398
External Interruptionst ittt e 398
Machine Check Interruptions0ttt ininennnnnn 398
Chapter 34. Functional Informationcccciiiiiinecreannnns 399
Register Usettt e it e e 399
Structure of DMSNUC e e 400

USERSECT (USEr AI€a)o c'i ittt it iiiannnnns 400

DEVTAB (Device Table)ot 400
Structure of CMS Storage ...ttt e 402
Free Storage Managementc..tiuiinninneneennennn. 407

GETMAIN Free Storage Managementccocouennn.. 407

DMSFREE Free Storage Management 409

XXViii VM/SP System Programmer’s Guide

Releasing Allocated Storageciiiteeenninninnnnnns
DMSFRE Service Routinest
Error Codes from DMSFREE, DMSFRES, and DMSFRET
CMS Handlingof PSW Keys i,
The DMSKEY Macroot e e
The DMSEXS Macrottt i e
CMS SVCHandling i
SVC Types and Linkage Conventions
Search Hierarchy for SVC 202 i,
User and Transient Program Areasc.oiiueennnnn...
Called Routine Start-Up Table i,
Returning to the Calling Routine
Dynamic Linkage -- SUBCOM i
System Product Editor Interface to Access Files in Storage
CMS Interface for Display Terminals

Chapter 35. Using the DASD Block I/0O System Service from CMS

Chapter 36. CMSIUCVY Supportcctiiietiiiinneernnneeennns
HNDIUCV MaCIo ...ttt it e et et et e
CMSIUCV MaCIO . vttt ittt e e e e e e et
EXits ..o e
Using CMS IUCV to Communicate Between Two Virtual Machines
Guidelines and Limitations of the CMS IUCV Support

Chapter 37. OS Macro Simulation Under CMScc0veeuuen
OS Data Management Simulation
Handling Files that Reside on CMS Disks
Handling Files that Reside on OSor DOS Disks
Simulation NOtest e e
Access Method Support e
Reading OS Data Sets and VSE Files Using OS Macros

Chapter 38. VSE Support Under CMS it iiiiiiiinneennn.
Hardware Devices Supported i
CMS Support of VSEFunctionsc.iitiiitinnnnnnn .

Logical Unit Assignment 0 iiiiiuteennnnnnnnnn.
VSE Supervisor and I/0O Macros Supported by CMS/DOS

Supervisor Macrosoiit i e

Sequential Access Method -- Declarative Macros

Sequential Access Method -- Imperative Macros
VSE Transient Routines i
EXCP Support in CMS/DOS e
VSE Supervisor Control Blocks Simulated by CMS/DOS
User Considerations and Responsibilities
VSE System Generation and Updating Considerations
VM/SP Directory ENtriesottt
When the VSE System Must Be Online
Performance i
Execution Considerations and Restrictions

Chapter 39. CMS Support for OS and VSE/VSAM Functions
Hardware Devices Supported ittt

Contents

414
415
417
418
418
419
420
420
426
430
431
432
434
437
439

441

445
445
450
455
456
459

461
461
461
462
464
471
476

481
482
482
485
487
488
496
506
506
508
508
509
509
510
510
511
511

513
514

XXiX

VSE Supervisor Macros and Logical Transients Support for VSAM
Data Set Compatibility Considerations
ISAM Interface Program (IIP) it

Chapter 40. Saving the CMS Systemcciiiiiineneneerraons
Saved System Restrictions for CMS

Chapter 41. The CMS Batch Facilitycciiiiiiiiinnn.
Installing the CMS Batch Machine
Resetting the CMS Batch Facility System Limits
Writing Routines To Handle Special Installation Input

BATEXIT1: Processing User-Specified Control Language

BATEXIT2: Processing the Batch Facility /JOB Control Card
EXEC Procedures for the Batch Facility Virtual Machine
Data Security under the Batch Facility
Improved IPL Performance Using a Saved System

Chapter 42. The Programmable Operator Facility
OVeIVIEW . . ot e
The Routing Table
How the Programmable Operator Facility Uses the Routing Table
Routing Table Entry Formats oo,
Tailoring the Routing Table,
Action ROUtinesot e
Description of Supplied Action Routines
The Log File e et
Ensuringa Complete Log i
The Feedback File i,
Installing the Programmable Operator Facility

Routing Table Conversioncouuutvutennnnnnnrnenn.. ,

Invoking the Programmable Operator Facility
Manual Invocation e
Automatic Invocation e
Using the LGLOPR Command iuuun...

Communications Checking i itreennnnnn.

How the Programmable Operator Establishes Communications with IUCV ..

Message Output Format i,

ExXit EXECS ..ottt e e
Exit EXEClInterface i
Communication Error Exit i

Y Tl Tiod
LOG Error BRit oo e

Problem Determination - DebugMode
The Action Routine Interfaceo i...
Action Routine Call Interface,
Action Routine Parameter Interface
EXEC Action Routinesciuitiiiteniinennnnennn.
Writing Action Routinesttt innnnennenn.
Action Routine Response Handling
Handling Console I/0 in an Action Routine
Stopping the Programmable Operator Facility
Running the Programmable Operator Facility from NCCF
The Programmable Operator/NCCF Message Exchange

XXX VM/SP System Programmer’s Guide

/{ ™
y

Chapter 43. Auxiliary Directories ittt iieneerannnns 575
Adding an Auxiliary Directory i 575
Generating the Auxiliary Directory0uiiiiinnnno .. 575
Initializing the Auxiliary Directory 576
Establishing the Proper Linkage 576
Creating an Auxiliary Directory i, 577
Chapter 44. Assembler Virtual Storage Requirements 581
Overlay Structuresttt it e e 581
Prestructured Overlay i 582
Dynamic Load Overlay 583
Part 3. Debugging with VM/SP, . 585
Chapter 45. Introduction to Debuggingottt 587
How To Start Debuggingo i, 587
Does a Problem EXist? i e 588
Identifying the Problem it .. 591
Analyzing the Problem 591
How To Use VM/SP Facilities ToDebug 597
Abend ... 597
Unexpected Results i 604
00D o 606
Wit o 607
Summary of VM/SP Debugging Toolscoueino... 611
Comparison of CP and CMS Facilities for Debugging 617
Chapter 46. Debuggingwith CP ittt iiinnn, 619
Commands that Display or Dump Virtual Machine Data 619
Commands that Set and Query System Features, Conditions, and Events . 620
Commands to Collect and Analyze System Information 621
Commands that Trace Events in Virtual Machines 622
Commands that Alter the Contents of Storage 623
Debugging CP in a Virtual Machine 624
CPInternal Trace Table, 624
Abend DUMPSo e 629
How to Print a CP Abend Dump from Tape 629
Reading CP Abend Dumps i 629
Reason forthe Abend i .. 630
Collect Information i 631
Register Uset 632
Save Area Conventionsttt 632
Virtual and Real Control Block Status 634
Identifying and Locating a Pageable Module 645
VMDUMP Records: Format and Content 645
Trapping Improper Use of CP Free Storage 649
CP FRET Trap Examples ittt 650
Debugging with the CPTRAP Facility 652
Activating CPTRAP 652
Recording CP Trace Table Entries in the CPTRAP File 652
Recording Virtual Machine Data in the CPTRAP File 653
Recording CP Datain the CPTRAPFile 655

Contents XXXi

Xx%xii

Additional CPTRAP Considerationsuuiiniiiuneenn.. 657

Using the TRAPRED Facility i, 659
Viewing Entries inthe CPTRAPFile 659
CPTRAP Examplesoiittiiii ittt ie e, 663
How to Collect CP Datain CPTRAPFile 663
How to Collect Virtual Machine Data ina CPTRAPFile 667
Displaying Formatted CPTRAP Output 669
Chapter 47. Debugging With CMS i iiiiiiiiiiinnen. 671
CMS Debugging Commandsttiuitininmnneennnennnny 671
DEBUG ..ottt e e e e 672
&QCRASH commandc0 ittt L... 673
NucleusLoad Mapt et e i 675
loadMapc..... e 676
Reading CMS Abend Dumps i, 676
Reason forthe Abend 679
Collect Information i, 679
Register Uset e e e e 681
Chapter 48. AppendiXesciviveieierennnsasosescsssansasssons 683
Appendix A. System/370 Informationc0iiurinrn.n. 685
Control Registersttt e e e 685
Appendix B. VM/SP Monitor Tape Format and Content 691
Header Record i i e 691
Data Records e e 692
Appendix C. CMS Macro Library i, 707
GloSSarY ..ttt i i i i i ittt et 713
IndeX .. oiiiiiiiiieiiiiiiineeeeesosesennnacsosesnnessssssssnss 717

VM/SP System Programmer’s Guide

N
1 .

Figures

2K Storage Protection Key i 14
Relationship of Privilege Class, Type, and Administrative Function 28
Different System Users and Their Responsibilities 31
DIAGNOSE Instructions That Can Be Respecified on an OVERRIDE

Control Statemento.tinttirii e 37
Storage Layout in a Virtual=Real Machine 63
Functions and Instructions that ECPS Supports 78
CP commands and 3088 Support 82
Virtual Machine Communication Facility (VMCF) Functions 114
The SEND Protocol ...t 119
The SEND/RECYV Protocolovuuuiriininnnenneneannnnn 120
The SENDX Protocolc.tiitiineiniinennnennn 121
The IDENTIFY Protocolo i, 122
VMCEF Functions, Parameters, and Return Codes 133
DIAGNOSE Code X‘68’ Return Codesovviieennnnn.. 138
DIAGNOSE Code X‘68’ Data Transfer Error Codes 140
TUCV QUEUES .ttt t ittt ettt et ie e eae e 143
IUCV Data Transfercciiiiumiiiniiennnnnn.. 144
CP System Services and Their Userids 149
Sequence of Functions ittt iiiinnnnnnn 157
IUCV Macro Instruction Format 162
IUCYV Function and IUCV Macro Parameter Relationships 175
Pending Connection External Interrupt Format 197
Connection Complete External Interrupt Format 197
Incoming Message External Interrupt Format 198
Message Complete External Interrupt Format 198
SEVER, QUIESCE, RESUME External Interrupt Format 199
IUCYV Return Codes and Completion Codes 212
Virtual Console SupportinCP 220
SNA Virtual Console Support Interfaces 223
Summary of Logical Device Support Facility Functions 258
Formats of Pseudo Timer Information 262
Storage Layout in a Virtual=Real Machine 265
Sample of the Correct Way to Set a Flag in an AP/MP Environment .. 269
Hierarchy of VM/SPLOCKSot 271
Addressable Storage Before and After a LOADSYS Function 316
UCSB Associative Field Chart v, 359
Devices Supported by a CMS Virtual Machine 401
CMS Storage Map 1 it it e 404
CMS Storage Map 2 ittt e e e 405
CMS Storage Map 3 i e 406
SVC 202 High-Order Byte Values of Register 1 421
CMS Command (and Request) Processing 428

Figures XXXiii

43.
44,
45.

46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.

on

L.

83.

PSW Fields When Called Routine Starts
Register Contents When Called Routine Starts
Sequence of Instructions in Virtual Machine to Virtual Machine

Communicationttt
Simulated OS Supervisor Callsottt
Summary of Changes to CMS Commands to Support CMS/DOS ...
Physical IOCS Macros Supported by CMS/DOS
SVC Support Routines and Their Operation
CMS/DOS Support of DTFCDMacroc.ouvuininennn..
CMS/DOS Support of DTFCN mMacrocuovuiuenennn..
CMS/DOS Support of DTFDIMaACIOovvvervennnnnnnnn..
CMS/DOS Support of DTFMT Macroooueuenrnnn..
CMS/DOS Support of DTFPRMacroccoovvenennn...
CMS/DOS Support of DTFSDMacro covnviveinenn..
The Programmable Operator Facility in a Distributed System
Partial routing table
Routing Entries to Filter Responses to Routine Commands
Uncontrolled Authorization it ..
Restricting Authorization by Nodeid
Restricting Authorization by Userid and Nodeid
Restricting Command Use to Specific Users
Sample LGLOPR Command Entries in a Routing Table
Register Conventions for Invoking an Action Routine
QUERY Command Authorization for an NCCF Operator
Routing Entries to Send Messages to an NCCF Operator
LGLOPR Command Authorization for an NCCF Operator
An Overlay Structureov ittt e e e e
Abend Messagest
VM/SP Problem TYPES ..\ vvv ittt ittt eie e
Does a Problem ExXist? i
Debug Procedures for Waitsand Loops
Debug Procedures for Unexpected Results and an Abend
Summary of VM/SP Debugging Tools
Comparison of CP and CMS Facilities for Debugging
CP Trace Table Entries0t
CP Control Block Relationships
CP Device Classes, Types, Models, and Features
VMDUMP Record Format,
CMS Control Blockst
Control Register Allocation 00 iiiiiineeennnn.
Controi Register ASSIgNmMentsouuunruneeeennnnn..
The Extended Control PSW (Program Status Word)

XXXiV VM/SP System Programmer’s Guide

Part 1. Control Program (CP)

Part 1 contains the following information:

» Introduction to VM/SP CP

¢ Program States

« Using Processor Resources

« Virtual Machine Time Management

e Virtual Machine Storage Management

« Storage Protection

« Virtual Storage Preservation

o Virtual Machine I/O Management

e Spooling Functions

o CP Commands

« Interruption Handling
- o Functional Information

¢ Performance Guidelines

o Virtual Machine Assist Feature

« VM/370 Extended Control-Program Support

« VM/VS Handshaking
Performance Observation and Analysis
Accounting Information
Generating Saved Systems
The Virtual Machine Communication Facility
The Inter-User Communications Vehicle
SNA Virtual Console Support
The Message System Service
The DASD Block I/O System Service
The Signal System Service
The Special Message Facility
The Single Console Image Facility
VM/SP Use of the IBM 3850 MSS
The Logical Device Support Facility
Timers
CP in Attached Processor and Multiprocessor Modes
DIAGNOSE Instruction

L] L] L] L]

L] . L] L] L]

Part 1. Control Program (CP)

1

CP Conventions

Print Buffers and Forms Control

The IBM 3800 Printing Subsystem

Journaling Logon, Autolog, and Link Commands
Suppressing Passwords Entered on the Command-Line

2 VM/SP System Programmer’s Guide

Chapter 1. Introduction to the VM/SP Control Program

The VM/SP Control Program, CP, manages the resources of a single computer so
that multiple computing systems appear to exist. Each “virtual” computing system,
or virtual machine, is the functional equivalent of an IBM System/370.

A virtual machine is configured by recording appropriate information in the
VM/SP directory. The virtual machine configuration includes counterparts of the ‘
components of a real IBM System/370: |

« A virtual operator’s console
« Virtual storage

« A virtual processor

« Virtual I/O devices.

CP makes these components appear real to the operating system controlling the
work flow of the virtual machine.

When a user logs on, a virtual machine is created based on information stored in
the user’s directory. The entry for each userid includes:

« A list of the virtual I/O devices associated with the particular virtual machine.

« The command privilege class

¢ Accounting data

« Normal and maximum virtual storage sizes

« Dispatching priority

« Optional virtual machine characteristics (such as, extended control (EC)
mode).

The virtual machines operate concurrently via multiprogramming techniques. CP
overlaps the idle time of one virtual machine with execution in another.

Each virtual machine is managed at two levels. The work to be done by the virtual
machine is scheduled and controlled by some System/360 or System/370
operating system. The concurrent execution of multiple virtual machines is
managed by CP.

VM/SP performs some functions differently when running in attached processor or
multiprocessor mode. For more information on attached processor and
multiprocessor support see “CP in Attached Processor and Multiprocessor Modes”.

The Control Program supervises the execution of virtual machines by permitting
only problem state execution except in its own routines, and receiving control after
all real computing system interrupts. CP intercepts each privileged instruction and
simulates it if the current program status word (PSW) of the issuing virtual machine

Chapter 1. Introduction to the VM/SP Control Program 3

indicates a virtual supervisor state. If the virtual machine is executing in virtual
problem state, the attempt to execute the privileged instruction is reflected to the
virtual machine as a program interrupt. All virtual machine interrupts (including
those caused by attempting privileged instructions) are first handled by CP, and are
reflected to the virtual machine if a similar interrupt would have occurred on a real
machine.

4 VM/SP System Programmer’s Guide

Chapter 2. Program States

When instructions in the Control Program are being executed, the real computer is
in the supervisor state; at all other times, when running virtual machines, the real
computer is in the problem state. Therefore, privileged instructions cannot be
executed by the virtual machine. Programs running on a virtual machine can issue
privileged instructions; but such an instruction either

1. Causes an interruption that is handled by the Control Program, or

2. Isintercepted and handled by the processor, if the virtual machine assist
feature or VM/370 Extended Control-Program Support is enabled and
supports that instruction.

CP examines the operating status of the virtual machine PSW. If the virtual
machine indicates that it is functioning in supervisor mode, the privileged
instruction is simulated according to its type. If the virtual machine is in problem
mode, the privileged interrupt is reflected to the virtual machine.

Only the Control Program may operate in the supervisor state on the real machine.
All programs other than CP operate in the problem state on the real machine. All
user interrupts, including those caused by attempted privileged operations, are
handled by either the control program or the processor (if the virtual machine assist
feature or VM/370 Extended Control-Program Support is available). Only those
interrupts that the user program would expect from a real machine are reflected to
it. A problem program executes on the virtual machine in a manner identical to its
execution on a real System/370 processor, as long as the problem program does
not violate the CP restrictions. CP restrictions are documented in the VM/SP
Planning Guide and Reference.

Chapter 2. Program States 5

6 VM/SP System Programmer’s Guide

N

Chapter 3. Using Processor Resources

CP allocates the processor resource to virtual machines according to their operating
characteristics, priority, and the system resources available. The CP functions
described in this section are:

¢ Virtual Machine Time Management

o Virtual Machine Storage Management.

Virtual Machine Time Management

The real processor simulates multiple virtual processors. Virtual machines that
execute in a conversational manner are considered interactive and given access to
the real processor more frequently than those that are not. Interactive machines

{ ' are assigned the smaller of two possible time slices. CP determines execution

\ characteristics of a virtual machine at the end of each time slice on the basis of the
recent frequency of its console requests or terminal interrupts. The virtual machine
is queued for subsequent processor use according to whether it is an interactive or
non-interactive user of system resources.

A virtual machine can gain control of the processor only if the virtual machine is
not waiting for some activity or resource. The virtual machine itself may enter a
virtual wait state after an input/output operation has started. The virtual machine
cannot gain control of the real processor if it is waiting for a page of storage, if it is
waiting for an input/output operation to be translated and started, or if it is waiting
for a CP command to finish execution.

A virtual machine can be assigned a priority of execution. Priority, a parameter in
the virtual machine’s directory entry, affects the execution of a particular virtual
machine as compared with other virtual machines that have the same general
execution characteristics. The system operator can reset the priority parameter
with the privilege class A SET PRIORITY command.

Selecting a Virtual Machine to Run

CP uses several queues to determine which CP task or virtual machine to execute
next. The relationship of these queues follows:

o The queue 1 (Q1) and queue 2/queue 3 (Q2/Q3) are eligible lists, which are
, (R lists of virtual machines waiting to be added to the run list. Virtual machines
. on the eligible list are considered not in queue.

Chapter 3. Using Processor Resources 7

Queue 1

Queue 2

« The run list is a list of virtual machines that are considered in queue, but not
necessarily runnable.

« The dispatch request queue(s) contain pointers to CP tasks that are awaiting
execution.

CP selects the next CP task or virtual machine to run from the dispatch request
queue or the run list, respectively.

Virtual machines are dynamically categorized at the end of each time slice as

interactive or noninteractive, depending on the frequency of operations to or from
either the virtual system console or a terminal controlled by the virtual machine,
and are placed on an eligible list. The eligible list contains the virtual machines that
can compete for processor resources but are not now in-queue virtual machines
because of the current system load.

The Q1 and Q2/Q3 eligible lists are sorted by deadline priority. A particular
deadline priority depends on:

o The time-of-day the virtual machine was last dropped from a queue.
o The virtual machine’s user priority

o The current load and number of virtual machines on the system

o The current resource utilization of the virtual machine.

Virtual machines in Queue 1 (Q1) are conversational or interactive, and enter this
queue when an interrupt from a terminal is reflected to the virtual machine. The
Q1 virtual machines are ordered by their deadline priorities. A deadline priority is a
value calculated every time a user is dropped from a queue (queue drop time). This
value is based on paging activity, processor use, the system load, and virtual
machine priority. Deadline priority determines when the virtual machine receives
its next time slice.

Depending on the deadline priority, a Q2 virtual machine may occasionally have a
better priority than Q1.

Virtual machines are dropped from the run list (dropped from queue) and placed in
an eligible list when they complete their time slice. Virtual machines entering CP
command mode are also dropped from the run list.

Virtual machines enter Q2 from a list of eligible virtual machines (the eligible list).
The order of virtual machines in the eligible list and the run list is determined by
each virtual machine’s deadline priority.

A virtual machine enters Q2 if its projected working set size is less than or equal to
the number of real page frames available for allocation. The working set of a
virtual machine is calculated and saved each time a user is dropped from Q2. The
working set size is a function of the number of virtual pages referred to by the

8 VM/SP System Programmer’s Guide

(D

7

Queue 3

virtual machine while in Q2, and the number of its virtual pages in real storage
when it is dropped from the queue.

If the projected working set of the highest priority virtual machine in the eligible list
is greater than the available number of page frames for allocation, CP continues to
search the eligible list for a virtual machine whose working set is less than or equal
to the number of available page frames. CP searches both Q1 and Q2 eligible lists
in deadline priority order, starting with the Q1 eligible list first.

A virtual machine that completes its time slice is dropped from queue and placed in
the eligible list according to its deadline priority. A virtual machine in Q2 that
enters CP command mode is removed from Q2.

To cause the virtual machine to leave CP command mode and return to the eligible
list for queue, the user issues a CP command that transfers control to the virtual

machine operating system for execution (for example, BEGIN, IPL, EXTERNAL, |
and RESTART). »f'

Virtual machines in Q2 are usually considered noninteractive. In CP mode,
interactive virtual machines (those in Q1), if any, are normally dispatched before
noninteractive virtual machines (Q2). This means that CMS users entering
commands that do not involve disk or tape I/O operations should get fast
responses from the VM/SP system even with many active virtual machines. Some
virtual machines in Q2 are dispatched before virtual machines in Q1 because of
their user priority, current resource use level, or for other reasons.

Q3 is an extension of Q2 scheduling. It helps to distinguish between noninteractive
virtual machines and those that frequently switch back and forth between Q2 and
Q1. Virtual machines that have cycled through at least eight consecutive Q2
processor time slices without a Q1 interaction are labeled Q3. Q3 virtual machines
are kept in the same lists (or queues) as Q2 virtual machines and for most purposes
are treated identically. The differences between Q2 and Q3 virtual machines are
reflected in their deadline priority calculations and the amounts of such processor
time they are allowed in queue. Q3 virtual machines are allowed eight consecutive
Q2 processor time slices before they are dropped from queue. Because of the
eight-fold increase in processor time allowed each time in queue, the scaled bias is
multiplied by eight before adding to the current time-of-day to form the deadline
priority. Q3 virtual machines should receive eight times as much processor time
each time in queue as Q2 virtual machines, but only one-eighth as often.

To reiterate the Q1/Q2 statement, which is also true for Q2/Q3: Operating
constantly in any queue, a virtual machine should receive the same amount of
processor time over an extended period. This does not necessarily mean that a
virtual machine performs the same when operating in Q3 mode as when operating
in standard Q2 mode. An amount of overhead (roughly proportional to the small
number of resident pages) is used for each virtual machine when it drops from
queue. When operating in Q3 mode, a virtual machine may perform much better
than in normal Q2 mode because it is undergoing fewer queue drops. For some
large virtual storage programs, operating in Q3 mode rather than Q2 mode reduces

the total use of the processor resources by half.

Chapter 3. Using Processor Resources 9

Deadline Priority

CP calculates the deadline priority at queue drop time by the following formula:

deadline priority = TOD + Virtual machine queue delay factor
where:

TOD
is the current time of day.

Virtual machine queue delay factor
is the User bias ratio * prioritized Q2 delay factor.

User bias ratio
depends on the amount of specified resources the particular virtual machine
is currently receiving. It is the weighted average of the paging and
processor resource ratios.

Q2 delay factor
is calculated dynamically based on configuration and load, and is the
average elapsed time required by a virtual machine to receive an amount of
processor time equal to one Q2 time slice.

For Q1 virtual machines, the scaled bias is divided by 8 (since the Q1 time slice is
one-eighth the Q2 time slice). The difference between scheduling a virtual
machine in Q1 instead of Q2 is that it receives one-eighth the amount of processor
time, eight times as often. Operating constantly in either queue, a virtual machine
should receive the same amount of processor resources over an extended period of
time. When Q1 virtual machines are moved from the eligible list to the run list,
they are moved ahead of Q2 virtual machines with the same or even slightly better
deadline priorities. For more information on calculating the deadline priority, see
VM/SP System Logic and Problem Determination Guide Volume 1 (CP).

Dispatch Request Queue and Run List

The dispatcher is the program in CP that places virtual machines or tasks into
execution. The dispatcher (DMKDSP) selects the next virtual machine to run and
prepares the virtual machine for problem state execution.

‘T'he dispatcher selects the next virtual machine to run from a list of in-queue virtual
machines. The run list contains all virtual machines competing for processor
resources (both runnable and not runnable).

The dispatch request queue contains CPEXBLOKSs, IOBLOKSs, and TRQBLOKSs.
CPEXBLOK:S are control blocks that designate CP tasks to be run, IOBLOKS
contain information on I/O operations, and TRQBLOKS are used to manage
system timing facilities. The tasks associated with these blocks are given priority
over VMBLOKS (user virtual machines).

10 VM/SP System Programmer’s Guide

CMS BLIP Facility

To be dispatched from a queue, a virtual machine must be runnable (that is, not
waiting for some activity or for some other system resource). A virtual machines is
not dispatched if it:

« Enters a virtual wait state after an I/O operation has begun.

o Is waiting for a page frame of real storage.

« Is waiting for an I/O operation to be translated by CP and started.
o Is waiting for CP to simulate its privileged instructions.

« Is waiting for a CP console function to be performed.

The CMS BLIP facility causes CMS to perform a write operation to the terminal
after every 2 seconds of virtual processor use. This feature effectively cancels
Queue 3 use for normal, connected CMS virtual machines, regardless of what types
of programs they are running. The CMS BLIP facility can be turned off with the
CMS SET BLIP OFF command or it can be disabled with the CP SET TIMER
OFF command.

Virtual Machine Storage Management

The normal and maximum storage sizes of a virtual machine are defined as part of
the virtual machine configuration in the VM/SP directory. You may redefine
virtual storage size to any value that is a multiple of 4K and not greater than the
maximum value defined in the directory. VM/SP implements this storage as virtual
storage. The storage may appear as paged or unpaged to the virtual machine,
depending upon whether or not the extended control mode option was specified for
that virtual machine. This option is required if operating systems that control
virtual storage, such as OS/VS1, VM/370 or VM/SP are run in the virtual
machine.

Virtual machine storage is logically divided into 4096-byte areas called pages.
Segments are contiguous 64K areas of virtual storage. Segment and page tables
describe the storage of each virtual machine. A page table shows whether a page is
in real storage and correlates virtual addresses with real storage addresses. A
segment table is used with dynamic address translation to control user access to
virtual storage segments. Each entry shows the length, location, and availability of
a corresponding page table. These tables are updated by CP and reflect the
allocation of virtual storage pages to blocks of real storage. These page and
segment tables allow virtual storage addressing in a System/370 machine.

To optimize real storage use, CP keeps only referenced virtual storage pages in real
storage. Further, CP can bring a page into any available page frame. During
program execution, a combination of VM/SP and the dynamic address translation
feature on the System/370 relocates the page. The active pages from all logged on
virtual machines and from the pageable routines of CP compete for available page
frames. When the number of page frames available for allocation falls below a
threshold value, CP determines which virtual storage pages currently allocated to
real storage are relatively inactive and starts suitable page-out operations for them.

Chapter 3. Using Processor Resources 11

CP keeps track of where each virtual machine’s page zero resides. Normally, CP
does this by issuing a TRANS macro that checks for page residency (LRA) and
demands a page-in if the page is not in real storage. However, if an in-storage
pointer in the VMBLOK contains the address of the virtual machine’s page zero,
the page is resident and CP bypasses issuing the TRANS macro. Thus,
unnecessary LCTL and LRA instructions are eliminated.

Inactive pages are kept on a direct access storage device (DASD). If an inactive
page has been changed during virtual machine execution, CP assigns it to a paging
device, selecting the fastest such device with available space. If the page has not
changed, it remains allocated in its original direct access location and is paged into
real storage when the virtual machine next references that page. A virtual machine
program can use the DIAGNOSE instruction to tell CP that the information from
specific pages of virtual storage is no longer needed. CP then releases the paging
devices areas which were assigned to hold the specified pages.

Paging is done on demand by CP. This means that a page of virtual storage is not
read (paged) from the paging device to a real storage block until it is actually
needed for virtual machine execution. CP makes no attempt to anticipate what
pages might be required by a virtual machine. During paging for one virtual
machine, another virtual machine can be executing. Any paging operation started
by CP is transparent to the virtual machine.

If the virtual machine is executing in extended control mode with translate on, two
additional sets of segment and page tables are kept. The virtual machine operating
system must map the virtual storage created by it to the storage of the virtual

- achine€P-usesthese of tables and the page and segment tables created for the
virtual machine at logon time to build shadow page tables for the virtual machine.
These shadow tables map the virtual storage created by the virtual machine
operating system to the storage of the real computing system. The tables created
by the virtual machine operating system may describe any page and segment size
permissible in the IBM System/370.

12 VM/SP System Programmer’s Guide

Chapter 4. Storage Protection

VM/SP provides both fetch and store protection for real storage. The contents of
real storage are protected from destruction or misuse caused by erroneous or
unauthorized storing or fetching by the program.

When protection applies to a storage access, the key in storage is compared with
the protection key associated with the request for storage access. A store or fetch
is permitted only when the key in storage matches the protection key. Storage keys
are discussed more in the next section.

When a store access is prohibited because of protection, the contents of the
protected location remain unchanged. On fetching, the protected information is
not loaded into an addressable register, moved to another storage location, or
provided to an I/0 device.

When a processor access is prohibited because of protection, the operation is
g‘ suppressed or terminated, and a program interruption for a protection exception
takes place. When a channel access is prohibited, a protection-check condition is
indicated in the channel status word (CSW) stored as a result of the operation.

When the access to storage is inhibited by the processor, and protection applies, the
protection key of the processor occupies bit positions 8-11 of the PSW. When the
reference is made by a channel, and protection applies, the protection key
associated with the I/O operation is used as the comparand. The protection key
for an I/O operation is specified in bit positions 0-3 of the channel-address word
(CAW) and is recorded in bit positions 0-3 of the channel status word (CSW)
stored as a result of the I/O operation.

To use fetch protection, a virtual machine must execute the Set Storage Key (SSK)
instruction referring to the data areas to be protected, with the fetch protect bit set
on in the key. VM/SP subsequently:

1. Checks for a fetch protect violation in handling privileged and nonprivileged
instructions.

2. Saves and restores the fetch protect bit (in the virtual storage key) when
writing and recovering virtual machine pages from the paging device.

3. Checks for a fetch protection violation on a write CCW (except for spooling or
console devices).

‘ The CMS nucleus resides in a shared segment. This presents a special case for
' (' storage protection since the nucleus must be protected and still shared among many

Chapter 4. Storage Protection 13

CMS users. To protect the CMS nucleus in the shared segment, user programs and
disk-resident CMS commands run with a different key than the nucleus code.

Key

Key — 4-~bit protect key

Storage Key

(1 111, 111
I
2K 2K 2K 2K 2K
Real
Storage
L
11

-

o

 __ ——————Addressable Storage

Figure 1. 2K Storage Protection Key

Storage Keys

Storage keys protect information in real storage from unauthorized use. A storage
key contains a four bit control field that is associated with an area of real storage.
When VM/SP is executing natively, each 2K area of storage is protected by one
storage key.

VM/SP contains support that allows it to execute as a guest virtual machine on a
processor that uses single key real storage frames. Single key storage frames
associate one storage key for each 4K area of storage. VM/SP does not run
natively on processors that have single key storage frames; however, under control
of the VM/SP High Performance Option program product, VM/SP executes as a
guest virtual machine operating system.

When VM/SP High Performance Option (Release 2 or subsequent release) is
controlling the processor equipped with single key storage frames, the program
product simulates for the guest, virtual storage that resembles the type of real
storage installed on the processor. If the storage simulated for the VM/SP guest

14 VM/SP System Programmer’s Guide

(A requires 4K storage protection keys, VM/SP issues two key instructions to the
- 'referenced storage frame.

Storage and Processor Use

The system operator can assign the reserved page frames option to a single virtual
machine. This option, specified by the SET RESERVE command, reserves real
storage for the virtual machine. If a virtual machine has this option set, during its
execution CP dynamically builds up a set of reserved real storage page frames until
the maximum number “‘reserved” is reached. Active pages up to the reserve count
of the selected virtual machine remain in real storage.

During CP system generation, the installation may specify an option called
virtual=real. With this option, the virtual machine’s storage is allocated directly
from real storage at the time the virtual machine logs on (if it has the
VIRT=REAL option in its directory entry). All pages except page zero are
allocated to the corresponding real storage locations. CP normally controls real
page zero. Consequently, the real storage size must be large enough to
accommodate the CP nucleus, the entire virtual=real virtual machine, and the
remaining pageable storage requirements of CP and the other virtual machines.

The virtual=real option improves performance in the selected virtual machine since
it removes the need for CP paging operations for the selected virtual machine. The
- virtual=real option is necessary whenever programs that contain dynamically
@ changed channel programs (excepting those of OS ISAM and OS/VS TCAM Level
5) are to execute under control of CP.

During CP system generation, the installation can specify an option called the
“Small CP Option”. The Small CP option removes some of the normally resident
CP nucleus functions that support remote CP. This effectively reduces the size of
the resident CP nucleus, making more storage available for the area where virtual
machine pages reside.

The Small CP option improves performance in environments where the real
processor storage size is 512K bytes or less.

Chapter 4. Storage Protection 15

16 VM/SP System Programmer’s Guide

C

Chapter 5. Virtual Storage Preservation

CP tries to preserve the contents of a virtual machine (up to 16M bytes) under
these conditions:

« The system operator forces the machine off the system.

« The virtual machine is abnormally terminated by VM/SP.

« The contents of the virtual machine is only saved if no shared pages of data to
be saved are present in the virtual machine.

o VM/SP itself abnormally terminates.

When coding the NAMESYS macro at system generation time, the system
programmer must specify which virtual machines are to be saved, the number of
pages to be saved (up to 4096), and the DASD where it will be saved.

The user can force a priority for the order in which multiple virtual machines are
saved through the SAVESEQ operand of the NAMESYS macro. The saved virtual
machine is restored to the user via the IPL command. Normal recovery procedures
or problem analysis for the saved virtual machine may then be initiated by the user.
To preserve its privacy and security, the automatically saved virtual machine is
made available only to previously specified users. This saved virtual machine can
be loaded into either a V=R or a normal non-V=R machine.

VMSAVE Option

Subject to certain restraints, the user can dynamically control the option to save or
not to save the contents of the virtual machine (VMSAVE), and in which DASD
area to save them (if there is more than one DASD area). If the user has a single
DASD area defined, VMSAVE can be enabled either by the VMSAVE directory
option or by the SET VMSAVE ON command. A single VMSAVE area can be
designated for use by multiple virtual machines. However, the area is allocated to
only one user at a time; the user who first enables VMSAVE has priority. Normal
logoff, or invoking the SET VMSAVE OFF command relinquishes this VMSAVE
area.

The user with multiple DASD areas allocated must issue the SET VMSAVE name
command to enable the VMSAVE option. The SET VMSAVE OFF command
disables the VMSAVE option. Also, to relinquish the VMSAVE area, the user
may issue the SET VMSAVE OFF command, or logoff, or issue the SET
VMSAVE name command specifying another area. The DASD save area can only

Chapter 5. Virtual Storage Preservation 17

Termination

IPL

Priority

be relinquished by the owner of the data of the save area if data is stored in it. If
there is a saved system in the DASD area, the way to relinquish the area is for the
owner of the saved area to logon and issue the SET VMSAVE name command for
that area, then issue SET VMSAVE OFF command or LOGOFF.

The current status of the VMSAVE option (ON or OFF) can be obtained from the
QUERY SET command. The QUERY VMSAVE command displays the current
status of the VMSAVE option, the names of the areas allocated for the user, the
page frames of each area, and the date and time that their contents were saved.

If the VMSAVE option is enabled when conditions of termination other than
normal LOGOFF occur (such as a VM/SP abend and restart), the pages of the
virtual machine specified are saved in the previously allocated DASD area in the
order specified at system generation time by NAMESYS macro values in
DMKSNT.

After a virtual machine termination or a VM/SP abend in which virtual machine
contents were saved by the VMSAVE option, the IPL. command initiated for the
designated VMSAVE(d system by a logged-on user brings a page image copy of a
saved virtual machine into an active virtual machine, but does not give the saved
virtual machine control. The copy can always be dumped; however, it may or may
not be executable.

The V=R area of the real machine (if active) is preserved if the system is
performing a warm start. The V=R area is cleared if the system terminates to a
hard wait state or if a different V=R user logs on.

The SAVESEQ operand of the NAMESYS macro allows the user to force a
priority in the saving order of multiple virtual machines. (The NAMESYS macro is

Ancawiland Sen Aatnil 2w ¢lan /AL /COD DI, el naerea
GCSCIioCa iil Gllail ifl ui vivi/ o1 1 ;unlun‘s Giiide and R ‘\CJCI ence.) The l.uIOrity is

determined by number. The lower the number, the higher the priority. If two
virtual machines have the same priority, and both have the VMSAVE option
enabled, they are saved in the order in which they enabled VMSAVE. A sequence
of VMSAVE disable followed by a VMSAVE enable causes a virtual machine to
be the last one on the chain -- that is, last among the other virtual machines that
have the same SAVESEQ priority value.

If a high priority of SAVESEAQ is specified for the production virtual machine, and
lower or equal priorities are specified for other virtual machines, the production
machine is saved first; other virtual machines are saved in the order in which the
virtual machines logged onto the system.

18 VM/SP System Programmer’s Guide

N

i

If different values of SAVESEQ are specified for each user (the range is 0-255),
the priority of saving order for each virtual machine is predictable, depending on
which users are logged on when an abend occurs.

VMSAVE Areas

Target Areas

The VM/SP FORMAT/ALLOCATE program must format DASD space used for
VMSAVE areas before any user can store into the area. Detailed information on
using the FORMAT/ALLOCATE program is contained in the VM/SP Operator’s
Guide.

You can specify multiple VMSAVE target areas for a single user; you do this by
including in the DMKSNT module more than one NAMESYS macro with the same
USERID=operand. Different target areas are required if a user wishes to IPL a
VMSAVE system and have the VMSAVE option enabled at the same time. Once
the VMSAVE is enabled, the area referred to cannot be referenced by the IPL
command until a recovery operation has been effected. Similarly, if a VMSAVE
area currently contains a saved system, it can be released only by the user who
caused the system to be stored there. That area cannot be the VMSAVE target
area referred to by a VMSAVE enable from another user until the stored system
has been released.

Overlapping Areas

The system programmer, at his option, can specify overlapping DASD areas for
VMSAVE target areas through NAMESYS macro specifications. However, if two
areas overlap, they must start at the same physical cylinder and page. They can
end at different locations if the areas are of different lengths. Overlapping areas
are useful for different environments of the same user, and they are also valid as
VMSAVE target areas for different users.

Only one user can be using the area (for IPL or for a VMSAVE target area) at any
one time. In addition, if one user has caused a virtual machine to be stored into an
area, no other user can access that area. The user also cannot issue the SET
VMSAVE command with that area as the VMSAVE target area, until the user who
caused the virtual machine to be stored does the following:

« Enables VMSAVE to that area via the SET command, which effectively clears
the area.

« Releases the area by issuing a SET VMSAVE command to another area, a SET
VMSAVE OFF, a DEFINE STORAGE, or a normal LOGOFF process.

Only when the area has been cleared and released in this manner is it available for
other users.

Chapter 5. Virtual Storage Preservation 19

For overlapping target areas, the user must load a system that has the same name
that it was saved under. This ensures that the page range returned with the load is
the same as the one stored by VMSAVE.

Only when the complete page range specified has been saved does the area become
valid and available. If an error occurs in the middle of a save operation, the area is
not valid, and therefore is not retrievable.

The user cannot force a save directly. The MESSAGE command may be used to
ask the operator to force the user off the system. The FORCE command causes an
automatic save, assuming that VMSAVE is enabled. The user can also disconnect
with a READ pending. After 15 minutes the system logs off the user, causing an
automatic save if VMSAVE is enabled.

Other Saved Systems

Systems loaded by name under VM/SP must be saved by the SAVESYS command
under VM/SP. Because of control block changes, systems saved under other
releases of VM/370 are not loaded properly on VM/SP. Conversely, systems
saved on VM/SP will not load properly on a system that does not have this product
installed.

20 VM/SP System Programmer’s Guide

Chapter 6. Virtual Machine I/0 Management

A real disk device can be shared among multiple virtual machines. Virtual device
sharing is specified in the VM/SP directory entry or by a user command. If
specified by the user, an appropriate password may have to be supplied before
gaining access to the virtual device. A particular virtual machine may be assigned
read-only or read/write access to a shared disk device. CP checks each virtual
machine input/output operation against the parameters in the virtual machine
configuration to ensure device integrity.

Virtual Reserve/Release support can be used to further enhance device integrity
for data on shared minidisks. Reserve/Release operation codes are simulated on a
virtual basis for minidisks, including full-extent minidisks. For details on
Reserve/Release support, refer to the VM/SP System Logic and Problem
Determination Guide Volume 1 (CP).

The virtual machine operating system is responsible for the operation of all virtual
devices associated with it. These virtual devices may be defined in the VM/SP
directory entry of the virtual machine, or they may be attached to (or detached
from) the virtual machine’s configuration, dynamically, for the duration of the
terminal session. Virtual devices may be dedicated, as when mapped to a fully
equivalent real device; shared, as when mapped to a minidisk or when specified as
a shared virtual device; or spooled by CP to intermediate direct access storage.

In a real machine, input/output operations are normally initiated when a problem
program requests the operating system to issue a START I/0 instruction to a
specific device. Device error recovery is handled by the operating system. In a
virtual machine, the operating system can perform these same functions, but the
device address specified and the storage locations referenced are both virtual. It is
the responsibility of CP to translate the virtual specifications to real.

In addition, the interrupts caused by the input/output operation are reflected to the
virtual machine for its interpretation and processing. If input/output errors occur,
CP records them but does not initiate error recovery operations. The virtual
machine operating system must handle error recovery, but does not record the error
(if SVC 76 is used).

In an attached processor environment, virtual I/O can be initiated by either
processor; however, all real 1/O requests must be executed by the main processor,
and all I/O interrupts must be received on the main processor (the processor with
I/0 capability). Any I/O requests by the attached processor (the processor
without I/O capability) are transferred to the main processor.

In a multiprocessor environment, both processors have real I/O capability. If
either processor receives an I/0 request, that processor attempts to initiate I/0

Chapter 6. Virtual Machine I/O Management 21

operations. If none of the online paths from the executing processor to the
required device are available, that processor queues the I/0 request on all busy and
scheduled paths to the device; both its own and the alternate paths to the device
from the second processor. If there is no online path from the executing processor,
that processor queues the I/O request on the first online and available path for the
second processor, as well as on all busy or scheduled paths from that processor.

Input/output operations initiated by CP for its own purposes (paging and
spooling), are performed directly and are not subject to translation.

Virtual machines may access data on MSS mass storage volumes using that virtual
machine’s standard 3330 device support. MSS cylinder faults, and associated
asynchronous interruptions, are transparent to the virtual machine in this situation.

Dedicated Channels

In most cases, the I/O devices and control units on a channel are shared among
many virtual machines as minidisks and dedicated devices, and shared with CP
system functions such as paging and spooling. Because of this sharing, CP has to
schedule all the I/O requests to achieve a balance between virtual machines. In
addition, CP must reflect the results of the subsequent I/O interruption to the
appropriate storage areas of each virtual machine.

By specifying a dedicated channel (or channels) for a virtual machine via the Class
B ATTACH CHANNEL command, the CP channel scheduling function is
bypassed for that virtual machine. A virtual machine assigned a dedicated channel
has that channel and all of its devices for its own exclusive use. CP translates the
virtual storage locations specified in channel commands to real locations and
performs any necessary paging operations, but does not perform any device address
translations. The virtual device addresses on the dedicated channel must match the
real device addresses; thus, a minidisk cannot be used.

22 VM/SP System Programmer’s Guide

Chapter 7. Spooling Functions

CP spooling facilities allow multiple virtual machines to share real unit record
devices. Since virtual machines controlled by CMS ordinarily have low
requirements for unit record input/output devices, real device sharing is
advantageous, and is the standard mode of system operation.

CP, not the virtual machine, controls the unit record devices that are designated as
spooled in the virtual machine directory entry. When the virtual machine issues a
START I/0 instruction to a spooled unit record device, CP intercepts the
instruction and changes it. CP moves data into page-size records (4096-byte
blocks) in a disk area that serves as intermediate storage between the real unit
record device and the virtual machine.

A virtual unit record device which is mapped directly to a real unit record device is
said to be dedicated. The real device is then controlled completely by the virtual
machine’s operating system. A virtual machine should not issue a clear channel to
any dedicated channel. If the CLRCH instruction is issued, the results are
unpredictable.

Spooling operations cease if the direct access storage space assigned to spooling is
depleted, or the virtual unit record devices appear in a not-ready status. The
system operator or the spooling operator can make additional spooling space
available by purging existing spool files or by assigning additional direct access
storage space to the spooling function. The spooling operator can use the class D
SPTAPE command to retrieve spool files from tape for output processing when
spooling space requirements are not critical. See the description of the SPTAPE
command in the VM /SP Operator’s Guide for further information.

Specific files can be transferred from the spooled card punch or printer of a virtual
machine to the card reader of the same or another virtual machine. Files
transferred between virtual unit record devices by the spooling routines are not
physically punched or printed. With this method, files can be made available to
multiple virtual machines, or to different operating systems executing at different
times in the same virtual machine.

Files may also be spooled to remote stations via the Remote Spooling
Communications Subsystem (RSCS) Networking Version 2, a program product of
VM/SP.

CP spooling includes many desirable options for the virtual machine user and the
real machine operator. These options include printing multiple copies of a single
spool file, backspacing any number of printer pages, and defining spooling classes
for the scheduling of real output. Each output spool file has, associated with it, a
136-byte area known as the spool file tag. The information contained in this area

Chapter 7. Spooling Functions 23

and its syntax are determined by the originator and receiver of the file. For
example, whenever an output spool file is destined for transmission to a remote
location via the Remote Spooling Communications Subsystem Networking Version
2, RSCS expects to find the destination identification in the file tag. Tag data is
set, changed, and queried using the CP TAG command.

It is possible to spool terminal input and output. All data sent to the terminal,
whether it be from the virtual machine, the control program or the virtual machine
operator, can be spooled. Spooling is particularly desirable when a virtual machine
is run with its console disconnected. Console spooling is usually started via the
command

SPOOL CONSOLE START

An exception to this is when a system operator logs on using a graphics device. In
this instance, console spooling is automatically started and continues in effect even
if the system operator should disconnect from the graphics device and log on to a
nongraphic device. To stop automatic console spooling, the system operator must
issue the command

SPOOL CONSOLE STOP

Spool File Recovery

Warm Start

Checkpoint Start

If the system should suffer an abnormal termination, there are three degrees of
recovery for the system spool files; warm start (WARM), checkpoint start (CKPT),
and force start (FORCE). Warm start is automatically invoked if SET DUMP
AUTO is in effect. Otherwise, the choice of recovery method is selected when the
following message is issued:

START ((WARM|CKPT|FORCE|COLD) (DRAIN)) | (SHUTDOWN) :

Note that a cold (COLD) start does not recover any spool files.

After a system failure, the warm start procedure copies spool file, accounting, and
system message data to the warm start area on the IPLed system residence volume.
When the system is reloaded, this information is retrieved and the spool file chains
and other system data are restored to their original status. If the warm start
procedure cannot be implemented because certain required areas of storage are
invalid, the operator is notified to take other recovery procedures.

Any new or revised status of spool file blocks, spooling devices, and spool hold
queue blocks is dynamically copied to the checkpoint area on the IPLed system
residence volume as it occurs. When a checkpoint (CKPT) start is requested, this
is the information that is used to recreate the spool file chains. It differs from
warm start data in that only spool file data is restored; accounting and system

24 VM/SP System Programmer’s Guide

N

Force Start

messages information is not recovered. Also, the order of spool files on any
particular restored chain is not the original sequence but a random one.

A force start is required when checkpoint start encounters I/0 errors while reading
files, or invalid data. The procedure is the same as for checkpoint start except that
unreadable or invalid files are bypassed.

Chapter 7. Spooling Functions 25

26 VM/SP System Programmer’s Guide

Chapter 8. CP Commands

The CP commands allow you to control the virtual machine from the terminal,
much as an operator controls a real machine. You can stop virtual machine
execution at any time by using the 3066 terminal’s attention key or the 3270
terminal’s ENTER or PA1 key. To restart execution, enter the CP BEGIN
command. You can also simulate external, attention, and device ready interrupts
on the virtual machine and inspect and change virtual storage, virtual machine
registers, and status words such as the PSW and the CSW. You can use extensive
trace facilities for the virtual machine, a single-instruction mode, and commands
that invoke the spooling and disk sharing functions of CP.

Command Privilege Classes and Types

also assigned one or more privilege classes. The privilege class(es) for each user
are stored in the VM/SP directory. If a user tries to issue a CP command, but the
classes assigned to the command do not include a class that was assigned to the
user, the system will not process the command. This prevents users from altering
system functions for which they are not authorized.

i) Each CP command has one or more privilege classes assigned to it. Each user is

The privilege class(es) assigned to administrative personnel are determined by the
size and configuration of the system and by the installation’s particular
circumstances. For example, in a small installation one individual may be assigned
all privilege classes to allow that individual to handle all administrative tasks. In
larger installations several individuals may be assigned different privilege classes
depending on the commands they need to access to do their assigned tasks.

Each version of each CP command is assigned a type code that corresponds to the
level of system control that is provided (operations, resource, programming,
spooling, analyst, general and CE).

IBM defines privilege classes for each command according to administrative tasks
that a typical installation might want to assign to the functions of that command. It
also assigns a type to each command that corresponds to the IBM-defined privilege
class. The IBM-defined privilege classes can be changed by an installation but the
type is permanent. Figure 2 shows the relationship of privilege class, type, and
administrative function. This relationship is discussed in the text that follows.

Chapter 8. CP Commands 27

IBM

Defined IBM .
Class User Defined
Functional Types User Class
Primary
A System Operations Spooling Spool D
Operator Type=0 Type=5 Operator
System
B Resource Resource Analyst System E
Operator Type=R Tvype=A Analyst
Virtual
C System Programmer General Machine]
Programmer Type=P Type=G Users
Service
CE Represent— F
Type=C ative (CE)

Note: The IBM—defined class ANY has no type and cannot be changed.

Figure 2. Relationship of Privilege Class, Type, and Administrative Function

The Operations administrative function (type O) is assigned to those commands
used for primary system operations. The IBM-defined privilege class for these
commands is class A.

The Resource administrative function (type R) is assigned to those commands used
for the distribution of real system resources (such as channels and devices) as they
are requested by virtual machine users. The IBM-defined privilege class for these
commands is class B.

The Programmer administrative function (type P) is assigned to those commands
used to control trace table information or to locate, display, print, or change the
information in specific storage locations to aid in trouble analysis. The
IBM-defined privilege class for these commands is class C.

The Spooling administrative function (type S) is assigned to those commands used
to control the spool files and certain aspects of the real card readers, punches, and
printers. The IBM-defined privilege class for these commands is class D.

The Analyst administrative function (type A) is assigned to commands used for
monitoring the system resources to ensure that enough resources are available for
the virtual machine users. The IBM-defined privilege class for these commands is
class E.

The CE administrative function (type C) is assigned to commands used for problem
determination and problem isolation. These commands allow the service
representative (customer engineer) to get data about the VM/SP system. The
IBM-defined privilege class for these commands is class F.

28 VM/SP System Programmer’s Guide

Tailoring the Class

The General function (type G) is assigned to commands used to control the
functions associated with a particular virtual machine. The IBM-defined privilege
class for these commands is class G.

Some commands have an IBM-defined privilege class of ANY. These commands
do not have a type associated with them and may be used by any user. The
privilege class for these commands cannot be changed.

For descriptions of all the CP commands, see the VM/SP CP Command Reference
for General Users and the VM /SP Operator’s Guide. Both publications also list all
commands with their types and IBM-defined privilege classes. For descriptions of
DIAGNOSE codes, refer to “DIAGNOSE Instruction in a Virtual Machine” in this
publication.

Structure to Your Installation’s Needs

An installation can optionally change the IBM-defined privilege classes to meet its
individual needs. (This applies to all IBM-defined privilege classes except class
ANY which cannot be changed.) You can define up to 32 classes, A through Z
and 1 through 6. This ability to change the IBM-defined class structure provides
additional flexibility and control over each user’s access to CP commands. Thus,
you have greater control over your installation’s resources and information.

In addition, new commands can be added to the system. This section describes
how to change command and DIAGNOSE code classes, how to change virtual
machine class access to commands and DIAGNOSE codes, how to change class
access to certain internal CP functions, and how to add new commands.

How to Change Command Classes and Virtual Machine Class
Access to Commands

To change the IBM-defined privilege classes, you must prepare a file that contains
the commands and DIAGNOSE codes for which you want to change the privilege
classes. This file is called the class override file. Each control statement in the class
override file shows the installation supplied class for that particular command.

Because you are changing the existing class structure, you must also change the
VM/SP directory to include the newly defined classes.

In general to redefine the class authorization for your system, you must do the
following steps (each step is described more fully later in this section):

1. Plan for the effect of the changes.

« Determine the different kinds of users of your system and what types of
administrative functions they should be able to do.

e List the commands that you want each kind of user to be able to access. If

a command is assigned to more than one type, be sure to include the type
or types of that command that you want the user to access.

Chapter 8. CP Commands 29

« From this you should be able to determine how many and which privilege
classes you want to associate with each command and type and with each
kind of user. Note that if you do not change the class on a command, the
class remains the IBM-defined class. For example, if the IBM-defined
class for a particular command is A and you do not change it in the
override file, it will remain class A.

« Make sure you will not compromise system integrity or system security
with these changes.

« Plan for updates to any HELP files caused by the changes.

« Check whether you need to change the classes of any internal functions
using the SYSFCN macro (see "How to Change the Privilege Class of
Certain Internal CP Functions').

2. Make any required class changes to commands:

a. Create a class override source file on a CMS formatted minidisk to which
only the system administrator or other authorized person has access. This
same user should have WRITE access to the system resident disk.

b. A class override file consists of:
o A DESTINATION control statement followed by,

+« OVERRIDE control statements for those commands and DIAGNOSE
codes for which you want to change the IBM-defined classes.

The DESTINATION statement must be the first control statement in the
override file.

c. Enter the OVERRIDE command with the EDIT operand to validate the
class override file.

d. When you are satisfied that the class override file is correct, enter the
OVERRIDE command without the EDIT operand to convert the class
override file to an internal format.

e. To aciivaie ihe class oveiiides, IPL the system. {(But

a matching CP directory before you IPL.)
3. Make any required class definition changes to the virtual machine directory:

« Normally to assign additional or different classes to a virtual machine,
change the CLASS field on the USER control statement.

« If the other parameters on the USER control statement do not leave
sufficient space for all of the new classes, place an * in the CLASS field on
the USER control statement for that virtual machine and add a CLASS
control statement on the next line.

30 VM/SP System Programmer’s Guide

When you want to make additional changes to the class overrides, make the
changes or additions to the class override file and enter the OVERRIDE command
to convert the changes to internal format as described above. Then IPL the
system.

To revert to the IBM-defined classes, enter the OVERRIDE command with the
FREE operand and then IPL the system. If your directory was updated specifically
for your new class structure, you need to install your original directory when you
issue the OVERRIDE command with the FREE operand.

Note: If extensive changes are made in the command structure, you must arrange
to update the directory immediately before you IPL with your new override file.
Extensive changes in the use of classes A - F might also require an update to the
SYSFCN macro in DMKSYS.

Planning the Command Authorization for the System

Before changing the classes of commands, carefully consider the effect of the
changes on users and on system integrity. Such changes to the existing command
structure will either limit or extend access to system commands. The key elements
of this planning are system integrity, system security, and how well these changes
enhance your installation’s organization and requirements.

| Determining Functions to be Done by Users

The first step in restructuring your command classes is to determine the different
kinds of users of your system and what types of functions each of these users need
to do the tasks associated with their job. You must consider the existing structure
and the users’ needs and requirements. This can best be shown in an example.

Consider an Insurance Company where several individuals’ job responsibilities and
tasks vary. The installation has decided to implement a new class structure. First
the users of the system are closely examined to determine their requirements. The
system administrator has determined that thc users fall into the following
categories:

Job Title

Abbrev Duties

System Administrator

SAD Responsible for general management of the system and for
determining how the system will be structured and used.

System Programmer 1

SP1 Responsible for planning, generating, maintaining, extending,
and controlling the use of the operating system with the aim
of improving the general productivity of the installation.

System Programmer 2

SP2 Same responsibilities as System Programmer 1 except that
since the system is large handles a different portion of the
system.

Figure 3 (Part 1 of 2).

Different System Users and Their Responsibilities

Chapter 8. CP Commands 31

Job Title Abbrev Duties

System Analyst 1 SA1l Responsible for analyzing the system to determine what new
applications, system programs, and devices are needed by the
installation.

System Analyst 2 SA2 Responsible for analyzing the system performance.

Primary System SO For each shift, there is a primary system operator who is

Operators responsible for ensuring the smooth running of the system
and carrying out such duties as changing tapes and disk
packs.

Data Base DBA Responsible for resources associated with and access to the

Administrator main data base of the system. Also responsible for resources
associated with spooling, printing, and archiving.

Service CE Obtains and examines certain data about input and output

Representative devices connected to the system. Also, controls intensive
error recording and some machine check error recording.

Experienced EP Responsible for developing, testing, and supporting

Application applications to do the work of the company.

Programmers

Inexperienced 1P Same as Experienced Application Programmers except that

Application they develop less sophisticated application programs and

Programmers therefore do not require access to some functions needed by
the more experienced application programmers.

Non-DP Users U1, U2 Two different types of non-DP users with different

requirements were identified.

Figure 3 (Part 2 of 2). Different System Users and Their Responsibilities

Assigning Commands to Kinds of Users

So far you have determined the kinds of users you have on your system and what
types of system functions each user will need to access. Now for each kind of user
list all commands that each user will need to do the indicated function. Do not list
commands the user does not need or commands whose IBM-defined class is ANY.
For those commands that do different functions depending on their assigned type,
list the type that corresponds to the functions that you want the user to able to do.
For some users, you may want to list more than one type for a particular command.

In our example of the insurance company, one way of doing this is to make a chart
like the following one that lists all the commands along the side and the types of
users across the top. (Note that, for sake of brevity, the example chart only lists a
few commands. In reality, all CP commands should be listed.) It will help you to
list user types in order by level of system control. You should also include a
column for Type (especially if a command has more than one Type) and a column
for the new classes to be assigned. The next step is to decide which commands you
want each user to be able to use. For the example, asterisks (*) were placed under
each user if that user could access the command in the left column.

32 VM/SP System Programmer’s Guide

Command

ACNT
ADSTOP
ATTN
AUTOLOG
CHANGE
CHANGE
DCP
DEFINE
DEFINE
INDICATE
INDICATE
INDICATE
IPL
MESSAGE
QUERY
QUERY
QUERY
QUERY
QUERY
QUERY
QUERY
SAVESYS
SPOOL
DIAGO04
DIAG1C
DIAG30
DIAG38
DIAG74
DIAGS84

Type

QraoaunrpvIOo0oQQ@roQRTQAROQOO

New

Class SAD SP1 SP2 SA1 SA2 SO DBA CE

*

* * * *
%*
*
* *
* *
* *
* *
*
* * *
* * * * *
%*
* *
* *

EP IP Ul U2

* * *
* * *
* *

* * *
* * *
* * *

Note: DIAGNOSE code X'84' is not marked in any column. This is an example
of a function that might be restricted to one or two users.

Associating Privilege Classes with Commands and Users

Once you have associated particular commands and command types with particular
users, you should be able to determine how many and which privilege classes you
want to associate with each command and type and with each kind of user.

In our insurance company example, the system administrator could assign a
different user class to each type of user. Then, each command could be assigned
the list of classes that corresponds to the users who need access. In the chart, each
asterisk can be changed to the appropriate user class and copied to the “New

Class” field as indicated below:

Chapter 8. CP Commands 33

Command

ACNT
ADSTOP
ATTN
AUTOLOG
CHANGE
CHANGE
DCP
DEFINE
DEFINE
INDICATE
INDICATE
INDICATE
IPL
MESSAGE
QUERY
QUERY
QUERY
QUERY
QUERY
QUERY
QUERY
SAVESYS
SPOOL
DIAG04
DIAG1C
DIAG30
DIAG38
DIAG74
DIAG84

34 VM/SP System Programmer’s Guide

o
L=
®

QrFraQurTEIOoO0oQQProQRTQALOQRQO

New
Class

IJK

UK

FGI

FG
IJKL
BCDH
F

IJKL

F

DE

K
IJKL

F

F

F

BC

DE

FG

H

IJKL
ABC
IJKL
ABCDE
H
ABCDEH
ABCDE
ABC

1

SAD SP1 SP2
A B C
B C
B C
A B C
A B C
A B C
A B C
A B C

SA1 SA2
D E

D

D

D E

D E

D E

D E

D E

SO DBA CE EP IP

F

jeslies]

izslisslies

G

Qo

H

asfias!

HICG U HHEN

U1l U2
K L
K

K

K L
K L
K

K L
K L
K L

As you can see, DIAGNOSE code X'84' is still not available to any of these user
groups. However, a few individuals could be given access to this function by
assigning class 1 in addition to their normal privilege classes.

You will probably notice that the users with access to system functions and
resources (classes A-H) do not have any of the commands that would be useful in
controlling their own virtual machine (e.g. SPOOL). Users with classes I - L have

lawvala af santral Avar tha
vou_yn.x& AWV Y WID VUl VUILIWM VL UYWL VAWVIL U YY1 Yir

the system administrator to independently control a user’s access to system
commands as well as virtual machine commands.

eir gwn virtual machine, Thig arrangement qnnum
as I joH rangement a:ue

With a change as extensive as this, it is necessary to redefine the privilege classes
that control certain internal CP functions. For this example, SYSFCN should be
coded:

SYSFCN OPER=I", CPRD=BC, CPWT=B, SERV=H, PRIV=ABCF , DFLT=K

For an explanation of the parameters to SYSFCN, see “How to Change the
Privilege Class of Certain Internal CP Functions” later in this section.

Security and System Integrity

Help Files

With the ability to define the command access to suit your installation’s security
and system integrity requirements, you have great flexibility and control over each
user’s access to CP commands. This can be used to enhance security and system
integrity at your installation by restricting access to system resources and
information controlled by commands or DIAGNOSE codes. However, when you
change the privilege class of commands and make changes to user access, be
careful not to inadvertently compromise security or system integrity by allowing
users to access commands that could provide access to unauthorized information or
that could affect system operation.

You may also want to update the HELP files if changes to the command classes
affect a type G command. Refer to the VM/SP CMS User’s Guide for information
on tailoring the HELP facility.

Documentation Considerations

\ Migration Considerations

If you change the privilege class for commands or DIAGNOSE codes, the privilege
classes documented in this and other publications for commands and DIAGNOSE
codes might not be correct for your installation.

Altering the VM/SP directory to take advantage of the 32 class command access
support will make your directory incompatible with earlier releases of the system.

How to Assign Privilege Classes to Commands and DIAGNOSE Codes

If you want to assign privilege classes other than the IBM-defined classes to certain
commands or DIAGNOSE codes (that is, override the IBM-defined privilege
classes) you must:

1. Allocate DASD space for the override file. Refer to VM/SP Planning Guide
and Reference for information on allocating DASD space for the override file.

2. Create a class override file.

3. Verify the syntax of the control statements in the class override file by issuing
the OVERRIDE command with the EDIT option.

4. Issue the OVERRIDE command without the EDIT option.

5. IPL the system.

Chapter 8. CP Commands 35

Creating a Class Override File S

To override the IBM-defined privilege classes for commands and DIAGNOSE
codes, you must first create a class override file. Since VM/SP does not assign a
filename to this file, you must assign the name. The default filetype is
OVERRIDE. You will specify the name on the OVERRIDE command, which is
used to process the class override file and convert it to internal format.

The class override file consists of one DESTINATION control statement followed
by an OVERRIDE control statement for each command or DIAGNOSE code
whose IBM-defined privilege class is to be overridden. The first statement in this
file (the DESTINATION control statement) gives the location of the CP-owned
volume that contains the internal override information. The DESTINATION
statement has the same syntax as the DIRECTORY statement in the CP directory
file. The override space should be on the same volume as the directory, so you
could copy the DIRECTORY statement, changing the first term from
DIRECTORY to DESTINATION, and use it in the override file.

In the class override file, follow the DESTINATION control statement with the
OVERRIDE control statements for the commands and DIAGNOSE codes to be
overridden. The format of the OVERRIDE control statement is:

command [Type=c] Class= 3 classes 2
*

where: \

command
specifies the command or DIAGNOSE code name. It must be the first
parameter on the control statement.

Note: VM/SP CP Command Reference for General Users and VM/SP
Operator’s Guide list the CP commands that you can specify on the
OVERRIDE control statement. Figure 4 lists the DIAGNOSE codes that
you can specify on the OVERRIDE control statement. Only the commands
and DIAGNOSE codes listed can have their classes changed. Commands or
DIAGNOSE codes defined by the system as class ANY are not valid on the
OVERRIDE control statement.

Class=jclasses L
L*)

specifies the classes to be assigned to this command. This parameter is
required. The minimum abbreviation of the keyword is C. classes can be
from 1 to 32 alphanumeric characters (with no intervening spaces) from A -
Z and 1 - 6. Duplicate characters are not allowed and the characters may be
in any order. An asterisk (*) specifies that this command or DIAGNOSE
code can be executed regardless of the class defined for the virtual machine.

Type=c
specifies the functional type to which the command belongs. (The types
correspond to the IBM-defined privilege classes. The classes can be changed P
but type is permanently associated with the command.) The minimum K J

abbreviation of the keyword is T. This parameter is required only when a

36 VM/SP System Programmer’s Guide

DESTINATION
*

%

%

*

*

* A
* B
* C
* D
* E
* F
* G
* H
* I
* J
* K
* L
*

* 1

command belongs to more than one functional type. For example, QUERY
belongs to seven types (O, R, P, S, A, C, and G). c¢ specifies one of the
following functional types:

Operations
Resource
Programmer
Spooling

Analyst

Customer engineer
General

Qapwyumm™O

The TYPE field is invalid for DIAGnn or DIAGnnn.

DIAGNOSE IBM-Defined
Code Class
DIAGO04 CE
DIAGIC F
DIAG2C CEF
DIAG30 CEF
DIAG34 CE
DIAG38 CE
DIAG3C ABC
DIAGS0 ABC
DIAG74 ABC
DIAGS84 B

Figure 4. DIAGNOSE Instructions That Can Be Respecified on an OVERRIDE Control
* Statement

Class Override File Example: Using the example of the insurance company from the
section on planning, the override file would contain the following entries:

250 3350 VMSRES

CP COMMAND OVERRIDES FOR 'OUR INSURANCE COMPANY'

USER CLASSES REPRESENT:

L L | | [T A

SYSTEM ADMINISTRATOR (SAD)

SYSTEM PROGRAMMER -~ LEVEL 1 (SP1)
SYSTEM PROGRAMMER - LEVEL 2 (SP2)
SYSTEM ANALYST - LEVEL 1 (SA1)

SYSTEM ANALYST - LEVEL 2 (SA2)

SYSTEM OPERATOR (SO)

DATA BASE ADMINISTRATOR (DBA)

IBM SERVICE REPRESENTATIVE (IBM)
EXPERIENCED APPLICATION PROGRAMMER (EP)
INEXPERIENCED APPLICATION PROGRAMMER (IP)
COMPLEX USERS (U1)

SIMPLE USERS (U2)

SPECIAL CLASS ASSIGNED TO DIAGNOSE CODE X'84'

Chapter 8. CP Commands 37

*

* COMMANDS ARE ARRANGED IN BROAD CATEGORIES:

*

* A-G = SYSTEM CONTROLS OR INFORMATION REQUESTS

* H = IBM SERVICE REPRESENTATIVE

* I-L = VIRTUAL MACHINE OPERATION

*

* NOTES:

*

* (1) MOST SYSTEM USERS NEED PRIVILEGE CLASS 'I' IN ADDITION TO
* THEIR PRIMARY FUNCTIONAL CLASS. THIS ENABLES THE SYSTEM
* USER TO FULLY CONTROL A VIRTUAL MACHINE.

*

* (2) USER CLASS '1' SHOULD BE RESTRICTED TO REDUCE THE POTENTIAL
* FOR MISUSE OF DIAGNOSE CODE X'84'.

*

ACNT TYPE=O CLASS=D

ADSTOP TYPE=G CLASS=IJK

ATTN TYPE=G CLASS=IJK

AUTOLOG TYPE=O CLASS=FGI
CHANGE TYPE=S CLASS=FG
CHANGE TYPE=G CLASS=IJKL
DCP TYPE=P CLASS=BCDH
DEFINE TYPE=R CLASS=F
DEFINE TYPE=G CLASS=IJKL
INDICATE TYPE=O CLASS=F
INDICATE TYPE=A CLASS=DE
INDICATE TYPE=G CLASS=IJK
IPL TYPE=G CLASS=IJKL
MESSAGE TYPE=0O CLASS=F
QUERY TYPE=O CLASS=F
QUERY TYPE=R CLASS=F
QUERY TYPE=P CLASS=BC
QUERY TYPE=A CLASS=DE
QUERY TYPE=S CLASS=FG
QUERY TYPE=C CLASS=H
QUERY TYPE=G CLASS=IJKL
SAVESYS TYPE=A CLASS=ABC
SPOOL TYPE=G CLASS=IJKL

DIAGO4 CLASS=ABCDE
DIAGI1C CLASS=H
DIAG30 CLASS=ABCDEH
DIAG38 CLASS=ABCDE
DIAG74 CLASS=ABC
DIAG84 CLASS=1

Verifying that the Clas

Note that the TYPE operand must be coded for the DEFINE and QUERY
commands because they are associated with more than one type. Note alsc that to
assign more than one class to a command or command type, all new classes are
placed on the same override control statement (see the QUERY TYPE=S

statement in the above example).
s Override File is Syntactically Correct

To verify that the control statements in the class override file have the correct
syntagx, issue the OVERRIDE command with the EDIT option:

OVERRIDE fn ft fm (EDIT

38 VM/SP System Progr

ammer’s Guide

where the filename (fn), filetype (ft), and filemode (fm) identify the class override
file. (Note that the default filetype is OVERRIDE.) If an error is detected, the
statement in error is displayed and a message informs you what the error is.

For information on messages, refer to VM /SP System Messages and Codes.

| Making the Class Assignments in the Class Override File Effective

After you create the class override file and verify the syntax of the control
statements in it, issue the OVERRIDE command with no options to make the new
privilege classes effective for the specified commands:

OVERRIDE fn ft fm

where the filename (fn), filetype (ft), and filemode (fm) identify the class override
file. If an error is detected, the statement in error is displayed, a message informs
you what the error is, and processing of the class override file continues in edit
mode but does not write the class override data. (Refer to ""How to Verify that the
Class Override File is Syntactically Correct'" for a list of messages that could be
issued.)

If no errors are detected, the OVERRIDE command converts the class override file
to an internal format. This command is similar to the DIRECT command used for
converting an external directory source to internal format. If an internal override
file already exists, issuing the OVERRIDE command replaces the existing override
file with the new one. At this time, however, the new class overrides do not take
effect.

To make the new class overrides effective after issuing the OVERRIDE command,
IPL the system.

Warning: Restricting the user class on a console command (for
example, IPL) does not restrict the function of the analogous
directory control statement (in this case, IPL). Thus, a command
(such as IPL or LINK) may work at IPL time but not work when
issued by the user during his session.

Reverting to the IBM-Defined User Classes

If you want to cause the commands to be assigned their IBM-defined privilege
classes again, issue the OVERRIDE command with the FREE option:

OVERRIDE fn ft fm (FREE
and IPL the system.

If, after reverting to the IBM-defined classes, you want to return to the classes you
defined in the override file:

1. Enter the OVERRIDE command without the FREE option:

OVERRIDE fn ft fm

Chapter 8. CP Commands 39

2. IPL the system. N

Note: If your changes are quite extensive, you may need to install a different
directory and/or build a new nucleus with an updated SYSFCN.

How Users Can Find Which Commands They Can Issue

To find out which IBM-defined and user-defined commands are available, the user
can issue the COMMANDS command. For example, if the IBM-defined classes
are in effect for all commands, a user whose virtual machine is assigned privilege
classes E and F would receive the response:

LOGON DIAL DISCONN LOGOFF MESSAGE SLEEP
* CP COMMANDS DCP DMCP INDICATE
MONITOR PER QUERY SAVESYS SET

DIAGOO DIAGO4 DIAGOS8 DIAGOC DIAG10 DIAG14
DIAG18 DIAG1C DIAG20 DIAG24 DIAG28 DIAG2C
DIAG30 DIAG34 DIAG38 DIAG40 DIAG48 DIAG4C
DIAG54 DIAG58 DIAGS5C DIAG60 DIAG64 DIAG68
DIAG6C DIAG70 DIAG78 DIAG7C DIAG80 DIAG8C
DIAGY94 DIAG98

Remember, this would include any commands of class E or F added by the user’s
installation.

How to Change the Definition of Privilege Classes for a Virtual Machine

The VM/SP directory contains the entries of all potential virtual machines R
permitted to logon to the VM/SP system. The VM/SP directory is set up during

system generation and contains, among other items about each virtual machine, the

privilege class or classes of commands that a user of each virtual machine can

successfully execute. (For additional information about the VM/SP directory and

how to generate it, refer to VM/SP Planning Guide and Reference.) The control

statements in the VM/SP directory that define the command privilege classes for a

virtual machine are the USER control statement and the CLASS control statement.

The USER control statement defines a virtual machine and creates a VM/SP
directory entry. It identifies the directory entry for one user. You must prepare a
separate USER statement for each virtual machine in your system. The format of
the USER statement is described in VM /SP Planning Guide and Reference. Use
the ¢/ operand of the USER statement or the CLASS control statement to define
privilege classes for ihe virtuai machine. (Coding this operand is described later in
this section.) You can define up to 32 classes.

Warning: Make sure you have enough free disk space before editing
and making changes to the existing directory so that you can file the
updated directory. Refer to VM /SP Planning Guide and Reference
for information on how to allocate DASD space for the directory.

For the example of the insurance company that we used before the directory might
include the following USER and CLASS control statements:

40 VM/SP System Programmer’s Guide

DIRECTORY 250 3350 VMSRES

NOTES :

(1)

(2)

(3)

*OX K K K K X X X X X X ¥ ¥ ¥ % ¥

CP DIRECTORY FOR 'OUR INSURANCE COMPANY'

MOST SYSTEM USERS NEED PRIVILEGE CLASS 'I' IN ADDITION TO
THEIR PRIMARY FUNCTIONAL CLASS. THIS ENABLES THE SYSTEM
USER TO FULLY CONTROL A VIRTUAL MACHINE.

USER CLASS '1' SHOULD BE RESTRICTED TO REDUCE THE POTENTIAL
FOR MISUSE OF DIAGNOSE CODE X'84'.

USERID ALTMAINT IS SET ASIDE FOR EMERGENCY USE. THIS USER
HAS ACCESS TO ANY CP COMMAND NO MATTER WHAT OVERRIDE FILE
IS APPLIED. THE PASSWORD SHOULD ONLY BE KNOWN TO A
*¥**VERY*** FEW KEY PEOPLE.

USER ALTMAINT SECRET 2M 8M *
CLASS ABCDEFGHIJKLMNOPQRSTUVWXYZ123456

(other
*
USER ADM
(other
*
USER SP1
(other
*
USER SP2
(other
*
USER SA1
(other
*
USER SA2

(other
*

control statements)

&

XXXXXXXX 2M 8M AI1
control statements)

XXXXXXXX 1M 2M BI
control statements)

XXXXXXXX 1M 2M CI
control statements)

XXXXXXXX 1M 2M DI
control statements)

XXXXXXXX 1M 2M EI
control statements)

USER SO XXXXXXXX 1M 2M FI

(other
*
USER DBA
(other
E3
USER IBM

(other
*

control statements)

XXXXXXXX 1M 4M GI
control statements)

XXXXXXXX 1M 4M HI
control statements)

USER EP XXXXXXXX 1M 4M I

(other
*

control statements)

USER IP XXXXXXXX 1M 2M J

(other
*

control statements)

USER U1 XXXXXXXX 1M 2M K

(other
*

control statements)

USER U2 XXXXXXXX 512K 1M L

(other

control statements)

If no user named “OPERATOR” is defined, DMKSYS should be updated to

identify “SO” as the system operator.

Chapter 8. CP Commands

41

Defining Privilege Classes for a Virtual Machine

To change the definition of privilege classes for a virtual machine do the following
steps. Step 3 will differ depending on whether you are defining eight or less
privilege classes, or more than eight privilege classes.

1. Use the XEDIT command to edit the VM/SP directory. This file will have a
fileid of USER DIRECT or, if you defined a different file name, filename
DIRECT.

2. Find the USER control statement for the virtual machine whose privilege
classes you want to change.

3. This next step is dependent on whether you are defining eight or less classes or
more than eight classes.

To define eight or less privilege classes for a virtual machine, do the following:

a. Change the c/ operand to the classes that you want this virtual machine to
have. The c! operand consists of one to eight EBCDIC characters (with no
intervening blanks) that can be A - Z, and 1 - 6. These characters define
privilege classes for the virtual machine. If ¢/ is not coded, the default is G.
For example, if you want the user whose virtual machine userid is
DATABASE to be able to use commands with the privilege classes D, E,
L, and M, code the USER control statement as:

USER DATABASE pass stor mstor DELM pri le 1d cd es

Note: For information on coding other operands of the USER control
statement, refer to Planning Guide and Reference.

If your list of privilege classes will not fit on your USER control statement, do
the following: i

a. Change the c/ operand to an asterisk (*).

b. Immediately following the USER control statement, insert a CLASS
control statement. The format of the CLASS control statement is:

| cLass | classes |

where:

classes
specifies up to 32 privilege classes that can consist of any letters
from A - Z and any numbers from 1 - 6 with no intervening blanks
or commas. Duplicate characters are not allowed. The characters
may appear in any order.

For example, if you want to assign privilege classes A through Q to a
virtual machine that belongs to a user whose userid is SYSADM, code the
USER control statement and the CLASS control statement as follows:

42 VM/SP System Programmer’s Guide

4(~

\. k /,’

USER SYSADM pass stor mstor * pri le 1d cd es
CLASS ABCDEFGHIJKLMNOPQ

Note: For information on coding other operands of the USER control
statement, refer to VM/SP Planning Guide and Reference.

4. After you make all the desired changes to the directory, file the directory file.

5. To verify that the CMS file can be used as a directory file, issue the DIRECT
command with the EDIT option. (For the format of the DIRECT command,
refer to VM /SP Planning Guide and Reference.) If you made a syntax error,
an error message informs you of the error.

6. When you have verified that the directory file is correct, to replace the old
directory with the updated directory, issue the command:

DIRECT filename

Note: The virtual machine that issues the DIRECT command must have write
access to the volume that will contain the new directory. If you create a
directory that is to be written on the active VM/SP system residence volume,
your virtual machine’s current directory entry must have write access to the
volume that contains the current VM/SP directory.

7. Once the directory is updated, directory changes for a virtual machine currently
logged on to the system do not take effect until the user logs off the system and
then logs back on.

8. If the new directory is written for a new system residence volume, to have the
new directory take effect, IPL the system. This causes the new system resident
volume to be loaded.

How to Change the Privilege Class of Certain Internal CP

Functions

Certain internal functions are preset and need the SYSFCN macro the change
them. You can use the SYSFCN macro to change the privilege classes of the

following internal CP functions:

« Authorization to logon during CP initialization

o Authorization for intensive recording

« Authorization to issue Diagnostic Load/Write or Sense/Read commands
« Authorization to issue diagnostic reads to a non-dedicated control unit

o Authorization to issue the Buffer Unload command

¢ Authorization for IOCP Read

Chapter 8. CP Commands 43

e Authorization for IOCP Write
A default SYSFCN macro is supplied in the DMKSYS macro. If you want to

include a SYSFCN macro statement in DMKSYS that specifies the changes you
want to make. The macro format is:

[label] SYSFCN [PRIV= 3ABCDEF %]
classes
[,OPER= %é 2]
classes
[,CPRD= ;@ %]
classes
[,CPWT= (C 2]
3classes
[,SERV= (F %]
%classes
[,DFLT= gg %]
classes
where:
PRIV

specifies the classes authorized to issue X'42' CCW on a 37xx emulation
line that is not dedicated to the user. The default classes are A through F.

OPER
specifies the classes authorized to logon during initialization. The default
classis A.

CPRD
specifies the classes authorized to issue IOCP READ. The default classes
are C and E.

CPWT
specifies the classes authorized to issue IOCP WRITE. The default class is
C.

SERV
specifies the classes authorized to issue Diagnostic Load/Write and
Sense/Read CCW commands. The default class is F.

DFLT
specifies the default class or classes for a user who does not have a class
defined. The default class is G.

For an example of how our insurance company used the SYSFCN macro, refer
back to “Associating Privilege Classes with Commands and Users”.

44 VM/SP System Programmer’s Guide

change some or all the privilege classes assigned to internal CP functions, you must

How to Add a Command to CP

Note: 1If your installation had added commands to CP in a release before Release
4, when you install Release 4 or following releases, you must recode any changes to
the command table in DMKCFC. You must recode the changes by replacing the
COMND macros with appropriate COMMD macros, as described below. You
must then reassemble DMKCFC before building your system.

You can add your own commands to your VM/SP system. To do so, follow the
steps described in this section:

1. Code the module to handle the command processing. Follow the CP coding
conventions outlined under "CP Coding Conventions."

2. Second, add an entry for the command in the CP DMKCFC module.
DMKCEFC has two entry points: one for users who are logged on and another
for users that are not logged-on. If the command is for logged-on users, be
sure its entry is beyond the label COMNBEG1. If the command has
subcommands, add entries for the subcommands in DMKCMD.

To place an entry for the command in the DMKCFC module, insert a line with the
following format:

[label] COMMD COMMAND= (command, abbrev)
,CLASS=classes
[, TYPE=t]
{,SUBCMD=sublabel }
{,EP=eplabel }
[,LAST=YES]

To place an entry for a subcommand in the DMKCMD module, insert a line with
the following format:

[labell] COMMD COMMAND= (command, abbrev)
, TYPE=types
{,SUBCMD=sublabel}
{,EP=eplabel }
[,LAST=YES]

To place an alias entry in either module, insert a line with the following format:

[label] COMMD COMMAND= (command , abbrev)
,ALIAS=cmdlabel
[,LAST=YES]
where:
label

used to reference command entry (for example, for an alias).
command

specifies the command or subcommand name. Null specifies no
subcommand validation. This operand can be 1 to 8 alphameric characters.

Chapter 8. CP Commands 45

abbrev \

specifies the length of the shortest abbreviation allowed for this command.

CLASS=classes

specifies the installation-defined privilege classes for this command. Up to
32 classes are allowed, from A -Z and 1 - 6.

TYPE=t (in DMKCFC) -

is the command type designation used by OVERRIDE to differentiate
between commands with the same name, and to identify subcommands that
are valid for this version of the command. ‘“‘t” must be a single character
(O,R,P,S,A,C, or G).

TYPE=types (in DMKCMD)

lists the functional types that can use this particular subroutine. An optional
plus (+) sign may be used to delimit multiple functional type codes.

ALIAS=cmdlabel

specifies the address of the command for which this command is an alias.

SUBCMD =sublabel

specifies the entry point label in DMKCMD that corresponds to the
subcommand.

EP=eplabel

specifies the entry point label to the command processing routine.

LAST=YES

delimits the command table or the subcommand list.

The procedure for a simple command entry (no subcommands) is:

1.

Update (via XEDIT) DMKCFC to include a new COMMD entry for the ‘
command.

COMMD COMMAND= (NEWCMD, 3) ,CLASS=ABC123, EP=DMKNEWCM

Reassemble (VMFASM) DMKCFC. If the EXTERNAL SYMBOL
DICTIONARY (page 1 of the ASSEMBLER listing) shows DMKCFC has a
length greater than X'1000’, then you must move DMKCFC to the resident
portion of the load list (before DMKCPE) to avoid an abend.

Assemble (VMFASM) the module that contains the entry point named in the
COMMD macro (for example, DMKNEW). -

Add your module to the load list before DMKCPE if it is a resident module, or
after DMKCEPE if it is a pageable module.

&1 &2 &3 DMKNEW

Load (VMFLOAD) a new CP nucleus.

46 VM/SP System Programmer’s Guide

Notes:

1

You cannot OVERRIDE this command because DMKOVR contains a table of
command names and DIAGNOSE codes for which an OVERRIDE statement is

valid.

If this command is listed in DMKCFC, it will appear with the COMMANDS
command.

Chapter 8. CP Commands

47

48 VM/SP System Programmer’s Guide

Chapter 9. Interruption Handling

1/0 Interrupts

Input/output interrupts from completed I/O operations initiate various completion
routines and the scheduling of further I/O requests. The I/O interrupt handling
routine also gathers device sense information.

Missing Interrupt Handler

An I/0 operation, such as a minidisk operation or a paging operation, that does
not complete in a specified time period causes a missing interrupt condition. An
incomplete minidisk operation can lock out a virtual machine user or an incomplete
paging I/O operation can degrade the performance of the system. The missing
interrupt handler detects incomplete 1/0 conditions by monitoring I/O activity
and, in addition, it takes action to correct incomplete 1/O conditions without
operator intervention. The missing interrupt handler, therefore, is designed to
improve the availability of the system by preventing user lockout and system
degradation.

The missing interrupt handler scans the real device blocks (RDEVBLOKSs) at
specified time intervals. If the device is busy (RDEVBUZY flag is on) a bit
(RDEVMID) is set that indicates a possible missing interrupt condition. The first
level interrupt handler, DMKIOT, resets RDEVBUZY and RDEVMID when the
device causes an interrupt at the completion of an I/O operation. Therefore, if
RDEVMID is on at the end of the next time interval, a missing interrupt condition
exists.

The installation may use the default time interval for each distinct device category
or may specify a time value. For example, if the default time interval value of ten
minutes for tape devices is not appropriate for an installation’s configuration, the
installation may change this value. See ‘‘Default Time Interval Values” and
“Changing the Time Interval” for a list of the default time interval values and how
you can change these values.

Chapter 9. Interruption Handling 49

Using the Missing Interrupt Handler

Devices Monitored

To use the Missing Interrupt Handler, DMKDID must be included in the load list
during system generation. MIH can be set on either by including it as an option in
the directory or by issuing the SET command. The default is MIH OFF. With
MIH on, when a missing interrupt is detected, CP simulates the interrupt. With
MIH off, when a missing interrupt is detected, message DMKDID546I is issued but
CP does not simulate the interrupt. If DMKDID is deleted from the load list during
system generation, support for the Missing Interrupt Handler is removed and no
messages are written to notify the operator of a missing interrupt.

If you want to change the interval time value, you must include the optional macro
SYSMIH in the system control file (DMKSYS). You must place this macro before
the SYSLOCS macro.

When a missing interrupt occurs, the control program attempts to correct the
condition and issues a message that either:

« The condition is cleared
- or -

« The condition is pending
This message warns the system operator or system programmer that a problem may
exist. The system operator or the system programmer can reset the hardware and
schedule maintenance for the device that caused the missing interrupt condition. If
the same device class caused frequent interruptions, the system programmer may
want to set a larger time interval for that particular device class.
The class G SET command can be used to turn MIH on and off. Use either

SET MIH ON or SET MIH OFF
To determine the status of MIH use

QUERY SET

The system responds either

MIH ON or MIH OFF

Each device group has an expected time interval during which an I/O operation
should be completed. This interval varies widely among devices. Therefore, the
missing interrupt handler provides a means to specify a time interval for the
following distinct categories of 1/O devices:

« Count-key-data devices (CLASDASD) and FB-512 devices (CLASFBA)

« Tape devices (CLASTAPE)

50 vm/sp System Programmer’s Guide

Graphic devices (CLASGRAF) except TYP1053 and TYP328X

Unit record devices (CLASURI and CLASURO) except TYP3800 and
TYP3289E

Miscellaneous devices (MISC) include: Mass storage system (MSS) devices
(specified at system generation as CLASSPEC TYP3851, and CLASDASD
FEATURE=VIRTUAL or FEATURE=SYSVIRT), graphics devices
TYP1053 and TYP328X, and UR output devices TYP3800 and TYP3289E.

Note: The missing interrupt handler does not support terminal devices, remote
graphic devices, SNA devices, pass-through virtual machine (logical) devices, and
special class devices (with the exception of MSS).

Default Time Interval Values

Default time interval values are assembled in DMKSYS. The following table gives
the default time interval values for the devices monitored:

Device Class Default
Class Parameter Time Interval
CLASDASD or CLASFBA DASD 15 seconds
CLASGRAF GRAF 30 seconds
CLASTAPE TAPE 10 minutes
CLASURI/CLASURO UR 1 minute
MISCELLANEOUS MISC 12 minutes

An installation may want to change the default time intervals because of their
particular configuration. For example, an installation that generates a large number
of devices might want to set the time interval value to a larger number to prevent
frequent timer interruptions.

Changing the Time Interval

The system programmer or the system operator can change the time interval in the
following ways:

Regenerate the system and, using the SYSMIH macro, specify a time interval
value in the system control file (DMKSYS) for the specific device class to be
changed. Specify the time interval value in minutes and seconds:

SYSMIH GRAF=00:15,UR=00:00, TAPE=05:00

This example changes the time interval for graphic devices from the default
value of thirty seconds to fifteen seconds. In this example, no further
monitoring takes place for unit record devices since the user specified a time
value of zero for that class. In addition, the example changes the time interval
value for tape devices from ten minutes to five minutes. This example does not
change the time interval value for DASD and MISC devices. If you do not

Chapter 9. Interruption Handling S 1

| specify a device class, or if you do not include the SYSMIH macro in N)
1 DMKSYS, the missing interrupt handler uses the default value for that class. -

« To change the value specified in DMKSYS for a particular device class, issue
the class B CP command specifying the new time interval value for that class in
minutes and seconds:

SET MITIME GRAF 00:10

This example changes the time interval for graphic devices to ten seconds.
This change is in effect until the system is reinitialized, or until a class B user
issues another SET MITIME command. If the user specifies a time value of
zero for a specific device class, no further monitoring takes place for that
device class.

Note: 1f you set the time interval for a device class below its default value, be

careful not to shorten the time interval too much. This may cause unnecessary
missing interruption handler processing for devices that are functioning

properly.

« To set all time values to zero and to prevent any monitoring for missing
interrupts for any devices, issue the class B CP command:

SET MITIME OFF

Monitoring for missing interrupts does not take place until the system is
reinitialized, or until the class B user issues another SET MITIME command.

Determining Time Interval Settings

The class B user can determine the current missing interrupt handler time intervals
by issuing the following CP command:

QUERY MITIME

The system issues:

« The time interval setting for each device group in minutes and seconds
¢ The response MITIME OFF

o An error message if the user specified an invalid parameter.

« The response that the missing interrupt handler is not available if DMKDID is
not in the load list during system generation.

52 VM/SP System Programmer’s Guide

Diagnostic Aids

System Messages

Missing interrupt handler support provides aids so that the system programmer can
determine the frequency and status of interrupts and also know when he has made
an error in using the support. Diagnostic aids available when using the missing
interrupt handler include:

o System messages

e Macro notes

+ VM/SP system’s error recording area
o Trace table.

Messages inform the system operator when a missing interrupt occurs and indicate
if the condition has been cleared or if the interrupt is still pending. Other messages
indicate that the module DMKDID is not in the load list or that the user specified
an invalid parameter on the QUERY or SET MITIME command. See VM/SP
System Messages and Codes for a complete discussion of messages that the missing
interrupt handler issues.

The system programmer can use message information to increase the availability of
the system. If a particular device class causes frequent interrupts even if the system
clears the condition, the system programmer may want to change the time interval.
Changing the time interval prevents the overhead of frequent timer interrupts,
frequent trips through the detector routine, and rescheduling of timer request
queues. On the other hand, if the control program did not clear the condition, the
messages make the system programmer or system operator aware of the condition
and one of them can reset the hardware either physically or using CP commands.

Macro notes (MNOTES) inform the user that SYSMIH is not present in DMKSYS
or that the user specified an invalid time value in the SYSMIH macro. The system
uses the default interval time values and informs the user.

System'’s Error Recording Area

Trace Table

Whether or not CP succeeds in correcting a missing interrupt situation, it creates a
record of the event in the system’s error recording area (LOGREC).

CP also traces the simulated interrupt and records it as trace table entry X'19'.
Refer to Figure 76, “CP Trace Table Entries”, for the format of the entry. The
system programmer uses the trace table to determine the events that preceded a CP
system failure.

Chapter 9. Interruption Handling 53

Program Interrupt | N

Program interrupts can occur in two states. If the processor is in supervisor state,
the interrupt indicates a system failure in the CP nucleus and causes the system to
abnormally terminate. If the processor is in problem state, a virtual machine is
executing. CP takes control to perform any required paging operations to satisfy
the exception, or to simulate the instruction. The fault is transparent to the virtual
machine execution. Any other program interrupt is a result of the virtual machine
processing and is reflected to the machine for handling.

Machine Check Interrupt

When a machine check occurs, the CP Recovery Management Support (RMS)
gains control to save data associated with the failure for the Field Engineer. RMS
analyzes the failure to determine the extent of damage.

Damage assessment results in one of the following actions being taken:

« System termination (CP disabled wait state)

« Attached processor disabled (system continues in uniprocessor mode)

¢ One processor of a multiprocessor configuration disabled (system continues in
uniprocessor mode)

e One or more failing channels disabled (system continues in same mode as at
time of the error)
« Selective virtual user termination
o Selective virtual machine reset
« Refreshing of damaged information with no effect on system configuration
« Refreshing of damaged information with the defective storage page removed
from further system use
« Error recording oniy for certain soft machine checks.
The system operator is informed of all actions taken by the RMS routines. When a
machine check occurs during VM/SP startup (before the system is sufficiently
initialized to permit RMS to operate successfully), the processor goes into a
disabled wait state and places a completion code of X'00B' in the leftmost bytes of
the current PSW.
AT
Lo
A

54 VM/SP System Programmer’s Guide

SVC Interrupt

When an SVC interrupt occurs, the SVC interrupt routine is entered. If the
machine is in problem mode, the type of interrupt (if it is other than an SVC 76 or
ADSTOP SVC) is reflected to the pseudo-supervisor (that is, the supervisor
operating in the user’s virtual machine). Control is transferred to the appropriate
interrupt handler for ADSTOP SVCs and all SVC 76s.

If the machine is in supervisor mode, the SVC interrupt code is determined, and a
branch is taken to the appropriate SVC interrupt handler.

External Interrupt

If a timer interrupt occurs, CP processes it according to type. The interval timer
indicates time slice end for the running user. The clock comparator indicates that a
specified timer event occurred, such as midnight, scheduled shutdown, or user
event reached.

The external console interrupt invokes CP processing to switch from the 3210 or
3215 to an alternate operator’s console.

} A service signal is a class 24 external interrupt that is generated when either a
@ logical device or the Maintenance and Service Support Facility (MSSF) signals
completion of an operation initiated by a program (in the case of the logical device
DIAGNOSE X'7C") or CP, (in the case of the MSSFCALL DIAGNOSE X'80"').

See the expanded descriptions of DIAGNOSE codes X'7C' and X'80"' in “Part 1.
Control Program (CP)”. Also refer to IBM System/370 Principles of Operation,
GA22-7000, for a general description of external interrupts.

Synchronous Interrupts in an Attached Processor or
Multiprocessor System

Generally, when synchronous interrupts (such as program and SVC interrupts)
occur in an attached processor or multiprocessor system, the processing of the
interrupt can proceed without the global system lock for mainline, nonerror paths.
Otherwise, the global system lock is required. If the global system lock is needed
and it is already in use, the processing of the interrupt is deferred until the global
system lock is available. In this case, the interrupted processor attempts to run
another user.

Chapter 9. Interruption Handling 55

Real 1/0 Interrupts

In an attached processor configuration, only the main processor can receive real
I/0 interrupts. To ensure this, the channel masks in control register 2 on the main

processor are initialized to ones to enable interruptions from any available channel.

On the attached processor, the channel masks in control register 2 are initialized to
zeroes. In a multiprocessor configuration, both processors can receive real /O
interruptions. The channel masks in control register 2 on both processors are
initialized to ones to enable interruptions from any available channel.

56 VM/SP System Programmer’s Guide

Chapter 10. Performance Guidelines

General Information

The performance characteristics of an operating system, when it is run in a virtual
machine environment, are difficult to predict. Several factors make this result
unpredictable:

+ The System/370 model used.

The characteristics of the operating system and its work level.

o The total number of virtual machines executing.

« The type of work being done by each virtual machine.

« The speed, capacity, and number of the paging devices.

« The order in which devices are selected for preferred paging and spooling.
« The amount of real storage available.

o The degree of channel and control unit contention, as well as arm contention,
affecting the paging device.

« The type and number of VM/SP performance options in use by one or more
virtual machines.

o The degree of MSS 3330 volume use.

o The amount of fixed head paging storage (drum, 3340, 3344, 3350, 3380).
Performance of any virtual machine may be improved by the choice of hardware,
operating system, and VM/SP options. The topics discussed in this section

address:

1. The performance options available in VM/SP to improve the performance of a
particular virtual machine.

2. The system options and operational characteristics of operating systems

running in virtual machines that affect their execution in the virtual machine
environment.

Chapter 10. Performance Guidelines 57

The performance of a specific virtual machine may never equal that of the same S
operating system running standalone on the same System/370, but the total

throughput obtained in the virtual machine environment may equal or better that

obtained on a real machine.

When a function executing in a virtual machine, cannot be performed completely
by the hardware, the virtual machine’s performance is degraded to some degree.
As the control program for the real machine, CP initially processes all real
interrupts. A virtual machine operating system’s instructions are always executed
in problem state. Any privileged instruction issued by the virtual machine causes a
real privileged instruction exception interruption. The amount of work to be done
by CP to analyze and handle a virtual machine-initiated interrupt depends on the
type and complexity of the interrupt.

The simulation effort required of CP may be trivial, as for a supervisor call (SVC)
interrupt (which is generally reflected back to the virtual machine), or may be more
complex, like a Start I/O (SIO) interrupt, which starts extensive CP processing.

When you plan the virtual machine environment, consider the number and type of
privileged instructions to be executed by the virtual machines. Reducing the
number of privileged instructions issued by the virtual machine’s operating system
reduces the amount of extra work CP must do to support the machine.

Before deciding which performance options to apply to your system, you should
monitor the current performance of your system to decide which options would
most likely give the system a performance gain and where performance bottlenecks
are occurring. Refer to “Performance Observation and Analysis” for guidelines N
and functions you can use to observe the present system performance.

Reducing the Number of Virtual Machine SIOs Handled by CP

Handling of SIOs for virtual machines can be one of the most significant causes of
reduced performance in virtual machines. To support I/O processing in a virtual
machine, CP must translate all virtual machine channel command word (CCW)
sequences to refer to real storage and real devices and, for minidisks, real cylinders.
When a virtual machine issues an SIO, CP must:

1. Intercept the virtual machine SIO interrupt.
2. Allocate real storage space to hold the real CCW list to be created.
3. Translate the virtual data addresses to real data addresses.

4. Translate the virtual device addresses referred to in the virtual CCWs to real
device addresses.

5. Page into real storage and lock, for the duration of the I/O operation, all
virtual storage pages required to support the I/O operation.

6. Generate a new CCW sequence building a Channel Indirect Data Address list \:\
if the real storage locations cross page boundaries.

58 VM/SP System Programmer’s Guide

7. If the real device is a 3330V, append an MSS cylinder fault prefix to the CCW
prefix to prevent the channel from doing channel command retry.

8. Schedule the I/0 request.
9. Present the SIO condition code to the virtual machine.

10. Recognize an MSS cylinder fault, queue the I/0 request, and reschedule the
request when the subsequent interruption is received (indicating staging is
complete).

11. Intercept, retranslate, and present the channel end and device end interrupts to
the appropriate virtual machine, where they must then be processed by the
virtual machine operating system.

The number of SIO operations required by a virtual machine can be significantly
reduced by:

« Using large blocking factors (up to 4096 bytes) for user data sets to reduce the
total number of SIOs needed.

« Using preallocated data sets.

« Using virtual machine operating system options (such as chained scheduling in
OS) that reduce the number of SIO instructions.

o Substituting a faster resource (virtual storage) for I/O operations, by building
small temporary data sets in virtual storage rather than using an I/O device.

Frequently, performance is improved when CP paging is substituted for virtual
machine I/O operations. To improve the performance of an operating system,
such as OS, specify frequently-used OS functions (transient subroutines, ISAM
indexes, and so forth) as resident in second level storage if possible. In this way,
paging I/0O is substituted for virtual machine-initiated I/O. Thus, CP only needs to
place the page that contains the desired routine or data into real storage.

CP performance options you can use to reduce the CP overhead associated with
virtual machine I/O instructions or other privileged instructions used by the virtual
machine’s I/O Supervisor:

1. The virtual=real option in VM/SP removes the need for CP to translate
storage references and to do paging before each 1/0 operation for a specific
virtual machine.

2. The virtual machine assist feature reduces the real supervisor state time used by
VM/SP. For a detailed description of the feature, see “Virtual Machine Assist
Feature” later in this section. For a list of processors on which the feature is
available, see the VM/SP Planning Guide and Reference.

3. VM/370 Extended Control-Program Support (ECPS) further reduces the real

supervisor state time used by VM/SP. For a detailed description of ECPS, see
“VM/370 Extended Control-Program Support (ECPS)” later in this section.

Chapter 10. Performance Guidelines 59

For a list of processors on which ECPS is available, see the VM/SP Planning
Guide and Reference.

Assignment and use of these options are discussed in “VM/SP Performance
Options™.

Reducing Paging Activity

When virtual machines refer to virtual storage addresses not currently in real
storage, they cause a paging exception and associated CP paging activity.

The addressing characteristics of programs executing in virtual storage significantly
affect the number of page exceptions for that virtual machine. Routines with
widely scattered storage references tend to increase the paging load of a particular
virtual machine. When possible, place modules of code that depend on each other
in the same page. Place reference tables, constants, and literals near the routines
that use them. Do not place infrequently used exception or error routines in main
routines, put them elsewhere.

When an available page of virtual storage contains only reenterable code, paging
activity can be reduced, since the page, although referred to, is never changed, and
thus does not cause a write operation to the paging device. The first copy of that
page is written on the paging device when that frame is needed for some other
more active page. Only inactive pages that have changed must be paged out.

Virtual machines that reduce their paging activity by controlling their use of
addressable space improve resource management for that virtual machine, the
VM/SP system, and all other virtual machines. The total paging load handled by
CP is reduced, and more time is available for productive virtual machine use.

Using the SYSCOR Macro to Control Free Storage Allocation

60

The more dynamic paging storage available, the less paging activity occurs. To
gain additional dynamic paging storage, control the amount of free storage
allocated at VM/SP initialization time. When you generate the system, use the
FREE operand of the SYSCOR macro statement to specify the number of free
storage pages to be allocated at system load time.

At IPL time, if the amount of storage that these pages represent is greater than 25
percent of the VM/SP storage size (not including the V=R area, if any), a default
number of pages is used. The default value is 3 pages for the first 256K bytes of
storage plus 1 page for each additional 64K bytes (not including the V=R size, if
any).

The SYSCOR macro definition can be found in VM/SP Planning Guide and
Reference.

VM/SP System Programmer’s Guide

(I Paging Performance Options

To reduce the paging requirements of virtual machines, CP provides locked pages,
reserved page frames, and a virtual=real area. Generally, these facilities require
some dedication of real storage to the chosen virtual machine and, therefore,
improve its performance at the expense of other virtual machines.

Locking Pages into Real Storage

To permanently fix or lock specific pages of virtual storage into real storage, use
the LOCK command (privilege class A). Inbso doing, all paging 1/0 for these page
frames is eliminated.

Since the LOCK command reduces total real storage resources (real page frames)
available for other virtual machines, lock only frequently used pages into real
storage. Since page zero (the first 4096 bytes) of a virtual machine storage is
referred to and changed frequently (for example, whenever a virtual machine
interrupt occurs or when a CSW is stored), consider locking page zero of a
particular virtual machine first. Also consider locking virtual machine interrupt

handler pages.

Other pages to be locked depend upon the work being done by the particular
virtual machine and its use of virtual storage.

The normal CP paging mechanism selects unreferenced page frames in real storage
for replacement by active pages. Page frames belonging to inactive virtual
machines are normally all selected eventually and paged ont if the real storage
frames are needed to support active virtual machine pages.

When virtual machine activity is started on an infrequent or irregular basis, such as
from a remote terminal in a teleprocessing inquiry system, some or all of its virtual
storage may have been paged out before the time the virtual machine begins
processing. Some pages then have to be paged in so that the virtual machine can
respond to the teleprocessing request. This paging activity might increase the time
to respond to the request compared with running the same teleprocessing program
on a real machine. Further response time is variable, depending upon the number
of paging operations that must occur. Locking specific pages of the virtual
machine’s program into real storage may ease this problem, but you may not be
able to identify which specific pages are required.

Once a page is locked, it remains locked until either the user logs off or the system
operator (privilege class A) issues the UNLOCK command for that page. If the
“locked pages” option is in effect and the user loads his system again (via IPL) or
loads another system, the virtual machine’s locked pages are unlocked by the
system. When a user issues the SYSTEM CLEAR command, virtual machine
storage is cleared, and the user’s locked pages are unlocked.

Note: In a system generated for attached processor or multiprocessor operation,
no shared pages are locked. If the system operator attempts to lock a shared page
or an address range containing one or more shared pages, he receives the message:

DMKCPV165I PAGE (hexloc) NOT LOCKED, SHARED PAGE

Chapter 10. Performance Guidelines 61

for each of the shared pages within the range.

Reserving Page Frames

The reserved page frames option is a more flexible approach than locked pages. To
provide a specified virtual machine with an essentially private set of real page
frames, use the CP SET RESERVE command. If the program code or data
required to satisfy the request was in real storage at the time the virtual machine
became inactive, paging is not required for the virtual machine to respond.

This option is usually more efficient than locked pages since the pages with the
most references at that moment remain in real storage, as determined automatically
by the system. Although multiple virtual machines may use the LOCK option, only
one virtual machine at a time may have the reserved page frames option active.
Assignment of this option is discussed further in “VM/SP Performance Options”.

The reserved page frames option provides performance that is generally consistent
from run to run with regard to paging activity. This can be especially valuable for
production-oriented virtual machines with critical schedules, or those running
teleprocessing applications where response times must be kept as short as possible.
The SET RESERVE command can be used to increase the efficiency of certain
noninteractive virtual machines such as system control programs and special service
machines. You can use the SET RESERVE command to reserve page frames for
multiple virtual machines.

To specify the maximum number of reserved page frames, use the class A
command:

SET RESERVE userid nnnn

where nnnn is the maximum number required (1-4096). The number of frames
held is nnnn or the working set size whichever is smaller. You can specify SET
RESERVE for multiple virtual machines at any one time.

Note: nnnn should never approach the total available pages, since CP overhead is
substantially increased in this situation, and excessive paging activity is likely to
occur in other virtual machines.

Eliminating CP Pading for a Selected Virtual Machine

To eliminate CP paging for the selected virtual machine, use the VM/SP
virtual=real option. All pages of virtual machine storage, except page zero, are
locked in the real storage locations they would use on a real computer. CP controls
real page zero, but the remainder of the CP nucleus is relocated and placed beyond
the virtual=real machine in real storage.

Since the entire address space required by the virtual machine is locked, these page
frames are not available for use by other virtual machines except when the
virtual=real area is unlocked. This option often increases the paging activity for
other virtual machine users, and sometimes for VM/SP. (Paging activity on the
system may increase substantially, since all other virtual machine storage
requirements must be managed with fewer remaining real page frames.)

62 VM/SP System Programmer’s Guide

The virtual=real option may be desirable or mandatory in certain situations. The
virtual=real option is desirable when running a virtual machine operating system
(like DOS/VS or OS/VS) that does paging of its own because the possibility of
double paging is eliminated. You must use the option to allow programs that
execute self-modifying channel programs or have a certain degree of hardware
timing dependencies to run under VM/SP.

For this option, the VM/SP nucleus is reorganized to provide an area in real
storage large enough to contain the entire virtual=real machine. In the selected
virtual machine, each page from page 1 to the end is in its true real storage
location; only its page zero is relocated. The virtual machine is still run in dynamic
address translation mode, but since the virtual page address is the same as the real
page address, no CCW translation is required.

For information about generating a virtual=real system, see the VM/SP
Installation Guide.

Figure 5 shows an example of a real storage layout with the virtual=real option.
The V=R area is 128K and real storage is 512K.

Virtual Storage Real Storage
Addresses Addresses
0K
Absolute Page 0 (Module DMKPSA)
4K 4K
Virtual Page 1
Virtual=Real Area
/ /
/ Size = 128K bytes /
(Minimum size is 32K bytes.)
128K 128K
0K Virtual Page 0
4K 132K (DMKSLC)
132K
/ Remainder of CP Resident Mucleus /
/ /
End of CP Nucleus
(DMKCPE)
/ Dynamic Paging Area /
/ and /
Free Storage
<
PSA for Attached or non—IPL Processor —— DMKPSA
<
PSA for MAIN or IPL Processor

512K (End of real
storage)

Figure 5. Storage Layout in a Virtual=Real Machine

Consider the following when planning to use the virtual=real option because of the
effect on overall system operation:

1. The area of contiguous storage built for the virtual=real machine must be large
enough to contain the entire addressing space of the largest virtual=real
machine. During system generation when the virtual=real option is selected,
define the virtual=real storage size for the VM/SP system.

Chapter 10. Performance Guidelines 63

Only a virtual machine with the virtual=real option specified in its directory
entry can use the storage reserved for a virtual=real machine. This storage is
not available to other users for paging space, nor for VM/SP use until released
from virtual=real status by a system operator via the CP UNLOCK command.
Once this storage is released, VM/SP must be loaded again before the
virtual=real option can become active again.

The virtual machine with the virtual=real option operates in the preallocated
storage area with normal CCW translation in effect until the CP SET
NOTRANS ON command is issued. At that time, with several exceptions, all
subsequent I/O operations are performed from the virtual CCWs in the
virtual=real space without translation. The exceptions occur when:

o SIO tracing is active

o The first CCW is not in the V=R region

« I/0 operation is a sense command

« I/0 device is a dial-up terminal

o I/0is for a device that is not dedicated (spooled unit record console
virtual CTCA or minidisks that are less than a full volume)

e I/0 device has an alternate path

« Device status is pending.

Any one of the above conditions forces CCW translation. Since minidisks are
nondedicated devices, they may be used by programs running in the V=R
region even though CP SET NOTRANS ON is in effect.

If the virtual=real machine performs a virtual reset or IPL, the normal CCW
translation goes into effect until the CP SET NOTRANS ON command is
again issued. This permits simulation of an IPL sequence by CP. Only the
virtual=real virtual machine can issue the command. A message is issued if
normal translation mode is entered.

A virtual=real machine must not IPL a named or shared system. It must IPL
by device address.

When NOTRANS is in effect for a virtual=real machine, no significant SEEK
data is collected by MONITOR operations for the V=R machine.

If you define a V=R area on a 3081 processor, the reliability and availability
of the V=R machine can be improved if the V=R machine issues the TEST
BLOCK instruction to validate storage in the V=R aica. Note that the only
two SCPs that issue TEST BLOCK are MVS/SP and VM/SP. The hardware
system area (HSA) on a 3081 processor can reside in the middle of the V=R
area; these two control programs mark the HSA as invalid and continue
validating storage. Any other system control program, such as OS/VS,
validates storage via the MVCL instruction. When OS/VS encounters the
beginning of the HSA, it assumes that it has reached the end of storage.
Therefore, such a control program running in the V=R area of VM/SP on a
3081 processor may not have access to the full V=R area.

If your system runs in single processor mode on a 3081 processor, the system
operator must issue a VARY OFF PROCESSOR nn VLOG command.

64 VM/SP System Programmer’s Guide

-

| i
N

9. A V=R machine running in extended control mode on a 3081 processor can
issue a MSSFCALL (DIAGNOSE X'80') for VARY PROCESSOR
commands, MSSF SCPINFO commands, and Input/Output Configuration
Program (IOCP) commands. MSSF processes these commands.

' Managing Page Migration

To keep 12% of the preferred paging area available, CP migrates inactive pages
from preferred to nonpreferred paging areas. The preferred paging area includes a
fixed-head area and a moveable-head area. The fixed-head paging area is paging
space on a drum and/or space under the fixed heads of a DASD volume that has
the fixed head feature installed. The moveable-head paging area is paging space on
a DASD volume that is accessed by a moveable arm. Normally, CP dynamically
invokes page migration, based on calculated load levels, once every ten minutes.

Inactive pages in the fixed-head preferred paging area are migrated every time CP
invokes migration. For pages in the moveable-head preferred paging area, you can
decide at what point inactive pages are selected for migration. Use the SET SRM
MHFULL command to set moveable-head page migration limits.

If a percentage for MHFULL has been specified, CP migrates pages from
moveable-head preferred paging areas only when that percentage is reached and
ten minutes has elapsed, rather than whenever fixed-head areas are full. Thus,
migration from moveable-head preferred paging areas and fixed-head preferred
paging areas can take place separately.

In addition, you can use the MIGRATE command to invoke page and swap table
migration immediately. Page migration can also be invoked only for a specific
virtual machine. The format of the MIGRATE command is described in the
VM/SP Operator’s Guide.

I Displaying, Changing, or Setting System Resource Management Variables

To display internal system activity counters or parameters, use the QUERY SRM
command. To set or change internal system activity counters or parameters, use
the SET SRM command. Formats for the QUERY SRM and SET SRM commands
are contained in the VM /SP Operator’s Guide.

Use the class A or class E QUERY SRM command to display the following
information:

o Current number of pageable pages

o Size of the dispatching time slice

« Setting of the maximum working set estimate

+ Maximum drum page allocation limit

o Current page migration counters

o Unused segment elapsed time as criteria for page migration
o Current PCI flag setting mode for 2305 page requests

o Maximum page bias value

o Current interactive shift bias value

o Moveable head page migration limit.

Chapter 10. Performance Guidelines 65

N
! Use the class E SET SRM command to set some of the system variables that can N .,,/'
| ' affect the values displayed by the QUERY SRM command.

I Displaying and Setting Paging Variables

The paging variable is used in the working set size algorithm. The current paging
load is constantly compared with the paging variable. CP adjusts the working set
size estimates based on how the actual load compares with the paging load variable.

Use the QUERY PAGING command to display the paging variable used in the
‘ working set size estimate control algorithm. Information on the paging rate per
second is available as a response to the INDICATE LOAD command.

Use the SET PAGING command to change the paging variable used in the working
set size estimate.

Information about the formats of the QUERY PAGING and SET PAGING
commands is contained in the VM/SP Operator’s Guide.

VM/SP Performance O'ptions

VM/SP provides a number of options you may use to improve the performance of

virtual machines and VM/SP. Several options improve the performance of a
installation specified virtual machines; other options improve the performance of all
virtual machines and VM/SP. The options described in the following discussion
are:

« Favored execution

e Virtual machine priority

o Affinity

« Multiple shadow table support

« Shadow table bypass

« Single processor mode

« Dynamic SCP transition to or from native mode
« Queue drop elimination

e Virtual machine assist

« Extended Control-Program Support

e 3088 Muitisysiem Channel Communicaiion Unii suppori
« MYVS extensions support.

When you specify a performance option, you may be improving the performance of
one virtual machine at the expense of VM/SP and other virtual machines. For
example, after an operator specifies favored execution for a virtual machine, that
virtual machine receives more processor time than other virtual machines.
Therefore, before specifying any performance option, identify the option’s
performance trade-offs and assess their impact on system performance. (See
“Performance Observation and Analysis”.)

The favored execution option and virtual machine priority option change the £
normal scheduler algorithm. The virtual machine priority option tends to take W/

66 VM/SP System Programmer’s Guide

precedence over the favored execution option even when you specify a percentage.
For example, suppose a user with the required privilege class issues a SET
FAVORED command for USERIDA. If USERIDA was assigned a lower priority
than USERIDB, USERIDA may get a smaller percentage of processor time than
was specified with the favored option.

Forcing the System to Devote More Processor Resources to a Virtual Machine

To change the normal CP deadline priority calculations in the fair share scheduler
to force the system to devote more of its processor resources to a given virtual
machine, use the favored execution options. The options are:

« The basic favored execution option
« The favored execution percentage option.

To specify that a virtual machine is to remain in the run list at all times, unless it
becomes nonexecutable, use the basic favored execution option. When the virtual
machine is executable, it is placed in the run list at its normal priority position.
However, any active virtual machine represents either an explicit or implicit
commitment of main storage. You can specify an explicit storage commitment by
either the virtual=real option or the reserved page frames option. An implicit
commitment exists if neither of these options is specified, and the scheduler
recomputes the virtual machine’s projected work set at what it would normally have
been at queue-drop time. You can set multiple virtual machines for the basic
favored execution option. However, if their combined main storage requirements
exceed the system’s capacity, performance can suffer since the system can do little
useful work because of excessive paging.

If the favored task is highly compute-bound and must compete for the processor
with many other tasks of the same type, you should define how much time the
favored task should get. In this case, you can use the favored execution percentage
option. This option specifies that the selected virtual machine, besides remaining in
queue, is requesting a specified minimum percentage (from 1 to 100 percent) of the
total processor time, if it can use it. If a virtual machine requests 100 percent of
the processor time, CP keeps that virtual machine at the top of the run list. This
ensures that the virtual machine always has first priority when CP dispatches a
virtual machine to the processor. To select the favored execution option, specify
the FAVORED operand on the class A SET command. The description of the
SET command is in the VM/SP Operator’s Guide. After the option is invoked,
VM/SP provides processor time for the selected virtual machine as follows:

1. The in-queue time slice is multiplied by the specified percentage to arrive at the
virtual machine’s requested processor time.

2. The scheduler tries to place the virtual machine, when it is executable, at the
top of the run list until it has obtained its requested processor time.

3. If the virtual machine obtains its requested processor time before the end of its
in-queue time slice, it is placed in the run list according to its calculated

dispatching priority.

4. In either case (2 or 3), at the end of the in-queue time slice the requested
percentage is recomputed as in step 1 and the process is repeated.

Chapter 10. Performance Guidelines 67

o

/7 N

If a percentage is not specified, a virtual machine with the favored execution option N
active is kept in the run list except under the following conditions:

« Entering CP console function mode

« Loading a disabled PSW

« Loading an enabled PSW with no active I/O in process
« Logging on or off.

When the virtual machine becomes executable again, it is put back on the run list in
Q1. If dropped from Q1, the virtual machine is placed directly in the Q2 dispatch
list. If you specified the percentage option of the SET FAVORED command, the
deadline priority is calculated at queue drop time by:

current time-of-day + length of allowed processor in-queue time slice
favored percentage

For example, if the processor in-queue time slice is 1 second, and the specified
percentage is 10 percent, then 10 seconds are added to the current time-of-day.
The virtual machine should receive one processor time slice (1 second) once every
10 seconds.

Note, however, that these options can affect response times of other virtual

machines. To provide a virtual machine with both options, basic and percentage,

issue both forms of the command for that virtual machine. You can use the

percentage form of the SET FAVORED command to specify any number of ‘
logged-on virtual machines. N~
Although the SET FAVORED command prevents specifying more than 100% for

a particular virtual machine, nothing prevents you from allocating more than 100%

to several virtual machines. Where more than 100% has been allocated, the

favored virtual machines compete for the available resources on a pro-rata basis.

An individual virtual machine’s allocation is roughly proportional to the percentage

allocated to it, divided by the total percentage allocated to all virtual machines.

The effect of allocating more than 100% of the system on interactive (Q1)

responses is unpredictable.

Note: The percentage of the processor time actually received by the favored user
normally remains close to the percentage specified in the command. However, it is
not an absolute value, and varies depending on the total load and type of load on
tha cxvatonm T faw avamnla multinla ristiial mashinoag Aan tha wman lict nra Anmnta
IV DJ 132 ey JJ., 1w vA(-uul.u.v, l‘.l.ullrlyl\/ YILLUAL LLLAVILILIVD ULl VLIV 1 WlL 110V Gl v vv;xxyul,v
bound (that is, are not queue dropped before the end of their in-queue time slice),
the favored user may not receive its requested percentage of the total processor

time.

Setting Virtual Machine Priority

The VM/SP operator can assign specific priority values to different virtual

machines. A virtual machine with higher priority is allocated a larger share of the

system resources than a virtual machine with lower priority. To assign specific

priority values to different virtual machines, use the following class A command: g

SET PRIORITY userid nn

68 VM/SP System Programmer’s Guide

where userid is the user’s identification and nr is an integer value from 1 to 99. nn
affects the user’s dispatching priority with respect to other users in the system. The
priority value (nn) is considered when the deadline priority is calculated. The
deadline priority is the basis on which all virtual machines in the system are ordered
on both the eligible list and the run list. The deadline priority calculation assumes
that the average or normal (default) user priority is 64.

' Selecting Attached Processor or Multiprocessor Affinity for a Program

To allow virtual machines that operate on attached processor or multiprocessor
systems to select the processor of their choice for program execution, use the
affinity option. To select the affinity option, use the directory OPTION statement,
or specify the AFFINITY operand on the class A or G SET command. The
directory OPTION statement is described in the VM /SP Planning Guide and
Reference. The class A SET command is described in the VM/SP Operator’s Guide
and the class G SET command is described in the VM/SP CP Command Reference
for General Users.

The affinity setting of a virtual machine implies a preference of operation to either
(or neither) processor. Affinity of operation for a virtual machine means the
program of that virtual machine is executed on the selected or named processor. It
does not imply that supervisory functions and CP housekeeping functions
associated with that virtual machine are handled by the same processor.

In attached processor systems, all real I/O operations and associated interrupts are
handled by the main processor. Virtual I/O started on the attached processor that
is mapped to real devices must transfer control to the main processor for real I/O
execution. Therefore, your system can benefit in a virtual machine “mix” if you
relegate those virtual machines that have a high I/O-to-compute ratio to the main
processor, and those virtual machines that have a high compute-to-1/0 ratio to the
attached processor. Weigh such decisions carefully as every virtual machine is
contending with other virtual machines for system resources.

To improve a virtual machine’s performance on a multiprocessor where the path(s)
to a user’s primary minidisks are from one processor only, set the user’s affinity to
that processor.

More importantly, use of the affinity setting in applications where a virtual machine
program requires special hardware features available on one processor and not the
other. Such features could be a performance enhancement such as virtual machine
assist (described later) or a special RPQ required for a particular program’s
execution.

l Virtual Relocation and Shadow Table

CP allows the virtual machine to use the DAT (dynamic address translation)
feature of the real System/370. Programming simulation and hardware features
are combined to allow the virtual machine to use the available features in the real
hardware (2K or 4K pages, 64K segments).

For clarification, some definitions of terms follow:

Chapter 10. Performance Guidelines 69

First-level storage
The physical storage of the real processor, in which CP resides.

Second-level storage
the virtual storage available to any virtual machine. This storage is
maintained by CP.

Third-level storage
The virtual storage space defined by the system operating in
second-level.

Page and segment tables .
Logical mapping between first-level and second-level storage.

Virtual page and segment tables
Logical mapping between second-level and third-level storage.

Shadow page and segment tables
Logical mapping between first-level storage and third-level storage.

A standard, nonrelocating virtual machine is provided with a single control register,
control register 0, that can be used for:

« Extended masking of external interruptions
¢ Special interruption traps for SSM
« Enabling of virtual block multiplexing.

A virtual machine that is allowed to use the extended control feature of
System/370 is provided with a full complement of 16 control registers, allowing
virtual monitor calls, PER, extended channel masking, and dynamic address
translation.

An extension to the normal virtual machine VMBLOK is built in when an extended
control virtual machine logs on to CP. This ECBLOK contains the 16 virtual
control registers, two shadow control registers, and several words of information
for maintenance of the shadow control tables, virtual processor timer, virtual TOD
clock comparator, and virtual PER event data.

Whei ai exteiided-contiol virtual iaching is fiist active, it has only the real page
and segment tables provided by CP and operates entirely in second-level storage.
CP determines when the virtual machine enters or leaves extended control or
translate mode. CP also determines any changes in the virtual machine’s operating
mode. The virtual machine can load or store any control register, enter or leave
extended control mode, take interruptions, and so forth without invoking the
address translation feature.

If the virtual machine, already in extended control mode, turns on the translate bit
in the EC mode PSW, CP examines the virtual control registers and builds the
required shadow tables. (Shadow tables are required because the real DAT
hardware can only map first-level storage.) CP determines whether control
registers 0 and 1 contain valid information for use in constructing the shadow

70 VM/SP System Programmer’s Guide

TN

'
N //

-~

tables. Control register 0 specifies the size of the page and segment the virtual
machine is using in the virtual page and segment tables. The shadow tables
constructed are always in the same format as the virtual tables.

This shadow segment table is constructed in first-level storage and initialized to
indicate that all segments are unavailable. CP also constructs the shadow control
registers 0 and 1. Shadow control register O contains the external interruption
mask bits used by CP, mixed with the hardware controls and enabling bits from
virtual control register 0. Shadow control register 1 contains the segment table
origin address of the shadow segment table.

When the virtual machine is operating in virtual translate mode, CP loads the
shadow control registers into the real control registers and dispatches the virtual
machine. The immediate result of trying to execute an instruction is a segment
exception. CP examines the virtual segment table in second-level storage. If the
virtual segment is marked available, CP:

1. Allocates a segment of the shadow page table in the format specified by virtual
control register 0.

2. Sets the page table entries to indicate that the page is not in storage.
3. Marks the segment available in the shadow segment table.
4. Dispatches the virtual machine again.

The immediate result is an interruption, which is a paging exception and references
the virtual page table in second-level storage to determine whether the virtual page
is available. If the page is not available, the paging interruption is reflected to the
virtual machine. However, if the virtual page is marked in storage, the virtual page
table entry determines which page of second-level storage is being referenced by
the third-level storage address provided. CP next determines whether that page of
second-level storage is resident in first-level storage at that time. If so, the
appropriate entry in the shadow page table is filled in and marked in storage. If
not, the required page is brought into the first-level storage and the shadow table
filled in as above.

As the virtual machine continues execution, more shadow tables are filled in or
allocated as the third-level storage locations are referenced. Whenever a new
segment is referenced, another segment of shadow page tables is allocated.
Whenever a new page is referenced, the appropriate shadow table entry is
validated. No changes are made in the shadow tables if the virtual machine leaves
translate mode unless it also leaves extended control mode. Dropping out of EC
mode is the signal for CP to release all shadow page and segment tables and the
copy of the virtual segment table.

Some situations require invalidating the shadow tables constructed by CP or even
releasing and allocating them. Whenever CP pages out a page that belongs to a
virtual relocating machine, it selectively invalidates the shadow page tables. If the
stolen page is below the high-water mark, the shadow page table entry for the
stolen page is invalidated. (The high-water mark is the highest contiguous address,
starting from location zero, where the virtual system’s real address equals the
virtual system’s virtual address.) If the stolen page is above the high-water mark

Chapter 10. Performance Guidelines 71

7N
and virtual machine assist is on, all of the shadow page tables above the high-water R
mark are invalidated when the virtual machine is about to be dispatched. The
shadow tables are scanned to selectively invalidate shadow page table entries that
map to the real page being stolen.

Reducing Purges When the Virtual Machine Dispatches New Address Space

To reduce the number of 'purges when the virtual machine dispatches a new address
space (changes control register (CR1) values), VM/SP maintains a queue of
segment table origins (STO) and associated shadow tables for the virtual machine.

To specify multiple shadow table support, use the SET STMULTI command. This
command adds the segment table origin control block (STOBLOK) pointed to by
the ECBLOK to the STO queue. The STOBLOK contains the the shadow
segment table, information pertaining to it, and the virtual CR1 value. It also
provides forward and backward queue pointers to the next STOBLOK on the
queue. The first STOBLOK on the queue contains the shadow STO to be loaded
into CR1 when the virtual machine is dispatched in translation mode. CP
maintains the queue of STOBLOKS in the following manner:

1. If a virtual machine loads a new CR1 value, CP searches the queue of
STOBLOKS for the virtual CR1 value.

2. If CP finds the proper STO, it places that STOBLOK first on the queue.
3. If CP does not find proper STO, it checks the maximum STO count.

a. If the number of STOBLOKS equals the maximum STO count, CP steals
the last STOBLOK, purges the shadow tables, and initializes the
STOBLOK. The STOBLOK is reused by being chained first on the queue
with the new virtual CR1 value.

b. If the number of STOBLOKS is less than the maximum STO count, CP
obtains free storage from VM/SP, and initializes the free storage area as
the STOBLOK and chains it first on the queue.

Multiple shadow table support is controlled by the SET STMULTI command. The
default minimum number of shadow tables is 3 and the maximum is 6 per virtual
machine.

Eliminating and Reestablishing Shadow Table Bypass

Shadow table bypass, invoked by the SET STBYPASS command, allows CP to

eliminate the shadow tables for an operating system running in the V=R area.

When CP runs a V=R virtual machine, the shadow table for the V=R machine is

identical to the virtual system’s own page and segment tables, except for page zero.

CP relocates the virtual machine’s page zero (via the shadow table) to the highest

real address within the V=R area. When STBYPASS is turned on, CP modifies the

virtual operating system’s page table to relocate virtual page zero to the highest real

address. It can then dispatch the virtual machine with control register 1 pointing to AT
the virtual page and segment tables. » N/

72 VM/SP System Programmer’s Guide

To eliminate and reestablish shadow table bypass, use the SET STBYPASS
command.

Note: If virtual machine assist is enabled on the system, the virtual machine must
have the STFIRST directory option to issue the SET STBYPASS nnM/nnnnK
command.

For the V=V User: This technique is based on several characteristics of VS
systems:

1. VS systems have a large area of addressing space starting with location zero
where the virtual address is equal to the real address.

2. This addressing space is common to each segment table when multiple segment
tables are used (MVS or SVS address space).

3. The VS system never pages within this fixed area.

Thus, you can establish an area starting at location zero where the second-level
address equals the third-level address or virtual-virtual=virtual-real (VV=VR). A
second-level address is the virtual address specified by the operating system
operating in a first-level virtual machine; a third-level address is the address
specified by a program running under control of the virtual machine guest. You
can then establish the highest VV=VR address for a VS system. Because the
second-level address is the same as the third-level address, a reverse translation
allows the shadow tables to be indirectly indexed. Then, whenever VM/SP steals a
page from the VV=VR area, it invalidates the shadow page table entry and
executes a real PTLB (purge-translation-lookaside buffer) before redispatching the
VS system’s virtual machine.

In addition, whenever a shadow table is purged because a page frame is stolen from
above the highest VV=VR address or the virtual machine executed a PTLB or
LCTL, the invalidation starts above the highest VV=VR address. Thus, purge and
revalidation time is reduced.

For the V=R User: You can use a V=R shadow table bypass technique to
eliminate both the shadow tables and the overhead associated with maintaining
them. This can be done by VM/SP changing the virtual operating system’s page
table to relocate virtual page zero to the highest real address in the V=R area. The
virtual machine can then be dispatched pointing to its own page and segment
tables.

Notes:

)
1. With MVS single processor mode enhancement support, absolute page zero is
made available to the MV'S guest when single processor mode is set on.

2. If the MV'S guest in single processor mode issues the SET STBYPASS VR
command, CP issues an invalid option error.

Chapter 10. Performance Guidelines 73

Eliminating Queue Drop Overhead for a Virtual Machine

VM/SP tries to optimize system throughput by monitoring the execution status of
virtual machines. When a virtual machine becomes idle, VM/SP drops it from the
run list. The virtual machine’s page and segment tables are scanned, and resident
pages are invalidated and put on the flush list.

VM/SP determines that a virtual machine is idle when it voluntarily suspends
execution (by loading a virtual PSW with the wait state bit on, for example), and
no high-speed I/0 operation is active. Normally, this is an adequate procedure.

However, in certain special cases, an idle virtual machine that is dropped from a
queue becomes active again sooner than expected. If this cycle of queue dropping
and reactivation is executed repeatedly, the overhead of invalidating and
revalidating the virtual machine’s pages may become large.

The SNA VTAM service machine is an example of this special case. The VTAM
service machine operates by processing an IUCV message (or queue of messages),
and then suspending execution until the next message arrives. VM/SP queue drops
the VTAM service machine from the queue when it suspends execution. When the
next message arrives, all the VT AM service machine’s pages must be revalidated.

If the message rate is moderate to high, the repeated queue dropping causes
excessive overhead.

To control this situation, use the CP class A command SET QDROP userid
ON/OFF [USERS]. If SET QDROP OFF is in effect for a virtual machine, the
virtual machine is dropped from the queue and its pages are not scanned or flushed.

If you specify SET QDROP OFF for a service virtual machine, system performance
and throughput may improve when queue dropping would otherwise occur rapidly.
But applying SET QDROP OFF indiscriminately may degrade system throughput
by defeating the page flush mechanism and forcing page stealing to take place.

A large overhead may be associated with a virtual machine being dropped from its
queue during communications with a service machine for which the QDROP OFF
specification is in effect. This can occur in small systems in which a high degree of
virtual machine intercommunications occurs. If you specify SET QDROP userid
OFF USERS, the QDROP OFF status is temporarily extended to any virtual
machine communicating via VMCF or IUCV to the service virtual machine
specified. The QDROP status for the “served” virtual machine remains in effect
oniy whiie messages are ouistanding beiween ii and ihe service machine. Thus you
can improve performance in systems that heavily use products such as IFS or PVM
(invoked via the CMS PASSTHRU command). This option will not improve
performance in systems in which PVM is invoked via CP DIAL or with the SNA
VTAM service machine, since the communication is with CP rather than another
virtual machine.

To list the userids for which SET QDROP OFF and the USERS parameter have
been specified, use the QUERY QDROP command (CP class A and E).

74 VM/SP System Programmer’s Guide

o —_n

Improving Performance With the Virtual Machine Assist Feature

The Virtual Machine Assist Feature is a processor hardware feature that improves
the performance of VM/SP. Virtual storage operating systems, which run in
problem state under the control of VM/SP, use many privileged instructions and
SVCs that cause interruptions that VM/SP must handle. When the virtual machine
assist feature is used, many of these interrupts are intercepted and handled by the
processor. Consequently, VM/SP performance is improved.

The virtual machine assist feature intercepts and handles interruptions caused by
SVCs (other than SVC 76), invalid page conditions, and several privileged
instructions. An SVC 76 is never handled by the hardware; it is always handled by
CP. The processing of the following privileged instructions is handled by this

feature:

LRA (load real address)
STCTL (store control)
RRB (reset reference bit)
ISK (insert storage key)
SSK (set storage key)
IPK (insert PSW key)

STNSM (store then AND system mask)
STOSM (store then OR system mask)

SSM (set system mask)
LPSW (load PSW)
SPKA (set PSW key from address).

Although the assist feature was designed to improve the performance of VM/SP,
virtual machines may see a performance improvement because more resources are
available for virtual machine users. For a list of processors on which the Virtual
Machine Assist Feature is available, see the VM /SP Planning Guide and Reference.

Using the Virtual Machine Assist Feature

When you IPL VM/SP on a processor with the virtual machine assist feature, the
feature is available for all VM/SP virtual machines. However, the class A or E
SET command can make the feature unavailable to VM/SP and, subsequently,
available again for all users. If you do not know whether the virtual machine assist
feature is available to VM/SP, use the class A and E QUERY command. For a
complete description of the class A and E QUERY and SET commands, see the
VM /SP Operator’s Guide.

If the virtual machine assist feature is available to VM/SP when you log on to your
virtual machine, it is also supported for your virtual machine unless you are running
a second-level VM/370 or VM/SP system in your virtual machine. If your
directory entry has the SVCOFF option, the SVC handling portion of the assist
feature is not available when you log on. Use the class G SET command to disable
the assist feature (or only disable SVC handling), or to enable the assist feature, or
if the assist feature is available, to enable the SVC handling. Use the class G
QUERY SET command to find whether you have full, partial, or none of the assist
feature available. For details on the class G QUERY and SET commands, see the
VM/SP CP Command Reference for General Users.

Chapter 10. Performance Guidelines 75

Restricted Use of the Virtual Machine Assist Feature (& J

Certain interrupts must be handled by VM/SP. Consequently, VM/SP
automatically turns off the assist feature in a virtual machine that:

« Has set an instruction address stop
o Istracing SVC and program interrupts.

Since an address stop is recognized by an SVC interrupt, VM/SP must handle SVC
interrupts while address stops are set. When you issue the ADSTOP command,
VM/SP automatically turns off the SVC handling portion of the assist feature for
your virtual machine. The assist feature is turned on again after the instruction is
encountered and the address stop removed. If you issue the QUERY SET
command while an address stop is in effect, the response shows that the SVC
handling portion of the assist feature is off.

When a virtual machine issues a TRACE command with the SVC, PRIV,
BRANCH, INSTRUCT, or ALL operands, the virtual assist feature is
automatically turned off for that virtual machine. The assist feature is turned on
again when the tracing is completed. If the QUERY SET command line is issued
while SVCs or program interrupts are being traced, the response indicates the assist
feature is off.

The virtual machine assist feature is not available to a second-level virtual machine,
that is, a virtual machine that is running in a virtual machine.

Extended Control-Program Support:VIM/370 (ECPS)

Extended Control-Program Support:VM/370 (ECPS) extends, for specific
privileged instructions, the hardware assistance that the virtual machine assist
feature provides. ECPS also provides hardware assistance for frequently used
VM/SP functions. ECPS improves VM/SP performance beyond the performance
gains that the virtual machine assist feature provides.

ECPS consists of three functions:

¢ CP assist
« Expanded virtual machine assist
e Virtuai intervai timer assisi.

CP assist provides hardware assistance for frequently used paths of specific CP
functions.

Expanded virtual machine assist extends the hardware assistance that the virtual

machine assist feature provides for the instructions LPSW, STNSM, STOSM, and

SSM. In addition, expanded virtual machine assist provides hardware assistance for

certain other privileged instructions.

Virtual interval timer assist provides hardware updating of the virtual interval timer .
at virtual address X'50'. Timer updating occurs only while the virtual machine is ” .
in control of the real processor. Virtual interval timer assist updates the virtual .

76 VM/SP System Programmer’s Guide

timer at the same frequency hardware updates the real timer, 300 times per second.
Thus, virtual interval timer assist updates the virtual timer more frequently than CP
updates it. Because the timer is updated more frequently, accounting routines might
provide more accurate accounting data.

ECPS does not support the same functions and instructions on all processors.

Figure 6 lists the processors on which ECPS is available, and identifies, by
processor, the functions and instructions ECPS supports.

Chapter 10. Performance Guidelines 77

Functions and Instructions

135-3, 138,
145-3, 148,
4341, 4381

3031
3031AP

4331
4361

CP Assist

Get free space (DMKFREE)

Release free space (DMKFRET)

Lock a page (DMKPTR)

Unlock a page (DMKPTR)

Test page status (DMKCCW)

Test page status and lock (DMKCCW)

Store ECPS identification

SVC 8 (LINK)

SVC 12 (RETURN)

Scan for changed shared pages (DMKVMA)
Locate virtual I/O control block (DMKSCN)
Invalidate page table (DMKVAT)

Invalid segment table (DMKVAT)
Untranslate CSW (DMKUNT)

Free CCW storage (DMKUNT)

Locate real I/O control block (DMKSCN)
Common CCW command processing (DMKCCW)
Decode first CCW (DMKCCW)

Decode following CCW (DMKCCW)

Main entry to dispatch (DMKDSP)

Dispatch a block or a virtual machine (DMKDSP)

Expanded Virtual Machine Assist

LPSW
STNSM
STOSM
SSM

PTLB

SIO (SIOF)
SPT

SCKC
STPT

TCH
DIAGNOSE

Virtual Interval Timer Assist

X

R R R R Bl e R i B i I RS e e

R e R e R R R R I

<

X

el R e R R R

ol

I R Rl

el R R R

b

Figure 6. Functions and Instructions that ECPS Supports

78 VM/SP System Programmer’s Guide

-

(Using the Extended Control-Program Support: VM/370

You can control Extended Control-Program Support: VM/370 (ECPS) at two
levels: the VM/SP system and the virtual machine.

At the VM/SP system level, ECPS is automatically enabled when the system is
loaded (except for AP and MP systems in which ECPS is always disabled). You
can use the class A command:

SET CPASSIST OFF

to disable both CP assist and expanded virtual machine assist. You can use the
class A command:

SET SASSIST OFF

to disable only the expanded virtual machine assist facility and the virtual interval
timer assist function of ECPS.

At the virtual machine level, whenever ECPS is enabled on the system, both
expanded virtual machine assist and virtual interval timer assist are automatically
enabled when you log on. If you issue the class G command:

SET ASSIST OFF

. expanded virtual machine assist, virtual interval timer assist, and the existing virtual
(machine assist are disabled. If you issue:

SET ASSIST NOTMR

only the virtual interval timer assist is disabled. If CP assist is disabled for the
system, and you issue the class A command:

SET SASSIST ON

the virtual machine assist is enabled. To enable virtual machine assist and virtual
interval timer assist for your virtual machine, issue the class G command:

SET ASSIST ON TMR

Restricted Use of ECPS
The restrictions on the use of ECPS are the same as those described for the virtual
machine assist feature with one addition. When a virtual machine traces external

interrupts, the virtual interval timer assist is automatically disabled. When external
interrupt tracing is completed, virtual interval timer assist is reenabled.

Chapter 10. Performance Guidelines 79

Improving Channel Use

Using the Virtual Block Multiplexer Channel Option

Virtual machine SIO operations are simulated by CP in three ways:

e Byte-multiplexer
« Selector
« Block multiplexer channel mode.

Virtual byte-multiplexer mode is reserved for I/O operations that apply to devices
allocated to channel zero.

In virtual selector channel operations, CP reflects a busy condition (condition code
2) to the virtual machine’s operating system if the system tries a second SIO to the
same device, or another device on the same channel, before the first SIO is
completed.

Block multiplexer channel mode is a CP simulation of real block multiplexer
operation; it allows the virtual machine’s operating system to overlap SIO requests
to multiple devices connected to the same channel. If you select block multiplexer
mode of operation, the virtual machine’s throughput may increase, particularly for
systems or programs designed to use the block multiplexer channels.

Note: CP simulation of block multiplexer processing does not reflect channel
available interruptions (CAlIs) to the user’s virtual machine.

You can select the channel mode of operation for the virtual machine by a system
generation DIRECTORY OPTION operand or by the CP DEFINE command.
Enter the DEFINE command as:

DEFINE CHAN BMX

Using the 3088 Multisystem Communications Unit

The IBM 3088 Multisystem Channel Communication Unit (MCU), an
input/output device, interconnects as many as eight systems using block
muitipiexer channeis. The 3088 Model i interconnects up to four systems, whiie
the 3088 Model 2 interconnects up to eight systems.

With the 3088, you can use the PREPARE channel command to prevent attention
interrupts on the side issuing the PREPARE command. See “Channel Command

Words” for a description of 3088 channel command words.

The 3088 is compatible with existing channel-to-channel usage. Also, 3088
support extends existing CTCA addressing and scheduling by:

« Allowing multiple unit addresses per control unit

80 VM/SP System Programmer’s Guide

P

« Implementing block multiplexer channel scheduling for both real and virtual
CTCAs and 3088.

System Programmer Considerations

Virtual 3088 Support

At system generation time, code parameters in the RDEVICE macro and the
RCTLUNIT macro to define the 3088 to the control program. See the VM/SP
Planning Guide and Reference for the format of these macros.

RDEVICE MACRO: When you code the RDEVICE macro, specify the address
and device type. For example, to define a maximum of 32 sequential unit
addresses at A0O, code the RDEVICE macro as follows:

RDEVICE ADDRESS=(A00,32),DEVTYPE=3088

RCTLUNIT MACRO: When you code the RCTLUNIT macro, specify the address
and the control unit type. Also, since the 3088 supports a maximum of 32 or 64
devices, specify the number of sequential unit addresses using the
FEATURE=xxx-DEVICE operand. For example, if you want to generate 32
devices at channel address A0Q, code the RCTLUNIT macro as follows:

RCTLUNIT ADDRESS=A00,CUTYPE=3088,FEATURE=32-DEVICE

SPECIAL DIRECTORY CONTROL STATEMENT: The 3088 is a valid device for
the SPECIAL directory control statement. For example, to specify a 3088 at
virtual address A0O, code the SPECIAL directory control statement as follows:

SPEcial AO0 3088

Use the class G DEFINE command to define a virtual 3088 device, with or without
a real equivalent. The system simulates all functions of the real 3088, except for
the online testing functions, for each virtual 3088 that you define. Define each
virtual 3088 unit address with a single DEFINE command. Defining each virtual
unit address is different from the dedicated 3088 support where you can define
multiple unit addresses using a single RDEVICE macro. Refer to VM/SP Running
Guest Operating Systems for examples of virtual machine usage of
channel-to-channel devices.

Command Use and 3088 Support

Support for the 3088 recognizes the 3088 as a valid device. Figure 7 outlines
commands affected by 3088 support. See the VM/SP Operator’s Guide and the
VM/SP CP Command Reference for General Users for details on these commands.

Chapter 10. Performance Guidelines 81

Command Class 3088 Support

DEFINE G The 3088 is a valid device type on
this command. The control unit
address for a CTCA and a 3088 need
not end in zero. Once you define the
control unit, you may define other
virtual devices for the same CTCA or
3088.

ATTACH B The response to these commands is
COUPLE G the same for channel-to-channel
DETACH G,B adapters (CTCAs) and 3088s.
QUERY B

Figure 7. CP commands and 3088 Support

Channel Command Words

In addition to the channel commands supported in System/360 and System/370
modes, the 3088 supports the following two channel commands:

« PREPARE -- Use the PREPARE channel command to receive a channel
program without causing an attention interrupt to the side issuing the
command.

e SENSE ID -- Use the SENSE ID channel command to transfer model and
control unit identification to the system issuing the command.

Diagnostic Aids
3088 support offers online testing facilities, and messages and MNOTES as
diagnostic aids when using the support. See VM/SP System Messages and Codes
for the complete text of the messages.
Online Testing: The last address in the group of 32 or 64 addresses for each
interface attached to the 3088 is available as a dedicated diagnostic unit address.
The diagnostic unit address provides a communication path between diagnostic
programs and the 3088 microprocessor for online testing. For example, a system
attached to the 3088 may use the diagnostic unit address to read the 3088 logout

and error information.

Messages and MNOTES To Support 3088 Devices: The system issues a message or
MNOTE if:

e You try to define a 3088 for a unit address previously defined

« The virtual channel-to-channel device specified in the COUPLE command is
busy on the receiving userid’s virtual machine

¢ You try to couple a 3088 to a channel-to-channel adapter

¢ You specify a model on the RDEVICE macro.

82 VM/SP System Programmer’s Guide

Alternate Path Support

With the Two-Channel Switch and Two-Channel Switch Additional Features,
alternate path support for DASD or tape provides for up to four channels on one
control unit to be attached to VM/SP (up to 2 channels per control unit in
multiprocessing configurations). In addition, one device can be attached to two
logical control units, providing support for the String Switch feature. This allows
the control program up to eight paths to a given device when the maximum number
of alternate channels and alternate control units are specified.

When an I/O request is received for a device that has alternate paths defined, and
the primary path is unavailable, VM /370 searches for the first available path
beginning with the first alternate path. It examines successive alternate paths, if
required, until an available path is found. If no available path to the device exists,
alternate path I/O scheduling queues the request on multiple busy/scheduled
paths, and the first path to become available is the path the I/O request is started
on.

The VM/370 1/0 Scheduler determines that a path is available by analyzing the
busy and scheduled software indicators in the RDEVBLOK, RCUBLOK, and
RCHBLOK as well as the chains of pending I/O requests that are queued from the
RCUBLOK and RCHBLOK. This processing is performed prior to issuing the
SIO.

The search for an available path begins with the RDEVBLOK. If the
RDEVBLOK is marked busy or scheduled, the I/O request is queued on the
RDEVBLOK. No alternate path scheduling is performed at the device level. If the
RDEVBLOK is not busy or scheduled, the IOBLOK for this I/O request is
promoted upward to the RCUBLOK. If the RCUBLOK is marked busy, the
IOBLOK is queued on the RCUBLOK and a search is made for an alternate
control unit path. If the RCUBLOK is marked scheduled and the present request
will not release the control unit (example: TAPE FSF and TAPE BSF), the
IOBLOK is queued off the RCUBLOK and a search is made for an alternate
control unit path. If the RCUBLOK is marked scheduled and the present request
will release the control unit, the search continues for a channel path. If the
RCUBLOK is not marked scheduled or busy but there are other I/O requests
queued on the RCUBLOK, the check is again made to see if the present request
will release the control unit. If the present request will not release the control unit,
the request is queued and a search is made for an alternate control unit path.
Otherwise, the search continues for a channel path.

The RCUBLOK “busy”” and “scheduled” indicators are only turned on for shared
control units. The busy and scheduled indicators are turned on in the RCUBLOK
for tape and 2314 DASD control units. The non-shared DASD RCUBLOKS never
have the busy and scheduled indicators in the “on” status. For this reason,
alternate control unit path selection rarely takes place for non-shared control units.
The one exception occurs when the channel path through the first control unit
appears busy (because a real channel busy condition was encountered). If an
alternate path exists through a second control unit, the control blocks associated
with the second control unit path are examined.

Finding an available channel path is the final step before issuing the SIO. If the
RCHBLOK is marked busy, a search is made for an alternate channel path. If the

Chapter 10. Performance Guidelines 83

RCHBLOK has other requests queued on the RCHBLOK, a search for an
alternate channel path is made. VM/370 never marks a byte multiplexor
RCHBLOK busy. The only time a byte multiplexor is marked busy is after a
condition code 2 has been encountered. The 1/0 load on byte multiplexor
channels must be sufficient to cause channel busy conditions before path selection
on an alternate channel can take place.

MVS/System Extensions Support

The MVS/System Extensions support in VM/SP allows an MVS system running in
a virtual machine to use the enhancements available in the MVS/System
Extensions Program Product (Program No. 5740-XE1) if the System/370
Extended Facility or System/370 Extended Feature is present on the hardware.

Included in the MVS/System Extensions Program Product enhancement is the use
of:

1. The System/370 Extended Facility for the 303x and the 308x processors, or

2. The System/370 Extended Feature for the System/370 Model 158 and 168
processors, or

3. ECPS:MVS for the 4341.

Note: An RPQ (MK3272) is available for the 158-3 processor that allows the
coexistence of virtual machine assist and System/370 Extended Facility (S370E)
and VM /370 Extended Feature. Thus, an MVS/SE virtual machine can run under
VM/SP with virtual machine assist active on a 158-3 processor. ECPS:MVS and
ECPS:VM/370 are mutually exclusive in the 4341 Model Group 1 and 4341
Model Group 2. The control storage expansion feature of the Model Group 2
allows coexistence of ECPS:MVS and ECPS:VM/370.

The System/370 Extended Facility and System/370 Extended Feature, and
ECPS:MVS are enabled by the MVS/System Extensions support as defined by the
directory OPTION statement or via the CP SET command. For details, refer to the
VM /SP Operator’s Guide, and the VM /SP CP Command Reference for General
Users, respectively.

MVS/Sysiem Exicnsions suppoit includes:

« Low address protection facility!

« Common segment facility!
« Special MVS instruction operation facilities.

1 ECPS:MVS is identical to the Extended Facility, except that the Low Address
Protection Facility and the Common Segment Facility are not included.

84 VM/SP System Programmer’s Guide

Low Address Protection Facility

Low address protection protects against improper storing by instructions using
logical storage addresses in the range 0-511. It prevents inadvertent program
destruction of those storage locations that the processor uses to fetch new PSWs
during interruption processing. Low address protection does not apply to the
storing of status by the processor (for example, old PSWs, logout data), nor does it
apply to any channel stores (for example, CSW or LCL).

Bit 3 of control register 0 is the low address protection bit, and controls whether or
not store instructions using logical addresses in the range 0 to 511 are permitted.
When this bit is zero in real control register zero, stores are permitted; when this
bit is one, stores are not permitted. When an instruction attempts to store at an
address in the range 0 to 511 and low address protection applies, the contents of
the storage area addressed by the instruction are not modified. Execution of the
current instruction is terminated or suppressed, and a protection exception occurs.

Common Segment Facility

The common segment facility allows addressing segments to be classified as private
or common. If bit 30 of the segment table entry for a given segment is 1, the
segment is a common segment; otherwise it is private. A private segment table
entry and the page table it designates can be used with only the segment table
origin (STO) that designates the segment table in which the segment table entry
resides. A common segment table entry and the page table it designates may
continue to be used for translating addresses even though a different STO is
specified by changing control register 1.

Special MVS Instruction Operation Handling Facilities

Special operations and instructions in the MVS/System Extensions Program
Product that enhance MVS operations are handled by System/370 Extended
Facility or System/370 Extended Feature, and are described in System/370
Extended Facility, GA22-7022. Invalidate Page Table Entry (IPTE) and Test
Protection (TPROT) instructions described in this publication are simulated in
VM/SP.

Enabling MVS/System Extensions Support

To enable the MVS/System Extensions support for all virtual machines, use the
class A SET S370E ON command. The general user uses he class G SET 370E
ON command (or 370E option on the directory OPTION control statement), to
enable the support for a particular virtual machine.

Chapter 10. Performance Guidelines 85

Improving Throughput of an 0S/VS2 MVS AP or MP System

l When an OS/VS2 MVS system runs on a multiprocessor under VM/SP, without

using single processor mode, MVS runs in uniprocessor mode. That is, MVS
programs do not execute simultaneously on both processors. Therefore, MVS does
not attain the level of throughput it could attain were it running in multiprocessor
mode.

To improve the throughput of an OS/VS2 MVS system in an AP or MP system,
run MVS in the V=R machine and use single processor mode. In this mode, MVS
has exclusive use of one processor while VM/SP and the V=R machine (running
MVS) use the other processor. In other words, MVS runs on two processors
instead of one. This improves MVS’s throughput.

The throughput of an OS/VS2 MVS system in an AP or MP system running under
VM/SP and using single processor mode is higher than the throughput would be
were single processor mode not used. However, single processor mode may reduce
the throughput of VM/SP and virtual machines not using the V=R area.

Single processor mode cannot improve the throughput of a VM/SP attached
processor or multiprocessor system. A VM/SP AP or MP system initialized (by
IPL) in the V=R machine with single processor mode on runs in uniprocessor
mode.

Two commands provide operator control of single processor mode. SPMODE, a
class A command, turns single processor mode on or off. QUERY, a class A or G
command, indicates whether single processor mode is on or off.

For detailed instructions on how to turn single processor mode on or off, see
VM /SP Running Guest Operating Systems.

Dynamic System Control Programming (SCP) Transition to or from Native Mode

Sometimes an installation benefits from switching an SCP to or from native mode.
For example, when obtaining the best possible performance from an SCP is
important, switch it to native mode. To do different kinds of work simultaneously,
switch the SCP from native mode to the VM/SP environment.

Installations have always had the capability to switch an SCP to or from native
mode, but to do so has been time consuming. Switching an SCP to native mode
meant quiescing the SCP and VM/SP and then initial program loading the SCP.
To return the SCP to the VM/SP environment meant quiescing the SCP and then
initial program loading VM/SP and the SCP.

Dynamic SCP transition to or from native mode enables an operator to dynamically
switch an SCP to or from native mode. Switching to native mode, there is no
longer a need to quiesce or reinitialize (via IPL) the SCP. The SCP continues to
run and can do productive work. Switching back to the VM/SP environment, there
is no longer a need to quiesce the SCP or IPL VM/SP or the SCP.

Before switching an SCP to or from native mode, an operator must prepare
VM/SP and the SCP for the switch: for example, all users except the VM/SP

86 VM/SP System Programmer’s Guide

T
’

operator and the operator on the V=R machine must logoff VM/SP. Detailed
instructions on preparing the systems and on switching to or from native mode are
in VM /SP Running Guest Operating Systems. The following discussion highlights
the switching process and defines precautions that must be observed.

To switch an SCP to native mode, it must be running in the V=R machine. The
VM/SP operator then prepares VM/SP and the SCP for the switch. To complete
the switch, the operator issues the QVM command (quiesce VM).

After the switch to native mode is completed, there are two areas of real storage
that must not be altered. Addresses 0-7 contain the restart PSW (program status
word) used to make the transition back to the VM/SP environment. Storage above
the upper limit of the V=R area contains the VM/SP nucleus. Altering either area
may make it impossible to return to the VM/SP environment.

To return the SCP to the VM/SP environment, an operator uses the System/370
restart facility. After stopping the processor, the operator stores the value X'FF'
into the real storage address located eight bytes prior to the address pointed to by
the restart PSW. To complete the switching process, the operator restarts the
processor. Caution: This process does not work unless the SCP was switched to
native mode via the QVM command.

The performance of an SCP switched to native mode depends on the size of the
V=R area. The SCP’s performance will be identical to the performance it would
attain were it initialized (via IPL) directly on a hardware configuration identical to
the V=R machine’s configuration with a real storage size equal to the storage size
of the V=R area. In other words, the larger the V=R area, the better the SCP
performs.

You can can switch to or from native mode using the procedures just described for:
« OS/VS1 running without VM VS1 Handshaking

« 0S/VS2S8VS

« OS/VS2MVS.

Chapter 10. Performance Guidelines 87

88 VM/SP System Programmer’s Guide

A
\)) J

Chapter 11. Performance Observation and Analysis

You can use the INDICATE, QUERY SRM, and MONITOR commands, to
measure system performance dynamically.

INDICATE command: Provides a method to observe the load conditions on the
system while it is running.

QUERY SRM command: Provides expanded observation facilities for analyzing
internal activity counters and parameters.

MONITOR command: Provides a data collection tool designed that samples and
records a wide range of data. The collection of data is divided into functional
classes that can be performed separately or concurrently. Keywords in the
MONITOR command enable the collection of data and identify the various data
collection classes. Other keywords control the recording of collected data on tape
for later examination and reduction.

Using the INDICATE Command

Use the INDICATE command to check the system for persistently heavy loads, to
judge when it is best to apply additional scheduling controls (if appropriate).

Use the INDICATE command to display the basic uses of and contentions for
major system resources (possible bottleneck conditions) and characteristics of the
active users and the resources that they use.

Virtual machine users can use the INDICATE command to observe the basic
smoothed conditions of contention and use of the primary resources of processor
and storage. The INDICATE command allows them to base their use of the
system on an intelligent guess of what the service is likely to be. Over a period of
time, virtual machine users relate certain conditions of service to certain utilization
and contention figures, and know what kind of responses to expect when they start
their terminal session.

The INDICATE command lets general users and the system analyst display on a
console at any time the use of and contention for major system resources. They
can also display the total amount of resources used during the terminal session and
the number of I/O requests. If they use the INDICATE command before and
after the execution of a program, users can determine the execution characteristics
of that program in terms of resource use.

Chapter 11. Performance Observation and Analysis 89

The system analyst can identify active users, the queues they are using, their I/O
activity, their paging activity, and many other user characteristics and use data.

The system analyst can use the data on system resource usage and contention to
monitor the performance of the system. The analyst can thus be aware of heavy
load conditions or low performance situations that may require the use of more
sophisticated data collection, reduction, and analysis techniques for resolution.

The VM/SP Scheduler maintains exponentially smoothed values for data provided
by the LOAD option. Specifically, at intervals (in seconds) depending on the
processor model, the scheduler calculates the total activities for variables such as
CP and storage use for the most recent interval, and factors them into a smoothed
wait value in the following way:

(3 * old smoothed
New smoothed value = value + current interval)
4

Thus, only one-fourth of the most recent interval is factored into the new smoothed
value which makes it predominantly the old smoothed value.

The remaining INDICATE components are sampled prior to a user being dropped
from a queue. Because of the frequency of this event, the remaining components

are subject to a heavier smoothing than the wait time. A general expression for the
smoothing follows:

nsv = ((rate - int) (osv) / rate) + civ

where:

nsv is the new smoothing value

osv is the old smoothing value

civ is the current interval value (results found during the current interval (int))
int is the current interval (time period being tested)

rate is either the history interval (hrate) of 8 minutes, or data interval (drate) of
75 seconds

Other operands of the command allow users to obtain other performance
information that enables them to understand the reasons for the observed
conditions. For the format of the class G INDICATE command, see the VM/SP
CP Command Reference for General Users. For the format of the class E
INDICATE command, see the VM /SP Operator’s Guide.

90 VM/SP System Programmer’s Guide

(The INDICATE FAVORED Command

The section ‘“‘Preferred Virtual Machine Options” in this publication contains
detailed information on favored execution. For information on the setting of
favored execution options, refer to the VM /SP Operator’s Guide.

Using the QUERY SRM and SET SRM Commands

Use the QUERY SRM and SET SRM commands to query and/or change internal
system activity counters or parameters. Formats for the QUERY SRM and SET
SRM commands are contained in the VM/SP Operator’s Guide.

Use the Class E QUERY SRM command to display the following information:

o Current number of pageable pages
« Size of the dispatching time slice
¢ Setting of the maximum working set estimate
¢ Maximum drum page allocation limit
o Current page migration counters
« Unused segment elapsed time as criteria for page migration
¢ Current PCI flag setting mode for 2305 page requests
« Maximum page bias value
- « Current interactive shift bias value
(« Moveable head page migration limit.

Use the class E SET SRM command to set some of the system variables that can
affect the values displayed by the QUERY SRM command.

The MONITOR Command

VM/SP Monitor collects data by:

o Handling interruptions caused by executing MONITOR CALL (MC)
instructions.

« Using timer interruptions to give control periodically to samp..i.g routines.

MONITOR.CALL instructions with appropriate classes and codes are embedded in
strategic places throughout the main body of VM/SP code (CP). When a
MONITOR CALL instruction executes, a program interruption occurs if the
particular class of MONITOR CALL is enabled. The classes of MONITOR CALL
that are enabled are determined by the mask in control register 8. For the format
and function of the MONITOR CALL instruction, refer to the System/370
Principles of Operation. The format of control register 8 is as follows:

Chapter 11. Performance Observation and Analysis 91

[xoxx [xoxx [xox [xxx [0123 [4567 [89AB [CDEF|

where:
X indicates unassigned bits.
0-F (hexadecimal) indicates the bit associated with each class of the

MONITOR CALL.

When a MONITOR CALL interruption occurs, the CP program interruption
handler (DMKPRG) transfers control to the VM/SP monitor interruption handler
(DMKMON) where data collection takes place.

Sixteen classes of separately enabled MONITOR CALL instructions are possible,
but only eight are implemented in the VM/SP Monitor.

Monitor output consists of event data and sampled data. MONITOR CALL
instructions in the VM/SP code obtain data. Sampled data is collected following
timer interruptions. All data is recorded as though it were obtained through a
MONITOR CALL instruction. This simplifies the identification of the records.

The following table shows the type of collection mechanism for each Monitor class:

Monitor Class Collection

Class Name Mechanism

0 PERFORM Timer requests
1 RESPONSE MC instructions
2 SCHEDULE MC instructions
32 -- --

4 USER Timer requests
5 INSTSIM MC instructions
6 DASTAP Timer requests
7 SEEKS MC instructions
8 SYSPROF Collected via class 2

Another function, separate from the VM/SP Monitor, is also handled by the
MONITOR command. The MONITOR command can stop and start collecting CP
internal trace table data, which is not initiated by MONITOR CALLs.

Note: The VM/SP Monitor record format and contents are shown in “Appendix
B. Monitor Tape Format and Content.”

The class A and E MONITOR command:
« Stops and starts CP internal trace table data collection.

o Displays the status of the internal trace table and each implemented class of
VM/SP Monitor data collection.

2 There is no class name for monitor class 3, but it is reserved.

92 VM/SP System Programmer’s Guide

Implemented Classes

Displays the specifications for automatic monitoring defined by the SYSMON
macro in DMKSYS.

Displays those specifications for automatic monitoring that are overridden by
Monitor commands.

Displays whether the tape or spool file is the recording medium.

Starts and stops VM/SP data collection using tape or spool file. It also closes
the spool file, if desired.

Specifies VM/SP monitor classes of data collection enabled, number of buffers
used, and time of data collection. It also specifies other options which override
the specifications for automatic monitoring on the SYSMON macro contained
in DMKSYS.

Specifies the interval to be used for timer driven data collection.
Specifies direct access devices to be included or excluded from a list of devices.

The list defines direct access devices for which CP is to collect data for the
SEEKSs class.

See the VM /SP Operator’s Guide for the format and details of the MONITOR
command.

The following MONITOR CALL classes correlate with the corresponding classes
in control register 8. Refer to the System/370 Principles of Operation for details of
the MC instruction and the bits in control register 8.

Monitor

Class Keyword Data Collection Function

0 PERFORM Samples system resource usage data by accessing system counters of interest
to system performance analysts.

1 RESPONSE | Collects data on terminal I/O. Simplifies analyses of command usage, user,
and system response times. It can relate user activity to system
performance. This class is invalid and no data can be collected for it unless
the system programmer changes the LOCAL COPY file and reassembles
DMKMCC.

2 SCHEDULE | Collects data about scheduler queue manipulation, monitors flow of work

through the system, and indicates the resource allocation strategies of the
scheduler.

Chapter 11. Performance Observation and Analysis 93

Monitor
Class

Data Collection Function

Reserved.

Periodically scans the chain of VMBLOKS in the system, and extracts user
resource utilization and status data.

INSTSIM

Records every virtual machine privileged instruction handled by the control
program (CP) standard simulation routines (DMKPRV, DMKPRW).
Because simulation of privileged instructions is a major source of overhead,
this data may lead to methods of improving performance.

The fast path simulation routines (DMKFPS) result in significantly less
control program overhead than the standard paths. Therefore, privileged
instructions simulated by DMKFPS are not recorded.

If the VMA feature is active, the number of privileged instructions that are
handled by the control program is reduced for those virtual machines that
are running with the feature activated.

DASTAP

Periodically samples device I/O activity counts (SIOs), for tape and DASD
devices only. DASTAP samples only those tapes and DASD devices that
are online when the MONITOR START command is issued.

It is possible that the number of DASD and tape devices defined in
DMKRIO may exceed 291 (the maximum number of MONITOR DASTAP
records that fit in a MONITOR buffer). The following algorithm
determines which devices are monitored:

1. If the total number of DASD and tape devices that are on-line is less
than or equal to 291, all on-line DASD and tape devices are monitored.

2. If the total number of on-line DASD devices is less than or equal to
291, all on-line DASD devices are monitored.

3. Otherwise, the first 291 on-line DASD devices are monitored.

94 VM/SP System Programmer’s Guide

S

Monitor
Class

Keyword

Data Collection Function

SEEKS

Collects data for every I/O request to DASD. Reveals channel, control
unit, or device contention and arm movement interference problems.

Note: 'When NOTRANS is in effect for a virtual=real machine, no
meaningful data is collected.

No data is collected for TIO or HIO operations. For SIO operations, data is
collected when the request for the I/O operation is initially handled and
again when the request is satisfied.

This means that a single SIO request could result in two MONITOR
CALLs. For example, if the request gets queued because the device is
already busy, then a MONITOR CALL would be issued as the request is
queued. Later, when the device becomes free and is restarted, a second
MONITOR CALL is issued.

In general, the data collected is the same except that in the first case
nonzero counts are associated with queued requests.

If the request for I/0 is satisfied when it is initially handled without being
queued, only one MONITOR CALL results. In both this case and the
second of the two data collections mentioned above, the count of I/O
requests queued for the device is zero.

SYSPROF

Collects data complementary to the DASTAP and SCHEDULE classes to
provide a more detailed ''profile" of system performance through a closer
examination of DASD utilization.

Monitor Response to Special Tape Conditions

Suspension

When I/0 to the tape is requested, the device may still be busy from the previous
request. If this occurs, two data pages are full and data collection must be
temporarily suspended. Control register 8 is saved and then set to zero to disable
MONITOR CALL program interruptions and timer data collection. A running
count is kept of the number of times suspension occurs. The current Monitor event
is disregarded. When the current tape I/0 operation ends, the next full data page
is scheduled for output. MONITOR CALL interruptions are reenabled (control
register 8 is restored), a record containing the time of suspension, the time of
resumption, and the suspension count is recorded and data collection continues.
The suspension count is reset to zero when the MONITOR STOP TAPE is issued.
If a MONITOR command is issued when monitor is suspended, a message is
displayed to the invoker of the command stating:

SEEK, STOP, OR CLOSE CMD IN PROGRESS, RETRY

Chapter 11. Performance Observation and Analysis 95

Unrecoverable Tape Error

End-of-Tape Condition

When an unrecoverable error occurs, DMKMON receives control and attempts to
write two tape marks, rewind, and unload the tape. The use of the tape is
discontinued and data collection stops. The operator is informed of the action
taken. Whether or not the write-tape-marks, rewind, and unload are successful, the
tape drive is released.

When an end-of-tape condition occurs, DMKMON receives control. A tape mark
is written on the tape and it is rewound and unloaded. The monitor is stopped and
the operator is informed of the action taken.

Monitor Considerations

Initial Program Load

System Shutdown

System Failure

The system programmer may want to set the TRACE(1) bit to a 1 in the LOCAL
COPY file and reassemble DMKMCC to allow RESPONSE data (MONITOR
class 1) to be collected. Refer to the VM /SP Installation Guide for details.

MONITOR START CPTRACE is active after real system IPL (manual or
automatic). The monitor tape data collection is off after IPL. If automatic
performance monitoring is specified in the SYSMON macro and IPL occurs within
the range of the TIME operand of the SYSMON macro, monitor data collection to
a spool file is started.

If the monitor data collection to a spool file is taking place, a system shutdown
causes closing of the file and termination of monitoring. If data collection is to
tape, a system shutdown implies a MONITOR STOP TAPE command. Normal
command processing for the MONITOR STOP TAPE function is performed by the
system.

If the VM/SP system fails and data collection to a spool file is active, the spool file
i closed and preserved, except for the last buffer. Tf the VM/SP system fails and
data collection is active on tape, an attempt is made to write two tape marks,
rewind, and unload the tape. If the tape drive fails to rewind and unload, be sure to
write a tape mark before rewinding and unloading the tape. Monitor data
collection is terminated by the system failure.

96 VM/SP System Programmer’s Guide

¢

1/0 Devices

| Monitor Output

If monitor data collection is active using tape, a supported tape drive must be
dedicated to the system for the duration of the monitoring. For accounting
purposes, all I/O is charged to the system.

Monitor spooled output requires that you have the IBM field-developed program
called VMAP (Virtual Machine Analysis Program, 5798-CPX) or some other user
application program to read the file and process it.

Monitor Data Volume and Overhead

Use of the monitor usually requires that three pages be locked in storage for the
entire time the monitor is active; however, only two pages are required if the single
buffer option is used with only the PERFORM class of data collection enabled.
This reduces by three the number of page frames available for paging. This
significantly affects the performance of the rest of the system when there is a
limited number of page frames available for paging.

PERFORM
This class of data collection is activated once every 60 seconds (or as defined
by the MONITOR INTERVAL command), and records system counters
relevant to performance statistics. It is, therefore, a very low overhead data
collection option.

RESPONSE
This class collects terminal interaction data and, because of the human factor,
has a very low rate of occurrence relative to processor speeds. Consequently,
this class causes negligible overhead and produces a low volume of data.

SCHEDULE
This class records the queue manipulation activity of the scheduler and
generates a record every time a user is added to the eligible list, added to
queuel, queue2, or queue3, or removed from queue. The recording overhead is
very low.

USER
This class of data collection is active once every 60 seconds (or as defined by
the MONITOR INTERVAL command). Data is extracted from each user’s
VMBLOK, including the system VMBLOK. The overhead incurred is
comparable with that of the statistical data of the PERFORM class; however, it
increases with the number of users logged onto the system.

INSTSIM
This class of data collection can give rise to large volumes of data because of
the frequency of privileged instructions in some virtual machines. This may
incur significant overhead. It should be activated for short periods of time and
preferably, though not necessarily, when other classes of data collection are
inactive. If the Virtual Machine Assist feature is active for the virtual machine,
the data volume and, consequently, the CP overhead may be reduced.

Chapter 11. Performance Observation and Analysis 97

TN
f \

DASTAP N
This class of data collection samples device activity counts once every 60
seconds (or as defined by the MONITOR INTERVAL command) and is a very
low source of overhead, similar to the PERFORM and USER classes.

SEEKS
This class of data collection can give rise to large volumes of data because
every start I/0 request to DASD is recorded via a MONITOR CALL.

SYSPROF
This class of data collection is complementary to the SCHEDULE and
DASTAP classes and results in a small amount of additional overhead. It
obtains more refined data on DASD resource usage.

Performance for Time-Shared Multibatch Virtual Machines

First you must determine how many similar users can be run concurrently on a
given configuration before the throughput of individual users becomes
unacceptable.

Monitoring Recommendations

To simplify and automate the collection of performance data, use the automatic
monitoring facilities. You should also set up a virtual machine to analyze and
report the collected data. The VM /370 Performance/Monitor Analysis Program
(VMAP) does such a task. For more information about this program and for :
details about ordering it, see the publication Virtual Machine Facility/370 N
Performance/Monitor Analysis Program. You should run this program or

user-written analysis programs on a daily basis to analyze the collected data. Run

such analysis programs preferably at off-peak hours to minimize the effect on the

performance of the system doing data reduction. Initially, analyze the data

collected with MONITOR default options to establish a familiarity with the load

environment and performance profile of each virtual machine system and its effect

on CP.

Once you establish a performance profile for each system and associated virtual
machines, you should be able to detect points of contention between processor(s)
storage, I/0, and paging subsystems.

Normally, use the spool file monitoring options. However, if large volumes of trace
data are to be collected, then use monitoring to tape. Tape is also useful if
benchmarking is set up frequently and all of the new monitor trace and sampled
data must be archived for possible future use. The default mode of operation of
the Performance/Monitor Analysis Program is to keep the condensed ACUM files
and not the raw data.

If you need SEEKSs data, use a sampling technique. One technique is to use a CMS

EXEC procedure to enable SEEKSs for ten seconds every ten minutes. This would

produce SEEKs data while limiting the volume of data collected. An alternative is

to create a list of devices for which data for the SEEKs class is to be collected. CP

collects data for only those devices in the list. To create the list, use the INCLUDE P
or EXCLUDE options of the MONITOR command’s SEEK operand. If data is \K ;
collected for only a few devices, consider collecting data for longer periods of time. -~

98 VM/SP System Programmer’s Guide

Load Environments of VM/SP

Two distinct uses of VM/SP can be readily identified: The system may be required
to time share multiple batch-type virtual machines with interactive machines
performing minor support roles; or, the system may be primarily required to
provide good interactive time-sharing services in the foreground, with a batch
background absorbing spare resources of real storage and processor. Because of
these distinct uses, there may be some differences in criteria for acceptable
performance.

After determining the minimum acceptable performance, perform external
observations of turnaround time on benchmarks and specify a point beyond which
adding more users would be unacceptable. However, when that point is reached,
you must do more sophisticated internal measurement to determine the scarcest
resource and how the bottleneck can be relieved by additional hardware.

Several conditions can result from different bottlenecks. They are:

« Real storage levels of multiprogramming are low compared with the number of
contending users. Hence, each user is dispatched so infrequently that running
time or response time may become intolerable.

« Storage may be adequate to contain the working sets of contending users, but
the processor is being shared among so many users that each is receiving
inadequate attention for good throughput.

« Real storage space may be adequate for the processor, and a high speed drum
is used for paging; however, some virtual storage pages of some users have
spilled onto slower paging devices because the drum is full. With low levels of
multiprogramming, user page wait can become a significant portion of system
wait time. Consequently, processor utilization falls and throughput
deteriorates.

« Storage, processor, and paging resources are adequate, yet several users are
heavily I/O-bound on the same disk, control unit, or channel. In these
circumstances, real storage may be fully committed because the correct level of
multiprogramming is selected, yet device contention is forcing high I/O wait
times and unacceptable processor use.

Obtain estimates of typical working set sizes to determine how well an application
may run in a multiprogramming environment on a given virtual storage system. A
measure of the application’s processor requirements may be required for similar
reasons. Measurements may be required on the type and density of privileged
instructions a certain programming system may execute, because, in the virtual
machine environment, privileged instruction execution may be a major source of
overhead. If the virtual machine environment is used for programming
development, where the improvement in programmer productivity outweighs the
disadvantages of extra overheads, the above points may not be too critical.
However, if throughput and turnaround time are important, then the converse is
true, and the points need close evaluation before allocating resources to a virtual
machine operation.

Chapter 11. Performance Observation and Analysis 99

High levels of multiprogramming and over-commitment of real storage space lead
to high paging rates. High paging rates can indicate a healthy condition; but be
concerned about page stealing and get evidence that this rate is maintained at an
acceptable level. A system with a high rate of page stealing is probably thrashing.

Performance -- Mixed Mode Foreground/Background Systems with Emphasis on
Good Interactive Response

Most of the conditions for good performance, established for the time-shared batch
systems, apply equally well to mixed mode systems. However, two major factors
make any determination more difficult to make. First, get evidence to show that, in
all circumstances, priority is given to maintaining good interactive response, and
that nontrivial tasks truly take place in the background. Second, background tasks,
no matter how large, inefficient, or demanding, should not be allowed to dominate
the overall use of the time-sharing system. In other words, in mixed mode
operation, get evidence that users with poor characteristics are discriminated
against for the sake of maintaining a healthy system for the remaining users.

A number of other conditions are more obvious and straightforward. You need to
measure response and determine at what point it becomes unacceptable and why.
Studies of time-sharing systems have shown that a user’s rate of working is closely
correlated with the system response. When the system responds quickly, the user is
alert, ready for the next interaction, and thought processes are uninterrupted.
When the system response is poor, the user becomes sluggish.

For interactive environments, analyze command use. Average execution time of
the truly interactive commands can provide data for validation of the Queue 1
execution time.

100 VM/SP System Programmer’s Guide

N

NS

Chapter 12. Accounting Records

The accounting data gathered by VM/SP can help in analysis of overall system
operation. Also, accounting data can be used to bill VM/SP users for time and
other system resources they use.

There are three types of accounting records: the virtual machine user records,
records for dedicated devices as well as T-disk space assigned to virtual machine
users, and accounting records generated as a result of user initiated DIAGNOSE
X'4C" instruction. A CMS batch virtual machine creates an accounting record
with the userid and account number of the user who sent his job to the batch
machine. Accounting records are prepared as 80-character card images and
spooled to disk.

When the user wishes, the data can be sent to the punch for punched output, or
spooled to the virtual machine’s reader for additional processing. By using the
SYSACNT macro, the user can do this when a specified number of records are
accumulated. By invoking the ACNT CLOSE command, the user does it
immediately.

Accounting Records for Virtual Machine Resource Use

The information stored in the accounting record in card image form when a user
ends his terminal session (or when the ACNT command is invoked) is as follows
(columns 1-28 contain character data; all other data is in hexadecimal form, except

as noted):

Column Contents

1-8 Userid

9-16 Account number

17-28 Date and Time of Accounting (mmddyyhhmmss)
29-32 Number of seconds connected to VM/SP System
33-36 Milliseconds of processor time used, including time for VM/SP

supervisor functions

37-40 Milliseconds of virtual processor time used
41-44 Number of page reads
45-48 Number of page writes
49-52 Number of virtual machine SIO instructions for nonspooled 1/0
53-56 Number of spool cards to virtual punch
57-60 Number of spool lines to virtual printer (This includes one line for

each carriage control command)

Chapter 12. Accounting Records 101

61-64

65-78
79-80

Total number of spool records from virtual reader

(This is not the number of records read, rather it is the total number
of records in the spool file (SFBRECNO) when the file is open for
processing.)

Reserved

Accounting record identification code (01)

Accounting Records for Dedicated Devices and Temporary
Disk Space

Accounting records are recorded and spooled to disk when a previously dedicated
device and temporary disk space is released by a user via DETACH, LOGOFF, or
releasing from DIAL (dedicated device only). A dedicated device is any device
assigned to a virtual machine for that machine’s exclusive use. These include
devices dedicated by the ATTACH command, those being assigned at logon by
directory entries, or by a user establishing a connection (via DIAL) with a system
that has virtual 2702 or 2703 lines. The information on the accounting record in
card image form is as follows (columns 1-28 contain character data; all other data
is in hexadecimal form, except as noted):

Column
1-8
9-16

17-28

29-32

33
34
35
36
37-38

39-78
79-80

Contents

Userid

Account number

Date and Time of Accounting (mmddyyhhmmss)

Number of seconds connected to VM/SP system

Device class

Device type

Model (if any)

Feature (if any)

Number of cylinders of temporary disk space used (if any) or number
of blocks used (columns 37-40) for fixed-block devices. This
information appears only in a code 03 accounting record.
Unused (columns 41-78 unused for fixed-block devices)
Accounting record identification code (02, 03)

The device class, device type, model, and feature codes in columns 33-36 are
shown in Figure 78.

Accounting Records for LOGON, AUTOLOG, and LINK
Journaling

102

When LOGON, AUTOLOG, and LINK journaling is on, VM/SP may write type
04, type 05, type 06, or type 07 records to the accounting data set. These records
are written under the following circumstances:

« Type 04 records are written when VM /SP detects that a user has issued
enough LOGON or AUTOLOG commands with an invalid password to reach
or exceed an installation defined threshold value.

VM/SP System Programmer’s Guide

7N
o/

« Type 05 records are written when VM/SP detects that a user has successfully

issued a LINK command to a protected minidisk not owned by that user.

« Type 06 records are written when VM/SP detects that a user has issued

enough LINK commands with an invalid password to reach or exceed an

installation defined threshold value.

« Type 07 records are written when a user logs off a device controlled by the

VTAM Service Machine (VSM). The records indicate the user’s share of the
VSM resources used.

These records have the following formats:

Type 04

Column
1-8
9-16

17-28

29-32

33-40

41-48

49-51

52-53

54-55

56-70

71-78

79-80

Type 05

Column
1- 8
9-16
17-28

29-32

33-40

41-48

49-51

52-70

71-78

79-80

Type 06

Column
1-8
9-16

17-28

29-32

33-40

41-48

49-51

Contents

USERID specified on the command

Reserved for IBM use

Date and time of accounting (mmddyyhhmmss)
Terminal address (see Note 1)

Invalid password (see Note 2)

USERID that issued the AUTOLOG command
Reserved for IBM use

Current invalid password count

Accounting record limit (JPSLOGAR)
Reserved for IBM use

LUNAME for SNA terminal

Accounting card identification code (04)

Contents

USERID that issued the command

Account number

Date and time of accounting (mmddyyhhmmss)
Terminal address (see Note 1)

Reserved for IBM use

USERID of user that owns the minidisk
Minidisk address for which the LINK command was issued
Reserved for IBM use

LUNAME for SNA terminal

Accounting card identification code (05)

Contents

USERID that issued command

Account number

Date and time of accounting (mmddyyhhmmss)

Terminal address (see Note 1)

Invalid password (see Note 2)

USERID of user that owns the minidisk

Minidisk address for which the LINK command was issued

Chapter 12. Accounting Records

103

52-53 Invalid password count 5'\\v S
| 54-55 Invalid password limit (JPSLNKAR)
| 56-70 Reserved for IBM use
| 71-78 LUNAME for SNA terminal
79-80 Accounting card identification code (06)
Type 07
Column Contents
1- 8 USERID or terminal identification
9-16 Accounting number or 0000
17-78 VTAM Service Machine accounting data
79-80 Accounting card identification (07)
Notes:

1. For the terminal address, columns 29-32 may contain one of the following:

‘NONE’ - if no terminal is found
e resource id - for remote bisynchronous terminals
o real device addr - for all other cases.

2. For the invalid password, columns 33-40 may contain one of the following:
e incorrect password

e ‘TERM/ERR’ - if the line dropped during password entry
‘TOO LONG" - if entered password is more that eight characters. N

Accounting Records Created by the User

A virtual machine user can initiate the creation of an accounting record that
contains up to 70 bytes of information of his own choosing. To do this, he issues a
DIAGNOSE code X'4C! instruction with the following operands:

« The address of a data area in virtual storage containing the information, in the
actual format, that he wishes to have recorded in columns 9 through 78 of the
card image record.

P . ‘e . 1 cxreane
. A nexaaccimal 1uncuon coae oL A’ 1V’

« The length of the data area in bytes

The information on the accounting record is as follows:

Column Contents

1- 8 Userid

9-78 User formatted data
79-80 Accounting record identification code (C0)
For information on using DIAGNOSE code X'4C' see “DIAGNOSE Instruction 0
in a Virtual Machine” in this section. K\/

104 VM/SP System Programmer’s Guide

For SNA users, VM/VTAM Communications Services (VCNA) uses the VM/SP
user accounting record. See the VCNA Installation and Terminal Use Guide for the
format of this record.

User Accounting Options

You may insert your own accounting procedures in the accounting routines. See
the “CP Conventions” section for information on CP coding conventions and load
list requirements. Operator responsibilities in such cases should be defined by the
installation making the additions. When designing such accounting procedures, you
should understand that:

1.

The accounting routines are designed to be expanded. The entry point
provided in the accounting module for installation use is called DMKACON.
If you want to perform additional accounting functions, you should modify the
following copy files:

ACCTON (account on) -- for action at logon time. This is provided as a null
file. It can be expanded to provide additional functions at logon time. The
ACCTON routine can request the system to force the user off by returning a
nonzero value in SAVER2. However, if the operator is automatically logged
on during system initialization, the nonzero return code has no effect.

Note: The ACCTON COPY file distributed with VM/SP contains the basic
logic required to enhance system security based on the 3277 Operator
Identification Card Reader feature. Additional checking may be added to
examine or validate the data read from the identification card.

ACCTOFF (account off) -- for action at logoff time. This section contains the
code that fills in the account card fields. It does not reset any internal data.
This file exists in both DMKACO and DMKCKEF (checkpoint). If the
ACCTOFF copy file is changed, both modules should be reassembled.

In addition to CP accounting, your installation can use the accounting routines
to supply virtual machine operating system accounting records. This provides a
means of job accounting and operating system resource use accounting.

If you specify, in the SYSACNT system generation macro, that your spooled

accounting records are to be sent to the reader of a virtual machine, you can
process the accounting data directly with your own accounting routines.

Chapter 12. Accounting Records 105

106 VM/SP System Programmer’s Guide

Chapter 13. Saved Systems, Discontiguous Saved Segments,
and Shared Segments

Saved Systems are systems you can IPL in a virtual machine, initialize, and save on
a disk along with all information you need to resume execution at the point where
you save the system. Saved systems provide an efficient means of IPLing systems
by bypassing many system initialization steps.

Discontiguous saved segments (DCSS) are areas of virtual storage outside the
address range of a virtual machine. These segments can contain read-only data or
reentrant code. Discontiguous saved segments provide an efficient means of
fetching programs by merely connecting discontiguous segments to a virtual
machine’s address space.

Shared segments are segments within a saved system or DCSS. These segments can
contain read-only data or reentrant code that many users can share. Many users
can share all or portions of a saved system or DCSS. This reduces the demand for
real storage for the overall system.

A segment of storage is 64K bytes long on a 64K byte boundary.

The VM /SP Planning Guide and Reference contains more information on:

« Saved systems, discontiguous saved segments, and shared segments

o Loading and saving discontiguous saved segments

o Creating a system name table

« Using the GENERATE EXEC to reassemble DMKSNT

e Coding the NAMESYS, NAMENCP, and NAME3800 macros.

Loading and Saving Discontiguous Saved Segments

Before a discontiguous saved segment can be attached and detached by name, it
must be loaded and saved. The procedure for loading and saving discontiguous
saved segments is in the VM/SP Planning Guide and Reference. The discontiguous
saved segment must be loaded at an address that is beyond the highest address of
any virtual machine to which it will be attached. The system programmer should
make sure the named segment is loaded at an address that does not overlay the
defined virtual machine or any other named segment that may be attached at the

Chapter 13. Saved Systems, Discontiguous Saved Segments, and Shared Segments 107

same time. But, if the load address is unnecessarily high, real storage is wasted
because CP must have segment table entries for storage that is never used.

For example, assume you have five CMS virtual machines in your installation. Also
assume that all five use the CMS support for DOS program development and
testing which is in a 32K segment named CMSDOS. If each of your five CMS
virtual machines has a machine size of 320K you should load the CMSDOS
segment just beyond 320K. If you load CMSDOS at a much higher address, for
example 512K, you are wasting real storage. In this case, whenever one of your
CMS virtual machines attaches the CMSDOS segment, CP creates segment table
entries for a 544K (512K + 32K) virtual machine. Although the virtual machine
cannot refer to storage addresses beyond 320K or below 512K, CP still must have
segment table entries in nonpageable real storage for those virtual addresses.

Once the named segment is loaded at the correct address, you can save it by issuing
the CP SAVESYS command. (See the VM/SP Planning Guide and Reference for
the format of the SAVESYS command. To be sure that the CMS discontiguous
saved segment has segment protection, set the storage key for the segment to
something other than X'F' before you save it. Use the CMS SETKEY command
to change the storage key.

The format of the CMS SETKEY command is:

I SETKEY | key systemname [startadr]

where:

key is the storage protection key, specified in decimal. Valid keys are
0-15.

systemname is the name of the saved system or segment for which the storage
protection is being assigned.

startadr is the starting address (in hexadecimal) at which the keys are to be
assigned. The address must be within the address range defined for
the saved system or discontiguous saved segments. Using the
startadr operand, you can issue the SETKEY command several
times and, thus, assign different keys to various portions of the
saved system or segment.

CP DIAGNOSE Code Interface With A DCSS

The linkage to attach and detach discontiguous saved segments is supported
through several CP DIAGNOSE codes.

The virtual machine is responsible for insuring that the discontiguous saved
segment it is attaching does not overlay other programming code. To do this, the
virtual machine must know how much virtual storage it has. By issuing
DIAGNOSE code X'60' during its initialization process, the virtual machine can
determine its virtual machine storage size.

108 VM/SP System Programmer’s Guide

TN

N

When the virtual machine needs to attach a discontiguous saved segment, it must
first ensure that the segment is available and that it does not overlay existing
storage. By issuing the DIAGNOSE code X'64' with subcode X'000C', the
virtual machine can verify that a loadable copy of the discontiguous saved segment
exists on a CP-owned volume. This DIAGNOSE code is called the FINDSYS
function. FINDSYS returns the starting address of the segment. The virtual
machine should compare the starting address of the segment to its own ending
address; if the segment does not overlay existing storage, it can be loaded.

CP DIAGNOSE code X'64' with subcode X'0000' or X'0004' provides a
LOADSYS function. Subcode X'0000' loads a named segment in shared mode,
and subcode X'0004' loads a named segment in nonshared mode. The section
“The DIAGNOSE Instruction in a Virtual Machine” contains a complete
description of the DIAGNOSE codes used in the discontiguous saved segment
interface.

If you want CMS to load the named segment in nonshared mode, you may do so by
issuing the CMS command:

SET NONSHARE segmentname

before CMS attaches the named segment. If the segment is loaded in nonshared
mode you can test and debug it using the CP TRACE, STORE, and ADSTOP
commands and the CMS DEBUG subcommands BREAK and STORE.

When CMS loads a named segment in shared mode, it issues the CP DIAGNOSE
code X'64' with subcode X'0000'. CMS issues the same code with subcode
X'0004' to load the named segment in nonshared mode.

When a discontiguous saved segment is loaded (or attached) to a virtual machine,
CP expands its segment table entries for that virtual machine to reflect the highest
address of the virtual machine.

When a named segment is successfully loaded, all of its storage is addressable by
the virtual machine. For example, when CMS attaches a named segment, it can
execute the routines contained in that segment. All of the commands that are
executable for CMS are also executable for the attached named segment, with the
following exceptions:

« The response for the CP QUERY VIRTUAL STORAGE command does not
reflect the storage occupied by the named segment.

« If you execute a command that alters storage (such as STORE), you are given
a nonshared copy of the named segment.

When the named segment is no longer needed, it can be detached. The CP
DIAGNOSE code X'64' subcode X'0008"' is called the PURGESYS function; it
detaches named segments. When a named segment is detached, its storage is no
longer addressable by the virtual machine and CP updates its segment tables. The
entries for segments beyond the original virtual machine size are deleted and the
associated real storage is released.

Chapter 13. Saved Systems, Discontiguous Saved Segments, and Shared Segments 109

Shared Segment Protection

VM/SP protects shared segments by default. However, at system generation time,
the system programmer can designate whether a shared segment is to be protected
or not. To do this, the programmer uses the PROTECT operand of the NAMESYS
MACRO. (See "Coding the NAMESYS MACROQ" in the VM/SP Planning Guide
and Reference for details).

Generally, the information contained in a protected shared segment should not be
modified. When segments are protected, CP ensures that one virtual machine does
not access a shared segment that another virtual machine has changed. In addition,
CP does not allow any user to change the storage keys on the protected page, thus
preventing other users from accessing the information on that page.

Unprotected shared segments differ from protected shared segments in that they
contain data that can be modified by any user that accesses the shared segment.
CP takes no action to protect either the contents or accessibility of these pages.
When segments are not protected, CP lets one virtual machine access a page in the
shared segment that may have been changed by another virtual machine. As a
result, all the virtual machines that share that storage must be aware of the change
activity that can occur and must act accordingly.

In addition, CP allows a user to change the storage keys on an unprotected page by
using the privileged instruction SSK. Changing the storage keys can prevent users
from accessing storage on the shared page; however, CP only simulates a privileged
instruction for a user in virtual supervisor state. Therefore, only a user in virtual
supervisor state is able to change the keys on unprotected shared pages.

Virtual Machine Operation with Protected Segments

When dealing with protected shared segments, CP determines if the current virtual
machine altered any pages within a segment before it dispatches another virtual
machine. Altering a page causes CP to take additional action before dispatching
the next virtual machine. The action that CP takes depends on what the virtual
machine did to alter the protected page.

The current virtual machine may have altered a protected shared page by issuing
one of the following commands:

« CPTRACE

« CP ADSTOP

« CPSTORE

In this instance CP gives exclusive use of the modified page to the virtual machine
that modified it. The user is given his own copy of the shared system that

contained the altered page. The user who issued the command receives the
message:

DMKATS181E SHARED SYSTEM name REPLACED WITH NON-SHARED COPY

110 VM/SP System Programmer’s Guide

This user’s virtual machine continues to execute using the private copy of the
shared system which contains the changes that were made to the page. CP
provides an unmodified copy of the page for other virtual machines to share.

The current virtual machine may have altered a protected shared page as a result of
issuing the STCP command. When STCP is issued, CP does not assign the
modified page to the user issuing the STCP command. Instead, the page changed
by the STCP command is written to the paging volumes. As a result, the change
made by the single user reflects to all the virtual machines using, that shared page.

If operations overlap and a STCP command is issued for a shared page that is
about to be assigned to a particular user (because that user just altered it), the user
that issued the STCP command receives the following message:

DMKCDS161E SHARED PAGE hexloc ALTERED BY userid

It should be noted that it is invalid to issue the STCP command to a shared segment
in attached processor systems. The store function is not performed and the user
receives the following message:

DMKCDSOO4E INVALID HEXLOC - XXXXXX

If the current virtual machine alters a protected shared page in any other way, then
the following happens:

1. CP sends the following message to the current virtual machine to identify the
altered page.

DMKVMA456W CP ENTERED; name-SHARED PAGE hexloc ALTERED

2. CP frees the storage occupied by the page, thus making it inaccessible. Later,
when a virtual machine references the page, CP brings a fresh copy of the page
into storage.

3. CP places the current virtual machine into console function mode thus stopping
the virtual machine. (To resume execution, the operator of this virtual machine
must issue the class G BEGIN command. The virtual machine then continues
to execute the unaltered system in shared mode.)

4. CP then dispatches another virtual machine.

I/0 activity into protected shared segments is monitored by channel program
translators. As a result, a channel protection error occurs if a virtual machine
attempts to read data into a protected page. A virtual machine is able to write from
a page in a protected segment. Shared systems contain segments that are either
protected or non-protected. No distinction is made between shared and nonshared
systems for storage key fetch instruction simulation, DISPLAY command
execution, and page key handling. In addition, the Extended Control Program
Support (ECPS) and the Virtual Machine Assist feature (VMA) are available to
users running shared systems with the following exception:

« The SSK instruction is not microcode assisted for a user who is running a
shared system.

Chapter 13. Saved Systems, Discontiguous Saved Segments, and Shared Segments 111

This exception is necessary because VMA updates the key on SSK instructions
(including SWPTABLE fields), but the new value is not detected by the hardware
change bit monitoring. A single bit in control register 6 controls whether or not the
ISK (Insert Storage Key) and SSK (Set Storage Key) instructions are handled by
the VMA feature. As a result, the dispatcher sets up control register 6 based on
the type of system that the virtual machine is running. If the virtual machine is
running a shared system of any kind (either protected or unprotected) then the
control registers are set up so that the SSK instruction is not microcode assisted.
Otherwise, the dispatcher sets up control register 6 so that the SSK instruction is
performed by the VMA feature.

112 vm/sp System Programmer’s Guide

Chapter 14. The Virtual Machine Communication Facility

The Virtual Machine Communication Facility (VMCF) is part of the CP
component of VM/SP. VMCEF provides virtual machines with the ability to send
data to and receive data from any other virtual machine.

VMCEF is made up of five data transfer functions, seven control functions, a special
external interrupt (code X'4001") to asynchronously alert virtual machines to
pending messages, and an external interrupt message header to pass control
information (and data, at times) to another user.

VMCEF is implemented by means of functions invoked using the DIAGNOSE
instruction code X'68' and a special 40-byte parameter list called VMCPARM. A
VMCEF function is indicated by a particular function subcode in the VMCPFUNC
field in the parameter list.

. Note: Before you can use any other VMCF function, you must use the
L{ AUTHORIZE function for communications. Before you can communicate with
another user, that user must also have used the AUTHORIZE function.

A special external interrupt (code X'4001"') is used by module DMKVMC to
notify one virtual machine of a pending transfer of data. This interrupt is also used
to synchronize sending and receiving of data.

Along with this interrupt, the virtual machine receives a message header that is
logged into a preassigned virtual storage area. This message header is used to
define the type of request and to provide data transfer information, such as length
of data. The message header is also used to notify the originator of a transaction
of the success or failure of the transaction. In this case, the message header
includes such information as residual counts and data transfer return codes.

Figure 8 lists the VMCEF functions and gives a brief description of each. The
functions are described in detail in the section “Descriptions of VMCF Functions”.

Messages and data are directed to other virtual machines logically via the userid.
Data is transferred in up to 2048-byte blocks from the sending virtual machine’s
storage to the receiving virtual machine’s storage. The amount of data that can be
moved in a single transfer is limited only by the sizes of virtual machine storage of
the respective virtual machines. Use of real storage is minimal. Only one real
storage page per virtual machine (a total of two pages, one for the sender and one
for the receiver) need to be locked during the data transfer.

- The special message facility uses VMCEF to send messages from one virtual
(machine storage area to another virtual machine storage area. For a description of

Chapter 14. The Virtual Machine Communication Facility 113

the special message facility and how it uses VMCEF, see “Special Message Facility
in this section.

9

Function Code* Comments

AUTHORIZE Control Initializes VMCEF for a given virtual machine. Once
AUTHORIZE is executed, the virtual machine can execute
other VMCF functions and receive messages or requests from
other users.

UNAUTHORIZE Control Terminates VMCEF activity.

SEND Data Directs a message or block of data to another virtual machine.

SEND/RECV Data Directs a message or block of data to another virtual machine,
and requests a reply.

SENDX Data Directs data to another virtual machine on a faster but more
restrictive protocol than the SEND function.

RECEIVE Data Allows you to accept selective messages or data sent via a
SEND or SEND/RECY function.

CANCEL Control Cancels a message or data transfer directed to another user but
not yet accepted by that user.

REPLY Data Allows you to direct data back to the originator of a
SEND/RECYV function, simulating full duplex communication.

QUIESCE Control Temporarily rejects further SEND, SENDX, SEND/RECYV, or
IDENTIFY requests from other users.

RESUME Control Resets the status set by the QUIESCE function and allows
execution of subsequent requests from other users.

IDENTIFY Control Notifies another user that your virtual machine is available for
VMCF communication.

REJECT Control Allows you to reject specific SEND or SEND/RECYV requests
pending for your virtual machine.

Figure 8. Virtual Machine Communication Facility (VMCF) Functions

114 VM/SP System Programmer’s Guide

* The word ‘“Data” in this column indicates a data transfer function whereas the
word “Control” indicates a VMCEF control function.

The following discussion presents ideas and suggestions for using the Virtual
Machine Communication Facility (VMCF).

(" VMCF Applications

The VM/SP system with VMCF prdvides the user with the potential to apply new
and different techniques to current applications.

Multitasking Programming

Resource Sharing

The VMCEF functions may be used to multitask virtual machines. Each virtual
machine can become a subtask (parallel or otherwise) of another virtual machine.
A virtual machine task can be a simple program or a large processor. The VMCF
functions provide the WAIT/POST, serialization and communication facilities to
control such an environment. The existing VM/SP functions provide efficient
scheduling, dispatching, and basic resource controls. The advantage of such an
environment is that a user is less restricted by operating system (software)
limitations and gains the flexibility of machine languages and hardware.

VMCEF provides a clear and concise method for sharing and serializing resources
between virtual machines. The resources can range from multi-write minidisks to
entire processors. The control functions for resource sharing (such as, resource
management, serialization) can be contained in a virtual machine.

Virtual Extensions to VM/SP

Program Testing

It is conceivable that functions could be added to VM/SP without altering the
control program (CP). A special privilege class virtual machine could be used to
provide additional functions to non-privilege class users using the VMCEF interface.
Similarly, CMS capabilities could be expanded (or at least appear to be expanded)
by linking CMS with other virtual machines.

The program testing capabilities offered by VMCEF can range from device
simulation to teleprocessing network simulation. In particular, VMCF can be used
to provide external interactions from one virtual machine to another. A simulated
teleprocessing network could be constructed with virtual machines. Each virtual
machine would effectively become a node within the network. The network
structure could range from a simple tree type structure to a complicated multi-path
mesh type structure. The program logic within each node virtual machine would be
the same logic as required for a real teleprocessing node. In theory, a reasonably
complicated structure could be simulated without requiring the physical hardware.

The significant testing capability provided by VMCEF is the ability to link the test
system with test/simulation routines in another virtual machine.

Chapter 14. The Virtual Machine Communication Facility 115

7N

INTRA Virtual Machine Communication « /‘

Although the VMCEF interface is intended for communication from one virtual
machine to another it can also be used to communicate within a single virtual
machine (wrap connection). The VMCEF interface could conceivably be used to
link one or more operating system tasks that are logically separated by the
software. This would allow task to task communication rather than virtual machine
to virtual machine communication.

Virtual Multiprocessing

The VMCEF interface could possibly be used to simulate a virtual multiprocessing
environment.

Security and Data Integrity
The VMCEF interface provides the following security aids:

o The user doubleword in the external interrupt message header can be used to
contain a security code to prevent unwarranted users from accessing a shared
data base or other confidential information.

« The AUTHORIZE SPECIFIC option allows a user to restrict messages sent to
his virtual machine. This option is useful when slave machines are to
communicate only with a host machine. The slave machines can AUTHORIZE o
SPECIFIC with the host and prevent unwarranted users from clogging their
message queues.

o The design of VMCEF prevents malicious users from intercepting transactions
in process for other users (for example, user D cannot execute a RECEIVE,
REPLY, REJECT or CANCEL to a message sent to user B from user A).

The VMCEF support module is designed such that a user is always informed of
conditions that could threaten the integrity of his own data. The user is notified
either with a DIAGNOSE code X'68' return code or data transfer error code.
There is no internal buffering of user data within the control program (CP), a
message is always retained by either the SOURCE or SINK virtual machine. If a
SEND type request fails, the SOURCE still has a copy of the original message. If a
SINK REPLY fails, the SINK user still has a copy of the REPLY data. The
DIAGNOSE return code or data transfer error code can indicate to a user that a
transaction failed. It is up to the user to preserve the associated transaction data.
A VMCEF user should consider the following notes:

1. The buffer used for SOURCE data in a SEND, SENDX or SEND/RECV
request should not be freed or reused until the final response external interrupt
is received by the SOURCE.

2. The buffer used for SINK data in a REPLY function can be reused by the
SINK after the DIAGNOSE instruction (REPLY) has successfully completed.

3. The user parameter list (VMCPARM) may be re-used upon completion of the I
DIAGNOSE instruction. At that point the VMCPARM data has been copied "

116 VM/SP System Programmer’s Guide

to a VMCEF control block (VMCBLOK) by the control program. A user
should, however, maintain queues of VMCPARM data to associate an external
interrupt message header (VMCMHDR) with a particular request.

4. A user should always interrogate the DIAGNOSE return code or data transfer
error code for possible error conditions. It is the user’s responsibility to
determine the types and extent of error recovery. The DIAGNOSE return
code 19 for a SOURCE SEND, SEND/RECYV or SENDX request indicates
that an error was associated with the SINK user and for a SINK RECEIVE or
REPLY request indicates that an error was associated with the SOURCE user.
The user who receives this return code does not have to invoke error recovery
for himself but only be aware that the transaction did not complete successfully
because of an error associated with the other user.

Performance Considerations

There are several factors that can affect the performance of VMCEF:

o The VMCEF support module, DMKVMC, is a pageable CP module. If a user
has significant paging activity, it may be advantageous to either lock the
module in real storage (CP LOCK command) or alter the CP LOADLIST to
make DMKVMC resident.

o It is to a user’s benefit to have the user parameter list, VMCPARM, in the
same 4K page as the DIAGNOSE code X'68" instruction. This may eliminate
a paging operation.

o User support modules using the VMCEF interface should be written as reentrant
modules and be contained within a CP shared segment whenever possible.
This helps reduce CP paging overhead.

« For applications that involve serial message processing, the SENDX function is
the most efficient. The SENDX function eliminates the need for the SINK to
do a RECEIVE operation.

Note: Overall system VM/SP performance is not affected when VMCEF is not
being used by an installation.

General Considerations

The SENDX function is a fast way to transfer messages or data and can be used in
place of the CP MSG command where the message length exceeds the capacity of
the terminal input line. Its use is somewhat restricted in that the maximum data
length must be agreed upon by all VMCEF users and then remains fixed unless
renegotiated.

The SEND and SEND/RECY functions are better suited to transfer high volume
data base type information. This type of data transfer requires the flexibility of a

wide range of data lengths along with rigorous management and control techniques.

The QUIESCE function allows a virtual machine to discontinue receiving messages.
The virtual machine can process those messages already stacked and then use the

Chapter 14. The Virtual Machine Communication Facility 1 17

VMCF Protocol

The SEND Protocol

RESUME function to continue reception. The QUIESCE function also allows a
virtual machine to process all queued messages prior to terminating VMCF
operation.

The user parameter list, VMCPARM, is designed such that it can be used for any
function by simply varying the contents of its fields.

Users should keep copies of VMCPARMs for all requests made via the SEND,
SEND/RECYV, or SENDX functions. When a final response interrupt is received
and the interrupt message header indicates no data transfer errors, the
corresponding VMCPARM copy can be released. If a data transfer error is
indicated, the copy can be used to reinitiate the transaction.

VMCEF provides four types of protocol: SEND, SEND/RECV, SENDX, and
IDENTIFY. The protocol used to communicate between two virtual machines
depends on the application of VMCEF and conventions established by virtual
machine users authorized to use VMCEF. A virtual machine must invoke the
AUTHORIZE function before it is allowed to use any of the other functions.

The types of transactions that virtual machines can be involved in are described by
a series of VMCEF protocols. In these protocols the originating virtual machine is
called the “source” virtual machine. The destination virtual machine is called the
“sink” virtual machine.

The protocol for a transaction remains in effect for the duration of the transaction.

The SEND protocol defines a one-way transfer of data from source virtual machine
storage to sink virtual machine storage. The SEND protocol uses the SEND and
RECEIVE functions, as described in Figure 9. The source virtual machine first
transfers data to the sink virtual machine. This is done by executing the SEND
function which specifies the userid of the sink virtual machine, a message ID, and
the address and length of the data being sent. The sink virtual machine receives an
external interrupt from CP notifying it of the data transfer request. The sink
virtual machine can then respond via the RECEIVE function. The RECEIVE
request specifies the address and the length of the SINK buffer that is to receive
the data and causes the data to be transferred from source virtual machine storage
to sink virtual machine storage. When the data transfer is complete, the source
virtual machine receives an external interrupt from CP, indicating that the
transaction is complete and that the sink virtual machine has received the data.

All virtual machines authorized to use VMCEF can send data using this protocol.
The amount of data transferred is limited only by virtual machine storage size.

Data is transferred in blocks of up to 2K (when necessary) and only one real page
frame is locked during the data transfer operation.

118 VM/SP System Programmer’s Gﬁide

N

CONTROL PROGRAM

DMKVMC
VMCF
Interface
Module
Source Sink
Virtual Virtual
Machine Machine
SEND >
External Interrupt—mm>
< RECEIVE
>Data|Transfer >
<—External Interrupt—
(Final Response)

Figure 9. The SEND Protocol

The SEND/RECYV Protocol

The SEND/RECYV protocol defines a transaction calling for two-way transfer of
data, as described in Figure 10. The SEND/RECY protocol uses the
SEND/RECV, RECEIVE, and REPLY functions.

The source virtual machine initiates the transaction using the SEND/RECV
function. Using an external interrupt, CP notifies the sink virtual machine that
there is a message waiting. The sink virtual machine uses the RECEIVE function
to cause the data to be transferred from the source virtual machine’s storage to the
sink virtual machine storage. The sink virtual machine now uses the REPLY
function to cause data to be transferred from its storage to the source virtual
machine’s storage. When the REPLY function completes processing, CP causes an
external interrupt in the source virtual machine, notifying it that the transaction is
complete.

The SEND/RECY request requires that the source virtual machine specify the
address and length of the data to be transferred and the address where data is
expected from the REPLY function. (Both addresses are in source virtual machine
storage.) These addresses, along with the length of the data to be transferred, are
specified via the VMCPARM parameter list, described below.

When RECEIVE is issued by the sink virtual machine in response to the

SEND/RECYV request, VMCPARM contains the address in sink virtual machine
storage where data is to be received. Finally, when the REPLY request is issued,

Chapter 14. The Virtual Machine Communication Facility 119

VMCPARM contains the address in the sink virtual machine storage from which
data is to be transferred.

CONTROL PROGRAM

DMKVMC
VMCF
Interface
Module
Source Sink
Virtual Virtual
Machine Machine
SEND/RECYV—>—m—>
——External Interrupt—m >
< RECEIVE
>Data Transfer >
< REPLY
< Data Transfer
<—External Interrupt—j
(Final Response)

Figure 10. The SEND/RECY Protocol

The SENDX Protocol

The SENDX protocol defines a transaction calling for an expedited one-way
transfer of data. Figure 11 shows the SENDX protocol graphically. SENDX
differs from the SEND protocol in that the sink virtual machine need not issue the
RECEIVE function; data is transferred from source virtual machine storage to sink
virtual machine storage at the same time the external interrupt from CP notifies the
sink virtual machine of the transaction. Data sent by the source virtual machine is
placed in the external interrupt buffer of the sink virtual machine.

Virtual machines using the SENDX protocol are responsible for specifying the
userid for the sink virtual machine, a message ID, the address and length of the
data being sent, and the external interrupt buffer address and data length for the
sink virtual machine. A virtual machine to be used as a sink virtual machine with
the SENDX protocol must specify this information via VMCPARM when that
virtual machine issues the AUTHORIZE function. The data length specified must
be at least as long as the maximum amount of data to be transferred during a
transaction; it need not be limited to the usual 40-byte external interrupt buffer.
Effective use of the SENDX protocol requires that VMCF users agree on a
maximum size for SENDX data and then issue the AUTHORIZE function with the
appropriate external interrupt buffer size.

120 vmMm/sp System Programmer’s Guide

If the sink virtual machine has not provided enough SENDX buffer area in the
external interrupt buffer, CP notifies the source virtual machine that the
transaction was not completed.

When a SENDX data transfer is complete, CP directs a response external interrupt
to the source virtual machine, notifying it that the transaction is complete.

CONTROL PROGRAM

DMKVHMC
VMCF

Interface

Module
Source Sink
Virtual Virtual
Machine Machine

SENDX >
>Data Transfer >

External Interrupt >

(Buffer Contains Data)

<—External Interrupt—
(Final Response)

Figure 11. The SENDX Protocol

The IDENTIFY Protocol

The IDENTIFY protocol defines a means for virtual machines to identify
themselves to other virtual machines by passing user-defined control information
via a standard VMCF message header. Figure 12 shows the IDENTIFY protocol
graphically.

When the IDENTIFY function is issued, CP directs an external interrupt to the
sink virtual machine. Along with the external interrupt, the sink virtual machine
receives a standard VMCF message header that contains user-defined information.
The IDENTIFY protocol does not cause a response external interrupt to be
directed to the source virtual machine.

Chapter 14. The Virtual Machine Communication Facility 121

CONTROL PROGRAM

DMKVMC
VMCF

Interface

Module
Source Sink
Virtual Virtual
Machine Machine

IDENTIFY > >

—External Interrupt—m >
(IDENTIFY Sequence Complete)

Figure 12. The IDENTIFY Protocol

Descriptions of VMICF Functions

There are two types of VMCF functions: control and data transfer.

The Control Functions

The VMCEF control functions allow efficient management of data transfer
operations from your virtual machine console. The control functions are:
AUTHORIZE, UNAUTHORIZE, CANCEL, QUIESCE, RESUME, IDENTIFY,
and REJECT.

AUTHORIZE: DIAGNOSE Code X‘68" Subcode X’'0000"

AUTHORIZE enables VMCEF for a virtual machine; once AUTHORIZE has been
executed, the virtual machine can execute other VMCF functions and receive
messages and data from other authorized VMCEF virtual machines. It is possible to
specify three options with the AUTHORIZE tunction: SPECIFIC, PRIORITY,
and VMCPSMSG.

The SPECIFIC option authorizes communication with a specific virtual machine.
Any messages sent to the virtual machine from other than the specified virtual
machine will be rejected. The SPECIFIC option can be used in an application
where virtual machines desire to communicate with a master controller but not
among themselves. Under the special message facility, CP is authorized with every
virtual machine that is to receive messages sent with the SMSG command. Virtual
machines that are to receive messages must authorize themselves.

The PRIORITY option allows a virtual machine to authorize the receipt of priority
messages. A virtual machine is allowed to send priority messages to another virtual

122 VM/SP System Programmer’s Guide

machine only if the other virtual machine is authorized to receive priority messages.
A priority message is one that is queued ahead of nonpriority messages and
therefore accepted first.

When you execute the AUTHORIZE function, you must specify the address and
length of the external interrupt buffer for your virtual machine. The buffer must be
large enough to contain a fixed message header (40 bytes). The message header
identifies messages sent by other virtual machines or responses to messages you
might send to your own virtual machine.

If you are going to accept SENDX-type communications, you must specify the size
of the external interrupt buffer as 40 plus the maximum size of SENDX data that
you plan to accept. This has the effect of authorizing SENDX protocol. That is, a
virtual machine may receive data along with the external interrupt in its external
interrupt buffer. When a virtual machine sends data to another virtual machine via
the SENDX function the data must fit in that virtual machine’s external interrupt
buffer or the function is rejected. Messages sent through the special message
facility require a buffer length of 169 bytes.

Any AUTHORIZE options in effect can be reset or changed by executing the
AUTHORIZE function again. If there are errors during execution of the
AUTHORIZE function, a virtual machine’s authorization status is not changed.

UNAUTHORIZE: DIAGNOSE Code X'68" Subcode X'0001"

UNAUTHORIZE terminates VMCEF activity for a virtual machine. The
UNAUTHORIZE function causes any stacked or queued messages associated with
the virtual machine to be purged. A virtual machine should execute the QUIESCE
function before executing UNAUTHORIZE if messages that are already queued
are to be handled. When a virtual machine executing UNAUTHORIZE has
pending final response external interrupts, the interrupts are purged. If a virtual
machine has pending SEND external interrupts from another source virtual
machine, a RESPONSE interrupt is reflected to the source indicating that the
virtual machine is no longer available.

CANCEL: DIAGNOSE Code X’'68" Subcode X'0006"

CANCEL cancels a message or data transfer pending for but not accepted by
another VMCEF virtual machine. A virtual machine can CANCEL messages it
originates with SEND, SENDX, or SEND/RECYV functions. A message cannot be
canceled if any of the following conditions exist:

« The request was SENDX or IDENTIFY and the sink had already received the
SEND external interrupt.

o The request was SEND and the sink had already executed the RECEIVE or
REJECT functions.

« The request was SEND/RECYV and the sink had already executed the REPLY
or REJECT functions.

If the original request was SEND/RECYV and the sink virtual machine had
executed the RECEIVE function but not the REPLY, the REPLY can be canceled.

Chapter 14. The Virtual Machine Communication Facility 123

A virtual machine is notified of this condition with a DIAGNOSE return code. (For
a description of the return codes, see Figure 13.)

QUIESCE: DIAGNOSE Code X'68" Subcode X'0008’

QUIESCE temporarily rejects SEND, SENDX, SEND/RECYV, or IDENTIFY
requests from other virtual machines. QUIESCE allows a virtual machine to
receive any stacked or queued messages but reject further SEND, SENDX,
IDENTIFY, or SEND/RECYV requests from other virtual machines. QUIESCE
can be used to indicate to other virtual machines that the virtual machine is in
QUIESCE status, authorized for communication but not able to accept messages at
this time (e.g., entering slowdown, my buffers are full, try again later). The
IDENTIFY function could be used to inform other virtual machines that a
particular user is no longer in QUIESCE status. You should execute the QUIESCE
function before executing the UNAUTHORIZE function to avoid losing messages
(see “UNAUTHORIZE: DIAGNOSE Code X'68' Subcode X'0001'”.) A virtual
machine can reset the QUIESCE status (exit slowdown) by executing the
RESUME function. (See “RESUME: DIAGNOSE Code X'68' Subcode
X'0009'”). A virtual machine in QUIESCE status may continue to send messages
to other virtual machines. QUIESCE status for a virtual machine only affects
messages sent from other virtual machines.

RESUME: DIAGNOSE Code X‘'68" Subcode X'0009’

RESUME cancels the QUIESCE status, allowing your virtual machine to resume
reception of VMCEF requests from other virtual machines. You can use the
IDENTIFY function to inform other virtual machines that your virtual machine is
no longer in QUIESCE status. (See “IDENTIFY: DIAGNOSE Code X'68'
Subcode X'000A'”.)

IDENTIFY: DIAGNOSE Code X'68" Subcode X'000A’

IDENTIFY notifies another virtual machine that your virtual machine is available
for VMCF communication. Use the IDENTIFY function after issuing the
AUTHORIZE function or after your virtual machine has been in the VMCF
QUIESCE state and you have issued the RESUME function. IDENTIFY causes
an external interrupt to be stacked for a specified virtual machine. The virtual
machine executing the IDENTIFY function specifies the userid of the user to
receive the external interrupt. The external interrupt identifies the virtual machine
executing the IDENTIFY function. The IDENTIFY function is provided to inform
a host or controller virtual machine that a virtual machine is activated (logged on)
and ready for VMCF communication. The IDENTIFY function can also be used
to inform other virtual machines that your virtual machine has exited QUIESCE
state. There is no response external interrupt associated with the IDENTIFY
function.

The IDENTIFY function can also be used to pass virtual machine defined control

information. The fields in the VMCF parameter list (VMCPARM) not used by the
IDENTIFY function may be used to contain additional virtual machine data.

124 VM/SP System Programmer’s Guide

REJECT: DIAGNOSE Code X'68° Subcode X'000B’

REJECT selectively rejects pending SEND or SEND/RECYV requests from other
VMCEF virtual machines. REJECT causes a response external interrupt to be
reflected to the originator of a message. The external interrupt indicates to the
originator that the message was rejected. The user doubleword within the external
interrupt header may tell a user why the message was rejected. When the user of a
virtual machine executes the REJECT function, he specifies within the VMCF
parameter list (VMCPARM) the message ID of the message to be rejected. A
virtual machine cannot reject a message sent with the SENDX function since the
message is received at the same time the external interrupt is received. The
REJECT function can be executed as response to either SEND or SEND/RECV
requests.

The Data Transfer Functions

The data transfer operations are SEND, SEND/RECV, SENDX, RECEIVE, and
REPLY. These operations involve the movement of data from one virtual machine
storage to another virtual machine storage.

SEND: DIAGNOSE Code X'68" Subcode X"0002°

SEND directs a message or block of data to another virtual machine. Specify the
virtual address and length of data to be sent within the user parameter list
(VMCPARM). Also, specify in the parameter list a message ID to be associated
with the message and the userid of the user to receive the message (data). You can
also send a doubleword of data to be transmitted within the external interrupt
message header (refer to the section “VMCF User Doubleword”). If the SEND
function is executed with a data length of zero, only the user doubleword is
transmitted to the sink virtual machine. The sink virtual machine can then respond
with a RECEIVE function (zero length) and pass back a doubleword of data to the
source virtual machine. The external interrupt message header identifies the SEND
request. When the sink virtual machine executes a RECEIVE function, the
message is transmitted from the source virtual machine storage to the sink virtual
storage. There is no internal buffering of data within the control program (CP).
All data is transferred in 2K blocks from virtual storage to virtual storage. Data is
transferred in 2K blocks to test for STORE/FETCH protection violations. When
the data transfer function is complete, the source virtual machine receives a
response external interrupt indicating that the SEND request is complete. The sink
virtual machine receives a DIAGNOSE code X'68"' return code indicating that the
RECEIVE function is complete. The return code can indicate error conditions
associated with the RECEIVE function or normal completion.

The sink virtual machine has the option to reject a message rather than execute the
RECEIVE function (See “REJECT: DIAGNOSE Code X'68' Subcode
X'0011'”.) The source virtual machine may cancel a SEND request before the
sink virtual machine has executed a RECEIVE function or REJECT function (See
“CANCEL: DIAGNOSE Code X'68' Subcode X'0006'”.)

If you are executing the SEND function, you may specify the PRIORITY option.
The PRIORITY option causes the external interrupt for the sink virtual machine to
be queued ahead of all other nonpriority external interrupts. If there are other
PRIORITY external interrupts pending for the sink virtual machine, the queuing is

Chapter 14. The Virtual Machine Communication Facility 125

done in a first in first out manner. That is, PRIORITY interrupts are queued FIFO
among themselves but ahead of all nonpriority interrupts.

SEND/RECV: DIAGNOSE Code X’'68" Subcode X'0003"

SEND/RECY provides the capability to both send and receive data in a single
VMCEF transaction. The SEND/RECY function causes an external interrupt to be
queued for the sink virtual machine. When the sink virtual machine receives the
external interrupt, it can respond with the RECEIVE function. The RECEIVE
function causes data to be transferred from the source virtual storage to sink virtual
storage. The sink virtual machine can then respond with a REPLY function. The
REPLY function causes data to be transferred from specified sink virtual storage to
a REPLY buffer in the source virtual storage. The source virtual machine then
receives a response external interrupt indicating that the SEND/RECYV request is
complete.

When the source virtual machine executes the SEND/RECYV function it specifies

the address and length of both the SEND buffer and REPLY buffer. The address

and length specifications are contained within the user parameter list

(VMCPARM). The user parameter list also contains a message ID and userid of
-the user to receive the data (See the “VMCPARM Parameter List”.)

The source virtual machine can cancel a previously executed SEND/RECYV request
provided the sink virtual machine has not yet executed the REPLY or REJECT
function. If the sink virtual machine has already executed the RECEIVE function,
only the REPLY can be canceled (see “CANCEL: DIAGNOSE Code X'68'
Subcode X'0006'”).

The sink virtual machine can execute the REJECT function in response to the
SEND/RECYV request and cause the entire operation to be terminated (See
“REJECT: DIAGNOSE Code X'68' Subcode X'0011'”.)

The sink virtual machine can respond to a SEND/RECYV request with the REPLY
function without executing the RECEIVE function. This has the effect of
informing the source virtual machine that the sink virtual machine cannot accept
data but that it can send data. The source virtual machine could have executed the
SEND/RECY function only as a means to solicit data from the sink virtual
machine. The application of this protocol is up to VMCEF users. The user
doubleword can be used as a means to control such an application (See “VMCF
User Doubleword”.)

You can execute a SEND/RECYV request using the PRIORITY option. The
PRIORITY option causes the sink external interrupt for the SEND/RECV request
to be queued ahead of any other nonpriority external interrupts. Response external
interrupts directed to the source of a PRIORITY message are also queued in
priority order.

126 VM/SP System Programmer’s Guide

(, SENDX: DIAGNOSE Code X'68° Subcode X'0004’

SENDX directs data to another virtual machine via a faster but more restrictive
protocol than the SEND function. SENDX function data reaches the sink virtual
machine at the same time the SEND external interrupt reaches the sink. To use the
SENDX function, the sink virtual machine must have an external interrupt buffer
large enough to contain both the standard message header and the data. The size
of the external interrupt buffer is specified when you execute the AUTHORIZE
function. Attempts to execute SENDX are rejected when the sink virtual
machine’s external interrupt buffer is not large enough to contain the data. After
the sink virtual machine receives the SEND external interrupt and data, a response
external interrupt is directed to the source virtual machine. The SENDX function
eliminates the need for a sink virtual machine to execute a RECEIVE function.

A SENDX request can be canceled by the source virtual machine provided the
SENDX external interrupt has not yet been reflected to the sink virtual machine
(See “CANCEL: DIAGNOSE Code X'68' Subcode X'0006'"".)

Specify the SENDX buffer address and length in the user parameter list
(VMCPARM). The message ID and userid of the sink virtual machine are also
specified in VMCPARM.

The SENDX function can be executed with the PRIORITY option allowing the
SEND external interrupt to be queued ahead of all nonpriority external interrupts
for the sink virtual machine.

(A SENDX request cannot be rejected by the sink virtual machine since the
message is received at the same time the external interrupt is received.

You can execute the SENDX function with a zero data length causing only the
message header and user doubleword to be transmitted.

RECEIVE: DIAGNOSE Code X’'68" Subcode X'0005

RECEIVE allows you to selectively accept messages or data sent via the SEND or
SEND/RECYV functions. You must specify in the user parameter list
(VMCPARM) the virtual address and length of the RECEIVE buffer. The
parameter list also contains the message ID of the message to be received and
userid of the virtual machine that originated the SEND or SEND/RECYV request.
When a virtual machine has more than one message pending, the RECEIVE
function can be executed to select messages in any order by message ID.

You can execute the REJECT function to reject messages sent by other virtual
machines. The REJECT function terminates the SEND or SEND/RECYV request
(see “REJECT: DIAGNOSE Code X'68' Subcode X'000B'”.)

You can execute the RECEIVE function in response to a SEND/RECYV request
and then execute a REJECT function rather than a REPLY. The user doubleword
passed back with the REJECT function could indicate “RESEND”’, for example, if
the original data was not received correctly (depending on how you want to use the
protocol).

Chapter 14. The Virtual Machine Communication Facility 127

REPLY: DIAGNOSE Code X’68" Subcode X'0007’

REPLY allows you to direct data back to the sender of a SEND/RECYV function.
(This simulates full duplex communication.) The REPLY function is used with the
SEND/RECYV function. A user who receives a SEND/RECV external interrupt
normally responds by executing the RECEIVE function. The RECEIVE function
causes data to be transferred from the source virtual storage to the sink virtual
storage. The sink virtual machine can then respond with the REPLY function
causing data to be transferred from specified sink virtual storage to the source
virtual storage. The REPLY function causes a response external interrupt to be
reflected to the source virtual machine.

The user parameter list (VMCPARM) identifies the virtual buffer address and
length of reply data. When the REPLY function is executed, the user parameter
list (VMCPARM) also contains the message ID and the userid of the virtual
machine to receive the reply.

The REPLY function can be executed with a zero data length indicating no
response. You can transmit a reply (zero length or otherwise) using the user
doubleword.

A reply can be executed in response to a SEND/RECYV request without executing
the RECEIVE function. This indicates that you do not want to receive the
message but may want to send a reply. A reply of zero length could be executed
simply to terminate the SEND/RECYV request. The application of the REPLY
function is a user decision. It must be used to terminate a SEND/RECYV request,
however, unless the REJECT function is executed (See “REJECT: DIAGNOSE
Code X'68' Subcode X'0011'”.) The reply is complete when the source virtual
machine receives the external interrupt response.

A REPLY function cannot be executed in response to a SEND request (this is a
protocol violation).

Invoking VMICF Functions

VMCEF functions are invoked by means of:

« DIAGNOSE code X'68' subcodes

« The VMCPARM parameter iist

« External interrupt code X'4001'

» The external interrupt message header.

Diagnose Code X'68’

All VMCEF functions are invoked from within assembler language programs by
means of DIAGNOSE code X'68":

0 1 2 3

83 Rx Ry CODE

128 VM/SP System Programmer’s Guide

AT

N

where:

83

Ry

CODE

is X'83"' and interpreted by the assembler as the DIAGNOSE
instruction.

Note: There is no mnemonic for DIAGNOSE.

specifies a register containing the address of the VMCPARM
parameter list.

is a register that contains a return code.

is X'0068"' and specifies that you are requesting execution of a
VMCF.

The VMICPARM Parameter List

The Rx register of DIAGNOSE code X'68' contains the address of a parameter
list (VMCPARM). This parameter list is used to specify the VMCF function to be
executed, along with other information required by VMCEF to execute that
function. The address of VMCPARM must be doubleword-aligned. The following
is the format of the VMCPARM parameter list and a description of each of the
fields in that list.

10
18

20

where:

V*1 V*2 VMCPFUNC VMCPMID
VMCPUSER
VMCPVADA VMCPLENA
VMCPVADB VMCPLENB
VMCPUSE

V*1 (VMCPFLG1)

is a flag byte used to specify options associated with a particular
function.

This flag byte can be set to the following values:

VMCPAUTS (X'80')
Indicates, for the AUTHORIZE function, an AUTHORIZE
SPECIFIC request. When this bit is set, the VMCPUSER field
must contain the userid of the sink virtual machine. The status of
the specified sink virtual machine is not checked by the control
program (CP) at this time.

VMCPPRTY (X'40")
Indicates, for SEND, SEND/RECV, SENDX, and IDENTIFY
requests, a PRIORITY message request. For an AUTHORIZE
request, it indicates an AUTHORIZE PRIORITY request. You

Chapter 14. The Virtual Machine Communication Facility 129

cannot send PRIORITY messages to another virtual machine
unless that virtual machine has been authorized for PRIORITY
messages. The SEND and RESPONSE external interrupts for a
PRIORITY message are queued ahead of pending nonpriority
external interrupts.

VMCPSMSG (X'20'")
Indicates that the virtual machine accepts messages sent via the
SMSG command.

Bits 3 through 7 are reserved for IBM use.

V*2 (VMCPFLG2)

Reserved for IBM use.

VMCPFUNC

Contains the halfword DIAGNOSE code X'68' subcode that defines
the VMCEF function being requested as follows:

Hexadecimal
Command Subcode Function
VMCPAUTH X'0000' AUTHORIZE
VMCPUAUT X'0001' UNAUTHORIZE
VMCPSEND X'0002' SEND
VMCPSENR X'0003! SEND/RECV
VMCPSENX X'0004' SENDX
VMCPRECV X'0005' RECEIVE
VMCPCANC X'0006' CANCEL
VMCPREPL X'0007! REPLY
VMCPQUIE X'0008' QUIESCE
VMCPRESM X'0009! RESUME
VMCPIDEN X'000A" IDENTIFY
VMCPRICT X'000B' REJECT
VMCPMID

Contains a unique message identifier associated with a transaction.
The source virtual machine must originate the message ID for SEND,
SEND/RECYV, and SENDX requests. The message ID is used by the
sink virtual machine (along with VMCPUSER) to respond to the
source request with a RECEIVE, REPLY, or REJECT request. The
message ID allows the sink virtual machine to selectively RECEIVE,
REPLY, or REJECT messages when more than one message is
enqueued. The message ID is used by both the source and sink as a
unique identification for all messages. You may send messages with
the same message ID to multiple users; you cannot send multiple
messages with the same message ID to one user. Once a transaction is
completed, however, the message ID may be reused.

VMCPUSER

Specifies the userid of the sink virtual machine for SEND,
SEND/RECYV, SENDX, IDENTIFY, and CANCEL requests and the
userid of the source virtual machine for RECEIVE, REPLY, and

130 VM/SP System Programmer’s Guide

«

(_v REJECT requests. The sink virtual machine uses this field in
combination with the message ID (VMCPMID) to respond to source
requests. When the original source parameter list VMCPARM is
passed to the sink as the message header VMCMHDR, the userid is
changed from sink to source.

This field is also used to specify the SPECIFIC userid for an
AUTHORIZE SPECIFIC request.

VMCPVADA
Contains one of four addresses, depending upon which VMCF
function is requested.

For SEND, SEND/RECYV, and SENDX requests, VMCPVADA
contains the address of the source virtual machine data. For
RECEIVE requests, VMCPVADA contains the address of a sink
virtual machine RECEIVE buffer. For REPLY requests,
VMCPVADA contains the address in sink virtual machine storage
where REPLY data is located. For an AUTHORIZE request,
VMCPVADA specifies the address of the virtual machine external
interrupt buffer.

The length of the associated data or buffer is specified in the
VMCPLENA field.

{ VMCPLENA
: Contains the length of the data sent by a user, the length of a
RECEIVE buffer, or the length of an external interrupt buffer,
whichever is specified in the field VMCPVADA. The size of the value
specified in VMCPLENA is restricted only by virtual machine storage
size.

The sink virtual machine can use the value in this field as the data
length for RECEIVE operations.

VMCPVADB
Contains the address of a source virtual machine’s REPLY buffer for
a SEND/RECYV request. When the sink virtual machine issues a
REPLY in response to a SEND/RECYV from the source virtual
machine, the REPLY data is moved in this buffer. The length of the
REPLY buffer is contained in the field VMCPLENB.

VMCPLENB
Specifies the length of the source virtual machine’s REPLY buffer.
The sink virtual machine uses this field to determine the maximum
length of the REPLY. A corresponding field within the response
message header contains a residual data count. The source virtual
machine uses this residual count to determine the length of the sink
reply. The original REPLY buffer length (less the residual count) is
the length of the REPLY from the sink virtual machine.

Chapter 14. The Virtual Machine Communication Facility 131

VMCPUSE

132 VM/SP System Programmer’s Guide

Contains the VMCEF user doubleword. The user doubleword is
transmitted to the sink virtual machine in the SEND message header
for SEND, SEND/RECV, SENDX, and IDENTIFY requests. For
RECEIVE, REPLY, and REJECT requests, the user doubleword is
transmitted to the source virtual machine within the RESPONSE
message header. The sink virtual machine can transmit the user
doubleword to the source virtual machine with REJECT or REPLY
requests only if the original request was a SEND/RECV. The user
doubleword is transmitted only with requests that result in SEND or
RESPONSE external interrupts.

The following chart summarizes the VMCPARM fields required for
execution of each of the VMCEF functions. Possible return codes
associated with each function are also listed. A discussion of the
return codes and their meanings can be found in the section
“DIAGNOSE Code X'68' Return Codes”.

.

NS

N

VMCF
Function

Applicable VMCPARM Parameters .

Return Codes

AUTHORIZE

VMCPFLG1 - SPECIFIC/PRIORITY optio
VMCPFUNC - X'0000' - subcode
VMCPUSER - SPECIFIC userid

VMCPVADA - external interrupt buffer address
VMCPLENA - external interrupt buffer length

0,1,2,6,15

UNAUTHORIZE

VMCPFUNC - X'0001"' - subcode

0,2,4,15

SEND

VMCPFLG!1 - PRIORITY option
VMCPFUNC - X'0002!' - subcode
VMCPMID - message identifier
VMCPUSER - sink userid
VMCPVADA - SEND data address
VMCPLENA - SEND data length
VMCPUSE - user doubleword

(See Note)

0,1’2’4’5’8’9’
10,15,18

SEND/RECV

VMCPFLG1 - PRIORITY option
VMCPFUNC - X'0003" - subcode
VMCPMID - message identifier
VMCPUSER - sink userid
VMCPVADA - SEND data address
VMCPLENA - SEND data length
VMCPVADB - REPLY buffer address
VMCPLENB - REPLY buffer length
VMCPUSE - user doubleword

0,1,2,4,5,8,9,
10,15,18

SENDX

VMCPFLG1 - PRIORITY option
VMCPFUNC - X'0004' - subcode
VMCPMID - message identifier
VMCPUSER - sink userid
VMCPVADA - SEND data address
VMCPLENA - SEND data length
VMCPUSE - user doubleword

(See Note)

0,1,2,4,5,7.,8,
9,10,15,18

RECEIVE

VMCPFUNC - X'0005' - subcode
VMCPMID - message identifier
VMCPUSER - source userid
VMCPVADA - RECEIVE buffer address
VMCPLENA - RECEIVE buffer length
VMCPUSE - user doubleword

0’1’3’2’4,5’65
12,13,15,16,17

CANCEL

VMCPFUNC - X'0006" - subcode
VMCPMID - message identifier
VMCPUSER - sink userid

0,2,3,4,5,11,
12,14,15,20

Figure 13 (Part 1 of 2). VMCF Functions, Parameters, and Return Codes

Chapter 14. The Virtual Machine Communication Facility

133

VMCF ‘ .
Function Applicable VMCPARM Parameters Return Codes
REPLY VMCPFUNC - X'0007"' - subcode 0,1,2,3,4,5,6,

VMCPMID - message identifier 12,13,15,16,

VMCPUSER - source userid 17,19

VMCPVADA - REPLY data address
VMCPLENA - REPLY data length
VMCPUSE - user doubleword

QUIESCE VMCPFUNC - X'0008"' - subcode 0,2,4,15

RESUME VMCPFUNC - X'0009' - subcode 0,2,4,15

IDENTIFY VMCPFLG1 - PRIORITY option 0,2,4,5,9,10
VMCPFUNC - X'000A' - subcode 15,18

VMCPUSER - sink userid
VMCPUSE - user doubleword

(See Note)
REJECT VMCPFUNC - X'000B' - subcode 0,2,3,4,12,13,
VMCPMID - message identifier 15

VMCPUSER - source userid
VMCPUSE - user doubleword

Figure 13 (Part 2 of 2). VMCEF Functions, Parameters, and Return Codes

Note: Fields within the user parameter list that are not used by a particular \
function may be used to contain additional user data. The data, however, can only .
be passed to the sink virtual machine by the source virtual machine. The REPLY

buffer address and length fields (VMCPVADB+VMCPLENB) may be used to

transmit additional user data for SEND and SENDX requests. All fields except

VMCPFLG1, VMCPFLG2, VMCPFUNC, and VMCPUSER may be used to pass

control information with an IDENTIFY request.

Extérnal Interrupt Code X’4001’

External interrupt code X'4001" is a special interrupt code recognized by CP as
part of a VMCEF transaction. Just as virtual machines use the DIAGNOSE
instruction to communicate with CP, so too CP uses this interrupt code to
communicate with virtual machines. External interrupt code X'4001' and
DIAGNOSE code X'68' provide the mechanism VMCF uses to synchronize
message processing.

The External Interrupt Message Header

Associated with external interrupt code X'4001"' is a storage area referred to as the

external interrupt message header. The external interrupt message header

(VMCMHDR) contains the control information required to SEND and RECEIVE

messages. The fields within the message header are, for the most part, a copy of

VMCPARM parameter list fields.

Before the receiving virtual machine can receive special messages via VMCEF, it d by
must k‘k/

134 wvMm/sp System Programmer’s Guide

« Enable itself to receive external interrupts

Set bit 31 of control register 0 to a value of 1

o Authorize itself by issuing DIAGNOSE code X'68', AUTHORIZE.

The parameter list, VMCPARM, specified with DIAGNOSE code X'68' must
« Contain a pointer to an external-interrupt buffer

« Specify a buffer length of 169 bytes

« Have the special message flag (VMCPSMSG) turned on.

The receiving virtual machine may turn on this flag by setting VMCPSMSG to a
value of B‘1’. Optionally, the receiving virtual machine may turn on the special
message flag by issuing the class G command, SET SMSG ON. For information on
using DIAGNOSE code X'68", see ‘“‘Description of VMCF Functions” and
“Invoking VMCF Functions.”

CP passes the external interrupt buffer (containing the external interrupt message
header) to the user’s interrupt handler for processing. The user must specify the
address and length of this buffer when he executes the AUTHORIZE function.
Then, when the user sends or receives messages, CP knows the address of the
buffer and passes it to the appropriate interrupt handler routine.

Fields VMCMFUNC through VMCMUSE correspond to the fields VMCPFUNC
through VMCPUSE in the VMCPARM parameter list transmitted by the source
virtual machine. The format of the message header and optional SENDX data
buffer is:

0 V1 | V*2 VMCMFUNC VMCMMID
8 ‘ VMCMUSER
10 VMCMVADA VMCMLENA
18 VMCMVADB VMCMLENB
20 VMCMUSE
28 VMCMBUF

Optional Message Buffer

where:

V*1 (VMCMSTAT)
is a status byte associated with the message header. The bits within
the status byte are defined as follows:

VMCMRESP (X'80')
Indicates final external interrupt (transaction complete). This bit
is set for all RESPONSE external interrupts and the SEND
external interrupt resulting from an IDENTIFY request.

Chapter 14. The Virtual Machine Communication Facility 135

VMCMRICT (X'40')
This bit is set in a RESPONSE external interrupt to indicate that
the sink virtual machine rejected the message via the REJECT
function.

VMCMPRTY (X'20')
This bit is set in both SEND and RESPONSE external interrupts
to indicate a priority message. A virtual machine must be
authorized for priority messages before it can receive them.

V*2 (VMCMEFLG)
Contains a data transfer error code indicating success or errors
associated with a data transfer operation. (Refer to the section ‘“Data
Transfer Error Codes™.)

VMCMFUNC
Contains the function subcode of the original request. The sink virtual
machine uses this field to determine the type of request. The possible
subcodes are:

VMCPSEND X'0002' - SEND
VMCPSENR X'0003' - SEND/RECV
VMCPSENX X'0004' - SENDX
VMCPIDEN X'000A' - IDENTIFY

VMCMMID
Contains the message ID associated with the original source request.

VMCMUSER
Contains the userid of the source virtual machine for SEND external
interrupts and the userid of the sink virtual machine for RESPONSE
external interrupts. If a SMSG command was issued, “SYSTEM”
appears in this field.

VMCMVADA
Contains the address of the original SEND data for SEND requests.
This field would normally have no meaning to the sink virtual
machine.

VMCMLENA

indicates a data transfer residual count for RESPONSE external
interrupts.

VMCMVADB
Contains the virtual address of the REPLY buffer for SEND/RECV
requests. This field has no meaning to the sink virtual machine.

VMCMLENB
Contains the length of the source virtual machine REPLY buffer for
SEND/RECYV external interrupts; contains the residual REPLY count
for RESPONSE external interrupts. The sink virtual machine uses this
field to determine the maximum length of the REPLY; the source

136 VM/SP System Programmer’s Guide

virtual machine uses this field to determine the length of the sink
virtual machine REPLY data.

VMCMUSE
Contains the user doubleword, which is transmitted to the sink virtual
machine with SEND external interrupts and to the source virtual
machine with RESPONSE external interrupts. If a SMSG command
was issued, this field contains the virtual machine identifier of the
issuer of that command.

VMCMBUF
This is the optional data buffer used by the SENDX function. The
data sent with the SENDX function is moved into this buffer. The
buffer size is specified when a virtual machine executes the
AUTHORIZE function.

VIMCF User Doubleword

VMCEF provides a doubleword for user data that can be transmitted within the
external interrupt message header. A user supplies the doubleword of data within
the parameter list (VMCPARM) for certain VMCEF requests (that is, SEND,
SENDX, SEND/RECV, RECEIVE, REPLY, IDENTIFY, and REJECT). You
can use the user doubleword in any manner you desire. The doubleword is
transmitted within the external interrupt message header for both SEND and
RESPONSE type external interrupts.

The user doubleword can be used for control information in a user-defined higher
level protocol. That is, you could have your own message headers defined within
the data transmitted from one virtual machine to another. The user doubleword
could be used to control such a protocol.

The user doubleword can also be used as a security code or provide additional
information for functions such as IDENTIFY and REJECT. You can specify a
zero data length for any VMCEF transaction. The effect of this is that only the
external interrupt message header with user doubleword is transmitted or received.

DIAGNOSE Code X'68" Return Codes

The virtual machine initiating a VMCEF request receives a return code in the
general register specified as ‘“‘Ry”’ in the DIAGNOSE instruction. The return code
indicates successful completion of the request or error conditions associated with
the request. Figure 14 is a description of all possible return codes returned to a
virtual machine executing DIAGNOSE code X'68".

Chapter 14. The Virtual Machine Communication Facility 137

Return
Code

Meaning

The normal response. Indicates successful completion of a request or successful initiation of a
request. For example, for an AUTHORIZE request, O indicates that the AUTHORIZE
function is complete; for a SEND request, O indicates that the SEND was successfully initiated.
The SEND request, of course, would not be complete until the final RESPONSE external
interrupt was received by the source virtual machine.

Invalid virtual buffer address or length. A virtual machine attempted to execute a VMCF
function but specified an invalid address or length:

o External interrupt buffer not within virtual storage.

« External interrupt buffer address not doubleword aligned.

« Message data or buffer not within virtual storage.

« External interrupt buffer less than the standard message header length.

Invalid function code. A virtual machine attempted to execute a VMCEF function but specified
an unsupported subcode.

Protocol violation. A virtual machine attempted to execute a function which would violate the
defined protocol:

« Cancel a message it did not originate.
« Reply to a message not sent via SEND/RECV.
« Executed more than one RECEIVE to a SEND or SEND/RECV request.

Source virtual machine not authorized. A virtual machine attempted to execute a function
(other than AUTHORIZE) but was not authorized to use VMCF (had not successfully
executed the AUTHORIZE function).

User not available. A virtual machine attempted to execute a function and specified a virtual
machine currently not available for VMCF communication:

« Not logged on.
« Not authorized for VMCF communication.

« Virtual machine authorized SPECIFIC for some other virtual machine.

Protection violation. A virtual machine attempted to execute a VMCEF function that would
result in a STORE or FETCH protection violation. The virtual machine specified a data or
buffer address that contained a storage key other than its current PSW key (assume the key
was nonzero). This return code is also set if a virtual machine attempts to receive data in a
CP-owned shared segment. ‘

SENDX data too large. A virtual machine attempted to execute a SENDX request but
specified a SENDX daia lengih larger inan ihe sink viriual machine exiernal inierrupi bufier.

Duplicate message. A virtual machine attempted to execute a SEND-type function and
specified a message ID and virtual machine userid for which there was already an active
message.

Target virtual machine in QUIESCE status. A virtual machine attempted to execute a
SEND-type function and specified a sink virtual machine userid of a virtual machine in
QUIESCE status.

Figure 14 (Part 1 of 2). DIAGNOSE Code X‘68’ Return Codes

138 wvm/sp System Programmer’s Guide

“

Return
Code Meaning

10 Message limit exceeded. A virtual machine attempted to execute a SEND function but already
had 50 messages active. The virtual machine should clear any pending RESPONSE external
interrupts or CANCEL previously sent messages to continue processing.

11 REPLY canceled. The source virtual machine executed a CANCEL to a previous
SEND/RECY request. The sink virtual machine had already RECEIVED the message but had
not yet executed a REPLY. The sink virtual machine REPLY in this case is canceled. The sink
virtual machine receives return code 12 (message not found) when it executes the REPLY
function.

12 Message not found. A virtual machine attempted to execute a function and specified a message
ID and virtual machine userid for a message that does not exist. The message may have existed
at one time but could have been cancelled by the originator.

13 Synchronization error. The sink virtual machine attempted to respond to a message for which it
had not yet received the SEND external interrupt. This condition can occur if the sink virtual
machine is anticipating certain messages but does not wait for the SEND external interrupt.

14 CANCEL too late. A virtual machine attempted to CANCEL a message that had already been
processed. The sink virtual machine had already responded with RECEIVE or REJECT
(SEND request) or REPLY or REJECT (SEND/RECYV request). This return code is also set
if a virtual machine attempts to CANCEL a SENDX request for which the sink virtual machine
had already received the SEND external interrupt.

15 Paging I/0 error. A virtual machine attempted to execute a function which resulted in an
uncorrectable paging 1/0 error. This is a hardware failure.
16 Incorrect length. A virtual machine executed a RECEIVE or REPLY function and specified a

RECEIVE buffer length less than the source virtual machine SEND data length or a REPLY
data length larger than the source virtual machine REPLY buffer length. The source virtual
machine receives a data transfer return code identifying the condition.

17 Destructive overlap. A virtual machine executed a RECEIVE or REPLY function and
specified a RECEIVE buffer address which overlapped the source virtual machine SEND data
address or a REPLY data address that overlapped the source virtual machine REPLY buffer
address. This condition can occur only when a virtual machine is sending messages to itself (a
‘““‘wrap connection”).

18 User not authorized for PRIORITY messages. A virtual machine attempted to send a
PRIORITY message to a virtual machine that was not authorized to accept PRIORITY
messages (that is, had not executed the AUTHORIZE function with the PRIORITY option).

19 Data transfer error. A virtual machine executed a request that resulted in a data transfer error
condition associated with the other virtual machine. The return code is returned to the sink
virtual machine to indicate that the transaction did not complete successfully.

20 CANCEL - busy. A virtual machine attempted to cancel a message being processed. If this is
a SEND/RECYV request and the RECEIVE function is in process, repeated retries may cancel
the REPLY function.

Figure 14 (Part 2 of 2). DIAGNOSE Code X‘68’ Return Codes

Chapter 14. The Virtual Machine Communication Facility 139

Data Transfer Error Codes

When a virtual machine executes a SEND, SENDX, or SEND/RECYV function, the

normal DIAGNOSE return code is zero, indicating that the request was

successfully initiated. However, when the actual data transfer takes place, errors
can occur. All errors occurring at data transfer time are communicated to the
source virtual machine in the RESPONSE external interrupt message header,
VMCMHDR. Figure 15 shows error codes indicating conditions that are possible
after the SENDX, SEND, or SEND/RECYV request is initiated. The error codes

correspond to DIAGNOSE return code numbers.

Error
Code

Meaning

The normal response (no errors).

Invalid buffer address or length. The SEND and/or RECEIVE buffers used for a data
transfer operation are not within the virtual machine’s virtual storage. The beginning and
ending addresses were valid when a request was initiated but all addresses are not valid.

User not available. The sink virtual machine executed the UNAUTHORIZE function,
executed the AUTHORIZE SPECIFIC function again, or implicitly reset his virtual
machine after the source virtual machine request was initiated.

Protection violation. The storage key for a virtual machine’s SEND or RECEIVE buffer
did not match its PSW key at the time the transfer was initiated (assume the key was
nonzero). This error code is also set if a virtual machine attempts to RECEIVE data into
a CP-owned shared segment.

SENDX data is too large. The sink virtual machine executed AUTHORIZE again and
specified an external interrupt buffer size less than the buffer size at the time a SENDX

function was executed. The SENDX data no longer fits in the sink virtual machine
buffer.

15

Paging I/O error. An uncorrectable paging I/O error occurred during the data transfer
operation attempting to fetch a virtual machine SEND or RECEIVE buffer. This is a
hardware failure.

16

Incorrect length. The sink virtual machine executed a RECEIVE function with a data
length (VMCPLENA) smaller than the original SEND data length or a REPLY function
with a REPLY data length larger than the source virtual machine REPLY buffer length.

17

Destructive overlap. A virtual machine was communicating with itself in a “wrap
connection” and his SEND or RECEIVE buffers overlapped one another (intra-virtual
machine communication).

19

Data transfer error. A data transfer error occurred which was associated with the other
virtual machine. The transaction did not complete successfully.

Figure 15. DIAGNOSE Code X‘68’ Data Transfer Error Codes

140 VM/SP System Programmer’s Guide

Chapter 15. Inter-User Communications Vehicle

IUCV Paths

The Inter-User Communications Vehicle (IUCV) is a communications facility that
allows users to pass any amount of information. IUCV enables a program running
in a virtual machine to communicate with other virtual machines, with a CP system
service, and with itself.

An IUCV communication takes place between a source communicator and a target
communicator. The communication takes place over a predefined linkage called a
path. Each communicator can have multiple paths, and each communicator can
receive or send multiple messages on the same path simultaneously.

IUCY provides functions, through the IUCV macro instruction, to:

¢ Create and dismantle paths

« Send and reply to messages

« Determine if messages are pending and describe a pending message
« Selectively receive or reject messages.

Each message is represented to CP by a control block called a MSGBLOK. This
MSGBLOK is moved among different queues at different stages in a
communication. Communicators can receive information about pending messages
either by interrogating the queues of MSGBLOKSs or by receiving an external
interruption for each message.

The TUCV directory control statement authorizes the establishment of a path
between one virtual machine and another, or between a virtual machine and a CP
system service. The number of possible paths for a communicator is limited to
65,535 (via the MAXCONN keyword of the OPTION directory statement). If a
maximum number of paths is not specified in the directory, a communicator can
establish a maximum of four paths. For CP system services, the maximum number
of possible paths is 4096.

Once authorized, users establish a path when the source communicator invokes the
CONNEUCT function and the target communicator invokes the ACCEPT function.
Either communicator can terminate an established path via the SEVER function.
The target communicator can also prevent the establishment of a path by invoking
the SEVER function. In addition, communication over a path can be temporarily
suspended when a communicator invokes the QUIESCE function; the quiesced
path can be reactivated when a communicator invokes RESUME.

Chapter 15. Inter-User Communications Vehicle 141

A single communicator can have multiple paths defined, and two virtual machines
may have multiple paths between them. The communicator could be a source
communicator on some of its defined paths, a target communicator on other paths,
and both a source and a target communicator on still other paths. Communication
over any and all paths can occur simultaneously.

Every path has two ends: the source communicator’s end and the target
communicator’s end. Each end of a path is described by a path description. There
are two path descriptions for each defined path. The source communicator has a
description of the path from the source’s perspective and the target communicator
has a description of the same path from the target’s perspective.

Each of the two path descriptions for a path has a path identification that is unique
for each communicator. Path identifications are assigned by [IUCV when
communicators invoke the CONNECT and ACCEPT functions. When invoking
TUCYV functions, the source communicator identifies the path by using the source’s
path identification. The target communicator identifies the same path to [IUCV by
using the target’s path identification. The only relationship that exists between a
path’s identifications is that the two identifiers are names for the two descriptions
of the same path.

TUCV groups path descriptions for all the paths defined for a communicator into a
single construct called a Communication Control Table.

IUCV Messages

142

An TUCV communication is called a message. Communication is initiated and a
message created when the source communicator invokes the SEND function. The
target communicator acknowledges and accepts the message by invoking the
RECEIVE function.

The target communicator can optionally request information about messages sent
to it by invoking the DESCRIBE function, and can refuse a message sent to it by
invoking the REJECT function. The target communicator can respond to a
message via the REPLY function.

Communication is terminated and the message is destroyed when the source
communicator issues the TEST COMPLETION function or handles an IUCV

tmmnmcmnra Ansamlaba Acbawnal Tk At

IIIUDDGEU \.«UIIAPLUI,U CAlLLl1lAL 111luvl L ul.ll..

An TUCV message is represented within CP by a control block called a
MSGBLOK. IUCYV creates a MSGBLOK when a communication is initiated and
destroys the MSGBLOK when a communication is terminated.

VM/SP System Programmer’s Guide

~ L

.

Message Queues

During its lifetime, an IUCV message (MSGBLOK) moves among three IUCV
queues. The IUCV queues are:

« Send queue - contains information about messages sent to a target
communicator that the target communicator has not yet received.

« Receive queue - contains information about messages received by a target
communicator that the target communicator has not yet replied to.

« Reply queue - contains information about messages replied to by a target
communicator that the source communicator has not yet terminated.

IUCYV moves the messages among the queues when a user issues the SEND,
RECEIVE, REPLY, or TEST COMPLETION function. When a source
communicator issues the SEND function, IUCV creates a message (MSGBLOK)
and moves it to the target communicator’s SEND queue. When the target invokes
the RECEIVE function, the message is moved to the target’s own RECEIVE
queue. IUCV moves the message to the source communicator’s REPLY queue
when the target communicator invokes the REPLY function. When the source
communicator issues the TEST COMPLETION function, IUCV removes the
message from the REPLY queue, destroys the message, and completes the
communication.

Figure 16 illustrates the movement of messages between the IUCV queues.

Source
Communicator

Target
PATH Communicator

1) SEND moves a

message to -—
the

moICow

—=> SEND QUEUE

2) RECEIVE moves
a message to
the

T >
lw i
—AmMoOo>—
TH>T
[R

I
RECEIVE QUEUE

REPLY QUEUE<-—

—3) REPLY moves
a message to

4) TEST COMPLETION
terminates the
communication

the

Figure 16. IUCV Queues

Chapter 15. Inter-User Communications Vehicle 143

Message Data Transfer

While a message (MSGBLOK) moves among the IUCV queues, [IUCV moves the
actual data associated with the message only twice during a complete
communication. TUCV moves data when the target communicator issues the
RECEIVE and REPLY functions.

IUCV moves data twice during a complete communication. When the target
communicator issues the RECEIVE function, IUCV moves the message data from
the source communicator’s SEND virtual address space to the target
communicator’s RECEIVE virtual address space. When the target communicator
issues the REPLY function, [IUCV moves data from the target communicator’s
REPLY virtual address space to the source communicator’s ANSWER virtual

| address space.

Figure 17 illustrates the movement of message data during an [UCV

communication.
SOURCE COMMUNICATOR TARGET COMMUNICATOR
VIRTUAL MACHIHE VIRTUAL MACHINE
RECEIVE
SEND > RECEIVE
AREA AREA
REFPLY
<
ANSWER REPLY
AREA AREA

Figure 17. IUCYV Data Transfer

The MSGBLOK representing the message contains the addresses and lengths of
the source communicator’s SEND and ANSWER areas. These locations may
overlap.

CP performs storage protection checking for all data moved during an [IUCV
communication. IUCV stores the source communicator’s PSW key in the
MSGBLOK. When the target communicator executes a RECEIVE or REPLY
function, IUCV uses the PSW key for protection checking in the source virtual
machine.

IUCY uses the target communicator’s PSW key at the time of the RECEIVE or
REPLY to check data accesses in the target virtual machine.

Message ldentification

A message is fully identified to a virtual machine by values that are recorded in the
MSGBLOK.

« Message identification - a single fullword value that identifies a message.
IUCYV assigns a message id when the source communicator invokes the SEND
function. The message identification is generated by a sequential counter value
and is unique for the system IPL.

144 vM/SP System Programmer’s Guide

o Message class - identifies the source message class and target message class.
The message classes are arbitrary fullword values that the source
communicator specifies when invoking the SEND function. The meaning of
the message classes is agreed to in advance by the two communicators. ITUCV
places no restrictions on the values specified for message class. The
communicators can use the message class to dequeue messages selectively.

« Path description and the target path description. IUCV assigns these path ids
when a path is established via the CONNECT and ACCEPT functions.

There is no defined relationship between the values of the source and target path
ids IUCYV assigns, or between the message classes the source and the target
communicators use. None of these values need be the same although they refer to
the same message. Only the message identification has the same value for both
target and source communicators.

Thus, when invoking IUCV functions, the source communicator refers to a
message by a combination of its source path id, source message class, and message
id. The target communicator refers to the same message by a combination of its
target path id, target message class, and message id. When the target
communicator issues the DESCRIBE function, IUCV provides the target’s
identifiers.

In addition, IUCV provides another message identifier for the source
communicator. When invoking the SEND function, the source communicator may
specify a message tag. IUCV does not assign a value or meaning to the tag; its use
is determined solely by the source communicator. For example, the source
communicator can use the message tag to tie a completed message to the original
SEND request. IUCV presents the tag to the source communicator when the
message completes.

Finally, a message can be identified as a priority message when the source
communicator invokes the SEND function. IUCV enqueues a priority message
ahead of any nonpriority messages on the target communicator’s SEND queue and
behind any earlier priority messages. The installation must authorize a path to
handle priority messages in the [UCV directory control statement.

Pending IUCV Communications

A communicator can receive notification of pending IUCV messages in two ways:
by receiving external interruptions or by interrogating the SEND and REPLY
queues.

IUCV External Interrupts

To enable IUCV external interruptions, communicators must:

o Invoke the DECLARE BUFFER function to indicate to IUCV where to store
data associated with an external interruption.

Chapter 15. Inter-User Communications Vehicle 145

« Set bit 7 in the virtual machine’s PSW to one; set submask bit 30 of control
register O to one.

In addition, communicators can invoke the SET MASK function to enable
selectively the virtual machine to receive external interruptions for [IUCV messages,
replies, and functions.

IUCY functions generate a type X'4000' external interruption. When a virtual
machine in EC mode receives an IUCV external interruption, IUCV places the
interruption code in locations X'86' and X'87' of the virtual machine’s storage.
For a virtual machine in BC mode, IUCV places the code in the external old PSW.
In addition, IUCYV stores an external interrupt buffer containing information about
the message or IUCV function at the address specified when the communicator
invoked the DECLARE BUFFER function. One field of this buffer is an external
interrupt subtype that indicates why the external interrupt occurred. The possible
values of this field are:

¢ 01 - Connection pending

o 02 - Connection complete

o 03 - Path severed

e 04 - Path quiesced

e 05 - Path resumed

e 06 - Incoming priority reply

e 07 - Incoming nonpriority reply

¢ 08 - Incoming priority message

¢ 09 - Incoming nonpriority message.

See “IUCV External Interrupt Buffers” for the formats of the buffers.

A virtual machine can use the SET MASK function to enable or disable selectively
external interrupts for IUCV communications. The SET MASK function has mask
bits that enable or disable external interruptions for:

o Priority messages

o Nonpriority messages

o Priority replies

e Nonpriority replies

o IUCV control functions.

To further divide and handle the control type interrupts, the SET CONTROL
MASK function may be used on the IUCV macro. 'T'he types of control interrupts
may be separately enabled and disabled. These control type interrupts are:

o Connection pending
« Connection complete
« Path severed

o Path quiesced

o Path resumed.

The SET MASK function is interrogated before the SET CONTROL MASK
function. If you specify that all control interrupts are disabled using the SET
MASK function, then the SET CONTROL MASK settings are not interrogated. If
you specify that all control interrupts are enabled using the SET MASK function,

146 VM/SP System Programmer’s Guide

N

AN
I 3

N/

then the SET CONTROL MASK settings will be interrogated to determine how to
handle the individual types of control interrupts.

After IUCV initialization and until you issue the SET MASK or SET CONTROL
MASK function, all IUCV submask bits are on, enabling all IUCV external
interrupts.

Interrogating IUCV Queues

A virtual machine can only be notified of pending CONNECT, ACCEPT, SEVER,
QUIESCE, and RESUME functions by receiving an external interruption.
However, a virtual machine can field incoming messages or replies either by being
enabled for external interruptions, or by interrogating the SEND queue (via the
DESCRIBE function) or the REPLY queue (via the TEST COMPLETION
function).

TUCYV also provides the TEST MESSAGE function to determine the presence of
any messages on a communicator’s SEND queue or REPLY queue. If no messages
are present, the virtual machine goes into a wait state until a message comes in.

For example, if a source communicator sends a priority message, IUCV queues an
external interruption (subtype 08) for the target communicator. If the target
virtual machine is both enabled for external interruptions (bit 7 in the virtual PSW
and submask bit 30 in control register zero are set to one), and enabled for priority
messages (via the SET MASK function), then the target virtual machine receives
an external interruption. If the target virtual machine is not enabled for external
interruptions or is not enabled for priority messages, the message remains queued
on the target’s SEND queue. If the target virtual machine is not enabled for
external interrupts or priority messages, it can issue the DESCRIBE function to
obtain information about the message, and the pending external interrupt for that
message is cleared. The target virtual machine can store the information and can
later RECEIVE or REJECT the message.

Note: 1f a communicator is enabled for external interruptions and issues the
DESCRIBE or TEST COMPLETION function, results are unpredictable. It can
not be determined whether information about a particular message is received via
external interruption or by the completion of DESCRIBE or TEST
COMPLETION. However, IUCV supplies information about a message only
once.

When a communicator has completed all communications, the virtual machine may
invoke the RETRIEVE BUFFER to

o Cause IUCV to stop using the external interruption buffer created by the
DECLARE BUFFER function

e Prevent further IUCV communication.

Note: TUCYV external interruptions are not reflected to CP system code. See the
section, “CP Communications” for details.

Chapter 15. Inter-User Communications Vehicle 147

CP Communications

TUCV communications with CP system services treat CP as a single virtual
machine. For this reason, a distributing mechanism in IUCV (the communication
processor) gathers initial information about a message and routes it to the proper
module in CP for processing.

Thus, [UCV provides:
« Routing of connections from virtual machines to CP system services
« Routing of messages received via IUCV to CP system services

« Routing of REPLYs received via IUCV to the CP system service that issued
the SEND

« Severing of virtual machines from system services.

External interrupts are not reflected to CP system code. For communications to
CP services, external interrupts are replaced with one of two possible linkages
depending on whether the function was initiated outside CP or whether it was
initiated from within CP. For data targeted for a CP service that was initiated in a
virtual machine, there is a table of entry points which tell IUCV where to pass
control. For replies targeted for a CP system service, virtual machines use a
control block called an IXBLOK. The structure and use of an IXBL.OK is similar
to a CPEXBLOK.

Each CP system service that interfaces with virtual machines is uniquely defined to
the IUCV communication processor. For each CP service defined to use [IUCV
communications, five entry points can gain control from I[UCV:

« One to get control for incoming connections

¢ One to get control for incoming messages

« One to get control when a connection to the particular service is severed

» One to get control when a QUIESCE is issued for a path

« One to get control when a RESUME is issued for a path.

When any one of these entry points is given control, Register 1 points to a buffer.
This buffer contains the same information in the same format as an IUCV external
interrupt buffer used in virtual machine-to-virtual machine communications.

The CP system services that IUCV currently supports are the Console
Communication Services, the Message System Service, the DASD Block I/0
System Service, and the Signal System Service. The following table shows the
corresponding userid for each of the CP system services. This userid must be

specified on the USERID= parameter when invoking the IUCV CONNECT
function.

148 VM/SP System Programmer’s Guide

AN
\

System

Service

Userid System Service

*CCS Console Communication Services
*MSG Message System Service

*BLOCKIO DASD Block I/0 System Service
*SIGNAL Signal System Service

Figure 18. CP System Services and Their Userids

Second Level Support

Trace Table Entries

An SCP that supports IUCV communications functions correctly in a virtual
machine generated by a CP system that supports ITUCV.

The TUCV macro instruction generates an operation exception in the real
hardware.

When a virtual machine invokes an IUCV function, it must be in a virtual
supervisor state.

A virtual machine must invoke the DECLARE BUFFER function before other
IUCYV functions except the QUERY function. Failure to do so causes an operation
exception to be reflected to the virtual machine.

Thus, an SCP can support IUCV in a virtual machine exactly as it does on real
hardware.

CP system code invokes IUCV functions through a CALL linkage rather than the
IUCV macro instruction.

IUCYV support generates a trace table entry for each IUCV function. There is one
trace table entry type for IUCV entries (X'15'). Each entry contains a subtype
field to indicate the exact IUCV function a communicator invoked.

Whether invoked from a virtual machine or from CP system code, all uses of IUCV
are recorded in the CP trace table. The address portion of the old PSW is recorded
as part of the entry. The X'80" bit in the RCODE byte indicates that this address
is a real address (when invoked from CP) rather than a virtual address (when
invoked from a virtual machine). For virtual machine addresses, the address of the
associated VMBLOK can be obtained from preceding trace table entries.

The IUCV trace facilities can be suppressed at assembly time by setting

&TRACE(9) to O or at execution time by setting the X'80' bit to 0 in TRACFLG3
in PSA.

Chapter 15. Inter-User Communications Vehicle 149

IUCYV functions invoked by other functions are also recorded as if they had been
invoked from CP. These secondary functions include:

« The RETRIEVE BUFFER function generates a SEVER for all established
paths.

o The SEVER function generates-a REJECT for each incoming outstanding
message and a PURGE for each outgoing outstanding message.

« A CONNECT issued to a CP system service passes control to that service.
The selected CP system service usually invokes the ACCEPT function.

« The CP dispatcher invokes the DESCRIBE and TEST COMPLETION
functions to dequeue messages intended for the CP system.

Audit Trail

IUCV maintains an audit trail for each message. The audit trail is a bit significant
value that records the status of the message. The value is maintained in the
MSGBLOK that represents the message. The audit trail is presented to the source
communicator during execution of the PURGE and TEST COMPLETION
functions and when the source receives a message-complete IUCV external
interrupt.

The audit trail for a message indicates:

« If the message caused a protection or addressing exception on the source
communicator’s send or answer buffer

« If the message caused a protection or addressing exception on the target’s
receive or reply buffer

« If a reply was too long for the source’s reply buffer
« If an invalid length was specified in a SEND buffer or answer list

« If the BUFLEN= and/or ANSLEN= field is not the total of the lengths in the
SEND buffer and/or answer list

e If an invalid ienginh was specified in the target
answer list

« If the BUFLEN= or ANSLEN= field is not the total of the lengths in the
target’s buffer or answer list

« If a message was rejected by the target

« If a path was severed.

150 VM/SP System Programmer’s Guide

C

Restrictions

The following areas of IUCV are limited:

o The use of IUCV is supported for a second level CP system. The IUCV
functions are not simulated, but are reflected to the second level system.

« Each virtual machine is limited to less than 65,536 outstanding connections at
one time.

« TUCYV does not recognize anything smaller than a virtual machine. If two
communicators choose to establish multiple communication paths, it is the
responsibility of these communicators to manage these paths.

« A CP system service cannot establish communication with itself.

« CP system services are limited to a total of 4,096 outstanding connections.

Security Considerations

Installations control the use of IUCV through the virtual machine directory entries.
If the installation has not authorized a user for [IUCV communications in the
directory, all requests for [IUCV communications to virtual machines other than his
own are denied. The installation must specifically authorize each virtual machine
which is to communicate with a CP system service.

IUCYV moves data from one virtual machine address space to another. At no time
does a virtual machine have access to the storage or registers of CP or another
virtual machine. When the user invokes the RECEIVE or REPLY functions, the
data to be moved is described by a starting address and a length, or a list of starting
addresses and lengths. The length specified in the parameter list is the maximum
amount of data moved. No requirements are placed on a virtual machine as to the
location of these buffers.

IUCV assigns path ids and records the path id in each communicator’s
communication control table (CCT). IUCV sets up one CCT for each virtual
machine and one for the CP system. A given communicator can reference only the
paths recorded in its own CCT. Other references are not possible.

TIUCV assigns the message id for each message. Although this message identifier
may be reused, at any given time, it identifies only one message. IUCV does not
use this identifier as a direct reference, but only as an operand in a comparison. It
is conceivable that a virtual machine could generate a valid message identifier and
use this to request a message. However, when a message id is used to request a
message, a user must also specify a message class and a path id. If the specified
message is not associated with the specified path id, and message class, the user
cannot access the messages. If the message id, path id, and message class do
match, the user could legitimately access it by specifying simply path id and/or
message class without the generated message id.

The installation can limit the number of connections for a particular virtual
machine in the virtual machine directory.

Chapter 15. Inter-User Communications Vehicle 151

Performance Considerations

The overhead involved in reflecting IUCV external interrupts to the virtual
machine can be reduced if the buffer declared on the DECLARE BUFFER
function is entirely within one page. Overhead can be reduced further if the buffer
is entirely within page O of the virtual machine.

Modules DMKIUA and DMKIUE can be made resident to improve the
performance of IUCV.

Using IUCV Functions

Communicators invoke all [UCV functions through the [IUCV macro instruction.
When using the IUCV macro instruction, communicators specify which function
they wish to perform. Most functions also require the address of a parameter list to
contain inputs to and outputs from the requested function. Communicators can
store inputs directly in the parameter list or they can specify inputs with keyword
parameters. ITUCV moves the values specified on the keyword parameters into the
specified parameter list. For details on how to use the IUCV macro, see the
section “Invoking IUCV Functions.”

ACCEPT
Use the ACCEPT function to respond to a pending connection. When a target
communicator invokes the ACCEPT function, IUCV completes the connection and
enables the path for use. A target communicator can refuse a pending connection
by invoking the SEVER function.

CONNECT

Use the CONNECT function to request the establishment of a communications
path with another communicator. When a source communicator invokes the
CONNECT function, IUCV establishes a pending connection. The path is not
complete until the target communicator invokes the ACCEPT function.

Use the DECLARE BUFFER function to specify the address of a buffer into
which IUCYV can store external interrupt information. If a virtual machine receives
an IUCYV external interruption, [IUCV stores in this buffer information about the
message, reply, or control function that caused the the interruption. Each virtual
machine must declare a buffer prior to establishing any connections.

Note: 'When a communicator invokes the DECLARE BUFFER function, IUCV
automatically enables the virtual machine for all five types of IUCV external
interrupts. Use the SET MASK function to change these initial settings. CP
system code does not declare a buffer.

152 VvM/SP System Programmer’s Guide

DESCRIBE

PURGE

QUERY

QUIESCE

Use the DESCRIBE function to determine the presence of any messages on the
SEND queue that have not been previously described or reflected in a
message-pending IUCV external interruption. If a previously undescribed and

~ unreflected MSGBLOK is on the SEND queue, IUCV returns pertinent

information about the MSGBLOK in the parameter list. The information stored by
TUCYV consists of the path id, the target message class, the message id, the message
flags, the length of the message, and the length of the source’s answer area. This
information allows the target communicator to receive the message using the
RECEIVE function. IUCV describes a particular message once. It is the
responsibility of the target communicator to remove described messages from the
SEND queue. Messages can be removed by invoking the RECEIVE or REJECT
function. The DESCRIBE function clears the pending-message external
interruption for the described message. CP system code (outside of IUCV
support) cannot use the DESCRIBE function.

Use the PURGE function to terminate a specified message sent to a target virtual
machine. If the source virtual machine purges a message before the target has
described or received it, the target is never aware that the message was sent. If the
message is already on the source’s REPLY queue, IUCV terminates the message
immediately. If the message has been described to the target, IUCV notifies the
target that the message has been purged. IUCV indicates that the message has
been purged when the target issues the RECEIVE or REPLY function for the
message. IUCV then destroys the message. When invoking the PURGE function,
you must identify which message you wish to purge. You can specify only a path
identifier, or a path id, message identifier, and message class. If you do not specify
a message identifier, the message class is optional.

Use the QUERY function to determine how large a buffer IUCV requires to store
external interrupt information. TUCYV returns the number of bytes required in
general register zero. In addition, use the QUERY function to determine the
maximum number of communication paths that can be established for your virtual
machine. IUCV returns the maximum number of paths in general register one.
The QUERY function does not use a parameter list. CP system code cannot use
the QUERY function.

Use the QUIESCE function to temporarily suspend incoming messages on an
IUCYV path. A communicator may reactivate a path by invoking the RESUME
function or may leave the path quiesced, making it a one-way path. The QUIESCE
is performed on the PATHID specified unless the ALL=YES option is used, then
all paths are affected. '

Chapter 15. Inter-User Communications Vehicle 153

RECEIVE N

Use the RECEIVE function to accept messages sent via the SEND function. When
a target virtual machine issues the RECEIVE function, ITUCV moves the actual
message data from the source virtual machine’s send area(s) to the target virtual
machine’s receive area(s). If the complete message has been moved from the send
area(s) to the specified receive area(s), [UCV moves the MSGBLOK for the
specified message from the SEND queue to the RECEIVE queue. If the receive
area(s) cannot completely contain the message, the MSGBLOK remains on the
SEND queue and the length of the remaining data is stored in the parameter list.
The target virtual machine can obtain the remainder of the message with a
subsequent RECEIVE. The RECEIVE function completes a one-way
communication. When invoking the RECEIVE function, you can identify the
message you wish to receive. Identify the message completely by specifying the
message id, path id, and target message class. If you do not specify the message id,
you can identify the message by path id, target message class, or both. If you do
not specify any identifiers when invoking the RECEIVE function, you receive the
first message that has not been partially received. Note that if a message has been
partially received, you must identify the message completely to receive the
remainder.

REJECT

Use the REJECT function to refuse a specified message sent by a source
communicator. After invoking the DESCRIBE or RECEIVE function, a target
communicator can choose not to process a message. The REJECT function moves N’
the MSGBLOK representing the specified message from the target’s SEND queue

or RECEIVE queue to the source communicator’s REPLY queue. IUCV updates

the message’s audit trail to indicate that the message has been rejected. No

message data is moved when the REJECT function is invoked. When invoking the

REJECT function, you must identify which message you wish to reject. You can

identify the message completely by specifying the message id, path id, and target

message class. If you do not specify the message id, you must identify the message

by path id, target message class, or both.

REPLY

Use the REPLY function to respond to a message sent by a source communicator.
When a target virtual machine invokes the REPLY function, {UCYV moves iiie

- MSGBLOK for the specified message from the target communicator’s RECEIVE
queue to the source communicator’s REPLY queue. Data in the target’s reply
‘area(s) is moved to the source communicator’s answer area(s). The target
communicator can specify that a reply is a priority reply. TUCV queues a priority
reply ahead of any nonpriority replies and after any earlier priority replies. When
invoking the REPLY function, you must identify completely the message to which
you wish to reply. Identify the message completely by specifying the message id,
path id, and target message class.

- 154 VM/SP System Programmer’s Guide

RESUME

RETRIEVE BUFFER

SEND

Use the RESUME function to restore communications over a previously quiesced
path. The RESUME is performed on the PATHID specified unless the ALL=YES
option is used, then all paths are affected.

Use the RETRIEVE BUFFER function to terminate all outstanding messages and
communications paths, and to end IUCV communications. CP system code
(outside IUCV support) cannot use the RETRIEVE BUFFER function.

Use the SEND function to initiate a communication with another virtual machine
or CP system service. When a source communicator invokes the SEND function,
IUCYV creates a MSGBLOK for the message and enqueues it on the target
communicator’s SEND queue. The message text is not transmitted to the target
virtual machine until the target communicator invokes the RECEIVE function. If
the installation has authorized the path for priority messages, you may indicate that
the message is a priority message. IUCV queues priority messages ahead of
nonpriority messages on the target communicator’s SEND queue (and after any
priority messages that have not yet been received). In addition, you may specify
that a message is a one-way communication. When the target communicator
receives a one-way communication, he cannot send a reply.

SET CONTROL MASK

SET MASK

Use the SET CONTROL MASK function to enable or disable external interrupts
for the IUCV control functions: connection pending, connection complete, path
severed, path quiesced, and path resumed. A virtual machine must first be enabled
for external interruptions by setting both bit 7 in the virtual PSW and submask bit
30 in control register zero to one. The SET MASK IUCYV control bit must also be
set on or the SET CONTROL MASK settings are ignored. The SET CONTROL
MASK function cannot be used from CP system code.

Use the SET MASK function to enable or disable [IUCV external interruptions for
priority messages, nonpriority messages, priority replies, nonpriority replies, and
IUCV control functions. A virtual machine must also be enabled for external
interruptions by setting both bit 7 in the virtual PSW and submask bit 30 in control
register zero to one. The SET MASK function cannot be used from CP system
code.

Chapter 15. Inter-User Communications Vehicle 155

SEVER

Use the SEVER function to reject a pending connection or to terminate a
completed IUCYV path. If the path is complete, both communicators must issue the
SEVER function for the path to be terminated. After one communicator invokes
the SEVER function, all messages outstanding on the path are terminated and
IUCV notifies the communicating partner (via a SEVER external interruption).
The communicating partner then can dequeue and process the terminated messages
if it chooses. The communicating partner invokes the SEVER function when it
finishes processing messages on the path.

If the path is a pending connection, either communicator may invoke the SEVER
function. If the originator of the connection invokes SEVER and the target has
received the pending-connection external interruption, the target must also invoke
the SEVER function. If the target invokes SEVER first, the originator must do so
as well. The SEVER is performed on the PATHID specified unless the ALL=YES
option is used, then all paths are affected.

TEST COMPLETION

TEST MESSAGE

Use the TEST COMPLETION function to determine if any messages have been
completed. When a source virtual machine invokes the TEST COMPLETION
function, IUCV removes the MSGBLOK representing the specified message from
the REPLY queue and destroys that MSGBLOK. When invoking the TEST
COMPLETION function, you may identify which message you wish to complete. i
You can identify the message completely by message id, path id, and source N
message class. If you do not specify the message id, you can identify the message

by path id, source message class, or both. If you do not specify any identifiers

when invoking the TEST COMPLETION function, IUCV completes the first

message on the REPLY queue. CP system code (outside of IUCV support) cannot

use the TEST COMPLETION function.

Use the TEST MESSAGE function to determine whether any messages or replies
are pending on a communicator’s SEND queue or REPLY queue. When a virtual
machine invokes the TEST MESSAGE function, the virtual machine enters a wait
state if neither messages nor replies are pending. If an IUCV message or reply
becomes pending while the virtual machine is in the wait state, the virtual machine
begins execution by re-executing the TEST MESSAGE function (which returns a
condition code). By using the TEST MESSAGE function, a virtual machine avoids
the necessity of external interrupt handling.

Virtual Machine to Virtual Machine Communication

Figure 19 on page 157 illustrates the sequence of functions invoked when a
virtual machine communicates with another virtual machine. The functions include
initialization, connection to another virtual machine, sending and receiving
messages, replying to and waiting for messages, severing communications with the ‘a
other virtual machine, and termination. "/

N
N

156 VM/SP System Programmer’s Guide

Virtual Machine X Communicating to Virtual Machine Y
(VIRTUAL MACHINE X) (VIRTUAL MACHINE Y)
1 DECLARE BUFFER 1 DECLARE BUFFER

2 CONNECTto Y
3 Get External Interrupt

4 ACCEPT

5 Get External Interrupt

6 SENDtoY
7 Get External Interrupt

/or/
DESCRIBE

8 TEST COMPLETION
9 RECEIVE
10 REPLY

11 Get External Interrupt

/or/
TEST COMPLETION

12 SEVER
13 Get External Interrupt
14 SEVER

15 RETRIEVE BUFFER 15 RETRIEVE BUFFER

Figure 19. Sequence of Functions

1. Virtual machine X wishes to communicate with virtual machine Y. Both virtual
machines must independently invoke the DECLARE BUFFER function. The
buffer is used to provide the virtual machine with information about incoming
external interrupts concerning IUCV functions.

2. Virtual machine X invokes the CONNECT function, indicating Y as the target.
TUCV checks the directory to determine if this connection is authorized. If it
is, [IUCV queues an external interrupt for Y indicating that there is a pending
connection for it. TUCV returns control to X at the next instruction after the
CONNECT; a return code indicates that a partial connection has been
established.

3. The external interrupt queued by step 2 is reflected to Y indicating a pending
connection. IUCV places the external interrupt information in the buffer that
Y provided in step 1. TUCV passes control to the external interrupt handler of
Y.

4. Virtual machine Y interprets the external interrupt and responds with an
ACCEPT to complete the connection. ITUCV then completes the connection
and queues a connection-complete external interrupt for X. TUCV returns
control to Y at the next instruction after the ACCEPT; a return code indicates
that the connection is complete.

5. The external interrupt queued by step 4 is reflected to X, indicating that the
connection is complete and the communication path is available for use. TUCV

Chapter 15. Inter-User Communications Vehicle 157

places the external interrupt information in the buffer that X provided in step N
1. TUCYV passes control to the external interrupt handler of X.

Virtual machine X issues a SEND. The SEND function queues an external
interrupt for Y indicating that there is a message pending. Control returns in X
at the next instruction after the SEND; a return code indicates that the
message has been sent.

If virtual machine Y is enabled for external interrupts and for [IUCV messages
(via SET MASK), the external interrupt queued by step 6 is reflected to Y,
indicating that a message is pending. TUCV places external interrupt
information in the buffer specified in step 1. IUCV passes control to the
external interrupt handler of Y. If virtual machine Y is disabled for external
interrupts or [UCV messages and invokes the DESCRIBE function, IUCV
places the information identifying the message in the DESCRIBE parameter
list and the pending-message external interrupt for this message is cleared.
IUCYV passes control to the next instruction after the DESCRIBE.

While virtual machine Y is processing the message, virtual machine X can

" decide to check if the communication has been completed by issuing the TEST

COMPLETION function. The condition code indicates that (in this example)
the communication is not complete.

With the message description from step 7, virtual machine Y starts to process
the message and issues a RECEIVE. The parameter list associated with
RECEIVE specifies where the message data is stored in virtual machine Y.

\, i_/'

10. When processing the message is complete, virtual machine Y responds to X by

invoking the REPLY function. The REPLY function queues an external
interrupt for X indicating that there is a reply pending. Control returns to Y at
the next instruction after the REPLY a return code indicates that the reply has
been transferred.

11. If virtual machine X is both enabled for external interrupts and enabled for

TUCYV replies, the external interrupt queued by step 10 is reflected to X,
indicating a reply pending. To identify the reply, the external interrupt
information is placed in the buffer specified in step 1. IUCV passes control to
the external interrupt handler of X. If virtual machine X is disabled for
external interrupts and issues a TEST COMPLETION, IUCYV places the
information identifying the reply in the TEST COMPLETION parameter list
and clears the queued external interrupt concerning this reply. IUCYV passes
control to the next instruction after the TEST COMPLETION.

12. Virtual machine X has now completed its communications with virtual machine

Y and issues a SEVER to break the communications path. The SEVER
function queues an external interrupt for Y indicating that the communication
link has been broken. Control returns in X at the next instruction after the
SEVER, a return code indicates the path has been broken.

13. The external interrupt queued by step 12 is reflected to Y indicating that the

path has been broken by virtual machine X. Virtual machine Y can now do
any clean up needed in its storage. {

158 VM/SP System Programmer’s Guide

14. After virtual machine Y has completed processing, the virtual machine issues a

SEVER to notify IUCV that it also is finished with the communication link.
IUCYV can then clean up the control blocks.

15. When all communications are complete and all communication paths have been

severed, both virtual machines independently invoke the RETRIEVE BUFFER
function.

IUCV Communications Using Parameter List Data

To better understand how data specified in the parameter list is handled, the IUCV
functions are covered in a typical user scenario:

1.

The IUCV DECLARE BUFFER, CONNECT, and ACCEPT sequence must
be invoked to establish the user’s external interrupt buffer and a path to the
target virtual machine (or CP). If you expect to receive data in the parameter
list, you must authorize such communication on the CONNECT or ACCEPT
by specifying PRMDATA=YES. The external interrupt information to the
target communicator includes a bit indicating if PRMDATA=YES was chosen.

Issue an IUCV SEND request. When the data is to be passed in the parameter
list, the DATA=PRMMSG option is used on the IUCV macro, and the
PRMMSG= option is used to move the data into the parameter list. Or you
can avoid using the macro options by initializing the parameter list yourself.
The sender of the message should be prepared to handle a return code
indicating that DATA=PRMMSG is not allowed if the target communicator
has not specified PRMDATA=YES at connection time. A message block
(MSGBLOK) is created to represent the message within CP and contains the
message data until presented to the target. The message is queued on the target
send queue.

If the target is enabled for IUCV pending-message external interrupts, the
target virtual machine receives an [IUCV pending-message external interrupt as
a result of the SEND request in the previous step. The message data is stored
in the external interrupt buffer. A flag is set in the IPFLAGSI field of the
buffer to indicate that the data is in the parameter list. Since the message data
has been presented to the target, the target does not have to issue an [UCV
RECEIVE for this message. If the message was a one-way message, the
MSGBLOK is destroyed and the communication is complete. There is no
asynchronous return of message completion given to the source (sending)
virtual machine on a one-way message.

If the target is disabled for IUCV pending-message external interrupts and
issues the [UCV DESCRIBE or RECEIVE functions, the message data is
stored in the parameter list. A flag is set in the [IPFLAGS1 field of the
parameter list to indicate that the data is in the parameter list. Since the
message data is presented to the target on a DESCRIBE, the target does not
have to issue an IUCV RECEIVE for this message. If the message was a
one-way message, the MSGBLOK is destroyed, and the communication is
complete. There is no asynchronous return of message completion given to the
source (sending) virtual machine on a one-way message.

Chapter 15. Inter-User Communications Vehicle 159

5. If the communication in the previous steps was a two-way message, a REPLY
is issued by the target virtual machine. When the REPLY data is to be passed
in the parameter list, the DATA=PRMMSG option is used on the IUCV
macro, and the PRMMSG= option is used to move the data into the parameter
list. Or, you can avoid using the macro options by initializing the parameter list
yourself. The REPLYer of the message should be prepared to handle a return
code indicating that DATA=PRMMSG is not allowed if the source
communicator has not specifiecd PRMDATA=YES at connection time. The
message block (MSGBLOK) contains the message data until presented to the
source communicator. The message block is queued on the sender’s reply
queue.

6. If the source communicator is enabled for IUCV message complete external
interrupts, the source virtual machine receives an IUCV message-complete
external interrupt as a result of the REPLY in the previous step. The message
data is stored in the external interrupt buffer. A flag is set in the IPFLAGS1
field of the buffer to indicate that the data is in the parameter list. The
MSGBLOK is destroyed and the communication is complete.

7. If the target is disabled for IUCV message-complete external interrupts, and
issues the IUCV TEST COMPLETE function, the message data is stored in
the parameter list. A flag is set in the IPFLAGSI1 field of the parameter list to
indicate that the data is in the parameter list. The MSGBLOK is destroyed,
and the communication is complete.

8. SEVER and RETRIEVE BUFFER cause any pending messages (MSGBLOK)
to be destroyed for that virtual machine. Since no asynchronous N
message-complete interrupt is returned to the source communicator, for
one-way messages using the DATA=PRMMSG option, the source
communicator must realize upon receiving an [UCV SEVER external interrupt
from the target communicator, that messages may not have been received by
the target.

Invoking IUCV Functions

Invoke all IUCV functions through the IUCV macro instruction. In general,
specify the name of the IUCV function you wish to perform, the address of a
parameter list to contain input to the function, and keyword parameters. [UCV
moves the values specified on the keyword parameters into the specified parameter
list. Most functions reguire a parameter list as input to the [UCV macro
instruction. Use the PRMLIST = parameter to specify the address of the parameter
list. The parameter list must begin on a doubleword boundary or a specification
exception results. When invoked from a virtual machine, specify the address of the
parameter list as a guest real address (that is, it must be an address that is real to
the virtual machine). When invoked from CP system code, the address of the
parameter list must be a real address.

Supply input to IUCV functions in two ways:

e By coding keyword parameters on the IUCV macro instruction. TUCV stores
values in the function parameter list based on values you specify on the macro. TN

160 VM/SP System Programmer’s Guide

« By storing required input to the function in the function parameter list before
invoking the IUCV macro instruction. To store input in an IUCV parameter
list, use labels generated by the IPARML DSECT.

You may use a combination of these methods to supply input to a single IUCV
function. If you specify any optional parameters on the IUCV macro, you are
responsible for providing the USING for the IPARML DSECT when the macro is
invoked. If you do not specify an optional parameter to initialize the parameter
list, the macro assumes that you have stored a value in the parameter list prior to
invoking the IUCV macro.

One advantage of using the IUCV macro instruction is that IUCV provides
extensive error checking of parameter combinations when input is supplied on the
macro. Many invalid parameter combinations can be detected by IUCV when you
assemble the program.

You can specify several parameters either as relocatable labels or a register
specification. Specify these parameters in one of the following ways:

¢ An addressable label in a program

« Alabel in the IPARML DSECT

« A register number in parentheses - (register)

« An explicit base-displacement notation -- displacement (register).

Figure 20 shows the format of the IUCV macro.

Chapter 15. Inter-User Communications Vehicle 161

label B 7

IUCV ACCEPT,
CONNECT,

DCLBFR,

PURGE,
QUIESCE

' RECEIVE,
REJECT,
RESUME,
SEND,
SETCMASK,
SETMASK,

SEVER,

l DESCRIBE,

[RTRVBFR,]

[QUERY]
[TESTMSG]

TESTCMPL,
e ——

PRMLIST=%

label%
(reg)

ALL=

CP=
PRTY=
PRMDATA=
QUIESCE=

ANSLIST=

BUFLIST=

ANSBUF=
BUFFER=

MSGID=
MSGLIM=
MSGTAG=
PRMMSG=
PATHID=
SRCCLS=
TRGCLS=
USERDTA=
USERID=

ASNLEN=
BUFLEN=

FCNCD=
MASK=

TYPE=

VMBLOK=

MF=

DATA=

o

2VMBLOK=

e

{

|
{
2y
{aim
{
{
{2t

YES

-

YES
NO
YES
NO

label
(reg)

label
(reg)
(label, 2)
((reg),2)
(label, 4)
((reg),4)

term

(req)
WAY
2WAY

SER
YSTEM

PRMMSG

YES} ?

USER
SYSTEM

BUFFER}

Figure 20. IUCYV Macro Instruction Format

162 VM/SP System Programmer’s Guide

where:

ACCEPT
CONNECT
DCLBFR
DESCRIBE
PURGE
QUIESCE
RECEIVE
REJECT
REPLY
RESUME
RTRVBFR
SEND
SETCMASK
SETMASK
SEVER
TESTCMPL
QUERY
TESTMSG

ALL=

ANSBUF=

is the ACCEPT function

is the CONNECT function

is the DECLARE BUFFER function
is the DESCRIBE function

is the PURGE function

is the QUIESCE function

is the RECEIVE function

is the REJECT function

is the REPLY function

is the RESUME function

is the RETRIEVE BUFFER function
is the SEND function

is the SET CONTROL MASK function
is the SET MASK function

is the SEVER function

is the TEST COMPLETION function
is the QUERY function

is the TEST MESSAGE function

(Used on QUIESCE, RESUME, SEVER)

ALL=YES specifies that the function requested is to be applied to
all paths for this virtual machine.

The valid values for ALL= are YES and NO.
If ALL=YES is specified, PATHID= is not allowed.
(Used on REPLY, SEND)

This parameter specifies the address of the area or list of areas to
contain the reply text of the message.

Specify either the relocatable label of the buffer or buffer list or the
number of a register that contains the address of the buffer or
buffer list. ITUCYV stores the address of the buffer or buffer list in
the function parameter list.

For SEND, this parameter identifies the area into which IUCV
places the reply text when ANSLIST=YES is not specified.

For REPLY, this parameter identifies the area from which [IUCV
takes the reply text when ANSLIST=YES is not specified.

For SEND and REPLY, if ANSLIST=YES is specified, ANSBUF=
provides the address of a list of addresses and lengths of
discontiguous buffers to contain the message reply text.

ANSBUF= is not valid on SEND if TYPE=1WAY is specified.

Chapter 15. Inter-User Communications Vehicle 163

ANSLEN=

ANSLIST=

164 VM/SP System Programmer’s Guide

If this parameter is not specified, the macro assumes that either the
parameter is not needed (such as SEND when TYPE=1WAY) or
the invoker has stored a value in the parameter list prior to invoking
the IUCV macro.

(Used on REPLY, SEND)

This parameter specifies the length of the area specified on the
ANSBUF parameter if ANSLIST=YES is not specified.

If ANSLIST=YES is specified, the value specified with ANSLEN=
is the total of the individual buffer lengths in the list pointed to by
ANSBUF=.

Specify either (1) the relocatable label of the location containing
the buffer length, or (2) the number of a register that contains the
length of the buffer. The macro assumes a halfword value for the
length at the storage location specified, or in the low-order halfword
of the register specified. If a length modifier of 4 is used, the macro
uses the fullword value for the length at the storage location or in
the register specified. IUCV stores the buffer length in the function
parameter list. If this parameter is not specified, the macro assumes
that either the parameter is not needed (such as on a SEND with
TYPE=1WAY) or the invoker has stored a value in the parameter
list prior to invoking the ITUCV macro.

ANSLEN= may be specified even though ANSBUF= is not. If
ANSBUF= has not been specified, the macro assumes that the
invoker has moved the address of the answer buffer into the
parameter list prior to invoking the ITUCV macro.

ANSLEN= is not valid on SEND if TYPE=1WAY is specified.
(Used on SEND, REPLY)
Specify ANSLIST=NO (default value) if a single area, defined by

the ANSBUF= and ANSLEN= parameters, is to be used to hold
message reply text.

Specify ANSLIST=YES if the values on the ANSBUF= and
ANSLEN= parameters identify respectively:

o The address of a list of addresses and lengths of discontiguous
buffers to hold the message reply text.

« The total of the individual buffer lengths in the list pointed to
by ANSBUF=.

If ANSLIST=YES is specified for the REPLY function,
DATA=PRMMSG and PRMMSG= cannot be specified.

N

BUFFER=

If you specify ANSLIST=YES or BUFLIST=YES, you must
construct the corresponding buffer address/length list on a
doubleword boundary in the following format.

address length1

address?2 length?2

addressn lengthn

Each address+length entry in this list must be doubleword aligned.
The first fullword contains the address of the data area to be
transferred. The second fullword contains the number of bytes to
be transferred. A list of one entry is valid.

These entries are updated during IUCV processing and therefore,
may not be reused by the application.

Any CP service using the list should lock and unlock any pageable
storage in the list. IUCV locks and unlocks pageable storage for the
virtual machine.

The length specified on the ANSLEN= or BUFLEN= parameter
must be the total of the individual lengths in the corresponding
answer or buffer list. If ANSLEN= or BUFLEN= is an invalid
value, an IUCYV error code is returned.

(Used on DCLBFR, RECEIVE, SEND)

When you invoke DCLBFR, this parameter identifies the external
interrupt buffer. When an external interrupt is reflected to the
virtual machine, IUCV stores information concerning the IUCV
message or a control interrupt in this buffer.

When you invoke SEND, this parameter identifies the area from
which IUCV takes the message text if BUFLIST=YES is not
specified.

When you invoke RECEIVE, this parameter identifies the area into
which IUCYV places the message text if BUFLIST=YES is not
specified.

For SEND and RECEIVE, if BUFLIST=YES is specified,
BUFFER= provides the address of a list of addresses and lengths
of discontiguous buffers to contain the message text.

Specify either the relocatable label of the buffer or buffer list or the
number of a register that contains the address of the buffer or

Chapter 15. Inter-User Communications Vehicle 165

BUFLEN=

BUFLIST=

166 VM/SP System Programmer’s Guide

buffer list. ITUCV stores the address of the buffer or buffer list in
the function parameter list.

If this parameter is not specified, the macro assumes that the
invoker has stored a value in the parameter list prior to invoking the
IUCV macro.

(Used on RECEIVE, SEND)

This parameter specifies the length of the area specified on the
BUFFER= parameter if BUFLIST=YES is not specified.

If BUFLIST=YES is specified, the value specified with BUFLEN=
is the total of the individual buffer lengths in the list pointed to by
BUFFER=.

Specify either (1) the relocatable label of the location containing
the buffer length, or (2) the number of a register that contains the
length of the buffer. The macro assumes a halfword value for the
length at the storage location specified, or in the low-order halfword
of the register specified. If a length modifier of 4 is used, the macro
uses the fullword value for the length at the storage location or in
the register specified. IUCV stores the buffer length in the function
parameter list.

If this parameter is not specified, the macro assumes that the
invoker has stored a value in the parameter list prior to invoking the
IUCV macro.

BUFLEN= may be specified even though BUFFER= is not. If
BUFFER= has not been specified, the macro assumes that the
invoker has moved the address of the buffer into the parameter list
prior to invoking I[UCV macro.

Do not use BUFLEN= for the DECLARE BUFFER function. By
default, the buffer declared on the DECLARE BUFFER is 40 bytes
long.

(Used on SEND, RECEIVE)

Specify BUFLIST=NO (default value) if a single area, defined by
the BUFFER= and BUFLEN= parameters, is to be used to hold
message text.

Specify BUFLIST=YES if the values on the BUFFER= and
BUFLEN= parameters identify respectively:

¢ The address of a list of addresses and lengths of discontiguous
buffers to hold the message text.

« The total of the individual buffer lengths in the list pointed to
by BUFFER=.

Cp

]

DATA=

If BUFLIST=YES is specified for the SEND function,
DATA=PRMMSG and PRMMSG= cannot be specified.

See ANSLIST= for a description of the address/length list.

(Used on ACCEPT, CONNECT, DESCRIBE, PURGE,
QUIESCE, RECEIVE, REJECT, REPLY, RESUME, RTRVBFR,
SEND, SEVER, TESTCMPL)

Specify CP=NO when invoking an IUCV function from a virtual
machine. IUCYV generates the IUCV instruction. The code
generated when you specify CP=NO modifies general register zero.
The virtual machine must be in supervisor state when the IUCV
macro executes.

CP=YES specifies that the function is being invoked from the CP
system code. A CALL linkage to CP module DMKIUACEP is
generated instead of the [IUCV instruction. The macro modifies
general registers 0, 1, and 15. The invoker is responsible for
providing an EXTRN statement for module DMKIUACP. General
register 11 is assumed to contain the address of the VMBLOK on
whose behalf the specified function is to be performed. See the
section "Communication Between CP and a Virtual Machine' for
details on IUCV communications initiated from CP system code.

The valid values for CP= are YES and NO. If not specified, the
default is NO.

CP=YES is required to invoke IUCV functions from CP system
code.

If CP=YES is specified, MSGTAG= is not allowed.

The DESCRIBE and TEST COMPLETION functions cannot be
used in CP outside of IUCV support.

(Used on SEND, REPLY)

This parameter specifies the location of your message data for this
IUCV communication. '

If you specify DATA=PRMMSG, your message or reply data is
contained in the parameter list. You may use the PRMMSG=
parameter to have the message or reply data moved into the
parameter list. When DATA= PRMMSG is specified, the ITUCV
macro parameters BUFFER, BUFLEN, and BUFLIST=YES may
not be used on the SEND function and the parameters ANSBUF,
ANSLEN, and ANSLIST=YES may not be used on the REPLY
function.

If you specify DATA=BUFFER, your messages or reply is

contained in a buffer. The IUCV macro parameter of PRMMSG=
may not be used when DATA=BUFFER.

Chapter 15. Inter-User Communications Vehicle 167

1 FCNCD=

MASK=

MF

168 VM/SP System Programmer’s Guide

The DATA= option on SEND and REPLY are independent of each
other. The protocol used is at the discretion of the communicators.
You may define a protocol such that:

« A message specified in the parameter list using the DATA=
option is REPLYed to via a message in the answer buffer
specified on the SEND.

e A message sent in a buffer may be REPLYed to by the target
via a message in the parameter list using the DATA= option.

(Used on CONNECT)

This parameter indicates which CP system service is invoking the
CONNECT function. Each supported CP system service is
identified by a one-byte numerical code.

Specify either the code itself or the number of a register that
contains the code in its low-order byte. TUCV moves the code into
the function parameter list.

If this parameter is not specified, the macro assumes that the
invoker has stored a value in the parameter list prior to invoking the
IUCV macro.

This parameter is valid only if CP=YES is specified.
(Used on SETMASK and SETCMASK)

This parameter specifies the mask byte to determine which, if any,
of the IUCV external interrupts a virtual machine is to be enabled
for. Specify either the relocatable label of a byte containing the
mask, or the number of a register that contains the mask in its
low-order byte. IUCV moves the mask into the function parameter
list.

If this parameter is not specified, the macro assumes that the
invoker has stored a value in the parameter list prior to invoking the
TUCV macro.

The SET MASK and SET CONTROL MASK functions cannot be
invoked from CP system code.

(Used on ACCEPT, CONNECT, DCLBFR, DESCRIBE, PURGE,
QUIESCE, RECEIVE, REJECT, REPLY, RESUME, SEND,
SETMASK, SETCMASK, SEVER, TESTCMPL)

The MF=L option is allowed as a keyword parameter on any [UCV
function that uses a parameter list.

This parameter lets you initialize an IUCV parameter list without
issuing the IUCYV instruction (from a virtual machine) or the SVC
(from CP system code). This parameter allows programs to

.

N ,,/:

MSGID=

MSGLIM=

initialize an IUCV parameter list and to pass that parameter list to
an operating system which provides an IUCYV interface (for
example, CMS).

(Used on PURGE, RECEIVE, REJECT, REPLY, TESTCMPL)

This parameter specifies the message identifier of the message to
search for. The message identifier uniquely identifies a particular
message. IUCV generates the message id and returns it in the
SEND parameter list when a message is created.

Specify either the relocatable label of a fullword containing the
message identifier, or the number of a register that contains the
message identifier. IUCV stores the message identifier in the
function parameter list.

If this parameter is not specified, the IUCV macro assumes that
either the parameter is not needed (for example, when you specify a
message by path id only), or the invoker has stored a value in the
parameter list prior to invoking the [IUCV macro.

MSGID= is an optional input to the functions listed above. When a
MSGID is specified, you must also supply the path id, and message
class (SRCCLS for PURGE and TESTCMPL, TRGCLS for
RECEIVE, REJECT and REPLY).

If you specify the MSGID= parameter on the IUCV macro, the
IPFGMID flag in IPFLAGSI is set when you invoke the PURGE,
RECEIVE, REJECT or TEST COMPLETION functions.

(Used on ACCEPT, CONNECT)

This parameter specifies the limit of outstanding messages to be
allowed from this side of the path. A message limit can also be
specified on the IUCV directory control statement. If a message
limit has been specified in the directory, the value you specify with
this parameter of the [IUCV macro must not exceed that limit.

Specify either the relocatable label of a halfword containing the
message limit, or the number of a register that contains the message
limit in the low-order halfword. TUCV stores the message limit in
the function parameter list.

If this parameter is not specified, the macro assumes that either the

parameter is not needed (the value from the directory or the default
is to be used) or the invoker has stored a value in the parameter list
prior to invoking the IUCV macro.

If the message limit is not specified on the IUCV macro or directory

control statement, or if the value has not been stored in the function
parameter list, ten is the default message limit.

Chapter 15. Inter-User Communications Vehicle 169

The maximum value that can be specified for the message limit is /\%
255. For CP system code, (CP=YES specified), there is no ’
overriding directory value. If MSGLIM is not specified, a default of

10 is assumed by IUCV. :

MSGTAG= (Used on SEND)

This parameter specifies the tag of the message created by invoking
the SEND function. TUCV returns the message tag when the
message completes.

| Specify either a relocatable label for a fullword containing the tag or
the number of a register that contains the tag. IUCYV stores the tag
in the function parameter list.

If you specify CP=YES, MSGTAG= is not needed. CP system
code uses the MSGTAG field in the parameter list for internal
linkage.

If this parameter is not specified, the macro assumes that either it is
not valid (for example, if CP=YES is specified) or that the invoker
has stored a value in the parameter list prior to invoking the IUCV

macro.

PATHID= (Used on ACCEPT, PURGE, QUIESCE, RECEIVE, REJECT,
REPLY, RESUME, SEND, SEVER, TESTCMPL)

This parameter specifies the path identification associated with a
message. IUCV assigns a path identification and returns the value
in the CONNECT parameter list.

All further communications on a path must specify the path id that
was returned from CONNECT. Path ids are sequential from
X'0000' to the maximum number of connections allowed for this
virtual machine. As paths are severed, the IUCV reuses vacated
path ids.

Specify either the relocatable label of a halfword that contains the
path id or the number of a register that contains the path id in the
low-order halfword. IUCYV stores the path identifier in the IUCV
parameter iist.

If this parameter is not specified, the macro assumes that either the
parameter is not needed (for example, if you invoke the SEVER
function with ALL=YES) or the invoker has stored a value in the
parameter list prior to invoking the IUCV macro.

If you specify MSGID on the PURGE, RECEIVE, REJECT,
REPLY, or TEST COMPLETION functions, IUCV requires that
you specify path id and message class (SRCCLS or TRGCLS, as
appropriate).

i PATHID= is not valid if ALL=YES is also specified. NS

170 VM/SP System Programmer’s Guide

If you specify the PATHID= parameter on the IUCV macro, the
IPFGPID flag in IPFLAGS]1 is set for PURGE, RECEIVE,
REJECT, and TEST COMPLETION functions.

PRMDATA= (Used on ACCEPT, CONNECT)

PRMLIST=

PRMMSG=

This parameter specifies whether the communicator wishes to allow
messages that contain the message data in the parameter list (for
example, messages sent via the DATA=PRMMSG option).

Specify PRMDATA=YES if you are willing to receive messages via
the DATA=PRMMSG option in your parameter list.

Specify PRMDATA=NO if you are not willing to receive messages
sent into your parameter list and only accept messages sent using a
buffer.

(Used on ACCEPT, CONNECT, DCLBFR, DESCRIBE
PURGE, QUIESCE, RECEIVE, REJECT, REPLY, RESUME,
SEND, SETMASK, SETCMASK, SEVER, TESTCMPL)

This parameter identifies the IUCV parameter list, which is input to
the actual IUCV instruction or CALL to DMKIUACP. This
parameter list must be a real address if CP=YES (invoked from CP
system code) or a guest real address (real to the virtual machine) if
invoked from a virtual machine. The parameter list must be on a
doubleword boundary.

Specify either a relocatable label or the number of a register. If a
label is specified, the macro assumes it is the label of the parameter
list. The address of the parameter list is loaded into general register
1 if CP=YES, or the IUCV instruction is generated to reference the
label if CP=NO. If a register is specified, the macro assumes it
contains the address of the parameter list; the address is loaded into
general register 1 if CP= YES, or the IUCV instruction is generated
to reference the register if CP=NO.

This parameter is required for all IUCV functions except QUERY,
RETRIEVE BUFFER, and TEST MESSAGE.

If CP system code issues a SEND or CONNECT, the area specified
on this parameter must be the address of an IXBLOK instead of a
parameter list. See the section, “Invoking Communications
Between CP and a Virtual Machine” for details.

(Used on SEND, REPLY)

This parameter specifies the eight bytes of message data that are
moved into the parameter list.

Specify either the relocatable label of the eight bytes of message

data or the number of a register that contains the address of the
data.

Chapter 15. Inter-User Communications Vehicle 171

PRTY=

QUIESCE=

SRCCLS=

172 VM/SP System Programmer’s Guide

ANSLIST=YES or BUFLIST=YES cannot be specified with the
PRMMSG= option.

(Used on ACCEPT, CONNECT, REPLY, SEND)

When you invoke the CONNECT and ACCEPT functions,
PRTY=YES indicates that you want this side of the path to handle
priority communications. When invoked from a virtual machine,
PRIORITY must be authorized in the IUCV directory entry. When
invoked from CP system code (CP=YES), PRTY=YES is always
valid.

When you invoke the SEND and REPLY functions, PRTY=YES
indicates that this message or reply is a priority message.
PRTY=YES is only valid if this path can handle priority
communications.

Valid values for PRTY= are YES and NO.
(Used on ACCEPT, CONNECT)

QUIESCE=YES indicates that you want to quiesce the path being
established; the other communicator cannot send messages on a
quiesced path. '

The valid values for QUIESCE= are YES and NO.

You can restore the path to full communication capability by
invoking the RESUME function.

(Used on PURGE, SEND, TESTCMPL)

This parameter specifies the source message class associated with a
message.

When you invoke the PURGE function, this parameter optionally
specifies the source message class of the message to be purged. If
omitted, IUCV does not use the source message class in the search
for the message.

When you invoke ihe SEND function, this paraineter specifies the
source message class that IUCV stores in the MSGBLOK that
represents the message.

When you invoke the TEST COMPLETION function, this
parameter optionally specifies the source message class of the
message to be dequeued. If omitted, IUCV dequeues the first
message encountered on the specified path regardless of its source
message class.

Specify either the relocatable label of a fullword containing the
source message class or the number of a register containing the

W/

TRGCLS=

TYPE=

source message class. IUCV stores the source message class in the
function parameter list.

If this parameter is not specified, the macro assumes either that the
parameter is not needed (for example, if you invoke a PURGE by
path id alone), or that the invoker has stored a value in the
parameter list prior to invoking the [TUCV macro.

If you specify the SRCCLS= parameter on the IUCV macro for the
PURGE and TEST COMPLETION functions, the IPEFGMCL flag
in IPFLAGSI is set.

(Used on RECEIVE, REJECT, REPLY, SEND)

This parameter specifies the target message class associated with
this message.

When you invoke the RECEIVE and REJECT functions, this
parameter optionally specifies the target message class of the
message to be received for rejected. If omitted, IUCV does not use.
the target message class in the search for the message.

When you invoke the SEND function, this parameter specifies the
target message class that IUCV stores in the MSGBLOK that
represents the message.

When you invoke the REPLY function, this parameter specifies the
target message class of the message being responded to.

Specify either the relocatable label of a fullword containing the
target message class, or the number of a register containing the
target message class. [UCV stores the target message class in the
function parameter list.

If this parameter is not specified, the macro assumes that either the
parameter is not needed (for example if you issue a RECEIVE by
path id alone) or the invoker has stored a value in the parameter list
prior to invoking the [UCV macro.

If you specify the TRGCLS= parameter on the IUCV macro for
the RECEIVE and REJECT functions, the IPFGMCL flag in
IPFLAGSI is set.

(Used on SEND)

TYPE=1WAY specifies that this is a one-way transaction. No
REPLY by the receiver is needed or valid. ITUCV moves the
MSGBLOK representing the message to the source communicator’s
REPLY queue when the target communicator issues a RECEIVE
for the message. TYPE=2WAY specifies that this is a two-way
transaction. ITUCV moves the message to the source’s REPLY
queue only when the target invokes a REPLY for this message.

Chapter 15. Inter-User Communications Vehicle 173

USERDTA=

USERID=

VMBLOK =

Two way transactions are useful for returning data in response to a \
specific request. '

The valid values for TYPE= are 1WAY and 2WAY.
(Used on ACCEPT, CONNECT, QUIESCE, RESUME, SEVER)

This parameter specifies the 16-byte user data area that is to be
reflected to the target.

Specify either (1) the relocatable label of the storage area, or (2)
the number of a register that contains the address of the user data
storage area. IUCV moves the address of the storage area into the
function parameter list.

If this parameter is not specified, the macro assumes that the
invoker has stored a value in the parameter list prior to invoking the
IUCV macro.

(Used on CONNECT)

This parameter specifies the eight-character userid of the virtual
machine or CP system service to which you want to establish this
path.

Specify either the relocatable label of the storage area containing
the userid, or the number of a register that contains the address of
the userid. IUCYV stores the userid in the function parameter list.

If this parameter is not specified, the [UCV macro assumes that the
invoker has stored a value in the parameter list prior to invoking the
IUCV macro.

(Used on ACCEPT, CONNECT, DESCRIBE, PURGE,
QUIESCE, RECEIVE, REJECT, REPLY, RESUME, RTRVBFR,
SEND, SEVER, TESTCMPL)

VMBLOK=USER specifies that the IUCV control blocks
associated with the current VMBLOK are to be used for this IUCV
request.

VMBLOK=SYSTEM specifies that the [IUCV control blocks
associated with the system VMBLOK are to be used for this IUCV
request.

The valid values for VMBLOK = are USER and SYSTEM. If not
specified, the default is SYSTEM.

VMBLOK = is only valid if CP=YES is specified.

See Figure 21 for a reference to the relationships between the IUCV functions the

IUCV macro instruction keyword parameters.

174 VM/SP System Programmer’s Guide

"/

.

A C D D P Q R R R R R S S S S T
c 0 C E U U E E E E T E E E E E
C N L S R I C J P S R N T T v S
E N B c G E E E L U v D c M E T
Iucy P E F R E S I c Y M B M A R c
Macro T C R I C v T E F A S M
Param— T B E E R S K P
eters E K L
ALL X X X
ANSBUF X X
ANSLEN X X
ANSLIST X X
BUFFER X X X
BUFLEN X X
BUFLIST X X
cpP X X X X X X X X X X X X X
DATA X X
FCHCD X
MASK X X
MF X X X X X X X X X X X X X X
MSGID X X X X X
MSGLIM X X
MSGTAG X
PATHID X X X X X X X X X X
PRMDATA X X
PRMLIST X X X X X X X X X X X X X X
PRMMSG X X
PRTY X X X X
QUIESCE X X
SRCCLS X X X
TRGCLS X X X X
TYPE X
USERDTA X X X X X
USERID X
YMBLOK X X X X X X X X X X X X X ;
Figure 21. IUCYV Function and IUCV Macro Parameter Relationships

Chapter 15. Inter-User Communications Vehicle

175

Notes:
1. PRMLIST is a required parameter (others are optional).

2. The QUERY and TEST MESSAGE functions do not use parameters.

Invoking Communications Between CP and a Virtual Machine

Specify CP=NO when invoking an IUCV function from a virtual machine. The
TIUCYV instruction is generated. If a label is specified for the parameter list, it must
be relocatable and addressable. The code generated by CP=NO modifies general
register 0. When the function is executed, the virtual machine must be in
supervisor state. CP=NO is the default.

CP system services invoke the IUCV macro instruction specifying CP=YES.
CP=YES generates a CALL linkage directly to the IUCV processing module
(DMKIUACP). If alabel is specified for the parameter list, it must be relocatable
and addressable. The code generated by CP=YES modifies general registers 0, 1
and 15. The invoker must supply an EXTRN statement for the entry point
DMKIUACEP.

If VMBLOK=USER is specified with CP=YES, then a CALL linkage is generated
directly to the IUCV processing module (DMKIUACU). The invoker must supply
an EXTRN statement for the entry point DMKIUACU.

Requests Initiated by the Virtual Machine N

When a virtual machine wishes to establish communications with a CP system
service, it invokes the CONNECT function specifying the name of the desired CP
service as the target virtual machine ID.

The TUCV communication processor receives control from the CONNECT
function, gathers the external interrupt information and determines which service is
desired. The communication processor then locates the CONNECT entry point for
that service and, using CALL linkage, passes control to that entry point.

The CONNECT entry point for the requested CP system service inspects the
external interrupt data. It must either accept the connection or reject the
connection. To accept the connection, it invokes the ACCEPT function, specifying
CP=YES. To reject the connection, it invokes the SEVER function specifying
CP=YES. When the service module has finished responding to the incoming
connection request, it issues an EXIT (SVC 12) to return control to the
communications processor.

When an incoming message for a CP system service is encountered, the
communications processor gathers the external interrupt information and
determines which service is desired. The communication processor locates the
entry point that processes incoming messages for the desired service and, using
CALL linkage, passes control to it.

N

The message processing module of the CP service then inspects the external i\k /,‘

interrupt data. The CP service module must invoke the RECEIVE function,

176 VM/SP System Programmer’s Guide

specifying CP=YES, to obtain the actual message. When the RECEIVE function
completes, the message data will have been moved to the address specified in the
RECEIVE parameter list. The CP service module then interprets the message data
and services the request. When the request has been satisfied, the CP service
module invokes the REPLY function to satisfy the two-way message protocol.
When the REPLY function completes, the reply has been queued back to the
source communicator. When the CP service module completes processing of the
message, it issues an EXIT (SVC 12) to return to the communications processor.

When a virtual machine wishes to terminate a communications path, it invokes the
SEVER function via the [IUCV macro. The communication processor receives
control from the SEVER function, gathers the external interrupt information, and
determines which service was connected. The communication processor locates the
SEVER entry point for that service and, using CALL linkage, passes control to it.

The SEVER entry point for that CP system service then inspects the external
interrupt data. The CP system service module issues a SEVER if the connection
was complete. When the CP service module finishes processing, it issues an EXIT
(SVC 12) to return control to the communication processor.

If a virtual machine wishes to quiesce a communications path, it invokes the
QUIESCE function of the [IUCV macro. The communications processor receives
control from the QUIESCE function, gathers the external interrupt information,
and determines which service was connected. The communications processor
locates the QUIESCE entry point for that service and, using CALL linkage, passes
control to it.

The QUIESCE entry point for the CP system service then inspects the external
interrupt data. The CP service records the fact that the path has been quiesced.
When the CP service module has finished processing, it issues an EXIT (SVC 12)
to return control to the communication processor.

After invoking QUIESCE for a path, the virtual machine may eventually invoke the
RESUME function for the path.

The communication processor receives control from the RESUME function,
gathers the external interrupt information, and determines which service was
connected. The communication processor locates the RESUME entry point for
that service and, using CALL linkage, passes control to it.

The RESUME entry point for that CP system service then inspects the external
interrupt data. The CP service records the fact that the path has been RESUMEd.
When the CP service module has finished processing, it issues an EXIT (SVC 12) |
to return control to the communication processor.

If BUFLIST=YES and/or ANSLIST=YES is specified, the user must provide the

necessary list(s). The format of this list is shown in the description of the
ANSLIST parameter of the [IUCV macro instruction earlier in the section.

Chapter 15. Inter-User Communications Vehicle 177

A

CP Initiated Requests \

When a CP module initiates a CONNECT or SEND to a virtual machine, it must
do the following:

« Get storage (via DMKFREE) in which to build an IXBLOK.

¢ Build the parameter list in the IXBLOK for the function that it wishes to
invoke.

« Store the general registers in the IXBLOK.

« Store the address of the routine that gets control when a connection completes
or when a reply is received. The CP module must store the routine’s address in
the “interrupt return address” field of the IXBLOK (label IXIRA).

« Invoke the CONNECT or SEND function via the IUCV macro, specifying
CP=YES and specifying the address of the IXBLOK or the
PRMLIST =parameter.

When the function has been initiated, control returns to the next sequential

instruction after the ITUCV macro instruction. When the function completes (that

is, when the target communicator invokes the ACCEPT or REPLY function), the
communications processor gets control. The communications processor loads the

general registers from the IXBLOK and passes control to the routine at the

“interrupt return address”. The communications processor restores all registers

except register 15 from the IXBLOK. Register 15 is used in passing control and is N
loaded with the interrupt return address.

The CP module that builds the IXBLOK is responsible for the following:

» Restoring the base register for the module that invoked the function (pass the
base register in general register 12 following CP conventions).

o Releasing (via DMKFRET) the IXBLOK upon completion of the
asynchronous portion of the function (pass the address of the IXBLOK in one
of the general registers).

o Lock the processing module in real storage if it is not resident. In addition,

when the routine at the interrupt return address gets control, the processing
module must be unlocked.

IUCV Parameter List Formats

This section illustrates the formats of the parameter lists required for IUCV
functions. Descriptions of the parameter list fields are included in the section,
“Parameter List and External Interrupt Fields.”

178 VM/SP System Programmer’s Guide

ACCEPT Parameter List Format

10

18

20

1

2

3

5 6 7

IPPATHID

IPFLAGS1 |IPRCODE

IPMSGLIM /1777777777

L1117 77777777777777777/77

IPUSER

IPUSER

L1177 777777777777 777

INPUT:s to this function (built in the parameter list by the IUCV macro or by

the invoker):

IPFLAGS1 IPMSGLIM IPPATHID IPUSER

OUTPUTs from this function returned in the parameter list:

IPMSGLIM IPRCODE IPFLAGSI1

Input flags for this function (set by the IUCV macro or by the invoker in

IPFLAGS1):

IPQUSCE

IPPRTY

IPRMDATA

Connect in quiesce mode (the originator of the connection
will be unable to issue SENDs).

The connection established can handle priority messages.

The communicator is prepared to handle message data in
his parameter list.

Output flags for this function (returned by IUCV in IPFLAGS1):

IPPRTY

Priority messages are allowed for this connection.

Exceptions generated by this function (abends generated for CP system code):

Specification

Operation

Addressing

Protection

Parameter list not on a doubleword boundary.

An external interrupt buffer has not been declared via the
DECLARE BUFFER function, or the invoker is not in
supervisor state. When the function is invoked by CP
system code, an operation exception cannot occur because
an external interrupt buffer has not been declared.

Invalid parameter list address. The specified address is
outside the virtual machine or, for CP system code, is an

invalid real address.

Invalid parameter list address. The storage key of the

Chapter 15. Inter-User Communications Vehicle 179

specified address does not match the key of the user.

CONNECT Parameter List Format

0 1 2 3 4 5 6 7
0 IPPATHID IPFLAGS1 | IPRCODE IPMSGLIM IPFCNCD| /////
8 ! IPVMID
10 IPUSER
18 IPUSER
A NV N N N NNV VNNV Vs

« INPUTS to this function (built in the parameter list by the IUCV macro or by
the invoker):

IPFCNCD IPFLAGS1 IPMSGLIM IPUSER IPVMID
« OUTPUTS: from this function returned in the parameter list:
IPMSGLIM IPPATHID IPRCODE IPFLAGS!1

« Input flags for this function (set by the IUCV macro or by the invoker in

IPFLAGS1):

IPPRTY The connection established can handle priority messages.

IPQUSCE Connect in Quiesce mode. (The target communicator
cannot issue SENDs).

IPRMDATA The communicator is prepared to handle message data in

his parameter list.
¢ Output flags for this function (returned by IUCV in IPFLAGS1):
IPPRTY Priority messages are allowed for this connection.
« Exceptions generated by this function (abends generated for CP system code):
Specification Parameter list not on a doubleword boundary.
Operation An external interrupt buffer has not been declared via the
DECLARE BUFFER function, or the invoker is not in
supervisor state. When the function is invoked by CP

system code, an operation exception cannot occur because
an external interrupt buffer has not been declared.

180 VM/SP System Programmer’s Guide

Addressing

Protection

Invalid parameter list address. The specified address is
outside the virtual machine or, for CP system code, is an
invalid real address.

Invalid parameter list address. The storage key of the
specified address does not match the key of the user.

DECLARE BUFFER Parameter List Format

0 1 2 3 5 6 7
O /////7/7/77777777/77777 IPRCODE | ///////////////////////////
8 /177777777777 7/777/7/7777/77/77 IPBFADR]1

O\ /17777777777 7777777/77

18 J////17177777 7777777777777/ /777777777777 77777777777777777777

A N N NIV a

« INPUTS to this function (built in the parameter list by the IUCV macro or by

the invoker):

IPBFADRI1

« OUTPUTs from this function returned in the parameter list:

IPRCODE

« Exceptions generated by this function (abends generated for CP system code):

Specification

Addressing

Operation

Protection

Parameter list not on a doubleword boundary.

Invalid parameter list address. The specified address is
outside the virtual machine or, for CP system code, is an
invalid real address.

Invalid buffer address.

Invoker not in supervisor state.

Invalid parameter list address. The storage key of the
specified address does not match the key of the user.

Chapter 15. Inter-User Communications Vehicle 181

DESCRIBE Parameter List Format \

10

18

20

0 1 2 3 4 5 6 7
IPPATHID IPFLAGS1 |IPRCODE : IPMSGID
IPTRGCLS IPRMMSG!
IPBFLN1F / IPRMMSG2 L1177 0077777777777777777777

L1177/77

IPBFLN2F

L17777777777777777777777777

INPUTS to this function (built in the parameter list by the IUCV macro or by
the invoker):

NONE

OUTPUTs from this function returned in the parameter list:
IPBFLN1 IPPATHID IPRCODE IPBFLNIF IPRMMSG1
IPBFLN2 IPMSGID IPTRGCLS IPBFLN2F IPRMMSG2
IPFLAGS!1

Output flags for this function (returned in IPFLAGS1):

IPFGMCL Always returned as 1 so that the resulting parameter list is
valid input to the next function (normally RECEIVE or
REPLY).

IPFGMID Always returned as 1 so that the resulting parameter list is
valid input to the next function (normally RECEIVE or
REPLY).

IPFGPID Always returned as 1 so that the resulting parameter list is
valid input to the next function (normally RECEIVE or
REPLY).

IPNORPY This is a one-way type message.

IPPRTY This is a priority message.

IPRMDATA The message data is in the IPRMMSGgx fields of the

parameter list.

Exceptions generated by this function (abends generated for CP system code):

Specification Parameter list not on a doubleword boundary.
Operation An external interrupt buffer has not been declared via the P
DECLARE BUFFER function, or the invoker is not in && y

supervisor state. When the function is invoked by CP —

182 VM/SP System Programmer’s Guide

Addressing

Protection

PURGE Parameter List Format

10

18

20

system code, an operation exception cannot occur because
an external interrupt buffer has not been declared.

Invalid parameter list address. The specified address is
outside the virtual machine or, for CP system code, is an
invalid real address.

Invalid parameter list address. The storage key of the
specified address does not match the key of the user.

1 2 3 5 6 7
IPPATHID IPFLAGS1 |IPRCODE IPMSGID
IPAUDIT L1117 77777777777777777777777777777777
LIIIIIII /7777777777777 77777777 IPSRCCLS
IPMSGTAG L1171 7 777777 777777777777777777

L1117 0777777 777777777 77777777777777770077777777777777777777777777

« INPUT:s to this function (built in the parameter list by the IUCV macro or by

the invoker):

IPFLAGS1 IPMSGID IPPATHID IPSRCCLS

« OUTPUTs from this function returned in the parameter list:

IPAUDIT IPMSGID IPPATHID IPRCODE IPSRCCLS
IPFLAGS1 IPMSGTAG

« Input flags for this function (set by the IUCV macro or by the invoker in

IPFLAGS1):

IPFGMCL

IPFGMID

IPFGPID

A message class identifier (SRCCLS) has been supplied in
the parameter list.

A message identifier has been supplied in the parameter
list.

A path identifier has been supplied in the parameter list.

o Output flags for this function (returned by IUCV in IPFLAGS1):

IPNORPY

IPPRTY

This is a one-way type message.

This is a priority message.

« Exceptions generated by this function (abends generated for CP system code):

Chapter 15. Inter-User Communications Vehicle 183

Specification Parameter list not on a doubleword boundary.

Invalid search flags. Either the path id has not been
specified, or the message id has been specified without a
message class.

Operation An external interrupt buffer has not been declared via the
DECLARE BUFFER function, or the invoker is not in
supervisor state. When the function is invoked by CP
system code, an operation exception cannot occur because
an external interrupt buffer has not been declared.

Addressing Invalid parameter list address. The specified address is
outside the virtual machine or, for CP system code, is an
invalid real address.

Protection Invalid parameter list address. The storage key of the
specified address does not match the key of the user.

QUERY Parameter List Format
The QUERY function does not take a parameter list.
The QUERY function is used to obtain IUCV information about a virtual machine.

QUERY Results: The size of the IUCV external interrupt buffer is returned in
general register 0.

The maximum number of connections that can be outstanding for this virtual
machine is returned in general register 1.

+ Exceptions generated by this function:

Operation Invoker not in supervisor state.

184 VM/SP System Programmer’s Guide

\
N

QUIESCE Parameter List Format

10

18

20

1 2 3

5 6 7

IPPATHID IPFLAGS1 |IPRCODE

L1177777777777777777777777777

L1117 7777777777777 7777777777777 777777777777 7777/

IPUSER

IPUSER

A A N N N N N N A Y N N A Va4

o INPUTSs to this function (built in the parameter list by the IUCV macro or by

the invoker):

IPFLAGS1 IPPATHID IPUSER

o OUTPUTs from this function returned in the parameter list:

IPRCODE

o Input flags for this function (set by the [IUCV macro or by the invoker in

IPFLAGS1):

IPALL

Quiesce all paths for this virtual machine.

« Exceptions generated by this function (abends generated for CP system code):

Specification

Operation

Addressing

Protection

Parameter list not on a doubleword boundary.

An external interrupt buffer has not been declared via the
DECLARE BUFFER function, or the invoker is not in
supervisor state. When the function is invoked by CP
system code, an operation exception cannot occur because
an external interrupt buffer has not been declared.

Invalid parameter list address. The specified address is
outside the virtual machine or, for CP system code, is an

invalid real address.

Invalid parameter list address. The storage key of the
specified address does not match the key of the user.

Chapter 15. Inter-User Communications Vehicle 185

RECEIVE Parameter List Format N

0 1 2 3 4 5 6 7

0 IPPATHID IPFLAGS1 |IPRCODE IPMSGID

8 "IPTRGCLS IPBFADR1 / IPRMMSG

10 IPBFLN1F / IPRMMSG2 L17117077777777777777777777777
8\ /1111117777777 77777777777777/7777//7777/7777777777777777777777/
20 IPBFLN2F LII111777 777777777777 77777777

¢ INPUTs to this function (built in the parameter list by the IUCV macro or by
the invoker):

IPBFADR1 IPFLAGS1 IPMSGID IPPATHID IPTRGCLS
IPBFLN1 IPBFLNIF

e OUTPUT: from this function returned in the parameter list:
IPBFLN1 IPBFADR1 IPMSGID IPRCODE IPTRGCLS

IPBFLN2 IPFLAGS1 IPPATHID IPRMMSG1 IPRMMSG2
I IPBFLNI1F IPBFLN2F

« Input flags for this function (set by the IUCV macro or by the invoker in p—
IPFLAGS1):
I IPBUFLST BUFLIST=YES has been specified.
IPFGMCL A message class identifier (TRGCLS) has been supplied in
the parameter list.
IPFGMID A message id has been supplied in the parameter list.
IPFGPID A path id has been supplied in the parameter list.

¢ Output flags for this function (returned in IPFLAGS1):

IPFGMCL Always returned as 1 so that the resulting parameter list is
valid input to the next function (normally RECEIVE or
REPLY).

IPFGMID Always returned as 1 so that the resulting parameter list is
valid input to the next function (normally RECEIVE or
REPLY).

IPFGPID Always returned as 1 so that the resulting parameter list is
valid input to the next function (normally RECEIVE or
REPLY). P

186 VM/SP System Programmer’s Guide

IPNORPY

IPPRTY

IPRMDATA

This is a one-way type message.
This is a priority message

The message data is in the IPRMMSGgx fields of the
parameter list.

o Exceptions generated by this function (abends generated for CP system code):

Specification

Operation

Addressing

Protection

REJECT Parameter List Format

10

18

20

Parameter list not on a doubleword boundary.

Invalid search flags. Message id has been specified
without path id and message class.

An external interrupt buffer has not been declared via the
DECLARE BUFFER function, or the invoker is not in
supervisor state. When the function is invoked by CP
system code, an operation exception cannot occur because
an external interrupt buffer has not been declared.

Invalid parameter list address. The specified address is
outside the virtual machine or, for CP system code, is an

invalid real address.

Invalid buffer address either in the parameter list or the
buffer list.

Invalid buffer list address.

Invalid parameter list address. The storage key of the
specified address does not match the key of the user.

Invalid buffer address either in the parameter list or the
buffer list.

Invalid buffer list address.

1 2 3 5 6 7
IPPATHID IPFLAGS1 |IPRCODE IPMSGID
IPTRGCLS LI107777777777777777777777777

LILLLI 7777077777777 77777777777 7777777777777777777777777777

LITIIII /777777777777 77

LI171777 7777777777777 7777777777777 7777777777777 7777777777777/ /

« INPUTsS to this function (built in the parameter list by the IUCV macro or by
the invoker):

Chapter 15. Inter-User Communications Vehicle 187

IPFLAGS1 IPMSGID IPPATHID IPTRGCLS
« OUTPUTs from this function returned in the parameter list:
IPMSGID IPPATHID IPRCODE IPTRGCLS

« Input flags for this function (set by the IUCV macro or by the invoker in

IPFLAGS1):

IPFGMCL A message class identifier (TRGCLS) has been supplied in
the parameter list.

IPFGMID A message id has been supplied in the parameter list.

IPFGPID A path id has been supplied in the parameter list.

« Exceptions generated by this function (abends generated for CP system code):
Specification Parameter list not on a doubleword boundary.

Invalid search flags. Message id has been specified
without path id and message class.

Operation An external interrupt buffer has not been declared via the
DECLARE BUFFER function, or the invoker is not in
supervisor state. When the function is invoked by CP
system code, an operation exception cannot occur because
an external interrupt buffer has not been declared.

Addressing Invalid parameter list address. The specified address is
outside the virtual machine or, for CP system code, is an

invalid real address.

Protection Invalid parameter list address. The storage key of the
specified address does not match the key of the user.

REPLY Parameter List Format

0 1 2 3 4 5 6 7
0 IPPATHID IPFLAGS1 |IPRCODE IPMSGID
8 IPTRGCLS IPRMMSG
10 IPRMMSG2 L1177 77777777777777777777777
8\ /111117177777 7777777777777777777 IPBFADR2
20 IPBFLN2F LI170777777777777777777777777

+ INPUTSsS to this function (built in the parameter list by the IUCV macro or by
the invoker):

188 VM/SP System Programmer’s Guide

IPBFADR2 IPBFLN2 IPFLAGS1 IPMSGID IPPATHID
IPTRGCLS IPBFLN2F IPRMMSG1 IPRMMSG?2

OUTPUTsS from this function returned in the parameter list:

IPRCODE IPBFADR2 IPBFLN2 IPBFLN2F

Input flags for this function (set by the IUCV macro or by the invoker in

IPFLAGS1):
IPPRTY

IPANSLST

IPRMDATA

This is a priority reply.

ANSLIST=YES has been specified with the REPLY
function.

The message data is in the IPRMMSGgx fields of the
parameter list.

Exceptions generated by this function (abends generated for CP system code):

Specification

Operation

Addressing

Protection

Parameter list not on a doubleword boundary.

An external interrupt buffer has not been declared via the
DECLARE BUFFER function, or the invoker is not in
supervisor state. When the function is invoked by CP
system code, an operation exception cannot occur because
an external interrupt buffer has not been declared.

Invalid parameter list address. The specified address is
outside the virtual machine or, for CP system code, is an
invalid real address.

Invalid answer list address.

Invalid answer address either in the parameter list or the
answer list.

Invalid parameter list address. The storage key of the
specified address does not match the key of the user.

Invalid answer list address.

Invalid answer address either in the parameter list or the
answer list.

Chapter 15. Inter-User Communications Vehicle 189

RESUME Parameter List Format “
0 1 2 3 5 6 7
0 IPPATHID IPFLAGS1 |IPRCODE V/////////////////////////////
8| /1111777777777 777777777777777777777/77/777777777777/7777777/77777
10 IPUSER
18 IPUSER
20 J//777077 77777777777 777
« INPUTS to this function (built in the parameter list by the [IUCV macro or by
the invoker):
IPFLAGS1 IPPATHID IPUSER
« OUTPUTsS from this function returned in the parameter list:
IPRCODE
« Input flags for this function (set by the IUCV macro or by the invoker in
IPFLAGS1):
IPALL Resume all paths for this virtual machine.
« Exceptions generated by this function (abends generated for CP system code):
Specification Parameter list not on a doubleword boundary.
Operation An external interrupt buffer has not been declared via the
DECLARE BUFFER function, or the invoker is not in
supervisor state. When the function is invoked by CP
system code, an operation exception cannot occur because
an external interrupt buffer has not been declared.
Addressing Invalid parameter list address. The specified address is
outside the virtual machine or, for CP system code, is an
invalid real address.
Protection Invalid parameter list address. The storage key of the
specified address does not match the key of the user.
AN
\\&/"

190 VM/ SP System Programmer’s Guide

(

RETRIEVE BUFFER Parameter List Format
The Retrieve Buffer function does not take a parameter list.
« Exceptions generated by this function (abends generated for CP system code):

Operation An external interrupt buffer has not been declared via the
DECLARE BUFFER function.

Invoker not in supervisor state.

SEND Parameter List Format

0 1 2 3 4 5 6 7
0 IPPATHID IPFLAGS1 | IPRCODE IPMSGID
8 IPTRGCLS IPBFADR] / IPRMMSG]
10 IPBFLN1F / IPRMMSG! IPSRCCLS
18 IPMSGTAG IPBFADR2
20 IPBFLN2F L11107777777777777777777777777

o INPUTs to this function (built in the parameter list by the IUCV macro or by
the invoker): '

IPBFADR1 IPBFLN1 IPPATHID IPBFLNIF IPRMMSG1
IPBFADR2 IPBFLN2 IPMSGTAG IPBFLN2F IPRMMSG2
IPTRGCLS IPFLAGS1 IPSRCCLS

e OUTPUT:s from this function returned in the parameter list:

IPMSGID IPRCODE

o Input flags for this function (set by the [IUCV macro or by the invoker in

IPFLAGS1):

IPBUFLST BUFLIST=YES has been specified.

IPANSLST ANSLIST=YES has been spécified.

IPNORPY This is a one-way type message.

IPPRTY This is a priority message.

IPRMDATA The message data is in the IPRMMSGgx fields of the

parameter list.

« Exceptions generated by this function (abends generated for CP system code):

Chapter 15. Inter-User Communications Vehicle 191

Specification

Operation

Addressing

Protection

Parameter list not on a doubleword boundary.

An external interrupt buffer has not been declared via the
DECLARE BUFFER function, or the invoker is not in
supervisor state. When the function is invoked by CP
system code, an operation exception cannot occur because
an external interrupt buffer has not been declared.

Invalid parameter list address. The specified address is
outside the virtual machine or, for CP system code, is an
invalid real address.

Invalid parameter list address. The storage key of the
specified address does not match the key of the user.

SET CONTROL MASK Parameter List Format

0 1 2 3 4

5 6 7

0| IPCMASK

LITLLII 7777777777777 7777777777777 7777777777777777

8| /1117777777777 77777777777777777/77777777777777777777777777777

O /7177777777777 77 7777777777777/ 7777777777777777777777777777777

18\ /1111717777777 7777777777777 7777/77777 /7777777777777 777777777

A Y N N A NS VIV a4

o INPUTsS to this function (built in the parameter list by the IUCV macro or by

the invoker):

IPCMASK

« OUTPUTs from this function returned in the parameter list:

NONE

« The bits defined in the IPCMASK field are:

- IPCLPC - X'80' - Enable for Type 01 - Pending connection

IPCLCC - X'40' - Enable for Type 02 - Connection complete

IPCLPS -

X'20' - Enable for Type 03 - Path severed

IPCLPQ - X'10' - Enable for Type 04 - Path quiesced

IPCLPR -

X'08' - Enable for Type 05 - Path resumed

X'04' - Reserved (Should be set to zero)

192 VM/SP System Programmer’s Guide

N/

X'02" - Reserved (Should be set to zero)

X'01' - Reserved (Should be set to zero)

« Exceptions generated by this function (abends generated for CP system code):

Operation

Protection

An external interrupt buffer has not been declared via the

DECLARE BUFFER function.

Invoker not in supervisor state.

Invalid parameter list address. The storage key of the

specified address does not match the key of the user.

SET MASK Parameter List Format

10

18

20

1 2 3

4 5 6 7

IPMASK L1777 7777777777777 7777777777777777

A N N VI I 4

L1117 077 777777777777 7777777777 77777777777777777777777777777777

LITLLLII L7777/ 7777777777777 7777777777777/

L1717 7 77777777777 7777777777777 77777777777777/777777777777777

o INPUTS: to this function (built in the parameter list by the IUCV macro or by
the invoker):

IPMASK

« OUTPUTs from this function returned in the parameter list:

NONE

e Mask bits defined in the IPMASK field are:

IPSNDN -

IPSNDP -

IPRPYN -

IPRPYP -

IPCTRL -

X'80' - Enable for nonpriority message interrupts.
X'40' - Enable for priority message interrupts.
X'20' - Enable for nonpriority reply interrupts.
X'10" - Enable for priority reply interrupts.

X'08' - Enable for IUCV control interrupts.
X'04' - RESERVED (Should be set to zero)

X'02' - RESERVED (Should be set to zero)

Chapter 15. Inter-User Communications Vehicle

193

X'01' - RESERVED (Should be set to zero) N
Exceptions generated by this function (abends generated for CP system code):

Operation An external interrupt buffer has not been declared via the
DECLARE BUFFER function.

Invoker not in supervisor state.

Protection Invalid parameter list address. The storage key of the
specified address does not match the key of the user.

SEVER Parameter List Format

0 1 2

3 4 5 6 7

0 IPPATHID IPFLAGS1 | IPRCODE V/////////////////////////////

8 /1111117777777 777777777777 777777777777777777777777777/777777777/

10

IPUSER

18

IPUSER

20 [S/111777

INPUTS to this function (built in the parameter list by the IUCV macro or by
the invoker):

IPFLAGS1 IPPATHID IPUSER
OUTPUTs from this function returned in the parameter list:
IPRCODE

Input flags for this function (set by the IUCV macro or by the invoker in
IPFLAGS1):

IPALL Sever all paths for this virtual machine.

Exceptions generated by this function (abends generated for CP system code):

Specification Parameter list not on a doubleword boundary.

Operation An external interrupt buffer has not been declared via the
DECLARE BUFFER function, or the invoker is not in
supervisor state. When the function is invoked by CP

system code, an operation exception cannot occur because
an external interrupt buffer has not been declared.

194 VM/SP System Programmer’s Guide

Addressing Invalid parameter list address. The specified address is
outside the virtual machine or, for CP system code, is an
invalid real address.

Protection Invalid parameter list address. The storage key of the
specified address does not match the key of the user.

TEST COMPLETION Parameter List Format

0 1 2 "3 4 5 6 7
0 IPPATHID IPFLAGS1 | IPRCODE IPMSGID
8 IPAUDIT /17777 IPRMMSG!
10 IPRMMSG2 IPSRCCLS
18 IPMSGTAG LI1170077 00777 777777777777777
20 IPBFLN2F LI111777777777777777777777777

e INPUT: to this function (built in the parameter list by the IUCV macro or by
the invoker):

IPFLAGS1 IPMSGID IPPATHID IPSRCCLS

« OUTPUTsS from this function returned in the parameter list:
IPAUDIT IPFLAGS1 IPMSGTAG IPRCODE
IPBFLN2 IPMSGID IPPATHID IPBFLN2F
IPSRCCLS IPRMMSG1 IPRMMSG2

« Input flags for this function (set by the IUCV macro or by the invoker in

IPFLAGS1):

IPFGMCL A message class identifier (SRCCLS) has been supplied in
the parameter list.

IPFGMID A message id has been supplied in the parameter list.

IPFGPID A path id has been supplied in the parameter list.

o Output flags for this function (returned in IPFLAGS1):

IPNORPY This is a one-way message.
IPPRTY This is a priority message.
IPRMDATA The message data is in the IPRMMSGx fields of the

parameter list.

» Exceptions generated by this function (abends generated for CP system code):

Chapter 15. Inter-User Communications Vehicle 195

Specification Parameter list not on a doubleword boundary. NS

Invalid search flags. Message id has been specified
without path id and message class.

Operation An external interrupt buffer has not been declared via the
DECLARE BUFFER function, or the invoker is not in
supervisor state. When the function is invoked by CP
system code, an operation exception cannot occur because
an external interrupt buffer has not been declared.

Addressing Invalid parameter list address. The specified address is
outside the virtual machine or, for CP system code, is an
invalid real address.

Protection Invalid parameter list address. The storage key of the
specified address does not match the key of the user.

TEST MESSAGE Parameter List Format
The TEST MESSAGE function does not use a parameter list.
« Exceptions generated by this function:

Operation Buffer has not been declared via the DECLARE BUFFER
function. N

Invoker not in supervisor state.

IUCV External Interrupt Formats

The following figures represent the content and format of the data presented on
each of the IUCV external interrupts.

External Interrupt for Pending Connection
When a virtual machine or CP system service invokes the CONNECT function, an
external interrupt is reflected to the target virtual machine or passed by the IUCV
communications processor to the CONNECT entry point of the requested CP
system service.

The format and content of the external interrupt data is:

TN
/ \

196 VM/SP System Programmer’s Guide

0 1 2 3 4 5 6 7

0 IPPATHID IPFLAGS1 | IPTYPE | IPMSGLIM IPFCNCD /171777
8 IPVMID
10 IPUSER
18 IPUSER
20 [/777

Figure 22. Pending Connection External Interrupt Format

External Interrupt for Complete Connection

When CONNECT invoked by a virtual machine or CP system service has been
responded to by the target virtual machine or CP system service, the external
interrupt data has the following format:

0 1 2 3 4 5 6 7
0 IPPATHID IPFLAGS1 | IPTYPE IPMSGLIM JI17777777777
R W N A e
10 IPUSER
18 IPUSER
N N N N IV

Figure 23. Connection Complete External Interrupt Format

External Interrupt for Pending Messages

When a message is pending for a communicator, the external interrupt data has the
following format. Note that the format of this data is the same as the output of the
DESCRIBE function.

Chapter 15. Inter-User Communications Vehicle 197

0 1 2 3 4 5 6 7 o
0| 1PPATHID IPFLAGS1 |IPTYPE IPMSGID
8 IPTRGCLS IPRMMSG
10 IPBFLN1F / IPRMMSG2 LIV 7 7777777777777 7777777
18 //////// 77771777
20 IPBFLN2F L111777777777777777777777777/

Figure 24. Incoming Message External Interrupt Format

External Interrupt for Complete Messages

When a message is complete for a communicator, the external interrupt data has
the following format. Note that the format of this data is the same as the output of
the TEST COMPLETION function.

0 1 2 3 4 5 6 7
0 IPPATHID IPFLAGS1 |IPTYPE IPMSGID
8 IPAUDIT /171777 IPRMMSG1
10 IPRMMSG2 IPSRCCLS {\
18 IPMSGTAG L1117 777777777777/777777777 |
20 IPBFLN2F L1117 777777777777 7777777

Figure 25. Message Complete External Interrupt Format

External Interrupt from SEVER, QUIESCE, RESUME
When a SEVER, QUIESCE, or RESUME function has been invoked for a path to
a virtual machine or CP system service, an external interrupt is generated. No
action need be taken by a virtual machine or CP sysstem service on a QUIESCE or
RESUME. The interrupt is reflected so that the status of the path can be recorded.

When the SEVER function has been invoked by the communicating partner, this
communicator must also invoke SEVER.

N

198 VM/SP System Programmer’s Guide

10

18

20

1

3

5 6 7

IPPATHID

1177777

IPTYPE

L1111 77777777777777777777777

LI11077777 7777777777777 777777777777 77777777777777777777777777777

IPUSER

IPUSER

LILL7177 7717777777777 7 7777777777777 7777777777 777777777777777777

Figure 26. SEVER, QUIESCE, RESUME External Interrupt Format

Parameter List and External Interrupt Fields

The following paragraphs define the fields of the IUCV parameter lists and
external interrupts. Not every field has meaning for every function. This section
explains, for each field, the functions for which this field is valid, and the meaning
or use of the field.

IPAUDIT

(Output from PURGE, TEST COMPLETION)

(Reflected in the message-complete IUCV external interrupt)

TUCV returns the audit trail of the message in this field. If no message
was found, this field is not modified. One output of the TEST
COMPLETION function, a condition code of 3, occurs when this field
contains any nonzero bits. This indicates that IUCV has stored a
nonzero audit trail.

The meanings of the bits in the audit trail are:

IPADRPLE
IPADSNPX
IPADSNAX
IPADANPX
IPADANAX
IPADRICT
IPADPRMD

IPADRCPX
IPADRCAX
IPADRPPX
IPADRPAX
IPADSVRD
IPADRLST

X'800000'
X'400000'
X1200000'
X'100000'
X'080000'
X'040000'
X'020000'

X'010000'
X'008000'
X'004000'
X'002000'
X'001000'
X'000800'
X'000400'
X'000200'

Reply too long for buffer

Protection exception on send buffer
Addressing exception on send buffer
Protection exception on answer buffer
Addressing exception on answer buffer
Message was rejected

Reply data was specified using DATA=PRMMSG
and originator did not allow this option.
Reserved

Protection exception on receive buffer
Addressing exception on receive buffer
Protection exception on reply buffer
Addressing exception on reply buffer
Path was severed

Invalid receive/reply list

Reserved

Chapter 15. Inter-User Communications Vehicle 199

X'000100' Reserved
IPADBLEN X'000080' Bad length in SEND buffer list
IPADALEN X'000040' Bad length in SEND answer list
IPADBTOT X'000020' Invalid total SEND buffer length
IPADATOT X'000010' Invalid total SEND answer length

X'000008' Reserved

X'000004' Reserved

X'000002' Reserved

X'000001" Reserved

IPBFADRI1
(Input to DECLARE BUFFER, RECEIVE, SEND)

(Output from RECEIVE)

As input to SEND, this field identifies the address of the area or list of areas
from which IUCV takes the message text.

As input to RECEIVE, this field identifies the address of the area or list of
areas into which IUCV places the message text.

As input to DECLARE BUFFER, this field identifies the area into which
TUCY stores information concerning an IUCV external interrupt.

The contents of this field are updated by the RECEIVE function. When the
function is finished, the address has been increased by the length of the data
received when BUFLIST=YES is not specified. When BUFLIST=YES is
specified, the address points to the current list entry [UCV is working on.

IPBFADR2
(Input to REPLY, SEND)

(Output from REPLY)

As input to SEND, this field identifies the address of the area or list of areas
into which IUCYV places the reply text.

As input to REPLY, this field identifies the address of the area or list of
areas from which IUCV takes the reply text when ANSLIST=NO is
specified or defaulted.

The REPLY function updates the contents of this field. REPLY increases
the buffer address by the length of the REPLY moved when ANSLIST=NO
is specified or defaulted. When ANSLIST=YES is specified, the address
points to the current list entry IUCV is working on.

IPBFLN1
IPBFLN1F
(Input to RECEIVE, SEND)
(Output from DESCRIBE, RECEIVE)

(Reflected in the pending-message ITUCV external interrupt)

200 VM/SP System Programmer’s Guide

(As an input, this field specifies the length of the input buffer or buffers
(IPBFADRI field). The label IPBFLNI1 is used by the IUCV macro
whenever a halfword value is desired, and IPBFLNT1F is used whenever a
fullword value is desired. The high-order halfword of the IPBFLN1F field is
cleared to zeroes by the IUCV macro when halfword values are desired. If
the macro is not used, it is the user’s responsibility to clear this field when
using halfword lengths.

As an output, this field indicates the length of the message as follows:

For DESCRIBE, IUCYV stores the actual length of the message in this
field.

For RECEIVE:

If the total length of the RECEIVE buffer(s) is the same length as
the message, IUCV stores a zero in this field.

If the total length of the RECEIVE buffer(s) is longer than the
length of the message, IUCV stores the number of bytes unused in
this field and sets a return code of 0.

If the total length of the RECEIVE buffer(s) is shorter than the
length of the message, IUCV stores the number of bytes remaining
in the message that would not fit into the buffer(s) in this field and
{ sets a nonzero return code.

When an external interrupt occurs, this field contains the actual length of the
message.

IPBFLN2
IPBFLN2F
(Input to REPLY, SEND)

(Output from DESCRIBE, RECEIVE, REPLY, TEST COMPLETION)

(Reflected in these IUCV external interrupts: pending message, message
complete.)

buffers IPBFADR?2 field). The label IPBFLN2 is used by the IUCV macro
whenever a halfword value is desired, and IPBFLN2F is used whenever a
fullword value is desired. The high-order half word of the IPBFLN2F field
is cleared to zeroes by the IUCV macro when halfword values are desired. If
the macro is not used, it is the user’s responsibility to clear this field when
using halfword lengths.

l As an input, this field specifies the total length of the input answer buffer or

As an output, this field indicates the length of the message as follows:

For DESCRIBE, IUCV stores the actual total length of the answer
area(s) in this field.

Chapter 15. Inter-User Communications Vehicle 201

IPFCNCD

For RECEIVE, IUCYV stores the actual total length of the answer
area(s) in this field.

For REPLY:

If the total length of the REPLY buffer(s) is the same length as the
message, [UCV stores a zero in this field.

If the total length of the REPLY buffer(s) is longer than the length
of the message, IUCV stores the number of bytes unused in this
field and sets a return code of 0.

If the total length of the REPLY buffer(s) is shorter than the length
of the message, IUCYV stores the number of bytes remaining in the
message that would not fit into the buffer(s) in this field and sets a
nonzero return code.

For TEST COMPLETION:

If the total length of the buffer(s) is the same length as the message,
IUCYV stores a zero in this field.

If the total length of the buffer(s) is longer than the length of the
message, IUCV stores the number of bytes unused in this field and
sets a return code of 0.

If the total length of the buffer(s) is shorter than the length of the
message, [UCV stores the number of bytes remaining in the message
that would not fit into the buffer in this field and sets the
IPADRPLE bit in the audit trail.

On a sending message external interrupt, this field contains the actual
length of the answer area.

For a complete message external interrupt:

If the total length of the buffer(s) is the same length as the message,
IUCYV stores a zero in this field.

If the total length of the buffer(s) is longer than the length of the
message, IUCV stores the number of bytes unused in this field and
sets a return code of 0.

If the total length of the buffer(s) is shorter than the length of the
message, [UCV stores the number of bytes remaining in the message
that would not fit into the buffer in this field and sets the
IPADRPLE bit in the audit trail.

(Input to CONNECT)

(Reflected in the pending-connection IUCV external interrupt.)

202 VM/SP System Programmer’s Guide

N

As an input, this field indicates which CP system service is invoking the
CONNEUCT function. Each supported CP service is identified by a one-byte
numerical code.

On an external interrupt, this field is valid only when the IUCV function is
invoked from CP system code. (The IPVMID field contains ‘SYSTEM’.)

IPFLAGS1
(Input to ACCEPT, CONNECT, PURGE, QUIESCE, RECEIVE,
REJECT, REPLY, RESUME, SEND, SEVER, TEST COMPLETION)

(Output from ACCEPT, CONNECT, DESCRIBE, RECEIVE, REPLY,
PURGE, TEST COMPLETION)

(Reflected in these IUCV external interrupts: pending connection,
connection complete, pending message, message complete.)

As an input, this field specifies options for the function requested. As output
or on an external interrupt, this field returns specific information about the
message or connection. Each bit is treated separately.

Bits not defined as input for a particular function are reserved for that
function and should be set to zero.

IPFGMCL
(X'01")

(Input to PURGE, RECEIVE, REJECT, TEST COMPLETION)
(Output from DESCRIBE, RECEIVE)

As an input, this bit indicates that a message class (source message class for
PURGE and TEST COMPLETION, target message class for RECEIVE and
REJECT) has been specified in field IPSRCCLS or IPTRGCLS. This bit is
set by the [IUCV macro when the SRCCLS= or TRGGCLS= parameter is
specified on the macro.

IUCYV sets this bit to 1 as output from the DESCRIBE function so the
resulting parameter list is valid input to the next function (normally
RECEIVE or REJECT).

When only part of the message data could be received, IUCV sets this bit to
1 as output from the RECEIVE function. IUCV sets this bit so that the
resulting parameter list is valid input to a subsequent RECEIVE.

IPFGPID
(X'02")

(Input to PURGE, RECEIVE, REJECT, TEST COMPLETION)

(Output from DESCRIBE, RECEIVE)

Chapter 15. Inter-User Communications Vehicle 203

204

As an input, this bit indicates that a path ID has been specified in field
IPPATHID. This bit is set by the IUCV macro when the PATHID=
parameter is specified on the macro.

IUCYV sets this bit to 1 as output from the DESCRIBE function so the
resulting parameter list is valid input to the next function (normally
RECEIVE OR REJECT).

IUCYV sets this bit to 1 as output from the RECEIVE function when only
part of the message data could be received. IUCV sets this bit so that the
resulting parameter list is valid input to a subsequent RECEIVE.

IPFGMID
(X'04")

(Input to PURGE, RECEIVE, REJECT, TEST COMPLETION)
(Output from DESCRIBE, RECEIVE)

As an input, this bit indicates that a message id has been specified in field
IPMSGID. This bit is set by the IUCV macro when the MSGID= parameter
is specified on the macro.

TUCYV sets this bit to 1 as output from the DESCRIBE function so the
resulting parameter list is valid input to the next function (normally
RECEIVE or REJECT).

When only part of the message data could be received, IUCV sets this bit to
1 as output from the RECEIVE function. IUCV sets this bit so that the
resulting parameter list is valid input to a subsequent RECEIVE.

IPANSLST
(X'08")

(Input to REPLY, SEND)

This bit set to one indicates that the address specified in IPBFADR?2 is
actually the address of a list of answer buffers and their respective lengths.

It also indicates that IPBFLN2/IPBFLNZ2F is the total length in the list. The
format of the list is shown in the description of the ANSLIST parameter of
the IUCV macro instruction.

IPNORPY
(X'10")

(Input to SEND)

(Output from DESCRIBE, PURGE, RECEIVE)

(Reflected in the pending-message IUCV external interrupt.)

As an input, this bit indicates, when set to one, that this is a one-way

transaction. When the target invokes the RECEIVE function for this

VM/SP System Programmer’s Guide

~

(message, [IUCV queues the MSGBLOK representing this message on the
source communicator’s reply queue. No reply by the target is allowed. If
this bit is zero, it indicates a two-way transaction. The message is queued on
the source’s reply queue only when the target invokes the REPLY function
for this message.

As an output or on an external interrupt, this bit indicates, when set to one,
that this message does not take a reply.

IPPRTY
(X'20")

(Input to ACCEPT, CONNECT, REPLY, SEND)

l (Output from ACCEPT, CONNECT, DESCRIBE, PURGE, RECEIVE,
TEST COMPLETION)

(Reflected in these IUCV external interrupts: pending connection,
connection complete, pending message, message complete.)

As an input to CONNECT, this bit indicates, when set to one, that the
source wishes to establish a path that can handle priority communications.
When invoked from a virtual machine, priority must also be authorized in the
IUCYV directory control statement. When invoked from CP system code, this
bit is always set to one.

{ , As an input to ACCEPT, this bit indicates, when set to one, that the target
wishes to establish a path that can handle priority communications. When
invoked from a virtual machine, priority must also be authorized in the
IUCV directory control statement. When invoked from CP system code, this
bit is always set to one.

As an input to SEND and REPLY, this bit indicates, when set to one, that
this message or reply, is a priority message or reply. If this path was
established to handle priority communications, the message is handled as a
priority message. If the path cannot handle priority messages, [UCV
generates a nonzero return code.

As an output for DESCRIBE, PURGE, RECEIVE, TESTCMPL, or on an
external interrupt for pending message or message complete, this bit
indicates that the message is a priority message. As an output for ACCEPT
and CONNECT or on an external interrupt for pending connections and
connection complete, this bit indicates that the path is authorized for priority
messages.

IPQUSCE
(X'40")

(Input to ACCEPT, CONNECT)

; (Reflected in these IUCV external interrupts: pending connection,
() connection complete.)

Chapter 15. Inter-User Communications Vehicle 205

As an input, this bit indicates, when set to one, that the communicator
wishes to establish a quiesced path. The other communicator is not able to
send messages on a quiesced path. The path can be restored to full
communication capability by invoking the RESUME function.

On an external interrupt, this bit indicates, when set to one, that the path is
quiesced. The path must be resumed by the communicating partner before
messages can be initiated by this user.

IPBUFLST
(X'40')

(Input to RECEIVE, SEND)

This bit set to one indicates that the address specified in IPBFADRI1 is
actually the address of a list of buffers and their respective lengths. It also
indicates that IPBFLN1/IPBFLNIF is the total length in the list. The
format of the list is shown in the description of the ANSLIST parameter of
the IUCV macro instruction.

IPALL
- (X'80")

(Input to QUIESCE, RESUME, SEVER)

When this bit is one, IUCV performs the specified function on all paths for
-this virtual machine.

If this bit is specified, IUCV ignores the IPPATHID field.

IPRMDATA
(X'80")

(Input to ACCEPT, CONNECT, SEND, REPLY)
(Output from DESCRIBE, RECEIVE, TEST COMPLETION)

This option cannot be used with BUFLIST=YES on the SEND function or
with ANSLIST=YES on the REPLY function.

As an input, or a connection-pending or connection-complete external
interrupt, this bit set to 1 indicates the communicator is prepared to handle
messages using the DATA=PRMMSG option.

When used with a SEND, a REPLY, a message-pending external interrupt,

or message-complete external interrupt, this bit set to 1 indicates that the
buffer/parmlist contains the message data in the IPRMMSGx fields.

IPCMASK
(Input to SETCMASK)

This field specifies the mask byte to determine which of the IUCV control
interrupts a virtual machine is to be enabled for.

206 VM/SP System Programmer’s Guide

//,/"\\
N

(‘ The SET CONTROL MASK function cannot be invoked from CP system
code.

The bits defined for IUCV are:

IPCLPC X'80' Enable for pending connection interrupts
IPCLCC X'40' Enable for connection complete interrupts
IPCLPS X120 Enable for path severed interrupts
IPCLPQ X'10' Enable for path quiesced interrupts
IPCLPR X'08' Enable for path resumed interrupts

IPMASK
(Input to SETMASK)

This field specifies the mask byte to determine which, if any, of the IUCV
interrupts a virtual machine is enabled for.

The SET MASK function cannot be invoked from CP system code.
The bits defined for IUCV are:

IPSNDN X'80! Enable for nonpriority messages

IPSNDP X'40' Enable for priority messages

IPRPYN X'20' Enable for nonpriority replies
IPRPYP X'10' Enable for priority replies

l(IPCTRL X'08' Enable for IUCV control interrupts
(CONNECT, SEVER, ACCEPT, QUIESCE,
RESUME)
IPMSGID

(Input to PURGE, RECEIVE, REJECT, REPLY, TEST COMPLETION)

(Output from DESCRIBE, PURGE, RECEIVE, REJECT, SEND, TEST
COMPLETION) ,

(Reflected in these IUCV external interrupts: pending message, message
complete.)

As an input, this field specifies the message identifier of the message to
search for. The message identifier uniquely identifies a particular message.
It is generated by IUCV and returned by the SEND function when the
message is created.

This field is an optional input to the functions listed above. When this field
is specified, the path id and message class (IPSRCCLS for PURGE and
TEST COMPLETION, IPTRGCLS for RECEIVE, REJECT and REPLY)
must also be supplied.

then this field is used for the above functions, the bit IPEFEGMID field of
IPFLAGS1 must be set to 1.

(As an output or on an external interrupt, this field indicates the message id
of the message associated with this function or interrupt.

Chapter 15. Inter-User Communications Vehicle 207

IPMSGLIM
(Input to ACCEPT, CONNECT)

(Output from ACCEPT, CONNECT)

(Reflected in the pending connection and connection complete IUCV
external interrupts.)

As an input, this field specifies the limit of outstanding messages to be
allowed on the path established by this CONNECT. A message limit can
also be specified on the IUCV directory control statement. If message limit
has been specified in the directory for this user, you may not specify a value
larger than the directory specification with this parameter of the [IUCV
macro.

The maximum value that can be specified is 255. For CP system code, there
is no overriding directory value. If this field contains a zero, IUCV assumes
a default of 10.

As an output or on an external interrupt, this field contains the message limit
for this path.

IPMSGTAG
(Input to SEND)

(Output from PURGE, TEST COMPLETION)
(Reflected in the message-complete IUCV external interrupt.)

This field specifies the tag data of the message created by invoking the
SEND function. IUCV returns the message tag when the message
completes. The source communicator can use this field to tie an incoming
message-complete interrupt or output of TEST COMPLETION to the
original SEND request.

As an output or on an external interrupt, this field indicates the message tag
of the message associated with this function or interrupt.

IPPATHID
(Input to ACCEPT, PURGE, QUIESCE, RECEIVE, REJECT,
REPLY, RESUME, SEND, SEVER, TEST COMPLETION)

(Output from CONNECT, DESCRIBE, PURGE, RECEIVE, REJECT,
TEST COMPLETION)

(Reflected in these IUCV external interrupts: pending connection,
connection complete, pending message, message complete, sever, quiesce,
resume.)

This field specifies the path identifiers associated with a message. [UCV
assigns a path identification and returns the value in the CONNECT

parameter list. All further communications on a path must specify the }
PATHID that was returned from CONNECT. PATHIDs are sequential g

AN

208 VM/SP System Programmer’s Guide

from X'0000' to the maximum connections allowed for this virtual machine.
As paths are severed, [UCV reuses the vacated PATHIDs.

If you specify MSGID on the PURGE, RECEIVE, REJECT, or TEST
COMPLETION functions, IUCV requires that you specify PATHID and
message class (IPSRCCLS or IPTRGCLS, as appropriate).

This field is ignored if the IPALL bit in IPFLAGSI is set to one.

When this field is used on the PURGE, RECEIVE, REJECT, and TEST
COMPLETION functions, the IPFGPID bit must be set to 1 in the
IPFLAGSI field. This bit is set by the IUCV macro when the PATHID=
function is specified on the macro.

As an output or on an external interrupt, this field indicates the pathid of the
message associated with this function or interrupt.

IPRCODE

(Output from ACCEPT, CONNECT, DECLARE BUFFER, DESCRIBE,
PURGE, QUIESCE, RECEIVE, REJECT, REPLY, RESUME, SEND,
SEVER, TEST COMPLETION)

TUCYV places a value in this field only when an error is encountered in
processing a function. The contents of this field are function dependent.
The possible values for this field are listed in Figure 27, “IUCV Return
Codes and Completion Codes.”

Only one error is returned from any function. IUCV terminates the function
when the first error is encountered.

IPRMMSGx

(Input to SEND, REPLY)
(Output from DESCRIBE, RECEIVE, TEST COMPLETION)

(Reflected in these IUCV external interrupts: message-pending, message
complete.)

For SEND and REPLY, these fields specify the parameter list data.
IPRMMSG is two fullwords in length, shown as IPRMMSG1 and
IPRMMSG?2.

IPSRCCLS

(Input to PURGE, SEND, TEST COMPLETION)
(Output from PURGE, TEST COMPLETION)
(Reflected in the message-complete IUCV external interrupt.)

This field specifies the source message class associated with a message.

Chapter 15. Inter-User Communications Vehicle 209

For PURGE and TEST COMPLETION, this field optionally specifies the
source message class of the message to be purged or completed. If omitted,
TUCYV does not use the source message class in the search for the message.

For SEND, this field specifies the source message class that IUCV stores in
the MSGBLOK that represents the message.

As an input to the PURGE and TEST COMPLETION functions, the
IPFGMCL bit must be set in the IPFLAGSI field. This bit is set by the
IUCV macro when the SRCCLS= parameter is specified on the macro.

As an output or on an external interrupt, this field indicates the source
message class of the message associated with this function or interrupt.

IPTRGCLS ,
(Input to RECEIVE, REJECT, REPLY, SEND)

(Output from DESCRIBE, RECEIVE, REJECT)

(Reflected in the pending-message IUCV external interrupt.)

This field specifies the target message class associated with this message.
For RECEIVE and REJECT, this field optionally specifies the target
message class of the message to be received or rejected. If omitted, [UCV

does not use the target message class in the search for the message.

For SEND, this field specifies the target message class that IUCV stores in
the MSGBLOK representing the message.

For REPLY, this field specifies the target message class of the message being
responded to. ’

As input to the RECEIVE or REJECT functions, the IPEFEGMCL bit in the
IPFLAGS]1 field must be set to 1. This bit is set by the IUCV macro when
the TRGCLS= parameter is specified on the macro.

As an output or on an external interrupt, this field indicates the target
message class of the message associated with this function or interrupt.

IPTYPE .
(Reflected in these IUCV external interrupts: pending connection,
connection complete, pending message, message complete, sever, quiesce,
resume.)

This field indicates the type of external interrupt that is being reflected. The
values that are found in this field and their meanings are:

01 - Pending connection

02 - Connection complete

210 VM/SP System Programmer’s Guide

03 - Path has been severed

04 - Path has been quiesced

05 - Path has been resumed

06 - Pending priority message completion

07 - Pending nonpriority message completion'
08 - Pending priority message

09 - Pending nonpriority message

IPUSER

(Input to ACCEPT, CONNECT, QUIESCE, RESUME, SEVER)

(Reflected in these IUCV external interrupts: pending connection,
connection complete, sever, quiesce, resume.)

As an input, this field specifies the 16 byte user data IUCV reflects to the
target.

On an external interrupt, this field contains the data specified by the
communicating partner.

IPVMID

(Input to CONNECT)
(Reflected in the pending connection IUCV external interrupt.)

As an input, this field specifies the eight-character userid of the virtual
machine or CP system service to which you want to establish this path.

On an external interrupt, this field contains the ID of the virtual machine that

issued the CONNECT. This field contains ‘SYSTEM’ if the CONNECT
was issued by CP system code.

Chapter 15. Inter-User Communications Vehicle 211

IUCv RETURN CODES CONDITION CODES
FUNCTION (Returned in IPRCODE) CC=
ACCEPT 00 - Normal return 0 - Normal completion -
01 - Invalid path id - not a external interrupt
pending connection queued to notify
18 - Value in IPMSGLIM originator
exceeds 255 1 - Nonzero value stored at
20 - Connection cannot be IPRCODE
completed - originator
has invoked SEVER
CONNECT 00 - Normal return 0 - Normal completion -
11 - Target communicator is partial connection
not logged on established. External
12 - Target communicator has interrupt queued to
not invoked the DECLARE notify target of pending
BUFFER function connection
13 - Maximum number of con- 1 - Nonzero value stored at
nections for this IPRCODE
communicator exceeded
14 - Maximum number of con-
nections for target
exceeded
15 - No authorization found
16 - Invalid CP system
service name
17 - Invalid function code
in IPFCNCD
18 - Value in IPMSGLIM
exceeds 255
DECLARE 00 - Normal return 0 - Normal completion
BUFFER 1 - Nonzero value stored
19 - A buffer has been at IPRCODE
previously declared 3 - Errors encountered in
reading directory
DESCRIBE 00 - Normal return 0 - Normal completion
. 2 - No message found
PURGE 00 - Normal return 0 - Normal completion
01 - Invalid path id 1 - Nonzero value stored
08 - Message found but at IPRCODE
message class invalid 2 - No message found
QUERY None 0 - Normal completion

3 - Errors were encountered
reading directory

Figure 27 (Part 1 of 4).

212 VM/SP System Programmer’s Guide

IUCV Return Codes and Completion Codes

AN

1\&/ |

Iucv
FUNCTION

RETURN CODES
(Returned in IPRCODE)

CONDITION CODES
CC=

QUIESCE

00 - Normal return
01 - Invalid path id
specified

0 - Normal completion
1 - Nonzero value stored at
IPRCODE

RECEIVE

00 - Normal return

01 - Invalid path id

05 - Receive buffer too short
to contain message

06 - Fetch protection excep-
tion on send buffer

07 - Addressing exception on
send buffer

08 - Message id found but
message class or path id
invalid

09 - Message has been purged

10 - Message length is
negative

22 - SEND list invalid

23 - Negative length in list

24 - Incorrect total length

26 - Buffer list not on a
doubleword boundary

0 - Normal completion

1 - Nonzero value stored at
IPRCODE

2 - No message found

REJECT

00 - Normal return

01 - Invalid path id

08 - Message id found but
message class or path
id invalid

0 - Normal completion
1 - Return code stored

2 - No message found

Figure 27 (Part 2 of 4).

IUCV Return Codes and Completion Codes

Chapter 15. Inter-User Communications Vehicle

IUCv
FUNCTION

RETURN CODES
(Returned in IPRCODE)

CONDITION CODES
CC=

REPLY

00 - Normal return

01 - Invalid path id

05 - Answer buffer too short
to contain message

06 - Storage protection ex-
ception on answer buffer

07 - Addressing exception on
answer buffer

08 - Message id found but
message class or path
id invalid

09 - Message has been purged

10 - Message length is
negative

21 - Parameter list data not
allowed on this path

22 - SEND list invalid

23 - Negative length in list

24 - Incorrect total length

25 - PRMMSG invalid with
ANSLIST option

27 - Answer list not on a
doubleword boundary

0 - Normal completion

1 - Nonzero value stored in
IPRCODE

2 - No message found

RESUME

00 - Normal return
01 - Invalid path id
specified

0 - Normal completion
1 - Nonzero value stored at
IPRCODE

RETRIEVE
BUFFER

None

0 - Normal completion

Figure 27 (Part 3 of 4).

214 vM/Sp System Programmer’s Guide

IUCYV Return Codes and Completion Codes

AN

o

IUCV RETURN CODES CONDITION CODES
FUNCTION (Returned in IPRCODE) CC=
SEND 00 - Normal return 0 - Normal completion
01 - Invalid path id
02 - Path quiesced - no sends 1 - Nonzero value stored at
allowed IPRCODE
03 - Message limit exceeded
04 - Priority message not
allowed on this path
10 - Message length is
negative
21 - Parameter list data not
allowed on this path
25 - PRMMSG invalid with
BUFLIST option
26 - Buffer list not on a
doubleword boundary
27 - Answer list not on a
doubleword boundary
SET MASK 00 - Normal return 0 - Normal completion
SET CONTROL | 00 - Normal return 0 - Normal completion
MASK
SEVER 00 - Normal return 0 - Normal completion
01 - Invalid path id 1 - Nonzero value stored at
specified IPRCODE
TEST 00 - Normal return 0 - Normal completion
COMPLETION | 01 - Invalid path id 1 - Nonzero value stored at
08 - Message id found but IPRCODE
message class or path 2 - No message found
id invalid 3 - Nonzero audit trail
stored
TEST None 1 - Messages queued on the
MESSAGE Send queue
2 - Messages queued on the
Reply queue
3 - Both messages and
replies are queued

Figure 27 (Part 4 of 4).

IUCYV Return Codes and Completion Codes

Chapter 15. Inter-User Communications Vehicle

215

IUCV Trace Table Entry Formats

ACCEPT, CONNECT, DESCRIBE, PURGE, QUIESCE, RECEIVE, REJECT,
REPLY, RESUME, SEND, SEVER, TEST COMPLETION

0 1 2 3 4 5 6 7
0 X'15" FCODE PATH IUCVBLOK
8 RCODE MSGBLOK FLAGS INSTRUCTION

DECLARE BUFFER, RTRVBFR

0 1 2 3 4 5 6 7
0| Xx'15'| FCODE | ///////////// IUCVBLOK
8| RCODE BUFFER FLAGS INSTRUCTION
QUERY
0 1 2 3 4 5 6 7
0| X'15'| FCODE PARMSIZE IUCVBLOK
8\ /11171771177 MAXCONN /1777 INSTRUCTION

SETMASK, SETCMASK

0 1 2 3 4 5 6 7
0| X'15'| FCODE | MASK ///// IUCVBLOK
8| RCODE| ////////////////////// FLAGS INSTRUCTION
TESTMSG
0 1 2 3 4 5 6 7
0| X'15'| FCODE | CCODE |///// TUCVBLOK
8| /1111 INSTRUCTION

216 VM/SP System Programmer’s Guide

o
AN

Trace Table Entry Field Definitions

This section explains, for each IUCV trace table field, the functions for which this
field is valid, and the meaning of the field.

BUFFER

CCODE

FCODE

FLAGS

(Used on DECLARE BUFFER, RTRVBFR)

This field contains the virtual buffer address specified by the user
for IUCYV external interrupt information.

(Used on TESTMSG)

This field contains the condition code returned to the invoker of
the TEST MESSAGE function if a message was pending at the
time the TEST MESSAGE function was issued. If no message is
pending when the TEST MESSAGE is issued, this field contains
zero. Bits 6 and 7 of this CCODE field are used for the condition
code.

(Used on all entries)

This field indicates the exact function executed. One of the
following function codes is found in this field.

'00' - QUERY '09' - PURGE

'01' - TESTMSG '0A' - ACCEPT

'02' - RTRVBFR 'OB' - CONNECT

'03' - DESCRIBE '0C' - DECLARE BUFFER
'04' - SEND '0OD' - QUIESCE

'05' - RECEIVE '0E' - RESUME

'06' - REPLY 'OF' - SEVER

'07' - TEST COMPLETION '10" - SET MASK

'08' - REJECT '11' - SETCMASK

(Used on ACCEPT, CONNECT, DECLARE BUFFER,
DESCRIBE, PURGE, QUIESCE, RECEIVE, REJECT, REPLY,
RESUME, SEND, SETCMASK, SETMASK, SEVER, TEST
COMPLETION)

This field is a copy of the input flags specified by the user in the
field IPFLAGSI1 of the parameter list. Note that the use of these
flags varies by function and that the user may have set flags that
are not used by the function.

INSTRUCTION (Used on all entries)

IUCVBLOK

This field contains the address of the instruction following where
the function was invoked. This address is a real address if CP
initiated this function. Otherwise, the address is an address in a
virtual machine.

(Used on all entries)

This field contains the address of the IUCVBLOK associated with
the invoker. For the QUERY function, this field may be zero if no

Chapter 15. Inter-User Communications Vehicle 217

MASK

MAXCONN

MSGBLOK

PARMSIZE

PATH

RCODE

218 VM/SP System Programmer’s Guide

IUCVBLOK currently exists for the invoker. For the DECLARE
BUFFER function, this field contains the address of the
IUCVBLOK created by this function.

(Used on SETMASK, SETCMASK)

This field contains a copy of the mask field that was specified by
the virtual machine.

(Used on QUERY)

This field contains the maximum number of connections allowed
by the virtual machine issuing this request.

(Used on DESCRIBE, PURGE, RECEIVE, REJECT, REPLY,
SEND, TEST COMPLETION)

This field contains the real address of the MSGBLOK processed
by this request.

(Used on QUERY)

This field contains the size of IUCV parameter li<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>