

QO

O

S
2y 33 _
58 B¢ EEEEEEEEE
fc¢ &k EEEEEEEEE
S Ei 3 EEEEEEEEE
28 85 § EEEEEEEEE
>h dE & HEEEEEEEE

First Edition (September 1983)

This edition, SC24-5239-0 applies to Release 3 of the IBM Virtual Machine/System
Product (5664-167) until otherwise indicated in new editions or Technical Newsletters.
Changes are made periodically to the information contained herein; before using this pub-
lication in connection with the operation of IBM systems, consult the IBM System/370
and 4300 Processors Bibliography, GC20-0001, for the editions that are applicable and cur-
rent.

In this manual are illustrations in which names are used. These names are fanciful and fic-
titious, created by the author; they are used solely for illustrative purposes and not for
identification of any person or company. :

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any refer-
ence to an IBM program product in this publication is not intended to state or imply that
only IBM’s program product may be used. Any functionally equivalent program may be
used instead.

Publications are not stocked at the address given below; requests for IBM publications
should be made to your IBM representative or to the IBM branch office serving your local-
ity.)

A form for reader’s comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to IBM Corporation, Programming Publica-
tions, Department G60, P.O. Box 6, Endicott, NY, U.S.A. 13760. IBM may use or dis-
tribute whatever information you supply in any way it believes appropriate without
incurring any obligation to you.

.

© Copyright International Business Machines Corporation 1983

Preface

This publication describes the VM/SP System Product Interpreter (hereafter
referred to as the interpreter) and the Restructured Extended Executor language
(sometimes abbreviated REXX). Descriptions include use and syntax of the lan-
guage, and explain how the interpreter “interprets” the Restructured Extended
Executor language as a program is executing.

Two manuals are available for people who intend to learn the Restructured
Extended Executor language:

The VM/SP System Product Interpreter User’s Guide, SC24-5238 is more suit-
able for beginners, and programmers who have not used a “structured” lan-
guage before

The book you are now reading is more suitable for experienced programmers,
particularly those who have used another high level language (for example,
PL/1, Algol or Pascal)

However, all users should use this book as a reference manual.

For ease of reference, the material in this book is arranged in chapters:

1.

2.

9.

Introduction

Syntax

Instructions (in alphabetical order)

Functions (in alphabetical order)

Debug aids

Parsing (a method of decomposing strings of words, such as command lines)
Numerics and arithmetic

Reserved keywords and special variables

Some useful CMS commands

10. System interfaces

There are three appendixes covering:

Performance
Example of a function package

Error numbers and messages.

Preface iii

Related Publications

iv

The reader may also need to refer to:

The VM/SP Sysiem Product Interpreter Reference Summary, SX24-5126
The VM/SP CMS Command and Macro Reference, SC19-6209
The VM/SP CP Command Reference for General Users, SC19-6211

The VM/SP System Product Editor Command and Macro Reference,
SC24-5221

The VM/SP System Messages and Codes, SC19-6204

Tutorial books which may be useful are:

System Product Interpreter Reference

The VM/SP System Product Interpreter User’s Guide, SC24-5238 (see above.)
The VM/SP CMS Primer, SC24-5236
The VM/SP CMS User’s Guide, SC19-6210

The VM/SP System Product Editor User’s Guide, SC24-5220

Preface v

The VMI/SP Library

Evaluation

GENERAL

INTRODUC-

INFORMATION TION
GC20-1838 GC19-6200
Planning

LIBRARY
GUIDE AND
MASTER
INDEX

GC19-6207

PLANNING OPERATING DISTRIBUTED RELEASE 3
GUIDE AND SYSTEMS iN DATA GUIDE
REFERENCE A VIRTUAL PROCESSING
MACHINE GUIDE
SC19-6201 GC19-6212 SC24-5241 5C24-5240
Installation Administration Operation

INSTALLA~ SYSTEM OPERATOR'S
TION PROGRAM- GUIDE
GUIDE MER'’S
GUIDE
8C24-5237 SC19-6203 SC19-6202
End Use

TERMINAL
REFERENCE

GC19-6206

CMs
PRIMER

SC24-5236

SC19-6210

CMS
COMMAND
AND MACRO
REFERENCE

SC19-6209

SP EDITOR
USER'’S GUIDE

SC24-5220

SP EDITOR
COMMAND

AND MACRO
REFERENCE

S$C24-5221

ce
COMMAND
REFERENCE

SC19-6211

SP
INTERPRETER
USER’S GUIDE

$C24-5238

SP
INTERPRETER
REFERENCE

S$C24-5239

EXEC 2
REFERENCE

S§C24-5219

Reference Summaries

QuicK
GUIDE
FOR USERS

§X20-~4400

FmTmT-TT T T

COMMANDS
(GENERAL
USER)

$X20-~4401

COMMANDS
(Other than
General User)

$X20-~4402

Figure 1 (Part 1 of 2). The Virtual Machine/System Product Library

vi System Product Interpreter Reference

To order all the Reference Summaries, use order number SBOF 3820.

SP EDITOR
COMMAND
LANGUAGE

$X24-5122

SP
INTERPRETER
LANGUAGE

$X24-5126

EXEC 2
LANGUAGE

S$X24-5124

e

Prog

ram Service

SYSTEM
MESSAGES
AND CODES

SC19-6204

© 8C19-6205

OLTSEP
AND ERROR
RECORDING
GUIDE

SERVICE
ROUTINES
PROGRAM
LOGIC

LY20-0890

PROBLEM
DETERMINA~
TION

VOL. 1 (CP}

LY20-0892

DATA AREAS
AND CON-

TROL BLOCKS
VOL.1(CP)

LY24-5220

PROBLEM DATA AREAS
DETERMINA-
TION

VOL. 2 (CMS)

VOL. 2 {CMS)

LY20-0893 LY24-5221

Auxiliary Service Support

DEVICE IPCS
SUPPORT EXTENSION
FACILITIES USER'S GUIDE
AND
REFERENCE
GC35-0033 SC34~2020
EREP EREP
MESSAGES PROGRAM
GC28-1179 GC28-1178

Aux

RSCS

iliary Communication Support

Device Support Facilities
IPCS Extension 5748-SA1

Environmental Recording
Editing and Printing
(EREP)

RSCS Networking

Figure 1 (Part 2 of 2). The Virtual Machine/System Product Library

RSCS RSCS RSCS 5748-XP1
NETWORKING NETWORKING NETWORKING NETWORKING
GENERAL PROGRAM LOGIC REFERENCE
INFORMA - REFERENCE SUMMARY
TION AND
OPERATIONS SX24-5119
GH24-5004 $H24-5005 LY24-5203
VTAM Communications
VCNA VCNA VCNA VCNA Networking Application
GENERAL INSTALLA- MESSAGES LOGIC (VCNA) 59’35”%(:5
INFORMA - TION -
TION OPERATION
AND
TERMINAL US
GC27-0501 $C27-0502 $C27-0510 LY38-3033

Preface

viii ~System Product Interpreter Reference

Contents

Introduction c..ieiiiieeeietrnciisncotettttesncscstesannsosssensnnns [P |
Brief Description of the Restructured Extended Executor Languagecccevvnn.nn. 1
Where to Find More Informationc.couiiintunirnnrennneeneenenneneennennenn 1
Syntax ctreesenanseas N eressesnenns Cererssssnassssrsennns ceeane 3
Structure and General SYNtaxXiittut ittt ittt et i e e 3
63 P 3
Implied Semicolons and ContinuUationsc.uivenrenerenrnnennennnnrnnennnenns 5
Expressions and OPeratorseuuntinnnenunnerrieeeeenreronsoeaseaneonnneans 6
Operator PHoritiescviiiiiii i i i i i it e e e e i e 8
Clauses and InStructionsttt tit e eereeneineenreaeenenronnnnnenn 10
ASSIgNMeNts e i i e e e SN 11
Commands tothe HOStottt ittt ineine e ennennnaanaannnns 15
ENVITOMMENt ...ttt ittt ittt et ettt ieaeceaaeenaaenenencasasaenennnns 15
Commands PP 15
The CMS ENVIrONMENtttt ittt enennasoaeeosnanuenaanannn 16
The COMMAND Environmentcouiuiuneetnennenrerneneaenenenenanaenas 17
Issuing Subcommands from Your Programcceiiitiiinenrenrnnennenennns 18
INStructionsiceieeinenensosenecesesnsocsosssososnsasassnsoansns resserseoes 19
AD DD RE S L. e e e e e i i e e et 20
ARG i e e e e i e e e e e e 22
(7. N 5 Nt 24
DO e e e e e e e e e e 27
SIMPIE DO GIOUP ..o vttt ittt tnieerineaenenaneeaseannonensseanannenns t... 28
Simple Repetitive LooPSottt it i i i et e e i, 28
Controlled Repetitive LoopSttt ittt iieineeeenerarrennanaaennnnn 28
Conditional Phrases (WHILE and UNTIL)itunitiiinrnnnrnronennnnnnnnenns 30
1) 20) AP 32
2 € P 33
T i e e et e i et e ettt it e 34
INTERPRET ... ittt ittt te e enesaneunennreneeneennensonnseesnsnnnnn 35
ITERATE ...\ttt ittt ittt ettt te e teaaeeeneenanneeeesaasnnenennnann, 37
LB AVE .ttt ittt it et et e e e e e e 38
30) OGS 39
NUMERIC ...ttt ettt et eee e e taaeaeeaesnanaeeeeenesnsoeeeneennnn 40
PARSE ...t e e 41
PROCEDURE ...ttt ttinett e et nee e eoanoesenaeeanossnnesnneennnns 44
2 L RO 46
o 0 47
QUEUE ..ottt ittt ettt tae i tia st ttsaeeeseaneneeronsasaasannnennnnas 48
RETURN Lttt it ittt ittt et et et iaeeaeetnttneennenessennennnnaenens 49
A Y i e e e e et et e e, 50
R0} 21 5 2 O P 51
S GN AL . e e e e et e e it e 52
The Special Variable SIGL ittt i ittt e et eanennrnennnnnn 54
Using SIGNAL with the INTERPRET Instructioncoiuiiiniiinennnannnn. 54
TRACE ..t it ittt et ittt it e e e e, 55
UPPER ...ttt ittt ettt ittt et e, 60
Functions cesestrreenanens tecsersnons Ceeeeeratstasssenrennoas Cerseeenas 61
2 1L OO PPt 61
Calls to Functions and Subroutinesottt tinnrnrnnneennrnenanenns 61
Search OFderiiitiittiit ittt intenaeetiieeeenaneonaoenaronnnasennas 62
Errors During EXecutionttt ittt iiinnnrneennenenenanaenss 65
Built-in FUnctionso..iuiiiiiii ittt ineeieenieennenrnerananaanannenns 65
ABBREV L. e e e e et e 65
AB S i e e et e e e et e, 66
AD DD RE S ... i i e e e e e et 66
ARG i e e e e e e e e 66
BT AN D ..ttt ittt i et et e 67
23 1010) PSPt 67
23 00) 2 68
CENTER CENTREiiiiitttittttttieeneaneaneeeneseesneaaeenoneenenneens 68
COMPARE ... ittt it tir it tnteaeaneeneeensaneanenneenonnonnnnnens 68

Contents ix

X

9772) LGSO 69
(072 GO 70
LD N N ¢ 70
DN R 71
L) 2 I S PP 72
DELWORD .. ittt ittt ittt it ettt ineesteeneaetnneantoesnnanaennnas 72
7 PP 72
D 7 AU 73
ERRORTEXT ittt ittt it tinet et e s tnsaneeessaesassneeennaaennns 73
EX T ERNALS ..ottt ittt ittt ettt enseeeeeaaneaenannaneenesnneanennas 73
FIN D . ittt ittt ettt e e et e et e ie e e, 73
FORM AT . ittt ittt ittt te ittt tin s soeannsneensssenensaaennns 74
INDE X ottt it et i e e e e e b et et 75
INSERT i i e e e e e e e e 75
JUST Y it it e it ittt ettt i e e 75
N 1 1 N 75
LEF T .ttt ettt ittt ettt e i i e e et e, 76
LENGTH ... i it iin e P L
LINESIZE .. .ttt ittt ittt it e ie et tasenoseesnsenonannasanns 76
L 7. 0 G OO 76
MIN L e e e e e e e e 77
OV E R LAY ot it e et ittt it i s e ta et 77
PO o e et it e e e e e et e 77
QUEUED ...ttt ittt tiette ettt eaneeneenneussnseunsoanneeanaaenns 77
RANDOM ..ttt ittt et et et et it e e e e 78
REVERSE .. ittt et ittt it i et et ttenanstanansenennas 78
RIGHT ..ottt it it et ittt it it ettt ae it eneneciaannsnennns 78
1) (€, A 79
SOURCELINE ... ttittttittetettas e eneneeunseneaaenaseneaneeaaaeseneenns 79
P ACE . i et e e et e e e e 79
TR ottt e e e e e, 79
SUBS T R .ttt e e e e e e e e 80
SUBWORD ..ttt ittt ee s tee e eaneannosssonesssenesseaneenonanans 80
SY M BOL .. e e e e e e 80
0. A 81
TRACE . ittt ittt et et e ettt e et e e 82
TRANSLATE ..ttt ittt et eaeten et tneeanetoneneeosaneansoenesssanennn 82
TRUNCC Lttt it ittt ettt e e it taes et e neaaeonsenasasnneeasnanans 83
USERID ...ttt i it e it e e e aaa 83
VALUE .ottt ittt ittt ie e tneeeaeenssensoasonseeansenonnsoanenns 83
2 1 AN 83
WO RD ..ttt ittt e e e e i e e e 84
WORDINDE X ...t iiiti ittt it eie e ie e tne e eaoneeraneneeeananenenanns 84
WORDLENGTH0c0iiiiiiiiiinnniinnnnns e e i e e s 84
WO RS .ottt it e e e e et e e 84
XRANGE ..ttt i ittt e i e et e e e e, 85
D P 85
X2D e s e e e i it 85
Function Packagescuuiuniniiiiint ittt ettt 86
D20 € 3 21 A PR 86
(01,7 13 7N 86
DIAG DIAGR C ... ittt ittt it ettt ie it eeeaaaeaeaneneeanaaneeeanns 87
STORAGE . .ot e e e e e 95
Debug Aidscviieniriieiirineniessetissasesnsssossssancnns Ceeteesnsaenesnas 96
Interactive Debugging of PrOgramseuieuiiennennrreernennsnneoseensnnenns 96
Interrupting Execution and Controlling Tracingceuiriinererieencnenenensenns 98
2 (- . PN e 99
Parsing for PARSE, ARG and PULLcccictieinieruconessoasssnssssanacnassasans 100
INtrodUCHON ...ttt it e e e et e e, 100
Parsing Wordsttt ittt ittt ittt ittt et it e 100
Parsing Using String Patternsiiiiiurnenoneeneneoerenaossosnesnsnens 100
Parsing using Numeric Patternsc.iitiniiiiiiiiieiinneinenrnneneenannnn 101
Parsing ATGUMENESttt eunnrttnenseneeeennnesennseonneenneeennencnanens 101
Definition . ..ot e e e e e et et 102
Parsing with Literal Patternsccuintittrenieneneenensoneeaeaeeonsasenanan 102
Use of the Period asa Placeholder it iitiiniiiiiennnnn, 104

System Product Interpreter Reference

Parsing with Positional Patternsccuiuiniiiiit it neineinaesenrneenns 104

Parsing with Variable Patternsitiiiititnin it nenennnaans 106
Parsing Multiple Stringsottt it i e e 106
Numerics and Arithmeticcoiiretetteererrrornsasatossssorssssasososssssannsss 107
INtroduCtiOn oottt e e e e e e e 107
Definition e e e e e e 108
Reserved Keywords and Special Variablesc.coitiitiiiiiiiiiiirnrneirienrocnannns 115
Reserved KeyWordsciitiet e ittt ittt ettt et e e 115
Special Variables it e e e et e 116
Some Useful CMS CommAandsovvvtiieviosieroseestoocssosssssessosssssencssssss 117
System INterfacesc.uiiuiiiecretiientitsrsorrsessssescsscsssssascscsscnnes 118
Calls To and From the Interpreterottt it reneennnn 118
Calls Originating from the CMS Command Line 00 .iiiiiiiinennnenen.. 118
Calls Originating from the XEDIT Command Lineo, 119
Calls Originating from CMS EXECSovuutttntnteneetieenetnrnaeenenaennanns 119
Calls Originating from EXEC 2 Programsuuuittueeitienenraenenenennnn 119
Calls Originating from a Clause thatis an Expressionccooviiiiiinn .. 119
Calls Originating from a CALL Instruction or a FunctionCall 120
Calls Originating froma MODULE ittt 121
DM E X .ottt it et e e e et 121
The Extended Parameter list ittt i, 121
The File BIOCKttt ittt et ettt en e, 123
Function Packagescuiuiniininiiiiinreneanenenenneneeneneeneeiraneneenns 124
Non-SVC Subcommand Invocationc.cuiiniiniiitiiientnenenenennuennnnn. 125
Direct Interface to Current Variables ittt 126
Function Codes (SHVCODE)ituiitiiniiiiiiinenenenann. e 128
EXECFLAGE=xternal Control Bytec.oiitiitiniitinintientenesanneenonnonens 130
Appendix A. Performance Considerationscc.citviiieerseccecercssosscnacnss 132
Appendix B. Example of a Function Packagecoovtenerieenrereeceesoscocsnccones 133
Appendix C. Error Numbers and MeSSageSveovesetersncorsssssosacsscnsssensonse 140
IRACX o itvineeitaneeuoeaenonesoseneeeesasoanasoseassosecosanssnacsnsnasssasnsonse 153

Contents xi

Figures

1. The Virtual Machine/System Product Libraryuuuiiereenennennnenennn vi
2. How a Typical DO Loopis Executedc0vcuiiiuniininnnennnns A 31
3. External Routine Resolution and Execution.ccoiiiiiiiiiiniiiinnenneennn, 64

xii System Product Interpreter Reference

Introduction

Brief Description of the Restructured Extended Executor Language

The Restructured Extended Executor (REXX) language is a language particularly
suitable for:

o Command procedures (EXECs)

o User defined XEDIT subcommands
+ Prototyping

o Personal computing

It is a general purpose, high-level language not unlike PL/I. REXX has the usual
“structured programming’ instructions — IF, SELECT, DO WHILE, LEAVE and
so on — and a number of useful built-in functions.

No restrictions are imposed by the language on program format. There can be
more than one clause on a line or a single clause can occupy more than one line.
Indentation is allowed. Programs can, therefore, be coded in a format that empha-
sizes their structure, making them easier to read.

There is no limit to the length of the values of variables, so long as all variables will
fit into the storage available. Symbols (variable names) are limited to a length of
250 characters.

Compound symbols, such as
NAME.X.Y

. (where X and Y can be the names of variables) may be used for constructing
arrays and for other purposes.

REXX programs normally have a filetype of EXEC; such files may contain CP and
CMS commands. Similarly, REXX programs with a filetype of XEDIT may con-
tain XEDIT subcommands.

REXX programs are executed by an interpreter. That is, the program is executed
line-by-line and word-by-word, without first being translated to another form
(compiled). The advantage of this to the user is, that if the program fails with a
syntax error of some kind, the point of failure is clearly indicated; usually, it will
not take long to understand the difficulty and make a correction.

Where to Find More Information

This is the Reference Manual. Reference information is also available in a conven-
ient summary (card) form, the System Product Interpreter Reference Summary,
SX24-5126.

You can find use information in the System Product Interpreter User’s Guide,
SC24-5238, and through the on-line HELP facility available with VM/SP. For

Introduction 1

any program written in the Restructured Extended Executor (REXX) language,
you can get information on how the interpreter will interpret the program or a par-
ticular instruction, by using the REXX instruction, TRACE.

2 System Product Interpreter Reference

Syntax

Structure and General Syntax

Tokens

Programs written in the Restructured Extended Executor (REXX) language must
start with a comment (which distinguishes them from CMS EXEC and EXEC 2
language programs).

A REXX program is built from a series of clauses that are composed. of: zero or
more blanks (which are ignored); a sequence of tokens (see below); zero or more
blanks (again ignored); and a semicolon (;) delimiter which may be implied by
line-end, certain keywords, or the colon (:), if it follows a single symbol. Each
clause is scanned before execution from left to right and the tokens composing it
are identified. Instruction keywords are recognized at this stage, comments are
removed, and multiple blanks (except within strings) are converted to single blanks.
Blanks adjacent to special characters (including operators, see page 5) are also
removed.

The language is composed of tokens (of any length, up to an implementation
restricted maximum) which are separated by blanks or by the nature of the tokens
themselves. The classes of tokens are:

Comments: any sequence of characters (on one or more lines) that are delimited
by “/#*” and “*/”. Comments may contain other comments, as long
as each begins and ends with the necessary delimiters. Comments
may be written anywhere in a program. They are ignored by the
interpreter (and hence may be of any length), but they do act as sepa-
rators.

/* This is a valid comment */

Strings: a sequence including any characters and delimited by the single quote
character (') or the double quote (). Use two consecutive double
quotes ("") to represent a " character within a string delimited by
doubie quotes. Similarly, use two consecutive single quotes (' ') to
represent a ' character within a string delimited by single quotes. A
string is a literal constant and its contents will never be modified when
it is interpreted. A string with no characters (that is, a string of length
0) is called a null string.

These are valid strings:

'Fred'
"Don't Panic!"
'You shouldn''t' /* Same as "You shouldn't" */

Implementation maximum: A literal string may contain up to 250 char-
acters. (But note that the length of computed results is limited only by
the amount of storage available.)

Note that if followed immediately by a (, the string will be taken to be

the name of a function. Or, if followed immediately by an X symbol, it
will be a hexadecimal-defined string.

Syntax 3

Hexadecimal Strings:

Symbols:

Numbers:

4 System Product Interpreter Reference

any sequence of zero or more hexadecimal digits (0-9, a-f, A-F),
optionally separated by blanks, delimited by single or double quotes
and immediately followed by the character x or X (The X may not be
part of a longer symbol.) A single leading 0 will be added, if neces-
sary, at the front of the string to make an even number of hexadecimal
digits, which then represent a character string constant formed by
packing the hexadecimal codes given. The blanks, which may only be
present at byte boundaries (and not at the beginning or end of the
string), are to aid readability and are ignored.

These are valid hexadecimal strings:

'"ABCD'x
"1d ec £8"X
"1 ds8"x

Implementation maximum: The packed length of a hexadecimal string
may not exceed 250 bytes.

groups of any EBCDIC characters, selected from the alphabetic and
numeric characters (A-z, a-z, 0-9) and/or from the characters
a#$¢. 12 and underscore, are called symbols. Any lowercase alpha-
betic character in a symbol is translated to uppercase.

These are valid symbols:

Fred
Albert.Hall
HI!

A symbol may be a label (see page 10) or a REXX keyword (see page
115). Otherwise, if it cannot be a number (that is, does not begin with
a digit or a period) then it may be used as a variable and may be
assigned a value. If it has not been assigned a value, its value is the
characters of the symbol itself, translated to uppercase.

Implementation maximum: A symbol may consist of up to 250 charac-
ters. (But note that its value, if it is a variable, is limited only by the
amount of storage available).

These are character strings consisting of one or more decimal digits
optionally prefixed by a plus or minus sign, and optionally including a

single period (.) which then represents a decimal point. A number

may also have a power of ten suffixed in conventional exponential
notation: an E (upper- or lowercase) followed optionally by a plus or
minus sign then followed by one or more decimal digits defining the
power of ten. Whenever a character string is used as a number it is
possible that rounding will occur, to a precision specified by the
NUMERIC DIGITS instruction (default nine digits). See pages
107-114 for a full definition of numbers.

Numbers may have leading blanks (before and/or after the sign, if
any) and may have trailing blanks. Embedded blanks are not permit-
ted. Note that a symbol (see above) may be a number and so may a
string constant. A number cannot be the name of a variable.

These are valid numbers:

12

-17.9
127.0650
73e+128

' 4+ 7.9E5 '

A whole number is a number that has a zero (or no) decimal part, and
that would not normally be expressed by the interpreter in exponential
notation. That is, it has no more digits before the decimal point than
the current setting of NUMERIC DIGITS (the default is 9).

Implementation maximum: The exponent of a number expressed in
exponential notation may have up to nine digits only.

Operators: The special characters: + - / % * | § = = > < and the sequences
>= K= > K = f= > > == oo== == // &§
{1 #** (which may have embedded blanks) are operator tokens (see
page 6). One or more blank character(s), where they occur in
expressions but are not adjacent to another operator, also act as an
operator.

Special Characters:
The characters , ; :) (together with the individual characters
from the operators have special significance when found outside of
strings, and constitute the set of ‘‘special” characters. They all act as
token delimiters, and blanks adjacent to any of these are removed,
with the exception that a blank adjacent to the outside of a parenthesis
is only deleted if it is also adjacent to another special character.

For example the clause:

'REPEAT' B + 3;

is composed of six tokens — a string ('REPEAT '), a blank operator, a symbol (B,
which may have a value), an operator (+), a second symbol (3, which is a number
and a symbol), and a delimiter (;). The blanks between the B and the + and
between the + and the 3 are removed. However, one of the blanks between the

REPEAT and the B remains as an operator. Thus, this is treated as though it were
written:

'"REPEAT' B+3;

Implementation maximum: During parsing of a clause, the internal form of a clause
(which is approximately the same length as the visible form, except that extra
blanks and comments are removed) may not exceed 500 characters. Note that this
does not limit in any way the length of data that can be manipulated, which is only
dependent upon the amount of storage (memory) available to the interpreter.

Implied Semicolons and Continuations

The end of a line marks the end of a clause (that is, a semicolon is implied), except
if:

« The line ends in the middle of a string

« The line ends in the middle of a comment

Syntax 5

Expressions and Operators

« Neither of the above cases holds, but the last non-comment token was a com-
ma. In this case the comma is functionally replaced by a blank, and hence acts
as a continuation character. Note that the comma will remain in execution
traces.

This means that semicolons need only be included when there is more than one
clause on a line.

Notes:

1. Semicolons are added automatically after colons (when following a single sym-
bol) and after certain keywords when in the correct context. The keywords
that may have this effect are: ELSE OTHERWISE THEN. These special
cases reduce typographical errors significantly.

2. The two characters forming a double quote within a string, or the comment
delimiters “/*” and “*/”* should not be split by a line-end since they could not
then be recognized correctly; an implied semicolon weuld be added.

Many clauses may include expressions which can consist of terms (strings, symbols,
or function calls), interspersed with operators and parentheses.

Terms may be:
» Strings (delimited by quotes), which are literal constants

« Symbols (no quotes), which are translated to uppercase. Those that do not
begin with a digit or a period may be the name of a variable, in which case they
are replaced by the value of that variable as soon as they are needed during
evaluation. Otherwise they are treated as a literal string. A symbol may also
be compound. See page 11.

« Function calls, which are of the form:

symbol ([expression[, ...]]) or string([expression[, ...11])
See page 61.

Evaluation of an expression is left to right, modified by parentheses and by
operator precedence in the usual “algebraic” manner (see below). Expressions
are always wholly evaluated, unless an error occurs during evaluation.

All data is in the form of “typeless” character strings, (typeless because it is not —
as in some other languages — of a particular, declared type, such as Binary,
Hexadecimal, Array, etc.). Consequently, the result of evaluating any expression is
itself a character string. All terms and results may be the null string (a string of
length 0). Note that the REXX language imposes no restriction on the maximum
iength of results, but there will usually be some practical limitation dependent upon
the amount of storage available to the interpreter.

Each operator (except for the prefix operators) acts on two terms, which may be
symbols, strings, function calls, intermediate results, or subexpressions in parenthe-
ses. Each prefix operator acts on the term or subexpression that follows it. There
are four types of operators:

6 System Product Interpreter Reference

=

String Concatenation;
The concatenation operators are used to combine two strings to
form one string. The combination may occur with or without an
intervening blank:
(blank) Concatenate terms with one blank in between
1 Concatenate without an intervening blank
(abuttal) Concatenate without an intervening blank
Concatenation without a blank may be forced by using the | |
operator, but it is useful to know that if a string and a symbol are
abutted, they will be concatenated.

Example:

If the variable FRED had the value 37.4,
then Fred% would evaluate to 37.4%

Arithmetic:
Character strings that are valid numbers (see above) may be com-
bined using the arithmetic operators:
+ Add
- Subtract
* Multiply
/ Divide
% Divide and return the integer part of the result
// Divide and return the remainder (not modulo, since the
result may be negative)
** Raise a number to a whole-number power
Prefix - Negate the following term (must be numeric)
Prefix + Take following term (must be numeric) as is.
See the section on “Numerics” (page 107) for details of accuracy,
the format of valid numbers, and the combination rules for arithme-
tic. Note that if an arithmetic result is shown in exponential nota-
tion, it is likely that rounding has occurred.
Comparative:

The comparative operators return the value 1 if the result of the
comparison is true, or 0 otherwise.

Syntax 7

The “==,"” “~==""and “‘/==" operators test for an exact match
between two strings. In this case the two strings must be identical
before they are considered equal.

For all the other comparison operators, if both the terms involved
are numeric, a numeric comparison (in which leading zeros are
ignored, etc.) is effected; otherwise, both terms are treated as char-
acter strings (leading and trailing blanks are ignored, and then the
shorter string is padded with blanks on the right).

True if terms are exactly equal (identical)

True if the terms are equal (numerically or when
padded, etc.)

==, [== True if the terms are NOT exactly equal (inverse
of ==

a=, /= Not equal (inverse of =)
> Greater than
< Less than
><, <> Greater than or less than (same as Not equal)

- >=, =< Greater than or equal to, Not less than
<=,-> Less than or equal to, Not greater than

Logical (Boolean):

A character string is taken to have the value “faise” if it is 0, and
“true” if it is a 1. The logical operators take one or two such values
(values other than 0O or 1 are not allowed) and return O or 1 as
appropriate:

& AND
Returns 1 if both terms are true.

| Inclusive OR
Returns 1 if either term is true.

&& Exclusive OR
Returns 1 if either (but not both) is true.

Prefix - Logical NOT ‘
Negates; 1 becomes 0 and vice-versa.

Operator Priorities

Expression evaluation is from left to right; this is modified by parentheses and by
operator precedence:

+« When parentheses are encountered, the expression in parentheses is evaluated
first.

8 System Product Interpreter Reference

e« When the sequence:

terml1 operatorl1 term2 operator2 term3

is encountered, and operator2 has a higher precedence that operatorl, the
expression (term?2 operator2 term3 ...) is evaluated first, applying the same
rule repeatedly as necessary.

Note, however, that individual terms are evaluated from left to right in the
expression (that is, as soon as they are encountered.) It is only the order of
operations that is affected by the precedence rules.

For example, * (multiply) has a higher priority than + (add), so 3+2*5 will evalu-
ate to 13 (rather than the 25 that would result if strict left to right evaluation

occurred).

The order of precedence of the operators is (highest at the top):

R

aok

*/ % //

+ -

" " || (abuttal)

= = a== == -
&

| &&

(prefix operators)
(exponentiation)
(multiply and divide)
(add and subtract)

(concatenation with/without blank)

= /= > < <> >< >= <= 2> <

(comparison operators)
(and)

(or, exclusive or)

Examples: Suppose that the following symbols represent variables; with values as

shown:

A has the value '3"'

DAY has the value 'Monday'

Then:

A+5
A-4%2
A/2
0.5%*2
(A+1)>7

l_l_
(A+1) *3=12
Today is Day
'If it is' day
Substr (Day, 2, 3)
"lxxx'l!

> l8l

> 1_g?
— '1.5'
—— '0.25"

—_— 'Q! /* that is, False */
_— /* that is, True */
—_ Q! /*¥ that is, False */
—_— /* that is, True */
_— ' /* that is, True */

—— 'TODAY IS Monday'

—— 'If it is Monday'

- 'ond' /* Substr is a function */
—_— T IXXX

Syntax 9

Clauses and Instructions

Note: The REXX order of precedence usually causes no difficulty, as it is the same
as in conventional algebra and other computer languages. There is one exception,
the prefix minus operator has a higher priority than the exponential operator.

Thus:

—3%%2 — 9 /* not -9 */
=(2+47) **2 — 9 /¥ not -9 */

The clauses may be subdivided into five types:
Null clauses:

A clause consisting only of blanks and/or comments is completely
ignored (except that if it includes a comment it will be traced, if
appropriate).

Note: A null clause is not an instruction, so (for example) putting an
extra semicolon after the THEN or ELSE in an IF instruction is not
equivalent to putting a dummy instruction (as it would be in PL/T).
The NOP instruction is provided for this purpose.

Labels:

A clause that consists of a single symbol followed by a colon is a label.
The colon acts as an implicit clause terminator, so no semicolon is
required. Labels are used to identify the targets of CALL instructions,
SIGNAL instructions, and internal function calls. They may be traced
selectively to aid debugging.

Any number of successive clauses may be labels, so permitting multi-
ple labels before another type of clause.

Assignments:

Single clauses with the form Symbol=expression are assignments. An
assignment gives a variable a (new) value.

Instructions:

An instruction is one or more clauses, the first of which starts with a
keyword that identifies the instruction. These control the external
interfaces, the flow of control, etc. Some instructions can include oth-
er (nested) instructions. In this example, the DO construct (DO, the
group of instructions that follow it, and its associated END keyword)
is considered a single instruction.

DO
instruction
instruction
instruction
END

10 System Product Interpreter Reference

Assignments

Commands:

Single clauses consisting of just an expression are commands. The
expression is evaluated and passed as a command string to some
external environment.

A variable is an object whose value may be changed during the course of execution
of a REXX program. The process of changing the value of a variable is called
assigning a new value to it. The value of a variable is a single character string, of
any length, that may contain any characters.

Variables may be assigned a new value by the ARG, PARSE, or PULL
instructions, but the most common way of changing the value of a variable is the
assignment instruction itself. Any clause of the form:

symbol=[expression];

is taken to be an assignment. The result of the expression becomes the new value
of the variable named by the symbol to the left of the equal sign. If no expression
is given, the variable is set to the null string.

Example:

/* Next line gives "FRED" the value "Frederic" */
Fred='Frederic'

The symbol naming the variable cannot begin with a digit (0-9) or a period.
(Without the restriction on the first character of a variable name, it would be pos-
sible to redefine a number; for example 3=4; would give a variable called 3 the
value 4)

Symbols may be used in an expression even if they have not been assigned a value,
since they have a defined value at all times. When unassigned, this defined value is

the character(s) of the symbol itself, translated to uppercase.

Example:

/* If "Freda" has not vet been assigned a value, */
/* then next line gives "FRED" the value "FREDA" */
Fred=Freda

Symbols may be subdivided into four classes: constant symbols, simple symbols,
compound symbols, and stems. Simple symbols may be used for variables where the
name corresponds to a single value. Compound symbols and stems are used for
more complex collections of variables, such as arrays and lists.

Constant symbols:

The symbol starts with a digit (0-9) or a period.

Syntax 11

The value of a constant symbol cannot be changed, and is simply the
string consisting of the characters of the symbol (that is, with any
alphabetic characters translated to uppercase).

These are constant symbols:

77

827.53

. 12345

12e5 /* Same as 12E5 */
3D

Simple symbols:

The symbol itself does not contain any periods, and does not start with
a digit (0-9).

By default its value is the characters of the symbol (that is, translated
to uppercase). If the symbol has been used as the target of an assign-
ment, it names a variable and its value is the value of that variable.

These are simple symbols:
FRED
Whatagoodidea! /* Same as WHATAGOODIDEA! */
$12
Compound symbols:

12 System Product Interpreter Reference

The symbol itself contains at least one period, which has characters on
each side of it. It may not start with a digit or a period.

The name begins with a stem (that part of the symbol up to and includ-
ing the first period), which is followed by parts of the name (delimited
by periods) that are constant symbols, simple symbols, or null.

These are compound symbols:

FRED. 3
Array.I.J
AMESSY. .One.2.

Before the symbol is used, the values of any simple symbols (I, J, and
One in the example) are substituted into the symbol, thus generating a
new derived name. This derived name is then used just like a simple
symbol. That is, its value is by default the derived name, or (if it has
been used as the target of an assignment) its value is the value of the
variable named by the derived name.

The substitution into the symbol that takes place permits arbitrary
indexing (subscripting) of collections of variables that have a common
stem. Note that the values substituted may contain any characters (in-
cluding periods). Substitution is only done once.

To summarize: the derived name of a compound variable that is ref-
erenced by the symbol

sO.s1.82. -—-- .sn

Stems

is given by

do.v1l.v2., --- .vn

where A0 is the uppercase form of the symbol s0, and v1 to vn are
the values of the constant or simple symbols s1 through sn. Any of
the symbols s1-sn may be null. The values v1-vn may also be nuil
and may contain any characters (lowercase characters will not be
translated to uppercase and blanks will not be removed).

Compound symbols may be used to set up arrays and lists of variables,
in which the subscript is not necessarily numeric, and thus offer great
scope for the creative programmer. A useful application is to set up an
array in which the subscripts are taken from the value of one or more
variables, so effecting a form of associative memory (‘“content
addressable”).

Some examples follow in the form of a small extract from a REXX
program:

a=3 /* assigns '3' to the variable 'A' */
b=4 /* 4t to 'B' */
c="'Fred' /* 'Fred' to 'C' */
a.b="Fred' /* 'Fred’ to 'A.4' */
a.fred=5 /* '5¢ to 'A.FRED' */
a.c='Bill’ /* 'Bill’ to 'A.Fred' */
c.c=a.fred /* '5° to 'C.Fred' */
X.a.b="Annie' /* 'Annie' to 'X.3.4' %/

say a b ¢ a.a a.b a.c c.a a.fred x.a.4

/* will display the string: */
/* '3 4 Fred A.3 Fred Bill C.3 5 Annie' */

Implementation Maximum: The length of a variable name, after substi-
tution, may not exceed 250 characters.

The symbol itself contains just one period, which is the last character.
It may not start with a digit or a period.

These are stems:

FRED.
A.

By default, the value of a stem is the characters of its symbol (that is,
translated to uppercase). If the symbol has been assigned a value, it
names a variable and its value is the value of that variable.

Further, when a stem is used as the target of an assignment, all possible
compound variables whose names begin with that stem are given the
new value, whether they had a previous value or not. Following the
assignment, a reference to any compound symbol with that stem will
return the new value until another value is assigned to the stem or to
the individual variable.

Syntax 13

For example:

hole.
hole.9

" empty "
"full"

say hole.? hole.mouse hole.9

/* says "empty empty full" */

Thus a whole collection of variables may be given the same value. For
example,

total. = 0

do until - datatype (n,number)
say "Enter an amount and a name:"
pull amt name
total.name = total.name + amt
end

Note: The value that has been assigned to the whole collection of var-
iables can always be obtained by using the stem. However, this is not
the same as using a compound variable whose derived name is the
same as the stem. For example,

total. = 0

null = ""

total.null = total.null + 5

say total. total.null /* says "O 5" */

Collections of variables, referred to by their stem, can also be manipu-
lated by the DROP and PROCEDURE instructions. DROP FRED.
will drop all variables with that stem (see page 32), and PROCEDURE
EXPOSE FRED. will expose all possible variables with that stem (see
page 44).

Notes:

14 System Product Interpreter Reference

When a variable is changed by the ARG, PARSE, or PULL instructions, the
effect is identical to an assignment. A stem used in a parsing template will
therefore set an entire collection of variables.

Since an expression may include the operator =, and an instruction may consist
purely of an expression (see next section), there would be a possible ambiguity
which is resolved by the following rule: any clause that starts with a symbol
and whose second token is = is an assignment, rather than an expression (or an
instruction). This is not a restriction, since the clause may be executed as a
command in several ways, such as by putting a null string before the first name,
or by enclosing the first part of the expression in parentheses.

Similarly, if a programmer unintentionally uses a REXX keyword as the vari-
able name in an assignment, this should not cause confusion — for example
the clause:

Address='10 Downing Street';

would be an assignment, not an ADDRESS instruction.

g

Commands to the Host

Environment

Commands

The host system for the interpreter is assumed to include at least one active envi-
ronment for executing commands. One of these is selected by default on entry to a
REXX program.

The environment so selected will depend on the caller; for example if a program is
called from CMS, the default environment is CMS. If called from an editor that
accepts subcommands from the interpreter, the default environment would be that
editor. For a discussion of this mechanism see “Issuing Subcommands from Your
Program’ on page 18.

The environment may be changed using the ADDRESS instruction. It may be
inspected using the ADDRESS built-in function.

Executing commands using the currently addressed environment may be achieved
using an instruction of the form:

expression;

The expression is evaluated, resulting in a character string (which may be the null
string) which is then prepared as appropriate and submitted to the host.

The host will then execute the command (which may have side-effects such as
altering REXX variables). It will eventually return control to the interpreter, after
setting a return code. The interpreter will place this return code in the REXX spe-
cial variable RC.

For example, if the host were CMS, the sequence:

fn = "JACK"; ft = "RABBIT"
STATE fn ft A1

would result in the string STATE JACK RABBIT A1 being submitted to CMS. Of
course, the simpler expression:

'STATE JACK RABBIT A1’
would have the same effect in this case.

On return, the return code would be placed in RC which would probably then have
the value 0 if the file JACK RABBIT A1 existed, or 28 if it did not.

Remember that the expression will be evaluated before it is passed to the environ-

ment. Any part of the expression that is not to be evaluated should be written in
quotes.

Syntax. 15

The CMS' Environment

Examples:

erase "*" listing /* not "multiplied by"! */
load " (" start

a = any
access 192 "b/a" /* not "divided by ANY" */

When the environment selected is CMS (which is the default for EXECs) the
command is invoked exactly as if it had been issued from the command line, (but
cleanup after the command has completed is different; see “Calls Originating from
a Clause that is an Expression” on page 119. The interpreter will create two
parameter lists:

o The result of the expression, tokenized and translated to uppercase, will be
placed in a Tokenized Parameter List

« The result of the expression, unchanged, will be placed in an Extended Parame-
ter List.

The interpreter will then ask CMS to execute the command. The search order used
is the same as that provided for a command entered from the CMS interactive
command environment; that is, the first token of the command is taken as the
name, and then:

1. If the name matches the name of an EXEC that EXEC is invoked.

2. The synonym tables are searched and, if this gives the name of an EXEC, that
EXEC is invoked. (For a description of the Synonym tables, see the SYNO-
NYM command in the VM/SP CMS Command and Macro Reference,
SC19-6209).

3. SVC 202 is invoked; that is, CMS now tries for:

a. acommand installed as a nucleus extension
b. a transient already loaded with the given name
¢. anucleus resident command

d. aMODULE

e. asynonym. The synonym tables are searched, and if a match is found the
first steps (a through d) are repeated using the command so obtained.

4. If the command is not known to CMS (that is, all the above fails) it is trans-
lated to uppercase and the interpreter asks CMS to execute the command as a
CP command.

Note: CP will execute the command as if it had been entered from the CMS
command line. (Specifically, if the password suppression facility is in use, a CP
command that provides a password will be rejected. To issue such a command,
use ADDRESS COMMAND CP cp_command.)

16 System Product Interpreter Reference

y

Since EXECs are often used as “covers” or extensions to existing MODULEs,
there is one exception to this order. A command issued from within an EXEC will
not implicitly invoke that same EXEC and hence cause a possible recursion loop.
To make your EXEC call itself recursively, use the CALL instruction or the EXEC
command.

To invoke a CP command explicitly, use the CMS command prefix CP.

To illustrate these last two points, suppose your EXEC contains the clause:

cp spool printer class s

You may have a “cover” program, CP EXEC, which is intended to intercept all
explicit CP commands. If such a program exists, it will be invoked. If not, the CP
command SPOOL will be invoked. You would prefix your command with the word
cp if you wanted to avoid invoking SPOOL EXEC or SPOOL MODULE.

Notes:

1. The searches for EXECs, synonyms, and CP commands are all affected by the
CMS SET command (IMPEX, ABBREV, and IMPCP options). The full
search order given above assumes these are all ON.

2. When the environment is CMS, the interpreter provides both a Tokenized
Parameter List and an Extended Parameter List. For example, the sequence:

fn=" Jack"; ft="Assemblersource"

State fn ft A1
Myexec fn ft A1

would result in both a Tokenized Parameter List and an Extended Parameter
List being built for each command and submitted to CMS. The STATE com-
mand would use the Tokenized Parameter List

(STATE) (JACK -) (ASSEMBLE) (A1)

while MYEXEC (if it were a REXX EXEC) would use the Extended Parame-
ter List

(MYEXEC Jack Assemblersource A1)

For full details of this assembler language interface, see page 118.

The COMMAND Environment

If you wish to issue commands without the search for EXECs or CP commands,
and without any translation of the parameter lists, you may use the environment
called COMMAND. Simply include the instruction address command at the start of
your EXEC (see page 21). Commands will be passed to CMS directly, using SVC
202. (See page 119.)

The COMMAND environment name is recommended for use in “‘system” EXECs
that make heavy use of MODULESs and nucleus functions. This makes such
EXECSs more predictable (commands cannot be usurped by user EXECs, and
operations can be independent of the user’s setting of IMPCP and IMPEX), and
faster (the EXEC and first abbreviation searches are avoided).

Note to EXEC 2 users: EXEC 2 issues commands in this way.

Syntax 17

Issuing Subcommands from Your Program

18

A command being executed by CMS may accept subcommands. Usually, the com-
mand will provide its own command line, from which it takes subcommands
entered by the user. But this can be extended so that the command will accept
subcommands from a REXX program.

A typical example is an editor. You can write a REXX program that issues editor
subcommands, and run your program during an editing session. Your program can
inspect the file being edited, issue subcommands to make changes, test return codes
to check that the subcommands have been executed as you expected, and display
messages to the user when appropriate. The user can invoke your program by
entering its name on the editor’s command line.

The editor (or any other program that is designed to accept subcommands from the
interpreter) will first create a subcommand entry point, naming the environment to
which subcommands may be addressed, and then call your program. Programs that
can issue subcommands are called macros. The interpreter (and EXEC 2) have the
convention that, unless instructed otherwise, they direct commands to a subcom-
mand environment whose name is the filetype of the macro. Usually, editors name
their subcommand entry point with their own name, and also claim that name as
the filetype to be used for their macros.

For example, the XEDIT editor sets up a subcommand environment named
XEDIT, and the filetype for XEDIT macros is also XEDIT.

The macro issues subcommands to the editor (for example, NEXT 4, or
EXTRACT @ZONE). The editor “replies” with a return code (which the inter-
preter assigns to the special variable RC), and sometimes with further information,
which may be assigned to other REXX variables. For example, a return code of 1
from NEXT 4 indicates that end-of-file has been reached; and EXTRACT
(@ZONE assigns the current limits of the zone of XEDIT to the REXX variables
ZONE.1 and ZONE.2. By testing RC and the other REXX variables, the macro
has the ability to react appropriately, and the full flexibility of a programmable
interface is available.

The interpreter allows the default environment to be altered (between various sub-
command environments or the host environment) using the ADDRESS instruction.

Note: The SUBCOM function is used to create, query, or delete subcommand
entry points.

Only the query form of SUBCOM is a subcommand, in the sense that it can be
issued from the terminal (or from a REXX program). The form of this subcom-
mand is:

SUBCOM name

This yields a return code of 0 if name is currently defined as a subcommand envi-
ronment name, or 1 if it is not.

The create and delete functions of SUBCOM are described in the VM/SP System
Programmer’s Guide, SC19-6203.

System Product Interpreter Reference

Instructions

Several of the more powerful features of the language (notably functions) reduce
the number of instructions needed in the REXX language.

In the following diagrams, symbols (words) in capitals denote keywords, other
words (such as expression) denote a collection of symbols as defined above. Note
however that the keywords are not case dependent: the symbols if If and iF
would all invoke the instruction shown below as IF. Note also that most of the
clause delimiters (;) shown may usually be omitted as they will be implied by the
end of a line.

The brackets [and] delimit optional parts of the instructions.

As explained on page 10, an instruction is recognized only if its keyword is the first
token in a clause, and if the second token is neither an = character (implying an
assignment) nor a colon (implying a label). The keywords ELSE, END, OTHER-
WISE, THEN, and WHEN are recognized in the same situation. A syntax error
will result if they are not in their correct position(s) in a DO, IF, or SELECT
instruction. (The keyword THEN may also be recognized in the body of an IF or
WHEN clause.) In other contexts, all these keywords are not reserved and may be
used as labels or as the names of variables (though this is generally not recom-
mended).

Certain other keywords are reserved within the clauses of individual instructions.

(For details, refer to the description of the instruction.) For a general discussion
on reserved keywords, see page 115.

Instructions 19

ADDRESS

ADDRESS

ADDRESS environment [expression] ;
[VALUE] expression

Where:
environment is a single symbol or string, which is taken to be a constant.

This instruction is used to effect a temporary or permanent change to the destina-
tion of command(s). The concept of alternative subcommand environments is
described on page 18.

To send a single command to a specified environment, an environment name fol-
lowed by an expression is given. The expression is evaluated, and the resulting
command string is routed to the given environment. After execution of the com-
mand, the environment will be set back to whatever it was before, thus giving a
temporary change of destination for a single command.

Example:

Address CMS 'STATE PROFILE EXEC'

If only an environment name is specified, a lasting change of destination occurs: all
following commands (expressions not preceded by a REXX keyword) will be
routed to the given command environment, until the next ADDRESS instruction is
executed. The previously selected environment is saved.

Example:

address CMS

'STATE PROFILE EXEC'

if rc=0 then 'COPY PROFILE EXEC A TEMP = ='
address XEDIT

Similarly, the VALUE form may be used to make a lasting change to the environ-
ment — here the expression (which of course may be just a variable name) is eval-
uated, and the result forms the name of the environment. The keyword VALUE
may be omitted as long as the expression starts with a special character (so that it
cannot be mistaken for a symbol or string).

Example:

ADDRESS ('ENVIR' | |number)

If no arguments are given, commands will be routed back to the environment that
was selected before the previous lasting change of environment was made, and the
current environment name is saved. Repeated execution of just ADDRESS will
therefore switch the command destination between two environments alternately.

The two environment names are automatically saved across subroutine and internal
function calls. See under the CALL instruction (page 24) for more details.

The current ADDRESS setting may be retrieved using the ADDRESS built-in func-
tion. See page 66.

20 System Product Interpreter Reference

ADDRESS

Note: In CMS, three environment names have a special meaning:

CMS This environment name, which is the default for EXECs, implies full
command resolution just as provided in normal interactive command (ter-
minal) mode. (See page 16 for details.)

COMMAND
This implies basic CMS SVC 202 command resolution. To invoke an
EXEC, the word EXEC must prefix the command, and to issue a com-
mand to CP, the prefix CP must be used (see page 17).

te (Null); same as COMMAND. Note that this is not the same as

ADDRESS with no arguments, which will switch to the previous environ-
ment.

Instructions 21

ARG

ARG [template];

Where:
template is a list of symbols separated by blanks and/or “patterns.”

ARG is used to retrieve the argument strings provided to a program or internal rou-
tine and assign them to variables. It is just a short form of the instruction

PARSE UPPER ARG [template];

Unless a subroutine or internal function is being executed, the input parameters to
the program will be read, translated to uppercase, and then parsed into variables

according to the rules described in the section on parsing (page 100). Use the
PARSE ARG instruction if uppercase translation is not desired.

If a subroutine or internal function is being executed, the data used will be the
argument string(s) passed to the routine.

The ARG (and PARSE ARG) instructions may be executed as often as desired
(typically with different templates) and will always parse the same current input
string(s). There are no restrictions on the length or content of the data parsed
except those imposed by the caller.

Example:
/* String passed to FRED EXEC is "Easy Rider" */
Arg adjective noun .

/* Now: "ADJECTIVE" contains 'EASY' */
/* "NOUN" contains 'RIDER' */

If more than one string is expected to be available to the program or routine, each
may be selected in turn by using a comma in the parsing template.

Example:
/* function is invoked by FRED('data X',1,5) */

Fred: Arg string, numl, num2

/* Now: "STRING" contains 'DATA X' ¥/
/* "NUM1" contains '1' */
/* "NUM2" contains '5' */
Notes:

1. The argument string(s) to a REXX program or internal routine may also be
retrieved or checked by using the ARG built-in function. See page 66.

2. The source of the data being interpreted is also made available on entry to the
program. See the PARSE instruction (SOURCE option) on page 42 for
details.

22 System Product Interpreter Reference

ARG

3. A string passed from CMS command level is restricted to 130 characters (in-
cluding the name of the EXEC being invoked.)

Note for CMS EXEC and EXEC 2 users: Unlike CMS EXEC and EXEC 2, the
arguments passed to REXX programs can only be used after executing either the
ARG or PARSE ARG instructions (or retrieving their value with the ARG built-in
function). They are not immediately available in predefined variables as in the
other languages.

Instructions 23

CALL

CALL

CALL name [expression] [, [expression]]l... ;

CALL is used to invoke a routine. The routine may be an internal routine, an
external routine or program, or a built-in function. The name given in the CALL
instruction must be a valid symbol, which is treated literally, or a string. If a string
is used for the name (that is, the name is specified in quotes) the search for internal
labels is bypassed, and only a built-in function or an external function will be
invoked. Note that the names of built-in functions (and generally the names of
external routines too) are in uppercase, and hence the name in the literal string
should be in uppercase.

The invoked routine may optionally return a result upon its completion, which is
functionally identical to the clause:

result=name ([expression] [, [expression]]...);

where ihe variable RESULT will become uninitialized if no result is returned by the
routine invoked.

Up to ten expressions, separated by commas, may be specified. These are evalu-
ated in order from left to right, and form the argument string(s) during execution of
the routine. Any ARG or PARSE ARG instructions, or ARG built-in function in
the called routine will access these strings, rather than those previously active in the
calling program. Expressions may be omitted if desired.

The CALL then causes a branch to the routine called name using exactly the same
mechanism as function calls. The order in which these are searched for is described
in the section on functions (page 61), but briefly is as follows:

Internal routines:
(unless the routine name is specified in quotes) These are sequences of
instructions inside the same program, which start at the label that
matches the name in the CALL instruction.

Built-in routines:
These are routines built in to the interpreter for providing various
functions. They always return a string containing the result of the
function. (See page 65).

External routines:
Users may write or make use of routines that are external to the inter-
preter and the calling program. An external routine may be written in
any language, including REXX, which supports the system dependent
interfaces used by the interpreter to invoke it — see page 124 for
details. A REXX program may be invoked as a subroutine by the
CALL instruction, and in this case may be passed more than one
argument string. These may be retrieved using the ARG or PARSE
ARG instructions, or the ARG built-in function.

During execution of an internal routine, all variables previously known are normally
accessible. However, the PROCEDURE instruction may be used to set up a local

24 System Product Interpreter Reference

~

CALL

variables environment to protect the subroutine and caller from each other. The
EXPOSE option on the PROCEDURE instruction may further be used to expose
selected variables to a routine.

Calling an external program as a subroutine is similar to calling an internal routine.
The external routine is however an implicit PROCEDURE in that all the caller’s
variables are always hidden, and the status of internal values (NUMERIC settings,
etc.) start with their defaults (rather than inheriting those of the caller).

When control reaches the internal routine, the line number of the CALL instruc-
tion is available in the variable SIGL (in the caller’s variable environment). This
may be used as a debug aid, as it is therefore possible to find out how control
reached a routine.

Eventually the subroutine should execute a RETURN instruction, and at that point
control will return to the clause following the original CALL. If the RETURN
instruction specified an expression, the variable RESULT will be set to the value of
that expression. Otherwise the variable RESULT is dropped (becomes uninitial-
ized).

Internal routines may include calls to other internal routines.

Example:

/* Recursive subroutine execution... */

arg x

call factorial x

say x'! =' result

exit

factorial: procedure /* calculate factorial by.. */
arg n /* .. recursive invocation. */

if n=0 then return 1
call factorial n-1
return result * n

During internal subroutine (and function) execution all important pieces of infor-
mation are automatically saved and are then restored upon return from the routine.
These are:

« The status of DO-loops and other structures Executing a SIGNAL while within
a subroutine is “safe” in that DO-loops, etc., that were active when the subrou-
tine was called are not deactivated (but those currently active within the sub-
routine will be.)

o Trace action Once a subroutine is debugged, you may insert a TRACE Off at
the beginning of it, and this will not affect the tracing of the caller.
Conversely, if you only wish to debug a subroutine, you could insert a TRACE
R at the start — tracing will automatically be restored to the conditions at
entry (for example, ‘“Off”’) upon return. Similarly, ? (command debug) and !
(command inhibition) are saved across routines.

« NUMERIC settings (the DIGITS, FUZZ, and FORM of arithmetic operations
— see page 40) are saved and are then restored on RETURN. A subroutine
may therefore set the precision, etc., that it needs to use without affecting the
caller.

Instructions 25

CALL

26

ADDRESS settings (the current and secondary destinations for commands —
see the ADDRESS instruction on page 20) are saved and are then restored on
RETURN.

Exception conditions (SIGNAL ON condition) are saved and are then restored
on RETURN. This means that SIGNAL ON and SIGNAL OFF may be used
in a subroutine without affecting the conditions set up by the caller.

Elapsed time clocks A subroutine inherits the elapsed time clock from its caller
(see the TIME function on page 80), but since the time clock is saved across
routine calls a subroutine or internal function may independently restart and
use the clock without affecting its caller. For the same reason, a clock started
within an internal routine is not available to the caller.

Implementation maximum: The total nesting of control structures, which includes
internal routine calls, may not exceed a depth of 250.

System Product Interpreter Reference

DO

DO

DO

FOREVER UNTIL expru

[“name=expri [TO exprt] [BY exprb] [FOR exprf]] [WHILE exprw:] ;
| exprr

instruction
[]
[]

END [symbol];

L_ []

Or, to present the instruction more generally:

DO [repetitor] [conditionall;

END [symbol];

instruction
[]
[]
[]

Where:

repetitor is one of:
name = expri [TO exprt] [BY exprb] [FOR exprf]
FOREVER
exprr

conditional is one of:
WHILE exprw
UNTIL expru

DO is used to group instructions together and optionally to execute them repetitive-
ly. During repetitive execution, a control variable (name) may be stepped through
some range of values.

Syntax Notes:

e exprr, expri, exprb, exprt, and exprf (if any are present) may be any expression
that evaluates to a number. exprr and exprf are further restricted to result in a
non-negative whole number. If necessary, the numbers will be rounded accord-
ing to the setting of NUMERIC DIGITS.

« exprw or expru (if present) may be any expression that evaluates to 1 or 0.

« the TO, BY, and FOR phrases may be in any order, if used.

o the instruction(s) may include IF, SELECT, or the DO instruction itself.

Instructions 27

DO

Simple DO Group

Simple Repetitive Loops

Controlled Repetitive Loops

¢ the sub-keywords TO, BY, FOR, WHILE, and UNTIL are reserved within a
DO instruction, in that they cannot name variables in the expression(s) but
they may be used as the name of the control variable. FOREVER is similarly
reserved, but only if it immediately follows the keyword DO.

¢ exprb defaults to 1, if relevant.

If neither repetitor nor conditional is given, the construct merely groups a number of
instructions together. These are executed once.

Example:
/* The two instructions between DO and END will both #*/
/* be executed if A has the value 3. */
If a=3 then Do

a=a+2

Say 'Smile!'

End

Otherwise the group of instructions is a repetitive DO loop, and they are executed
according to the repetitor phrase, optionally modified by the conditional phrase.

If no repetitor is given (so there is only a conditional, see “Conditional Phrases
(WHILE and UNTIL)” on page 30) or the repetitor is FOREVER, the group of
instructions will nominally be executed “forever”; that is, until the condition is sat-
isfied or a LEAVE or SIGNAL instruction is executed. ‘

In the simple form of the repetitor, the expression exprr is evaluated immediately
(and must result in a non-negative whole number), and the loop is then executed
that many times:

Example:

/* This displays "Hello" five times */
Do 5

say 'Hello'

end

Note that, similar to the distinction between a command and an assignment, if the
first token of exprr is a symbol and the second token is an “=,” the controlled form
of repetitor will be expected.

The controlled form specifies a control variable, name, which is assigned an initial
value (the result of expri). The variable is then stepped (by adding the result of
exprb, at the bottom of the loop) each time the group of instructions is executed.
The group is executed repeatedly while the end condition (determined by the result
of exprt) is met. If exprb is positive, the loop will be terminated when name is
greater than exprt. If negative, the loop will be terminated when name is less than
exprt.

28 System Product Interpreter Reference

DO

The expressions expri, exprt, and exprb must result in numbers. They are evalu-
ated once only, before the loop begins and before the control variable is set to its
initial value. The default value for exprb is 1. If no exprt is given the loop will
execute indefinitely unless some other condition terminates it.

Example:

Do I=3 to -2 by -1 /* Would display: */
say 1 /* 3 * /
end /* 2 */

/* 1 */
/* 0 */
/* -1 */
/* -2 */

Note that the numbers do not have to be whole numbers:

Example:

X=0.3 /* Would display: */

Do Y=X to X+4 by 0.7 /* 0.3 * /
say Y /* 1.0 */
end /* 1.7 */

/* 2.4 */
/% 3.1 */
VA 3.8 */

The control variable may be altered within the loop, and this may affect the iter-
ation of the loop. Altering the value of the control variable is not normally consid-
ered good programming practice, though it may be appropriate in certain
circumstances.

Note that the end condition is tested at the start of each iteration. It is therefore
possible for the group of instructions to be skipped entirely if the end condition is
met immediately. Note also that the control variable is referenced by name. If (for
example) the compound name “A.I”” was used for the control variable, altering “I”’
within the loop will cause a change in the control variable.

The execution of a controlled loop may further be bounded by a FOR phrase. In
this case, exprf must be given and must evaluate to a non-negative whole number.
This acts just like the repetition count in a simple repetitive loop, and sets a limit to
the number of iterations around the loop if no other condition terminates it. Like
the TO and BY expressions, it is evaluated once only — when the DO instruction is
first executed and before the control variable is given its initial value. Like the TO
condition, the FOR count is checked at the start of each iteration.

Example:

Do Y=0.3 to 4.3 by 0.7 for 3 /* Would display: */
say Y /* 0.3 */
end : /* 1.0 */

Vi 1.7 */

In a controlled loop, the symbol describing the control variable may be specified on
the END clause. This symbol must match the symbol name in the DO clause (note
that no substitution for compound variables is carried out); a syntax error will
result if it does not. This enables the nesting of loops to be checked automatically,
with minimal overhead.

Instructions 29

DO

Example:
Do K=1 to 10
ﬁﬁé k /* Checks that this is the END for K loop */
Note: The values taken by the control variable may be affected by the NUMERIC

settings, since normal REXX arithmetic rules apply to the computation of stepping
the control variable.

Conditional Phrases (WHILE and UNTIL)

Any of the forms of repetitor (none, FOREVER, simple, or controlled) may be fol-
lowed by a conditional phrase, which may cause termination of the loop. If
WHILE or UNTIL is specified, the expression following it is evaluated each time
around the loop using the latest values of-all variables (and must evaluate to either
0 or 1), and the group of instructions will be repeatedly executed either while the
result is 1, or until the result is 1.

For a WHILE loop, the condition is evaluated at the top of the group of
instructions, and for an UNTIL loop the condition is evaluated at the bottom —
before the control variable has been stepped.

Example:

Do I=1 to 10 by 2 until i>6
say i
end
/* Would display: 1, 3, 5, 7 */

Note that the execution of repetitive loops may also be modified by using the
LEAVE or ITERATE instructions.

30 System Product Interpreter Reference

Start value assigned to control
variable

TO value (exprt) used to test
control variable for termination

FOR value (exprf) used to test
for termination

WHILE expression {exprw)
used to test for termination

Execute instruction(s) in the
DO group

UNTIL expression (expru)
used to test for termination

BY value (exprb) used to
update control variable

~

\§ . - .
>D|scont|nue execution of DO

=7V group if TO value is exceeded.
-~

~— Discontinue execution of DO
~<\\group if FOR value (number of
>iterations through the loop) is
exceeded.

-

P

group if WHILE condition is

S~ __>Discontinue execution of DO
—
P not met.

~~ _ Discontinue execution of DO
»aroup if UNTIL condition /s
- met.

Figure 2. How a 'Typical DO Loop is Executed

Instructions

31

DROP

DROP

DROP name [name] [name]... ;

Where: ’
name is a symbol, separated from any other names by blanks.

DROP is used to ‘‘unassign” variables; that is, to restore them to their original
uninitialized state.

Each variable specified will be dropped from the list of known variables. The vari-
ables are dropped in sequence from left to right. It is not an error to specify a
name more than once, or to DROP a variable that is not known. If an EXPOSEd
variable is named (see the PROCEDURE instruction), the variable itself in the
older generation will be dropped.

Example:
j=4
Drop a x.3 x.J

/* would reset the variables: "A", "X.3", and "X.4" */
/* so that reference to them returns their name. */

If a stem is specified (that is, a symbol that contains only one period, as the last
character), all variables starting with that stem are dropped.

Example:

Drop X.
/*¥ would reset all with names starting with "X." */

32 System Product Interpreter Reference

EXIT

EXIT

EXIT [expression];

EXIT is used to unconditionally leave a program, and optionally return a data
string to the caller. The program is terminated immediately, even if an internal rou-
tine is currently being executed. If no internal routine is active, RETURN (see
page 49) and EXIT have the same function.

If an expression is given, it is evaluated and the string resulting from the evaluation
is then passed back to the caller when the program terminates.

Example:
j=3

Exit j*4
/* Would exit with the string '12' */

If no expression is given, no data is passed back to the caller. If the program was
called as an external function this will be detected as an error — either immediately
(if RETURN was used), or on return to the caller (if EXIT was used).

“Running off the end” of the program is always equivalent to the instruction
EXIT;, in that it terminates the whole program and returns no result string.

Note: The interpreter does not distinguish between invocation as a command on
the one hand, and invocation as a subroutine or function on the other. If in fact
the program was invoked via the more primitive command interface (which only
allows a numeric return code), an attempt is made to convert the returned value to
a return code acceptable by the host. The returned string must then be a whole
number whose value will fit in a S/370 register (that is, must be in the range
-(2**31) through 2**31-1). If the conversion fails, it is deemed to be a failure of
the host interface and is thus not subject to trapping by SIGNAL ON SYNTAX.
Note also that only the last five digits of the return code (four digits for a negative
return code) will be displayed by the standard CMS Ready message.

Instructions 33

IF

IF

IF expression [;] THEN[;] instruction

[ELSE[;] instruction]

The IF construct is used to conditionally execute an instruction or group of
instructions.

The expression is evaluated and must result in O or 1. The instruction after the
THEN is executed only if the result was 1. If an ELSE was given, the instruction
after the ELSE is executed only if the result was 0.

Example:

if answer='YES' then say 'OK!'
else say 'Why not?!

Remember that if the ELSE clause is on the same line as the last clause of the
THEN part, you need a semicolon to terminate that clause.

Example:

if answer='YES' then say 'OK!'; else say 'Why not?'

The ELSE binds to the nearest IF at the same level. This means that any IF, that is
used as the instruction following the THEN in an IF construct that has an ELSE
clause, must itself have an ELSE clause (which may be followed by the dummy
instruction, NOP).

Example:

1f answer= en 1f name= ED en say , Fred.
if 'YES' th if 'FRED' th 'OK d.'
else nop
else say 'Why not?'

Notes:

1. An instruction includes all the more complex constructions such as DO groups
and SELECT groups, as well as the simpler ones and the “IF” instruction
itself. A null clause is not an instruction however, so putting an extra semico-
lon after the THEN or ELSE is not equivalent to putting a dummy instruction
(as it would be in PL/I). The NOP instruction is provided for this purpose.

2. A variable called THEN cannot be used within expression, because the
keyword THEN is treated specially, in that it need not start a clause. This
allows the expression on the IF clause to be terminated by the THEN, without
a “;” being required — were this not so, people used to other computer lan-
guages would experience considerable difficulties.

34 System Product Interpreter Reference

INTERPRET

INTERPRET

INTERPRET expression;

INTERPRET is used to execute instructions that have been built dynamically by
evaluating an expression (rather than that exist permanently in the program).

The expression is evaluated, and will then be executed (interpreted) just as though
the resulting string were a line inserted into the input file (and bracketed by a DO;
and an END;).

Any instructions (including INTERPRET instructions) are allowed, but note that
constructions such as DO ... END and SELECT ... END must be complete. For
example, a string of instructions being INTERPRETed cannot contain a LEAVE or
ITERATE instruction (valid only within a repetitive DO loop) unless it also con-
tains the whole repetitive DO ... END construct.

A semicolon is implied at the end of the expression during execution, as a service to

the user.

Example:

data='FRED'

interpret data '= 4°'

/*¥ Will a) build the string "FRED = 4" */

/* b) execute FRED = 4; *
/* Thus the variable "FRED" will be set to "4" */

Example:

data='do 3; say "Hello there!"; end'

interpret data /* Would display: */
/* Hello there! */
/% Hello there! */
/* Hello there! */

Notes:

1. Labels within the interpreted string are not permanent and are therefore
ignored. Hence, executing a SIGNAL instruction from within an interpreted
string will cause immediate exit from that string before the label search begins.

2. If you are new to the concept of the INTERPRET instruction and are getting

results that you do not understand, you may find that executing it with TRACE
R or TRACE I set is helpful.

Instructions 35

INTERPRET

Example:
The program:

/* Here we have a small program. */ Trace Int
name="Kitty'

indirect="name'

interpret 'say "Hello"' indirect'™!"'

when run gives the trace:
2 *-*% name='Kitty'

>L> "Kitty"
3 *-*% indirect='name'

>L> "name"

4 *-% interpret 'say "Hello"' indirect'"!"'
>L> "say "Hello""
>V> "name"
>0> "say "Hello" name"
>L> nn ! nn
>0> "say "Hello" name"!""
*-% say "Hello" name"!"
>L> "Hello"
>V> "Kitty"
>0> "Hello Kitty"
>L> " ! ”
>0> "Hello Kitty!"

Hello Kitty!

Here, lines 2 and 3 set the variables used in line 4. Execution of line 4 then pro-
ceeds in two stages. First the string to be interpreted is built up, using a literal
string, a variable INDIRECT), and another literal. The resulting pure character
string is then interpreted, just as though it were actually part of the original pro-
gram. Since it is a new clause, it is traced as such (the second *-#* trace flag under
line 4) and is then executed. Again a literal string is concatenated to the value of a
variable (NAME) and another literal, and the final result- (Hello Kitty!) is then
displayed. For many purposes, the VALUE function (see page 83) may be used
instead of the INTERPRET instruction. Line 4 in the last example could therefore
have been replaced by:

say "Hello" value(indirect)"!"

INTERPRET is usually only required in special cases, such as when more than one
statement is to be interpreted at once.

36 System Product Interpreter Reference

ITERATE

ITERATE

ITERATE [name];

ITERATE alters the flow within a repetitive DO loop (that is, any DO construct
other than that with a plain DO).

Execution of the group of instructions stops, and control is passed to the DO
instruction just as though the bottom of the group of instructions had been reached.
The UNTIL expression (if any) is tested, the control variable (if any) is incre-
mented and tested, and the WHILE expression (if any) is tested. If these tests
indicate that conditions of the loop have not yet been satisfied, the group of
instructions is executed again (iterated), beginning at the top.

If no name is specified, ITERATE will step the innermost active repetitive loop. If
a name is specified, it must be the name of the control variable of a currently active
loop (which may be the innermost), and this is the loop that is stepped. Any active
loops inside the one selected for iteration are terminated (as though by a LEAVE
instruction).

Example:

do i=1 to 4
if i=2 then iterate
say 1
end
/* Would display the numbers: 1, 3, 4 */

Notes:

1. The name, if specified, must match that on the DO instruction exactly. No
substitution for compound variables is carried out when the comparison is
made.

2. Aloop is active if it is currently being executed. If a subroutine is called (or an
INTERPRET instruction is executed) during execution of a loop, the loop
becomes inactive until the subroutine has returned or the INTERPRET instruc-
tion has completed. ITERATE cannot be used to step an inactive loop.

3. If more than one active loop uses the same control variable, the innermost will
be the one selected by the ITERATE.

Instructions 37

LEAVE

LEAVE

LEAVE [name];

LEAVE causes immediate exit from one or more repetitive DO loops (that is, any
DO construct other than that with a plain DO).

Execution of the group of instructions is terminated, and control is passed to the
instruction following the END clause, just as though the END clause had been
encountered and the termination condition had been met normally, except that on
exit the control variable (if any) will contain the value it had when the LEAVE
instruction was executed.

If no name is specified, LEAVE will terminate the innermost active repetitive loop.
If a name is specified, it must be the name of the control variable of a currently
active loop (which may be the innermost), and that loop (and any active loops
inside it) is then terminated. Control then passes to the clause following the END
that matches the DO clause of the selected loop.

Example:

do i=1 to 5
say i
if i=3 then leave
end
/* Would display the numbers: 1, 2, 3 %/

Notes:

1. The name, if specified, must match that on the DO instruction exactly. No
substitution for compound variables is carried out when the comparison is
made.

2. Aloop is active if it is currently being executed. If a subroutine is called (or an
INTERPRET instruction is executed) during execution of a loop, the loop
becomes inactive until the subroutine has returned or the INTERPRET instruc-
tion has completed. LEAVE cannot be used to terminate an inactive loop.

3. If more than one active loop uses the same control variable, the innermost will
be the one selected by the LEAVE.

38 System Product Interpreter Reference

NOP

NOP

NOP;

NOP is a dummy instruction that has no effect. It can be useful as the target of an
THEN or ELSE clause:

Example:

Select
when a=b then nop /* Do nothing */
when a>b then say 'A > B'
otherwise say 'A < B'

end

Note: Putting an extra semicolon instead of the NOP would merely insert a null
clause, which would just be ignored. The second WHEN clause would be seen as
the first instruction expected after the THEN, and hence would be treated as a syn-
tax error. NOP is a true instruction, however, and is therefore a valid target for the
THEN clause.

Instructions” 39

NUMERIC

NUMERIC

NUMERIC DIGITS [expression] :

FORM | SCIENTIFIC
ENGINEERING

FUZZ [expression]

The NUMERIC instruction is used to change the way in which arithmetic oper-
ations are carried out. The options of this instruction are described in detail on
pages 107-114, but in summary:

NUMERIC DIGITS
controls the precision to which arithmetic operations will be carried
out. The expression (if specified) must evaluate to a positive whole
number, and the default is 9. This number must be larger than the
FUZZ setting.

There is no limit to the value for DIGITS (except the amount of stor-
age available) but note that high precisions are likely to be very expen-
sive in CPU time. It is recommended that the default value be used
wherever possible.

NUMERIC FORM
controls which form of exponential notation is to be used for com-
puted results. This may be either SCIENTIFIC (in which case only
one, non-zero, digit will appear before the decimal point), or ENGI-
NEERING (in which case the power of ten will always be a multiple
of three). The default is SCIENTIFIC.

NUMERIC FUZZ
controls how many digits, at full precision, will be ignored during a
comparison operation. The expression (if specified) must result in a
non-negative whole number that must be less than the DIGITS setting.
The default value for FUZZ is 0.

The effect of FUZZ is to temporarily reduce the value of DIGITS by
the FUZZ value before every comparison operation, so that the num-
bers are subtracted under a precision of DIGITS-FUZZ digits during
the comparison and are then compared with 0.

Note: The three numeric settings are automatically saved across subroutine and
internal function calls. See under the CALL instruction (page 24) for more details.

40 System Product Interpreter Reference

PARSE

PARSE

PARSE [UPPER] ARG [template];
EXTERNAL
NUMERIC
PULL
SOURCE
VALUE [expression] WITH
VAR name

Where:
template is a list of symbols separated by blanks and/or “patterns.”

The PARSE instruction is used to assign data (from various sources) to one or
more variables according to the rules described in the section on parsing (page
100).

If the UPPER option is specified, the data to be parsed is first translated to upper-
case. Otherwise no uppercase translation takes place during the parsing.

If no template is specified, no variables will be set but action will be taken to get
the data ready for parsing if necessary. Thus for PARSE EXTERNAL and
PARSE PULL, a data string will be removed from the appropriate queue; and for
PARSE VALUE the expression will be evaluated.

The data used for each variant of the PARSE instruction is:
PARSE ARG

The string(s) passed to the program, subroutine, or function as the
input parameter list are parsed. (See the ARG instruction for details
and examples.)

Note: The argument string(s) to a REXX program or internal routine
may also be retrieved or checked by using the ARG built-in function.
See page 66.

PARSE EXTERNAL

The next string from the terminal input buffer (system external event
queue) is parsed. This queue may contain data that is the result of
external asynchronous events — such as user console input, or mes-
sages. If that queue is empty, a console read results. Note that this
mechanism should not be used for “normal’ console input, for which
PULL is more general, but rather it could be used for special applica-
tions (such as debugging) when the program stack cannot be
disturbed.

The number of lines currently in the queue may be found with the
EXTERNALS built-in function. See page 73.

Instructions 41

PARSE

PARSE NUMERIC

The current numeric controls (as set by the NUMERIC instruction,
see page 40) in the order DIGITS FUZZ FORM are made available.

Example:

9 0 SCIENTIFIC

See also page 114.

PARSE PULL

The next string from the program stack (system-provided data queue)
is parsed, (see note). This queue can save a series of data strings.
Data can by added to the beginning or end of the queue using the
PUSH and QUEUE instructions respectively. The queue can also be
altered by other programs in the system, and can be used as a means
of communication between programs.

The number of lines currently in the queue may be found with the the
QUEUED built-in function. See page 77.

Note: PULL and PARSE PULL read from the program stack. If that
is empty, they read from the terminal input buffer; and if that too is

empty, a console read results. (See the PULL instruction, on page 46,
for further details.)

PARSE SOURCE

42 System Product Interpreter Reference

The data parsed describes the source of the program being executed.

The source string contains the characters CMS, followed by either
COMMAND, FUNCTION, or SUBROUTINE depending on whether
the program was invoked as some kind of host command (for example,
EXEC or macro), or from a function call in an expression, or via the
CALL instruction. These two tokens are followed by the program
filename, filetype, and filemode; each separated from the previous
token by one or more blanks. (The filetype and filemode may be
unknown if the program is being executed from storage, in which case
the SOURCE string will have one or two “*”’s as place holders.) Fol-
lowing the filemode is the name by which the program was invoked
(due to synonyming, this may not be the same as the filename). It
may be in mixed case and will be truncated to 8 characters if
necessary. (If it cannot be determined, ““?” is used as a placeholder).
The final word is the initial (default) address for commands.

If the interpreter was called from a program that set up a subcommand
environment, the filetype is usually the name of the default address for
commands — see page 18 for details.

The string parsed might therefore look like this:

CMS COMMAND REXTRY XEDIT * rext XEDIT

PARSE

PARSE VALUE

The expression is evaluated, and the result is the data that is parsed.
Note that WITH is a keyword in this context and so cannot be used as
a symbol within the expression.

Thus, for example:

Parse VALUE time() WITH hours ':' mins ':' secs
will get the current time and split it up into its constituent parts.
PARSE VAR name

The value of the variable specified by name is parsed. name must be a
symbol that is valid as a variable name (that is, it may not start with a
period or a digit). Note that the variable name may be included in the
template, so that for example:

PARSE VAR string wordl string

will remove the first word from STRING and put it in the variable
WORD1, and

PARSE UPPER VAR string word1l string

will also translate the data from STRING to uppercase before it is
parsed.

PARSE VERSION
Information describing the language level and the date of the inter-
preter is parsed. This consists of five words: first the string “Rex,”

then the language level description (for example, “&vers.”), and finally
the interpreter release date (for example, “&vdate.”).

Instructions 43

PROCEDURE

PROCEDURE

PROCEDURE [EXPOSE name [name] [namel...];

Where:
name is a symbol, separated from any other names by blanks.

The PROCEDURE instruction may be used within an internal routine (subroutine
or function) to protect all the existing variables by making them unknown to fol-
lowing instructions. On executing a RETURN instruction, the original variables
environment is restored and any variables used in the routine are dropped.

The EXPOSE option modifies this, in that the variables specified by names are
exposed, so that any references to them (including setting them and dropping
them) refer to the variables environment owned by the caller. If the EXPOSE
option is used, at least one name must be specified. Any variables not specified by
name on a PROCEDURE EXPOSE instruction are still protected. Hence, some
limited set of the caller’s variables can be made accessible; and these variables may
be changed (or new variables in this set may be created). All these changes will be
visible to the caller upon RETURN from the routine.

The variables are exposed in sequence from left to right. It is not an error to speci-
fy a name more than once, or to specify a name that has not been used as a vari-
able by the caller.

Example:

/* This is main program */
Jj=1; x.1="a'

call toft
say J k m /* would display "1 7 M" */
exit

toft: procedure expose j k x.j
say j k x.3j /* would display "1 K a" */
k=7; m=3 /* note "M" is not exposed */
return

Note that if the x.J in the EXPOSE list had been placed before the J, the caller’s
value of J would not have been visible at that time, so X. 1 would not have been
exposed.

If a stem is declared in names all possible compound variables whose names begin
with that stem are exposed. (A stem is a symbol containing just one period, which
is the last character. See page 13.)

Example:

Procedure Expose i j a. b.
/* This exposes "I", "J", and all variables whose */

/* name starts with "A." or "B." */
A.1='7" /% This will set "A.1" in the caller's */
/* environment, even if it did not */
/* previously exist. */

44 System Product Interpreter Reference

PROCEDURE

Variables may be exposed through several generations of routines, if desired, by
ensuring that they are included on all intermediate PROCEDURE instructions.

Only one PROCEDURE instruction in each level of routine call is allowed, all oth-
ers (and those met outside of internal routines) are in error.

Notes:

1. An internal routine need not include a PROCEDURE instruction, in which
case the variables it is manipulating are those “owned” by the caller.

2. Itis suggested that the PROCEDURE instruction should be the first instruc-
tion executed after the CALL or function invocation — that is, it should be the
first instruction following the label. This is not enforced.

See the CALL instruction and Function descriptions on pages 24 and 61 for details
and examples of how routines are invoked.

Instructions 45

PULL

PULL

PULL [template];

Where:
template is a list of symbols separated by blanks and/or “patterns.”

PULL is used to read a string from the program stack (system-provided data
queue), (see note). It is just a short form of the instruction:

PARSE UPPER PULL [template];

The current head-of-queue will be read as one string. If no template is specified,
no further action is taken (and the data is thus effectively discarded). Otherwise,
the data is translated to uppercase and then parsed into variables according to the
rules described in the section on parsing (page 100). Use the PARSE PULL
instruction if uppercase translation is not desired.

Note: If the program stack is empty, the terminal input buffer is used. If that too
is empty, a console read will occur. Conversely, if you “type-ahead” before an
EXEC asks for your input, your input data is added to the end of the terminal input
buffer and will be read at the appropriate time. The length of data in the program
stack is restricted to 255 characters. The length of data in the terminal input buffer
is restricted to 130 characters.

Example:

Say 'Do you want to erase the file? Answer Yes or No:'
Pull answer .
if answer='YES' then Erase filename filetype filemode

Here the dummy placeholder “.” is used on the template so as to isolate the first
word entered by the user.

The number of lines currently in the queue may be found with the QUEUED
built-in function. See page 77.

46 System Product Interpreter Reference

PUSH

PUSH

PUSH [expression];

The string resulting from expression will be stacked LIFO — Last In, First Out —
onto the most recently created buffer of the program stack (system-provided data
queue), see note. If no expression is specified, a null string is stacked.

Note: This is limited to 255 characters per entry. The program stack contains one
buffer initially, but additional buffers may have been created using the CMS com-

mand MAKEBUF.

Example:

a='Fred'

push /* Puts a null line onto the stack */
push a 2 /*¥ Puts "Fred 2" onto the stack */

The number of lines currently in the queue may be found with the QUEUED
built-in function. See page 77.

Instructions 47

QUEUE

QUEUE

48

QUEUE [expression];

The string resulting from expression will be appended to the most recently created
buffer of the program stack (system-provided data queue), see note. That is, it will
be stacked FIFO — First In, First Out. If no expression is specified, a null string is
queued.

Note: This is limited to 255 characters per entry. The program stack contains one
buffer initially, but additional buffers may have been created using the CMS com-
mand MAKEBUF.

Example:

a="'Toft'

gueue a 2 /* Engueues "Toft 2" */

queue /* Enqueues a null line behind the last */

The number of lines currently in the queue may be found with the QUEUED
built-in function. See page 77.

System Product Interpreter Reference

RETURN

RETURN

RETURN [expression];

RETURN is used to return control (and possibly a result) from a REXX program
or internal routine to the point of its invocation.

If no internal routine (subroutine or function) is active, RETURN is essentially
identical to EXIT. (See page 33.)

If a subroutine is being executed (see the CALL instruction) the expression (if any)
is evaluated, control passes back to the caller, and the REXX special variable
RESULT is set to the value of the expression. If no expression is specified, the
special variable RESULT is dropped (becomes uninitialized). The various settings
saved at the time of the CALL (tracing, Addresses, etc.) are also restored. (See
page 24.)

If a function is being executed, the action taken is identical, except that an
expression must be specified on the RETURN instruction. The result of the
expression is then used in the original expression at the point where the function
was invoked. See the description of functions on page 61 for more details.

If a PROCEDURE instruction was executed within the routine (subroutine or
internal function), all variables of the current generation are dropped (and those of
the previous generation are exposed) after the expression is evaluated and before
the result is used or assigned to RESULT.

Instructions 49

SAY

SAY

SAY [expression];

The result of evaluating the expression is displayed (or typed, etc.) to the user. The

‘result of the expression may be of any length.

Note: The data will be formatted (split up into shorter lengths, if necessary) to fit
the terminal line size (which may be determined using the LINESIZE function).
The line size is restricted to a maximum of 130 characters. The line splitting is
done by the interpreter, hence allowing any length data to be displayed. Lines are
typed on a typewriter terminal, or displayed on a display terminal. If you are dis-
connected (in which case LINESIZE=0), or CP TERMINAL LINESIZE OFF has
been issued (in which case there is no “real” console, but data can still be written
to the console log), SAY will use a default line size of 80.

Example:
data=100

Say data 'divided by 4 =>' data/4
/* Would display: "100 divided by 4 => 25" */

‘50 System Product Interpreter Reference

SELECT

SELECT

SELECT;
WHEN expression [;] THEN [;] instruction

T WHEN expression [;] THEN [;] instruction

b

OTHERWISE [;] instruction
[]
[)

L []

END;

SELECT is used to conditionally execute one of several alternative instructions.

Each expression following a WHEN is evaluated in turn and must result in O or 1.
If the result is 1, the instruction following the THEN (which may be a complex
instruction such as IF, DO, or SELECT) is executed and control will then pass to
the END. If the result is 0, control will pass to the next WHEN clause.

If none of the WHEN expressions succeed, control will pass to the instruction(s), if
any, following OTHERWISE. In this situation, the absence of an OTHERWISE
will cause an error.

Example:

State Fn Ft Fm
Select
when rc=0 then do
erase Fn Ft Fm
say 'File existed, Now erased’

end
when rc=28 | rc=36 then say 'File does not exist'
otherwise
say 'Unexpected return code' rc 'from STATE'
exit rc

End /* Select */
Notes:

1. A null clause is not an instruction, so putting an extra semicolon after a WHEN
clause is not equivalent to putting a dummy instruction (as it would be in
PL/I). The NOP instruction is provided for this purpose.

2. A variable called THEN cannot be used within the expression, because the
keyword THEN is treated specially, in that it need not start a clause. This
allows the expression on the WHEN clause to be terminated by the THEN,
without a ; (delimiter) being required — this is consistent with the treatment of
THEN following an IF clause.

Instructions 51

SIGNAL

SIGNAL

SIGNAL labelname ;
[VALUE] expression

ERROR

ON HALT
OFF NOVALUE

SYNTAX

Where:
labelname is a single symbol that is taken as a constant.

The SIGNAL instruction causes an abnormal change in the flow of control, or (if
ON or OFF is specified) controls the trapping of exceptions.

In the case of neither ON nor OFF being specified:

The labelname is used directly, or is the result of the expression if VALUE is
specified (the keyword VALUE may be omitted if the expression does not
begin with a symbol or string). All active pending DO, IF, SELECT, and
INTERPRET instructions in the current routine are then terminated (that is,
they cannot be reactivated). Control then passes to the first label in the pro-
gram that matches the required string, as though the search had started from
the top of the program. The match is done independently of alphabetic case,
but otherwise the label must match exactly.

Example:

Signal fred; /* Jump to label "FRED" below */

oo

-

Fred: say 'Hi!'

Since the search effectively starts at the top of the program, control will always
pass to the first label in the program if duplicates are present. That is, dupli-
cate labels are ignored.

In the case of ON or OFF being specified:

The condition is either enabled to trap an event (ON) or disabled (OFF).
When a condition is enabled and the corresponding event occurs, the special
action (described below) will be taken. The conditions and their corresponding
events, which may be trapped, are:

Condition Event
ERROR any host command returns a non-zero return code.
HALT an external attempt is made to interrupt execution of the pro-

gram, for example, by using the CMS immediate command, HI
(Halt Interpretation); see page 98.

52 System Product Interpreter Reference

SIGNAL

NOVALUE an uninitialized variable is used in an evaluated expression, or
following the VAR keyword of the PARSE instruction, or in an
UPPER instruction. NOVALUE will trap a return of LIT on a
function call SYMBOL.(‘name’).

SYNTAX an interpretation error is detected.

The initial setting of all conditions is OFF. When a condition is disabled (either ini-
tially or if OFF has been specified) the trap is not in effect. So, when the corre-
sponding event occurs, no special action is taken.

When a condition is currently enabled (ON has been specified) the trap is in effect.
So, when the corresponding event occurs, instead of the usual action at that point,
the special action is taken — execution of the current instruction is terminated and
a SIGNAL instruction is executed automatically. This causes control to pass to the
first label in the program that matches the condition.

Example:

Signal on error

erase /* this command gives a non-zero */
/* return code */
ERROR: /¥ Program will continue from here */

say "Return code was" rc

Once an event is trapped, its corresponding condition is disabled (before the SIG-
NAL takes place), and a new SIGNAL ON instruction is required to re-enable it.
Therefore, for example, if the required label is not found, a normal Syntax Error
exit will be taken, which traces the name of that label and the clause in which the
event occurred.

For ERROR and SYNTAX the REXX special variable RC is set to the error return
code or syntax error number respectively before control is transferred to the condi-
tion label.

The conditions are saved on entry to a subroutine and are then restored on
RETURN. This means that SIGNAL ON and SIGNAL OFF may be used in a
subroutine without affecting the conditions set up by the caller. See under the
CALL instruction (page 24) for more details.

Notes:

1. 1In all cases, whenever the event occurs corresponding to an enabled condition,
the SIGNAL takes place immediately (and the current instruction is
terminated). Therefore, the instruction during which an event occurs may be
only partly executed (for example, if the event corresponding to SYNTAX
occurs during the evaluation of the expression in an assignment, the assignment
will not take place). Note that HALT and ERROR can only occur at clause
boundaries, but could arise in the middle of an INTERPRET instruction.

2. During interactive debug, all conditions are set OFF so that unexpected trans-
fer of control does not occur should (for example) the user accidentally use an

Instructions 53

SIGNAL

The Special Variable SIGL

uninitialized variable while SIGNAL ON NOVALUE is active. For the same
reason, a syntax error during interactive debug will not cause exit from the
program, but is trapped specially and then ignored after a message is given.

3. Certain execution errors are detected by the host interface either before exe-
cution of the program starts or after the program has Exited. These errors
cannot be trapped by SIGNAL ON SYNTAX, and are listed on page 140.

Note that labels are clauses consisting of a single symbol, followed by a colon. Any
number of successive clauses may be label, so permitting multiple labels before
another type of clause.

When any transfer of control due to a. SIGNAL (or CALL) takes place, the line
number of the clause currently executing is stored in the REXX special variable
SIGL. This is especially useful for SIGNAL ON SYNTAX (see above) when the
number of the line in error can be used, for example, to control an editor. Typical-
ly code following the SYNTAX label may PARSE SOURCE to find the source of
the data, then invoke an editor to edit the source file, positioned at the line in error.
Note that in this case the EXEC has to be re-invoked before any changes made in
the editor can take effect.

Alternatively SIGL may be used to help determine the cause of an error (such as
the occasional failure of a function call), using the following section of code (or
something similar):

/* Standard handler for SIGNAL ON SYNTAX */
syntax:
$error='REXX error' rc 'in line' sigl':
say $error
say sourceline(sigl)
trace '?r'; nop

errortext (rc)

This code displays the error message and line number, then displays the line in
error, and finally drops into debug mode to allow you to inspect the values of the
variables used at the line in error (for instance). This may be followed, in CMS, by
the following lines, so that by pressing ENTER you will be placed in XEDIT as
suggested above:

call trace 'O'

address command ‘'Dropbuf 0'

parse source . . $fn $ft $fm .

push 'Command :'sigl; push 'Command EMSG' $error
address cms 'Xedit' $fn $ft $fm

exit rc

Using SIGNAL with the INTERPRET Instruction

If, as the result of an INTERPRET instruction, a SIGNAL instruction is issued or a
trapped event occurs, the remainder of the string(s) being interpreted will not be
searched for the given label. In effect, labels within interpreted strings are ignored.

54 System Product Interpreter Reference

TRACE

TRACE

r— —_
2 [2... 0 211 i
TRACE 1., Commands ;
Errors
Intermediates
1] Labels
!, Normal | Negative
Off
Results
L__Scan _
[number]
Or, alternatively:
TRACE string