

]

(el

Licensed Material — Property of IBM

Virtual Machine/
System Product

System Logic and
Problem
Determination Guide
Volume 2 (CMS)

Release 3

Licensed Material--Property of IBM

Third Edition (September 1983)

This edition, LY20-0893-2, is a major revision of LY20-0893-1
and applies to Release 3 of the Virtual Machine/System Product
(VM/SP), Program Number 5664-167, and to all subsequent releases
and modifications until otherwise indicated in new editions or
Technical Newsletters. Changes are periodically made to the
information contained herein; before using this publication in
connection with the operation of IBM systems, consult the latest
IBM System/370 and 4300 Processors Bibliography, GC20-0001, for
the editions that are applicable and current.

Summary of Changes
For a list of changes, see page iii.

Changes and additions to text and illustrations are indicated by
a vertical line to the left of the change.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available
in all countries in which IBM operates. Any reference to an IBM
program product in this publication is not intended to state or
imply that only IBM's program product may be used. Any
functionally equivalent program may be used instead.

Publications are not stocked at the address given below.
Request for IBM publications should be made to your IBM
reprfsentative or to the IBM branch office serving vour
locality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Corporation, Programming Publications, Dept.
G60, P.0. Box 6, Endicott, NY, U.S5.A. 13760. IBM may use or
distribute whatever information vou supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1980,
1981, 1982, 1983

SUMMARY OF CHANGES

C

New CMS commands

NeW CMS Macros

Licensed Material--Property of IEM

SUMMARY OF CHANGES FOR LY20-0893-2 FOR VM/SP RELEASE 3

Modules DMSQRY and DMSDOS split

The modules DMSQRY and DMSDOS have been split. DMSQRY was split
into the following modules: DMSQRS, DMSQRT, DMSQRU, DMSQRYV,
DMSQRW, DMSQRX, DMSQRY, and DSMQRZ.

DMSD0OS handles CMS5/D0S SVC requests. DMSD0OS passes control to
the appropriate module to handle the SVC. The following modules
handle the SVC functions: DMSETR, DMSGMF, DMSGTM, DMSGVE,
DMSLCK, DMSLDF, DMSLIC, DMSMCM, DMSRPG, DMSSTX, DMSSUB, DMSSVL,
DMSVIS, and DMSXCP.

CMS Enhancements - IUCVY

CMS now supports IUCY communication. The two new macros,
HNDIUCV and CMSIUCV, enable programs to invoke IUCV functions.
These macros also allow the user to specify exits for any IUCVY
external interrupts that occur on the path. CMS support allouws
multiple subsystems/Zapplications to use IUCV functions within a
virtual machine.

system Product Interpreter Information

The System Product Interpreter processing is described. All
modules associated with the System Product Interpreter are
documented.

CATCHECK command: A new CMS command that allows VSAM users to
invoke the VSE/VSAM Catalog Check Service Aid to verify a
catalog structure.

RESERVE command: A new CMS commands that allocates all
available blocks of a 512-, 1K-, 2K-, or 4K-byte block formatted
minidisk to a unique CMS file. DMSRSV processes this command.

IMMCMD command: A new CMS command that establishes and cancels
immediate commands. This command should be issued only from
EXECs. DMSIMM processes this command.

EXECOS command: A new CMS command that resets the 05 and VSAM
environments under CMS without returning to the interactive
environment. DMSSTG processes this command.

ABNEXIT macro: A new CMS macro that sets or clears abend exit
routines. DMSABX processes this wmacro.

WAITECB macro: A new CMS macro that waits on an ECB or a list
of ECBs. DMSWTE processes this macro.

IMMCMD macro: A new CMS macro that declares, clears, and
queries immediate commands. DMSIMM processes this macro.

TEOVEXIT macro: A new CMS macro that sets up and clears a CMS
tape end-of-volume exit.

Summary of Changes iii

Licensed Material--Property of IBM

New CMS function

DISKID function: A new CMS function that obtains information on
the physical organization of a minidisk - the virtual address,
the blocksize, and the offset of the RESERVEd minidisk.

Modified CMS cummands and macros

IDUMP

NUCXLOAD command: A nucleus extension with the ENDCMD attribute
specified receives control at normal end-of-command processing.

FORMAT command: This command now allows you to specify a
512-byte block minidisk.

RDTERM macro: The RDTERM macro with the TYPE=DIRECT attribute
specified indicates that a line is to be read directly from the
virtual machine console.

VSE IDUMP macro will be simulated by CMS/D0S using the PDUMP
support. The IDUMP macro produces a dump containing information
about the failing component. The CMS IDUMP support is invoked
whenever a program product issues the VSE IDUMP macro.

CMSSEG Was eliminated

PROP Enhancements

Miscellaneous

CMSSEG was eliminated and the code was merged into the CMS
Nucleus.

To support the new enhancements to PROP, the following modules
were added: DMSPOL, DMSP0Q, and DMSPOS.

Minor technical and editorial changes have been made throughout
this publication.

iv VM/SP System Logic and Problem Determination Guide (CMS)

9

C

PREFACE

Licensed Material--Property of IBM

This publication provides the IBM system hardware and software
support personnel with the information needed to analyze
problems that may occur on the IBM Virtual Machine/System
Product (VM/SP) when used in conjunction with VM/7370 Release 6.

HOW THIS MANUAL IS ORGANIZED

This manual is one of two volumes:
. Volume 1. VM/SP Control Program (CP)
. Volume 2. Conversational Monitor System (CMS)

Each volume contains logic descriptions for the designated
components of VM/SP. Each of these volumes is divided into four
sections: Introduction, Method of Operation, Directory, and
Diagnostic Aids.

The method of operation and program organization sections
contain the functions and relationships of the program routines
in VM/SP. They indicate the program operation and organization
in a general way to serve as a guide in understanding VM/SP.
They are not meant to be a detailed analysis of VM/SP
programming and cannot be used as such.

The directory contains a table of the CMS modules and their
entry points.

The diagnostic aids sections contain additional information
useful for determining the cause of a problem.

Appendix A, located in Volume 2, contains a description of the
CMS macro library.

Appendix B, also located in Volume 2, describes the CMS/D0S
macro library.

Appendix C, also located in Volume 2, describes CMS/D0S support
modules.

Information on the Remote Spooling Communications Subsystem
(RSCS), a VM/7370 Release 6 component, is contained in:

IBM VM/370 System lLogic and Program Determination Guide,

Volume 3 Remote Spooling Communications Subsystem (RSCS),
5Y20-0888

Ihe control blocks supportive of the RSCS Logic are contained
in:

VM/SP Data Areas and Control Block Logic, Volume 2 (CMS),
LY24-5221

Logic Information on the Interactive Problem Control System
(IPCS), a VM/7370 Release 6 component is totally contained in:

VM/SP_Service Routines Program Logic, LY20-0890

HOW TO USE THIS MANUAL

. Isolate the component of VM/370 in which the problem
occurred.

. Use the list of restrictions in VM/SP System Messages and

Codes to be certain that the operation that was being
performed was valid.

Preface v

Licensed Material--Property of IBM

DEVICE TERMINOLOGY

Use the directories, VM/SP Data Areas and Control Block
Logic, Volume 1 (CP), and VM/SP Data Areas and Control Block
Logic, Volume 2 (CMS) to help you to isolate the problem.

Use the method of operation and program organization
sections, if necessary, to understand the operation that was
being performed.

The following terms in this publication refer to the indicated

support devices:

;2305" refers to IBM 2305 Fixed Head Storage, Models 1 and

"270x"™ refers to IBM 2701, 2702, and 2703 Transmission
Control Units or the Integrated Communications Adapter (ICA)
on the System/370 Model 135.

"FB~512" refers to those IBM DASD devices implementing the
fixed-block (512-byte blocks) architecture. Specifically,
they are the IBM 3310, and the IBM 3370. Current IBM disk
storage devices are referred to as count-key-data DASD when
it is important to distinguish between count-key-data DASD
and FB-512. Otherwise, they are collectively referred to as
DASD or disk.

"3330" refers to the IBM 3330 Disk Storage, Models 1, 2, or
11; the IBM 3333 Disk Storage and Control, Models 1 or 1l1;
and the 3350 Direct Access Storage operating in 333073333
Model 1 or 3330/3333 Model 11 compatibility mode.

"3340" refers to the IBM 3340 Disk Storage, Models A2, Bl,
and B2, and the 3344 Direct Access Storage Model B2.

"3350" refers to the IBM 3350 Direct Access Storage Models
A2 and B2 in native mode.

"3380" refers to the IBM 3380 Storage Facility. Information
on the IBM 3380 Storage Facility is for planning purposes
only until the availability of the product.

"3704,"™ "3705," or "370X" refers to IBM 3704 and 3705
Communications Controllers.

The term "3705" refers to the 3705 I and the 3705 II unless
otherwise noted.

"2741" refers to the IBM 2741 and the 3767, unless otherwise
specified.

"3270" refers to a series of display devices, namely the IBM
3275, 3276, 3277, 3278, and 3279 Display Stations.

specific device type is used only when a distinction is
required between device types.

The term, System/370 processors, is also applicable to 4300
processors and 303x series processors unless indicated
otherwise.

Information about display terminal usage also applies to the
IBM 3036, 3138, 3148, and 3158 Display Consoles when used in
display mode, unless otherwise noted.

Any information pertaining to the IBM 3284 or 3286 also
pertains to the IBM 3287, 3288 and the 3289 printers, unless
otherwise noted.

"3262" refers to the IBM 3262 Printer, Models 1 and 11.
Information on the IBM 3262 Printer, Models 1 and 11, is for
Planni:g purposes only, until the availability of the
product.

vi VM/SP System Logic and Problem Determination Guide (CMS)

Licensed Material--Property of IBM
Unless otherwise noted, the term "VSE" refers to the
combination of the DOS/VSE system control program and the
VSE/Advanced Functions program product.
In certain cases, the term D0OS is still used as a generic term.
For example, disk packs initialized for use with VSE or any
predecessor DOS or D0OS/VS system may be referred to as DO0S
disks.
The DOS like simulation environment provided under the CMS

component of the VM/System Product, continues to be referred to
as CMS/D0S.

CMS COMPONENT

PREREQUISITE PUBLICATIONS
Virtual Machine/$S m Produc
Introduction, GC19-6200
Terminal Reference, GC19-6206
CMS Command and Macro Reference, 5C19-6209
CMS User's Guide, 5C19-6210

COREQUISITE PUBLICATIONS

Virtual Machine/System Product

Operator's Guide, $C19-6202

CP_Command Reference for General Users, SC19-6211

System Programmer's Guide, SC19-6203

System Messages and Codes, SC19-6204

OLTSEP and Error Recording Guide, 5C19-6205

Operating Systems in a Virtual Machine, GCl19-6212

Service Routines Program lLogic, LY20-0890

Data Areas and Control Block lLogic, Volume 1 (CP), LY26-5220

ata Areas and Control Block Logic, Volume (CMS),
LY24-5221

In addition, for EREP processing the following 05/VS Library
publications are required:

IBM 0S/VS, DOS/VSE, VM/370 Environmental Recording Editing and
Printing (EREP) Program, GC28-0772

IBM 0S/VS, DOS/VSE, VM/370 Environmental Recording Editing and
Printing (EREP) Program lLogic, SY28-0773

SUPPLEMENTARY PUBLICATIONS
IBM System/360 Principles of Operation, GA22-6821
IBM Systems/370 Principles of Operation, GA22-7000
IBM 0S/VS, DOS/VS, and VM/370 Assembler Language, GC33-4010
IBM 0S/VS and VM/370 Assembler Programmer's Guide, GC33-4021

Preface vii

Licensed Material--Property of IBM
RELATED PUBLICATION

Vi achi i / i
mmun i ions S m ' ide, GC20-1816

E (] F T
CMS/D0S is part of the CMS system and is not a separate system.
The term CMS/D0S is used in this publication as a concise way of
stating that thae D0S simulation modae of CMS is currently activa;
that is, tha CMS command

SET DOS ON

has been previously issuead.
The phrasae "CMS file system™ refars to disk files that are in

CMS's 512-, 800-, 1024-, 2048-, and 4096-byte block format;
CMS's VSAM data sets are not included.

viii VM/SP System Logic and Problem Determination Guide (CMS)

Licensed Material--Property of IBM

Prefaca ix

Licensed Material--Property of IBM

The VM/SP Library
LIBRARY
GUIDE AND
- MASTER
Evaluation INDEX
GC19-6207
GENERAL INTRODUC-
INFORMATION TION
GC20-1838 GC19-6200
Planning
EEEEE Y
PLANNING OPERATING DISTRIBUTED RELEASE 3
GUIDE AND SYSTEMS IN DATA GUIDE
REFERENCE A VIRTUAL PROCESSING
MACHINE GUIDE
SC19-6201 GC19-6212 SC24-5241 SC24-5240
Installation Administration Operation
INSTALLA-~ SYSTEM OPERATOR’S
TION PROGRAM-~ GUIDE
GUIDE MER’S
GUIDE
SC24-5237 SC19-6203 SC19~6202
End Use
TERMINAL CMS CMS CMS
REFERENCE PRIMER USER’S GUIDE |: COMMAND
B AND MACRO
REFERENCE
GC19-6206 SC24-5236 SC19-6210 SC19-6209
£
SP EDITOR SP EDITOR CcP
USER’'S GUIDE COMMAND COMMAND
AND MACRO REFERENCE
REFERENCE
SC24-5220 SC24-5221 SC19-6211
(=
SP SP EXEC 2
INTERPRETER INTERPRETER REFERENCE
USER'S GUIDE REFERENCE
SC24-5238 SC24-5239 SC24-5219

Reference Summaries

To order all the Reference Summaries, use order number SBOF 3820.

Fm——m e e e e e e - - ——

1

|

| QuickK COMMANDS COMMANDS SP EDITOR SP EXEC 2

| GUIDE (GENERAL (Other than COMMAND INTERPRETER LANGUAGE
\ FOR USERS USER) General User) LANGUAGE LANGUAGE

|

| SX20-4400 $X20-4401 S$X20-4402 SX24-5122 S$X24-5126 SX24-5124
I

L

Figure 1 (Part 1 of 2). Tha VM/SP Library

X VM/SP System Logic and Problem Determination Guida (CMS)

C

Licensed Material--Property of IBM

Program Service

SYSTEM OLTSEP SERVICE
MESSAGES AND ERROR ROUTINES
AND CODES RECORDING PROGRAM

GUIDE LOGIC
SC19-6204 SC19-6205 J LY20-0890
PROBLEM DATA AREAS PROBLEM DATA AREAS
DETERMINA- AND CON- DETERMINA- AND CON-
TION TROL BLOCKS TION TROL BLOCKS
VOL. 1 (CP) VOL. 1 {CP) VOL. 2 (CMS) VOL. 2 (CMS)
LY20-0892 LY24-5220 LY20-0893 LY24-5221

Auxiliary Service Support

IPCS
EXTENSION

Aux

DEVICE

SUPPORT

FACILITIES USER’'S GUIDE
AND
REFERENCE

GC35-0033 SC34-2020

EREP EREP

MESSAGES PROGRAM

GC28-1179 GC28-1178

Device Support Facilities
IPCS Extension 5748-SA1

Environmental Recording
Editing and Printing
(EREP)

iliary Communication Support

Figure 1 (Part 2 of 2).

: RSCS Networking
RSCS RSCS RSCS Rscs 5748- XP1
NETWORKING NETWORKING NETWORKING NETWORKING
GENERAL PROGRAM LOGIC REFERENCE
INFORMA - REFERENCE SUMMARY
TION AND
OPERATIONS SX24-5119
GH24-5004 SH24-5005 | LY24-5203
s e VTAM Communications
VCNA VCNA VCNA VCNA : N,
GENERAL INSTALLA- MESSAGES LOGIC Networking Application
INFORMA - TION (VCNA) 5735-RC5
TION OPERATION
AND '
TERMINAL USE| |
GC27-0501 SC27-0502 SC27-0510 LY38-3033

The VM/SP Library

Preface xi

Licensed Material--Property of IBM

xii VM/SP System Logic and Problem Determination Guide (CMS)

C

CONTENTS

Licensed

section 1l: Introduction to CMS o .

conversational Monitor System (CHSJ
The CMS Command Language . . e . .

The File System . e e e e e e
Program Development e e e e e e e .
Interrupt Handling in CMS e o o o »
SVC Interruptions . . . e e e .

Internal Linkage SVCs e e e e

Other SVCs e . e e e e o e
Input/Output Interruptlons e e e e e
Terminal Interruptions e e e . . .

Reader/Punch/Printer Interruptlons

User-Controlled Device Interruptions
Program Interruptions e e e e e e
External Interryptions e e e e e e
Machine Check Interruptions e e

Functional Information e o o
Register Usage . .
Structure of CMS Storage .
Structure of DMSNUC . e e .
USERSECT (User Area) e e . . .
DEVTAB (Device Table)
CMS Interface for Display Termlnals

e o o o o
e ¢ o o o

0S Macro Simulation Under CMS e o o
0S5 Data Management Simulation

Material--Property of

¢ e o o o o o o e o

¢ o e o o ¢ s s e o @
. e & o ¢ o o

« e o o

e ¢ o o o o e e @

Handling Files that Resida on CHS Disks) : . :
Handling Files that Reside on 0S or DOS Disks

Simulation Notes . e e e e e e .
Access Method Support e e e e e .
BDAM Restrictions

Reading 05 Data Sets and DOS Flles U51ng OS Macros)

The ACCESS Command e e e e e .
The FILEDEF Command e e e e e

VSE Support Under CMS .
CMS Support for 0S and VSE VSAM Functlo
Hardware Devices Supported e e e e

section 2: CMS Method of Operation and Program Organizat

Initialization of the CMS Virtual Machine Environment
Initialization: Loading a CMS Virtual Machine from Card

Reader . .
Initlallzes Storage COntents and Syst
Processes IPL Command Line Parameters
Initialize 05 SVC-Handling . .
Initializing a Named or Saved System
Modifying a 3800 Named System .
Processing the IMAGEMOD Command
Handling the First Command Line Passed
Setting the Virtual Machine Environment
DMSSET: SET DOS ON (VSAM) Processing
Querying CMS Environment Options . .

Processing and Executing CMS Files .
Maintaining an Interactive Console Envi

-

ns e o o

em Tables)
to CMS .
Options

ronment .

Maintaining an Interactive Command/Rasponse Session.

Execute Commands Passed via DMSINS

Handle Commands Entered During a CMS Termlnal Se5510n

Method of Operation for DMSINT - Cons

Method of Operation for DMSITS - CMS SVC Handling Réutlne

Types of SVCs and Linkage Conventio
Search Hierarchy for SVC 202 .
User and Transient Program Areas

ole Manager

ns e e e

Contents

e o o o &

* o o s s o @

.

IBM

—
COVVUVY ~NULWW =

i
-

-
[

e el
DO O LW

19

Xiii

Licensed Material--Property of IBM

Xiv

Called Routine Start-Up Table e e e e e
Returning to the Caller . e e e e e e e
Modification of the System Save Area e e e e e
Dynamic Linkage/SUBCOM e e e e e e e & e e
Loading and Executing Text Files e e e e e e e e
SLC Card Routine . e e e e e e e e e e e e e
ICS Card Routine - CZAEl e e e e e e e e e e e e
ESD Type 0 Card Routine - C3AA3 e e e e e e e e
ESD Type 1 Card Routine - ENTESD e e e e e e e .
ESD Type 2 Card Routine - C3AH1l e e e e e e e .
ESD Type 4 Routine - PC e e e e e e e e e e e e
ESD Types 5 and 6 Card Routine - PRVESD and COMESD
ESD Type 10 Routine - WEAK EXTRN . . .
TXT Card Routine - C4AAl . . .
REP Card Routine - C4AA3 e e .
RLD Card Routine - C5AAl . e .
END Card Routine - C6AAl
Control Card Routine - CTLCRDl
REFADR Routine (DMSLDRB) . e .
PRSERCH Routine (DMSLDRD) . .
Loader Data Bases e e e e e e . .
ESIDTB Entry e e e e e e e e e e e e e e e e e

e ¢ o o o o o o
.
.
.
« o o o o o o
.

.
e o o o o o o o o

REFTBL Entry

Patch Control Block (PCB) .

Loader Input Restrictions e e e e e e e e e
Loading and Executing Members of LOADLIBS e e

Processing Commands That Manipulate the File System

Managing the CMS File System e o o o o o o o o o = o
Disk Organization . e e e e .
How CMS Files Are Organlzed ln Storage for an 800-Byte
Record e e e e e e e e e e e e e e e e
File Status Tables e e e e e e e e e e e o e
Chain Links . e e e e e e e e e e e e e e e e
CMS Record Formats . .
Physical Organlzatlon of Vlrtual Dlsks .
The Master File Directory

Keeping Track of Read/Write Dlsk Storage=. QMSK and QQMSK

Dynamic Storage Management: Active Disks and Files
Managing Active Disks: The Active Disk Table .
Managing Active Files: The Active File Table .

CMS Routines Used To Access the File System . . .
Access a Virtual Disk: DMSACC . . .

How CMS Files Are Organized in Storage for 512- 1K-,
or 4K-Byte Records on Disk e e e . e e e e e

File Status Tables e e e e e e e e e e e e e e e

Pointer Blocks e e e e e e e e e e e e e e e e e .

CMS Block Formats . e e e e .

Physical Organization of Vlrtual Dlsks

The File Directory, the Allocation Map., aﬁd the DlSk Label
Keeping Track of Read/Write Disk Storage: Allocation Map

Selective Directory Update .
Dynamic Storage Management: Actlve DISkS and Flles

Managing Active Disks: The Active Disk Table .
Managing Active Files: The Active File Table
CMS Routines Used to Access the File System .
Access a Virtual Disk: DMSACC e e e e e e .
Handling I/0 Operations e o o o 2 s v e o e o s v e
Unit Record I/0 Processing e e e e o e e e o e
Read a Card e e e e e . . e e e .
Punch a Card e e e e e e e . e e e e e e e e

Print a File . e e e .
Printer Carrlage Control Characters Used by DMSPIO
The SETPRT Command e e e e e e e e . e . e e e .

Disk I/0 in CMS . e e e e e e e e e e e e e e
Read or Write Disk IIO e e e e e e e e e e e
CMS Tape Label Processing e e e e e e e e e e

Handling Interruptions e o v o o o o o o o e o s o @

Managing CMS Storage e o o e o @ ® o o o o o o o
GETMAIN Free Storage Management e e e e e e e e

VM/SP System Logic and Problem Determination Guide (CMS)

"2K-,

.

109
110

110
113

115
115

Licensed

DMSFREE Free Storage Management .

Method of Operation for DMSFREE .
Allocating User Free Storage .
Allocating Nucleus Free Storage
Releasing Storage e e e e

Releasing Allocated Storage .
Storage Allocated by GETMAIN
Storage Allocated by DMSFREE

DMSFREE Service Routines . .

Storage Protection Keys .

CMS Handling of PSW Keys .
Tha DMSKEY Macro e e e .
The DMSEXS Macro .

CP Handling for Saved Systems
Effects on CMS e e e e e e .
Restrictions on CMS e e e .
Overhead . e e .

Error Codes from DMSFRES, DMSFREE

.

e o o o
e o o o o
e e o ¢ o o o v e e o

.
.
.
.
.
.
.
.
.
.
.
.
o o
»

and DM

e 6 ¢ 6 o e e 6 o e e e e e o o
e & & & o o o o o e o e o e ¥ o o
e e o ¢ o o o o e o o & s e s o o

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .

. .
.o .
. .
. .
. .
. .
. .
. .
. .
..
..
. .
. .
. .
o .
. .
..
SFR

FRE

simulating Non~CMS Operating Environments .
Accass Mathod Support for Non-CMS Operatlng Env1ronments

0S Access Method Support . .

CMS Support for the Virtual Storage Access Method

Creating the DOSCB Chain e e e .
Executing an AMSERV Function . .
DMSAMS -- Method of Operation

Executing a VSAM Function for a VSE User

CMS/D0S SVC Handling . e .

Executing a VSAM Function for an 05 User

DMSVIP Processing . e e e .
Simulate an 0S5 VSAM OPEN e e .
Simulate an 0S5 VSAM CLOSE . .
Completion Processing for 0S5 and
CMS QSAM Tape End-of-Volume Exit
TEOVEXIT Macro e e e e e e e
Standard Format e e e e e
MF=L Format .
MF=(L,addrl, labell) Format
MF=(E,addr) Format . .
Restrictions e e e
Return Codes e e .
SET Function: .
CLR Function: .
Successful Completion
0S Simulation by CMS e o .
TS0 Service Routine Support . .
CMS Simulation of 0S Control Block

e o o o
e o o o

Operating System Simulation Routines

Format of SCB . .

.
.

SE/VSAM Pro

e o o o o o o o

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

TJ e o e o o s o o o o o o

-
c
3

e O o ¢ o o o o o s o o o
e o Uflo o o s o o 0 o e o s o o

t

Command Flow of Commands Involvrng OS Access
0S Access Method Modules--LogngDescrlptlon

Routines Common to All of D

.

Simulating a VSE Environment under CMS e o e

Initializing VSE and Processing VSE System Contro

Commands

DMSSET -- InltlaIIZIng the CMS/DOS Operatlng

Environment .

e ¢ o ¢ o ¢ o o e e o & o o o o o o

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

ram

e 6 & 4 o s o o 6 o o & o o e o o o

e o o & & o o ¢ o o & s e e e o o o

© o o o o o o e e s s e & e o o e e o o e s s e e s e e 4 o

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

Data Areas Prepared for ProceSSIng Durlng CMS/DOS

Initialization . .

Setting or Resetting System Env1ronment Optlons
DMSOPT -- Setting and Resetting Compiler Options
DMSASN -- Associate System or Programmer Logical Unlts

with Physical Units . . .

DMSDAS -- Dynamically Assoc1ated Programmer Loglcal

Units with Physical Units .

DMSLLU -- List the Assignments of CMS/DOS Phy51ca1

Units to Logical Units

DMSDLB -- Associate a DTF Table Fllename wlth a Loglcal

Unit

Process CMS/DOS OPEN and CLOSE Functlons . .
Opening Files Associated With DTF Tables .
Closing Files Associated With DTFs . .
Opening and Closing Files Associated Nlth DIS

Contents of the CMSBAM DCSS . .

.

.

k DTFs

e & & ¢ o o ¢ e e ¢ o ¢ o e e v o o

.

@ o & o o & o o e o o o 0 e s o o s o o

.

.
.
.
.

e e o ¢ o o e o o o o o o

@ ® o o o e e 6 6 ° o e o & e & & & s e e & o & & s o o o s o o]

.
.
.
.
.
.
.

Material--Property of IBM

116
120
120
120
121
122
122
122
122
124
124
125
125
126
127
127
128
128

129
129
129
129
130
130
131
132
132
133
134
134
135
136
137
137
137
138
139
139
140
140
140
141
141
141
141
143
143
148
151
152
157
157

158
158
158
159
159
159
159
160
160
161
161
162

162
163

Contents xv

Licensed Material--Property of IBM

xvi

Process CMS/D0S Execution-Related Control Commands
DMSFET and DMSFCH -- Bring a Phase into Storage for

Execution

DMSDLK -- S1mulate the Functlons of the VSE Linkaga

Editor . « e .
Simulate VSE SVC Functlons . .
Process CMS/D0S Service Commands

.

.

Terminate Processing the CMS/DO0S Envnronmant

Performing Miscellaneous CMS Functions

CMS Batch Facility . . .
General Operation of DMSBTB .
General Operation of DMSBTP

Other CMS Modules Modified in CMS Batch
EXEC 2 and System Product Interpreter Procaess

DMSEXI e e e e e e e e e e e
DMSEXE . e e e e e e
READSUB/READLAB . e e e
Line Execution e e e e e e e
Assignment Processing . o e
DMSREX e e e e e e e . . .

section 3: CMS Directory « o
Module Entry Point Directory . .

section 4: CMS Diagnostic A'ds
Supported Devices e e e e .

DMSFREX Error Codes « o o o
Error Codes from DMSFRES. DMSFREE:

ABEND Codes e o 8 s o s e o o @
Abend Recovery .
Unrecoverable Termlnatlon - The
Appendix A. CMS Macro Library .
Appendix B. CMS/D0OS Macro Library
Appendix C.

Index e o o o o o o o o o s o o

e o o o o

.

and

HALT Option ¢

CMS/D0S Support Modules

e o o o
e o o o

. . .

e @ 6 o o o ae o o o o

e o o o o
e e o o o
e o ¢ o o

DMSFRET

VM/SP System Logic and Problem Determination Guide (CMS)

D RN - IR R)

o o o

e o o o o o

o o o

e ¢ ¢ e ¢ o o o o o o @

@ e o & ¢ o o o o o o 0 e o o

e o o o

e ¢ o o o o o o o o o 0

e« o o o

e & 6 o o o o o o o o o

164
165

165
166
178
178

179
179
179
180
182
182
183
184
186
186
186
188

189
190

211
212

213
213

215
215
216
221
227
229

231

C

FIGURES

e o o o o o

o o o

[
HOWVRONOUVIPAUNH

—

« o o

—
DHUN
o o

15.

16.
17.

18.
19.
20.
21.
22.
23.
24.

25.
26.

27.
28.
29.
30.
31.

32.
33.

Licensed Material--Property of

The VM/SP Library . e e e e
Module Flow for the VM/SP System Product Edltor e e e
File System for an 800-Byte Record on Disk . . o
CMS Storage Map 1 e e e e e e e e e e e e e e e e e
CMS Storage Map 2 e e e e e e e e e e e e e e e . .
CMS Storage Map 3 . e e e e e e e e e e e
Simulated 0S Superv150r Calls e e e e e
An Overview of the Functional Areas of CMS e e e .
Details of CMS System Functions . .

SVC 202 - Contents of High-Order Byte of Reglster 1l
CMS Command (and Request) Proce551ng e e e e e e
PSW Fields when Called Routine is Started .
Register Contents when Called Routine is Started . .
How 800-Byte CMS File Records are Chained Together .
Format of a File Status Table Block - Format of a File
Status Table . . .
Format of the F1rst Chaln Llnk and Nth Chaln Llnks .
Arrangement of Fixed-Length Records and Variable-Length
Records in Files . . e e e e
Structure of the Master Flle Dlrectory e e e
Disk Storage Allocation Using the QMSK Data Block . .
How 512-, 1K-, 2K-, or 4K-Byte CMS File Records are
Chained Together .

Format of a File Status Table Block - Format of a Flle
Status Table . .
Fo;mat of Level 3 P01nter Block Fixed-Length Record
File e e e e e e e e e e e e e
Format of Level 2 Pointer Block Variable-Length Record

e o o o o o o

File e e e e e e e e e e e e e e e e
S]lﬁ System for 512— 1K-, 2K-, or 4K-Byte Record on

is . e e e e e e e e e
Flow of Control for Unxt Record I/O Processing . .

Relationship in Storage between the CMS Interface
Module DMSAMS, the CMSAMS DCSS, and the CMSVSAM DCSS
The Relationship in Storage between the User Program,
the CMSDOS DCSS, and the CMSVSAM DCSS . e . e e .
Relationship in Storage between the User Program. 0S
Simulation and Interface Routines, CMSDOS DCSS, and
CMSVSAM DCSS . e e e e e e e e e
Simulated 0S Superv150r Calls e e e .
CMS Modules Handling SVC Functlons Supported in
CMS/D0S e e .

SVC Support Routlnes and their Operatlon .
Devices Supported by a CMS Virtual Machine
CMS Abend Codes e e e e e e e e e e e

e o o o

e e o o

e e o o
.

IBM

106
131
132
134
142
167
168

212
217

Figures xvii

Licensed Material--Property of IBM

xviii VM/SP System Logic and Problem Detarmination Guide (CMS)

Licensed Material--Property of IBM

This section contains the following information:

Convarsational Monitor Systam (CMS)
Interrupt Handling in CMS
Functional Information

08 Macro Simulation Under CMS

VSE Support Under CMS

Saction 1: Introduction to CMS

1

Licensed Material--Property of IBM

2 VM/SP System Logic and Problem Determination Guide (CMS)

C

| € ERSATIONA

Licensed Material--Property of IBM

ONITOR SYSTEM (C

The Conversational Monitor System (CMS), the major subsystem of
VM/SP, provides a comprehensive set of conversational facilities
to the user. Several copies of CMS may run under CP, thus
providing several users with his own time sharing system. CMS
is designed specifically for the VM/SP virtual machine
environment.

Each copy of CMS supports a single user. This means that the
storage area contains only the data pertaining to that user.
Likewise, each CMS user has his own machine configuration and
his own files. Debugging is simpler because the files and
storage area are protected from other users.

Programs can be debugged from the terminal. The terminal is
used as a printer to examine limited amounts of data. After
examining program data, the terminal user can enter commands on
the terminal that alter the program. This is the most common
method used to debug programs that run in CMS.

CMS, operating with the VM/SP Control Program, is a time sharing
system suitable for problem solving, program development, and
general work. It includes several programming language
processors, file manipulation commands, utilities, and debugging
aids. Additionally, CMS provides facilities to simplify the
operation of other operating systems in a virtual machine
environment when controlled from a remote terminal. For
example, CMS creates and modifies job streams and analyzes
virtual printer output.

Part of thae CMS environment is related to the virtual machine
environment created by CP. Each user is completely isolated
from the activities of all other users, and each machine where
CMS executes has virtual storage available to it and managed for
it. The CP commands are recognized by CMS. For example, the
commands allow messages to be sent to the operator or to other
users and allow virtual devices to be dynamically detached from
the virtual machine configuration.

TJHE _CMS COMMAND LANGUAGE

JHE FILE SYSTEM

The CMS command language offers terminal users a wide range of
functions. It supports a variety of programming languages,
service functions, file manipulation, program execution control,
and general system control. For detailed information on CMS

commands, refer to the YM/SP CMS Command and Macro Reference.

Figure 11 on page 60 describes CMS command processing.

The Conversational Monitor System interfaces with virtual disks,
tapes, and unit record equipment. The CMS residence device is
kept as a read-only, shared, system disk. Permanent user files
may be accessed from up to 25 active disks. CMS controls the
logical access to these virtual disks, while CP facilities
manage the device sharing and virtual-to-real mapping.

User files in CMS are identified with three designators. The
first is filename. The second is filetype. The filetype may
imply specific file characteristics to the CMS file management
routines. The third is filemode. The filemode describes the
location and access moda of the file.

The compilers available under CMS default to particular input

filetypes, such as ASSEMBLE, but the file manipulation and
listing commands do not. Files of a particular filetype form a

Conversational Monitor System (CMS) 3

Licensed Material--Property of IBM

logical data library for a user. For example, the collection of
all COBOL source files, or of all object (TEXT) decks, or of all
EXEC procedures. This allows selective handling of specific
groups of files with minimum input by the user.

User files can be created directly from the terminal with the
VM/SP System Product Editor. The VM/SP System Product Editor
provides extensive context editing services. File
characteristics such as record length, record format, and tab
locations can be specified. The VM/SP System Product Editor
also provides full screen support for 3270 display stations.

The major highlights of this editor include:

. Multiple views of the same or different files

L Selective column viewing

. Automatic wrapping of lines larger than the screen

. Ability to issue selected commands directly from the
displayed line

. Ability to define screen format
. Extended string search functions
. Column pointing for editing within a line

Additionally, the VM/SP System Product Editor provides language
expansions and flexibility through the EXEC 2 processor and the
System Product interpreter. Figure 2 on page 5 describes the
modules that perform the processing for the new editor.

CMS automatically allocates compiler work files at the beginning
of command execution on whichever active disk has the greatest
amount of available space, and then CMS deallocates them at
completion. Compiler object decks and listing files are
normally allocated on the same disk as the input source file or
on the primary read/urite disk, and they are identified by
combining the input filename with the filetypes TEXT and
LISTING. These disk locations may be overridden by the user.

CMS disk files contain records stored on disks as 512-, 800-,
1024-, 2048-, or 4096-byte records. For disks with 800-byte
records a single user file is limited to a maximum of 65,533
records and must reside on one virtual disk. The maximum number
of files is limited by the file management system to 3400. For
disks with 1024-, 2048-, and 4096-byte records, a single user
file is limited to a maximum of 23!-1 CMS blocks and must resida
on one virtual disk. The maximum number of data blocks
available in a variable format file on a 512-byte blocksize
minidisk is about 15 times less than 23!-1. This number is the
maximum number of data blocks that can be accessed by the CMS
file system due to the 5 level tree structure. The maximum
number of files on any one disk is limited by the file
management system to 23'-1. However, the actual number of files
}§11imited by the available disk space and the size of the user
iles.

4% VM/SP System Logic and Problem Determination Guide (CMS)

C

DMSXUP

Upadate
processing

DMSXDS

Read OS
data set

Licensed Material--Property of IBM

DMSXMA <

Macro
Processing
{calls EXEC 2)

DMSXFL

Subcommand
entry point to
STATE/POINT/
READ/WRITE
files in storage

DMSXFC

Editing functions

DMSXFD

e

Editing functions

DMSXST

Storage handling

DMSXCN

Arrange
compound
characters

L -

L
BASIC FUNCTIONS

*Note 1.

*Note 2.

r
|

|

|

|

|

|

|

: * GET
| |
|

|

|

|

|

|

|

|

|

|

|

DMSXIN DMSXBG jea— »| DMsxws
Load; process GET
command options :(nE“I':‘)'I Ioint terminal’s
Set up Defaults characteristics
s
r q
| Filetype |
1 descriptor table §
1 1
I | —— e = -
I 1
DMSXDC +] OMSXSU__le—=s[DMSXIO_ Je—y DMSXSC |
y I . [
Decode Editing " Logical screen
Subcommands Supervisor Terminal 1/0 [handling |
I |
|
4 3 I I
! | DMSXSD |
[~owsxte_] DMSXER I Build logical | |
| [| and physical
| Subcommand | Format error I screens |
| table 1 message |
| [' [
|
R —— DMSXPX |
r——-——-—=-- L .l | |
| Prefix
I DMSXCG DMSXCM DMSXCT | | | subcommena |
| processing |
1| *seeNote1 STACK, CMS, CP *SeeNote2 | |] |
I | | I
| | | DMSXSS |
I | | |
| DMSXGT DMSXPT DMSXHL | | SOS |
| | |
PUT(D) HELP | l |
| o Lo————
|_ SCREEN SUPPORT
' mininlale
| DMSXMC DMSXMD | omsxmL DMSXPO |
| BACKWARD
CFIRST, CLAST, INPUT, ADD, . |
I |cLOCATE, REPLACE, BOTTOM, DOWN,
FORWARD POWERINP |
| |LEFT,RIGHT, CREPLACE, LOCITE NEXT
| SET VERIFY CINSERT roF. UP.FIND ' |
| tfamily |
[|
| DMSXSE DMSXSF DMSXTR DMSXTE |
| |
Second half Second half
| SET of SET EXTRACT of EXTRACT | |
' |
' |
|
| DMSXQR DMSXED DMSXMS DMSXRE |
I |
-QUERY, XEDIT RT RE
| |
SUBCOMMANDS

CDELETE, CHANGE, COMPRESS, COPY, COUNT, COVERLAY, DELETE, DUPLICATE, EXPAND, LOWERCAS,
MERGE, MOVE, OVERLAY, RECOVER, SHIFT, UPPERCAS.

CMSG, CURSOR, EMSG, FILE, LPREFIX, MSG, PFILE, PRESERVE, PSAVE, PURGE, READ, REFRESH, RENUM,
REPEAT, RESET, RESTORE, SAVE, SET POINT, SET SCREEN, SET TERMINAL, TYPE.

Figure 2. Module Flow for the VM/SP System Product Editor

Conversational Monitor System (CMS)

5

Licensed Material--Property of IBM

All CMS disk files are written as 512-, 800-, 1024-, 2048-, or
4096-byte records chained together by a specific master file
entry that is stored in a table called the file directory; a
separate file directory is kept for, and on, each virtual disk.
The data records may be discontiguous, and are allocated and
deallocated automatically. A subset of the file directory
(called the user file directory) is made resident in virtual
storage when the disk directory is made available to CMS. It is
updated on the virtual disk at least once per CMS command if the
status of any file on that disk has been changed.

Virtual disks may be shared by CMS users; the facility is
provided by VM/SP to all virtual machines, although a user
interface is directly available in CMS commands. Specific files
may be spooled between virtual machines to accomplish file
transfer between users. Commands allow such file manipulations
as writing from an entire disk or from a specific disk file to a
tape, printer, punch, or the terminal. Other commands write
from a tape or virtual card reader to disk, rename files, copy
files, and erase files. Special macro libraries and text or
program libraries are provided by CMS, and special commands are
provided to update and use them. CMS files can be written onto
and restored from unlabeled tapes via CMS commands.

Caution: Multiple write access under CMS can produce
unpredictable results.

Problem programs which execute in CMS can create files on
unlabeled tapes in any record and block size; the record format
can be fixed, variable, or undefined. Figure 3 describes the
file system for an 800-byte record on disk. Figure 2% on page
101 shows the file system for 512-, 1lK-, 2K-, and 4K-byte
records on disk.

DMSNUC

DMSNUC Area of Storage : Free Storage
|

AFT

ADT

Disk Storage

| Pointer to
current
| chain link

ADTCLB
Nth

Copy of Chain Link
FSTB AFTDBA

AFTPFST

Mth Data Bik

AFTSECT

ADTA

ADTSECT

ADTB

ADTC
ADTD
ADTE

ADTG
ADTS
ADTY
ADTZ

M+1 Data Blk

M+2 Data Blk
\Data Block M+2

Pointer to current REC1 l REC2
data block

AFT
continued

_/

Data Data Data Data
Block | | Block Block Block

~

FSTB; M M+1 M+2

ADTMFDA | ADTFDA

Header

ADTQQM | ADTMSK

| FSTFCL
°

|

|

|

1 ‘

| There is one FST
QQMSK | FST20 for each file

1

L}

1

|

L}

|

|

|

|

|

|

|

|

l For Read/Write FSTy File Name| File Type '
'— —disksonly — =5 FST I
QMSK r) |

|

|

|

|

|

1

|

|

.Figure 3. File System for an 800-Byte Record on Disk

6 VM/SP System Logic and Problem Determination Guida (CMS)

C

PROGRAM DEVELOPMENT

Licensed Material--Property of IBM

The Conversational Monitor System includes commands to create,
compile, modify, and correct source programs; to build test
files; to execute test programs; and to debug from the terminal.
The commands of CMS are especially useful for 05 and VSE program
development, but the commands also may be used in combination
with other operating systems to provide a virtual machine
program development tool.

CMS utilizes the 0S5 and VSE compilers via interface modules; the
compilers themselves normally are not changed. To provide
suitable interfaces, CMS includes a certain degree of 05 and VSE
simulation. The sequential, direct, and partitioned access
methods are logically simulated; the data records are physically
kept in the chained fixed-length blocks, and they are processed
internally to simulate 0S5 data set characteristics. CMS
supports VSAM catalogs, data spaces, and files on 0S5 and DOS
disks using the Access Method Services portion of VSE/VSAM. 0§
Supervisor Call functions such as GETMAIN/FREEMAIN and TIME are
simulated. The simulation restrictions concerning what types of
0S5 object programs can be executed under CMS are primarily
related to the 05/PCP, MFT, and MVT Indexed Sequential Access
Method (ISAM) and the telecommunications access methods.
Functions related to multitasking in 0S and VSE are ignored by
CMS. For more information, see "0S Macro Simulation under CMS"™
and "VSE Support under CMS."

Conversational Monitor System (CMS) 7

Licensed Material--Property of IBM

8 VM/SP System Logic and Problem Determination Guide (CMS)

C

Licensed Material--Property of IBM

INTERRUPT HANDLING IN CMS

SVC INTERRUPTIONS

CMS receives virtual SVC, input/output, machine, program, and
external interruptions and passes control to the appropriate
handling program.

The Conversational Monitor System is SVC (supervisor call)
driven. SVC interruptions are handled by the DMSITS resident
routines. Two types of SVCs are processed by DMSITS: internal
linkage SVC 202 and 203, and any other SVCs. The internal
linkage SVC is issued by the command and function programs of
the system when they require the services of other CMS programs.
(Commands entered by the user from the terminal are converted to
the internal linkage SVC by DMSINT). The 0S SVCs are issued by
the processing programs (for example, the Assembler).

INTERNAL LINKAGE SVCS

OTHER SVCS

When DMSITS receives control as a result of an internal linkage
SVC (202 or 203), it saves the contents of the general
registers, floating-point registers, and the SVC old PSW,
establishes the normal and error return addresses, and passes
control to the specified routine. (The routine is specified by
the first 8 bytes of the parameter list whose address is passed
igsr?gister 1 for SVC 202 or by a halfword code following SVC
203.

For SVC 202, if the called program is not found in the internal
function table of nucleus (resident) routines, then DMSITS
attempts to call in a module (a CMS file with filetype MODULE)
of this name via the LOADMOD command.

If the program was not found in the function table, nor was a
module successfully loaded, DMSITS returns an error code to the
caller.

To return from the called program, DMSITS restores the calling
program's registers, and makes the appropriate normal or error
return as defined by the calling program.

The general approach taken by DMSITS to process other SVCs
supported under CMS is essentially the same as that taken for
the internal linkage SVCs. However, rather than passing control
to a command or function program, as is the gase with the
internal linkage SVC, DMSITS passes control to the appropriate
routine. The SVC number determines the appropriate routine.

In handling non-CMS SVC calls, DMSITS refers first to a
user-defined SVC table (if one has been set up by the DMSHDS
program). If the user-defined SVC table is present, any SVC
number (other than 202 or 203) is looked for in that table. If
it is found, control is transferred to the routine at the
specified address.

If the SVC number is not found in the user-defined SVC table (or
if the table is nonexistent), DMSITS either transfers control to
the CMSDO0S shared segment (if SETDOS ON has been issued), or the
standard system table (contained in DMSSVT) of 0S calls is
searched for that SVC number. If the SVC number is found,
control is transferred to the corresponding address in the usual
manner. If the SVC is not in either table, then the supervisor
call is treated as an abend call.

Interrupt Handling in CMS 9

Licensed Material--Property of IBM

The DMSHDS initialization program sets up the user-defined SVC
table. It is possible for a user to provide his own SVC
routines.

INPUT/Z0UTPUT INTERRUPTIONS

All input/output interruptions are received by the I/70 interrupt
handler, DMSITI. DMSITI saves the I/0 old PSW and the CSW
(channel status word). It then determines the status and
requirements of the device causing the interruption and passes
control to the routine that processes interruptions from that
device. DMSITI scans the entries in the device table until it
finds the one containing the device address that is the same as
that of the interrupting device. The device table (DEVTAB)
contains an entry for each device in the system. Each entry
for a particular device contains, among other things, the
address of the program that processes interruptions from that
device.

When the appropriate interrupt handling routine completes its
processing, it returns control to DMSITI. At this point, DMSITI
tests the wait bit in the saved I/0 old PSW. If this bit is
off, the interruption was probably caused by a terminal
(asynchronous) 170 operation. DMSITI then returns control to
the interrupted program by loading the I/0 old PSW.

If the wait bit is on, the interruption was probably caused by a
non-terminal (synchronous) I/0 operation. The program that
initiated the operation most likely called the DMSIOW function
routine to wait for a particular type of interruption (usually a
device end). In this case, DMSITI checks the pseudo-wait bit in
the device table entry for the interrupting device. If this bit
is off, the system is waiting for some event other than the
interruption from the interrupting device; DMSITI returns to the
wait ﬁtate bg loading the saved I/70 old PSW. (This PSW has the
wait bit on.

If the pseudo-wait bit is on, the system is waiting for an
interruption from that particular device. If this interruption
is not the one being waited for, DMSITI loads the saved I/0 old
PSW. This will again place the machine in the wait state.
Thus, the program that is waiting for a particular interruption
Wwill be kept waiting until that interruption occurs.

If the interruption is the one being waited for, DMSITI resets
both the pseudo-wait bit in the device table entry and the wait
bit in the 170 old PSW. It then loads that PSW. This causes
control to be returned to the DMSIOW function routine, which, in
turn, returns control to the program that called it to wait for
the interruption.

TERMINAL INTERRUPTIONS

Terminal input/output interruptions are handled by the DMSCIT
module. All interruptions other than those containing device
end, channel end, attention, or unit exception status are
ignored. If device end status is present with attention and a
write CCW was terminated, its buffer is unstacked. An attention
interrupt causes a read to be issued to the terminal, unless
attention exits have been queued via the STAX macro. The
attention exit with the highest priority is given control at
each attention until the queue is exhausted; then a read is
issued. Device end status indicates that the last I/0 operation
has been completed. If the last 1/0 operation was a write, the
line is deleted from the output buffer and the next write, if
any, is started. If the last I/0 operation was a normal read,
the buffer is put on the finished read list and the next
operation is started. If the read is caused by an attention
interrupt, the line is first checked to see if it is an
immediate command (built-in or user-defined). If it is a
user-defined immediate command, control is passed to a user
specified exit, if one exists. Upon completion, the exit

10 VM/SP System Logic and Problem Determination Guide (CMS)

Licensed Material--Property of IBM

raturns to DMSCIT. If it is a built-in immediate command (HX,
for example), appropriate processing is performed by DMSCIT.
Unit exception indicates a canceled read. The read is reissued,
unless it had been issued with ATTREST=NO, in which case unit
exception is treated as device end.

N UPTION

Interruptions from these devices are handled by the routines
that actually issue the corresponding I/0 operations. When an
interruption from any of these devices occurs, control passes to
DMSITI. Then DMSITI passes control to DMSIOW, which returns
control to the routine that issued the 170 operation. This
routine can then analyze the cause of the interruption.

c T UPTION

Interrupts from devices under user control are serviced the same
as CMS devices except that DMSIOW and DMSITI manipulate a
user-created device table, and DMSITI passes control to any
user-written interrupt processing routine that is specified in
the user device table. Otherwise, the processing program regains
control directly.

PROGRAM INTERRUPTIONS

RNA

CHEC

The program interruption handler, DMSITP, receives control when
a program intaerruption occurs. When DMSITP gets control, it
stores the program old PSW and the contents of registers 14, 15,
0, 1, and 2 into the program interruption element (PIE). (The
routine that handles the SPIE macro instruction has already
placed the address of the program interruption control area
(PICA) into PIE.) DMSITP then determines whether or not the
event that caused the interruption was one of those selected by
a SPIE macro instruction. If it was not, DMSITP passes control
to the DMSABN abend recovery routine.

If the cause of the interruption was one of those selected in a

SPIE macro instruction, DMSITP picks up the exit routine address

from the PICA and passes control to the exit routine. Upon

return from the exit routine, DMSITP returns to the interrupted

program by loading the original program check old PSW. The

:gdr:§§ field of the PSW was modified by a SPIE exit routine in
e .

UPTIONS

An external interruption causes control to be passed to the
external interrupt handler DMSITE. If the user has issued the
HNDEXT macro to trap external interrupts, DMSITE passes control
to the user's exit routine. If the interrupt was caused by the
timer, DMSITE resets the timer and types the BLIP character at
the terminal. The standard BLIP timer setting is two seconds,
and the standard BLIP character is uppercase, followed by the
lowercase (it moves the typeball without printing). Otherwise,
control is passed to the DEBUG routine.

RUPTIONS

Hard machine check interruptions on the real processor are not

reflected to a CMS virtual user by CP. A message prints on the
consola indicating the failure. The user is then disabled and

must IPL CMS again in order to continue.

Interrupt Handling in CMS 11

Licensed Material--Property of IBM

12 VM/SP System Logic and Problem Datermination Guide (CMS)

Licensed Material--Property of IBM

Thae most important thing to remember about CMS, from a debugging
standpoint, is that it is a one-usaer system. The supervusor
manages only one user and kaeeps track of only one user's file
and storage chains. Thus, aeverything in a dump of a particular
machine raelates only to that virtual machine's activity.

You should be familiar with register usage, save area
structuring, and control block relationships before attempting
to debug or alter CMS.

REGISTER USAGE

When a CMS routine is called, Rl must point to a valid parameter
list (PLIST) for that program. On return, RO may or may not
contain meaningful information (for example, on return from a
call to FILEDEF with no change, R0 contains a negative address
if a new FCB has been set up; otherwise, it contains a positive
address of the already existing FCB). R15 contains the return
code, if any. The use of registers 0 and 2 through ll varies.
On entry to a command or routine called by SVC 202 the following
are in effect:
Register Contents

0 The address of EPLIST, if available.

1 The address of the PLIST supplied by the caller.

12 The address entry point of the called routine.

13 The address of a work area (12 doublewords) supplied

by SVCINT.

14 The return address to the SVCINT routine.

15 The entry point (same as register 12).
On return from a routine, Register 15 contains:
Return Code Meaning

0 No error occurred

<0 Called routine not found

>0 Error occurred
If a CMS routine is called by an SVC 202, registers 0 through 14
ara saved and restored by CMS.
Most CMS routines use register 12 as a base register.

uc F STORAG

Figura ¢ on page 16 describes how CMS uses its virtual storage.
The pointars indicated (MAINSTRT, MAINHIGH, and FREELOWE) are
all found in NUCON (the nucleus constant area).

DMSFRE handles requests for CMS free storage. The sections of
CMS storage have the following uses:

DMSNUC (X'00000' to X'05000°').
This is the nucleus constant area. It contains pointers,
flags, and other data updated by the various system routines.

Log:gégsgsg DMSFREE User Free Storage Area (X'05000°' to
This area is a free storage area, where user requests to
DMSFREE are allocated.

Functional Information 13

Licensed Material--Property of IBM

Transient Program Area (X'0E000' to X'10000°').
Since it is not essential to keep all nucleus functions
resident in storage all the time, some of them are made
"transient." This means that when they are needed, they are
loaded from the disk into the transient program area. Such
programs may not be longer than two pages, because that is the
size of the transient area. (A page is 4096 bytes of virtual
storage.) All transient routines must be serially reusable
since they are not read in each time they are needed.

Lo;:g%gsgg? DMSFREE Nucleus Free Storage Area (X'10000' to
This area is a free storage area where nucleus requests to
DMSFREE are allocated. The top part of this area contains the
dummy hyperbloks for the S and Y disks. Each block is 48
bytes long. This area may be followed by the file status
tables for the 52 filemode files of the system disk and the Y2
filemode files of the system disk extension.

If the system disk is formatted as 512, 1K, 2K, or 4K blocks,
then each FST is 64 bytes (X'40') long and holds approximately
318 FSTs. If the system disk is formatted in 800-byte blocks,
then each FST is 40 bytes (X'28') long and holds approximately
509 FSTs. If there is enough room, the FREETAB table also
occupies this area, just below the file status tables, if they
are there. Each entry in the FREETAB table is one byte long.
E:ch byte represents one page (4K or 4096 bytes) of defined
storage.

User Program Area (X'20000' to Loader Tables or CMS nucleus,
whichever has the lowest value).
User programs are loaded into this area by the LOAD command.
Storage allocated by means of the GETMAIN macro instruction is
taken from this area, starting from the high address of the
user program. In addition, this storage area can be allocated
from the top down by DMSFREE, if there is not enough storage
available in the low-storage DMSFREE storage area. Thus, the
usable size of the user program area is reduced by the amount
of free storage that has been allocated from it by DMSFREE.

Loader Tables (Top pages of storage).
The top of storage is occupied by the loader tables, which are
required by the CMS loader. These tables indicate the modules
that are currently loaded in the user program area (and the
transient program area after a LOAD command). The size of the
loader tables can be varied by the SET LDRTBLS command.
However, to successfully change the size of the loader tables,
the SET LDRTBLS command must be issued immediately after IPL.

CMS Nucleus (location is a system installation option; suggested
location is (X'70000' - 'X'MB).
These segments contain the reentrant code for the CMS nucleus,
shared copies of the system $-STAT, and the system S-disk and
Y-disk FST tables, respectively. If there is not sufficient
room to contain these tables, the S-STAT is placed in
low-storage DMSFREE Nucleus Free Storage area. The CMS system
is designed to operate as a saved system, shared among all
users of the CMS system. The CMS nucleus code in such a
shared system must be reentrant and may not be modified under
any circumstances.

If the size of the user's virtual machine is defined below the
ending location of the CMS nucleus (refer to label NUCSIGMA in
Figure 5 on page 17), it is not possible to IPL by device name.
This is because the CMS nucleus is too large to be loaded into
the user's virtual storage. Therefore, the user can only IPL by
the system name (such as IPL CMS). The loader table is placed
immediately below the CMS nucleus.

On the other hand, if the size of the user's virtual machine is
defined above the ending location of the CMS nucleus (see
Figure 6 on page 18), the user may IPL by either device name or
system name.

14 VM/SP System Logic and Problem Determination Guide (CMS)

Licensed Material--Property of IBM
IPLing by device name:

The S-STAT, Y-STAT, and the loader table are placed above the
CMS nucleus. If there is not enough room to contain the S-STAT
and Y-STAT above the CMS nucleus (NUCSIGMA), they are placed in
low storage. Likewise, if there is not sufficient room for the
loader table above the CMS nucleus (NUCSIGMA), it is placed
below the nucleus. Any leftover free space above the nucleus is
placed on the high DMSFREE chain.

IPLing by system name:

Tha shared copy of the S-STAT, Y-STAT and the nucleus is used.
The loader table is placed above the S-STAT and Y-STAT
(NUCOMEGA) if there is sufficient room. If there is not
sufficient room to contain the loader table above the S-STAT and
Y-STAT, it is placed below the nucleus. Any leftover free spacae
above the S5-STAT and Y-STAT (NUCOMEGA) is placed on the high
DMSFREE chain.

Functional Information 15

Licensed Material--Property of IBM

VIRTUAL STORAGE

| *x'mB
NUCOMEGA S-STAT and Y-STAT
(Shared)
NUCSIGMA
CMS Nucleus
d, (Shared) ,L
b2} Wn
0S simulation, EXEC, EXEC 2, REXX, XEDIT, CMS
interrupt handlers, file system, free storage management,
loader, device 1/0, debug.
‘X'MB -
X'70000’ = }E! "y
NUCALPHA Storage Key = X'F’ or X'0'
END OF STORAGE
E
vmsiz System Loader Table
(Size determined by set LDRTBLS command)
Storage Key = X'F’
\DMSFREE requests when no more low storage is available
Storage Key = X'E’ or X'F’
FREELOWE —_—e——— — — — — — — — — ——
Unused portion of User Program Area
)
~— -
Storage Key = X'E’ U CONTROL BLOCKS IN FREE STORAGE =y
MAINHIGH —_——_——— —_—— — — — — = — —] ? Pro
GETMAIN requests Area [oece || womst || aer || apT |
Storage Key = X'E’
MAINSTRT | — — — — — —_— — — — —_— ——
The User’s Program lCMSSAV?' | CMSCB—l l FSTB]
(Program is located via the LOAD command)
Storage Key = X'E’,
X'20000°]
Low Storage DMSFREE Nucleus Free Storage
Area. The upper part of this area may contain the
S-STAT and/or the Y-STAT, followed by the
FREETAB, if there is enough room.
X'10000° Storage Key = X'F’
Transient Program Area
Storage Key = X'E’
X'E000" g0 Y
Low Storage DMSFREE User Free Storage Area
X'5000" Storage Key = X'E’
DMSNUC
System Control Blocks, flags constants, and pointers
X0’ Storage Key = X‘F' *

* The page starting at X'4000’ containing OPSECT, SUBSECT,
DBGSECT, DMSERL, TSOBLKS, USERSECT, and free
storage has a Storage Key = X'E’.

Figure 4. CMS Storage Map 1. Storage Map 1 describes CMS virtual storage usage when
the CMS nucleus is larger than the user's virtual storage. In this case,
you must IPL by system name (VMSIZE is less than NUCSIGMA). (The arrous
;ndicatg §hat MAINHIGH is extended upward and FREELOWE is extended

ownward.

16 VM/SP System Logic and Problem Determination Guide (CMS)

Licensed Material--Property of IBM

VIRTUAL STORAGE

VM SIZE I
| 'x'mB S-STATand Y-STAT
NUCOMEGA (Shared — if IPL'd by system name)
NUCSIGMA
CMS Nucleus
(Shared — if IPL'd by system name)
~:OS simulation, EXEC, EXEC 2, REXX, XEDIT, CMS ::
T interrupt handlers, file system, free storage management,
loader, device /0, debug.
Storage Key = X‘F’ or X'0’
‘X'MB-
| x'70000' System Loader Table
NUCALPHA (Size determined by set LDRTBLS command)
Storage Key = X'F’
DMSFREE requests when no more low storage is available
Storage Key = X'E’ or X'F’
FREELOWE P —— ——— — === = = = = — — — —
N Unused portion of User Program Area
-) CONTROL BLOCKS IN FREE STORAGE
U
Storage Key = X'E’ % Prog
MAINHIGH =& ——=— == - =—=————=—=—=="="="-—9 Area | DECB I[iLDRST l [AFT]l ADT]

GETMAIN requests

MAINSTRT f=—m = m— = m = —— = — — Storage Key Z X'E'| |CMSSAVE] rcmsca | | FSTB]
The User’s Program

(Program is located via the LOAD command)

Storage Key = X'E’

X’20000
Low Storage DMSFREE Nucleus Free Storage
Area. The upper part of this area may contain the
S-STAT and/or the Y-STAT, followed by the
FREETAB, if there is enough room.
Storage Key = X'F’
X'10000
Transient Program Area
Storage Key = X'E’
X'EQO0’
Low Storage DMSFREE User Free Storage Area
Storage Key = X'E’
| x'so00’ ®
DMSNUC
System Control Blocks, flags, constants, and pointers
Storage Key = X‘F’ *
X0’ g Y

* The page starting at X'4000’ containing OPSECT,
SUBSECT, DBGSECT, DMSERL, TSOBLKS,
USERSECT, and free storage has a Storage Key =
X'E'.

Figure 5. CMS Storage Map 2. Storage Map 2 describes virtual storage usage when the
user's virtual storage is larger than the CMS nucleus. The user may IPL
by system name or device. In addition, this figure shows where there is
insufficient room to place the system loader table above S-STAT and
Y-STAT. (The arrows indicate that MAINHIGH is extended upward and
FREELOWE is extended downward.)

Functional Information 17

Licensed Material--Property of IBM

VIRTUAL STORAGE

VM SIZE
System Loader Table
(Size determined by set LDRTBLS command)
Storage Key = X'F’
DMSFREE requests
I X'MB Storage Key = X'E’ or X'F' [ik
NUCOMEGA 1
S-STAT and Y-STAT
(Shared — if IPL’d by system name)
NUCSIGMA
CMS Nucleus
L (Shared — if IPL'd by system name)

S~ 0S simulation, EXEC, EXEC 2, REXX, XEDIT, CMS dun
interrupt handlers, file system, free storage management,
loader, device 1/0, debug.

X'MB- Storage Key = X'F’ or X'0’
X‘70000" |

NUCALPHA DMSFREE requests when no more low storage is available
St e Key = X'E’ or X'F' |§
FREELOWE S { Mg At AT
Unused portion of User Program Area

~ ~

{L
7’

Storage Key = X'E’ CONTROL BLOCKS IN FREE STORAGE
MAINHIGH bt — = — e - e e

GETMAIN requests

[DECB Il LDRST] [' AFT I | ADT |

Storage Key = X‘E’
MAINSTRT pr— —— — — — = — — = = = = = = — = —

The User’s Program
(Program is located via the LOAD command)

[CMSSAVEII CMSCle FSTB |

Storage Key = X'E’

X'20000’
Low Storage DMSFREE Nucleus Free Storage
Area. The upper part of this area may contain the
S-STAT and/or the Y-STAT, followed by the
FREETARB, if there is enough room.
Storage Key = X'F’
X*10000° S
Transient Program Area
X'E000’ Storage Key = X'E’
Low Storage DMSFREE User Free Storage Area
St Key = X'E’
| x*5000° OFgR N,
DMSNUC
System Control Blocks, flags, constants, and pointers
Storage Key = X'F’ *
X'0’

* The page starting at X'4000° containing OPSECT,

SUBSECT, DBGSECT, DMSERL, TSOBLKS,
USERSECT, and free storage has a Storage Key =
X'E'.

Figure 6. CMS Storage Map 3. Storage Map 3 describes CMS virtual storage usage when
the user's virtual storage is larger than the CMS nucleus. The user may
IPL by system name or device. In addition, this figure shows where there
is sufficient storage to place the system loader table above S-STAT and
Y-STAT. (The arrows indicate that MAINHIGH is extended upward and
FREELOWE is extended downward.)

18 VM/SP System Logic and Problem Determination Guide (CMS)

C

STRUCTURE OF DMSNUC

USERSECT (USER AREA)

Licensed Material--Property of IBM

DMSNUC is the portion of storage in a CMS virtual machine that
contains system control blocks, flags, constants, and pointers.

The CSECTs in DMSNUC contain only symbolic references. This
means that an update or modification to CMS, which changes a
CSECT in DMSNUC, does not automatically force all CMS modules to
be recompiled. Only those modules that refer to the area that
was redefined must be recompiled.

The USERSECT CSECT defines space that is not used by CMS. A
modification or update to CMS can use the 18 fullwords defined
for USERSECT. There is a pointer (AUSER) in the NUCON area to
the user space.

DEVTAB (DEVICE TABLE)

The DEVTAB CSECT is a table describing the devices available for
the CMS system. Thae table contains the following entries:

1 console
26 disks

1 reader

1 punch

1 printer

4 tapes

You can change some existing entries in DEVTAB. Each device
table entry contains the following information:

Virtual device address

Device flags

Device types

Symbol device name

Address of the interrupt processing routine (for the
console)

e 0000

The virtual address of the console is defined at IPL time. The
virtual address of the user disks can be altered dynamically
with the ACCESS command. The virtual address of the tapes can
be altered in the device table. Changing the virtual address of
the reader, printer, or punch has no effect.

CMS INTERFACE FOR DISPLAY TERMINALS

CMS has an interface that allows it to display large amounts of
data in a very rapid fashion. This interface for 3270 display
terminals (also 3138, 3148, and 3158) is much faster and has
less overhead than the normal write because it displays up to
1760 characters in one operation, instead of issuing 22
individual writes of 80 characters each (that is one uwrite per
line on a display terminal). Data that is displayed in the
screen output area with this interface is not placed in the
console spool file.

The DISPW macro allows you to use this display terminal
interface. It generates a calling sequence for the CMS display
terminal interface module, DMSGIO. DMSGIO creates a channel
program and issues a DIAGNOSE instruction (Code X'58') to
display the data. DMSGIO is a TEXT file that must be loaded to
use DISPW. (It is advisable for the user to save registers
before issuing the DISPW macro and to restore them after the
macro, because neither the macro nor its called modules save the
user's registers.)

Functional Information 19

Licensed Material--Property of IBM

20

The format of the CMS DISPW macro is:

[labell DISPW

2 LINE=0 2BYTES=1760
[,ERASE=YES] [,CANCEL=YES]

bufad [,LINE=n] [yBYTES=bbbb

where:

label
is an optional macro statement label.

bufad

is the address of a buffer containing the data to be
written to the display terminal.

LINE=n
LINE=O

is the number of the line, 0 to 23, on the display terminal
that is to be written. Line number 0 is the default.

BYTES=bbbb
BYTES=1760
is thae number of bytes (0 to 1760) to be written on tha
display terminal. 1760 bytes is tha default.

[ERASE=YES]
specifies that the display screen is to be erased before
the current data is written. The screen is erased
regardless of the line or number of bytes to be displayed.
Specifying ERASE=YES causes the screen to go into "MORE"
status.

[CANCEL=YES]

causes the CANCEL operation to be performed: the output
area is erased.

VM/SP System Logic and Problem Determination Guide (CMS)

C

os 0 N

Licensed Material--Property of IBM
NDE'

When a language processor or a user-written program is executing
in the CMS environment and using 0S-type functions, it is not
executing 0S code. Instead, CMS provides routines that simulate
the 0S functions required to support 0S5 language processors and
their generated object code.

CMS functionally simulates the 0S macros in a way that presents
equivalent results to programs executing under CMS. The 0S
macros are supported only to the extent stated in the
publications for the supported language processors, and than
only to the extent necessary to successfully satisfy the
specific requirement of the supervisory function.

Figure 7 on page 22 shows the 0S macro functions that are
partially or completely simulated, as defined by SVC number.

0S_DATA MANAGEMENT SIMULATION

HANDLING FILES THAT

HANDLING FILES THAT

The disk format and data base organization of CMS are different
from thosa of 0S. A CMS file produced by an 0S program running
under CMS and written on a CMS disk has a different format from
that of an 0S data set produced by the same 0S program running
under 0S5 and written on an 0S disk. The data is exactly the
same, but its format is different. (An 0S disk is formatted by
an 0S program, such as Device Support Facility.)

RESIDE ON CMS DISKS

CMS can read, write, or update any 0S5 data that resides on a CMS
disk. By simulating 0S macros, CMS simulates the following
access mathods so that 0S data organized by these access methods
can raeside on CMS disks:

direct identifying a record by a key or by its relative
position within the data set.

partitionaed seeking a named member within the data set.

sequential accessing a racord in a sequence in relation to
preceding or following items in the data set.

Refar to Figure 7 on page 22 and the "Simulation Notes,™ then
re:g "Accass Method Support™ to see how CMS handles these access
methods.

Since CMS does not simulate the indexed sequential access method
(ISAM), no 0S program that uses ISAM can execute under CMS.
Therefore, no program can write an indexed sequential data set
on a CMS disk.

RESIDE ON 0S OR DOS DISKS

By simulating 0S macros, CMS can read, but not write or update,
0S sequential and partitioned data sets that reside on 0S disks.
Using the same simulated 0S macros, CMS can read DOS sequential
files that reside on D0S disks. The 05 macros handle the DOS
data as if it were 0S data. Thus, a D0S sequential file can be
used as input to an 0S program running under CMS.

However, an 0S sequential or partitioned data set that resides
on an 0S5 disk can bae written or updated only by an 05 program
running in a real 0S machine.

CMS can execute programs that read and write VSAM files from 0S
programs written in the VS BASIC, COBOL, or PL/I programming

0S Macro Simulation Under CMS 21

Licensed Material--Property of IBM

22 VM/SP System Logic and Problem

languages.

DOS/VSE.
Macro

XDAP
WAIT
POST
EXIT
RETURN
GETMAIN
FREEMAIN
GETPOOL
FREEPOOL
LINK
XCTL

LOAD
DELETE
FREEMAIN
GETMAIN
TIME
ABEND
SPIE

RESTORE
BLDL

FIND
OPEN
CLOSE
STOW
OPENJ
TCLOSE
DEVTYPE
TRKBAL
FEOV
WTO/WTOR
EXTRACT
IDENTIFY
ATTACH
CHAP
TTIMER
STIMER
DEQ

SNAP

ENQ
FREEDBUF
STAE

DETACH
CHKPT
RDJFCB
SYNAD
SYNADAF
SYNADRLS
BSP

DCB
DCBD
SAVE
RETURN
GET

PUT
READ
WRITE
NOTE

Figure 7 (Part

SVC No.

00
01
02
03
03
04
05

06
07

Function

Reads or writes direct access volumes
Waits for an I/0 completion

Posts the I/0 completion

Returns from a called phase

Returns from a called phase
Conditionally acquire user storage
Releases user-acquired storage

This CMS support is based on the DOS/VSE Access
Method Services and VSE/VSAM, and,
limited to those VSAM functions that are available under

therefore,

Simulates as SVC 10
Simulates as SVC 10

Links control to another phase
then links control to another load

Deletes,
phase

Reads a phase into storage
Deletes a loaded phase
Manipulates user free storage
Manipulates user free storage

Gets the time of day
Terminates processing

Allow processing program to handle program
interrupts

Effective NOP

Builds a directory list for a partitioned

data set

Locates a member of a partitioned data set
Activates a
Deactivates
Manipulates
Activates a
Temporarily

data file

a data file
partitioned directories

data file

deactivates a data file
Obtains device-type physical characteristics

Effective NOP

Sets forced EOV error code
Communicates with the terminal

Effective NOP

Adds entry to loader table

Effective LINK
Effective NOP

Accesses or cancels timer
Sets timer interval and timer exit routine

Effective NOP

Dumps specified areas of storage

Effective NOP

Releases a free storage buffer
Allows processing program to decipher abend
conditions

Effective NOP
Effective NOP

Obtains information from FILEDEF command
Handles data set error conditions
Provides SYNAD analysis function
Releases SYNADAF message and save areas
Backs up a record on a tape or disk
Constructs a data control block
Generates a DSECT for a data control block
Saves program registers

Returns from a subroutine

Reads system-blocked data (QSAM)

Writes system-blocked data (QSAM)
Accesses system-record data

Writes system-record data

Manages data set positioning

1 of 2).

Simulated 0S5 Supervisor Calls

Determination Guide (CMS)

the 0S user is

J

<

SIMULATION NOTES

Licensed Material--Property of IBM

Macro SVC No. Function

POINT - Manages data set positioning
CHECK - Verifies READ/WRITE completion
TGET/TPUT 93 Reads or writes a terminal line
TCLEARQ 94 Clears terminal input queue
STAX 96 Creates an attention exit block
PGRLSE 112 Releases storage contents

Figure 7 (Part 2 of 2). Simulated 0S Supervisor Calls

Because CMS has its own file system and is a single-user system
operating in a virtual machine with virtual storage, there are
certain restrictions for the simulated 0S5 function in CMS. For
example, HIARCHY options and options that are used only by 0S
multitasking systems are ignored by CMS.

Due to the design of the CMS loader, an XCTL from the explicitly
loaded phase, followed by a LINK by succeeding phases, may cause
unpredictable results.

Listed below are descriptions of all the 05 macro functions that
are simulated by CMS as seen by the programmer. Implementation
and program results that differ from those given in IBM 0S Data
Management Macro Instructions and IBM 0S Supervisor Services and
Macro Instructions are stated. HIARCHY options and those used
only by 0S multi-tasking systems are ignored by CMS. Validity
checking is not performed within the simulation routines. The
entry point name in LINK, XCTL, and LOAD (SVC 6, 7, 8) must be a
member name or alias in a LOADLIB directory or in a TXTLIB
directory unless the COMPSWT is set to on. If the COMPSWT is
on, SVC 6, 7, and 8 must specify a module name. This switch is
turned on and off by using the COMPSWT macro. See the VM/SP_CMS
Command and Macro Reference for descriptions of all CMS user

macros.

XDAP-SVC 0
The TYPE option must be R or W; the V, I, and K options are
not supported. The BLKREF-ADDR must point to an item
number acquired by a NOTE macro. Other options associated
with V, I, or K are not supported.

WAIT-SVC 1
All options of WAIT are supported. The WAIT routine waits
for the completion bit to be set in the specified ECBs.

POST-SVC 2
All options of POST are supported. POST sets a completion
code and a completion bit in the specified ECB.

EXIT/RETURN-SVC 3
Depending upon whether this is an exit or return from a
linked or an attached routine, SVC 3 processing does the
following: posts ECBs, executes end of task routines,
releases phase storage, unchains and frees the latest
request block, and restores registers. Do not use
EXIT/RETURN to exit from an explicitly LOADed phase. If
EziT/RETURN is used for this purpose, CMS issues abend code

GETMAIN-SVC 4
All options of GETMAIN are supported except SP, BNDRY=,
HIARCHY, LC, and LV. SP, BNDRY=, and HIARCHY are ignored
by CMS. LC and LV, result in abnormal termination if they
are used. GETMAIN gets blocks of free storage.

0S Macro Simulation Under CMS 23

Licensed Material--Property of IBM

FREEMAIN-SVC 5
All options of FREEMAIN are supported except SP, which is
ignored by CMS, and L, which results in abnormal
termination if used. FREEMAIN frees blocks of storage)
acquired by GETMAIN.

LINK-SVC 6
The DCB and HIARCHY options are ignored by CMS. All other
options of LINK are supported. LINK loads the specified
program into storage (if necessary) and passes control to
the specified entry point.

XCTL-SVC 7
The DCB and HIARCHY options are ignored by CMS. All other
options of XCTL are supported. XCTL loads the specified
program into storage (if necessary) and passes control to
the specified entry point.

LOAD-SVC 8
The DCB and HIARCHY options are ignored by CMS. All other
options of LOAD are supported. LOAD loads the specified
program into storage (if necessary) and returns the address
of the specified entry point in register zero. If loading
a subroutine is required when SVC 8 is issued, CMS searches
directories for a TXTLIB member containing the entry point
or for a TEXT file with a matching filename. An entry name
in an unloaded TEXT file will not be found unless the
filename matches the entry name. After the subroutine is
loaded, CMS attempts to resolve external references within
the subroutine, and may return another entry point address.
To insure a correct address in register 0, the user should
bring such subroutines into storage either by the CMS
LOAD/INCLUDE commands or by a VCON in the usaer program.

GETPOOL/FREEPOOL
All the options of GETPOOL and FREEPOOL are supported.
GETPOOL constructs a buffer pool and stores the address of
a buffer pool control block in the DCB. FREEPOOL frees a)
buffer pool constructed by GETPOOL.

DELETE-SVC 9
All the options of DELETE are supported. DELETE decreases
the use count by one and, if the result is zero, frees the
corresponding virtual storage. Code 4 is returned in
register 15 if the phase is not found.

GETMAIN/FREEMAIN-SVC 10
All the options of GETMAIN and FREEMAIN are supported
except SP and HIARCHY, which are ignored by CMS.

TIME-SVC 11
CMS supports the DEC, BIN, TU, and MIC parameters of the
TIME macro. TIME returns the time of day to the calling
program. However, the time value that CMS returns is only
accurate to the nearest second and is converted to the
proper unit.

ABEND-SVC 13
The completion code parameter is supported. The DUMP
parameter is not. If a STAE request is outstanding,
control is given to the proper STAE routine. If a STAE
routine is not outstanding, a message indicating that an
abend has occurred is printed on the terminal along with
the completion code.

SPIE-SVC 14
All the options of SPIE are supported. The SPIE routine
specifies interruption exit routines and program
int:rrgption types that cause the exit routine to receive
control.

RESTORE-SVC 17 J
The RESTORE routine in CMS is a NOP. It returns control to
the user.

4 VM/SP System Logic and Problem Determination Guide (CMS)

Licensed Material--Property of IBM

BLDL-SVC 18
BLDL is an effective NOP for LINKLIBs and JOBLIBs. For
TXTLIBs and MACLIBs, item numbers are filled in the TTR
field of the BLDL list. The K, Z, and user data fields, as
described in IBM 0S5/VS Data Management Macro Instructions,
are set to zeros. The "alias" bit of the C field is
supported, and the remaining bits in the C field are set to
zero.

FIND-SVC 18
All the options of FIND are supported. FIND sets the
reag/write pointer to the item number of the specified
member.

STOW-SVC 21
All the options of STOW are supported. The "alias"™ bit is
supported, but the user data field is not stored in the
150%58 directory since CMS MACLIBs do not contain user data
ields.

OPEN/OPENJ-SVC 19722
All the options of OPEN and OPENJ are supported except for
the DISP, EXTEND, and RDBACK options, which are ignored.
OPEN creates a CMSCB (if necessary), completes the DCB, and
merges necessary fields of the DCB and CMSCB.

CLOSE/TCLOSE-SVC 20723
All the options of CLOSE and TCLOSE are supported except
for the DISP option, which is ignored. The DCB is restored
to its condition before OPEN. If the device type is disk,
the file is closed. If the device type is tape, the REREAD
option is treated as a REWIND. For TCLOSE, the REREAD
option is REWIND, followed by a forward space file for
tapes with standard labels.

DEVTYPE-SVC 24
With the exception of the RPS option, which CMS ignores,
CMS accepts all options of the DEVTYPE macro instruction.
In supporting this macro instruction, CMS groups all
devices of a particular type into the same class. For
example, all printers are grouped into the printer class,
all tape drives into the tape drive class, and so forth.
In response to the DEVTYPE macro instruction, CMS provides
the same device characteristics for all devices in a
particular class. Thus, all devices in a particular class
appear to be the same device type.

The device type characteristics CMS returns for each class

are:
Device
Class Characteristics
Printer 1403
Card reader 2540
Console 1052
Tape drive 2400 (9 track)
DASD 2314
Card punch 2540
DUMMY 2314
unassigned 2314

FEOV-SVC 31
Control is returned to CMS with an error code of & in
register 15.

WTO0/WTOR-SVC 35
All options of WT0 and WTOR are supported except those
options concerned with multiple console support. WTO
displays a message at the operator's console. WTOR
displays a message at the operator's console, waits for a
reply, moves the reply to the specified area, sets a
completion bit in the specified ECB, and returns. There is

0S Macro Simulation Under CMS 25

Licensed Material--Property of IBM

no check made to determine if the operator provides a reply
that is too long. The reply length parameter of the WTOR

macro instruction specifies the maximum length of the
reply. The WTOR macro instruction reads only this amount)
of data.

EXTRACT-SVC 40
The EXTRACT routine in CMS is essentially a NOP. The
user-provided answer area is set to zeros and control is

returned to the user with a return code of 4 in register
15.

IDENTIFY-SVC 41
The IDENTIFY routine in CMS adds a REQUEST block to the
load request chain for the requested name and address.

ATTACH-SVC 42

All the options of ATTACH are supported in CMS as in 0S
PCP. The following options are ignored by CMS: DCB, LPMOD,
DPMOD, HIARCHY, GSPV, GSPL, SHSPV, SHSPL, SZERO, PURGE,
ASYNCH, and TASKLIB. ATTACH passes control to the routine
specified, fills in an ECB completion bit if an ECB is
specified, passes control to an exit routine if one is
specified, and returns control to the instruction following
the ATTACH.

Since CMS is not a multi-tasking system, a phase requested
by the ATTACH macro must return to CMS.

CHAP-SVC 44
The CHAP routine in CMS is a NOP. It returns control to
the user.

TTIMER-SVC 46
All the options of TTIMER are supported.

STIMER-SVC 47
All options of STIMER are supported except for TASK and)

WAIT. The TASK option is treated as if the REAL option had

been specified, and the WAIT option is treated as a NOP; it

returns control to the user. The maximum time interval

allowed is X'7FFFFF00' timer units (X'0055555%4' in binary,

or 15 hours, 32 minutes, and 4 seconds in decimal). If the

time interval is greater than the maximum, it is set to the

maximum. If running in the CMSBATCH environment, issuing

the STIMER or TTIMER macro will affect the CMSBATCH time

limit. Depending on the frequency, number, and duration of

STIMER and/or TTIMER issued, the CMSBATCH time limit may

never expire.

DEQ-SVC 48
The DEQ routine in CMS is a NOP. It returns control to the
user.

SNAP-SVC 51

Except for SDATA, PDATA, and DCB, all options of the SNAP
macro are processed normally. SDATA and PDATA are ignored.
Processing for the DCB option is as follows. The DBC
address specified with SNAP is used to verify that the file
associated with the DCB is open. If it is not open,
control is returned to the caller with a return code of 4.
If the fila is open, then storage is dumped (unless the FCB
indicates a DUMMY device type). SNAP always dumps output
to the printer. The dump contains the PSW, the registers,
and the storage specified.

ENQ-SVC 56
The ENQ routine in CMS is a NOP. It returns control to tha
user.
FREEDBUF-SVC 57
All the options of FREEDBUF are supported. FREEDBUF ,

returns a buffer to the buffaer pool assigned to the
specified DCB.

26 VM/SP System Logic and Problem Determination Guide (CMS)

Licensed Material--Property of IBM

STAE-SVC 60
All the options of STAE are supported except for the XCTL
option, which is set to XCTL=YES; the PURGE option, which
is set to HALT; and the ASYNCH option, which is set to NO.
STAE creates, overlays, or cancels a STAE control block as
requested. STAE retry is not supported.

DETACH-SVC 62

The DETACH routine in CMS is a NOP. It returns control to
the user.

CHKPT-SVC 63

The CHKPT routine is a NOP. It returns control to the
user.

RDJFCB-SVC 64
All the options of RDJFCB are supported. RDJFCB causes a
Job File Control Block (JFCB) to be read from a CMS Control
Block (CMSCB) into real storage for each data control block
specified. FILEDEF commands create CMSCBs.

For additional information, see section "0S Simulation by
CMS. ™

SYNADAF-SVC 68
All the options of SYNADAF are supported. SYNADAF analyzes
an I/0 error and creates an error message in a work buffer.

SYNADRLS-SVC 68
All the options of SYNADRLS are supported. SYNADRLS frees
the work area acquired by SYNAD and deletes the work area
from the save area chain.

BSP-SVC 69

All the options of BSP are supported. BSP decrements the
item pointer by one block.

TGET/TPUT-SVC 93
TGET and TPUT operate as if EDIT and WAIT were coded. TGET
reads a terminal line. TPUT writes a terminal line.

TCLEARQ-SVC 94

TCLEARQ in CMS clears the input terminal queue and returns
control to the user.

STAX-SVC 96
The only option of the STAX that is supported is EXIT
ADDRESS. Updates a queue of CMTAXEs each of which defines
an attention exit level.

PGRLSE-SVC 112

Release all complete pages (4K bytes) associated with the
area of storage specified.

NOTE
All the options of NOTE are supported. NOTE returns the
item number of the last block read or written.

POINT
All the options of POINT are supported. POINT causes the
control program to start processing the next read or write
operation at the specified item number. The TTR field in
the block address is used as an item number.

CHECK
All the options of CHECK are supported. CHECK tests the
I/0 operation for errors and exceptional conditions.

DCB

The following fields of a DCB may be specified relative to
the particular access method indicated:

0S Macro Simulation Under CMS 27

Ooperand

BFALN
BLKSIZE
BUFCB
BUFL
BUFNO
DDNAME

Licensed Material--Property of IBM

BDAM

F,D
n(number)
a(address)
n

n
s(symbol)

BPAM

-

o

BSAM

-
o

QSAM

Y
o

DSORG
EODAD
EXLST
KEYLEN?
LIMCT
LRECL
MACRF
OPTCD
RECFM
SYNAD
NCP

o
w
(7]

-
< =

-
(=
-
< =
-
= v

»S,A,M,U

-
-

’

I TMEO®I | Y TUII®ITN

leM>»N 1339 10
>
SoMIAI I 1Y VUIIHITN

SO TMCAS IJPYVUISIHIN

ACCESS METHOD SUPPORT

An access method governs the manipulation of data. To facilate
the execution of 0S5 code under CMS, the processing program must
see data as 05 would present it. For instance, when the
processors expect an access method to acquire input source cards
sequentially, CMS invokes specially written routines that
simulate the 0S5 sequential access method and pass data to the
processors in the format that the 0S5 access methods would have
produced. Therefore, data appears in storage as if it had been
manipulated using an 0S5 access method. For example, block
descriptor words (BDW), buffer pool management, and variable
records are updated in storage as if an 0S5 access method had
processed the data. The actual writing to and reading from the
I/0 device is handled by CMS file management. Note that the
character string X'61FFFF6l' is interpreted by CMS as an end of
file indicator.

The essential work of the volume table of contents (VTOC) and
the data set control block (DSCB) is done in CMS by a master
file directory (MFD), which updates the disk contents, and a
file status table (FST) (one for each data file). All disks are
formatted in physical blocks of 512, 800, 1K, 2K, or 4K bytes.

CMS continues to update the 0S5 format, within its own format, on
the auxiliary device for files whose filemode number is 4. That
is, the block and record descriptor words (BDW and RDW) are
written along with the data. If a data set consists of blocked
records, the data is written to and read from the I/0 device in
physical blocks rather than logical records. CMS also simulates
the specific methods of manipulating data sets.

To accomplish this simulation, CMS supports certain essential
macros for the following access methods:

BDAM (direct) -- identifying a record by a key or by its
relative position within the data set.

BPAM (partitioned) -- seeking a named member within data
set.

BSAM/QSAM (sequential) -- accessing a record in a sequence in
relation to preceding or following records.

1 If an input data set is not a BDAM data set, zero is the

only value that should be specified for KEYLEN. This
applies to the user exit lists as well as to the DCB macro
instruction.

28 VM/SP System Logic and Problem Determination Guide (CMS)

Licensed Material--Property of IBM

VSAM (diract or sequential) -- accessing a record
sequentially or directly by key or address.

Note: CMS support of 0S5 VSAM files is based on
VSE/VSAM. See "CMS Support for 0S and D0OS VSE/VSAM
Functions" under "VSE Support Under CMS"™ for datails.

CMS also updates those portions of the 0S control blocks that
are needed by the 0S5 simulation routines to support a program
during execution. Most of the simulated supervisory 0S control
blocks are contained in the following two CMS control blocks:

CMSCVT simulates the communication vector table. Location 16
contains the address of the CVT control section.

CMSCB is allocated from system free storage whenever a FILEDEF
command or an OPEN (SVC 19) is issued for a data set.
The CMS Control Block consists of a file control block
(FCB) for the data file and partial simulation of the
job file control block (JFCB), input/output block (IOB),
and data extent block (DEB).

The data control block (DCB) and the data event control block
(DECB) are used by the access method simulation routines of CMS.

Note: The results may be unpredictable if two DCBs access the
same data set at the same time.

The GET and PUT macros are not supported for use with spanned
records, except in GET locate mode. READ, WRITE and GET (in
locate mode) are supported for spanned records, provided the
;ilam:de number is 4, and the data set is in physical sequential
ormat.

GET (QSAM)
All the QSAM options of GET are supported. Substitute mode
is handled the same as move mode. For CMS files, when the
DCBRECFM is FB, the filemode number is 4, the last block is
a short block, and an EOF indicator (X'61FFFF61') must be
present in the last block after the last record.

GET (QISAM)
QISAM is not supported in CMS.

PUT (QSAM)
All the QSAM options of PUT are supported. Substitute mode
is handled the same as move mode. If the DCBRECFM is FB,
the filemode number is 4, and the last block is a short
block. An EOF indicator is written in the last block after
the last record.

PUT (QISAM)
QISAM is not supported in CMS.

PUTX
PUTX support is provided only for data sets opened for
QSAM-UPDATE with simple buffering.

READ/WRITE (BISAM)
BISAM is not supported in CMS.

READ/WRITE (BSAM and BPAM)
All the BSAM and BPAM options of READ and WRITE are
supported except for the SE option (read backwards).

READ (Offset Read of Keyved BDAM dataset)
This type of READ is not supported because it is used only
for spanned records.

READ/WRITE (BDAM)
All the BDAM and BSAM (create) options of READ and WRITE
are supported except for the R and RU options.

0S5 Macro Simulation Under CMS 29

Licensed Material--Property of IBM

BDAM Restrictions

When an input or output error occurs, do not depend on 0S senseae
bytes. An error code is supplied by CMS in the ECB in place of
the sense bytes. These error codes differ for various types of
devices and their meaning can be found in the VM/SP System
Messages and Codes, under DMS message 120S.

Note: If OPTCD J is specified in the FILEDEF command, the
proper flag is set in the JFCOPTCD byte of the FCBSECT
(simulated 0S control block). During simulation of the 0S5 OPEN
macro, the FILEDEF value will be merged into DCBOPTCD. After
DCBOPTCD is set, the first data byte of output lines presented
to the PUT (QSAM) and WRITE (BSAM) macros is interpraeted as a
table reference character (TRC) byte. CP uses the TRC byte to
select translate tables when printing on a 3800. The translate
table determines the font type at real print time. If the
virtual printer is not a 3800, the TRC byte is stripped off and
the line is printed in the usual manner.

The four methods of accessing BDAM records are:

Relative Block RRR

Relative Track TIR

Relative Track and Key ITKey
Actual Address MBBCCHHR

DHUHUN-

The restrictions on these access methods are as follows:

L Only the BDAM identifiers underlined above can be used to
refer to records, since the CMS simulation of BDAM files
uses a three-byte record identifier on 512, 1K, 2K, and 4K
format CMS minidisks. For 800-byte disks, only the last two
identifiers are used.

. CMS BDAM files are always created with 255 records on the
first logical track, and 256 records on all other logical
tracks, regardless of the block size. If BDAM methods 2, 3,
or & are used and the RECFM is U or V, the BDAM user must
either write 255 records on the first track and 256 records
on every track thereafter, or they must not update the track
indicator until a NO SPACE FOUND message is returned on a
write. For method 3 (WRITE ADD), this message occurs when
no more dummy records can be found on a WRITE request. For
methods 2 and 4, this does not occur, and the track
indicator is updated only when the record indicator reaches
256 and overflows into the track indicator.

. Two files of the same filetype, which use keys, cannot be
open at the same time. If a program that is updating keys
does not close the file it is updating, for example because
of a system failure or another IPL operation, the original
keys for files that are not fixed format are saved in a
temporary file with the same filetype and a filename of
SKEYSAVE. To finish the update, run the program again.

. Once a file is created using keys, additions to the file
must not be made without using keys and specifying the
original length.

. The number of records in the data set extent must be
specified using the FILEDEF command. The default size is 50
records.

. The minimum LRECL for a CMS BDAM file with keys is eight
bytes.

30 VM/SP System Logic and Problem Determination Guide (CMS)

C

\

Licensed Material~--Property of IBM

READING 0S DATA SETS AND DOS FILES USING 0S MACROS

The ACCESS Command

The FILEDEF Command

CMS users can read 0S5 sequential and partitioned data sets that
reside on 0S disks. The CMS MOVEFILE command can be used to
manipulate those data sets, and the 0S5 QSAM, BPAM, and BSAM
macros can be executed under CMS to read them.

The CMS MOVEFILE command and the same 0S macros can also be used
to manipulate and read D0S sequential files that reside on DO0S
disks. The 0S5 macros handle the D0S data as if it were 0S data.

The following 0S5 Release 20.0 BSAM, BPAM, and QSAM macros can be
used with CMS to read 0S5 data sets and D0S files:

BLDL ENQ RDJFCB
BSP FIND READ
CHECK GET SYNADAF
CLOSE NOTE SYNADRLS
DEQ POINT WAIT

DEVTYPE POST

CMS supports the following disk formats for the 0S and 0S/VS
sequential and partitioned access methods:

Split cylinders
User labels
Track overflow
Alternate tracks

As in 0S5, the CMS support of the BSP macro produces a return
code of 4 when attempting to backspace over a tape mark or when
a beginning of an extent is found on an 0S data set or a VSE
file. If the data set or data file contains split cvlinders, an
attempt to backspace within an extent, resulting in a cylinder
switch, also produces a return code of 4.

Baefore CMS can read an 0S5 data set or VSE file that resides on a
non-CMS disk, you must issue the CMS ACCESS command to make the
disk available to CMS.

The format of the ACCESS command is:

ACCESS cuu model/ext]

You must not specify options or file identification when
accessing an 05 or DOS disk.

You then issue the FILEDEF command to assign a CMS file
identification to the 0S5 data set or VSE file so that CMS can
read it.

0S Macro Simulation Under CMS 31

Licensed Material--Property of IBM

The format of the FILEDEF command used for this purpose is:

FllLedef - "9)
(\

DISK |fn ft fm
FILE ddname |Al
or
ddname . |
nn }
* DISK fn ft fm DSN ?
FILE ddname Al DSN quall qual2 ... }
DSN quall.qual2 ...
\ DUMMY }

Related Option:
[CONCAT

MEMBER membername]

If you are issuing a FILEDEF for a VSE file, note that the 0S5
program that will use the VSE file must have a DCB for it. For
"ddname™ in the FILEDEF command line, use the ddname in that
DCB. With the DSN operand, enter the fileid of the VSE file.

Sometimes, CMS issues the FILEDEF command for you. Although the

CMS MOVEFILE command, the supported CMS program product

interfaces, and the CMS OPEN routine each issue a default

FILEDEF, you should issue the FILEDEF command yourself to ensure J
the appropriate file is defined.

After you have issued the ACCESS and FILEDEF commands for an 0S5
sequential data set, 0S5 partitioned data set, or VSE sequential
file, CMS commands (such as ASSEMBLE and STATE) can refer to the
0S5 data set or VSE file just as if it were a CMS file.

Several other CMS commands can be used with 05 data sets and DO0S
files that do not reside on CMS disks. See the VM/SP _CMS Command
and Macro Reference for a complete description of the CMS
ACCESS, FILEDEF, LISTDS, LKED, MOVEFILE, OSRUN, QUERY, RELEASE,
and STATE commands.

For restrictions on reading 0S5 data sets and D0OS files under
CMS, see the VM/SP Planning Guide and Reference.

The CMS FILEDEF command allows you to specify the I/0 device and
the file characteristics to be used by a program at execution
time. 1In conjunction with the 05 simulation scheme, FILEDEF
simulates the functions of the data definition JCL statement.

FILEDEF may be used only with programs using 05 macros and
functions. For example:

filedef filel disk proga data al

After issuing this command, your program referring to FILE1l
would access PROGA DATA on your A-disk.

If you wished to supply data from yvour terminal for FILEl, you
could issue the command:

filedef filel terminal '

32 VM/SP System Logic and Problem Determination Guide (CMS)

Licensed Material--Property of 1BM
and entar the data for your program without recompiling.
fi tapein tap2 (recfm fb lrecl 50 block 100 9track den 800)

After issuing this command, programs referring to TAPEIN
accesses a tape at virtual address 182. (Each tape unit in the
CMS environment has a symbolic name associated with it.) The
tape must have been previously attached to the virtual machine
by the VM/SP operator.

THE AUXPROC OPTION OF THE FILEDEF COMMAND: The AUXPROC option
can only be used by a program call to FILEDEF and not from the
terminal. The CMS language interface programs use this featurea
for special 170 handling of certain (utility) data sets.

The AUXPROC option, followed by a fullword address of an
auxiliary processing routine, allows that routine to receive
control from DMSSEB before any device I/0 is performed. At the
completion of its processing, the auxiliary routine returns
control to DMSSEB signaling whether or not I/0 has been
performed. If it has not been done, DMSSEB performs the
appropriate device 1/0.

When control is received from DMSSEB, the general-purpose
registers contain the following information:

GPR2 = Data Control Block (DCB) address
GPR3 = Base register for DMSSEB

GPR8 = CMS OPSECT address

GPR11l = File Control Block (FCB) address
GPR14 = Return address in DMSSEB

GPR15 = Auxiliary processing routine address

all other registers Work registers

The auxiliary processing routine must provide a save area to
save tha general registers; this routine must also perform the
save operation. DMSSEB does not provide the address of a save
area in general register 13, as is usually the case. When
control returns to DMSSEB, the general registers must be
restored to their original values. Control is returned to
?ESSEB by branching to the address contained in general register

GPR15 is used by the auxiliary processing routine to inform to
DMSSEB of the action that has been or should be taken with the
data block as follows:

Register Action

GPR15=0 No I/0 performed by AUXPROC routine; DMSSEB
will perform I/0.

GPR15<0 I/0 performed by AUXPROC routine and error was
encountered. DMSSEB will take error action.

GPR15>0 I/0 performed by AUXPROC routine with residual
count in GPR15; DMSSEB returns normally.

GPR15=64K I/0 performed by AUXPROC routine with zero
rasidual count.

0S Macro Simulation Under CMS 33

Licensed Material--Property of IBM

34 VM/SP System Logic and Problem Determination Guide (CMS)

Licensed Material--Property of IBM

CMS supports interactive program development for VSE. This
includes creating, compiling, testing, debugging, and executing
commercial application programs. The VSE programs can be
executed in a CMS virtual machine or in a CMS Batch Facility
virtual machine.

VSE files and libraries can be read under CMS. VSAM data sets
can be read and written under CMS.

The CMS VSE environment (called CMS/D0S) provides many of the
same facilities that are available in VSE. However, CMS/D0S
supports only those facilities that are supported by a single
(background) partition. The VSE facilities provided by CMS/D0S
are:

VSE linkage editor

Fetch support

VSE Supervisor and I/0 macros

VSE Supervisor control block support
Transient area support

VSE/VSAM macros

This environment is entered each time the CMS SET DOS ON command
is issued; VSAM functions are available in CM5/D0S only if the
SET D0S ON (VSAM) command is issued. In the CMS/DO0S
environment, CMS supports many VSE facilities, but does not
support 0S5 simulation. When you no longer need VSE support
under CMS, you issue the SET D0OS OFF command and VSE facilities
are no longer available.

CMS/D0S can execute programs that use the sequential access
method (SAM) and VSE/VSAM and can access VSE libraries.

CMS/D0S cannot execute programs that have execution-time
rastrictions, such as programs that use sort exits,
teleprocessing access methods, or multitasking. D0OSs/VS COBOL,
DOS PL/I, DOS/VS RPG II and Assembler language programs are
axecutable under CMS/DO0S.

All of the CP and CMS online debugging and testing facilities
(such as the CP ADSTOP and STORE commands and the CMS DEBUG
aenvironment) are supported in the CMS/D0S environment. Also, CP
disk arror recording and recovery is supported in CMS/DO0S.

With its support of a CMS/D0S environment, CMS becomes an
important tool for VSE application program development. Because
CMS/D0S is a VSE program development tool, it assumes that a VSE
system exists, and uses it. The following sections describe
what is supported and what is not.

| cCM$ SUPPORY FOR 0S8 AND VSE VSAM FUNCTIONS

CMS supports interactive program development for 0S and VSE
programs using VSE/VSAM. CMS supports VSAM macros for 0S and
VSE programs. The complete set of VSE/VSAM macros and options
and a subset of 05/VSAM macros are supported for execution with
Assembler language programs.

CMS also supports Access Method Services to manipulate 0S5 and
VSE VSAM and SAM data sets.

Under CMS, VSAM data sets can span up to 10 DASD volumes. CMS
does not support VSAM data set sharing. However, CMS already
supports the sharing of minidisks or full pack minidisks.

VSAM data sets created in CMS are not in the CMS file format.
Theraefore, CMS commands currently used to manipulate CMS files

VSE Support Under CMS 35

Licensed Material--Property of IBM

cannot be used for VSAM data sets that are read or written in
CMS. A VSAM data set created in CMS has a file format that is
compatible with 05 and D0OS VSAM data sets. Thus, a VSAM data
set created in CMS can later be read or updated by 0S5 or DO0S.
This compatibility with 05 is limited to VSAM data sets created

| with physical record sizes of 512, 1K, 2K, and 4K bytes. For
further information on compatibility between 05/VS VSAM and
VSE/VSAM, please refer to the IBM VSE/VSAM General Information
Manual.

Because VSAM data sets in CMS are not a part of the CMS file
system, CMS file size, record length, and minidisk size
restrictions do not apply. The VSAM data sets are manipulated
with Access Method Services programs executed under CMS instead
of with the CMS file system commands. Also, all VSAM minidisks
| and full packs used in CMS must be initialized by the Device
Support Facility (DSF); the CMS FORMAT command must not be used.

CMS supports VSAM control blocks with the GENCB, MODCB, TESTCB,
and SHOWCB macros.

In its support of VS5AM data sets, CMS uses RPS (rotational
position sensing) wherever possible. CMS does not use RPS for
%31:/2319 devices or for 3340 devices that do not have the
eature.

HARDUWARE DEVICES SUPPORTED

| CMS support of VSAM data sets is based on VSE/VSAM. Except for
the 3380, only disks supported by VSE can be used for VSAM data
sets in CMS. These disks are:
. IBM 2316 Direct Access Storage Facility
] IBM 2319 Disk Storage
. IBM 3310 Direct Access Storage
L IBM 3330 Disk Storage, Models 1 and 2
U IBM 3330 Disk Storage, Model 11
. IBM 3340 Direct Access Storage Facility
] IBM 3344 Direct Access Storage
U IBM 3350 Direct Access Storage
g IBM 3370 Direct Access Storage
. IBM 3375 Direct Access Storage

| . IBM ?380 Direct Access Storage (05/VSAM environment of CMS
only

CMS disk files used as input to or output from Access Method
Services may reside on any disk supported by CMS.

36 VM/SP System Logic and Problem Determination Guide (CMS)

C

Licensed Material--Property of IBM

SECTION 2: CMS METHOD OF OPERATION AND PROGRAM ORGANIZATION

This section contains the following information:

. Initialization of the CMS Virtual Machine Environment

o Procéssing and Executing CMS Files

. Processing Commands that Manipulate the File System

. Managing the CMS File System

[Handling I/0 Operations

. Handling Interruptions

. Managing CMS Storage

° Simulating Non-CMS Operating Environments

o Performing Miscellaneous CMS Functions

The CMS description is in two parts. The first part contains
figures showing the functional organization of CMS. The second
part contains general information about the internal structure
of CMS programs and their interaction with one another.

CMS program organization is in two figures. Figure 8 on page 38
is an overview of the functional areas of CMS. Each block is

numbered and corresponds to a more detailed outline of the
function found in Figure 9 on page 39.

Section 2: CMS Method of Operation and Program Organization 37

Licensed Material--Property of IBM

®

®

Process
Commands that
Manipulate the
File System

Manage the
CMS File
System

Process and
Execute
CMS Files

O,

Initialize the
CMS Virtual
Machine

Environment

CMs

Handie 1/0
Operations

Handle

Interruptions

Perform
Miscellaneous
CMS Functions

Simulate
Non-CMS
Operating
Environments

Manage the
CMS Storage

©

Figura 8. An Overview of the Functional Areas of CMS

38 VM/SP System Logic and Problem Determination Guide (CMS)

Licensed Material--Property of IBM

Initialize and
Query the CMS

©)

Process and

DMSIDE

Display
virtual
machine
identification

Figure 9 (Part 1 of 5).

Section 2:

CMS Method of Operation and Program Organization

Define libraries
to be searched
during execution;
release the chain

DMSLGT

Create chain

of TXTLIB
blocks for use
during execution;
release the chain

|

DMSLIB

Search TXTLIB
libraries for
undefined
symbols; close
TXTLIB libraries

Details of CMS System Functions

Virtual Machine execute
environment CMS files
Maintain an Process and Load and Process
interactive execute execute MODULE Perform library
console CMS files TEXT files files support functions
DMSINI DMSINT DMSEXI DMSLOA DMSMOD DMSLBM
Interpret Determine if Process th.
Read the CMS commands EXEC, EXEC 2, LOAD ang Generate and Generate and
nucleus entered at or System Product INCLUDE load a MODULE update MACLIB
the console Interpreter commands file fites
DMSINS DMSINA I I DMSLDR DMSNXL DMSLBT
Initialize DMSEXT DMSEXE
storaga constants Handle Begin execution Load a Generate and
and virtual disks synonyms and Processes Processes of programs in nucleus update TXTLIB
for a virtual abbreviations EXECs written EXECs written storage extension library
machine in CMS EXEC in EXEC2
language
DMSINT DMSSCN DMSREX DMSLSB DMSNXD
Handle first Process o Processes
line EXECs written Process Delete
entered at and create a in REXX {oader specified
the console PLIST lanaguage options nucleus
extensions
DMSSET DMSCPF DMSLIO DMSNXM
Sat virtual Pass a Create a Identify
machine command load map existing
environment line to CP and perform nucleus
options for execution loader 1/0 extensions
| I
DMSQRS, DMSQRT DMSITS DMSMDP
DMSQRU, DMSQRV
DMSQRW, DMSQRX P
DMSQRY, DMSQRZ rocess Type a load
i map ata
Query the functions . console
virtual machine via SVC calls
environment
option settings
DMSGLB

39

Licensed Material--Property of IBM

C) | (:)]

that manipulate
the file system

Manage the CMS
file system

DMSPRT
Perform general Perform date . Locate data .
file support manipulation Print a record Manage virtual in the CMS Perform file
functions functions disk data file system update functions
DMSSTT DMSEDC DMSEDF, DMSPUN DMSACC DMSLAD DMSARE
DMSEDI,DMSEDX
Verify the
existence Create and Punch a record Access data on Find an active Clear an active
of a file and update files a virtual disk disk table disk table
return its address
DMSLST DMSXBG DMSTYP DMSACM DMSLAF DMSFNS
List the names Create and Build an active Find an active Closs any open
?:'l\g:;i ‘okn a update files Type a record disk table file table files on disk
DMSSYN DMSUPD DMSASM DMSACF DMSLFS DMSALU
Interface with Build file Clear tables and
Create synonym . N
o " the assembler status table Find a file free storage
;:,d:?i?:":::i:"s Update source file o assemble block for a status table associated with
files virtual disk disk
DMSRNM DMSCPY DMSDSK DMSLAF
. . Load card-to-~ Create or
Rename a file m:"r'ft'ﬂ:;: disk disk, dump delate active
disk-to -card file table entries
DMSERS DMSCMP DMSTPE
Compare Process TAPE
Erase a file records in command
two files functions
DMSSRT DMSMVE
Sort/arrange Move data from
records in one device to
a file another
DMSRDC DMSHLB,DMSHLI,
DMSHLD ,DMSHLP,
DMSHLE,DMSHLS
Read a record Displays HELP
description files
DMSSPR DMSGLO DMSNAM
Initialize a Maintain Search a
: — named ‘NAMES’
3800 printer variables file
DMSEIO DMSDDL
Do 1/0 SEND and
between & RECEIVE
device and fil
the stack tles

Figure 9 (Part 2 of 5). Details of CMS System Functions

40 VM/SP System Logic and Problem Determination Guide (CMS)

Licensed Material--Property of IBM

®

©

Figure 9 (Part 3 of 5). Details of CMS System Functions

console input

a disk file 1K, 2K,
or 4K-byte
record format

characteristics
of a reader file

[

DMSCWR DMSPNT
Set the read or
Write a line write pointer

to the console

for afile to a
given file item

Section 2:

IUCV external
exits

interrupts

l

DMSITP

Handle program
check interrupts

Handle 1/0 Manage CMS
Operations Storage
Handle
Interrupts
Pertorm Perform Perform Unit Perform Dimee o8 Wait for 1/0
Console I/0 Disk 1/0 Record I/0 Tape 1/0 Terminal to Complete
DMSIMM DMSCIT DMSDIO DMSPIO DMSTPD DMSSCR DMSIOW omsCeIT DMSFRE
Read or Write Load display . Allocate
Set up user Start an 1/0 one or more Perform print Read a butfers to be Wait for an Handle release free
immediate Operation blocks of disk 1/0 functions PDS tape displayed on 1/0 event to console system and
commands data a screen take place interrupts user storage
DMSCWT oMsTaa, DMSCIO DMSTIO DMSGIO DMSHDS DMSITS DMSSMN
Allocate and
i relesse user storsf
Wait for a ::I;:nnpulate Perform read Read or write Issue a display Set up and handle [Handie SVC upon request by -
console event ge card and punch a tape record to screen user-defined SVC interrupt 0S GETMAIN/
to chains card 1/0 DIAGNOSE interrupts FREEMAIN
macros
MSBRD,
DMSCAT gMgBWR DMSCWR DMSTMA DMSHDI DMSITI
Stack a line Read or write one Read an unloaded
of console or more items to a Write a line PDS from tape \?";e r"_%:;:g&’?fole o Handle 1/0
input for disk file 800-byte to the console and place itina interrupts interrupts
DMSCRD record format MACLIB interrup!
DMSCRD DMSERD DMSRDR DMSIUC DMSITE
Read or write one
Read a line of or more items to Identify Set up CMS ™1 Handle external

CMS Method of Operation and Program Organization

%1

Licensed

Material--Property of IBM

Simulate
Non-CMS
operating
environments

—

Figure 9 (Part 4% of 5).

nucleus exiensions

nucleus extensions

Details of CMS System Functions

42 VM/SP System Logic and Problem Determination Guide (CMS)

Provide access Simulate 0S Simulate DOS
method support functions functions
DMSssQs DMSFLD | | | |
su Qsam Interpret Of JcL Initialize DOS
pport parameters for and process P Process DOS N . N
rocess DOS “ : Provide DOS Process DOS Terminate the Provide VSE
use by CMS DOS system 1/0 functions execution related SVC simulation service DOS system i
control functions
DMSSBS DMSFLE l
Processes the DMSSET DMSBOP DMSDLK DMSDOS DMSSRV DMSBAB DMSLAB
Support BSAM CLEAR and
and BPAM LIST functions Simulate the Link edit Copy books from Pass control to
for the FILEDEF Initialize the VSE OPEN DOS/VSE Handle a source statement an abnormal LABEL
command CMS/DOS function phases in CMS/DOS SVC library to an terminati macro
i (non disk files) storage requests output device routine via support
]] STXIT AB macro
DMSSBD DMSSV T, DMSSOP, I _I
DMSSCT, DMSSMN,
DMSSVN, gussgs«, DMSOPT gmgg:;ADMSORZ DMSFET, DMSFCH DMSRRV DMSITP DMSCVH
Support BDAM DMSSAB, DMSLOS,
DMSSFF, DMSSVY Copy modules Simulate
Set compiler Locate a Load a phase; from a Process program vTOC
Simulate OS macros options specified file begin program relocatable interrupt and requests for
execution library to an SPIE exits CMS disks
| output device
DMSVIB DMSSEB I
Load the DMSASN DMSOPL DMSPRV DMSDMP DMSDAS
CMS/VSAM Perform 1/0
shared system functions for OS Simulate $$SDUMP
for OS VSAM Associate system Access a VSE Copy procedures and $$PDUMP: ASSGN
programs or programmer source statement from a procedure 1ssue the CP DUMP macro
logical units with library library to an DIAGNOSE. support
physicel units output device Simulate IDUMP:
issue the PRINTL
DMSVIP DMSROS | I macro
Interface with Aliow CMS to
VSAM programs ACCESS, STATE, DMSLLY DMSCLS DMSDSV
10 perform VSAM READ, NOTE,
functions for OS and BACKSPAC
List assignments Simulate the List the
VSAM programs on OS disks of logical units VSE CLOSE directories
function of libraries
| {non disk files)
DMSVSR DMSLDS I
Reset fields set DMSDLB CMSBAM DCSS DMSDSL
during VSAM List i S SE
processing and about OS data u
purge the CMS/ sets Associate a OPEN/CLOSE, Delete, compress,
VSAM DCSS DTF table logic module, ist phases of @
tilename with VTOC, and source DOSLIB Iibrary
a logical unit statement library
functions
DMSAMS DMSUTL
DMSVLT
Support VSAM List, copy, or
access method compress
services LOADLIBs Handle return
from CMSBAM
css
DMSCCK DMSOSR
Invokes the invokes a load [| | —l
VSE/VSAM module from a CMS
catalog check LOADLIB or OS DMSXCP DMSETR DMSLCK DMSGMF DMSGTM DMSGVE DMSLIC
service aid module library . - = = = E
Handle SVC 0 Handie SVC 98 Handie SVC 110 Handies SVC 107 Handies SVC 34 Handles SVC 99 Handies SVC 50
(EXTRACT) (LOCK/UNLOCK) (GETFLD, (GETIME) (GETVCE) (LIOCS ERROR)
MODFLDJ
DMSLKD
Link -edit a CMS
TEXT tile or OS
object module into DMSRPG DMSSTX DMSSUB DMSLDF DMSVIS DMSSVL
a CMS LOADLIB E— - 1 F 1 F
Handles SVC 16,
Handles SVC 85 17, 37,95 (STXIT Handles SVC 105 Handles SVCs 1, Handies SVCs Handles SVC 75
(RELPAG) PC, EXIT PC, (SUBSID) 2,4,65 (FETCH 61,62 (GETVIS, (SECTVAL)
STXIT AB, FETCH, LOAD, FREEVIS)
DMSSNXL EXIT AB) CDLOAD)
Load a]
nucleus DMSMCM
extension |
DMSFCH DMsVIS
= Handles SVC &
(MCCOM)
Load a phase: Handles SVCs
DMSNXD DMSNXM beain program 61, 62, (GETVIS,
execution FREEVIS)
Delete speci ied Identify existing

Licensed Material--Property of IBM

Perform
Miscellaneous
CMS functions

I | I I I I

DMSIFC DMSBTB DMSDBG DMSGND DMSABN DMSABX DMSRSV
Distributes blocks
Check and passes Load the CMS Perform DEBUG Generate Handle Receives control of a minidisk
CPEREP operands batch virtual functions an auxiliary abnormal when ABNEXIT between ';‘F
to EREP machine directory termination macro is executed directory file,
(IFCEREP1) allocation map
file, and user’s file.
Sets up pointer
l J I I l blocks.
DMSREA DMSBTP DMSOVR DMSASD DMSERR
Provides records to Perform batch Load the Provide an Generate
EREP from the processing SVCTRACE auxiliary error
VM/370 error functions madule, directory messages
recording cylinders DMSOVS
DMSOVS DMSLAD
Perform Include an
SVCTRACE auxhary
functions directory on

the FST chain

Figure 9 (Part 5 of 5). Details of CMS System Functions

Section 2: CMS Method of Operation and Program Organization 43

Licensed Material--Property of IBM

44 VM/SP System Logic and Problem Determination Guide (CMS)

I LIZATION OF T

Licensed Material--Property of IBM
C TUA C NVIR

There are four steps involved in initializing a CMS virtual
machine:

. Processing the IPL command for a virtual card reader.

[Processing the IPL command for a disk device or a named or
saved system.

L Processing the first command line entered at the CMS virtual
console.

L Setting up the options for the virtual machine operating
environment.

DMSINI and DMSINS are the two routines that are mainly
responsible for the one-time initialization process in which the
virtual card reader is initial program loaded. DMSINI also
handles the IPL process when a named or saved system is loaded.
The CMS command interpreter, DMSINT, processes the first line
entered from the console as a special case; the processing
performed by this code is a part of the initialization process.
DMSSET sets up the user-specified virtual machine environmant
fe::gres; DMSQRY allows the user to query the status of these
settings.

T ZATION: ADING A CMS VIRTUAL MACHINE FROM CARD READ

INITIALIZES STORAGE

When a virtual card reader is specified by the IPL command, for
example 00C, initialization processing begins. Initialization
refers to the process of loading from a card reader as opposed
to reading a nucleus from a cvlinder of a CMS minidisk or
reading a named or shared system (description follows).

IPL 00C invokes the CMS module DMSINI, which requests that the
operator enter information such as the address of the DASD whera
the nucleus is to be written, the cylinder address where tha
write operation is to begin, and the version of CMS that is to
be written (if there is more than one to choose from).

When all questions are answered, the requested nucleus is
written to the DASD.

Once written on the DASD, a copy of the nucleus is read into
virtual machine storage. One track at a time is read from thea
disk-resident nucleus into virtual storage. DMSINS is then
invoked to initialize storage constants and to set up the disks
and storage space required by this virtual machine.

DMSINS performs three general functions:

U Initializes storage constants and system tables.

. Processes IPL command line parameters (BATCH and AUTOCR).

CONTENTS AND SYSTEM TABLES

DMSINS
Saves the address of this virtual machine in NUCON.

DMSLAD
Locates and returns the address of the ADT for this virtual
machine.

DMSFRE

Allocates free storage to be used during initialization.

Initialization of tha CMS Virtual Machine Environmaent 45

Licensed Material--Property of IBM

DMSFRE
Allocates all low free nucleus storage so the system status
table (SSTAT) can be built in high free storage.

DMSACM J
Reads the S-disk ADT entry and builds the SSTAT. Reads the
Y-disk ADT entry and builds the YSTAT.

DMSFRE
Releases the low nucleus free storage allocated above (to
force SSTAT into high storage) so it can be used again.

DMSINS
aﬁggﬁs the address of SSTAT into ASSTAT and ADTFDA in

DMSALU
Sorts the entries in the SSTAT and YSTAT.

PROCESSES IPL COMMAND LINE PARAMETERS

DMSINS
Checks for parameters BATCH or AUTOCR. 1If BATCH is
specified, DMSINS sets the flag BATFLAGS. At this point,
all the parameters on the command line have been scanned.

If AUTOCR is specified, a local flag is set so that the
subsequent console read may be bypassed and the null line
inputts;mulated. This action causes a PROFILE EXEC to ba
executed.

DMSINS
Issues DIAGNOSE 24 to obtain the device type of the
console.

DMSCHR
Writes the system id message to the console. ’

DMSCRD
Reads the IPL command line from the console.

DMSSCN
Puts the IPL command line in PLIST format.

DMSINS
If BATCH is specified, sets BATFLAGS and BATFLAG2 in NUCON.
aazga the name of the BATCH saved system in SYSNAME in

DMSACC
is:geﬁ ACCESS 195 A to access the batch virtual machine
-disk.

DMSINS
Issues DIAGNOSE 60 to get the size of the virtual machine

and sets up enough storage for this virtual machina. Sets
the FREELOWE pointer in NUCON.

DMSINS
Performs time-of-day processing and 05 initialization.

A validity check is performed when a saved system is IPLed
to ensure that the saved copy of the S-STAT or Y-STAT is
current. This check is performed only for S-disks and
Y-disks formatted in 512-, 1024-, 2048-, or 4096-byte CMS
blocks. For 800-byte block disks, the saved copy of the
S-STAT or Y-STAT is used.

A validity check consists of comparing the date that the

saved directory was last updated with the date that the
current disk was last updated. If the dates for tha S-STAT ’

46 VM/SP System Logic and Problem Determination Guide (CMS)

Licensed Material~--Property of IBM

are diffarent, tha S-STAT is built in user storage. If the
dates for the Y-STAT are different, the Y-disk is accessed
using tha CMS ACCESS command:

ACCESS 19E Y/S % % Y2 (1)

This means that even when the S- and Y-disks are accessed
in read/writa mode and then released, the message
DMSINS100W S-STAT and/or Y-STAT not available will result.

o The DASD address of the Y-disk is whatever was
specified whan CMS was generated. For the standard
system, it is 19E.

' INITIALIZE 0S SVC-HANDLING

DMSINS
If the BATCH virtual machine is not being loaded,
daetermines whether thare is a PROFILE EXEC or a first
command line to be handled. If so, issues SVC 202's to
process these commands and passes control to DMSINT, the
CMS console manager.

DMSACC
If the BATCH virtual machine is being initial program
loaded, it accesses the D-disk and passes control to
DMSINT, the console manager.

\'J -] E

The CMS system is designed to be used as a saved, shared system.
A named system is a copy of the nucleus that has been saved and
named with the CP SAVESYS command. It is faster to IPL a named
systam than to IPL by disk address because CP maintains the
named system in page format instead of CMS disk format. The
initialization of a saved system is also faster because the
SSTAT and YSTAT are already built.

Tha shared system is a variant of the saved system. In the
shared system, reentrant portions of the nucleus are placed in
storage pages that are available to all users of the shared
system. Each user has his own copy of nonreentrant portions of
the nucleus. The shared pages are protected by CP and may not
be altered by any virtual machine.

During DMSINI processing, the virtual machine operator is asked
if the nucleus must be written (via message DMSINI6O07R). If the
operator answers no, control passes directly to DMSINS to
initialize the named or saved system specified by the operator
in his answer to message DMSINI6O06R.

MODIFYING A 3800 NAMED SYSTEM

The IMAGEMOD command allows an installation to modify an
existing 3800 named systaem without the need for generating from
scratch a completely new one. Beforae, with the IMAGELIB
command, a user had to construct a 3800 named system from a
control file that listed all the members to be included. The
IMAGELIB command contained no means for modifying an existing
3800 named system. Therefore, a system with, for example, 150
membars, had to be totally reconstructed each time a member was
added, deleted, or replaced. The IMAGEMOD command eliminates
this problem by manipulating only the specific members of a 3800
named system that require changing.

Initialization of the CMS Virtual Machine Environment 67

Licensed Material--Property of IBM
Thae format of the IMAGEMOD command is:

IMAGEMOD {GEN|ADD|REP |DEI |MAP}
libname

modname [modnamel...
[TERM|PRINT|DISK]

Fo

r further information, refer to the VM/SP Operator's Guide.

Processing the IMAGEMOD Command

Module DMSIMA paerforms the following steps when processing the
IMAGEMOD command:

1.

48 VM/SP System Logic

Analyze the input PLIST for syntax. If there is an error,
exit with a return code of 2 and issue the appropriate
message:

. DMSIMAOO1E = NO MODULE NAME SPECIFIED

. DMSIMAOO3E = INVALID OPTION ‘option'

. DMSIMAOL14E = INVALID FUNCTION 'function'
. DMSIMAOG6E = NO LIBRARY NAME SPECIFIED

. DMSIMAO47E = NO FUNCTION SPECIFIED

Obtain maximum storage area (via GETMAIN macro).

Unless the GEN function is specified, read the named system
into storage just obtained with DIAGNOSE code X'74'. Leave
the first 10 pages of storage empty. This permits later
expansion by 10 members.

Determine the type of function requested:

MAP
DEL
GEN
ADD
REP

e o0 o 0

If the function requested is MAP, scan the named system
dirgctory and format the following information about each
member:

[Name
[Relative displacement
[Total size

Determine the option requested. If the option is TERM,
PRINT, or DISK, place the formatted information on the
user's terminal, virtual printer, or in the CMS file named
"libname MAP A5', respectively.

If the function requested is DEL, delete the member from the
directory and the data area of the named system. Compress
the named system by moving up the remaining members to take
up the space vacated by the deletion. If the member is not
found, issue message DMSIMAO1l3E.

If the function requested is GEN, construct a skeleton named
system in virtual storage. This skeleton system has no
?ggbers initially. Then proceed as if the function wereae

If the function requested is ADD, load the member into the
CMS transient area. If a load error occurs, issue
DMSIMA346E and exit with return code of 6. Add the new
member entry to the end of the named system directory. 1If
virtual capacity is exceeded by this addition, issue
DMSIMA109E and exit with return code of 2. During this

and Problem Determination Guide (CMS)

C

Licensed Material--Property of IBM

process, the directory is moved back in storage one page to
prevent new data from overlaying existing data. Move the
new member data to the end of the named system residing in
user virtual storage. Modify the directory entries after
this move takes place. If the member already exists, issue
message DMSIMA751E and exit with return code of 4.

9. If the function requested is REP, concatenate the DEL and
ADD functions. In other words, perform the DEL function and
then the ADD function for the specified member.

10. Scan the input command line for more members to be
processed. If there are no more members or if the number of
members has reached the maximum (10), write the changed
named system back to disk via DIAGNOSE code X'74' (unless
this was a MAP function request) and then exit. Otheruwise,
process the next member according to the function requested.

HANDLING THE FIRST COMMAND LINE PASSED TO CMS

DMSINT, the CMS console manager, contains the code to handle
commands stacked by module DMSINS during initialization
processing. DMSINT checks for the presence of a stacked command
line, and if there is one to process, DMSINT processes it just
as it would a command entered during a terminal session. That
is, DMSINT calls the WAITREAD subroutine and issues an SVYC 202
to execute the command. MWhen first command processing
completes, DMSINT receives control to handle commands entered at
the console for the duration of the session.

SETTING THE VIRTUAL MACHINE ENVIRONMENT OPTIONS

DMSSET sets up the virtual machine environment options, as
outlined in the publication YM/SP CMS Command and Macro
Reference. This module is structured and relatively easy to
follow, except for some sections of DMSSET.

SET DOS ON (VSAM) PROCESSING

DMSSET
(label D0OS) If a disk mode is specified on the command
line, ensures that it is valid.

DMSLAD
If the disk mode specified is valid, locates and returns
the address of the disk.

DMSSET
Issues DIAGNOSE 64 FINDSYS to locate the CMSDOS or CMSBAM

segments. If the segment is not already loaded, issues
DIAGNOSE 64 LOADSYS to load it.

DMSSET
Sets up the $$B-transient area for use by VSE routines.

DMSSET
Sets up the LOCK/UNLOCK resource table.

DMSSET
If SET DOS OFF has been specified, issues the DIAGNOSE 64
PURGESYS function for the CMSD0OS and CMSBAM segments and,
if VSAM has been loaded, for the CMSVSAM segment.

QUERYING CMS ENVIRONMENT OPTIONS

The QUERY command, which displays CMS environment options, is
handled by eight modules. DMSQRY is the main module. The first
time QUERY is invoked, DMSQRY established QUERY as a nucleus
extension. DMSQRY acquires a work area and uses DMSQRZ to
initialize it.

Initialization of the CMS Virtual Machine Environment 649

Licensed Material--Property of IBM

50

If the option queried is a CMS option and if tha command has the
correct syntax, DMSQRY passes control to the module that handles
that option: DMSQRS, DMSQRT, DMSQRU, DMSQRV, DMSQRW, or DMSQRX.
The module called performs the requested QUERY function, then
returns control to the original caller.

VM/SP System Logic and Problem Determination Guide (CMS)

9

Licensed Material--Property of IBM
3 ND EXECUTING CMS FILES

As shoun in Part 2 of Figure 9 on page 39 five general topics
form the category "Process and Execute CMS Files." Two of these
topics are discussed in this section: "Maintaining an
Interaetive Console Environment™ and "Loading and Executing TEXT
files."

MAINTAINING AN INTERACTIVE CONSOLE ENVIRONMENT

Two levels of information are discussed in the following
section. The first level is a general discussion of how CMS
maintains an interactive console environment. The second level
is a more detailed discussion of the methods of operation mainly
responsible for this function.

There are two major functions concerned with maintaining an
interactive terminal environment for CMS: console management and
command processing. The CMS module that manages the virtual
machine console is DMSINT. The module responsible for command
processing is DMSITS. Many CMS modules are called in support of
these two functions, but the modules in the following list are
primarily responsible for supporting the functions:

DMSCRD
Reads a line from the console.

DMSCHR
Writes a line to the console.

DMSSCN
Converts a command line to PLIST format.

DMSINA
Converts abbreviated commands to their full names.

DMSCPF
Passes a command line to CP for execution.

MAINTAINING AN INTERACTIVE COMMAND/RESPONSE SESSION

Three main lines of control maintain the continuity for an
interactive CMS session: (1) handling of commands passed to
DMSINT by the initialization module, DMSINS (2) handling of
commands entered at the console during a session, and (3)
handling of commands entered as subset commands. The following
lists show the main logic paths for the first two functions.

Execute Commands Passed via DMSINS

DMSINT
On entry from DMSINS, processes any commands passed via the
console read put on the user's console by that routine.
That is, processes any commands the user stacks on the line
as the first read that DMSINT processes. In handling the
first read, if that read is null, control passes to the
main loop of the program, which is described in the
following section.

DMSINM
Retrieves the current time.

DMSCRD
Branches to the waitread subroutine to read a command line
at the console.

Processing and Executing CMS Files 51

Licensed Material--Property of IBM

DMSSCN
Waitread then calls DMSSCN to convert the line just read
into PLIST format. Once converted to PLIST format, an SVC
202 is issued (at label INIT1A) to execute the function.
This cycle is repeated until all stacked commands are
executed.

DMSFNS
When command execution completes, calls DMSFNS (at label
UPDAT) to close any files that may have remained open
during the command processing.

DMSVSR
Ensures that any fields set by VSAM processing are reset
for CMS. Also ensures that the VSAM discontiguous shared
segment is purged.

DMSINT
Sets up an appropriate status message (CMS, CMS SUBSET,
CMS/D0S, etc.).

DMSCHR
Writes the status message to the consolae.

Handle Commands Entered During a CMS Terminal Session

DMSINT
Branches (from label INLOOP2) to the waitread subroutine to
read a line entered at the console.

DMSCRD
Reads a line entered at the console (subroutine waitread).

DMSSCN
Converts the command line to PLIST format (subroutine
waitread).

DMSINT
Determines whether the command line is a null line or a
comment.

DMSLFS
If the command line is neither a command line nor a
comment, determines whether the command is an EXEC filae.

DMSINA (ABBREV)
Determines whether the command is an abbreviation, and if
it is, returns its full name.

DMSITS
Passes the command line to DMSITS via an SVC 202. DMSITS
is the CMS SVC handler. For a detailed description of the
SVC handler, see "Method of Operation for DMSITS."™

DMSCPF
If the command could not be executed by the SVC handler,
passes the command to CP to see if CP can execute it.

DMSFNS
On return from processing the command line (label UPDAT),
closes any files that may have been opened during
processing.

DMSSMN
Resets any flags or fields that may have been set during 0S
processing.

DMSVSR
Ensures that any fields set for VSAM processing are reset
for CMS. Also ensures that the VSAM discontiguous shared
segment is purged.

52 VM/SP System Logic and Problem Determination Guide (CMS)

9

METHOD OF OPERATION

Licensed Material--Property of IBM

DMSINT
When the command line has been successfully executed,
builds a CMS ready message for the user (label PRNREADY).

DMSCHR
Writes the ready message to the console.

DMSINT
Returns control to DMSINT at label INLOOP2 to continue
monitoring the CMS terminal session.

FOR DMSINT - CONSOLE MANAGER

DMSINT, the console manager, maintains the continuity of
operation of the CMS command environment. The main control loop
of DMSINT is initiated by a call to DMSCRD to get the next
command. When the command is entered, DMSINT calls DMSINM to
initialize the CPU time for the new command and then puts it in
both a standard tokenized and an extended parameter list form by
calling the scan function program DMSSCN. After calling DMSSCN,
DMSINT checks to see if an EXEC filetype exists with a filename
of the typed-in command. (For example, if ABC was typed in, it
checks to see if ABC EXEC exists.) If the EXEC file does exist,
DMSINT adjusts register 1 to point to the same command set up by
DMSSCN, but preceded by CL8'EXEC'. Then DMSINT issues an SVC
202 tg gall the corresponding EXEC procedure ('ABC EXEC' in the
example).

If no such EXEC file exists for the first word typed in, DMSINT
makes a further check using the CMS abbreviation-check routine,
DMSINA. If, for example, the first word typed in had been 'E’',
DMSINT looks up 'E' via the DMSINA routine. If an equivalent is
found for 'E', DMSINT looks for an EXEC file with the name of
the equivalent word (for example, EDIT EXEC). If such a file is
found, DMSINT adjusts register 1 as described above to call the
EXEC and substitutes the equivalent word, EDIT, for the first
word typed in. Thus, if 'YE' is a valid abbreviation for 'EDIT®
and you have an EXEC file called EDIT EXEC, EDIT EXEC is invoked
when you type in 'E' from the terminal.

If no EXEC file is found either for the entered command name or
for any equivalent found by DMSINA, DMSINT leaves the terminal
command as processed by DMSSCN and then issues an SVC 202 to
pass control to DMSITS. DMSITS then passes control to the
appropriate command program. When the command terminates
exaecution, or if DMSITS cannot execute it, the return code is
passed in register 15.

A zero return code indicates successful completion of the
command. A positive return code indicates that the command was
completed, but with an apparent error. A negative code returned
by DMSITS indicates that the typed in command could not be found
or executed at all.

In the last case, DMSINT assumes that the command is a CP
command and issues a DIAGNOSE instruction to pass the command
line to the CP environment. If the command is not a CP command,
DMSINT calls DMSCWR to type a message indicating that the
command is unknown and the main control loop of DMSINT is
entered at the beginning.

If the return code from DMSITS is positive or zero, DMSINT saves
the return code briefly and calls module DMSAUD to update the
master file directory (MFD) on the appropriate user's disk for
the 800-byte records on disk, or to update the file directory
and the allocation map, or the appropriate user's disk for the
512-, 1lK-, 2K-, or 4K-byte records on disk. DMSINT also frees
the TXTLIB chain and releases pages of storage if required.

After updating the file directory, DMSINT checks the return code
that was passed back. If the code is zero, DMSINT types a ready
message and the processor time used by the given command.
Control is passed to the beginning of tha main control loop of

Processing and Executing CMS Files 53

Licensed Material--Property of IBM

METHOD OF OPERATION

DMSINT. If the return code is positive, an error message is
typed, along with the processor time used. The command causes
the typing of an error message with the format: DMSxxxnnnt
"text' where DMSxxx is the module name, nnn is the message
identification number, t is the message type, and "text' is the
message explaining the error. Control is then passed to the
beginning of the main control loop.

FOR DMSITS - CMS SVC HANDLING ROUTINE

DMSITS (INTSVC) is the CMS system SVC handling routine. Since
CMS is SVC driven, the SVC interruption processor is more
complex than the other interruption processors.

The general operation of DMSITS is as follows:

1. The SVC new PSW (low-storage location X'60') contains, in
the address field, the address of DMSITSl1. Thus, the DMSITS
routine is entered whenever a supervisor call is executed.

2. DMSITS allocates a system save area and a user save area.
The user save area is a register save area used by the
routine, which is invoked later as a result of the SVC call.

3. The called routine is invoked (via a LPSW or BALR).

4. Upon return from the called routine, the save areas are
released.

5. Control is returned to the caller (the routine that
originally made the SVC call).

The following expands upon various features of the general
operation that has just been described.

Types of SVCs and Linkage Conventions

The types of SVC calls recognized by DMSITS, and the linkage
conventions for each, are as follows:

SVC 201: When a called routine returns control to DMSITS, the
user storage key may be in the PSW. Because the called routine
may also have turned on the problem bit in the PSW, the most
convenient way for DMSITS to restore the system PSW is to cause
another interruption, rather than to attempt the privileged Load
PSW instruction. DMSITS does this by issuing SVC 201, which
causes a recursive entry into DMSITS. DMSITS determines if the
interruption was caused by SVC 201, and if so, determines if the
SVC 201 was from within DMSITS. If both conditions are met,
control returns to the instruction following the SVC 201 with a
PSW that has the problem bit off and the system key restored.

SVC 202: SVC 202 is the most commonly used SVYC in the CMS
system. It is used for calling nucleus-resident routines,
nucleus extensions, and routines written as commands (for
example, disk resident modules).

A typical coding sequence for an SVC 202 call is the following:

LA R1,PLIST
SVC 202
DC AL4C(ERRADD)

The "DC AlL4(address)™ following the SVC 202 is optional and may
be omitted if the programmer does not expect any errors to occur
in the routine or command being called. If the DC statement is
included, an error return is made to the address specified in
the DC, unless the address is equal to 1. If the address is
equal to 1, return is made to the next instruction after "DC
AL4(1)"™. DMSITS determines whether this DC was inserted by
examining the byte following the SVC call inline. If it is

56 VM/SP System Logic and Problem Determination Guide (CMS)

C

Licensed Material--Property of IEM
nonzero, the statement following the SVC 202 is an instruction.
If it is zero, then the statement is a "DC AL4(address)" or "DC
ALGCLO™.

If you want to ignore errors, use the following sequence:

LA R1,PLIST
SVC 202
DC AL4(1)

Whenever SVC 202 is called, the contents of general purpose
register 0 and general purpose register 1 are passed intact to
the called routine. Register 1 must point to an eight-character
string, which may be the start of a tokenized plist. This
character string must contains the symbolic name of the routine
or command being called. The SVC handler only examines the name
and high-order byte of register 1. The called routine decides
whether to use the extended plist or the tokenized plist by
examining the high-order byte of register 1.

Note: Although an extended plist is provided, the called
routine may not be set up to use it.

CMS Supplied
Extended
PLIST Pointer
Value Meaning in Register 0
X'o00" The call did not originate from an EXEC file or from a No
command typed at the terminal.
X'ol’' The call is from an EXEC 2 EXEC or from the System Yes
Product Interpreter when "ADDRESS COMMAND" is
specified.
Xrp2" See "Dynamic Linkage/SUBCOM" in this manual. Yeas
X'05" Used by the System Product Interpreter for function Yes
calls.
Xro06"' The command was invoked as an immediate command. This Yes
setting should never occur with SVC 202.
X'0B"' The command was called as a result of its name being Yes
typed at the terminal, or by the CMDCALL command to
invoke the command from EXEC 2, or from a System
Product Interpreter EXEC when "ADDRESS CMS" is
specified.
Xr'ocC' The call is a result of a command invoked from a CMS No
EXEC file with &CONTROL set to something other than
NOMSG or MSG.
X'oD' The call is a result of a command invoked from a CMS No
EXEC file with &CONTROL MSG in effect (indicates that
messages are to be displayed at the terminal).
X'0E" The call is the result of a command invoked from a CMS No
EXEC file with &CONTROL NOMSG in effect.
X'FE" This is an end-of-command call from DMSINT (CMS No
console command handler). See the NUCEXT command in
the VM/SP_CMS Command and Macro Reference for details.
X'FF' This is a service call from DMSABN (ABEND) or from No
NUCXDROP. See the NUCEXT function in the VM/SP CMS
Command and Macro Reference for details.
Figure 10. SVC 202 - Contents of High-Order Byte of Register 1

Processing and Executing CMS Files 55

Licensed Material--Property of IBM

Tokenized PLIST: For a tokenized parameter list, the symbolic

name of the function being called (8 character string, padded

with blank characters on the right if needed) is followed by

extra arguments depending on the actual routine or command)
called. These arguments must be "tokenized." Every parenthesis

is considered an individual argument, and each argument may have

a maximum length of eight characters.

Extended PLIST: For an extended parameter list, no restriction
is put on the structure of the argument list passed to the
called routine or command. Register 0 points to the following
consecutive words:

DC A(CMDBEG)?
DC A(ARGBEG)?
DC ACARGEND)*
DC A(0)S

Notes:

1. These four words can be moved to some location convenient
for the command resolution routines or convenient for some
other program executed between the caller's SVC 202 and
entry to the program list for which the parameter list is
intended. For this reason, the called program may not
assume that additional words follow word %, or that the
storage address of these 4 words bears any relationship to
other data addresses.

2. For function calls in the System Product Interpreter, two
additional words are available. See tha VM/SP System
Produc nterpreter Reference for more information on
function calls and the two additional words.

The first three addresses are definad by:

CMDBEG EQU J
DC C'TESTPROG'

ARGBEG EQU X
DC C'FILEZ’
ARGEND EQU x

CMDBEG EQU % indicates the beginning of the command name, ARGBEG

EQU % indicates the beginning of the argument list, and ARGEND

EQU ¥ indicates the end of the argument list. The left

:;Eentheses after 'testprog' is used as a delimiter to determine
BEG.

SVC 203: SVC 203 is called by CMS macros to perform various
internal system functions. SVC 203 is an SVC call where no
parameter list is provided; for example, DMSFREE. The
parameters are passed in registers 0 and 1.

A typical sequence for an SVC 203 call follows:

svVC 203
DC H'code"'

The halfuword decimal code following the SVC 203 indicates the
specific routine being called. DMSITS examines this halfword
code as follows: (1) the absolute value of the code is taken,

2 The first word gives the beginning address of the command.
The second gives the beginning address of the argument list.
4 The third gives the address of the byte immediately
following the end of the argument list.
5 The fourth word may be used to pass any additional
information required by individually called programs. If
this word is not used to pass additional information, it ,

“

should be zero so programs receiving optional information
via this word, may detect that none is provided in this
call.

56 VM/SP System Logic and Problem Determination Guide (CMS)

Licensed Material--Property of IBM

using an LPR instruction, (2) the first byte of the result is
ignored, and the second byte of the resulting halfword is used
as an index into a branch table, (3) the address of the correct
routine is loaded, and control is transferred to it as the
called routine.

It is possible for the address in the SVC 203 index table to be
zero. In this case, the index entry contains an 8-byte routine
or command name, which is processed in the same way as the
8-byte name passed in the parameter list passed to SVC 202.

The sign of the halfword code indicates whether the programmer
expects an error return. If so, the code is negative; if not,
the code is positive. Note that the sign of the halfword code
has no effect on determining the routine that is to be called,
because DMSITS takes the absolute value of the code to determine
the called routine.

Because only the second byte of the absolute value of the code
is examined by DMSITS, seven bits (bits 1-7) are available as
flags or for other uses. For example, DMSFREE uses these seven
bits to indicate such things as conditional requests and
variable requests. Therefore, DMSITS considers the codes H'3'
and H'259' to be identical and handles them the same as H'-3'
and H'-259', except for error returns.

When an SVC 203 is invoked, DMSITS stores the halfuword code into
the NUCON location CODE203, so that the called routine can
examine the seven bits made available to it.

All calls made by SVC 203 should be made by macros with the
macro expansion computing and specifying the correct halfuword
code.

USER-HANDLED SVCS: The programmer may use the HNDSVC macro to
specify the address of a routine that processes any SVYC call for
SVC numbers 0 through 200 and 206 through 255. If the HNDSVC
macro is used, the linkage conventions are as required by the
user specified SVC-handling routine.

You cannot specify a normal or error return from a user-handled
SVC routine.

0S MACRO SIMULATION SVC CALLS: CMS supports selected SVC calls
ge?frated by 0S macros, by simulating the effect of these macro
calls.

The proper linkages are set up by the 05 macro generations.
DMSITS does not recognize any way to specify a normal or error
return from an 0S macro simulation SVC call.

VSE SVC CALLS: All SVC functions supported for CMS/D0S are
handled by the CMS module DMSDOS. DMSDOS receives control from
DMSITS (the CMS SVC handler) when that routine intercepts a VSE
aﬁgoﬁode and finds that the DOSSVC flag in DOSFLAGS is set in

DMSD0OS acquires the specified SVC code from the OLDPSW field of
the current SVC save area. Using this code, DMSD0OS computes the
address of the routine where the SVC is to be handled.

Many CMS/D0S routines (including DMSD0S) are contained in a
discontiguous shared segment (DCSS). Most SVC codes are
executed within DMSD0S, but some are in separate modules
external to DMSD0S. If the SVC code requested is external to
DMSD0S, its address is computed using a table called DCSSTAB.
If the code requested is executed within DMSD0S, the table
gngAB is used to compute the address of the code to handle the

DOS SVC calls are discussed in more detail in "Simulating a VSE
Environment Under CMS."

Processing and Executing CMS Files 57

Licensed Material--Property of IBM

INVALID SVC CALLS: There are saveral types of invalid SVC calls
recognized by DMSITS:

o Invalid SVC number. If the SVC number does not fit into any
of the classas described above, it is not handled by DMSITS.
An error message is displayed at the terminal, and control
is returned directly to the caller.

. Invalid routine name in SVC 202 parameter list. If the
routine named in the SVC 202 parameter list is invalid or
cannot be found, DMSITS handles the situation in the same
way it handles an error return from a legitimate SVC
routine. The error code is -3.

. Invalid SVC 203 code. If an invalid code follows SVC 203,
an error message is displayed and the ABEND routine is
called to terminate execution.

search Hierarchy for SVC 202

SVC 202 ENTERED FROM A PROGRAM: When a program issues SVC 202
and passes a routine or command name in the parameter list,
DMSITS must search for the specified routine or command. (In
the case of SVC 203 with a zero in the table entry for the
speci fied index, the same logic must be applied.)

The search order is as follous:

1. A check is made to see if the specified name is a nucleus
extension routine. If this is the case, then control goes
to the specified nucleus extension routine (unless
resolution to a nucleus extension is prohibited by a code
value specified in the high-order byte of register 1).

2. A check is made to see if there is a routine with the
specified name currently occupying the system transient
:;ea. If this is the case, then control is transferred

erea.

3. The system function name table is searched to see if a
command by this name is a nucleus-resident command. If the
sea;gh is successful, control goes to the specified nucleus
routine.

4. A search is then made for a disk file with the spaecified
name as the filename and MODULE as the filetype. The search
is made in the standard disk search order. If this search
is successful, the specified module is loaded (via the
LOADMOD command) and control passes to thae storage location
now occupied by the command.

5. If all searches so far have failed, DMSINA (ABBREV) is
called to see if the specified routine name is a valid
system abbreviation for a system command or function.
User-dafined abbreviations and synonyms are also checked.

If this search is successful, steps 1 through 4 are repeated
with the full function name.

6. If all searches fail, an error code of -3 is issued.

COMMANDS ENTERED FROM THE TERMINAL: When a command is entered
from the terminal, DMSINT processes the command line and calls
the scan routine to convert it into a tokenized parameter list
consisting of eight-byte entries and an extended parameter list
as previously described. The following search is performed:

1. DMSINT searches for a disk file whose filename is the
command name and whose filetype is EXEC. If this search is
successful, EXEC is invoked to process the EXEC file. 1If
not found, the command name is considered to be an

58 VM/SP System Logic and Problem Determination Guide (CMS)

9

4.

See

Licensed Material-~-Property of IBM

abbraeviation and the appropriate tables are examined. If
found, the abbreviation is replaced by its full equivalent
and the search for an EXEC file is repeated.

If there is no EXEC file, DMSINT executes SVC 202 passing
the scanned tokenized parameter list, with the command name
in the first eight bytes of the plist pointed to by register
1 and the extended plist address in register 0. DMSITS
performs the search described for SVC 202 in an effort to
execute the command.

If DMSITS returns to DMSINT with a return code of -3
indicating that the search was unsuccessful, DMSINT uses the

CP DIAGNOSE facility to attempt to execute the command as a
CP command.

If all of these searches fail, DMSINT displays the error
message UNKNOWN CP/CMS COMMAND.

Figure 11 on page 60 for a daescription of this search for a

command name.

Processing and Executing CMS Files 59

Licensed Material--Property of IBM

User enters name
at terminal

Y
Read line from
terminal
("“name..."}

Implied EXEC

Now in Effect
{Note 1)

Does file
“name EXEC"

Expand Line by
Inserting the

exist

Name is now the
real name from a
Synonym Table

|s name’
a Synonym
or abbreviation for
some real
name

Yes

Notes:

not in effect.

the command.

not in effect.

Figure 11

name
EXECto:
EXEC name

Issue SVC 202
{See the SVC 202
Subroutine)

IsRC=-3
{Note 2)

Implied CP
now in Effect
(Note 3)

Pass line to CP
for processing

Was

- No d found
Y and exscuted
Display Yes
UNKNOWN
CP/CMS
COMMAND

1. If the terminal line was actually from an EXEC file, or if the
command SET IMPEX OFF has been executed, implied EXEC is

2. A-3return code indicates SVC 202 processing did not find

3. If the terminal line was actually from an EXEC file, or if the
command SET IMPEX OFF has been executed, implied CP is

(Part 1 of 2). CMS Command (and Requaest) Processing

Y

Display Ready
message with
error code of
ifRC#0

60 VM/SP System Logic and Problem Determination Guide (CMS)

High order byte
= X'02"

Name is now the
name from the
Synonym Table

High order byte
=X‘03’ or X'04"

Is name
now in
transient
area

Pass control to
routine in
transient area

Look aside buffer

Is name
now in
transient
area

a
function

Attempt to execute
LOADMOD name
module from disk

Was the Yes

Y

LOADMOD
successful

Is name
a Synonym
or abbreviation for
some real
name

> Set RC=-3

Y

Upon completion
return to SVC
routine

Pass control to the
routine (in the
leus or user area)

to execute the
command

<
-

Return to routine
that issued the
SVC 202

Figure 11 (Part 2 of 2). CMS Command (and Request) Processing

Processing and Executing CMS Files

Licensed Material--Property of IBM

61

Licensed Material--Property of IBM

User and Transient Program Areas

There are two areas that can hold program modules that are
loaded by LOADMOD from the disk. These are called tha user
program area and the transient program area. (See Figure 4 on
page 16 for a description of CMS storage usage.) A summary of
CMS modules and their attributes, including whether they reside
in the user program area or the transient area, is contained in
the VM/SP _CMS Command and Macro Reference.

The user program area starts at location X'20000' and extends
upward to the loader tables. However, the high-address end of
that area can be allocated as free storage by DMSFREE.
Generally, all user programs and certain system commands, such
as EDIT and COPYFILE, are executed in the user program area.
Because only one program can be executing in the user program
area at one time, unless it is an overlay structure, it is
impossible for one program in the user program area to invoke,
by means of SVC 202, a module that is also intended to execute
the user program area.

The transient program area is two pages, running from location
X'E000' up to and including location X'FFFF'. It provides an
area for system commands that may also be invoked from the user
program area by means of an SVC 202 call. For example, a
program in the user program area may invoke the SET command
because this command is loaded into the transient program area.
When a transient module is called by an SVC, it is normally
executed with the PSW system mask disabled for I/0 and external
interrupts.

A program executing in the transient program area may not invoke
another program intended to execute in the transient program
area. Thus, for example, a program executing in the transient
program area may not invoke the SET command.

There is one further functional difference between the use of
the two program areas. DMSITS starts a program in the user
program area so that it is enabled for all interruptions. It
starts a program in the transient program area so that it is
disabled for all interruptions. Thus, the individual program
may have to use the SSM (Set System Mask) instruction to change
the current status of its system mask.

Called Routine Start-Up Table

Figure 12 and Figure 13 show how the PSW and registers are set
up when the called routine is entered.

System Storage Problem
Called Type Mask Key Bit
SVC 202 or 203 - Nucleus Resident Disabled System off
SVC 202 -~ Nucleus Extension Module User defined User defined off
SVC 202 or 203 - Transient area MODULE Disabled User off
SVC 202 or 203 - User area Enabled User off
User-handled Enabled User off
05-VSE - Nucleus resident Disabled System off
0S-VSE ~ Transient area module Disabled System off

Figure 12. PSW Fields when Called Routine is Started

62 VM/SP System Logic and Problem Determination Guide (CMS)

9

Licensed Material--Property of IBM

Type Regs 0-1 Regs 2-11 Reg 12 Reg 13 Reg 14 Reg 15
SVC 202 Same as Unpredictable Address User Return Address
or 203 caller of save address of
called area to called
routine DMSITS routine
Other Same as Same as Address User Return Same as
caller of save address caller
called area to
routine DMSITS

Figure 13. Register Contents when Called Routine is Started

Returning to the caller

When the called routine is finished processing, it returns
control to DMSITS, which then must return control to the calling
routine.

RETURN LOCATION: The return is effected by loading the original
SVC old PSW (that was saved at the time DMSITS was first
entered), after possibly modifying the address field. How the
address field is modified depends on the type of SVC call and on
whether the called routine indicated an error return address.

For SVC 202 and 203, the called routine indicates a normal
return by placing a zero in register 15 and an error return by
placing a nonzero in register 15. If the called routine
indicates a normal return, then DMSITS makes a normal return to
the calling routine. If the called routine indicates an error
return, then DMSITS returns to the caller's error return
address, if one was specified. If no error return address was
specified, DMSITS abnormally terminates.

For SVC 202 not followed by "DC AlL4(address)™ or "DC AL4(1)™, a
normal return is made to the instruction following the SVC
instruction and an error return causes an abnormal termination.
For an SVC 202 followed by "DC AlL4(address)", a normal return is
made to the instruction following the DC and an error return is
made to the address specified in the DC unless the address is
equal to 1. If the address is 1, return is made to the next
instruction after the "DC AL4(1)" instruction. In either case,
regi§ter 15 contains the return code passed by the called
routine.

For SVC 203 with a positive halfword code, a normal return is
made to the instruction following the halfword code and an error
return causes an abnormal termination. For SVC 203 with a
negative halfword code, both normal and error returns are made
to the instruction following the halfword code. In any case,
regi§ter 15 contains the return code passed back by the called
routine.

For 0S macro simulation SVC calls and user-handled SVC calls, no
error return is recognized by DMSITS. As a result, DMSITS
always returns to the calling routine by loading the SVC old PSW
that was saved when DMSITS was first entered.

REGISTER RESTORATION: Upon entry to DMSITS, all registers are
saved as they were when the SVC instruction was first executed.
Upon exiting from DMSITS, all registers are restored to the
values that were saved at entry.

The exception to this is register 15 for SVC 202 and 203. Upon
return to the calling routine, register 15 contains the value
that was in registar 15 when the called routine returned to
DMSITS after it had completed processing.

Processing and Executing CMS Files 63

Licensed Material--Property of IBM
Modification of the System Save Area

If the called routine has system status, so that it runs with a
PSW storaga protect kaey of 0, it may store new valuas into the
system save area.

If the called routine wishes to modify the location whera
control is to ba returned, it must modify tha following fields:

. For SVC 202 and 203, it must modify the NUMRET and ERRET
(normal and error return address) fields.

. For other SVCs, it must modify the address field of OLDPSW.

To modify the registers that are to be returned to tha calling
routine, the fields EGPR1l, EGPR2, ..., EGPR15 must be modified.

If this action is taken by the called routine, the SVCTRACE
facility may print misleading information, since SVCTRACE
assumes that these fields are exactly as they were when DMSITS
was first entered. Whenever an SVC call is made, DMSITS
allocates two save areas for that particular SVC call. Save
areas are allocated as needed. For each SVC call, a system and
user save area are needed.

When tha SVC-called routine returns, the save areas are not
released, but are kept for the next SVC. At the completion of
eafh cogmand. all SVC save areas allocated by that command are
released.

DMSITS uses the system save area (DSECT SSAVE) to save the valuea
of tha SVC old PSW at the time of the SVC call, the calling
routina's registers at the time of the call, and any other
necessary control information. Since SVC calls can be nested,
there can be saveral of these save areas at ona time. The
system sava area is allocated in protected frea storage.

The user save area (DSECT EXTUAREA) contains 12 doublewords (24 J
words) allocated in unprotected free storage. DMSITS does not

use this area at all; it simply passes a pointer to this area

(via register 13.) The called routine can use this area as a

temporary work area or as a register save area. There is one

user save area for each system save area. The USAVEPTR fiald in

the system save area points to the user save area.

The exact format of tha system save area can be found in the
VM/SP Areas and Contr Bloc oqgi Volum . The
most important fields and thair usaes are as follows:

Field Usage

CALLER (Fullword) The addraess of tha SVC instruction
that resulted in this call.

CALLEE (Doubleword) Eight-byta symbolic name of tha
called routine. For 05 and user-handled SVC
calls, this field contains a character string
of the form SVC nnn, where nnn is the SVC
number in decimal.

CODE (Halfword) For SVC 203, this fiaeld contains the
halfword code following the SVC instruction
line.

OLDPSW (Doubleword) The SVC old PSW at tha time that
DMSITS was aenteread.

64 VM/SP System Logic and Problem Determination Guide (CMS)

C

Licensed Material--Property of IBM
Field Usage

NRMRET (Fullword) The address of the calling routine
where control is to be passed if there is a
normal return from the called routine.

ERRET (Fullword) The address of the calling routine
where control is to be passed if thera is an
arror return from the called routine.

EGPRS (16 Fullwords, separately labeled EGPRO, EGPRI1,
EGPR2, EGPR3, ..., EGPR15) The aentry
ragisters. The contents of the general
raegisters at entry to DMSITS are stored in
these fields.

EFPRS (4 Doublewords, separately labeled EFPRO,
EFPR2, EFPR4, EFPR6) The entry floating-point
registers. The contents of the floating-point
registars at entry to DMSITS are stored in
these fields.

SSAVENXT (Fullword) The address of the next system save
area in the chain. This points to the system
sava area that is being used, or will be used,
for any SVC call nested in relation to the
current one.

SSAVEPRYV (Fullword) The addraess of the previous system
save area in the chain. This points to the
system save area for the SVC call in relation
to which the current call is nested.

USAVEPTR (Fullword) Pointer to the user save area for
this SVC call.

Dynamic Linkaga/SUBCOM

It is possible for programs that are already loaded from disk to
become dynamically known by name to CMS for the duration of the
current command; such programs can be called via SVC 202. These
programs can also make other programs dynamically known if first
program can supply the entry points of the other programs.

To becomae known dynamically to CMS, a program or routine invokes
tha create function of SUBCOM. To invoke SUBCOM, issue the
following calling sequence from an assembler program (Register 1
must point to this calling sequence):

LA LA R1,PLIST

SvVeC 202

DC AL4(ERROR)

PLIST DS OF
DC CL8'SUBCOM!'

SUBCNAME DC CL8'name' COMMAND NAME

SUBCPSW DC XL2'0000° SYSTEM MASK, STORAGE KEY, ETC.
DC AL2(0) RESERVED

SUBCADDR DC A(-%) ENTRY ADDRESS, -1 FOR QUERY
DC Ac0) USER WORD

SUBCOM creates an SCBLOCK control block containing the
information specified in the SUBCOM parameter list. SVC 202
uses this control block to locate the specified routine. The
SUBCOM chain of SCBLOCKs is released at the completion of the
command (that is, when CMS displays the Ready message). See the
publication VM/SP Data Areas and Control Block Logic, Volume 2
(CMS), for a description of the SCBLOCK control block.

Processing and Executing CMS Filas 65

Licensed Material--Property of IBM

When a program issues an SVC 202 call to a program that has
become known to CMS via SUBCOM, it places X'02' in the
high-order byte of register one. Control passes to the called
program at the address specified by the called program when it
invoked SUBCOM.

The PSW specifies the system mask, the PSW key to be used, the
program mask (and initial condition code), and the starting
address for execution. Thae problem-state bit and machine-check
bit may be set. The machine-check bit has no effect in CMS
under CP. The EC-mode bit and wait-state bit cannot be set
(they are always forced to zero). Also, one 4-byte user-defined
word can be associated with the SUBCOM entry point, and referred
to when the entry point is subsequently called.

Note: When control passes to the spacified entry point, the
register contents are:

R2 Address of SCBLOCK for this entry point.
R12 Entry point address.

R13 24-word save area address.

Rl4 Return address (CMSRET).

R15 Entry point address.

You can also use SUBCOM to delete this potential linkage to the
program or routine's SCBLOCK or to determine if an SCBLOCK

exists for a program or routine. To delete a program or
routine's SCBLOCK, issua:

DC CL8'SUBCOM'
DC CL8'program or routine name'
DC 8X'00"'

To determine if a SCBLOCK exists for a program or routine,
\B-1- -1

DC CL8'SUBCOM'

DC CL8'program or routine name'

DC A(0) SCBLOCK address as a returned value
DC 4X'FF!'

Note that if '"SUBCOM name' is called from an EXEC file, the
QUERY PLIST is the form of PLIST which will be issued.

To query the chain anchor issue:

DC CL8'SUBCOM'

DS CL8 (contents not relevant)

DS AL¢4 Will receive chain anchor
contents from NUCSCBLK.

DC AL4(1) Indicates request for anchor.

Note that the anchor will be equal to F'0' if there are no
SCBLOCKs on the chain.

Return codes from SUBCOM are:

0 - Successful completion. A new SCBLOCK was created,
the specified SCBLOCK was deleted, or the specified
program or routina has an SCBLOCK.

1 - No SCBLOCK exists for the specified program or
routine. This is the return code for a delete or a
query.

25 - No more free storage available. SCBLOCK cannot be
created for specified program or routine.

66 VM/SP System Logic and Problem Determination Guide (CMS)

Licensed Material--Property of IBM

Note: If you create SCBLOCKs for several programs or routines
with the same name, they will all be remembered, but SUBCOM uses
the last one created. A SUBCOM delete request for that name
will eliminate only the most recently created SCBLOCK, making
active tha next most recently created SCBLOCK with the same
name.

When control returns to CMS after a console input command has
terminated, the entire SUBCOM chain of SCBLOCKs is released;
none of the subcommands established during that command are
carried forward to be available during execution of the next
console command.

LOADING AND EXECUTING TEXT FILES

The CMS loader consists of a nucleus resident loader (DMSLDR), a
file and message handler program (DMSLIO), a library search
program (DMSLIB), and other subroutine programs. DMSLDR starts
loading at the user first location (AUSRAREA) specified in NUCON
or at a user specified location. When performing an INCLUDE
function, loading resumes at the next available location after
the previous LOAD, INCLUDE, or LOADMOD.

The loader reads in the entire user's program, which consists of
one or mora control sections, each defined by a type 0 ESD
record ("card"). Each control section contains a type 1 ESD
card for each entry point and may contain other control cards.

Once the user's program is in storage, the loader begins to
search its files for library subprograms called by the program.
The loader reads the library subprograms into storage,
relocating and linking them as required. To relocate programs,
the loader analyzes information on the SLC, ICS, ESD, TXT, and
REP cards. To establish linkages, it operates on ESD and RLD
cards. Information for end-of-load transfer of control is
provided by the END and LDT cards, the ENTRY control card, START
command, or RESET option.

The loader also analyzes the options specified on the LOAD and
INCLUDE commands. In response to specified options, the loader
can:?

U Set tha load area to zeros before loading (CLEAR option).

o Load the program at a specified location (ORIGIN option).

. Suppress creation of the load-map file on disk (NOMAP
option).

. Suppress the printing of invalid card images in tha load map
(NOINV option).

. Suppress tha printing of REP card images in the load map
(NOREP option).

. Load program into "transient area™ (ORIGIN TRANS option).

o Suppress TXTLIB search (NOLIBE option).

. Suppress text file search (NOAUTO option).

o Execute the loaded program (START option).

o Type the load map (TYPE option).

. Set the program entry point (RESET option).

During its operation, the loader uses a loader table (REFTBL),
and external symbol identification table (ESIDTB), and a
location counter (LOCCNT). The loader table contains the names
of control sections and entry points, their current location,

and the relocation factor. (The relocation factor is the
difference between the compiler-assigned address of a control

Processing and Executing CMS Files 67

Licensed Material--Property of IBM

SLC CARD ROUTINE

section and the address of the storage location where it is
actually loaded.) The ESIDTB contains pointers to the entries
in REFTBL for the control section currently being processed by
the loader. The loader uses the location counter to determine
where the control section is to be loaded. Initially, the
loader obtains from the nucleus constant area the address
(LOCCNT) of the next location at which to start loading. This
value is subsequently incremented by the length indicated on an
ESDd(type 0), END, or ICS card, or it may be reset by an SLC
card.

The loader contains a distinct routine for each type of input
card. These routines perform calculations using information
contained in the nucleus constant area, the location counter,
the ESIDTB, the loader table, and the input cards. Other loader
routines perform initialization, read cards into storage, handle
error conditions, provide disk and typewritten output, search
libraries, convert hexadecimal characters to binary, process
end-of-file conditions, and begin execution of programs in core.

Following are descriptions of the individual subprocessors with
LDR.

Function
This routine sets the location counter (LOCCT) to the
address specified on an SLC card or to the address assigned
(in the REFTBL) to a specified symbolic name.

Entry
The routine is entered at the first instruction when it
receives control from the initial and resume loading
routine. It is entered at ORG2 whenever a loader routine
requires the current address of a symbolic location
specified on an SLC card.

operation
This routine determines which of the following situations
exists, and takes the indicated action:

1. The SLC card does not contain an address or a symbolic
name. The SLC card routine branches, via BADCRD in the
reference table search routine, to the disk and type
output routine (DMSLIO), which generates an error
message.

2. The SLC card contains an address only. The SLC card
routine sets the location counter (LOCCT) to that
address and returns to RD, in the initial and resume
loading routine, to read another card.

3. The SLC card contains a name only, and there is a
reference table entry for that name. The SLC card
routine sets LOCCT to the current address of that name
(at ORG2) and returns to the initial and resume loading
routine to get another card.

4. The SLC card contains a name only, and there is no
reference table entry for that name. The SLC card
routina branches via ERRSLC to the disk and type output
routine (DMSLIO), which generates an error message for
that name.

5. The SLC card contains both an address and a name. If
there is a REFTBL entry for the name, the sum of the
current address of the name and the address specified
on the SLC card is placed in LOCCT. Control returns to
the initial and resume loading routine to get another
card. If there is no REFTBL entry for the name, the
SLC card routine branches via ERRSLC to the disk and
type output routine, which generates an error message
for the name.

68 VM/SP System Logic and Problem Determination Guide (CMS)

9

Licensed Material--Property of IBM
ICS CARD ROUTINE - C2AEl

Function
This routine establishes a reference table entry for tha
control-segment name on the ICS card if no entry for that
name exists, adjusts the location counter to a fullword
boundary, if necessary, and adds the card-specified
control-segment length to the location counter, if
necessary.

Entry
This routine has one entry point, C2AEl. The routine is
entered from the initial and resume loading routine when it
finds an ICS card.

Operation

1. The routine begins its operation with a test of card
type. If the card being processed is not an ICS card,
the routine branches to the ESD card analysis routine.
Otherwise, processing continues in this routine.

2. The routine tests for a hexadecimal address on the ICS
card. If an address is present, the routine links to
the DMSLSBA subroutine to convert the address to
binary. O0Otheruwise, the routine branches via BADCRD to
the disk and type output routine (DMSLIO).

3. The routine next links to the REFTBL search routine,
which determines whether there is a reference table
entry for the card-specified control-segment name. If
such an entry is found, the REFTBL search routine
branches to the initial and resume loading routine.
Otherwise, the REFTBL search routine places the
control-segment name in the reference table and
processing continues.

4. The routine determines whether the card-specified
control-segment length is zero or greater than zero.
If the length is zero, the routine placaes the current
location counter value in the reference table entry as
the control segment's starting address (ORG2), and then
it branches to the initial and resume loading routine.
If the length is greater than zero, the routine sets
the current location counter value at a fullword
boundary address. The routine then places this
adjusted current location counter value in the
reference table entry, adjusts the location counter by
adding the specified control-segment length to it, and
branches to RD in the initial and resume loading
routine to get another card.

ESD TYPE 0 CARD ROUTINE - C3AA3

Function
This routine creates loader table and ESID table entries
for the card-specified control section.

Entry
This routine has one entry point, C3AA3. The routine is
entered from the ESD card analysis routine.

Operation

1. If this is the first section definition, its ESDID is
proved.

2. This routine first determines whether a loader table
(REFTBL) entry has already been established for the
card-specified control section. To do this, the
routine links to the REFTBL search routine. The ESD
type 0 card routine's subsequent operation depends on
whether there already is a REFTBL entry for this

Processing and Executing CMS Files 69

Licensed Material--Property of IBM

control section. If there is such an entry, processing
continues with operation 5, below; if there is not, the
REFTBL search routine places the name of this control
section in REFTBL and processing continues with
operation 3.

3. The routine obtains the card-specified control section
length and performs operation 4.

4. The routine links to location C2AJl in the ICS card
routine and returns to C3AD4 to obtain the current
storage address of the control section from the REFTBL
entry, inserts the REFTBL entry position (N - where
this is the Nth REFTBL entry) in the card-specified
ESID table location, and calculates the difference
between the current (relocated) address of the control
section and its card-specified (assembled) address.
This difference is the relocation factor. It is placed
in the REFTBL entry for this control section. 1If
previous ESDs have been waiting for this CSECT, a
branch is taken to SDDEF, where the waiting elements
are processed. A flag is set in the REFTBL entry to
indicate a section definition.

5. The entry found in the REFTBL is examined to determine
whether it had been defined by a COMMON. If so, it is
converted from a COMMON to a CSECT and performs
operation 3.

6. If the entry had not been defined previously by an ESD
type 0, processing continues at 3.

7. If the entry had been defined previously as other than
COMMON, DMSLIO is called via ERRORM to print a warning
message, "DUPLICATE IDENTIFIER"™. The entry in the ESID
table is set to negative so that the CSECT is skipped
(that is, not loaded) by the TXT and RLD processing
routines.

ESD TYPE 1 CARD ROUTINE - ENTESD

70

Function
This routine establishes a loader table entry for the entry
point specified on the ESD card, unless such an entry
already exists.

Entry
This routine is entered from the ESD card analysis routine.

Operation

1. Branches and links to REFADR to find loader table entry
for first section definition of the text deck saved by
the ESD 0 routine.

2. The routine then adds the relocation factor and the
address of the ESD found in operation 1 or the address
in LOCCNT if an ESD has not yet been encountered. The
sum is the current storage address of the entry point.

3. The routine links to the REFTBL search routine to find
whether there is already a REFTBL entry for the
card-specified entry point name. If such an entry
exists, the routine performs operation 4. If there is
no entry, the routine performs operation 5.

4. Upon finding a REFTBL entry that has been previously
defined for the card-specified name, the routine then
compares the REFTBL-specified current storage address
with the address computed in operation 2. If the
addresses are different, the routine branches and links
to the DMSLIO routine (duplicate symbol warning); if
the addresses are the same, the routine branches to

VYM/SP System Logic and Problem Determination Guide (CMS)

Licensed Material--Property of IBM

location RD in the initial and resume loading routine
to read another card. Otherwise, it is assumed that
the REFTBL entry was created as a result of previously
encountered external references to the entry. The
DMSLSBC routine is called to resolve the previous
external references and adjust the REFTBL entry. The
ent[¥0point name and address are printed by calling
DMS .

5. If there is no REFTBL entry for the card-specified
entry point name, the routine makes such an entry and
branches to the DMSLIO routine.

ESD TYPE 2 CARD ROUTINE - C3AH1

Function
This routine creates the proper ESID table entry for the
card-specified external name and places the name's assigned
agdress (ORG2) in the reference table relocation factor for
that name.

Entry
This routine has two entry points: C3AH1 and ESDOO.
Location C3AHl is entered from the ESD card analysis
routine. This occurs when an ESD type 2 card is being
processed. Location ESD0O0 is entered from:

. The ESD card analysis routine, when the card being
processed is an ESD type 2 and an absolute loading
process is indicated.

. The ESD type 0 card routine and ESD type 1 card
routine, as the last operation in each of these
routines.

Operation

1. When this routine is entered at location C3AHl, it
first links to the REFTBL search routine to determine
whether there is a REFTBL entry for the card-specified
external name. If none is found, the REFTBL search
routine sets the undefined flag for the new loader
table entry.

2. The routine resets a possible WEAK EXTRN flag. The
routine next places the REFTBL entry's position—-key in
the ESID table. If the entry has already been defined
by means of an ESD type 0, 1, 5, or 6, processing
continues at operation 4. Otherwise, it continues at
operation 3.

3. The relocated address is placed in the RELFAC entry in
the external name's REFTBL entry.

4. The ESD type 2 card routine then determines (at
location ESD0O0) whether there is another entry on the
ESD card. If there is another entry, the routine
branches to location CA3Al in the ESD card analysis
routine for further processing of this card.
Otherwise, the routine branches to location RD in the
initial and resume loading routine.

Exits
This routine exits to location CA3Al in the ESD card
analysis routine if there is another entry on the ESD card
being processed, and it exits to location RD in the initial
and resume loading routine if the ESD card requires no
further processing.

Processing and Executing CMS Files 71

Licensed Material--Property of IBM
ESD TYPE % ROUTINE - PC

Function
This routine makes loader table and ESIDTAB entries for
private code CSECT.

Operation

1. The routine LDRSYM is called to generate a unique
character string number of the form 00000001, which is
left in the external data area NXTSYM. It is greater
in value than the previously generated symbol.

2. The CSECT is then processed as a normal type 0 ESD with
the above assigned name.

ESD TYPES 5 AND 6 CARD ROUTINE - PRVESD AND COMESD

Function
This routine creates a reference table and ESIDTAB entries
for common and pseudo-register ESDs.

operation

1. Links to ESIDINC in the ESD type 0 card routine to
update the number of ESIDTB entries.

2. Links to the REFTBL search routine to determine whether
a reference table (REFTBL) entry has already been
created. If there is no entry, the REFTBL search
routine places the name of the item in the REFTBL.

J. If the REFTBL search routine had to create an entry for
the item, the ESD type 5 and 6 card routine indexes it
in the ESIDTB, enters the length and alignment in the
entry, indicates whether it is a PR or common, and
branches to ESD00 in the ESD type 2 card routine to
determine whether the card contains additional ESDs to
be processed. If the entry is a PR, the ESD type 5 and
6 card routine enters its displacement and length in
the REFTBL before branching to ESD0O0.

4. If the REFTBL already contained an entry, the ESD type
5 and 6 card routine indexes it in the ESIDTB, checks
alignment, and branches to ESDO0O.

Note: The PR alignment is coded and placed into the REFTBL. It
is an error to encounter more restrictive alignment PR than
previously defined. A blank alignment factor is translated to
fullword alignment.

ESD TYPE 10 ROUTINE - WEAK EXTRN

The WEAK EXTRN routine calls the search routine to find the
EXTRN name in the loader table. If not found, set the WEAK
EXTRN flag in the new loadar table entry. Exit to ESDO0O.

TXT CARD ROUTINE - C%AAl

Function
This routine has two functions: address inspaction and
placing text in storage.

Entry
This routine has three entry points: C4AAl, which is
entered from the ESD card analysis routina, and REPENT and
APR1l, which are entered from the REP card routine for
address inspection.

72 VM/SP System Logic and Problem Determination Guide (CMS)

J

>

Licensed Material--Property of IBM
Operation

1. This routine begins its operation with a test of card
type. If the card being processed is not a TXT card,
the routine branches to the REP card routine.
Otherwise, processing continues in this routine.

2. The routine then determines how many bytes of text are
to be placed in storage and finds whether the loading
process is absolute or relocating. If the loading
process is absolute, the routine performs operation 4,
below; if relocating, the routine performs operation 3.

3. If the ESIDTB entry was negative, this is a duplicate
to CSECT and processing branches to RD. Otherwise, the
routine links to the REFADR routine to obtain the
relocation factor of the current control segment.

4. The routine then adds the relocation factor (0, if the
loading process is absolute) and the card-specified
storage address. The result is the address at which
the text must be stored. This routine also determines
whether the address is such that the text, when loaded
starting at that address, overlays the loader or the
reference table. If a loader overlay or a reference
table overlay is found, the routine branches to the
LDRIO routine. If neither condition is detected, the
routine proceeds with address inspection.

5. The routine then determines whether an address has
already been saved for possible use as the end-of-load
branch address. If an address has been saved, the
routine performs operation 7. If not, the routine
performs operation 6.

6. The routine determines whaether the text address is
below location 128. If the address is below location
128, it should not be saved for use as a possible
end-of-load branch address, and the routine performs
operation 7. Otherwise, the routine saves the address
and then performs operation 7.

7. The routine then stores the text at the address
specified (absolute or relocated) and branches to
location RD in the initial and resume loading routine
to read another card.

EXits
The routine exits to two locations:

1. The routine exits to location RD in the initial and

resume loading routine if it is being used to process a
TXT card.

2. The routine exits to location APRIL in the REP card
routine if it is being used for REP card address
inspection.

REP CARD ROUTINE - C%AA3

Function
This routine places text corrections in storage.

Entry

This routine has one entry point, C4AA3. The routine is
entered from the TXT card routine.

Operation

l. This routine begins its operation with a test of card
type. If the card being processed is not a REP card,
the routine branches to the RLD card routine.
Otherwisa, processing continues in this routine.

Processing and Executing CMS Files 73

Licensed Material--Property of IBM

2. The routine then links to the HEXB conversion routine
to convert the REP card-specified correction address
from hexadecimal to binary.

3. The routine then links to the HEXB conversion routine
again to convert the REP card-specified ESID from
hexadecimal to binary.

4. The routine then determines whether the 2-byte
correction being processed is the first such correction
on the REP card. If it is the first correction, the
routine performs operation 5. Otherwise, the routine
performs operation 6.

5. When the routine is processing the first correction, it
links to location REPENT in the TXT card routine, where
the REP card-specified correction address is inspected
for loader overlay and for end-of-load branch address
saving. In addition, if the loading process is
relocating, the relocated address is calculated and
checked for reference table overlay. The routine then
performs operation 7.

6. When the correction being processed is not the first
such correction on the REP card, the routine branches
to location APRl in the TXT card routine for address
inspection.

7. The routine then links to the HEXB conversion routine
to convert the correction from hexadecimal to binary,
places the correction in storage at the absolute
(card-specified) or relocated address, and determines
whether there is another correction entry on the REP
card. If there is another entry, the routine repeats
its processing from operation 4, above. Otherwise, the
routine branchaes to location RD in the initial and
resume loading routine.

Exits
When all the REP-card corrections have been processed, this
routine exits to location RD in the initial and resume
loading routine.

RLD CARD ROUTINE - C5AAl

Function
This routine processes RLD cards, which are produced by the
assembler when it encounters address constants within the
program being assembled. This routine places the current

storage address (absolute or relocated) of a given defined

symbol or expression into the storage location indicated by
the assembler. The routine must calculate the proper value
of the defined symbol or expression and the proper address
at which to store that value.

Entry
This routine has two entry points, C5AAl and PASSTWO.

Operation

1. Location C5AAl writes each RLD card into a work file
(DMSLDR CMSUT1). Exit to RD to process the next card.

Location PASSTWO reads an RLD card from the work file.
At EOF get to C6AB6 to finish this file.

2. The routine uses the relocation header (RH ESID) on the
card to obtain the current address (absolute or
relocated) of the symbol referred to by the RLD card.
This address is found in the relocation factor section
of the proper reference table entry. If the RH ESID is
0, the routine branches to the LDRIO routine (invalid
ESD).

74 VM/SP System Logic and Problem Determination Guide (CMS)

9

Licensed Material--Property of IBM

3. The routine uses the position header (PH ESID) on tha
card to obtain the relocation factor of the control
segment in which the DEFINE CONSTANT assembler
instruction occurred. If the PH ESID is 0, the routine
branches to BADCRD in the REFTBL search routine
(invalid ESID). If the ESIDTAB entry is negative
(duplicata CSECT), the RLD entry is skipped.

4. Thae routine next decrements the card-specified byte
count by 4 and tests it for 0. If the count is now 0,
the routine branches to location RD in the initial and
resume loading routine. Otherwise, processing
continuas in this routina.

5. Tha routine determines the length, in bytes, of the
address constant referred to in the RLD card. This
length is specified on the RLD card.

6. Tha routina then adds the relocation factor obtainad in
operation 3 (relocation factor of the control segment
in which the current address of the symbol must ba
stored) and the card-specified address. The sum is the
current address of the location at which the symbol
address must ba stored.

7. The routine then computes the arithmetic value (symbol
address or expression value) that must be placed in
storage at the address calculated in opaeration 6,
above, and places that value at the indicated address.
If the value is undefined, the routine branches to
location DMSLSBB, where the constant is added to a
string of constants that are to be defined later.

8. The routine again decrements the byte count of
information on the RLD card and tests the result for
zero. If the result is zero, go to opaeration 2.
Otherwise, processing continues in this routine.

9. The routine next checks the continuation flag, a part
of the data placed on the RLD card by tha assemblar.
If tha flag is on, the routine repeats its processing
for a new address only--the processing is repeated from
operation 4. If the flag is off, the routine repeats
its processing for a new symbol--the processing is
repeatad from operation 2.

Exits
This routine exits to location RD in the initial and resume
loading routine.

END CARD ROUTINE - C6AAl

Function
This routine saves the END card addraess under caertain
circumstances and initializes the loader to load another
control segment.

Entry
This routine has ona entry point, C6AAl. Tha routine is
entered from the RLD card routine.

operation

1. This routine begins its operation with a test of card
type. If the card being processed is not an END card,
the routine branches to the LDT card routina.
Otherwise, processing continues in this routine.

2. Tha routine then determines whethar the END card
contains an address. If the card contains no address,
the routine performs operation 7, below. Otherwise, the
routine performs operation 3.

Processing and Executing CMS Files 75

Licensed Material--Property
3.

Exits

of IBM

The routine next checks the end-address-saved switch.
If this switch is on, an address has already been
saved, and the routine performs operation 7. If the
switch is off, the routine performs operation 4.

Tha routine determines whether loading is absolute or
relocated. If the loading process is absolute, the
routine performs operation 6. Otherwise, the routine
performs operation 5.

The routine links to the REFADR routine to obtain tha
current relocation factor, and the routine adds this
factor to the card-specified address.

The routine stores the address (absolute or relocated)
in area BRAD for possible use at the end-of-load
transfer of control to the problem program.

Goes to location PASSTWO (in RLD routine) to process
RLD cards.

The routine then clears the ESID table, sats the
absolute load flag on, and branches to the location
specified in a general register (see "Exits").

This routine exits to the location specified in a general
register. This may be either of two locations:

1.

Location RD in the initial and resume loading routine.
This exit occurs when the END card routine is
processing an END card.

The location in the LDT card routine, that is specified
by that routine's linkage to the END card routine.

This exit occurs when thae LDT card routine entered this
routine to clear the ESID table and set the absolute
load flag on.

CONTROL CARD ROUTINE - CTLCRD1

Function
This routine handles the ENTRY and LIBRARY control cards.

Entry

This routine has one entry point, CTLCRDl. The routine is
entered from the LDT card routine.

Operations

1.
2.

The CMS function SCAN is called to parse the card.

If the card is not an ENTRY or LIBRARY card, the
routine determines whether the NOINV option (no
printing of invalid card images) was specified. If
printing is suppressed, control passes to RD in the
initial and resume loading routine, where another card
is read. If printing is not suppressed, control passes
to the disk and type output routine (DMSLIO), where the
invalid card image is printed in the load map. If the
card is a valid control card, processing continues.

ENTRY Card

If the ENTRY name is already defined in REFTBL, its
REFTBL address is placed in ENTADR. Otherwise, a new
entry is made in REFTBL, indicating an undefined
external reference (to be resolved by later input or
library search), and this REFTBL entry's address is
placed in ENTADR.

The control card is printed by calling DMSLIO via
CTLCRD; it then exits to RD.

76 VM/SP System Logic and Problem Determination Guida (CMS)

9

Licensed Material--Property of IBM

LIBRARY Card

5. Only nonobligatory reference LIBRARY cards are handled.
Any others are considered invalid.

6. Each entry-point name is individually isolated and is
searched for in the REFTBL. If it has already been
loaded and defined, nothing is done and the next
entry-point name is processed. Otherwise, the
no:obligatory bit is set in the flag byte of the REFTBL
entry.

7. Processing continues at operation 4.

REFADR ROUTINE (DMSLDRB)

Function
This routine computes the storage address of a given entry
in the reference table.

Entry
This routine has one entry point, REFADR. The routine is
entered for several of the routines within the loader.

Operation

1. Checks to see if requested ESDID is zero. If so, uses
LOCCNT as requested location and branches to the return
location + 44. OQOtherwise, continues this routine.

2. The routine first obtains, from the indicated ESID
table entry, the position (n) of the given entry within

the reference table (where the given entry is the nth
REFTBL entry).

3. The routine then multiplies n by 16 (the number of
bytes in each REFTBL entry) and subtracts this result
from the starting address of the reference table. The
starting address of the reference table is held in area
TBLREF. This address is the highest address in
storage, and the reference table is always built
downward from that address.

4. The result of the subtraction in operation 2, above, is
the storage address of the given reference table entry.
If there is no ESD for the entry, goes to operation 5.
Otheruwise, this routine returns to the location
specified by the calling routine.

5. Adds an element to the chain of waiting elements. The
element contains the ESD data item information to be
resolved when the requested ESDID is encountered.

PRSERCH ROUTINE (DMSLDRD)

Function
This routine compares each reference table entry name with
the given name determining (1) whether there is an entry
fo; that name and (2) what the storage address of that
entry is.

Entry
This routine is initially entered at PRSERCH and
subsequently at location SERCH. The routine is entered
from several routines within the loader.

Operation
1. This routine begins its operation by obtaining the

number of entries currently in the reference table
(this number is contained in area TBLCT), the size of a

Processing and Executing CMS Files 77

Licensed Material--Property of IBM

LOADER DATA BASES

ESIDTB ENTRY

referance table entry (16 bytaes), and the starting
address of the reference table (always the highest
address in storage, contained in area TBLREF).

2. The routine then checks the number of entries in the
reference table. If the number is zero, the routine
performs operation 5. Otherwise, the routine performs
operation 3.

3. The routine next determines the address of the first
(or next) reference table entry to have its name
checked, increments by one the count it is keeping of
name comparisons, and compares the given name with the
name contained in that entry. If the names are
identical, PRSERCH branches to the location specified
in the routine that linked to it. PRSERCH then returns
the address of the REFTBL entry. Otherwise, PRSERCH
performs operation 4.

4. The routina then determines whethaer there is another
reference table entry to be checked. If there is none,
the routine performs operation 5. If there is another,
the routine decrements by one the number of entries
remaining and repeats its operation starting with
operation 3.

5. If all the entries have been checked, and none contains
the given name for which this routine is searching, the
routine increments by one the count it is keeping of
name comparisons, places that new value in area TBLCT,
moves the given name to form a new reference table
entry, and returns to the calling program.

EXits
This routine exits to either of two locations, both of
which are specified by the routine that linked to this
routine. The first location is that specified in the event
that an entry for the given name is found; the second
location is that specified in the event that such as entry
is not found.

ESD Card Codes (col. 25...)
Code Meaning

00 SD (CSECT or START)
01 LD C(ENTRY)

02 ER (EXTRN)

04 PC (Private code)

05 CM (COMMON)

06 XD (Pseudo-register)
0A WX (WEAK EXTERN)

The ESD ID table (ESIDTB) is constructed separately for each
text deck processed by the loader. The ESIDTB produces a
corraspondenca between ESD ID numbers (used on RLD cards) and
entries in the loader reference table (REFTBL) as specified by
the ESD cards. Thus, the ESIDTB is constructed while processing
the ESD cards. It is then used to process the TXT and RLD cards
in the text deck.

The ESIDTB is treated as an array and is accessed by using the
ID number as an index. Each ESIDTB entry is 16 bits long.

78 VM/SP System Logic and Problem Determination Guida (CMS)

9

REFTBL ENTRY

Licensed Material--Property of IBM

Bits Meaning

0 If 1, this entry corresponds to a CSECT that has been

previously defined. All TXT cards and RLD cards referring

to this CSECT in this text deck should be ignored.
If 1, this entry corresponds to a CSECT definition (SD).

1

2 Waiting ESD items exist for this ESDID.

3 Unused.

4-15 REFTBL entry number (for example 1, 2, 3, etc.)

Bit 1 is very crucial because it is necessary to use the VALUE

field of the REFTBL if the ID corresponds to an ER, CM, or PR;

but, the INFO field of the REFTBL entry must be used if the ID

corresponds to an SD.

0¢0)
NAME
8(8) 9(9)
FLAG1 INFO
12(¢C) 13(D)
NOTE1l VALUE
16(10) 17(11)
FLAG2 ADDRESS

A REFTBL entry is 20 bytes. The fields have the following uses:

NAME
Contains the symbolic name from the ESD data item.

FLAG1

Loader ESD Routine
Code Ccode Label Meaning

7C 00 XBYTE PR - byte alignment

7D 01 XHALF PR - halfword alignment
7E 03 XFULL PR - fullword alignment
7F 07 XDBL PR - doubleword alignment
80 05 XUNDEF Undefined symbol

81 04 XCXD Resolve CXD

82 02 XCOMSET Define common area

83 05 WEAKEXT Weak external reference
90 06 CTLLIB TXTLIBs not to be used to

resolve names

INFO
Depends upon the type of the ESD item.
ESD Item Type INFO Field Meaning
SD (CSECT or START) Relocation
factor
LD C(ENTRY) Zero
CM (COMMON) Maximum length

PR (Pseudo Register) -

Processing and Executing CMS Files

79

Licensed Material--Property of IBM

PATCH CONTROL BLOCK

VALUE
Depends upon the type of the ESD item, as does tha INFO
field.
ESD Item Type INFO Field Meaning
SD (CSECT or START) Absolute address
LD (ENTRY) Absolute address
CM (COMMON) Absolute address
PR (Pseudo register) Assigned value (starting
from 0)
FLAG2
Bit Meaning
0 Unused
1 Unused
2 Unused
3 Unused
4 Unused
5 Name was located in a TXTLIB
6 Section definition entry
7 Name specifically loaded from command
line.
ADDRESS
Unused

Entries may be created in the loader reference table prior to
the actual defining of the symbol. For example, an entry is
created for a symbol if it is referenced by means of an EXTRN
(ER) even if the symbol has not yet been defined or its type
known. Furthermore, COMMON (CM) is not assigned absolute
addresges until prior to the start of execution by the START
command.

These circumstances are determined by the setting of the flag

byte. If the symbol's value has not yvet been defined, the value
field specifies the address of a patch control block (PCB).

{PCB)

These are allocated from free storage and pointed at from REFTBL
entries or other PCBs.

Byte Meaning
0-3 Address of next PCB

4 Flag byte
5-7 Location of ADCON in storage

All address constant locations in loaded program for undefined
symbols are placed on PCB chains.

LOADER INPUT RESTRICTIONS

All restrictions that apply to object files for the 0S5 linkage
editor apply to CMS loader input files.

LOADING AND EXECUTING MEMBERS OF LOADLIBS

The 0S relocating loader support consists of two members: the
relocating program (DMSL0OS) and the overlay program (DMSSFF).
In addition, the OSRUN command (DMSOSR) allows the user to
invoke directly from the consocle a program residing in a CMS
LOADLIB or an 0S module library. DMSOSR executes in user
storage.

80 VM/SP System Logic and Problem Determination Guida (CMS)

9

Licensed Material--Property of IBM

When a user program invokes the LINK, LOAD, XCTL, or ATTACH SVC,
DMSSLN calls DMSLOS to search the libraries in the LOADLIB
global list for the specified member name. If found, DMSLOS
loads and relocates the requested program from either an 0S
module library (for example, SYS1.LINKLIB) or a CMS LOADLIB
(created by the LKED command). If the member is not found,
return is made to DMSSLN to search for a TEXT file or a member
of a TXTLIB by that name.

Tha program exists in the library as text records, directly
followed (when required) by control, relocation, and position
records. DMSLOS obtains, via the BLDL macro, the information
necessary to start loading the program from the PDS directory
entry for the program. Then, text records and control records
are read alternately, the proper addresses are modified, and
return is made to DMSSLN.

The OSRUN command generates a LINK SVC and therefore follows the
same path described in the preceding paragraphs. However, if
the requested member is not found in searching the librariaes
specified in the LOADLIB global list, a search is made for a
default library ($SYSLIB LOADLIB); TEXT files and TXTLIB members
are not searched.

For detailed information on the library record formats, see the

IBM 0S/VS Linkage Editor Logic.

Processing and Executing CMS Files 81

Licensed Material--Property of IBM

82 VM/SP System Logic and Problem Determination Guide (CMS)

Licensed Material--Property of IBM
E G_COMMANDS THAT MA L THE _FILE SYSTEM

Figure 9 on page 39 lists the CMS modules that perform eithaer

general file system support functions or that perform data
manipulation.

Processing Commands That Manipulate the File System 83

Licensed Material--Property of IBM

86 VM/SP System Logic and Problem Determination Guida (CMS)

C

C

MANAGING THE CMS FILE SYSTEM

DISK ORGANIZATION

0 M LE RE ORGANIZED IN STORAGE FO

Licensed Material--Property of IBM

A description of the structure of the CMS file system and the
flow of routines that access and update the file system follouws.

CMS virtual disks (also referred to as minidisks) are blocks of
data designed to externally parallel the function of real disks.
Several virtual disks may reside on one real disk.

A CMS virtual machine may have up to 26 virtual disks accessaed
during a terminal session, depending on user specifications.
such as the S-disk, are accessed during CMS

Some disks,

initialization.

However, most disks are accessed dynamically as

they are needed during a terminal session.

N_800-BYTE RECORD

CMS files are organized in storage by three types of data

blocks:
records.
to each other.

the file status table (FST), chain links, and file
Figure 14 shows how these types of data blocks relate
The following text and figures describe these

relationships and the individual data blocks in more detail.

FILE STATUS TABLES

CMS files consist of 800-byte records whose attributes are
described in the file status table (FST). The file status tablae
is defined by DSECT FSTSECT. The FST consists of such
information as the filename, filetype, and filemode of the file,
the date on which the file was last written, and whether the
file is in fixed-length or variable format. Also, the FST
contains a pointer to the first chain link. The first chain
link is a block that contains addresses of thae data blocks that
contain the actual data for the file.

The FSTs are grouped into 800-byte blocks called FST Blocks
(these are sometimes referred to in listings as hyperblocks).
Each FST block contains 20 FST entries, each describing the
attributes of a separate fila. Figure 15 on page 86 shows the
structure of an FST block and the fields defined in the FST.

File Status
Master Table Block File Status First Chain Nth Chain
File Directory (FSTB) Table Entry Link (FCL) Link (NCL)
Address of 2‘%‘ /
FSTB r
FCL Address of
an 800-byte
CMS Record r-‘
(L
—Ir
»| Record 1 Record 2 Record 3 e Record n
7

|<— 800-byte CMS Record Containing File Data Items ——I

Figure 14. How 800-Byte CMS File Records are Chained Together

Managing the CMS File System 85

Licensed Material--Property of IBM

CHAIN LINKS

CMS RECORD FORMATS

Fields in a File Status Table Entry

0
FILE
NAME
File Status
Table Block
8
FST 1 FILE
FST 2
TYPE

L

DATE LAST WRITTEN
i 22
Write Pointer Read Pointer
(Number of Item) {Number of Item)
26
N Filemode Number of Items in File
ﬁ
Disk Address of 30 31
i r R .
1st Chain Link Fixed Variable Flag Byte

Item Length (F)
Maximum Item Length (V)

Number of
800-Byte Data Blocks Year

Figure 15. Format of a File Status Table Block - Format of a
File Status Table. (for 800-Byte Disk Format)

Chain links are 200- or 800-byte blocks of storage that chain
the records of a file in storage. There are two types of chain
links: first chain links and Nth chain links.

The first chain link points to two kinds of data. The first 80
bytes of the first chain link contain the halfword addresses of
the remaining 40 chain links used to chain the records of the
file. The next 120 bytes of the file are the halfword addresses
of the first 60 records of the file.

The Nth chain links contain only halfword addresses of the
records contained in the file.

Because there are 41 chain links (of which the first contains
addresses for only 60 records), the maximum size for any CMS
file is 16,060 800-byte records.

CMS records are 800-byte blocks containing the data that
comprises the file. For example, the CMS record may contain
several card images or print images, each is referred to as a
record item. Figure 16 on page 87 shows how chain links are
chained together.

86 VMs/SP System Logic and Problem Determination Guide (CMS)

Licensed Material--Property of IBM

CMS records can be stored on disk in either fixed-length or
variable-length format.
mixed in a single file.

Regardless of their format,
CcMS

However,

the two formats may not be

the items of a file are stored by

in sequential order in as many 800-byte records as are

required to accommodate them.

tha next record.

Each record (except the last) is
completely filled and items that begin in one record can end on

Figure 17 on page 88 shows the arrangement of

records in files containing fixed-length records and files
containing variable-length records.

Disk Address of 2nd Chain Link

Disk Address of 3rd Chain Link

L
4

i [d

Chain
> Linkage
Directory

Disk Address of 40th Chain Link

Disk Address of A + Oth Data Block

Disk Address of 41st Chain Link J

Disk Address of A+ 1st Data Block

Disk Address of 1st Data Block

IL
aJ
(i
>

Disk Address of 2nd Data Block

Disk Address of A + 398th Data Block

w{d
24

Disk Address of A + 399th Data Block

ol
¥

A=(n-2} - 400 + 61

Disk Address of 59th Data Biock

where n = Chain Link Number

Disk Address of 60th Data Block

Figura 16.

Format of the First Chain Link and Nth Chain Links

Managing the CMS File System 87

Licensed Material--Property of IBM

Data block structure for file Data block structure for file
consisting of fixed -length records consisting of variable-length records
1st record L1
______________ 1st record
80— —~— 800 goy /- ——=-- 800
L2
—————————— = — - - - 2nd record
2nd record
-2 + F| oo -
_J L3 3rdrecord | L4
3rd record
sopb---- - - ——-——— 800 800 800
-—— = 4th record
_____ hrecord i
= Y
5th record Ls
8 hb——-- - - - - — == ~{ 800 800 Sth record 800
I - - — - r. _________ —
i A 1

Figure 17. Arrangement of Fixed-Laength Records and Variable-Length Records in Files

The

location of any item in a file containing fixed-length

records is determined by the formula:

(item number - 1) x record length

locations = -=---———----—————m———————— o

where the quotient is the sequential number of the data block

and the remainder is the displacement of the item into the data
block.
For variable-length records, each record is preceded by a 2-byte

field specifying the length of the record.

PHYSICAL ORGANIZATION OF VIRTUAL DISKS

Virtual disks are physically organized in 800-byte records.
Records 1 and 2 of each user disk are reserved for IPL. Record 3.
contains the disk label. Record & contains the master file
directory. The remaining records on the disk contain user
file-related information such as the FSTs, chain links, and thea
individual file records discussed above.

THE MASTER FILE DIRECTORY

The

master file directory (MFD) is the major file management

table for a virtual disk. As mentioned earlier, it resides on
cylinder 0, track 0, record ¢ of each virtual disk. The master
file directory contains six types of information:

The disk addresses of the FST entries describing user files
on that disk.

A 4-byte "sentinel,”™ which can be either FFFD or FFFF. FFFD
specifies that extensions of the QMSK (described below)
follow. FFFF specifies that no QMSK extensions follow.
Extensions to the QMSK, if any.

General information describing the status of the disk:

88 VM/SP System Logic and Problem Determination Guide (CMS)

Licensed Material--Property of IBEM

ADTNUM -- The total number of 800-byte blocks on the
user's disk.

ADTUSED -- The numbar of blocks currently in use on the
disk.

ADTLEFT -- Number of blocks remaining for use (ADTNUM -
ADTUSED).

ADTLAST -- Relative byte address of the last record in
use on thae disk.

ADTCYL -- Number of cylinders on the user's disk.

Unit Type -- A l-byte field describing the type of the
disk: 07 for a 3340, 08 for a 2314, 09 for a 3330, OB
for a 3350, 0C for a 3375, 0E for a 3380, FE for a 3370,
and FF for a 3310.

A bit mask called the QMSK, which keeps track of the
status of the records on disk.

Another bit map, called the QQMSK, which is used only
for 2314 disks and performs a function similar to that
of QMSK.

Figura 18 shows the structure of the master file directory.
Figure 14 on page 85 shows the relationship of the Master File
Directory, which rasides on disk, to data blocks brought into
storage for file management purposes, for example, FSTs and
chain links.

Byte 0 >

Byte

Byte
Byte
Byte
Byte
Byte

Figure

[]

L]

L]
364 —»

—
3

2 Bytes >

Disk Address of 1st FST Block

Disk Address of 2nd FST Block (if any)
[)

[]
Disk Address of Nth FST Block (if any)

Sentinel

Disk Address of 1st QMSK extension (if any)
[]
[)
[]

Disk Address of Nth QMSK extension (if any)

[]
*L Not used — Zero filled

IL
)

ADTNUM, ADTUSED, ADTLEFT, ADTLAST

™ (4 bytes each) n

380 - —»
Not used (zero)
382 —»
ADTCYL

384 —»

N .
599 N First 215 Bgtes of QMSK ;:

l UNIT-TYPE

600 —> :

oL Entire 200-Byte QQMSK Table S

T (for 2314 only)
18. Structura of tha Master File Directory

Managing the CMS File System 89

Licensed Material--Property of IBM

QMSK for 2314 or 2319 —’l I‘"‘ 1bit "| |“1 bit QMSK for 3330
olololo|lo]Jo]o]o c olololo|lololo]o
olojlo|lolo]o|o]|o]|1bit H | 1bit olo|o|lo|o|o|o]|oO
1|2]|3|a4|/s5|6|7 8] ¢ R] ¢ 1/2|3|a4|5]|6 |78
olo|lo|]o|[o]o]|oOo]|oO where: ololofo|o|lo|o]|o
S T T T O T I I C = Cylinder oloflo|ojlofo]|1]1
g|10[11|12]|13[14]15 |1 H = Head 9 [10[11]12]|13[14]| 1 |2
ololojo|o]|]o|o]oO R = Record oloJo|ofo]o]|o]oO

1 {11 |1
g ; : g : 3 : 3 Bit Value Meaning ; l ; ; 78 |9 |10
0 Block available
:l: j 1 Block in use =|:“ o«
Number of QMSK Extensions Number of Cylinders on Disk
Required (if any) 2314 or 2319 3330 3340 3350
0 1-1n 1-6
1 12 — 54 7-30
2 55 — 96 31 — 54
3 97 — 139 55 — 78
4 140 — 182 79 — 102
5 183 — 203 103 — 126
6 - 127 — 150
7 — 161 — 174
8 - 175 — 198
9 - 199 — 223
10 - 224 — 246

Figure 19. Disk Storage Allocation Using the QMSK Data Block

KEEPING TRACK OF READ/URITE DISK STORAGE: QMSK AND QQMSK

90

Because CMS does not require contiguous disk space, disk space
management needs to determine only the availability of 800-byte
blocks and to chain them together. The status of the blocks on
any read/urite disk (which blocks are available and which are
currently in use) is stored in a table called QMSK. The term
QMSK is derived from the fact that a 2311 disk drive has four
800-byte blocks per track. One block is a "quarter-track," or
QTRK, and a 200-byte area is a "quarter-quarter-track,”™ or
QQTRK. The bit mask for 2314, 2319, 3310, 3330, 3340, 3350,
3370, 3375, or 3380 records is called the QMSK, although each
800-byte block represents less than a quarter of a track on
these devices.

On a 2314 or 2319 disk, the blocks are actually grouped fifteen
800-byte blocks per even/odd pair of tracks. An even/odd pair
of tracks is called a track group. On a 3330 disk, the blocks
are grouped fourteen 800-byte blocks per track. On a 3340 disk,
the blocks are grouped into eight 800-byte blocks per track.

When the system is not in use, a user's QMSK resides on the
Master File Directory. During a session it is maintained on
disk, but also resides in main storage. QMSK is of variable
length, depending on how many cylinders exist on the disk.

Each bit is associated with a particular block on the disk. The
first bit in QMSK corresponds to the first block, the second bit
to the second block, and so forth, as shown in Figure 19.

VM/SP System Logic and Problem Determination Guide (CMS)

9

Licensed Material--Property of IBM

When a bit in QMSK is set to 1, it indicates that the
corresponding block is in use and not available for allocation.
A 0-bit indicates that the corresponding block is available.
The data blocks are referred to by relative block numbers
throughout disk space management, and the disk I/0 routine,
DMSDIO, finally converts this number to a CCHHR disk address.

A table called QQMSK indicates which 200 byte segments (QQTRK)
are available for allocation and which are currently in use.
QQMSK contains 100 entries, which are used to indicate the
status of up to 100 QQTRK records. An entry in QQMSK contains
either a disk address, pointing to a QQTRK record that is
available for allocation, or zero. QQMSK is used only for 2314
files; for 3330, 3340, and 3350, the first chain link occupies
the first 200-byte area of an 800-byte block.

The QMSK and QQMSK tables for read-only disks are not brought
into storage, since no space allocation is done for a disk while
it is read-only. They remain, as is, on the disk until the disk
is accessed as a read/write disk.

DYNAMIC STORAGE MANAGEMENT: ACTIVE DISKS AND FILES

CMS disks and files contained on disk are physically mapped
using the data blocks described above: for disks, the MFD, the
QMSK, and the QQMSK; for files, the FST, chain links, and
800-byte file records. In storage, all of this data is accessed
by means of two DSECTs whose addresses are defined in the DSECT
NUCON, ADTSECT and AFTSECT.

Managing Active Disks: The Active Disk Table

Thae ADTSECT DSECT maps information in the active disk table
(ADT). This information includes data contained in the MFD, FST
blocks, the QMSK, and QQMSK. The DSECT comprises of ten
"slots,™ each representing one CMS virtual disk. A slot
contains significant information about the disk such as a
pointer to the MFD for the disk, a pointer to the first FST
block, and pointers to the QMSK and QQMSK, if the disk is a R/W
disk. ADTSECT also contains information such as the number of
cylinders on the disk and the number of records on the disk.

Managing Active Files: The Active File Table

Each open file is represented in storage by an active file tabla
(AFT). The AFT (defined by the AFTSECT DSECT) contains data
found on disk in FSTs, chain links, and data records. Also
contained in the AFT is information such as the address of the
first chain link for the file, the current chain link for the
file, the address of the current data block and the fileid
information for the file. Figure 3 on page 6 shows the
relationship between the AFT and other CMS data blocks.

CMS ROUTINES USED TO ACCESS THE FILE SYSTEM

DMSACC is the control routine used to access a virtual disk. In
conjunction with DMSACM and DMSACF, DMSACC builds, in virtual
storage, the tables CMS requires for processing files contained
on the disk. The list below shows the logical flow of the main
function of DMSACC.

Access a Virtual Disk: DMSACC
DMSACC

Scans tha command line to determine which disk is
specified.

Managing the CMS File System 91

Licensed Material--Property of IBM

DMSLAD
Looks up the address of the ADT for the disk specified on
the command line.

DMSACC
Determines whether an extension to a disk has been
specified on the command line and ensures that it is
correctly spacified.

DMSLAD
In the case where an extension has been specified, ensures
that the extension disk exists.

DMSLAD
Ensures that the specified disk is not already accessed as
a R/W disk.

DMSFNS
In the case where the specified disk is replacing a
currently accessed disk, closes any open files belonging to
the duplicate disk.

DMSACC
Verifies the parameters remaining on the command line.

DMSALU
Releases any free storage belonging to the duplicate disk
via a call to DMSFRE. Also, clears appropriate entries in
the ADT for use by the new disk.

DMSACHM
(Called as the first instruction by DMSACF) Reads from the
Master File Directory, the QMSK, and the QQMSK for the
specified disk. Also, DMSACM updates the ADT for the
specified disk using information from the MFD.

DMSACF
Reads into storage all thae FST blocks associated with the
specified disk.

DMSACC
Handles error processing or processing required to return
control to DMSINT.

| HOW cMS FILES ARE ORGANIZED IN STORAGE FOR 512-, 1K=, 2K-, OR 4K~BYTE RECORDS ON
[

DISK

FILE STATUS TABLES

CMS files are organized by three types of blocks; the file
status table (FST), pointer blocks, and file records. Figure 20
on page 93 shows how these types of blocks relate to each other.
The following text and figures describe these relationships and
the individual data blocks in morae detail.

CMS files consist of 512-, 1K-, 2K-, or 4K-byte CMS blocks whose
attributes are described in the file status table (FST). The
file status table is defined by DSECT FSTSECT. The FST consists
of such information as the filename, filetype, and filemode of
the file, the date on which the file was last written, and
whether the file is in fixed-length or variable format. Also,
the FST contains a pointer to the highest level pointer block or
only data block. If it is a pointer block, this block contains
addresses of the next lower level pointer blocks or the data
blocks that contain the actual data for the file.

The FSTs are grouped into 512-, 1K-, 2K-, or 4K-byte CMS blocks
called FST blocks (these are sometimes referred to in listings
as hyperblocks). Each FST block contains 8, 16, 32, or 64 FST
entries respectively (an FST is 64 bytes long), each describing
the attributes of a separate file. Figure 21 on page 94 shouws
the structure of an FST block and the fields defined in the FST.

92 VM/SP System Logic and Problem Determination Guide (CMS)

Licensed Material--Property of IBM

Highest Level
File Status Pointer Block Lower Pointer Lower
File Directory Table Entry (FOP) _ Block (LPB) Pointer Block
LPB |
Addr
FoP ‘L\zgr Address of a 1K,
2K, or 4K record
rL
¥
1 Item 1 item 2 | Item 3 . Item n
1 F

| Figure 20. How 512-, 1K-, 2K-, or 4K-Byta CMS File Records are Chained Together

lt—

512-, 1K-, 2K -, or 4K -byte Record
Containing File Data Items

Managing the CMS File System

93

Licensed Material--Property of IEM)
Fields in a File Status Table Entry

Reserved
File Status
Table Block 20
Reserved
FST
24 26
FST Filemode Reserved
S 28 30 31
Reserved Fixed Variable Flag Byte

32

I1tem Length (F)
Maximum Item Length (V)

Reserved

File Origin Pointer (FOP) ’

Number of 512, 1K, 2K, 4K Blocks

1L

48

Number of Items In File

52 53 54

Highest Level Pointer Date Last Written
of Pointer Entry
Blocks Size

56
(YY MM DD HH MM SS)

4 Reserved

Figure 21. Format of a File Status Table Block - Format of a
File 2tatus Tabla. (For 512-, 1K-, 2K-, 4K-Byte Disk
ormat)

POINTER BLOCKS

Pointer blocks are 512-, 1K-, 2K-, or 4K-byte blocks of storage
that chain the records of a file. There are up to five levels
of pointer blocks. All but the first level of pointer blocks
contain the fullword disk address of the next louwer level

96 VM/SP System Logic and Problem Determination Guide (CMS)

Licensed Material--Property of IBM

pointaer block. Thae level-one pointer blocks contain the
fullword disk addresses of the data blocks of the file (see
Figure 22 on page 96 and Figurae 23 on page 97).

There are two types of pointer blocks: pointer blocks for fixed
files which are as described above, and pointer blocks for
variable files. For the variable files, each pointer block entry
is threa fullwords long. The first fullword holds the disk
address of the next lower level pointer block, the next fullword
holds the highest item number contained in this lower
corraesponding pointer block, and the last fullword holds the
displacement, at the data level, to the first identified item
contained in a lower corresponding pointer block. CMS blocks
are not shared by files.

Each entry of a level-one pointer block is composed of one
fullword containing the disk address of the corresponding data
block, one fullword containing the highest item number contained
in this data block, and one fullword containing the
displacement, in bytes, of the first identified item (if any)
containad in this data block. This last fullword of the entry
may hold the hexadecimal value X'FF...F', indicating that the
item is spanned.

The last fullword of a pointer block holds the displacement, in
bytes, of the last used entry, if one exists, in the block.

This structure permits the creation of very large files. The
maximum number of data blocks available in a variable format
file on a 1K-, 2K-, or 4K-byte blocksize minidisk is about 23! =~
1. The maximum number of data blocks available in a variable
format file on a 512-byte blocksize minidisk is about 15 times
less than 23! - 1. The maximum number of blocks available in a
variable format file is 64K.

Each pointer block or data block is prefixed in virtual storage
with a header. This header holds an entry called DCHTRUNK that
points to the upper level pointer block. Associated with the
DCHTRUNK value is a displacement that indicates the
corresponding entry in this upper level pointer block.

In virtual storage, each level of pointer block and the data

block have an anchor in the corresponding Active File Table
(AFT) and are forward and backward chained by the prefix.

Managing the CMS File System 95

Licensed Material--Property of IBM

P3(0)

Level 3 Pointer Block

Disk Address P2(0)

Disk Address P2(1)

f L
wrl;

fL

P2(0)

P1(0)

Disk Address DB(0)

Disk Address DB(1)

d L
J

J
]

[3 N B)
EX

Disk Address DB(255)

DB(0)

Disk Address P1(0)

Disk Address P1(1)

f

P2(1)

Disk Address P1(256)

Disk Address P1(257)

Item 1

Item 2

I L

—f L

Item n

Disk Address P1(258)
. Disk Address P1(259) | p2vel 2
! . Blocks
Sl N\
- ° T
° by J\
[
[]
Disk Address P1(255)
P1(1) P1(259)
Disk Address DB(256) Disk Address DB(66304)
Disk Address DB(257) Disk Address DB(66305)
XYY X
Level 1
. Pointer
. Blocks
) ° N) :\
- o b o Tt o
L4 .
Disk Address DB(511)
DB(1) DB(2) DB(3) * DB(66305)
Item n+1 Item Item Item M
Item Item item [XX Y XYY YY)
° °
[] [] L
~ : 'J-; ~ :)) :s <4 :
~ : 7.) .) b) ™ jn ol
[] []
[] [
Item Item Item

Figure 22. Format of Level 3 Pointer Block Fixed-Length Racord File

96

VM/SP System Logic and Problem Determination Guida (CMS)

Licensed Material--Property of IBM
P2(0)

Disk Address P1(0)

dp1 124 Level 2
———————— Pointer
i 0 Block

| Dink AdaressP1(1) |
126
1K +d125
oy ~
T T
dp1
Y P1(0) Y P1(1)
Disk Address DB(0) i Disk Address DB(86) 1
3 124 dp87
d1=0 X'FFFFFFFF J
Disk Address DB(1) Disk Address DB(87) Level 1
———————————————— eve
6 dp85 126 Pointer
———————— f— — — —_— — —— Blocks
d4 d125
n ~ H‘
N oS
A
\‘ d
Disk Address DB(85) > ~
124
d112
dp85 dp87
Data Block Data Block Data Block Data Block Data Block
DBI(0) DB(1) DB(92) Y DB(s6) Y os(87)
d1 [
L1 1}
d4 Item 3 d125 Item 124
Item 1 *
L4 I L1 25|
Item 6 eooeoe Item 124 Item 125
Item 4 d7 L126|
N Jd, Rltem 126 N
—— \P
~ ~4
L2 ' - T'\
Item 2 N
N S
[s]
Item 5
s | s |
Item 3 Item 6 1] | L7

Figure 23. Format of Level 2 Pointer Block Variable-Laength Record File

Managing the CMS File System 97

Licensed Material--Property of IBM

CMS BLOCK FORMATS

CMS blocks are 512-, 1lK-, 2K-, or 4K-byte disk records
containing the data that comprises the file. For example, the
CMS record may contain several card images or print images, each
of which is referred to a record item. Figure 22 on page %6
shows how pointer blocks are chained together.

CMS file items can be stored on disk in either fixed-length or
variable-length format. However, the two formats may not be
mixed in a single file.

Regardless of their format, the items of a file are stored by
CMS in sequential order in as many 512-, 1K-, 2K-, or 4K-byte
records as are required to accommodate them. Each CMS block
(except the last) is completely filled and items that begin in
one CMS block can end in the next CMS block. Figure 22 on page
96 shows the arrangement of items in files containing
fixed-length items and files containing variable-length items.

The location of any item in a file containing fixed-length items
is determined by the formula:

(item number - 1) x record length
location = -—--—--——---—-—————————e oo
512: IK’ 2K, or 4K

where the quotient is the sequential number of the data block
and the remainder is the displacement of the item into the data
block.

For variable-length files, each item is preceded by a 2-byte
field specifying the length of the item.

PHYSICAL ORGANIZATION OF VIRTUAL DISKS

THE FILE DIRECTORY,

Virtual disks are physically organized in 512-, 1K-, 2K-, or
4K-byte disk records. Records 1 and 2 of each user disk are
reserved for IPL. Record 3 contains the disk label. The first
block of the file directory is alternately exchanged between
raecord 4 and record 5 when the directory is rewritten to disk.
The remaining records on the disk contain information such as
allocation map blocks, FSTBs, pointer blocks, and the individual
file records as discussed above.

CMS disk structures that reside on FB-512 devices are 512-,
1024-, 2048-, or 4096-byte CMS block format. The required
number of 512-byte physical FB-512 disk records are logically
concatenated together to form each CMS block. For example; on a
1024-byte format disk, FB-512 physical record numbers 0 and 1
(origin 0) are used together to form CMS block 1 (origin 1l).

The FB-512 label occupies FB-512 block 1 (origin 0) leaving CMS
blocks 2 and 3 available for general use.

THE ALLOCATION MAP, AND THE DISK LABEL

The file directory and the allocation map have the same
organization as files. The directory contains FSTs and the
first block resides on cylinder 0, track 0, record 4 or record 5
of each virtual disk. The record number (4 or 5) is maintained
in the field disk origin pointer of the disk label.

The directory itself is described by an FST that is the first
FST in the first block. The filename for the directory is
binary zero (except for byte 4 which is binary 1), and the
filetype is "DIRECTOR"™.

The allocation map is described by an FST that is the second FST
in the first block of the directory. The filename is binary
zero (except for byte 4 which is binary 2), and the filetvpe is
T"ALLOCMAP™.

98 VM/SP System Logic and Problem Determination Guide (CMS)

<9

9

Licensed Material--Property of IBM

The disk label resides on cylinder 0, track 0, record 3. It is
80-bytes long and contains the following information:

ADTIDENT CMS1 is the label identifier.

ADTID Six characters given by the user are the volume
identifier.

ADTDBSIZ One fullword; contains the disk block size that the
user chooses at format disk time (512, 1K, 2K, or

4K).
ADTDOP One fullword; contains records 4 or 5 depending upon
the actual directory first data block address.
ADTCYL One fullword; contains the number of formatted
cvlinders available for CMS files.
ADTMCYL One fullword; contains the maximum number of
formatted cylinders, that is, the size of the disk.
ADTNUM One fullword; the total number of 512-, 1K-, 2K-, or

4K-byte blocks on the user's disk.

ADTUSED One fullword; the number of blocks currently in use
on the disk.

ADTFSTSZ One fullword; the size of the FST (64 bytes).
ADTNFST One fullword; the number of FSTs per block.

ADTCRED Six characters; the disk creation date
(YYMMDDHHMMSS) .

KEEPING TRACK OF READ/URITE DISK STORAGE: ALLOCATION MAP

In CMS, disk space is composed of 512-, 1K-, 2K-, or 4K-byte
blocks chained together. Because disk space management only
determines the availability of blocks, not extents, it need not
allocate disk space contiguously. The status of the blocks on
any read/urite disk (which blocks are available and which are
currently in use) is stored in a table called the allocation
map. The allocation map contains bits, each of which is
associated with a particular CMS block. The first corresponds
to the first CMS block, the second bit corresponds to the second
CMS block, and so forth.

When a bit in the allocation map is set to 1, it indicates that
the corresponding block is in use and not available for
allocation. A 0-bit indicates that the corresponding block is
available. The data blocks are referred to by relative block
numbers through disk space management, and the disk I/0 routine,
DMSDIO, finally converts this number to a CCHHR disk address or
FB-512 block number.

When the system is not in use, a user's allocation may resides
on the corresponding disk. During a session, it is maintained
on disk but also resides in real storage. The allocation map is
variable in length, depending on how many cylinders exist on the
disk. The CMS disk may reside on the entire physical disk pack
and is limited only by the physical limit of the disk pack.

A deallocation map exists in real storage when CMS disk blocks
are deallocated. During a terminal session, a block is recorded
as deallocated by turning on its corresponding bit in the
deallocation map.

When the disk is updated by rewriting the file directory and the
allocation map, the current allocation map is formed by
combining the allocation map and the deallocation map. In fact,
a deallocation map block is created only for those allocation
map blocks in which a CMS block is deallocated.

Managing the CMS File System 99

Licensed Material--Property of IBM

selective Directory

The allocation maps for read-only disks are not brought into
storage because no space allocation is performed for a disk

while it is in read-only status. They remain, as is, on the
disk until the disk is accessed as a read-urite disk.

Update

The file directory and the allocation map are built with CMS
blocks (512-, 1K-, 2K-, or 4K-bytes). The selective directory
update function takes place when the file directory and the
allocation map must be updated on the corresponding disk. It
writes on disk only the modified blocks of the directory
(including required pointer blocks) and the entire allocation
map.

DYNAMIC STORAGE MANAGEMENT: ACTIVE DISKS AND FILES

CMS disks are physically mapped in CMS blocks containing the
file directory and the allocation map. CMS files on disk are
mapped using FST blocks, pointer blocks, and 512-, 1K-, 2K-, or
4K-byte file data blocks.

In real storage all of this data is accessed by means of two
DSECTs whose addresses are defined in DMSNUC, ADTSECT, and
AFTSECT. 10 ADTSECTs reside in DMSNUC and the others (11
through 26) reside in free storage when they are used. Five
AFTs reside in DMSNUC and the others reside in free storage.
(See Figure 24 on page 101.)

Managing Active Disks: The Active Disk Table

The ADTSECT DSECT maps information in the active disk table
(ADT). An ADT contains significant information about the CMS
disk such as the anchors for pointer block levels, the data
block for the file directory, and the data block for the
allocation map (if the disk is a read-write disk). The ADTSECT
also contains disk label information.

Managing Active Files: The Active File Table

Each open file is represented in storage by an activa file table
(AFT). The AFT (defined by AFTSECT DSECT) contains data found
on disk in FSTs, the anchors for pointer block levels and the
data block for the file. The AFT also contains such information
as the read pointer and write pointer of the file, the number of
entries in a pointer block, the number of pointer block levels,
and the langth of a pointer block entry. Figure 24 on page 101
shows the relationship between the AFT and other CMS blocks.

100 VM/SP System Logic and Problem Determination Guide (CMS)

Licensed Material--Property of IBM

DMSNUC Area of Storage Free Storage
AFT LEVEL 2
i
POINTER TO HEADER
CURRENT
AFTUFP5 ;Eggk2 LEVEL 1 POINTER
/ AFTUFP4 LEVEL 1 POINTER |
P AFTUFP3
AFTFO LEVEL 1 POINTER
AFTUFP2
AFTUFP1 POINTER TO
DMSNUC AFTDBA CURRENT
- LEVEL 1
— POINTER TO BLOCK
cory CURRENT
OF FST
- DATA BLOCK ¥ DATA BLOCK n+k LEVEL 1
AFT HEADER HEADER
CONTINUED ITEM i LOCK n+1
AFTSECT ADT i DATA BLOCK n
ADTSECT ADTA DT 'TEM'+1 DATAB&OCKn+2
ADTB CONTINUED ! '
‘ ITEM p 1
ADTC
| DATA BLOCK n+k
ADTD 7
H
\ , DATA BLOCK 2n+1
ADTF
ADTG ADTDFP3
ADTDFP2
DTS ADTAMP2)
ADTAMP1 ADTDFP1
ADTY ADTMSK ADTFDA
ADTZ ADTDOP
VOLLABEL r—:—1
44on5
LEVEL 1 POINTER ALLOCMAP BLK ALLOCMAP BLK
HEADER' HEADER 441\g~__, HEADER
ALLOCMAP BLK 11 1 1 1 11 1 0 0
1 1 0 O 1
ALLOCMAP BLK | |
] 1
I 1.0 0 0 O
I 0 0 0 0 O
0 1 1 0 0 0 0 0 0 O

(Figure 24 (Part 1 of 3). File System for 512-, 1K-, 2K-, or 4K-Byte Record on Disk

Managing the CMS File System 101

Licensed Material--Property of IBM

LEVEL 2 POINTER
HEADER

LEVEL 1 POINTER [
LEVEL 1 POINTER [*®

l? LEVEL 1 POINTER LEVEL 1 POINTER

HEADER m HEADER

—p=| FSTB1 POINTER FSTB n+1 POINTER
FSTB2 POINTER FSTB n+2 POINTER
FSTB n+1 POINTER
:
]
1
FSTBn POINTER EST
FILENAME
FSTB1
ST FSTB2 —— FSTB n+3 FILETYPE
HEADER HEADER HEADER
FST DIRECTOR FSTi+1 USER FST USER
FSTALLOCMAP FSTi+2 USER FST USER FSTFOP
T
FST1 USER |
FST2 USER !
. ! THERE 1S ONE FST
: : FOR EACH FILE
FSTi USER FST USER

Figure 24 (Part 2 of 3). File System for 512-, 1K-, 2K-, or 4K-Byte Record on Disk

102 VM/SP System Logic and Problem Determination Guide (CMS)

C

Disk Storage CKD — DEVICE

VOLUME
LABEL

CYLO
HEAD O
REC 3

FST DIRECTOR

FST ALLOCMAP [

FST 1 USER

FST 2 USER

FSTi USER

Licensed Material--Property of IBM

DIRECTORY

CYLO
HEAD 0
REC 5

LEVEL 2

Y LEVEL1

FSTB1 POINTER

FSTB2 FSTBn

FSTB2 POINTER

FSTBn POINTER

LEVEL 1 POINTER
LEVEL 1 POINTER

LEVEL 1
FSTBn+1 POINTER

FSTBn+2 POINTER
FSTBn+3 POINTER

FSTBn+3

LEVEL 1
DATA BLOCK 1

DATA BLOCK 2

]

DATA BLOCK n

DATA BLOCK 1
ITEM1

ITEM 2

L
[}
1

ITEM

LEVEL 2 X <—])
LEVEL 1 POINTER

LEVEL 1 POINTER

LEVEL 1 POINTER

LEVEL1

LEVEL 1

DATA BLOCK n+1

DATA BLOCK n+2

DATA BLOCK 2n+1

DATA BLOCK 2

ITEM

DATA BLOCK m-2

DATA BLOCK m-1

DATA BLOCK m

DATA BLOCK m

ITEM

ITEM

ITEM

Figure 24 (Part 3 of 3). File System for 512-

» 1K-, 2K-, or 4K-Byte Record on Di;k

Managing the CMS File System 103

Licensed Material--Property of IBM
CMS ROUTINES USED TO ACCESS THE FILE SYSTEM

DMSACC is the control routine used to access a virtual disk. In
conjunction with DMSACM and DMSACF, DMSACC builds, in virtual
storage, the tables CMS requires for processing files contained
on the disk. The list below shows the logical flow of the main
function of DMSACC.

Access a Virtual Disk: DMSACC

DMSACC
Scans the command line to determine which disk is
specified.

DMSLAD
Looks up the address of the ADT for the disk specified on
the command line.

DMSACC
Determines whether an extension to a disk has been
specified on the command line, and ensures that it is
corractly specified.

DMSLAD
In the case where an extension has been specified, calls
DMSLAD to ensure that the extension disk exists.

DMSLAD
Ensures that the specified disk is not already accessed as
a R/W disk.

DMSFNS
In the case where the specified disk is replacing a
currently accessed disk, closes any open files balonging to
the duplicate disk.

DMSACC
Verifies the parameters remaining on the command lina.

DMSALU
Releases any free storage belonging to the duplicate disk
via a call to DMSFRE. Also, clears appropriate entries in
the ADT for use by the new disk.

DMSACM
(Called as the first instruction by DMSACF) Reads from
the file directory and the allocation map for the specified
disk. Also, DMSACM updates the ADT for the specified disk
using information from the file directory and disk label.

DMSACF
Reads into storage all the FST blocks associated with the
specified disk.

DMSACC

Handles error processing or processing required to return
control to DMSINT.

106 VM/SP System Logic and Problem Determination Guide (CMS)

9

C

Licensed Material--Property of IBM

HANDLING I/0 OPERATIONS

CMS input/output operations for unit record, disk, and tape
devices are always synchronous.

Input/output operations to a card reader, card punch, or printer
are initiated via a normal START I/0 instruction. After
starting the operation, CMS enters the wait state until a davice
end interruption is received from the started device. Because
the I/0 is spooled by CP, CMS does not handle any exceptional
conditions other than not ready, end-of-file, or forms overflow.

Disk and tape I/0 is initiated via a privileged instruction,
DIAGNOSE, whose function code requests CP to perform necessary
error recovery. Control is not returned to CMS until the
operation is complete, except for tape rewind or rewind and
unload operations, which return control immediately after the
operation is started. No interruption is ever received as the
result of DIAGNOSE I/0. The CSW is stored only in the event of
an error.

CMS input/output operations to the terminal may be either
synchronous or asynchronous. Output to the terminal is always
asynchronous, but a program may wait for all terminal
input/output operations to complete by calling the console wait
routine. Input from the terminal is usually synchronous but a
user may cause CMS to issue a read by pressing the attention
key. A program may also asynchronously stack data to be read by
calling the console attention routine.

COR /0 PROCESSING

Seven routines handle I/0 processing for CMS: DMSRDC, DMSPUN,
and DMSPRT handle the READCARD, PUNCH, and PRINT commands and
pass control to the actual I/0 processors, DMSCIO (for READCARD
and PUNCH) or DMSPIO (for PRINT). DMSCIO and DMSPIO issue the
SI0 instructions that cause I/0 to take place. Two other
routines, DMSIOW and DMSITI, handle synchronization processing
for I/0 operations. Figure 25 on page 106 shows the overall
flow of control for I/0 operations.

Handling I/0 Operations 105

Licensed Material--Property of IBM

READ A CARD

DMSRDC
DMSPUN
DMSPRT
DMSCIO Channel
DMSPIO
s10 7 DMSIOW

DMSITI

Figure 25. Flow of Control for Unit Record I/0 Processing

The following are more detailed descriptions of the flow of
control for the read, punch, and print unit record control
functions.

DMSRDC
Initializes block length and unit record size.

DMSCIO
Initializes areas to read records.

DMSCIO
Issues an SI0 command to read a record.

DMSIOU
Sets the wait bit for the virtual card reader, and loads
the 170 old PSW from NUCON. This causes CMS to enter a
wait state until the read I/0 is complete.

DMSITI
Ensures that this interrupt is for the virtual reader.
not, the I/0 old PSW is loaded, returning CMS to a wait

state. If the interrupt is for the reader, DMSITI resets

the wait bit in the I/0 old PSW and loads it causing
control to return to DMSIOW.

DMSIOU

Places the symbolic name of the interrupting device in the

PLIST, and passes control to the calling routine.

DMSCIO
Checks for SENSE information, and handles I/0 errors, if
necessary.

DMSCUR
Displays a control record at the console.

106 VM/SP System Logic and Problem Determination Guide (CMS)

PUNCH A CARD

Licensed Material--Property of IBM

DMSSCN
If another control record is encountered, formats it via
DMSSCN.

DMSCHR
Displays the new control record at the console.

DMSFNS
Closes the file when end-of-file occurs.

DMSRDC
Issues a CP CLOSE command to close the card reader.

DMSPUN
Ensures that a virtual punch is available, and processes
PUNCH command options.

DMSSTT
Verifies the existence of tha file, and returns its
starting address.

DMSPUN
If requested, sets up a header record, and calls DMSCWR to
write it to the console.

DMSBRD
Reads a block of data into the read buffer, and continues
reading until the buffer is filled.

DMSBUR
Writes a block of data on disk.

DMSCIO
Initializes areas to punch records.

DMSCIO
Issues the SI0 instruction to punch the contents of the
buffer.

DMSCIO
Issues a call to DMSIOW to wait for completion of the punch
I/0 operation.

DMSIOU
Saets the wait bit on for the virtual punch device, and
loads the I/0 old PSW from NUCON. This causes CMS to enter
a wait state until the punch operation completes.

DMSITI
Ensures that this interrupt is for the punch. If not, the
I/0 old PSW is loaded returning CMS to a wait state. If the
interrupt is for the punch, DMSITI resets the wait bit in
:hebaggoﬁld PSW and then loads the PSW, returning control
o .

DMSION
Places the symbolic name of the interrupting device in the
PLIST, and passes control to DMSCIO.

DMSCIO
Checks for SENSE information, and handles I/0 errors, if
any.

DMSPUN
Handles error returns, and resats constants for the next
punch operation.

DMSFNS
Closes the file, and returns control to tha command
handler, DMSINT.

Handling I/0 Operations 107

Licensed Material--Property of IBM

PRINT A FILE

DMSPRT
Determines the device type of the printer. Checks out the
specified fileid. Checks out the options specified on the
PRINT command line, and calls DMSPIO to print the
designated file.

DMSSCN
Verifies the existence of the file, and returns its
starting address.

DMSPRT
Determines the record size to be printed, and sets up an
appropriate buffer area via a call to DMSFRE.

DMSFRE
Obtains storage space to be used as a buffer.

DMSPRT
Determines whether the file to be printed is a library
member or an input file.

DMSBRD
Reads a record; continues reading until the buffer is
filled. When the buffer is filled, calls DMSPIO to issue
the SI0 instruction to begin the print operation.

DMSPIO
Builds appropriate printer CCW chain. Issues the print SIO
instruction, and then calls DMSIOW to wait until the the
I/0 operation completes.

DMSIOW
Sets the wait bit for the virtual printer device, and loads
the I/70 old PSW from NUCON. This causes CMS to enter a
wait state until the print operation completes.

DMSITI
Ensures that the interrupt is for thae printer. If not, the
I7/0 old PSW is reloaded, returning CMS to a wait state. 1If
the interrupt is for the printer, DMSITI resets the WAIT
bit in the I/0 old PSW and loads that PSW, returning
control to DMSIOW.

DMSION
Places the symbolic name of the device in the last word of
the PLIST, and passes control to DMSPIO.

DMSPIO
Performs channel testing and handles errors. TIO
instructions and sense SI0 instructions are issued during
the test processing. These operations are synchronized
using DMSIOW and DMSITI in the manner described above.
gaggk¥he I/0 completes successfully, control returns to

DMSPRT
Determines whether all file records have been printed. If
50, control returns to the caller. Otherwise, the address
of the buffer is updated and more print operations are
performed.

Printer Carriage Control Characters Used by DMSPIO

CMS supports the use of ASA control characters and machine
carriage control characters for the printed output. Part of the
CMS implementation depends upon the fact that the set of ASA
control characters has almost nothing in common with the set of
machine control characters. There are two exceptions +n this,
the characters X'Cl' and X'C3°'.

108 VM/SP System Logic and Problem Determination Guide (CMS)

9

9

Licensed Material--Property of IEM

These two characters, when interpreted as ASA control
characters, have the following meanings:

Cl = Skip to channel 10 before print.
c3

Skip to channal 12 before print.

The sama characters, when interpreted as machine control
charactars, have the following meanings:

Ccl

Writa, then skip to channel 8 after print.
C3 = Do not write, but skip to channel 8 immediately.

In printed lines containing carriage control characters, CMS can
operate in two modes. In the first mode, ASA control characters
or machines control characters are recognized and properly
interprated. Howaever, two conflicting characters are always
interpreted as ASA control characters. In the second mode, only
machine control characters are recognized. Two conflicting
characters are treated as machine control characters.

The DMSPIO function uses a bit in the PLIST to indicate which of
the two modes is in effect for printing.

Tha PRINTL macro always uses ASA control character mode or
machine control character mode.

Thae PRINT command with the CC option always runs in ASA control
character mode or machinae control character mode.

0S simulation output, which is used, for example, by the
MOVEFILE command, uses the RECFM field in the DCB or in the
FILEDEF command to determine which mode is to be used. If FA,
VA, or UA is specified, then ASA control character mode or
machine control character mode is used. If FM, VM, or UM is
spacified, then machine-only mode is used. If no control
character specification is included with the RECFM, then it is
assumed that the output line begins with a valid data character
rather than with a control character, and single spacing is
always used.

The CMS SETPRT command allows a CMS user to control the
facilities of a virtual 3800 device defined for their virtual
machine. The SETPRT command is similar in function to the 0S
SETPRT macro. It allows the user to request multiple character
arrangement tables, loading of copy modifications, etc. The
command uses the current CMS search order for locating disk
files. Therefore, users can create their own character
arrangement tables, copy modifications, etc. and print files
Wwith user-defined characteristics. The SETPRT command writes
3800 CCWs and data to a virtual 3800 spool file to set up the
real 3800 for the data to follow. If a file is created on a
virtual 3800 and printed on a real printer of a different type,
the 3800 load CCWs imbedded within the file are ignored and
printing takes place as normal. However, this may create output
that does not appear as originally intended.

The format of the command is:

SETPRT [CHARS [(] cccc [)11]
[COPIES [(] nnn [)

)1
1]
[COPYNR [(] nnn [)11]

Handling I/0 Operations 109

Licensed Material--Property of IBM
DMSSPR process the SETPRT command in the following manner:

1. Accept input PLIST and analyze. If there are errors, issue
a message to the user and exit.

2. Select the correct character set modules, and load these
modules into free storage.

3. Assign writeable character generation modules (WCGMs), and
change the translate tables if necessary.

4. Issue SIOs to the virtual 3800 printer. In the case of an
error, terminate processing, and issue a message and
appropriate return code.

5. Exit with a zero return code if the operation completes
successfully.

DISK I/0 IN CMS

Files residing on disk are read and written using DMSDIO.
DMSDIO has two entry points: DMSDIOR, which is entered for a
read I/0 operation, and DMSDIOW, which is entered for a write
operation.

The actual disk I/0 operation is performed using the DIAGNOSE
code 18 instruction. A return code of 0 from CP indicates a
successful completion of the I/0 operation. If the I/0 is not
successful, CP performs error recording, retry, recovery, or
ABEND procedures for the virtual machine.

READ OR WRITE DISK I/O

DMSDIO
Initializes the CCW to perform read operations.

DMSLAD
Obt:ins the address of the disk from which to read or
write.

DMSDIO
Determines the size of the record to be read or written.

DMSFRE
Gets enough storage to contain the record if the request is
for a record longer than 800 bytes.

DMSDIO
Reads records continually until all records for the file
have been read.

DMSFRE
Returns the buffer to free storage if the record was longer
than 800 bytes.

DMSDIO
Returns to the caller.

CMS TAPE LABEL PROCESSING

DMSLBD
Allows the user to specify tape label information that will
be used by a program at execution time.

DMSTLB
Processes IBM standard tape labels for 0S5 simulation,
CMS/D0S, CMS commands, and the TAPESL macro. It also
provides linkage to nonstandard user label routines for 0S
simulation and CMS commands. There are common tape label
checking routines for input header and trailer labels and
common tape label writing routines for output header and

110 VM/SP System Logic and Problem Determination Guide (CMS)

9

Licensed Material--Property of IBM

trailer labels. These common routines are used for all IBM
standard label processing regardless of what operating
system is being simulated.

DMSTIO

Reads or writes a tape record. Also performs tape control
operations. Functions by issuing diagnose code X'20°'.

Handling I1/0 Operations 111

Licensed Material--Property of IBM

112 VM/SP System Logic and Problem Determination Guide (CMS)

Licensed Material--Property of IBM
HANDLING INTERRUPTIONS

C

Figure 9 on page 39 lists the CMS modules that process

interruptions for CMS. These CMS modules are described briaefly
in "Module Entry Point Directory." Also, sea "Interrupt
Handling in CMS."

Handling Interruptions 113

Licensed Material--Property of IBM

114 VM/SP System Logic and Problem Determination Guide (CMS)

C

MANAGING CMS STORAGE

ETMAI EE

Licensed Material--Property of IBM

Free storage can be allocated by issuing the GETMAIN or DMSFREE
macros.

Storage allocated by the GETMAIN macro is taken from the user
program area, starting after the high address of the user
program. Storage allocated by the DMSFREE macro can be taken
from several areas. First, DMSFREE requests are allocated from
the low-address free storage area. If requests cannot be
satisfied from there, they are satisfied from the user program
area.

There are two types of DMSFREE requests for free storage:
requests for user-type storage and nucleus-type storage, as
specified in the TYPE parameter of the DMSFREE macro. These two
types of storage are kept in separate areas. It is possible, if
there are no 4K pages completely free in low storage, for
storage of one type to be available in low storage, while no
storage of the other type is available.

ORAGE MANAGEMENT

All GETMAIN storage is allocated in the user program area,
starting after the end of the user's actual program. Allocation
begins at the location pointed to by the NUCON pointer MAINSTRT.
The location MAINHIGH, in NUCON, points to the highest address
of GETMAIN storage. :

The STRINIT function initializes pointers used by CMS for
simulation of 0S5 GETMAIN/FREEMAIN storage management. In the
usual CMS execution environment, that is, when execution is
initiated by the LOAD and START commands, CMS executes the
STRINIT function as a part of the LOAD preparation for
execution. In an 05 environment established by CMS, such as
OSRUN, the STRINIT function has already been executed and should
not be done by the user program. In any case, the STRINIT macro
should be issued only once in the 05 environment preceding the
initial GETMAIN request.

The format of the STRINIT macro is:

(-

[labell STRINIT
TYPCALL=|SVC
ALR

where:

TYPCALL=]|SVC
BALR

indicates how control is passed to DMSSTG, the routine that
processes the STRINIT macro. Since DMSSTG is a
nucleus-resident routine, other nucleus-resident routines
can branch directly to it (TYPCALL=BALR). Routines that
are not nucleus-resident must use linkage SVC
(TYPCALL=SVC). If no operands are specified, the default is
TYPCALL=SVC.

When the STRINIT macro is executed, both MAINSTRT and MAINHIGH
are initialized to the end of the user's program, in the user
program area. The end of the user's program is the upper
boundary of the load module created by the CMS LOAD and INCLUDE
commands. This upper boundary value is stored in the NUCON

Managing CMS Storage 115

Licensed Material--Property of IBM

field LOCCNT. When the user's program executes, tha STRINIT
macro is executed and the LOCCNT value is used to initialize
MAINSTRT and MAINHIGH. During the user program execution, the
LOCCNT field is used in CMS to pass starting and ending
addresses of files loaded by 05 simulation. (Reissuing the
STRINIT macro during execution of an 0S5 program or issuing the
STRINIT macro without having done a CMS LOAD is not advised.
The value in LOCCNT has not been appropriately set and this may
cause a storage management failure.) As storage is allocated
from the user program area to satisfy GETMAIN requests, the
MAINHIGH pointer is adjusted upward. Such adjustments are
always in multiples of doublewords, so that this pointer is
always on a doubleword boundary. As the allocated storage is
returned, the MAINHIGH pointer is adjusted downward.

The pointer MAINHIGH can never be higher than FREELOWE.

FREELOWE is the pointer to the lowest address of DMSFREE storage
allocated in the user program area. If a GETMAIN request cannot
be satisfied without extending MAINHIGH above FREELOWE, GETMAIN
takes an error exit, indicating that insufficient storage is
available to satisfy the request.

The area between MAINSTRT and MAINHIGH may contain blocks of
storage that are not allocated. Therefore, these blocks are
available for allocation by a GETMAIN instruction. These blocks
are chained together, and the first block is pointed to by the
NUCON location MAINLIST. See Figure 4 on page 16 for a
description of CMS virtual storage usage.

The format of an element on the GETMAIN free element chain is as

follows:
FREPTR == pointer to next free element in
0¢0) the chain, or 0 if there is no next
element

FRELEN == length, in bytes, of this
(%) element

Remainder of this free element

.

When issuing a variable-length GETMAIN, additional pages are
reserved for CMS usage; this is a design value. A user who needs
additional reserved pages (for example, for larger directories)
should Zree up some of the variable GETMAIN storage from the
high end.

DMSFREE FREE STORAGE MANAGEMENT

The DMSFREE macro allocates CMS free storage. Tha format of the
DMSFREE macro is:

[labell DMSFREE

DNORDS:%(E)% [AMINE ;(1)‘]

(e fate] (=]
el [

116 VM/SP System Logic and Problem Determination Guide (CMS)

Licensed Material--Property of IBM

phere:

label
is any valid assembler language label.

DWORDS={ n }
o)}

is the number of doublewords of free storage requested.
DWORDS=n specifies the number of doublewords directly.
DWORDS=(0) indicates that register 0 contains the number of
doublewords requested.

MIN={ n }
€

indicates a variable request for free storage. If the
exact number of doublewords indicated by the DWORDS operand
is not available, then the largest block of storage that is
greater than or equal to the minimum is returned. MIN=n
specifies the minimum number of doublewords of free storage
directly. MIN=(1) indicates that the minimum is in
register 1. The actual amount of free storage allocated is
returned to the requestor via general register 0.

TYPE=|USER
NUCLEUS

indicates the type of CMS storage requested: USER or
NUCLEUS.

s ngr]

is tha return address if any error occurs. "laddr™ is any
address that can be referred to in an LA (load address)
instruction. The error return is taken if there is a macro
coding error or if thera is not enough free storage
available to fill the request. If the asterisk (%) is
specified for the return address, the error return is the
same as a normal return. There is no default for this
ogergnd. If it is omitted and an error occurs, the system
abends.

AREA= |LOUW
HIGH
indicates the area of CMS free storage from which this
request for free storage is filled. LOW indicates any free
storage below the user areas, depending on the storage
requested. HIGH indicates DMSFREE storage above the user
area. If AREA is not specified, storage is allocated
wherever it is available.

TYPCALL=|SVC
BALR

indicates how control is passed to DMSFREE. Since DMSFREE
is a nucleus-resident routine, other nucleus-resident
routines can branch directly to it (TYPCALL=BALR).

Routines that are not nucleus-resident must use linkage SVC
(TYPCALL=SVC).

The pointers FREEUPPR and FREELOWE in NUCON indicate the amount
of storage that DMSFREE has allocated from the high portion of
the user program area. These pointers are initialized to the
beginning of the system loader tables.

The pointer FREELOWE is the pointer to the lowest address of
DMSFREE storage in the user program area. As storage is
allocated from the user program area to satisfy DMSFREE
requests, the pointer FREELOWE is adjusted downward. Such

Managing CMS Storage 117

Licensed Material--Property of IBM

adjustments are in multiples of 4K bytes so that this pointer is
always on a 4K boundary. As the allocated storage is returned,
this pointer is adjusted upward when whole 4K pages are
completely free. The freed pages are released by issuing a
DIAGNOSE CODE X'10'" instruction to CP.

The pointer FREELOWE can never be lower than MAINHIGH. The
MAINHIGH is the pointer to the highest address of GETMAIN
storage. If a DMSFREE request cannot be satisfied without
extending FREELOWE below MAINHIGH, then DMSFREE takes an error
exit, indicating that insufficient storage is available to
satisfy the request. Figure 4 on page 16 shows the relationship
of these storage areas.

The FREETAB free storage table is usually kept in nucleus low
free storage. If there is no space available there, FREETAB is
located from the top of the user program area. This table
contains one byte for each page of virtual storage. Each such
byte contains a code indicating the use of that page of virtual
storage. The codes in this table are as follows:

Code Meaning

USERCODE (X'01') The page is assigned to user storage.

NUCCODE (X'02") The page is assigned to nucleus storage.

TRNCODE (X'03") The page is part of the transient program area.

USERCODE (X'04') The page is part of the user program area.

SYSCODE (X'05") The page is none of the above. The page is
assigned to system storage, system code, or the
loader tables.

Other DMSFREE storage pointers are maintained in the DMSFRT
CSECT, in NUCON. The four chain header blocks are the most
important fields in DMSFRT. The four chains of unallocated
elements are:

The low storage nucleus chain
The low storage user chain
The high storage nucleus chain
The high storage user chain

For each of these chains of unallocated elements, there is a
control block consisting of four words with the following
format:

0(0)| POINTER -- pointer to the first free
element on the chain, or zero, if the
chain is empty.

4(4)] NUM -- the number of elements on the
chain.

8(8)| MAX -- a value equal to or greater than
the size of the largest free element on
the chain.

12(C){ FLAGS- SKEY - TCODE - Unused
Flag Storage FREETAB
byte key code

where:

POINTER

points to the first element on this chain of free elements.
If there are no elements on this free chain, then the
POINTER field contains all zeros.

NUM
contains the number of elements on this chain of free
elements. If there are no elements on this free chain,
then this field contains all zeros.

118 VM/SP System Logic and Problem Determination Guide (CMS)

Licensed Material--Property of IBM

MAX
is used to avoid searches that will fail. It contains a
number not exceeding the size, in bytes, of the largest
element on the free chain. Thus, a search for an element
of a given size wWill not be made if that size exceeds the
MAX field. However, this number may actually be larger
than the size of the largest free element on the chain.

FLAGS
The following flags are used:

FLCLN (X'80') - Clean-up flag. This flag is set if the
chain must be updated. This is necessary in the
following circumstances:

. If one of the two high-storage chains contains a 4K
page that is pointed to by FREELOWE, that page can
be removed from the chain, and FREELOWE can be
increased.

. All completely unallocated 4K pages are kept on the
user chain, by convention. Thus, if one of the
nucleus chains (low-storage or high-storage)
contains a full page, then this page must be
transferred to the corresponding user chain.

FLCLB (X'40') - Clobbered flag. This flag is set if
the chain has been destroyed.

FLHC (X'20'") - High-storage chain. This flag is set
for both the nucleus and user high-storage chains.

FLNU (X'10') - Nucleus chain. Set for both the low
storage and high storage nucleus chains.

FLPA (X'08') - Page available. This flag is set if
there is a full 4K page available on the chain. This
flag may be set even if there is no such page
available.

SKEY
is a one-byte field that contains the storage key assigned
to storage on this chain.

TCODE
is a one-byte field that contains the FREETAB table code
for storage on this chain.

Each element on the free chain has the following format:

< 4 bytes >

0(0) POINTER -- pointer to the next element
in the free chain

4(%) SIZE -- size of this free element, in
bytes

Remainder of this free element

When the user issues a variable length GETMAIN, the control
program reserves 6 172 pages for CMS usage; this is a designed
and set value. If the user wants more space, (for example, for
more directories) the user should free some of the variable
GETMAIN area from the high end.

As indicated in the illustration above, the POINTER field points
to the next element in the chain, or contains the value zero if
there is no next element. The SIZE field contains the size of
this element, in bytes.

Managing CMS Storage 119

Licensed Material-~-Property of IBM

All elements within a given chain are chained together in order
of descending storage address. This is done for two reasons:

1. Because the allocation search is satisfied by the first free
element that is large enough, the allocated elements are
grouped together at the top of the storage area, and prevent
storage fragmentation. This is particularly important for
high-storage free storage allocations, because it is
desirable to keep FREELOWE as high as possible.

2. If free storage does become somewhat fragmented, the search
causes as few page faults as possible.

As a matter of convention, completely nonallocated 4K pages in
high storage are kept on the user free chain rather than the
nucleus free chain. This is because requests for large blocks
of storage are made, most of the time, from user storage rather
than from nucleus storage. Nucleus requests need to break up a
full page less frequently than user requests.

METHOD OF OPERATION FOR DMSFREE

A description of the algorithms that allocate and release blocks
follows. The descriptions are based on the assumption that
neither AREA=LOW nor AREA=HIGH was specified in the DMSFREE
macro call. If either was specified, then the algorithm must be
appropriately modified.

ALLOCATING USER FREE STORAGE

When DMSFREE with TYPE=USER (the default) is called, the
following steps are taken to satisfy the request. As soon as
one of the following steps succeeds, then user free storage
allocation processing terminates.

1. Search the low-storage user chain for a block of the
required size.

2. Search the high-storage user chain for a block of the
required size.

3. Extend high-storage user storage downward into the user
program area, modifying FREELOWE in the process.

4. For fixed requests, there is nothing more to try. For
variable requests, DMSFRE puts all available storage in the
user program area onto the high-storage user chain, and then
allocates the largest block available on either the
high-storage user chain or the low-storage user chain. The
allocated block is not satisfactory unless it is larger than
the minimum requested si:ze.

ALLOCATING NUCLEUS FREE STORAGE

When DMSFREE with TYPE=NUCLEUS is called, the following steps
are taken in an attempt to satisfy the request, until one
succeeds:

1. Search the low-storage nucleus chain for a block of the
required size.

2. Search the high-storage nucleus chain for a block of the
required size.

3. Get free pages from the high-storage user chain, if they are
available, and put them on the high-storage nucleus chain.

4. Extend high-storage nucleus storage downward into the user
program area, modifying FREELOWE in the process.

VM/SP System Logic and Problem Determination Guide (CMS)

9

RELEASING STORAGE

Licensed Material--Property of IBM

5. For fixed requests, there is nothing more to try. For
variable requests, DMSFRE puts all available pages from the
high-storage user chain and the user program area onto the
high-storage nucleus chain, and allocates the largest block
available on either the low-storage nucleus chain or the
high-storage nucleus chain.

The DMSFRET macro releases free storage previously allocated
with the DMSFREE macro.

The format of the DMSFRET macro is:

[labell DMSFRET DNORDS=;(B)$,LOC=;1?g?r§

» ERR=|laddr » TYPCALL=|SVC
% BALR

where:

label
is any valid Assembler language label.

DNOR03=3(3]§

is the number of doublewords of storage to be released.
DWORDS=n specifies the number of doublewords directly.
DWORDS=(0) indicates that register 0 contains the number of
doublewords being released.

Loczgl?ggrz
is the address of the block of storage being released.
"laddr"™ is any address that can be referred to in an LA
(load address) instruction. LOC=laddr specifies the

address directly. LOC=(1l) indicates the address is in
register 1.

ERR= [lagdr]

is the return address if an error occurs. "laddr" is any
address that can be referred to by an LA (load address)
instruction. The error return is taken if there is a macro
coding error or if there is a problem returning the
storage. If an asterisk (¥) is specified, the error return
address is the same as the normal return address. There is
no default for this operand. If it is omitted and an error
occurs, the system abends.

TYPCALL=|SVC
BALR
indicates how control is passed to DMSFRET. Since DMSFRET
is a nucleus-resident routine, other nucleus-resident
routines can branch directly to it (TYPCALL=BALR).
Routines that are not nucleus-resident must use SVC linkage
(TYPCALL=SVC).

When DMSFRET is called, the block being released is placed on
the appropriate chain. At that point, the final update
operation is performed, if necessary, to advance FREELOWE, or to
move pages from the nucleus chain to the corresponding user
chain.

Managing CMS Storage 121

Licensed Material--Property of IBM

Similar update operations are performed, when necessary, after
calls to DMSFREE, as well. When FREELOWE is adjusted upward,
the corresponding pages are released by issuing a DIAGNOSE code
X'10' instruction to CP.

RELEASING ALLOCATED STORAGE

STORAGE ALLOCATED BY GETMAIN

Storage allocated by the GETMAIN macro may be released in either
of the following ways:

. A specific block of such storage may be released by means of
the FREEMAIN macro.

. Whenever any user routine or CMS command abends (so that the
routine DMSABN is entered) and the ABEND recovery facility
of the s¥stem is invoked, all GETMAIN storage area pointers
are reset.

STORAGE ALLOCATED BY DMSFREE

Storage allocated by the DMSFREE macro may be released in any of
the following ways:

. A specific block of such storage may be released by means of
the DMSFRET macro.

. Whenever any user routine or CMS command abnormally
terminates (so that the routine DMSABN is entered) and the
abend recovery facility of the system is invoked, all
DMSFREE storage with TYPE=USER is released automatically.

Except in the case of abend recovery, storage allocated by the
DMSFREE macro is never released automatically by the system.

Thus, storage allocated by means of this macro should always be
released explicitly by means of the DMSFRET macro.

DMSFREE SERVICE ROUTINES

The system uses the DMSFRES macro to request certain free
storage management services.

The format of the DMSFRES macro is:

[labell DMSFRES INIT1

INIT2 » TYPCALL=|5VC
CHECK ALR
CKON
CKOFF
UREC
CALOC

where:

label

is any valid Assembler language label.
INIT1

invokes the first free storage initialization routine, to
allow free storage requests to access the system disk.
Before INITl is invoked, no free storage requests may be
made. After INIT1l has been invoked, free storage requests
may be made. However, these requests are subject to the
following restraints until the second free storage
management initialization routine has been invoked:

122 VM/SP System Logic and Problem Determination Guide (CMS)

Licensed Material--Property of IBM

. All requests for user-type storage are changed to
requests for nucleus-type storage.

. Error checking is limited before initialization is
complete. In particular, it is sometimes possible to
release a block that was never allocated.

. All requests that are satisfied in high storage must be
temporary, because all storage allocated in high
storage is released when the second free storage
initialization routine is invoked.

When CP's saved system facility is used, the CMS system is
saved at the point after the system disk has been accessed.
It is necessary for DMSFRE to be used before the size of
virtual storage is known, because the saved system can be
used on any size virtual machine. Thus, the first
initialization routine initializes DMSFRE so that limited
functions can be requested. The second initialization
routine performs the initialization necessary to allow the
full functions of DMSFRE to be exercised.

INIT2

invokes the second initialization routine. This routine is
invoked after the size of virtual storage is known, and it
performs initialization necessary to allow all the
functions of DMSFRE to be used. The second initialization
routine performs the following steps:

. Releases all storage that has been allocated in the
high-storage area.

. Allocates the FREETAB free storage table. This table
contains one byte for each 4K page of virtual storage,
and so cannot be allocated until the size of virtual
storage is known. It is allocated in the nucleus low
free storage area, if there is enough room available.
If not, then it is allocated in the higher free storage
area. For a 256K virtual machine, FREETAB contains 64
gy:es; for a 16 million byte machine, it contains 4096

ytes.

. The FREETAB table is initialized, and all storage
protection keys are initialized.

CHECK

CKON

invokes a routine that checks all free storage chains for
consistency and correctness. Thus, it checks to see
whether any free storage pointers have been destroyed.
This option can be used at any time for system debugging.

turns on a flag that causes the CHECK routine to be invoked
each time a call is made to DMSFREE or DMSFRET. This can
be useful for debugging purposes (for example, when you
Wwish to identify the routine that destroyed free storage
management pointers). Care should be taken when using this
option, since the CHECK routine is coded to be thorough
rather than efficient. Thus, after the CKON option has
been invoked, each call to DMSFREE or DMSFRET takes much
longer to be completed than before. This can impact the
efficiency of system functions.

CKOFF

UREC

turns off the flag that was turned on by the CKON option.

is used by DMSABN during the abend recovery process to
release all user storage.

CALOC

is used by DMSABN after the abend recovery process has been
completed. It invokes a routine that returns, in register

Managing CMS Storage 123

Licansed Material--Property of IBM

0, the number of doublewords of free storage that have been
allocated. This number is used by DMSABN to determine
whether the abend recovery has been successful.

TYPCALL=|SVC
BALR
indicates how control is passed to DMSFRES. Since DMSFRES
is a nucleus-resident routine, other nucleus-resident
routines can branch directly to it (TYPCALL=BALR).
Routines that are not nucleus-resident must use SVC linkage
(TYPCALL=SVC).

STORAGE PROTECTION KEYS

In general, the following rule for storage protection keys
applies: system storage is assigned the storage key of X'FO0',
while user storage is assigned the key of X'E0'. This is the
storage key associated with the protected areas of storage, not
tg be confused with the PSW or CAW key used to access that
storage.

The specific key assignments are as follows:

. The NUCON area is assigned the key of X'F0', with the
exception of the last page containing the OPSECT and
TSOBLOKS areas and user free storage, which have a key of
X'EOQ"'.

. Free storage allocated by DMSFREE is broken up into user
storage and nucleus storage. The user storage has a
protection key of X'E0', while the nucleus storage has a key
of X'FO0'.

. The transient program area has a key of X'EO'.

. The CMS nucleus code has a storage key of X'F0'. In saved
systems, this entire segment is protected by CP from
modification even by the CMS system, and so must be entirely
reentrant.

. The user program area is assigned the storage key of X'EO',
except for those pages which contain nucleus DMSFREE
storage. These latter pages are assigned the key of X'F0'.

. The loader tables are assigned the key of X'FO0'.

KEYS

CMS HANDLING OF PSW

The CMS nucleus protection scheme protects the CMS nucleus from
inadvertent destruction by a user program. This mechanism,
however, does not prevent you from writing in system storage
intentionally. Because vou can execute privileged instructions,
you can issue a LOAD PSW (LPSW) instruction and load any PSW key
you wish. If this occurs, there is nothing to prevent your
program from:

. Modifying nucleus code
. Modifying a table or constant area
. Losing files by modifying a CMS file directory

In general, user programs and disk-resident CMS commands are
executed with a PSW key of X'E', while nucleus code is executed
with a PSW key of X'0°'.

There are, however, some exceptions to this rule. Certain
disk-resident CMS commands run with a PSW key of X'0', because
they have a constant need to modify nucleus pointers and
storage. The nucleus routines called by the GET, PUT, READ, and
WRITE macros run with a user PSW key of X'E' to increase
efficiency.

124 VM/SP System Logic and Problem Determination Guide (CMS)

<9

C

THE DMSKEY MACRO

THE DMSEXS MACRO

Licensed Material--Property of IBM

Two macros, DMSKEY and DMSEXS, are available to any routine that
wishes to change its PSW key.

The DMSKEY macro may be used to change the PSW key to the user
value or the nucleus value. The format of the DMSKEY macro is:

[labell DMSKEY {NUCLEUS[,NOSTACKI]|
USERL,NOSTACK]|
LASTUSERL ,NOSTACK]|
RESET}
where:
NUCLEUS

USER

causes the nucleus storage protection key to be placed in
the PSW, and the old contents of the second byte of the PSW
is saved in a stack. This option allows the program to
store into system storage, which is ordinarily protected.

causes the user storage protection key to be placed in the
PSW, and the old contents of the second byte of the PSW is
saved in a stack. This option prevents the program from
inadvertently modifying nucleus storage, which is
protected.

LASTUSER

The SVC handler traces back through its system save areas
for the active user routine closest to the top of the
stack. The storage key in effect for that routine is
placed in the PSW. The old contents of the second byte of
the PSW is saved in a stack. This option should be used
only by system routines that should enter a user exit
routine. (0S macro simulation routines use this option
when they want to enter a user-supplied exit routine. The
exit routine is entered with the PSW key of the last user
routine on the SVC system save area stack.)

NOSTACK

RESET

This option may be used with any of the above options to
prevent the system from saving the second byte of the
current PSW in a stack. If this is done, then no DMSKEY
RESET need be issued later.

The second byte of the PSW is changed to the value at the
top of the DMSKEY stack, and removed from the stack. Thus,
the effect of the last DMSKEY NUCLEUS, DMSKEY USER, or
DMSKEY LASTUSER request is reversed. However, if the
NOSTACK option was specified on the DMSKEY macro, the RESET
option should not be used. A DMSKEY RESET macro must be
executed for each DMSKEY NUCLEUS, DMSKEY USER, or DMSKEY
LASTUSER macro that was executed and that did not specify
the NOSTACK option. Failure to observe this rule results
in program abnormal termination. CMS requires that the
DMSKEY stack must be empty when a routine terminates.

The DMSEXS, "execute in system mode,"™ macro is useful in
situations where a routine is being executed with a user PSW

key,

but wishes to execute a single instruction with a nucleus

PSW key. The single instruction may be specified as the
argument to the DMSEXS macro, and that instruction is executed
With a nucleus PSW key. This macro can be used instead of two
DMSKEY macros.

Managing CMS Storage 125

Licensed Material--Property of IBM
The format of the DMSEXS macro is:

[labell DMSEXS op-code,operands)

The op-code and the operands of the instruction to be exaecuted
must be given as arguments to the DMSEXS macro.

For example, execution of the sequence,

USING NUCON,0
DMSEXS OI,0SSFLAGS,COMPSWT

causes the 0I instruction to be executed with a zero protect key
in the PSW. This sequence turns on the COMPSWT flag in the
nucleus. It is reset with

DMSEXS NI,0SSFLAGS,255-COMPSWT
The instruction to be executed may be an EX instruction.

Register 1 cannot be used in any way in tha instruction being
executed.

Whenever possiblae, CMS commands are executed with a user protect
key. This protects the CMS nucleus in cases where there is an
error in the system command that would otherwise destroy the
nucleus. If the command must execute a single instruction or
small group of instructions that modify nucleus storage, then
the DMSKEY or DMSEXS macros are used, so that the system PSW key
is used for as short a period of time as is possible.

CP HANDLING FOR SAVED SYSTEMS

The explanation of saved system nucleus protection depends on)
the VSK, RSK, VPK and RPK:

1. Virtual Storage Key (VSK) - This is the storage key assigned
by the virtual machine using the virtual 55K instruction.

2. Real Storage Key (RSK) - This is the actual storage key
assigned by CP to the 2K page.

3. Virtual PSW Key (VPK) - This is the PSW storage key assigned
by the virtual machine, by means of an instruction such as
LPSW (Load PSW).

4. Real PSW Key (RPK) - This is the PSW storage key assigned by
CP, which is in the real hardware PSW when the virtual
machine is running.

When there are no shared segments in the virtual machine,
storage protection works as it does on a real machinae. RSK=VSK
for all pages, and RPK=VPK for the PSW.

However, when there is a shared segment (as in the case of the
CMS nucleus), it is necessary for CP to protect the shared
segment. For non-CMS shared systems, CP protects the shared
segment by ignoring the values of the VS5Ks and VPK and assigning
the real values as follows: RSK=0 for each page of the shared
segment, RSK=F for all other pages, and RPK=F, always, for the
real PSW. The SSK instruction is ignored, except to save the
key value in a table in case the virtual machine later does an
ISK to get it back.

For the CMS saved system, the RS5Ks and RPK are initialized as
before, but resetting the virtual keys has the following

effects:)

126 VM/SP System Logic and Problem Determination Guide (CMS)

| &

EFFECTS ON CMS

RESTRICTIONS ON CMS

Licensed Material--Property of IBM

L If the virtual machine uses an 55K instruction to reset a
VSK, CP does the following: If the new VSK is nonzero, CP
resets the RSK to the value of the VSK; if the new VSK is
zero, CP resets RSK to F.

. If the virtual machine uses a LPSW (or other) instruction to
reset the VPK, CP does the following: If the new VPK is
non-zero, CP resets the RPK to the value of the VPK; if the
new VPK is zero, CP resets RPK to F.

. If the VPK=0 and the RPK=F, storage protection may be
handled differently. 1In a real machine, a PSW kay of 0
would allow the program to store into any storage location,
no matter what the storage key. But under CP, the program
gets a protection violation, unless the RPK of the page
happens to be F.

Because of this, there is extra code in the CP program check
handling routine. Whenever a protection violation occurs,
CP checks to see if the following conditions hold:

- The virtual machine running is the saved CMS system,
running with a shared segment.

- The VPK = 0. The virtual machine is operating as though
its PSW key is 0.

- The RSK of the page where the store was attempted is
nonzero, and different from the RPK.

If any one of these three conditions fails to hold, then the
protection violation is reflected back to the virtual machine.

If all three of these conditions hold, then the RPK (the real
protection key in the real PSW) is reset to the RSK of the page
where the store was attempted.

In CMS, this works as follows: CMS keeps its system storage in
protect key F (RSK = VSK = F), and user storage in protect key E
(RSK = VSK = E).

When the CMS supervisor is running, it runs in PSW key 0 (VPK =
0, RPK = F), so that CMS gets a protection violation the first
time it tries to store into user storage (VSK = RSK = E). At
that point, CP changes the RPK to E, and lets the virtual
machine re-execute the instruction that caused the protection
violation. There is not another protection violation until the
supervisor goas back to storing into system-protected storage.

There are several coding restrictions that must be imposed on
CMS if it is to run as a saved system.

The first and most obvious one is that CMS5 may never modify the
segments containing CMS nucleus code that is shared and runs
with a RSK of 0, although the VSK = F.

A less obvious, but just as important, restriction is that CMS
may never modify with a single machine instruction (except MVCL)
a section of storage that crosses the boundary between two pages
with different storage keys. This restriction applies not only
to SS instructions, such as MVC and ZAP, but also to RS
instructions, such as STM, and to RX instructions, such as ST
and STD, which may have nonaligned addresses on the Systems/370.
An exception is the MVCL instruction. This instruction can be
restarted after crossing a page boundary because the registers
are updated when the paging exception occurs.

Managing CMS Storage 127

Licensed Material--Property of IBM

This restriction also applies to I/0 instructions. If the kay
specified in the CCW is zero, then the data area for input may

EOt cross the boundary between two pages with different storage
eys. J
OVERHEAD

It can be seen that this system is most inefficient when

"storage-key thrashing™ occurs -- when the virtual machine with

a VPK of 0 jumps around, storing into pages with different

VSK's.

ERROR CODES FROM DMSFRES, DMSFREE, AND DMSFRET

A nonzero return code upon return from DMSFRES, DMSFREE, or
DMSFRET indicates that the request could not be satisfied.
Register 15 contains this return code, indicating which error
has occurred. The following codes apply to the DMSFRES,
DMSFREE, and DMSFRET macros.

Code Error

1 (DMSFREE) Insufficient storage space is availabla to
satisfy the request for free storage. In the case of a
variable request, even the minimum request could not bhe
satisfied.

(DMSFREE or DMSFRET) User storage pointers destroyed.

(DMSFREE, DMSFRET, or DMSFRES) Nucleus storage

pointers destroved.

4 (DMSFREE) An invalid size was requested. This error
exit is taken if the requested size is not greater than
zero. In the case of variable requests, this error
exit is taken if the minimum request is greater than
the maximum request. (However, the latter error is not l

wWN

detected if DMSFREE is able to satisfy the maximum
request.)

5 (DMSFRET) An invalid size was passed to the DMSFRET
macro. This error exit is taken if the specified
length is not positive.

6 (DMSFRET) The block of storage that is being released
was never allocated by DMSFREE. Such an error is
detected if one of the following errors is found:

. The block does not lie entirely inside either the
free storage area in low storage or the user
program area between FREELOWE and FREEUPPR.

. The block crosses a page boundary that separates a
page allocated for user-type storage from a page
allocated for nucleus-type storage.

. The block overlaps another block already on the
free storage chain.

7 (DMSFRET) The address given for the block being
released is not on a doubleword boundary.

3 (DMSFRES) An invalid request code was passed to the
DMSFRES routine. Since all request codes are generated
by the DMSFRES macro, this error code should never
appear.

9 (DMSFREE, DMSFRET, or DMSFRES) An internal error
occurred in the free storage management routine.

128 VM/SP System Logic and Problem Determination Guide (CMS)

C

Licensed Material--Property of IBM

SIMULATING NON-CMS OPERATING ENVIRONMENTS

The following contains descriptions for: access method support
for non-CMS operating systems, CMS simulation of 0S5 functions,
and CMS implementation of VSE functions.

ACCESS METHOD SUPPORT FOR NON-CMS OPERATING ENVIRONMENTS

0S ACCESS METHOD SUPPORT

CMS SUPPORT FOR THE

An access method governs the manipulation of data. To make the
execution of 0S generated code easier under CMS, the processing
program must see data as 05 would present it. For instance,
when the processors expect an access method to acquire input
source records sequentially, CMS invokes specially written
routines that simulate the 0S5 sequential access method and
passes data to the processors in the format that the 05 access
methods would have produced. Therefore, data appears in storage
as if it had been manipulated using an 0S access method. For
example, block descriptor words (BDW), buffer pool management,
and variable records are maintained in storage as if an 0S
access method had processed the data. The actual writing to and
reading from the I/0 device is handled by CMS file management.

The work of the volume table of contents (VTOC) and the data set
control block (DSCB) is done by a master file directory (MFD).
The MFD maintains the disk contents and a file status table
(FST) for each data file. All disks are formatted in physical
blocks of 512, 800, 1024, 2048, or 4096 bytes.

CMS continues to maintain the 0S format, within its own format,
on the auxiliary device for files whose filemode number is 4.
That is, the block and record descriptor words (BDW and RDW) are
written along with the data. If a data set consists of blocked
records, the data is written to and read from the I/0 device in
physical blocks, rather than logical records. CMS also
simulates the specific methods of manipulating data sets.

To accomplish this simulation, CMS supports certain essential
macros for the following access methods:

BDAM (direct)
identifying a record by a key or by its relative position
within the data set.

BPAM (partitioned)
seeking a named member within an entire data set.

BSAM/QSAM (sequential)
accessing a record in a sequence in relation to preceding
or following records.

VSAM (direct or sequential)
accessing a record sequentially or directly by key or
address. CMS support of 0S VSAM files is based on
VSE/VSAM. Therefore, the 0S user is restricted to those
services available under VSE/VSAM.

VIRTUAL STORAGE ACCESS METHOD

CMS simulation of 0S5 and D0OS includes support for the virtual
storage access method (VSAM). The description of this support
is in three parts:

. A description of the access method services program
(AMSERV), which allows you to create and update VSAM files.

Simulating Non-CMS Operating Environments 129

Licensed Material--Property of IBM

. A description of support for VSAM functions under CMS/DOS.

L A description of support for VSAM functions for the CMS 0S
simulation routines.

The routines that support VSAM reside in four discontiguous
shared segments (DCSSs).

- The CMSAMS DCSS, which contains the VSE/VSAM code to
support AMSERV processing.

- The CMSVSAM DCSS, which contains actual VSE/VSAM code,
and the CMS/VSAM 0S interface program for processing 0S5
VSAM requests.

- The CMSD0OS DCSS, which contains the code that supports
VSE requests under CMS.

- The CMSBAM DCSS, which contains the SAM modules required
for AMS to access SAM files.

Note: DMSVSR, which performs completion processing for CMS/VSAM
support, resides in the CMS nucleus.

CREATING THE DOSCB CHAIN

EXECUTING AN AMSERV

The DLBL command creates a control block called a DOSCB in CMS
free storage. The ddname specified in this DLBL command is
associated with the ddname parameter in the program's ACB.

The DOSCB contains information defining the file for the system.
The information in the DOSCB parallels the information written
on the label information area of a real DOS SYSRES unit; for
example, the name, and mode (volume serial number) of the data
set, its logical unit specification, and its data set type (SAM
or VSAM). The anchor for this chain is at location DOSFIRST in
NUCON.

FUNCTION

The CMS AMSERV command invokes the module DMSAMS, which is the
CMS interface to the VSE/VSAM access method services (AMS)
program. Module DMSAMS loads VSE/VSAM AMS code, contained in
the CMSAMS DCSS, by means of the LOADSYS DIAGNOSE 64. The AMS
code requires the services of VSE/VSAM code that resides in the
CMSVSAM DCSS. So, that DCSS is also loaded via LOADSYS DIAGNOSE
64 when the VSAM master catalog is opened. Figure 26 on page
131 shows the relationship in storage between the interface
module DMSAMS, the CMSAMS DCSS, and the CMSVSAM DCSS.

130 VM/SP System Logic and Problem Determination Guide (CMS)

DMSAMS ~- Method of

Licensed Material--Property of IBM

CMS A-disk

CMSAMS DCSS (:::::::::::::)

SYSIPT [N A
"| DEFINV1 AMSERV

BALR IDCAMS —| IDCcAMS: 1 ~—
AMS Root |
Phase | sysLsT N A

DEFINV1 LISTING

B-disk for OS _)

CMSVSAM DCSS or DOS User

5

VSAM

VSAMF E

N—

AMSERV MODULE

!

Figure 26. Relationship in Storage between the CMS Interface
Module DMSAMS, the CMSAMS DCSS, and the CMSVSAM DCSS

Operation

DMSAMS first determines whether the user is in the CMS/D0S
environment. If not, a SET DOS ON (VSAM) command is issued to
load the CMSDOS segment and to initialize the CMS/D0S
environment. In this case, DMSAMS must also issue ASSGN
commands for the disk modes in the DOSCB chain created by the 05
user's DLBL commands. An ASSGN is also issued for SYSCAT, the
VSAM master catalog.

DMSAMS then issues the ASSGN command for the SYSIPT and SYSLST
files, assigning them to the user's A-disk. DLBL commands are
then issued associating these units with files on the user's
A-disk. Input to the AMSERV processor is in the SYSIPT file.
This file has the filetype AMSERV. Output from AMSERV
processing is placed in the SYSLST file. This file has the
filetype LISTING.

DIAGNOSE 64 (LOADSYS) is then issued to load the CMSAMS DCSS,
which contains the VSE/VSAM code. A VSE SVC 65 is issued to
find the address of the VSE/VSAM root phase, IDCAMS. When the
SVC returns with the address of IDCAMS, a branch is made to
IDCAMS, giving control to "live"™ VSE/VSAM routines.

IDCAMS aexpects parameters to be passed to it when it receives
control. DMSAMS passes dummy parameters in the list labeled
AMSPARMS.

After the root phase IDCAMS receives control, the functions in
the file specified by the filename on the AMSERV command are
executed.

Simulating Non-CMS Operating Environments 131

Licensed Material--Property of IBM

In performing the functions requested in this file, AMS may
require execution of VSE/VSAM phases located in the CMSVSAM
DCSS. The CMSVSAM DCSS is loaded when AMS opens the VSAM
catalog for processing.

On return from VSE/VSAM code, DMSAMS purges the CMSAMS DCSS and
issues DLBL commands for the SYSIPT and SYSLST files to clear
the DOSCB's for these ddnames.

Control is then passed to DMSVSR, which purges the CMSVSAM DCSS.
If the user program was not in the CMS/D0S environment when
DMSAMS was entered, the SET D0OS OFF command is issued by DMSVSR.
Upon return from DMSVSR, DMSAMS performs minor housekeeping
tasks and returns control to CMS.

EXECUTING A VSAM FUNCTION FOR A VSE USER

DOS VSAM Program

OPEN ACB1

CLOSE ACB1

When a VSAM function, such as an OPEN or CLOSE macro, is
requested from a VSE program, CMS routes control through the
CMSD0OS DCSS to the CMSVSAM DCSS, thus giving control to VSE/VSAM
phases. Figure 27 shows the relationships in storage between
the user program, the CMSDOS DCSS, and the CMSVSAM DCSS. The
description below illustrates the overall logic of that control
flow. :
CMSDOS DCSS

DOS Transient Area CMSVSAM DCSS

DMSDOS

DMSBOP —I

$$BOVSAM

- — - — — = $$BCVSAM

$$BACLOS IKQVCLS

B -disk for OS
or DOS User

C__ >

VSAM Master Catalog

VSAMFILE

N~

Figure 27. The Relationship in Storage between the User Program, the CMSDOS DCSS,
and the CMSVSAM DCSS

CMS/D0S SVC Handling

There are four CMS/D0S routines that handle VSAM requests:
DMSD0S, DMSBOP, DMSCLS, and DMSXCP. Within DMSD0S, several SVC
functions support VSAM requests. These are described in
"Simulating a VSE Environment Under CMS."

132 VYM/SP System Logic and Problem Determination Guide (CMS)

w

Licensed Material--Property of IBM

DMSDOS VSAM PROCESSING: DMSDOS VSAM processing involves
handling of SVC 65 (CDLOAD), which returns the address of a
specified phase to the caller. DMSDO0S searches both the shared
segment table and the nonshared segment table for the CMSD0S and
CMSVSAM segments, because both could be in use. Both of these
segment tables contain the name of each phase consisting of that
segment followed by the fullword address of that phase within
the segment.

During SVC 65 processing, DMSD0OS checks to see if the IJBLKMD is
being requested. IJBLKMD is the VSE lookaside function that
VSE/VSAM uses to gain information from the partition anchor
tables. If this is the case, DMSD0OS returns the address of the
IJBLKMD that resides in the CMSBAM DCSS.

If VSAM has not been loaded, a DIAGNOSE 64 (LOADSYS) is issued
to load the CMSVSAM DCSS.

DMSBOP VSAM PROCESSING: When DMSBOP is entered to process ACBs,
it checks to see if CMSVSAM is loaded. If VSAM has not been
loaded, DIAGNOSE 64 is issued to load the CMSVSAM DCSS. DMSBOP
then initializes the transient work area and issues a VSE OPEN
via SVC 2 to bring the VSAM OPEN $$BOVSAM transient into the VSE
transient area.

When VSAM processing completes, control returns to the user
program directly.

DMSCLS VSAM PROCESSING: DMSCLS processing is nearly the same as
processing for DMSBOP. When DMSCLS is entered, it checks for an
ACB to process. If there is one, the $$BCVSAM transient work
area is initialized and SVC 2 is issued to FETCH the VSAM CLOSE
transient $$BCVSAM into the VSE transient area. MWhen the VSAM
CLOSE routines complete processing, control returns to the user
program, as in the case of OPEN.

Note: Since VSE does not support the 3380, CMS/D0S cannot
access a 3380 when minidisks are formatted as 05/D0S disks.

EXECUTING A VSAM FUNCTION FOR AN 0S USER

0S user requests for VSAM services are handled by VSE/VSAM code
that resides in the CMSVSAM DCSS. To access this code, 0S5 VSAM
requests are intercepted by the CMS module DMSVIP. DMSVIP is
the interface between the 0S5 VSAM requests and the CMS/D0S and
VSE/VSAM routines.

Because DMSVIP is in the CMSVSAM segment, it is available only
when that segment is loaded. Module DMSVIB, which resides in
the CMS nucleus, is a bootstrap routine to load the CMSVSAM
segment and to pass contro} to DMSVIP.

DMSVIP receives control from VSAM request macros in three ways:

via SVC (for example, OPEN and CLOSE), via a direct branch using

the address of DMSVIP in the ACB, and via a direct branch to the

location of DMSVIP whose address is 256 bytes into the CMSCVT.

é%MS&V; is a CMS control block that simulates the 0S5 CVT control
ock.

This last technique is used by the code generated from the 0S
VSAM control block manipulation macros (GENCB, SHOWCB, TESTCB,
MODCB). That is, the address at 256 into CVT is assumed to be
the address of a control block that is at displacement X'l2' has
the address of the VSAM control block manipulation routine. To
ensure that DMSVIP receives control from these requests, the
address of DMSVIP is stored at 256 bytes into CMSCVT. However,
until the CMSVSAM segment is loaded, the address at CMSCVT+256
is the address of module DMSVIB rather than the address of
DMSVIP. The address of DMSVIP replaces that of DMSVIB when
CMSVSAM is loaded. Both DMSVIB and DMSVIP have pointers to
themselves at 12 bytes into themselves to ensure that this
technique works.

Simulating Non-CMS Operating Environments 133

Licensed Material--Property of IBM

Figure 28 on page 134 shows the relationships in storage between

the user program, the 0S5 simulation and interface routines, the
CMSDO0S DCSS, and the CMSVSAM DCSS.
B-disk for OS
0S VSAM CMS Module DOS Transient CMSVSAM or DOS User
Program DMSSOP DMSVIP CMSDOS DCSS Area DCSS
DMSDOS —'| $$BOVSAM h
OPEN ACB 1 |—+| DMSSOP19 DOSOPEN . IKQVOPEN |(ummipl VSAM
o > . . . Master Catalog
BALR 14, 15 o DMSBOP ——
. $$BCVSAM
DMSSOP20 DOSCLOSE . { /
. DMSCLS ° °
CLOSE ACB 1 BALR 14, 15 . e [IKWVCLS VSAMFILE
. $$BACLOS
\—/

Figure 28. Relationship in Storage between the User Program,
Interface Routines,

DMSVIP Processing

Simulate an 0S VSAM

0S Simulation and

CMSDOS DCSS, and CMSVSAM DCSS

The following description illustrates the overall logic of that
control flow.

DMSVIP gains control from DMSSOP when an 0S SVC 19, 20 or 23
(CLOSE TYPE=T) is issued. It also gains control on return from
execution of a VSAM function, as described below. DMSVIP
performs five main functions:

. Initializes the CM5/D0S environment for 0S VSAM processing.
. Simulates an 0S VSAM OPEN macro.
. Simulates an 0S VSAM CLOSE macro.

. Simulates an 0S5 VSAM control block manipulation macro
(GENCB, MODCB, SHOWCB, or TESTCB).

. Processes 0S VSAM I/0 macros.

INITIALIZING THE CMS/D0OS ENVIRONMENT FOR 0S VSAM PROCESSING:
DMSVIP gets control when the first VSAM macro is encountered in
the user program. Initialization processing begins at this
time. The CMSD0S DCSS is loaded by issuing the command SET DOS
ON (VSAM). ASSGN commands are also issued at this time
according to the user-issued DLBL's indicated in the DOSCB
chain. Once this initialization completes, DMSVIP processes the
VSAM request.

After the initialization, DMSVIP first checks to determine which
VSAM function is being requested, OPEN, CLOSE, or a control
block manipulation macro.

OPEN

For OPEN processing, the DOSSVC bit in NUCON is set on and
control passes to DMSBOP via SVC 2. Once the CMS/D0S routines
are in control, execution of the VSAM function is the same as
the execution of the VSE/VSAM functions described abova.

On return from executing the OPEN routine, the address of
another entry point to DMSVIP, at label DMSVIP2, is placed in
the ACB for the data set just opened, the DOSSVC bit is turned
off, and control is passed to DMSS0P, which returns to the user
program. DMSVIP2 is the entry point for code that performs
linkage to the VSAM data management phase IKQVSM. This is done

136 VM/SP System Logic and Problem Determination Guide (CMS)

9

Simulate an 0S VSAM

Licensed Material--Property of IBM

after the first OPEN because it is assumed that, once opened,
the user performs I/0 for the phase; for example, a GET or PUT
operation.

When the linkage routine is entered, the DOSSVC bit is set on
and control is given to the VSAM data management routine IKQVSM.
On return from IKQVSM, DMSVIP turns off the DOSSVC bit and
returns control to the user program. (Refer to "Simulate 0S
VSAM I/0 Macros™ in this section.)

CLOSE

For CLOSE processing, the DOSSVC bit is set on and control is
passed to the CMS/D0S routine DMSCLS via SVC 2. As in the case
of OPEN, once control passes to the CMS/D0S routine, execution
of the VSAM function is the same as the execution of the
VSE/VSAM functions described above.

On return from executing the VSAM CLOSE, the DOSSVC bit is
turned off and control passes to DMSSOP, which returns to the
user program.

SIMULATE 0S VSAM CONTROL BLOCK MANIPULATION MACROS: DMSVIP
simulates the GENCB, MODCB, SHOWCB, and TESTCB control block
manipulation macros.

GENCB Processing: When a GENCB macro is issued with BLK=ACB or
BLK=EXLST specified, the GENCB PLIST is passed unmodified to
IKQGEN for execution. If GENCB is issued with BLK=RPL and
ECB=address specified, the PLIST is rearranged to exclude the
ECB specification, because CMS/D0S does not support ECB
processing. The GENCB PLIST is then passed to IKQGEN for
execution.

MODCB, SHOWCB, and TESTCB Processing: When MODCB, SHOWCB, or
TESTCB is issued, the 0S5 ACB, RPL, and EXLST control blocks are
reformatted, if necessary, to conform to VSE/VSAM formats.

For MODCB and SHOWCB, the requests are passed to IKQTMS for
processing. MWhen MODCB is issued with EXLST= specified, ensure
that the exit routines return control to entry point DMSVIP3.

For TESTCB, check for any error routines the user may have
specified. If the TESTCB specified RPL= and IO=COMPLETE, a not
equal result is passed to the user. All other TESTCB requests
are passed to D0S, and the new PSW condition code indicates the
results of the test.

If an error return is provided for TESTCB, the address of
DMSVIP4 is substituted in the PLIST. This allows DMSVIP to
regain control from VSAM so that the DOSSVC bit can be turned
off. The error routine is then given control after the address
is raeturned to the PLIST.

SIMULATE 0S VSAM I/0 MACROS: DMSVIP simulates the 0S5 GET, PUT,
POINT, ENDREQ, ERASE, and CHECK I/0 macros.

GET, PUT, POINT, ENDREQ, and ERASE Processing: First, the 0S
request code in register 0 is mapped to a VSE request code. The
RPL or chain of RPLs is rearranged to VSE format (unless that
has already been done).

If there is an ECB address in the 05 RPL, a flag is set in the
new VSE RPL and the ECB address is saved at the end of the RPL.

Asynchronous I/0 processing is simulated by setting active exit
returns inactive in the user EXLST. The exception to this is
the JRNAD exit. It need not be set inactive since it is not an
error exit. Setting error exits to be inactive prevents VSAM
from taking an error exit, thus allowing such an exit to be
deferred until a CHECK can be issued for it.

The VSE macro is then issued to IKQVSM via a BALR.

Simulating Non-CMS Operating Environments 135

Licensed Material--Firoperty of IBM

VSE error codes returned in the RPL FDBK field that do not exist
in 0S5 are mapped to their 0S equivalents. If the user has
specified synchronous processing, this return code is passed
unchanged in register 15.

For asynchronous processing, return codes are cleared before
return and any exit routines set inactive are reactivated in the
EXLST. Also, all ECBs are set to WAITING status.

CHECK Processing: For CHECK processing, return codes in the RPL
FDBK field are checked to determine the results of the I/0
operation. If there is an active exit routine provided for the
return code, control is passed to that routine. Also, all
WAITING ECBs are posted with an equivalent completion code.

If no active exit routine is provided or if the exit routine
returns to VSAM, the return code is placed in register 15 and
control is returned to the instruction following the CHECK.

CMS/VSAM ERROR RETURN PROCESSING: Two types of support for
error routine processing are provided in DMSVIP. Entry point
DMSVIP3 provides support for user exit routines; entry point
DMSVIP4 provides support for ERET error returns.

User Exit Routine Processing: DMSVIP provides support for 0S
VSAM I/0 error exits at entry point DMSVIP3. At this entry
point the DOSSVC bit is turned off and the user storage key is
restored.

The address of the user routine is recovered from VIP's saved
exit list (either the primary exit list in the work area or the
overflow exit list, OEXLSA).

Control then passes to the appropriate exit routine. If the
routine is one that returns to VS5AM, the DOSSVC flag is set ON
and VSAM processing continues.

DMSVIP can save the addresses of up to 128 exit routines during
execution of a user program.

ERET Error Routine Processing: DMSVIP provides support for 0S
VSAM ERET exit routines used in conjunction with the TESTCB
macro. This support is located at entry point DMSVIP4. At
DMSVIP4, the DOSSVC bit is turned off and the user storage key
is restored. The address of the ERET routine is recovered from
the work area and control passes to that routine.

The ERET routine may not return control to VSAM.

Completion Processing for 0S and VSE/VSAM Programs

136

When an 0S5 or VSE/VSAM program completes, control is passed to
module DMSVSR, which "cleans up™ after VSAM. DMSVSR can be
called from three routines after 0S processing:

DMSINT if processing completes without system errors or
serious user errors.

DMSEXT if the user program is used as part of an EXEC file.

DMSABN if there are system errors or the user program
abnormally terminates.

After VSE/VSAM processing completes, DMSVSR is called by DMSDOS.

DMSVSR issues an SVC 2 to execute the D0OS transient routine

$SBACLOS. $$BACLOS first checks for any OPEN VSAM files. If any

:rf open, SVC 2 is issued to $$BCLOSE (DMSCLS) to close the
iles.

If there are no open files or if all ACB's have been closed,
$$BACLOS issues SVC 2 to $$BE0J4, an entry point in DMSVSR. At
$$BE0J4, a PURGESYS DIAGNOSE 64 is issued to purge the CMSVSAM

VM/SP System Logic and Problem Determination Guide (CMS)

Licensed Material--Property of IBM

DCSS. DMSVSR then checks to see if an 0S program has comp}eted
processing. If this is the case, the SET D0S OFF command is
issued and control returns to the caller.

CMS QSAM TAPE END-OF-VOLUME EXIT

TEOVEXIT MACRO

standard Format

A program working with CMS simulation of 0S5 QSAM can set up an
exit that could be entered on the end-of-volume condition on IBM
standard label tapes. This exit receives control after the
trailer labels have been processed and the tape has been rewound
and unloaded. Without this exit, CMS terminates the program
after the end-of-volume condition is reached. This exit should
not be confused with the 05 DCB end-of-volume exit. The 0S DCB
end-of-volume exit continues to be unsupported.

Use the TEOVEXIT macro instruction to set up and clear a CMS
tape end-of-volume exit.

The four formats of the TEOVEXIT macro instruction are:

standard

MF=L
MF=(L,addrl,labell)
MF=(E,addr)

The standard format of the TEOVEXIT macro is:

RETINFO=addrl, ERROR=addr]
CLR,DDNAME={'ddname' |addr}[, ERROR=addr]

[labell TEOVEXIT { SET,DDNAME={'ddname"' |addr}, EXIT=addr, }

where:

addr
is an assembler program label or an address stored in a
general register. If a register is used, it must be
enclosed in parentheses.

label

is an assembler program label.

SET
establishes an exit.

CLR
clears an exit.

DDNAME=
is the "ddname”™ the tape end-of-volume exit is being
established for. "ddname" may be from 1 to 8 alphameric
characters enclosed in quotes.

EXIT=

labeal is an assembler program label that is the address
of the program's end-of-volume processing routine.

(Rn) is a general register. Its value is the address of
the program's end-of-volume processing routine.

This routine receives control after trailer labels have
been processed and the tape has been rewound and unloaded.

Simulating Non-CMS Operating Environments 137

Licensed Material--Property of IBM

MF=L Format

This routine receives control with the same PSW key as the
call to CMS QSAM. The registers passed to the exit are the
same as they were at the call to QS5SAM except: register 0
points to the DCB; register 1 points to the FCB; register
14 contains the address the routine branches to upon
completion. If the exit does not return control to the
address in register 14, future options are unpredictablae
for that file. Register 15 contains the address of the
user exit routine.

(This attribute is required for SET. If the EXIT attribute
is specified on CLR, it is ignored. No MNOTE is issued.)

Note: When control is returned to the program that issued
the QSAM call, the registers are unaffected by changes to
registers in the end-of-volume exit.

RETINFO=

label is an assembler program label that is the address
of a 20-byte halfuword aligned area.
(Rn) is a general register. Its value is the address of

a 20-byte halfword aligned area.

The program must provide this 20 byte, halfword aligned
area for return information.

(This attribute is required for SET. If the RETINFO
attribute is specified on CLR, it is ignored. No MNOTE is
issued.)

ERROR=

label is an assembler program label that is the address
of the error routine.
(Rn) is a general register. Its value is the address of

the error routine.

The error routine receives control if an error is found.
If this parameter is not specified and an error occurs,
control returns to the next sequential instruction in the
calling program.

When MF=L is coded, the TEOVEXIT macro has the following format:

[labell

TEOVEXIT MF=L

[,DDNAME="'ddname'1[,EXIT=labell
[,RETINFO=1labell

»SETL,DDNAME="ddname'1[,EXIT=1labell
[,RETINFO=labell

»CLR[,DDNAME="ddname"']

All parameters have the same meaning as the standard format with
the following difference:

indicates that the parameter list is created in-line. No
executable code is generated. Register notation cannot be
used for macro parameter addresses.

Note: When using the MF= parameter, all other parameters are
optional. When the function is executed, however, a valid
combination of parameters must have been specified by the LIST
and EXECUTE formats of the macro.

138 VM/SP System Logic and Problem Determination Guide (CMS)

9

Licensed Material--Property of IBM

MF=(L,addrl, labell]) Format

When MF=(L,addrl,labell) is coded, the TEOVEXIT macro has the
following format:

[labell TEOVEXIT MF=(L,addrl,labell)

[,DDNAME={"ddname"' |addr}]
[,EXIT=addrl[,RETINFO=addr]

,SETL,DDNAME={"ddname"' |addr}]
[,EXIT=addrl[,RETINFO=addr]l

»CLRL[,DDNAME={'ddnamea"' |addr}]

MF=(E,addr) Format

All parameters have the same meaning as the standard format with
the following difference:

MF=(L,addr[,labell]}
indicates that the parameter list is created in the area
specified by "addr™. The address .may represent an area
within your program or an area of free storage obtained by
a system service. You can determine the size of the
parameter list by coding the "label" operand. The macro
expansion equates "label" to the size of the parameter
list. This format of the macro produces executable code to
move the data into the parameter list specified by "addr™.
However, it does not generate the instructions to invoke
the function. If this version of the LIST format is used,
it must be executed before any related invocation of the
EXECUTE format.

Note: When using the MF= parameter, all other parameters are
optional. When the function is executed, however, a valid
combination of parameters must have been specified by the LIST
and EXECUTE formats of the macro.

When MF=(E,addr) is coded, the TEOVEXIT macro has the following
format:

[labell TEQVEXIT MF=(E,addr)

[,DDNAME={"ddname"' |addr}1[,EXIT=addr]
[,RETINFO=addrl[, ERROR=addr]

»SET[,DDNAME={"ddname"' [addr}1[,EXIT=addrl]
[,RETINFO=addrl[, ERROR=addr]

»CLR[,DDNAME={"ddname"' |addr}1[, ERROR=addr]

All parameters have the same meaning as the standard format with
the following difference:

MF=(E,addr])
indicates that instructions are generated to execute the
TEOVEXIT function. "addr" represents the location of the
parameter list. Information in the parameter list may be
changed by specifying the appropriate operands on the
macro.

Note: When using the MF= parameter, all other parameters are
optional. MWhen the function is executed, however, a valid
combination of parameters must have been specified by the LIST
and EXECUTE formats of the macro.

Simulating Non-CMS Operating Environments 139

Licensed Material--Property of IBM
RESTRICTIONS

1. Tape end-of-volume exit only applies to CMS 0S QSAM

simulation.
2. 0Only IBM standard label tapes are supported.
from TEOVEXIT.

3. The LEAVE option of the FILEDEF command is invalid.
is used, you receive a return code of 20 from TEOVEXIT.

4. The NOEOV processing option of the FILEDEF command is
invalid. If it is used, you receive a return code of 28

from TEOVEXIT.

5. You cannot read backwards. If it is attempted,

are unpredictable.

6. The tape end-of-volume exit is not entered if either an OPEN

or a CLOSE is in progress.

7. The exit must not issue I/0 requests that might result in

the tape end-of-volume exit being invoked.
attempted, the results are unpredictable.

8. The exit must not issue additional Q5AM requests to the
file. If it is attempted, the results are unpredictable.

9. The exit must not modify or clear the FCB of the file the

end-of-volume condition was encountered on.

RETURN CODES

If any errors occur during the processing of the TEOVEXIT macro,

register 15 contains the error return codes.

SET Function:

140

Code Meaning

0 End-of-volume exit is established for the
specified DDNAME. This is the normal return.

4 The DDNAME specified is not found. (No
FILEDEF was found with the given DDNAME.)

8 Device specified in the FILEDEF is not a tape
device.

12 Tape identification is invalid. (Must be
TAPl, TAP2, TAP3, TAP4.)

16 Tape label tvype is other than "SL".

20 "LEAVE" is specified in the FILEDEF (FCB).

24 Invalid PLIST.

28 "NCGEOV" is specified in the FILEDEF (FCB).

32 Exit address or RETINFO address is zero.

VM/SP System Logic and Problem Determination Guide (CMS)

If other than
standard labels are used, you receive a return code of 16

the results

CLR Function:

Licensed Material--Property of IBM

Code Meaning

0 End-of-volume exit is cleared for the
specified DDNAME. This is the normal return.
A return code of 0 may also indicate the
end-of-volume exit was not in effect, but it
was still cleared.

% The DDNAME specified is not found. (No
FILEDEF was found with the given DDNAME.)
24% Invalid PLIST.

SUCCESSFUL COMPLETION

On successful completion of TEOVEXIT SET (register 15=0), the
RETINFO attribute contains:

Word Meaning

0 The symbolic tape number associated with the
%Zgg? DDNAME (character TAPl, TAP2, TAP3,
The address of the FCB of the given DDNAME
RESERVED

RESERVED

RESERVED

SUNH

0S_SIMUL ON MS

TS0 SERVICE ROUTINE

When in a CMS environment, a processor or a user-written program
is executing and utilizing 0S5-type functions, 0S is not
controlling this action, CMS is in control. Consequently, it is
not 0S code that is in CMS, but routines to simulate, in terms
of CMS, certain 0S5 functions essential to the support of 0S
language processors and their generated code.

These functions are simulated to yield the same results as seen
from the processing program, as specified by 05 program logic
manuals. However, they are supported only to the extent stated
in CMS documentation and to the extent necessary to successfully
execute 0S5 language processors. The user should be aware that
restrictions to 05 functions as viewed from 0S exist in CMS.

Certain TS0 Service routines are provided to allow the Program
Products to run under CMS. The routines are the Command Scan
and Parse Service Routines and the Terminal I/0 Service
Routines. 1In addition the user must provide some initialization
as documented in TS0 TMP Service Routine initialization. The 0S
functions that CMS simulates are shown in Figure 29 on page 142.

SUPPORT

TS0 macros that support the use of the terminal monitor program
(TMP) service routines are contained in TSOMAC MACLIB. The macro
functions are as described in the TS0 TMP documentation with the
exception of PUTLINE, GETLINE, PUTGET, and TCLEARQ.

Before using the TS0 service routines, the calling program
performs the following initialization:

1. Stores the address of the command line as the first word in
the command processor parameter list (CPPL). The TSOGET
macro puts the address of the CPPL in register 1.

2. Initializes CMS storage using the STRINIT macro.

Simulating Non-CMS Operating Environments 141

Licensed Material--Property of IBM

3. Clears the ECT field that contains the address of the I/0
work area (ECTIOWA).

4. Issues the STACK macro to define the terminal as the primary

source of input.

Macro SVC No.
XDAP 00
WAIT 01
POST 02
EXIT 03
RETURN 03
GETMAIN 04
FREEMAIN 05
GETPOOL -
FREEPOOL -
LINK 06
XCTL 07
LOAD 08
DELETE 09
FREEMAIN 10
GETMAIN 10
TIME 11
ABEND 13
SPIE 14
RESTORE 17
BLDL 18
FIND 18
OPEN 19
CLOSE 20
STOW 21
OPENJ 22
TCLOSE 23
DEVTYPE 24
TRKBAL 25
FEQV 31
WTO/WTOR 35
EXTRACT 40
IDENTIFY 41
ATTACH 42
CHAP 44
TTIMER 46
STIMER 47
DEQ 48
SNAP 51
ENQ 56
FREEDBUF 57
STAE 60
DETACH 62
CHKPT 63
RDJFCB 64
SYNAD 68
SYNADAF -
SYNADRLS -

Figure 29 (Part 1 of 2).

Module
DMSSVT

DMSSVN
DMSSVN
DMSSLN
DMSSLN
DMSSMN
DMSSMN
DMSSMN
DMSSMN
DMSSLN
DMSSLN

DMSSLN
DMSSLN
DMSSMN
DMSSMN
DMSSVT
DMSSAB
DMSSVT

DMSSVT
DMSSVT

DMSSVT

DMSSQOP
DMSSOP
DMSSVT

DMSSOP
DMSSOP

DMSSVT

DMSSVT
DMSSVT
DMSSVT
DMSSVT
DMSSVT
DMSSVT
DMSSVT
DMSSVT
DMSSVT

DMSSVT
DMSSVT
DMSSVT
DMSSVT
DMSSVT

DMSSVT
DMSSVT
DMSSVT

DMSSVT
DMSSVT
DMSSVT

Function

Reads or writes direct access
volumes

Waits for an I/0 completion

Posts the I/0 completion

Returns from a called phase
Returns from a called phase
Conditionally acquire user storage
Releases user-acquired storage
Simulates as SVC 10

Simulates as SVC 10

Links control to another phase
Deletes, then links control to
another load phase

Reads a phase into storage
Deletes a loaded phase
Manipulates user free storage
Manipulates user free storage
Gets the time of day

Terminates processing

Allow processing program to handle
program interrupts

Effective NOP

Builds a directory list for a
partitioned data set

Locates a member of a partitioned
data set

Activates a data file

Deactivates a data file
Manipulates partitioned
directories

Activates a data file

Temporarily deactivates a data
file

Obtains device-type physical
characteristics

Effective NOP

Sets forced EOV error code
Communicates with the terminal
Effectiva NOP

Adds entry to loader table
Effective LINK

Effective NOP

Accesses or cancels timer

Sets timer interval and timer exit
routine

Effective NOP

Dumps specified areas of storage
Effective NOP

Releases a free storage buffer
Allows processing program to
decipher abend conditions
Effective NOP

Effective NOP

Obtains information from FILEDEF
command

Handles data set error conditions
Provides SYNAD analysis function
Releases SYNADAF message and save
areas

Simulated 0S Supervisor Calls

142 VM/SP System Logic and Problem Determination Guida (CMS)

Licensed Material--Property of IBM

Macro SVC No. Module Function

BSP 69 DMSSVT Backs up a record on a tape or
disk

DCB - DMSSVT Constructs a data control block

DCBD - DMSSVT Generates a DSECT for a data
control block

SAVE - DMSSVT Saves program registers

RETURN - DMSSVT Returns from a subroutine

GET - DMSS5QS Reads system-blocked data (QSAM)

PUT - DMSSQS Writes system—-blocked data (QSAM)

READ - DMSSBS Accesses system-record data

WRITE - DMSSBS Writes system-record data

NOTE - DMSSCT Manages data set positioning

POINT - DMSSCT Manages data set positioning

CHECK - DMSSCT Verifies READ/WRITE completion

TGET/TPUT 93 DMSSVN Reads or writes a terminal line

TCLEARQ 94 DMSSVN Clears terminal input queue

STAX 96 DMSSVT Creates an attention exit block

PGRLSE 112 DMSSVT Releases storage contents

Figure 29 (Part 2 of 2). Simulated 0S Supervisor Calls

CMS SIMULATION OF 0S CONTROL BLOCK FUNCTIONS

Most of the simulated supervisory 0S control blocks are
contained in the following two CMS control blocks:

CMSCVT simulates the communication vector table (CVT).
Location 16 contains the address of the CVT control
section.

CMSCB allocated from system free storage whenever a FILEDEF
command or an OPEN (SVC 19) is issued for a data set.
The CMS control block consists of the CMS file Control
block (FCB) for the data file management under CMS, and
simulation of the job file control block (JFCB),
input/outrut block (IOB), and data extent block (DEB).
The name of the data set is contained in the FCB, and is
obtained from the FILEDEF argument list, or from a
predetermined file name supplied by the processing
problem program.

CMS also utilizes portions of the supplied data control block
(DCB) and the data event control block (DECB). The TS0 control
blocks utilized are the command program parameters list (CPPL),
user profile table (UPT), protected step control block (PSCB),
and environment control table (ECT).

OPERATING SYSTEM SIMULATION ROUTINES

CMS provides a number of routines to simulate certain operating
system functions used by programs such as the Assembler and the
FORTRAN and PL/I compilers. The following paragraphs describe
how these simulation routines work.

XDAP-SVC 0:
Writes and reads the source code spill file, SYSUT1l, during
language compilation for PL/I Optimizer and ANS COBOL
Compilers.

WAIT-SVC 1:

Causes the active task to wait until one of more event
control blocks (ECBs) have been posted. For each specified
ECB that has been posted, one is subtracted from the number
of events specified in the WAIT macro. If the number of
events is zero by the time the last ECB is checked, control
is returned to the user. If the number of events is not
zero after the last ECB is checked and the number of events
is not greater than the number of ECBs, the active task is

Simulating Non-CMS Operating Environments 143

Licensed Material--Property of IBM

put into a wait state until enough ECBs are posted to set
the number of events at zero. When the event count reaches
zero the wait bits are turn off in any ECBs that have not
been posted and control is returned to the user. If the
number of events specified is greater than the number of
ECBs, the system abnormally terminates with an aerror
message. All options of WAIT are supported.

POST-SVC 2:
Causes the specified event control block (ECB) to be set to
indicate the occurrence of an event. This event satisfies
the requirements of a WAIT macro instruction. All options
:fIEOST are supported. The bits in the ECB are set as
ollows:

Bit Setting
0 0

1 1
2-7 Value of specified completion code

EXIT-SVC 3:
This SVC is for CMS internal use only. It is used by the
CMS routine DMSSLN to acquire an SVC SAVEAREA on return
from an executing program that had been given control by
LINK (SVC 6), XTCL (SVC 7) or ATTACH (SVC 42).

GETMAIN-SVC 4:
Control is passed to the GETMAIN entry point in the DMSSMN
storage resident routine. The mode is determined: VU, VC,
EC. A call is made to GETBLK to obtain the block of
storage. Control blocks of two fullwords precede each
section of available storage: (1) the address of the next
block, (2) the size of this block. The head of the pointer
string is located at the words MAINSTRT - initial free
block, and MAINLIST - address of first link in chain of
free block pointers. All options of GETMAIN are supported
except SP, BNDRY=, HIARCHY, LC, and LV.

FREEMAIN-SVC 5:
Releases a block of free storage. If the block is part of
segmented storage, a control block of two fullwords is
placed at the beginning of the released area. Adjustment
is made to include this block in the chain of available
areas. All options of FREEMAIN are supported except SP and
L.

LINK-SVC 6:
Program transfer is controlled by the nucleus routine,
DMSSLN. The LINK macro causes program control to be passed
to a designated phase. If the COMPSWT bit within the bvte
0SSFLAGS is on, loading is done by calling LOADMOD to bring
a CMS MODULE file into storage. If this flag is off,
dynamic loading is initiated by calling LOAD. If the
routine is already in storage, determined by scanning the
load request chain, no LOAD or LOADMOD is done. Control is
passed directly to the routine. CMS ignores the DCB and
HIARCHY options; all other options of LINK are supported.

XCTL-SVC 7:
XCTL first deletes the current phase from storage.
Processing then continues as for LINK-SVC 6, as previously
described. CMS ignores The DCB and HIARCHY options; all
other options of XCTL are supported.

LOAD-SVC 8:
Control is passed to DMSSLN8 located in DMSSLN when a LOAD
macro is issued. If the requested phase is not in storage,
a LOAD or LOADMOD is issued to bring it in. Control is
then returned to the caller. CMS ignores the DCB and
HIARCHY options; all other options of LOAD are supported.

DELETE-SVC 9:

Control is passed to DMSSLN9 located in DMSSLN when a
DELETE macro is issued. 'Upon entry, DELETE checks to see

144 VYM/SP System Logic and Problem Determination Guida (CMS)

Licensed Material--Property of IBM

whether the module specified was loaded using LOADMOD or
dynamically loaded by LOAD or INCLUDE. If it was loaded by
LOADMOD control is returned to the user. If it was
dynamically loaded, the responsibility count is decremented
by one and if it reaches zero, the storage is released
using FREEMAIN, and control is returned to the user. All
options of DELETE are supported. Code 4 is returned in
register 15 if the phase is not found.

GETMAIN/FREEMAIN-SVC 10:
Control is passed to the SVC 10 entry point in DMSSMN.
Storage management is analogous to SVC 4 and 5,
respectively. All options of GETMAIN and FREEMAIN are
supported. Subpool specifications are ignored.

GETPOOL:
Gets control via an 05 LINK macro to IECQBFGI. IECQBFGI
allocates an area of free storage using GETMAIN, sets up a
buffer control block in the free storage, stores the
address of the buffer control block in the DCB, and then
returns control to the caller.

TIME-SVC 11:
This routine (TIME) located in DMSSVT receives control when
a TIME macro instruction is issued. A call is made (by SIO
or DIAGNOSE) to the RPQ software chronological timer
device, X'0FF'. The real time of day and date are returned
to the calling program in a specified form. CMS supports
the DEC, BIN, TU, and MIC parameters of the TIME macro
instruction. However, the time value that CMS returns is
only accurate to the nearest second and is converted to the
proper unit.

ABEND-SVC 13:
This routine (DMSSAB) receives control when either an ABEND
macro or an unsupported 057360 SVC is issued. If an SVC 13
was issued with the DUMP option and either a SYSUDUMP or
SYSABEND ddname had been defined via a call to DMSFLD
(FILEDEF), a SNAP (SVC 51) specifying PDATA=ALL is issued
to dump user storage to the defined file. A check is made
to see if there are any outstanding STAE requests. If not,
or if an unsupported SVC was issued, DMSCWR is called to
type a descriptive error message at the terminal. Next,
DMSCHT is called to wait until all terminal activity has
ceased, and then, control is passed to the ABEND recovery
routine. If a STAE macro was issued, a STAE work area is
built and control is passed to the STAE exit routine.
After the exit routine is complete, a test is made to see
if a retry routine was specified. If so, control is passed
to the retry routine. Otherwise, control passes to DMSABN
unless the task that had the ABEND was a subtask. In that
case, the resume PSW in the link block for the subtask is
adjusted to point to an EXIT instruction (SVC 3). The EXIT
frees the subtask, and the attaching task is redispatched.

SPIE-SVC 14:
This routine (SPIE) receives control when a SPIE macro
instruction is issued. When it gets control, SPIE inserts
the new program interruption control area (PICA) address
into the program interruption element (PIE). The program
interruption element resides in the program interruption
handler (DMSITP). It then returns the address of the old
PICA to the calling program, sets the program mask in the
calling program's PSW, and returns to the calling program.
All options of SPIE are supported.

RESTORE-SVC 17:
RESTORE is a NOP located in DMSSVT.

BLDL/FIND (Type D)-SVC 18:
SVC to entry points in DMSSOP. If an 0S disk is specified,
DMSSVT branches and links to DMSR0S. See BLDL and FIND
under description of BPAM routines in DMSSVT.

Simulating Non-CMS Operating Environments 145

Licensed Material--Property of IBM

STOW-SVC 21:
See STOW under description of BFAM routines in DMSSVT.

OPEN/OPENJ-SVC 19/22:
OPEN simulates the data management function of opening one
or more files. It is a nucleus routine and receives
control from DMSITS when an executing program issues an
OPEN macro instruction. The OPEN macro causes an SVC to
DMSSOP. DMSSOP simulates the OPEN macro. The DISP,
EXTEND, and RDBACK options are ignored by CMS; all other
options of OPEN and OPENJ are supported. You can achieve
similar results with the EXTEND option by opening the file
with the OUTPUT option and using the DISP MOD parameter on
the FILEDEF command.

CLOSE/TCLOSE-SVC 20/23:
CLOSE and TCLOSE are simulated in the nucleus routine
DMSSOP. It receives control whenever a CLOSE or TCLOSE
macro instruction is issued. The CLOSE macro causes an SVC
to DMSSOP. DMSSOP simulates the CLOSE macro. CMS ignores
the DISP option; all other options of CLOSE and TCLOSE are
supported.

DEVTYPE-SVC 24:
This routine (DEVTYPE), located in DMSSVT, receives control
when a DEVTYPE macro is issued. Upon entry, DEVTYPE moves
Device Characteristic Information for the requested data
set into a user specified area, and then returns control to
the user. All options of DEVTYPE are supported, except
RPS, which is ignored.

TRKBAL-SVC 25:
TRKBAL is a NOP located in DMSSVT.

FEOV-SVC 31:
Tgturns control to CMS with an error code of % in register

WTO/WTOR-SVC 35:
This routine (WT0), located in DMSSVT, receives control
when either a WT0 or a WTOR macro instruction is issued.
For a WT0, it constructs a calling sequence to the DMSCWR
function program to type the message at the terminal. (The
address of the message and its length are provided in the
parameter list that results from the expansion of the WTO
macro instruction.) It then calls the DMSCWT function
program to wait until all terminal I/0 activity has ceased.
Next, it calls the DMSCWR function program to type the
message at the terminal and returns to the calling program.
All options of WTO and WTOR are supported except those
concerned with multiple console support.

For a WTOR macro instruction, this routine proceeds as
described for WT0. However, after it has typed the message
at the terminal it calls the DMSCRD function program to
read the user's reply from the terminal. When the user
replies with a message, it moves the message to the buffer
specified in the WTOR parameter list, sets the completion
bit in the ECB, and returns to the calling program.

EXTRACT-SVC 40:
This routine (EXTRACT), located in DMSSVT receives control
when an EXTRACT macro is issued. Upon entry, EXTRACT
clears the user provided ansuwer area and returns control to
the user with a return code of 4 in register 15.

IDENTIFY-SVC 41:
Located in DMSSVT, this routine creates a new load request
block with the requested name and address if both are
valid. The new entry is chained from the existing load
request chain. The new name may be used in a LINK or
ATTACH macro.

146 VM/SP System Logic and Problem Determination Guide (CMS)

5

Licensed Material--Property of IBM

ATTACH-SVC 42:
Located in DMSSLN, ATTACH operates like a LINK (SVC 6),
Wwith additional capabilities. The user is allowed to
specify an exit address to be taken upon return from the
attached phase; also, an ECB is posted when the attached
phase has completed; and a STAI routine can be specified in
case the attached phase abends. The DCB, LPMOD, DPMOD,
HIARCHY, GSPV, GSPL, SHSPV, SHSPL, SZERO, PURGE, ASYNCH,
and TASKLIB options are ignored; all other options of
ATTACH are supported. Because CMS is not a multitasking
operating system, a phase requested by the ATTACH macro
must return to CMS.

CHAP-SVC 44:
CHAP is a NOP located in DMSSVT.

TTIMER-SVC 46:
Checks to ensure that the value in the timer (hex location
50) was set by an STIMER macro. If it was, the value is
converted to an unsigned 32 bit binary number specifying 26
microsecond units and is returned in register 0. If the
timer was not set by an STIMER macro a zero is returned in
register 0, after setting register 0, the CANCEL option is
checked. If it is not specified, control is returned to
the user. If it is specified, the timer value and exit
routine set by the STIMER macro are cancelled and control
is returned to the user. All options of TTIMER are
supported.

STIMER-SVC 47:
Checks to see if the WAIT option is specified. If so,
control is returned to the user. If not, the specified
timer interval is converted to 13 microsecond units and
stored in the timer (hex location 50). If a timer
completion exit routine is specified, it is scheduled to be
given control after completion of the specified time
interval. If not, no indication of the completion of the
time interval is scheduled. After checking and handling
any specified exit routine address, control is returned to
the user. All options of STIMER are supported. The TASK
option is treated as though the REAL option had been
specified. The maximum time interval allowed is
X'7FFFFFO00' timer units (X'00555554"' in binary, or 15
hours, 32 minutes, and 4 seconds in decimal). If the time
interval is greater than the maximum, it is set to the
maximum. If running in the CMSBATCH environment, issuing
the STIMER or TTIMER macro will affect the CMSBATCH time
limit. Depending on the frequency, number, and duration of
STIMER and/or TTIMER issued, the CMSBATCH time limit may
never expire.

DEQ-SVC 48:
DEQ is a NOP located in DMSSVT.

SNAP-SVC 51:
Control is passed to SNAP in DMSSVT when a SNAP macro is
issued. SNAP fills in a PLIST with a beginning and ending
address and calls DMPEXEC. DMPEXEC dumps the specified
storage along with the registers and low storage to the
printer. Control is then returned to SNAP and SNAP checks
to see if any more addresses are specified. It continues
calling DMPEXEC until all the specified addresses have been
dumped to the printer. Control is then returned to the
user. Except for SDATA, PDATA, and DCB, all options of the
SNAP macro are processed normally. SDATA and PDATA are
ignored. Processing for the DCB option is as follows: The
DCB address specified with SNAP is used to verify that the
file associated with the DCB is open. If it is not open,
control returns to the caller with a return code of 4. If
the file is open, the FCB associated with the file is
checked for a device type of DUMMY. If the device type is
DUMMY, control returns to the caller with a return code of
0 and storage is not dumped.

Simulating Non-CMS Operating Environments 147

Licensed Material--Property of IBM
ENQ-SVC 56:

FORMAT OF SCB

ENQ is a NOP located in DMSSVT.

FREEDBUF-SVC 57:

STAE-

0¢0)
4(4%)
8(8)
12(C)

This routine (FREEDBUF) located in DMSSVT receives control
when a FREEDBUF macro is issued. Upon entry, FREEDBUF sets
up the correct DSECT registers and calls the FREEDBUF
routine in DMSSBD. This routine returns the dynamically
obtained buffer (BDAM) specified in the DECB to the DCB
buffer control block chain. Control is then returned to
the DMSSVT routine which returns control to the user. All
the options of FREEDBUF are supported.

SVC 60:

This routine (STAE) located in DMSSVT receives control when
a STAE macro is issued. Upon entry, STAE creates, overlays
or cancels a STAE control block (SCB) as requested.

Control is then returned to the user with one of the
following return codes in register 15:

code Meaning

00 An SCB is successfully created, overlaid or
cancelled.
08 The user is attempting to cancel or overlay a

nonexistent SCB.

0 or pointer to next SCB

exit address

parameter list address

DETACH-SVC 62:

DETACH is a NOP located in DMSSVT.

CHKPT-SVC 63:

CHKPT is a NOP located in DMSSVT.

RDJFCB-SVC 64:

This routine (RDJFCB) receives control when a RDJFCB macro
instruction is issued. When it gets control, RDJFCB
obtains the address of the JFCB from the DCBEXLST field in
the DCB and sets the JFCB to zero. It then reads the
simulated JFCB located in CMSCB that was produced by
issuing a FILEDEF into the closed area. RDJFCB calls the
STATE function program to determine if the associated file
exists. If it does, RDJFCB returns to the calling program.
If the file does not exist, RDJFCB sets a switch in the DCB
to indicate this and then returns to the calling program.
RDJFCB is located in DMSSVT. All the options of RDJFCB are
supported.

° The DCB's specified in the "RDJFCB parameter list"™ are
processed sequentially as they appear in the parameter
list.

. On return to the caller, a return code of zero is
always placed in register 15 (if an abend occurs,
control is not returned to the caller).

. Abend 240 occurs if zero is specified as the address of
the area where the JFCB will be placed.

148 VM/SP System Logic and Problem Determination Guida (CMS)

J

Licensed Material--Property of IBM

o Abend 240 occurs if a "JFCB exit list entry"” (entry
type X'07') is not present in the "DCB exit list"™ for
?nytone of the DCB's specified in the "RDJFCB parameter

ist."

U If a DCB is encountered in the parameter list with zero
specified as the "DCB exit list™ ("EXLST") address,
RDJFCB immediately returns with return code zero in
register 15 -- except if all of the DCB's specified in
the "RDJFCB parameter list™ are processed unless an
abend occurs.

. For a DCB that is not "open", a search is done for the

corresponding "FILEDEF"™ and "DLBL™ -- if one is not
found, a test is done to determine if a file exists
with:

filename = "FILE"

filetype = ddname from DCB

filemode = "Al"

If such a file does exist, X'40' is placed in the JFCB
at displacement X'57' (flag "JFCOLD™ in field
"JFCBIND2"). 1If such a file does not exists, X'C0'
(flag "JFCNEW"™ will be in field "JFCBIND2".

J For a file that is not "open,™ but a "DLBL™ has been
specified, X'08' is placed in the JFCB at displacement
X'63"'" (field "JFCDSORG" byte 2) to indicate that it is
a VSAM file.

Note: The suitch set by the RDJFCB is tested by the
FORTRAN object-time direct-access handler (DIOCS) to
determine whether or not a referenced disk file exists. If
it does not, DIOCS initializes the direct access file.

SYNAD-SVC 68:

Located in DMSSVT, SYNAD attempts to simulate the functions
SYNADAF and SYNADRLS. SYNADAF expansion includes an SVC 68
and a high-order byte in register 15 denoting an access
method. SYNAD prepares an error message line, swap save
areas and register 13 pointers. The message buffer is 120
bytes: bytes 1-50, 84-119 blank; bytes 51-120, 120S
INPUT/0QUTPUT ERROR nnn ON FILE: "dsname"; where nnn is
the CMS RDBUF/WRBUF error code. All the options of SYNAD
are supported.

SYNADRLS expansion includes SVC 68 and a high order byte of
X'FF' in register 15. The save area is returned, and the
message buffer is returned to free storage.

BACKSPACE-SVC 69:

Also in DMSSVT.For a tape, a BSR command is issued to the
tape. For a direct access data set, the CMS write and read
pointers are decremented by one. Control is passed to
BACKSPACE in DMSSVT when a BACKSPACE macro is issued.
BACKSPACE decrements the read write pointer by one and
returns control to the user. No physical tape or disk
adjustments are made until the next READ or WRITE macro is
issued. All the options of BACKSPACE are supported.

TGET/TPUT-SVC 93:

Located in DMSSVN, this routine receives control when a
TGET or TPUT macro is issued. It is provided to support TSO
service routines needed by program products. TGET reads a
terminal line; TPUT writes a terminal line. The return code
is zero if the operation was successful and a four if an
error was encountered.

TCLEARQ-SVC 9%4:

TCLEARQ is located in DMSSVN and causes the terminal input
queue to be cleared via a call to DESBUF. At completion a
return is made to the user.

Simulating Non-CMS Operating Environments 149

Licensed Material--Property of IBM

150

STAX-SVC 96:
Located in DMSSVT, STAX gets and chains a CMSTAXE control
block for each STAX SVC issued with an exit routine address
specified. The chain is anchored by TAXEADDR in DMSNUC. If
no exit address is specified the most recently added
CMSTAXE is cleared from the chain. If an error occurs
during STAX SVC processing, a return code of eight is
placed in register 15. The only option of STAX which may be
specified is EXIT ADDRESS.

PGRLSE-SVC 112:
Located in DMSSVT, PGRLSE receives control when a PGRLSE
macro instruction is issued. The routine checks the
validity of the beginning and end addresses of the area to
be freed, or forces the right values (AUSRAREA to the
beginning, or FREELOWE to the end). Then the routine
checks the length of the area to find out if at least 1
page (4K bytes) has to be released and issues a DIAGNOSE
code X'10' instruction to CP. The return code will set to
zero in register 15 if the PGRLSE operation is successful,
or to four if only a portion of the area is released.

GET/PUT:
See the DMSSQS prolog for description.

READ/WRITE:
0S READ and WRITE macros branch and link to DMSSBS. DMSSBS
branches and links to DMSSEB and, if the disks is an 0S
disk, DMSSEB branches and link to DMSR0OS. See DMSSBS for
description.

NOTE/POINT/FIND (Type C):
0S NOTE, POINT, and FIND (type c) macros branch and link to
entry points in DMSSCT. If the disk is an 0S disk, DMSSCT
branches and links to DMSR0S. See DMSSCT for descriptions.

CHECK:
See the DMSSCT prolog for description.

Notes on using the 0S5 simulation routines:

J CMS files are physically blocked in 800-byte blocks, and
logically blocked according to a logical record length. If
the filemode of the file is not 4, the logical record length
is equal to the DCBLRECL and the file must always be
referenced with the same DCBLRECL, whether or not the file
is blocked. If the filemode of the file is 4, the logical
record length is equal to the DCBBLKSI and the file must
always be referenced with the same DCBBLKSI.

. When writing CMS files with a filemode number other than
four, the 0S5 simulation routines deblock the output and
write it on a disk in unblocked records. The simulation
routines delete each 4-byte block descriptor word (BDW) and
each 4-byte record descriptor word (RDW) of variable length
records. This makes the 0S-created files compatible with
CMS-created files and CMS utilities. When CMS reads a CMS
file with a filemode number other than four, CMS blocks the
record input as specifies and restores the BDW and RDW
control words of variable length records.

If the CMS filemode number is four, CMS does not unblock or
delete BDWs or RDWs on output. CMS assumes on input that
the file is blocked as specified and that variable length
recgrds contain block descriptor words and record descriptor
words.

L To set the READ/WRITE pointers for a file at the end of the
file, a FILEDEF command must be issued for the file
specifying the MOD option.

. A file is erased and a new one created if the file is opened
and all the following conditions exist:

YM/SP System Logic and Problem Determination Guide (CMS)

9

9

Licensed Material--Property of IBM
- The OUTPUT or OUTIN option of OPEN is specified.
- The TYPE option of OPEN is not J.

- The dataset organization option of the DCB is not direct
access or partitioned.

- A FILEDEF command has not been issued for data set
specifying the MOD option.

. The results are unpredictable if two DCBs read and write to
the same data set at the same time.

COMMAND FLOW OF COMMANDS INVOLVING 0S ACCESS

ACCESS COMMAND FLOW: The module DMSACC gets control first when
you invoke the ACCESS command. DMSACC verifies parameter list
validity and sets the necessary internal flags for later use.

If the disk you access specifies a target mode of another disk
currently accessed, DMSACC calls DMSALU to clear all pertinent
information in the old active disk table. DMSACC then calls
DMSACF to bring in the user file directory of the disk. As soon
as DMSACF gets control, DMSACF calls DMSACM to read in the
master file directory of the disk. Once DMSACM reads the label
of the disk, and determines that it is an 0S disk, DMSACM calls
DMSR0OS (ROSACC) to complete the access of the 0S disk. Upon
returning from DMSR0OS, DMSACM returns immediately to DMSACF,
bypassing the master file directory logic for CMS disks. DMSACF
then checks to determine if the accessed disk is an 0S disk. If
it is an 05 disk, DMSACF returns immediately to DMSACC,
bypassing all the user file directory logic for 0S5 disks.

DMSACC checks to determine if the accessed disk is an 0S disk;
if it is, another check determines if the accessed disk replaces
another disk to issue an information message to that effect.
Another check determines if you specified any options or fileid
and, if you did, a warning message appears on the terminal.
Control now returns to the calling routine.

FILEDEF COMMAND FLOW: DMSFLD gets control first when vou issue
a CMS FILEDEF command. DMSFLD adds, changes, or deletes a
FILEDEF control block (CMSCB) and returns control to the calling
routine.

LISTDS COMMAND FLOW: The module DMSLDS gets control first when
you invoke the LISTDS command. DMSLDS verifies parameter list
validity and calls module DMSLAD to get the active disk table
associated with the specified mode. DMSLDS reads all format 1
DSCB and if you specified the PDS option and the data set is
partitioned, DMSLDS calls DMSR0OS (ROSFIND) to get the members of
the data set. After displaying the DSCB (or DSCB) on you
console, DMSLDS returns to the calling routine.

OSRUN COMMAND FLOW: The module DMSOSR gets control first when
you invoke the OSRUN command. DMSOSR checks the command syntax.
The PARM=parameter, if specified, is set up according to 0S
convention and a LINK (SVC 6) is issued for the member specified
in the OSRUN command. DMSITS (the SVC FLIH) passes control to
DMSSVT which in turn goes to DMSSLN for processing of the LINK
SVC. DMSSLN passes control to DMSL0OS. DMSLOS loads, relocates,
and executes the member specified. When the member completes
execution and returns control to DMSL0OS, DMSLOS returns to
DMSSLN for some cleanup; DMSSLN goes through the normal SVC
return to DMS0OSR. DMSOSR goes through its termination and
returns to CMS.

MOVEFILE COMMAND FLOW: The module DMSMVE gets control first
when you issue a CMS MOVEFILE command. DMSMVE calls DMSFLD to
get an input and output CMSCB and, if the input DMSCB is for a
disk file, DMSMVE calls DMSSTT to verify the existence of the
input file and get default DCB parameters in absence of CMSCB
DCB parameters. DMSMVE uses 0S OPEN, FIND, GET, PUT, and CLOSE

Simulating Non-CMS Operating Environments 151

Licensad Material--Property of IBM

macros to move data from the input file to the output file.
After moving the specified data, control returns to the calling
routine.

LKED COMMAND FLOM: The module DMSLKD gets control first when

you invoke a CMS LKED command. DMSLKD generates the necessary
FILEDEFs for execution of the 0S5 linkage editor and calls the
linkage editor (HEWLFROU). When the link-edit is complete,
2M5é§g receives control to do some clean up prior to returning
o .

QUERY COMMAND FLOH: The module DMSQRY gets control first when
vou invoke the QUERY command. DMSQRY verifies parameter list
validity and passes control to DMSQRS that calls DMSLAD to get
the active disk table associated with the specified mode.
DMSQRY displays all the information that you requested on your
console. When DMSQRY finishes, control returns to the calling
routine.

RELEASE COMMAND FLOW: The module DMSARE gets control first when
you invoke the RELEASE command. DMSARE verifies parameter list
validity and checks to determine if the disk you want to release
is accessed. If the disk you want to release is currently
active, DMSARE calls DMSALU to clear all pertinent information
associated with the active disk. DMSALU first checks the active
disk table for any existing CMS tables kept in free storage. 1If
the disk you want to release is an 0S5 disk, DMSALU does not find
any tables associated with a CMS disk. If the disk is an 0S
disk, DMSALU releases the 0S5 FST blocks (if any) and clears any
0S5 FST pointers in the 05 file control blocks. DMSALU then
clears the active disk table and returns to DMSARE. DMSARE then
clears the device table address for the specified disk and
returns to the calling routine.

STATE COMMAND FLOW: The module DMSSTT gets control first when
you invoke the STATE command. DMSSTT verifies the parameter
list validity and calls module DMSLAD to get the active disk
table associated with the specified mode. Upon return from
DMSLAD, DMSSTT calls DMSLFS to find the file status table (FST)
associated with the file you specified. Once DMSLFS finds the
associated FST, it checks to determine if the file resides on an
0S disk. If it does, DMSLFS calls DMSR0OS (ROSSTT) to read the
extents of the data set. Upon return from DMSROS, DMSLFS
returns to DMSSTT. DMSSTT then copies the FST (or 05 FST) to
the FST copy in statefst and returns to the calling routine.

0S ACCESS METHOD MODULES--LOGIC DESCRIPTION

DMSACC MODULE: Once DMSACC determines that the disk vou want to
access is an 0S disk, it bypasses the routines that perform
LOGIN UFD and LOGIN ERASE.

If the disk you want to access replaces an 05 disk, message
DMSACC7241 appears at your terminal.

If you specified any options or fileid in the ACCESS command to
an 05 disk, a warning message, DMSACC230W, appears to notify you
that such options or fileid were ignored. DMSACC returns to the
calling routine with a warning code of 4.

DMSACF MODULE: DMSACF verifies that the disk you want to access
is an 0S disk and, if it is, exits immediately.

DMSACM MODULE: DMSACM saves the disk label and VTOC address in
the ADT block if the disk is an 05 disk. DMSACM checks to
determine if a previous access to an 0S disk loaded DMSROS. If
not, DMSACM calls DMSSTT to verify that DMSR0OS text exists.

Upon successful return from STATE, DMSACM loads DMSROS text into
the high storage area with the same protect key and calls the 0S
access routine (ROSACC) of DMSROS to read the format 4 DSCB of
the disk. Upon successful return from DMSR0S, control returns
to the calling routine. Any other errors are treated as general
logon errors.

152 VM/SP System Logic and Problem Determination Guide (CMS)

Licensed Material--Property of IBM

DMSALU MODULE: If the disk is an 0S5 disk, DMSFRET returns the
0S FST blocks (if any) to free storage. DMSALU clears the 0S5
FST pointer in all active 05 file control blocks, decrements the
DMSROS usage count and, if the usage count is zero, clears the
address of DMSROS in the nucleus area. DMSALU also calls
DMSFRET to returns to free storage the area which DMSR0S
occupies.

DMSARE MODULE: DMSARE ensures that the disk you want to release
is an 0S disk. DMSARE calls DMSALU to release all 0S5 FST blocks
and, if necessary, to free the area DMSROS occupies. Upon
return from DMSALU, DMSARE clears the common CMS and 0S active
disk table.

DMSFLD MODULE:

. DSN —- If you specify the parameter DSN as a question mark
(?), FILEDEF displays the message DMSFLD220R to request you
to type in an 0S data set name with the format Q1.Q2.QN.

Ql, Q2, and QN are the qualifiers of an 05 data set name.

If you specify the parameter DSN as Q1.Q2.QN, FILEDEF
assumes that Ql, Q2, and QN are the qualifiers of an 05 data
set name, and stores the qualifiers with the format Q1.Q2.QN
in a free storage block and chains the block to the FCB.

. CONCAT -- If you specify the CONCAT option, FILEDEF assumes
that the specified FILEDEF is unique unless a filedef is
outstanding with a matching ddname, filename, and filetype.
This allows you to specify more than one FILEDEF for a
particular ddname. The CONCAT option also sets the FCBCATML
bit in the FCB to allow the 05 simulation routine to know
the FCB is for a concatenated MACLIB.

. MEMBER -- If you specify the member option, filedef stores
the member name in FCBMEMBR in the FCB to indicate that the
0S simulation routine should set the read/write pointer to
point to the specified BPAM file member when OPEN occurs.

DMSLDS MODULE: DMSLDS saves the return register, sets itself
with the nucleus protection key, clears the dsnhame key, and
initializes its internal flag.

DMSLDS verifies parameter list validity. The data set name must
not exceed 44 characters, and the disk mode (the last parameter
before the options) must be valid. DMSLDS joins the qualifiers
with dots (.) to form valid data set names. If you specify the
data set name as a question mark (?), DMSLDS prompts you to
enter the dsname in exactly the same form as the dsname which
appears on the disk.

DMSLDS calls DMSLAD to find the active disk table block. If vou
specify filemode as an asterisk (%), DMSLAD searches for all ADT
blocks. If you specify the filemode as alphabetic, DMSLAD finds
only the ADT block for the specified filemode.

If you specify the dsname (which is optional), DMSLDS sets
the channel programs to read by key. If you did not specify a
dsname, DMSLDS searches the whole VTOC for format 1 DSCBS and
displays all the requested information contained in the DSCB on
your console. If you specify the format option, the RECFM,
LRECL, BLKSI, DSORG, DATE, LABEL, FMODE, and data set name
appear on you console; otherwise, only the FMODE and data set
name appear.

If you specify the PDS option, DMSLDS calls the 'find' routine
(rosfind) in DMSROS to read the member directory and pass back,
one at a time, in the fcbmembr field of CMSCB the name of each
member of the data set. This occurs if the data set is
partitioned.

After processing finishes, DMSLDS resets the nucleus key to the

same value as the user key, puts the return code in register 15,
and returns to the calling routine.

Simulating Non-CMS Operating Environments 153

Licensed Material--Property of IBM

DMSLFS MODULE: DMSLFS verifies that the FST being searched for
has an 0S5 disk associated with it. DMSLFS calls the DMSROS
state routine (ROSSTT) to verify that the data set exists and
CMS supports the data set attributes. Upon return from DMSROS,
a return code of 88 indicates that the data set was not found,
and DMSLDS starts the search again using the next disk in
sequence. Any other errors, such as a return code 80, cause
DMSLFS to exit immediately. A return code of 0 from DMSROS
indicates that the data set is on the specified disk. From this
point on, execution occurs common to both CMS and 0S disks.

DMSHMVE MODULE: If you specify the PDS option and the input is
from a disk, DMSMVE sets the FCBMVPDS bit and issues an 05 FIND
macro before opening an output DCB to position the input file at
the next member. DMSMVE then stores the input member name in
the output CMSCB for use as the output filename. After reaching
end-of-file on a member, the message DMSMVE2251 appears, DMSMVE
closes the output DCB, and passes control to find the next
member. After moving all the members to separate CMS files,
movefile displays message DMSMVE226I, closes the input and
output DCBS, and returns control to the calling routine.

DMSROS MODULE:

. ROSACC Routine -- ROSACC gets control from DMSACM after
DMSACM determines that the label of the disk belongs to an
0S disk. The ROSACC routine reads the format & DSCB of the
disk to further verify the validity of the 0S5 disk. ROSACC
updates the ADT to contain the address of the high extent of
the VTOC (if the disk is a DOS disk) or the address of the
last active format 1 DSCB (if the disk is an 0S5 disk), and
the number of cylinders in the disk. If the disk is a D0S
disk, ROSACC sets a flag in the ADT. Information messages
appear to notify you that the disk was accessed in read-only
mode. If the disk is already accessed as another disk,
another information message appears to that effect. Finally
ROSACC zeroes out the ADTFLGl flag in the ADT, sets the
ADRFLG2 flag to reflect that an 05 disk was accessed, and
returns control to the calling routine.

. ROSSTT Routine -- Verifies the existence of an 0S5 data set
and verifies the support of the data set attributes.

Note: Within the ROSSTT description, any reference to FCB
or CMSCB implies a DOSCB if D0OS is active.

ROSSTT gets control from DMSSTT after DMSSTT determines that
the STATE operation is to an 0S disk. The ROSSTT routine
searches for the correct FCB which a previous FILEDEF
associated with the data set. If the D0OS environment is
active, ROSSTT locates the correct DOSCB that defines a data
set described by a previous DLBL. If ROSSTT finds an active
FST, control passes to ROSSTRET; otherwise, ROSSTT acquires
the dsname block, places its address in the FCB, and moves
the dsname in the FCB to the acquired block. ROSSTT
acquires an FST block, chains it to the FST chain, and fills
all general fields (dsname, disk address, and disk mode).
ROSSTT now reads the format 1 DSCB for the data set and
checks for unsupported options (BDAM, ISAM, VSAM, and read
protect).

Errors pass control back to the calling routine with an
error code. ROSSTT groups together all the extents of the
data set (by reading the format 3 DSCB if necessary) and
checks them for validity. ROSSTT bypasses any user labels
that may exist and displays a message to that effect. HNext,
ROSSTT moves the DSCB1 BLKSIZE, LRECL, and RECFM parameters
to the 0S5 FST and passes control to ROSSTRET.

U ROSSTRET Routine -- If the disk is not a DOS disk, ROSSTRET
passes control back to the caller. If the specified disk is
a DOS disk, ROSSTRET fills in the 0S5 FST BLKSIZE, LRECL, and
RECFM fields that were not specified in the DSCBl. If the

15¢ VM/SP System Logic and Problem Determination Guide (CMS)

Licensed Material--Property of IBM

CMSCB fields are zero, ROSSTRET defaults them to
BLKSIZE=32760, LRECL=32670, and RECFM=U. Control then
returns to the calling routine.

ROSRPS Routine -- ROSRPS reads the next record of an 0S data
set. Upon entry to the ROSRPS entry point, ROSRPS calls
CHKXTNT and, if the current CCHHR is zero, SETXTNT to ensure
the CCHHR and extent boundaries are correctly set. ROSRPS
then calls DISKIO and, if necessary, CHKSENSE and GETALT to
read the next record. If no errors exist or an
unrecoverable error occurred, control returns to the user
with either a zero (I/0 0K) or an 80 (I/0 error) in register
15. If an unrecoverable error occurs, ROSRPS updates the
CCWS and buffer pointers as necessary and recalls CHKXTNT
and DISKIO to read the next record.

ROSFIND Routine -- ROSFIND sets the CCHHR to point to a
member specified in FCBMEMBR or, if the FCBMVPDS bit is on,
sets the CCHHR to point to the next member higher than
FCBMEMBR and sets a new member name in FCBMEMBR.

Upon entry at the ROSFND entry point, ROSFND sets up a CCW
to search for a higher member name if the FCBMVPDS bit is
on, or an equal member name if the FCBMVPDS bit is off. It
then calls SETXTNT, DISKIO and, if needed, CHKSENSE and
GETALT to read in the directory block that contains the
member name requested. After reading the block, it is
searched for the requested member name. If the member name
is not found, an error code % returns to the calling
routine. If an I/0 error occurs while trying to read the
PDS block, an error code 8 returns to the calling routine.
If the member name is found, TTRCNVRT is called to convert
the relative track address to a CCHH and pass the address of
the member entry to the calling routine.

ROSNTPTB Routine -- ROSNTPTB gets the current TTR, sets the
current CCHHR to the value of the TTR, and backspaces to the
previous record.

Upon entry at the ROSNTPTB entry point, ROSNTPTB checks to
determine if a NOTE, POINT, or BSP operation was requested.

If register 0 is zero, NOTE is assumed. The note routine
calls CHRCNVRT to convert the CCHH to a relative track and
returns control to the calling routine with the TTR in
register 0.

If register 0 is positive upon entry into DMSROS, POINT is
assumed and ROSNTPTB loads a TTR from the address in
register 0 and calls TTRCNVRT and SETXTNT to convert the TTR
to a CCHHR. Then control returns to the calling routine.

If register 0 is negative upon entry into DMSROS, BSP
(BACKSPACE) is assumed. The backspace code checks to
determine if the current position is the beginning of a
track. If not, the backspace code decrements the record
number by one and control then returns to the calling
routine. If the current position is the beginning of a
track, the backspace code calls CHRCNVRT to get the current
CCHH. The backspace code then calls rdcnt to get the
current record number of the last record on the new track,
calls setxtnt to set the new extent boundaries, and returns
control to the calling routine.

DMSSCT MODULE:

NOTE Routine =-- Upon entry to note, DMSSCT checks to
determine if the DCB refers to an 0S disk. If it does,
DMSSCT calls DMSROS (ROSNTPTB) to get the current TTR.
Control then returns to the user.

Simulating Non-CMS Operating Environments 155

Licensed Material--Property of IBM

156

. POINT Routine == Upon entry to point, DMSSCT checks to
determine if the DCB refers to an 0S5 disk. If it does,
DMSSCT calls DMSROS (ROSNTPTB) to reset the current TTR,
calls CKCONCAT and returns control to the calling routine.

U CKCONCAT Routine -- Upon entry to CKCONCAT, DMSSCT checks to
determine if the FCB MACLIB CONCAT bit is on. If it is on,
DCBRELAD+3 sets the correct 05 FST pointer in the FCB and
returns control to the calling routine. If the FCB MACLIB
CONCAT bit is off, control returns to the calling routine.

J FIND (type_C) Routine -~ If the DCB refers to an 0S disk,
DMSSCT calls DMSROS (ROSNTPTB) to update the TTR and control
returns to the calling routine.

DMSSEB MODULE:

. EOBROUTN Routine -- If the FCB 0S bit is on, control passes
to OSREAD. Otherwise, if no special I/0 routine is
specified in FCBPROC, control passes to EOB2 in DMSSEB.

. OSREAD Routine -- DMSSEB calls DMSROS to perform a read or
write and then control passes to EOBRETRN which, in turn,
passes control back to DMSSBS. DMSSBS passes control back
to the routine calling the read or write macro operation.

DMSSOP MODULE: If the MACLIB CONCAT option is on in the CMSCB,
OPEN checks the MACLIB names in the global list and fills in the
addresses of 0S5 FSTS for any MACLIBS on 0S5 disks. The CMSCB of
the fgrst MACLIB in the global list merges and initializes
CMSCBS.

If the CMSCB refers to a data set on an 0S5 disk, DMSSOP checks
to ensure that the data set is accessible and the DCB does not
specify output, BDAM, or a key length. If any errors occur,
error message DMSSOP036E appears and DMSSOP does not open the
DCB. DMSSOP fills them in from the 05 FST for the data set.

If the CMSCB fcbmembr field contains a member name (filled in by
FILEDEF with the member option), DMSSOP issues an 0S5 FIND macro
to position the file pointer to the correct member. If an error
occurs on the call to the FIND macro, error message DMSSOPO036E
appears and DM550P does not open the DCB.

DMSSVT MODULE:

U BSP (backspace) Routine -- Upon entry, backspace checks for
the FCB 0S bit. If it is on, the BSP routine calls DMSROS
(ROSNTPTB) to backspace the TTR and control returns to the
calling routine.

. FIND (type_D) Routine ~- Upon entry to find, the find
routine checks the FCB 0S bit. If it is on, the FIND
routine takes the 0S5 FST address from the CMSCB or, if the
CONCAT bit is on, from the global MACLIB list. The FIND
routine then calls DMSR0OS (ROSFIND) to find the member name
and TTR. DMSROS searches for a matching member name or, if
the FCBMVPDS option is specified, a higher member name. If
the DMSROS return code is 0 or 8, or if the FCBCATML bit is
not on, control returns to the calling routine with the
return code from DMSROS. If the return code is & and the
FCBCATML bit is on, DMSSVT checks to determine if all the
global MACLIBS were searched. If they were, control returns
to the calling routine with the DMSR0OS return code. If they
were not, DMSSVT issues the FIND on the next MACLIB in the
global list.

. BLDL Routine--BLDL list = FF LL NAME TTR KZC DATA

If the DCB refers to an 0S disk, the BLDL routine fills in
the TTR, C-byte and data field from the 0S data set.

VM/SP System Logic and Problem Determination Guide (CMS)

9

Licensed Material--Property of IBM
DMSQRS MODULE:

. SEARCH Routine -- The search routine ensures that any 0S
disk currently active is included in the search order of all
disks currently accessible.

L DISK Routine -- The disk routine displays the status of any
or all 0S disks using the following form:

YMODE(CUU): (NO. CYLS.), TYPE Rs/0 - 0S.'

DMSSTT MODULE: DMSSTT verifies that the disk being searched is
an 0S5 disk. DMSSTT calls DMSLFS to get the FST associated with
the data set. Upon return from DMSLFS, DMSSTT checks the return
code to ensure that CMS supports the data set attributes. A
return code of 8l or 82 indicates that CMS does not support the
data set and message DMSSTT229E occurs to that effect. DMSSTT
then clears the FST copy with binary zeros, and moves the
filename, filetype, filemode, BLKSIZE, LRECL, RECFM, and flag
byte to the FST copy. From this point on, common code execution
occurs for both CMS and 0S disks.

Routines Common to All of DMSROS

. CHRCNVRT Routine -- The CHRNCVRT routine converts a CCHH
address to a relative track address.

. CHKSENSE Routine -- CHKSENSE checks sense bits to determine
the recoverability of a unit check error if one occurs.

° CHKXTNT Routine -- CHKXTNT checks to determine if the end of
split cylinder or the end of extent occurred, and, if so,
updates to the next split cylinder or extent.

. DISKIO Routine -- DISKIO starts I/0 operation on a CCW
string via a DIAGNOSE X'20°'.

L GETALT Routine -- GETALT switches reading from alternate
track to prime track, and from prime track to alternate
- - track.

. RDCNT Routine -- RDCNT reads count fields on the track to
determine the last record number on the track.

. SETXTNT Routine -- SETXTNT sets OSFSTEND to the value of the
end of the extent and, if a new extent is specified, sets
CCHHR to the value of the start of the extent.

SIMULATING A VSE ENVIRONMENT UNDER CMS

CMS/D0S is a functional enhancement to CMS that provides VSE
installations with the interactive capabilities of a VM/SP
virtual machine. CMS/D0S operates as the background VSE
partition; other VSE partitions are unnecessary, since the
CMS/D0S virtual machine is a one-user machine.

CMS/D0S provides read access to real VSE data sets, but not
write or update access. Real VSE private libraries, system
relocatable libraries, source statement libraries, and
core-image libraries can be read. This read capability is
supported to the extent required to support the CMS/D0S linkage
editor, the DOS/PLI, DOS/VS COBOL, and the DOS/VS RPG II
compilers, the FETCH routine, and the RSERV, SSERV, and ESERYV
commands. No read or write capability exists for the VSE
procedure library, except for copying procedures from the
procedure library (via the PSERV command) or displaying the
procedure library (via the DSERV command).

CMS/D0S does not support the standard label area.

Simulating Non-CMS Operating Environments 157

Licensed Material--P

roperty of IBM

INITIALIZING VSE AND PROCESSING VSE SYSTEM CONTROL COMMANDS

Initialization of the CMS/D0S operating environment requires the
setting of flags and the creation of certain data areas in
storage. Once initialized, these flags and data areas may then
be changed by routines invoked by the system control commands.

DMSSET -~ Initializing the CMS/D0S Oparating Environment

Data Areas Prepared

DMSSET initializes the CMS/D0S operating environment as follows:

U Verifies that the mode, if specified, is for a DOS formatted
disk.

. Stores appropriate data in the SYSRES LUB and PUB.

L Locates and loads the CM5/D0S discontiguous shared segment.
Saves (in NUCON) the addresses of the two major CMS/D0S data
blocks, SYSCOM and BGCOM, and the address of the CMS/DO0S
discontiguous shared segment (CMSDOS).

. Locates and loads the CMSBAM shared segment if available.
This segment contains the following:

- Simulated VSE OPEN/CLOSE and logic module routines for
the VSE sequential access method

- DTFSL support for the D0OS PL/I and D0S/VS COBOL
compilers

- LBROPEN, LBRFIND, and LBRGET macro simulation as
required by the VSE ESERV program

- VSE lookaside function support as required by VSE/VSAM

. Obtains free storage and initializes the LOCK/UNLOCK
resource control table.

. Sets the DOSMODE, DOSSVC and CMSBAM bits in DOSFLAGS in
NUCON.

. Assigns (via ASSGN) the SYSLOG logical unit as the CMS
virtual console.

The CMS/D0S operating environment is entered when the CMS SET
D0S ON command is issued, invoking the module DMSSET.

for Processing During CMS/D0OS Initialization

Several data areas are prepared for processing during
initialization. The main CMS data area, NUCON, is modified to
contain the addresses of two VSE data areas, SYSCOM and BGCOM.
NUCON also contains the address of the Task Control Block (TCB).

The SYSCOM DSECT is the VSE system communications region. It
consists mainly of address constants, including the addresses of
the boundary box, the PUB ownership table, and the FETCH table.
It also includes such information as the number of partitions
(always one for CMS/D0S) and the length of the PUB table.

The BGCOM DSECT is the partition communication region. It
includes such information as the date, the location of the end
of supervisor storage, the end address of the last phase loaded,
the end address of the longest phase loaded, bytes used to set
the language translator and supervisor options, and the
addresses of many other VSE data areas such as the LUB, PUB,
NICL, FICL, PIB, and PIB2TAB.

The TCB contains the addresses of the PC and AB exit routines.
The TCB also contains the addresses of the related PC and AB
exit save areas.

158 VMs/SP System Logic and Problem Determination Guide (CMS)

J

9

Licensed Material--Property of IBM

The LUB and PUB tables are also made available during
initialization. The LUB is the logical unit block table. It
acts as an interface between the user's program and the CMS/D0S
physical units. It contains an entry for each symbolic device
available in the system.

Each of the symbolic names in the LUB is mapped into an element
in the PUB, the physical unit block table. The PUB table
contains an entry for each channel and device address for all
devices physically available to the system and also contains
such information as device type code, CMS disk mode, tape mode
setting, and 7-track indicator.

Three bits are set in DOSFLAGS in NUCON: DOSMODE, DOSSVC, and
CMSBAM. DOSMODE specifies that this virtual machine is running
in the CMS/D0S operating environment. DOSSVC indicates whether
0S or VSE SVCs are operative in the operating environment.
CMSBAM indicates that various VSE functions are supported and
available. If DOSSVYC is set, VSE SVCs are used. Otherwise, 0S5
SVCs are operative.

SETTING OR RESETTING SYSTEM ENVIRONMENT OPTIONS

Once the CMS/D0S environment is initialized, the flags and
control blocks set during initialization can be modified and
manipulated to perform the functions specified by commands
entered at the console. This section describes the modules that
set and reset the system environment options. That is, they set
those options that control compiler execution and that control
the configuration of logical and physical units in the system.

DMSOPT ~- Setting and Resetting Compiler Options

DMSASN -~ Associate

The CMS/D0S OPTION command invokes module DMSOPT, which sets
either the default options for the compiler or the options
specified on the command line. The nonstandard language
translator options switch and the job duration indicator byte
are altered. Options are set using two control words located in
the partition communication region (BGCOM). Bits in bytes JCSW3
or JCSW4 are set, depending on the options specified.

sSystem or Programmer Logical Units With Physical Units

Module DMSASN is invoked when the ASSGN command is entered.
DMSASN first scans the command line to ensure that the logical
unit being assigned is valid for the physical unit specified
(for example, SYSLOG must be assigned to either the virtual
console or the virtual printer). Once the command line is
checked, PUB and LUB entries are modified to reflect the
specified assignment.

A check is made to ensure that the logical units SYSRDR or
SYSIPT are not being assigned to a D0OS formatted FB-512 DASD.
This is not supported in the CMS/D0S environment because SVC 103
(SYSFIL support) is not available.

For the PUB entry, the device type is determined (via DIAG 24)
and the device type code is placed in the PUB. Other
modifications are made to the PUB depending on the specified
Sﬁgignment. The LUB entry is then mapped to its corresponding

DMSDAS -- Dynamically Associated Programmer Logical Units wWwith Physical Units

The function of DMSDAS is to assign a disk device with address
X'cuu' to a programmer logical unit (SYS5000 - SYS241l).

The dynamic assign function supports assigning a DASD unit
either permanently or temporarily, changing a DASD unit

Simulating Non-CMS Operating Environments 159

Licensed Material--Property of IBM

temporary assign to permanent, or unassigning a DASD. Temporary
assig?sdare cleared either at end-of-job or when the program is
canceled.

DMSDAS first searches the Active Disk Table (ADT) chain to
ensure that the X'cuu' supplied is accessed. If the X'cuu'
exists, DMSDAS ensures the device is a DASD unit. The
programmer LUB table is then searched backwards to find the
first available entry. A CMS PLIST is built using the found LUB
entry to call DMSASN to actually do the assign.

DMSDAS updates the appropriate LUB entry directly when
performing the unassign and change functions.

DMSLLU -- List the Assignments of CMS/D0S Physical Units to Logical Units

DMSDLB -- Associate

The function of DMSLLU is to request a list of the physical
units assigned to logical units. It performs this function by
referencing information located in the CMS/D0S data blocks,
specifically SYSCOM,

LUB, and PUB. Another data block, the next in class (NICL)
table is also referenced.

The information on the command line is scanned and the
appropriate items are displayed at the user's console. If an
option (EXEC or APPEND) is specified, an EXEC file is created
(SLISTIO EXEC Al) to contain the output. If EXEC is specified,
any existing $LISTIO EXEC Al file is erased and a new one is
created. If APPEND is specified, the new file is appended to
the existing file.

a DTF Table Filename With a Logical Unit

DMSDLB is invoked when the CMS/D0S DLBL command is entered.
DMSDLB associates a DTF (Define The File) table filename with a
logical unit. This function is performed by creating a control
block called a DOSCB, which contains information defining a VSE
file used during job execution. DLBL is valid only for
sequential or VSAM disk devices.

This information parallels the label information written on a
real VSE SYSRES unit under VSE. The DOSCB contains such
information as the name, type, and mode of the referenced
dataset, its device type code, its logical unit specification,
and its dataset type (SAM or VSAM).

A DOSCB is created for each file specified by the user during a
terminal session. The DOSCBs are chained to each other and are
anchored in NUCON at the field DOSFIRST. The chain remains
intact for the entire session, unless an abend occurs or the
user specifically clears an entry in the the DOSCB chain. A
given DOSCB is accessed when an OPEN macro is issued from an
executing user program.

The overall logic flow for DMSDLB is as follows:

. Scans the command line to ensure that any options entered
are valid (that is, anything to the right of the open
parenthesis).

J Processes the first operand (ddname or %). When ddname is
specified, loop through the DOSCB chain to find a matching
ddname. If none is found, DMSDLB calls DMSFRE to get storage
to create a new DOSCB for this file. The old copy of the
DOSCB is then saved so that, in case of errors during
processing, it can be retrieved intact. The new copy of the
DOSCB contains updates, and DOSCB replaces the old copy if
there are no errors.

160 VM-/3P System Logic and Problem Determination Guide (CMS)

5

Licensed Material--Property of IBM

. The mode specification is checked to ensure that it is a
valid mode letter; if the file is a CMS file, the mode
letter must specify a CMS disk. If DSN has been specified,
the mode letter must be for a non-CMS disk.

. Process each option on the command line appropriately.

. If EXTENT or MULT is specified, a separate block of free
storage is obtained to contain information about the extent;
for example, a block is obtained to contain the VSE data set
name.

. Check for errors. If there are errors, any blocks created
during processing are purged and an error message is issued.
If there are no errors, restore the old block, which has
been modified to reflect current processing, and return
control to DMSITS.

PROCESS CMS/D0OS OPEN AND CLOSE FUNCTIONS

The CMS/D0S OPEN routines are invoked in response to VSE OPEN
macros. They operate on DTF (define the file) tables and ACB
(access method control block) tables created when the DTFxx and
ACB macros are issued from an executing user program. These
tables contain information such as the logical unit
specification for the file, the DTF type of the file, the device
code for the file, and so forth. The information in the tables
varies depending upon the type of DTF specified (that is, the
table generated by a unit record DTF macro is slightly different
from the table generated by a DTF disk macro).

Five routines are invoked to perform OPEN functions, DMSOPL,
DMSOR1, DMSOR2, DMSOR3, and DMSBOP. DMSCLS performs the CLOSE
function.

OPEN/CLOSE processing in tha CMS/D0S environment depends upon
the DTF type:

. For DTFCP (disk), DTFDI (disk), and DTFSD DTF types, actual
OPEN/CLOSE processing is performed by the simulated VSE SAM
routines in the CMSBAM DCSS.

) For all other supported DTF types, OPEN/CLOSE processing is
performed totally within the CMS/D0S modules mentioned
above.

opening Files Associated With DTF Tables

Depending on the type of OPEN macro issued from a user program,
one of five CMS/D0S OPEN routines could be invoked. OPENR
macros give control to DMSOR1l, and depending on the DTF type
specified, DMSOR2 or DMSOR3 may be invoked. These three
routines (DMSOR1, DMSOR2, and DMSOR3) request the relocation of
a specified file. DMSOPL is invoked by tha VSE compilers when
they need access to a source statement library. These routines
are mainly interface routines to DMSBOP, which performs the main
function of opening the specified file. Each of the routines
calls DMSBOP.

DMSBOP is tha CMS/D0S routine that simulates the VSE OPEN
function for nondisk DTFs. The basic function of DMSBOP for
nondisk DTFs is the initialization of DTF tables (that is,
setting fields in specified DTFs for use by the VSE LIOCS
routines). For disk DTFs, DMSBOP services as an interface
routine and passes control the the CMSBAM DCSS.

When a VSE problem program is compiling, a list of DTFs and ACBs
is built. At execution time, this list is passed to DMSBOP.
The logic flow of DMSBOP is as follows:

1. Scans the list of DTF and ACB addresses, handling each item
in the list in line. When the OPEN macro expands, register

Simulating Non-CMS Operating Environments 161

Licensed Material--Property of IBM

1 points to the name of the $$B transient to receive control
($$BOPEN) and register 0 points to the list of DTF/ACB
addresses to be opened.

2. When an ACB is encountered in the table, control is passed
directly to the VSAM OPEN routine, $$BOVSAM. The VSAM
routine is responsible for opening the file and returning
control to DMSBOP.

3. MWhen a DTF is encountered in the table for nondisk files,
DMSBOP itself handles the OPEN:

a. For reader/punch files (DTFCD), the OPEN bit in the DTF
table is turned on.

b. For printer files (DTFPR), if two I0AREAs are specified,
the IOREG is loaded with the address of the appropriate
IOAREA. Next, the PUB index byte associated with the
logical unit specified in the DTF is checked to ensure
that a physical device has been assigned and the PUB
device code is then analyzed. The OPEN bit in the DTF
table is then turned on.

c. For console files (DTFCN), no OPEN logic is required.

d. For tape files (DTFMT), the PUB device type code must
specify TAPE. If an IOREG is specified (for output
tapes only), the address of the appropriate IOAREA is
placed in it. For input files, there is separate
processing for tapes uwith standard label, nonstandard
label, and no label. For output tapes, both tape data
files and work tape files are treated as no label tapes.

4. For disk files, DMSBOP simulates the function of the VSE
transient $$BOSFBL. DMSBOP sets up in the CMSBAM DCSS the
input parameters and data areas required by the simulated
VSE SAM routines. Control is then passed to the CMSBAM DCSS
by placing the address of $IJJGTOP (the SAM OPEN/CLOSE
phase) in the problem program save area PSW and exiting via
SVC 11.

5. DTFDI and DTFCP are device-independent DTFs. Processing is
as above depending upon the type of physical unit to which
the DTFs are assigned.

6. If no disk DTFs are encountered, DMSBOP opens all files in
the table and returns control to the problem program via SVC
11. If a disk DTF is encountered, DMSBOP exits as described
above in step 4 for disk files.

7. If errors are encountered during DMSBOP processing, an error
message is issued and return is made via SVC 6.

Closing Files Associated With DTFs

Opening and Closing

DMSCLS is the CMS/D0S routine that processes CLOSE requests.
Its logic is analogous to that of DMSBOP, the OPEN routine
described above: when CLOSE expands, register 1 points to
$BCLOSE and register 0 points to the list of DTF/ACB addresses.
The same table containing DTFs and ACBs used to open files is
also used to close those files. Each entry in the table is
processed as it occurs, with control passing to a VSAM CLOSE
routine ($$BCVSAM) when an ACB is encountered. The OPEN bit is
then turned off.

Files Associated With Disk DTFs

The OPEN and CLOSE functions for disk DTFs are performed by the
simulated VSE SAM routines located in the CMSBAM DCSS.

These routines normally issue the LABEL macro to obtain
DLBL/EXTENT information from the VSE label area, and issue the

162 VM/SP System Logic and Problem Determination Guide (CMS)

Licensed Material--Property of IBM

ovVTOC, PVTOC, and CVTOC macros to obtain VTIOC information. .
These macros require special handling in CMS/D0S. Processing is
as follows:

1. DMSLAB (LABEL macro support) -- CMS/D0S does not support the
label information area in the same manner as VSE. CMS/D0S
keeps similar information in the DOSCB for the file.

CMS/D0S intercepts invocations of the LABEL macro and passes
control to DMSLAB. DMSLAB obtains the appropriate
information from the DOSCB and builds the BLDL/EXTENT
record. The DLBL/EXTENT record is then returned to the SAM
routines in CMSBAM. Only the GETLBL and GETNXL functions of
the LABEL macro are supported. All other functions result
in an error return code to the SAM routines in CMSBAM.

2. DMSCVH (0VTOC, PVTOC, and CVTOC macro support) -- In VSE
these macros are normally handled by the Common VTOC Handler
routines. These routines are simulated in CMSBAM and are
used when accessing the VTOC on an 0S5 or D0S formatted disk.
However, when these macros are issued for a file on a CMS
formatted disk, DMSCVH must simulate the appropriate
function because CMS formatted disks do not contain a VTOC.
VTO0C functions simulated by DMSCVH are as follows:

0VT0C - open VTOC

PVTOC - read format 1 label by name
PVTOC - read format 1 label by address
PVTOC - write format 1 label in any slot
PVTOC - write format 1 label by address
PVTOC - check for file overlap

PVTOC - scratch file

CVTOC - close VTOC

Any other requested VTOC functions is regarded as an error
and the program is canceled via SVC 6.

3. When the SAM routines in CMSBAM complete processing, they
exit via an SVC 2 to $$BOSVLT. The functions of this
transient are simulated within CMS/D0S by the DMSVLT module.
Obtained storage areas are returned and other clean-up
functions are performed. DMSVLT exits in one of two
different ways:

. If there are no more DTFs to process, control is
returned to the problem program via SVC 11.

. If there are more DTFs to process, an SVC 2 is issued to
the appropriate $$B transient. Then, DMSBOP or DMSCLS
is eventually invoked to process the remaining DTFs.

CONTENTS OF THE CMSBAM DCSS

Several VSE functions are supported within the CMSBAM DCSS as
simulated VSE phases. The simulated VSE phases and their
functions are as follouws:

$IJJGTOP performs OPEN and CLOSE functions for all disk DTFs
(DTFSD, DTFDI, and DTFCP).

$IJJHCVH performs YTOC access functions for all disks in DOS
format.)

$IJBLBSL performs I/0 operations to the VSE source statement
library for the VSE compilers and the ESERV utility
program. The compilers invoke this phase via the
DTFSL macro. ESERV invokes this phase indirectly via
the LBRFIND and LBRGET macros.

DMSLBR simulates the VSE internal macros LBROPEN, LBRFIND,
and LBRGET to the extent required by the VSE ESERV
utility program. S$IJBLBSL is invoked to perform I/0
operations to the VSE source statement library when
appropriate.

Simulating Non-CMS Operating Environments 163

Licensed Material--Property of IBM

$IJBLKMD performs the VSE lookaside function as requiraed by
VSE/VSAM.

Eight VSE logic modules and two VSE SAM saervice routines are
also simulated as VSE phases. The logic modules handle I/0
macros (GET, PUT, POINT, etc.) for SAM files as issued by the
user's program. The logic modules and the specific type of SAM
file they are associated with are as follows:

$IJGXSDF DTFSD fixed length record data files on D0OS formatted
FB-512 devices assigned to nonSYSFIL logical units.

$IJGXSDU DTFSD undefined record data files on DOS formatted and
CM§tformatted disks assigned to nonSYSFIL logical
units.

$I1JGXSDV DTFSD variable length record data files on DOS
forgatted FB-512 devices assigned to nonSYSFIL logical
units.

$IJGXSDW DTFSD work files on DOS formatted and CMS formatted
disks assigned to nonSYSFIL logical units.

$IJGXSVI DTFSD variable length record data files on CMS
formatted and D0OS formatted FB-512 device, or CMS
for$atted CKD davices assigned to nonSYSFIL logical
units.

SIJGXSFI DTFSD fixed length record data files on CMS formatted
and D0OS formatted FB-512 devicae, or CMS formatted CKD
devices.

$IJGXCP DTFCP files except for files on D0S formatted FB-512
devices assigned to SYSFIL logical units.

$IJGXDI DTFDI files except for files on DOS formatted FB-512
devices assigned to SYSFIL logical units.

SYSFIL logical units are not supported for use with D0S
formatted FB-512 devices in CMS/D0S. SYSFIL logical units
refers collectively to logical units SYSRDR, SYSIPT, SYSLST, and
SYSPCH.

The SAM service routines issue the actual 170 channel programs
for SAM files. The functions they perform are as follows:

$IJGXSSR issues I/0 operations for DOS formatted FB-512
devices.

$IJGXSRI issues I/0 operations for all CMS formatted disks
(FB-512 or CKD) and for DOS formatted CKD devices.

PROCESS CMS/D0S EXECUTION-RELATED CONTROL COMMANDS

The CMS/D0S FETCH and DOSLKED commands simulate the operation of
the VSE fetch routines and the VSE Linkage Editor. The three
CMS modules that perform this simulation are:

DMSFET Provide an interface to interpret the DOS FETCH command
line and execute the phasa, if START is specified on the
command line.

DMSFCH Bring into storage a specified phase from a system or
private core-image library or from a CMS DOSLIB library.

DMSDLK Link edit the relocatable output of the CMS5/D0S language
translators to create executable programs.

166 VYM/SP System Logic and Problem Determination Guide (CMS)

C

Licensed Material--Property of IBM

DMSFET and DMSFCH -- Bring a Phase into Storage for Execution

The VSE FETCH function is simulated by CMS modules DMSFET and
DMSFCH. The main control block used during a FETCH operation is
FCHSECT, which contains addressing information required for I/0
operations.

The FETCH command line invokes module DMSFET. This module first
validates the command line and issues a FILEDEF for the DOSLIB
file. It then issues a FILEDEF for a DOSLIB file. DMSFET then
issues a VSE SVC 4, which invokes the module DMSFCH to perform
the actual FETCH operation.

DMSFCH first determines where the phase to be fetched resides.
The search order is private core-image library, DOSLIB, system
core-image library. If the phase is not found in any of these
libraries, DMSFCH assumes that the FETCH is for a phase in a
system or private core-image library. To find a DOSLIB library
member, 0S5 OPEN and FIND macros are issued (SVC 19 and 18).

When the member is found, 0S5 READ and CHECK macros are issued to
read the first record of the file (the member directory). This
recgrd contains the number of text blocks and the length of the
member.

All addressing information is stored in FCHSECT and the text
blocks in that phase are read into storage. If the read is from
a CMS disk, issue the 0S5 READ and CHECK macros to read the data.
If the read is from a D0S disk, first determine whether this is
the first read for the CMS/D0S discontiguous shared segment
(DCSS). If this is the case, CCW information is relocated to
ensure that the DCSS code is reentrant. For all reads for a DO0S
disk, a CP READ DIAG instruction is issued. When the entire
file is read, it is relocated (if it is relocatable).

If a DOSLIB is open, close it using an 0S SVC 20 and return
control to DMSFET. DMSFET then checks to see whether START is
specified and, if so, an SVC 202 is issued for the CMS START
command to execute the loaded file.

When all FETCH processing is complete, control returns to the
CMS command handler, DMSITS.

DMSDLK ~-- Simulate the Functions of the VSE Linkage Editor

CMS simulation of the VSE Linkage Editor function directly
parallels the Release 1 implementation of that function. For
detailed information on the logic of the function, see the
publication IBM DOS/VSE Linkage Editor Logic, S5Y33-8556.

The modules that comprise the VSE Linkaga Editor are prefixed by
the letters IJB and are separate CSECTs. All of these CSECTs
have counterparts contained within the one CMS module, DMSDLK.
They are treated as subroutines within that module, but perform
the same functions as their independent VSE counterparts and
have been named using the same naming conventions as the VSE
CSECTs. For example, the IJBESD CSECT in VSE is paralleled by
the CMS DMSDLK subroutine DLKESD.

A brief description of the logic follows. The CMS/D0S DOSLKED
command invokes the module DMSDLK, which is entered at
subroutine DLKINL. DLKINL performs initialization and is later
overlaid by the text buffer and the linkage editor tables.
DLKINL starts to read from a DOSLNK file and processes ACTION
statements, if there are any.

On encountering the first non-ACTION card (or if there is no
DOSLNK file), the main flow is entered. Depending on the input
on thae DOSLNK or the TEXT file, records from either of those
files may be read or records from a relocatable library may be
read. The type of card image read determines the subroutine to
which control is given for further processing.

Simulating Non-CMS Operating Environments 165

Licensed Material--Property of IBM

An ENTRY card indicates the end of the input to the linkage
editor. At this point, a map is produced by subroutine DLKMAP.
DLKRLD is then entered to finish the editing of object modules
by relocating the address constants. If the phases are to be
relocatable, relocation information is added to the output on
the DOSLIB. Updating of the DOSLIB library is performed by
DLKCAT using the 0S5 STOW macro.

A significant deviation from VSE code is the use of 0S5 macros,
in some instances, rather than VSE macros. To take advantage of
CMS support of partitioned data sets, the 0S OPEN, FIND, READ,
CHECK, and CLOSE macros are issued rather then their VSE
counterparts.

SIMULATE VSE SVC FUNCTIONS

All SVC functions supported for CMS/D0S are handled by the
following CMS modules:

DMSDOS
DMSETR
PMSGMF
DMSGTM
DMSGVE
DMSLCK
DMSLDF
DMSLIC
DMSMCM
DMSRPG
DMSSTX
DMSSUB
DMSSVL
DMSVIS
DMSXCP

DMSDOS receives control from DMSITS (the CMS SVC handler) when
that routine intercepts a D0S SVC code and finds that the DOSSVC
flag in DOSFLAGS is set in NUCON.

DMSD0S acquires the specified SVC code from the OLDPSW field of
the current SVC save area. Using this code, DMSD0S computes the
address of the routine where the SVC is to be handled.

Many CMS/D0S routines (including DMSDOS) are contained in a
discontiguous shared segment (DCSS). Most SVC codes are
executed within DMSD0S, but some are in separate modules
external to DMSD0S. If the SVC code requested is external to
DMSD0S, its address is computed using a table called DCSSTAB.
If the code requested is executed within DMSD0S, the table
SVCTAB is used to compute the address of the code to handle the
SVC. Figure 30 on page 167 lists the CMS modules that handle
SVC functions supported in CMS/DO0S.

166 VM/SP System Logic and Problem Determination Guide (CMS)

Licensed Material--Property of IBM

Associated

Module sVCs Function
DMSETR 98 EXTRACT
DMSGMF 107 GETFLD, MODFLD
DMSGTM 34 GETIME
DMSGVE 99 GETVCE
DMSLCK 110 LOCK/UNLOCK
DMSLDF 1 FETCH

2 FETCH

4 LOAD

65 CDLOAD
DMSLIC 50 LIOCS ERROR
DMSMCM 5 MVCOM
DMSRPG 85 RELPAG
DMSSTX 16 STXIT PC

17 EXIT PC

37 STXIT AB

95 EXIT AB
DMSSUB 105 SUBSID
DMSSVL 75 SECTVAL
DMSVIS 61 GETVIS

62 FREEVIS
DMSXCP 0 EXCP

Figure 30. CMS Modules Handling SVC Functions Supported in CMS/DO0S

Simulating Non-CMS Operating Environments 167

Licensed Material--Property of IBM

Figure 31 shows the VSE SVCs and their support in CMS/DO0S
simulation routines, the name of the macro that invokes a given
SVC code, and a brief statement describing how the SVC function
is performed.

Functions
Macro

SVC No.
Dec

Hex support

EXCPOO

0

0 Used to read from CMS or DO0S/0S formatted disk.

The CCW's are converted to appropriate CMS I/0
requests (ex., RDBUF/WRBUF, CARDRD/CARDPH, etc.).

The CCB or IORB is posted according to the CMS return
information. DMSDOS will call CMSXCP routine to
perform the I/0 operation. If a non-zero return code
is returned from DMSXCP, a cancel is done. 1I/0
requests to D0OS disks are handled using CP DIAGNOSE
instructions.

FETCH

1 Used to bring a problem program phase into user
storage, and to start execution of the phase if the
phase was found. Operand SYS=YES is not supported.

If the user did specify a directory list, a call to
DMSFCH is made. Otherwise, DMSD0S will build a
directory list using the specified phase name. Once
the directory list is prepared, a call to DMSFCH is
made. Upon return from DMSFCH, if the phase was
found, the entry point address of the phase is saved
in the 'SVC' save area oldpsw so that upon return to
CMS, DMSITS will then give control to the phase just
loaded. If upon return from DMSFCH there were any
errors, a cancel is done. If the phase was not
found, a message is issued and a cancel is done.

FETCH

2 Used to bring a $$B-transient phase into the CMS
transient area (or if the phase is in the CMSDOS
segment, not to load it), and start execution of the
phase if the phase was found. Operand SYS=YES is not
supported.

A search is made through the loaded segment(s) in an
attempt to locate the specified transient. If the
phase is found in one of the segments, a call to
DMSFCH is not needed. If the phase was not found, a
call to DMSFCH is made in a similar way as in SVC 1
above. Once the transient entry point is obtained
(from storage or loaded), the address is saved in the
SVC save area (as above SVC 1) so that DMSITS gives
immediate control to the phase wanted. Errors or not
found conditions are handled as above in SVC 1.

FORCE
DEQUEUE

3 Not supported, see note 2.

Figure 31 (Part 1 of 11). SVC Support Routines and their Operation

168 VM/SP System Logic and Problem Determination Guide (CMS)

Licensed Material--Property of IBM

Function/ SVC No.
Macro Dec Hex support

t LOAD 4 4 Used to bring a problem program phase into user
l storage, and return the caller the entry point

address of the phase just loaded. Operand SYS=YES is
not supported.

Loading of the requested phase is done exactly as
FETCH (SVC 1) calling DMSFCH. Any errors returned
from DMSFCH are processed exactly as in fetch. A
difference between FETCH (SVC 1) and LOAD (SVC 4), is
that upon return from DMSFCH, assuming there are no
errors, the user's registers 0 and 1 are updated to
contain the address of the directory list (for the
user to test if the phase was found), and the entry
point address of the phase, respectively. If IJBSIA
is being loaded, the address of DMSLAB is returned.
If $IJJHCVA (Common VTOC handler) is being loaded,
the address of DMSCVH is returned.

MVCOM 5 5 Provides the user with a means of altering positions
12 through 23 of the partition communications region
(BGCOM) .

Before moving the specified information, a test is
made to ensure that the range (user's start address,
plus length of field to move) will not exceed the
allowed range. Once the specified range is found to
be within the allowed limits, the user's specified
information is moved to the partition communications
region.

CANCEL 6 6 Cancels a VSE session either by a VSE program

request, or by request from any of tha CMS routines
handling CMS/DO0S.

\h, Cancel will issue the message 'JOB CANCELLED DUE T0
PROGRAM REQUEST'. A test will be made to see if the
value of register 15 upon entry to cancel is below
256. If below, the value in register 15 will be the
return code to CMS. If equal or greater, a special
return code of 101 will be used to denote that the
cancel was issued from a user program (return code of
101 is not used for CMS error messages). Processing
then continues using the 'EQJ' code.

WAIT 7 7 Used to wait on a CCB, IORB, ECB, or TECB (note that
CMS/D0S does not support ECBs or TECBs). CCBs are
always posted by the DMSXCP routine before returning
to the caller.

The WAIT support under CMS/D0S will effectively be a
branch to the CMS/D0S POST routine.

CONTROL 8 8 Temporarily return control from a $$B-transient to
the problem program.

If a $$B-transient has to temporarily give control to
the problem program, the $$B-transient will issue an
SVC 8 passing in register 0 the address of the
problem program gaining control. SVC 8 routine will
store this address in the SVC work area oldpsw, and
return back to CMS SVC handler (DMSITS).

Figure 31 (Part 2 of 11). SVC Support Routines and their Operation

C

Simulating Non-CMS Operating Environments 169

Licensed Material--Property of IBM

Functions
Macro

SVC No.
Dec Hex

support

LBRET

9 9

Return to a $$B-transient after an SVC 8 was issued
to give control to the problem program.

The address saved before (SVC 8 above) is stored in
the SVC work area oldpsw, so that when DMSD0S returns
to the CMS SVC handler, control is given to the
$$B-transient that issued the SVC 8.

SET
TIMER

10 A

No operation, successful return code of 0 is given in
register 15. See note 1.

TRANS.
RETURN

11 B

Return from a $$B-transient to the calling problem
program.

The address saved when the initial SVC 2 (fetch a
$$B-transient) was issued, is stored in the CMS's SVC
work area oldpsw. Now, when DMSDOS returns to the
CMS's SVC handler, control will return to the problem
program that issued the SVC 2 calling the
$$B-transient.

JOB CTL.
"AND'
"AND™ SVC
12

12 c

Resets flags to 0 in the linkage control byte in
BGCOM (communication region). If register 1 equals
0, SVC 12 has another meaning. Bit 5 of JCSW4
(COMREG byte 59) is turned off.

If register 1 contains a nonzero value, the function
depends on bit 8 of this register. If bit 8 is 0,
this SVC supplies supervisory support to reset flags
in the linkage control byte (displacement 57 in BGCOM
- communication region). The user has provided the
address of a mask (1 byte) in register 1. An 'AND'
operation of the mask with the linkage control byte
is performed. If bit 8 of register 1 is one, this
SVC supplies the supervisory support to reset flags
in a specified byte of BGCOM (communication region).
The user has provided a displacement in byte 2 and a
mask in byte 3 of register 1. An 'AND' operation of
the mask byte with the specified displacement in the
partition communication region is performed.

JC FLAGS

13 D

Not supported. See note 2.

EOJ

14 E

Normally terminates execution of a problem program.

The last SVC save work area is unstacked. Cleanup is
done by:

1. Clearing the CMS DOSLIB CMSCB
2. Resetting the JOBNAME in BGCOM
3. Unassigning all temporary device assignments

The latest return code is loaded into register 15,
and control returns to DMSITS (CMSRET).

SYSIO

15 F

Not supported. See note 2.

Figure 31 (Part 3 of 11).

SVC Support Routines and their Operation

170 VM/SP System Logic and Problem Determination Guide (CMS)

Licensed Material--Property of

IBM

Functions

SVC No.

Dec

Hex

support

Macro
Q— PC STXIT

16

10

Establish or terminate linkage to a user's program
check routine.

Locate the appropriate PC option table entry. If the
contents of register 0 is zero (terminate linkage),
determine if PC routine is active. If the PC routine
address in PC option table is negative, terminate
linkage by storing zero in routine address field of
PC option table. If the routine is not active
presently, store zeros in PC routine address field
and savearea address field in PC option table. If
register 0 is not zero, the address of the PC routine
and the savearea address is passed to the STXIT
macro. If a STXIT PC routine is active, the
complement of the new routine address is placed in
the PC option table. If no STXIT PC routine is
active, the new PC routine address and savearea
address are stored in the PC option table.

PC EXIT

17

11

Used to provide supervisory support for the EXIT
macro. SVC 17 provides a return from the user's PC
routine to the next sequential instruction in the
program that was interrupted due to a program check.

Locates the appropriate PC option table entry and
restores user's registers and PSW. Stores the
address of the PC routine in the PC option table
returns to the next sequential instruction in the
program that was interrupted.

IT STXIT

18

12

No operation, successful return code of 0 is given in
register 15. See note 1.

\' IT EXIT

19

13

Not supported. See note 2.

0C STXIT

20

14

No operation, successful return code of 0 is given in
register 15. See note 1.

0C EXIT

21

15

Not supported. See note 2.

SEIZE

22

16

No operation, successful return code of 0 is given in
register 15. See note 1.

LOAD
HEADER

23

17

Not supported. See note 2.

SETIME

24

18

No operation, successful return code of 0 is given in
register 15. See note 1.

HALT I/0

25

19

Not supported. See note 2.

26

1A

Validate address limits. The upper address must be
specified in general register 2 and the lower address
must be specified in general register 1.

First the lower address must not be negative. An
error message DMSDOSO005E is issued if it is. Second,
the high address cannot be negative. If it is, the
same error messages is issued. If the low or high
address is greater than the end of partition address
in BGCOM, the same error message is issued.
Otherwise, control returns to the caller.

TP HALT
I/0

27

1B

Not supported. See note 2.

‘ Figura 31 (Part % of 11).

SVC Support Routines and their Operation

Simulating Non-CMS Operating Environments

171

Licensed Material--Property of IBM

Function/ SVC No.

Macro Dec Hex support

MR EXIT 28 1C Not supported. See note 2.

WAITM 29 1D Not supported. See note 2.

QWAIT 30 1E Not supported. See note 2.

QPOST 31 1F Not supported. See note 2.

32 20 Reserved.

COMRG 33 21 Used to provide the caller with the address of the
partition communications region.

DMSDOS will provide the caller with the address of
the partition communications region, in the user's
register 1.

GETIME 34 22 Provides support for the GETIME macro. SVC 34
updates the date field in the communications region.
The GMT operand is not supported.

HOLD 35 23 No operation, successful return code of 0 is given in
register 15. See note 1.

FREE 36 26 No operation. Successful return code of 0 is given
in register 15. See note 1.

AB STXIT 37 25 Establish or terminate linkage to a user's abnormal
termination routine.

Supported for OPTION=DUMP or NODUMP.

Locate the appropriate AB option table entry. 1If RO
is zero and the AB routine is inactive, then
terminate linkage. Otherwise, if the AB routine is
active (bit 0 of the AB routine address is on), then
cancel the program.

If RO is not zero and the AB routine is active,
cancel the program. Otherwise, validate the save
area address (must be at least X'20000' and not
greater than the partition end), and store the AB
routine and save area addresses in the AB option
table.

ATTACH 38 26 Not supported. See note 2.

DETACH 39 27 Not supported. See note 2.

POST 40 28 Used to post an ECB, IORB, TECB, or CCB. Byte 2, bit
0 of the specified control block will be turned 'on'
by DMSDOS.

DEQ 41 29 No operation, successful return code of 0 is given in
register 15. See note 1.

ENQ 42 2A No operation, successful return code of 0 is given in
register 15. See note 1.

43 2B Reserved.
UNIT 44 2C Not supported. See note 2.
CHECKS

Figure 31 (Part 5 of 11). SVC Support Routines and their Operation

172 VYM/SP System Logic and Problem Determination Guide (CMS)

Licensed Material--Property of IBM

Functions SVC No.

Macro Dec Hax support

EMULATOR 45 2D Not supported. See note 2.

INTERF.

OLTEP 46 2E Not supported. See note 2.

WAITF 47 2F Not supported. See note 2.

CRT TRANS 48 30 Not supported. See note 2.

CHANNEL %9 31 Not supported. See note 2.

PROG.

LIOCS 50 32 Issued by a logical I0CS routine when the LIOCS is

DIAG. called to perform an operation the LIOCS was not
generated to perform.
The error message 'unsupported function in a LIOCS
routine' will be issued, and the session will then be
terminated.

RETURN 51 33 Not supported. See note 2.

HEADER

TTIMER 52 34 No operation. Successful return code of 0 is given n
register 15. See note 1. Register 0 is also
cleared.

VTAM EXIT 53 35 Not supported. See note 2.

FREEREAL 54 36 Not supported. See note 2.

GETREAL 55 37 Not supported. See note 2.

POWER 56 38 Not supported. See note 2.

POWER 57 39 Not supported. See note 2.

SUPVR. 58 3A Not supported. See note 2.

INTERF.

EQJ 59 3B Not supported. See note 2.

INTERF.

GETADR 60 3C Not supported. See note 2.

GETVIS 61 3D Used by VSAM to obtain free storage for scratch use
or for obtaining an area into which a relocatable
VSAM program may be loaded.
A free storage subroutine similar to that in the
DMSSMN routine is called to obtain the needed space
(from the user area). If successful, the address is
returned in register 1, and register 15 is cleared.
If the request cannot be satisfied, a return code of
12 is passed back in register 15.
The 'PAGE', 'POOL', and 'SVA' GETVIS options are
ignhored.

Figure 31 (Part 6 of 11). SVC Support Routines and their Operation
Simulating Non-CMS Operating Environments 173

Licensed Material--Property of IBM

Functions
Macro

SVC No.
Dec Hex

support

FREEVIS

62 3E

Used to return the free storage obtained via an
earlier GETVIS call.

The free storage subroutine similar to that in the
DMSSMN routine is called to return the area
designated by register 1. All complete pages (4K
bytes) associated with the returned storage are
;elggsed by issuing a DIAGNOSE code X'10' instruction
o .

USE

63 3F

The USE/RELEASE function has been replaced by SVC 110
(LOCK/ZUNLOCK) for serially controlling system
resources. All SVC 63 and 64 requests are mapped
into SVC 110 requests respectively. Return code
previously associated with USE/RELEASE under CMS/DO0S
are maintained.

RELEASE

64 40

Reference SVC 63.

CDLOAD

65 41

Used to load a relocatable VS5AM phase into storage
unless the program has already been loaded.

If an anchor table is available, it is searched for
the given phase; if found, its load point, entry
point, and length are returned in the caller's
regi:te; 0, 1, and 14 respectively, with register 15
se o 0.

If not, DMSFCH is called to find the given phase;
found in a discontinuous shared segment, register 0,
l, and 14 are loaded as above and return made.

If the phase was found but is not loaded, storage is
obtained (if available) from the GETVIS SVC; DMSFCH
is called again to load the program into the storage
area just obtained. An anchor table is built in the
user area (unless one already exists), the
appropriate entries made, and registers 0, 1, and 14
loaded as above, with return to caller.

If the program cannot be found, or if storage is
unavailable for either loading the program or for
building the anchor table, an error code 22 (X'16"')
is returned to the caller in register 15.

RUNMODE

66 62

Used by a problem program to find out if the program
is running in real or virtual mode.

The caller's register 0 will be zeroed to indicate
that the program is running in virtual mode.

PFIX

67 43

No operation, successful return code of 0 is given in
register 15. See note 1.

PFREE

68 44

Successful return code of 0 is given
See note 1.

No operation.
in register 15.

REALAD

69 45

Not supported. See note 2.

VIRTAD

70 46

Not supported. See note 2.

SETPFA

71 47

Successful return code of 0 is given
See note 1.

No operation.
in register 15.

Figure 31 (Part 7 of 11).

SVC Support Routines and their Operation

17¢ VM/SP System Logic and Problem Determination Guide (CMS)

C

Licensed Material--Property of IBM

Function/ SVC No.

Macro Dec HeXx support

GETCBUF/ 72 %8 Not supported. See note 2.

FREECBUF

SETAPP 73 49 Not supported. See note 2.

PAGE FIX 74 GA Not supported. See note 2.

SECTVAL 75 4B Used by VSAM I/0 routines (ex., IKQIOA) to obtain a
sector number for a 3330, 3330-11, 3340, or 3350
device.

The appropriate sector value is calculated from the
input data supplied by the user's register 0 and 1.
If the calculation is successful, the sector number
(from 0 to 127) is returned in register 0.

If any errors were detected, the noop set-sector
value of 255 (X'FF') is returned.

SYSREC 76 4C Not supported. See note 2.

TRANSCCW 77 4D Not supported. See note 2.

CHAP 78 4E Not supported. See note 2.

SYNCH 79 4F Not supported. See note 2.

SETT 80 50 Not supported. See note 2.

TESTT 81 51 Not supported. See note 2.

LINKAGE 82 52 Not supported. See note 2.

ALLOCATE 83 53 Not supported. See note 2.

SET LIMIT 84 54 Not supported. See note 2.

RELPAGE 85 55 Provides support for the RELPAG macro. At entry
register 1 points to a list of 8-byte storage
description areas. Each entry contains the beginning
address and the length 1 of an area to be released.

A nonzero byte following an entry indicates the end

of the list. An area is released only if it contains

at least a full CP page (4K bytes). Pages are

released when the virtual machine calls CP via

DIAGNOSE code X'10'. On return register 15 holds the

return code as follows:

register 15 = all areas have been released

register 15 = one or more negative area lengths were
specified.

register 15 = one or more pages to be released were
outside the user storage area.

ragister 15 = 16 at least one entry contains a
beginning address outside the user
storage area.

FCEPGOUT 86 56 No operation. Successful return code of 0 is given
in register 15. See note 1.

Figure 31 (Part 8 of 11). SVC Support Routines and their Operation
Simulating Non-CMS Operating Environments 175

Licensed Material--Property of IBM

Function/ SVC No.

Macro Dec Hex support

PAGEIN 87 57 No operation. Successful return code of 0 is given
in register 15. See note 1.

TPIN 88 58 Not supported. See note 2.

TPOUT 89 59 Not supported. See note 2.

PUTACCT 90 5A Not supported. See note 2.

POWER 91 5B Not supported. See note 2.

XECBTAB 92 5C Not supported. See note 2.

XPOST 93 5D Not supported. See note 2.

XWAIT 94 5E Not supported. See note 2.

AB EXIT 95 5F Exit from abnormal task termination routine and
continue the task.

The linkage to either the PC or AB routine is
reestablished, and the cancel condition is reset by
clearing the ABEND indication in the partition PIB
extension. Control is returned to the instruction
following the exit AB macro.

TT EXIT 96 60 Not supported. See note 2.

TT STXIT 97 61 Not supported. See note 2.

EXTRACT 98 62 Support for EXTRACT macro of VSE. The caller
requests PUB information, CPUID or, storage boundary
information. Register 1 on entry points to a
parmlist. Output is placed in an area provided by

. caller.

GETVCE 99 63 Caller requests device information about a specific
DASD. Information is returned in an output area
pointed to from the parmlist. Register 1 contains a
pointer to the parmlist on entry.

100 64 Reserved.

MODVCE 101 65 No operation. Successful return code of 0 is given

in register 15. See note 1.
102 66 Reserved.

SYSFIL 103 67 Not supported. See note 2.

EXTENT 104 68 No operation. Successful return code of 0 is given
in register 15. See note 1.

SUBSID 105 69 SUBSID.. the 'INQUIRY' function is supported for the
supervisor subsystem. Information returned is
described by the SUPSSID control block. The SUBSID
'NOTIFY' and 'REMOVE' functions are not supported.

LINKAGE 106 6A Not supported. See note 2.

Figure 31 (Part 9 of 1l1).

SVC Support Routines and their Operation

176 VM/SP System Logic and Problem Determination Guide (CMS)

Licensed Material--Property of

IBM

Function/
Macro

S$VC No.
Dec Hex

support

TASK
INTERF.

107 6B

Provides macro interface support for system
information retrieval. The parameters supported are:

GETFLD:

field=ppsavar returns problem program save area
address.

field=savar returns current save area
address.

field=aclose return in register 1, 0 if in
process, 1 if not.

field=pcexit returns the pcexit routine
address and save area in RO and
Rl, respectively. If the exit
routine is currently active, bit
0 in RO is set ON. If no exit is
defined, it returns 0 in both RO
and R1.

MODFLD:

field=vsamopen set bit X'08' in tcb tcbflags
byte.

field=aclose set bit X'10' in tcbhb tcbflags
byte.

All other GETFLD/MODFLD requests are treated as a NOP
and a return code of 0 is placed in register 15.

All other SVCl07 macro calls are unsupported. The
error message DMSGMF121S will be issued and the
program is canceled. See note 2.

DATA
SECURE

108 6C

Not supported. See note 2.

PAGESTAT

109 6D

Not supported. See note 2.

LOCKs
UNLOCK

110 6E

Used by VSAM to control access to resources. Access
is maintained in either a 'shared' or 'exclusive!'
control environment. When DOS is SET ON, counters
are maintained as well as the type of control for
each resource in a table (LOCKTAB) built in free
storage. All entries not unlocked by the program are
cleared at both normal and abnormal end-of-job.

All requests for resource control are passed to SVC

110 through the DTL macro (Define the Lock). SVC 63

gsquests are mapped into a dummy DTL and processed by
C ll1o0.

Figure 31 (Part 10 of 11).

SVC Support Routines and their Operation

Simulating Non-CMS Operating Environments

177

Licensed Material--Property of IBM

Function/
Macro

SVC No.
Dec Hex

support

Note:

1. No operation:
In each case, register 15 is cleared to simulate
successful operation, and all other registers are
returned unchanged, unless otheruwise noted.

2. Not supported:

For unsupported SVCs, an error message will be
given, and the SVC will be treated as a "cancel."

Figure 31 (Part 11 of 11).

SVC Support Routines and their Operation

PROCESS CMS/D0OS SERVICE COMMANDS

DMSSRV

DMSPRV

DMSRRYV

DMSDSV

DMSDSL

ESERV

Copies books from a system or private source statement
library to a specified output device.

Copies VSE procedures from a VSE system procedure
library to a specified output device.

Copies modules from a system or private relocatable
library to a specified output device.

Lists the directories of VSE private or system
libraries.

Deletes members (phases) of a DOSLIB library; compresses
?'gOSLIB library; lists the members (phases) of a DOSLIB
ibrary.

De-edits, displays or punches, verifies, and updates
edit assembler macros from the source statement library.

TERMINATE PROCESSING THE CMS/DOS ENVIRONMENT

DMSBAB

DMSITP
DMSDMP

Gives control to an abnormal termination routine once
linkage to such a routine has been established via the
STXIT AB macro.

Processes program interrupts and SPIE exits.

Simulates the $$BDUMP and $$BPDUMP routines; issues a CP
DUMP command directing the dump to an offline printer.

178 VM/SP System Logic and Problem Determination Guide (CMS)

Licensed Material--Property of IBM

PERFORMING MISCELLANEOUS CMS FUNCTIONS

C

CMS BAT

CILI

Y

The CMS Batch Facility is a function of CMS. It provides a way
of entering individual user jobs through an active CMS machine
from the virtual card reader rather than from the console. The
batch facility reissues the IPL command after each job.

The CMS Batch Facility consists of two modules: DMSBTB, the
bootstrap routine (a nonrelocatable CMS module file) and DMSBTP,
the processor routine (a relocatable CMS text file that runs
free storage).

GENERAL OPERATION OF DMSBTB

The bootstrap module, DMSBTB, loads the processor routine DMSBTP
and the user exit routines BATEXIT1l and BATEXIT2 (if they exist)
into free storage.

DMSBTB first ensures that DMSINS (CMS initialization) has set
the BATRUN and BATLOAD flags on in the CMS nucleus constant area
indicating that either an explicit batch initial program load
command has been issued or that the CMSBATCH command has been
issued immediately after initial program load has taken place.
If not, error message DMSBTBIOlE is typed and the batch console
returns to a normal CMS interactive environment. STATE (DMSSTT)
is then called to confirm the existence of the processor file
DMSBTP TEXT. 1If the file does not exist, error message
DMSTBT100E is typed and the batch console returns to the CMS
interactive environment.

Using the "state"™ copy of the file status table (FST) for
DMSBTP, DMSBTB computes the size of DMSBTP TEXT file by
multiplying the logical record length by the number of logical
records (no DS constants). A free storage request is made for
the size of DMSBTP, and the address of the routine is then
stored at ABATPROC in the NUCON area of the CMS nucleus.

The existence of the user exit routines is determined by STATE.
If they exist, their sizes are included in the request for free
storage.

The free storage address is translated into graphic hexadecimal
format, and the CMS LOAD command is issued to load the DMSBTP
TEXT file into the reserved free storage area. The user exit
routines, BATEXIT1l TEXT and BATEXIT2 TEXT are also loaded at
this time. If these files do not exist, an unresolved external
reference error code is returned by the loader, but the error
code is ignored by DMSBTB because these routines are optional.
If an error (other than unresolved names) occurs, error message
DMSBTB10lE is typed and the batch console returns to the CMS
interactive environment.

The loader tables are searched for the address of the ABEND
entry point DMSBTPAB in the loaded batch processor. When the
entry is found, its address and that of entry DMSBTPLM are
stored in ABATABND and the ABATLIMT respectively, in the NUCON
area of the CMS nucleus. If the ABEND entry point is not found
in the tables, error message DMSBTBlOlE is typed and the batch
console returns to the CMS interactive environment.

The BATLOAD flag is set off to show that DMSBTP has been loaded,
the BATNOEX flag is set on to prevent user job execution until
DMSBTP encounters a /J0B card, and finally, control is returned
to the command processor DMSINT.

Performing Miscellaneous CMS Functions 179

Licensed Material--Property of IBM

If an error message is issued, DMSERR is called to type the
message, and the BATRUN and BATLOAD flags are set off before
control is returned to CMS. This allows the normal CMS
interaction to resume.

GENERAL OPERATION OF DMSBTP

180

The batch processor module DMSBTP simulates the function of the
CMS console read module, DMSCRD. This is accomplished by
issuing reads to the virtual card reader, formatting the
card-image record to resemble a console record, and returning
control to CMS to process the command (or data) request. DMSBTP
also performs reads to the console stack if the stack is not
empty, checks for and processes the /J0OB card, ensuring that it
is the first record in the user job, traps all CP commands to
maintain system integrity, and performs job initialization,
cleanup, and job recovery.

Upon receiving control, DMSBTP checks the BATCPEX flag in NUCON.
If the flag is set on, control was received from DMSCPF and a
branch is made to the CP trap routine to verify that the command
is allowable under batch. The function of that routine is
described later. 1If the BATCPEX flag is off, control was
received from DMSCRD (console read module) and DMSBTP checks for
finished reads in the real batch console stack. If the number
of finished reads is not zero, control is returned to DMSCRD to
process the real console finished (stacked) reads. If the
number of finished reads is zero, a record is read from the
batch virtual card reader into the CARD buffer via an SVC call
to CARDRD (DMSCIO). The record in the CARD buffer is typed on
the console via the WRTERM macro. If the BATMOVE flag is set on
(MOVEFILE executing from the console), the records in the file
are not typed on the console.

The record in the reader buffer is scanned to compute its length
with trailing blanks deleted. It is then moved to the CMS
console read buffer, and the computed length is stored in the
original DMSCRD parameter list, whose address is passed by
DMSCRD when it initially passes control to DMSBTP.

If the first user record is not a 7/7JOB card, error message
DMSBTP105E is typed and normal cleanup is performed with the
BATTERM flag set on. This flag prevents another initial program
load, since it is not needed at this time. Reads to the card
reader are then issued until the next /JOB card is found.

If the first record is a /JOB card, DMSBTP branches to its /JOB
card processing routine which calls DMSSCNN via a BALR. A check
is made for the existence of the userid and account number on
the card. If the fields exist, a CP DIAGNOSE X'4C' is issued to
start accounting recording for that userid and account number.
If an error is returned from CP denoting an invalid userid or if
the userid or account number fields were missing on the /JOB
card, error message DMSBTPl06E is typed and normal cleanup is
performed with the BATTERM flag set on.

The jobname, if provided on the /J0OB card, is saved and a
message is issued via SVC to inform the source userid that the
job has started. The spooling devices are closed and respooled
for continuous output, a CP QUERY FILES command is issued for
information purposes, and the implied CP function under CMS is
disabled and the protection feature set off via SVC calls to SET
(DMSSET). The BATPROF EXEC is executed via an SVC to EXEC. The
BATNOEX flag, which is set by DMSBTB to suppress user job
execution until the /JOB card is detected, is set off. The
BATUSEX flag is set on (for DMSCPF) to signal the start of the
actual user job, and a branch is taken to read the next card
from the reader file (user job).

After reading the /7JOB card, DMSBTP continues reading and checks
for a /% card, a /SET card, or a CP command. If a card is none
of these, DMSBTP passes control back to the command processor
DMSINT for processing of the command (or data).

VM/SP System Logic and Problem Determination Guide (CMS)

Licensed Material--Property of IBM

If a /¥ card is read and it is the first card of the new job, it
is assume to be a precautionary measure and thus ignored by
DMSBTP which then reads the next card. If it is not the first
card, a check is made for the BATMOVE flag. If the flag is on,
the /% card indicates an end-of-file condition for the MOVEFILE
operation from the console (reader) and is consequently
translated to a null line for the MOVEFILE command.

If the BATMOVE flag is not on, the /% card is an end-of-job
indicator and an immediate branch is taken to the end-of-job
routine for cleanup and reloading of CMS batch.

When a CP command is encountered, DMSBTP branches to a routine
that first checks a table of CP commands allowable in batch. If
the command is allowed, a check is made for a readar or other
spool device in the command line. If the CP command is allowed
but would alter the status of the batch reader or any spooling
device or certain disks, or if the command is not allowed at
alla error message DMSBTPl07E is typed, and the next card is
read.

If the CP command is LINK, the device address is stored in a
table so ;hat DMSBTP can detach all user disk devices at the end
of the job.

A CP DETACH command is examined for a device address
corresponding to the system disk, the IPL disk, the batch 195
work disk or any spool device. If the device to be detached is
any of these, error message DMSBTPl07E is displayed and the next
card is read. Otherwise, DMSBTP returns control to DMSINT (or
DMSCPFdif the BATCPEX flag is set on) for processing of the
command.

When a /SET control card is encountered, the card is checked for
valid keyuwords, valid integer values (less than or equal to the
installation default values). If an error is detected, error
message DMSBTPl08E is typed. An abnormal termination message is
also sent to the source userid, and the job is terminated with
normal cleanup performed. If the control card values are valid,
the appropriate fields are updated in the user job limit table
DMSBTPLM and the next card is read.

If DMSBTP detects a "not ready™ condition at the reader, a
message is typed at the console stating that batch is waiting
for reader input. DMSBTP then issues the WAITD macro to wait
for a reader interrupt. When first detecting the empty reader,
DMSBTP calls the CP accounting routines via a CP diagnose '"4C'
to charge the wait time to the batch userid.

If a hard error is detected at the reader, DMSBTP sends an
"intervention required" message to the system console, branches
to its abnormal terminal routine, and waits for an interruption
for the reader by issuing the WAITD macro.

When a 7% card is read (with the BATMOVE flag off) or when the
end-of-file condition occurs at the reader, DMSBTP branches to
the cleanup routine that sends the source userid a message
stating that the job ended normally or abnormally (if cleaning
up after an abnormal termination) and turns off the BATUSEX flag
(for DMSCPF) to signal the end of the user job. CONWAIT
(DMSCWT) is called via SVC to allow any console I/70 to finish,
the spooling devices are closed (including the console), and all
disks that were made available by issuing the CP LINK command
are returned by issuing the CP DETACH command.

DMSBTP then relinquishes control by issuing the CP IPL command
with the PARM BATCH option which loads a new CMS nucleus, and
the nfxt job is started when CMS attempts its first read to the
console.

A branch is made to the CMSBTP routine when DMSBTP itself
detects an I/0 error at the reader. However, the primary
purpose of the routine is to receive control not only from
DMSABN when there is an abnormal termination during the user

Performing Miscellaneous CMS Functions 181

Licensed Material--Property of IBM

job, but also from DMSITE, DMSPIO, and DMSCIO when a user job
exceeds one of the batch job limits (BATXLIM flag is on). This
routine, entry point DMSBTPAB, calls the CP DUMP routine via
SVC, and then it branches to the cleanup routine that reloads
CMS Batch and treats the remainder of the current job as a new
job with no 7JOB card. This has the effect of flushing the
remainder of the job. This technique is used because batch must
keep its reader spooled "continuous." Entry point DMSBTPAB is
also used by the CMS commands that are disabled in CMS batch.
In this case (BATDCMS flag set on), an error message is
displayed and control returned to CMS.

When a CP command is called via an SVC in DMSBTP, the CMS CP
module (DMSCPF) is actually called to issue the DIAGNOSE
instruction to invoke the CP command. DMSBTP calls DMSCPF by

issuing a direct SVC 202 or by issuing the LINEDIT macro with
the CPCOMM option that generates an SVC 203.

OTHER CMS MODULES MODIFIED IN CMS BATCH
Several CMS modules check whether CMS batch is running, and, if
so, they perform functions associated with batch operation.
These modules are shown in the following list:
Module Function Performed for CMS Batch
DMSINI Passes batch parameters to DMSINS.
DMSINS Uses batch IPL parameters to reload CMS Batch.
DMSLDR Loads DMSBTP into free storage.

DMSCRD Passes control to DMSBTP to read from the reader
rather than from the console.

DMSITE Accounts for virtual time used by batch job -- ABEND
if over limit.

DMSPIO Accounts for number of lines printed by batch job --
ABEND if over limit.

DMSCIO Accounts for number of cards punched by batch job —-
ABEND if over limit.

DMSABN Passes control to batch ABEND routine in DMSBTP.

DMSERR Passes control to batch ABEND routine instead of
entering disabled wait state.

DMSMVE Turns the BATMOVE flag on and off -- allows batch to
treat moved blanks as data.

DMSSET Disabled if batch running, except during batch
initialization.

DMSRDC Disabled if batch running.

DMSCPF Distinguishes between CP command issued by user and by
batch.
DMSFLD Disallows reader device specification.

DMSDSK Disk load not allowed in batch.

| EXEC_2 AND SYSTEM PRODUCT INTERPRETER PROCESSING

Three modules process these functions: DMSEXI, DMSEXE, and
DMSREX.

182 VM/SP System Logic and Problem Determination Guide (CMS)

DMSEXI

Licensed Material--Property of IBM
DMSEXI is an interface routine between CMS and either the CMS
EXEC interpreter, the EXEC 2 interpreter, or the System Product
Interpreter. DMSEXE is the EXEC 2 interpreter. DMSREX is the
System Product Interpreter.

A description of each module's method of operation follows.

MODULE NAME: DMSEXI
CALLED BY: DMSEXC for all EXEC functions
CALLS TO OTHER ROUTINES:

DMSBRD - 'RDBUF' file system function

DMSEXT - CMS EXEC processor

DMSEXE - EXEC 2 processor

DMSFRE - Get and return free storage
DMSREX - System Product Interpreter

EXTERNAL REFERENCES: NUCON, IO
METHOD OF OPERATION:

DMSEXI is an interface routine between CMS and the three EXEC
interpreters.

DMSEXI allows coexistence by routing calls to either the System
Product Interpreter, the EXEC 2 interpreter, or the CMS EXEC
intaerpreter, according to the following rules:

1. The caller provides an extended-form PLIST, including a file
block. DMSEXI directs the call to the EXEC 2 interpreter or
System Product Interpreter.

2. The specified EXEC file exists, has a valid format, and
contains the character '/%' as the first two non-blank
characters in the first 255 characters of the first record
or byte 0 of register 1 is X'05'. DMSEXI directs the calls
to the System Product Interpreter, after generating a file
block and copying or building an extended PLIST.

3. The specified EXEC file exists, has a valid format, and
contains the word "&TRACE" within the first 255 bytes of
line 1 or byte 0 of register 1 is X'01*' or X'0B' and a
FILEBLOK exists. DMSEXI directs the calls to the EXEC 2
interpreter, after generating a file block and copying or
building an extended PLIST.

4. DMSEXI directs all other cases to the CMS EXEC interpreter,
with the original PLIST pointer.

There is one case where DMSEXI must build an untokenized command
string to pass to DMSEXE:

. If only a tokenized PLIST is available, DMSEXI builds a
command string by concatenating the CMS tokens, separating
each by one blank, with no leading or trailing blanks.

DMSEXI releases any storage obtained before it called DMSEXE,
then returns to the main caller with the return code from DMSEXE
in register 15.

The format of the extended-form PLIST is:

PLIST DS 0F (alignment)
DC A(command-verb)
DC A(parm-string)
DC A(byte-following-parm-string)
DC AC0) or A(file-block) (the file to be executed)

Performing Miscellaneous CMS Functions 183

Licensed Material--Property of IBM

DMSEXE

The following two lines exist only if a function call:
DC ACarglist) adlen pairs
DC A(funret) address to store returned
data pointer
The command-verb and the parm-string form a contiguous area:

COMMAND DC C'command-verb'
DC C'parm-string'

Trailing blanks are allowed after the command-verb.

The format of the file block is:

FILE DS 0F (alignment)
DC CL8'filename"' (or blank)
DC CL8"filetype' (or blank)
DC CL2'filemode"' (eg. Al, or blank)

If the filename contains blanks, CMSEXI will use the first word
in the argument list (&0) as the filename.

é;Eéhe filetype contains blanks, DMSEXI will use a filetype of

If the filemode is blank, DMSEXI will use the first file with
the specified filename and filetype, found according to the file
system search order.

The format of the file block extension is:

DC XL2C0000) or XL2(0002) (number of words
in extension)

DC AL4(PGMFILE) (address of the in-storage
EXEC 2 descriptor)
pC AL4(PGMEND-PGMFILE) (number of bytes

in descriptor)

MODULE NAME: DMSEXE
CALLED BY: DMSEXI to interpret EXEC 2 statements.
CALLS TO OTHER ROUTINES:

DMSERR - Write all error messages
DMSSCN - Tokenize strings

DMSPNT - 'POINT' file system function
DMSSTT - 'STATE' file system function
DMSBRD - 'RDBUF' file system function
DMSFNS - 'FINIS' file system function
DMSFRE - Get and return free storage
WAITRD - Read from the terminal
TYPLIN - Type on the terminal

ATTN - Stack lines in console stack

EXTERNAL REFERENCES: NUCON, FST, FVS, ADT
METHOD OF OPERATION:

DMSEXE reads lines from disk files, or accepts lines previously
prepared by the caller and stored in main memory.

If the lines are EXEC 2 statements, DMSEXE interprets the
statements. If the lines contain commands, DMSEXE passes the
commands to CMS command mode or a subcommand environment.

Execution continues until a statement or command explicitly
terminates it, or DMSEXE finds a statement error.

18¢ VM/SP System Logic and Problem Determination Guide (CMS)

9

Licensed Material--Property of IBM

DMSEXE LOGIC DESCRIPTION:

Pseudo Code

Pseudo code is used to describe the logic of portions of DMSEXE.
This Pseudo code has the following general statements:

1.

DO

statement

statement

si;iement

END

"Statement™ is either:
a. A description of an action to be done, or
b. Another pseudo code statement:

DO...END,
IF...THEN...ELSE,
G070, or

CALL

If condition THEN statement ELSE statement.

"Condition”" is a hyphenated sequence of words describing the
conditions for which the statement after "THEN" is executed.

Example: IF initial-flag-is-set
THEN perform initialization
ELSE indicate error condition

GOTO label

Transfer control to the label specified. A label is
followed by a colon and precedes a statement, or is on a
line by itself.

Example: GOTO George

George: ...
CALL name
CALLs the named subroutine.
DMSEXE General Logic Flow

Aftar initialization, DMSEXE loops continually, reading
lines that may contain EXEC 2 statements or commands. The
logic follows:

Initialization
DO forever
Loop initialization
IF executing &loop
THEN DO
Taest condition
IF condition
THEN set for top of loop
ENDELSE set for exit from &loop
CALL READSUB (read next line)
F eof
THEN IF executing-&loop
THEN error condition
ELSE exit
ENDCALL EXECUTE (executae line)

Performing Miscellaneous CMS Functions 185

Licensed Material--Property of IEM
READSUB/READLAB

READSUB is the DMSEXE subroutine that reads the next line. '
READLAB, a secondary entry point to READSUB, reads the next line J
when scanning forward for labels.

READSUB reads a line from:

1. The console - if the console count is non-zero,

2. The cache - if there is one, and the needed line is there,
3. 'BUF' - if the needed line is there, or

4. The file - if none of the above conditions are true.

If the line is read from the file, and there is a cache, then
the line is read into the cache.

READLAB reads a line from;

l. The cache - if there is one, and the line is there,
2. 'BUF' - if the line is there, or
3. The file - if none of the above conditions are true.

If the line is read from the file, and there is a cache, then
the line is read into the cache.

In all cases:

1. A blank and a zero byte are placed at the end of a line,
2. The file read may be either an in-storage file, or a file
accessed by calls to file system routines.

Line Execution
DMSEXE executes lines according to the following logic:
EXECUTE: IF comment THEN exit J
IF tracing THEN trace the line
IF blank-line THEN exit

IF assignment
THEN DO
CALL ASSIGN (perform assignment)
Exit
END
IF command
THEN DO
Pass command to CMS command mode or
subcommand environment
Exit
END
(Line must be a control-statement:)
Look up control-statement word

IF found
THEN DO
GOTO control-statement routine:
ex. ARGS
BEGPRINT
BEGSTACK
BUFFER
Exit
END

ELSE error (invalid statement)
END EXECUTE

Assignment Processing

DMSEXE processes assignment statements according to the J
following logic:

186 VM/SP System Logic and Problem Determination Guide (CMS)

Licensed Material--Property of IBM

ASSIGN: CALL SUBS (Substitute value of EXEC variable into
characters 2 through N of target)
Point to first word after equal sign
Call GETNEXT
IF none THEN set null value and exit
Call GETNEXT
IF none THEN set value obtained above and exit

Top-of-loop:
IF last-word-is-not-an-operation
THEN error
Call GETNEXT
IF none THEN error
Call GETNEXT

IF none
THEN DO
Do calculation
Set value
Exit
END
IF function-reference
THEN DO
IF not "of' THEN error
IF system—-function -
THEN Call appropriate routine
to evaluate function
ELSE invoke user function
Exit
END

Do calculation
GOTO Top-of-loop

END ASSIGN
GETNEXT: Get next word
IF found
THEN DO
Call SUBS
IF null THEN GOTO GETNEXT

END
END GETNEXT

SUBS: Set pointer to end of word plus one

SUBSLP:
Decrement pointer
IF at-front-of-word THEN exit
IF not '&' THEN GOTO SUBSLP
Calculate hash using last character of name and length
Scan appropriate variable lookaside chain
IF found
THEN DO
IF not-at-front-of-chain THEN put at front
IF predefined-variable
THEN DO
CALL predefined variable routine
and substitute value
IF at-front-of-word THEN exit
GOTO SUBSLP
END
Substitute value
IF at-end-of-word THEN exit
GOTO SUBSLP
END
ELSE DO
IF predefined-name
THEN DO
Build variable blocks
Point block to processing routine

CALL routine and substitute value
END

Performing Miscellaneous CMS Functions 187

Licensed Material--Property of IBM

END SUBS

DMSREX

ELSE DO
Build variable block for null
value
Substltute null

IF at- front of word THEN exit
GOTO SUBSLP

DMSEXI sends EXEC files (files written in the Restructured
Extended Executor (REXX) language) to DMSREX (System Product
Interpreter) if the first two non-blank characters in the first
255 characters of the first record are '"/%'., All System Product
Interpreter processing is done by DMSREX. DMSREX has the
following CSECTS:

DMSRCN

DMSREV
DMSRFN
DMSRIN

DMSRTC
DMSRVA
DMSRXE
DMSREX
DMSRSF

Performs character conversion, console I/0, general
services, and all arithmetic.

Evaluates expressions.
Performs all built-in functions.

Parses input data, controls most execution decisions,
and passes clauses to DMSRXE for execution.

Formats and displays trace information.
Accesses and maintains variables.
Executes individual clauses.

Reads the EXEC file and calls DMSRIN.

Performs additional functions similar to the built-in
functions

188 VM/SP System Logic and Problem Determination Guide (CMS)

Licensed Material--Property of IBM
ECTIO ¢ CMS DIRECTO

This section contains the following information:

] Modulae Entry Point Directory

Section 3: CMS Directory 189

Licensed Material--Property of IBM
MODULE ENTRY POINT DIRECTORY

Module
Name

Entry
Points

Function

DMSABN

DMSABN

DMSABNKX
DMSABNGO
DMSABNXV
DBSABNRT

Intercepts an abnormal termination (ABEND) and
provides recovery from the ABEND. Entered by a DMKABN
TYPCALL=BALR macro call.

Entered by a KXCHK macro to halt execution after HX
has been entered after signaling attention.

Entered by any routine that sets up ABNPSW and

ABNREGS in the work area beforehand.

Entfred as the result of a DMSABN TYPCALL=SVC macro
call.

Returns entry point from DEBUG.

DMSABX

DMSABX
DMSABXR

Receives control when the ABNEXIT macro is executed.
Handles the SET or CLEAR attribute of the ABNEXIT
macro.

Handles the RESET attribute of the ABNEXIT macro.

DMSACC

ACCESS

Accesses data in the ADT and related information (such
as AFT's and chain links) in virtual storage.

DMSACF

READFST

Reads all file status table blocks into storage for a
read/uwrite disk. Reads in file management tables for
a read - only disk. For an 0/5 disk, control returns
to the caller after a successful return from DMSACM.

DMSACM

READMFD

Reads the ADT, QMSK, QQMSK, and first chain link into
virtual storage from the master file directory on
disk.

DMSALP

DMSALP

Marks the start of the CMS nucleus code.

DMSALU

RELUFD

For a specified disk, releases all tables kept in free
storage and clears appropriate information in the
active disk table (ADT).

DMSAMS

DMSAMS

Provides an interface to VSE/VSAM Access Method
Utility programs (IDCAMS). Provided for support of
CMS/VSAM.

DMSARD

DMSARD

Provides storage for the ASM3705 assembler auxiliary
directory. DMSARD contains no executable code. It
must be loaded with DMSARX and the GENDIRT command
must then be issued to fill in the auxiliary directory
entries. GENMOD must then be issued to create the
ASSEMBLE module.

DMSARE

DMSARE

Releases storage used for tables pertaining to a given
disk when that disk is no longer needed.

DMSARN

DMSARN
ASMHAND

This is the ASM3705 command processor. It provides
the interface between user and the 370x Assembler.
This is the SYSUT2 processing routine called from
DMSSOB and used during the assembly whenever any I/0
activity pertains to the SYSUT2 file.

DMSARX

DMSARX

Provide an interface for the ASM3705 command to the
3705 assembler program.

190 VYM/SP System Logic and Problem Determination Guide (CMS)

Licensed Material--Property of IBM

Module Entry

Name Points Function

DMSASD DMSASD Provides storage for the assembler auxiliary
directory. DMSASD contains no executable code. It
must be loaded with DMSASM and the GENDIRT command
must then be issued to fill in the auxiliary directory
entries. The GENMOD command must then be issued to
create the assemble module.

DMSASM DMSASM Processes the ASSEMBLE command. Provides the
interface between the user and the system assembler.

ASMPROC This is the SYSUT1 processing routine (called from

DMSSOB) .

DMSASN DMSASN Associates logical units with a physical harduware
device. (Interface for the ASSGN command used by
CMS/D0S and CMS/VSAM.)

DMSAUD DMSAUD Reserves space on disk for writing a copy of disk and

file management tables on disk and then updates the
master file directory.

DMSAUDUP Closes all CMS files, thereby updating the master file
directory for any disks that had an output file open.

DMSBAB DMSBAB Give control to an abnormal termination routine once
linkage to such a routine has been established by
STXIT AB macro.

DMSBOP DMSBOP Opens CMS/D0S files associated with the following DTF
(Define The File) tables: DTFCN, DTFCD, DTFPR, DTFMT,
DTFDI, DTFCP, DTFSD. For nondisk files, the OPEN
function is performed in its entirety by DMSBOP. For
disk files, the SAM OPEN/CLOSE routines in CMSBAM are
invoked. Once the files are opened and initialized,
I/0 operations can be performed using the fila.

DMSBRD DMSBRD Reads one or more successive items from a specified
(RDBUF) file. DMSBRD, itself, reads items from 800-byte
formatted disks, or calls DMSERD at the DMSERDBF entry
point to read items from 512-, 1K-, 2K-, or 4K-byte
formatted disks.

DMSBSC BASIC Processes the BASIC command. The BASIC command
invokes the CALL-0S BASIC language processor to
compile and execute the specified file of BASIC source
code.

DMSBTB DMSBTB This is the CMS batch bootstrap routine. It loads the
batch processor routine (DMSBTP) and user exit routine
(if they exist) into free storage.

DMSBTP DMSBTP Main entry; reads from the virtual card reader each
time CMS tries to execute a console read.
DMSBTPAB Entry point for abnormal conditions during user job:

. Job execution ABEND (from DMSABN)
. Job limit exceeded (from DMSITE, DMSCIO, DMSPIO)
. Disabled CMS command (from the command)

DMSBTPLM Non-executable user job limit table referenced by
DMSITE, DMSPIO, and DMSCIO.

DMSBWR DMSBWR Writes one or more successive items into a specified
disk file. DMSBWR, itself, writes to 800-byte
formatted disks, or calls DMSERD at the DMSEWRBF entry
point to write items to 512-, 1K-, 2K-, 4K-byte
formatted disks.

Section 3: CMS Directory 191

Licensed Material--Property of IBM

Module Entry

Name Points Function

DMSCAT DMSCAT Stacks a lina of consola input that DMSCRD reads later
when it is called.

DMSCATMK MAKEBUF command.
DMSCATNB SENTRIES command.

DMSCCK CATCHECK Provides an interface to the VSE/VSAM Catalog Check
Service Aid. Provided for support of CMS/VSAM.

DMSCIO DMSCIOR Reads one card record.

DMSCIOP Punches one card record.
DMSCIOSI Punch caller's buffer.

DMSCIT DMSCIT Processes the intarruptions for all CMS terminal I/0
operations and starts the next I/0 operation upon
completion of the current I/0 operation.

DMSCITA Processes terminal interruptions.
DMSCITB Starts next terminal 1I/0 operation.
DMSCITDB Frees I/0 buffers from stacks.
DMSCITDK DROPBUF command.

DMSCLS DMSCLS Closes CMS/D0S files associated with the following DTF
(Defina The File) tables: DMTCN, DTFCD, DTFPR, DTFMT,
DTFDI, DTFCP, and DTFSD. For nondisk files, the
CLOSE function is performed in its entirety by CMSCLS.
For disk files, the VSE OPEN/CLOSE routines in CMSBAM
are invoked.

DMSCMP COMPARE Compares the records contained in two disk files.

DMSCPF DMSCPF Passes a command line to CP for execution.

DMSCPY DMSCPY Processes the COPYFILE command to copy disk files.

DMSCRD DMSCRD Reads an input line and makes it available to the
caller.

DMSCVH DMSCVH Simulates VTO0C functions for CMS formatted disks in
the CMS/D0S environment.

DMSCWR DMSCUWR Writes an output lina to the console.

DMSCUT DMSCWT Causes the calling program to wait until all terminal
I/0 operations have been completed.

DMSDAS DMSDAS Simulates tha VSE ASSIGN macro.

DMSDBD DMSDBD Enables a user to dump his virtual storage from within
an executing program.

DMSDBG DMSDBG Enables the user to debug his program from the
tarminal.

DMSDBGP Entry point for program interruptions.
DMSDBG Entry point for all other interruptions.

DMSDDL DMSDDL Send files in NETDATA form to a user on a local or a
remote noda. Receive and query NETDATA files in
user's reader.

DMSDID DMSDID Returns the virtual address, blocksize, and offset of
a RESERVEd mini-disk to the user.

DMSDIO DMSDIOR Reads one or more 800-byte records (blocks) from disk,
or reads one 200-byte record (sub-block) from disk.

DMSDIOW Writes one or more 800-byte records (blocks) on disk,
or writes ona 200-byte record (sub-block) on disk.

192 VM/SP System Logic and Problem Determination Guidae (CMS)

Licensed Material--Property of IBM

Module Entry

Name Points Function

DMSDLB DMSDLB Interfaca for the CMS/D0S DLBL command; allows the
user to specify I/0 devices extents, and certain file
attributes for use by a program at execution time.
DLBL can also be used to modify or delete previously
defined disk file descriptions.

DMSDLK DMSDLK Interface for the CMS/D0S DOSLKED command. Link-edit
the relocatable output of the language processors.
Once link-edited, these core image phases are added to
the end of the specified DOSLIB.

DMSDMP DMSDMP Simulates the VSE $$BDUMP. A CP DUMP command is
issued, directing the dump to a virtual printer.

DMSPDP Simulates IDUMP, JDUMP, and PDUMP. For IDUMP, the
PRINTL macro is issued. For JDUMP and PDUMP, a CP
DUMP command is issued directing the dump to a virtual
printer.

DMSDOS DMSDOS Provides D0S SVC support. Interprets D0S SVC codes
and passes control to appropriate routines for
execution (for example, OPEN, CLOSE, FETCH, EXCP).

DMSDSK DMSDSK Dumps a disk file to cards or loads files from card to
disk.

DMSDSL DMSDSL Provides capability to delete members (phases) of a
DOSLIB library; also, to compress a DOSLIB library;
also, to list the members (phases) of a DOSLIB
library.

DMSDSV DMSDSV Lists the directories of DOS private or system packs.

DMSEDC DMSEDC Arranges compound (overstruck) characters into an
ordered form and disregards tab characters as special
characters.

DMSED% DMSEDF Provides the Editor with the proper settings (CASE,
TAB, FORMAT, SERIAL, etc.) by filetype. Contains
nonexecutable code for reference by DMSEDI.

DMSEDI DMSEDI Modifies the contents of an existing file or creates a
new file for editing.

DMSEDX DMSEDX Performs initialization for the CMS Editor.

DMSEIO DMSEIO Processes EXECIO command.

DMSEIOI Initialization routine.

DMSERD DMSERDBF Reads one or more items from a specified 512-, 1K-,
2K-, or 4K-byte formatted disk.

DMSEWRBF Writes one or more items from a specified 512-, 1lK-,
2K-, or 4K-byte formatted disk.

DMSERR DMSERR Builds a message to be written at the virtual console
by DMSCWR.

DMSERS DMSERS Deletes a file or related group of files from
read/wurite disks.

DMSETR DMSETR Provides SVC 98 EXTRACT macro support. Called by
DMSDOS.

DMSEXE DMSEXE Processes an EXEC 2 file.

DMSEXI DMSEXI Determine whether to call CMS EXEC, EXEC 2 processor,
or System Product Interpreter. (DMSEXT, DMSEXE, or
DMSREX) .

Section 3: CMS Directory 193

Licensed Material--Property of IBM

Module Entry

Name Points Function

DMSEXT DMSEXT Processes a CMS EXEC file.

DMSFCH DMSFCH Bring a specified phase into storage from a system or
private core image library or from a CMS DOSLIB
library. DMSFCH is invoked via SVC 1, 2, or 4 or via
the FETCH command.

DMSFET DMSFET Provides an interface for the FETCH command; also,
provides the capability to start execution of a
specified phase.

DMSFLD DMSFLD Interprets 05 JCL DD parameters for use by CMS.

DMSFLE DMSFLE Processes the CLEAR and LIST functions for the FILEDEF
command.

DMSFNC DMSFNC Nucleus resident command name table.

: DMSFNCSV Standard SVC table.
DMSFNS DMSFNSA Closes one or more input or output disk files.
DMSFNSE Closes a particular file without updating the
directory or removing it from the active file table.
DMSFNST Temporarily closes all output files for a given disk.

DMSFOR DMSFOR Physically initializes a disk space for the CMS data
management routines. For an existing disk, any
information on the disk may be destroved. The label
may be changed and the number of cylinders allowed may
be changed. Reads and writes one track at a time.

DMSFRE DMSFREB Called as a result of the DMSFREE and DMSFRET macro
calls. Allocates or releases a block of storage
depending upon the code in NUCON location CODE203.

DMSFREES Called as a result of the SVCFREE macro call. The
size of the block is loaded from the PLIST and a
DMSFREE macro is executed. Upon return, the address
of the allocated block is stored into the PLIST.

DMSFRETS Called as a result of the SVCFRET macro call. The
size and address of the block to be released are
loaded from the PLIST and a DMSFRET macro is executed.

DMSFREEX Called as a result of a BALR to the address in the
NUCON location AFREE. Executes the DMSFREE macro.

DMSFRETX Called as a result of a BALR to the address in the
NUCON location AFRET. Executes the DMSFRET macro.

DMSFRES Called as a result of executing the DMSFRES macro.
DMSFRES processes the following service routines:
CKOFF, INIT1l, INIT2, CHECKS, UREC, and CALOC.

DMSGIO DMSGIO Creates the DIAGNOSE and CCWs for an I/0 operation to
a display terminal from a virtual machine.

DMSGLB DMSGLB Defines the macro libraries to be searched during
assembler processing. Defines text libraries to be
searched by the loader for any unresolved external
references.

DMSGLO DMSGLO Handles GLOBALV command requests to: 1) define global
variables for short term use in table(s) in storage,
or long term use in CMS files; 2) retrieve and stack
variables for use by EXECs.

DMSGMF DMSGMF Provides support for SVC 107 GETFLD and MODFLD macros.
Called by DMSDOS.

DMSGND DMSGND Generates auxiliary system status table.

194 VM/SP System Logic and Problem Determination Guide (CMS)

IBM

Licensed Material--Property of
Module Entry
Name Points Function
DMSGRN DMSGRN Edits STAGEl output (STAGE2 input), builds 3705
assembler files, link-edits text files and an EXEC
macro file.
DMSGTM DMSGTM Provides support for SVC 34 GETIME macro. Called by
DMSDOS.
DMSGVE DMSGVE Provides support for SVC 99 GETVCE macro. Called by
DMSD0OS and DMSGMF.
DMSHDI DMSHDI Sets the CMS interruption handling functions to
(HNDINT) transfer control to a given location for an I/0 device
other than those normally handled by CMS, or clears
previously initialized I/0 interruption handling.
DMSHDS DMSHDS Initializes tha SVCINT SVC interruption handler to
transfer control to a given location for a specific
SVC number (other than 202) or to clear such previous
handling.
DMSHLB DMSHLB Processes and builds output for .BX HELP format word.
DMSHLD DMSHLD HELP facility communication module, loaded into free
storage by DMSHLI.
DMSHLE DMSHLE Builds messages to be written at virtual control by
DMSHLS.
DMSHLI DMSHLI Contains HELP facility initialization routines.
DMSHLP DMSHLP HELP facility module for processing HELP description
file input.
DMSHLS DMSHLS Contains HELP facility I/0 routines.
SWRTPREP Determines virtual terminal characteristics and
acquires buffer storage.
SWRTIO Performs normal virtual terminal I/0.
SWRTMSG Performs I/0 to virtual terminal for error messages.
GOPEN Performs OPEN function for HELP description file.
GREAD Routine to read HELP file input.
GCLOSE Routine to perform file closing functions on exit.
DMSIDE IDENTIFY Display or stack information about the virtual
machine.
DMSIMA DMSIMAMD Implements the IMAGEMOD command. This command is used
to modify specific members of a 3800 named system.
With this command, you can dynamically delete, add,
replace, and generate members for a named system.
DMSIMM DMSIMM Handles the IMMCMD macro and the IMMCMD command.
DMSINA DMSINA Handles either user-defined synonyms or abbreviations
or system-defined synonyms for command names.
DMSIND DMSINDEX Index of CMS listings in the microfiche deck.
DMSINI DMSINIR Reads a nucleus into main storage.
DMSINIW Writes a nucleus onto a DASD unit.
DMSINM DMSINM Obtains the time from the CP timer.
(GETCLK)
(CMSTIMER)
DMSINS DMSINS Controls initialization of the CMS nucleus.

Section 3: CMS Directory

195

Licensed Material--Property of IBM

Module Entry

Name Points Function

DMSINT DMSINT Reads CMS commands from the terminal and executes
them. Entry is from DMSINS.

DMSINTAB Entry from DMSABN.

SUBSET CMS subset entry.

DMSIOW DMSIOW, Places the virtual CPU in the wait state until the

WAIT, completion of an I/0 operation on one or more devices.

DMSIOWR,

WAITRTN

DMSITE DMSITE, Processes external interruptions.

EXTINT,

DMSITET,

TRAP

DMSITI DMSITI, This module is entered when an I/0 opaeration causes

IOINT the I/70 new PSW to be loaded. This modulae handles all
I/0 interruptions, passes control to tha interruption
processing routine, and returns control to the
interrupted program.

DMSITP DMSITP Prg:esses program interruptions and processes SPIE
exits.
DMSITS DMSITS Avoids CP overhead due to SVC call.

DMSITS1 Address pointed to by the CMS SVC new PSW. This point
is entered whenever an SVC interruption occurs.

DMSITSCR Return point to which a program called by a CMS SVC
returns when it is finishad processing.

DMSITSNU NUCEXT handling.

DMSITSOR Return point to which a program callaed by an 0S SVC
returns when it is finished processing.

DMSITSK Called by an SVC by the DMSKEY macro.

DMSITSXS Called by an SVC from the DMSEXS macro.

DMSITSR This is the DMSITS recovery and reinitialization
routine, called by DMSABN. DMSABN is the ABEND
recovery routine.

DMSITSSB SUBCOM handling.

DMSIUC DMSIUC Handles the CMSIUCV and HNDIUCV macros.
DMSLAB DMSLAB Simulates the VSE LABEL macro.
DMSLAD DMSLAD, Finds the active disk tablae block whosae mode matchas

ADTLKP the one supplied by the caller.

DMSLADN, Finds the first or tha next ADT block in the active

ADTNXT disk table.

DMSLADW Finds the read or write disk according to input
parameters.

DMSLADAD Modifies thae fila status table chain to includae an
auxiliary directory, or clears tha auxiliary directory
from the chain.

DMSLAF DMSLAF, Finds the active file table block whosa filenama,

ACTLKP filftype, and filemode match the one supplied by the
caller.

DMSLAFNX, Finds the next or first AFT block in tha active file

ACTNXT table.

DMSLAFFE, Finds an empty block in the active file table or adds

ACTFREE a new block from frea storaga to the active file
table, if necessary, and places a file status entry
(if given) into the AFT block.

DMSLAFFT, Removes an AFT block from the active file table and

ACTFRET returns it to free storage if necessary.

196 VM/SP System Logic and Problem Determination Guida (CMS)

Licensed Material--Property of

IBM

Module
Name

Entry
Points

Function

DMSLBD

DMSLBD

Allows the user to specify tape label information that
will be used by a program at execution time (the
parameters are similar to those of the D0OS TLBL
statement or the tape options of the 0S data
definition statement). LABELDEF can also be used to
modify, delete, and list previously described label
descriptions.

DMSLBM

DMSLBM

Generates a macro library, adds macros to an existing
library, and lists the dictionary of an existing macro
library.

DMSLBR

DMSLBR

Simulates the VSE LBROPEN, LBRFIND, and LBRGET macros
as required by the VSE ESERV utility program.

DMSLBT

DMSLBT,
TXTLIB

Creates a text library, adds text files to an existing
text library, creates a disk file that lists the
control section and entry point names in a text
library or types, at the terminal, the control section
and entry point names in a text library.

DMSLCK

DMSLCK

SVC 110 LOCK/UNLOCK macro support. Called by DMSDOS.

DMSLDF

DMSLDF

Provides support for SVCs 1, 2, 4, and 65 that
correspond to macros FETCH, FETCH, LOAD, and CDLOAD,
respectively. Called by DMSDOS.

" DMSLDR

DMSLDRA

DMSLDRB

DMSLDRC

DMSLDRD

Begins execution of a group of programs loaded into
real storage. Definition of all undefined programs
is established at location zero. Entered from the
START command or internally from DMSLDRB LDT routine
if START is specified.
Processes TEXT files that may contain the following
cards: SLC, ICS, ESD, TXT, REP, RLD, END, LDT,
LIBRARY, and ENTRY. Entered from DMSLDP when the load
function is requested.
Does the processing required by various loader
;ggtines when an invalid card is detected in a text
ile.
Does the processing required when a fatal I/0 error is
detected in a text file.

DMSLDS

DMSLDS

Lists information about specified data sets residing
on an 0S disk. Processes the LISTDS command.

DMSLFS

DMSLFS,
TYPSRCH

Finds a specified FST entry within the FST blocks for
read-only or read/write disks.

DMSLGT

DMSLGTA
DMSLGTB

Entered from DMSLDRB if not a dynamic load. Frees all
the TXTLIB blocks on the TXTLIB chain.

Reads TXTLIB directories into a chain of free storage
directory blocks. Entered from DMSLDRB.

DMSLIB

DMSLIB

Searches TEXT libraries for undefined symbols and
closes the libraries.

DMSLIC

DMSLIC

Provides support for SVC 50 LIOCS ERROR. Called by
DMSDOS.

DMSLIO

DMSLIO

Creates the load map on disk and types it at the
Eﬁgfsgal. Performs disk and typewriter output for

DMSLKD

DMSLKD

Provides an interface between CMS and the VS1 linkage
editor.

DMSLLU

DMSLLU

Lists the assignments of logical units.

Section 3¢ CMS Directory

197

Licensed Material--Property of IBM

Module Entry

Name Points Function

DMSLOA DMSLOA Processes the LOAD and INCLUDE commands to invoke the
relocating loader.

DMSLOS DMSLOS Provides load and relocate support for 0S5 load modules
and CMS LOADLIB modules.

DMSLSB DMSLSBA Hexadecimal to binary conversion routine.

DMSLSBB Adds a symbol to the string of locations waiting for
an undefined symbol to be defined.

DMSLBC Removes the undefined bit from the REFTBL entry and
replaces the ADCON with the relocated value.

DMSLBD Processes LDR options.

DMSLST DMSLSTA Processes the LISTFILE command. Prints information
about the specified files.

DMSLSY DMSLSY Generates a unique character string of the form
2000001 for private code symbols.

DMSMCM DMSMCM Provides support for SVC 5 MVCOM macro. Called by
DMSDOS .

DMSMDP DMSMSP Types the load map associated with the specified file
on the terminal.

DMSMOD GENMOD Processes the GENMOD command to create a file that is
a core image copy of the loaded object code.

LOADMOD Processes the LOADMOD command to load a file that is
in core image form.

DMSMVE DMSMVE Transfers data between two specified 05 ddnames, the
ddnames may specify any devices or disk files
supported by the CMS system.

DMSMVG DMSMVG Handles input for the MOVEFILE command when the input
is a DOS FBA file.

DMSNAM DMSNAM Processes the NAMEFIND command. Displays or stacks
information contained in a "NAMES' file.

DMSNAMI Install NAMEFIND as a nucleus extension.

DMSNCP DMSNCP Reads a 3705 control program module (Emulator Program
or Network Control Program) in 0S load module format
and writes a page-format core image copy on a VM/SP
system volume.

DMSNUC DMSNUC Contains CSECTS for nucleus work areas and permanent
storage.

NUCON Nucleus constant area.
SYSREF Nucleus address table.
DEVTAB Device table.
ADTSECT Active disk table.
AFTSECT Active file table.
EXTSECT External interruption storage.
IOSECT I/0 interruption storage.
PGMSECT Program Interruption storage.
SVCSECT SVC interruption storage.
DIOSECT Disk I/0 storage.
FVS File system storage.
OPSECT Parameter lists.
CVTSECT Simulated 0S CVT.
DBGSECT Debug storage.
TSOBLKS TS0 control blocks.
DMSNXD DMSNXD Processes the NUCXDROP command.
DMSNXL DMSNXL Processes the NUCXLOAD command.

198 VM/SP System Logic and Problem Determination Guide (CMS)

Licensed Material--Property of IBM

Module Entry

Name Points Function

DMSNXM DMSNXM Processas the NUCXMAP command.

DMSOME DMSOME Marks the end of the CMS nucleus.

DMSOPL DMSOPL Reads the appropriate system directory records and
headers and determines if the specified libraries
contain any active members. Returns the disk address
of tha specified system library and indicates whether
or aot there are active members to be accessed on the
disk.

DMSOPT DMSOPT Sets VSE options in the System Communications Region
as specified by the OPTION command.

DMSOR1 DMSOR1 Relocates all DTF (Define The File) Table address
constants to executable storage addresses. (Called by
$$BOPENR via SVC 2.)

DMSOR2 DMSOR2 Relocates all DTF (Define The File) Table address
constants to executable storage addresses. (Called by
DMSOR1.)

DMSOR3 DMSOR3 Ralocates all DTF (Define The File) Table address
constants to executable storage addresses. (Called
by DMSOR2.)

DMSOSR DMSOSR Allows user to invoke a program from a CMS LOADLIB or
an 0S module library.

DMSOVR DMSOVR Analyzes the SVCTRACE command parameter list and loads
the DMSOVS tracing routine.

DMSOVS DMSOVS Provides trace information requested by the SVCTRACE
command.

DMSPIO0 DMSPIO Prints one line.

DMSPIOCC Puts CCWs to select translate table (for virtual 3800)
and to print the data, plus the data itself, in the
caller's buffer.

DMSPIOSI Prints the caller's buffer, issues an SI0 to the
virtual printer, and analyzes the resulting status.

DMSPNT DMSPNT Places the address of a file status table entry in the
activa file table (if necessary), and sets the read
pointer or write pointer for that file to a given item
number within the file.

DMSPOL DMSPOL The module containing the supplied action routine for
ioa@}pg a routing table for the programmable operator
acility.

DMSPOP DMSPOP The Programmable Operator command module.

DMSPOQ DMSPOQ The module containing various programmable operator
facility internal subroutines.

DMSPOR DMSPOR The module containing the supplied action routines for
the programmable operator.

DMSPOS DMSPOS The module containing the supplied action routine for
routing a message for the programmable operator
facility.

DMSPRE DMSPREEP Combine, link, and relocate multiple text (object)
filaes into a single text file.

DMSPRT DMSPRT Prints CMS files.

Saction 3¢ CMS Directory 199

Licensed Material--Property of IBM

Module Entry

Name Points Function

DMSPRV DMSPRV Copies procedures from the VSE system procedurae
library to a specified output device.

DMSPUN DMSPUN Punches CMS5 files to the virtual card punch.

DMSQRS DMSQRS Processes the QUERY DISK and SEARCH subcommands from
DMSQRY.

DMSQRT DMSQRT Processes the following QUERY subcommands: ABBREV,
AUTOREAD, BLIP, CMSTYPE, EXECTRAC, IMESCAPE, IMPCP,
IMPEX, LDRTBLS, PROTECT, RDYMSG, RELPAGE, SYSNAMES,
and CMSLEVEL.

DMSQRU DMSQRU Processes the QUERY FILEDEF and LABELDEF subcommands.

DMSQRV DMSQRV Processes the QUERY INPUT, OUTPUT, and SYNONYM
subcommands.

DMSQRW DMSQRW Processes the QUERY LIBRARY, MACLIB, TXTLIB, DOSLIB,
and LOADLIB subcommands.

DMSQRX DMSQRX Processes the QUERY DOSPART, OPTION, DOSLNCNT, UPSI,
DLBL, and DOS subcommands.

DMSQRY DMSQRYI Loads QUERY as a nucleus extension.

DMSQRY Initializes QUERY work area, if necessary. Processes
the QUERY command by passing control to one of the
following:

1. Another QUERY module: for a CMS subcommand with
the correct syntax.

2. CP: for a subcommand, other than a CMS subcommand.
3. Caller: for a syntax error.

DMSQRZ DMSQRZ Non-executable constants used by DMSQRY to initialize
the work area for the CMS QUERY command.

DMSRDC READCARD Reads cards and assigns the indicated filename.

DMSRDR DMSRDR Processes the RDR command. Stacks and displays the
characteristics of the first file in the virtual
reader.

DMSREX DMSREX Reads the EXEC file; calls DMSRIN.

DMSRIN Parses input data, controls most execution decisions,
and passes clauses to DMSRXE for execution.

DMSRXE Executes individual clauses.

DMSRCN Performs character conversion, console I/0, general
services, and all arithmetic.

DMSREV Evaluates expressions.

DMSRFN Performs built-in functions.

DMSRVA Accesses and maintains System Product Interpreter
variables.

DMSRTC Formats and displays trace information.

DMSRSF Performs additional functions similar to the built-in
functions.

DMSRNE DMSRNE Provides an interface for the CMS Editor RENUM
subcommand, which renumbers files with filetypes of
VSBASIC and FREEFORT.

DMSRNM DMSRNM Processes the RENAME command. Changes the fileid of
the specified file.

200 VM/SP System Logic and Problem Determination Guide (CMS)

Licensed Material--Property of IBM

Module Entry

Name Points Function

DMSROS DMSROS Accesses 0S5 disks.

ROSACC
DMSROS+4 Verifies the existence of 0S5 disks.
ROSSTT

DMSR0OS+8 Reads 0S disks.

ROSRPS

DMSR0OS+12 Finds a member in an 0S5 PDS.

ROSFIND

DMSROS+16 Performs NOTE, POINT, and BSP functions.
ROSNTPTB

DMSRPG DMSRPG Provides support for SVC 85 RELPAG macro. Called by
DMSDOS.

DMSRRV DMSRRV Provides the capability to copy (to an output device)
modules residing on D0S system or private relocatable
libraries.

DMSRSV DMSRSYV Distributes all the blocks of a mini-disk between the
directory file, allocation map file, and user's file.
DMSRSV sets up pointer blocks for each of these files.

DMSSAB DMSSAB Processes 05 ABEND macros.

DMSSBD DMSSBD Accesses data set records directly by item number. It
converts record identifications given by 0S BDAM
macros into item numbers and uses these item numbers
to access records.

DMSSBS Processes 0S5 BSAM READ and WRITE macros.

DMSSBSRT Entry for error return from call to DMSSBD.

DMSSCN DMSSCN Transforms the input line from a series of arguments to
a series parameter strings.

DMSSCR DMSSCR Loads display buffers and issues a macro resulting in a
CP DIAGNOSE to write to the display terminal.

DMSSCT DMSSCTNP Processes 05 POINT, NOTE, CHECK, and FIND (typa C)
macros.

DMSSCTCK Processes 05 CHECK macro.

DMSSCTCE Handles QSAM I/0 errors for DMSSQS and PDS and keys
errors for DMSSOP.

DMSSCTTP SETs and CLEARs the CMS tape end-of-volume exits.

DMSSEB DMSSEB Calls device I/0 routines to do I/0 and sets up ECB
and I0B return codes.

DMSSET DMSSET Processes the SET command.

DMSSFF DMSSFF Provides overlay support for 0S5 load modules.

DMSSIG DMSSIG The anchor table for the SSTAT and YSTAT. Also marks
the end of the CMS nucleus code.

DMSSLN DMSSLN Handles 0S contents management requests issued under
CMS (LINK, LOAD, XCTL, DELETE, ATTACH, EXIT).

DMSSMN DMSSMN Processes 05 FREEMAIN and GETMAIN macros and CMS calls
DMSSMNSB and DMSSMNST.

DMSSOP DMSSOP Processes 0S OPEN and CLOSE macros.

Saection 3:

CMS Directory 201

Licensed Material--Property of IBM

Module Entry

Name Points Function

DMSSPR DMSSPR Processes the SETPRT command. This command sets up a
virtual 3800 printer spool file for a CMS user. With
the SETPRT command, a user can select the character
arrangement tables, copy modification modules, FCB,
and forms overlay frame for printing files with a
virtual 3800.

DMSSQS DMSSQS Analyzes record formats and sets up the buffers for
GET, PUT, and PUTX requests.

DMSSRT DMSSRT Arranges records within a file in descending
sequential order.

DMSSRV DMSSRV Provides capability to copy books from a system or
private source statement library to a specified output
device.

DMSSSK DMSSSK Sets storage protect key for a specified saved system.
DMSSTG Procaesses CMS calls to DMSSTGST and DMSSTGSB (STRINIT)
and storage service routines.

DMSSTGOS Processes the EXEC0OS command.

DMSSTGSB STRINIT.

DMSSTGST

DMSSTGCL 0S exit reset routine.

DMSSTGSV Service routine to change nucleus variables.
DMSSTGAT Initializes storage and sets up an anchor table.

DMSSTT DMSSTT Locates the file status table entry for a given file
and, if found, provides the caller with the address of
the entry.

DMSSTX DMSSTX Provides support for SVCs 16, 17, 37, and 95 that
correspond to macros STXIT PC, EXIT PC, STXIT AB, and
EXIT AB, respectively. Called by DMSDO0S.

DMSSUB DMSSUB SVC 105 SUBSID macro support. Called by DMSDOS.

DMSSVL DMSSVL SVC 75 SECTVAL macro support. Called by DMSDOS.

DMSSVN DMSSVN Processes the 05 WAIT and POST macros.

DMSSVT DMSSVT Processes 0S macros: XDAP, TIME, SPIE, RESTORE, BLDL,
FIND, STOW, DEVTYPE, TRKBAL, WTO, WTOR, EXTRACT,
IDENTIFY, CHAP, TTIMER, STIMER, DEQ, SNAP, ENQ,
FREEDBUF, STAE, DETACH, CHKPT, RDJFCB, SYNAD,
BACKSPACE, and STAX. .. .

DMSSVU DMSSVU Builds a keys file when a data file using keys is
opened and saves the keys in the data file when it is
closed.

DMSSYN SYNONYM Processes the SYNONYM command. Sets up user-defined
command names and abbreviations for CMS commands.

DMSTIO DMSTIO Reads or writes a tape record or controls tape
positioning.

DMSTLB DMSTLB Processes IBM standard tape labels for 0S5 simulation,
CMS/D0S, CMS commands, and TAPESL macro. Also
provides linkage to nonstandard user label routines
for 0S simulation and CMS commands.

DMSTMA DMSTMA Reads an IEHMOVE unloaded PDS from tape and places it
in a CMS MACLIB.

202 VM/SP System Logic and Problem Determination Guide (CMS)

Licensed Material--Property of IBM

Module Entry

Name Points Function

DMSTPD DMSTPD Reads a tape consisting of card image members of a PDS
and creates CMS disk files for each member of the data
set. The PDS option allows reading unblocked tapes
produced by the 05 IEBPTPCH utility or blocked tapes
produced by the 05 IEHMOVE utility. The UPDATE option
provides the "./ ADD"™ function to blocked or unblocked
tapes produced by the IEBUPDTE utility.

DMSTPE DMSTPE Processes the TAPE command to perform certain tape
functions, such as: dump a CMS file, load a CMS file,
set tape mode, display or write VOL1 labels, scan,
skip, rewind, run, FSF, FSR, BSF, BSR, ERG, and WTM.

DMSTPF DMSTPF Tapeload function.

DMSTPG ‘ DMSTPG Dump functions of TAPE command.

DMSTQQ - - |. DMSTQQ Allocates a 200-byte first chain link (FCL) to a
calling program.

DMSTQQX Makes a 200-byte disk area no longer needed by one
program available for allocation to another program.

DMSTRK DMSTRKA Allocates an 800-byte disk area to a calling program.

DMSSTRKX Makes an 800-byte disk area that is no longer needed
by one program available for allocation to another.

DMSTYP TYPE Processes the TYPE command. Types all or a specified
part of a given file on the user's console.

DMSUPD DMSUPD Processes the UPDATE command. Updates source files
according to specifications in update files. Multiple
updates can be made, according to specifications in
control files that designate the update files.

DMSUTL DMSUTL List, copy, or compress LOADLIBs.

DMSVAN DMSVAN First table of Access Method Services nonshared
(nonreentrant) modules.

DMSVAS DMSVAS Contains a table of Access Method Services shared
(reentrant) modules.

DMSVAX DMSVAX Second table of Access Method Services nonshared
(nonreentrant) modules.

DMSVBM DMSVBM- Contains table of simulated VSE phases located in
CMSBAM DCSS.

DMSVIB DMSVIB Loads the CMS/VSAM saved system and pass control to
the CMS/VSAM interface routine, DMSVIP.

DMSVIP DMSVIP Finds the CMS5/D0S discontiguous shared segment (DCSS);
issues all necessary VSE ASSGN statements for 0S user;
maps all 05 VSAM macro requests to VSE specifications;
equivalents, where necessary; traps all transfers of
control between VSAM and the 0S user and sets the
appropriate operating environment flags.

DMSVIS DMSVIS Provide support for SVC 61 GETVIS macro and for SVC 62
FREEVIS macro. Called by DMSD0S and DMSLDF.
DMSVLT DMSVLT Simulates VSE $$BOSVLT transient. Provides return

linkage from SAM OPEN/CLOSE routines to CMS/DO0S
routines.

DMSVSR DMSVSR Resets any flags or fields set by VSAM processing;
purges the VSAM discontiguous shared segment.

Section 3: CMS Directory 203

Licensed Material--Property of IBM

Module Entry
Name Points Function
DMSVVN DMSVVN Contains table of VSE/VSAM nonshared (nonreentrant)
modules.
DMSVVS DMSVVS Contains table of VSE/VSAM shared (reentrant) modules.
DMSWTE DMSWTE Processes the WAITECB function.
DMSXBG DMSXBG Allocates and initializes storage for the XEDIT work
area. Processes the XEDIT command.
DMSXCG CDELETE Processaes the subcommands (entry points) listed.
CHANGE
COMPRESS
COPY
COUNT
COVERLAY
DELETE
DUPLICAT
EXPAND
LOWERCAS
MERGE
MOVE
OVERLAY
UPPERCAS
RECOVER
SHIFT
DMSXCM STgCK Processes the subcommands (entry points) listed.
CM
CcP
DMSXCN DMSXCN Arranges compound characters into canonical form;
disregards tab characters as special characters.
DMSXCP DMSXCP Simulates the VSE EXCP function (VSE SVC 0) in the
CMS/D0S environment. EXCP (Execute Channel Program)
requests initiation of an I/0 operation to a specific
logical unit.
DMSXCT CMSG Processes the CMSG subcommand.
CURSOR Processes tha CURSOR subcommand.
DMSXCTPN Processes the SET POINT subcommand.
DMSXCTTE Processes the SET TERMINAL subcommand.
DMSXCTSC Processes the SET SCREEN subcommand.
EMSG Processes the EMSG subcommand.
FILE Processes the FILE/PFILE subcommand.
LPREFIX Processes the LPREFIX subcommand.
MSG Processes the MSG subcommand.
PRESERVE Processes tha PRESERVE subcommand.
PURGE Processes the PURGE subcommand.
READ Processes the READ subcommand.
REFRESH Redisplays the screen.
RENUM Processes the RENUM subcommand.
REPEAT Processes the REPEAT subcommand.
RESET Processes the RESET subcommand.
RESTORE Procasses the RESTORE subcommand.
SAVE Processes the SAVE/PSAVE subcommand.
TYPE Processes the TYPE subcommand.
DMSXDC DMSXDCOD Scans input from the terminal for a subcommand or
macro; operands are decoded and placed in buffers.
Executes the MACRO and COMMAND subcommands. Performs
synonym substitution.
DMSXDCSY Procaesses the SET SYNONYM subcommand.
DMSXDCST Executes multiple synonyms.
DMSXDS DMSXDSRD Reads a data set (SAM) from an 0S formatted disk.

204 VM/SP System Logic and Problem Determination Guide (CMS)

Licensed Material--Property of IBM

Module Entry
Name Points Function
DMSXED XEDIT Processes the XEDIT subcommand; brings a file into the
ring of files in storage.
DMSXEDRT Removes an edited file from storage (QUIT).
DMSXER DMSXERMG Displays an error message in the standard CMS format:
DMSxxxnnnc message text....
DMSXFC DMSXFCNX Moves the line pointer to the next line.
DMSXFCUP Moves the line pointer to the previous line.
DMSXFCPL Moves the line pointer to line number "n".
DMSXFCML Moves the current line UPl or NEXT1.
DMSXFCLA Locates a line by its address.
DMSXFCCD Moves the column pointer to the right.
DMSXFCCG Moves the column pointer to the left.
DMSXFCLM Locates a specified string (FIND) in the current line.
DMSXFCDP Inserts the column pointer as "_" in a buffer.
DMSXFCIN Inserts a new line in the file.
DMSXFCRL Replaces a line in the file with a new one.
DMSXFCSU Deletes one line from the file.
DMSXFCRC Performs string substitution in the current line.
DMSXFCRM Performs an overlay function on the current line.
DMSXFCSP Handles special characters, ex., tab, backspace.
DMSXFCDC Displays SET VERIFY or SET TABS columns.
DMSXFCLR Defines the logical record length.
DMSXFCTR Defines the truncation column.
DMSXFCHT Defines the top of range.
DMSXFCBT Defines the end of range.
DMSXFCGA Defines the zone left column.
DMSXFCDR Defines the zone right column.
DMSXFCPC Sets the column pointer in column "n".
DMSXFCCC Sets the cursor to column "c" in the file.
DMSXFCCL Sets the cursor to line "1" in the file.
DMSXFCTB Sets up the tabulation columns.
DMSXFCPI Checks if a line has to be spilled.
DMSXFD DMSXFDFI Writes the file on disk.
DMSXFDSR Serializes the file in storage.
DMSXFDTG Performs target processing.
DMSXFDLE Locates an extended string (a string with arbitrary
characters).
DMSXFDLN Locates a named line.
DMSXFL DMSXFLST Determines if a file is in the XEDIT ring, and if so,
returns its characteristics.
DMSXFLRD Transfers one (or more) records from XEDIT storage to
the calling program. .
DMSXFLWR Transfers one (or more) records to XEDIT storage from
the calling program.
DMSXFLPT Moves the current line pointer to the record specified
by the calling program.
DMSXGT GET Process the GET subcommand.
DMSXHL HELP Invokes the CMS HELP facility.
DMSXIN DMSXINTF Initializes a file descriptor block.
DMSXINLA ﬁgggts the profile macro if an error occurs during
DMSXINLD Processes the LOAD subcommand.
DMSXINLX Processes an explicit LOAD, from the profile macro.
DMSXINOP Handles XEDIT command options.
DMSXIO Performs I/0 at the terminal.
DMSXIORD Reads at the terminal.
DMSXIOWR Writes at the terminal.
DMSXIOMG Displays message pending in the message line.

Section 3:

CMS Directory 205

Licensed Material--Property of IBM

Module Entry
Name Points Function
DMSXMA DMSXMAOP Executes XEDIT macros (files written in EXEC 2
language or REXX language).

DMSXMAEX Executes subcommand from XEDIT macros.

DMSXMARD States existence of a macro and reads it.

DMSXMARS Releases a macro from free storage.
DMSXMC CFIRST Processes the CFIRST subcommand.

CLAST Processes the CLAST subcommand.

CLOCATE Processes the CLOCATE subcommand.

LEFT Processes the LEFT subcommand.

RIGHT Processes the RIGHT subcommand.

DMSXMCVR Processes the SET VERIFY subcommand.
DMSXMD Processes the subcommands (entry points) listed.

INPUT

ADD

REPLACE

CREPLACE

CINSERT
DMSXML Processes the subcommands (entry points) listed.

BACKWARD

BOTTOM

DOWN

FIND

FINDUP

FORWARD

FUP

LOCATE

NEXT

NFIND

NFINDUP

NFUP

TOP

up
DMSXMS DMSXMS Arranges records within a file in a descending or

ascending sequential order (SORT macro).

DMSXPO POWERINP Allows easy input mode for script users.
DMSXPT PUT Processes the PUT subcommand.

PUTD Processes the PUTD subcommand.

DMSXPTER Erases the temporary file used by GET/PUT(D).
DMSXPX DMSXPXDC Decodes prefix subcommands and macros.

DMSXPXEX Executes prefix subcommands and macros.

DMSXPXPN Sets a prefix in the pending list.

DMSXPXRS Resets an entry in the pending list
DMSXQR QUERY Contains the QUERY/TRANSFER subcommands.

TRANSFER Stacks variable from the editor.

DMSXQRPT Handles QUERY POINT.

DMSXQRCL Handles QUERY COLOR.

DMSXQRPY Handles QUERY PREFIX SYNONYM.

DMSXQRPK Handles QUERY PF/PA key.

DMSXQRPF Displays PF/PAZ/Enter Key definition.

DMSXQRPN Handles QUERY PENDING.

DMSXQRTK Gets the next token in the operand.
DMSXRE DMSXRE Processes the RENUM subcommand.

206 VM/SP System Logic and Problem Determination Guide (CMS)

IBM

Licensed Material--Property of
Module Entr¥
Name Points Function
DMSXSC DMSXSCDP Dispatches a logical screen.
DMSXSCFL Computes to which logical screen belongs a field on
the physical screen.
DMSXSCIM Builds and displays all the logical screens.
DMSXSCPR Checks if the cursor is in a protected area.
DMSXSCCN Scans the buffer read from the screen.
DMSXSCCP Prints an image of the physical screen (COPYKEY
function).
DMSXSCIO Handles 170 on a 3270.
DMSXSCFR Transforms a buffer read by READ BUFFER to a buffer
equivalent to READ MODIFIED FIELD.
DMSXSCRV Displays a line in the 3270 command line.
DMSXSCCS Sets the cursor on the screen.
DMSXSD DMSXSDLS Builds a logical screen block.
DMSXSDSC Builds a logical screen.
DMSXSDPH Builds the physical screen.
DMSXSDLN Builds a line to be displaved.
DMSXSDML Moves a line from screen buffer in the file.
DMSXSDMS Builds the scale line.
DMSXSDSR Scans a line for CTLCHAR.
EXTSCRBF Extends the input/output buffer.
MOVTOSCR Moves a line to the output buffer.
DMSXSE DMSXSERA Handles the SET RANGE subcommand.
SET Handles the SET subcommand.
DMSXSF Processes the SET subcommand.
DMSXSFRS Processes the SET RESERVED subcommand.
DMSXSFCT Processes the SET CTLCHAR subcommand..
DMSXSFMG Processes the SET MSGLINE subcommand.
DMSXSFCR Processes the SET COLOR subcommand.
DMSXSFSL Processes the SET SELECT subcommand.
DMSXSFDM Decodes a line number (M % n).
DMSXSS 505 Processes the 505 subcommand.
DMSXSSXY Computes the EBCDIC address of the cursor.
DMSXSSTB Tabs backward in the file on the command line.
DMSXSSTF Tabs forward in the file on the command line.
DMSXST DMSXSTLG Gets a free line in storage.
DMSXSTNB Computes the number of free lines available.
DMSXSTCP Combines free lines in one free block.
DMSXSTEX Dvnamically extends the storage for the files.

Section 3¢ CMS Directory 207

Licensed Material--Property of IBM

Module Entry
Name Points Function
DMSXSU DMSXSUVR Editing supervisor.
DMSXSUPE Executes the profile macro.
QUIT Executes the QUIT subcommand.
DMSXSUFL Flushes subcommand execution if no more save area.
DMSXSUNP No operation (used when a macro ends).
DMSXSU Redisplays the last input in the input area.
DMSXSUIG Maintains file integrity on multiple windows.
DMSXSUTY Types the current line.
DMSXSUEF Types "EOF"™.
DMSXSUTF Types "TOF"™.
DMSXSUTE Types "TOF"™ or "EOF".
DMSXSUTP Checks displacement to a target line.
DMSXSUNC Types "NO CHANGE".
DMSXSUNF Types "NOT FOUND"™.
DMSXSUPR Checks for prefix subcommand or macro waiting.
DMSXSULG Computes line length.
DMSXSUEX Executes a subcommand.
DMSXSUCK Checks if fname ftype fmode are valid.
DMSXSUTS Computes autosave identification.
DMSXSUCN Performs EBCDIC-binary conversion.
DMSXSUCC Performs binary-EBCDIC conversion.
DMSXSUCH Performs EBCDIC-hexadecimal conversion.
DMSXSUHC Performs hexadecimal-EBCDIC conversion.
DMSXSULK Checks coherency between file and logical screen.
DMSXSURYV Redisplays the last entry in the input area.
DMSXSUPK Executes PFKEY/PA2/PA3/Enter Key.
DMSXSUQM Executes ? command.
PQUIT Removes one file from the ring of files in storage
(protected QUIT).
DMSXTB DMSXTBHC Address of hash code table.
DMSXTBRQ Address of subcommand table.
DMSXTE Contains the second half of the EXTRACT subcommand.
DMSXTERG Assigns ring settings to EXEC 2/REXX variables.
DMSXTEEN Assigns enter settings to EXEC 2/REXX variables.
DMSXTEVR Assigns VERIFY settings to EXEC 2/REXX variables.
DMSXTECL Assigns COLOR settings to EXEC 2/REXX variables.
DMSXTESC Assigns SCREEN settings to EXEC 2/REXX variables.
DMSXTEPS Assigns PREFIX SYNONYM settings to EXEC 2/REXX
variables.
DMSXTERS Assigns RESERVED settings to EXEC 2/REXX varaibles.
DMSXTEPK Assigns PF/PA Key settings to EXEC 2/REXX variables.
DMSXTEHK Handles setting PF/PA Key values for a specified key.
DMSXTEPT Assigns POINT settings to EXEC 2/REXX variables.
DMSXTESY Assigns SYNONYM settings to EXEC 2/REXX variables.
DMSXTEPD Assigns PENDING settings to EXEC 2/REXX variables.
DMSXTECC Assigns CTLCHAR settings to EXEC 2/REXX variables.
DMSXTEFP Parses input up to the end of input, or delimiter, or
a blank
DMSXTEGS Gets storage from buffer DMSFREED in DMSXTR.
DMSXTESH Sets up SHVBLOCK.
DMSTEEX Performs an EXECCOMM.
DMSXTF DMSXTF Filetype descriptor table.
DMSXTR Contains the EXTRACT subcommand.
EXTRACT Assigns editor settings to EXEC 2/REXX variables.
DMSXTRSE Sets up SHVBLOCK for variable not requiring a special
routine to compute variable value.
DMSXUP DMSXUPCK Checks for proper serialization.
DMSXUPAT Applies one update file to the source file.
DMSXUPCT Handles CNTRL and AUX files for multi-level update.
DMSXUPBL Builds the update file (subcommands SAVE or FILE).
DMSXUPDL Handles deleted lines in the source file.
DMSXUPR2 Builds error messages.

208 VM/SP System Logic and Problem Determination Guide (CMS)

IBM

Licensed Material--Property of

Module Entr¥

Name Points Function

DMSXWS DMSXWSQR Checks the terminal characteristics and allocates the
screen buffer.

DMSZAP DMSZAP Processes tha ZAP command. Provides a facility to
maintain CMS LOADLIB members as written by the CMS
command LKED.

DMSZAT DMSZAT Defines 8K-bytes of transient area.

DMSZIT DMSZIT Defines the end of the CMS nucleus in user storage.

DMSZNR DMSZNR Defines the end of NUCON (DMSNUC).

DMSZUS DMSZUS Defines the start of the user area.

Section 3: CMS Directory 209

Licensed Material--Property of IBM

210 VM/SP System Logic and Problem Determination Guide (CMS)

Licensed Material--Property of IBM
SECTION 4: CMS DIAGNOSTIC AIDS

C

This section contains the following information:

. A list of devices supported by a CMS Virtual Machine

. DMSFREX Error Codes
[Abend Codes

Section 4¢: CMS Diagnostic Aids 211

Licensed Material--Property of IBM
SUPPORTED DEVICES

Figure 32 indicates those devices that are supported by a CMS
machine.

Virtual Virtual symbolic

IBM Device Type Addressé Name (default) | Device Use

3210, 3215, 1052, cuu’ CON1 System console

3066, 3270

2314, 2319, 3310, 190 DSK8 CMS System disk (read-only)

3330, 3340, 3350, 1918 DSK1 Primary disk (user files)

3370, 3375, 3380 cuu DSK2 Minidisk (user files)
cuu DSK3 Minidisk (user files)
192 DSK% Minidisk (user files)
cuu DSKS Minidisk (user files)
cuu DSK6 Minidisk (user files)
cuu DSK?7 Minidisk (user files)
19E DSK9 Minidisk (user files)
cuu DSKO Minidisk (user files)
cuu DSKH Minidisk (user files)
cuu DSKI Minidisk (user files)
cuu DSKJ Minidisk (user files)
cuu DSKK Minidisk (user files)
cuu DSKL Minidisk (user files)
cuu DSKM Minidisk (user files)
cuu DSKN Minidisk (user files)
cuu DSKO Minidisk (user files)
cuu DSKP Minidisk (user files)
cuu DSKQ Minidisk (user files)
cuu DSKR Minidisk (user files)
cuu DSKT Minidisk (user files)
cuu DSKU Minidisk (user files)
cuu DSKV Minidisk (user files)
cuu DSKW Minidisk (user files)
cuu DSKX Minidisk (user files)

2540, 2501, 3505 00C RDR1 Virtual reader

2540, 3525 00D PCH1 Virtual punch

1403, 1443, 3203, 00E PRN1 Line printer

3211, 3262, 3800,

4245, 3289-4

2401, 2402, 2403, 181-% TAP1-TAP4 Tape drives

2415, 2420, 3410,

3411, 3420, 3430,

8809

Figure 32. Devices Supported by a CMS Virtual Machine

The device addresses shown are those that are preassembled
into the CMS resident device table. These need only be
modified and a new device table made resident to change the
addresses.

The virtual address of the system console may be any valid
multiplexer address.

s 191 is the default user-accessed A-disk unless it is
dynamically changed by an ACCESS at CMS initial program
load (IPL).

212 VM/SP System Logic and Problem Determination Guide (CMS)

Licensed Material--Property of IBM
DMSFREX ERROR CODES

C

ERROR CODES FROM DMSFRES, DMSFREE ND _DMSFRET

A nonzero return code upon return from DMSFRES, DMSFREE, or
DMSFRET indicates that the request could not be satisfied.
Register 15 contains this return code, indicating which error
has occurred. The following codes apply to the DMSFRES,
DMSFREE, and DMSFRET macros.

Code Error

1 (DMSFREE) Insufficient storage space is available to
satisfy the request for free storage. In the case of a
variable request, even the minimum request could not be
satisfied.

2 (DMSFREE or DMSFRET) User storage pointers destroyed.

3 (DMSFREE, DMSFRET, or DMSFRES) Nucleus storage
vointers destroyed.

% (DMSFREE) An invalid size was requested. This error
exit is taken if the requested size is not greater than
zero. In the case of variable requests, this error
exit is taken if the minimum request is greater than
the maximum request. (However, the latter error is not
detected if DMSFREE is able to satisfy the maximum
request.)

5 (DMSFRET) An invalid size was passed to the DMSFRET
\ _ macro. This error exit is taken if the specified
length is not positive.

6 (DMSFRET) The block of storage that is being released
was never allocated by DMSFREE. Such an error is
detected if one of the following errors is found:

. The block does not lie entirely inside either the
free storage area in low storage or the user
program area between FREELOWE and FREEUPPR.

. The block crosses a page boundary that separates a
page allocated for user-type storage from a page
allocated for nucleus-type storage.

. The block overlaps another block already on the
free storage chain.

7 (DMSFRET) The address given for the block being
released is not on a doubleword boundary.

8 (DMSFRES) An invalid request code was passed to the
DMSFRES routine. Since all request codes are generated
by the DMSFRES macro, this error code should never
appear.

9 (DMSFREE, DMSFRET, or DMSFRES) An internal error
occurred in the free storage management routine.

DMSFREX Error Codes 213

Licensed Material--Property of IBM

214 VM/SP System Logic and Problem Determination Guide (CMS)

C

ABEND CODES

ABEND RECOVERY

Licensed Material--Property of IBM

Modules Used: DMSABN
ration of the Abend Routine, DMSABN

When the abend recovery routine, DMSABN, is entered, it checks
for any ABEND exit routines set by the ABNEXIT macro. If a list
of exit routines exists, the current exit routine (that is, the
last one set) gains control.

After receiving control, the following occurs:

1. The exit routine receives control with the nucleus protect
key and disabled interrupts.

2. Information about the abend is available to the exit routine
in the DMSABW CSECT in DMSNUC. The address of this area is
passed to the exit routine via register 1. In addition to
the information currently available in DMSABW, a fullword
specified on the ABNEXIT macro for the exit's own purposes
is also available.

3. If a program check occurs in the exit (ABNEXIT RESET has not
been issued), DMSABN gives control to the previous exit in
the list. If there is not an exit to trigger, normal CMS
abend recovery occurs.

4. Abend exits cannot be set or cleared from within an exit
routine. You can issue the ABNEXIT macro with the RESET
option only from within an exit.

After complation of the ABEND exit routines, the exit can do one
of the following:

1. Returns to DMSABN via a branch on register 14. DMSABN calls
the previous exit in the list or proceeds with normal CMS
abend processing.

2. Returns elsewhere by loading the PSW at the time of abend
(available in DMSABW) or a modified version of the PSW.
Prior to loading the PSW, the ABNEXIT RESET form of the
macro should be issued.

When DMSABN continues with normal abend processing, it may type
out the abend message, followed by the line "CMS"™, that you may
type in your next command.

At this point, there are two options available to you.

First, you may type the DEBUG command. In this case, DMSABN
passes control to DMSDBG, to make the facilities of DEBUG
available to you. DEBUG's PSW and registers are as they were at
the time that the abend recovery routine was invoked. From
DEBUG, you may alter the PSW or registers, and either type GO to
continue processing or type RETURN to return to DMSABN so that
abend recovery can continue.

The second option available is to type in any other command. If
this is done, DMSABN performs its abend recovery function and
zasses control to DMSINT to execute the command that has been
vyped in.

The abend recovery function performs the following functions, in
sequence:

ABEND Codes 215

Licensed Material--Property of IBM

1. Clears the consolae input buffer and program stack.
2. Terminates all VMCF activity.

3. Reinitializes the SVC handler, DMSITS, and frees all stacked
save areas.

4. Clears the auxiliary directories, if any. Invokes "FINIS ¥
¥ %," to close all files, and to update the master file
directory.

5. Zeroes out EXECFLAG and frees CQ§ EXEC global storage.

6. Zeroes out the maclib directory pointers.

7. Frees the CMS work area, if the CMS subset was active.

8. Issues the STAE, SPIE, TTIMER, and STAX macros to cancel any
outstanding 05 exit routines. Frees any TXTLIB, MACLIB, or
LINK tables.

9. Calls with a purge plist, all nucleus extensions that have
the "SERVICE" attribute defined.

10. Drops all nucleus extensions that do not have the "SYSTEM"
attribute. Also drops any nucleus extensions that are in
typa user storage.

11. Frees all SCBLOCKs associated with SUBCOM.

12. Clears all immediate commands that are not nucleus
extensions with the "SYSTEM" attribute. Returns all
associated free storage.

13. Frees all storage of type user.

14. Zeroes out all interrupt handler pointers in IOSECT.

15. Turns the SVCTRACE command off;*

16. Closes the virtual punch and ﬁrinter. Closes the virtual
reader with the HOLD option.

17. Zeroes out all FCB, DOSCB, and LABSECT pointers.

18. Reinitializes the VSE lock table used by CMS/D0S and
CMS/VSAM.

19. Zeroes out all 0S loader blocks, and frees the FETCH work
area.

20. Disables the CMS IUCY environment, and all IUCVIDBKs and
frees CMS IUCV system storage.

21. Clears all ABNEXIT set and frees storage.

22. Computes the amount of system free storage that should be
allocated and compares this amount with the amount of free
storage actually allocated. Types a message to the user if
the two amounts are unequal.

23. Issues a STRINIT if all storage is accounted for.
After abend recovery has been completed, control passes to

DMSINT at entry point DMSINTAB to process the new command that
was typed in.

UNRECOVERABLE TERMINATION =- THE HALT OPTION OF DMSERR

216

There are certain times, such as when the SVC handler's pointers
are modified, that the system can neither continue processing
nor try to recover. In these cases, DMSERR with the option

VM/SP System Logic and Problem Determination Guide (CMS)

9

9

Licensed Material--Property of IBM

HALT=YES is specified to cause a message to be typed out, after
which a disabled wait state PSW is loaded unless the NUCON field
AUSERRST has been loaded.

The valid address contained in AUSERRST is assumed to be the
address of an error recovery routine and will be directly
branched to. The initialization routines of an application
running undaer CMS must set this address to point to a module
that might, for example, request a dump and then issue an IPL
command. If the IPL command is

IPL CMS PARM AUTOCR

and the PROFILE EXEC on virtual disk 191 invokes
rainitialization, the application has the capability of
automatic racovery. This capability is valuable for CMS service
virtual machines that run permanently disconnected and are
required to stay oparational.

In CP mode, the programmer can examine the PSW, whose address
field contains the address of the instruction following the call
to the DMSERR macro. The programmer can also examine all the
fegi;tgrs. which are as they were when the DMSERR macro was
invoked.

Figure 33 lists tha CMS ABEND codes and describes the cause of
the abend and tha action required.

Abend | Module

code Name causa of Abend Action

001 DMSSCT The problem program Message DMSSCT120S
encountered an input/output indicates the possible
error processing an 0S macro. cause of the error.
Either the associated DCB did Examine the error message
not have a SYNAD routine and take the action
specified or the 170 error was indicated.
encountered processing an 0S
CLOSE macro.

034 DMSVIP The problem program Refer to VSE/VSAM
encountered an I/0 error while Messages and Codes, to
processing a V5AM action macro determine the cause of
under VSE for which there is the VSAM error.
no 0S equivalent. An internal
error occurraed in a VSE/VSAM
routine.

035 DMSVIP An error occurrad in VSE/VSAM Refer to the VSE/VSAM
processing while running an documentation for the
0S5/VSAM program, for which error and return codes
there is no equivalent 0S/VSAM indicated in the CMS
error code. error message preceding

the ABEND.
Figura 33 (Part 1 of 4). CMS Abend Codes

ABEND Codes 217

Licensed Material--Property of IBM

Abend Module

Code Name Cause of Abend Action

0Cx DMSITP The specified hardware Type DEBUG to examine the
exception occurred at a PSW and registers at the
specified location. "x" is time of the exception.
the type of exception:

X Type

0 IMPRECISE

1 OPERATION

2 PRIVILEGED OPERATION
3 EXECUTE

4 PROTECTION

5 ADDRESSING

6 SPECIFICATION

7 DECIMAL DATA

8 FIXED-POINT OVERFLOW
9 FIXED-POINT DIVIDE

A DECIMAL OVERFLOW

B DECIMAL DIVIDE

(s EXPONENT OVERFLOW

D EXPONENT UNDERFLOW

E SIGNIFICANCE

F FLOATING-POINT DIVIDE

0F0 DMSITS Insufficient free storage is If the abend was caused
available to allocate a save by an error in the
area for an SVC call. application program,

correct it; if not, use
the CP DEFINE command to
increase the size of
virtual storage and then
restart CMS.

0F1 DMSITS An invalid halfword code is Enter DEBUG and type GO.
associated with SVC 203. Execution continues.

0F2 DMSITS The CMS nesting level of 20 None. Abend recovery
has been exceeded. takes place when the next

command is entered.

OF3 DMSITS CMS SVC (202 or 203) Enter DEBUG and type GO.
instruction was executed and Control returns to the
provision was made for an point to which a normal
error return from the routine return would have been
processing the SVC. made.

0F4 DMSITS The DMSKEY key stack Enter DEBUG and type GO.
overflowed. Execution continues and

the DMSKEY macro is
ignored.

0F5 DMSITS The DMSKEY key stack Enter DEBUG and type GO.
overflouwed. Execution continues and

the DMSKEY macro is
ignored.

0F6 DMSITS The DMSKEY key stack was not Enter DEBUG and type GO.
empty when control returned Control returns from the
from a command or function. command or function as if

the key stack had been
empty.

OF7 DMSFRE Occurs when TYPCALL=SVC (the When a system abend
default) is specified in the occurs, use DEBUG to
DMSFREE or DMSFRET macro. attempt recovery.

Figure 33 (Part 2 of 4). CMS Abend Codes

218 VM/SP System Logic and Problem Determination Guide (CMS)

C

Licensed Material--Property

of IBM

Abend | Module

code Name cause of Abend Action

0F8 DMSFRE Occurs when TYPCALL=BALR is When a system abend
specified in the DMSFREE or occurs, use DEBUG to
DMSFRET macro devices. attempt recovery.

101 DMSSVN The wait count specified in an Examine the program for
0S5 WAIT macro was larger than excessive wait count
the number of ECBs specified. specification.

104 DMSVIB The 0S interface to VSE/VSAM See the additional error
is unable to continue message accompanying the
execution of the problem abend message, correct
program. the error, and reexecute

the program.

155 DMSSLN Error during LOADMOD after an See the last LOADMOD
0S LINK, LOAD, XCTL, or (DMSMOD) error message
ATTACH. The compiler switch is for error description.
on. In the case of an 1/0

error, recreate the
module. If the module is
missing, create it.

15A DMSSLN Severe error during load See last LOAD error
(phase not found) after an 0S message (DMSLIO) for the
LINK, LOAD, XCTL, or ATTACH. error description. In
The compiler switch is on. the case of an I/0 error,

recreate the text deck or
TXTLIB. If either is
missing, create it.

160 DMSXSU Occurs when XEDIT cannot None. Abend recovery
allocate a save area to a takes place when the next
callad routine. command is entered.

174 DMSVIB The 0S interface to VSE/VSAM See the additional error
is unable to continue message accompanying the
execution of the problem abend message, correct
program. the error, and reexecute

the program.

177 DMSVIB The 0S interface to VSE/VSAM See the additional error

DMSVIP is unable to continue message accompanying the
execution of the problem abend message, correct
program. the error, and reexecute

the program.

2490 DMSSVT No work area was provided in Check RDJFCB
the parameter list for an 0S5 specification.

RDJFCB macro.

400 DMSSVT An invalid or unsupported form Examine program for
of tha 05 XDAP macro was unsupported XDAP macro or
issued by the problem program. for SVC 0.

500 DMSTLB A block count error was Find out what caused the
detected when reading a SL block count error. Then
tape. User replied 'cancel! reload CMS and rerun the
to message 425R or the user's job.
program contained a block
count error routine that
returned a code of 0 under 0S
simulation.

Figure 33 (Part 3 of 4). CMS Abend Codes

ABEND Codes 219

Licensed Material--Property of IBM

Abend Module
Code Name Cause of Abend Action
704 DMSSMN An 0S GETMAIN macro (SVC 4) Change the program so
was issued specifying the LC that it specifies
or LU operand. These operands allocation of only one
are not supported by CMS. area at a time.
705 DMSSMN An 0S FREEMAIN macro (SVC 5) Change the program so
was issued specifying the L that it specifies the
operand. This operand is not release of only one area
supported by CMS. at a time.
804 DMSSMN An 0S5 GETMAIN macro (804 - SVC Check the program for a
80A 4, 80A - SVC 10) was issued valid GETMAIN request. If
that requested either zero more storage was
bytes of storage or more requasted than was
storage than was available. available, increase the
size of the virtual
machine and retry. 1If
you run out of storage
while trying to acquire a
large GETMAIN area and if
the size of your virtual
machine is above the
start of the CMS nucleus,
you should IPL a CMS
system generated at a
higher virtual address
than the one you are
using. If the saved
system CMSL is available,
then IPL it; if not, then
contact your system
support personnel.
905 DMSSMN An 0S5 FREEMAIN macro (905 - Check the program for a
90A SVC 5, 90A - SVC 10) was valid FREEMAIN request;
issued specifying an area to the address may have been
be released whose address was incorrectly specified or
not on a doubleword boundary. modified.
A0S DMSSMN An 0S FREEMAIN macro (A05 - Check the program for a
AOA SVC 5, AOA - SVC 10) was valid FREEMAIN request;
issued specifying an area to the address and/or length
be released that overlaps an may have been incorrectly
existing free area. specified or modified.

Figure 33 (Part 4 of 4). CMS Abend Codes

220 VM/SP System Logic and Problem Determination Guide (CMS)

C

Licensed Material--Property of IBM
APPENDIX A. CMS MACRO LIBRARY

The following is a list and brief description of the CMS macros

applicable to VM/SP.

Asterisk (¥) indicates that the macro is reserved for IBM use.

CMS Macro Function
¥ADT Generates a CSECT or DSECT for an active disk table.
*ADTGEN Generates an active disk table (ADT) for a disk; used by ADTSECT.
¥ADTSECT Generates all the ADTs for CMS.
XAFT Generates a DSECT for an active file table.
¥AFTSECT Generates all the AFTs for CMS.
BATLIMIT Table of CPU, punch, and printer limits for user jobs running
under CMS batch.
BBOX DSECT of boundary box; contains beginning and ending addresses of
background communication region.
BGCOM DSECT of background communication region.
BGTCB Task Control Block.
¥CMSAVE Equivalent to SVCSAVE macro.
¥CMSCB Generates a list of simulated 05 control blocks.
¥CMSCVT Generates the communication vector table as supported by CMS.
¥CMSLEVEL Defines the value of 'release number' of the feature or program
product returned by QUERY CMSLEVEL. Refer to the CMSLEVEL macro
for more information.
COMPSHWT Sets the compiler switch on or off. Refer to VM/SP CMS Command
and Macro Reference.
%CORG Sets the origin for CSECT.
¥DBGSECT Generates a CSECT or DSECT for DEBUG environment variables.
DESTYP Used by the XEDIT module DMSXIN to determine filetype default
settings. The DESTYP block is defined in DMSXTF.
*DEVGEN gggﬁ;ates a device table for a given device; used by the DEVTAB
*DEVSECT DSECT for a device table.
¥DEVTAB Generates the device tables for the CMS nucleus.
XDIAG Issues a specified CP Diagnose instruction.
DIB Disk Information Blocks.
¥DIOSECT Generates a CSECT or DSECT for all I/0 information.
DISPW Generates the calling sequence for the display terminal interface.

Refer to VM/SP System Programmer's Guide.

Appendix A. CMS Macro Library 221

Licensed Material--Property of IEM

CMS Macro Function
DMSABN éBEgD the virtual machine. Refer to VM/SP System Programmer's
uide.
¥DMSCCB DSECT describes field of DOS command control block (CCB). Refer
to VM/SP Data Areas and Control Block Logic, Volume 2 (CMS).
¥DMSABW Allocates a work area for DMSABN.
¥DMSDM Reserved for IBM use.
¥DMSERR Sets up parameter list to type out a CMS error message; Refer to
the LINEDIT macro.
*DMSERT DMSERR work area DSECT.
DMSEXS Execute an instruction without nucleus protection. Refer to VM/SP
System lLoqgic and Problem Determination Guide--Volume 2.
DMSFREE Gets free storage. Refer to VM/SP System Programmer's Guide.
¥DMSFRES Calls system free storage service routines.
DMSFRET Releases free storage. Refer to VM/SP System Programmer's Guide.
¥DMSFREX Calls system free storage service routines.
XDMSFRT Generates a DSECT for free storage management work area.
¥DMSFRX Submacro called by DMSFRET.
DMSFST Sets up a file status table for a given file. Refer to VM/SP
System Programmer's Guide.
DMSKEY Sets nucleus protection on or off. Refer to VM/SP System Logic
and Problem Determination Guide--Volume 2.
¥DMSLN Called by DMSERR, LINEDIT macros.
¥DMSLNC Called by DMSERR, LINEDIT macros.
*¥DMSLND Called by DMSERR, LINEDIT macros.
XDMSLNP Called by DMSERR, LINEDIT macros.
¥DMSLNU Called by DMSERR, LINEDIT macros.
¥DMSLNY Called by DMSERR, LINEDIT macros.
¥DMSLNZ Called by DMSERR, LINEDIT macros.
¥DMSPID Passes a fileid in quotes into separate filename, filetype,
filemode, used by FSCB, and FSPOINT.
¥DMSTMS Used by RDTAPE, WRTAPE, and TAPECTL.
DOSAVE DSECT, describes fields in the logical transient area (LTA).
DOSCB DOS simulation control block used for simulation of the CMS file
control block (FCB).
DOSCON Creates CMS/D0S control blocks for DMSNUC.
DTFSD DTFSD DSECT.
DTFX DTF extension DSECT.

222 VM/SP System Logic and Problem Determination Guide (CMS)

IBM

Licensed Material--Property of
CMS Macro Function
XEDCB Frees storage control blocks initialized by DMSEDX for CMS edit
modules.
XEPLIST DSECT to map extended plist passed in register 0.
¥EQUATES Generates CMS equates for symbolic names.
XEXCP Issues an SVC 0.
¥EXTSECT Defines storage for the timer interrupt.
*FCB Generates a file control block (FCB) DSECT.
FSCB Sets up a file system control block. Refer to VM/SP_CMS Command
and Macro Reference.
¥FSCBD DSECT that describes fields in CMS PLIST for related commands.
FSCLOSE Closes a file. Refer to VM/SP CMS Command and Macro Reference.
XFSENTR Used by CMS file system routines at entry.
FSERASE Erases a file. Refer to VM/SP CMS Command and Macro Reference.
FSOPEN Opens a file. Refer to VM/SP _CMS Command and Macro Reference.
XFSPOINT Executes the CMS POINT function.
FSREAD Reads a record from a file. Refer to VM/SP CMS Command and Macro
Reference.
FSSTATE Checks for an existing file. Refer to VM/SP CMS Command and Macro
Reference.
¥FSTB Generates a file status table (file directory) block.
¥FSTD Entry to the file status table (file directory) block.
FSWRITE Writes a record into a disk file. Refer to YM/SP CMS Command and
Macro Reference.
XFVS Defines storage for file system variables.
XGETADT Gets a specified active disk table.
¥GETFST Gets a specified file status table.
HNDEXT Handles external and timer interrupts. Refer to VM/SP CMS Command
and Macro Referance.
HNDINT Handles interrupt on devices. Refer to VM/SP CMS Command and
Macro Reference.
HNDSVC Handles SVCs. Refer to VM/SP CMS Command and Macro Reference.
IJJHCPL Common VTOC handler input PLIST.
IJJHDLST Common VTOC handler descriptor list DSECT.
IJJHMFT1 Format 1 VTOC label DSECT.
xI0 Contains PLISTs needed to access CMS I/0 routines.
*I0OSECT Defines miscellaneous I/0 variables.
XKEYSECT Contains variables necessary for storage key handling.
¥KXCHK Checks to see if HX has been entered by the user.

Appendix A. CMS Macro Library

223

Licensed Material--Property of IBM

CMS Macro Function
LABREC DLBL/EXTENT record.
*LDM Loads double multiple (for floating point registers).
¥LDRST CMS Loader work area.
LINEDIT Types a line to the terminal. Refer to VM/SP_CMS Command and
Macro Reference.
LOCKTAB LOCK/UNLOCK resource table.
LPLDCT LABEL macro PLIST.
LSCREEN Used by XEDIT modules to describe the layout of a logical screen
on the physical screen. LSCREEN is built by module DMSXSD.
¥NUCON Generates a DSECT CMS nucleus constant area.
0CTS OPEN/CLOSE transient SVA PLIST.
¥OVSECT DMSOVS work area.
X0SFST Defines an 05 file status table for 0S5 ACCESS.
¥PDSSECT DSECT used for processing MACLIB files.
XPGMSECT Defines work area for DMSITP.
PIBTAB DSECT, program information block.
PIB2TAB DSECT, program information block extension.
PRINTL Prints a line on the printer. Refer to VM/S5P CMS Command and
Macro Reference.
PRSCB Used by the XEDIT subcommands PRESERVE and RESTORE. It is built
by module DMSXCT.
PUNCHC Punches a card. Refer to VM/SP_CMS Command and Macro Reference.
RDCARD Reads a card from the reader. Refer to VM/SP CMS Command and
Macro Reference.
RDTAPE Reads a record from tape. Refer to VM/SP CMS Command and Macro
Reference.
RDTERM Reads a record from the terminal. Refer to VM/SP CMS Command and
Macro Reference.
RECSAVE Used by XEDIT modules to describe the address list for nested
macro calls. It is built by DMSXMA.
REGEQU Generates symbolic register equates. Refer to VM/SP CMS Command
and Macro Reference.
XRELPAGES Sets the release pages flag.
REQDES Used by XEDIT modules to describe all XEDIT subcommands and their
operands and syntax. The REQDES block is defined in DMSXTB.
SAVEREG Used by XEDIT modules to save register contents during subroutine
calls.
¥STDM Storage for multiple floating-point registers.
STRINIT Initializes storage. Refer to VM/SP CMS Command and Macro
Reference.

224 VM/SP System Logic and Problem Determination Guide (CMS)

Licensed Material--Property of IBM

CMS Macro Function

*¥SUBSECT CSECT or DSECT for CMS SUBSET use.

¥SVCENT Issues a DMSKEY macro before calling an instruction.

%¥SVCSAVE System save area.

%SVCSECT Defines work area for DMSITS.

SYNSUB Used by XEDIT modules to describe the synonyms defined for XEDIT
subcommands. A SYNSUB block is built dynamically by DMSXDC each
time a synonym is defined.

SYSCOM DSECT of system communication region.

%¥SYSLOAD Puts in a specified register the address of a specified routine in
NUCON.

*SYSNAMES Saves system names table loaded via CMS routines.

TAPECTL Positions a tape. Refer to VM/SP CMS Command and Macro Reference.
*TSOBLKS Contains CPPL, UPT, PSCB, and the ECT for TS0 service routines.
*TSOGET Gets the address of the TS0 command processor parameter list

(CPPL).

*USE Generates assembler USING and DROP instructions, as needed.

¥USERSECT Creates user work area.

WAITD Néits until the next interrupt occurs for the specified device.
Refer to VM/SP_CMS Command and Macro Reference.

WAITT Waits until all pending I/0 to the terminal has completed. Refer
to VM/SP _CMS Command and Macro Reference.

WRTAPE Writes a record to tapa. Refer to VM/SP CMS Command and Macro
Reference.

WRTERM Writes a record to the terminal. Refer to VM/SP _CMS Command and
Macro Reference.

ZDESC Used by XEDIT modules to describe file characteristics.

ZFONC Used by XEDIT modules as a common work area. It is built by
DMSXBG only once in an editing session.

ZMACST Used by XEDIT modules to describe an XEDIT macro in storage. A
ZMACST block is built dynamically by DMSXMA each time a macro is
invoked.

ZPACK Used by XEDIT modules when a file is being packed or unpacked. It

is built by DMSXIN or DMSXFD.

Appendix A.

CMS Macro Library 225

Licensed Material--Property of IBM

226 VM/SP System Logic and Problem Determination Guide (CMS)

Licensed Material~--Property of IBM
APPENDIX B. CMS/DOS MACRO LIBRARY

C

CMS, in this release, contains a DOS macro library with the
following significant entries. A more complete list may be
obtained by invoking the DOSMACRO EXEC; this EXEC produces a
list of all the macros in the D0S library.

Macro Function

CCB Generates the D0S/VS command control block.

COMRG Returns address of background partitions communication region;
expands to SVC 33.

EOJ Normal processing termination; expands to SVC 0.

OPENR Activates a data file; simulated by DMSOR1, DMSOR2, DMSOR3.

STXIT Provides/terminatas supervisor linkage to user's program
check routines; simulated by DMSDOS.

IKQACB DSECT for VSAM ACB (access method control block).

IKQEXLST DSECT for VSAM EXLST control block (contains addresses
of user exit routines.

IKQRPL DSECT for VSAM RPL (request parameter list control block).
ABTAB DSECT of abnormal termination option table.
FICL DSECT, CMS/D0S first in class table.

\' NICL DSECT, CMS/D0S number in class table.

PUBOWNER DSECT, physical unit block ownership table.
ANCHTAB DSECT, DOS/VS anchor table.

FCHTAB DOS/VS faetch table containing fetch/load parameter list.
MAPPUB DSECT defines fields of CMS/D0S physical unit block (PUB).
PUBTAB DSECT same usage as MAPPUB.

EXCPW DSECT, work area for DMSXCP routine.

LUBTAB DSECT for CMS/DO0S logical unit block.

Appendix B. CMS/D0S Macro Library 227

Licensed Material--Property of IBM

228 VM/SP System Logic and Problem Determination Guida (CMS)

C

APPENDIX C. CMS/D0OS SUPPORT MODULES

Licensed Material--Property of IBM

The modules listed below (by phasae) make up tha CMSBAM segment.

The phasaes and modules (except DMSLBR) retain their VSE
identifiers.

Phase Modules

$IJBLKMD | IJBLKMD

$IJBLBSL | IJBLBSL

$IJGXCP IJGXCP

$I1JGXDI IJGXDI

$IJGXSDF | IJGXSDF

$IJGXSDU | IJGXSDU

$IJGXSDV | IJGXSDV

$IJGXSDW | IJGXSDW

$IJBLKMD | IJBLKMD

$IJGXSFI | IJGXSFI

$IJGXSRI IJGXSRI

$IJGXSSR | IJGXSSR

$IJGXSVI | IJGXSVI

$IJJGTOP | IJJGDACX IJJGDAI1 IJJGDAI2 IJJGDAMO IJJGDAMS ITJJGDAMX
IJJGDAOl IJJGDAO2 IJJGDAO3 IJJGDAO4 IJJGDAOS TIJJGDARL
IJJGDART IJJGDAVC IJJGMFBA IJJGMIOI IJJGMLLM IJJGMMBF
IJJGMSO0 IJJGMS10 IJJGMTOP IJJGSDBH IJJGSDBS IJJGSDCD
IJJGSDCI IJJGSDCI IJJGSDCW IJJGSDFP IJJGSDGC IJJGSDI1
1JJGSDI2 IJJGSDI3 1IJJGSDI4 1IJJGSDI5 IJJGSDLP IJJGSDMC
IJJGSDMF IJJGSDMN IJJGSDMO IJJGSDNV IJJGSDO1 TIJJGSDO2
1JJGSDO4 1IJJGSDO5 1IJJGSDO6 IJJGSDO7 IJJGSDRL IJJGSDSF
IJJGSDUL IJJGSDVH IJJGSDWI IJJGSDW2 IJJGSDW3 IJJGSDW4
IJJGSDXT IJJGVDOO IJJGVD1O IJJGVMOO TIJJGVM1O

$IJJHCVH | IJJHCCVO TIJJHCVHO TIJJHOPNO IJJHRDSO IJJHSRNO TIJJHWDSO

DMSLBR DMSLBR

Appendix C. CMS/DO0S Support Modules

229

Licensed Material--Property of IBM

230 VM/SP System Logic and Problem Determination Guide (CMS)

INDEX

A

abend
See abnormal termination (abend)
ABEND exit
contents of register 1 55
module 190
ABEND macro 24
abnormal termination (abend)
CMS
codes 213
recovery 215
ACCESS command, accessing 0S5 data
sets 31
access methods
BDAM 28, 129
BPAM 28, 129
BSAM/QSAM 28, 129
for non-CMS environments 129
0Ss 28, 129
VSAM 129
accessing
a virtual disk 91, 104
the file system 91, 104
active disk and file storage
management 91, 100
Active Disk Table
See ADT (Active Disk Table)
Active Fila Table
See AFT (Active File Table)
ADT (Active Disk Table)
used in disk management 91, 100
AFT (Active File Table)
used in file management 91, 100
allocated
free storage, types of 115
releasing storage allocated by
DMSFREE 122
releasing storage allocated by
GETMAIN 122
allocating storage 120
allocation
of gucleus free storage 116,
12
of user free storage 115, 120
selective directory update 100
allocation map, organization 100
AMSERV function, execution of 130
ASA control characters 108
ATTACH macro 26
AUSERRST, HALT option 216
Ag}gCR. IPL command processing 46,

B
batch
CMS
description of 179
modules usaed in 182
BDAM

CMS support of 28, 129
restrictions on 30

Licensed Material--Property of IBM

BLDL macro 25
block formats (CMS) 98
BPAM

CMS support of 28, 129
BSAM/QSAM, CMS support of 28, 129
BSAM, using the WRITE macro with a

3800 printer 30
BSP macro 27

c

called routine

register contents, when

started 62

start-up table 62
caller, returning to 63
carriage control characters,
CMS 108
CATCHECK command

module 192
chain header block

FLCLB in 119

FLCLN in 119

FLHC in 119
FLNU in 119
FLPA in 119
format 118

MAX in 119

NUM in 118
POINTER in 118
SKEY in 119

TCODE in 119
chain links 86
CHAP macro 26
CHECK macro 27
CHECK processing, 0S5 VSAM 136
CHKPT macro 27
CLOSE/TCLOSE macros 25
CLOSE, 0S VSAM, simulation of 135
CMS (Conversational Monitor System)
ABEND codes 215, 217
accessing the file system 91
batch
description of 179
modules used in 182
called routine table 62
CMS nucleus first part 19
command language 3
command processing 51, 60
command, handling 49
console management 53
devices supported 19
DEVTAB (Device Table) 19
diaghostic aids 211
directory 189
disk organization 85, 88, 98
disk storage management 91, 100
DMSFREE macro
description 116
free storage management 116
located in CMS storage 13
service routines 122
DMSFRES macro 122
DMSFRET macro 121
DMSITS module

Index 231

Licensed Material--Property of IBM

user and transient areas 62
DMSNUC (nucleus constant area)
located in CMS storage 13
structure of 19
d{g:mic storage management 91,
error codes
DMSFREE 213
DMSFRES 213
DMSFRET 213
file
executing 51
processing 51
file status table block 86, 94
file status tables 85, 92
file system
accessing 91
description of 3
managing 85
routines that access the file
system 104
512-, 1K-, 2K-, 4K-byte
records &, 100
800-byte records ¢, 6
files
512-, lk'r 2k-, Qk-bytﬂ
records 92
800-byte record 85
first command processing 49
free storage management
DMSFREE 116
GETMAIN 115
functional information 13
handling of PSW keys 124
I70 control flow 106
I/0 operations 105
initialization for 0S SVC
handling 47
interactive console
environment 51
interface with display
terminals 19
interrupt handling 9, 113
introduction 3
IPL command processing 646
loader 67
loader tables 14
loading from a card readar 45
maintaining interactive
session 51
master file directory 88, 98
miscellaneous functions 179
module entry point
directory 190
nucleus 14
0S and VSE VSAM
functions supported 35
hardware devices
supported 36
ovaerview of functional areas 38
printer carriage control 108
printing a file 108
processing commands entered
during 51
program
development facilities 7
organization 37
punching a card 107
read disk I/0 110
reading a card 106
record formats 86
register usage 13
restrictions on, as a saved
system 127

returning to the calling
routine 63

routines that access the file
system 104

simulation

of 05 141

of VSE environment 157
storage

constant initialization 45

maps 16

structure of 13
SVC handling 54
system functions 39
system save area
modification 64
transient area 14, 62
user
area 19
program area 14
USERSECT 19
virtual devices used in 212
virtual machine
initialization 45
VSE support 35
VSE VSAM and 0S
functions supported by
CMS 35
hardware devices
supported 36
write disk I0 110

CMS commands

ACCESS 31

file system manipulation 85
FILEDEF 31

pa;sed via DMSINS, execution
o

process of, entered during
CMS 52

CMS macro library 221
CMS/D0S

CLOSE functions 161, 162
compatible with VSE releases via
CMSBAM DCSS 163
DOSLKED command 165
environment termination command
DMSBAB 178
DMSDMP 178
DMSITP 178
execution related control
commands 164
FETCH command 164
initialization 158
initialization for 05 VSAM
processing 134
OPEN functions 161, 162
service commands

DMSDSL 178
DMSDSV 178
DMSPRV 178
DMSRRV 178
DMSSRV 178
ESERV 178

support modules 229

SVC functions
AB EXIT SVC 95 176
AB STIXIT SVC 37 172
CANCEL SVC 6 169
CDLOAD SVC 65 174
COMRG SVC 33 172
CONTROL SVC 8 169
EOJ SVC 14 170
EXCP SVC 0 168
EXTRACT SVC 98 176
FETCH SVC 1 168

232 VM/SP System Logic and Problem Daetermination Guida (CMS)

C

FETCH SVC 2 168
FREEVIS SVC 62 174
GETIME SVC 3¢ 172
GETVCE SVC 99 176
GETVIS SVC 61 173
JOB CTL. 170
LBRET SVC 9 170
LIOCS DIAG SVC 50 173
LOAD SVC 4 169
MVCOM SVC 5 169
PC EXIT SVC 17 171
PC STXIT SVC 16 171
POST SVC 40 172
RELEASE SVC 64 174
RELPAGE SVC 85 175
RUNMODE SVC 66 174
SECTVAL SVC 75 175
simulation of 166
SVC 26 171
SYSFIL SVC 103 176
TRANS/RETURN SVC 11 170
USE SVC 63 174
WAIT SVC 7 169
SVC functions not
supported 166-178
SVC functions treated as
NOOPs 166-178
SVC handling 132
upgrade to VSE, through support
modules in CMSBAM 229
CMS/D0S macro library 229
CMS/VSAM error return
processing 136
CMSAMS-CMSVSAM DCSSs, storage
relationships with DMSAMS 131
CMSBAM DCSS, contents of 163
CMSBAM segment, modules that
comprisae this DCSS 229
CMSCB, defined 143
CMSCVT, defined 143
CMSD0OS-CMSVSAM-user program storage
relationships 132
CMSVSAM-CMSDOS-user program storage
relationships 132
command
handling, CMS 51, 52
language, CMS 3
processing
SET D0OS ON 49
commands
Sea CMS commands
completion processing
D0OS VSAM programs 136
0S VSAM programs 136
console
management, CMS 53
control block, manipulation macros,
simulation of, VSAM 134
control card routine
ENTRY card 76
LIBRARY card 77
control flow for I/0
processing 105
conventions
linkage 54
SVCs 54
Conversational Monitor System
See CMS (Conversational Monitor
System)
creating program names dynamically,
for use via SVC 202 65

Licensed Material--Property of IBM

data base, loader 78
data set control block (DSCB) 28
data sets
0s
accessing 31
defining 31
reading 31
DCB macro 27
deallocation map 98
DELETE macro 24
DEQ macro 26
DETACH macro 27
devices, CMS supported 19
DEVTAB (Device Table) 19
DEVTYPE macro 25
diagnostic aids, CMS 211
directory, CMS 189
disk
I»0, CMS 110
label, organization 98
organization in CMS 85
disk and file storage
management 91, 100
disk space, read/uwrite,
allocation 90
disk storage management
cMS 99
QMSK used in 90
QQMSK used in 90
DISKID function
module 192
display terminals, CMS
interface 19
DISPSW macro 20
DMSABN module
used in CMS batch
processing 182
DMSACC module
accassing a virtual disk 91
0S access method module 152
DMSACF module
0S5 access method module 152
DMSACM module
0S access method module 152
DMSALU module
0S accass method module 153
DMSAMS module
DMSAMS-CMSAMS-CMSVSAM storage
relationships 131
operation of 131
DMSARE module
0S access maethod module 153
DMSASN module
invoking the ASSGN command 159
DMSBOP module
simulates VSE OPEN 161
VSAM processing 132
DMSBTB module
batch processing, bootstrap
module 179
genaeral operation of 179
DMSBTP module
batch processing 180
general operation of 180
DMSCIO module
used in CMS batch
processing 182
DMSCLS module
processes CLOSE requests 162
VSAM processing 133

Index 233

Licensed Material--Property of IBM

234

DMSCPF module
maintaining an interactive
console environment 51
used in CMS batch
processing 182
DMSCRD module
maintaining an interactive
console environment 51
used in CMS batch
processing 182
DMSDLB module
invoking the CMS/D0S DLBL
command 160
DMSDLK module
simulating the VSE linkage
editor function 165
DMSDOS module
description of 132
DMSD0S VSAM processing 133
DMSDSK module
used in CMS batch
processing 182
DMSDSL module
processes CMS/D0S service
commands 178
DMSDSV module
processes CMS/D0S service
commands 178
DMSERR module
AUSERRST NUCON field 216
HALT option 216
used in CMS batch
processing 182
DMSEXS module
format of 125
DMSFCH module 165
DMSFET module 165
DMSFLD module
FILEDEF command 151
0S access method module 153
used in CMS batch
processing 182
DMSFRE module
method of operation 120
used in free storage
management 13
DMSFRE service routine 122
DMSFREE macro
allocating nucleus free
storage 120
allocating user free
storage 120
error codes 128, 213
format of 116
free storage allocation 116
free storage pointers 116
operands 116
storage management 116
DMSFRES macro
error codes 128, 213
format of 122
operands 122
DMSFRET macro
error codes 128, 213
format of 121
operands 121
releasing storage 121
DMSINI module
used in CMS batch
processing 182
DMSINS module
executing commands 51
used in CMS batch
processing 182

DMSINT module 53
DMSIOW module 11
DMSITE module 11
used in CMS batch
processing 182
DMSITI module 10
DMSITP module 11, 178
DMSITS module 9, 54
DMSKEY macro
format of 125
DMSLDR module
PRSERCH routinae 77
REFADR routine 77
used in CMS batch
processing 182
DMSLDS module
LISTDS command 151
0S access method module 153
DMSLFS module
0S5 access method module 154
DMSLKD module
LKED command 152
DMSLLU module
request a list of CMS/DO0S
physical units 160
DMSMVE module
MOVEFILE command 151
0S5 access method module 154
used in CMS batch
processing 182
DMSNUC module
located in CMS storage 13
structure of 19
DMSOPT module
saetting compiler options 159
DMSOSR module
OSRUN command 151
DMSPIO module
builds printer CCW chain 108

carriage control characters used

by 108

performing channel testing 108

used in CMS batch
processing 182
DMSPRV module
processes CMS/D0S service
commands 178
DMSQRS module
0S access method module 157
DMSQRY module
displaying CMS environment
options 49
QUERY command 152
DMSRDC module
used in CMS batch
processing 182
DMSR0OS module
common routines 157
0S access method module 154
DMSRRV module
processes CMS/D0S service
commands 178
DMSSCT module
0S access method module 155
DMSSEB module
0S access method module 156
DMSSET module
initializing CMS/D0S operating
environment 158
used in CMS batch
processing 182
DMSSOP module
0S access method module 156
DMSSRV module

VM/SP System Logic and Problem Determination Guide (CMS)

processes CMS/D0S service
commands 178
DMSSTT module
0S5 access method modulae 157
STATE command 152
DMSSVT module
0S access method module 156
DMSVIP module
intarface for 0S VSAM requests
and CMS/D0S and VSE/VSAM
routines 133
DMSXCP module
handles VSAM requasts 132
D0OS
CLOSE functions 161
initialization
assign logical and physical
units 159
associate a DTF table
filename with a logical
unit 160
for 0S VSAM processing 134
list assignments of CMS/D0S
logical units 160
resetting CMS/D0S environment
options 159
resetting compiler
options 159
setting CMS/D0S environment
options 159
setting compiler options 159
OPEN functions 161
VSAM
function supported by CMS 35
hardware devices supported by
CMS 36
DOS VSAM
completion processing 136
execution of, for a VSE
user 132
D0S-0S5-VSAM-user program storage
relationships 132
DOSCB 160
creation of 130
DSCB 28, 129
DTF table
closing filaes associated
with 162
opening files associated
with 161
DTF tables, disk filaes in FB-512
devices 161

dump
DMSDBD 192
DMSDMP 178, 193
SVC 13 145

SVC 51 26, 147
when debugging 13
dynamic linkage, via SUBCOM 65
dynamic storage management
active disks 91, 100
activa files 91, 100

editor, VM/SP System Product
Editor 5
END card routine 75
end-of-command exit, QSAM
contents of register 1 55
module 201

Licensed Material--Property of IBM

TEOVEXIT macro 137
ENQ macro 26
ENTRY control card 76
entry point directory, CMS 190
environments
access method support for
non-CMS 129
ERET error routine processing 136
error codes
from DMSFREE 128, 213
from DMSFRES 128, 213
from DMSFRET 128, 213
error return, CMS/VSAM, processing
of 136
error routine, ERET,
processing 136
ESD card codes 79
ESD type 0 card routine 69
ESD type 1 card routine 70
ESD type 10 routine 72

ESD type 2 card routine 71
ESD type 4 card routine 72
ESD type 5 card routine 72
ESD type 6 card routine 72
ESERV

processes CMS/D0S service
commands 178
ESIDTB (ESD ID table) entry 78
EXEC 2
logic flow for modules
processing EXEC 2
functions 184
processing 184
EXECO0S command
module 202
executing
CMS files 51
text files 67
EXIT macro 23
exit routine
QSAM tape end-of-volume 137
user, processing of 136
external interrupt
BLIP character 11
HNDEXT macro 11
in CMS 11
timer 11
EXTRACT macro 26

FB-512 device, CMS block format 98
FCB (file control block) 13
FEOV macro 25
file
arrangement of fixed-length
records, in CMS 88
arrangement of variable-length
records, in CMS 88
management 3
file control block
See FCB (file control block)
file directory
physical organization 88
selective directory update 100
file status table
Sea FST (file status table)
file status table block
format 86
file system
CMS, management 85

Index 235

Licensed Material--Property of IEBM

manipulation commands 83 high-storage nucleus chain 118
512-, lk-, 2k-, 4k-byte high-storage user chain 118
records 92
800-byte record 85 ’
FILEDEF command
AUXPROC option 33 I
defining 0S5 data saets 31
flow 151
format of 31 I/0
files, 05 format, support of 28 disk, CMS 105, 110
FIND macro 25 interrupt, in CMS 10
first chain link format 86 macros, 0S5 VSAM, simulation
first command processing, CMS 49 of 135
format I/0 control flow, CMS 106
DMSEXS macro 125 I/0 operations, CMS 105
DMSFRES macro 122 ICS card routine 69
DMSKEY macro 125 IDENTIFY macro 26
first chain link, in CMS 87 {MAGEMOD command, used to modify a
nth chain link, in CMS 87 3800 named system 47
system save area 6% immediate commmands
user save area 6% contents of register 1 55
free chain element format 119 module 195
free storage management initialization
allocation of CMS virtual machine 45
nucleus 120 CMS/D0S, for 0S VSAM
user 120 processing 134
DMSFREE 116 DMSINS module 45
GETMAIN 115 for a named system &7
pointers 116, 117 for a saved system 47
free storage table for 0S SVC handling, CMS 47
FREETAB 118 storage contents, CMS 45
NUCCODE 118 system tables 45
SYSCODE 118 VSE 158
TRNCODE 118 input restrictions, loader 80
USERCODE 118 input/output
FREEDBUF macro 26 See I1/0
FREEMAIN macro 24 interactive console environment,
FREEPOOL macro 24 CMS 51
FREETAB free storage table 118 interrupt handling
FST (file status table) CMS
CMS 85, 92 input/output interrupts 10
format 86, 94 SVC interrupts 9
functional area, overviaw, CMS 38 terminal interrupts 10
DMSITS 9

external interrupts 11

machine check interrupts 11

G program interrupts 11
reader/punch/printer
interrupts 11

GENCB processing 135 user-controlled device
GET macro 29 interrupts 11
GETMAIN interrupts, processing 113
free element chain 119 introduction, CMS
free storage INTSVC 54
allocation 115 IPL
management pointers 116 by device name 15
GETMAIN/FREEMAIN macros 24 by system name 15
releasing storage allocated by IPL command processing
GETMAIN 122 AUTOCR 46, 217
simulation 16 CMS 46
GETMAIN macro 23 IUCV (Inter-User Communication
GETPOOL macro 2% Vehicle)

module 196

H

HALT option 216
AUSERRST NUCON field 217
handling

0S files
on CMS disks 21
on 0S5 and DOS disks 21

236 VM/SP System Logic and Problem Determination Guide (CMS)

key
read PSW 126
real storage 126
virtual PSW 126
virtual storage 126
keys, storage protection 124

LIBRARY control card 77
LINK macro 2%
linkage conventions
SVCs 54
LISTDS command flow 151
LKED command flow 152
LOAD macro 24
loader
CMS 80
data base 78
input restrictions 80
loader tables, CMS 14
loading
CMS, from card reader 45
text files 67
low-storage DMSFREE nucleus frea
storage area 14
low-storage DMSFREE user frae
storage area 13
low-storage nucleus chain 118
low-storage user chain 118

machine carriage control
charactaers 108
machine check, interrupt, in
cMS 11
macro library
cMs 221
CMS/D0S 229
macros
control block manipulation,
VSAM 135
GENCB 135
I/0
CHECK 136
ENDREQ 135
ERASE 135
GET 135
POINT 135
PUT 135
MODCB 135
0s 135
SHOWCB 135
TESTCB 135
maintaining interactive session,
CMS 51
master file directory
cMS 88, 98
structure 89
method of operation, for EXEC 2
modules 184
miscellaneous CMS functions 179
MODCB processing 135

Licensed Material--Property of IBM

module entry point directory,
CMS 190

module flow description, for the
new VM/SP editor 5

MOVEFILE command flow 151

named system initialization 47
named system, modifying one with
the IMAGEMOD command 47
non-CMS operating environments 129
NOTE macro 27
Nth chain link, format 86
nucleus
free storage, allocation 120
storage copy of 45
nucleus (CMS) 14

0

OPEN/OPENJ macros 25
OPEN, 0S VSAM, simulation of 134
operating environments
non-CMS, access method support
for 129
Operating System
Sea 0S (Operating System)
operation
of DMSINT 53
of DMSITS 54
organization, virtual disk 85
0S (Operating System)
control block functions, CMS
simulation of 143
data management simulation 21
data sets, reading 31
formatted files 28
handling
files on CMS disks 21
files on 0S or DOS disks 21
macros
ABEND 24
ATTACH 26
BLDL 25
BSP 27
CHAP 26
CHECK 27
CHKPT 27
CLOSE/TCLOSE 25
DCB 22, 27
DCBD 22
DELETE 24
DEQ 26
description of 23
DETACH 27
DEVTYPE 25
ENQ 26
EXIT 23
EXTRACT 26
FEQV 25
FIND 25
FREEDBUF 26
FREEMAIN 24
FREEPOOL 24
GET 29
GETMAIN 23
GETMAIN/FREEMAIN 24

Index 237

Licensed Material--Property of IBM

0s

GETPOOL 24
IDENTIFY 26
LINK 24
LOAD 24
NOTE 27
OPEN/OPENJ 25
PGRLSE 27
POINT 27
POST 23
PUT 29
PUTX 29
RDJFCB 27
READ 29
RESTORE 24
RETURN 23
SAVE 22
SNAP 26
SPIE 24
STAE 27
STAX 27
STIMER 26
STOW 25
SYNADAF 27
SYNADRLS 27
TCLEARQ 27
TGET/TPUT 27
TIME 24
TTIMER 26
under CMS 21
WAIT 23
WRITE 29
WTO/WTOR 25
XCTL 24
XDAP 23
VSAM

functiogs supported by

CMS

hardware devices supportaed by

CMS 36

access method modules

DMSACC 152

DMSACF 152

DMSACM 152

DMSALU 153

DMSARE 153

DMSFLD
CONCAT 153
DSN 153
MEMBER 153

DMSLDS 153

DMSLFS 154

DMSMVE 154

DMSQRS
DISK routine 157
SEARCH routine 157

DMSROS
CHKSENSE routina 157
CHKXTNT routine 157
CHRCNVRT routine 157
common routines 157
DISKIO routine 157
GETALT routine 157
RDCNT routine 157
ROSACC routine 154
ROSFIND routine 155
ROSNTPTB routine 155
ROSRPS routine 155
ROSSTRET routine 154
ROSSTT routine 154
SETXTNT routine 157

DMSSCT
CKCONCAT routina 156
FIND (Type C) routine
NOTE routine 155

156

POINT routine 156
DMSSEB

EOBROUTN routine 156

OSREAD routine 156

DMSSOP 156
DMSSTT 157
DMSSVT

BLDL routine 156
BSP routine 156
FIND (Type D) routine 156
0S5 access method support 129
0S ACCESS, flow of commands used
in 151
05 functions
defined 141
simulated by CMS 142
SVC numbers of 142
05 macro simulation SVC calls 57
0S simulation by CMS 142
0S simulation routines
ABEND SVC 13 145
ATTACH SVC 642 147
BACKSPACE SVC 69 149
BLDL/FIND (Type D) SVC 18 145
BSP 143
CHAP SVC 44 147
CHECK 150
CHKPT SVC 63 148
CLOSE/TCLOSE SVC 20/23 146
DCB 143
DCBD 143
DELETE SVC 9 144
DEQ SVC 48 147
DETACH SVC 62 148
DEVTYPE SVC 24 146
ENQ SVC 56 148
EXIT SVC 3 144
EXTRACT SVC 40 146
FEOV SVC 31 146
FREEDBUF SVC 57 148
FREEMAIN SVC 5 144
FREEPOOL 142
GET/PUT 150
GETMAIN SVC 4 144
GETMAIN/FREEMAIN SVC 10 145
GETPOOL 145
IDENTIFY SVC 41 146
LINK SVC 6 144
LOAD SVC 8 144
NOTE/POINT/FIND (Type C) 150
notes on 150
OPEN/OPENJ SVC 19722 146
PGRLSE SVC 112 150
POST SVC 2 144
provided by CMS 143
RDJFCB SVC 64 148
READ/WRITE 150
RESTORE SVC 17 145
RETURN 1642, 143
SAVE 143
SNAP SVC 51 147
SPIE SVC 14 145
STAE SVC 60 148
STAX SVC 96 150
STIMER SVC 47 147
STOW SVC 21 146
SYNAD SVC 68 149
SYNADAF 142
SYNADRLS 142
TCLEARQ SVC 94 149
TGET/TPUT SVC 93 149
TIME SVC 11 145
TRKBAL SVC 25 146
TTIMER SVC 46 147

238 VM/SP System Logic and Problem Determination Guide (CMS)

used by Assembler 143
used by FORTRAN 143
used by PL/I 143
WAIT SVC 1 143
WTO/WTOR SVC 35 146
XCTL SVC 7 144
XDAP SVC 0 143
0S SVC handling, initialization
for, CMS 47
0S VSAM
CHECK processing 136
CLOSE, simulation of 135
execution, user 133
I/0 macros, simulation of 135
OPEN, simulation of 134
program completion
processing 136
05-D0S-VSAM-user program storage
relationships 134
OSRUN command flow 151
overview, CMS, functional areas 38

P

patch control block (PCB) 80
PGRLSE macro 27
POINT macro 27
pointer blocks
fixed-length record format 96
variable-length record
format 97
pointers, free storage
management 116, 117
POST macro 23
printer interruptions 11
printing a file, CMS 108
ASA control characters 108
machine carriage control
characters 108
processing
CMS files 51
commands entered during CMS
session 51
interrupts 113
VSE system control commands 158
program
interruption, in CMS 11
organization, CMS 37
program areas
transient 62
user 62
Program Status Word
See PSW (Program Status Word)
PROP (programmable operator)
modules 199
PRSERCH routine 77
PSW (Program Status Word)
handling of PSW keys 124
storage protection keys 124
PSW keys 124
punch interruptions 11
punching a card, CMS 107
PUT macro 29
PUTX macro 29

Licensed Material--Property of IBM

Q

QMSK data block 90
QQMSK table 90
QSAM

tape end-of-volume exit 137
QSAM, using the PUT macro with a
3800 printer 30
query

modules 200
QUERY command flow 152
quarying options in the virtual
machine environment 49

RDJFCB macro 27

READ macro 29
read/write disk space,
allocation 90, 99
reader interruptions 11

reading

a card 106

0S data sets 31
real

PSW key 126

storage key 126
record formats, CMS 86, 95, 96
REFADR routine 77

REFTBL
ADDRESS field 80
entry 79

FLAGl byte 79
FLAG2 byte 80
INFO field 79
NAME field 79
VALUE field 80

raegister
contents of register 1 with SVC
202 55
contents when called routine
starts 62

restoration by called
routine 63
registers, usage, CMS 13
RELEASE command flow 152
raeleasing
allocated 122
storage 121
REP card routine 73
RESERVE command
modules 201
RESTORE macro 24
restrictions
BDAM 30
input, loader 80
on CMS as a saved system 127
return location, when returning to
caller 63
RETURN macro 23
returning
to caller
register restoration 63
return location 63
RLD card routine 74

Index 239

Licensaed Material--Property of IBM

240

-]

save area
CMS system 64
user 64
saved system
effects on CMS 127
handling of, CP 126
initialization 47
restrictions on CMS 127
selective directory update 100
saervice routines
DMSFREE 122
TS0, support of 141
SET DOS ON command processing,
VSAM 49
SETPRT command, initializing a 3800
printer 109)
setting options in the virtual
machine environment 69
SHOWCB processing 135
simulating VSE functions, via tha
CMSBAM DCSS 163
simulation routines, 0S
See 0S simulation routines
simulation, of 0S by CMS 141
SLC card routine 68
SNAP macro 26
spanned records, usage 29
SPIE macro 24
STAE macro 27
start-up table, called routine 62
STATE command flow 152
status tables, file 85, 92
STAX macro 27
STIMER macro 26
storage
allocated by DMSFREE 116
allocated by GETMAIN 115
allocation 115, 116
CMS 13
CMS nucleus first part 14
content initialization 45
freae, allocation 115
map, CMS 16
organization of CMS files
512- 1K- 2K- 4K-byte
records 92
800-byte record 85
protection keys 124
releasing 121, 122
storage relationships,
D0S-05-VSAM-user program 132
STOW maAcro 25
STRINI macro 115
SUBCOM, dynamic linkage
enhaacements for use with SVC
202 65
sugport modules, CMS/D0S 229
SV
handling
by user 57
commands entered from a
terminal 58
invalid SVCs 58
linkage 54
0S SVC simulation 57
type of SVC 54
VSE SVC simulation 57
handling for CMS/D0S 132
interrupt
CMS internal linkage SVCs 9

other CMS SVCs 9
types
user—handled 57
201 54
202 54
203 56
SVC calls
invalid 58
0S5 macro simulation 57
VSE 57
SVC functions supported in CMS/DO0S
CMS modules handling 167
for VSE 166
SVC 201 54
SVC 202
saarch hiararchy 58
using with SUBCOM linkage
enhancements 65
SVC 203 56
SYNADAF macro 27
SYNADRLS macro 27
system
file, management 83
functions, CMS 39
save area 64
table initialization, CMS 45
System Product Interpreter
CSECTS 182
modules 200
processing 188

T

table entry
ESIDTB 78
REFTBL 79
table, start-up, called routine 62
TCLEARQ macro 27
TEOVEXIT macro
description 137
rastrictions 140
return codes 140
terminal interruptions 10
termination, abnormal
Sea abnormal termination (abend)
TESTCB processing 135
text files
executing 67
loading 67
TGET/TPUT macro 27
TIME macro 2%
tokenized PLIST 56
transient program areas 14, 62
TS0 service routine, support
of 141
TTIMER macro 26
TXT card routine 72

u

user
exit routine processing 136
free storage, allocation of 120
handled SVCs 57
program areas 164, 62
save area 64

user program—-CMSD0OS-CMSVSAM storage

relationships 132

VYM/SP System Logic and Problem Determination Guide (CMS)

9

user program—-VYSAM-D0S-0S storage
relationships 134

user-control device interrupts 11
USERSECT (User Area) 19

v

virtual
devices used in CMS 212
disk

accessing 91, 104
organization 85, 92
physical organization 88, 98
PSW key 124
virtual machine
environment
querying options 49
setting options 49
initialization, CMS 45
Virtual Machine/System Product
See VM/SP (Virtual
Machine/System Product)
virtual storage, key 126
virtual 3800 printer, initializing
via the CMS SETPRT command 109
VM/SP (Virtual Machine/System
Product)
CMS 3
System Product Editor, managing
CMS files 5
Volume Table of Contents (VTOC},
support of 28
VPK of 0 127
VSAM
CLOSE, 0S, simulation of 135
CMS support of 129
control block manipulation
macros, simulation of 135
DMSD0OS processing 133
execution for 0S user 133
execution of, for a VSE
user 132
OPEN, 0S, simulation of 134
SET DOS ON command
processing 49
support of 28
VSAM-D0S-0S—-user program storage
relationships 134
VSE
environment simulation under
CMS 157
FETCH function 165
initialization 158
Linkage Editor, CMS, simulation
of 165
support, under CMS 35
SVC calls 57
system control commands,
processing of 158
VSE commands 158
VSE support, under CMS 35
VSE SVCs, supported via CMS/D0S
simulation routines 166
VSE VSAM functions, CMS support
for 35

Licensed Material--Property of IBM

WAIT macro 23
WAITECB macro
module 204
WRITE macro 29
WTO/WTOR macros 25

X

XCTL macro 24
XDAP macro 23
XEDIT modules 204

3
3800
initializing a 3800 printer with
the SETPRT command 109
modifying a 3800 named system,
with the IMAGEMOD command 47
using Q5AM and BSAM macros to
product output 30
5

512-, 1K-, 2K-, 4K-byte records
access file system 104
allocation map 99
block formats 98
chaining records 93
directory update 100
file status tables 92
file system for 101
format 96, 97
organization, virtual disk 98
pointer blocks 94
read/write disk storage 99
storage management 100

8

800-byte records %, 6
access the file system 91
chain links 86
chaining records 85
file status tables 85
master file directory 88
organization, virtual disk 88
read/write disk storage 90
storage management 91

Index 241

Licensed Material — Property of IBM

LY20-0893-2

B B

VM/SP Sys. Logic & Prob. Deter. Guide Vol. 2 (CMS) (File No. S370/4300-39) Printed in U.S.A. LY20-0893-2

Staples can cause problems with automated mail sorting equipment.

Note:

Please use pressure sensitive or other gummed tape to seal this form.

VM/SP System Logic and READER’'S

Problem Determination Guide COMMENT
Volume 2 (CMS) FORM
LY20-0893-2

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. You may use this form to communicate your
comments about this publication, its organization, or subject matter, with the understanding
that IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

Your comments will be sent to the author’s department for whatever review and action, if

any, are deemed appropriate. Comments may be written in your own language; English is
not required.

Note: Copies of IBM publications are not stocked at the location to which this form is
addressed. Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your IBM representative or to the IBM branch office serving your locality.

Yes No
« Does the publication meet your needs? O O
« Did you find the material:
Easy to read and understand? O O
Organized for convenient use? O O
Complete? O O
Well illustrated? O O
Written for your technical level? O O
« What is your occupation?
« How do you use this publication:
As an introduction to the subject? O As an instructor in class? O
For advanced knowledge of the subject? O As a student in class? O
To learn about operating procedures? O As a reference manual? O

Your comments:

If you would like a reply, please supply your name and address on the reverse side of this form.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or
you may mail directly to the address in the Edition Notice on the back of the title page.)

Licensed Material — Property of IBM
LY20-0893-2

Reader’'s Comment Form

U 6UOIY P10 IO IND) — — = = = —

¢-€680-0CAT "V'S'N Ul paiulld (6E-00EY/0LES "ON 3lld) (SIND) Z "IOA 3PING “1a18Q "qo.d 1 91607 "SAS 4S/NA

Fold and Tape Please Do Not Staple Fold and Tape

...

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

1
|
|
1
!
|
1
—————
e ——
BUSINESS REPLY MAIL S—
I |
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. S :
I
POSTAGE WILL BE PAID BY ADDRESSEE: I :
I |
— !
International Business Machines Corporation ——
Department G60 IEEE——
P.0. Box & —
Endicott, New York 13760 [r—
I
|
|
... '
Fold Fold
If you would like a reply, please print:
Your Name
Company Name Department
Street Address
City
State Zip Code
— m— - IBM Branch Office serving you
==

Staples can cause problems with automated mail sorting equipment.

Note:

Please use pressure sensitive or other gummed tape to seal this form.

VM/SP System Logic and READER’S

Problem Determination Guide COMMENT
Volume 2 (CMS) FORM
LY20-0893-2

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. You may use this form to communicate your
comments about this publication, its organization, or subject matter, with the understanding
that IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

Your comments will be sent to the author’s department for whatever review and action, if

any, are deemed appropriate. Comments may be written in your own language; English is
not required.

Note: Copies of IBM publications are not stocked at the location to which this form is
addressed. Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your IBM representative or to the IBM branch office serving your locality.

Yes No
« Does the publication meet your needs? O O
« Did you find the material:
Easy to read and understand? O O
Organized for convenient use? O O
Complete? O O
Well illustrated? O O
Written for your technical level? O O
« What is your occupation?
« How do you use this publication:
As an introduction to the subject? O As an instructor in class?
For advanced knowledge of the subject? O As a student in class?

To learn about operating procedures? O As a reference manual?

ooao

Your comments:

If you would like a reply, please supply your name and address on the reverse side of this form.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or
you may mail directly to the address in the Edition Notice on the back of the title page.)

Licensed Material — Property of IBM
LY20-0893-2

Reader’'s Comment Form

Fold and Tape Please Do Not Staple

Fold and Tape

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Department G60

P.O0.Box 6

Endicott, New York 13760

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

UM BUOIY PIOF I0IND) = — = = = —

If you would like a reply, please print:

Your Name

Company Name Department
Street Address
City
State Zip Code

IBM Branch Office serving you

C-€680-0ZA71 "V'S’N Ul paiulld (6€-00EV/0LES "ON 3i1d) (SIND) Z °[OA 8pINY “1d1aq "qo.d 13 91607 "SAS dS/NIA

C

C

\l C

.”. Sy 1 =2 e . \.vaﬂf. i - _.M- - w e, ||w| -

Guide Vol. 2 (CMS) %___m_z?@#. 0-39) Printed in US.A." L

>
s

s A e
L o r Lt
" P e RS TN RS

