Program Product

SC19-6210-1
File No. S370/4300-39

IBM Virtual Machine/
System Product:
CMS User's

Guide

Program Number 5664-167

Release 2

fre 2

Second Edition (April 1982)

This edition, SC19-6210-1 applies to Release 2 of the IBM Virtual
Machine/System Product (5664-167) and to all subsequent releases and
modifications unless otherwise indicated in new editions or Technical
Newsletters. This edition is a major revision of SC19-6210-0.

Changes are periodically made to the information contained herein;
before using this publication in connection with the operation of IBM
systems, consult the IBM System/370 and 4300 Processors Bibliography,
GC20-0001, for the editions that are applicable and current.

Summary of Amendments
For a list of changes, see page iii.

Technical changes and additions to text or illustrations are indicated
by a vertical bar to the left of the change.

It is possible that this material may contain reference to, or
information about, IBM products (machines and programs), programming, or
services that are not announced in your country. Such references or
information must not be construed to mean that IBM intends to announce
such IBM products, programming, or services in your country.

Publications are not stocked at the address given below; requests for
copies of IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this
publication; if the form has been removed, comments may be addressed to
IBM Programming Publicatiomns, Dept. G60, P.O. Box 6, Endicott, New York,
U.S.A. 13760. IBM may use or distribute any of the information you
supply in anyway it believes appropriate without incurring any
obligation whatever. You may, of course, continue to use the
information you supply.

C) Copyright International Business Machines Corporation 1980,
1981, 1982

restructuring of the CMS nucleus.
and the enhanced
included.
and functions

Support of IOCP

following commands

for Release
DEFAULTS, FILELIST,
IDENTIFY, NUCXDROP,
NUCXLOAD,
NAMEFIND,
READCARD,
SENDFILE,
are documented
VM/SP CHS
Reference.

SUMMARY OF AMENDMENTS
for SC19-6210-1
for VM/SP Release 2

This major revision incorporates
minor technical and editorial
changes.

Summary of Amendaments iii

iv

IBM VYM/SP: CMS User's Guide

This publication is intended for the
general CMS user. It contains information
describing the interactive facilities of
CMS, and includes examples showing you how
to use CHMS.

"Part 1. OUnderstanding CMS" contains
sections that describe, in general terns,
the CMS facilities and the CMS and CP

comnmands that you can use to control your
virtual machine. If you are an experienced
programmer vho has used interactive
terninal systems before, you may be able to
refer directly to the VM/SP CMS Command and

Macro Reference publication to find
specific details about CMS commands that
are summarized in this part. Othervise,

you may need to refer to later sections of

this publication to gain a broader

background in using CHMS. The topics

discussed in Part 1 are:

e What It Means To Have a CMS Virtual
Machine

e VM/SP-CMS Environments and Mode

Switching
e What You Can Do with VM/SP-CMS Commands
e The CMS File Systenm
e The Editors
e Introduction to the CMS EXEC Processors

e Using Real Printers, Punches,
and Tapes

Readers,

"part 2. Program Development Using CMS"™
is primarily for applications programmers
who want to use CMS to develop and test 0S
and DOS programs under CMS. The topics
discussed in Part 2 are:

e Developing 0S Programs Under CMS
e Developing DOS Programs Under CMS

e Using Access Method Services and VSAM
Under CMS and CMS/DOS

e How VM/SP Can Help You
Programs

Debug Your

e Using the CMS Batch Facility

e Programming for the CMS Environment

Preface

"part 3. Learning To Use CMS EXECs"
gives detailed information on creating EXEC

procedures to use with CMS. The topics
discussed in Part 3 are:
e Building CMS EXEC Procedures
e Using CMS EXECs with CMS Commands
e Refining Your CMS EXEC Procedures
e Writing CMS Edit Macros
"part 4. The HELP Facility" contains
descriptions and examples of the use of

HELP facility format words in creating HELP
description files.

Using the HELP Facility

How the HELP Facility Works
Tailoring the HELP Facility
HELP File Naming Conventions
Creating HELP Files

Commands"
in the CHMs

"Appendix A: Summary of CMS
lists the commands available
command environment.

"Appendix B: Summary of CP Commands"
lists the CP command privilege classes and
summarizes the commands available in the CP
conmand environment.

"Appendix C: Considerations for 3270
Display Terminal Users" discusses aspects
of VM/SP and CMS that are different or

unique when you use a 3270 display
terminal.
"Appendix D: Sample Terminal Sessions"

shows sample terminal sessions for:

e Using the CMS Editor and CMS file systen
commands

e Using line-number the CMS

editor

editing with

e C(Creating, assembling,
0S program in CMS

and executing an
e C(Creating, assembling, and executing a
DOS program in CMS/DOS

e Using access method services in CHMS

Preface v

Terminology

Some of the following terms are

used, for

convenience, throughout this publication:

also applies to
3158 Display Consoles when

The term "CMS/DOS" refers to the
functions of CMS that become available
when you issue the command

set dos on

CMS/DOS 1is a part of the normal CHMS
system, and is not a separate systen.
Users who do not use CMS/DOS are

sometimes referred to as 0S users, since
they use the 0S simulation functions of
CMS.

The term "CMS files" refers exclusively
to files that are in the fixed block
format used by CMS file system commands.
VSAM and 0S data sets and DOS files are
not compatible with the CMS file format,
and cannot be manipulated using CMS file
system commands. The terms "disk" and
"yirtual disk" are used interchangeably
to indicate disks that are in your CMS
virtual machine configuration. Where
necessary, a distinction is made between
CMS-formatted disks and disks in O0S or
DOS format.

"3270" refers to a series of display
devices, namely, the 1IBM 3275, 3276
Controller Display Station, and 3277,
3278, and 3279 Display Stationms. A
specific device type is used only when a
distinction is required between device
types.

Information about display terminal usage
the IBM 3138, 3148, and
used in display

mode, unless otherwise noted.

Any information pertaining to the IBM
3284 or 3286 Printer also pertains to the
IBM 3287, 3288, and 3289 printers, unless
otherwise noted.

e m3330" refers to the IBM 3330 Disk
Storage Models 1, 2, and 11, the IBM
3333 Disk Storage and Control Models 1
and 11, and the IBM 3350 Direct Access

vi

Storage in 3330 compatibility mode.

"2305" refers to the IBM 2305 Fixed Head
Storage, Models 1 and 2.

"3340" refers to the IBM 3340 Direct
Access Storage Facility and the IBM 3344

Direct Access Storage.

"3350" refers to the IBM 3350 Direct
Access Storage device when used in
native mode.

IBM VM/SP CMS User's Guide

information pertaining to the IBM
also applies to the 1IBM
unless otherwise noted.

e Any
2741 terminal
3767 terminal,

e 370x refers to the 3704/3705
Communications Controllers.

e n3370" refers to the IBM 3370 Direct
Access Storage Device.

e "3310" refers to the IBM 3310 Direct
Access Storage Device.

e "FB-512" refers to the IBM 3370 and 3310
Direct Access Storage Devices.

For a glossary of VM/SP terms, see the
IBM Virtual Machine/System Product: Library
Guide and Master Index, GC19-6207.

SCRIPT/VS 1is a component of the 1IBM
Document Composition FPacility progranm
product, which is available from IBM for a

license fee. For additional information on
SCRIPT/VS usage, see Document Composition
Facility: User's Guide, SH20-9161.

PREREQUISITE PUBLICATIONS

IBM Virtual Machine/System Product:

Introduction, GC18-6200

Terminal User's Guide, GC19-6206

COREQUISITE PUBLICATIONS

IBM Virtual Machine/System Product:

CMS Command and Macro Reference,
SC19-6209
CP Command Reference for General Users,
SC19-6211

System Messages and Codes, SC19-6204
EXEC 2 Reference, SC24-5219

System Product Editor
SC24-5220

User's Guide,

System Product Editor Command and Macro

Reference, SC24-5221

Operating Systems in a Virtual Machine,

GC19-6212

W

RELATED VM/SP PUBLICATIONS

Additional descriptions of various CMS
functions and commands that are normally
used by system support personnel are

described in the following publicatiomns:

IBM Virtual Machine/Systenm Product:

System Programmer's Guide, SC19-6203

Operator's Guide, SC19-6202

Planning and System Generation Guide,

SC19-6201

Information describing the CMS command
CPEREP, a command used to generate output
reports from VM/SP's error recording
records, is contained in the IBM Virtual

Machine/System Product OLTSEP and Error
Recording Guide, SC19-6205

Details on the use of 0S/VS EREP
operands, required to make use of CPEREP,
are contained in the 0S/VS, DOS/VSE, VM/370
Environmental Recording, Editing, and
Printing Proqram, GC28-0772.

There are three publications available
as ready reference material when you use
VM/SP and CMS. They are:

IBM Virtual Machine Facility/370:

Quick Guide for Users, SX20-4400

Commands (General User), SX20-4401

Commands (Other than General User),

SX20-4402

For information on O0S/VS tape 1label
processing, discussed with "Label
Processing in 0S Simulation" in this
publication, refer to:
0S/VS1 Data Management Services Guide,
GC26-3874
0S/VS2 Data Management Services Guide,
GC26-3875
0S/VS Tape Labels, GC26-3795

IPCS CMS commands are described in IBM

VM/370 Interactive Problem Control Systenm
(IPCS) User's Guide, GC20-1823, and not in
this publication.

RELATED PUBLICATIONS FOR
METHOD SERVICES USERS

VSAM AND ACCESS

CMS support of access method services is
based on VSE/AF and VSE/VSAM. The control
statements that you can use are described
in Using VSE/VSAM Command and Macros,
SC24-5144.

Error messages produced by the access
method services program, and return codes
and reason codes, are listed in JVSE/VSAM
Messages and Codes, SC24-5146.

For a detailed description of VSE/VSAM
macros and macro parameters, refer to the
VSE/AF Macro User's Guide, SC24-5210

For information on 0S/VS VSAM nmacros,
refer to 0S/VS Virtual Storage Access
Method (VSAM) Programmer's Guide,
GC26-3818.

RELATED PUBLICATIONS FOR CMS/DOS USERS

The CMS ESERV command invokes the VSE/AF
ESERV program, and uses, as input, the
control statements that you would use in
VSE/AF. These control statements are
described in Guide to the DOS/VSE

Assembler, GC33-4024.

Linkage editor control
when invoking the
CMS/DOS, are

statements, used
linkage editor under
described in JVSE/AF Systenm

Control Statements, SC33-4024.

For information on DOS/VSE and CMS/DOS
tape label processing, refer to the
following publications:

VSE/AF Tape Labels, SC24-5212

VSE/AF Macro User's Guide, GC24-5211

Preface vii

Publications that support VM/SP as used
in conjunction with VM /370 Release 6

! @ i ' |]

VM/SP Licensed VM/SP General Information
Program Spcificati M 0]
GC20-1842 (38) GC20-1838 (00) System
Programming Support
VM, . .
lnd/h‘:mmmﬂ VM/SP Introduction Note: The numbers given in VM/SP Planning and E:::ﬁ:l.s." 5‘:".‘.
GC19-8207 120) GC19-6200 (20 parentheses represent System Generation Guide Guide and Reference
the Subject Code. S$C19-6201 (34) GC35-0033 (30)
I N ‘ ! !
h
VM/SP Terminal User's VM/SP Operating Systems VM/SP OLTSEP and
Guide in 8 Virtual Mechine Error Recording Guide
GC19-6206 (40) Operations GC19-6212 (34) $C19-6205 (37)
% o
v VM/SP CP Command . £ VM/SP System Logic and
mh;/(s;)ds.\:nom Messages Reference for General VM/SP Operator’s Guide gxérs.’:ns:\:‘r?;nGuidc ¢ | Problem Determination
$C19-6204 (40) Users $C19-6202 (40) o1, 6208 36 Guide Volue 1 (CP)
S$C19-6211 (36) LY20-0892 (36)
CMS User l
> rr— VM/SP System Logic and
4 Problem Determination
Guide Volume 2 (CMS)
EREP Messages VM/SP CMS Primer LY20-0893 (39)
GC38-1045 (40) S$C24-5236 (39) l
' VM/SP Data Areas and
— Control Block Logic
VM/SP CMS User's Guide VM/SP CMS Command ﬁM/SP Quick Guide for L¥20-0891 @er] -
& and Macro Reference sors :
. | sc19-6210 (39)
Auxiliary Support g SC19-6209 (39) $X20-4400 (36) I
B P R 3
g ﬂ $ l ‘ l VM/SP Service Routines
; — Program Logic
VM/370 Remote Spooling 08/VS and VM/370 LY20-0890 37
Communications Assembler Programmer’s OS/VS, DOS/VS, VM/370 VM/SP Commands (37)
| Susbsystem User's Guite Guide (General User)
. -
. | cc20-1816 (%0) GC33-4021 @ 6c33-4010 21 $X20-4401 e }

0S/VS and VM/370
Assembler Program Logic

VM/370 Interactive

m&x SDV.;'.;“#:““ g VM/8P System Product VM/SP Commands Svas-sos1 1
Guide Volume 3 (RSCS) . | Editor User's Guide (Other than General Use)
$Y20-0888 (38) g 8C24-8220 ol 5X20-4402 (36) "
—q > i !
& 1 | vM/sP System Product VM/SP SP Editor

Environmental Recording,

Problem Control System . Editor Command and Command Language Editing, and Printing
= | UPCS) User's Guide 3 i | Mecro Referance Reference Summary (EREP) Program
GC20-1823 37) (2 8C24-85221 (39) S$X24-5122 (36) GC28-0772 (37)
& =] : } a
; —

VM/SP EXEC 2 Language

Environmental Recording,

- All users of virtusl mechine must use the VAI/SP System Messages and Codes publication.
-Oonulm Information on VM/EREP support. EREP Relsase 3 is recommended for use with VM/SP Release 2.

Kl VM/370 Relesse 8 H , the IPCS E: lon Progrem Product (5748-SA1) and the RSCS Networking Program Product (5748-XP1)
are recommended for use with VM/8P,
n If you want all three of tha Ref. S Y icati use SBOF 3820 when ordering.

Figure 1. VM/SP Library Interrelationship of Publicatioms

viii IBM VM/SP CMS User's Guide

VM/SP EXEC 2 Reference @ Reference Summary Editing, and Printing
§C24-6219 Qe SX24-5124 (36) (EREP) Program Loglc
i $Y28-0773 a7
ES————————
Legend:
For SNA terminal users, the prersquisite publication Is: VM/VCNA Instalition, Op , and Terminal Use, Order Number SC27 -0502.

C

PART 1. UNDERSTANDING CMS. « ¢ « o o« @

SECTION 1. WHAT IT MEANS TO HAVE A CMS
VIRTUAL MACHINE o« o o o © o o o o o o
How You Communicate With VM/SP

Getting Commands Into the System . .

Loading CMS in the Virtual Machine: The

IPL Command . . . o e o o o @
Logical Line Editing Symbols e o o o o
How VM/SP Responds to Your Commands.
Getting Acquainted With CMS.
Virtual Disks and How They Are Deflned
Permanent Virtual Disks. « « « « « «
Defining Temporary Virtual Disks . .
Formatting Virtual Disks . « « « . «
Sharing Virtual Disks: Linking
Identifying Your Disk To CMS: Accessing
Releasing Virtual Disks. « « « « « «

SECTION 2. VM/SP ENVIRONMENTS AND MODE
SWITCHING o« o « o « o © « o o« o o
The CP Environmént . « « « « « -
The CMS Environment. . . . « . -
EDIT, INPUT, and CMS Subset. o
DEBUGe <« « ¢ o « « o o o o o -
CMS/DOSe « « o « o « o a « « o o

Interrupting Program Execution .
Virtual Machine Interruptions.
Control Program Interruptions.
Address Stops and Breakpoints.

SECTION 3. WHAT YOU CAN DO WITH
VM/SP-CMS COMMANDS. « « ¢ « « o o« « @
Command Defaults « « « « « « o « « o o
Commands to Control Terminal
CommunicationS. « « « ¢ o « o « o o
Establishing and Terminating
Communications with VM/SP
Controlling Terminal Output.
Commands to Control How VM/SP

Processes Input Lines . . . « o
Controlling Keyboard—dependent
Communications. . . . - . «

Commands to Create, Hodify, and nove
Data Files and Progralms . « « « « «
Commands that Create Files
Commands that Modify Disk Files. .
Commands to Move Files « « o « «
Commands to Print and Punch Files. .
Commands to Develop and Test OS and CMS
ProgralSe « « « « « e o e e e o o @
Commands to Develop and Test DOS
PrOgramSe « « « o o « o « o « o o o =
Commands Used in Debugging Programs. .
Commands to Request Information. . . .
Commands to Request Information Ahout
Terminal Characteristics. . « « . «
Commands to Request Information About
Data FileSe « « « o o o o« « o o o
Commands to Request Information About
Your Virtual Disks. « « « « « « . &

3
3
-5

-6
-6
-9
10
12
12
13
13
14
15
16

25
25

25

25
26

29

40

Contents

Commands to Request Information About
Your Virtual Machine. « « « « « « « . 41

Commands to use to communicate with
other COMPUtEr USErSe. « « « « « « « o U2

SECTION 4. THE CMS FILE SYSTEM 43
CMS File FOrMatsS « o« o o o o o o« « « « o 43
How CMS Files Get Their Names. « 44
Duplicating Filenames and Filetypes. . 44
What Are Reserved Filetypes? . « 45
Filetypes for CMS Commands . « « « « « 46
Output Files: TEXT and LISTING . . . « 50
Filetypes for Temporary Files. 50
Filetypes for Documentation. 51
Filemode Letters and Numbers . « . « « « 51
When to Specify Filemode Letters:
Reading Files . . . e o o o o o o 53
When to Specify Fllemode Letters:
Writing Files « « « . « e o o o « o« 54
How Filemode Numbers are Used. « o« o« « 55
Managing Your CMS DiskS. « « « o« « « o« o 57
CMS File Directories « « « « o ¢« « o « « 57
CMS Command Search Order . . « « « « . « 58
SECTION 5. THE EDITORS 2« « « « « « « « « 61
The CMS EQitOr « ¢ o ¢ « o « o « « « « « 61
The EDIT Command . . . e o o o« « o o« 61
Writing a File Onto DlSk e« o o o o o« o 62
EDIT Subcommands . ~ « « « « o« « « « « 64
The Current Line Pointer . . e « o o « 65
Verification and Search Columns. « « « 69
Changing, Deleting, and Adding L1nes « « 69
Describing Data File Characteristics . . 73
Record Lengthe « o o« o« o ¢« o o « « « « T4
Record Formate. « « o o« « o« o « o « o « 15
Using Special Characters . « « « « « . 76
Setting Truncation Limits. . « « « . . 79
Entering a Continuation Character in
ColumnD 72 o o« o « o « « o o o « o o « 19
Serializing Records. « « « « « « « « « 80
Line-Number Editing. « « « « « « « « o 82
Renumbering Lines. . . e« o o o« « o « 83
Controlling the CMS Edltor e« o o « o 84
Communicating with CMS and CP. « o « o 84
Changing File Identifiers. . 85

Controlling the CHMS Edltor's Dlsplays. 86
Preserving and Restoring CMS Editor
SettingSe o« « o« « « o« « o o o o o o o
X, Y, =, ? Subcommands « « « ¢« « ¢ o« o
What To Do When You Run Out of Space . 88
The System Product Editor. . « « « « . «
Summary of CMS EDIT Subcommands. « « . »

SECTION 6. INTRODUCTION TO THE EXEC

PROCESSORSe « « « « « o o o « « « « « « 96
The CMS EXEC PrOoCeSSOL « « o o « « « o« « 96
Creating EXEC FileS. « « « o o« « « « « 97
Invoking EXEC FileSe o « o « « « « « « 97
PROFILE EXECS. « « « e o e« o « o« 98
Executing Your PROFILE EXEC. e« e o o « 99
CMS EXECs and How To Use Them. « « « « « 99
Modifying CMS EXECSe « « « « « « « « <101

Contents ix

Summary of the CMS EXEC Language

FacilitieS. ¢« o« ¢« o o e o o o o o o &«
Arguments and Variables. . . « . . .
Assignment Statements.
Built-in Functions and Special
Variables <« « ¢« ¢ ¢ ¢« e ¢ o o o o @
Flow Control in an EXEC. « o« « « <
Comparing Variable Symbols and
Constants « ¢« ¢« ¢ o ¢ o ¢ o o &«
Doing I/O With an EXEC
Monitoring EXEC Procedures . . .

The EXEC 2 Processor . . .
Relationship of EXEC and EXEC 2
Invoking EXEC 2c v« o « o o o o o o =
Attributes of EXEC 2 Files . . . -

Summary of CMS EXEC Control Statements

and Special Variables . « « « « « < &«

SECTION 7. USING REAL PRINTERS,
PUNCHES, READERS, AND TAPES

CMS Unit Record Device Support
Using the CP Spooling System
Altering Spool Files o« o o

051ng Your Card Punch and Card Reader

in CMS. ¢ ¢ o o o e o o o o o o o =
Handling Tape Files in CMS
Using the CMS TAPE Command
Tape Labels in CMS . « « o o o o « «
User Responsibilities. . « « « « .
Label Processing in 0S Simulation.
Label Processing in CMS/DOS.
CMS TAPESL Macro

-102
«102
-103

-105
- 105

-107
«107
.109
«110
-110
<111
-111

«112

- 117
<117
- 117
-119

.121
.123
-124
-126
-126
- 126
-133
-136

Tape Label Processing by CHS Conmands.136

LABELDEF Command « « « o « o « o o »
End-of-Volume and End-of-Tape
Processinge « « « o o o o o o o « «
Error Processing « . o« « « o o o o «
The MOVEFILE Command o o o
Tapes Created by 0S Utility Programs
Specifying Special Tape Handling
OPtionsS o ¢« ¢ o o o o o o o o o o @
Using Remote Spooling Communicatiomns .

PART 2. PROGRAM DEVELOPMENT USING CMS.

SECTION 8: DEVELOPING OS PROGRAMS
ONDER CHMS e o o o o o o
Using OS Data Sets in CHS. o o
Access Methods Supported by cus.
Using the FILEDEF Command. . . . «
Specifying the ddname.
Specifying the Device Type . . .
Entering File Identifications. .
Creating CMS Piles From OS Data Set
Using CMS Libraries. « « « o« o«
Using OS Macro Simulation Under CHS.
Assembling Programs in CMS
Executing Programs « « « « « « «
TEXT LIBRARIES (TXTLIBS) . . «
Resolving External References.
Controlling the CMS Loader . .
Creating Program Modules . . .
Using, EXEC Procedures. . . .
Executing Members of 0OS Hodule
Libraries or CMS LOADLIBS . « « « .
Specifying Input to the LKED Command .

¢ o o 0 s N o s 2
e o 0 8 g 0 5 0 0 8 8 8 0

SECTION 9: DEVELOPING DOS PROGRAMS

X IBM VM/SP CMS User's Guide

.138

-139
-140
- 141
- 141

- 142
- 142

- 145

<147
.49
150
151
.151
152
.152
.155
156
162
.164
.165
.166
.168
.169
.170
L1717

.172
-173

UNDER CMS . o o o o o o o o o o« « o« « o175
The CMS/DOS Environment. . . « « « « « .175
DL/I in the CMS/DOS Environment.178
Using DOS Files on DOS Disks « . « « . .178

Reading DOS Files. . . . e o o« o - <179
Creating CMS Files from DOS Libraries. 180
Using the ASSGN Command. « « « « « « - 181

Manipulating Device Assignments. . . .182
Virtual Machine Assignments.183
Using the DLBL Command « « « « « « « - 183
Entering File Identifications.184
Using DOS Libraries in CMS/DOS185
The SSERV Command. « « « « « « « « « 186
The RSERV Command. « « « « « « « « « 186
The PSERV Command. « « « « « « « « « o187
The ESERV Command « « « « « « « « « 187
The DSERV Command. « « « « « « « « - 188
Using DOS Core Image Libraries189
Using Macro lLibraries. . « « « « « « « .189

CMS MACLIBSe « o« o o o« o o o « « « = 2190
Creating a CMS MACLIB. « « « « « « « -190
The MACLIB Command « « « « « e « <191
DOS Assembler Language Macros Supported 194
Assembling Source PrograllS « . « « « « 196
Link-editing Programs in CMS/DOS197
Linkage Editor Input <197
Linkage Editor Output: CMS DOSLIBs - 199
Executing Programs in CMS/DOS.200
Executing DOS Phases . . . « e « o <200
Search Order for Executable Phases . «201
Making I/0 Device Assignments.201
Specifying a Virtual Partition Size. .202
Setting the UPSI Byte. « « « « « . . .203
Debugging Programs in CMS/DOS.203
Using CMS EXEC Procedures in CMS/DOS .203

SECTION 10. USING ACCESS METHOD
SERVICES AND VSAM UNDER CMS AND

CMS/DOS « « « « o o o o o o o« « o o« « 2205
Executing VSAM Programs Under CMS. . .205
Using the AMSERV Command « .« « « « . - .206
AMSERV Output Listings 207

Controlling AMSERV Command Llstlngs. .208
Manipulating 0S and DOS Disks for Use
With AMSERV . ¢ ¢ o ¢ o o « o o o « « 2209
Data and Mastercatalog Sharing209
Disk Compatibility « « « « « « « « « <210
Using VM/SP Minidisks. « « « « « « « <211
Using The LISTDS Command « « « « « « 212
Using Temporary Disks. . . . « o <213
Defining DOS Input and Output Flles. - <214
Using VSAM CatalogS. « « « o o « « « <215
Defining and Allocating Space for
VSAM files. . . . e o o o o 218
Using Tape Input and Output. e o o o <220
Defining OS Input and Output Files . . .222
Allocating Extents on 0S Disks and
Minidisks « « ¢ ¢ ¢« ¢ o o o o o o o 223
Using VSAM CatalogSe. « « o« « « « « o <224
Defining and Allocating Space for
VSAM fileSe. o o o« o o o o o = o o « <227
Using Tape Input and Output.229
Using AMSERV Under CMS . « « o« « . <231
Using the DEFINE and DELETE Punct10ns.231
Using the REPRO, IMPORT, and EXPORT
(or EXPORTRA/IMPORTRA) functioms. . .233
Writing EXECs for AMSERV and VSAM. . .235

SECTIION 11. HOW VM/SP CAN HELP YOU
DEBUG YOUR PROGRAMS « « « o o o « « « 2237
Preparing to Debug . . « « « <« o« « o o 237
When a Program Abends. « « « « o« « « « 237
Resuming Execution After a Program
Check « « « « ¢« & o « e e o o « « <238
Using DEBUG Subcommands to Moni tor
Program Execution . « « « « ¢ ¢ o o o 239
Using Symbols with DEBUG240

What To Do When Your Program Loops . . .242
Tracing Program Activity . . « «2U42
Using the CP TRACE Command243
Using the SVCTRACE command245
Using CP Debugging Commands. e o o o <245

Debugging with CP After a Program
CheCKk o o o o o o e e « o o« o o « « o2U46
Program DUMPS. « « « « o o o« « « « « « o247
Debugging Modules. . . . o e 247
Comparison Of CP And CMS Fac111t1es For
Debugging « « o « « o o e o o« o o o« o 2248
What Your Virtual Machine Storage Looks
LiKk€e o o o o o e o o e o e o o« « « « 2249
Shared and Nonshared Systems250

SECTION 12. USING THE CMS BATCH
FACILITY. . . . e e o o o @ e « o« <253
Submitting Jobs to the CHMS Batch
Facilitye o« o ¢ o ¢ o o o o o o @
Input to the Batch Machine . . .
How the Batch Facility Works . .
Preparing Jobs for Batch Execution

e « «253
Restrictions on CP and CMS Commands

« <253
« «256
.« «257

.« <258
.« «259

in Batch Jobs &« « &« &« ¢ ¢« <« . .
Batch Facility Output.
Purging, Reordering, and Restarting
Batch Jobs. . . . e o o o o o @
Using CMS EXEC Flles for Input to the
Batch Facility. « « o« o o o o « @ - <260

Sample System Procedures for Batch
Execution . .« o @ ¢ o o ¢ o o o o « o261
A Batch EXEC for a Non-CMS User. . . .262

259

SECTION 13.
ENVIRONMENT o ¢ o« o o o o
Program Linkage.
Return Code Handling . . .

PROGRAMMING FOR THE CMS

e o o o <265
e o o o <265
e« o o o« <266

Calling a CMS Command from a Program

Parameter lists. « « . « « e o o o« <266

. <267

Executing Program Modules. . e o o o <269
The Transient Program Area . . « « . .269
CMS Macro Instructions . . « « « « « « 270
Macros for Disk File Manipulation. . .270

CMS Macros for Terminal

Communications. « « « o o« o « « « o 276

CMS Macros for Unit Record and Tape

I/0 o o o o o o « o o « a o o o« o« « 2278

Interruption Handling Macros278
Updating Source Programs Using CMS . . .279

The UPDATE Philosophy. . . « . « . . 279

Update FileS . « o o o o o o « « « o« <280
Sequencing Output Records. . . . « . .282
Multiple Updates285
The VMFAS# EXEC Procedure.290

PART 3. LEARNING TO USE EXECS.293

SECTION 14. BUILDING CMS EXEC

PROCEDURES. « « o « o o = « « « « « o 2295]

What is a Token? « « o o o « o « « « « 2295
Variables. « « « « « « 296
Arguments.« - <299
Using the GINDEX Spec1al Varlable. - <301
Checking Arguments . . . e o « « 2301
Execution Paths in a CHMS EXEC. e o « « 303
Labels in a CMS EXEC Procedure303
Conditional Execution with the &IF
Statement . < <« . ¢ e o o o o o -
Branching with the &GOTO Statement - <305
Branching with the &SKIP Statement . .307
Using Counters for Loop Control. . . .307
Loop Control with the &§LOOP Statement.308
Nesting CMS EXEC Procedures.310
Exiting From CMS EXEC Procedures . . .311
Terminal Communications. « « « « « « « 312
Reading CMS Commands and CMSEXEC
Control Statements from the Terminal.313
Displaying Data at a Terminal.314
Reading from the Console Stack317
Exchanging Data Between Programs
through the Stack « « « « ¢ « ¢« o « &
Stacking CMS CommandS. « « « « « « «
Stacking Lines for EXEC to Read. . .
Clearing the Console Stack « « « « .
Pile Manipulation with CMS EXECs . . .
Stacking EXEC FileS. « o « o« o « o «

-304

.318
320
«322
<322
.323
.323

SECTION 15. USING CMS EXECS WITH CMS
COMMANDS. o o o o e @ « o o o o o o o
Monitoring CMS Command Execution . . .
Handling Error Returns From CMS
Commands. . « « e o o s & ® o o .
Using the GERROR Control statement .« <330
Using the ERETCODE Special Variable. .331
Tailoring CMS Commands for Your Own Use.332

.329
329

330

Creating Your Own Default Filetypes. .333
SECTION 16. REFINING YOUR CMS EXEC
PROCEDURES. « « « « o « o o e« « « « « 335
Annotating CMS EXEC Procedures335
Error Situations « <« ¢« . ¢ o o & o < o 336
Writing Error Messages « « « « « « « «336
Debugging CMS EXEC Procedures.338
Using CMS Subset « - <339

Summary of CMS EXEC Interpreter Log1c.3u0

SECTION 17. WRITING CMS EDIT MACROS. . .341
Creating CMS Edit Macro Files.341
How CMS Edit Macros Work . . « « « . . .341
The Console Stack. « « « « « « « « - 343
Notes on Using EDIT Subcommands.344
The STACK Subcommand . « « « « « « « o347
An Annotated Edit Macro.348
User-Written Edit Macros . « « « « . « .350
$MACROS. =« o o o o o« « o =« « « « o« « 350
FMARKe o« o« o o o o o o o « o « « « « 351
PBPOINT v o o o o « o o« o o« o« =« « « « 2353
FCOL 2« o o o o o o o o o o« o« o « « « 2354
PART 4. THE HELP FACILITY. . « « « « « 355
SECTION 18. USING THE HELP FACILITY. . .357
Issuing the Help Command358
Menus. . . e e e o o o« « 2361
The Systenm Product Edltor. e o o o o o 362
Printing Help Files. . . . « « 362
Notational Conventions363

Contents xi

Using the PF Ke€YSe o o o o o « o « o «

SECTION 19.
HELP Facility Filetypes. « « « « « <

SECTION 20.
HELP FileS « o o o o o o o o o o o o =
Adding HELP Files. « « o o « «
Deleting HELP Files.
Altering Existing HELP Flles . o
Creating Menus . « « « o« o o « o o «

Example of Menu Creation
Changing Menus « « « o« o « o o o

SECTION 21. HELP FILE NAMING
CONVENTIONS « ¢ ¢ o o o o o o o o o o
Naming Conventions « « « « ¢« o« o« o« o &

SECTION 22. CREATING HELP FILES. . . .
Creating Additional HELP Files . . . «
Enclosing Text (.BX Format Word) -
Placing Comments in HELP Files (. cn
Format Word). o o
Conditional Display of Text (- CS
Format Word) . « « o« o « o o o o &«
Use of Format Mode (.FO Format Hord)
Indenting Text (.IN and .IL format
Words) « « « « - e« o o o o o o
Use of Offsets (. OF Format Word) . .
Spacing between Lines of Text (.SP
Format Word)e « o« o o ¢ o o o o o o
Translating Output Characters (.TR
Format Word). « « « o o o o « o o @

APPENDIXES ¢ « « o 2 o o o o o o o o =
APPENDIX A. SUMMARY OF CMS COMMANDS. .

APPENDIX B. SUMMARY OF CP COMMANDS . .

xii IBM VM/SP-CMS User's Guide

-364

HOW THE HELP FACILITY WORKS.367

«367

TAILORING THE HELP FACILITY.369

369
-369
-369
370
370
<370
.371

-373
<373
375
«375
-376
-.378

.378
379

379
-381

.382
.383
.385
.387

395

APPENDIX C. CONSIDERATIONS FOR 3270
DISPLAY TERMINAL USERSe « ¢ o o « «
Entering Commands. « « « o o o o o o«
RETRIEVE Function. « « « « o « o < &
Setting Program Function Keys. . . .
Controlling the Display Screen . .
Additional Display Screen
Capabilities. . « « « . . .
Console Output . .
Signaling Interruptions. . . .
Halting Screen Displays. . .
Using the CMS Editor with a 3270 .
Entering EDIT Subcommands. . . .
Controlling the Display Screen . .
The Current Line Pointer . . . -
Using Program Function (PF) Keys .
Using the Editor in Line Mode. . .
Using Special Characters on a 3270
Using APL with a 3270. « =« o« « o «
Error Situations
Leaving the APL Environment. .
Using the 3277 Text Feature. . .

Error Situations
Leaving the Text Environment

APPENDIX D. SAMPLE TERMINAL SESSIONS .
Sample Terminal Session Using the CHMS
Editor and CMS File System Commands .
Sample Terminal Session Using
Line-Number Editing . « « ¢ « o & <«
Sample Terminal Session For O0S
Programmers « « « « « . e o o o
Sample Terminal Session for DOS
PrOGraBNmerSe « o o o « o o o« o o o o
Sample Terminal Session Using Access
Method Services « « « o« o o o « o o «
INDEXe o o o e o o @ o o o o o o o o @

-401
-401
-401
-402
-403

404
-405
-406
407
407
-408
. 409
410
411
411
412
- 413
414
414
415
415
-415

<417
-418
-426
- 429
-U433

439
447

Figure
Figure
Figure

Figure
Figure

Figure
Figure

Figure
Figure

Figure
Figure

Figure
Figure

Fiqure
Figure

Figure

Figure
Figure

7.

8.
9.

10.

1.

12.
13.

14.
15.

16.

17.
18.

VM/SP Library Interrelation-
ship of PublicationSe........viii
VM/SP Environments and Mode
SWwitchingeeeeeeeeeececaacceecasal?
Filetypes Used by CMS
ComMandSeecececcececccccccccccanna.ltd
Filetypes Used in CMS/DOS.....50
How CMS Searches for the

Command to ExecCut€e.ceecececes.60
Positioning the Current Line
Pointereeccececcccecccccccceceeaab8
Number of Records Handled by

the EditOrececceccccccecccccceaesal5
Default Tab SettingSeceeceececeaa77
Summary of CMS EDIT Subcommands
and MACrOSececececcccccccccceacacesad2
Summary of CMS EXEC Built-In
FUnNCtionNSeececececccccccceccceaceaaa 105
Summary of CMS EXEC Control
StatementSececceecceccccecccceaal12
CMS EXEC Special Variables... 115
CP Query Unit Record
RESPONSEeecccccccccccccccccces 117
0S Terms and CMS Equivalents. 148
CMS Commands That Recognize

0S Data Sets and 0S Disks.... 149
Creating CMS Files From OS

Data SetS.ccececcccccccccccacass 157
0S Macros Simulated by CMS...163
CMS/DOS Commands and CMS
Commands with Special

Operands for CMS/DOSeccececccees177

Figure

Figure
Figure

Figure
Figure

Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure

19.

20.
21.

22.
23.

24,
25.

26.
27.
28.
29.
30.
31.
32.
33.
34.
35.

36.
37.

Figures

VSE/AF Macros Supported by
CMSecececcccccccccccccccccccaceca 195
Summary of DEBUG Subcommands.241
Comparison of CP and CMS
Facilities for Debugging.....248
Simplified CMS Storage Map...249
Sample CMS Assembler Program
Entry and Exit Linkage.......266
FSCB FOrMatecccecccecccecacas.271
A Sample Listing of a

Program That Uses CMS Macros.277
Updating Source Files with the
UPDATE ComMandeececeececcccceeceea283
An Update with a Control
Fil€eeceeeeeaeccacacccacaeesaal89
The Console StackSeeeeececees.319
CMS M€NUeecececceccoccccccccaceeaalbl
Example of Using PF1, PF3

and PF12.ccccccccccccccccneasalb’
HELP Format Word Summarye.....376
CMS Command SummarCY.eeees....388
CMS Commands for System
PrOgrallerSececcececcecccscccececeea393
CP Privilege Class
DesCriptionS.ecececcececccccececeeaa395
CP Command SUMMACLYeeececeesee396
3270 Screen DisplaYeeeeeeoss.U406
How the CMS Editor Formats

a 3270 SCre€Neececececcecccccccss.l408

Figures xiii

xiv IBM VM/SP CMS User's Guide

Part 1. Understanding CMS

Learning how to use CMS is not an end in itself: you have specific tasks
to do, and you need to use the computer to perform them. CMS has been
designed to make these tasks easier, but if you are unfamiliar with CMS,
then the tasks may seem more difficult. The information contained in
Part 1 of the VM/SP CMS User's Guide is organized to help you make the
acquaintance of CMS quickly, so that it enhances, rather than impedes,
the performance of your tasks.

"Section 1. What It Means To Have a CMS Virtual Machine" introduces
you to VM/SP and its conversational component, CMS. It should help you
to get a picture of how you, at a terminal, use and interact with the
systen.

During a terminal séssion, commands and requests that you enter are
processed by different parts of the system. How and when you can
comnunicate with these different programs, is described in "Section 2.
VM/SP Environments and Mode Switching."

There are more than two hundred commands and subcommands comprising
the VM/SP language. There are some that you may never need to use; there
are others that you will use over and over again. "Section 3. What You
Can Do With VM/SP-CMS Commands" contains a sampling of commands in
various functional areas, to give you a general idea of the kinds of
things you can do, and the commands available to help you do then.

Almost every CMS command that you enter results in some kind of
activity with a direct access storage device (DASD), known in CMS simply
as a disk, or minidisk. Data and programs are stored on disks in what
are called "files." "Section 4. The CMS File System" introduces you to
the creation and handling of CMS files.

"Section 5. The Editors" contains all the basic information you need
to create and write a disk file directly from your terminal, or to
correct or modify an existing CMS file.

Just as important as the CMS editors are the CMS facilities, called
EXEC and EXEC 2 processor or interpreter. Using EXEC files, you can
execute many commands and programs by entering a single command line
from your terminal, or you can write your own CMS commands. "Section 6.
Introduction to the EXEC Processors" presents a survey of the basic
characteristics and functions of EXEC.

"Section 7. Using Real Printers, Punches, Readers, and Tapes"

discusses how to use punched cards and tapes in CMS, and how to use your
virtual printer and punch to get real output.

Part 1. Understanding CMS 1

2 1IBM VH/SP CHMS User's Guide

Section 1. What It Means to Have a CMS Virtual Machine

Virtual Machine/System Product (VM/SP) is a program product that
controls "virtual machines." A virtual machine is the functional
equivalent of a real computer that you control from your terminal, using
a command language of active verbs and nouns.

The command 1languages correspond to the components! of VM/SP. CP
controls the resources of the real machine; that is, the physical
machine in your computer room; it also manages the communications among
virtual machines, and between a virtual machine and the real systen.
CMS is the conversational operating system designed specifically to run
under CP; it can simulate many of the functions of the O0S and DOS
operating systems, so that you can run many OS and DOS programs in a
conversational environment.

Although this publication is concerned primarily with using CMS, it
also contains examples of CP commands that you, as a CMS user, should be
familiar with.

How You Communicate With VM/SP

When you are running your virtual machine under VM/SP, each command, or
request for work, that you enter on your terminal is processed as it is
entered; usually, you enter one command at a time and commands are
processed in the order that you enter then.

You can enter CP commands from either the CP or CMS environment; but
you cannot enter CMS commands while in the CP environment. The concept
of M"environments" in VM/SP 1is discussed in "Section 2. VM/SP
Environments and Mode Switching."

After you have typed or keyed in the line you wish to enter, you
press the Return or Enter key on the keyboard. When you press this key,
the line you have entered is passed to the command environment you want
to have process it. 1If you press this key without entering any data,
you have entered a "null 1line." Null lines sometimes have special
meanings in VM/SP.

If you make a mistake entering a command line, VM/SP tells you what
your mistake was, and you must enter the line again. The examples in
this publication assume that the command lines are correctly entered.

You can enter commands using any combination of uppercase and
lowercase characters; VM/SP translates your input to uppercase.

Examples in this publication show all user-entered input lines in
lowercase characters and system responses in uppercase characters.

Section 1. What it Means to Have a CMS Virtual Machine 3

The CP Command Lanquage

You use CP commands to communicate with the control program. CP commands
control the devices attached to your virtual machine and their
characteristics.

For example, if you want to allocate additional disk space for a work
area or if you want to increase the virtual address space assigned to
your virtual machine, use the CP command DEFINE. CP takes care of the
space allocation for you and then allows your virtual machine to use it.

or if, for example, you are receiving printed output at your terminal
and do not want to be interrupted by messages from other VM/SP users,
you can use the CP command SET MSG OFF to refuse messages, since it is
CP that handles communication among virtual machines.

Using CP commands, you can also send messages to the system operator
and to other users, modify the configuration of devices in your virtual
machine, and use the virtual machine input/output devices. CP commands
are available to all virtual machines using VM/SP. You can invoke these
commands when you are in the virtual machine environment using CMS (or
some other operating system) in your virtual machine.

The CP commands and command privilege classes (not all commands are
available to all users) are 1listed in "Appendix B: Summary of CP
Commands"™. The CP Commands applicable to the average user are discussed
in detail in the VM/SP CP Command Reference for General Users. The rest
of the CP commands are discussed in VM/SP Operator's Guide. However,
since many CP commands are used with CMS commands, some of the CP
commands you will use most frequently are discussed in this publication,
in the context of their usefulness for a CMS application. To aid you in
distinguishing between CMS commands and CP commands, all CP commands
used in examples in this publication are prefaced with "CpP".

The CMS Command Lanquage

The CMS command language allows you to create, modify, and debug problem
or application programs and, in general, to manipulate data files.

Many OS language processors can be executed under CMS: the assembler,
VS BASIC, OS FORTRAN, VS FORTRAN, O0OS/VS COBOL, and O0S PL/I Optimizing
and Checkout Compilers. In addition, the DOS/VS COBOL, DOS PL/I, VS
APL, and DOS VS RPG II Program Products are supported. You can find a
conprehensive list of language processors that can be executed under CMS
and relevant publications in the VM/SP Introduction. CMS executes the
assembler and the compilers when you invoke them with CMS commands. The
ASSEMBLE command is used to present examples in this publication; the
supported compiler commands are described in the appropriate DOS and OS
program product documentation.

When you invoke the EDIT command, the System Product Editor places
you in CMS (EDIT) compatibility mode. In this mode the CMS editor and
the System Product Editor both allow you to create and modify files.
The CMS EXEC interpreter and the EXEC 2 interpreter both provide
execution procedures consisting of CP and CMS commands; they also
provide the conditional execution capability of a macro language. The
DEBUG command gives you several program debugging subcommands.

Other CNMS commands allow you to read cards from a virtual card
reader, punch cards to a virtual card punch, and print records on a

4 IBM VM/SP CMS User's Guide

virtual printer. Many commands are provided to help you manipulate your
virtual disks and files.

You use the HELP command to display at your terminal informatiom on
how to use CP commands and CMS commands, subcommands, and EXECs, and
explanations of CP and CMS messages. You can issue the HELP command
wvhen a brief explanation of syntax, a parameter, or function is
sufficient, thereby avoiding interrupting your terminal session to refer
to a manual.

Since you can invoke CP commands from within the CMS virtual machine
environment, the CP and CMS command 1languages are, for practical
purposes, a single, integrated command language for CMS users.

GETTING COMMANDS INTO THE SYSTEM

Before you can use CP and CMS, you should know (1) how to operate your
terminal and (2) your userid (user identification) and password.

The Terminal: Your Virtual Comnsole

There are many types of terminals you can use as a VM/SP virtual
console. Before you can conveniently use any of the commands and
facilities described in this publication, you have to familiarize
yourself with the terminal you are using. Generally, you camn find
information about the type of terminal you are using and how to use it
with VM/SP in the VM/SP Terminal User's Guide. If your terminal is a
3767, you also need the IBM 3767 Operator's Guide.

In this publication, examples and usage notes assume that you are
using a typewriter-style terminal (such as a 2741). If you are using a
display terminal (such as a 3270), consult "Appendix C: Consideratiomns
for 3270 Display Terminal Users" for a discussion of special techniques
that you can use to communicate with VM/SP.

Your Userid and Password: Keys into the Systen

Your userid 1is a symbol that identifies your virtual machine to VM/SP
and allows you to gain access to the system. Your password is a symbol
that functions as a protective device ensuring that only those allowed
can use your virtual machine. The userid and password are usually
defined by the system programmer for your installation.

Contacting ¥YM/SP

To establish contact with VM/SP, you switch the terminal device on and
VM/SP responds with some form of the message

VM/370 online

to let you know that VM/SP is running and that you can use it. If you
do not receive the "VM/370 online" message, see the VM/SP Terminal
User's Guide for specific directions. You can now press the Attention
key (or equivalent) on your terminal and issue the LOGON command to
identify yourself to the system:

Section 1. What it Means to Have a CMS Virtual Machine 5

cp logon smith
where SMITH represents a userid. The LOGON command is entered by
pressing the Return (or Enter) key. If VM/SP accepts your userid, it
responds by asking you for your password:

ENTER PASSWORD:

You then enter your password, the displaying of it may be supressed,
depending on your terminal.

LOADING CMS IN THE VIRTUAL MACHINE: THE IPL COMMAND

You load CMS in your virtual machine using the IPL command:

cp ipl cms
wvhere '"cms" is assumed to be the saved systen name for your
installation's CMS. You could also load CMS by referring to it using
its virtual device address, such as 190:

cp ipl 190
VM/SP responds by displaying a message such as:

VM/SP CMS - 02/28/79 12:02

to indicate that the IPL command executed successfully and that CMS is
loaded into your virtual machine.

Your userid may be set up for an automatic IPL, so that you receive
this message, 1indicating that you are in the CMS command environment,
without having to issue the IPL command.

Now you can enter a null line to begin your virtual machine
operation.

Note: 1If this 1is the first time you are using a new virtual disk
assigned to you, you receive the message:

DMSACC112S DISK'A(191)' DEVICE ERROR

and you mnust "format" the disk, that is, prepare it for use with CMS
files. See "Formatting Virtual Disks"™ below.

Logical Line Editing Symbols

To aid you in entering command or data lines from your terminal, VM/SP
provides a set of logical 1line editing symbols, which you can use to
correct mistakes as you enter 1lines. Each symbol has been assigned a
default character value. These normally are:

Symbol Character
Logical character delete]
Logical line end #
Logical 1liné delete ¢z
Logical escape "

6 IBM VM/SP CMS User's Guide

Logical Character Delete

The logical character delete symbol (@) allows you to delete one or more
of the previous characters entered. The @ deletes one character per @
entered, including the ¢ and # logical editing characters. For example:

ABC#@2 results in AB
ABC@D results in ABD
¢dDEF results in DEF
ABC22d@ deletes the entire string

Logical Line End

The logical 1line end symbol (#) allows you to key in more than one
conmand on the same line, and thus minimizes the amount of time you have
to wait between entering commands. You type the # at the end of each
logical command line, and follow it with the next logical command line.
VM/SP stacks the commands and executes them in sequence. For example,
the entry:

query blip#query rdymsg#query search
is executed in the same way as the entries:

query blip
query rdymsg
query search

The logical line end symbol also has special significance for the #CP
function. Beginning any physical line with #CP indicates that you are
entering a command that is to be processed by CP immediately. If you
have set a character other than # as your logical 1line end symbol, you
should use that character instead of a #.

Logical Line Delete

The 1logical line delete symbol (¢) (or 9 for Teletype! Model 33/35
terminals) deletes the entire previous physical 1line, or the last
logical line back to (and including) the previous logical line end (#).
You can use it to cancel a line containing many or serious errors. If a
immediately precedes the ¢ sign, only the # sign is deleted, since the
indicates the beginning of a new line, and the ¢ cancels the current
line. For example:

e 1Logical Line Delete:

ABCADEFZ¢ deletes the #DEF and results in ABC
ABC#¢ results in ABC
ABC#DEFZ#GHI results in ABC#GHI
ABC#DEP¢GHI results in ABCGHI
¢ Physical Line Delete:
ABC¢ deletes the whole line
Note that when you cancel a line by using the ¢ logical line delete

1Trademark of the Teletype Corporation, Skokie, Illinois.

Section 1. What it Means to Have a CMS Vvirtual Machine 7

symbol, you do not need to press a carriage return; you can continue
entering data on the same line.

Logical Escape

The 1logical escape symbol (") causes VM/SP to consider the next
character entered to be a data character, even if it is normally one of
the logical line editing symbols (@, ¢, ", or #). For example:

ABC"¢D results in ABC¢gD
NUABC"" results in "“ABC®

If you enter a single logical escape symbol (") as the last character
on a line, or on a line by itself, it is ignored.

When you enter logical escape characters in conjunction with other
logical editing characters, the results may be difficult to predict.
For example, the lines:

ABC""@DEF
ABC""3?3DEF both result in the line: ABCDEF

Defining Logical Line Editing Symbols

The logical 1line editing symbols are defined for each virtual machine
during VM/SP system generation. If your terminal's keyboard lacks any
of these special characters, your installation can define other special
characters for logical line editing. You can find out what logical line
editing symbols are in effect for your virtual machine by entering the
command:

cp query terminal
The response might be something like:
LINEND # , LINEDEL ¢ , CHARDEL @ , ESCAPE "
LINESIZE 130, MASK OFF, APL OFF, ATTN OFF, MODE VM
You can use the CP TERMINAL command to change the logical 1line
editing characters for your virtual machine. For example, if you enter:
cp terminal linend /
Then, the line:
input # line / input / #
would be interpreted:
input # line
input
#
The terminal characteristics 1listed in the response to the CP QUERY

TERMINAL ¢ommand are all controlled by operands of the CP TERMINAL
command.

8 1IBM VM/SP CMS User's Guide

HOW VM/SP RESPONDS TO YOUR COMMANDS

CP and CMS respond differently to different types of requests. All CMS
command responses (and all responses to CP commands that are entered
from the CMS environment) are followed by the CMS ready message. The
form of the ready message can vary, since it can be changed using the
SET command. The long form of the ready message is:
R; T=7.36/19.89 09:26:11
If you have issued the command:
set rdymsg smsg
the ready message looks like:
3
When you enter a command 1line incorrectly, you receive an error
message, describing the error. The ready message contains the 1last 5
digits (4 digits for a negative return code) from the command: for
example:
R(00028) ;

indicates that the return code from the command was 28.

A ready message from the command may contain a negative return code;
for example:

R(-0001) ;

indicates that the return code from the command was -0001.

Some Sample CP and CMS Command Respomnses

If you enter a CP or CMS command that requests information about your
virtual machine, the response should be the information requested. For
example, if you issue the command:

cp display g

CP responds by showing you the contents of your virtual machine's
general registers, for example:

GPR 0 = 00000003 00003340 00000720 00000003
GPR 4 = 00000848 Cu404040 00000040 00002DFO
GPR 8 = 00000008 000132F8 00002BA0 00002230
GPR 12 = 00003238 FFFFFFFD 50013386 00000000

Similarly, if you issue the CMS command:
listfile * assemble c
you might receive the following information:

JUNK ASSEMBLE C1
MYPROG ASSEMBLE C1

If you enter a CP command to alter your virtual machine configuration
or the status of your spool files, CP responds by telling you that the
task is accomplished. The response to:

Section 1. What it Means to Have a CMS Virtual Machine 9

cp purge reader all
might be:
0004 FILES PURGED

Some CP commands, those that alter some of the characteristics of
your virtual machine, give you no response at all. If you enter:

cp spool e class x hold
you receive no response from CP.

Certain CMS commands may issue prompting messages, to request you to
enter more information. The SORT command, which sorts CMS disk files,
is an example. If you enter:

sort in file a1 out file a1l
you are prompted with the message:

DMSSRT604R ENTER SORT FIELDS:

and you can then specify which fields you wish the input records to be
sorted on.

Getting Acquainted With CMS

If you have just logged on for the first time, and you want to try a few
CMS commands, enter:

query disk a
the response might look like:

| LABEL cuu M STAT CYL TYPE BLKSIZE FILES BLKS USED-(%) BLKS LEFT BLK TOTAL
| MYDISK 191 1A R/W 5 3330 1024 171 1221-92 107 1328

The response should tell you that you have an A-disk at virtual address
191; it also provides information such as how much room there is on the
disk and how much of it is used. Again, if you receive an error message
that indicates the disk may not be formatted, see "Formatting Virtual
Disks."

Your A-disk is the disk you use most often in CMS, to contain your
CMS files. Files are collections of data, and may have many purposes.

Note: When you issue the EDIT command, the System Product Editor
automatically places you in CMS Editor (EDIT) compatibility mode. In
this mode, you can issue both EDIT and XEDIT subcommands. For complete
information on EDIT compatibility mode, as well as instructions on how
to invoke the CMS editor itself, refer to the publication VM/SP System
Product Editor Command and Macro Reference.

For this exercise, the data is meaningless. Using the CMS Editor,
enter:

edit junk file

You should receive the response:

10 IBM VM/SP CMS User's Guide

NEW FILE:
EDIT:

which indicates that this file does not already exist on your A-disk.
Enter:

input
You should receive the response:

INPUT:
and you can start to create the file, that is, write input records that
are eventually going to be written onto your A-disk. Enter 5 or 6 data
lines, such as:

hickory dickory dock

the mouse ran up the clock

the clock struck one

and down he run
dickory hickory dock

Now, enter a null line (one with no data). You should receive the
message:

EDIT:
Enter:
file
You should see the message:
R; T=0.01,/0.02 09:31:29
You have just written a CMS file onto your A-disk. If you enter:
type junk file a
you should see the following:
HICKORY DICKORY DOCK
THE MOUSE RAN UP THE CLOCK
THE CLOCK STRUCK ONE
AND DOWN HE RUN
DICKORY HICKORY DOCK

The CMS command, TYPE, requested a display of the disk file JUNK
FILE, on your A-disk.

To erase the file, enter:
erase junk file
Now, if you reissue the TYPE command, you should receive the message:
FILE NOT FOUND
Most CMS commands create or reference disk files, and are as easy to

use as the commands shown above. Your CHMS disks are among the most
important features in your VM/SP virtual machine.

Section 1. What it Means to Have a CMS Virtual Machine 11

Virtual Disks and How They Are Defined

Under VM/SP, a real direct access storage device (DASD) (disk pack) or
an FB-512 device can be divided into many small areas, called minidisks.
Minidisks (also called virtual disks because they are not equivalent to
an entire real disk) are defined im the VM/SP directory, as extents on
real disks. For CMS applications, you never have to be concerned with
the extents on your minidisks; when you use CMS-formatted minidisks,
they are, for practical purposes, functionally the same as real disks.
Minidisks can also be formatted for use with OS or DOS data sets or VSAM
files.

You can have two types of disks, permanent and temporary. Permanent
disks persist across logons while temporary disks are automatically
destroyed at logoff. Both types may be attached to your machine during
a terminal session. Permanent disks are defined in the VM/SP directory
entry for your virtual machine. Temporary disks are those you define for
your own virtual machine using the CP DEFINE command, or those attached
to your virtual machine by the system operator.

PERMANENT VIRTUAL DISKS

The VM/SP directory entry for your userid defines your permanent virtual
disks. Each disk has associated with it an access mode specifying
whether you can read and write on the disk or only read from it (its
read/vrite status). Virtual disk entries in the VM/SP directory may
look like the following:

MDISK 190 2314 000 050 CHMS190
MDISK 191 3330 010 005 BDISKE
MDISK 194 3330 010 020 CHMsS001
MDISK 195 FB-512 1000 500 FBDISK
MDISK 198 3330 050 010 CMS192
MDISK 19E 3330 010 050 CMS19E

UExgux

The first two fields describe the device, minidisk in this example,
and the virtual address of the device. Virtual addresses (shown above
as 190, 191, and so on), are the names by which you and VM/SP identify
the disk. Each device in your virtual machine has an address which may
or may not correspond to the actual location of the device on the VM/SP
systen.

The third field specifies the device type of your virtual disk. For
count-key-data devices, the fourth and fifth fields specify the starting
real cylinder at which your virtual disk logically begins and the number
of cylinders allocated to your virtual disk, respectively. For FB-512
devices, the fourth field specifies the starting real block numbers
wvhere your virtual disk begins, and the fifth field is the number of
blocks allocated to your virtual disk.

The sixth field is the label of the real disk on which the virtual
disk is defined and the seventh field is a letter specifying the
read/vwrite mode of the disk; "R"™ indicates that the disk is a read-only
disk, and "w" indicates that you have read/write privileges. The MDISK
control statement of the Directory Service Program is described in the
VM/SP Planning and System Generation Guide.

12 IBM VM/SP CMS User's Guide

DEFINING TEMPORARY VIRTUAL DISKS

Using the CP DEFINE command, you can attach a temporary disk to your
virtual machine for the duration of a terminal session. The following
command allocates a 10-cylinder temporary disk from a 3330 device and
assigns it a virtual address of 291:

cp define t3330 as 291 cyl 10
When you define a minidisk, you can choose any valid address that is not
already assigned to a device in your virtual machine. Valid addresses

for minidisks range from 001 through 5FF, for a virtual machine in basic
control mode.

FORMATTING VIRTUAL DISKS

Before you can use any new virtual disk, you must format it. This
applies to new disks that have been assigned to you and to temporary
disks that you have allocated with the CP DEFINE command. When you
issue the FORMAT command you must use the virtual address you have
defined for the disk and assign a CMS mode letter, for example:

format 291 c
CMS then prompts you with the following message:

DMSFOR603R FORMAT WILL ERASE ALL FILES ON DISK 'C(291)°'. DO YOU
WISH TO CONTINUE? (YES|NO):

You respond:

yes
CMS then asks you to assign a label for the disk, which may be anything
you choose. Labels can have a maximum of 6 characters. When the
message:

DMSFOR605R ENTER DISK LABEL:

is issued, you respond by supplying a disk label. For example, if this
is a temporary disk, you might enter:

scrtch

CMS then erases all the files on that disk, if any existed, and formats
the disk for your use. When you enter the label, CMS responds by
telling you:

FORMATTING DISK 'C?
*10" CYLINDERS FORMATTED ON 'C(291)°'.

R; T=0.15/1.60 11:26:03

The FORMAT command should only be used to format CMS disks, that is,
disks you are going to use to contain CMS files. In additiom, this
command allows you a choice of physical disk block size as an option.
Refer to the ¥M/SP CMS Command and Macro Reference for details. Format
disks for 0S, DOS, or VSAM applications, using the Device Support
Facilities. See VM/SP Operator's Guide for details.

Section 1. What it Means to Have a CMS Virtual Machine 13

Sharing Virtual Disks: Linking

Since only one user can own a virtual disk, and there are many occasions
that require users to share data or programs, VM/SP allows you to share
virtual disks, on either a permanent or temporary basis, by "linking."

Permanent links can be established for you in your VM/SP directory
entry. These disks are them a part of your virtual machine
configuration every time you log on.

You can also have another user's disk temporarily added to your
configuration by using the CP LINK command. For example, if you have a
program that uses data that resides on a disk identified in userid
DATA's configuration as a 194, and you know that the password assigned
to this disk is GO, you could issue the command:

cp link to data 194 as 198 r pass= go!?

DATA's 194 disk is then added to your virtual machine configuration at
virtual address 198.

The "R"™ in the command line indicates the access mode; in this case,
it tells CP that you only want to read files from this disk and you will
not be allowed to write on it. If you try to issue this command when
someone already has write access to that disk, you will not be able to
establish the link. If you want to link to DATA in any event, you can
reissue the LINK command using the access mode RR:

cp link data 194 198 rr go?

The keywords 'TO', 'AS', and 'PASS=' are optional; you do not have to
specify then.

However, note that using the RR access allows one user to read a disk
while another is updating the same disk at the same time. This may
produce unpredictable results.

You can also use the CP LINK command to link to your own disks. For
example, if you log on and discover that another user has access to one
of your disks, you may be givemn read-only access, even if it is a
read/write disk. You can request the other user to detach your disk
from his virtual machine, and after he has done so, you can establish
the link:

cp link * 191 191

When you link to your own disks, you can specify the userid as * and you
do not need to specify the access mode or a password.

You can find more information about the CP LINK command and CP access
modes in VM/SP CP Command Reference for General Users.

1Note that the password cannot be entered on the command line if the
password suppression facility was specified at sysgen.

14 IBM VM/SP CMS User's Guide

Identifying Your Disk To CMS: Accessing

LINK and DEFINE are CP commands: they tell CP to add DASD devices to
your ‘'virtual machine configuration. CMS must also know about these
disks, and you must use the ACCESS command to establish a filemode
letter for thenm:

access 194 b

CMS uses filemode letters to manage your files during a terminal
session. By using the ACCESS command you can control:

e Whether you can write on a disk or only read from it (its read/write
status)

e The 1library search order for programs executing im your virtual
machine

e VWhich disks are to contain the new files that you create

If you want to know which disks you currently have access to, issue
the command:

query search

You might see the following display:

PER191 191 A R/W
DAT194 198 B R/0
CMNS190 190 S R/0
CMS19E 19E ¥ R/0

The first column indicates the label on the disk (assigned when the
disk is formatted), and the second column shows the virtual address
assigned to it.

The third column contains the filemode letter. All letters of the
alphabet are valid filemode letters.

The fourth column indicates the read/write status of the disk. The
190 and 19E disks in this example are read-only disks that contain the
CMS nucleus and disk-resident commands for the CMS systen. You will
probably use your 191 (A) disk as your primary read/write work disk.

Section 1. What it Means to Have a CMS Virtual Machine 15

RELEASING VIRTUAL DISKS
When you no 1longer need a disk during a terminal session, use the CMS
command RELEASE:

release c
When you want to assign a currently active filemode letter to another
disk, issue the ACCESS command to assign that filemode letter to amother
disk. It is not necessary to release an accessed disk prior to accessing
another disk with the same filemode.

When you no longer need disks in your virtual machine configuration,
use the CP command DETACH to disconnect them from your virtual machine:

cp detach 194
cp detach 291

If you are going to release and detach the disk at the same time, you
can use the DET option of the RELEASE command:

release 194 (det

For more information on controlling disks in CMS, see "Section 4. The
CMS File System."

16 IBM VM/SP CMS User's Guide

Section 2. VM/SP Environments and Mode Switching

When you are using VM/SP, your virtual machine can be in one of two
possible "environments": the CP, or control program environment, or the
virtual machine environment, vhich may be CMS. The CMS environment has
several subenvironments, sometimes called "modes." Each environment or
subenvironment accepts particular commands or subcommands, and each
environment has its ovn entry and exit paths, responses and error
messages. If you have a good understanding of how the VM/SP
environments are related, you can learn to change environments quickly
and use your virtual machine efficiently.

This section introduces the CP and CMS environments that you use and
describes:

e Entry and exit paths
e Command subsets that are valid as input

Figure 2 summarizes the VM/SP command environments and lists the
conmands and terminal paths that allow you to go from one environment to
another.

Any "“Class Any"’
CP Command

LOGON Any CMS Subset Command
Any CP Command

HX
RETURN
y ‘; #CP Command Line

CMS Subset

CP Environment' CMS Environment CMS EDIT Environment
Any CP Command? Any CMS Command Any CMS EDIT
IPL CMS Any CP Commary Subcommand
BEGIN® CMS EDIT fn ft - FILE or QUIT
EXTERNAL Execute any OS or - Any CMS EDIT Macro
CMS Program CMS
SET DOS ON INPUT I
DEBUG #CP Command Line INPUT MODE
#CP Command Line Any Input Line

Carrier return or
null line
#CP Command Line

DEBUG Environment CMS/DOS Environment

Any CMS Command

Any CMS/DOS Command

Any CP Command

Execute any DOS
Program Notes:

#CP Command Line

Any DEBUG Subcommand
RETURN or HX

GO
#CP Command Line

A

1. The CP environment may be entered from any other environment either by
using your terminal’s Attention key or equivalent, ar by entering the

command #CP.
2. Any CP command that is valid for your privilege class. Any time a CP
command can be entered, it may be prefixed by #CP.
Program E i 3. The BEGIN command returns your virtual machine to the environment it
was in when CP was entered. For example:

N\

HX or {Abend) @ It you were in edit or input made, the current line painter remains
(Breakpoint) unchanged.
(Address Stop) e |f you were ing a program, resumes as the i

address indicated in the PSW,

Figure 2. VM/SP Environments and Mode Switching

Section 2. VM/SP Environments and Mode Switching 17

With the exception of input mode in the edit environment, you can
alwvays determine which environment your virtual machine is in by
pressing the Return or Enter key on a null 1line. The responses you
receive and the environments they indicate, are:

Response Environment

(024 CP

CHMS CMS

CMS (DOS ON) CMS/DOS

EDIT: Edit

CMS SUBSET CMS Subset

DEBUG Debug

XEDIT XEDIT, System Product Editor

The CP Environment

Vhen you log on to VM/SP, your virtual machine is in the CP environment.
In this environment, you can enter any CP command that is valid for your
privilege class. This publication assumes that you are a gemneral, or
class G, user. You can find information about the commands that you can
use in the VYM/SP CP Command Reference for General Users.

Only CP commands are valid terminal input in the CP environment. You
can, however, preface a CP command 1line with the characters "CP" or
"#CP", followed by one or more blanks, although it is not necessary.
These functions are described under "The CMS Environment."

You can enter CP commands from other VM/SP environments. There may
be times during your terminal session when you want to enter the CP
environment to issue one or more CP commands. You can do this from any
other environment by doing either of two things:

1. Issue the command:
#cp
2. Use your terminal's Attention key (or equivalent). On a 2741
terminal, you must normally press the Attemntion key twice, quickly,

to enter the CP environment.

The following message indicates that your virtual machine is in the
CP environment:

Cp

After entering whatever CP commands you need to-use, you return your
virtual machine to the environment or mode that it came from by using
the CP command:

cp begin

which, literally, begins execution of your virtual machine.

The CMS Environment

You enter the CMS environment from CP by issuing the IPL command, which
loads CMS into your virtual storage area. If you are planning to use
CMS for your entire terminal session, you should not have to IPL again
unless a program failure forces you into the CP environment.

18 IBM VM/SP CMS User's Guide

When you issue the IPL command, specify the named system CMS at your
installation. For example:

cp ipl cms

When your virtual machine is in the CMS environment, you can issue
any CMS command and any of the CP commands that are valid for your user
privilege class. You can also execute many of your own OS or DOS
programs; the ways you can execute programs are discussed in "Section 8.
Developing OS Programs OUnder CMS"™ and "Section 9. Developing DOS
Programs Under CMS."

You can enter CP commands from CMS in any of the following ways:

e Using the implied CP function of CMS (See Note.)
e With the CP command
e With the #CP function

Note: For the most part, you may enter any CP command directly from the
CMS environment. This implied CP function is controlled by an operand
of the CMS SET command, IMPCP. You can determine whether the implied CP
function is in effect for your virtual machine by entering the command:

query impcp

If the response is:
IMPCP = OFF

you can change it by entering:
set impcp on

When the implied CP function is set off, you must use either the CP
command or the #CP function to enter CP commands from the CHMS
environment. CP commands that you execute in EXEC procedures must
always be prefaced by the CP command, regardless of the implied CP
setting. An example of using the CP command is:

cp close punch

When you issue CP commands from the CMS environment either implicitly
or with the CP command, you receive, in addition to the CP response (if
any), the CMS ready message. If you use the #CP function, discussed
next, you do not receive the ready message.

You can preface any CP command 1line with the characters "#CP",
followed by one or more blanks. When you enter a CP command this way,
the ccmmand 1is processed by CP immediately; it is as if your virtual
machine were actually in the CP environment.

EDIT, INPUT, AND CMS SUBSET

The CMS editor is a VM/SP facility that allows you to create and modify
data files that reside on CMS disks. The editor environment, more
commonly called the edit environment, is entered when you issue the CMS
command EDIT, specifying the identification of a data file you want to
create or modify.

Note: When you issue the EDIT command, the System Product Editor

automatically places you in CMS Editor (EDIT) compatibility mode. 1In
this mode, you can issue both EDIT and XEDIT subcommands. For complete

Section 2. VM/SP Environments and Mode Switching 19

information on EDIT compatibility mode, as well as instructions on how
to invoke the System Product Editor, refer to the publication YM/SP
System Product Editor Command and Macro Reference.

edit myfile assemble
is an example of howvw you would enter the edit environment to either
create a file called MYFILE ASSEMBLE or to make changes to a disk file
that already exists under that nanme.
When you enter the edit environment your virtual machine is
automatically in edit mode, where you can only issue EDIT or XEDIT
subcommands or CP commands prefaced by "#CP." EDIT subcommands tell the

editor what you wish to do with the data you have accessed. After you
enter the EDIT subcommand:

input

data lines that you enter are considered input to the file. To return
to edit mode, you must enter a null line.

If you issue the EDIT subcommand:
cms
the editor responds:
CMS SUBSET
and your virtual machine is in CMS subset mode, where you can issue any

valid CMS subset command, that is, a CMS command that is allowed imn CMS
subset mode. These include:

ACCESS | NAMEFIND | RDR
Ccp | NAMES | RDRLIST
DISK | NOTE READCARD
ERASE | NUCXDROP | RECEIVE
EXEC | NUCXLOAD | SENDFILE

| EXECIO | NUCXMAP SET

| FILELIST | PEEK STATE

| GLOBALV PRINT STATEW

| IDENTIFY PUNCH | TELL
LISTFILE QUERY TYPE

You can also issue CP commands. To return to edit mode, you use the
special CMS subset command, RETURN. If you enter the Immediate command
HX, your editing session 1is terminated abnormally and your virtual
machine is returned to the CMS environment.

When you are finished with an edit session, you return to the CHMS
environment by issuing the FILE subcommand, which indicates that all
modifications or data insertions that you have made should be written
onto a CMS disk, or by issuing the subcommand QUIT, which tells the
editor not to save any modifications or insertions made since the last
time the file was written.

More detailed information about EDIT subcommands and how to use the

CMS editor is contained in this publication in "Section 5. The Editors"
and in the YM/SP CMS Command and Macro Reference.

20 IBM VM/SP CMS User's Guide

DEBUG

CMS DEBUG is a special CMS facility that provides subcommands to help
you debug programs at your terminal. Your virtual machine enters the
debug environment when you issue the CMS command:

debug

You may want to enter this command after you have loaded a program into
storage and before you begin executing it. At this time you can set
"breakpoints," or address stops, where you wish to halt your program's
execution so that you can examine and change the contents of general
registers and storage areas. When these breakpoints are encountered,
your virtual machine is placed in the debug environment. You can also
enter the debug environment by issuing the CP EXTERNAL command, which
causes an external interrupt to your virtual machine.

Valid DEBUG subcommands that you can enter in this environment are:

BREAK GO RETURN
CAW GPR SET
Csw HX STORE
DEFINE ORIGIN X

DUMP PSW

You can also use the #CP function in the debug environment to enter CP
commands.

You leave the debug environment in any of the following ways:

e TIf the program you are running completes execution, you are returned
to the CMS environment.

e If your virtual machine entered the debug environment after a
breakpoint was encountered, it returns to CMS when you issue the
DEBUG subcommand:

hx

To continue the execution of your program, you use the DEBUG
subcommand:

go
e If your virtual machine is in the debug environment and is not
executing a program, the DEBUG subcommand:
hx

returns it to the CMS environment.

CMSs/DOS

If you are a VSE/AF user, the CHNMS/DOS environment provides you with all
the CMS interactive functions and facilities, as well as special CMS/DOS
commands which simulate DOS functioms. The CMS/DOS environment becomes
active when you issue the command:

set dos on

\ {
Section 2. VM/SP Environments and Mode Switching 21

When your virtual machine is in the CMS/DOS environment you can issue
any command line that would be valid in the CMS environment, including
the facilities of EDIT, DEBUG, and EXEC, but excluding CMS commands or
program modules that load and/or execute programs that use 0S macros or
functions.

The following commands are provided in CMS/DOS to test and develop
DOS programs, and to provide access to VSE/AF libraries:

ASSGN DSERV OPTION
DLBL ESERV PSERV
DOSLIB FETCH RSERV
DOSLKED FCOBOL SSERV
DOSPLI LISTIO

Your virtual machine leaves the CMS/DOS environment when you issue
the command:

set dos off

If you reload CMS (with an IPL command) during a terminal session, you
must also reissue the SET DOS ON command.

Interrupting Program Execution

When you are executing a program under CMS or executing a CMS command,
your virtual machine is not available for you to enter commands. There
are, however, ways in which you can interrupt a program and halt its
execution, either temporarily, in which case you can resume its
execution, or permanently, in which case your virtual machine returns to
the CMS environment. In both cases, you interrupt execution by creating
an "attention interruption," which may take two forms:

e An attention interruption to your virtual machine operating system
e An attention interruption to the control program

These situations result in what are known as virtual machine (VM) or
control program (CP) "reads" being presented to your virtual comnsole.
On a typewriter terminal, the keyboard unlocks when a read occurs.

Whether you have to press the Attention key once or twice depends on
the terminal mode setting in effect for your virtual machine. This
setting is controlled by the CP TERMINAL command:

cp terminal mode vnm

The setting VM is the default for virtual machines; you do not need to
specify it. The VM setting indicates that one depression of the
Attention key sends an interruption to your virtual machine, and that
two depressions results in an interruption to the control program (CP).

The CP setting for terminal mode, which is the default for the system
operator, indicates that one depression of the Attention key results in
an interruption to the control program (CP). If you are using your
virtual machine to run an operating system other than CMS, you might
wish to use this setting. Issue the command:

cp terminal mode cp

22 1IBM VM/SP CMS User's Guide

VIRTUAL MACHINE INTERRUPTIONS

While a command or program is executing, if you press the Attention key
once on a 2741 (or the Enter key omn a 3270), you have created a virtual
machine interruption. The program halts execution, your terminal will
accept an input line, and you may:

e Terminate the execution of the program by issuing an Immediate
command to halt execution:

hx
The HX comnand causes the program to abnormally terminate (abend).

e Enter a CMS command. The command is stacked in a console buffer and
is processed by CHMS when your program is finished executing and the
next virtual machine read occurs. For example:

print abc listing
After you enter this line, the program resumes execution.

e If the program is directing output to your terminal and you wish only
to halt the terminal display, use the Immediate command:

ht

The program resunes execution. Terminal output can also be
suppressed immediately when you enter a command by placing #HT at the
end of the command line. The logical line end character (#) allows
the Immediate command HT to be accepted; program execution proceeds
without typing.

You can, if you want, cause another interruption and request that
typing be resumed by entering the RT (resume typing) command:

rt

e Enter a null line; your program continues execution. The null line is
stacked in the console stack and read by CMS as a stacked command
line.

HX, HT, and RT are three of the CMS Immediate commands. They are
"immnediate" because they are executed as soon as they are entered.
Unlike other commands, they are not stacked in the coansole buffer. You
can only enter an Immediate command following am attention interruption.

CONTROL PROGRAM INTERRUPTIONS

You can interrupt a program and enter the CP environment directly by
pressing the Attention key twice quickly, on a 2741, or pressing the PA1
key on a 3270. Then, you can enter any CP command. To resume the
program's execution, issue the CP command:

cp begin

If your terminal is operating with the terminal mode set to CP, pressing
the Attention key once places your virtual machine in the CP
environment.

Section 2. VM/SP Environments and Mode Switching 23

ADDRESS STOPS AND BREAKPOINTS

A program may also be interrupted by an instruction address stop, which
you specifically set by the CP command ADSTOP. For example, if you
issue the command:

cp adstop 201ea

an address stop is set at virtual storage location X'201EA'. When your
program reaches this address during its execution, it is interrupted and
your virtual machine is placed in the CP environment, where you can
issue any CP command, including another ADSTOP command, before resuming
your program's execution with the CP command BEGIN.

Breakpoints, similar to address stops, are set using the DEBUG
subcommand BREAK, which you issue in the debug environment before
executing a program. For example, if you issue:

break 1 201ae

your program's execution is interrupted at this address and your virtual
machine is placed in the debug environment. You can then enter any
DEBUG subcommand. To resume program execution, use the DEBUG subcommand
GO. If you want to halt execution of the program entirely, use the
DEBUG subcommand HX, which returns your virtual machine to the CMS
environment. You can find more information about setting address stops
and breakpoints in "Section 11. How VM/SP Can Help You Debug Your
Programs."

24 IBM VM/SP CMS User's Guide

Section 3. What You Can Do With VM/SP-CMS Commands

This section provides amn overview of the CMS and CP command languages,
and describes the various commands within functional areas, with
examples. The commands are not presented in their entirety, nor is a
complete selection of commands represented.

When you finish reading this section you should have an understanding
of the kinds of commands available to you, so that when you need to
perform a particular task using CHMS you may have an idea of whether it
can be done, and know what command to reference for details. For
complete lists of the CP and CMS commands available, see "Appendix A:
Summary of CMS Commands" and "Appendix B: Summary of CP Commands."

Command Defaults

Many of the characteristics of your CMS virtual machine are already
established when you log on, but there are commands available so you can
change them. In the case of many CMS commands, there are implied values
for operands, so that when you enter a command line without certain
operands, values are assumed for then. In both of these instances, the
values set or implied are considered default values. As you learn CP
and CHMS commands, you also should become familiar with the default
values or settings for each.

Commands to Control Terminal Communications

Using VWVM/SP, you control your virtual machine directly from your
terminal. VM/SP provides a set of commands for terminal communications.

ESTABLISHING AND TERMINATING COMMUNICATIONS WITH VM/SP

To initiate your communication with VM/SP, use the CP LOGON command:
cp logon sam
Optionally, you may enter your password on the same linel:
cp logon sam 123456
When you are sure that your communication line is all right and you have
difficulty logging on (for example, someone else has logged on under

your userid), you can use the CP MESSAGE command:

cp message sam this is sam...pls log off

1Note that, the passvord cannot be entered on the command line if the
passvword suppression facility was specified at sysgen.

Section 3. What You Can Do With VM/SP-CMS Commands 25

Another way to access the VM/SP system is to use the CP command DIAL:
cp dial tsosys
In this example, TSOSYS is the userid of a virtual machine running a TSO
systen. After this DIAL command is successful, you can use your
terminal as if you were actually connected to a TSO system, and you can
begin TSO logon procedures.
To end your terminal session, use the CP command LOGOFF:

cp logoff

If you have used a switched (or dial-up) communication path to the VM/SP
computer and you want the line to remain available, you can enter:

cp logoff hold
At times, you might be rumning a 1long program under one userid and wish
to use your terminal for some other work. Then, you can disconnect your
terminal:

cp disconn

cp disconn hold
Your virtual machine continues to run, and is logged off the system when
your program has finished executing. If you want to regain terminal
control of your virtual machine after disconnecting, log on as you would
to initiate your terminal session. Your virtual machine is placed in
the CP environment, and to resume its execution, you use the CP command
BEGIN.

You should not disconnect your virtual machine if a program requires

an operator response, since the console read request cannot be
satisfied.

CONTROLLING TERMINAL OUTPUT

During the course of a terminal session, you can receive many kinds of
messages from VM/SP, from the system operator, from other users, or from
your own programs. You can decide whether or not you want these
nessages to actually reach you. For example, if you use the command:

cp set msg off
no one will be able to send messages to you with the CP MESSAGE command;
if another virtual machine user tries to send you a message, he receives
the message:

userid NOT RECEIVING, MSG OFF

If your virtual machine handles special messages and you do not want to
receive special messages at this time, you can issue:

cp set smsg off

26 IBM VM/SP CMS User's Guide

No one will be able to send special messages to you with the CP SMSG
command; if another virtual machine user attempts to do so, he receives
a message:

userid NOT RECEIVING, SMSG OFF

Similarly, you can use:

cp set wng off
to prevent warning messages (which usually come from the system
operator) from coming to you. You would probably do this, however, only

in cases where you vere typing some output at your terminal and did not
want the copy ruined.

VM/SP issues error messages whenever you issue a command incorrectly
or if a command or program fails. These messages have a long fornm,
consisting of the error message code and number, followed by text
describing the error. If you wish to receive only the text portion of
messages with severity codes I, E, and W (for informational, error, and
warning, respectively), you can issue the command:

cp set emsg text
If you want to receive only the message code and number (from which you
can locate an explanation of the error in VM/SP System Messages and
Codes) , you specify:
cp set emsg code
You can also cancel error messages completely:
cp set emsg off

To restore the EMSG setting to its default, which is the message text,
enter:

cp set emsg text
Some CP commands issue informational messages telling you that CP has
performed a particular function. You can prevent the reception of these
messages with the command:
cp set imsg off
or restore the default by issuing:
cp set imsg on

The setting of EMSG applies to CMS commands as well as to CP commands.

You can also control the format of the CMS ready message. If you
enter:

set rdymsg smsg
you receive only the "R;" or shortened form of the ready message after
the completion of CMS commands. If you are not receiving error messages

(as described above) and an error occurs, the return code from the
command still appears in parentheses following the "R"™.

Section 3. What You Can Do With VM/SP-CMS Commands 27

An additional feature exists for CMS. If you have a typewriter
terminal with a two-color ribbon, you can specify:

set redtype on
so that CMS error messages are typed in red.

Some commands or messages result in displays of lines that are very
long. If you want to limit the width of lines that are received at your
terminal (for example, if you are using terminal paper that is only
eight inches wide), you can specify:

cp terminal linesize 80

so that all lines received at your terminal are formatted to fit within
an 80-character display.

You can also control two special characters in VM/SP. One is the
exclamation point (!) that types when the Attention key is pressed. 1If

you do not want this character to type when you press the Attention key,
use the command:

cp terminal attn off

CMS allows you to specify a "blip! character: this character is typed
or displayed whenever two seconds of processor time are used by your
virtual machine. TIf you enter:

set blip *

then, during program execution, this character types for every tvwo
seconds of CPU time. You can cancel the function:

set blip off

or set it to nonprintable characters:

set blip on

When this command has been entered on a typewriter terminal, the
Selectric type ball tilts and rotates whenever a blip character is
received.

Note: Issuance of the STIMER macro for more than two seconds will mask
off blips.

On a display terminal, you can control the intensity of the redisplay
of user input. If you enter:

cp terminal hilight on
the redisplay of user input is highlighted. If you enter:
cp terminal hilight off
the redisplay of user input dis at normal intensity. This is the

default.

28 IBM VM/SP CMS User's Guide

COMMANDS TO CONTROL HOW VM/SP PROCESSES INPUT LINES

You can manipulate VM/SP's logical line editing function to suit your
ovn needs. In addition to using the CP TERMINAL command to change the
default logical line editing symbols, you can issue:

cp set linedit off

so that none of the symbols are recognized by VM/SP when it interprets
your input lines.

When you are in the CMS environment, there are a number of commands
that you can use to control how CMS validates a command line. The SET
command functions IMPCP (implied CP) and IMPEX (implied EXEC) control
the recognition of CP commands and CMS EXEC procedures. For example, if
you issue:

set impcp off # set impex off

then, when you enter CP commands in CMS or try to execute EXEC
procedures, you must preface the name of the command or procedure with
CP (or #CP), or EXEC, respectively.

By using the SYNONYM and the SET ABBREV commands, you can control
vhat command names, synonyms, or truncations are valid in CHMS. For
example, you could set up a file named MYSYN SYNONYINM which contains the
following records:

PRINT PRT 1
RELEASE LETGOOF 5
ACCESS GET 1
DOSLKED LNKEDT 3

The first column specifies an existing CMS command, module, or EXEC
name; the second column specifies the alternate name, or synonym, you
wvant to use; and the third column is a count field that indicates the
minimum number of characters of the synonym that can be used to truncate
the name. Using this file, after you enter the command:

synonym mysyn

you can use PRT, LETGOOF, GET, and LNKEDT in place of the corresponding
CMS command names. Also, if the ABBREV function is in effect, (it is
the default; you can make sure it is in effect by issuing the command
SET ABBREV ON), you can truncate any of your synonyms to the minimum
number of characters specified in the count field of the record (that
is, you could enter "p" for PRINT, "letgo" for RELEASE, and so on).

You can set up CMS EXEC files with the same names as CMS commands,
that may or may not perform the same function as the CMS names they
duplicate. For example, if every time you used the GLOBAL command you
used the same operands, you could have a CMS EXEC file, named GLOBAL,
that contained a single record:

global maclib cmslib osmacro
Then, every time you entered the command name:
global

the command GLOBAL MACLIB CMSLIB OSMACRO would execute.

Section 3. What You Can Do With VM/SP-CMS Commands 29

As another example, suppose you had an EXEC file named 'T', that
contained the following records:

&CONTROL OFF
CP QUERY TIME

Then, whenever you entered:
t

you would receive the CP time-of-day message, and you could no longer
use the truncation "T" for the CMS command TYPE. In order to see the
contents of a CMS file displayed at your terminal you would have to
enter at least "TYI" as a truncation.

CONTROLLING KEYBOARD-DEPENDENT COMMUNICATIONS

You are dependent on your terminal for communication with VM/SP: when
your virtual machine is waiting for a read either from the control
program or from your virtual machine operating system, you can not
receive messages until you press the Return key to enter a command or a
null line. If you are in a situation where you must wait for a message
before continuing your work, for example, if you are waiting for a tape
device to be attached to your virtual machine, you can use the CP
command SLEEP to lock your keyboard:

cp sleep

You must then press the Attention key to get out of sleep and unlock the
keyboard so you can enter a command.

If your virtual machine 3is in the CP environment when you issue the
SLEEP command, or if you issue the SLEEP command from the CMS
environment using the #CP function, your virtual machine is in the CP
environment after you press the Attention key. If your virtual machine
is in the CMS environment when you enter the SLEEP command (or if you
enter CP SLEEP), your virtual machine is in the CMS environment when you
press the Attention key once.

You can control the effect of pressing the Attention key on your
terminal with the CP TERMINAL command. If you specify:

cp terminal mode cp

then, vwvhenever you press the Attention key, you are in the CP
environment.

If you use the default terminal mode setting, which is VM, and then
you press the Attention key once, you cause a read to your virtual
machine; if you press the Attention key twice you cause a CP read, and
you are in the CP environment.

The effect of pressing the Attention key is also important when you
are executing a program. At times, you may wish to enter some CP
commands while your program executes, but you do not want to interrupt
the execution of the progran. If, before you begin your program you
issue the command:

cp set rumn on

and then use the Attention key to get to the CP environment while your
program executes, the program continues executing while you communicate

30 IBM VM/SP CMS User's Guide

vith CP. The default setting for the RUN operand of the SET command is
off; usually, when you press the Attention key (twice) during progranm
execution, your program is interrupted.

SPECIAL CHARACTER SETS: If you are using a programming language or
entering data that requires you to use characters that are not on your
keyboard, you can select some characters that you do not use very often
and establish a translate table with the SET command. For example, if
your terminal does not have the special characters [and] (which have
the hexadecimal values AD and BD, respectively), you could issue the
commands:

set input % ad
set input $ bd

Then, when you are entering data 1lines at your terminal, whenever you
enter the characters "%" or "$", they are translated and written into
your file as "["™ and "]". When you display these 1lines, the character
positions occupied by the special characters appear to be blanks,
because they are not available on your keyboard. If you want these
special characters to appear on your terminal in symbolic form, you
should issue the commands:

set output ad %
set output bd $

so that when you are displaying lines that contain these characters,
they will appear translated as % and $ on your terminal. If you are
going to use the input and output functions together, you must set the
output character first; if you set the input character first, then you
are unable to set the output function.

If you are using CMS to develop application programs (COBOL, FORTRAN,
etc.), remember when entering data from a terminal that a null line
results in an end-of-file (EOF) entry into your file.

If you are an APL user and have the special APL type font or the APL
3270 feature and keyboard, you can tell VM/SP to use APL tramslation
tables with the command:

cp terminal apl on

Commands to Create, Modify, and Move Data Files and Programs

The CMS command 1language provides you with many different ways of
manipulating files. A file, in CMS, is any collection of data; it is
most often a disk file, but it may also be contained on cards or tape,
or it may be a printed or punched output file.

COMMANDS THAT CREATE FILES

You create files in CMS by several methods; either specifically or by
default. The EDIT command invokes the CMS editor to allov you to create
a file directly at your terminal. You must specify a file identifier
wvhen you are creating a new file:

edit mother goose

In this example, the file has an identifier, or fileid, of MOTHER GOOSE.

Section 3. What You Can Do With VM/SP-CMS Commands 31

The EDIT subcommand INPUT allows you to begin inserting lines of data or
source code into this file. When you issue the subcommands FILE or
SAVE, the lines that you have entered are written into a CMS disk file.

Files are «created, and sometimes named, by default, with the
following types of commands:

e Commands that invoke programming language processors or compilers.
For example, if you issue the command:

assemble myfile

the assembler assembles source statements from an existing CMS file
named MYFILE ASSEMBLE and produces an output file containing object
code, as well as a listing. The files that are created are named:

MYFILE TEXT
MYFILE LISTING

e Commands that load CMS files onto a disk from cards or tapes. These
comnmands are READCARD, TAPE LOAD, and DISK LOAD.

e The LISTFILE and LISTIO commands with the EXEC option create files
named CMS EXEC and $LISTIO EXEC which you can execute as EXEC
procedures.

e The TAPPDS and TAPEMAC commands create CMS disk files from O0S data
sets on tape. If the data set is a partitioned data set, the TAPPDS
command creates individual CMS files from each of the members; the
TAPEMAC command creates a CMS macro library, called a MACLIB, from an
0S macro library.

e The MOVEFILE and FILEDEF commands, used together, can copy OS or DOS
data sets or files into CMS files; they can also copy files from
cards or tapes.

e CHMS/DOS commands SSERV, ESERV, RSERV, and PSERV copy DOS files from
source statement, relocatable, and procedure libraries into CHMS
files.

e Some CMS commands produce maps, or lists of files, data sets, or
program entry points. For example, if you issue the command:

tape scan (disk

a CMs disk file named TAPE MAP is created that contains a list of the

CMS files that exist on a tape attached to your virtual machine at

virtual address 181.

Some commands create new files from files that already exist on your
virtual disks. The creation may involve a simple copy operation, or it
may be a combining of many files of one type into a 1larger file of the
same or a different type:

e The COPYFILE command, in its simplest form, copies a file from one
virtual disk to another:

copyfile yourprog assemble b myprog assemble a

e The MACLIB and TXTLIB commands create 1libraries from MACRO or COPY
filedg, or from TEXT (object) files.

e The SORT command rearranges (in alphameric sequence) the records in a
file and creates a new file to contain the result. You have to

32 1IBM VM/SP CMS User's Guide

specify the name of the new file:
sort nonseq recs a seq recs a
e The GENMOD command creates nonrelocatable modules from object modules
that you have loaded into your virtual storage area. For example,
the commands:

load test
genmod payroll

create a file named PAYROLL MODULE, which you can then execute as a
user-written CMS command.

e The DOSLKED command creates or adds members to DOSLIBs, which are
libraries containing link-edited CMS/DOS program phases.

e The UPDATE command creates an updated source file and special update
files when you use it to apply updates to your source programs.

COMMANDS THAT MODIFY DISK FILES
You can use the CMS Editor to modify existing files on your virtual
disks. You issue the EDIT command, giving the file identifier:
edit old file
CMS editor subcommands allow you to make minor specific chamnges or

global changes, which can affect many lines in a file at one time.

The MACLIB and TXTLIB commands also allow you to modify CMS macro and
text 1libraries. You can add, delete, or replace members imn these
libraries using these commands.

The COPYFILE command has some options that allow you to change a file
without creating a new output file. For example, if you enter the
command:

copyfile my file a (lowcase

then all of the uppercase characters in the file MY FILE are translated
to lowercase.

You can change the file identifier of a file using the RENAME
command:

rename test file a1l good file a1l
The ERASE command deletes files from your virtual disks:

erase temporary file b1
For additional examples of CMS file system commands, see "“Appendix D:
Sample Terminal Sessions.™

COMMANDS TO MOVE FILES

You can use CMS commands to transfer a data file from one device or
medium to another device of the same or of a different type. The types

Section 3. What You Can Do With VM/SP-CMS Commands 33

of movement and the commands to use are described briefly here and in
detail in "Section 7. Using Real Printers, Punches, Readers, and Tapes."

If you need to transfer files between virtual machines, you can use
the SENDFILE, PUNCH, or DISK commands to punch virtual card image

records. These are then placed in the virtual card reader of the
receiving virtual machine.

Before you use PUNCH or DISK commands, you must indicate the output

disposition of the files. You do this with the CP SPOOL command:

cp spool 004 to mickey
Then, you can use the PUNCH command to punch virtual card images:

punch acct records
The file ACCT RECORDS is spooled to the userid MICKEY's virtual card
reader. If the CMS file you are transferring does not have fixed-
length, 80-character (card image) records, you can use the command:

disk dump acct records

The CMS TAPE command allows you to dump CMS files onto tape, or to
restore previously dumped files:

tape dump archive file
tape load archive file

VM/SP also provides a special utility program, DASD Dump Restore
(DDR), that allows you to dump the entire contents of your virtual disk
onto a tape and then 1later restore it to a disk. You might wuse this

program, invoked by the DDR command in CMS, to back up your data files
before using them to test a new progranm.

COMMANDS TO PRINT AND PUNCH FILES
The commands that you use most often to print and punch CMS files are
the commands PRINT and PUNCH. For example:
print myprog listing
prints the contents of the LISTING file on the system printer, and:
punch myprog assemble

punches the assembler language source statement file onto cards. You
can also punch members of MACLIBs and TXTLIBs:

punch cmslib maclib (member fscb
Some CMS commands have a PRINT option, so that instead of having some
kinds of output displayed at your terminal or placed in a disk file, you
can request to have it printed on the real system printer. For example,
if you want a list of the contents of a macro library to print, you
could issue the command:
maclib map mylib (print

You can see the contents of a file displayed at your terminal by
using the TYPE command:

34 IBM VM/SP CMS User's Guide

type week3 report

You can specify, on the TYPE command, that you want to see only some
specific records in this file:

type veek3 report a 1 20

Commands to Develop and Test OS and CMS Programs

Use CMS to prepare programs: you can create them with the CMS editor, or
write them onto your CMS disks using any of the methods discussed above.
You can also assemble or compile source programs directly from cards,
tapes, or 0S data sets. If your source program is in a CMS disk file,
then during the development process you can use the editor to make
corrections and updates.

To compile your programs, use the assembler or any of the language
processors available at your installation. If your program uses macros
that are contained in either system or private program 1libraries, you
must make these libraries known to CMS by using the GLOBAL command:

global maclib cmslib asmlib

In this example, you are using two 1libraries: the CMS macro library,
CMSLIB MACLIB, and a private library, named ASMLIB MACLIB.

The output from the compilers, in relocatable object form, is stored
on a CMS disk as a file with the filetype of TEXT. To load TEXT files

into the user area of virtual storage to execute them, use the LOAD
command:

load myprog
The LOAD command performs the linkage editor function in CMS. If

MYPROG contains references to external routines, and these routines are
the names of CMS TEXT files, those TEXT files are automatically included
in the 1load. If you receive a message telling you that there is an
undefined name (which might happen if you have a CSECT name or entry
point that is not the same as the name of the TEXT file that contains
it), you can then use the INCLUDE command to load this TEXT file:

include scanrtn

When you have 1loaded the object modules into storage, you can begin
program execution with the START command:

start
If you want to begin execution at a specified entry point, enter:
start scan1
where SCAN1 is the name of a control section, entry point, or procedure.

If you are testing a program that either reads or writes files or
data sets using OS macros, you must use the FILEDEF command to supply a
file definition to correspond to the ddname you specify in your progranm.
The command:

filedef indd reader

indicates that the input file is to be read from your virtual card

Section 3. What You Can Do With VM/SP-CMS Commands 35

reader. A disk file might be defined:

filedef outdd disk out file a1l The FILEDEF command in CMS performs
the same function as a data defimnition (DD) card in OS.

The commands to load and execute O0S programs are discussed in
"Section 8. Developing 0S Programs Under CMS."

The RUN command, which is actually a CMS EXEC procedure, combines
many of these commands for you, so that if you want to compile, load,
and execute a single source file, or load and execute a TEXT or MODULE
file, you can use the RUN command instead of issuing a series of
commands. See the discussion of the RUN command in VM/SP CMS Command and
Macro Reference for a list of the 0S language processors available.

Commands to Develop and Test DOS Programs

CHMS simulates many functions of VSE/AF in the CMS/DOS environment.
CNS/DOS is not a separate system, but is part of CMS. When you enter the
command:

set dos on
you are in the CMS/DOS environment. If you want to use the libraries on

the VSE/AF system residence volume, you should access the disk on which
it resides and specify the mode letter on the SET DOS ON command line:

access 132 ¢
set dos on c

Using commands that are available only in the CMS/DOS environment,
you can assign system and programmer 1logical wunits with the ASSGN
command:

assgn sys200 reader

If the device 1is a disk device, you can set up a data definition with
the DLBL command:

assgn sys100 b
dlbl infile b dsn myinput.file (sys100

You can find out the current logical unit assignments and active file
definitions with the LISTIO and QUERY DLBL commands, respectively:

listio a
query dlbl

If you are an assembler language programEer, you can assemble a
source file with the ASSEMBLE command:

assemble myprog
A CMS file with a filetype of DOSLIB simulates a DOS core image
library; you can link-edit TEXT files or relocatable modules from a DOS
relocatable library and place the link-edited phase in a DOSLIB using
the DOSLKED command:

doslked mybrog newlib

36 IBM VM/SP CHMS User's Guide

Then, use the GLOBAL command to identify the phase library and issue the
FETCH command to bring the phase into virtual storage:

global doslib newlib
fetch myprog

The START command begins program execution:
start

During program development with CMS, you can use VSE/AF system or
private libraries. You can use files on these libraries or you can copy
them into CMS files. The DSERV command displays the directories of
VSE/AF libraries. The command:

dserv cd

produces a copy of the directory for the core image library. To copy
phases from relocatable libraries into CMS TEXT files, you could use the
RSERV command:

rserv oldprog

The SSERV and ESERV commands are available for you to copy files from
source statement 1libraries, or copy and de-edit macros from E
sublibraries. Also, the PSERV command copies procedures from the
procedure library.

The CMS/DOS commands are described in detail in "Section 9.
Developing DOS Programs Under CMS."

Commands Used in Debugging Programs

When you execute your programs under CMS, you can debug them as they
execute, by forcing execution to halt at specific instruction addresses.
You do this by entering the debug environment before you issue the START
conmand. You enter the debug environment with the DEBUG command:

debug

To specify that execution be stopped at a particular virtual address,
you can use the BREAK subcommand to set a breakpoint. For example:

break 1 20ad0

Then, when this virtual address is encountered during the execution of
the program, the debug environment is entered and you can examine
registers or specific storage locations, or print a dump of your virtual
storage. Subcommands that do these things might 1look 1like the
following:

gpr 0 15
x 20c12 8
dump 20000 *

Instead of using the CMS DEBUG subcommands, you can use the CP ADSTOP
conmand to set address stops. For example:

cp adstop 20ado0

Section 3. What You Can Do With VM/SP-CMS Commands 37

Then, in the CP environment, you can use CP commands to do the same
things. For example:

cp display g
cp display 20c12.8
cp dump 20000

Both sets of commands shown in these examples result in displays of (1)
the contents of your virtual machine's general purpose registers, (2) a
display of eight bytes of storage beginning at location X'20C12' and (3)
a dump of virtual storage from location X'20000' to the end.

You can also use the CMS SVCTRACE command and the CP TRACE commands
to see a record of interruption activity im your virtual machine.

The DEBUG subcommands and _the CMS and CP debugging facilities are
described in more detail imn "Section 11. How VM/SP Can Help You Debug
Your Programs."

Commands to Request Information

All of the CP and CMS commands discussed in this section have required
some action on your part: you set your terminal characteristics,
manipulate disk files, develop, compile, and test programs, and control
your virtual machine devices and spool files. During a terminal session
you can change the status of many of your devices and virtual machine
characteristics, modify the files on your disks and create spool files.
VM/SP provides many commands to help you f£find out what is and what is
not currently defined in your virtual machine.

COMMANDS TO REQUEST INFORMATION ABOUT TERMINAL CHARACTERISTICS

You can find out the status of your terminal characteristics by using
the CP command QUERY with the TERMINAL or SET operands. If you issue the
command:

cb query terminal
you can see the settings for all of the functions controlled by the CP
TERMINAL command, including the current line size and line editing
symbols.

Similarly, the command:
Cp query set

tells you the settings for the functions controlled by the CP SET
command, such as error messadge display, and the MSG and WNG flags.

For most of the functions controlled by the CMS SET command, there
are corresponding CMS QUERY command operands; to find out a particular
setting, you mnust specify the function in the QUERY command. For
example:

query input

38 IBM VM/SP CMS User's Guide

lists the current settings in effect for input character translation.
Other functions that you can query this way are:

BLIP INPUT REDTYPE
IMPCP . OUTPUT SYNONYHM
IMPEX RDYMSG

.COMMANDS TO REQUEST INFORMATION ABOUT DATA FILES

Use the LISTFILE command to get information about CMS files. The
information you can obtain from the LISTFILE command includes:

|listfile [Names of all of the files on your A-disk.
1 L

L] Ll
|listfile * * b |Names of all the files on your accessed B-disk.
L L

+
ilistfile myprog ¥ | Names of all of the files omn your A-disk
|with a filename of myprog.

L

Ll

listfile * assemble |Names of all of the files on your A-disk
|with a filetype of assemble.
1

+
listfile * * a1 |Names of all of the files on your A-disk
|with the filemode number of 1.
'
+
listfile * * (label |The record length, record format, blocksize,
|creation date, and disk label for each of the
| files on your A-disk.

e e e e — — . — o ak —— - — i —

o ——— gy — — e —— i —

Also see the CMS command FILELIST in the CMS Command and Macro
Reference. In a full screen environment, FILELIST provides you with
the same information as the LISTFILE command.

Use the STATE command to find out whether a certain file exists:
state sales list c

If you want to know if the file is on a read/write disk, you can use
the STATEW command.

To find out what CMS libraries have been made available, you can use
the commands:

query doslib
query maclib
query txtlib
query library

To find out what members are contained in a particular macro or text
library use the commands:

maclib map mylib (term
txtlib map proglib (term

Section 3. What You Can Do With VM/SP-CMS Commands 39

The MODMAP command displays a load map of a MODULE file:
modmap payroll

To examine load maps created by the LOAD command, use the TYPE
conmand:

type load map a5
The TYPE command can also be used to display the contents of any CHMS.
file. To examine large files, you can use the PRINT command to spool a
copy to the high-speed printer.

To compare the contents of two files to see if they are identical,
use the COMPARE command:

compare labor stat a1l labor stat b1

Any records in these files that do not match are displayed at your
terminal.

If you have OS or DOS disks attached to your virtual machine, you
can display a list of 0S data sets or DOS files by using the LISTDS
command; for example:

listds d

displays a list of the data sets or files on the O0S or DOS disk
accessed as your D-disk.

COMMANDS TO REQUEST INFORMATION ABOUT YOUR VIRTUAL DISKS

Use the CP QUERY command to find out:
e FWhat virtual disks are currently part of your configuration:
cp query virtual dasd
e Whether a particular virtual disk address is in use:
cp query virtual 291
e FWhat users might be linked to one of your disks:
cp query links 330

The CMS QUERY command can tell you about your accessed disks. If you
enter:

query disk a
you can find out the number of files on your A-disk, the amount of space
that is being used, and its percentage of the total disk space, and the
read/vwrite status. To get this information for all of your accessed
disks, issue the command:

query disk *

To obtain information about the extents occupied by files on 0S and DOS
disks, enter the command:

listds * (extent

40 IBM VM/SP CMS User's Guide

If you want to know the current order in which your disks are
searched for data files or programs, issue the command:

query search
You could also use this command to find out what disks you have

accessed, what filemode letters you have assigned to them, whether they
are read/vwrite or read-only, and whether they are CMS, 0S, or DOS disks.

COMMANDS TO REQUEST INFORMATION ABOUT YOUR VIRTUAL MACHINE

The command:

cp query userid
gives you your userid and the system identifier for the CPU you are
using. The system identifier is a one to eight character name assigned
by your 1location. The system identifier is not given if no name has
been assigned. The CMS IDENTIFY command also can be used to display or
stack the userid, nodeid, rscsid, date, time, time zone, and day of the
veek. Refer to the VM/SP CMS Command and Macro Reference for more
information.
If you issue the command:

Cp query virtual

you can find out the status of your virtual machine configuration. You
can also request specific information; for example, the command:

Ccp query storage
gives you the amount of virtual storage you have available.

To find out the current spooling characteristics of your printer,
punch, or reader, issue the commands:

cp query 00e
cp query 004
cp query 00c
To see information about all three at once, use:

Cp query ur

For the status of spool files on any of +these devices, issue the
commands:

cp query printer
CpP query punch
cp query reader

Using these commands, you can request the status of particular spool
files by referring to the spoolid number; for example:

Cp query printer 4187

You can also request additional information about the files, including
file identification and creation time:

cp query reader all

Section 3. What You Can Do With VM/SP-CMS Commands 41

Use the CMS RDR command to determine the characteristics of the next
file in your virtual reader. For more information on the RDR command,
refer to the YM/SP CMS Command and Macro Reference.

If you want to know the total number of spool files associated with
your virtual machine, you can use the command:

cp query files

The response to this message is the same as the message you receive if
you have spool files when you 1log on. The RDRLIST EXEC procedure
displays information about the files in your virtual reader with the
ability to PEEK at them or RECEIVE them. Refer to the VM/SP CMS Command
and Macro Reference for command information.

COMMANDS TO USE TO COMMUNICATE WITH OTHER COMPUTER USERS

Using CMS commands, you have the ability to send information to other
users and to receive information from them. Information about other
computer users with whom you communicate can be collected in your
"userid Names" file. The following commands reference the NAMES file
created by the NAMES command: NAMEFIND, NOTE, RECEIVE, SENDFILE, and
TELL.

1
TELL |Send a message to one or more computer users who
|are logged on to your computer or to omne attached
|to yours via RSCS.
1

L T 1
| NAMEFIND IDisplay/stack information from a NAMES file. |
L i]
] h i
| NOTE | Prepare a 'note' for one or more computer users, |
I |to be sent via the SENDFILE command. |
['l Il
¥ L
|RECEIVE | Read onto disk a file or note that is in your |
] |virtual reader. |
1 i]
] 1
SENDFILE	Send files or notes to one or more users,
	attached locally or remotely, by issuing the
	command or by using a menu. (display terminal omnly)
F ' i	
i	
i	
L J

The command formats and examples for each of the above commands are
documented in the VM/SP CMS Command and Macro Reference.

42 1IBM VM/SP CMS User's Guide

Section 4. The CMS File System

The file 1is the essential unit of data in the CMS systen. CMs disk
files are unique to the CMS system and cannot be read or written using
other operating systems. When you create a file in CMS, you name it
using a file identifier. The file identifier consists of three fields:

e Filename (£fn)
e Filetype (ft)
e TFilemode (£fm)

When you use CMS commands and programs to modify, update, or
reference files, you must identify the file by using these fields. Some
CMS commands require you to enter only the filename, or the filename and
filetype; others require you to enter the filemode field as well. This
section contains information about the things you must consider when you
give your CMS files their identifiers, notes on the file system commands
that create and modify CMS files, and additional notes on using CMS
disks.

CMS File Formats

The CMS file management routines write CMS files on disk in fixed
physical blocks, regardless of whether they have fixed- or
variable-length records. For most of your CMS applications, you never
need to specify either a logical record length and record format or
block size when you create a CMS file.

When you create a file using one of the CMS editors, the file has
certain default characteristics, based on its filetype. The special
filetypes recognized by the editor, and their applications, are
discussed under "What are Reserved Filetypes?"

VSAM files written by CMS are in the same format as VSAM files
written by O0S/VS or VSE/AF and are recognized by those operating
systems. You cannot, however, use any CMS file system commands to read
and write VSAM files, because VSAM file formats are unique to the
virtual storage access method.

For a mninidisk formatted in 800-byte physical blocks, a single CMS
file can contain up to 12,848,000 bytes of data grouped into as many as
65,533 logical records, all of which must be on the same minidisk. If
the file is a source program, the file size limit may be smaller. The
maximum number of files per real disk in the 800-byte physical block
format is 3400 for a 3330, 3333, 3340, or 3350 disk, or 3500 for a 2314
or 2319.

For a minidisk formatted in 1024-, 2048-, or U4096-byte logical
blocks, a single CMS file can contain up to about (231 - 132,000) disk
blocks of data, grouped into as many as 231-1 logical records, all of
which must be on the same minidisk.

Section 4. The CMS File Systenm 43

How CMS Files Get Their Names

When you create a CMS file, you can give it any filename and filetype
you wish. The rules for forming filenames and filetypes are:

e The filename and filetype can each be from one to eight characters.
e The valid characters are A-Z, 0-9, $, #, @, +, - (hyphen), : (colon),
and _ (underscore).

When you enter a command 1line into the VM/SP system, VM/SP always
translates your input 1line into uppercase characters. So, when you
specify a file identifier, you can enter it in lowercase.

Remember that, by default, the # and @ characters are 1line editing
symbols in VM/SP; when you use them to identify a file, you must precede
them with the logical escape syambol (").

The third field in the file identifier, the filemode, indicates the
mode letter (A-Z) currently assigned to the virtual disk on which you
want the file to reside. When you use the CMS Editor to create a file,
and you do not specify this field, the file you create is written on
your A-disk, and has a filemode letter of A.

The filemode letter, for any file, can change during a terminal
session. For example, when you log on, your virtual disk at address 191
is accessed as your A-disk, so a file on that disk named SPECIAL EVENTS
has a file identifier of:

SPECIAL EVENTS A

If, however, you later access another disk as your A-disk, and access
your 191 as your B-disk, then this file has a file identifier of:

SPECIAL EVENTS B

DUPLICATING FILENAMES AND FILETYPES

You can give the same filename to as many files on a given disk as you
want, as long as you assign them different filetypes. Or you can create
many files with the same filetype but different filenanmes.

For the most part, filenames that you choose for your files have no
special significance to CMS. If, however, you choose a name that is the
same as the name of a CMS command, and the file that you assign this
name to is an executable module or EXEC procedure, then you may
encounter difficulty if you try to execute the CMS command whose name
you duplicated.

For an explanation of how CMS identifies a command name, see "CMS
Command Search Order"™ later in this section.

Many CMS commands allow you to specify one or more of the fields in a

file identifier as an asterisk (*) or equal sign (=), which identify
files with similar fileids.

44 IBM VM/SP CMS User's Guide

Using Asterisks (*) in Fileids

Some CMS commands that manipulate disk files allow you to enter the
filename and/or filetype fields as an asterisk (*), indicating that all
files of the specified filename/filetype are to be modified. These
commands are:

COPYFILE RENAME
ERASE TAPE DUMP

For example, if you specify:

erase ¥ test a
all files with a filetype of TEST on your A-disk are erased. The
LISTFILE command allows you to request similar lists. If you specify an
asterisk for a filename or filetype, all of the files of that filenanme
or filetype are listed. There is an additional feature that you can use
with the LISTFILE command, to obtain a list of all the files that have a
filename or filetype that begin with the same character string. For
example:

listfile t* assemble

produces a 1list of all files on your A-disk with filenames beginning
with the letter T and with the filetype of assemble. The conmmand:

listfile tr* ax*

produces a 1list of all files on your A-disk with filenames beginning
with the letters TR and with filetypes beginning with the letter A.

Equal Signs in Output Fileids

The COMPARE, COPYFILE, RENAME, and SORT commands allow you to enter
output file identifiers as equal signs (=), to indicate that it is the
same as the corresponding input file identifier. For example:

copyfile myprog assemble b = = a
copies the file MYPROG ASSEMBLE from your B-disk to your A-disk, and
uses the same filename and filetype as specified in the input fileid for
those positions in the output fileid.
Similarly, if you enter the command:
rename temp * b perm = = all files with a filename of TEMP are

renamed to have filenames of PERM; the existing filetypes of the files
remain unchanged.

What Are Reserved Filetypes?

For the purposes of most CMS commands, the filetype field is used merely
as an identifier. Some filetypes, though, have special uses in CHMS;
these are known as "reserved filetypes."

Nothing prevents you from assigning any of the reserved filetypes to
files that are not being used for the specific CMS function normally

Section 4. The CMS File Systenm 45

associated with that filetype.

Some reserved filetypes also have special significance to the CHMS
editor. When you use the EDIT command to create a file with a reserved
filetype, the editor assumes various default characteristics for the
file, such as record 1length and format, tab settings, tramslation to
uppercase, truncation column, and so on.

PILETYPES FOR CMS COMMANDS

Reserved filetypes sometimes indicate how the file is used in the CHMS
system: the filetype ASSEMBLE, for example, indicates that the file is
to be used as input to the assembler; the filetype TEXT indicates that
the file is in relocatable object form, and so on. Many CMS commands
assume input files of particular filetypes, and require you to enter
only the filename on the command line. For example, if you enter:

synonyn test

CMS searches for a file with a filetype of SYNONYM and a filename of
TEST. A file named TEST that has any other filetype is ignored.

Some CMS commands create files of particular filetypes, using the
filename you enter on the command 1line. The language processors do this
as well; if you are recompiling a source file, but wish to save previous
output files, you should rename them before executing the command.

Figure 3 lists the filetypes used by CMS commands and describes how
they are used. PFigure 4 lists the filetypes used by CMS/DOS commands.

In addition to these CMS filetypes, there are special filetypes
reserved for use by the 1language processors, which are IBM progran
products. These filetypes, and the commands that use them, are:

Filetypes Commands

COBOL, SYMDMP, TESTCOB COBOL, FCOBOL, TESTCOB

FORTRAN, FREEFORT, FORTRAN, FORTGI, FORTHX
FTnn001, TESTFORT GOFORT, TESTFORT

PLI, PLIOPT DOSPLI, PLIC, PLICR, PLIOPT

RPGII RPGII

VSBASIC, VSBDATA VSBASIC

For details on how to use these filetypes, consult the appropriate
program product documentation.

46 IBM VM/SP CMS User's Guide

Comments

r
Filetype	Command
AMSERV	AMSERV
ASM3705	ASM3705
	GEN3705
ASSEMBLE	ASSEMBLE
AUXxxxx	UPDATE
CNTRL	UPDATE
COPY	MACLIB
1	
DIRECT	DIRECT
EXEC	EXEC
	GEN3705
	LISTFILE
GLOBALYV	DEFAULTS
	GLOBALV
HELPCHMS	HELP
HELPCP	
HELPDEBU	
HELPEDIT	
HELPMENU	
HELPMSG	
HELPEXEC	
HELPEXC2	
HELPHELP	
HELPXEDI	
HELPSET	
HELPPREF	
LISTING	AMSERV
	ASSEMBLE
	ASM3705
	COBOL
	DOSPLI
	FCOBOL
	LOADLIB
	PLIOPT
LKEDIT	LKED
! | |

Contains VSAM access method services control
statements executed with the AMSERV command.
command.

Used by system programmers to generate the
3704/3705 control program.

Contains source statements for assembler
language programs.

Points to files that contain UPDATE control
statements for multiple updates.

Lists files that either contain UPDATE controlj|

statements or point to additional files.

Can contain COPY control statements and macrosj

or copy files to be added to MACLIBs.

Contains entries for the VM/SP user directory |
file.The system programmer controls this file.|

Can contain sequences of CMS or user—written
commands, with execution control statements.

Contains variables used by GLOBALYV.

Contains descriptive information for CP and
CMS commands, messages, EXEC and EXEC2
statements, CMS Editor and System Product
Editor subcommands, and menu lists.

Listings are produced by the assembler, the
language processors, and the AMSERV and
LOADLIB conmands.

Contains the printer output from the LINK
EDIT of a CMS text file or 0S object module.

Figure 3. Filetypes Used

by CMS Commands (Part 1 of 3)

Section 4. The CMS File System

u7

and lists or deletes existing members. The

1

Filetype | Command | Comments |
| | |

LOADLIB | FILEDEF | Is a library created by the LKED command or |
| GLOBAL | the LOADLIB utility command. The GLOBAL or |

| LKED | FILEDEF command identifies the libraries that |

| LOADLIB | should be searched for program execution. |

| NUCXLOAD | NUCXLOAD loads a member of a CMS LOADLIB 1li-— |

| OSRUN | brary or an O0S module library. OSRUN executes]|

| QUERY | a member of a CMS LOADLIB library or am 0S |

| ZAP | module library. Query indicates the libraries |

| | that were affected by the GLOBAL command. ZAP|

| | is used to modify an existing LOADLIB member. |

| | |

MACLIB | GLOBAL | Library members contain macro definitioms or |
| MACLIB | copy files; the MACLIB command creates the |

| | library, and lists, adds, deletes, or replaces|

| | members. The GLOBAL command identifies which |

| | macro libraries should be searched during an |

| | assembly or compilation.]

| | |

MACRO | MACLIB | Contains macro definitions to be added to a |
| | CMS macro litkrary (MACLIB). |

| | |

MAP | INCLUDE | Maps created by the LOAD and INCLUDE commands |
| LOAD | indicate entry point locations; the MACLIB, |

| MACLIB | TXTLIB, and TAPE commands produce MAP files. |

| TAPE | |

| TXTLIB | |

| | |

MODULE | GENMOD | MODULE files created by the GENMOD command are|
| LOADMOD | nonrelocatable executable progranms. |

| MODMAP | The LOADMOD commands loads a MODULE file for |

| NOUCXLOAD | execution; the MODMAP command displays a map |

1 | of entry poimnt locations. NUCXLOAD loads a |

| | module into free storage and defines it as a |

1 | nucleus extension. |

| | |

NAMES | NAMEFIND | Contains information regarding users with]
| NAMES | whom you communicate. |

| | |

NETLOG | RECEIVE | Contains records which log the transmission |
| SENDFILE | of files sent by or received by you. |

| | |

NOTEBOOK | RECEIVE | Contains notes sent to you or sent by you to |
| SENDFILE | to other users. |

| | |

SYNONYM | SYNONYM | Contains a table of synonyms for CMS commands |
1 | and user—written EXEC and MODULE files. |

| | |

SCRIPT | SCRIPT | SCRIPT text processor input includes data and |
| | SCRIPT control words. |

| | |

TEXT | ASSEMBLE | TEXT files contain relocatable object code |
| INCLUDE | created by the assembler and compilers. The |

| LOAD | LOAD and INCLUDE commands load them into |

| TXTLIB | storage for execution. The TXTLIB command |

| | manipulates libraries of TEXT files. |

| | |

TXTLIB | GLOBAL | Library members contain relocatable object |
| TXTLIB | code. The TXTLIB command creates the library, |

| | |

| I |

GLOBAL command identifies TXTLIBs to search.

)

Figure 3. Filetypes Used

48 TIBM VM/SP CMS User's

by CMS Commands (Part 2 of 3)

Guide

Filetype | Command | Comments
| |

UPDATE | UPDATE | Contains UPDATE control statements for single
| | updates applied to source programs.
| |

UPDLOG | UPDATE | Contains a record of additions, deletioms, or
| | changes made with the UPDATE command.
| |

UPDTxxxx | UPDATE | Contains UPDATE control statements for
| | multilevel updates.
| |

ZAP | ZAP | Contains control records for the ZAP command,
| |

which is used by system support personnel.

e s —— — —— — — —— — —

Figure 3. Filetypes Used by CMS Commands (Part 3 of 3)

relocatable libraries. TEXT files can also be

Filetype | Command | Comments

COPY | MACLIB | When the SSERV command copies books or macros
SSERV	from DOS source statement libraries, the output
	is written to CMS COPY files, which can be added
	to CMS macro libraries with the MACLIB command.

DOSLIB | DOSLIB | DOS core image phases are placed in a DOSLIB by |
DOSLNK	linkage editor, invoked with the DOSLNK command.
FETCH	The GLOBAL command identifies DOSLIBs to be
GLOBAL	searched when the FETCH command is executed.

DOSLNK | DOSLKED | Contains linkage editor control statements for |
| | input to the CMS/DOS linkage editor. |
| | |

ESERV | ESERV | Contains input control statements for the ESERV |
| | utility progranm. |
| | |

EXEC | LISTIO | The LISTIO command with the EXEC option creates |
	the $LISTIO EXEC that lists system and
	programmer logical unit assignments.

LISTING | ASSEMBLE| Listings contain processor output from the ESERV|
ESERV	command, and compiler output from the assembler
	and language processors.

MACRO | ESERV | Contains SYSPCH output from the ESERV program, |
| MACLIB | suitable for addition to a CMS MACLIB file. |
| | |

MAP | DOSLIB | The DSERV command creates listings of the |
DOSLKED	directories of DOS libraries. The DOSLIB command
DSERV	with the MAP ofption produces a list of DOSLIB
	members. The linkage editor map from the DOSLKED
	command is written into a MAP file.

PROC | PSERV | The PSERV command copies procedures from DOS
| | procedure libraries into CMS PROC files.
| |

TEXT | ASSEMBLE| Object decks created by the assembler or
| DOSLKED | compilers are written into TEXT files. The RSERV
| RSERV | command creates TEXT files from modules in DOS
| |
| |

used as input to the linkage editor.

Figure 4. Filetypes Used in CMS/DOS

Section 4. The CMS File Systenm 49

OUTPUT FILES: TEXT AND LISTING

Output files from the assembler and the language processors are
logically related to the source programs by their filenanmes. Some of
these files are permanent and some are temporary. For example, if you
issue the command:

assemble myfile

CMS locates a file named MYFILE with a filetype of ASSEMBLE and the
system assembler assembles it. If the file is on your A-disk, then when
the assembler completes execution, the permanent files you have are:

MYFILE ASSEMBLE A1

MYFILE TEXT A1

MYFILE LISTING A1 where the TEXT file contains the object code
resulting from the assembly, and the LISTING file contains the progran
listing generated by the assembly. If any TEXT or LISTING file with the
same name previously existed, it is erased. The source input file,
MYFILE ASSEMBLE A1, is neither erased nor changed.

The characteristics of the TEXT and LISTING files produced by the
assembler are the same as those created by other processors and programs
in CHMS.

Because these files are CMS files, you can use the CMS editor to
examnine or modify their contents. If you want a printed copy of a
LISTING file, you can use the PRINT command to print it. If you want to
examine a TEXT file, you can use the TYPE or PRINT command specifying
the HEX option.

Note that if a TEXT file contains control changes for the terminal,
the edit lines may not be displayed in their true form. Therefore, it
is suggested you do not use the editor for TEXT files, because the
results are unpredictable. Instead, use the TYPE or PRINT commands with
the HEX option to display TEXT decks. Put TEXT decks into a TXTLIB and
ZAP the TXTLIB to modify the TEXT deck.

FILETYPES FOR TEMPORARY FILES

The filetypes of files created by the assembler and language processors
for use as temporary workfiles are:

SYSUT1 SYs001 SYS004
SYSUT2 SYS002 SYsS005
SYSUT3 SYsS003 SYS006
SYSUTu4

CMS handles all SYSUTx and SYS00x files as temporary files.

The CMS AMSERV command, executing VSAM utility functiomns, uses two
workfiles that have filetypes of LDTFDI1 and LDTFDI2.

Disk space 1is allocated for temporary files on an as-needed basis.
They are erased when processing is complete. If a program you are
executing is terminated before completion, these workfiles may remain on
your disk. You can erase then.

50 IBM VM/SP CMS User's Guide

CMSUT1 Files

The CMSUT1 filetype is used by CMS commands that create files on your
CMS disks. The CMSUT1 file is used as a workfile and is erased when the
file is created. When a command fails to complete execution properly,
the CMSUT1 file may not be erased. CMSUT1 files are reserved for systenm
usage, and use of these files may cause unpredictable results. The
commands, and the filenames they assign to files they create, are listed
belovw.

Command Filename Command Filename

COPYFILE COPYFILE MACLIB DMSLBM

DISK LOAD DISK READCARD READCARD

EDIT EDIT TAPE LOAD TAPE

INCLUDE DMSLDR UPDATE fn (the filename of
LOAD DMSLDR the UPDATE file)

FILETYPES FOR DOCUMENTATION

There are two CMS reserved filetypes for which the CMS Editor and Systenm
Product Editor accept (by default) uppercase and 1lowercase input data.
These are MEMO and SCRIPT. You can use MEMO files to document program
notes or to write reports. The SCRIPT filetype is used by the SCRIPT or
SCRIPTVS commands. These commands invoke text processors that are IBM
Installed User Program (IUP) and IBM program products, respectively.

Filemode Letters and Numbers

The filemode field of a CMS file identifier has two characters: the
filemode letter and the filemode number. The filemode letter is
established by the ACCESS command and specifies the virtual disk on
which a file resides: A through Z. The filemode number is a number from
0 to 5, which you can assign to the file when you create it or rename
it; if you do not specify it, the value defaults to 1. How you access
your disks and what filemode 1letters you give them with the ACCESS
command depends on how you want to use the files that are on then.

For most of the reading and writing you do of files, you use your
A-disk, which is also known as your primary disk. This is a read/write
disk. You may access other disks in your configuratiom, or access
linked-to disks, in read-only or read/write status, depending on whether
you have a read-only or read/write 1link.

When you load CMS (with the IPL command), your virtual disk at
address 191 is accessed for you as your A-disk. Your virtual disk at
address 190 (the system disk) is accessed as your S—-disk; and the disk
at 19E is accessed as an extension of your S-disk, with a mode letter of
Y. The S-disk and Y-disk are accessed for only mode S2 and Y2 files,
thus:

access 190 S * * S2
access 19E Y * * Y2

In addition, if you have a disk defined at address 192, it is accessed
for you as your D-disk. If the 192 disk has not been formatted, CMS
will do it automatically and label the minidisk 'SCRTCH'.

If ACCESS is the first command issued after an IPL of the CMS systen,
only the A-disk is not automatically defined. Another ACCESS command

Section 4. The CMS File Systenm 51

must be issued to define the A-disk.

The actual letters you assign to any other disks (and you may
reassign the letters A, D, and Y), is arbitrary; but it does determine
the CMS search order, which is the order in which CMS searches your
disks when it is looking for a file. The order of search (when all disks
are being searched) is alphabetical: A through Z. If you have duplicate
file identifiers on different disks, you should check your disk search
order before issuing commands against that filename to be sure that you
will get the file you want. You can find out the current search order
for your virtual disks by issuing the command:

query search

You can also access disks as logical extensions of other disks, for
example:

access 235 b/a

The "/A" indicates that the B-disk is to be a read-only extension of the
A-disk, and the A-disk is considered the "parent" of the B-disk. A disk
may have many extensions, but only one level of extemsion is allowed.
If you access an extension A-disk containing no files, the access fails.

How Extensions Are Used

If you have a disk accessed as an extension of another disk, the
extension disk is automatically read-only, and you cannot write omn it.
You might access a disk as its own extension, therefore, to protect the
files on it, so that you do not accidentally write on it. For example:

access 235 b/b

Another use of extensions is to extend the CMS search order. If you
issue a command requesting to read a file, for example:

type alpha plan

CMS searches your A-disk for the file named ALPHA PLAN and if it does
not find it, searches any extensions that your A-disk may have. If you
have a file named ALPHA PLAN on your B-disk but have not accessed it as
an extension of your A-disk, CMS will not find the file, and you will
have to reenter the command:

type alpha plan b

Additionally, if you issue a CMS command that reads and vwrites a
file, and the file to be read is on an extension of a read/write disk,
the output file is written to the parent read/write disk. The EDIT
command is a good example of this type of command. If you have a file
named FINAL LIST on a B-disk extension of a read/write A-disk, amnd if
you invoke the editor to modify the file with the command:

edit final list

after you have made modifications to the file, the changed file is
written onto your A-disk. The file on the B-disk remains unchanged.

52 IBM VM/SP CMS User's Guide

Accessing and Releasing Read-Only Extensions

When you access a disk as a read-only extension, it remains an extension
of the parent disk as long as both disks are still accessed. If either
disk 1is released, the relationship of parent disk/extension 1is
terminated.

If the parent disk is released, the extension remains accessed and
you may still read files on it. If you access another disk at the mode
letter of the original parent disk, the parent/extemnsion relationship
remains in effect.

If you release a read-only extension and access another disk with the
same mode 1letter, it is not an extension of the original parent disk
unless you access it as such. For example, if you enter:

access 198 c/a
release c
access 199 c¢

the C-disk at virtual address 199 is not an extension of your A-disk.

WHEN TO SPECIFY FILEMODE LETTERS: READING FILES

When you request CMS to access a file, you have to identify it so that
CMS can locate it for you. The commands that expect files of particular
filetypes (reserved filetypes) allow you to enter only the filename of
the file when you issue the command. When you execute any of these
commands or execute a MODULE or EXEC file, CMS searches all of your
accessed disks (using the standard search order) to locate the file.
The CMS commands that perform this type of search are:

AMSERV GLOBAL MODMAP
ASSEMBLE LOAD RUN
DOSLIB LOADMOD TXTLIB
EXEC MACLIB

Some CMS commands require you to enter the filename and filetype to
identify a file. You may specify the filemode letter; if you do not
specify the filemode, CMS searches only your A-disk and its extensiomns
when it 1looks for the file. If you do specify a filemode letter, the
disk you specify and its extensions are searched for the file. The
commands you use this way are:

EDIT PUNCH TAPE DUMP
ERASE STATE TYPE
FILEDEF SYNONYM UPDATE
PRINT

There are three CMS commands that do not search extensions of disks
wvhen looking for files. They are:

DISK DUMP
FILELIST
LISTFILE

You must explicitly enter the filemode if you want to use these commands
to list or dump files that are on extensions.

The following commands search every accessed read-only and read-write
disk.

Section 4. The CMS File Systenm 53

NAMES
NAMEFIND

Using Asterisks and Equal Sigms

For some CMS commands, 1if you specify the filemode of a file as an
asterisk, it indicates that you either do not know or do not care what
disk the file is on and you want CMS to locate it for you. For example,
if you enter:

listfile myfile test *

the LISTFILE command responds by listing all files omn your accessed
disks named MYFILE TEST. When you specify an asterisk for the filemode
of the COPYFILE, ERASE, or RENAME commands, CNS locates all copies of
the specified file. For example:

rename temp sort * good sort =

renames all files named TEMP SORT to GOOD SORT on all of your accessed
read/write disks. An equal sign (=) is wvalid in output fileids for the
RENAME and COPYFILE commands.

For some commands, when you specify an asterisk for the filemode of a
file, CMS stops searching as soon as it finds the first copy of the
file. For example:

type myfile assemble *
If there are files named MYFILE ASSEMBLE omn your A-disk and C-disk, then

only the copy on your A-disk is displayed. The commands that perform
this type of search are:

COMPARE PRINT STATE
DISK DUMP PUNCH SINONYN
EDIT RUN TAPE DUMP
FILEDEF SORT TYPE

For the COMPARE, COPYFILE, RENAME, and SORT commands, you must always
specify a filemode letter, even if it is specified as an asterisk.

WHEN TO SPECIFY FILEMODE LETTERS: WRITING FILES

When you issue a CMS command that writes a file onto one of your virtual
disks, and you specify the output filemode, CMS writes the file onto
that disk. The commands that require you to specify the output filemode
are:

COPYFILE
RENAME
SORT

The commands that allow you to specify the output filemode, but do
not require it, are:

FILEDEF TAPE LOAD
GENMOD TAPPDS
READCARD UPDATE

When you do not specify the filemode on these commands, CMS writes the

54 IBM VM/SP CMS User's Guide

output files onto your A-disk.

Some CMS commands that create files always write them onto your
A-disk. The LOAD and INCLUDE commands write a file named LOAD MAP AS.
The LISTFILE command creates a file named CMS EXEC, on your A-disk. The
CMS/DOS commands DSERV, ESERV, SSERV, PSERV, and RSERV also write files
onto your A-disk.

Other commands that do not allow you to specify the filemode, write
output files either:

e To the disk from which the input file was read, or
e To your A-disk, if the file was read from a read-only disk

These commands are:

AMSERV
MACLIB
TXTLIB
UPDATE

The SORT command also functions this way if you specify the output
filemode as an asterisk (¥*).

In addition, many of the 1language processors, when creating work
files and permanent files, write onto the first read/write disk in your
search order, if they cannot write on the source file's disk or its
parent.

HOW FILEMODE NUMBERS ARE USED

Whenever you specify a filemode letter to reference a file, you can also
specify a filemode number. Since a filemode number for most of your
files is 1, you do not need to specify it. The filemode numbers 0, 2,
3, U4, and 5 are discussed below. Filemode numbers 6 through 9 are
reserved for IBM use.

Filemode 0: A filemode number of 0 assigned to a file makes that file
private. No other user may access it unless they have read/write access
to your disk. Under normal circumstances; if someone links to your disk
in read-only mode and requests a list of all the files on your disk, the
files with a filemode of 0 are not listed.

The DDR command will allow you to copy the minidisk from omne disk to
another, and therefore, the filemode 0 files. Use a read share
password to protect minidisks with private files when using ACCESS.

Filemode 2: PFilemode 2 is essentially the same, for the purposes of
reading and writing files, as filemode 1. Usually a filemode of 2 is
assigned to files that are shared by users who link to a common disk,
like the system disk. Since you can access a disk and specify which
files on that disk you want to access, files with a filemode of 2
provide a convenient subset of all files on a disk. For example, if you
issue the command:

access U489 esa * * e2

you can only read files with a filemode of 2 on the disk at virtual
address u489.

Section 4. The CMS File Systenm 55

Filemode 3: Files with a filemode of 3 are erased after they are read.
If you create a file with a filemode of 3 and themn request that it be
printed, the file is printed, and then erased. You can use this filemode
if you write a program or EXEC procedure that creates files that you do
not want to maintain copies of on your virtual disks. You can create the
file, print it, and not have to worry about erasing it later.

The language processors and some CMS commands create work files and
give these work files a filemode of 3.

Note: A filemode of 3 should not be used with EXECs. Depending on what
commands are issued within it, an EXEC with a filemode of 3 may be

erased before it completes execution.

Filemode 4: Files with a filemode of 4 are in O0S simulated data set
format. These files are created by OS macros in programs running in
CHMs. You specify that a file created by a program is to have O0S
simulated data set format by specifying a filemode of 4 when you issue
the FILEDEF command for the output file. If you do not specify a
filemode of 4, the output file is created in CMS format.

You can find more details about 0S simulated data sets in "Section 8.
Developing O0S Programs Under CMS."

Note: There are no filemode numbers reserved for DOS or VSAM data sets,
since CMS does not simulate these file organizations.

Filemode 5: This filemode number is the same, for purposes of reading
and writing, as filemode 1. You can assign a filemode of 5 to files that
you want to maintain as logical groups, so that you can manipulate thenm
in groups. For example, you can reserve the filemode of 5 for all files
that you are retaining for a certain period of time; then, when you want
to erase them, you could issue the command:

erase * * aS5

¥hen To Enter Filemode Numbers

You can assign filemode numbers when you use the following commands:

COPYFILE: You can assign a filemode number when you create a new file
with the COPYFILE command.

EDIT: You can assign a filemode number when you create a file with the
CMS editor. To change the filemode number of an existing file, use the
RENAME or COPYFILE commands, or use the FMODE subcommand when you are in
the edit environment.

DLBL, FILEDEF: When you assign file definitions to disk files for
programs or CMS command functions, you can specify a filemode number.

GENMQD: You can specify a filemode number on the GENMOD command line.
To change the filemode number of an existing MODULE file, use the RENAME
or COPYFILE commands.

READCARD: You can assign a filemode number when you specify a file
identifier on the READCARD command line or on a READ control card.

RENAME: When you specify the fileids on the RENAME command, you can
specify the filemode numbers for the input and/or output files. To
change only the filemode number of an existing file, you must use the
RENAME option. For example:

56 IBM VM/SP CMS User's Guide

RENAME test module al = = a2

changes the filemode number of the file TEST MODULE A from 1 to 2.

SORT: You can specify filemode numbers for the input and/or output
fileids on the SORT command line.

Managing Your CMS Disks

The number of files you can write on a CMS disk derends on both the size
of the disk and the size of the files that it contains. You can find
out how much space is being used on a disk by wusing the QUERY DISK
command. For example, to see how much space is on your A-disk, you would
enter:

query disk a

The response may be something like this:

LABEL cuu M STAT CYL TYPE BLKRSIZE FILES BLKS USED-(¥) BLKS LEFT BLK TOTAL
MYDISK 191 A R/W 5 3330 1024 171 1221-92 107 1328

When a disk is becoming full, you should erase whatever files you no
longer need. Or dump to tape files that you need to keep but do not need
to keep active on disk.

When you are executing a command or program that writes a file to
disk, and the disk becomes full in the process, you receive an error
message, and you have to try to clear some space on the disk before you
can attempt to execute the command or program again. To avoid the
delays that such situations cause, you should ¢try to maintain an
avareness of the usage of your disks. If you cannot erase any more
files from your disks, you should contact installation support personnel
about obtaining additional read/write CMS disk space.

CMS File Directories

Each CMS disk has a master file directory that contains entries for each
of the CMS files on the disk. When you access a disk, information from
the master file directory is brought into virtual storage and written
into a user file directory. The user file directory has an entry for
each file that you may access. If you have accessed a disk specifying
only particular files, then the user file directory contains entries
only for those files.

If you have read/write access to a disk, then each time you write the
file onto disk the user file directory and master file directory are
updated to reflect the current status of the disk. If you have
read/vwrite access to a disk and the FSCLOSE macro is issued, the user
file directory is updated. When there are no open files on the disk,
the master file directory is updated to reflect the current status of
the files. If you have read-only access to a disk, then you cannot
update the master file directory or user file directory. If you access
a read-only disk while another user is vwriting files omnto it, you may
need to periodically reissue the ACCESS command for the disk, to obtain
a fresh copy of the master file directory.

Section 4. The CMS File System 57

Note: You should never attempt to write on a disk at the same time as
another user.

The user file directory remains in virtual storage until you issue
the RELEASE command specifying the mode letter or virtual address of the
disk. If you detach a virtual disk (with the CP DETACH command) without
releasing it, CMS does not know that the disk is no longer part of your
virtual machine. When you attempt to read or write a file on the disk
CMS assumes that the disk is still active (because the user file
directory is still in storage) and encounters an error when it tries to
read or write the file.

A similar situation occurs if you detach a disk and then add a new
disk to your virtual machine using the same virtual address as the disk
you detached. For example, if you enter the following sequence of
commands:

cp link user1 191 195 rr rpass!
access 195 d

cp detach 195

cp link user2 193 195 rr rpass2t
listfile * * g4

the LISTFILE command produces a list of the files on USER1's 191 disk;
if you attempt to read one of these files, you receive an error message.
You must issue the ACCESS command to obtain a copy of the master file
directory for USER2's 193 disk.

The entries in the master file directory are sorted alphamerically by
filename and filetype, to facilitate the CMS search for particular
files. When you are updating disk files, the entries in the user file
directory and master file directory tend to become unsorted as files are
created, updated, and erased. When you use the RELEASE command to
release a read/write disk, the entries are sorted and the master file
directory is rewritten. If you or any other user subsequently access
the disk, the file search may be more efficient.

CMS Command Search Order

When you enter a command line in the CMS environment, CMS has to locate
the command to execute. If you have EXEC or MODULE files on any of your
accessed disks, CMS treats them as commands; also, they are known as
user-written commands.

As soon as the command name is found, the search stops and the
command is executed. The search order is:

1. Search for a file with filetype EXEC on any currently accessed
disk. CMS uses the standard search order (A through 2Z.)

2. Search for a valid name on any currently accessed disk, according
to current SYNONYM file definitions in effect.

3. Search for a nucleus extension command if the high order byte of
register 1 is not equal to X'03' or X'04°'.

iNote that the password cannot be entered on the command line if the
password suppression facility was specified at sysgen.

58 IBM VM/SP CMS User's Guide

4. Search for a command in the tramnsient area. Commands which may be
in the transient area are:

ACCESS HELP READCARD
ASSGN LISTFILE RELEASE
COMPARE MODHAP RENAME
DISK. OPTION SET

DLBL PRINT SVCTRACE
FILEDEF PUNCH SINONYNM
GENDIRT QUERY TAPE
GLOBAL RDR TYPE

5. Search for a nucleus-resident command. Some nucleus-resident CHS
commands are:

I CP I GENMOD I NAMEFIND
I DEBUG | INCLUDE I START

| ERASE I LOAD | STATE

| EXECIO I LOADMOD | STATEW

| FETCH

6. Search for a file with filetype MODULE on any currently accessed
disk

7. Search for a valid abbreviation or truncation of a nucleus
extension.

8. Search for a valid abbreviation or truncation of a command in the
transient area.

9. Search for a valid abbreviation or truncation of a command in the
nucleus.

10. Search for a valid abbreviation or truncation of any other CHMS
command

11. Search for a CP command.
12. Search for a valid abbreviation or truncation of a CP command.

For example, if you create a command module that has the same name as
a CMS nucleus-resident command, your command module cannot be executed,
since CMS locates the nucleus-resident command first, and executes it.
When a user-written command has the same name as a CMS command module
abbreviation, certain error messages may indicate the CMS command nanme,
rather than the program nanme.

Figure 5 illustrates details of the command search order.

Section 4. The CMS File Systenm 59

KEY IN A
COMMAND NAME

EXECUTE
THE FILE
AND RETURN
CONTROL TO
CMS.

EXPAND THE
NAME TO THE
FULL REAL

NAME, EXECUTE
IT, AND RETURN
CONTROL TO CMS.

EXECUTE THE
NUCLEUS EXTENSION
AND RETURN CONTROL
TO CMS.

NUCLEUS
EXTENSION,
TRANSIENT,
OR
NUCLEUS
RESIDENT
COMMAND

IS THE NAME
A COMMAND THAT I8
ALREADY IN THE
TRANSIENT

YES EXECUTE THE

— I
RETURN CONTROL

TO CMS.

EXECUTE THE MODULE
AND RETURN CONTROL
TO CMS.

YES EXECUTE THE FILE
AND RETURN CONTROL
TO CMS.

18 THE NAME
A MODULE FILE?

EXPAND THE NAME
TO THE FULL REAL
NAME, EXECUTE IT,
AND RETURN
CONTROL TO CMS.

CMS
MODULE
SEARCH

EXPAND THE

NAME TO THE FULL
REAL NAME, EXECUTE
IT, AND RETURN
CONTROL TO CMS.

]

EXECUTE THE COMMAND

— AND RETURN CONTROL
TO CMS.

IS THE NAME A
CP COMMAND?

cpP
SEARCH

—

ISSUE
AN ERROR
MESSAGE

Figure 5. How CMS Searches for the Command to Execute

60 IBM VM/SP CMS User's Guide

Section 5. The Editors

In CMS usage, the term edit is used in a variety of ways, all of which
refer, ultimately, to the functions of the CMS Editor or the System
Product Editor.

When you issue the EDIT command, the System Product Editor
automatically places you in CMS Editor (EDIT) compatibility mode. In
this mode, you can issue both EDIT and XEDIT subcommands. For complete
information on EDIT compatibility mode, as well as instructions on how
to invoke the System Product Editor, see the ¥M/SP System Product Editor
Command and Macro Reference.

The CMS Editor

To edit a file means to make changes, additions, or deletions to a CMS
file that 1is on a disk, and to make these changes interactively: you
instruct the editor to make a change, the editor does 1it, and themn you
request another change.

You can edit a file that does not exist; when you do so, you create
the file online, and can modify it as you enter it.

To file a file means to write a file you are editing back onto a
disk, incorporating any changes you made during the editing session.
When you issue the FILE subcommand to write a file, you are no longer in
the environment of the CMS Editor, but are returned to the CMS
environment. You can, however, write a file to disk and then continue
editing it, by using the SAVE subcommand.

An editing session is the period of time during which a file is in
your virtual storage area, from the moment you issue the EDIT command

and the editor responds EDIT: until you 4issue the FILE or QUIT
subcommands to return to the CMS command environment.

The EDIT Command

When you issue the EDIT command you must specify the filename and
filetype of the file you want to edit. If you issue:

edit test file
CMS searches your A-disk and its extensions for a file with the
identification TEST PILE. If the file is not found, CMS assumes that you
want to create the file and issues the message:

NEW FILE:
EDIT:

to inform you that the file does not already exist.

If the file exists on a disk other than your A-disk and its
extensions, or if you want to create a file to write omn a read/write
disk other than your A-disk, you must specify the filemode of the file:

edit test file b

Section 5. The Editors 61

In this example, your B-disk and its extensions are searched for the
file TEST FILE.

After you issue the EDIT command, you are in edit mode, or the
environment of the CMS editor. If you have specified the filename and
filetype of a file that already exists, you can now use EDIT subcommands
to make changes or corrections to lines in that file. If you want to
add records to the file, as you would if you are creating a new file,
issue the EDIT subcommand:

input

to enter input mode. Every line that you enter is considered a data line
to be written into the disk file. For most filetypes, the editor
translates all of your input data to uppercase characters, regardless of
how you enter it. For example, if you create a file and enter input
mode as follows:

edit myfile test

NEW FILE:

EDIT:

input

INPUT:

This is a file I anm

learning to create with the CMS editor.

the lines are written into the file as:

THIS IS A FILE I AM
LEARNING TO CREATE WITH THE CMS EDITOR.

You can use the VM/SP 1logical line editing symbols to modify data
lines as you enter then.

To return to edit mode to modify a file or to terminate the edit
session, you must press the Return key on a null line. If you have just
entered a data line, for example, and your terminal's typing element or
cursor is positioned at the last character you entered, you must press
the Return key once to enter the data line, and a second time to enter a
null line.

You may also use the logical line end symbol to enter a null line;
for example:

last line of input#
*

Both of these lines cause you to return to edit mode from input mode.

If you do not enter a null line, bLut enter an EDIT subcommand or CMS
command, the command line is written into your file as input. The only
exception to this is a line that begins with the characters #CP. These
characters indicate that the command is to be passed immediately to CP
for processing.

WRITING A FILE ONTO DISK

A file you create and the modifications that you make to it during an
edit session are not automatically written to a disk file. To save the
results, you can do the following:

62 IBM VM/SP CMS User's Guide

e Periodically issue the subcommand:
save

to write onto disk the contents of the file as it exists when you
issue the subcommand. Periodically issuing this EDIT subcommand
protects your data against a system failure; you can be sure that
changes you make are not lost.

e At the beginning of the edit session, issue the AUTOSAVE subcoamand,
with a number:

autosave 10

Then, for every tenth change or addition to the file, the editor
issues an automatic save request, which writes the file omto disk.

e At the end of the edit session, issue the subcommand:
file

This subcommand terminates the CMS Editor session, writes the file
onto disk, replacing a previous file by that name (if one existed),
and returns you to the CMS environment. You can return to the edit
environment by issuing the EDIT command, specifying a different file
or the same file.

The editor decides which disk to write the file onto according to the
following hierarchy:

e If you specify a filemode on the FILE or SAVE subcommand 1line, the
file is written onto the specified disk.

e If the current filemode of the file is the mode of a read/write disk,
the file 4is written onto that disk. (If you have not specified a
filemode letter, it defaults to your A-disk.)

e If the filemode is the mode of a read-only extension of a read/write
disk, the file is written onto the read/write parent disk.

e If the filemode is the mode of a read-omly disk that is not an
extension of a read/write disk, the editor cannot write the file amnd
issues an error message.

See "Changing File 1Identifiers" for information on how you can tell
the editor what disk to use when writing a file.

If you are editing a file and decide, after making several changes,
that you do not wish to save the changes, you can use the subcommand:

quit

No changes that you made since you last used the SAVE subcommand (or the
editor last issued an automatic save for you) are retained. If you have
just begun an edit session, and have made no changes at all to a file,
and for some reason you do not want to edit it at all (for example, you
misspelled the name, or want to change a CMS setting before editing the
file), you can use the QUIT subcommand instead of the FILE subcommand to
terminate the edit session and return to CHMS.

A file must have at least one line of data in order to be written.

Section 5. The Editors 63

EDIT SUBCOMMANDS

While you are in the edit enviromment, you can issue any EDIT subcommand
or macro. An edit macro is an EXEC file that contains a sequence of EDIT
subcommands that execute as a wunit. You can create your own EDIT
subcommands with the CMS EXEC facility. EDIT subcommands provide a
variety of functions. You can:

e Position the current line pointer at a particular line, or record, in
a file.

e Control which columns of a file are displayed or searched during an
editing session.

e Modify data lines.

e Describe the characteristics that a file and its individual records
will have.

e Automatically write and update sequence numbers for fixed-length
records.

e Edit files by line number.

e Control the editing session.

Entering EDIT Subcommands

Like CMS commands, EDIT subcommands have a subcommand name and some have
operands. In most cases, a subccmmand name (or its truncation) can be
separated from its operands by one or more blanks, or no blanks. For
example, the subcommand lines:

type 5
ty 5
t5

are equivalent.

Several subcommands also use delimiters, which enclose a character
string that you want the editor to operate on. For example, the CHANGE
subcommand can be entered:

change/apple/pear/
The diagonal (/) delimits the character strings APPLE and PEAR. For the
subcommands CHANGE, LOCATE, and DSTRING, the first nomnblank character
following the subcommand name (or its truncation) is considered the
delimiter. No blank is required following the subcommand name. In the
subcommand:

locate $vm/$

the dollar sign ($) is the delimiter. You cannot use a / in this case,
since the diagonal is part of the character string you want to locate.

When you enter these subcommands, you may omit the final delimiter;
for examplé:

dstringycsect

64 IBM VM/SP CMS User's Guide

You must enter the final delimiter, however, when you specify a global
change with the CHANGE subcommand.

For the FIND and OVERLAY subcommands, additional blanks following the
subcommand names are interpreted as arguments. The subcommand:

find Pudding

requests the editor to locate the line that has " Pudding" in columns 1
through 9. 1Initial blanks are considered part of the character string.

An asterisk, when used with an EDIT subcommand, may mean "to the end
of the file"™ or "to the record length." For example:

delete*
deletes all of the lines in a file, beginning with the current line.
verify *

indicates that the editor should display the entire length of records.

?EDIT:

When you make an error entering an EDIT subcommand, the editor displays
the message:

?EDIT: 1line...

vhere line... is the 1line, as you entered it, that the editor does not
understand.

The Current Line Pointer

When you begin an editing session, a file is copied into virtual
storage; in the case of a new file, virtual storage is acquired for the
file you are <creating. In either case, you can picture the file as a
series of records, or lines; these lines are available to you, one at a
time, for you to modify or delete. You can also insert new 1lines or
records following any line that is already in the file.

The line that you are currently editing is pointed to by the current
line pointer. On a display terminal, this line is highlighted.

¥Fhat you do during an editing session is:

e Position the current line pointer to access the 1line you want to
edit.

e Edit the 1line: change character strings imn it, delete it or insert
new records following it.

e Position the line pointer at the next line you want to edit.

When you are editing a file and you issue an EDIT subcommand that
either changes the positiomn of the line pointer or that changes a line,

Section 5. The Editors 65

the current line or the changed line (or lines) is displayed. You can
also display the current line by using the TYPE subcommand:

type

If you want to examine more than one 1line in your file, you can use the
TYPE subcommand with a numeric parameter. If you enter:

type 10

the current line and the nine lines that follow it are displayed; the
line pointer then stays positioned at the last line that was displayed.

You can move the line pointer up or down in your file. "Up" indicates
a location toward the beginning of the file (the first record); "down"
indicates a location toward the end of the file (the last record). You

use the EDIT subcommands UP and DOWN to move the line pointer up or down
one or more lines. For examfple:

up 5

moves the current 1line pointer to a line five lines closer to the
beginning of the file, and:

down
moves the pointer to point at the next sequential record in the file.
You can also request that the line pointer be placed at the

beginning, or top of the file, or at the end, or bottom of the file.
When you issue the subcommand:

top
you receive the message:

TOF:
and the line pointer is positioned at a null line that is always at the
top of the file. This null line exists only during your editing sessionj;
it is not filed on disk when you end the editing session.

When you issue the subcommand:

botton
the current line pointer is positioned at the last record in the file.
If you now enter input mode, all 1lines that you enter are appended to

the end of the file.

If the current line rpointer is at the bottom of the file and you
issue the DOWN subcommand, you receive the message:

EOF:

and the current line pointer is positioned at the end of file, following
the last record.

When you are adding records to your file, the current limne pointer is
always pointing at the line you last entered. When you delete a line
from a file, the line pointer moves down to point to the next line down
in the file.

66 IBM VM/SP CMS User's Guide

Going from edit mode to input mode does not change the current line
pointer. If you are creating a new file and, every 30 1lines or so, you
move the current line pointer to make corrections to the lines that you
have entered, you must issue the BOTTOM subcommand to begin entering
more lines at the end of the file.

The current line pointer is also moved as the result of the LOCATE
and FIND subcommands. You use the FIND subcommand to get to a line when
you know the characters at the beginning of the line. For example, if
you want to change the 1line:

BAXTER J.F. 065941 ACCNTNT
you could first locate it by using the subcommand:
find baxter

If you do not know the first characters on a line, you can issue the
LOCATE subcommand:

locate /accntnt/

Both of these subcommands work only in a top-to-bottom direction: you
cannot use them to position the line pointer above the current line. If
you use the FIND or LOCATE subcommands and the target (the character
string you seek) is not found, the editor displays a message, and
positions the line pointer at the end of the file. Subsequently, if you
reissue the subcommdnd, the editor starts searching at the top of the
file.

In a situation 1like that above, or in a case where you are
repetitively entering the same LOCATE or FIND subcommand (if, for
example, there are many occurrences of the same character string, but
you seek a particular occurrence) you can use the = (REUSE) subcommand.
To use the example above, you are looking for a 1line that contains the
string ONCE UPON A TIME, but you do not know that it is above the
current line. When you issue the subcommand:

locate /once upon a time/
the editor does not locate the line, and responds:

NOT FOUND
EOF:

If you enter:

the editor searches again for the same string, beginning this time at
the top of the file, and locates the line:

"ONCE UPON A TIME"™ IS A COMMON

This may still not be the line you are looking for. You can, again,
enter:

The LOCATE subcommand is executed again. This time, the editor might
locate the line:

A STORY THAT STARTED ONCE UPON A TIME

Section 5. The Editors 67

Figure 6 illustrates a simple CMS file, and indicates how the current
line pointer would be positioned following a sequence of EDIT
subcommands.

LINE-NUMBER EDITING: Some fixed-length files are suitable for editing by
referencing 1line numbers instead of character strings. The EDIT
subcommands that allow you to change the line pointer position by line
number are discussed under "Line-Number Editing."

1

EDIT PPRINT EXEC |
CLP |
-—=> TOF: |
(null line) |

& CONTROL OFF |
&P = i
&IF .61 EQ . &EXIT 100 |
EFN = &1 l
&§IF &1 EQ ? &§GOTO -TELL |
ENFN = ECONCAT $ &1 |
&§IF .82 EQ . E&EXIT 200 |
EFT &2 |
&EFM &3 |
10 &€IF .€3 NE . E&SKIP 2 |
11 EFM = A |
12 ESKIP 3 |
13 &IF &3 NE (&ESKIP 2 |
14 EFM = A |
15 &P = (|
16 &CONTROL ALL |
17 COPY &FN &EFT EFM ENFN &FT A (UNPACK |
PRINT &ENFN &FT A &P &4 €5 &6 &7 &8 &9 &10 &11 &12 &13 &14 |
19 ERASE &ENFN EFT A |
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

]

WONOTNEWNaO

20 &EXIT
21 -TELL &ETYPE THIS EXEC PRINTS A LISTING FROM PACKED FORMAT
EOF:

The line numbers represented are symbolic: they are not an actual
part of the file, but are used below to indicate at which line the
current line pointer is positioned after execution of the EDIT
subcommand indicated.

Subcommand CLP Position

— -—=>0

DOWN 5 -—> 5

up -—> 4

LOCATE /UNP/ -—=> 17

TYPE 3 -—=> 19

BOTTOM -—=> 21

DOWN ---> EOF:

FIND - --=> 21

TOP --—-> 0

CHANGE /EQ/EQ/ 6 -—-> 5

DELETE 2 --=> 7 (lines numbered 5 and 6 are deleted)
INPUT * ---> the line just entered (between 7 and 8)

-
@

Figure 6. Positioning the Current Line Pointer

68 IBM VM/SP CMS User's Guide

Verification and Search Columns

There are two EDIT subcommands you can use to control what you and the
editor "see" in a file. The VERIFY subcommand controls what you see
displayed; the ZONE subcommand controls what columns the editor
searches. Normally, when you edit a file, every request that you make
of the editor results in the display of one or more lines at your
terminal. If you do not want to see the lines, you can specify:

verify off

Alternatively, if you want to see only particular columns in a file, you
can specify the columns you wish to have displayed:

verify 1 30

Some filetypes have default values set for verification, which
usually include those columns in the file that contain text or data, and
exclude columns that contain sequence numbers. If a verification column
is less than the record length, you can specify:

verify *
to indicate that you want to see all columms displayed.

In conjunction with the VERIFY subcommand, you can use the ZONE
subcommand to tell the editor within which columns it can search or
modify data. When you issue the subcommand:

zone 20 30

The editor ignores all text in columns 1-19 and 31 to the end of the
record when it searches 1lines for LOCATE, CHANGE, ALTER, and FIND
subcommands. You cannot unintentionally modify data outside of these
fields; you must change the zones in order to operate on any other data.

The zone setting also controls the truncation column for records when
you are using the CHANGE subcommand; for more details, see "Setting
Truncation Limits."

Changing, Deleting, and Adding Lines

You can change character strings in individual lines of data with the
CHANGE subcommand. A character string may be any length, or it may be a
null string. Any of the characters on your terminal keyboard, including
blanks, are valid characters. The following example shows a simple data
line and the cumulative effect of CHANGE subcommands.

ABC ABC ABC
is the initial data line.

CHANGE /ABC/XYZ/)
changes the first occurrence of the character string "ABC" to the
string "XYZ".
XYZ ABC ABC

CHANGE /ABC//
deletes the character string "ABC" and concatenates the characters
on each side of it.

XYZ ABC

Section 5. The Editors 69

CHANGE //ABC/
inserts the string "ABC" at the beginning of the line.

ABCXYZ ABC

CHANGE /XYZ /XYZ/
deletes one blank character following "XYZ".

ABCXYZ ABC

CHANGE /C/C /
adds a blank following the first occurrence of the character "C%,

ABC XYZ ABC

is the final 1line.
THE ALTER SUBCOMMAND: You can use the ALTER subcommand to change a
single character; the ALTER subcommand allows you to specify a
hexadecimal value so that you can include characters in your files for
wvhich there are no keyboard equivalents. Oonce in your file, these
characters appear during editing as nonprintable blanks. For example,
if you input the line:

IF A = B THEN
in edit mode and then issue the subcommand:

alter = 8c
the line is displayed:

IF A B THEN

If you subsequently print the file containing this line on a printer
equipped to handle special characters, the line appears as:

IF A < B THEN
since X'8C' is the hexadecimal value of the special character <.

Either or both of the operands on the ALTER subcommand can be
hexadecimal or character values. To change the X'8C' to another
character, for example <, you could issue either:

alter 8c ae

alter 8c <
THE OVERLAY SUBCOMMAND: The OVERLAY subcommand allows you to replace
characters in a line by spacing the terminal's typing element or cursor
to a particular character position to make character-for-character
replacements, or overlays. For example, given the line:

ABCDEF
the subcommand:

overlay xyz

results in the line:

XYZDEF

70 1IBM VM/SP CMS User's Guide

A blank entered on an OVERLAY 1line indicates that the corresponding
character is not to be changed; to replace a character with a blank, use
an underscore character (_). Given the above 1line, XYZDEF, the
subcommand:

overlay 3
results in:

DE3 (The "D" is preceded by blanks in columms 1, 2, and 3.)

Global Changes

You can make global or repetitive changes with the CHANGE and ALTER
subcommands. On these subcommand lines, you can include operands that
indicate:

e The number of 1lines to be searched for a character or character
string. An asterisk (*) indicates that all lines, from the current
line to the end of the file, are to be searched.

e Whether only the first occurrence or all occurrences on each line are
to be modified. An asterisk (*) indicates all occurrences. If you do
not specify an asterisk, only the first occurrence on any line is
changed.

For example, 1if you are creating a file that uses the (e) special
character (X'AF') and you do not want to use the ALTER subcommand each
time you need to enter the e, 7you could use the character - as a
substitute each time you need to enter a e. When you are finished
entering input, move the current line pointer to the top of the file,
and issue the global ALTER subcommand:

topkalter -~ af * *

All occurrences oOf the character -~ are changed to X'AF'. The current
line pointer is positioned at the end of the file.

When you use a global CHANGE subcommand, you must be sure to use the
final delimiter on the subcommand line. For example:

change /hannible/hannibal/ 5

This subcommand changes the first occurrence of the string "HANNIBLE" on
the current line and the four lines immediately following it.

You can also make global changes with the OVERLAY subcommand, by
issuing a REPEAT subcommand just prior to the OVERLAY subcommand. Use
the REPEAT subcommand to indicate how many 1lines you want to be
affected. For example, if you are editing a file containing the three
lines:

A
B
C

with the current line pointer at line "A", issuing the subcommands:

repeat 3
overlay | | |

Section 5. The Editors 71

results in:

O w>

The current 1line pointer is now positioned at the line beginning with
the character "C".

Deleting lLines

You delete lines from a file with the DELETE subcommand; to delete more
than one line, specify the number of lines:

delete 6

Oor, if you want to delete all the lines from the current line to the end
of the file, use an asterisk (*):

delete *

If you want to delete an undetermined number of lines, up to a
particular character string, you can use the DSTRING subcommand:

dstring /weather/
When this subcommand is entered, all the lines from and including the
current 1line down to and including the 1line just above the 1line

containing the character string "WEATHER" are deleted. The current line
pointer is positioned at the line that has "WEATHER" on it.

If you want to replace a line with another line, you can use the
REPLACE subcommand:
replace o o o ok o kK
The current line is deleted and the 1line "k***x**" jgs jnserted im its
place. The current line pointer is not moved.
To replace an existing line with many new lines, you can issue the
REPLACE subcommand with no new data line:
replace

The editor deletes the current line and enters input mode.

Inserting Lines

You can insert a single line of data between existing lines wusing the
INPUT subcommand followed by the line of data you want inserted. For
example:

input * this subroutine is for testing only

inserts a single line following the current line. If you want to imsert
many lines, you can issue the INPUT subcommand to enter input mode.

72 1IBM VM/SP CMS User's Guide

You can also add new lines to a file by using the GETFILE subcommand.
This allows you to copy lines from other files to include in the file
you are editing or creating. For exanmple:

getfile single items c

inserts all the 1lines in the file SINGLE ITEMS C immediately following
the current 1line pointer. The 1line pointer is positioned at the last
line that was read in.

You could also specify:
getfile double items c 10 25

to copy 25 1lines, beginning with the tenth line, from the file DOUBLE
ITEMS C.

The $MOVE and $DUP EDIT macros provide two additional ways of adding
lines into a file in a particular ¢rposition. The $MOVE macro moves lines
from one place in a file to another, and deletes them from their former
position. For example, if you want to move 10 lines, beginning with the
current line, to follow a line 9 lines above the current line, you can
enter:

$move 10 up 8
The $DUP macro duplicates the current 1line a specified number of
times, and inserts the new lines immediately following the current line.
For example:

$dup 3

creates 3 copies of the current 1line, and 1leaves the current 1line
pointer positioned at the last copy.

Describing Data File Characteristics

When you issue the EDIT command to create a new file, the editor checks
the filetype. If it is one of the reserved filetypes, the editor may
assign particular attributes to 1it, which can simplify the editing
process for you. The default attributes assigned to most filetypes are
as follows:

e PFixed-length, 80-character records

e All alphabetic characters are translated to uppercase, regardless of
how they are entered

e TInput lines are truncated in column 80

e Tab settings are in columns 1, 6, 11, 16, 21, ... 51, 61, and so on,
and the tab characters are expanded to blanks

e Records are not serialized
The filetypes for some CMS commands and for the language processors
deviate from these default values. Some of the attributes assigned to

files and how you can adjust them to suit your needs are discussed
below.

Section 5. The Editors 73

RECORD LENGTH
You can specify the logical record length of a file you are creating on
the EDIT command line:

edit new file (lrecl 130

If you do not specify a record length, the editor assumes the
following defaults:

e For editing old files, the existing record length is used.
e For creating new files, the following default values are in effect:

Filetype Record Length Format
EXEC 80 characters Variable
FREEFORT 81 characters Variable
LISTING 121 characters Variable
SCRIPT 132 characters Variable
VSBDATA 132 characters Variable
All others 80 Fixed

If you edit a variable-length file and the existing record length is
less than the default for the filetype, the record length is taken from
the default value. '

When you use the LRECL option of the EDIT command you can override
these default record lengths; you can also change the record lengths of
existing files to make them larger, but not smaller.

If you try to override the record length of an existing file and make
it smaller, the editor displays an error message, and you must issue the
EDIT command again with a larger record length. For example, suppose
you have on your B-disk a file named MYFILE FREEFORT, which was created
with the default record 1length of 81. If you try to edit that file by
issuing:

edit myfile freefort b (lrecl 72
the editor displays the message:

GIVE A LARGER RECORD LENGTH.
You must then issue the EDIT command again and either specify a length
of 81 or more, or allow it to default to the current record length of
the file.

You can use the COPYFILE command to increase or decrease the record
length of a file before you edit it. For example, 1if you have
fixed-length, 132-character records in a file, and you want to truncate
all the records at column 80 and create a file with 80-character
records, you could issue the command:

copyfile extra funds a (lrecl 80
Long Records

The largest record you can edit with the editor is 160 characters. A
file with record length up to 160 bytes (for example, a listing file
created by a DOS program) can be displayed and edited.

The largest record you can create with the CMS editor, however, is
130 characters using a 3270 display terminal and 134 characters using a

74 IBM VM/SP CMS User's Guide

typevwriter terminal such as a 2741 or 1050. If you enter more than 130
characters on a 3270, the record is truncated to 130 characters when you
press the Enter key. Note that as the 1line is trumncated to 130
characters, the CMS editor will not know the actual line length entered,
and will not issue the "TRUNCATED" message. If you type more than 134
characters on a 1line using a typewriter terminal, CP generates an
attention interruption to your virtual machine and the input 1line is
lost when you press the Return Key.

For most purposes, you will not need to create records longer than
130 characters. If it is necessary, you can expand a record that you
have entered. You do this by issuing the CHANGE subcommand with
operands, to add more characters to the record (for example, by changing
a 1-character string to a 31-character string). However, if a record is
longer than 130 characters, the CHANGE subcommand without operands will
cause truncation to 130 characters.

You cannot create a record that is longer than the record length of
the file. For example, if the file you are editing has a default record
length of 80, or if you specified LRECL 80 when you created the file,
the editor truncates all records to 80 characters.

Record Length and Fil

Size

There is a relationship between the record 1length of a file and the
maximum number of records it can contain. Figure 6 shows the
approximate number of records, rounded to the nearest hundred, that the
CMS Editor can handle in a virtual machine with different amounts of
virtual storage.

| Virtual Machine Size

T 1
: Record | :
| Length | 320K | 512K | 768K |1024K |
: 80 Characters | 1700 | 3800 | 6800 | 9800 :
: 120 Characters | 1100 | 2600 | 4700 | 6800 :
: 132 Characters | 1100 | 2400 | 4300 | 6200 :
; 160 Characters | 900 | 2000 | 3600 | 5100 !

Figure 7. Number of Records Handled by the CMS Editor

RECORD FORMAT

With the CMS Editor, you can create either fixed- or variable-length
files. Except for the filetypes EXEC, LISTING, FREEFORT, SCRIPT, and
VSBDATA, all the files you create have fixed-length records, by default.
You can change the format of a file at any time during an editing
session by using the RECFM subcommand:

recfm v
This changes the record format to variable-length. This does not change
the record length; in order to add new records with a greater length,

you must write the file onto disk and then reissue the EDIT command
using the LRECL option.

Section 5. The Editors 75

The COPYFILE command also has an RECFM option, so that you can change
the record format of a file without editing it. The command:

copyfile * requests a1l (recfm v trunc

changes the record formats of all the files with a filetype of REQUESTS
on your A-disk to variable-length. The TRUNC option specifies that you
want trailing blanks removed from each of the records. When you are
editing a file with variable-length records, trailing blanks are
truncated when you write the file onto disk with the FILE or SAVE
subcommand. (In VSBDATA files, however, blanks are not truncated.)

USING SPECIAL CHARACTERS

The IMAGE and CASE subcommands control how data, once entered on an
input 1line, is going to be represented in a file. The specific
characters affected, and the subcommands that control their
representation, are:

e Alphabetic characters: CASE subcommand
e Tab characters (X'05'): IMAGE subcommand (ON and OFF operands)
e Backspaces (X'16'): IMAGE subcommand (CANON operand)

Alphabetic Characters

If you are using a terminal that has only uppercase characters, you do
not need to use the CASE subcommand; all of the alphabetic characters
you enter are uppercase. On terminals equipped with both uppercase and
lowercase letters, all lowercase alphabetic characters are converted to
uppercase in your file, regardless of how you enter them. If you are
creating a file and you want it to contain both uppercase and lowercase
letters you can use the subcommand:

case m

The "M" stands for ™"™mixed." This attribute is not stored with the file
on disk. If you create a new file, and you issue the CASE M subcommand,
all the lowercase characters you enter remain in lowercase. If you
subsequently file the file and later edit it again, you must issue the
CASE M subcommand again tc locate or enter lowercase data.

There are two reserved filetypes for which uppercase and lowercase is
the default. These are SCRIPT and MEMO, both of which are text or
document-oriented filetypes. For most programming applicatioms, you do
not need to use lowercase letters.

ab Characters

Logical tab settings indicate the column positions where fields withinm a
record begin. These logical tab settings do not necessarily correspond
to the physical tab settings on a typewriter terminal. What happens
when you press the Tab key on a typewriter terminal depends on whether
the image setting is on or off. The default for all filetypes except
SCRIPT 1is IMAGE ON. You can change the default by issuing the
subcommand:

image off

76 IBM VM/SP CMS User's Guide

If the image setting is on, when you press the Tab key the editor
replaces the tab characters with blanks, starting at the column where
you pressed the Tab key, and ending at the last colunn before the next
logical tab setting. The next character entered after the tab beconmes
the first character of the next field. For example, if you enter:

tabset 1 15

and then enter a line that begins with a tab character, the first data
character following the tab is written into the file in column 15,
regardless of the tab stop on your terminal.

If the image setting is off, the tab character, X'05', is inserted in
the record, just as any other data character is inserted. No blanks are
inserted.

If you want to insert a tab character (X'05') into a record and the
image setting is on, you can do one of the following:

1. Set IMAGE OFF before you enter or edit the record, and then use the
Tab key as a character key.

2. Enter some other character at the appropriate place in the record,
and use the ALTER subcommand to alter that character to a X'05°'.

SETTING TABS: When you create a file, there are logical tab settings in
effect, so that you do not need to set them. The default values for the
language processors correspond to the columns used by those processors.
If you want to change them, or if you are creating a file with a
nonreserved filetype, you may want to set them yourself. Use the TABSET
subcommand, for example:

tabset 1 12 20 28 72
Then, regardless of what physical tab stops are in effect for your

terminal, when you press the Tab key with image setting ON, the data you
enter is spaced to the appropriate colummns.

See Fiqgure 8 for the default tab settings used by the CMS Editor.

T

| Filetype ‘| Default Tab Settings i
L l d
¥ LS Al
| ASSEMBLE, MACRO, COPY, UPDATE, | 1, 10, 16, 30, 35, 40, 45, 50, 55, 60, 65, 70 |
| UPDT, ASM3705, MACLIB, XEDIT | |
f t 1
| AMSERV, ESERYV |1 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 |
r t 4
| FORTRAN 1 1, 7, 10, 15, 20, 25, 30, 80 i
1 1 |
r R

| FREEPORT | 9, 15, 18, 23, 33, 38, 81 1
1 Nl d
L) T h
[DIRECT, JOB | 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, |
| | 70, 75 i
F + 2|
| EXEC, CHTRL | 1, 5, 8, 17, 27, 31 1
i 1 4
1) L) 1
| COBOL | 1, 8, 12, 20, 28, 36, 44, 68, 72, 80 |
— } |
| BASIC, BASDATA, VSBASIC \ 7, 10, 15, 20, 25, 30, 80 |
L i 4
1 L]

| VSBDATA, SCRIPT, MEMO, | 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, €5, i
| LISTING, *%%kk%x | 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120 |
t t {
{PLI, PLIOPT | 2, 4, 7, 10, 13, 16, 19, 22, 25, 31, 37, 43, 49, 55, |
| 1 79, 80 |
i A J

Pigure 8. Default Tab Settings

Section 5. The Editors 77

When you are specifying tab settings for files, the first tab setting
you specify should be the column in which you want your data to begin.
The editor will not allow you to place data im a column preceding this
one. For example, if you issue:

tabset 5 10 15 20
and enter an input line:
input This is a line

Columns 1, 2, 3, and 4 contain blanks; text begins in column 5.

Backspaces

For most of your applications, you do not need to underscore or
overstrike characters or character strings. If you are using a
typewriter terminal and are typing files that use backspaces and
underscores, you should use either the IMAGE OFF or IMAGE CANON
subcommands so that the editor handles the backspaces properly. IMAGE
CANON is the default value for SCRIPT files.

CANON means that regardless of how the characters are keyed in
(characters, backspaces, underscores), the editor orders, or canonizes,
the characters in the file as: character-backspace-underscore,
character-backspace-underscore, and so on. If, for example, you want an
input line to look like:

ABC
You could enter it as:
ABC, 3 backspaces, 3 underscores
- or -
3 underscores, 3 backspaces, ABC
A typevwriter types out the line in the following order:

A backspace, underscore

B backspace, underscore

C backspace, underscore, which results in:
ABC

If you need to modify a line that has backspaces, and you do not want
to rekey all of the characters, backsraces, and overstrike characters in
a CHANGE or REPLACE subcommand, you can use the ALTER subcommand to
alter all of the backspaces to some other character and use a global
CHANGE command. For example, the following sequences shows how to
delete all of the backspace characters on a line:

AAAAA
alter 16 + 1 %
+A+A_+A_+A_+A
change /_+// 1 *
AAAAA

This technique may also be useful on a display terminal.

78 IBM VM/SP CMS User's Guide

SETTING TRUNCATION LIMITS

Every CMS file that you edit has a truncation column setting: this
column represents the last character position in a record into which you
can enter data. When you try to input a record that is longer than the
truncation column, the record is truncated, and the editor sends you a
message telling you that it has been truncated.

You can change the truncation column setting with the TRONC
subcommand. For example, if you are creating a file with a record length
of 80 and wish to insert some records that do not extend beyond column
20, you could issue the subcommand:

trunc 20

Then, when you enter data lines, any 1line that is 1longer than 20
characters is truncated and the editor sends you a message. If you are
entering data in input mode, your virtual machine remains in input mode.

When you use the CHANGE subcommand to modify records, the column at
which truncation occurs 1is determined by the current 2zone setting. If
you change a character string in a 1line to a 1longer string, and the
resultant line extends beyond the current end zone, you receive the
message:

TRUNCATED.

If you need to create a line longer than the current end zone setting,
use the ZONE subcommand to increase the setting. The subcommand:

zone 1 *

extends the zone to the record length of the file. If the end zone
already equals the record 1length, you have to write the file onto disk
and reissue the EDIT subcommand specifying a longer record length.

For most filetypes, the truncation and end zone columns are the same
as the record length. For some filetypes, however, data is truncated
short of the record length. The default truncation and end zomne columns
are:

Filetype Column
ASSEMBLE, MACRO 71
UPDATE,
UPDT xxxX
AMSERV, COBOL, 72
DIRECT, FORTRAN
PLI, PLIOPT

All other filetypes are truncated at their record length.

You can, when «creating files for your own uses, set truncation
columns so that data does not extend beyond particular colunns.

ENTERING A CONTINUATION CHARACTER IN COLUMN 72

When you are using the editor to enter source records for an assembler
language progranm and you need to enter a continuation character in
column 72, or whenever you want to enter data outside a particular
truncation setting, you can use the following technique. Note that this
technique will not work if CANON is specified on the IMAGE subcommand.

Section 5. The Editors 79

1. Change the truncation setting to 72, so that the editor does not
truncate the continuation character:

trunc 72

2. Use the TABSET subcommand to set the left margin at column 72:
tabset 72

3. Use the OVERLAY subcommand to overlay an asterisk in column 72:
overlay *

Since the 1left margin is set at 72, the OVERLAY subcommand line
results in the character * being placed in column 72.

4. Restore the editor truncation and tab settings:

trunc 71
tabset 1 10 16 31 36 41 51 61 71 81

Note: If you issue the PRESERVE subcommand before you change the
truncation and tab settings, then after you enter the OVERLAY
subcommand, you can restore them with the RESTORE subcommand. See
"Preserving and Restoring CMS Editor Settings."

Use the $MARK
is to use the
is available
environment:

red

Edit Macro: Another way to insert a continuation character
$MARK edit macro. You can find out if the $MARK edit macro
on your system by entering, in the CMS or CMS subset

listfile $mark exec *
If it is not available omn your system, you can create the $MARK edit
macro for your own use. See "Section 17. Writing Edit Macros" in "Part
3. Learning to Use EXEC."
If you have the $MARK macro, then when you need to enter a

continuation character, you can enter a null line to get into edit mode,
issue the command:

$mark

and then return to input mode to continue entering text.

SERTALIZING RECORDS

Some CMS files that you create are automatically serialized for you.
This means that columns 73 to 80 of each record contain an identifier in
the form:

CCCXXXXX
vhere ccc are the first three characters of the filename and xxxxx is a

sequence number. Sequence numbers begin at 00010 and are incremented by
10.

The filetypes that are automatically serialized imn columns 73 to 80
are:

80 IBM VM/SP CMS User's Guide

ASSEMBLE FORTRAN PLIOPT
DIRECT COBOL UPDATE
MACRO PLI UPDTxxxX

You can serialize any file that has fixed-length, 80-character
records by using the SERIAL subcommand:

serial on
The SERIAL subcommand can also be used to:
e Assign a particular three-character identifier:
serial abc
e Specify that all eight bytes of the sequence field be used to contain
numbers:
serial all
e Specify a sequence increment other tham 10:
serial on 100
-— or —-
serial ccc 100

e Indicate that no sequence numbers are to be assigned to new records
being inserted:

serial off

When you create a file or edit a file with sequence numbers, the
sequence numbers are not written or updated until you issue a FILE or
SAVE subcommand. Because the end verification columns for the filetypes
that are automatically serialized are the same as their truncation
columns, you do not see the serial numbers unless you specify:

verify *
verify 80

Although the serial numbers are not displayed while you edit the file,
they do appear on your output listings or printer files.

If you are editing files with the following filetypes:

BASIC
VSBASIC
FREEFORT

the sequence numbers are on the 1left. For BASIC and VSBASIC files,
columns 1-5 are used; numbers are blank-padded to the left. For
FREEFORT files, the sequence numbers use columns 1-8, and are
zero-padded to the left. To edit these files, you should use line-number
editing, which is discussed next.

Section 5. The Editors 81

LINE-NUMBER EDITING

To edit a file by line pumbers means that when you are adding new lines
to a file or referencing lines that you wish to change, you refer to
them by their 1line, or sequence numbers, rather than by character
strings. You can use right line-number editing only on files with
fixed-length, 80-character records.

If you want to edit by line numbers, issue the subcommand:
linemode right
-— or --

linemode left
wvhere "right" indicates that the sequence numbers are on the right, in
columns 76-80, and "left"™ indicates you want sequence numbers on the
left in columns 1-5S. LINEMODE LEFT is the default for BASIC, VSBASIC,
and FREEFORT files. You do not have to specify it. You must specify
LINEMODE for files with other filetypes.

If you specify LINEMODE RIGHT to wuse line-number editing on a
typewriter terminal, the line numbers are displayed on the left, as a
convenience, while you edit the file.

When you are using 1line-number editing in input mode, you are
prompted to enter lines; the line numbers are in increments of 10. For
example, when you are «creating a new file, you are prompted for the
first line number as follows:

10

On a typewriter terminal, you enter your input line following the 10.
When you press the carriage return, you are prompted again:

20

and you continue entering lines in this manner until you enter a null
line.

You can change the prompting increment to a larger or smaller number
with the PROMPT subcommand:

prompt 100

When you are in edit mode you can 1locate a line by giving its line
number:

700

This is the nnnnn subcommand. In line-number editing, you use it instead
of the INPUT subcommand to insert a single line of text. For example:

905 x = a * b

inserts the text 1l1limne "X = A * B" in the proper sequence in the file.
If you use "nnnnn text" specifying the number of a line that already
exists, that 1line is replaced; the current line pointer is moved to
point to it.

The EDIT subcommands that you normally use for context editimng, such

as CHANGE, ALTER, LOCATE, UP, DOWN, and so forth, can also be used when
you are line-number editing; their operation does not change.

82 1IBM VM/SP CMS User's Guide

RENUMBERING LINES

When you are using line-number editing, the editor uses the prompting
increment set by the PROMPT subcommand. However, when you begin adding
lines of data between existing lines, the editor uses an algorithm to
select a line number between the current line number and the next line
number. If a prompting number cannot be generated because the current
line number and the next line number differ only by one, the editor
displays the message:
RENUMBER LINES

and you must resequence the line numbers in the file before you can
continue line-number editing.

You can resequence the line numbers in one of three vays:
1. If you are a VSBASIC or FREEPORT user, Yyou may use the RENUM
subcommand:
renunm
This subcommand resolves all references to 1lines that are
renumbered.
2. 1If you are using right-handed line-number editing, you must:
a. Turn off line-number editing:
linemode off
b. If you want to change the three-character identifier or specify
eight-character sequence numbers, issue the SERIAL subcommand,
for example:
serial all
If you want to use the default serialization setting, you do not
need to issue the SERIAL suktcommand.
C. Issue the SAVE subcommand:

sSave

d. Reissue the LINEMODE subcommand and continue line-number
editing:

linemode right
3. If you are using 1left-handed line-number editing for a filetype
other than VSBASIC or FREEFORT, you must manually change individual
line numbers using EDIT subcommands. In order to modify the line

numbers, you must change the zone setting and the tab setting:

zone 1 *
tabset 1 6

so that you can place data in columns 1 through 6.

Section 5. The Editors 83

When you are using right-handed 1line-number editing, and a FILE,
SAVE, or automatic save request is issued, the editor does not
resequence the serial numbers, but displays the message:

RESERIALIZATION SUPPRESSED

so that the lines numbers that are currently saved on disk match the
line numbers in the file. You must cancel line-number editing (using the
LINEMODE OFF subcommand) before you can issue a FILE or SAVE subcommand
if you vant to update the sequemnce numbers.

Controlling the CMS Editor

There are a number of EDIT subcommands that you can use to maximize the
use of the editor in CMS. A few techniques are suggested here; as you
become more familiar with VM/SP and CMS you will develop additional
techniques for your own applications.

COMMUNICATING WITH CMS ANL CP

Often during a terminal session, you may need to issue a CMS command or
a CP command. You can issue certain CMS commands and most CP commands
without terminating the edit session. The EDIT subcommand CMS places
your virtual machine in the CMS subset mode of the editor, where you can
issue CMS commands that do not modify your virtual storage. Remember
that the editor is using your virtual storage; if you overlay it with
any other command or program, you will not be able to finish your
editing.

One occasion vhen you may want to enter CMS subset is when you want
to issue a GETFILE subcommand for a file on one of your virtual disks
and you have not accessed the disk. You can enter:

cms
The editor responds:
CMS SUBSET
Then you can enter:
access 193 b/a
return

get setup script b

The special CMS SUBSET command RETURN returns your virtual machine to
edit mode.

You can enter CP commands from CMS subset, or you can issue then
directly from edit mode or input mode with the #CP function. For
exanple, if you are inputting lines into a file and another user sends
you a message, you can reply without leaving input mode:

#cp m oph i will call you later

If you enter #CP without specifying a command line, you receive the
message:

cp

84 1IBM VM/SP CMS User's Guide

which indicates that your virtual machine is in the CP command
environment, and you can issue CP commands. You would not, hovever,
want to issue any CP command that would modify your virtual storage or
alter the status of the disk on which you want to write the file.

To return to edit or input mode from CP, use the CP command, BEGIN.
If you are working at a display terminal and the screen image does not
reappear, enter the TYPE command to cause the editor to redisplay the
screen.

CHANGING FILE IDENTIFIERS

There are several methods you can use to change a file identifier before
writing the file onto disk. You can use the FNAME and FMODE subcommands
to change the filename or filemode, or you can issue a FILE or SAVE
subcommand specifying a new file identifier.

For example, if you want to create several copies of a file while you
are using the editor, you can issue a series of FNAME subcommands,
followed by SAVE subcommands, as followus:

edit test file
EDIT:

fn testi#save

fn test2#save

fn test3#file
Or, you could issue the SAVE and FILE subcommands as follows:

edit test file

save test1

save test?2

file test3

In both of the preceding examples, when the FILE subcommand is executed,
there are files named TEST FILE, TEST1 FILE, TEST2 FILE, and TEST3 FILE.
The original TEST FILE is unchanged.

To change the filemode letter of a disk, use the FMODE subcommand.
You can do this in cases where you have bequn editing a file that is on
a read-only disk, and want to write it. Since you cannot write a file
onto a read-only disk, you can issue the FMODE subcommand to change the
mode before filing it:

Section 5. The Editors 85

fmode a
file

Or, you can use the FILE (or SAVE) subcommand specifying a complete file
identifier:

file test file a

You should remember, however, that when you write a file onto disk,
it replaces any existing file that has the same identifier. The editor
does not issue any warning or informational messages. If you are
changing a file identifier while you are editing the file, you must be
careful that you do not unintentionally overlay existing files. To
verify the existence of a file, you can enter CMS subset and issue the
STATE or LISTFILE commands.

CONTROLLING THE CMS EDITOR'S DISPLAYS

When you are using a typewriter terminal, you may not always want to see
the editor verify the results of each of your subcommands. Particularly
when you are making global changes, you may not want to see each line
displayed as it is changed. You can issue the VERIFY subcommand with
the OFF operand to instruct the editor not to display anything unless
specifically requested. After you issue:

verify off

lines that are normally displayed as a result of a subcommand that moves
the current line pointer (UP, DOWN, TOP, BOTTOM, and so forth), or that
changes a line (CHANGE, ALTER, and so forth), are not displayed. If the
current line pointer moves to the end of the file, however, the editor
always displays the EOF: message.

If you are editing with verification off, then you mnmust be
particularly careful to stay aware of the position of your current line
pointer. You can display the current line at any time using the TYPE
subcommand:

type

Long and Short Error Messages: When you enter an invalid subcommand
while you are using the editor, the editor normally responds with the
error message:

?EDIT: line...
displaying the line that it did not recognize. If you prefer, you can
issue the SHORT subcommand so that instead of receiving the long form of
the error, you receive the short form, which is:

-

When you issue an invalid edit macro request (any line that begins with
a $), you receive the message:

-3

To resume receiving the long form of the error message, use the LONG
.subcommand:

long

LONG and SHORT control the display of the error message regardless of

86 IBM VM/SP CMS User's Guide

vhether you are editing with verification on or off.

On a display terminal, all EDIT
top of the screen,
highlighted.

messages that are displayed
including error messages and

at the

'?EDIT:' messages, are

PRESERVING AND RESTORING CMS EDITOR SETTINGS

The PRESERVE and RESTORE
subcommand saves the
file format, message
you are editing a file and you
settings, issue
¥hen you
subcommand to restore the settings.

want

For example, if you are editing a

image setting to create a particular format,

preserve

image on

tabset 1 15 40 60 72
zone 1 72

trunc 72

When you have finished entering data
the subcommand:

restore

subcommands are
settings of the EDIT subcommands
and verification display, and file identifier. If

the PRESERVE subcommand to save their
have finished your temporary edit project, issue the RESTORE

the PRESERVE
the

used together;
that control

to temporarily change some of these
current status.

SCRIPT file and want to change the
you can enter:

using these settings, you can issue

to restore the default settings for SCRIPT filetypes.

X, Y, =, ? SUBCOMMANDS

The X, Y, =, and ? subcommands all
can help you to extend the language
to manipulate, reuse, or interrogate

If you have an editing project in
subcommand a number of tinmes,
subcommands, as follows:

x locate /insert here/
y getfile insert file c

you

functions that
They allow you

perform very simple
of the CMS editor.
EDIT subcommands.

which you have to execute the same
can assign it to the X or Y

Each time that you enter the X subcommand:

X

the command 1line LOCATE /INSERT HERE/

enter the Y subcommand:

Y
the GETFILE subcommand is executed.
When

you specify a number

following an X

is executed, and every time you

or Y subcommand, the

subcommand assigned to X or Y is executed the specified number of times;

for example:
x locate /aa/
x 10

Section 5. The Editors 87

the LOCATE subcommand line is executed 10 times before you can enter
another EDIT subcommand.

Another method of re-executing a particular subcommand is to use the
= (REUSE) subcommand. For example, if you enter:

locate /ard/
AARDVARK

the LOCATE subcommand is re-executed seven times.

What the = (REUSE) subcommand actually does is to stack the
subcommand in the console stack. Since CMS, and the editor, read from
the console stack before reading from the terminal, the lines in the
stack execute before a read request is presented to the terminal. When
you enter multiple equal signs, the subcommand is stacked once for each
equal sign you enter.

You can also stack an additional EDIT subcommand following an equal
sign. The subcommand 1line is also stacked, but it is stacked LIFO
(last-in, first-out) so that it executes before the stacked subcommand.
For example, if you enter:

delete
= next

a DELETE subcommand is executed, then a DELETE subcommand is stacked,
and a NEXT subcommand is stacked in front of it. Then the stacked lines
are read in and executed. The above sequence has the same effect as if
you enter:

delete
next
delete

In addition to stacking the last subcommand executed, you can also
find out what it was, using the ? subcommand. For example, if you
enter:

next 10
.

the editor displays:

NEXT 10
Since the subcommand line NEXT 10 was the last subcommand entered, if
you enter an = subcommand, it is executed again. You cannot stack a ?
subcommand.

Note: The ? subcommand, on a display terminal, copies the 1last EDIT
subcommand into the user input area, where you may modify it before
re-entering it.

WHAT TO DO WHEN YOU RUN OUT OF SPACE

There are two situations that may prevent you from continuing an edit
session or from writing a file onto disk. You should be aware of these
situations, know how to avoid them, and how to recover from them, should
they occur.

88 IBM VM/SP CMS User's Guide

When you issue the EDIT command to edit a file, the editor copies the
file into virtual storage. If it is a large file, dr you have made many
additions to it, the editor may run out of storage space. If it does, it
issues the message:

AVAILABLE STORAGE IS NOW FULL
When this happens, you cannot make any changes or additions to the file
unless you first delete some lines. If you attempt to add a line, the
editor issues the message:

NO ROOY

If you were entering data in input mode, your virtual machine is
returned to edit mode, and you may receive the message:

STACKED LINES CLEARED

which indicates that any additional lines you entered are cleared and
will not be processed.

You should use the FILE subcommand to write the file onto disk. If
you want to «continue editing, you should see that the editor has more
storage space to work with. To do this, you can find out how large your
virtual machine is and then increase its size. To find out the size,
issue the CP QUERY command:

cp query virtual storage
If the response is:
STORAGE = 256K

You might want to redefine your storage to 512K. Use the CP command
DEFINE, as follovws:

cp define storage 512k

This command resets your virtual machine, and you must issue the CP IPL
command to reload the CMS system before you can continue editing.

If a file is very large, the editor may not have enough space to
allow you to edit it using the EDIT command. The message:

DMSEDI132S FILE 'fn ft fm' TOO LARGE

indicates that you must obtain more storage space before you can edit
the file. If this is the case, or if you are editing 1large files, you
should redefine your storage before beginning the terminal session. If
this happens consistently, you should see your installation support
personnel about having the directory entry for your userid updated so
that you have a large storage size to begin with.

Splitting CMS Files Into Smaller Files

If the file you are editing is too 1large, and the data it contains does
not have to be in one file, you can split the file into smaller files,
so that it is easier to work with. Two of the methods you can use to do
this are described below.

Use the COPYFILE Command: You can use the COPYFILE command to copy

portions of a file into separate files, and then delete the copied lines
from the original file. For example, if you have a file named TEST FILE

Section 5. The Editors 89

that has 1000 records, and you want to split it into four files, you
could enter:

copyfile test file a test1 file a (from 1 for 250

copyfile test file a test2 file a (from 251 for 250
copyfile test file a test3 file a (from 501 for 250
copyfile test file a testd file a (from 751 for 250

When these COPYFILE commands are complete, you have four files
containing the information from the original TEST FILE, which you can
erase:

erase test file

Use the Editor: If you use the editor to create smaller files, you can
edit them as you copy them, that is, if you have other changes that you
want to make to the data. To copy files with the editor, you use the
GETFILE subcommand. Using the file TEST FILE as an example, you might
enter:

edit test1 file
getfile test file a 1 250

file
edit test2 file
getfile test file a 251 250

Again, you could erase the original TEST FILE when you are through with
your edit session.

When Your Disk Is Full

When you enter a FILE or SAVE subcommand or whem an automatic save
request is issued, the editor writes a copy of the file you are editing
onto disk, and names it EDIT CMSUT1. If this causes the disk to become
full, you receive the message:

DMSBWR170S DISK 'mode(cuu) ' IS FULL
The editor erases the workfile, and issues the message:
SET NEW FILEMODE, OR ENTER CMS SUBSET AND CLEAR SOME SPACE

The original file (as last written onto disk) remains unchanged. You
can use the CMS subcommand to enter CMS subset, and erase any files that
you do not need. You can use the LISTFILE command to 1list the files on
the disk, then the ERASE command to erase the unwanted files.

If you cannot erase any of the files on the disk, there are several
alternate recovery paths you can take:

1. If you have another read/write disk accessed, you can use the FMODE
subcommand to change the filemode of the file, so that when you
file it, it is written to the other disk. If you have a read/vwrite
disk that is not accessed, you can access it in CMS subset. After
filing the file on the second disk, erase the original copy, and
then cuse the COPYFILE command to transfer the file back to its
original disk.

90 1IBM VM/SP CMS User's Guide

2. If you do not have any other read/write disk in your virtual
machine, you may be able to transfer some of your files to another
user, using either the SENDFILE, PUNCH or DISK command in CMS
subset. When the files have been read onto the other user's disk,
you can erase them from your disk. Then, return to edit mode and
issue the FILE subcommand.

3. In CMS subset, erase the original disk file (if it existed), then
return to edit mode and file the copy that you are editing. You
should not use this method unless absolutely necessary, since any
unexpected problems may result in the loss of both the disk file
and the copy.

After you use the FILE subcommand to write the file onto disk, you
should continue erasing any files you no longer need.

The System Product Editor

The System Product Editor provides full screen and file manipulation
capabilities not offered by the CMS Editor.

This editor has the following advantages:

e Full screen support for IBM 3270 Display Terminals is available
including:

- the ability to display mnmultiple views of the same file or of
different files

- automatic "wrapping" of lines that are wider than a screen line

- the ability to enter selected subcommands directly on the displayed
lines

- the ability to define the screen format according to individual
preferences

e Extended string search facilities are provided for improved text
processing.

e A variety of macros, that use the EXEC 2 interpreter are offered.

e An enhanced set of functions to handle program development is
available, including automatic update generation.

e The ability to import and export data between files is provided.
For complete information about the System Product Editor, see the

VM/SP System Product Editor User's Guide and the VM/SP System Product
Editor Command and Macro Reference.

Section 5. The Editors 91

Summary of CMS EDIT Subcommands

The EDIT subcommands, and their formats, are shown in Figure 9. Refer to
the VYM/SP CMS Command and Macro Reference for complete details.

Subcommand Format | Function

L)
|
|

|Scans the next n records of |
|the file, altering the speci- |
| fied character, either once in|
|each line or for all occur—
jrences in the line.

ALter char1 char2

= ——n
= %

oo — -
* @

| S —— |

| SSpe——— |

r 1 |Automatically saves the file
AUTOsave |n | J]on disk after the indicated

]OFF| | number of lines have been

L 4 | processed.

] Points the current line

| pointer to a line above the
|line currently pointed to.
|

Bottonm | Makes the last line of the
|£file the current line.

r
BAckward |

e

n
I 2
L

]Indicates whether tramnslatiom |
| to uppercase is to be done, or|
|displays the current status. |
| |
|
r oIl |Changes stringl to string2 for|
CHange [/string1[/string2[/ |n I1GI1]]]In records or to EOF, either |
1* 1% | for the first occurrence in
|11 L | each line or for all

|
L 4 | occurrences.

CASE

——
Q=
——d

CHMS | Enters CMS subset command
| mode.

| Deletes n lines or to the enmnd
|of the file (¥).
|

DElLete

———n
|= #B
beo———

r
DOwn | n
I 2
L

| the current line.
|
|

DString /[string [/]] | Deletes all lines from the
|current line down to the line
|containing the indicated
| string.

o d

FILE [fn [£ft [fm]]] | Saves the file being edited on
|disk or changes its identi-
| fiers. Returns to CMS.

(o i e — — — — — mn S — U S — — T — — . — — — — — — — — — —— — — — O — mmn — — —— — T — — — — - — — — —— — —

i
|
|
|
|
|
|
|
|
|
|
|
|
| Points to the nth line from 1
|
|
|
I
|
|
|
|
|
|
|
|
1

Figure 9. Summary of CMS EDIT Subcommands and Macros (Part 1 of 4)

92 1IBM VM/SP CMS User's Guide

Subcommand Format | Function
Find [line] | Searches the file for the
lgiven line.
FMode [fm] |Resets or displays the
| filemode.
FName [fn] | Resets or displays the
| filename.
FORMat fDISPLAY | Switches the 3270 terminal
LINE | between display mode and line

|mode. (3270 only)

| Points to the nth line after

'l
[

Figure 9. Summary of CMS EDIT Sukcommands and Macros (Part 2 of 4)

LN 1
| |
| |
| |
| |
| |
| |
| |
i 1
| |
| |
| |
| |
| |
| |
| |
| rooon |
[Forward | n | | the current line. |
| 111 | |
| L 4 | |
| I
1 r r r r 19 1 11 I|Inserts a portion or all of |
Getfile fn	ft	fm	m	n					the specified file after the
		I 21 * {1			current line.				
L L	8	8 d 41 41 1							
I									
1 r 1 J	Expands text into line images								
IMAGE	ON		or displays current settings.						
	OFF								
	CANON								
L 4									
Input [line]	Inserts a line in the file or								
	enters input mode.								
r 1	Sets or displays current								
LINEmode	LEFT		setting of line—number						
	RIGHT		editing.						
	OFF								
L 4									
[Locate]/[string [/]]	Scans file from next line for								
1	first occurrence of 'string'.								
LONG	Enters long error message								
	mode.								
r 1	Points to the nth line down								
Next	n		from the current line.						
111									
L 4									
Overlay [line]	Replaces all or part of the								
	current line.								
I									
PREserve	Saves current mode settings.								
roa	Sets or displays line number								
PROMPT	n		increment. Initial setting is						
1101	10.								
L J

Section 5. The Editors 93

Subcommand Format

Function

QUIT

| Terminates edit session with
|no updates incorporated since
|last save request.

| Sets or displays record format
| for subsequent files.

| Recomputes line numbers for

r r 11
RENum |strtno |incrno|| | VSBASIC and FREEFORT source
110 Istrtnol | | files.
L L JJ |
r 1 | Executes the following OVERLAY
REPEAT | n | | subcommand n times.
| * | |
(| |
L Jd |

Replace [line]

| Replaces the current line or
|deletes the current line and
|enters input mode.

REStore | Restores editor settings to
| values last preserved.
RETURN | Returns to edit environment

| from CMS subset.

{REUSE} [subcommand]

| Stacks (LIFO) the last EDIT

| subcommand that does not start
Jwith REUSE or the question
|mark (?) and then executes any
|given EDIT subcommand.

SAVE [fn [ft [fm]]]

| Saves the file on disk and
] stays in edit environment.

{SCroll
S[croll]U[p]}

————
l= 3 &
= —d

| Displays a number of screens
|of data above or below the
jcurrent line (3270 omnly).

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
l
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
{
|
|
1
|
|
|
|
1
|
|
|
1
|
{
|
1
|
!

SERial OFF 1 | Turns serialization on or off
ON |incr| |in columns 73 through 80.
ALL | 10 | |
seq t J |
SHORT |Enters short error message
| mode.
r 1 | Stacks data lines or EDIT
STACK | n { | subcommands in the console
| 1 | | input stack.
| 0 | |
[subcommand | |
L J l

e e e —— — . ————— ——— —— — . ——— — — — I —— — — — — —— —— — — —— — —— oot — G — — — — —— — — — — —— T ——— — —]

Figure 9. Summary of CMS EDIT Subcommands and Macros (Part 3 of 4)

94 TIBM VM/SP CMS User's Guide

Subcommand Format | Function

TABSet n1 [n2 ... nn] |Sets logical tab stops.

TOP | Moves the current line pointer
| to the null line at the top
|of the file.

|Sets or displays the column of
{truncation. An asterisk (%)
|indicates the logical record

| length.

TRONC

——-
* B
=

|Displays m lines beginning
Jwith the current line. Each
|line may be truncated to n
| characters.

Type

r———
*|l- B
o ———

» P
[SEP——— |
-

| Moves the current line pointer
| toward the top of the file.

|

|

=]
]

r——a
[y -]

| A |

r 1 1 | Sets, displays, or resets
| startcoljendcol| | verification. An asterisk (¥)
| 1 | =* I |indicates the logical record
L

o]
o
r——=

4 3. |length.

1 | Assigns to X or Y the given
subcommand|] | EDIT subcommand or executes
n | | the previously assigned

1 | | subcommand n times.
4 |

(o ——

| Sets or displays the columns
| betwveen vhich editing is to
| take place.

|

|

| Displays the last EDIT
| subconmand, except = or 2.

Zone

o ———
*la B
————

» s
e
b e)

“

{nnnnn } [text] |Locates the line specified by
nnnnnnnn |the given line number and
|inserts text, if given.

|Duplicates the current line n
| times. $DUP is an edit macro.
|
I

$MOVE n { Up m } |Moves up n lines or down m

$DUP

e e

n
1

rF——n

Down m |lines. $MOVE is an edit macro.
TO label]

Figure 9. Summary of CMS EDIT Subcommands and Macros (Part 4 of 4)

(o o . —— —— A —— e —— — — — G T — G —— — - D —— S — —— — — — — — — —— — — S G D — - —— —— — — am— — Y
-
[

e e e - - — —— — — - G S —— — — — — i — — — — — — N S G G e G S — e — — — — — — o

Section 5. The Editors 95

Section 6. Introduction to the EXEC Processors

There are two EXEC processors available: CMS EXEC and EXEC 2. The CHMS
EXEC processor handles CMS EXEC programs, while the EXEC 2 processor
handles EXEC 2 programs. EXEC 2 programs and processing are similar to
those of the CMS EXEC.

The CMS EXEC Processor

A CMS EXEC processor is a CMS file that contains executable statements.
The statements may be CMS or CP commands or EXEC control statements.
The execution can be conditionally controlled with additional EXEC
statements, or it may contain no EXEC statements at all. In its simplest
form, an EXEC file may contain only one record, have no variables, and
expect no arguments to be passed to it. In its most complex form, it can
contain thousands of records and may resemble a program written in a
high-level programming language. As a CMS user, you should beconme
familiar with the EXEC processor and use it often to tailor CMS commands
to your own needs, as well as to create your own commands.

The following is an example of a ' simple EXEC procedure that might be
named RDLINKS EXEC:

CP LINK DEWEY 191 291 RR DEWEY
CP LINK LIBRARY 192 292 RR DEWEY
ACCESS 291 B/A

ACC 292 C/A

When you enter:
rdlinks
each command line contained in the file RDLINKS EXEC is executed.

You could also create an EXEC procedure that functioms 1like a
cataloged procedure, and set it up to receive an argument, so that it
executes somevhat differently each time you invoke it. For example, a
file named ASM EXEC contains the following:

ASSEMBLE &1
PRINT &1 LISTING

LOAD &1
START

If you invoke the EXEC specifying the name of an assembler lamnguage
source file, such as:

asm mayprog

the procedure executes as follovs:
ASSEMBLE MYPROG
PRINT MYPROG LISTING

LOAD MYPROG
START

96 1IBM VM/SP CMS User's Guide

The variable &1 in the EXEC file is substituted with the argument you
enter when you execute the EXEC. As many as 30 arguments can be passed
to an EXEC in this manner; the variables thus set range from &1 through
§30.

CREATING EXEC FILES

EXEC files can be created with the CMS editors, by punching cards, or by
using CMS commands or programs. When you create a file with the editor,
records are, by default, variable-length with a logical record lemngth of
80 characters. EXEC can process variable-length files of up to 130
characters. To create a variable-length EXEC file larger than 80
characters, use the LRECL option of the EDIT command:

edit new exec a (lrecl 130

To convert a variable-length file to a fixed-length file, you can
edit the EXEC file and issue the subcomnmand:

recfn £
Or, you can use the COPYFILE command:
copyfile old exec a (recfm f

If you use fixed-length EXEC files, you should be aware that the EXEC
interpreter only processes the first 72 characters of each record in a
fixed-length file, regardless of the record length. You can, however,
enter command or data lines that are longer than than 72 characters to
be processed by using the &BEGSTACK, &BEGTYPE, &BEGPUNCH, and &BEGEMSG
control statements preceding the line(s) you want to be processed. If
you specify G&BEGPUNCH ALL, EXEC processes lines up to 80 characters
long; if you specify &EBEGTYPE ALL, &BEGSTACK ALL, or &BEGEMSG ALL, EXEC
processes lines up to 130 characters.

In variable-length EXEC files, there are no such restrictions; lines
up to 130 characters are processed in their entirety.

Two CMS commands create EXEC files. One 1is LISTFILE, which can be
invoked with the EXEC option; it creates a file named CMS EXEC. The uses
of CMS EXEC files are discussed under the heading "CMS EXECs and How To
Use Them." The CMS/DOS command LISTIO creates an EXEC file named
$LISTIO EXEC, which creates records for each of the system and
programmer logical unit assignments. The LISTIO command and the $LISTIO
EXEC are described in "Section 9. Developing DOS Programs Under CMS."

INVOKING EXEC FILES

EXEC procedures are invoked when you enter the filename of the EXEC
file. You can precede the filename on the command line with the CMS
command, EXEC. For example:

exec test type list
vhere TEST is the filename of the EXEC file and TYPE and LIST are

arguments (&1, &2, and so on) you are passing to the EXEC. For example,
an EXEC named PREPEDIT would be executed when you entered either:

Section 6. Introduction to the EXEC Processors 97

prepedit newfile replace

- or --

exec prepedit newfile replace
You must precede the EXEC filename with the EXEC command when:
e You invoke an EXEC from within another EXEC.

e You invoke an EXEC from a progranm.
e You have the implied EXEC function set off for your virtual machine.

The implied EXEC function is controlled by the SET command. If you
issue the command:

set impex off

then you mnust use the EXEC command to invoke an EXEC procedure. The
default setting is ON; you almost never need to change it.

An EXEC procedure having a synonym defined for it can be invoked by
its synonym if the implied EXEC (IMPEX) function is on. However, within
an EXEC procedure, only the EXEC filename can be used. A synonym is not
recognized within an EXEC since the synonym tables are not searched
during EXEC processing.

There is one EXEC file that you never have to specifically invoke.

This is a PROFILE EXEC, which is automatically executed after you load
CMS, when your A-disk is accessed. PROFILE EXECs are discussed next.

PROFILE EXECs

A PROFTILE EXEC must have a filename of PROFILE. It can contain the CP
and CMS commands you normally issue at the start of every terminal
session. For example:
e Commands that describe your terminal characteristics, such as:

CP SET LINEDIT ON

SET BLIP *

SET RDYMSG SMSG
SYNONYM MYSYN

e Commands that spool your printer and punch for particular classes or
characteristics:

CP SPOOL E CLASS S HOLD

e Commands to initialize macro and text libraries that you commonly
use:

GLOBAL MACLIB OSMACRO CMSLIB
GLOBAL TXTLIB PRIVLIE

e Commands to access disks that are a permanent part of your
configuration:

ACCESS 196 B

A PROFILE EXEC file that contains all of these commands might look
like this:

98 1IBM VM/SP CMS User's Guide

ECONTROL OFF

CP SET LINEDIT ON

CP SPOOL E CLASS S HOLD

SET RDYMSG SMSG

SET BLIP *

SYNONYM MYSYN

GLOBAL MACLIB OSMACRO CMSLIB
GLOBAL TXTLIB PRIVLIB

ACCESS 196 B

§CONTROL OFF is an EXEC control statement that specifies that the CP
and CMS command 1lines are not to be displayed on your terminal before
they execute.

A PROFILE EXEC can be as simple or as complex as you require. As an
EXEC file, it <can contain any valid EXEC control statements or CMS
commands. The only thing that makes it special is its filename,
PROFILE, which causes it to be executed the first time you press the
Return key after loading CHMS.

EXECUTING YOUR PROFILE EXEC

Usually, the first thing you do after loading CMS is to type a CMS
command. When you press the Return key to enter this command or if you
enter a null line, CMS searches your A-disk for a file with a filename
of PROFILE and a filetype of EXEC. If such a file exists, it is
executed before the first CMS command you enter is executed. Because
you do not do anything special to cause your PROFILE EXEC to execute,
you can say that it executes "automatically."

You can pr