

Program Product

File No. 8370-36
Order No. 8C19-6209-0

IBM Virtual
Machine/System Product:
CMS Command and
Macro Reference
Program Number 566~167

This publication provides users of the
Conversational Monitor System (CMS) component
of I BM Virtual Machine/System Product with
detailed reference information concerning command
syntax and usage notes for:

• CMS commands
• EDIT subcommands
• DEBUG .subcommands
• EXEC control statements, special variables, and

built-in functions
• CMS assembler language macro instructions

• CMS functions
• HE LP format words

PREREQUISITE PUBLICATIONS

IBM Virtual Machine/System Product:

Terminal User's Guide, GC19-6206

eMS User's Guide, SC19-6210

--------- - ---- ---- -... -~-- - - _ ... --------_~_w_

r---
'~Q!i~~: The term VM/SP. as used in this publication.
,when used in conjunction with VM/370 Release 6.
L-

Fi~2!]~i!i2] (September 1980)

This edition (SC19-6209), applies to the initial release of the Virtual
Machine/System Pr~duct, and to subsequent releases (if any) until
otherwise indicated in new editions or Technical Newsletters. Changes
are continually made to the information contained herein; before using
this publication in connection with the operation of IBM systems,
consult the l~] ~~§!~~L]70 ~]g ~]QQ R!2£g§§2!§]iQlio~!~~~, GC20-0001,
for the editions that are applicable and current.

It is possinle that this material may contain reference to, or
information about, IBM products (maChines and programsl, programming. or
services that are not annnounced in your country. Such reterences or
information must not be construed to mean that IBM intends to announce
suc~ IBM products, programming, or services in your country.

Publications are not stocked at the address given below; requests for
copies of IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this
publication; if the form has been removed, comments may be addressed to
IBM Programming Publications, Dept. G60, P.O. Box 6, Endicott, New York,
U.S.A. 13760. IBM may use or distribute any of the information you
supply in any way it believes appropriate without incurring any
obligation whatever. You may, of course, continue to use the
information you supply.

© copyright International Business Machines corporation 1980

,
refers to VM/SPI ,

Use this publication as a reference manual;
it contains all of the command formats,
syntax rules, and operand and option
descriptions for CMS commands, subcommands,
functions, and macro instructicns for
general users.

The IBM Vi~!yg! ~~£hin~L~g: CMS User's
guig~, SC19-6210, contains --tutorial
information and functional descriptions of
CMS commands, as well as informaticn on
using the editor, EXEC, and debugging
facilities of CMS. You should be familiar
with the contents of the VML~R CMS User's
guiQ~ before you attempt to -use--this
reference manual. For most of the CMS
commands described in this publication, you
may find additional useful notes in the
!~L~R ~~§ Us~£~§ QYig~.

This publication has eight sections:

"Section 1. Introduction and General
Concepts" describes the components of the
VM/SP system and tells you how to enter CMS
commands. It lists the notational
conventions used in this manual, so that
you can interpret the command format
descriptions in Section 2. Section 1 also
contains information about the CMS command
search order and a summary of all the CMS
commands available under VM/SP, including
those not for general users.

"Section 2. CMS Commands" contains
complete format descriptions, and operand
and option lists, for the CMS commands
available to general users. Each command
description contains usage notes, and lists
responses and error messages (with
associated return codes) produced by the
command.

"Section 3. EDIT Subcommands and Macros"
describes the subcommands and macros
available in the environment of the CMS
editor, which you can invoke using the EDIT
command with the OLD option. Each
subcommand description contains usage notes
and summarizes the types of responses you
might receive. Where applicable,
additional information is provided for
users of display terminals.

"Section 4. DEBUG Sutcommands" describes
the subcommands available in the debug
environment of CMS. Each subcommand
description contains usage notes and, where
applicable, lists the responses to the
subcommand.

Preface

"Section 5. EXEC Control Statements"
describes the control statements, special
variables, and built-in functions you can
use when you create EXEC procedures to
execute in CMS. The ccntrol statement
descriptions contain usage notes, where
applicable.

"Section 6. CMS
functions that are
user.

Functions" describes
available to the CMS

"Section 7. CMS Macro Instructions"
lists the formats and operands of the CMS
assembler language macro instructions you
can use when you write programs tc execute
in CM S.

"Section 8. HELP Format Words" describes
the formats, operands, and defaults of the
HELP facility format words. HELP format
words are used in HELP descriFtion files
when the user wants HELP to format output
when the HFLP file is processed.

This publication
appendixes:

alsc has three

"Appendix A: Reserved Filetype tefaults"
lists the filetypes that are recognized by
the CMS editor and indicates the default
settings that the editor sUFplies for
logical tabs, truncation, verification,
logical record length, and so on.

"Appendix B: VSE/VSAM Functions Not
Supported in CMS" lists the restricticns on
the use of access method services and VSAM
in the CMS/DOS environment of CMS.

"Appendix C: OS/VS Access Method
Services and VSAM Functions Not Supported
in CMS" lists the restrictions for OS
programmers using access method services
and VSAM in CMS.

Some of the following convenience terms are
used throughout this publication:

• Throughout this publication, the term
"VM/SP" refers to the VM/SP program
package when you use it in conjunction
with VM/370 Release 6. The terms "CP"
and "CMS" refer to the VM/370 components
enhanced by the functions included in
the VM/SP package. Any references to

Preface iii

"RSCS" and "IPCS", unless otherwise
noted, is to the VM/370 components
unchanged by the VM/SP package.

When you install and use VM/SP in
conjunction with the VM/370 Release 6
system Control Program (SCP), it becomes
a functional operating system that
provides extended features to the
Control Program (CP) and Conversational
Monitor System (CMS) components of
VM/3 7 0 Release 6. VM/SP adds no
additional functions to the Remote
Spooling Communications Subsystem (RSCS)
and the Interactive Problem Control
system (IPCS) componen ts of VM/370.
However, you can appreciably expand the
capabilities of these components in a
VM/SP system by installing the RSCS
Networking program product (5748-XP1)
and the VM/IPCS Extension program
product (5748-SA 1).

• The term "CMS/DOS" refers to the
functions of CMS that become available
when you issue the command:

set dos on

• The term "CMS console stack" refers to
the combination of the program stack and
the console input buffer.

The following terms in this publication
refer to the indicated support devices:

• "2305" refers to IBM 2305 Fixed Head
Storage, Models 1 and 2.

• "270x" refers to IBM 2701, 2702, and
2703 Transmission Control Units or the
Integrated Communications Adapter (ICA)
on the System/370 Model 135.

• "3270" refers to a series of display
devices, namely, the IBM 327~, 3276,
3277, 3278, and 3279 Display Stations.
A specific device type is used only when
a distinction is required between device
types.

Information about display terminal usage
also applies to the IBM 3138, 3148, and
3158 Display Consoles when used in
display mode, unless otherwise noted.

CMS/DOS is a part of the ncrmal CMS
system, and is not a separate system.
Users who do not use CMS/DOS are
sometimes referred to as as users, since •
they use the as simulation functions of
CMS.

Any information pertaining to the IBM
3284 or 3286 Printer also pertains to
the IEM 3287, 3288, and 3289 printers,
unless otherwise noted.

"3330" refers to the IBM 3330 Disk
Storage Models 1, 2, or 11; and the 3350
Direct Access Storage operating in
3330/3333 Modell or 3330/3333 Model 11
compatibility mode. • Dnless otherwise noted, the term ~VSE~

refers to the combination of the DOS/VSE
system control program and the • "3340" refers to the IBM 3340 Disk

Storage, Models A2, Bl, and E2, and the
3344 tirect Access storage Model B2.

VSE/Advanced Functions program product.

In certain cases, the term DOS is still
used as a generic term. For example,
disk packs initialized for use with VSE
or any predecessor DOS or DOS/VS system
may be referred to as DOS disks.

The DOS - like simulation environment
provided under the CMS component of the
VM/System Product, continues to be
referred to as CMS/DOS.

• The term "CMS files" refers exclusively
to files that are in the format used by
CMS file system commands. VSAM and as
data sets and DOS files are not
compatible with the CMS file format, and
cannot be manipulated using CMS file
system commands.

The terms "disk" and "virtual disk" are
used interchangeably to indicate disks
that are in your CMS virtual machine
configuration. Where necessary, a
distinction is made between the
CMS-formatted disks and disks in OS or
DOS format.

iv VM/SP CMS Command and Macro Reference

• "3350" refers to the
Access storage Models
native mode.

IBM 3350
A2 and

Direct
B2 in

• "3380" refers to the IBM 3380 Direct
Access Storage. Informatior ccncerning
the 3380 is for planning purposes only
until this product is available.

• "3704", "3705", or "3704/3705" refers to
IBM 3704 and 3705 Communications
Controllers.

• "3705" refers to the 3705 I and the 3705
II unless otherwise noted.

• "2741" refers to the IBM 2741 and the
3767, unless otherwise specified.

• "3066" refers to the IBM 3066 System
Console.

• "3800" refers to the IBM 3800 Printing
Subsystem.

For a glossary of VM/SP terms, see the
1]~ !i£1Y~1 ~~£nineL~Y§!~~ E~od~£~:
~1Q2~~£Y ~ng ~~2!~£ !ng~~, GC19-6207.

PREREQUISITE PUBLICATIONS

In addition to the !~L~R f~~ User's Guide,
prerequisite information is contained--In
the following publications:

•

•

•

For information about the terminal that
you are using, including procedures for
gaining access to the VM/SP system and
logging on, see the IB~ Virtual
~~£]i~L2Y§!~~ R~Qg~£~: !~i~inal-~§~r'§
~~iQ~, GC19-6206.

If you are using an IBM 3767
Communications Terminal, the IBM 1761
Q~~~1Q~~ ~~ig~, GA18-2000, is a
prerequisite.

The CP commands that are available to
you as a general user are described in
!~~ !i£1Y~1 ~~chill~L[Y~i§~ Rrodu£~: fE
fQ~~~nQ B~!§f~n£§ !Q£ Q~~E~l g§~f§,
SC1Q-6211.

For additional tutorial informaticn on
using CMS, you may want to use f~~ fo£
R£QE£~m~~f~ - A Efi~§I, SR20-4438.

If you are going to use an IBM Program
Product compiler under CMS, you should have
available the appropriate program product
documentation. These publications are
listed in 1]~ !j~~ua1 Ma£]i~L~Y§tem
PrQ~~£!: lnt£Qg~£~ign, GC19-6200.

COREQUISITE PUELICATIONS

The 1~~ Virty~J ~~£]in~L~y§~~m R£Qg~ct:
Sys!~m ~~~~E~2 ~ng fQg~§, SC19-6204,
describes all of the error messages and
system responses produced by the CMS
commands and EDIT and DEBUG subcommand~
referenced in this publication. It also
lists the error messages issued by the EXEC
Frocessor during execution of your EXEC
procedures.

If you are alternating between C~S and
other operating systems in virtual machines
running under VM/SP, you should consult IB~
Yi£1~~J ~~£njn~L~Y§!~m E~od~£!: QE~f~!ing
~§!~m§ in ~ !!f!~~J ~~£hin~, GC19-6212.

For information on the VM/SF System
Product Editor refer to VML~i ~~~em
Product Editor Command and Macro Reference,
SC24=S221-and- !~~R-~yst~~--R~£duct ~gI!~~
g§~£~§ QYide, SC24-5220.

For information on EXEC 2 refer to !]L~R
~XEC ~ B~!~~nce, SC24-5219.

SUPPLEMENTAL PUBLICATIONS

For general information about the VM/SP
system, see 1]] Virtu~l]~£]ineLSy~!§m
Rfody£!: In!EQductign, GC19-6200.

Additional descriptions of various CMS
functions and commands which are normally
used by system support personnel are
described in:

Information on IPCS command~, which are
invoked under CMS, is contained in IBM
Yirtual Ma£ni!!~ .E~£j.!itYL.Jl.Q: Integ£!Ive
Rrob1 em £Qnt£ol ~§.t.§~ llif~) !!~~§ Guig~,
GC20-1823.

Details on the CMS CPEREP, a command
used to generate outFut reForts from VM/SP
error recording records, are contained in:

For more details on the oFerands used
with CPEREP, refer to:

Q~L!~,]OSLVS~,
B~£2!:dinE,]giti.ng,
R£Qg£am, GC28-0772.

For messages issued ty CMS CFEREP, see:

Preface v

There are three publications available as
ready reference material when you use VM/SP
and CMS. They are:

If you are going to, use the
Spooling Communications Subsystem,
1]~ Yl£1yal ~gfhln~ !g£ili1YL1IQ:
§EQQling CO~~~Djfg!jQn§ ~~h§Y§!~~
~§~£~§ Qui£§, GC20-1816.

Remote
see the
B20t~
(!!~CS)

Assembler language programmers may find
information about the VM/SP assembler in
OSL12, QQ2L12, ggg Y~L1IQ !§§~!hle~
Langy~g~, Order No. GC33-4010, and Q~LY~

gng l~LllQ !§§~~hl~! g£Qg!g~ID§!~§ QYide,
GC33-4021.

CMS support of Access Method Services is
based on VSE and VSE/VSAM. The control
statements that you can use are described
in Q§jgg 12~LY2!~ ~Q~~ng§ ggg ~~£!Q§,
SC24-5144. The !~L~R: ~~~ Qse!~§ Q~id~
contains details on how to use this
support. Error messages produced by the
Access Method Services program, and return
codes and reason codes are listed in
1~]L12!~ ~es§gg~§ gng COQ~§, SC24-5146.

For additional information refer to the
VS]L!2!~ g!Qg!g~~~£~§ B~fe!~g£~, SC24-5145.

vi VM/SP CMS Command and Macro Reference

For a detailed descripticn of VSE/VSAM
macros and macro parameters, refer to the
!~]L!dv~nfed l~~£1iQ~§]~!Q ~§~~ Guig~,
SC24-5210 and !~~!£vanced X~£ti~~§ ~g£~
Reference, SC24-5211. For information on
oS/VS-VSAM macros, refer to Q2L!2 Vir!~g!
~tor~~ !£~§§ Me1.hgg (!2Al1) R'!£ll~~£~§
Q~id§, GC26-3818.

The CMS ESERV command invokes the VSE ESEBV
program, and uses, as input, the control
statements that you would use in VSE.
These control statements are described in
Q~ide iQ ihe YSE !§§!~!le!, GC33-4024.

Linkage editor control statements, used
when invoking the linkage editcr under
CMS/DOS, are described in !2I ~Y§!~m
~Qnt£ol ~1at~~ts, SC33-6095.

Batch DL/I application programs can be
written and tested in the CMS/DOS
environment. See !~SP ~~2 ~~£~ QyiQ~,
and ~1Ll ~OSL!2 ~~§!gl Inf~matiQg,
GH20-124E, for details.

For information on VSE and CMS/DOS tape
label processing, refer to: !SELAdvg~£~£
!Y~1jQll§ TaE~ 1ab~1§, SC24-5212.

SECTION 1. INTRODUCTION AND GENERAL
CONCEPTS.

The CMS Environment.
Entering CMS Commands.
Character Set Usage.
Notational Conventions •
CMS Command Search Order •
CMS Command Summary.

SECTION 2. CMS COMMANDS.
ACCESS
AMSERV
ASSHIBLE
ASSGN.
CMSBATCH
COMPARE.
CONWAIT.
COPYFIL E

Using the COPYFILE Command •
CP
DDR.

DDR Control Statements •
I/O Definition Statements.

DEBUG.
DESBUF
DISK
DLBL
DOSL IB
DOSLKED.
DROPBUF.
DSERV.
EDIT
ER AS E.
ESERV.
EXEC
FET CH.
FILEDEF.
FINIS.
FORM AT
GENDIRT.
GENMOD
GLOBAL
HELP
INCLUDE.
LABELDEF
LISTDS
LISTFILE
LISTIO
LKED
LOAD

Loader Control statements.
LOADLIB.
LOADMOD.
MACLIB
M~KEBUF.

MODM AP
MOVEFILE
OPTION
OSRUN.
PRINT.
PSERV.
PUNCH.

• 1
• 1
• 3
• 4
• 4
.7
.9

17
18
22
25
31
34
35
37
38
41
49
50
51
51
64
65
66
68
8 1
83
86
87
89
92
94
96
99

• 10 1
• 112
• 113
• 117
• 118
• 12 1
• 123
• 127
• 13 1
• 135
• 140
• 144

146
• 149
• 153
• 158
• 16 1
• 162
• 165
• 166
• 167
• 17 1
• 17 3
• 17 4
• 17 7
• 179

QUERY.
READCARD •
RELEASE.
RENAM E •
RSERV.
RUN.
SENTRIES
SET.
SETPRT •
SORT
SSERV.
START.
S TATE/ST ATEW
SVCTR ACE •
SYNONYM.

The User Synonym Table •
TAPE
TAPEMAC.
TAPPDS •
TXTLI E •
TYPE
UPDATE.

Update Control Statements.

Contents

• 182
• 191
• 194
• 196
• 199
.201
.203
.204
.210
.212
.214
.216
.218
.220
.224
.225
.228
.234
.237
• 241
.244
.246
.247

Summary of Files Used by the UPDATE
Command

XEDIT.
Immediate Commands
HB •
HO
HT
HX
RO
RT
SO

SECTION 3. EDIT SUBCOMMANDS AND
EDIT Subcommands •
ALTER.
AUTOS AVE •
BACKWARD (Primarily 3270).
BOTTOM
CASE
CHANGE.
CMS.
DELETE.
DOWN
DSTRING.
FILE
FIND
FMODE.
FN AME.
FORMAT (3270 only)
FORWARD (Primarily 3270)
GETFILE.
IMAGE.
INPUT.
LINEMODE •
LOCATE •
LONG
NEXT
OVERL AY.
PRESERVE •

.251

.258

.262

.262

.262

.263

.263

.263

.264

.264

MACROS.265
.265
.266
.267
.268
.269
.269
.270
.273
.274
.275
.275
.276
.277
.277
.278
.279
.280
.281
.282
.283
.284
.286
.287
.287
.288
.289

Contents vii

PROMPT
QUIT
RECFM.
RENUM.
REPEAT
REPLACE.
RESTORE.
RETURN
REUSE (=).
SAVE •
SCROLL/SCROLLUP (3270 only).
SERI AL
SHORT.
STACK.
TABSET
TOP.
TRUNC.
TYPE
UP
VERIFY
X or Y
ZONE
? (QUESTION MARK)
nnnnn.
EDIT Macros.

$DUP
$MOVE.

.290

.290
• 29 1
.292
.293
.294
.295
.295
• 296
.297
.298
.299
.300
• 30 1
.302
.303
.303
.304
.305
.306
.307
.308
.309
• 310
• 311
• 311
• 312

SECTION 4.
BR EAK.

DEEUG SUBCOMMANDS. .313
.314
• 315
.316
.317
.318
.319
.320
.320
.321
.322
.322
.323
.324
.325

CA W.
CS W.
DEFINE
DO MP
GO
GPR.
HX
ORIGIN
PSW.
RETURN
SET.
STORE.
x.

SECTION 5. CMS EXEC CONTROL
The Assignment Statement •
& ARGS.
&BEGEMSG
&BEGPUNCH.
&BEGSTACK.
&BEGTYPE
&CONTINUE.
&CONTROL
&EMSG.
&END
&ERROR
&EXIT.
&GOTO.
&HEX
&IF.
&LOOP.
&PUNCH
&READ.
&SKIP.
&SPACE
&STACK
&TIME.
&TYPE.

STATEMENTS.327
.328
.330
.33,0
.332
.332
.333
.334
.334
.335
.336
.336
.337
.338
.338
.339
.340
• 34 1
.342
.343
.343
.344
.345
.346

Built-in Functions
&CONCAT.
& DATATYPE.
&LENGTH.
&LITERAL
& SUBSTR.
Special Variables.
&n •
&* and &$ •
&0 •
&DISKx •
&DISK* •
&DISK? •
&DOS
&EXEC.
&GLOB AL.
&GLOB ALn
&INDEX •
&LINENUM
&READFLAG.
&RETCODE
&TYPEFLAG.

SECTION 6. CMS FUNCTIONS.
ATTN Function •
WAITRB Function •

SECTION 7.
COMPSWT.
FSCB
FSCBD.
FSCLOSE.
FSERA SE.
FSOPEN •
FSPOINT.
FSREAD •
FSSTATE.
FSWRITE.
HNDEXT •
HNDINT •
HNDSVC •
LINEDIT.
PRINTL •
PUNCHC •
RDCAR B •
RDTAPE •
RDTERM
REGEQU •
TAPECTL.

CMS MACRO INSTRUCTIONS •

T APESL •
W AITD.
WAITT.
WRTAP E •
WRTER M •

SECTION 8.
• EX (EO X).

HELP FORMAT WORDS.

• CM
• CS
• FO

(COMMENT) •
(CONDITIONAL SECTION) •
(FO R MAT MOD E) •

• IL
.IN
.OF

(INDENT LINE) •
(INDENT)
(OFFS ET)

• SP (SPACE LINES).
.TR (TRANSLATE CHARACTER).

APPEN tIXES •

-.

viii IBM VM/SP CMS Command and Macro Reference

.347

.347

.348

.348

.349

.349

.350

.350

.350

.350

.350

.351

.351

.351

.351

.351

.352

.352

.352

.352

.352

.352

.353

.354

.355

.357

.358

.358

.359

.361

.362

.363

.364

.365

.367

.369

.371

.372

.373

.375

.386

.388

.389

.390

.391

.392

.393

.395

.397

.398

.398

.400

.401
.. .403

.405

.406

.407

.408

.409

.410

.411

.412

.413

APPENDIX A: RESERVED FILETYPE DEFAULTS.415

APPENDIX B: VSE/VSAM FUNCTIONS NOT
SUPPORTED IN CMS •••••••••••• 417

APPENDIX C: OS/VS ACCESS METHOD
SERVICES AND VSAM FONCTIONS NOT
SUPPORTED IN CMS ••

INDEX •••

.419

.421

Contents ix

FIGURES

Figure 1.

Figure 2.

Figure 3.
Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.
Figure 10.
Figure 11.

Character sets and Their
Contents •••••••••••••••••••••• 4
How CMS Searches for the
Command to Execute •••••••••••• 8
CMS Command Summary •••••••••• l1
CMS Commands for System
Programmers •••••••••••••••••• 15
COPYFILE Option
Incompatibilities •••••••••••• 41
An Annotated Sample of
Output From the TYPE and
PRINT Functions of the DDR
Program •••••••••••••••••••••• 61
Determining which VSAM
Catalog to Use ••••••••••••••• 76
Valid File Characteristics
for Each Device Type of
the FILEDEF Command ••••••••• 103
Loader Search Order ••••••••• 152
ENTRY Statement Format •••••• 153
LIBRARY Statement Format •••• 153

x IBM VM/SP CMS Command and Macr6 Reference

Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.

Figure 18.
Figure 19.

Figure 20.

Figure 21.

Figure 22.

Figure 23.

LDT Statement Format •••••••• 154
rcs Statement Format •••••••• 154
SLC Statement Format •••••••• 155
REP Statement Format ••••• ~ •• 156
SPB Statement Format •••••••• 156
Default Device Attributes for
the MOVEFILE Command •••••••• 169
Header Card Format •••••••••• 180
Summary of SVC Trace Output
Lines ••••••••••••••••••••••• 223
System and User-Defined
Truncations •••••• ~ •••••••••• 227
HELP Format Word
Summary ••••••••••••••••••••• 402
Default EDIT Subcommand
Settings for the CMS
Reserved Filetypes •••••••••• 415
OS Access Method Services
Operands Not Supported in
CMS ••••••••••••••••••••••••• 420

Section 1. Introductio·n and General Concepts

Virtual Machine/System Product (VM/SP) is a program product that, when
used in conjunction with VM/370 Release 6, controls "virtual machines."
A virtual machine is the functional equivalent of a real machine.
However, where the real machine has lights to show status, and buttons
and switches cn the real system console to control it, the virtual
machine does not. It has a virtual system console to display status and
a command language to start operations and control them. The virtual
system console is your terminal.

VM/SP has two command languages, which correspond to the two
components of the VM/SP system:

• The Control Program (CP) controls the resources of the real machine;
that is, it controls the physical machine in your computer room. The
CP commands are described in y~~g ~g ~Qmm~gg Re1~fen£~ fQf Q§n~l
!!§~f:§.

• The Conversational Monitor System (CMS) is a conversational operating
system designed to run under CP. This publication describes general
use CMS commands, and the subcommands and macros that you can use in
the CMS environment.

When used in conjunction with VM/370 Release 6, the VM/370 components
PSCS and IPCS are also available to the VM/SP user.

• The Remote Spooling Communications Subsystem (RSCS) is a subsystem
designed to supervise transmission of files across a teleprocessing
network controll€!d by CP. For information about RSCS, see the VMLll..Q
]~~Q!~ ~EQQ!~ng fQ~~Yn~£s!~Qll§ ~Y~§I§!~~ (]~~~) Us~£'s Quid~.

• The Interactive Problem Control System (IPCS) provides system
programmers and installation support personnel with problem analysis
and management facilities, including problem report creation, problem
tracking, and CP abend dump analysis. IPCS runs in the CMS command
environment; for details, see YM/3IQ 1~~~ Q§§f~§ Qy~Q~.

BQ!~: In the VM/SP environment, do not use the IPCS component of
VM/370 for: (1) analysis, formatting, and printing of CP dumps taken
in MP mode, and (2) analysis of CP dumps with an abend code added
since VM/370 Release 6. Note also that IPCS formats control blocks
in VM/370 Release 6 format, except RECBLOK which is not formatted at
all. If a block bas been extended since VM/370 Release 6, IPCS does
not format the extension.

Except for IPCS, each of the above components has a unique "command
environment" that must be active in order for a command to be accepted.
For CMS users, the two basic command environments are the CP command
environment and the CMS command environment. By default, CP commands are
acceptable input in the CMS command environment; if you enter a CP
command, CP executes it, but control returns to the CMS environment.

The eMS' Environment

The CMS command langtiage allows you to create, modify, debug, and, in
general, manipulate a system of files.

section 1. Introduction and General Concepts

The OS/VS Assembler and many OS/VS and VSE (DOS) language processors
can be executed under CMS. For example, the OS VS BASIC, FORTRAN IV
(G1), COBOL/ and PL/I compilers, as well as the DOS PL/I and DOS/VS
COBOL compilers, can execute under CMS. You can find a complete list of
language processors that can be executed under CMS in the ~~g
Illl£QQY£!1Qg. CMS invokes the assembler and the compilers when you
issue the appropriate CMS commands. The ASSEMBLE command is described
in this manual; the supported compiler commands are described in the
appropriate program product publications.

eMS commands allow you to read cards from a virtual card reader,
punch cards to a virtual card punch, and print records on a virtual
printer. Many commands are provided to help you manipulate your virtual
disks and files. The CMS commands are described in "Section 2. CMS
Comm ands."

A special set of CMS commands becomes available to you when you issue
the command:

set dos on

These commands, called CMS/DOS commands, simulate various functioijs of
the VSE Operating System (DOS) in your CMS virtual machine. When the
CMS/DOS environment is active, the CMS/DOS commands are an integral part
of the CMS command language; they are listed alphabetically among the
other CMS commands in "Section 2. CMS Commands."

The EDIT command places your virtual machine in the EDIT
compatibility mode. In EDIT compatibility mode, you can issue both EDIT
and XEDIT subcommanis. In this environment you can use the editors to
create and modify files. In the subcommand environment, you can place
your virtual machine in either of two modes, edit mode or input mode.
Edit mode lets you modify a file; input mode lets you create or add to a
file. The subcommands available to you in the EDIT subcommand
environment are described in "Section 3. EDIT Subcommands and Macros."
For more information on XEDIT subcommands, see VMLSP: ~Y§1~~ gfQg~!

gg~tQ£ fQillm~gg ~nQ ~~££Q Rgf~~n£~·

The DEBUG command places your virtual machine in the DEBUG subcommand
environment. In this environment you can issue commands to display
registers and storage, specify breakpoints (address instruction stops),
display the contents of control words, and so on. The DEBUG subcommands
are described in "Section 4. DEBUG Subcommands."

The EXEC command executes CMS command procedures, called EXEC files.
You can create EXE: files consisting of CMS and CP commands and EXEC
control statements. The EXEC facility also has a symbolic capability; by
manipulating variable symbols within an EXEC file, you can control the
execution of the procedure. These procedures are usually created in the
edit environment. The EXEC control statements, variable symbols, and
built-in functions are described in "Section 5. EXEC control
statements. "

You can use the CMS assembler language
assembler language programs to execute in
Descriptions of these macros are contained in
Instructions."

macros when you write
the CMS environment.
"Section 7. CMS Macro

The HELP format words are used to create HELP ·text· informatio~ for
user-defined commanis, EXECs, and messages. The function, formats, and
operands of the HELP facility format words are described in "Section 8.
HELP Format Words."

2 IBM VIi/SP CMS Command and Macro Reference

Entering CMS Commands

A CMS command consists of a command name, usually followed by one or
more positional operands and, in many cases, by an option list. CMS
commands and EDIT and DEBUG subcommands described in this publication
are shewn in the format:

r
t command name [operands •••] ((options ••• [)]] L __ ~

You must use one or more blanks to separate each entry in the command
line unless otherwise indicated. For an explanation of the special
symbols used to describe the command syntax, see "Notational
Conventions."

The command name is an alphameric symbol of one to eight characters. In
general, the names are based on verbs that describe the function you
want the system to perform. For example, you may want to find out
information concerning your CMS files. In this case, you would use the
LIST FILE command.

The cemmand operands are keywords and/or positional operands of one to
eiqht, and in a few cases, one to seven alphameric characters each. The
operands specify the information on which the system operates when it
performs the command function.

You must write the operands in the erder in which they appear in the
command formats in "Section 2. CMS Commands," unless otherwise
specified. When you are using CMS, blanks may optionally be used to
separate the last operand from the option list. CMS recognizes a left
parenthesis" (" as the beginning ef an option list; it does not have to
be preceded by a bla nk.

The command options are keywords used to control the execution of the
command. The cemmand formats in "Section 2. CMS Commands" show all the
options for each CMS cemmand.

The option list must be preceded by a left parenthesis; the closing
?arenthesis is not necessary.

For most commands, if conflicting or duplicate options are entered,
the last option entered is the option in effect for the command.
Exceptions to this rule are noted where applicable.

Section 1. Introduction and General Concepts 3

If you want to write comments with CMS commands, you enter them
following the closing parenthesis of the option list. The only
exception to this rule is the ERASE command, for which comments are not
allowed.

You can also enter comments on your console by using the CP *
comm and.

Character Set Usage

CMS commands may be entered using a combination of characters from six
different character sets. The contents of each of the character sets is
shown in Figure 1.

r----

, , ,
I

Character Set,

Separator

National

Alphabetic

Numeric

Alphameric

, Special ,
L

Names

Blank

Dollar Sign
Pound Sign
A t Sign

Uppercase
Lowercase

Numeric

National
Alphabetic

Numeric

Figure 1. Character Sets and Their Contents

Notational Conventions

-------,
Symbols

A Z
a - z

o 9

$. #, Q)

A Z
a z
o 9

All other
characters

The notation used to define the command syntax in this publication is:

• Truncations and Abbreviations of Commands

Where truncation of a command name is permitted, the shortest
acceptable version of the command is represented by uppercase
letters. (Remember, however, that CMS commands can be entered with
any combination of uppercase and lowercase letters.) The following
example shows the format specification for the FILEDEF command.

FIledef

This format means that FI, FIL. FILE, FILED, FILEDE, and FILEDEF are
all valid specifications for this command name.

4 IBM VM/SP CMS Command and Macro Reference

Operands and options are specified in the same manner. Where
truncation is permitted, the shortest acceptable version of the
operand or option is represented by uppercase letters in the command
format box. If no minimum truncation is noted, the entire word
(represented by all uppercase letters) must be entered.

Abbreviations are shorter forms of command operands and options.
Abbreviations for operands and options are shown in the description
of the individual operands and options that follow the format box.
For example, the abbreviation for MEMBER in the PRINT command is MEM.
Only these two forms are valid and no truncations are allowed. The
format box contains

MEM BER {n:me}

and the description that follows the format box is

MEMBER {name}
MEM *

• The following symbols are used to define the command format and
should never be typed when the actual command is entered.

underscore
traces { }
brackets (]
ellipsis

• Upoercase letters and words, and the following symbols, should be
entered as specified in the format box.

asteris k *
comma
hyphen
equal sign =
parentheses ()
period
colon

• The abbreviations !tfn", "ft", and "fm" refer to filename, filetype,
and filemode, respectively. The combination "fn ft (fm]" is also
called tbe file identifier or fileid.

When a command foraat box shows the characters, fn ft fm or fileid
and they are not enclosed by brackets or braces, it indicates that a
CMS file identifier must be entered. If an asterisk (*) appears
beneath fn, ft, or fm, it indicates that an asterisk may be coded in
that position of the fileid. The operand description describes the
usage of the *.

• Lowercase letters, words, and symbols that appear in the command
format box represent variables for which specific information should
be substituted. For examFle, "fn ft fm" indicates that file
identifiers such as "KYFILE EXEC Al" should be entered.

• Choices are represented in the command format boxes by stacking.

A
B
C

section 1. Introduction and General Concepts 5

• An underscore indicates an assumed default option. If an underscored
choice is selected, it need not be specified when the command is
entered.

~!~l!l.El~
The representation

A

l!
C

indicates that either A,
selected, it need not be
assumed.

B, or C may be selected. However, if B is
specified. Or, if none is entered, B is

• The use of braces denotes choices, one of which mus! be selected.

~!~l!l.El~
The representation

{ ~ }
indicates that you l!lY§~ specify either A, or B, or C.
choices is enclosed by neither brackets or braces,
treated as if enclosed by braces.

If a list of
it is to be

• The use of brackets denotes choices, one of which l!l~Y be selected.

•

~~~l!l.Elg: 
The representation 

r , 
I A , 
, B , 
, C , 
L .J 

indicates that you may en-ter A, B, or C, or you may omit the field. 

In instances where there are nested 
lines, the following rule applies: 
dependent upon the selection of the 
nesting. 

_Level 1 Level 2 Level 3 
[filename [filetype [filemode]]] 

braces or brackets on the text 
nested operand selection is 
operand of a higher level of 

where the highest level of nesting is the operand that is enclosed in 
only one pair of brackets and the lowest level of nesting is the 
operand that is enclosed by the maximum number of brackets. Thus, in 
the previous exa~ple, the user has the option of selecting a file by 
filename only or filename filetype only or by filename filetype 
filemode. The user cannot select filetype alone because filetype is 
nested within filename and our rule states: the higher level of 
nesting must be selected in order to select the next level (lower 
level) operand. The same is true if the user wants to select 
filemode; filename and filetype must also be selected. 

6 IBM VM/SP CMS Co~mand and Macro Reference 



An ellipsis indicates that the preceding item or group of items may 
be repeated more than once in succes5ion. 

~Z~.!!!Ele 
The representation 

(option s ••• ) 

indicates that more than one option may be coded within the 
parentheses. 

CMS Command Search Order 

When you enter a ccmmand name at the terminal, CMS begins searching for 
the command of that name. Once a match is found, the search stops. The 
search order is: 

1. EXEC file on any currently accessed disk. CMS uses the standard 
search order (A through Z.) 

2. Valid abbreviaticn or truncation for an EXEC file on any currently 
accessed disk, according to current SYNONYM file definitions in 
effect. 

3. CMS command tha t has al ready been loaded into the transient area. 

The commands that execu te in the transient area are: 

ACCESS HELP RELEASE 
ASSGN LISTFILE RENAME 
COMPARE MODMAP SET 
DISK OPTION SVCTRACE 
DLBL PRINT SYNONY M 
FILEDEF PUNCH TAPE 
GENDIRT QUERY TYPE 
GLOBAL READCARD 

4. CMS n ucleu s-res ident c cmmand. The nucleus-resident CMS commands 
are: 

CP GENMOD START 
DEBUG INCLUDE STATE 
ERASE LOAD STATEW 
FETCH LOAD MOD 

5. Command module on any currently accessed disk. (All the remaining 
CMS commands are disk-resident and execute in the user area.) 

6. Valid abbreviaticn or truncation for nucleus-resident or transient 
area command module. 

7. Valid abbreviaticn or truncation for disk-resident command. 

Fiqure 2 shows a basic description of the command search order; you 
can find complete details in the Y~L~f §l~lg~ f£Qg&gm~~£~§ Guig~· 

Section 1. Introduction and General Concepts 7 



CMS 
EXEC 

SEARCH 

CMS 
MODULE 

·SEARCH 

KEY IN A 
COMMAND NAME 

EXECUTE 
THE FILE 
AND RETURN 
CONTROL TO 
CMS. 

EXPAND THE 
NAME TO THE 
FULL REAL 
NAME, EXECUTE 
IT, AND RETURN 
CONTROL TO CMS. 

EXECUTE THE 
FILE AND 
RETURN CONTROL 
TO CMS. 

EXPAND THE 
NAME TO THE FULL 

~IIIIIIIIIIIIII_~~I~REALNAME,EXECUTE 
IT, AND RETURN 

AN ERROR 
MESSAGE 

Figure 2. How CMS Searches for the Command to Execute 

8 IBM VM/SP CMS Command and Macro Reference 

CONTROL TO CM.S. 

EXECUTE THE 
COMMAND 
AND RETURN 
CONTROL TO 
CMS. 



CMS Command Summary 

Figures 3 and 4 contain alphabetical lists of the CMS commands and the 
functions each performs. Figure 3 lists those commands that are 
available for general use; Figure 4 lists the commands used by system 
programmers and system support personnel who are responsible for 
generating, maintaining, and updating VM/SP. Unless otherwise noted, 
CMS commands are described in this manual. For those commands not 
described in this manual, the "Code" column indicates the publication 
that describes the command: 

VSE PP 

EREP 

IPCS 

Op Gd 

os PP 

SCRI PT 

SPG 

SYSGEN 

indicates that this command invokes a VSE Program product, 
available from IBM for a license fee. 

indicates that this command is described in the VML§E QLT§~E 
gng ~E£Q£ R~Q£ging Guide; further details on the operands 
used by this command are contained in the OSL!§, ~QS/VS~, 

!~L~f ~nY~£QB!gn~gl ~~£Q~ding, ~ditiQg, ~~ frinti~g (EREP) 
program. 

indicates that this command is a part of the Interactive 
Problem Control System (IPCS), and is invoked under CMS. It 
is described in the !l!LJ1Q IQte~g£~i~ prob1~!! £Qnt.!:.Q1 §.!.§tem 
(If£~) Q§g£~§ Q!!!g~. 

indicates that this command is 
QEg£~!QE~ Quigg. 

described in the !~L§E 

indicates that this command invokes an os Program product, 
available from IBM for a license fee. 

indicates that this command invokes a text 
an IBM Installed User Program, available 
license fee. 

processor that is 
from IBM for a 

indicates that this command is described in the !~L§g ~Y§!~!! 
fEQgE~!!!!g£~§ Q!!!g~. 

indicates that this command is described in the !~L~f fl~ing 
~ng ~Y§~~m Q~~Eg~ion ~ig~· 

Note: If a CMS command is described in this manual, but is also repeated 
in-other VM/SP publications, the chart does not refer to those other 
publications. 

You can enter CMS commands when you are running CMS in your virtual 
machine, the terminal is idle, and the virtual machine can accept input. 
However, if eMS is processing a previously entered command and your 
typewriter terminal keyboard is locked, you must signal your virtual 
machine via an attention interruption. The system acknowledges the 
interruption by unlocking the keyboard. Now you can enter commands. 

If your terminal is a display device, there is no problem of entering 
commands while the virtual machine is busy because its keyboard remains 
unlocked for additional command input. Note that in these circumstances 
the command you enter is stacked in the console input buffer and is not 

section 1. Introduction and General Concepts 9 



executed until the command that is currently being executed completes. 
If more commands are entered than CP can handle, a NOT ACCEPTED message 
is displayed at the display terminal. 

In addition to the commands listed in Figures 3 and 4, there are 
seven commands called Immediate commands that are handled in a different 
manner from the others. They may be entered while another command is 
being executed by pressing the Attention key (or its equivalent), and 
they are executed immediately. The Immediate commands are: 

• HB - Halt batch execution 
• HO - Halt tracing 
• HT - Halt typing 
• HX - Halt execution 
• RO - Besume traci ng 
• RT - Besume typing 
• so - Suspend tracing 

10 IBM VM/SP CMS Command-and Macro Reference 



.-­
,Command 
I 
I ACCFSS , 
I 
I 
IAMSERV , 
I , 
I ASSEMBLE 
I 
IASSGN 
I 
I 
ICMSBATCH 
I 
ICOBOL 
I 
I 
,COMPARE 
1 
,CONVERT 
I 
ICOPYFILE 
I 
ICP 
I 
ICPEREP 
I 
IDDR 
I 
I 
,DEBUG 
I 
IDISK 
I 
I 
IDLEL 
I 
I 
IDOSLIE 
I 
I 
IDOSLKED 
I , 
I 
IDOSPLI 
I 
IDROPBUF 
I 
IDSERV , , , 
,EDIT 
I , , 
IERASE 

I Code 

I 
I 
I 
lOS PP , 
I 
I 
I 
lOS PP , 
I , 

EREP 

VSE PP 

Usage 

Identify direct access sFace to a CMS virtual 
machine, create extensions and relate the disk 
space to a logical directory. 

Invoke access method services utility functions to 
create, alter, list, copy, delete, import, or 
export VSAM catalogs and data sets. 

Assemble assembler language source code. 

Assign or unassign a CMS/DOS system or programmer 
logical uni~ for a virtual I/O device. 

Invoke the eMS batch facility. 

Compile OS ANS Version 4 or OS/VS COBOL source 
code. 

Compare records in CMS disk files. 

Convert free form FORTRAN statements to fixed form. 

Copy CMS disk files according to specifications. 

Enter CP commands from the CMS environment. 

Format and edit system error records for output. 

Perform backup, restore, and copy operations for 
disks. 

Enter DEBUG subcommand environment. 

IPerform disk-to-card and card-to-disk operations 
for CMS files. 

I 

Define a VSE filename or VSAM ddname and relate 
that name to a disk file. 

Delete, compact, or list information about the 
phases of a CMS/DOS phase library. 

Link-edit CMS text decks or object modules from a 
VSE relocatable library and place them in 
executable form in a CMS/DOS phase library. 

Compile DOS PL/I source code under CMS/DOS. 

Eliminate a program stack buffer. 

Display information contained in the VSE core 
image, relocatable, source, procedure, and 
transient directories. 

tInvoke the VM/SP System Product editor in CMS 
t editor (EDIT) compatibility mode to create or 
t modify a disk file. 
t 
IDelete eMS disk files. 

Figure 3. CMS Command Summary (Part 1 of 4) 

Section 1. Introduction and General Concepts 11 



r 
Command 

ESERV 

EXEC 

FCOBOL 

FETCH 

FIL EDEF 

FINIS 

FORMAT 

FORTGI 

FORTHX 

GENDIRT 

GEN MOD , 
GLOBAL 

GOFORT 

HELP 

INCLUDE 

LAB ELDEF 

LIS TDS 

LIS TFILE 

LISTIO 
I 
I 
ILKED 
I 
I 
I LOAD 
1 
ILOADLIB 
L-

Figure 3. 

I Code Usage 

Display, punch or print an edited (compressed) 
macro from a VSE source statement library 
(E sublibrary). 

Execute special procedures made up of frequently 
used sequences of commands. 

VSE PP Compile DOS/VS COBOL source code under CMS/DOS. 

OS PP 

as PP 

as pp 

Fetch a CMS/DOS or VSE executable phase. 

Define an as ddname and relate that ddname to any 
device supported by CMS. 

Close an open file. 

Prepare disks in CMS fixed block format. 

Compile FORTRAN source code using the G1 compiler. 

Compile FORTRAN source code using the H-extended 
compiler. 

Fill in auxiliary module directories. 

Generate nonrelocatable CMS files (MODULE files). 

Identify specific CMS libraries to be searched for 
macros, copy files, missing subroutines, LOADLIB 
modules, or DOS executable phases. 

Compile FORTRAN source code and execute the program 
using the FORTRAN Code and Go compiler. 

Display information about CP, CMS, or user 
commands, EDIT, XEDIT, or DEBUG subcommands, EXEC 
and EXEC2 control statements, and descriptions of 
CMS and CP messages. 

Bring additional TEXT files into storage and 
establish linkages. 

Specify standard HDR1 and EOF1 tape label descrip­
tion information for CMS, CMS/DOS, and os 
simulation. 

List information about data sets and space 
allocation on as, DOS, and VSAM disks. 

List information about CMS disk files. 

Display information concerning CMS/DOS system and 
programmer logical units. 

Link edit a CMS TEXT file or OS object module into 
a CMS LOADLIB. 

Bring TEXT files into storage for execution. 

Maintain CMS LOADLIB libraries. 

CMS Command Summary (Part 2 of 4) 

12 IBM VM/SP CMS Command and Macro Reference 



r--------------------------
ICommand ICode I Usage 

LOADMOD 

MACLIB 

MAKEBUF 

MODMAP 

MOVEFILE 

oprION 

OSRUN 

PLIC 

PLICR 

PLIOPT 

PRINT 

PSERV 

PUNCH 

QUERY 

READCARD 

RELEASE 

RENAME 

RSERV 

IRUN 
I 
I 
1SCRIPT 
I 
I 
1SENTRIES 
I 
I 
ISEr 
I 

OS PP 

OS PP 

OS PP 

Bring a single MODULE file into storage. 

Create or modify CMS macro libraries. 

Create a new program stack buffer. 

Display the load map of a MODULE file. 

Move data from one device to another device of the 
same or a different type. 

Change the DOS/VS COBOL compiler (FCOBOL) options 
that are in effect for the current terminal 
session. 

Load, relocate, and execute a load module from a 
CMS LOADLIB or OS module library. 

Compile and execute PL/I source code using the 
PL/I Checkout Compiler. 

Execute the PL/I object code generated by the OS 
PL/I Checkout Compiler. 

Compile PL/I source code using the OS PL/I 
Optimizing Compiler. 

Spool a specified CMS file to the virtual printer. 

Copy a procedure from the VSE procedure library 
onto a CMS disk, display the procedure at the 
terminal, or spool the procedure to the virtual 
punch or printer. 

Spool a copy of a CMS file to the virtual punch. 

Reguest information about a CMS virtual machine. 

Read data from spooled card input device. 

Make a disk and its directory inaccessible to a CMS 
virtual machine. 

Change the name of a CMS file or files. 

Copy a VSE relocatable module onto a CMS disk, 
display it at the terminal, or spool a copy to 
the virtual punch or printer. 

Initiate series of functions to be performed on a 
source, MODULE, TEXT, or EXEC file. 

SCRIPT Format and print documents according to embedded 
SCRIPT control words in the document file. 

Determine the number of lines currently in the 
program stack. 

Establish, set, or reset CMS virtual machine 
characteristics. L __________________________ _ 

Figure 3. CMS Command Summary (Part 3 of 4) 

Section 1. Introduction and General Concepts 13 



r 
Command 

SETPRT 

SORT 

SSERV 

START 

STATE 

STA TEW 

SVCTRACE 

SYNONYM 

I 
TAPE 

TAPEMAC 

TAPPDS 

TESTCOB 

TESTFORT 

TXT LIB 

TYPE 

,UPDATE , 
I 
,VSAPL , 
lVSBASIC 
I 
I VSB UTIL 
I 
I XED IT , 
L 

Figure 3. 

I Code 

OS PP 

OS PP 

OS PP 

OS PP 

OS PP 

, 

Usage 

Load a virtual 3800 printer. 

Arrange a specified file in ascending order 
according to sort fields in the data records. 

Copy a VSE source statement book onto a CMS 
disk, display it at the terminal, or spool a copy 
to the virtual punch or printer. 

Begin execution of programs previously loaded (OS 
and CMS) or fetched (CMS/DOS). 

verify the existence of a CMS disk file. 

Verify a file on a read/write CMS disk. 

Record information about supervisor calls. 

Invoke a table containing synonyms you have created 
for CMS and user-written commands. 

Perform tape-to-disk and disk-to-tape operations 
for CMS files, position tapes, and display or 
write VOL1 labels. 

Create CMS MACLIB libraries directly from an 
IEHMOVE-created partitioned data set on tape. 

Load as partitioned data set (PDS) files or card 
image files from tape to disk. 

Invoke the OS COBOL Interactive Debug Program. 

Invoke the FORTRAN Interactive Debug Program. 

Generate and modify text libraries. 

Display all or part of a CMS file at the terminal. 

Make changes in a program source file as defined 
by control cards in a control file. 

I Invoke VS APL interface in CMS. , 
I Compile and execute VS BASIC programs under CMS. , 
, Convert BASIC 1.2 data files to VS BASIC format. 
I 
,Invoke the VM/SP System Product Editor to create or , modify a disk file. 

CMS Command summary (Part 4 of 4) 

14 IBM VM/SP CMS Command and Macro Reference 



r 
,Command 
I 
IASM3705 
1 
, AS MGEND , 
,CMSGENt 
I 
I 
1CMSXGEN 
I 
ICPEREP 
1 
, DIRECT , 
, DOSGEN 
I 
I 
I DUMPSCAN 
I 
IGEN3705 
I 
I 
I GENERATE 
I , 
INCPDUMP 
I 
I 
IPRB 
I 
,PROB 
I 
I SAMGEN 
1 
I SAVENCP 
I 
I 
ISETKEY 
I , 
ISTAT , 
,VMFBl.D , 
,VMFDOS 
I 
I 
IVMFDUMP , , 
IVMFLOAD , 
IVSAMGEN , 
I 
IZAP 
I 
L---

I Code 

I SYSGEN , 
I SYSGEN , 
, SYSGEN 
1 , 
I SYSGEN , 
1 EREP 
1 
ISYSGEN 
1 
,SYSGEN 
I 
I 
IIPCS 
I 
,SYSGEN 
I , 
ISYSGEN 
I 
I 
lOP Gd, 
,SPG 
I 
IIPCS 
I 
,IPCS , 
,SYSGEN 
I 
I SYSGEN, 
ISPG , 
ISPG 
I 
I 
IIPCS 
I 
I SYSGEN 

SYSGEN 

op Gd, 
IPCS 

SYSGEN 

SYSGEN 

Op Gd, 
SPG 

Usage 

I Assemble 370x source code. 
I 
IRegenerate the VM/SP assembler command modules. 
I 
Generate a new CMS disk-resident module from 

updated TEXT files. 

Generate the CMSSEG discontiguous saved segment. 

Format and edit system error records for output. 

Set up VM/SP directory entries. 

Load and save the CMSDOS and INSTVSAM shared 
segments. 

Provide interactive analysis of CP abend dumps. 

Generate an EXEC file that assembles and link-edits 
the 370x control program. 

!Update VM/SP or the VM/SP directory, or generate 
a new standalone copy of a service program. 

Process CP spool reader files created by 370x 
dumping operations. 

Update IPCS Froblem status. 

Enter a problem report in IPCS. 

Load and save the CMSBAM shared segment. 

Read 370x control program load into virtual 
storage and save an image on a CP-owned disk. 

Assign storage protect keys to storage assigned to 
named systems. 

IDisplay the status of reported system problems. 
1 
,Generate and/or update VM/SP using the PLC tape. , 
,Create CMS files for VSE modules from VSE library 
,distribution tape or SYSIN tape. , 
IFormat and print system abend dumps; under IPCS, 
I create a problem report. 
1 
IGenerate a new CP, CMS or RSCS module. 
1 
ILoad and save the CMSVSAM and CMSAMS shared 
, segments. , 
,Modify or dump LOADLIB, TXTLIB, or MODULE files. , 

Figure 4. CMS Commands for System Programmers 

Section 1. Introduction and General Concepts 15 



16 rBM V~/SP CMS Command and Macro Reference I 



Section 2. CMS Commands 

This section contains reference information for the CMS commands used by 
general users. Each command description indicates the command format, 
operands and options; it also lists error messages and return codes the 
command issues. Usaqe notes are provided, where applicable. 

The formats of the DEBUG, EDIT, XEDIT, and EXEC commands are also 
listed; for details on the EDIT or DEBUG subcommands or EXEC control 
statements, see: 

• "Section 3. EDIT Subcommands and ~acros" 
• "Section 4. DEBUG Subcommands" 
• "Section 5. EXEC Control Statements" 

For details on the XEDIT subcommands and macros, see !~L§f: 
~£QQ~£~ ~g~iQ£ ~Q~~g~g gnQ ~g££Q Bg!g£§~gg· 

For usage information on XEDIT subcommands and macros, see l~LSP: 

~Y~1~m ~rod~£! ~gito£ y§~£~§ ~~ig~. 

For more detailed usage information on CMS commands, see the !~L~f:~~~ 
!!~.§!:~~ Quig~. 

Section 2. CMS Commands 17 



ACCESS 

ACCESS 

Use the ACCESS command to identify a disk to CMS, establish a filemode 
letter for the files on the disk, and set up a file directory in 
storage. The specifications you make with the ACCESS command determine 
the entries in the user file directory. The format of the ACCESS 
command is: 

r-----
ACcess 

L 

r , 
I cuu moder/ext (fn (ft (fm]]]] (options ••• ()]] , 
I 1.21! * * * , 
I I 
L J 

2Bti.Ql!.§: 
NOPROF 
ERASE 
NODISK 

cuu makes available the disk at the specified virtual device 
address. The default value is 191. 

Valid addresses are 001 through 5FF for a virtual machine in 
basic control mode, and 001 through FFF for a virtual machine 
in extended control mode. 

mode assigns a one-character filemode letter to all files on the 
disk being accessed. This field must be specified if cuu is 
specified. The default value is A. 

ext indicates the mode of the parent disk. Files on the disk 
being accessed (cuu) are logically associated with files on 
the parent disk; the disk at cuu is considered a read-only 
extension. A blank must not precede or follow the slash (/). 

fn (ft (fm]] 

NOPBOF 

defines a subset of the files on the specified disk. only the 
specified files are included in the user file directory and 
only those files can be read. An asterisk coded in any of 
these fields indicates all filenames, filetypes, or filemode 
numbers (except 0) are to be included. (See Usage Notes 3 and 
4.) To specify a filemode use a letter and a number, for 
example: B1. For OS and DOS disk access restrictions, see 
Usage Note 9 .. 

suppresses execution of a PROFILE EXEC file. This option is 
valid cnly if the ACCESS command is the first command entered 
after you IPL CMS. On subsequent ACCESS commands, the NOPROF 
option is ignored. 

ERASE specifies that you want to erase all 
specified disk. This option is only 
disks. (See Usage Note 7.) 

of the files on the 
valid for read/write 

18 IBM VM/SP CMS Command and Macro Reference 



NOD1SK 

ACCESS 

lets you gain access to the CMS operating system with no disks 
accessed by CMS except the system disk (S-disk) and its 
extensions. This option is only valid if the ACCESS command 
is the first command you enter after you 1PL CMS. 

1. If you have defined disk addresses 190, 191, 192, and 19E in the 
VM/SP directory, or if they are defined before you 1PL CMS, these 
disks are accessed as the S-, A-, D-, and Y-disks respectively. 
Fcllowing an IPL of CMS, you must issue explicit ACCESS commands to 
access other disks. Ordinarily, you have access only to files with 
a filemode number of 2 on the system disk. 

When ACCESS is the first command issued after an 1PL of the CMS 
system, the A-disk is not automatically defined. Another ACCESS 
ccmmand must be issued to define the A-disk. 

2. Associated with each CMS disk is a file directory, which contains 
an entry for every eMS file on the disk. The user file directory 
created in storage by the ACCESS command contains entries for only 
those files that you can reference. 

If you use the CP LINK command to 
ACCESS command each time. Do 
aFPropriate file directory. 

link to a new minidisk, issue an 
this so that you obtain the 

3. The filename, filetype, and filemode fields can only be specified 
for disks that are accessed as read-only extensions. For example: 

access 195 b/a * assemble 

gives you read-cnly access to all the files with a filetype of 
ASSEMBLE on the disk at virtual address 195. The command: 

access 190 z/a * * z1 

gives you access to all files on the system disk (190) that have a 
filemode number of 1. 

When you access any disk in read-only status, files with a filemode 
number of 0 are not accessed. 

4. Yeu can also identify a set of files on a disk by referring to a 
filename or filetype prefix. For example: 

access 192 cIa abc* 

accesses only those files in the disk at virtual address 192 whose 
filenames begin with the characters ABC. The command line: 

access 192 cia * a* c2 

gives you access to all files whose filetypes begin with an A and 
that have a filemcde number of 2. 

5. You can force a read/write disk into read-only status by accessing 
it as an extension of another disk or of itself; for example: 

access 191 a/a 

forces your A-disk into read-only status. 

Section 2. CMS Commands 19 



ACCESS 

6. When a disk is made a read-only extension of another disk, commands 
that typically require or allow you to specify a filemode may 
search extensions of the specified disk. The exceptions to this 
are the LISTFILE and DISK DUMP commands. For a detailed 
description of read-only extensions, see the !~L~f £~~ ~§~~2 
~Yide. 

7. If you enter the ERASE option by mistake you can recover from the 
error as long as you have not yet written any new files onto the 
disk. (That is, you have not yet caused CMS to rewrite the file 
directory.) Reissue the ACCESS command without the ERASE option. 

8. You should never attempt to access a disk in read/write status if 
another user already has it in read/write status; the results are 
unpredictable. 

9. When accessing OS and DOS disks: 

a. You cannot specify filename, filetype and filemode when you 
access OS or DOS disks, nor can you specify any options. 

b. In order to see OS and DOS disks, you must have a read/write 
CMS A-disk available if you are going to use the LOAD command 
with the MAP option. (MAP is a default option.) 

10. If two or more disks have been accessed in CMS, and CP DEFINE 
ccmmands are executed that swap virtual addresses, then a 
subsequent RELEASE command may write the file directory on the 
wrong disk; for example: 

(CMS) 
(CMS) 
(CP) 
(CP) 
(CMS) 

ACCESS 193 C 
ACCESS 198 E 
DEFINE 193 293 
DEFINE 198 193 
RELEASE C 

This seguence of commands will write the file directory from 193 to 
198 since the CP definitions are unknown to CMS. 

r , 
DMSACC723I mode (cuu) {R/O} ,-OS , 

R/W I-DOS, 
L J 

If the specified disk is a CMS disk, this message is displayed if 
the disk is read-only. If the disk is in OS or DOS format, the 
message indicates the format, as well as whether it is a read/write 
or read-only disk. 

DMSACC724I cuu1 REPLACES mode(cuu2) 

Before execution of the command, the disk represented by cuu2 was 
tbe "mode" disk. The disk, cuu1, is now ~ssigned that filemode 
letter. This message is followed by message DMSACC726I. 

r , 
DMSACC7251 cuu ALSO = 'mode' ,-OS , DISK 

I-DOS, 
L J 

The disk specified by cuu is the mode disk and an ACCESS command 
was issued to assign it another filemode letter. 

20 IBM VM/SP CMS Command and Macro Reference 



ACCESS 

DMSACC7261 'cuu mode' RELEASED 

The disk being accessed at virtual address cuu as a read/write disk 
is already accessed at a different mode. It is released from that 
mode. Or, a disk currently accessed at mode is being replaced. 

DMSACC002E FILE 'DMSROS TEXT' NOT FOUND RC~28 
DMSACC003E INVALID OPTION 'option' RC=24 
DMSACC017E INVALID DEVICE ADDRESS 'cuu' RC=24 
DMSACC048E INVALID MODE 'mode' RC=24 
DMSACC059E 'cuu' ALREADY ACCESSED AS READ/WRITE 'mode' DISK RC=36 
DMSACC060E FILE(S) 'fn (ft [fm]]' NOT FOUND. DISK 'mode (cuu) , WILL NOT 

BE ACCESSED RC=28 
DMSACC070E INVALID PARAMETER 'parameter' RC=24 
DMSACC109S VIRTUAL STORAGE CAPACITY EXCEEDED RC=104 
OMSACC112S DISK 'mode (cuu) , DEVICE ERROR RC=100 
DMSACC113S mode (cuu) NOT ATTACHED RC= 100 
DMSACC230W OS DISK - FILEID AND/OR OPTIONS SPECIFIED ARE IGNORED RC=4 
DMSACC240S EEROR LOADING READ as ROUTINE 'DMSROS TEXT' 

Section 2. CMS Comm~nds 21 



AMSERV 

AMSERV 

Use the AMSERV command to invoke access method services to: 

• Define VSAM catalogs, data spaces, or clusters 
• Alter, list, copy, delete, export or import VSAM catalogs and data 

sets 

T~e format of the AMSERV command ic. 

r 
t r , 
I AMserv fn1 Ifn21 

11111 , 
( (options ••• [) ]] 

I 
I L .J , 
t , , 
I 
L 

2£.:t!Q.!!.§: 
[PRINT] 
.. 
ITAPIN 
I 
l 

, 
{ 18n }' TAPn , 

.J 

r , 

,r.I,APOUT {18n }' 
, TAPn , 
L .J 

fn1 specifies the filename of a CMS file with a file type of AMSERV 
that contains the access methcd services control statements to 
be executed. CMS searches all of your accessed disks, using 
the standard search order, to locate the file. 

fn2 specifies the filename of the CMS file that is to contain the 
access method services listing; the filetype is always 
LISTING. If fn2 is not specified, the LISTING file will have 
the same name a,s the AMSERV input file (fn1). 

The LISTING file is written to the first read/write disk in 
the standard search order, usually your A-disk. If a LISTING 
file with the same name already exists, it is replaced. 

Q.E.t1£ns: 

PRINT spools the output listing to the virtual printer, instead of 
writing it to disk~ If PRINT is specified, fn2 cannot be 
specified. 

{ 18n } 
TAPn 

TAPIN 

TAPOUT 

specifies that tape input is on the tape drive at the address 
indicated by 18n or TAPn. n may be 1, 2, 3, or 4, indicating 
virtual addresses 181 through 184, respectively. 

{ ~:~n} 
specifies that tape output should be written to the tape drive 
at the address indicated by 18n or TAPn. n may be 1, 2, 3, or 
4, indicating virtual addresses 181 through 184, respectively. 

!Q.:t~: If both TAPIN and r.IAPOUT are specified, their virtual device 
addresses must be different. 

22 IBM VM/SP CMS Command and Macro Reference 



AMSERV 

1. To create a job stream for access method ser~ices, you can use the 
CMS Editor to create a file with the filetype of AMSERV. The 
editor automatically sets input margins at columns 2 and 72. 

2. Refer to Q§!ng !SE~Y~!~ £omm~ds ~nd Ma£~Q§ for a description of 
access method services control statements format and syntax. 
Restrictions placed on VSAM usage in CMS are listed in this 
publication in "Appendix B: VSE/VSAM Functions Not Supported in 
CMS" and "Appendix C: CS/VS Access Method Services and VSAM 
Functions Not Supported in CMS." 

3. You must use the DLBL command to identify the master catalog. Disk 
input and output files may also require a DLBL command. For more 
information on DLBL requirements for AMSERV see !§!L!~~ 

~£Qg&~!!~~~§ ~i~~~~· 

4. When you use tape input and/or output with the AMSERV command, you 
are prompted to enter the ddnames; a maximum of 16 ddnames are 
allowed for either input and output. The ddnames can each have a 
maximum of seven characters and must be separated by blanks. 

While using A~SERV, only one tape at a time can be attached for 
either input or output. If you you enter more than one tape 
ddname, specify the tape files in the sequence they are used in the 
input stream. 

5. A CMS format variable file cannot be used directly as input to 
AMSERV functions as a variable (V) or variable blocked (VB) file 
because the standard variable CMS record does not contain the BL 
and RL headers needed by the variable record modules. If these 
headers are not included in the record, errors will result. 

6. 

Most files placed on the CMS disk by AMSERV will show a RECFM of V, 
even if the trae format is fixed (F), fixed blocked (FB), undefined 
(U), variable or variable blocked. The programmer must know the 
true format of the file he is trying to use with the AMSERV command 
and access it properly, or errors will result. 

If an AMSERV command abnormally 
terminate an AMSERV command, the 
reset correctly. If a subsequent 
CMS. 

terminates or you 
AMSERV environment 
AMSERV abends, you 

issue HX to 
may not be 
must re-IPL 

AMSERV internally issues an ASSGN command for SYSIPT and locates the 
source file; therefore, you do not need to assign it. If you use the 
TAPIN or TAPOUT options, AMSERV also issues ASSGN commands for the tape 
drives (assigning logical units SYS004 and SYS005). 

Any other assignments and DLBL definitions that are in 
you invoke the AMSERV command are saved and restored when 
completes executing. 

effect when 
the command 

The CMS ready message indicates that access method services has 
completed processin~. If access method services completed with a no~zero 
return code, the return code is shown in the ready message. Examine the 
LISTING file created by AMSERV to determine the results of access method 
services processing. 

Section 2. CMS Commands 23 



AMSERV 

The publication !~~!~!~ ~~§~~§ ~ng Cod~2 lists and explains the 
messages access method services generates and the associated reason 
code s. 

DMSAMS367R ENTER TAPE {INPUT,OUTPUT} DDNAMES: 

This message pcompts you to enter the ddnames associated with the 
tape files. 

DMSAMS7221 FILE 'fn2 LISTING fm' WILL HOLD AMSERV OUTPUT 

This message is displayed when you enter a fn2 operand or when the 
listing is not being written on your A-disk; it tells you the file 
identifier of the output listing. 

DMSAMS001E NO FILENAME SPECIFIED RC=24 
DMSAMS002E FILE 'fn1 AMSERV' NOT FOUND RC=28 
DMSAMS003E INVALID OPTION 'option' RC=24 
DMSAMS006E NO READ/WRITE DISK ACCESSED FOR 'fn2 LISTING' RC=36 
DMSAMS007E FILE 'fn1 AMSERV fm' NOT FIXED, 80-CHAR. RECORDS RC=32 
DMSAMS065E 'option' OPTION SPECIFIED TWICE RC=24 
DMSAMS066E 'option' AND 'option' ARE CONFLICTING OPTIONS RC=24 
DMSAMS070E INVALID PARAMETER 'parameter' RC=24 
DMSAMS109S VIRTUAL STORAGE CAPACITY EXCEEDED RC=104 
DMSAMS113E {TAPIN, TAPOUT} (addr) NOT ATTACHED RC=100 
DMSAMS136S UNABLE TO LOAD 'IDCAMS' RC=104 
DMSAMS228E NO DDNAME ENTERED RC=24 
DMSSTT062E INVALID CHARACTER 'char' IN FILEID {'fn1 AMSERV','fn2 

LISTING'} RC=20 

24 IBM VM/SP CMS Command and Macro Reference 



ASSEMBLE' 

ASSEMBLE 

Use the ASSEMBLE command to invoke the assembler to assemble a file 
containing source statements. Assembler processing and output is 
controlled by the options selected. The format of the ASSEMBLE command 
is: 

r-----
Assemble 

fn 

fn 
----------------, 

( (cption s ••• () )] 

r , 
IAl!Q~IC I 
INOALOGICI 
L .J 

r , 

1~!'§1 I 
INOLISTI 
L .J 

r , 
1].§J2 I 
INOESDI 
L .J 

r , 
,MCALL I 
I!!Q~£A1l!' 
L .J 

f' re 
,FLAG (nnn) , 
,FLAG (Q) I 
l .J 

r , 
I MLOGIC I 
I!Q!'1l!°G!~' 
l .J 

r , r , 
, X REF (F UL L ) , 
'!!!~l <'~HQ RT) t 

,PRINT I 
,NOPRINTI 

I NOXREF , IQ!'~1S , 
L .J l J 

r , 
'DECK , 
I H,Q.QEC!i I 
L .J 

r , 

I !!!H!BE!U 
,NONUM I 
L .J 

r , 

IQJ1~~~~ I 
tNOOBJECTt 
L .J 

r , 
I ST!11 I 
INOSTMT, 
L .J 

r , 
ITEST I 
,!!OTES!, 
l .J 

r , 

'1:§!U1!NAb I 
INOTERM , 
L .J 

r , 
I LINECOUN (nn) I 
'l!!~~£Q!!! (~~) I 
L .J 

r , 
IEb!! , 
INORLDI 
l .J 

r , 
ILIBMAC , 
11!Q1!]!'1!£I 
L .J 

r , r , r , 
1!l!!GN I 
INOALIGN, 
L .J 

r , 
IYFLAG I 
I!QYFl!AGI 
L J 

I BUFSIZE (MIN) I 
IJ1Yl'§!~~ (.§TD) I 
L .J 

I RENT , 
'liQ~~li~I 
L .J 

r ,. 
,SYSPARM (string)' 
,SYSPARM 0 , 
,SYSPARM (1) I 
L .J 

is the filename of the source file to be assembled and/or the 
filename of assembler output files. ~he file must have 
fixed-length, 80-character records. By default, the assembler 
expects a CMS file with a filetype of ASSEMBLE. 

Section 2. CMS Commands 25 



ASSEMBLE 

1i§!j]g ~Q~!~~!Q]ti£n~: The 
options you can use to control 
values are underscored. 

list below describes the 
the assembler listing. 

assembler 
The default 

!1Q~!~ 

NOALOGIC 

~2.!2 

NOESD 

FLAG (nnn) 
f1!~ JQl 

lists conditional assembly statements in open code. 

suppresses the ALOGIC option. 

lists the external symbol dictionary (ESD). 

suppresses the printing of the ESD listing. 

does not include diagnostic messages and MNOTE 
messages below severity code nnn ~n the listing. 
Diagnostic messages can have severity codes of 4, 8, 
12, 16, or 20 (20 is the most severe); and MNOTE 
message severity codes can be between 0 and 255. For 
example, FLAG (8) suppresses diagnostic messages with a 
severity code of 4 and MNOTE messages with severity­
codes of 0 through 7. 

LINECOUN (nn) nn specifies the number of lines to be listed per 
11~~~Q~li J2~1 page. 

NOLIST 

MCALL 

liQ~~!LL 

MLOGIC 

]Q~1Q~!£ 

.H1.!2 

NORLD 

LIBMAC 

produces an assembler listing. Any previous listing is 
erased. 

does not produce an assembler listing. However, any 
orevious listing is still erased. This option overrides 
ESD, RLD, and XREF. 

lists the inner macro instructions encountered during 
macro generation following their respective outer macro 
instructions. The assembler assigns statement numbers 
to these instructions. The MCALL option is implied by 
the MLOGIC option; NOMCALL has no effect if MLOGIC is 
specified. 

suppresses the MCALL option. 

lists all statements of a macro definition processed 
during macro generation after the macro instruction. 
The assembler assigns statement numbers to them. 

suppresses the MLOGIC option. 

produces the relocation dictionary (RLD) as part of the 
listing,. 

does not print the relocation directory. 

lists the macro definitions read from the macro 
libraries and any assembler statements following the 
logical END statement. The logical END statement is 
the first END statement processed during macro 
generation,. It may appear in a macro or in open code; 
it may even be created by substitution. The assembler 
assigns statement numbers to the statements that follow 
the logical END statement. 

suppresses the LIBMAC option. 

26 IBM VM/SP CMS Command and Macro Reference 



ASS!MBLE 

XR!F (FULL) includes in the assembler listinq a cross-reference 
table of all symbols used in the assembly. This 
inc ludes symbols that are defined but never referenced, .. 
The assembler listing also contains a cross-reference 
table of literals used in the assembly. 

!~~f (~nQRT) includes in the assembler listing a cross-reference 
table of all symbols that are referenced in the 
assembly. Any symbols defined but not referenced are 
not included in the table. The assembler listing 
contains a cross-reference table of literals used in 
the assembly. 

NOXREF does not print the cross-reference tables .. 

PRINT writes the LISTING file to the printer. 
PE 

NOPRINT suppresses the printing of the LISTING file. 
NOPE 

Ql~~ places the LISTING file on a virtual disk. 
DI 

Q~1E~! £QTI1!£! Q~ti2n§: The output control options are used to 
control the object module output of the assembler. 

DECK 

NOOEJECT 
NOOBJ 

TEST 

writes the object module on the device specified on the 
FILEDEF statement for PUNCH. If this option is 
specified with the OBJECT cption, the object module is 
written both on the PUNCH and TEXT files. 

suppresses the DECK option. 

writes the object module on the device, which is 
specified by the FILEDEF statement for TEXT, and erases 
any previous object modules. If this option is 
specified with the DECK option, the object module is 
written on the two devices specified in the FILEDEF 
statement for TEXT and PUNCH. 

does not create the object module. However, any previous 
object module is still erased. 

includes the special source symbol table (SYM cards) in 
the object module,. This option should not be used for 
programs to be run under CMS because the SYM cards are 
not acceptable to the CMS LOAD and INCLUDE commands. 

Does not produce SYM cards. 

~!~I~EM QEtiQ~§: The SYSTERM options are used to control the SYSTERM 
file associated with your assembly. 

NONUM 

writes the line number field (columns 73-80 of the 
input records) in the SYSTERM listing for statements 
for which diagnostic information is given. This option 
is valid only if TERMINAL is specified. 

suppresses the NUMBER option. 

writes the statement number assigned by the assembler 
in the SYSTERM listing for statements for which 

Section 2. CMS Commands 27 



ASSEMBLE 

NOSTMT 

NOTERM 

diagnostic information is given. This option is valid 
only if TERKINAL is specified. 

suppresses the STMT option. 

writes the diagnostic information on the 
SYSTERM data set. The diagnostic information consists 
of the diagnosed statement followed by the error 
message issued. 

suppresses the TERMINAL option. 

other !§§§,!!!.QJ~I Q.l2J;io!!§: The following options all'ow you to specify 
~~ri~us functions and values for the assembler. 

!1!~H! aligns all data on the proper boundary in the 
!1.21! object module; for exa mple, an F-t ype constant is 

aliqned on a fullword boundary. In addition, the 
assembler checks storage addresses used in machine 
instructions for alignment violations. 

NOALIGN does not aliqn data areas other than those 
NOALGN specified in CCW instructions. The assembler does not 

skip bytes to align constants on proper boundaries. 
Alignment violations in machine instructions are not 
diagnosed. 

BUFSIZE (MIN) uses the minimum buffer sizes (790 bytes) for each of 
the utility data sets (SYSUT1, SYSUT2, and SYSUT3). 
Storage normally used for buffers is allocated to work 
space. Because more work space is available, more 
complex programs can be assembled in a given virtual 
storage size; but the speed of the assembly is 
substantially reduced. 

~~R~lZE J~l~l chooses the buffer size that gives optimum 
The buffer size depends on the amount 
storage. Of the assembler working storage 
minimum requirements, 37~ is allocated to 
data set buffers and the rest to macro 
dic t ionarie s. 

performance. 
of virtual 

in excess of 
the utility 
generation 

RENT 

YFLAG 

SYSl?ABM 

checks your program for a possible violation of program 
reenterability. Code that makes your program 
nonreenterable is identified by an error message. 

suppresses the RENT option. 

does not suppress the warning messages that indicate 
that relocatable Y-type address constants have been 
dec lared. 

suppresses the warning messages that indicate 
relocatable Y-type constants have been declared. 

{ 
~~tring)} 
(1 ) 

passes a character value to the system variable symbol, 
SYSPARM. The variable (string) cannot be greater tha\{l 
eiqht characters. If you want to enter a string of 
more than eight characters, use the SYSPARM (1) format. 
With the SYSPARM (1) format, CMS prompts you with the 
message: 

28 IBM VM/SP CMS Command and Macro Reference 



ASSEMBLE 

ENTER SYSPAR M: 

You can enter up to 100 characters. You can also enter 
parentheses and embedded blanks from the terminal. 
SYSPARM () enters a null string of characters. 

1. When you issue the ASSEMBLE command, default FILEDEF commands are 
issued for assembler data sets. You may want to override these 
with explicit FILEDEF commands. The ddnames used by the assembler 
are: 

ASSEMBLE 
TEXT 
LISTING 
PUNCH 
CMSLIB 
SYSUT 1 
SYSUT2 
SYSUT3 

(SYSIN input to the assembler) 
(SYSLIN output of the assembler) 
(SYSPRINT output of the assembler) 
(SYSPUNCH output of the assembler) 
(SYSLIB input to the assembler) 
(workfile of the assembler) 
(w orkfile of the assemble r) 
(w orkfile of the assembler) 

The default FILEDEF commands issued by the assembler for these 
ddnames are: 

FILEDEF ASSEMBLE DISK fn ASSEMBLE fm (RECFM FB LRECL 80 BLOCK 800 
FILEDEF TEXT DISK fn TEXT fm 
FILEDEF LISTING DISK fn LISTING fm (RECFM FBA BLOCK 1210 
FILEDEF PUNCH PUNCH 
FILEDEF CMSLIB DISK CMSLIB MACLIB * (RECFM FB LRECL 80 BLOCK 800 
FILEDEF SYSUT1 DISK fn SYSUT1 fmij (BLOCK 7294 AUXPROC asmproc 
FILEDEF SYSUT2 DISK fn SYSUT2 fmij (BLOCK 7294 AUXPROC asmproc 
FILEDEF SYSUT3 DISK fn SYSUT3 fm4 (BLOCK 7294 AUXPROC asmproc 

At the completion of the ASSEMBLE command, all FILEDEFs that do not 
have the PERM opticn are erased. 

2. If you want to use any CMS macro cr copy libraries during an 
assembly, issue the GLOBAL command to identify the macro libraries 
before you issue the ASSEMBLE command. For example: 

global mac lib dmssp cmslib osmacro testlib 

identifies the MACLIB files named CMSLIB, DMSSP, OSMACRO, and 
TESTLIB. 

3. To use OS macro libraries during an assembly, issue the FILEDEF 
command for the OS data set. Use a ddname of CMSLIB and assign a 
CMS file identifier; the filetype must be MACLIB, and you must use 
the filename on the GLOBAL command line. For example: 

filedef cmslib disk oldtest maclib c dsn old test macros 
global maclib oldtest 

assigns the OS data set OLDTEST.MACROS, on the disk accessed as 
mode C, a CMS fileid of OLDTEST MAC LIB and identifies it as the 
macro library to be used during assembly. 

4. You cannot assemble programs using DOS macros from the DOS/VS 
source statement libraries under CMS/DOS. You should use the 
SSERV, ESERV, and MACLIB commands to create CMS MACLIBs to contain 
DOS macros for assembly under CMS/DOS. See the !~L~f £~§ y§~~§ 
Q~ide for examples. 

Section 2. CMS Commands 29 



ASS EMBLE 

5. You need not make any logical assignments for input or output files 
when you use the assembler under CMS/DOS. File definitions are 
assigned by default under CMS, as described in Usage Note 1. 

6. Usage information about the VM/SP Assembler Language and assembler 
options can be found in Q2L!~ ~ng !~IQ !§semQlg~ ~~Qg~~~~~§ 
gYig~ and Q~L!~, QOSL!2, ~g VML37Q !§§~mQlg~ LangY£gg· 

For the messages and return codes associated with the ASSEMBLE command, 
see the Q~L!~ ~ng !~Ll1Q !§§§m~!~! prQg~~~g~§ Qy!de. 

30 IBM VM/SP CMS Command and Macro Reference 



ASSGN 

ASSGN 

Use the ASSGN command in CMS/DOS to assign or unassign a system or 
programmer logical unit for a virtual I/O device. The format of the 
ASSGN command is: 

r 
ASSGN SYSxxx Reader [ (opticns ••• () ]] 

PUnch 
PR inter 
Terminal 2£112n§: 

r , 
TAP I nl 

111 
L .J 

mode 
IGN 
UA 

.. , 
IQR£!~~ I 
ILOWCASEI 
L .J 

r ., 
17TRACK I 
19TEACKI 
L .J 

(TR!CH a] 

(DEN den] 

L-________________________________________________________ _ 

SYSxxx 

READER 

specifies the system or programmer logical unit to be assigned 
to a particular physical device. SYSOOO through SYS241 are 
valid programmer logical units in CMS/DOS; they may be 
assigned to any valid device. The system logical units you 
may assign, and the devices to which they may be assigned, 
are: 

~x~~~~ 
SYSRDR 
SYSIPT 
SYSIN 
SYSPCH 
SYSLST 
SYSLOG 
SYSOUT 
SYSSLB 
SYSBLB 
SYSCLB 
SYSCAT 

yalig g§§~gnm~n!§ 
Beader,disk,tape 
Beader,disk,tape 
Reader,disk,tape 
Punch,disk,tape 
Printer,disk,tape 
Terminal,printer 
Tape 
Disk 
Disk 
Disk 
Disk 

The assignment of a system logical unit to a particular device 
type must be consistent with the device type definition for 
the file in your program. 

is the spooled card reader (card reader I/O must not be 
blocked) • 

PUNCH is the spooled punch. 

PRINTER is the spooled printer. 

TERMINAL is your terminal (terminal I/O must not be blocked). 

TAP(~] is a magnetic ta~e. n is the symbolic number of the tape 
drive. It is either 1, 2, 3, or 4, representing virtual 
addresses 181, 182, 183, a'nd 184, respectively. If n is 
omitted, TAP1 is assumed. 

mode specifies 
assigned 

the one-character mode letter 
to the logical unit (SYSxxx). 

of the disk being 
The disk must be 

Section 2. CMS Commands 31 



ASSGN 

IGN 

UA 

accessed when the ASSGN command is issued. SYSRDR, SYSIPT, 
and SYSIN cannot be assigned to a DOS-formatted FB-512 disk. 

(ignore) specifies that any attempt to read from the specified 
device results in an end-of-file indication; any attempt to 
write to the device is ignored. IGN is not valid when 
associated with SYSRDR, SYSIPT, SYSIN, or SYSCLB. 

indicates that the logical unit is to be unassigned. When you 
release a disk for which an assignment is active, it is 
automatically unassigned. 

[f~!~j translates all terminal input data to uppercase. 

LOWCASE 
retains all terminal input data as keyed in. 

7TRACK is the tape setting. 
9TRACK 

TRTCH a 

DEN den 

refers to the tape recording technique for 7-track tapes. Use 
the following chart to determine the value of a. 

r0-

t a Parity Converter Translator , , 0 odd off off 
t OC odd on off 
I OT odd off on , E even off off , ET even off on 
L- --J 

is tape density: den can be 200, 556, 800, 1600, or 6250 bits 
per inch (bpi). If 200 or 556 are specified, 7TRACK is 
assumed. If 800, 1600, or 6250 are specified, 9TRACK is 
assumed. (See Usage Note 8.) 

1. When you enter the CMS/DOS environment with the command SET DOS ON, 
SYSLOG is assigned by default to TERMINAL. If you specify the mode 
letter of the VSE system residence on the SET DOS ON command line, 
SYSRES is assigned to that disk mode. 

2. You cannot assign any of the following VSE system logical units 
with the ASSGN command: 

SYSRES 
SYSCTL 

S YSLNK 
SYSREC 

SYSDMP 

3. If you assign the logical unit SYSIN to a virtual device, SYSRDR 
and SYSIPT are also assigned to that device. If you make a logical 
assignment for SYSOUT, both SYSLST and SYSPCH are assigned. 

4. To obtain a list of current assignments, use the LISTIO command. 

32 IBM VM/SP CMS Command and Macro Reference 



ASSGN 

5. To cancel all current assignments (that is, to unassign them), you 
can enter, in succession, the commands: 

set dos off 
set dos on [mode] 

6. If you want to access VSE private libraries, you must assign the 
logical units SYSSLB (source statement library) , SYSRLB 
(relocatable library), and SYSCLB (core image library), and you 
must issue the DLBL command to establish a file definition. 

7. An assignment to disk (mode) should be accompanied by a DLBL 
command that provides the disk file identification. 

You cannot make an assignment to a 3380 disk in native mode. 

8. If no tape options are specified on the command line, the default 
for a 7-track tape is 800 bpi, data converter off, translator off 
and odd parity. If the tape is 9-track, the density defaults to 
the density of the tape drive. 1600 bpi is the reset condition for 
9-track dual-density tapes. If the tape drive is phase-encoded, 
density defaults to the density of the tape. If the tape drive is 
NRZI, the reset condition is 800 bpi. 

9. 

None. 

8809 tape drives require the 9TRACK and DEN 1600 
are the default options; it is not necessary 
explicitly. 

DMSASN003E INVALID OPTION 'option' RC=24 
DMSASN027E INVALID DEVICE 'device' RC=24 
DMSASN028E NO LOGICAL UNIT SPECIFIED RC=24 

options. 
to state 

DMSASN029E INVALID PARAMETER 'parameter' IN THE OPTION 'option' 
FIELD R:=24 

DMSASN035E INVALID TAPE MODE RC=24 
DMSASN050E PARAMETER MISSING AFTER SYSxxx RC=24 
DMSASN065E 'option' OPTION SPECIFIED TWICE RC=24 
DMSASN066E 'option' AND 'option' ARE CONFLICTING OPTIONS RC=24 
DMSASN069E DISK 'mode' NOT ACCESSED RC=36 
DMSASN070E INVALID PARAMETER 'parameter' RC=24 
DMSASN087E INVALID ASSIGNMENT of 'SYSxxx' TO DEVICE 'device' RC=24 
DMSASN090E INVALID DEVICE CLASS 'deviceclass' FOR 'device' RC=36 
DMSASN099E CMS/DOS ENVIRONMENT NOT ACTIVE RC=40 

These 
them 

DMSASN113S '{TAPnlmodeIREADERIPUNCHIPRINTER} (cuu) , NOT ATTACHED RC=100 

Section 2. CMS Commands 33 



CMSBATCB 

CMSBATCH 

The system operator uses the CMSBATCH command to invoke the CMS batch 
facility. Instead of compiling or executing a program interactively, 
virtual machine users can transfer jobs to the virtual card reader of an 
active CMS batch virtual machine. This frees their terminals for other 
work. The format of the CMSBATCH command is: 

r----------------------------------------------------------------------, 
, C MSEATCH, (sysname] I L __________________________________________________________________ ~ 

sysnam e is the eight-character identification of the saved system that 
is specifically generated for CMS batch operations via the CP 
SAVESYS command and the NAMESYS macro. Refer to the !~L~f 
~Y§ig~ R!Qg!~~!~~ ~~!g~ for details on SAVESYS and NAMESYS 
use. 

!Qte: If sysname is not supplied on the command line, then the 
system that the system operator is currently logged onto 
becomes the CMS batch virtual machine. 

1. The CMSBATCH command may be invoked immediately after an IPL of the 
CMS system. Alternatively, BATCH ~ay be specified following the 
PAB~ operand on the IPL command line. 

2, Do not issue the CMSBATCH command if you use a virtual disk at 
address 195; the C~S batch virtual machine erases all files on the 
disk at address 195. 

3. For a description of how to send jobs to the CMS batch virtual 
machine, see the !~~f ~~~ Q§~~~§ ~y!de. For an explanation of 
setting up a batch virtual machine, see the !~L~f Q£§~~1Q~~§ ~y!g~. 

4. The CMS batch virtual machine can be utilized by personnel who do 
not have access to a terminal cr a virtual machine. This is 
accomplished by submitting jobs via the real card reader. For 
details on this, see the !~L~g ~~~ y~~~~ ~Yig§. 

5. If the CMSBATCH command encounters recursive abends, the message 
"CMSBATCH system ABEND" appears on the system operator's console. 

DMSBTB100E NO BATCH PROCESSOR AVAILABLE RC=40 
DMSBTB101E BATCH NOT LOADED BC= 88 
DMSBTP105E NO JOB CARD PROVIDED RC=None 
DMSBTP106E JOB CARD FORMAT INVALID RC=None 
DMSBTP107E CP/CMS COMMAND 'command, (device)' NOT ALLOWED RC=88 
DMSBTP108E /SET CARD FORMAT INVALID RC=None 
DMSBTP109E {CPUIPRINTERIPUNCH} LIMIT EXCEEDED RC=None 

34 IBM VM/SP CMS Command and Macro Reference 



COMPARE 

COMPARE 

Use the COMPARE command to compare two CMS disk files of fixed- or 
variable-length format on a record-far-record basis and to display 
dissimilar records at the terminal. The format of the COMPARE command 
is: 

.-------,--
, I .. , 
, COMpare I fi1eid1 fi1eid2 ( (COL mm(- )Inn '() ]] 
I I 1 I!I.§c11 
I I l .J 

L-

fi1eid is the file identifier of a file 
identifiers (filename, fi1etype, 
specified for each fi1eid. 

to be compared. 
and fi1emode) 

All three 
must be 

(COL mm-nn) 
defines specific columns to be compared. The comparison 
begins at position mm of each record. The comparison proceeds 
up to and including column nne The hyphen (-) may be used in 
place of a blank if the total number of characters required 
for mm-nn is not more than eight (maximum parameter field 
size). If column nn is specified, the hyphen may not follow 
or precede a blank. If column nn is not specified, the 
default ending position is the last character of each record 
(the logical record length). 

1. To find out whether two files are identical, enter both file 
identifications, as follows: 

compare test1 assemble a test1 assemble b 

Any records that do not match are displayed at the terminal. 

2. To stop the display of dissimilar records, use the CMS Immediate 
ccmmand HT. 

3. If a file does not exist on a specified disk, that disk's read-only 
extensions are also searched. The complete fileids of the files 
being compared are displayed in message DMSCMP179I. 

DMSCMP1791 COMPARING 'fn ft fm' iITH 'fn ft fm' 

This message idantifies the files being compared. If the files are 
the same (in the columns indicated), this messaqe is followed by 
the CMS ready message. If any records do not match, the records 
are displayed. When all dissimilar records have been displayed the 
message DMSCMP209W is issued. 

Section 2. CMS Commands 35 



COMPARE 

DMSCMP002E FILE 'fn ft fm' NOT FOUND RC=28 
DMSCMP003E INVALID OPTION 'option' RC=24 
DMSCMP005E NO COLUMN SPECIFIED RC=24 
DMSCMP009E COLUMN 'col' EXCEEDS RECORD LENGTH RC=24 
D~SCMP010E PREMATURE EOF ON FILE 'fn ft fm' RC=40 
DMSCMP011E CONFLICTING FILE FORMATS RC=32 
DMSCMP019E IDENTICAL FILEIDS RC=24 
DMSCMP029E INVALID PARAMETER 'parameter' IN THE OPTION 'COL' FIELD 

BC=24 
DMSCMP054E INCOMPLETE FILEID SPECIFIED RC=24 
DMSCMP062E INVALID * IN FILEID RC=20 
DMSCMP104S ERROR 'nn' READING FILE 'fn ft fm' FROM DISK RC=100 
DMSC~P209W FILES DO NOT COMPARE RC=4 
DMSCMP211E COLUMN FIELDS OUT OF SEQUENCE RC=24 

36 IBM VM/SP CMS Command and Macro Reference 



CONWAIT 

CONWAIT 

Use the CONiAIT ccmmand to cause a proqram to wait until all pending 
terminal I/O is complete. The format of the CONWAIT command is: 

r----------------------------------------------------------------------, 
I CONWAIT II L ______________________________________________________________ -------~ 

The CONWAIT command synchronizes input and output to the terminal; it 
ensures that the output console stack is cleared before the program 
continuEs execution. Also, you can ensure that a read or write 
operation is finished before you modify an I/O buffer. 

Section 2. CMS Commands 37 



COPYFILE 

COPYFILE 

Use the COPYFILE command to copy and/or modify CMS disk files. The 
manner in which the file identifiers are entered determines whether or 
not one or more output files are created. The format of the COPYFILE 
command is: 

r-----
, COpy file 
I 
I , , , , 
I 
I , 
I , , , 
I , 
I 
I 
I , 
L--

fileidi1 

fileidi2 

fileido 

fiieidi 1 r fileidi2 ••• ] (fileido] ( (options ••• () ]] 

f12!io1!§: 
... ., 
,Type f 
I!QII12§1 

... , 
H!EW~,gte I 
IOLDDatel 

r , 
'1!~ll!.!~1 
,REPlacel 

r , 

IfSQl!!12£ I 
I NOPRompt I 

L .J '- .J L .J L ..J 

r , 
,PRom recno f 
IFRLabel xxxxxxxx, 
L 

r ., 
IOVly , 
,APpend, 
L .I 

r ,. 

,PAck f 
,UNPackt 
L ..J 

(SIngle] 

.J 

... 
I RECfm 
I 
L 

r .. 
IFIll c t 
IPIll hhl 
IFIll ~QI 
L ..J 

r , 
tFOR numrec I 
ITOLabel xxxxxxxxi 
L .J 

[LRecl nnnnn] 

r , 
,SPecs I 
11!Q~g~£§1 
L .J 

r , 
,TRUnc I 
I.HQ1R!!1!£f 
L .I 

[EBcdic] 
f , 

IUPcase t 
ILOwcasel 
L .I 

(TRAns] 

------------------------------' 

is the first (or only) input file. Each file identifier 
(filename, filetype, and filemode) must be specified either 
by indicating the sFecific identifier or by coding an 
as terisk. 

is one or more additional iDput files. Each file identifier 
(filename, filetype, and filemode) must be specified. In 
single output mode, any of the three input file identifiers 
may be specified either by indicating the specific 
identifier or by coding an asterisk. However, all three 
file identifiers of fileidi2 cannot be specified by 
asterisks. In multiple output mode, an asterisk (*) is an 
invalid file identifier. 4n equal sign (=) may be coded for 
any of th8 file identifiers, indicating that it is the same 
as the corresponding identifier in fileidi 1. 

is the output file(s) to be created. Each file identifier 
(filename, fi1etY1?e, and filemode) must be specified.. To 
create multiple output files, an equal sign (=) must be 
coded in cne or more of the identifier fields. If there is 
only one input file, fileido may be omitted, in which case 
it defaults to = = = (the input file represented by fileidi1 
is replaced). 

The COPYFILE command options are 
notes and examples, see "Using the 
option descriptions. 

listed below, briefly. For usaqe 
COPYFILE Command" following the 

38 IBM V~/SP CMS Command and Macro Reference 



TYPE 

OLDDATE 

REPLACE 

N01?ROMPT 

COPYFILE 

displays, at the terminal, the names of the files beinq 
copied. 

su~presses the dis~lay of the names of the files being 
copied. 

uses the current date as the creation date of the new 
file(s). 

uses the date on the (first) input file as the creation 
date of the new file(s). 

checks that files with the same fileid as the output file 
de not already exist. If cne or more output files do 
exist, an error message is displayed and the COPYFILE 
command terminates. This option is the default so that 
existing files are not inadvertently destroyed. 

causes the output file to replace an existing file with 
the same file identifier. REPLACE is the default option 
when only one fileid is entered or when the output fileid 
is specified as "= = =." 

displays the messages that request specification or 
translation lists. 

suppresses the display of prompting messages 
specification and translation lists. 

for 

FROM recno is the startinq record number for each input file in the 
copy operation. 

F R LAB EL x x x x x x x x 
xxxxxxxx is a character string that appears at the 
beginning of the first record to be copied from each 
input file. Up to eight nonblank characters may be 
specified. 

FOR numrec is the number of records to be copied from each input 
file. 

TOIABEL xxxxxxxx 

SPECS 

OVLY 

xxxxxxxx is a character string which, if at the beginning 
of a record, stops the copy operation for that input 
file. The record containing the given character is not 
copied. Up to eight nonblank characters may be specified. 

indicates that you are going to enter a specification 
list to define hew records should be copied. See 
"Entering a COPYFILE Specification List" for information 
en how you can define output records in a specification 
list. 

indicates that no specification list is to be entered. 

overlays the data in an existing output file with data 
from the input file. You can use OVLY with the SPECS 
option to overlay data in particular columns. 

Section 2. eMS Commands 39 



COPYFILE 

APPEND appends the data trom the input file at the end of the 
output file. 

Qs!g ~Qgifl£s1io] QE1i2n~: The following options can be used to 
change the record format of a file. See "Modifying Record Formats" 
for more details. 

RECFM { ~ } is the record format 
specified, the output 
of the input file. 

of the output files. If not 
record format is the same as that 

LRECL nnnnn is the logical record length of the output file(s) if it 
is to be different from that of the input file(s). The 
maximum value of nnnnn is 65535. 

TRUNC 

PACK 

UNPACK 

FILL c 
FILL hh 
.El11 ~Q 

EBCDIC 

U PCASE 

LOWCASE 

TRANS 

removes trailing blanks (or fill characters) when 
converting fixed-length files to variable-length format. 

suppresses the removal of trailinq blanks (or fill 
characters) when converting fixed-length files to 
variable-length format. 

compresses records in a file so that they can be stored 
in packed format. 

~gytiQ]: A file in packed format should not be modified 
in any way. If such a file is modified, the UNPACK 
routines are unable to reconstruct the original file. 

reverses the PACK operation. If a file is inadvertently 
packed twice, you can restore the file to its original 
unpacked form by issuing the COPYFILE command twice. 

is the padding and truncation character for the TRUNC 
cption or the principal packing character for the PACK 
cption. The fill character may be specified as a single 
character, c, or by entering a two-digit hexadecimal 
representation of a character. The default is 40 (the 
hexadecimal representaticn for a blank in EBCDIC) a 

converts a file that was created with 026 
characters (BCD), to 029 keypunch characters 
The following conversions are made: 

{ to 
& to + 
% to 
# to = 
Q) to ' 
, to 

keypunch 
(EECDIC) • 

converts all lowercase characters in each record to 
uppercase before writing the record to the output file. 

converts all uppercase characters in each record to 
lcwercase before writing the record to the output file. 

indicates that you are going to enter a list of character 
translations to be made as the file is copied. See 
"Entering Translation Specifications" for details on 
entering a list of characters to be translated. 

40 IBM VM/SP CMS Command and Macro Reference 



SINGLE 

COPYFILE 

suppresses multiple output mode regardless of how the 
file identifiers are specified. 

Figure 5 shows ccmbinations of options that should not be specified 
together in the same COPYFILE ccmmand. If the option- in the first 
column is specified, do not code any of the options in the second 
colu mn. 

r 
Option 

APPEND 

EBCDIC 
FOR 
FRLABEL 
FROM 
LOWCASE 
LRECL 
NEWDATE 
NEWFILE 
NO PROMPT 
NO SPECS 
NOTRUNC 
NOTYPE 
OLDDATE 
OVLY 
PACK 

PR OMPT 
RECFM 
REPLACE 
SPECS 
TOLABEL 
TRANS 
TRUNC 
TYPE 
UN PACK 

UPCASE 

Figure 5. 

Inccmpatible Options 

LRECL, NEWDATE, NEWFILE, OIDDATE, OVLY, PACK, RECFM, 
REPLACE, UNPACK 

PACK, UNPACK 
PACK, TOLABEL, UNPACK 
FROM, PACK, UNPACK 
FRLABEL, PACK, UNPACK 
PACK, UNPACK 
APPEND, PACK, UNPACK 
APPEND, OLDDATE 
APPEND, OVLY~ REPLACE 
PROMPT 
SPECS 
TRUNC 
TYPE 
APPEND, NEWDATE 
APPEND, NEWFILE, PACK, REPLACE, UNPACK 
APPEND, EBCDIC, FOR, FRLABEL, FROM, LOWCASE, LRECL, 

OVLY, RECFM, SPECS, TOIABEL, TRANS, TRUNC, UNPACK, 
UPCASE 

NOPROMPT 
APPEND, PACK, UNPACK 
APPEND, NEWFILE, OVLY 
NOSPECS, PACK, UNPACK 
FOR, PACK, UNPACK 
PACK, UNPACK 
NOTRUNC, PACK, UNPACK 
NOTYPE 
APPEND, EBCDIC, FOR, FRLABEL, FROM, LOWCASE, LRECl, 

OVLY, PACK, RECFM, SPECS, TOIABIL, TRANS, TRUNC, 
UPCASE 

PACK, UNPACK _______________________________ -J 

COPYFILE Option Incompatibilities 

USING THE COPYFILE COMMAND 

Two simple uses of the COPYFILE command are: (1) to copy a single CMS 
file from one disk tc another, or (2) to make a duplicate copy of the 
file on the same disk. For example: 

copyfile test1 assemble a test2 assemble a 

makes a copy of the file TEST1 ASSEMBLE A and names it TEST2 ASSEMBLE A. 

Section 2. CMS Commands 41 



COpy FILE 

For those portions of the file identifier that you want 
same, you may code an equal sign in the output fileid. 
command line above can be entered: 

copyfile test1 assemble a test2 = = 

to stay the 
~hus, the 

The equal sign may be used as a prefix or suffix of a file 
identifier. For example, the command: 

copyfile abc file= type= = 

creates an output file called FILEA TYPEB C. 

When you copy a file from one 
the old and new file modes, and any 
to make; for example: 

virtual disk to another, you specify 
filename or filetype change you want 

copyfile test3 assemble c good = a 

This cemmand makes a copy of the file TEST3 ASSEMBLE C, and names it 
GOOD ASSEMBLE A. 

If you want to copy only particular records in a file, you can use 
the FRCM/FOR FRLABEL/TOLABEL options. For example: 

copyfile old test a new test a (frlabel start for 41 

copies 41 records from the file OLD TEST A1, beginning with the record 
beginning with the character string START into the file NEW TEST A1. 

You can combine two or more files into a single file with the COPYFILE 
command. For ex?mple: 

copyfile test data1 a test data2 = test data3 b 

copies the files TEST DATA1 and TEST DATA2 from your A-disk and combines 
them into a file, TEST DATA3, on your B-disk. 

Note that if any input file has a file mode number of 3, it is 
possible that the file will be copied in a sequence different from its 
order on the disk. 

If you want to combine two more files without creating a new file: 
use the APPEND option. For example: 

copyfile new list a old list a (append 

appends the file NEW LIST A to the bottom of the existing file labeled 
OLD LIST A. 

Note: If the file NEW LIST A has a different LRECL from the file OLD 
LIST A, the appended data is padded, or truncated, to the LRECL of the 
file OLD LIST A. 

Whenever you cede an asterisk (*) in an input fileid, you may cause 
one or more files to be copied, depending upon the number of files that 
satisfy the remaining conditions. For example: 

copyfile * test a combined test a 

42 IBM VM/SP CMS Command and Macro Reference 



COPYFILE 

copies all files with a filetype of TEST on your A-disk into a single 
file named CO~BINED TEST. If only one file with a filetype of TEST 
exists, only that file is copied. 

If you want to copy all the files en a particular disk to another 
disk, yeu could enter: 

copyfile * * b = = a 

All the files on the B-disk are copied to the A-disk. The filenames and 
filetypes remain unchanged. 

You can also copy a qroup of files and change all the filenames or 
all the filetypes. For example: 

copyfile * assemble b = test a 

copies all ASSEMBLE 
TEST on the A-disk. 

files in the B-disk into files with a 
The filenames are not changed. 

filetype of 

You can use the SINGLE option to override multiple output mode. For 
example: 

copyfile * test a = = B (single 

copies all files on the A-disk with a filetype of TEST to the B-disk as 
one combined file, with the filename and filetype equal to the first 
input file found. 

Whenever an asterisk appears, it indicates that all ~iles are to be 
copied; whenever an equal sign (=) appears, it indicates that the same 
files are to be copied. For example: 

copyfile x * a1 = file = 

combines all files with a filename of X on the A-disk into a single file 
named X FILE A1. 

Whenever an equal sign appears in the output fileid in a position 
corresponding to an asterisk in an input fileid, multiple input files 
producE multiple output files. When you perform copy operations of this 
nature you miqht wish to use the TYPE option, which displays the names 
of files being copied. For example: 

copyfile * test a = output a = summary (type 

might result in the display: 

COPY 'ALPHA TEST A1' TO 'ALPHA SUMMARY A1' (NEW FILE) 
COpy 'ALPHA OUTPUT A' 
COPY 'BETA TEST A1' TO 'BE'IA SUMMARY A1' (NEW FILE) 
COPY 'BETA OUTPUT A.' 

which indicates that files ALPHA TEST A and ALPHA OUTPUT A were copied 
into a file named ALPHA SUMMARY A and that files BETA TEST A and BETA 
OUTPUT A were copied into a file named BETA SUMMARY A. 

Section 2. CMS Commands 43 



COpy FILE 

You can use the RECFM and LRECL options to change the record format of a 
file as you copy it. For example: 

copyfile data file a (recfm f lrecl 130 

converts the file DATA FILE A1 to fixed-lenqth 130-character records. 

If you specify an output fileid, for example: 

copyfile data file a fixdata file a (recfm f lrecl 130 

the original file remains unchanged. The file FIXDATA FILE A contains 
the converted records. 

If the records in a file being copied are variable-length, each 
output record is padded with blanks to the specified record length. If 
any records are longer than the record length, they are truncated. 

When you convert files from fixed-length records to variable-length 
records, you can specify the TRUNC option to ensure that all trailing 
blanks are truncated: 

copyfile data file a (recfm v trunc 

If you specify the LRECL option and RECFM V, the LRECL option is 
ignored and the output record length is taken from the longest record in 
the input file. 

When you convert a file from variable-length to fixed-length records, 
you may also specify a fill character to be used for padding instead of 
a blank. If you specify: 

copyfile short recs a (recfm f fill * 
then each record 
record length. 
vari abl e-len gt h 
existinq record. 
not altered. 

in the file SHORT RECS is padded with asterisks to the 
Assuming that SHORT RECS was originally a 

file, the record length is taken from the longest 
Note that if SHORT RECS is already fixed-length, it is 

Similarly, when you are converting back to variable-length a file 
that was padded with a character other than a blank, you must specify 
the FILL option to indicate the pad character, so that character is 
truncated. 

The FILL option can also be used to specify the packing character 
used with the PACK option. When you use the PACK option, a file is 
compressed as follows: all occurrences of two or "more blanks are 
encoded as one character, and four or more occurrences of any other 
character are written as three characters. If you use the FILL option 
to specify a fill character, then that character is treated as a blank 
when records are compressed. You must, of course, specify the FILL 
option to unpack any files packed in this way. Since most fixed-length 
files are blank-padded to the record length, you do not need to specify 
the FILL option unless you know that some other character appears more 
frequently. 

A file which is packed on an 800 byte blocksize disk will be fixed 
format file with a logical record length of 800. On a 1K, 2K, or 4K 
blocksize disk, the file will be fixed format with a logical record 
lenqth of 1024. A packed file of either logical record length can be 
unpacked back to its original speCifications regardless of the disk 
blocksize it resides on. A packed file with logical record length 800 

44 IBM VM/SP CMS Command and Macro Reference 



COPYFILE 

on a disk with blocksize 1K, 2K, or 4K, and packed files with logical 
record length 1024 on 800 byte disks should be unpacked and re-packed if 
minimal disk block usage is needed. 

When you convert record formats on packed files with the COPYFILE 
command you can specify single or multiple output files, in accordance 
with the procedures outlined under "Modifying Record Formats." For 
example: 

copyfile * assemble a (pack 

compresses all ASSEMBLE files in the A-disk without changing any file 
identifiers. The command: 

copyfile * assemble a = script = (Iecfm trunc 

converts all ASSEMBLE files to variable-length, and changes their 
filetypes to SCRIPT. 

when you use the COPYFILE command, you can specify particular columns of 
data to be manipulated or particular characters to be translated. 
Again, hew you specify the file identifier determines how many files are 
copied er modified. 

When you use the SPECS oFtion on tbe COPYFILE command, you receive 
the message: 

DMSCPY601R ENTER SPECIFICATION LIST: 

CP waits for you to enter a specification list. If you do not wish to 
receive this message, use the NOPROMPT option. The specification list 
you enter may consist of one or more pairs of operands in the following 
format: 

{
nn-mm } 
/strinq/ 
hxx ••• 

col 

nn-mm specifies the start and end columns of the input file that are to 
be copied to the output file. If mm exceeds the length of the 
input record, the end of the record is the assumed ending 
position. 

string is any string of uppercase and lowercase characters or numbers 
delimited by any non-alphameric character. 

hxx ••• is an even number of hexadecimal digits prefixed with an h. 

col is the column in the output file at which the copy operation is 
te begin. 

You can enter as many as 20 pairs of specifications. If you want to 
enter more than one line of specifications, enter two plus signs (++) at 
the end of one input line as continuation indicators. 

Section 2. CMS Commands 45 



COPYFILE 

A specification list may contain any combination of specification 
pairs; for example: 

copyfile sorted list a (specs 
DMSCPY601R ENTER SPECIFICATION LIST: 
III 1 1-8 3 III 12 1***1 14 ++ 
9- 80 18 

After this command is executed, each record in the file SORTED LIST 
will look like the following: 

, 00000000 , *** 0000 •••• 

where the o's in cclumns 3 through 10 indicate information originally in 
columns 1 through 8; the o's following the asterisks indicate the 
remainder of each record, column~ 9 through 80. 

When you enter a specification list, you are actually constructing a 
file column by column~ If you specify multiple input or output files, 
the same copy operation is performed for each record in each output 
file. 

Those columns for which you do not specify any data are filled with 
blanks or, if you use the FILL option, the fill character of your 
choice. For example: 

copyfile sorted list a (specs noprompt lrecl 20 fill $ 
1-15 6 

copies columns 1 through 15 beginning in column 6 and writes dollar 
signs($)in columns 1 through 5. 

If you do want to modify data in particular columns of a file but 
want to leave all of the rest of each record unchanged, you can use the 
OVLY (overlay) option. For example, the sequence: 

COPYFILE * bracket a (specs ovly ncprompt 
had 1 hbd 80 

overlays the characters [ (X'AD') and J (X'BD') in columns 1 and 80 of 
all the files with a filetype of BRACKET on your A-disk. 

When you copy fixed-length files, records 
the record length; variable-length files 
specified. 

are padded or truncated to 
are always written as 

You can perform conversion on particular characters in CMS files or 
groups of files with the TRANS option of the COPYFILE command. 

When you enter the TRANS cption, you receive the message: 

DMSCPY602R ENTER TRANSLATION LIST: 

and a read is presented to your virtual machine. You may enter the 
translation list. If you do not wish to receive this message, use the 
NOPROMPT option. 

46 IBM VM/SP CMS Command and Macro Reference 



COPYFILE 

A translation list consists of one or more pairs of characters or hex 
digits, each pair representing the character you want to translate and 
the character you want to translate it to, respectively. For example: 

copy test file a (trans 
DMSCPY602R ENTER TRANSLATION LIST: 
* - A fO 00 ff 

specifies that all occurrences of the character * are to be translated 
to -, all character A's are to be translated to X'FO' and all X'OO's are 
to be translated to X'FF's. 

If any translation specifications you enter conflict with the 
LOWCASE, EBCDIC, or UPCASE options specified on the same command line, 
the translation list takes precedence. In the preceding example, if 
LOWCASE had also been specified, all A's would be translated to X'FO's, 
not to a's. 

You can enter translation pairs on more than one line if you enter a 
++ as a continuation indicator. 

DMSCPY601R ENTER SPECIFICATION LIST: 

This message prompts you to enter a specification list when you use 
the SPECS option. 

DMSCPY602R ENTER TRANSLATION LIST: 

This message prompts you to enter a translation list when you use 
the TRANS option. 

DMSCPY721I COPY 'fn ft fm' (TO IAPPENDI OVLY] 'fn ft fm' (OLDINE~] FILE 

This message appears for each file copied with the TYPE option. It 
indicates the names of the input file and output file. ~hen you 
have multiple input files, the output fileid is displayed only 
onCE. 

DMSCPY002E 
DMSCPY003E 
DMSCPY024E 
DMSCPY029E 

DMSCPY030E 
DMSCPY037E 
DMSCPY042E 
DMSCPY048E 
DMSCPY054E 
DMSCPY062E 
DMSC~Y063E 

DMSCPY064E 

DMSCPY065E 
DMSCPY066E 
DMSCPY067E 

DMSCPY068E 
DMSCPY069E 
DMSCPY101S 

{INPUT,OVERLAY1 FILE 'fn ft fm' NCT FOUND RC=28 
INVALID OPTION 'option' RC=24 
FILE 'fn ft fm' ALREADY EXIS1S SPECIFY 'REPLACE' RC=28 
INVALID PARAMETER 'parameter' IN THE OPTIO~ 'option' FIELD 
RC=24 
FILE 'fn ft fm' ALREADY ACTIVE RC=28 
DISK 'mode' IS READ/ONLY RC=36 
NO FILFID (S) SPECIFIED RC=24 
INVALID MODE 'mode' RC=24 
INCOMPLETE FILEID 'fn [ft'] SPECIFIED RC=24 
INVALID CHAR '[=I*lchar]' IN FILEID '(fn ft fm]' RC=20 
NO {lRANSLATION,SPECIFICATIONJ LIST ENTERED RC=40 
INVALID (TRANSLATE] SPECIFICATION AT OR NEAR 
RC=24 
'option' 
'option' 
COMBINED 
RC=24 

OPTION SPECIFIED TWICE RC=24 
AND 'option' ARE CONFLICTING CPTIONS RC=24 

INPUT FILES ILLEGAL ~ITH PACK OR UNPACK 

INPUT FILE Ifn ft fm' NOT IN PACKED FORMAT 
DISK 'mode' NOT ACCESSED RC=36 

RC=32 

'SPECS' TEMP STRING STORAGE EXHAUSTED AT , •••••••• 

OP1IONS 

RC=88 

Section 2. CMS Commands 47 



COpy FILE 

DMSCPY102S TOO MANY FILEIDS RC=88 
DMSCPY103S NUMBER OF SPECS EXCEEDS MAX 20 RC=88 
DMSCPY156E 'FROM nnn' NOT FOUND --FILE 'fn ft fm' HAS ONLY 'nnn' RECORDS 

RC=32 
DMSCPY157E LABEL 'label' NOT FOUND IN FILE 'fn ft fm' RC=32 
DMSCPY172E TO LABEL 'label' {EQUALSI IS AN INITIAL SUBSTRING OF} FRLAEEL 

'label' RC=24 
DMSCPY173E NO RECORDS WERE COPIED TO OUTPUT FILE 'fn ft fm' RC=40 
DMSCPY901T UNEXPECTED ERROR AT 'addr': PLIST 'plist' AT 'addr', BASE 

'addr', RC Inn' RC=256 
DMSCPY903T IMPOSSIBLE PHASE CODE 'xx' RC=256 
DMSCPY904T UNEXPECTED UNPACK ERROR AT 'addr', BASE 'addr' RC=256 

48 IBM VM/SP CMS Command and Macro Reference 



CP 

CP 

Use the CP command to transmit commands to the VM/SP control program 
environment without leaving the CMS environment. The for,mat of the CP 
command is: 

r-
CP ( commandline ] L---_________________________________________________________________ ~ 

commandline 
is any CP command valid for your CP command privilege class. 
If this field is omitted, you are placed in the CP environment 
and may enter CP ccmmands without precedinq each command with 
CP. To return to CMS, issue the CP ccmmand BEGIN. 

1. You must use the CP command to invoke a CP command: 

• Within an EXEC procedure 

• If the inplied CP 
virtual machine 

(IMPCP) function is set to OFF for your 

• In a job you send to the CMS batch facility 

2. To enter a CP command from the CMS environment without CMS 
processing the command line, use #CP. 

3. When you enter an invalid CP 
receive a return code of -1. 

command following the CP command, you 
In an EXEC, this return code is +1. 

All responses are from the CP command that was issued; the CMS ready 
message follcws the response. 

Section 2. CMS Commands 49 



DDR 

DDR 

Use the DASD Oump Restore (DOR) program to dump, restore, copy, or print 
VM/SP user minidisks. The DDR program may run as a standalone program, 
or under CMS via the DDR command. 

r 
I 
I 
I 
I 

The DDR program ha s five functions: 

1. Dumps part or all of the data from a DASD device to tape. 

2. Transfers data from tapes created by the DDR dump function to a 
direct access device. The direct access device must be the same as 
that which originally contained the data. 

3. Copies data from one device to another of the same type. Data may 
be reordered, by cylinder or by block for fixed-block DASD, when 
copied from disk to disk. In order to copy one tape to another, 
the original tape must have been created by the DDR DUMP function. 

4. Prints selected parts of DASD and tape records in hexadecimal and 
EBCDIC on the virtual printer. 

5. Displays selected parts of DASD and tape records in hexadecimal and 
EBCDIC on the terminal. 

The format of the DOR command is: 

r , 
DDR [fn ft I fm, ] 

I! I 
L J L-_________________________ _ 

r , 
fn ft I fml 

1* , 
L J 

identifies the file containing the control statements for the 
DDR program. If no file identification is provided, the DDR 
program attempts to obtain control statements from the 
console. The filemode defaults to * if a value is not 
provided. 

1. If you use the CMS ODR command, CMS ignores the SYSPRINT control 
statement and directs the output to the CMS printer OOE. 

2. Be aware that DDR, when run as a standalone program, does not have 
error recovery support. However, when DDR is invoked in CMS, in a 
virtual machine environment, the I/O operation is performed by CP; 
CP has better error recovery facilities. 

3. When running as a standalone program, DDR searches for a console a 
address 009 or 01F. If there is no operational console at oqe of 
these addresses, the program enters a wait state until an interrupt 

50 IBM VM/SP CMS Command and Macro Reference 



DDR 

occuis to identify the address of the console. If any nonconsole 
device is physically connected to address 009 or 01F, it must be 
disconnected or results are unpredictable. 

4. When performing the DUMP or COpy functions, the standalone DDR 
utility will Dot support cylinder faults for MSS virtual volumes. 

5. DDR copies mode zero (private) files from a CMS disk if that disk 
was linked R/O. Use read passwords to protect private files on CMS 
disks. 

6. Results are unpredictable if DDR is used to copy data from one 
minidisk tc anotber minidi~k formatted with a different blocksize 
(if the output disk is larger than the input disk). 

DDR CONTROL STATEMENTS 

DDR control statements describe the intended processing and the needed 
I/O devices. Specify I/O definition statements first. 

All control statements may be entered from either the console or the 
card reader. Tbe program inspects only columns 1 to 71. All data after 
the last operand in a statement is ignored. An output tape must have 
the DASD cylinder header records in ascending sequences; therefore, 
enter extents in sequence by DASD location, that is, in sequence by 
cylinder number if count-key-data or by block number if FB-512. Only 
one type of function -- dump, restore, or copy -- may be performed in 
one execution, but up to 20 statements describing cylinder or block 
extents may be entered. The function statements are delimited by an 
INPUT or OUTPUT statement, or by a null line if the console is used for 
input. If additional functions are to be performed, the sequence of 
control cards must be repeated. If you do not use INPUT or OUTPUT 
control statements to separate the functions you specify when the input 
is read from a card reader or CMS file, an error messaqe (DMKDDR702E) is 
displayed. The remainder of the input stream will be checked fer proper 
syntax, but no further DDR operations will be performed. Only those 
statements needed to redefine the I/O devices are necessary for 
subsequent steps. All other I/O definition remain the same. 

To return to CMS, enter a null line (carriage return) in response to 
the prcmpting message (ENTER:). To return directly to CP, key in #CP. 

Tbe PRINT and TYPE statements work differently from other DDR control 
statements in that they operate on only one data extent at a time. If 
the input is from a tape created by the dump function, it must be 
positioned at the header record for each step. The PRINT and TYPE 
statements have an implied output of either the console (TYPE) or system 
printer (PRINT). Therefore, PRINT and TYPE statements need not be 
delimited by an INPUT or OUTPUT statement. 

I/O DE~INITION STATEMENTS 

The I/O definition statements describe the tape, DASD, and printer 
devices used while executing the DASD Dump Restore proqram. 

Section 2. CMS Commands 51 



DDR 

An INPUT or OUTPUT statement describes each tape and DASD unit used. 
The format of the INPUT/OUTPUT statement is: 

r 
I r ., 
I INput cuu tYFe ,volser, (options ••• )] 
I OUTput laltapel 
, L .J 

, Q.EtiQ!!.§: 
, r,r,r, 
I ,SKip nn, ,MOde 6250, ,REWind, 
I '~~i.E Q , ,MOde 1600, 'Y!!Qggl 
I L.J ,MOde 800 I ,LEave, 
I L.J L .J L-_______________________________________________ _ 

INPUT 

OUTPUT 

cuu 

type 

indicates that the device described is an input device. 

indicates that the device described is an output device. 

!gte: If the output device is a DASD device and DDR is running 
under CMS, the device is released using the eMS RELEASE 
command function and DDR processing continues. 

is the unit address of the device. 

is the device type: 

2314 
2319 
3330 
3330-11 
3340-35 
3340-70 

3350 
3380 
2305-1 
2305-2 
FB- 512 (FB) 

2400 
2420 
3410 
3420 
8809 

DDR does not Rrovide 7-track support for any tape devices. 

Specify a 3340-70F as a 3340-70, and a 3333 as a 3330. Specify 
a 3350 that is in 3330-1 or 3330-11 compatibility mode as a 
3330 or 3330-11. Specify a 3344 as a 3340-70, and specify 
3350 for a 3350 operating in native mode (as opposed to 
compatibility mode). Note that both 3310 and 3370 are denoted 
by specifying FB-512 or simply FB. 

Note: The DASD Dump Restore (DDR) program, executing in a 
virtual machine, uses I/O DIAGNOSE 20 to perform I/O 
operations on tape and DASD devices. DDR under CMS requires 
that the device type entered agree with the device type of the 
real device as recognized by VM/SP. If there is a conflict 
with device types, the following message is issued: 

DMKDDR708E INVALID OPTION 

However, if DDR executes standalone in a virtual machine, DDR 
uses DIAGNOSE 20 to perform the I/O operation if the device 
types agree. If the device types do not agree, error message 
DMKDDR708E is issued. 

52 IBM VM/SP CMS Command and Macro Reference 



volser 

altape 

DDR 

The speed setting for 8809 tape drives is not under the user's 
control. When DDR is running as a command under CMS, the 8809 
is supported only in start/stop mode. If DDR is run 
stand-alone in a virtual machine, DDR attempts to run the 8809 
in high-speed mode. In this mode, the data transfer time is 
reduced. However, this does not mean that the time for a DDR 
job is reduced; job duration depends on many factors such as 
processor and device contention. 

is the volume serial number of a DASD device. If the keyword 
"SCRATCH" is specified instead of the volume serial number, no 
label verification is performed. 

is the address of an alternate tape drive. 

EQ~!: If Dultiple reels of tape are required and "altape" is 
not specified, DDR types the following at the end of the reel: 

END OF VOLUME CIL xxx HD xxx, MOUNT NEXT TAPE 

After the new tape is mounted, DDR continues automatically. 

SKIP nn 
o 

forward spaces nn files on the tape. nn is any number 
up to 255. The SKIP option is reset to zero after the 
tape has been positioned. 

r , 
MODE 162501 causes all output tapes that are opened for the first 

116001 tiDe and at the load point to be written or read in 
I 8001 the specified density. All subsequent tapes mounted 
L ~ are also set to the specified density. If no mode 

REWIND 

UNLOAD 

LEAVE 

option is specified, then no mode set is performed and 
the density setting remains as it previously was. 

re~inds the tape at the end of a function. 

re~inds and unloads the tape at the end of a function. 

leaves the tape positioned at the end of the file at 
the end of a function. 

1. When the wrong input tape is mounted, the message DMKDDR709E is 
displayed and the tape will rewind and unload regardless of options 
REWIND, UNLOAD, or LEAVE being specified. 

2. If DDR is executed from CMS, failure to attach the tape drive or 
the disk device (or both) to your virtual machine prior to invoking 
the input/output statement causes the following response to be 
displayed: 

INVALID INPUT OR OUTPUT DEFINITION 

Section 2. CMS Commands 53 



DDR 

The SYSPRINT control statement describes the device that output is to be 
sent to. If the SYSPRINT CONS option is specified, the output is 
airected to the console for both the CMS environment and the standalone 
DDR virtual machine. 

In the CMS environment, all output is directed (by default) to ODE, 
unless the SYSPRINT CONS option is specified. Any SYSPRINT cuu option 
specification is ignored. 

In the standalone DDR virtual machine, the output is directed to the 
output device specified by the SYSPRINT CUll option. If the SYSPRINT 
CONS option is specified, all output is directed to the console. If no 
options are specified, the output is directed (by default) to ODE • 

. ----------------------------------------------------------------------, 
I SYsprint' {cuu } I 
I , CONS I L _____________________________________________________________________ ~ 

cuu specifies the unit address of the device. 

CONS specifies the console as the output device. 

The function statements tell the DDR program what action to perform. 
The function commands also describe the extents to be dumped, copied, or 
restored. The format of the DUMP/COPY/RESTORE control statement is: 

r----------------------------------------------------- -----------------, 
I , r , , 
, DUml? I [FTRJ1 Icyl1 (To] [cyl2 [Reorder] [To] [cyl3]] I , 
I COpy I Iblock1 [To] [block2 [Reorder] [To] [block3]] I I 
, REstore I ,CPvol I , 
I I IALL , , 
I , I NUcleus , , 
I I L .J , 

1----------------------------------------------------------------------1 
liThe FTR option is valid only with the DUMP control statement. , L ______________________________________________________________________ ~ 

DUMP requests the program to move data from a direct access volume 
onto a magnetic tape or tapes. The format of the tape depends 
on the type of the direct access volume. The tape format is 
shown for both count-key-data and FB-512 devices. 

54 IBM VM/SP CMS Command and Macro Reference 



COpy 

RESTORE 

PTR 

For count-key-data DASD, the data 
cylinder-by-cylinder. Any number of cylinders can 
The format of the resulting tape is: 

Record 1: a volume header 
descrIbIng the volumes. 

record, consisting 

DDR 

is moved 
be moved. 

of data 

Record 2: a track header record, consisting of a list of count 
fields-to restore the track, and the number of data records 
written on tape. After the last count field the record 
contains key and data records to fill the 4K buffer. 

g~£Q£g_l: track data records, consisting of key and data 
records packed into 4K blocks, with the last record truncated. 

Record 4: either the end-of-volume (EOV) or end-of-job (EOJ) 
trailer- label. The end-of-volume label contains the same 
information as the next volume header record, except that the 
ID field contains EOV. The end-of-job trailer label contains 
the same information as record 1 except that the cylinder 
number field contains the disk address of the last record on 
tape and the ID field contains EOJ. 

For PB-512 devices, the data is moved in 'sets' of blqcks. 
Each set contains 95 blocks of data. (The last set moved may 
have less than 95 blocks.) Any number of blocks can be moved 
with one DUMP statement. The format of the resulting tape is: 

Record 1: a volume header record, consisting 
descrIbing the volume. 

of data 

Record 2: a data header record. This consists of control data 
that-describes the set of blocks that follow (such as block 
numbers and the number of 4K tape records required to hold 
these PB-512 blocks) • Following the control data is the 
actual FB-512 blocks filling out the 4K tape record. 

g~£Q~g 1: FB-512 data records. These contain the rest of the 
blocks making up the set. 

g~£Q£g ~: either the end-of-volume (EOV) or end-of-job (EOJ) 
trailer label. The EOV label contains the same information as 
the next header record, except that the ID field contains EOV. 
The EOJ trailer label is just like record 1 except that it 
contains the number of the last DASD block dumped and the ID 
field contains EOJ. 

requests the program to copy data from one device to another 
device of the same or equivalent type. Note that you cannot 
copy between FB-512 and count-key-data DASD. Data may be 
recorded on a cylinder or block basis from input device to 
output device. A tape-to-tape copy can be accomplished only 
with data dumped by this program. 

requests the program to return data that has been dumped by 
this program. Data can be restored only to a DASD volume of 
the same or equivalent device type from which it was dumped. 
It is possible to dump from a real disk and restore to a 
minidisk as long as the device types are the same. 

requests the use of the full track read feature for those 
devices supporting the feature (3330, 3340, 3344, 3350, and 
3380) • 

section 2. eMS Commands 55 



DDR 

B21g: When using this option, be aware of the following. 
specifying FTR produces a tape format of variable, unblocked 
records; the size of the records and the number of records 
written per track depend on the density of the output tape. 
(FTR is the default for the 3380 and therefore need not be 
specified.) 

cyl1 [TO] [cyl2 [REORDER] [TO] (cyI3]] 
Only those cylinders specified are moved, starting with the 
first track of the first cylinder (cy11), and ending with the 
last track of the second cylinder (cy12). The REORDER operand 
causes the output to be reordered, that is, moved to different 
cylinders, starting at the specified cylinder (cyl3) or at the 
starting cylinder (cy11) if cy13 is not specified. Th~ 
REORDER operand must not be specified unless specified limits 
are defined for the operation; the starting and, if required, 
ending cylinders (ey11 and cy12) must be specified. Note that 
if the input device cylinder extents exceed the number of 
cylinders specified on the output device, an error message 
results. 

block1 [To] [block2 [Reorder] (To] (block3]] 
Only those blocks specified are moved, starting with the block 
indicated by block1, up to and including the block indicated 
by block2. The REORDER operand causes the data to be moved to 
a different DASD location. The REORDER operand must not be 
specified unless specified limits are defined for the 
operation. If the input block extents exceed the capacity of 
the output device, an error message results. 

CPVOL specifies that cylinder 0 (blocks 0-15 if FB-512) and all 
active directory and permanent disk space are to be copied, 
dumped, or restored. This indicates that both source and 
target disk must be in CP format; that is, the CP 
Format/Allocate program must have formatted them. 

ALL specifies that the operation is to be performed on the entire 
DASD volume (all cylinders or all blocks) • 

NUCLEUS 

Note: The occurrence of message DMKDDR705E (issued upon 
completion of the copy, restore, or dump operation) indicates 
that an attempt was made to copy, restore, or dump the 
contents of DASD locations beyond the extents of the 
designated minidisk. 

specifies that record 2 on cylinder 0, track 0 and the nucleus 
on cylinder 0, track 0 (blocks 5-12 if FB-512) are dumped, 
copied, or restored. 

• Each track must contain a valid home address, containing the real 
cylinder and track location. 

• Record zero must not contain more than eight key and/or data 
characters. 

• Flagged tracks are treated just as any other track for all 2314, 
2319, 3340, and 2305 devices. That is, no attempt is made to 
substitute the alternate track data when a defective primary track is 
read. In addition, tracks are not inspected to determine whether 
they were previously flagged when written. Therefore, volumes 
containing flagged tracks should be restored to the same cylinders of 
the volume from which they were dumped. The message DMKDDR715E occurs 

56 IBM VM/SP CMS Command and Macro Reference 



DDR 

each time a defective track is dumped, copied or restored, and the 
operation continues. 

• Flagged tracks on 3330, and 3350 devices are handled automatically by 
the control unit and may never be detected by the program. The 
program may detect a flagged track if, for example, no alternate 
track is assigned to the defective primary track. If a flagged track 
is detected by the program, the message DMKDDR715E occurs and the 
operation terminates. 

• For DASD devices other than the 3380 that support 
(FTR) processing, the option must be specified. 
will be produced in the current DDR format of 
3330/3340 DASD devices can only take advantage of 
feature when the 3830 has microcode supporting 
3350. 

INPUT 191 3330 SYSRES 
OUTPUT 180 2400 181 (r'IODE 800 
SYSPRINT OOF 
DUMP CPVOL 
INPUT 130 3330 MINI01 
DUMP 1 TO 50 REORDER 51 
60 70 101 

the full track read 
Otherwise, the tape 

4096 blocks. The 
the full track read 
either the 3344 or 

rhis example sets the density to 800 bpi, then dumps all pertinent 
data from the voluDe labeled SYSRES onto the tape that is mounted on 
unit 180. If the program runs out of space on the first tape, it 
continues dumping onto the alternate device (181). A map of the dumped 
cylinders is printed on unit OOF while the program is dumping. When the 
first function is complete, the volume labeled MINI01 is dumped onto a 
new tape. Its cylinder header records are labeled 51 to 100. A map of 
the dumped cylinders is printed on unit OOF. Next, cylinders 60 to 70 
are dumped and labeled 101 to 111. This extent is added to the cylinder 
map on unit OOF. ~hen the DDR processing is complete, the tapes are 
unloaded and the program stops. 

If cylinder extents are being defined from the console, the user need 
only enter DUr'IP, COPY or RESTORE on the command line. The followi~g is 
displayed: 

ENTER CYLINDER EXTENTS 
ENTER: 

For any extent after the first extent, the message: 

ENTER NEXT EXTENT OR NULL LINE 
ENTER: 

is displayed. 

You may then enter additional extents to be dumped, restored, or 
copied. A null line causes the job step to start. 

1. When a cylinde~ map is printed on the virtual printer (OOF as in 
the previous example) a heading precedes the map information. 
Module DMKDDR controls the disk, time and zone printed in the 
heading. Your installation must apply a local modification. to 
DMKDDR to ensure that local time, rather than GMT (Greenwich 
Meridian Time), is printed in the heading. 

Section 2. CMS Commands 57 



DDR 

2. Attempts to restore cylinders or blocks beyond the capacity that 
had been recorded on the tape produces a successful EOJ, but the 
printout only indicates the last cylinder or block found on the 
tape. 

Use the PRINT and rYPE function statement to print or type (display) a 
hexadecimal and EBCDIC translation of each record specified. The input 
device must be defined as direct access tape. The output is direct~d to 
the system console for the TYPE function, or to the SYSPRINT device for 
the PRINT function. (This does not cause redefinition of the output unit 
definition.) The format of the PRINT/TYPE control statement is: 

r 
I , 
I 
I 
I 
L 

PRint 
TYpe 

'[CY11 [hh1 [rr1]] (To cy12 
, block1 [To block2] 
I 
I QE1!Qn§: 
I [ Hex] [ Graphic] 

[ h h2 [rr2 ]]] 

[ Count] 

[ (options ••• [) ]]] 

I 
I 

cy11 is the starting cylinder. 

hh1 

rr1 

is the starting track. If present, it must follow the cy11 
operand. The default is track zero. 

is the starting record. If present, it must follow the hh1 
operand. The default is home address and record zero. 

TO cy12 is the ending cylinder. If more than one cylinder is to be 
printed or typed, "TO cy1211 must be specified. 

hh2 

rr2 

is the ending 
operand. The 
cylinder. 

track. If present, it must 
default is the last track 

follow the cy12 
on the ending 

is the record ID of the last record to print. The default is 
the last record on the ending track. 

block1 is the starting FB-512 block number. 

To block2 is the eniing block number. If more than one block is to be 
printed or typed, 'To block2' must be specified. 

HEX prints or displays a hexadecimal representation of each record 
specified. 

GRAPHIC 
prints or displays an EBCDIC translation of each record 
specified. 

COUNT prints or 
specified. 

displays only the count field for each record 
This option'is ignored for FB-512 data. 

58 IBM VM/SP CMS Command and Macro Reference 



DDR 

If the TYPE statement follows the occurrence of error message DMKDDR705E 
and specifies the same cylinder, track, and record extents indicated in 
the error message, the contents of the printed record must be 
interpreted in the context of the IIO error information given in the 
initial message. 

PRINT 0 TO 3 

Prints all of the records from cylinders or blocks 0, 1, 2, and 3. 

PRINT C 1 3 

Prints only one record, from cylinder 0, track 1, record 3. 

PRINT 1 10 3 TO 1 15 4 

Prints all recoras starting with cylinder 1, track 10, record 3, and 
ending with cylinder 1, track 15, recora 4. 

The example in Figure 6 shows the information displayed at the 
console (TYPE function) or system printer (PRINT function) by the DDR 
program. The listing is annotated to describe some of the data fields. 

The printea output for FB-512 data is self-explanatory. DDR prints a 
short heading telling the block number, then prints the 512 bytes of 
data in that block. 

DMKDDR711R VOLID READ IS volid2 [NOT vOlid1] 

volid2 

volid1 

DO YOU WISH TO CONTINUE? RESPOND YES NO OR REREAD: 

is the volume serial number from the VOL1 label Oij the 
DASD unit. 

is the volume serial number from the INPUT or OUTPUT 
control card. 

The volume serial number read from the device at cuu is not the 
same as that specified on the INPUT or OUTPUT control card. 

DMKDDR716R NO VOL1 LABEL FOUND FOR volser 

volser 

DO YOU WISH TO CONTINUE? RESPOND YES NO OR REREAD: 

is the volume serial number of the DASD device from the 
INPUT or the OUTPUT control card. 

The DASD device at cuu contains no volume serial number. 

Section 2. CMS Commands 59 



DDR 

DMKDDR717R DATA DUMPED FROM volid1 TO BE RESTORED TO volid2 
DO YOU WISH TO CONTINUE? RESPOND YES NO OR REREAD: 

volid1 

volid2 

is the volume serial number from the input tape header 
record (volume dumped). 

is the volume serial number from the output DASD device. 

The above message is printed to verify the input parameters. 

ENTER CYLINDER EXTENTS 
ENTER: 

or ENTER BLOCK EXTENTS 
ENTER: 

This message is received only if you are entering input from your 
terminal. 

END OF VOLUME CYL xxx HD xx, MOUNT NEXT TAPE 
or END OF BLOCK xxxxxxxx, MOUNT NEXT TAPE 

DDR continues processing, after the mounting of the next tape reel. 

60 IBM VM/SP CMS Command and Macro Reference 



Home Address 
Re~ord 0 

Data 
(hexadecimal) 

re--;;th;:;;a I~h ~is:;ze~ 

I • A heading is printed containing the I 
-l Re~ord I --+--~-

~-.. -.. - data length from the count field first in 

I 
decimal, then in hexadecimal 

• The data is then printed in hexadecimal I 

~ 
with graphic interpretation at the right 

_ ~ts~nhere). ___ J 

04096 1000 DATA LENGTH _,.--------'-----

00000 0000 00000000 00000000 00000000 00000000 00000000 00000000 0000000000000000 
SUPPRESSED CHARACTERS SAME AS ABOVE ... 

1st Halfof-+---__ CYL 019.HD 00 REC 002 COUNT 0013000002 009A8 
Record 2 

Note: Data Length field repeated 
in heading. 

02472 09A8 DATA LENGTH 

00000 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
SUPPRESSED CHARACTERS SAME AS ABOVE ... 

ABOVE RECORD WRITTEN USING RECORD OVERFLOW CD 
r:::;- ------., 

1
0 This statement indicates that this portion I 

of Record 2 was written using the Write 

I 
Special Count, Key, and Data command. The 
remainder of Record 2 is found on the next I 
track as the first record after Record O. L ______ J 

Home Address+---_ CYL 019 HD 01 HOME ADDRESS 0000130001 RECORD ZERO 00130001000000080000000000000000 
Record 0 

2nd Halfof CYL 019 HD 01 REC 002 COUNT 0013000102 00 0658 

Record 2 01624 0658 DATA LENGTH 

00000 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
SUPPRESSED CHARACTERS SAME AS ABOVE ... 

~---------.., 
• If the key length field IS not zero 

I • A heading IS pnnted containing the key length I 
;; 

first In deCimal, then In hexadeCimal. 
• The key IS then printed In hexadeCimal With I 

e -- - __ ..J 

Record 3 --+------ CYL 019 HD 01 ;i7
1 graphiC interpretatIOn at the right (not shown here). 

REC 003 COUNT 0013000103 800F80 

00128 0080 KEY LENGTH 

00000 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
SUPPRESSED CHARACTERS SAME AS ABOVE ... 

03968 OF80 DATA LENGTH 

00000 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
SUPPRESSED CHARACTERS SAME AS ABOVE ... 

Record 4 ---1----- CYL 019 HD 01 REC 004 COUNT 0013000104 00 0000 

END OF FILE RECORD 

re~-------' 

I Whenever the data length field is zero I 
I an end-of-file prints next. I 
L _______ ..J 

DDR 

Figure 6. An Annotated Sample of Output from 
Functions of the DDR Program 

the TYPE and PRINT 

Section 2. CMS Commands 61 



DDR 

RESTORING volser 

J!.!:!~~: 

volser is the volume serial number of the disk dumped. 

The RESTORE operation has begun. 

COPYING volser 

J!.b~~: 

volser is the volume serial number described by the input unit. 

The COpy operation has begun. 

DUMPING volser 

!l1~g: 

volser is the volume serial number described by the input unit. 

The DUMP operation has begun. 

PRINTIWG volser 

!.!:!.§g: 

volser is the volume serial number described by the input unit. 

The PRINT operation has begun. 

END OF DUMP 

The DUMP operation has ended. 

END OF RESTORE 

The RESTORE operation bas ended. 

END OF COPY 

The COpy operation has ended. 

END OF PRINT 

The PRINT operation has ended. 

END OF JOB 

All specified operations have completed. 

62 IBM VM/SP CMS Command and Macro Reference 



DDR 

ENTE R: 

Prompts for input from the terminal. A null line (that is p 

~r€ssing the Enter key or equivalent) causes control to return to 
CMS if the virtual machine is in the CMS environment. 

DMKDDR725R ORIGINAL INPUT DEVICE WAS (IS) LARGER THAN OUTPUT DEVICE. 
DO YOU WISH TO CONTINUE? RESPONSE YES OR NO: 

~!E.!~.n.2j;i.Q.n: 
RESTORE function - The number of 
original DASD input unit is compared 
dev ice. 

cylinders or blocks on the 
with the number on the output 

COpy function - The input device contains more cylinders or blocks 
than the output device. 

QE§!Si.Q~ !£.:tign: The operator must determine if the COpy or REStORE 
function is to continue. The response is either yes or no. 

!.Qte: Except as shown p there is no return code returned for the 
following messages. For FB-512 devices p DASD locations are described by 
a s~ecific block number instead of by cchhr. 

DMKDDR700E INPUT UNIT IS NOT A CPVOL 
DMKDDB701E INVALID OPERAND - operand 
DMKDDR702E CONTROL STATEMENT SEQUENCE ERROR 
DMKDDR703E OPERAND MISSING 
DMKDDR704E DEV cuu NOT OPERATIONAL 
DMKDDR705E 10 ERROR cuu CSW csw SENSE sense INPUT bbcchhlblock OUTPUT 

bbccbhlblock CCW ccw 
DMKDDB707E MACHINE CHECK RUN SEREP AND SAVE OUTPUT FOR CE 
DMKDDR708E INVALID INPUT OR OUTPUT DEFINI~ION 
DMKDDR709E WRONG INPUT TAPE MOUNTED 
DMKDDB710A DEV cuu INTERVENTION REQUIRED 
DMKDDB712E NUMBER OF EXTENTS EXCEEDS 20 
DMKDDB713E OVERLAPPING OR INVALID EXTENTS 
DMKDDB714E RECORD bbcchhlblock NOT FOUND ON TAPE 
DMKDDB715E LOCATION bbcchhlblock IS A FLAGGED TRACK RC=3 
DMKDDR718E OUTPUT UNIT IS FILE PROTECTED BC=1 
DMKDDR719E INVALID FILENAME OR FILE NOT FOUND 
DMKDDB720E ERROR IN routine Rc=varies 
DMKDDB721E RECORD cchhrlblocK NOT FOUND 
DMKDDR722E OUTPUT UNIT NOT PROPERLY FORMATTED FOR THE CP NUCLEUS 
DMKDDB723E NO VALID CP NUCLEUS ON THE INPUT UNIT 
DMKDDB724E INPUT TAPE CONTAINS A CP NUCLEUS DUMP 
DMKDDF756E PROGRAM CHECK PSW=psw 

Section 2. CMS Commands 63 



DEBUG 

DEBUG 

Use the DEBUG command to enter the debug environment from the CMS 
environment. In the debug environment you can use a variety of DEBUG 
subcommands that allow you to test and debug your programs. the DEBUG 
subcommands are described in "Section 4. DEBUG Subcommands." For 
tutorial information, including examples, see the !11L~g £11~ Us~~§ 
~uiQ~. The format of the DEBUG command is: 

L 

1. The debug environment is also entered 
interruption or the result of a 
encountered during program execution. 

_________ ---..1 

as a result of an external 
breakpoint (address stop) 

2. Once you are in the debug environment, you can enter only DEBUG 
subcommands and CP commands via the #CP function. 

3. To return to the CMS environment, enter the DEBUG subcommand 
RETURN. 

DMSDBG728I DEBUG ENTERED 

This message indicates that you are in the debug environment. 

64 IBM V~/SP C~S Command and Macro Reference 



DESBUF 

DESBUF 

Use the DESBUF command to clear the console and program stack input and 
output buffers. The format of the DESBUF command is: 

r 
, DESBUF L __________________________ _ 

Note that DESBUF clears the output buffers as well as the input buffers. 
Use the CONWAIT command before DESBUF to halt program execution until 
all output lines are displayed at the terminal. 

H~£lling: Be careful when using the DESBUF command because the input and 
output console and program stack buffers are used to communicate 
information between programs. 

section 2. CMS Commands 65 



DISK 

DISK 

Use the DISK command to: 

• Punch CMS disk files to the virtual spcoled card punch in a special 
format which allows the punched deck to be restored to disk in the 
form of the original disk file. 

I, 

• Restore punched decks created by the DISK DUMP command to a disk 
file. 

The format of the DISK command is: 

r 
DISK, {DUMP fn ft [fm] } 

I LOAD 
'------

____ ---J 

DUMP fn ft fm 

LOAD 

punches the specified file (fn ft fm). The file may have 
either fixed- or variable-length records. After all data is 
punched, an end-of-file card is created with an N in column 5. 
This card contains directory information and must remain in 
the deck. The original disk file is retained. 

loads a file or files from the spooled card reader and writes 
them as CMS files on your A-disk. The filename and filetype 
are obtained from the card stream. If a file exists with the 
same filename and filetype as one of those in the card stream, 
it is replaced. 

Note: DISK LOAD file identifiers are those of the specified 
file issued by the DISK DUMP command. 

1. To read files with the DISK LOAD ccmmand, they must have been 
created by the DISK DUMP command. To load spooled reader files 
created in any other manner, you should use the READCARD command. 

2. To load reader files created by DISK DUMP, you must issue the DISK 
LOAD command for each spool file,. For example, if you enter: 

disk dump source1 assemble 
disk dump source2 assemble 

the virtual machine that receives the files must issue the DISK 
LOAD command twice to read the files onto disk. If you use the CP 
SPOOL command to spool continuous, for example: 

cp spool punch cont 
disk dump source1 assemble 
disk dump source2 assemble 
cp spool punch nocont close 

then you only need to issue the DISK LOAD command once to read both 
files. 

66 IBM VM/SP CMS Command and Macro Reference 



DISK 

There is no response to the DISK DUMP command. The file identifiers of 
each file loaded are displayed when you issue the DISK LOAD command: 

tn ft fm 

DMSDSK002E FILE 'fn ft fm' NOT FOUND RC=28 
DMSDSK014E INVALID FUNCTION 'function' RC=24 
DMSDSK037E DISK 'A' IS READ/ONLY RC=36 
DMSDSK047E NO FUNCTION SPECIFIED RC=24 
DMSDSK048E INVALID MODE 'mode' RC=24 
DMSDSK054E INCOMPLETE FILEID SPECIFIED RC=24 
DMSDSK062E INVALID * IN FILEID ('fn ft fm') RC=20 
DMSDSK070E INVALID PARAMETER 'parameter' RC=24 
DMSDSK017E END CARD MISSING FROM INPUT DECK RC=32 
DMSDSK078E INVALID CARD IN INPUT DECK RC=32 
DMSDSK104S ERROR Inn' READING FILE 'fn ft fm' FROM DISK RC=100 
DMSDSK105S ERROR Inn' WRITING FILE 'fn ft fm' ON DISK RC=100 
DMSDSK118S ERROR PUNCHING FILE RC=100 
DMSDSK124S ERROR READING CARD FILE RC=100 
DMSDSK205W READER EMPTY OR NOT READY RC=8 

Section 2. CMS Commands 67 



DLBL 

DLBL 

Use the DLBL command: 

• In eMS/DOS, to define VSE and eMS sequential disk files for program 
input/output; to identify VSE files and libraries; to define and 
identify VSAM catalogs, clusters, and data spaces; and to identify 
VSAM, VSE, or CMS files used for VSAM program input/output and access 
method services functions. In many situations, VSE/VSAM does not 
cequire the DLBL command. Information on when a DLBL statement is 
required can be found in the !~!L!~!~ ~~2gf~~~£~2 R~fe~n£~ • . ~. 

• In CMS, to define and identify VSAM catalogs, clusters, and data 
spaces; to identify VSAM files used for program input/output; and to 
identify input/output files for AMSERV. 

The format of the DLBL command is: 

DLBL 
r 
Iddname 
I 
I 
I 

{
mode } 
DUr! MY 

r , 
I eMS fn ft I (optionA optionB () ]] 
I£~~ l!~~ ~m~ I 
L 

r , I 
Iddname 
I {

mo:te }IDSN qual1 (qual2 ••• qualn] I 
DUMMY IDSN ? I 

I 
I 
I 
I ddname CLEAR 
I * 
L 

2.Eli2!!!: 
( SYSxxx] 

L ..J 

2EliQn!!: 
[PERM] 
r , 
I£!!!.NQ~ I 
INOCHANGEt 
L ..J 

( (optionA optionB optionC () ]] 

Q.E1ionf: 
(VSAM ] 
r , 
IEXTENTI 
t MULT I 
L ..J 

[CAT catdd] 
[ B UFS P nnnnnn] 

, 

L ______ _ 

NQ!g: The operands and options of the DLBL command are described below. 
Usage notes are provided for general usage, followed by additional notes 
for CMS/DOS users, ~nd then additional notes for OS VSAM users. 

ddname 

mode 

specifies a one- to seven-character program ddname (OS) or 
filename (VSE), or dname (as specified in the FILE parameter 
of an access method services control statement). An asterisk 
(*) entered with the CLEAR operand indicates that all DLBL 
definitions, except those that are entered with the PERM 
option, are to be cleared. 

specifies a valid CMS disk mode letter and 
filemode number. A letter must be specified; if 
not specified, it defaults to 1. The disk must 
when the DLBL command is issued. 

optionally, 
a number is 
be accessed 

68 IBM VM/SP eMS Command and Macro Reference 



DUMMY 

CLEAR 

DLBL 

specifies that no real I/O is to be performed. A read 
operation results in an end-of-file condition and a write 
operation results in a successful return code. DUMMY should 
not be used for OS VSAM data sets (see Usage Note 3) • 

removes any existing definitions for the specified ddname. 
Clearing a ddname before defining it ensures that a file 
definition does not exist and that any options previously 
defined with that ddname no longer have any effect. 

CMS fn ft indicates that this is a CMS file, and the file identifier (fn 
ft) that follows is a CMS filename and filetype. 

FILE ddnane is the default CMS file identifier associated with 
all non-C[t1S data sets. (See Usage Note 3 for CMS/DOS users.) 

DSN indicates that this is a non-CMS file. 

? indicates that you are going to enter the ~ata set name 
interactively. When prompted, you enter the data set name or 
fileid in its exact form, including embedded blanks, hyphens, 
or periods. 

qual1 [qual2 ••• qualn ] 

S YSxxx 

PERM 

is an as data set name or VSE file-ide Only data sets named 
according to standard as conventions may be entered this way; 
you must omit the periods between qualifiers. (See Usage Note 
2. ) 

(CMS/DOS only) indicates the system or programmer logical unit 
that is associated with the disk on which the disk file 
resid~s. The logical unit must have been previously assigned 
with the ASSGN command. In many situations VSE/VSAM does not 
require a SYSxxx operand. Thus no previous ASSGN is required. 
See YE~LY§!~ ~fQg~~~~~ g~i~~n~ for information on when 
the SYSxxx operand is required. 

indicates that this DLBL definition can be cleared pnly with 
an explicit CLEAR request. It will not be cleared when the 
DLBL * CLEAR command line is entered. 

All DLBL definitions, including those entered with the PERM 
option, are cleared as a result of a program abend or HX (halt 
executio~ Immediate command. 

indicates that any existing DLBL for this ddname is not to be 
canceled, but that conflicting options are to be overridden 
and new options merged into the old definition. Both the 
ddname ani the file identifier must be the same in order for 
the definitions to be merged. 

NOCHANGE 

VSAM 

does not alter any existing DLBL definition for the specified 
ddname, but creates a definition if none existed. 

indicates that the file is a VSAM data set. This option must 
be specified for VSAM functions unless the EXTENT, MULT, CAT, 
or BUFSP options are entered or the ddnames IJSYSCT or IJSYSUC 
are used. 

Section 2. CMS Commands 69 



DLBL 

EXTENT 

MULT 

CAT 

indicates that you are going to use access method services to 
define a VSAM catalog,'data space, or unigue cluster and you 
want to enter extent information. 

indicates that you are going 
multivolume data set and you 
specifications. 

to 
want 

reference 
to enter 

an existing 
the volume 

~Q!g: In many situations VSE/VSAM does not reguire EXTENT or 
MULT information. See !SEL!~!~ g£Qg£~m~£~2 Refe~D£~ for 
information on when EXTENT or MULT information is required. 

catdd 
identifies the VSAM catalog (defined by a previous 
definition) which contains the entry for this data set. 
must use the CAT option when the VSAM data set you 
creating or identifying is not cataloged in the current 
catalog. catdd is the ddname in the DLBL definitio~ for 
catalog. 

DLBL 
You 
ue 
job 
the 

BUFSP nnnnnn 
specifies the number of bytes (in decimal) to be used for I/O 
buffers by VSAM data management during program execution, 
overriding the BUFSP value in the ACB for the file. The 
maximum value for nnnnnn is 999999; embedded commas are not 
permitted. 

1. To display all of the disk file definitions in effect, enter: 

dlbl 

The response will be: 

ddname DISK fn ft 

If no DLBL definitions are in effect, the following message is 
displayed: 

DMSDLB324I NO USER DEFINED DLBL'S IN EFFECT 

2. To enter an as or VSE file identification on the DLBL command line, 
it must consist of 1- to 8-character gualifiers separated by 
periods, with a maximum length of 44 characters, including periods. 
For example, the file TEST.INPUT.SOURCE.D could be identified as 
follows: 

dlbl dd1 c dsn test input source d (options ••• 

Or, it may be entered interactively, as follows: 

dlbl dd1 c dsn ? (options 
DMSDLB220R ENTER DATA SET NAME: 
test.input.source.d 

Note that when the data set name is entered interactively, the data 
set name must be entered in its exact form; when entered on the 
DLBL command line, the periods must be omitted. 

70 IBM VM/SP CMS Command and Macro Reference 



DLBL 

" You must use the interactive form to enter a DOS file-id that 
contains embedded blanks or hyphens. 

3. In VSE, a VSA~ data set that has been defined as DUMMY is opened 
with an error code of X'11'. CMS supports the DUMMY operand of the 
DLBL command in the same manner. as users should not use the DUMMY 
operand in CMS, since a dummy data set does not return, on open, an 
end-of-file indication. 

1. Each DLBL definition must be associated with a system or programmer 
logical unit assignment, previously made with an ASSGN command. 
Specify the SYSxxx option on the first, or only, DLBL definition 
for a particular ddname. Many DLBL definitions may be associated 
with the same logical unit. For example: 

assgn sys100 b 
dlbl dd1 b cms test file1 (sys100 
dlbl dd2 b cms test file2 (sys100 
dlbl dd1 cms test file3 

is a valid command sequence. 

In many situations VSE/VSAM does not require the DLBL command. See 
l~]L!~~l1 ffQgf~!!!!!!~f~§ Re!~gl!£~ for information on when the DLBL 
command is required. 

2. The following special ddnames must be used to define VSE private 
libraries, and must be associated with the indicated logical units: 

gg!1~!!!£ 
IJSYSSL 
IJSYSRL 
IJSYSCL 

Logical 
Q!1!:!:. __ _ 
SYSSLB 
SYSRLB 
SYSCLB 

1!br~£.I 
Source statement 
Relocatable 
Core image 

These libraries must be identified in order to perform librarian 
functions (with the SSERV, ESERV, DSERV, or RSERV commands) for 
private libraries; or to link-edit or fetch modules or phases from 
private relocatable or core image libraries (with the DOSLKED and 
FETCH commands). 

3. Each VSE file has a CMS file identifier associated with it by 
default; the filename is always FILE and the filetype is always the 
same as the ddname. For example, if you enter a DLBL command for a 
DOS file MOD.TEST.STREAM as follows: 

dlbl test c dsn mod test stream 

then you can refer to this as data set as FILE TEST when you use 
the STATE command: 

state file test 

When you enter a DLBL command specifying only a ddname and mode, as 
follows: 

dlbl junk a 

CMS assigns a file identifier of FILE JUNK A1 to the ddname JUNK. 

section 2. CMS Commands 71 



DLBL 

4. The FILEDEF command performs a function similar to that of the DLBL 
command; you need to use the FILEDEF ccmmand in eMS/DOS only: 

• When you want to override a default ddname for an assembler 
input or output file. 

• When you want to use the MOVEFILE command to process a file. 

5. If you use the DUMMY operand, you must have issued an ASSGN command 
specifying a device type of IGN, or ignore, for the SYSxxx unit 
s~ecified in the DLBL ccmmand, for example, 

assgn sys003 ign 
dlbl test dummy (sys003 

2R~~J1XJ~2 !~!~ ~XTE!I INrQ~~!I!Q!: You may specify extent information 
when you use the access method services control statements DEFINE SPACE, 
DEFINE MASTERCATALOG, DEFINE USERCATALOG, DEFINE CLUSTER (UNIQUE); or 
when you use the IMPORT or IMPORTRA functions for a unique file. 

In many situations, VSE/VSAM does not 
See !~£LY~A~ f!£g~~m~~~~ ~~!~~n£~ for 
information is required. 

require EXTENT 
information on 

information. 
when EXTENT 

When you enter the EXTENT option of the DLBL command, you are 
prompted to enter the disk extents for the specified file. You must 
enter extent information in accordance with the following rules: 

• For count-key-data devices, you must specify the starting track 
number and number of tracks for each extent, as follows: 

19 38 

This extent allocates 38 tracks, beginning with the 19th track, on a 
3330 dev ice. 

• For fixed-block devices, you must specify the starting block number 
and the number of blocks for each extent. The following example 
allocates 200 blocks, starting at block number 352, on a fixed-block 
d ev ice. 

352 200 

Because VSAM rounds the starting block to the next highest cylinder 
boundary, it is advisable to specify the starting block on a cylinder 
boundary. 

• All count-key-data extents must begin and end on cylinder boundaries, 
regardless of whether the AMSERV file contains extent information in 
terms of cylinders, tracks, or records. 

• Multiple extent entries may be entered 
commas or on different lines. Commas 
ignored. 

on a single line separated by 
at the end of a line are 

• Multiple extents for the same volume must be entered in numerically 
ascending order; for example: 

20 400, 600 80 

These extents are valid for a 2314 device. 

72 IBM VM/SP CMS Command and Macro Reference 



DLBL 

• When you enter multivolume extents, you must specify the mode letter 
and logical unit associated with each disk that contains extents; 
extents for each disk must be entered consecutively. For example: 

assgn sys001 b 
assgn sys002 c 
assgn sys003 d 
dlbl file1 b (extent sys001 
DMSDLB331R ENTER EXTENT SPECIFICATIONS: 
100 60, 400 80, 60 40 d sys003 
200 100 c sys002 
400 100 c sys002 

(null line) 

specifies extents on disks accessed at modes B, C, and D. These 
disks are assigned to the logical units SYS001, SYS002, and SYS003. 
Since B is the mode specified on the DLBL command line, it does not 
need to be respecified along with the extent information. 

• A DASD volume must be mounted, accessed, and assigned for each disk 
mode referenced in an extent. 

When you are finished entering extent information, you must enter a 
null line to terminate the DLBL command sequence. If you do not, an 
error may result and you will have to reenter the DLBL command. If you 
make any error entering the extents, you must reenter all the extent 
information. 

The DLBL command does not check the extents to see whether they are 
on cylinder boundaries or whether they are entered in the proper 
sequence. If you do not enter them correctly, the access method services 
DEFINE function will terminate with an error. 

:MS assigns sequence numbers to the extents according to the order in 
which they were entered. These sequence numbers are listed when you use 
the LISTDS command with the EXTENT option. 

In order to display the actual extents that were entered for a VSAM 
data set at DLBL definition time, the following commands may be entered: 

DLBL (EXTENT) or QUERY DLBL EXTENT 

Either of these commands will provide the following information to 
the user: 

DDNA ME 

MODE 

LOGU NIT 

EXTENT 

The VSE filename or OS ddname. 

The eMS disk mode identifying the disk on which the extent 
resides. 

The VSE logical unit specification (SYSXXX). This operand 
will be blank for a data set defined while in CMS/OS 
environment; that is, the SET DOS ON command had not been 
issued at DLBL definition time. 

Specifies the relative starting track number and number of 
tracks for each extent entered for the given dataset ddname. 

If no DLBL definitions with extent information are active, the 
following message is issued: 

DMSDLB324I NO USER DEFINED EXTENTS IN EFFECT 

Section 2. CMS Commands 73 



DLBL 

lQ~NIllIlHQ ~Y1!11Q1Y~~ y§!~ ~!TE!l~: When you want to execute a program 
or use access method services to reference an existing multivolume VSAM 
data set, you may use the MULT option on the DLBL command that 
identifies the file. 

In many situations, VSE/VSAM does 
!~~LY~!~ g~2g~gm~~f~§ B~f~~~£~ for 
EXTENT information is required. 

not require this information. See 
information on when this type of 

When you use the MULT option, you are prompted to enter additional 
disk mode letters, as follows: 

assgn sysO 01 c 
assgn sysOO 2 d 
assgn sys003 e 
assgn sys004 f 
ass gn s y sO 0 5 9 
dlbl infile c (mult sys001 
DMSDLB330R ENTER VOLUME SPECIFICATIONS: 
d sys002, e sys003 , f sys004 
g sys005 

(null line) 

The above identifies a file that has extents on disks accessed at modes 
C, D, E, F, and G. These disks have been assigned to the logical units 
SYS001, SYS002, SYS003, SYS004, and SYS005. The rules for entering 
multiple extents are: 

• All disks must be mounted, accessed, and assigned when you issue the 
DLBL command. 

• You must not repeat the mode letter and logical unit of the disk that 
is entered on the DLBL command line (C in the above example). 

• If you enter 
t hey must be 
ignored. 

more than one mode letter and logical unit 
separated by commas; trailing commas on 

on a line, 
a line are 

• A maximum of nine disks may be specified you do not need to specify 
them in alphabetical order. 

You must enter a null line to terminate the 
finished entering extents; if not, an error may 
reenter the entire command sequence. 

command when 
result and 

you are 
you must 

In order to display the volumes on which all multivolume data sets 
reside, the following commands are issued: 

DLBL (MULT) or QUERY DLBL MULT 

rhe following information concerning multiple volume datasets is 
provided: 

DDNAME 

MODE 

LOGUNIT 

The VSE filename or OS ddname. 

The CMS disk mode identifying one of the disks on which the 
dataset resides. 

The VSE logical unit specification (SYSxxx). This operand 
will be blank for a data set defined while in CMS/OS 
environ~ent; that is, the SET DOS ON command had not been 
issued at DLBL definition time. 

74 IBM VM/SP CMS Command and Macro Reference 



DLBL 

If no DLBL definitions with multiple volume specifications are 
active, the following message is issued: 

DMSDLB324I NO USER DEFINED MULTS IN EFFECT 

g~!!2 !~!~ ~!I!1QGS: There are two special ddnames you must use to 
identify a VSAM master catalog and job catalog: 

IJSYSCT 

IJSYSUC 

identifies the master catalog when you initially define it 
(using AMSERV), and when you begin a terminal session. You 
should use the PERM option when you define it. 

You must assign the logical unit SYSCAT to the disk on which 
the master catalog resides. If you are redefining a master 
catalog that has already been identified, you may omit the 
SYSCAT option on the DLBL command line. 

identifies a job catalog to be used for subsequent AMSERV jobs 
or VSAM programs .• 

Any programmer logical unit may be used to assign a job 
catalog. 

Only one VSAM catalog is ever searched when a VSAM function is 
performed. If a job catalog is defined, you may override it by using 
the CAT option on the DLBL command for a data set. The following DLBL 
command sequence illustrates the use of catalogs: 

assgn syscat c 
dlbl ijsysct c dsn mastcat (perm syscat 

identifies the master catalog, MASTCAT, for the terminal session. 

assgn sys010 d 
dlbl ijsysuc d dsn mycat (perm sys010 

identifies the job (user) catalog, MYCAT, for the terminal session. 

assgn sys100 e 
dlbl intest1 e dsn test case (vsam sys100 

identifies a VSAM file to be used in a program. It is cataloged in the 
job catalog, MYCAT. 

assgn sys1 0 1 f 
dlbl cat3 f dsn testcat (cat ijsysct sys101 

identifies an additional user catalog, which has an entry in the master 
catalog. Since a job catalog is in use, you must use the CAT option to 
indicate that another catalog, in this case the master catalog, should 
be used. 

dlbl infile f dsn test input (cat cat3 sys101 

identifies an input file cataloged in the user catalog TESTCAT, which 
was identified with a ddname of CAT3 on the DLffL command. 

The selection of a VSAM catalog for AMSERV jobs and VSAM programs 
runn ing 'in CMS is su mmarized in Figure 7. 

Section 2. CMS Commands 75 



DLBL 

NO 

NO 

USE THE 
MASTER 

CATALOG 

YES 

YES 

USE THE 
CATALOG 

DEFINED BY 
THAT DDNAME 

USE THE 
JOB CATALOG 

Figure 1. Determining Which VSAM Catalog to Use 

1. You may use the DLBL command to identify all access method services 
in~ut and output files, and to identify all VSAM input and output 
files referenced in programs. 

For all other file definitions, including as or CMS disk files 
referenced in programs that use VSAM data management, you must use 
the FILEDEF command. 

File definition statements, either DLBL or FILEDEF, are not always 
required by VSAM. For more information on file definition 
requirements, see !SEL1§!~ f~gg~g!!~£~§ Rg!gf~n£~. 

2. A DLBL ddname may have a maximum of seven characters. If you have 
donames in your programs that are eight characters long, only the 
first seven characters are processed when the programs are ~xecuted 
in CMS. If you have two ddnames with the same first seven 
characters and you attempt to execute this program in CMS, you will 
receive an open error when the second file is opened. You should 
recompile these programs providing unique seven-character ddnames. 

3. If you release a disk for which you have a DLBL definition in 
effect, you should clear the DLBL definition before you execute a 
VSAM program or an AMSERV command. CMS checks that all disks for 
which there are DLBL definitions are accessed, and issues error 
message DMSSTT069E if any are not. 

76 IBM VM/SP CMS Command and Macro Reference 



/ 

DLBL 

~E~~1111~~ !SA~ E!lEMl INlQ~~!IIQM: You may specify extent information 
when you use the access method services control statements DEFINE SPACE, 
DEFINE MASTERCATALOG, DEFINE USERCATALOG, DEFINE CLUSTER (UNIQUE); or 
when you use the IMPORT or IMPORTRA functions for a unique file. Space 
allocation is made only for primary allocation amounts. 

In many situations, VSE/VSAM does not 
See !~EL!~!~ fI~g!S~~~~ ~~!~I~~£~ for 
information is required. 

require EXTENT 
information on 

information. 
when E·XTENT 

When you enter the EXTENT option of the DL6L command, you are 
prompted to enter the disk extents for the specified file. You must 
enter extent information in accordance ~ith the following rules: 

• For count-key-data devices, you must specify the starting track 
numter and number of tracks for each extent, as follows: 

19 38 

This extent allocates 38 tracks, beginning with the 19th track, on a 
3330 device. 

• For fixed-block devices, you must sFecify the starting block number 
and the number of blocks for each extent. The following example 
allocates 200 blocks, starting at block number 352, on a fixed-block 
device. 

• 

• 

352 200 

Because VSAM rounds the starting block to the next highest cylinder 
boundary, it is advisable to specify the starting block on a cylinder 
boundary. 

All count-key-data extents must begin and end on cylinder boundaries, 
reqardless of whether the AMSERV file contains extent information in 
terms of cylinders, tracks, or Iecords. 

Multiple extent entries may be entered 
commas or on different lines. Commas 
ignored. 

on a single line separated by 
at the end of a line are 

• Multiple extents for the same volume must be entered in numerically 
ascending order; fer example: 

20 400, 6CO 80 

These extents are valid for a 2314 device. 

• When you enter multivolume extents, you must specify the mode letter 
for extents on additional disks; extents for each disk must be 
entered consecutively. For example: 

dlbl file1 b (extent 
tMSDLB331R ENTER EXTENT SPECIFICATIONS: 
100 60, 400 80, 60 40 d 
200 100 c 
400 100 c 

(null Ii ne) 

specifies extents on disks accessed at modes B, C, and D. Since B is 
the mode specified on the DLBL command line, it does not need to be 
respecified along with the extent information. 

• A DASD volume must be mounted and accessed for each mode referenced 
in an extent. 

Section 2. CMS Commands 77 



OLBL 

When you are finished entering extent information, you must enter a 
null line to terminate the OLBL command sequence. If you do not, an 
error may result and you will have to reenter the entire OLBL command. 
If you make any error entering the extents, you must reenter all the 
extent informatien. 

The OLBL command dces not check the extents to see if they are on 
cylinder boundaries or that they are entered in the proper sequence. If 
you do not enter them correctly, the access method services DEFINE 
function terminates with an error. 

CMS assigns sequence numbers to the extents according to the order in 
which they were entered. These sequence numbers are listed when you use 
the LISTDS command with the EXTENT option. 

IDENTIFYING MULTIVOLUME VSAM ~X~£!I~: When you want to execute a program 
or-use-access-method-servIces to reference an existing multivolume VSAM 
data set, you may use the MULT option on the DLBL command that 
identifies the file. 

In many situations, VSE/VSAM does 
Y~~Y§A~ R£Qg~~~!~~§ Eef~~~~£~ for 
EXTENT information is required. 

net require this information. See 
information on when this type of 

When you use the MULT option, you are Frompted to enter additional 
disk mode letters, as follows: 

dlbl infile c (mult 
OMSDLB330R ENTER VOLUME SPECIFICATIONS: 
d, e, f 
9 

(null line) 

The above example identifies a file that has extents on disks accessed 
at modes C, D, E, F, and G. The rules fer entering multiple extents are: 

• All disks must be mounted and accessed when you issue the DLBL 
command. 

• You must not repeat the mode letter of the disk that is entered on 
the DLBL command line (C in the above example) • 

• If you enter more than one mode letter on a line, they must be 
separated by commas; trailing commas on a line are ignored. 

• A maximum of nine disks may be specified; you do not need to specify 
them in alphabetical order. 

You must enter a null line to terminate the 
finished entering extents; if not, an error may 
re-enter the entire command sequence. 

command when 
result and 

you are 
you must 

USING VSAM CATALOGS: There are two special ddnames you must use to 
identify-a-VSAM-master cataloq and job catalog: 

IJSYSCT 

IJSYSUC 

identifies the master catalog, both when you initially define 
it (using AMSERV) and when you begin a terminal session. You 
should use the PERM option when you define it. 

identifies a job catalog to hi used for subsequent AMSERV jobs 
or VSAM programs. 

78 IBM VM/SP CMS Command and Macro Reference 



DLBL 

Only one VSAM catalog is ever searched when a VSAM function is 
performed. If a job catalog is defined, you may override it by using 
the CAT cption on the DLBL command for a data set. The following DLBL 
command sequence illustrates the use of catalogs: 

dltl ijsysct c dsn mastcat (perm 

identifies the master catalog, MASTCAT, for the terminal session. 

dlbl ijsysuc d dsn mycat (perm 

identifies the job (user) catalog, MYCAT, for the terminal session. 

dlbl intest1 e dsn test case (vsam 

identifies a VSAM file to be used in a program. It is cataloged in the 
job catalog, MYCAT. 

dlbl cat3 dsn testcat (cat ijsysct 

identifies an additional user catalog, which has an entry in the master 
catalog. Since a job catalog is in use, you must use the CAT option to 
indicate that another catalog, in this case the master catalog, should 
be used. 

dltl infile e dsn test input (cat cat3 

identifies an input file cataloged in the user catalog TESTCAT, which 
was identified with a ddname of CAT3 on the DLBL command. 

The selection of a VSAM catalog for AMSERV jobs and VSAM programs 
running in CMS is summarized in Figure 7. 

If the DLBL command is issued with no operands, the current DLBL 
definiticns are displayed at your terminal: 

ddname1 device1 (fn1 ft1 fm1 (datasetname1]] 

ddnamen devicen (fnn ftn fmn (datasetnamen]] 

DMSDLB220R ENTER DATA SET NAME: 

This message is displayed when you use the DSN? form of the DLBL 
ccmmand. Enter the exact DOS or OS data set name. 

DMSDLB320I MAXIMUM NUMBER OF DISK ENTRIES RECORDED 

This message indicates that nine volumes have been specified for a 
VSAM data set# which is the maximum allowed under CMS. 

DMSDLB3211 MAXIMUM NUMBER OF EXTENTS RECORDED 

This message indicates that 16 extents on a sinqle disk or minidisk 
have been specified for a VSAM data space, catalog, or unique data 
set. This is the maximum number of extents allowed on a minidisk 
or disk. 

Section 2. CMS Commands 79 



DLBL 

DMSDLB322I DDNAME 'ddname' NOT FOUND; NO CLEAR EXECUTED 

This message indicates that the clear function was not performed 
because no DLBL definition is in effect for the ddname. 

DMSDLB3231 {MASTERIJOB} CATALOG DLBL CLEARED 

This message indicates that either the master catalog or job 
catalog has been cleared as a result of a clear request. 

You also receive this message if you issue a DLBL * CLEAR command, 
and any DLBL definition is in effect for IJSYSCT or IJSYSUC that 
was not entered with the PERM option. 

DMSDLB330R ENTER VOLU~E SPECIFICATIONS: 

This message prompts you to enter volume specifications for 
existing multivolume VSAM files. (See "Identifying Multivolume VSAM 
Extents" in the aFpropriate usage section.) 

DMSDLB331R ENTER EXTENT SPECIFICATIONS: 

This message prompts you to enter the data set extent or extents of 
a new VSAM data space, catalog or unique data set. (See 
"Specifying VSAM Extent Information" in the appropriate usage 
section.) 

DMSDLB001E NO FILENAME SPECIFIED RC=24 
DMSDLB003E INVALID OPTION 'option' RC=24 
OMSDLB005E NO '{CATIBUFSP}' SPECIFIED RC=24 
DM~DLB023E NO FILETYPE SPECIFIED RC=24 
DMSDLB048E INVALID MODE 'mode' RC=24 
DMSDLB050E PARAMETER MISSING AF!ER DDNdME RC=24 
DMSDLB065E 'option' OPTION SPECIFIED TWICE RC=24 
DMSDLB066E 'option' AND 'option' ARE CONFLICTING OPTIONS RC=24 
DMSDLB070E INVALID PARAMETER 'parameter' RC=24 
DMSDLB086E INVALID DDNAME 'ddname' RC=24 
DMSDLB109S VIRTUAL STORAGE CAPACITY EXCEEDED RC=104 
DMSDLB221E INVALID DATA SET NAME RC=24 
DMSDLB301E 'SYSxxx' NOT ASSIGNED FOR DISK 'fm' RC=36 
DMSDLB302E NO SYSXXX OPERAND ENTERED RC=24 
DMSDLB304E INVALID OPERAND VALUE 'value' RC=24 
DMSDLB305E INCOMPLETE EXTENT RANGE RC=24 
DMSDLB306E SYSXXX NOT ASSIGNED FCR 'IGNORE' RC=36 
DMSDLB307E CATALOG DDNAME 'ddname' NOT FOUND RC=24 
DMSDLE308E 'mode' DISK IN {CMSINON-CMS} FORMAT; INVALID FOR 

{NON-CMSICMS} .DATASEI RC=24 

80 IBM VM/SP CMS Command and Macro Reference 



tOSLIB 

DOSLIB 

Use the DOSLIB command to delete, compact, cr list information about the 
executatle phases in a CMS/DOS phase library. The format of the DOSLIB 
command is: 

r----------------------------------------------------------------------, 
DOSLIE I DEL libname phasename1 r ••• phasenamen] I' 

COM P Ii bname 

MAP lib name ( (o?tions ••• [) ]] 

DEL 

Q~!iQ!!§: 
r , 
ITERM , 
IQ1.§JS I 
,PRINT, 
L .J 

deletes phases from a CMS/DOS phase library. The library is 
not erased when the last pbase is deleted from the library, 

COMP compacts a CMS/DOS phase library. 

MAP lists certain information about the phases of 
Available information provided is phase name, 
relative location in the library. 

a DOSLIB. 
size, and 

libname is the filename of a C~S/DOS phase library. The filetype must 
be DOSLIB. 

phasename1 ••• phaseDamen 
is the name of one or more phases that exist in the eMS/DOS 
phase library. 

~!!: Q.l2ti.Q'!!'§= The followinq options specify t.he output device for the 
MAP function. If more than one option is specified, only the first 
option is used. 

TERM displays the MAP output at the terminal. 

writes the MAP output to a CMS disk file with the file 
identifier of 'litname MAP A5'. If a file with that name 
already exists, the old file is erased. 

PRINT spools the MAP output to the virtual printer. 

1. The CMS/DOS environment does not have to be active when you issue 
the DOSLIB ccmmand. 

2. ~hases may cnly be added to a DOSLIB by the CMS/DOS linkage editor 
as a result of the DOSLKED command. 

Section 2. CMS Commands 81 



DOSLIB 

3. In order to fetch a program phase from a DOSLIB for execution, you 
must issue the GLOBAL command to identify the DOSLIE. When a fETCH 
command or dynamic fetch from a program is issued, all current 
DOSLIBs are searched for the specified phases. 

4. If DOSLlBs are very large, or there are many of them to search, 
program execution is slowed down accordingly. To avoid excessive 
execution time, you should keep your DOSLlBs small and issue a 
GLOBAL command specifying only those libraries that you need. 

When you use the TERM option on the DOSLIB MAP command line, the 
followinq is displayed: 

PHASE 
name1 

INDEX BLOCKS 
lac size 

DMSDSL002E FILE 'fn DOSLIB' NOT FOUND RC=28 
DMSDSL003E INVALID OPTION 'option' RC=24 
DMSDSL013W PHASE 'phase' NOT FOUND IN LIBRARY 'fn DeSLIB fm' RC=4 
DMSDSL014E INVALID FUNCTION 'function' RC=24 
DMSDSL031E DISK 'mode' IS READ/ONLY RC=36 
DMSDSL046E NO LIBRARY NAME SPECIFIED RC=24 
DMSDSL041E NO FUNCTION SPECIFIED RC=24 
DMSDSL069E DISK 'mode' NOT ACCESSED RC=36 
DMSDSL010E INVALID PARA~ETER 'parameter' RC=24 
DMSDSL098E NO PHASE NAME SPECIFIED RC=24 
DMSDSL104S ERROR 'nn' READING FILE 'fn DOSLIB fm' FROM DISK RC=100 
DMSDSL105S ERROR 'nn' WRITING FILE 'fn DOSIIB fm' ON DISK RC=100 
DMSDSL213W LIBRARY 'fn DOSLIB fm' NOT CREATED RC=4 

82 IBM VM/SP CMS Command and Macro Reference 



DOSLKED 

DOSLKED 

Use the DOSLKED command in CMS/DOS to link-edit TEXT files from CMS 
disks or object modules from VSE private or system relocatable libraries 
and place them in executable form in a CMS phase library (DOSLIB). The 
format of the DOSLKED command is: 

r------------------
, 1 r , 
1 DOSLKED I fn Ilibnamel [ (options ••• [) ]] 
I I I!n , 
I ,L .J 

, I 
I , r , , , IDI.§!S I 

I PRINT, 
I TERM, 
L .J 

, , 
I I 
I I , , 
L 

fn specifies the name of the source file or module to be 
link-edited. CMS searches for: 

1. A CMS file with a filetype of DOSLNK 

2. A module in a private relocatable library (if IJSYSRL has 
been defined) 

3. A CMS file with a filetype of TEXT 

4. A module in the system relocatable library (if a mode was 
specified on the SET DOS ON command line) 

libname designates the name of the DOStIB where the link-edited phase 
is to be written. The filetype is DOStIB. If libname is not 
specified, the default is fn. The output filemode of the 
DOSLIB is determined as follows: 

• If libname DOSLIB exists on a read/write disk, that 
filemode is used and the output is appended to it. 

• If fn DOSLNK exists on a read/write disk, libname DOSLIB is 
written to that disk. 

• If fn DOSLNK exists on a read-only extension of a 
read/wcite disk, libname DOSLIB is written to the parent 
disk. 

• If none of the above apply, libname DOSLIB is written to 
your A-disk. 

QE1iQ~§: Only one of the following options should be specified. If 
more than one is specified, only the first entry is used. 

writes the linkage editor map produced by the DOSLKED command 
on your A-disk into a file with the filename of fn and a 
filetype ~f MAP. This is the default option. 

section 2. CMS Commands 83 



DOSLKED 

PRINT spools the linkage editor map to the virtual printer. 

TERM displays the linkage editor map at your terminal. 

Note: All error messages are sent to the terminal as well as to the 
~~~~ified device. 

1. You can create a eMS file with a filetype of DOSLNK to co~tain
linkage editor control statements and, optionally, CMS text files.

2. If you want to link-edit a module from a private relocatable
library, you must issue an ASSGN command for the logical unit
SYSRLB and enter a DLBL command using a ddname of IJSYSRL to
identify the library:

assgn sysrlb c
dlbl ijsysrl c dsn reloc lib (sysrlb

If you have defined a private relocatable library but do not want
it to be searched, enter:

assgn sysrlb ign

to temporarily bypass it.

3. CMS TEXT files may also contain linkage editor control statements
INCLUDE, PHASE, and ENTRY. The ACTION statement is ignored when a
TEXT file is link-edited.

4. To access modules on a VSE system residence volume, you must have
specified the mode letter of the system residence on the SET DOS ON
command line:

set dos on z

5. The search order that CMS uses to locate object modules to be
link-edited is:

a. The specified object module on the VSE private relocatable
library, if one is available

b. CMS disks for a file with the specified filename and with a
filetype of TEXT

c. The specified object module on the VSE system relocatable
library, if it is available

6. When a phase is added to an existing DOSLIB, it is always written
at the end of the library. If a phase that is being added has the
same name as an existing phase, the DOSLIB directory is updated to
point to the new phase. The old phase is not deleted, however; you
should issue the DOSLIB command with the COMP 'option to compress
the space.

If you run out of space in a DOSLIB while you are executing the
DOSLKED command, you should reissue the DOSLKED command specifying
a different DOSLIB, or compress the DOSLIB before attempting to
reissue the DOSLKED command.

1!~~!Q~ ~Q!!Q~ ~Q~IRQ1 ~I!I~~~!I~: The CMS/DOS linkage editor recognizes
and supports the VSE linkage editor control statements ACTION, PHASE,
ENTRY, and INCLUDE. The eMS/DOS linkage editor ignores:

84 IBM VM/SP CMS Command and Macro Reference

DOSLKED

• The SVA operand of the PHASE statement
• The F+address form for specifying origin on the PHASE statement
• The BG and Fn operands of the ACTION statement

The S-form of specifying the origin on the PHASE statement corresponds
to the CMS user area under CMS/DOS. If a default PHASE statement is
required~ the origin is assumed to be S. The PBDY operand of the PHASE
statement indicates that the phase is link-edited on a 4K page boundary
under CMS/DOS as opposed to 'a 2K page boundary for VSE.

In VSE, an ACTION CLEAR control statement clears the unused portion
of the core image library to binary zeros. In VSE, the core image
library has a defined size, while in CMS/DOS the CMS phase library
varies in size, depending on the number of phases cataloged. Therefore,
in CMS/DOS an ACTION CLEAR control statement clears the current buffers
to binary, zeros before loading them; CMS/DOS cannot clear the entire
unused portion of the CMS phase library because that portion varies as
phases are added to and deleted from the CMS phase library. In CMS/DOS
if you want your phases cleared you must issue an ACTION CLEAR control
statement each time you add a phase to the CMS phase library.

&1~~!~]]Ql!Q~ f!~Q 11R~~: The input to the linkage editor can consist
of six card types, produced by a language translator or a programmer.
These cards appear in the following order:

f~Ig 1Y~~
ESD
SYM
TXT
RLD
REP
END

Definition
External-Symbol dictionary
Ignored by linkage editor
Text
Relocation list dictionary
Replacement of text made by the programmer
End of module

CMS/DOS supports ,these six card types in the same manner that VSE
does.

When you use the TERM option of the DOSLKED command, the linkage editor
map is displayed at the terminal.

21011 INVALID OPERATION IN CONTROL STATEMENT

This message indicates that a blank card was encountered in the
process of link-editing a relocatable module. This message also
appears in the MAP file. The invalid card is ignored and
processing continues.

DMSDLK001E NO FILENAME SPECIFIED RC=24
DMSDLK003E INVALID OPTION 'option' RC=24
DMSDLK006E NO READ/WRITE DISK ACCESSED RC=36
DMSDLK007E FILE 'fn ft fm' IS NOT FIXED, 80-CHAR. RECORDS ~C=32
DMSDLK070E INVALID PARAMETER 'parameter' RC=24
DMSDLK099E CMS/DOS ENVIRONMENT NOT ACTIVE RC=40
DMSDLK104S ERROR Inn' READING FILE 'fn ft fm' FROM DISK RC=100
DMSDLK105S ERROR 'nn' WRITING FILE 'fn ft fm' ON DISK RC=100
DMSDLK210E LIBRARY 'library' IS ON READ-ONLY DISK RC=36
DMSDLK245S ERROR 'nnn' ON PRINTER RC=100

Section 2. CMS Commands 85

DROPBUF

DROPBUF

Use the DROPBUF command to eliminate the most recently created program
stack buffer. The format of the DROPBUF command is:

r--
\../

~---------------------------------------,
t DR OPEUF
L--

n ,

n indicates the number of the first program stack buffer you
want to drop. CKS drops the indicated buffer and all buffers
created after it. If n is not specified, only the most
recently created buffer is dropped.

Note that you can specify a number with DROPBUF. For example, if you
issu e:

DBOPBUF 4

CMS eliminates program stack buffer 4 and all program stack buffers
created after it. Thus, if there were presently six program stack
buffers, CMS would eliminate program stack buffers 6, 5, and 4. If you
issued tROPBUF without specifying n, only Frogram stack buffer 6 would
be eliminated.

None.

If an error occurs in DROPBUF processing, Register 15 contains one of
the follcwing nonzero return codes:

Return
~QQ§

1
2

Invalid buffer number specified
Specified buffer does not exist

86 IBM VK/SP CMS Command and Macro Reference

DSERV

DSERV

Use the DSERV command in eMS/DOS to obtain information that is contained
in VSE private or system libraries. The format of the DSERV command is:

r------------
I
I

DS ERV I
I
I
I
I
I
I
I
I

r
I

CD I PHASE {name

RD
SD
PD
TD
ALL

L

r , ,
Innl I
Ill!} I
L .I .I

[d2 ••• dn] [(options ••• [)]]

Q£!i.Ql!§:
r ,
IQ!g I
ITERM I
I PRINT I
L .I

[SORT]

eD specifies that information concerning one or more types of
RD directories is to be displayed or printed. The directory
SD types that can be specified are: CD (core image library),
PD RD (relocatable library), SD (source statement library),
TD PD (procedure library), TD (transient directory) , and
ALL ALL (all directories) •

There is no default value. The private libraries take
precedence over system libraries.

PHAS E name

nn

specifies the name of the phase to be listed. If the
phasename ends with an asterisk, all phases that start with
the letters preceding the asterisk are listed. This operand
is valid only for CD.

is the displacement within the phase where the versioq and
level are to be found (the default is 12).

[d2 ••• dn]
indicates additional libraries whose directories are to be
listed. (S ee Usage Note 1.)

212~ writes the output on your eMS A-disk to a file named DSERV MAP
A5. This is the default value if TERM or PRINT is not
specified.

TERM displays the output at your terminal.

PRINT spools the output to the system printer.

SORT sorts the entries for each library alphamerically; otherwise,
the order is the order in which the entries were cataloged.

Section 2. eMS Commands 87

DSERV

1. You may specify more than one directory on DSERV command line; for
example:

dserv rd sd cd phase $$bopen (term

displays the directories of the relocatable and source statement
libraries, as well as the entry for the phase $$BOPEN from the core
image directory.

You can specify only one phasename or phasename* at a time,
however. If you specify more than one PHASE operand, only the last
one entered is listed. For example, if you enter:

dserv cd phase cor* phase idc*

the file DSERV MAP contains a list of all phases that begin with
the characters IDC. The first phasename specification is ignored.

2. If you want to obtain information from the directories of private
source statement library directories, relocatable library
directories, cr core image library directories, the libraries must
be assigned and identified (via ASSGN and DLBL commands) when the
DSERV command is issued. Otherwise, the system library directories
are used. System directories are made available when you specify a
mode letter on the SET DOS ON command line.

3. The current assignments for logical units are ignored by the DSERV
command; output is directed o[ly to the output device indicated by
the option list.

When you use the TERM option of the DSERV command, the contents of the
specified directory are displayed at your terminal.

DMSDSV003E INVALID OPTION 'option' RC=24
DMSDSV021W NO TRANSIENT DIRECTORY RC=4
DMSDSV022W NO CORE IMAGE DIRECTORY RC=4
DMSDSV023W NO RELOCATABLE DIRECTORY RC=4
DMSDSV024W NO PROCEDURE DIRECTORY RC=4
DMSDSV025W NO SOURCE STATEMENT DIRECTORY RC=4
DMSDSV026W 'phase' NOT IN LIBRARY RC=4
DMSDSV027E INVALID DEVICE Inn' RC=24
DMSDSV027W NO PRIVATE CORE IMAGE LIBRARY RC=4
DMSDSV028W NO {PRIVATEISYSTEM} TRANSIENT DIRECTORY ENTRIES RC=4
DMSDSV047E NO FUNCTION SPECIFIED RC=24
DMSDSV065E 'option' O~TION SPECIFIED TWICE RC=24
DMSDSV066E 'option' AND 'option' ARE CONFLICTING OPTIONS RC=24
DMSDSV070E INVALID PARAMETER 'parameter' RC=24
DMSDSV095E INVALID ADDRESS 'address' RC=24
DMSDSVC99E CMS/DOS ENVIRONMENT NOT ACTIVE RC=40
DMSDSV105S ERROR Inn' WRITING FILE 'DSERV MAP A5' ON DISK RC=24
DMSDSV245S ERROR 'nnn' ON PRINTER RC=100
DMSDSV411S INPUT ERROR CODE 'nne ON {SYRES,SYSRLB} RC=24

88 IBM VM/SP CMS Command and Macro Reference

EDIT

EDIT

Use the EDIT command to invoke the VM/SP System Product editor in eMS
editor (EDIT) compatibility mode. Use tbe editor to create, modify, an~
manipulate eMS disk files. In EDIT compatibility mode, you may execute
both EDIT and XEDIT subcommands. For complete details on EDIT
compatibility mode, refer to the publication !~L§f: §I§1g~ ~!g~Y£1
~,g!ig!; ~.Q1!!1!!~nd ~.!!g !l~£!2 Re!~!~.!!£~, "Appendix B".

To invoke only the eMS editor, refer to the "Usage Note" below.

Once the eMS editor has been invoked, you may only execute EDIT
subcommands and EDIT macro requests, and enter data lines into the disk
file. A limited number of eMS commands may be executed in the eMS
subset mode. Enter eMS subset mode from the edit environment by issuing
the EDIT subcommand, eMS.

You can return control to the eMS environment by issuing the EDIT
subcommands FILE cr QUIT.

For complete details on the EDIT subcommand formats and usage, see
"Section 3. EDIT Subcommands and Macros." For tutorial information on
using the CMS editor, including examples, see the !~L§f ~~§ ~§~~~§
Guid~. The format of the EDIT command is:

r-- ----------------,
, Edit, fn ft [fro] (opticns ••• ()]]

I' * , ,
, I
f ,
L

fn ft

fm

..QJ2!ion.!p
(LRECL nn]
(NODISP]

is the filename and filetype of the file to be created or
edited. If a file with the specified filename and filetype
does not exist, the CMS editor assumes that you want to create
a new file, and after you issue the INPUT subcommand, all data
lines you enter become input to the file. If a file with the
specified filename and filetype exists, JOU may issue EDIT
subcommands to modify the specified file.

is the filemode of the file to be edited, indicating the disk
on whicb the file resides. The editor determines the filemode
of the edited file as follows:

!gi!!.!!g ~~i§ti~g !i!~~: If the file does not reside on your
A-disk or its extensions, you must specify fm.

When you specify fm, the specified disk and its extensions are
searche1. If a file is found on a read-only extension, the
filemode of the parent disk is saved; when you issue a FILE or
SAVE subcommand, the modified file is written to the parent
disk.

If you specify fm as an asterisk (*) all accessed disks are
searched for the specified file.

£!~~1i.!!g ng! !i1~§: If you do not specify fm, the new file is
written on your A-disk when you issue the FILE or SAVE
subcom mand s.

Section 2. eMS Commands 89

EDIT

LRECL nn is the record length of the file to be created or edited.
Use this option to override the default values supplied by
the editor, which are determined as follows:

~gi~ing ~isi~Ba Fil~§: Existing record length is kept
regardless of format. If the file has variable-length
records and the existing record length is less than the
default record length, the default record length is used.

££~~~ing Ne~ Files: All new files have a record length of
80, with the following exceptions:

!il~~YE~
LISTING
SCRIPT,VSBDATA
FREEFORT

LRE£~
121
132

81

The maximum record length supported by the editor is 160
characters.

NODISP forces a 3270 display terminal into line (typewriter) mode.
When the NODISP option is in effect, all subcommands that
control the display as a 3270 terminal such as SCROLL,
SCROLLUP, and FORMAT (and CHANGE with no operands) are made
invalid for the edit session.

Note: It is recommended that the NODISP option always be
i~;~ when editing on a 3066.

When you issue the EDIT command, an EXEC named EDIT EXEC S2 is executed.
This EXEC invokes the VM/SP System Product editor in EDIT compatibility
mode.

If you want to invoke only the CMS editor on a permanent basis, your
system programmer must rename this EXEC. Then, when you issue the EDIT
command, the EXEC will not execute and the CMS editor will be invoked.

If you want to invoke the CMS editor only for a particular
session, specify OLD on the EDIT command line. CMS passes the
parameter to EDIT EXEC S2 and only the CMS editor is invoked.

NEW FILE:

The specified file does not exist.

EDIT:

edit
OLD

The edit environment is entered. You may issue any valid EDIT
subcommand or macro request.

INPUT:

The input environment is entered
REPLACE or INPUT with no operands.
accepted as input to the file.

by issuing the EDIT subcommands
All subsequent input lines are

90 IBM VM/SP CMS Command and Macro Reference

EDIT

DMSEDI003E INVALID OPTION 'option' RC=24
DMSEDI024E FILE 'EDIT CMSUT1 fm' ALREADY EXISTS RC=28
DMSEDI029E INVALID PARAMETER 'parameter' IN THE OPTION 'LRECL' FIELD RC=24
DMSEDI044E RECORD LENGTH EXCEEDS ALLOWABLE MAXIMUM RC=32
DMSEDI054E INCOMPLETE FILEID SPECIFIED RC=24
DMSEDI016E ACTUAL RECORD LENGTH EXCEEDS THAT SPECIFIED RC=40
DMSEDI104S ERROR 'nn' READING FILE 'fn ft fm' FROM DISK RC=100
DMSEDI105S ERROR 'nn' WRITING FILE 'fn ft fm' ON DISK RC=100
DMSEDI111S ERROR WRITING TO DISPLAY TERMINAL RC=100
DMSEDI132S FILE 'fn ft fm' TOO LARGE RC=88
DMSEDI143S UNABLE TO LOAD SAVED SYSTEM OR LOAD MODULE RC=40
DMSEDI144S REQUESTED FILE IS IN ACTIVE STATUS

Section 2. CMS Commands 91

ERASE

ERASE

Use the ERASE command to delete ane or more CMS files from a read/write
disk. The format of the ERASE command is:

r----
I ER ASE , , ,
I ,
'------

fn

ft

fm

TYPE

((options ()]]

r ..,
IType ,
'!!Q~.Y~§!I
L .J

~

I
I ,
I
I
I

is the filename of the file(s) to be erased. An asterisk
coded in this position indicates that all filenames are to be
used. fn must be specified r either with a name or an
asterisk.

is the filetype of the file(s) to be erased. An asterisk
coded in this position indicates that all filetypes are to be
used. This field must be specifiedr either with a name or an
asterisk.

is the filemode of the files to be erased. If this field is
omitted r only the A-disk is searched. An asterisk coded in
this position indicates that files with the specified filename
and/or filetype are to be erased from all read/write disks.

displays at the terminal the file identifier of each file
erased.

file identifiers are not displayed at the terminal.

1. If you specify an asterisk for both filename and filetype you must
specify both a filemode letter and number; for example:

erase * * as

2. To erase all files on a particular disk r you can use the FORMAT
command to reformat itr or you can access the disk using the ACCESS
command with the ERASE option.

3. If an asterisk is entered as the filemode r then either the filename
or the filetype or both must be specified by name.

92 IBM VM/SP eMS Command and Macro Reference

ERASE

If you specify the TYPE option, the file identification of each file
erased is displayed. For example:

erase oldfile temp (type

results in the display:

OLDFILE TEMP Al
R;

DMSE RS 00 2E FILE [' fn [ft [fm)]') NOT FOUND RC=28
DMSEBS003E INVALID OPTION 'option' RC=24
DMSERS031E DISK 'mode' IS READ/ONLY RC=36
DMSERS048E INVALID MODE 'mode' RC=24
DMSERS054E INCOMPLETE FILEID SPECIFIED RC=24
DMSERS069E DISK 'mode' NOT ACCESSED RC=36
DMSERS010E INVALID PARA~ETER 'parameter' RC=24
DMSERS011E ERASE * * [*Imode] NOT ALLOWED RC=24
DMSERS109T VIRTUAL STORAGE CAPACITY EXCEEDED

.Note: You can invoke the ERASE command from the terminal, from an EXEC
file, or as a function from a program. If ERASE is invoted as a function
or from an EXEC file that has the &CONTROL NOMSG option in effect, no
error message is issued.

Section 2. CMS Commands 93

ESERV

ESERV

Use the ESERV EXEC procedure in CMS/DOS to copy edited VSE macros from
system or private source statement E sublibraries to CMS disk files, or
to list de-edited macros. The format of the ESERV command is:

r--------------------------
I ESERV I fn
L-

fn specifies the filename of the CMS file that contains the ESERV
control statements; it must have a filetype of ESERV. The
logical unit SYSIPT must be assigned to the disk on which the
ESERV file resides. fn is also the filename of the LISTING
and MACRO files produced by the ESERV program.

1. The input file can contain any or all of the ESERV cOQtrol
statements as defined in §Yi~ 12 !he ~L!~~ !22~mbl~!.

2. You must have a read/write A-disk accessed when you use the ESERV
command.

3. To copy macros from the system source statement library, you must
have entered the CMS/DOS environment specifying the mode letter of
th~ VSE system residence. To copy from a private source statement
library, you must assign the logical unit SYSSLB and issue a DLBL
command for the ddname IJSYSSL.

4. The output of the ESERV program is directed (as in VSE) to
devices assigned to the logical units SYSLST and/or SYSPCH. If
either SYSLST .or SYSPCH is not assigned, the following files are
created:

Qni~
SYSLST
SYSPCH

QY~£Y! file
fn LISTING mode
fn MACRO mode

where mode is the mode letter of the disk on which the source file,
fn ESERV resides. If fn ESERV is on a read-only disk, the files are
written to your A-disk.

You can override default assignments made by the ESERV EXEC as
follows:

• If you assign SYSIPT to TAPE or READER, the source statements
are read from that device.

• If you assign SYSLST or SYSPCH to another device, the SYSLST or
SYSPCH files are written to that device.

5. The ESERV EXEC procedure clears all DLBL definitions, except those
entered with the PERM option.

6. If you want to use the ESERV command in an EXEC procedure, you must
use the EXEC command (because ESERV is also an EXEC).

94 IBM VM/SP CMS Command and Macro Reference

ESERV

7. When you use the ESERV control statements PUNCH or DSPCH, the ESERV
program may generate CATAL.S, END, or 1* records in the output
file. When you add a MACRO file containing these statements to a
CMS macro library using the MACLIB command, the statements are
ignored and are not read into the MACLIB member.

None. The CMS ready message indicates that the ESERV program completed
execution successfully. You may examine the SISLST output to verify the
results of the ESERV program execution.

DMSERV001E NO FILENAME SPECIFIED RC=24
DMSERV002E FILE 'fn ESERV' NOT FOUND RC=28
DMSERV006E NO READ I WRITE DISK ACCESSED RC=36
DMSERV027E INVALID DEVICE ' device' FOR SYSxxx RC=28
DMSERV037E DISK 'mode' IS READ ONLY RC=36
DMSERV070E INVALID ARGUMENT ' argument' RC=24
DMSERVC99E CMS/DOS ENVIRONMENT NOT ACTIVE BC=40

NQ1~: The ESERV EXEC calls other CMS commands to perform certain
functions, and so you may, on occasion, receive error messages that
occur as a result of those commands.

Non-CMS error messages produced by the VSE ESERV program are
described in the Qy!gg ~Q lhg QQ~VS~ !~~mble£.

section 2. CMS commands 95

EXEC

EXEC

Use the EXEC command to execute one or more CMS commands or EXEC control
statements contained in a specified CMS EXEC or EXEC2 file. The format
of the EXEC command is:

r---
I (EXec] I fn (args •••] L-_______________ _

(EXec]

fn

args

indicates that the EXEC command may be omitted if you are
executing the EXEC procedure from the CMS command environment
and have not issued the command SET IMPEX OFF.

is the filename of a file containing one or more CMS commands
and/or EXEC control statements to be executed. The filetype
of the file must be EXEC. The file can have either fixed- or
variable-length records with a logical record length not
exceeding 130 characters. A text editor or a user program can
create EXEC files. EXEC files a CMS editor creates have, by
default, variable-length, 80-character records.

are any arguments you wish to pass to the EXEC. The CMS EXEC
processor assigns arguments to special variables &1 through
&30 in the order in which they appear in the argument list.
The EXEC 2 processor assigns arguments to special variables
starting with special variable &1. With the EXEC 2 processor,
the n~~]~ of arguments is not limited. However, the number
of bytes of data you can pass in the argument list is limited.
The limit is the maximum number of bytes that can fit in a
line: 130 bytes if the command is entered frem a terminal,
255 bytes if the command is issued from a program.

"Section 5. EXEC Control Statements" contains complete descriptions
of EXEC control statements, special variables, and built-in functions.
For information on designing EXEC procedures and examples of control
word usage, see the !~~g ~~~ Qg~f~§ 2Yig~.

See y~~g E~~~ ~ E~fe~nQ~ for information about EXEC 2.

The amount of information displayed during the execution of an EXEC
depends on the setting of the &CONTROL control statement. By default,
&CONTRCL displays all CMS commands, responses, and error messages. In
addition, it displays nonzero return codes from CMS in the format:

+++ R(nnnnn) +++

where nnnnn is the return code from the CMS command.

For details, see the description of the &CONTROL control statement in
"Section 5. EXEC Centrol Statements."

The amount of information displayed during the execution of an EXEC 2
file depends on the setting of the &TRACE control statement. See l~LSP
E!~~ ~ ~ef~~~Q~ for details.

96 IBM VM/SP CMS Command and Macro Reference

DMSEXC001E NO FILENAME SPECIFIED RC=24

If the EXEC interpreter finds an error, it displays the message:

DMSEXT072E ERROR IN EXEC FILE filename, LINE nnnn - description

The possible errors, and the associated return codes, are:

Q§.§£&i.12tiQ'!!
FILE NOT FOUND
&SKIP OR &GOTO ERROR
BAD FILE FORKAT
TOO MANY ARGUMENTS
KAX DEPTH OF LOOP NESTING EXCEEDED
EEBOR READING FILE
INVALID SYNTAX
INVALID FORM OF CONDITION
INVALID ASSIGNMENT
MISUSE OF SPECIAL VARIABLE
ERROR IN &ERROR ACTION
CCNVERSION ERROR
TOO MANY TOKENS IN STATEMENT
MISUSE OF BUILT-IN FUNCTION
EeF FOUND IN LOOP
INVALID CONTROL WORD
EXEC ARITHMETIC UNDERFLOW
.EXEC ARITHMETIC OVERFLOW
SPECIAL CHARACTER IN VARIABLE SYMBOL

Return
~2g§l __
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819

If the EXEC 2 interpreter finds an error, it dis-plays the message:

DMSEXE085E ERROR IN EXEC FILE fn ft fm, LINE nnnn - description

The possible errors and the associated return codes are:

Q~ .§£&i.12.ti.Q'!!
FILE NOT FOUND
WRONG FILE FORMAT
WORD TOO LONG
STATEMENT TOO LONG
INVALID CONTROL WORD
LABEL NOT FOUND
INVALID VARIABLE NAME
INVALID FORM OF CONDITION
INVALID ASSIGNMENT
MISSING ARGUMENT
INVALID ARGUMENT
CONVERSION ERROR
NUMERIC OVERFLOW
INVALID FUNCTION NAME
END OF FILE FOUND IN LOOP
DIVISION BY ZERO
INVALID LOOP CONDITION
ERROR RETURN DURING &ERROR ACTION
ASSIGNMENT TO UNSET ARGUMENT
STATEMENT CUT OF CONTEXT
INSUFFICIENT STORAGE AVAILABLE
FILE READ ERROR nnn
TRACE ERROR nnn

Return
~Qg§l __
10001
10002
10003
10004
10005
1000E
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10019
10020
10021
10097
10098
10099

EXEC

Section 2. CMS Commands 97

EXEC

DMSEXE255T INSUFFICIENT STORAGE FOR EXEC INTERPRETER

DMSEXE175E INVALID EXEC COMMAND RC=10000

98 IBM VM/SP CMS Command and Macro Reference

RC=1009E

FETCH

FETCH

Use the FETCH command in CMS/DOS to load an executable phase- into
storage for execution. The format of the FETCH command is:

r-
I FETch phasename ((options ••• ()]]
I
I
I
I
L

optbon§:
[START]
(COMP]
[ORIGI N hexloc]

phasename is the name of the phase to be loaded into virtual storage.
CMS searches for the phase:

• In a VSE private core image library, if IJSYSCL has been
defined

• In CMS DOSLIBs that have been identified with the GLOBAL
command

• In the VSE system core image library, if you specified the
mode letter of the VSE system residence on the SET DOS ON
command line

START specifies that once the phase is loaded into storage,
execution should begin immediately.

COMP specifies that
should con tain
Note 5.)

when the phase is to be executed,
the address of its entry point.

register 1
(See Usage

ORIGIN hexloc
fetches the program and loads it at the location specified by
hexloc; this location must be in the CMS user area. The
location, hexloc, is a hexadecimal number of up to eight
characters. (See Usage Note 6.)

1. If you do not use the START option, FETCH displays a message at
your terminal indicating the name of the phase and the storage
location of its entry point. At this time, you can set address
instruction stops for testing. To continue, issue the START
command to initiate execution of the phase just loaded.

2. The fetch routine is also invoked by supervisor
instructions 1, 2, 4, or 65. The search order for
phases is the same as listed above.

call (SVC)
executable

3. If you want to fetch a phase from a private core image library, you
must issue an ASSGN command for the logical unit SYSCLB and d~fine
the library in a DLBL command using the ddname IJSSYCL. For
example:

Section 2. CMS Commands 99

FETCH

assgn sysclb c
dlbl ijsyscl c dsn core image lib (sysclb perm

4. Phases fetchea from VSE core image libraries must have been
link-edited with ACTION REL.

5. CMS uses the COMP option when it fetches the DOS PL/I compiler
because that compiler expects register 1 to contain its entry PQint
address. This option is not required when you issue the FETCH
command to loaa your own programs.

When CMS starts executing a phase that has COMP specified, the
DMSLI0740I EXECUTION BEGINS ••• message is not displayed.

6. The ORIGIN option is used by the VSAMGEN installation EXEC
procedure to load nonsharable modules on a segment boundary. It is
not required ~hen you issue the FETCH command to load your own
programs, unless you want to load them at a location other than
20000.

7. The FETCH command should only be used with the START command to
execute a VSE program. It should not be used with GENMOD to
attempt to create an executable CMS module file.

8. Multiphase program support is different in CMS/DOS than in VSE.
The core image directory is not searched for multiphase programs.
Thus the value of HIPROG in BGCOM reflects only the ending address
of the longest phase loaded, not that of the phase in the library
that has the highest ending address.

DMSFET710I PHASE 'phase' ENTRY POINT AT LOCATION xxxxxx

This message is issued when the
indicates the virtual storage
loaded.

DMSLI0740I EXECUTION BEGINS •••

START option is not specified. It
address at which the phase was

This message is issued when the START option is specified; it
indicates that program execution has begun.

DMSFCH104S ERROR Inn' READING FILE 'fn ft fm' FROM DISK RC=100
DMSFCH109S VIRTUAL STORAGE CAPACITY EXCEEDED RC=104
DMSFCH113S DISK (cuu) NOT ATTACHED RC=100
DMSFCH115E PHASE LOAD POINT LESS THAN 'address' RC=40
DMSFCH411S INPUT ERROR CODE "nn" ON '{SYSRESISYSCLB}' RC=100
DMSFCH777S DOS PARTITION TOO SMALL TO ACCOMMODATE FETCH REQUEST RC=104
DMSFET003E INVALID OPTION • option' RC=24
DMSFET004E PHASE 'phase' NOT FOUND RC=28
DMSFET029E INVALID PARAMETER 'parameter' IN THE OPTION 'ORIGIN' FIELD

RC=24
DMSFET070E INVALID PARAMETER 'parameter' RC=24
DMSFET098E NO PHASE NAME SPECIFIED RC=24
DMSFET099E CMS/DOS ENVIRONMENT NOT ACTIVE RC=40
DMSLI0055E NO ENTRY POINT DEFINED RC=40

100 IBM VM/SP CMS Command and Macro Reference

FIIEDEF

FILEDEF

Use the FILEDEF command to establish data definitions for OS ddnames, to
define files to be copied with the MOVEFILE command, or to override
default file definitions made by the assembler and the as language
processors. The format of the FILEDEF command is:

r--..
tFIledef r ,
t I{ddname} Terminal ((optionA optionD()]]
't I *nn PRinter
, PUnch ((optionA[)]]

Reader

,
I
I
I ,
t
I
I
I ,
I
I
I

Q.E!iQ.!!A:
[PERM]
r
ICHANGE ------

,
I

t NOCHANGEt
L .J

f RECFPI a]

r r "
DISK t fn ft Ifm II (optionA optionE()]]

I!I1E gg~~m~ I!111
L L .1.1

rr , r "
"DISK fn ft 'Ifmll {DSN ? } 'I !!1~ £g~~m§II!111 DSN qual1 qual2 •••
LL .lL .1.1

DUMPIY

TAPn

CLEAR

((optionA optionB[)]]

(optionA()]]

r
'1!!!Qll
I BLP (n]
I SL (n] [VaLID
ISUL (n] (VaLID
, NL (n]
I NSL filename
L

,
I
I

volid] I
volid 11 ,

I
.J

(optionA optionC optionE()]]

.Q~!i.Q'!!~:
(KE YL-EN nnn]
r ,
IXTENT nilnnn,
I]I~!iI.2,Q t
L .J

£E1iQ'!!~:
... ,
17TRACKI
,9TRACK I
L .I

[TRTCH a)
(DEN den]

QE!iQ~Q:
r ,

'!!f~!'§] ,
tlCWCASEI
L .J

(LRECL nnnnn]
(LIMCT nnn]
(OPTCD a]
(DISP MOD]

2E!iQ!!E:
(LEAVE 1
(NeEOV] r ,

I BLOCK nnn nn 1
IBLKSIZE nnnnni
L .J

(KEMBER membername]
(CONCAT]
r
I DSORG
I
I
L

{
PS}' PO I
DA I

.J L-____________ _ --------------'

Section 2. eMS Commands 101

FILEDEP

ddname
nn

*

is the name by which the file is referred to in your
program. The ddname may be frcm one to eight alphameric
characters, but the first character must be alphabetic or
national. If a number nn is specified, it is translated to a
FORTRAN data definitio~ name of FTnnF001. An asterisk (*) may
be specified with the CLEAR operand to indicate that all file
definitions not entered with the PERM option should be
cleared.

TERMINAL is your terminal (terminal I/O must not be blocked).

PRINTER is the spooled printer.

PUNCH is the spooled punch.

READER

DISK

DUMMY

TAP(n]

CLEAR

is the spooled card reader (card reader I/O must not be
blocked).

specifies that the virtual I/O device is a disk. As shown in
the format, you can choose one of two forms for specifying the
DISK operand. Both forms are described in "Using the FIIEDEF
DISK Operand."

indicates that no real I/O takes place for a data set.

is a magnetic tape. The symbolic number of the tape drive, n,
can be 1, 2, 3, cr 4, representing virtual units 181, 182,
183, and 184, respectively. If n is not specified, FIIEDEF
uses the existing TAPn device for the specified ddname. TAP
defaults to TAP2 if there is no existing definition for the
s~ecified ddname, or if the existing device was not TAPn. You
can also specify the type of label processing you want on your
tape. Specifying label processing is discussed in "Using the
FILEDEF TAPn operand."

removes any existing definition for the specified ddname.
Clearing a ddname before defining it ensures that a file
definition does not exist. and that any options previously
defined with the ddname no longer have effect.

102 IB~ VM/SP CMS Command and Macro Reference

FILEDEF

QE!iQn~: Whenever an invalid option is specified for a particular
device type, an error message is issued. Figure 8 shows valid
options for each device type.

r
I
1 Options ,
I

I OPERANDS I
,R EADER, PUNCH I
I PRINTER , TERMINAL TAPn

DISK
DUMMyt

I BLOCK, BLKSIZE x
X

X
X

x
X

X
X
X

1 CHANGE, NOCHANGE
, CONCAT
I DEN
I DISP MOD
, DS ORG

KEYLEN
LEAVE
LIMCT

X
X4

X

X
X
X2

LOWCASE, UPCASE
LRECL X

X
X X X

X ME MBER
NOEOV
OPTCD
PERM
RECFM
TRTCH
XTENT

X
X

X
X

X

X
X
X3

X2
X
X

, 7T RACK, 9TRAC K X
I
I 1 No options may
, 2Th is option is
13 Th is option is
14Th is option is

be necessary but all disk options are accepted.
meaningful only for BDAM files.
for 7-track tapes only.
for SL tapes only.

L

Figure 8.

PERM

NOCHANGE

Valid File Characteristics for Each Device Type of the
FILEDEF Command

retains the current definition until it either is
explicitly cleared or is changed with a new FILEDEF
command with the CHANGE option. If PERM is not
speci fied, the definition is cleared when a FILEDEF * CLEAR command is executed.

merges the file definitions whenever a file definition
already exists for a ddname and a new FILEDEF command
specifying the same ddname is issued; the options
associated with the two definitions are merged. Options
from the original definition remain in effect unless
duplicated in the new definition. New options are added
to the option list.

retains the current file definition, if one exists, for
the specified ddname.

Section 2. CMS Commands 103

FILEDEF

RECFM a is the record format of the file, where "a" can be one of
the following:

F
FB
V
VB
U
FS, FB S
VS, VB S
A
M

fixed length
fixed blocked 1

variable length
variable blocked 1

undefined
fixed length, standard blocks
variable length, spanned ~ecords
ASA print control characters 2

machine print central codes 2

LRECL nnnnn is the logical record length (nnnnn) of the file, in
bytes. LRECL should not exceed 32760 bytes because of as
restr ictions .•

BLOCK nnnnn
BLKSIZE nnnnn

is the logical bleck size (nnnnn) of the file, in bytes.
BLOCK should not exceed 32760 bytes because of as
restrictions. If both BLOCK and BLKSIZE options are
specified, the value of nnnnn for BLOCK is used and
BLKSIZE is ignored.

If a CMS file is fixed and has 80-byte CMS records, you
shculd specify RECFM FB BLOCK 800 LBECL 80. Performance
can be improved for CMS fixed files if the block size is
a multiple of 800.

KEYLEN nnn is the size (nnn) of the key (in bytes).
value accepted is 256.

The maximum

XTENT nnnnn is the number of records (nnnnn) in the extent for the

L IMCT nnn

OPTeD a

file. The default is 50. The maximum value is
1 6 , 77 7 , 2 1 5 •

is the maximum number of extra tracks or blocks (nnn) to
be searched. The maximum value is 256.

is the direct access search processing desired. The
variable "a" may be any coml:ination of up to three of the
following: (A and R are mutually exclusive.)

s;od~
A
E
F
J

R

DASD Search
Actual-devIce addressing
Extended search
Feedback addressing
When the virtual printer is a 3800, 'J'
indicates to QSAM and BSAM that the output
line contains a TRC (Table Reference Character)
byte.
Relative block addressing

lFB and VB should not be used with TERMINAL or READER devices.
2A and M may be used with any of the valid RECFM settings (for example,

FA, FBA, VA, VBA, etc.) M should not be used with TERMINAL devices.

104 IBM VK/SP CMS Command and Macro Reference

FILEDEF

NQ1~: The KEYLEN, XTENT, LIMCT, and OPTCD options should only be used
with BDAM, QSA~, or BSAM files.

DISP MOD positions the read/write pointer after the last record in
the disk file. This option should only be used for
output files. The DISP MOD option may be used to update
files on standard label tapes only.

MEMBER membername

CONCAT

DSORG {H}
r ,

allows you to specify the name of a member
partitioned data set; membername is the name
member.

of an OS
of the PDS

allows you to assign the same ddname to two or more OS
macro libraries so that you can refer to them in a single
GLOBAL command.

Any file format options you specify in the first FILEDEF
command line remain in effect for subsequently
concatenated libraries. For a detailed descriptio~ of
concatenated macro libraries, see "Using OS Macro
Libraries" in !l1LSP £11~ !!g£~ Guig~.

is the data set organization: physical sequential (PS),
parti tioned (PO), or direct access (DA).

I 7TRACK I is the tape setting.
I 9TRACK I
L .J

TRTCH a is the tape recording technique for 7-track tapes. Use
the following chart to determine the value of "a" for
7-track tapes.

D EN den

LOWCASE

LEAVE

NOEOV

r ---,
I a Parity Converter Translator I
I I
I 0 odd off off I
I OC odd on off I
I OT odd off on I
I E even off off I
I ET even off on I
L--

The default value of TRTCH is ac.

is tape density: den can be 200, 556, 800, 1600, or 6250
bpi (bits per inch). If 200 or 556 are specified, 7TRACK
is assumed. If 800, 1600, or 6250 are specified 9TRACK is
assumed.

translates all terminal input data to uppercase.

retains all terminal input tata as typed in.

is only valid for TAPn files that are SUL or SL (standard
label). With this option selected, the tape is not moved
before label processing. If LEAVE is not specified,
tapes with files specified as SL or SUL are rewound and
then positioned before the files are processed.

is only valid for TAPn files. With NOEOV selected, there
is no automatic limited end-of-volume processing when end

section 2. CMS Commands 105

FILEDEF

of tape is sensed on output. See the section "CMS Tape
Label processing" in the I1:!L.§g £!i2 !!§~~§ Qy!de for a
description of end-of-volume processing.

1. If you do not issue a FILEDEF command for an as input or output
file, CMS uses the ddname on the DCB macro to issue the following
default file definition:

FILEDEF ddname DISK FILE ddname A1

See "Usage Notes" under the discussion of the ASSEMBLE command for
information on the default file definitions made by the assembler.

2. To identify VSE files for VSE program execution or to identify VSAM
data sets for either OS or VSE program execution, you must use the
DLBL command.

3. A file definition established with the FILEDEF command remains in
effect until explicitly changed or cleared. The system clears file
definitions under the following circumstances:

• When the assembler or any of the language processors are
invoked. (N ote that FILEDEF definitions entered with the PERM
option are not cleared.)

• When a program abends or when you issue the Immediate command HI
to halt command or program execution.

4. The FILEDEF command does not supply default values for LRECL and
BLKSIZE. As under OS, if DCB information is unavailable when a
file is opened, an open error is issued for the file. The
following chart summarizes the results at OPEN time of specifying
LRECL and BLKSIZE options.

r
BLKSIZE LRECL Results

Not I Not IIf the input file exists on disk, the
Specified I Specified litem length (or item length +4 for vari-

, lable-length records) becomes the BLKSIZE.

Specified Not I LRECL=BLK SIZ E (or LRECL=BLKSIZE-4, for
Specified I variable-length records) •

Not Specified I BLKSIZE=LRECL (or BLKSIZE=LRECL+4, for
Specified I variable-length records) •

Specified Specified IThe values specified are used.
L

If V or VB is specified for RECFM, LRECL must be at least 4 bytes
less than BLKSIZE.

VSE sequential (SAM) files do not contain BLKSIZE, LRECL, or RECFM
specifications. These options must be specified by a FILEDEF
command or DCB statement if as macros are used to access VSE files.
Otherwise the defaults, BLKSIZE=32760 and RECFM=U, are assumed.
LRECL is not used for RECFM=U files.

5. There is an auxiliary processing option for FILEDEF that is only
valid when FILEDEF is executed by an internal program call: this
option cannot be entered as a terminal command. The option,

106 IBM VM/SP CMS :ommand and Macro Reference

FILEDEF

AUXPROC addr, allows an auxiliary processing routine to receive
control during IIO operations. For details on how to use this
option of the FILEDEF command, see VML~ ~Y2i~~ R£2g£~~~~§ Guid~.

6. If a FILEDEF command is issued with a DDNAME that matches a current
DDNAME defined by a previous FILEDEF command and the devices are
the same, the filename, filetype, filemode, and options previously
specified remain in effect, unless respecified by the new FILEDEF
command. If the devices are not the same, all previous
specifications are removed.

7. If the FILEDEF command is entered with no operands, a list of
current definitions is displayed.

There are two general forms for specifying the DISK operand in a FILEDEF
command. If you specify the first form:

FILEDEF ddname DISK fn ft [fm]

fn and ft (filename and filetype) are assumed to be a CMS fileid. If fm
is the filemode of an as disk, fn and ft are assumed to be the only two
qualifiers of an as data set name. If fm is specified as an asterisk,
(*) then all accessed disks are searched.

You cannot use this form unless the as data set name or VSE file-id
conforms to the as naming convention (1- to a-byte qualifiers separated
by periods, to a maximum of 44 characters, including periods). Also,
the data set name can have only two qualifiers; otherwise, you must use
the DSN ? or DSN q~aI1 ••• form. For example, if the as data set name
or VSE file-id is TEST.SAMPLE.MAY, you enter:

FILEDEF MINE B1 DSN TEST SAMPLE MAY

-- or --

FILEDEF MINE B1 DSN ?
TEST.SAMPLE.MAY

If the as data set name or VSE file-id is TEST. SAMPLE, then you may
enter:

FILEDEF MINE DISK TEST SAMPLE B1

The second form of the DISK operand is used only with as data sets
and VSE files:

r , r ,
FILEDEF ddname I DISK fn ft I I fm I {DSN ? }

I fI1~ gdn.2:~gl Illi DSN qual1 [qual2 •••]
L .J L .J

This form allows you to to enter as and VSE file identifications that do
not conform to as data set naming conventions. The DSN operand
corresponds to the DSN parameter on the as DD (data definition)
statement. There are three ways you can specify this form:

Section 2 •. CMS Commands 107

FILEDEF

• FILEDEF ddname DISK fn ft fm DSN qua11 [qua12 •••]

This form of the FILEDEF command associates the eMS filename and
filetype you specify with the as data set name or VSE file-id specified
following the DSN operand. Once it is defined, you can refer to the as
data set name or VSE file-id by using the eMS filename and filetype. If
you omit DISK, filename, filetype, and filemode, the default values are
FILE ddname A 1 •

• FILEDEF ddname DSN ?

rhis form of the FILEDEF command allows you to specify the as data
set name or VSE file-id interactively. Using this form, you can
enter an as data set name or VSE file-id containing embedded special
characters such as blanks and hyphens. If you use this form, the
default filename and filetype for your file, FILE ddname, is the eMS
filename and filetype associated with the as data set name or VSE
file-ide The filemode for this form is always the default, A1.

To use the interactive DSN ~perand, you key in DSN 1; eMS then
requests that you enter the as data set name or DOS file-id exactly
as it appears in the data set or file. Do not omit the periods that
separate the qualifiers of an as data set name, but do not insert
periods where they do not appear.

qual1[• qua12 •••]

where qual1.qua12 •• ~ are the qualifiers of the as data set name or
VSE file-ide When you use this form, you must code the periods
separating the qualifiers.

• FILEDEF ddname mode DSN qual1 [qual2 •••]

rhis form allows you to specify the as data set name or VSE file-id
explicitly. (This form can be used for VSE file-ids only if they
comply with the as naming convention of 1- to a-byte qualifiers
separated by periods, to a maximum of 44 characters, including
periods.) Again, the default value for the filename and filetype is
FILE ddname. When you use this form, you must omit the periods that
separate the qualifiers of the as data set name. For example, for an
as data set or VSE file named MY.FILE.IN, you enter:

FILEDEF ddname B1 DSN MY FILE IN

All of these forms have many variations, as is apparent from the
command format.

Y§ing lh~ ~Ib~Q~~ I!fB QE~£And

When you define a tape file with the FILEDEF command, you can specify
the type of label processing to be done for the file. You do this by
specifying a second operand after the word TAPn. The operands that you
may specify and their meanings are:

LABO FF

BLP

SL

indicates that there is no eMS tape label processing for this
tape file. LABOFF is the default. The tape is not positioned
if this operand is specified.

indicates that the system is to bypass label processing but
that the tape is to be positioned before the file is processed.

indicates that you are using IBM standard labels.

10a IBM VM/SP eMS :ommand and Macro Reference

SUL

NL

indicates that you are using
processed for MOVEFILE).

FILEDEF

standard user labels (not

indicates that your
use this operand if
will not be opened.)

tape has no IBM standard labels. (Do not
your tape has a VOL1 label. A file on it

NSL indicates that you are using nonstandard labels.

For the operands BLP, SL, and SUL:

n indicates the position of the file on a multifile volume. When
n is not specified, the default is 1.

For SL and SUL files:

volid specifies a 1- to 6-character volume serial number to be
verified by reading the VOL1 label on the tape. If not
specified in FILEDEF, volid may be specified on a LABELDEF
command. If specified on both commands, the more recent
specification is used. VOLID is only valid for SL or SUL tape
files. If VOLID is not specified, the volume label on the tape
is not checked.

For SL files:

DISP MOD The DISP MOD option may be used to update files on standard
label tapes only:

FILEDEF file a tap1 sl (disp mod

when the file is opened (output), the tape will be positioned
at the end of the file, ready to add new records.

For the NSL operand:

filename is required for NSL files. It is the filename of a file that
contains a routine for processing nonstandard labels. The
filename must be that of a TEXT or MODULE file. If you have
both a MODULE and TEXT file with this name, the MODULE file is
used. MODULE files must be created so that they start at an
address that does not allow them to overlay a user program if
they are to be used for NSL routines. See the section "Tape
Labels in CMS" in the VML§f CM~ Q.§g£~§. Guid~. for details on
writing routines to process nonstandard labels.

You can define a file on tap2 with standard labels by using the
following command:

filedef filea tap2 sl valid dept10

When this tape file is opened, CMS checks to see that it has a VOL1
label with a volume serial number of dept10.

To specify the second file on the same tape, use

filedef filea tap2 sl 2 valid dept10

The same file could be defined as having no labels by using

filedef filea tap2 blp 2 filedef filea tap2 nl 2

If you use the above specification, your tape must n0t contain IBM
standard labels. NL causes CMS to read your tape when you try to open a
file on it and checks to see if the tape contains a VOL1 label as its

section 2. CMS Commands 109

FILEDEF

first record.
file.

Ifa VOL1 label is there, eMS does not open your tape

If you specify

filedef filea tap2 blp 2

eMS positions the tape to the second file, but does not check to see if
the tape has a label.

~Q!g: If you mount a blank tape and specify NL, the tape will run off
the end of the reel. Write a tape mark to prevent this from occurring.

To define a tape file with nonstandard labels, use the following
comm and:

filedef filea tap2 nsl nonstd

The routine NONSTD must exist as a TEXT or MODULE file and be able to
process the particular nonstandard labels you are using for your tapes.

If you defined filea with no label parameter at all, for example,

filedef filea tap2

there is no label processing or positioning before the data in filea is
processed.

Read the section "Tape Labels in eMS" in the VMLg £.H.a Q§~£~§ QJ!id~
before you write programs that handle labeled tapes.

Use the LEAVE and NOEOV options for tape files only.

LEAVE indicates that a tape containing standard-label files is not to be
moved before label processing. Using this option prevents eMS from
rewinding the tape and checking the VOL1 label as it otherwise does for
SL and SUL files. The command

filedef fileb tap1 sl (leave

defines a tape file on tape1 but tells eMS not to position the tape
before processing the labels for fileb. Note that you must positio~ the
tape properly yourself before using the LEAVE option. LEAVE may be used
with SL. SUL, and BLP. However, it has no effect if used with NL. NL
tapes are always rewound and positioned before a file on them is opened
(even if you specify LEAVE).

Use the LEAVE option with multifile volumes where rewinding and
repositioning a tape before processing each file is inefficient. You
must not move the tape between files if you use this option. Note that
for BLP files you can obtain the effect of LEAVE by defining the file as
LABOFF rather than BLP.

Using NOEOV, eMS does not do any end-of-tape processing on output. If
this option is not specified, eMS writes a tape mark after it encounters
EOT on output and, for SL and SUL files, also writes an EOV1 label and
another tape mark after the first tape mark. The tape is then rewound
and unloaded. NOEOV suppresses this limited EOV processing.

A list of current lefinitions is displayed if the FILEDEF command is
entered with no operands.

110 IBM VM/SP eMS Command and Macro Reference

FILEDEF

ddname1 device1 [filename1 filetype1 filemode1 (da tasetname]]

ddnameN deviceN [filenameN filetypeN filemodeN [datasetname]]

DMSFLD069I DISK 'mode' NOT ACCESSED

The specified disk is not accessed; the file definition remains in
effect. You should access the disk before you attempt to read or
write the file.

DMSFLD220R ENTER DATA SET NAME:

A FILEDEF command with the DSN ? operand was entered. Enter the
exact as or VSE file identification, including embedded periods and
blanks.

DMSFLD704I INVALID CLEAR REQUEST

A CLEAR request was entered for a file definition that does not
exist; no action is taken.

DMSSTT228I USER LABELS BYPASSED ON DATA SET 'data set name'

This message is displayed when you issue a FILEDEF command for an
as data set that contains user labels. The message is displayed the
first time you issue the FILEDEF command after accessing the disk
on which the data set resides.

DMSFLDOO3E INVALID OPTION 'option' RC=24
DMSFLD023E NO FILETYPE SPECIFIED RC=24
DMSFLD027E INVALID DEVICE 'device name' RC=24
DMSFLD029E INVALID PARAMETER ' parameter' IN THE OPTION 'option' FIELD

RC=24
DMSFLD035E INVALID TAPE MODE RC=24
DMSFLD050E PARAMETER MISSING AFTER DDNAME RC=24
DMSFLD065E 'option' OPTION SPECIFIED TWICE RC=24
DMSFLD066E ' option' AND 'option' ARE CONFLICTING OPTIONS RC:;:24
DMSFLD070E INVALID PARAMETER ' parameter' RC=24
DMSFLD221E INVALID DATA SET NAME 'data set name' RC=24
DMSFLD224E FILEID ALREADY IN USE RC=24
DMSFLD420E NSL EXIT FILENAME MISSING OR INVALID RC=24

section 2. CMS Commands 111

FINIS

FINIS

Use the FINIS comma nd to c lose one or more files. The format of the
FINIS command is:

r--,
, , r ~ ,

I FINIS I fn ft Ifrol ,
, I * * I * I ,
I , L .J I
L--------------------~---.J

fn

ft

fm

is the filename of the file to be closed. If you code an
asterisk (*) in this field, all filenames are closed.

is the filetype of the file to be closed. If you code an
asterisk (*) in this field, all filetypes are closed.

is the filemode of the file to be closed. If you code an
asterisk (*) in this field, all disks are searched for the
specified file. If this field is omitted, A1 is assumed.

Use FINIS when your program does not close a file during its execution.
CMS commands close files automatically at the end of their execution.
(An 'EXEC' file is considered to be a single CMS command, independent of
its content.)

None.

If an error occurs, register 15 contains the following error code:

6 File Dot open

112 IBM VM/SP CMS Command and Macro Reference

FORMAT

FORMAT

Use the FORMAT cemmand to:

• Initialize a virtual disk (minidiskl for use with CMS files
• count or reset the number of cylinders on a virtual disk
• Write a label on a virtual disk

The format of the FORMAT command is:

r-----,
FORMAT

cuu mode (nocyl] ((options ••• ()]]

(noblk]

.QEli2.!!§:
r
I~!!§i!~
I
I
I
I , , ,
INoerase
,Label
I Recomp
L

r " I 8001 ,
1.1.Q1,g, ,
,2048, ,
140961 ,
, 1 I< , ,
, 21<, ,
, 4 1<, ,
L .J I ,

I ,
.J

cuu is the virtual device address of the virtual disk to be
formatted.

mode

nocyl

noblk

BLKSIZE

Valid addresses are 001 throuqh 5FF for a virtual machine in
basic control mode and 001 throuqh FFF for a virtual machine
in extended centrol mode.

is the filemode letter to be assigned to the specified device
address. Valid filemode letters are A through Z. This field
must be specified,. If any other disk is accessed at mode, it
is released.

is the number of cylinders to be made available for use~ All
available cylinders on the disk are used if the number
specified exceeds the actual number available.

is the number of FB-512 blocks to be made available for use.
If the number specified exceeds the actual number of blocks on
the disk, then all the blocks on the disk are made available
for use.

specifies the physical DASD block size of the CMS minidisk.
The block sizes 1024, 2048, and 4096 may alternately be
specified as 1K, 2K, and 4K, respectively. For FB-512

Section 2. CMS Commands 113

FORMAT

NOERASE

devices, only block sizes 1024, 2048, and 4096 are supported;
for CKD (count key data) devices, all block sizes are
supported.

specifies for FB-512 devices that the permanently formatted
FB-512 blocks are not to be cleared to zeros. If not
specified, the FB-512 blocks will be cleared. For non-FB-512
devices, this option is ignored.

LABEL writes a label on the disk without formatting the disk. The
CMS disk label is written on cylinder 0, track 0, record 3 of
the virtual disk or block1 of an FB-512 device. A prompting
message requests a six-character disk label (fewer than six
characters are left-justified and blanks padded).

RECOMP
changes the number of cylinders or FB-512 blocks on the disk
that are available to the user. This number becomes the
actual number of minidisk cylinders or FB-512 blocks, or the
number specified by nocyl/noblk, whichever is less. If nocyl
is not specified and the disk is formatted in 800-byte blocks,
all cylinders are used. If the disk is formatted in 1K, 2K,
or 4K blocks, the maximum number of cylinders initially
formatted on the disk is made available to the user.

1. You can use the FORMAT command with any virtual 3310, 3330, 3340,
3350, 3370, 3380, or 2319 device.

2. When you do not specify either the RECOMP or LABEL option, the disk
area is initialized by writing a device-dependent number of records
(containing binary zeros) on each track. Any previous data o~ the
disk is erased. A read after write check is made as the disk is
formatted. For example:

format 191 a 25

initializes 25 cylinders of the disk located at virtual address 191
in CMS format. The command:

format 192 b 25 (recomp)

changes the number of cylinders available at virtual address 192 to
25 cylinders, but does not erase any existing data. To change only
the label on a disk, you can enter:

format 193 c (label)

Respond to the prompting message with a six-character label.

3. If you want to format a minidisk for VSAM files, you must use the
IBCDASDI program. If you want to format an entire disk, you may
use any OS or DOS disk initialization program.

4. Because the FORMAT command requires heavy processor utilizatioQ and
is heavily I/O bound, system performance may be degraded if there
are many users on the system when you use FORMAT.

5. When formatting FB-512 devices, enough blocks of the minidisk area
must be formatted to support the CMS disk structure, or message
DMS216E will be displayed, and the FORMAT request will be
terminated. The number of FB-512 blocks which must be formatted

114 IBM VM/SP CMS Command and Macro Reference

FORMAT

for minidisks of
respectively.

1K, 2K, and 4K CMS blocksize i$ 12, 24, and 48,
I

6. If the FORMAT command with the RECOMP option fails and CMS issues
message DMSFOR214W, "CANNOT RECOMPUTE WITHOUT LOSS OF DATA. NO
CHANGE.", query your A-disk to determine the number of unallocated
cylinders. If the number of cylinders seems adequate, it is
possible that some of the allocated space is at the end of the
disk, and is thus not available to the FORMAT command. Issue the
command:

COpy * * A = = = (REP

followed by the FORMAT command with the RECOMP option.

DMSFOR603R FORMAT WILL ERASE ALL FILES ON DISK 'mode(cuu) '. DO YOU WISH
TO CONTINUE? (YESINO):

You have indicated that a disk area is to be initialized: all
existing files are erased. This message gives you the option of
canceling the execution of the FORMAT command. Reply yes or no.

DMSFOR605R ENTER DISK LABEL:

You have requested that a label be written on the disk.
one- to six-character label.

DMSFOR705I DISK REMAINS UNCHANGED.

Enter a

The response to message DMSFOR603R was NO or a null line was
entered.

DMSFOR732I {'nnn' CYLINDERSI 'nnnnnnnnnn' FB-512 BLOCKS} FORMATTED ON
DISK 'mode (cuu) ,

The format operation is complete.

DMSFOR7331 FORMATTING DISK 'mode'

The disk represented by mode letter 'mode' is being formatted.

LABEL CUU M STAT CYL TYPE BLKSIZE FILES BLKS USED-(%) BLKS LEFT BLK TOTAL
label cuu m R/W nnn type blksize nnnnn nnnn- % nnn nnnnnD

This message provides the status of a disk when you use the RECOMP
option. The response is the same as when you issue the QUERY
command with the DISK operand.

DMSFOR003E INVALID O~TION 'option' RC=24
DMSFOR005E NO 'option' SPECIFIED RC=24
DMSFOR017E INVALID DEVICE ADDRESS 'cuu' RC=24
DMSFOR028E NO tEVICE SPECIFIED RC=24
DMSFOR037E DISK 'mode[(cuu)]' IS READ/ONLY RC=36
DMSFOR048E INVALID MODE 'mode' RC=24

Section 2. CMS Commands 115

FORMAT

DMSFOR069E DISK 'mode' NOT ACCESSED RC=36
DMSFOR070E INVALID PARAMETER 'parameter' RC=24
DMSFOR113S DEVICE 'cuu' NOT ATTACHED RC=100
DMSFOR114S 'cuu' IS AN UNSUPPORTED DEVICE TYPE

OR REQUESTED BLKSIZE IS NOT SUPPORTED
FOR THE DEVICE RC=88

DMSFOR125S PERMANENT UNIT CHECK ON DISK tmode(cuu) f RC=100
DMSFOR126S ERROR {READIWRIT}ING LABEL ON DISK 'mode (cuu) , RC=100
DMSFOR214W CANNOT RECOMPUTE WITHOUT LOSS OF DATA. NO CHANGE RC=8
DMSFOR216E INSUFFICIENT BLOCKS ON DISK TO SUPPORT

CMS DISK STRUCTURE RC=100

116 IBM VM/SP CMS :ommand and Macro Reference

GENDIRT

GENDIRT

Use the GENDIRT command to fill in a CMS auxiliary directory. The
auxiliary directory contains the name and location of modules that would
otherwise significantly increase the size of the resident directory,
thus increasing search time and storage requirements. By using GENDIRT
to fill in an auxiliary directory, the file entries for the given
command are loaded only when the command is invoked. The format of the
GENDIRT command is:

r
I GENDIRT directoryname· [targetmode]
L

dire ctoryname

targ etmode

is the entry point of the auxiliary directory.

is the filemode letter of the disk containing the modules
referred to in the directory. The letter is the filemode of
the disk containing the modules at execution time, not the
filemode of the disk at creation of the directory. At
directory creation time, all modules named in the directory
being created must be on either the A-disk or a read-only
extension; that is, not all disks are searched. The default
value for targetmode is S (system disk). It is your
responsibility to determine the usefulness of this operand at
your installation, and to inform all users whose programs are
in auxiliary directories exactly what filemode to specify on
the ACCESS command.

Note: For information on creating auxiliary directories and for further
requirements for using the targetmode option, see the !~L~~ ~Y§te~
R£Qg£s~£~~ 2y!g~·

DMSGND002W FILE 'fn ft fm' NOT FOUND RC=4
DMSGND021E ENTRY POINT 'name' NOT FOUND RC=40
DMSGND022E NO DIRECTORY NAME SPECIFIED RC=24
DMSGND070E INVALID PARAMETER 'parameter' RC=24

Section 2. CMS Commands 117

GENMOD

GENMOD

Use the GENMOD command to generate a nonrelocatable (MODULE)
eMS disk. The format of the GENMOD command is:

file on a

r

fn

fm

Genmod
r ,

[fn [MODULE I fm I]] [(options •.. [)]]
I 11 I
L .J

QE:!:i2!!§: [FROM entry1] [TO entry2]
r , r , r ,
1111£ I ISTR I IQ2 I
INOMAPI I NOSTR I I DOSI
L .J L .J IALLI
[SYSTEM] L .J

is the filename of the MODULE file being created. If fn is
not specified, the file created has a filename equal to that
of the first entry point in the LOAD MAP.

is the filemode of the MODULE file being created. If fm is
not specified, A1 is assumed.

Q~:!:i2n§: If conflicting options are specified, the last one entered
is used.

FROM entry1
specifies an entry point or a control section
represents the starting virtual storage location
the nonrelocatable copy is generated.

TO entry2

name that
from which

specifies an entry point or a control section name that
represents the ending virtual storage location from which the
nonrelocatable copy is generated.

~!g includes a load map in the MODULE file. The load map is a
variable-length record placed at the end of the load module.

NOMAP specifies that a load map is not to be contained in the MODULE
file.

!21g: If a module is generated with the NOMAP option, that
module cannot later be loaded and started with the CMS LOADMOD
and START commands. When NOMAP is specified, the information
produced is not sufficient for the START command to execute
properly. However, a module generated with the NOMAP option
can later be invoked as a command; that is, it can be invoked
if its filename is entered.

STR invokes the CMS storage initialization routine when the MODULE
file is subsequently loaded (see the LOADMOD command
description). This routine frees any storage remaining from a
previous program. STR is the default setting if the MODULE is
to be loaded at the beginning of available user storage.

118 IBM VM/SP eMS :ommand and Macro Reference

GENMOD

If you have issued CMS SET RELPAGE ON, STR causes CMS storage
initialization to release the remaining pages of storage.

!Q1§: If a program running in the user area calls a transient
routine that was generated with the STR option, the user area
storage pointers will be reset. This reset condition could
cause errors upon return to the original program (for example,
when OS GETMAIN/FREEMAIN macros are issued in the user
program) •

NOSTR indicates that, when the MODULE is loaded, free storage
pointers are not reset for any storage currently in use.
NOSTR is the default setting if the MODULE file is to be
loaded at a location other than the default load address.

SYSTEM indicates that when the MODULE file is subsequently loaded, it
is to have a storage protect key of zero.

Q§ indicates that the program may contain OS macros and,
therefore, should be executed only when eMS/DOS is not active.

DOS indicates that the program contains VSE macros; eMS/DOS must
be active (that is, SET DOS ON must have been previously
invoked) in order for this program to execute. (See Usage
Note 2).

ALL indicates that the program:

• contains CMS macros and must be capable of running
regardless of whether eMS/DOS is active or not

• contains no VSE or OS macros

• Preserves and resets the DOS flag in the CMS nucleus

• Does its own setting of the DOS flags

!Q1§: The ALL option is primarily for use by eMS system
programmers. CMS system routines are aware of which
environment is active and will preserve and reset the DOS flag
in the CMS nucleus.

1. The GENMOD command is usually invoked following the LOAD command,
and possibly the INCLUDE command. For example, the sequence:

load myprog
genmod testprog

loads the file MYPROG TEXT into virtual storage and creates a
nonrelocatable load module named TESTPROG MODULE. TESTPROG may now
be invoked as a user-written command from the CMS environment.

2. The execution of MODULE files created from VSE programs is not
supported and may give unpredictable results. GENMOD is intended
for use with the LOAD command, not the FETCH command. Storage
initialization for FETCH is different from that for LOAD.

3. Before the file is written, undefined symbols are set to location
zero and the common reference control section is initialized. The
undefined symbols are not retained as unresolved symbols in the
MODULE file. Therefore, once the MODULE file is generated, those

Section 2. CMS Commands 119

GENMOD

references cannot be resolved and may cause unpredictable results
during execution.

4. If you load a program into the transient area you should issue the
GENMOD command with the STR option. Be careful if the program uses
as GETMAIN or FREEMAIN macros because your program, plus the amount
of storage obtained via GET MAIN, canno~ exceed two pages (8192
bytes). It is recommended that you do not use GETMAIN macros in
programs that execute in the transient area.

5. A transient module (loaded with the O~IGIN TRANS option) that was
generated with the SYSTEM option ~s written on disk as a
fixed-length record with a maximum length of 8192 bytes.

6. If you are using FORTRAN under CMS, use FROM MAIN as an option to
avoid unpredictable results.

7. If FROM is not specified on the GENMOD command, the starting
virtual storage location (entry point) of the module is either the
address of fn (if it is an external name) or the entry point
determined according to the hierarchy discussed in Usage Note 4 of
the LOAD command. This is not necessarily the lowest address
loaded. If you have any external. references before your START or
CSECT instructions, you must specify the 'FROM entry1' operaqd on
the GENMOD command to load your program properly.

8. If you are using PL/I under CMS, use FROM PLISTART as an option to
avoid unpredictable results.

None.

DMSMOD003E INVALID OPTION 'option' RC=24
DMSMOD005E NO {FROMITO} ENTRY SPECIFIED RC=24
DMSMOD021E ENTRY POINT 'name' NOT FOUND RC=40
DMSMOD032E INVALID FILETYPE aft' RC=24
DMSMOD037E DISK 'mode' IS READ/ONLY RC=36
DMSMOD040E NO FILES LOADED RC=40
DMSMOD070E INVALID PARAMETER 'parameter' RC=24
DMSMOD084E INVALID crS~OF 'FROM' AND 'TO' OPTIONS RC=24
DMSMOD10SS ERROR Inn' WRITING FILE 'fn ft fm' ON DISK RC=100
DMSSTT048E INVALID MODE 'mode' RC=24
DMSSTT069E DISK 'mode' NOT ACCESSED RC=36

120 IBM VM/SP CMS Command and Macro Reference

GLOBAL

GLOBAL

Use the GLOBAL command to identify which CMS r CMS/DOS r or OS libraries
are to be searched for macros r copy files r subroutines r VSE executable
phases, or OS load modules when processing subsequent CMS commands. The
format of the GLOBAL command is:

r--------
, GLobal I
I I
, I
I I
L

MACLIB

TXTLIB

DOSL IB

LOADLIB

i
MACLIB } [libname1 ••• libname8]
TXTLlB
DOSLIB
LOADLIB

precedes the specification of macro libraries that are to be
searchel for macros and copy files during the execution of
language processor commands. The macro libraries may be CMS
files or OS data sets. If you specify an OS data set r a
FlLEDEF command must be issued for the data set before you
issue the GLOBAL command.

precedes the specification of text libraries to be searched
for missing subroutines when the LOAD or INCLUDE comma~d is
issued, or when a dynamic load occurs (that is, when an OS
SVC 8 is issued).

Note: Subroutines that are called by dynamic load should (1)
contain only VCONs that are resolved within the same text
library member or (2) be resident in storage throughout the
processing of the original CMS LOAD or INCLUDE command.
Otherwise, the entry point is unpredictable.

precedes the specification of DOS simulated core image
libraries (that is, CMS/DOS phase libraries) to be searched
for missing phases. This operand does not apply to system
or private core image libraries residing on DOS disks.
DOSLIB can be specified regardless of whether the CMS/DOS
environment is active or not.

precedes the specification of load module libraries to be
searched for a module that the OSRUN command or the LINK r
LOAD, ATTACH, or XCTL macros refer to. The libraries can be
CMS LOADLIBS or OS module libraries. If you specify an OS
data set, issue a FILEDEF command for the data set before
you issue the GLOBAL command.

libname1 ••• are the filenames of up to eight libraries. Filetypes must
be MACLlB, TXTLIB, DOSLIB, - or LOADLIB accordingly. The
libraries are searched in the order in which they are named.
If no library names are specified, the command cancels the
effect of any previous GLOBAL command.

1. A GLOBAL command remains in effect for an entire CMS session unless
it is explicitly canceled or reissued. If a program failure forces
you to IPL CMS again, you must reissue the GLOBAL command.

Section 2. CMS Commands 121

GLOBAL

2. There are no default libraries;
libraries during every terminal
command(s) in your PROFILE EXEC.

if you wish to
session, place

use the same
the GLOBAL

3. If you want to use an OS library during the execution of a language
processor, you can issue a GLOBAL command to access the library, as
long as you have defined the library via the FILEDEF command. If
you want to use that library for more than one job, however, you
should use the PERM option on the FILEDEF command, since the
language processors clear nonpermanent file definitions.

4. To find out what libraries have been specified, issue the QUERY
command with the MACLIB, TXTLIB, DOSLIB, LOADLIB, or LIBRARY
operands. (The LIBRARY operand requests a display of all
libraries.)

5. For information on creating and/or manipulating CMS libraries, see
the discussion of the MACLIB, TXTLIB, DOSLIB, and LOADLIB commands.

None.

DMSGLB002W FILE 'fn ft' NOT FOUND RC=28
DMSGLB014E INVALID FUNCTION 'function' RC=24
DMSGLB047E NO FUNCTION SPECIFIED RC=24
DMSGLB108S MORE THAN 8 LIBRARIES SPECIFIED RC=88

122 IBM VM/SP CMS :ommand and Macro Reference

HELP

HELP

Issue the HELP command to use the CMS HELP facility. The HELP facility
allows you to display a menu of the components for which HELP files are
available, a menu of the HELP files available for a particular
component, and the actual" HELP files. HELP files contain descriptions,
formats, and parameters of CMS and CP commands, EDIT, XEDIT, and DEBUG
subcommands, and EXEC and EXEC 2 control statements, and descriptions of
eMS and CP messages. The format of the HELP command is:

r

Help

wher e:

HELP

message

MENU

component

r
I
I
I
1
I
I
I
L

Help
message
l1£;lB!
component

r ,
I componentl
1£.t12.
L

!~b
FORM
PARM
DESC

I
.J

,
I
I
I

MENU I
I

{name [(option[)]]} I
I

.J

displays information on how to use the CMS HELP facility.
HELP HELP displays a description of the function of the HELP
command, its syntax, keywords, operands, and options.

is the 7-character message id you specify to display the HELP
file for a message. Specify the message id in the form
xxxnnnt, where:

xxx indicates the component (for
messages, DMK for CP messages)

example, DMS for CMS

nnn is the message number

t is the message type

Note that you must specify the 7-character message id, not the
10-character id that also identifies the issuing module. For
example, specify DMS250S rather than DMSHLP250S for
information on that message.

displays a list of component menus available.
menus list the commands, subcommands or
statements for which HELP files are available.
default if no parameters are specified.

The comp~nent
EXEC control

MENU is the

is the name of the component you want information about. The
HELP facility has the following components:

Section 2. CMS Commands 123

HELP

CMS
CP
DEBUG
EDIT
EXEC
EXEC2
XEDIT

Conversational Monitor System commands
Control Program commands
CMS DEBUG subcommands
CMS EDIT subcommands
CMS EXEC statements
EXEC2 statements
XEDIT subcommands

component MENU
displays the menu of HELP files available for the specified
component. There is no default component when you specify
component MENU. (For example, if you want to display the menu
of CMS commands, you must issue HELP CMS MENU.)

component name

option

displays the HELP file
or statement. If a
assumed. Thus, if you
command, you need only

HELP name

for the specified command, subcommand,
component is not specified, CMS is

want to display the HELP file for a CMS
specify:

is valid only for CMS and CP commands and subcommands. You
may specify DESC, FORM, PARM, or ALL. ALL is the default.
The HELP command options are:

Abb display the specified HELP file starting at the
beginning.

DESC display the specified HELP file starting with the
description.

FORM display the specified HELP file starting with the format
specification.

PARM display the specified HELP file starting with the
parameter descriptions.

When a HELP command option is specified, the entire HELP file
is made available to the user. The options effect only the
initial position of the HELP file display.

~!g!B!~§: These are examples of HELP requests issued as CMS commands.
Remember that you may also request HELP files directly from menus or
from the XEDIT environment.

To request a HELP file for CP message DMK006I, issue:

HELP DMK0061

To request a menu of CP c6mmands, issue:

HELP CP MENU

To request a HELP file for the XEDIT LOCATE subcommand, issue:

HELP XEDIT LOCATE

To request display of the HELP file for the CMS TAPE command beginning
with the description, issue:

HELP CMS TAPE (DESC or HELP TAPE (DESC

124 IBM VM/SP CMS :ommand and Macro Reference

HELP

1. If you specify more than one option, only the first is checked for
validity.

2. When you format the CMS system disk with a blccksize of 800 bytes,
you must access the system disk with a mode other than 'S' in order
for the HELP facility to find the mode 1 HELP files. This is not
necessary if the system disk is formatted with a blocksize of 1K
(the default), 2K, or 4K.

3. If the command or statement name begins with a special character,
~ollowed by alphanumeric characters (for example, EXEC statements
&STACK and &END), HELP creates the filename by translating the
special character as follows:

? is translated to q
= is translated to e
/ is translated to s

" is translated to d
S is translated to a

is translated to p

The first character of the name of the special character replaces
the special character in the filename.

Thus, the statements &STACK and &END would have the filenames
ASTACK and AEND. Remember that these changes only apply to the
filenames of the statements; they do not affect the way you call
for a HELP file display. To display the HELP files for &STACK and
SEND, you would issue HELP EXEC &STACK and HELP EXEC &END.

Names which have more than one special character are handled
differently. The first special character is handled as above.
However, any special characters that are not the first character in
the filena~e must be translated to the first character of their
name, even when asking for a HELP file display. (This applies to
the special characters listed in the table above, and to the
asterisk, *, which must be translated to a. Remember that the
asterisk is not valid as the first character of a filename.)

Thus, to display the HELP files for the EXEC statements &*, &DISK*,
and &DISK?, you would issue HELP EXEC SA, HELP EXEC &DISKA, and
HELP EXEC &DISKQ, respectively. The following table reviews all
the above changes:

r-------------------------------,
, NAME I FILENAME , CALLED AS ,
, I
, & AMPRSAND & ,
1 SSTACK ASTACK &STACK ,
,&DISK? ADISKQ &DISKQ I
1 &* AA &A 1
, S$ A$ &$,
L-

DMSHLP003E INVAlID OPTION 'option' RC=24
DMSHLP104S ERROR ff READING FILE 'fn ft fm' FROM DISK RC=104
DMSHLP10qE VIRTUAL STORAGE CAPACITY EXCEEDED RC=104
DMSHLP143S UNABLE TO LOAD SAVED SYSTEM OR LOAD MODULE ('ERROR CODE=nn']

Section 2. CMS Commands 125

HELP

DMSHLP250S I/O ERROR OR DEVICE ERROR RC=100
DMSHLP251E HELP PROCESSING ERROR r CODE nnn 'description' RC=12

801 output line too long.
802 Format word parameter should be a number.
803 Invalid format word.
804 Format word parameter missing.
805 Invalid format word parameter.
806 Undent gLeater than indent.
807 Excessive or negative space count generated.
808 Numeric format word parameter is outside valid

range.

DMSHLP252E VALID OPTIONS ARE: DESC FORM PARM ALL RC=28
DMSHLP254E HELP CANNOT FIND THE INFORMATION YOU REQUESTED. IF

NOT MISSPELLED r
PLEASE ENTER 'HELP' FOR MENU SELECTION OR 'HELP HELP'
FOR THE HELP COMMAND

DMSHEL529E 'subcommand' SUBCOMMAND IS ONLY VALID IN EDITING MODE
DMSHEL545E MISSING JPERAND(S)
DMSHEL561E CURSOR IS NOT ON A VALID DATA FIELD
DMSHEL586E NOT FOUND
DMSHLP907T I/O ERROR ON FILE 'fn ft fm' RC=256

126 IBM VM/SP CMS Command and Macro Reference

INCLUDE

INCLUDE

Use the INCLUDE command to read one or more TEXT files (containing
relocatable object code) from disk and to load them into virtual
stocage, establishing the proper linkages between the files. A LOAD
command must have been previously issued for the INCLUDE command to
produce desirable results. For information on the CMS loader and the
handling of unresolved references, see the description of the LOAD
command. The format of the INCLUDE command is:

r---------------------
INclude

L

f n. • • [(opti on s ••• [)]]
QI!1iQl!2 : r , r ,

ICLEAR I IIRESET {en*tr y }I,
IHQgn:R1
L ~ L ~

r , r , r , r
I MAP I I TYPE I II.!!! I I!!!f

r ,
10RIGIN {heXloc}I
I TRANS I
L ~

, r ,
I IAUTO I

INOMAPI I NO!I.f!1 I NOINV I I NOREP I INOAUTOI
L ~ L ~ L ~ L -' L ~

r , r ,
11!~~ I [START] [SA ME] IDUP I
INOLIBEI INODUPI
L -' L ~

fn •.• are the names of the files to be loaded into storage. Files
must have a filetype of TEXT and consist of relocatable object
code such as that produced by the OS language processor. If a
GLOBAL TXTLIB command has identified one or more TXTLIBs, fn
may indicate the name of a TXTLIB member.

QI!~i2n2: If options were specified with a previous LOAD or INCLUDE
command, these options (with the exception of CLEAR and ORIGIN)
remain set if SAME is specified when INCLUDE is issued. Otherwise,
the options assume their default settings. If conflicting options
are specified, the last one entered is in effect.

CLEAR clears the load area in storage to binary zeros befor~ the
files are loaded.

RESET

does not clear the load area before loading.

{en;ry}

resets the execution starting point previously set by a LOAD
or INCLUDE command. If entry is specified, the starting
execution address is reset to the specified location. If an
asterisk (*) is specified or if the RESET option is omitted,
the loader input is searched for control statements. The
entry point is selected from the last ENTRY statement
encountered or from an assembler- or compiler-produced END
statement. If none is found, a default entry point is
selected as follows: if an asterisk was specified, the first
byte of the first control section loaded by the INCLUDE
command becomes the default entry point; if the RESET option

section 2. CMS Commands 127

INCL UDE

ORIGIN

NOMAP

TYPE

was omitted, the entry point defaults to the execution
starting point previously set by a LOAD or INCLUDE command.

{
heXIOc}
TRANS

begins loading the program at the location specified by
hexloc. The variable, hexloc, is a hexadecimal number of up
to six ch~racters. If this option is not specified, loading
begins at the next available storage location. INCLUDE does
not overl~y any previously loaded files unless this option is
specified and the address given indicates a location within a
previously loaded object module. TRANS indicates that the
file is loaded into the transient area.

adds information to the load map.

does not add any information to the load map.

displays the load map of the files at the terminal, as well as
writing it on the A-disk. This option is valid only if MAP is
specified or implied.

HQT!g~ does not display the load map at the terminal.

!NY writes invalid card images in the LOAD MAP file.

NOINV does not write invalid card images in the LOAD MAP file.

g~R writes Replace (REP) statement images in the LOAD MAP file.
See the explanation of the CMS LOAD command for a description
of the Replace (REP) statement.

NOREP suppresses the writing of Replace (REP) statements in the LOAD
MAP file.

A!!1Q searches your disks for TEXT files to resolve undefined
references.

NOAUTO suppresses automatic searching for TEXT files.

tl]~ 'searches the text libraries defined by the GLOBAL command for
missing subroutines.

NOLIBE does not search any text libraries for unresolved references.

START begins execution after loading is completed.

SAME retains the same options (except ORIGIN and CLEAR) that were
used by a previous INCLUDE or LOAD command. Otherwise, the
default setting of unspecified options is assumed. If other
options are specified with SAME, they override previously
specified options. (See Usage Note 1.)

~!!R displays warning messages at your virtual console when a
duplicate CSECT is encountered during processing. The
duplicate CSECT is not loaded.

NODUP does not display warning messages at your virtual console when
duplicate CSECTs are encountered during processing. The
duplicate CSECT is not loaded.

128 IBM VM/SP CMS :ommand and Macro Reference

INCLUDE

1. If you specify several nondefault options on the LOAD command and
you want those options to rema1n 1n effect, use the SAME option
when you issue the INCLUDE command; for example:

include main subi data (reset main map start)

brings the files named MAIN TEXT, SUBr TEXT, and DATA TEXT into
virtual storage and appends them to previously loaded files.
Information about these loaded files is added to the LOAD MAP file.
Execution begins at entry point KAIN.

load myprog (nomap nolibe nore~

include mysub (map same)

During execution of the LOAD command, the file named MYPROG TEXT is
brought into real storage. The following options are in effect:
NOMAP, NOLIBE, NOREP, NOTYPE, INV, and AUTO. During execution of
the INCLUDE command, the file named MYSUB TEXT is appended to
MYPROG TEXT. The following options are in effect:

KAP, NOLIBE, NOREP, NOTYPE, INV, AUTO

2. When the INCLUDE command is issued, the loader tables are not
reset.

3. For additional information on the CMS loader, see the discussion of
the LOAD command, or consult VML~f ~~ Us~~~ Guig~.

DMSLI0740I EXECUTION BEGINS •••

START was specified with INCLUDE and the loaded program has begun
execution. Any further responses are from the program.

INVALID CARD - xxx ••• xxx

INV was specified with LOAD and an invalid card has been found.
The message and the contents of the invalid card (xxx ••• xxx) are
listed in the LOAD MAP file. The invalid card is ignored and
loading continues.

DMSLGT002I FILE 'fn' TXTLIB NOT FOUND RC=O
DMSLI0001E NO FILENAME SPECIFIED RC=24
DMSLI0002E FILE 'fn ft' NOT FOUND RC=28
DMSLI0003E INVALID OPTION 'option' RC=24
DMSLI0005E NO 'option' SPECIFIED RC=24
DMSLI0021E ENTRY POINT 'name' NOT FOUND RC=40
DMSLI0029E INVALID PARAMETER 'parameter' IN THE OPTION 'option' FIELD

RC=24
DMSLIOC55E NO ENTRY POINT DEFINED RC=40
DMSLI0056E FILE 'fn ft' CONTAINS INVAL~D [NAMEIALIASIENTRYIESD] RECORD

FORMATS RC=32
DMSLI0099E CMS/DOS ENVIRONMENT ACTIVE RC=40
DMSLI0104S ERROR Inn' READING FILE 'fn ft fm' FROM DISK RC=100
DMSLI0105S ERROR 'nn' WRITING FILE 'fn ft fm' ON DISK RC=100
DMSLI0109S VIRTUAL STORAGE CAPACITY EXCEEDED RC=104

section 2. CMS Commands 129

INCLUDE

DMSLI0116S LOADER TABLE OVERFLOW RC=104
DMSLI0168S PSEUDO REGISTER TABLE OVERFLOW RC=104
DMSLI0169S ESDID TABLE OVERFLOW RC=104
DMSLI0201W THE FOLLJWING NAMES ARE UNDEFINED: RC=4
DMSLI0202w DUPLICATE IDENTIFIER 'identifier' RC=4
DMSLI0203W "SET LOCATION COUNTER" NAME 'name' UNDEFINED RC=4
DMSLI0206W PSEUDO REGISTER ALIGNMENT ERROR RC=4
DMSLI0907T I/O ERROR ON FILE 'fn ft fm' RC=256

130 IBM VM/SP CMS Command and Macro Reference

LABELDEF

LABELDEF

Use the LABELDEF command to specify standard HDR1 and EOF1 tape label
description information for CMS, CMS/DOS, and OS simulation. This
command is required for CMS/DOS and CMS tape label processing. It is
optional for OS simulation. However, it is needed if you want to
specify a filename to be checked or the exact data to be written in any
field of an output HDR1 and EOF1 label. The format of the LABELDEF
comm and is:

r
I LA beldef
I
I
1
I
I
I
I
I
I
1
I
I
I ,
I
L

*

filename

CLEAR

FID { ? }
fid

VOLI D volid

CLEAR
r ,

IFID{ ? }I
I fid I

[VOLID volid] (VOLSEQ volseq]

L .J

fseq] [GENN genn] (GENV genv]

[CRDTE yyddd] [EXDTE yyddd]
[(options ••• [)]]

QE!i2n§:r ,
[PER M] I £HA,NQ! I

INOCHANGEI
L .J

r SEC{~}l
I 3 I
L .J

may be specified only with CLEAR.
label definitions.

It clears all existing

is one of the following:

ddname for FILEDEF files (OS simulation) •

filename in DTFMT macro (CMS/DOS simulation) •

labeldefid specified in the TAPEMAC or TAPPDS command or in
the LABID field of the TAPESL macro (can be 1-8 characters).

removes a label definition.

LABELDEF filename CLEAR clears only the label definitio~ for
that filename.

LABELDEF * CLEAR removes all existing label definitions
unless specified as PERM.

supplies the file (data set for OS) identifier in the tape
label. Use the FID ? form if the identifier exceeds 8
characters (up to a maximum of 17) or the identifier contains
special characters. The system responds by prompting you to
supply the information. If the file identifier does not
exceed 8 characters, enter the fileid directly (FID fid).

is the volume serial number (1-6 numeric characters).

section 2. CMS Commands 131

LABELDEF

VOLS EQ volseq
is the volume sequence number (1-4 numeric characters) •

FSEQ fseq is the file (data set for OS) sequence number in the label
(1-4 numeric characters) •

GENN genn

GENV genv

CRDTE yyddd

EXDTE yyddd

SEC

is the generation number (1-4 numeric characters) •

is the generation version (1-2 numeric characters) •

is the cceation date.

is the expiration date.

specifies security classification (0 , 1, or 3). See the IBM
publication Q~L!~ I~E~ Labe!§, GC26-3795, for the meaning of
security classification on tape files. Note that this number
has no effect on how the file is processed. It is used only
for checking or writing purposes.

PERM retains the current definition until it either is explicitly
cleared or is changed by a new LABELDEF command with the
CHANGE option., If PERM is not specified, the definition is
cleared when a LABELDEF * CLEAR command is executed.

CHANGE merges the label definitions whenever a label definition
already exists for a filename and a new LABELDEF command
specifying the same filename is issued. In this situation,
the options associated with the two definitions are merged.
Options from the original definition remain in effect unless
duplicated in the new definition. New options are added to
the option list.

NOCHANGE retains the current label definition, if one exists, for the
specified filename.

The following default values are used in output labels when a value is
not explicitly specified:

FID For as simulation, tid is the ddname specified in the
FILEDEF command for the file.

For CMS/DOS, fid is the DTFMT symbolic name.

For the CMS TAPESL macro, tid is the LABELDEF specified in
the LABID parameter.

VaLID is CMS001.

FSEQ is 0001.

VOLSEQ is 0001.

GENN is blanks.

GENV is blanks.

CRDTE is the date when the label is written.

132 IBM VM/SP CMS Command and Macro Reference

LABELDEF

EXDTE is the date when the label is written.

SEC is O.

1. To check a field in an input label, specify it on your LABELDEF
command for the label. If you do not specify a value for a
particular field, this field is not checked at all for input. For
output, any field you specify is written in the label exactly as
you specify it on the LABELDEF command. If you do not specify a
field for output, the default value for that field is written in
the label.

If you write the following LABELDEF command,

labeldef filex fid master fseq 2 exdte 78285

and use the statement for an input file, only the file identifier,
file sequence number, and expiration date in HDR1 labels are
checked. Error messages are issued when there fields in the tape
label do not match those specified in the LABELDEF statement. If
you use the same statement for an output file, the fields leave the
following values:

fileid
file sequence number
volume sequence number
creation date
expiration date
security
volume serial number
generation number
generation version

MASTER
0002
0001
date when label is written
78285
o
CMS001
blank
blank

2. If you issue LABELDEF without any operands, a list of all LABELDEFs
currently in effect is displayed on your terminal.

3. For OS simulation, a LABELDEF statement may
FILEDEF statement for a file. Use of a
optional in this case. The statements

filedef filez tap1 sl volid vo14

be used as well as a
LABELDEF statement is

labeldef filez fid payroll fseq 2 exdte 78300

define filez as a labeled tape file on tape 181. The volume serial
is VOL4, the fileid is PAYROLL, and the file sequence number is
00~2. Expiration date is day 300 in 1978. If you only use the
FILEDEF command, you have only defined the VOLID (volume serial
number) •

4. For CMS and CMS/DOS, a LABELDEF command is required. The command

labeldef file14 volid sup vol volseq 3

defines a tape label with a volume serial of SUPVOL and a volume
sequence number of 0003. This LABELDEF statement could be used by
a CMS/DOS program containing a DTFMT macro with the form

FILE14 DTFMT ••• FILABL=STD •••

or by a CMS program with a TAPESL macro similar to the following:

TAPESL HOUT,181,LABID=FILE14

Section 2. CMS Commands 133

LABELDEF

A CMS TAPEMAC command could use the same LABELDEF as follows:

tapemac aaclib sl file14

In all three preceding examples, the LABELDEF statement must be
issued before the program or command is executed.

5. See the section "Tape Labels in CMS" in the !1!L~g £11~ Q.§~§ ~~
for more details on CMS tape label processing.

DMSLBD003E INVALID OPTION-option RC=24
DMSLBD029E INVALID PARAMETER 'parameter' IN THE OPTION 'option' FIELD

RC=24
DMSLBD065E 'option' OPTION SPECIFIED TWICE RC=24
DMSLBD066E 'option' AND 'option' ARE CONFLICTING OPTIONS RC=24
DMSLBD070E INVALID PARAMETER 'parameter' RC=24
DMSLBD221E INVALID DATA SET NAME RC=24
DMSLBD3241 NO USER DEFINED LABELDEFS IN EFFECT RC=20
DMSLBD7041 INVALID CLEAR REQUEST RC=24

134 IBM VM/SP CMS Command and Macro Reference

LISTDS

LISTDS

Use the LISTDS command to list, at your terminal, information about the
data sets or files residing on accessed OS or DOS disks. In addition,
use LISTDS to display extent or free space information when you want to
allocate space for VSAM files. The format of the LISTDS command is:

r
I , r 1

QEii2!l§:
, LISTDS
I

I 1 I {f*m} [(options ••• [)]]
I dsnamel
L

r ,
I EXTENT I
I FREE I I

I , ,
L

1

L .J

[FORMAT]
[PDS]

indicates that you want to enter interactively the OS data
set name, VSE file-id, or VSAM data space name. When you
enter a question mark (1), CMS prompts you to enter the OS
data set name, DOS file-id, or VSAM data space name exactly
as it appears on the disk. This form allows you to enter
names that contain embedded blanks or hyphens.

dsname is the ~S data set name or VSE file-id or VSAM data space
name and takes the form:

fm

*

qual1 [qual2 qualn]

where qual1, qua12, through qualn are one- to eight-character
qualifiers normally separated by periods. Each qualifier
must be separated from other qualifiers by blanks whe~ you
enter them this way. (See Usage Note 1.)

is the filemode of the disk to be searched for the specified
file. If a dsname is not specified, a list of all the files
or data sets on the specified disk is displayed.

indicates that you want all of your accessed DOS or OS disks
searched for the specified data set or file. If a dsname is
not specified, a list of all files on all accessed OS and DOS
disks is displayed.

QE!iQ~§: The FREE and EXTENT options are mutually exclusive; the
FORMAT and PDS options cannot be specified with either FREE or
EXTENT.

FREE requests a display of all free space extents on
minidisk or on all accessed DOS and OS disks. If
the FREE option, you cannot specify a dsname.

a specific
you enter

EXTENT requests a display of allocated extents for a single file
EX or for an entire disk or minidisk. If a dsname is specified,

only the extents for that particular file or data set are
listed; if fm is specified as *, all disks are searched for
extents occupied by that file.

Section 2. CMS Commands 135

LISTDS

If a dsname is not specified, then a list of all currently
allocated extents on the specified disk, or on all disks, is
displayed.

FORMAT requests a display of the date, disk label, filemode, and
FO data set name for an OS data set as well as RECFM, LRECL,

BLKSIZE, and DSORG information. For a VSE file, LISTDS
displays the date, disk label, filemode, and file-id, but
g1ves no information about the RECFM, LRECL, and BLKSIZE (two
blanks appear for each); DSORG is always PS.

PDS displays the member names of referenced OS partitioned data
sets.

For examples of the displays produced as a result of each of these
options, see the "Responses" section, below.

1. If you want to enter an OS or VSE file identification on the LISTDS
command line, it must consist of one- to eight-character qualifiers
separated by periods. For example, the file TEST.INPUT.SOURCE.D
could be listed as follows:

listds test input source d *
Or, you can enter the name interactively, as follows:

listds ? *
DMSLDS220R ENTER DATA SET NAME:
test.input.source.d

Note that when the data set name is entered interactively, it must
be entered in its exact form; when entered on the LISTDS command
line, the periods must be omitted.

You must use the ,interactive form to enter a VSE file-id that
contains embedded blanks or hyphens.

2. When using access method services, use the FREE option to determine
what free space is available for allocation by VSAM. For example:

listds * (free

requests a display of unallocated extents on all accessed OS or DOS
disks. You can then use the EXTENT option on the DLBL command when
you define the file for AMSERV.

3. Full disk displays using the FREE option will display free
alternate tracks as well as free space extents.

4. Since CMS does not support ISAM files, LISTDS lists extent and free
information on ISAM files, but ignores format 2 DSCB's.

5. Since CMS does not support track overflow, LISTDS will not read
beyond a track if DCB=RECFM=T is specified for the OS VTOC.

136 IBM VM/SP CMS Command and Macro Reference

LISTDS

DMSLDS220R ENTER DATA SET NAME:

This message prompts you to enter the data set name when you use
the ? operand on the LISTDS command. Enter the file identification
in its exact form. A sample sequence might be:

listds ? c
DMSLDS220R ENTER DATA SET NAME:
my.file.test
FM DATA SET NAME
C MY.FILE.TEST
R;

The response shown above following the entry of the data set name
is the same as the response given when you enter a data set name on
the LISTDS command line.

DMSLDS229I NO MEMBERS FOUND

This message is displayed when you use the PDS option and the data
set has no members.

DMSLDS233I NO FREE SPACE AVAILABLE ON 'fm' DISK

This message is displayed when you use the FREE opt~on and there is
no free space available on the specified disk.

gg~EQn§~§·~Q ~hg ~!!~!! Q~!iQn: A sample response to the EXTENT option
is shown below. The headers and the type of information supplied are the
same when you request information for a specific file only, or for all
disks.

listds g (extent

EXTENT INFORMATION FOR 'VTOC' ON 'G' DISK:
SEQ TYPE CYL-HD(RELTRK) TO CYL-HD(RELTRK)
000 VTOC 099 JO 1881 099 18 1899

TRACKS
19

EXTENT INFORMATION FOR 'PRIVAT.CORE.IMAGE.LIB' ON 'G' DISK:
SEQ TYPE CYL-HD(RELTRK) TO CYL-HD(RELTRK) TRACKS
000 DATA 000 01 1 049 18 949 949

EXTENT INFORMATION FOR 'SYSTEM.WORK.FILE.NO.6' ON 'G' DISK:
SEQ TYPE CYL-HD(RELTRK) TO CYL-HD(RELTRK) TRACKS
000 DATA 050 00 950 051 18 987 38

EXTENT INFORMATION FOR 'COBOL TEST PROGRAM' ON 'G' DISK:
SEQ TYPE CYL-HD(RELTRK) TO CYL-HD(RELTRK) TRACKS
000 DATA 052 02 990 054 01 1027 38

EXTENT INFORMATION FOR 'DKSQ01A' ON 'G' DISK:
SEQ TYPE CYL-HD(RELTRK) TO CYL-HD(RELTRK) TRACKS
oeo DATA 080 01 1521 081 00 1539 19

or for a fixed-block device:

EXTENT INFORMATION FOR 'DSQ01A' ON G DISK:
SEQ TYPE REL-BLK TO REL-BLK BLOCKS
000 DATA 0050J) 00550 51

Section 2. CMS Commands 137

LISTDS

SEQ indicates the sequence number assigned this extent when the
extents were defined via the DLBL command. CMS assigns the
sequence numbers for VSAM data sets; the first extent set has a
sequence of 000, the second extent has a sequence of 001, and so
on.

TYPE can have the following designations:

!.YE~
DATA
VTOC
SPLIT
LABEL
INDEX
OVFLO
MODEL

l1~S!!i!!g
Data area extent
VTOC extent of the disk
Split cylinder extent
Use~ label extent
ISA~ index area extent
ISA~ independent overflow area extent
Model data set label in the VTOC. Does not define an extent

CYL-HD(RELTRK) TO CYL-HD(RELTRK)
indicates the cylinder, head, and relative track numbers of the
start and end tracks of this extent.

TRACKS indicates the number of tracks in the extent.

REL-BLK TO REL-BLK
indicates the relative block numbers of the start and end of the
extent.

BLOCKS indicates the number of blocks in the extent.

g~§EQ!!§~ 12 ihg lRE~ 2E1i2!!: A sample response to the FREE option is
shown below. The same headers and type of information is shown when you
request free information for all accessed disks.

listds g (free
FREESPACE EXTENTS
CYL-HD(RELTRK) TO
052 00 988
054 02 1028
081 01 1540

FOR 'G' DISK:
CYL-HD (RELTRK)
052 01 989
080 00 1520
098 18 1880

or for a fixed-block device:

listds g (free
FREESPACE EXTENTS FOR 'G' DISK:
REL-BLK TO REL-BLK BLOCKS

501 1330 830
10310 29610 19301
68990 69990 1001

CYL-HD(RELTRK) TO CYL-HD(RELTRK)

TRACKS
2

493
341

indicates the cylinder, head and relative track numbers of the
starting and ending track in the free extent.

TRACKS indicates the total number of free tracks in the extent.

REL-BLK TO REL-BLK
indicates the relative block number of the start and end of
extents that are free on the fixed-block device.

BLOCKS indicates the total number of blocks contained in each extent.

138 IBM VM/SP CMS :ommand and Macro Reference

LISTDS

Rg2QQllse £2 £hg fQR~!I ~ll~ f~ QE1iQ~§: If you enter the FORMAT and PDS
options, you receive information similar to the following:

listds d (fo pds)

RECF M LRECL BLKSI DSORG DATE LABEL
FB 80 800 PO 01/31/75 OSSYS1

MEMBER NAMES:
ABEND ATTACH BLDL BSP CLOSE
FIND PUT READ WRITE XDAP
RECFM lRECL BLKSI DSORG DATE LABEL

F 80 80 PS 01/10/75 OSSYS 1

DMSLDS002E DATA SET NOT FOUND RC=28
DMSLDS003E INVALID OPTION 'option' RC=24
DMSLDS048E INVALID MODE 'mode' RC=24
DMSLDS069E DISK 'mode' NOT ACCESSED RC=36

FM DATA SET NAME
D SYS1.MACLIB

DCB DETACH DEVTYPE

FM DATA SET NAME
D SAMPLE

DMSLDS117E INVALID EXTENT FOUND FOR 'data set name' ON 'fm' DISK RC=24
DMSLDS221E INVALID DATA SET NAME RC=24
DMSLDS222E I/O ERROR READING 'data set name' FROM {fmIOSIDOS} DISK

RC=28
DMSLDS223E NO FILEMODE SPECIFIED RC=24
DMSLDS226E 'NO DATA SET NAME ALLOWED WITH FREE OPTION RC=24
DMSLDS227W INVALID EXTENT FOUND FOR 'datasetname' ON {fmIOSIDOS} DISK

RC=4
DMSLDS231E I/O ERROR READING VTOC FROM {fmIOSIDOS} DISK RC=28

Section 2. CMS Commands 139

LIST FILE

LISTFILE

use the LISTFILE co~mand to obtain specified information about CMS files
residing on accessed disks. The format of the LISTFILE command is:

r--------------------------
I f" r f" ",
I Listfile Ifn 1ft Ifmt I I [(options ••• [)]]
I I * 1* 1* 1'1
, L L L.J.J.J

I ,
t
I
I ,
I
I
I ,

r ,
IHeader I
INOHeaderl
L .J

r ,
I Exec I
I APpend I
L .J

r ,
IFName I
I FType I
I rtlode I
IFOrmatl
IALloc I
1 Date I·
I Label I
L .J L ___________________ _

fn

ft

fm

HEADER

is the filename of the files for which information is to be
collected.. If an asterisk is coded in this field, all
filenames are used. If you code an asterisk preceded by any
number of characters, then files that begin with the specified
characters are listed.

is the filetype of the files for which information is to be
collected. If an asterisk is coded in this field, all
filetypes are used. If you code an asterisk preceded by any
number of characters, then files that begin with the specified
characters are listed.

is the filemode of the files for which information is to be
collected. If this field is omitted, only the A-disk is
searched. If an asterisk is coded, all disks are searched.

includes column headings in the listing. HEADER is the
default if any of the supplemental information options
(FORMAT, ALLOCATE, DATE, or LABEL) are specified. The
format of the heading is:

FILENAME FILETYPE FM FORMAT LRECL RECS BLOCKS DATE TIME LABEL

NOHEADER does not include column headings in the list. NOHEADER is
the default if only filename, filetype, or filemode
information is requested.

EXEC creates a CMS EXEC file of SO- or SS-character records (one
record for each of the files that satisfies the given file
identifier) on your A-disk. An SO-character record file is
created unless you specify the LABEL option, in which case
an SS-character record file is created. If a CMS EXEC

140 IBM VM/SP CMS :ommand and Macro Reference

APPEND

LISTFILE

already exists, it is replaced. The header is not included
in the file.

creates a CMS EXEC and appends it to the existing CMS EXEC
file. If no eMS EXEC file exists, one is created.

!g!Q&~g~iQg ~~gyg~! Q~!iQn§: Only one of these options need be
specified. If one is specified, any options with a higher priority
are also in effect. If none of the following options are specified,
the default information request options are in effect.

FNAME

FTYPE

FMODE

FORMAT

ALLoe

DATE

LABEL

creates a list containing only filenames. Option priority
is 7.

creates a list containing only filenames and filetypes.
Option priority is 6.

creates a list containing filenames,
fi1emo~es. Option priority is 5.

filetypes, and

includes the record format and logical record length of the
of each file in the list. Option priority is 4.

includes the amount of disk space that CMS has allocated to
the specified file in the list. The quantities given are
the number of aDO-byte blocks and the number of logical
records in the file. Option priority is 3.

includes the date the file was last written in the list.

The form of the date is:

month/day/year hour: minute

for aOO-byte block disks, or:

month/day/year hour: minute: second

for all other format sizes.

Option priority is 2.

includes the label of the disk on which the file resid~s in
the list. Option priority is 1.

1. If you enter the LISTFILE command with no operands, a list of all
files on your A-disk is displayed at the terminal. If you enter:

listfile a* f* c

Section 2. eMS Commands 141

LIST FILE

you might see the display:

AARDVARK
ANNA
AUTHOR

FILE
FILEDATA
FLINDEX

cs
C1
C1

2. If you request any additional information with the supplemental
information options, that information is displayed along with the
header.

3. When you use the EXEC or APPEND option, the CMS EXEC A1 that is
created is in the format:

&1 &2 filename filetype fm •••

where column 1 is blank.

If you use any of the supplemental information options, that
information is included in the EXEC file. For information on using
CMS EXEC files, see the Y~LSP £~~ Q§g£~ Quig~.

4. You can invoke the LISTFILE command from the terminal, from an EXEC
file, or as a function from a program. If LISTFILE is invoked as a
function or from an EXEC file that has the &CONTROL NOMSG option in
effect, the DMSLST002E FILE NOT FOUND error message is not issued.

If the EXEC or APPEND option is not specified, the requested information
is displayed at the terminal. Depending on the options specified, or
discussed above, the information displayed is:

FILENAME FILETYPE FM FORMAT LRECL RECS BLOCKS DATE TIME LABEL

fn ASS EMBLE fm {~} lrecl norecs noblks mm/dd/yy hh:mm:ss volid

fn

ft

fm

{~}
lrecl

norecs

noblks

is the filename of the file.

is the filetype of the file.

is the filemode of the file

is the file forma t: F is fixed-length, V is variable-
lengt h.

is the logical record length of the largest record in the
file •.

is the number of logical records in the file.

is the number of physical blocks that the file occupies
on di sk.

142 IBM VM/SP CMS :ommand and Macro Reference

LISTFILE

mm/dd/yy is the date (month/day/year) that the file was last
updated.

hh:mm:ss is the time (hours:minutes:seconds) that the file was
last updated.

volid is the volume serial number of the virtual disk on which
the file resides.

One entry is displayed for each file listed.

DMSLST002E FILE NOT FOUND RC=28
DMSLST003E INVALID OPTION 'option' RC=24
DMSLST037E DISK 'mode" IS READ/ONLY RC=36
DMSLST048E INVALID MODE 'mode' RC=24
DMSLSTC66E 'option' and 'option' ARE CONFLICTING OPTIONS RC=24
DMSLSTC69E DISK 'mode' NOT ACCESSED RC=36
DMSLST070E INVALID PARAMETER 'parameter' RC=24
DMSLST105S ERROR Inn' WRITING FILE 'fn ft fm' ON DISK RC=100

Section 2. CMS Commands 143

LISTIO

LISTIO

Use the LISTIO command in CMS/DOS to display a list of current
assignments for system and/or programmer logical units in your virtual
machine. The format of the LISTIO command is:

r
I
, LISTIO

SYS
PROG
SYSxxx
A

[(options ••• ()]]
I
I
I ,
I

UA
!~~

.Q-Etio!!.§:
r ,
,EXEC I
IAPPENDI
L .J

(STAT]

L __

SYS requests a list of the physical devices assigned to all system
logical un its.

PROG requests a list of the physical devices assigned to programmer
logical units SYSOOO through SYS241.

SYSxxx requests a display of the physical device assigned to the
particular logical unit specified.

A requests a list of only those logical units that have been
assigned to physical devices.

UA requests a list of only those logical units that have not been
assigned to physical devices; that is, that are unassigned.

!~~ requests a list of the physical units assigned to all system
and programmer logical units. If no operand is specified, ALL
is the default.

I,

QE1i2!!§: The EXEC and APPEND options are mutually exclusive; if both
are entered on the command line, the last one entered is in effect.

EXEC erases the existing $LISTIO EXEC file, if one exists, and
creates a new one.

APPEND adds new entries to the end of an existing $LISTIO EXEC file.

STAT

If no $LISTIO EXEC file exists, a new one is created.

lists the status (read-only or read/write) of all disk devices
currently assigned.

1. Logical units are assigned and unassigned with the ASSGN command.
For a list of logical units and valid device types, see· the
discussion of the ASSGN command •

. 144 IBM VM/SP CMS Command and Macro Reference

LISTIO

2. The $LISTIO EXEC contains one record for each logical unit listed.
The format is:

&1 &2 SYSxxx {device }
mode (status]

where column 1 is blank.

Depending on the operands specified, the following is displayed for each
unit requested in the LISTIO command:

SYSxxx {device }
mode [status]

where device is the device type (READER, PRINTER, PUNCH, TERMINAL, TAPn,
IGN, or UA). If the device is a disk, the one-character mode letter is
displayed. If the STAT option is specified, the status (R/O or R/i) is
also displayed.

DMSLLU003E INVALID OPTION 'option' RC=24
DMSLLU006E NO READ/WRITE 'A' DISK ACCESSED RC=36
DMSLLU070E INVALID PARAMETER 'parameter' RC=24
DMSLLUC99E CMS/DOS ENVIRONMENT NOT ACTIVE RC=40
DMSLLU105S ERROR 'nn' WRITING FILE '$LISTIO EXEC A1' ON DISK RC=100

Section 2. CMS Commands 145

LKED

LKED

Use the LKED command to create a eMS LOADLIB or LOADLIB member. The
format of the LKED command is:

,------
, LKED , fname [(options ••• ()]]

,
I
I ,
I
I
I ,
I
I ,

Q.E:ti.Q!!s:
[NeAL][LE T](ALIGN 2](NE][OL](RENT]

[REUS][REFR][OVLY][XeAL]

[NAME membername](LIBE 1ibraryname]
,- ,
I XREF I
,MAP ,

'1!~!'
L .J

,- ...
I I~!U~ I
I NOTERM,
L J

,- ,
IPRINT I
IQIS~ I
INOPRINTI
L .J

L_-_-_

fname specifies the filename of the object file to
The file must have a filetype of TEXT and
80-character records.

be processed.
fixed-length,

Q.Eii.Q.ll§:

If duplicate or conflicting linkage editor options are specified, the
linkage editor resolves them according to normal procedures. If
duplicate or conflicting eMS-related options are specified, the last
one entered on' the command line is in effect. The eMS-related
options are: TERM, NOTERM, PRINT, DISK, NOPRINT, NAME, and LIBE.

NeAL suppresses the automatic library call function of the linkage
editor.

LET suppresses marking of the load module "not executable" in the
event of some linkage editor error condition.

ALIGN2

NE

OL

RENT

REUS

REFR

OVLY

XCAL

indicates that boundary alignment specified in the linkage
editor input file is to be performed on the basis of 2048-byte
boundaries. If this option is omitted, alignment is performed
on the basis of 4096-byte boundaries.

marks the load module output as "not to be edited" such that
it cannot be processed again by the linkage editor.

marks the load module output "only loadable".

marks the load module reenterable.

marks the load module reusable.

marks the load module refreshable.

processes an overlay structure.

allows valid exclusive CALLs in the overlay structure.

146 IBM VM/SP CMS :ommand and Macro Reference

LKED

NAME membername
is the member name to be used for the load module created.
The member name specified here overrides the default name~ but
it cannot override a name specified via the linkage editor
NAME control statement.

LIBE libraryname

XREF

is the filename of a LOADLIB file where the output load module
is to be placed. The LOADLIB file specified here may also be
used for auxiliary input to the linkage editor via the INCLUDE
statement.

produces an external symbol cross-reference for the modules
being processed.

MAP produces only a module map for the. processed module(s).

NOTERM

includes only linkage editor control messages in the printed
output file.

displays any linkage editor diagnostic messages at the user
terminal.

suppresses the displaying of diagnostic messages.

PRINT spools the linkage editor printed output file to the printer.

NOPRINT

stores the linkage editor output in a CMS disk file with a
filetype of LKEDIT.

produces no output file.

1. Only a subset of the possible linkage editor control statements are
meaningful in eMS. Since the eMS interface program cannot examine
the input data for the LKED command, all of the control statements
are allowed, even though several of them result in the creatiQn of
a load module file that cannot be used under CMS. For both command
options and control statements, see the publication Q~L!a Link~g~
~g!1Q~ ggg 1Qgg§~·

2. The LKED command produces one temporary file:

fname SYSUT1

This file is temporarily created for each link-edit step; any
existing file with the same file identifier is erased at the
beginning of the link edit. This file is placed on the read/~rite
disk with the most available space. Work space is automatically
allocated as needed during the link edit and returned to available
status when the link edit is complete. Insufficient space causes
abnormal termination of the link edit.

3. The LKED command produces two permanent file:

fname LOADLIB
fname LKEDIT

The 'fname LOADLIB' file contains the load module(s) that the
linkage editor created. This file is in eMS simulated partitioned
data set format, as created by the eMS OS data management macros.

Section 2. eMS Commands 147

LKED

The filename of the input file becomes the filename of the LOADLIB
file, unless the LIBE option is specified. The filename of the
input file also becomes the member name of the output load module,
unless either the NAME option or a NAME control statement is used.
One or more load modules may be created during a single LKED
command execution if the NAME linkage editor control statement is
used in the input file. When the NAME control statement is used,
that name becomes the member name in the LOADLIB f~le. The replace
option of the NAME statement determines whether existing members
with the same name are replaced or retained.

The 'fname LKEDIT' file contains the printed output listing
produced according to the XREF, MAP, or LIST options. This file is
created on disk unless the PRINT or NOPRINT option is specified.
The LOADLIB and LKEDIT files are placed on (1) the disk from which
the input file was read, (2) the parent disk, or (3) the primary
disk. Failure to obtain sufficient space for these files results
in abnormal termination of the linkage editor.

148 IBM VM/SP eMS Command and Macro Reference

LOAD

LOAD

Use the LOAD command to read one or more CMS or OS TEXT files
(containing relocatable object code) from disk and to load them into
virtual storage, establishing the proper linkages between the files.
The format of the LOAD command is:

r
LOAD

L

fn ••• [(options ••• [)]]
r ..

QE~iQn§: ,CLEAR I
INO£1~!~1
L .J

r ,
111!£ ,
I NOMAP,
L .J

r ,
11I1H; I
INOLIBEI
L .J

r ,
ITYPE I
I!!QIYP!I
L .J

[START]

r , r ,

10RIGIN {hexlOC}I ~ RESET {en;ry} ~
I TRANS I

L .J L .J

r ,
lIN! I
INOINVI
L .J

r ,
IDUg I
I NODUPI
L .J

r ,
I~EP I
INOREPI
L .J

r ,
I AUIQ I
INOAUTOI
L .J

fn .•• specifies the names of the files
The files must have a filetype
relocatable object code such as
language processors. If a GLOBAL
issued, fn may indicate the name of

to be loaded into storage.
of TEXT and consist of
that produced by the OS

TXTLIB command has been
a TXTLIB member.

QEli2n§: If conflicting options are specified, the last one entered
is in effect. Options may be overridden or added when you use the
INCLUDE command to load additional TEXT files.

CLEAR clears the load area in storage before the object files are
loaded. Whole page frames are released; the remainder of
storage that is not on a page boundary is set to binary
zeros.

liQf1]!g does not clear the load area before loading.

RESET {en;ry}

sets the starting location for the programs currently loaded.
The oper~nd, entry, must be an external name (for example,
CSECT or ENTRY) in the loaded programs. If RESET is not
specifiej" the default entry point is used. (See Usage Note
4.) If * is entered the results are the same as if the RESET
option were omitted.

EQ~~: The RESET option should not be used when loading TEXT
files created by any of the following OS/VS language
processors under CMS: OS Code and Go FORTRAN, OS FORTRAN IV
(G1), OS FORTRAN IV (H) Extended, OS/VS COBOL Compiler and
Library, OS Full American National Standard COBOL Version 4
Compiler and Library.

Section 2. eMS Commands 149

LOAD

ORIGIN
{

hexloc }
TRANS
loads the program beginning at the location specified by
hexloc; this location must be in the CMS nucleus transient
area or in the user area. The location, hexloc, is a
hexadecimal number of up to six characters. If TRANS is
specified, the file is loaded into the CMS nucleus transient
area. If ORIGIN is not specified, loading begins at the
first available storage location in the user program area.

MQ!g: Any program loaded into the transient area must have a
starting address of X'EOOO'. See the discussion of the
GENMOD command for information on loading programs in the
transient area.

~!g writes a load map on your A-disk, named LOAD MAP AS.

NOMAP does not create the LOAD MAP file.

TYPE displays the load map at your terminal, as well as writing it
on the A-disk. This option is valid only if the MAP option
is in effect.

NQ!lg] does not display the load map at the terminal.

!BY includes invalid card images in the load map.

NOINV does not include invalid card images in the load map.

g~R includes Replace (REP) statements in the load map.

NOREP does not include the Replace (REP) statements in the load
map.

searches your virtual disks for TEXT files to resolve
undefined references.

NOAUTO suppresses automatic searching for TEXT files.

11~] searches the text libraries for missing subroutines. If text
libraries are to be searched for TEXT files, they must
previously have been defined by a GLOBAL command.

NOLIBE does not search the text libraries for unresolved references.

START executes the program being loaded when loading is compl~ted.
LOAD does not normally begin execution of the loaded files.
To begin execution immediately upon successful completiqn of
loading, specify START. Execution begins at the default
entry point. (See Usage Note 4.)

~Qg displays warning messages at your terminal when a duplicate
CSECT is encountered during processing. The duplicate CSECT
is not loaded. (See Usage Note 3.)

NODUP does not display warning messages at your terminal
duplicate CSECTs are encountered during processing.
duplicate CSECT is not loaded.

when
The

1. You must have a read/write CMS A-disk accessed when you issue the
LOAD command; the loader creates a temporary workfile named DMSLDR
SYSUT1 and writes it on the A-disk.

150 IBM VM/SP CMS Command and Macro Reference

LOAD

2. Unless the NOMAP option is specified, a load map is created on the
A-disk each time the LOAD command is issued. A load map is a file
that contains the location cf control sections and entry points of
files loaded into storage. This load map is named LOAD MAP AS.
Each time LOAD is issued, a new LOAD MAP file replaces any previous
LOAD MAP file.

If invalid card images exist in the file or files that are being
loaded, they are listed with the message INVALID CARD in the LOAD
MAP file. To suppress this listing in the load map, use the NOINV
option.

If Replace (REP) statements exist in the file being loaded, they
are included in the LOAD MAP file. To suppress this listing of REP
statements, specify the NOREP option.

If the ENTRY or LIBRARY control cards are encountered in the
file, the load map contains an entry:

CONTROL CARD-

listing the card that was read.

Mapping of any common areas that exist in the loaded files will
occur when the program is prepared for execution by the START or
GENMOD command or by the START option of the LOAD or INCLUDE
command. An ~pdated load map may be displayed prior to program
execution if the START command is issued with the NO option to
suppress execution.

3. Duplicate CSEcrs (control sections) are bypassed by the loader.
Only the first CSECT encountered is physically loaded. The
duplicates are not loaded. A warning message is displayed at your
terminal if yoa specified the DUP option. If a section contains an
ADCON that references a duplicate CSECT that has not been loaded,
that ADCON may be resolved incorrectly.

4. The loader selects the entry point for the loaded program according
to the following hierarchy:

• From the parameter list on the START command

• From the last RESET operand in a LOAD or INCLUDE command

• From the last ENTRY statement in the input

• From the last LDT statement in the input

• From the first
that specifies
input

assembler- or compiler-produced END stat~ment
an entry point if no ENTRY statement is in the

• From the first byte of the first control section of the loaded
program if there is no ENTRY statement and no assembler- or
compiler-produced END statement specifying an entry point

5. The LOAD command should not be used to execute programs containing
DOS macros. To link-edit and execute programs in the CMS/DOS
environment, use the DOSLKED and FETCH commands.

6. See Figure 9 for an illustration of the loader search order. The
loader uses this search order to locate the filename on the LOAD
and INCLUDE command lines, as well as in the handling of unresolved
references.

Section 2. CMS Commands 151

LOAD

.----- --,
, Use standard order of search to ,
, locate the TEXT files specified ,
, by fn •• !' 1
'- ---' , ,

* . * Any *
* unresolved * NO

* references *
* ? *

* · · *
*
, YES ,

· * · * Is *
* NOAUTO * YES

* specified *
* ? *

* · *
*
1 NO ,

r-------- --,
1 Use standard order of search to ,
I locate files with a filetype of 1
, TEXT and a filename correspond- I
1 ing to the unresolved reference 1
'----------

1<
1

· * · . * Any *
* unresolved * NO

* references *
* ? *

* · · *
*
, YES
I

· * · * Is *
* NOLIBE * YES

r-
1 Search
1 complete
'--

r-, Search
I complete

r-
1 Search

* specified . *---1 complete

* ? *
* · *

* , NO
1

.---------------------------------,
, Search active text libraries I
I (those that were previously 1
, specified by a GLOBAL command). I
1 . Files are searched in the order 1
, they are entered in the command.r

----------------'

r-------------------,
f Search complete I
L- --I

Figure 9. Loader Search Order

152 IBM VM/SP eMS :ommand and Macro Reference

--I

7. The CMS loader also loads routines called dynamically
LOAD, and XCTL macros. Under certain circumstances,
entry point may be returned to the calling program.
£~~ Y§~~~2 Qyid~ for more details.

LOAD

by OS LINK,
an incorrect

See the VM/SP

8. LOAD does not clear user storage unless the CLEAR option is
specified.

LOADER CONTROL STATEMENTS

You can add loader control statements to TEXT files either by editing
them or by punching real cards and adding them to a punched text deck
before reading it into your virtual machine. The seven control ~ards
recognized by the CMS loader are discussed below.

The ENTRY and LIBRARY cards, which are discussed first, are similar
to the as linkage editor control statements ENTRY and LIBRARY. The CMS
ENTRY and LIBRARY statements must be entered beginning in column 1.

~BIRI Stat~!~n~: The ENTRY statement specifies the first instruction to
be executed. It can be placed before, between, or after object modules
or other control statements. The format of the ENTRY statement is shown
in Figure 10. The external name is the name of a control section or an
entry name in the input deck. It must be the name of an instruction,
not of data.

r--------------------------
I ENTRY ,external name

Figure 10. ENTRY Statement Format

LIBRARY Statement: The LIBRARY statement can be used to specify the
~e;er:call-fU;ctIon. The never-call function (indicated by an asterisk
(*) as the first operand) specifies those external references that are
not to be resolved by the automatic library call during any loader step.
It is negated when a deck containing the external name referred to is
included as part of the input to the loader. The format of the LIBRARY
statement is shown in Figure 11. The external reference refers 'to an
external reference that may be unresolved after input processing. It is
not to be resolved. Multiple external references within the parentheses
must be separated by commas. The LIBRARY statement can be placed
before, between, or after object decks or other control statements.

r----------
LIBRARY * (external reference)

L

Figure 11. LIBRARY Statement Format

19~9~~ 1~!!n~i~ (~~I) ~i2!~~~!: The LDT statement is used in a text
library as the last record of a member. It indicates to the loader that
all records for that member were processed. The LDT statement can
contain a name to be used as the entry point for the loaded member. The
LDT statement has the format shown in Figure 12.

Section 2. CMS Commands 153

LOAD

r
I Column
I
I
I
I
1 2-4
I

5-16

17-24

25

26-33

34-80

Figure 12.

contents

X' 02' (12-2-9 punch).
Identifies this as a loader control statement.

LDT -- identifies type of statement.

Not used.

Blank or entry name (left-justified and padded with
blanks to eight characters).

Blank.

May contain information specified on a SETSSI card
processed by the TXTLIB command.

Not used.

LDT statement Format

!llf!~Q~ COll~£~! 2~ctiQg (!£~) ~tate~~!: The ICS statement changes the
length of a specified control section or defines a new control section.
It should be used only when REP statements cause a control section to be
increased in length. The format of an ICS statement is shown in Figure
13. An ICS statement must be placed at the front of the file or TEXT
file.

r
I
I
I
I
I
I ,

Column

2-4

5-16

17-22

23

24

25-28

contents

X' 02' (12-2-9 punch).
Identifies this as a loader control statement.

ICS -- identifies the type of load statement.

Blank.

Control section name -- left-justified in these columns.

Blank.

(comllla) •

Hexadecimal length in bytes of the control section. This
must not be less than the actual length of the previously
specified control section. It must be right-justified in
columns with unused leading columns filled with zeros.

29 Blank.

30-72 May be used for comments or left blank.

73-80 Not usea by the loader. You may leave these columns blank
or insert program identification for your own convenience.

Figure 13. ICS statement Format

154 IBM VM/SP CMS Command and Macro Reference

LOAD

!Q1g: Only six characters can be coded for the CSECT name in the lCS
statement, but the loader compares eight characters to the CSECT name
from the TEXT file.

~~i 1Q£~~!Qn ~QYBi~f (§~~) ~tate~~!: The SLC statement sets the
location counter used with the loader. The file loaded after the SLC
statement is placed in virtual storage beginning at the address set by
this SLC statement. The SLC statement has the format shown in Figure
14. It sets the location counter in one of three ways:

1. With the absolute virtual address specified as a hexadecimal number
in columns 7-12.

2. With the symbolic address already defined as a
entry point. This is specified by a symbolic
columns 17-22.

program name or
name punched in

3. If both a hexadecimal address and a symbolic name are specified,
the absolute virtual address is converted to binary and added to
the address assigned to the symbolic name; the resulting sum is
the address to which the loader's location counter is set. For
example, if OOOOF8 was specified in columns 7-12 of the SLC card
image and GAMMA was specified in columns 17-22, where GAMMA has an
assigned address of 006100 (hexadecimal), the absolute address in
columns 7-12 is added to the address assigned to GAMMA g~v~ng a
total of 0061F8. Thus, the location counter would be set to
0061F8.

r-
, Column
I--
I 1 ,
I
I 2-4
I
I 5-6 ,
, 7-12 , , ,
I
, 13-16
I
I 17 -2 2
1
I
I
I 23
1
, 24-72
I
I 73-80
I
I
L

Figure 14.

Contents

X' 02' (12-2-9 punch).
Identifies this as a loader control statement.

SLC -- identifies the type of load statement.

Blank.

Hexadecimal address to be added to the value of the symbol,
if ,any, in columns 17-22. It must be right-justified in
these columns, with unused leading columns filled with
zeros.

Blank.

Symboli~ name whose assigned location is used by the
loader. Must be left-justified in these columns. If blank,
the address in the absolute field is used.

Blank.

May be used for comments or left blank.

Not usei by the loader. You may leave these columns
blank or insert program identification for your own
convenience.

SLC statement Format

g~2!s£~ (~~f) ~1at~~~1: A REP statement
constants to be changed and additions made.
punched in hexadecimal code. The format of

allows instructions and
The REP statement must be

a REP statement is shown in

Section 2. CMS Commands 155

LOAD

Figure 15. The data in columns 17-70 (excluding the commas) replaces
what has already been loaded into virtual storage, beginning at the
address specified in columns 7-12. REP statements are placed in the
file either (1) immediately preceding the last statement (END statement)
if the text deck 10es not contain relocatable data such as address
constants, or (2) immediately preceding the first RLD (relocatable
dictionary) statement if there is relocatable data in the text deck. If
additions made by REP statements increase the length of a cOQtrol
section, an ICS statement, which defines the total length of the control
section, must be placed at the front of the deck •

.-------------------------
1 Column 1
1---
I 1
I
I
I 2-4

5-6

7-12

13-14

15-16

17-70

71-72

contents

X' 02' (12-2-9 punch).
Identifies this as a loader control statement.

REP -- identifies the type of load statement.

Blank.

Hexadecimal starting address of the area to be replaced as
assigned by the assembler. It must be right-justified
in these columns with unused leading columns filled with
zeros.

Blank.

ESID (External Symbol Identification) -- the hexadecimal
number assigned to the control section in which replacement
is to be made. The LISTING file produced by the compiler
or assembler indicates this number.

A maximum of 11 four-digit hexadecimal fields, separated by
commas, each replacing one previously loaded halfword (two
bytes). The last field must not be followed by a comma.

Blank.

73-80 Not used by the loader. This field may be left blank or
program identification may be inserted. L _________________________ _

Figure 15. REP Statement Format

~~i Rs~~ ~Qynds~1 (~f~) ~is1~~D1: An SPB statement instructs the loader
to update the location counter to point to the next page boundary. The
SPB statement has the format shown in Figure 16.

r
1 Column
1
1
I ,
I 2-4
I
I 5-80
I
L

Figure 16.

contents

X' 02' (12-2-9 punch).
Identifies this as a loader control statement.

SPB identifies the type of load statement.

May be used for comments or left blank.

SPB Statement Format

156 IBM VM/SP CMS :ommand and Macro Reference

LOAD

DMSLI07401 EXECUTION BEGINS •••

START was specified with LOAD and the loaded program starts
execution. Any further responses are from the program.

INVALID CARD - xxx ••• xxx

INV was specified with LOAD and an invalid statement was found.
The message and the contents of the invalid statement (xxx ••• xxx)
are listed in the file LOAD MAP. The invalid statement is ignored
and loading continues.

DMSLGT002I FILE 'fn TXTLIB' NOT FOUND RC=O
DMSLI0001E NO FILENAME SPECIFIED RC=24
DMSLI0003E INVALID OPTION 'option' RC=24
DMSLI0005E NO 'option' SPECIFIED RC=24
DMSLI0021E ENTRY POINT 'name' NOT FOUND RC=40
DMSLI0029E INVALID PARAMETER 'parameter' IN THE OPTION 'option' FIELD RC=24
DMSLI0055E NO ENTRY POINT DEFINED RC=40
DMSLI0056E FILE 'fn ft' CONTAINS INVALID [NAMEIALIASIENTRYIESD] RECORD

FORMATS RC=32
DMSLI0099E CMS/DOS ENVIRONMENT ACTIVE RC=40
DMSLI0104S ERROR Inn' READING FILE 'fn ft fm' FROM DISK RC=100
DMSLI0105S ERROR Inn' WRITING FILE 'fn ft fm' ON DISK RC=100
DMSLI0109S VIRTUAL STORAGE CAPACITY EXCEEDED RC=104
DMSLI0116S LOADER TABLE OVERFLOW RC=104
DMSLI0168S PSEUDO REGISTER TABLE OVERFLOW RC=104
DMSLI0169S ESDID TABLE OVERFLOW RC=104
DMSLI0201W THE FOLLOWING NAMES ARE UNDEFINED: RC=4
DMSLI0202W DUPLICATE IDENTIFIER 'identifier' RC=4
DMSLI0203W "SET LOCATION COUNTER" NAME 'name' UNDEFINED RC=4
DMSLI0206W PSEUDO REGISTER ALIGNMENT ERROR RC=4
DMSLI0907T 1/0 ERROR ON FILE 'fn ft fm' RC=256
DMSSTT062E INVALID * IN FILEID RC=20

Section 2. CMS Commands 157

LOADLIB

LOADLIB

Use the LOADLIB command to list, copy, or compress a CMS LOADLIB. CMS
LOADLIBs can be merged, and specified members can optionally be selected
or excluded during the merge. The format of the LOADLIB command is:

r--------------------------
LOADLIB

, r
ILIST
I COMPRESS
ICOPY

I
fileid11

L

r ,

2.e:ti2!!§. : I !~!U1 I
IPRINTI
IDISK I
L .J

I
.J

[fileid2 [fileid3]] [(options ••• ()]]

r ,
I REPLACEI
!MODIFY I
L .J

SYSIN control statements (COpy function only) :

r ,
ISELECT ,
,EXCLUDE,
L .J L _________________________ _

LIST lists by member name, the contents of the CMS LOADLIB
specified by fileid1, and gives a hexadecimal representation
of each member's size.

COMPRESS recreates a LOADLIB with the same name as the specified file
(fileid1), and deletes all obsolete members from the new data
set.

COpy copies members of fileid1 into fileid2. If fileid2 already
exists, MODIFY or REPLACE must be specified. If you specify
MODIFY, existing members are not replaced in the output data
set, but new members are added. If you specify REPLACE,
existing members are replaced in the output data set and new
members are added.

You must specify SYSIN control statements. If you do not
specify SISIN control statements in a SYSIN dataset (fileid3),
you will be prompted for them at the terminal with the
message: ~ENTER:"

B2~~: You may specify the LOADLIB function (LIST, COMPRESS, COPY) either
on the comm~nd line or in the SYSIN data set (fileid3). If you specify
the function in the SYSIN data set, you must issue the FILEDEF command
for fileid1, fileid2 (if required), and fileid3 before you issue the
LOADLIB command. However, if you specify th .. e function on the command
~ine, fileid1, and optionally, fileid2 and fileid3 may be specified
either on the command line or defined via FILEDEF commands. Any FILEDEF
commands issued by the user remain in effect after the command function
completes.

fileid 1 is the filename, filetype, and filemode of the input LOADLIB.
This data set is referred to as the SYSUT1 data set. SYSUT1
is always required.

158 IBM VM/SP CMS Command and Macro Reference

fileid2

fileid3

PRINT

DISK

REPLACE

MODI FY

SELECT

EXCL UDE

LOADLIB

is the filename, filetype, and filemode of the output LOADLIB.
This data set is referred to as the SYSUT2 data set. If the
SYSUT2 data set already exists, either MODIFY or REPLACE must
be specified. If a SYSUT2 data set is not specified, LOADLIB
SYSUT2 A (or the filemode of the first available read/write
disk) is the default. When the default SYSUT2 file is used
and no errors occur, fileid1 is erased and the new file is
renamed fileid1. SYSUT2 is ignored for the LIST or COMPRESS
functions.

is the filename, filetype, and filemode of the control data
set. This data set is referred to as the SYSIN data set. If
no SYSIN data set is specified, the user is prompted at the
terminal to enter LOADLIB functions or SYSIN COpy coqtrol
statements.

directs printer output to the terminal. TERM is the default.

directs printer output to the printer.

directs printer output to disk. The
file named LOADLIB LISTING *, where "*"
first available read/write disk.

DISK option creates a
is the filemode of the

replaces existing members of a data set and adds new members.

does not replace existing members of a data set; adds new
members.

copies only the members of a data set that you select. Use
the SELECT statement followed by the member names to be
copied. Note that if you specify the SELECT statement, the
LOADLIB command does not replace existing members of a data
set. If you want to replace an existing member of a data set,
you must specify (R) immeaiately following the member name.

copies a whole data set except for a few members. Use the
EXCLUDE statement followed by the member names to be excluded.

liQ1~: Indicate the end of control statements from the terminal by
entering a null line; EOF serves this purpose in a SYSIN file. If you
want to copy an entire data set, specify COpy and enter a null line at
the terminal (or include a blank line in a SYSI~ file).

MEMBER - member name HAS BEEN COPIED
MEMBER - member name HAS BEEN REPLACED IN DATA SET r

}
MEMBER member name DOES NOT EXIST BUT HAS BEEN ADDED TO DATA SET ~

REPLACE was specified but the member was not in the output da~a
set, therefore the member was added to the output data set. .

MEMBER - member name COPY UNSUCCESSFUL
An error occurred while trying to add/replace the member in the
output data set. (For example, if MODIFY was specified and the
member already existed in the output data set.) The COpy
continues with the next member to be copied.

MEMBER - member name NOT FOUND
The member requested was not found in the input data set.

Section 2. CMS Commands 159

LOAD LIB

DMSUTL003E
DMSUTL014E
DMSUTL024E
DMSUTL032E
DMSUTL039E
DMSUTL042E
DMSUTL047E
DMSUTL054E
DMSUTL065E
DMS(JTL066E
DMS(JTL073E
DMS(JTL901T

DMSUTL907T

INVALID OPTION 'option' RC=24
INVALID FUNCTION 'function' RC=24
FILE 'fn ft fm' ALREADY EXISTS RC=28
INVALID FILETYPE 'filetype' RC=24
NO ENTRIES IN LIBRARY 'fn ft fm' RC=32
NO FILEID(S) SPECIFIED RC=24
NO FUNCTION SPECIFIED RC=24
INCOMPLETE FILEID SPECIFIED RC=24
'option' OPTION SPECIFIED TWICE RC=24
• option' and 'option' ARE CONFLICTING OPTIONS RC=24
UNABLE TO OPEN FILE ddname RC=28
UNEXPECTED ERROR AT 'addr': PLIST 'plist fn ft fm'
AT 'adde', BASE: 'addr', RC nn RC=256
I/O ERROR ON FILE 'fn ft fm' RC=256

160 IBM VM/SP CMS :ommand and Macro Reference

LOADi10D

LOADMOD

Use the LOADMOD cOBmand to load a
must be in nonrelocatable format as
format of the LOADMOD command is:

MODULE file into storage. The file
created by the GENMOD command. The

r
I LOADMod
I
L

fn is the filename of the file to be loaded into storage. The
filetype must be MODULE.

fm is the filemode of the module to be loaded.
or specified as an asterisk, all your disks
the file.

If not specified,
are searched for

1. You can use the LOADMOD command when you want to debug a CMS MODULE
file. After the file is loaded, you may set address stops or
breakpoints before you begin execution with the START command; for
example:

loadmod prog1
cp adstop 210ae
start

2. If a MODULE file was created using the DOS option of the GENMOD
command, the CMS/DOS environment must be active when it is loaded.
If it was created using the OS option (the default), the CMS/DOS
environment must not be active when it is loaded.

3. MODULE files created with the ALL option, or with SYSTEM option and
l\oaded into the transient area, may be loaded regardless of whether
the CMS/DOS envi~onment is active. If the LOADMOD command is
called from a program, the loading is also done regardless of
whether the CMS/DOS environment is active.

None.

DMSMOD001E NO FILEN~ME SPECIFIED RC=24
DMSMOD002E FILE 'fn ft' NOT FOUND RC=28
DMSMOD032E INVALID FILETYPE 'ft' RC=24
DMSMOD070E INVALID PARAMETER 'parameter' RC=24
DMSMOD104S ERROR Inn' READING FILE 'fn ft fm' FROM DISK RC=100
DMSMOD109S VIRTUAL STORAGE CAPACITY EXCEEDED RC=104
DMSMOD114E 'fn ft fm' NOT LOADED; CMS/DOS ENVIRONMENT [NOT] ACTIVE

RC=40 or RC=-0005
DMSMOD116S LOADER TABLE OVERFLOW RC=104
DMSSTT048E INVALID MODE 'mode' RC=24

section 2. CMS Commands 161

MACL IB

MACLIB

Use the MACLIB command to create and modify CMS macro libraries. The
format of the MACLIB command is:

r
I MAClib , , , ,
I
I
I
I
I
I
!
I ,
I ,
L

GEN

{
GEN} ADD
REP

libname fn 1(fn2 •••]

DEL libname membername1[membername2 •••]

CaMP Ii bname

MAP Ii bname [(options ••• ()]]

QE!i2.ll§:
r ,
JTERM I
JQIS~ J
JPRINTI
L .J

generates a CMS macro library.

ADD adds members to an existing macro library. No checking is
done for duplicate names, entry points, or CSECTS.

REP

DEL

replaces existing members in a macro library.

deletes members from a macro library. If more than one member
exists with the same name, only the first entry is deleted.

CaMP compacts a macro library.

MAP lists certain information about the members in a macro
library. Available information includes member name, size,
and location relative to the beginning of the library.

libname is the filename of a macro library. If the file
exists, it must have a filetype of MACLIB; if it
created, it is given a filetype of MACLIB.

already
is being

fn 1 [f n 2 •••]
are the names of the macro definition files to be used. A
macro definition file must reside on a CMS disk and its
filetype must be either MACRO or COPY. Each file may contain
one or moce macros and must contain fixed-length, 80-character
records.

membername1[membername2 •••]
are the names of the macros that exist in a macro library.

~!R Q£!!gn§: The following options specify where the output of the
MAP function is sent. Only one option may be specified. If more
than one option is specified, only the first one given is used.

TERM displays the MAP output at the terminal.

162 IBM VM/SP eMS :ommand and Macro· Reference

MACLIB

writes the MAP output on a CMS disk with the file identifier
of "libname MAP A1". If a file with that name already exists,
the old file is erased. If no option is specified, DISK is
the default.

PRINT writes the file "libname MAP A1" to your A-disk and spools a
copy to the virtual printer.

1. When a MACRO file is added to a MACLIB, the membername is taken
from the macro prototype statement. If there is more than one
macro definition in the file, each macro is written into a separate
MACLIB member.

If the filetype is COpy and the file contains more than one macro,
each macro must be preceded by a control statement of the following
format:

*COPY membername

The name on the control statement is the name of the macro when it
is placed in the macro library. If there is only one macro in the
COpy file and it is not preceded by a COpy control statement, its
name (in the macro library) is the same as the filename of the COpy
file. If there are several macro definitions in a COpy file and
the first one is not preceded by a COpy control statement, the
entire file is treated as one macro.

2. If any MACRO file contains invalid records between members, the
MACLIB command displays an error message and terminates. Any
members read before the invalid card is encountered are already in
the MACLIB. The MACLIB command ignores CATAL.S, END, and 1*
records when it reads MACRO files created by the ESERV program.

3. If you want a macro library searched during an assembly or
compilation, you must identify it using the GLOBAL command before
you begin compiling.

4. The MACLIBs distributed with the CMS system are: CMSLIB, OSMACRO,
OSMACR01, TSOMAC, and DOSMACRO.

5. The TERM or PRINT options will erase the old MAP file, if one
exists.

When you enter the MACLIB MAP command with the TERM option, the names of
the library members, their sizes, and their locations in the library are
displayed.

MACRO INDEX SIZE
name loc size

section 2. CMS Commands 163

MACLIB

DMSLBM001E NO FILENAME SPECIFIED RC=24
DMSLBM002E FILE 'fn ft' NOT FOUND RC=28
DMSLBM002W FILE 'fn ft [fm]' NOT FOUND RC=4
DMSLBM003E INVALID OPTION 'option' RC=24
DMSLBMC13W MEMBER 'name' NOT FOUND IN LIBRARY 'fn ft fm' RC=4
DMSLBM014E INVALID FUNCTION 'function' RC=24
DMSLBM037E DISK 'mode' IS READ/ONLY RC=36
DMSLBM046E NO LIBRARY NAME SPECIFIED RC=24
DMSLBM047E NO FUNCTION SPECIFIED RC=24
DMSLBM056E FILE 'fn ft fm' CONTAINS INVALID RECORD FORMATS RC=32
DMSLBM069E DISK 'mode' NOT ACCESSED RC=36
DMSLBM070E INVALID PARAMETER 'parameter' RC=24
DMSLBM104S ERROR Inn' READING FILE 'fn ft fm' FROM DISK RC=100
DMSLBM105S ERROR Inn' WRITING FILE 'fn ft fm' ON DISK RC=100
DMSLBM109S VIRTUAL STORAGE CAPACITY EXCEEDED RC=104
DMSLBM157S MACLIB LIMIT EXCEEDED[, LAST MEMBER NAME ADDED WAS

'membername'] RC=88
DMSLBM167S PREVIOUS MACLIB FUNCTION NOT FINISHED RC=88
DMSLBM213W LIBRARY 'fn ft fm' NOT CREATED RC=4
DMSLBM907T I/O ERROR ON FILE 'fn ft fm' RC=256

164 IBM VM/SP CMS :ommand and Macro Reference

MAKEBUF

MAKEBUF

Use the ~AKEBUF command to create a new buffer within the program stack.
The format of the MAKEBUF command is:

r-------------------------
I MAKEBUF I L ___________ _

1. When you issue a MAKEBUF command, CMS returns as a return code the
number of the program stack buffer just created. If you issue a
MAKEBUF command in an EXEC that has the &ERROR statement in effect,
the MAKEBUF return code causes the &ERROR statement to execute.

2. Use the WAITRD function to read lines from the buffers the MAKEBUF
command creates. WAITRD first reads lines from the most rec~ntly
created buffer. When the ~ost recent buffer is exhausted, WAITRD
reads the next most recent buffer. When all program stack buffers
are exhausted, WAITRD reads from the console input buffer.

section 2. eMS Commands 165

MODMAP

MODMAP

Use the MODMAP command to display the load map associated with the
specified MODULE file. The format of the MODMAP command is:

r--------------------
, MODmap , fn
L

fn is the filename of the MODULE file whose load map is to be
displayed. The filetype of the file must be MODULE; all of
your accessed disks are searched for the specified file.

You cannot issue a MODMAP command for
area modules or that have been created
GENMOD command.

modules that are CMS transient
with the NOMAP option of the

The load map associated with the file is displayed at the terminal, in
the format:

name location

DMSMDP001E NO FILENAME SPECIFIED RC=24
DMSMODP002E FILE 'fn ft' NOT FOUND RC=28
DMSMODP018E NO LOAD MAP AVAILABLE RC=40
DMSMDP070E INVALID PARAMETER 'parameter' RC=24

166 IBM VM/SP CMS Command and Macro Reference

MOVEFILE

MOVEFILE

Use the MOVEFILE command to move data from any device supported by VM/SP
to ~ny other device supported by VM/SP. The format of the MOVEFILE
comm and is:

r
I
I

r
linddname

I MOVEfile I

r , ,
I outddname I I
I I I
I Q!!T MOY~ I I

[(PDS[)]]
I I.!!!1QY~
I L L

L

inddname is the ddname representing the input file
ddname is not specified, the default input
is used.

definition. If
ddname, INMOVE,

outddname is the ddname representing the output file definition. If
ddname is not specified, the default output ddname, OUTMOVE,
is used.

PDS moves each of the members of the CMS MACLIB or TXTLIB or of
an OS partitioned data set into a separate CMS disk file.
Each CMS file has a filename equal to the member name and a
filetype equal to the filetype of the output file
def ini ti on.

1. Use the FILEDEF command to provide file definitions for the ddnames
used in the MOVEFILE command. If you use the ddnames INMOVE and
OUTMOVE on the FILEDEF commands, then you need not specify them on
the MOVEFILE command line. For example:

filedef inmove disk sys1 maclib b (member stow
filedef outmove disk stow macro
movefile

copies the member STOW from the OS partitioned data set SYS1.MACLIB
into the CMS file STOW MACRO.

If you enter:

filedef indd reader
filedef outdd printer
movefile indd outdd

a file is moved from your virtual card reader to your vi~tual
printer.

Section 2. CMS Commands 167

MOVEFILE

2. To copy an entire OS partitioned data set into individual CMS
files, you could enter:

filedef test2 disk sys1 maclib b
filedef macro disk
movefile test2 macro (pds

These commands copy members from the OS partitioned data set
SYS1.MACLIB or the eMS file SYS1 MACLIB into separate files, each
with a filename equal to the membername and a filetype of MACRO.
Note that the output ddname was not specified in full, so that CMS
assigned the default file definition (FILE ddname).

3. You cannot copy VSAM data sets with the MOVEFILE command.

4. The MOVEFILE command does not support data
records. Use of spanned records results in
DMSSOP036E and an error code of 7.

containing
the error

spanned
message

5. To copy an entire partitioned data set into another partitioned
data set, use the COPYFILE command. If an attempt is made to use
the MOVEFILE command without the PDS option for a partitioned data
set, only the first member is copied and an end-of-file condition
results. The resultant output file will contain all input records,
including the header, until the end of the first member.

6. When using the MOVEFILE command to move members from CMS maclibs,
note that each member is followed by a II record, which is a maclib
delimiter. !o~ can edit the file to delete the II record.

If a record format (RECFM), blocksize (BLOCK), and logical record length
(LRECL) are specified on the FILEDEF command, these values are used in
the data control block (DCB) defining the characteristics of the move
operation. If the FILEDEF was issued without a record format or
blocksize specified, these values are determined according to the
defaults listed in Figure 17. If the blocksize was not specified, the
default blocksize is used. If the logical record length was not
specified, the default logical record length is determined as follows:
for an F or U record format, the logical record length equals the
blocksize; for a V record format, the logical record length equals the
blocksize minus 4.

168 IBM VM/SP eMS Command and Macro Reference

L

lIf the default record format and blocksize are used in a
tape-to-tape move operation and an input record is greater than 3600
bytes, it is truncated to 3600 bytes on the output tape.

2Not applicable.

Figure 17. Default Device Attributes for MOVEFILE Command

DMSMVE225I PDS MEMBER 'membername' MOVED

The specified member of an OS partitioned data set was moved
successfully to a eMS file. This response is issued for each
member moved when you use the PDS option.

DMSMVE226I END OF PDS MOVE

The last member of the partitioned data set was moved successfully
to a CMS file.

DMSMVE706I TERM INPUT TYPE NULL LINE FOR END OF DATA

The input ddname in the MOVEFILE specified
terminal. This message requests the input
terminates input.

a device type of
data; a null line

DMSMVE708I DISK FILE 'FILE ddname A1' ASSUMED FOR DDNAME 'ddname'

No file definition is in effect for a ddname specified on the
MOVEFILE command. The MOVEFILE issues the default FILEDEF command:

FILEDEF ddname DISK FILE ddname A1

If file ddname does not exist for the input file, MOVEFILE
terminates processing.

section 2. CMS Commands 169

MOVEFILE

DMSMVE002E FILE 'fn ft fm' NOT FOUND RC=28
DMSMVE003E INVALID OPTION 'option' RC=24
DMSMVE037E OUTPUT DISK 'mode' IS READ/ONLY RC=36
DMSMVE041E INPUT AND OUTPUT FILES ARE THE SAME RC=40
DMSMVE069E OUTPUT DISK 'mode' IS NOT ACCESSED RC=36
DMSMVE070E INVALID PARAMETER 'parameter' RC=24
DMSMVE073E UNABLE TO OPEN FILE ddname RC=28
DMSMVE075E DEVICE 'device name' ILLEGAL FOR {INPUTIOUTPUT} RC=40
DMSMVE086E INVALID DDNAME 'ddname' RC=24
DMSMVE127S UNSUPPORTED DEVICE FOR ddname RC=100
DMSMVE128S I/O ERROR ON INPUT AFTER READING nnnn RECORDS: INPUT ERROR

code ON ddname RC=100
DMSMVE129S I/O ERROR ON OUTPUT WRITING RECORD NUMBER nnnn: OUTPUT ERROR

code ON ddname RC=100
DMSMVE130S BLOCKSIZE ON V FORMAT FILE ddname IS LESS THAN 8 RC=88

170 IBM VM/SP eMS Command and Macro Reference

OPTION

OPTION

Use the OPTION command to change any or all of the options in effect for
the DOS/VS COBOL cowpiler in CMS/DOS. The format of the OPTION command
is:

r
OPTION [options •••]

Q~iQn§:
r ,
I DUMP ,

r , r ,
112£;~!s I ILI.§I I

INOLISTI
L .J

'!Q!H!H~ I
L .J

INODECKI
L .J

r ,
IXREF I
I!!Q!E~£:I
L .J

r ,

l~lUi~ I
INOERRSI
L ...

r ,
148C I
I.§OCI
L .J

r ,
ILISTX I
I !Qil.§!! I
L ...

r ,
ITERM I
Ili2lll1t!1
L ...

r ,
ISYM I
I!Q.§Il1l
L ...

Q~1iQn§: If an invalid option is specified on the command line, an
error message is issued for that option; all other valid options are
accepted. Only those options specified are altered, and all other
options remain unchanged.

DUMP dumps the registers and the virtual partition on the virtual
SYSLST device in the case of abnormal program end.

!!Q~Q~f suppresses the DUMP option.

Q~~!S punches the resulting object module on the virtual SYSPCH
device. If you do not issue an ASSGN command for the logical
unit SYSPCH before invoking the compiler, the text deck is
written to your CMS A-disk.

NODECK suppresses the DECK option.

writes the output listing of the source module on the SYSLST
device.

NOLIST suppresses the LIST option. This option overrides the XREF
option as it does in DOS/VS.

LISTX produces a procedure division map on the SYSLST device.

!Q11~!! suppresses the LISTX option.

SYM prints a Data Division map on SYSLST.

~Q~X~ suppresses the SYM option.

XREF writes the output symbolic cross-reference list on SYSLST.

NQX]]! suppresses the XREF option.

writes an output listing of all errors in the source program
on SYSLST.

NOERRS suppresses the ERRS option.

48C Uses the 48-character set.

Section 2. CMS Commands 171

OPTION

§Qf Uses the 60-character set.

TERM writes all compiler messages to the user's terminal.

NOTERM Suppresses the TERM option.

1. If you enter the OPTION command with no options, all options are
reset to their default values, that is, the default settings that
are in effect when you enter the CMS/DQS environment. eMS/DOS
defaults are not necessarily the same as the d~faults generated on
the VSE systen being used and do not include additional options
that are available with some DOS compilers.

2. The OPTION comnand has no effect on the DOS PL/I compiler nor on
any of the OS language compilers in CMS.

None. To display a list of options currently in effect, use the QUERY
command with the OPTION operand.

DMSOPT070E INVALID PARAMETER 'parameter' RC=24
DMSOPT099E CMS/DOS ENVIRONMENT NOT ACTIVE RC=40

172 IBM VM/SP CMS :ommand and Macro Reference

OS RUN

OSRUN

Use the OSRUN command to execute a load module from a CMS LOADLIB or an
OS module library. The library containing the module must have been
previously identified by a GLOBAL command. For an OS module library,
the library must also have been defined in a FILEDEF command. If no
library has been identified by a GLOBAL command, the OSRUN command
searches the $SYSLIB LOADLIB library for the specified module. The
format of the OSRUN command is:

r--------------------------
1 OSRUN 1 member PARM=parameters
L

member

PARM=

is the member of a CMS LOADLIB or an OS module library to be
executed.

are the OS parameters that the user wants to pass to the
module. If the parameters contain blanks or special
characters, they must be enclosed in quotes. To include
quotes in the parameters, use double quotes. The parameters
are passed in OS format: register1 points to a fullword
containing the address of a character string headed by a
halfword field containing the length of the character string.
The parameters are restricted to a maximum length of 100
characters.

!2~~: You may not pass parameters (PARM=) to the modure if you
issue the OSRUN command from a CMS EXEC file. The OSRUN
command can be issued from an EXEC 2 file with no
restrictions.

DMSOSRG01E NO FILENAME SPECIFIED RC=24
DMSLOSC13E MEMBER member name NOT FOUND IN LIBRARY RC=32
DMSOSR052E MORE THAN 100 CHARACTERS OF OPTIONS SPECIFIED RC=24
DMSOSR070E INVALID PARAMETER RC=24
DMSLOS073E UNABLE TO OPEN FILE Ifni RC=28

Section 2. CMS Commands 173

PRINT

PRINT

Use the PRINT command to print a CMS file on the spooled virtual
printer. The format of the PRINT command is:

r--------------------------

fn

ft

fm

r ,
PRint fn ft I fml [(options ••• [)]]

I * I
L .J

r ,
Q.E!:iQ!!'§: I CC I

I !!Q££ I
L .J

r ,
ITRC I
I NOI££I
L .J

(UPCASE]

r ,

r
ILINECOUN
I
L

I MEr1BER { * } II
I membername (HEX]
L .J

is the filename of the file to be printed.

is the filetype of the file to be printed.

,
{~~} :

..J

is the filemode of the file to be printed. If this field is
specified as an asterisk (*), the standard order of search is
followed and the first file found with the given filename and
filetype is printed. If fm is not specified, the A-disk and
its extensions are searched.

CC interprets the first character of each record as a carriage
control character. If the filetype is LISTING or LIST3800,
the CC option is assumed. If CC is in effect, the PRINT
command does not perform page ejects nor count the number of
lines per page; these functions are controlled by the carriage
control characters in the file. The LINECOUN option has no
effect if CC is in effect.

IQ££ does not interpret the first character of each record as a
carriage control character. In this case, the PRINT command
ejects a new page and prints a heading after the number of
lines specified by LINECOUN are printed. If NOCC is
specified, it is in effect even if CC was specified previously
or if the filetype is LISTING.

rRC interprets the first data byte in each record as a TRC (Table
Reference Character) byte. The value of the TRC byte
determines which translate table the 3800 printer selects to
print a record. The value of the TRC byte corresponds to the
order in which you have loaded WCGMs (via the CHARS keyword of
the SETPRT command). Valid values for TRC are 0, 1, 2, and 3.
If an invalid value is found, a TRC byte of 0 is assumed. If
the filetype is LIST3800, TRC is assumed.

!!QI]f does not interpret the first data byte in each record as a TRC
byte. NOTRC is the default.

174 IBM VM/SP CMS :ommand and Macro Reference

U PCASE
UP

MEMBER
MEM

PRINT

translates the lowercase letters in the file to uppercase for
printing.

{:embername}
prints the members of macro or text libraries. This option may
be specified if the file is a simulated partitioned data set
(filetype MACLIB or TXTLIB). If an asterisk (*) is entered,
all individual members of that library are printed. If a
membername is specified, only that member is printed.

HEX prints the file in graphic hexadecimal format. If HEX is
specified, the options CC and UPCASE are ignored, even if
specified, and even if the filetype is LISTING.

L INECOUN {nn'}
LI ~2

allows you to set the number of lines to be printed on each
page. nn can be any decimal number from 0 through 99. If a
number is not specified, the default value is 55. If ~n is
set to zero, the effect is that of an infinite line count and
page ejection does not occur. This option has no effect if
the CC option is also specified.

1. The file may contain carriage control characters and may have
either fixed- or variable-length records, but no record may exceed
132 characters for a 1403, 3203, or 3289 Model 4 printer or 150
characters for a 3211 printer. There are two exceptions:

• If the CC option is in effect,
character longer (133 or 151) to
character.

the record length can be one
allow for the carriage co~trol

• If the virtual printer is a 3800, you can specify a carriage
control byte, a TRC byte, or both, for a total line length of up
to 206 bytes.

• If the HEX option is in effect, a record of any length can be
printed, up to the CMS fil~ system maximum of 65,535 bytes.

2. If you want the first character of each line to be interpreted as a
carriage control character, you must use the CC option. Whe~ you
use the CC option for files that do not contain carriage co~trol
characters, the first character of each line is stripped off. An
attempt is made to interpret the first character for carriage
control purposes. If the character is not valid, the results are
unpredictable because CMS does not check for valid carriage cOijtrol
characters.

Files with a filetype of UPDLOG (produced by the UPDATE command)
must be printed with the CC option.

3. If the virtual printer is not a 3800 and you have specified TRC,
PRINT strips off the first data byte before each line is printed.

4. One spool printer file is produced for each PRINT command; for
example:

print mylib maclib (member get

Section 2. CMS Commands 175

PRINT

prints the member GET from the file MYLIB MACLIB. If you want to
print a number of files as a single file (so that you do not get
output.separator pages, for example), use the CP command SPOOL to
spool your virtual printer with the CONT option.

5. The PRINT command has its own forms control buffer load. The
format of the FCB macro used is:

FCB NNNN, 6,66, (1,2,2,3,3,4,4,5,5,6,6,7,7,8i8,9,9,10i10,
11,64,12,65,9)

This FCB macro is always loaded by the PRINT command and must be
taken into account when the CC option is used.

If you are using a virtual 3203 or
compatible with the FCB usd on VM/SP's
printer or results are unpredictable.

3211, this FCB must be
real 3203 or 3211 output

6. If the MEMBER option is specified more than once, only
member specified will be printed. However, if one MEMBER
coded with an asterisk (*), and another MEMBER option is
with a membername, only the specified member will be
regardless of their order on the command line.

For example, if you code:

PRINT ONE MACLIB (MEMBER EXAMPLE1 MEMBER EXAMPLE2

only EXAMPLE2 will be printed. If you code:

PRINTER ONE MACLIB (MEMBER EXAMPLE1 MEMBER *
only EXAMPLE1 will be printed.

the last
optiQn is
specified
printed,

None. The CMS ready message indicates the command completed without
error (that is, the file is written to the spooled printer). The file
is now under the control of CP spooling functions. If a CP SPOOL
command option such as HOLD or COpy is in effect, you may receive a
message from CPo

DMSPRT002E FILE 'fn ft fm' NOT FOUND RC=28
DMSPRT003E INVALID OPTION 'option' RC=24
DMSPRT008E DEVICE 'cuu' {INVALID OR NONEXISTENTIUNSUPPORTED DEVICE TYPE}

RC=36
DMSPRT013E MEMBER 'name' NOT FOUND IN LIBRARY RC=32
DMSPRT029E INVALID PARAMETER 'parameter' IN THE OPTION 'option' FIELD

RC=24
DMSPRT033E FILE 'fn ft fm' IS NOT A LIBRARY RC=32
DMSPRT039E NO ENTRIES IN LIBRARY 'fn ft fm' RC=32
DMSPRT044E RECORD LENGTH EXCEEDS ALLOWABLE MAXIMUM RC=32
DMSPRT048E INVALID MODE 'mode' RC=24
DMSPRTC54E INCOMPLETE FILEID SPECIFIED RC=24
DMSPRT062E INVALID * IN FILEID RC=20
DMSPRT070E INVALID PARAMETER 'parameter' RC=24
DMSPRT104S ERROR Inn' READING FILE 'fn ft fm' FROM DISK RC=100
DMSPRT123S ERROR PRINTING FILE 'fn ft fm' RC= 100

176 IBM VM/SP CMS Command and Macro Reference

PSERV

PSERV

Use the PSERV command in CMS/DOS to copy,
procedure from the VSE procedure library.
command is:

display, print, or punch a
The format of the PSERV

r----------
I , r"1
,PSERV 'procedure I ft I [(options ••• [)]]
'1 I£RO~I
I I L J 2ptiQn§:
I , [~ISK] (PRINT]
1 ,
, I [PUNC H] [TERM]
L

procedure

ft

specifies the name of the procedure in the VSE procedure
library that you want to copy, print, punch, or display.

specifies the filetype of the file to be created on your
A-disk. ft defaults to PROC if a filetype is not specified;
the filename is always the same as the procedure name.

Q~1i2D§: You may enter as many options as you wish, depending oij the
functions you want to perform.

copies the procedure to a CMS file.
specified, DISK is the default.

If no options are

PRINT spools a c6py of the procedure to the virtual printer.

PUNCH spools a copy of the procedure to the virtual punch.

TERM displays the procedure on your terminal.

1. You cannot execute VSE procedures in CMS/DOS. You can use the
PSERV command to copy an existing VSE procedure onto a CMS disk,
use the CMS Editor to change or add VSE job control statements to
it, and then spool it to the reader of a VSE virtual machine for
execution.

2. The PSERV command ignores current assignments of logical units, and
directs output according to the option list.

When you issue the TERM option, the procedure is displayed at your
terminal.

Section 2. CMS Commands 177

PSERV

DMSPRV003E INVALID OPTION 'option' RC=24
DMSPRV004E PROCEDURE 'procedure' NOT FOUND RC=28
DMSPRV006E NO READ/WRITE 'A' DISK ACCESSED RC=36
DMSPRV037E DISK 'A' IS READ/ONLY RC=36
DMSPRV070E INVALID PARAMETER 'parameter' RC=24
DMSPRV097E NO 'SYSRES' VOLUME ACTIVE RC=36
DMSPRV098E NO PROCEDURE NAME SPECIFIED RC=24
DMSPRV099E CMS/DOS ENVIRONMENT NOT ACTIVE RC=40
DMSPRV105S ERROR 'nn' WRITING FILE 'fn ft fm' TO DISK RC=100
DMSPRV113S DISK (cuu) NOT ATTACHED RC=100
DMSPRV411S INPUT ERROR CODE Inn' ON 'SYSRES' RC=100

178 IBM VM/SP CMS :ommand and Macro Reference

PUNCH

PUNCH

Use the
punch.

PUNCH command to punch a CMS disk file
The format of the PUNCH command is:

to your virtual card

r

fn

ft

fm

PU nch
r ,

fn ft Ifml
1* ,
L J

[(options ••• [)]]

r ,
1 !!nJH1!l I
INOHEADERf
L J

r ,

IMEMBER {* }'
I membername I
L J

is the filename of the file to be punched. This field must be
specified.

is the filetype of the file tobe punched. This field must be
specified.

is the filemode of the file to be punched. If you specify it
as an asterisk (*), the standard order of search is followed
and the first file found with the specified filename and
filetype is punched. If fm is not specified, your A-disk and
its extensions are searched.

inserts a control card in front of the punched output.
H This control card indicates the filename and filetype for a

subsequent READCARD command to restore the file to a disk.
The control card format is shown in Figure 18.

NOHEADER NOH

MEMBER
MEM

does not punch a header control card.

{:embername}
punches members of MACLIBs or TXT1IBs. If an asterisk (*) is
entered, all individual members of that macro or text library
are punched. If membername is specified, only that member is
punched. If the filetype is MAC1IB and the MEMBER membername
option is specified, the header contains MEMBER as the
filetype. If the filetype is TXTLIB and the MEMBER membername
option is specified, the header card contains TEXT as the
filetype.

Section 2. CMS Commands 179

PUNCH

r
INumber of 1 1

ColumnlCharacterslContentsl

1 1

2-5 4 READ

6-7 2 blank

8-15 8 fname

16 blank

17-24 8 ftype

25 blank

26-27 2 fmode

28 blank

29-34 6 volid

1

Meaning

Identifies card as a control card.

Identifies card as a READ control card.

Filename of the file punched.

Filetype of the file punched.

Filemode of the file punched.

Label of the disk from which the file was
read.

135 blank
I
136- 43 8 mm/dd/yy The date that the file was last written.
1
144-45 2 blank
I
146- 50 5 hh:mm The time of day that the file was written

to disk. I
I
151-80 30 blank
L

Figure 18. Header Card Format

!!§9:g:~ liQ1g§

1. You can punch fixed- or variable-length records with the PUNCH
command, as long as no record exceeds 80 characters. Records with
less than 80 characters are right-padded with blanks. Records
longer than 80 characters are rejected.

2. If you
option,
member.
option,
deck.

punch a MACLIB or TXTLIB file specifying the MEMBER *
a read control card is placed in front of each library
If you punch a library without specifying the MEMBER *

only one read control card is placed at the front of the

3. One spool punch file is produced for each PUNCH command; for
example:

punch compute assemble (noh

punches the file COMPUTE ASSEMBLE, without inserting a header card.
To transmit multiple CMS files as a single punch file, use the CP
SPOOL command to spool the punch with the CONT option.

4. If the MEMBER option is specified more than once, only the last
member specified will be punched. However, if one MEMBER option is
coded with an asterisk (*), and another MEMBER option is specified

180 IBM VM/SP CMS Command and Macro Reference

PUNCH

with a membername, only the member specified by membername will be
punched, regardless of their order on the command line.

For example, if you code:

PUNCH ONE MACLIB (MEMBER EXAMPLE1 MEMBER EXAMPLE2

only EXAMPLE2 ~ill be punched. If you code:

PUNCH ONE MACLIB (MEMBER EXAMPLE1 MEMBER *
only EXAMPLE1 ~ill be punched.

5. When punching members from CMS maclibs, each member is followed by
a II record, which is a maclib delimiter. You can edit the file to
delete the II record

None. The CMS ready message indicates that the command completed
without error (the file was successfully spooled); the file is now under
control of CP spooling functions. You may receive a message from CP
indicating that the file is being spooled to a particular user's virtual
card reader.

DMSPUN002E FILE 'fn ft fm' NOT FOUND RC=28
DMSPUNOC3E INVALID OPTION 'option' RC=24
DMSPUN008E DEVICE 'cuu' {INVALID OR NONEXISTENTIUNSUPPORTED DEVICE TYPE}

RC=36
DMSPUN013E MEMBER 'name' NOT FOUND IN LIBRARY RC=32
DMSPUNC33E FILE 'fn ft fm' IS NOT A LIBRARY RC=32
DMSPUN039E NO ENTRIES IN LIBRARY 'fn ft fm' RC=32
DMSPUNG44E RECORD LENGTH EXCEEDS ALLOWABLE MAXIMUM RC=32
DMSPUNC54E INCOMPLETE FILEID SPECIFIED RC=24
DMSPUN062E INVALID * IN FILEID RC=20
DMSPUN104S ERROR Inn' READING FILE 'fn ft fm' FROM DISK RC=100
DMSPUN118S ERROR PUNCHING FILE 'fn ft fm' RC=100

Section 2. CMS Commands 181

QUERY

QUERY

Use the QUERY command to gather information about your CMS virtual
machine. You can determine:

• The state of virtual machine characteristics that are controlled by
the CMS SET command

• File definitions (set with the FILEDEF and DLBL commands) that are in
effect

• The status of accessed disks

• The status of CMS/DOS functions

The format of the QUERY command is:

r---------
, Query

L

BLIP
RDYMSG
LDRTBLS
RELPAGE
IMPCP
HIPEX
ABBREV
RE DTYPE
PROTECT
INPUT
OUTPUT
SY S NAMES
SEARCH

DISK

{
SYSTEM}

SYNONYM USER
ALL

FILEDEF
LABELDEF
MACLIB
LOADLIB
TXTLIB
LIBRARY

DLBL
DOS
DOSLIB
DOSPART
DOSLNCNT
OPTION
UPSI

182 IBM VM/SP CMS Command and Macro Reference

BLIP

RDYMSG

LDRT BLS

RELPAGE

IMP:P

IMPEX

displays the BLIP character(s).

g~§EQn§~: BLIP = {xxxxxxxx}
:OFF

displays the format of the CMS ready message.

Re§EQn§~: RDYMSG = {LMSG}
SMSG

LMSG is the standard CMS ready message:

R; T = 0.12/0.3311:06:20

SMSG is the shortened CMS ready message:

R;

displays the number of loader tables.

g~§EQn§~: LDRTBLS = nn

QUERY

indicates whether pages of storage are to be released or
retained after certain commands complete execution.

g~§EQn§~: RELPAGE = {ON }
OFF

ON releases pages.
OFF retains pages.

displays the status of implied CP command indicator.

ON indicates that CP commands can be entered from the CMS
en v ironm en t.

OFF indicates that you must use the CP command or the tcp
function to enter CP commands from the CMS
en v ironm en t.

displays status of implied EXEC indicator.

g~§EQn§~: IMPEX = .{ON }
OFF

ON indicates that EXEC files can be executed by entering
the filename of the file.

OFF indicates that the EXEC command must be explicitly
entered to execute EXEC files.

Section 2. CMS Commands 183

QUERY

ABBR EV

REDTYPE

PROT ECT

INPUT

OUTP UT

displays the status of the minimum truncation indicator.

!1~§EQ!!§~: ABBREV = {ON }
OFF

ON

OFF

indicates that truncations are accepted for
commands.

indicates that truncations are not accepted.

displays the status of the REDTYPE indicator.

!1~§EQ!!§~: REDTYPE = {ON }
OFF

CMS

ON types CMS error messages in red. for certain terminals
equipped with the appropriate terminal feature and a
two-color ribbon. Supported terminals are described in
the !l1~f !~f.!.i!!al !!~~~2 Guid~.

OFF does not type CMS error messages in red.

displays the status of CMS nucleus protection.

!1~§EQ!!§~: PROTECT = {ON }
OFF

ON means CMS nucleus protection is in effect.
OFF means CMS nucleus protection is not in effect.

displays the contents of any input translate table in effect.

\ !1~§EQ!!§~: INPUT a 1 xx1

an xxn

If you do not have an input translate table in effect, the
response is:

NO USER DEFINED INPUT TRANSLATE TABLE IN USB

displays the contents of any output translate table in effect.

!1~§EQ!!§~: OUTPUT xx1 a1

xxn an

If you do not have an output translate table defined. the
response is:

NO USER DEFINED OUTPUT TRANSLATE TABLE IN USE

184 IBM VM/SP CMS :ommand and Macro Reference

QUERY

SYSNAMES displays the names of the standard saved systems.

SEARCH

SYSNAMES: CMSSEG CMSVSAM CMSAMS CMSDOS
ENTRIES: entry ••• entry ••• entry ••• entry •••

SYSNAMES are the standard names
discontiguous saved systems.

that identify the

ENTRIES are the standard system default names or the system
names established via the SET SYSNAME command.

displays the search order of all disks currently accessed.

r ,
g~.2EQ!!.2~: label cuu mode

{R/O} I-OS I
I-DOSI

label

cuu

mode

r ,
lOS I
IDOSI
L J

R/W
L J

is the label assigned to the disk when it was
formatted; or, if it is an OS or DOS disk, the volume
label.

is the virtual device address.

is the filemode letter assigned to the disk when it was
accessed.

indicates whether read/write or read-only is the status
of the disk.

indicates an OS or DOS disk.

DISK mode displays the status of the single disk represented by "mode".

LABEL CUU M STA T
label cuu m {RIO}

,R/W

CYL TYPE BLKSIZE
cyl type blksize

FILES BLKS USED-(%) BLKS LEFT BLK TOTAL
nnnn nnnn-nn nqnn nnnnn

If the disk is an OS or DOS disk, the response is:

LABEL CUU M STAT CYL TYPE BLKSIZE
label cuu m {RIO} {CYI} type

R/W IFBA

FILES BLKS USED-(%) BLKS LEFT B~K TOTAL

{Dg;}

section 2. CMS Commands 1~5

QUERY

DISK *

label is the label assigned to the disk when it was
formatted; or, if it is an os or DOS disk, the vQlume
label.

cuu is the virtual device address.

m is the access mode letter.

cyl

type

blksize

{RIO}
R/W

STAT indicates whether read/write or read-only
is the status of the disk.

is the number of cylinders available on the disk. For
an FB,512 device, this field contains the notation
'FBA' rather than the number of cylinders.

is the device type of the disk.

is the CMS disk block size when the minidisk was
formatted.

nnnn FILES
is the number of CMS files on the disk.

nnnn BLKS USED
indicates the number of CMS disk blocks in use.

nn % indicates the percentage of blocks in use.

nnnn BLKS LEFT
indicates the number of disk blocks left. This is a
high approximation because control blocks are included.

nnnnn BLK TOTAL
indicates the total number of disk blocks.

{
OS } indicates an OS or DOS disk.
OOS

If the disk with the specified mode is not accessed,
the response is:

DISK 'mode' NOT ACCESSED

displays the status of all CMS disks.

li~~EQ~~~: Is the same as for QUERY DISK mode; one line is
displayed for each accessed disk.

SYNONYM SYSTEM
displays the CMS system synonyms in effect.

SYSTEM SHORTEST
COMMAND FORM

command minimum truncation

186 IBM VM/SP CMS Command and Macro Reference

QUERY

If no system synonyms are in effect, the following message is
displayed at the terminal:

NO SYSTEM SYNONYMS IN EFFECT

SYNONYM USER
displays user synonyms in effect.

SYSTEM USER SHORTEST
COMMAND SYNONYM FORM (IF ANY)

command synonym minimum truncation

If no user synonyms are in effect, the following message is
displayed at the terminal:

NO USER SYNONYMS IN EFFECT

SYNONYM ALL

FILEDEF

displays all synonyms in effect.

R§§EQ~§§: The response to the command QUERY SYNONYM SYSTEM is
followed by the response to QUERY SYNONYM USER.

displays all file definitions in effect.

R§§EQ~§~: ddname device [fn [ft]]

If no file definitions are in effect, the following message is
displayed at the terminal:

NO USER DEFINED FILEDEF'S IN EFFECT

LABELDEF displays all label definitions in effect.

~§§EQn§~: ddname volid fseg volseg genn genv crdte exdte fid

Only fields you have explicitly specified are displayed.
Defaulted fields are not displayed. If no label definitions
are in effect, the following message is displayed at the
terminal:

NO USER DEFINED LABELDEF'S IN EFFECT

Section 2. CMS Commands 187

QUERY

MACL IB

TXTL IB

LOADLIB

LIBR ARY

DLBL

displays the names of all files, with a filetype of MACLIB,
that are to be searched for macro definitions (that is, all
MACLIBs specified on the last GLOBAL MACLIB command, if any).

R~§~Q~§~: MACLIB = libname •••

If no macro libraries are
definitions, the response is:

MACLIB = NONE

to be searched for macro

displays the names of all files, with a filetype of TXTLIB,
that are to be searched for unresolved references (that is,
all TXTLIBs specified on the last GLOBAL TXTLIB command, if
any) •

R~~Q~§~: TXTLIB = libname •••

If no TXTLIBs are to be searched for unresolved references,
the following message is displayed at the terminal:

TXTLIB = NONE

displays the names of all files, that have a filetype of
LOADLIB, that are to be searched for load modules (that is,
all LOADLIBs specified on the last GLOBAL LOADLIB command, if
any) •

R~~Q~§~: LOADLIB = libname •••

If no LOADLIBs are to be searched, the following message is
displayed at the terminal:

LOADL IB = NONE

displays the names of all library files with filetypes of
MACLIB, TXTLIB, DOSLIB, and LOADLIB that are to be searched.

R~~Q~§~: MACLIB = {libname ••• }
NONE

TXTLIB = {libname ••• }
NONE

DOSLIB = {libname ••• }
NONE

LOADLIB = {libname ••• }
NONE

in order to display the contents of the current data set
definitions, it is necessary only to enter:

DLBL or QUERY DLBL

Entering the command yields the following information:

DDNAME the VSE filename or OS ddname.

188 IBM VM/SP CMS :ommand and Macro Reference

DOS

DOSLIB

MODE

LOGUNIT

TYPE

CATALOG

EXT

VOL

BUFSP

PERM

DISK

QUERY

the CMS disk mode identifying the disk on which the
data set resides.

the VSE logical unit specification (SYSxxx). This
operand will be blank for a data set defined while
in CMS/OS environment; that is, the SET DOS ON
command had not been issued at DLBL definition time.

indicates the type of data set defined. This field
may only have the values SEQ (sequential) and VSAM.

indicates the ddname of the VSAM catalog to be
searched for the specified data set. This field
will be blank for sequential (SEQ) dataset
definitions.

specifies the number of extents defined for the data
set. The actual extents may be displayed by
entering either the DLBL (EXTENT) or the QUERY DLBL
EXTENT command. This field will be blank if no
extents are active for a VSAM data set or if the
data set is sequential (SEQ).

specifies the number (if greater than one) of
volumes on which the VSAM data set resides. The
actual volumes may be displayed by entering either
the DLBL (MULT) or the QUERY DLBL MULT commands.
This field will be blank if the VSAM data set
resides only on one volume or if the data set is
sequential (SEQ).

indicates the size of the VSAM buffer space if
entered at DLBL definition time. This field will be
blank if the dataset is sequential (SEQ).

indicates whether the DLBL definition was made with
the PERM option. The field will contain YES or NO.

indicates whether the data set resided on a CMS or
DOS/OS disk at DLBL definition time. The values for
this field are DOS and CMS.

DATASET. NAME
for a data set residing on a CMS disk, the CMS
filename and filetype are given; for a data set
residing on a DOS/OS disk, the data set name
(maximum 44 characters) is given. This field will
be blank if no DOS/OS data set name is entered at
DLBL definition time.

If no DLBL definitions are active, the following message is
issued:

DMSDLB324I NO USER DEFINED DLBL'S IN EFFECT

displays whether the CMS/DOS environment is active or not.

displays the names of all files with a filetype of DOSLIB that
are to be searched for executable phases (that is, all DOSLIBs
specified on the last GLOBAL DOSLIB command, if any) •

Section 2. CMS Commands 189

QUERY

DOSPART

R~2EQ!!.2~: DOSLIB = {,libname ••• }
NONE

displays the current setting of the virtual partition size.

R~§12Qn.2~: { nnnnn K,}
NONE '

nnnnnK indicates the size of the virtual partition to be used
at program execution time.

~ONE indicates that CMS determines the virtual partition
size at program execution time.

DOSLNCNT displays the number of SYSLST lines per page.

R~§l2Q!!.2~: DOSLNCNT = nn

nn is an integer from 30 to 99.

OPTION displays the compiler options that are currently in effect.

R~.2EQn§~: OPTION = options •••

UPSI displays the current setting of the UPSI byte. The eight
individual bits are displayed as zeros or ones depending upon
whether tne corresponding bit is on or off.

R~2eQ!!.2~: UPSI = nnnnnnnn

1. You can specify only one QUERY command function at a time. If the
implied CP function is in effect and you enter an invalid QUERY
command function, you may receive the message DMKCQG045E.

2. If an invalid ~UERY command function is specified from an EXEC and
the implied CP function is in effect, then the return code is
-0003.

3. The DOSPART, OPTION, and UPSI functions are valid only if the
CMS/DOS environment is active.

DMSQRY005E NO 'option' SPECIFIED RC=24
DMSQRYC14E INVALID FUNCTION 'function' RC=24
DMSQRYC26E INVALID PARAMETER 'parameter' FOR 'function' FUNCTION RC=24
DMSQRY047E NO FUNCTION SPECIFIED RC=24
DMSQRY070E INVALID PARAMETER 'parameter' RC=24
DMSQRY099E CMS/DOS ENVIRONMENT NOT ACTIVE RC=40

190 IBM VM/SP CMS Command and Macro Reference

READCARD

READCARD

Use the READCARD command to read data records from your
reader and to create CMS disk files containing the data
format of the READCARD command is:

virtual card
records. The

r
I .. ,
I R EADcard fn ft Ifml
I IA I
I L ..
I r .. " I * I! Ifml I
I I 11 II
I L L
I
L

fn is the filename you want to assign to the file being read.

ft

* [*]

fm

is the filetype you want to assign to the file being read.

indicates that file identifiers are to be assigned according
to READ control cards in the input deck.

is the filemode of the disk onto which the file is to be read.
If this field is omitted or specified as an asterisk (*), the
A-disk is assumed. Whenever a mode number is specified on the
command line, it is used. However, if the file to be read has
a mode letter of A, the filemode number on the READ control
card is used to creat~ the disk file. For a file with any
other filemode letter, 1 is the default filemode number.

Dat a records read
records, and may
characters.

by the
be a

READCARD command must be fixed-length
minimum of 80 and a maximum of 204

2. CMS disk file identifiers are assigned according to READ control
cards in the input deck (the PUNCH command header card is a valid
READ control card). When you enter the command:

readcard *
CMS reads the first spool reader file in the queue and if there are
READ control cards in the input stream, it names the files as
indicated on the control cards.

The first card in the deck may not be a READ control card. If it
isn't, CMS writes a file named READCARD CMSUT1 A1 to contain the
data, until a READ control card is encountered or until the
end-of-file is reached.

3. If you specify a filename and filetype on the READCARD command, for
example:

readcard junk file

section 2. CMS Commands 191

READCARD

4.

5.

CMS does not check the input stream for READ control cards, but
reads the entire spool file onto disk and assigns it the specified
filename and filetype.

If there were any READ control cards in the deck, they are not
removed. Delete them using the editor if you do not want them in
your file. If the file is too large, you can either increas~ the
size of your virtual storage (using the CP DEFINE command), or use
the COPYFILE command to copy all records except the READ co~trol
cards (using the FROM and FOR options).

To read
filemode
example:

a file onto a disk other than your A-disk, specify the
letter when you enter the filename and filetype; for

readcard junk file c

Or, if you want READ control card to determine the filenames and
filetypes, you can enter:

readcard * * c

When you read a file
that of an existing
replaced.

that has the
file on the

same filename and filetype as
same disk, the old file is

6. If you are preparing real or virtual card decks to send to your own
or another user's virtual card reader, you may insert READ co~trol
cards to designate filenames, filetypes, and optionally, filemode
numbers, to be assigned to the disk file(s) •

A READ control card must begin in column 1 and has the format:

:READ filename filetype filemode

Each field must be separated by at least one blank; the second
character of the filemode field, if specified, must be a valid
filemode number (0 through 5). The filemode letter is ignored when
this file is read, since the mode letter is determined by
specifications on the READCARD command line.

7. To send a real card deck to your own or another user's virtual card
reader, punch a CP ID card to precede the deck. The ID card has
the keyword ID or USERID in column 1, followed by the userid you
want to receive the file and optionally, spool file class and name
designations; for example:

ID MARY CLASS A NAME LITTLE LAMB

Each field must be separated from the others by at least one blank.

When the READCARD * command is issued, control cards encountered in the
input card stream are displayed at the terminal (see message DMSRDC702I)
to indicate the names assigned to each file.

DMSRDC701I NULL FILE

The spooled card reader contains no records after the control card.

192 IBM VM/SP CMS :ommand and Macro Reference

READCARD

DMSRDC702I :READ filename filetype fn (other information)

A READ control card has been processed; the designated file is
being written on disk.

DMSRDC702I READ CONTROL CARD IS MISSING. FOLLOWING ASSUMED:
DMSRDC702I :READ READCARD CMSUT1 A1

The first card in the deck is not a READ control card. Therefore,
the file READCARD CMSUT1 A1 is created.

DMSRDC738I RECORD LENGTH IS 'nnn' BYTES

The records being read are not 80 bytes long; this message gives
the length.

DMSRDC008E DEVICE 'cuu' {INVALID OR NONEXISTENTIUNSUPPORTED DEVICE TYPE}
RC=36

DMSRDC042E NO FILEID SPECIFIED RC=24
DMSRDC054E INCOMPLETE FILEID SPECIFIED RC=24
DMSRDC062E INVALID * IN FILEID RC=20
DMSRDC069E DISK 'mode' NOT ACCESSED RC=36
DMSRDC105S ERROR Inn' WRITING FILE 'fn ft fm' ON DISK RC=100
DMSRDC124S ERROR READING CARD FILE RC=100
DMSRDC205W READER EMPTY OR NOT READY RC=8

Section 2. CMS Commands 193

RELEASE

RELEASE

Use the RELEASE com~and to free an accessed disk and make the files on
it unavailable. The format of the RELEASE command is:

r
I RELease

{
cuu } [(DET[)]]

I mode
L

cuu is thp. virtual device address of the disk that is to be
released.

mode

Valid addresses are 001 through 5FF for a
basic control mode and 001 through FFF for
in extended control mode.

virtual machine in
a virtual machine

is the mode letter at which the disk is currently accessed.

DET specifies that the disk is to be detached from your virtual
machine c~nfiguration; CMS calls the CP command DETACH.

1. If a disk is accessed at more than one mode letter, the RELEASE cuu
command releases all modes. If you access a disk specifying the
mode letter of an active disk, the first disk is released.

2. You cannot release the system disk (S-disk).

3. When a disk is released, the user file directory is freed from
storage and that storage becomes available for other CMS commands
and programs. When you release a read/write CMS disk, either with
the RELEASE command or implicitly with the FORMAT command, the user
file directory is sorted and rewritten on disk; user(s) who may
subsequently access the same disk may have a resultant favorable
decrease in file search time.

4. When a disk is released, any read-only extensions it may have are
not released. The extensions may be referred to by their own mode
letters. If a disk is then accessed with the same mode as the
original parent disk, the original read-only extensions remain
extensions to the new disk at that mode.

5. In CMS/DOS, when you release a disk, any system or programmer
logical unit assignments made for the disk are unassigned.

DASD cuu DETACHED

This is a CP ~essage that is issued when you use the DET option.
It indicates that the disk has been detached.

194 IBM VM/SP CMS Command and Macro Reference

DMSARE017E INVALID DEVICE ADDRESS 'cuu' RC=24
DMSARE028E NO DEVICE SPECIFIED RC=24
DMSARE048E INVALID MODE 'mode' RC=24
DMSARE069E DISK {'mode'I'cuu'} NOT ACCESSED RC=36
DMSARE070E INVALID PARAMETER 'parameter' RC=24

RELEASE

Section 2. CMS Commands 195

RENA ME

RENAME

Use the RENAME command to change the fileid of one or more eMS files on
a read/write CMS disk. The format of the RENAME command is:

r------------
I Rename I fileid1 fileid2 [(options ••• ()]]
I I
I I
I I
I , r ~ r ~ , , ,TYPE , l!Iill!1! I

I NOUPDIRTI , I I NO!IPEI , , L .J L

'--

file id 1

fileid2

TYPE
T

is the file identifier of the original file whose name is to
be changed. All components of the fileid (filename, filetype,
and fileDode) must be coded, with either a name or an
asterisk. If an asterisk is coded in any field, any file that
satisfies the other qualifications is renamed.

is the ne~ file identifier of the file. All components of the
file (filename, filetype, and filemode) must be coded, with
either a name or an equal sign; if an equal sign (=) is coded,
the corresponding file identifier is unchanged. The output
filemode can also be specified as an asterisk (*), indicating
that the filemode is not changed.

displays, at the terminal, the new identifiers of all the
files that are renamed. The file identifiers are displayed
only when an asterisk (*) is specified for one or more of the
file identifiers (fn, ft, or f~ in fileid1.

suppresses at the terminal, displaying of the new file
identifiers of all files renamed.

updates the master file directory upon completion of this
command.

NOUPDIRT
NOUP

suppresses the updating of the master file directory upon
completion of this command. (See Usage Note 3.)

196 IBM VM/SP CMS ~ommand and Macro Reference

RENAME

1. When you code an asterisk (*) in any portion of the input fileid,
any or all of the files that satisfy the other qualifiers may be
renamed, depending upon how you specify the output fileid. For
example:

2.

rename * assemble a test file a

results in the first ASSEMBLE file found on the A-disk being
renamed to TEST FILE. If more than one ASSEMBLE file exists, error
messages are issued to indicate that they cannot be renamed.

If you code an equal sign (=) in an output fileid in
corresponding to an asterisk in an input fileid, all
satisfy the condition are renamed. For example:

rename * assemble a = oldasm =

a position
files that

renames all files
filetype of OLDASM.

with a filetype of ASSEMBLE to
Current filenames are retained.

files with a

You cannot use the
another. You must
filemode letters.

RENAME command to move a file from one disk to
use the COPYFILE command if you want to change

You can use the RENAME command to modify filemode numbers, for
example,

rename * module a1 = = a2

changes the filemode number on all MODULE files that have a mode
number of 1 to a mode number of 2.

N2£~: You can invoke the RENAME command from the terminal, from an
EXEC file, or as a function from a program. If RENAME is invoked as
a function or from an EXEC file that has the &CONTROL NOMSG option
in effect, the message DMSRNM002E FILE 'fn ft fm' NOT FOUND is not
issued.

3. Normally, the file directory for a CMS disk is updated whenever you
issue a command that affects files on the disk. When you use, the
NOUPDIRT option of the RENAME command, the file directory is not
updated until you issue a command that writes, updates, or deletes
any file on tne disk, or until you explicitly release the disk
(with the RELEASE command) •

newfn newft newfm

The new filename, filetype, and filemode of each file altered is
displayed when the TYPE option is specified and an asterisk vas
specified for at least one of the file identifiers (fn, ft or fm)
of the input fileid.

DMSRNM002E
DMSRNM003E
DMSRNM019E
DMSRNM024E
DMSRNM030E

FILE 'fn ft fm' NOT FOUND RC=28
INVALID OPTION 'option' RC=24
IDENTICAL FILEIDS RC=24
FILE 'fn ft fm' ALREADY EXISTS
FILE 'fn ft fm' ALREADY ACTIVE

RC=28
RC=28

section 2. CMS Commands 197

RENAME

DMSRNMG37E DISK 'mode(cuu) I IS READ/ONLY RC=36
DMSRNM048E INVALID FILE MODE Ifml RC=24
DMSRNM051E INVALID MODE CHANGE RC=24
DMSRNM054E INCOMPLETE FILEID SPECIFIED RC=24
DMSRNM062E INVALID * IN OUTPUT FILEID RC=20

198 IBM VM/SP CMS Command and Macro Reference

RSERV

RSERV

Use the RSERV command in CMS/DOS to copy, display, print, or punch a VSE
relocatable module from a private or system library. The format of the
RSER V comman dis:

r

RS ERV
r ,

mod n a mel f t I [(0 pt ion s ••• [)]]
II~!II
L J 2E.ti.Q.!!.2:

[:Q!~!S]
[PUNCH]

[PRINT]
(TERM] L ______________ _

modn ame specifies the name of the module on the VSE private or system
relocatable library. The private library, if any, is searched
before the system library.

ft specifies the filetype of the file to be created on your
A-disk. ft defaults to TEXT if a filetype is not specified.
The ~ilename is always the same as the module name.

QEiign§: You may specify as many options as you wish on the RSERV
command, depending on which functions you want to perform.

copies the relocatable module onto your A-disk.
options are specified, DISK is the default.

If no other

PUNCH punches the relocatable module on the virtual punch.

PRINT prints the relocatable module on the virtual printer.

TERM displays the relocatable module at your terminal.

1. If you want to copy modules from a private relocatable library, you
must issue an ASSGN command for the logical unit SYSRLB and
identify the library on a DLBL command line using the ddname
IJSYSRL.

To copy modules from the system relocatable library, you must have
entered the CMS/DOS environment specifying a mode letter on the SET
DOS ON command line.

2. The RSERV command ignores the assignment of logical units, and
directs output to the devices specified on the option list.

If you use the TERM option, the relocatable module is displayed at the
term inal.

Section 2. CMS Commands 199

RSERV

DMSRRV003E INVALID OPTION 'option' RC=24
DMSRRV004E MODULE 'Bodule' NOT FOUND RC=28
DMSRRV006E NO READ/~RITE 'A' DISK ACCESSED RC=36
DMSRRV070E INVALID PARAMETER 'parameter' RC=24
DMSRRV097E NO 'SYSRES' VOLUME ACTIVE RC=36
DMSRRV098E NO MODULE NAME SPECIFIED RC=24
DMSRRV099E CMS/DOS ENVIRONMENT NOT ACTIVE RC=40
DMSRRV105S ERROR 'nu' WRITING FILE 'fn ft fm' ON DISK RC=100
DMSRRV113S DISK (eua) NOT ATTACHED RC=100
DMSRRV411S INPUT ERROR CODE 'nn' ON '{SYSRESISYSRLB}' RC=100

200 IBM VM/SP CMS Command and Macro Reference

RUN

RUN

Use the RUN EXEC procedure to initiate a series of functions on a file
depending on the filetype. The RUN command can select or combine the
procedures require~ to compile, load, or start execution of the
specified file. The format of the RUN command is:

r--
I RUN I fn [ft [fm]] [(args ••• [)]]
L

fn

ft

fm

is the filename of the file to be manipulated.

is the filetype of the file to be manipulated. If filetype is
not specified, a search is made for a file with the specified
filename and the filetype of EXEC, MODULE, or TEXT (the search
is performed in that order). If the filetype of an input file
for a lanjuage processor is specified, the language processor
is invokel to compile the source statements and produce a TEXT
file. If no compilation errors are found, LOAD and START may
then be called to initiate program execution. The valid
filetypes and resulting action for this command are:

Xil~1YE'§
EXEC

!£!1Q!!
The EXEC processor is called to process the file.

MODULE The LOADMOD command is issued to load the program into
storage and the START command begins execution of the
program at the entry point equal to fn.

TEXT The LOAD command brings the file into storage in an
executable format and the START command executes the
program beginning at the entry point named by fn.

FORTRAN The FORTRAN processor module that is called is FORTRAN,
FORTGI, GOFORT, or FORTHX, whichever is found first.
Object text successfully compiled by the FORTGI or FORTHX
processors will be loaded and executed.

TESTFORT The TESTFORT module is called to initiate FORTRAN
Interactive Debug and will process a TEXT file that has
been compiled with the TEST option.

FREEFORT The GOFORT module is called to process the file.

COBOL The COBOL processor module that is called is COBOL or
TESTCOB, whichever is found first. After successful
compilation, the program text will be loaded and
execu ted.

PLI The PLIOPT processor module is called to process
PLIOPT the file. After successful compilation, the program text

will be loaded and executed.

is the filemode of the file to be manipulated. If this field
is specified, a filetype must be specified. If fm is not
specified, the default search order is used to search your
disks for the file.

Section 2. CMS Commands 201

RUN

args are arguments you want to pass to your program. You can
specify up to 13 arguments in the RUN command, provided they
fit on a single input line. Each argument is left-justified,
and any argument more than eight characters long is truncated
from the right.

1. The RUN command is an EXEC file; if you want to execute it from
within an EXEC, you must use the EXEC command.

2. If you are executing an EXEC file, the arguments you
RUN command line are assigned to the variable symbols
so on.

enter o~ the
&1, &2, and

3. If you are executing a TEXT or MODULE file, or compiling and
executing a program, the arguments are placed in a parameter list
and passed to your program when it executes. The arguments are
placed 1n a series of doublewords in storage, terminated by X'FF'.
If you enter:

run myprog (charlie dog

the arguments *, CHARLIE, and DOG are placed in
parameter list, and the address of the list is in
your program receives control.

doublewords in a
register 1 when

Note: You cannot use the argument list to override default options
for the compilers or for the LOAD or START commands.

4. The RUN commani is not designed for use with CMS/DOS.

5. The RUN EXEC cannot be used for COBOL and PL/I programs that
require facilities not supported under CMS. For specific language
support limitations, see Y~L~g glanning ~ng ~yst~~ Gen~g!ion
QYiQ~·

Any responses are from the programs or procedures that executed within
the RUN EXEC.

DMSRUN001E NO FILENAME SPECIFIED RC=24
DMSRUN002E FILE('fn eft [fm]]'] NOT FOUND RC=28
DMSRUN048E INVALID MODE 'fm' RC=24
DMSRUN070E INVALID PARAMETER 'parameter' RC=24
DMSRUN999E NO [ft] PROCESSOR FOUND RC=28

202 IBM VM/SP CMS Command and Macro Reference

SENTRIES

SENTRIES

Use the SENTRIES command to determine the number of lines currently in
the program stack. When you issue a SENTRIES command, CMS returns the
number of lines in the program stack (but not the console input buffer)
as a return code. The format of the SENTRIES command is:

r
, SENTRIES ,
L

If you issue a SENTRIES command in an EXEC that has the SERROR statement
in effect, a nonzero SENTRIES return code causes the &ERROR statement to
execute.

Section 2. eMS Commands 203

SET

SET

Use the SET command to establish, turn off, or reset a particular
function in your CMS virtual machine. Only one function may be
specified per SET command. The format of the SET command is:

r---------------------------
I SE T function
1
I
I ,
I
I
I
I
I
1

L

r
IBLIP string[(count)
IBLIP ON
IBLIP OFF
L

[LDRTBLS nn]

r 1
IABBREV ------ Q! I
IABBREV OFFI
L J

r ,
I !!1!~£g QM I
IIMPCP OFFI
L .J

r ,
I !L~ LP AQ] Q! I
I RELPAGE OFFI
L .J

r ,
, REDTYPE ON I
l!ifdDTIR.E QKll
L .J

r ,
I FJiQ!fd£I QM 1
1 PROTECT OFFI
L .J

r {CMSDOS } ISYSNAME CMSVSAM
I CMSAMS
L CMSSEG

,
entryname I

I
.J

r ,
ICMSTYPE
I {

Hr }I
RT 1

L .J

~~2LQQ~ i~n£~iQll2:

, r ,
] I I !U2!.!1~Q b!1~Q I

I IRDYMSG SMSGI
I L .J

.J

r r , ,
IINPUT I a xxi I
I I xx yyl I
L L .J .J

[OUTPUT [xx a]]
r ,
IIMPEX Q!i I
IIMPEX OFFI
L .J

r ,
IAUTOREAD ON 1
IAUTOREAD OFFI
L .J

r rasDos 1 ' 1 NONSHARE CMSVSAM 1
I CMSAMS 1
L CMSSEG .J

r ,
I DOS ON [mode [(VSAM()]]]1
IDOS OFF I

r ,
IDOSLNCNT nnl
L .J

L

r , r ,
IUPSI nnnnnnnni IDOSPART nnnnKI
IUPSI OFF 1 IDOSPART OFF 1
L .J L .J

BLIP string[(count)]
defines the characters that are displayed at the terminal to
indicate every two seconds of virtual interval timer time.
This time is made up of virtual processor time plus, if the
REALTIMER option is in effect, self-imposed wait time. Blips
may also be caused by the execution of the STIMER macro.

204 IBM VM/SP CMS :ommand and Macro Reference

BLIP ON

SET

You can define up to eight characters as a blip string; if you
want trailing blanks, you must specify count. ON and OFF must
not be used as BLIP characters.

sets the BLIP character string to its default, which is a
string of nonprintable characters. ON is the default for
typewriter devices. The default BLIP character provides no
visual or audio-visual signal on a 3767 terminal. You must
define a BLIP character for a 3767 if you want the BLIP
function.

BLIP OFF turns off BLIP. OFF is the default for graphics devices.

Note: The BLIP operand will be ignored when issued from the
CMS batch machine.

R~!~~§ LMSG
---Indicates that the standard CMS

current and elapsed time, is used.
Ready message is:

R; T=s.mm/s.mm hh:mm:ss

ready message, including
The format of the standard

where the virtual processor time, real processor time, and
clock time are listed.

RDYMSG SMSG

LDRTBLS nn

indicates that a shortened form of the CMS ready ~essage (R:)
which does not include the time is used.

defines the number (nn) of pages of storage to be used for
loader tables. By default, a virtual machine having up to
384K of addressable real storage has two pages of loader
tables; a larger virtual machine has three pages. Each loader
table page has a capacity of 204 external names. During LOAD
and INCLUDE command processing, each unique external name
encountered in a TEXT deck is entered in the loader table.
The LOAD command clears the table before reading TEXT files;
INCLUDE does not. This number can be changed with the SET
LDRTBLS nn command provided that: (1) nn is a decimal number
between 0 and 128, and (2) the virtual machine has enough
storage available to allow nn pages to be used for loader
tables. If these two conditions are met, nn pages are set
aside for loader tables. If you plan to change the number of
pages allocated for loader tables, you should deallocate
storage at the high end of storage so that the storage for the
loader tables may be obtained from that area. Usually, you
can deallocate storage by releasing one or more of the disks
that were accessed.

releases page frames of storage and sets them to binary zeros
after the following commands complete execution: ASSEMBLE,
COPYFILE, COMPARE, EDIT, MACLIB, SORT, TXTLIB, UPDATE, HELP,
and the program product language processors supported by
VM/SP. These processors are listed in the !~LSP Ig1£odyction.

RELPAGE OFF
does not release pages of storage after the commands listed in
the RELPAGE ON description complete execution. Use the SET
RELPAGE OFF function when debugging or analyzing a problem so
that the storage used is not released and can be examined.

Section 2. CMS Commands 205

SET

INPUT a xx
translates the specified character a to the specified
hexadecimal code xx for characters entered from the terminal.

INPU T xx yy

INPUT

allows you to reset the hexadecimal code xx to the specified
hexadecimal code yy in your translate table.

Ng!§: If you issue SET INPUT and SET OUTPUT commands for the
same characters, issue the SET OUTPUT command first.

returns all characters to their default translation.

OUTPUT xx a

OUTPUT

ABBR EV OFF

REDT YPE ON

translates the specified hexadecimal representation xx to the
specified character "a" for all xx characters displayed at the
terminal.

returns all characters to their default translation.

Ngi§: Output translation does not occur for SCRIPT files when
the SCRIPT command output is directed to the terminal, nor
when you use the CMS editor on a display terminal in display
mode.

accepts system and user abbreviations for system commands. The
SYNONYM command makes the system and user abbreviations
available.

accepts only the full system command name or the full user
synonym (if one is available) for system commands.

For a discussion of the relationship of the SET ABBREV and
SYNONYM commands, refer to the SYNONYM command descriptio~.

types CMS error messages in red for certain terminals equipped
with the appropriate terminal feature and a two-color ribbon.
Supported terminals are described in the VML~g I~£mi~al Y~£~2
Q!!1g~·

InlQ~lg~ Qfl:

IMPEX OFF

IMPCP OFF

suppresses red typing of error messages.

treats EXEC files as commands; an EXEC file is invoked when
the filename of the EXEC file is entered.

does not consider EXEC files as commands. You must issue the
EXEC tommand to execute an EXEC file.

passes command names that CMS does not recognize to CP; that
is, unknown commands are considered to be CP commands.

generates an error message at the terminal if a command is not
recognized by CMS.

protects the CMS nucleus against writing in its storage area.

2C6 IBM VM/SP CMS Command and Macro Reference

SET

PROT ECT OFF
does not protect the storage area containing the CMS nucl~us.

AUTO READ ON
specifies that a console read
after command execution. ON is
nonbuffered terminals.

is to be issued immediately
the default for nondisplay,

AUTO READ OFF
specifies that you do not want a console read to be issued
until you press the Enter key or its equivalent. OFF is the
default for display terminals because the display terminal
does not lock, even when there is no READ active for it.

N.Q~§: If
reconnect
unchanged.

you
on

disconnect from
another type,

one type of terminal and
the AUTOREAD status remains

SYSN AME {g:~~~iM 1 entryname
CMSAMS
CMSSEG
allows you to replace a saved system name entry in the
SYSNAMES table with the name of an alternative, or backup
system. A separate SET SYSNAME command must be issued for
each name entry to be changed. CMSDOS, CMSVSAM, CMSAMS, and
CMSSEG are the default names assigned to the systems when the
CMS system is generated.

NONSHARE ~.~~~~~iM1
CMSAMS
CMSSEG

CMSTYPE HT

CMSTYPE RT

specifies that you want your own nonshared copy of a normally
shared named system.

suppresses CMS terminal display within an EXEC. All CMS
terminal display from an EXEC is suppressed until the end of
the EXEC file or until a SET CMSTYPE RT command is executed.

resumes CMS terminal display which has been suppressed as a
result of a previous SET CMSTYPE HT command.

N.Qi§: &STACK HT and SET CMSTYPE HT have the same effect when interpreted
by the CMS EXEC processor. Similarly, &STACK RT and SET CMSTYPE RT are
equivalent for the CMS EXEC processor. However, when using EXEC 2, the
commands &STACK HT and &STACK RT cause the characters "HT" and "RT" to
be placed in the program stack and do not affect the console output.
These characters must be used by a program or cleared from the stack.
Otherwise, you will receive an "UNKNOWN CP/CMS COMMAND" error message
when they are read from the program stack.

The following functions describe the SET operands that apply to the
CMS/DOS environment.

DOS ON places your CMS virtual machine in the CMS/DOS environment.
The logical unit SYSLOG is assigned to your terminal.

section 2. CMS Commands 207

SET

mode

VSAM

specifies the mode letter at which the VSE system residence is
accessed; the logical assignment of SYSRES is made for the
indicated mode letter.

specifies that you are going to use the AMSERV command or you
are going to execute programs to access VSAM data sets.

returns your virtual machine to
All previously assigned system
are unassigned.

the normal CMS environment •.
and programmer logical units

DOSLNCNT nn
specifies the number of SYSLST lines per page.
integer from 30 to 99.

UPSI nnnnnnnn

nn is an

sets the UPSI (User Program Switch Indicator) byte to the
specified bit string of O's and 1's. If you enter fewer than
eight digits, the UPSI byte is filled in from the left and
zero-padded to the right. If you enter an "x" for any digit,
the corresponding bit in the UPSI byte is left unchanged.

gE~I QfK resets the UPSI byte to binary zeros.

DOSPART nnnnnK
specifies the size of the virtual partition in which you want
a program to execute. The value, nnnnnK, may not exceed the
amount of user free storage available in your virtual machine.
You shouli use this function only when you can control the
performance of a particular program by reducing the amount of
available virtual storage.

EQ~g: In rare circumstances, it may happen that when a program
is executed, the amount of storage available is less than the
current DOSPART. Then, only the amount of storage available is
obtained; no message is issued.

QQ~g!£1 OFF
--specifies that you no longer want to control your virtual

machine partition size. When the DOSPART setting is OFF, CMS
computes the partition size whenever a program is executed.

1. If you issue the SET command specifying an invalid function and the
implied CP function is in effect, you may receive message
DMKCFC003E INVALID OPTION - option.

2. If an invalid SET command function is specified from an EXEC and
the implied CP function is in effect, then the return code is
-0003.

None. To determine or verify the setting of a function, use the QUERY
command.

208 IBM VM/SP CMS :ommand and Macro Reference

DMSLI0002I FILE Ifni TXTLIB NOT FOUND RC=O
DMSSET014E INVALID FUNCTION 'function' RC=24

SET

DMSSETC26E INVALID PARAMETER 'parameter' FOR 'function' FUNCTION RC=24
DMSSET031E LOADER TABLES CANNOT BE MODIFIED RC=40
DMSSET047E NO FUNCTION SPECIFIED RC=24
DMSSET048E INVALID MODE 'mode' RC=24
DMSSET050E PARAMETER MISSING AFTER 'function' RC=24
DMSSET061E NO TRANSLATION CHARACTER SPECIFIED RC=24
DMSSET070E INVALID PARAMETER 'parameter' RC=24
DMSSET098W CMS OS SIMULATION NOT AVAILABLE RC=4
DMSSET099E CMS/DOS ENVIRONMENT NOT ACTIVE RC=40
DMSSET100W SYSTEM NAME 'name' NOT AVAILABLE RC=4
DMSSET142S SAVED SYSTEM NAME 'name' INVALID RC=24
DMSSET333E nnnnnK PARTITION TOO LARGE FOR THIS VIRTUAL MACHINE RC=24
DMSSET400S SYSTEM 'sysname' DOES NOT EXIST RC=44
DMSSET401S V.M. SIZE (size) CANNOT EXCEED 'DMSDOS' START ADDRESS

(address) RC=1 04
DMSSET410S CONTROL PROGRAM ERROR INDICATION 'retcode' RC=nnn

!Q~g: In RC=nnn, the nnn represents the actual error code
generated by CP.

DMSSET444E VOLUME 'label' IS NOT A DOS SYSRES RC=32

Section 2. CMS Commands 209

SETPRT

SETPRT

Use the SETPRT command to load a virtual 3800 printer. The SETPRT
command is valid only for a virtual 3800 printer.

r----------------
, SETPRT, r ,
I "Chars [(]cccc ••• [)]]1
I' 'I COpies [(]nnn[)] ,
, "COPYnr [(]nnn[)] I , I' Fcb [(] ffff[) J ,
I 'I F Las h [(] i d nnn [)] I
I " Init I
I I' Modify [(]mmmm(n]()]I
I I L .I

L

CHAR S cccc •••

COPI ES nnn

COPYNR nnn

FCB ffff

specifies the names of from one to four character arrangement
tables (CATs) to be loaded into the virtual 3800. CAT names
may be from one to four alphameric characters. The CATs must
exist as 'XTB1cccc TEXT' files on an accessed CMS disk.

specifies the total number of copies of each page to be
printed. The value of nnn must be a number from 1 to 255.
The default value is 1.

specifies the copy number of the first copy in a copy group.
The value of nnn must be a number from 1 to 255. If COPYNR is
not specified, a starting copy number of 1 is assumed.

specifies the FCB to be loaded into the virtual 3800. The FCB
must exist as a 'FCB3ffff TEXT' file on an accessed CMS disk
unless ffff is specified as 6, 8, or 12. In that case, the
FCB is not loaded from a CMS file. CP determines the
appropriate FCB to load and prints the entire file at 6, 8, or
12 lines per inch.

FLAS H id nnn

INIr

MODIFY

specifies the one- to four-character overlay name (id) and the
number of copies of each page (nnn) to be printed ~ith the
overlay indicated by 'ide. nnn may be a number from 0 to 255.
If n is not specified, 1 is the default. If the FLASH keyword
is omitted, no copies are printed with an overlay.

specifies that an
before any other
performed.

mmmm [n]

"Initialize Printer"
functions specified

ccw will be issued
in this command are

specifies copy modification data to be loaded. The copy
modification must exist as a 'MOD1mmmm TEXT' file OQ an
accessed :MS disk. Further, n specifies the CAT to use for
the copy modification load. If n is omitted, 0 is the
default.

210 IBM VM/SP CMS Command and Macro Reference

SETPRT

~Q~~: Keyword values must be enclosed
be interpreted as a SETPRT keyword or
the parentheses may be omitted.

in parentheses only if they could
keyword abbreviation~ Otherwise

1. The values specified with the COPYNR, COPIES, and FLASH keywords
override values specified in the SPOOL command except that multiple
copies specified in the SPOOL command result in that number of
retransmissions of the file.

2. CATs must be specified so that they correspond to the appropriate
TRC bytes. The first CAT specified corresponds to TRC byte 0, the
second CAT corresponds to TRC byte 1, and so on.

3. CATs can reference the Library Character Set modules that IEBIMAGE
supports.

4. If the number of copies specified with the FLASH keyword is greater
than the number of copies specified in COPIES nnn, the actual
number of copies printed will equal the number specified with the
FLASH keyword. Thus, if you want all copies to be printed with an
overlay, you can specify the number with the FLASH keyword and omit
the COPIES keyword.

DMSSPR1961 PRT cuu SETUP COMPLETE
The virtual 3800 printer was successfully loaded.

DMSSPR002E FILE 'fn ft' NOT FOUND
DMSSPR014E INVALID KEYWORD 'keyword'
DMSSPR026E INVALID VALUE 'value' FOR 'keyword' KEYWORD
DMSSPR113S PRINTER 'OOE' NOT ATTACHED RC=100
DMSSPR145S INTERVENTION REQUIRED ON PRINTER RC=100
DMSSPR197S UNDIAGNOSED ERROR FROM PRINTER 'OOE' RC=100
DMSSPR198E SETPRT CAUSED A LOAD CHECK - SNS=ssssssssss
DMSSPR199E PRT OOE NOT A VIRTUAL 3800
DMSSPR204E TOO MANY WCGM NEEDED FOR CHARS
DMSSPR352E INVALID SETPRT DATA IN FILE 'fn ft'

Section 2. CMS Commands 211

SORT

SORT

Use the SORT command to read fixed-length records from a CMS input file,
arrange them in ascending EBCDIC order according to specified sort
fields, and create a new file containing the sorted records. The format
of the SORT command is:

r---
I SORT fileid1 fileid2 L _____________ _

fileid1

fileid2

is the file identifier (filename, filetype, filemode) of the
file containing the records to be sorted.

is the file identifier (filename, filetype, filemode) of the
new output file to contain the sorted records.

The input and output files must not have the same file identifiers,
since SORT cannot write the sorted output back into the space occupied
by the input file. If fileid2 is the same as fileid1, message
DMSSRT019E 'IDENTICAL FILEIDS' is issued and the SORT operation does not
take place. If fileid1 and fileid2 are different and a file with the
same name as fileid2 already exists, the existing file is replaced when
the SORT operation takes place.

~n1gf~ng Sort Control Fields: After the SORT command is entered~ CMS
responds wIth the-followIng-message on the terminal:

DMSSRT604R ENTER SORT FIELDS:

Respond by entering one or more pairs of numbers of the form "xx yy";
separate each pair by one or more blanks. Each "xx" is the starting
character position of a sort field within each input record and "yy" is
the ending character position. The leftmost pair of numbers denotes the
major sort field. The number of sort fields is limited to the number of
fields you can enteL on one line. The records can be sorted on up to a
total of 253 positions.

!!~iY~l ~~Q±~gg EggY!fg!gg!§ !Q~ ~Qrt1~g: The sorting operation takes
place with two passes of the input file. The first pass creates an
ordered pointer table in virtual storage. The second pass uses the
pointer table to read the input file in a random manner and write the
output file. Therefore, the size of storage and the size and number of
sort fields are the limiting factors in determining the number of
records that can be sorted at anyone time. An estimate of the maximum
number of records that can be sorted is:

VMSIZE - 132K
NR = -------------

14 + NC

212 IBM VM/SP CMS Command and Macro Reference

SORT

~hg£~: NR is the estimated maximum number of input records; NC is the
total number of characters in the defined sort fields; VMSIZE is the
stoLage size of the virtual machine; and 132K is the size of the
resident CMS nucleus. For example, enter the command and respond to the
prompting message:

sort name address a1 sortedna address b1

DMSSRT604R ENTER SORT FIELDS:

1 10 25 28

The records in the NAME ADDRESS file are sorted on positions 1-10 and
25-28. The sorted output is written into the newly created file
SORTEDNA ADDRESS. If you have a 320K virtual machine, you can sort a
maximum of 6875 records.

VMSIZE-132K 320K-132K 188K 192,512
NR = ----------- = --------- = = ------- = 6875

14 + NC 14 + 14 28 28

DMSSRT604R ENTER SORT FIELDS:

You are requested
them in the form
Fields."

to enter SORT control fields. You should enter
described previously in "Entering Sort COQtrol

DMSSRT002E FILE 'fm ft fm' NOT FOUND RC=28
DMSSRT009E COLUMN 'col' EXCEEDS RECORD LENGTH RC=24
DMSSRT019E IDENTICAL FILEIDS RC=24
DMSSRT034E FILE 'fn ft fm' IS NOT FIXED LENGTH RC=32
DMSSRT037E DISK 'mode' IS READ/ONLY RC=36
DMSSRT053E INVALID SORT FIELD PAIR DEFINED RC=24
DMSSRT054E INCOMPLETE FILEID SPECIFIED RC=24
DMSSRT062E INVALID * IN FILEID RC=20
DMSSRT063E NO LIST ENTERED RC=40
DMSSRT070E INVALID PARAMETER 'parameter' RC=24
DMSSRT104S ERROR Inn' READING FILE 'fn ft fm' FROM DISK RC=100
DMSSRT105S ERROR 'nne WRITING FILE 'fn ft fm' ON DISK RC=100
DMSSRT212E MAXIMUM NUMBER OF RECORDS EXCEEDED RC=40

Section 2. CMS Commands 213

SSERV

SSERV

Use the SSERV command in
book from a VSE source
comm and is:

CMS/DOS to copy,
statement library.

display, print, or punch a
The format of the SSERV

r
I
I SS ERV

r ,
sublib book name I ft I [(options ••• [)]]

I I~Qg!1
I L .J ,
I ,
L

.QE1i.21!§ :
(DISK]
[PUNCH

,(PRINT]
(TERM]

sublib specifies the source statement sublibrary in which the book is
cataloged.

bookname specifies the name of the book in the VSE private or system
source statement sublibrary. The private library, if any, is
searched before the system library.

ft specifies the filetype of the file to be created on your
A-disk. ft defaults to COpy if a filetype is not specified.
The filename is always the same as the bookname.

QEii2n§: You may enter as many options as you wish, depending upon
the functions you want to perform.

Ql~~ copies the book to a CMS file.

PUNCH punches the book on the virtual punch.

PRINT spools a copy of the book to your virtual printer.

TERM displays the book on your terminal.

1. If you want to copy books from private libraries, you must issue an
ASSGN command for the logical unit SYSSLB and identify the library
on a DLBL command line using a ddname of IJSYSSL.

If you want to copy books from the system library, you must have
entered the CMS/DOS environment specifying the mode letter of the
system residence volume.

2. You should not use the SSERV command to copy books from macro (E)
sublibraries, since they are in "edited" (that is, compressed)
form. Use the ESERV command to copy and de-edit macros from a
macro (E) sublibrary.

When you use the TERM option, the specified book is displayed at the
terminal.

214 IBM VM/SP CMS :ommand and Macro Reference

DMSSRV003E INVALID OPTION 'option' RC=24
DMSSRV004E BOOK 'subl.book' NOT FOUND RC=28
D~SSRV006E NO READ/WRITE 'A' DISK ACCESSED RC=36
DMSSRV070E INVALID PARAMETER 'parameter' RC=24
DMSSRV097E NO 'SYSRES' VOLUME ACTIVE RC=36 -
DMSSRV098E NO BOOK NAME SPECIFIED RC=24
DMSSRV099E CMS/DOS ENVIRONMENT NOT ACTIVE RC=40
DMSSRV105S ERROR 'nn' WRITING FILE 'fn ft fm' ON DISK RC=100
DMSSRV113S DISK (cuu) NOT ATTACHED RC=100
DMSSRV411S INPUT ERROR CODE Inn' ON '{SYSRESISYSSLB}' RC=100
DMSSRV194S BOOK 'subl.book' CONTAINS BAD RECORDS RC=100

SSERV

section 2. CMS Commands 215

START

START

Use the START command to begin execution of CMS, as, or VSE programs
that were previously loaded or fetched. The format of the START command
is:

r ,
, START ,

r ,
I entry [args •••] I
I * I
I (option [)] I

QE1i.2!U. , NO
I L J L ___________________ _

entry passes control to the control section name or entry point name
at execution time. The operand, entry, may be a filename only
if the filename is identical to a control section name or an
entry point name.

* passes control to the default entry point.
of the LOAD command for a discussion of
point selection.

See the discussion
the default entry

args ••. are arguments to be passed to the started program. If user
arguments are specified, the entry or * operands must be
specified; otherwise, the first argument is taken as the entry
point. Arguments are passed to the program via general
register 1. The entry operand and any arguments become a
string of doublewords, one argument per doubleword, and the
address of the list is placed in general register 1.

1 •

NO suppresses execution of the program. Linkage editor and loader
functions are performed and the program is in storage ready to
execute, but control is not given to the program. START * and
START (NO) are mutually exclusive.

Any undefined names or references specified in the files loaded
into storage are defined as zero. Thus, if there is a call or
branch to a subroutine from a main program, and if the subroutine
has never been loaded, the call or branch transfers control at
execution time to location zero of the virtual machine.

2. Do not use the START command for programs that are generated via
the GENMOD command with the NOMAP option. The START command does
not execute properly for such programs.

3. When arguments are passed on the START command, the requirements of
both CMS and the language of the application program must be met.
For example, COBOL programs require arguments separated by commas:

STAR T * A, B , C

See the appropriate language guide for details on parameter
requirements.

216 IBM VM/SP CMS Command and Macro Reference

START

4. Issue the START command immediately following the LOAD and INCLUDE
commands. If the LOAD and INCLUDE were issued in an EXEC
procedure, issue the START command from within the EXEC as well.

DMSLI0740I EXECUTION BEGINS •••

is displayed when the designated entry point is validated.

This message is suppressed if eMS/DOS is active and the COMP option
is specified in the FETCH command.

DMSLI0021E ENTRY POINT 'name' NOT FOUND RC=40
DMSLI0055E NO ENTRY POINT DEFINED RC=40

section 2. CMS Commands 217

STATE, STATEW

STATE/STATEW

Use the STATE command to verify the existence of a CMS, OS, or DOS file
on any accessed disk; use the STATEW command to verify the existence of
a CMS, OS, or DOS file on any accessed read/write disk. The formats of
the STATE and STATEW commands are:

.---------------------
I {STATE} I {fn} {ft} [fm]
I STATEW I * * *
L

fn is the filename of the file whose existence is to be verified.
If fn is specified as *, the first file found satisfying the
rest of the fileid is used.

ft

fm

is the filetype of the file whose existence is to be verified.
If ft is specified as *, the first file found satisfying the
rest of the fileid is used.

is the filemode of the file whose existence is to be verified.
If fm is omitted, or specified as *, all your disks are
searched.

1. If you issue the STATEW command specifying a file that exists on a
read-only disk, you receive error message DMSSTT002E.

2. When you code an asterisk in the fn or ft fields,
the file is ended as soon as any file satisfies any
conditions. For example, the command:

state '* file

the search for
of the other

executes successfully if any file on any accessed disk (including
the system disk) has a filetype of FILE.

3. To verify the existence of an OS or VSE file when DOS is set OFF,
you must issue the FILEDEF command to establish a CMS file
identifier for the file. For example, to verify the existence of
the as file TEST. DATA on an OS C-disk you could enter:

filedef check disk check list c dsn test data
state chec k list

where CHECK LIST is the CMS filename and filetype associated with
the as data set name.

4. To verify the existence of an OS or VSE file when the CMS/DOS
environment is active, you must issue the DLBL command to establish
a CMS file identifier for the file. For example, to verify the
existence of the DOS file TEST. DATA on a DOS C-disk, you could
enter:

dlbl check c dsn test data
state file check

218 IBM VM/SP CMS :ommand and Macro Reference

STATE, STATEW

where FILE CHECK is the default CMS filename and filetype (FILE
ddname) associated with the VSE file-ide

5. You can invoke the STATE/STATEW command from the terminal, from an
EXEC file, or as a function from a program. If STATE/STATEW is
invoked as a function or from an EXEC file that has the &CONTROL
NOMSG option in effect, the message DMSSTT002E FILE 'fn ft fm' NOT
FOUND is not issued.

The CMS ready message indicates that the specified file exists.

DMSSTT2271 PROCESSING VOLUME 'no' IN DATA SET 'data set name'

The specified data set has multiple volumes; the volume being
processed is shown in the message. The STATE command treats
end-of-volume as end-of-file and there is no end-of-volume
switching.

DMSSTT228I USER LABELS BYPASSED ON DATA SET 'data set name'

The specified data set has disk user labels; these labels are
skipped.

DMSSTT002E FILE 'fn ft fm' NOT FOUND RC=28
DMSSTT048E INVALID MODE 'mode' RC=24
DMSSTTC54E INCOMPLETE FILEID SPECIFIED RC=24
DMSSTT062E INVALID 'char' IN FILEID 'fn ft' RC=20
DMSSTT069E DISK 'mode' NOT ACCESSED RC=36
DMSSTT070E INVALID PARAMETER 'parameter' RC=24
DMSSTT229E UNSUPPORTED OS DATA SET, ERROR 'code' RC=code

Section 2. CMS Commands 219

SVCTRACE

SVCTRACE

Use the SVCTRACE command
supervisor calls oc~urring
SVCTRACE command is:

to trace and record
in your virtual machine.

information about
The format of the

r---

SVCTrace {ON}
OFF L _____________________ ~ __ _

ON starts tracing all SVC instructions issued within CMS.

OFF stops SVC tracing.

1. The trace information recorded on the printer includes:

• The virtual storage location of the calling SVC instruction and
the name of the called program or routine

• The normal and error return addresses

• The contents of the general registers both before the SVC-called
program is given control and after a return from that program

• The contents of the general registers when the SVC handling
routine is finished processing

• The contents of the floating-point registers before the
SVC-called program is given control and after a return from that
program

• The contents of the floating-point registers when the SVC
handling routine is finished processing

• The parameter list passed to the SVC

2. To terminate tracing previously established by the SVCTRACE
command, issue the HO or SVCTRACE OFF commands. SVCTRACE OFF and
HO cause all trace information recorded, up to the point they are
issued, to be printed on the virtual spooled printer. On
typewriter terminals SVCTRACE OFF can be issued only when the
keyboard is unlocked to accept input to the CMS command
environment. To terminate tracing at any other point in system
processing, HO must be issued. To suspend tracing temporarily
during a session, interrupt processing and enter the Immediate
command SO (Suspend Tracing). To resume tracing that was suspended
with the SO command, enter the Immediate command RO (Resume
Tracing) •

If you issue the CMS Immediate command HX or you log
VM/SP system before termination of tracing previously set
SVCTRACE command, the switches are cleared automatically
recorded trace information is printed on the virtual
printer.

220 IBM VM/SP CMS :ommand and Macro Reference

off the
by the

and all
sp~oled

If a user timer exit is activated while SVCTRACE is
SVCTRACE is disabled for the duration of the timer exit.
issued during the timer exit are not reflected in the
listing.

SVCTRACE

active,
Any SVCs
SVCTRACE

3. When tracing on a virtual machine with only one printer, the trace
data is intermixed with other data sent to the virtual printer.

A variety of information is printed whenever the:

SVCTRACE ON

command is issued.

The first line of trace output starts with a dash or plus sign or an
asterisk (- or + or *). The format of the first line of trace output
is:

+

*

N/D

xxx

dd

name

loc

psw1

psw2

rc

N/D = xxx/dd name FROM loc OLDPSW = psw1 GOPSW = psw2 [RC=rc]

indicates information recorded before processing the SVC.

indicates information recorded after processing the SVC, unless
the asterisk (*) applies.

indicates information recorded after processing a CMS SVC that
had an error return.

is an abbreviation for SVC number and depth (or level) •

is the number of the SVC call (they are numbered sequentially).

is the nesting level of the SVC call.

is the macro or routine being called.

is the program location from which the SVC was issued.

is the PSW at the time the SVC was called.

is the PSW with which the routine being called is invoked, if
the first character of this line is a dash (-). If the first
character of this line is a plus sign or asterisk (+ or *), PSW2
represents the PSW that returns control to the user.

is the return code from the SVC handling routine in general
register 15. This field is omitted if the first character of
this line is a dash (-), or if this is an OS SVC call. For a
CMS SVC, tnis field is 0 if the line begins with a plus sign
(+), and nonzero for an asterisk (*). Also, this field equals
the contents of R15 in the "GPRS AFTER" line.

section 2. CMS Commands 221

SVCTRACE

The next two lines of output are the contents of the general
registers when control is passed to the SVC handling routine. This
output is identified at the left by " .GPRSB". The format of the output
is:

.GPRSB h h h h h h h h *dddddddd*
= h h h h h h h h *dddddddd*

where h represents the contents of a general register in hexadecimal
format and g represents the EBCDIC translation of the contents of a
general register. The contents of general registers 0 through 7 are
printed on the first line, with the contents of registers 8 through F on
the second line. The hexadecimal contents of the registers are printed
first, followed by the EBCDIC translation. The EBCDIC translatiqn is
preceded and followed by an asterisk(*).

The next line of output is the contents of general registers 0, 1,
and 15 when control is returned to your program. The output is
identified at the left by ".GPRS AFTER :". The format of the output is:

.GPRS AFTER: RO-R1 = h h *dd* R15 = h *d*

where h represents the hexadecimal contents of a general register and g
is the EBCDIC translation of the contents of a general register. The
only general registers that CMS routines alter are registers 0, 1, and
15 so only those registers are printed when control returns to your
program. The EBCDI: translation is preceded and followed by an asterisk
(*) •

The next two lines of output are the contents of the general
registers when the SVC handling routine is finished processing. This
output is identified at the left by ".GPRSS." The format of the output
is:

.GPRSS = h h h h h h h h *dddddddd*
= h h h h h h h h *dddddddd*

where h represents the hexadecimal contents of a general register and £
represents the EBCDIC translation of the contents of a general register.
General registers 0 through 7 are printed on the first line with
registers 8 through F on the second line. The EBCDIC translation is
preceded and followed by an asterisk (*).

The next line of output is the contents of the
floating-~oint registers. The output is identified
".FPRS". The format of the output is:

.FPRS = f f f f *gggg*

calling routine's
at the left by

where! represents the hexadecimal contents of a floating-point register
and g is the EBCDIC translation of a floating-point register. Each
floating point register is a doubleword; each f and g represents a
doubleword of data. The EBCDIC translation is preceded and followed by
an asterisk (*).

The next line of output is the contents of floatihg-point registers
when the SVC handling routine is finished processing. The output is
identified by ".FPRSS" at the left. The format of the output is:

.FPRSS = f f f f *gggg*

where! represents the hexadecimal contents of a floating-point register
and g is the EBCDIC translation. Each floating-point register is a
doubleword and each f and g represents a doubleword of data. The EBCDIC
translation is preceded and followed by an asterisk (*).

222 IBM VM/SP eMS :ommand and Macro Reference

SVCTRACE

The last two lines of output are printed only if the address in
register 1 is a valid address for the virtual machine. If printed, the
output is the parameter list passed to the SVC. The output is
identified by ".PAR~" at the left. The output format is:

.PARM h h h h h h h h *dddddddd*
= h h h h h h h h *dddddddd*

where h represents a word of hexadecimal data and d is the EBCDIC
translation. The parameter list is found at the address contained in
register 1 before control is passed to the SVC handling program. The
EBCDIC translation is preceded and followed by an asterisk (*).

Figure 19 summarizes the types of SVC trace output.

r---
1 Id en tifica tion
1----------
! {:} N/D

1
1 .GPRSB

.GPRS AFTER

. G PRSS

.FPRS

.FPRSS

• PARM

Comments

The SVC and the routine that issued the SVC.

Contents of general registers when control is passed
to the SVC handling routine.

Contents of general registers 0, 1, and 15 when
control is returned to your ~rogram.

Contents of the general registers when the SVC
handling routine is finished processing.

Contents of floating-point registers before the
SVC-called program is given control and after
returning from that program.

Contents of the floating-point registers when the
SVC handling routine is finished processing.

The parameter list, when one is passed to the SVC •

Figure 19. Summary of SVC Trace Output Lines

DMSOVF014E INVALID FUNCTION 'function' RC=24
DMSOVR047E NO FUNCTION SPECIFIED RC=24
DMSOVR104S ERROR Inn' READING FILE 'DMSOVR MODULE' ON DISK RC=100
DMSOVR109S VIRTUAL STORAGE CAPACITY EXCEEDED RC=104

section 2. CMS Commands 223

SYNO NYM

SYNONYM

Use the SYNONYM comnand to invoke a table of synonyms to be used with,
or in place of, CMS and user-written command names. You create the
table yourself using the CMS editor. The form for specifying the
entries for the table is described under "The User Synonym Table."

The names you define can be used either instead of or in conjunction
with the standard CMS command truncations. However, no matter what
truncations, synonyns, or truncations of the synonyms are in effect, the
full real name of the command is always accepted. The format of the
SYNONYM command is:

r--------------------------
I r r r ",

SYNonym I 1 fn 1~!N°l!X!1 I fmlll [(options ••• ()]]
I I I Illlll
I L L 1* I
I L .J

I. r ,
I 2Eii2!!§: 1~1.Q I [CLEAR]
I INOSTDI
1 L .J L _____ - ____________________ _

fn

fm

is the filename of the file containing your synonyms table.

is the filemode of the file containing your synonyms; if
omitted, your A-disk and its extensions are searched. If you
specify fm, you must enter the keyword, SYNONYM. If you
specify fm as an asterisk (*), all disks are searched for the
specified SYNONYM file.

QE!i2.!!§:

~1.Q specifies that standard CMS abbreviations are accepted.

NOSTD standard :MS abbreviations are not to be accepted. (The full
CMS command and the synonyms you defined can still be used.)

CLEAR removes any synonym table set by a previously entered SYNONYM
command.

If you enter the SYNONYM command
synonym table and the user synonym
listed.

with no
table

operands, the system
(if one exists) are

2. The SET ABBREV ON or OFF command, in conjunction with the SYNONYM
command, determines which standard and user-defined forms of a
particular CMS command are acceptable.

224 IBM VM/SP CMS :ommand and Macro Reference

SYNONYM

THE USER SYNONYM TABLE

You create the synonym table using the CMS editor. The table must be a
file with the filetype SYNONYM. The file consists of 80-byte
fixed-length records in free-form format with columns 73-80 ignored.
The format for each record is:

systemcommand usersynonym count

systemcommand
is the name of the CMS command or MODULE or EXEC file for which you
are creating a synonym.

user synonym
is the synonym you are assigning to the command name. When you
create the synonym, you must follow the same syntax rules as for
commands; that is, you must use the character set used to create
commands, the synonym may be no longer than eight characters, and
so on.

count is the minimum nuwb~r of characters that must be entered for the
synonym to be accepted by CMS. If omitted, the entire synonym must
be entered (see the following example).

A table of command synonyms is built from the contents of this file.
You may have several synonym files but only one may be active at a time.
For example, if the synonym file named MYSYN contains:

MOVEFILE MVIT

then, after you have issued the command:

synonym mysyn

the synonym MVIT can be entered as a command name to execute the
MOVEFILE command. It cannot be truncated since no count is specified.
If MYSYN SYNONYM contains:

ACCESS GETDISK 3

then, the synonyms GET, GETD, GETDI, GETDIS, or GETDISK can be entered
as the command name instead of ACCESS.

If you have an EXEC file named TDISK, you might have a synonym entry:

TDISK TDISK 2

so that you can invoke the EXEC procedure by specifying the truncation
TD.

Th~]§!~1!Qg§h!E Eet~§§n ih~ ~li! !~~]~! an~ ~!!QNY~ Co~~ds

The default values of the SET and SYNONYM commands are such
system synonym abbreviation table is available unless
specified.

that the
otherwise

for the FILEDEF command states
Therefore, the acceptable
FILE, FILED, FILEDE, and

table is available whenever
effect.

rhe system synonym abbreviation table
that FI is the minimum truncation.
abbreviations for FILEDEF are: FI, FIL,
FILEDEF. The system synomym abbreviation
both SET ABBREV ON and SYNONYM (STD) are in

Section 2. CMS Commands 225

SYNONYM

If you have a synonym table with the file identification USERTAB
SYNONYM A, that has the entry:

FILEDEF USENAME 3

then, USENAME is a synonym for FILEDEF, and acceptable truncations of
USENAME are: USE, USEN, USENA, USENAM, and USENAME. The user synonym
abbreviation table is available whenever both SET ABBREV ON and SYNONYM
USER TAB are specified.

No matter what synonyms and truncations are defined, the full real
name of the command is always in effect.

Figure 20
available for
commands.

lists the forms of the system command and user synonyms
the various combinations of the SET ABBREV and SYNONYM

When you enter the SYNONYM command with no operands, the synonym
table(s) currently in effect are displayed.

SYSTEM
COMMAND

USER
SYNONYM

SHORTEST
FORM (IF ANI)

This response is the same as the response to the command QUERY
SYNONYM ALL.

DMSSYN7111 NO SYSTEM SYNONYMS IN EFFECT

This response is displayed when you issue the SYNONYM command with
no operands after the command SYNONYM (NOSTD) has been issued.

DMSSYN712I NO SYNONYMS (DMSINA NOT IN NUCLEUS)

The system routine which handles SYNONYM command processing is not
in the system.

DMSSYN002E FILE 'fn ft fm' NOT FOUND RC=28
DMSSYN003E INVALID OPTION 'option' RC=24
DMSSYNC07E FILE 'fn ft fm' NOT FIXED, 80 CHAR RECORDS RC=32
DMSSYN032E INVALID FILETYPE 'ft' RC=24
DMSSYNC56E FILE 'fn ft fm' CONTAINS INVALID RECORD FORMATS RC=32
DMSSYN066E 'option AND 'option' ARE CONFLICTING OPTIONS RC=24
DMSSYN104S ERROR Inn' READING FILE 'fn ft fm' FROM DISK RC=100

226 IBM VM/SP CMS :ommand and Macro Reference

r

options

SET ABBREV ON
SY N USERTAB (STD

SET ABBREV OFF
SY N USERTAB (STD

SET ABBREV ON 1
SYN USERTAB (NOSTDI

1
1
1
1
1
1
1
1

Acceptable
Command
Forms

FI
FIL

FILEDEF
USE
USEN

USENA ME

FILEDEF
USENAME

FILEDEF
USE
USEN

USENA ME

1 SET ABBREV OFF 1 FILEDEF
1 SYN USERTAB (NOSTDI USENAME
1 1
1 , , , , , , , , ,
1 , , , , , ,
1 SET ABBREV ON FI
, SYN (CLEAR STD FIL
I , ,
1 FILEDEF ,
, SET ABBREV OFF FILEDEF
, SYN (CLEAR STD ,
1--------------1
, SET ABBREV ON ,
, SYN (CLEAR NOSTD ,
1--------------1
I SET ABBREV OFF 1
, SYN (CLEAR NOSTD 1
L

SYNONYM

Comments

The ABBREV ON option of the SET
command and the STD option of the
SYNONYM command make the system
table available. The user synonym,
USENAME, is available
because the synonym table
(USERTAB) is specified on the

SYNONYM command. The truncations
for USENAME are available because
SET ABBREV ON was specified with
the USERTAB also available.

,The user-defined synonym, USENAME,
, is permitted because the user
, synonym table (USERTAB) is speci­
, fied on the SYNONYM command. No
, system or user truncations are
I permitted.

IThe system synonym table is un-
I available because the NOSTD option
I is specified on the SYNONYM com-
I mand. The user synonym, USENAME,
I is available because the user syno­
I nym table (USERTAB) is specified on
, the SYNONYM command and the trunca­
I tions of USENAME are permitted
I because SET ABBREV ON is specified
I with USERTAB also available.

IThe system synonym table is made
I unavailable either by the SET
I ABBREV OFF command or by the SYN
I (NOSTD command. The synonym#
I USENAME, is permitted because the
, user-defined synonym table
I (USERTAB) is specified on the
, SYNONYM command. The truncations
I for USENAME are not permitted
I because the SET ABBREV OFF option
I is in effect.

(The user-defined table is now un­
available. The system synonym
table is available because both
the ABBREV ON option of the SET
command and the STD option of the
SYNONYM command are specified.

I Because CLEAR is specified on the
, SYNONYM command, the synonym and
, its truncations are no longer
I available. Either the SET ABBREV
, OFF command or the SYNONYM (NOSTD
, command make the system synonym
, table unavailable.
I

Figure 20. System and User-Defined Truncations

Section 2. CMS Commands 227

TAPE

TAPE

Use the TAPE command to dump CMS-formatted files from disk to tape, load
previously dumped files from tape to disk, and perform various control
operations on a specified tape drive. Files processed by the TAPE
command must be in a unique CMS format. The TAPE command does not
process multivolume files. Disk files to be dumped can contain either
fixed- or variable-length records. The format of the TAPE command is:

r--

,
I
L

TAPE
r ,

DUMP Ifml
I * I [(optionA opti on B optionD()]]
L .J

r r , ,
LOAD I{fn} {ft} Ifml I

I * * IA I I
(optionB optionC optionD[)]]

L L .J .J

SCAN
r

{.:;n} {;t}
,

I I
I I

[(optionB optionC optionD()]]

L .J

r ,
SKIP I {;n} {;t} : t

[(optionB optionC optionD[)]]

L .J

DVOL1
WVOL 1 v olid (owner]

[(optionD optionE[)]]
[(optionD optionE[)]]

tapcmd

[(optionD[)]]
r ,
Int [(optionD[)]]
111
L .J

r , r
IWTM I I BLKSIZE {~Q.22}
I!OW!!11 I 800
L .J L

r ,
tNOPRintl
I PRint I
11gf!!! I
IDISK I
L .J

r ,
IEOT I
IEOF nl
I~Qf 11
L .J

rr " r ,

,
I
t

.J

II TAPn II
IITAf1 II

t7TRACKI [DEN den] [TRTCH a]
19TRACKI

t L .J I
I r , I
Ilcuu II
Illll II
LL .J.J

r ,
IREWINDI
I~~A!~ I
L .J

L .J

228 IBM VM/SP CMS Command and Macro Reference

DUMP

LOAD

SCAN

SKIP

{;n}{;t}[;m J
dumps one or more disk files to
specified as an asterisk (*) all
file identifier are dumped.

TAPE

tape. If fn and/or ft is
files that satisfy the other

If fm is coded as a letter, that disk and its extensions are
searched for the specified file(s). If fm is coded as a
letter and number, only files with that mode number and letter
(and the extensions of the disk referenced by that fm letter)
are dumped. If fm is coded as asterisk (*), all accessed
disks are searched for the specified file(s). If fm is not
specified, only the A-disk and its extensions are searched.

[{~n}{;t}[im JJ
reaas tape files onto disk. If a file identifier is
specified, only that one file is loaded. If the option EOF n
is specified and no file identifier is entered, n tape files
are written to disk. If an asterisk (*) is specified for fn
or ft, all files within EOF n that satisfy the other file
identifier are loaded.

The files are written to the disk indicated by the filemode
letter. The filemode number, if entered, indicates that only
files with that filemode number are to be loaded.

[{;n}{;t}]
positions the tape at a specified point, and lists the
identifiers of the files it scans. Scanning occurs over n
tape marks, as specified by the option EOF n (the default is 1
tape file~. However, if a file identifier (fn and ft) is
specified, scanning stops upon encountering that file; the
tape remains positioned ahead of the file.

[{;n}{;t}]
positions the tape at a specified point and lists the
ident ifier s of the files it skips. Skipping occurs over 11

tape marks, as specified by the option EOF n (the default is 1
tape mark~ • However, if a fil e identifier (fn and ft) is
specified, skipping stops after encountering that file; the
tape remains positioned immediately following the file.

MODESET sets the values specified by the DEN, TRACK, and TRTCH
options. After initial specification in a TAPE command, these
values remain in effect for the virtual tape device until they
are changed in a subsequent TAPE command, RDTAPE, WRTAPE, or
TAPECTL macro •

.- ,
tapGmdlni specifies a tape control function (tapcmd) to be executed n

111 times (default is 1 if n is not specified). These functioQs
L ~ also work on tapes in a non-CMS format.

1~E£!!!g
BSF
BSR
ERG
FSF
FSR
REW

AC:!:.!Q.!!
Backspace n tape marks
Backspace n tape records
Erase gap
Forward-space n tape marks
Forward-space n tape records
Rewind tape to load point

Section 2. CMS Commands 229

TAPE

DVOL1

WVOL1

!!!.E~!!!g
RUN
WTM

AC!;hQ11
Rewind tape and unload
write 11 tape marks

displays an 80-character VOL1 label in EBCDIC on the user's
terminal if such a label exists on the tape. If the first
record on the tape is not a VOL1 label, an error message is
sent to the user.

volid (owner]
writes a VOL1 label on a tape. All fields are set to the
same values they are set to when a VOL1 label is written by
the IBM-supplied IEHINITT utility program (see the
publication Q~LY2l ~y~ [!i!i1ie§ fo~ details). The volid is
~et to the 1- to 6-character volid specified on the command.
If the user specifies owner field, it is written in the owner
name and address code field of the label. It can be up to
eight characters long and left-justified in the 10-byte field
in the label. If not specified, the owner field is set to
blanks. The WVOL1 option also writes a dummy HDR1 label and
tape mark after the VOL1 label.

If conflicting options are specified, the last one entered is in
effect.

WTM writes a tape mark on the tape after each file is dumped.

writes a tape mark after each file is dumped, then backspaces
over the tape mark so that subsequent files written o~ the
tape are not separated by tape marks.

BLKSIZE 4096
BLKSIZE 800

specifies the size of the tape data block at which the files
are to be dumped (not including a five-byte prefix).

NOPRINT does not spool the list of files dumped, loaded, scanned, or
skipped to the printer.

PRINT

DISK

EOT

EOF n
~Q£: 1

TAPn
18n

spools the list of files dumped, loaded, scanned, or SKipped
to the pI:' inter.

displays a list of files dumped, loaded, scanned, or skipped
at the terminal.

creates a disk file containing the list of files dumped,
loaded, scanned, or skipped~ The disk file has the file
identification of TAPE MAP AS.

reads the tape until an end-oi-tape indication is received.

reads the tape through a maximum of ~ tape marks. The
default is EOF 1.

specifies the symbolic tape identification (TAPn) or the
actual device address of the tape to be read from or written
to where n is 1, 2, 3, or 4. The default is TAP1 or 181.
The unit specified by cuu must previously have been attached
to your :MS virtual machine before any tape I/O operation can
be attempted. Only symbolic names TAP1 through TAP4 and
virtual device addresses 181 through 184 are supported.

230 IBM VM/SP CMS Command and Macro Reference

TAPE

7TRACK specifies a 7-track tape. Odd parity, data convert on, and
translate off are assumed unless TRTCH is specified.

9TRACK specifies a 9-track tape.

DEN den is the tape density where den is 200, 556, 800, 1600, or
6250. If 200 or 556 is specified, 7TRACK is assumed. If
1600 or 6250 is specified, 9TRACK is assumed; if 800 is
specified, 9TRACK is assumed unless 7TRACK is specified. In
the case of either 800/1600 or 1600/6250 dual-density drives,
1600 is the default if the 9TRACK option is specified. If
neither the 9TRACK option nor the DEN option is specified,
the drive operates at whatever bpi the tape drive was last
set.

TRTCH a is the tape recording technique for 7-track tape. If TRTCH
is specified, 7TRACK is assumed. One of the following must
be specified as "an:

REWIND
!t.]!.Y]

~ !i~ru!i!!g
a Odd parity, data convert off, translate off
OC Odd parity, data convert on, translate off
aT Odd parity, data convert off, translate on
E Even parity, data convert off, translate off
ET Even parity, data convert off, translate on

are only valid for the DVOL1 and WVOL1 functions.
specify the positioning of a tape after the VOL1

They
is

processe:l. If REWIND is specified, the tape is rewound and
posi tioned at load point. If LEAVE (the default) is
specified, the tape is positioned at the record immediately
after the VOL1 label.

1. Tape records written by the CMS TAPE DUMP command are either 805
bytes long, if the option BLKSIZE is specified as 800; or 4101
bytes long if the BLKSIZE is specified as, or defaults to, 4096.
The first character is a binary 2 (X'02'), followed by the
characters CMS and a file format byte. For a variable format file,
the file format byte is V. For a fixed format file without null
blocks, the file format byte is F; otherwise the file format byte
is S. In the final record, the character N replaces the file
format byte, and the data area contains CMS file directory
information. A tape created at 4096-byte block size is not
reloadable on a CMS system that does not have the multivalue
BLKSIZE option on the TAPE command; however, the 800-byte BLKSIZE
option provides backward compatibility to such a system.

2. If a tape file contains more CMS files tha~, would fit on a disk,
the tape load operation may terminate if there is not enough disk
space to hold the files. To prevent this, when you dump the files,
separate logical files by tape marks, then forward space to the
appropriate file.

3. Because the CMS file directory is the last record of the file, the
TAPE command creates a separate workfile so that backspacing and
rereading can be avoided when the disk file is built. If the load
criteria is not satisfied, the workfile is erased; if it is
satisfied, the workfile is renamed. This workfile is named TAPE
CMSUT1, which nay exist if a previous TAPE command has abnormally
terminated. If the work file is accidentally dumped to tape and
subsequently loaded, it appears on your disk as TAPE CMSUT2.

section 2. CMS Commands 231

TAPE

4. The RUN option (rewind and unload) indicates completion before the
physical operation is completed. Thus, a subsequent operation to
the same physical device may encounter a device busy situation.

5. It is possible to run a tape off the reel in at least one
situation. If you specify EOF nand n is greater than the number
of tape marks on the tape, the tape will run off the reel.

6. DVOL1 and WVOL1 are the only TAPE command functions that
automatically process tape labels. TAPE DUMP does not
automatically write labels on a tape when it writes the dump file,
and TAPE LOAD does not recognize tape labels when loading a file.

7. Do not use TAPE DVOL1 for a tape that you suspect to be blank. If
you do, and the tape is blank, it will run off the reel.

8. The options for the 8809 tape drive must be 9TRACK and DEN 1600.
Note that these are the default values, so you do not need to
specify them.

9. For more information on tape file handling, see the !~L~~ £~~
!!§.§£.§ Guig~·

DMSTPE7011 NULL FILE

A final record was encountered and no prior records were read in a
TAPE LOAD operation. No file is created on disk.

If the TERM option is in effect, the following is displayed at the
terminal depending on the operation specified:

LOAD ING •••••
fn ft fm

SKIPPING •••••
fn ft fm

pUMP ING •••••
fn ft fm

SCANNING •••••
fn ft fm

When a tape mark is encountered, the following is displayed at the
terminal if the TERM option is specified:

END-OF-FILE OR END-OF-TAPE

232 IBM VM/SP CMS :ommand and Macro Reference

DMSTPEO~2E FILE 'fn ft fm' NOT FOUND RC=28
DMSTPEOJ3E INVALID OPTION 'option' RC=24
DMSTPE010E PREMATURE EOF ON FILE 'fn ft fm' RC=40
DMSTPE014E INVALID FUNCTION 'function' RC=24
DMSTPE017E INVALID DEVICE ADDRESS 'cuu' RC=24
DMSTPE023E NO FILETYPE SPECIFIED RC=24
DMSTPE027E INVALID DEVICE 'device name' RC=24

TAPE

DMSTPE029E INVALID PARAMETER 'parameter' IN THE OPTION 'option' FIELD
RC=24

DMSTPE037E DISK 'mode' IS READ/ONLY RC=36
DMSTPE042E NO FILEID SPECIFIED RC=24
DMSTPE043E 'TAPn(cuu)' IS FILE PROTECTED RC=36
DMSTPE047E NO FUNCTION SPECIFIED RC=24
DMSTPE048E INVALID MODE 'mode' RC=24
DMSTPE057E INVALID RECORD FORMAT RC=32
DMSTPE058E END-OF-FILE OR END-OF-TAPE RC=40
DMSTPE070E INVALID PARAMETER 'parameter' RC=24
DMSTPE096E FILE 'fn ft' DATA BLOCK COUNT INCORRECT RC=32
DMSTPE104S ERROR 'nn' READING FILE 'tn tt fm' FROM DISK RC=100
DMSTPE105S ERROR 'nn' WRITING FILE 'fn ft fm' ON DISK RC=100
DMSTPE110S ERROR READING 'TAPn(cuu)' RC=100
DMSTPE111S ERROR WRITING 'TAPn(cuu)' RC=100
DMSTPE113S TAPn(cuu) NOT ATTACHED RC=100
DMSTPE115S {CONVERSIONI {719}-TRACKI (80016250} BPIITRANSLATIONIDUAL

DENSITY} FEATURE NOT SUPPORTED ON DEVICE 'cuu' RC=88
DMSTPE431E 'TAPn(cuu)' VOL1 LABEL MISSING RC=32

Section 2. CMS Commands 233

TAPEMAC

TAPEMAC

Use the TAPEMAC command to create a CMS MACLIB from an unloaded
partitioned data set (PDS) from a tape created by the IEHMOVE utility
program under os. The PDS from which the tape was created can be
blocked, but the logical record length must be 80. The format of the
TAPEMAC command is:

r
I
I T APEMAC
I
I
I
I
I
I
I L __

fn

SL

NSL

labeldefid

r ,
fn J~~ (labeldefid] I ((options()]]

INSL filename [ID=identifier]1
L .J

.QE!ion.§.i.
r , r ,
IT~Pnl IITEMCT YYYYYI
JIARlI I!I~~CT_2QQQQI
L .J L .J

specifies the filename of the first, or only, CMS MACLIB to be
created on the A-disk. If fn MACLIB already exists on the
A-disk, the old one is erased; no warning message is issued.

means that the tape has
without a labeldefid.
standard header labels
terminal. If labeldefid
not displayed, but are
routine.

standard labels. The default is SL
With the default specification, the
are only displayed on the user's

is specified, the standard labels are
checked by the tape label checking

means that the tape has nonstandard labels.

identifies the LABELDEF command that supplies descriptive
label information for the file to be processed. The
labeldefid given here must match the 1- to 8-character
identifier specified as the filename on the LABELDEF command
that was previously issued.

filename is the eMS filename of a routine to process nonstandard
labels. The filetype must be TEXT or MODULE. If both TEXT
and MODULE files exist, the MODULE file is used. MODULE files
that are used for NSL routines with the TAPEMAC command must
be created so that they start at an address above X'21000'.
This prevents the NSL modules from overlaying the command.
See the section "Tape Labels in CMS" in the VMLSP £MS yser'.§
~Yig~ for details on how to write routines to process
nonstandard labels.

ID=identifier
specifies a 1- to 8-character identifier to be passed to a
user-written NSL routine. You may use the identifier in any
way you want to identify the file being processed. The
identifier {s passed to the user routine exactly as specified
in the ID operand. If an identifier is not specified, blanks
are passed. See the section "Tape Labels in CMS" in the VM~g
f~~ Q§~£~ Guig~ for details on communicating with routines
that process nonstandard labels.

234 IBM VM/SP CMS :ommand and Macro Reference

TAPEMAC

TAPn specifies the symbolic address of the tape, where n is a number
between 1 and 4 corresponding to virtual device addresses 181
through 184, respectively. The default is TAP1.

ITEMCT yyyyy
specifies the item count threshold of each MACLIB to be
created, which is the maximum number of records to be written
into each file. yyyyy is a number between 0 and 62500 (commas
are not allowed). If ITEMCT is not specified, the default is
50000.

1. Tape records are read and placed into fn MACLIB until the file size
exceeds the ITEMCT (item count); loading then continues until the
end of the current member is reached. Then another CMS file is
created; its filename consists of the number 2 appended to the end
of the filename specified (fn) if the filename is seven characters
or less. The appended number overlays the last character of the
filename if the name is eight characters long. Loading then
continues with this new name. For example, if you enter the
command:

tapemac mylib

you may create files named MYLIB MACLIB, MYLIB2 MACLIB, MYLIB3
MACLIB, and so on.

This process continues until up to nine CMS files have been
created. If more data exists on the tape than can fit in nine CMS
files, processing is terminated with the error message DMSTMA139S.
The maximum size of the unloaded PDS which can be loaded into CMS
MACLIBs would be approximately 9 times 62500 or 584,500 records.

2. Only header labels of the first file encountered are display~d or
checked if SL or SL labdefid is specified. Trailer labels are not
processed or displayed; they are skipped.

3. The following examples illustrate the different ways tape labels
are processed by TAPEMAC. The command

tapemac mac6 sl

displays any standard VOL1 or HDR1 labels on a tape before loading
maclib MAC6. It does not stop before loading the MACLIB.

If you specify

labeldef taplab fid macfile crdte 77106
tapemac mac8 sl taplab

CMS checks the HDR1 label on the tape before loading MAC8. It uses
the information you supplied in the LABELDEF command TAPLAB to
check the label. If there are discrepancies between fields you
specified in the LABELDEF command and in the actual tape label, the
MACLIB is not loaded.

Section 2. CMS Commands 235

TAPEMAC

If you specify

tapemac mac10 nsl nsl3

CMS uses your own routine NSL3 to process tape labels before
loading MAC10.

The TAPEMAC command displays the message:

LOADING fn MACLIB

for each macro library created.

DMSTMA001E NO FILENAME SPECIFIED RC=24
DMSTMA003E INVALID OPTION 'option' RC=24
DMSTMA057E INVALID RECORD FORMAT RC=32
DMSTMA069E DISK 'mode' NOT ACCESSED RC=36
DMSTMA070E INVALID PARA~ETER 'parameter' RC=24
DMSTMA105S ERROR nn WRITING FILE fn ft ON DISK RC=100
DMSTMA109S VIRTUAL STORAGE CAPACITY EXCEEDED RC=104
DMSTMA110S ERROR READING TAPn RC=100
DMSTMA137S ERROR nn ON STATE FOR fn ft RC=100
DMSTMA138S ERROR nn ERASING 'fn ft'. BEFORE LOADING TAPE RC=100
DMSTMA139S TAPE FILE EXCEEDS 9 CMS MACLIBS RC=104
DMSTMA420E NSL EXIT FILENAME MISSING OR INVALID RC=24

/

236 IBM VM/SP CMS :ommand and Macro Reference

TAPPDS

TAPPDS

Use the TAPPDS command to create CMS disk files from tapes that are used
as input to or output from the following OS utility programs:

• I EBPTPCH tape files must be the
operation from either a
set in os. The default
have been issued:

result of an IEBPTPCH punch
sequential or partitioned data
attributes (IEBPTPCH DCB) must

DCB=(RECFM=FA,LRECL=81,BLKSIZE=81)

• IEBUPDTE -- tape files may be blocked or unblocked and must be in the
format accepted by IEBUPDTE as "control data set" (SYSIN)
input with a control statement

• I EHMOVE

./ ADD •••

preceding the records to be placed in each partitioned
data set member (OS) or separate CMS file (CMS».

unloaded partitioned data sets are read.

The tape can contain os standard labels or be unlabeled. The format
of the TAPPDS command is:

r----------~

TAPPDS

fn

ft

fro

r r r",
I fn I ft I fm I II
I * I * IA 1111
I , 1* III
L L L .J.J.J

r ,
QEtiQg§: IPDS I

INOPDS I
IUPDATEI
L .J

r ,
I END I
, !iQ~!!QI
L .J

r ,
I~~ [labeldefid] I
INSL filename [ID=identifier]1
L .J

[(options[)]]
r ,
ICOL1 I
IliQCOLll
L .J

r ,
I MAXTEN I
I liQl1AXIEN I
L .J

r ,
ITAPnl
IIAPll
L .J

is the filename of the disk file to be created from the
sequential tape file. If the tape contains members of a
partitioned data set (PDS), fn must be specified as an
asterisk (*); one file is created for each member with a
filename the same as the member name. If NOPDS or UPDATE is
specified and you do not specify fn or specify it as an
asterisk (*), the default filename is TAPPDS.

is the filetype of the newly created files. The default
filetypes are CMSUT1 (for PDS or NOPDS) and ASSEM-BLE (for
UPDATE). The defaults are used if ft is omitted or specified
as *.

is the mode of the
field is omitted or
assumed.

disk to con tain
specified as

the new files. If this
an asterisk (*), A1 is

Section 2. CMS Commands 237

TAPP DS

SL means that the tape has standard labels. The default is SL
without a labeldefid. with the default specification, the
standard labels are displayed at the user's terminal. If
labeldefid is specified, the standard labels are not
displayed, but are checked by the tape label checking
routine.

NSL means that the tape has nonstandard labels.

labeldefid identifies the LABELDEF command, which supplies descriptive
label information for the file to be processed. The
labeldefid given here must match the 1- to 8-character
specified as the filename on the LABELDEF command that was
previously issued.

filename is the eMS filename of a routine to process nonstandard
labels. The filetype must be TEXT or MODULE. If both TEXT
and MODULE files exist, the MODULE file is used. MQDULE
files that are used for NSL routines with the TAPPDS command
must be created 50 that they start at an address above
X'21000'. This prevents the MODULE files from overlaying the
command. See the section "Tape Labels in CMS" in the VML.§g
f~~ [§~£~§ Qgig~ for details on writing routines to process
nonstandard labels.

ID=i dentifier
specifies a 1- to 8-character identifier to a user-written
NSL routine. You may use the identifier in any way you want
to identify the file being processed. The identifier is
passed to the user routine exactly as specified in the
operand. If an identifier is not specified, blanks are
passed. See the section "Tape Labels in CMS" in the !.HL.§g
CMS User's Guide for details on communication with routines
that-procesS-oonstandard labels.

NQig: If either SL or NSL is specified for tape label processing, the
fn, ft, and fm operands must all be specified. They may be specified by
asterisks (*) if you want default values; however, none of the three
operands may be omitted.

Qni!2ll§: If conflicting options are specified, the last one entered
is the one that is used. All options, except TAPn, are ignored when
unloaded (IEHMOVE) PDS tapes are read.

~Q~ indicates that the tape contains members of an as partitioned
data set, each preceded by a MEMBER NAME=name statement. The
tape must have been created by the os IEBPTPCH service
program if this option is specified.

NOPDS indicates that the contents of the tape will be placed in one
CMS file.

UPDATE indicates that the tape file is in IEBUPDTE control file
format. The filename of each file is taken from the NAME=
parameter in the "./ ADD" record that precedes each member.
(See Usag e Note 2.)

COL1 reads data from columns 1-80. You should specify this option
when you use the UPDATE option.

NQ~Q11 reads data from columns 2-81; column 1 contains coqtrol
character information. This is the format produced by the as
IEBPTPCH service program.

238 IBM VM/SP CMS :ommand and Macro Reference

TAPn

END

is the tape
repr esent in g
respectively.

unit number. n can be 1, 2,
virtual units 181, 182, 183,
If not specified, TAP1 is assumed.

3,
and

TAPPDS

or 4,
184,

considers an END statement (characters 'END' in columns 2-5)
a delimiter for the current member.

specifies that END statements are not to be treated as member
delimiters, but are to be processed as text.

MAXTEN reads up to ten members.
option is selected.

This is valid only if the PDS

reads any number of members.

1. You can ase the TAPE command to position a tape at a particular
tape file before reading it with the TAPPDS command. If the tape
has OS standard labels, TAPDD5 will read and display the "VOL1" and
"HDR" records at the terminal. If the file you want to process is
not at the beginning of the tape, the TAPE command must be used to
position the tape at a particular tape file before reading it with
the TAPPDS command. Be aware that each file on an as standard
label tape is actually three physical files (HDR, DATA, TRAILER).
If positioning to other than the first file, the user must skip
more physical tape files (3n-3 if positioning to the header labels,
3n-2 if positioning to the data file, where n is the number of the
file on the tape).

2. If you use the UPDATE option, you must also specify the COL1
option. Each tape record is scanned for a ".1 ADD" record
beginning in column 1. When a ".1 ADD" record is found, sUbsequent
records are read onto disk until the next ".1 ADD" record is
encountered or until a "./ ENDUP" record is encountered.

A It./ ENDUP" record or a tape mark ends the TAPPDS command
execution; the tape is not repositioned.

". I label" records are not recognized by CMS and are included in
the file as data records.

If the NAME= parameter is missing on the ".1 ADD" record or if it
is followed by a blank, TAPPDS uses the default filename, TAPPDS,
for the CMS disk file. If this happens more than once during the
execution of the command, only the last unnamed member is contained
in the TAPPD5 file.

3. If you are reading a macro library from a tape created by the
IEHMOVE utility, you can create a CMS MACLIB file directly by using
the TAPEMAC command.

4. Only header labels of the first file encountered are displayed or
checked if 5L or 5L labeldefid is specified. Trailer labels are
not processed or displayed; they are skipped. When more than one
file is ~rocessed by one issuance of the TAPPDS command, only the
first file has its standard labels processed. Standard labels are
skipped on succeeding files.

5. The following examples illustrate different ways in which tape
labels are processed by TAPPDS. If you specify

tappds fileg cmsut1 * sl

Section 2. CMS Commands 239

TAPPDS

then, before loading the PDS into fileg, CMS displays a VOL1 and
HDR1 label if it exists on the tape. It does not stop before the
PDS is loaded; therefore, you cannot use the tape label to suppress
loading if the wrong tape has been mounted.

If you specify

labeldef labe12 fid pds1 volid xyz
tappds fileh cmsut1 * sl labe12

CMS uses the label information specified to check the label on the
tape before loading your PDS. If there are discrepancies, the PDS
is not loaded.

If you specify

tappds filej * * nsl nonstd

CMS uses your own routine called NONSTD to process tape labels
before loading the PDS.

DMSTPD7031 FILE 'fn ft [fmJ' COPIED

The named file is copied to disk.

DMSTPD7071 TEN FILES COPIED

The MAXTEN option was specified and ten members have been copied.

N21g: If the tape being read contains standard OS labels, the labels are
displayed at the terminal.

DMSTPD003E INVALID OPTION 'option' RC=24
DMSTPD058E END-OF-FILE OR END-OF-TAPE RC=40
DMSTPD105S ERROR Inn' WRITING FILE 'fn ft fm' ON DISK RC=100
DMSTPD109S VIRTUAL STORAGE CAPACITY EXCEEDED RC=104
DMSTPD110S ERROR Inn' READING 'TAPn(cuu)' RC=100
DMSTPD420E NSL EXIT FILENAME MISSING OR INVALID RC=24

24C IBM VM/SP CMS :ommand and Macro Reference

TXTLIB

TXTLIB

Use the TXTLIB command to update CMS text libraries. The format of the
TXTLIB command is:

r
I TXTlib
1
I
I
I
1
I
I
L

GEN

ADD

DEL

MAP

libn ame

GEN libname fn1 [fn2 ...]

ADD libname fn1 [fn2 ...] Ql2tiQ!!'~:
r ,

DEL libname membernamel [membername2 •••] ITERM I
IDISK I

MAP libname [(options ••• [)]] IPRINTI
L .J

creates a TXTLIB on your A-disk. If a TXTLIB with the same
name already exists, it is replaced.

adds TEXT files to the end
read/write disk. No checking
entry points, or CSECTs.

of an
is done

existing TXTLIB
for duplicat e

on a
names,

deletes members from a TXTLIB on a read/write disk and
compresses the TXTLIB to remove unused space. If more than
one member exists with the same name, only the first entry is
deleted.

lists the names (entry points) of TXTLIB members, their
locations in the library, and the number of entries.

specifies the filename of a file
which is to be created or listed
be deletej or added.

with a filetype of TXTLIB,
or from which members are to

fn 1 (fn2 •..]
specifies the name(s) of file(s) with filetype(s) of TEXT,
that you want to add to a TXTLIB.

membername1 [membername2 •••]

TERM

specifies the name(s) of TXTLIB member(s) that you want to
delete.

displays information about the TXTLIB on your terminal.

writes a :MS file, named libname MAP A5, that contains a list
of TXTLIB members.

PRINT spools a copy of the TXTLIB map to the virtual printer.

1. When a TEXT file is added to a library, its membername(s) are taken
from the CSECT names or NAME statements in the TEXT file. Deletions
and LOAD or INCLUDE command references must be made on these names.
For example, a TEXT file with a filename of TESTPROG that contains

Section 2. CMS Commands 241

TXTL IB

CSECTs named CHECK and RECHECK, when added to a TXTLIB, creates
members named CHECK and RECHECK.

2. Members must be deleted by their initial entry in the dictionary
(that is, their flname" or the first ID name). Any attempt to
delete a specific alias or entry point within a member will result
in a "Not found" message.

3. If you want your TXTLIBs to be searched for missing subroutines
during CMS loader processing; you must identify the TXTLIB on a
GLOBAL command; for example:

global txtlib newlib

4. You may add OS linkage editor control statements NAME, ALIAS,
ENTRY, and SETSSI to a TEXT file before adding it to a TXTLIB. You
must follow OS linkage editor conventions concerning format (column
1 must be blank) and placement within the TEXT file. The specified
entry point must be located within the CSECT.

5. TXTLIB members are not fully link-edited, and may return erroneous
entry points during dynamic loading.

6. The total number of members in the TXTLIB file cannot exceed 1000.
When this number is reached, an error message is displayed. The
total number of entry points in a member cannot exceed 255. When
this number is reached, an error message is displayed and the next
text file (if there is one) is processed. The text library cr~ated
includes all the text files entered up to (but not including) the
one that caused the overflow.

7. TERM or PRINT options will erase the old MAP file, if one exists.

When the TXTLIB MAP command is issued with the TERM option, the contents
of the directory of the specified text library are displayed at t~e
terminal. The number of entries in the text library (xxx) is also
displayed.

ENTRY INDEX
name location

xxx ENTRIES IN LIBRARY

DMSLBT001E NO FILENAME SPECIFIED RC=24
DMSLBT002E FILE 'fn ft' NOT FOUND RC=28
DMSLBT002W FILE 'fn ft' NOT FOUND RC=4
DMSLBT003E INVALID OPTION 'option' RC=24
DMSLBT013E MEMBER 'name' NOT FOUND IN LIBRARY 'fn ft fm' RC=32
DMSLBT014E INVALID FUNCTION 'function' RC=24
DMSLBT037E DISK 'mode' is READ/ONLY RC=36
DMSLBT046E NO LIBRARY NAME SPECIFIED RC=24
DMSLBT047E NO FUNCTION SPECIFIED RC=24
DMSLBT056E FILE 'fn ft fm' CONTAINS [NAMEIALIASIENTRYIESD] INVALID

RECORD FORMATS RC=32
DMSLBT056W FILE 'fn ft fm' CONTAINS [{NAMEIALIASIENTRYIESDJ] INVALID

RECORD FORMATS RC=4
DMSLBT069E DISK 'mode' NOT ACCESSED RC=36

242 IBM VM/SP CMS Command and Macro Reference

DMSLBT104S ERROR Inn' READING FILE 'fn ft fm' FROM DISK RC=100
DMSLBT105S ERROR 'nne WRITING FILE 'fn ft fm' ON DISK RC=100

T~TLIB

DMSLBT1J6S NUMBER OF MEMBER NAMES EXCEEDS MAX 'nnnn'. FILE 'fn ft' NOT
ADDED RC=88

DMSLBT213W LIBRARY' fn ft fm' NOT CREATED RC=4

Section 2. CMS Commands 243

TYPE

TYPE

Use the TYPE command to display all or part of a CMS file at the
terminal in either EBCDIC or the hexadecimal representation of the
EBCDIC code. The format of the TYPE command is:

r

Type

fn

ft

fm

rec1

recn

r r"
fn ft [fm] I rec1 Irecnll [(options ••• [)]]

* I * I * II
I 1 I II
L L JJ

r r"
[HEX] ICOL {XXXXX}-IYYYYYI I

I 1 I!~£!.II
L L JJ

r ,

IMEMBER {* }I
I name I
L J

is the filename of the file to be displayed.

is the filetype of the file to be displayed.

is the filemode of the file to be displayed. If this field is
omitted, the A-disk and its extensions are searched to locate
the file. If fm is specified as an asterisk (*), all disks
are searched, and the first file found is displayed.

is the record number of the first record to be displayed.
This field cannot contain special characters. If rec1 is
greater than the number of records in the file, an error
message is displayed. If this field is omitted or entered as
an asterisk (*), a record number of 1 is assumed.

is the record number of the last record to be displayed. This
v&lue cannot contain embedded commas. If this field is not
specified, is entered as an asterisk (*), or is greater than
the number of records in the file, displaying continues until
end of file is reached.

COL xxxxx-YYYYY
displays only certain columns of each record. xxxxx specifies
the start column and YYYYY the end column of the field within
the record that is to be displayed. The string xxxxx-yyyyy
may have a maximum of eight characters; additional characters
are trunca ted.

If columns are not specified, the entire record is displayed
unless the filetype is LISTING, in which case the first
position of each record is not displayed, since it is assumed
to be a carriage control character.

HEX displays the file in hexadecimal format.

244 IBM VM/SP CMS :ommand and Macro Reference

MEMBER
MEM

TYPE

{n:me}
displays member(s) of a library. If it is MACLIB or TXTLIB, a
MEMBER entry can be specified. If an asterisk (*) is
specified, all members of the library are displayed. If a name
is specified, only that particular member is displayed.

1. If the HEX option is specified, each record can be displayed in its
entirety; if not, no more than 130 characters of each record can be
displayed.

2. The length of each output line is
current terminal linesize (as
command), whichever is smaller.

limited to 130 characters or the
specified by the CP TERMINAL

3. If the MEMBER option is specified more than once, only the last
member specified will be typed. However, if one MEMBER option is
coded with an asterisk (*), and another MEMBER option is specified
with a membername, only the member specified by membername will be
typed, regardless of their order on the command line.

For example, if you code:

TYPE ONE MACLIB (MEMBER EXAMPLE1 MEMBER EXAMPLE2

only EXAMPLE2 will be typed. If you code:

TYPE ONE MACLIB (MEMBER EXAMPLE1 MEMBER *
only EXAMPLE1 will be typed.

The file is
specifications.
a he ad er record:

displayed at the terminal according to the given
When you use the HEX option, each record is preceded by

RECORD nnnnnnnnnn LENGTH=nnnnnnnnnn

DMSTYP002E
DMST YPOO 3E
DMSTYP005E
DMSTYP009E
DMST YPO 13E
DMSTYP029E

DMsr YP033E
DMST YP 03 9E
DMSTYP049E
DMST YP054E
DMSTYP062E
DMST YP069E
DMSTYP104S

FILE 'fn ft fm' NOT FOUND RC=28
INVALID OPTION 'option' RC=24
NO 'option' SPECIFIED RC=24
COLUMN 'col' EXCEEDS RECORD LENGTH
MEMBER 'name' NOT FOUND IN LIBRARY
INVALID PARAMETER 'parameter' [IN
RC=24
FILE 'fn ft fm' IS NOT A LIBRARY
NO ENTRIES IN LIBRARY 'fn ft fm'
INVALID LINE NUMBER 'line number'
INCOMPLETE FILEID SPECIFIED RC=24
INVALID * IN FILEID RC=20
DISK 'mode' NOT ACCESSED RC=36
ERROR Inn' READING FILE 'fn ft fm'

RC=24
RC=32

THE OPTION 'option' FIELD]

RC=32
RC=32

RC=24

FROM DISK RC=100

Section 2. CMS Commands 245

UPDATE

UPDATE

Use the UPDATE cOMmand to modify program source files. The UPDATE
command accepts a source input file and one or more files containing
UPDATE control'statements and updated source records; then it creates an
updated source output file, an update log file indicating what changes,
if any, were made, and an update record file if more than a single
update file is applied to the input file. The format of the UPDATE
command is:

r

r r "
Update fn1 Ift1 Ifm1 [fn2 [ft2 (fm2]]]l1 (options ••• [)]]

I!~~~~LE I!l II
L L J.J

r , r , r , r ,
.Q.E!:1Q!1.§: IREP I ISEQ.§ I IINC I ICTL I

I liQREg I I NOSEQ8 I I liQlli£ I I NO£!l! I
L J L J L J L .J

r , r , r , r ,
ISTK I ITERM I IDISK I ISTOR I
I liQSTlS I INOTERMI IPRINTI IliOS!Q.E1
L J L .J L J L J

fn 1 ft 1 fm 1
is the file identifier of the source input file. The file
must consist of SO-character card image records with sequence
fields in positions 73 through 80 or 76 through 80. If the
filetype or filemode are omitted, ASSEMBLE and A1 are assumed,
respective ly.

fn2 ft2 fm2
is the file identifier of the update file. If the NOCTL
option is in effect, this file must contain UPDATE co~trol
statements and updated source records. The default file
identifier is fn1 UPDATE A1. If the CTL option is specified,
this file must be a control file that lists the update files
to be applied; the default file identifier is fn1 CNTRL A1.

REP creates an output source file with the same filename as the
input source file. If the output file is placed on the same
disk as the input file, the input file is erased.

N2.E]R retains the old file in its original form, and assigns a
different filename to the new file, consisting of a dqllar
sign ($) plus the first seven characters of the input filename
(fn 1) •

~~Q'§ specifies that the entire sequence field (columns 73 through
SO) contains an eight-digit sequence number on every record of
source input.

NOSEQ8
specifies that
field, and that
columns 76-80.

columns 73-75 contain a
the sequence number is a

246 IBM VM/SP CMS ~ommand and Macro Reference

three-character label
five-digit value in

UPDATE

BQ!~: Source files sequenced by the CMS editor are sequenced,
by default, with five-digit sequence numbers.

INC increments sequence numbers in columns 73 through 80 in each
record inserted into the updated output file, according to
specifications in UPDATE control statements.

!QI!~ puts asterisks (********) in the sequence number field of each
updated record inserted from the update file.

CTL specifies that fn2, ft2, and fm2 describe an update co~trol
file for applying multiple update files to the source input
file. (See "The CTL Option.")

BQ!~: The CTL option implies the INC option.

BQ£11 specifies that a single update file is to be applied to the
source input file.

STK stacks information from the control file in the CMS cOQsole
stack. STK is valid only if the CTL option is also specified
and is useful only when the UPDATE command is executed in an
EXEC procedure.

BQ~I~ does not stack control file information in the console stack.

!~~~ displays warning messages at the terminal whenever a sequence
or update control card error is discovered. (Such warning
messages appear in the update log, whether they are displayed
at the terminal or not.)

NOTERM suppresses the display of warning messages at
However, error messages that terminate the
p,rocedure are displayed at the terminal.

the terminal.
entire update

Qf~~ places the update log file on disk. This file has a file
identifier "fn UPDLOG", where "fn" is the filename of the file
being updated.

PRINT prints the update log file directly on the virtual printer.

STOR specifies that the source input file is to be read into
storage and the updates performed in storage prior to placing
the updated source file on disk. This option is meaningful
only when used with the CTL option since the benefit of
increased processing speed is realized when processing
multiple updates. STOR is the default when CTL is specified.

specifies that no updating is to take place
NOSTOR is the default when single updates are
(CTL is onitted from the command line).

UPDATE CONTROL STATEMENTS

in storage.
being applied

The UPDATE control statements let you insert, delete, and replace source
records, as well as resequence the output file.

All references to the sequence field of an input record ref~r to the
numeric data in columns 73-80 of the source record, or columns 76-80 if
NOSEQ8 is specified. Leading zeros in sequence fields are not required.
If no sequence numbers exist in an input file, a preliminary UPDATE with

Section 2. CMS Commands 247

UPDATE

only the './ S' control statement can be used to establish file
sequencing.

Sequence numbers are checked while updates are being applied; an
error condition results if any sequence errors occur in the update
control statements, and warn1ngs are issued if an error is detect~d in
the sequencing of the input file. Any source input records with a
sequence field of eight blanks are skipped, without any indication of a
sequence error. Such records may be replaced or deleted only if they
occur within a range of records that are being replaced or deleted
entirely and if that range has limits with valid sequence numbers.
There is no means provided for specifying a sequence field of blanks on
an UPDATE control statement.

All UPDATE control statements are identified by the characters '.1' in
columns .1 and 2 of the 80-byte record, followed by one or more blanks
and additional, blank-delimited fields. Control statement data must not
extend beyond column 50.

~~2Q~!CE ~QB!~Ql ~~~~~~~B! -- resequences the updated source output file
in columns 73-80 (if SEQ8 is specified), or in columns 76-80 with the
label placed in columns 73-75 (if NOSEQ8 is specified) • The format of
the SEQUENCE control statement is:

r
I .1 S [segstrt [seqincr [label]]]
L

seqstrt

seqincr

label

is a one- to eight-digit numeric field specifying the
first decimal sequence number to be used. The default
value is 1000 if SEQ8 is specified and 10 if NOSEQ8 is
specified.

is a one- to eight-digit numeric field specifying the
decimal increment for resequencing the output file.
The default is the "seqstrt" value.

is a three-character field to be duplicated in columns
73-75 of each source record if NOSEQ8 is specified.
The default value is the first three characters of the
input filename (fn1).

If you use the SEQUENCE statement, it must be the first statement in the
update file. If any valid control statement precedes it, the resequence
operation is suppressed.

When the sequence control statement is the first statement processed,
the sequence numbers in the source file are checked and warning message
DMSUPD210W is issued for any errors. If the sequence control statement
is processed after updates have been applied, no warning messages will
be issued.

Each source record is resequenced in columns 73-80 as it is written
onto the output file, including unchanged records from the source f~le
and records inserted from the update file.

248 IBM VM/SP CMS :ommand and Macro Reference

UPDATE

INSERT Control Statement -- inserts all
~ext-control-statement:-into the output
control statement is:

records following it, up to the
file. The format of the INSERT

r ---,
1 ./ I seqno [$ [seqstrt [seqincr]]] I

seqno

$

seqstrt

seqincr

, ___ -J

is the sequence number of the record in the source
input file following which new records are to be added.

is an optional delimiter indicating that the inserted
records are to be sequenced by increments.

is a one- to eight-digit numeric field specifying the
first decimal number to be used for sequencing the
inserted records.

is a one- to eight-digit numeric field specifying the
decimal increment for sequencing the inserted records.

All records following the "./ I" statement, up to the next control
statement, are inserted in the output file following the record
identified by the "seqno" field. If the NOINC option is specified, each
inserted record is identified with asterisks (********) in columns
73-80. If either the INC or CTL option is specified, the records are
inserted unchanged in the output file, or they are sequenced according
to the "seqstrt" and "seqincr" fields, if the dollar sign ($) key is
specified.

The default sequence increment, if the dollar sign is included, is
determined by using one tenth of the least significant, nonzero digit in
the seqno field, with a maximum of 100. The default seqstrt is computed
as seqno plus the default seqincr. For example, the control statement:

./ I 2600 $ 2610

causes the inserted records to be sequenced XXX02610, XXX02620, and so
forth (NOSEQ8 assumed here). For the control statement:

./ I 240000 $

the defaulted seqincr is the maximum, 100,
number is 240100. SEQ8 is assumed, so
sequenced 00240100, 00240200, and so forth.

and the starting sequence
the inserted records are

If either INC or CTL is specified but the dollar sign is not
included, whatever sequence number appears on the inserted records in
the update file is included in the output file.

section 2. CMS Commands 249

UPDATE

\

DELETE £~!fQ! ~!g!~!~n~ -- deletes one or more records from the source
iile:- The format of the DELETE control statement is:

r
I .1 D segn01 (segn02] [$]
L

segn01

segn02

$

is the sequence number identifying the first or only
record to be deleted.

is the seguence number of the last record to be
deleted.

is an optional delimiter indicating the end of the
con trol fields.

All records of the input file, beginning at segn01, up to and
including the segn02 record, are deleted from the output file. If the
segn02 field is omitted, only a single record is deleted.

E~g~!£~ £Qll!fQ! ~£~~~~n! -- replaces one or more input records with
updated records fro~ the update file. The format of the REPLACE co~trol
statement is:

r
I .1
L

segn01

segn02

$

,
R seqn01 [seqn02] ($ (segstrt (segincr]]]1

--'

is the seguence number of the first input record to be
replaced.

is the seguence number of the last record to be
replaced.

is an optional delimiter key indicating that the
sUbstituted records are to be sequenced incrementally.

segstrt is a one- to eight-digit numeric field specifying the
ficst decimal number to be used for sequencing the
sUbstituted records.

segincr is a one- to eight-digit numeric field specifying the
decimal increment for seguencing the substituted
records.

All records of the input file, beginning with the seqn01 record, up
to and including the seqn02 record, are replaced in the output file by
the records following the ".1 R" statement in the update file, up to the
next control state~ent. As with the ".1 D" (delete) function, if the
segn02 field is omitted, only a single record is replaced, but it may be
cepl aced by more than a single inserted record. The ".1 R" (replace)
function is perfor~ed as a delete followed by an insert: thus, the
number of statements inserted need not match the number deleted. The
dollar sign ($), segstrt, and seqincr processing is identical to that
for the insert function.

250 IBM VM/SP CMS :ommand and Macro Reference

UPDATE

~QHH~!I ~g!~!~n! --allows inserting·supplemental information that the
user may want. The format of the COMMENT statement is:

r---------------
I ./ * [comment] L ____________________ _

* indicates that this is a comment statement and is only
copied into the update log file.

SUMMARY OF FILES USED BY THE UPDATE COMMAND

The following discussion shows input and output files used by the UPDATE
comm and for a:

• Single-level update
• Multilevel update
• Multilevel update with an auxiliary control file

Q!~~ ~~~ Q! Q~!~Y! K!~§: If several read/write disks are accessed when
the UPDATE command is invoked, the following steps are taken to
determine the disk upon which the output files are to be placed (the
search stops as soon as one of the following steps is successful) :

1. If the disk on which the original source file resides is
read/write, then the output files are placed on that disk.

2. If that disk is a read-only extension of a read/write disk, then
the output files are placed on that particular read/write disk.

3. If neither of the other steps is successful, the output files are
placed on the primary read/write disk (the A-disk) •

r------,
I I
I I
I I L ______ .1

fn ASSEMBLE
fn UPDATE

update fn

r----'---,
I
I
I

L--___ --'

$fn ASSEMBLE
fn UPDLOG

!n !~§~~~~ is the source input file.

!n [RQ!!~ contains UPDATE control statements and updated source input
records.

$fn ASSEMBLE is the updated source file, incorporating cha~ges,
additIons;--and deletions specified in the update file. The output
filetype is always the same as the filetype of the input file. These

section 2. CMS Commands 251

UPDATE

default filetypes and filemodes can be overridden on the command line;
for example:

update testprog cobol b fix cobol b (rep

results in a source file TESTPROG COBOL B being updated with control
statements contained in the file FIX COBOL B. The output file replaces
the existing TESTPROG COBOL B.

~n ~PD1Q~ contains a record of updates applied. If you do not want this
file written on disk, specify the PRINT option.

r------,
I I
I ,
I , , , , ,
L ______ .J

fn ASSEMBLE
fn CNTRL
fn UPDTABC
fn UPDTXYZ

update fn (ctl

r------,
I I
I I
I I , ,
I ---.I

fn !~~~~BL~ is the source input file.

$fn ASSEMBLE
fn UPDLOG
fn UPDATES

~n £!I~1 is the control file that lists updates to be applied to the
source file. These default filetypes and filemodes can be overridden on
the command line; for example:

update acct pliopt a test cntrl a (ctl

results in the file TEST CNTRL being used by the UPDATE command to
locate the update files for ACCT PLIOPT.

~n ~~~!!~£ ~g!n Y~DT!!~ are update files containing UPDATE cOijtrol
statements and new source records. These files must have filenames that
are the same as the source input file. The first four characters of the
filetype must b~ "UPDT." The UPDATE command searches all accessed disks
to locate the update files.

$fn ASSEMBLE is the updated source file, incorporating changes,
additions,-and deletions specified in the update files. The filetype is
always the same as the filetype of the source input file.

~n gPD1Q~ contains a record of updates applied. If you do not want this
file written on disk, specify the PRINT option.

!n ~~~AI~2 summarizes the updates applied to the source file.

252 IBM VM/SP CMS Command and Macro Reference

UPDATE

!h~ ~QNT~1 1!1~ (fn CNTRL) may not contain UPDATE control statements.
It may only list the filetypes of the files that contain UPDATE co~trol
statements. This control file contains the records:

TEXT MACS CMSLIB
TWO UPDTABC
ONE UPDTXIZ

where Q~~I!~~ and UPDTXIZ are the filetypes of the update files. The
UPDATE command applies--these updates to the source file beginning with
the last record in the control file. Thus, the updates in fn UPDTXIZ
are applied before the updates in fn UPDTABC.

When you create update files whose filetypes begin with 'UPDT'~ you
may omit these characters when you list the updates in the control file;
thus, the CNTRL file may be written:

TEXT MACS CMSLIB
TWO ABC
ONE XIZ

I~!I, I!Q, QB~: The first column of the control file consists of an
update level identifier, which may be from one to five characters long.
These identifiers are used by VM/SP updating procedures, like the VMFASM
EXEC, to locate and identify text decks produced by multilevel updates.

~!~~: The first record in the control file must be a MACS record that
contains an update level identifier (TEXT) and, optionally, lists up to
eight macro library (MACLIB) filenames.

UPDATE uses the information provided in the MACS card and the update
level identifier only when the STK option is specified. This
information is, however, required in the CNTRL file.

r------, ,
I
I
I
I L ______ .J

fn ASSEMBLE
fn CNTRL
fn UPD'r ABC
fn UPDTXYZ
fn AUXLIST
fn FIXO 1
fn FIXD2

update fn (ctl

.---------,
I I
I I
I I
I I
'--__ --oJ

$fn ASSEMBLE
fn UPDLOG
fn UPDATES

~n !~~rut~~~, !:n ~!I!!~, !:n. 1!~DT!~, !:n. QPDTXY~, !fn AS§.~MB!!~, !:n QgQLOG,
and in. ~Q!I~§ are used as described, for "Multilevel Update," except
that the CNTRL file contains:

TEXT MACS CMSLIB
TWO UPDTABC
ONE UPDTXYZ
TEXT AUXLIST

Section 2. CMS Commands 253

UPDATE

lY! in the filetype AUXLIST indicates that this is the filetype of an
auxiliary control file that contains an additional list of updates. The
first three characters of the filetype of an auxiliary control file must
be "AUX"; the remaining character(s) (to a maximum of 5) may be
anything. The filename must be the same as the source input file.

An auxiliary file may also be specified as:

xxxxx AUX

in the control file. For example, the record:

FIX TEST AUX

identifies the auxiliary file fn AUXTEST.

Note that if you give an auxiliary control file the filetype AUXPTF or
an update level identifier of AUX, the UPDATE command assumes that it is
a simple update file and does not treat it as an auxiliary file.

PREFERRED AUX FILE: A preferred AUX file may be specified. A pref~rred
Aux-file-contains-the version of an update that applies to your version
of the source file. (There may be more than one version of the same
update if there is more than one version of the source file. For
example, you need one version for the source file that has a system
extension program product installed, and you need another version for
the source file that does not have a program product installed.)

When you specify an auxiliary control file, you can specify more than
one filetype. The first filetype indicates a file that UPDATE uses only
on one condition: the files that the second and subsequent filetypes
indicate do not exist. If they do exist, this AUX file entry is ignored
and no updating is done. The files that the second and subsequent
file types indicate are preferred because, if they exist, UPDATE does not
use the file that the first filetype indicates. For example, assume
that the file 'fn ASSEMBLE' does exist. The control file MYMODS CNTRL:

TEXT MACS MY~ACS CMSLIB OSMACRO

MY2 AUXTEST

MY1 AUXMINE AUXTEST

and the command:

UPDATE fn ASSEMBLE * MYMODS CNTRL (CTL

would result in UPDATE finding the preferred auxiliary control file 'fn
AUXTEST', and therefore not using 'fn AUXMINE' to update 'fn ASSEMBLE'.
UPDATE would then proceed to the MY2 AUXTEST entry and update 'fn
ASSEMBLE' with the updates listed in 'fn AUXTEST.' It is assumed that
AUXTEST and AUXMINE list similar but mutually exclusive updates.

The search for a "preferred" auxfile will continue until one is found or
until the token is an invalid filetype; that is, less than four or more
than eight characters. This token and the remainder of the line are
considered a comment.

!n l!XQl and t~ f!!02 are update files containing UPDATE control
statements and new source records to be incorporated into the input
file. When update files are listed in an auxiliary control file, they
can have any filetype you choose but the filename must be the same as

254 IBM VM/SP CMS ~ommand and Macro Reference

UPDATE

the source input file.
be on any accessed disk.

The update files, as well as the AUX file, may
These are indicated in fn AUXL1ST as follows:

FIX02
FIX01

The updates are applied from the bottom of the auxiliary file. Thus, fn
FIX01 is applied to the source file before fn FIX02. Since the
auxiliary file is listed at the bottom of the control file, these
updates are applied before UPDTXYZ and UPDTABC.

ADDITIONAL CONTROL FILE RECORDS: In addition to the MACS record, the
iIletypes-of-Update (UPDT)-files, and the filetypes of auxiliary co~trol
(AUX) files, a control file may also contain:

• Comments. These records begin with an asterisk (*) in colum~ 1.
Comments are also valid in AUX files.

• PTF records. If the characters PTF appear in the update level
identifier field, the UPDATE command expects the second field to
contain the filetype of an update file. The filetype may be
anything; the filename must be the same as the source input file.

• Update level identifiers not associated with update files.

The following example of a control file shows all the valid types of
records:

* Example of a control file
ABC MACS MYLIB
TEXT
004 UPDTABC
003 XYZ
002 AUXLIST1
001 LIST2 AUX
PTF TESTFIX

TH~ ~1~ OP!!QH: The STK (stack) option is valid only with the CTL option
and is meaningful only when the UPDATE command is invoked within an EXEC
procedure.

When the STK option is specified, UPDATE stacks the following data
lines in the console stack:

first line: * update level identifier
second line: * library list from MACS record

The update level identifier is the identifier of the most recent update
file that was found and applied. For exa~ple, if a control file
contains

TEXT MACS CMSLIB OSMACRO TESTKAC
OFA UPDTOFA
PFA UPDTOFA

and the UPDATE command appears in an EXEC as follows:

UPDATE SAMPLE (CTL STK
&READ VARS &STAR &TEXT
&READ VARS &STAR &LIB1 &L1B2 &L1B3 &L1B4

Section 2. CMS Commands 255

UPDATE

then the variable symbols set by the &READ VARS statements have the
following values if the file SAMPLE UPDTOFA is found and applied to the
file SAMPLE ASSEMBLE:

~y.!!!bol
&STAR
&TEXT
<B1
&LIB2
&LIB3
&LIB4

.Y~1J!~
*

OFA
CMSLIB
OSMACRO
'!'ESTM AC
null

The library list may be useful to establish macro libraries in a
subsequent GLOBAL command within the EXEC procedure. If no update files
are found, UPDATE stacks the update level identifier on the MACS record.

FILE 'fn ft fm,' REC #n = update control statement

This message is displayed when th~ TERM option is specified and an
error is detected in an update file. It identifies the file and
record number where the erro~ is found.

DMSUPD177I WARNING
IGNORED.]

MESSAGES ISSUED (SEVERITY=nn). ['REP' OPTION

Warning messages were issued during the updating process. The
severity shown in the error message in the "nn" field is the
highest of the return codes associated with the warning messages
that were generated during the updating process.

The warning return codes have the following meanings:

RC = 4; Sequence errors were detected in the original source file
being updated.

RC = 8; sequence errors, which did net previously exist in the
source file being updated, were introduced in the output file
during the updating process.

RC = 12; Any other warning error detected during the updating
process. Such errors include invalid update file control
statements and missing update or PTF files.

The severity value is passed back as the return code from the
UPDATE command. In addition, if the REP option is specified in
the command line, then it is ignored, and the updated source file
has the fileid "$fn 1 ft 1", as if the REP option was not specified.

DMSUPD178I UPDATING 'fn ft fm'
APPLYING 'fn ft fm'
APPLYING 'fn ft fm'

The specified
This message
comman d 1 ine ..

update file is being applied to the source file.
appears only if the CTL option is specified in the

The updating process continues.

256 IBM VM/SP CMS Command and Macro Reference

UPDATE

DMSUPD3041 UPDATE PROCESSING WILL BE DONE USING DISK

An insufficient amount of virtual storage was available to perform
the updating in virtual storage, so a CMS disk must be used. This
message is displayed only if NOSTOR was specified in the UPDATE
command line.

DMSUPD001E NO FILENAME SPECIFIED RC=4
DMSUPD002E FILE 'fn ft fm' NOT FOUND RC=28
DMSUPD003E INVALID OPTION 'option' RC=24
DMSUPD007E FILE 'fn ft fm' IS NOT FIXED, 80 CHAR. RECORDS RC=32
DMSUPD010W PREMATURE EOF OF FILE 'fn ft fm' --SEQ NUMBER , ••••••••• NOT

FOUND RC=12
DMSUPD024E FILE 'UPDATE CMSUT1 fm' ALREADY EXISTS RC=28
DMSUPD037E DISK 'mode' IS READ/ONLY RC=36
DMSUPD048E INVALID MODE 'mode' RC=24
DMSUPD065E 'option' OPTION SPECIFIED TWICE RC=24
DMSUPD066E 'option' AND 'option' ARE CONFLICTING OPTIONS RC=24
DMSUPD069E DISK 'mode' NOT ACCESSED RC=36
DMSUPD070E INVALID PARAMETER 'parameter' RC=24
DMSUPD104S ERROR Inn' READING FILE 'fn ft fm' FROM DISK RC=100
DMSUPD105S ERROR Inn' WRITING FILE 'fn ft fm' ON DISK RC=100
DMSUPD174W SEQUENCE ERROR INTRODUCED IN OUTPUT FILE: ••• &.... TO

••••.••• ' RC=8
DMSUPD176W SEQUENCING OVERFLOW FOLLOWING SEQ NUMBER' •••••••• ' RC=8
DMSOPD179E MISSING OR DUPLICATE 'MACS' CARD IN CONTROL FILE 'fn ft fm'

RC=32
DMSUPD180W MISSING PTF FILE 'fn ft fm' RC=12
DMSUP~181E NO UPDATE FILES WERE FOUND RC=40
DMSUPD182W SEQUENCE INCREMENT IS ZERO RC=8
DMSUPD183E INVALID {CONTROLIAUX} FILE CONTROL CARD RC=32
DMSUPD184W './S ' NOT FIRST CARD IN INPUT FILE --IGNORED RC=12
DMSUPD185W INVALID CHAR IN SEQUENCE FIELD , •.•••••• , RC=12
DMSUPD186W SEQUENCE NUMBER' •••••••• ' NOT FOUND RC=12
DMSUPD187E OPTION 'STK' INVALID WITHOUT 'CTL' RC=24
DMSUPD207W INVALID UPDATE FILE CONTROL CARD RC=12
DMSUPD210W INPUT FILE SEQUENCE ERROR: ' •••••••••• TO , ••••••••• , RC=4
DMSUPD299E INSUFFICIENT STORAGE TO COMPLETE UPDATE RC=41
DMSUPD300E INSUFFICIENT STORAGE TO BEGIN UPDATE RC=41

Section 2. CMS Commands 257

XEDIT

XEDIT

Use the XEDIT command to invoke the VM/SP System Product editor to
create, modify, and manipulate CMS disk files. Once the VM/SP system
Product editor has been invoked, you may execute XEDIT subcommands and
use the EXEC 2 macro facility.

You can return control to the CMS environment by issuing the XEDIT
subcommand FILE, QUIT or QQUIT.

For complete details on XEDIT subcommands and macros, see the
publication YttL~g: ~y§~~! ffQ£~£! ~di!g£ £~~nd ~Bg ~~££g Re!~£en£~.

The format of the XEDIT command is:

r

,
I
I
I
I
I
I
I
I
L

XEDIT

fn ft

fm

[fn (ft (fm]]] ((options ••• ()]]

options:
[Width nn]

[NOSCreen]

[PROFile macroname]

[NOPROFil]

options valid only in update mode:
(Update]
[NOUpda te]

[Seq8 /]
(NOSeq8]

(Ctl fn 1]
[NOCtl]

[Merge]

[Incr nn]

[SIDcode string]

are the filename and filetype Of the file to be edited. If
they are not specified here, they must be provided in the LOAD
subcommand as part of the profile.

is the filemode of the file to be edited, indicating the disk
on which the file resides. The editor determines the filemode
of the edited file as follows:

• Editing existing files

When the filemode is specified, that disk and its
extensions are searched. If the filemode is not specified
or is specified as an asterisk (*), all accessed disks are
searched for the specified file.

258 IBM VM/SP CMS Command and Macro Reference

XEDIT

• creating new files

If the filemode is not specified, the editor assumes a
filemode of A 1.

Width nn
defines the amount of virtual storage used to contain one line
of the file. If the value specified is too small, certain
file lines may be truncated.

If not specified here, WIDTH may be defined in the LOAD
subcommand, as a part of the profile. If WIDTH is not
specified in either the XEDIT command or the LOAD subcommand,
the default is the larger of the following:

• The logical record length (LRECL) of the file

• The default logical record length associated with the
filetype

. NOSCreen
forces a 3270 display terminal into line (typewriter) mode.

PROFile macroname
If the specified macro exists on one of the accessed disks,
the editor executes it as the first subcommand.

If the specified macro is not found on an accessed CMS disk,
an error message is displayed.

If this option is not specified but a macro with a macro name
of PROFILE exists, the editor executes it.

In all cases, the profile macro must have a filetype of XEDIT.

NOPROFil
forces the editor not to execute the default PROFILE macro.

The following options are meaningful only if the VM/SP System Product
editor is to be used in update mode:

Update
The editor searches all accessed CMS disks for a file with a
filename of fn and a filetype of UPDATE. If the file exists,
the editor applies the update statements before displaying the
file to be edited. Each new modification made by the user is
added to the existing UPDATE file. The original source file
is nQ.:!: modified.

If the file does not exist, the editor creates a new UPDATE
file to contain modifications made by the user.

NOUpdate

Seq8

specifies that the editor is to apply no update statements
(ev~n if UPDATE is specified in the LOAD subcommand in the
profile) •

specifies that the entire sequence field (columns 73-80)
contains an eight-digit sequence number in every record of the
file to be edited. The SEQ8 option automatically forces the
UPDATE option. SEQ8 is the default value.

Section 2. CMS Commands 259

XEDIT

NOSeqa

Ctl fn1

specifies that columns 73-75 contain a three-character label
field, and that the sequence number' is a five-digit number i:n
columns 76-80.

The NOSEQ8 option forces ihe UPDATE option.

specifies that "fn1 CNTRL" is an update control file that
controls the application of multiple update files to the file
to be edited. (See the CMS UPDATE command description for
more information.)

This option aut~matically forces the UPDATE and SEQ8 options.

NOCtl specifies that the editor is not to use the control (CTL) file
(even if it is' specified in the LOAt subcommand in the
profile).

Merge specifies that all the updates made through the control file
and all the changes made while editing will be written into
the file whose name is defined by the latest update level
(t hat is, the most recently applied UPDA TE file' in a control
file). This option forces the UPDATE option.

Incr nn
When inserting new lines in an update file, the
automatically computes the serialization; the INCR
forces a minimum increment between two adjacent lines.
specified, the minimum increment is one (1). This
forces the UPDATE option.

editor
option
If no't
option

SIDcode string
specifies a string that the editor inserts in all new or
changed lines in an update file. The editor inserts the
specified string in columns 64-71 and pads on the right with
blanks, if necessary. Any data in columns 64-71 is overlaid.
This option forces the UPDATE option.

1. For the PROFILE, CTL, SIDCODE, and WIDTH options, the operand must
be specified; otherwise, the next option will be interpreted as the
operand. For example, in the "PROFILE macroname" option,
"macroname" must be specified; if it is not, the next option will
be interpreted as a macro name.

2. Once the XEDIT command has been executed, the XEDIT ~YQ£~~nd can
be used to edit-aiid--display multiple files simultaneously. (See
the XEDIT subcommand description in the publication !~~f: ~§te~

R£Q~Y£!]gi!Q~ ~Q~~~Bg ~nd ~~£~Q li~fe~n£~).

3. You can also call the editor recursively (using "CMS XEDIT ••• ", for
example). This ability is particularly useful when applications
are developed using the editor and its macro facilities to
interface with the user, for example, HELP.

4. If the editor is kept in virtual storage as part o~ the CMSSEG
shared segment, the CMS user area is unused. As a result, assuming
a large enough virtual machine, any CMS or CP command may be issued
directly from the editor environment itself (if a SET IMPCMSCP
subcommand is in effect). \ Otherwise, the edi tor runs in the user
area and only CMS and CP commands that run in the transient area
may be issued from the editor environment.

260 IBM VM/SP CMS Command and Macro Reference

XEDIT

The following messages are displayed only if you are using the VM/SP
System Product editor in update mode:

DMSXUP178I UPDATING 'fn ft fm'.
APPLYING 'fn ft fm'
APPLYING 'fn ft fm'

DMSXUP180W MISSING PTF FILE 'fn ft fm'.

DMSXIN002E FILE 'fn ft fm' NOT FOUND RC=28
DMSXIN003E INVALID OPTION 'option' RC=24
DMSXIN024E FILE 'XEDTEMP CMSUTl A1' ALREADY EXISTS RC=28
DMSXIN02QE INVALID PARAMETER 'parameter' IN THE OPTION 'option'

FIELD RC=24
DMSXSU048E INVALID MODE 'mode' RC=24
DMSXINOS4E INCOMPLETE FILEID SPECIFIED RC=24
DMSXSU062E INVALID CHARACTER IN FILEID 'fn ft fm' RC=20
DMSXIN06SE 'option' OPTION SPECIFIED TWICE RC=24
DMSXIN066E 'option' AND 'option' ARE CONFLICTING OPTIONS RC=24
DMSXSU069E DISK 'mode' NOT ACCESSED RC=36
DMSXINO?OE INVALID PARAMETER 'parameter' RC=24
DMSXIN104S ERROR Inn' READING FILE 'fn ft fm' FROM DISK RC=100
DMSXIN132S FILE 'fn ft fm' TOO LARGE RC=88
DMSXSU229E UNSUPPORTED OS DATA SET RC=80,81,82,83
DMSXDSSqOE DATA SET TOO LARGE RC=~8

Error messages with UPDATE options:

DMSXUP001E FILE 'fn ft fm' IS NOT FIXED, 80 CHAR. RECORDS RC=32
DMSXUP174W SEQUENCE ERROR INTRODUCED IN OUTPUT FILE: , ••••••••• TO

•.•••••• RC=32
DMSXUP11QE MISSING OR DUPLICATE 'MACS' CARD IN CONTROL FILE 'fn ft fm'

RC=32
DMSXUP1A3E INVALID auxlctl FILE CONTROL CARD RC=32
DMSXUP184W ·./S' NOT FIRST CARD IN UPDATE FILE -- IGNORED RC=32
DMSXUP1RSW NON NUMERIC CHARACTER IN SEQUENCE FIELD ,........ RC=32
DMSXUP186W SEQUENCE NUMBER NOT FOUND RC=32
DMSXUP207W INVALID UPDATE FILE CONTROL CARD RC=32
DMSXUP210W INPUT FILE SEQUENCE ERROR , •••••••• , TO ••••••••• RC=32
DMSXUP5Q1E UNABLE TO MERGE UPDATES CONTAINING '.1 S' CA~DS RC=32

o Normal
6 Subccmmand rejected in the profile due to LOAD error

20 Invalid character in filename or filetype
24 Invalid parameters, or options
28 Source file not found (UPDATE MODE) or file XEDTEMP

CMSUT1 already exists
32 Error during updating process
36 Corresponding disk not accessed
88 File is too large and does not fit into storage

100 Error reading the file into storage

Section 2. CMS Commands 261

Immediate Commands

ImmAdiate Commands

You can issue an Immediate command from the terminal only after causing
an attention interruption by pressing the Attention key (or its
equivalent). These commands are processed as soon as they are entered.
The HT and RT Immediate commands are also recognized when they are
stacked in an EXEC procedure, and the HT Immediate command can be
appended to a CMS command preceded by a logical line end symbol (I).
Any program execution in progress is suspended until the Immediate
command is processed.

None of the Immediate commands issue responses.

HB

Use the HB command to stop the
at the end of the current job.
is:

r
I HB
L

execution of a CMS batch virtual machine
The format of the HB Immediate command

1. If the batch virtual machine is running disconnected, it must be
reconnected.

2. When the HB com mand is executed, CMS sets a flag such that at the
end of the current job, the batch processor generates accounting
information for the current job and then logs off the CMS batch
virtual machine.

HO

Use the HO command during the execution of a command or one of your
programs to stop the recording of trace information. Program execution
continues to its normal completion, and all recorded trace information
is spooled to the printer. The format of the HO command is:

r
I HO
L

262 IBM VM/SP CMS Command and Macro Reference

Immediate Commands

HT

Use the HT command to suppress all terminal output generated by any CMS
command or your program that is currently executing. The format of the
HT command is:

r-
I HT
L

1 • Program execution continues. When the
normal terminal output resumes. Use
typing or displaying.

ready message is displayed,
the RT command to restore

2. CMS error messages having a suffix letter of S or T cannot be
suppressed.

HX

Use the HX command to stop the execution of any CMS or CMS/DOS command
or program, close any open files or I/O devices, and return to the CMS
command environment. The format of the HX command is:

r
I HX L ___________________ _

1. HX clears all file definitions made via the FILEDEF or DLBL
commands, including those entered with the PERM option.

2. The HX command is executed when the next SVC or I/O interruption
occurs: therefore a delay may occur between keying HX and the
return to CMS. All terminal output generated before HX is
processed is displayed before the command is executed.

3. HX does not clear user storage.

RO

Use the RO command, during the execution of a command or one of your
programs, to resume the recording of trace information that was
temporarily suspended by the SO command. Program execution continues to
its normal completion, and all recorded trace information is spooled to
the printer. The format of the RO command is:

r--------------------
I RO 1
L

Section 2. CMS Commands 263

Immediate Commands

RT

use the RT command to restore terminal output from an executing CMS
command or one of your programs that was previously suppressed by the HT
command. The format of the RT command is:

r---------------------------
I RT I
L

Program execution continues, and displaying continues from the current
point of execution in the program. Any terminal output that is
generated after the HT command is issued and up to the time the RT
command is issued is lost. Execution continues to normal program
completion.

so

Use the SO command during the execution of a command or one of your
programs to temporarily suspend the recording of trace information.
Program execution continues to its normal completion and all recorded
trace information is spooled to the printer. The format of the SO
command is:

r
, SO
L-

To resume tracing, issue the RO command.

264 IBM VM/SP CMS Command and Macro Reference

EDIT Subcommands

Section 3. EDIT Subcommands and Macros

This section describes the formats and operands of the EDIT subcommands
and macros. EDIT subcommands are valid only in the environment of the
CMS editor or in C~S editor compatibility mode, which is invoked with
the EDIT command. The EDIT command format is described in "Section 2.
CMS Commands."

The editor has two modes of operation: edit mode and input mode.
Whenever the EDIT command is issued, edit mode is entered; when the
INPUT or REPLACE subcommands are issued with no operands, input, mode is
entered. In input mode, all lines you enter are written into the file
you are editing. To return to edit mode from input mode, you must ~nter
a null line (one that has no data on it).

For a functional description of the CMS editor and information on how
to use it, consult the !~L2g ~~~ g~~~§ Guide.

For a functional description of CMS editor compatibility mode and
information on how to use it, see the EDIT command in this book and the
Y~L§E: .§I§!~!! gfQ9J!£!: ~g;L~Q!: £Q!!!l!!.2l!,g .2!!g !1~fQ Re~~~£~, "Appendix B".

)

For a summary of the default settings assumed by the editor for CMS
reserved filetypes, see "Appendix A: Reserved Filetype Defaults."

EDIT Subcommands

The EDIT subcommands are listed in alphabetical order for easy
reference. Each subcommand description includes the format, a list of
operands (if any), usage notes, and responses. For those subcommands
that operate somewhat differently on a 3270 display terminal than on a
typewr iter terminal, an additional discussion, "Display Mode
Considerations, " is added.

Subcommands that are valid only with 3270 display terminals, namely
SCROLL, SCROLLUP, and FORMAT have the notation "(3270 only)" next to the
subcommand names. The FORWARD and BACKWARD subcommands, which were
designed for use with 3270 terminals but can be issued at any terminal,
have the notation "(primarily 3270)" next to the subcommand names.

"Section 3. EDIT Subcommands and Macros 265

EDIT Subcommands-ALTER

ALTER

Use the ALTER subcommand to change a specific character to anQther
character, one that may not be available on your terminal keyboard. The
ALTER subcommand allows you to reference characters by their hexadecimal
values. The format of the ALTER subcommand is:

r
I r r"
I ALter char1 char2 In IGII
I
1
I
L

1* 1*11
11 I II
L L.J.J

char 1 specifies the character to be
either as a single character
digits (00 through FF).

altered.
or as a

It may
pair of

be specified
hexadecimal

char 2 specifies the character to which char1 is to be altered. It
may be specified either as a single character or as a pair of
hexadecimal digits.

n

G

indicates the number of lines to be searched for the specified
character. If you specify an asterisk (*), all lines in the
file, beginning with the current line, are searched. If this
option is omitted, then only the current line is searched.

requests the editor to alter every occurrence of char1 in the
lines specified. If G or * is not specified, only the first
occurrence of char1 in each line specified is altered.

1. If char2 is a hexadecimal value that cannot be represented on your
terminal, it may appear as a blank, for example:

input XSLe
alter X 02

SLC

Column 1 contains an X'02', which cannot be displayed.

2. Use the ZONE subcommand if you want only particular columns
searched for a specific character.

When verification is on, altered lines are displayed at your terminal.

266 IBM VM/SP CMS :ommand and Macro Reference

\
EDIT Subcommands-ALTER, AUTOSAVE

When you request a global change on a 3270, the display is changed only
once, to reflect the final position of the current line pointer. The
editor displays a message to indicate the number of lines changed:

{:~nn} LINE(S) CHANGED

AUTOSAVE

Use the AUTOSAVE subcommand to set, reset, or display the automatic save
function of the editor. When the automatic save function is in effect,
the editor automatically issues the SAVE subcommand each time the
specified number of changes or insertions are made. The format of the
AUTOSAVE subcommand is:

r--------------
I I
I AUTOsave I

r ,
I n I
IOFFI
l J

I I
I I
L----

n is a decimal number between and 32761, indicating the
frequency of the automatic save function. One SAVE subcommand
is issued for every n lines that are changed, deleted, or
added to the file.

OFF turns off the automatic save function. This is the initial
setting.

1. Each line affected by the $MOVE macro is treated as one update.
However, all changes caused by a single CHANGE, DELETE, DSTRING,
GETFILE, or OVERLAY subcommand are treated as a single update, no
matter how many lines are affected.

2. If you are editing a file on a read-only disk, and an automatic
save request occurs, the message:

SET NEW FILEMODE AND RETRY

is issued. You can enter CMS subset and access the disk in
read/write mode, or use the FMODE subcommand to change the filemode
to the mode of a read/write disk. If you were in input mode, you
are placed in edit mode.

3. The message "SAVED" is displayed at the terminal each time the save
operation occurs.

Section 3. EDIT Subcommands and Macros 267

EDIT Subcommands-AUTOSAVE, BACKWARD

If you issue the AUTOSAVE subcommand with no operands, the editor
displays the current setting of the automatic save function.

BACKWARD (Primarily 3270)

Use the BACKWARD subcommand to move the current line pointer towards the
beginning of the file you are editing. The format of the BACKWARD
subcommand is:

r
I r ,
I BAckward Inl
I 111
I L J

L

n is the number of records backward you wish to move the current
line pointer. If n is not specified, the current line pointer
is moved backward one line, toward the top of the file.

The BACKWARD subcommand is equivalent to the UP subcommand; it is
provided for the convenience of 3270 users.

When verification is on, the current line on the screen contains the
record located by the BACKWARD n value. If n exceeds the number of
records above the current line, TOF is displayed on the current line.

On a typewriter
verification is on.

terminal the new current line

268 IBM VM/SP CMS Command and Macro Reference

is typed if

EDIT Subcommands-BOTTOM, CASE

BOTTOM

Use the BOTTOM subcommand to make the last line of the file the new
current line. The format of the BOTTOM subcommand is:

r
I Bottom
L

Use the BOTTOM subcommand followed by the INPUT subcommand to begin
entering new lines at the end of a file.

When verification is on, the last line in the file is displayed.

If the BOTTOM subcoDmand is issued at a 3270 display terminal in display
mode, EOF: is displayed on the line following the current line, preceded
by the last records of the file; the rest of the screen's output ar~a is
blan k.

CASE

Use the CASE subcommand to indicate how the editor is to process
uppercase and lowercase letters. The format of the CASE subcommand is:

r ,
, CASE , ,
L

M

U

r ,
I M I
I U ,
L .J

indicates that the editor is to accept any
uppercase and lowercase letters for the file
entered at the terminal.

mixture
as they

of
are

indicates that the editor is to translate all lowercase
letters to uppercase letters before the letters are entered
into the file. U is the default value for all filetypes
except ME~O and SCRIPT.

Section 3. EDIT Subcommands and Macros 269

EDIT Subcommands-CASE, CHANGE

If you enter the CASE subcommand with no operand, the current setting is
displayed at the terminal.

If you specify CASE M when using a 3270 that does not have the lowercase
feature (RPQ), you can key in lowercase characters, but they appear on
the screen as uppercase characters.

CHANGE

Use the CHANGE subcommand to change a specified group of characters to
another group of characters of the same or a different length. You may
use the CHANGE subcommand to change more than one line at a time. The
format of the CHANGE subcommand is:

r--,
I I r r " I
I Change I (/string1(/string2(/lnIGI I]]] I
I I 1*1 * II I
I I 111 II I
I ILL .J.J I
L--.J

/ (diagonal) signifies any unique delimiting character that does not
appear in the character strings involved in the change.

string1

string2

n or *

G or *

specifies a group of characters to be changed (old data).
string1 may be a null string.

specifies the group of characters that are to replace
string1 (new data). string2 may be a null string; if
omitted, it is assumed null.

indicates the number of lines to be searched, starting at
the current line. If * is entered, the search is performed
until the end of the file is reached. If this option is
omitted, then only one line is searched.

requests "the editor to change every occurrence ofstring1
in the lines specified. If G or * is not specified, only
the first occurrence of string1 in each line specifie.d is
changed. If string1 is null, G or * may not be specified.

270 IBM VM/SP CMS Command and Macro Reference

1 •

EDIT Subcommands-CHANGE

The first nonblank character following the CHANGE
any of its truncations) is considered the delimiter.

c.VM/SP.CMS.*

subcommand (or
For example:

changes the first occurrence of VM/SP to CMS on every line from the
current line to the end of the file.

2. If string2 is omitted, it is assumed to be a null string. For
example:

THIS ISN THE LINE.
change In
THIS IS THE LINE.

A null string causes a character deletion. If string1 is null,
characters are inserted at the beginning of the line. For example:

THIS IS THE LINE.
change liSa I
so THIS IS THE LINE.

3. To change multiple occurrences of the same string on one line,
enter:

change/string1/string2/ 1 *
4. The CHANGE subcommand can be used on typewriter terminals to

display, without changing, any lines that contain the information
specified in string1. Enter:

change Istring1/string1/ * *

5. Use the ZONE subcommand to indicate which columns are to be
searched for string1. If string1 is wider than the current zone,
you receive the message:

ZONE ERROR

and you should either reenter the CHANGE subcommand or chang~ the
zone setting.

6. If the character string inserted causes the data line to extend
beyond the truncation column or the zone column, any excess
characters are truncated. (See the description of the TRUNC
subcommand for additional information on truncation.)

7. You should use the ALTER
single character to some
available on your keyboard).

subcommand when you want
special character (one

to change a
that is not

8. When the IMAGE subcommand is set with the CANON operand, backspace
characters at the beginning or end of string1 are ignored.

9. To stack a CHANGE subcommand with no operands from a fixed-length
EXEC, you should use the &STACK control statement.

Section 3. EDIT Subcommands and Macros 271

EDIT Subcommands-CHANGE

When verification is on, every line that is changed is displayed.

If you issue the CHANGE subcommand without operands at a 3270 display
terminal in display mode, the following occurs:

1. The record pointed to by the current line pointer appears in the
user input area of the display. If the line is longer than the
current truncation setting, it is truncated.

2. You can then alter the record in the user input area by retyping
part or all of the line, or by using the Insert, Delete, or Erase
EOF keys to insert or delete characters.

3. When the line is modified, press the Enter key. This causes the
record in the user input area to replace the old record at the
current line in the output display area.

If you bring a line down
change it, press the Erase
line is not changed.

to the user input area and decide
Input key and then the Enter key,

not to
and the

When a line is moved to the user input area, all nonprintable
characters (including tabs, backspaces, control characters, and so on)
are stripped from the line. Also, any characters currently assigned to
VM/SP logical line editing symbols (I, ~, ¢,") are reinterpreted when
the line is reentered. You should issue an explicit CHANGE subcommand
to change lines containing special characters.

The CHANGE subcommand is treated as
issued without operands at a typewriter
terminal that is not in display mode.

an invalid subcommand if it is
terminal or at a 3270 display

When you request a global change on a 3270 terminal, the display is
changed only once, to reflect the final position of the current line
pointer. The editor displays, in the message area of the display
screen:

{~~nn} LINE(S) CHANGED

to indicate the
request resulted
displayed as:

number of lines that were
in the truncation of any

updated.
lines,

nnnn LINE(S) CHANGED nnnn LINE(S) TRUNCATED

If the change
the message is

If the change request moves the current line pointer beyond the end
of the file, the wo~d EOF: is displayed on the current line, preceded by
the last records of the file. The rest of the output area is blank.

272 IBM VM/SP CMS Command and Macro Reference

EDIT Subcommands-CMS

eMS

Use the C~S subcommand to cause the editor to enter the CMS subset mode,
where you may execute those C~S commands that do not need to use the
main storage being used by the-editor. The format of the CMS subcommand
is:

r-
I C~S
L

1 •

2.

In C~S subset, you can execute
nucleus-resident or that executes
nucleus-resident C~S commands are:

CP
DEBUG
ERASE
FETCH

GEN~OD

INCLUDE
LOAD
LOAD~OD

any CMS command that
in the transient area.

START
STATE
STATEW

The commands that execute in the transient area are:

ACCESS HELP RELEASE
ASSGN LISTFILE RENAME
COMPARE MODMAP SET
DISK OPTION SVCTRACE
DLBL PRINT SYNONYM
FILEDEF PUNCH TAPE
GENDIRT QUERY TYPE
GLOBAL READCARD

To return to edit mode, use the CMS subset command RETURN.

is
The

If you attempt to execute a CMS command that requires main storage,
you receive the message:

INVALID SUBSET COMMAND

Results are unpredictable at this point. You should not attempt to
execute any program that executes in the user program area. Using
the LOAD, INCLUDE (RESET), FETCH, START, and RUN commands could
load programs that would overlay the editor's storage area and its
contents. Use these commands only for programs that execute in the
transient area.

3. In an edit macro, if you attempt to use a command that is invalid
in the C~S subset, you receive a return code of -0002.

4. If you attempt to execute a CMS command that fails because of
insufficient storage, your EDIT session may abnormally terminate.
You should save input you have entered before you enter CMS subset
mode.

section 3. EDIT Subcommands and Macros 273

EDIT Subcommands-CMS, DELETE

After you issue the CMS subcommand, you receive the message:

CMS SUBSET

to indicate that you are in CMS subset mode. On a display terminal, the
screen is cleared before the editor issues this message; the display of
the file is restored when you enter the RETURN command.

DELETE

Use the DELETE subcommand to delete one or more lines
beginning with the current line. The line immediately
last line deleted becomes the new current line. The
DELETE subcommand is:

r-
I
I DELete ,
I
I

r ,
I nl
1*1
111
L .J L-__________________ _

from a file,
following the

format of the

n indicates the number of lines to be deleted, starting at the
current line. If an asterisk (*) is entered, the remainder of
the file is deleted. If n is omitted, only one line is
deleted.

None. If you delete the last line in the file, or if you issue the
DELETE subcommand when the current line pointer is already at the end of
the file, the editor displays the message:

EOF:

If you delete a record when using a display terminal in display mode,
the editor rewrites the output display area with the records above the
current line pointer unchanged. The record at the current line pointer
and the remaining records on the screen move up by one, and a new record
(if one exists) moves into the bottom of the output display area.

274 IBM VM/SP CMS Command and Macro Reference

EDIT Subcommands-DOWN, DSTRING

DOWN

Use the DOWN subcommand to advance the current line P9inter forwand in
the file. The line pointed to becomes the new current line. The format
of the DOWN subcommand is:

r ,
, Dawn , ,
L-

n

r ,
I nl
111
L .J

indicates the number of lines to advance the pointer, starting
at the current line. If n is not specified, the current line
pointer is advanced one line.

DOWN is equivalent to the NEXT and FORWARD subcommands.

When verification is on, the new current line is displayed at the
terminal; if the end of the file is reached, the message:

EOF:

is displayed.

DSTRING

Use the DSTRING subcommand to delete one or more lines beginning with
the current line, down to, but not including, the first line containing
a specified character string. The current line is not checked for the
character string. The format of the DSTRING subcommand is:

.-
I DString
L

I I[string[/]]

I (diagonal) signifies any unique delimiting character that does not
appear in the string.

string specifies the group of characters for which a search is to
be made. If string is not specified, only the current line
is deleted.

Section 3. EDIT Subcommands and Macros 275

EDIT Subcommands-DSTRING, FILE

The zone set by the ZONE subcommand or the default zone setting is
checked for the presence of the character string. A character string
with a length greater than the current zone setting causes the error
message ZONE ERROR.

If the character string is not tound by the end of the file, no
deletions occur, the current line pointer is unchanged, and the message:

STRING NOT FOUND, NO DELETIONS MADE

is displayed.

If verification is on when the DSTRING subcommand is issued at a display
terminal in display mode, the screen is changed to reflect the deletions
from the file.

FILE

Use the FILE subcommand to write the edited file on disk and,
optionally, override the file identifier originally supplied in the EDIT
command. The format of the FILE subcommand is:

I
, FILE
L

fn

ft

fm

, [fn (ft [fm]]]

indicates the filename for the file. If filename is omitted,
filetype and filemode cannot be specified, and the existing
filename, filetype, and filemode are used.

indicates the filetype for the file.

indicates the filemode for the file.

1. When you specify a file identifier, any existing file that has an
identical fileid is replaced. If the' file being edited had been
previously written to disk, that copy of the file is not altered.

2. You can change the filename and filemode during the editing session
using the FNAME and FMODE subcommands.

\
The eMS ready message indicates that the file has b~en written to disk
and ~ontrol is returned to the eMS environment.

276 IBM VM/SP eMS Command and Macro Reference

EDIT Subcommands-FIND, FMODE

FIND

Use the FIND subcommand to locate a line based on its initial character
string. The format of the FIND subcommand is:

r
I Find
'-

line

, [line]

is any character string, including blanks and tabs, that you
expect to find beginning in column 1 of an input record. At
least one nonblank character must be specified. If line is
not specified or the line contains only blanks, the current
line pointer is moved down one line.

1. Only one blank can be used as a delimiter following the FIND
subcommand; additional blanks are considered part of the character
string.

2. If the image setting is ON, the editor expands tab characters to
the appropriate number of blanks before searching for the line.

3. If the current line pointer is at the bottom of the file when the
FIND subcommand is issued the search begins at the top of the file.

When verification is on, the line is displayed at the terminal. If the
line is not found, the message:

EOF:

is displayed and you may use the REUSE (=) subcommand to search again,
beginning at the top of the file.

FMODE

Use the FKODE subcommand to display or change the filemode of a file.
The format of the FKODE subcommand is:

r-
I FMode
'---

fro

I [fm]

indicates the file mode that is to replace the current filemode
setting. You can specify a filemode letter (A-Z) or a
filemode letter and number (O-S). If you specify a filemode
letter, tne existing filemode number is retained.

section 3. EDIT Subcommands and Macros 277

EDIT Subcommands-FMODE, FNAME

1. The specified filemode is used the next time a FILE, SAVE, or
automatic save request is issued. If the file being edited had
been previously filed or saved, that copy of the file remains
unchanged.

2. If the disk specified by filemode already contains a file with the
same filename and filetype, that file is replaced when a FILE,
SAVE, or automatic save request is issued; no warning message is
issued.

3. If the filemode specified is that of a read-only disk, then when an
attempt is made to file or save the file, the editor displays an
error message.

If you enter the FMODE subcommand without specifying fm, the editor
displays the current filemode.

When you specify a new filemode with the FMODE subcommand, the editor
writes the new filemode in the filemode field at the top of the screen.

FNAME

Use the FNAME subcommand to display or change the filename of a file.
The format of the FNAME subcommand is:

.-
I FN ame
L-

I [fn]

fn indicates the filename that is
filename.

to replace the current

1. The specified filename is used the next time a FILE, SAVE, or
automatic save request is issued. If the file being edited had
been previously filed or saved, that copy of the file remains
unchanged.

2. If a file already exists with the specified filename and the same
filetype and filemode, that file is replaced; no warning message is
issued.

3. You can use the FNAME subcommand when you want to make multiple
copies of a file, with different filenames, without terminating
your edit session.

278 IBM VM/SP eMS Command and Macro Reference

EDIT Subcommands-FNAME, FORMAT

If you enter the FNAME subcommand without specifying fn, the editor
displays the current filename.

When you issue the FNAME subcommand specifying a new filename, the
editor writes the new name in the filename field at the top of the
screen.

FORMAT (3270 Only)

Use the FORMAT subcommand to change the mode of a local or remote 3270
terminal from display to line or line to display mode. The format of
the FORMAT subcommand is:

r--,
I FORMat I {DISPLAY} I
I I LINE I
L--J

DISPLAY specifies that a full screen display of data is to occur.
Subcommands do not appear as part of the data displayed.

LINE specifies that the display station is to operate as a
typewriter terminal. Every line you enter is displayed oQ the
screen; the screen looks like a typewriter terminal's console
sheet.

1. Line mode is the default for remote 3270s. If you are using a
remote 3270 in display mode, and you enter the INPUT subcommand,
you are placed in line mode while you enter input. When you return
to edit mode, the full screen display is restored.

2. The FORMAT subcommand is treated as invalid under any of the
following conditions:

a. The NODISP option of the EDIT command was used to invoke the
editor.

b. The edit sessi-~ was initiated on a typewriter terminal. (The
session may optionally be continued on a 3270 after a
reconnection.)

To obtain a full screen display, yon must save your file and
restart your edit session.

3. The column settings for the VERIFY, TRUNe, and ZONE subcommands
remain unchanged when you issue the FORMAT subcommand.

section 3. EDIT Subcommands and Macros 279

EDIT Subcommands-FORWARD

None.

FORWARD (Primarily 3270)

Use the FORWARD subcommand to move
end of the file you are editing.
is:

the current line pointer towards the
The format of the FORWARD subcommand

r---~--------------,
I 1 r, I
I FOrward 1 1 nl I
, 1 111 I
I I L.J I
L---------------~--.J

n is the number of records you wish to move forward in the file
being edited. If n is not specified, 1 is assumed.

The FORWARD subcommand is equivalent to the DOWN and NEXT subcommands;
it is provided for the convenience of 3270 users.

When verification is on, the new current line is displayed. If the
number specified exceeds the number of lines remaining in the file, the
current line pointer is positioned at EOF:.

280 IBM VM/SP eMS Command and Macro Reference

EDIT Subcommands-GETFILE

GETFILE

Use the GETFILE subcommand to insert all or part of a specific CKS file
into a file you are editing. The format of the GETFILE subcommand is:

r--,
I I r r r r"" I
I Getfile I {fn} 1ft Ifm Ifirstrec Inumrecl I II 1
I I * I ~ I~ 11 I ~ I III I
I ILL L L J...... I L----------------------------------_-_________________ --------------___ ..

fn

ft

is the filename of the file that contains the data to be
inserted into the file you are editing. When an asterisk (*)
is specified, the filename of the file you are editing is
assumed.

is the filetype
inserted. If ft
specified, the
assumed.

of the file that contains the data to
is not specified or when an asterisk (*)

filetype of the file you are editing

be
is
is

fm is the filemode of the file that contains the data to be
inserted. If fm is not specified or when an asterisk (*) is
specified, all of your accessed disks are searched for the
file.

firstrec indicates the number of the first record you want to copy.

numrec indicates the number of lines to be inserted, starting with
the line specified by firstrecc If numrec is not specified,
or specified as *, then the remainder of the file between
firstrec and the end of the file is inserted.

1 • The GETFILE operand list is positional; if you omit
you cannot specify any operands that follow. Thus, if
specify firstrec and lastrec, you must specify the
filemode of the file.

2. The last line inserted becomes the new current line.

one operand,
you want to

filetype and

3. If the length of the records in the file containing the data to be
inserted exceeas that of the file being edited, an error message is
displayed, and the GETFILE is not executed; if shorter, the records
are padded to the record length of the file being edited . and
inserted in the file.

4. If you use the GETFILE subcommand to insert lines into a VSBASIC
file, use the RENUM subcommand to resequence the file.

5. If the editor fills up available storage while executing a GETFILE
request, it may not be able to copy all of the file. You should
determine how many records were actually copied, and then write the
current file on disk.

section 3. EDIT Subcommands and Macros 281

EDIT Subcommands-GETFILE, IMAGE

When verification is on, the last line inserted into the file is
displayed. If the end of the file has been reached, the message:

EOF REACHED

is displayed, followed by the display of the last line inserted.

IMAGE

Use the IMAGE subcommand to control how the editor should handle
backspaces and tab characters or to display the current image setting.
The format of the IMAGE subcommand is:

r--,
I I r , I
I IMAGE I ION I I
I I lOFF I I
I I I CANON I I
I I L J I
L--J

ON

OFF

CANON

specifies that any text entered while in input mode or as a
line of data following a FIND, INPUT, OVERLAY, or REPLACE
subcommand, is expanded into a line image; backspaces are
removed and tabs are replaced by blanks.

Text entered in the form of delimited strings,
LOCATE, and ALTER, is not expanded; tabs and
treated in the same way as other characters.

as in CHANGE,
backspaces are

IMAGE ON is the default for all filetypes except SCRIPT.

specifies that tabs and backspaces are treated as data
characters in the same way as other characters. They are not
deleted, translated, expanded, or reordered.

specifies that backspaces may be used to produce compound
characters such as underscored wordS, headings, or phrases.
Before they are inserted in the file, compound characters are
ordered, with backspaces arranged singly between the
characters that overlay each other; the overlaying characters
are arranged according to their EBCDIC values. Tab characters
are handled as for IMAGE OFF.

CANON is the default for SCRIPT files.

1. When the image setting is ON, tab characters are expanded to an
appropriate number of blanks, according to the current settings of
the TABSET subcommand. The TABSET command has no effect if the
image setting is either OFF or CANON.

282 IBM VM/SP CMS Command and Macro Reference

EDIT Subcommands-IMAGE, INPUT

2. When the image setting is on, backspaces are handled as follows:

• Backspace characters act in a similar manner to the logical
character delete symbol, in deleting the previous characters if
a sufficient number of other characters or blanks follow the
backspace characters. However, backspace characters that
immediately follow a command name are interpreted as separator
characters and do not delete any part of the command name.

• If a backspace character is the last character in the input
line, it is ignored.

When you issue the IMAGE subcommand with no operand, the current IMAGE
setting is displayed.

INPUT

Use the INPUT subcommand to insert a single line into a file, or, if no
data line is specified, to leave edit mode and enter input mode. The
format of the INPUT subcommand is:

r--,
, In pu t , [line] I L--- ___ ~

line pecifies the input line to be entered into the file. It can
contain blanks and tabs; if you enter at least two blanks
following the INPUT subcommand and no additional text, a blank
line is inserted into the file.

1. Each line that is inserted into the file becomes the new current
line.

2. When you are using line-number editing (LINEMODE LEFT or LINEMODE
RIGHT) you cannot use the INPUT subcommand to insert a single line
of data; use the nnnnn subcommand.

3. To stack an INPUT subcommand in order to enter input mode from a
fixed-length EXEC, you should use the &STACK control statement.

section 3. EDIT Subcommands and Macros 283

EDIT Subcommands-INPUT, LINEMODE

When you issue the INPUT subcommand without operands, and verification
is on, the editor displays:

INPUT:

All subsequent lines you entered are written into the file, until you
enter a null line to return to edit mode.

1 • When you insert lines while using
display mode, the editor writes each
The old current line and all records
except for the topmost record formerly
from the screen.

a local display terminal in
record on the current line.
above it move up one line,

on line 2, which is deleted

2. If you are using a remote display terminal in display mode and you
issue the INPUT subcommand with no text, the terminal is forced
into line mode. The display of the file on the screen disappears
and the word INPUT: appears. As you enter input lines, they appear
in the output display area. When you leave input mode by entering
a null line, the remote terminal returns to display mode. The
display of the file reappears on the screen, with the lines you
have just entered in their proper place in the file.

3. When you are entering data in input mode at a display terminal that
is in line moie, a tab character generated by a program function
(PF) key only generates one character, and appears as one character
on the screen. That is, the line does not appear spaced according
to the tab settings.

LINEMODE

Use the LINEMODE subcommand to set, cancel, or display the status of
line-number editing. When you use line-number editing, you can i~put,
locate, and replace lines by referencing their record numbers.
Line-number editing is the default for VSBASIC and FREEFORT files. The
format of the LINEMODE subcommand is:

r--- -----------------,
I I r , I
I LI NEmode I I LEFT I I
I I I RIGHT I I
I I IOFF I I
I I L .J I
~--~

LEFT initializes line-number editing and places sequence numbers
L on the left, in columns 1 through 5, right-justified and padded

with blanks; the near zone is set to 7. If' the filetype is
FREEFORT, columns 1 through 8 are used for serial numbers; the
near zone is set to 9.

284 IBM VM/SP CMS Command and Macro Reference

EDIT Subcommands-LINEMODE

You should never use left-handed line-number editing for files in
which data must occupy columns 1 through 6, for example ASSEMBLE
files.

RIGHT initializes line-number editing and places sequence numbers
R on the right, in columns 76 to 80, right-justified and padded

with zeroes. The end zone and truncation columns are set to 72 •.

This operand is valid only
80-character records.

for files with fixed-length

OFF cancels line-number editing and (if you were using left-handed
line-number editing) resets the first logical tab setting to
column 1. The VERIFY, TRUNC, and ZONE subcommand settings remain
unchanged. Serialization may still be in effect. OFF is the
default for all filetypes except VSBASIC and FREEFORT.

1 •

Motg: If you enter LINEMODE OFF while editing a FREEFORT file,
line-number editing cannot be resumed for the remainder of the
edit session.

When you anter input mode while
you are prompted with a line
default prompting increment is
PROMPT subcommand.

you are using line-number editing,
number to enter each line. The
10; you may change it using the

If you enter input mode after using the nnnnn subcommand to
position the current line pointer, the prompted line number is the
next higher multiple of the current prompting increment or an
adjusted line number, whichever is smaller. The adjusted line
number is determined according to the following formula:

pppp = 1 + cccc + _!!1!!!1!_=~££f (Any fractional remainder is
4 dropped.)

where:

pppp is the prompt line number.

cccc is the current line number.

nnnn is the next sequential line number in the file.

2. When you are prompted on a typewriter terminal, enter your input
line on the same line as the prompted line number. If you are
using right-handed line-number editing, on a typewriter terminal or
on a display terminal in line mode, the serial numbers are not
redisplayed in columns 76 to 80 (unless you use the VERIFY
subcommand to increase the verification setting) •. When a liqe is
displayed in edit mode, the line numbers always appear on the left
even though they are on the right in the disk copy of the file.
Whether or not the line numbers are displayed on the right depends
on the current verification setting.

3. You cannot use the INPUT or REPLACE subcommands to input a single
data line when you are using line-number editing; use the nnnnri
subcommand instead.

Section 3. EDIT Subcommands and Macros 285

EDIT Subcommands-LINEMODE, LOCATE

4. When you initialize line-number editing for files that already
exist, the editor assumes that the records are in the proper format
and numbered in ascending order.

5. If you want to place serial numbers in columns 76
you do not wish to use line-number editing,
subcommand.

through 80, but
use the SERIAL

When you issue the LINEMODE subcommand with no operands, the current
setting is displayed.

When you use line-number editing on a display terminal in display mode,
the prompting numbers in input mode appear on line 2 of the display
screen, in the editor message area. Enter your input lines in the user
input area. Regardless of whether you are using right- or left-handed
line-number editing, the line numbers always appear in their true
position in the file.

LOCATE

Use the LOCATE subcommand to scan the file beginning with the next line
for the first occurrence of a specified character string. The format of
the LOCATE subcommand is:

r
I[Locate]
L-

I (d iagonal)

string

I /[string[/]]

signifies any unique delimiting character that does not
appear in the string. The delimiter may be any nonblank
character. The closing delimiter is optional.

specifies any group of characters to be searched for in
the file.

1. If the beginning delimiter is /, you can omit the subcommand name
LOCATE. If yo~ enter only:

/

on a line, the current line pointer is moved down one line.

2. If string is n~ll or blank, the search is successful on the first
line encountered. If the line pointer is at the end of the file
when the LOCATE subcommand is issued, scanning starts from the top
of the file.

286 IBM VM/SP CMS Command and Macro Reference

EDIT Subcommands-LOCATE, LONG, NEXT

3. Use the ZONE subcommand when you want the editor to search only a
specific column. If you specify a character string longer tha~ the
current zone width, the editor issues the message ZONE ERROR.

When verification is on, the line containing the specified string is
displayed. If the string is not found, the messages:

NOT FOUND
EOF:

are displayed, and you may use the REUSE (=) subcommand to request that
command be repeated, beginning at the top of the file.

LONG

Use the LONG subcommand to cancel a previous SHORT subcommand request.
The format of the LONG subcommand is:

...
I LONG
L

When the LONG subcommand is in effect (it is the default), the editor
responds to invalid subcommands with the message:

? EDIT: line •••

None.

NEXT

Use the NEXT subcommand to advance the line pointer a specified number
of lines toward the end of the file. The line pointed to becomes the
new current line. The format of the NEXT subcommand is:

r
I
, Next
I
I
L

n

r ,
I nl
111
L .J

indicates the number of lines to move the line pointer. If
is omitted, then the pointer is moved down only one line.

n

Section 3. EDIT Subcommands and Macros 287

EDIT Subcommands-NEXT, OVERLAY

NEXT is equivalent to DOWN and FORWARD.

When verification is on, the new current line is displayed. If the end
of the file is reached, the message:

EOF:

is displayed.

OVERLAY

Use the OVERLAY subcommand to selectively replace one or more character
strings in the curcent line with the corresponding nonblank characters
in the line being keyed in. The format of the OVERLAY subcommand is:

r-
I Overlay
L

I [line]

line specifies an input line that replaces corresponding character
positions in the current line. On a typewriter terminal, if
you enter the OVERLAY subcommand with no data line, the input
record remains unchanged.

1. Blank characters in the input line indicate that the corresponding
characters in the current line are not to be overlaid. For
example:

CHARMIE
o L
CHARLIE

Blanks in columns 3, 4, 5, and 6 of the OVERLAY line indicate that
columns 1, 2, 3, and 4 of the current line are not to be changed.
(At least one blank must follow the OVERLAY subcommand, which can
be truncated as 0).

2. This subcommand may be entered at a typewriter terminal by typing
the letter "0", followed by a backspace, followed by the overlaying
characters. This sets up the correct alignment on the terminal.

3. An underscore in the overlaying line must be used to place a blank
into the corresponding position of the current line. Thus, an
underscore cannot be placed (or replaced) in a line.

OVERLAY should be used with care on lines containing underscored
words or other compound characters.

288 IBM VM/SP CMS Command and Macro Reference

EDIT Subcommands-OVERLAY, PRESERVE

4. To perform a global overlay
just prior to issuing the
you enter:

operation, issue the REPEAT subcommand
OVERLAY subcommand. For example, when

repeat *
overlay X

an X is placed
beginning with
with the IMAGE
setting.

in the leftmost column of each record in the file,
the current line. The leftmost column, for files
setting ON, is determined by the first logical tab

When verification is on, the line is displayed at the terminal after it
has been overlaid.

In addition to using the OVERLAY subcommand in the normal way, you may
also issue the OVERLAY subcommand with no operands. The next line you
enter is treated as overlay data. To cancel the overlay request, press
the Erase Input key and then the Enter key.

PRESERVE

Use the PRESERVE subcommand to save the settings of various EDIT
subcommands until a subsequent RESTORE subcommand is issued. The format
of the PRESERVE subcommand is:

r
I PR Eserve
L

settings are saved for the following subcommands:

CASE
FMODE
FNAME
IMAGE
LINE MODE

None.

LONG
PROMPT
RECFM
SERIAL
SHORT

TABSET
TRUNC
VERIFY
ZONE

Section 3. EDIT Subcommands and Macros 289

EDIT Subcommands-PROMPT, QUIT

PROMPT

Use the PROMPT subcommand to change the prompting increment for input
line numbers when you are using line-number editing. The format of the
PROMPT subcommand is:

r
I
, PROMPT ,

r ,
I n I
11QI

I
L

n

L .I

specifies the prompting increment; the default value is 10.
The value of n should not exceed 32,767.

When you issue the PROMPT subcommand with no operands, the current
setting is displayed.

QUIT

Use the QUIT subco~mand to terminate the current editing sessio~ and
leave the previous copy of the file, if any, intact on the disk. The
format of the QUIT subcommand is:

r
, QUIT
L

1. You can use the QUIT subcommand when you have made a global change
that introduced errors into your file; or whenever you discover
that you have made errors in editing a file and want to cancel your
editing session.

If a SAVE subcommand or automatic save request has been issued, the
file remains as it was when last written.

2. The QUIT subcommand is a convenient way to terminate an edit
session when you enter an incorrect filename on the EDIT command
line, or when you edit a file merely to examine, but not to change,
its contents.

The eMS ready message indicates that control has been returned to eMS.

290 IBM VM/SP eMS Command and Macro Reference

EDIT Subcommands-RECFM

RECFM

Use the RECFM subcommand to indicate to the editor whether the record
format of the file is fixed-length or variable-length, or to display the
current RECFM setting. The format of the RECFM subcommand is:

r-, r ,
I RECfm
I

I FI
IVI ,

L

F

v

L J

indicates fixed-length records.

indicates variable-length records.

1. V is assumed by default for all new EXEC, LISTING, FREEFORT,
VSBDATA, and SCRIPT files. Usually, a variable-length format file
occupies a smaller amount of disk space because trailing blanks are
deleted from each line before it is written onto disk. When
variable-length VSBDATA files are written to disk, however,
trailing blanks are not truncated (to allow VSBDATA file to span
records) •

2. When you use the RECFM subcommand to change the format of a file
from fixed-length to variable-length records, trailing blanks are
removed when the file is written to disk; when you are changing
variable-length records to fixed-length, all records are padded to
the record length.

When you use the RE:FM subcommand without specifying F or V, the current
setting is displayed.

When you specify a new record format with the RECFM subcommand, the
editor writes the new record format in the format field at the top of
the screen.

Section 3. EDIT Subcommands and Macros 291

EDIT Subcommands-RENUM

RENUM

Use the RENUM subcommand to recompute the line numbers for VSBASIC and
FREEFORT source files. The format of the RENUM subcommand is:

r
I
I RENum

r r "
Istrtno lincrnol I

I I 10 1§!~!1!Q11
I L L J J

L-

strt no indicates the number from which you wish to start renumbering
your file. Because RENUM renumbers the whole file from
beginning to end, the number you specify as strtno becomes the
statement number of the first statement in the newly
renumbered file. This number may not exceed 99999 for VSBASIC
files or 99999999 for FREEFORT files. The default start
number value is 10 and the specified start number must not be
zero.

incr no indicates the increment number value by which you wish to
renumber your file. This value may not exceed 99999 for
VSBASIC files or 99999999 for FREEFORT files. The default for
incrno is strtno, the first sequence number in the renumbered
file, and the specified incrno must not be zero.

1. If you do not specify strtno and incrno, the default value for both
is 10. If you specify only strtno, incrno defaults to the same
value as strtno.

2. The current line pointer remains as it was before you entered the
RENUM subcommand regardless of whether or not RENUM completes
successfully. If you are editing a VSBASIC file, the file to be
renumbered must either originate from a read/write disk or you must
issue an FMODE subcommand to change the file destination to a
read/wr ite disk.

3. All VSBASIC statements that use statement numbers for operands are
updated to reflect the new line numbers. The VSBASIC statements
with line number operands are:

CLOSE IF READFILE
CLOSEFILE ON REREADFILE
DELETE OPEN RESET
EXIT OPENFILE RESETFILE
GET PRI NT USING REWRITEFILE
GOSUB PUT WRITEFILE
GOTO

4. If any error occurs during the RENUM operation, the editor
terminates the RENUM operation and the file being edited remains
unchanged.

292 I~M VM/SP CMS :ommand and Macro Reference

)

EDIT Subcommands-RENUM, REPEAT

When verification is on, the message EDIT: indicates that the RENUM
subcommand completed processing.

REPEAT

Use the REPEAT subcommand to execute the immediately following OVERLAY
subcommand (or an X or Y subcommand assigned to invoke OVERLAY) for the
specified number of lines or to the end of the file. The format of the
REPEAT subcommand is:

.--
I
I REPEAT

r ,
I nl
1*1
111

I
I
I L .I

L

n indicates the number of times to repeat the OVERLAY request that
immediately follows, beginning with the current line. An asterisk
(*) indicates that the request is to be repeated until the eqd of
the file is reached. If neither n nor * is specified, then only
one line is handled. The last line processed becomes the new
current line.

1. If the next subcommand issued after the REPEAT subcommand is not an
OVERLAY subcommand, the REPEAT subcommand is ignored.

2. For an example of a REPEAT subcommand followed by an OVERLAY
subcommand, see the discussion of the OVERLAY subcommand.

None.

section 3. EDIT Subcommands and Macros 293

EDIT Subcommands-REPLACE

REPLACE

Use the REPLACE subcommand to replace the current line with a specified
line or to delete the current line and enter input mode. The format of
the REPLACE subcommand is:

.--
, Replace
L

line

I [line]

specifies an input line that is to replace the current line.
If a line is specified, then the editor puts it into the file
in place of the current line. If no line is specified, the
editor deletes the current line and enters input mode (see
Usage Note 2 for exception).

1. If the LINEMODE subcommand with a LEFT or RIGHT operand is in
effect, then issuing the REPLACE subcommand specifying a line is
not valid. If the REPLACE subcommand is used without any operands
when LINEMODE is set to LEFT or RIGHT, you are prompted for the
next available line number; the first data line you enter replaces
the current line number.

2. If you use the REPLACE subcommand with no operands to enter input
mode, and the next line you enter is a null line, then the current
line is not deleted, and you are returned to edit mode.

3. To stack a REPLACE subcommand in order to enter input mode from a
fixed-length EXEC, you should use the &STACK control statement.

When verification is on and you issue the REPLACE subcommand with no
data line, the message:

INPUT:

indicates that your virtual machine is in input mode.

294 IBM VM/SP CMS ~ommand and Macro Reference

EDIT Subcommands-RESTORE, RETURN

RESTORE

Use the RESTORE subcommand to restore the settings of EDIT subcommands
to their values when the PRESERVE subcommand was last issued or to their
default values if a PRESERVE subcommand has not been issued. The format
of the RESTORE subcommand is:

r-
, REStore
L

The settings are restored for the following subcommands:

None.

CASE
FMODE
FNAME
IMAGE
LINEMODE

RETURN

LONG
PROMPT
RECFM
SERIAL
SHORT

TABSET
TRUNC
VERIFY
ZONE

Use the RETURN subcommand to return to edit mode from the CMS subset
environment. RETURN is not an EDIT subcommand, but is listed here as a
companion to the eMS subcommand. The format of the RETURN command is:

r-
, RETURN
L

When verification is on, the editor responds:

EDIT:

to indicate that your virtual machine is in edit mode.

Section 3. EDIT Subcommands and Macros 295

EDIT Subcommands-REUSE (=)

REUSE (=)

Use the REUSE subcommand (which can also be specified as =) to stack
last in, first out (LIFO) the last EDIT request, except for REUSE or a
question mark, and then execute the stacked subcommands. The format of
the REUSE (or =) subcommand is:

r---------------------
'{REUSE} I [subcommand]
I = I
L

subcommand specifies any valid EDIT subcommand.

1. If the subcommand you enter on the REUSE subcommand line is an
invalid subcommand, the editor clears the stack.

2. You can use the REUSE subcommand to repeat a subcommand request
that was not satisfied the first time, for example, a LQCATE
subcommand that resulted in an end-of-file condition. If you
enter:

=

the LOCATE subcommand is stacked, then read by the editor and
executed again.. This time the search begins from the top of the
file.

3. You can also enter more than one equal sign (=) on a single line,
to stack the last issued subcommand more than once. For example:

locate /xyz/
XYZ IS MY FAVORITE
= = = =
I FIRST MET XYZ
XYZ'S NAME IS DERIVED
LAST SAW IYZ
EOF:

the LOCATE subcommand is stacked four times, and then the editor,
reading from the stack, executes the four stacked subcommands.

4. You can do the following if you issue a CHANGE subcommand before
positioning your current line pointer:

c/xx/yy
NOT FOUND
= l/x/
LINE XXXX
LINE YYXX

In this example, the CHANGE request was issued and string1 was not
found. The REUSE subcommand stacks the CHANGE subcommand and
stacks a LOCATE subcommand in front of it. The LOCATE subcommand is
read and executed, followed by the CHANGE subcommand.

296 IBM VM/SP CMS Command and Macro Reference

EDIT Subcommands-REUSE (=), SAVE

5. You can stack an INPUT or REPLACE subcommand in front of a data
line you mistakenly entered in edit mode, for example:

roses are red, violets are blue
?EDIT: ROSES ARE RED, VIOLETS ARE BLUE
= input
INPUT:
without cms
i would be, too.

The = subcommand stacks the INPUT subcommand in front of the data
line. Reading from the stack, the editor executes the INPUT
subcommand, then reads in, as the first line of data, the line
beginning with ROSES. The file contains:

ROSES ARE RED, VIOLETS ARE BLUE
WITHOUT Ct'lS
I WOULD BE, TOO.

Responses are those that are issued to the stacked subcommands.

SAVE

Use the SAVE subcommand to write the file that is currently being edited
onto the disk, without returning control to CMS, and optionally to
change the file identifier. The format of the SAVE subcommand is:

r
I SAVE
L-

I [fn [ft [fm]]]

fn

ft

fm

indicates the filename of the file to be saved. If you
specify only fn, then the filetype and filemode are the same.

ndicates the filetype of the file to be saved.

indicates the filemode of the file to be saved.

1. If you specify a new file identifier, any existing file with the
same file identifier is replaced; no message is issued. The file
being edited, if previously written to disk, is not altered.

2. To write a file on disk and terminate the editing session, use the
FILE subcommand.

3. If you want to save the contents of a file at regular intervals,
use the AUTOSAVE subcommand.

Section 3. EDIT Subcommands and Macros 297

EDIT Subcommands-SAVE, SCROLL/SCROLLUP

When verification is on, the editor displays:

EDIT:

to indicate the SAVE request completed successfully and you may continue
to enter EDIT subcommands.

SCROLL/SCROLLUP (3270 Only)

Use the SCROLL and SCROLLUP subcommands to scan the contents of a file
on a display screen.

SCROLL causes the editor to scan forward through
causes the editor to scan backward through the file.
SCROLL and SCROLLUP subcommands is:

the file; SCRQLLUP
The format of the

r
I I r ,
I {Scroll } I In I
I S [croll]U(p], I 1 * 1
I I 11 I , , L .J

L-

n is a number from 1 to 255 that specifies the number of
successive screens of data to be displayed. If an asterisk
(*) is specified, the entire file, from the current line to
the end oc beginning of the file, is displayed. If n is not
specified, 1 is the default.

1. The SCROLLUP subcommand can be specified by any combination of the
truncation of SCROLL and UP; the minimum truncation is SUe

2. The number of lines shifted forward or backward depends on the
current verification setting. If the verification setting is 80
characters or less, then a scroll request displays a file in
increments equal to the number of lines that can be displayed in
the output display area of the screen. If the verification setting
is more than 80 characters, then a SCROLL request displays a file
in increments equal to half the number of lines that can be
displayed in the output area.

Therefore, a single SCROLL on a 3270 Model 2 display terminal is
the equivalent of DOWN 20 or DOWN 10, depending on the record
length, and SCROLLUP is the equivalent of UP 20 or UP 10.

3. When you use the SCROLL or SCROLLUP subcommands to display more
than one screenful, each display is held for one minute, and the
screen status area indicates MORE ••• ,. To hold the screen display
longer, press the Enter key.

298 IBM VM/SP CMS Command and Macro Reference

EDIT Subcommands-SCROLL/SCROLLUP, SERIAL

To halt scrolling before all the requested screenfuls are
displayed, enter the HT Immediate command and press the Cancel key
twice.

4. When you begin scrolling from the top of the file, the first
screenful contains only the first seven lines. When you scroll to
the end of the file, the last screen may duplicate lines displayed
in the previous screen.

The screen display is shifted forward or backward.

SERIAL

Use the SERIAL subcommand to control the serialization of records in
columns 73 through BO. The format of the SERIAL subcommand is:

r---1
I SE Rial I 1 OFF ! I I I r, I
I I ON lincrl I
I 1 ALL 11Q 1 I
I 1 seq L .J I L __ -'

OFF indicates that neither serialization numbers nor identifiers
are to be placed in columns 73-80.

ON indicates that the first three characters of the filename are
to be use~ in columns 73-75 as an identifier.

ALL indicates that columns 73-80 are to be used for serialization
numbers.

seq specifies a three-character identification to be used in
columns 73-75.

incr specifies the increment for the line number in columns 16-80
(or 73-80~. This number also becomes the first line number.
If incr is not specified, then 10 is assumed.

1. The SERIAL subcommand is valid only for files with fixed-leqgth,
BO-character records. To renumber VSBASIC or FREEFORT files, use
the RENUM subcommand.

2. The serialization setting is ON, by default, for the following
filetypes:

ASSEMBLE
COBOL
DIRECT
FORTRAN
MACRO

PLI
PLIOPT
UPDATE
UPDTxxxx

Section 3. EDIT Subcommands and Macros 299

EDIT Subcommands-SERIAL, SHORT

3. When serialization is in effect, records in a file are resequenced
each time a FILE, SAVE, or AUTOSAVE request is issued. If you are
using line-number editing, you must issue the subcommand:

linemode off

before issuing a FILE or SAVE subcommand if you wish the records to
be resequenced.

If you issue the SERIAL subcommand in a file with a zone column greater
than 72, the message:

END ZONE SET TO 72

is displayed, to indicate that the zone has been changed. If the zone
column is 72 or less, but the truncation column is greater than 72, the
message:

TRUNC SET TO 72

is displayed.

SHORT

Use the SHORT subcommand to request the editor to respond
subcommand lines with the short form of the ?EDIT message.
of the SHORT subcomnand is:

r-
I SHORT
'--

to invalid
The format

1. When the SHORT subcommand is in effect, the editor responds:

to an invalid subcommand line, and responds:

.,$

to an invalid nacro request.

2. To resume displaying the long form of the ?EDIT message, use the
LONG su bcommand.

None.

300 IBM VM/SP CMS ~ommand and Macro Reference

EDIT Subcommands-STACK

STACK

Use the STACK subcommand to stack data lines or EDIT subcommands in the
console stack for subsequent reading. The format of the STACK
subcommand is:

r
I
I

r ,

I STACK ,
In,
I subcommand I
10 ,

I
I
L

n

11 I
L J

indicates the number of lines to be stacked beginning with
the current line. If a number or a subcommand is not
specified~ then one line is assumed by default. A maximum
of 25 lines can be stacked.

If the current line pointer is ~t the top of the file, then
n-1 lines are stacked. If fewer than n lines remain in the
file, only the lines remaining are stacked.

subcommand specifies an EDIT subcommand to be stacked.

o stacks a null line.

1 • STACK subcommands are used
from a file so that they
additional subcommands.

to write edit macros, to stack lipes
can be moved around, or to stack

2. All lines stacked with the STACK subcommand are stacked FIFO (first
in, first out).

3. The length of input lines
current TRUNC setting.
characters.

that are stacked is determined
The maximum length, however,

by the
is 130

None. If you issue the STACK subcommand
line, the stacked subcommand is executed
those to the stacked subcommands, if any.

to stack an EDIT subcommand
immediately; responses are

section 3. EDIT Subcommands and Macros 301

EDIT Subcommands-TABSET

TABSET

Use the TABSET subcommand to set logical tab stops for a file. The
format of the TABSET subcommand is:

r---------------------------
I I
I TABSet I n1 [n2 ••• nn]
I I
L-

n1 [n2 ••• nn] indicates column positions for logical tab settings. You
may specify up to 25 numbers, separated from each qther
by at least one blank. n1 indicates the first column in
the file that may contain data.

1. The editor assigns the following tab settings by default:

liletYE~2 ~~~~~!1 !~R ~11ing§
ASM3705, ASSEMBLE, 1, 10, 16, 31, 36, 41, 46, 69, 72, 80

MACRO, UPDATE,
UPDTxxxx

AMSERV 2, 6, 11, 16, 21, 26, 31, 36, 41, 46,
61, 71, 80

FORTRAN 1 , 7, 10, 15, 20, 25, 30, 80

FREEFORT 9, 15, 18, 23, 28, 33, 38, 81

BASIC, VSBASIC 7, 10, 15, 20, 25, 30, 80

51,

PLIOPT, PLI 2, 4, 7, 10, 13, 16, 19, 22, 25, 31, 37,
43, 49, 55, 79, 80

COBOL 1, 8, 12, 20, 28, 36, 44, 68, 72, 80

Others 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 51,
61, 71, 81, 91, 101, 111, 121,131

2. Tab setting operands have no effect if the IMAGE subcommand's
operand is eitller OFF or CANON. (CA NON is the default for SCRIPT
filetypes) • A tab entered into a file under these conditions
appears as X'05'.

3. The margins set by the TABSET subcommand are used by the INPUT,
REPLACE, OVERLAY, and FIND subcommands.

None.

302 IBM VM/SP CMS Command and Macro Reference

EDIT Subcommands-TOP, TRUNC

TOP

Use the TOP subcommand to move the line pointer to the top of the file.
The null top line becomes the current line.. The format of the TOP
subcommand is:

r-
I TOP
L-

When verification is on, the message:

TOF:

is displayed.

When you are using a display terminal, if you specify TOP and
verification is on, the current line (see Figure 29) contains the
characters TOF (indicating the top of the file), the lines preceding it
are blank, and the rest of the screen's output display area contains the
first lines of the file.

TRUNC

Use the TRUNC subcommand to change the truncation column of records or
to display the current truncation column setting. The format of the
TRUNC subcommand is:

r
I
, TRUNC ,
I

r ,
I n I
I * I
L .J L ____________________ _

n ~nQ~ca~es ~ne column at which truncation is to occur. If n is
specified as an asterisk (*), the truncation column is set to
the record length for the filetype.

1. The editor assigns the following truncation setting by default:

li!~iYE~§
ASSEMBLE, MACRO, UPDATE, UPDTxxxx
AMSERV, COBOL, DIRECT, FORTRAN,

PLI, PLIOPT
All Others

~~Yncat!QB Coly~
71

72
Record Length

section 3. EDIT Subcommands and Macros 303

EDIT Subcommands-TRUNC, TYPE

2. The truncation value is used by the INPUT, REPLACE, STACK, and
OVERLAY subcommands also, and, for display terminals in display
mode, the CHANGE subcommand when it is used with no operands.

3. If your virtual machine is in input mode and you enter a line that
is longer than the current truncation setting, the message:

TRUNCATED

is displayed along with a display of the truncated line. Your
virtual machine is still in input mode.

When you enter the TRUNC subcommand with no operands, the editor
displays the current setting.

TYPE

Use the TYPE subcommand to display all or any part of a file at the
terminal. The format of the TYPE subcommand is:

r-
I r r "
I Type , 1m In II

1* 1* II
11 I I' I

I L L .J.J

L-

m

n

indicates the number of lines to be displayed, beginning with
the current line. An asterisk (*) indicates all lines between
the current line and the end of the file. If m is omitted,
only one line is displayed. If the number of lines specified
exceeds the number remaining in the file, displaying stops at
the end of the file.

indicates the column at which displaying is to stop,
overriding the current end column for verification. If n 1S
specified as an asterisk (*), it indicates that displaying is
to take place for the full record length.

1. Use the TYPE subcommand to display lines when you are editing a
file with verification off.

2. If you display one line, the current line pointer does not move; if
you display more than one line, the current line is positione.d at
the last line displayed, or at the end of the file if you specified
an asterisk (*~.

3. If you have set an end verification column to a value less than the
record length, and you want to display an entire record, enter:

type 1 *

304 IBM VM/SP CMS :ommand and Macro Reference

EDIT Subcommands-TYPE, UP

4. If you do not specify an end column, the length of the line(s)
displayed is determined by the current end verification setting.
If you are using right-handed line-number editing on a typewriter
terminal or a display terminal in line mode, the line numbers are
displayed on the left.

The requested lines are displayed.

Since the TYPE subcommand was designed for printing terminals, it is of
marginal value on a display terminal, except when you use line mode.
However, if the display screen is interrupted by communication from the
control program (CP~, you should use the TYPE subcommand to restore the
full screen display.

UP

Use the UP subcommand to r'eposi tion the current line pointer toward the
beginning of the file. The format of the UP subcommand is:

r-,
, Up , ,
L-

n

, r ,

lin 1
1 11 1
1 L .J

indicates the number of lines the pointer is to be moved
toward the beginning of the file. If a number is not
specified, then the pointer is moved up only one line. The
line pointed to becomes the new current line.

UP is equivalent to BACKWARD.

When verification is on, the line pointed to is displayed at your
terminal. If the UP subcommand causes the current line pointer to move
beyond the beginning of the file, the following message is displayed:

TOP:

section 3. EDIT Subcommands and Macros 305

EDIT Subcommands-VERIFY

VERIFY

Use the
setting.

VERIFY subcommand to set or display the
The format of the VERIFY subcommand is:

current verification

r-
I
I Verify
I
I

r 1

ION I
IOFFI
L .I

rr , ,
Iistartcoll endcoll
II 1 I * I
L L .J .J L _________________________ _

ON specifies
displayed,
indicated.

that lines located, altered,
and changes between edit and
ON is the initial setting.

or changed
input mode

are
are

OFF specifies that lines that are located, altered, or changed are
not displayed, and changes between edit and input mode are not
indicated.

startcol indicates the column in which verification is to begin, when
verification is on. The default is column 1. startcol must
not be greater than the record length nor greater than endcol.

endcol indicates the last column to be verified, when verification is
on. endcol must not be greater than the record length. If
endcol is specified as an asterisk (*), each record is
displayed to the end of the record.

1. If you issue the VERIFY subcommand with only one operand, that
operand is ass~med to be the endcol operand. For example, if you
issue VERIFY 10; verification occurs in columns 1 through 10.

2. The editor assigns the following settings, by default:

li!~~IE~§
AMSERV, ASSEMBLE, COBOL,

DIRECT, FORTRAN, MACRO,
PLI, PLIOPT, UPDATE, UPDTxxxx

Others (Including FREEFORT) Record Length

If you issue the VERIFY subcommand with no operands,
startcol and endcol settings are displayed, regardless
verification is on or off.

306 IBM VM/SP CMS Command and Macro Reference

the
of

current
whether

EDIT Subcommands-X, I

X or Y

Use the X or I sub commands to assign a given EDIT subcommand to be
executed whenever X or I is entered, or to execute the previo.usly
assigned subcommand a specified number of times. The format of the X
and I subcommands is:

r
I

~ {;}
r ,
1 subcommand 1
1 n 1

1
1
L

11 1
L .J

subcommand indicates any EDIT subcommand line. The editor assumes that
you have specified a valid EDIT subcommand, and no error
checking is done.

n indicates the number of times the previously assigned
subcommand is to be executed. If X or I is entered with no
operands, 1 is assumed.

1. Advancement of the current line pointer depends upon the EDIT
subcommand that has been assigned to X or I. If a number or a
subcommand is not specified, the previously assigned subcommand is
executed once.

2. X and I are initially set to null strings. If you enter X or I
without having previously assigned a subcommand to it, the editor
issues the ?EDIT error message.

3. Iou can use the X and I subcommands in many instances where you
must repeat a subcommand line many times while editing a file, but
the situation does not lend itself to a global request. For
example, if you assign X to a LOCATE and I to a CHANGE subcommand,
issue:

x

to execute the LOCATE request, and after examining the line, you
can change it and continue searching, by entering the I subcommand
followed by the X subcommand:

y#x

or just continue searching:

x

Responses are issued for the EDIT subcommands that are assigned to X and
I, in accordance with the current verification setting.

section 3. EDIT Subcommands and Macros 307

EDIT Subcommands-ZONE

ZONE

Use the ZONE subcommand to specify the columns of each record (sta~ting
position and ending position) to be scanned when the editor searches for
a character string or to display the current ZONE settings. The format
of the ZONE subcommand is:

r-----------------------
, , r r "
I Zone I Ifirstcol Ilastcoll I
I I I * I * II
I I 11 I II
I ILL JJ

L

firstcol indicates the near zone column of each record to be scaqned.
If firstcol is specified as an asterisk (*), the default is
column 1.

last col indicates the end zone column of each record to be scanned.
If lastcol is specified as an asterisk (*), the default is the
record len gth.

1. The editor assigns the following settings by default:

ASSEMBLE, MACRO, UPDATE,
UPDTxxxx

AMSERV, PLI, PLIOPT
COBOL, DIRECT, FORTRAN
BASIC, VSBASIC
FREEFORT
Others

Near Zone
(£QI umi--)

1

2
1
1
9
1

End Zone
(Colu!i)

71

12
12

Rec ord Length
Record Length
Record Length

2. The ZONE settings are used by the ALTER, CHANGE, and LQCATE
subcommands to define the columns that will be scanned. If you
specify a character string longer than the zone, you receive the
message:

ZONE ERROR

and the subcommand is not executed.

3. If you issue a CHANGE subcommand that increases the length of a
line beyond the end zone setting, the line is truncated.

308 IBM VM/SP CMS Command and Macro Reference

EDIT Subcommands-ZONE, ?

4. Iou can use the ZONE subcommand to protect data in particular
columns, for example:

edit newfile memo
NEW FILE:
EDIT:
zone

1 80
zone 10 20·
input the zone is now set for columns 10-20

EDIT:
change 101*/
the zone is n*w set for columns 10-20

Note that the LOCATE and CHANGE
now, not the word zone, because
not in position 1.

subcommands operated on the word
scanning started in position 10,

When you enter the ZONE subcommand without specifying zone settings, the
editor displays the current setting.

? (QU ESTION MARK)

Use the ? subcommand to display the last EDIT subcommand executed except
for a REUSE (=) or? (question mark) subcommand. The format of the?
subcommand is:

r-
I ?
L-

After an X, I,
subcommand that
subcommand.

or = subcommand,
was executed as a

the last
result

EDIT subcommand
of issuing the

is
X or

the
I

When you issue the ? subcommand using a 3270 in display mode, the last
EDIT subcommand that was executed is redisplayed in the user input area.
Press the Enter key to execute it again; you may modify the line before
reentering it.

section 3. EDIT Subcommands and Macros 309

EDIT Subcommands-nnnnn

nnnnn

Use the nnnnn subcommand to enter and locate lines when you are using
line-number editing. The format of the nnnnn subcommand is:

r--------------------------
I {nnnnn } I [text]
I nnnnnnnn I L-________________________ _

nnnnn

text

indicates a line number between 0 and 99999 if the filetype is
BASIC or VSBASIC, or a line number between 0 and 99999999 if
the filetype is FREEFORT.

specifies a line of text to be inserted into the file at the
specified line number. If a line with that number already
exists, it is replaced. If no text line is specified, the
current line pointer is positioned at the line number
specified •.

The nnnnn subcommand
editing; that is, you
RIGHT or LEFT operand.
and FREEFORT files.

is valid only when you are using line-number
have issued the LINEMODE subcommand using the
Line-number editing is the default for VSBASIC

When you issue the nnnnn subcommand with no operands, the line with the
specified line number is displayed. If the line is not found, the
editor displays the message:

LINE NOT FOUND

and the current line pointer is set at the largest line number that does
not exceed nnnnn.

310 IBM VM/SP CMS Command and Macro Reference

Edit Macros-$DUP

EDIT Macros

Edit macros are eMS EXEC files that execute sequences of EDIT
subcommands. The following edit macros are supplied with VM/SP for your
convenience. For additional information on creating and invoking your
own edit macros and EXEC files, see the VHLSP £~~ Q§~£~§ §uid~.

$DUP

Use the $DUP to duplicate the current line. The format of the $DUP
macro is:

r
I
I $DUP

, r ,

I In I
I 11 I
I L .J

I
I
L

n indicates the number of times you want to duplicate the line;
the maximum value you can specify is 25. If n is omitted, the
current line is duplicated once.

1. The last copy of the line duplicated becomes the new current line.

2. If you use the logical line end symbol (#) to stack additional
subcommands on the same line with the $DUP edit macro those
subcommands are cleared from the console stack and the message:

3.

STACKED LINES CLEARED BY $DUP

is issued. The stacked subcommand(s) are not executed.

Because it
duplicating
characters.

uses console functions, $DUP cannot
records containing binary zeros or
Truncated duplicate records will result.

be used when
nonprintable

4. When using line-number editing, you can insert duplicate lines
between existing numbered lines if the interval between line
numbers is large enough. Execution of $DUP stops after the last
valid line number has been assigned. You can renumber your file to
increase the interval between line numbers.

5. Because it uses the STACK EDIT subcommand, $DUP can duplicate a
maximum of 130 character in one line. Longer lines are truncated.

The last line duplicated (the new current line) is displayed.

Section 3. EDIT Subcommands and Macros 311

Edit Macros-$MOVE

$MOVE

Use the $MOVE edit macro to move one or more lines from one place in a
file tc another place. The format of the $MOVE macro is:

r-
, $ MOVE , n {UP m } DOWN m
I
L

n

TO label.

indicates the number of records you want to move, begiqning
with the current line. The maximum number of lines you can
move is 25.

UP m indicates that you want to move the lines toward the top of
the file, m lines above the current line.

DOWN m

TO label

indicates that you want to move the lines toward the end of
the file, m lines below the last line you are going to move.

indicates that you want the lines inserted
specified label. The label must be one to
characters and must start in column 1.

following the
eight uppercase

1. The last line moved becomes the new current line.

2. If the label is not found or if the DOWN value exceeds the number
of lines remaining before end of file, the lines are inserted at
the end of the file. If the UP value exceeds the number of lines
remaining before top of file, the lines are inserted at the t~p of
the file.

3. If you use the logical line end symbol (#) to stack additional
subcommands on the same line with the $MOVE request, those
subcommands are cleared from the console stack and the message:

STACKED LINES CLEARED BY $MOVE

is displayed. The stacked subcommands are not executed.

4. Because it uses console functions, $MOVE will truncate duplicated
records containing binary zeros or nonprintable characters.

5. Because it uses the STACK EDIT subcommand, $MOVE can move a maximum
of 130 characters in one line. Longer lines are truncated.

When verification is on, the last line moved is displayed.

312 IBM VM/SP CMS Command and Macro Reference

DEBUG Subcommands

Section 4. DEBUG Subcommands

This section describes the subcommands that
you use the debug environment to test and
debug environment is entered when:

are available to you when
debug your programs. The

• The DEBUG command is issued from the CMS environment.
command is described in "Section 2. CMS Commands.")

(The DEBUG

• An external interruption occurs. (An external interruption is caused
by the CP EXTERNAL command.)

• A breakpoint (instruction address stop) is encountered during program
execution. (Breakpoints are set with the DEBUG subcommand BREAK.)

When the debug environment is entered, the contents of all general
registers, the channel status word (CSW), and the channel address word
(CAW) are saved so they may be examined and changed before being
restored when leaving the debug environment. If debug is entered via an
interruption, the old program status word (PSW) for that interruptiqn is
also saved. If DEBUG is the first ccmmand entered after an abnormal
termination (abend) occurs, the contents of all general registers~ the
CSW, the CAW, and the old PSW are available from the time of the abend.

For hints on debugging your programs using the CMS debug environment,
consult the !~L~g CM~ US~£~2 Guid~.

section 4. DEBUG Subcommands 313

DEBUG Subcommands-BREAK

BREAK

Use the BREAK subcommand to stop execution of a program or module at a
specific instruction location called a breakpoint. The format of the
BREAK subcommand is:

r
I BReak id {Symbol}

hexloc I
L

id is a decimal number, from 0 to 15, which identifies the
breakpoint. A maximum of 16 breakpoints may be in effect at
one time; if you specify an identification number that is
already set for a breakpoint, the previous breakpoint is
cleared and the new one is set.

symbol

hexloc

is a name assigned to the storage location where the
breakpoint is set. symbol, if used, must have previously been
set using the DEFINE subcommand.

is the hexadecimal storage location (relative to- the current
origin) where the breakpoint is to occur. hexloc must be on a
halfword boundary and its value added to the current origin
must not exceed your virtual machine size.

1. To set breakpoints before beginning program execution, enter the
debug environment with the DEBUG command after you load the program
into storage. After setting the breakpoints, use the RETURN
subcommand to leave the debug environment and issue the START
command to begin program execution. For example:

load myprog
debug
break 1 20016
break 2 20032
return
start

2. When you assign hexloc to a breakpoint, you must know the current
origin (set with the ORIGIN subcommand). The hexloc you specify is
added to the current origin to determine the breakpoint address.

3. When a breakpoint is found during program execution, the message:

DMSDBG7281 DEBUG ENTERED BREAKPOINT yy AT xxxxxx

is displayed at the terminal. To resume program execution, use the
GO subcommand.

4. Breakpoints are cleared after they are encountered; thus, if a
breakpoint is encountered during a program loop you must reset the
breakpoint if you want to interrupt execution the next time that
address is encountered.

5. When you set a breakpoint, the halfword at the address specified is
replaced with B2Ex, where x represents the identification number

314 IBM VM/SP eMS Command and Macro Reference

DEBUG Subcommands-BREAK, CAW

you assigned. After the breakpoint is encountered during
execution, B2Ex is replaced with the original operation code.

6. You should set breakpoints only at valid operation code addresses;
the BREAK subcommand does not check to see whether or not the
specified location contains a valid operation code.

7. If you reference a virtual storage
segment, you are given a nonshared
receive the message:

address that is in
copy of the segment

SYSTEM sysname REPLACED WITH NON-SHARED copy

a shared
and you

None.

CAW

Use the CAW subcommand to display at the terminal the contents
CAW (channel address word) as it existed at the time the
environment was entered. The format of the CAW subcommand is:

of the
debug

r-
I CAW I
L

1. Issue the CAW subcommand to check that the command address field
contains a valid CCW address, or to find the address of the current
CCW so you can examine it.

2. The three low-order bits of the command address field must be zeros
in order for the CCW to be on a doubleword boundary. If the CCW is
not on a doubleword boundary or if the command address specifies a
location protected from fetching or outside the storage a,f a
particular user, the Start I/O instruction causes the status
portion of the CSW (channel status word) to be stored with the
program check or protection check bit on. In this event, the I/O
operation is not initiated.

The CAW, located at storage location X'48', is displayed. Its format is:

r
I KEY , 0000 I Command Address L ___________________ _

o

~i12
0-3

4-7

3 4 7 8 31

~Qnt~n1.2
The protection key for all commands associated with Start I/O.
The protection key in the CAW is compared to a key in storage
whenever a reference is made to storage.

This field is not used and must contain binary zeros.

Section 4. DEBUG Subcommands 315

DEBUG Subcommands-CAW, CSW

8-31 The command address field contains the storage address (in
hexadecimal representation) of the first CCW (channel command
word) associated with the next or most recent start I/O.

csw

Use the CSW subcommand to display at the terminal the contents
CSW (channel status word), as it existed at the time the
environment was entered. The format of the CSW subcommand is:

of the
debug

.--
I csw
L

1. The CSW indicates the status of the channel or an input/output
device, or the conditions under which an I/O operation terminated.
The CSW is formed in the channel and stored in storage location
X'40' when an I/O interruption occurs. If I/O interruptions are
suppressed, the CSW is stored when the next start I/O, Test I/O, or
Halt I/O instruction is executed.

2. Whenever an I/O operation abnormally terminates, issue the
subcommand. The status and residual count information in the
is very useful in debugging. Also, use the CSW to calculate
address of the last executed CCW (subtract eight bytes from
command address to find the address of the last CCW executed).

CSW
CSW
the
the

The contents of the CSW are displayed at the terminal in hexadecimal
representation. Its format is:

.--
,KEY I 00001 Command Address status Byte Count

03478 31 32 47 48 63

4-7

8-31

32-47

contents
The-protection key is moved to the CSW from the CAW. It shows
the protection key at the time the I/O operation started. The
contents of this field are not affected by programming errors
detected by the channel or by the condition causing
termination of the operation.

This field is not used and must contain binary zeros.

The command address contains a storage address (in hexadecimal
representation) that is eight bytes greater than the address
of the last ccw executed.

The status bits indicate the conditions in the device or
channel that caused the CSW to be stored.

316 IBM VM/SP CMS Command and Macro Reference

DEBUG Subcommands-eSW, DEFINE

48-63 The residual count is the difference between the number of
bytes specified in the last executed eew and the number of
bytes that were actually transferred. When an input operation
is terminated, the difference between the original count in
the eew and the residual count in the esw is equal to the
number of bytes transferred to storage; on an output
operation, the difference is equal to the number of bytes
transferred to the I/O device.

DEFINE

Use the DEFINE subcommand to assign a symbolic name to a specific
storage address. Once a symbolic name is assigned to a storage address,
that symbolic name can be used to refer to that address in any of the
other DEBUG subcommands. The format of the DEFINE subcommand is:

r
I
I DE Fine , symbol hexloc

r ,
Ibytecountl
I ! I

I L .J

L-

symbol

hexloc

bytecount

is the name to be assigned to the storage address derived from
the second operand, hexloc. Symbol may be from one to eight
characters long, and must contain at least one nonhexadecimal
character. Any symbolic name longer than eight characters is
left-justified and truncated on the right after the eighth
character.

is the hexadecimal storage location, in relation
current origin, to which the name specified in the
operand (symbol), is assigned.

to the
first

is a decimal number, between 1 and 56 inclusive, which
specifies the length in bytes of the field whose name is
specified by the first operand (symbol) and whose starting
location is specified by the second operand (hexloc). When
bytecount is not specified, 4 is assumed.

1. Issuing the DEFINE subcommand creates an entry in the debug symbol
table. The entry consists of the symbol name, the storage address,
and the length of the field. A maximum of 16 symbols can be
defined in the debug symbol table at any given time.

2. When a DEFINE subcommand specifies a symbol that already exists in
the debug symbol table, the storage address derived from the
current request replaces the previous storage address. Several
symbols may be assigned to the same storage address, but each of
these symbols constitutes one entry in the debug symbol table. The
symbols remain defined until they are redefined or until an IPL
subcommand loads a new copy of eMS.

Section 4. DEBUG Subcommands 317

DEBUG Subcommands-DEFINE, DUMP

3. When you assign a symbolic name to a storage location, you must
know the current origin (set by the ORIGIN subcommand). The hexloc
you specify is added to the current origin to create the entry in
the symbol table used by DEBUG subcommands. If you change the
current origin, existing entries are not changed.

4. You can use symbolic names to refer to storage locations when you
issue the DEBUG subcommands BREAK, DUMP, GO, ORIGIN, STORE, and X.

None.

DUMP

Use the DUMP subcommand to print part or all of your virtual storage on
the printer. The requested information is printed offline as soon as
the printer is available. First, a heading:

ident FROM starting location TO ending location

is printed. Next, the general registers 0-7 and 8-15, and the
floating-point registers 0-6 are printed, followed by the PSW, CSW, and
CAW. Then the specified portion of virtual storage is printed with. the
storage address of the first byte in the line printed at the left,
followed by the alphameric interpretation of 32 bytes of storage. The
format of the DUMP subcommand is:

r--
I
I DUmp
I
I
1
I
L-

symbo11

hexloc1

symbo12

hexloc2

*

r r , ,
I symbol1 I symbo12 I I
I hexloc1 I hexloc2 (ident] I I
I Q I * I I
I I II I I
L L J J

is the name assigned (via the DEFINE subcommand) to the
storage address that begins the dump.

is the hexadecimal storage location, in relation to current
origin, that begins the dump.

is the name assigned (via the DEFINE subcommand) to the
storage address that ends the dump.

is the hexadecimal storage location, in relation to the
current origin, that ends the dump.

indicates that the dump ends at your virtual machine's last
virtual storage address.

ident is any name (up to eight characters) that identifies the dump.

318 IBM VM/SP CMS Command and Macro Reference

DEBUG Subcommands-DUMP, GO

1. If you issue the DUMP subcommand with no operands, 32 bytes of
storage are dumped, starting at the current origin.

2. The first and second operands must designate storage addresses that
do not exceed your virtual machine storage size. Also, the storage
address derived from the second operand must be greater than the
storage address derived from the first operand.

None.

GO

Use the GO subcommand to exit from the debug environment and begin
program execution. The format of the GO subcommand is:

r ,
I GO
I

r 1
I symbol ,
, hexloc I

I L J

L

symbol is the symbolic name assigned to the storage location where
you want execution to begin.

hexloc is the hexadecimal location, in relation to the current
origin, where you want execution to begin.

1. When you issue the GO subcommand, the general registers, CAW
(channel address word), and CSW (channel status word) are restored
either to their contents upon entering the debug environment, or,
if they have been modified, to their modified contents. Then the
old PSW is loaded and becomes the current PSi. Execution begins at
the instruction address contained in bits 40-63 of the PSi.

2. When you specify symbol or hexloc with the GO subcommand, the
specified address replaces the instruction address in the old PSi,
so execution will begin at that address. If you entered the debug
environment with the DEBUG command, you must specify an address
with the GO subcommand.

3. The address you specify must be within your virtual machine and it
must contain a valid operation code.

prE9 ram execution is resumed.

Section 4. DEBUG Subcommands 319

DEBUG Subcommands-GPR, HX

GPR

Use the GPR subcommand to display the contents of one or more general
registers at the terminal. The format of the GPR subcommand is:

r-
I GPR I reg1 (reg2]
L

reg1 is a decimal number (from 0-15 inclusive) indicating the first
or only general register whose contents are to be displayed.

reg2 is a decimal number (from 0-15 inclusive) indicating
general register whose contents are to be displayed.
be larger than reg1.

the last
reg2 must

The register or registers specified are displayed, in hexadecimal
representation:

xxxxxxxx

HX

Use the HX subcommand to leave
reason the debug environment
subcommand is:

r
I HX
L

the debug environment, regardless of the
was entered. The format of the HI

If you entered the debug environment following a program interruption,
you receive the message:

CMS

to indicate a return to the CMS environment. If you entered the debug
environment by issuing the DEBUG command, you receive the message:

DMSABN148T SYSTEM ABEND 2E4 CALLED FROM xxxxxx

where xxxxxx is the address of the debug routine.

320 IBM VM/SP CMS Command and Macro Reference

DEBUG Subcommands-ORIGIN

ORIGIN

Use the ORIGIN subcommand to set an origin or base address to be us~d in
the debug environment. The format of the ORIGIN subcommand is:

r-
I ORigin

{
SymbOl}

I hexloc
I Q
L-

symbol

hexloc

is a symbolic name that was previously assigned (via the
DEFINE subcommand) to a storage address.

is a hexadecimal location within
storage. If you do not explicitly
a value of O.

the limits of your virtual
set an origin, then it has

1. When the ORIGIN subcommand specifies a symbol, the debug symbol
table is searched. If a match is found, the value correspqnding to
the symbol becomes the new origin. When a hexadecimal location is
specified, that value becomes the or~g~n. In either case, the
operand cannot specify an address greater than your virtual stqrage
size.

2. Any origin set by an ORIGIN subcommand remains in effect until
another ORIGIN subcommand is issued, or until you obtain a new copy
of CMS. Whenever a new ORIGIN subcommand is issued, the value
specified in that subcommand overlays the previous origin setting.
If you obtain a new copy of CMS (via IPL), the origin is set to 0
until a new ORIGIN subcommand is issued.

3. You can use the ORIGIN subcommand to set the origin to your
program's base address, and then refer to actual instruction
addresses in your program, rather than to virtual storage
locations.

None.

section 4. DEBUG Subcommands 321

DEBUG Subcommands-PSW, RETURN

PSW

Use the PSi
stat us word) •

subcommand to display the contents of
The format of the PSW subcommand is:

the PSi (program

r
I PSW
L

1. If the debug environment was entered because of a program
interruption, the program old PSW is displayed. If the debug
environment was entered because of an external interruption, the
external old PSi is displayed. If the debug environment was
entered for any other reason, the following is displayed in
response to the PSW subcommand:

01000000xxxxxxxx

where the 1 in the first byte means that external interruptions are
allowed and xxxxxxxx is the hexadecimal storage address of the
debug program.

2. The PSW contains some information not contained in storage or
registers but required for proper program execution. In general,
the PSi is used to control instruction sequencing and to hold and
indicate the status of the system in relation to the program
currently executing. For a description of the PSi, refer to
"Appendix A: System/370 Information" in the VML2R 2.l§!~!!
R£Qgf~m~£~§ Guig~·

The PSW is displayed in hexadecimal representation.

RETURN

Use the RETURN subcommand to exit from the debug environment and enter
the eMS command environment. The format of the RETURN subcommand is:

.-
I RETurn
L

The RETURN subcommand is valid only when the debug environment was
entered via the DEBUG command.

The eMS ready message indicates that control has been returned to the
eMS environment.

322 IBM VM/SP eMS Command and Macro Reference

DEBUG Subcommands-SET

SET

Use the SET subcommand to change the contents of the control words and
general registers. The format of the SET subcommand is:

r-
I SET

{

CAW hexinfo
hexinfo
hexinfo
reg [hexinfo] l

I
I
I
L

CSW
PSW
GPR

[hexinfo]
[hexinfo]

hex info

CAW hex info
stores the specified information (hexinfo) in the CAW (channel
address word) that existed at the time the debug environment
was entered.

CSW hexinfo [hexinfo]
stores the specified information (hexinfo (hexinfo]) in the
CSW (channel status word) that existed at the time the debug
environment was entered.

PSW hexinfo (hexinfo]
stores the specified information (hexinfo (hexinfo]) in the
old PSW (program status word) for the interruption that caused
the debug environment to be entered.

GPR reg hexinfo [hexinfo]
stores the specified information (hexinfo [hexinfo]) in the
specified general register (reg).

1. The SET subcommand can only change the contents of one control word
at a time. For example, you must issue the SET subcommand three
times:

set caw hexinfo
set csw hexinfo [hexinfo]
set psw hexinfo (hexinfo]

to change the contents of the three control words.

2. The SET subcommand can change the contents of one or two general
registers each time it is issued. When four or fewer bytes of
information ace specified, only the contents of the specified
register are changed. When more than four bytes of information are
specified, the contents of the specified register and the next
sequential register are changed. For example, the SET subcommand:

set gpr 2 xxxxxxxx

changes only the contents of general register 2. But, the SET
subcommand:

set gpr 2 xxxxxxxx xxxxxxxx

changes the contents of general registers 2 and 3.

section 4. DEBUG Subcommands 323

DEBUG Subcommands-SET, STORE

3. Each hexinfo operand should be from one to four bytes long. If an
operand is less than four bytes and contains an uneven number of
hexadecimal digits (representing half-byte information), the
information is right-justified and the left half of the uneven byte
is set to zero. If more than eight hexadecimal digits are
specified in a single operand, the information is left-justified
and truncated on the right after the eighth digit.

4. The number of bytes that can be stored using the SET subcommand
varies depending on the form of the subcommand. with the CAW form,
up to four bytes of information may be stored. With the CSW, GPR,
and PSW forms, up to eight bytes of information may be stored, but
these bytes must be represented in two operands of four bytes each.
When two operands of information are specified, the information is
stored in consecutive locations (or registers), even if one or both
operands contain less than four bytes of information.

None. To display the contents of control words or registers after you
modify them, you must use the CAW, CSW, PSW, and GPR subcommands.

STORE

Use the STORE subcommand to store up
information in any valid virtual storage
STORE subcommand i~

to 12 bytes of hexadecimal
location. The format of the

r
I STore

{
symbol}
hexloc

hexinfo [hexinfo (hexinfo]]
I
L

symbol is the symbolic name assigned (via the DEFINE subcommand) to
the storage address where the first byte of specified
information is to be stored.

hexloc

hexinfo

is the hexadecimal location, relative to the current origin,
where the first byte of information is to be stored.

is the hexadecimal information, four bytes or less in length
(that is, two to eight hexadecimal digits), to be stored.

1. If an operand is less than four bytes long and contains an uneven
number of hexadecimal digits (representing half-byte information),
the information is right-justified and the left half of the uneven
byte is set to zero. If more than eight hexadecimal digits are
specified in a single operand, the information is left-justified
and truncated on the right after the eighth digit.

2. The STORE subcommand can store a maximum of 12 bytes at one time.
By specifying all three information operands, each containing four
bytes of information, the maximum 12 bytes can be stored. If less
than four bytes are specified in any or all of the operands, the

324 IBM VM/SP CMS :ommand and Macro Reference

DEBUG Subcommands-STORE, X

information given is arranged into a string of consecutive bytes,
and that string is stored starting at the location derived from the
first operand.

For example, if you have defined a four-byte symbol named FENCE
that currently contains X'FFFFFFFF' and you enter:

store fence 0

FENCE contains X'OOFFFFFF'.

None. To display the contents of a storage location after you have
modified it, you must use the X subcommand.

x

Use the X subcommand to examine and display the contents of specific
locations in virtual storage. The format of the X (examine) subcommand
is:

r
I r 1

I X symbol I n I
I I !~g~~ I
I L J

I r ,
I hexloc I n I
I I ~ I
I L J

L

symbol n is the name assigned (via the DEFINE subcommand) to the
storage address of the first byte to be displayed. n is a
decimal number from 1 to 56 inclusive, that specifies the
number of bytes to be examined. If a symbol is specified
without a second operand, the length attribute associated with
that symbol in the debug symbol table specifies the number of
bytes to be examined.

hexloc n is the nexadecimal location, in relation to the current
origin, of the first byte to be examined. If hexloc is
specified without a second operand, four bytes are displayed.

The address represented by symbol or hexloc must be within your virtual
macnine storage size.

The requested information is displayed at the terminal in hexadecimal
format.

section 4. DEBUG Subcommands 325

326 IBM VM/SP eMS :ommand and Macro Reference

EXEC Control Statements

Section 5. CMS EXEC Control Statements

This section describes the formats, usage rules, and default values for
CMS EXEC control words, including:

• Control statements
• Built-in functions
• Special variables

An EXEC procedure is a CMS file that contains a sequence of CMS
commands and/or EXEC control statements. Control statements determine
the logic flow for EXEC, provide terminal communications, and may be
used to manipulate CMS disk files. For an introduction to the EXEC
facilities, and for complete tutorial information, including examples,
consult the !~L~~ £~~ Q~~~~ GuiQ~. Refer to Y~L~f ~!]£ 1 Ref~~D~ for
information on EXEC 2.

EXEC procedures may be invoked with the EXEC command, described in
"Section 2. CMS Commands." You may also execute an EXEC procedure by
specifying its filename, as long as the implied EXEC function is in
effect.

Section 5. EXEC Control Statements 327

EXEC Control statements-Assignment statement

The Assignment Statement

Use the assignment statement in an EXEC procedure to assign a value to a
variable symbol. Variable symbols may be tested and manipulated to
control the execution of an EXEC procedure. The format of the
assignment statement is:

r ,
, & variable = ,

{

string
ae
function
XIXXXXXX ,

L

&var iable

string

ae

function

XIXXXXXX

indicates the variable symbol that is assigned the specified
value. A variable may contain a maximum of eight alphameric
and national characters, including the initial ampersand,
which is required. Except in the EXEC special variables &*
and &DISK*, a variable must not contain any special
characters.

is a data item of up to eight characters. It may also be a
variable symbol or null. Whether a numeric string is
treated as numeric or character data depends on how it is
used in the EXEC. If a string containing variable symbols
expands to more than eight characters, it is truncated. If
the string consists of eight X'FF' characters, the variable
is set to a null string.

is an arithmetic expression consisting of a sequence of data
items that possess positive or negative integral values and
are separated by plus or minus signs:

&1 - 4 + &CALC - 6

is an EXEC built-in function followed by at least one token.

indicates up to six hexadecimal digits to be converted to
decimal before assignment. For example:

&A = XI CO

results in &A having the decimal value 192.

Hexadecimal conversion is not performed unless you have used
the &HEX ON control statement.

All variable symbols occurring in executable statements are substituted
before the statement is executed. An executable statement is (1) a CMS
command line, or (2) an EXEC control statement (including assig~ment
stat ements) •

328 IBM VM/SP CMS Command and Macro Reference

EXEC Control statements-Assignment statement

Variable substitution is performed on all symbols on the left-hand
side of an assignment statement, except the leftmost variable. For
example:

&I = 2
&X&I 5

sets &X2 to 5.

If a variable on the left-hand side of an assignment statement has
already been assigned a value, it is replaced by the new value specified
in the assignment statement.

If the special form, X'&symbol, is
converted to its hexadecimal equivalent.

&A = 192
&TYPE X'&A

results in the display:

co

used, the specified symbol
For example:

is

If a variable symbol that has not been defined is used in an
executable statement the symbol is set to a null token and ignored. In
some instances this may cause an EXEC processing error.

All executable statements in an EXEC are scanned into eight-character
tokens, and padded or truncated as necessary. Tokens are formed of ~ords
delimited by blanks and parentheses. If there is no blank before or
after a parenthesis, one is added in either case. If more thaq one
blank separates a word or a parenthesis from another, the extra blanks
are removed from the line. For example, the line:

&TYPE THIS IS AN EXAGGERATED (MESSAGE

scans as:

&TYPE THIS IS AN EXAGGERA (MESSAGE

variable symbols are substituted after each line is scanned, and each
token is scanned repeatedly until all symbols in it are substituted.

In an executable statement, a token beginning with the character
X'FF' (or a variable to which such a token is assigned as a value)
usually prevents the processing of data following it on the same line.
However, if an assignment statement sets a variable to eight X'FF'
characters, data following the variable in an executable statement is
processed.

Section 5. EXEC Control statements 329

EXEC Control Statements-&ARGS, &BEGEMSG

&ARGS

Use the &ARGS control statement to redefine the value of one or more of
the special variables, &1 through &30. The format of the &ARGS control
statement is:

r
I & ARGS [arg1 [arg2 • ~. (arg30]]] L __________________________ _

[arg 1 [arg2 ••• [arg 3 0]]]
specify up to 30 tokens to be assigned to the special
variables &1 through &30. If no arguments are specified, all
of the variables &1 through &30 are set to blanks. When fewer
than 30 arguments are entered, the remaining arguments are set
to blanks. An argument is also set to blanks if it is
specified as a percent sign (%).

1. To enter an argument list from the terminal, use the &READ ARGS
control statement.

2. An &ARGS control statemen t resets the val ues of the &INDEX, &*, and
&$ special variables.

&BEGEMSG

Use the &BEGEMSG control statement to introduce one or more unscanned
lines to be edited as VM/SP error messages. The list of lines to be
displayed must be terminated by an &END control statement, which must
appear beginning in column 1. The format of the &BEGEMSG control
statement is:

r-
I &B EGEMSG I (ALL] L ____________________ _

ALL specifies, for fixed-length EXEC files, that the entire line
(to a maximum of 130 characters) is to be displayed.

1. To qualify for error message editing, the first data item on each
line following the &BEGEMSG control statement must be seven
characters long, in the format:

mmmnnns

330 IBM VM/SP eMS Command and Macro Reference

EXEC Control stateme~ts-&BEGEMSG

mmmnnn is a six-character message identification you can supply
for the error message. Standard VM/SP error messages use a
three-character module code (mmm) and a three-character
message number (nnn).

s indicates the severity code. The following codes qualify
the message for error message editing:

~g§§~g 1Y~~
Informational
Error
Warning

When the severity code is E,
displayed in accordance with the
CODE, or TEXT). You can change
SET command, described in VMLSP
§g~~~al Q~~2.

I, or W, the message is
CP EMSG setting (ON, OFF,
this setting with the CP
CP £Q~~~g ~~!~n£~ fOE

2. When you use the &BEGEMSG control statement to display error
messages, the character string "DMS" is inserted in front of the
seven-character message identification. For example, if the EMSG
setting is ON, the lines:

&BEGEMSG
TEST01E INSURMOUNTABLE ERROR
&END

result in the display:

DMSTEST01E INSURMOUNTABLE ERROR

]Q!~: Since the maximum length of a line that you can display at
your terminal is 130 characters, the insertion of the characters
DMS will cause lines greater than 127 characters long to be
truncated.

3. Messages that are displayed as the result of an &BEGEMSG co~trol
statement are not scanned by the EXEC interpreter. Therefore, no
variable substitution is performed and no data items are truncated.
To display variable data, use the &EMSG control stat€ment.

Section 5. EXEC Control statements 331

EXEC Control Statements-&BEGPUNCH, &BEGSTACK

&BEGPUNCH

Use the &BEGPUNCH control statement to delimit the beginning of a list
of one or more data lines to be spooled to your virtual card punch. The
list of lines to be punched is terminated by the control statement &END,
which must occur beginning in column 1. The format of the &BEGPUNCH
control statement is:

r
I &BEGPUNCH
L

[ALL]

ALL specifies that data occupying columns 73 through 80 should be
punched. If ALL is not specified, input records are truncated
at column 72 and columns 73 through 80 of the output record
are padded with bl~nks.

1. Lines that are punched as the result of an &BEGPUNCH control
statement are not scanned by the EXEC interpreter. Therefore, no
variable sUbstitution is performed and no data items are truncated.
To punch variable data, you must use the &PUNCH control statement.

2. When you are finished punching lines in an EXEC procedure, you
should use the CP CLOSE command to close your virtual punch.

&BEGSTACK

Use the &BEGSTACK control statement to delimit the beginning of a list
of one or more data lines to be placed in the program stack. The list
of lines to be stacked is terminated by the control statement &END which
must occur beginning in column 1. The format of the &BEGSTACK control
statement is:

r
I r , r ,
I & BEGSTACK , 1.f!fQI

t LIFOt
L J

tALLI
L J ,

'--

LIFO

specifies that the lines that follow are to be stacked on a
first in, first out basis. This is the default value.

specifies that the lines that follow are to be stacked on a
last, in, first out basis.

ALL specifies, for fixed-length EXEC files, that the entire line
(to a maximum of 130 characters) is to be stacked. If ALL is
not specified, the lines are truncated in column 72.

332 IBM VM/SP CMS ~ommand and Macro Reference

EXEC Control Statements-&BEGSTACK, &BEGTIPE

1. Lines that are stacked as the result of an &BEGSTACK co~trol
statement are not scanned by the EXEC interpreter. Therefore, no
variable sUbstitution is performed, and data items are not
truncated. To stack variable data, you must use the &STACK control
statement.

2. To stack a null line in an EXEC file you must use the &STACK
control statement. A null line following an &BEGSTACK control
statement is interpreted as a line of blanks. To stack an INPUT,
REPLACE, or CHANGE subcommand to enter input mode from a
fixed-length EXEC, you should use the &STACK control statement.

&BEGTYPE

Use the &BEGTIPE control statement to delimit the beginning of a list of
one or more data lines to be displayed at the terminal. The list of
lines to be displayed is terminated by the control statement &END, which
must occur beginning in column 1. The format of the &BEGTYPE control
statement is:

r
I &BEGTYPE
L

[ALL]

ALL specifies, for fixed-length EXEC files, that data occupying
columns 73 through 130 is to be displayed. If ALL is not
specified, the lines are truncated at column 72.

Lines that are displayed as the result of an &BEGTIPE control statement
are not scanned by the EXEC interpreter. Therefore, no variable
sUbstitution is performed, and data items are not truncated. To display
variable data, you must use the &TIPE control statement.

section 5. EXEC Control statements 333

EXEC Control Statements-&CONTINUE, &CONTROL

&CONTINUE

Use the &CONTINUE control statement to
process the next statement in the
&CONTINUE control statement is:

instruct the EXEC interpreter to
EXEC file. The format of the

r--------------------
I & CONTINUE I
L

&CONTINUE is generally used with an EXEC label (for example, -LAB
&CONTINUE) to provide a branch address for &ERROR, &GOTO, and other
branching statements. &CONTINUE is the default action taken when an
error is detected in processing a CMS command.

&CONTROL

Use the &CONTROL control statement to specify the amount of data to be
displayed in the execution summary of an EXEC. The format of the
&CONTROL control statement is:

r--------
, I
I & CONTROL I
I I
I I
, I
I I
L-_

r ,
IOFF ,
IERRORI
'f!1§. I
IALL I
L .J

r ,

1!1§.§ I
I NOMSG I
L .J

r ,
,TIME I
I1iOT!l1~'
L .J

r ,

'R!f!l ,
INOPACK,
L ..

OFF suppresses the display of CMS commands and EXEC
statements as they execute and of any return codes
result from CMS commands.

control
that may

ERROR displays only those CMS commands that result in an error and
also displays. the error message and the return code.

£H§. displays each CMS command as it is executed and all nonzero
return codes.

ALL displays :MS commands and EXEC executable statements as they
execute as well as any nonzero return codes from CMS commands.

!1§.§ does not suppress the "FILE NOT FOUND" message if it is issued
by the following commands when they are invoked from an EXEC
procedure: ERASE, LISTFILE, RENAME, or STATE.

NOMSG suppresses the "FILE NOT FOUND" message if it is issued when
the ERASE, LISTFILE, RENAME, or STATE commands are invoked
from an EXEC procedure.

334 IBM VM/SP CMS Command and Macro Reference

EXEC Control Statements-&CONTROL, &EMSG

TIME includes the time-of-day value with each CMS command printed
in the execution summary; for example:

14:36:30 TYPE A B

This operand is effective only if CMS or ALL is also
specified.

does not include the time-of-day value with CMS commands
printed in the execution summary.

packs the lines of the execution summary so that surplus
blanks are removed from the displayed lines.

NOPACK does not pack the lines of the execution summary.

1. The execution summary may consist of CMS commands, responses, error
messages, and return codes, as well as EXEC control statements and
assignment statements. When EXEC statements are displayed, they
are displayed in their scanned format, with all variable symbols
substituted.

2. Each operand remains set until explicitly reset by another &CONTROL
statement that specifies a conflicting operand. When &CONTROL is
used with no operands, all operands are reset to their default
values.

3. There is no global setting for &CONTROL. When an EXEC is nested
within another EXEC, the execution summary is controlled by the
nested EXEC's &CONTROL setting. When control returns to the outer
EXEC, the original &CONTROL setting is restored.

&EMSG

Use the &EMSG control statement to display a line of tokens to be edited
as a VM/SP error message. The format of the &EMSG control statement is:

r
I &EMSG I mmmnnns [tok1 ••• [tokn]]
L-

mmmnnn

s

is a six-character identification you may supply for the error
message. Standard VM/SP messages are coded using a
three-character module code (mmm) and a three-character
message number (nnn).

indicates the severity code. The following codes qualify the
message for error message editing:

£Q~~
I
E
W
R

~~2~g~ II~~
Information
Error
Warning
Response

section 5. EXEC Control statements 335

EXEC Control Statements-&EMSG, &END, &ERROR

tok 1 ••• [tokn]
is the text of the message to be displayed.

1. When the severity code is I, E, or W, the message is displayed in
accordance with the CP EMSG setting (ON, OFF, CODE, or TEXT). You
can change the setting with the CP SET command, described in VM~R
fR fQm~s~g ~~!~~~ng~ i2f §~n~fS! Us~~.

2. When an &EMSG code is displayed, it is prefixed with DMS. For
example, the statement:

&EMSG ERROR1E INVALID ARGUMENT

displays as follows when the EMSG setting is ON:

DMSERROR1E INVALID ARGUMENT

3. To display an error message with unsubstituted data, or to display
a line with words of more than eight characters, use the &BEGEMSG
control statement.

&END

Use the &END control statement to terminate a list of one or more lines
that began with an &BEGEMSG, &BEGPUNCH, &BEGSTACK, or &BEGTYPE co~trol
statement. The format of the &END control statement is:

r
I &END
L

The word "&END" must be entered beginning in column 1.

&ERROR

Use the &ERROR control statement to specify the action to be taken when
a CMS command results in an error and returns with a nonzero return
code. The format of the &ERROR control statement is:

r
I
I &ERROR
I
I
'--

r ,
I executable-statement I
l~fQNTI!Q~ I
L J

executable-statement
specifies any executable statement, which may be an EXEC
control statement or assignment statement or a CMS command.
If you specify an EXEC control statement that transfers

336 IBM VM/SP CMS Command and Macro Reference

EXEC Control Statements-&ERROR, &EXIT

control to another line in the EXEC, execution continues at
the specified line. Otherwise, execution continues with the
line following the CMS command line that caused the error.

1. If your EXEC does not contain an &ERROR control statement, then the
default is &CONTINUE; that is, EXEC processing is to continue with
the line following the CMS command that caused the error. You can
use &ERROR &CONTINUE to reset a previous &ERROR statement.

2. The words following an &ERROR control statement are not scanned
until a CMS command returns a nonzero return code. Therefore, if
you specify an invalid EXEC statement, the error is not det~cted
until a CMS command failure triggers the &ERROR statement. If the
&ERROR statement executes a CMS command that also results in an
error, EXEC processing is' terminated.

&EXIT

Use the &EXIT' control statement to terminate processing the EXEC file.
If the exit is taken from a first-level EXEC procedure, control passes
to CMS. If the exit is taken from a nested EXEC procedure, co~trol
passes to the calling EXEC procedure. The format of the &EXIT coqtrol
statement is:

r-
I
I &EXIT

r ,
I return-code I
I ~ , I

I L .J

'--

retu rn-code
specifies a numeric value, which may be a variable symbol, to
be used as the return code from this EXEC. If the return code
is not specified, it defaults to O.

1. If control is returned to CMS, the CMS ready message indicates the
return code value. Thus, the statement:

&EXIT 12

results in the ready message:

R(00012) ;T=O/02 15:32:34

2. If you specify:

&EXIT &RETCODE

the return code value displayed is the return code from the most
recently executed CMS command.

section 5. EXEC Control statements 337

EXEC Control Statements-SGOTO, SHE X

&GOTO

Use the SGOTO control statement to transfer control to a specific
location in the EXEC procedure. Execution then continues at the
location that is branched to. The format of the SGOTO control statement
is:

r
I &GOTO ,
I
L-

TOP

{
TOP }
line-number
-label

transfers control to the first line of the EXEC fil~.

line-number transfers control to a specific line in the EXEC file.

-label transfers control to a specific label in the EXEC file. A
label must begin with dash (-), and it must be the first
token on a line. The remainder of the line may contain an
executable statement or it may be null.

1. Scanning for an EXEC label starts on the line following the &GOTO
statement, goes to the end of the file, then to the top of the
file, and (if unsuccessful) ends on the line above the &GOTO
statement. If more than one statement in the file has the same
label, the ficst one encountered by these rules satisfies the
search.

2. To provide a branch up or down a specific number of lines in the
EXEC, use the &SKIP control statement.

&HEX

Use the &HEX control statement to initiate or inhibit hexadecimal
conversion in an EXEC procedure. The format of the &HEX control
statement is:

r
I &HEX ,
L

ON indicates that tokens beginning with the string X' are to be
interpreted as hexadecimal notation.

Qff indicates that no hexadecimal conversion is to be done by
EXEC. OFF is the default setting.

338 IBM VM/SP CMS Command and Macro Reference

EXEC Control Statements-SHEX, SIF

1. You should use the SHEX control statement when you want to display
a hexadecimal value. For example:

&HEX ON
&TYPE X' 40
&HEX

results in the display:

28

If you did not use the SHEX ON control statement, the STYPE
statement would result in the display:

X'40

2. To convert a hexadecimal value to its decimal equivalent, use an
assignment statement.

3. The !~L~f ~~~ Q§~~2 Gui~~ should be consulted for details and
examples of correct usage of EXEC control statements with SHEX ON
in effect.

&IF

Use the SIF control statement to test a condition in an EXEC proc~dure
and to perform a particular action if the test is valid. If the test is
invalid, execution continues with the statement following the SIF
control statement. The format of the &IF statement is:

r-------------------------- ------------------,
I &IF I {token'} operator
I ,&$
I I &*

executable-statement I
I
I

L-

token1
token2

&$

&*

operator

may be numeric constants, character
symbols. All variable symbols are
statement is executed.

I

strings, or EXEC variable
substituted before the SIF

tests al~ of the arguments entered when the EXEC was invoked.
If at least one of the arguments satisfies the specified
condition, the &IF statement is true.

tests all of the arguments entered when the EXEC was invoked.
All of the entered arguments must meet the specified condition
in order for the &IF statement to be true.

indicates the test to
tokens are numeric,
Otherwise, a logical

be performed on the tokens. If both
an arithmetic test is performed.

(alphabetic) test is performed. The

Section 5. EXEC Control Statements 339

EXEC Control Statements-SIF, SLOOP

comparison operators, listed below, may be specified either in
symbolic or mnemonic form:

~I!I!!2.Q! QE~£~ti.Q!!
= or EQ equals

..,= or NE not equal
< or LT less than
<= or LE less than or equal to (not greater than)
> or GT greater than
>= or GE greater than or equal to (not less than)

executable-statement
is any valid EXEC executable statement which may be a CMS
command, an EXEC control statement, or an assigqment
statement •. You may also specify another SIF statement; the
number of &IF statements that may be nested is limited only by
the record length of the file. In fixed-length EXEC files,
only the first 72 characters of the line are scanned.

1. The values &* and &$ are reset when an &ARGS or &READ ARGS con.trol
statement is executed. They are not changed when you reset a
specific numeric variable (&1 through &30).

2. If a variable symbol used in an SIF control statement is undefined,
the EXEC interpreter cannot properly compare it. In cases where a
variable may be null, or to check for a null symbol, you should use
a concatenation character when you write the SIF statement; for
example:

SIF .S1 EO • &GOTO -NOARGS

tests for a null symbol S1.

3. If the symbols &* or S$ are null. because no arguments were entered,
the entire &IF statement is treated as a null statement.

&LOOP

Use the &LOOP control statement to describe a loop in an EXEC procedure,
including the conditions for exit from the loop. The format of the
&LOOP control sta~ement is:

r---------------------
I & LOOP I {n } {m }
I I -label condi tion L ___ _

n

-label

is a positive integer from 0 to 4095 that indicates the
number of executable and nonexecutable lines in the loop.
These lines must immediately follow the SLOOP statement.

specifies that all of the lines following the SLOOP
statement down to, and including the line with the specified
label, are to be executed in the loop. The first character
of the label must be a hyphen, and it must be the first

340 IBM VM/SP CMS Command and Macro Reference

m

EXEC Control Statements-SLOOP, &PUNCH

token on a line. The remainder of the line may contain an
executable statement, or it may be null.

is a positive integer from 0 to 4095 that indicates the
number of times the loop is to be executed.

condition specifies the condition that must be met. The syntax of the
exit condition is the same as that in the &IF statement,
that is:

1. When loop execution is complete, control passes to the next
statement following the end of the loop.

2. The condition is always tested before the loop is executed. If the
specified condition is met, then the loop is not executed. For
example, the statement:

&LOOP 3 &COUNT = 100

specifies that the next three lines are interpreted until the value
of &COUNT is 100.

3. Loops may be nested up to four levels deep. All nested loops may
end at the same label.

4. A loop is closed when the requirements for termination specified in
the &LOOP statement are met, or when control is transferred outside
the scope of the loop (via &GOTO or &SKIP) •

&PUNCH

Use the &PUNCH control statement to punch a line of tokens to the
virtual card punch. The format of the &PUNCH control statement is:

r
, &PUNCH
L

[tok 1 [tok2 ••• [tokn]]]

tok1 [tok2 ••• [tokn]]
specifies the tokens to be punched. All tokens are padded or
truncated to eight characters. The punched line is right-padded
with blanks to fill an 80-column card. If no tokens are specified,
a line consisting of 80 blank characters is punched.

1. Lines punched with the &PUNCH control statement are scanned by the
EXEC interpreter and variable symbols are substituted before the
line is punched. In fixed-length EXEC files, only the first 72
characters of the record .are scanned. To punch one or more lines

section 5. EXEC Control statements 341

EXEC Control Statements-&PUNCH, &READ

of unscanned data, use the &BEGPUNCH or &BEGPUNCH ALL control
statement.

2. When you have finished punching lines in an EXEC procedure, you can
use the CP command CLOSE to close the spool punch file and release
it for processing.

&READ

Use the &READ control statement to read one or more lines from the
executable statements. console stack. The lines may contain data or

The format of the &READ control statement is:

r
I
I
I
I
I ,
L

n

&READ

ARGS

r
I n
, 1
IARGS
IVARS [&var1 [&var2 •••
L

,
I
I
I

[&varn]]]1
~

reads the next n lines from the terminal and treats them as if
they had been in the EXEC file. Reading from the terminal
stops when n lines have been read, or when an &LOOP stat~ment
or a statement that transfers control is encountered. If an
&READ statement is encountered, the number of lines to be read
by it is added to the number outstanding.

If n is not specified, the default 1 is assumed, and the EXEC
continues processing after reading a single line.

reads a single line, assigns the entered tokens to the special
variables &1, &2, ••• , &n, and resets the special variables
&INDEX, &*, and &$.

If any of the tokens is specified as a percent sign (%) or
begins with the character X'FF', the corresponding argument is
set to blanks.

VARS (&var1 [&var2 ••• [&varn]]]
reads a single line and assigns the tokens entered to the
variable symbols &var1, &var2, ••• , &varn (up to 17).

These variables are scanned in the same way as though they
appeared on the left-hand side of an assignment statement. If
no variable names are specified~ any data read from the
terminal is lost.

If any of the tokens is specified as a percent sign (%) or
begins with the character X'FF', the corresponding variable is
set to blanks.

You can test the special variable &READFLAG to determine whether the
next &READ statement will result in a physical read to your terminal
(the value of &READFLAG is CONSOLE) or in reading a line from the
console stack (the value of &READFLAG is STACK) •

342 IBM VM/SP CMS Command and Macro Reference

EXEC Subcommands-&SKIP, &SPACE

&SKIP

Use the &SKIP control statement to cause a specified number of lines in
the EXEC file to be skipped. The format of the &SKIP control statement
is:

,--
I
I &SKIP

r ,
I n I
111 I

I L .I
L __

n specifies the number of lines to be skipped:

• If n is greater than 0, the specified number of lines are
skipped. Execution continues on the line foll9win9 the skipped
lines. If the value of n surpasses the number of lines
remaining in the file, the EXEC terminates processing.

• If n is equal to 0, no lines are skipped, and execution
continues with the next line.

• If n is less than 0, execution continues with the line that is n
lines above the current line. An attempt to skip beyond the
beginning of the file results in an error exit from the EXEC.

• The n may be coded as a variable symbol. 1 is the default value
that is used when no value is specified for n.

To pass control to a particular label in an EXEC procedure, use the
&GOTO control statement •. The &GOTO control statement provides more
flexibil1ty when you want to update your EXEC procedures. The &SKIP
statement, however, is more efficient, in terms of execution time.

&SPACE

Use the &SPACE control statement to display a specified number of blank
lines at your terminal. The format of the &SPACE control statement is:

,----
I
I &SPACE
I
I
L

n

r ,
In,
I 1 I
L .I

specifies the number of blank lines to be displayed at the
terminal. If no number is specified, &SPACE 1 is assumed by
default.

section 5. EXEC Control statements 343

EXEC Control State~ents-&SPACE, &STACK

1. You may want to use the &SPACE control statement to control the
format of the execution summary that displays while your EXEC
executes.

&STACK

Use the &STACK control statement to stack a single data line in the
program stack .. Stacked lines may be read by the EXEC, by CMS,or by the
CMS editor. The format of the &STACK control statement is:

r-, r 1 r ,
, &STACK , ·'!lIQ'

, LIFO,
I tok1 [tok2 ••• [tokn
I HT

]]1 , ,
I
L

L J I RT I
L .J

specifies that the line is to be stacked in a first in, first
out sequence. FIFO is the default.

LIFO specifies that the line is to be stacked in a last in, first
out sequence.

tok 1 [tok2 ••• [tokn]] C
specify the tokens to be stacked. If no tokens are specified,
a null line is stacked. The tokens are in expanded form.

HT

RT

stacks the CMS Immediate command HT (halt typing), which is
executed immediately. All CMS terminal display from the EXEC
is suppressed until the end of the file or until an RT (resume
typing) command is read.

stacks the CMS Immediate command
executed immediately. If CMS
suppressed as the result of an
display is resumed.

RT (resume typing), which is
terminal display has been

HT (halt typing) request,

1. Lines stacked with the &STACK control statement are scanned by the
EXEC interpreter and variable symbols are sUbstituted before the
line is stacked. To stack one or more unscanned lines, use the
&BEGSTACK or &BEGSTACK ALL control statement.

2. You must use the &STACK control statement when you want to stack a
null line.

3. The commands SET CMSTYPE HT and SET CMSTYPE RT perform the same
functions as &STACKHT and &STACK RT.

4. A complete discussion of techniques you can use
and data in the console stack is provided in the
Qy!de.

344 IBM VM/SP CMS Command and Macro Reference

to stack commands
llL§g CMS J1~2

EXEC Control Statements-&TIME

&TIME

Use the &TIME control statement to request timing information to be
displayed at the terminal after each CMS command that is executed. The
format of the &TIME control statement is:

r----------
I I r ,
I &TIME I ION I
I I lOFF I
I I I RESETI , , ITYPE I
I I L J

L

ON resets the processor's time before every CMS command, and
prints the timing information on return. If the &CONTROL
control statement is set to CMS or ALL, the display of the
timing information is followed by a blank line.

RESET

TYPE

does not automatically reset the processor's time before ~very
CMS command, nor does it print the timing informatio~ on
return.

performs an immediate reset of the processor's time.

displays the current timing information (and resets the
processor's time).

1. When timing information is displayed, it is in the format:

T=x.xx/y.yy hh:mm:ss

where:

x.xx

y.yy

is the virtual processor's time used since it was last
reset in the current EXEC file.

is the total of the processor's time used since it was
last ~eset in the current EXEC file.

hh:mm:ss is the actual time of day in hours:minutes:seconds.

2. The processor's time is set to zero before the executio~ of the
first statement in the EXEC file, and is again set to zero (reset)
whenever timing information is printed.

section 5~ EXEC Control Statements 345

EXEC Control Statements-STIPE

&TYPE

Use the &TIPE control statement to display a line of
terminal. The format of the &TIPE control statement is:

tokens at the

r
I &TIPE I [tok1 [tok2 •••. [tokn]]]
L

tok1 [tok2 ••• (tokn]]
specify the tokens to be displayed.
truncated to eight characters. If
null line is displayed.

All tokens are padded or
no tokens are specified, a

Lines displayed with the &TIPE control statement are scanned by the EXEC
interpreter and variable symbols are substituted before the line is
displayed. To display one or more unscanned lines, use the &BEGTIPE or
&BEGTIPE ALL control statements.

346 IBM VM/SP CMS :ommand and Macro Reference

EXEC Built-In Functions-&CQNCAT

Built-In Functions

You can use the
variable symbols.
may be used only
follows:

EXEC built-in functions to assign and manipulate
With the exception of &LITERAL, built-in functions

on the right-hand side of an assignment statement, as

&MIX = &CONCAT &1 &2

Built-in functions may not be combined with arithmetic expressions.

Each of the built-in functions (&CONCAT,
&LITERAL, and &SUBSTR) is described separately.

&DATATYPE, &LENGTH,

&CONCAT

Use the &CONCAT function to concatenate two or more tokens and assign
the result to a variable symbol. The format of the &CONCAT functioQ is:

r-
, &variable
L __

&var iable

&CONCAT tok 1 [tok2 ••• (tokn]]

is the variable symbol whose value is determined by the
&CONCAT function.

tok1 [tok2 ••• [tokn]]
specifies the tokens that are to be concatenated into a
single token; for example:

&A = **

&B &CONCAT XX &A 45
&TYPE &B

results in the printed line:

XX**45

If the concatenated token is longer than eight characters, the data is
left-justified and truncated,on the right.

section 5. EXEC Control statements 347

EXEC Built-In Functions-&DATATYPE, &LENGTH

&DATATYPE

Use the &DATATYPE function to determine whether the value of the
specified token is alphabetic or numeric data. The format of the
&DATATYPE function is:

r
, &variabie = &DATATYPE token
L----

&variable

token

is the variable symbol whcse value is determined by the
&DATATYPE function.

specifies the target token
alphabetic or numeric data.
function has the value NUM or
type of the specified token.

SCHECK = &DATATYPE ABC
&TYPE &CHECK

results in the display:

CHAR

that is to be examined for
The result of the &DATATYPE

CHAR, depending on the data
For example:

A null token is considered character data.

&LENGTH

Use the &LENGTH function to determine the number of characters in a
token. The format of the &LENGTH function is:

r
, &variable = &LENGTH token L __ ~ ___________ . ________ __

&variable is the variable symbol whose value is determined by the
&LENGTH function.

token specifies the target token that
non blank characters. The result of
the number of nonblank characters
For example:

&LEN = &LENGTH ALPHA
STYPE &LEN

results in the display:

5

348 IBM VM/SP CMS Command and Macro Reference

is to be examined for
the &LENGTH function is

in the specified token.

EXEC Built-in Functions-&LITERAL, &SUBSTR

&LITERAL

Use the &LITERAL function to inhibit variable sUbstitution on the
specified token. The &LITERAL function may appear in any EXEC control
statement, as follows:

r--
I [•••] SLITERAL token[•••]
L-

token specifies the token whose literal value is to be used without
sUbstitution. For example:

&X = **
&TIPE SLITERAL &X EQUALS SX

results in the printed line:

&X EQUALS **

&SUBSTR

Use the SSUBSTR function to extract a character string from a specified
token and to assign the substring to a variable symbol. The format of
the SSUBSTR function is:

r--
I &variable = &SUBSTR token i (j]
L-

&var iable is the variable symbol whose value is determined by the
SSUBSTR function.

token

i

j

is the token from which the character string is to be
extracted.

specifies the character position in the token of the first
character to be used in the substring.

specifies the number of characters in the string.
omitted, the remainder of the token is used.

If

The values of i and j (if given) must be positive integers. For
example:

&A = SSUBSTR ABCDE 2 3
STIPE &A

results in the printed line:

BCD

section 5. EXEC Control statements 349

EXEC Special Variables

Special Variables

Special variables are variable symbols that a~e assigned values by the
EXEC interpreter, and that you can test or display in your EXEC
procedures. In some cases, you may assign your own values to EXEC
special variables; these cases are noted in the variable descriptio~s.

&n

The &n special variable represents the numeric variables &1 through &30.
When an EXEC is invoked, the numeric variables from &1 through &30 are
initialized according to the arguments that are passed to the EXEC file
(if any).

The numeric variables can be reset by either an &ARGS or &READ ARGS
control statement; when fewer than 30 arguments are set or reset, the
remainder of the &n variables are set to blanks. A particular argument
can be set to blanks by assigning it a percent sign (%) when invoking
the EXEC procedure, in an &ARGS control statement, or in an &READ ARGS
control statement. An argument is also set to blanks if it begins with
the character XIFFI and is specified when invoking the EXEC procedure or
in an &READ ARGS control statement.

You may set the values of specific
statements. Any value of n, however, that
than 0 is rejected by the EXEC interpreter.

&* and &$

arguments using assignment
is greater than 30 or less

These variables can be used to perform a collective test on all of the
arguments passed to the EXEC procedure. &* and &$ may only be used in
the &IF and &LOOP control statements and are described under the
description of the &IF control statement.

You may not assign values to the special variables &* and &$.

&0

The &0 special variable contains the filename of the EXEC file. You may
test and manipulate this variable.

&DISKx

You can use the &DISKx special variable to determine whether a disk is
an as, DOS, or CMS disk. x represents the mode letter at which the disk
is accessed. For example, if you access an as disk with a ~ode letter
of C, then the special variable &DISKC has a value of as. The possible
values for the &DISKx special variable are as (for an as disk), DOS (for
a DOS disk), CMS (for a CMS disk), and NA (when the disk is not
accessed) •

350 IBM VM/SP CMS Command and Macro Reference

EXEC Special Variables

You may set or change the values of an &DISKx special variable; if
you do so, however, you will no longer be able to test the status of the
disk at mode x.

&OISK*

The &DISK*
the first
read/write
NONE.

special variable contains the one-character mode letter of
read/write disk in the CMS search order. If you have no
disks accessed, this special variable contains the value

You may assign a value to the &DISK* special variable for your own
use; if you do so, kowever, you will not be able to use it to obtain the
filemode letter of a read/write disk.

&OISK?

You can use the &DISK? special variable in an EXEC to determine which
read/write disk that you have accessed has the most space on it. If you
have no read/write disks accessed, &DISK? contains the value NONE.

You may assign a value to the &DISK? special variable for your own
use; if you do so, however, you will no longer be able to locate the
read/write disk with the most space.

&OOS

The &DOS special variable contains one of the two character values ON or
OFF, depending on whether the CMS/DOS environment is active. If you
have issued the command:

set dos on

then the &DOS special variable contains the value ON.

You may set or change the value of the &DOS special variable for your
own use; if you do so, however, you will not be able to test whether the
CMS/DOS environment is active.

&EXEC

The &EXEC special variable is the filename of the EXEC file. You cannot
set this variable explicitly but you can examine and test it.

&GLOBAL

The &GLOBAL special variable contains the recursion level of the EXEC
currently executing. Since the EXEC interpreter can handle up to 19
levels of recursion, the value of &GLOBAL ranges from 1 to 19. You
cannot set this variable explicitly, but you can examine and test it.

Section 5. EXEC Control Statements 351

EXEC Special variables

&GLOBALn

The &GLOBALn special variable represents the variables &GLOBALO through
&GLOBAL9. You can set these variables only to integral numeric values.
They are all initially set to 1. Unlike other EXEC variables, these can
be used to communicate between different recursion levels of the EXEC
interpreter.

&INDEX

The &INDEX special variable contains the number of arguments passed to
the EXEC procedure. Since up to 30 arguments can be passed to an EXEC
procedure, the value of &INDEX can range from 0 through 30.

Although you cannot set this variable explicitly, it is reset by an
&ARGS or &READ ARGS control statement. &INDEX can be examined to
determine the number of active arguments in the EXEC procedure.

&LINENUM

The &LINENUM special variable contains the current line number in the
EXEC file. You cannot explicitly set this variable but you can examine
and test it.

&READFLAG

The &READFLAG special variable contains one of two literal values:
CONSOLE or STACK. If there are stacked lines in the program stack or
console input buffer &READFLAG contains the value STACK and the next
read request results in a line being read from the stack. If not, then
the next read request results in a physical read to the terminal, and
the value of &READFLAG is CONSOLE. You cannot explicitly set this
variable but you can examine and test it.

&RETCODE

The &RETCODE special variable contains the return code from the most
recently executed CMS command. &RETCODE can contain only integral
numeric values (positive or negative), and is set after each CMS command
is executed. You can examine, test, and change this variable but
changing it is not recommended.

&TYPEFLAG

The &TYPEFLAG special variable contains one of two literal values: RT
(resume typing) or HT (halt typing). It contains the value HT when
terminal display has been suppressed by the Immediate command HT. It
contains the value RT when the terminal is displaying output. You
cannot explicitly set this variable, but you can examine and test it.

352 IBM VM/SP CMS Command and Macro Reference

CMS Functions

Section 6. eMS Functions

This section describes functions that are avilable to the CMS user.

Execute CMS functions from application programs by setting up a
parameter list and then issuing an SVC 202. When you want to execute a
function in your program, load the address of the function parameter
list into Register 1 and issue the SVC 202 as follows: '

LA 1,Parameter List
SVC 202
DC AL4 (ERROR)

where ERROR is a routine to handle nonzero return codes returned in
register 15 after execution of the SVC call.

If you want to ignore errors, you can code the sequence:

LA 1,Parameter List
SVC 202
DC AL4 (*+4)

If the function completes normally, this sequence causes execution of
the next sequential instruction. However, if an error occurs while
executing the function and the program req uires successful execution of
the function, abnormal termination of your program may result.

Section 6. CMS Functions 353

ATTN Function

ATTN Function

Use the ATTN function to insert a line of input into the program stack.
ATTN may be executed from an assembler language program via SVC 202 with
the following parameter list:

PLIST

*

DS
DC
DC

DC
DC

OD
CL8' ATTN'
CL4'order'

AL1 (length)
AL3 (addr)

where order may be LIFO or FIFO.
FIFO is the default
length of line to be stacked
address of line to be stacked

1. The line that ATTN stacks is extracted from the program stack when
WAITRD is executed to read a line of inpu t. (See the WAITRD
function description for details of WAITRD function.)

2. ATTN stacks lines of up to 255 characters.

None

o Function successfully completed
25 No more storage

354 IBM VM/SP CMS Command and Macro Reference

WAITRD Function

WAITRD Function

Use the WAITRD function to read a line of input from the program stack
or console input buffer into a specified buffer. WAITRD may be executed
from an assembler language program via SVC 202 with the following
parameter list:

PLIST OF
eL8' WAITRD'
AL1 (1)
AL3(input buffer address)
CL1'code'

DS
DC
DC
DC
DC
DC AL3(number of bytes) - See Usage Note 1

WAITRD first exhausts the program stack, then automatically switches
to the console input buffer. WAITRD does not perform logical line
editing on lines read from the program stack (unless uppercase
translation is requested). WAITRD does perform logical line editi~g on
lines read from the console input buffer, unless you specify code x.
WAITRD does not perform logical line editing if you specify code X.

The following coaes specify what kind of processing WAITRD performs
on lines read from the console input buffer. with these codes you must
specify a buffer length of 130 bytes in the 'number of bytes' field in
the WAITRD parameter list.

U Reads a logical line, pads it with blanks, and translates it to
uppercase.

V Reads a logical line and translates it to upper case; does not
pad with blanks~

S Reads a logical line and pads it with blanks.

T Reads a logical line; does not pad with blanks.

X Reads a physical line.

The following codes specify what kind of processing WAITRD performs
on lines read from the program stack. Indicate the length of the input
buffer as the last parameter in the WAITRD parameter list. The length
of the input buffer may be up to 255 bytes.

W Reads a physical line; performs no uppercase translatio~ or
padding with blanks.

Z Reads a physical line and translates it to upper case; does not
pad with blanks.

Use the following codes when you use APL under CMS. Indicate the
length of the input buffer as the last parameter in the WAITRD parameter
list. The length of the buffer may be up to 2030 bytes.

*

$

Reads a physical line into the caller's buffer.
4.)

Reads a physical line into the caller's buffer.
4.)

(See Usage Note

(See Usage Note

section 6. CMS Functions 355

WAITRD Function

1. Specify the input buffer length as the last parameter in the WAITRD
parameter list. Upon completion of th~ WAITRD function, the
'number of bytes' field contains the number of bytes read.

2. WAITRD does not perform logical line editing when reading a
physical line.

WAITRD performs line editing on lines read from the console input
buffer (lines typed at the terminal), unless code X is specified;
WAITRD does not perform logical line editing when you specify code
X. WAITRD does not perform line editing (except uppercase
translation, if requested) on lines read from the program stack.

3. Lines typed at the terminal (and stacked in the console input
buffer) are scanned by CP for logical line editing characters.
Logical line ejiting characters are set by the CP TERMINAL command.
The line editing characters may be set for:

Chardel
Linedel
Linend
Escape

In addition, C~S scans the lines for the two following hexadecimal
characters:

X'15' - in terpreted as the end of the physical line. Any
character (s) to the right of this hexadecimal
character is ignored.

X' 00' - in terpreted as the end of the logical line. Any
character (s) to the right of this hexadecimal
character is interpreted as a new line.

4. For code $, an attention interrupt during a read operation signals
the end of the line and does not result in a restart of the read.
For code *, an attention interrupt during a read results in a
restart of the read operation.

None

Code --0-
2
4

356

!1g~n!ng
Function completed successfully.
Invalid code. Read not completed.
Code=$. An attention interruption ended the read operation.

IBM VM/SP CMS :ommand and Macro Reference

CMS Macros

Section 7. eMS Macro Instructions

This section describes the formats of the CMS assembler language macros,
which you can use when you write assembler language programs to execute
in the CMS environment. To assemble a program using any of these
macros, you must issue the GLOBAL command specifying MACLIB DMSSP CMSLIB
which are the macro libraries (located on the system disk) which contain
CMS macros.

For functional descriptions and usage examples of the CMS macros, see
the VML~g £~~ ~~~£~ §ui£~.

Coding conventions for
assembler language macros.
operands in the format:

[, operand]

CMS macros are the same as
The macro format descriptions

those for all
show optional

indicating that if you are going to use this operand, it must be
preceded by a comma (unless it is the first operand coded). If a macro
statement overflows to a second line, you must use a continuation
character in column 72. No blanks may appear between operands.
Incorrect coding of any macro results in assembler errors and MNOTEs.

Where applicable, the end of a macro description contains a list of
the possible error conditions that may occur during the execution of the
macro, and the associated return codes. These return codes are always
placed in register 15. The macros that produce these return codes have
ERROR= operands, that allow you to specify the address of an error
handling routine, so that you can check for particular errors during
macro processing. If an error occurs during macro processing and no
error address is provided, execution continues at the next sequential
instruction following the macro.

section 7. CMS Macro Instructions 357

COMPSWT, FSCB Macros

COMPSWT

Use the COMPSWT macro instruction to turn the compiler switch (COMPSWT)
flag on or off. The COMPSWT flag is in the OSSFLAGS byte of the nucleus
constant area (NUCON). The format of the COMPSWT macro instruction is:

.-
I [1 abel] COMPSWT
I
L

label

ON

FSCB

is an optional statement label.

turns the :OMPSWT flag on. When this flag is on, any program
called by a LINK, LOAD, XCTL, or ATTACH macro instruction must
be a nonrelocatable module in a file with a filetype of MODULE;
it is loaded via the CMS LOADMOD command.

turns the COMPSWT
called by a LINK,
be a relocatable
filetype of TEXT,
INCLUDE comm and.

flag off. When this flag is off, any program
LOAD, XCTL, or ATTACH macro instruction must
object module residing in a file with a
LOADLIB, or TXTLIB; it is loaded via the CMS

Use the FSCB macro instruction to create a file system control block
(FSCB) for a CMS input or output disk file. The, format of the FSCB
macro instruction is:

.---------------------------------------
I [1 abel] I FSCB I [fileid] (, RECFM=forma t] [, BU FFER=buffer](, FORM=E]
I I I [,BSIZE=size] (,RECNO=number] (, NOREC=numrec]
L-

label

fileid

RECF M=forma t

is an optional statement label.

specifies the CMS file identifier, which must be enclosed
in single quotation marks and separated by blanks
('filename filetype filemode '). If filemode is omitted,
A 1 is assumed.

indicates whether the records are fixed- (F) or variable­
(V) length format. The default is F.

BUFFER=buffer specifies the address of an I/O buffer, from which
records are to be read or written.

FORM=E specifies the extended format FSCB is to be generated.
This extended format FSCB allows you to specify a value
(up to 231 -1) for RECNO and NOREC. If you do not specify
FORM=E, the RECNO and NOBEC values cannot exceed 65533.

358 IBM VM/SP CMS :ommand and Macro Reference

BSIZ E=size

RECNO=number

NOREC=numrec

FSCB, FSCBD Macros

specifies the number of bytes to be read or written for
each read or write request.

specifies the record number of the next record to be
accessed, relative to the beginning of the file, record
1. The default is 0, which indicates that records are to
be accessed sequentially.

specifies the number of records to be read in the next
read operation. The default is 1.

1. The options RECFM, BUFFER, BSIZE, RECNO, and NOREC must all be
specified as self-defining terms.

2. You can use the same FSCB to reference several different files: you
can override the fileid, or any of the options, on the FSOPEN,
FSWRITE, or FSREAD macro instructions when you reference a file via
its FSCB. However, if the FSOPEN macro instruction is used to
ready an existing file, the BSIZE and RECFM fields in the FSCB are
reset to reflect actual file characteristics.

3. You can use multiple FSCBs to reference the same file, for example,
if you wanted one FSCB for writing and a different FSCB for reading
the file. Keep in mind, however, that ~he file characteristics are
inherent to the file and not to the FSCB. If you establish a read
or write pointer using the RECNO option in one FSCB, that pointer
remains unchanged unless you specify the RECNO option again on the
same or any other FSCB for that file.

FSCBD

Use the FSCBD macro instruction to generate a DSECT for the file system
control block (FSCB~. The format of the FSCBD macro instruction is:

r--------
I [label] I FSCBD L-_________________ _

label is an optional statement label. The first statement in the
FSCBD macro expansion is labeled FSCBD.

1. You can use the labels established in the FSCB DSECT to modify the
fields in an FSCB for a particular file. An FSCB is created
explicitly by the FSCB macro instruction, and implicitly by t~e
FSREAD, FSWRITE, and FSOPEN macro instructions.

section 7. CMS Macro Instructions 359

FSCB D Macros

2. The FSCBD macro instruction expands as follows:

3.

FSCBD
FSCBCOMM
FSCBFN
FSCBFT
FSCBFM
FSCBITNO
FSCBBUFF
FSCBSIZE
FSCBFV
FSCBFLG
FSCBNOIT
FSCBNORD
FSCBAITN
FSCBANIT
FSCBWPTR
FSCBRPTR

FSCBD
DSECT
DS CL8
DS CL8
DS CL8
DS CL2
DS H
DS A
DS F
DS CL1
DS X
DS H
DS A
DS F
DS F
DS F
DS F

Command
Filename
Filetype
Filemode
Relative record (item) number
Address of read/write buffer
Length of buffer
Record format (F or V)
PLIST flag
Number of records to be read/written
Number of records actually read
Extended item number
Extended number of items
Write pointer
Read pointer

If you specify FOR~=E as the parameter of the FSCB marco
instruction, the fields FSCBITNO and FSCBNOIT are no longer used.
They are replaced with FSCBAITN and FSCBANIT. The X'20' bit of the
FSCBFLG flag is turned on. The fields FSCBWPTR and FSCBRPTR are
used by the FSPOINT function. FORM=E plists must be used to
manipulate files larger than 65,533 items.

360 IBM VM/SP CMS Command and Macro Reference

FSCLOSE Macro

FSCLOSE

Use the FSCLOSE macro instruction to close an open file and save its
current status on disk. The format of the FSCLOSE macro instruction is:

r-
, [label] , FSCLOSE

{
fileid[,FSCB=fscb] } [,ERROR=erraddr]
FSCB=fscb

L-.

label is an optional statement label.

fileid specifies the CMS file identifier. It may be:

'fn ft fm' fileid enclosed in single quotation marks and
separated by blanks. If fm is omitted, A1 is
assumed.

(reg) a register other than 0 or 1 containing the
address of the fileid (18 characters) • When
register format is used, the fileid must be
exactly 18 characters in length; 8 for the
filename, 8 for the filetype, and 2 for the
filemode. Shorter names .. must be filled with
blanks.

FSCB=fscb specifies the address of an FSCB. It may be:

label
(reg)

the label on the FSCB macro instruction.
a register containing the address of an FSCB.

ERRO R=erraddr

1 •

specifies the address of an error routine to be given coqtrol
if an error is found. If ERROR= is not coded and an error
occurs, control returns to the next sequential instruction in
the calling program, as it does if no error occurs.

Although CMS routines close files when a command
completes execution, you must use the FSCLOSE macro
when you are executing a program from within an EXEC,
are going to read and write records in the same file.

or program
instruction
or when you

2. If you specify both fileid and FSCB, the fileid is used to fill in
the FSCB.

If an error occurs, register 15 contains the following error code:

l1~~ning
File not open

section 7. CMS Macro Instructions 361

FSER ASE Macro

FSERASE

Use the FSERASE macro instruction to delete a CMS disk file. The format
of the FSERASE macro instruction is:

r
I [label] ,
'---

label

fileid

FSERASE
{

fileid[,FSCB=fscb] } [,ERROR=erraddr]
FSCB=fscb

is an optional statement label.

specifies the CMS file identifier. It may be:

'fn ft fm' fileid enclosed in single quotation marks
separated by blanks. If fm is omitted, A1
assumed.

(reg) a register other than 0 or 1 containing
address of the fileid (18 characters) •
register format is used, the fileid must
exactly 18 characters in length; 8 for
filename, 8 for the filetype, and 2 for
filemode. Shorter names must be filled
blanks.

and
is

the
When

be
the
the

with

FSCB=fscb specifies the address of an FSCB. It may be:

label
(reg)

the label of an FSCB macro instruction.
a register containing the address of an FSCB.

ERRO R= erraddr
specifies the address of an error routine to be giveq control
if an error occurs. If ERROR= is not coded and an error
occurs, control returns to the next sequential instructiQn in
the calling program, as it does if no error occurs.

1. On return from the FSERASE macro, register 1 points to a parameter
list. The second, third, and fourth words of the list contain the
filename, filetype, and filemode of the file.

2. If fileid and FSCB= are both coded, the fileid is use6 to fill in
the FSCB.

If an error occurs, register 15 contains one of the following error
codes:

fQ£~
24
28
36

!1~g1!i1!g
Parameter list error
File not found
Disk not accessed

362 IBM VM/SP CMS :ommand and Macro Reference

FSOPEN Macro

FSOPEN

Use the FSOPEN macro instruction to ready a file for either input or
output. The format of the FSOPEN macro instruction is:

r I

I [label] FSOPEN
{

fileid (,FSCB=fscb]
FSCB=fscb }

[,ERROR=erraddr](,options]1
[,FORM=E] I I

L

label is an optional statement label.

fileid specifies the CMS file identifier. It may be:

'fn ft fm' the fileid enclosed in single quotation marks and
separated by blanks. If fm is omitted, A1 is
assumed.

(reg) a register other than 0 or 1 containing the
address of the fileid (18 characters) • When
register format is used, the fileid must be
exactly 18 characters in length; 8 for the
filename, 8 for the filetype, and 2 for the
filemode. Shorter names must be filled with
blanks.

FSCB=fscb specifies the address of an FSCB. It may be:

label
(reg)

the label on an FSCB macro instruction.
a register containing the address of an FSCB.

ERROR=erraddr

FORM=E

specifies the address of an error routine to be given control
if an error is found. If ERROR= is not coded and an error
occurs, control returns to the next sequential instruction in
the calling program, as it does if no error occurs.

must be specified when the extended format is being used.

You can specify any of the following FSCB macro options on the FSOPEN
macro instruction:

BUFFER=buffer
RECNO=number
BSIZE=size
RECFM=format
NOREC=numrec

These options may be specified either as the actual value (for
example, NOREC=1) or as a register that contains the value (for
example, NOREC=(3) where register 3 contains the value 1).

When you use any of these options, the associated field in the
FSCB is modified.

section 7. eMS Macro Instructions 363

FSOPEN, FSPOINT Macros

1. On return from the FSOPEN macro, register 1 points to the FSCB for
the file. If no FSCB exists, one is created in the FSOPEN macro
expansion. However, if the FSOPEN macro instruction is used to
ready an existing file, the BSIZE and RECFM fields are reset to
reflect actual file characteristics.

2. If you code both fileid and FSCB=, the fileid is used to fill in
the FSCB.

3. You can use the FSOPEN macro instructicn to verify the existence of
a file to be opened for reading or writing, and you can use FSOPEN
to create an FSCB for that file.

If an error occurs, register 15 contains one of the following error
code s:

~QQ~
20
28

~~9J!!!lg
Invalid file identifier
File does not exist

FSPOINT

Use the FSPOINT macro instruction to reset the write and/or read
pointers for a file. The format of the FSPOINT macro instruction is:

r
I [label]
I
I
L

label

fileid

FSPOINT
{

. fileid[,FSCB=fSCb]}[,ERROR=erraddr]
'FSCB=fscb

[,WRPNT=wrpnt] [,RDPNT=rdpnt] [,FORM=E]

is an optional statement label.

specifies the CMS file identifier. It may be:

'fn ft fm' the fileid enclosed in quotation marks
separated by blanks. If fm is omitted, A1
assumed.

(reg) a register other than 0 or 1 containing
address of the fileid (18 characters) •

and
is

the

FSCB=fscb specifies the address of an FSCB. It may be:

label
(reg)

ERRO R=erraddr

the label of an FSCB macro instruction.
a register containing the address of an FSCB.

specifies the address of an error routine to be given co~trol
if an error is found. If you don't code ERROR= is not coded
and an error occurs, control returns to the next sequential
instruction in the calling program, as it does if no error
occurs.

364 IBM VM/SP CMS Command and Macro Reference

FSPOINT, FSREAD Macro

WRPN T=wrpn t specifies the new value of the write pointer.

number
(reg)

any assembler symbol or number.
a register containing the binary number.

RDPN T=rdpn t
specifies the new value of the read pointer.

number
(reg)

any assembler symbol or number.
a register containing the binary number.

FORM=E / must be specified when the extended format FSCB is being used.

1. Both write and read pointers may be changed at the same time, and
zero indicates no change.

2. Minus one used for a write pointer indicates that the next item is
to be put at the end of the file.

If an error occurs, register 15 contains one of the following error
codes:

£QQ§
20
24
28
36

l1§sn ing
Invalid character in fileid
Invalid filemode
File not found
Disk not accessed

FSREAD

Use the FSREAD macro instruction to read a record from a disk file into
an I/O buffer. The format of the FSREAD macro instruction is:

r-
, [label] ,
L

label

fileid

FSREAD
{

fileid[, FSCB=fscb] } [, ERROR=erraddr] (, FORM=E]
FSCB=fscb [,options]

is an optional statement label.

specifies the CMS file identifier. It may be:

, fn ft fm' the fileid enclosed in single quotation marks and
separated by blanks. If fm is omitted, A1 is
assumed.

(reg) a register other than 0 or 1 containing the
address of the fileid (18 characters) • When
register format is used, the fileid must be
exactly 18 characters in length; 8 for the
filename, 8 for the filetype, and 2 for the
filemode. Shorter names must be filled with
blanks.

Section 7. CMS Macro Instructions 365

FSREAD Macro

FSCB=fscb specifies the address of an FSCB. It may be:

label
(reg)

the label of an FSCB macro instruction.
a register containing the address of an FSCB.

ERRO R=erraddr
specifies the address of an error routine to be given cOijtrol
if an ercor is found. If ERROR= is not coded and an error
occurs, control returns to the next sequential instruction in
the calling program, as it does if no error occurs.

FORM=E
must be specified when the extended format FSCB is being used.

You can specify any of the following FSCB macro options on the FSREAD
macro instruction:

BUFFER= buffer
NOREC=numrec
BSIZE=size
RECNO=number

These options may be specified either as the actual value (for
example, NOREC=1) or as a register that contains the value (for
example, NOREC=(3) where register 3 contains the value 1).

When you use any of these options, the associated field in the
FSCB is modified.

1. If an FSCB macro instruction has not been coded for a file (and the
FSCB= operand is not coded), you must specify the BUFFER= and
BSIZE= options to indicate the address of the buffer and its
length. When reading variable-length records, a record that is
longer than the buffer length is truncated. FSREAD does not clear
the buffer when the record length is not the maximum.

2. On return from the FSREAD macro, register 1 points to the FSCB for
the file. If no FSCB exists, one is created following the FSREAD
macro instruction.

3. If you specify both fileid and FSCB=, the fileid is used to fill in
the FSCB.

4. Register 0 contains, after the read operation
number of bytes actually read. This information
in the FSCBNORD field of the FSCB.

is complete, the
is also contained

5. To read records sequentially beginning with a particular record
number, use the RECNO option to specify the first record to be
read. On the next FSREAD macro instruction, use RECNO=O so that
reading continues sequentially following the first record read.

366 IBM VM/SP CMS Command and Macro Reference

FSREAD, FSSTATE Macros

If an error occurs, register 15 contains one of the following error
codes:

7

8
9

11
12

13

14
15
25

26

.t1~~!!i!!.g
Fi Ie not found
Invalid buffer address
Permanent IIO error ,
Number of records to be read is less than or equal to zero

(or greater than 32,768 for an 800-byte formatted disk)
Invalid record format (only checked when the file is first

opened for reading)
Incorrect length
File open for output (for an 800-byte formatted disk)
Number of records greater than 1 for variable-length file
End of file, or record number greater than number of records

in data set
Variable-length file has invalid displacement in active file

table
Invalid character in filename
Invalid character in filetype
Insufficient free storage available for file ~anagement

control areas.
Requested item number is negative or item number plus number

of items exceeds file system capacity.

FSSTATE

Use the FSSTATE macro instruction to determine whether a particular file
exists. The format of the FSSTATE macro instruction is:

r
I [label] I FSSTATE I {fileid [,FSCB=fscb] } [, ERROR=erraddr]
I I I FSCB=fscb [,FORM=E] L _________________________ _

label is an optional statement label.

fileid specifies the CMS file identifier. It may be:

'fn ft fm' the fileid enclosed in single quotation marks
separated by blanks. If fm is omitted, A1
assumed.

(reg) a register other· than 0 or 1 containing
address of the fileid (18 characters) •
register format is used, the fileid must
exactly 18 characters in length; 8 for
filename, 8 for the filetype, and 2 for
filemode. Shorter names must be filled
blanks.

FSCB=fscb specifies the address of an FSCB. It may be:

label
(reg)

the label on an FSCB macro instruction.
a register containing the address of an FSCB.

and
is

the
When

be
the
the

with

Section 7. CMS Macro Instructions 367

FSSTATE Macro

ERROR=erraddr

FORM=E

specifies the address of an error routine to be given control
if an error is found. If ERROR= is not coded and an error
occurs, control returns to the next sequential instructiQn in
the calling program, as it does if no error occurs.

must be specified when the extended format FSCB is being used.

1. If the specified file exists, register 15 contains a 0 return code.

2. When the FSSTATE macro completes execution, register 1 contains the
address of the file status table (FST) for the specified file.

The file status table contains the following information:

Decimal
Displacement

o
8

16
18
20
22
24
26
28
30
32
36
38

Field Description

Filename
Filetype
Date (mmdd) last written
Time (hhmm) last written
write pointer (number of item)
Read pointer (number of item)
Filemode
Number of records in file
Disk address of first chain link
Record format (F/V)
Logical record length
Number of 800-byte data blocks
Year (yy) last written

If an error occurs, register 15 contains one of the following error
codes:

Code
-'20-

24
28
36

l1.~S!!!i!!g
Invalid character in fileid
Invalid filemode
File not found
Disk not accessed

368 IBM VM/SP CMS Command and Macro Reference

FSWRITE Macro

FSWRITE

Use the FSWRITE macro instruction to write a record from an I/O buffer
to a CMS disk file. The format of the FSWRITE macro instruction is:

r
I [label] FSWRITE

{
fileid[,FSCB=fscb] }
FSCB=fscb

[, ERROR=erraddr]
[,FORM=E] [,options] I

L

label is an optional statement label.

fileid specifies the CMS file identifier. It may be:

'fn ft fm' the fileid enclosed in single quotation marks and
separated by blanks. If fm is omitted, A1 is
assumed.

(reg) a register other than 0 or 1 containing the
address of the fileid (18 characters) • When
register format is used, the fileid must be
exactly 18 characters in length; 8 for the
filename, 8 for the filetype, and 2 for the
filemode. Shorter names must be filled with
blanks.

FSCB=fscb specifies the address of an FSCB. It may be:

label
(reg)

the label on an FSCB macro instruction.
a register containing the address of an FSCB.

ERRO R= erraddr

FORM=E

specifies the address of an error routine to be given co~trol
if an error is found. If ERROR= is not coded and an error
occurs, control returns to the next sequential instruction in
the calling program, as it does if no error occurs.

must be specified when the extended format FSCB is being used.

You can specify any of the following FSCB macro options on the
FSWRITE macro instruction:

BUFFER=buffer
RECNO=number
BSIZE=size
NOREC=numrec
RECFM=format

These options may be specified either as the actual value (for
example, NOREC=1) or as a register that contains the value (for
example, NOREC=(3) where register 3 contains the value 1).

~hen you use any of these options, the associated field in the FSCB
for the file is filled in or modified.

section 7. eMS Macro Instructions 369

FSWR ITE Macro

1. If an FSCB macro instruction has not been coded for a file (and the
FSCB= operand is not coded on the FSWRITE macro instruction)r you
must specify the BUFFER= and BSIZE= options to indicate the
location of the read/write buffer and the length of the record to
be written. For the filemode, you must specify both a letter and a
number. If the file is a variable-length file, you must also
specify RECFM=V.

2. On return from the FSWRITE macro, register 1 contains the address
of the FSCB for the file. If no FSCB exists, one is created
following the FSWRITE macro instruction.

3. If you specify both fileid and FSCB=, the fileid is used to fill in
the FSCB.

4. If the RECNO option is specified (either on the FSWRITE macro
instruction or in the FSCB), that specified record is written.
Otherwise, the next sequential record is written. For new files,
writing begins with record 1; for existing files, writing begins
with the first record following the end of the file.

5. To write records sequentially beginning with a particular record
number, use the RECNO option to specify the first record to be
written. On the next FSWRITE macro instruction, use RECNO=O so that
writing continues sequentially, following the first record written.

6. To write blocked records (valid for fixed-length files only), use
the BSIZE and NOREC options to specify the blocksize and number of
records per block, respectively. For example, to ~rite aO-byte
records into BOO-byte blocks, you should specify BSIZE=aOO and
NOREC=10. The buffer you use must be at least aoo bytes long.

If an error occurs, register 15 contains one of the following error
codes:

£.Qg~
2
4
5
6

7
a
9

10

11
12
13
14

15
16
17
1a
19

20
21
22

!1~S!!!i!!g
Invalid buffer address
First character of filemode is invalid
Second character of filemode is invalid
Item number too large (more than 65,533 for an aOO-byte

formatted disk)
Attempt to skip over unwritten variable-length item
Buffer size not specified
File open for input (for an aOO-byte formatted disk)
Maximum number of files per minidisk reached (3400 for an

aOO-byte formatted disk)
Record format not F or V
Attempt to write on read-only disk
Disk is full
Number of bytes to be written is not integrally divisible

by the number of records to be written
Length of fixed-length item not the same as previous item
Record format specified not the same as file
Variable-length item greater than 65K bytes
Number of records greater than 1 for variable-length file
Maximum number of data blocks per file reached (16060 for

an aOO-byte formatted disk)
Invalid character detected in filename
Invalid character detected in filetype
virtual storage capacity exceeded

370 IBM VM/SP CMS Command and Macro Reference

FSWRITE, HNDEXT Macros

25 Insufficient free storage available for file directory
buffers

26 Requested item number is negative or item number plus
nunber of items exceeds file system capacity.

HNDEXT

Use the HNDEXT macro instruction to trap external interruptions and pass
control to an internal routine for processing. External interruptions
are caused, in a virtual machine, by the CP EXTERNAL command. The
format of the HNDEXT macro instruction is:

r-
1 [label] HNDEXT

{
SET,address }
CLR I

L

label is an optional statement label.

SET specifies that you want to trap external interruptions.

address specifies the address in your program of the routine to be
given control when an external interruption occurs.

CLR specifies that
interruptions.

you no longer want to trap external

1. External interruptions (other than timer interruptions) normally
place your virtual machine in the debug environment.

2. When your interruption handling routine is given control, all
virtual interruptions, except multiplexer, are disabled. If you
are using the eMS blip function, all blips are stacked.

3. You are responsible for providing proper entry and exit linkage for
your interruption handling routine. When your routine receives
control, register 1 points to a save area in the "format:

1~~~!
GRS
FRS
PSi
UAREA
END

Dec ---0-
64
96

104
176

Hex --0--
40
60
68
BO

Register 13 points to the user save area at label UAREA.

Register 15 contains the entry point address of your routine; it
must return control to the address in register 14.

4. If you also issue a STAX macro instruction to handle attention
interruptions while the HNDEXT macro is active, either exit may be
interrupted while the other is running. If your exits depend on
data in static areas, results are unpredictable.

Section 7. CMS Macro Instructions 371

HNDI NT Macro

HNDINT

Use the HNDINT macro instruction to trap interruptions for a specified
I/O device. The i forma t of the HNDINT macro instruction is:

r---

I [label] I HNDINT I {SET,(deV1,{add,r},C.UU,{ASAP})[,(deV2 •••) •••] l
I I I 0 {WAIT}
I I ,
I I I CLR,(dev1)[,(dev2)[•••]]
I I I
I I I [,ERROR=erraddr] L ________________________ _

label

SET

is an optional statement label.

specifies that you want to
specified device.

trap interruptions for the

dev specifies a four-character symbolic name for the device whose
interruptions are to be trapped.

addr specifies the address in your program of the routine to be
given control when the interruption occurs. An address of 0
indicates that interruptions for the device are to be ignored.

cuu specifies the virtual device address, in hexadecimal, of the
device whose interruptions are to be trapped.

ASAP

WAIT

specifies that the routine at addr is to be given control as
soon as the interruption occurs.

specifies that the routine at addr is to be given co~trol
after the WAITO macro is issued for the device.

CLR specifies that you no longer want to trap interruptions for
the specified device. HNOINT CLR should not be issued from
within the interruption handling routine.

ERROR=erraddr
specifies the address of an error routine to be given coqtrol
if an error is found. If ERROR= is not coded and an error
occurs, control returns to the next sequential instruction in
the calling progr~m, as it does if no error occurs.

1. HNDINT does lot trap I/O operations initiated by a DIAGNOSE
instruction.

2. In a single HNOINT macro instruction, you can define interruption
handling routines for more than one device. The argument list for
each device must be enclosed in parentheses and separated from the
next list by a comma.

3. If you specify WAIT, then the routine at the specified address in
your program receives control when a WAITD macro instruction that
specifies the same symbolic device name is issued. If the WAITD
macro instruction has already been issued for the device when the

372 IBM VM/SP eMS Command and Macro Reference

HNDINT, HNDSVC Macros

interruption occurs, then the routine at the specified address
receives control immediately.

4. You are responsible for establishing proper entry and exit linkage
for your interruption handling routine. When your routine receives
control, the significant registers contain:

R§g!2~~f:2
0-1
2-3

4
14
15

£Qnt~!!~.§
1/0 old PSW
Channel status word (CSW)
Address of interrupting device
Return address
Entry point address

Your routine must return control to the address in register 14, and
indicate, via register 15, whether processing is complete. A 0 in
register 15 means that you are through handling the interruption;
any nonzero return code indicates that you expect anqther
interruption.

5. The interruption handling routine that you code should not perform
any IIO operations. When it is given control, all IIO
interruptions and external interruptions are disabled.

If an error condition occurs, register 15 will contain one of the
following return codes:

2

3

H~an!!l.g
Invalid device address (cuu)
address (addr)

or interruption handling routine

Trap item replaces another of same device name

Attemptin~ to clear a nonexisting interruption

HNDSVC

Use the HNDSVC macro
specific supervisor call
macro instruction is:

instruction to trap
(SVC) instructions.

interruptions caused by
The format of the HNDSVC

r-
I [label] , , ,

HNDSVC
{

SET, (svcnum,address)[,(svcnum,address) •••] }
CLR,svcnum[,svcnum •••]

[,ERROR=erraddr] L _______ _

label is an optional statement label.

SET specifies that you want to trap SVCs of the specified
number (s) •

svcn um specifies the number of the SVC you want to trap. SVC numbers
o through 200 and 206 through 255 are valid.

section 7. CMS Macro Instructions 373

address specifies the address of the routine in your program that
should receive control whenever the specified SVC is issued.

CLR specifies that you no longer want to trap the specified
SVC (s) •

ERRO R= erraddr
specifies the address of an error routine to be given coqtrol
if an error is found. If ERROR= is not coded and an error
occurs, control returns to the next sequential instruction in
the calling program, as it does if no error occurs.

You are responsible for providing the proper entry and exit linkage for
your SVC-handling routine. When your program receives control, the
register contents are as follows:

R~gi§1~£ Contents
12 Address-of your SVC-handling routine
13 Address of an 18-fullword save area (for your use)
14 Return address

Your routine must return control to the address in register 14.

If an error occurs, register 15 contains one of the following error
codes:

!1~g!!i !l.g
Invalid SVC number or address
SVC number set replaced previously set number
SVC number cleared was not set

374 IBM VM/SP CMS Command and Macro Reference

LINEDIT Macro

LINEDIT

Use the LINEDIT macro instruction to convert decimal values into EBCDIC
or hexadecimal and to display the results at your terminal. The format
of the LINEDIT macro instruction is:

[label] LINEDIT
r
I,TEXT='messagetext'
I,TEXTA=address
L

, r , r ,

I I, DOT={!~~} I I , COMP={YES} I
I I NO I I NO I

.I L .lL .I

[,SUB= (substitutionlist)]
r , r ,
I,DISP= ,tYP£! I I, BUFFA= ({addreSS}) I
I NONE I I (reg) I
I SIO I L .J

I PRINT I
I CPCOMM I
I ERRKSG I
L .I

r
I,MF=
I ,
I

~~{E,addreSS}) t
(reg))

, [,MAXSUBS=number]
I
I
I
I

L .J

r ,

: ,RENT= {!~~} :
L .I

The LINEDIT macro operands are listed below, briefly. For detailed
formats, descriptions, and examples, refer to the appropriate heading
following "LINEDIT Kacro Operands."

TEXT='message text'
specifies the text of the message to be edited.

TEXT A=address
specifies the address of the message text. It may be:

label
(reg)

the symbolic address of the message text.
a register containing the address of the message text.

DOT specifies whether a period is to be placed at the end of the
line.

CaMP

SUB

DISP

BUFFA

MF

specifies whether multiple blanks are to be removed from the
line.

specifies a sUbstitution list describing the conversions to be
performed on the line.

specifies how the edited line is to be used. When DISP is not
coded, the message text is displayed at the terminal.

specifies the address of the buffer in which the line is to be
copied.

specifies the macro format.

Section 7. CMS Macro Instructions 375

LINEDIT Macro

MAXSUBS specifies the maximum number of substitutions (MAXSUBS is used
with the list form of the macro) •

RENT specifies whether reentrant code must be generated.

1. You should never use registers 0, 1, or 15 as address registers
when you code the LINEDIT macro instruction; these registers are
used by the macro.

2. When message text for the LINEDIT macro instruction contains two or
more consecutive periods, it indicates that a substitution is to be
performed on that portion of the message. The number of periods
you code indicates the number of characters that you want to appear
as output. To indicate what values are to replace the periods, code
a sUbstitution list using the SUB operand.

3. When you use the standard (default) form of the LINED IT macro
instruction, reentrant code is produced, except when you specify
more than one sUbstitution list, or when you use register notation
to indicate an address on the TEXTA or BUFFA operands. When any of
these conditions occur, an MNOTE message is ,produced, indicating
that the code is not reentrant.

If you do not care whether the code is reentrant, you can sp~cify
the RENT=NO operand to suppress the MNOTE message. otherwise, you
can use the list and execute forms of the macro to write reentrant
code (see "MF 0 perand") •

4. When the macro completes, register 15 may contain a 2 or 3,
indicating that a channel 9 or channel 12 punch was sensed,
respectively. You can use these codes to determine whether th~ end
of the page is near (channel 9), or if the end of the page has been
reached (channel 12).

Use the TEXT operand to specify the exact text of the message o~ the
macro instruction. The message text must appear within single quotation
marks, as follows:

TEXT='message text'

If you want a single quotation mark
text, you must code two of them.

Text specified on the LINEDIT macro
appear as only a single blank, and a
line, for example:

to appear within the actual message

is edited so that multiple blanks
period is placed at the end of the

LINEDIT TEXT='IT ISN' 'T READY'

results in the display:

IT ISN'T READY.

376 IBM VM/SP eMS Command and Macro Reference

LINEDIT Macro

Use the TEXTA operand when you want to display a line that is contained
in a buffer. You may specify either a symbolic address or use register
notation, as follows:

TEXTA={label}
(reg)

In either case, the first byte at the address specified must contain the
length of the message text, for example:

LINEDIT TEXTA=MESSAGE

X' 16' MESSAGE DC
DC CL22'THIS IS A LINE OF TEXT'

If you use register notation with either the standard or list forms of
the macro, the code generated is not reentrant. To suppress the MNOTE
that informs you that code is not reentrant, use the RENT~NO operand.

Use the DOT operand when you do not want a period placed at the end of
the message text. Tbe format of the DOT operand is:

DOT={~~~}

For example, if you code:

LINEDIT TEXT='BI!',DOT=NO

the line is displayed as:

HI!

Use the CaMP operand when you want to display multiple blanks within
your message text. The format of the CaMP operand is:

For example, if you code:

LINEDIT TEXT='TOTAL 5' ,COMP=NO

the line is displayed as:

TOTAL 5.

section 7. eMS Macro Instructions 377

LINEDIT Macro

Use the SUB operand to specify the type of sUbstitution to be performed
on those portions of the message that contain periods. For each set of
periods, you must specify the type of sUbstitution and the value to be
substituted or its address. The format of the SUB operand is:

r
SUB= (

L

HEX{, (reg) }
DEC ,expression

HEXA{,address}
DECA, (reg)

HEX4A {,address
CHARA , (reg)
CHAR8A , ({address}, {length})

(reg) (reg)
}

Each of the possible sUbstitution pairs is described below, followed by
discussions of length specification and multiple substitution lists.

HEX, (reg)
converts the value in the specified register to graphic hexadecimal
format and substitutes it in the message text. If you code fewer
than eight consecutive periods in the message text, then leading
digits are truncated; leading zeros are not suppressed.

For example, if register 3 contains the value C0031FC8, then the
macro instruction:

LINEDIT TEXT='VALUE = ••• ·,SUB=(HEX, (3»

results in the display:

VALUE = FC8.

HEX, expression
converts the given expression to graphic hexadecimal format and
sUbstitutes it ~n the message text. The expression may be a
symbolic address or symbol equate; it is evaluated by means of a
LOAD ADDRESS (LA) instruction. For example, if your program has a
label BUFF1, the line:

LINEDIT TEXT='BUFFER IS LOCATED AT •••••• ·,SUB=(HEX,BUFF1)

might result in the display:

BUFFER IS LOCATED AT 0201AC.

If you code fewer than eight periods in the message text, leading
digits are truncated; leading zeros are not suppressed.

DEC, (reg)
converts the value in the specified register into graphic decimal
format and substitutes it in the message text. Leading zeros are
suppressed. If the number is negative, a leading minus sign is
inserted. For example, if register 3 contains the decimal value
10,345, then the macro instruction:

LINEDIT TEXT='REG 3 = ••••••• ,SUB=(DEC, (3»

378 IBM VM/SP CMS Command and Macro Reference

LINEDIT Macro

results in the line:

REG 3 = 10345.

DEC, expression
converts the given expression to graphic decimal format and
substitutes it in the message text. The expression may be a
symbolic label in your program or a symbol equate. For example, if
your program contains the statement:

VALUE EQU 2003

then the macro instruction:

LINEDIT TEXT='VALUE IS •••••• ·,SUB=(DEC,VALUE+5)

results in the display:

VALUE IS 2008.

HEXA , address
converts the fullword
hexadecimal format and
code fewer than eight
are truncated; leading
code:

at the specified address to graphic
sUbstitutes it in the message text. If you
periods in the message text, leading digits
zeros are not removed. For example, if you

LINEDIT TEXT='HEX VALUE IS ••••• ·,SUB=(HEXA,CODE)

then the last five hexadecimal digits of the fullword at the label
CODE are substituted into the message text.

HEXA, (reg)
converts the fullword at the address indicated in the specified
register into graphic hexadecimal format and substitutes it in the
message text. For example, if you code:

LINEDIT TEXT='REGISTER 5 -) •••••• ·,SUB=(HEXA,(5»

then the last six hexadecimal digits of the fullword whose address
is in register 5 are substituted in the message text.

If you code fewer than eight digits, leading digits are truncated;
leading zeros are not suppressed.

DECA , address
converts the fallword at the specified address to graphic decimal
format. Leading zeros are suppressed; if the number is negative, a
minus sign is inserted. For example, if you code:

LINEDIT TEXT='COUNT = ••••••• ,SUB=(DECA,COUNT)

then the fullword at the location COUNT is converted to graphic
decimal format and substituted in the message text.

DECA, (reg)
converts the fullword at the address
register into graphic decimal format
message text. For example:

specified in the indicated
and substitutes it in the

LINEDIT TEXT='SUM = •••••••••• ·,SUB=(DECA,(3»

causes the value in the fullword whose address is in register 3 to
be displayed in graphic decimal format.

section 7. CMS Macro Instructions 379

LINEDIT Macro

HEX4 A, address
converts the data at the specified address into graphic hexadecimal
format, and inserts a blank character following every four bytes
(eight characters of output). The data to be converted does not
have to be on a fullword boundary.

When you code periods in the message text for substitution, you
must· code sufficient periods to allow for the blanks. Thus to
display 8 bytes of information (16 hexadecimal digits), you must
code 17 periods in the message text.

For example, to display seven bytes of hexadecimal data beginning
at the location STaR in your program, you could code:

LINEDIT TEXT='STOR: ••••••••••••••• ·,SUB=(HEX4A,STOR)

This might result in a display:

STOR: OA23F115 78ACFE

Note that 15 periods were coded in the message text, to allow for
the blank following the first four bytes displayed.

HEX4 A, (reg)
converts
register
character
output) •

the data at the address indicated in the specified
into graphic hexadeci.al format and inserts a blank
following every four bytes displayed (eight characters of

When you code the
sufficient periods
inserted.

message text for substitution, you must code
to allow for the blank characters tQ be

For example, the line:

LINEDIT TEXT=' BUFFER: ••••••••••••••••••••• ,SUB= (HEX4A, (6»

results in the display of the first nine bytes at the address in
register 6, in the format:

hhhhhhhh hhhhhhhh hh

CHAR A, address
substi t utes the
message text.

character data at
For exam pIe:

the specified address

LINEDIT TE XT=' NAME IS , •••••••••••••• , SUB= (CHARA, NAME)

into the

causes the 10 characters at location NAME to be sUbstituted into
the message text. Multiple blanks are removed.

CHAR A, (reg)
substitutes the character data at the address indicated in the
specified register into the message text. For example:

LINEDIT TE XT=' CODE IS ••••• , SUB= (CHARA, (7))

the first four characters at the address indicated in register 7
are substituted in the message line.

CHAR 8A, address
substitutes the character data at the specified address into the
message text, and inserts a blank character following each eight
characters of output.

380 IBM VM/SP CMS Command and Macro Reference

LINEDIT Macro

When you code the message text, you must code enough periods to
allow for the blanks that will be substituted.

This sUbstitution list is convenient for displaying CMS parameter
lists. For example, to display a fileid in an FSCB, you might code

LINEDIT TEXT='FILEID IS •••••••••••••••••••• ',
SUB= (CHAR8A,OUTFILE+8)

where OUTFILE is the label on an FSCB
this file were TEST OUTPUT A1, then the
would result in the display:

macro. If the fileid for
LINEDIT macro instruction

FILEID IS TEST OUTPUT A1.

In the final edited line, multiple blanks are reduced to a single
blank.

CHAR 8 A, (reg)
substitutes the character data at the address indicated in the
specified register and inserts a blank character following each
eight characters of output.

When you code the message text, you must include sufficient periods
to allow for the blanks. For example:

LINEDIT TEXT=' PLIST: •••••••••••••••••••••••••••••••••••• ,
SUB= (CHAR8 A, (7))

results in a display of four doublewords of character data,
beginning at the address indicated in register 7.

2g~~!!Xl!~ I~j ~EN~I~ !Q~ bIN~DII ~!f~Q SUBSTITUTION: In all the
examples shown, the length of the argumen~-b;Ing--substituted was
determined by the number of periods in the message text. The number of
periods indicated the size of the output field, and indirectly
determined the size of the input data area.

For hexadecimal and decimal substitutions, the input data is
truncated on the left. To ensure that a decimal number will nev~r be
truncated, you can code 10 periods (11 for negative numbers) in the
message text where it will be substituted. For hexadecimal data, code
eight periods to ensure that no characters are truncated when a fullword
is substituted.

When you are coding substitution lists with the CHARA,
HEX4A options, however, you can specify the length of the
field. You must code the SUB operand as follows:

CHAR8A, and
input data

SUB=(type, (address,length»

Both address and length may be specified using register notation. For
example:

SUB= (HEX4A, (LOC, (4) »

shows that the characters at location
message text; the number of characters
contained in register 4, but it cannot
periods coded in the message text.

LOC are substituted into the
is determined by the value

be larger than the numb~r of

You can use this method in the special case where only one character
is to be substituted. Since you must always code at least two peniods

section 7. CMS Macro Instructions 381

LINEDIT Macro

to indicate that sUbstitution is to be performed, you can code two
periods and specify a length of one, as follows:

LINEDIT TEXT='INVALID MODE LETTER •• ·,SUB=(CHARA, (PLIST+24,1»

§'R];~.!!:X1NG lB!l!~.!Rl!]; ~UB§'~!~!!~!Q! LIST§.: When you want to make several
substitutions in the same line, you must enter a sUbstitution list for
each set of periods in the message text. For example:

LINEDIT TEXT='VALUES ARE ••••• and ••••••• ,
SUB= (DEC, (3) ,HEXA ,LOC)

might generate a line as follows:

VALUES ARE -45 AND FFE3C2.

You should remember that if you are using the standard form of the
macro instruction, and you want to perform more than one sUbstitution in
a single line, the LINEDIT macro will not generate reentrant code. If
you code RENT=NO on the macro line, then you will not receive the MNOTE
message indicating that the code is not reentrant. If you want reentrant
code, you must use the list and execute forms of the macro instruction.

Use the DISP operand to specify the output disposition of the edited
line. The format of the DISP operand is:

DISP= TXR];

DISP=TYPE

NONE
PRINT
SIO
CPCOMM
ERRMSG

specifies that the message is to be displayed on the terminal.
This is the default disposition.

DISP=NONE
specifies that no output occurs. This option is useful with the
BUFFA operand.

DISP=SIO
specifies that the message is to be displayed, at the terminal,
using SIO instead of TYPLIN, which is normally used. This option
is used by CMS routines in cases where free storage pointers may be
destroyed. Sin=e lines are not stacked in the console buffer, no
CONWAIT function is performed.

DISP=PRINT
specifies that the line is to be printed on the virtual printer.
The first character of the line is interpreted as a carriage
control character and as such does not appear on the printed
output. (See the discussion of the PRINTL macro for a list of
valid ASA control characters.)

382 IBM VM/SP CMS Command and Macro Reference

LINEDIT Macro

DISP=CPCOMM
specifies that the line is to be passed to CP to be executed as a
CP command. For example:

LINEDIT TEXT='QUERY USERS',DCT=NO,DISP=CPCOMM

results in the CP command line being passed to CP and executed. On
return, register 15 contains the return code from the CP command
that was executed.

DISP=ERRMSG
sp~cifies that the line is to be checked to see if it qualifies for
error message editing. If it does, it is displayed as an error
message rather than as a regular line.

The standard format of VM/SP error messages is

xxxmmmnnns

where xxxmmm is the name of the module issuing the message, nnn is
the message number, and s is the severity code. You can code
whatever you want for the first nine characters of the code when
you write error messages for your programs, but the tenth character
must specify one of the following VM/SP message types:

!1~.§.§~g~ !.Y.E~
Information
Warning
Error

Then, the line is displayed in accordance with the CP EMSG setting.
If EMSG is set to ON, then the entire message is displayed; if EMSG
is set to TEXT, then only the message portion is displayed; if EMSG
is set to CODE, then only the lO-character code is displayed.

Use the BUFFA operand to specify the address of a buffer into which the
edited message is to be written. The message is copied into the
indicated buffer, as well as being used as specified in the DISP
operand. The format of the BUFFA operand is:

BU FFA= {ad d.ress}
(reg)

When the text is copied into the buffer, the length of the message
text is inserted into the first byte of the buffer, and the remainder of
the text is inserted in subsequent bytes.

If you use register notation to indicate the buffer address, the code
generated will not be reentrant. To suppress the MNOTE that informs you
that code is not reentrant, use the RENT=NO operand.

section 7. CMS Macro Instructions 383

LINEDIT Macro

Use the MF operand to specify the macro format when you want to code
list and execute forms when you write reentrant programs. The format of
the MF operand is:

MF={~E' {addr }) }
(reg)

MF=I (standard form)
generates an inline operand list for the LINEDIT macro instruction,
and calls the routine that displays the message. This is the
default. It generates reentrant code, except under the following
circumstances:

• When you specify more than one substitution list
• When you use register notation with the TEXTA or BUFFA operands

MF=L (List form)
generates a parameter list to be filled in when the execute form of
the macro is used.

The size of the area reserved
sUbstitutions to be made, which you
operand. For example:

LINEDIT MF=L,MAXSUBS=5

depends upon the number of
can specify with the MAXSUBS

reserves space for
substitution lists.
macro instructions.

a parameter list
This same list may

that may hold up to five
be used by several LINEDIT

MF= (E, address) (Execute form)
generates code to fill in the parameter list at the specified
address, and calls the routine that displays the message text.

The address specified (either a symbolic address or in register
notation) indicates the location of the list form of the macro.
The following example shows how you might use the list and execute
forms of the LINEDIT macro to write reentrant code:

WRITETOT LINEDIT TEXT='SUBTOTAL ••••• TOTAL ••••• ',
SUB= (DEC, (4) ,DEC, (5» , MF= (E,LINELIST)

LINELIST LINEDIT MF=L,MAXSUBS=6

When the execute form of the LINEDIT macro instruction is used~ the
parameter list for the message is built at label LINELIST, where
the list form of the macro was coded.

384 IBM VM/SP CMS :ommand and Macro Reference

LINEDIT Macro

Use the MAXSUBS operand when you code the list form (MF=L) form of the
LINEDIT macro instruction. The format of the MAXSUBS operand is:

MAXSUBS=number

where number specifies the maximum number of substitutions that will be
made when the execute form of the macro is used.

Use the RENT operand when you are going to use the standard form of the
LINEDIT macro instruction and you do not care whether the code that is
generated is reentrant. The format of the RENT operand is:

When RENT=YES (the default) is in effect, the LINEDIT macro expansion
issues an MNOTE massage indicating that nonreentrant code is being
generated. This occurs when you use the standard form of the macro
instruction and you specify one of the following:

• TEXTA=(reg)
• BUFFA=(reg)
• More than one sUbstitution pair

If you do not care whether the code is reentrant, and you do not wish
to have the MNOTE appear, code RENT=NO. The RENT=NO coding merely
suppresses the MNOTE statement; it has no effect on the expansion of the
LINEDIT macro instruction.

section 7. eMS Macro Instructions 385

PRINTL Macro

PRI NTL

Use the PRINTL macro instruction to write a line to a virtual printer.
The format of the PRINTL macro instruction is:

r
t [label] I PRINTL I line [,length] (,TRC=] [,ERROR=erraddr]
L

label

line

length

TRC=

is an optional statement label.

specifies the line to be printed. It may be:

, linetext'
lineaddr
(reg)

text enclosed in quotation marks.
the symbolic address of the line.
a register containing the address of the line.

specifies the length of the line to be printed.
It may be:

(See Note 1.)

(reg)
n

a register containing the length.
a self-defining term indicating the length.

specifies whether or not the current print line includes a TRC
(Table Reference Character) byte. The TRC byte indicates
which 3800 translate table is selected to print a line.

MQ specifies that there is no TRC byte in the line to be
printed. NO is the default.

YES specifies that the line to be printed has a TRC byte as
the second byte in the line. The value of the TRC byte
determines which 3800 translate table is selected. If an
invalid value is found, translate table 0 is selected.

n specifies a value for TRC to indicate which 3800
translate table should be selected before printing the
line •. The line to be printed does not contain a TRC
byte. If an invalid value is specified, translate table
o is selected.

The value
you have
command) •

of the TRC byte corresponds to the order in which
loaded WCGMs (via the CHARS keyword on the SETPRT

Valid values for TRC are 0, 1, 2, and 3.

ERRO R=erraddr
specifies the address of an error routine to be given control
if an error is found. If ERROR= is not coded and an error
occurs, control returns to the next sequential instruction in
the calling program, as it does if no error occurs.

1. The maximum length allowed is 151 characters. on a virtual 3211 or
133 characters on a virtual 1403 or 3203. If you do not specify
the length, it defaults to 133 characters, unless 'linetext' is
specified. In this case, the length is taken from the length of the
line text.

386 IBM VM/SP CMS Command and Macro Reference

2.

3.

PRINTL Macro

If the virtual printer is a 3800, the line may contain a maximum of
204 bytes of ~ata. In addition, you can specify both a carriage
control byte, a TRC byte, or both, for a total line length of up to
206 bytes.

The first character of the line is
control character, which may be either
The valid ASA control characters are:

interpreted as a carriage
ASA (ANSI) or machine code.

f!H~£~£~~£ Hex Code l1~~1!!.ng
)f --40--- Space 1 line before printing
0 FO Space 2 lines before printing

60 Space 3 lines before printing
+ 4E Suppress space before printing
1 F1 Skip to channel 1
2 F2 Skip to channel 2
3 F3 Skip to channel 3
4 F4 Skip to channel 4
5 F5 Skip to channel 5
6 F6 Skip to channel 6
7 F7 Skip to channel 7
8 F8 Skip to channel 8
9 F9 Skip to channel 9
A C1 Skip to channel 10
B C2 Skip to channel 11
C C3 Skip to channel 12

Hex codes X' C1' and X'C3' are used in both machine code and ASA
code. CMS recognizes these codes as ASA control characters, nqt as
machine control characters.

4. If the line does not begin with a valid carriage control character,
the line is printed with a write command to space one line before
printing (ASA X'40').

5. If you specify TRC= and the virtual printer is not a 3800, the TRC
byte is stripped off before the line is printed. If the TRC byte
is invalid, PRINTL issues the following MNOTE:

MNOTE 8,'INVALID TRC SPECIFICATION'

Translate table 0 is selected if the TRC byte is invalid.

6. When the macro completes, register 15 may contain a 2 or a 3,
indicating that a channel 9 or channel 12 punch was sensed,
respectively. You can use these codes to determine whether the end
of the page is near (channel 9), or if the end of the page has been
reached (channel 12). You might want to check for these codes if
you want to print particular information at the bottom or at the
end of each page being printed.

When the channel 9 or channel 12 punch is sensed, the write
operation terminates after carriage spacing but before writing the
line. If you want to write the line without additional space, you
must modify the carriage control character in the buffer to a code
that writes without spacing (ASA code + or machine code 01).

7. You must issue the CP CLOSE command to close the virtual printer
file. Issue the CLOSE command either from your program (using an
SVC 202 instruction or a LINEDIT macro instruction) or from the CMS
environment after your program completes execution. The printer is
automatically closed when you log off or when you use the CMS PRINT
command.

Section 7. CMS Macro Instructions 387

PRINTL, PUNCHC Macros

If an error occurs register 15 contains one of the following error
code s:

~Qg~
1
2
3
4
5

100

l1gan!l!.g
Line too long
Channel 9 punch sensed (virtual 3203 or 3211 only)
Channel 12 punch sensed (virtual 3203 or 3211 only)
Intervention required
Unknown error
Printer not attached

PUNCHC

Use the
punch.

PUNCHC macro instruction to write a line to
The format of the PUNCHC macro instruction is:

a virtual card

r
[label] I PUNCHCI line [,ERROR=erraddr]

L

label is an optional statement label.

line specifies the line to be punched. It may be:

'linetext'
lineaddr
(reg)

text enclosed in quotation marks.
the symbolic address of the line.
a register containing the address of the line.

ERRO R=erraddr
specifies the address of an error routine to be given control
if an error is found. If ERROR= is not coded and an error
occurs, control returns to the next sequential instruction in
the calling program, as it does if no error occurs.

1. No stacker selecting is allowed. The line length must be 80
characters.

2. You must issue the CP CLOSE command to close the virtual punch
file. Issue the CLOSE command either from your program (using an
SVC 202 instruction) or from the CMS environment when your program
completes execution. The punch is closed automatically when you log
off or when you use the CMS PUNCH command.

If an error occurs, register 15 contains one of the following error
codes:

~QQ~
2
3

100

l1~@!!lg
unit check
Unknown error
Punch not attached

388 IBM VM/SP CMS :ommand and Macro Reference

RDCARD Macro

RDCARD

Use the RDCARD macro instruction to read a line from a virtual card
reader. The format of the RDCARD macro instruction is:

r----------
I [l abel] I RDCARD buffer[,length][,ERROR=erraddr]
L __

label

buff er

length

is an optional statement label.

specifies the buffer address into which the card is to be
read. It may be:

bufaddr
(reg)

the symbolic address of the buffer.
a register containing the address of the buffer.

specifies the length of card to be read. If omitted, 80 is
assumed. The length may be specified in one of two ways:

n
(reg)

a self-defining term indicating the length.
a register containing the length.

ERRO R=erraddr
specifies the address of an error routine to be given
control if an error is found. If ERROR= is not coded and an
error occurs, control returns to the next seque~tial
instruction in the calling program, as it does if no error
occurs.

1. No stacker selecting is allowed.

2. When the macro completes, register 0 contains the length of the
card that was read.

3. You may not use the RDCARD macro in jobs that run under the CMS
batch machine.

If an error occurs, register 15 contains one of the following error
codes:

l1~.ru!!n.9:
End of file
unit check
Unknown error
Length not equal to requested length
Device not attached

section 7. eMS Macro Instructions 389

RDTA PE Macro

RDTAPE

Use the RDTAPE macro instruction to read a record from the specified
tape drive. The format of the RDTAPE macro instruction is:

r---
I [label]
I
L

label

buff er

length

device

RDTAPE buffer,length (,device] [,MODE=mode]
(, ERROR=erradr]

is an optional statement label.

specifies the buffer address into which the record is to be
read. It may be specified in either of two ways:

lineaddr
(reg)

the symbolic address of the buffer.
a register containing the address of the buffer.

specifies the length of the largest record to be read. A
65,535-byte record is the largest record that can be read. It
may be specified in either of two ways:

n
(reg)

a self-defining term indicating the length.
a register containing the length.

specifies the device from which the
omitted, TAP1 (virtual address 181)
specified in either of two ways:

line is to be
is assumed.

read. If
It may be

TAPn

cuu

indicates the symbolic tape number (TAP1 through
TAP4) •
indicates the virtual device address.

MODE=mode specifies the number of tracks, density, and tape recording
technique options. It must be in the following form:

«(track],e density],(trtch])

ERRO R=erraddr

track 7 indicates a 7-track tape (implies density=800 and
trtch=O) •

density

trtch

9 indicates a 9-track tape (implies density=800).

200, 556, or 800 for a 7-track tape.
800, 1600, or 6250 for a 9-track tape.

indicates the
7-track tape.
specified:

tape recording technique
One of the following must

for
be

o - odd parity, converter off, translator off.
OC - odd parity, converter on, translator off.
OT - odd parity, converter off, translator on.
E - even parity, converter off, translator off.
ET - even parity, converter off, translator on.

specifies the address of an error routine to be given control
if an error is found. If ERROR= is not coded and an error
occurs, control returns to the next sequential instruction in
the calling program, as it does if no error occurs.

390 IBM VM/SP CMS Command and Macro Reference

RDTAPE, RDTERM Macros

1. When the macro completes, register 0 contains the number of bytes
read.

2. You need not specify the Mode option when you are reading from a
9-track tape and using the default density of the tape drive nor
when you are reading from a 7-track tape with a density of 800 bpi,
odd parity, with the data converter and translator off.

If an error occurs, register 15 contains one of the following error
codes:

Me~n!ng
Invalid function or parameter
End of file or end of tape
Permanent IIO error
Invalid device address
Tape not attached
Incorrect length e~ror

list

RDTERM

Use the RDTERM macro instruction to read a line from the terminal into
an IIO buffer. The format of the RDTERM macro instruction is:

r--------------------
I I I
I [label] I RDTERM I

,. ,1
buffer[,EDIT=code](,LENGTH=length]I,ATTREST={II~}1 I

INQ II I I I
I I I L .I I
'--

label

buffer

is an optional statement label.

specifies the address of a buffer into which the line is to be
read. The buffer is assumed to be 130 bytes long, unless
EDIT=PHYS is specified. The address may be specified as:

lineaddr
(reg)

the symbolic address of the buffer.
a register containing the address of the buffer.

EDIT=code specifies the type of editing, if any, to be performed on the
input line.

NO indicates that a logical line is to be read and no
editing is to be done.

PAD requests that the input line be padded with blanks
to the length specified.

UPCAS E requests that the line be translated to uppercase.

indicates both padding and translation to uppercase.
YES is the default~

section 7. CMS Macro Instructions 391

RDTERK, REGEQU Macros

PHYS indicates that a physical line is to be read. When
PHYS is specified, the LENGTH and ATTREST=NO
operands may also be entered. This option causes
the input line to be translated using the user
translation table.

LENGTH=length
specifies
assumed.
specified
specified

the length of the buffer. If not specified, 130 is
The maximum length is 2030 bytes. The length may be
only if EDIT=PHYS (see Usage Note 2). It may be
in either of two forms:

n

(reg)

a self-defining term indicating the length of the
buffer
a register containing the length of the buffer.

ATTR EST=YES I NO
specifies whether an attention interruption during a read
should result in a restart of the read operation. (See Usage
Note 2.)

·1. When the macro completes, register 0 contains the number of
characters read.

2. You can use the ATTREST=NO and LENGTH operands only when you are
reading physical lines (EDIT=PHYS). When ATTREST=NO, an attention
interruption during a read operation signals the end of the line
and does not result in a restart of the read. These operands are
used primarily in writing VS APL programs.

When an error occurs, register 15 contains one of the following error
codes:

l1~g!!i!!g
Invalid parameter
Read was terminated by an attention signal (possible only when
ATTREST=NO)

REGEQU

Use the REGEQU macro instruction to generate a list of EQU (equate)
statements to assign symbolic names for the general, floating-point, and
extended control registers. The format of the REGEQU macro instruction
is:

r
I REGEQU
L-

392 IBM VM/SP eMS Command and Macro Reference

REGEQU, TAPECTL Macros

The REGEQU macro instruction causes the following equate statements to
be generated:

Q~~£~J:
RO
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15

g~gi§1~:£2
EQU 0
EQU 1
EQU 2
EQU 3
EQU 4
EQU 5
EQU 6
EQU 7
EQU 8
EQU 9
EQU 10
EQU 11
EQU 12
EQU 13
EQU 14
EQU 15

Xlo~~ing=fQin1 R~gi21~:£2
o FO EQU

F2 EQU 2
F4 EQU 4
F6 EQU 6

Extended ---co-
C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C 11
C12
C13
C14
C15

Cont:£Q! g~i§!~:£2
EQU 0
EQU 1
EQU 2
EQU 3
EQU 4
EQU 5
EQU 6
EQU 7
EQU 8
EQU 9
EQU 10
EQU 11
EQU 12
EQU 13
EQU 14
EQU 15

TAPECTL

Use the TAPECTL macro instruction to position the specified tape
according to the specified function code. The format of the TAPECTL
macro instruction is:

r
I [label] I TAPECTL I function [,device][,MODE=mode][,ERROR=erraddr]
L

label is an optional statement label.

function specifies the control function to be performed. It must be
one of the following codes:

£Qg~
REW
RUN
ERG
BSR
BSF
FSR
FSF
WTM

Function
Rewina-the tape
Rewind and unload the tape
Erase a gap
Backspace one record
Backspace one file
Forward-space one record
Forward-space one file
Write a tape mark

section 7. eMS Macro Instructions 393

TAPECTL Macro

device specifies the tape on which the control operation is to be
performed. If omitted, TAP1 (virtual address 181) is assumed.
It may be:

TAPn

cuu

indicates the symbolic tape number (TAP1 through
TAP4) •
indicates the virtual device address.

MODE=mode specifies the number of tracks, density, and tape recording
technique options. It must be in the following form:

([·track l,e density],[trtch])

track 7 indicates a 7-track tape (implies density=800 and
trtch=O) •

density

trtch

9 indicates a 9-track tape (implies density=800).

200, 556, or 800 for a 7-track tape.
800, 1600, or 6250 for a 9-track tape.

indicates the
7-track tape.
specified:

tape recording technique for
One of the following must be

o - odd parity, converter off, translator off.
OC - odd parity, converter on, translator off.
OT - odd parity, converter off, translator on.
E - even parity, converter off, translator off.
ET - even parity, converter off, translator on.

ERRO R=erraddr
specifies the address of an error routine to be given coqtrol
if an error is found. If ERROR= is not coded and an error
occurs, control returns to the next sequential instruction in
the calling program, as it does if no error occurs.

You need not specify the MODE option when you are manipulating a 9-track
tape and you are using the default density for the tape drive, nor when
you are writing a 7-track tape with a density of 800 bpi, odd parity,
with data converter and translator off.

If an error occurs, register 15 contains one of the following error
codes:

~Qg~
1
2
3
4
5
6

~~~n!n.9: 
Invalid function or parameter list. 
End of file or end of tape 
Permanent I/O error 
Invalid device id 
Tape is not attached 
Tape is file-protected 

394 IBM VM/SP CMS :ommand and Macro Reference 



TAPESL Macro 

TAPESL 

The TAPESL macro processes IBM standard HDR1 and EOF1 labels without 
using DOS or OS OPEN and CLOSE macros. This macro is used with RDTAPE, 
WRTAPE, and TAPECTL. TAPESL processes only HDR1 and EOF1 labels. It 
does not process other labels such as standard user labels or HDR2 
labels. It does not perform any functions of opening a tape file other 
than label checking or writing. The same macro is used both to check 
and to write tape labels. A LABELDEF command must be supplied 
separately to use the macro. The tape must be positioned correctly (at 
the label to be checked or at the place where label is to be written) 
before issuing the macro. TAPECTL may be used to position the tape. 
TAPESL reads or writes only one tape record unless SPACE=YES is 
specified. The format of the TAPESL macro is: 

r 
I [label] 
I 
I 
I 
I 
I 
L 

function 

device 

TAPESL function[ ,device],LABID=labeldefid[,MODE=mode] 
[,BLKCNT=blkcnt][,ERROR=erraddr] 
r , r , 

I,SPACE={I~2}1 I,TM={I~2}1 
I NO II NO I 
L .J L J 

is one 
HIN 
HOUT 
EIN 
EOUT 
EVOUT 

of the following: 
checks input HDR1 label. 
writes HDR1 label. 
checks input EOF1 label. 
writes output EOF1 label. 
writes output EOV1 label. 

is one of the following: 
TAPn n=1-4. If omitted, 181 is assumed. 
cuu 181-184 are the only values allowed. 

MODE=mode specifies the number of tracks, density, and tape recording 
technique options. It must be in this form: 

([ track ],( density ],[ trtch]) 

track 

density 

trtch 

7 indicates a 7-track tape (implies density=800 and 
trtch=O) • 

9 indicates a 9-track tape (implies density=800) • 

200, 556, or 800 for a 7-track tape. 
800, 1600, or 6250 for a 9-track tape. 

indicates the 
7-track tape. 

tape recording technique for 
One of these must be specified: 

o - odd parity, converter off, translator off. 
OC - odd parity, converter on, translator off. 
OT - odd parity, converter off, translator on. 
E - even parity, converter off, translator off. 
ET - even parity, converter off, translator on. 

section 7. CMS Macro Instructions 395 



TAPESL Macro 

LABI D=labeldefid 
specifies the 1- to a-character name on the LABELDEF command 
to be use1 for the file. (A separate LABELDEF statement must 
be specified for the file before the program containing TAPESL 
is executed.) 

BLKC NT=blkcn t 
specifies the block count to be inserted in an EOF1 or EOV1 
label on output or used to check against on input. This field 
is only ~sed for functions EOUT, EIN, or EVOUT. If not 
specified, the output block count is set to O. This field may 
also be specified as a register number enclosed within 
parentheses when a general register contains the block count. 

ERRO R=erraddr 
specifies the address of an error routine to be given control 
if an error of any kind occurs during label processing. If 
ERROR= is not coded and an error occurs, control is returned 
to the next sequential instruction in the calling program. If 
you request the EIN function and a block count error is 
detected, control is transferred to your error routine if you 
specify an ERROR= parameter that contains an address different 
from the next sequential instruction. If no error return is 
specified or the ERROR= address is the same as the normal 
return, a block count error causes message 425R to be issued. 

SPAC E= {~~§} 

TM={~~~} 

may be specified for functions HIN and EIN. If YES is 
specified, the tape is spaced, after processing, beyond the 
tapemark at the end of the label record. If NO is specified, 
the tape is not moved after the label has been processed. YES 
is the default. 

may be specified for functions HOUT, EOUT, and EVOUT. If YES 
is specified, a single tapemark is written after a HDR1 or 
EOV1 label. Two tapemarks are written after an EOF1 label. 
If NO is specified, no tapemarks are written. YES is the 
default. 

1. The input functions HIN and EIN read a tape label and check to see 
if it is the type specified. They also check any fields in the 
tape label that have been specified explicitly (no defaulted) in 
the LABELDEF statement (indicated by LABID). Any discrepancies 
between the fields in the LABELDEF statement and the fields on the 
tape label cause an error message to be issued and an error return 
to be made. 

2. The output functions HOUT, EOUT, and EVOUT write a tape label ~f 
the requested type on the specified tape. The values of fields 
within the labels are those specified or defaulted to in the 
LABELDEF command. See the description of the LABELDEF commaqd in 
this publication for information about the default fields. 

3. For a more complete discussion of tape label processing, see the 
section "CMS Tape Label Processing" in the Y!!LSP fl1~ !l2~f:~ §.yid~. 

396 IBM VM/SP eMS Command and Macro Reference 



TAPESL, WAITD Macros 

When an error occurs, register 15 contains one of the following error 
codes: 

~Q£~ 
24 
28 
32 
36 
40 

100 

t1~s!!i!!g 
Invalid device type specified. 
LABELDEF cannot be found. 
Error in checking tape label or block count error. 
output tape is file-protected. 
End of file or end of tape occurred. 
Tape lID error occurred. 

WAITD 

Use the WAITD macro instruction to cause the program to wait until the 
next interruption occurs on the specified device. The format of the 
WAITD macro instruction is: 

r 
I [label] I WAITD I device ••• [, devicen] [, ERROR=erraddr] 
L-

label 

devicen 

is an optional statement label. 

specifies the device(s) to be waited for. 
following may be specified: 

One of the 

symn indicates the symbolic device name and number, where: 

sym is CON, DSK, PRT, PUN, RDR, or TAP. 
n indicates a device number. 

user is a four-character symbolic name specified a HNDINT 
macro issued for the same device. 

ERRO R=erraddr 
specifies the address of an error routine to be given coqtrol 
if an error is found. If ERROR= is not coded and an error 
occurs, control returns to the next sequential instruction in 
the calling program, as it does if no error occurs. 

1. Use the WAITD macro instruction to ensure completion of an I/O 
operation. If an interruption has been received and not processed 
from a device specified in the WAITD macro instruction, the 
interruption is processed before program execution continues. 

2. When the interruption has been completely processed, control is 
returned to the caller with the name of the interrupting device in 
register 1. 

3. If an HNDINT macro instruction issued for the same device specified 
ASAP and an interruption has already been processed for the device, 
the wait condit ion is satisfied. 

Section 7. eMS Macro Instructions 397 



WAITD, WAITT, WRTAPE Macros 

4. If an HNDINT macro instruction issued for the same device specified 
WAIT and an interruption for the device has been received, the 
interruption handling routine is given control. 

5. The interruption routine determines if an interruptio~ 
considered processed or if more interruptions are necessary 
satisfy the wait condition. For additional information see 
discussion of the HNDINT macro instruction. 

is 
to 

the 

When an error is detected, register 15 contains a 1 to indicate that an 
invalid device number was specified. 

WAITT 

Use the WAITT macro instruction to cause the program to wait until all 
of the pending terminal I/O is complete. The format of the WAITT macro 
instruction is: 

r 
I [label] I WAITT I 
L 

label is an optional statement label. 

The WAITT macro instruction synchronizes input and output to the 
terminal; it ensures that the console stack is cleared before the 
program continues execution. Also, you can ensure that a read or write 
operation is finished before you modify an I/O buffer. 

WRTAPE 

Use the WRTAPE macro instruction to write a record on the specified tape 
drive. The format of the WRTAPE macro instruction is: 

r 
I [label] 
I 
L 

label 

buffer 

WRTAPE buffer,length [,device] [,MODE=mode] 
[,ERROR=erraddr] 

is an optional statement label. 

specifies the address of the record to be written. It may be: 

lineaddr 
(reg) 

the symbolic address of the line. 
a register containing the address of the time. 

398 IBM VM/SP eMS :ommand and Macro Reference 



length 

device 

WRTAPE Macro 

specifies the length of the line to be written. It may be 
specified in either of two ways: 

n 
(reg) 

a self-defining term indicating the length. 
a register containing the length. 

specifies the device to which the record is to be written. If 
omitted, rAP1 (virtual address 181) is assumed. It may be: 

TAPn 

cuu 

indicates the symbolic tape number (TAP1 through 
TAP4) •. 
indicates the virtual device address. 

MODE=mode specifies the number of tracks, density, and tape recording 
technique. It must be in the following form: 

([ track ],[ density],[ trtch]) 

track 7 indicates a 7-track tape (implies density=800 and· 
trtch=O) • 

density 

trtch 

9 indicates a 9-track tape (implies density=800). 

200, 556, or 800 for a 7-track tape 
800, 1600, or 6250 for a 9-track tape. 

indicates the 
7-track tape. 
specified: 

tape recording technique for 
One of the following must be 

o - odd parity, converter off, translator off. 
oe - odd parity, converter on, translator off. 
OT - odd parity, converter off, translator on. 
E - even parity, converter off, translator off. 
ET - even parity, converter off, translator on. 

ERRO R= erraddr 
specifies the address of an error routine to be given control 
if an ercor is found. If ERROR= is not coded and an error 
occurs, control returns to the next sequential instructiqn in 
the calling program, as it does if no error occurs. 

You need not specify the MODE option when you are writing to a 9-track 
tape and want to use the default density, nor when you are writing to a 
7-track tape with a density of 800 bpi, odd parity, with data converter 
and translator off. 

If an error occurs, register 15 contains one of the following error 
codes: 

~Q£~ 
1 
2 
3 
4 
5 
6 

l'Ie~!!!!!g 
Invalid function or parameter 
End of file or end of tape 
Permanent 1/0 error 
Invalid device identification 
Tape not attached 
Tape is file-protected 

list 

section 7. eMS Macro Instructions 399 



WRTERM Macro 

WRTERM 

Use the WRTERM macro instruction to display a line at the terminal. The 
format of the WRTERM macro instruction is: 

r--------------------------
, [label] , WRTERM I line [rlength] [rEDIT=code ] (rCOLOR=color] 
L 

label 

line 

length 

is an optional statement label. 

specifies the line to be displayed. 
forms: 

It may be one of three 

'linetext' 
lineaddr 
(reg) 

the actual text line enclosed in quotation marks. 
the label on the statement containing the line. 
a register containing the address of the line. 

specifies the length of the line. If the line is specified 
within quotation marks in the macro instruction r the length 
operand may be omitted. The length may be specified in either 
of two ways: 

n 
(reg) 

a self-defining term indicating the length. 
a register containing the length. 

EDIT=code specifies whether the line is to be edited: 

I~~ indicates that trailing blanks are to be removed and a 
carriage return added to the end of the line. YES is the 
default value. 

NO indicates that trailing blanks are not to be removed and 
no carriage return is to be added. 

LONG indicates the line may exceed 130 bytes. 
performed. 

COLO R=color 

No editing is 

indicates the color in which the line is to be typed r if the 
typewriter terminal has a two-color ribbon: 

~ indica tes that the line is to be typed in black. This is 
the default. 

R indica tes that the line is to be typed in red. 

!!2gg~ l!Q!~2 

1. The maximum line length is 130 characters for a black line and 126 
characters for a red line. 

2. If EDIT=LONG, ~OLOR must be specified as "B". In this case r you may 
write as many as 1760 bytes with a single WRTERM macro instruction. 
You are responsible for embedding the proper terminal control 
characters in the data. (This operand is for use primarily with VS 
APL program s.) 

3. You may want to use the WAITT macro instruction to ensure that 
terminal, I/O is complete before continuing program execution. 

400 IBM VM/SP CMS ~ommand and Macro Reference 



HELP Format Words 

Section 8. HELP Format Words 

This section describes the formats, operands, and defaults of the HELP 
facility format words. In each of the format word descriptions, the 
default values are those that are implied when you enter a format word 
with no operands or parameters. For example, the default operand of the 
.FO (FORMAT MODE) format word is 'on'. Therefore, the format lines 

.fo 

.fo on 

are equivalent, and in the format box of the .FO format word the 'on' 
operand is underscored. 

HELP format words are used only in HELP description files when the user 
wants HELP to do output formatting when the £ile is processed. Figure 
21 is a summary of the HELP facility format words. 

Section 8. HELP Format Words 401 



HELP Format Words 

r 
I Format 
, word 
I 

Operand 
Format 

I . BX (BOX) Vl V2 
OFF 

••• Vn, 
I , 
I , 
1 • CM I Comments 
, (COMMENT), 
I I 
1 • cs I nON/OFF 
, (CONDI- I 
I TIONAL , 
, SECTION) I 
, I 
,.FO , ON/OFF 
I (FORM AT I 
I -MODE) I 
I I 
I I 
I.IL (IN- I nl+nl-n 
IDENT LINE) I , , 
, I 
I.IN (IN- I nl+nl-n 
IDENT) I 
, I 
, I 
I.OF (OFF- I nl+nl-n 
I SET) I 
, I , , 
I I 
I.SP I n 
I (SPACE) I 
I I 
I I 
, I 
I.TR(TRANS-I s t 
I L ATE) I 
I I 
I I 
L-

, 
1 , , , , 
I , , 
I 
1 
I , , , , 
I 
I 
I 
1 
I 
1 , , 
I , , 
I 
I 
I 
1 
I 
I 
I 
I , 
1 
1 
I 

Function 

Draws horizontal and 
vertical lines around 
subsequent output text in 
blank columns. 

, 
I , , 
1 

Places comments in a 1 
file for future reference.' 

Allows conditional 
inclusion of input in 
the formatted output. 

Causes concatenation of 
input lines, and left and 
right-justification of 
output. 

Indants only the next 
line the specified 
number of spaces. 

Specifies the number 
of spaces subsequent 
text is to be indented. 

Provides a technique 
for indenting all but 
the first line of a 
section. 

Specifies the number 
of blank lines to be 
inserted before the 
next output line. 

Specifies the final 
output representation. 
of any input character. 

1 
1 
I , 
1 
I 
1 , 
I , , 
1 , 
I 
I 
1 
I , , , , , 
I 
1 
I 
I 
I , 
1 , 
1 
1 
1 

Figure 21. HELP Format Word Summary 

Q02 IBM VM/SP CMS Command and Macro Reference 

, 
Default , 

Break Value, 
I 

Yes ,Draws a , 
1horizontal' 
,line. , , 

No I , 
I 

No 1 
1 
1 
I , 

Yes IOn , , , , 
Yes 10 , , 

1 
Yes 10 

I 
1 
I 

Yes 10 
I 
I , 
I 

Yes I' 
I 
I 
I 
I 

No I , , 
1 



HELP Format Words - .BX 

.BX (BOX) 

The BOX format word defines and initializes a horizontal rule for output 
and defines vertical rules for subsequent output lines. 

The format of the .BX format word is: 

r 
I 
I , , 

.BX 
r , 
Ivl v2 [ ••• [vn]]1 
lOFF , 
L .J 

L-

vl-vn 

Off 

are the positions at which you want to plae vertical rules in 
output text. This format of the format word initializes the 
box and draws a horizontal line with vertical descenders at 
the columns indicated. Subsequently entering the .BX format 
word with no operands causes HELP to print a horiz~ntal line 
with vertical bars at the columns indicated. 

causes HELP to finish drawing the box by printing a horizontal 
line with vertical ascenders at the columns specified in a 
previous .BX format word. 

1. The .BX format word describes an overlay structure for subsequent 
text that is processed by HELP. After the '.BX vl v2 •••• line is 
processed, HELP continues processing output lines as usual. 
However, before a line is printed, HELP places vertical bars in the 
columns indicated by vl, v2, and so on, unless a column is already 
occupied by a data character. In this case, HELP does not place a 
vertical bar in the column. 

2. The .BX control word causes a break in the text. 

3. The terminal output characters for boxes are formed with dashes 
(-), vertical bars el), and plus signs (+). 

4. You can specify a .BX format word with different columns while a 
box is being drawn. When this happens, HELP puts in vertical 
ascenders for all the old columns and vertical descenders for all 
the new columns. The vertical rules then appear in all subsequent 
output lines in the new columns designated. 

5. The column specification for the .BX format word uses a different 
rule than is used elsewhere in HELP. In some control words the 
numbers in the format word represent not columns but displacements. 
For example the HELP format word .IN 5 means that a blank character 
should be expanded to enough blanks to fill up 1h£Qygh column 5; 
the next word starts in column 6. In the .BX control word, .BX 5 
means to put vertical rules in column 5. Thus, you can use the 
same numbers for a .IN control word as for a .BX control word, and 
the vertical bar will appear in the column immediately preceding 
the first word on that line. 

Section 8. HELP Format Words 403 



HELP Format Words - .BX 

Consider the HELP file called 'MARYHADA' that looks like this: 

.bx 1 43 

.in 5 
Mary had a little lamb r 
Whose fleece was white as snowr 
And everywhere that Mary went r 
The lamb was sure to go • 
. bx off 

This filer when processed by HELP r creates the following output: 

.--- --, 
, Mary had a little lamb r , 
, Whose fleece was white as snow r , 
, And everywhere that Mary went r , 
, The lamb was sure to go. , 
L---

404 IBM VM/SP CMS Command and Macro Reference 



HELP Format Words - .C~ 

.CM (COMMENT) 

Use the CO~MENT format word to place comments within a HELP file. 

The format of the .CM format word is: 

r--, 
1 • CM comments , L--__________ . __________________________ _ 

comments may be anything; this input line is not used in formatting the 
output. 

1. The .CM format word enables you to store comments in the HELP files 
for future reference. The comments can be seen Qn!~ by editing the 
HELP file. 

2. You can use comments to store unique identifications to be used to 
locate a specific region of the file during editing • 

• CM Remember to change the date. 

The line above is seen only when editing the HELP file, and it reminds 
you to change the date used in the text. 

section 8. HELP Format Words 405 



HELP Format Words - .CS 

.CS (CONDITIONAL SECTION) 

The CONDITIONAL SECTION format word identifies to HELP the sections of 
the input file that are to be co~ditionally processed based on the 
specified HELP command option. 

The format of the .CS format word is: 

,--
I 
I 
I 
I 

.CS ON ] 
OFF 

L--

n specifies the conditional section code number from 1 to 3. 

on marks the beginning of conditional section n. 

off marks the end of conditional section n. 

1. The .CS format word enables you to identify the specific sections 
of the input file that are directly associated with the HELP 
facility command 'options', and that will be included in the output 
based on the HELP command option specified. 

If you choose to implement any HELP description files using the 
ALL, PARM, FORM, and DESC options, the format word .CS is required 
in the file. you must use the following form: 

Top of file 
.cs 1 on 

(Text for DESC option) 
.CS 1 off 
.CS 2 on 

(Text for FORM option) 
.cs 2 off 
.CS 3 on 

(Text for PARM option) 
.CS 3 off 
End of file 

2. A conditional section can contain HELP format words as well as 
text. If the section is ignored when processed by HELP, all format 
words contained in that section are ignored~ except the format 
word: 

.cs n off 

which marks the end of the section. 

3. Imbedding .CS format words (that is, specifying the beginning of a 
conditional section before you have specified the end of a previous 
conditional section) produces unpredictable resUlts. 

406 IBM VM/SP CMS Command and Macro Reference 



HELP Format Words - .FO 

.FO (FORMAT MODE) 

Use the FORMAT MODE format word to cancel or restore concatenation of 
input lines and right-justification of output lines. 

The format of the .FO format word is: 

r--'----, 
, • FO , , 
L-

r , 
I Q! 1 
, OFF 1 
L .J 

ON restores default HELP formatting, including both justification 
and concatenation of lines. If you use the .FO format word 
with no operands, ON is assumed. 

Off cancels concatenation of input lines and justification of 
output lines. Subsequent text is printed 'as is'. 

1. When format mode is in effect, lines are formed by shifting words 
to or from the next line (concatenation) and padding with extra 
blanks to produce an aligned right margin (justification). 

2. This format word acts as a break. 

3. When format mode is in effect, a 
exceeds the current line length is 
If a line is processed so that only 
word is left-justified. 

line without any blanks that 
extended into the right margin. 

one word fits on the line, the, 

~. If nQ formatting is to be done by HELP, HELP description files m~§! 
contain a '.fo off' format word as the first line of the file. 

1. • FO off 

Justification and concatenation are 
completed for 
the preceding line or lines, but the following 
lines are 
typed exactly as they appear in the file. 

2. .FO 

Justification and formatting are 
output from this point on in the 
right margin on the output page. 

resumed with the 
file is padded to 

next input line. 
produce an aligned 

section 8. HELP Format Words ~07 



HELP Format Words - .IL 

.Il (INDENT liNE) 

Use the INDENT LINE format word to indent the ~~xt 1i~~ Qnl~ a specified 
number of characters. 

The format of the .IL format word is: 

,--, r , 
, .IL , n, , , , 

, +n , 
, -n , 
L .J 

L--

n specifies the number of character spaces to shift the next 
line from the current margin. +n specifies that text is 
shifted to the right, and -n shifts text to the left. 

Us~g~ !.Q.:t~.§ 

1. The. IL format word provides a way to indent the next output line. 
The line is shifted to the right or the left of the current margin 
(which includes any indent or offset values in effect) • 

2. This format word acts as a break. 

3. The .IL format word is useful for beginning new paragraphs. 

q. When successive .IL format words are encountered without 
intervening text, or when you specify positive or negative 
increments for .IL format words entered without intervening text, 
the indent amount is modified to reflect the last .IL encountered; 
that is, the increments are added together. Thus the lines: 

.il q 

.il +6 

result in the next line being indented 10 spaces. 

5. When you use the .IL format word with a negative value (undenting), 
an error message is generated if the resulting amount would cause a 
shift to the left of character position one. 

Q08 IBM VM/SP CMS Command and Macro Reference 



HELP Format Words - .IN 

.IN (INDENT) 

Use the INDENT format word to change the left margin displacement of 
HELP output. 

The format of the .IN format word is: 

.-------, r , 
, • IN , n, , 
I 
I , 

I +n 1 
I -n 1 
, !! I 
L .J 

L--

n specifies the number of spaces to be indented. If omitted, 0 
is assumed, and indentation reverts to the left margin. If 
you use +n or -n, the current left margin increases or 
decreases by the amount specified. 

1. The .IN format word resets the current left margin. This 
indentation remains in effect for all following lines until another 
.IN format word is encountered. '.IN 0' cancels the indentation, 
and output continues at the original left margin setting. 

2. The value of n represents the number of blank spaces 
text margins. Thus, '.in 5' sets the left margin at 
leaving 5 blank spaces at the left. 

3. This format word acts as a break. 

left before 
column 6, 

4. The .IN format word cancels any .OF (OFFSET) setting. The .OF 0 
request cancels the current offset, but leaves the left margin 
specified by the .IN format word unchanged. 

Section 8. HELP Format Words 409 



HELP Format Words - .OF 

.OF (OFFSET) 

Use the OFFSET format word to indent all but the first line of a block 
of text. 

The format of the .OF format word is: 

r-, r , 
, .OF , n, , 
I 
I , 

I +n , 
I -n , 
, Q' 
L .J 

L--

n specifies the number of spaces to be indented after the next 
line is formatted. If omitted, 0 is assumed, and indentation 
reverts to the original margin setting. If you use +n or -n, 
the current offset value increases or decreases the specified 
amount, and a new offset is started. 

1. The .OF format word does not take effect until after the next line 
is formatted. The indentation remains in effect until a .IN 
(INDENT) format word or another OFFSET control word is encounter~d. 

You can use the .OF format word within a section that is also 
indented with the .IN format word. Note that .IN settings take 
precedence over .OF, however, and any .IN request causes a previous 
offset to be cleared. 

If you want to start a new section with the same offset as the 
previous section, you need only repeat the .OF n request. 

2. This format word acts as a break. 

3. You can use the .IL (INDENT LINE) format word to shift only the 
next line to the left or right of the current margin. 

1. Starting an offset: 
. of 10 

The line immediately following the .OF fermat word is printed 
at the current left margin. All lines thereafter (until the 
next indent or offset request) are indented ten spaces from 
the current margin setting. These two examples were processed 
with OFFSET control words in the positions shown. 

2. Ending an offset: 

.of 

The effect of any previous .OF request is canceled, and all output after 
the next line continues at the current left margin setting. 

410 IB~ VM/SP CMS Command and Macro Reference 



HELP ~orm.t Word. • .sP 

.sP (SPACE LINES) 

Use the SPACE LINES format word when you want blamt lines to .. ,ear 
between text lines of output. 

The format of the .SP format word is: 

r--, 
, .SP , , 

n 

r , 
I n I 
I 1 I 
L .J 

specifies the number of blank lines to be inserted in the 
output. If omitted, 1 is assumed. 

Section 8. HELP ~or.at Wor ••• 11 



HELP Format Words - .TR 

.TR (TRAN.SLATE CHARACTER) 

The TRANSLATE CHARACTER format word allows you to specify the output 
representation of each character in the source text. For example, you 
could specify that all exclamation points in the file appear as blanks 
in the output. 

The format of the .TR format word is: 

r , , , .TR ( s t ) 

L-

s 

t 

is a source character under consideration. It may be a single 
character or a two-character hexadecimal code. 

is the intended output representation of the source character. 
It may be a single character or a two-character hexadecimal 
code. 

1. After formatting of an input source line has been completed and 
immediately before actual output, each character of the output line 
may be translated to a different output code. 

2. Since format words are only processed internally, they are never 
translated in the file. 

3. Translate character specifications 
explicitly respecified. 

remain in effect until 

4. A .TR format word with no operands causes the translation table to 
be reinitialized and all previously specified translations to be 
reset. 

5. The .TR format word does not cause a break. If you have a section 
of text that has translation characters in effect, followed by a 
.TR to reset the translations, the last line of the text may not 
yet have been printed. In this case, that last line is not 
translated . 

. tr 40 ? 

This causes all blanks in the file to be typed as question marks (?) on 
output. 

412 IBM VM/SP CMS Command and Macro Reference 



Appendixes 

The following appendixes are provided for your convenience: 

• Appendix A: Reserved Filetype Defaults 

• Appendix B: VSE/VSAM Functions Not Supported in CMS 

• Appendix C: as/vs Access Method Services and VSAM Functions 
Not Supported in CMS 

Appendixes 413 



414 IBM VM/SP eMS :ommand and Macro Reference 



Appendix A: Reserved Filetype Defaults 

r--------------------·------·------------------
1 Eiletypel RECFMI LRECLI ZONEITRUNC VERIFYISERIALITABS IUsage 
I------------------------·--~--------------------------------------------------------------
1 def ault 1 F 1 8J '11 * 1 * 
1 1 1 1 1 
1 1 1 1 1 

* I OFF 
I 
I 

11,6,11,16,21,26,31,36,IAll pther tiletypes 
I 41,46,51,61,71,81,91,\ 
I 101,111,121,131 1 

1-------------------------------------------------------------------------
IAMSERV 1 F 1 8J'I272 72 
1 1 1 1 \ 
1-------------------
1 ASS EMBLEI F \ 80' \1 71\ 71 
1 \ 1 \ \ 1-----------
IASM3705 1 F \ 80 11 71\ 71 
1 \ \ \ \ 1-----------
1 BAS IC 1 F 1 80 ' 17 * 1 
IBASDATA 1 1 1 \ 
1---------------

* 

1 COB OL 1 F 1 80, 1 1 72 1 72 
1 \ 1 1 1 
1-----------------
1 DIR ECT \ F 1 80 '11 72\ 72 
1 \ 1 1 \ 

72 OFF 

72 ON 

72 ON 

* L/L 

12,6,11,16,21,26,31,36,IInput Control statements for 
I 41,46,51,61,71,80 1 Access Method Services 

11,10,16,31,36,41,46, 
\ 69,72,80 

11,10,16,31,36,41,46, 
1 69,72,80 

17,10,15,20,25,30,80 
1 

IAssemble~ language source 
\ statements. 

IMacrp instruction for 3705 
1 Assembler 

1 
\BASIC source statements; and I 
1 executipn-time files. 1 

---------------------------------------------------------\ 72 ON 

72 ON 

11,8,12,20,28,36,44,68,ICOBOL source statements. 
1 72,80 1 

11,6,11,16,21,26,31,36,IVM/SP user directory entries 
1 41,46,51,61,71 1 

1 
I 
1 
I 
I 

1------------------------------------------------------------------------- -------1 
1 EXE C 1 v 1 80 ' 1 1 * 1 
1 \ \ 1 1 

* 1 
1 * OFF 11,6,11,16,21,26,31,36,IEXEC procedures. 

I 41,46,51,61,71 I 
1---------------- ------------~----------------------------------------

I 
I 
I 
I 
I 

1 FRE EFORTI V \ 81 19 * 1 
\ 1 1 1 1 
\------------

* 1 
I 

\ FORTRAN \ F 1801172172 

* 1 L/L 
1 

72 ON 
1------------------- ------. 
ILISTING 1 V 112111 *\ * \ * \ OFF 
1 \ 1 1 1 1 1 
I I 1 I 1 1 1 

19,15,18,23,28,33,38, 
I 81 

IFREEFORM FORTRAN source 
I statements. 

--------1 
11,7,10,15,20,25,30,80 IFORTRAN so,urce statements. I 

-------1 
11,6,11,16,21,26,31,36,ICommand, program, and \ 
I 41,46,51,61,71,81,91,1 compiler listings. I 
I 101,111,121,131 I I 

1------------------ .--------------------------------------- I 
I 
I 
1 

I MAC RO \ F 1 80 . 11 71 1 71 
, 'I 1 1 , 
1 MEM 0 F 80 '11 * 1 
I \ 1 , I 
1-------------

* 1 
\ 

1 PLI 1 F 1 80 ' 1 2 72 1 72 
1 PLIOPT , . \ 1 1 
, \ I \ \ 
\-----------
I SCR IPT 1 V I 132 11 * I 
, I I , I 
I 

* I 
I 

,UPDATE F 80 11711 71 
, I I 1 I 
1--------------------
I UPDTxxxxi F I 8J ' 11 71 I 71 
I I I I I 
1-------------------
,VSBASIC IF, 80 17 * I 
1------------------
I VSBDATA I V I 132 11 * I 
, I I I I 
1 1 I 1 1 
1 

* I 

* I 
I 
I 

72 ON 

* 1 OFF 
\ 

72 ON 

* I OFF 
I 

72 ON 

72 ON 

* I L/L 

* 1 OFF 
I 
I 

11,10,·16,31,36,41,46, 
( 69,72,80 

(Macro d~tinitions. 
I 

11,6,11,16,21,26,31,36,IDocuDentation. (Default CASEj 
I 41,46,51,61,71 1 value is M.) \ 

12,4,7,10,13,16,19,22, IPL/I Source statements. 
1 25,31,37,43,49,55,79,1 
I 80 I 

I 
I 
I 
I 
I 

I (IMAGE setting is 
I CANON.) 

I SCRI~T text processor input. I 
I (Default CASE setting is M.) 1 

11,10,16,31,36,41,46, 
I 69,72,80 

11,10,16,31,36,41,46, 
I 69,72,80 

IUpdate files for assembler 
1 language programs. 

IUpda±e fjles for assembler 
I lanquageprograms. 

I 
I 
I 
1 
1 
I 
I 

17,10,15,20,25,30,80 IVS BASIC source statements. I 

11,6,11,16,21,26,31,3.6,1 VS BASIC execution-time 
I 41,46,51,61,71,81 ••• 1 files. (Trailing blanks 
1131 1 nottruncat.ed.) 

I 
I 

arel 

1* 
IL/L 

indicates that the ZONE, TRUNC, or VERIFY setting is equal to the current record length. 
indicates that the LINEMODE setting is LEFT, with serial numbers on the left. 

1 
\ 
I 
I L-________________ _ 

Figure 22. Default EDIT Subcommand Settings for eMS Reserved Filetypes 

Appendix A: Reserved Filetype Defaults 415 



416 IBM VM/SP eMS :ommand and Macro Reference 



Appendix B: VSE/VSAM Functions Not 
Supported in eMS 

Refer to the publication Q§ing VS~y~AM Co~n~§ ~n~ ~g£fQ§ for a 
description of access method services functions available under VSE, 
and, therefore, under CMS. This knowledge of access method services is 
as~umed throughout this publication. 

All of VSE/VSAM is supported by CMS, except for the following: 

• Non-VSAM data sets with data formats that are not supported by 
CMS/DOS (for example, BDAM and 1SAM files are not supported) • 

• The SHAREOPT10NS operand 
partition sharing in 
supported) . 

is not supported for cross 
CMS/DOS (that is, DASD 

system or cross 
sharing is not 

• The Local Shared Resources option is not supported by CMS/DOS. 

• Space Management for SAM Feature 

• Backup/Restore Feature 

Appendix B: VSE/VSAM Functions Not Supported 417 



q18 IBM VM/5P eMS :ommand and Macro Reference 



Appendix C: OS/VS Access Method Services. and 

VSAM Functions Not Supported in CMS 

In eMS, an OS user is defined as a user that has not issued the command: 

SET DOS ON (VSA M) 

OS users can use all of the access method services functions that are 
supported by VSE/VSAM, with the following exceptions: 

• Non-VSAM data sets with data formats that are not supported by 
CMS/DOS (for example, BDAM and ISAM files are not supported). 

• The SHAREOPTIONS operand 
partition sharing in 
supported) • 

is not supported for cross 
CMS/DOS (that is, DASD 

system or cross 
sharin g is not 

• Do not use the AUTHORIZATION (entrypoint) operand in the DEFINE and 
ALTER commands unless your own authorization routine exists on the 
DOS core image library, the private core image library, or in a CMS 
DOSLIB file. In addition, results are unpredictable if your 
authorization routine issues an OS svC instruction. 

• The OS access method services GRAPHICS TABLE options and the TEST 
option of the PARM command are not supported. 

• T he filename 
char acters. 

in the FILE (filename) operands is limited to seven 
If an eighth character is specified, it is ignored. 

• The OS access method services CNVTCAT and CHKLIST commands are not 
supported in VSE/VSAM access method services. In addition, alIOS 
access method services commands that support the 3850 Mass storage 
System are not supported in DOS/VS access method services. 

• Figure 23 is a list of OS operands, by control statement, 
not supported by the CMS interface to VSE/VSAM access 
services. 

that are 
method 

If any of the unsupported 
specified, the AMSERV command 
error message. 

operands or commands in Figure 23 are 
terminates and displays an appropriate 

When you use the PRINT, EXPORT, IMPORT, IMPORTRA, EXPORTRA, and REPRO 
control statements for sequential access method (SAM) data sets, you 
must specify the ENVIRONMENT operand with the required DOS options (that 
is, PRIME DATA DEVICE, BLOCKSIZE, RECORDSIZE, or RECORDFORMAT) • You 
must have previously issued a DLBL for the SAM file. 

AMSERV can write SAM data sets only to a CMS disk, but can read them 
from DOS, OS, or CMS disks. 

Appendix C: OS/VS VSAM Functions Not supported 419 



r--------1 os Access Method Services Operands Not supported in CMS 
1 control statement 1 
1------------------1---
, ALTER 1 EMPTY/NOEMPTY 
1 1 SCRATCH/NOSCRATCH 
, I DESTAGEWAIT/NODESTAGEWAIT 
, I STAGE/BIND/CYLINDERFAULT 

DEFINE 

DELETE 

ALIAS 
EMPTY/NOEMPTY 
GENERATIONDATAGROUP 
PAGESPACE 
SCRATCH/NOSCRATCH 
DESTAGEWAIT/NODESTAGEWAIT 
STAGE/BIND/CYLINDERFAULT 
TO/FOR/OW NERI 

ALIAS 
GENERATIONDATAGROUP 
PAGESPACE 

---------------------- ----
EX PORT 

IMPORT 

OUT DATASET 

INDATASET 
OUTDATASET 
IMPORTA 

------------------1 
LISTCAT I ALIAS 

I GENERATIONDATAGROUP 
I LEVEL 
1 OUTFILE2 
I PAGESPACE 

---------------------1----, 
PRINT I INDATASET 

1 OUTFILE2 
-------------------1 

, REPRO I INDATASET 
, I OUTDATASET 
1====================================================================== 
liThe TO/FOR/OWNER operands are supported for the access method 
, services interface, but are not supported for the DEFINE NONVSAM 
, control statement •. 
,2The OUTFILE operand is supported by the access method services 
I interface, but is not supported for the LISTCAT and PRINT control 
I statements. ' 
L _____ _ 

Figure 23. OS Access Method Services Operands Not Supported in CMS 

420 IBM VM/SP CMS Command and Macro Reference 



./ * (comments) UPDATE control statement 
251 

./ D (DELETE) UPDATE control statement 250 

./ I (INSERT) UPDATE control statement 249 

./ R (REPLACE) UPDATE control statement 
250 

./ S (SEQUENCE) UPDATE control statement 
248 

.BX (BOX) format word 403 

.CM (COMMENT) format word 405 

.CS (CONDITIONAL SECTION) format word 406 

.FO (FORMAT MODE) format word 407 

.IL (INDENT LINE) format word 408 

.IN (INDENT) format word 409 

.OF (OFFSET) format word 410 
.SP (SPACE LINES) format word 411 
.TR (TRANSLATE CHARACTER) format word 412 

~$ special variable 350 
in &IF control statement 339 
setting 330 

&* special variable 350 
in &IP control statement 339 
sett ing 330 

&ARGS control statement, description 330 
&BEGEMSG control statement 

ALL operand 330 
description 330 

&BEGPUNCH control statement 
ALL operand 332 
description 332 

&BEGSTACK control statement 
ALL operand 332 
description 332 
FIFO operand 332 
LIFO operand 332 

&BEGTYPE control statement 
ALL operand 333 
description 333 

&CONCAT built-in function, description 347 
&CONTINUE control statement 334 

used with &ERROR control statement 337 
&CONTROL control statement 

ALL operand 334 
CMS operand 334 
description 334 
ERROR operand 334 
MSG operand 334 
NOMSG operqnd 334 
NOPACK operand 335 
NOTIME operand 335 
OFF operand 334 
PACK operand 335 
TIME operand 335 

&DATATYPE built-in function, description 
348 

&DISK* special variable 351 
&DISK? special variable 351 
&DISKx special variable 350 
&DOS special variable 351 

Index 

&EMSG control statement, description 335 
&END control statement 336 

with &BEGEMSG control statement 330 
with &BEGPUNCH control statement 332 
with &BEGSTACK control statement 332 
with &BEGTYPE control statement 333 

&ERROR control statement, description 336 
&EXEC special variable 351 
&EXIT control statement, description 337 
&GLOBAL special variable 351 
&GLOBALn special variable 352 
&GOTO control statement 

de scription 338 
TOP operand 338 

&HEX control statement 
description 338 
OFF operand 338 
ON operand 338 

&IF control statement, description 339 
&INDEX special variable 352 

setting 330,342 
&LENGTH built-in function, description 348 
&LINENUM special variable 352 
&LITERAL built-in function, description 

349 
&LOOP control statement, description 340 
&n special variable 350 
&PUNCH control statement, description 341 
&READ control statement 

ARGS operand 342 
description 342 
VARS operand 342 

&READFLAG special variable 352 
testing 342 

&RETCODE special variable 352 
&SKIP control statement, description 343 
&SPACE control statement, description 343 
&STACK control statement 

de scripti on 344 
FIFO operand 344 
LIFO operand 344 
stacking CHANGE subcommand 271 
stacking INPUT subcommand 283 
stacking REPLACE subcommand 294 

&SUBSTR built-in function, description 349 
&TIME control statement 

description 345 
OFF operand 345 
ON operand 345 
RESET operand 345 
TYPE operand 345 

&TYPE control statement, description 346 
&TYPEFLAG special variable 352 
&0 special variable 350 

$DUP edit macro 311 
$LISTIO EXEC file 

appending information to 144 
creating 144 
format 145 

Index 421 



$MOVE edit macro 312 
DOWN operand 312 
TO operand 312 
UP operand 312 

* (asterisk) 
entered in fileid 5 
in ACCESS command 18 
in ALTER subcommand 266 
in CHANGE subcommand 270 
in COPY FILE command 38 

examples 42 
in DELETE subcommand 274 
in DLBL command 68 
in DSERV command 87 
in EDIT command 89 
in FILEDEF command 101 
in GETFILE subcommand 281 
in LISTDS command 135 
in LISTFILE command 142 
in PRINT command 174 
in PUNCH command 179 
in READCARD command 191 
in RENAME command 197 
in REPEAT subcommand 293 
in SCROLL/SCROLLUP subcommand 298 
in START command 216 
in STATE and STATEW commands 218 
in TAPPDS command 237 
in TRUNC subcommand 303 
in TYPE subcommand 304 
in VERIFY subcommand 306 
in ZONE subcommand 308 
with~DISK option, of CMS QUERY command 

186 
with RESET option 

of INCLUDE command 127 
of LOAD ccmmand 149 

* (comment) command 4 
*COPY statement 163 

/ (diagonal), used in ACCESS command 18 

%, used to pass null argument to EXEC 
procedure 350 

? 
subcommand, description 309 
used with DSN option of DLBL command 69 
used with FILEDEF DISK option 108 

(equal sign) 
in COPY FILE command 38 

examples 42 
in RENAME command 197 

subcommand (§~~ REUSE subcommand) 

A 
A option of LISTIO command 144 
ABBREV option 

of CMS QUERY com~and 184 
of CMS SET command 2Q6 

relationship to SYNONYM command 225 
abbreviation 

of command names 4,206,225 
querying acceptability of 184 
setting acceptability of 206 

used with synonyms 225 
abnormal termination (abend) 

effect on DLBL definitions 69 
effect on FILEDEF definitions 106 
encountered by CMSBATCH command 34 
entering debug environment after 313 

ACCESS command 
description 18 
ERASE option 18,20 
examples 19 
first command after IPL 18 
NODISK option 19 
NOPROF option 18 
usage with DEFINE command 20 

access method services 
allocating VSAM space 77 

in CMS/DOS 72 
control statements, operands not 

supported in CMS (OS usersl 419 
determine free space extents for 137 
invoking in CMS 22 
LISTING file created by 22 
restrictions 

for OS/VS users 419 
for VSE users 419 

ADD option 
of MACLIB command 162 
of TXTLIB command 241 

A-disk, accessed after IPLing CMS 19 
AL!GN option of ASSEMBLE command 28 
alignment of boundaries in assembler 

program statements 28 
ALIGN2 option, of LKED command 146 
ALL 

operand 
of &BEGEMSG control statement 
of &BEGPUNCH control statement 
of &BEGSTACK control statement 
of &BEGTYPE control statement 
of &CONTROL control statement 
of SERIAL subcommand 299 

option 
of GENMOD command 119 
of LISTIO command 144 

ALL option, of HELP command 124 
ALLOC option of LISTFILE command 141 
ALOGIC option of ASSEMBLE command 26 
ALTER subcommand 

description 266 
effect of zone setting 308 

AMSERV 
command 

description 
LISTING file 
PRINT option 
TAPIN option 
TAPOUT option 

22 
22 
22 
22 

22 

330 
332 
332 

333 
334 

422 IBM VM/SP CMS Command and Macro Reference 



filetype 23 
default CMS editor settings 415 

APPEND option 
of COPYFILE command 40 
of LISTFILE command 141 
of LISTIO command 144 

ARGS operand of &READ control statement 
342 

arguments 
on RUN command 202 
on START command 216 
passed to EXEC procedure 96,330 

initializing 330 
nassing to nested EXEC procedures 

352 
r~ading from terminal or console 
stack 342 

testing how many were passed 352 
ASA carriage control characters 387 
ASAP operand of HNDINT macro 372 
ASSEMBLE 

assembler input ddname 29 
command 2 

ALIGN option 28 
ALOGIC option 26 
BU~SIZE option 28 
DECK opt ion 27 
description 25 
DISK option 27 
ESD option 26 
FLAG option 26 
LIBMAC option 26 
LINECOUN option 26 
LIST option 26 
listing control options for 26 
MCALL option 26 
MLOGIC option 26 
NOALIGN option 28 
NOALOGIC option 26 
NODEC~ option 27 
NOESD option 26 
NOLIBMAC option 26 
NOLIST option 26 
NOMCALL option 26 
NOMLOGIC option 26 
NONUM option 27 
NOOBJECT option 27 
NOPRINT option 27 
NO RENT option 28 
NORLD option 26 
NOSTMT option 28 
NOTERM option 28 
NOTEST option 27 
NOXREF option 27 
NOYFLAG option 28 
NUMBER option 27 
OBJECT option 27 
PRINT option 27 
RENT option 28 
RLD option 26 
STMT option 27 
SYSPARM option 28 
SYSTERM listing 27 
TERMINAL option 28 
TEST option 27 
XREF opt ion 27 
Y'FLAGoption 28 

filetype 
created by TAPPDS command 237 
default CMS editor settings 415 
used as input to assembler 25 

assembler 
conditional assembly statements, listing 

26 
overriding CMS file defaults 29 
using under CMS 2,25 

ASSGN command 
DEN option 32 
de scription 31 
IGN option 32 
LOWCASE option 32 
PRINTER option 31 
PUNCH option 31 
READER option 31 
SYSxxx option 31 
TA Pn opti on 31 
TERMINAL option 31 
TRTCH option 32 
UPCASE option 32 
7TRACK option 32 
9TRACK option 32 

assignment statement 327 
a ssig nments 

logical unit, listing 144 
system and programmer, unassigning 194 

attention interruption, causing 9 
ATTN CMS function 

description 354 
using 354 

ATTREST operand of RDTERM macro 392 
AUTO option 

of INCLUDE command 128 
of LOAD command 150 

automatic 
read function, setting 207 
save function of CMS editor 

canceling 267 
invoking 267 

AUTOREAD option of CMS SET command 207 
AUTOS AVE subcommand 

description 267 
OFF operand 267 

auxiliary directory, creating 117 
AUXPROC, option of FILEDEF command 106 

B 
backspace 

characters, how CMS editor handles 283 
key, used with OVERLAY subcommand 288 

BACKWARD subcommand, description 268 
BASDATA filetype, default CMS editor 
settings 415 

base address, for debugging, set with 
ORIGIN subcommand 321 

BASIC filetype, default CMS editor settings 
415 

BCD characters, converting to EBCDIC 40 
BDAM, files, specifying in CMS 101 
blank lines, displaying at terminal during 

EXEC processing 344 

Index 423 



blanks 
as delimiters 3 

FIND subccmmand 211 
displaying in LINEDIT message text 311 
overlaying characters with 288 
trailing 

removing with WRTERM macro 400 
truncating from variable-length file 

2q1 
blip 

characters 
for virtual machine 204 
for virtual machine, displaying 183 

function 
querying setting of 183 
setting 204 

BLIP option 
of CMS QUERY command 183 
of CMS SET command 204 

BLKCT operand, of TAPESL macro 396 
BLKSIZE option 

of FILEDEF command 104 
of FORMAT command 113 
of TAPE command 230 

BLOCK option of FILEDEF command 104 
blocksize, specifying with FILEDEF command 

106 
BLP operand, of FILEDEF command 108 
books, from VSE source statement libraries, 
copying 214 

BOTTOM subcommand, description 269 
boundary alignment, of statements in 
assembler program 28 

BOX (. BX) format word 403 
BREAK subcommand, description 314 
breakpoints, setting 314 
BSF, tape control function 229 
BSIZE operand of FSCB macro 359 
BSR, tape control function 229 
BUFFA operand of LINEDIT macro 384 
buffer 

size 
controlling for assembler 28 
for VSAM programs 10 

BUFFER operand of FSCB macro 358 
BUFSIZE option of ASSEMBLE command 28 
BUFSP option of DLBL command 10 

C 
CANON operand of IMAGE 
CASE subcommand 

description 269 
M operand 269 
U operand 269 

CAT option 

CAW 

of DLBL command 70 
example of usage 
example of usage 

subcommand 

19 
in CMS/DOS 

operand of SET subcommand 323 
subcommand, description 315 

CAW (channel address word) 

282 

15 

changing in debug environment 323 
displaying in debug environment 315 
format 315 

424 IBM VM/SP CMS Command and Macro Reference 

CC option of PRINT command 114 
CD option of DSERV command 81 
CHANGE 

option 
of DLBL command 69 
of FILEDEF command 102 
of LABELDEF command 132 

subcommand 
description 210 
effect of zone setting 308 
stacking with &STACK control 
statement 211 

CHAR, result of &DATATYPE built-in function 
348 

character 
for blip string 

displaying 183 
setting 204 

overlaying, with OVERLAY subcommand 288 
sets, used in CMS 4 
special, changing on 3270 272 
strings 

assigning to variable symbols 328 
changing 270 
copying 45 
extracting in EXEC procedure 349 
locating 286 

valid in CMS command lines 4 
CHARS option, of SETPRT command 210 
CLEAR option 

of DLBL command 69 
of FILEDEF command 101 
of INCLUDE command 127 
of LABELDEF command 131 
of LOAD command 149 
of SYNONYM command 224 

closing CMS files, via FINIS command 112 
CLR operand 

CMS 

of HNDEXT macro 311 
of HNDINT macro 372 
of HNDSVC macro 314 

operand of &CONTROL control statement 
334 

option of DLBL command 69 
subcommand, description 273 

CMS (Conversational Monitor System) 
accessing with no virtual disks attached 
to virtual machine 19 

basic description of 2 
batch facility (~~ CMS batch facility) 
command language, basic description 1 
commands (g~ CMS commands) 
editor 2 
files (§~~ file) 
loader (§~~ loader) 
macros (§~~ CMS macro instructions) 
subset (§~ CMS subset) 

CMS batch facility 34 
halting 262 

CMS commands 
ACCESS 18 
AM SERV 22 
AS SEMBLE 25 
ASSGN 31 
CMSBATCH 34 
COMPARE 35 



CONW~IT 37 
COPYFILE 38 
CP 4q 
DDR 50 
DEBUG 64 
DESBUF 65 
DISK 66 
displaying during EXEC processing 334 
DLBL 68 
DOSLIB 81 
DOSLKED 83 
DROPBUF 86 
DSEFV 87 
EDIT 89 
entering 3 
entering by synonym 225 
ER ASE 92 
ESERV 94 
EXEC 96 
FETCH q9 
FILEDEF 101 
FINIS 112 
FORMAT 113 
GENDIRT 117 
GENMOD 118 
GLOBAL 121 
halting execution 263 
HELP 123 
INCLUDE 127 
LAB EL DE F 1 3 1 
LISTDS 135 
LISTFILE 140 
LISTIO 144 
LKED 146 
LOAD 149 
LOADLIB 158 
LO ADMOD 161 
M ACLIB 162 
MAKEBUF 165 
MODMAP 166 
M 0 V E F IL E 1 67 
not for general users 7 
nucleus-resident 7 
OPTION 171 
OSRUN 173 
PRINT 174 
PSERV 177 
PUNCH 179 
QUERY 182 
READCARD 191 
RELEASE 194 
RENAME 196 
RSERV 199 
RUN 201 
search order 7 
SENTRIES 203 
SET 204 
SETP"RT 210 
SORT 212 
SSERV 214 
START 216 
STATE 218 
STATEW 218 
summary 11 
SVCTRACE 220 
SYNONYM 224 
TAPE 228 
TAPEMAC 234 

TAPPDS 237 
transient area 7 
TXTLIB 241 
TYPE 244 
UPDATE 246 
valid in CMS subset 273 
XE :CIT 258 

CMS editor, compatibility mode 89 
CMS EXEC file 

appending information to 141 
creating 140 
format 142 

CMS file (~~~ file) 
CMS functions 

ATTN 354 
description 353 
in voking 353 
WAITRD 355 

CMS Immediate commands (~~~ Immediate 
commands) 

CMS LOADLIBs 
compressing with LOADLIB command 158 
copying with LOADLIB command 158 
creating with LKED command 146 
executing a load module from 173 
listing with LOADLIB command 158 

CMS macro instructions 356 
COMPSWT 356 
entering operands on 356 
FSCB 358 
FSCBD 359 
FSCLOSE 361 
FSERASE 362 
FSOPEN 363 
FSPOINT 364 
FSREAD 365 
FSSTATE 367 
FSWRITE 369 
HNDEXT 371 
HNtINT 372 
HN tSVC 373 
LINEDIT 375 
PRINTL 386 
PUNCHC 388 
RDCARD 389 
RDTAPE 390 
RDTERM 391 
REGEQU 392 
TAPECTL 393 
TAPESL 395 
WA lTD 397 
WAITT 398 
WRTAPE 398 
WRTERM 400 

CMS subset 
en tering 273 
returning to edit mode 295 

CMSAMS, saved system name 207 
CMSBATCH command 

description 34 
recursive abends encountered by 34 

CMS/DOS 
beginning program execution in 99 
defining files for 68 
en vironment 

description 2 
initializing 207 
leaving 208 

Index 425 



testing whether it is active 189 
testing whether it is active r in EXEC 
procedure 351 

CMSDOS r saved system name 207 
CMSLIB r assembler macro library ddname 29 
CMSSEG r saved system name 207 
CMSTYPE option of CMS SET command 207 
CMSUTl file 

created by READCARD command 191 
created by TAPE LOAD command 231 
created by TAPPDS command 237 

CMSVSAM r saved system name 207 
COBOL 

compiler 
querying options in effect for 190 
specifying options for in CMS/DOS 

171 
filetype r default CMS editor settings 

415 
COL option 

of COMPARE ccmmand 35 
of TYPE command 244 

COLOR operand of WRTERM macro 400 
columns 

comparing disk files by 35 
displaying particular 

with TYPE command 244 
with TYPE subcommand 304 

of data r copying 45 
specifying 

for copy operations 45 
for verification setting 306 
for zone setting for edit session 

308 
COLl option of TAPPDS command 238 
command 

abbreviat ing 4 
defaults r shown by underscore in command 

format box 6 
entering 3 
environment 

CMS 1 
CP 1 
definition 

execution r halting 263 
keyboard differences in entering 9 
language r CMS 2 
modules r creating 118 
operands 3 
options 3 
stacking in console buffer 9 
tru ncat ing 4 
valid in CMS subset 273 
when to enter 9 

COMMENT (.CM) format word 405 
comments r in CMS command lines 4 
COMP 

operand r of LINEDIT macro 377 
option 

of DOSLIB command 81 
of FETCH command 99 
of MACLIB command 162 

COMPARE command 
COL option 35 
description 35 

comparison operators r in EXEC procedure 
339 

compilers, using under CMS 2 

componen ts 
of VM/SP 1 
of VM/370 1 

COMPRESS option r of LOADLIB command 158 
COMPSWT macro r description 356 
CONCAT option, of FILEDEF command 105 
conditional execution 

&IF control statement 339 
&LOOP control statement 340 

CONDITIONAL SECTION (.CS) format word 406 
console 

input buffer 
clearing 65 
reading a line from via WAITRD 355 

read r after CMS command execution r 
controlling 207 

stack 
reading data in EXEC procedure 342 
stacking lines r &BEGSTACK control 

statement 332 
stacking lines r &STACK control 

statement 344 
stacking lines r STACK subcommand 301 
testing whether it is empty 352 

CONSOLE r value of &READFLAG special 
variable 352 

constants 
al tering 

with LOAD command 155 
with STORE subcommand 324 

continuation character 
on COPYFILE specification list 45 
on COPYFILE translation list 47 

control program (§~~ CP (control program» 
control statements 

for access method services 23 
for DDR command 51 
for UPDATE command 247 

conventions r notational 4 
Conversational Monitor System (~~ CMS 

(Conversational Monitor System» 
CONWAIT command 

description 37 
using 37 

COPIES option r of SETPRT command 210 
COpy 

filetype 
adding to MACLIBs 163 
created by SSERV command 214 

function statement r of DDR command 55 
option r of LOADLIB command 158 

COPYFILE command 
APPEND option 40 
description 38 
EBCDIC option 40 
examples 41 
FILL option 40 
FO R option 39 
FRLABEL option 39 
FROM option 39 
incompatible options 41 
LOWCASE option 40 
LR ECL option 40 
NEWDATE option 39 
NEWFILE option 39 
NOPROMPT option 39 
NOSPECS option 39 
NOTRUNC option 40 

426 IBM VM/SP CMS Command and Macro Reference 



NOTYPE option 39 
OLDDATE option 39 
OVLY option 39 
PACK option 40 
PROMPT option 39 
RECFM option 40 
REPLACE option 39 
SINGLE option 41 
specification list 45 
SPECS option 39 
TOLABEL option 39 
TRANS option 40 
TRUNC option 40 
TYPE option 39 
UNPACK option 40 
UPCASE option 40 
usage 41 

COPYNR option, of SETPRT command 210 
COUNT option of DDR command TYPE/PRINT 
function control statement 58 

CP (control program) 
basic description 
commands (§~~ CP commands) 

CP commands 
description 49 
executing 

in CMS command environment 49,206 
in EXEC procedure 49 
in jobs for CMS batch facility 49 
with LINEDIT macro 383 

implied 206 
when to use 49 

CFDTE operand, of LABELDEF command 132 
creating, a program stack buffer, via 

MAKEBUF 165 
CSECTs, duplicate, for LOAD command 151 
CSW 

operand of SET subcommand 323 
subcommand, description 316 

CSW (channel status word) 

CTL 

D 

changing in debug environment 323 
displaying in debug environment 316 
format 316 

option 
of UPDATE command 247,252 
of XEDIT command 260 

DASD Dump Restore (DDR) program, invoking 
via DDR command 50 
D~TE option of LISTFILE command 141 
DD (data definition), simulating in CMS 

101 
D-disk, accessed after IPL of CMS 19 
ddnames 

defining 
with DLBL command 68 
with FILEDEF command 101 

entering tape ddnames for AMSERV 23 
for DLBL command, restrictions for OS 
users 76 

relating to CMS file 101 
to identify VSAM catalogs 78 

in CMS/DOS 75 
used by assembler 29 

DDR command 
control statements, entering 51 
COpy function statement 55 
COUNT option of TYPE/PRINT function 
control statement 58 

description 50 
DUMP function statement 54 
example of TYPE/PRINT output 61 
GRAPHIC option of TYPE/PRINT function 
control statement 58 

HEX option of TYPE/PRINT function 
control statement 58 

INPUT control statement 52 
PRINT function statement 58 
RESTORE function statement 55 
SYSPRINT control statement 54 
TYPE function statement 58 

DEBUG 
command 2 

description 64 
subcommands 

BREAK 314 
CAW 315 
CSW 316 
DEFINE 317 
DUMP 318 
GO 319 
GPR 320 
HX 320 
ORIGIN 321 
PSW 322 
RETURN 322 
SET 323 
STORE 324 
X 325 

DECK option 
of ASSEMBLE command 27 
of OPTION command 171 

DEFINE, subcommand, description 317 
DEL option 

of DOSLIB command 81 
of MACLIB command 162 
of TXTLIB command 241 

DELETE 
control statement, for UPDATE command 

250 
subcommand, description 274 

deleting, program stack buffer 86 
DEN option 

of ASSGN command 32 
of FILEDEF command 105 
of TAPE command 230 

DESBUF command, description 65 
DESC option, of HELP command 124 
DET option of RELEASE command 194 
DETACH command 194 
DIRECT, filetype, default CMS editor 
sett ings 415 

directories 
CM S auxiliary 117 
CMS file, writing to disk 194 
of VSE libraries, sorting 87 

discontiguous, shared segment, saved system 
names 207 

DISK 
command 

DUMP option 66 
LOAD option 66 

Index 427 



option 

disks 

of ASSEMBLE command 27 
of CMS QUERY command 185 
of DOSLIB command 81 
of DOSLKED command 83 
of DSERV command 87 
of FILEDEF command 101 
of FILEDEF command, examples 107 
of FILEDEF command, interactive use 

of 108 
of LKED ccmmand 147 
of LOADLIB command 159 
of MACLIB command 163 
of PSERV command 177 
of RSERV command 199 
of SSERV command 214 
of TAPE ccmmand 230 
of TXTLIB command 241 
of UPDATE command 247 

accessing 18, 19 
detaching 194 
determining 

if disk is accessed, in EXEC 
procedure 350 

if disk is CMS OS or DOS, in EXEC 
procedure 350 

if disk is full 185 
read/write status of 185 

dumping to and restoring from tape 50 
erasing files from 92 
files (.§~~ file) 
formatting 113 
read/write, sharing 20 
releasing 194 

effect on logical unit assignments in 
CMS/DOS 32 

in CMS/DOS 194 
when DLBL definitions are active 76 

storage capacity, displaying status of 
1~5 

writing files to 276 
DISP 

operand of LINEDIT macro 382 
option of FILEDEF command 105 

DISPLAY operand of FORMAT subcommand 279 
DLBL 

command 
CAT option 70 
CHANGE option 69 
CLEAR option 69 
CMS option 69 
ddname restrictions (OS user~ 16 
description 68 
displaying volumes on which 

multivolume data sets reside 74 
displaying VSAM data set extents 73 
DSN option 69 
DUMMY option 69 
entering SYSxxx operand 71 
establishing file definitions for 

STATE command 218 
EXTENT option 70 
MULT option 70 
NOCHANGE option 69 
PERM option 69 
SYSxxx option 69 
to identify files for AMSERV 23 

428 IBM VM/SP CMS Command and Macro Reference 

VSAM option 69 
when to use (OS users) 76 

definitions 
cleared by ESERV EXEC 94 
clearing 69,76 
displaying 188 

option, of CMS QUERY command 188 
DMSLDR SYSUT 1 file 150 
DOS (Disk Operating System) 

disks, accessing 20 
files 

listing information 135 
specifying FILEDEF options for 106 

DOS option 
of CMS QUERY command 189 
of CMS SET command 207 
of GENMOD command 119 

DOSLIE 
command 

COMP option 81 
DEL option 81 
description 81 
DISK option 81 
MAP option 81 
PRINT option 81 
TERM option 81 

files 82 
adding phases to 84 
fetching phases from 99 
identifying for fetching 121 
listing information about members 81 
output f1lemode 83 
size considerations 82 
space considerations 84 
which DOSLIBs will be searched 189 

option 
of CMS QUERY command 189 
of GLOBAL command 121 

DOSLKED command 
description 83 
DI SK option 83 
PR INT option 84 
TERM option 84 

DOSLNCNT option 
of CMS QUERY command 190 
of CMS SET command 208 

DOSLNK 
filetype 

CMS/DOS linkage editor input 83 
creating 84 

DOSPART option 
of CMS QUERY command 190 
of CMS SET command 208 

DOT operand of LINEDIT macro 377 
DOWN 

operand of $MOVE edit macro 312 
subcommand, description 275 

DROPBUF command 
description 86 
using 86 

DSECT, for file system control block (FSCB) 
359 

DSERV command 
CD option 87 
description 87 
DI SK option 87 
PD option 87 
PR INT option 87 



RD option 81 
SD option 81 
SORT option 81 
TD option 81 
TERM option 87 

DSN option of DLBL command 69 
DSORG option of FILEDEF command 105 
DSTRING subcommand, description 275 
DUMMY option 

of DLBL command 69 
restrictions for OS VSAM user 71 
using in CMS/DOS 72 

of FILEDEF ccmmand 101 
DUMP 

function statement, of DDR command 54 
option 

of DISK ccmmand 66 
of OPTION command 171 
of TAPE ccmmand 229 

subcommand, description 318 
DUP option 

of INCLUDE ccmmand 128 
of LOAD command 150,151 

DVOL1 operand, of TAPE command 230 

E 
EBCDIC 

display file in 244 
option, of COPYFILE command 40 

EDIT 
command 2 

description 89 
LRECL option 90 
NODISP option 90 

operand 
of RDTERM macro 391 
of WRTERM macro 400 

subcommand environment 2 
subcommands (E~~ EDIT subcommands) 

EDIT EXEC S2, suppressing execution of 90 
EDIT subcommands 2 

2q6 
affected by zone setting 308 
ALTER 266 
AUTOSAVE 267 
BACKWARD 268 
BOTTOM 269 
CASE 269 
CHANGE 270 
CMS 273 
DELETE 274 
displaying last one executed 309 
DOWN 275 
DSTRING 275 
FILE 276 
FIND 277 
FMODE 271 
FNAME 278 
FORMAT 279 
FORWARD 280 
GETFILE 281 
IMAGE 282 
INPUT 283 
LINFMODE 284 
LOCATE 286 
LONG 2~7 

NEXT 287 
nnnnn 310 
OVERLAY 288 
PRESERVE 289 
PROMPT 290 
QUIT 290 
RECFM 291 
re-executing 296,307 
RENUM 292 
REPEAT 293 
REPLACE 294 
RESTORE 295 
REUSE 296 
SAVE 297 
SCROLL 298 
SCROLLUP 298 
SERIAL 299 
settings saved by PRESERVE subcommand 

289 
SHORT 300 
STACK 301 
TABSET 302 
TOP 303 
TRUNC 303 
TYPE 304 
UP 305 
VERIFY 306 
X 307 
Y 307 
ZONE 308 

edi tor 
CMS 

compatibility mode 89 
IMAGE subcommand, default settings 

282 
TABSET subcommand, default settings 

302 
TRUNC subcommand, default settings 

303 
verifying changes made by 306 
ZONE subcommand, default settings 

308 
System Product 

invoking 258 
using 260 

END, option of TAPPDS command 239 
end of file 

effect of LOCATE subcommand 286 
position current line pointer at 269 

ENTRY, loader control statement 153 
entry point 

determined by loader 151 
displayed with FETCH command 99 
specifying 

with ENTRY statement 
with GENMOD command 

EOF option of TAPE command 
EOT option of TAPE command 

153 
118 

230 
230 

EQU statements, generating for registers, 
REGEQU macro 393 

ERASE 
command 

description 92 
NOTYPE option 92 
TYPE option 92 

option 
of ACCESS command 18,20 

Index 429 



ERG, tape control function 229 
ERROR 

operand 
of TAPESL macro 396 
of WAITD macro 397 

ERROR operand 
of SCONTROL cont~ol statement 334 
of FSCLOSE macro ~61 
of FSERASE macro 362 
of FSOPEN macro 363 
of FSPOINT macro 364 
of FSREAD macro 366 
of FSSTATE macro 368 
of FSWRITE macro 369 
of HNDINT macro 372 
of HNDSVC macro 374 
of PRINTL macro 386 
of PUNCHC macro 388 
of RDCARD macro 389 
of RDTAPE macro 390 
of TAPECTL macro 394 
of WAITD macro 394 
of WRTAPE macro 399 

ERRS option of OPTION command 171 
ESD option of ASSEMBLE command 26 
ESERV, command, description 94 
EXCLUDE SYSIN control statement 159 
EXDTE operand, of LABELDEF command 132 
EXEC 

built-in functions 347 
SCONCAT 347 
SDATATYPE 347 
SLENGTH 348 
SLITERAL 349 
SSUBSTR 349 

command 2 
descript ion 96 
implied 206 

control statements 327 
SARGS 330 
SBEGEMSG 330 
SBEGPUNCH 332 
SBEGSTACK 332 
SBEGTYPE 333 
SCONTINUE 334 
SCONTROL 334 
SEMSG 335 
SEND 336 
SERROR 336 
SEXIT 337 
SGOTO 338 
SHEX 338 
SIF 339 
SLOOP 340 
SPUNCH 341 
SREAD 342 
SSKIP 343 
SSPACE 343 
&STACK 344 
STIME 345 
STYPE 346 
assignment statement 327 
displaying during EXEC processing 

334 

430 IBM VM/SP CMS Command and Macro Reference 

files 
$LISTIO EXEC created by LISTIO 

command 144 
CMS EXEC created by LISTFILE command 

140 
executing with RUN command 201 

filetype 
default CMS editor settings 415 
record format 96 

option 
of LISTFILE command 140 
of LISTIO command 144 

procedures 
branching with SGOTO control 
statement 338 

branching with SSKIP control 
statement 343 

comparing tokens in 339 
concatenating tokens in 347 
defining synonyms for 224 
ESERV 94 
executing 7,96,327 
exiting from 337 
halting terminal output during 344 
passing arguments to nested EXEC 

procedures 352 
reading data from terminal during 

342 
resuming terminal output during 344 
RUN 201 

special variables 350 
S$ 350 
s* 350 
SDISK* 351 
SDISK? 351 
&DISKx 350 
&DOS 351 
&EXEC 351 
SGLOBAL 351 
&GLOBALn 352 
&INDEX 352 
&INDEX, setting 330 
&LINENUM 352 
&n 330,350 
&READFLAG 352 
&RETCODE 352 
&TYPEFLAG 352 
&0 350 
&1 through &30 330 

EXEC 2, procedures, executing 96 
exten sions 

read-only 
accessing 19 
editing files on 89 
releasing 194 

EXTENT option 
of DLBL command 70,77 

in CMS/DOS 72 
of LISTDS command 135 

EXTERNAL, command 313 



F 
FCB 

macro, loaded by PRINT command 116 
option, of SETPRT command 210 

FETCH command 
COMP option 99 
description 99 
ORIGIN option 99 

FID operand, of LABELDEF command 131 
FIFO operand 

of &BEGSTACK control statement 332 
of &STACK control statement 344 

file 
creating 

with CMS editor 89 
with COPYFILE command 38 
with FSWRITE macro 369 
with PEADCARD command 191 

defining for CMS/DOS 68 
identifier 

entering on FILEDEF command 108 
entering on LISTDS command 136 
in command syntax 5 

inserting lines in 
with INPUT subcommand 283 
with UPDATE command 249 

listing information about 140 
loading 

from tape to disk 229 
from virtual reader to disk 66 

modifying 38 
moving from device to device 167 
numbering lines in 299 
opening, during program execution 363 
overlaying data in 

specifying number of lines to overlay 
2q3 

with COPYFILE command 39,46 
with OVERLAY subcommand 288 

packing 40 
specifying fill character 44 

printing 114 
in hexadecimal format 115 
specifying number of lines per page 

175 
processed by TAPE command, listing 230 
protecting data during edit session 309 
punched 

restoring to disk 66,191 
punching to virtual card punch 66, 179 
reading 

during program execution 365 
from virtual card reader 66 
sequentially 366 

relating to OS ddname 101 
renaming 196 

displaying new names for 196 
renumbering lines in 292,299 
replacing lines in 

with REPLACE subcommand 294 
with UPDATE command 250 

replacing old file with new copy 39 
serializing lines in 299 

with line-number editing 300 
sorting records in 212 
tape, writing to disk 229 

transferring, with DISK DUMP command 66 
un packing 40 
updating, FSWRITE macro 310 
verifying existence of 

with FSOPEN macro 364 
with FSSTATE macro 367 
with STATE and STATEW commands 218 

writing to disk 
with AUTOSAVE subcommand 261 
with FILE subcommand 276 
with FSWRITE macro 370 
with SAVE subcommand 297 

FILE NOT FOUND error message, suppressing 
during EXEC processing 334 

FILE subcommand, description 276 
FILEDEF 

command 
AUXPROC option 106 
BLKSIZE option 104 
BLOCK option 104 
BL P operan d '08 
CHANGE option 102 
CLEAR option 101 
CONCAT option 105 
default FILEDEF commands issued by 

assembler 29 
definitions for MOVEFILE command 167 
DEN option 105 
description 101 
DISK option 101 
DISP option 105 
DSORG option 105 
DUMMY option 101 
establishing file definitions for 

STATE command 218 
examples 107, 108 
KEYLEN option 104 
LABOFF operand 108 
LEAVE option 105 
LIMCT option 104 
LOWCASE option 105 
LRECL option 104 
MEMBER option 105 
NL operand 109 
NOCHANGE option 102 
NOEOV option 105 
NSL operand 109 
OPTCD option 104 
PERM option 102 
positioning read/write pointer 105 
PRINTER option 101 
PUNCH option 101 
READER option 101 
RECFM option 104 
SL operand 108 
SUL operand 109 
TAPn option 101 
TERMINAL option 101 
TRTCH option 105 
UPCASE option 105 
VOLID operand 109 
when to use (OS users) 16 
when to use in CMS/DOS 72 
XTENT option 104 
1TRACK option 105 
9TRACK option 105 

Index 431 



definitions 
clearing 102,106 
displaying 110,187 

option of CMS QUERY command 187 
fileid, in command syntax 5 
filemode 

chanqing 
with COPYFILE command 42 
with FMODE subcommand 277 

displaying, FMODE subcommand 277 
lett.er 

establishing 18 
replacing 194 

numbers, changing 197 
specifying, for FSWRITE macro 370 
specifying on READCARD command 192 

filename 
chanqing, with FNAME subcommand 278 
of EXEC file 

testing 350,351 
filetypes, reserved, default CMS editor 
settings for 415 

FILL option of COPYFILE command 40 
FIND subcommand 

description 277 
effect of image setting 282 

FINIS command, description 112 
first-in first-out stacking, in EXEC 
procedure 332,344 

fixed-length files, converting to 
variable-length 44,291 

FLAG option of ASSEMBLE command 26 
FLASH option, of SETPRT command 210 
FMODE 

option of LISTFILE command 141 
subcommand, description 277 

fn ft fm, used to represent file identifier 
5 

FNAME 
option of LISTFILE command 141 
subcommand, description 278 

FOR option of COPYFILE command 39 
FORM operand 

of FSCB macro 358 
363 

365 
366 

368 
369 

of FSOPEN macro 
of FSPOINT macro 
of FSREAD macro 
of FSSTATE macro 
of FSWRITE macro 

FORM option, of HELP command 124 
FORM AT 

command 
BLKSIZE option 113 
description 113 
examples 114 
LABEL option 114 
NOERASE option 114 
performance consideration 114 
RECOMP option 114 

option 
of LISTDS command 136 
of LISTFILE command 141 

subcommand 
description 279 
DISPLAY operand 279 
LINE operand 279 

432 IBM VM/SP CMS Command and Macro Reference 

FORMAT MODE (.FO) format word 407 
FORTRAN filetype, default CMS editor 
settings 415 

FORWARD subcommand, description 280 
FREE option of LISTDS command 135 
FREEFORT 

files, renumbering 292 
filetype, default CMS editor settings 

415 
FRLABFL option of COPYFILE command 39 
FROM option 

of COPYFILE command 39 
of GENMOD command 118 

FSCB 
macro 

BUFFER operand 358 
description 358 
FORM operand 358 
NOREC operand 359 
RECNO operand 359 

operand 
of FSCLOSE macro 361 
of FSERASE macro 362 
of FSOPEN macro 363 
of FSPOINT macro 364 
of FSREAD macro 366 
of FSSTATE macro 367 
of FSWRITE macro 369 

FSCB (file system control block) 
creating 358 
format 359 

FSCBD macro, description 359 
FSCLOSE macro 

description 361 
ERROR operand 361 
FSCB operand 361 

FSEQ operand, of LABELDEF command 132 
FSERASE macro 

de scription 362 
ERROR operand 362 
FSCB operand 362 

FSF, tape control function 229 
FSOPEN macro 

description 363 
ERROR operand 363 
FORM operand 363 
FSCB operand 363 

FSPOINT macro 
description 364 
ERROR operand 364 
FORM operand 365 
FSCB operand 364 
RDPNT operand 365 
WRPNT operand 365 

FSR, tape control function 229 
FSREAD macro 

description 365 
ERROR operand 366 
FORM operand 366 
FSCB operand 366 

FSSTATE macro 
description 367 
ERROR operand 368 
FORM operand 368 
FSCB operand 367 



FST (§~~ file status table) 
FSWRITE macro 

description 
ERROR operand 
FORM operand 
FSCB operand 

FTYPE option, of 

G 
GEN option 

369 
369 

369 
369 
LISTFILE 

of MACLIB command 162 
of TXTLIB command 241 

command 

GENDIRT command, description 117 
general registers 

141 

changing, in debug environment 323 
displaying, in debug environment 320 
generating list of EQU statements for 

3q3 
printing contents of 318 

GENMOD command 
ALL option 119 
description 118 
DOS option 119 
FROM option 118 
MAP opt ion 1 18 
NOMAP option 118 
NOSTR option 119 
OS option 119 
STR option 118 
SYSTEM option 119 
'1'0 option 118 

GENN operand, of LABELDEF command 132 
GENV operand, of LABELDEF command 132 
GETFILE subcommand, description 281 
qlo bal changes 

with ALTER subcommand 266 
with CHANGE subcommand 270 
with OVERLAY subcommand 289 

GLOBAL command 
description 121 
DOSLIB option 121 
LOADLIB option 121 
MACLIB option 121 
querying which DOSLIBs were last 
specified 189 

querying which MACLIBs were last 
specified 188 

querying which TXTLIBs were last 
specified 188 

TXTLIB option 121 
GO subcommand, description 319 
GPR 

operand of SET subcommand 323 
subcommand, description 320 

GRAPHIC option of DDR ccmmand TYPE/PRINT 
function control statement 58 

H 
HB Immediate command 262 
header 

card 
as READ control card 191 
punched by PUNCH command 179,180 

for LISTFILE command output 140 
format 142 

HEADER option 
of LISTFILE command 140 
of PUNCH command 179 

HELP 
command 

ALL option 124 
DESC option 124 
description 123 
FORM option 124 
HELP option 123 
MENU option 123 
PARM option 124 
usage 124 

option, of HELP command 123 
HELP format words 

• BX (BOX) 403 
.CM (COMMENT) 405 
• CS (CONDITIONAL SECTION) 406 
• FO (FORMAT MODE) 407 
.IL (INDENT LINE) 408 
.IN (INDENT) 409 
.OF (OFFSET) 410 
.SP (SPACE LINES) 411 
.TR (TRANSLATE CHARACTER) 412 
summary 401 

HEX option 
of DDR command TYPE/PRINT function 
control statement 58 

of PRINT command 175 
of TYPE command 244 

hexadecimal 
conversion, in assignment statement 328 
converting to decimal, LINED IT macro 

378 
converting to EBCDIC, LINEDIT macro 375 
display file in 244 
printing file in 175 
representations of characters, 

t ranslat ing 205 
substitution 

in EXEC procedure 329 
invoking in EXEC procedure 338 
suppressing in EXEC procedure 338 

values, displaying in EXEC procedure 
339 

HNDEXT macro 
CLR operand 371 
description 371 
SET operand 371 

HNDINT macro 
ASAP operand 372 
CLR operand 372 
de scri ption 372 
ERROR operand 372 
SET operand 372 
used with WAITD macro 397 

HNDSVC macro 
CLR operand 374 
description 373 
ERROR operand 374 
SET operand 373 

HO Immediate command 262 
HT Immediate command 263 

stacking in EXEC procedure 344 

Index 433 



HX 

I 

DEBUG subcommand 320 
Immediate command 263 

effect on DLBL definitions 69 
effect on FILEDEF definitions 106 

ICS control statement (~~ include control 
section (ICS) statement) 

ID card, CP, example 192 
ID operand 

of TAPEMAC command 234 
of TAPPDS command 238 

IEBPTPCH utility program, creating CMS 
files from tapes created by 237 

IEBUPDTE utility program, creating CMS 
files from tapes created by 237,238 

IEHMOVE utility program 
creating CMS files from tapes created by 

237 
creating CMS MACLIBs from tapes created 

by 234 
IGN option 

of ASSGN command 32 
with DUMMY data sets 72 

IJSYSCL, defining in CMS/DOS 71 
IJSYSCT 

defining 78 
in CMS/DOS 75 

IJSYSRL, defining in CMS/DOS 71 
IJSYSSL, defining in CMS/DOS 71 
IJSYSUC 

defining 78 
in CMS/DOS 75 

image setting 
effect on FIND subcommand 277 
effect on logical tab settings 302 

IMAGE subcommand 
CANON operand 282 
description 282 
OFF operand 282 
ON operand 282 

Immediate commands 
HB 262 
HO 262 
HT 263 
HX 263 
RO 263 
RT 264 
SO 264 
summary 10 

IMPCP option 
of CMS QUERY command 183 
of CMS SET ccmmand 206 

IMPEX option 
of CMS QUERY command 183 
of CMS SET command 206 

implied 
CP function 49 

query status of 183 
setting 206 

434 IBM VM/SP CMS Command and Macro Reference 

EXEC function 96 
query status of 183 
setting 206 

INC option of UPDATE command 247 
INCLUDE command 

AUTO option 128 
called to load files dynamically 356 
CLEAR option 127 
description 127 
DUP option 128 
effect on loader tables 205 
examples 129 
following LOAD command 129 
identify TXTLIBs to be searched 121 
INV option 128 
LIBE option 128 
MAP option 128 
NOAUTO option 128 
NOCLEAR option 127 
NODUP option 128 
NOINV option 128 
NOLIBF option 128 
NOREP option 128 
NOTYPE option 128 
ORIGIN option 128 
REP option 128 
RESET option 127 
SAME option 128 
START option 128 
TYPE option 128 

include control section (ItS), loader 
control statement 154 

INCR option, of XEDIT command 260 
increment 

specifying for line-number editing 290 
specifying for sequence numbers in file 

299 
INDENT (.IN) format word 409 
INDENT LINE (.IL) format word 408 
INIT option, of SETPRT command 210 
INMOVE, MOVEFILE command ddname 167 
INPUT 

control statement, for DDR command 52 
option 

of CMS QUERY ccmmand 184 
of CMS SET command 206 

subcommand 
description 283 
effect of image setting 282 
on = subcommand line 297 
stacking with &STACK control 
statement 283 

input mode 2,265 
during line-number editing 285 
entering 283,294 
leaving 265 

INSERT control statement, for UPDATE 
command 249 

instructions 
addresses, halting program execution at 

314 
al tering 

with LOAD command 155 
with STORE subcommand 324 



Interactive Problem Control System (IPCS) 
1 

int erru ption s 
entering debug environment after 313 
handling 

external 371 
I/O 372 
SVC 373 

INV option 
of INCLUDE command 128 
of LOAD command 150 

I/O, devices, handling interruptions for 
372 

IPCS (Interactive Problem Control System) 
1 

ITEMCT option of TAPEMAC command 235 

K 
KEYLEN option of FILEDEF command 104 

L 
LABEL option 

of FORMAT command 114 
of LISTFILE command 141 

LABELDE"F 
command 

CHANGE option 132 
CLEAR operand 131 
CRDTE operand 132 
description 131 
EXDTE operand 132 
FID operand 131 
FSEQ operand 132 
GENN operand 132 
GENV operand 132 
NOCHANGE option 132 
PERM option 132 
SEC operand 132 
VOLID operand 131 
VOLSEQ operand 132 

operand of CMS QUERY command 187 
LABID operand, of TAPESL macro 396 
LABOFF operand, of FILEDEF command 108 
LDRTBLS option 

of CMS QUERY command 183 
of CMS SET ccmmand 205 

LDT statement (.§~~ loader terminate (LDT) 
statement) 

LEAVE option 
of FILEDEF ccmmand 105 
of TAPE ccmmand 231 

LEAVE option of DDR command INPUT/OUTPUT 
control statement 53 

LEFT operand of LINEMODE subcommand 284 
LENGTH operand of RDTERM macro 392 
LET option, of LKED command 146 
LIBE option 

of INCLUDE command 128 
of LKED command 147 
of LOAD command 150 

LIBMAC option of ASSEMBLE command 26 
libraries 

OS, macro libraries (.§~~ macro 
libraries, OS) 

VSE 
assigning logical units 33 
obtain information about 87 

VSE core image 
defining IJSYSCL 71 
fetching phases from 99,100 

VS E procedure 
copying procedures from 177 
displaying directories of 87 
displaying procedures from 177 
printing procedures from 177 
punching procedures from 177 

VSE relocatable 
assigning SYSRLB 199 
copying modules from 199 
defining IJSYSRL 71 
displaying modules from 199 
link-editing modules from 83 
printing modules from 199 
punching modules from 199 

VSF source statement 
assigning SYSSLB 214 
copying books 214 
copying macros from 94 
defining IJSYSSL 71 
displaying books 214 
printing books 214 
punching books 214 

LIBRARY 
loader control statement 153 
option of CMS QUERY command 188 

LIFO operand 
of &BEGSTACK control statement 332 
of &STACK control statement 344 

LIMCT option of FILEDEF command 104 
line 

duplicating, in CMS file 311 
image, of record 282 
locating by beginning character string 

277 
mode 

of CMS editor 90 
of 3270 279 

moving, within CMS file 312 
number, of EXEC statement, testing 352 
printing 

with LINEDIT macro 382 
with PRINTL macro 386 

punching 
in EXEC procedure 332,341 

punching with PUNCHC macro 388 
reading from console stack 301 

LINE operand of FORMAT subcommand 279 
LINECOUN option 

of ASSEMBLE command 26 
of PRINT command 175 

LINEDIT macro 
BUFFA operand 384 
COMP operand 377 
description 375 
DISP operand 382 
DOT operand 377 
MAXSUBS operand 385 
MF operand 384 
RENT operand 385 
SUB operand 378 
substitution list, specifying 378 

Index 435 



TEXT operand 376 
TEXTA operand 377 

LINEMODE subcommand 
description 284 
LEFT operand 284 
OFF operand 285 
RIGHT operand 285 

line-number editing 
displaying line numbers 285 
inserting single line 310 
left-handed 284 
reserializing records in file 300 
right-handed 285 
setting prompting increment for 290 

LINK command, accessing disks after 19 
linkage editor control statements 

OS 
read by TXTLIB command 242 
required format for TXTLIB command 

242 
VSE supported in CMS/DOS 84 

link-editing 
in CMS/DOS 83 
modules from VSE relocatable libraries 

84 
TEXT files in storage 149 
TXTLIB members 242 

list form of LINEDIT macro 384 
LIST option 

of ASSEMBLE command 26 
of LKED command 147 
of LOADLIB ccmmand 158 
of OPTION command 171 

LISTDS command 
description 135 
examples 137 
EXTENT option 135 
FORMAT option 136 
FREE option 135 
PDS option 136 

LISTFILE command 
ALLOC opt ion 141 
APPEND option 141 
DATE option 141 
description 140 
examples 142 
EXEC option 140 
FMODE option 141 
FNAME option 141 
FORMAT option 141 
FTYPE option 141 
HEADER option 140 
LABEL option 141 
NOHEADER option 140 

LISTING filetype 
created by access method services 22 
created by ASSEMBLE command 26 

controlling 26 
created by ESERV program 94 
default CMS editor settings 415 
printinq 174 

LISTIO command 
A option 144 
ALL option 144 
APPEND option 144 
description 144 
EXEC option 144 
PROG option 144 

436 IBM VM/SP CMS Command and Macro Reference 

STAT option 144 
SY S option 144 
SYSxxx option 144 
UA option 144 

LISTX option, of OPTION command 171 
literal values, using in EXEC procedure 

349 
LKED command 

ALIGN2 option 146 
description 146 
DISK option 147 
LET option 146 
LI EE option 147 
LIST option 147 
MAP option 147 
NAME option 147 
NC AL option 146 
NE option 146 
NOPRINT option 147 
NO TERM option 147 
OL option 146 
OVLY option 146 
PRINT option 147 
REF-R option 146 
RENT option 146 
REUS option 146 
TERM option 147 
using 147 
XC AL option 146 
XREF option 147 

LOAD 
command 

AUTO option 150 
called to load files dynamically 356 
CLEAR option 149 
description 149 
DUP option 150, '51 
duplicate CSECTs 151 
effect on loader tables 205 
executing program using 150 
identify TXTLIBs to be searched 121 
INV option 150 
MAP option 150 
NOAUTO option '50 
NOCLEAR option 149 
NODUP option 150 
NOINV option 150 
NOLIBE option 150 
NOMAP option 150 
NOREP option 150 
NOTYPE option 150 
ORIGIN option 150 
REP option 150 
RESET option 149 
START option 150 
TYPE option 150 
used with GENMOD command 119 

option 
of DISK command 66 
of TAPE command 229 

load map 
creating 151 

with INCLUDE command 128 
with LOAD command 150 

displaying 150 
generated by GENMOD command 118 
invalid card images in 151 



of MODULE file, displaying 166 
replace card image in 128 

load point, specifying 128,150 
loader 

CMS 151 
control statements 

ENTRY statement 153 
include control section (ICS) 
statement 154 

LIBRARY statement 153 
loader terminate (LDT) statement 153 
replace (REP) statement 155 
set location counter (SLC) statement 

155 
set page boundary (SPB) statement 

156 
search order, for unresolved references 

152 
tables 

defining storage for 205 
displaying number of 183 

loader terminate (LDT), loader control 
statement 153 

loading a virtual 3800 printer, via SETPRT 
command 210 

LOADLIB 
command 

COMPRESS option 158 
COpy option 158 
description 158 
DISK option 159 
EXCLUDE SYSIN control statement 159 
LIST option 158 
MODIFY option 159 
PRINT option 159 
REPLACE option 159 
SELECT SYSIN control statement 159 
TERM option 159 

opt ion 
of CMS QUERY command 188 
of GLOBAL command 121 

LOADLIBs 
CMS 

compressing with LOADLIB command 158 
copying with LOADLIB command 158 
creating with LKED command 146 
executing a load module from 173 
listing with LOADLIB command 158 

LOADMOD command 
called to load files dynamically 356 
CMS/DOS considerations 161 
description 161 

LOCATE subcommand 
description 286 
effect of zone setting 308 

logical 
operators, in EXEC procedure 339 
record length, of CMS file, defaults 

used by CMS editor 90 
units 

assigning 31 
iqnoring assignments 32 
listing 144 
unassigning 208 
unassigning in CMS/DOS 32,33 

LONG subcommand, description 287 
looping, in EXEC procedure 340 

LOWCASE option 
of ASSGN command 32 
of COPYFILE command 40 
of FILEDEF command 105 

lowercase letters 
suppressing translation to uppercase 

269 
translating to uppercase 

with CASE subcommand 269 
with COPYFILE command 40 
with PRINT command 175 

LRECL option 

M 

of COpy FILE command 40 
example 44 

of EDIT command 90 
of FILEDEF command 104 

M operand of CASE subcommand 269 
MACLIB 

command 
ADD option 162 
COMP option 162 
DEL option 162 
description 162 
DISK option 163 
GEN option 162 
MAP option 162 
PRINT option 163 
reading files created by ESERV 

program 95 
REP option 162 
TERM option 162 

files 
creating 162 
displaying names of MACLIBs to be 

searched 188 
distributed with CMS system 163 
specifying for assembly or 
compilation 121 

option 

MACRO 

of CMS QUERY command 188 
of GLOBAL command 121 

files, created by ESERV program 94 
fi letype 

adding to MACLIBs 163 
default CMS editor settings 415 
invalid records in, handling by 

MACLIB command 163 
macro definitions 

in assembler listing 26 
in MACRO files 163 

macro libraries 
CMS 

adding to 162 
compacting members of 162 
creating 162 
deleting members of 162 
displaying information about members 
in 162 

printing members 176 
punching members 176,180 
reading OS macro libraries into 234 
replacing members of 162 
typing members 245 

Index 437 



creating 
from os partitioned data sets on tape 

234 
from tapes created by IEHMOVE utility 

program 234 
identifying for assembly 29,121 
os 

concatenating 105 
reading into CMS MACLIBs 234 
using in CMS 29 

VSE, copying macros from 94 
MAKEBUF command 

MAP 

description 165 
return code, effect on &ERROR statement 

165 

fi1etype 
created by DOSLIB command 81 
created by DSERV command 87 
created by LOAD command 151 
created by MACLIB command 162 
created by TAPE command 230 
created by TXTLlB command 241 

option 
of DOSLIB command 81 
of GENMOD command 118 
of INCLUDE command 128 
of LKED ccmmand 147 
of LOAD ccmmand 150 
of MACLIB command 162 
of TXTLlB command 241 

maps 
created by DOSLIB command 81 
created by GENMOD command 118 
created by LOAD command 151 
created by MACLIB command 162 
created by TXTLIB command 241 
linkage editor, in CMS/DOS 83 

margins, setting left margin for input with 
CMS editor 302 

master catalog (VSAM) 
identifying 79 
identifyinq in CMS/DOS 75 

master file directory 
contents of 19 
suppressing updating after RENAME 

command 197 
updating entries in 196 
updating on disk 194 

MAXSUBS operand of LINEDIT macro 385 
MAXTEN option of TAPPDS command 239 
MCALL option of ASSEMBLE command 26 
MEMBER option 

of FlLEDEF ccmmand 105 
of PRINT command 175 
of PUNCH command 179 
of TYPE command 245 

MEMO fi1etype, default CMS editor settings 
415 

MENU option, of HELP command 123 
MERGE option, of XEDIT command 260 
message, text for LINEDIT macro 376 
MF operand of LlNEDIT macro 384 
minidisks (a~~ ~laQ disks) 

copying 50 
counting cylinders on 114 

438 IBM VM/SP CMS Command and Macro Reference 

MLOGIC option of ASSEMBLE command 26 
MODE 

operand 
of RDTAPE macro 390 
of TAPECTL macro 394 
of TAPESL macro 395 
of WRTAPE macro 399 

option of DDR command INPUT/OUTPUT 
control statement 53 

mode letter (a~~ filemode letter) 
MODESET option of TAPE command 229 
MODIFY option 

of LOADLIB command 159 
of SETPRT command 210 

MODMAP command, description 166 
MODUL E files 

creating 118 
debugging 161 
defining synonyms for 224 
executing with RUN command 201 
format 118 
generating 118 
loading dynamically during program 
execution 356 

loading into storage for execution 161 
ma pping 166 
VSE, link-editing 83 

modules, VSE, link-editing 83 
MOVEFlLE command 

default device attributes 168 
description 167 
examples 167 
PDS option 167 

MSG operand of &CONTROL control statement 
334 

MULT option of DLBL command 70 
multilevel updates using UPDATE command, 

examples 252,253 
multi pIe 

extents for VSAM files 
specifying 77 
specifying in CMS/DOS 72 

FSCBs 359 
in put files 

for UPDATE command 247 
with COPYFlLE command 42 

output files 
with COPYFILE command 38,42,45 
with RENAME command 197 

substitution lists, LINEDIT macro 382 
multivolume data sets, displaying volumes 

on which they reside 74 
multivolume VSAM extents 

N 

identifying with DLBL command 78 
in CMS/DOS 74 

maximum number of disks 78 
in CMS/DOS 74 

rules for specifying 78 
in CMS/DOS 74 

NAME option, of LKED command 147 
NCAL option, of LKED command 146 
NE option, of LKED command 146 



nesting 
&IF statements in EXEC procedure 340 
EXEC procedures 

effect on &CONTROL 335 
passing variable data 352 
testing recursion level 351 

loops in EXEC procedure 341 
never-call function, specifying in CMS TEXT 
file 153 

NFWDATE option of COPYFILE command 39 
NEWFILE option of COPYFILE command 39 
NEXT subcommand, description 281 
NL operand, of FILEDEF command 109 
nnnnn subcommand, description 310 
NO option of START command 216 
NOALIGN option of ASSEMBLE command 28 
NOALOGIC option of ASSEMBLE command 26 
NOAUTO option 

of INCLUDE command 128 
of LOAD command 150 

NOCC option of PRINT command 114 
NOCHANGE option 

of DLBL command 69 
of FILEDEF ccmmand 102 
of LABELDEF command 132 

NOCLEAR option 
of INCLUDE command 121 
of LOAD command 149 

NOCOLl option of TAPPDS command 238 
NOCTL option, of XEDIT command 260 
NOCTL option of UPDATE command 241 
NODECK option 

of ASSEMBLE command 21 
of OPTION command 111 

NODISK option of ACCESS command 19 
NODISP option 

of EDIT command 90 
effect on FORMAT subcommand 219 

NODUMP option of OPTION command 111 
NODUP option 

of INCLUDE ccmmand 128 
of LOAD command 150 

NOEND option of TAPPDS command 239 
NOEOV option, of FILEDEF command 105 
NOERASE option, of FORMAT command 114 
NOERRS option of OPTION command 111 
NOESD option of ASSEMBLE command 26 
NOHEADER option 

of LISTFILE command 140 
of PUNCH command 119 

NOINC option of UPDATE command 241 
NOINV option 

of INCLUDE ccmmand 128 
of LOAD command 150 

NOLIBE option 
of INCLUDE command 128 
of LOAD command 150 

NOLIBMAC option of ASSEMBLE command 26 
NOLIST option 

of ASSEMBLE command 26 
of OPTION command 111 

NOLISTX option of OPTION command 111 
NOMAP option 

of GENMOD command 118 
of LOAD command 150 

NOMAXTEN option of TAPPDS command 239 
NOMCALL option of ASSEMBLE command 26 

NOMLOGIC option of ASSEMBLE command 26 
NOMSG operand of &CONTROL control statement 

334 
nonreentrant code, writing for LINEDIT 

macro 385 
nonrelocatable modules, in CMS 118 
NONSHARE option of CMS SET command 201 
nonshared copy 

of named system, obtaining 201 
of saved system, obtained during debug 

315 
NONUM option of ASSEMBLE command 21 
NOOBJ!CT option of ASSEMBLE command 21 
NOPACK operand of &CONTROL control 

statement 335 
NOPDS option of TAPPDS command 238 
NOPRINT option 

of ASSEMBLE command 21 
of LKED command 141 
of TAPE command 230 

NOPROF option of ACCESS command 18 
NOPROFIL option, of XEDIT command 259 
NOPROMPT option of COPYFILE command 39 
NOREC operand of FSCB macro 359 
NORENT option of ASSEMBLE command 28 
NOREP option 

of INCLUDE command 128 
of LOAD command 150 
of UPDATE command 246 

NORLD option of ASSEMBLE command 26 
NOSCREEN option, of XEDIT command 259 
NOSEQ8 

option 
of UPDATE command 246 
of XEDIT command 260 

NOSPECS option of COPYFILE command 39 
NOSTD option of SYNONYM com~and 224 
NOSTK option of UPDATE command 241 
NOSTMT option of ASSEMBLE command 28 
NOSTOR option of UPDATE command 241 
NOSTR option of GENMOD command 119 
NOSYM option of OPTION command 111 
notational conventions 4 
NOTERM option 

of ASSEMBLE command 28 
of LKED command 141 
of OPTION command 112 
of UPDATE command 241 

NOTEST option of ASSEMBLE command 21 
NOTIME operand of &CONTROL control 

statement 335 
NOTRC option, of PRINT command 114 
NOTRUNC option of COPYFILE command 40 
NOTYPE option 

of COpy FILE command 39 
of ERASE command 92 
of INCLUDE command 128 
of LOAD command 150 
of RENAME command 196 

NOUPDATE option, of XEDIT command 259 
NOUPDIRT option of RENAME command 196 
NOWTM option of TAPE ccmmand 230 
NOXREF option 

of ASSEMBLE command 21 
of OPTION command 111 

NOYFLAG option of ASSEMBLE command 28 

Index 439 



NSL operand 
of FILEDEF ccmmand 109 
of TAPEMAC ccmmand 234 
of TAPPDS command 238 

nucleus 
CMS, protected storage 206 
protection feature 

displaying status of 184 
setting 206 

resident commands, list 7 
null 

arguments in EXEC procedure, setting 
with % 350 

block, dumping to tape 231 
line 

stacking in console stack 301 
stacking in EXEC 344 
to return to edit mode from input 

mode 265 
when entering VSAM extents 78 
when entering VSAM extents, in 

CMS/DOS 73 
symbols in EXEC statement 340 

NUM, result of &DATATYPE built-in function 
348 

number 
of characters in token in EXEC 

procedure, determining 348 
of records to be read or written, 
specifying 359 

NUMBER option of ASSEMBLE command 27 
numeric 

o 

data, determining if token contains 348 
variables in EXEC procedure 350 

object deck, assembler, generating 27 
OBJECT option, of ASSEMBLE command 27 
OFF operand 

of &CONTROL control statement 334 
of &HEX control statement 338 
of &TIME control statement 345 
of AUTOSAVE subcommand 267 
of IMAGE subcommand 282 
of LINEMODE subcommand 285 
of SERIAL subcommand 299 

OFFSET (.OF) format word 410 
OL option, of LKED command 146 
OLDDATE option of COPYFILE command 39 
ON operand 

of &HEX control statement 338 
of &TIME control statement 345 
of IMAGE subcommand 282 
of SERIAL subcommand 299 

operands, command 3 
operatcrs, comparison, in EXEC procedure 

339 
OPTCD option of FILEDEF command 104 
OPTION 

command 
DECK option 171 
description 171 
DUMP option 171 
ERRS option 171 
LIST option 171 

440 IBM VM/SP CMS Command and Macro Reference 

LISTX option 171 
NODECK option 171 
NODUMP opt ion 171 
NOERRS option 171 
NOLIST option 171 
NOLISTX option 171 
NOSYM option 171 
NOTERM option 172 
NOXREF option 171 
SYM option 171 
TERM option 172 
XREF option 171 
48C option 172 
60C option 172 

option, of CMS QUERY command 190 
options 

command 3 
for DOS/VS COBOL compiler, specifying 

171 
for DOS/VS COBOL compiler in CMS/DOS, 

querying 190 
LOAD and INCLUDE command, retaining 128 

origin 
for debug environment 

setting 321 
used to compute symbol location 318 

ORIGIN 

OS 

option 
of FETCH command 99 
of INCLUDE command 128 
of LOAD command 150 

subcommand, description 32' 

da ta sets 
defining in CMS 101 
listing information 135 

disks, accessing 20 
linkage editor control cards, adding to 

TEXT files 242 
macro libraries 

reading into CMS MACLIBs 234 
used in assembly 29 

option, of GENMOD command 119 
partitioned data sets (§~~ partitioned 
data sets) 

tapes 
containing partitioned data sets 238 
standard-label processing 239 

utility programs 
creating CMS files from tapes created 

by 237 
IEBPTPCH 237 
IEBUPDTE 237 
IEHMOVE 237 

OSRUN command 
description 173 
PARM keyword 173 

OUTMOVE, MOVEFILE command ddname 167 
OUTPUT 

control statement, for DDR command 52 
option 

of CMS QUERY command 184 
of CMS SET command 206 

OVERLAY subcommand 
description 288 
effect of image setting 282 



OVLY option 
of COPYFILE command 39 

example 46 
of LKED ccmmand 146 

P 
PACK 

operand of &CONTROL control statement 
335 

option 
of COPYFILE command 40 
of COPYFILE command, example 45 

parameter list 
displaying with LINEDIT macro 381 
passed by RUN command 203 
passed by START command 216 
passed to SVC instruction, recorded 220 

parent disk, of read-only extension 18 
parentheses 

before option list 3 
scanned by EXEC interpreter 329 

PARM 
keyword, OSRUN command 173 
option, of HELP ccmmand 124 

partition size, for CMS/DOS, setting 208 
partitioned data sets 

copying into CMS files 167 
copying into partitioned data sets 168 
displaying member names 137 
listing members of 136 
on tapes, creating CMS files 238 

PD option of DSERV command 87 
PDS (§~~ partitioned data sets) 
PDS opt ion 

of LISTDS command 136 
of MOVEFILE command 167 
of TAPPDS command 238 

periods 
as concatenation character for EXEC 
variables 340 

indicating message substitution in 
LINEDIT macro 376 

placing at end of message text in 
LINEDIT macro 377 

PERM option 
of DLBL command 69 
of FILEDEF ccmmand 102 
of LABELDEF command 132 

permanent file definitions 102 
phase library 

clearing to zeros 85 
CMS/DOS 81 
deleting phases from 81 

phases 
executing in CMS/DOS 99 
in VSE core image libraries, obtaining 
information about 88 

PLI filetype, default CMS editor settings 
415 

PLIOPT filetype, default CMS editor 
settings 415 

preferred auxiliary files 254 
prefixes 

identifying sets of files 
with ACCESS command 19 
with LISTFILE command 142 

prefixing, error messages issued in EXEC 
with DMS 331 

PRESERVE subcommand, description 289 
PRINT 

command 
CC option 174 
description 174 
FCB macro loaded by 176 
HEX option 175 
LINECOUN option 175 
MEMBER option 175 
NOCC option 174 
NOTRC option 174 
TRC option 174 

function statement of DDR command 58 
option 

of AMSERV command 22 
of ASSEMBLE command 27 
of DOSLIB command 81 
of DOSLKED command 84 
of DSERV command 87 
of LKED command 147 
of LOADLIB command 159 
of MACLIB command 163 
of PSERV command 177 
of RSERV command 199 
of SSERV command 214 
of TAPE command 230 
of TXTLIB command 241 
of UPDATE command 247 

printer, printing records at 50 
PRINTER option 

of ASSGN command 31 
of FILEDEF command 101 

printers, virtual, closing after using 
PRINTL macro 387 

PRINTL macro 
de scription 386 
ERROR operand 386 
TRC operand 386 

private libraries (se~ libraries, VSE) 
PROC, files, creating in CMS/DOS 177 
procedures, VSE, copying into CMS files 

177 
processor time, displaying in EXEC 

procedure 345 
PROFILE EXEC, suppressing execution of ~8 
PROFILE option, of XEDIT command 259 
PROG option of LISTIO command 144 
program 

compilation and execution, with RUN 
command 201 

entry point 
selection during CMS loader 
processing 151 

specifying 149 
execution 

considerations for closing files in 
EXEC procedures 361 

displaying data at terminal 375 
displaying parameter lists 381 
displaying storage 379 
halting 263,314 
handling external interruptions 371 
handling I/O interruptions 372 
handling SVC interruptions 373 
in CMS subset 273 
in CMS/DOS 99 

Index 441 



modifying control words 323 
modifying general registers 323 
modifying storage 324 
resuming after breakpoint 319 
with INCLUDE command 128 
with LOAD command 150 
with START command 216 

loading intc storage 
while using CMS editor 273 
with INCLUDE command 127 

stack buffer, clearing 65 
program stack 

buffer 
creating 165 
eliminating 86 
using WAITRD function to read lines 

from 165 
determining number of lines in 203 
stacking an input line in 354 

program stack buffer~ reading a line from 
via WAITRD 355 

program status word (§~ PSW (program 
status word)) 

programmer logical units 
for job catalogs 75 
listing assignments for in CMS/DOS 144 
valid assignments in CMS/DOS 31 

PROMPT 
option of COPYFILE command 39 
subcommand, description 290 

prompting 
increment for line-number editing 285 

setting 290 
PROTECT option 

of CMS QUERY command 184 
of CMS SET ccmmand 206 

PSERV command 
description 177 
DISK option 177 
PRINT option 177 
PUNCH option 177 
TERM option 177 

PSW 
operand of SET subcommand 323 
subcommand, description 322 

PSW (program st a tus word) 
changing, in debug environment 323 
displaying in debug environment 322 

PUNCH 
assembler punch output ddname 29 
command 

description 179 
EEADER card format 180 
HEADER option 179 
MEMBER option 179 
NOHEADER option 179 

opt ion 
of ASSGN command 31 
of FILEDEF command 101 
of PSERV command 177 
of RSERV command 199 
ot SSERV command 214 

punch, virtual, closing after PUNCHC macro 
388 

PUNCHC macro 
description 388 
ERROR operand 388 

punched files, restoring to disk 66 

442 IBM VM/SP CMS Command and Macro Reference 

Q 
QUERY command (CMS) 

ABEREV option 184 
BLIP option 183 
description 182 
DISK option 185 
DL EL option 188 
DO S option 189 
DOSLIE option 189 
DOSLNCNT option 190 
DOSPART option 190 
FILEDEF option 187 
IMPCP option 183 
IMPEX option 183 
INPUT option 184 
LAEELDEF operand 187 
LDRTBLS option 183 
LIERARY option 188 
LOADLIB option 188 
MACLIB option 188 
OPTION option 190 
OUTPUT option 184 
PROTECT option 184 
RDYMSG option 183 
REtTYPE option 184 
RELPAGE option 183 
SEARCH option 185 
SYNONYM ALL option 187 
SYNONYM SYSTEM option 186 
SYNONYM USER option 187 
SYSNAMES option 185 
TXTLIB option 188 
UPSI option 190 

QUIT subcommand, description 290 

R 
RD option of DSERV command 87 
RDCARt macro 

de scription 389 
ERROR operand 389 

RDPNT operand, of FSPOINT macro 365 
RDTAPE macro 

description 390 
ERROR operand 390 
MODE operand 390 

RDTERM macro 
ATTREST operand 392 
description 391 
EDIT operand 391 
LENGTH operand 392 

RDYMS G option 
of CMS QUERY command 183 
of CMS SET command 205 

read, console read after CMS command 
execution 207 

READ control card 191 
deleting 191 
format 192 

READCARD command, description 191 
reader 

virtual 
reading file from 66,191 

READER option 
of ASSGN command 31 
of FILEDEF command 101 



read-only 
disKs, editing files on 267 
extensions 

editing files on 89 
releas ing 194 

read/write 
status of disKs 

controlling 19 
finding first read/write disk in the 
standard search order 351 

finding read/write disk with the most 
space 351 

listing for disk assignments in 
CMS/DOS 144 

querying 185 
read/write pointer, positioning, FSWRITE 
macro 310 

ready message 
displaying return code from EXEC 
processing 337 

format 205 
long form 205 
query setting of 183 
sett ing 205 
short form 205 
special format in EXEC 96 

RECFM 
operand of FSCB macro 358 
option 

of COPYFILE command 40 
of COPYFILE command, examples 44 
of FILEDEF command 104 

subcommand 
description 291 
F operand 291 
V operand 291 

RECNO operand of FSCB macro 359 
RECOMP option of FORMAT command 114 
record format 

of CMS file 
changing 40,44,291 
listing 141 

of file, specifying 104 
records that can be punched 180 
specifying, for FSWRITE macro 370 

record length 
default used by CMS editor 90 
modifying 90 
of CMS file 

changing 40,44 
listing 141 
maximum lengths for PRINT command 

175 
specifying truncation setting for input 

303 
specifying with FILEDEF command 106 

record number, specifying next record to be 
accessed 359 

records 
displaying selected positions of 244 
in file, numbering with UPDAT~ command 

246 
red type 

display lines with WRTERM macro 400 
for error messages 206 

REDTYPE option 
of CMS QUERY command 184 
of CMS SET command 206 

reentrant code, writing for LINEDIT macro 
384 

references 
unresolved 

resolving with INCLUDE command 128 
resolving with LOAD command 150 

REFR option, of LKED command 146 
REGEQU macro, description 392 
registers (§~ general registers) 
RELEASE command 

de scription 194 
DET option 194 

relocatable 
libraries (VSE), displaying directories 
of 87 

modules, link-editing in CMS/DOS 83 
relocation dictionary, assembler 26 
RELPAGE option 

of CMS QUERY command 183 
of CMS SET command 205 

remote terminals, using CMS editor 279 
RENAM E command 

description 196 
NOTYPE option 196 
NOUPDIRT option 196 
TYPE option 196 
UPDIRT option 196 

RENT 
operand of LINEDIT macro 385 
option 

of ASSEMBLE command 28 
of LKED command 146 

RENUM subcommand, description 292 
REP option 

of INCLUDE command 128 
of LOAD command 150 
of MACLIB command 162 
of UPDATE command 246 

REPEAT subcommand 293 
used with OVERLAY subcommand 289 

REPL ACE 
control statement, for UPDATE command 

250 
option 

of COPYFILE command 39 
of LOADLIB command 159 

subcommand 
description 294 
effect of image setting 282 
restriction while using line-number 
editing 285 

stacking with &STACK control 
statement 294 

replace (REP) 
loader control statement 155 

image of in load map 128 
RESET 

operand of &TIME control statement 345 
option 

of INCLUDE command 127 
of LOAD command 149 

Index 443 



responses, CMS editor, controlling format 
of 2A7 

RESTORE 
function statement, of DDR command 55 
subcommand, description 295 

restrictions 
access method services and VSAM 

OS/VS users 419 
VSE users 419 

RETURN 
command, description 295 
subcommand (DEBUG) 322 

return code 
from MAKEBUF command, effect on &ERROR 
statement 165 

from SENTRIES command, effect on &ERROR 
statement 203 

return codes 
CMS, in EXEC procedure 96 
displaying during EXEC processing 334 
from access method services 24 
from CMS commands, testing in EXEC 

procedure 352 
from CMS macro instructions 356 
from EXEC, displaying in ready message 

33 7 

from EXEC interpreter 97 
from EXEC 2 interpreter 97 
specifying in EXEC procedure 337 

REUS option, of LKED command 146 
REUSE subcommand 

description 296 
examples 296 

REW, tape control function 229 
REWIND option, of TAPE command 231 
REWIND option of DDR command INPUT/OUTPUT 
control statement 53 

ribbon, two-color, controlling use of 184 
RIGHT operand of LINEMODE subcommand 285 
RLD option of ASSEMBLE command 26 
RO Immediate command 263 
RSCS (Remote Spooling Communications 

Subsystem) 1 
RSERV command 

description 199 
DISK option 199 
PRINT option 199 
PUNCH option 199 
TERM option lq9 

RT Immediate command 264 
stacking in EXEC procedure 344 

RUN· 

S 

command, description 201 
tape control function 230 

SAME option of INCLUDE command 128 
SAVE subcommand, description 297 
saved system 

names 
querying 185 
setting 207 

sharing 207 

444 IBM VM/SP CMS Command and Macro Reference 

SCAN option of TAPE command 229 
scanning 

&ERROR control statement 337 
in EXEC procedure 329 

SCRIPT, filetype, default CMS editor 
settings 415 

SCROLL subcommand, description 298 
SCROLLUP subcommand, description 298 
SD option of DSERV command 87 
S-disk, accessed after IPLing CMS 19 
SEARCH option of CMS QUERY command 185 
search order 

for CMS commands 7 
for CMS loader 152 
for executable phases in CMS/DOS 99 
for relocatable modules in CMS/DOS 84 
of CMS disks, querying 185 

SEC operand, of LABELDEF command 132 
SELECT SYSIN control statement 159 
SENTRIES command 

description 203 
return code, effect on &ERROR statement 

203 
SEQUENCE control statement, for UPDATE 

command 248 
sequence numbers 

assigned to VSAM extents 78 
in CMS/DOS 73 

SEQ8 
option 

of UPDATE command 246 
of XEDIT command 259 

SERIAL subcommand 
ALL operand 299 
description 299 
OFF operand 299 
ON operand 299 

SET command (CMS) 
ABEREV option 206 
AUTOREAD option 207 
BL IP opti on 204 
CMSTYPE option 207 
description 204 
determining status of SET operands for 
virtual machine environment 182 

DO S option 207 
DOSLNCNT option 208 
DOSPART option 208 
IMPCP option 206 
IMPEX option 206 
INPUT option 206 
LDRTBLS option 205 
NONSHARE option 207 
OUTPUT option 206 
PROTECT option 206 
RDYMSG option 205 
RErTYPE option 206 
RELPAGE option 205 
SYSNAME option 207 
UPSI option 208 

set location counter (SLC), loader control 
statement 155 

SET operand 
of HNDEXT macro 371 
of HNDINT macro 372 
of HNDSVC macro 373 



set page boundary (SPB), loader control 
statement 156 

SET subcommand (DEBUG) 323 
CAW operand 323 
CSW operand 323 
GPR operand 323 
PSW operand 323 

SETPRT command 
CHARS option 210 
COPIES option 210 
COPYNR option 210 
description 210 
FCB option 210 
FLASH option 210 
INIT option 210 
MODIFY option 210 
using 211 

SHORT subcommand, description 300 
SIDCODE option, of XEDIT command 260 
SINGLE option of COPYFILE command 41 
SKIP option 

of DDR command INPUT/OUTPUT control 
statement 53 

of TAPE command 229 
SL operand 

of FILEDEF command 108 
of TAPEMAC ccmmand 234 
of TAPPDS command 238 

SLC statement (§~~ set location counter 
(SLC) statement) 

SO Immediate command 264 
SORT 

command 
description 212 
storage requirements 212 

option of DSERV command 87 
sort fields, defining 212 
source file, numbering records with UPDATE 

command 246 
source files 

assembling 
identifying macro libraries 29,121 

for assembler 25 
updating 246 

source statement libraries, VSE, displaying 
directories of 87 

source symbol table, assembler, generating 
27 

space, determine free extents for VSAM 135 
SPACE LINES (.SP) format word 411 
SPACE operand, of TAPESL macro 396 
special variables (§~~ EXEC special 
variables) 

specification list, for COPYFILE command, 
format 45 

SPECS option 
of COPYFILE command 39 

usage 45 
SPOOL command 

used with DISK DUMP command 66 
used with PRINT command 175 

SSERV comman d 
description 
DISK option 
PRINT option 
PUNCH option 
TERM option 

214 
214 

214 
214 

214 

STACK 
subcommand, description 301 
value of &READFLAG special variable 352 

stacking 
EDIT subcommands 301 
in EXEC procedure, testing whether there 
are lines in stack 352 

lines in console stack 
&BEGSTACK control statement 332 
&STACK control statement 344 

START 
command 

description 216 
NO option 216 
passing arguments 216 

option 
of FETCH command 99 
of INCLUDE command 128 
of LOAD command 150 

starting point for execution of module, 
setting 149 

STAT option of LISTIO command 144 
STATE command, description 218 
STATEW command, description 218 
status of virtual machine environment 182 
STD option of SYNONYM command 224 
STK option, of UPDATE command 255 
STK option of UPDATE command 247 
STMT option of ASSEMBLE command 27 
STOR option of UPDATE command 247 
storage 

clearing to zeros 
in CMS/DOS 85 
with INCLUDE command 127 
with LOAD command 149 

displaying with LINEDIT macro 379 
examining in debug environment 325 
initializing for MODULE file execution 

118 
modifying during program execution 324 
printing contents of 318 
releasing pages of after command 
execution 183,205 

requirements for SORT command 212 
specifying storage for CMS/DOS partition 

208 
used by GETFILE subcommand 281 

STORE, subcommand, description 324 
STR option of GENMOD command 118 
SUB operand of LINEDIT macro 378 
sublibraries, of VSE source statement, 

copying books 214 
subset, CMS (se~ CMS subset) 
sUbstitution 

in EXEC procedure, inhibiting 349 
list for LINEDIT macro 378 

specifying length 381 
of message text in LINEDIT macro 376 

substrings, extracting in EXEC procedure, 
&SUBSTR built-in function 349 

SUL operand, of FILEDEF command 109 
summary, of HELP format words 401 
SVC 

instructions 
handling interruptions during program 
execution 373 

tracing 220 

Index 445 



SVCTRACE command 
description 220 
output 221 

SYM option of OPTION command 171 
symbol table, debug 317 
symbolic names, assigning to storage 
locations, in debug environment 317 

symbols 
debug 

defining 317 
modifying 324 
used to set breakpoints 314 

in EXEC procedure 
effect of undefined symbols in &IF 
statement 340 

reading from terminal or console 
stack 342 

substituted in EXEC procedure, 
displaying 335 

variable (§~~ variable symbols) 
SYNONYM 

command 
CLEAR option 224 
description 224 
example 225 
NOSTD option 224 
relationship to SET ABBREV command 

225 
STD option 224 

option, of CMS QUERY command 186 
synonym table 

clearing 224 
defining 225 
format for entries in 225 
invoking 224 

synonyms 
for CMS and user-written commands 224 

defining 225 
displaying 186,225 
examples 225 

system, displaying 186 
SYS option of LISTIO command 144 
SYSCAT, assigning in CMS/DOS 75 
SYSIN 

assembler input 29 
logical unit assignment in CMS/DOS 32 

SYSIPT, assigning for ESERV program 94 
SYSLOG, assigning in CMS/DOS 32 
SYSLST lines per page 

displaying number of 190 
setting number of 208 

SYSNAME option of CMS SET command 207 
SYSNAMES option of CMS QUERY command 185 
SYSPARM option of ASSEMBLE command 28 
SYSPRINT control statement of DDR command 

54 
SYSRES, assigning in CMS/DOS 32 
system and programmer logical units, 
entering on DLBL command 71 

system disk 
files available 19 
releasing 194 

system logical units 
invalid assignments in CMS/DOS 32 
listing assignments for in CMS/DOS 144 
valid assignments in CMS/DOS 31 

446 IBM VM/SP CMS Command and Macro Reference 

SYSTEM option of GENMOD command 119 
system residence volume, VSE, specifying 

208 
SYSTERM option of ASSEMBLE command 27 
SYSxxx option 

T 
tab 

of ASSGN command 31 
of DLBL command 69 
of LISTIO command 144 

characters, how CMS editor handles 282 
settings, used by CMS editor 302 

Table Reference Character byte 174 
TABSET subcommand 

affected by IMAGE subcommand 282 
description 302 

tape 
assigning to logical units in CMS/DOS 

32 
backward spacing 229 
control functions 229 

restrictions when using 231 
TAPECTL macro 393 

controlling, TAPECTL macro 393 
creating CMS disk files 237 
density of, specifying 230 
displaying filenames on 229 
dumping and loading CMS files 229 
dumping and restoring disk data 50 
files 

created by OS utility programs 237 
created by TAPE command 231 
writing to disk 229 

forward spacing 229 
labels 

displaying definitions in effect 187 
displaying VOLl label 230 
in FILEDEF command processing 108 
in TAPEMAC command processing 

234,235 
in TAPESL macro processing 395 
in TAPPDS command processing 238,239 
specifying descriptive information 

131 
writing VOL1 label 230 

marks 
writing 230 

OS, standard-label processing 239 
po si tioni ng 229 

after VOLl label is processed 231 
at specified file 229 
TAPECTL macro 393 

reading records from, RDTAPE macro 390 
recording technique, specifying 231 
rewinding 229 
used for AMSERV input and output 22 

entering ddnames 23 
in CMS/DOS 23 

writing records to, WRTAPE macro 398 
T APE command 

BLKSIZE option 230 
control functions 

BSP 229 
BSR 229 
ERG 229 



FSF 229 
FSR 229 
REW 229 
RUN 230 
WTM 230 

DEN option 230 
description 228 
DISK option 230 
DUMP option 229 
dumping null block 231 
DVOL1 operand 230 
EOF option 230 
EOT option 230 
LEAVE option 231 
LOAD option 229 
MODESET option 229 
NOPRINT option 230 
NOWTM option 230 
PRINT option 230 
REWIND option 231 
SCAN option 229 
SKIP option 229 
TAPn option 230 
TERM option 230 
TRTCH option 231 
WTM option 230 
WVOL1 operand 230 
7TRACK option 231 
qTRACK option 231 

TAPECTL macro 
description 393 
ERROR operand 394 
MODE operand 394 

TAPEMAC command 
description 234 
ID operan d 234 
ITEMCT option 235 
NSL operand 234 
SL operand 234 
TAPn option 235 

TAPESL macro 
BLKCT operand 396 
description 395 
ERROR operand 396 
LABID operand 396 
MODE operand 395 
SPACE operand 396 
TM operand 396 

TAPIN option of AMSERV command 22 
TAPn option 

of ASSGN command 31 
of FILEDEF command 101 

usage 108 
of TAPE command 230 
of TAPEMAC ccmmand 235 
of TAPPDS command 239 

TAPOUT option of AMSERV command 22 
TAPPDS command 

COL 1 option 238 
description 237 
END opt ion 239 
In operand 238 
MAXTEN option 239 
NOCOL1 option 238 
NOEND option 239 
NOMAXTEN option 239 
NOPDS option 238 
NSL operand 238 

PDS option 238 
processing OS standard-label tapes 239 
SL operand 238 
TAPn option 239 
UPtATE option 238 

TD option of DSERV command 87 
TERM option 

of DOSLIB command 81 
of DOSLKED command 84 
of DSERV command 87 
of LKED command 147 
of LOADLIB command 159 
of MACLIB command 162 
of OPTION command 172 
of PSERV command 177 
of RSERV command 199 
of SSERV command 214 
of TAPE command 230 
of TXTLIB command 241 
of UPDATE command 247 

terminal 
displaying lines at, WRTERM macro 400 
displaying records at 50 
output 

determining if terminal is displaying 
352 

halting 263 
halting in EXEC procedure 344 
restoring 264 
restoring in EXEC procedure 344 

reading data from 
during EXEC procedure 342 
with RDTERM macro 391 

waiting for I/O to complete, WAITT macro 
398 

TERMINAL option 
of ASSEMBLE command 28 
of ASSGN command 31 
of FILEDEF command 101 

TEST option of ASSEMBLE command 27 
TEXT 

assembler output ddname 29 
files 

automatic loading 150 
cards read by loader 151 
creating with assembler 27 
executing with RUN command 201 
link-editing in CMS/DOS 83,84 
linking in storage 149 
loading into storage during program 

execution 356 
loading into virtual storage 149 
resolving unresolved references with 

LOAD command 150 
libraries (§~ TXTLIB) 
operand of LINEDIT macro 376 

TEXT files 
loading into storage for execution 127 
setting starting point for execution 

149 
TEXTA operand of LINEDIT macro 377 
time information, displaying during EXEC 

processing 345 
time of day, displaying during EXEC 

processing 335 
TIME operand of'&CONTROL control statement 

335 
timers, virtual interval 204 

Index 447 



TM operand, of TAPESL macro 396 
TO 

operand of $MOVE edit macro 312 
option of GENMOD command 118 

tokens 
comparing in EXEC procedure 339 
description 329 

TOLABEL option of COPYFILE command 39 
TOP 

operand of &GOTO control statement 338 
subcommand, description 303 

tracing 
resuming after temporarily halting 263 
suspending recording temporarily 264 
SVC instructions 220 

halting 262 
trailing fill characters, removing from 
records 44 

TRANS option of COPYFILE command 40 
transient area 

CMS commands that execute in 7 
creating modules to execute in 120 
loading programs into 150 

transient directories in VSE, displaying 
A7 

TRANSLATE CHARACTER (.TR) format word 412 
translate tables 

defining input characters for 
translation 205 

defining output characters for 
translation 206 

displaying 184 
translation list, for COPYFILE command, 
description 46 

TRC 
operand, of PRINTL macro 386 
option, of PRINT command 174 

TRTCH option 
of ASSGN command 32 
of FILEDEF ccmmand 105 
of TAPE command 231 

TRUNC 
option of COPYFILE command 40 

example 44 
subcommand, description 303 

truncation 
column, for input mode 303 
of command names 

querying acceptability of 184 
setting acceptability of 206 

of commands 4 
of input records with CMS editor, 

default settings 303 
of records in CMS file 40 

during GETFILE subcommand 281 
following CHANGE subcommand 211 

of tokens in EXEC procedure 329 
of trailing blanks from CMS file 40 

two-color ribbon, controlling use of 
184,206 

TXTLIB 
command 

ADD option 241 
DEL option 241 
description 241 
DISK option 241 
GEN option 241 
MAP option 241 

448 IBM VM/SP CMS Command and Macro Reference 

PRINT option 241 
TERM option 241 

file, searching for unresolved 
references 128 

files 
adding members 241 
creating 241 
deleting members 241 
determining which TXTLIBs are 

searched 188 
identifying for LOAD and INCLUDE 

command processing 121 
listing members in 241 
maximum number of members 242 
search for unresolved references 150 
searched during INCLUDE command 
processing 121 

searched during LOAD command 
processing 149 

option 
of CMS QUERY command 188 
of GLOBAL command 121 

TYPE 
command 

COL option 244 
description 244 
HEX option 244 
MEMBER option 245 

function statement of DDR command 58 
operand of &TIME control statement 345 
option 

of COPYFILE command 39 
of COPYFILE command (example) 43 
of ERASE command 92 
of INCLUDE command 128 
of LOAD command 150 
of RENAME command 196 

subcommand, description 304 
TYPE/PRINT output of DDR command 61 

U 
U operand of CASE subcommand 269 
UA option 

of ASSGN command 32 
of LISTIO command 144 

underscore 
character, on OVERLAY subcommand 288 
data records, using backspaces 283 

UNLOAD option of DDR command INPUT/OUTPUT 
control statement 53 

UNPACK option, of COPYFILE command 40 
unresolved references 

UP 

during MODULE file generation 119 
loader handling of 152 
resolving with INCLUDE command 128 
searching for TEXT files 150 
searching TXTLIBs for 150 

operand of $MOVE edit macro 312 
subcommand, description 305 

UPCASE option 
of ASSGN command 32 
of COPYFILE command 40 
of FILEDEF command 105 
of PRINT command 175 



UPDATE 
command 

control statements 247 
CTL option 247,252 
description 246 
DISK option 247 
error handling for 256 
INC option 247 
input files 251 
multilevel updates, example with 
auxiliary control file 253 

NOCTL option 2~7 
NOINC option 247 
NOREP option 246 
NOSEQ8 option 246 
NOSTK option 2~7 
NOTERM option 247 
output files 251 
PRINT option 2~7 
REP option 246 
SEQ~ option 246 
STK option 2~7,255 
STOR option 247 
TERM option 247 
warnings by 256 

control statements 
comments 251 
DELETE 250 
INSERT 249 
REPLACE 250 
SEQUENCE 2~8 

fi1etype, default CMS editor settings 
415 

option, of XEDIT command 259 
option of TAPPDS command 238 

update log 
for UPDATE command operations 247 

generating at your terminal 2~7 
UPDIRT option of RENAME command 196 
uppercase letters 

converting to lowercase, with COPYFILE 
command 40 

suppressing translation of lowercase 
letters with CMS editor 269 

UPSI 
byte 

querying setting of 190 
setting 208 

option 
of CMS QUERY command 190 
of CMS SET command 208 

UPTDxxxx fi1etype, default CMS editor 
settings 415 

user catalog 
ident ifyi ng 79 

in CMS/DOS 75 
user file directory 18 

contents of 19 
creating 18 
updating on disk 194 

user-defined synonyms, displaying 186 
user-written commands 

assigning synonyms for 224 
creating 119 

V 
variable data 

in EXEC procedure 
displaying 346 
punching 341 
stacking 344 

variable symbols 
assigning values to in EXEC procedures 

328 
reading from terminal or console stack, 
in EXEC procedure 342 

substituting, in EXEC procedure 328 
testing, in EXEC procedure 339 

variable-length files 
converting to fixed-length 44 

using RECFM subcommand 291 
reading and writing with CMS macros 370 

VARS operand of &READ control statement 
342 

verification setting, for CMS editor, 
changing 306 

VERIFY subcommand, description 306 
virtual disks (§~~ al§Q disks) 

counting cylinders on 114 
initializing 113 
resetting number of cylinders on 114 
valid addresses for 18 

virtual machines 
components of 
console 1 
definition 
environment, determining status of 182 

VM/SP, basic description 1 
VOLI D operan d 

of FILEDEF command 109 
of LABELDEF command 131 

VOLSEQ operand, of LABELDEF command 132 
VSAM 

ca ta10gs 
determining which catalog is searched 

76 
identifying 79 
identifying in CMS/DOS 75 

data set extents, displaying 73 
determining free space extents 135 
files 

defining with DLBL command 68 
specifying disk extents 77 
specifying disk extents in CMS/DOS 

72 
rna ster catalog 

identifying 79 
identifying in CMS/DOS 75 

option 
of DLBL command 69 
of SET DOS ON command 208 

re strictions 
for OS/VS users 419 
for VSE users 419 

VSBASIC 
files, renumbering 292 
fi1etype, default CMS editor settings 

415 
VSBDATA fi1etype, default CMS editor 
settings 415 

Index 449 



W 
wait, for terminal I/O to complete, WAITT 

macro 3Q8 
WAITD macro 

description 391 
ERROR operand 391 
used with HNDINT macro 312 

WAITRD CMS function 
description 355 
logical line editing with 356 
usinq 356 

WAITRD function, reading lines from program 
stack buffer 165 

WAITT macro, description 398 
WIDTH option, of XEDIT command 259 
WRPNT operand, of FSPOINT macro 365 
WRTAPE macro 

description 398 
ERROR operand 399 
MODE operand 399 

WRTERM macro 

WTM 

COLOR operand 400 
description 400 
EDIT operand 400 

option of TAPE command 230 
tape control function 230 

WVOL1 operand, of TAPE command 230 

x 
X 

DEBUG subcommand 325 
EDIT subcommand 

description 301 
example 301 

XCAL option, of LKED command 146 
XEDIT command 

CTL option 260 
description 258 
INCR option 260 
MERGE option 260 
NOCTL option 260 
NOPROFIL option 259 
NOSCREEN option 259 
NOSEQ8 option 260 
NOUPDATE option 259 
PROFILE option 259 
SEQA option 259 
SIDCODE option 260 
UPDATE option 259 
usinq 260 
WIDTH option 259 

XREF option 
of ASSEMBLE command 27 
of LKED command 141 
of OPTION command 111 

XTENT option of FILEDEF command 104 

Y 
Y subcommand 

description 307 
example 307 

Y-disk, accessed after IPLing CMS 19 
YFLAG option of ASSEMBLE command 28 

450 IBM VM/SP CMS Command and Macro Reference 

Z 
zone settings, for edit session 308 
ZONE subcommand, description 308 

1 
19E virtual disk 
Y-disk 19 

190 virtual disk 
S-disk 19 

191 virtual disk 
A-di sk 19 

192 virtual disk 
D-disk 19 

195 virtual disk 
batch facility 

3 

address, 

address, 

address, 

address, 

address, 
34 

accessed as 

accessed as 

accessed as 

accessed as 

formatted by CMS 

3350, restriction on use in CMS/DOS 33 
3800 printer, loading a virtual, via SETPRT 

command 210 

4 
48C option of OPTION command 172 

6 
60C option of OPTION command 112 

1 
1TRACK option 

of ASSGN command 32 
of FILEDEF command 105 
of TAPE command 231 

7-track tapes, specifying on TAPE command 
231 

9 
9TRACK option 

of ASSGN command 32 
of FILEDEF command 105 
of TAPE command 231 

9-track tapes, specifying on TAPE command 
231 



IBM Virtual Machine/System Product: 
CMS Command and Macro Reference 
SC19-6209-0 

This manual is part of a library that serves as a reference source for systems analysts, 
programmers, and operators of IBM systems. This form may be used to communicate 
your views about this publication. They will be sent to the author's department for 
whatever review and action, if any, is deemed appropriate. Comments may be written 
in your own language; use of English is not required. 

IBM may use or distribute any of the information you supply in any way it believes 
appropriate without incurring any obligation whatever. You may, of course, continue 
to use the information you supply. 

Note: Copies of I BM publications are not stocked at the location to which this form is 
addressed. Please direct any requests for copies of publications, or for assistance in using 
your IBM system, to your IBM representative or to the IBM branch office serving your 
locality. 

• Does the publication meet your needs? 

• Did you find the material: 

Easy to read and understand? 

Organized for convenient use? 

Complete? 

Well illustrated? 

Written for your technical level? 

• What is your occupation? 

• How do you use this publication: 

As an introduction to the subject? 

For advanced knowledge of the subject? 

To learn about operating procedures? 

Your comments: 

Yes No 

o 

o 
o 
o 
o 
o 

o 
o 
o 

o 

o 
o 
o 
o 
o 

As an instructor in class? 

As a student in class? 

As a reference manual? 

o 
o 
o 

If you would like a reply, please supply your name and address on the reverse side of this 
form. 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. 
(Elsewhere, an IBM office or representative will be happy to forward your comments.) 

READER'S 
COMMENT 
FORM 



SC19-6209-0 

Reader's Comment Form 

Fold and Tape 

Fold 

Please Do Not Staple 

I "I 
BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE: 

I nternational Business Machines Corporation 
Department G60 
P. O. Box 6 
Endicott, New York 13760 

If you would like a reply, please print: 

Fold and Tape 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

Fold 

Your Name __________________________________________________________ _ 

Company Name ___ - ____________ Department _____ _ 
Street Address _______________________ _ 
City ____________________ _ 

State _____________ Zip Code ______ _ 

IBM Branch Office serving you ___________________ _ ------- --.----
~ ---­- - - _ ... -------

-~-.-® 
International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, N. Y. 10604 

IBM World Trade Americas/Far East Corporation 
Town of Mount Pleasant, Route 9, North Tarrytown, N. Y., U. S. A. 10591 

IBM World Trade Europe/Middle East/Africa Corporation 
360 Hamilton Avenue, White Plains, N. Y., U. S. A. 10601 

n 
~ 
Q 
"TI 
0 
ii 
» CD 0 s: :::J 
IQ 

r < :; :::;. 
II .-+ 

C 
2?. 

I s: 
~ 
CO) 
::T :;. 
CI) 
......... en 
< (II 

lit 
3 
." ... 
0 
Q. 
c 
CO) 

!"t 

C") 

s: 
en 
C") 
0 
3 
3 
~ ::s 
Q. 

~ ::s 
Q. 

s: 
~ 
CO) ... 
0 

::xJ 
CI) .... 
CI) ... 
CI) 

::s 
CO) 
CI) 

." ... :; . 

.-+ 
CI) 
Q. 

:;. 

c: 
(I) 

~ 

en 
C") 
....lI 
(0 
a, 
N 
0 
<p 
0 



IBM Virtual Machine/System Product: 
CMS Command and Macro Reference 
SC19-6209-0 

This manual is part of a library that serves as a reference source for systems analysts, 
programmers, and operators of IBM systems. This form may be used to communicate 
your views about this publication. They will be sent to the author's department for 
whatever review and action, if any, is deemed appropriate. Comments may be written 
in your own language; use of English is not required. 

IBM may use or distribute any of the information you supply in any way it believes 
appropriate without incurring any obligation whatever. You may, of course, continue 
to use the information you supply. 

Note: Copies of IBM publications are not stocked at the location to which this form is 
addressed. Please direct any requests for copies of publications, or for assistance in using 
your IBM system, to your IBM representative or to the IBM branch office serving your 
locality. 

• Does the publication meet your needs? 

• Did you find the material: 

Easy to read and understand? 

Organized for convenient use? 

Complete? 

Well illustrated? 

Written for your technical level? 

• What is your occupation? 

• How do you use this publication: 

As an introduction to the subject? 

For advanced knowledge of the subject? 

To learn about operating procedures? 

Your comments: 

Yes 

D 

D 
D 
D 
D 
D 

D 
D 
D 

No 

D 

D 
D 
D 
D 
D 

As an instructor in class? 

As a student in class? 

As a reference manual? 

D 
o 
o 

If you would like a reply, please supply your name and address on the reverse side of this 
form. 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. 
(Elsewhere, an IBM office or representative will be happy to forward your comments.) 

READER'S 
COMMENT 
FORM 



SC19-6209-0 

Reader's Comment Form 

Fold and Tape Please Do Not Staple 

IIII 
BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE: 

I nternational Business Mach ines Corporation 
Department G60 
P. O. Box 6 
Endicott, New York 13760 

Fold and Tape 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

................................... , ............................................................................................................................................................. . 
Fold Fold 

If you would like a reply, please print: 

Your Name ____________________________________________ _ 

Company Name _______________ _ Department _____ _ 
Street Address ________________________ _ 
City ____________________________________________ ___ 

State _____________________ Zip Code ______ _ 

IBM Branch Office serving you __________________________ _ --...-. ------ ---- ----.. _ .... -- - ---------___ w_ 
® 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, N. Y. 10604 

IBM World Trade Americas/Far East Corporation 
Town of Mount Pleasant, Route 9, North Tarrytown, N. Y., U. S. A. 10591 

IBM World Trade Europe/Middle East/Africa Corporation 
360 Hamilton Avenue, White Plains, N. Y., U. S. A. 10601 

(') 

So 
~ 
'TI 
0 a: 
» Cl 0 s: :::s 
10 

r < :;- ::;. 
It 1+ 

C 
2!.. 

I s: 
I» 
C') 

::r 
:i' 
CD 

en 
I -< en 

S-
3 
"'0 ... 
0 a. c 
C') 

!"!' 

n s: 
(I) 

n 
0 
3 
3 
I» ::s 
a. 
I» 
::s a. 
s: 
I» 
C') ... 
0 

:0 
CD 

d:' ... 
CD 
::s 
C') 
CD 

"'0 ... 
:i' 
S-a. 
:i' 
c 
en 
}> 

(I) 
n 
....Jo 

~ 
N 
0 
cp 
0 




