
Program Product

SC28-1304-1
File No. S370-39

TSO Extensions
ClISTS: Implementation
and Reference

--..- -==== - --------- ----- -- ----------_. -

Second Edition (December, 1985)

This is a major revision of, and obsoletes, SC28-1304-0. See the Summary of
Amendments following the Contents for a summary of the changes made to this manual.
Technical changes or additions to the text and illustrations are indicated by a vertical line
to the left of the change.

This edition applies to TSO Extensions (TSOjE) Release 2, Program Number 5665-285,
and all subsequent releases until otherwise indicated in new editions or Technical
Newsletters. Changes are made periodically to the information herein: before using this
pUblication in connection with the operation of IBM systems, consult the latest IBM
System/370 Bibliography, GC20-0001, for the editions that are applicable and current.

References in this pUblication to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM program product in this pUblication is not intended to state or imply
that only IBM's program product may be used. Any functionally equivalent program
may be used instead.

Publications are not stocked at the address given below. Requests for IBM publications
should be made to your IBM representative or to the IBM branch office serving your
locality.

A form for readers' comments is provided at the back of this publication. If the form
has been removed, comments may be addressed to IBM Corporation, Information
Development, Department D58, Building 921, PO Box 390, Poughkeepsie, New York
12602. IBM may use or distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1984, 1985

Preface

Audience

Organization

This publication is intended for programmers who design and code CLISTS for
installation-dependent applications. Although the applications will vary from
installation to installation, some possible ones are:

• Extensions to TSO
• Production programs
• Interfaces between an end user and TSO
• Interfaces between an end user and existing applications

To exploit the full capabilities of the CLIST language, a programmer should have
a prerequisite knowledge of TSO and ISPF.

"Chapter 1: Introduction" describes the types of functions CLISTs perform.

"Chapter 2: Developing and Executing CLISTs" describes how to set up and
invoke CLISTs.

"Chapter 3: Programming Tools" describes how to use CLIST statements,
functions, and variables and how they interrelate.

"Chapter 4: Implementation" provides examples of CLISTs that perform a broad
range of application tasks. Each example is preceded by· a description of the
concepts the example illustrates. Generally, the more complex examples more
fully develop the concepts introduced in the simple examples.

"Chapter 5: Reference" contains complete syntax descriptions of all of the CLIST
statements and two TSO commands - EXEC and END. This chapter also
includes a figure describing error codes.

Preface 111

Related Publications

The following publications are referenced in, or related to, this pUblication:

• IBM System/370 Reference Summary, GX20-1850

• TSO Extensions Command Language Reference, SC28-1307

• TSO Extensions User's Guide, SC28-1333

• TSO Guide to Writing a Terminal Monitor Program or Command Processor,
SC28-1136.

• Interactive System Productivity Facility Dialog Management Services,
SC34-2137

• Interactive System Productivity Facility/Program Development Facility for
MVS: Program Reference, SC34-2139

• MVS/370 JCL User's Guide, GC28-1349; MVS/370 JCL Reference,
GC28-1350.

• MVS/Extended Architecture JCL User's Guide, GC28-1351; MVS/Extended
Architecture JCL Reference, GC28-1352.

• MVS/370 Data Management Services, GC28-4058

• MVS/Extended Architecture Data Administration Guide, GC26-4013

Referenced Products

All occurrences of ISPF refer to Interactive System Productivity Facility, Program
Number 5665-319.

All occurrences of ISPF /PDF refer to Interactive System Productivity
Facility/Program Development Facility, Program Number 5665-317.

All occurrences of RACF refer to Resource Access Control Facility, Program
Number 5740-XXH.

IV CLISTs: Implementation and Reference

Contents

Chapter 1. Introduction 1-1
CLISTs That Perform Routine Tasks 1-1
CLISTs That are Self-contained Applications 1-2
CLISTs That Manage Applications Written in Other Languages 1-2

Chapter 2. Creating, Editing, and Executing CLISTs 2-1
Data Sets and CLIST Libraries 2-1
Creating and Editing CLIST Data Sets 2-1
CLIST Data Set Attributes 2-2
Considerations for Copying CLIST Data Sets 2-2
Executing CLISTs 2-3

Methods of Allocating Data Sets to SYSPROC 2-4
Concatenating Data Sets 2-4

Chapter 3. Programming Tools 3-1
Overview of CLIST Statements 3-1
Syntax Rules 3-1

Delimiters 3-1
Capitalization 3-2
Formatting 3-2
Comments 3-2

TSO Commands and JCL Statements 3-3
TSO Commands 3-3
JCL Statements 3-3

Operators and Expressions 3-4
Order of Evaluations 3-5
Valid Numeric Ranges 3-5

Symbolic Variables 3-6
Valid Values of Variables 3-6
Defining Variables and Assigning Values 3-6
Nesting Symbolic Variables 3-8
Concatenating Symbolic Variables 3-9
Double Ampersands and Symbolic Variables 3-9
Character Set Supported in Symbolic Variables 3-10

Control Variables 3-11
Control Variables Related to the Current Date and Time 3-13
Control Variables that Describe Terminal Characteristics 3-14
Control Variables Related to the User 3-14
Control Variables Related to the System 3-15
Control Variables Related to the CLIST 3-16
Control Variables Related to Input 3-18

Contents V

Control Variables Related to TSO Command Output 3-19
Control Variables Related to Return and Reason Codes 3-20

Variables Related to the Use of the TSOEXEC Command 3-21
Built-in Functions 3-21

Determining the Data Type of an Expression - &DATATYPE 3-22
Forcing Arithmetic Evaluations - &EVAL 3-23
Determining an Expression's Length - &LENGTH 3-23
Preserving the Integrity of a Character String - &NRSTR 3-24
Defining Character Data - &STR 3-26
Defining a Substring - &SUBSTR 3-27
Translating Character Strings to Uppercase Characters - &SYSCAPS 3-28
Determining Whether a Data Set Exists - &SYSDSN 3-28
Translating Character Strings to Lowercase Characters - &SYSLC 3-29

Prompting for Input 3-29
PROC Statement 3-29
WRITE and WRITENR Statements 3-30
TSO Commands 3-30
The DATA PROMPT-ENDDATA Sequence 3-31

Parameter Definitions - - the PROC Statement 3-32
Communicating with the Terminal User 3-34

Writing Messages to the Terminal User - WRITE and WRITENR 3-35
Reading Input from the Terminal - READ and READDV AL 3-36
Controlling Uppercase and Lowercase for READ Statement Input 3-38
Passing Control to the Terminal - TERMIN 3-40

Controlling the Display of Informational Messages 3-42
Structuring CLISTs 3-43

DO-Groups 3-43
Creating Loops - The DO-WHILE-END Sequence 3-43
Making Decisions - The IF-THEN-ELSE Sequence 3-44
Distinguishing END Statements from END Commands or

Subcommands 3-46
GOTO Statements 3-47

Nested CLISTs 3-48
Global Variables 3-49
Exiting from a Nested CLIST 3-50

Performing I/O 3-51
Opening a File 3-51
Closing a File 3-52
Reading a Record from a File 3-52
Writing a Record to a File 3-52
Updating a File 3-53
Special Considerations for Performing I/O on Records Containing JCL

Statements 3-54
End-of-File Processing 3-54

ATTN and ERROR ROUTINES 3-55
Attention Routines 3-56
Error Routines 3-59

Chapter 4. Implementation 4-1
Including TSO Commands - The LISTER CLIST 4-2
Simplifying Routine Tasks - The DELETE CLIST 4-3
Creating Arithmetic Expressions from User-Supplied Input - The CALC

CLIST 4-4
Using Front-End Prompting - The CALCFTND CLIST 4-5

Vl CLISTs: Implementation and Reference

Initializing and Invoking System Services - The SCRIPTDS CLIST 4-7

/
Invoking CLISTs to Perform Subtasks - The SCRIPTN CLIST 4-9
Including JCL Statements - The SUBMITDS CLIST 4-12
Performing Substringing on Input Strings - The SUBMITFQ CLIST 4-14
Allowing Foreground and Background Execution of Programs - The RUNPRICE

CLIST 4-16
Including Options - The TESTDYN CLIST 4-18
Simplifying System-Related Tasks - The COMPRESS CLIST 4-20
Simplifying Interfaces to Applications - The CASH CLIST 4-22
Using &SYSDV AL When Perfonning I/O - The PHONE CLIST 4-24
Allocating Data Sets to SYSPROC - The SPROC CLIST 4-26
Writing Full-Screen Applications Using ISPF Dialogs - The PROFILE

CLIST 4-29

Chapter 5. Reference 5-1
Coding the Statements and Commands 5-1

ATTN Statement 5-4
CLOSFILE Statement 5-5
CONTROL Statement 5-6
DATA-END DATA Sequence 5-8
DATA PROMPT-END DATA Sequence 5-9
DO-WHILE-END Sequence 5-10
END Command 5-11
ERROR Statement 5-12
EXEC Command 5-13
EXIT Statement 5-17
GETFILE Statement 5-18
GLOBAL Statement 5-19
GOTO Statement 5-20
IF-THEN-ELSE Sequence 5-21
OPENFILE Statement 5-22
PROC Statement 5-23
PUTFILE Statement 5-24
READ Statement 5-25
READDV AL Statement 5-26
RETURN Statement 5-27
SET Statement 5-28
TERMIN Statement 5-29
WRITE and WRITENR Statements 5-30

Error Codes 5-31

Index X-I

Contents VB

VIn CLISTs: Implementation and Reference

Figures

3-1. CLIST Statement Categories 3-1
3-2. Arithmetic, Comparative, and Logical Operators 3-4
3-3. Control Variable Categories 3-11
3-4. Modifiable Control Variables 3-12
3-5. Non-modifiable Control Variables 3-12
3-6. Nested CLISTS 3-48
3-7. A CLIST Containing an Attention Routine - The ALLOCATE

CLIST 3-58
3-8. An Attention Handling CLIST - The HOUSKPNG CLIST 3-59
3-9. The COPYDATA CLIST 3-61
4-1. CLIST Examples and Their Functions 4-1
4-2. The LISTER CLIST 4-2
4-3. The DELETE CLIST 4-3
4-4. The CALC CLIST 4-4
4-5. The CALCFTND CLIST 4-6
4-6. The SCRIPDS CLIST 4-8
4-7. The SCRIPTN CLIST 4-9
4-8. The SCRIPTD CLIST 4-10
4-9. The OUTPUT CLIST 4-11

4-10. The SUBMITDS CLIST 4-13
4-11. The SUBMITFQ CLIST 4-15
4-12. The RUNPRICE CLIST 4-17
4-13. The TESTDYN CLIST 4-19
4-14. The COMPRESS CLIST 4-21
4-15. The CASH CLIST 4-23
4-16. The PHONE CLIST 4-25
4-17. The SPROC CLIST 4-27
4-18. Purpose of, and Figures Containing, PROFILE CLIST and Supporting

Panels 4-30
4-19. The PROFILE CLIST 4-30
4-20.
4-21.
4-22.
4-23.

5-1.

The Terminal Characteristics Panel Definition (XYZABCI0)
The LOG/LIST Characteristics Panel Definition (XYZABC20)
The PF Keys 1-12 Panel Definition (XYZABC30) 4-35
The PF Keys 13-24 Panel Definition (XYZABC40) 4-37
CLIST Statement Error Codes 5-31

4-32
4-33

Figures IX

X CLISTs: Implementation and Reference

Summary of Amendments

Summary of Amendments
for SC28-1304-1
for TSO Extensions Release 2

Changes have been made throughout this publication to support TSO Extensions
(TSO/E) service updates.

Summary of Amendments Xl

XU CLISTs: Implementation and Reference

Chapter 1. Introduction

The CLIST language provides functions that enable you and others to do work
more efficiently. You can organize related activities so that users can simply
invoke a CLIST to perform a given task or group of tasks. CLISTs can handle
any number of activities, from issuing multiple TSO commands to coordinating
testing sessions.

The CLIST language is an interpretive language. Like other high-level
interpretive languages, CLISTs are easy to write and test. You do not have to
compile and link edit them. To test a CLIST, you execute it, correct any errors if
it fails, and re-execute it.

The CLIST language includes an extensive set of arithmetic and logical operators,
as well as string-handling functions.

CLIST statements let you structure your programs, perform I/O, define and
modify symbolic variables, and hfllldle errors and attention interrupts. In
addition, you can use CLIST statements in conjunction with TSO commands and
JCL statements to write applications.

Based on input supplied by the invoker, your CLISTs can invoke programs in
either the foreground or the background.

A CLIST can perform a wide range of application tasks. Three general categories
of CLISTs are:

• CLISTs that perform routine tasks
• CLISTs that are self-contained applications
• CLISTs that manage applications written in other languages

CLISTs That Perform Routine Tasks

A user may perform certain tasks on a regular basis. Checking on the status of
data sets, allocating data sets for particular programs, and printing files are
examples of such tasks.

You can write CLISTs that significantly reduce the amount of time that a user
has to spend on these routine tasks. By grouping together in a CLIST the
instructions required to complete a task, you reduce the time, number of
keystrokes, and errors involved in performing the task; thereby, increasing
end-user productivity. Such a CLIST may consist entirely of TSO commands or
of a combination of TSO commands and CLIST statements.

Chapter 1. Introduction 1-1

If the tasks require specific input, you may define variables on a PROC statement,
use WRITE and READ statements, or allow TSO commands to prompt for the
input.

CLISTs That are Self-contained Applications

The CLIST language includes the basic tools required to write applications. Any
CLIST can invoke another CLIST, which is referred to as a nested CLIST.
Therefore, you can structure complex applications using CLISTs. The GLOBAL
statement lets you define common data among CLISTs and the PROC statement
allows you to pass parameters to a CLIST.

CLISTs can issue ISPF commands, such as ISPEXEC, to display full-screen
panels. Conversely, ISPF panels can invoke CLISTs, based on input provided by
the user. When the user changes a value on a panel, the change to the variable on
the associated panel definition also applies to the value of the variable in the
CLIST that displayed the panel.

CLISTs That Manage Applications Written in Other Languages

You may have access to applications that are written in other programming
languages and perform useful services. However, the interfaces required to invoke
these applications may not be easily mastered by a casual user. Rather than write
new applications, you can write CLISTs that act as intermediaries between a user
and such applications.

A CLIST can send messages to, and receive messages from, the terminal to
determine what the invoker wants to do. Then, based on this information, the
CLIST can set up the environment and create the commands required to invoke
the application that performs the requested tasks.

1-2 CLISTs: Implementation and Reference

Chapter 2. Creating, Editing, and Executing CLISTs

This chapter describes how to create, edit, and execute CLISTs. The descriptions
include:

• the steps you take to create and edit CLIST data sets
• the attributes of CLIST data sets
• the different methods you can use to execute a CLIST
• how to allocate and concatenate CLIST data sets

Data Sets and CLIST Libraries

CLISTs are programs that reside in either sequential or partitioned data sets
(PDSs). A sequential CLIST data set consists of only one CLIST, while a PDS
may contain one or more CLISTs. In a PDS, each CLIST is a member and has a
unique member name. When a PDS consists entirely of CLISTs, it is called a
CLIST library. (A CLIST library may also consist of a concatenation of
individual CLIST libraries.)

CLISTs are stored and cataloged like other TSO data sets. Your installation may
allocate a PDS to be used as a production CLIST library. You may create your
own CLIST library by making your CLISTs members of a PDS. If you store
CLISTs in a PDS, you can allocate that data set to the file SYSPROC and
execute the CLISTs implicitly as described under 'Executing CLISTs'.

Creating and Editing CLIST Data Sets

Prior to coding a CLIST, you should create a CLIST data set. As you code the
CLIST, you can edit it interactively. Once the CLIST is completed, you can
execute it for testing purposes, make any necessary changes or corrections to it
directly on the screen, and re-execute it.

There are two ways to create and edit CLIST data sets:

1. Using options 2 (EDIT) and 3 (UTILITIES) of ISPF/PDF.

• Allocate a CLIST data set using the allocate panel in ISPF (usually
option 3.2 on the primary menu).

• Create your CLIST in the full-screen environment using the ISPF/PDF
editor (usually option 2).

Chapter 2. Creating, Editing, and Executing CLISTs 2-1

• Modify the CLIST by making corrections directly to the data on the
screen.

For a complete description of creating and editing data sets under ISPF /PDF,
refer to Interactive System Productivity Facility/Program Development Facility
for MVS: Program Reference.

2. Using the TSO EDIT command and its subcommands. (This method
includes option 6 of ISPF /PDF.)

• Include the CLIST keyword on the EDIT command to inform TSO that
you are creating a CLIST data set.

• Enter and save your CLIST statements, TSO commands, and TSO
subcommands.

• Use subcommands of EDIT to modify the CLIST.

For a complete description of creating and editing data sets under TSO, refer
to TSO Extensions Command Language Reference.

CLIST Data Set Attributes

If no explicit assignment is made, the system assigns the following default
attributes:

Record format
Logical record length
Blocksize

Variable-blocked
255
3120

When creating a CLIST data set, you have the option of overriding the default
attributes. However, you should allocate your CLIST data set using the same
attributes as your installation's production CLIST library.

Note: CLIST record formats must be fixed- or variable-blocked only.

Considerations for Copying CLIST Data Sets

When copying an existing CLIST data set into another data set under ISPF /PDF,
be aware of the record formats of the data sets. Variable-blocked data sets may
contain line numbers in columns 1-8 that do not normally appear when you are
editing the data sets. If you copy a variable-blocked data set into a fixed-blocked
data set, the line numbers are copied as part of the data. This data must then be
removed manually.

When copying fixed-blocked data sets into variable-blocked data sets, the system
copies the sequence numbers from columns 72-80 into the variable-blocked data
set. This data must also be removed manually. See the ISPF Program Reference,
SC34-2139, for information on how to delete all the line numbers from a variable
block data set.

2-2 CLISTs: Implementation and Reference

Executing CLISTs

To execute a CLIST, use the EXEC command. When in TSO EDIT mode, use
the EXEC subcommand. CLISTs executed under EDIT can execute only EDIT
subcommands and CLIST statements. However, in a CLIST you can terminate
EDIT mode using the END subcommand to allow the CLISTS to execute TSO
commands.

You can execute a CLIST in either the foreground (from your terminal) or in the
background (submit it as a batch job).

The EXEC command (or subcommand) has two forms:

• Explicit form -- Enter "exec" or "ex" followed by the one of the following:

1. the name of the data set and the member name, with the member name
enclosed in parentheses (the CLIST is a member of a PDS whose library
name is CLISTLIB and type is CLIST)

For example, if a CLIST, LISTPGM, is a member of a PDS named
PREFIX.CLISTLIB.CLIST, enter:

clistlib(listpgrn)

2. the name of the CLIST enclosed in parentheses (the CLIST is a member
of a PDS whose type is CLIST

For example, if a CLIST, LISTPGM, is a member of a PDS named
PREFIX.CLIST, enter:

(listpgm)

3. the name of the CLIST (the CLIST is in a sequential data set whose type
is CLIST)

For example, if the CLIST is in a sequential data set named
PREFIX.LISTPGM.CLIST, enter:

listpgm

4. the fully qualified name of a data set enclosed in single quotes

For example, if the CLIST is in a data set named PREFIX.LISTPGM,
enter:

'prefix.listpgm'

• Implicit form -- Enter only the name of the CLIST, optionally preceded by a
percent sign (%). The implicit form works only when executing CLISTs

Chapter 2. Creating, Editing, and Executing CLISTs 2-3

that are members of a PDS allocated to the file SYSPROC. The two implicit
forms are as follows:

1. Enter only the member name, for example:

listpgm

When you use this form, TSO searches several libraries before it searches
the SYSPROC file to ensure that the name you entered is not a TSO
command.

2. Enter the member name prefixed with a percent sign (%), for example:

%listpgm

When you use this form, called the extended implicit form, TSO searches
only the SYSPROC file for the name, thus reducing the amount of search
time.

For a complete syntactical definition of the EXEC command, refer to Chapter 5.

Methods of Allocating Data Sets to SYSPROC

There are three methods of allocating partitioned CLIST data sets to SYSPROC:

1. Allocate them by a CLIST that you execute when you log on.
2. Allocate the data sets at the terminal using the ALLOCATE command.
3. Have your logon procedure modified to allocate them.

If you use method 1 or 2, include the REUSE operand on the ALLOCATE
command. The REUSE operand enables you to use an already allocated filename
without having to free it.

Concatenating Data Sets

To create a CLIST library that spans several data sets, use the ALLOCATE
command to concatenate the data sets and allocate them to the file name specified
on the FILE or DDNAME keyword. The concatenated data sets are treated as
one data set for the duration of your TSO session.

If you want to implicitly execute the CLISTs in the concatenation, allocate the
data sets to the file SYSPROC. When you allocate data sets to SYSPROC,
include in the concatenation all data sets that were previously allocated to
SYSPROC if you want to implicitly invoke any CLISTs in those data sets. To
find out which data sets are allocated to SYSPROC, issue the LIST ALC
command with the STATUS keyword.

To concatenate data sets using the ALLOCATE command, enter their names in
the order in which you want TSO to concatenate them. The concatenation order
establishes the order in which TSO searches the data sets to find specified
CLISTs.

2-4 CLISTs: Implementation and Reference

The block sizes of data sets may affect their concatenation order. If block sizes
vary, TSO requires that you specify the data set with the largest block size first.
If, for example, you want to concatenate your priv"ate library to the installation's
library so that your library is the first in the concatenation order, make sure that
your library's block size is at least as large as that of the installation's library. To
determine the block size of any library, display its data set attributes with the
LISTDS command.

Do not mix variable-blocked with fixed-block data sets in a concatenation.

For example, assume your userid is STEVE and you want to concatenate the
CLIST libraries whose fully-qualified data set names are as follows:

MARK.CLISTLIB.CLIST
STEVE. CMPRCLIB. CLIST
MASTER.PROFLIB.CLIST
ISR.VIRIMO.ISRCLIB

After you determine that the blocksizes are in descending order, the largest first,
the following ALLOCATE command concatenates the data sets in the order listed
and allocates them to the file SYSPROC so that CLISTs from any of them may
be invoked implicitly:

allocate file(sysproc) da('mark.clistlib.clist'­
'steve.cmprclib.clist' 'master.proflib.clist' -
'isr.vlrlmO.isrclib') shr reu

The hyphen at the end of the first line indicates that the command continues on
the next line. The REV keyword enables you to allocate SYSPROC without
having to free and reallocate it. The disposition of SHR allows more than one
person to use the allocated data sets concurrently.

Chapter 2. Creating, Editing, and Executing CLISTs 2-5

2-6 CLISTs: Implementation and Reference

Chapter 3. Programming Tools

This chapter describes the programming tools provided by the CLIST language
and how to use them in conjunction with TSO commands and JCL statements.

Overview of CLIST Statements

Syntax Rules

Delimiters

CLIST statements set controls, assign values to variables, monitor the conditions
under which CLISTs execute, and perform I/O. CLIST statements execute
correctly in both the command and subcommand environment. They fall into the
categories shown in Figure 3-1.

Control Assignment Conditional 110

ATIN READ DO-WHILE-END CLOSFILE
CONTROL READDVAL IF-THEN-ELSE GETFILE
DATA-END DATA SET OPENFILE
DATA-PROMPT PUTFILE
ERROR
EXIT
GLOBAL
GOTO
PROC
RETURN
TERMIN
WRITE
WRITENR

Figure 3-1. CLIST Statement Categories

Subsequent topics in this chapter describe all the statements in detail.

This section provides the syntax rules for CLIST statements relative to those for
TSO commands.

Most CLIST statements have operands. Operands are variables or data that
provide information to be used in processing the statement. As is the case with
TSO commands, include one or more blanks between a CLIST statement and its
first operand. Also, separate operands from each other by one or more blanks, a
comma, or tabs.

Chapter 3. Programming Tools 3-1

I Continuation Symbols

Capitalization

Formatting

Comments

Line continuation symbols are equivalent. A hyphen (-) indicates that leading
blanks in the next line are not ignored. A plus sign (+) indicates that leading
blanks in the next line are ignored. For example, the following command
executes successfully:

alloc da(jcl.cntl) shr­
reuse file(input)

However, if you substitute a plus sign for the hyphen in this example, the
command fails because, when the lines are joined logically, there is no blank
between the end of the shr keyword and the beginning of the reuse keyword. You
would have to insert a blank before the plus sign for correct execution.

Note: If you use a continuation character in a line containing comments, the
continuation character must appear after the comments, as in the following
example:

IF &RC ,= 0 THEN /* error occurred */ +
DO •••

All CLIST statement names must be capitalized. If lowercase letters are used
when uppercase are required, the CLIST abnormally terminates. Capitalization of
CLIST variable names and built-in function names is optional. Capitalization of
TSO commands and subcommands in a CLIST is also optional.

The CLIST language does not provide any formatting aids. For example, the
interpreter does not align DO statements with their corresponding END
statements; you must align them yourself if formatting is desired. You may use
blank lines as a formatting aid. Note that a blank line after a continuation
character ends continuation, unless the blank line is also continued.

You may include a comment:

• On a line by itself

• Before, in the middle of, or after a CLIST statement or TSO command that is
not continued on the following line

You define a comment by placing the descriptive text between facing
slash-asterisk combinations (comment delimiters) as follows:

/* This statement opens the data set containing the input records */

3-2 CLISTs: Implementation and Reference

As shown in the following example, when a comment appears at the end of a
logical line, the closing comment delimiter is unnecessary.

alloc da(accounts.data) shr /* Input data set

Note that comments may be in both upper-case and lowercase letters. No
symbolic substitution is performed ill comments.

TSO Commands and JCL Statements

TSO Commands

JCL Statements

You can include TSO commands and subcommands, and JCL statements in a
CLIST to provide functions that add capabilities and flexibility to that CLIST.

You may include TSO commands and subcommands (and user-written commands
and subcommands) in a CLIST at any point where the specific functions (for
example, allocate, free, etc.) are required. For certain applications, a CLIST may
consist entirely of commands and subcommands. You can also substitute CLIST
variables as operands in commands and subcommands, or as commands
themselves, to add flexibility to a CLIST.

From a CLIST, you may want to submit a jobstream for execution. In the
CLIST, you can include the required JCL statements (EXEC, DD, etc.).
However, when you include the following JCL statements in a CLIST, you must
use a particular CLIST function to prevent the CLIST from modifying the
statements and causing subsequent JCL errors.

1. Statements following the SYSIN statement - use the &STR built-in function.

2. A statement containing a single ampersand (&) or a double ampersand (&&) -
use the &NRSTR built-in function or the &SYSSCAN control variable.

3. JCL comments - use the &STR built-in function.

Examples of using the built-in functions and the control variable are provided
later in this chapter.

Chapter 3. Programming Tools 3-3

Operators and Expressions

Operators cause a CLIST to perform evaluations on data; the data may be
numeric or character, or may be a variable or a built-in ftinction. Operations fall
into three categories: arithmetic, comparative,' and logical, as shown in
Figure 3-2.

• Arithmetic operators perform integer arithmetic on numeric operands. The
operators connect integers, variables, or built-in functions to form
expressions, such as 4-2.

• Comparative operators perform comparisons between two expressions, to
form comparative expressions, such as 4-2 = 3. The' =' is a comparative
operator.

The comparison produces a true or false condition. Comparative expressions
are often used to determine conditional branching within a CLIST.

• Logical operators perform a logical comparison between the results of two
comparative expressions, to form logical expressions, such as &A =4 AND
&B = &C. The 'AND' is a logical operator.

Logical expressions produce true or false conditions. Logical expressions are
often used to determine conditional branching within a CLIST.

In Figure 3-2, if more than one accepted value exists for an operator, the values
are separated by commas.

For the function: Enter:

Arithmetic Addition +
Subtraction -
Multiplication •
Division /
Exponentiation •• (See Note 1.)
Remainder /I

Comparative Equal =,EQ
Not equal -, =,NE
Less than <,LT
Greater than >,GT
Less than or equal < =,LE
Greater than or equal > =,GE
Not greater than -, >,NG
Not less than -, <,NL

Logical And AND;&&
Or OR,I

Note 1: Negative exponents are handled as exponents of zero, thus the result is always set to I.

Figure 3-2. Arithmetic, Comparative, and Logical Operators

3-4 CLISTs: Implementation and Reference

,/

Order of Evaluations

Valid Numeric Ranges

A CLIST evaluates operations in the following default order. (Wherever more
than one operation is listed for an item in the following list, the CLIST performs
the operations sequentially, left to right in the order in which they appear on the
CLIST statement.)

1. Exponentiation
2. Division, remainder, multiplication
3. Addition, subtraction
4. Comparative operators
5. Logical AND
6. Logical OR

You ~ay override the default order by placing parentheses around the operations
you want executed first. For example, without any parentheses, the following
example performs multiplication, division, then addition. The statement sets X to
the value 24.

SET X = 4+5*8/2

By placing parentheses around 4 + 5, you indicate to the CLIST that it should
perform addition first and then proceed with the default order (multiplication,
then division). The following statement sets X to the value 36.

SET X = (4+5)*8/2

You may place parentheses around expressions that are themselves enclosed in
parentheses. This process is called nesting parenthesized expressions. The CLIST
evaluates the deepest level of nesting first and proceeds outward until all nesting
has been evaluated. In the following example, X is set to the value 7.

SET X=«1+4)*2+4)/2

The parentheses around 1 + 4 indicate that the CLIST should add these numbers
before performing multiplication. The parentheses around the compound
expression to the left of the division operator indicate that the CLIST should
evaluate the compound expression before performing division.

In the preceding example, if you omit the outer-level parentheses, the CLIST
performs division as the third operation (4/2) and sets X to the value 12:

SET X=(l+4)*2+4/2

The values of numeric variables in expressions can range from -2,147,483,648
(_231) to + 2,147,483,647 (+ 231 _1).

A CLIST terminates and issues an error message in the following situations:

• You explicitly code a value outside the valid range.

• The evaluation of an expression produces an intermediate or final value
outside the valid range.

Chapter 3. Programming Tools 3-5

Symbolic Variables

A symbolic variable is any alphameric character string, usually preceded by an
ampersand, for which you can substitute different values at different times. The
variable name may be a maximum of 252 alphameric characters (not including the
ampersand); variables used as keywords have a maximum length of 31 characters.
The first character must be an alphabetic or national character, or the underscore.
(However, any parameter specified on a PROC statement must only begin with an
alphabetic character.) Valid alphameric characters include letters, digits, national
characters (#,$,@), and the character underscore U.

Note: The system recognizes the following hexadecimal representations of the
u.s. national characters: @ as X'7C'; $ as X'5B'; and # as X'7B'. In countries
other than the U.S., the U.S. national characters represented on terminal
keyboards might generate a different hexadecimal representation and cause an
error. For example, in some countries the $ character may generate a X'4A'.

You can include variables on a subset of the CLIST statements, on TSO
commands and subcommands, and on JCL statements. When a CLIST is
executed, it scans each line and replaces the symbolic variables with their actual
values. This process is called symbolic substitution.

Valid Values of Variables

The maximum length of a value that you can assign to a variable is 32,768
characters.

Defining Variables and Assigning Values

You can use a number of CLIST statements to define and assign values to
variables. A short description of each statement follows:

• Use the PROC statement to define variables and assign values to them.

• Use the GLOBAL statement to define variables whose values are accessed by
more than one CLIST.

• Use the SET, READ, and READDVAL statements to define variables, assign
values to them, and modify them.

• Use the OPENFILE statement to define a variable used to send records to,
and retrieve records from, a data set.

The previous statements explicitly define variables. You may also implicitly
define a variable by referencing it in a CLIST statement before you explicitly
define it. The CLIST assigns a null value to such a variable.

3-6 CLISTs: Implementation and Reference

The PROC Statement

The GLOBAL Statement

The SET Statement

The PROC statement enables both the CLIST and its invoker to assign values to
variables by CLIST invocation, prompting, and default parameter values. The
PROC statement may contain positional parameters, keyword parameters, and
keyword parameters with associated values. When used, the PROC statement
must precede all other executable statements and commands. However,
comments or blank lines may precede the PROC statement.

The GLOBAL statement enables a CLIST to reference the value of a variable if
the variable was defined on a GLOBAL statement in both:

1. the CLIST itself

2. the highest-level CLIST of those that directly or indirectly invoked this
CLIST

For more information on using the GLOBAL statement, refer to "Nested
CLISTs" later in this chapter.

You use the SET statement to assign a specific value to a symbolic variable. For
example, to assign the character string JOHN to the variable &NAME, code:

SET &NAME=JOHN

The variable &NAME contains the value JOHN.

You can also use the SET statement to assign an initial value to a variable, then
increment or decrement the value as necessary. For example, to control a loop
you can initialize a counter

SET COUNTER = 1

For each execution of the loop, you can increment the counter

SET &COUNTER = &COUNTER + 1

Note that an ampersand is required when the variable appears in the expression
on the right side of the equal sign, but is optional when the variable appears on
the left-hand side of the equal sign.

You can also use control variables and built-in functions on SET statements.
Refer to "Control Variables" and "Built-in Functions" for additional information.

Chapter 3. Programming Tools 3-7

The READ Statement

The READ statement creates or modifies variables. You can assign terminal
input directly to variables and do so to multiple variables using one statement.

The CLIST successively assigns each input string supplied after a READ
statement to the variables included on the READ statement.

If you code a READ statement with no operands, the input is stored in the
&SYSDV AL control variable. You then can use a READDV AL statement to
assign the contents of &SYSDVAL to a variable or set of variables.

The READDV AL Statement

1/0 Statements

Like the READ statement, the READDV AL statement enables you to define and
assign values to multiple variables using one statement.

The CLIST successively assigns each input string contained in the control
variable &SYSDV AL to the variables included on the READDV AL statement.
(For a description of &SYSDVAL, refer to "Control Variables" later in this
chapter.)

You use the OPENFILE, GETFILE, PUTFILE, and CLOSFILE statements to
perform I/O to a physical sequential data set or to a member of a PDS.

Performing I/O to data sets involves steps that involve variables. For input,
define a variable that receives the retrieved record. For output, assign to a
variable the value (record) to be sent to the data set. In either case, the variable
created must have the same name as the file name of the data set on which I/O is
being performed. For examples, refer to "Performing I/O."

The CLIST scans I/O variables only once to obtain the variable's value.

Nesting Symbolic Variables

The value substituted for a symbolic variable can be another (nested) symbolic
variable. If a CLIST encounters nested symbolic variables in a line, it normally
scans the line multiple times until all symbolic variables are resolved.

For example:

SET A
SET B
SET C
SET D
SET X

50
&&C
&A+50
&&A
(&D+&B)/&D

result:
result:
result:

&B contains &C
&C contains 100
&D contains &A

To resolve the fifth expression the CLIST uses the values assigned to the symbolic
variables &A-&D and assigns the value 3 to &X.

3-8 CLISTs: Implementation and Reference

Concatenating Symbolic Variables

You may concatenate a symbolic variable to another symbolic variable to form a
third symbolic variable.

Assume a CLIST invokes programs that are contained in data sets whose names
are sequentially numbered. By concatenating &PROGRAM and &N you can use
the DO-WHILE-END conditional loop structure to invoke PROGRAMI through
PROGRAMIO as follows:

SET N=O
SET PROGRAM = PROGRAM
DO WHILE &N-,)lO

SET N = &N+l
call rnylib(&PROGRAM&N)

END

By changing the value of &N in a loop, a CLIST could invoke the following set
of programs without having to modify the CALL command.

PROGRAMI
PROGRAM2

PROGRAMIO

You may also concatenate symbolic variables to character strings. When the
variable precedes the character string, place a period after the symbolic variable to
distinguish it from the character string:

&PROGRAM.l

No period is required when the character string precedes the symbolic variable
because the ampersand distinguishes the variable from the string:

l&PROGRAM

Double Ampersands and Symbolic Variables

In some situations, you may want to assign the name of another variable to a
variable, or, modify the name of a variable. When a CLIST encounters a double
ampersand, it removes the first one, producing a variable name. For example, to
set a variable called &VARIABLE to the variable string &LINE, code:

SET VARIABLE = &&LINE

When you use double ampersands, you are telling a CLIST not to perform
symbolic substitution on a variable.

Suppose you want to set a variable to the name of another variable and then
modify the name of the other variable. For example, if you have to set

Chapter 3. Programming Tools 3-9

&VARIABLE to different variables such as &LINEl, &LINE2, and so on, during
processing, you could code many SET statements, or code the following sequence:

SET NUMBER=O
SET VARIABLE=&&LINE&NUMBER /* Initialize &VARIABLE to &LINEO */
DO WHILE &NUMBER,>8 /* Perform processing from &LINEl-&LINE8 */

SET NUMBER = &NUMBER +1 /* Increase &NUMBER to create next
/* variable name */

SET VARIABLE=&&LINE&NUMBER /* Set &VARIABLE to next variable
/* name * /

(processing)
END

If you nest variables whose values contain double ampersands, only the variable
that was set to the value contains the name of the variable. For example, af~er
the following statements execute, &V ARIABLE contains &LINEI and &DAT A
contains the value 430.

SET LINE1=430
SET NUMBER=l
SET VARIABLE=&&LINE&NUMBER
SET DATA=&VARIABLE

Character Set Supported in Symbolic Variables

Using CLIST I/O statements can cause characters other than those you can enter
at a terminal to become part of the value of a symbolic variable. Certain
hexadecimal codes are used by the system in internal processing and should not
appear in data processed by CLIST I/O statements. CLISTs support all codes
from x'40' through x'FF', with the understanding that lowercase characters are
translated to uppercase, unless otherwise specified by NOCAPS or ASIS, and
lowercase numbers (x'BO'-x'B9') are translated to standard numbers (x'FO'-'F9').
In addition, the following control characters are supported:

x'OS' HT (horizontal tab)
x'14' RES (restore)
x'16' BS (backscore)
x'17' IL (Idle)
x'24' BYP (bypass)
x'2S' LF (line feed)

All other codes between x'OO' and. x'3F' are reserved for internal processing; the
use of I/O statements to process data sets containing these codes is not supported.
For example, I/O statements cannot be used to process OBJ or LOAD type data
sets.

Refer to IBM System/370 Reference Summary, GX20·1850, for the characters
associated with. the internal hexadecimal codes.

3-10 CLISTs: Implementation and Ref~rence

Control Variables

Control variables are variables which are assigned special meaning in a CLIST.
Generally, they provide information about the environment during CLIST
execution. When a CLIST encounters a control variable, it replaces the variable
with either the information it is intended to provide or the information you have
assigned to a modifiable control variable. You can assign values only to a subset
of the control variables.

You code a control variable as you would a symbolic variable, for example:

alioc da('&SYSPREF .. jcl.cntl') shr
where &SYSPREF is a control variable

Figure 3-3 lists the control variables in the categories in which they are described
in this section.

Category Variable Modifiable

Current date &SYSDATE No
and time &SYSJDATE No

&SYSSDATE No
&SYSTIME No
&SYSSTIME No

Terminal-related &SYSLTERM No
&SYSWTERM No

User-related &SYSUID No
&SYSPREF No
&SYSPROC No

System-related &SYSCPU No
&SYSSRV No
&SYSISPF No
&SYSRACF No

CLIST -related &SYSSCAN Yes
&SYSENV No
&SYSICMD No
&SYSPCMD No
&SYSSCMD No
&SYSNEST No

Input-related &SYSDVAL Yes
&SYSDLM No

Output-related &SYSOUTTRAP Yes
&SYSOUTLINE Yes

Return &LASTCC Yes
codes &MAXCC Yes

Figure 3-3. Control Variable Categories

Figure 3-4 gives brief descriptions of the control variables you can modify.

Chapter 3. Programming Tools 3-11

Modifiable Contents
Variable

&LASTCC Contains the return code from the last operation (TSO command,
subcommand, or CLIST statement).

&MAXCC Contains the highest return code issued up to this point in the CLIST or the
highest passed back from a nested CLIST.

&SYSDVAL (1) Contains the input line supplied by the user when he returned control to
the CLIST after a TERMIN statement. (2) Contains the input line supplied
by the user after a READ statement without operands. (3) Contains the
value after the execution of a SET SYSDV AL = .

&SYSOUTLINE Contains the number of lines of command output saved in CLIST variables;
points to the variables containing the output.

&SYSOUTTRAP Contains the maximum number of lines of TSO command output to be
saved.

&SYSSCAN Contains the maximum number of times a CLIST may res can a line to
evaluate variables. The default is 16 times. The maximum value is
+2,147,483,647. The minimum is o.

Figure 3-4. Modifiable Control Variables

Figure 3-5 gives brief descriptions of those control variables you cannot modify.

Non-modifiable Contents
Variable

&SYSCPU Contains the number of CPU seconds used during the session in the form:
seconds .hundredths-oJ-seconds.

&SYSDATE Contains the current date in the form: month/day/year.

&SYSDLM Contains the character string the user entered to return control to the CLIST
after a TERMIN statement.

&SYSENV Indicates whether the CLIST is executing in the foreground or background
environment.

&SYSICMD Contains the name by which the invoker implicitly invoked this CLIST.
(This value is null if the invoker explicitly invoked the CLIST.) .

&SYSISPF Indicates whether ISPF dialog management services are available to the
CLIST.

&SYSJDATE Contains the Julian date in the form year.days.

&SYSLTERM Contains the number of lines available on the screen.

&SYSNEST Indicates whether the currently executing CLIST was invoked by another
CLIST.

&SYSPCMD Contains the name (or abbreviation of the name) of the most recently
executed TSO command in this CLIST.

&SYSPREF Contains the prefix that TSO uses to fully qualify data set names.

&SYSPROC Contains the name of the logon procedure used when the TSO user logged
on.

&SYSRACF Indicates whether the Resource Access Control Facility (RACF) is installed
and available to the CLIST.

&SYSSCMD Contains the name of the most recently executed subcommand.

&SYSSDATE Contains the date in the form: year/month/day.

&SYSSRV Contains the number of system resource manager (SRM) service units used
during the session. .

&SYSSTIME Contains the time of day in the form: hours:minutes.

&SYSTIME Contains the time of day in the form: hours:minutes:seconds.

&SYSUID Contains the user ID under which the current session is logged.

&SYSWTERM Contains the width of the screen.

Figure 3-5. Non-modifiable Control Variables

3-12 CLISTs: Implementation and Reference

Control Variables Related to the Current Date and Time

Five control variables provide information related to the current time and date.
You cannot modify any of them with an assignment statement.

&SYSDAT~&SYSSDAT~and&SYSJDATE

Three variables provide the current date.

&SYSDATE provides the date in the standard form: month/day/year. If executed
on June 27, 1983, the following statement displays the message 'Today is
06/27/83':

WRITE Today is &SYSDATE

&SYSSDATE provides the date in a sortable form: year/month/day. If executed
on June 27, 1983, the following statement displays the message 'Today is
83/06/27':

WRITE Today is &SYSSDATE

&SYSJDATE provides the date in the Julian form: year.days. If executed on June
27, 1983, the following statement displays the message 'Today is 83.178':

WRITE Today is &SYSJDATE

&SYSDATE and &SYSSDATE provide data that contain slashes. As a result,
when they appear in expressions on comparative and assignment statements,
enclose them in &STR built-in functions. For example, in the following example
&SYSDATE appears in a statement containing comparative expressions;
therefore, enclose it in a &STR built-in function. However, the use of &STR is
not necessary on the WRITE statement.

IF &STR(&SYSDATE) = &STR(06/27/83) THEN +
WRITE On &SYSDATE, the system was down for &TMIN minutes.

&SYSTIME and &SYSSTIME

Two variables provide the current time of day.

&SYSTIME provides the time in the form: hours:minutes:seconds. If executed at
2:32 and 58 seconds P.M., the following statement displays the message 'It's
14:32:58':

WRITE It's &SYSTIME

&SYSSTIME provides a shortened version of &SYSTIME, in the form:
hours:minutes. If executed at 2:32 and 58 seconds P.M., the following statement
displays the message 'It's 14:32':

WRITE It's &SYSSTIME

Chapter 3. Programming Tools 3-13

Control Variables that Describe Terminal Characteristics

Two control variables provide information about the terminal to which the user is
logged on.

&SYSLTERM and &SYSWTERM

&SYSL TERM provides the number of lines available on the terminal screen.
&SYSWTERM provides the width of the screen.

&SYSL TERM and &SYSWTERM can be used when a CLIST reformats the
screen using session manager commands. For example, a CLIST called
HORZNTL splits the terminal screen horizontally based on the number of lines
on the screen and its width. The following section of HORZNTL substitutes the
control variables in the session manager commands that define the windows for
the reformatted screen. By using &SYSL TERM and &SYSWTERM instead of
explicit screen positions, HORZNTL makes optimal use of the space available on
a given screen.

SET LINE = (&SYSLTERM-S)/2
SET TOPS = &LINE-l
SET BOT = &LINE+l
SET BaTS = (&SYSLTERM-l)-&BOT
SET BOTSX = (&SYSLTERM-3)-&BOT
smput /save sereen;save.pfk;+

save.win main;save.win line;save.win eurrent;+
del.win main;del.win line;del.win eurrent;+
define. window main 1 1 &TOPS &SYSWTERM;+
define. window line &LINE 1 1 &SYSWTERM;+
define.window current &BOT 1 &BOTS &EVAL(&SYSWTERM-18)/

Control Variables Related to the User

&SYSUID

Three control variables provide information related to the user.

&SYSUID provides the user ID under which the current TSO session is logged
on. You can use this variable when you want to allocate data sets that are unique
to the user who invoked the CLIST. For example, the following ALLOCATE
command allocates unique data sets for invokers of a CLIST containing the
command:

alloe da('&SYSUID .. reeords.data') shr reuse

Two periods are required between &SYSUID and RECORDS; the first indicates
the end of the variable name and the second is part of the text to be
concatenated. After substitution, the command has the following form:

alloe da('userid.reeords.data') shr reuse

You may also use &SYSUID in messages and wherever logic depends on, or
references, the user ID.

3-14 CLISTs: Implementation and Reference

/

&SYSPREF

&SYSPROC

&SYSPREF provides the current data set name prefix that is prefixed to non-fully
qualified data set names. The PROFILE command controls this prefix. For
example, suppose a CLIST allocates many data sets that have the same
identification qualifier, D1984F. To avoid having to code full qualifications for
every data set name, you can ensure that TSO uses the desired prefix using
&SYSPREF as follows:

SET SAVEPREF=&SYSPREF
IF &STR(&SYSPREF) ,= D1984Fl THEN +
profile prefix(D1984Fl)

ELSE /* null ELSE */
(Allocations)
PROFILE PREFIX (&SAVEPREF)

Once the PROFILE command in the previous example is issued, all non-fully
qualified data set names have D1984Fl as their identification qualifier. If you
attempt to allocate non-fully qualified data sets that have identification qualifiers
other than D1984Fl, TSO may allocate the wrong data sets or the allocations
may fail. &SYSPREF enables you to keep track of the prefix to avoid these
problems.

&SYSPROC provides the name of the logon procedure used when the user logged
on to the current TSO session. You can use &SYSPROC to determine whether
programs, such as session manager, are available to the user. For example, before
invoking the CLIST (HORZNTL) that reformats the screen using session
manager commands, verify that session manager is active. One way to make the
verification is to check the logon procedure as follows:

IF &STR(&SYSPROC) = SMPROC THEN +
%horzntl

ELSE +
DO

WRITE Your screen cannot be reformatted.
WRITE Log on using SMPROC as logon proc.

END

Control Variables Related to the System

&SYSCPU and &SYSSRV

Four control variables provide information related to the system environment
under which the CLIST is executing.

&SYSCPU provides the number of central processing unit (CPU) seconds used
during the session in the form: seconds.hundredths-of-seconds. &SYSSRV
provides the number of system resource manager (SRM) service units used during
the session. These variables are can be used for:

• Measuring the performance of applications
• Reporting session duration to the user

Chapter 3. Programming Tools 3-15

For example, to measure the performance of an application invoked from a
CLIST, you can code the following:

SET CPU = &SYSCPU
SET SRV = &SYSSRV
call mylib(payroll) '50,84'
SET CPU = &STR(&SYSCPU-&CPU)
SET SRV = &STR(&SYSSRV-&SRV)
call mylib(calc) '&STR(&CPU) ,&STR(&SRV)' /* Measure performance */

/* Do calculations */
/* And pass back results */

WRITE &CPU &SRV

The user can then see the number of CPU seconds and SRM service units used by
the program PAYROLL.

&SYSISPF and &SYSRACF

&SYSISPF indicates whether or not ISPF dialog manager services are available.
The variable can have one of two values:

ACTIVE - ISPF services are available
NOT ACTIVE - ISPF is not initialized

&SYSRACF indicates the status of RACF. The variable can have one of three
values:

AVAILABLE
NOT AVAILABLE
NOT INSTALLED

- RACF services are available
- RACF is not initialized
- RACF is not installed

Control Variables Related to the CLIST

&SYSENV

Six control variables provide information related to the CLIST.

&SYSENV indicates whether the CLIST is executing in the foreground (FORE)
or the background (BACK). You can use this variable when a CLIST must make
logical decisions based on the environment. For example, the way a CLIST
obtains its input is sensitive to background and foreground executions. You can
use &SYSENV to prevent the CLIST executing READ statements in the
background as follows:

GLOBAL LNAME /* Define global variable to be set by FETCHNAM */

IF &SYSENV=FORE THEN +
DO

WRITE Enter your last name.
READ LNAME

END
ELSE +

%fetchnam

3-16 CLISTs: Implementation and Reference

&SYSSCAN

&SYSICMD

&SYSPCMD

&SYSSCMD

&SYSSCAN contains a number that defines the maximum number of times
symbolic substitution is performed on each line in a CLIST. The default number
is 16. You can give &SYSSCAN a value from 0 to + 2,147,483,647 (231 _1). A
zero limit inhibits all scans, preventing any substitution of values for symbolic
variables.

For example, to write a record containing an ampersand (&) and prevent a
CLIST from performing erroneous symbolic substitution, you may code the
following:

SET &SYSSCAN=O /* Prevent symbolic substitution
WRITE Jack & Jill went up the hill
SET &SYSSCAN=16 /*Reset &SYSSCAN

&SYSICMD contains the name by which the user implicitly invoked the currently
executing CLIST. If the user invoked the CLIST explicitly, this variable has a
null value.

&SYSPCMD contains the name of the TSO command that the CLIST most
recently executed. The initial value of &SYSPCMD depends on the environment
from which the CLIST was invoked. If the invoker used the EXEC command,
the initial value is EXEC. If the invoker used the EXEC subcommand of EDIT,
the initial value is EDIT.

&SYSSCMD contains the name of the TSO subcommand that the CLIST most
recently executed. If invoker used the EXEC command, the initial value of
&SYSSCMD is null. If the invoker used the EXEC subcommand of EDIT, the
initial value is EXEC.

Relationship between &SYSPCMD and &SYSSCMD

The &SYSPCMD and &SYSSCMD control variables are interdependent.
Following the initial invocation, the values of &SYSPCMD and &SYSSCMD
depend on the TSO command or subcommand most recently executed. For
example, if the value of &SYSSCMD is EQUATE, a subcommand unique to the
TEST command, the value of &SYSPCMD is TEST.

You can use &SYSPCMD and &SYSSCMD in error and attention exits to
determine where the error or attention interrupt occurred.

Chapter 3. Programming Tools 3-17

&SYSNEST

&SYSNEST indicates whether or not the currently executing CLIST is nested. (A
nested CLIST is one that was invoked by another CLIST rather than explicitly by
the user.) If the CLIST is nested, &SYSNEST contains the value YES. If it is
not nested, &SYSNEST contains the value NO.

Control Variables Related to Input

&SYSDLM

&SYSDVAL

Two control variables are related to input supplied to a CLIST.

&SYSDLM contains a number that identifies the position (first, second, third,
and so on) of the TERMIN statement character string entered by the user to
return control to the CLIST.

You can use this variable to determine what action should be taken when the user
returns control to the CLIST, based on the string chosen. For example, the
following statements inform the user what is requested (WRITE), pass control to
the terminal and establish valid control character strings (TERMIN), and
determine the subsequent action based on the string entered.

WRITE The first phase of BUDGET has completed with
WRITE a return code of &RCODE.
WRITE Enter YES if you want the results printed.
WRITE Enter NO if you do not want them printed.
TERMIN YES NO
IF &SYSDLM = 1 THEN +

(Print results)

At any given time, &SYSDV AL contains one of the following:

• A null value

• The input the user entered, in addition to the character string or null line,
when returning control to the CLIST after a TERMIN statement

• The user's response after a READ statement without operands

• The value assigned to &SYSDVAL with an assignment statement

Initially, &SYSDV AL contains a null value. It can also contain a null value, if:

• The user does not enter anything but a character string or null line after a
TERMIN statement

• The user does not enter any input after a READ statement without operands

• You assign a null value to &SYSDV AL

3-18 CLISTs: Implementation and Reference

You can also use &SYSDV AL when performing I/O to a data set. You can
assign the data to variables by defining SYSDVAL as the file name of the data
set.

Control Variables Related to TSO Command Output

&SYSOUTTRAP

&SYSOUTLINE

Two control variables are related to TSO command output -- &SYSOUTTRAP
and &SYSOUTLINE. These variables save output from TSO commands and
allow a CLIST or application to display the output. You can use assignment
statements to modify the values of &SYSOUTTRAP and &SYSOUTLINE.

Use &SYSOUTTRAP to specify the maximum number of lines of TSO command
output to be saved for each command. If you want to save all the output from a
TSO command, set &SYSOUTTRAP to a number greater than or equal to the
number of output lines that the command produces.

When you use &SYSOUTTRAP in a CLIST, the CLIST saves the TSO command
output in variables beginning with SYSOUTLINE.

The CLIST uses the variable &SYSOUTLINE to record the actual number of
output lines saved. This number is limited by the one in &SYSOUTTRAP; the
CLIST saves no more output lines than &SYSOUTTRAP specifies.

The CLIST saves the actual command output in the variables
&SYSOUTLINEnn, where 'nn' represents the positional number of the line being
saved. 'nn' can be any number up to 21 digits in length. However, the value in
&SYSOUTTRAP and the amount of storage available determine the actual
number of lines saved.

Note: Whenever a CLIST executes a new TSO command, it resets
&SYSOUTLINE to zero. However, if a CLIST invokes a non-CLIST program
containing TSO commands, the program does not reset &SYSOUTLINE to zero
for each TSO command. Therefore, to save command output lines in a
non-CLIST program, use an assignment statement to reset &SYSOUTLINE to
zero for each TSO command. See TSO Guide to Writing a Terminal Monitor
Program or Command Processor for information on assigning a value to CLIST
variables in a non-CLIST environment.

Be aware of the following considerations when using &SYSOUTTRAP and
&SYSOUTLINE:

• If you try to display a line of output in &SYSOUTLINEnn where 'nn' is
greater than the value of &SYSOUTTRAP, the &SYSOUTLINEnn variable
contains unreliable data.

• If you try to display a &SYSOUTLINEnn variable that contains no
command output, the CLIST returns a null line.

• If a TSO command produces fewer output lines than a previous command,
the remaining &SYSOUTLINEnn variables retain output from the previous

Chapter 3. Programming Tools 3-19

command. To avoid this possibility, you can reset &SYSOUTTRAP between
commands.

• Because CLISTs use the TSO EXEC command to invoke nested CLISTs,
&SYSOUTLINE saves the WRITE statements of nested CLISTs as TSO
command output.

• &SYSOUTLINE does not save command output sent to the terminal by a
TPUT macro, such as normal or error prompting messages.

For an example of using &SYSOUTTRAP and &SYSOUTLINE when saving
command output, refer to "Allocating Data Sets to SYSPROC" in Chapter 4.

Control Variables Related to Return and Reason Codes

&LASTCC

&MAXCC

Two control variables are related to return and reason codes. You can modify
both &LASTCC and &MAXCC with an assignment statement. .

&LASTCC contains the return code from the last TSO command or
subcommand, nested CLIST, or CLIST statement executed. Because the value of
this variable is updated after the execution of each statement or command, store
its value in a symbolic variable before executing code that references the value.

&LASTCC can be used in error routines that handle multiple error conditions.
For example, if an error routine handles arithmetic errors, it can use &LASTCC
to determine what type of message to display at the terminal:

ERROR +
DO

SET RCODE = &LASTCC
/* Character data in operands? */

IF &RCODE = 852 THEN +
WRITE Character data was found in numbers being added.

/* Numeric value too large? */
IF &RCODE = 872 THEN +

WRITE A numeric value in the addition was too large.
. (Other tests)

RETURN
END

SET SUM &VALUEl + &VALUE2 + &VALUE3

&MAXCC contains the highest return code returned by a nested CLIST or by a
TSO command, subcommand, or CLIST statement in the currently executing
CLIST.

You can use &MAXCC in conjunction with &LASTCC to determine error
conditions. For example, error codes caused by evaluation errors are in the
800-899 range. You can modify the error routine in the example under
&LASTCC to determine first whether the error was caused by an arithmetic

3-20 CLISTs: Implementation and Reference

evaluation. Insert the following IF-THEN-ELSE sequence before the check for
character data in operands:

/* Evaluation error? */
IF &MAXCC <800 OR &MAXCC >899 THEN +

GOTO
ELSE +

Variables Related to the Use of the TSOEXEC Command

Three variables are related to the use of the TSOEXEC command:
&SYSABNCD, &SYSABNRC, and &SYSCMDRC. You can modify anyone of
them with an assignment statement.

&SYSABNCD, &SYSABNRC, and &SYSCMDRC contain, respectively, the
ABEND code, ABEND reason code, and command return code produced by the
most previous command invoked by the TSOEXEC command. You can use these
variables in situations similar to those in which you would use &LASTCC and
&MAXCC. For example, to determine if the TRANSMIT command terminated
abnormally, you could code:

tsoexec transmit plpsc.dOOabcl dataset(letter.text)
/* Abend code nonzero? */
IF &SYSABNCD,=O THEN +

Built-in Functions

DO
WRITE The transmission of LETTER. TEXT to
WRITE PLPSC.DOOABCl abended.

END

Built-in functions enable you to perform certain functions on variables,
expressions, and character strings. A CLIST evaluates the variable or expression
first, if necessary, and then performs the requested function. The built-in function
is then replaced by the result of the evaluation.

A built-in function name (identifier) is followed by an argument, enclosed in
parentheses, upon which a particular predetermined function is performed. The
name identifies the function. Blanks are not allowed between a built-in function
identifier and its argument.

Chapter 3. Programming Tools 3-21

The built-in functions are described in individual topics in this section. A short
description of each of them follows:

Built-in Function

&DAT ATYPE(expression)

& EVAL(expression)

&LEN GTH(expression)

&NRSTR(string)

&STR(string)

&SUBSTR(exp[:exp),string)

&SYSCAPS(string)

Function

Indicates whether the evaluation of expression is a character string or a
numeric value.

Performs an arithmetic evaluation of expression.

Evaluates expression if necessary and indicates the number of
characters in the result.

Preserves the integrity of a character string.

Defines data to be used as a character string.

Uses part of a character string.

Translates the string to uppercase characters.

&SYSDSN(dsname(~~~ber»)j-""1?dicates whether the specified data set exists.

&SYSLC(string) Translates the string to lowercase characters.

Determining the Data Type of an Expression - &DATATYPE

Use the &DATATYPE built-in function to determine whether the evaluation of a
given expression is a numeric value or a character string. After evaluating the
expression, a CLIST replaces this built-in function with either the string CHAR or
the string NUM. The strings indicate the following:

• CHAR -- The evaluated expression contains at least one non-numeric
character.

• NUM -- The evaluated expression is entirely numeric.

The following examples show the evaluations of various expressions:

• &DATATYPE(ALPHABET) - CHAR
• &DATATYPE(l234)- NUM
• &DATATYPE(SYSl.PROCLIB) - CHAR
• &DATATYPE(3*2/4) - NUM
• &DATATYPE(l2.34) - CHAR

For example, the following clause evaluates as true:

IF &DATATYPE(12.34)=CHAR THEN

3-22 CLISTs: Implementation and Reference

Forcing Arithmetic Evaluations - &EV AL

On most statements, the appearance of arithmetic expressions results in
evaluations of those expressions when a CLIST executes the statements.
However, on the WRITE statement, you must explicitly instruct a CLIST to
evaluate an arithmetic expression by using the &EV AL built-in function. For
example, to create a WRITE statement that adds two variables, &FNUM and
&SNUM, and displays the results, code the following:

WRITE &FNUM + &SNUM = &EVAL(&FNUM+&SNUM)

Assuming &FNUM is four and &SNUM is three, the CLIST displays the
following message:

4 + 3 = 7

Determining an Expression's Length - &LENGTH

Use the &LENGTH built-in function to determine the number of characters in an
expression or character string. &LENGTH performs symbolic substitution and
arithmetic evaluations before determining the length. If a variable has a null
value, &LENGTH returns a value of zero.

For example, after the following statement executes, &LENANSWR has the value
2 because there are two characters in the result of the addition, 11.

SET LENANSWR = &LENGTH(1+1+9)

&LENGTH may also reference symbolic variables. Assume you want to save a
value that is triple the length of the value of a variable called &CSTRING. To
save the value in a variable called &NXTFIELD, code:

SET NXTFIELD = 3 * &LENGTH(&CSTRING)

If &CSTRING contains the value 100, &NXTFIELD contains the value 9.

Suppressing Arithmetic Evaluations

If you do not want a CLIST to perform arithmetic evaluations of a &LENGTH
expression, enclose the expression in a &STR built-in function as follows:

SET LENANSWR = &LENGTH(&STR(1+1+9))

After the previous statement executes, &LENANSWR contains the value 5.

Including Leading and Trailing Blanks and Leading Zeros

If you want leading and trailing blanks and leading zeros in a &LENGTH
expression included in the assignment, enclose the expression in a &STR built-in
function. Otherwise, the blanks and zeroes are ignored.

For example, suppose that you want to save the length of the variable &IFIELD
in a variable called &SLNGTH. The contents of &IFIELD are 0 472.20 .

Chapter 3. Programming Tools 3-23

Include &IFIELD in the &STR built-in function to include the blanks and the
leading zero as part of the assignment:

SET SLNGTH= &LENGTH(&STR(&IFIELD»

Preserving the Integrity of a Character String - &NRSTR

Double Ampersands

You can use the &NRSTR built-in function to prevent a CLIST from:

• removing the first ampersand when it encounters a character string with a
prefix of double ampersands

• performing more than one level of symbolic substitution on a variable

Also, you can use &NRSTR when performing I/O to data sets that contain JCL
statements that include the name of a temporary data set (for example, &&A) or
a symbolic parameter (for example, &LIBRARY). Using &NRSTR prevents a
CLIST from:

• changing the name of a temporary data set (&&A) to a symbolic parameter
(&A)

• performing erroneous symbolic substitution on a symbolic parameter
(&LIBRARY)

In either case, the use of &NRSTR prevents the subsequent execution of the JCL
statement from causing a JCL error.

To assign the character string &&DATA to the variable &FILE, code:

SET FILE = &NRSTR(&&DATA)

One Level of Symbolic Substitution

To set two variables, &A and &C, to the value &B code:

SET A
SET C

&&B
&NRSTR(&A)

After the execution of the first SET statement, &A contains the value &B. When
the second SET statement is executed, the CLIST performs symbolic substitution
and substitutes &B for &A. &NRSTR prevents any further scan of the statement;
therefore, &C is ASSIGNED the value &B.

3-24 CLISTs: Implementation and Reference

/

/

Records Containing JCL Statements

The following paragraphs discuss the use of the &NRSTR built-in function when
reading or writing records that contain JCL statements.

Temporary Data Set Names: If a JCL statement contains a temporary data set
name (for example, &&A), enclose the statement in a &NRSTR built-in function
to prevent a CLIST from removing the first ampersand. The following CLIST
writes a JCL statement containing a temporary data set name to a data set.

alloc f(to) da(datal.ctl) shr
OPENFILE TO OUTPUT
SET TO = &NRSTR(//DD3 DD DSN=&&A(ADD) ,UNIT=3350,+

DISP=(OLD,KEEP),VOL=SER=MYOWN2)
PUTFILE TO
CLOSFILE TO

When reading the same statement from the data set and writing it to a different
data set, you can code the following CLIST to ensure the integrity of the
temporary data set name.

alloc f(from) da(datal.ctl) shr
alloc f(to) da(data2.ctl) shr
OPENFILE FROM INPUT
OPENFILE TO OUTPUT

GETFILE FROM
SET TO=&NRSTR(&FROM) /* Do not change the record
PUTFILE TO /* Write it as is
CLOSFILE FROM
CLOSFILE TO

Symbolic Parameters: If a JCL statement contains a symbolic parameter (for
example, &LIBRAR Y), you can use &NRSTR to prevent a CLIST from
performing erroneous symbolic substitution. Assume a record contains the
following JCL statement:

//D02 DD DSN=&LIBRARY,DISP=(OLD,KEEP),UNIT=3400,VOL=SER=MYOWNl

You can. use the same CLIST code shown in the previous example under
'Temporary Data Set Names' to read the statement from one data set and write it
to another data set without having the CLIST perform symbolic substitution on
the symbolic parameter &LIBRARY. (The single substitution substitutes the JCL
statement for the variable &FROM.)

Chapter 3. Programming Tools 3-25

However, if you wanted to,write the statement directly to a data set from a
CLIST or do some processing on the statement within a CLIST, use the
.&SYSSCAN control variable in place of the &NRSTR built-in function to
prevent symbolic substitution.

Defining Character Data - &STR

Use the &STR built-in function to define character data. The data may be any
expression or statement. Nested variables are also permitted in &STR built-in
functions.

The statement SET DIMENSNS = &STR(2*4) defines 2*4 as a character string
and assigns the string to the variable &DIMENSNS. Without the &STR built-in
function, you could not make the desired assignment because a CLIST would
evaluate 2*4 as an arithmetic expression and set &DIMENSNS to the value 8.

The &STR built-in function suppresses arithmetic evaluations only for the data
between the parentheses. If you set &STATS to &DIMENSNS, &STATS will
contain the value 8, not the character string 2*4. In order to preserve the
character string, code the following:

SET STATS=&STR(&DIMENSNS)

Using &STR with &SYSDATE or &SYSSDATE

If you use &SYSDATE or &SYSSDATE on a CLIST statement other than
WRITE, enclose the variable in an &STR built-in function. Otherwise, a CLIST
views the slashes separating the day, month, and year as division operators and
performs division.

SET TODAY = &STR(&SYSDATE)

Using &STR with Leading and Trailing Blanks

Use the &STR built-in function to preserve leading and trailing blanks in a
character string. For example, the following statement sets the variable
&CMNDFLD to a blank, 2 hyphens, a greater than symbol, and four blanks:

SET CMNDFLD= &STR(--)

Using &STR When Supplying Input Using SYSIN JCL Statements

When you submit a background job that invokes a program, you sometimes
include a '/ /SYSIN DD *' JCL statement that supplies the input statements. If
any input statement is the same as a CLIST statement, enclose that statement in a
&STR built-in function. For example, suppose a hypothetical language called
SES has an IF-THEN-ELSE sequence. If you were to include such a sequence in
the SYSIN input statements, you would have to enclose it in an &STR built-in

3-26 CLISTs: Implementation and Reference

function as shown in the following background invocation of a hypothetical SES
program called MATRIX.

PROC 1 FORMAT ACCT() CLASS(A)
CONTROL MAIN

submit * end(nn)
//&SYSUIO.1 JOB &ACCT,&SYSUIO,CLASS=&CLASS
//STEP1 EXEC PGM=MATRIX

//SYSIN 00 *
&STR(IF &FORMAT=l THEN OPEN OSl)
&STR(ELSE OPEN OS2)
GETFILES 1-12
&STR(SET COLUMNS=GETFILES)

nn

Only those input statements that are the same as CLIST statements are enclosed
in &STR built-in functions. If the CLIST invoked MATRIX in the foreground,
the &STR built-in functions would not be necessary because the program's
statements would appear in the data set containing MATRIX. Thus, they would
be associated with the program, not the CLIST.

Defining a Substring - &SUBSTR

Use the &SUBSTR built-in function to request that a CLIST recognize only part
of an indicated string when performing substitution. You indicate the starting
and ending positions of the string from which the substitution is made.

For example, assuming a variable called &ANIMALS contains the character
string 'DOGSCATSSEALS', to set a variable called &FELINE to the character
string 'CATS', code the following:

SET FELINE = &SUBSTR(5:8,&ANIMALS)

Note that the character string 'CATS' begins in the fifth position of &ANIMALS
and ends in the eighth position.

A &SUBSTR built-in function may contain other built-in functions. Assume your
CLIST receives input from the user and assigns it to a variable called &NAME.
&NAME contains a person's first and middle initial followed immediately by the
last name. To add a blank between the initials and the last name, you can set a
variable called &NFIELD to a character string consisting of the following:

1. the first and middle initials
2. a blank
3. the last name

SET NFIELO = &STR(&SUBSTR(l:2,&NAME) &SUBSTR(3:&LENGTH(&NAME)+
,&NAME))

Chapter 3. Programming Tools 3-27

If you want to substring only one position, the colon and end-expression may be
omitted. For example, if you are interested only in the first letter of the last
name, code the following:

SET FLTRLNAME = &SUBSTR(3,&NAME)

You can substitute variables for starting and ending expressions. For instance, to
set the section of &STRING beginning at the second position and ending at the
eighth position to a variable called &WIDGET, you can create a variable and
substitute it in the SET statement. Assume that the substringed data represents a
part number.

SET PART# = &STR(2:8,)
SET WIDGET = &SUBSTR(&PART#&STRING)

Translating Character Strings to Uppercase Characters - &SYSCAPS

Use &SYSCAPS to translate character input strings to uppercase characters. A
CLIST does not modify numbers, national characters, or special characters
included in, the data string. You may use variables containing the character
strings in &SYSCAPS built-in functions.

You can use &SYSCAPS in conjunction with &SYSLC to control the
capitalization of text in a CLIST. For an example, refer to '"Controlling
Uppercase and Lowercase in READ Statement Input" later in this chapter.

Determining Whether a Data Set Exists - &SYSDSN

Use the &SYSDSN built-in function to determine whether or not a specified data
set exists or a specified data set and member exist. &SYSDSN can return one of
the following values:

- OK -- data set exists or data set and member exist
- MEMBER SPECIFIED, BUT DATASET IS NOT PARTITIONED
- MEMBER NOT FOUND
- DATASET NOT FOUND
- ERROR PROCESSING REQUESTED DATASET
- PROTECTED DATASET -- a member was specified but the

data set is RACF-protected
- VOLUME NOT ON SYSTEM
- UNAVAILABLE DATASET -- another user has an exclusive

ENQ on the specified data set
- INVALID DATASET NAME, xxxx
- MISSING DATA SET NAME

3-28 CLISTs: Implementation and Reference

For example, you can use the &SYSDSN built-in function in conjunction with
conditional logic to determine which data set to allocate for use in a CLIST.

IF &SYSDSN('SYSl.MYLIB')=OK THEN +
DO

alloc f(utility) da('SYSl.MYLIB')
call iecompar

END
ELSE +
IF &SYSDSN('SYSl.INSTLIB(IECOMPAR) ')=OK THEN +

DO
alloc f(utility) da('SYSl.INSTLIB')
call iecompar

END
ELSE +

Enclose fully qualified data set names in single quotes when they appear in
&SYSDSN built-in functions. You may use variables containing data set names
in &SYSDSN built-in functions.

Translating Character Strings to Lowercase Characters - &SYSLC

Use &SYSLC to translate character strings to lowercase characters; A CLIST
does not modify numbers, national characters, or special characters included in
the string. You may use variables containing the character strings in &SYSLC
built-in functions. For data to be changed to lowercase, CONTROL ASIS or
NOCAPS must be in effect.

Prompting for Input

PROC Statement

A CLIST can prompt for input in a number of different ways:

• using positional parameters and keywords with associated values on a PROC
statement

• using WRITE and WRITENR statements

• using TSO commands

When you include positional parameters on a PROC statement, the invoker must
supply a value for each of them. If the invoker does not specify a value at
invocation, the CLIST prompts until the invoker specifies one.

When you include keywords that require associated values on a PROC statement
and the invoker specifies only the keyword at invocation, the CLIST prompts
until the invoker specifies the value.

For details on the use of the PROC statement, refer to "Parameter Definitions the
PROC Statement" in this chapter.

Chapter 3. Programming Tools 3-29

WRITE and WRITENR Statements

TSO Commands

You can use either a WRITE or WRITENR statement, or a combination of both,
to send a message to the terminal user and prompt for input. For details on the
use of the WRITE and WRITENR statements, refer to "Communicating with the
Terminal User" in this chapter.

Some TSO commands, for example LISTDS, require more information than just
the name of the command and prompt when that information is not supplied.
However, TSO commands included in a CLIST can prompt for input only when
the CLIST allows prompting, which is controlled by PROFILE and EXEC, TSO
commands, and by CONTROL, a CLIST statement.

The following table illustrates the effect on prompting using different explicit
specifications of PROMPT jNOPROMPT on the PROFILE and EXEC
commands and on the CONTROL statement.

Prompting by TSO commands
allowed in CLIST

Specifications Yes No

profile prompt
exec prompt X
CONTROL PROMPT

profile prompt
exec noprompt X
CONTROL PROMPT

profile prompt X
CONTROL PROMPT

profile prompt
exec prompt X

profile noprompt
exec prompt X
CONTROL PROMPT

profile prompt
exec prompt X
CONTROL NOPROMPT

profile prompt X
exec noprompt

profile prompt X

Notes:

• PROFILE PROMPT is the default specification and applies to a TSO session
not just to a particular CLIST. The explicit specification of PROFILE
PROMPT is unnecessary unless needed to override a prior PROFILE
NOPROMPT command.

• The PROFILE command may be executed either outside of, or within, a
CLIST.

3-30 CLISTs: Implementation and Reference

/"

• EXEC NOPROMPT is the default specification and applies only to the
CLIST that it invokes.

• The CONTROL statement applies only to the CLIST in which it appears.

• If a CONTROL statement does not appear in a CLIST, CONTROL
NOPROMPT is implied.

The DATA PROMPT-ENDDATA Sequence

Use the DATA PROMPT-ENDDATA sequence in a CLIST to designate
responses to prompts by TSO commands, subcommands, or READ statements.

To use the DATA PROMPT-END DATA sequence, code:

DATA PROMPT

/* Responses */
ENDDATA

If the sequence is not immediately preceded by a TSO command or subcommand
that prompts, or by a READ statement, an error occurs (error code 968). You
can ignore the error condition if a command or subcommand that could prompt,
does not prompt.

The responses in the DATA PROMPT-ENDDATA sequence must appear exactly
as if entered by the user. Each DATA PROMPT-END DATA sequence can
respond only to prompts issued by the immediately preceding command,
subcommand, or READ statement. However, you can include multiple responses
to satisfy multiple prompts. Excess responses can result in an error message and
termination of the CLIST if an error routine is not present.

Some TSO commands prompt for input when you code certain operands. For
example, the LINK command invokes the linkage editor. When you substitute an
asterisk (*) for the data set name, TSO prompts for control statements. If you
include such a LINK command in a CLIST that is run in the background, place
the control statements within a DATA PROMPT-ENDDATA sequence. The
following CLIST link edits the member X, which resides in the file DD1:

SET NULL =
CONTROL PROMPT LIST
link (*) /* Prompt terminal for control statements */ +
load('d32kdsl.load') pr(*) ncal xref list let

DATA PROMPT
include ddl(x)
entry x
name x
ENDDATA
&NULL

Chapter 3. Programming Tools 3-31

There are additional considerations for using the DATA PROMPT-ENDDATA
sequence:

• The CLIST must allow prompting, except in the case of the READ statement

• The CLIST performs symbolic substitution before using the responses to
satisfy the prompt. (You may include variables in the responses.)

Parameter Definitions - - the PROC Statement

The PROC statement enables both the CLIST and its invoker to assign values to
variables by CLIST invocation, prompting, and default parameter values. The
PROC statement may contain positional parameters, keyword parameters, and
keyword parameters with associated values. When used, the PROC statement
must precede all other executable statements and commands. However,
comments or blank lines may precede the PROC statement.

When you specify positional parameters on the PROC statement, the CLIST
needs to know the number of them. To inform the CLIST, specify the number as

. the first operand on the PROC statement. If you do not specify any positional
parameters, just keyword parameters, specify the number O.

Positional Parameters: Use positional parameters when the CLIST requires input
from the invoker that may vary from one invocation to the next. For each
positional parameter name, the CLIST defines a variable of the same name and
initializes it with the value entered for the parameter. As a result, positional
parameter names have the same syntax rules as symbolic variables.

Positional parameter values may be up to 252 alphameric characters in length.
The invoker enters only a value for the parameter because the CLIST identifies it
by its position, not its name. The CLIST assigns the values to the positional
parameters sequentially. As a result, the invoker must know the order of the
parameters on the PROC statement so that the CLIST assigns the values entered
to the correct variables. If the invoker does not supply values for all positional
parameters, the CLIST prompts for the data.

Assume a CLIST called BUDGET resides in a data set called PROC.CLIST and
that it references an account number to perform its processing. If account
numbers could be different for different invocations, code the following:

PROC 1 ACCT

The" I" indicates that the PROC statement contains one positional parameter,
ACCT.

If BUDGETis invoked explicitly, the invoker must enclose the account number
parameter in single quotes as follows:

ex proc(budget) 'd5880p'

3-32 CLISTs: Implementation and Reference

If the CLIST is invoked implicitly, the invoker does not enclose the positional
parameter in single quotes, for example,

%budget d5880p

or

budget d5880p

If the invoker enters only the name of the CLIST on either an explicit or implicit
invocation, the CLIST prompts for an account number. Regardless of how the
CLIST was invoked, the missing information may then be entered without single
quotes.

Keyword Paramete,·s: Use keyword parameters when the input is either optional
or capable of having a default value. Keywords do not have the same syntax
rules as synibolic variables. Keyword parameters must be from one to 31
characters in length, and they mayor may not have associated values.

For each keyword parameter on a PROC statement, a CLIST defines a variable
of the same name. If the keyword does not have an associated value and the
invoker supplies the keyword name, the CLIST initializes the variable to the
keyword name. If the invoker does not supply a keyword name, the CLIST
initializes the variable to a null value.

If the keyword has an associated value, the CLIST initializes the variable to the
value supplied by the invoker or to a default value.

Using Keyword Parameters: Use a keyword parameter to enable the invoker to
indicate if the CLIST should perform a certain action.

The invoker may include the name of the keyword or omit it. On the invocation,
the CLIST does not recognize an abbreviation of the name.

To enable the invoker to indicate whether the results of BUDGET should be
printed, you could code the following:

PROC 1 ACCT PRINT

The 1 indicates that there is only one positional parameter. ACCT is the
positional parameter; PRINT is a keyword parameter. The CLIST may perform
a check on the variable &PRINT to see if the invoker wants the results printed.
You can code this check using an IF-THEN-ELSE sequence.

IF &PRINT= PRINT THEN (Print results)

Another use for keywords involves options on CLIST statements. Suppose you
want the invoker of BUDGET to be able to indicate whether to display TSO
commands and CLIST statements at the terminal. You could code the following:

PROC 1 ACCT PRINT DEBUG
IF &DEBUG=DEBUG THEN +
CONTROL LIST CONLIST SYMLIST

Chapter 3. Programming Tools 3-33

If the invoker includes DEBUG, the CLIST displays TSO commands and CLIST
statements. If the invoker does not include DEBUG (&DEBUG has a null
value), the CLIST does not display TSO commands and CLIST statements.

Using Keywords with Associated Values: Use a keyword with an associated value
if the input, for example an account number, is optional. The length restriction
for subparameter values is the same as that for symbolic variable values.

You could code the following:

PROC 0 ACCT ()

If the invoker of the CLIST wants to supply an account number, the invoker
enters the word ACCT along with the number in parentheses. If the invoker
enters only the word ACCT, the CLIST prompts for the account number. If the
invoker omits the word ACCT, the variable has a null value.

Another case occurs when there is a standard account number that applies to
most, but not all, invokers of the CLIST. You can supply a default value that the
CLIST uses if the invoker does not supply a value. For example:

PROC 0 ACCT(D5880P)

Regardless of the default value, if the invoker enters ACCT(D90) on the
invocation of the CLIST, the value of &ACCT becomes D90.

Special Considerations for Values Containing Single Quotes: If the invoker of a
CLIST wants to pass values containing single quotes (or apostrophes), the invoker
must adhere to certain guidelines that are shown in Chapter 5 under the EXEC
command.

Communicating with the Terminal User

The WRITE, WRITENR, READ, READDV AL, and TERMIN statements
provide a means of communication between a CLIST and the terminal user:

• The WRITE and WRITENR statements issue messages to the user, usually
stating why the user received control, and prompt for input.

• The READ statement reads user input either into variables included on the
READ statement or into the &SYSDV AL control variable when no variables
are included on the READ statement.

• The READDV AL statement accesses the contents of the &SYSDV AL control
variable.

• The TERMIN statement causes a CLIST to pass control to the user.
TERMIN suspends CLIST execution until the user indicates that execution
should resume. The statement also defines character strings, any of which the
user may enter to return control to the CLIST. TERMIN statements
commonly follow WRITE or WRITENR statements.

3-34 CLISTs: Implementation and Reference

Writing Messages to the Terminal User - WRITE and WRITENR

Two CLIST statements are available for sending messages to the terminal and
prompting for input:

• WRITE - Displays a message at the terminal and causes the terminal's display
cursor to return to the beginning of the next line after the message is
displayed

• WRITENR - Displays a message at the terminal and causes the terminal's
display cursor to remain at the end of the message

You can use either statement to send messages. You may find WRITENR
preferable when the message prompts the user for input. Both WRITE and
WRITENR must be followed by one or more blanks and the text of the message.
For example:

CONTROL ASIS

WRITE Your previous entry was lnvalid.
WRITE Do you want to continue?
WRITENR Enter yes or no.

As a result of these statements, the terminal user sees the following messages on
the screen:

Your previous entry was invalid.
Do you want to continue?
Enter yes or no. __

The cursor stops after the period in the last line to indicate the CLIST is waiting
for the user's response. Since CONTROL ASIS is specified the CLIST displays
the message 'as written', in both uppercase and lowercase letters.

You can also use the WRITENR statement to join text. For example:

CONTROL CAPS

WRITENR Please enter your userid
WRITE followed by two blanks.

As a result of these statements, the terminal user sees the following message:

PLEASE ENTER YOUR USERID FOLLOWED BY TWO BLANKS.

Since CONTROL CAPS is specified, the message is translated to all capital letters
before being displayed.

Chapter 3. Programming Tools 3-35

Reading Input from the Terminal - READ and READDVAL

Using the READ Statement

The READ and READDV AL statements provide two ways for CLISTs to access
user input from the terminal. The READ statement obtains input directly from
the terminal or from the DATA-PROMPT-ENDDATA sequence. The
READDV AL statement obtains input from the &SYSDV AL control variable.

The READ statement makes terminal input available to a CLIST in the form of
symbolic variables. You normally precede a READ statement with one or more
WRITE or WRITENR statements to let the user know that the CLIST is
expecting input, and what sort of input it is expecting.

You may include one or more symbolic variables on a READ statement.

If a READ statement does not include any variables, the CLIST stores the
information the user enters into the control variable &SYSDV AL.

Assume that a WRITE statement requests that the user enter four names. The
accompanying READ statement could be coded as follows:

READ A,B,C,D

Note that variables on a READ statement do not require ampersands.

If the user's response to the previous READ statement is:

SMITH,JONES,KELLY,INGALLS,GREENE

The CLIST assigns the names to the symbolic variables on the READ statement
as follows:

&A has the value SMITH.
&B has the value JONES.
&C has the value KELLY.
&D has the value INGALLS.

Because on the READ statement only includes four variables, the CLIST ignores
the fifth name (GREENE).

You can also code READ statements without variables:

READ

If the user responded with the same five names, they would all be stored in the
control variable &SYSDV AL. To preserve the input strings, the CLIST does not
remove the delimiters. For example, if the user responds to the previous READ
statement by entering 'SMITH,JONES,KELL Y,INGALLS,GREENE',
&SYSDV AL has the following value:

SMITH,JONES,KELLY,INGALLS,GREENE

To assign a null value to one of the variables on a READ statement, the user can
enter either a double comma or a double apostrophe (two single quotes). For

3-36 CLISTs: Implementation and Reference

PRoe 0

example, assume that the CLIST sends a message to the user requesting four
successive numbers. The READ statement to obtain these numbers is:

READ NUMl,NUM2,NUM3,NUM4

If the user responds either:

15,24, ,73
or

'15' '24' " '73'

The symbolic variables on the READ statement then have the following values:

&NUMI has the value 15.
&NUM2 has the value 24.
&NUM3 has a null value.
&NUM4 has the value 73.

The fact that single quotes are valid delimiters requires that you exercise care
when reading fully qualified data set names into variables. Precautions are
necessary because, if the user enters the data set name within single quotes
(according to TSO naming conventions), the CLIST normally reads them as
delimiters, not data. If a WRITE statement requests the name of a fully qualified
data set, the CLIST can obtain the data set name as entered by the user, with
single quotes preserved, by using the READ statement with the &SYSDVAL
control variable.

The following CLIST uses a READ statement and &SYSDVAL to preserve single
quotes around a data set name. It also checks for the quotes to see if the user
entered a fully qualified data set name and, if not, adds the quotes and the user's
prefix to the name.

WRITE Enter the name of a data set.
READ
SET &DSN = &SYSDVAL /* get name from &SYSDVAL */
IF &SUBSTR(l:l,&DSN)

DO
,= &STR(') THEN +

/* if data set is not fully qualified,
/* add prefix and quotes */ SET &DSN = '&SYSPREF .. &DSN'

END
WRITE &DSN

You can also use the READ statement to obtain values for PROC statement
keywords that were not supplied on the invocation of the CLIST. For example,
suppose a PROC statement defines &ALPHA as a keyword with a default null
value. Assume &ALPHA contains the number of golf balls on the moon and that
the user does not assign a value to &ALPHA when invoking the CLIST.
However, a variable, &SPACEVENTS, in the CLIST results in code being
executed that requires a non-null value for &ALPHA. To obtain a value for

Chapter 3. Programming Tools 3-37

&ALPHA, the following code sends a message to the user requesting a value for
&ALPHA. Then, it issues a READ statement with &ALPHA as a parameter.

PROC 0 ALPHA ()

SET SPACEVENTS = &ALPHA
DO WHILE &SPACEVENTS =

WRITE Enter the number
WRITE are on the moon.
WRITE acceptable.
READ ALPHA
SET SPACEVENTS = &ALPHA

END

/* Null */
of golf balls there

A null value is not

Controlling Uppercase and Lowercase for READ Statement Input

To control uppercase and lowercase for READ statement input, use of the
CAPSj ASISjNOCAPS operand on the CONTROL statement, as well as the
&SYSLC and &SYSCAPS built-in functions. The CAPSj ASISjNOCAPS operand
indicates whether the CLIST should translate all READ statement input to
uppercase characters. (The CLIST does not modify numbers, national characters,
or special characters in such input.)

If you want the CLIST to translate all input obtained by READ statements to
uppercase characters, you can use the default value (CAPS) or code:

CONTROL CAPS

To request that the CLIST leave all input obtained by READ statements in the
format in which it was entered, code:

CONTROL ASIS
or

CONTROL NOCAPS

&'SYSLC and &SYSCAPS enable you to tailor individual strings as well as
substrings of input strings.

For example, a CLIST that prompts for first, middle, and last names, and saves
the data for inclusion in a report, may want to guarantee that the name is
properly capitalized before saving it in a variable. The following section of code
shows a way to do so:

3-38 CLISTs: Implementation and Reference

CONTROL ASIS /* Do not translate all READ input to uppercase */
WRITENR Enter first name:
READ FNAME
WRITENR Enter middle name:
READ MNAME
WRITENR Enter last name:
READ LNAME

/**/
/* Set the lengths of the first, middle, and last names to */
/* variables so that the substring notation is easier to read. */
/**/

SET LGTHFNAME &LENGTH(&FNAME)
SET LGTHMNAME = &LENGTH(&MNAME)
SET LGTHLNAME = &LENGTH(&LNAME)

/**/
/* Capitalize the first letters in first, middle, and last names */
/* and make sure all other letters are in lowercase characters. */
/**/

SET F &SUBSTR(1,&SYSCAPS(&FNAME))&SUBSTR(2:&LGTHFNAME,&SYSLC(&FNAME))
SET M = &SUBSTR(1,&SYSCAPS(&MNAME))&SUBSTR(2:&LGTHMNAME,&SYSLC(&MNAME))
SET L = &SUBSTR(1,&SYSCAPS(&LNAME))&SUBSTR(2:&LGTHLNAME,&SYSLC(&LNAME))
SET NAME = &STR(&F &M &L)

If the input entered is CADman ha VVy fisH, &NAME contains the string
'Cadman Havvy Fish'.

Using the READDV AL Statement

The READDV AL statement accesses the contents of the &SYSDV AL control
variable. &SYSDV AL contains one of three types of information:

• Information obtained by a READ statement without operands

• The non-delimiter data on the line returning control to the CLIST after a
TERMIN statement, as described in "Passing Control to the Terminal -
TERMIN"

• Information that the CLIST explicitly placed into &SYSDVAL with an
assignment statement

&SYSDVAL is updated only when a CLIST:

• Executes a READ statement without operands
• Executes a TERMIN statement
• Explicitly modifies &SYSDVAL with an assignment statement

The CLIST successively places each input string in &SYSDV AL into each
variable on the READDV AL statement.

Chapter 3. Programming Tools 3-39

Assume for the remainder of this topic that the following strings are in
&SYSDVAL:

SMITH JONES KELLY

The following statement assigns the strings to the symbolic variables listed on the
following statement:

READDVAL NAME1,NAME2,NAME3

Note that variables on the READDVAL statement do not require ampersands.

The preceding READDVAL statement produces the following results:

&NAMEl has the value SMITH.
&NAME2 has the value JONES.
&NAME3 has the value KELLY.

Note: The variables &NAMEl, &NAME2, and &NAME3 can be set to different
values during the execution of a CLIST. However, if the contents of
&SYSDV AL is not modified and READDV AL is executed again, those variables
are reset to their original values.

The following statement also reads all three strings from &SYSDV AL:

READDVAL NAME1,NAME2,NAME3,NAME4

The value of &NAME4 is null because there are not enough input strings in
&SYSDV AL to provide a fourth value.

The following statement, however, assigns values only to the variables NAMEl
arid NAME2:

READDVAL NAME1,NAME2

Because there are not enough variables on READDV AL to which the CLIST can
assign the input strings in &SYSDV AL, the CLIST ignores the excess strings. In
the previous example, the CLIST ignores KELLY.

Passing Control to the Terminal- TERMIN

The TERMIN statement transfers control to the terminal and establishes a means
for the user to return control to the CLIST.

Note: If a CLIST containing a TERMIN statement is executed under ISPF, the
TERMIN statement terminates the CLIST. As a result, users should not invoke
such a CLIST from ISPF unless termination at that point is acceptable.

The TERMIN statement either defines character strings, one of which the user
must enter to return control to the CLIST; or null lines, where the· user must press
the ENTER key to return control to the CLIST.

The TERMIN statement normally does not function alone. WRITE statements
preceding the TERMIN statement inform the user why control is b~ing
transferred to the terminal and how to return control to the CLIST.

3-40 CLISTs: Implementation and Reference

Unlike the READ statement, TERMIN enables the user to enter commands or
subcommands, and invoke programs before responding to the WRITE statement
prompts.

As soon as the CLIST executes the TERMIN statement, the user receives control.
The user might or might not receive a mode message after the TERMIN
statement executes. If issued, the mode message might be READY or the name
of the command under which the CLIST was invoked. (When READY is
displayed, users may think the CLIST has terminated. You may want to avoid
any confusion by telling them otherwise in the WRITE statement that precedes
the TERMIN statement.)

Returning Control After a TERMIN Statement

Code the TERMIN statement and define one or more character strings that
return control to the CLIST. For example:

TERMIN IGNORE ,PROCESS ,TERMINATE

The user then enters IGNORE, PROCESS, or TERMINATE to return control to
the CLIST. The &SYSDLM control variable contains the position of the string
used. For example, if the user enters TERMINATE to return control,
&SYSDLM contains a 3 because TERMINATE is the third variable on the
TERM IN statement. Multiple strings enable the user to indicate desired actions
to the CLIST.

You may allow a null line as one of the valid strings but it must be the first string
on the TERMIN statement. To do so, place a comma directly before the first
character string as follows:

TERMIN ,PRoCESS,TERMINATE

The previous statement enables the user to return control by entering one of the
following:

• null line (pressing the ENTER key)
• PROCESS
• TERMINATE

You can issue a TERMIN statement that lets the user return control by entering a
null line (pressing the ENTER key). To do so, code:

TERMIN

Exercise care in using a null line as the means for a user to return control to the
CLIST, because some TSO command processors use null lines as function
delimiters (for example, to switch between input and edit modes under EDIT).

Chapter 3. Programming Tools 3-41

Entering Input After a TERMIN Statement

The user can optionally enter input when returning control by appending the
input to the string that returns control. The CLIST stores the input in the
&SYSDVAL control variable, which the CLIST can then access by executing a
READDVAL statement. The READDVAL statement changes the input to upper
case, unless you code CONTROL ASIS in the CLIST.

Suppose a WRITE statement prompts the user to inform the CLIST, when
returning control after a TERMIN statement, if any data sets should be deleted.
The user affirms the request by entering the following:

PROCESS JCL.CNTL(BUDGT) ACCOUNT.DATA

The following CLIST deletes the data sets in the previous statement:

WRITE Check your catalog and enter the names of
WRITE up to two data sets you want deleted.
WRITE They must be separated by a comma or blank and
WRITE the first name must be preceded by the word PROCESS
WRITE and a blank. If you do not want to delete any data
WRITE sets, type in the word IGNORE. If you want to end
WRITE the CLIST, type in TERMINATE.
TERMIN IGNORE,PROCESS,TERMINATE
/* Read the two data set names (if any) in &SYSDVAL into
/* variables called &DSNl and &DSN2
READDVAL DSNl DSN2
/* If the user wants to delete data sets (PROCESS),
/* delete them
IF &SYSDLM = 2 THEN +

DO
IF &DSN1,= THEN +
delete &DSNl

IF &DSN2,= THEN +
delete &DSN2

END
/* If the user wants the CLIST to ignore the deletion request
/* but continue processing, execute the rest of CLIST. The
/* null ELSE path covers the request to terminate immediately.
IF &SYSDLM = 1 THEN +

DO
(Rest of CLIST)

END

Controlling the Display of Informational Messages

You can request that informational messages from commands or statements in a
CLIST be displayed or suppressed using operands on the CONTROL statement.
To request that they be displayed:

CONTROL MSG

To suppress the display of informational messages, code:

CONTROL NOMSG

The MSG/NOMSG option has no effect on error messages, they are always
displayed.

3-42 CLISTs: Implementation and Reference

Structuring CLISTs

DO-Groups

You may structure a CLIST using the following CLIST functions:

• DO-groups
• DO-WHILE-END sequences
• IF-THEN-ELSE sequences
• GOTO statements and labels for branching

DO-groups enable you to organize the instructions in a CLIST into groups to be
executed conditionally. The DO-END sequence appears only in an
IF-THEN-ELSE sequence and is described in "Making Decisions - the
IF-THEN-ELSE Sequence." The DO-WHILE-END sequence is a DO-group that
executes repeatedly while a condition is true.

Creating Loops - The DO-WHILE-END Sequence

The DO-WHILE-END sequence is the loop structure in the CLIST language. A
loop is a programming structure that repeats instructions as long as a condition is
true. When the condition becomes false, the loop ends and execution continues at
the instruction after the loop.

To use the DO-WHILE-END sequence, code:

DO WHILE condition
action
END

The condition must be either a comparative expression or a variable containing a
comparative expression. You may code multiple conditions, in which case the
comparative expressions (and/or variables) must be joined by logical operators.

The action can be one or more instructions. The CLIST executes the instructions
within the sequence repeatedly while the condition included on the WHILE clause
is true. When the condition is false, the CLIST executes the next instruction after
the END statement.

For example, you can initialize a variable (usually a counter) before the sequence
and include it in the conditional expression. Then, you can modify the variable in
the action so that eventually the condition is false.

For example, to process a set of instructions five times, you can code the
following:

SET &COUNTER = 5 /* Initialize counter
/* Perform the action while counter is greater than 0 */
DO WHILE &COUNTER GT 0

(Set of instructions)

SET COUNTER = &COUNTER - 1 /* Decrease counter by 1 */
END

Chapter 3. Programming Tools 3-43

The variable &COUNTER is a loop counter initially set to a value of five.
WHILE causes a test of the value of this counter each time the CLIST begins to
execute the DO-WHILE-END sequence. As long as the value of &COUNTER is
greater than zero (the test condition is true), the CLIST executes the sequence,
whose last instruction decreases the counter's value by one. When the counter's
value reaches zero (the test condition is false), the CLIST bypasses the action, and
continues processing at the instruction following the END statement.

Nesting DO-WHILE-END Sequences

You can nest DO-WHILE-END sequences within other DO-WHILE-END
sequences. The condition governing the execution of the action of the nested
sequence mayor may not be the same as that governing the execution of the
sequence in which it is nested. The following example includes a nested
DO-WHILE-END sequence whose conditional action is the same as that of the
sequence in which it is nested.

SET &COUNTER = 5 /* Initialize counter
/* Perform the action while counter is greater than 0 */
DO WHILE &COUNTER GT 0

(Set of instructions)
DO WHILE &COUNTER GT 3

. (Subset of instructions)

SET COUNTER = &COUNTER - 1 /* Decrease counter by 1 */
END

SET COUNTER
END

&COUNTER - 1 /* Decrease counter by 1 */

M~king Decisions - The IF-THEN-ELSE Sequence

The IF-THEN-ELSE sequence tests a condition or set of conditions, then
determines the logical path of execution (action) based on the results of the test.

The condition must be either a comparative expression or a variable containing a
comparative expression. You may code multiple conditions, in which case the
comparative expressions (and/or variables) must be joined by logical operators.

The action can be one or more instructions. If the condition(s) is true, the CLIST
executes the instructions in the THEN action. If the condition(s) is false, the
CLIST executes the instructions in the ELSE action.

3-44 CLISTs: Implementation and Reference

,/

The Standard Format

The Null ELSE Format

The standard format includes actions for both true and false conditions. (If an
action involves only one statement or command, it is not necessary to use the
DO-group.)

IF condition THEN +
DO
action

END
ELSE action

For example, assume a CLIST optionally prints a data set it has updated based
on user input. Assume the CLIST has prompted the user to determine whether to
print the data set and has saved the response in a variable called &PRINT. The
following IF-THEN-ELSE sequence performs the desired processing:

/**/
/* If the user wants data set printed, issue a message */
/* saying that it is being printed and invoke the CLIST */
/* that prints it. If user does not want data set printed */
/* just issue a message saying that the data set is not */
/* being printed. */
/**/

IF &PRINT=YES THEN +
DO

WRITE We are printing the data set as you requested.
%printds

END
ELSE +

WRITE The data set will not be printed.

When there is only one instruction in an action, you may place the instruction on
the same line as the THEN or ELSE statement. For example, you could code the
ELSE statement in the previous example as follows:

ELSE WRITE The data set will not be printed.

When a specific ELSE action is not required. You can code a null ELSE
statement in one of two ways: omit the ELSE statement entirely or just code
ELSE without operands (an action). The following IF-THEN-ELSE sequence
performs the desired processing:

IF &PRINT=YES THEN +
DO

WRITE We are printing the data set as you requested.
%printds

END

You can also code the following:

IF &PRINT=YES THEN
DO

WRITE We are printing the data set as you requested.
%printds

END
ELSE

Chapter 3. Programming Tools 3-45

The Null THEN Format

Assume a CLIST prints a data set itself and does not have to invoke another
CLIST to do the printing. By coding a condition that is true when the data set
should not be printed, you define a null THEN statement that effectively branches
to the end of the ELSE statement, avoiding the code that prints the data set.

The following IF-THEN-ELSE sequence performs the desired processing:

IF &PRINT=NO THEN
ELSE +

DO

· (The rest of the CLIST, which prints the data set)

END

Distinguishing END Statements from END Commands or Subcommands

The CONTROL Statement

When you include END commands or subcommands in the action of a
DO-group, a CLIST allows you to distinguish the END commands or
subcommands from the END statement.

One way to distinguish between an END statement and an END command or
subcommand is by coding a CONTROL statement with the END operand. The
value you code for the END operand may then be substituted for the END
statement in the DO-group. Once you have established this value in a given
CLIST, use it to end all DO-groups unless another CONTROL END statement
overrides the value.

For example, if you want to substitute ENDO for the END statement, you can
code the following:

CONTROL END(ENDO)
SET COUNTER = 10
DO WHILE &COUNTER GT 0

· ,(Set of instructions)

test 'datapak(newpgm)'

. (TEST subcommands)

end

· (more instructions)

SET COUNTER = &COUNTER - 1 /* Decrease counter by 1 */
ENDO

3-46 CLISTs: Implementation and Reference

/

The DATA-END DATA Sequence

GOTO Statements

Another way to identify END commands or subcommands in DO-groups, is to
place them in a DATA-ENDDATA sequence. For example:

SET COUNTER = 10
DO WHILE &COUNTER GT 0

. (Set of instructions)

DATA
test 'datapak(newpgm)'

(TEST subcommands)

end
ENDDATA

. (more instructions)

SET COUNTER = &COUNTER - 1 /* Decrease counter by 1 */
END

Only TSO commands and subcommands can appear within the DATA -
ENDDATA sequence. If a CLIST statement is included, TSO attempts to
execute it as a TSO command, causing an error.

The GOTO statement causes an unconditional branch to a label within a CLIST.
The label may be a variable, whose value, after symbolic substitution, is a valid
. label within the CLIST. You cannot use a GOTO statement to branch to another
CLIST. Examples of using GOTO statements are:

IF &A = 555 THEN GOTO Al
ELSE GO TO A2

AI: processing

A2: processing

SET TARGET = Bl
IF &X = 666 THEN GOTO &TARGET
ELSE +

DO
SET TARGET B2

IF LASTCC = 0 THEN +
SET TARGET = Bl
ELSE GOTO &TARGET

END
Bl: processing
B2: processing

Chapter 3. Programming Tools 3-47

Nested CLISTs

A CLIST may invoke another CLIST, which in turn may invoke another, and so
forth. CLISTs that are invoked by other CLISTs are called nested CLISTs. A
nested CLIST automatically branches back to the statement following the one
that invoked it. You can define global variables that allow nested CLISTs to
communicate with each other.

You can structure a series of nested levels of CLISTs in the same way that you
can design complex programs with main routines and subroutines. The CLIST
invoked by the user is the top-level or outer-level CLIST in the nesting chain.
CLISTs invoked by the outer-level CLIST are nested within it, and they may have
lower-level CLISTs nested within them.

In Figure 3-6, PROCI is the outer-level CLIST. It invokes PROC2 and PROC3,
which are nested within it. PROC2 invokes PROC4, and PROC4 invokes
PROC5. PROC4 is nested within PROC2, and PROC5 within PROC4.

PROCI

PROC2 PROC3

PROC4

PROCS

Figure 3-6. Nested CLISTS

If, for a given invocation, PROC2 invokes PROC4 and PROC5, it must do so
before returning control to PROCI. PROCI cannot invoke PROC3 until PROC2
finishes processing.

The same CLIST can be invoked at two or more levels of a nested hierarchy
because each invocation of a nested CLIST causes a new copy of it to be brought
into storage.

3-48 CLISTs: Implementation and Reference

Global Variables

Any special options established by a nested CLIST are in effect only when that
nested CLIST is executing. In particular, CONTROL statement options and
ATTN exits are no longer in effect when a nested CLIST returns control to the
CLIST that called it.

Nested CLISTs in the subcommand environment may execute only subcommands
and CLIST statements. They cannot execute TSO commands. A CLIST at any
given level determines the execution environment (command or subcommand) for
the CLISTs nested at all levels beneath it.

Global variables are variables defined on a GLOBAL statement. They are
designed to allow communication between nested CLISTs. Any CLIST in the
nested chain can modify or reference the value of a global variable.

All global variables in a given CLIST must have unique names. You cannot have
more global variables on the GLOBAL statement in a nested CLIST than there
are on the GLOBAL statement in the top-level CLIST.

To establish global variables, first determine the total number of symbolic
variables that are referenced by more than one of the CLISTs in the nested chain.
(Include the top-level CLIST among those in the nested chain.) Then, code
GLOBAL statements in each of the CLISTs in the chain that are involved in the
passing of data.

For example, in Figure 3-6, assume the following global variable definitions in
each of the CLISTs:

In PROCl: GLOBAL ABC D
In PROC2: GLOBAL X Y Z
In PROC3: GLOBAL F G H K
In PROC4: GLOBAL Q
In PROC5: GLOBAL R S

Variables &A, &X, &F, &Q, and &R can be shared amongst all the CLISTs. If
PROC4 sets &Q equal to D777, then &A, &X, &F, and &R are also set equal to
D777.

Within nested CLISTs, global variables are positional; that is, all variables defined
first refer to the same variable; all variables defined second refer to the same
variable; and so on.

Chapter 3. Programming Tools 3-49

Exiting from a Nested CLIST

Using the END Command

Using the EXIT Statement

There are three ways to exit from a CLIST:

• Let control automatically return to the calling CLIST at the end of the nested
CLIST

• Issue an END command

• Issue an EXIT statement

The END command only allows you to terminate a CLIST. You cannot set a
return code. To use the END command, code:

end

To cause a nested CLIST to return control to the CLIST that invoked it (one
level upward), code:

EXIT

You can specify a return code on the EXIT statement. The return code provides
a way for lower-level CLISTs to pass back to their callers indications of errors
encountered during execution.

To pass a return code when you exit, code:

EXIT CODE (expression)

The expression must be an integer or a symbolic variable whose value, after
substitution, is an integer. The CLIST stores the value of the expression into the
control variable &LASTCC.

If the proper control options are in effect, you can also have control passed back
to a CLIST that is protected from having an error or attention interrupt terminate
its execution. To return control to such a CLIST, code:

EXIT QUIT
or
EXIT CODE (expression) QUIT

If a CLIST in the nested chain is protected from termination, execution continues
based on actions in the CLIST's active error or attention routine. For
information on writing error and attention routines, refer to "ATTN and ERROR
ROUTINES."

If no CLIST in the nested chain is protected from being terminated after an error
or an attention interrupt, coding QUIT causes TSO to receive control. When this
situation occurs, the user sees a READY message indicating that TSO has
returned control to the terminal.

3-50 CLISTs: Implementation and Reference

Performing I/O

Opening a File

CLISTs can perform I/O to a physical sequential data set or a member of a PDS.
CLISTs can also perform I/O to the directory of a PDS if the record format is not
variable (V or VB). Four CLIST statements are available for opening, accessing,
and closing data sets:

• OPENFILE opens a previously allocated data set (file) for input, output, or
updating. You may have allocated the file using the TSO ALLOCATE
command or using step allocation (JCL statements in a logon procedure).

• GET FILE reads a record from a file opened in the same CLIST.

• PUTFILE writes a record to a file opened in the same CLIST.

• CLOSFILE closes a file opened in the same CLIST.

Whenever you perform I/O, include an error routine that can handle end-of-file
conditions and errors that may occur; for example, during pre-allocation or
allocation.

When performing I/O to a physical sequential data set that has a block size of 80
and a record format of U, TSO truncates the last character in the record.
(VTAM/TCAM uses the last byte for an attribute character notation.)

To open a file, use an OPENFILE statement that includes the file name of the
data set. Code either the name included on the FILE keyword of the
ALLOCATE command that allocates the data set; or if you used step allocation,
the ddname of the JCL statement that allocated the data set. If you use the
ALLOCATE command, include the FILE keyword or you cannot open the data
set for I/O. On the allocation, create the file name; it is an arbitrary value.

For example, you can code the following:

alloe file(payeheks) da('d58tanl.eheeks.data ') shr
OPENFILE PAYCHEKS

You can also code the file name as a symbolic variable as follows:

SET FILEID= PAYCHEKS

alloe file(&FILEID) da('d58tanl.eheeks.data ') shr
OPENFILE &FILEID

Chapter 3. Programming Tools 3-51

Closing a File

To close an open file, use a CLOSFILE statement that includes the same file
name as that specified on the corresponding OPEN FILE statement.

When coding the file name on the CLOSFILE, statement, code the same file
name as that specified on the associated OPENFILE statement. For example, if
you opened a file by coding:

OPENFILE &FILEID

close that file by coding:

CLOSFILE &FILEID

For examples of CLOSFILE, refer to the examples in the following two sections.

Reading a Record from a File

To read a record from an open file, use a GETFILE statement. The CLIST
creates a variable of the same name as the file name and places the record into it.
As long as the file remains open, successive GETFILE statements read successive
records from the file.

Assume a data set called D58TANl.CHECKS.DATA has a variable-blocked
record format and contains the following records:

200BLACKBUY
449REFY
450YARRUM

To read the records into three variables, you could code the following:

. (Error routine)

alloc file(paycheks) da('inst.emp.data ') shr reu
OPENFILE PAYCHEKS /* Defaults to INPUT */
SET COUNTER=l
DO WHILE &COUNTER ,> 3

GETFILE PAYCHEKS /* Read a record */
SET EMPLOYEE&COUNTER=&PAYCHEKS /* Store the record */
SET COUNTER=&COUNTER+l /* Increase counter by one */

END
CLOSFILE PAYCHEKS /*Close the file */

Writing a Record to a File

To write a record to an open file, use a PUTFILE statement. After issuing the
OPENFILE statement but before issuing PUTFILE, create a variable of the same
name as the file name and place into it the record you are writing to the data set.

As long as the file remains open, successive PUTFILE statements write successive
records to the data set. For a data set with a disposition of NEW, OLD, or
SHR, if you close the file and then re-open it, a subsequent PUTFILE statement

3-52 CLISTs: Implementation and Reference

Updating a File

overlays the first record in the data set. For a data set with a disposition of
MOD, a subsequent PUTFILE statement adds a record to the end of the data set.

Assume a CLIST contains the following variables:

&EMPLOYEE1, which contains the value 'BLACKBUY: $200.00'.
&EMPLOYEE2, which contains the value 'REFY: $449.00'.
&EMPLOYEE3, which contains the value 'YARRUM: $450.00'.

To place the previous values in a data set called
D58TANl.CURRENTSAL.DATA, you could code the following:

alloc file(salaries) da('d58tanl.currentsal.data') shr reu
OPENFILE SALARIES OUTPUT /* Open the file for output */
SET COUNTER=l
DO WHILE &COUNTER .> 3

SET EMPLOYEE=&&EMPLOYEE&COUNTER
SET SALARIES=&EMPLOYEE /* Set the record to be written */
PUTFILE SALARIES /* Write the record */
SET COUNTER=&COUNTER+l /* Increase counter by one */

END
CLOSFILE SALARIES /* Close the file */

To update a record in an open file, use the GETFILE and PUTFILE statements.
After opening a file for updating, perform successive GETFILE statements until
the desired record is read. After assigning the new value to a variable of the same
name as the file name, perform a PUTFILE statement to update the record.

As long as the file remains open, you may update records.

Assume a data set called D58TANl.CHECKS.DATA has a variable-blocked
record format and contains the following records:

200BLACKBUY
449REFY
450YARRUM

To update the record for REFY, you can code the following:

. (Error routine)

alloc file(paycheks) da('d58tanl.checks.data') shr reu
OPENFILE PAYCHEKS UPDATE /* Open file for updating */
GETFILE PAYCHEKS /* Read first record */
DO WHILE &SUBSTR(4:7,&PAYCHEKS).=REFY

GETFILE PAYCHEKS /* Read another record */
END
SET PAYCHEKS = OOOREFY /* Set new value */
PUTFILE PAYCHEKS /* Write new value to data set */
CLOSFILE PAYCHEKS /* Close the file */

Note: On a GETFILE or PUTFILE statement, code the actual filename; DO
NOT code the file name as a symbolic variable. You can, however, use a

Chapter 3. Programming Tools 3-53

symbolic variable on the OPENFILE and CLOSEFILE statements, as in the
following example:

SET FILEID PAYCHEKS

alloc f(&FILEID) da('d58tanl.checks.data') shr
OPENFILE &FILEID

GETFILE PAYCHEKS

PUTFILE PAYCHEKS
CLOSFILE &FILEID

Special Considerations for Performing 1/0 on Records Containing JCL Statements

End-of-File Processing

If a CLIST reads or writes records containing JCL statements, that CLIST could
make incorrect modifications to the statements by symbolic substitution. To
prevent the incorrect modifications, you can use the &STR built-in function or the
&SYSSCAN control variable. Refer to "Preserving the Integrity of a Character
String - &NRSTR" and &SYSSCAN for details and example.

Whenever you perform I/O, you should include code that handles end-of-file
conditions. In a CLIST, end-of-file causes an error condition (error code 400).
To process this condition, provide an error routine before the code that performs
the I/O. For a complete description of how to write an error routine, refer to
"Error Routines" later in this chapter.

The following error routine saves the value of &LASTCC, closes and frees the
open file, and branches to a statement that determines whether end-of-file was
reached.

3-54 CLISTs: Implementation and Reference

SET RCODE=O /* Initialize the return code variable to 0 */
SET EOF=OFF /* Set the end-of-file indicator off */

ERROR +
DO

SET RCODE = &LASTCC /* Save the value of &LASTCC */
IF &RCODE=400 THEN +

DO
CLOSFILE PAYCHEKS
free f(paycheks)
WRITE No record to update because end-of-file was reached.
SET EOF=ON
RETURN

END
END

alloc file(paycheks) da('d58tan.checks.data') shr reu /* Allocate
/* file */
/* and establish file name of paycheks */
OPENFILE PAYCHEKS UPDATE /* Open file for updating */
SET COUNTER=l /* Initialize counter to 1 */
DO WHILE &COUNTER <= 4

GETFILE PAYCHEKS /* Skip records */
SET COUNTER= &COUNTER+l /* Increase counter by 1 */

/* If EOF reached, end loop. Null else */
IF &EOF=ON THEN GO TO OUT

END
SET PAYCHEKS = 480BUZZBEE /* Set variable to new value */
PUTFILE PAYCHEKS /* Update fourth record */
CLOSFILE PAYCHEKS /* Close the file */

. (Rest of CLIST)
OUT: END

ATTN and ERROR ROUTINES

Two types of actions cause the execution of a CLIST to halt prematurely:
attention interrupts and errors. The CLIST language provides two statements
that enable you to code routines within the CLIST to handle attention interrupts
and errors. They are ATTN and ERROR respectively. The ATTN statement is
described in "Attention Routines." The ERROR statement is described in "Error
Routines."

An attention interrupt occurs when the user presses the key (usually PAl or
ATTN) on the terminal keyboard and suspends execution of a program. The user
may enter an attention interrupt for any number of reasons, such as to terminate
an infinite loop or simply to end the CLIST.

An error can occur for any number of reasons, such as a numeric value that
exceeds 231 _1, an end-of-file condition, a non-zero return code from a TSO
command, etc.

Chapter 3. Programming Tools 3-55

Attention Routines

Use the ATTN statement to create an attention routine that defines an action to
be taken when the user enters an attention interrupt.

To create an attention routine, code:

ATTN action

The ATTN statement and its action must precede the code to which it applies.
Multiple CLIST statements may be executed in the action but only one TSO
command, TSO subcommand, or null line may be executed. If the one TSO
command executed is an invocation of an attention handling CLIST, you may
execute as many TSO commands or subcommands as you wish in the attention
handling CLIST.

You should inform the user at the beginning of the attention routine that TSO is
processing the attention interrupt. Otherwise, the user may enter another
attention interrupt. For a description of how TSO processes multiple attention
interrupts, refer to TSO Guide to Writing a Terminal Monitor Program or a
Command Processor.

Cancelling Attention Routines

You can cancel an attention routine at any point, letting theCLIST continue
without any special attention processing. To cancel an attention routine, code:

ATTN OFF

This entry nullifies the most previously established attention routine. Do not use
ATTN OFF within an attention routine.

You may also code attention routines that override previous ones. You may
initialize new attention routines as many times as you wish. Each attention
routine overrides all previous ones.

Unless the action terminates the CLIST, it must execute a RETURN statement.
The RETURN statement returns control to the CLIST statement, command, or
subcommand following the one that was executing when the user entered the
attention interrupt.

Protecting the Input Stack for Attention Routines

When a CLIST is executed, it translates each statement into an executable format
and places it in a section of storage called the input stack. The input stack is the
source from which TSO obtains its input (TSO commands, CLIST statements).

For nested CLISTs, the input stack holds the contents of the CLISTs in the order
in which they are nested.

If you write an attention routine that does anything other than terminate the
CLIST, protect the input stack from being erased (flushed) from storage when an
attention interrupt occurs. You can protect the input stack by coding a
CONTROL statement with the MAIN operand that must appear before the

3-56 CLISTs: Implementation and Reference

attention routine. The MAIN operand indicates that the CLIST is the main
CLIST in the invoker's TSO environment and automatically prevents TSO from
flushing the input stack in the event of an attention interrupt.

If you use global variables in both a main CLIST and one that is invoked by the
ATTN action, code CONTROL MAIN in the main CLIST so that the global
variables can be maintained.

Attention routine processing depends on whether or not CONTROL MAIN has
been coded, as well as whether the routine executes a null line. If CONTROL
MAIN is not in effect, the CLIST terminates and the user sees the READY
message, indicating that control has returned to the terminal. If CONTROL
MAIN is in effect, and a command is issued, the CLIST ultimately continues at
the statement or command following the one that was executing when the user
entered the attention interrupt. If CONTROL MAIN is in effect, and a null line
executes in the attention routine, the CLIST continues at the point where the
attention occurred, which may not be the next command or statement.

The ALLOCATE CLIST shown in Figure 3-7 contains an attention routine that
prompts the user to indicate whether he wants to terminate the CLIST. If the
user responds affirmatively, the CLIST determines whether any data sets have
been allocated, and, if so, invokes a CLIST called HOUSKPNG to free allocated
data sets. HOUSKPNG determines which data sets to free by referencing the
CLEANUP global variable. CLEANUP contains the number one, two, or three.
The CLIST containing the attention routine frees the data sets in the inverse order
of that in which it allocates them. The HOUSKPNG CLIST is shown in
Figure 3-8.

Chapter 3. Programming Tools 3-57

THE ALLOCATE CLIST

/***/
/* THE ALLOCATE CLIST ALLOCATES THREE DATA SETS REQUIRED FOR */
/* A PROGRAM. IT IS EQUIPPED TO HANDLE ATTENTION INTERRUPTS */
/* ENTERED AT ANY POINT. WHEN NECESSARY, IT INVOKES HOUSKPNG. */
/***/

PROC 2 &DSI &DS2
CONTROL END(STOP)
CONTROL PROMPT
GLOBAL DSI DS2 CLEANUP
ATTN +

DO
WRITE TSO is processing your attention
WRITENR Do you want to end? If so, type YES ====>
READ &END
IF &END = YES THEN +

/* If user wants to end, terminate the CLIST after the HOUSKPNG routine
/* frees any data sets allocated by the CLIST.

DO
CONTROL FLUSH /* flush the input stack after HOUSKPNG */

STOP
ELSE +

CONTROL NOFLUSH MAIN /* return control to the next CLIST */
/* instruction after HOUSKPNG finishes */

= YES THEN + IF &FOOTPRINT
%houskpng

ELSE
DO

SET &NULL
&NULL

END
STOP

/*issue null line */

alloc f(input) da(&dsl .. text) shr reu
SET FOOTPRNT = YES
SET CLEANUP=l
alloc f(output) da(&ds2 .. text) reu
SET CLEANUP=2
alloc f(temp) da(temp.text)
SET CLEANUP=3
call 'myid.myprog.load(member)'
free f(temp) da(temp.text)
SET CLEANUP=2
free f(output) da(&ds2 .. text)
SET CLEANUP=l
free f(input) da(&dsl .. text)
SET FOOTPRNT = /* Set FOOTPRNT back to null */

Figure 3-7. A CLIST Containing an Attention Routine - The ALLOCATE CLIST

3-58 CLISTs: Implementation and Reference

THE HOUSKPNGCLIST

/***/
/* THE HOUSKPNG CLIST IS INVOKED WHEN THE USER WANTS TO END THE */
/* ALLOCATE CLIST AFTER AN ATTENTION AND DATA SETS ARE ALREADY */
/* ALLOCATED. BASED ON THE VALUE OF THE GLOBAL VARIABLE */
/* CLEANUP, THE CLIST FREES FROM ONE TO THREE OF THE DATA SETS */
/* ALLOCATED IN ALLOCATE. */
/***/

CONTROL END(ENDO)
ATTN +

EXIT QUIT
GLOBAL DSI DS2 CLEANUP
IF &CLEANUP=l THEN +
free f(input) da(&dsl .. text)

IF &CLEANUP=2 THEN +
DO
free f(input) da(&dsl .. text)
free f(output) da(&ds2 .. text)

ENDO
IF &CLEANUP=3 THEN +

DO
free f(input) da(&dsl .. text)
free f(output) da(&ds2 .. text)
free f(ternp) da(ternp.text)

ENDO

Figure 3-8. An Attention Handling CLIST - The HOUSKPNG CLIST

Error Routines

Note that the ATTN action in Figure 3-7 itself issues only one TSO command:
%houskpng or the null line. However, when HOUSKPNG is invoked, one to
three commands are issued.

Use the ERROR statement to create an error routine. The error routine defines
an action to be taken when a CLIST receives a nonzero return code. (Figure 5-1
lists the CLIST error codes.) The action is any executable statement and is often
a DO-group that performs operations tailored to the indicated error. You can
structure an ERROR action as follows:

ERROR +
DO

. (action)

END

The ERROR statement and its action must precede the code to which it applies.
An action may contain TSO commands and subcommands, subject to the mode in
which the CLIST is executing when the error occurs. An error routine action is
not limited to issuing only one TSO command or subcommand, as is an attention
routine.

Unless the action terminates the CLIST, it m~st execute a RETURN statement.
The RETURN statement returns control to the CLIST statement, TSO command,

Chapter 3. Programming Tools 3-59

Cancelling Error Routines

or TSO subcommand following the one that was executing when the error
occurred. Repeated errors which activate the same error routine may cause the
CLIST to terminate.

You may also code error routines that override previous ones. You may initialize
new error routines as many times as you want. Each error routine overrides all
previous ones.

To cancel the most previously established error routine in a CLIST, code either:

ERROR OFF

or

ERROR

following the error routine to be cancelled. For ERROR OFF, the CLIST
continues execution without any error processing.

For ERROR, the CLIST continues execution without any error processing but
displays the statement, command, or subcommand that caused the error, together
with explanatory error messages. After displaying the information, the CLIST
attempts to continue execution with the next sequential statement, command, or
subcommand.

Protecting the Input Stack for Error Routines

Using Error Routines

When a CLIST is executed, it translates each statement into an executable format
and places it in a section of storage called the input stack. The input stack is the
source from which TSO obtains its input (TSO commands, CLIST statements).

If you write a CLIST that contains an error routine, protect the input stack from
being erased from storage (flushed) when an error occurs. You can protect the
input stack by coding a CONTROL statement with the NOFLUSH or MAIN
operand. The CONTROL statement must appear before any error routine.
preferably at the beginning of the CLIST.

The COPYDATA CLIST, shown in Figure 3-9, contains an error routine that
handles:

• Pre-allocation errors
• End-of-file condition
• Allocation errors

The CLIST allocates the data sets required to copy an existing data set into an
output data set. If the copy is successful, the CLIST cancels the error routine by
executing an ERROR statement with no operands and continues.

3-60 CLISTs: Implementation and Reference

THE COPYDATA CLIST

/***/
/* THE COPYDATA CLIST COPIES RECORDS FROM A DATA SET INTO AN */
/* OUTPUT DATA SET. IT IS EQUIPPED TO HANDLE ERRORS CAUSED BY */
/* END-OF-FILE, ALLOCATION ERRORS, AND ERRORS CAUSED BY OTHER */
/* STATEMENTS AND COMMANDS IN THE CLIST. */
/***/

CONTROL NOFLUSH END(ENDO) /* Protect the stack from being flushed
/* so that when error is caused by end-of-file, CLIST can continue
ERROR +

DO
SET RCODE=&LASTCC /* Save return code
/* If end-of-file, branch to CLOSFILE statements
IF &RCODE=400 THEN GOTO EOF
/* If error occurred before allocation, set exit code to 4
IF &FOOTPRINT=O THEN SET ECODE=4
/* If allocation of file OUTDS failed, free file INDATA and set
/* exit code to 8
IF &FOOTPRINT=l THEN +

DO
free f(indata) da(text.data)
SET ECODE=8

ENDO
/* If the error was not caused by end-of-file or allocation error,
/* free both files and set exit code to 12. In this case, error was
/* caused by one of the file I/O statements
IF &FOOTPRINT=2 THEN +

DO
free f(indata) da(text.data)
free f(outds)
SET ECODE=12

EN DO
EXIT CODE(&ECODE) /* For all errors except end-of-file condition,
/* exit the CLIST with the appropriate exit code

ENDO /* End of error routine
SET FOOTPRINT=O /* Identify pre-allocation errors

SET FOOTPRINT=l /* Identify allocation error for file INDATA
alloc f(indata) da(d1Srbo1.text.data) shr reu /* Allocate input data set
SET FOOTPRINT=2 /* Identify allocation error for file OUTDS
alloc f(outds) sysout(a) /* Allocate output data set
OPENFILE INDATA /* Open input data set
OPENFILE OUTDS OUTPUT /* Open output data set
/* Copy records from input data set to output data set
DO WHILE 1=1 /* Use infinite loop to reach EOF

GETFILE INDATA /* Read input record
SET OUTDS=&INDATA /* Set output record to value of input record
PUTFILE OUTDS /* Write output record to output data set

ENDO
EOF: CLOSFILE INDATA /* Close input data set
CLOSFILE OUTDS /* Close output data set
ERROR /* From this point on, display statement that causes error along
/* with any error messages

Figure 3-9. The COPYDATA CLIST

Chapter 3. Programming Tools 3-61

3-62 CLTSTs: Implementation and Reference

Chapter 4. Implementation

This chapter contains examples of CLISTs that illustrate the implementation of
the CLIST tools discussed in Chapter 3. The examples assume that the CLISTs
reside in a PDS allocated to SYSPROC.

Figure 4-1 lists the names of the CLISTs and provides short descriptions of the
functions they illustrate. Many of these CLISTs include examples of symbolic
variables, control variables, built-in functions, and conditional sequences.

CLIST Function

LISTER Including TSO commands

DELETE Simplifying routine tasks

CALC Creating arithmetic expressions from user supplied input

CALCFTND Performing front-end prompting

SCRIPTDS Initializing and invoking system services

SCRIPTN Invoking CLISTs to perform subtasks

SUBMITD Including JCL; performing front-end prompting

SUBMITFQ Performing substringing; adding flexibility

RUN PRICE Allowing foreground or background submittal of jobs

TESTDYN Providing invoker with options and performing initialization based on
options specified

COMPRESS Simplifying routine, system-related tasks

CASH Simplifying invoker's interface to complex applications

PHONE Performing I/O; reading records into &SYSDV AL

SPROC Using &SYSOUTTRAP and &SYSOUTLINE variables to manage command
output

PROFILE Using ISPF dialog management services in CLISTs to create full-screen
applications

Figure 4-1. CLIST Examples and Their Functions

Chapter 4. Implementation 4-1

Including TSO Commands - The LISTER CLIST

You can organize related activities so that users can simply invoke a CLIST to
perform a given task or group of tasks. The simplest example is a CLIST that
groups TSO commands together.

The LISTER CLIST consists of two TSO commands. (See Figure 4-2.) The
LISTCAT command lists all of the entries in the invoker's catalog. The
LIST ALC command lists the names and status of all data sets allocated to the
invoker's userid. TSO displays the output produced by these commands in the
same order as that in which it executes the commands. The invoker does not
have to enter a command, view its output, then enter another command; all input
required from the invoker is supplied at one time.

I T~E LISTER CLIST

llstc
lista st

Figure 4-2. The LISTER CLIST

4-2 CLISTs: Implementation and Reference

Simplifying Routine Tasks - The DELETE CLIST

THE DELETE CLIST

One way to simplify routine tasks is to write CLISTs that make the process as
interactive as possible. For example, the syntax of the DELETE command could
confuse users who simply want to delete some of their data sets. For those users,
you could write a CLIST that simplifies the process. The DELETE CLIST shown
in Figure 4-3 is an example of such a CLIST. It prompts the invoker for a data
set name or a completion indicator.

/**/
/* THIS CLIST (DELETE) PROMPTS THE USER FOR THE NAMES OF THE DATA */
/* SETS TO BE DELETED, ONE AT A TIME. */
/**/

SET DONE=NO
DO WHILE &DONE=NO

WRITE Enter the name of the data set you want deleted.
WRITE Omit the identification qualifier (userid).
WRITE Do not put the name in quotes.
WRITE When you are finished deleting all data sets, type an If I .
READ DSN
IF &DSN = F THEN SET DONE=YES
ELSE delete &DSN

END

Figure 4-3. The DELETE CLIST

Chapter 4. Implementation 4-3

Creating Arithmetic Expressions from User-Supplied Input - The
CALC CLIST

THE CALC CLIST

The CALC CLIST, shown in Figure 4-4, contains a PROC statement that
requires three input strings from the invoker:

• A numeric value
• An arithmetic opera tor
• Another numeric value

The CLIST creates an arithmetic expression using the positional parameter
variables that represent these three values. A WRITE statement displays a
message made up of the unevaluated expression, an equal sign, and the evaluated
expression. CALC contains no validity-checking statements; therefore, invalid
input causes the &EV AL built-in function to fail and generate an error code.

PROC 3 FVALUE OPER LVALUE

/**/
/* DISPLAY THE ENTIRE EQUATION AT THE TERMINAL, INCLUDING THE RESULT */
/* OF THE EXPRESSION. */
/**/

WRITE &FVALUE&OPER&LVALUE = &EVAL(&FVALUE&OPER&LVALUE)

Figure 4-4. The CALC CLIST

4-4 CLISTs: Implementation and Reference

Using Front-End Prompting - The CALCFTND CLIST

Front-end prompting verifies the data before the CLIST uses it in other
statements. For example, the CALC CLIST assumed that &FVALUE and
&LVALUE represented valid numeric values or variables containing valid
numeric values. It also assumed that &OPER represented a valid arithmetic
operator.

In CALCFTND, shown in Figure 4-5, the CLIST first ensures that &FVALUE is
numeric, not character data. The WRITE statement message is tailored to
address the possibility that the invoker is including decimal points in the value.
The CLIST views such a value as character data, not numeric data. The
DO-WHILE-END sequence executes until the invoker supplies a valid numeric
value. A similar DO-WHILE-END sequence is provided for &LVALUE.

The verification of &OPER is somewhat more involved. &OPER must be a valid
arithmetic operator, one of the following symbols: + ,-, *,/, **,/ /. Therefore, the
condition for the corresponding DO-WHILE-END sequence requires a logical
ANDing of comparative expressions. Each expression is true when &OPER does
not equal the operator in the expression. When all of the expressions are true,
&OPER is not a valid arithmetic operator. To ensure that the CLIST views
&OPER and the valid arithmetic operators as character data, enclose them in
&STR built-in functions.

Chapter 4. Implementation 4-5

THE CALCFTND CLIST

PROC 0 FVALUE() OPER() LVALUE()

/**/
/* IF &FVALUE IS INVALID, CONTINUE PROMPTING THE USER TO ENTER */
/* AN ACCEPTABLE VALUE. */
/**/

SET &NULL =
DO WHILE &DATATYPE(&FVALUE) ,= NUM

IF &STR(&FVALUE) = &NULL THEN +
WRITE Please enter a first value without decimal points &STR(-)

ELSE +
DO

WRITENR Your first value is not numeric. Reenter a number without
WRITE decimal points &STR(-)

END
READ &FVALUE

END
/**/
/* IF &OPER IS INVALID, CONTINUE PROMPTING THE USER TO ENTER */
/* AN ACCEPTABLE VALUE. */
/**/

DO WHILE &STR(&OPER),=&STR(+) AND &STR(&OPER),=&STR(-) AND +
&STR(&OPER),=&STR(*) AND &STR(&OPER),=&STR(/) AND +
&STR(&OPER),=&STR(**) AND &STR(&OPER),=&STR(//)

IF &STR(&OPER) = &NULL THEN +
DO

WRITE Please enter a valid arithmetic operator (+,-,*,/,**,//)
WRITE enclosed in parentheses, for example, (+) or (-).

END
ELSE +

DO
WRITE Your second value is not a valid operator (+,-,*,/,**,//).
WRITE Reenter this value, using one of the valid arithmetic
WRITE operators enclosed in parentheses, for example, (+) or (-).

END
READ &OPER

END
/**/
/* IF &LVALUE IS INVALID, CONTINUE PROMPTING THE USER TO ENTER */
/* AN ACCEPTABLE VALUE. */
/**/

DO WHILE &DATATYPE(&LVALUE) ,=NUM
IF &STR(&LVALUE) = &NULL THEN +

WRITE Please enter a second value without decimal points &STR(-)
ELSE +

DO
WRITENR Your last value is not numeric. Reenter a number without
WRITE decimal points &STR(-).

END
READ LVALUE

END
/**/
/* ONCE THE OPERANDS HAVE BEEN VERIFIED, EVALUATE THE EXPRESSION AND */
/* DISPLAY THE RESULT AT THE TERMINAL. */
/**/
WRITE &FVALUE&OPER&LVALUE = &EVAL(&FVALUE&OPER&LVALUE)

Figure 4-5. The CALCFTND CLIST

4-6 CLISTs: Implementation and Reference

Initializing and Invoking System Services - The SCRIPTDS CLIST

A user can invoke the SCRIPTDS CLIST to run the SCRIPT program against an
input data set and have the output printed.

As shown in Figure 4-6, SCRIPTDS contains a positional parameter, &DSN.
The invoker supplies a unique name for this parameter. The CLIST includes the
&DSN variable in the member name of the input data set parameter on the
invocation of the SCRIPT program. The invoker does not have to supply input
for &SYSPREF because it is a control variable whose value is available to the
CLIST. The inclusion of &SYSPREF as the identification qualifier of the input
data set frees the invoker from having to enter a fully qualified data set name.
The CLIST also substitutes &SYSPREF and &DSN on the allocation of the
output data set so that its name corresponds to the name of the input data set.

Chapter 4. Implementation 4-7

THE SCRIPTDS CLIST

PROC 1 DSN LIST

/***/
/* THIS CLIST (SCRIPTDS) SETS UP THE ENVIRONMENT FOR SCRIPTING A */
/* DATA SET, ISSUES THE SCRIPT COMMAND, AND PRINTS THE OUTPUT. */
/***/

CONTROL NOFLUSH NOMSG
IF &LIST=LIST THEN +

CONTROL LIST

/***/
/* DELETE THE OUTPUT DATA SET INTO WHICH THE SCRIPTED FILE WILL BE */
/* PLACED IN CASE IT IS STILL ALLOCATED FROM A PREVIOUS INVOCATION */
/* OF SCRIPTDS. */

/***/
delete '&SYSPREF .. &DSN .. list'
/***/

/* DEFINE A FILE NAME (DDNAME) FOR THE OUTPUT DATA SET SO THAT THE */
/* SCRIPT PROGRAM CAN REFERENCE IT. FREE THE FILE BECAUSE SCRIPT WILL */
/* ALSO ALLOCATE THE DATA SET. */

/***/
alloc f(a) da('&SYSPREF .. &DSN .. list') dsorg(ps) recfm(v,b,m) +

blk(3156) sp(lO,lO) tr new release reu
free f(a)
CONTROL LIST

/***/
/* ISSUE THE SCRIPT COMMAND, SPECIFYING THE NAME OF THE DATA SET */
/* MEMBER TO BE SCRIPTED: MEMOS.TEXT(&DSN). */

/***/
script '&SYSPREF .. memos.text(&DSN)' +
message(delay id trace) device(3800n6) twopass +
profile('script.r2.text(ssprof) ') +
lib('script.r2.maclib') +
sysvar(c 1 dyes) +
bind(8 8) chars(gt12 gb12) file('&SYSPREF .. &DSN .. list') continue

/***/
/* FREE THE FILES REQUIRED TO PRINT THE SCRIPTED DATA SET. */
/* THEN ALLOCATE THEM, REQUESTING TWO COPIES ON THE 3800 PRINTER. */
/***/

CONTROL NOMSG
free f(sysprint,sysutl,sysut2,sysin)
CONTROL MSG
alloc f(sysprint) dummy reuse
alloc f(sysutl) da('&SYSPREF .. &DSN .. list') shr reuse
alloc f(sysut2) sysout(n) fcb(std4) chars(gt12,gb12) +

copies(2) optcd(j) reuse
alloc f(sysin) dummy reuse

/***/
/* INVOKE THE UTILITY TO HAVE THE DATA SET PRINTED AND FREE THE */
/* FILES. */
/***/

call 'sysl.linklib(iebgener)'
free f(sysutl,sysut2,sysprint,sysin)

Figure 4-6. The SCRIPDS CLIST

4-8 CLISTs: Implementation and Reference

,/

/

Invoking CLISTs to Perform Subtasks - The SCRIPTN CLIST

THE SCRIPTN CLIST

PROC 1 DSN
GLOBAL DSNAM
SET DSNAM=&DSN

While you can write CLISTs that perform application tasks directly, you can also
write CLISTs that subdivide application tasks among nested CLISTs and control
their execution. For example, you can write a CLIST that invokes two other
CLISTs to perform the same tasks as those performed by SCRIPTDS.

SCRIPTN, shown in Figure 4-7, produces the same results as SCRIPTDS. The
invoker provides a data set name qualifier as done for SCRIPTDS. SCRIPTN
defines &DSNAM as a global variable because SCRIPTN invokes two CLISTs
that refer to the variable. SCRIPTN immediately invokes a CLIST called
SCRIPTD, which sets up the environment required to script the input data set
and then issues the SCRIPT command (See Figure 4-8). When finished with these
tasks, SCRIPTD automatically returns control to SCRIPTN and execution
continues at the command following the invocation of SCRIPTD. This command
is the invocation of a CLIST called OUTPUT (See Figure 4-9). OUTPUT
performs the required allocations to invoke the IEBGENER utility to print the
output data set.

IF &LENGTH(&DSN) LE 8 AND + /* ENSURE VALID NAME AND */
&DATATYPE(&SUBSTR(l,&DSN))=CHAR THEN + /* VALID FIRST CHARACTER */

DO

/***/
/* INVOKE THE SCRIPTD CLIST TO SET UP THE ENVIRONMENT REQUIRED TO */
/* SCRIPT THE INPUT DATA SET AND THEN EXECUTE THE SCRIPT COMMAND. */

/***/
%scriptd
/***/

/*
/*

INVOKE THE OUTPUT CLIST TO PRINT 2 COPIES OF THE SCRIPTED
DATA SET ON THE 3800 PRINTER.

*/
*/

/***/

%output
END
ELSE +

WRITE The name entered must be less than 9 characters long and +
the first character must not be numeric.

Figure 4-7. The SCRIPTN CLIST

Chapter 4. Implementation 4-9

THE SCRIPTD CLIST

GLOBAL DSNAM

/***/
/* THIS CLIST (SCRIPTD) SETS UP THE ENVIRONMENT FOR SCRIPTING A */
/* DATA SET PROVIDED BY THE USER AND ISSUES THE SCRIPT COMMAND. */
/**~******************************/

CONTROL NOFLUSH NOMSG

/***/
/* DELETE THE OUTPUT DATA SET INTO WHICH THE SCRIPTED FILE WILL BE */
/* PLACED IN CASE IT IS STILL ALLOCATED FROM A PREVIOUS INVOCATION */
/* OF SCRIPTN. */
/***/

delete '&SYSPREF .. &DSNAM .. list'

/***/
/* DEFINE THE OUTPUT DATA SET SO THAT THE SCRIPT PROGRAM CAN REFERENCE */
/* IT. FREE THE FILE BECAUSE SCRIPT WILL ALSO ALLOCATE THE DATA SET */
/***/

alloc f(a) da('&SYSPREF .. &DSNAM .. list') dsorg(ps) recfm(v,b,m) +
blk(3156) sp(50,30) tr new release reu

free f(a)
CONTROL LIST

/***/
/* ISSUE THE SCRIPT COMMAND, SPECIFYING THE NAME OF THE DATA SET */
/* MEMBER TO BE SCRIPTED: MEMO.TEXT(&DSNAM). */
/* THEN RETURN CONTROL TO SCRIPTN. */
/***/

script '&SYSPREF .. memo.text(&DSNAM)' +
message(delay id trace) device(3800n6) twopass +
profile('script.r2.text(ssprof) ') +
lib('script.r2.maclib') +
sysvar(c 1 dyes) +
bind(8 8) chars(gt12 gb12) file('&SYSPREF .. &DSNAM .. list') continue

Figure 4-8. The SCRIPTD CLIST

4-10 CLISTs: Implementation and Reference

/

/'

THE OUTPUT CLIST

GLOBAL DSNAM

/**/
/* THIS CLIST (OUTPUT) FREES FILES REQUIRED TO PRINT THE SCRIPTED */
/* DATASET, ALLOCATES THEM REQUESTING TWO COPIES ON THE 3800 */
/* PRINTER, AND INVOKES IEBGENER TO HAVE THEM PRINTED. */
/**/

CONTROL NOMSG
free f(sysprint,sysutl,sysut2,sysin)
CONTROL MSG
alloe f(sysprint) dummy reuse
alloe f(sysutl) da('&SYSPREF .. &DSNAM .. LIST') shr reuse
alioe f(sysut2) sysout(n) feb(std4) ehars(gt12,gb12) +

eopies(2) opted(j) reuse
alloe f(sysin) dummy reuse

/**/
/* INVOKE THE UTILITY TO HAVE THE DATA SET PRINTED AND FREE THE */
/* FILES. THEN RETURN CONTROL TO SCRIPTN. */
/**/

call 'sysl.linklib(iebgener)'
free f(sysutl,sysut2,sysprint,sysin)

Figure 4-9. The OUTPUT CLIST

Chapter 4. Implementation 4-11

Including JCL Statements - The SUBMITDS CLIST

You can include job control language (JCL) statements in CLISTs. The
SUBMITDS CLIST, shown in Figure 4-10, makes use of the SUBMIT *
command, which indicates that the JCL statements immediately follow the
command.

SUBMITDS verifies job card information using front-end prompting and then
submits a job that copies one data set into another. The validity-checking does
not go beyond verifying that the account number is a four-digit number.

Since an account number may contain leading zeros that are ignored by the
&LENGTH built-in function, use the &STR built-in function in the evaluation of
the length of &ACCT.

The design of SUBMITDS assumes that:

• The account number is required and must be a four-digit number.

• The account number may contain leading zeros.

• The default CLASS for the job is C.

4-12 CLISTs: Implementation and Reference

THE SUBMITDS CLIST

PROC 2 DSN ACCT CLASS(C)

/**/
/* IF &ACCT IS INVALID, CONTINUE PROMPTING UNTIL THE USER ENTERS */
/* AN ACCEPTABLE VALUE. */
/**/

DO WHILE &LENGTH(&STR(&ACCT)) ,= 4 OR &DATATYPE(&ACCT) ,= NUM
WRITE Your account number is invalid.
WRITE Reenter a four-digit number.
READ ACCT

END

/**/
/* ONCE ACCOUNT NUMBER HAS BEEN VERIFIED, SUBMIT THE JOB. */
/**/

SET SLSHASK=&STR(/*) /* Set the /* required for jcl comment statement */
SUBMIT * END($$)
//&SYSUID.l JOB &ACCT,&SYSUID,CLASS=&CLASS,notify=&sysuid
/&SLSHASK THIS STEP COPIES THE INPUT DATASET TO SYSOUT=A
//COPY EXEC PGM=COPYDS
//SYSUTI DD DSN=&SYSUID .. &DSN,DISP=SHR
//SYSUT2 DD SYSOUT=A
$$

Figure 4-10. The SUBMITDS CLIST

Chapter 4. Implementation 4-13

Performing Substringing on Input Strings - The SUBMITFQ CLIST

It is possible to use the &SUBSTR built-in variable to modify input supplied by
the invoker. The SUBMITFQ CLIST, shown Figure 4-11, determines whether
the data set name supplied by the invoker is a fully qualified name or not.
SUBMITFQ makes the determination by comparing the first character in &DSN
to a single quote ('). If the logical comparison is true, the CLIST assumes a fully
qualified data set name and removes the quotes. (Unlike on the ALLOCATE
command, fully qualified data set names are not enclosed in single quotes on JCL
statements.) If the first character of &DSN is not a single quote, the CLIST
assumes the data set name is not fully qualified and prefixes the character string
'&SYSUID .. ' to the value of &DSN. In either case, &DSN contains a fully
qualified data set name when referenced on the SYSUTI JCL statement.

4-14 CLISTs: Implementation and Reference

THE SUBMITFQ CLIST

PROC 2 DSN ACCT CLASS(C)

/***/
/* IF &ACCT IS INVALID, CONTINUE PROMPTING UNTIL THE USER ENTERS */
/* AN ACCEPTABLE VALUE. */
/***/

DO WHILE &LENGTH(&STR(&ACCT)) ,= 4 OR &DATATYPE(&ACCT) ,= NUM
WRITE Your account number is invalid.
WRITE Reenter a four-digit number.
READ ACCT

END

/**/
/* IF THE DATA SET IS FULLY QUALIFIED, REMOVE THE QUOTES. OTHERWISE, */
/* PREFIX THE CURRENT USERID. */
/**/

IF &STR(&SUBSTR(l,&DSN)) = I THEN +
SET DSN = &STR(&SUBSTR(2:&LENGTH(&DSN)-1,&DSN))

ELSE SET DSN=&STR(&SYSUID .. &DSN)
WRITE &DSN

/**/
/* ONCE ACCOUNT NUMBER HAS BEEN VERIFIED, SUBMIT THE JOB. */
/**/

SET SLSHASK=&STR(/*) /* Set the /* required for the jcl comment statement */
SUBMIT * END($$)
//&SYSUID.l JOB &ACCT,&SYSUID,CLASS=&CLASS
/&SLSHASK THIS STEP COPIES THE INPUT DATASET TO SYSOUT=A
//COPY EXEC PGM=COPYDS
//SYSUTl DD DSN=&DSN,DISP=SHR
//SYSUT2 DD SYSOUT=A
$$

Figure 4-11. The SUBMITFQ CLIST

Chapter 4. Implementation 4-15

Allowing Foreground and Background Execution of Programs - The
RUNPRICE CLIST

You can write CLISTs that invoke programs in either the foreground or the
background. By creating a background job, the CLIST can have the job invoke
any program, including itself, in the background. You can implement this
capability to enable users who are not familiar with JCL to submit programs. By
placing the JCL in a CLIST, you simplify the user's work, while adding greater
range to the tasks the user can perform. The RUNPRICE CLIST, shown in
Figure 4-12, illustrates these advantages.

RUNPRICE either executes a COBOL program called APRICE in the
foreground or submits a job that executes it in the background. The CLIST
determines which type of invocation to perform based on whether or not the
invoker includes the BATCH keyword on the invocation of RUNPRICE.

4-16 CLISTs: br.~lerr.cntation and Reference

/

THE RUNPRICE CLIST

PROC 0 M(R) BATCH

/***/
/* THIS CLIST (RUNPRICE) SUBMITS A JOB FOR EXECUTION EITHER IN THE */
/* FOREGROUND OR BACKGROUND, BASED ON WHETHER THE INVOKER INDICATES */
/* 'BATCH' ON THE INVOCATION. THE MESSAGE CLASS DEFAULTS TO 'R', */
/* THOUGH THE INVOKER MAY CHANGE IT. */

/***/
CONTROL END(ENDO)
/***/

/* IF &BATCH DOES NOT EQUAL A NULL, THIS INDICATES THAT THE INVOKER */
/* INCLUDED THE KEYWORD ON THE INVOCATION. IN THIS CASE, THE INVOKER*/
/* WANTS THE JOB SUBMITTED IN THE BACKGROUND, SO CREATE A JOB THAT */
/* EXECUTES THE TMP AND THEN INVOKES RUNPRICE WITHOUT THE 'BATCH' */
/* KEYWORD. ON THIS SECOND INVOCATION OF RUNPRICE, ONLY THE */
/* APRICE PROGRAM IS EXECUTED. */
/* IF &BATCH EQUALS A NULL, THIS INDICATES THAT THE INVOKER WANTS */
/* TO EXECUTE THE PROGRAM IN THE FOREGROUND. IN THIS CASE, SIMPLY */
/* INVOKE THE APRICE PROGRAM DIRECTLY. */
/***/

SET SLSHASK=&STR(/*) /* Set the /* for JOBPARM to a variable */
IF &BATCH=BATCH THEN +

DO
CONTROL NOMSG
SUBMIT * END(NN)
//STEVEl JOB 'accounting info', 'STEVE',
// MSGLEVEL=(l,l),CLASS=T,NOTIFY=&SYSUID,MSGCLASS=&M,
// USER=????????,PASSWORD=????????
&SLSHASK.JOBPARM COPIES=l
//BACKTMP EXEC PGM=IKJEFT01,REGION=4096K,DYNAMNBR=lO
//SYSPRINT DD DUMMY
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
ex 'd84rlhl.tsoer2.pubs.clist(runprice)'
NN

ENDO
ELSE call 'd60fotl.allot.cobol(aprice)'

Figure 4-12. The RUNPRICE CLIST

Chapter 4. Implementation 4-1 7

Including Options - The TESTDYN CLIST

You can code options in CLISTs that add flexibility to an application. The
TESTDYN CLIST, shown in Figure 4-13, sets up the environment needed to
execute a program called PARMTEST, which tests dynamic allocation input
parameters entered from the terminal. In TESTDYN, conditional
IF-THEN-ELSE sequences and optional keywords on the PROC statement enable
the invoker to select a number of options when invoking the CLIST. For
example, one option is whether or not the invoker wants the system messages that
P ARMTEST produces sent to a data set rather than to the terminal. TESTDYN
includes a keyword parameter on its PROC statement called SYSPRINT and
assigns it a default value of *, which sends system messages to the terminal. The
invoker can override that default value and have them sent to a system output
data set.

Note that special considerations are taken in the processing that determines
whether SYSOUT has been coded for SYSPRINT. On the IF statement, the
variable &SYSPRINT is enclosed in a &STR built-in function because
&SYSPRINT defaults to an asterisk, which the CLIST views as a multiplication
operator.

4-18 CLISTs: Implementation and Reference

THE TESTDYN CLIST

PROC 0 MBR(PARMTEST) SYSPRINT(*) SYSLIB(LOAD) OUTFILE(VLDPARMS) LISTDSETS

/***/
/* THIS CLIST SETS UP THE ENVIRONMENT NEEDED FOR EXECUTION OF */
/* A PROGRAM NAMED 'PARMTEST' WHICH TESTS DYNAMIC ALLOCATION */
/* INPUT PARAMETERS ENTERED FROM THE TERMINAL. */
/***/

/***/
/* IF THE USER REQUESTED THAT DATA SETS BE LISTED, LIST THEM. */
/***/

IF &LISTDSETS = LISTDSETS THEN +
DO

WRITE
WRITE
WRITE
WRITE

END

PROGRAM:
SYSPRINT:
SYSLIB:
OUTFILE:

&MBR
&SYSPRINT
&SYSLIB
&OUTFILE

/**/
/* IF THE USER REQUESTED THAT SYSTEM MESSAGES BE SENT TO A SYSTEM */
/* OUTPUT DATA SET, ALLOCATE SYSPRINT TO SYSOUT. OTHERWISE, */
/* ALLOCATE SYSPRINT TO THE DATA SET NAME (OR TERMINAL) AS */
/* INDICATED BY THE USER. */
/**/

IF &STR(&SYSPRINT) = SYSOUT THEN +
alloc f(sysprint) sysout reu

ELSE alloc f(sysprint) da(&SYSPRINT) reu

/**/
/* ALLOCATE THE SYSTEM LIBRARY, WHETHER IT BE THE DEFAULT (LOAD) */
/* OR ANOTHER LIBRARY. */
/**/

alloc f(syslib) da(&SYSLIB) reu shr

/**/
/* ALLOCATE THE OUTPUT DATA SET FOR THE PROGRAM. ALLOCATE THE */
/* INPUT DATA SET TO THE TERMINAL. */
/**/

alloc f(outfile) da(&OUTFILE) lrecl(121) blksize(1210) recfm(f,b) reu
alloc f(sysin) da(*) reu

/**/
/* CALL PARMTEST AND NOTIFY THE USER THAT THE INVOCATION WAS */
/* SUCCESSFUL OR UNSUCCESSFUL. */
/**/

CONTROL NOFLUSH
call 'steve.lib.load(&MBR}'
IF &LASTCC = 0 THEN +

WRITE &MBR invoked successfully at &SYSTIME on &SYSDATE.
ELSE +

WRITE &MBR invoked unsuccessfully at &SYSTIME on &SYSDATE.

Figure 4-13. The TESTDYN CLIST

Chapter 4. Implementation 4-19

Simplifying System-Related Tasks - The COMPRESS CLIST

From time to time, users must compress a data set they have updated multiple
times to free some space for additional members. The process involves allocating
the data sets required by the IEBCOPY utility, which performs the copying
involved in compressing the data set, and invoking the utility.

The COMPRESS CLIST, shown in Figure 4-14, performs all of the functions
required to compress a data set.

COMPRESS could allocate a data set to contain the input required by the
IEBCOPY utility. However, IEBCOPY requires only the following command for
input:

copy indd=output,outdd=output

Rather than waste permanent storage for the one command, COMPRESS creates
a virtual I/O (VIO) data set for the SYSIN file using an ALLOCATE command
that does not specify a data set name. The ALLOCATE command assigns the
file name SYSIN to the VIO data set and then writes a record containing the
COpy command to the SYSIN file.

4-20 CLISTs: Implementation and Reference

THE COMPRESS CLIST

PROC 1 DSNAME DISP(OLD) LIST
CONTROL NOFLUSH /* Preserve the input stack for errors */
/**/
/* THIS CLIST (COMPRESS) COMPRESSES A DATA SET AND INFORMS THE USER */
/* WHETHER OR NOT THE COMPRESS WAS SUCCESSFUL. */
/**/
/**/
/* SET UP AN ERROR ROUTINE TO FREE ALLOCATED FILES WHEN AN ERROR */
/* OCCURS. */
/**/
ERROR +

DO
ERROR OFF
WRITE An error has occurred prior to the actual compress.
free file(sysin,sysprint,sysut3,sysut4,output)
GOTO FINISH

END
/**/
/* IF THE USER WANTS TO VIEW THE TSO COMMANDS AS THEY EXECUTE, ISSUE */
/* THE CONTROL LIST STATEMENT. , */
/**/
IF &LIST=LIST THEN +

CONTROL LIST
/**/
/* ESTABLISH ENVIRONMENT NEEDED BY IEBCOPY UTILITY. */
/**/
allocate file(sysin) space(l,l) track Irecl(80) recfm(f) blksize(80) reuse
IF &SYSDSN(COMPRESS.LIST) ,= OK THEN +
allocate file(sysprint) dataset (compress. list) recfm(f,b,a) +

Irecl(121) blksize(12947) space(l,l) track reuse
ELSE +
allocate file(sysprint) dataset(compress.list) shr reuse
allocate file(sysut3) unit(sysda) space(l,l) cylinders reu
allocate file(sysut4) unit(sysda) space(l,l) cylinders reu
allocate file(output) dataset (&DSNAME) &DISP reu
/**/
/* PLACE THE COpy COMMAND INTO THE SYSIN FILE REQUIRED BY IEBCOPY. */
/**/
OPENFILE SYSIN OUTPUT
SET SYSIN = &STR(COpy INDD=OUTPUT,OUTDD=OUTPUT)
PUTFILE SYSIN
CLOSFILE SYSIN
/**/
/* Set up an error routine to notify user of compress errors. */
/**/
ERROR +

DO
WRITE Compress error--Details in '&SYSPREF .. compress.list'
GOTO FINISH

END
/**/
/* INVOKE IEBCOPY UTILITY TO PERFORM THE COMPRESS. */
/**/
tsoexec call 'sysl.linklib(iebcopy)' 'size=S12k'

WRITE &DSNAME compressed at &SYSTIME
FINISH: end /* End the CLIST */

Figure 4-14. The COMPRESS CLIST

Chapter 4. Implementation 4-21

Simplifying Interfaces to Applications - The CASH CLIST

You may have access to applications written in other programming languages that
perform useful services. However, the interfaces required to invoke these
programs may not be easily mastered by the casual users of the system. Rather
than write new applications, you can write CLISTs that act as intermediaries
between users and such programs.

For example, a program called CASHFLOW creates and prints weekly and
monthly reports. If the invoker wants a weekly report, the invocation is:

call 'sysl.plib(cashflow)' 'a",38,ccfdacr'

If the invoker wants a monthly report, the invocation is:

call 'sysl.plib(cashflow)' 'x",49,ccfmacr'

Not only are the preceding invocations quite technical, they are difficult to
remember.

CASHFLOW also requires the allocation of a file. For weekly reports, it
requires:

alloc f(projwkly) da(weekly) shr

For monthly reports, it requires:

alloc f(projmtly) da(monthly) shr

To simplify the process of invoking CASHFLOW, the CASH CLIST, shown in
Figure 4-15, performs the following intermediary tasks:

1. It determines whether the invoker wants a weekly or monthly report.

2. It assigns values to the variables substituted in the parameter string on the
CALL command that invokes CASHFLOW. The values correspond to the
parameters required for the type of report requested.

3. It allocates the appropriate data set.

4-22 CLISTs: Implementation and Reference

THE CASH CLIST

/* PROMPT THE USER FOR THE WORD 'WEEKLY' or 'MONTHLY' */

DO WHILE &TYPE,=WEEKLY AND &TYPE,=MONTHLY
WRITE Enter the word WEEKLY or MONTHLY to indicate the
WRITE type of report you want to create.
READ TYPE

END

/**/
/* NOW THAT A VALID REQUEST HAS BEEN ESTABLISHED, ALLOCATE THE */
/* APPROPRIATE DATA SET, ASSIGN THE APPROPRIATE VALUES TO CALL */
/* COMMAND PARAMETER VARIABLES, AND INVOKE CASHFLOW. */
/**/

IF &TYPE=WEEKLY THEN +
DO
alloc f(projwkly) da(weekly) shr
SET INVOKE=38
SET CHAR=a
SET OPT=ccfdacr

END
ELSE +

DO
alloc f(projrntly) da(rnonthly) shr
SET INVOKE=49 .
SET CHAR=x
SET OPT=ccfrnacr

END
call 'sysl.plib(cashflow)' '&CHAR",&INVOKE,&OPT'

Figure 4-15. The CASH CLIST

Chapter 4. Implementation 4-23

Using &SYSDV AL When Performing I/O - The PHONE CLIST

Data records often contain related pieces or blocks of information. For instance,
a sequential record could contain a name and a phone number. When you read
records of this type, you may want to separate the blocks of information. By
defining SYSDVAL as the file name of the data set containing the records, you
read each record into SYSDV AL, which the CLIST equates with the &SYSDV AL
control variable. Then you can issue a READDV AL statement that contains the
names of the variables into which you want the blocks of information stored.

The PHONE CLIST, shown in Figure 4-16, takes advantage of this technique.
PHONE receives a last name as input using a positional parameter called NAME.
PHONE then allocates a data set called SYSl.STAFF.DIRECTRY and assigns it
the file name SYSDVAL. Each record in SYSl.STAFF.DIRECTRY contains a
last name, followed by a blank and a phone number. Sample records are:

PICKERELL 555-5555
GORGEN 555-4444

PHONE sets the first character string in the record to a variable called &LNAME
and sets the second string to a variable called &PHONUMBR. Then, it compares
&NAME to &LNAME and, if they are equal, displays the corresponding phone
number (contained in &PHONUMBR) at the terminal. If the names are not
equal, PHONE reads another record and performs the same test.

If none of the names in the directory match the name supplied by the invoker, the
CLIST branches to the end-of-file error routine. The end-of-file routine informs
the invoker that a name was not found, and provides for loop termination (SET
DONE=YES).

4-24 CLISTs: Implementation and Reference

./

THE PHONE CLIST

PROC 1 NAME

/***/
/* THIS CLIST (PHONE) SEARCHES A DATA SET FOR A NAME THAT MATCHES THE */
/* NAME SUPPLIED TO THE CLIST. IF A MATCH IS FOUND, THE CORRESPONDING */
/* PHONE NUMBER IS DISPLAYED AT THE TERMINAL. OTHERWISE, A MESSAGE IS */
/* ISSUED INFORMING THE USER THAT A MATCH WAS NOT FOUND. */
/***/

/***/
/* ALLOCATE THE INPUT DATA SET FOR THE CLIST. */
/***/

alloc f(sysdval) da('sysl.staff.directry') shr reu

/***/
/* OPEN THE FILE, SET UP AN ERROR ROUTINE TO HANDLE END-OF-FILE, */
/* AND OPEN THE FILE. */
/***/

CONTROL NOMSG NOFLUSH
ERROR +

DO
IF &LASTCC = 400 THEN +

DO
WRITENR The name requested, & NAME , was not found in the staff
WRITE directory.
SET DONE=YES

END
RETURN

END /* END OF END-OF-FILE ROUTINE */
SET DONE=NO
OPENFILE SYSDVAL

/***/
/* THIS LOOP RETRIEVES RECORDS FROM THE INPUT DATA SET UNTIL A MATCH */
/* IS FOUND OR END OF FILE IS REACHED. IF A MATCH IS FOUND, THE */
/* SECOND VARIABLE ON THE READDVAL STATEMENT (THE ONE CONTAINING */
/* THE PHONE NUMBER) IS DISPLAYED. */
/***/

DO WHILE &DONE=NO
GETFILE SYSDVAL
READDVAL LNAME PHONUMBR
IF &STR(&NAME) = &STR(&LNAME) THEN +

DO
WRITE &PHONUMBR
SET DONE=YES

END
END
CLOSFILE SYSDVAL
free file(sysdval)

Figure 4-16. The PHONE CLIST

Chapter 4. Implementation 4-25

Allocating Data Sets to SYSPROC - The SPROC CLIST

The purpose of SPROC is: first, find all data sets currently allocated to
SYSPROC and concatenate them; then add the invoker's data set to the
beginning of the concatenation and allocate the concatenation to SYSPROC.

The CLIST, shown in Figure 4-17, uses &SYSOUTTRAP to intercept the output
from the LIST ALC STATUS command and saves the command output in
&SYSOUTLINEnn variables. The output produced by the LIST ALC STATUS
command is formatted as follows:

--DDNAME---DISP-­
DATA-SET-NAMEl

FILE-NAME 1 DISPOSITION
DATA-SET-NAME2

FILE-NAME2 DISPOSITION
DATA-SET-NAME3

DISPOSITION
DATA-SET-NAME4

FILE-NAME3 DISPOSITION

In the previous format, DATA-SET-NAMEI is allocated to FILE-NAME1;
DATA-SET-NAME2 and DATA-SET-NAME3 are allocated to FILE-NAME2;
and DATA-SET-NAME4 is allocated to FILE-NAME3. The name of the file
begins in the third position, whereas a data set name begins in the first position of
the output line. The steps in the process are:

1. Loop through &SYSOUTLINEnn variables until either the string SYSPROC
is found or until all output has been searched. (It is possible no data sets are
allocated to SYSPROC.)

2. If SYSPROC is found, set a variable to the name of the previous data set in
the list and enclose it in single quotes.

3. Begin with the &SYSOUTLINEnn variable three lines after the one
containing the name of the first data set allocated to SYSPROC. This line
either contains a new file name, in which case you have found all data sets
allocated to SYSPROC, or it contains the disposition of the next data set in
the concatenation. By setting a variable to three blanks, you can determine
the contents of the line.

If the line contains a disposition, decrease &SYSOUTLINEnn by one to get
the data set name and add it to the variable (&CONCAT) representing the
data sets in the new concatenation. Repeat this procedure until another file
name is encountered or until all command output has been searched. Once
all data sets have been added to the concatenation list, issue the ALLOCATE
command, adding the user's data set name to the beginning of the
concatenation list.

SPROC contains an error routine to handle allocation errors should they occur.
SPROC may itself be allocated to SYSPROC, in which case the user can invoke it
implicitly. However, if the CLIST fails after it frees the SYSPROC file, but
before it is able to re-establish the concatenation, the user cannot re-invoke
SPROC implicitly without first logging off and logging on again.

4-26 CLISTs: Implementation and Reference

THE SPROC CLIST

PROC 0 LIST
IF &LIST=LIST THEN +
CONTROL LIST CONLIST

/***/
/* THIS CLIST (SPROC) CONCATENATES DATA SETS AND ALLOCATES THEM */
/* TO THE FILE SYSPROC. */
/* THE USER IS PROMPTED TO SUPPLY THE NAME OF THE DATA */
/* SET TO BE ADDED TO THE BEGINNING OF THE CONCATENATION. */
/***/
/***/
/* IF ALLOCATION FAILS, TELL THE USER TO LOG OFF, LOG ON, AND, IF */
/* DESIRED, TRY EXECUTING SPROC AGAIN. */
/***/
CONTROL NOFLUSH
ERROR +

DO
WRITE An error has been encountered in the SYSPROC concatenation.
WRITE Please log off, then log on again, and, if desired, re-invoke
WRITE SPROC. If the problem persists, see your system programmer.
GOTO OUT

END
/***/
/* PROMPT THE USER FOR THE NAME OF THE DATA SET TO BE ADDED TO THE */
/* BEGINNING OF THE SYSPROC CONCATENATION. */
/***/
WRITE Enter the fully qualified data set name you want
WRITE added to the beginning of the SYSPROC concatenation.
WRITE Do NOT place quotes around the dataset name.
READ ADD
/***/
/* SET A VARIABLE TO THREE BLANKS. THIS VARIABLE IS USED TO CHECK */
/* THE LISTALC COMMAND OUTPUT FOR THE BEGINNING OF A DIFFERENT */
/* FILENAME AFTER SYSPROC DATA SETS HAVE BEEN LISTED. */
/***/
SET BLANKS = &STR()
/***/
/* SET &SYSOUTTRAP TO A LARGE ENOUGH VALUE TO ENSURE THAT ALL OF */
/* THE LINES OF OUTPUT FROM THE LISTALC COMMAND CAN BE VIEWED. */
/***/
SET SYSOUTTRAP = 300
/***/
/* ISSUE THE LISTALC STATUS COMMAND AND LOOP THROUGH THE VARIABLES */
/* CONTAINING THE OUTPUT LINES UNTIL THE LINE CONTAINING */
/* THE FILENAME */
/* SYSPROC IS FOUND OR UNTIL ALL LINES HAVE BEEN VIEWED. */
/* (ALL LINES HAVE BEEN VIEWED WHEN A NULL LINE IS RETURNED.) */
/* AN AUXILIARY VARIABLE MUST BE CREATED (&DSN) TO LOOP THROUGH */
/* &SYSOUTLINEnn. &1 REPRESENTS THE VALUE OF nn. */
/* NOTE THAT, IN ORDER TO SET &DSN TO &SYSOUTLINE, TWO AMPERSANDS */
/* MUST BE PLACED BEFORE SYSOUTLINE TO AVOID SYMBOLIC SUBSTITUTION */
/* OF &SYSOUTLINE. */
/* IF SYSPROC IS FOUND, SET THE VARIABLE &CONCAT EQUAL TO */
/* THE PREVIOUS LINE (CONTAINING THE NAME */
/* OF THE FIRST DATA SET ALLOCATED TO SYSPROC). */
/***/

Figure 4-17 (Part 1 of 2). The SPROC CLIST

Chapter 4. Implementation 4-27

lista st
SET SPROC &STR(SYSPROC)
SET FOUND NO
SET 1=1
DO WHILE &STR(&FOUND) = NO AND &SYSOUTLINE <= &1

SET DSN = &&SYSOUTLINE&I
IF &LENGTH(&STR(&DSN)) >=9 THEN +

IF &STR(&SUBSTR(3:9,&DSN)) = &SPROC THEN +
DO

SET FOUND = YES
SET I = &1-1
SET DSN = &&SYSOUTLINE&I
SET CON CAT = '&DSN'

END
ELSE SET I &1+1

ELSE SET I &1+1
END
/***/
/* IF SYSPROC WAS FOUND, LOOP THROUGH .DATA SETS UNTIL ANOTHER */
/* FILENAME IS ENCOUNTERED OR UNTIL THE REST OF THE OUTPUT HAS */
/* BEEN PROCESSED. SETTING &1 = &1+3 MAPS &DSN TO THE LINE AFTER */
/* THE NEXT DATA SET NAME, WHICH WILL CONTAIN ANOTHER FILENAME IF */
/* WE HAVE ALREADY PROCESSED THE LAST DATA SET ALLOCATED TO SYS?ROC */
/* AND WE HAVE NOT REACHED THE END OF THE COMMAND OUTPUT. */
/***/
IF &FOUND=YES THEN +

DO
DO WHILE &1+3 <= &SYSOUTLINE
SET I = &1+3

SET DSN = &&SYSOUTLINE&I
IF &STR(&SUBSTR(1:3,&DSN)) &BLANKS THEN +

DO
SET I = &1-1
SET DSN = &&SYSOUTLINE&I
SET CONCAT = &CONCAT&STR(')&DSN'

END
ELSE +

SET I=&SYSOUTLINE
END

END
/***/
/* ONCE ALL DATA SETS ALLOCATED TO SYSPROC HAVE BEEN ADDED TO THE */
/* VARIABLE &CONCAT, ADD THE USER'S DATA SET TO THE BEGINNING OF */
/* THE CONCATENATION. (INSERT THE VARIABLE &ADD BEFORE &CONCAT.) */
/* THIS CLIST ASSUMES THAT THE DATA SET HAS BEEN ENTERED CORRECTLY */
/* BY THE USER. */
/***/
alloe f(sysproe) da('&ADD' &CONCAT) shr reu
OUT: end

Figure 4-17 (Part 2 of 2). The SPROC CLIST

4-28 CLISTs: Implementation and Reference

Writing Full-Screen Applications Using ISPF Dialogs - The
PROFILE CLIST

The CLIST language is well-suited for applications that invoke ISPF dialog
management services to display full-screen panels. The PROFILE CLIST is an
example of a CLIST that displays entry panels on which the user can modify
information.

PROFILE receives control after the user enters a choice on a primary selection
menu. PROFILE allows the user to perform any of the following functions to
modify his profiles:

• Set terminal characteristics
• Set LOG/LIST parameters
• Set PF keys (1-12)
• Set PF keys (13-24)

The PROFILE CLIST receives control from another CLIST that displays a
higher-level panel. The higher-level panel prompts the user to indicate which
function he wants to perform (QCMD); and if the function is setting PF keys,
which PF keys he wants to view (QKEYS). Then, the CLIST invokes PROFILE,
passing along the values for QCMD and QKEYS.

PROFILE determines which selection was requested by referencing PROC
statement keywords called QCMD and QKEYS.

If &QCMD is 1, PROFILE displays the terminal characteristics panel definition.

If &QCMD is 2, PROFILE displays the LOG/LIST parameters panel definition.

If &QCMD is 3 and &QKEYS is 12, PROFILE displays the PF keys 1-12 panel
definition.

If &QCMD is 3 and &QKEYS is 24, PROFILE displays the PF keys 13-24 panel
definition.

Panels are displayed using the ISPEXEC command.

When the user presses the END key after viewing and/or modifying a particular
panel, the value of &LASTCC is 8. By testing the value of &LASTCC,
PROFILE can determine when the user is finished with the selection.

When the user is viewing one of the two PF key panels, he can switch to the other
one by pressing the enter key. The value of &QPFKSW is initially O. PROFILE
modifies its value to 1 if the user switches to another PF key panel. PROFILE
also sets &QKEYS to the PF key (12 or 24) that represents the other panel so
that the user can continue to switch back and forth if desired. Pressing enter
re-executes the DO-WHILE-END sequence, causing PROFILE to test the value
of &QKEYS to determine which panel to display. As with the other selection
sequences, the PF key sequence ends when the user presses the END key.

Values set or changed on any of the four panels displayed by PROFILE are
automatically stored in the associated variables on the panel definitions.

Chapter 4. Implementation 4-29

Figure 4-18 contains the purpose of, and figures containing, the PROFILE
CLIST and its supporting four panel definitions.

CLIST IPanel Purpose

PROFILE Manage user profile panels

XYZABCIO Terminal characteristics panel

XYZABC20 LOG/LIST parameters panel

XYZABC30 PF keys 1-12 panel

XYZABC40 PF keys 13-24 panel

Figure

4-19

4-20

4-21

4-22

4-23

Figure 4-18. Purpose of, and Figures Containing, PROFILE CLIST and Supporting
Panels

THE PROFILE CLIST

PROC 0 QCMD(l) QKEYS(12)

/**/
/* THIS CLIST (PROFILE) DISPLAYS THE PANEL THAT CONTAINS THE PROFILE */
/* DATA THE USER WANTS TO UPDATE. IT SETS THE FINISH FLAG TO NO AND */
/* THEN DETERMINES WHICH OF THE FOUR POSSIBLE PANELS THE USER NEEDS */
/* DISPLAYED. */
/**/

CONTROL MSG END(ENDO)
SET FINISH = NO

/**/
/* IF THE USER WANTS TO UPDATE TERMINAL CHARACTERISTICS, DISPLAY */
/* THE ASSOCIATED PANEL. */
/**/

IF &QCMD = 1 THEN +
DO WHILE (&FINISH = NO)

ISPEXEC DISPLAY PANEL(XYZABC10)
IF &LASTCC = 8 THEN +

SET FINISH = YES
ENDO

/**/
/* IF THE USER WANTS TO UPDATE LOG/LIST PARAMETERS, DISPLAY */
/* THE ASSOCIATED PANEL. */
/**/

IF &QCMD = 2 THEN +
DO WHILE (&FINISH = NO)

ISPEXEC DISPLAY PANEL (XYZABC20)
IF &LASTCC = 8 THEN +

SET FINISH = YES
ENDO

/**/
/* IF THE USER WANTS TO UPDATE PF KEYS, DETERMINE WHICH GROUP HE */
/* WANTS TO UPDATE: 1-12 or 13-24. DISPLAY THE ASSOCIATED PANEL. */
/**/

Figure 4-19 (Part 1 of 2). The PROFILE CLIST

4-30 CLISTs: Implementation and Reference

IF &QCMD =3 THEN +
DO

SET QPFKSW = 0
DO WHILE (&FINISH = NO)

IF &QKEYS ,= 24 THEN +
DO

ISPEXEC DISPLAY PANEL (XYZABC30)
IF &LASTCC = 8 THEN +

SET FINISH = YES
ELSE +

DO
SET QPFKSW = 1
SET QKEYS = 24

ENDO
ENDO

ELSE +
DO

ISPEXEC DISPLAY PANEL (XYZABC40)
IF &LASTCC = 8 THEN +

SET FINISH YES
ELSE +

IF &QPFKSW 1 THEN +
SET QKEYS 12

ENDO
ENDO

ENDO
/*
/* EXIT ROUTINE
/*
FINAL: +
SET FCODE = 0
EXIT CODE(&FCODE)

Figure 4-19 (Part 2 of 2). The PROFILE CLIST

Chapter 4. Implementation 4-31

THE TERMINAL CHARACTERISTICS PANEL DEFINITION - XYZABCIO

)ATTR DEFAULT (%_)
/* % TYPE (TEXT) INTENS(HIGH) defaults displayed for */
/* + TYPE (TEXT) INTENS(LOW) information only */
/* _ TYPE(INPUT) INTENS(HIGH) CAPS(ON) JUST(LEFT) */

@ TYPE(INPUT) INTENS(HIGH) PAD(_) CAPS(ON)
)BODY
+ SAMPLE - SET THE TERMINAL CHARACTERISTICS FOR THE USER
%COMMAND === _ZCMD +
%
+Type the information where requested, or change the information shown
+by typing over it:
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

TERMINAL TYPE %=== @Z +
NUMBER OF PF KEYS%===>@Z +
INPUT FIELD PAD %===>@Z+
SCREEN FORMAT %===>@Z +
COMMAND DELIMITER%===>@Z+

)INIT

3277, 3277A, 3278, 3278A, or 3278T +
12 or 24
Nulls (N) or Blanks (B)
(3278 ModelS only) DATA, STD, or MAX
Any special character

.HELP = ICQAE120 /* Insert name of tutorial panel */

.ZVARS = '(ZTERM ZKEYS ZPADC ZSF ZDEL) ,
&ZSF = TRANS (&ZFMT D,DATA S,STD M,MAX *,' ')

)PROC
IF (&ZCMD ,= , ') .MSG = ISPZ001 /* INVALID COMMAND */
VER (&ZTERM NB LIST 3277,3277A,3278,3278A,3278T)
&ZCHARLM = TRANS(&ZTERM

3277 ISP3277
3277A, ISP3277A
3278 ISP3278
3278A, ISP3278A
3278T, ISP3278T)

VER (&ZKEYS NB LIST 12,24)
IF (&ZKEYS = 24)

VER (&ZTERM LIST 3278 MSG=ISP0002)
VER (&ZPADC NB LIST N,B)
VER (&ZSF,NONBLANK)
&ZFMT = TRUNC (&ZSF,l)
VER (&ZFMT,LIST D,S,M)
VER (&ZDEL NB PICT C)
IF (.MSG ,= , ')

.RESP = ENTER
)END

Figure 4-20. The Terminal Characteristics Panel Definition (XYZABCIO) .

4-32 CLISTs: Implementation and Reference

THE LOG/LIST CHARACTERISTICS PANEL DEFINITION - XYZABC20

)ATTR DEFAULT(%_)
/* % TYPE (TEXT) INTENS(HIGH) defaults displayed for */
/* + TYPE (TEXT) INTENS(LOW) information only */
/* _ TYPE(INPUT) INTENS(HIGH) CAPS (ON) JUST (LEFT) */

@ TYPE(INPUT) INTENS(HIGH) PAD(_) CAPS (ON)
)BODY
+
% COMMAND
%

SAMPLE - SET THE LOG/LIST PARAMETERS FOR THE USER
_ZCMD

+Type the information where requested, or change the information shown
+by typing over it:
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

PROCESS OPTION
SYSOUT CLASS
LOCAL PRINTER ID
LINES PER PAGE
PRIMARY PAGES
SECONDARY PAGES

%LOG

%=== @Z+
%===>@Z
%===>@Z
%===>@Z +
%===>@Z +
%===>@Z +

+

%LIST

@Z+
+ @Z

@Z +
@Z +
@Z +
@Z +

)INIT
.HELP = ICQAE135 /* Insert name of tutorial panel */
.ZVARS = '(ZLOGFDSP,ZLSTFDSP,ZLOGCLA,ZLSTCLA,ZLOGPID,ZLSTPID, +

ZLOGLIN,ZLSTLIN,ZLOGIPG,ZLSTIPG,ZLOG2PG,ZLST2PG) ,

Figure 4-21 (Part 1 of 2). The LOG/LIST Characteristics Panel Definition (XYZABC20)

+

+

+

Chapter 4. Implementation 4-33

)PROC
IF (&ZCMD ,= , ') .MSG = ISPZ001
VER (&ZLOGFDSP LIST J,L,K,D,' ')
VER (&ZLSTFDSP LIST J,L,K,D,' ')
IF (&ZLOGFDSP = J)

VER (&ZLOGCLA,NB)
IF (&ZLOGFDSP = L)

VER (&ZLOGPID,NB)
IF (&ZLSTFDSP = J)

VER (&ZLSTCLA,NB)
IF (&ZLSTFDSP = L)

VER (&ZLSTPID,NB)
VER (&ZLOGLIN NB NUM)
VER (&ZLOGLIN RANGE 1,99)
VER (&ZLSTLIN NB NUM)
VER (&ZLSTLIN RANGE 1,99)
VER (&ZLOG1PG NB NUM)
VER (&ZLOG1PG RANGE 0,9999)
VER (&ZLST1PG NB NUM)
VER (&ZLST1PG RANGE 1,9999)
VER (&ZLOG2PG NB NUM)
VER (&ZLOG2PG RANGE 0,9999)
VER (&ZLST2PG NB NUM)
VER (&ZLST2PG RANGE 1,9999)
IF (&ZLOG1PG = 0)

VER (&ZLOG2PG,NB)
VER (&ZLOG2PG,RANGE,0,0)

IF (&ZLOG1PG ,= 0)
VER (&ZLOG2PG,NB NUM)
VER (&ZLOG2PG,RANGE,1,9999)

IF (. MSG ,= ' ,)
.RESP = ENTER

)END

/* INVALID COMMAND

Figure 4-21 (Part 2 of 2). The LOG/LIST Characteristics Panel Definition (XYZABC20)

4-34 CLISTs: Implementation and Reference

*/

THE PF KEYS 1-12 PANEL DEFINITION - XYZABC30

)ATTR DEFAULT(%)
/* % TYPE(TEXT) INTENS(HIGH) defaults displayed for */
/* + TYPE(TEXT) INTENS(LOW) information only */
/* _ TYPE(INPUT) INTENS(HIGH) CAPS(ON) JUST(LEFT) */

@ TYPE (INPUT) INTENS(HIGH) PAD(_) CAPS (ON)
) BODY
+ SAMPLE - SET PF KEYS 1-12 FOR THE USER
%COMMAND ===>_ZCMD
%
+Type the information
+by typing over it:
+
+ PF1 %===>@QPF01
+ PF2 %===>@QPF02
+ PF3 %===>@QPF03
+ PF4 %===>@QPF04
+ PFS %===>@QPFOS
+ PF6 %===>@QPF06
+ PF7 %===>@QPF07
+ PF8 %===>@QPF08
+ PF9 %===>@QPF09
+ PF10 %===>@QPF10
+ PF11 %===>@QPF11
+ PF12 %===>@QPF12
+
+
+
+
+
+
)INIT

.HELP = ICQAE180
IF (&QPF01 =' ')

&QPF01 = HELP
IF (&QPF02 = ' ')

&QPF02 = SPLIT
IF (&QPF03 =' ')

&QPF03 = END
IF (&QPF04 = ' ')

&QPF04 = RETURN
IF (&QPFOS = ' ')

&QPFOS = RFIND
IF (&QPF06 = ' ')

&QPF06 = RCHANGE
IF (&QPF07 =' ')

&QPF07 = UP
IF (&QPF08 = ' ')

&QPF08 = DOWN
IF (&QPF09 = ' ')

&QPF09 = SWAP
IF (&QPF10 =' ')

&QPFIO = LEFT
IF (&QPFll = ' ')

&QPF11 = RIGHT
IF (&QPF12 = , ')

&QPF12 = CURSOR

where requested, or change the information

/* Insert name of tutorial panel

Figure 4-22 (Part 1 of 2). The PF Keys 1-12 Panel Definition (XYZABC30)

shown

*/

+

+
+
+
+
+
+
+
+
+
+
+
+

Chapter 4. Implementation 4-35

)PROC
IF (&ZCMD -,= , ,) .MSG ISPZOOI
IF (&QPFOI =

, ,)
&QPFOI = HELP

IF (&QPF02 =
, ,)

&QPF02 = SPLIT
IF (&QPF03 =

, ,)
&QPF03 = END

IF (&QPF04 =
, ,)

&QPF04 = RETURN
IF (&QPF05 = , ,)

&QPF05 = RFIND
IF (&QPF06 =

, ,)
&QPF06 = RCHANGE

IF (&QPF07 = , ,)
&QPF07 = UP

IF (&QPF08 =
, ,)

&QPF08 = DOWN
IF (&QPF09 = , ,)

&QPF09 = SWAP
IF (&QPFIO =

, ,)
&QPFIO = LEFT

IF (&QPFll =
, ,)

&QPFll = RIGHT
IF (&QPF12 =

, ,)
&QPF12 = CURSOR

IF (.MSG -,=
, ,)

.RESP = ENTER
)END

Figure 4-22 (Part 2 of 2). The PF Keys 1-12 Panel Definition (XYZABC30)

4-36 CLISTs: Implementation and Reference

THE PF KEYS 13-24 PANEL DEFINITION - XYZABC40

)ATTR DEFAULT(%)
/* % TYPE(TEXT) INTENS(HIGH) defaults displayed for */
/* + TYPE(TEXT) INTENS(LOW) information only */
/* _ TYPE(INPUT) INTENS(HIGH) CAPS (ON) JUST(LEFT) */

@ TYPE(INPUT) INTENS(HIGH) PAD() CAPS(ON)
)BODY
+ SAMPLE - SET PF KEYS 13-24 FOR THE USER
%COMMAND === _ZCMD
%
+Type the information where requested, or change the information shown
+by typing over it; then, to set PF keys 1-12, press ENTER.
+
+ PF13 %=== @QPF13
+ PF14 %=== @QPF14
+ PF15 %=== @QPF15
+ PF16 %=== @QPF16
+ PF17 %=== @QPF17
+ PF18 %=== @QPF18
+ PF19 %=== @QPF19
+ PF20 %=== @QPF20
+ PF21 %=== @QPF21
+ PF22 %=== @QPF22
+ PF23 %=== @QPF23
+ PF24 %=== @QPF24
+
+
+
+
+
+
)INIT

.HELP = ICQAE165
IF (&QPF13 = ' ')

&QPF13 = HELP
IF (&QPF14 =' ')

&QPF14 = SPLIT
IF (&QPF15 = ' ')

&QPF15 = END
IF (&QPF16 =' ')

&QPF16 = RETURN
IF (&QPF17 = ' ')

&QPF17 = RFIND
IF (&QPF18 = , ')

&QPF18 = RCHANGE
IF (&QPF19 = ' ')

&QPF19 = UP
IF (&QPF20 =' ')

&QPF20 = DOWN
IF (&QPF21 =' ')

&QPF21 = SWAP
IF (&QPF22 = , ')

&QPF22 = LEFT
IF (&QPF23 = ' ')

&QPF23 = RIGHT
IF (&QPF24 =' ')

&QPF24 = CURSOR

/* Insert name of tutorial panel

Figure 4-23 (Part 1 of 2). The PF Keys 13-24 Panel Definition (XYZABC40)

*/

+
+
+
+
+
+
+
+
+
+
+
+

+

Chapter 4. Implementation 4-37

)PROC
IF (&ZCMD ,= , ,) .MSG ISPZOOI
IF (&QPF13 = , ,)

&QPF13 = HELP
IF (&QPF14 =

, ,)
&QPF14 = SPLIT

IF (&QPF15 =
, ,)

&QPF15 = END
IF (&QPF16 =

, ,)
&QPF16 = RETURN

IF (&QPF17 = , ,)
&QPF17 = RFIND

IF (&QPF18 =
, ,)

&QPF18 = RCHANGE
IF (&QPF19 =

, ,)
&QPF19 = UP

IF (&QPF20 =
, ,)

&QPF20 = DOWN
IF (&QPF21 = , ,)

&QPF21 = SWAP
IF (&QPF22 = , ,)

&QPF22 = LEFT
IF (&QPF23 = , ,)

&QPF23 = RIGHT
IF (&QPF24 =

, ,)
&QPF24 = CURSOR

IF (.MSG -,=
, ,)

.RESP = ENTER
)END

Figure 4-23 (Part 2 of 2). The PF Keys 13-24 Panel Definition (XYZABC40)

4-38 CLISTs: Implementation and Reference

Chapter 5. Reference

This chapter describes the syntax of the CLIST statements and the two TSO
commands - EXEC and END - that are closely associated with CLIST processing.
In addition, it lists the error codes returned by CLIST statements.

Coding the Statements and Commands

The notation used to define the statement and command syntax and format in
this publication is described in the following paragraphs.

1. The set of symbols listed below is used to define the syntax, but never use
them in a statement or command.

hyphen
underscore
braces
brackets
ellipsis

{ }
[]

The special uses of these symbols are explained in the following paragraphs.

2. Use uppercase letters, numbers, and the set of symbols listed below in a
statement or command exactly as shown in the syntax.

apostrophe or single quote
asterisk *
comma
equal sign
parentheses ()
period
ampersand &
percent %
colon

3. Lowercase letters, and symbols appearing in the syntax represent variables for
which you substitute specific information in the statement or command.

Example: If name appears in the syntax, substitute a specific value (for
example, ALPHA) for the variable when you enter the statement or
command.

4. Hyphens join lower-case words and symbols to form a single variable.

Example: If member-name appears in the syntax, substitute a specific value
(for example, BET A) for the variable in the statement or command.

Chapter 5. Reference 5-1

5. A stack groups related items, such as alternatives.

Example: The representation

A
B
C

indicates select A or B or C. Select one item and only one item; and specify it
explicitly in the statement or command.

6. An underscore indicates a default option. If you select an underscored
alternative, you need not specify it when you enter the statement or
command.

Example: The representation

A

J?
c

indicates select A or B or C; however, if you select B, you need not specify it
in the statement or command because it is the default option.

7. Braces group related items, such as alternatives.

Example: The representation

ALPHA=<{i},D)

indicates choose only one of the items enclosed within the braces. If you
select A, specify ALPHA = (A,D) in the statement or command.

8. Braces group related items, such as alternatives.

Example: The representation

ALPHA= <{ ~ }'D)

indicates choose only one of the items enclosed within the braces. If you
select A, specify ~ither ALPHA = (A,D) or ALPHA = (,D). If you select A,
you need not specify it in the statement or command because it is the default
option.

5-2 CLISTs: Implementation and Reference

9. Brackets also group related items; however, everything within the brackets is
optional and may be omitted.

Example: The representation

ALPHA~{ilD)

indicates choose only one of the items enclosed within the brackets or omit all
of the items within the brackets. If you select only D, specify ALPHA = (,D)
in the statement or command.

10. An ellipsis indicates that the preceding item or group of items can be repeated
more than once in succession.

Example:

ALPHA [,BETA] •••

indicates that ALPHA can appear alone or can be followed by ,BETA any
number of times in succession in the statement or command.

11. Alphameric characters: unless otherwise indicated, an alphameric character is
one of the following:

• alphabetic: A-Z
• numeric: 0-9
• national: $ # @

12. CLIST statements and TSO commands may be prefixed with a label. The
label may appear on a separate line. A colon must immediately follow the
label name. For example,

label: +

IF A=

Chapter 5. Reference 5-3

A TTN Statement

Use the ATTN statement to set up a routine that TSO executes when the user
causes an attention interrupt. The attention interrupt is designed to halt
execution of a CLIST so that the user can terminate or alter its processing.

[label:] ATTN {OFF. }

label

OFF

actlon

a name the CLIST can reference in a GOTO statement to branch to this
ATTN statement. label is one-to-eight alphameric characters, beginning
with an alphabetic character.

any previous attention action is nullified. Do not use ATTN OFF within an
attention routine.

action
specifies either:

1. One TSO command, commonly an EXEC command that invokes an
attention processing CLIST, or a null (blank) line. An attention
processing CLIST can execute multiple TSO commands, while the
action can execute only one.

2. A DO-group constituting an attention exit routine. This routine must
specify either one TSO command, an EXIT statement, or a null on the
line preceding the RETURN statement. It may contain CLIST
statements.

If a null line is executed, TSO ignores the attention and execution continues
at the point where the interruption occurred.

If an EXIT statement is executed, the attention is ignored and the CLIST is
terminated.

If a TSO command is executed, control is given to the command.

Once a TSO command. an EXIT statement, or a null line is executed, TSO
ignores all other CLIST statements and commands in the action.

5-4 CLISTs: Implementation and Reference

CLOSFILE Statement

Use the CLOSFILE statement to close a file (data set) that has been previously
opened by an OPENFILE statement. Only one file can be closed with each
CLOSFILE statement.

[label:] CLOSFILE
{

file-name }

label

&symbolic-variable-name

a name the CLIST can reference in a GOTO statement to branch to this
CLOSFILE statement. label is one-to-eight alphameric characters,
beginning with an alphabetic character.

file-name
the file name (ddname) assigned to the file (data set) when it was allocated
in the current session.

symbolic-variable-name
the symbolic variable to which you assigned file-name.

Chapter 5. Reference 5-5

CONTROL Statement

Use the CONTROL statement to define processing options for a CLIST. The
options are in effect from the time CONTROL executes until either the CLIST
terminates or it issues another CONTROL statement.

CLISTs that do not issue CONTROL statements execute with the following
options: NOPROMPT, NOSYMLIST, NOLIST, NOCONLIST, CAPS, MSG,
and FLUSH. The user can set PROMPT and LIST by entering them as
keywords on the EXEC command or subcommand issued to invoke the CLIST.

CONTROL has no default operands. If you enter CONTROL with no operands,
the system uses options already defined by system default, the EXEC command,
or a previous CONTROL statement. In addition, when there are no operands
specified, the system displays those options currently in effect.

Note: CONTROL operands cannot be entered as symbolic variables.

[label:] CONTROL [
PROMPT] [SYMLIST J [LIST]
NOPROMPT NOSYMLIST NOLIST [

CONLIST J
NOCONLIST

label

~{~~~!PS}~i[MSG] [FLUSH]
~ASIS ~ NOMSG NOFLUSH

[END (str ing)]

a name the CLIST can reference in a GOTO statement to branch to this
CONTROL statement. label is one-to-eight alphameric characters,
beginning with an alphabetic character.

PROMPT
TSO commands in the CLIST may prompt the terminal for input. (The
PROMPT operand on the PROFILE command must also be in effect.)

NOPROMPT
TSO commands in the CLIST may not prompt the terminal for input.

SYMLIST
each executable statement is displayed at the terminal before it is scanned
for symbolic substitution. Executable statements include commands,
subcommands, and CLIST statements.

NOSYMLIST

LIST

executable statements are not displayed at the terminal before symbolic
substitution.

commands and subcommands are displayed at the terminal after symbolic
substitution but before execution.

5-6 CLISTs: Implementation and Reference

NO LIST
commands and subcommands are not displayed at the terminal.

CONLIST
CLIST statements are displayed at the terminal after symbolic substitution
but before execution.

NOCONLIST
CLIST statements are not displayed at the terminal after symbolic
substitution.

CAPS
character strings are translated to uppercase letters before being processed.

NO CAPS or ASIS

MSG

character strings are not translated to uppercase before being processed.

informational messages from commands and statements in the CLIST are
displayed at the terminal.

NOMSG
informational messages from commands and statements in the CLIST are
not displayed at the terminal.

FLUSH
the system can erase (flush) the queue of nested CLISTs called the input
stack unless NOFL USH or MAIN is encountered. The system normally
flushes the stack on an execution error.

NOFLUSH
the system cannot flush the input stack below the CLIST with NOFL USH
specified.

MAIN
this is the main CLIST in your TSO environment and cannot be deleted by
a stack flush request from the system. When MAIN is specified, the
NOFLUSH condition is assumed for this CLIST, regardless of whether or
not FLUSH was in effect. This operand is required for CLISTs containing
attention routines that do anything other than terminate the CLIST.

END(string)
a character string recognized by the CLIST as a replacement for an END
statement that concludes a DO-group. string is 1-4 alphameric characters,
beginning with an alphabetic character.

Chapter 5. Reference 5-7

DATA-ENDDATA Sequence

Use the DATA-ENDDATA sequence when you do not want a command or
subcommand to be interpreted as a CLIST statement. The CLIST views the
group of commands and subcommands in the DATA-END DATA sequence as
data to be ignored and passed on to TSO for execution.

Do not include CLIST statements in a DATA-ENDDATA sequence because TSO
attempts to execute them as commands or subcommands.

Symbolic substitution is performed before execution of the group.

[label:] DATA

label

ENDDATA

a name the CLIST can reference in a GOTO statement to branch to this
DATA-END DATA sequence. label is one-to-eight alphameric characters,
beginning with an alphabetic character.

5-8 CLISTs: Implementation and Reference

DATA PROMPT-ENDDATA Sequence

Use the DATA PROMPT-ENDDATA sequence to designate responses to
prompts by TSO commands or subcommands, or READ statements. An error
condition (error code 968) occurs unless the sequence is immediately preceded by
a command or subcommand, or by READ statement, issuing a prompt.

DATA PROMPT

ENDDATA

Note: There are certain rules to remember when using the DATA
PROMPT-END DATA sequence. They are:

• The CLIST must allow prompting.
• Symbolic substitution is performed before a reply is sent.

Chapter 5. Reference 5-9

DO-WHILE-END Sequence

Use the DO-WHILE-END sequence to group commands, subcommands, and
statements. This sequence can include decision-making using the DO-WHILE
statement. The DO statement indicates the beginning of a DO-group. The END
statement concludes the DO-group.

You use DO-groups:

• With IF-THEN-ELSE sequences
• With WHILE statements
• In attention and error routines

A DO-group includes the actions you want executed when the logical expression
for the THEN, ELSE, or WHILE statement is true. The WHILE DO-group
executes repeatedly until the logical expression is false.

The string specified on the END operand of the CONTROL statement can be
used instead of the END statement.

[label:] DO [WHILE logical-expression]

[label:] END

label
a name the CLIST can reference in a GOTO statement to branch to this
DO-WHILE-END sequence. label is one-to-eight alphameric characters,
beginning with an alphabetic character.

logical-expression
a group of comparative expressions grouped by logical operators. The
minimal entry for a logical expression is a comparative expression.

5-10 CLISTs: Implementation and Reference

END Command

You may use the END command to end a CLIST. When an END command is
encountered in a CLIST, and the CONTROL MAIN option is not in effect,
execution of the CLIST is terminated. (If the CONTROL MAIN option is in
effect, use the EXIT statement to terminate the execution of the CLIST.

END

Chapter 5. Reference 5-11

ERROR Statement

Use the ERROR statement to set up an environment that checks for nonzero
return codes from commands, subcommands, and CLIST statements in the
currently executing CLIST. When an error code is detected, processing
automatically continues at the ERROR routine active for the code that registered
the error. If an ERROR routine is not active for the code, the CLIST either
terminates or continues, depending on the severity of the error.

The error exit must be protected from being flushed from the input stack by the
system. Stack flushing makes the error return codes unavailable. Use the MAIN
or NOFLUSH operands of the CONTROL statement to prevent stack flushing.

When ERROR is entered with no operands, the CLIST displays the command,
subcommand, or statement in the CLIST that ended in error. The CLIST then
attempts to continue with the next sequential statement if possible.

If the LIST option was requested for the CLIST, the null ERROR statement is
ignored.

The ERROR statement must precede any statements that might cause a branch to
it.

[label:] ERROR
[

OFF]

label

OFF

action

a name the CLIST can reference in a GOTO statement to branch to this
ERROR statement. label is one-to-eight alphameric characters, beginning
with an alphabetic character.

any action previously set up by an ERROR statement is nullified.

action
any executable statement, commonly a DO-group constituting a routine.
The action may execute TSO commands, subcommands, and CLIST
statements.

Note: Coding ERROR OFF within the DO-group routine itself prevents
the routine from returning control to the CLIST.

5-12 CLISTs: Implementation and Reference

EXEC Command

Use the EXEC command to execute a CLIST. You can specify the EXEC
command or the EXEC subcommand of EDIT in three ways:

• The expUcit (orm: Enter EXEC or EX followed by the name of the data set
that contains the CLIST.

• The implicit (orm~ Enter only the member-name (a member of a CLIST
library). A CLIST library is a PDS allocated to the SYSPROC file. TSO
determines if the specified name is a command before searching SYSPROC
for the name.

• The extended implicit form: Enter a percent sign, followed by the
member-name. TSO searches only the SYSPROC file for the specified name.

Some of the commands in a CLIST may have symbolic variables for operands.
When you specify the EXEC command, you may supply actual values for the
CLIST to use in place of the symbolic variables.

The EXEC subcommand of EDIT performs the same basic functions as the
EXEC command. However, a CLIST which is executed with the EXEC
subcommand of EDIT can only execute CLIST statements and EDIT
subcommands.

!
EXECII~~~~!7.~::e~member_name) I ['p-value

n
']···

EX 'data-set-name' .
'data-set-name(member-name)'

[

- [('k-valuc
n

') 1 ' 1 [NOLISTIINOPROMPT I
k wordn ...

(k-valucn) LIST PROMPT

[%]mcmbcr-name [p-valucn] ...
[[

('k-valuen')]]
k-wordn ...

(k-valucn)

data-sct-name
the unqualified name of a PDS whose type is CLIST. (data-set-name is the
library name.)

member-name
the name of the CLIST

member-name
a member of a PDS whose type is CLIST. (member-name is the name of
the CLIST.)

data-set-name
the unqualified name of a sequential data set whose type is CLIST.
(data-set-name is the name of the CLIST.)

Chapter 5. Reference 5-13

'data-set-name'
the fully qualified name of a sequential data set.

'data-set-name(member-name)'
the fully qualified name of a PDS. (member-name is the name of the
CLIST)

A data set may contain line numbers according to the following format:

• Variable blocked - First eight characters in each record. If the data in
columns 1-8 is not numeric, the CLIST treats it as data.

• Fixed blocked - Last eight characters in each record

Variable blocked records are recommended, although fixed blocked can be
used.

member-name
the name of a CLIST. The CLIST is a member of a PDS that is either not
concatenated to SYSPROC; or concatenated to SYSPROC, but the user did
not use the extended implicit form.

%member-name
member-name is the name of a CLIST. The CLIST is a member of a PDS
that is concatenated to SYSPROC.

p-value
the actual value a user specifies for each positional parameter on the PROC
statement. Lower-case values are changed to upper case.

The user must specify a p-value for each positional parameter in the same
sequence as each appears on the PROC statement (for example, p-value1
p-value2 ...).

If a user does not specify a p-value for a positional parameter, the CLIST
prompts for the value. Nested CLISTs prompt for the value only if
PROMPT appears on the CONTROL statement of the first CLIST.

k-word
the actual keyword a user specifies. k-word must be the exact name of a
keyword parameter on the PROC statement.

The specification of k-word must follow all p-value specifications; but
k-words may be specified in any order.

k-value
a value associated with k-word

'k-value'
k-value is a quoted string

5-14 CLISTs: Implementation and Reference

Specification on the PROC statement: keywordO

If the user specifies k-word without a k-value, the CLIST prompts
for the value.

If the user does not specify k-word, the associated keyword has a
null value.

Specification on the PROC statement: keyword(default-value)

If the user specifies k-word without a k-value or does not specify
k-word, the CLIST uses the default-value.

If the user specifies k-word with a k-value, the CLIST uses k-value.

Considerations for specifying parameters that:

• contain single quotes (apostrophes) - specify two apostrophes for each
apostrophe within the string. For example, to pass the string: It's 2 o'clock
specify: It"s 2 o"clock

• are quoted strings

implicit invocation

• p-value - specify the exact string. For example, to pass the fully
qualified data set name 'USER33.MASTER.BACKUP'
specify: 'user33.master.backup'

• k-word('k-value') - to pass the same fully qualified data set name as
shown in the previous example as a k-value, specify:
dsn(' "user33 .master. backup"')

explicit invocation

• p-value - specify two quotes for each enclosing quote. For example,
to pass the fully qualified data set name
'USER33.MASTER.BACKUP'
specify: "'user33.master.backup'"

The outermost set of quotes is required as part of the syntax.

• k-word(,k-value') - to pass the same fully qualified data set name as
shown in the previous example as a k-value,
specify: 'dsn(''''''user33.master.backup'''''')'

The number of enclosing quotes must be doubled because the entire
specification is i~self a quoted string.

Chapter 5. Reference 5-15

NOLIST
do not display commands and subcommands at the terminal.

LIST
display commands and subcommands at the terminal as they are executed.

PROMPT
allow prompting to the terminal during the execution of a CLIST. The
PROMPT keyword implies LIST, unless NOLIST has been explicitly
specified.

NOPROMPT
do not allow prompting during the execution of a CLIST.

5-16 CLISTs: Implementation and Reference

EXIT Statement

Use the EXIT statement to cause control to be returned to the program that
called the currently executing CLIST. The return code associated with this exit
can be specified by the user or allowed to default to the value in control variable
&LASTCC.

A CLIST that is called by another CLIST is said to be nested. Multiple levels of
nesting are allowed. The structure of the nesting is called the hierarchy . You go
"up" in the hierarchy when control passes back to the calling CLIST. TSO itself
is at the top of the hierarchy.

Entering EXIT causes control to go up one level. When EXIT is entered with the
QUIT operand, the system attempts to pass control upward to the first CLIST
encountered that has MAIN or NOFLUSH in effect (see the CONTROL
statement). If no such CLIST is found, control passes to TSO, which flushes all
CLISTs from the input stack and passes control to the terminal.

[label:] EXIT [CODE(expression)] [QUIT]

label
a name the CLIST can reference in a GOTO statement to branch to this
EXIT statement. label is one-to-eight alphameric characters, beginning with
an alphabetic character.

CODE(expression)
a user-defined return code, a decimal integer or a simple expression. When
CODE is not specified, the system uses the contents of &LASTCC.

QUIT
control is passed up the nested hierarchy until either a CLIST is found with
the MAIN or NOFLUSH option active or TSO receives control.

Chapter 5. Reference 5-17

GETFILE Statement

Use the GETFILE statement to read a record from a file opened by the
OPENFILE statement. One record is obtained by each execution of GETFILE.

After GETFILE executes, the file name variable contains the record obtained.

[label:] GETFILE file-name

label
a name the CLIST can reference in a GOTO statement to branch to this
GETFILE statement. label is one-to-eight alphameric characters, beginning
with an alphabetic character.

file-name
the file name (ddname) assigned to the file (data set) when it was allocated
in the current session. Do not specify a symbolic variable containing the file
name.

5-18 CLISTs: Implementation and Reference

GLOBAL Statement

Use the GLOBAL statement to share values between nested CLISTs. In the
hierarchy of nested CLISTs, the highest-level CLIST that will reference the values
uses the GLOBAL statement to define them to global variables. Lower-level
CLISTs must include a GLOBAL statement if they intend to refer to the global
variables defined by the highest-level CLIST. The number of global variables
defined in the highest-level CLIST is the maximum number that can be referenced
by any lower-level CLIST.

The global variables are positional, and the order is set by the GLOBAL
statement in the highest-level CLIST. All lower-level CLISTs that reference this
same set of variables must follow this order to reference the same values. The
variable names may be unique to the lower-level CLISTs. This means that the
Nth name on any level GLOBAL statement refers to the same value, even though
the symbolic name at each level may be different. For example, if a nested
CLIST references the fifth global variable, then it must define five global
variables. If it references the second global variable, then it only needs to define
two global variables.

The GLOBAL statement must precede any statement that uses or defines its
variables.

[label:] GLOBAL variablel[variablen J •••

label
a name the CLIST can reference in a GOTO statement to branch to this
GLOBAL statement. label is one-to-eight alphameric characters, beginning
with an alphabetic character.

variable
a symbolic variable name for this CLIST. The name refers to a variable
that is either being created by this GLOBAL statement or that was created
by a GLOBAL statement in the highest-level CLIST.

Chapter 5. Reference 5-19

GOTO Statement

Use the GOTO statement to cause an unconditional branch within a CLIST.
Branching to another CLIST is not allowed.

[label:] GOTO
{

target }

label

target

&variable

a name the CLIST can reference in a GOTO statement to branch to this
GOTO statement. label is one-to-eight alphameric characters, beginning
with an alphabetic character.

a label on a statement or command

variable
a symbolic variable that contains a valid label

5-20 CLISTs: Implementation and Reference

IF-THEN-ELSE Sequence

Use the IF-THEN-ELSE sequence to define a condition, test the truth of that
condition, and initiate an action based on the test results. Do not code THEN
and ELSE on the same logical line.

[label:] IF logical-expression THEN [action]
[ELSE [action]]

label
a name the CLIST can reference in a GOTO statement to branch to this
IF-THEN-ELSE sequence. label is one-to-eight alphameric characters,
beginning with an alphabetic character.

logical-expression
a group of comparative expressions grouped by logical operators. The
minimal entry for a logical expression is a comparative expression.

action
an executable command, subcommand, or CLIST statements. (Enclose an
action consisting of more than one statement in a DO-group.) The THEN
action is invoked if the logical expression is true. The ELSE action is
invoked if the logical expression is false. If a null THEN or null ELSE
statement is executed, control passes to the next sequential statement after
the IF-THEN-ELSE sequence.

Chapter 5. Reference 5-21

OPENFILE Statement

Use the OPENFILE statement to open a file for I/O. The file must have been
allocated during the session and assigned a file name. Each execution of
OPENFILE can open only one file.

Note: The OPENFILE statement sets any I/O variables to nulls. Always execute
the OPENFILE statement before using any SET statements to create I/O records.

Complete your file I/O on a specific file before changing from command to
subcommand mode and vice versa. Cross-mode file I/O is not supported and
causes miscellaneous abnormal terminations.

Specify NOFLUSH for a CLIST that uses file I/O. (See the CONTROL
statement.)

If a system action causes TSO to flush the input stack because you did not specify
NOFLUSH, a user may have to log off the system to recover. The user will
recognize the condition by receiving a message similar to "FILE NOT FREED,
DATA SET IS OPEN."

[label:] OPENFILE {file-name }

{

INPUT }

label

OUTPUT
&symbolic-variable-name UPDATE

a name the CLIST can reference in a GOTO statement to branch to this
OPENFILE statement. label is one-to-eight alphameric characters,
beginning with an alphabetic character.

file-name
the file name (ddname) you assigned to the file (data set) when allocating it
in the current session.

symbolic-variable-name
the symbolic variable to which you assigned file-name

INPUT
open the file for input.

OUTPUT
open the file for output.

UPDATE
open the file for updating in place; that is, the CLIST can execute
GETFILE and PUTFILE statements before closing the file.

5-22 CLISTs: Implementation and Reference

PROC Statement

Use the PROC statement to define parameters to be passed to the CLIST using
the EXEC command. PROC is optional. If you use it, it must be the first
executable statement in the CLIST.

If the name of a positional parameter on the PROC statement is the same as the
name of a GLOBAL variable, an error occurs. You cannot predefine a GLOBAL
variable.

PRoe positional-specification [positional-pararnetern] ...

[keyword-pararnetern[([default-valuen])]] ...

positional-specification
the number of required positional parameters to be passed. Enter 1-5
decimal digits. Enter 0 if none.

positional-parameter
a positional parameter passed to the CLIST.

A positional parameter name may be 1-252 alphameric characters in length,
beginning with an alphabetic character.

keyword-parameter
a keyword parameter passed to the CLIST.

A keyword parameter name may be 1-31 alphameric characters in length,
beginning with an alphabetic character.

default-value
the value assigned to the corresponding variable in the CLIST if the user
does not specify a value on the associated keyword on the EXEC command.

omitted value (empty parentheses)
the user may supply a value on the associated keyword on the EXEC
command

All parameters have an initial value at the time the CLIST begins execution.
Each parameter name becomes the name of a symbolic variable that has the
initial value of the associated parameter. The values of passed parameters are in
effect only while the CLIST is active. Values passed in lower case are translated
to upper case by the the EXEC command.

Chapter 5. Reference 5-23

PUTFILE Statement

Use the PUTFILE statement to write a record to an open file. Each execution of
PUTFILE transfers one record. Unless the user wants the same record sent more
than once, the file name variable must be initialized to a different record using an
assignment statement before the next PUTFILE statement is issued.

[label:] PUTFILE file-name

label
a name the CLIST can reference in a GOTO statement to branch to this
PUT FILE statement. label is one-to-eight alphameric characters, beginning
with an alphabetic character.

file-name
the file name (ddname) assigned to the file (data set) when it was allocated
in the current session. Do not specify a symbolic variable containing the file
name.

5-24 CLISTs: Implementation and Reference

READ Statement

Use the READ statement to read input from the terminal and store it in symbolic
variables. These variables may be created on the READ statement or elsewhere
in the CLIST. The READ statement is usually preceded by a WRITE statement
that requests the expected input from the terminal.

[label: J READ [variable, [variablenJ ...]

label
a name the CLIST can reference in a GOTO statement to branch to this
READ statement. label is one-to-eight alphameric characters, beginning
with an alphabetic character.

variable
any valid variable name. The variables are positional in that values in the
input data entered by the terminal user are stored sequentially into the
specified variables.

omitted operand
store the input in the &SYSDV AL control variable

Chapter 5. Reference 5-25

READDV AL Statement

Use the READDVAL statement to cause the current contents of the &SYSDVAL
control variable to be assigned to a specified symbolic variable.

The assignment is done sequentially to the variables in the order specified;
variables not assigned values default to null values. If there are more values than
variables, the excess values from &SYSDVAL are not assigned.

[label:] READDVAL variablel [variablen] •••

label
provides a name the CLIST can reference in a GOTO statement to branch
to this READDV AL statement. label is one-to-eight alphameric characters,
beginning with an alphabetic character.

variable
any valid variable name. A variable need not have been previously defined.

5-26 CLISTs: Implementation and Reference

RETURN Statement

The RETURN statement returns control from an error routine or an attention
routine to the statement following the one that ended in error or the one that was
interrupted by an attention.

RETURN is valid only when issued from an activated error routine or an
activated attention routine in this CLIST. If neither of these conditions exists,
RETURN is treated as a no-operation.

[label:] RETURN

label
a name the CLIST can reference in a GOTO statement to branch to this
RETURN statement. label is one-to-eight alphameric characters, beginning
with an alphabetic character.

Chapter 5. Reference 5-27

SET Statement

Use the SET statement to assign a value to a symbolic variable, control variable,
or built-in function.

[label:] SET {
[&]SYmbOliC-Variable-name}
&control-variable-name

label
a name the CLIST can reference in a GOTO statement to branch to this
SET statement. label is one-to-eight alphameric characters, beginning with
an alphabetic character.

symbolic-variable-name
the symbolic variable to which you are assigning a value

control-variable-name
the control variable to which you are assigning a value (Refer to Figure 3-9
for those control variables that you can modify.)

EQ or =

the operator 'equal'

value
any valid numeric value or character string

5-28 CLISTs: Implementation and Reference

TERMIN Statement

Use the TERMIN statement to pass control from the CLIST to the terminal user.
You can also use TERMIN to define the character strings, including a null line,
that a user enters to return control to the CLIST. TERM IN is usually preceded
by a WRITE statement that requests the expected response from the terminal
user.

Do not use TERMIN if the CLIST may be executed under ISPF or in the
background.

Control returns to the CLIST at the statement after TERMIN. When control
returns, &SYSDLM and &SYSDVAL have been set.

[label:] TERMIN

label

string

a name the CLIST can reference in a OOTO statement to branch to this
TERMIN statement. label is one-to-eight alphameric characters, beginning
with an alphabetic character.

a character string that the terminal user enters to return control to the
CLIST. The &SYSDLM control variable contains a number corresponding
to the position of the string that the user entered (l for stringb 2 for string2,
etc.).

user-input
additional input entered by the terminal user. The input is stored in the
&SYSDV AL control variable.

the terminal user can enter a null line (press the ENTER key) to return
control to the CLIST.

no operands specified
the terminal user enters a null line to return control to the CLIST.

Chapter 5. Reference 5-29

WRITE and WRITENR Statements

Use the WRITE and WRITENR statements to define text and have it displayed
at the terminal. This text can be used for messages, information, or prompting.

[label:]
{

WRITE } text
WRITENR

label
a name the CLIST can reference in a GOTO statement to branch to this
WRITE/WRITENR statement. label is one-to-eight alphameric characters,
beginning with an alphabetic character.

WRITE
the cursor moves to a new line after the text is displayed.

WRITENR

text

the cursor does not move to a new line after the text is displayed.

what is displayed at the terminal. You can enter any character string,
including symbolic variables. Unless you enclose an arithmetic expression in
an &EVAL built-in function, the WRITE/WRITENR statement does not
perform evaluation on the expression. The CLIST also displays any
comments on the same line as the WRITE/WRITENR statement.

5-30 CLISTs: Implementation and Reference

Error Codes

Figure 5-1 lists the error codes returned by CLIST statements. Except as
otherwise noted, the codes are in decimal format.

Error Code Explanation

16 Not enough virtual storage

300 User tried to update a control variable that can only be updated by the
system.

304 Invalid keyword on EXIT statement.

308 CODE keyword specified, but no code given on EXIT statement.

312 Internal GLOBAL processing error.

316 TERMIN delimiter greater than 256 characters.

324 G ETLINE error.

328 More than 64 delimiters on TERMIN.

332 Invalid file name syntax.

336 File already open.

340 Invalid OPEN type syntax.

344 Undefined OPEN type.

348 File specified did not open. (For example, the file name was not allocated.)

352 GETFILE - file name not currently open.

356 GETFILE - the file has been closed by the system. (For example, the file
was opened under EDIT mode and EDIT mode has been terminated.)

360 PUTFILE - file name not currently open.

364 PUTFILE - file closed by system (see code 356).

368 PUTFILE - CLOSFILE - file not opened by OPENFILE.

372 PUTFILE - issued before GETFILE on a file opened for update.

400 GETFILE - end of file. TSO treats this condition as an error that can be
handled by an ERROR action.

404 PUTFILE - tried to write to a file open for INPUT.

408 GETFILE - tried to read from a file open for OUTPUT.

8xx Evaluation routine error codes.

800 Data found where operator was expected.

804 Operator found where data was expected.

808 A comparison operator was used in a SET statement.

812 (Reserved).

816 Operator found at the end of a statement.

820 Operators out of order; data may resemble operators.

824 More than one exclusive operator found.

828 More than one exclusive comparison operator found.

832 The result of an arithmetic calculation is outside the valid range extending
from -2,147,483,647 to +2,147,483,647.

Figure 5-1 (Part 1 of 2). CLIST Statement Error Codes

Chapter 5. Reference 5-31

Error Code Explanation

836 (Reserved).

840 Not enough operands.

844 No valid operators.

848 Attempt to load character from numeric value.

852 Addition error - character data.

856 Subtraction error - character data.

860 Multiplication error - character data.

864 Divide error - character data or division by o.
868 Prefix found on character data.

872 Numeric value too large.

900 Single ampersand found.

904 (Reserved).

908 Error occurred in an error action range that received control because of
another error.

912 Substring range invalid.

916 Non-numeric value in substring range.

920 Substring range value too small (zero or negative).

924 Invalid substring syntax.

932 Substring outside of the range of the string. (For example, an &SUBSTR
variable attempted to substring the first three positions of data that
contains only two characters.)

936 A built-in variable that requires a value was entered without a value.

940 Invalid symbolic variable.

944 A label was used as a symbolic variable.

948 Invalid label syntax on a GOTO statement.

952 GOTO label was not defined.

956 GOTO statement has no label.

960 &SYSSCAN was set to an invalid value.

964 &LASTCC was set to an invalid value and EXIT tried to use it as a default
value.

968 DATA PROMPT-ENDDATA statements supplied, but no prompt
occurred.

972 TERM IN statement cannot be used in background jobs.

976 READ statement cannot be used in background jobs.

999 Internal CLIST error.

Sxxx A system ABEND code, printed in hexadecimal.

Uxxx A user ABEND code, printed in hexadecimal.

Figure 5-1 (Part 2 of 2). CLIST Statement Error Codes

5-32 CLISTs: Implementation and Reference

Index

A

action
attention 3-56

cancelling 3-56
protecting the input stack for 3-56
protecting using the MAIN operand of

CONTROL 3-57
error 3-59

cancelling 3-60
listing instruction causing error 3-60
protecting the input stack for 3-60
protecting using MAIN or NOFLUSH operand
of CONTROL 3-60

ALLOCATE CLIST 3-57
alphameric characters

definition 3-6
applications

full-screen
writing 4-29

arithmetic expressions
creating from user supplied input 4-4

attention handling CLISTs 3-56
example 3-58

attention interrupts 3-55
cancelling actions for 3-56
defining actions for 3-56
errors 3-55
protecting the input stack for 3-56

attention routines
cancelling 3-56
establishing 3-56
example 3-57
protecting the input stack for 3-56

ATTN statement 3-56

B

cancelling attention action using 3-56
protecting the input stack for 3-56
reference 5-4
syntax 5-4

background
execution of jobs, allowing

example 4-16
branching

within a CLIST
using GOTO statements 3-47

built-in functions 3-21

C

CALC CLIST
adding front-end prompting to 4-5

creating arithmetic expressions from input 4-4
CALCFTND CLIST 4-6
capitalization in CLISTs 3-2
CASH CLIST 4-22
categories of CLISTs

CLISTs that perform routine tasks 1-1
manage applications written in other languages 1-2
self-contained applications 1-2

character set
supported by CLISTs 3-10

CLIST data sets
considerations for copying 2-2
default attributes 2-2
partitioned 2-1

advantages 2-1
sequential 2-1

CLIST libraries
allocating to SYSPROC file 2-4
concatenating to SYSPROC file 2-4

example 2-5
definition 2-1

CLIST statements
overview 3-1

CLOSFILE statement 3-52
reference 5-5
syntax 5-5

closing a file 3-52
comments, including in CLISTs 3-2
COMPRESS CLIST 4-20
compressing data sets 4-20
concatenating

data sets to SYSPROC
LIST ALC command 4-26

continuation symbols 3-2
CONTROL statement

reference 5-6
syntax 5-6

controlling
the display

of messages 3-42
uppercase and lowercase

using &SYSLC and &SYSCAPS control
variables 3-38

using CAPS operand of CONTROL 3-38
creating CLISTs

TSO EDIT and full-screen editor 2-1

D

DATA PROMPT-ENDDATA sequence
reference 5-9
syntax 5-9

data set
concatenating to SYSPROC

example 2-4

Index X-I

example of a CLIST that 4-26
fully qualified names

performing sub stringing on 4-14
I/O

performing 3-51
DATA-ENDDATA sequence

reference 5-8
syntax 5-8

DAT ATYPE built-in function 3-22
defining

a non-rescannable character string
(&NRSTR) 3-24

a real value (&STR) 3-26
a substring (&SUBSTR) 3-27

DELETE CLIST 4-3
delimiters

period
used to distinguish variables from data 4-12

determining
an expression's data type (&DATATYPE) 3-22
an expression's length (&LENGTH) 3-23
including leading/trailing blanks/zeros 3-23
whether a data set exists (&SYSDSN) 3-28

dialogs
ISPF

invoking 4-29
distinguishing

END statements from END subcommands 3-46
using the CONTROL statement 3-46
using the DATA-ENDDATA sequence 3-47

DO-WHILE-END sequence
reference 5-10
syntax 5-10

E

editing CLISTs
TSO EDIT and full-screen editor 2-1

END command 3-50
END statement

reference 5-11
syntax 5-11

end-of-file processing
performing 3-54

entry panel
in PROFILE CLIST 4-29

error
conditions

end-of-file processing 3-54
routines

end-of-file 3-54
error routines

cancelling 3-60
establishing 3-59
example 3-60
protecting the input stack for 3-60

ERROR statement 3-59
cancelling error action using 3-60
listing instruction causing error 3-60

X-2 CLISTs: Implementation and Reference

protecting the input stack for 3-60
reference 5-12
syntax 5-12

errors
cancelling actions for 3-60
defining actions for 3-59
protecting the input stack for 3-60

EV AL built-in function 3-23
EXEC statement

reference 5-13
syntax 5-13

executing CLISTs 2-3
exit routines

establishing 3-55
EXIT statement

reference 5-17
syntax 5-17
to exit a CLIST specifying a return code 3-50
to exit a CLIST without specifying a return

code 3-50
exiting

CLISTs using the END command 3-50
CLISTs using the EXIT statement 3-50

specifying a return code 3-50
from a nested CLIST 3-50

expressions
comparative 3-4
logical 3-4
simple 3-4

F

file input/output
performing 3-51

closing a file 3-52
end-of-file processing 3-54
on JCL statements 3-54
opening a file 3-51
significance of file name 3-51
using &SYSDV AL 4-24
using READDV AL 4-24

reading records from a file 3-52
updating a file 3-53
writing records to a file 3-52

file name
significance of in file I/O 3-51

flexibility
adding

to SCRIPTDS CLIST 4-7
to SUBMITFQ CLIST 4-14

footprints
setting

in a CLIST 3-58
testing

in an attention handling CLIST 3-59
forcing arithmetic evaluations 3-23
foreground

execution of jobs, allowing
example 4-16

formatting in CLISTs 3-2
front-end prompting

adding to the CALC CLIST 4-5
example 4-5, 4-12

full-screen applications
writing 4-29

fully qualified data set names
processing

example 4-14
functions

G

built-in 3-21
defining a non-rescannable character string

(&NRSTR) 3-24
defining a real value (&STR) 3-26
defining a substring (&SUBSTR) 3-27
determining an expression's length

(&LENGTH) 3-23
determining data types (&DATATYPE) 3-22
determining whether a data set exists

(&SYSDSN) 3-28
forcing arithmetic evaluations (&EVAL) 3-23
overview 3-21
translating READ input to lowercase

(&SYSLC) 3-29
translating READ input to uppercase

(&SYSCAPS) 3-28

GETFILE statement 3-52
reference 5-18
syntax 5-18
using to assign values to variables 3-8

GLOBAL statement
reference 5-19
syntax 5-19

global symbolic variables
analogy 3-49
establishing 3-49

global variables
in attention routine

protecting using the MAIN operand of
CONTROL 3-57

in error routine
protecting using the MAIN operand of

CONTROL 3-60
GOTO statement

reference 5-20
syntax 5-20

H

hexidecimal characters
excluded from CLISTs 3-10

HOUSKPNG CLIST 3-57
hyphen

as continuation symbol 3-2

I/O
performing file 3-51

IF-THEN-ELSE sequence
reference 5-21
syntax 5-21

implementation
CLISTs, list of 4-1
overview 4-1

implementations
adding

front-end prompting to the CALC CLIST 4-5
background execution of jobs, allowing

example 4-16
concatenating data sets to SYSPROC 4-26
creating

arithmetic expressions from input 4-4
distinguishing operators from operands

example 4-18
distinguishing variables from data

example 4-12
foreground execution of jobs, allowing

example 4-16
full-screen applications

writing 4-29
including JCL statements 4-12
initializing

system services 4-7
interfaces to applications

simplifying 4-22
invoking

CLISTs to perform sub tasks 4-9
system services 4-7

keywords, using to run foreground/background jobs
example 4-16

options, including
example 4-18

organizing related activities 4-2
protecting

JCL statements containing /* 4-12
leading zeros 4-12

READDV AL statement
using when performing file I/O 4-24

routine tasks
simplifying 4-3

simplifying
routine tasks 4-3

sub stringing
avoiding when performing file I/O 4-24
performing on input strings 4-14

system-related tasks
simplifying 4-20

TSO commands, including 4-2
verifying jobcard information 4-12
VIO data set

creating 4-20
input stack

Index X-3

protecting
for attention routines 3-56
for error routines 3-60
using MAIN operand of CONTROL 3-57, 3-60
using NOFLUSH operand of CONTROL 3-60

input strings
performing substringing on

example 4-14
recognizable 3-8

intercept
command output 4-26

interfaces to applications
simplifying 4-22

interpretative language, advantages of 1-1
introduction 1-1
ISPF

dialogs
invoking 4-29

J

JCL statements
including in CLISTs

example 4-12
protecting those containing /* 4-12
special considerations for performing I/O on 3-54

job control language statements
including in CLISTs

example 4-12
protecting those containing /* 4-12
special considerations for performing I/O on 3-54

jobcard information
verifying

example 4-12
jobs

K

foreground and background execution
example 4-16

keywords

L

using to run foreground/background jobs
example 4-16

LENGTH built-in function 3-23
libraries

CLIST 2-1
installation-defined 2-1
user-defined 2-1

LIST ALC command
managing command output 4-26

LISTER CLIST 4-2
LOG/LIST parameters

setting 4-29, 4-32

X-4 CLISTs: Implementation and Reference

M

MAIN operand of CONTROL
using to protect

global variables for attention routines 3-57
global variables for error routines 3-60
the input stack for attention routines 3-57
the input stack for error routines 3-60

managing command output
LIST ALC command 4-26

MATRIX example 3-27
menu

selection
relevance to PROFILE CLIST 4-29

N

nested
CLISTs 3-48

example 3-48
OUTPUT 4-9
protecting the input stack for 3-56
SCRJPTD 4-9

nesting
CLISTs

example 4-9
NOFLUSH operand of CONTROL

using to protect the input stack
for error routines 3-60

NRSTR built-in function 3-24
null

o

ELSE format 3-45
THEN format 3-46

OPENFILE statement 3-51
reference 5-22
syntax 5-22
using to define variables 3-8

opening a file 3-51
options

including in a CLIST
example 4-18

organizing related activities 4-2
OUTPUT CLIST 4-9

P

panel
definition

XYZABCI0 4-29, 4-31
XYZABC20 4-29, 4-32
XYZABC30 4-29,4-34
XYZABC40 4-29, 4-36

in PROFILE CLIST 4-29
performing file I/O

using &SYSDV AL 4-24
using READDV AL statement 4-24

period
used to distinguish variables from data

example 4-12
PF key definitions

setting 4-29
PF key definitions (1-12)

setting 4-34
PF key definitions (13-24)

setting 4-36
PHONE CLIST 4-24
plus sign

as continuation symbol 3-2
PROC statement

considerations for
parameter values containing single quotes 3-34

reference 5-23
syntax 5-23
using

keyword parameters on 3-33
keyword parameters with subparameters

on 3-34
keyword parameters without subparameters

on 3-33
positional parameters on 3-32
to assign values to variables 3-32

PROFILE CLIST 4-29,4-30
programming tools 3-1

attention handling CLISTs
establishing 3-56
example 3-58

attention routines
cancelling 3-56
establishing 3-56
example 3-57
protecting the input stack for 3-56

branching within a CLIST
using GOTO statements 3-47

communicating with the terminal user 3-34
DO-groups 3-43

distinguishing END statements from
subcommands 3-46

DO-WHILE-END sequence 3-43
example 3-43
nesting 3-44

error routines
cancelling 3-60
establishing 3-59
example 3-60
protecting the input stack for 3-60

exit routines
establishing 3-55

exiting
CLISTs using the END command 3-50
CLISTs using the EXIT statement 3-50
from a nested CLIST 3-50

file input/output

closing a file 3-52
opening a file 3-51
performing 3-51
performing end-of-file processing 3-54
performing on JCL statements 3-54
reading records from a file 3-52
significance of file name 3-51
updating a file 3-53
writing records to a file 3-52

flushing the input stack
for attention routines 3-57
for error routines 3-60

functions, built-in 3-21
defining a non-rescannable character string

(&NRSTR) 3-24
defining a real value (&STR) 3-26
defining a substring (&SUBSTR) 3-27
determining an expression's length

(&LENGTH) 3-23
determining data types (&DATATYPE) 3-22
determining whether a data set exists

(&SYSDSN) 3-28
forcing arithmetic evaluations (&EVAL) 3-23
overview 3-21
translating READ input to lowercase

(&SYSLC) 3-29
translating READ input to uppercase

(&SYSCAPS) 3-28
general considerations for writing CLISTs

capitalization 3-2
comments 3-2
delimiters 3-1
formatting 3-2

global symbolic variables
analogy 3-49
establishing 3-49

IF-THEN-ELSE sequence 3-44
null ELSE format 3-45
standard format 3-45

input stack
protecting for attention routines 3-56
protecting for error routines 3-60
protecting using the MAIN operand of

CONTROL 3-57, 3-60
protecting using the NO FLUSH operand of

CONTROL 3-60
messages, controlling the display of 3-42
nesting CLISTs 3-48

example 3-48
overview of CLIST statements 3-1
passing control to the terminal

READ 3-36
returning control after a TERMIN

statement 3-42
significance of &SYSDLM control

variable 3-41
TERMIN 3-40

performing operations
default order of evaluations 3-5
overriding the default order 3-5

Index X-5

valid numeric ranges 3-5
precautions when reading fully qualified data set

names 3-37
prompting

controlling uppercase and lowercase 3-38
for input 3-29
returning control after a TERMIN

statement 3-42
significance of &SYSD LM control

variable 3-41
storing ·input in &SYSDV AL control
variable 3-39

to obtain values for PROC statement
keywords 3-37

using the DATA PROMPT-ENDDATA
sequence 3-31

using the READ statement 3-36
using the READDV AL statement 3-39
using the TERMIN statement 3-40
using WRITE and WRITENR 3-35

protecting global variables
for attention routines 3-57
for error routines 3-60

structuring CLISTs 3-43
attention handling CLISTs 3-56
attention handling CLISTs, example 3-58
attention routines 3-56
branching using GOTO statements 3-47
closing a file 3-52
creating loops (DO-WHILE-END) 3-43
creating loops, example 3-43
error routines 3-59
error routines, example 3-60
exit routines, establishing 3-55
exiting CLISTs using the END command 3-50
exiting CLISTs using the EXIT statement 3-50
exiting from a nested CLIST 3-50
file input/output, performing 3-51
global symbolic variables, analogy 3-49
global symbolic variables, establishing 3-49
IF-THEN-ELSE: null ELSE format 3-45
IF-THEN-ELSE: null THEN format 3-46
IF-THEN-ELSE: standard format 3-45
making decisions (IF-THEN-ELSE) 3-44
nesting CLISTs 3-48
nesting CLISTs, example 3-48
nesting loops 3-44
opening a file 3-51
performing end-of-file processing 3-54
performing file I/O on JCL statements 3-54
reading records from a file 3-52
updating a file 3-53
using DO-groups 3-43
writing records to a file 3-52

variables
concatenating 3-9
nesting 3-8
using double ampersands 3-9

variables, CLIST -defined 3-6
defining and assigning values 3-6

X -6 CLISTs: Implementation and Reference

format 3-6
values assigned 3-6

variables, control
&LASTCC 3-20
&MAXCC 3-20
&SYSCPU 3-15
&SYSDATE 3-13
&SYSDLM 3-18
&SYSDVAL 3-18
&SYSENV 3-16
&SYSICMD 3-17
&SYSISPF 3-16
&SYSJDATE 3-13
&SYSL TERM 3-14
&SYSNEST 3-18
&SYSOUTLINE 3-19
&SYSOUTRAP 3-19
&SYSPCMD 3-17
&SYSPREF 3-15
&SYSPROC 3-15
&SYSRACF 3-16
&SYSSCAN 3-17
&SYSSCMD 3-17
&SYSSDATE 3-13
&SYSSRV 3-15
&SYSSTIME 3-13
&SYSTIME 3-13
&SYSUID 3-14
&SYSWTERM 3-14
considerations for &SYSDATE and

&SYSSDATE 3-13
describe terminal characteristics 3 -14
modifiable 3-11
non-modifiable 3-12
related to input 3-18
related to return and reason codes 3-20
related to the CLIST 3-16
related to the current date and time 3-13
related to the system 3-15
related to the user 3-14
related to TSO command output 3-19
relationship between &SYSPCMD and

&SYSSCMD 3-17
prompting

for input 3-29
controlling uppercase and lowercase 3-38
using the READ statement 3-36
using WRITE and WRITENR 3-35

front-end
example 4-5, 4-12

precautions when reading fully qualified data set
names 3-37

storing input in &SYSDV AL control variable 3-39
to obtain values for PROC statement

keywords 3-37
using the DATA PROMPT-END DATA

sequence 3-31
example 3-31

using the READDV AL statement 3-39
using the TERMIN statement 3-40

returning control after a TERMIN
statement 3-42

significance of &SYSDLM control
variable 3-41

protecting
input stack

for attention routines 3-56
for error routines 3-60
using MAIN operand of CONTROL 3-57,3-60
using NOFLUSH operand of CONTROL 3-60

protecting JCL statements containing /*
example 4-12

PUTFILE statement 3-52
reference 5-24
syntax 5-24

R

READ statement
reference 5-25
syntax 5-25
using to assign values to variables 3-8

READDVAL statement
reference 5-26
syntax 5-26
using to assign values to variables 3-8
using when performing file I/O 4-24

reading input from the terminal
precautions when reading fully qualified data set

names 3-37
storing input in &SYSDV AL control variable 3-39
to obtain values for PROC statement

keywords 3-37
using the READ statement 3-36

controlling uppercase and lowercase 3-38
using the READDV AL statement 3-39
using the TERM IN statement 3-40

returning control after a TERMIN
statement 3-42

significance of &SYSDLM control
variable 3-41

reading input from within the CLIST
using the DATA PROMPT-ENDDATA

sequence 3-31
example 3-31

reading records from a file 3-52
records

copying directly into variables using
&SYSDV AL 4-24

performing file I/O on 3-51
special considerations for JCL statements 3-54

reading from a file 3-52
updating in a file 3-53
writing to a file 3-52

reference
ATTN statement 5-4
CLOSFILE statement 5-5
CONTROL statement 5-6
DATA PROMPT-END DATA sequence 5-9

DATA-END DATA sequence 5-8
DO-WHILE-END sequence 5-10
END statement 5-11
ERROR statement 5-12
EXEC statement 5-13
EXIT statement 5-17
GETFILE statement 5-18
GLOBAL statement 5-19
GOTO statement 5-20
IF-THEN-ELSE sequence 5-21
OPENFILE statement 5-22
PROC statement 5-23
PUTFILE statement 5-24
READ statement 5-25
READDV AL statement 5-26
RETURN statement 5-27
SET statement 5-28
TERMIN statement 5-29
WRITE statement 5-30
WRITENR statement 5-30

reserved characters 3-10
RETURN statement

reference 5-27
syntax 5-27

routine tasks
simplifying 4-3

RUNPRICE CLIST 4-16

S

saving
command output 4-26

SCRIPTD CLIST 4-9
SCRIPTDS CLIST 4-7
SCRIPTNEST CLIST 4-9
selection menu

relevance to PROFILE CLIST 4-29
SET statement

reference 5-28
syntax 5-28
using to assign values to variables 3-7

setting
LOG/LIST parameters 4-29, 4-32
PF key definitions 4-29
PF key definitions (1-12) 4-34
PF key definitions (13-24) 4-36
terminal characteristics 4-29, 4-31

simplifying
interfaces to applications 4-22
process of invoking CASHFLOW 4-22
routine tasks 4-3
system-related tasks 4-20

SPROC CLIST 4-26
standard format for IF-THEN-ELSE sequence 3-45
STR built-in function 3-26
strings

performing substringing on input
example 4-14

structuring CLISTs 3-43

Index X-7

attention handling CLISTs
establishing 3-56
example 3-58

attention routines
cancelling 3-56
establishing 3-56
example 3-57
protecting the input stack for 3-56

branching within a CLIST
using GOTO statements 3-47

error routines
cancelling 3-60
establishing 3-59
example 3-60
protecting the input stack for 3-60

exit routines
establishing 3-55

exiting
CLISTs using the END command 3-50
CLISTs using the EXIT statement 3-50
from a nested CLIST 3-50

file input/output
closing a file 3-52
opening a file 3-51
performing 3-51
performing end-of-file processing 3-54
performing on JCL statements 3-54
reading records from a file 3-52
significance of file name 3-51
updating a file 3-53
writing records to a file 3-52

flushing the input stack
for attention routines 3-57
for error routines 3-60

global symbolic variables
analogy 3-49
establishing 3-49

IF-THEN-ELSE sequence
null THEN format 3-46

input stack
protecting for attention routines 3-56
protecting for error routines 3-60
protecting using the MAIN operand of

CONTROL 3-57
protecting using the NOFLUSH operand of

CONTROL 3-60
protecting via the MAIN operand of

CONTROL 3-60
nesting CLISTs 3-48

example 3-48
protecting global variables

for attention routines 3-57, 3-60
using DO-groups 3-43

distinguishing END statements from
subcommands 3-46

using the DO-WHILE-END sequence 3-43
example 3-43
nesting 3-44

using the IF-THEN-ELSE sequence 3-44
null ELSE format 3-45

X-8 CLISTs: Implementation and Reference

null THEN format 3-46
standard format 3-45

SUBMIT * command
use of

example 4-12
SUBMITDS CLIST 4-12
SUBMITFQ CLIST 4-14
SUBSTR built-in function 3-27
substringing

avoiding when performing file I/O 4-24
on input strings

example 4-14
subtasks

performing using nested CLISTs 4-9
OUTPUT 4-9
SCRIPTD 4-9

symbols, continuation 3-2
syntax

ATTN statement 5-4
CLOSFILE statement 5-5
CONTROL statement 5-6
DATA PROMPT-ENDDATA sequence 5-9
DATA-END DATA sequence 5-8
DO-WHILE-END sequence 5-10
END statement 5-11
ERROR statement 5-12
EXEC statement 5-13
EXIT statement 5-17
GETFILE statement 5-18
GLOBAL statement 5-19
GOTO statement 5-20
IF-THEN-ELSE sequence 5-21
OPENFILE statement 5-22
PROC statement 5-23
PUTFILE statement 5-24
READ statement 5-25
READDV AL statement 5-26
RETURN statement 5-27
SET statement 5-28
TERMIN statement 5-29
WRITE statement 5-30
WRITENR statement 5-30

SYSCAPS built-in function 3-28
SYSCPU control variable 3-15
SYSDATE control variable 3-13
SYSDLM control variable 3-18
SYSDSN built-in function 3-28
SYSDV AL control variable 3-18
SYSISPF control variable 3-16
SYSJDATE control variable 3-13
SYSLC built-in function 3-29
SYSLTERM control variable 3-14
SYSNEST control variable 3-18
SYSOUTLINE control variable 3-19
SYSOUTTRAP control variable 3-19
SYSPCMD control variable 3-17
SYSPREF control variable 3-15
SYSPROC control variable 3-15
SYSPROC file

allocating data sets to 2-4

concatenating data sets to 2-4
SYSRACF control variable 3-16
SYSSCMD control variable 3-17
SYSSDATE control variable 3-13
SYSSRV control variable 3-15
SYSSTIME control variable 3-13
system services

initializing and invoking 4-7
example 4-7

system-related tasks
simplifying 4-20

SYSTIME control variable 3-13
SYSUID control variable 3-14
SYSWTERM control variable 3-14

T

TERMIN statement
reference 5-29
syntax 5-29

terminal characteristics
setting 4-29, 4-31

TESTDYN CLIST 4-18
translating READ statement input

to lowercase characters (&SYSLC) 3-29
to uppercase characters (&SYSCAPS) 3-28

TSOEXEC command 3-21

U

updating a file 3-53

v

variables
assigning values

using the GETFILE statement 3-8
CLIST -defined

assigning character strings to 3-6
format 3-6
to add flexibility to CLISTs 3-6
values assigned 3-6

concatenating 3-9
control 3-11

&LASTCC 3-20
&MAXCC 3-20
&SYSCPU 3-15
&SYSDATE 3-13
&SYSDLM 3-18
&SYSDVAL 3-18
&SYSENV 3-16
&SYSICMD 3-17
&SYSISPF 3-16
&SYSJDATE 3-13
&SYSLTERM 3-14
&SYSNEST 3-18

&SYSOUTLINE 3-19
&SYSOUTRAP 3-19
&SYSPCMD 3-17
&SYSPREF 3-15
&SYSPROC 3-15
&SYSRACF 3-16
&SYSSCAN 3-17
&SYSSCMD 3-17
&SYSSDA TE 3-13
&SYSSR V 3-15
&SYSSTIME 3-13
&SYSTIME 3-13
&SYSUID 3-14
&SYSWTERM 3-14
considerations for &SYSDATE and

&SYSSDATE 3-13
describe terminal characteristics 3-14
modifiable 3-11
non-modifiable 3-12
related to input 3-18
related to return and reason codes 3-20
related to the CLIST 3-16
related to the current date and time 3-13
related to the system 3-15
related to the user 3-14
related to TSO command output 3-19
related to TSOEXEC command 3-21
relationship between &SYSPCMD and

&SYSSCMD 3-17
defining and assigning values

implicitly 3-6
using the PROC statement 3-32
using the READ statement 3-8
using the READDV AL statement 3-8
using the SET statement 3-7

defining values
using the OPENFILE statement 3-8

nesting 3-8
related to the TSOEXEC command

&SYSABDRC 3-21
&SYSABNCD 3-21
&SYSABNRC 3-21

using double ampersands 3-9
VIO data set

creating 4-20

W

WRITE statement
reference 5-30
syntax 5-30

WRITENR statement
reference 5-30
syntax 5-30

writing
full-screen applications 4-29
messages to the terminal 3-35
records to a file 3-52

Index X-9

x

XYZABCIO 4-29,4-31

X-10 CLISTs: Implementation and Reference

XYZABC20 4-29,4-32
XYZABC30 4-29,4-34
XYZABC40 4-29, 4-36

TSO Extensions CLISTS: Implementation and Reference

SC28-1304-1 S370-39

Printed in U.S.A. --.. -. .---- .-- ---------- ----- - - ------------ - ... -®

!§
.2
(I)

-5
'0

Cl)
.(1)

.3
Cl)
Q.

2
"0

Cl)

E
E
::J C 01 ... ~
Cl) CI
~ C
0 0
... <
0 "0
Cl)

~ ~
'iii ...
c 0
Cl) "5 (I)

') u

J
(I)

~
Q.
Cl)
(I)

::J
Cl)
(I)

0
Cl)

c::

TSO Extensions
CLISTS: Implementation
and Reference

SC28-1304-1

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers,
and operators of IBM systems. You may use this form to communicate your comments about this
publication, its organization, or subject matter, with the understanding that IBM may use or distribute
whatever information you supply in any way it believes appropriate without incurring any obligation to
you.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please
direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM
representative or to the IBM branc/t office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name, company, mailing address, and date:

What is your occupation?

How do you use this publication?

Number of latest Newsletter associated with this publication:

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an
IBM office or representative will be happy to forward your comments or you may mail directly to the
address in the Edition Notice on the back of the title page.)

TSO Extensions CLiSTS: Implementation and Reference

SC28-1304-1

Reader's Comment Form

Fold and tape Please Do Not Staple

S370-39

Fold and tape
i
I
I
I

---~

Fold and tape

----- ------ ---------- ----- -- ---------_~_ 'f'_®

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department D58, Building 921 -2
PO Box 390
Poughkeepsie, New York 12602

Please Do Not Staple

I ---____ -.1
I

NO POSTAGE I
NECESSARY I

I
IF MAILED I

IN THE i
UNITED STATES i ... _-----·1

I
--______ 1

I ------1 I --------1 ------1 I ------1 --______ 1

I ------1 I wi
I --------1

Fold and tape

Printed in U.S.A.

TSO Extensions
CLISTS: Implementation
and Reference

SC28-1304-1

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers,
and operators of IBM systems. You may use this form to communicate your comments about this
publication, its organization, or subject matter, with the understanding that IBM may use or distribute
whatever information you supply in any way it believes appropriate without incurring any obligation to
you.

Note: Copies of IBM publicatiolls are IlOt stocked at the locatioll to which this form is addressed. Please
direct allY requests for copies of publicatiolls, or for assistallce ill usillg your IBM system, to your IBM
represelltative or to the IBM branch office servillg your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name, company, mailing address, and date:

What is your occupation?

How do you use this publication?

Number of latest Newsletter associated with this publication:

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an
IBM office or representative will be happy to forward your comments or you may mail directly to the
address in the Edition Notice on the back of the title page.)

TSO Extensions CLISTS: Implementation and Reference

SC28-1304-1

Reader's Comment Form

Fold and tape Please Do Not Staple

S370-39

Fold and tape
i
I
I
I

---~

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 058, Building 921 -2
PO Box 390
Poughkeepsie, New York 12602

I
I .-------.:

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

I
I
I
I
I

I
I
1
I
I
I .. _----_.:
1
I

______ 1

1 ------! 1 ----

.-----1 1
1
1
I
1
1 .---1

Fold and tape Please Do Not Staple

--- ------ --------- ----- -- ------------ - ... -®

Fold and tape

Printed in U.S.A.

SC28-1304-01

1
1
1
1 ,
1
1 ,
1
1
1
I
I ,
I
1
I
1
I
I
1
1
1
1
I
1
1
I
1
1
I
I
I
I
I

