
--------- ----- - -- - ---- - - ----------- ·-
Transmission Control Protocol/
Internet Protocol for MVS

Programmer's Reference

SC09-1261-00

--------- ----- - -- .-... ---- --------·----·-
Transmission Control Protocol/
Internet Protocol for MVS

Programmer's Reference

SC09-1261-00

First Edition (June· 1989)

This edition applies to the Transmission Control Protocol/Internet Protocol for MVS Licensed Program
(Program Number 5685-061), and to all subsequent releases and modifications until otherwise indicated in
new editions. Changes are periodically made to the information herein; any such changes will be reported in
subsequent revisions.

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM licensed program in
this publication is not intended to state or imply that only IBM's licensed program may be used. Any
functionally equivalent program may be used instead.

Note to US Government Users: Documentation related to restricted rights. Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corporation.

Publications are not stocked at the address given belov:. Requests for IBl\1 publications should be made to
your IBM representative or to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this publication. If the form has been removed,
comments may be addressed to:

IBM Canada Ltd.,
Information Development,
Department 849,
1150 Eglinton A venue East,
North York, Ontario, Canada.
M3C 1H7

IBM may use or distribute whatever information you supply in any way it believes appropriate without
incurring any obligation to you.

© Copyright International Business Machines Corporation 1989. All rights reserved.
Portions of this publication are © Copyright Sun Microsystems, Inc. and EJectronic Data Systems
Corporation 1988, 1989.
IBM is a registered trademark of International Business Machines Corporation, Armonk, N.Y.

About This Book

This book describes the programming interfaces for the IBM Transmission Control
Protocol/Internet Protocol for MVS (TCP/IP for MVS) program. These interfaces
allow you to develop application programs that use the services of TCP/IP to enable
MVS and non-MVS hosts to communicate across an internetwork (internet).
However, this book also provides the following types of information, which are
explicitly identified where they occur:

Product-Sensitive Programming Interfaces
Installation exits and other "product-sensitive" interfaces are provided to allow the
customer installation to perform tasks such as product tailoring, monitoring,
modification, or diagnosis. They are dependent on the detailed design or
implementation of TCP/IP for MVS. Such interfaces should be used only for these
specialized purposes. Because of their dependencies on detailed design and
implementation, it is to be expected that programs written to such interfaces may
need to be changed in order to run with new TCP/IP for MVS releases or versions, or
as a result of maintenance. The product-sensitive interfaces provided by TCP /IP for
MVS are as follows:

All product-sensitive programming interfaces for TCP/IP for MVS are described in this
book, IBM Transmission Control Protocol/Internet Protocol for MVS: Programmer's
Reference, SC09-1261.

Internal Product Information
Internal product information is provided as additional guidance on writing
application programs that use the layers of the TCP/IP protocol suite. This internal
information should never be used as programming interface information.

Identified here are those interfaces provided by TCP/IP for MVS by which a
customer-written program is to request or receive functions or services of TCP/IP for
MVS:

• Chapter 2, TCP/UDP/IP API (Pascal Language)

• Chapter 3, C Socket Application Program Interface

• Chapter 4, X-Windows Interface

• Chapter 5, Remote Procedure Calls

• Appendix A, VMCF Interface

• Appendix B, Interface to SMTP Address Space

Note: The above application programming interfaces (API) are available for use
by only one task per address space.

• Appendix D, Network File System Server Exit Routines.

About This Book iii

Macros
This section lists the macros which are intended to be used as, or as part of, a
programming interface for customers.

Distribution Library Name Macro Name

TCPIP.COMMMAC auth_ destroy

TCPIP.COMMMAC clnt call

TCPIP.COMMMAC clnt freeres

TCPIP.COMMMAC clnt_geterr

TCPIP.COMMMAC svc _destroy

TCPIP.COMMMAC svc _ freeargs

TCPIP.COMMMAC svc _getcaller

TCPIP.COMMMAC xdr inline

TCPIP.COMMMAC xdr enum

Note: Some programming interfaces include the use or specification of certain fields
within an otherwise internal control block. You should use only those fields which
are documented as part of the programming interface.

Throughout this book, the abbreviation MVS refers to the following IBM products:

• IBM Multiple Virtual Storage/System Product Version 1 Release 3.5 (MVS/370),
or later ·

• IBM Multiple Virtual Storage/System Product Version 2 Release 1.3
(MVS/XA ™), or later

• IBM Multiple Virtual Storage/System Product Version 3 Release 1.0
(MVS/ESA™), or later.

This book is intended for use by an experienced programmer familiar with MVS, the
IBM Operating System/Multiple Virtual Storage (OS/MVS) commands, and the TCP/IP

protocols.

The glossary at the end of this book defines the most commonly used terms in a
TCP/IP internet environment.

MVSfXA and MVSJESA are trademarks of the International Business Machines Corporation.

iv Programmer's Reference

What This Book Contains
This book contains the following information:

• Chapter 1, "Computer Networks and TCP/IP Protocols" gives an overview of
TCP/IP networks and the TCP/IP set of protocols.

• Chapter 2, "TCP/UDP/IP API (Pascal Language)" describes the functions of
the Pascal Language Application Program Interface (API) used when writing
application programs directly to the Transmission Control Protocol (TCP), User
Datagram Protocol (UDP), and Internet Protocol (IP) boundaries.

• Chapter 3, "C Socket Application Program Interface" describes the functions of
the C Language Socket API used when writing application programs directly to
the TCP and UDP protocol boundaries.

• Chapter 4, "X-Windows Interface" describes the functions of the X-Windows
Interface used when writing application programs directly to the X Window
System protocol boundary.

• Chapter 5, "Remote Procedure Calls" describes the functions of the Remote
Procedure Call (RPC) Interface used when writing application programs directly
to the RPC protocol boundary.

• Appendix A, "VMCF Interface" describes how to communicate directly with
TCP/IP using Virtual Machine Communication Facility (VMCF) calls.

• Appendix B, "Interface to SMTP Address Space" describes the interface to the
Simple Mail Transfer Protocol (SMTP) address space.

• Appendix C, "Assembler Calls for the Pascal API" describes the assembler calls
used with the Pascal API.

• Appendix D, "Network File System Server Exit Routines" describes the
Network File System server exit routines.

• Appendix E, "Sample Programs" contains sample application programs
illustrating the Pascal, C Socket and X-Windows APis.

• Appendix F, "Related Protocol Specifications" lists the publications that are
used as the protocol specifications.

How to Read the Syntax Diagrams
This book presents the command descriptions using "railroad track" syntax
diagrams. The structure of these diagrams is defined below.

• Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.

The..,.__ symbol indicates the beginning of a statement.

The ___. symbol indicates that the statement syntax is continued on the next
line.

The i-- symbol indicates that a statement is continued from the previous line.

The ___..... symbol indicates the end of a statement.

About This Book V

• Required items appear on the horizontal line (the main path) .

.,.._COMMAND-required i tern--------------------

• Optional items appear below the main path .

.,.._COMMAND
'--optional itero--l

• If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main
path .

.,.._COMMAN~required choice!
required choice2

If all items are optional, the entire stack appears below the main path .

.,.._COMMAND~....----------------.----------------------------•-•

'--optional choicel__J
L_optional choice2__J

• An arrow returning to the left above the main line indicates an item that can be
repeated.

i
.,.._COMMAND----repeatab le i temm-------------------• •

• A repeat arrow above a stack indicates that you can make more than one choice
from the stacked items, or repeat a single choice .

.,.._COMMANDi---~----------.---'.__ _____________ ~••
L_repeatable iteml_J
L_repeatable item2__J

vi Programmer's Reference

• Commands are shown in BOLD UPPERCASE letters in the syntax. They are not
case sensitive.

Note: Network File System commands must be issued in lowercase at the
client. Because of this restriction, they are shown in bo 1 d 1 owercase.

Keywords are shown in bo 1 d 1 owercase letters in the syntax. They should be
entered exactly as shown, but are not case sensitive.

Variables appear in ttaltc lowercase letters in the syntax. They represent
user-supplied names or values.

11+-COMMAND-vartable,-.-------T"---------------l•~ ..
Lkeyword_J

• If punctuation marks, parentheses, arithmetic operators, or such symbols are
shown, you must enter them as part of the syntax.

11+-COMMAND-vartable c= ~
(-keyword

....

A Note on Data Set Names
In this book, all data set names are assumed to have a high-level qualifier of TCPIP

(this is the default condition). See your local System Administrator if your TCP/IP
for MVS installation has implemented a different high-level qualifier. The high-level
qualifier for TCP/IP for MVS's libraries may be customized at time of installation
(refer to IBM Transmission Control Protocol/ Internet Protocol for MVS: Installation
and Maintenance).

Recommended Reading
For a concise overview and introduction to internetworking with TCP/IP, you can
refer to:

Internetworking With TCP/IP: Principles, Protocols, and Architecture. Douglas
Comer. Prentice Hall. (New Jersey, 1988). You can obtain this book from
IBM by ordering publication number SC09-1302

Introducing IBM's Transmission Control Protocol/Internet Protocol Products,
GC09-1307.

About This Book vii

Publications Referenced in This Book
At times, this book references other books to find more information. Following is a
list of the books referenced:

IBM AIX Operating System Technical Reference: System Calls and Subroutines,
SC23-2125

IBM AIX X-Windows Programmer's Reference, SC23-2118

IBM AIX X-Windows User's Guide, SC23-2017

IBM VM/SP System Facilities for Programming, SC24-5288

Networking on the Sun Workstation: Remote Procedure Call Programming
Guide, SUN Microsystems.

Other Books That You May Reference
In addition to the books referenced in this book, you may want to consult other
books in the TCP/IP library. Following is a list of other books in the library:

IBM Transmission Control Protocol/Internet Protocol for MVS: Installation and
Maintenance, SC09- l 256

IBM Transmission Control Protocol/Internet Protocol for MVS: User's Guide,
SC09-1255

IBM Transmission Control Protocol/ Internet Protocol for VM: Command
Reference Manual, GC09- l 204

IBM Transmission Control Protocol/Internet Protocol for VM: Installation and
Maintenance Manual, GC09- l 203

IBM Transmission Control Protocol/Internet Protocol for VM: Network File
System and Remote Procedure Call Manual, SC09-1274

IBM Transmission Control Protocol/Internet Protocol for VM: Programmer's
Manual, GC09-1206

IBM Transmission Control Protocol for the Personal System/ 2 Computer:
Command Reference and Installation Manual, SC09-1270

IBM AIX PS/2 Transmission Control Protocol/Internet Protocol User's Guide,
SC23-2047

IBM RT AIX Interface Program for Use with TCP/IP: Version 2.2.l, SC23-2005.

For information about the IBM 8232 LAN Channel Station, you may want to refer to
the following books:

IBM 8232 LAN Channel Station: Installation and Testing, GA27-3796

IBM LAN Channel Station Operator Guide, GA27-3785

IBM LAN Channel Support Program, Version 1.0: User's Guide, SC30-3458.

viii Programmer's Reference

Contents

Chapter 1. Computer Networks and TCP/IP Protocols
Network Basics

Gateways
Internetwork Communication .
TCP /IP Protocols and Network Software

Internet Protocol .
Address Resolution Protocol .
Transmission Control Protocol
User Datagram Protocol
Other Network Protocols

Internet Addressing
Routing

Example of Using TCP/IP

Chapter 2. TCP /UDP /IP API (Pascal Language)
Software Requirements
Data Structures

Connection State
Connection Information Record .
Notification Record
File Specification Record

Procedure Calls
Notifications
TCP/UDP Initialization Procedures
TCP/UDP Termination Procedure
Handling External Interrupts
TCP Communication Procedures . . .
Ping Interface
Monitor Procedures
UDP Communication Procedures
Raw IP Interface
Timer Routines
Host Lookup Routines
Other Routines

Notifications
GetNextNote .
Handle
Unhandle

TCP/UDP Initialization Procedures
TcpNameChange
BeginTcpip
StartTcpNotice

TCP/UDP Termination Procedure
EndTcpip

Handling External Interrupts .
TcpExtRupt .
TcpVmcfRupt

TCP Communication Procedures .

1-1
1-1
1-2
1-2
1-3
1-4
1-4
1-4
1-5
1-5
1-5
1-6
1-7

2-1
2-2
2-2
2-2
2-4
2-5

2-12
2-12
2-13
2-13
2-13
2-13
2-14
2-14
2-15
2-15
2-15
2-16
2-16
2-16
2-17
2-17
2-18
2-18
2-19
2-19
2-20
2-20
2-21
2-21
2-21
2-22
2-22
2-23

Contents ix

TcpOpen and TcpWaitOpen
TcpFSend, TcpSend, and TcpWaitSend
TcpFReceive, TcpReceive, and TcpWaitReceive
TcpClose
TcpAbort
TcpStatus

Ping Interface .
PingRequest .

Monitor Procedures
MonCommand
MonQuery

UDP Communication Procedures
UdpOpen
UdpSend
UdpNReceive
UdpReceive
UdpClose

Raw IP Interface
RawipOpen
RawipReceive
RawlpSend
Raw IpClose .

Timer Routines .
CreateTimer
ClearTimer
SetTimer
Destroy Timer

Host Lookup Routines
GetHostNumber . .
GetHostResol
GetHostString
Getldentity . .
IsLocalAddress
IsLocalHost

Other Routines
GetSmsg
ReadXlateTable
SayCalRe
SayConSt
SaylntAd
SaylntNum ..
SayNotEn
SayPorTy
SayProTy .. .
Add User Note

Pascal Return Codes

Chapter 3. C Socket Application Program Interface
Programming With Sockets

A Typical TCP Socket Session
A Typical UDP Socket Session

Software Requirements

X Programmer's Reference

2-23
2-25
2-28
2-31
2-32
2-33
2-34
2-34
2-35
2-35
2-36
2-38
2-38
2-39
2-40
2-41
2-41
2-42
2-42
2-43
2-44
2-45
2-45
2-46
2-46
2-46
2-47
2-47
2-47
2-48
2-48
2-49
2-50
2-50
2-51
2-51
2-51
2-52
2-52
2-53
2-53
2-54
2-54
2-54
2-55
2-55

3-1
3-1
3-2
3-3
3-3

C Socket Quick Reference . 3-3
The Socket Library . 3-4

accept() . 3-5
bind() . 3-6
close() . 3-8
connect() . 3-8
gethostbyaddr() . 3-9
gethostbyname() . 3-10
gethostname() . 3-11
getsockname() . 3-11
listen() . 3-12
read() and readv() . 3-12
recv() and recvfrom() . 3-13
select() . 3-15
send() and sendto() . 3-16
socket() . 3-17
write() and writev() . 3-18

Chapter 4. X-Windows Interface . 4-1
Software Requirements . 4-1
How the X-Windows Interface Works . 4-1

X Defaults . 4-3
EBCDIC-ASCII Translation . 4-3
Creating an Application . 4-3
Running an Application . 4-4

X-Windows Quick Reference . 4-4
Opening and Closing Display . 4-5
Creating and Destroying Windows . 4-5
Manipulating Windows . 4-S
Changing Window Attributes . 4-6
Obtaining Window Information . 4-6
Properties and Atoms . 4-7
Manipulating Window Properties . 4-7
Setting Window Selections . 4-7
Manipulating Colormaps . 4-7
Manipulating Color Cells . 4-8
Creating and Freeing Pixmaps . 4-8
Manipulating Graphics Contexts . 4-8
Clearing and Copying Areas . 4-9
Drawing Lines . 4-10
Filling Areas . 4-10
Loading and Freeing Fonts . 4-10
Querying Character String Sizes . 4-11
Drawing Text . 4-11
Transferring Images . 4-12
Manipulating Cursors . 4-12
Handling Window Manager Functions 4-12
Manipulating Keyboard Settings . 4-13
Controlling the Screen Saver . 4-14
Manipulating Hosts and Access Control . 4-14
Handling Events . 4-14
Enabling and Disabling Synchronization 4-15

Contents xi

Using Default Error Handling .
Communicating with Window Managers
Keyboard Event Functions .
Manipulating Regions .
Using Cut and Paste Buffers .
Querying Visual Types .
Manipulating Images .
Manipulating Bitmaps .
Using the Resource Manager .
Display Functions .

Extension Routines .
Associate Table Functions .
X-Windows Toolkit

Purpose
Contents
Requirements
Defining Widgets

Chapter 5. Remote Procedure Calls .
The RPC Interface .
Software Requirements .
Remote Procedure Call Quick Reference .
Remote Procedure Call Library

auth _destroy() .
authnone _create() .
authunix _create() .
authunix _create_ default() .
callrpc()
clnt _call() .
clnt _destroy() .
clnt _ freeres() .
clnt_geterr()
clnt _pcreateerror() .
clnt _perrno() .
clnt _perror() .
clntraw _create() .
clnttcp _create() .
clntudp _create() .
get_ myaddress() .
mvs_xdr_enum()
pmap _getmaps() .
pmap _getport() .
pmap _rmtcall() .
pmap _set() .
pmap _unset() .
registerrpc()
rpc _ createerr .
svc _destroy() . ·. . . .
svc_fds
svc _ freeargs() .

xii Programmer's Reference

4-15
4-16
4-17
4-17
4-18
4-18
4-18
4-19
4-19
4-20
4-23
4-24
4-25
4-25
4-25
4-25
4-27

5-1
5-1
5-1
5-1
5-5
5-5
5-6
5-6
5-6
5-6
5-7
5-8
5-8
5-8
5-9
5-9
5-9

5-10
5-10
5-11
5-11
5-11
5-12
5-12
5-13
5-13
5-14
5-14
5-15
5-15
5-15
5-15

svc _getargs() . 5-16
svc _getcaller() . 5-16
svc _getreq () . 5-16
svc _register() . 5-17
svc_run() . 5-17
svc _ sendreply() . 5-17
svc _unregister() . 5-18
svcerr _ auth() . 5-18
svcerr _decode() . 5-18
svcerr _ noproc() . 5-19
svcerr_noprog() . 5-19
svcerr_progvers() . 5-19
svcerr _ systemerr() . 5-19
svcerr _ weakauth() . 5-20
svcraw _create() . 5-20
svctcp _create() . 5-20
svcudp _create() . 5-21
xdr_accepted_reply() . 5-21
xdr_array() . 5-21
xdr _ authunix _parms() . 5-22
xdr_bool() . 5-22
xdr _bytes() . 5-22
xdr callhdr() . 5-23
xdr _ callmsg() . 5-23
xdr _double() . 5-23
xdr _ enum() . 5-24
xdr_float() . 5-25
xdr _ inline() . 5-25
xdr _int() . 5-26
xdr _long() . 5-26
xdr _opaque() . 5-26
xdr_opaque_auth() . 5-27
xdr _pmap() . 5-27
xdr _pmaplist() . 5-27
xdr _reference() . 5-28
xdr_rejected _reply() . 5-28
xdr_replymsg() . 5-28
xdr _short() . 5-29
xdr _string() . 5-29
xdr_u_int() . 5-29
xdr _ u _long() . 5-30
xdr _ u _short() . 5-30
xdr union() . 5-30
xdr _void() . 5-31
xdr _ wrapstring() . 5-31
xprt _register() . 5-31
xprt _unregister() . 5-31

Appendix A. VMCF Interface A-1

Contents xiii

Sending and Receiving Special Messages
Locating Program Call Numbers .
Program Call Sequences .
Parameters Passed to External Interrupt Routines
Disabling Reception oflnterrupts .

Manipulating the System Mask .
Updating Control Register 0 .

Data Structures .
General Information .

Use of VMCF Parm List Fields
Use of VMCF Interrupt Header Fields

TCP/UDP/IP Initialization and Termination Procedures
Begin TCP /IP Service .
Specifying the Notifications to Receive
End TCP /IP Service .
Open TCP Connection .
Send TCP Data .
Receive TCP Data with the FRECEIVEtcp Function
Receive TCP Data with the RECEIVEtcp Function
Close a TCP Connection .
Abort a TCP Connection .
Obtain Current Status of TCP Connection
Close a UDP Port
Open a UDP Port .
Send UDP Data .
Receive UDP Data
Determine Whether an Address is Local
Instruct TCPIP to Obey a File of Commands
Obtain Status Information from TCPIP
Send an ICMP Echo Request
Tell TCPIP That Your Program Will Use a Particular IP Protocol
Tell TCPIP That Your Program Will No Longer Use a Particular IP

Protocol
Send Raw IP Packets .
Receive Raw IP Packets of a Given Protocol

Notifications .
BUFFERspaceA VAILABLE
CONNECTIONstateCHANGED
DATAdelivered
PINGresponse
RA WIPpacketsDELIVERED .
RAWIPspaceAVAILABLE
RESOURCESavailable
UDPdatagramDELIVERED .
UDPdatagramSPACEavailable
UDPresourcesA VAILABLE
URGENTpending

Appendix B. Interface to SMTP Address Space.
Format of Batch SMTP Command Data Sets
SMTP Responses

SMTP Path-Address Handling

xiv Programmer's Reference

A-1
A-2
A-3
A-5
A-5
A-5
A-6
A-7

A-10
A-10
A-10
A-11
A-11
A-11
A-12
A-12
A-13
A-14
A-15
A-15
A-16
A-16
A-16
A-17
A-17
A-18
A-18
A-18
A-19
A-20
A-20

A-21
A-21
A-22
A-22
A-23
A-23
A-24
A-24
A-25
A-25
A-26
A-26
A-27
A-27
A-28

B-1
B-1
B-1
B-2

SMTP Commands .
DATA
HELO
HELP
MAIL FROM
NOOP
QUEU
QUIT
RCPT TO
RSET
TICK
VERB
VRFY
Unimplemented Commands

Batch SMTP Example

Appendix C. Assembler Calls for the Pascal API
RTcpExtRupt
RTcpVmcfRupt
AddUserNote

Appendix D. Network File System Server Exit Routines
Related Publications
Login Exit

Requirements
Register Contents
Contents of Parameter List
Using the Parameter List
System Initialization
Start of New User Session
User Logon Request
New Password Supplied
User Timed Out
Logout Has Been Requested
System Termination
Sample Parameter List - Assembler Language DSECT

Security Exit
Requirements
Contents of Parameter List
Using the Parameter List
Validate Allocate Request
Validate Write Request
Validate Read Request
Return Security Permissions
Sample Parameter List - Assembler Language DSECT

Archive Exit .
Requirements
Register Contents
Contents of Parameter List
Using the Parameter List
System Initialization
Information From Archive Requested

Contents

B-3
B-3
B-4
B-4
B-5
B-5
B-5
B-6
B-6
B-6
B-7
B-7
B-7
B-8
B-8

C-1
C-1
C-1
C-2

D-1
D-1
D-1
D-2
D-2
D-2
D-4
D-4
D-5
D-5
D-6
D-7
D-7
D-8
D-8

D-10
D-10
D-11
D-12
D-12
D-13
D-14
D-15
D-15
D-16
D-17
D-17
D-17
D-19
D-20
D-20

xv

Retrieve From Archive Requested D-22
Read Request . D-23
Write Request . D-24
Delete Request . D-24
Create Request . D-25
System Termination . D-26
Sample Parameter List - Assembler Language DSECT D-27

Account Exit . D-28
When It Is Called . D-28
Requirements . D-29
Register Contents . D-29
Contents of Parameter List . D-29
Using the Parameter List . D-32
System Initialization . D-32
Start of New User Session . D-32
User Request Complete . D-33
User Interval Expiration . D-34
User Data Set Usage . D-34
User Termination . D-35
System Termination , D-35
Sample Parameter List - Assemble Language DSECT D-36

Appendix E. Sample Programs . E-1
A Sample Pascal Application . E-1
A Sample C Socket Communications Server E-6
A Sample C Socket Communications Client E-10
A Sample X-Windows Application E-13

Appendix F. Related Protocol Specifications F-1

Glossary X-1

Index ... X-9

xvi Programmer's Reference

Figures

1-1.
1-2.
1-3.
1-4.
2-1.
2-2.
2-3.
2-4.
2-5.
2-6.
4-1.

A-1.
A-2.
A-3.
A-4.
A-5.
A-6.
A-7.
A-8.
A-9.

A-10.
A-11.
A-12.
A-13.
A-14.
A-15.
A-16.
A-17.
A-18.
A-19.
A-20.
A-21.
A-22.
A-23.
A-24.
A-25.
A-26.
A-27.
A-28.
A-29.
A-30.
A-31.
A-32.

E-1.
E-2.
E-3.
E-4.

Examples of Bus, Ring, and Point-to-Point Network Topologies
A Typical Internetwork
Relationship of TCP/IP to Network Software
File Transfer Using TCP/IP
Pascal Declaration of Connection State Type
Pascal Declaration of Connection Information Record
Pascal Declaration of Socket Type
Notification Record
Pascal Declaration of File Specification Record
Monitor Query Record
MVS X-Windows Application to Server
Routine to Locate the VMCF CVT
Standard Program Call Sequence
VMCF Parameter List
IUCV Parameter List
IUCV Query Parameter List .. .
External Interrupt Routine Parameter List
Read System Mask Parameter List
Set System Mask Parameter List
Store Then And System Mask Parameter List
Store Then Or System Mask Parameter List
Read Control Register 0 Parameter List
Set Control Register 0 Parameter List
VMCF Parameter List Fields
Equates for the CALLCODE Field
Equates for the CALLCO DE Field
Equates for Connection States .
Equates for Notification Mask in the HANDLEnotice Call
Assembler Format of the Connection Information Record
Miscellaneous Constants
Assembler Format of the SpecOfFileType Record for MVS
MonQueryRecordType
BUFFERspaceAVAILABLE Notification ..
CONNECTIONstateCHANGED Notification
DATAdelivered Notification
PINGresponse Notification
RAWIPpacketsDELIVERED Notification
RAWIPspaceAV AI LAB LE Notification
RESO u RCESavailable Notification
u D PdatagramD ELIV BRED Notification
u D PdatagramsP ACEavailable Notification
UDPresourcesAV AI LAB LE Notification . .
URGENTpending Notification
Example of a Pascal Application Program
Example of a C Socket Communications Server
Example of a C Socket Communications Client
Example of an X-Windows Application

1-1
1-2
1-3
1-7
2-3
2-4
2-5
2-6

2-12
2-37
4-2

A-3
A-4
A-4
A-4
A-4
A-5
A-5
A-5
A-6
A-6
A-6
A-6
A-7
A-8
A-8
A-9
A-9
A-9

A-10
A-19
A-19
A-23
A-23
A-24
A-24
A-25
A-25
A-26
A-26
A-27
A-27
A-28

E-1
E-6

E-10
E-13

Figures xvii

xviii Programmer's Reference

Tables

1-1.
2-1.
2-2.
2-3.

2-4.

2-5.
2-6.

2-7.
2-8.
2-9.

2-10.
2-11.
2-12.
2-13.
2-14.
3-1.
4-1.
4-2.
4-3.
4-4.
4-5.
4-6.
4-7.
4-8.
4-9.

4-10.
4-11.
4-12.
4-13.
4-14.
4-15.
4-16.
4-17.
4-18.
4-19.
4-20.
4-21.
4-22.
4-23.
4-24.
4-25.
4-26.
4-27.
4-28.

Address Fields of Internet Addresses
TCP Connection States .
Pascal Language Interface Summary - Notifications
Pascal Language Interface Summary - TCP/UDP Initialization
Procedures .
Pascal Language Interface Summary - TCP/UDP Termination
Procedure
Pascal Language Interface Summary - Handling External Interrupts
Pascal Language Interface Summary - TCP Communication
Procedures
Pascal Language Interface Summary - Ping Interface
Pascal Language Interface Summary - Monitor Procedures
Pascal Language Interface Summary - UDP Communication
Procedures .
Pascal Language Interface Summary - Raw IP Interface
Pascal Language Interface Summary - Timer Routines
Pascal Language Interface Summary - Host Lookup Routines
Pascal Language Interface Summary - Other Routines
Pascal Language Return Codes .
C Socket Quick Reference .
Differences in Header File Names
Opening and Closing Display
Creating and Destroying Windows
Manipulating Windows .
Changing Window Attributes
Obtaining Window Information
Properties and Atoms
Manipulating Window Properties
Setting Window Selections
Manipulating Colormaps .
Manipulating Color Cells .
Creating and Freeing Pixmaps
Manipulating Graphics Contexts
Clearing and Copying Areas
Drawing Lines .
Filling Areas
Loading and Freeing Fonts
Querying Character String Sizes
Drawing Text .
Transferring Images
Manipulating Cursors
Handling Window Manager Functions
Manipulating Keyboard Settings
Controlling the Screen Saver
Manipulating Hosts and Access Control
Handling Events .
Enabling and Disabling Synchronization
Using Default Error Handling

1-6
2-3

2-13

2-13

2-13
2-13

2-14
2-14
2-15

2-15
2-15
2-16
2-16
2-16
2-55
3-3
4-4
4-5
4-5
4-5
4-6
4-6
4-7
4-7
4-7
4-7
4-8
4-8
4-8
4-9

4-10
4-10
4-10
4-11
4-11
4-12
4-12
4-12
4-13
4-14
4-14
4-14
4-15
4-15

Tables xix

4-29.
4-30.
4-31.
4-32.
4-33.
4-34.
4-35.
4-36.
4-37.
4-38.
4-39.
4-40.

5-1.
A-1.
B-1.
D-1.
D-2.
D-3.
D-4.
D-5.
D-6.
D-7.
D-8.
D-9.

D-10.
D-11.
D-12.
D-13.
D-14.
D-15.
D-16.
D-17.
D-18.
D-19.
D-20.
D-21.
D-22.
D-23.
D-24.
D-25.
D-26.
D-27.
D-28.
D-29.
D-30.

XX Programmer's Reference

Communicating with Window Managers
Keyboard Event Functions
Manipulating· Regions .
Using Cut and Paste Buffers
Querying Visual Types .
Manipulating Images
Manipulating Bitmaps
Using the Resource Manager
Display Functions
Extension Routines
Associate Table Functions
Differences in Header File Names for Toolkits
Remote Procedure Call Quick Reference . . .
VMCF CVT Program Call Number Field Names
Default Values of SMTP Commands and Data
Login Exit Routines .
System Initialization Codes and Fields
Start of New User Session Codes and Fields
User Logon Request Codes and Fields
New Password Supplied Codes and Fields ..
User Timed Out Codes and Fields
Logoff Has Been Requested Codes and Fields
System Termination Codes and Fields
Security Exit Routines
Validate Allocate Request Codes and Fields .
Validate Write Request Codes and Fields
Validate Read Request Codes and Fields
Return Security Permissions Codes and Fields
Archive Exit Routines .
System Initialization Codes and Fields
Information from Archives Requested Codes and Fields
Retrieve From Archive Requested Codes and Fields
Read Request Codes and Fields
Write Request Codes and Fields
Delete Request Codes and Fields
Create Request Codes and Fields
System Termination Codes and Fields
Account Exit Routines .
System Initialization Codes and Fields
Start of New User Session Codes and Fields
User Request Complete Codes and Fields
User Interval Expiration Codes and Fields
User Data Set Storage Codes and Fields
User Termination Codes and Fields
System Termination Codes and Fields

4-16
4-17
4-17
4-18
4-18
4-18
4-19
4-19
4-20
4-23
4-24
4-26

5-2
A-2
B-2
D-3
D-4
D-5
D-5
D-6
D-7
D-7
D-8

D-11
D-12
D-13
D-14
D-15
D-18
D-20
D-20
D-22
D-23
D-24
D-24
D-25
D-26
D-30
D-32
D-32
D-33
D-34
D-34
D-35
D-36

Chapter 1. Computer Networks and TCP/IP Protocols

Network Basics

This chapter provides background information about computer networks, explains
the concept of internetwork communication using Transmission Control
Protocol/Internet Protocol (TCP/IP), and introduces the IBM TCP/IP for MVS product.

A computer network is a collection of computer nodes physically connected by a
suitable communications medium. A computer node can be a microcomputer,
computer workstation, minicomputer, or mainframe. The arrangement and
connection of network nodes is known as the network topology.

Figure 1-1 shows several common network topologies.

C5 C5
Bus Topology

Ring Topology

0------0 Point-to-Point

Figure 1-1. Examples of Bus, Ring, and Point-to-Point Network Topologies

The purpose of a computer network is to provide communication between nodes,
resource sharing, and distributed computing. Communication applications include
electronic mail, remote logon, and file transfer. Resource sharing refers to the access
to limited resources, such as disk space and printers, by many computers on the

· network. Distributed computing refers to distribution of workload among hosts. A
designated computer on the network (the server) makes a specialized service
available to other computers on the network (the clients). Different computers
provide different services for the benefit of the entire network.

A network where all nodes are treated the same, regardless of size, is called a
peer-to-peer network.

Chapter 1. Computer Networks and TCP /IP Protocols 1-1

Gateways
Networks are linked together through a common node called a gateway. The
gateway performs all protocol conversion required for communication across
networks. The network to which a node is physically connected is the local
network; the network to which it is linked by a gateway is the foreign network.
This local/foreign concept applies not only to networks, but also to hosts.

Internetwork Communication

Bus Network

Ring
Network

Bua Network

An internetwork or internet is a collection of packet-switched networks
interconnected by gateways to form a single, large virtual network.

Conceptually, an internet is equivalent to universal connectivity. It means all nodes
on all interconnected networks can communicate as if they were all on the same
physical network, regardless of their specific hardware or software architecture. This
cooperation among otherwise incompatible networks and systems is known as
interoperability.

Figure 1-2 shows the various ways networks can be interconnected in an internet.

D Host

()Gateway

Figure 1-2. A Typical Internetwork

When capitalized, internet, that is, Internet, refers to a specific internetwork that
includes ARPANET, MILNET, and NSFnet.

Each network connection of each node on an internetwork must be assigned a
unique address according to conventions discussed later in this chapter. This is
different from a hardware address, which is often preset by the manufacturer. Also,
internet addresses follow a standard format, while different hardware types use
different address lengths and formats.

1-2 Programmer's Reference

TCP/IP Protocols and Network Software

user I ..

network
software

•

I network
hardware

Network protocols are formal descriptions of the sequence and content of data
packets exchanged between network nodes. Because network protocols are
implemented in the network software, these terms are often used interchangeably.

Internetwork communication is dependent on TCP/IP, a family of nonproprietary
network level protocols, collectively referred to as a protocol suite. TCP/IP allows
disparate packet-switched computer networks to function as a single coordinated
entity. Originally developed to link military, government research and university
networks, TCP/IP now has many commercial users and applications.

The TCP/IP protocol suite forms a layered structure of protocols (see Figure 1-3)
ranging from low-level hardware-dependent software to high-level applications.
Each TCP/IP layer provides services to the layer above it and uses the services
provided by the layer below it. The lowest layer, which is next to the hardware, is
not defined by TCP/IP. This layer consists of the hardware specific network
protocols.

Figure 1-3 shows where TCP/IP protocols are positioned in relation to network
software.

USER

APPLICATION PROTOCOLS •
• Electronic Mail
• File Transfer
•and Others

TCP/IP

TCP = Transmission UDP = User Datagram Protocols:
Control Protocol network
Protocol hardware

Independent

IP = Internet Protocol
ICMP = Internet Control Message Protocol •

NETWORK ADAPTER DRIVERS I hardware
·----------------------- specific
: ARP =Address Resolution software
I Protocol

NETWORK HARDWARE
• network adapter logic
• network adapters
• network communications medium

Figure 1-3. Relationship of TCP/IP to Network Software

Chapter 1. Computer Networks and TCP/IP Protocols 1-3

Internet Protocol

Following are brief descriptions of the layers making up the TCP/IP protocol suite.

The Internet Protocol (IP) provides the basic transport mechanism for
communication between hosts on the different networks that make up an
internetwork. IP is responsible for making the underlying interconnected networks
appear to the layers above as a single, large, virtual network. IP is thus responsible
for implementing the internet concept, which it accomplishes by routing packets
from a host on one network through a series of gateways to a host on another
network. At the internet level, all communication is host-to-host, using fixed length
addresses to identify source and destination hosts. The protocol layers above only
need to know each host's internet address to make a connection.

In computer networks that use TCP/IP protocols, information is transmitted between
nodes in the form of packets of data. Outgoing packets can be fragmented into
multiple smaller packets. The packet of each fragment is automatically prefixed
with an IP header. Incoming packets are reassembled, if necessary, and stripped of
the header before being passed on to the next higher protocol layer, usually TCP or
UDP. IP does not acknowledge receipt of a packet, nor is it responsible for
retransmitting or providing flow and error control. Reliable delivery must be
ensured by a higher-level protocol, such as TCP.

Integral to every IP implementation is the Internet Control Message Protocol
(ICMP), used for reporting errors in datagram processing. Although ICMP is a basic
part of IP, it treats IP as a higher-level protocol.

Address Resolution Protocol
The Address Resolution Protocol (ARP) dynamically maps internet addresses to
hardware addresses on a local network.

Transmission Control Protocol
The Transmission Control Protocol (TCP) provides a reliable vehicle for delivering
packets between hosts on an internet. TCP takes a stream of data, breaks it into
datagrams, sends each one individually using IP, and reassembles the datagrams at
the destination node. If any datagrams are lost or damaged during transmission,
TCP detects this fact and resends the missing datagrams. The received data stream is
a reliable copy of the transmitted data stream.

The interface to TCP is a set of library calls similar to the calls made by an
application program to an operating system when manipulating files. TCP

communicates asynchronously with applications in a general environment of
interconnected networks, and assumes the presence of IP as the underlying protocol
at the network level.

1-4 Programmer's Reference

User Datagram Protocol
The User Datagram Protocol (UDP) allows application programs to send messages
to other programs with a minimum of protocol conversion. Unlike TCP, UDP is a
connectionless datagram protocol that requires minimal overhead, but does not
guarantee delivery. UDP may be used instead of TCP when an application does not
want to incur the overhead of TCP connection setup and breakdown, and is able to
do its own acknowledgement and retransmission processing to ensure reliable data
transfer. The interface to UDP is a set of library calls.

Other Network Protocols
The user interfaces directly with the Application Protocols layer. This layer consists
of several independent protocols that implement the following applications:

File Transfer Protocol
The File Transfer Protocol (FTP) allows copies of files to be sent across
an internet. Usually, a password is required to retrieve a file from a
foreign host .

. Simple Mail Transfer Protocol
The Simple Mail Transfer Protocol (SMTP) allows electronic mail to be
exchanged among hosts across an internet.

Remote Terminal Protocol

Internet Addressing

The Telnet Protocol (Telnet) allows remote logon to hosts across an
internet.

Each node on an internet must have a unique address called an internet address.
This address is a 32-bit integer. Internet addresses are usually expressed in the form
www. xxx.yyy. zzz, where each field is the decimal representation of one octet of the
address. For example, the address whose hexadecimal representation is
X 1 8263800 l 1 would be expressed as 130. 99 .128 .1. Addresses on the Internet1 are
administered by SRI International2• If you have your own internet, you are its
administrator. It is strongly recommended that you have an Internet address.

A higher-level naming method called domain naming is used to eliminate the need
for users to know numerical internet addresses. When a user specifies a domain
name, it is resolved into an internet address by a domain name server.

Internet addresses have two parts: a network number and a host number on that
network. The four-octet address is divided into network number and host number
in any of three different ways, depending on the range of addresses into which the
address falls. The first range of addresses is reserved for Class A networks, which are
very large networks. The second range of addresses is reserved for Class B networks,
which are medium-size networks. The third range of addresses is reserved for Class

1 A specific internetwork that includes ARPANET, MILNET and NSFnet. These networks use the TCP/IP protocol suite.

2 SRI International, 333 Ravenswood Avenue, Menlo Park, CA. 94025, 1-800-235-3155.

Chapter 1. Computer Networks and TCP/IP Protocols 1-5

Routing

C networks, which are small networks. Some addresses are reserved for special
purposes and for future classes of networks.

The division of addresses between network number and host number is as follows:

Table 1-1. Address Fields of Internet Addresses

Network Class Network Number Host Number

Class A First octet Last three octets

Class B First two octets Last two octets

Class C First three octets Last octet

A network can be divided into multiple smaller subnetworks called subnets. For
example, a Class B network can be divided into multiple subnets, each having the
same number of hosts as a Class C network. This extension to the IP addressing
scheme allows a site to be seen from outside as having one network number. The
Class B network could consist of multiple networks, each of smaller size.

To allow for subnet addressing, the host number portion of an internet address is
divided into a subnet part and a host part. The network portion and subnet part
are logically concatenated to form the subnetwork identifier. For example, if a Class
B network had an address of 130. 42, it could be divided into 254 subnetworks with
addresses ranging from 130.42.1through130.42.254 (0 and 255 are reserved).

On each network, a special host number is reserved for a broadcast address. This is
the host number consisting of all 0 bits or all 1 bits. For example, the broadcast
host number on a Class B network is 0 or 65 535. The broadcast host number on
a Class C network, or on each subnet of a Class B network is 0 or 255.

Routing is the process of deciding where to send a packet based on its destination
address. There are two kinds of routing involved in communications within an
internet: direct and indirect.

Direct routing is used when the source and destination nodes are on the same
network within the internet. The source node maps the destination internet address
into a hardware address and sends packets to the destination node at this address.
This mapping is normally performed through a translation table, but if no match
can be found for a destination internet address, the Address Resolution Protocol
(ARP) provides a default address.

Indirect routing is used when the source and destination nodes are on different
networks within the internet. The source node sends packets to a gateway, bridge,
or router on the same network using direct routing. From there, the packets are
forwarded through intermediate gateways, bridges, or routers, as required, until they
arrive at the destination network. Direct routing is then used to forward the packets
to the destination host on that network. Each host, gateway, bridge, and router in
the internet has a routing table that defines paths to other nodes in the internet.

1-6 Programmer's Reference

Example of Using TCP/IP
To send a large file from a source node on one network to a destination node on
another network, the source node waits for concurrence from the destination node.
In this scenario, the source node is the client and the destination node is the server
for the file transfer application (see Figure 1-4).

Network 1

Network 4

Source
Node

Gateway c

Figure 1-4. File Transfer Using TCP/IP

Gateway
A

Destination Node

The file transfer application on the source node takes the file and uses the reliable
data stream connection services of TCP to send the file to the file transfer application
on the destination node. The source node's TCP layer breaks the file into packets
and uses the packet routing services of IP to individually send each packet to TCP on
the destination node. Packets do not necessarily arrive in sequence. It is up to the
destination node's TCP layer to sort them out and restore the original file. If packets
are lost in transmission, the source node resends the lost packets.

The source node's IP layer determines whether the destination node is on the local
network or on a foreign network. If the destination node is on the local network,
the source node's IP uses the services of the low-level network protocol to send the
packet to the destination node's IP layer. If the destination node is on a foreign
network, the source node's IP layer decides which gateway should route the
datagram and uses the services of the low-level network protocol to send the packet
to that gateway's IP layer. The gateway's IP layer in tum routes the packet through
the foreign network until the destination node's IP layer is reached.

Chapter 1. Computer Networks and TCP/IP Protocols 1-7

1-8 Programmerts Reference

Chapter 2. TCP/UDP/IP API (Pascal Language)

This chapter describes the Pascal Language Application Program Interface (API)

provided with the TCP/IP for MVS product. This interface allows programmers to
write application programs that use the TCP, UDP, and IP layers of the TCP/IP

protocol suite.

You should have experience in Pascal Language programming and be familiar with
the principles of internetwork communication in order to use the Pascal Language
APL

Your program uses pro~edure calls to initiate communication with the TCPIP

address space. Most of these procedure calls return with a code that indicates
success, or the type of failure incurred by the call. The TCPIP address space starts
asynchronous communication by sending you notifications.

The general sequence of operations is as follows:

1. Start up TCP/UDP/IP service (BeginTcplp, StartTcpNotice)

2. Specify the set of notifications that TCP/UDP/IP may send you (Handle)

3. Establish a connection (TcpOpen, UdpOpen, RawlpOpen, TcpWaitOpen)

If using TcpOpen, you must wait for the appropriate notification that a
connection has been established.

4. Transfer data buffer to or from the TCPIP address space (TcpSend, TcpFSend,
TcpWaitSend, TcpReceive, TcpFReceive, TcpWaitReceive, UdpSend,
UdpNReceive, RawlpSend, RawlpReceive)

Note: TcpWaitReceive and TcpWaitSend are synchronous calls.

5. Check status returned from TCPIP in the form of notifications (GetNextNote)

6. Repeat the data transfer operations (steps 4 and 5) until the data is exhausted

7. Terminate the connection (TcpClose, UdpClose, RawlpClose)

If using TcpClose, you must wait for the connection to terminate.

8. Terminate the communication service (EndTcplp).

Control is returned to you, in most instances, after the initiation of your request.
When appropriate, some procedures have alternative wait versions that return only
after completion of the request. The bodies of the Pascal procedures are in the
TCPIP.ATCPPSRC data set.

A sample program is supplied with the TCP/IP for MVS program. It is contained in
the PSAMPLE member of the TCPIP.ATCPPSRC data set, and illustrates the use of the
interface procedures. Refer to "A Sample Pascal Application" on page E-1 for a
listing of the sample program.

Chapter 2. TCP/UDP/IP API (Pascal Language) 2-1

Software Requirements

Data Structures

Connection State

To develop programs in Pascal that interface directly to the TCP, UDP, and IP

protocol boundaries, you require the following:

• IBM vs Pascal Compiler & Library (5668-767).

Programs containing Pascal Language API calls must include the appropriate data
structures. The data structures are declared in the CMCOMM and CMCLIEN members
of the TCPIP.COMMMAC data set. Your SYSLIB concatenation must include the
TCPIP.COMMMAC library. To incluqe these data sets in your program source, enter:

%include CMCOMM

%include CMCLIEN

Additional include statements are required in programs that use certain calls. The
following list shows which members of the TCPIP.COMMMAC data set need to be
included for the various calls .

• CMRESGLB for GetHostResol

• CMINTER for GetHostNumber, GetHostString, IsLocalAddress, and lsLocaJHost

• CM MON for MonCommand, and Mon Query.

The load modules are in the TCPIP.COMMTXT data set. Include this data set in your
SYSLIB concatenation when you are creating a load module to link an application
program.

ConnectionState is the current state of the connection. See Figure 2-1 on page 2-3
for the Pascal declaration of the ConnectionStateType data type.
ConnectionStateType is used in StatuslnfoType and NotificationlnfoType. It
defines the client program's view of the state of a TCP connection, in a form more
readily usable than the formal TCP connection state defined by RFC 793. Refer to
Table 2-1 on page 2-3 for the mapping between TCP states and
ConnectionState Type.

2-2 Programmer's Reference

ConnectionStateType =
(

);

CONNECTIO Nclosing,
LISTENING,
NONEXISTENT,
OPEN,
RECEIVINGonly'
SEND INGonly'
TRYINGtoOPEN

Figure 2-1. Pascal Declaration of Connection State Type

CONNECTION closing

Indicates that no more data can be transmitted on this connection because it is
going through the TCP connection closing sequence.

LISTENING

Indicates that you are waiting for a foreign site to open a connection.

NONEXISTENT

Indicates that a connection no longer exists.

OPEN

Indicates that data can go either way on the connection.

RECEIVIN Gonly

Indicates that data can be received, but cannot be sent on this connection,
because the client has done a TcpClose.

SENDINGonly

Indicates that data can be sent out, but cannot be received on this connection,
because the foreign application has done a TcpClose or equivalent.

TRYINGtoOPEN

Indicates that you are trying to contact a foreign site to establish a connection.

Table 2-1. TCP Connection States

TCP State

CLOSED

LAST-ACK, CLOSING, TIME-WAIT

CLOSE-WAIT

ESTABLISHED

FIN-WAIT-1, FIN-WAIT-2

LISTEN

SYN-SENT, SYN-RECEIVED

Pseudo-State

NONEXISTENT

If there is incoming data that the client program
has not received, then RECEIVINGonly, else
CONNECTIONclosing.

If there is incoming data that the client program
has not received, then OPEN, else SENDINGonly.

OPEN

RECEIVINGonly

LISTENING

TRYINGtoOPEN

Chapter 2. TCP/UDP/IP API (Pascal Language) 2-3

Connection Information Record
The connection information record is used as a parameter in several of the
procedure calls. It enables you and the TCP /IP for MVS program to exchange
information about the connection. The Pascal declaration is shown in Figure 2-2.
See "TcpOpen and TcpWaitOpen" on page 2-23 and "TcpStatus" on page 2-33 for
further details on the use of each field.

StatuslnfoType =
record
Connection: ConnectionType;
OpenAttemptTimeout: integer;
Security: SecurityType;
Compartment: CompartmentType;
Precedence: PrecedenceType;
BytesToRead: integer;
UnackedBytes: integer;
ConnectionState: ConnectionStateType;
LocalSocket: SocketType;
F oreignSocket: SocketType;
end;

Figure 2-2. Pascal Declaration of Connection Information Record

Connection
Is a number identifying the connection that is being described. This connection
number is different from the connection number displayed by the NETSTAT

command. (Refer to the IBM Transmission Control Protocol/Internet Protocol
for MVS: User's Guide for more information about the NETSTAT command.)

OpenAttemptTimeout
Is the number of seconds that TCP continues to attempt to open a connection.
You specify this number. If the limit is exceeded, TCP stops trying to open the
connection and shuts down any partially open connection.

Security, Compartment, Precedence
Are used only when working within a multilevel secure environment. These
parameters are reserved for IBM use only.

BytesToRead
Is the number of data bytes received from the foreign host by TCP, but not yet
delivered to the client. TCP maintains this value.

UnackedBytes
Is the number of bytes sent by your program but not yet sent to the foreign
TCP, or the number of bytes sent to the foreign TCP, but not yet acknowledged.

Local Socket
Is the local internet address and local port. Together, these form one end of a
connection. The foreign socket forms the other end. See Figure 2-3 on
page 2-5 for the Pascal declaration of the SocketType record.

2-4 Programmer's Reference

InternetAddressType = UnsignedlntegerType;
PortType = UnsignedHalfW ordType;
SocketType =

record
Address: lnternetAddressType;
Port: PortType;
end;

Figure 2-3. Pascal Declaration of Socket Type

Addr~

Is the internet address.

Port
Is the port.

Foreign Socket

Notification Record

Is the foreign, or remote, internet address and its associated port. These form
one end of a connection. The local socket forms the other end.

The notification record is used to provide event information. You receive this
information by using the GetNextNote call (refer to "GetNextNote" on page 2-17
for more information). It is a variant record, the number of fields being dependent
on the type of notification. Refer to Figure 2-4 on page 2-6 for the Pascal
declaration of this record.

Chapter 2. TCP/UDP/IP API (Pascal Language) 2-5

NotificationlnfoType =
record
Connection: ConnectionType;
Protocol: ProtocolType;
case NotificationTag: NotificationEnumType of

BUFFERspaceAVAILABLE:
(
AmountOfSpacelnBytes: integer
);

CONNECTIONstateCHANGED:
(
NewState: ConnectionStateType;
Reason: Call Return Code Type
);

DAT Adelivered:
(
Bytes Delivered: integer;
LastUrgentByte: integer;
PushFlag: Boolean
);

EXTERNALinterrupt:
(
RuptCode: integer
);

FRECEIVEerror:
(
ReceiveTurnCode: CallReturnCodeType;
ReceiveRequestErr: Boolean;
);

FSENDresponse:
(
SendTurnCode: CallReturnCodeType;
SendRequestErr: Boolean;
);

IOinterrupt:
(
DeviceAddress: integer;
UnitStatus: UnsignedByteType;
ChannelStatus: UnsignedByteType
);

IUCVinterrupt:
(
IUCVResponseBuf: IUCVBufferType
);

PIN Gresponse:
(
PingTurnCode: CallReturnCodeType;
ElapsedTime: TimeStampType
);

RA WIPpacketsDELIVERED:
(
RawlpDataLength: integer;
RawlpFullLength: integer;
);

Figure 2-4 (Part I of 2). Notification Record

2-6 Programmer's Reference

RA WIPspaceA VAILABLE:
(
RawlpSpacelnBytes: integer;
);

RESOURCESavailable: ();
SMSGreceived: ();
TIMERexpired:

(
Datum: integer;
AssociatedTimer: Timer PointerType
);

UDPdatagramDELIVERED:
(
DataLength: integer;
F oreignSocket: SocketType;
FullLength: integer
);

UDPdatagramSPACEavailable: ();
UDPresourcesA VAILABLE: ();
URGENT pending:

(
BytesToRead: integer;
UrgentSpan: integer
);

USERdefinedNOTIFICATION:
(
UserData: UserNotificationDataType
);

USERdeliversLINE:
(
LengthOfUserData: integer;
UnsolicitedRead: Boolean
);

USERwantsA TTENTION:
(
WhichAttentionKey: char
);

end;

Figure 2-4 (Part 2 of 2). Notification Record

Connection
Is the client's connection number to which the notification applies. In the case
of USERdefinedNOTIFICATION, this field is as supplied by the user in the
AddUserNote call.

Protocol
In the case of USERdefinedNOTIFICATION, this field is as supplied by the user in
the AddUserNote call. For all other notifications, this field is reserved.

Notification Tag
Is the type of notification being sent, and a set of fields dependent on the value
of the tag. Possible tag values relevant to the TCP/UDP/IP interface and the
corresponding fields are:

Chapter 2. TCP/UDP/IP API (Pascal Language) 2·7

BUFFERspaceAV AILABLE
Notification given when space becomes available on a connection for which
TcpSend (refer to "TcpFSend, TcpSend, and TcpWaitSend" on page 2-25)
previously returned NobufferSPACE.

AmountOfSpacelnBytes:
The minimum number of bytes that the TCP/IP service has available for
buffer space for this connection. The actual amount of buffer space
might be more than this number.

CONNECTIONstateCHANGED
Indicates that a TCP connection has changed state.

NewState:
The new state for this connection.

Reason:
The reason for the state change. This field is meaningful only if the
NewState field has a value of NONEXISTENT.

Usage Notes:

1. The sequence of state notifications for a connection is usually the
following. For active open: OPEN' RECEIVINGonly or SENDINGonly,
CONNECTIONclosing, NONEXISTENT. For passive open:
TRYINGtoOPEN, OPEN, RECEIVINGonly or SENDINGonly,
CONNECTIONclosing, NONEXISTENT.

Your program should be prepared for any intermediate step or steps to
be skipped.

2. The normal TCP connection closing sequence may lead to a connection
staying in CONNECTIONclosing state for up to two minutes,
corresponding to the TCP state TIME-WAIT.

3. Possible Reason codes giving the reason for a connection changing to
NONEXISTENT are as follows.

OK (means normal closing), UNREACHABLEnetwork, TIMEOUTopen
OPENrejected, REMOTEreset, WRONGsecORprc, UNEXPECTEDsyn,
FATALerror
KILLEDbycLIENT, TI MEO UTconnection, TCPipSHUTDOWN'
DROPPEDbyOPERATOR.

DA TAdelivered

2-8 Programmer's Reference

Notification given when your buffer (named in an earlier TcpReceive or
TcpFReceive request) contains data.

Usage Note: The data delivered should be treated as part of a byte-stream,
not as a message. There is no guarantee that the data sent in one TcpSend
(or equivalent) call on the foreign host is delivered in a single DATAdelivered
notification, even if the PushFlag is set.

BytesDelivered:
Number of bytes of data delivered to you.

Last UrgentByte:
Number of bytes of urgent data remaining, including data just delivered.

PushFlag:
TRUE if the last byte of data was received with the push bit set.

EXTERNALinterrupt
Notification given when a simulated external interrupt occurs in your
address space. The Connection and Protocol fields are not applicable.

RuptCode:
The interrupt type.

FRECEIVEerror
Notification given in place of DATAdelivered when a TcpFReceive that
initially returned o K has terminated without delivering data.

Receive Turn Code:
The reason the TcpFReceive has failed or was canceled. If
ReceiveRequestErr is set to FALSE, ReceiveTurnCode contains the same
reason as the Reason field in the CONNECTIONstateCHANGED with
NewState set to NONEXISTENT notification for this connection (see
Usage Note 3 on page 2-8). ReceiveTurnCode could be OK, if the
connection closed normally.

ReceiveRequestErr
If TRUE, the TcpFReceive was rejected during initial processing. If
FALSE, the TcpFReceive was initially accepted, but was terminated due
to connection closing.

Usage Note: Normally, you do not need to take any action upon receipt of
this notification with ReceiveRequestErr set to FALSE, because your
program receives a CONNECTIONstateCHANGED notification informing it
that the connection has been terminated.

FSENDresponse
Notification given when a TcpFSend request is completed successfully or
unsuccessfully.

SendTurnCode:
The status of the send operation.

SendRequestErr
If TRUE, the TcpFSend was rejected during initial processing or during
retry after buffer space became available. If FALSE, the TcpFSend was
canceled due to connection closing.

PING response

Ping Turn Code:
The status of the ping operation.

ElapsedTime:
The time elapsed between the sending of a request and the reception of
a response. This time does not include the time spent in the simulated
Virtual Machine Communication Facility (VMCF) communication
between your program and the TCPIP address space. This field is valid
only if PingTurnCode has a value of OK.

Chapter 2. TCP/UDP/IP API (Pascal Language) 2-9

RA WIPpacketsDELIVERED
Notification given when your buffer (indicated in an earlier RawlpReceive
request) contains a datagram. Only one datagram is delivered on each
notification. Your buffer contains the entire IP header, plus as much of the
datagram as fits in your buffer.

RawlpDataLength
The actual data length delivered to your buffer. If this is less than
RawlpFullLength, the datagram was truncated.

RawlpFullLength
Length of the packet, from the TotalLength field of the IP header.

RA WIPspaceA VAILABLE
When space becomes available after a client does a RawlpSend and receives
a NobuffersPACE return code, the client receives this notification to indicate
that space is now available.

RawlpSpacelnBytes:
The amount of space available always equals the maximum size IP
datagram.

RESOURCES available
Notice given when resources needed for a TcpOpen or TcpWaitOpen are
available. This notification is sent only if a previous TcpOpen or ·
TcpWaitOpen returned ZEROresources.

SMSGreceived
Notification given when one or more Special Messages (Smsgs) arrive. The
GetSmsg call is used to retrieve queued Smsgs. Refer to "Sending and
Receiving Special Messages" on page A-1 for information on the SMSG

command.

TIMER expired
Notification given when a timer set through SetTimer expires.

Datum:
The data specified when SetTimer was called.

AssociatedTimer:
The address of the timer that expired.

UDPdatagramDELIVERED

2• 10 Programmer's Reference

Notification given when your buffer, indicated in an earlier UdpNReceive or
UdpReceive request, contains a datagram. Your buffer contains the
datagram excluding the UDP header.

Usage Note: If UdpReceive was used, your buffer contains the entire
datagram excluding the header, with the length indicated by DataLength. If
UdpNReceive was used, and DataLength is less than FullLength, your
buffer contains a truncated datagram. The reason is that the length of your
buffer was too small to contain the entire datagram.

DataLength:
Length of the data delivered to your buffer.

F oreignSocket:
The source of the datagram.

FullLength:
The length of the entire datagram, excluding the UDP header. This field
is set only if UdpNReceive was used.

UDPdatagramsP A CEavailable
Notification given when buffer space becomes available for a datagram for
which UdpSend previously returned NobuffersPACE due to insufficient
resources.

UDPresourcesA v AILABLE
Notice given when resources needed for a UdpOpen are available. This
notification is sent only if a previous UdpOpen returned
UDPZeroRESOURCES.

URGENTpending
Notification given when there is urgent data pending on a TCP connection.

BytesToRead:
The number of incoming bytes not yet delivered to the client.

UrgentSpan:
Number of undelivered bytes to the last known urgent pointer. No
urgent data is pending if this is negative.

USERdefinedNOTIFICATION
Notice generated from data passed to AddUserNote by your program.

User Data:
A 40-byte field supplied by your program through AddUserNote. The
Connection and Protocol fields are also set from the values supplied to
AddUserNote.

USERdeliversLINE
Reserved for IBM use only.

USERwantsATTENTION
Reserved for IBM use only.

Chapter 2. TCP/UDP/IP API (Pascal Language) 2-11

File Specification Record
The file specification record is used to fully specify a data set. The Pascal
declaration is shown in Figure 2-5.

SpecOfFileType =
record
Owner: DirectoryNameType;
Case SpecOfSystemType of
VM:
(

VirtualAddress: VirtualAddressType;
N ewVirtualAddress: VirtualAddressType;
DiskPassword: DirectoryNameType;
Filename: DirectoryNameType;
Filetype: DirectoryNameType;
Filemode: FilemodeType

);
MYS:
(

DatasetPassword: DirectoryNameType;
FullDatasetName: DatasetNameType;
MemberName: MemberNameType;
DDName: DDNameType

);
end;

Figure 2-5. Pascal Declaration of File Specification Record

DatasetPassword
The password for a password-protected data set. If a password is not needed, it
should be left blank.

FullDatasetName
The fully-qualified data set name to be processed.

MemberName
The member of the data set to be processed if the data set is a partitioned data
set.

DD Name
Reserved for IBM use only.

Procedure Calls
Your program uses procedure calls to initiate communication with the TCPIP

address space. Most of these procedure calls return with a code, which indicates
success or the type of failure incurred by the call. Refer to Table 2-14 on page 2-55
for an explanation of the return codes.

Before invoking any of the other interface procedures, use BeginTcplp or
StartTcpNotice to start up the TCP/UDP/IP service. Once the TCP/UDP/IP service
has begun, use the Handle procedure to specify a set of notifications that the
TCP/UDP/IP service may send you. To terminate the TCP/UDP/IP service, use the
EndTcplp procedure.

2-12 Programmer,s Reference

The following tables give short descriptions of the various Pascal Language API

procedures and functions. The table also refers you to a page where additional
information on the use of the procedure can be obtained.

Notifications

Table 2-2. Pascal Language Interface Summary - Notifications

Procedure Call Description Page

GetNextNote Retrieves the next notification. 2-17

Handle Specifies the types of notifications that your program will 2-18
process.

Unhandle Specifies notification types that your program will no 2-18
longer process.

TCP/UDP Initialization Procedures

Table 2-3. Pascal Language Interface Summary - TCP/UDP Initialization Procedures

Procedure Call Description Page

TcpNameChange Identifies the name of the address space running the 2-19
TCP/IP for MVS program when the address space has a
name other than TCPIP.

BeginTcplp Establishes communication with the TCP /IP services. 2-20

StartTcpNotice Establishes communication with the TCP /IP services. 2-20

TCP/UDP Termination Procedure

Table 2-4. Pascal Language Interface Summary - TCP/UDP Termination Procedure

Procedure Call Description Page

EndTcplp Terminates communication with the TCP/IP services. 2-21

Handling External Interrupts

Table 2-5 (Page 1 of 2). Pascal Language Interface Summary - Handling External Interrupts

Procedure Call Description Page

TcpExtRupt Notifies the TCP interface of the arrival of a simulated 2-22
external interrupt.

R TcpExtRupt A version of TcpExtRupt. C-1

Chapter 2. TCP/UDP/IP API (Pascal Language) 2-13

Table 2-5 (Page 2 of 2). Pascal Language Interface Summary - Handling External Interrupts

Procedure Call Description Page

Tep VmcfRupt Notifies the TCP interface of the arrival of a simulated 2-22
external VMCF interrupt.

RTcpVmcfRupt A version of TcpVmcfRupt. C-1

TCP Communication Procedures

Table 2-6. Pascal Language Interface Summary - TCP Communication Procedures

Procedure Call Description Page

TcpOpen Initiates a TCP connection. 2-23

TcpWaitOpen Initiates a TCP connection and waits for the establishment 2-23
of the connection.

TcpFSend Sends TCP data. 2-25

TcpSend Sends TCP data. 2-25

Tep W aitSend Sends TCP data and waits until TCPIP accepts it. 2-25

TcpFReceive Establishes a buffer to receive TCP data. 2-28

Tep Receive Establishes a buffer to receive TCP data. 2-28

Tep W aitReceive Establishes a buffer to receive TCP data and waits for the 2-28
reception of the data.

TcpClose Begins the TCP one-way closing sequence. 2-31

TcpAbort Shuts down a TCP connection immediately. 2-32

TcpStatus Obtains the current status of a TCP connection. 2-33

Ping Interface

Table 2-7. Pascal Language Interface Summary - Ping Interface

Procedure Call Description Page

PingRequest Sends an Internet Control Message Protocol (ICMP) echo 2-34
request.

2-14 Programmer's Reference

Monitor Procedures

Table 2-8. Pascal Language Interface Summary - Monitor Procedures

Procedure Call Description Page

Mon Command Instructs TCP to read a specific data set and execute the 2-35
commands that it contains.

Mon Query Performs control functions and retrieves internal TCPIP 2-36
control blocks.

UDP Communication Procedures

Table 2-9. Pascal Language Interface Summary - UDP Communication Procedures

Procedure Call Description Page

UdpOpen Requests communication with UDP on a specified socket. 2-38

UdpSend Sends a UDP datagram to a specified foreign socket. 2-39

UdpNReceive Notifies the TCPIP address space that you are willing to 2-40
receive u DP datagram data.

UdpReceive Notifies the TCPIP address space that you are willing to 2-41
receive u DP datagram data.

UdpClose Tenninates use of a UDP socket. 2-41

Raw IP Interface

Table 2-10. Pascal Language Interface Summary - Raw IP Interface

Procedure Call Description Page

RawlpOpen Informs the TCPIP address space that the client wants to 2-42
send and receive IP packets of a specified protocol.

RawlpReceive Specifies a buffer to receive raw IP packets of a specified 2-43
protocol.

RawlpSend Sends raw IP packets of a specified protocol. 2-44

RawlpClose Informs the TCPIP address space that the client no longer 2-45
handles the protocol.

Chapter 2. TCP/UDP/IP API (Pascal Language) 2-15

Timer Routines

Table 2-11. Pascal Language Interface Summary - Timer Routines ~

Procedure Call Description Page

Create Timer Allocates a timer. 2-46

Clear Timer Resets a timer. 2-46

SetTimer Sets a timer to expire after a specified interval. 2-46

Destroy Timer Deallocates a timer. 2-47

Host Lookup Routines

Table 2-12. Pascal Language Interface Summary - Host Lookup Routines

Procedure Call Description Page

GetHostNumber Converts a host name to an internet address using static 2-47
tables.

GetHostResol Converts a host name to an internet address using a 2-47
domain name resolver.

GetHostString Converts an internet address to a host name using static 2-48
tables.

Getldentity Returns environment information. 2-49

IsLocalAddress Determines if an internet address is local. 2-50

IsLocalHost Determines if a host name is local, remote, loopback, or 2-50
unknown.

Other Routines

Table 2-13 (Page 1 of 2). Pascal Language Interface Summary - Other Routines

Procedure Call Description Page

GetSmsg Retrieves one queued special message (Smsg). 2-51

ReadXlateTable Reads a binary translation table data set. 2-51

SayCalRe Converts a return code into a descriptive message. 2-52

SayConSt Converts a connection state into a descriptive message. 2-52

SaylntAd Converts an internet address into a name or 2-53
dotted-decimal form.

SaylntNum Converts an internet address into its dotted-decimal form. 2-53

SayNotEn Converts a notification enumeration type into a 2-54
descriptive message.

2-16 Programmer's Reference

Table 2-13 (Page 2 of 2). Pascal Language Interface Summary - Other Routines

Procedure Call

SayPorTy

Say Pro Ty

Add User Note

Notifications

GetNextNote

Description Page

Converts a port number into a descriptive message or into 2-54
EBCDIC.

Converts the protocol type into a descriptive message or 2-54
into EBCDIC.

Adds a USERdefinedNOTIFICATION notification to the 2-55
note queue.

The TCPIP address space sends you notifications to inform you of asynchronous
events. Also, some notifications are generated in your address space by the TCP
interface. Notifications can be received only after BeginTcp or StartTcpNotice.

The notifications are received by the TCP interface and kept in a queue. Use
GetNextNote to get the next notification. The notifications are in Pascal variant
record form (refer to Figure 2-4 on page 2-6).

Use this procedure to retrieve notifications from the queue. This procedure returns
the next notification queued for you.

procedure GetNextNote
(

var Note: NotificationlnfoType;
ShouldW ait: Boolean;

var ReturnCode: integer
);
external;

Parameter

Note:

ShouldW ait:

Return Code:

Description

Next notification is stored here when ReturnCode is OK.

Set ShouldWait to TRUE if you want GetNextNote to wait
until a notification becomes available. Set ShouldW ait to
FALSE if you want GetNextNote to return immediately.
When ShouldWait is set to FALSE, ReturnCode is set to
NOoutstandingNOTIFICATIONS if no notification is currently
queued.

Indicates success or failure of call.

Chapter 2. TCP/UDP/IP API (Pascal Language) 2-17

Handle

Un handle

Possible ReturnCode values:

OK

NOoutstandingNOTIFICATIONS
NOTyetBEGUN.

For a description of Pascal ReturnCodes, see Table 2-14 on page 2-55.

Use the Handle procedure to specify that you want to receive notifications in the
given set. You must always use it after calling the BeginTcplp procedure and before
accessing the TCP/IP services. This Pascal set may contain any of the
NotificationEnumType values shown in Figure 2-4 on page 2-6.

procedure Handle
(

Notifications: NotificationSetType;
var ReturnCode: integer

);
external;

Parameter

Notifications:

ReturnCode:

Description

The set of notification types to be handled.

Indicates success or failure of call.

Possible ReturnCode values:

OK

NOTyetBEGUN
TCPipSHUTDOWN
ABNO RMALcondition
FAT ALerror.

For a description of Pascal RetumCodes, see Table 2-14 on page 2-55.

Use this procedure when you no longer want to receive notifications in the given
set.

If you request to unhandle the DATAdelivered notification, the Unhandle procedure
returns with a code of INV ALIDrequest.

2-18 Programmer's Reference

procedure Unhandle
(

Notifications: NotificationSetType;
var ReturnCode: integer

);
external;

Parameter

Notifications:

Return Code:

Description

The set of notifications that you no longer want to receive.

Indicates success or failure of call.

Possible ReturnCode values:

OK
ABNO RMALCondition
FATALerror
INV ALIDrequest
NOTyetBEGUN
TCPipSHUTDOWN.

For a description of Pascal RetumCodes, see Table 2-14 on page 2-55.

TCP/UDP Initialization Procedures

TcpNameChange

The following procedures affect all present and future connections. Use these
procedures to initialize the TCP/IP environment for your program.

Use this procedure if the address space running the TCP/IP for MVS program is not
named TCPIP and is not the same as specified in the TcpipUserid statement of the
TCPIP.TCPIP.DATA data set (refer to the IBM Transmission Control Protocol/Internet
Protocol for MVS: Installation and Maintenance book).

If required, this procedure must be called before the BeginTcplp or the
StartT cpNotice procedure.

procedure TcpNameChange
(

NewNameOITcp: DirectoryNameType
);
external;

Parameter Description

NewNameOITcp: Specifies the name of the address space running TCP/IP.

Chapter 2. TCP/UDP/IP API (Pascal Language) 2-19

BeginTcplp

StartTcpNotice

Use BeginTcplp to inform the TCPIP address space that you want to start using its
services. If your program handles simulated external interrupts itself, use
StartTcpNotice instead of BeginTcplp. Refer to Appendix A, "VMCF Interface"
on page A-1 for information on simulated external interrupt support.

procedure BeginTcplp
(

var ReturnCode: integer
);
external;

Parameter Description

Return Code: Indicates success or failure of call.

Possible ReturnCode values:

OK

ABNO RMALCondition
FATALerror
NotcpIPservice
TCPipSHUTDOWN
VIRTUALmemoryroosmall.

For a description of Pascal ReturnCodes, see Table 2-14 on page 2-55.

Use this procedure instead of BeginTcplp when you want to handle simulated
external interrupts yourself. You establish your own external interrupt handler.

If your program does not use simulated VMCF (refer to Appendix A, "VMCF
Interface" on page A-1 for information on the simulated Virtual Machine
Communication Facility interface), set the ClientDoesVmcf parameter to FALSE.
Later, when your program receives a simulated external interrupt that it does not
handle, including a VMCF interrupt, inform the TCP interface by calling TcpExtRupt.
The TCP interface then processes the interrupt.

If your program uses simulated VMCF itself, set the ClientDoesVmcf parameter to
TRUE. Your program must use the VMCF AUTHORIZE function to establish a VMCF
interrupt buffer. Later, when your program receives a VMCF interrupt that it does
not handle, inform the TCP interface by calling TcpVmcfRupt with the address of
your VMCF interrupt buffer. When your program receives a non-VMCF simulated
external interrupt that it does not handle, call TcpExtRupt as explained above.

2-20 Programmer's Reference

procedure StartTcpNotice
(

ClientDoes V mcf: Boolean;
var ReturnCode: integer

);
external;

Parameter

ClientDoes V mcf:

Return Code:

Description

Set to FALSE if your program does not use simulated VMCF.
Otherwise set to TRUE.

Indicates success or failure of call.

Possible ReturnCode values:

OK
ABNO RMALcondition
ALREADY closing
Notcp I Pservice
VIRTUALmemoryroosmall
FAT ALerror.

For a description of Pascal ReturnCodes, see Table 2-14 on page 2-55.

TCP/UDP Termination Procedure

EndTcplp
Use EndTcplp when you have finished with the TCP/IP services. This procedure
releases ports and protocols in use that are not permanently reserved. It causes TCP
to clean up any data structures it has associated with you.

procedure EndTcplp;
external;

Handling External Interrupts
The following procedures allow you to pass simulated external interrupts to the TCP
interface. You must call the StartTcpNotice initialization routine before you can
begin using the external interrupt calls.

Chapter 2. TCP/UDP/IP API (Pascal Language) 2-21

TcpExtRupt

TcpVmcfRupt

Use this procedure when:

1. You initiated the TCP/IP service by calling StartTcpNotice with ClientDoesVmcf
set to TRUE, and your external interrupt handler receives a non-VMCF interrupt
not handled by your program. See "TcpVmcfRupt" on page 2-22 for the
handling of VMCF interrupts.

2. You initiated the TCP/IP service by calling StartTcpNotice with ClientDoesVmcf
set to FALSE, and your external interrupt handler receives any interrupt not
handled by your program.

RTcpExtRupt is a version of TcpExtRupt. Refer to Appendix C, "Assembler Calls
for the Pascal API" on page C-1 for more information.

procedure TcpExtRupt
(

const RuptCode: integer
);
external;

Parameter Description

RuptCode: The external interrupt code you received.

Use this procedure when you initiated the TCP/IP service by calling StartTcpNotice
with ClientDoesVmcf set to TRUE, and your external interrupt handler receives a
VMCF interrupt not handled by your program.

RTcpVmcfRupt is a version of TcpVmcfRupt that can be called directly from an
assembler interrupt handler. Refer to Appendix C, "Assembler Calls for the Pascal
API" on page C-1 for more information.

procedure TcpVmcfRupt
(

Vmcfl-leaderAddress: integer
);
external;

Parameter Description

VmcfHeaderAddress: Is the address of your VMCF interrupt buffer as specified in
the VMCF AUTHORIZE function that your program issued at
initialization.

2-22 Programmer's Reference

TCP Communication Procedures
The following procedures apply to a particular client connection. Use these
procedures to establish a connection and to communicate. You must call either the
BeginTcplp or the StartTcpNotice initialization routine before you can begin using
TCP communication procedures.

TcpOpen and TcpWaitOpen
Use TcpOpen or TcpWaitOpen to initiate a TCP connection. TcpOpen returns
immediately, and connection establishment proceeds asynchronously with your
program's other operations. The connection is fully established when your program
receives a CONNECTIONstateCHANGED notification with NewState set to OPEN.
TcpWaitOpen does not return until the connection is established, or until an error
occurs.

There are two types of TcpOpen calls: passive open, and active open. A passive
open call sets the connection state to LISTENING. An active open call sets the
connection state to TRYINGtoOPEN.

If a TcpOpen or TcpWaitOpen call returns ZEROresources, and your application
handles RESOURCESavailable notifications, you receive a RESOURCESavailable
notification when sufficient resources are available to process an open call. The first
open your program issues after a RESO u RCESavailable notification is guaranteed not
to get the ZEROresources return code.

procedure TcpOpen
(

var Connectionlnfo: StatuslnfoType;
var ReturnCode: integer

);
external;

procedure TcpWaitOpen
(

var Connectionlnfo: StatuslnfoType;
var RetumCode: integer

);
external;

Parameter

Connectionlnfo:

Connection:

Description

Is a connection information record as indicated below.

Set this field to UNSPECIFIEDconnection. When the call
returns, the field contains the number of the new
connection if ReturnCode is OK.

Chapter 2. TCP/UDP/IP API (Pascal Language) 2-23

Connection State: For active open, set this field to TRYINGtoOPEN. For
passive open, set this field to LISTENING.

OpenAttemptTimeout:

Security:

Compartment:

Precedence:

Local Socket:

Foreign Socket:

Return Code:

2-24 Programmer's Reference

Set this field to specify how long, in seconds, TCP is to
continue attempting to open the connection. If the
connection is not fully established during that time, TCP
reports the error to you. If you used TcpOpen, you
receive a notification. The type of notification that you
receive is CONNECTIONstateCHANGED. It has a new state
of NONEXISTENT and a reason of TIMEOUTopen. If you
used TcpWaitOpen it returns with ReturnCode set to
TIMEOUTopen.

This field is reserved. Set it to DEFAULTsecurity.

This field is reserved. Set it to DEFAULTcompartment.

This field is reserved. Set it to DEFAULTprecedence.

Active Open: In general, you can use an address of
UNSPECIFIEDaddress (TCPIP uses the home address
corresponding to the network interface used to route to
the foreign address) and a port of UNSPECIFIEDport
(TCPIP assigns a port number, in the range of 1 000 to
65 534). You can specify the address and/or the port if
particular values are required. by your application. The
address must be a valid home address for your node, and
the port must be available (not reserved, and not in use
by another application).

Passive Open: You generally specify a predetermined port
number, which is known by another program, that will
do an active open to connect to your program.
Alternatively, you can use UNSPECIFIEDport to let TCPIP
assign a port number, obtain the port number through
TcpStatus, and transmit it to the other program through
an existing TCP connection or manually. You generally
specify an address of UNSPECIFIEDaddress, so that the
active open to your port succeeds no matter what home
addresses it was sent to.

Active Open: The address and port must both be
specified, because TCPIP cannot actively initiate a
connection without knowing the destination address and
port.

Passive Open: If your program is offering a service to
anyone who wants it, specify an address of
UNSPECIFIEDaddress and a port of UNSPECIFIEDport.
You can specify a particular address and port if you want
to accept an active open only from a certain foreign
application.

Indicates success or failure of call.

Possible ReturnCode values:

OK

ABNORMALcondition
FATALerror
co N N ECTI 0 N alreadyEXISTS
DROPPEDbyOPERATOR (TcpWaitOpen only)
LOCALportN OTavailable
NOsuchCONNECTION
NOTyetBEGUN
OPENrejected (TcpWaitOpen only)
PARAMlocalADD RESS
PARAMstate
PARAMtimeout
PARAMunspecADD RESS
PARAMunspecPORT
REMOTEreset (TcpWaitOpen only)
SOFTWAREerror
TCPipSHUTDOWN
TIMEOUTconnection (TcpWaitOpen only)
TIMEOUTopen (TcpWaitOpen only)
TOOmanyOPENS
UNEXPECTEDsyn (TcpWaitOpen only)
UNREACHABLEnetwork (TcpWaitOpen only)
WRONGsecoRprc (TcpWaitOpen only)
ZEROresources.

For a description of Pascal ReturnCodes, see Table 2-14 on page 2-55.

TcpFSend, TcpSend, and TcpWaitSend
TcpFSend and TcpSend are the asynchronous ways of sending data on a TCP
connection. Both procedures return to your program immediately (do not wait
under any circumstance).

TcpWaitSend is a simple synchronous method of sending data on a TCP connection.
It does not return immediately if the TCPIP address space has insufficient space to
accept the data being sent.

TcpFSend and TcpSend differ in the way that they handle VMCF when the TCPIP
address space has insufficient buffer space to accept the data being sent. Both start
by issuing a VMCF SEND function to transfer your data. Normally, the TCPIP
address space issues a VMCF RECEIVE, thus completing the VMCF transaction.

In the case of insufficient buffer space, TCPIP responds to TcpSend with a VMCF
REJECT, completing the VMCF transaction (unsuccessfully). When space becomes
available, another complete VMCF transaction is performed to send a
BUFFERspaceAVAILABLE notification.

In the case of a TcpFSend with insufficient buffer space, TCPIP does not respond to
the VMCF SEND until buffer space becomes available, at which time the transaction
is completed with a VMCF RECEIVE.

Chapter 2. TCP/UDP/IP API (Pascal Language) 2-25

TcpSend returns to your program after the VMCF response from TCPIP is received.
In contrast, because the VMCF response from TcpFSend may be delayed, TcpFSend
returns before the VMCF response is received. An OK return code from TcpFSend
indicates only the successful initiation of the VMCF transaction.

The advantage of TcpFSend is that the VMCF transactions necessary to send data are
reduced in the case where a program can send data faster than the TCP connection
can carry it. Its disadvantages are that it is limited to 50 outstanding VMCF sends
and therefore 50 TcpFSends, and is slightly more complicated to use because you
have to wait for an FSENDresponse notification (generated internally by the TCP
interface) between successive TcpFSends.

The advantage of TcpSend is that it does not involve an outstanding VMCF
transaction. Thus, there is no imposed VMCF-related limit. Also, TcpSend is
simpler to use because you can issue successive TcpSends without waiting for a
notification. The disadvantage of TcpSend is that it is less efficient than TcpFSend
if your program can send data faster than the TCP connection can carry it.

Your program can issue successive TcpWaitSend calls. Buffer shortage conditions
are handled transparently. Any errors that occur are likely to be nonrecoverable
errors, or are caused by a connection that has terminated.

If you receive any of the codes listed for Reason in the CONNECTIONstateCHANGED
notification, except for OK, the connection was terminated for the indicated reason.
Your program should not issue a TcpClose, but the connection is not completely
terminated until your program receives a NONEXISTENT notification for the ·
connection.

procedure TcpFSend

2-26 Programmer's Reference

(
Connection: Connection Type;
Buffer: Address3 l Type;
BufferLength: integer;
PushFlag: Boolean;
UrgentFlag: Boolean;

var ReturnCode: integer
);
external;

procedure TcpSend
(

Connection: ConnectionType;
Buffer: Address31 Type;
BufferLength: integer;
PushFlag: Boolean;
UrgentFlag: Boolean;

var ReturnCode: integer
);
external;

procedure TcpWaitSend
(

Connection: Connection Type;
Buffer: Address3 l Type;
BufferLength: integer;
PushFlag: Boolean;
UrgentFlag: Boolean;

var ReturnCode: integer
);
external;

Parameter

Connection:

Buffer:

Buff er Length:

Push Flag:

UrgentFlag:

Return Code:

Description

Is the connection number, as returned by TcpOpen or
TcpWaitOpen in the Connection field of the StatusinfoType
record.

Is the address of the buffer containing the data to send.

Is the length of data in the buffer. Maximum is 8 192.

Is set to force the data, and previously queued data, to be
sent immediately to the foreign application.

Is set to mark the data as 'urgent'. The semantics of urgent
data is dependent on your application.

Note: Use urgent data with caution. If the foreign
application follows the Telnet-style use of urgent data, it may
flush all urgent data until a special character -sequence is
encountered.

Indicates success or failure of call.

Possible ReturnCode values:

OK
ABNORMALcondition
BADlengthARGUMENT
CANNOTSendDATA

Chapter 2. TCP/UDP/IP API (Pascal Language) 2-27

FATALerror
FSENDstillPENDING
NObufferSPACE (TcpSend only)
NOsuchCONNECTION
NOTyetBEGUN
NOTyetOPEN
TCPipSHUTDOWN.

For a description of Pascal ReturnCodes, see Table 2-14 on page 2-55.

Usage Notes:

1. A successful TcpFSend, TcpSend, and TcpWaitSend means that TCP has
received the data to be sent and stored it in its internal buffers. TCP then puts
the data in packets and transmits it when the conditions permit.

2. Data sent in a TcpFSend, TcpSend, or TcpWaitSend request may be split up
into numerous packets by TCP, or the data may wait in TCP's buffer space and
share a packet with other TcpFSend, TcpSend, or TcpWaitSend, requests.

3. The PushFlag is used to give the user the ability to affect when TCP sends the
data.

Setting the PushFlag to FALSE allows TCP to buffer the data and wait until it has
enough data to transmit so as to utilize the transmission line more efficiently.
There can be some delay before the foreign host receives the data.

Setting the PushFlag to TRUE instructs TCP to packetize and transmit any
buffered data from previous Send requests along with the data in the current
TcpFSend, TcpSend, or TcpWaitSend request without delay or consideration of
transmission line efficiency. A successful send does not imply that the foreign
application has actually received the data, only that the data will be sent as soon
as possible.

4. TcpWaitSend is intended for programs that manage a single TCP connection. It
is not suitable for use by multiconnection servers.

TcpFReceive, TcpReceive, and TcpWaitReceive
TcpFReceive and TcpReceive are the asynchronous ways of specifying a buffer to
receive data for a given connection. Both procedures return to your program
immediately. A return code of o K means that the request has been accepted. When
received data has been placed in your buffer, your program receives a DATAdelivered
notification. If your program uses TcpFReceive, it may receive an FRECEIVEerror
notification instead of DATAdelivered, indicating that the receive request was
rejected, or that it was initially accepted but was later canceled due to connection
closing.

TcpWaitReceive is the synchronous interface for receiving data from a TCP
connection. TcpWaitReceive does not return to your program until data has been
received into your buffer, or until an error occurs. It is therefore not necessary that
TcpWaitReceive receive a notification when data is delivered. The BytesRead
parameter is set to the number of bytes received by the data delivery, but if the
number is less than zero, the parameter indicates an error.

2-28 Programmer's Reference

TcpReceive uses a complete VMCF transaction (SEND by your address space followed
by REJECT by TCP/IP address space) to tell the TCPIP address space that your
program is ready to receive, and another complete VMCF transaction (SEND by
TCPIP address space followed by RECEIVE by your address space) to deliver the
received data. In contrast, the entire TcpFReceive cycle is completed in one VMCF
transaction. The TCP interface does a VMCF SEND/RECEIVE to inform TCPIP that
your program is ready to receive. This transaction remains uncompleted until data
is ready to be placed in your buffer. At that time the TCPIP address space does a
VMCF REPLY, completing the transaction.

The advantage of TcpFReceive is that it requires less VMCF transactions to receive
data, thus increasing efficiency. The disadvantage is that each outstanding
TcpFReceive means an outstanding VMCF transaction. You are limited to 50
outstanding VMCF transactions (per address space), thus 50 outstanding
TcpFReceives.

The advantage of TcpReceive is that you are not subject to the limit of 50
outstanding receives (per address space). The disadvantage is that there are twice as
many VMCF transactions involved in receiving data, thus more overhead.

The only programming difference between TcpFReceive and TcpReceive is the
generation of FRECEIVEerror notifications for TcpFReceive.

procedure TcpFReceive
(

Connection: Connection Type;
Buffer: Address3 l Type;
BytesToRead: integer;

var ReturnCode: integer
);
external;

procedure TcpReceive
(

Connection: ConnectionType;
Buffer: Address31 Type;
BytesToRead: integer;

var ReturnCode: integer
);
external;

Chapter 2. TCP/UDP/IP API (Pascal Language) 2-29

procedure TcpWaitReceive
(

Connection: Connection Type;
Buffer: Address31 Type;
BytesToRead: integer;

var BytesRead: integer
);
external;

Parameter

Connection:

Buffer:

BytesToRead:

BytesRead:

2-30 Programmer's Reference

Description

Is the connection number, as returned by TcpOpen or
TcpWaitOpen in the Connection field of the StatuslnfoType
record.

Is the address of the buffer to contain the received data.

Is the size of the buffer. TCPIP usually buffers the incoming
data until this many bytes are received. Data is delivered
sooner if the sender specified the PushFlag, or if the sender
does a TcpClose or equivalent. The largest usable buffer is
8 192 bytes. Specifying BytesToRead of more than 8 192
bytes may not cause an error return, but only 8 192 bytes of
the buffer will be used.

Usage Note: The order of TcpFReceive or TcpReceive calls
on multiple connections, and the order of DATAdelivered
notifications among the connections, are not necessarily
related.

Will be set when TcpWaitReceive returns. If it is greater
than zero, it indicates the number of bytes received into your
buffer. If it is less than or equal to zero, it indicates an error.

Possible BytesRead Error values:

OK+
ABNO RMALCondition
FATALerror
TIMEOUTopen +
UNREACHABLEnetwork+
BADlengthARGUMENT
NOsuchCONNECTION
NOTyetBEGUN
NOTyetOPEN
o PEN rejected+
RECEIVEstillPENDING
REMOTEreset +
UNEXPECTEDsyn +
WRONGsecoRprc+
DROPPEDbyOPERATOR+
FATALerror+
KILLEDbyCLIENT+

TcpClose

TCPipSHUTDOWN +
TI MEO UTconnection +

REMOTEclose.

Usage Notes (TcpWaitReceive):

1. For BytesRead OK, the function was initiated, but the connection is no longer
receiving for an unspecified reason. Your program does not have to issue
TcpClose, but the connection is not completely terminated until a
NONEXISTENT notification is received for the connection.

2. For BytesRead REMOTEclose, the foreign host has closed the connection. Your
program should respond with TcpClose.

3. If you receive any of the codes marked with + , the function was initiated but the
connection has now been terminated (see Usage Note 3 on page 2-8). Your
program should not issue TcpClose, but the connection is not completely
terminated until NONEXISTENT notification is received for the connection.

4. TcpWaitReceive is intended to be used by programs that manage a single TCP
connection. It is not suitable for use by multiconnection servers.

5. A return code of TCPipSHUTDOWN may be returned either because the
connection initiation has failed, or because the connection has been terminated
due to shutdown. In either case, your program should not issue any more
TCP/IP calls.

Return Code: Indicates success or failure of call.

Possible ReturnCode values:

OK
ABNORMALCondition
BADlengthARGUMENT
FATALerror
NOsuchCONNECTION
NOTyetBEGUN
NOTyetOPEN
RECEIVEstillPENDING
REMOTEclose
TCPipSHUTDOWN.

For a description of Pascal ReturnCodes, see Table 2-14 on page 2-55.

Use this procedure to begin the TCP one-way closing sequence. During this closing
sequence, you, the local client, cannot send any more data. Data may be delivered
to you until the foreign application also closes. TcpClose also causes all data sent
on that connection by your application, and buffered by TCP IP, to be sent to the
foreign application immediately.

Chapter 2. TCP/UDP/IP API (Pascal Language) 2-31

TcpAbort

procedure TcpClose
(

Connection: Connection Type;
var ReturnCode: integer

);
external;

Parameter

Connection:

Return Code:

Description

Is the connection number, as returned by TcpOpen or
TcpWaitOpen in the Connection field of the StatuslnfoType
record.

Indicates success or failure of call.

Possible ReturnCode values:

OK

ABNO RMALcondition
ALREADY closing
NOsuchCONNECTION
NOTyetBEGUN
TCPipSHUTDOWN.

For a description of Pascal ReturnCodes, see Table 2-14 on page 2-55.

Usage Notes:

1. If you receive the notification CONNECTIONstatecHANGED with a NewState of
SENDINGonly, the remote application has done TcpClose (or equivalent
function) and is receiving only. Respond with TcpClose when you have finished
sending data on the connection.

2. The connection is fully closed when you receive the notification
CONNECTIONstateCHANGED, with a NewState field set to NONEXISTENT.

Use this procedure to shut down a specific connection immediately. Data sent by
your application on the aborted connection may be lost. TCP sends a reset packet
to notify the foreign host that you have aborted the connection, but there is no
guarantee that the reset will be received by the foreign host.

procedure TcpAbort
(

Connection: Connection Type;
var ReturnCode: integer

);
external;

2·32 Programmer's Reference

TcpStatus

Parameter

Connection:

Return Code:

Description

Is the connection number, as returned by TcpOpen or
TcpWaitOpen in the Connection field of the StatusinfoType
record.

Indicates success or failure of call.

Possible ReturnCode values:

OK
ABNO RMALCondition
FATALerror
NOsuchCONNECTION
NOTyetBEGUN
TCPipSHUTDOWN.

The connection is fully terminated when you receive the notification
CONNECTIONstateCHANGED with the NewState field set to NONEXISTENT.

For a description of Pascal ReturnCodes, see Table 2-14 on page 2-55.

Use TcpStatus to obtain the current status of a TCP connection. Your program sets
the Connection field of the Connectioninfo record to the number of the connection
whose status you want.

procedure TcpStatus
(

var Connectioninfo: Statusinfo Type;
var ReturnCode: integer

);
external;

Parameter Description

Connectionlnfo: If RetumCode is OK, the following fields are returned.

OpenAttemptTimeout:

BytesToRead:

UnackedBytes:

Connection State:

If the connection is in the process of being opened
(including a passive open), this field is set to the number
of seconds remaining before the open is terminated if it
has not completed. Otherwise, it is set to WAITforever.

Is the number of bytes of incoming data queued for your
program (waiting for TcpReceive, TcpFReceive, or
TcpWaitReceive).

Is the number of bytes sent by your program but not yet
sent to the foreign TCP, or the number of bytes sent to
the foreign TCP, but not yet acknowledged.

Is the current connection state.

Chapter 2. TCP/UDP/IP API (Pascal Language) 2-33

Ping Interface

PingRequest

Local Socket:

ForeignSocket:

Is the local socket, consisting of a local address and a
local port.

Is the foreign socket, consisting of a foreign address and a
foreign port.

Return Code: Indicates the success or failure of the call.

Possible ReturnCode values:

OK

ABNORMALcondition
NOsuchCONNECTION
NOTyetBEGUN
TCPipSHUTDQWN.

For a description of Pascal RetumCodes, see Table 2-14 on page 2-55.

Usage Note: Your program cannot monitor connection state changes exclusively
through polling with TcpStatus. It must receive CONNECTIONStateCHANGED
notifications through GetNextNote, for the TCP interface to work properly.

The Ping Interface lets a client send an ICMP echo request to a foreign host. You
must call either the BeginTcplp or the StartTcpNotice initialization routine before
you can begin using the Ping Interface.

Use this procedure to send an ICMP echo request to a foreign host. When a
response is received or the timeout limit is reached, you receive a PingResponse
notification.

The PingRequest procedure is used by the PING user command. Refer to the IBM

Transmission Control Protocol/Internet Protocol for MVS: User's Guide for more
information on the PING command.

procedure PingRequest
(

ForeignAddress: IntemetAddressType;
Length: integer;
Timeout: integer;

var RetumCode: integer
);
external;

Parameter Description

F oreignAddress: Address of foreign host to be 'pinged'.

2-34 Programmer's Reference

Length:

Timeout:

Return Code:

The length of the ping packet, excluding the IP header. The
range of values for this field are 8 to 512 bytes.

How long to wait for a response, in seconds.

Indicates success or failure of call.

Possible ReturnCode values:

OK

ABNORMALcondition
BADlengthARG UM ENT
co NNECTIO NalreadyEXISTS
NO buffers PACE
NOTyetBEGUN.

Usage Note: CONNECTIONalreadyEXISTS, in this context, means a ping request is
already outstanding.

For a description of Pascal ReturnCodes, see Table 2-14 on page 2-55.

Monitor Procedures

MonCommand

Two monitor procedures, MonCommand and MonQuery, provide a mechanism for
querying and controlling the TCPIP address space.

MonCommand and MonQuery are described in the CMMON member of the
TCPIP.COMMMAC data set. Any program using these procedures must include
CMMON after the include statements for CMCOMM and CMCLIEN.

Use the Mon Command procedure to instruct TCPIP to read a specific data set and
execute the commands found there. This procedure updates TCP/IP internal tables
and parameters while the TCPIP address space is running. For example, the type
and destination of run-time tracing can be modified dynamically using
MonCommand. This procedure is used by the OBEYFILE command (refer to IBM

Transmission Control Protocol/ Internet Protocol for MVS: Installation and
Maintenance for more information about the OBEYFILE command). You must be in
the TCPIP obey list to use the MonCommand procedure.

procedure MonCommand
(

const FileSpec: SpecOfFileType;
var ReturnCode: integer

);
external;

Chapter 2. TCP/UDP/IP API (Pascal Language) 2-35

MonQuery

Parameter

FileSpec:

Return Code:

Description

Specifies fully a data set in a manner that allows access to
that data set. The TCPIP address space must be authorized
to access the data set.

The SpecOfFileType record is shown on page 2-12.

Indicates success or failure of call.

Possible ReturnCode values:

OK
ABNORMALcondition
ERROR.inPROFILE
HASnoPASSWORD
INCORRECTpassword
INV ALIDUserID
INV ALIDvirtualADDRESS
MINIDISKinUSE
MINIDISKnotAVAILABLB
NOTyetBEGUN
PROFILEnotFOUND
SOFTW AREerror
TCPipSHUTDOWN
UNAUTHORIZEDuser
UNIMPLEMENTEDrequest.

For a description of Pascal ReturnCodes, see Table 2-14 on page 2-55.

The MonQuery procedure is used to obtain status information, or to request TCPIP
to perform certain actions. This procedure is used by the NETSTAT command. For
more information about the NETSTAT command, refer to the IBM Transmission
Control Protocol/ Internet Protocol for MVS: User's Guide.

procedure MonQuery
(

QueryRecord: MonQueryRecordType;
Buffer: integer;
BufSize: integer;

var ReturnCode: integer;
var Length: integer

Parameter

Buffer:

BufSize:

);
external;

Description

Is the address of the buffer to receive data.

Is the size of the buffer.

2-36 Programmer's Reference

Return Code: Indicates success or failure of call.

Length: Is the length of the data returned in the buffer.

Query Record: Your program sets up a QueryRecord to specify the type of
status information to be retrieved. The
MonQueryRecordType is shown in Figure 2-6.

MonQueryRecordType =
record
case QueryType: MonQueryType of
QUERYhome, QUERYgateways, QUERYcontrolBLOCKS,
QUERYstartTIME, QUERYtelnetSTATUS,
Q u ER YdevicesAN Dlinks,
QUERYhomeONLY: ();
Q UERYudpPO RTowner:
(

QueryPort: PortType
);
COMMANDcpCMD:
(

CpCmd: WordType
);
COMMANDdropCONNECTION:
(

Connection: ConnectionType
);
end; { MonQueryRecordType}

Figure 2-6. Monitor Query Record

The only QueryType values available for customer use are:

QUERYhomeONLY: Is used to obtain a list of the home internet addresses
recognized by your TCP IP. Your program sets the Buffer to
the address of a variable of type HomeOnly ListType, and the
BufSize to its length. When MonQuery returns, Length is
set to the length of the Buffer that was used, if Return Code
is OK. Divide the Length by sizeof(InternetAddressType) to
get the number of the home addresses that are returned.

COMMANDdropCONNECTION:
Is used to instruct the TCPIP address space to drop a TCP
connection. The connection is reset, and the client process
owning the connection is sent a NONEXISTENT notification
with the Reason field set to DROPPEDbyOPERATOR. Your
program sets the Connection field to the number of the
connection to be dropped. The connection number is the
number displayed by the NETSTAT CONN or the NETSTAT
TELNET command, and is not the same number used to refer
to the connection by the client program that owns the
connection. Refer to the IBM Transmission Control
Protocol/Internet Protocol/or MVS: User's Guide for

Chapter 2. TCP/UDP/IP API (Pascal Language) 2-37

information on the NETSTAT command. The address space
running your program that uses
COMMANDdropCONNECTION must be in the TCPIP obey list.

Possible ReturnCode values:

OK
ABNORMALCondition
FATALerror
NOTyetBEGUN
TCPipSHUTDOWN
UNAUTHORIZEDuser
UNIMPLEMENTEDrequest.

For a description of Pascal ReturnCodes, see Table 2-14 on page 2-55.

UDP Communication Procedures

UdpOpen

This section describes the programming interface for the User Datagram Protocol
(UDP) provided in the TCP/IP for MVS product.

This procedure requests acceptance of UDP datagrams on the specified socket and
allows datagrams to be sent from the specified socket. When the socket port is
unspecified, UDP selects a port and returns it to the socket port field. When the
socket address is unspecified, UDP uses the default local address. If specified, the
address must be a valid home address for your node.

Usage Note: When the local address is specified, only the UDP datagrams addressed
to it are delivered.

If the Return Code indicates the open was successful, use the returned Connindex
value on any further actions pertaining to this UDP socket.

procedure UdpOpen
(

var LocalSocket: SocketType;
var Connindex: ConnectionindexType;
var ReturnCode: CallReturnCodeType

);
external;

Parameter

Local Socket:

Conn Index:

Return Code:

Description

Is the local socket (address and port pair).

Is the Connindex value returned from UdpOpen.

Indicates success or failure of call.

2-38 Programmer's Reference

UdpSend

Possible ReturnCode values:

OK

ABNO RMALCondition
FATALerror
LOCALportNOTavailable
NOTyetBEGUN
SOFTWAREerror
TCPipSHUTDOWN
UDPlocalAD DRESS
UDPzeroRESOURCES.

For a description of Pascal ReturnCodes, see Table 2-14 on page 2-55.

Usage Note: If a UdpOpen call returns UDPzeroRESOURCES, and your application
handles UDPresourcesAVAILABLE notifications, you receive a
UDPresourcesAVAILABLE notification when sufficient resources are available to
process a UdpOpen call. The first UdpOpen your program issues after a
UDPresourcesAVAILABLE notification is guaranteed not to get the
UDPzeroRESOURCES return code.

This procedure sends a UDP datagram to the specified foreign socket. The source
socket is the local socket selected in the UdpOpen that returned the Connindex
value that was used. The buffer does not include the UDP header. This header is
supplied by TCPI p.

When there is no buffer space to process the data, an error is returned. In this case,
wait for a subsequent uoPdatagramSPACEavailable notification.

procedure UdpSend
(

Connindex: ConnectionindexType;
F oreignSocket: SocketType;
BufferAddress: integer;
Length: integer;

var ReturnCode: CallReturnCodeType
);
external;

Parameter

Connlndex:

Foreign Socket:

Buff er Address:

Length:

Description

Is the Connindex value returned from UdpOpen.

Is the foreign socket (address and port) to whom the
datagram is to be sent.

Is the address of your buffer containing the UDP datagram to
be sent, excluding UDP header.

Is the length of the datagram to be sent, excluding UDP
header. Maximum is 8 492 bytes.

Chapter 2. TCP/UDP/IP API (Pascal Language) 2-39

UdpNReceive

Return Code: Indicates success or failure of call.

Possible ReturnCode values:

OK
BADlengthARG UM ENT
NObuffersPACE
NOsuchCONNECTION
NOTyetBEG UN
SOFfW AREerror
TCPipSHUTDOWN
UDPunspecADD RESS
UDPunspecPORT.

For a description of Pascal ReturnCodes, see Table 2-14 on page 2-55.

This procedure notifies the TCPIP address space that you are willing to receive UDP
datagram data. This call returns immediately. The data buffer is not valid until you
receive a UDPdatagramDELIVERED notification.

procedure UdpNReceive
(

Connindex: ConnectionindexType;
Buffer Address: integer;
BufferLength: integer;

var ReturnCode: CallReturnCodeType
);
external;

Parameter

Connlndex:

Buff er Address:

Buffer Length:

Return Code:

Description

Is the Connindex value returned from UdpOpen.

Is the address of your buffer that will be filled with a UDP
datagram.

Is the length of your buffer. If you specify a length larger
than 8 492 bytes, only the first 8 492 bytes are used.

Indicates success or failure of call.

Possible ReturnCode values:

OK
ABNO RMALCondition
FATALerror
NOsuchCONNECTION
NOTyetBEGUN
RECEIV EstillPEN DING
TCPipSHUTDOWN.

For a description of Pascal ReturnCodes, see Table 2-14 on page 2-55.

2-40 Programmer's Reference

UdpReceive

UdpClose

This procedure notifies the TCPIP address space that you are willing to receive UDP
datagram data.

UdpReceive is for compatibility with old programs only. New programs should use
the UdpNReceive procedure, which allows you to specify the size of your buffer.

If you use UdpReceive, TCPIP may put a datagram of up to 2 012 bytes in your
buffer. If a larger datagram is sent to your port when UdpReceive is pending, the
datagram is discarded without notification.

Note: No data is transferred from the TCPIP address space in this call. It only tells
TCPIP that you are waiting for a datagram. Data has been transferred when a
UDPdatagramDELIVERED notification is received.

procedure UdpReceive
(

Connlndex: ConnectionlndexType;
DatagramAddress: integer;

var ReturnCode: CallReturnCodeType
);
external;

Parameter

Connlndex:

DatagramAddre~:

Return Code:

Description

Is the Connlndex value returned from UdpOpen.

Is the address of your buffer that will be filled in with a UDP
datagram.

Indicates success or failure of call.

Po~ible ReturnCode values:

OK
ABNO RMALcondition
FATALerror
NOsuchCONNECTION
NOTyetBEGUN
so FTW AREerror
TCPipSHUTDOWN.

For a description of Pascal ReturnCodes, see Table 2-14 on page 2-55.

This procedure closes the UDP socket specified in the Connlndex field. All
incoming datagrams on this connection are discarded.

Chapter 2. TCP/UDP/IP API (Pascal Language) 2-41

procedure UdpClose
(

Connindex: ConnectionindexType;
var ReturnCode: CallReturnCodeType

);
external;

Connlndex:

Return Code:

Is the Connindex value returned from UdpOpen.

Indicates success or failure of call.

Possible ReturnCode values:

OK
ABNORMALcondition
FATALerror
NOsuchCONNECTION
NOTyetBEGUN
SOFTW AREerror
TCPipSHUTDOWN.

For a description of Pascal ReturnCodes, see Table 2-14 on page 2-55.

Raw IP Interlace

RawlpOpen

The Raw IP interface lets a client program send and receive arbitrary IP packets on
any IP protocol except TCP and UDP. Only one client can use any given protocol at
one time. Only clients in the obey list can use the Raw IP interface. For further
information on the obey list, refer to the IBM Transmission Control Protocol/Internet
Protocol for MVS: Installation and Maintenance book.

This command tells the TCPIP address space that the client wants to send and
receive packets of the specified protocol.

Protocols 6 and 17 must not be used. They specify the TCP (6) and UDP (17)
protocols. When you specify 6, 17 or a protocol that has been opened by another
address space, you receive the LOCALportNOTavailable return code.

procedure RawlpOpen
(

ProtocolNo: integer;
var ReturnCode: integer

);
external;

2-42 Programmer's Reference

RawlpReceive

Parameter Description

ProtocolNo:

Return Code:

Is the number of the IP protocol.

Indicates success or failure of call.

P~ible ReturnCode values:

OK
LOCALportN OTavailable
NOTyetBEGUN
so FrW AREerror
TCPipSHUTDOWN
UNAUTHORIZEDuser.

For a description of Pascal RetumCodes, see Table 2-14 on page 2-55.

Usage Note: You can open the ICMP protocol, but your program receives only
those ICMP packets that are not interpreted by the TCPIP address space.

Use this command to specify a buffer to receive Raw IP packets of the specified
protocol. You get the notification RAWIPpacketsDELIVERED when a packet is put
in the buffer.

procedure RawlpReceive
(

ProtocolNo: integer;
Buffer: Address31 Type;
BufferLength: integer;

var RetumCode: integer
);
external;

Parameter Description

ProtocolNo:

Buffer:

Is the number of the IP protocol.

Address of your buffer.

Buffer Length: Length of your buffer. If you specify a length greater than
8 492 bytes, only the first 8 492 bytes are used.

Return Code: Indicates success or failure of call.

Possible ReturnCode values:

OK
NOsuchCONNECTION
NOTyetBEGUN
SOFrW AREerror
TCPipSHUTDOWN
UNAUTHORIZEDuser.

Chapter 2. TCP/UDP/IP API (Pascal Language) 2-43

RawlpSend

For a description of Pascal ReturnCodes, see Table 2-14 on page 2-55.

This command sends IP packets of the given protocol number. The entire packet,
including the IP header, must be in the buffer. The TCPIP address space uses the
total length field of the IP header to determine where each packet ends. Subsequent
packets begin at the next double-word (8-byte) boundary within the buffer.

The packets in your buffer are transmitted as is with the following exceptions.

• They may be fragmented. The fragment offset and flag fields in the header are
filled in.

• The version field in the header is filled in.
• The checksum field in the header is filled in.
• The source address field in the header is filled in.

You get the return code NOsuchcoNNECTION if the client is not handling the
protocol, or if a packet in the buff er has another protocol. The return code
BADlengthARGUMENT is received when:

• The DataLength is less than 40 bytes or more than 8KB.
• NumPackets is 0.
• A packet is greater than 2 048 bytes.
• All packets do not fit into DataLength.

A ReturnCode value of NobufferSPACE indicates that the data is rejected because
TCPIP is out of buffers. When buffer space is available, the notification
RAWIPspaceAVAILABLE is sent to the client.

procedure RawlpSend
(

ProtocolNo: integer;
Buffer: Address31 Type;
DataLength: integer;
NumPackets: integers;

var ReturnCode: integer
);
external;

Parameter

ProtocolNo:

Buffer:

DataLength:

NumPackets:

Return Code:

Description

Is the number of the IP protocol.

Address of your buffer containing packets to send.

Total length of data in your buffer.

Number of packets in your buffer.

Indicates success or failure of call.

Usage Note: If your buffer contains multiple packets to send, some of the packets
may have been sent even if ReturnCode is not OK.

2-44 Programmer's Reference

RawlpClose

Timer Routines

Possible ReturnCode values:

OK
BADlengthARGUMENT
NO buffers PACE
NOsuchCONNECTION
NOTyetBEGUN
SOFTWAREerror
TCPipSHUTDOWN
UNAUTHORIZEOuser.

For a description of Pascal ReturnCodes, see Table 2-14 on page 2-55.

This command tells the TCPIP address space that the client does not handle the
protocol any longer. Any queued incoming packets are discarded.

When the client is not handling the protocol, a return code of NosuchcoNNECTION
is received.

procedure RawlpClose
(

ProtocolNo: integer;
var ReturnCode: integer

);
external;

Parameter Description

ProtocolNo:

ReturnCode:

Is the number of the IP protocol.

Indicates success or failure of call.

Possible ReturnCode values:

OK
NOsuchCONNECTION
NOTyetBEGUN
so FfW AREerror
TCPipSHUTDOWN
UNAUTHORIZEDuser.

For a description of Pascal ReturnCodes, see Table 2-14 on page 2-55.

The timer routines are used with the TCP/UDP/IP interface. You must call either the
BeginTcplp or the StartTcpNotice initialization routine before you can begin using
the timer routines.

Chapter 2. TCP/UDP/IP API (Pascal Language) 2-45

Create Timer

ClearTimer

SetTimer

This procedure allocates a timer. The timer is not set in any way. Refer to the
SetTimer procedure to activate the timer.

procedure CreateTimer
(

var T: TimerPointerType
);
external;

Parameter Description

T: Is set to a timer pointer that can be used in subsequent
SetTimer, ClearTimer, and DestroyTimer calls.

This procedure resets the timer to prevent it from timing out.

procedure ClearTimer
(

T: TimerPointerType
);
external;

Parameter Description

T: A timer pointer, as returned by a previous Create Timer call.

This procedure sets a timer to expire after a specified time interval. Specify the
amount of time in seconds. When it times out, you receive the TIMERexpired
notification, which contains the data and the timer pointer.

Usage Note: This procedure resets any previous time interval set on this timer.

procedure SetTimer

Parameter

T:

(

);

T: TimerPointerType;
AmountOffime: integer;
Data: integer

external;

Description

A timer pointer, as returned by a previous CreateTimer call.

2-46 Programmer's Reference

DestroyTi mer

AmountOffime:

Data:

The time interval in seconds.

An integer value to be returned with the TIMERexpired
notification.

This procedure deallocates or "frees" a timer that you created.

procedure DestroyTimer
(

var T: TimerPointerType
);
external;

Parameter Description

T: A timer pointer, as returned by a previous CreateTimer call.

Host Lookup Routines

GetHostNumber

The host lookup routines (with the exception of GetHostResol) are declared in the
CMINTER member of the TCPIP.COMMMAC data set. The host lookup routine
GetHostResol is declared in the CMRESGLB member of the TCPIP.COMMMAC data
set. Any program using these procedures must include CMINTER or CMRESGLB
after the include statements for CMCOMM and CMCLIEN.

The main purpose of the GetHostNumber procedure is to resolve a host name into
an internet address.

GetHostNumber uses a table lookup to convert the name of a host to an internet
address, and returns this address to the HostNumber field. When the name is a
dotted-decimal number, GetHostNumber returns the integer represented by that
dotted-decimal. The dotted-decimal representation of a 32-bit number has one
decimal integer for each of the 4 bytes, separated by dots. For example, 14. e. e. 7
for X 10E000007 1

• Refer to the IBM Transmission Control Protocol/Internet Protocol
for MVS: Installation and Maintenance book for information on how to create host
lookup tables.

The HostNumber field is set to NO host if the host is not found.

procedure GetHostNumber
(

const Name: string;
var HostNumber: InternetAddressType

);
external;

Chapter 2. TCP/UDP/IP API (Pascal Language) 2-47

GetHostResol

GetHostString

Parameter Description

Name: The name or dotted-decimal number to be converted.

HostNumber: Set to the converted address, or Nohost if conversion fails.

The main purpose of the GetHostResol procedure is to resolve a host name into an
internet address by using a name server.

GetHostResol passes the query to the remote name server through the resolver. The
name server converts the name of a host to an internet address, and returns this
address in the HostNumber field. If the name server does not respond or does not
find the name, the host name is converted to a host number by table lookup. When
the name is a dotted-decimal number, the integer represented by that dotted-decimal
is returned. The dotted-decimal representation of a 32-bit number has one decimal
integer for each of the 4 bytes, separated by dots. For example, 14.0.0.7 for
x I OE000007 I.

The HostNumber field is set to Nohost if the host is not found.

procedure GetHostResol
(

const Name: string;
var HostNumber: IntemetAddressType

Parameter

Name:

);
external;

HostNumber:

Description

The name or dotted-decimal number to be converted.

Set to the converted address, or Nohost if conversion fails.

The GetHostString procedure call uses a table lookup to convert an internet address
to a host name, and returns this string in the Name field. The first host name found
in the lookup is returned.. If no host name is found, a gateway or network name is
returned. If no gateway or network name is found, a null string is returned.

procedure GetHostString
(

Address: lnternetAddressType;
var Name: SiteNameType

);
external;

2-48 Programmer's Reference

Getldentity

Parameter

Address:

Name:

Description

The address to be converted.

Set to the corresponding host, gateway, or network name, or
to null string if no match found.

This procedure returns the following information:

• The user ID of the TSO user or the job name of a batch job that has invoked it

• The host machine name

• The network domain name

• The user ID of the TCPIP address space.

The host machine name and domain name are extracted from the HostName and
DomainOrigin statements, respectively, in the userid.TCPIP.DATA data set. If the
userid.TCPIP.DATA data set does not exist, the TCPIP.TCPIP.DATA data set is used. If
a HostName statement is not specified, then the default host machine name is the
name specified by the TCP/IP for MVS installer during installation (refer to the IBM

Transmission Control Protocol/ Internet Protocol for Mvs: Installation and
Maintenance). The TCPIP address space user ID is extracted from the TcpipUserid
statement in the userid.TCPIP.DATA data set; if the statement is not specified, the
default is TCPIP.

procedure Getldentity
(

var Userld: DirectoryNameType;
var HostName, DomainName: String;
var TcplpServiceName: DirectoryNameType;
var Result: integer

);
external;

Parameter

User Id:

HostName:

DomainName:

TcplpServiceName:

Result:

Description

The user ID of the TSO user or the job name of a batch job
that has invoked Getldentity.

The host machine name.

The network domain name.

The user ID of the TCPIP address space.

Indicates success or failure of the call.

Chapter 2. TCP/UDP/IP API (Pascal Language) 2-49

lsLocalAddress

lsLocalHost

11tls procedure queries the TCPIP address space to determine whether the
HostAddress is one of the addresses recognized for this host. If the address is local,
it returns OK. If the address is not local, it returns NONlocalADDRESS.

procedure IsLocalAddres.s
(

HostAddress: InternetAddressType;
var ReturnCode: integer

);
external;

Parameter

HostAddress:

Return Code:

Description

The host address to be tested.

Indicates whether host address is local, or may indicate an
error.

Possible ReturnCode values:

OK
NONlocalADDRESS
TCPipSHUTDOWN
ABNO RMALcondition
FAT ALerror.

For a description of Pascal ReturnCodes, see Table 2-14 on page 2-55.

11tls procedure returns the correct host class for Name, which may be a host name
or a dotted-.decimal address.

The host classes are:

HOSTlocal

HOSTloopback

HOSTremote

HOSTunknown

Is an internet address for the local host.

Is one of the dummy internet addresses used to designate
various levels of loopback testing.

Is a known host name for some remote host.

Is an unknown host name (or other error).

procedure IsLocalHost
(

const Name: string;
var Class: HostClassType

);
external;

2-50 Programmer's Reference

Other Routines

GetSmsg

ReadXlateTable

Parameter Description

Name:

Class:

ls the host name.

ls the host class.

Your program should call this procedure after receiving an SMSGreceived
notification. Each call to GetSmsg retrieves one queued Smsg. Your program
should exhaust all queued Smsgs, by calling GetSmsg repeatedly until the Success
field returns with a value of FALSE. After a value of FALSE is returned, do not call
GetSmsg again until you receive another SMSGreceived notification.

Refer to "Sending and Receiving Special Messages" on page A-1 for information on
the SMSG command and how to enable the reception of Smsgs.

procedure GetSMsg
(

var Smsg: SmsgType;
var Success: Boolean;

);
external;

Parameter Description

Smsg:

Success:

Will be set to the returned Smsg if Success is set to TRUE.

TRUE if Smsg returned, otherwise FALSE.

This routine reads the binary translation table data set specified by Tablename, and
fills in the AtoETable and EtoATable translation tables.

procedure ReadXlateTable
(

var TableName: DirectoryNameType;
var AtoETable: AtoEType;
var EtoATable: EtoA Type;
var TranslateTableSpec: SpecOfFileType;
var ReturnCode: integer

);
external;

Chapter 2. TCP/UDP/IP API (Pascal Language) 2-51

SayCalRe

SayConSt

Parameter

TableName:

AtoETable:

EtoATable:

Description

The name of the translate table. ReadXlateTable tries to
read userid.TableName.TCPXLBIN. If that file exists but it
has a bad format, ReadXlateTable returns with a
ReturnCode FILEformatINV ALID. If
userid.TableName.TCPXLBIN does not exist, ReadXlateTable
tries to read TCPIP.TableName.TCPXLBIN. RetumCode
reflects the status of reading that file.

Will be filled in with ASCII-to-EBCDIC table if return code is
OK.

Will be filled in with EBCDIC-to-ASCII table if return code is
OK.

TranslateTableSpec: If ReturnCode is OK, TranslateTableSpec contains the
complete specification of the file that ReadXlateTable used.
If ReturnCode is not OK, TranslateTableSpec contains the
complete specification of the last file that ReadXlateTable
tried to use.

ReturnCode: Indicates success or failure of a call.

Possible ReturnCode values:

OK
ERRO RopeningoRreadingFILE
FILEformatINV ALID.

This function returns a printable string describing the return code passed in
CallReturn.

function SayCalRe
)

CallReturn: integer

Parameter

):
WordType;
external;

Calf Return:

Description

The return code to be described.

This function returns a printable string describing the connection state passed in
State. For example, if SayConSt is invoked with the type identifier RECEIVINGonly,
it returns the message "Receiving only".

2-52 Programmer's Reference

SaylntAd

SaylntNum

function SayConSt
(

State: ConnectionStateType

Parameter

State:

):
Wordtype;
external;

Description

The connection state to be described.

This function converts the internet address specified by InternetAddress to a
printable string. The address is looked up in TCPIP .HOSTS.ADDRINFO, and the
name is returned if found. If it is not found, the dotted-decimal format of the
address is returned.

function SaylntAd
(

InternetAddress: InternetAddressType

Parameter

):
WordType;
external;

Internet Address:

Description

The internet address to be converted.

This function converts the internet address specified by InternetAddress to a
printable string, in dotted-decimal form.

function Say IntNum
(

InternetAddress: lnternetAddressType
):
Wordtype;
external;

Parameter

Internet Address:

Description

The internet address to be converted.

Chapter 2. TCP/UDP/IP API (Pascal Language) 2-53

SayNotEn

SayPorTy

SayProTy

This function returns a printable string describing the notification enumeration type
passed in Notification. For example, if SayNotEn is invoked with the type identifier
EXTERNALinterrupt, it returns the message "Other external Interrupt received".

function SayNotEn
(

Notification: NotificationEnumType
);
Wordtype;
external;

Parameter

Notification:

Description

The notification enumeration type to be described.

This function returns a printable string describing the port number passed in Port, if
it is a well-known port number such as the Telnet port. Otherwise, the EBCDIC
representation of the number is returned.

function Say PorTy
(

Port: PortType

Parameter

Port:

):
WordType;
external;

Description

The ,port number to be described.

This function converts the protocol type specified by Protocol to a printable string if
it is a well-known protocol number such as 6 (TCP). Otherwise, the EBCDIC
representation of the number is returned.

function SayProTy
(

Protocol: ProtocolType
):
WordType;
external;

2-54 Programmer's Reference

AddUserNote

Parameter Description

Protocol: The number of the protocol to be described.

This procedure can be called to add a USERdefinedNOTIFICATION notification to the
note queue and wake up GetNextNote if it is waiting for a notification. See
Appendix C, "Assembler Calls for the Pascal API" on page C-1 for more
information.

Pascal Return Codes
When using Pascal procedure calls, check to detennine whether or not the call has
been completed successfully. Use the SayCalRe function (see "SayCalRe" on
page 2-52) to convert the ReturnCode parameter to a printable form.

The SayCalRe function converts a return code value into a descriptive message.
For example, if SayCalRe is invoked with the integer constant
BADlengthARGUMENT, it returns the message "Invalid buffer length specified".
Refer to Table 2-14 for a description of Pascal return codes and their equivalent
message text from SayCalRe.

Most return codes are self-explanatory in the context where they occur. The return
codes you see as a result of issuing a TCP/UDP/IP request are in the range -128 to 0.
Refer to the Explanatory Notes at the end of Table 2-14 for more information.

Table 2-14 (Page 1 of 3). Pascal Language Return Codes

Return Code Numeric Value Message Text

OK 0 OK.

ABNORMALCondition 1 -1 Abnormal condition during inter-address
communication. (VMCF Re= nn
User= xxxxxxxx)

ALREADY closing -2 Connection already closing.

BADlengthARGUMENT -3 Invalid length specified.

CANNOTsendDATA2 -4 Cannot send data.

CLIENTrestart -5 Client reinitialized TCP/IP service.

CONNECTIONalreadyEXISTS -6 Connection already exists.

DESTINATIONunreachable -7 Destination address is unreachable.

ERRORinPROFILE -8 Error in profile data set. Details are in
PROFILE.TCPERROR.

FATALerror3 -9 Fatal inter-address communications error.
(VMCF Rc=nn User=xxxxxxxx)

HASnOPASSWORD -10 No password in RACF directory.

INCORRECTpassword -11 TCPIP not authorized to access data set.

Chapter 2. TCP/UDP/IP API (Pascal Language) 2-55

Table 2-14 (Page 2 of 3). Pascal Language Return Codes

Return Code Numeric Value Message Text

INVALIDrequest -12 Invalid request.

I NV ALIDuserID -13 Invalid user ID.

INVALIDvirtualADDRESS -14 Invalid virtual address.

KILLEDbyCUENT -15 You aborted the connection.

LOCALportNOTavailable -16 The requested local port is not available.

MINIDISKinUSE -17 Data set is in use by someone else and cannot be
accessed.

MINIDISKnotAVAILABLE -18 Data set not available.

NObuffersPACE4 -19 No more space for data currently available.

NOmoreINCOMINGdata -20 The foreign host has closed this connection.

NONlocalADDRESS -21 The internet address is not local to this host.

NOoutstandingNOTIFICATIONS -22 No outstanding notifications.

NOsuchCONNECTION -23 No such connection.

NOtcpIPservice -24 No TCP/IP service available.

NOTyetBEGUN -25 Not yet begun TCP/IP service.

NOTyetOPEN -26 The connection is not yet open.

OPENrejected -27 Foreign host rejected the open attempt.

PARAMlocalAD DRESS -28 TcpOpen error: invalid local address.

PARAMstate -29 TcpOpen error: invalid initial state.

PARAMtimeout -30 Invalid timeout parameter.

PARAMunspecAD DRESS -31 TcpOpen error: unspecified foreign address in
active open.

PARAMunspecPORT -32 TcpOpen error: unspecified foreign port in active
open.

PROFILEnotFOUND -33 TCPIP cannot read profile data set.

RECEIVEstillPENDING -34 Receive still pending on this connection.

REMOTEclose -35 Foreign host unexpectedly closed the connection.

REMOTEreset -36 Foreign host aborted the connection.

SOFTW AREerror -37 Software error in TCP/IP!

TCPipSHUTDOWN -38 TCP /IP service is being shut down.

TIMEOUTconnection -39 Foreign host is no longer responding.

TIMEOUTopen -40 Foreign host did not respond within OPEN
timeout. .

TOOmanyOPENS -41 Too many open connections already exist.

2-56 Programmer's Reference

Table 2-14 (Page 3 of 3). Pascal Language Return Codes

Return Code Numeric Value Message Text

UNAUTHORIZEDuser -43 You are not authorized to issue this command.

UNEXPECTEDsyn -44 Foreign host violated the connection protocol.

UNIMPLEMENTEDrequest -45 Unimplemented TCP/IP request.

UNKNOWNhost -46 Destination host is not known.

UN REACHABLEnetwork -47 Destination network is unreachable.

UNSPECIFIEDconnection -48 Unspecified connection.

VIRTUALmemoryTOOsmall -49 Client address space has too little storage.

WRONGsecORprc -50 Foreign host disagreed on security or precedence.

YOU Rend -55 Client has ended TCP/IP service.

ZER.Oresources -56 TCP cannot handle any more connections now.

UD PlocalAD DRESS -57 Invalid local address for UDP.

UD PunspecAD DRESS -59 Address unspecified when specification necessary.

UD PunspecPORT -60 Port unspecified when specification necessary.

UDPzeroRESOURCES -61 UDP cannot handle any more traffic.

FSENDstillPENDING -62 FSend still pending on this connection.

DROPPEDbyOPERATOR -79 Connection dropped by operator.

ERRO Ropeningo RreadingFILB -80 Error opening or reading data set.

FILEformatINV ALID -81 Data set format invalid.

Explanatory Notes:

1. ABNORMALcondition The actual VMCF return code is available in the external integer variable
LastVmcfCode, and is included in the output of SayCalRe if called
immediately after the error is detected.

2. CANNOTsendDATA Cannot send data on this connection because the connection state is invalid for
sending data.

3. FATALerror The actual VMCF return code is available in the external integer variable
LastVmcfCode, and is included in the output of SayCalRe if called
immediately after the error is detected.

4. NobuffersPACE Applies to this connection only. There may still be space available for other
connections.

Chapter 2. TCP/UDP/IP API (Pascal Language) 2-57

2-58 Programmer's Reference

Chapter 3. C Socket Application Program Interface

This chapter describes the C socket API provided with the TCP/IP for MVS product.
Use the socket routines when you want your C Language programs to communicate
across networks with other programs. You can, for example, make use of socket
routines when you write a client program that must communicate with a server
program running on another computer.

Knowledge of the C Language programming is required to use the sockets. For
further information on C sockets, refer to IBM AIX Operating System Technical
Reference: System Calls and Subroutines (SC23-2125).

TCP/IP for MVS supports a subset of the socket library described in SC23-2125
(Order Number SX23-071 l).

Programming With Sockets
A socket is a communication endpoint between two processes, in effect, a virtual
port. Two sockets, one associated with a process on one computer and one
associated with another process on another computer, cooperate to allow the two
tasks to communicate. Socket applications can also be processes running in
different address spaces on the same local host.

The TCP/IP for MVS program supports two types of socket: stream sockets and
datagram sockets.

Stream sockets are connected by a set pathway and transmit data reliably in both
directions between two processes. Because the pair of sockets are reliable, you use
stream sockets most frequently for long communications of multiple packets. In the
TCP/IP for MVS program, the TCP and IP protocols handle data delivery for stream
sockets.

Datagram sockets, on the other hand, are connectionless and have no fixed
pathway. Consequently, datagram sockets transmit data unreliably in both
directions. Delivery of datagrams is not guaranteed, and data may be lost or
duplicated in either direction. Datagram sockets are generally used for brief
communications or client broadcasting where only one packet travels in each
direction. The UDP and IP protocols handle data delivery for datagram sockets.

Your choice of the type of socket to use may be limited if you write an application
program that follows a well-known application protocol. Well-known application
protocols are documented in the TCP/IP RFC specifications. You must use the type
of socket called for in the corresponding RFC. If you are writing an application
program to be used with an existing client or server, you must use the same type of
socket used by the corresponding pro gram.

A socket is characterized by a local address or name. These addresses or names are
fixed structures comprised of an address family and information specific to it.
TCP/IP for MVS only supports the DARPA Internet address domain or address family.

Chapter 3. C Socket Application Program Interface 3-1

Socket names, defined in the socket.h header file, hence, consist of a port number
and an internet address.

Note: Some of the port numbers, called well-known port numbers, are reserved for
servers that offer well-known services. For further information, refer to TCP/IP RFC

1010.

A Typical TCP Socket Session
The use of TCP sockets is divided into passive (server) and active (client) processes.
While some commands are necessary to both types, some are role-specific.

Once a connection is made, it exists until its socket is closed. During the
connection, data is either delivered, or an error code is returned by the TCPIP

address space.

The general sequence of socket calls needed to be able to send and receive data
follows:

1. Create a stream socket s with the socket() call.

2. Bind the socket s to a local address with the bind() call.

3. Server: Alert the TCP IP machine of your readiness to communicate with the
listen() call.

4. Server: Accept a connection on the sockets using a temporary socket, say ns,
with the accept() call.

The socket ns is now a dedicated connection between the local and foreign
hosts. The socket s remains ready to accept other connections.

Client: Connect the socket s to a foreign host with the connect() call.

The socket s is now a dedicated connection between the local and foreign hosts.
Only one connection per local address is allowed.

5. Server: Read and write data on the socket ns until all desired data has been
exchanged.

Close the socket ns using the close() call.

Client: Read and write data on the sockets until all desired data has been
exchanged.

6. Server: Accept another connection from socket s, or close the original socket
using the close() call (ending the TCPIP session).

Client: Close the sockets using the close() call (ending the TCPIP session).

Refer to pages E-6 and E-10 in Appendix E, Sample Programs for a sample C
Socket communications server and client.

3-2 Programmer's Reference

A Typical UDP Socket Session
UDP socket processes are not clearly divided into server and client roles. Instead,
the distinction is between connected and unconnected sockets. While an
unconnected socket can be used to communicate with any host, a connected socket
is a dedicated pathway able to send data to, and receive data from, one host only.

Both connected and unconnected sockets send their data over the network without
verification. Once a packet has been placed on the network by the TCPIP address
space, its existence, and hence delivery, is not guaranteed.

The general sequence of socket calls needed to be able to send and receive data
follows:

1. Create a datagram socket s with the socket() call.

2. Bind the socket s to a local address with the bind() call.

3. Unconnected Socket: Send and receive data on sockets using the sendto() and
recvfrom() calls until all desired exchanges have taken place.

Connected Socket: Connect the socket s using the connect() call.

Send and receive data on socket s using the recv() and send() calls until all
desired exchanges have taken place.

4. Close the sockets using the close() call (ending the TCPIP session).

Software Requirements
To develop programs with the C Language that interface to TCP and UDP you
require the following:

• IBM C for System/370, Compiler Licensed Program (5688-040) and IBM C for
System/370, Library Licensed Program (5688-039) for compilation of the
programs.

• IBM vs Pascal Compiler & Library (5668-767) or IBM vs Pascal Library (5668-717)

for execution of the programs.

C Socket Quick Reference

Table 3-1 (Page 1

Socket() Call

accept()

bind()

close()

connect()

gethostbyaddr()

The table below summarizes each socket call supported by the TCP /IP for MVS

program, and points to the page where you can find detailed information.

of 2). C Socket Quick Reference

Description Page

Accepts a connection request from a foreign host. 3-5

Assigns a local address to the socket. 3-6

Closes the socket associated with the socket descriptors. 3-8

Requests a connection to a foreign host. 3-8

Returns information about a host specified by an address. 3-9

Chapter 3. C Socket Application Program Interface 3-3

Table 3-1 (Page 2 of 2). C Socket Quick Reference

Socket() Call Description Page

gethostbyname() Returns information about a host specified by a name. 3-10

gethostname() Returns the standard name of the current host. 3-11

getsockname() Obtains local socket name. 3-11

listen() Indicates that a stream socket is ready for a connection request 3-12
from a foreign host.

read() Reads a set number of bytes into a buffer. 3-12

readv() Obtains data from a socket and reads this data into specified 3-12
buffers.

recv() Receives messages from a connected socket. 3-13

recvfrom() Receives messages from a datagram socket, regardless of its 3-13
connection status.

select() Detects whether read is possible on a group of sockets. 3-15

send() Transmits messages to a connected socket. 3-16

send to() Transmits messages to a datagram socket, regardless of its 3-16
connection status.

socket() Requests that a socket be created. 3-17

write() Writes a set number of bytes from a buffer to a socket. 3-18

writev() Writes data in the buffers specified by an array of iovec 3-18
structures.

The Socket Library
The C socket library uses data structures that are declared in the TCPIP.COMMMAC

data set. The C socket routines are in the TCPIP.COMMTXT data set and the headers
are in the TCPIP.COMMMAC data set.

Socket programs need the include files listed below.

• types.h
• ctype.h
• tcperrno .h
• in.h
• ioctl.h
• manifest.h
• netdb.h
• socket.h
• uio.h

3-4 Programmer's Reference

accept()

To access the socket libraries, you must include the statements below at the
beginning of each program:

I #define MVS
#include <manifest.h>

A sample linkedit for a file MYFILE in 31-bit mode is:

INCLUDE OBJ(MYFILE)
INCLUDE SYSLIB(AMPZMVSB)
MODE AMODE(31),RMODE(ANY)
ENTRY CEESTART
NAME MYFI LE (R)

A sample linkedit for a file MYFILE in 24-bit mode is:

INCLUDE OBJ(MYFILE)
INCLUDE SYSLIB(AMPZRPOl)
MODE AMODE(24),RMODE(24)
ENTRY CEESTART
NAME MYFILE(R)

A description of each socket library call and its relevant parameters follows.

The accept() call waits for a connection request on the unconnected stream socket
with descriptor s. If there is a connection request queued, or as soon as one arrives,
accept() accepts the connection as follows. A new socket, whose descriptor is the
return value from accept(), is created. This socket is bound to the same local
address as the original sockets (refer to "bind()" on page 3-6). The TCPIP address
space connects this new socket to the foreign host that requested the connection.
The original socket remains free to receive requests for more connections, up to the
backlog parameter specified in the listen() call (refer to "listen()" on page 3-12).

If no pending connections are present on the queue, the accept() call blocks the
caller until a connection is available. The accepted socket is used for subsequent
calls to read(), write() and select().

Use accept() when you are writing a server, and you want to wait for and accept
connection requests from clients.

Chapter 3. C Socket Application Program Interface 3-5

bind()

#include <types.h>
#include <socket.h>
#include <in.h>

int accept(s, name, namelen)
int s;
struct sockaddr_in *name;
int *namelen;

Parameter Description

s

name

name/en

The integer-valued socket descriptor.

The internet address of the connecting socket that is filled by
accept() before it returns. The exact format of name is determined
by the AF _INET domain in which communication occurs.

The size of name in bytes.

Return Values

The accept() call returns a nonnegative integer as the socket descriptor if it
successfully created and connected to the socket address where the connection
request originated. If the accept() call fails, a value of -1 is returned. If accept()
does not receive any connection requests, it does not return.

The bind() call assigns a unique local address to the socket with descriptors. The
address assigned to the socket depends on the values assigned to the fields of the
name parameter. Each name is a combination of a port number and a machine
address. Each socket must use a different combination.

Since TCP /IP for MYS supports internet protocols exclusively, the name is always a
sockaddr _:in structure. This structure is defined in in.h, and has the following three
fields:

short sin_family;
ushort sin_port;
struct in_addr sin_addr;

The in_addr structure is also defined in in.h, and has one field:

u_long s_addr;

You make assignments to the fields of name based on the role played by the
particular application. In the case of servers that wait for connections before
entering into communication with other hosts, a predetermined port number must
be used. Certain "well-known" port numbers are reserved for specific applications;
these are listed in RFC 1010. Other port numbers may be assigned as desired, but
you must ensure that clients wishing to access the server know with which port to
connect (refer to "connect()" on page 3-8).

You can have the TCPIP address space assign a free port to a socket by setting the
sin_port field equal to zero (0). This can be done when a client function uses bind()

3-6 Programmer's Reference

to assign itself a particular machine address, but where the specific port used is
unimportant.

Note: The TCPIP address space expects all values assigned to name to be in network
byte order, rather than host byte order. The C Language macros ntohs(), ntohl(),
htonl(), and htons() are used to translate values from network-to-host-short,
network-to-host-long, host-to-network-long, and host-to-network-short,
respectively. (MYS host order and internet network order are identical. These C
Language macros can be used for portability purposes.)

The sin_addr field is used to specify the machine address with which the socket will
be associated. If you do not know the address of the machine, or if the machine has
more than one address, gethostbyname() can be used to obtain a list of the local
host's internet addresses. Any one of these addresses can be assigned to the s_addr
field of sin_addr. Refer to "gethostname()" on page 3-11 for more information.

The bind() call does not have to request a specific address. Certain applications (for
example, a gateway server offering a function to all of its networks, clients using
bind() to request only a specific port, any application on a single address machine)
may desire or require that the address be left unspecified. In these and similar cases,
the INADDR_ANY C Language macro (defined in the in.h include file) can be used
instead of a specific address. This is most important in the case of a server offering
a service to multiple networks. By leaving the address unspecified, the server is free
to accept all connection requests made for its port, regardless of which of the
gateway's addresses was used to deliver the request. If a specific address is used, the
server is only able to accept requests made to that address.

The sin_family field is always assigned the AF _INET C Language macro (defined in
the in.h include file), specifying that communications take place in the AF_INET

domain.

Note: After a successful call to listen() or connect(), getsockname() can be used to
determine the actual address and port assigned to the socket. Refer to
"getsockname()" on page 3-11 for details.

See "A Sample C Socket Communications Server" on page E-6 and "A Sample C
Socket Communications Client" on page E-10 for examples of these assignments.

#include <types.h>
#include <socket.h>
#include <in.h>

int bind(s, name, namelen)
int s;
struct sockaddr_in *name;
int namelen;

Parameter Description

s The integer-valued socket descriptor returned by the associated
socket() call.

Chapter 3. C Socket Application Program Interface 3-7

close()

connect()

name

name/en

Return Values

Points to a sockaddr _in structure containing the requested address
and port number. On return, modified to reflect assigned address
and port.

The size of name in bytes.

The bind() call returns a value of 0 if it is successful. The binding of a stream socket
is not complete until a successful call to listen() or connect() is made. Applications
using stream sockets should check the return values of listen() and connect() before
using any function that requires a bound stream_ socket. (Refer to "getsockname()"
on page 3-11.)

The close() call shuts down the socket associated with the socket descriptors, and
frees resources allocated to the socket. Ifs refers to an open TCP connection, the
connection is closed.

I ~nt close(s)
int s;

Parameter

s

Return Values

Description

The descriptor of the socket to discard.

The close() call returns a value of 0 if successful. If the close() call fails, a value of
-1 is returned.

The connect() call is used by the client side of socket-based applications to establish
a connection with a server. The address and port· of the server are specified in name
(see "bind()" on page 3-6 for a description of the fields of name). The server must
have successfully called bind() and listen() before a connection can be made.
Otherwise, the connection request is refused.

The connect() call is occasionally used with datagram sockets. It permanently
specifies the peer socket to which datagrams are sent. If you permanently connect
the two sockets with this call, you can use the send() call to transmit data rather
than the sendto() call.

3-8 Programmer's Reference

gethostbyaddr()

#include <types.h>
#include <socket.h>
#include <in.h>

int connect(s, name, namelen)
int s;
struct sockaddr_in *name;
int namelen;

Parameter

s

name

name/en

Return Values

Description

The integer-valued socket descriptor returned on the creation of
the socket by the socket() call.

The pointer to a socket address structure containing the address of
the foreign socket to which a connection will be attempted.

The size of name in bytes.

The connect() call returns a value of 0 if successful. connect() performs two tasks
when called for a stream socket: it completes the binding necessary for a stream
socket, and it attempts to create a connection with a foreign socket. If either of
these steps fail, connect() returns -1. If connect() is used with a datagram socket, a
return value of -1 indicates locally detected errors.

The gethostbyaddr() call returns a pointer to a hostent structure for the host name
specified on the call. This information is obtained from a name server.

The hostent structure is defined in the netdb.h header file, and contains the
following elements:

Element

h name

h aliases

h_addrtype

h_length

h addr list

h addr

Description

Official name of the host.

An array, terminated with a NULL pointer, of alternative names for
the host.

The type of address being returned. The call always sets this value
to AF_INET.

The length of the address in bytes.

An array, terminated with a NULL pointer, of pointers to the
network addresses for the host. Host addresses are returned in
network byte order.

The first address in h _ addr _list, provided for backward
compatibility.

Chapter 3. C Socket Application Program Interface 3-9

gethostbyname()

#include <netdb.h>

struct hostent *gethostbyaddr(addr, addrlen, domain)
char *name;
int addrlen, domain;

Parameter

addr

addrlen

domain

Return Values

Description

The pointer to a structure containing the address of the socket.
(An unsigned long for AF _INET.)

The size of addr in bytes.

The address domain supported (AF _INET).

The return value points to static data that is overwritten by subsequent calls. The
gethostbyaddr() call returns a pointer to a hostent structure on success.

A NULL pointer is returned if an error occurs or if the host name is unknown.

The gethostbyname() call returns a pointer to a hostent structure for the host name
specified on the call. This information is obtained from a name server.

The hostent structure is defined in the netdb.h header file, and contains the
following elements:

Element

h name

h aliases

h_addrtype

h_length

h_addr_list

h addr

Description

Official name of the host.

An array, terminated with a NULL pointer, of alternative names for
the host.

The type of address being returned. The call always sets this value
to AF_INET.

The length of the address in bytes.

An array, terminated with a NULL pointer, of pointers to the
network addresses for the host. Host addresses are returned in
network byte order.

The first address in h_addr_list, provided for backward
compatibility.

3-10 Programmer's Reference

gethostname()

getsockname()

#include <netdb.h>

struct hostent *gethostbyname(name)
char *name;

Parameter

name

Return Values

Description

The pointer to a socket address structure containing the address of
the socket.

The return value points to static data that is overwritten by subsequent calls. The
gethostbyname() call returns a pointer to a hostent structure on success.

A NULL pointer is returned if an error occurs or if the host name is unknown.

The gethostname() call returns the standard host name of the current host. The
host name is obtained from the TCPIP.TCPIP.DATA data set.

int gethostname(name, namelen)
char *name;
int namelen;

Parameter

name

name/en

Return Values

Description

The pointer to the name of the current host.

The size of name in bytes.

Upon successful completion of the gethostname() call, a value of 0 is returned. If
the gethostname() call fails, a value of -1 is returned.

The getsockname() call stores the current name for the socket specified by the s
parameter into the structure pointed to by the name parameter.

#include <in.h>

int getsockname(s, name, namelen)
int s;
struct sockaddr_in *name;
int *namelen;

Chapter 3. C Socket Application Program Interface 3-11

listen()

Parameter

s

name

name/en

Return Values

Description

The integer-valued socket descriptor.

The pointer to a socket address structure containing the address of
the socket.

The size of name in bytes.

Upon successful completion of the getsockname() call, a value of 0 is returned. If
the getsockname() call fails, a value of -1 is returned. Stream sockets are not
assigned a name until after a successful call to either listen() or connect() (see
"bind()" on page 3-6 for details).

The listen() call creates a queue of length backlog for connection requests to the
stream socket with descriptors. listen() indicates a willingness to accept client
connections. If it is not called, no connections are accepted.

int listen (s, backlog)
int s, backlog;

Parameter

s

backlog

Return Values

Description

The integer-valued socket descriptor.

Defines the maximum length for the queue of pending
connections. The only backlog value supported in this
implementation is 1.

The listen() call returns a value of 0 if it is successful. listen() performs two tasks: it
completes the binding necessary for a steam socket, and it creates a
connection-request queue of length backlog. If either of these tasks fail, listen()
returns a -1.

read() and readv()
The read() call reads the number of bytes set by the nbyte parameter from the open
stream socket denoted by the socket descriptors, and places those bytes into the
buffer pointed to by the buf parameter.

int read(s, buf, nbyte)
int s;
char *buf;
unsigned int nbyte;

3-12 Programmer's Reference

Parameter

s

buf

nbyte

Description

The integer-valued socket descriptor.

The pointer to the buffer storing the incoming data.

The set number of bytes read into the buffer.

The readv() call applies to stream sockets and performs the same function as read().
It reads data into the buffers specified by the· array of iovec structures pointed to by
the iov parameter.

The iovec structure is defined in the uio.h header file, and contains the following
elements:

Element

caddr_t

int

Description

iov_base

iov len

Each iovec entry specifies the base address and length of an area in memory where
data should be placed. The readv() call completely fills out an area before moving
to the next.

#include <types.h>
#include <uio.h>

int readv(s, iov, iovcnt)
int s;
struct iovec *iov;
int i ovcnt;

Parameter Description

s

iov

A socket descriptor as defined previously.

The array of iovec structures pointed to.

iovcnt The number of iovec structures pointed to by the iov parameter.

Return Values

Upon successful completion, the read() and readv() calls return the number of bytes
actually read and placed in the buffer; this number can be less than the value of the
nbyte parameter. A value of 0 is returned when the connection is closed. If read()
or readv() fails, a value of -1 is returned.

recv() and recvfrom()
The recv() and recvfrom() calls receive data on a socket with descriptor s and store it
in a buffer. The recv() call applies to connected sockets only; the recvfrom() call
applies to any datagram socket, whether connected or not.

These calls return the length of the incoming message or data. If a datagram packet
is too long to fit in the supplied buffer, datagram sockets discard excess bytes. If no

Chapter 3. C Socket Application Program Interface 3-13

datagram packets are available at the socket with descriptors, the receive calls wait
for a message to arrive, and block the caller.

#include <types.h>
#include <socket.h>

int recv(s, buf, nbyte, flags)
int s;
char *buf;
int nbyte, flags;

Parameter Description

s

buf

nbyte

flags

The integer-valued socket descriptor.

The pointer to the buffer that receives the data.

The length of the buffer pointed to by the buf parameter.

Provided only for compatibility with other socket
implementations. Should be zero.

Other parameters apply to the recvfrom() call.

#include <types.h>
#include <socket.h>
#include <in.h>

int recvfrom(s, buf, len,
flags, name, namelen)
int s;
char *buf;
int 1 en, flags;
struct sockaddr_in *name;
int *namelen;

Parameter

s

buf

!en

flags

name

name/en

3-14 Programmer's Reference

Description

The integer-valued socket descriptor.

The pointer to the buff er that receives the data.

The length of the buffer pointed to by the buf parameter.

Provided only for compatibility with other socket
implementations. Should be zero.

A pointer to a socket address structure from which data is being
received. If name is a nonzero value, the source address will be
returned.

The size of name in bytes.

select()

Return Values

Upon successful completion, the length of the message/datagram in bytes is
returned. If the recv() or recvfrom() calls fail, a value of -1 is returned. Return
values of -1 indicate some locally-detected errors.

The select() call monitors for activity on a set of different sockets to see if any of
them are ready for reading (receiving), or until a timeout period expires. TCP/IP for
MVS does not support selecting for writing or exceptional conditions.

The address of the bitmask is passed in read[ds. The socket descriptors from 0
through numJds-1 are examined. On return, select() replaces the mask of the
socket descriptors examined with the mask of the sockets tltai aie ready for reading.
The total number of ready socket descriptors is returned in 'nfound.

The set of descriptors available for reading are stored as bit fields in unsigned long
integers.

#include <types.h>

nfound=select(num_fds, readfds, e, e, timeout);
int num_fds, nfound;
unsigned long *readfds;
struct timeval *timeout;

Parameter

numJds

readfds

timeout

Description

Number of file descriptors represented in the mask (~32).

Points to the bit mask representing the sockets to be checked.
Each bit in the read mask corresponds to a socket descriptor. To
set the bit for an arbitrary socket descriptor, s:

readfds I= (1 << s);

The parameter timeout is a pointer to a timeval structure
containing the timeout value. The timeval structure, included by
types.h, has two fields:

long tv_sec;
long tv_usec;

Only the first field is relevant in this implementation (the tv_usec
field can be set, but is not used). If the select() function should
wait indefinitely for data to arrive on any of the num Jds sockets,
timeval should be a pointer to NULL. Otherwise, tv _sec should be
set to the desired timeout value, in seconds. If select() should poll
the sockets and return immediately, set tv_sec to 0.

Note: The zeroes (third and fourth parameters) are required.

Chapter 3. C Socket Application Program Interface 3-15

send() and sendto()
The send() and sendto() calls send packets on the socket with descriptor s. The
send() call applies to all connected sockets, and the sendto() call applies to any
datagram socket, whether connected or not.

When used with stream sockets, send() blocks until the packet is delivered, or until
an error condition is encountered. No indication of failure to deliver is implied in
the return value of either call when used with datagram sockets.

#include <types.h>
#include <socket.h>

int send(s, buf, nbyte, flags)
int s;
char *buf;
int nbyte, flags;

Parameter Description

s The integer-valued socket descriptor.

buf

nbyte

flags

The pointer to the buffer containing the message to transmit.

The length of the message pointed to by the buf parameter.

Provided only for compatibility with other socket
implementations. Should be zero.

Other parameters pertain to the sendto() call as follows. Give the address of the
target socket by name, with name/en specifying its size. Specify the length of the
message with !en. If the message is too long to pass through the underlying protocol,
an error is returned.

#include <types.h>
#include <socket.h>
#include <in.h>

int sendto(s, msg, len,
flags, name, namelen)
int s;
char *msg;
int len, flags;
struct sockaddr_in *name;
int namelen;

Parameter Description

s

msg

!en

3-16 Programmer's Reference

The integer-valued socket descriptor.

The pointer to the buffer containing the message to transmit.

The length of the message in the buff er pointed to by the msg
parameter.

socket()

flags

name

name/en

Return Values

Provided only for compatibility with other socket
implementations. Should be zero.

~

A pointer to a socket address structure to which data is being sent.

The size of name in bytes.

Upon successful completion, the number of characters sent is returned. If the send()
or sendto() call fails, a value of -1 is returned. Return values of -1 indicate some
locally-detected errors.

The socket() call creates an end point for communication and returns a positive
integer value socket descriptor s. The parameters specify the type of socket protocol
supported for the socket, and address domain.

TCP /IP for MVS program supports the following socket definitions.

• The types of socket supported are stream sockets and datagram sockets. These
are specified as SOCK_STREAM and SOCK_DGRAM, respectively. Refer to
"Programming With Sockets" on page 3-1 for further information about these
socket types.

• The protocol parameter specifies a particular protocol to be used with the
socket. When you specify protocol as 0, the socket() call defaults to the correct
protocol for the type of returned socket requested. The protocol supported is
TCP for stream sockets and UDP for datagram sockets.

• The address domain supported is the DARPA Internet address, specified as
AF_INET.

#include <types.h>
#include <socket.h>

int socket (af, type, protocol)
int af, type, protocol;

Parameter

af

type

protocol

Return Values

Description

The address domain supported (AF _INET).

The type of socket created, either SOCK_STREAM or SOCK_DGRAM.

The protocol used with the socket as an integer. Possible values
are 0, IPPROTO_UDP or IPPROTO_TCP.

If successful, socket() returns a valid socket descriptor. If an error has occurred,
socket() returns a value of -1.

Chapter 3. C Socket Application Program Interface 3-17

write() and writev()
The write() call writes t}Je number of bytes set by the nbyte parameter to the open
stream socket denoted by the socket descriptor .s from a buffer specified by the buf
parameter.

The s parameter is a socket descriptor obtained from a socket() or accept() call.

int write{s, buf, nbyte)
int s;
char *buf;
unsigned int nbyte;

Parameter

s

buf

nbyte

Description

The integer-valued socket descriptor.

The pointer to the buffer storing the outgoing data.

The set number of bytes written into the buffer.

The writev() call applies to stream sockets and functions like write(). It writes data
to the socket from the buffers specified by the array of iovec structures pointed to
by the iov parameter.

The iovec structure is defined in the uio.h header file, and contains the following
elements:

Element

caddr_t

int

Description

iov base

iov len

Each iovec entry specifies the base address and length of an area in memory from
which data is transferred. The writev() call completely transfers an area before
moving to the next.

#include <types.h>
#include <uio.h>

int writev(s, iov, iovcnt)
int s;
struct iovec *iov;
int iovcnt;

Parameter Description

s

iov

iovcnt

3-18 Programmer's Reference

The integer-valued socket descriptor.

The array of iovec structures pointed to.

The number of iovec structures pointed to by the iov parameter.

Return Values

Upon successful completion, the write() and writev() calls return the number of
bytes actually written. If write() or writev() fails, a value of -1 is returned.

Chapter 3. C Socket Application Program Interface 3-19

3-20 Programmer's Reference

Chapter 4. X-Windows Interface

This chapter contains information of benefit to someone writing application
programs using the X Window System1 protocol developed by the Massachusetts
Institute of Technology. The X-Windows API allows users to interface MVS to any
X-Windows server on a TCP/IP-based network to provide the MVS client with
real-time interactive 2-dimensional bitmap and vector graphics. For more detailed
information on the X-Windows API, see the IBM AIX X-Windows Programmer's
Reference, SC23-2118 or the X-Windows programmer's book you are using.

Software Requirements
Application programs using the X-Windows API are written in C and require the
following:

• IBM C for System/370, Compiler Licensed Program (5688-040)

• IBM C for System/370, Library Licensed Program (5688-039)

• IBM vs Pascal Compiler & Library (5668-767) or IBM vs Pascal Library (5668-717).

How the X-Windows Interface Works
The TCP/IP for MVS X-Windows API provides programmers with a set of
X-Windows calls. X-Windows is a network-transparent windowing protocol that
operates under the AIX TM Operating System, or on any server with bitmapped
display terminals running the Xl t standard. This interface assumes that a reliable
bidirectional byte-stream is available for communication between the application
and the server in the TCP/IP for MVS programming environment.

In an X-Windows environment, the X Server distributes user input to and accepts
output requests from various client programs located either on the same system or
elsewhere in a network. The client code uses sockets to communicate with the
server.

Figure 4-1 on page 4-2 is a high-level abstraction of the different parts of the
system. The application programmer need only be concerned with the client API to
write his or her code.

I Trademark of Massachusetts Institute of Technology.

AIX is a trademark of the International Business Machines Corporation.

Chapter 4. X-Windows Interface 4-1

MVS System

User's
Address Space

MVS X-Windows
Application

t---XOpenDisplay()____,

Client
Code

i---socket()

Socket Emulation

tcpopen()-

TCP/IP for MVS

TCP IP
Address Space

+-VMCF_..
.l

Server
INTERNET

Workstation

Figure 4-1. MVS X-Windows Application to Server. The communication path from the
MVS X-Windows Application to the server involves the client code and TCP/IP
for MVS.

The application program you create is the client part of a client-server relationship;
you write the program, and the X Server provides it independence from the
hardware. There is one X Server for each virtual terminal that runs X-Windows. In
this chapter, the term display refers to a logical virtual terminal with its associated
keyboard, locator, and server unless it is explicitly stated otherwise.

Each client can interact with many X Servers, and each X Server can interact with
many clients.

Your application can call the XOpenDisplay() routine to start communications with
your workstation. The client code creates the appropriate X Protocol and opens a
socket to the server running on your workstation. This socket is emulated, using
the appropriate TCP/IP for MVS program calls, to establish a connection to your
server over which a two-way communication can take place.

The X Protocol generated by the client code uses an ASCII representation for
character strings. A transformation from EBCDIC to ASCII (or from ASCII to
EBCDIC) is performed automatically for you when you use the client API, because
MVS uses the EBCDIC representation for character strings.

4-2 Programmer's Reference

X Defaults
X-Windows allows you to create a data set containing defaults that an application
can consult to alter its functionality. Typically, this data set contains hints about
the window size, placement, coloring, font usage, and other functional details of the
application.

On an AIX system, these hints are usually found in the user's home directory in a
file called .xdefaults. Under the X-Windows interface used with the TCP/IP for MVS

program, this information is found in the user's data set called userid.X.DEFAULTS.
Each line of this data set represents information for an application. A typical data
set might look like this:

mvsload*Geometry: =400xl00+0-0
mvsload*Background: blue
mvsload*Foreground: white
mvsload*BorderWidth: 3
mvsload*Font: Rom10.500

An application can use this data set to automatically modify the characteristics of
the windows displayed by a particular application. For example, the mvs load
program above might look in this data set for automatic window sizing and
placement, rather than prompting you for the information. It allows the application
user to automatically tailor some of the characteristics of the application at the time
the application is run, rather than having to pass parameters on the command line.
For more information about the format of this data set, consult the IBM AIX

X-Windows User's Guide (SC23-2017), IBM AIX X-Windows Programmer's Reference
(SC23-2118), or the X-Windows documentation for your workstation.

EBCDIC-ASCII Translation
Because MVS uses the EBCDIC representation for character strings, and the Socket
API protocol uses the ASCII representation, a translation is needed. The translation
table used by the X-Windows client code can be changed by the user by creating a
userid.STANDARD.TCPXLBIN data set. The data set called
TCPIP.STANDARD.TCPXLBIN is used if you do not have your own translation table.
If this data set is not available to the client, a built-in table is used instead and a
warning message is issued by the client.

Refer to IBM Transmission Control Protocol/Internet Protocol for MVS: Installation
and Maintenance for information on creating your own translation table.

Creating an Application
To create an application that uses the X-Windows interface, study the application
program interface for the X-Windows protocol running on your workstation. The
sample programs provided illustrate the simple creation of windows and some of the
graphics capabilities available to you. You must write your application in the C
language, and you should be familiar with creating, compiling, and generating
applications with this language in the MVS environment.

To generate your application, you must include the libraries TCPIP.Xl ILIB,

TCPIP.OLDXLIB and TCPIP.COMMTXT in your SYSLIB declaration so the linkage
editor can search these libraries for the client interface code.

Chapter 4. X-Windows Interface 4-3

Due to the characteristics of file naming conventions in MVS, some header files have
different names than they do on the original MIT distribution of the X Window
System. In porting applications to MVS, includes of these header files must be
changed for the C compiler to work. Table 4-1 on page 4-4 describes the name
changes.

Table 4-1. Differences in Header File Names

MIT Distribution Name X-Windows API Name

ermo.h Xerrno.h

copyright.h cpyright.h

cursorfont.h cursfont.h

Xatomtype.h Xatomtyp.h

Xprotostr.h Xprotost.h

Xresource.h Xresourc.h

Running an Application
Many applications are not coded with the specific name of a server with which they
are to communicate. This information is provided to the application in the
userid.XWINDOWS.DISPLA Y data set. A line of this data set may look like this:

ROYAL.CSC.IBM.COM:0.0

The application can then communicate with the server associated with display 0 on
the machine "royal.csc.ibm.com." You can dynamically change the server you want
to communicate with. You could also pass this information to the application in a
number of other ways. However, if the application uses the XOpenDisplay() call
and passes a NULL pointer, the value entered in userid.XWINDOWS.DISPLA Y is used
as the address of the server. Consult your local operations group about the names
used for hosts on your Local Area Network if this is not clear.

Alternatively, you can specify an internet address of your server in
userid.XWINDOWS.DISPLAY. like this:

129.42.3.100:0.0

This permits you to use an application while you are waiting for your system
administration group to update the TCP/IP name tables to include your workstation.

Refer to page E-13 in Appendix E, Sample Programs for a sample X-Windows
application.

X-Windows Quick Reference
The following is a Quick Reference list of the subroutines supported by the TCP/IP

for MVS product. These subroutines are tabled alphabetically and grouped according
to the type of function provided.

4-4 Programmer's Reference

The AIX extensions described in the IBM AIX X- Windows Programmer's Reference
(SC23-2118) are not supported by the X-Windows API provided by the TCP/IP for
MVS library routines.

For a comprehensive description of X-Windows subroutines and the X-Windows
Toolkit, including the configuration and operation of the X-Windows programming
interface, consult the IBM AIX X-Windows Programmer's Reference (SC23-2118) and
"X-Windows Toolkit" on page 4-25, respectively.

Opening and Closing Display

Table 4-2. Opening and Oosing Display

Subroutine Description

X Close Display() Closes a display.

XFree() Frees in-memory data created by Xlib function.

XNoOp() Executes a NoOperation protocol request.

XOpenDisplay() Opens a display.

Creating and Destroying Windows

Table 4-3. Creating and Destroying Windows

Subroutine Description

XConfigure Window() Configures the specified window.

XCreateSimple Window() Creates unmapped Input Output subwindow.

XCreateWindow() Creates unmapped subwindow.

XDestroySubwindows() Destroys all subwindows of specified window.

XDestroyWindow() Unmaps and destroys window and all subwindows.

Manipulating Windows

Table 4-4 (Page 1 of 2). Manipulating Windows

Subroutine Description

XCirculateSubwindows() Circulates a subwindow up or down.

XCirculateSubwindows Up() Raises the lowest mapped child of window.

XCirculateSubwindowsDown() Lowers the highest mapped child of window.

XLowerWindow() Lowers the specified window.

XMapRaised() Maps and raises the specified window.

XMapSubwindows() Maps all subwindows of the specified window.

Chapter 4. X-Windows Interface 4-5

Table 4-4 (Page 2 of 2). Manipulating Windows

Subroutine Description

XMapWindow() Maps the specified window.

XMoveResize Window() Changes the specified window's size and location.

XMoveWindow() Moves the specified window.

XRaise Window() Raises the specified window.

XResizeWindow() Changes the specified window's size.

XRestackWindows() Restacks a set of windows from top to bottom.

XSet Window Border Width() Changes the border width of the window.

XUnmapSubwindows() Unmaps all subwindows of the specified window.

XUnmapWindow() Unmaps the specified window.

Changing Window Attributes

Table 4-5. Changing Window Attributes

Subroutine Description

XChange Window Attributes() Changes one or more window attributes.

XSet Window Background() Sets the window's background to specified pixel.

XSetWindowBackgroundPixmap() Sets the window's background to specified pixmap.

XSetWindowBorder() Changes the window's border to specified pixel.

XS et Window Border Pixmap() Changes window's border tile.

XTranslateCoordinates() Transforms coordinates between windows.

Obtaining Window Information

Table 4-6. Obtaining Window Information

Subroutine Description

X Get Geometry() Gets current geometry of specified drawable.

X Get Window Attributes() Gets current attributes for specified window.

X Query Pointer() Gets pointer coordinates and root window.

XQueryTree() Obtains the ms of the children and parent windows.

4-6 Programmer's Reference

Properties and Atoms

Table 4-7. Properties and Atoms

Subroutine Description

XGetAtomName() Gets a name for the specified atom ID.

XlntemAtom() Gets an atom for the specified name.

Manipulating Window Properties

Table 4-8. Manipulating Window Properties

Subroutine Description

XChangeProperty() Changes the property for specified window.

XDeleteProperty() Deletes a property for the specified window.

X Get Window Property() Gets atom type and property format for window.

XListProperties() Gets the specified window's property list.

XRotate Window Properties() Rotates properties in property array.

Setting Window Selections

Table 4-9. Setting Window Selections

Subroutine Description

X ConvertSelection() Converts a selection.

X GetSelectionOwner() Gets the selection owner.

XSetSelectionOwner() Sets the selection owner.

Manipulating Colormaps

Table 4-10. Manipulating Colormaps

Subroutine Description

XCopyColormapAndFree() Creates a new colormap from specified colormap.

X CreateColormap() Creates a colormap.

XFreeColormap() Frees the specified colormap.

XQueryColor() Queries the RG B value for a specified pixel.

XQueryColors() Queries the RGB values for array of pixels.

XSetWindowColormap() Sets the colormap of the specified window.

Chapter 4. X-Windows Interface 4-7

Manipulating Color Cells

Table 4-11. Manipulating Color Cells

Subroutine Description

XAllocColor() Allocates a read-only color cell.

XAllocColorCells() Allocates read/write color cells.

XAllocColor Planes() Allocates read/write color resources.

XAllocN amedColor() Allocates a read-only color cell by name.

XFreeColors() Frees colormap cells.

XLookupColor() Looks up colomame.

XStoreColor() Stores an RG B value into a single colormap cell.

XStoreColors() Stores RG B values into colormap cells.

XStoreNamedColor() Sets a pixel color to the named color.

Creating and Freeing Pixmaps

Table 4-12. Creating and Freeing Pixmaps

Subroutine Description

X Create Pixmap() Creates a pixmap of a specified size.

XFreePixmap() Frees all storage associated with specified pixmap.

Manipulating Graphics Contexts

Table 4-13 (Page 1 of 2). Manipulating Graphics Contexts

Subroutine Description

XChangeGC() Changes the components in the specified Graphics Context
(Ge).

XCopyGC() Copies components from a source Ge to a destination GC.

X CreateGC() Creates a new Ge.

XFreeGC() Frees the specified Ge.

XGContextFromGC() Obtains the GContext resource ID for GC.

X Query BestTile() Gets best fill tile shape.

X Query Best Size() Gets best size of tile, stipple, or cursor.

X Query BestStipple() Gets best stipple shape.

XSetArcMode() Sets the arc mode of the specified GC.

4-8 Programmer's Reference

Table 4-13 (Page 2 of 2). Manipulating Graphics Contexts

Subroutine Description

XSetBackground() Sets the background of the specified GC.

XSetClipmask() Sets the clip _mask of specified GC to specified pixmap.

XSetClipOrigin() Sets the clip origin of the specified GC.

XSetClip Rectangles() Sets clip_ mask of Ge to list of rectangles.

XSetDashes() Sets the dashed line style components of specified GC.

XSetFillRule() Sets the fill rule of the specified GC.

XSetFillStyle() Sets the fill style of the specified GC.

XSetFont() Sets the current font of the specified GC.

XSetForeground() Sets the foreground of the specified GC.

XSetFunction() Sets display function in specified GC.

XSetGraphicsExposures() Sets graphics-exposure flag of specified Ge.

XSetLineAttributes() Sets the line-drawing components of the GC.

XSetPlaneMask() Sets the plane mask of the specified GC.

XSetState() Sets foreground, background, plane mask, and function in
GC.

XSetStipple() Sets the stipple of the specified GC.

XSetSubwindowMode() Sets subwindow mode of the specified GC.

XSetTile() Sets the fill tile of the specified GC.

XSetTSOrigin() Sets the tile or stipple origin of specified GC.

Clearing and Copying Areas

Table 4-14. Clearing and Copying Areas

Subroutine Description

XClearArea() Clears a rectangular area of window.

XClearWindow() Clears the entire window.

XCopyArea() Copies drawable area between drawables of the same root
and the same depth.

XCopyPlane() Copies single bit-plane of drawable.

Chapter 4. X-Windows Interface 4-9

Drawing Lines

Table 4-15. Drawing Lines

Subroutine Description

XDraw() Draws an arbitrary polygon or curve that is defined by the
specified list of Vertexes as specified in vlist.

XDrawArc() Draws single arc in drawable.

XDrawArcs() Draws multiple arcs in specified drawable.

XDraw Filled() Draws arbitrary polygons or curves and then fills them in.

XDrawLine() Draws a single line between two points in drawable.

XDraw Lines() Draws multiple lines in the specified drawable.

XDrawPoint() Draws a single point in specified drawable.

XDrawPoints() Draws multiple points in specified drawable.

XDraw Rectangle() Draws outline of single rectangle in drawable.

XDraw Rectangles() Draws outline of multiple rectangles in drawable.

XDrawSegments() Draws multiple line segments in specified drawable.

Filling Areas

Table 4-16. Filling Areas

Subroutine Description

XFillArc() Fills single arc in drawable.

XFillArcs() Fills multiple arcs in drawable.

XFillPolygon() Fills a polygon area in drawable.

XFillRectangle() Fills single rectangular area in drawable.

XFillRectangles() Fills multiple rectangular areas in drawable.

Loading and Freeing Fonts

Table 4-17 (Page 1 of 2). Loading and Freeing Fonts

Subroutine Description

XFreeFont() Unloads font and free storage used by font.

XFreeFontlnfo() Frees the font information array.

XFreeFontNames() Frees a font name array.

XFreeFontPath() Frees data returned by XGetFontPath.

4-10 Programmer's Reference

Table 4-17 (Page 2 of 2). Loading and Freeing Fonts

Subroutine Description

X GetFontPath() Gets the current font search path.

X GetFontProperty() Gets the specified font property.

XListFonts Withlnfo() Gets names and information about loaded fonts.

XLoadFont() Loads a font.

XLoadQueryF ont() Loads and queries font in one operation.

XListFonts() Gets a list of available font names.

XQueryFont() Gets information about a loaded font.

XSetF ontPath() Sets the font search path.

XUnloadFont() Unloads the specified font.

Querying Character String Sizes

Table 4-18. Querying Character String Sizes

Subroutine Description

XQueryTextExtents() Gets a I-byte character string bounding box from server.

XQueryTextExtents I 6() Gets a 2-byte character string bounding box from server.

XTextExtents() Gets a bounding box of a I-byte character string.

XTextExtents I 6() Gets a bounding box of a 2-byte character string.

XTextWidth() Gets the width of an 8-bit character string.

XText Width I 6() Gets the width of a 2-byte character string.

Drawing Text

Table 4-19. Drawing Text

Subroutine Description

XDraw Image String() Draws 8-bit image text in specified drawable.

XDraw Image String I 6() Draws 2-byte image text in specified drawable.

XDrawString() Draws 8-bit text in specified drawable.

XDrawStringI6() Draws 2-byte text in specified drawable.

XDrawText() Draws 8-bit complex text in specified drawable.

XDrawText 16() Draws 2-byte complex text in specified drawable.

Chapter 4. X-Windows Interface 4-11

Transferring Images

Table 4-20. Transferring Images

Subroutine Description

XGetlmage() Gets image from rectangle in drawable.

XGetSublmage() Copies rectangle on display to image.

XPutlmage() Puts image from memory into rectangle in drawable.

Manipulating Cursors

Table 4-21. Manipulating Cursors

Subroutine Description

XCreateFontCursor() Creates a cursor from a standard font.

X CreateGlyphCursor() Creates a cursor from font glyphs.

XDefineCursor() Defines a cursor for a window.

XFreeCursor() Frees a cursor.

X Query Best Cursor() Gets useful cursor sizes.

XRecolorCursor() Changes the color of a cursor.

XUndefineCursor() Undefines a cursor for a window.

Handling Window Manager Functions

Table 4-22 (Page I of 2). Handling Window Manager Functions

Subroutine Description

XAddToSaveSet() Adds a window to the client's save-set.

XAllowEvents() Allows events to be processed after a device is frozen.

X ChangeActivePointerGrab() Changes the active pointer grab.

X ChangePointerControl() Changes the interactive feel of pointer device.

X ChangeSaveSet() Adds or removes a window from the client's save-set.

X GetlnputFocus() Gets the current input focus.

X GetPointerControl() Gets the current pointer parameters.

X Grab Button() Grabs a mouse button.

XGrabKey() Grabs a single key of the keyboard.

X Grab Keyboard() Grabs the keyboard.

XGrabPointer() Grabs the pointer.

4-12 Programmer's Reference

Table 4-22 (Page 2 of 2). Handling Window Manager Functions

Subroutine Description

XGrabServer() Grabs the server.

XlnstallColormap() Installs a colormap.

XKillClient() Removes a client.

XListlnstalledColormaps() Gets a list of currently installed colormaps.

XRemoveFromSaveSet() Removes a window from the client's save-set.

XReparentWindow() Changes the parent of a window.

XSetCloseDownMode() Changes the close down mode.

XSetlnputFocus() Sets the input focus.

XUngrabButton() Ungrabs a mouse button.

XUngrabKey() Ungrabs a key.

XUngrabKeyboard() Ungrabs the keyboard.

XUngrabPointer() Ungrabs the pointer.

XUngrabServer() Ungrabs the server.

XUninstallColormap() Uninstalls a colormap.

XW arpPointer() Moves the pointer to arbitrary point on the screen.

Manipulating Keyboard Settings

Table 4-23 (Page I of 2). Manipulating Keyboard Settings

Subroutine Description

XAutoRepeatOff() Tums off keyboard auto-repeat.

XAutoRepeatOn() Turns on keyboard auto-repeat.

XBell() Sets the volume of the bell.

XChangeKeyboardControl() Changes keyboard settings.

XChangeKeyboardMapping() Changes the mapping of symbols to keycodes.

XDeleteModifiermapEntry() Deletes an entry from XModi:fierKeymap structure.

XFreeModi:fiermap() Frees XModifierKeymap structure.

XGetKeyboardControl() Gets the current keyboard settings.

XGetKeyboardMapping() Gets the mapping of symbols to keycodes.

X GetModiferMapping() Gets keycodes to be modifiers.

XGetPointerMapping() Gets the mapping of buttons on the pointer.

XlnsertModifiermapEntry() Adds an entry to XModifier Keymap structure.

XNew Modifiermap() Creates the XModifier Keymap structure.

Chapter 4. X-Windows Interface 4-13

Table 4-23 (Page 2 of 2). Manipulating Keyboard Settings

Subroutine Description

X Query Keymap() Gets the state of the keyboard keys.

XSetPointerMapping() Sets the mapping of buttons on the pointer.

XSetModifier Mapping() Sets keycodes to be modifiers.

Controlling the Screen Saver

Table 4-24. Controlling the Screen Saver

Subroutine Description

XActivateScreenSaver() Activates the screen saver.

XF orceScreenSaver() Tums the screen saver on or off.

X GetScreenSaver() Gets the current screen saver settings.

XResetScreenSaver() Resets the screen saver.

XSetScreenSaver() Sets the screen saver.

Manipulating Hosts and Access Control

Table 4-25. Manipulating Hosts and Access Control

Subroutine Description

XDisableAccessControl() Disables access control.

XEnableAccessControl() Enables access control.

XListHosts() Gets the list of hosts.

XSetAccessControl() Changes access control.

Handling Events

Table 4-26 (Page 1 of 2). Handling Events

Subroutine Description

X Checklffivent() Checks event queue for specified event without blocking.

XCheckMaskEvent() Removes the next event that matches a specified mask
without blocking.

X CheckTypedEvent() Gets the next event that matches event type.

XCheckTypedWindowEvent() Gets the next event for specified window.

4-14 Programmer's Reference

Table 4-26 (Page 2 of 2). Handling Events

Subroutine Description

XCheckWindowEvent() Removes next event that matches the specified window and
mask without blocking.

XEventsQueued() Checks the number of events in the event queue.

XFlush() Flushes the output buffer.

X GetMotionEvents() Gets the motion history for specified window.

XlfEvent() Checks event queue for specified event and removes it.

XMaskEvent() Removes the next event that matches a specified mask.

XNextEvent() Gets the next event and removes it from the queue.

XPeekEvent() Peeks at the event queue.

XPeeklfEvent() Checks event queue for specified event.

XPending() Returns the number of events that are pending.

XPutBackEvent() Pushes event back to top of event queue.

XSelectlnput() Selects events to be reported to the client.

XSendEvent() Sends an event to a specified window.

XSync() Flushes the output buffer and waits until all requests are
completed.

XWindowEvent() Removes next event that matches the specified window and
mask.

Enabling and Disabling Synchronization

Table 4-27. Enabling and Disabling Synchronization

Subroutine Description

XSetAfter Function() Sets the previous after function.

XSynchronize() Enables or disables synchronization.

Using Default Error .Handling

Table 4-28 (Page 1 of 2). Using Default Error Handling

Subroutine Description

XDisplayName() Gets name of display currently being used.

X GetErrorText() Gets error text for specified error code.

XGetErrorDatabaseText() Gets error text from the error database.

Chapter 4. X-Windows Interface 4-15

Table 4-28 (Page 2 of 2). Using Default Error Handling

Subroutine Description

XSetErrorHandler() Sets error handler.

XSetIOErrorHandler() Sets error handler for unrecoverable I/O errors.

Communicating with Window Managers

Table 4-29. Communicating with Window Managers

Subroutine Description

X Get Class Hint() Gets the class of a window.

XFetchName() Gets the name of a window.

XGeticonName() Gets the name of an icon window.

X GeticonSizes() Gets the values of icon size atom.

XGetNormalHints() Gets size hints for window in normal state.

X GetSizeHints() Gets the values of type WM_SIZE_HINTS properties.

X GetStandardColormap() Gets colormap associated with specified atom.

X GetTransientFor Hint() Gets WM_TRANSIENT_FOR property for window.

XGetWMHints() Gets the value of the window manager's hints atom.

XGetZoomHints() Gets values of the zoom hints atom.

XSetCommand() Sets the value of the command atom.

XSetClassHint() Sets the class of a window.

XSeticonName() Assigns a name to an icon window.

XSeticonSizes() Sets the values of icon size atom.

XSetNormalHints() Sets size hints for window in normal state.

XSetSizeHints() Sets the values of type WM_SIZE_HINTS properties.

XSetStandardColormap() Sets colormap associated with specified atom.

XSetStandardProperties() Specifies a minimum set of properties.

XSetTransientForHint() Sets WM_TRANSIENT_FOR property for window.

XSet WM Hints() Sets the value of the window manager's hints atom.

XSetZoomHints() Sets values of the zoom hints atom.

XStoreName() Assigns a name to a window.

4-16 Programmer's Reference

Keyboard Event Functions

Table 4-30. Keyboard Event Functions

Subroutine Description

XKeycodeToKeysym() Converts keycode to a keysym value.

XKeysymTo Keycode() Converts keysym value to keycode. •
XKeysymToString() Converts keysym value to keysym name.

XLookupKeysym() Translates keyboard event into keysym value.

XLookupMapping() Gets mapping of keyboard event from keymap file.

XLookupString() Translates keyboard event into character string.

XRebindCode() Changes the keyboard mapping in keymap file.

XRebindKeysym() Maps character string to specified keysym and modifiers.

XRefreshKeyboardMapping() Refreshes stored modifier and keymap information.

XStringToKeysym() Converts keysym name to keysym value.

XUseKeymap() Changes keymap files.

X Geometry() Parses window geometry given padding and font values.

X Get Default() Gets default window options.

XParseColor() Obtains RGB values from color name.

XParseGeometry() Parses standard window geometry options.

Manipulating Regions

Table 4-31 (Page 1 of 2). Manipulating Regions

Subroutine Description

XClipBox() Generates the smallest enclosing rectangle in region.

XCreateRegion() Creates a new empty region.

XEmpty Region() Determines whether a specified region is empty.

XEqualRegion() Determines whether two regions are the same.

XlntersectRegion() Computes intersection of two regions.

XDestroy Region() Frees storage associated with specified region.

XOffsetRegion() Moves specified region by specified amount.

XPointlnRegion() Determines if a point lies in specified region.

XPolygonRegion() Generates a region from points.

XRectlnRegion() Determines if a rectangle lies in specified region.

XSetRegion() Sets the GC to the specified region.

Chapter 4. X-Windows Interface 4-17

Table 4-31 (Page 2 of 2). Manipulating Regions

Subroutine Description

XShrinkRegion() Reduces specified region by specified amount.

XSubtractRegion() Subtracts two regions.

X UnionRegion() Computes union of two regions.

XUnionRectWithRegion() Creates a union of source region and rectangle.

XXorRegion() Gets the difference between union and intersection of
regions.

Using Cut and Paste Buffers

Table 4-32. Using Cut and Paste Buffers

Subroutine Description

XFetchBuffer() Gets data from specified cut buffer.

XFetchBytes() Gets data from first cut buffer.

XRotateBuffers() Rotates the cut buffers.

XStoreBuffer() Stores data in specified cut buffer.

XStoreBytes() Stores data in first cut buffer.

Querying Visual Types

Table 4-33. Querying Visual Types

Subroutine Description

XGetVisualinfo() Gets a list of visual information structures.

XMatch Visualinfo() Gets visual information matching screen depth and class.

Manipulating Images

Table 4-34 (Page 1 of 2). Manipulating Images

Subroutine Description

XAddPixel() Increases each pixel in pixmap by constant value.

X Create Image() Allocates memory for Xlmage structure.

XDestroy Image() Frees memory for XImage structure.

XGetPixel() Gets a pixel value in an image.

4-18 Programmer's Reference

Table 4-34 (Page 2 of 2). Manipulating Images

Subroutine Description

XPutPixel() Sets a pixel value in an image.

XSubimage() Creates an image that is a subsection of a specified image.

Manipulating Bitmaps

Table 4-35. Manipulating Bitmaps

Subroutine Description

XCreateBitmapFromData() Includes a bitmap in C program.

XCreatePixmapFromBitmapData() Creates pixmap using bitmap data.

XDeleteContext() Deletes data associated with window and context type.

XFindContext() Gets data associated with window and context type.

XReadBitmapFile() Reads in a bitmap from a file.

XSaveContext() Stores data associated with window and context type.

XUniqueContext() Allocates a new context.

XW rite Bitmap File() Writes out a bitmap to a file.

Using the Resource Manager

Table 4-36 (Page 1 of 2). Using the Resource Manager

Subroutine Description

Xpermalloc() Allocates memory that is never freed.

XrmGetFileDatabase() Creates a database from specified file.

XrmGetResource() Retrieves a resource from a database.

XrmGetStringDatabase() Creates a database from specified string.

Xrminitialize() Initializes the resource manager.

XrmMergeDatabases() Merges two databases.

XrmParseCommand() Stores command options in a database.

XrmPutFileDatabase() Copies database into specified file.

XrmPutLineResource() Stores a single resource entry in a database.

XrmPutResource() Stores resource in a database.

XrmPutStringResource() Stores string resource in a database.

XrmQGetResource() Retrieves a quark from a database.

Chapter 4. X-Windows Interface 4-19

Table 4-36 (Page 2 of 2). Using the Resource Manager

Subroutine Description

XrmQGetSearchList() Gets a resource search list of database levels.

XrmQGetSearchResource() Gets a quark search list of database levels.

XrmQPutResource() Stores binding and quarks in a database.

XrmQ PutStringResource() Stores string binding and quarks in a database.

XrmQuarkToString() Converts a quark to a character string.

XrmStringToQuark() Converts character string to a quark.

XrmStringToQuarkList() Converts character strings to quark list.

XrmStringToBindingQuarkList() Converts strings to bindings and quarks.

Xrm UniqueQuark() Allocates a new quark.

Display Functions

Table 4-37 (Page I of 4). Display Functions

Subroutine Description

AllPlanes() Returns all bits suitable for use in plane argument.
XAllPlanes()

BitMapBitOrder() Returns either the most or least significant bit in each bitmap
XBitMapOrder() unit.

BitMapPad() Returns the multiple of bits padding each scanline.
XBitMapPad()

BitMap Unit() Returns the size of a bitmap's unit in bits.
XBitMap Unit()

Black Pixel() Returns black pixel value of screen specified.
XBlackPixel()

BlackPixelOfScreen() Returns black pixel value of screen specified.
XBlackPixelOfScreen()

CellsOfScreen() Returns number of colormap cells.
X CellsOfScreen()

ConnectionNumber() Returns file descriptor of connection.
XConnectionNumber()

CreatePixmapCursor() Creates a pixmap of a specified size.
X CreatePixmapCursor()

Create Window() Creates an unmapped subwindow for a specified parent
XCreate Window() window.

DefaultColormap() Returns default colormap ID for allocation on screen
XDefaultColormap() specified.

4-20 Programmer's Reference

Table 4-37 (Page 2 of 4). Display Functions

Subroutine Description

DefaultColormapOfScreen() Returns default colormap ID of screen specified.
XDefaultColormapOfScreen

Default Depth() Returns depth of default root window.
XDefaultDepth()

DefaultDepthOfScreen() Returns default depth of screen specified.
XDefaultDepthOfScreen()

DefaultGC() Returns default GC of default root window.
XDefaultGC()

DefaultGCOfScreen() Returns default GC of screen specified.
XDefaultGCOfScreen()

DefaultScreen() Obtains the default screen referenced in the XOpenDisplay
XDefaultScreen() routine.

DefaultScreenofDisplay() Returns the default screen of the display specified.
XDefaultScreenofDisplay()

DefaultRootWindow() Obtains the root window for the default screen specified.
XDefaultRootWindow()

Default Visual() Returns default visual type of the screen specified.
XDefault Visual()

Default VisualOfScreen() Returns default visual type of the screen specified.
XDefaultVisualOfScreen()

DisplayCells() Displays number of entries in the default colormap.
XDisplayCells()

Display Height() Displays height of screen in pixels.
XDisplay Height()

Display HeightMM() Displays height of screen in millimeters.
XDisplayHeightMM()

DisplayOfScreen() Displays the type of screen specified.
XDisplayOfScreen()

Display Planes() Displays the depth (number of planes) of the root window of
XDisplay Planes() the screen specified.

DisplayString() Displays the string passed to X OpenDisplay when current
XDisplayString() display was opened.

Display Width() Displays width of specified screen in pixels.
XDisplayWidth()

DisplayWidthMM() Displays width of specified screen in millimeters.
XDisplayWidthMM()

DoesBackingStore() Indicates whether specified screen supports backing stores.
XDoesBackingStore()

Chapter 4. X-Windows Interface 4-21

Table 4-37 (Page 3 of 4). Display Functions

Subroutine Description

DoesSave Unders() Indicates whether specified screen supports save unders.
XDoesSave Unders()

EventMaskOfScreen() Returns initial root event mask for specified screen.
XEventMaskOfScreen()

HeightMMOfScreen() Returns height of specified screen in millimeters.
XHeightMMOfScreen()

HeightOfScreen() Returns height of specified screen in pixels.
XHeightOfScreen()

ImageByteOrder() Specifies required byte order for each scanline unit of an
XlmageByteOrder() image.

IsCursor Key() Returns TRUE if keysym is on cursor key.

IsFunctionKey() Returns TRUE if keysym is on function keys.

IsKeypadKey() Returns TRUE if keysym is on keypad.

IsMiscFunctionKey() Returns TRUE if keysym is on miscellaneous function keys.

Is Modifier Key() Returns TRUE if keysym is on modifier keys.

IsPFKey() Returns TRUE if keysym is on PF keys.

LastKnownRequestProcessed() Extracts full serial number of last known request processed
XLastKnownRequestProcessed() by X Server.
~

MaxCmapsOfScreen() Returns maximum number of colormaps supported by
XMaxCmapsOfScreen() specified screen.

MinCmapsOfScreen() Returns minimum number of colormaps supported by
XMinCmapsOfScreen() specified screen.

NextRequest() Extracts full serial number to be used for next request to be
XNextRequest() processed by X Server.

PlanesOfScreen() Returns depth (number of planes) in specified screen.
XPlanesOfScreen{)

ProtocolRevision() Returns minor protocol revision number (zero) of X Server
XProtocolRevision() associated with display.

Protocol Version() Returns major version number (11) of protocol associated
XProtocolVersion() with display.

QLength() Returns length of event queue for display.
XQLength()

Root Window() Returns root window of current screen.
XRootWindow()

Root WindowOfScreen() Returns root window of specified screen.
XRoot WindowOfScreen()

Screen Count() Returns number of screens available.
XScreenCount()

4-22 Programmer's Reference

Table 4-37 (Page 4 of 4). Display Functions

Subroutine Description

ScreenOfDisplay() Returns pointer to screen of display specified.
XScreenOfDisplay()

Server Vendor() Returns pointer to a null-determined string that identifies
XServerVendor() owner of X Server implementation.

Vendor Release() Returns number related to vendor's release of the X Server.
XVendor Release()

White Pixel() Returns white pixel value for current screen.
XWhitePixel()

WhitePixelOfScreen() Returns white pixel value of specified screen.
XWhitePixelOfScreen()

WidthMMOfScreen() Returns width of specified screen in millimeters.
XWidthMMOfScreen()

WidthOfScreen() Returns width of specified screen in pixels.
XWidthOfScreen()

Extension Routines
X-Windows Extension Routines allow you to create extensions of the core Xlib
functions with the same performance characteristics. The basic protocol requests for
X-Windows extensions are:

• XQueryExtension

• XListExtensions

• XFreeExtensionList

Table 4-38 (Page 1 of 2). Extension Routines

Subroutine Description

XAllocID() Returns a resource ID that can be used when creating new
resources.

XESetCloseDisplay() Defines a procedure to call when XCloseDisplay is called.

XESetCopyGC() Defines a procedure to call when a GC is copied.

XESetCreateFont() Defines a procedure to call when XLoadQueryFont is called.

XESetCreateGC() Defines a procedure to call when an new GC is created.

XESetError() Suppresses the call to an external error handling routine and
defines an alternative routine for error handling.

XESetErrorString() Defines a procedure to call when an I/O error is detected.

XESetEventTo Wire() Defines a procedure to call when an event must be converted
from the host to wire format.

Chapter 4. X-Windows Interface 4-23

Table 4-38 (Page 2 of 2). Extension Routines

Subroutine Description

XESetFreeFont() Defines a procedure to call when XFreeFont is called.

XESetFreeGC() Defines a procedure to call when a GC is freed.

XESetWireToEvent() Defines a procedure to call when an event is converted from
the wire to host format.

XFreeExtensionList() Frees memory allocated by XListExtensions.

XListExtensions() Returns list of all extensions supported by the server.

XQueryExtension() Indicates whether named extension is present.

Associate Table Functions
When it is necessary to associate arbitrary information with resource ms, the
XAssocTable allows you to associate your own data structures with X resources
such as bitmaps, pixmaps, fonts, and windows.

An XAssocTable can be used to type X resources. For example, to create three or
four types of windows with different properties, each window ID is associated with a
pointer to a user-defined window property data structure. (A generic type, called
XID, is defined in Xlib.h.)

Observe the following guidelines when using an XAssocTable:

• Ensure the correct display is active before initiating an XASSOCTABLE function,
because all xms are relative to a specified display.

• Restrict the size of the table (number of buckets in the hashing system) to a
power of 2, and assign no more than 8 xms per bucket to maximize the
efficiency of the table.

There is no restriction on the number of xms per table or display, or the number of
displays per table.

Table 4-39. Associate Table Functions

Subroutine Description

XCreateAssocTable () Returns pointer to newly created associate table.

XDeleteAssoc() Deletes entry from specified associate table.

XDestroy Assoc Table() Frees memory allocated to specified associate table.

XLookUpAssoc() Obtains data from specified associate tabie.

XMakeAssoc() Creates entry in specified associate table.

4-24 Programmer's Reference

X-Windows Toolkit

Purpose

Contents

Requirements

The Toolkit is a library package layered on top of X-Windows that allows you to
simplify the design of applications by providing an underlying set of common user
interface functions. Included are mechanisms for defining and expanding
intercomponent and intracomponent interaction independently, masking
implementation details from both the application and component implementer.

The X-Windows Toolkit is policy-free, making the definition, implementation, and
enforcement of policy a function of the application environment, as defined by you.

For additional information on the X-Windows Toolkit, see the IBM AIX X-Windows
Programmer's Reference, SC23-2118.

The X-Windows Toolkit functions manage the following:

• Toolkit initialization
• Widgets and Widget Geometry
• Memory
• Window, file, and timer events
• Input focus
• Selections
• Resources and resource conversion
• Translation of events
• Graphics contexts
• Pixmaps
• Errors and warnings.

Each X-Windows Toolkit consists of:

• A set of programming mechanisms, called Intrinsics, used to build widgets.

• An architectural model to help programmers design new widgets, with enough
flexibility to accommodate different application interface layers.

• A consistent interface, in the form of a coordinated set of widgets and
composition policies, some of which are application domain specific while
others are common across several application domains.

The following libraries must be included in the SYSLIB declaration:

• TCPIP.XTLIB (Xt Intrinsics)
• TCPIP.XAWLIB (Athena Widget Set)
• TCPIP.XRl lLIB (Hewlett-Packard Widget Set)
• TCPIP.Xl 1 LIB

• TCPIP.OLDXLIB

Chapter 4. X-Windows Interface 4-25

Applications that use the X-Windows Toolkit must include the following header
files:

• <Xlib.h>
• <Intrinsi.h>
• <StringDf.h>

and possibly:

• <Atoms.h>
• <Shell.h>

The applications should also include the additional headers for each widget class to
be used, such as <Label.h> or <Scroll.h>. The object library file of the Intrinsic is
named Xtlib.

Again, many of the names of header files needed by these toolkits and widget sets
have been shortened because of the file name conventions in MVS. The name
changes in general shorten the MVS file name to eight characters or less. Table 4-40
describes the name changes.

Table 4-40. Differences in Header File Names for Toolkits

MIT Distribution Name X-Windows Toolkit Name

Cardinals.h Cardinal.h

Composite.h Composit.h

Constraint.h Constrai.h

Cascade.h1 HPCascad.h

CascadeP .h 1 HPCascaP.h

Form.h1 HPForm.h

Intrinsic.h Intrinsi.h

ScrollBar.h ScrollBa.h

StringDefs.h StringDf.h

TE Display P .h TEDisplP.h

TESourceP .h TESourcP.h

TMprivate.h TMprivat.h

WorkSpace.h WorkSpac.h

Note:

1. Cascade.h, CascadeP.h, and Form.hare the Hewlett-Packard widget include
files renamed to avoid conflict with files of the same names belonging to the
Athena widgets. The Athena files have kept the same names as on the MIT

distribution.

When using the Athena Widget Set, and your application uses text widgets, you
must explicitly INCLUDE SYSLIB(TBXT) when you load your application code, as not
all entry points are defined as external references in TCPIP.XA WLIB.

4-26 Programmer's Reference

Defining Widgets

Likewise, the Hewlett-Packard Widget Set has two routines which you may have to
explicitly include. These are PRIMITIV and TEXTEDIT.

The fundamental data type of the X-Windows Toolkit is the widget. A widget is
allocated dynamically and contains state information. Every widget belongs to one
widget class that is allocated statically and initialized. The widget class contains the
operations allowed on widgets of that class.

For the list of X-Windows Toolkit routines, refer to IBM AIX X-Windows
Programmer's Reference (SC23-2118), or the X-Windows programmer's manual you
are using.

Chapter 4. X-Windows Interface 4-27

4-28 Programmer's Reference

Chapter 5. Remote Procedure Calls

The Remote Procedure Call (RPC) protocol permits remote execution of
subroutines across a TCP/IP network. RPC, together with the External Data
Representation (XDR) protocol, defines a standard for representing data that is
independent of internal protocols or formatting. Remote Procedure Calls can
communicate between processes on the same or different hosts.

This chapter describes the high-level RPC routines implemented in the TCP/IP for
MVS program. Only the RPC programming interface to the C Language, and
communication between processes on different hosts is discussed here.

For more detailed information on RPC and XDR, refer to the SUN Microsystems
documentation, Networking on the Sun Workstation: Remote Procedure Call
Programming Guide, and protocol specifications in the following RFCs:

• Remote Procedure Call Protocol Specification (RFC 1057)

• XDR: External Data Representation Standard (RFC 1014).

The RPC lnterf ace
The RPC interface enables programmers to write distributed applications using
high-level RPcs rather than lower level calls based on sockets.

In the RPC process, the client is communicating with a server. The client invokes a
procedure to send a call message to the server. When the message arrives, the server
calls a dispatch routine, and performs the requested service. The server sends back a
reply message, after which the original procedure call returns to the client program
with a value derived from the reply message.

To use the RPC interface, you must be familiar with programming in the C
Language, and possess a working knowledge of networking concepts.

Software Requirements
Programs that use Remote Procedure Calls require the following:

• IBM C for System/370, Compiler Licensed Program (5688-040)

• IBM C for System/370, Library Licensed Program (5688-039)

• IBM vs Pascal Compiler & Library (5668-767) or IBM vs Pascal Library (5668-717).

Remote Procedure Call Quick Reference
Table 5-1 on page 5-2 lists the RPCs supported by the TCP/IP for MVS program.

1 Trademark of American Telephone and Telegraph Company.

Chapter 5. Remote Procedure Calls 5-1

Table 5-1 (Page 1 of 3). Remote Procedure Call Quick Reference

Remote Procedure Call Description Page

auth _destroy() Destroys authentication information. 5-5

authnone _create() Creates and returns a null RPC authentication handle. 5-6

authunix_ create() Creates and returns a UNIX1-based authentication handle. 5-6

authunix _create_ default() Calls authunix_ create() with default parameters. 5-6

callrpc() Calls remote procedures. 5-6

clnt_call() Calls remote procedures. 5-7

clnt_destroy() Destroys client's RPC handle. 5-8

clnt _freeres() De-allocates resources assigned for decoding RPC. 5-8

clnt _geterr() Copies error structure from client's handle to local address. 5-8

clnt _pcreateerror() Indicates why a client handle cannot be created. 5-9

clnt_permo() Writes error message indicating why RPC failed. 5-9

clnt _perror() Writes error message indicating why RPC failed. 5-9

clntraw _create() Creates client transport handle for use in a single task. 5-10

clnttcp _create() Creates an RPC client for the remote program using TCP 5-10
transport.

clntudp _create() Creates an RPC client for the remote program using UDP 5-11
transport.

get_ myaddress() Returns local host's internet address. 5-11

mvs_xdr_enum() Translates C-enumerated numbers to their external 5-11
representations.

pmap _getmaps() Returns list of current program to port mappings on specified 5-12
remote host.

pmap _getport() Returns port number associated with remote program. 5-12

pmap _rmtcall() Instructs remote host to make RPC call on the client's behalf. 5-13

pmap_set() Sets mapping of server program to port on local machine. 5-13

pmap _unset() Resets mappings on the local machine. 5-14

registerrpc() Registers procedure with local RPC portmapper. 5-14

rpc _ createerr() Global variable set when any RPC client creation routine fails. 5-15

svc _destroy() Destroys RPC service transport handle. 5-15

svc_fds() Specifies read descriptor bit mask on the service transport 5-15
machine.

svc _ freeargs() Frees storage allocated for arguments. 5-15

svc _getargs() Decodes arguments from an RPC service transport handle. 5-16

svc _getcaller() Obtains the network address of the client associated with the 5-16
service transport handle.

5-2 Programmer's Reference

Table 5-1 (Page 2 of 3). Remote Procedure Call Quick Reference

Remote Procedure Call Description Page

svc _getreq() Implements asynchronous event processing, and returns 5-16
control to program after all sockets have been serviced.

svc _register() Registers procedures on portmapper. 5-17

svc_run() Accepts RPC requests, and calls appropriate service. 5-17

svc _ sendreply() Sends results of RPC to caller. 5-17

svc _unregister() Removes local mapping. 5-18

svcerr _au th() Returns error reply when service cannot execute RPC due to 5-18
authentication errors.

svcerr _decode() Returns error reply when service cannot decode its 5-18
parameters.

svcerr _noproc() Returns error reply when service cannot call procedure 5-19
requested.

svcerr _ noprog() Returns error reply when service cannot call program 5-19
requested.

svcerr _progvers() Returns error reply when service cannot call version of 5-19
program requested.

svcerr _ systemerr() Returns error reply when service detects system error not 5-19
handled.

svcerr _ weakauth() Returns error reply when service cannot execute RPC because 5-20
of weak authentication parameters.

svcraw _create() Creates service transport handle to simulate RPC programs in 5-20
a single task.

svctcp _create() Creates TCP based service transport. 5-20

svcudp _create() Creates UDP based service transport. 5-21

xdr _accepted_ reply() Translates RPC reply messages. 5-21

xdr_array() Translates array to its external representation. 5-21

xdr_authunix_parms() Translates UNIX-based authentication information. 5-22

xdr_bool() Translates booleans to their external representations. 5-22

xdr_bytes() Translates counted byte strings. 5-22

xdr _ callhdr() Translates RPC call message header. 5-23

xdr _ callmsg() Translates RPC call messages. 5-23

xdr_double() Translates C double-precision numbers to their external 5-23
representations.

xdr_enum() Translates C-enumerated numbers to their external 5-24
representations.

xdr_float() Translates C floating-point numbers to their external 5-25
representations.

Chapter 5. Remote Procedure Calls 5-3

Table 5-1 (Page 3 of 3). Remote Procedure Call Quick Reference

Remote Procedure Call Description Page

xdr _ inline() Invokes inline routine, and returns pointer to continuous 5-25
piece of XD R buffer.

xdr_int() Translates C integers to their external representations. 5-26

xdr_long() Translates C long integers to their external representations. 5-26

xdr_opaque() Translates fixed-size opaque data to its external 5-26
representation.

xdr_opaque_auth() Translates RPC authentication data. 5-27

xdr_pmap() Translates port map elements. 5-27

xdr _pmaplist() Translates list of port mappings. 5-27

xdr _reference() Provides pointer "chasing" within structures. 5-28

xdr _rejected_ reply() Translates rejected RPC reply messages. 5-28

xdr_replymsg() Translates RPC reply messages. 5-28

xdr_short() Translates between C short integers and their external 5-29
representations.

xdr_ string() Translates between C strings and their external 5-29
representations.

xdr_u_int() Translates between C unsigned integers and their external 5-29
representations.

xdr_ u _long() Translates between C unsigned long integers and their 5-30
external representations.

xdr_u_short() Translates between C unsigned short integers and their 5-30
external representations.

xdr_union() Translates between a discriminated C union and its external 5-30
representations.

xdr_void() Returns a value of one. 5-31

xdr_ wrapstring() Translates strings to their external representation. 5-31

xprt _register() Registers service transport handles with the RPC service 5-31
package, and modifies the service transport.

xprt _unregister() Unregisters RPC service transport handle before it is 5-31
destroyed.

5-4 Programmer's Reference

Remote Procedure Call Library

auth _destroy()

In addition to the c and Pascal Libraries, include TCPIP.COMMTXT in SYSLIB for
linking. When compiling, include TCPIP.COMMMAC and the standard c SYSLIB

allocation.

The RPC routines are in the TCPIP.COMMTXT data set and the headers are in the
TCPIP.COMMMAC data set.

The following statements are required at the beginning of each program that uses
RPC calls.

I #define MVS
#include "rpc.h"

A sample linkedit for a file MYFILE in 31-bit mode is:

INCLUDE OBJ(MYFILE)
INCLUDE SYSLIB(AMPZMVSB)
MODE AMODE(31),RMODE(ANY)
ENTRY CEESTART .
NAME MYFI LE (R)

A sample linkedit for a file MYFILE in 24-bit mode is:

INCLUDE OBJ(MYFILE)
INCLUDE SYSLIB(AMPZRPOl)
MODE AMODE(24),RMODE(24)
ENTRY CEESTART
NAME MYFILE(R)

A description of each RPC routine and its relevant parameters follows.

This procedure destroys (discards, frees storage for reuse) the authentication
information for auth. Once this procedure is called, auth points to NULL.

void
auth_destroy(auth)

AUTH *auth;

Usage Parameter
au th A pointer to authentication information.

Chapter 5. Remote Procedure Calls 5-5

authnone create()
- This procedure creates and returns an RPC authentication handle. The handle

passes the NULL authentication on each call.

AUTH *
authnone_create()

authunix create()
- This procedure creates and returns an authentication handle that contains

UN IX-based authentication information.

AUTH *
authunix_ueate(host, uid, gid, len, aup_gids)

char *host;
int uid, gid, len, *aup_gids;

Parameter
host

uid
gid
!en
aup_gids

Usage
A pointer to to the symbolic name of the host where the desired
server is located.
The user's user ID.

The user's group ID.

The length of the information pointed to by aup_gids.
A pointer to a counted array of groups to which the user belongs.

authunix create default()
- - This procedure calls authunix_ create() with default parameters.

callrpc()

AUTH *
authunix_create_default()

This procedure calls the remote procedure described by prognum, versnum, and
procnum running on the host system. It can encode and decode the parameters for
transfer, and returns a 0 if it was successful, and an enum clnt_stat cast to an integer
if it was not. The results of the remote procedure call are returned to out.

5-6 Programmer's Reference

clnt_call()

enum clnt stat
callrpc(host, prognum, versnum, procnum, inproc, in, outproc, out)

char *host, *in, *out;
u_long prognum, versnum, procnum;
xdrproc_t inproc, outproc;

Parameter
host

prognum
versnum
procnum
inproc

in
outproc
out

Notes:

Usage
A pointer to the symbolic name of the host where the desired
server is located.
Used to identify the remote procedure's program number.
Used to identify the remote procedure's version number.
Used to identify the remote procedure's procedure number.
The XOR procedure used to encode the remote procedure's
arguments.
A pointer to the remote procedure's arguments.
The XOR procedure used to decode the remote procedure's results.
A pointer to the remote procedure's results.

1. clnt_perrno() can be used to translate the return code into messages.

2. callrpc cannot call the procedure xdr_enum. Refer to "xdr_enum()" on
page 5-24 for more information.

· 3. This procedure uses UDP as its transport layer. Refer to "clntudp_create()" on
page 5-11 for more information.

This procedure calls the remote procedure (procnum) associated with the client
handle (c/nt).

enum clnt stat
clnt_call (clnt, procnum, inproc, in, outproc, out, tout)

CLIENT *clnt;
u_long procnum;
char *in, *out;
xdrproc_t inproc, outproc;
struct timeval tout;

Parameter
clnt

procnum
inproc
in
outproc
out
tout

Usage
Points to a client handle that can be obtained using
clntudp_create(), clnttcp_create(), or clntraw_create().
Used to identify the remote procedure number.
The XOR procedure used to encode procnum's arguments.
Points to the remote procedure's arguments.
The XOR procedure used to decode the remote procedure's results.
Points to the remote procedure's results.
The time allowed for the server to respond in units of 0.1 seconds.

Chapter 5. Remote Procedure Calls 5-7

cl nt_ destroy()

clnt _ f reeres()

clnt_geterr()

This procedure destroys a client RPC transport handle. This procedure involves the
deallocation of private data resources, including clnt. Once this procedure is used,
clnt points to NULL. Open sockets associated with clnt must be closed.

void
clnt_destroy(clnt)

CLIENT *clnt;

Parameter
clnt

Usage
Points to a client handle that can be created using clntudp_create(),
clnttcp_create(), or clntraw_create().

This procedure deallocates any resources that were assigned by the system to decode
the results of an RPC call. This routine returns a 1 if it succeeds, and a 0 if it does
not.

bool t
clnt_freeres(clnt, outproc, out)

CLIENT *clnt;
xdrproc_t outproc;
char *out;

Parameter
clnt

outproc
out

Usage
Points to a client handle, that can be obtained using
clntudp _create(), clnttcp _create(), or clntraw _create().
The XOR procedure used to decode the remote procedure's results.
Points to the remote procedure's results.

This procedure copies the error structure from the client handle to the structure at
address errp.

void
clnt_geterr(clnt, errp)

CLIENT *clnt;
struct rpc_err *errp;

Parameter
clnt

errp

Usage
Points to a client handle, that can be obtained using
clntudp_create(), clnttcp_create(), or clntraw_create().
Points to the address into which the error structure is copied.

5-8 Programmer's Reference

cl nt pcreateerror()
- This procedure writes a message to the standard error device indicating why a client

handle cannot be created. This procedure is used after the clntraw_create(),
clnttcp_create(), or clntudp_create() calls fail as indicated by a returned value of
NULL.

cl nt_perrno()

clnt perror()

void
clnt_pcreateerror(s)

char *s;

Usage Parameter
s Points to a string that is to be printed in front of the message.

The string is followed by a colon.

This procedure writes a message to the standard error device corresponding to the
condition indicated by stat. This procedure should be used after callrpc() if there is
an error.

void
clnt_perrno(stat)

Parameter
stat

enum clnt_stat stat;

Usage
The client status.

This procedure writes a message to the standard error device indicating why an RPC

call failed. This procedure should be used after clnt_call() if there is an error.

void
clnt_perror(clnt, s)

CLIENT *clnt;
char *s;

Parameter
clnt

Usage
Points to a client handle, that can be obtained using
clntudp_create(), clnttcp_create(), or clntraw_create().

s Points to a string that is to be printed in front of the message.
The string is followed by a colon.

Oiapter 5. Remote Procedure Calls 5-9

clntraw _create()

clnttcp _create()

This procedure creates a dummy client for the remote double (prognum, versnum).
Because messages are passed using a buffer within the local process's address space,
the server should also use the same address space. This allows the simulation of
RPC programs within one address space. Refer to "svcraw_create()" on page 5-20
for more information.

This procedure returns NULL if it fails.

CLIENT *
clntraw_create(prognum, versnum)

u_long prognum, versnum;

Parameter
prognum
versnum

Usage
The remote program number.
The version number of the remote program.

This procedure creates an RPC client transport handle for the remote program
specified by (prognum, versnum). The client uses TCP as the transport layer.

This procedure returns NULL if it fails.

CLIENT *
clnttcp_create(addr, prognum, versnum, sockp, sendsz, recvsz)

struct sockaddr in *addr;
u_long prognum, versnum;
int *sockp;
u_int sendsz, recvsz;

Parameter
addr

prognum
versnum
sockp

sendsz
recvsz

Usage
Points to the internet address of the remote program. If addr
points to a port number of zero (0), addr is set to the port the
remote program is receiving on. The remote PORTMAP service is
used for this.
The remote program number.
The version number of the remote program.
Points to the socket (virtual port). If sockp is RPC_ANYSOCK, then
this routine opens a new socket and sets sockp.
The size of the send buffer. Use zero to get the default.
The size of the receive buffer. Use zero to get the default.

5-10 Programmer's Reference

cl ntudp _create()

get_ myaddress()

mvs_xdr_enum()

This procedure creates a client transport handle for the remote program (prognum)
with version (versnum). UDP is used as the transport layer.

Note: This procedure should not be used with procedures that use large arguments
or return large results. UDP RPC messages can only contain 8K bytes of encoded ",
data.

CLIENT *
clntudp_create(addr, prognum, versnum, wait, sockp)

struct sockaddr in *addr;
u_long prognum, versnum;
struct timeval wait;
int *sockp;

Parameter
addr

prognum
versnum
wait

sockp

Usage
Points to the internet address of the remote program. If addr
points to a port ,number of zero (0), addr is set to the port the
remote program is receiving on. The remote PORTMAP service is
used for this.
The remote program number.
The version number of the remote program.
UDP resends the call request at intervals of wait time, until either a
response is received or the call times out. The time out length is
set using the clnt_call() procedure.
Points to the socket (virtual port). If sockp is RPC_ANYSOCK, this
routine opens a new socket and sets sockp.

This procedure puts the local host's internet address into addr.

The port number (addr- > sin_port) is set to htons(PMAPPORT), which is 111.

void
get_myaddress(addr)

struct sockaddr in *addr;

Usage Parameter
addr Points to the location where the local internet address is placed.

This XDR procedure translates between C-enumerated groups and their external
representation. Refer to the Usage Note: with "xdr _en um()" on page 5-24 for more
information.

Chapter 5. Remote Procedure Calls 5-11

pmap _getmaps()

pmap _getport()

bool t
mvs_xdr_enum(xdrs, ep, size)

XDR *xdrs;
enum_t *ep;
int size;

Parameter
xdrs
ep
size

Usage ,
Points to an xo R stream. \
Points to the enumerated type variable.
The size of the enumerated type variable.

This procedure returns a list of current program to port mappings on the remote
host specified by addr.

struct pmaplist *
pmap_getmaps(addr)

Parameter
addr

struct sockaddr in *addr;

Usage
Points to the remote host's internet address.

This procedure returns the port number associated with the remote program
(prognum), with version (versnum), and transport protocol (protocol). A return
value of zero indicates that the mapping does not exist or that the remote PORTMAP

could not be contacted. If the remote PORTMAP server could not be contacted, the
global variable rpc _ createerr contains the RPC status.

u_short
pmap_getport(addr, prognum, versnum, protocol)

struct sockaddr_in *addr;
u_long prognum, versnum, protocol;

Parameter
addr
prognum
versnum
protocol

Usage
Points to the remote host's internet address.
The program number to be mapped.
The version number of the program to be mapped.
The transport protocol used by the program.

5-12 Programmer's Reference

pmap _rmtcall()

pmap_set()

This procedure instructs PORTMAP on the remote host to make an RPC call to a
procedure on that host, on your behalf. This procedure should only be used for
PING type functions.

enum clnt stat
pmap_rmtcall (addr, prognum, versnum, procnum, inproc, in, outproc,

out, tout, portp)
struct sockaddr_in *addr;

u_long prognum, versnum, procnum, *portp;
char *in, *out;
xdrproc_t inproc, outproc;
struct timeval tout;

Parameter
addr
prognum
versnum
procnum
inproc

in
outproc
out
tout
portp

Usage
Points to the remote host's internet address.
The remote program number.
The version number of the remote program.
Used to identify the procedure to be called.
The XDR procedure used to encode the remote procedure's
arguments.
Points to the remote procedure's arguments.
The XDR procedure used to decode the remote procedure's results.
Points to the remote procedure's results.
The time out period for the remote request.
If the call from the remote PORTMAP service is successful, portp
contains the port number of the triple (prognum, versnum,
procnum).

This is part of the interface to the PORTMAP service.

This procedure sets the mapping of the program (specified by prognum, versnum,
and protocol) to port on the local machine. This procedure is automatically called
by the svc_register() procedure. This routine returns a 1 if it succeeds, and a 0 if it
does not.

bool t
pmap_set(prognum, versnum, protocol, port)

u_long prognum, versnum, protocol;
u short port;

Parameter
prognum
versnum
protocol
port

Usage
The local program number.
The version number of the local program.
The transport protocol used by the local program.
The port to which the local program is mapped.

Chapter 5. Remote Procedure Calls 5-13

pmap_unset()

reg isterrpc()

This is part of the interface to the PORTMAP service.

This procedure removes the mappings associated with prognum and versnum on the
local machine. All ports for each transport protocol currently mapping the prognum
and versnum are removed from the PORTMAP service. This routine returns a 1 if it
succeeds, and a 0 if it does not.

bool t
pmap_unset(prognum, versnum)

u_long prognum, versnum;

Parameter
prognum
versnum

Usage
The local program number.
The version number of the local program.

This procedure registers a procedure (prognum, versnum, procnum) with the local
PORTMAP server, and creates a control structure to remember the server procedure
and its XDR routine. The control structure is used by svc_run(). When a request
arrives for the program (prognum, versnum, procnum), the procedure procname is
called. Procedures registered using registerrpc() are accessed using the UDP

transport layer. This routine returns a 0 if it succeeds, and a -1 if it does not.

Note: xdr_enum() cannot be used as an argument to registerrpc. Refer to
"xdr_enum()" on page 5-24 for more information.

registerrpc(prognum, versnum, procnum, procname, inproc, outproc)
u_long prognum, versnum, procnum;

char * (*procname) ();
xdrproc_t inproc, outproc;

Parameter
prognum
versnum
procnum
procname

inproc
outproc

Usage
The program number to register.
The version number to register.
The procedure number to register.
The procedure that is called when the registered program is
requested. procname must accept a pointer to its arguments, and
return a static pointer to its results.
The XDR routine used to decode the arguments.
The XD R routine that encodes the results.

5-14 Programmer's Reference

rpc _ createerr

svc _destroy{)

SVC fds

svc_freeargs{)

A global variable that is set when any RPC client creation routine fails. Use
clnt_pcreateerror() to print the message.

struct rpc_createerr rpc_createerr;

This procedure destroys the RPC service transport handle xprt, which becomes NULL

after this routine is called.

void
svc_destroy(xprt)

SVCXPRT *xprt;

Usage Parameter
xprt Points to the service transport handle.

This is a global variable that specifies the read descriptor bit mask on the service
machine. This is only of interest if the service programmer decides to write an
asynchronous event processing routine; otherwise svc_run() should be used. Writing
asynchronous routines in the MVS environment is not simple because there is no
direct relationship between the descriptors used by the socket routines and the Event
Control Blocks commonly used by MVS programs for coordinating concurrent
activities.

Warning: Do not modify this variable.

int svc_fds;

This procedure frees storage allocated to decode the arguments received by
svc_getargs(). This routine returns a 1 if it succeeds, and a 0 if it does not.

bool t
svc_freeargs(xprt, inproc, in)

SVCXPRT *xprt;
xdrproc_t inproc;
char *in;

Chapter 5. Remote Procedure Calls 5-15

svc _getargs()

svc _getcaller()

svc_getreq()

Parameter
xprt
inproc
in

Usage
Points to the service transport handle.
The XDR routine used to decode the arguments.
Points to the input arguments.

This procedure uses the XDR routine inproc to decode the arguments of an RPC

request associated with the RPC service transport handle xprt. The results are placed
at address in. This routine returns a 1 if it succeeds, and a 0 if it does not.

bool t
svc_getargs(xprt, inproc, in)

SVCXPRT *xprt;
xdrproc_t inproc;
char *in;

Parameter
xprt
inproc

Usage
Points to the service transport handle.
The XDR routine used to decode the arguments.
Points to the decoded arguments. in

This macro obtains the socket address of the client associated with the service
transport handle xprt.

struct sockaddr in *
svc_getcaller(xprt)

SVCXPRT *xprt;

Parameter
xprt

Usage
Points to the service transport handle.

This procedure is used instead of svc_run() to implement asynchronous event
processing. The routine returns control to the program once all sockets associated
with the read descriptor bit mask have been serviced.

void
svc_getreq(rdfds)

int rdfds;

Parameter
rdfds

Usage
The read descriptor bit mask.

5-16 Programmer's Reference

svc _register()

svc_run()

svc _send reply()

This procedure associates the program described by (prognum, versnum) with the
service dispatch routine dispatch. This routine returns a 1 if it succeeds, and a 0 if it
does not.

bool t
svc_register(xprt, prognum, versnum, dispatch, protocol)

SVCXPRT *xprt;
u_long prognum, versnum protocol;
void (*dispatch) ();

Parameter
xprt
prognum
versnum
dispatch

protocol

Usage
Points to the service transport handle.
The program number to be mapped.
The version number of the program to be mapped.
The dispatch routine associated with prognum and versnum.

The structure of the dispatch routine is as follows:

dispatch(request, xprt)
struct svc_req *request;

SVCXPRT *xprt;

The protocol used. This value is generally one of:
• 0 (zero)
• IPPROTO_UDP

• IPPROTO_TCP

When a value of 0 is used, the service is not registered with
PORTMAP.

Note: When using a toy RPC service transport created with svcraw _create, a call to
xprt_register must be made immediately after a call to svc_register.

This procedure does not return control. It accepts RPC requests, and calls the
appropriate service using svc_getreq().

svc_run()

This procedure is called by the service dispatch routine to send the results of the call
to the caller. This routine returns a 1 if it succeeds, and a 0 if it does not.

Chapter 5. Remote Procedure Calls 5-17

svc _unregister()

svcerr _ auth()

svcerr _decode()

bool t
svc_sendreply(xprt, outproc, out)

SVCXPRT *xprt;
xdrproc_t outproc;
char *out;

Parameter
xprt
outproc
out

Usage
Points to the caller's transport handle.
The XDR procedure used to encode the results.
Points to the results.

This procedure removes all local mappings of (prognum, versnum) to dispatch
routines and (prognum, versnum, +) to port numbers.

void
svc_unregister(prognum, versnum)

u_long prognum, versnum;

Parameter
prognum
versnum

Usage
The program number that is removed.
The version number of the program that is removed.

This procedure is called by a service dispatch routine that refuses to execute an RPC

request because of authentication errors.

void
svcerr_auth(xprt, why)

SVCXPRT *xprt;
enum auth_stat why;

Parameter
xprt
why

Usage
Points to the service transport handle.
The reason the call was refused.

This procedure is called by a service dispatch routine that cannot decode its
parameters.

void
svcerr_decode(xprt)

SVCXPRT *xprt;

5-18 Programmer's Reference

svcerr _ noproc()

svcerr noprog{)

svcerr _progvers()

Parameter
xprt

Usage
Points to the service transport handle.

This procedure is called by a service dispatch routine that does not implement the
procedure requested.

void
svcerr_noproc(xprt)

SVCXPRT *xprt;

Parameter
xprt

Usage
Points to the service transport handle.

This procedure is used when the desired program is not registered.

void
svcerr_noprog(xprt)

SVCXPRT *xprt;

Parameter
xprt

Usage
Points to the service transport handle.

This procedure is used when the desired version of a program is not registered.

void
svcerr_progvers(xprt)

SVCXPRT *xprt;

Parameter
xprt

Usage
Points to the service transport handle.

svcerr systemerr{)
- This procedure is called by a service dispatch routine when it detects a system error

that is not handled by the protocol.

void
svcerr_systemerr(xprt)

SVCXPRT *xprt;

Chapter 5. Remote Procedure Calls 5-19

Parameter
xprt

Usage
Points to the service transport handle.

svcerr weakauth()
- This procedure is called by a service dispatch routine that cannot execute an RPC

call because of correct but weak authentication parameters.

svcraw _create()

svctcp _create()

void
svcerr_progvers(xprt)

SVCXPRT *xprt;

Parameter
xprt

Usage
Points to the service transport handle.

Note: This is the equivalent of: svcerr _auth (xprt, AUTH_ TOOWEAK) .

This procedure creates a local RPC service transport used for timings, to which it
returns a pointer. Messages are passed using a buffer within the address space of the
local process; hence, the client process must also use the same address space. This
allows the simulation of RPC programs within one computer. Refer to
"clntraw_create()" on page 5-10 for more information.

This routine returns NULL if it fails.

SVCXPRT *
svcraw_create ()

This procedure creates a TCP-based service transport to which it returns a pointer.

This routine returns NULL if it fails.

SVCXPRT *
svctcp_create(sockp, send_buf_size, recv_buf_size)

int sockp;
u_int send_buf_size, recv_buf_size;

Parameter
sockp

send_ bu[_ size

Usage
Points to the socket (virtual port). If sockp is RPC_ANYSOCK, a
new socket is created. If the socket is not bound to a local TCP
port, it is bound to an arbitrary port.
The size of the send buffer. Specify zero (0) to choose the default.

5-20 Programmer's Reference

svcudp _create()

recv _bu/_ size The size of the receive buffer. Specify zero (0) to choose the
default.

This procedure creates a UDP-based service transport to which it returns a pointer.

This routine returns NULL if it fails.

SVCXPRT *
svcudp_create(sockp)

int sockp;

Parameter
sockp

Usa2e
Points to the socket associated with the service transport handle.
If sockp is RPC_ANYSOCK, a new socket is created. If the socket is
not bound to a local TCP port, it is bound to an arbitrary port.

Warning: UDP can only transmit 8K bytes of data per message.

xdr accepted reply()
- - This XDR procedure is used to translate RPC reply messages.

xdr array()

bool t
xdr_accepted_reply(xdrs, ar)

XOR *xdrs;
struct accepted_reply *ar;

Parameter
xdrs

Usa2e
Points to an XDR stream.

ar Points to the reply to be represented.

This filter primitive translates between an array and its external representation. This
routine returns a 1 if it succeeds, and a 0 if it does not.

bool t
xdr_array(xdrs, arrp, sizep, maxsize, elsize, elproc)

XOR *xdrs;
char **arrp;
u_int *sizep, maxsize, elsize;
xdrproc_t elproc;

Parameter
xdrs

Usage
Points to an XOR stream.

arrp The address of the pointer to the array.

Chapter 5. Remote Procedure Calls 5-21

sizep
maxsize
elsize
elproc

Points to the element count of the array.
The maximum number of elements accepted.
The size of each of the array's elements (found using sizeof()).
The XDR routine that translates an individual array element.

xdr authunix parms()
- - This XDR procedure translates UNIX-based authentication information.

xdr_bool()

xdr_bytes()

bool t
xdr_authunix_parms(xdrs, aupp)

XDR *xdrs;
struct authunix_parms *aupp;

Parameter
xdrs
aupp

Usage
Points to an XDR stream.
Points to the authentication information.

This primitive translates between booleans and their external representation. This
routine returns a I if it succeeds, and a 0 if it does not.

bool_t
xdr_bool(xdrs, bp)

XDR *xdrs;
bool_t *bp;

Parameter
xdrs
bp

Usage
Points to an XDR stream.
Points to the Boolean.

This XDR procedure translates between counted byte strings and their external
representations. This routine returns a 1 if it succeeds, and a 0 if it does not.

bool_t
xdr_bytes(xdrs, sp, sizep, maxsize)

XDR *xdrs;
char **sp;
u_int *sizep, maxsize;

Parameter
xdrs
sp
sizep
maxsize

Usage
Points to an XD R stream.
Points to the byte string.
Points to the byte string size.
The maximum size of the byte string.

5-22 Programmer's Reference

xdr _ callhdr()

xdr_callmsg(}

xdr_double(}

This XDR procedure translates an RPC message header.

void
xdr_callhdr(xdrs, chdr)

XOR *xdrs;
struct rpc_msg *chdr;

Parameter
xdrs
chdr

Usage
Points to an xo R stream.
Points to the call header.

This XOR procedure is used to translate RPC call messages (header and
authentication; not argument data).

void
xdr_callmsg(xdrs, cmsg)

XOR *xdrs;
struct rpc_msg *cmsg;

Usage Parameter
xdrs
cmsg

Points to an XDR stream.
Points to the call message.

This xo R procedure translates between C double-precision numbers and their
external representations. This routine returns a 1 if it succeeds, and a 0 if it does
not.

bool t
xdr_double(xdrs, dp)

XOR *xdrs;
double *dp;

Parameter
xdrs

Usage
Points to an xo R stream.

dp Points to a double-precision number.

Chapter S. Remote Procedure Calls 5-23

xdr_enum()
This XDR procedure translates between C-enumerated groups and their external
representation. This routine returns a 1 if it succeeds, and a 0 if it does not.

Usage Note: The xdr_enum() procedure is a macro that calls the mvs_xdr_enum()
procedure. The xdr_enum() macro cannot be used as a parameter in another
procedure such as callrpc() and registerrpc().

bool t
xdr_enum(xdrs, ep)

XOR *xdrs;
enum_t *ep;

Parameter
xdrs
ep

Usage
Points to an XDR stream.
Points to the enumerated number.

When calling the procedures callrpc and registerrpc, a stub procedure must be
created for both server and client before the procedure of the application program
using xdr_enum. This procedure should look like the following:

void
static xdr_enum_t(xdrs, ep)

XDR *xdrs;
enum_t *ep;
{

xdr_enum(xdrs, ep)

The xdr_enum_t procedure is used as the inproc and outproc in both the client and
server RPCs.

A sample RPC client would contain the following line:

error= callrpc(argv[l],ENUMRCVPROG,VERSION,ENUMRCVPROC,xdr_enum_t,
&innumber,xdr_enum_t,&outnumber);

5-24 Programmer's Reference

xdr_float()

xdr_inline()

A sample RPC server would contain the following line:

registerrpc(ENUMRCVPROG,VERSION,ENUMRCVPROC,xdr_enum_t,
xdr_enum_t);

This XOR procedure translates between C floating-point numbers and their external
representations. This routine returns a 1 if it succeeds, and a 0 if it does not.

bool t
xdr_float(xdrs, fp)

XOR *xdrs;
float *fp;

Parameter
xdrs

Usage
Points to an xo R stream.

fp Points to the floating-point number.

This XOR procedure returns a pointer to a continuous piece of the XDR stream's
buffer. The value is 1 ong *rather than char *because the external data
representation of any object is always an integer multiple of 32 bits.

long *
xdr_inline(xdrs, len)

XOR *xdrs;
int len;

Parameter
xdrs

Usage
Points to an XD R stream.

/en The byte length of the desired buffer.

Note: xdr_inline() may return NULL if there is not sufficient space in the stream
buffer to satisfy the request.

Chapter 5. Remote Procedure Calls 5-25

xdr_int()

xdr long()

xdr_opaque()

This XDR procedure translates between C integers and their external representations.
This routine returns a 1 if it succeeds, and a 0 if it does not.

bool t
xdr_int(xdrs, ip)

XOR *xdrs;
int *ip;

Parameter
xdrs

Usage
Points to an XOR stream.
Points to the integer. ip

This XD R procedure translates between C long integers and their external
representations. This routine returns a 1 if it succeeds, and a 0 if it does not.

bool_t
xdr_long(xdrs, lp)

XOR *xdrs;
long *lp;

Parameter
xdrs
Ip

Usage
Point to an XOR stream.
Points to the long integer.

This xo R procedure translates between fixed size opaque data and its external
representation. This routine returns a 1 if it succeeds, and a 0 if it does not.

bool t
xdr_opaque(xdrs, cp, cnt)

XOR *xdrs;
char *cp;
u_int cnt;

Parameter
xdrs
cp
cnt

Usage
Points to an XOR stream.
Points to the opaque object.
The size of the opaque object.

5-26 Programmer's Reference

xdr opaque auth()
- - This XDR procedure is used to translate RPC message authentications.

xdr_pmap()

xdr _pmaplist()

bool_t
xdr_opaque_auth(xdrs, ap)

XOR *xdrs;
struct opaque_auth *ap;

Parameter
xdrs

Usage
Points to an XDR stream.

ap Points to the opaque authentication information.

This XDR procedure translates an RPC procedure identification such as is used in
calls to PORTMAP.

bool t
xdr_pmap(xdrs, regs)

XOR *xdrs;
struct pmap *regs;

Parameter
xdrs

Usage
Points to an xo R stream.

regs Points to the PORTMAP parameters.

This XDR procedure translates a variable number of RPC procedure identifications
such as PORTMAP creates.

bool t
xdr_pmaplist(xdrs, rp)

XOR *xdrs;
struct pmaplist **rp;

Parameter
xdrs

Usage
Points to an XDR stream.

rp Points to the PORTMAP data array.

Chapter 5. Remote Procedure Calls 5-27

xdr _ref ere nee()
This XDR procedure provides pointer "chasing" within structures. This routine
returns a 1 if it succeeds, and a 0 if it does not.

bool t
xdr_reference(xdrs, pp, size, proc)

XOR *xdrs;
char **pp;
u_int size;
xdrproc_t proc;

Parameter
xdrs
pp
size
proc

Usage
Points to an XDR stream.
Points to a pointer.
The size of (sizeof()) to which the structure *pp points.
The XD R procedure that translates an individual element of the
type addressed by the pointer.

xdr rejected reply()
- - This XDR procedure is used to translate RPC reply messages.

xdr replymsg()

bool t
xdr_rejected_reply(xdrs, rr)

XOR *xdrs;
struct rejected_reply *rr;

Parameter
xdrs

"

Usage
Points to an XD R stream.
Points to the rejected reply.

This XDR procedure is used to translate RPC reply messages.

bool t
xdr_replymsg(xdrs, rmsg)

XOR *xdrs;
struct rpc_msg *rmsg;

Parameter
xdrs
rmsg

Usage
Points to an XDR stream.
Points to the reply message.

5-28 Programmer's Reference

xdr_short()

xdr_string()

xdr_u_int()

This XOR procedure translates between C short integers and their external
representations. This routine returns a 1 if it succeeds, and a 0 if it does not.

bool t
xdr_short(xdrs, sp)

XDR *xdrs;
short *sp;

Usage Parameter
xdrs
sp

Points to an XDR stream.
Points to the short integer.

This XOR procedure translates between C strings and their external representations.
This routine returns a 1 if it succeeds, and a 0 if it does not.

bool t
xdr_string(xdrs, sp, maxsize)

XDR *xdrs;
char **sp;
u_int maxsize;

Parameter
xdrs

Usage
Points to an XDR stream.

sp
max size

Points to a pointer to the string.
The maximum size of the string.

Usage Note: This procedure uses the userid.STANOARD.TCPXLBIN translation table.
If this table is not found, TCPIP.STANOARD.TCPXLBIN is used.

This XOR procedure translates between C unsigned integers and their external
representations. This routine returns a 1 if it succeeds, and a 0 if it does not.

bool t
xdr_u_int(xdrs, up)

XDR *xdrs;
unsigned *up;

Usage Parameter
xdrs
up

Points to an XD R stream.
Points to the unsigned integer.

Chapter S. Remote Procedure Calls 5-29

xdr u long()

xdr_u_short()

xdr_union()

This XDR procedure translates between C unsigned long integers and their external
representations. This routine returns a 1 if it succeeds, and a 0 if it does not.

bool t
xdr_u_long(xdrs, ulp)

XOR *xdrs;
unsigned long *ulp;

Parameter
xdrs
ulp

Usa2e
Points to an XOR stream.
Points to the unsigned long integer.

This XDR procedure translates between C unsigned short integers and their external
representations. This routine returns a 1 if it succeeds, and a 0 if it does not.

bool t
xdr_u_short(xdrs, usp)

XOR *xdrs;
unsigned short *usp;

Parameter
xdrs
usp

Usage
Points to an xo R stream.
Points to the unsigned short integer.

This xo R procedure translates between a discriminated C union and its external
representation. This routine returns a 1 if it succeeds, and a 0 if it does not.

bool t
xdr_union(xdrs, dscmp, unp, choices, dfault)

XOR *xdrs;
int *dscmp;
char *unp;
struct xdr_discrim *choices;
xdrproc_t dfault;

Parameter
xdrs
dscmp
unp
choices

dfault

Usage
Points to an XDR stream.
Points to the union's discriminant.
Points to the union.
Points to an array detailing which XDR procedure to use on each
arm of the union.
The default XDR procedure to use.

5-30 Programmer's Reference

xdr_void()

xdr _ wrapstring()

xprt _register()

xprt_ unregister()

This XOR procedure always returns a value of 1.

bool t
xdr_void()

This XOR procedure is the equivalent of calling xdr_string() with a maximum size of
MAXUNSIGNEO. It is useful because many RPC procedures implicitly invoke
two-parameter XOR routines, and xdr_string() is a three-parameter routine. This
routine returns a 1 if it succeeds, and a 0 if it does not.

bool t
xdr_wrapstring(xdrs, sp)

XDR *xdrs;
char **sp;

Parameter
xdrs

Usage
Points to an XOR stream.

sp Points to a pointer to the string.

Usage Note: This procedure uses the userid.STANOARO.TCPXLBIN translation table.
If this table is not found, TCPIP.STANOARO.TCPXLBIN is used.

This procedure registers service transport handles with the RPC service package.
This routine also modifies the global variable svc_fds.

void
xprt_register(xprt)

SVCXPRT *xprt;

Usage Parameter
xprt Points to the service transport handle.

This procedure unregisters an RPC service transport handle. A transport handle
should be unregistered with the RPC service package before it is destroyed. This
routine also modifies the global variable svc_fds.

Chapter 5. Rempte Procedure Calls 5-31

void
xprt_unregister(xprt)

SVCXPRT *xprt;

Parameter
xprt

5-32 Programmer's Reference

Usai:e
Points to the service transport handle.

Appendix A. VMCF Interface

You can communicate directly with the TCP IP address space using the simulated
Virtual Machine Communication Facility (VMCF) calls, instead of the Pascal API or
C Sockets. You can use the simulated VMCF calls when:

1. You want to write your program in assembler.

2. You add TCP/IP communication to an existing complex program, and it may be
difficult or impossible for your program to monitor TCP /IP events through the
GetNextNote interface.

If your program drives the simulated VMCF interface directly, do not link any of the
TCP interface library modules with your program. Consequently, you will not be
able to use any of the auxiliary routines such as the Say functions and timer
routines. (You must use MVS timer support, or support provided by your existing
program.)

For further information on the VMCF interface, refer to IBM VM/SP System Facilities
for Programming, SC24-5288.

Sending and Receiving Special Messages
The SMSG command is used to send a special message (Smsg) to a user program, a
started task, or a batch job. The format of the SMSG command is as follows:

I ,..__.___SMSG--user_id--message_text

Parameter

user_id

message_text

Description

Is the name of the user program, the started task, or the batch job
to receive the Smsg.

Is text of the Smsg to be sent.

When TCP/IP establishes the session with VMCF, it does not enable Smsgs. If your
application program accepts and processes Smsgs, you must enable the reception of
Smsgs before using the services provided by the application program. By default,
reception of Smsgs is disabled. The SETSMSG command is used to enable and
disable the reception of Smsgs. The format of the SETS MSG command is as follows:

Appendix A. VM CF Interface A-1

..,._____SETSMSG--c=on
off

Parameter Description

on Enables the reception of Smsgs.

off Disables the reception of Smsgs. This is the default.

Locating Program Call Numbers
Before calling any VMCF routines, locate the correct program call (Pc) number to
invoke the desired function. The PC numbers are contained in VMCF CVT

(MVPXVMCV, a member of TCPIP.COMMMAC). This is pointed to by the SSCTSUSE

field of the VMCF subsystem entry. You can locate the correct sscT by following
the chain beginning with the JESSSCT field. See Table A-1 for a list of labels and
associated tasks.

Table A-1. VMCF CVT Program Call Number Field Names

Function Performed Field Name

VMCF PCVMCF

Set System Mask PCSSM

Read System Mask PCRBADSM

Set Control Register 0 PCS ETC RO

Read Control Register 0 PCRBDCRO

Store then "or" System Mask PCSTOSM

Store then "and" System PCSTNSM

Mask

Figure A-1 on page A-3 is a sample routine to locate the VMCF vector table.

A-2 Programmer's Reference

USING PSA,0
L Rl,FLCCVT
DROP R0
USING CVT, Rl
L Rl,CVTJESCT
USING JESCT, Rl
ICM Rl,B'llll',JESSSCT

*
BZ ERRORl
USING SSCT ,Rl

Get address of CVT
Done with PSA

Get address of JES Control Table

Get address of subsystem
communications table

VMCF not loaded

LOOP CLC SSCTSNAM,=C 1 VMCF 1 Correct entry?
BE FOUND
ICM Rl,B'llll',SSCTSCTA
BNZ LOOP

Yes, get CVT address
Get pointer to next entry
Check next entry

ERRORl OS 0H
*
*
FOUND

*
*

VMCF entry could not be found
Appropriate error processing goes here
L Rl,SSCTSUSE Get address of VMCF CVT
USING MVPXVMCV,Rl
At this point, the VMCF CVT address is in register 1
and it may be saved for use by later parts of the program.

Figure A-1. Routine to Locate the VMCF CVT

Program Call Sequences
The VMCF and IUCV facilities provided with TCP/IP for MVS are similar to the VMCF

and IUCV facilities of VM. Each uses identical parameter formats; the VMCBLOK for
VMCF and the IPARML for IUCV. They differ in the manner in which they are
invoked.

On MVS, VMCF and rncv are invoked via a Program Call (Pc) instruction. The
correct PC number for each of the following functions is determined from the VMCF

CVT. The standard sequence for issuing a program call instruction on MVS is shown
in Figure A-2 on page A-4. On return from the PC instruction, register 13 is intact.
Many other registers are not. Make sure the save area is based by a register whose
contents are restored, or subsequent execution will be unpredictable.

Appendix A. VM CF Interface A-3

LA
ESAR
STM
L
PC
L
SSAR
LM

Rl,PARMS
R14·
R14,R12,12(R13)
R2,PCNUMBER
0(R2)
R14,12(,R13)
R14
R2,R12,28(R13)

Pointer to VMCF parameter list
Save secondary address
Save callers registers
Get PC Number of routine to call
Call routine
Get saved secondary address
Restore secondary address
Restore remainder of registers

Figure A-2. Standard Program Call Sequence

When calling VMCF, the parameter list contains one or three parameters. The first
parameter is a VMCBLOK, containing the actual request. The second and third
parameters are only used for an authorize request. They contain the address of the
routine to receive control on a simulated external interrupt and a token to be passed
to that routine. The calling sequence is shown in Figure A-3.

Rl -> A(•••••)
A(•••••)
A(•••••)

-> VMCBLOK
-> A(•••••) -> Interrupt_routine
-> Token

Figure A-3. VMCF Parameter List

When calling rncv, the parameter list may contain two, three, or four parameters.
The first parameter is the IucvJunction_code. This function code is the value that
would be in register 0 were an IUCV request made on VM. The second parameter is
the IPARML for the request. For a declare buffer request, parameter three is the
address of the interrupt routine to get control when a simulated external interrupt
occurs, and parameter four is a token to be passed to that routine. This is shown in
Figure A-4.

Rl -> A (..•••) -> Iucv Function Code - -A(•.•.•) -> IPARML
A(.•..•) -> A(•....) -> Interrupt_routine
A (••.•.) -> Token

Figure A-4. IUCV Parameter List

The one exception is for an IUCV query request. For that request, the second
parameter is a word that will get the contents of register 0 and the third parameter is
a word that will get the contents of register l as defined by the rncv query function.
Figure A-5 shows this parameter list.

Rl -> A(..•.•) -> Iucv_Function_Code
A(.••.•) -> Query_register0
A(....•) -> Query_registerl

Figure A-5. IUCV Query Parameter List

A-4 Programmer's Reference

Parameters Passed to External Interrupt Routines
When the external interrupt routine receives control, it is called with two
parameters. The first parameter is the half word interrupt code of the interrupt.
The second parameter is the token that was passed at VMCF authorize or rncv
declare buffer time. The calling sequence is the same, so it is possible to use the
same routine to process both VMCF and IUCV interrupts. The parameter list is
shown in Figure A-6.

Rl -> A(.....) -> Interrupt~Code
A(.....) -> Token

Figure A-6. External Interrupt Routine Parameter List

The remainder of the data associated with the interrupt is in the buffer that was
specified on the VMCF authorize or the rncv declare buffer. The interrupt routine is
executed from an Interruption Request Block (IRB) running in the same task as the
one that issued the VMCF authorize or IUCV declare buffer.

Disabling Reception of Interrupts
To disable the reception of VMCF or IUCV interrupts, a pseudo-system mask and
pseudo-control register 0 are supported, along with routines for fetching and setting
them.

Manipulating the System Mask
The system mask may be manipulated with either set-system-mask,
read-system-mask, store-then-and-system-mask, and store-then-or-system-mask.
Set-system-mask and read-system-mask each take a one byte parameter.
Set-system-mask takes the new system mask contents. Read-system-mask returns
the present system mask contents. Store-then-and-system-mask and
store-then-or-system-mask take two one byte parameters. The first is a byte to
contain the old system mask. The second is a byte to AND or OR with the old
system mask. These parameter lists are shown in the following figures.

Rl -> A(••.•.) -> Old_System_Mask

Figure A-7. Read System Mask Parameter List

Rl -> A(•....) -> New_System_Mask

Figure A-8. Set System Mask Parameter List

Appendix A. VM CF Interface A-5

Rl -> A(.•...) -> Old_System_Mask
A(•••••) -> And Mask

Figure A-9. Store Then And System Mask Parameter List

Rl -> A(•••••)
A(•••••)

-> Old_System_Mask
-> Or Mask

Figure A-10. Store Then Or System Mask Parameter List

Updating Control Register 0
Two routines are provided to update control register 0. These are read control
register 0 and set control register 0. These are similar to read system mask and set
system mask, and each takes a single fullword parameter of control register 0. The
following figures show this parameter list.

Rl -> A(•.••.) -> Old_Control_Register0

Figure A-11. Read Control Register 0 Parameter List

Rl -> A(••.••) -> New_Control_Registere

Figure A-12. Set Control Register 0 Parameter List

A-6 Programmer's Reference

Data Structures
Your program uses the standard 40-byte VMCF parameter list (parm list) to submit
VMCF requests to the TCPIP address space. VMCF interrupts result in the similar
40-byte VMCF interrupt header being stored in your address space. In this appendix,
fields in the parameter list and interrupt header are referred to using the field names
in the following pseudo-DSECT:

Vl DS X
V2 DS X
FUNC DS H
MSGID DS F
JOBNAME DS CLB
VADA DS A
LENA DS F
VADB DS A
LENB DS F
* User-doubleword field is divided into the following fields:
ANINTEGR DS F
CONN DS H
CALLCODE OS X
RETCODE DS X

Figure A-13. VMCF Parameter List Fields

The VMCF functions used to communicate with the TCP/IP for MVS program are:

SEND
SEND/RECV
RECEIVE
REPLY
REJECT

In addition, your program must use the AUTHORIZE and UNAUTHORIZE functions
to initialize and halt the use of VMCF.

Figure A-14 on page A-8 shows the equates for the CALLCODE field, used when
you are initiating a function from your program.

Appendix A. VM CF Interface A-7

ABORTtcp
BEGINtcpIPservice
CLOSEtcp
CLOSEudp
ENDtcpIPservice
HANDLEnotice
IShostLOCAL
MONITORcommand
MONITORquery
OPENtcp
OPENudp
RECEIVEtcp
NRECEIVEudp
SENDtcp
SENDudp
STATUStcp
FRECEIVEtcp
FSENDtcp
CLOSErawIP
OPENrawIP
RECEIVErawIP
SENDrawIP
PINGreq

EQU 100
EQU 101
EQU 102
EQU 103
EQU 104
EQU 105
EQU 106
EQU 107
EQU 108
EQU 110
EQU 111
EQU 113
EQU 115
EQU 118
EQU 119
EQU 120
EQU 121
EQU 122
EQU 123
EQU 124
EQU 125
EQU 126
EQU 127

Figure A-14. Equates for the CALLCODE Field. These equates are used when you are
initiating a function from your program.

Figure A-15 shows the equates for the CALLCODE field, used when TCPIP sends a
notification to your program.

BUFFERspaceAVAILABLE EQU 10
CONNECTIONstateCHANGED EQU 11
DATAdelivered EQU 12
URGENTpending EQU 15
UDPdatagramDELIVERED EQU 16
UDPdatagramSPACEavailable EQU 17
RAWIPpacketsDELIVERED EQU 24
RAWIPspaceAVAILABLE EQU 25
RESOURCESavailable EQU 28
UDPresourcesAVAILABLE EQU 29
PINGresponse EQU 30

Figure A-15. Equates for the CALLCODE Field. These equates are used when TCPIP sends
a notification to your program.

Figure A-16 on page A-9 shows the equates used for the connection states.

A-8 Programmer's Reference

CONNECTIONclosing EQU 0
LISTENING EQU 1
NONEXISTENT EQU 2
OPEN EQU 3
RECEIVINGonly EQU 4
SENOINGonly EQU 5
TRYINGtoOPEN EQU 6

Figure A-16. Equates for Connection States

Figure A-17 shows the equates used for notification mask in the HANDLEnotice call.

MaskBUFFERspaceAVAILABLE EQU
MaskCONNECTIONstateCHANGED EQU
MaskOATAdelivered EQU
MaskURGENTpending EQU
MaskUDPdatagramDELIVERED EQU
MaskUDPdatagramSPACEavailable EQU
MaskRAWIPpacketsDELIVERED EQU
MaskRAWIPspaceAVAILABLE EQU
MaskRESOURCESavailable EQU
MaskUDPresourcesAVAILABLE EQU
MaskPINGresponse EQU

X'00000001 1

x•00000002 1

X'00000004'
x•00000020 1

X'00000040'
X'00000080'
X'00004000'
X100008000 1

X100040000 1

X100080000 1

X'00100000'

Figure A-17. Equates for Notification Mask in the HANDLEnotice Call

Figure A-18 shows the assembler format of the Connection Information Record.

Connection OS H
OpenAttemptTimeout OS F
Security OS H
Compartment OS H
Precedence OS x
BytesToRead OS F
UnackedBytes OS F
ConnectionState OS x
Local Socket.Address OS F
Local Socket.Port OS H
ForeignSocket.Address OS F
ForeignSocket.Port OS H

Figure A-18. Assembler Format of the Connection Information Record

Figure A-19 on page A-10 shows Miscellaneous constants.

Appendix A. VMCF Interface A-9

UNSPECIFIEDconnection
DEFAULTsecurity
DEFAULTcompartment
DEFAULTprecedence
UNSPECIFIEDaddress
UNSPECIFIEDport
ANintegerFLAGrequestERR

-48
0
0
0
e
X'FFFF'
X'80000000'

Figure A-19. Miscellaneous Constants

General Information
Except when noted, TCPIP responds immediately to your VMCF requests, and you
should wait for the response before issuing another TCPIP request.

Use of VMCF Parm List Fields
VI:

V2:

MSG ID:

JOBNAME:

You can set the VMCPAUTS flag in Vl for the AUTHORIZE function
to disallow VMCF communication with any address space other
than TCPIP. If you do not set the VMCPAUTS flag in Vt, you must
check the JOBNAME field when processing each interrupt, to ensure
that interrupts from other address spaces are not misinterpreted as
coming from TCPIP. Vt must be zero for all functions other than
AUTHORIZE.

Must be 0.

You must use a unique number for each outstanding transaction.
A simple method is to number your transactions consecutively.

You must set this field to the user ID of the TCP IP address space.

Use of the remaining fields is described individually for each TCP/IP function.

Use of VMCF Interrupt Header Fields
VI: If the interrupt is in response to a transaction initiated by your

address space, the VMCMRESP flag is set. If the TCPIP address
space responds using the REJECT function, the VMCMRJCT flag is
also set. This flag by itself does not usually indicate that the
transaction was unsuccessful. Your program should check the
RETCODE field, as described for each function.

CALLCODE:

RETCODE:

A-10 Programmer's Reference

If the interrupt is in response to a transaction initiated by your
address space (VMCMRESP flag set in Vt), CALLCODE is the same as
set by your program when it initiated the transaction.

Return codes reported in this field are taken from the same set
used by Pascal programs (see "Pascal Return Codes" on
page 2-55). Further information is given in the description of each
function.

TCP/UDP/IP Initialization and Termination Procedures

Begin TCP/IP Service
Your program must perform this function after doing a VMCF AUTHORIZE, but
before performing any other TCP/IP function. It informs TCPIP that your address
space will use TCPIP services. An "End TCP/IP Service" function is logically
performed first, in the case where your address space already has TCPIP resources
allocated.

FUNC:
VADA:
LENA:
VADB:
LENB:
CALLCODE:

SEND
0
1
0
0
BEGINtcpIPservice

The TCPIP address space responds using the VMCF REJECT function. The VMCF
interrupt header, stored in your address space by the response interrupt, contains a
return code in the RETCODE field. The return code can be any of those listed for the
BeginTcplp Pascal procedure (page 2-20).

Specifying the Notifications to Receive
Your program performs this function to specify the notification types to be received
from TCPIP. The VADB field in the VMCF parm list contains a notification mask,
with 1 bit set for each notification you want to handle. The bit to be set for each
notification type is shown in Figure A-17 on page A-9.

Each HANDLEnotice call must specify all the notification types to be handled.
Notification types specified in previous HANDLEnotice calls are not remembered.

FUNC: SEND
VADA: 0
LENA: 1
VADB: Note mask
LENB: 0
CALLCODE: HANDLEnotice

The TCPIP address space responds using the VMCF REJECT function. The VMCF
interrupt header, stored in your address space by the response interrupt, contains a
return code in the RETCODE field. The return code can be any of those listed for the
Handle Pascal procedure (page 2-18).

Appendix A. VM CF Interface A-11

End TCP/IP Service
Your program should perform this function when it has finished using TCPIP

services. All existing TCP connections are reset (aborted), all existing UDP port
opens are canceled, and all IP protocols are released.

FUNC:
VADA:
LENA:
VADB:
LENB:
CALLCODE:

SEND
0
1
0
0
ENDtcpIPservice

The TCPIP address space responds using the VMCF REJECT function. The VMCF

interrupt header, stored in your address space by the response interrupt, indicates a
return code of OK in the RETCODE field.

Open TCP Connection
Use this function to initiate a TCP connection. Note that your program sends a
Connection Information Record to TCPIP. Figure A-18 on page A-9 gives the
assembler format of the record. Figure A-19 on page A-10 gives the equates for the
assorted constants used to set up the record. See the section on the Pascal TcpOpen
procedure (page 2-23) for further information on the usage of the fields of the
Connection Information Record.

FUNC: SEND/RECV
VADA: Address of Connection Information Record initialized by

LENA:
VAOB:

LENB:
CONN:
CALLCODE:

your program
Length of Connection Information Record
Address of Connection Information Record to be filled in
with TCPIP reply
Length of Connection Information Record
UNSPECIFIEDconnection
OPENtcp

If the open attempt cannot be initiated, the TCPIP address space responds using the
VMCF REJECT function. The VMCF interrupt header, which is stored in your address
space by the response interrupt, contains a return code in the RETCODE field. The
return code can be any of those listed for the TcpOpen Pascal procedure.

If the open attempt is not immediately rejected, the TCPIP address space will use the
VMCF RECEIVE function to receive the Connection Information Record describing
the connection to be opened. If the connection then cannot be initiated, TCP IP

responds using the VMCF REJECT function. The RETCODE field in the VMCF

interrupt header will be set as described in the previous paragraph.

If the open was successfully initiated, the TCPIP address space responds using the
VMCF REPLY function to send back the updated Connection Information Record.
The Connection field contains the connection number of the new connection. In

A-12 Programmer's Reference

Send TCP Data

the VMCF interrupt header, stored in your address space by the response interrupt,
the RETCODE field will indicate OK, and the CONN field also contains the connection
number of the new connection. The connection is not yet open; your program
receives notification(s) during the opening sequence. See the section on the Pascal
NotificationinfoType ("Notification Record" on page 2-5) for more information
about this notification. Also refer to "Notifications" on page A-22.

Use either SENDtcp or FSENDtcp to send data on a TCP connection. Refer to the
TcpFSend and TcpSend Pascal procedures (page 2-25) for the advantages and
disadvantages of using each function, and for general information about sending TCP
data.

FUNC:
VADA:
LENA:
VADB:
LENB:
CONN:
CALLCODE:

SEND
Address of data
Length of data
1 if push desired, else 0
1 if urgent data, else 0
Connection number from open
SENDtcp or FSENDtcp

If TCPIP can successfully queue the data for sending, it responds with the VMCF
RECEIVE function. The VMCF interrupt header, stored in your address space by the
response interrupt, indicates a RETCODE of OK

If TCPIP cannot queue the data for sending, it responds with the VMCF REJECT
function. In the VMCF interrupt header, stored in your address space by the
response interrupt, the RETCODE field indicates the type of error. The return code
can be any of those listed for the TcpSend Pascal procedure.

TcpFSend is the same as SENDtcp. If TCPIP cannot accept the data due to a buffer
shortage, it does not respond immediately. Instead, it waits until space is available,
and then uses VMCF RECEIVE to receive the data. While it is waiting, if the
connection is reset, it responds with VMCF REJECT, with a return code as described
above. In summary, TCPIP may not respond immediately to FSENDtcp, and its
response after waiting may indicate either success or failure. If TCPIP responds with
REJECT, your program can check the ANintegerFLAGrequestERR bit in ANINTEGR to
determine if the request was rejected during initial or retry processing (bit on) or
because of connection closing (bit oft).

Your program need not wait for a response from FSENDtcp. It can issue functions
involving other connections, before receiving a response from FSENDtcp.

There is a limit of 50 outstanding VMCF transactions per address space; your
program can therefore have FSENDtcp functions outstanding on only 50 connections
at a time. If your application needs more outstanding sends, use the SENDtcp
function.

Appendix A. VMCF Interface A-13

Receive TCP Data with the FRECEIVEtcp Function
Use the FRECEIVEtcp function to tell TCPIP that you are ready to receive data on a
specified TCP connection. Note that TCPIP does not respond until data is received
or the connection is closed. Consequently, each outstanding FRECBIVEtcp function
results in an outstanding VMCF transaction. There is a limit of 50 outstanding
VMCF transactions per address space; you can therefore have FRECEIVEtcp functions
outstanding on only 50 connections at one time. If your application needs more
outstanding receives, use the RECEIVEtcp function.

Your program need not wait for a response from FRECEIVEtcp. It can issue
functions involving other connections, before receiving a response from
FRECEIVEtcp.

Refer to the TcpFReceive Pascal procedure (page 2-28) for general information
about receiving TCP data.

FUNC:
VADA:
LENA:
VADB:
LENB:
CONN:
CALLCODE:

SEND/RECV
0
1
Address of buffer to receive data
Length of buffer to receive data
Connection number from open
FRECEIVEtcp

If TCPIP accepts the request, your program will receive no response until TCPIP is
ready to deliver data to your buffer, or until the request is canceled, because the
connection has closed without delivering data.

When TCPIP is ready to deliver data for this connection, it issues a VMCF REPLY
function. Significant fields in the VMCF interrupt header, stored in your address
space by the response interrupt, are:

LENB:

ANINTEGR:

CONN:

RETCODE:

The residual count. Subtract this from the size of your buffer
(LENB value in parameter list) to determine the number of bytes
actually delivered.

The high-order byte is nonzero if data was pushed; otherwise, it is
zero. The low-order three bytes are interpreted as a 24-bit integer,
indicating the off set of the byte following the last byte of urgent
data, measured from the first byte of data delivered to your buffer.
If it is zero or a negative number, then there is no urgent data
pending.

The connection number.

OK

If TCPIP responds with the VMCF REJECT function (VMCFRJCT flag set in the VMCF
interrupt header), either:

1. It did not accept the request, in which case the ANintegerFLAGrequestERR bit in
ANINTEGR is on.

A-14 Programmer's Reference

2. It accepted the request initially, but the connection closed before data was
delivered. ANintegerFLAGrequestERR bit in ANINTEGR is off. In this case, the
RETCODE field indicates one of the reason codes listed for
CONNECTIONstateCHANGED with the NewState field set to NONEXISTENT. See
Usage Note 3 on page 2-8 for further information. Note that your program
does not have to take any special action in this case, because it receives one or
more CONNECTIONstateCHANGED notifications indicating that the connection is
closing.

Receive TCP Data with the RECEIVEtcp Function
Use the RECEIVEtcp function to tell TCPIP that you are ready to receive data on a
specified TCP connection. Unlike FRECEIVEtcp, TCPIP responds immediately to
RECEIVEtcp. You can have more than SO receives pending using RECEIVEtcp
without exceeding the limit of SO outstanding VMCF transactions.

Refer to the TcpReceive Pascal procedure for (page 2-28) general information about
receiving TCP data.

FUNC:
VADA:
LENA:
VADB:
LENB:
CONN:
CALLCODE:

SEND
0
1
(:')

Length of buffer to receive data
Connection number from open
RECEIVEtcp

TCPIP responds with the VMCF REJECT function. The RETCODE field of the VMCF
interrupt buffer, stored in your address space, indicates whether the request was
successful. If yes (RETCODE of OK), you will later receive a DATAdelivered
notification delivering data to your buffer. If not, then the return code is one of
those listed for the TcpReceive Pascal procedure.

Close a TCP Connection
Use the CLOSEtcp function to initiate the closing of a TCP connection. Refer to the
TcpClose Pascal procedure (page 2-31) for general information about the close
function.

FUNC:
VADA:
LENA:
VADB:
LENB:
CONN:
CALLCODE:

SEND
(:')

1
(:')

(:')

Connection number from open
CLOSEtcp

TCPIP responds with the VMCF REJECT function. The RETCODE field of the VMCF
interrupt buffer, stored in your address space, contains the return code. It is one of
those listed for the TcpClose Pascal procedure.

Appendix A. VM CF Interface A-15

Abort a TCP Connection
Use the ABORTtcp function to abort a TCP connection. Refer to the TcpAbort
Pascal procedure (page 2-32) for general information about the abort function.

FUNC:
VADA:
LENA:
VADB:
LENB:
CONN:
CALLCODE:

SEND
0
1
0
0
Connection number from open
ABORTtcp

TCPIP responds with the VMCF REJECT function. The RETCODE field of the VMCF
interrupt buffer, stored in your address space, contains the return code. It is one of
those listed for the TcpAbort Pascal procedure.

Obtain Current Status of TCP Connection

Close a UDP Port

Use the STATUStcp function to obtain a Connection Information Record giving the
current status of a TCP connection. Refer to Figure A-18 on page A-9 for the
assembler format of the Connection Information Record. Refer to the TcpStatus
Pascal procedure (page 2-33) for general information about the status function.

FUNC:
VADA:
LENA:
VADB:
LENB:
CONN:
CALLCODE:

SEND/RECV
(:)

1
Address of Connection Information Record to fill in
Length of Connection Information Record to fill in
Connection number from open
STATUStcp

TCP IP responds with the VMCF REPLY function, filling in the record whose address
you supplied in LENB. The record is valid only if the return code, which is in the
RETCODE field of the VMCF interrupt header, returns OK. Otherwise, the return code
is one of those listed for the TcpStatus Pascal procedure.

Use the CLOSEudp function to close a UDP port. Refer to the UdpClose Pascal
procedure (page 2-41) for general information about the close UDP function.

FUNC:
VADA:
LENA:
VADB:
LENB:
CONN:
CALLCODE:

SEND
0
1
0
0
Connection number
CLOSEudp

A-16 Programmer's Reference

Open a UDP Port

Send UDP Data

TCPIP responds with the VMCF REJECT function. The RETCODE field in the VMCF
interrupt header can be any of the return codes listed for the UdpClose Pascal
procedure. If the return code is OK, and your program specified UNSPECIFIEDport
as the port number, the actual port number assigned is encoded in the CONN field of
the interrupt header. Add 32 768 to the CONN field, using unsigned arithmetic, to
compute the port number.

Use the OPENudp function to open a UDP port. Refer to the UdpOpen Pascal
procedure (page 2-38) for general information about the UDP close function.

FUNC:
VADA:
LENA:
VADB:
LENB:
CONN:

SEND
0
1
Local port number or UNSPECIFIEDport
Local address
Connection number: An arbitrary number, which your program
will use in subsequent actions involving this port.

CALLCODE: OPENudp

TCPIP responds with the VMCF REJECT function. The RETCODE field in the VMCF
interrupt header may be any of the return codes listed for the UdpOpen Pascal
procedure.

Use the SENDudp function to send a UDP datagram. Refer to the UdpSend Pascal
procedure (page 2-39) for general information about the UDP send function.

FUNC:
VADA:
LENA:
VADB:
LENB:
CONN:
CALLCODE:

SEND
Address of datagram data
Length of datagram data (up to 8492 bytes)
Destination port number
Destination address
Connection number
SENDudp

If TCPIP can send the datagram, it responds with the VMCF RECEIVE function. The
RETCODE field in the VMCF interrupt header, stored in your address space by the
response interrupt, contains OK. If TCPIP cannot send the datagram, it responds
with the VMCF REJECT function. The RETCODE field contains one of the return
codes listed for the UdpSend Pascal procedure.

Appendix A. VMCF Interface A-17

Receive UDP Data
Use the NRECEIVEudp function to tell TCPIP that your program is ready to receive a
UDP datagram on a particular port. TCPIP responds immediately to inform you
whether it accepted the request. If it has, your program receives a
UDPdatagramDELIVERED notification when a datagram arrives. Refer to the
UdpNReceive Pascal procedure (page 2-40) for further information about receiving
UDP datagrams.

FUNC:
VADA:
LENA:
VADB:
LENB:
CONN:
CALLCODE:

SEND
0
1
0
Size of your buffer to receive datagram
Connection number
NRECEIVEudp

TCPIP responds with the VMCF REJECT function. The RETCODE field of the VMCF
interrupt header, which is stored in your address space, contains one of the return
codes listed for the UdpNReceive Pascal procedure.

Determine Whether an Address is Local
Use the 1shostLOCAL function to determine whether a given internet address is one
of your host's local addresses. Refer to the IsLocalAddress Pascal procedure (page
2-50) for general information about this procedure.

FUNC:
VADA:
LENA:
VADB:
LENB:
CONN:
CALLCODE:

SEND
0
1
Internet address to be tested
0
UNSPECIFIEDconnection
IShostLOCAL

TCPIP responds with the VMCF REJECT function. The RETCODE field of the VMCF
interrupt header contains the return code, as described in the IsLocalAddress Pascal
procedure section.

Instruct TCPIP to Obey a File of Commands
Use the MONITORcommand function to instruct TCPIP to obey a file of commands.
Refer to the MonCommand Pascal procedure (page 2-35) for more information.
Refer to the IBM Transmission Control Protocol/Internet Protocol for MVS:

Installation and Maintenance book for more information on the OBEYFILE
command, which uses the MonCommand procedure.

A-18 Programmer's Reference

Owner
OatasetPassword
FullOatasetName
MemberName
OOName

OS CL8
OS CL8
OS CL44
OS CL8
OS CL8

Figure A-20. Assembler Format of the SpecOfFileType Record for MVS

FUNC:
VADA:
LENA:
VAOB:
LENB:
CONN:
CALLCODE:

SEND/RECV
Address of SpecOfFile record
Length of SpecOfFile record
0
0
UNSPECIFIEDconnection
MONITORcommand

If TCPIP cannot process the request, it responds immediately with the VMCF REJECT
function. Otherwise, it uses the VMCF RECEIVE function to receive the SpecOfFile
record provided by your program. It then attempts to process the file, and uses the
VMCF REJECT function to report the return code. In either case, the return code is
one of those specified for the MonCommand Pascal procedure.

Obtain Status Information from TCPIP
Use the MONITORquery function to obtain status information from the TCPIP
address space or to request that it perform certain functions. Refer to the
MonQuery Pascal procedure (page 2-36) for general information. Assembler
formats of constants and records used with MONITORquery are:

COMMANDcpCMD EQU 6
COMMANDdropCONNECTION EQU 8
QUERYhomeONLY EQU 9

QueryType DS X
* For QueryType = QUERYhomeONLY: No other fields
* For QueryType = COMMANOcpCMO:
CpCmd OS H Length of command

DS 100C Command
* For QueryType = COMMANDdropCONNECTION:

ORG CpCmd
Connection OS H

Figure A-21. MonQueryRecordType

The Pascal type Home Only ListType is an array of 64 InternetAddressType
elements. InternetAddressType is a fullword.

Appendix A. VM CF Interface A-19

FUNC:
VADA:
LENA:
VADB:
LENB:
CONN:
CALLCODE:

SEND/RECV
Address of MonQueryRecord describing request
Length of MonQueryRecord
Address of return buff er
Length of return buffer
UNSPECIFIEDconnection
MONITORquery

If TCPIP cannot process the request, it responds immediately with the VMCF REJECT
function. Otherwise, it uses the VMCF RECEIVE function to receive the
MonQueryRecord describing your request, followed by either a VMCF REPLY to
send the response to your return buffer (not applicable to
COMMANDdropCONNECTION), or a VMCF REJECT to send a return code but no
return data. Refer to the MonQuery Pascal procedure for information on the return
codes and the data returned (if any).

Send an ICMP Echo Request
Use the PINGreq function to send an ICMP echo request (Ping request) to a specified
host and wait a specified time for a response. Refer to the PingRequest Pascal
procedure (page 2-34) for general information.

FUNC:
VADA:
LENA:
VADB:
LENB:
ANINTEGR:
CALLCODE:

SEND
(:)

1
Internet address of foreign host
Length of ping packet
Timeout
PINGreq

TCPIP uses the VMCF REJECT function to respond to the request. The RETCODE
field of the VMCF interrupt header, which is stored in your address space by the
response interrupt, contains one of the return codes listed for the PingRequest
Pascal procedure. If the return code is OK, your program receives a PINGresponse
notification later.

Tell TCPIP That Your Program Will Use a Particular IP Protocol
Use the OPENrawip function to tell TCPIP that your program is ready to send and
receive packets of a specified IP protocol. Refer to the RawlpOpen Pascal procedure
(page 2-42) for general information.

A-20 Programmer's Reference

FUNC:
VADA:
LENA:
VADB:
LENB:
CONN:
CALLCODE:

SEND/RECV
0
1
0
0
Protocol number
OPENrawip

TCPIP uses the VMCF REJECT function to respond to the request. The RETCODE
field of the VMCF interrupt header, which is stored in your address space by the
response interrupt, contains one of the return codes listed for the Raw lpOpen Pascal
procedure.

Tell TCPIP That Your Program Will No Longer Use a Particular IP Protocol
Use the CLOSErawip function to tell TCPIP that your program is ready to cease
sending and receiving packets of a specified IP protocol. Refer to the RawlpClose
Pascal procedure (page 2-45) for information.

FUNC:
VADA:
LENA:
VADB:
LENB:
CONN:
CALLCODE:

SEND/RECV
0
1
0
e
Protocol number
CLOSErawip

TCPIP uses the VMCF REJECT function to respond to the request. The RETCODE
field of the VMCF interrupt header: stored in your address space by the response
interrupt, contains one of the return codes listed for the RawlpClose Pascal
procedure.

Send Raw IP Packets
Use the SENDrawip function to send raw IP packets of a given protocol. Refer to
the RawlpSend Pascal procedure (page 2-44) for general information.

FUNC:
VADA:
LENA:
VADB:
LENB:
CONN:
CALLCODE:

SEND/RECV
Address of buffer containing packets to send
Length of buff er
0
0
(Number of packets shifted left 8 bits) + protocol number
SENDrawip

If TCPIP immediately determines that the request cannot be fulfilled, it responds
with the VMCF REJECT function. Otherwise, it uses the VMCF RECEIVE function to
receive your da~a, followed by VMCF REJECT. The RETCODE field of the VMCF

Appendix A. VMCF Interface A-21

interrupt header, which is stored in your address space by the response interrupt,
contains one of the return codes listed for the RawlpSend Pascal procedure.

Receive Raw IP Packets of a Given Protocol

Notifications

Use the RECEIVErawip function to tell TCPIP that your program is ready to receive
raw IP packets of a given protocol. Your program receives a
RAWIPpacketsDELIVERED notification when a packet arrives. Refer to the
RawlpReceive Pascal procedure (page 2-43) and the section on the Pascal
N otificationlnfo Type (page 2-5) for general information.

FUNC:
VADA:
LENA:
VADB:
LENB:
CONN:
CALLCODE:

SENO/RECV
El
1
El
Length of your buffer
Protocol number
RECEIVErawip

TCPIP responds with the VMCF REJECT function. The RETCODE field of the VMCF
interrupt header, stored in your address space by the response interrupt, contains
one of the return codes listed for the RawlpReceive Pascal procedure.

Described below are the VMCF interrupt headers that are stored in your address
space for the various types of notifications. Also indicated is the action that your
program should take.

Refer to the Pascal NotificationlnfoType record ("Notification Record" on
page 2-5) for general information on the various notification types.

The VMCF transaction for a notification must be completed before TCPIP sends your
program another notification. Your program must therefore be careful to take the
VMCF actions specified below, or TCPIP cannot communicate further with your
program.

A-22 Programmer's Reference

BUFFERspaceAVAILABLE

FUNC: SEND
JOB NAME: Name of the TCPIP address space
VADB: Space available to send on this connection, in bytes.

Currently always 8192
CONN: Connection number
CALLCODE: BUFFERspaceAVAILABLE
RETCODE: OK

Your program should issue the VMCF REJECT function, with VMCF parm
list copied from the interrupt header, with the following fields changed:

Vl: (:)
V2: (:)
FUNC: REJECT

Figure A-22. BU FFERspaceA v AILABLE Notification

CONNECTIONstateCHANGED

FUNC: SEND
JOB NAME: Name of the TCPIP address space
VADB: New connection state (see Figure A-16)
LENB:
CONN:

Reason for state change, if new state is NONEXISTENT
Connection number

CALLCODE: CONNECTIONstateCHANGED
RETCODE: OK

Your program should issue the VMCF REJECT function, with VMCF parm
list copied from the interrupt header, with the following fields changed:

Vl: 0
V2: (:)
FUNC: REJECT

Figure A-23. CONNECTIONstateCHANGED Notification

Appendix A. VM CF Interface A-23

DATAdelivered

PINGresponse

FUNC:
JOBNAME:
LENA:
VADB:
LENB:

CONN:
CALLCODE:
RETCODE:

SEND
Name of the TCPIP address space
Length of data being delivered
Non-zero if data was pushed, else zero.
The offset of the byte following the last byte of urgent
data, measured from the first byte of data delivered to your
buffer. If zero or negative then there is no urgent data
pending.
Connection number
DATAdelivered
OK

Your program should issue the VMCF RECEIVE function, with VMCF pa rm
list copied from the interrupt header, with the following fields changed:

Vl: 0
V2: 0
FUNC: RECEIVE
VADA: Address of your buffer to receive data. Buffer should be

at least as long as indicated by LENA. LENA will be no
larger than the buffer length you specified using the
RECEIVEtcp function.

Figure A-24. DATAdelivered Notification

FUNC:
JOB NAME:
VADB:

LENB:

ANINTEGR:
CALLCODE:
RETCODE:

SEND
Name of the TCPIP address space
High order word of elapsed time, in TOD clock format
Valid only if ANINTEGR is zero
Low order word of elapsed time, in TOD clock format
Valid only if ANINTEGR is zero
Return code from ping operation
PING response
OK

Your program should issue the VMCF REJECT function, with VMCF parm
list copied from the interrupt header, with the following fields changed:

Vl: 0
V2: 0
FUNC: REJECT

Figure A-25. PINGresponse Notification

A-24 Programmer's Reference

RAWIPpacketsDELIVERED

FUNC:
JOBNAME:
ANINTEGR:
LENA:

CONN:

CALLCODE:
RETCODE:

SEND
Name of the TCPIP address space
Total length of datagram being delivered (including IP header)
Length of data (including IP header) that TCPIP will
deliver to you.
Low-order byte is protocol number, 3 high order bytes
is number of packets, currently always 1.
RAWIPpacketsDELIVERED
OK

Your program should issue the VHCF RECEIVE function, with VHCF pa rm
list copied from the interrupt header, with the following fields changed:

Vl: 0
V2: 0
FUNC: RECEIVE
VADA: Address of your buffer to receive data. Buffer should be

at least as long as indicated by LENA.

Figure A-26. RAWIPpacketsDELIVERED Notification

RAWIPspaceAVAILABLE

FUNC: SEND
JOB NAME: Name of the TCPIP address space
LENB:
CONN:

Space available. Always equals maximum IP datagram size.
Protocol number

CALLCODE: RAWIPspaceAVAILABLE
RETCODE: OK

Your program should issue the VHCF REJECT function, with VHCF parm
list copied from the interrupt header, with the following fields changed:

Vl: 0
V2: 0
FUNC: REJECT

Figure A-27. RAWIPspaceAVAILABLE Notification

Appendix A. VMCF Interface A-25

RESOURCESavailable

FUNC: SEND
JOBNAME: Name of the TCPIP address space
CALLCODE: RESOURCESavailable
RETCODE: OK

Your program should issue the VHCF REJECT function, with VHCF pa rm
list copied from the interrupt header, with the following fields changed:

Vl: 0
V2: 0
FUNC: REJECT

Figure A-28. RESOURCESavailable Notification

UDPdatagramDELIVERED

FUNC:
JOBNAME:
LENA:
VADB:
LENB:
ANINTEGR:

SEND
Name of the TCPIP address space
Length of data being delivered.
Source port
Source address
length of entire datagram excluding UDP header.
than LENA then the

If larger

datagram was too large to fit into the buffer size specified
in NRECEIVEudp call, and has been truncated.

CONN: Connection number
CALLCODE: UDPdatagramDELIVERED
RETCOOE: OK

Your program should issue the VHCF RECEIVE function, with VMCF parm
list copied from the interrupt header, with the following fields changed:

Vl: 0
V2: 0
FUNC: RECEIVE
VADA: Address of your buffer to receive data. Buffer should be

at least as long as indicated by LENA.

Figure A-29. UDPdatagramDELIVERED Notification

A-26 Programmer's Reference

UDPdatagramSPACEavailable

FUNC:
JOB NAME:
CONN:
CALLCODE:
RETCODE:

SEND
Name of the TCPIP address space
Connection number
UDPdatagramSPACEavailable
OK

Your program should issue the VMCF REJECT function, with VMCF parm
list copied from the interrupt header, with the following fields changed:

Vl: 0
V2: 0
FUNC: REJECT

Figure A-30. UDPdatagramSPACEavailable Notification

UDPresourcesAVAILABLE

FUNC: SEND
JOBNAME: Name of the TCPIP address space
CALLCODE: UDPresourcesAVAILABLE
RETCODE: OK

Your program should issue the VMCF REJECT function, with VMCF parm
list copied from the interrupt header, with the following fields changed:

Vl: 0
V2: 0
FUNC: REJECT

Figure A-31. UDPresourcesAVAILABLE Notification

Appendix A. VMCF Interface A-27

URGENTpending

FUNC: SEND
JOBNAME: Name of the TCPIP address space
VADB: Number of bytes of queued incoming data not yet received

by your program.
LENB: Subtract 1 from LENB to get the offset of the byte following

the last byte of urgent data, measured from the first byte not
yet received by your program. If this quantity is zero or
negative then there is no urgent data pending.

CONN: Connection number
CALLCODE: URGENTpending
RETCODE: OK

Your program should issue the VHCF REJECT function, with VHCF parm
list copied from the interrupt header, with the following fields changed:

Vl: 0
V2: 0
FUNC: REJECT

Figure A-32. URGENTpending Notification

A-28 Programmer's Reference

Appendix B. Interface to SMTP Address Space

This appendix is intended for the reader interested in details of the interfaces to the
SMTP address space. It may also be of interest to implementers of electronic mail
preparation programs that communicate with the IBM TCP/IP for MVS

implementation of the Simple Mail Transfer Protocol (SMTP).

There are two interfaces to the SMTP address space:

1. Interface from the TCP /IP network. SMTP commands and replies can be sent
and received interactively over a TCP network connection. Mail from TCP

network sites destined for local MVS users (or users on a Network Job Entry
(NJE) network attached to the local MVS system) arrives over this interface. All
commands and data received and transmitted through this interface use ASCII

characters.

2. Interface from the Job Entry System (JES) spool, including any connected NJE

nodes. SMTP commands can be written into a SYSOUT data set, with an external
writer name of the SMTP address space. SMTP processes each of the commands
in the data set in sequence, exactly as if they had been transmitted over a TCP

connection. This is how mail is sent from local MVS users to recipients on the
TCP network. Batch SMTP data sets must contain commands and data in
EBCDIC characters.

Format of Batch SMTP Command Data Sets
Data sets containing SMTP commands can be written to the JES spool as SYSOUT

data sets. These SYSOUT data sets contain either punch or netdata records. Data
sets originate from users on the same system as the SMTP address space or from
users on any system connected to the host system through an NJE network.

Files containing SMTP commands can have either fixed-length or variable-length
records. All trailing blanks on each record are truncated. Records longer than
8 192 characters are also truncated.

The SMTPNOTE command packaged with the TCP /IP for MVS program converts mail
destined for TCP network recipients into batch SMTP format, and spools the batch
SMTP file to the SMTP address space.

SMTP Responses
SMTP commands arrive over a TCP connection or over a batch SMTP connection.
With either connection, a response to each command is generated. All responses are
prefixed with a three-digit number. A simple interpretation of the response is
possible by inspecting the first digit of the response code:

Appendix B. Interface to SMTP Address Space B-1

First Digit Description

1 Not used for SMTP.

2 Positive response; command accepted.

3 Positive response; now send the data associated with the command.

4 Temporary negative response. Try again later.

5 Permanent negative response. The command has been rejected.

If SMTP commands arrive over a TCP connection, all responses (positive or negative)
are returned over that TCP connection. If SMTP commands arrive over a batch SMTP

connection, all responses are written to a batch SMTP response file.

If verbose mode is enabled for a batch SMTP connection, SMTP returns the batch
SMTP response file to the origination point of the spool file. The origination point
is determined from information in the NETDATA header if the file arrives in netdata
format, or the MAIL FROM command if the file arrives in punch format. If the batch
SMTP connection is not in verbose mode, the batch SMTP response file is not
returned to the point of origin.

If an error occurs during the processing of commands over a batch SMTP

connection, such as reception of a negative response (with first digit of 4 or 5), an
error report is mailed back to the sender of the mail. The sender is determined from
the last MAIL FROM command received that was both syntactically and semantically
valid. If the sender cannot be determined from a MAIL FROM command, the sender
is assumed to be the origination point of the batch SMTP command file. The error
report mailed to the sender includes the batch SMTP response file and the text of the
undeliverable mail.

All SMTP commands and data that arrive over TCP/IP or batch SMTP connections are
subject to the following restrictions. The default values are as follows:

Table B-1. Default Values of SMTP Commands and Data

Maximum length of command line 512 characters

Maximum length of data line 1 024 characters

Maximum length of path 256 characters

Maximum length of domain name 256 characters

Maximum length of user name 256 characters

SMTP Path-Address Handling
The syntax of a path_address used in both MAIL FROM and RCPT TO commands is
defined in RFC 821 (refer to "MAIL FROM" on page B-5 and "RCPT TO" on
page B-6). Path addresses are simplified and rewritten according to the following
rules:

1. If the local part of a mailbox name includes a percent sign (%) and the domain
of the mailbox is the host system, SMTP rewrites the address by treating that

B-2 Programmer's Reference

portion of the local part to the right of the % as the real destination host. For
example, the path address

John%yourhost@ourhost.our.edu

is rewritten by SMTP running at ourhost.our.edu as:

John@yourhost

2. Path addresses with source routes are accepted and rewritten to remove the
domain name of the host system. For example, the path address

@ourhost.our.edu,@next.host.edu:John@yourhost

is rewritten by SMTP running at ourhost.our.edu as:

@next.host.edu:John@yourhost

SMTP Commands

DATA

This section describes the SMTP commands that are recognized by the TCP/IP for
MVS implementation of SMTP.

The DATA command is used after a HELO command, a MAIL FROM command, and
at least one RCPT TO command have been accepted. Following receipt of a reply
message (354), the sender must transmit the body of the mail.

The body of the mail is terminated by a record that contains a single period (.).
When receiving mail over a TCP connection, this ASCII period should be followed by
an ASCII CRLF character. If any record in the body of the mail begins with a period,
the sending SMTP program must convert the period into a pair of periods(..). When
the receiving SMTP encounters a record that begins with two periods in the body of
the mail, it discards the leading period. This convention permits the body of mail to
contain records that would otherwise be interpreted as signaling the end of the body
of mail. These rules must be followed over both TCP and batch SMTP connections.

The SMTPNOTE command included in the TCP/IP for MVS program performs this
period doubling on all mail spooled to SMTP. If the body of the mail in a batch
SMTP command is not explicitly terminated by a record with a single period, SMTP

adds one.

After a period has been received, the SMTP connection is reset to the initial state
(that is, before any sender or recipients have been specified). Additional MAIL

FROM, RCPT TO, DATA, and other commands can now be sent. If there is no more
mail to be delivered, terminate the connection with the QUIT command. If a QUIT

command is not found at the end of a batch SMTP command file, it is implied.

If SMTP runs out of local mail storage space, it sends a reply with a 451 code. If the
length of the body of the mail exceeds the MaxMailBytes parameter (defined in the
SMTP configuration data sets to be 512KB), SMTP sends a reply with a 552 code.
For more information on MaxMailBytes, refer to IBM Transmission Control
Protocol/ Internet Protocol for MVS: Installation and Maintenance.

Appendix B. Interface to SMTP Address Space B-3

HELO

HELP

When mail arrives over a batch SMTP connection from an NJE network host, the
RFc822 header fields are modified to reflect that mail has been transferred to the TCP

network recipients through a gateway. The mail header records: From, Sender,
ReSent-From, ReSent-Sender, Reply-To, ReSent-Reply-To, and Return-Path may
contain NJE network addresses. For the TCP network recipient to be able to respond
to this mail, the NJE network addresses must have the domain name of the gateway
added to the path.

For example, mail in batch SMTP format spooled to the SMTP address space running
at OURHOST.OUR.EDU, with SMTP runtime options GATEWAY and NJEDOMAIN

BITNET, and containing the mail header record:

Sender: JOHN@YOURHOST

is rewritten as

From: JOHN%YOURHOST.BITNET@ourhost.our.edu

The HELO command must be sent once before a MAIL FROM command to identify
the domain_name of the sending host to SMTP.

I ,..._____HELO--domatn_name

domain_ name
Is the domain name of the sending host.

The HELP command returns a multiline reply with some very general information
about the SMTP commands. You can issue the HELP command with the parameter
command_name to request information about a specific SMTP commands .

.,._HELP
Lcommand name_J

. 8-4 Programmer's Reference

MAIL FROM

NOOP

QUEU

The MAIL FROM command must be used once after a HELO command to specify the
sender of the mail.

I ~MAIL FROM:<sender_path_address

sender _path_ address
Is the full path address of the sender of the mail.

For information on how to specify path address, refer to the "SMTP Path-Address
Handling" on page B-2.

This command returns an OK return code when SMTP is responding.

This command returns a multiline reply with detailed information about mail
queued for delivery. Information is returned about mail in the spool queue, mail
currently active, mail currently queued, mail in the retry queue, and mail in the
undeliverable queue. This command can be issued from a batch SMTP session, in
which case it must be preceded by a VERB ON command. If the batch SMTP file is
in punch format, the QUEU command must be preceded by appropriate HELO and
MAIL FROM commands.

Spool Queue

Active

Queued

Retry Queue

Contains mail that is destined for recipients on the local MVS

system, or for recipients on an NJE system attached to the local
MVS system. This queue is generally empty because SMTP can
deliver this mail quickly by spooling it to the local recipient or
NJE.

Indicates that if SMTP is currently transmitting to a TCP network
destination, all the mail queued for that destination is shown to be
Active.

All mail that arrived over a batch SMTP connection (and mail from
TCP connections that is to be forwarded to another TCP network
destination through source routing) is placed on the queued list.
As soon as SMTP receives resources from the TCPIP address space,
mail that is queued is "promoted" to be Active.

Contains mail placed here after SMTP has tried to transmit mail to
each of the TCP network hosts, but was unable to either open a
connection or complete delivery over the connection. After a

Appendix B. Interface to SMTP Address Space B-5

QUIT

RCPT TO

RSET

number of minutes specified by RETRYINT, mail is promoted from
the Retry Queue to the Queued state. For more information
about the RETRYINT variable, refer to IBM Transmission Control
Protocol/Internet Protocol/or MVS: Installation and Maintenance.

Undeliverable Queue
Contains mail placed here if SMTP cannot deliver mail to a local
MVS recipient (or a recipient on the NJE network attached to the
local MVS system) because spool space on the local MVS system is
full. After spool space has become available and SMTP has been
restarted, delivery is attempted again.

This command terminates an SMTP session.

You can use the RCPT TO command any number of times to specify the recipients of
the mail. You must use the RCPT TO command after a MAIL FROM command. If
the recipient's host is unknown to the local host system, the RCPT TO command
receives a negative reply. If a name server is used for domain name resolution, MX

records are used to resolve the recipient's internet address.

I ~CPT TO:<rectptent_path_address

recipient ya th_ address
Is the full path address of a recipient of the mail.

This command resets the SMTP connection to the initial state. The sender and
recipient buffers are erased, and the connection is ready to begin a new mail
transaction.

B-6 Programmer•s Reference

TICK

VERB

VRFY

Use this command in conjunction with the VERB ON command to insert an
identifier into the batch SMTP response file. This command may be useful for some
mail systems that keep track of batch SMTP response files.

The TICK command has no effect when it is issued over a TCP connection to SMTP .

....,__TICK-identifier'----------------------1~

Use this command to enable or disable verbose mode. When verbose mode is
enabled, batch SMTP commands and associated replies are recorded in the batch
SMTP response file. If verbose mode is disabled (the default), only the replies (not
the commands) are recorded in the batch SMTP response file. When verbose mode
is enabled, the batch SMTP response file is sent back to the origination point of the
batch SMTP command file.

When the VERB command is issued over a TCP connection to SMTP, there is no
effect.

Use this command to verify the existence of a given mailbox on the local host.
Specify the user ID of a user on the local host to see if that user ID exists.

SMTP commands and responses issued to TCP host abc.com:

VRFY sleepy
250 sleepy@abc.com

The EXPN command is implemented as VRFY.

I ,..____VRFY----mai!box

mailbox
ls the user ID of the mailbox.

Appendix B. Interface to SMTP Address Space B-7

Unimplemented Commands
The SEND, SOML, SAML, and TURN SMTP commands are not implemented.

Batch SMTP Example
Listed below is an example of sending mail from an NJE network host to two TCP

network recipients. The NJE network is BITNET, and the NJE host is named
YOURHOST. This batch SMTP file is spooled to SMTP at OURHOST which is running
with the run-time arguments GATEWAY and NJEDOMAIN BITNET. OURHOST is a
BITNET host and is also connected through a TCP network to the hosts rsch.our.edu
and ai.our.edu.

HELO YOURHOST
MAIL FROM:<SNEEZY@YOURHOST>
RCPT TO:<msgs@rsch.our.edu>
RCPT TO:<sneezy@ai.our.edu>
DATA
Date: Fri, 28 Jul 89 04:23:35 CST
From: Sneezy Dwarf<SNEEZY@YOURHOST>
To: <msgs@rsch.your.edu>
Cc: <sneezy@ai.your.edu>
Subject: It's a Boy!

Snow White-Dwarf and I are pleased to announce the arrival of:

Sneezy Edward Dwarf Jr.

born on Tuesday, July 25, 1989 at 10:47 pm. He weighs 6lbs, 15.5
ounces and measures 18.5 inches from toe to honker.
Mother and Father are doing fine.

QUIT

SMTP rewrites the From: line to reflect that the mail has been transferred from an
NJE network (in this case, BITNET) to a TCP network. The TCP network recipients
receive:

From: Sam Sneezy <SNEEZY%YOURHOST.BITNET@ourhost.our.edu>

B-8 Programmer's Reference

Appendix C. Assembler Calls for the Pascal API

RTcpExtRupt

RTcpVmcfRupt

The content of this appendix is Internal Product Information and must not be used
as programming interface information.

This procedure is a version of TcpExtRupt Pascal procedure and is callable directly
from an assembler interrupt handler. The following is a sample calling sequence.

LA R13,PASCSAVE
LA Rl,EXTPARM
L R15,=V(RTCPEXTR)
BALR R14,R15

RUPTCODE OS
PASCSAVE DS
ENV DC

H
18F
F'0'

Store interrupt code here before calling XTCPEXTR
Register save area
Zero initially. It will be filled in with
an environment address. Pass it unchanged
in subsequent calls to RTCPEXTR.

EXT PARM DC
DC

A(ENV)
A (RUPTCODE)

This procedure is a version of TcpVmcfRupt Pascal procedure and is callable
directly from an assembler interrupt handler. The following is a sample calling
sequence.

LA Rl3,PASCSAVE
LA Rl,VMCFPARM
L Rl5,=V(RTCPVMCF)
BALR R14,R15

PASCSAVE DS
ENV DC

VMCFPARM DC
DC

18F
F'0'

Register save area
Zero initially. It will be filled in with
an environment address. Pass it unchanged
in subsequent calls to RTCPVMCF.

A(ENV)
A(VMCFBUF) Address of your VMCF interrupt buffer.

Appendix C. Assembler Calls for the Pascal API C-1

AddUserNote
This procedure can be called from assembler code to add a
USERdeftnedNOTIFICATION notification to the note queue, and wake up
GetNextNote if it is waiting for a notification. The following is a sample calling
sequence.

PASCSAVE
ENV

DAT Al
DATA2
DATA3
RC

PASCPARM

LA R13,PASCSAVE
LA Rl,PASCPARM
L R15,=V(ADDUSERN)
BALR R14,R15

OS 18F
DC F'0'

OS H
OS c
OS XL40
OS F

DC A(ENV)
DC A(DATAl)
DC A(DATA2)
DC A(DATA3)
DC A(RC)

Register save area
Zero initially. It will be filled in with
an environment address. Pass it unchanged
in subsequent calls to ADDUSERN.
Data for Connection field of notification.
Data for Protocol field of notification.
Data for UserData field of notification.
AddUserNote stores return code here.

Possible ReturnCode values:

OK
NObuffersPACE.

C-2 Programmer's Reference

Appendix D. Network File System Server Exit Routines

The content of this appendix is Product Sensitive and is intended to provide a
customized interface to remote procedure calls, and must not be used for any other
purpose.

This appendix contains information about exits provided by the Network File
System server code, which can be used by your site's technical support personnel to
create routines to do the processing your installation requires. The exits provided
are:

• Login
• Security
• Archive
• Account.

The site routines should be executed as part of the Network File System server.

Related Publications

Login Exit

The IBM Transmission Control Protocol/Internet Protocol for MVS: User's Guide
contains information relevant to the user in the client environment.

The IBM Transmission Control Protocol/Internet Protocol for Mvs: Installation and
Maintenance book contains information about installing the server, messages,
warnings and information that it could generate, operator commands and
configuration.

The login exit routine is called when a client tries to use either the mvslogin or
mvslogout commands. The exit routine can use Security Authorization Facility
(SAP) or a customized authorization facility.

This exit will have a parameter list passed from the server and is called in one of
three ways:

1. For a login: User verification, password checking, and new password processing.
The exit routine returns a value to the server.

2. For a logout: Can do cleanup or other required processing.

3. When a time-out occurs: The time·out interval can be extended or the server can
be told to proceed with a forced logout.

Appendix D. Network File System Server Exit Routines D-1

Requirements

Register Contents

Check and be sure you observe and follow each of the following requirements. The
login exit routine must:

• Be link-edited with the name NPSXUt.

• Be reentrant.

• Reside in an APP-authorized library because when it receives control it is part of
an APP-authorized task.

• Obtain a Global Storage Block (see Request code 4 description in Table D-1
on page D-3). The address of this block is returned to the Network File
System in the parameter list, and is passed back to the exit in each subsequent
call. This block contains user exit data that will be needed as long as the
Network File System server is active.

Note: Access to the Global Storage Block (GSB) must be controlled by the
user-written exits to ensure that updates to common data occur from a single
task at a time. This block is shared with the security exit.

• Obtain a User Storage Block (see Request code 8 description in Table D-1 on
page D-3). The address of this block is returned to the Network File System in
the parameter list, and is passed back to the exit on each subsequent call related
to this machine-user combination. This block will contain a save area and user
data needed for this session.

Note: Access to the User Storage Block (u~m) is controlled by the server. The
Network File System will use single thread access to this exit routine for each
machine-user. This block is shared with the security and archive exits.

Standard operating system (o;s) register conventions are used. On entry to the login
routine, the registers contain:

Register 1

Register 13

Register 14

Address of a fullword that contains the address of the parameter
list for this exit routine.

Address of the caller's save area.

Caller's return address.

Register 15 Address of the entry point for this exit routine.

Note: Address parameters will have a null value (0) if the related data does not
exist.

Contents of Parameter List
The parameter list is made up of 18 contiguous fullwords. Table D-1 on page D-3
provides the contents of each word and information about each system request
code. Detailed information about what this exit routine should do for each event
follows the table.

D-2 Programmer's Reference

Table D-1 (Page I of 2). Login Exit Routines

Fullword Field Description (Contents)
Number

1 Request code System request code set by the Network File System server before
call to this exit, for the following conditions:

4 System initialization
8 Start of new user Session
12 User login request
16 New password supplied
20 User timed out
24 Logout has been requested
28 System termination

2 Return code Codes generated and returned by this routine:

0 Login successful.
4 Invalid user ID. Message returned.
8 Invalid password. Message returned.
12 Password expired. Message returned.
16 Password required. Message returned.
20 User ID required. Message returned.
24 Timeout interval extended; value supplied.
28 Logout forced because of server timeout.
32 Request invalid.
36 User not authorized for this service.

3 Address of client Address of character string terminated by single byte containing
system name x•oo•.

4 Client IP address Number

5 Client user ID Number
number

6 Client group ID Number
number

7 Address of MVS Address of character string terminated by single byte containing
user ID X '00' , conforming to MVS standards.

8 Address of MVS Address of character string terminated by single byte containing
group name X' 00' , conforming to security system standards.

9 Address of MVS Address of character string terminated by single byte containing
user password X '00 ', conforming to MVS and security system standards.

10 Address of new Address of character string terminated by single byte containing
user password X' 00' , conforming to MVS and security system standards.

11 Session timeout Number, specified in seconds.
value

12 Address of USB Size and content installation-dependent, generated at start of a user
session.

Appendix D. Network File System Server Exit Routines D-3

Table D-1 (Page 2 of 2). Login Exit Routines

Fullword Field Description (Contents)
Number

13 Address of GSB Size and content installation-dependent, generated at system
initialization.

14 Address of Address of character string terminated by single byte containing
message x•oo•.
supplied by this
exit routine

15, 16 Reserved for
future definition

17 Authentication Valid types are:
type

0 None
1 UNIX-type credentials
2 Short hand UNIX credentials
3 DES credentials

18 User time delta Number, specified in seconds. Amount of time user system is West
of Greenwich.

Using the Parameter List
This section describes how the data in the parameter list is used by the Network
File System server and by the login exit routine. A request code is set by the
Network File System server before each call to this exit routine. Each topic below
describes an event, for which some fields are set on entry. This exit routine sets a
return code for each event.

System Initialization
This routine is used once at system initialization, and must acquire and initialize the
GSB. The codes and fields used are shown in Table D-2.

Table D-2. System Initialization Codes and Fields

When Fullword Field Contents
Number

On entry 1 Request code 4

On exit 2 Return code 0 Initialization
successful

On exit 13 Global Storage Block Address

D-4 Programmer's Reference

Start of New User Session
This routine is used when a new client machine-user combination is recognized by
the Network File System server. A USB is acquired and analyzed at this time if
access is permitted. If access is not permitted, an mvslogin command must be issued
by the Network File System client. The codes and fields used are shown in
Table D-3.

Table D-3. Start of New User Session Codes and Fields

When Fullword Field Contents
Number

On entry 1 Request code 8

On entry 3 Client name Character string

On entry 4 Client IP address Number

On entry 5 Client User ID number Number

On entry 6 Client Group ID Number
number

On exit 2 Return code 0 Login successful

On exit 12 User Storage Block Address

User Logon Request
This routine is called when mvslogin is used. The installation security system should
be called to determine if the user is properly authorized. The codes and fields used
are shown in Table D-4.

Table D-4 (Page I of 2). User Logon Request Codes and Fields

When Fullword Field Contents
Number

On entry 1 Request code 12

On entry 3 Client machine name Character string

On entry 4 Client IP address Number

On entry 5 Client User ID number Number

On entry 6 Client Group ID Number
number

On entry 7 MVS User ID Character string

On entry 8 MVS Group Name Character string

On entry 9 MVS User Password Character string

On entry 11 Session Timeout Value Number of seconds

On entry 12 User Storage Block Address

On entry 13 Global Storage Block Address

On entry 17 Authentication Type Number

Appendix D. Network File System Server Exit Routines D-5

Table D-4 (Page 2 of 2). User Logon Request Codes and Fields

When Fullword Field Contents
Number

On entry 18 User Time Delta Number of seconds

On exit 2 Return code 0 Login successful
4 Invalid user ID

8 Invalid password
12 Password expired
16 Password required
20 User ID required

New Password Supplied
This routine is used when the user enters a new password. Calls can be made to the
installation security system. The codes and fields used are shown in Table D-5.

Table D-5. New Password Supplied Codes and Fields

When Fullword Field Contents
Number

On entry 1 Request code 16

On entry 3 Client name Character string

On entry 4 Client IP address Number

On entry 5 client ID number Number

On entry 6 Client Group ID Number
number

On entry 7 MVS User ID Character string

On entry 8 MVS Group Name Character string

On entry 9 MVS User Password Character string

On entry 10 New User Password Character string

On entry 11 Session Timeout Value Number of seconds

On entry 12 User Storage Block Address

On entry 13 Global Storage Block Address

On entry 17 Authentication Type Number

On entry 18 User Time Delta Number of seconds

On exit 2 Return code 0 Login successful
4 Invalid user ID

8 Invalid password
12 Password expired
16 Password required
20 User ID required

D-6 Programmer's Reference

User Timed Out
This routine is used at the expiration of the timeout interval when no new user
input has been received. A new timeout interval can be provided or a logoff can be
forced for the user. The codes and fields used are shown in Table D-6.

Table D-6. User Timed Out Codes and Fields

When Fullword Field Contents
Number

On entry 1 Request code 20

On entry 3 Client machine name Character string

On entry 4 Client IP address Number

On entry 5 Client User ID number Number

On entry 6 Client Group ID Number
number

On entry 7 MVS User ID Character string

On entry 8 MVS Group Name Character string

On entry 9 MVS User Password Character string

On entry 11 Session Timeout Value Number of seconds

On entry 12 User Storage Block Address

On entry 13 Global Storage Block Address

On entry 17 Authentication Type Number

On exit 18 User Time Delta Number of seconds

On exit 2 Return code 24 Extend timeout
interval. Value
supplied.

28 Force timeout
logout.

Logout Has Been Requested
This routine is used at logout to return storage obtained at the start of the session
and to perform any related termination processing. The codes and fields used are
shown in Table D-7.

Table D-7 (Page 1 of 2). Logoff Has Been Requested Codes and Fields

When Fullword Field Contents
Number

On entry 1 Request code 24

On entry 3 Client machine name Character string

On entry 4 Client IP address Number

On entry 5 Client User ID number Number

Appendix D. Network File System Server Exit Routines D-7

Table D-7 (Page 2 of 2). Logoff Has Been Requested Codes and Fields

When Fullword Field Contents
Number

On entry 6 Client Group ID Number
number

On entry 7 MVS User ID Character string

On entry 8 MVS Group Name Character string

On entry 9 MVS User Password Character string

On entry 11 Session Timeout Value Number of seconds

On entry 12 User Storage Block Address

On entry 13 Global Storage Block Address

On entry 17 Authentication Type Number

On entry 18 User Time Delta Number of seconds

On exit 2 Return code 0 Logout successful

System Termination
This routine is used at Network File System server termination to terminate
processing and to release the storage used for the GS B. The codes and fields used
are shown in Table D-8.

Table D-8. System Termination Codes and Fields

When Fullword Field Contents
Number

On entry 1 Request code 28

On exit 2 Return code 0 Exit termination
successful

Sample Parameter List - Assembler Language DSECT
This listing is found in TCPIP.COMMMAC(LOGIN). If this listing differs from that
shipped with the source code, the latter is more accurate.

*
*
*
*
*
*
*
*
*
*

D-8 Programmer's Reference

Copyright (C) 1987, 1988, Sun Microsystems, Inc.
and Electronic Data Systems Corp.

Licensed Materials - Property of IBM
5798-061 (C) Copyright IBM Corporation
All rights reserved.
U.S. Government Users Restricted Rights -
Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corporation

*
* NFS login exit data structure (LEDS)
*
* All strings are terminated with x100 1

* NULL (x 100') pointers are used for unavailable data
*
LEDS DSECT
LEDSRQ OS F REQUEST FROM CALLER
LEDS IN EQU 4 SYSTEM INITIALIZATION
LEDS SS EQU 8 START OF USER SESSION
LEDS LO EQU 12 LOGON REQUEST
LEDS PS EQU 16 NEW PASSWORD SUPPLIED
LEDS TM EQU 20 TIMEOUT OCCURRED
LEDSLF EQU 24 LOGOFF REQUEST/FORCED
LEDS XX EQU 28 SYSTEM TERMINATION
MAXREQ EQU 28 MAXIMUM REQUEST VALUE
*
LEDS RC OS F EXIT STATUS
LEDSOK EQU 0 LOGON SUCCESSFUL
LEDSIU EQU 4 INVALID USERID, MSG RETURNED
LEDS IP EQU 8 INVALID PASSWORD, MSG RETURNED
LEDS PX EQU 12 PASSWORD EXPIRED, MSG RETURNED
LEDS PR EQU 16 PASSWORD REQUIRED, MSG RETURNED
LEDS UR EQU 20 USERID REQUIRED, MSG RETURNED
LEDSXT EQU 24 EXTEND TIMEOUT, USE NEW INTERV
LEDS FT EQU 28 FORCE TIMEOUT LOGOFF
LEDS IR EQU 32 INVALID REQUEST BYTE
LEDS UN EQU 36 USER NOT AUTHORIZED FOR SERV
*
LED SM OS A ADDRESS OF AIX MACHINE NAME
LEDS IA OS F INTERNET PROTOCOL (IP) ADDRESS
LEDSU OS F AIX USER ID
LEDSG DS F AIX GROUP
LEDSMU OS A ADDRESS OF MVS USER-ID
LEDSMG OS A ADDRESS OF MVS GROUP NAME
LEDSMP DS A ADDRESS OF MVS USER PASSWORD
LEDS NP OS A ADDRESS OF NEW USER PASSWORD
LEDS TO DS F SESSION TIMEOUT VALUE IN SECOND
LEDSXS OS A ADDRESS OF EXIT CONTROLLED STRG
LEDSXG OS A ADDRESS OF EXIT GLOBAL STORAGE
* SET ON INITIAL CALL ONLY
LEDSXD DS A ADDRESS OF EXIT SUPPLIED MSG

OS F RESERVED
OS F RESERVED

LED SAU DS F AUTHENTICITY TYPE TO USE
LEDS UT OS F USER TIME ADJ(MIN WEST OF GMT)
*
LEDS LEN EQU *-LEDS LENGTH OF EXIT DATA STRUCTURE
*

MEND

Appendix D. Network File System Server Exit Routines D-9

Security Exit

Requirements

The security exit routine verifies that a user is authorized to access a specific MVS
data set or data set member in the access mode requested.

The three access modes and what they permit are as follows:

1. ·Allocate: Read, write, create, delete or rename the data set.

2. Write: Read or write the data set.

3. Read: Read the data set.

This exit will have a parameter list passed from the server and is called:

1. For Data Set Access: When a logged in user tries to access, read or write an
MVS data set or data set member.

2. For Data Set Allocation: When a logged in user tries to allocate (create),
rename, or delete a specific data set.

3. For Getting Access Mode or Permissions: The Network File System server
needs the access mode or the permissions that a user has for a specific data set.

A return code is set by the exit routine indicating whether or not the request is
allowed. This exit is not called at startup or shutdown.

Each of the following requirements must be followed. The security exit routine
must:

• Be link-edited with the name NPSXU2.

• Be reentrant.

• Reside in an APP-authorized library because when it receives control it is part of
an APP-authorized task.

You do not have to allocate any control blocks, because the Network File
System server makes its control blocks available to this exit routine.

Notes:

1. Access to the USB is controlled by the server. The Network File System will
single thread access to the security exit for one machine-user. The USB is shared
with the login and archive exits.

2. Access to the GSB must be controlled by these exit routines to be sure that
updates to common data occur from a single task at a time. The GSB is shared
with the login exit.

D-10 Programmer's Reference

Register Contents
Standard o /S register conventions are used. On entry to this routine the registers
contain:

Register 1

Register 13

Register 14

Register 15

Address of a fullword that contains the address of the parameter
list for this exit routine.

Address of the caller's save area.

Caller's return address.

Address of the entry point for this exit routine.

Contents of Parameter List
The parameter list is 17 contiguous fullwords. Table D-9 provides the contents of
each word, as well as information about each system request code. Detailed
information about what this exit routine should do for each event follows the table.

Table D-9 (Page 1 of 2). Security Exit Routines

Fullword Field Description (Contents)
Number

1 Request code System request code set by the Network File System server before
call to this exit, for the following conditions:

4 Validate allocate request
8 Validate write request
12 Validate read request
16 Return security permissions

2 Return code Codes generated and returned by this routine:

0 Access allowed
4 Access denied
8 Permissions returned
12 Invalid request

3 Address of client Address of character string terminated by single byte containing
system name x•oo•.

4 Client IP address Number

5 Client user ID Number
number

6 Client group ID Number
number

7 Address of MVS Address of character string terminated by single byte containing
user ID X' 00'. This conforms to. MVS standards.

8 Address of MVS Address of character string terminated by single byte containing
data set name X' 00' . This conforms to MVS standards.

9 Address of MVS Address of character string terminated by single byte containing
data set member X' 00'. This conforms to MVS standards.
name

Appendix D. Network File System Server Exit Routines D-11

Table D-9 (Page 2 of 2). Security Exit Routines

Fullword Field Description (Contents)
Number

10 Address of data Address of character string terminated by single byte containing
set volume X '00'. Contains the volume serial number where the requested
name,, data set resides.

11 Address of Address of character string tenninated by single byte containing
catalog volume X '00'. Contains the volume serial number for the catalog that
name contains the entry for the requested data set.

12 Address of Address of character string terminated by single byte containing
catalog data set X' 00 1

• Contains MVS data set name for the catalog that contains
name the entry for the requested data set.

13 Address of USB Size and content installation dependent. Generated at the start of a
user sess10n.

14 Address of GSB Size and content installation dependent. Generated at system
initialization.

15, 16 Reserved for
future definition

17 Permissions Valid types are:
returned

0 None
1 Allocate allowed
2 Write allowed
4 Read allowed

Note: Address parameters will have null value (0) if the related data does not exist.

Using the Parameter List
This section describes how the data in the parameter list is used by the Network
File System server and by the security exit routine. A request code is set by the
Network File System server before each call to this exit routine.

Each topic below describes an event, for which some fields are set on entry. This
exit routine sets a return code for each event.

Validate Allocate Request
This routine is used when a user tries to allocate, rename, or delete a specific MVS

data set or data set member. The codes and fields used are shown in Table D-10.

Table D-10 (Page 1 of 2). Validate Allocate Request Codes and Fields

When Fullword Field Contents
Number

On entry 1 Request code 4

On entry 3 Client machine name Character string

D-12 Programmer's Reference

Table D-10 (Page 2 of 2). Validate Allocate Request Codes and Fields

When Fullword Field Contents
Number

On entry 4 Client IP address Number

On entry 5 Client ID number Number
"

On entry 6 Client ID number Number

On entry 7 MVS user ID Character string

On entry 8 MVS data set name Character string

On entry 9 MVS data set member Character string
name

On entry 10 MVS data set volume Character string
name

On entry 11 Catalog volume name Character string

On entry 12 Catalog data set name Character string

On entry 13 User Storage Block Address

On entry 14 Global Storage Block Address

On exit 2 Return code 0 Access allowed
4 Access denied

Validate Write Request
This routine is called when a user tries to write to a specific MVS data set or data set
member. The codes and fields used are shown in Table D-11.

Table D-11 (Page I of 2). Validate Write Request Codes and Fields

When Fullword Field Contents
Number

On entry 1 Request code 8

On entry 3 Client machine name Character string

On entry 4 Client IP address Number

On entry 5 Client User ID number Number

On entry 6 Client Group ID Number
number

On entry 7 MVS User ID Character string

On entry 8 MVS data set name Character string

On entry 9 MVS data set member Character string
name

On entry 10 MVS data set volume Character string
name

Appendix D. Network File System Server Exit Routines D-13

Table D-11 (Page 2 of 2). Validate Write Request Codes and Fields

When Fullword Field Contents
Number

On entry 11 Catalog volume name Character string

On entry 12 Catalog data set name Character string

On entry 13 User Storage Block Address

On entry 14 Global Storage Block Address

On exit 2 Return code 0 Access allowed
4 Access denied

Validate Read Request
This routine is used when a user tries to read from a specific MVS data set or data set
member. The codes and fields used are shown in Table D-12.

Table D-12. Validate Read Request Codes and Fields

When Fullword Field Contents
Number

On entry 1 Request code 12

On entry 3 Client machine name Character string

On entry 4 Client IP address Number

On entry 5 Client User ID number Number

On entry 6 Client Group ID Number
number

On entry 7 MVS User ID Character string

On entry 8 MVS data set name Character string

On entry 9 MVS data set member Character string
name

On entry 10 MVS data set volume Character string
name

On entry 11 Catalog volume name Character string

On entry 12 Catalog data set name Character string

On entry 13 User Storage Block Address

On entry 14 Global Storage Block Address

On exit 2 Return code 0 Access allowed
4 Access denied

D-14 Programmer's Reference

Return Security Permissions
This routine is used when the access mode or permissions that a user has for a
specific data set are requested. The codes and fields used are shown in Table D-13.

Table D-13. Return Security Permissions Codes and Fields

When Fullword Field Contents
Number

On entry 1 Request code 16

On entry 3 Client machine name Character string

On entry 4 Client IP address Number

On entry 5 Client User ID number Number

On entry 6 Client Group ID Number
number

On entry 7 MVS User ID Character string

On entry 8 MVS data set name Character string

On entry 9 MVS data set member Character string
name

On entry 10 MVS data set volume Character string
name

On entry 11 Catalog volume name Character string

On entry 12 Catalog data set name Character string

On entry 13 User Storage Block Address

On entry 14 Global Storage Block Address

On exit 2 Return code 8 Permissions
returned

On exit 17 Permissions returned

Sample Parameter List - Assembler Language DSECT
This listing is found in TCPIP.COMMMAC(SECURE). If this listing differs from that
shipped with the source code, the latter is more accurate.

*
*
*
*
*
*
*
*
*
*

Copyright (C) 1987, 1988, Sun Microsystems, Inc.
and Electronic Data Systems Corp.

Licensed Materials - Property of IBM
5798-061 (C) Copyright IBM Corporation
All rights reserved.
U.S. Government Users Restricted Rights -
Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corporation

* MVS/NFS security exit file access data structure (FEDS)
*

Appendix D. Network File System Server Exit Routines D-15

Archive Exit

* All strings are terminated with x'00'
* NULL (x'00') pointers are used for unavailable data
*
FEDS DSECT
FEDSRQ OS F REQUEST
FEDSAR EQU 4 VALIDATE ALLOCATE REQUEST
FEDSWR EQU 8 VALIDATE WRITE REQUEST
FEDS RR EQU 12 VALIDATE READ REQUEST
FEDS SP EQU 16 RETURN SECURITY PERMISSIONS
FEDMAXRQ EQU 16 MAX VALUE REQUEST FIELD CAN CONTAIN
*
FEDS RC OS F EXIT STATUS
FED SAA EQU 0 ACCESS ALLOWED
FED SAD EQU 4 ACCESS DENIED
FEDS PR EQU 8 PERMISSIONS RETURNED
FEDSlR EQU 12 INVALID REQUEST
*
FED SM OS A ADDRESS OF CLIENT MACHINE NAME
FEDS IA OS F INTERNET PROTOCOL (IP) ADDRESS
FED SU DS F CLIENT USER ID NUMBERS
FEDSG OS F CLIENT GROUP ID NUMBERS
FEDSMU OS A ADDRESS OF MVS USER-ID
FEDSDN OS A ADDRESS OF MVS DATA SET NAME
FEDSMN OS A ADDRESS OF MEMBER NAME IF PDS
* IF MEMBER NAME, ACTION IS ON MEMBER
FEDSDV OS A ADDRESS OF DATASET VOLUME
FEDSVN DS A ADDRESS OF CATALOG VOLUME NAME
FEDSCN OS A ADDRESS OF CATALOG DATASET NAME
FEDSXS OS A ADDRESS OF EXIT CONTROLLED STORAGE
* (FROM LOGON EXIT)
FEDSXG OS A ADDRESS OF EXIT GLOBAL STORAGE
* SET ON INITIAL CALL ONLY

OS F RESERVED
OS F RESERVED

FEDS RPM OS F PERMISSIONS RETURNED IF REQUESTED
FED SAP EQU 1 ALLOCATE PERMISSION ALLOWED
FEDSWP EQU 2 WRITE PERMISSION ALLOWED
FEDS RP EQU 4 READ PERMISSION ALLOWED
FEDS LEN EQU FEDS-* LENGTH OF EXIT DATA STRUCTURE
*

MEND

The archive exit routine is used when a Network File System client tries to read,
write, create, delete, or rename an MVS data set that cannot be located. First, the
installation exit is called, then an archive management package such as HSM may
find out if the data set is in the installation's archives. After the search, data in an
archived data set can be returned to the server, or a request for the data set to be
restored can be issued. The restoration will be done depending upon the server's
request and the capabilities of the archive package. This exit is also called during
system startup and shutdown.

D-16 Programmer's Reference

Requirements

Register Contents

Each of the following requirements must be followed. The archive exit routine
must:

• Be link-edited with the name NFSXU3.

• Be reentrant.

• Reside in an APF-authorized library because when it receives control it is part of
an APF-authorized task.

• Obtain a GSB (see Request code 4 description in Table D-14 on page D-18).
The address of this block is returned to the Network File System in the
parameter list and is passed back to the exit in each subsequent call. This block
contains user exit data that will be needed as long as the Network File System
server is active.

Note: Access to the GSB must be controlled by the user written exits to ensure
that updates to common data occur from a single task at a time.

The USB that was created by the login exit will be used by this routine.

Note: Acce·ss to the uss is controlled by the server. The Network File System
uses single thread access to this exit routine for each machine-user. The USB is
shared with the security exit.

Standard o /S register conventions are used. On entry to this routine the registers
contain:

Register 1

Register 13

Register 14

Register 15

Address of a fullword that contains the address of the parameter
list for this exit routine.

Address of the caller's save area.

Caller's return address.

Address of the entry point for this exit routine.

Contents of Parameter List
The parameter list is 23 contiguous fullwords. Table D-14 on page D-18 provides
the contents of each word and information about each system request code.
Detailed information about what this exit routine should do for each event follows
the table.

Appendix 0. Network File System Server Exit Routines D-17

Table D-14 (Page 1 of 2). Archive Exit Routines

Fullword Field Description (Contents)
Number

1 Request code System request code set by the Network File System server before
call to this exit, for the following conditions:

4 System initialization
8 Information from archive requested
12 Retrieve from archive requested
16 Read request
20 Write request
24 Delete request
28 Create request
32 System termination

2 Return code Codes generated and returned by this routine:

0 Data set restored, re-issue lookup
4 Data set does not exist
8 Access privilege refused
12 Device not available
16 Data set deleted from archives
20 Information returned
24 Invalid request

3 Address of client Address of character string terminated by single byte containing
system name x•oo•.

4 Client IP address Number

5 Client user ID Number
number

6 Client group ID Number
number

7 Address of MVS Address of character string terminated by single byte containing
user ID X' 00 1

• This conforms to MVS standards.

8 Address of MVS Address of character string terminated by single byte containing
data set name X 1 00'. This conforms to MVS standards.

9 Address of MVS Address of character string terminated by single byte containing
data set member X 1 00 1

• This conforms to MVS ·and security system standards.
name

10 Address of MVS Address of character string terminated by single byte containing
data set volume x•oo•.
name

11 Address of User Size and content installation dependent. Acquired at the start of a
Storage Block user session.

12 Address of Size and content installation dependent. Acquired at system
Global Storage initialization.
Block

D-18 Programmer's Reference

Table D-14 (Page 2 of 2). Archive Exit Routines

Fullword Field Description (Contents)
Number

13 Address of Address of character string terminated by single byte containing
message X'OO'.

supplied by this
exit routine

14, 15 Reserved for
future definition

16 Data set First byte of DSORG field in Format 1 DSCB for requested data set.
organization

0 Unknown
1 Sequential data set
2 Partitioned sequential data set
3 Direct access data set
4 Indexed sequential data set
5 VSAM

6 VSAM entry sequenced data set
7 VSAM relative record data set
8 VSAM key sequenced data set

17 File size Size of requested data set in bytes.

18 Creation date Julian date when requested data set was created. Format:
(Packed value) X 1OOYYDDDS 1

; YY is the year, DDD is the day, s is the sign.

19 Archive date Julian date when requested data set was archived. Format:
(Packed value) X 1OOYYDDDS 1

; YY is the year, DDD is the day, s is the sign.

20 Archive time Time requested data set was archived. Format: X 'OOHHMMSS ';
(Packed value) HH is the hour, MM is the minute, ss is the second.
unsigned

21 Data set record Contains the value of DCB REC FM.

format

22 Data set record Record length information maintained in the archives.
length

23 Data set block Block size information maintained in the archives.
size

Note: Address parameters will have a null value (0) if the related data does not exist.

Using the Parameter List
This section describes how the data in the parameter list is used by the Network
File System server and by the archive exit routine. A request code is set by the
Network File System server before each call to this exit routine.

Each topic below describes an event, for which some fields are set on entry. This
exit routine sets a return code for each event.

Appendix D. Network File System Server Exit Routines D-19

System Initialization
This routine is used at system initialization to get the storage and initialize the GSB.

The codes and fields used are shown in Table D-15.

Table D-15. System Initialization Codes and Fields

When Fullword Field Contents
Number

On entry 1 Request code 4

On exit 2 Return code 0 Exit initialization
successful.

On exit 12 Global Storage Block Initialized

Information From Archive Requested
This routine is called when the Network File System server cannot locate the
requested data set. The codes and fields used are shown in Table D-16.

Table D-16 (Page I of 3). Information from Archives Requested Codes and Fields

When Fullword Field Contents
Number

On entry l Request code 8

On entry 3 Client machine name Name

On entry 4 Client IP address Number

On entry 5 Client user ID number Number

On entry 6 Client group ID number Number

On entry 7 MVS user ID Character string

On entry 8 MVS data set name Character string

On entry 9 MVS data set member Character string
name

On entry 10 MVS data set volume Character string
name

On entry 11 User Storage Block Address

On entry 12 Global Storage Block Address

D-20 Programmer's Reference

Table D-16 (Page 2 of 3). Information from Archives Requested Codes and Fields

When Fullword Field Contents
Number

On exit 2 Return code 0 Data set restored,
re-issue lookup.

4 Data set does not
exist.

8 Access privilege
refused.

12 Device not
available.

20 Information
returned.

On exit 16 Data set organization First byte of DSORG

field in Format 1 DSCB

for requested data set.

0 Unknown.
1 Sequential data set.
2 Partitioned

sequential data set.
3 Direct access data

set.
4 Indexed sequential

data set.
5 VSAM

6 VSAM entry
sequenced data set.

7 VSAM relative
record data set.

8 VSAM key
sequenced data set.

On exit 17 File size Size of requested data
set in bytes.

On exit 18 Creation date Date requested data set
was created. Format:
X 100YYDDDS 1

; YY is
the year, DDD is the
day, s is the sign.

On exit 21 Record format Contains values of DCB
REC FM

On exit 22 Record length Information maintained
in archives

On exit 23 Block size Information maintained
in archives

Appendix D. Network File System Server Exit Routines D-21

Table D-16 (Page 3 of 3). Information from Archives Requested Codes and Fields

When Fullword Field Contents
Number

On exit 19 Archive date Packed value. Date
requested data set was
archived. Format:
X 100YYDDDS 1 ; yy is
the year, ooo is the
day, s is the sign.

On exit 20 Archive time Packed unsigned value.
Time requested data set
was archived. Format:
X 100HHMMSS 1

; HH is
the hour, MM is the
minute, ss is the
second.

Retrieve From Archive Requested
This routine is called when the Network File System server determines that a data
set must be restored from the archives. The codes and fields used are shown in
Table D-17.

Table 0-17 (Page 1 of 2). Retrieve From Archive Requested Codes and Fields

When Fullword Field Contents
Number

On entry 1 Request code 12

On entry 3 Client machine name Character string

On entry 4 Client IP address Number

On entry 5 Client user ID number Number

On entry 6 Client group ID number Number

On entry 7 MVS user ID Character string

On entry 8 MVS data set name Character string

On entry 9 MVS data set member Character string
name

On entry IO MVS data set volume Character string
name

On entry 11 User Storage Block Address

On entry 12 Global Storage Block Address

D-22 Programmer's Reference

Read Request

Table 0-17 (Page 2 of 2). Retrieve From Archive Requested Codes and Fields

When Fullword Field Contents
Number

On exit 2 Return code 0 Data set restored,
re-issue lookup.

4 Data set does not
exist.

8 Access privilege
refused.

12 Device not
available.

This routine is called when the user tries to read a data set that cannot be located.
This is a special case of Retrieve and is included in case unique processing is needed
for a data set that will be read only. The codes and fields used are shown in
Table D-18.

Table D-18. Read Request \Codes and Fields

When Fullword Field Contents
Number

On entry 1 Request code 16

Ori. entry 3 Client machine name Character string

On entry 4 Client IP address Number

On entry 5 Client user ID number Number

On entry 6 Client group ID number Number

On entry 7 MVS user ID Character string

On entry 8 MVS data set name Character string

On entry 9 MVS data set member Character string
name

On entry 10 MVS data set volume Character string
name

On entry 11 User Storage Block Address

On entry 12 Global Storage Block Address

On exit 2 Return code 0 Data set restored,
re-issue lookup.

4 Data set does not
exist.

8 Access privilege
refused.

12 Device not
available.

Appendix D. Network File System Server Exit Routines D-23

Write Request

Delete Request

This routine is called when the user tries to write to a data set that cannot be
located. This is a special case of Retrieve and is included in case unique processing
is needed for a data set that will be written to. The codes and fields used are shown
in Table D-19.

Table D-19. Write Request Codes and Fields

When Fullword Field Contents
Number

On entry 1 Reques! code 20

On entry 3 Client machine name Character string

On entry 4 Client IP address Number

On entry 5 Client user ID number Number

On entry 6 Client group ID number Number

On entry 7 MVS user ID Character string

On entry 8 MVS data set name Character string

On entry 9 MVS data set member Character string
name

On entry 10 MVS data set volume Character string
name

On entry 11 User Storage Block Address

On entry 12 Global Storage Block Address

On exit 2 Return code 0 Data set restored,
re-issue lookup.

4 Data set does not
exist.

8 Access privilege
refused.

12 Device not
available.

This routine is called when the user tries to delete a data set that cannot be located.
This routine is included in case unique processing is needed for a data set that will
be deleted. The codes and fields used are shown in Table D-20.

Table D-20 (Page I of 2). Delete Request Codes and Fields

When Fullword Field Contents
Number

On entry 1 Request code 24

On entry 3 Client machine name Character string

D-24 Programmer's Reference

Create Request

Table D-20 (Page 2 of 2). Delete Request Codes and Fields

When Fullword Field Contents
Number

On entry 4 Client IP address Number

On entry 5 Client user ID number Number

On entry 6 Client group ID number Number

On entry 7 MVS user ID Character string

On entry 8 MVS data set name Character string

On entry 9 MVS data set member Character string
name

On entry 10 MVS data set volume Character string
name

On entry 11 User Storage Block Address

On entry 12 Global Storage Block Address

On exit 2 Return code 0 Data set restored,
re-issue lookup.

4 Data set does not
exist.

8 Access privilege
refused.

12 Device not
available.

16 Data set deleted
from archives.

The Network File
System server
expects that the
exit routine has
removed all
references to the
data set from the
system.

This routine is called when the user tries to create a data set that cannot be located
by the archive routine. The codes and fields used are shown in Table D-21.

Table D-21 (Page l of 2). Create Request Codes and Fields

When Fullword Fields Contents
Number

On entry 1 Request code 28

On entry 3 Client machine name Character string

Appendix D. Network File System Server Exit Routines D-25

Table D-21 (Page 2 of 2). Create Request Codes and Fields

When Fullword Fields Contents
Number

On entry 4 Client IP address Number

On entry 5 Client user ID number Number

On entry 6 Client group ID number Number

On entry 7 MVS user ID Character string

On entry 8 MVS data set name Character string

On entry 9 MVS data set member Character string
name

On entry 10 MVS data set volume Character string
name

On entry 11 User Storage Block Address

On entry 12 Global Storage Block Address

On exit 2 Return code 0 Data set restored,
re-issue lookup.

4 Data set does not
exist.

8 Access privilege
refused.

12 Device not
available.

16 Data set deleted
from archives.

The Network File
System server
expects that the
exit routine has
removed all
references to the
data set from the
system.

System Termination
This routine is used to terminate processing and to release the storage used for the
GSB. The codes and fields used are shown in Table D-22.

Table D-22 (Page I of 2). System Termination Codes and Fields

When Fullword Field Contents
Number

On entry 1 Request code 32

On entry 12 Global Storage Block Address

D-26 Programmer's Reference

Table D-22 (Page 2 of 2). System Termination Codes and Fields

When Fullword Field Contents
Number

On exit 2 Return code 0 Exit termination is
successful

Sample Parameter List - Assembler Language DSECT
This listing is found in TCPIP.COMMMAC(ARCHIVE). If this listing differs from that
shipped with the source code, the latter is more accurate.

*
*
*
*
*
*
*
*
*
*

Copyright (C) 1987, 1988, Sun Microsystems, Inc.
and Electronic Data Systems Corp.

Licensed Materials - Property of IBM
5798-061 (C) Copyright IBM Corporation
All rights reserved.
U.S. Government Users Restricted Rights -
Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corporation

* MVS/NFS archive exit data structure (ARCOS)
*
* All strings are terminated with x100 1

* NULL (x 100 1
) pointers are used for unavailable data

*
ARCDS DSECT
ARCDSRQ DS F REQUEST FROM CALLER
ARCDSIN EQU 4 SYSTEM INITIALIZATION
ARCDSDI EQU 8 D.S. INFORMATION REQUEST
ARCDSRA EQU 12 RETRIEVE FROM ARCHIVE
ARCDSRR EQU 16 READ REQUEST
ARCDSWR EQU 20 WRITE REQUEST
ARCDSDR EQU 24 DELETE REQUEST
ARCDSCR EQU 28 CREATE REQUEST
ARCDSTM EQU 32 SYSTEM TERMINATION
MAXREQ EQU 32 MAXIMUM REQUEST VALUE
*
ARCDSRC DS F EXIT STATUS
ARCDSRS EQU 0 ARCHIVE RESTORE SUCCESSFUL
ARCDSNO EQU 4 ENOENT - NO SUCH DATA SET
ARCDSAC EQU 8 EACCES - ACCESS NOT ALLOWED
ARCDSNX EQU 12 ENXIO DEVICE NOT AVAILABLE
ARCDSDL EQU 16 D.S. DELETED FROM ARCHIVES
ARCDSRI EQU 20 D.S. INFORMATION RETURNED
ARCDSIR EQU 24 INVALID REQUEST BYTE
*
ARC DSM DS A ADDRESS OF CLIENT MACHINE NAME
ARCDSIA DS F INTERNET PROTOCOL (IP) ADDRESS
ARCDSU DS F CU ENT USER ID
ARCDSG OS F CU ENT GROUP
ARCDSMU OS A ADDRESS OF MVS USER-ID
ARCDSDN DS A ADDRESS OF MVS DATA SET NAME

Appendix D. Network File System Server Exit Routines D-27

Account Exit

When It Is Called

ARCDSMN DS A ADDRESS OF MEMBER NAME
ARCDSDV DS A ADDRESS OF VOLUME SERIAL
ARCDSXS DS A ADDRESS OF EXIT CONTROLLED STRG
ARCDSXG OS A ADDRESS OF EXIT GLOBAL STORAGE
* SET ON INITIAL CALL ONLY
ARCDSXD DS A ADDRESS OF EXIT SUPPLIED MSG

DS F RESERVED
OS F RESERVED

* FOLLOWING VALUES ARE RETURNED BY EXIT
ARCDSDO DS F DATA SET TYPE
ARCDSSZ DS F FILE SIZE IN BYTES
ARCDSCD DS F CREATE DATE (00yyddds)
ARCDSAD OS F ARCHIVE DATE (00yyddds)
ARCDSAT OS F ARCHIVE TIME (00hhmmss)
ARCDSRF OS F DATA SET RECORD FORMAT
ARCDSRL DS F DATA SET RECORD LENGTH
ARCOS RS DS F DATA SET RECORD SIZE
ARCDSLEN EQU *-ARCOS LENGTH OF EXIT DATA STRUCTURE
*

MEND

The account exit routine is used when accounting information has been
accumulated at various times during execution. Data is collected about resource
utilization for each request or transaction as well as on activity to any data set. The
data is identified with a specific user and can be summarized or written to a
permanent data set.

The account exit routine is called in the following cases:

• For startup and shutdown of the system, or general housekeeping (such as
storage acquisition or release, opening and closing a data set).

• For a new machine and user starting, or when the user issues the mvslogin
command. A USB can be created at this time.

• For completion of the processing of each request or transaction. Data such as
elapsed time, active time, disk l/O counts, and TCP/IP l/O counts can be found
and saved either in the USB or buffered into memory. 1/0 requests cannot be
made.

• When use of data has been completed by a specific user. Data such as I/O

counts and bytes transferred is available.

• When the time interval (15 minutes) is over for each user.

• When a user is logging off. The storage for the USB can be released.

D-28 Programmer,s Reference

Requirements

Register Contents

Each of the following requirements must be followed. The account exit routine
must:

• Be link-edited with the name NPSXU4.

• Be reentrant.

• Reside in an APP-authorized library because when it receives control it is part of
an APP-authorized task.

• Obtain a GSB (see Request code 4 description in Table D-23 on page D-30).
The address of this block is returned to the Network File System in the
parameter list and is passed back to the exit on each subsequent call. This
block contains user exit data that will be needed while the Network File System
server is active.

Note: Access to the GSB must be controlled by the user-written exits to ensure
that updates to common data occur from a single task at a time.

• Obtain a USB (see Request code 8 description in Table D-23 on page D-30).
The address of this block is returned to the Network File System in the
parameter list and is passed back to the exit on each subsequent call related to
this machine-user combination. This block will contain a save area and a
storage area for accumulating accounting information.

Note: Access to the USB is controlled by the server. The Network File System
server will use single thread access to this exit routine for each machine-user.

Standard o /S register conventions are used. On entry to this routine the registers
contain:

Register 1

Register 13

Register 14

Register 15

Address of a fullword that contains the address of the parameter
list for this exit routine.

Address of the caller's save area.

Caller's return address.

Address of the entry point for this exit routine.

Contents of Parameter List
The parameter list is 32 contiguous fullwords. Table D-23 on page D-30 provides
the contents of each word and information about each system request code.
Detailed information about what this exit routine should do for each event follows
the table.

Appendix D. Network File System Server Exit Routines D-29

Table D-23 (Page 1 of 2). Account Exit Routines

Fullword Field Description (Contents)
Number

1 Request code System request code set by the Network File System server before
call to this exit, for the following conditions:

4 System initialization
8 User initialization
12 User request complete
16 User interval expiration
20 User data set usage
24 User termination
28 System termination

2 Return code Code generated and returned by this routine:

0 Processing successful
4 Processing error
8 Invalid request

3 Address of client Address of character string terminated by single byte containing
system name x•oo•.

4 Client IP address Number

5 Client user ID Number
number

6 Client group ID Number
number

7 Address of MVS Address of character string terminated by single byte containing
user ID X '00'. Conforms to MVS standards.

8 Address of User Size and content installation-dependent. Acquired at start of a user
Storage Block session.

9 Address of Size and content installation-dependent. Acquired at system
Global Storage initialization.
Block

10 Address of error Address of character string terminated by single byte containing
message x•oo•.

11, 12 Reserved for
future use

13, 14 Request start 64 bits. TOD clock value at start of processing. Server sets the value
time when it receives the request.

15, 16 Request end 64 bits. TOD clock value at the end of processing. Server sets the
time value immediately before returning the results of the request to the

user.

17 Request Program number of the server that processed the request.
program number

D-30 Programmer,s Reference

Table D-23 (Page. 2 of 2). Account Exit Routines

Fullword Field Description (Contents)
Number

18 Request version Version number of the server that processed the request.
number

19 Request Procedure number that was requested to be executed.
procedure
number

20 Request active Number of milliseconds request was actively worked on by the
time Network File System server tasks.

21 Request bytes Number of bytes received by the Network File System server from
read from TCP/IP TCP/IP for this request.

22 Request bytes Number of bytes written by the Network File System server to
written from TCP/IP for this request.
TCP/IP

23 Request disk Number of read operations to all data sets by the Network File
read count System server needed to complete this request.

24 Request disk Number of bytes read from disk by the Network File System server
bytes read during all the read operations.

25 Request disk Number of write operations to all data sets by the Network File
write count System server needed to complete this request.

26 Request disk Number of bytes written by the Network File System server during
bytes written all write operations.

27 Address of data Address of character string terminated by single byte containing
set name X 1 00' . It is the address of the data set name used, in conformance

to MVS standards.

28 Address of Address of character string terminated by single byte containing
member name X 100 1

• It is the address of the data set member used, in
conformance to MVS standards.

29 Data set read Number of reads by user during this use of the data set.
count

30 Data set bytes Number of bytes transferred by this user for this use of the data set.
read

31 Data set write Number of write operations done by this user for this use of the
count data set.

32 Data set bytes Number of bytes written by this user for this use of the data set.
written

Note: Address parameters will have null value if the related data does not exist.

Appendix D. Network File System Server Exit Routines D-31

Using the Parameter List
This section describes how the data in the parameter list is used by the Network
File System server and by the account exit routine. A request code is set by the
Network File System server before each call to this exit routine.

Each topic below describes an event, for which some fields are set on entry. This
exit routine sets a return code for each event.

System Initialization
This routine is used at system initialization and must acquire and initialize the GSB.

The codes and fields used are shown in Table D-24.

Table D-24. System Initia.lization Codes and Fields

When Fullword Field Contents
Number

On entry I Request code 4

On exit 2 Return code. Global 0 Exit initialization
Storage Block created. successful.

On exit 9 Global Storage Block Address

Start of New User Session
This routine is used at the first activity for a client session which can be a new
machlne-user or when a client issues an mvslogin command. This routine must also
acquire and initialize the usn. The codes and fields used are shown in Table D-25.

Table D-25. Start of New User Session Codes and Fields

When Fullword Field Contents
Number

On entry I Request code 8

On entry 3 Client machine name Character string

On entry 4 Client IP address Number

On entry 5 Client user ID number Number

On entry 6 Client group ID number Number

On entry 7 MVS user ID Character string

On entry 9 Global Storage Block Address

On exit 2 Return code 0 User initialization
successful

On exit 8 User Storage Block Address

D-32 Programmer's Reference

User Request Complete
This routine is called when there is a request or transaction from a specific user that
has been completed. The data can be collected, but a write cannot be done at this
time. The codes and fields used are shown in Table D-26.

Table D-26. User Request Complete Codes and Fields

When Fullword Field Contents
Number

On entry 1 Request code 12

On entry 3 Client machine name Character string

On entry 4 Client IP address Number

On entry 5 Client user ID number Number

On entry 6 Client group ID number Number

On entry 7 MYS user ID name Character string

On entry 8 User Storage Block Address

On entry 9 Global Storage Block Address

On entry 13, 14 Request start time 64 bits clock value

On entry 15, 16 Request end time 64 bits clock value

On entry 17 Request program Number
number

On entry 19 Request procedure Number
number

On entry 20 Request active time Milliseconds

On entry 21 Request bytes read Bytes
from TCP/IP

On entry 22 Request bytes written Bytes
from TCP/IP

On entry 23 Request disk read count Number

On entry 24 Request disk bytes read Bytes

On entry 25 Request disk write Number
count

On entry 26 Request disk bytes Bytes
written

On exit 2 Return code 0 Processing
successful

4 Processing error

On exit 10 Message supplied by Site defined message for
Exit routine accounting purposes

Appendix D. Network File System Server Exit Routines D-33

User Interval Expiration
This routine is used every 15 minutes to collect information. Also used immediately
before the user logs off. The codes and fields used are shown in Table D-27.

Table D-27. User Interval Expiration Codes and Fields

When Fullword Field Contents
Number

On entry 1 Request code 16

On entry 3 Client machine name Character string

On entry 4 Client IP address Number

On entry 5 Client user ID number Number

On entry 6 Client group ID number Number

On entry 7 MVS user ID name Character string

On entry 8 User storage block Address

On entry 9 Global storage block Address

On exit 2 Return code 0 Processing
successful

4 Processing error

On exit 10 Message supplied

User Data Set Usage
This routine is called when the data set has timed out (see the Processing Attributes
Table in the IBM Transmission Control Protocol/Internet Protocol for MVS:

Installation and Maintenance book, Configuring the Network File System Server
chapter, for an explanation of timeouts). Data about the user's activity while using
the data set is made available. The codes and fields used are shown in Table D-28.

Table D-28 (Page I of 2). User Data Set Storage Codes and Fields

When Fullword Field Contents
Number

On entry 1 Request code 20

On entry 3 Client machine name Character string

On entry 4 Client IP address Number

On entry 5 Client user ID number Number

On entry 6 Client group ID number Number

On entry 7 MVS user ID name Character string

On entry 8 User Storage Block Address

On entry 9 Global Storage Block Address

On entry 27 Data set name Address of

D-34 Programmer's Reference

User Termination

Table D-28 (Page 2 of 2). User Data Set Storage Codes and Fields

When Fullword Field Contents
Number

On entry 28 Member name Address of

On entry 29 Data set read count Number

On entry 30 Data set bytes read Bytes

On entry 31 Data set write count Number

On entry 32 Data set bytes written Bytes

On exit 2 Return code 0 Processing
successful

4 Processing error

On exit 10 Message supplied

This routine is used at logout to return storage obtained at the start of the session
and performs any related termination processing. The codes and fields used are
shown in Table D-29.

Table D-29. User Termination Codes and Fields

When Fullword Field Contents
Number

On entry 1 Request code 24

On entry 3 Client machine name Character string

On entry 4 Client IP address Number

On entry 5 Client user ID number Number

On entry 6 Client group ID number Number

On entry 7 MVS user ID name Character string

On entry 8 User Storage Block Address

On entry 9 Global Storage Block Address

On exit 2 Return code 0 User termination
successful

System Termination
This routine is used at Network File System server termination to terminate
processing and to release the storage used for the GSB. The codes and fields used
are shown in Table D-30 on page D-36.

Appendix D. Network File System Server Exit Routines D-35

Table D-30. System Termination Codes and Fields

When Fullword Field Contents
Number

On entry I Request code 28

On entry 9 Global Storage Block Address

On exit 2 Return code 0 Network File
System server
tennination
successful.

Sample Parameter List - Assemble Language DSECT

D-36

This listing is found in TCPIP.COMMMAC(ACCOUNT). If this listing differs from that
shipped with the source code, the latter is more accurate.

*
* Copyright (C) 1987, 1988, Sun Microsystems, Inc.

and Electronic Data Systems Corp. *
*
*
*
*
*
*

Licensed Materials - Property of IBM
5798-061 (C) Copyright IBM Corporation
All rights reserved.
U.S. Government Users Restricted Rights -
Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corporation

*
*
* NFS Account exit data structure (ACCDS)
*
* All strings are terminated with x'00'
* NULL (x'00') pointers are used for unavailable data
*
ACTSDSCT DSECT
ACTSRQ OS F REQUEST FROM CALLER
ACTSSINT EQU 4 - SYSTEM INITIALIZATION
ACTSUSIN EQU 8 - USER INITIALIZATION
ACTSUSRC EQU 12 - USER REQUEST COMPLETE
ACTSUSIX EQU 16 - USER INTERVAL EXPIRATION
ACTSUSDS EQU 20 - USER DATA SET USAGE
ACTSUSTM EQU 24 - USER TERMINATION
ACTSSTRM EQU 28 - SYSTEM TERMINATION
MAXREQ EQU 28 - MAXIMUM REQUEST VALUE
*
ACTS RC DS F EXIT RETURN CODE
ACTS OK EQU 0 - PROCESSING SUCCESSFUL
ACTS ER EQU 4 - PROCESSING ERROR
ACTS IR EQU 8 - INVALID REQUEST
*
ACTSUMNA OS A UNIX MACHINE NAME ADDRESS
ACTS IPA OS F INTERNET PROTOCOL (IP) ADDRESS
ACTSUUID DS F UNIX USER ID
ACTSUGID OS F UNIX GROUP ID
ACTSMUIA OS A MVS USER-ID ADDRESS

Programmer's Reference

ACTSUSBA OS
ACTSGSBA OS
ACTSESMA OS

*

OS
OS

A
A
A
F
F

USER STORAGE BLOCK ADDRESS
GLOBAL STORAGE BLOCK ADDRESS
EXIT SUPPLIED MESSAGE ADDRESS
- RESERVED
- RESERVED

* FOLLOWING ARE VALID WITH ACTSRQ = ACTSUSRC
*
ACTSRBEG OS
ACTSREND DS
ACTSRPGM OS
ACTSRVER DS
ACTSRPRC OS
ACTSRACT DS
ACTSRCBR OS
ACTSRCBW DS
ACTSRDRC DS
ACTSRDBR OS
ACTSRDWC DS
ACTSRDBW OS
*

D
D
F
F
F
F
F
F
F
F
F
F

REQUEST START TIME
REQUEST END TIME
REQUEST PROGRAM NUMBER
REQUEST VERSION NUMBER
REQUEST PROCEDURE NUMBER
REQUEST ACTIVE TIME
REQUEST CTC BYTES READ
REQUEST CTC BYTES WRITTEN
REQUEST DISK READ COUNT
REQUEST DISK BYTES READ
REQUEST DISK WRITE COUNT
REQUEST DISK BYTES WRITTEN

*
*

FOLLOWING ARE VALID WITH ACTRSQ = ACTSUSDS

ACTSDSNA OS
ACTSMBNA OS
ACTSDSRC OS
ACTSDSBR DS
ACTSDSWC OS
ACTSDSBW DS
*

A
A
F
F
F
F

ACTS EQU ACTSDSCT,*-ACTSDSCT
MEND

DATA SET NAME ADDRESS
MEMBER NAME ADDRESS
DATA SET READ COUNT
DATA SET BYTES READ
DATA SET WRITE COUNT
DATA SET BYTES WRITTEN

Appendix D. Network File System Server Exit Routines D-37

D-38 Programmer's Reference

Appendix E. Sample Programs

This appendix provides you with sample application programs to illustrate the
Pascal, C Socket and X-Windows APis.

A Sample Pascal Application

{**}
{* *}
{* Memory-to-memory Data Transfer Rate Measurement *}
{* *}
{* Pseudocode: Establish access to TCP/IP Services *}
{* Prompt user for operation parameters *}
{* Open a connection (Sender:passive, Receiver:active) *}
{* If Sender: *}
{* Send 5M of data using TcpFSend *}
{* Use GetNextNote to know when Send is complete *}
{* Print transfer rate after every lM of data *}
{* else Receiver: *}
{* Receive 5M of data using TcpFReceive *}
{* Use GetNextNote to know when data is delivered *}
{* Print transfer rate after every lM of data *}
{* Close connection *}
{* Use GetNextNote to wait until connection is closed *}
{* *}
{**}
program SAMPLE;

%include CMALLCL
%include CMINTER
%include CMRESGLB

const
BUFFERlength = 8192; { same as MAXdataBUFFERsize }
PORTnumber = 999; { constant on both sides }
CLOCKunitsPERthousandth = '3E8088'x;

static
Buff er
Buff erAddress
Connectionlnfo
Count
DataRate
Difference
HostAddress
IbmSeconds
Ignored
Line
Note
PushFlag

packed array (.1 .• BUFFERlength.) of char;
Address31Type;
StatuslnfoType;
integer;
real;
TimeStampType;
InternetAddressType;
integer;
integer;
string(88);
NotificationlnfoType;
boolean; { for TcpFSend

Figure E-1 (Part 1 of 5). Example of a Pascal Application Program

}

Appendix E. Sample Programs E-1

Real Rate
ReturnCode
SendFlag
StartingTime
Thousandths
Total Bytes
UrgentFlag

real;
integer;
boolean; { are we sending or receiving
TimeStampType;
integer;
integer;
boolean; { for TcpFSend

}

}

{**}
{* Print message, release resources and reset environment · *}
{**}
procedure Restore (const Message: string;

begin
Write(Message);

const ReturnCode: integer);

if ReturnCode <> OK then
Write(SayCalRe(ReturnCode));

Writeln(11
);

EndTcpip;
Close (Input);
Close (Output);

end;

begin
TermOut (Output);
Termin (Input);

{Establish access to TCP/IP services }
BeginTcpip (ReturnCode);
if ReturnCode <> OK then begin

Writeln('BeginTcpip: 1 ,SayCalRe(ReturnCode));
return;

end;

{ Inform TCPIP which notifications will be handled by the program}
Handle ((.DATAdelivered, BUFFERspaceAVAILABLE,

CONNECTIONstateCHANGED, FRECEIVEerror,
FSendResponse.), ReturnCode);

if ReturnCode <> OK then begin
Restore ('Handle: 1

, ReturnCode);
return;

end;

{ Prompt user for operation parameters
Writeln('Transfer mode: (Send or Receive)');
ReadLn (Line);
if (Substr(Line,1,1) = 's') or (Substr(Line~1,1)

SendFlag := TRUE
else

SendFlag := FALSE;

'S') then

Figure E-1 (Part 2 of 5). Example of a Pascal Application Program

E-2 Programmer's Reference

}

Writeln('Host Name or Internet Address:');
ReadLn (Line);
GetHostResol (Line, HostAddress);
if HostAddress = NOhost then begin

Restore ('GetHostResol failed. ' OK);
return;

end;

{ Open a TCP connection: active for Send and passive
{ - Connection value will be returned by Tcpip

for Receive }

{ - initialize IBM reserved fields: Security, Compartment
{ and Precedence
{ for Active open - set Connection State to TRYINGtoOPEN
{ - must initialize foreign socket
{ for Passive open - set ConnectionState to LISTENING

}
}
}
}
}
}

{ - may leave foreign socket uninitialized to }
{ accept any open attempt
with Connectionlnfo do begin

Connection := UNSPECIFIEDconnection;
OpenAttemptTimeout := WAITforever;
Security := DEFAULTsecurity;
Compartment := DEFAULTcompartment;
Precedence := DEFAULTprecedence;
if SendFlag then begin

ConnectionState

end

Local Socket.Address
LocalSocket.Port
ForeignSocket.Address
ForeignSocket.Port

else begin
ConnectionState
Local Socket.Address
Local Socket.Port
ForeignSocket.Address
ForeignSocket.Port

end;
end;

:= TRYINGtoOPEN;
:= UNSPECIFIEDaddress;
:= UNSPECIFIEOport;
:= HostAddress;
:= PORTnumber;

:= LISTENING;
:= HostAddress;
:= PORTnumber;
:= UNSPECIFIEDaddress;
:= UNSPECIFIEDport;

TcpWaitOpen (Connectionlnfo, ReturnCode);
if ReturnCode <> OK then begin

Restore ('TcpWaitOpen: ', ReturnCode);
return;

end;

{ Initialization }
BufferAddress := Addr(Buffer(.1.));
StartingTime := ClockTime;
TotalBytes := 0;
Count := 0;

}

PushFlag := false;
UrgentFlag := false;

{ let Tcplp buffer data for efficiency }
{ none of out data is Urgent }

Figure E-1 (Part 3 of 5). Example of a Pascal Application Program

Appendix E. Sarp.pie Programs E-3

{ Issue first TcpFSend or TcpFReceive }
if SendFlag then

TcpFSend (Connectionlnfo.Connection, BufferAddress,
BUFFERlength, PushFlag, UrgentFlag, ReturnCode)

else
TcpFReceive {Connectionlnfo.Connection, BufferAddress,

BUFFERlength, ReturnCode);

if ReturnCode <> OK then begin
Writeln(1TcpSend/Receive: 1 ,SayCalRe(ReturnCode));
return;

end;

{ Repeat until 5M bytes of data have been transferred}
while (Count < 5) do begin

{ Wait until previous transfer operation is completed }
GetNextNote{Note, True, ReturnCode);
if ReturnCode <> OK then begin

restore(1 GetNextNote : 1 ,ReturnCode);
return;

end;

{ Proceed with transfer according to the Notification received }
{ Notifications Expected : }
{ DATAdelivered - TcpFReceive function call is now complete }
{ - receive buffer contains data }
{ FSENDresponse - TcpFSend function call is now complete }
{ - send buffer is now available for use }
{ FRECEIVEerror - if there was an error on TcpFReceive function }
case Note.NotificationTag of

DATAdelivered:
begin

TotalBytes := TotalBytes + Note.BytesDelivered;
{issue next TcpFReceive }
TcpFReceive (Connectionlnfo.Connection, BufferAddress,

BUFFERlength, ReturnCode);
if ReturnCode <> OK then begin

Restore{'TcpFReceive: ',Note.SendTurnCode);
return;

end;
end;

FSENDresponse:
begin

if Note.SendTurnCode <> OK then begin
Restore('FSENOresponse: 1 ,Note.SendTurnCode);
return;

end
else begin

{issue next TcpFSend }
TotalBytes := TotalBytes + BUFFERlength;
TcpFSend (Connectionlnfo.Connection, BufferAddress,

BUFFERlength, PushFlag, UrgentFlag, ReturnCode);
if ReturnCode <> OK then begin

Figure E-1 (Part 4 of 5). Example of a Pascal Application Program

E-4 Programmer's Reference

Restore('TcpFSend: ',Note.SendTurnCode);
return;

end;
end;

end;
FRECEIVEerror:

begin
Restore('FRECEIVEerror: ' Note.ReceiveTurnCode);
return;

end;
OTHERWISE

begin
Restore('UnExpected Notification ',OK);
return;

end;
end; { Case on Note.NotificationTag }

{ is it time to print transfer rate? }
if TotalBytes < 1848576 then

continue;

{ Print transfer rate after every lM bytes of data transferred }
DoubleSubtract (ClockTime, StartingTime, Difference);
DoubleDivide (Difference, CLOCKunitsPERthousandth, Thousandths,

Ignored);
RealRate := (TotalBytes/Thousandths) * 1eee.e;
Writeln('Transfer Rate ', RealRate:l:e,' Bytes/sec.');

StartingTime := ClockTime;
TotalBytes := e;
Count := Count + 1;

end; {Loop while ·count< 5}

{ Close TCP connection and wait till partner also drops connection }
TcpClose (Connectionlnfo.Connection, ReturnCode);
if ReturnCode <> OK then begin

Restore ('TcpClose: ', ReturnCode);
return;

end;

{when partner also drops connection, program will receive }
{ CONNECTIONstateCHANGEO notification with NewState = NONEXISTENT }
repeat

GetNextNote (Note, True, ReturnCode);
if ReturnCode <> OK then begin

Res tore ('GetNextNote: ' , ReturnCode);
return;

end;
until (Note.NotificationTag = CONNECTIONstateCHANGEO) &

(Note.NewState =NONEXISTENT);

Restore ('Program terminated successfully. ', OK);
end.

Figure E-1 (Part 5 of 5). Example of a Pascal Application Program

Appendix E. Sample Programs E-5

A Sample C Socket Communications Server

/**
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

A sample C Socket coll1Tlunications server.

This process uses the TCP (SOCK_STREAM) conrnunications protocol
to establish a reliable, connected pathway to the host running
the client process. The socket is full-duplex.*

The function calls of chief importance are:

socket()
bind()
listen()

accept()

read()
write()
close()

Creates the data-socket.
Associates the socket with a local address
Signals the TCP/IP space that the process is ready
to accept foreign connection attempts.
Accepts a foreign connection, if there is data to read.
Blocks otherwise, until data arrives.
Reads data from the socket.
Writes data to the socket.
Closes the socket, terminating the connection.

NOTE: This example performs no I/O, nor does it perform complete
error handling. The error handling routine included,
errhand(), performs no useful function, just like the server
itself.

**/

/*********************/
/* include files */
/*********************/

#define MVS
#include <manifest.h>
#include <types.h>
#include <socket.h>
#include <tcperrno.h>
#include <netdb.h>
#include <in.h>
#include <uio.h>
#include <ioctl.h>
#include <ctype.h>

Figure E-2 (Part I of 4). Example of a C Socket Communications Server

E-6 Programmer's Reference

/*********************/
/* error handler */
/*********************/

void errhand ()
{

exit(-1);
}

/*********************/
/* server routine */
/*********************/

main()
{

/* Error occurred. Quit. */

int port 1965;
/*Client and server must choose port number */
/* before beginning comnunications. */
/* Certain ports are reserved - see RFC 1818 */

int nbytes;
char buf[] = "the message";
struct sockaddr_in name;
int namelen;
int s;
int ns;
int backlog;

/*********************/
/* Create the socket */
/*********************/

/* Size of message buffer
/* The message buff er
/* Complete address info
/* Size of name structure
/* The socket descriptor
/* Accept's descriptor
/* Queue length

s = socket(AF_INET, SOCK_STREAM, 8};
if (s < 8}

*/
*/
*/
*/
*/
*/
*/

{ /* If the socket function returns */
errhand(); /*a negative value, the call to */

} /* socket failed. */

/**********************/
/* Set the fields of */
/* the name structure */
/**********************/

name.sin_family = AF_INET; /*The comnunication domain */
name.sin_port = htons(port); /*The port number to be used */
name.sin_addr.s_addr = INADDR_ANY

/* Default local address */

Figure E-2 (Part 2 of 4). Example of a C Socket Communications Server

Appendix E. Sample· Programs E-7

/*******************/
/* Bind the socket */
/*******************/

namelen = sizeof(name);
if (bind(s, &name, namelen) < 0)
{ /* If bind() returns a negative */

errhand(); /*value, the call failed. */
}

/********************/
/* Inform the TCPIP */
/* address space of */
/* your readiness */
/********************/

backlog = 1;
if (listen(s, backlog) != 0)
{

errhand();
}

/* If listen() returns
/* a non-zero value,
/*it failed.

/*********************************/
/* Accept any queued connections */
/*********************************/

ns = accept(s, &name, &namelen);
if (ns == -1)
{

errhand();
}

/*****************************/
/*Read the client's message */
/*****************************/

if (read(s, buf, nbytes) == -1)

/* If accept() returns
/*negative one, it failed

{ /* If read() returns
errhand(); /*negative one, it failed.

}

/******************/
/* Send a message */
/******************/

nbytes = sizeof(*buf);
if (write(s, buf, nbytes) < 0)
{

errhand();
}

/* If write() returns
/* negative one, it failed.

Figure E-2 (Part 3 of 4). Example of a C Socket Communications Server

E-8 Programmer's Reference

*/
*/
*/

*/
*/

*/
*/

*/
*/

!********************/
/* Close the socket */
/* associated with */
/* the accept call */
/********************/

close(ns);

/*****************************/
/* Close the original socket */
/*****************************/

close(s);

/**************/
/*That's it! */
/**************/
}

Figure E-2 (Part 4 of 4). Example of a C Socket Communications Server

Appendix E. Sample Programs E-9

A Sample C Socket Communications Client

/**
I
I
I
I
I
I
I
I
l
I
I
I
I
I
I
I
I
I
I
I
I
I
I

A sample C Socket corrmunications client.

This process uses the TCP (SOCK_STREAM) corrmunications protocol
to establish a reliable, connected pathway to the host running
the server process. The socket is full-duplex.

The function calls of chief importance are:

socket()
connect()

Creates the data-socket.
Establishes a connection with the server's host.
Connect will not return until a connection has been
made, or an error condition discovered.

write()
read()
close()

NOTE:

Writes data to the socket.
Reads data from the socket.
Closes the socket, terminating the connection.

This example performs no I/O, nor does it perform complete
error handling. The error handling routine included,
errhand(), performs no useful function, just like the client
itself.

**/

/*********************/
/* include files */
/*********************/

#define MVS
#include <manifest.h>
#include <types.h>
#include <socket.h>
#include <tcperrno.h>
#include <netdb.h>
#include <in.h>
#include <uio.h>
#include <ioctl.h>
#include <ctype.h>

/*********************/
/* error handler */
/*********************/

void errhand ()
{

exit(-1);
}

/* Error occurred. Quit. */

Figure E-3 (Part I of 3). Example of a C Socket Communications Oient

E-10 Programmer's Reference

/*********************/
/* client routine */
/*********************/

main()
{

int port 1965;
/* Client and server must choose port number */
/* before beginning corrmunications. */
/* Certain ports are reserved - see RFC 1010 */

int nbytes;
char buf[] = "the message";
char *host = "ForeignHost";
char hostname[80];
struct hostent *hp;
unsigned long hostaddr;
structure sockaddr_in myname;
struct hostent *hostnm;
struct sockaddr in name;
int namelen;
int s;

hostnm = gethostbyname(host);
if (hostnm == 0)
{

errhand();
}

/***********************/
/* Set the fields of */
/* the name structures */
/***********************/

/* Size of message buffer */
/* The message buffer */
/*The server's local host */
/*The client's host's name */
/*Client's host's address info */
/*Client's actual address */
/*Client's host's address and port */
/* Resolved hostname info */
/* Complete address info */
/* Size of name structure */
/* The socket descriptor */

/* Resolve the server's name

/* If a NULL pointer is returned,
/* there was an error in the call
/* to gethostbyname()

*/

*/
*/
*/

name.sin_family = AF_INET; /*The conmunication domain */
name.sin_port = htons(port); /*The port number to be used */
name.sin_addr.s_addr =*((unsigned long*) hostnm->h_addr);

/* Internet address field of hostnm */
gethostname(hostname, sizeof(hostname); /*What is my host's name? */
hp= gethostbyname(hostname); /*Determine host's address info */
hostaddr = hp->h_addr_list[0]; /*Use first internet address */

myname.sin_family = AF_INET /* The conmunication domain */
myname.sin_port = 0; /*Take any available port */
myname.sin_addr.s_addr = hostaddr;

/* Client will receive on hostaddr */

/*********************/
/* Create the socket */
/*********************/

s = socket(AF_INET, SOCK_STREAM, 0);
if (s < 0)
{ /* If the socket function returns */

errhand(); /*a negative value, the call to */
} /* socket failed. */

Figure E-3 (Part 2 of 3). Example of a C Socket Communications Client

Appendix E. Sample Programs E-11

/*******************/
/* Bind the socket */
/*******************/

namelen = sizeof(myname);
if (bind(s, &myname, namelen) < 0)
{ /* If bind() returns a negative */

errhand(); /*value, the call failed. */
}

/**********************/
/* Connect the socket */
/**********************/

namelen = sizeof(name);
if (connect(s, &name, namelen) < 0)
{ /* If connect() returns a negative */

errhand(); /*value, the call failed. */
}

/******************/
/* Send a message */
/******************/

nbytes = sizeof(*buf);
if (write(s, buf, nbytes) < 0)
{

errhand();
}

/***************************/
/* Read the server's reply */
/***************************/

if (read(s, buf, nbytes) < 0)
{

errhand();
}

/********************/
/* Close the socket */
/********************/

close(s);

/**************/
/*That's it! */
/**************/
}

/* If write() returns
/* a negative value,
/* it failed.

/* If read() returns
/* a negative value,
/* it failed.

Figure E-3 (Part 3 of 3). Example of a C Socket Communications Oient

E-12 Programmer's Reference

*/
*/
*/

*/
*/
*/

A Sample X-Windows Application
Figure E-4 gives a simple example of an X-Windows application which opens the
display and creates a window, waits 60 seconds, then destroys the window before
ending.

/*
**This is a basic X-Window program, written using the X-Windows
**Application Program Interface (API).
*/
#include <Xlib.h>
#include <stdefs.h>
#include <Xutil.h>

main(argc, argv)
int argc;
char **argv;
{

/*

Display *dp;
Window w;
char *cp;

** X will look up the value of the DISPLAY global variable
** in the CENV group when passed a NULL pointer in XOpenDisplay.
*/

dp = XOpenDisplay(NULL);
/*
** Create a 200x200 window at xy(40, 40) with a black border.
*/

w = XCreateSimpleWindow(dp, RootWindow(dp, 0), 40, 40, 200,
200, 2, BlackPixel(dp, 0),
WhitePixel(dp, 0));

/*
** Map the window to the display •••
** This will cause the window to become visible on the screen.
*/

XMapWindow(dp, w);
/*
** Force X to write buffered requests.
*/

XFlush(dp);
/*
** Sleep for a minute.
*/

sleep (60);
/*
** Destroy the window and end the connection to the X Server.
*/

}

XDestroyWindow(dp, w);
XCloseDisplay(dp);

Figure E-4. Example of an X-Windows Application

Appendix E. Sample Programs E-13

E-14 Programmer's Reference

Appendix F. Related Protocol Specifications

The following publications are used as the protocol specifications:

User Datagram Protocol, RFC 768, J. Postel

Trivial File Transfer Protocol, RFC 783, K.R. Sollins

Internet Protocol, RFC 791, J. Postel

Internet Control Message Protocol, RFC 792, J. Postel

Transmission Control Protocol, RFC 793, J. Postel

Simple Mail Transfer Protocol, RFC 821, J. Postel

Standard for the Format of ARPA Internet Text Messages, RFC 822, David H.
Crocker

The DARPA Internet Gateway, RFC 823, R. Hinden, A. Sheltzer

An Ethernet Address Resolution Protocol, RFC 826, D. Plummer

Telnet Protocol Specification, RFC 854, J. Postel, J. Reynolds

Telnet Binary Transmission, RFC 856, J. Postel, J. Reynolds

Telnet Echo Option, RFC 857, J. Postel, J. Reynolds

A Standard for the Transmission of IP Datagrams over Public Data Networks,
RFC 877, J.T. Korb

Telnet End Of Record Option, RFC 885, J. Postel

Telnet Terminal Type Option, RFC 930, M. Solomon, E. Wimmers

Internet Standard Subnetting Procedure, RFC 950, J. Mogul, J. Postel

DOD Internet Host Table Specification, RFC 952, K. Harrenstien, M. Stahl, E.
Feinler

File Transfer Protocol, RFC 959, J. Postel

Mail Routing And The Domain System, RFC 974, C. Partridge

Assigned Numbers, RFC 1010, J. Reynolds, J. Postel

Official ARPA Internet Protocols, RFC 1011, J. Reynolds, J. Postel

X Window System Protocol, Version 11, RFC 1013, R. Scheifler

XDR: External Data Representation Standard, RFC 1014, SUN Microsystems
Incorporated

Domain Names - Concepts and Facilities, RFC 1034, P. Mockapetris

Domain Names - Implementation and Specification, RFC 1035, P. Mockapetris

Internet Protocol on Network Systems HYPERchannel Protocol Specification, RFC

1044, K. Hardwick, J. Leckashaman

Remote Procedure Call Protocol Specification, RFC 1057, SUN Microsystems
Incorporated

Appendix F. Related Protocol Specifications F -1

Network File System Protocol Specification, RFC 1094, SUN Microsystems
Incorporated.

These RFCs are part of a distribution package contained in the tcpip.arfc(rfcnnnn)
data set; where the nnnn in the member name is the number of the RFC. Other
documents may be obtained from:

SRI International
DDN Network Information Center
Room EJ291
333 Ravenswood Avenue
Menlo Park, CA. 94025
1-800-235-3155

You may also obtain the RFcs from the Internet host with a domain name of
sri-nic.arpa. Use the FTP command and the appropriate FTP subcommands to
retrieve the files. Use a user ID of guest and supply a password of anonymous to the
FTP server on that host. The files to receive are:

< rfc > rfc-index.txt

< rfc > rfcnnnn.txt

F-2 Programmer's Reference

Glossary

This glossary defines the most common terms associated
with TCP /IP communication in an internet environment.

A

access method. A mainframe data management routine
that moves data between storage and an I/O device in
response to requests made by a program.

active open. The state of a connection that is actively
seeking a service.

address. The unique identifier assigned to each device
or workstation connected to a network.

address space. The complete range of addresses in
memory available to a computer program.

AIX. Acronym for Advanced Interactive Executive,
IBM's licensed version of the UNIX operating system.

API. Acronym for Application Program Interface, the
formally-defined programming language interface
between an IBM system control program or licensed
program and the user of the program.

ARP. Acronym for Address Resolution Protocol, a
protocol used to dynamically bind an internet address to
a hardware address. ARP is implemented on a single
physical network, and is limited to networks that
support broadcast addressing.

ARP A. Acronym for Advanced Research Projects
Agency, the former name for DARPA. See DARPA.

ARPANET. A proprietary TCP/IP-based internetwork
funded by United States Department of Defense.

ASCII. Acronym for American National Standard
Code for Information Interchange, the standard code,
using a coded character set consisting of 7-bit coded
characters, used for information exchange among data
processing systems, data communication systems, and
associated equipment.

B
backbone. In a wide area network, a high speed link to
which nodes or data switching exchanges are connected.

baseband. A frequency band that uses the complete
bandwidth of a transmission. All the stations on the
network must participate in every transmission. See also
broadband.

block. A string of data elements recorded, processed or
transmitted as a unit. The element may be characters,
words or physical records.

bridge. A functional unit that connects two LANs that
use the same logical link control procedure, but may use
different medium access control procedures.

broadband. A frequency band divisible into several
narrower bands that uses analog signals, carrier
frequencies and multiplexing techniques to atlow
simultaneous communication by more than one process
through a single connection.

broadcast. The transmission of data packets to all
nodes on a network or subnetwork simultaneously.

broadcast address. An address that is recognized by atl
nodes on a network.

bus topology. A network configuration in which only
one path is maintained between stations and any data
transmitted by a station is available concurrently to all
other stations on the link.

c
checksum. The sum of a group of data associated with
the group and used for error-checking purposes.

Class A network. An internet network in which the
high-order bit of the address is 0. The host number
occupies the 3 low-order octets, allowing for 128 class A
networks with 16 777 216 host numbers on each
network.

Class B network. An internet network in which the
high-order bit of the address is 1 and the next high-order
bit is 0. The host number occupies the 2 low-order
octets, allowing for 16 384 class B networks with
65 536 host numbers on each network.

Glossary X-1

Class C network. An internet network in which the 2
high-order bits of the address are 1 and the next
high-order bit is 0. The host number occupies the
low-order octets, allowing for 2 097 152 class C
networks with 256 host numbers on each network.

client. (1) A function that requests services from a
server, and makes them available to the user. (2) An
address space in MVS that is using TCPIP services. (3) A
term used in an environment to identify a machine that
uses the resources of the network.

client-sener relationship. Any process that provides
resources to other processes on a network is a server.
Any process that employs these resources is a client. A
machine can run client and server processes at the same
time.

connection. An association established between
functional units for conveying information.

D

daemon. A background process usually started at
system initialization that runs continuously and performs
a function required by other processes.

DARPA. Acronym for Defense Advanced Projects
Research Agency, the United States Department of
Defense agency responsible for creating ARPANET.

Formerly called ARPA.

datagram. The basic unit of information that is passed
across an internet. It consists of one or more data
packets.

data set. The major unit of data storage and retrieval
in MYS, consisting of a collection of data in one of
several prescribed arrangements and described by
control information to which the system has access.

data set organization. The way in which data is
arranged within a data set on a mainframe. Only
sequential, direct, partitioned, and YSAM data set
organizations are supported by the Network File System
server feature of TCP/IP for MVS.

DON. Acronym for Defense Data Network. It is
sometimes used to refer to the collection of X.25

networks that include MILNET and ARPANET, but more
accurately refers to MILNET and its interconnected
military networks.

direct data set. A type of data set used in a mainframe
environment for storing data on a random access device
that is accessed using a record address.

X-2 Programmer's Reference

Distributed Services. A facility that provides a stateful
architecture for transparent file sharing, file-level remote
mounts, inherited mounts, cross-system file locking, and
for local/remote process transparency of Inter-Process
Communications message queues. It is supported only
on AIX RT and AIX PS/2 systems.

domain name. Part of the naming hierarchy used in an
internet. It contains a sequence of names (labels)
separated by periods (dots).

domain naming. A hierarchical system for naming
network resources.

dotted-decimal notation. A representation for a 32-bit
integer consisting of four 8-bit numbers, written in base
10, and separated by periods (dots). Dotted decimal
notation is accepted by many Internet application
programs (instead of machine names).

DS. See Distributed Services.

E

EBCDIC. Acronym for Extended Binary Coded
Decimal Interchange Code, a coded character set
consisting of 8-bit coded characters.

entry-sequenced data set. A type of data set used in a
mainframe environment. The format consists of logical
records sequenced by the time of their arrival. A
particular record is located by using the relative byte
address (RBA).

ESDS. Acronym for Entry-Sequenced Data Set.

Ethernet. The name given to a local area
packet-switched network technology invented in the
early 1970s by the Xerox Corporation.

exit. A mechanism that provides an interface from a
, server application into a function. Exits are used in the
Network File System server feature of TCP/IP for MYS to
provide RPC services.

F

foreign host. Any host on the network other than the
local host.

foreign network. In an internet, any other network
interconnected to the local network by one or more
intermediate gateways.

foreign node. See foreign host.

FTP. Acronym for File Transfer Protocol, a TCP/IP
protocol used for transferring files to and from foreign
hosts. FTP also provides the capability to access
directories. Password protection is provided as part of
the protocol.

G
gateway. A functional unit that interconnects computer
networks of different architectures and protocols (at the
IP layer).

H
hop count. The number of networks through which a
datagram passes on the way to its destination node.

host. A computer connected to a network, and
providing an access method to that network. A host
provides end-user services.

I

ICMP. Acronym for Internet Control Message
Protocol. It is included in IP, and handles error and
control messages.

IEEE. Acronym for Institute of Electrical and
Electronics Engineers.

internet. See internetwork.

internetwork. A collection of packet-switched networks
that are connected by gateways. They function as single
network.

Internet. A specific internetwork that includes
ARPANET, MILNET and NSFnet. These networks use the
TCP/IP protocol suite.

internet address. The unique 32-bit address identifying
a node on an internetwork.

interoperability. The ability of hardware and software
from multiple vendors to communicate on a network.

IP. Acronym for Internet Protocol, the TCP/IP layer
between the higher-level host-to-host protocol and the
local network protocols. IP uses local area network
protocols to carry packets, in the form of datagrams, to
the next gateway or destination host.

ISO. Acronym for International Standards
Organization, an organization of national standards
bodies from various countries established to promote
development of standards to facilitate international

exchange of goods and services, and develop
cooperation in intellectual, scientific, technological, and
economic activity.

IUCV. Acronym for Inter-User Communication
Vehicle, a communication mechanism between address
spaces.

J

JES. Acronym for Job Entry Subsystem, a system
facility for spooling, job queuing, and managing I/O.

K

KB. Kilobyte; 1024 bytes.

kernel. A master program that manages all the physical
resources of the computer, including file system
management, virtual memory, reading and writing files
to disks and tapes, scheduling of processes, printing, and
communicating over a network.

key-sequenced data set. A type of data set used in a
mainframe environment for sorting data on a random
access device. The format consists of an index followed
by one or more logical records.

KSDS. Acronym for Key-Sequenced Data Set.

L
LAN. Acronym for Local Area Network, a data
network located on the user's premises in which serial
transmission is used for direct data communication
among data stations.

local host. The computer to which a user's terminal is
directly connected.

local network. That portion of a network physically
connected to the host without intermediate gateways.

M
MCH. Acronym for Multichannel Link.

mount. (1) The process of accessing a directory from a
disk attached to the machine making the mount request
(4.2 mount), or to the remote disk on a network
(Network File System mount). (2) An operation that
associates a group of files on a server with a directory
(mount point) on a client to provide transparent access
to the files through that directory. The files must be in a
hierarchical arrangement.

Glossary X-3

mount point. A place established in a workstation or
server local directory that is used during the transparent
accessing of a remote file. Two entries must be created;
first, an entry in the /ETC/FSTAB file and, second, an
empty directory must be created in a local directory,
quite often the /USR directory.

multichannel link. A means of enabling a data terminal
equipment (DTE) to have several access channels to the
data network over the single circuit.

N
name server. The server used for cross-referencing a
name with its corresponding internet address.

national characters. The characters$,#, and@.

NCP. Acronym for Network Control Program, an IBM
licensed program that provides communication
controller support for single-domain, multiple-domain,
and interconnected network capability.

network. An arrangement of nodes and connecting
branches.

Network File System. (1) A generic term for a system
based on the NFS 3.2 protocol. (2) A facility for sharing
files in a heterogeneous environment of machines,
operating systems, and networks.

NFS 3.2. A protocol developed by SUN Microsystems
Incorporated. It allows computers on a network to
access each other's file systems. Once accessed, the file
system appears to reside on the local host. NFS 3.2 uses
IP.

NJE. Acronym for Network Job Entry, a batch
networking application that transmits data between IBM

operating systems.

node. (1) In a network, a point at which one or more
functional units connect channels or data circuits.
(2) In a network topology, the point at an end of a
branch.

NPSI. Acronym for NCP Packet Switching Interface, an
IBM program product that provides NCP users with the
capability of attaching IBM communications controllers
to data transmission services that support X.25 interfaces.

X-4 Programmer's Reference

0
obey list. The list of user IDs that is authorized to
perform privileged functions in the TCPIP address space.

octet. A byte composed of eight binary elements.

OSI. (1) Acronym for Open Systems Interconnection,
the interconnection of open systems in accordance with
specific ISO standards. (2) The use of standardized
procedures to enable the interconnection of data
processing systems.

p

packet. A sequence of binary digits, including data and
control signals, that is transmitted and switched as a
composite whole.

passive open. The state of a connection that is prepared
to provide a service on demand.

PON. Acronym for Public Data Network, a network
established and operated by a telecommunication
administration or by a Recognized Private Op~rating
Agency (RPOA) for the specific purpose of providing
circuit-switched, packet-switched, and leased-circuit
services to the public.

partitioned data set. See PDS.

PDS. A type of data set used in the mainframe
environment. It must be on a direct access volume and
consists of members. It has a directory that points to
the locations of the various files stored in this data set.
Often used to store libraries of programs and macro
instructions.

peer. In network architecture, any functional unit that
resides in the same layer as another entity.

PING. The process of sending an ICMP Echo Request
packet to a host or gateway, with the expectation of
receiving a reply.

POP. Acronym for Post Office Protocol, a protocol
that allows an AIX RT or AIX PS/2 host to act as the
receiver for mail destined for a user of TCP for the PS/2

computer.

portmapper. A server that converts RPC program
numbers into port numbers acceptable to the protocol.
This server must be running to make RPC calls.

port. (1) An endpoint for communication between
devices, generally referring to a physical connection.

(2) A 16-bit number identifying a particular TCP or UDP
resource within a given TCP /IP node.

process. (1) A unique, finite course of events defined by
its purpose or by its effect, achieved under defined
conditions. (2) Any operation or combination of
operations on data. (3) A function being performed or
waiting to be performed. (4) A program in operation.
For example, a daemon is a system process that is
always running on the system. (If it stops running, you
have to start it up.)

PROFS. Acronym for Professional Office Systems,
IBM's proprietary integrated office management system
used for sending, receiving, and filing electronic mail,
and a variety of other office tasks.

protocol. A set of semantic and syntactic rules that
defines the behavior of functional units in achieving
communication.

R
RACF. Acronym for Resource Access Control Facility,
a facility that allows access to data and system
components based on authorization levels.

RBA. Acronym for Relative Byte Address, an address
which may be used in accessing key sequenced or entry
sequenced VSAM data sets.

relative record data set. A type of data set used in the
mainframe environment. It must be on a direct access
volume and the format consists of one logical record in
a fixed-length slot. Each slot has a unique relative
record number. Data is placed in a specific slot based
on a user-supplied relative record number.

remote host. See foreign host.

remote spooling communications subsystem. A VM
networking component that provides telecommunication
facilities for the transmission of bulk files between VM
users and remote stations.

resolver. A program or subroutine that obtains
information from a name server for use by the calling
program.

RFC. Acronym for Request For Comments, a series of
documents that address a broad range of topics affecting
internetwork communication. Some RFCs are
established as internet standards.

ring topology. A network configuration in which
devices are connected by unidirectional transmission
links to form a closed path.

router. A device that connects networks at the physical
network layer. It is protocol-dependent and connects
only networks operating the same protocol. Routers do
more than transmit data; they also select the best
transmission paths and optimum sizes for packets.

routing table. A list of network numbers and the
information needed to route packets to each.

RPC. Acronym for Remote Procedure Call, a facility
that a client uses to have a server execute a procedure
call. This facility is composed of a library of procedures
plus an XDR.

RRDS. Acronym for Relative Record Data Set.

RSCS. Acronym for Remote Spooling
Communications Subsystem.

s
segmentation. The process of dividing a unit of data
into smaller units in order to send it across a network.
Usually this is done at a gateway when the incoming
data buffer is too large to be transmitted to the next
network.

sequential data set. A type of data set used in the
mainframe environment. It must be on a direct access
volume and has the records stored and retrieved
according to their physical order within the data set.

server. (1) A function that provides services for users.
A machine may run client and server processes at the
same time. (2) A machine that provides resources to
the network. It provides a network service, such as disk
storage and file transfer, or a program that uses such a
service.

sharing. A term used in a computing environment to
refer to utilizing a file on a remote system. It is done by
mounting the remote file system, then reading or writing
files in that remote system.

SMF. Acronym for System Management Facility, a
facility used on the mainframe to log accounting
information, which includes processor time, data transfer
statistics, as well as user information.

SMTP. Acronym for Simple Mail Transfer Protocol, a
TCP/IP application protocol used for transferring mail
between users on different systems.

SNA. Acronym for Systems Network Architecture, the
description of a logical structure, formats, protocols, and
operational sequences for transmitting information units
through, and controlling the configuration and operation
of, networks.

Glossary X-5

socket. (1) An endpoint for communication between
processes or applications in the C Socket API of TCP/IP

for MVS. (2) A pair consisting of TCP port and IP

address, or UDP port and IP address.

star topology. A network configuration in which all
nodes are connected to a central controller or computer
that transfers data between nodes.

stream. A continuous sequence of data elements
transmitted in character or binary-digit form using a
defined format.

subnet. A networking scheme that divides a single
logical network into smaller physical networks to
simplify routing.

subnet address. The portion of the host address that
identifies a subnetwork.

subnet mask. A mask used in the IP protocol layer to
separate the subnet address from the host address.

SVC. Acronym for Supervisor Call, the macro
instruction used by the mainframe to generate a software
interrupt. Control is then transferred to a routine that
will handle the interrupt processing.

switched virtual circuit. A virtual circuit that is
requested by a virtual call. It is released when the
virtual circuit is cleared.

system catalog. The highest level catalog on a
mainframe that must exist so that the operating system
can find data files. It is a VSAM data set and can
contain pointers to VSAM data sets, VSAM user catalogs,
OS data sets, and OS user catalogs.

T

TCB. Acronym for Transmission Control Block, an
internal control block within the TCPIP address space.

TCF. Acronym for Transparent Computing Facility, a
facility that allows a cluster of AIX/370 and AIX PS/2

systems to be constructed, allowing centralized
administration of user Iogons, passwords, and system
resources across the entire cluster.

TCP. Acronym for Transmission Control Protocol, a
stream communication protocol that includes error
recovery and flow control.

TCP/IP. Acronym for Transmission Control
Protocol/Internet Protocol, a suite of protocols designed
to allow communication between networks regardless of
the technologies implemented in each network.

X-6 Programmer's Reference

Telnet. Terminal Emulation Protocol, a TCP/IP

application protocol that allows interactive access to
foreign hosts.

token. (1) In a local network, the symbol of authority
passed among data stations to indicate the station
temporarily in control of the transmission medium.
(2) In programming languages, a language construct
that by convention represents an elemental unit of
meaning.

TFTP. Acronym for Trivial File Transfer Protocol, the
TCP/IP standard protocol for file transfer used primarily
for communications among PS/2 computers. TFTP allows
sending and receiving of files; but does not provide any
password protection or directory capability.

TN3270. An informally defined protocol for
transmitting 3270 data streams over Telnet.

Token-Ring network. A ring network that allows
unidirectional data transmission between data stations
by a token passing procedure over one transmission
medium so that the transmitted data returns to the
transmitting station.

u
UDP. Acronym for User Datagram Protocol, a
connectionless datagram protocol that requires minimal
overhead, but does not guarantee delivery.

user. Anyone who requires the services of a computing
system.

USS. Acronym for Unformatted System Services.

v
VMCF. Acronym for Virtual Machine Communication
Facility, a connectionless mechanism for communication
between address spaces.

VSAM. Acronym for Virtual Storage Access Method, -
an access method used on a mainframe to organize data
and maintain information about that data in a catalog.
VSAM data sets cannot be accessed by any other access
method.

Virtual Telecommunications Access Method. An IBM
program product that controls communication and the
flow of data in an SNA network. It provides
single-domain, multiple-domain, and interconnected
network capability. VTAM runs under MVS, VSE, and VM.

virtual circuit. (1) In packet switching, the facilities
provided by a network that give the appearance to the

user of an actual connection. (2) A logical connection
established between two DTEs.

VT AM. Acronym for Virtual Telecommunications
Access Method.

w
WAN. Acronym for Wide Area Network, a network
that provides communication services to a geographic
area larger than that served by a local area network.

widget. (1) The fundamental data type of the
X-Windows Toolkit. (2) An object providing a
user-interface abstraction; for example, a Scrollbar
widget. It is the combination of an X-Windows window
(or subwindow) and its associated semantics.

working directory. A collection of files to be
manipulated by an FTP operation.

x
X.25. A recommendation of the Consultative
Committee on International Telephony and Telegraphy
(CCITT) that defines the interface between data terminal
equipment and packet switching networks.

XDR. Acronym for External Data Representation, a
standard developed by SUN Microsystems Incorporated
for representing data in machine independent format.

X-Windows API. An application program interface
designed as a distributed, network-transparent, device
independent, multitasking windowing and graphics
system.

X Window System. An application developed by the
Massachusetts Institute of Technology that incorporates
the protocol also used in IBM's X-Windows API.

Glossary X-7

I

/

X-8 Programmer's Reference

Index

A
accepting the C socket connection request 3-5
access control, manipulating (X-Windows) 4-14
access modes D-10, D-15
account exit D-28-D-37

address of client system name D-30
address of data set name D-31
address of error message D-30
address of global storage block D-30
address of member name D-31
address of MVS user ID D-30
address of user storage block D-30
APF-authorized library D-29
APF-authorized task D-29
client group ID number D-30
client IP address D-30
client user ID number D-30
data set D-28
data set bytes read D-31
data set bytes written D-31
data set read count D-31
data set write count D-31
logout D-35
MVSLOGIN command D-28, D-32
NFSXU4 D-29
register contents D-29

address of entry point D-29
address of save area D-29
address of the parameter list D-29
return address D-29

request active time D-31
request bytes read from TCP/IP D-31
request bytes written from TCP/IP D-31
request code D-30

system initialization D-30
system termination D-30
user data set usage D-30
user initialization D-30
user interval expiration D-30
user request complete D-30
user termination D-30

request disk bytes read D-31
request disk bytes written D-31
request disk read count D-31
request disk write count D-31
request end time D-31
request procedure number D-31
request program number D-31
request start time D-30
request version number D-31

account exit (continued)
resource utilization D-28
return code D-30

invalid request D-30
processing error D-30
processing successful D-30

single thread access D-29
start of new user session D-32
storage block D-29, D-32, D-35
system initialization D-32
system shutdown D-28
system startup D-28
system termination D-35
USB D-28
user data set usage D-34
User Interval Expiration D-34
user request complete D-33
user storage block D-32
user termination D-35

ACF D-1
active open 2-23
Address Resolution Protocol (ARP) 1-4, 1-6
addressing 1-2, 1-4, 1-5-1-6
AddUserNote (Pascal) 2-55, C-2
APF-authorized library D-2

account exit D-29
archive exit D-17
login exit D-2
security exit D-10

APF-authorized task D-2
account exit D-29
archive exit D-17
login exit D-2
security exit D-10

archive exit D-16-D-28
address of client system name D-19
address of global storage block D-19
address of message supplied D-19
address of MVS data set member name D-19
address of MVS data set name D-19
address of MVS data set volume name D-19
address of MVS user ID D-19
address of user storage block D-19
APF -authorized library D-17
APF-authorized task D-17
archive date D-19
archive management package D-16
archive package D-16
Archive routine D-25
archive time D-19
client group ID number D-19

Index X-9

archive exit (continued)
client IP address 0-19
client user ID number D-19
create request 0-25
creation date 0-19
data set D-16

archi\red 0-16
create 0-25
delete 0-24
restoration 0-16
unique processing D-24

data set block size 0-19
data set organization D-19

direct access data set 0-19
indexed sequential data set D-19
partitioned sequential data set 0-19
sequential data set 0-19
unknown 0-19
VSAM D-19
VSAM entry sequenced data set D-19
VSAM key sequenced data set 0-19
VSAM relative record data set D-19

data set record format 0-19
data set record length 0-19
delete request 0-24
file size D-19
information from archive requested 0-20
installation exit 0-16
NFSXU3 0-17
read request 0-23
register contents 0-17

address of entry point 0-17
address of save area 0-17
address of the parameter list 0-17
return address D-1 7

request code D-18
create request 0-18 ·
delete request 0-18
information from archive requested 0-18
read request D-18
retrieve from archive requested 0-18
system initialization D-18
system termination 0-18
write request D-18

retrieve D-23
retrieve from archive requested 0-22
return code D-18

access privilege refused 0-18
data set deleted from archives D-18
data set does not exist 0-18
data set restored, re-issue lookup 0-18
device not available 0-18
information returned 0-18
invalid request D-18

storage block 0-17, 0-20, 0-26

X-10 Programmer's Reference

archive exit (continued)
system initialization 0-20
system shutdown 0-16
system startup 0-16
system termination 0-26
unique processing 0-24
unsigned archive time 0-19
write request 0-24

archive management package D-16
areas (X-Windows)

clearing 4-9
copying 4-9
filling 4-10

ARP 1-6
ARPANET 1-2
associating tables (X-Windows) 4-24
asynchronous communication 2-1
atoms (X-Windows) 4-7

B
batch mailing B-8
BeginTcplp (Pascal) 2-20
bitmaps, manipulating (X-Windows) 4-19
broadcast address 1-6
BUFFERspaceAVAILABLE notification (Pascal) 2-8
BytesToRead information (Pascal) 2-4

c
C Language 3-1
C programming language 3-3
C socket application program interface 3-1-3-19

library calls 3-4-3-19
accept() 3-5
bind() 3-6
close() 3-8
connect() 3-8
gethostbyaddr() 3-9
gethostbyname() 3-10
gethostname() 3-11
getsockname() 3-11
listen() 3-12
readv() 3-12
read() 3-12
recvfrom() 3-13
recv() 3-13
select() 3-15
sendto() 3-16
send() 3-16
socket() 3-17
writev() 3-18
write() 3-18

quick reference 3-3
software requirements 3-3

character string sizes, querying (X-Windows) 4-11
OearTimer (Pascal) 2-46
client defined 1-1
color cells, manipulating (X-Windows) 4-8
colormaps, manipulating (X-Windows) 4-7
communication procedures

TCP (Pascal) 2-23
UDP (Pascal) 2-38

Compartment information (Pascal) 2-4
Connection information (Pascal) 2-4
connection notification (Pascal) 2-7
CONNECTIONclosing state (Pascal) 2-3
ConnectionState (Pascal) 2-2
CONNECTIONstateCHANGED notification

(Pascal) 2-8
CreateTimer (Pascal) 2-46
creating an application 4-3
cursors, manipulating (X-Windows) 4-12
cut and paste buffers, using (X-Windows) 4-18

D
DARPA Internet 3-1
DAT A command (SMTP) B-3
data set D-10, 0-12, D-14

access D-10
archived D-16
create D-25
MYS 0-10, D-12, D-14
permanent D-28
restoration D-16
unique processing D-24

data set names vii
data structures 3-4
DATAdelivered notification (Pascal) 2-8
datagram sockets 3-1
datagrams 1-4, 1-5
DatasetPassword file specification (Pascal)
DDName file specification (Pascal) 2-12
DestroyTimer (Pascal) 2-47
direct routing 1-6
display functions (X-Windows) 4-20
displays (X-Windows)

closing 4-5
defined 4-2
opening 4-5

distributed computing 1-1
domain naming 1-5

E
electronic mail B-1
end point for communication, creating 3-17
EndTcplp (Pascal) 2-21

2-12

error handling, default (X-Windows) 4-15
establishing a connection 3-6
events, handling (X-Windows) 4-14
exit routines

account exit D-28-D-37
archive exit D-16-0-28
login exit 0-1-D-9
security exit D-10-0-16

extension routines (X-Windows) 4-23
External Data Representation (XOR) 5-1
external interrupt handling (Pascal) 2-21
EXTERNALinterrupt notification (Pascal) 2-9

F
file specification record (Pascal) 2-12
File Transfer Protocol (FTP) 1-5
fonts (X-Windows)

freeing 4-10
loading 4-10

foreign host 1-2
foreign network 1-2
F oreignSocket information (Pascal) 2-5
FRECEIVEerror notification (Pascal) 2-9
FSENDresponse notification (Pascal) 2-9
FullDatasetName file specification (Pascal) 2-12

G
gateways ·,,

defined 1-2
GetHostNumber (Pascal) 2-47
GetHostResol (Pascal) 2-48
GetHostString (Pascal) 2-48
Getldentity (Pascal) 2-49
GetNextNote (Pascal) 2-17
GetSmsg (Pascal) 2-51
global storage block

account exit D-29, D-32, D-35
archive exit D-17, D-20, D-26
login exit D-2, 0-4, D-8
security exit D-10

graphics contexts, manipulating (X-Windows) 4-8

H
Handle (Pascal) 2-18
HELO command (SMTP) B-4
HELP command (SMTP) B-4
host

foreign 1-2
local 1-2

host lookup routines (Pascal) 2-4 7
host name, returning 3-11

Index X-11

hostent structure 3-9, 3-10
hosts, manipulating (X-Windows) 4-14

I
images, manipulating (X-Windows) 4-18
images, transferring (X-Windows) 4-12
indirect routing 1-6
initialization procedures, TCP/UDP (Pascal) 2-19
initiating a connection on a socket 3-8
installation exit D-16
Inter-User Communication Vehicle (IUCV) A-3

disabling interrupts A-5-A-6
external interrupt parameters A-5
program call sequences A-3-A-4

interface
TCP/UDP/IP interface (C Sockets) 3-1

internet
addressing 1-2, 1-4, 1-5-1-6
defined 1-2
routing 1-6

Internet Control Message Protocol (ICMP) 1-4
Internet defined 1-2
Internet Protocol (IP) 1-4, 2-1
interoperability defined 1-2
Intrinsics (X-Windows) 4-25
IsLocalAddress (Pascal) 2-50
IsLocalHost (Pascal) 2-50
1/0 status, checking 3-15

K
keyboard event functions (X-Windows) 4-1 7
keyboard settings, manipulating (X-Windows) 4-13

L
lines, drawing (X-Windows) 4-10
LISTENING state (Pascal) 2-3
local host 1-2
local network 1-2
LocalSocket information (Pascal) 2-4
login exit D-1-D-9

ACF D-1
address of client system name D-4
address of GSB D-4
address of message supplied D-4
address of MVS group name D-4
address of MVS new user password D-4
address of MVS user ID D-4
address of MVS user password D-4
address of USB D-4
APP-authorized library D-2
APP-authorized task D-2
authentication type D-4

DES credentials D-4

X-12 Programmer's Reference

login exit (continued)
authentication type (continued)

short hand UNIX credentials D-4
UNIX type credentials D-4

cleanup D-1
client group ID number D-4
client IP address D-4
client user ID number D-4
logout D-1, D-7

forced D-1
logout requested D-8
mvslogin command D-1, D-5
mvslogout command D-1
new password D-6
new password processing D-1
new password supplied D-6
NFSXUl D-2
password checking D-1
RACF D-1
register contents D-2

address of entry point D-2
address of save area D-2
address of the parameter list D-2
return address D-2

request code D-3
logout requested D-3
new password D-3
new user session D-3
system initialization D-3
system termination D-3
user login request D-3
user timed out D-3

return code D-3
forced logout D-3
invalid password D-3
invalid user ID D-3
login successful D-3
password expired D-3
password required D-3
request invalid D-3
timeout interval extended D-3
unauthorized user D-3
user ID required D-3

session timeout value D-4
start of new user session D-5

return code D-5
storage block D-2, D-4, D-5, D-8
system initialization codes and fields D-4
system termination D-8
time-out interval D-1, D-7
user login request D-6
user time delta D-4
user time out D-7
user verification D-1

logout D-1, D-7
forced D-1

M
MAIL FROM command (SMTP) B-5
MemberName file specification (Pascal) 2-12
MILNET 1-2
MonCommand (Pascal) 2-35
monitor procedures (Pascal) 2-35
MonQuery (Pascal) 2-36
MVS defined iv
mvslogin command D-5

account exit D-28, D-32
login exit D-1

mvslogout command
login exit D-1

N
network

classes 1-6
defined 1-1
foreign 1-2
gateways 1-2
local 1-2
peer-to-peer 1-1
protocols 1-3
software 1-3
topology examples 1-1

NFSXUl D-2
NFSXU2 D-10
NFSXU3 D-17
NFSXU4 D-29
node defined 1-1
NONEXISTENT state (Pascal) 2-3
NOOP command (SMTP) B-5
notifications (Pascal) 2-17
Notification Tag (Pascal) 2-7
NSFnet 1-2

0
OPEN state (Pascal) 2-3
OpenAttemptTimeout information (Pascal) 2-4

p
packets 1-3, 1-4
Pascal API assembler calls C-1-C-2
Pascal APls 2-1-2-57

data structures 2-2
connection information record 2-4
ConnectionState 2-2
file specification record 2-12
notification record 2-5

Pascal APls (continued)
procedure calls 2-12-2-55

handling external interrupts 2-21
host lookup routines 2-47
monitor procedures 2-35
notifications 2-17
other routines 2-51
Ping interface 2-34
raw IP interface 2-42
summary 2-13-2-1 7
TCP communication procedures 2-23
TCP/UDP initialization 2-19
TCP/UDP termination 2-21
timer routines 2-45
UDP communication procedures 2-38

return codes 2-55-2-57
software requirements 2-2

passive open 2-23
peer-to-peer networks 1-1
permission D-10, D-15
Ping interface (Pascal) 2-34
PingRequest (Pascal) 2-34
PINGresponse notification (Pascal) 2-9
pixmaps (X-Windows)

creating 4-8
freeing 4-8

pointers to objects, returning 3-9, 3-10
Precedence information (Pascal) 2-4
program call numbers A-2
properties (X-Windows) 4-7
protocol notification (Pascal) 2-7
protocols, network

Address Resolution Protocol 1-4
defined 1-3
File Transfer Protocol (FTP) 1-5
Internet Control Message Protocol (ICMP) 1-4
Internet Protocol (IP) 1-4
Simple Mail Transfer Protocol (SMTP) 1-5
Telnet Protocol (f elnet) 1-5
Transmission Control Protocol (f CP) 1-4
User Datagram Protocol (UDP) 1-5

Q
QUEU command (SMTP) B-5
queuing a connection request 3-12
QUIT command (SMTP) B-6

R
RACF D-1
raw IP interface (Pascal) 2-42
RawipClose (Pascal) 2-45
RawlpOpen (Pascal) 2-42

Index X-13

RA WIPpacketsDELIVERED notification
(Pascal) 2-10

RawlpReceive (Pascal) 2-43
RawlpSend (Pascal) 2-44
RA WIPspaceA VAILABLE notification (Pascal) 2-10
RCPT TO command (SMTP) B-6
ReadXlateTable (Pascal) 2-51
receiving messages from a socket 3-13
RECEIVINGonly state (Pascal) 2-3
regions, manipulating (X-Windows) 4-17
register contents

account exit D-29
archive exit D-17
login exit D-2
security exit D-11

related protocol specifications F-1
Remote Procedure Calls (RPCs) 5-1-5-32

interface described 5-1
library calls 5-5-5-32

authnone _create 5-6
authunix _create 5-6
authunix_ create_ default 5-6
auth_destroy 5-5
callrpc 5-6
clntraw _create 5-10
clnttcp _create 5-10
clntudp _create 5-11
clnt_ call 5-7
clnt_ destroy 5-8
clnt_freeres 5-8
clnt_geterr 5-8
clnt_pcreateerror 5-9
clnt_perrno 5-9
clnt_perror 5-9
get_myaddress 5-11
mvs_xdr_enum 5-11
pmap _getmaps 5-12
pmap _getport 5-12
pmap _rmtcall 5-13
pmap_set 5-13
pmap _unset 5-14
registerrpc 5-14
rpc _ createerr 5-15
svcerr_auth 5-18
svcerr _decode 5-18
svcerr _ noproc 5-19
svcerr_noprog 5-19
svcerr _progvers 5-19
svcerr_systemerr 5-19
svcerr_weakauth 5-20
svcraw _create 5-20
svctcp_create 5-20

X-14 Programmer's Reference

Remote Procedure Calls (RPCs) (continued)
library calls (continued)

svcudp_create 5-21
svc _destroy 5-15
SVC _f ds 5-15
svc _freeargs 5-15
svc _getargs 5-16
svc _getcaller 5-16
SVC _getreq 5-16
svc_register 5-17
svc_run 5-17
svc_sendreply 5-17
svc _unregister 5-18
xdr_accepted_reply 5-21
xdr_array 5-21
xdr_authunix_parms 5-22
xdr_bool 5-22
xdr _bytes 5-22
xdr _ callhdr 5-23
xdr _ callmsg 5-23
xdr_double 5-23
xdr_enum 5-24
xdr_float 5-25
xdr_inline 5-25
xdr_int 5-26
xdr_long 5-26
xdr_opaque 5-26
xdr_opaque_auth 5-27
xdr_pmap 5-27
xdr_pmaplist 5-27
xdr reference 5-28
xdr_rejected_reply 5-28
xdr_replymsg 5-28
xdr_short 5-29
xdr_string 5-29
xdr_union 5-30
xdr _ u _int 5-29
xdr_u_long 5-30
xdr_u_short 5-30
xdr _void 5-31
xdr _ wrapstring 5-31
xprt_register 5-31
xprt_ unregister 5-31

quick reference 5-1-5-4
software requirements 5-1

Requests For Comment (RFCs) F-1
resource manager, using (X-Windows) 4-19
resource sharing 1-1

resource utilization D-28
RESOURCESavailable notification (Pascal) 2-10
retrieve D-23, D-24
return codes, Pascal 2-55-2-57
routing 1-4

direct 1-6
indirect 1-6

RSET command (SMTP) B-6
RTcpExtRupt (Pascal) C-1
RTcpVmcfRupt (Pascal) C-1
Running an Application 4-4

s
saving a socket name 3-11
SayCalRe (Pascal) 2-52
SayConSt (Pascal) 2-52
SaylntAd (Pascal) 2-53
SaylntNum (Pascal) 2-53
SayNotEn (Pascal) 2-54
SayPorTy (Pascal) 2-54
SayProTy (Pascal) 2-54
screen saver, controlling (X-Windows) 4-14
security exit D-10-D-16

access allowed D-11
access denied D-11
invalid request D-11
permissions returned D-11

access modes D-10, D-15
allocate D-10
getting access mode D-10
read D-10
write D-10

address of catalog data set name D-12
address of catalog volume name D-12
address of client system name D-11
address of data set volume name D-12
address of GSB D-12
address of MYS data set member name D-12
address of MYS data set name D-12
address of MYS user ID D-11
address of USB D-12
APF -authorized library D-10
APF-authorized task D-10
client group ID number D-11
client IP address D-11
client user ID number D-11
data set D-10, D-12, D-14

access D-10
MYS D-10, D-12, D-14

NFSXU2 D-10
permission D-10, D-15
permissions returned D-12

allocate allowed D-12
none D-12
read allowed D-12

security exit (continued)
permissions returned (continued)

write allowed D-12
register contents D-11 \

address of entry point D-11
address of save area D-11
address of the parameter list D-11
return address D-11

request code D-11
return security permissions D-11
validate allocate request D-11
validate read request D-11
validate write request D-11

return security permissions D-15
storage block D-10
validate allocate request D-13
validate read request D-14
validate write request D-14

Security information (Pascal) 2-4
sending mail to TCP network recipient B-8
sending messages to a socket 3-16
SENDINGonly state (Pascal) 2-3
server defined 1-1
SETSMSG command A-1
SetTimer (Pascal) 2-46
Simple Mail Transfer Protocol (SMTP) 1-5
SMSGreceived notification (Pascal) 2-10
SMTP address space interface B-1-B-8

batch SMTP command file format B-1
command responses B-1
commands B-3-B-8

DATA B-3
HELO B-4
HELP B-4
MAIL FROM B-5
NOOP B-5
QUEU B-5
QUIT B-6
RCPT TO B-6
RSET B-6
TICK B-7
VERB B-7
VRFY B-7

example B-8
JES spool interface B-1
network interface B-1
path_address syntax B-2
unimplemented commands B-8
verbose mode B-2

SMTPNOTE command B-1
socket 4-1
socket API protocol 4-3
sockets 3-1-3-19

datagram 3-1
defined 3-1

Index , X-15

sockets (continued)
stream 3-1

software requirements
C Socket interface 3-3
RPC interface 5-1
TCP/UDP/IP interface (Pascal) 2-2
X-Windows interface 4-1

software, network 1-3
Special Messages (Smsgs) A-1
specifications

protocol F -1
SRI International 1-5
StartTcpNotice (Pascal) 2-20
stream sockets 3-1
structures

hostent 3-9, 3-10
subnets 1-6
synchronization (X-Windows)

disabling 4-15
enabling 4-15

syntax diagrams, how to read v-vii

T
TcpAbort (Pascal) 2-32
TcpClose (Pascal) 2-31
TcpExtRupt (Pascal) 2-22
TcpFReceive (Pascal) 2-28
TcpFSend (Pascal) 2-25
TcpNameChange (Pascal) 2-19
TcpOpen (Pascal) 2-23
TcpReceive (Pascal) 2-28
TcpSend (Pascal) 2-25
TcpStatus (Pascal) 2-33
Tep VmcfRupt (Pascal) 2-22
TcpWaitOpen (Pascal) 2-23
TcpWaitReceive (Pascal) 2-28
TcpWaitSend (Pascal) 2-25
TCP/IP

See Transmission Control Protocol/Internet Protocol
(TCP/IP)

Telnet Protocol (Telnet) 1-5
termination procedure, TCP/UDP (Pascal) 2-21
text, drawing (X-Windows) 4-11
TICK command (SMTP) B-7
time-out interval D-1, D-7
timer routines (Pascal) 2-45
TIMERexpired notification (Pascal) 2-10
toolkit (X-Windows) 4-25
topology, network 1-1
Transmission Control Protocol (fCP) 1-4, 2-1
Transmission Control Protocol/Internet Protocol

(TCP/IP)
addressing 1-2, 1-4, 1-5-1-6
example of using 1-7

X-16 Programmer's Reference

Transmission Control Protocol/Internet Protocol
(TCP/IP) (continued)

protocols 1-3-1-5
routing 1-6
software 1-3

TRYINGtoOPEN state (Pascal) 2-3

u
UdpOose (Pascal) 2-41
UDPdatagramDELIVERED notification (Pascal) 2-10
U D PdatagramSP A CEavailable notification

(Pascal) 2-11
UdpNReceive (Pascal) 2-40
UdpOpen (Pascal) 2-38
UdpReceive (Pascal) 2-41
UDPresourcesAVAILABLE notification (Pascal) 2-11
UdpSend (Pascal) 2-39
UnackedBytes information (Pascal) 2-4
Unhandle (Pascal) 2-18
URGENTpending notification (Pascal) 2-11
User Datagram Protocol (UDP) 1-5, 2-1
user storage block D-32

account exit D-29
archive exit D-1 7
login exit D-2, D-5
security exit D-10

USERdefinedNOTIFICATION (Pascal) 2-11
USERdeliversLINE notification (Pascal) 2-11
USERwantsA TIENTION notification (Pascal) 2-11

v
VERB command (SMTP) B-7
Virtual Machine Communication Facility

(VMCF) A-l-A-28
aborting a TCP connection A-16
closing a TCP connection A-15
closing a UDP port A-16
command files A-18
determining whether an address is local A-18
disabling interrupts A-5-A-6
dropping an IP protocol A-21
ending TCP/IP communication A-12
external interrupt parameters A-5
identifying your IP protocol A-20
interrupt header fields A-10
interrupts described A-22-A-28
locating the CVT A-3
obtaining TCP connection status A-16
opening a TCP/IP connection A-12
opening a UDP port A-17
parameter list fields A-10
parameter list structure A-7-A-10

CALLCODE values (initiation) A-8
CALLCODE values (notification) A-8

Virtual Machine Communication Facility (VMCF)
(continued)

parameter list structure (continued)
connection information record format A-9
connection state values A-9
fields A-7
miscellaneous constants A-10
notification mask values A-9

program call numbers A-2
program call sequences A-3-A-4
receiving raw IP packets A-22
receiving TCP data (FRECEIVEtcp) A-14
receiving TCP data (RECEIVEtcp) A-15
receiving UDP data A-18
sending an ICMP echo request A-20
sending raw IP packets A-21
sending TCP data A-13
sending UDP data A-17
Special Messages (Smsgs) A-1
specifying notifications to receive A-11
starting TCP/IP communication A-11
status information A-19
when to use A-1

visual types, querying (X-Windows) 4-18
VRFY 8-7

w
well-known application protocol 3-1
well-known port numbers 3-2
well-known services 3-2
widgets (X-Windows) 4-27
window manager functions, handling

(X-Windows) 4-12
window property data structures (X-Windows) 4-24
windows (X-Windows)

x

changing attributes 4-6
communicating with window managers 4-16
creating 4-5
destroying 4-5
manipulating 4-5
manipulating properties 4-7
obtaining information 4-6
setting selections 4-7

X Defaults 4-3
X Protocol 4-2
X Server 4-1, 4-2
X-Windows interface 4-1-4-27

creating an application · 4-3
EBCDIC-ASCII Translation 4-3
example of an application E-13
how it works 4-1

X-Windows interface (continued)
quick reference 4-4-4-27

associating tables 4-24
atoms 4-7
changing window attributes 4-6
clearing areas 4-9
closing displays 4-5
communicating with window managers 4-16
controlling the screen saver 4-14
copying areas 4-9
creating pixmaps 4-8
creating windows 4-5
destroying windows 4-5
disabling synchronization 4-15
display functions 4-20
drawing lines 4-10
drawing text 4-11
enabling synchronization 4-15
extension routines 4-23
filling areas 4-10
freeing fonts 4-10
freeing pixmaps 4-8
handling events 4-14
handling window manager functions 4-12
keyboard event functions 4-1 7
loading fonts 4-10
manipulating access control 4-14
manipulating bitmaps 4-19
manipulating color cells 4-8
manipulating colormaps 4-7
manipulating cursors 4-12
manipulating graphics contexts 4-8
manipulating hosts 4-14
manipulating images 4-18
manipulating keyboard settings 4-13
manipulating regions 4-17
manipulating window properties 4-7
manipulating windows 4-5
obtaining window information 4-6
opening displays 4-5
properties 4-7
querying character string sizes 4-11
querying visual types 4-18
setting window selections 4-7
toolkit 4-25
transferring images 4-12
using cut and paste buffers 4-18
using default error handling 4-15
using the resource manager 4-19

running an application 4-4
software requirements 4-1
X Defaults 4-3

XDR 5-1
XID (X-Windows) 4-24

Index X-17

X-18 Programmer's Reference

IBM Transmission Control Protocol/
Internet Protocol for MVS
Programmer's Reference

SC09-1261 -00

READER'S COMMENT FORM

Please use this form only to identify publication errors or to request changes in publications. Direct any requests
for additional publications, technical questions about IBM systems, changes in IBM programming support, and so
on, to your IBM representative or to your nearest IBM branch office. You may use this form to communicate your
comments about this publication, its organization, or subject matter with the understanding that IBM may
use or distribute whatever information you supply in any way it believes appropriate without
incurring any obligation to you.

D If your comment does not need a reply (for example, pointing out a typing error), check this box and do not
include your name and address below. If your comment is applicable, we will include it in the next revision
of the manual.

D If you would like a reply, check this box. Be sure to print your name and address below.

Page number(s): Comment(s):

Please contact your nearest IBM branch office to request additional publi
cations.

Name

Company or
Organization

Address

SC09-1261 -00

Reader's Comment Form

Fold and tape Please Do Not Staple

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Department 6R1T
180 Kost Road
Mechanicsburg, Pennsylvania 17055

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

,,
0
c:
)>
0
::::s
cc
r :r
CD

·--,
Fold and tape

--------- - - --- - -- - ---- - - ------ --___ ,_
®

Please Do Not Staple Fold and tape
I
I
I
I
I
I
I
I
I
I
I

--------- ----- - -- - ---- - - ----------- ·-(!!>

SC09-1261-00

Printed in U.S.A. 111111111111111

