
Systems

SH20·1773·0

IBM System/370
Special Real Time
Operating System
Programming RPQ Z06751
Description and Operation
Manual

Program Number 5799-AHE

The Special Real Time Operating System Programming
RPQ is a system which augments the services provided
by OS/VSl to support realtime computer operations.
The Special Real Time Operating System is designed
to meet the needs of Electric Utility Energy Manage
ment Systems and oil refmery applications, but is not
restricted to these applications. The Special Real Time
Operating System runs as an OS/VSl job step and
performs services which support independent task
management, time management, and data base
management. The installation of the Special Real Time
Operating System on an OSNSI system requires no
modifications to the OS/VSl System.

This manual contains all the information necessary to
understand, install, use, and operate the Special Real
Time Operating System PRPQ.

This Programming Rl>Q is available on a special
quotation only (see inside front cover).

First Edition (January 1976)

This edition applies to Version 1, Modification 0 of the Special Real Time Operating System,
PRPQ (programming Request for Price Quotation) number:

5799-AHE, Version 1, Modification 0

and to all subsequent versions and modifications until otherwise indicated in new editions or
technical newsletters.

(banges are periodically made to the specifications herein; before using this publication in
connection with the operation of IBM systems, consult the latest System!370 Bibliography
(GA22-6822) for the editions that are applicable and current.

The PRPQ described in this manaul, and all licensed materials available for it, are provided by
IBM on a special quotation basis only, under the terms of the License Agreement for IBM
Program Products. Your local IBM branch office can advise you regarding the special quotation
and ordering procedures.

A form for reader's comments is provided at the back of this publication. If the form has been
removed, send your comments to IBM Corporation, General Systems Division, Dept. 20GB,
2800 Sand Hill Road, Menlo Park, California 94025. Comments become the property of IBM.

©Copyright International Business Machines Corporation 1976

PREFACE
CHAPTER 1. GENERAL INFORKATION
Introduction •
General Description
customer Responsibilities •
Programming Systems
System Configuration
Storage Requirements
Timing Information
Timing Chart
Initialization ~
Task Management
Time Management
Data Base •
Data Base Logging
Supplementary Services

CHAPTER 2. APPLICATION SERVICES
In trod 1I1C tion •
General Description
Processing Description
Task Management
Time Management
Realtime Message Handler •
Report Data output Facility
InpQt Message Processing •
Data 'Base Kanagement •
Data Recording and Playback
High Level Language Interfaces
Duplicate Data Set support
DDS Failover/Restart Considerations
Failover/Restart Feature •

•

Additional Special Real Time operating System Services
Tvo-Partition operation
Special Real Time operating System Debug Guide
Coding and Performance Considerations
Special Real Time operating system Online Macros.

BEGIN
CHAIN
DDSBLDL •
D,DSCLOSE
DDSDCB
DDSFIND •
DDSOPEN •
DDSSTOW •
DEFLOCK •
DPATCH
DPPXBLKS
DUMPLOG •
EXIT
FREEWA
GETARRAY
GET BLOCK
GETITEM •
GET LOG
GETWA
LOCK
MESSAGE •
PATCH

."

viii
1-1
1-1
1-2
1-3
1-3
1-4
1-5
1-7
1-8
1-8
1-8
1-9
1-9
1-9
1-9

2-1
2-1
2-1
2-2
2-2

2-22
2-31
2-35
2-37
2-42
2-53
2-61

2-151
2-154
2-154
2-166
2-172
2-176
2-178
2-180
2-181
2-183
2-186
2-187
2-188
2-189
2-190
2-191
2-192
2-194
2-197
2-201
2-204
2-205
2-206
2-210
2-213
2-216
2-220
2-222
2-224
2-228

Contents iii

PTIME
PURGEWQ •
PUTARRAY
PUTBLOCK
PUTITEM •
PUTLOG
RECORD
REPATCH •

CHAPTER 3. INSTALLATION GUIDE.
In trod uction
OS/VS 1 SYSGEN Considerat ions .
Pre-Special Real Time Operating System SYSGEN Initialization

The Special Real Time Operating System Data Set Allocation
Failover/Restart storage Requirements
The Special Real Time Operating System SYSGEN
SYSGEN Restart Procedures
The Special Real Time Operating System SYSGEN Macros •
Configuration Customer Definition Data Set Macros

CONFIGH. • • • •
Software Customer Definition Data set Macros.

VS
FAILRST •
DUPDISK •
DBASE
LOG •
PLISUB
FORSUB
MSGRC
IMP •
DATASET
GENEMS

System Initialization
Offline Util~ty Program
Offline Macros

ARRAY,.
BLOCK
ITEM
DEFMSG

Data Base BDAM Data Set Compress.

CHAPTER 4. OPERATOR'S REFERENCE
Introduction
Normal Operating Procedure

CANCEL Command
R'~PORT Command
DREC Comman d •
nDSCNTRL Command •
DLMP Command.
MSGRC Command
STAE Command.

coutrol Card Information
C'")ntinuation •

Two-Partition Operation
Failover/Restart Operation
Single CPU Environmeqt •
Single CPU Environment with continuous Monitor
Tvo-CPU Environment with Continuous Monitor and Probe

Normal Termination Procedures •
The Special Real Time Operating System Abend Codes
The Special Real Time Operating System Online Messages
Offline Utility Messages

iv Description and Operation Manual

2-236
2-242
2-245
2-247
2-250
2-252
2-255
2-256

3-1
3-1
3-1
3-2
3-6
3-6
3-8

3-10
3-16
3-16
3-16
3-16
3-17
3-20
3-22
3-23
3-24
3-25
3-26
3-27
3-28
3-29
3-30
3-33
3-47
3-59
3-60
3-65
3-67
3-70
3-72

4-1
4-1
4-1
4-3
4-4
4-5
4-6
4-7
4-8

4-11
4-13
4-13
4-14
4-14
4-14
4-15
4-15
4-15
4-16
4-23
4-64

APPENDIX A. THE SPECIAL REAL TIME OPERATING SYSTEM SAMPLE
PROGRAM

APPENDIX B. LISTING AIDS

APPENDIX C. MODULE NAME - FUNCTION CROSS-REFERENCE

APPENDIX D. SPECIAL REAL TIME OPERATING SYSTEM
PROG RAl1S/M AC ROS

APPENDIX G. GLOSSARY

A-I

B-1

C-l

D-l

G-l

Contents v

1-1

1-2

2-1

2-2

2-3

2-q

2-5

2-6

2-6.1

2-6.2

2-6.3

2-6.4

2-7

2-8

2-9

2-10

2-11

2-12

2-13

2-14

2-15

2-16

2-17

2-18

vi

User special Real Time Operating system
OS/VS Interface •

storage Requirements.

The Special Real Time Operating System
overview of the Online System

Task Kanagement overview

The special Real Time Operating System
Task structure and Priorities

Task Management Control Blocks

Control Blocks Built for Example 1

Control Blocks after Initialization.

Task/Queue Structure

Queue Processor/Queue Holder
Structure

Task/Queue Structure

Task/Queue Processing

PTIME Logic and Control Flow

Time Drift - Special Real Time Operating
System Time Relationship

Real Time Message Handler Components

Report Data output Facility Overview

Data Recording and Playback Processing
Overview •

Macros Supported by FORTRAN-PL/I

High Level Language Interfaces for the Special
Real-Time Operating system Services •

PI.II Example

GETARRAY Services

PUTARRAY Services

GETITEK services

PUTITEM Services

Description and Operation Manual

1-1

1-6

2-1

2-3

2-3

2-5

2-7

2-8

2-13

2-15

2-16

2-17

2-23

2-30

2-31

2-36

2-54

2-62

2-62

2-63

2-87

2-87

2-92

2-92

2-19

2-20

2- 21

2-22

2-23

2-24

2-25

2-26

2-27

2-28

2-29

2-30

2- 31

2-32

2-33

2-34

3-1

3-2

3-3

3-4

3-5

3-6

3-7

3-8

3-9

3-10

GETBLOCK Services

PUTBLOCK Services

GETARR AY Services

PUTARR AY Services

GETITEM Services

PUTITEM Services

GETBLOCK Services

PUTBLOCK Services

Restart Process •

Probe Function Failure/Restart Feature

Remote System Reset Feature.

System with Automatic 2914 Switch

computer Status,Panel Indicators and Switches

computer status Panel Connections (Functional)

control Block Format Entry to PATCHed Program

Relationship of PATCH operands to Type of Task

The Special Real Time operating System SYSGEN
Da ta Sets

The Special Real Time Operating System
SYSGEN - Stage I

The Special Real Tille Operating System
SYSGEN - st~ge II

XXXDSET Parameter Values

The Special Real Time Operating System
In itia Ii za tion

control statement Input stream

Offline Utility Proces~ing Overview •

Update Processing overview

Online Data Set Processing Overview.

Hexadecimal and Binary Variable Descriptions

2-95

2-95

2-134

2-134

2-138

2-138

2-141

2-141

2-155

2-160

2-161

2-162

2-163

2-165

2-177

2-235

3-2

3-8

3-9

3-32

3-33

3-34

3-47

3-49

3-52

3-72

List of Figures vii

This publication provides information on the Special Real Time operating
system (5799- AHE) •

This manual is organized so that it can be used as four separate
manuals, each chapter addressing the needs of a different audience.
In each case, the intended audience is a group within a typical computer
department. The intended audience and the applicable chapters are:

• ftanagement -- Chapter 1 - GENERAL INFORftATION

• Application Programmers -- Chap~er 2 - APPLICATION SERVICES

• System Programmers -- Chapter 3 - INSTALLATION GUIDE

• Operators -- Chapter 4 - OPERATORS' REFERENCE

The intended audience for the section entitled "GENERAL INFORMATION"
includes those people wishing to gain an overview of the Special Real
Time operating System and to become familiar with the general functions
of the PRPQ. This chapter is prerequisite reading to the following
chapters.

The sectibn entitled "APPLICAT~ON SERVICES" is intended to be used by
programmers to gain knowledge of the realtime system concepts and
processing methods. It is technically oriented. Users of this section
should have a thorough knowledge of programming techniques as well as
a general knowledge of Operating system/Virtual Storage (OS/VS1). The
parts of this section dealing with high-level language interface require
a prior knowledge of the language specifications for the given
high-level language.

The intended audience for the section entitled "INSTALLATION GUIDE"
are the people involved with the preparation for and the installation
of the special Real Time Operating system PRPQ. Users of this section
should have prerequisite knowledge of OS/VS1 system programming, job
control (JCL), SYSGEN, and generally a thorough knowledge of OS/VS1.

The final section entitled "OPERATORS' REFERENCE" is intended for the
system console operator. This section contains operations information
to enable the operator to start, terminate, and communicate with the
Special Real Time Operating System. The operator should be familiar
with OS/V51 operating techniques.

viii Description and Operation Manual

The Special Real Time operating System PRPQ is a support program thdt
augments the services of OS/VS1 to support realtime applications and
provides a stable operating environment. The services provided by
OS/VS1 are still available to a program or system of programs utilizing
the Special Real Time Operating System. Although in some cases, the
Special Real Time Operating system acts as an interface between OS/VS1
and user programs, as shown in Figure 1-1.

-------------Special
Real Time
Operating

OS/VS System
~ User

Services Services ~ Programs

Figure 1-1. User Special Real Time Operating System-OS/VS Interface

The installation of the Special Real Time Operating System on the user's
OS/VS1 system entails no modifications to the OS/VS1 system; although
there are certain additions to that system. In particular, there are
supervisor call (SVC) routines that must be included into the OS/VS1
libraries. The Special Real Time operating System services augment
the OS/VS1 services in the following areas:

• Lower overhead through independent task management

• significantly enhanced time management routines

• Realtime message handler

• Data base management and data base logging

• Duplicate data set support for critical Special Real Tim~ Operating
System and user data sets.

• Selective termination of units of work

• Selective data recording for post-run analysis

• Input message processing

• High-level language support for PL/I and FORTRAN

• Failover restart support.

In addition to these enhancements, the Special Real Time operating
System is designed so that each user builds and tailors his own Special
Real Time Operating System for his own equipment configuration and for
his own operational requirements through a system build or system
generation (SYSGEN) process.

Creation and modification of the table structure and initial conditions
for the online system are handled by offline utility programs. As a

GENERAL INFORMATION 1-1

result, changes in this area do not require additional system
generations.

The Special Real Time Operating System is designed to enhance areas
which are critical to a realtime operation. The following paragraphs
discuss the enhancements which are provided by the special Real Time
Operating System.

Independent task management allows a task to be created and remain in
existence when its processing is finished. Units of work are queued
to the task, and the task does its processing with the overhead of
resource allocation, initiation, and termination only once and not for
any subsequent processing ot units of work by the task. The SpeCial
Real Time operating System task management routines bring a task into
virtual storage, queue work against the task, and delete the task or
specified units of work upon request from the user. This results in
a significant decrease in task management processing overhead. Also,
the Special Real Time Operating system provides the user with greater
flexibility and control over the work to be processed by a given task.

The special Real Time Operating system time management services fall
into two categories. First, the Special Real Time Operating System
maintains system time and date independently of OS/VS1 time and date.
The Special Real Time Operating System time can be synchronized with
an external time source or can be adjusted by manual inputs. second,
the Special Real Time Operating System time management services provide
the user with the capability to pass a work request to a specific task
at a selected time and. optionally. have the work request repeated at
a specified interval.

The realtime message handler allows messages which the user has
previously defined offline to be accessed in realtime. These messages
can then be selected by message number, modified. and routed in realtime
with minimum impact on system performance.

The Special Real Time Operating System data base services maintain a
data base in virtual storage and on direct access storage. The services
also allow the data base to be accessed independently by several tasks.
The data is defined as a group of named arrays and named items within
the arrays. The data is accessed by name, and this allows associated
programs to be coded independently of most changes or additions to the
data base. The content of the data base arrays may be logged to history
files on a cyclic or demand basis. The logged data can then be used
for reinitialization of the data base after a system outage as well as
a historical record of system operation. The data base arrays and
items are created by an offline utility program for use in the realtime
run.

Duplicate copies of the critical special Real Time Operating System
and/or user data sets can be maintained to provide backup copies should
the primary copy experience a failure. This provides a smooth
transition when making modifications to these critical data sets. The
duplicate data set su pport services are optional and may be selected
when the Special Real Time Operating system is created. Duplicate data
sets may be used to keep backup copies of the data base data sets.

The impact of failing ta.sks is minimize.d through selective termination
of units of work. If a task experiences a failure while executing a
unit of work. that unit of work is terminated. However, the task is
maintained, and all remaining units of work queued to the task will be
executed.

1-2 Description and Operation Manual

The Special Real Time Operating System record and playback feature
provides services for the user to define data that can be recorded on
tape or direct access device during realtime execution. This recorded
data can then be used for post-run analysis or as test data on a
subsequent program execution.

An input message processor is provided to allow for operator
communication. This allows operator commands to be entered through a
system console and routed to designated user programs.

An interface is provided so that the user may code his programs in PL/I
or FORTRAN and request the normal Special Real Time Operating System
services through the interface program.

The Special Real Time Operating system has facilities to allow execution
on a two CPU configuration where a job in the backup CPU monitors the
performance of the online cpu. When either CPU recognizes that a
failure has occurred, that CPU can request a failover, and the backup
CPU becomes the online cPU. Failover can also be initiated by program
request to facilitate scheduled maintenance or changes to the
operational environment~

It is the customer's responsibility to provide in his inst.allation:

• Facilities and minimum hardware configuration required for the
-Special Real Time operating System

• Ordering, generation, and testing of the host OS/VS1 system

• ordering, generation, and testing of the Special Real Time Operating
system

• Processing programs required for the realtime operation

• Ordering, generation, and testing of any related PRPQs or program
products to be installed

• Data set contents for defining initial values, limits, and other
control parameters

• A thorough knowledge of his system and his desired control strategy

• Orders for required computer and terminal equipment needed in the
system

• Instailation of any instrumentation and/or common carrier facilities
required to meet his desired control strategy

• Design and implementation of any specialized application programs
and/or display formats required to meet his control strategy

• Training of personnel

All special Real Time operating System programs are coded using the
System/370 Assembler Language. The Special Real Time operating System
executes under control of IBK Operating System/Virtual storage 1,
version 3.0 or a later release. The following components of OS/VS1
are required:

GENERAL INFORKATION 1-3

• Supervisor

• Sequential Access Method

• Direct Access Method

• Linkage Editor

• Loader

• System Assembler

• System Utilities

• Partitioned Access Methods.

In addition to the OS/VS1 components, the user may require any of the
following:

• ~1lI_E (360S-NL-511) and R~L!-l_§ubrQYiin~-1!~£~£Y (360S-LM-512
VS1)

• f1l!_QEiimi~i~[_~QmEi!gI - 5734-PL1

• f1l!_QEtimi~in[_~QmEi!~£_~~Q_LiQI~ie~ - 5734 - PL3

• !Q~!BA~_i! (G1) - 5734-F02

• !Q~!BA~_i! (H Extended) - 5734-F03

• EQR!E!~_iY-1i~£~ry - 5734-LM3.

The following minimum configuration is required to compile and execute
the Special Real Time Operating System.

The machine configuration for the Special Real Time Operating System
varies according to the user's application needs. Typical systems are
shown as a guideline:

• For Compilation - A 3135 Processing Unit Model DH (245,760 by test
and appropriate system console. Sufficient Input/Output (I/O)
devices must be included to support the requirements for system
input, system output, system residence, and system data sets.

• Minimum Operational System - A 3135 processing Unit Model H
(245,760 bytes) including one byte multiplexer channel, one block
multiplexer channel, and floating-point instruction set. The
configuration must include sufficient I/O devices to support the
requirements for system output, system residence, and system data
sets. Sufficient direct access storage must be provided to satisfy
user information storage requirements. Direct access devices may
be chosen from a 2305 Fixed Head Storage, a 2319 Disk Storage
Control (Integrated), a 3330 (3333) Disk Storage Facility, 3340
Disk Storage Facility, or combinations.

1-4 Description and Operation Manual

A magnetic tape unit (9-track) must be available for program
distribution and maintenance.

Storage requirements for the Special Real Time Operating System are
presented below. The figures are approximate and assume a typical
customer environment. They are intended as a guide only.

Figure 1-2 shows the approximate Virtual Storage required by the load
modules which comprise the Special Real Time Operating System. The
total size represents the approximate maximum number of bytes of storage
required for all load modules of each fUnction. Several functions are
selectable by Special Real Time Operating System SYSGEN which may reduce
the total size of any SYSGENed system fro~ these values. The table
includes estimates for routines which are used in an offline environment
only and will never be a part of the online system. Some of the
routines may be a part-of the online system during initialization for
a short duration when requested by the user or while processing unusual
conditions.

The frequently used column represents the approximate number of bytes
of each function which may be used frequently in ruost systems during
a continuing realtime execution. The actual use of any function is
dependent upon the application programs and as such, the amount of
virtual or real storage occupied by any function is predictable only
through analysis of the application.

In addition to the storage represented in Table 1, approximately 320
bytes are added to the OS/VS1 fixed nucleus, and 7700 bytes are added
to the pageable nucleus.

The Special Real Time Operating System programs also require
approximately five cylinders of a 3330 direct access storage device
(or equivalent). .

These figures do not include virtual storage or direct access storage
which are required for the user's data base.

GENERAL INFORMATION 1-5

Function Frequently Used Total Size

Task Management 5,000 11,000

Time Management 3,000 5,000

Data Base 4,000 5,000

Data Base Logging 6,000

Message Handler 3,300 3,300

Data Recording 7,000

Report Data Output 900

Duplicate Data Set Support 5,000 22,000

Input Message Processing 7,400

System Initialization 41,000

Failover /Restart 1,000 20,000

FORTRAN PL/I Interface 2,000

Offline Utility Routines 35,000

*Specifies functions wich are optionally selected by the user when he generates his Special
Real· Time Operating System.

Figure 1-2. Storage Requirements

1-6 Descri ption and Operation Manual

The timing information given here is meant to aid the user in evaluating
factors which may impact the perf orma nce of the Special Real Time
operating System. Timings were obtained on a Release 3.0 version of
OS/VSl with eight megabytes of virtual storage and System Management
Facility (SMF). The following was the basic hardware configuration:

• System/370 Model 145
• 512K bytes of main storage
• Four 3330 direct access storage devices.

While timing statistics were being gathered, no other jobs were
executing. The Special Real Time Operating System was generated with
the following options:

• Two-partition support
• Duplicate data set support
• Failover/restart.

The test data base consisted of 46 arrays. Of these arrays, 5 were
loggable and 12 were direct access storage resident arrays (this
includes 5 log arrays·). Of the loggable arrays, 4 were refreshed during
ini tialization.

The following chart gives approximate timings for the major SpeCial
Real Time Operating System services. The timings all inclUde as/VS1
control program services. Task management timings do not include the
time of execution of the test program. Times are given as CPU time
and as such do not represent elapsed time. The elapsed time could vary
greatly depending on system activity, paging, I/O activity, device
types, etc.

Caution and judgment should be used in evaluating these statistics due
to the many OS/VS1 SYSGEN options and other variables involved. The
statistics must be interpreted only as the results obtained in the
environment described, and not as a commitment to be met in any or all
environments. All times are shown in millisecond units (ms).

GENERAL INFORMATION 1-7

INITI At IZ ATIO N

Basic Jobstep Initialization
(includes task management initialization)

Time Management Initialization

Data Base Initialization*

Logging Initialization **
(includes data base refresh)

supplementary Services ***
(includes Message Handler & Duplicate Data
Set Support)

PATCH to existing independent task for a
reentrant load module previously loaded

PATCH to existing independent task for a
reentrant load module not previously loaded

PATCH to existing independent task for a
non-reentrant load module

PATCH to dependent task (or non-existing
independent task) for a reentrant load module
previously loaded, assuming there were no
dormant Special Real Time operating System
tasks available

*Dependent upon size of data base.

900-1200 ms

125-150 ms

1500-up ms

425-up ms

900-up ms

3.70-5.0 ms

60-100 ms

50-100 ms

25-75 ms

**Dependent upon number of log arrays and initialization
refresh opt.ions.

***Dependent upon numher of messages and the number of
duplicate data sets.

PATCH to dependent. task (or non-existing
independent task) for a reentrant load module
previously loaded, assuming a dormant Special
Real Time Operating System task is available

PATCH to dependent task (or non-existing
independent task) for a reentrant load module
not previously loaded, assuming a dormant
Special Real Time Operating System task is
available

PATCH to dependent task (or non-existing
independent task) for a reentrant load
module not previously loaded, assuming
there were no dormant Special Real Time
Operating system task available

PATCH to dependent task (or non-existing
independent task) for a non-reentrant load
module, assuming there were no

1-8 Description and Operation Manual

20-75 ms

65-100 ms

10-150 ms

15-155 ms

dormant Special Real Time Operating System
tasks available

PATCH to dependent task (or non-existing
independent task) for a non-reentrant
load module, assuming a dormant Special
Real Time operating System task is available

REPATCH SVC

DPATCH SVC

TI ME MANAGEMENT

TIME - update time array routine
PTIM - execute PATCH routine
PTIMF. SVC

DATA BASE*

GETARRAY/PUTAFRAY

TYPE=ADDR
TYPE=SPEC
TYPE=DATA

GETITEM/PUTI TEM

TYPE=ADDR
TYPF=SPEC
TYPE=DATA(address given)
TYPE=DATA (no address given)

GETBLOCK/PUTBLOCK

VS resident
DA resident

DATA BASE LOGGING**

PUTlOG
NORMAL
LOGHDR
BLKLST

GETLOG

DUMPLOG

SUPPLEMENTARY SERVICES

CHAIN
DEFLOCK
LOCK
GETWA
MESSAGE HANDLER(includes PATCH)
DUPLICATE DATA SET

DDS READ/DDSWRITE
DDS CHECK
DDSPOINT/DDSFIND
DDSBLDL

70-150 ms

1-5 ms

6- 2.5 ms

3-5 ms
6-15 ms
5-10 ms

2.5-5.0 ms
15-40 ms
2.75-5.0 ms

15.0-55.0 ms
15.0-55.0 ms
3.0-5.0 ms
15.0-55 .• 0 ms

2.0-3.5 ms
10-20 ms

13.0-40.0 ms
22.0-65.0 ms
10.0-30.0 ms

14.0-100 ms

200-up ms

0.5-1.5 IDS

2.5-5.0 ms
o. 1-0.5 ms
0.45-1.0 ms
30-50 ms

12-50 ms
7-25 ms
5- 20 ms
20-60 ms

GENERAL INFORMATION 1-9

*nependent upon size of data base and number of ITEMS being processed.

**Dependent upon number and size of log arrays and number of log copies.

1-10 Description and Operation Manual

The objectives of the Special Real Time Operating System in a real-time
environment are to provide additional services to user coded, real-time
programs and to minimize the impact normally caused by ABENDing
programs. The additional services are provided for lower supervisor
overhead and added capabilities and flexibility in the areas of task
management, time management, data base, message handling, and failover
restart, as well as other less significant enhancements. Minimizing
system impact due to ABENDs is accomplished by isolating user tasks
from one another and by handling work requests as separate entities
from the user program s.

The Special Real Time Operating System, by itself, as a real-time
program, does meaningful processing only when its services are requested
by user progr ams in a real-time environment. The Special Real Time
Operating System services are requested through the use of macro calls
which invoke the Special Real Time operating System SVC routines or
branch to the Special Real Time Operating System subroutines. This is
shown in Figure 2-1.

User
Macro

Call

I
I

SVC Routines I Branch to ,Subroutine I
I
I

I'

, ,~ ,~

Data High Lvi Task Time Failover Data Message Duplicate Record
Mgmt Mgmt Restart Base Handler Data Set and Play Language

Back Interface

Figure 2-1. The Special Real Time Operating System overview of the
Online S yste m

Figure 2-1 shows the major areas in which the Special Real Time
Operating System supplies services for real-time execution

The task management services provide facilities to create the real-time
task, queue work to an existing task, or delete a task. These services
are provided to the user through the PATCH, REPATCH, and DEATCR macr~s.

Time management services allow for maintenance of time and for causing
work to be passed to tasks at a given time or cyclically for a given
interval. The time management services are available to the user via
the PTIME macro.

For a real-time environment, the system must have the ability to recover
quickly from a failure or system outage. The Special Real Time

APPLICATION SERVICES 2-1

Operating System fail over restart services allow for a fast switch to
a backup-CPU (failover) or a fast restart in the failing cPU. These
services are either automatic or under operator control. The data base
services in the real-time application allow the user to access the data
base but prevent (when requested) access to data by one program if that
data is currently being modified by another proqram. User access to
the data base is achieved through six macros; GETITEM, PUTITEK,
GETBLOCK, PUTBLOCK, GETARRAY, and PUTARRAY.

The data base, or portions of it, may be logged at given intervals to
create a history file. The user interface to the logging routines is
through the GETLOG, PUTLOG, and DUftPLOG macros.

The real-time message handler provides a service whereby predefined
messages may be retrieved, modified, and routed to predefined devices
in real-time. The user interface to this service is through the MESSAGE
macro.

Duplicate data set support provides a service whereby the user can
maintain duplicate copies of critical data sets. The user requests
this service via the DDSBLDL, DDSCLOSE DDSDCB, DDSFIND, DDSOPEN, and
DDS STOW macros.

Data record and playback provide a facility for the user to record
areas of virtual storage under program control and later to retrieve
or play back the data. The user requests data to be recorded via the
RECORD macro.

The high-level language interface programs provide an interface for
the real-time services to be used from a PL/I or FORTRAN program.

Each of the Special Real Time Operating System services shown in Figure
2-1 is described in detail in the following sections. Additional
services are described later. For the convenience of the application
programmer, all online macros are described in detail in the section
entitled 'Special Real Time Operating System Online Macros'. The macros
in this section are listed in alphabetical sequence.

TASK MANAGEMENT

The special Real Time Operating system task management services are an
extension of the as/VS1 task supervision and virtual storage supervision
to make more efficient use of system resources in a real-time processing
system. These additional services are provided by the Special Real
Time Operating System through the use of SVC routines, monitor routines,
and service subroutines. This is shown ~n Figure 2-2. The service
subroutines can be used only by the SVC routines and the monitor
routines. The user invokes the monitor through the SVC interface.

2-2 Description and Operation Manual

User SVC Monitor Service
PrOQi'am Routines , R . outlnes S b . u routines , ,

POST: System
~ Control PATCH , Monitor Block ,

DPPTSMON , .. Get ,
PATCH/

, DPPTCBGT ,
REPATCH ,

DPPTPSVC , ,
REPATCH ~- ... ,

, , Work Queue , If POST Delete
POST' DPPTWQDL ,

PATCH , ,
Monitor I

IPOST' DPPTPMON

DPATCH
DPATCH

DPPTDSVC

GETWA .I '" ~ GETWA/ End of Task
FREEWA Routine f+

FREEWA ~. DPPTWSVC DPPTETXR
~

f
I , ,

Purge Work
PURGEWQ

,
I Queue , I DPPTPWQE
I I

Figure 2- 2. Task Management overview

The Special Real Time operating System utilizes many tasks (TCBs) during
online execution. The task structure for the permanent TeBs is
established during initialization. Figure 2-3 shows the Special Real
Time Operating System task structure and the task's relative priorities.

DPPTPMON DPPTPMON DPPXIMPW
PRTY=Q PRTY=Q PRTY=

JOBSTEP-3

DPPTSMON PRTY=JOBSTEP

--- - --1

DPPCTIME
PRTY=
JOBSTEP-,

DPPCPTIM
PRTY=
JOBSTEP-2

DPPMMSGI
PRTY=
JOBSTEP-3

en
DPPDFREQ
PRTY=
JOBSTEP-3

Figure 2- 3.
Priorities

The Special Real Time operating System Task Structure and

Task DPPTSMON receives control from initialization via XeTL. There
will be a vuriable number of tasks for DPPTPMON. The number vill depend
upon SYSGEN options. Following initialization these advance TCBs will
have a dispatching priority of zero and a limit priority of JOBSTEP
task minus three (JOBSTEP-3), which is the highest available user
priority.

The task for the input message processor program (DPPXIMWP) is
established with a dispatching priority of JOBSTEP-3. Time management
(DPPCTIME) has a priority of JOBSTEP-l. and the PTIME monitor (DPPCPTIM)

APPLICATION SERVICES 2-3

has a priority of JOBSTEP-2. The real-time message handler program
(DPPMMSG1) is PATCHed with a priority of JOBSTEP-3.

If cyclic logging (DPPDFREQ) ,were selected during system generation,
the cyclic logging program would be invoked at initialization time and
would have a Tca with the priority of JOBSTEP-3. Demand logging does
not create a TCB at initialization.

The tasks used by the Special Real Time Operating System are true OS/VS1
tasks and will be assigned OS task priorities based upon the priority
of the jobstep task. These tasks compete for resources among themselves
and with tasks of other jobs in the system based on their assigned
priority. When two or more tasks have the same priority, the order of
assignment to that priority value determines which task will be serviced
first.

PATCH is the service by which a task is created or by which a work
request is made for a task already in existence. REPATCH is the means
by which a failing PATCH may be retried.

To provide its services, the Special Real Time Operating System builds
control blocks and tables which it uses to maintain control of the
system and to interface with user programs. Figure 2-4 shows the
relationship of the Special Real Time Operating System control blocks
for the first PATCH issued on a basic special Real Time Operating System
system, when the user gains control. The Special Real Time Operating
System builds its con trol bl·ocks in pro tected storage and allocates it
via an internal routine called CBGET (control block get). This storage
is allocated at initialization and is not expandable.

2-4 Description and Operation Manual

I TCB RB

-- ., I DPPTSMON
r--- TCBUSER

_I
TCBLTC -I TCB

RB
J

I 1 DPPTPMON
TCBX

r---

Register 1 TCBX WOE

I ,

.. XCVT t XCVT

- t RSTB r--

.-- t PARM

SCVT Resource Table LCB ,

t EP=ONE

.-----

r--

TMCT ,
.. LCB J ,

t EP=ONE PATCH EP=ONE, TASK FIRST

Figure 2-4. Task Management Control Blocks

At the point that program ONE gains control following the PATCH, general
register 1 will point to the three words in the TCBX (TCB extension)
containing pointers to the XCVT, the resource table, and the parameters
being passed into program ONE. The XCVT is the Special Real Time
Operating System equivalent to the OS CVT. The XCVT contains pointers
and control information which must be available to the subsystems as
well as the Special Real Time Operating System. The SCVT contains
pointers to system areas and control information which must always be
available to the Special Real Time Operating System. The Task
Management Control Table (TMCT) contains task-oriented information
which must be available to all the Special Real Time Operating System
tasks. The TCVX contains control information pertinent only to the
specific task and contains a pointer to the XCVT. This pointer links
each task to the basic Special Real Time Operating System control
information.

The resource table is an 8-byte area of virtual storage that the Special
Real Time Operating System gets from subpool zero and passes to the
user. This area can be used by the user to pass information across
PATCHes to the same task. For example, two PATCHes could be performed
for TASK=A, one for EP=A and the second for EP=B. Program A could open
a DCB and put its address in the resource table. When program B
executes, it could do I/O processing using the open DCB. The resource
table is initialized to contain zeros when the task is created and is

APPLICATION SERVICES 2-5

not changed by the Special Real Time Operating System as long as the
task is in existence.

The work queue element (WQE) is built by the Special Real Time Operating
System to represent the PATCH request for execution of program ONE
under task FIRST. Once program ONE has completed execution and returned
control to the Special Real Time Operating System, the WQE is deleted.
If additional PATCHes had been made for task FIRST, additional WQEs
are queued to the TeBX. When the first execution of program ONE is
completed, the first WQE is removed and the second scheduled. This
process continues until there are no WQEs left on the queue. There is
one WQE created for every PATCH.

The load control block (LCB) is created by the Special Real Time
Operating System to represent the load module for program DNE. Program
ONE in Figure 2-4 is represented by two LCBs. This is the case when
the program is reentrant. A non-reentrant module is represented by
only one LCB chained to the requesting WQE. There is one LCB for each
module (EP=) under each task (TASK=), plus one LCB for each reentrant
module in the partition. LCBs are created for modules loaded through
the use of the Special Real Time Operating System services. Figure"6
shows the Special Real Time Operating System LCB-WQE blocks that will
be built for the following PATCHe~

EXAMPLE 1 :

• PATCH 1 PATCH TASK=X,EP=A (r eent ra nt)
• PATCH 2 PATCH T ASK=X , EP= B (n on- r eent ra nt)
• PATCH 3 PATCH TA SK=Y ,EP=A (reen tran t)
• PATCH 4 PATCH TASK=X, EP= B (non-reentrant)
• PATCH 5 PATCH TA SK=Y ,EP=B (non-reentrant)
• PATCH 6 PATCH TASK=Y, EP= A (reentrant)

2-6 Description and Operation Manual

t:J c- TCB

,.... . TASK"'X TMCT
r--- TASK=Y

r---

TCBX TCBX

, LCB ,-- -
~

EP=A

WOE LCB LCB WOE

I---
,-- PATCH #1 ~ EP=A EP=A PATCH #3 -

I---

WOE LCB LCB WOE
'"

r------ PATCH #2 ~ EP=B EP=B - PATCH #5 -

WOE WOE

----. -
PATCH #4 PATCH #6

Figure 2-5. Control Blocks Built for Example 1

The control blocks will be built as shown in Figure 2-5 ~t a point in
time when all PATCHes have been issued, and program A and Bare
executing, under the first WQE.

PATCH 1 causes a WQE to be scheduled for program A on task X. PATCH
1 also creates the LCB pointed to by the WQE and the LCB pointed to by
the T MCT.

PATCH 2 creates the WQE and its LCB for task X, program B.

PATCH 3 creates the WQE on task Y and the LCE for program A pointed to
by the WQE. It also points the LCB to the existing LCB for program A
on the TMCT.

PATCH 4 creates the WQE for task X and points it to the LCE for program
B that was previously created by PATCH 2.

PATCH 5 creat es the WQE for task Y, and because this is the first
request for program B on task Y, creates an LCB for B and chains it to
the WQE.

PATCH 6 creates a WQE for task Y and points it to the LCB previously
created by PATCH 3.

The Special Real Time Operating System task management is initialized
by DPPINIT. DPPINIT gets protected core from subpool 253 and builds
the XCVT, the SCVT, and the TMCT. It then initializes the get w~rk
area (GETWA) and control block get (CBGET) storage. Next,
initialization determines the number of TCBs and task control block.
extensions (TCBXs) to be obtained and initializej, and creates the TCBs
by attaching the PATCH monitor (DPPTPMON) for the number of TCBs. Next,

APPLICATION SERVICES 2-7

DPPINIT gets CBGET storage for TeBXs, chains the TCBX to a TCB, and
puts the TeBX On the TMCTFREE chain. When initialization is completed,
it XCTLs to the system monitor (DPPTSKON). At this point the system
is configured as shown in Figure 2-6.

TCBX

r---

XCVT

r---

SCVT

-

TMCT
Task

ement Manag
Contro I Table

I TCB
Job Step

Task

TCBUSER

TCBLTC

TCBX ,

TCBX

~

TCBX

....

RB
.1

I DPPTSMON

Il.
TCB RB

-'
I DPPTPMON

- TCBNTC

ITCB
, • ..1 , -, DPPTPMON

TCBNTC I--

r- TCB "J

"'

DPPTPMON ,

Figure 2-6. Control Blocks After Initialization

~

J

I

When DPPTPMON is in storage and begins execution, it vaits until it is
posted by DPPINIT. DPPINIT posts DPPTPMON when a TCBX has been
initialized and chained to the TCB. DPPTPMON then does a GETMAIN for
the resource table, and chains it to the TCBX. A STAE macro call is
then executed by DPPTPMON specifying load module DPPTSTAE as the STAE
exit routine. DPPTPKON then executes a WAIT macro call. At this point
the Special Real Time operating System is ready for user service
requests.

The user requests that a task be brought into virtual storage and
executed via the PATCH macro. Two different types of tasks can be
executed. Dependent tasks operate similarly to normal OS/VSl tasks;
the requested module is loaded and executed once; then the module is
deleted, and the t~sk is terminated. Independent tasks, however, can
request loading of multiple programs; each can be executed many times
and is terminated only upon a specific request from a user by the DPATCH
macro. To facilitate multiple execution of independent tasks, the
Special Real Time Operating System loads each reentrant program only
for the initial PATCH. The WQE and LeB are built and queued to the
tasks TCBX. On subsequent PATCHes to the same task requesting the
execution of the same program (EP=), a WQE viII be created; but the
program will not be reloaded, and the WQE will be pOinted to the LCB
created by the first PlTCH.

An option on the PATCH macro allows programs to be deleted after the
WQE has been processed. even though the program is reentrant.

2-8 Description and Operation Manual

The user's PATCH macro results in the PATCH SVC code (DPPTPSVC) ga1n1ng
control. The SVC validity checks the input parameters, and if they
are valid, obtains a TCaX and a Tea for the task. DPPTPSVe then builds
a WQE and an LCB for the program and chains them to the TCBX. DPPTPSVC
then posts DPPTSKON to change priority (CHAP) of the TCB to the
specified priority (PRTY=) and returns control to the program that
issued the PATCH SVC.

The system monitor (DPPTSMON) has three main functions.

• When posted by DPPTPSVC, it CHAPs the Tca to the requested priority.

• It creates Teas and Tcaxs and maintains them on the TMCT chain.

• DPPTSKON handles the loading and deleteing of reentrant modules.

The PATCH monitor (OPPTPMON) is the Special Real Time Operating
System-user interface, DPPTPMON manipulates WQEs and non-reentrant
LCEs. DPPTPKON is the program under which all user tasks are executed.
When the program has been loaded and the WQE scheduled, DPPTPMON
branches to the user code. Upon completion, the user executes a normal
BR14 return, and OPPTPKON regains control, posts the user ECB, and
attempts to schedule the next WQE. If no WQEs exist, DPPTPMON waits
for the next PATCH.

Note: Because user programs are loaded and branched to by DPPTPMON,
the user program will not be represented by an RB on the OS/VS1
system. As a result, user programming errors will cause ABEND
dumps that show OPPTPMON as the ABENDing program.

The following examples show how the user would invoke the Special Real
Time operating system task management services through the use of the
PATCH macro.

PTCHO 1 PATCH TASK=ONE,EP=FIRST,QL=3,
QPOS=FIRST,PRTY=(TWO,4),
EC B= (ECSON E) ,
FREE=P ,ID=4

*
*
*

This PATCH will cause a task with the name ONE to be created. If task
ONE already exists, a WQE will be queued to it to represent PATCH
PTCH01. PTCH01 is a request for execution of program FIRST, and the
WQE will be queued at the top of the queue (QPOS=FIRST). If the task
does not exist, it will be created with a priority of 4 less than the
existing task named TWO and will allow a maximum of three WQEs (QL=3)
to be queued plus the current WQE being processed. If task TWO does
not exist. the PATCH will not be processed, and the PATCHor viII be
given a return code 10. If task ONE does exist, the QL and PRTY
keywords will have no effect. The ECB=keyword specifies that an ECB
at location ECBONE is to be posted when the Special Real Time Operating
System task management dequeues the WQE which represents this PATCH
request. The ECB will b~ posted with a Special Real Time operating
System task management POST code in the high-order byte and the
low-order three bytes of register 15 if the PATCHed program is completed
successfully, or the ABEND code is in the low-order three bytes if the
task ABENDed. FREE=P requests that the Special Real Time Operating
System task management services free (FREEMAIN) the virtual storage
ocr.upied by the PROBL (user problem parameter list). The 10=4 requests
that a value of 4 be put int~ the PROBL and passed to the PATCHed
program.

APPLICATION SERVICES 2-9

PTCH02 PATCH ID~255,TASK=MAIN
EP=WORK01,PRTY=(,1),
QL=9

*
*

PTCH02 uses the special ID (ID=25~. This ID creates a Special Real
Time operating System task named MAIN with a queue length of 9 and a
priority of 1 less than the PATCHor. The program named WORKOl is loaded
but never given control, because the ID is 255. This facility allows
the user to create a task structure of reentrant ·and serially reusable
programs. As a result, he knows the task structure prior to the
execution of the PATCHed tasks.

Reentrant and serially reusable programs are kept in virtual storage
and are not deleted at completion of their execution. If the user
wishes to have a reentrant or serially reusable program deleted at its
completion, he must cbde the PATCH with EP=(name, DELETE). This will
result in the LCB for the program being removed from the task's LCB
chain, and if no other tasks have issued PATCHes for the program, the
load module will be deleted. However, if other tasks did PATCH the
program and did not request the DEI·ETE option, the load module will
not be deleted. If multiple tasks PATCH a module and all specify the
DELETE option, a use count is kept by the Special Real Time Operating
System task management, and the module is deleted when the use count
becomes zero. The Special Real Time Operating System use count is
independent of OS/VSl use count. As a result, if a user program does
a LOAD, followed by PATCH with EP=(name,DELETE), the Special Real Time
Operating System DELETE will not necessarily result in the module being
removed from virtual storage, ~s the OS/VS1 use count will not go to
zero. This is because the Special Real Time Operating System task
management routines will issue LOAD for the module on the first PATCH
to it resulting in an OS/VS1 use count of 2.

Work queue pooling is a capability of special Real Time Operating System
to allow a single task to process work that would otherwise be processed
by several tasks, or several tasks to process the work that would
otherwise be processed by a singel task, or combinations thereof. A
close similarity to this concept can be observed in the OS/VSl job
scheduler vhere an initiator can process work from several job classes
or jobs of a given class can be processed by any of several initiators.

Work queue pooling may be invoked for a given execution of the Special
Real Time Operating System by including in the initialization stream
the commands which define the elements, Queue Holders (QH) and Queue
Processors (QP), to be active on this execution. To make use of work
queue pooling, the user viII execute PATCHes to the queue holders,
exactly as done to independent task. One command (card) will define
one QH or QP. The QP represents a Special Real Time Operating System
and as ·task, the same as with an independent task. It is defined at
initialization and will remain for the duration of the job. There is
no provision for adding or deleting QPs after initialization. The QP
differs from an independent task in that work cannot be passed directly
to the QP via a PATCH.

The QH appears as an independent task without an associated as task.
Work is passed to the QH via PATCH but the vork is processed by one of
the QPs associated with the QH. The QH has a name, exactly as an
independent task and the TASK= operand of the PATCH and other macros
will reference the QH by this name. As with QPs, all QHs must be
specified at initialization. When specifying QHs, the user assigns
the name and other attributes. Any QH may be specified to be connected
to several QPs; that is, any of the connected QPs are allowed to process
work that is 'PATCHed' to this QH. Also, several QHs may he connected

2-10 Description and Operation Manual

to anyone QP, which means that a QP can process work from any of
several QHs. There is an implied priority relationship in this scheme
in that when a QP completes a piece of work, it will look for wock in
the first QH connected to it and only if that QH is empty will it look
to the next QH, etc. The opposite is also true when a piece of work
is passed to a QH, the work will be given to the first. QP that is
connected to it and is not busy. If all connected QPs are busy, the
work will be queued to the QH to await a QP that becomes available.

The relationships between QPs and QHs is defined through the
initialization stream commands. The QP command allows the user to
specify the order in which the QP is to search the QHs for new work
when a piece of work is completed. The ordering of the QP commands
implies the order in which to search for an available QP when work is
added to a QH. Each QP is assigned a number (0 to 99) on the OP
command. From this number a name is generated. The user
assigned number will be used for all references by other commanas.
Each QH is assigned a name (1 to 8 EBCDIC characters) by the QH command.
This name will be used for all references to it, either by other
commands or by programs via the PATCH macro, etc. Various other
parameters may be specified on the QH and QP commands~ The PRTY=
parameter on the QP cOlllmand is similar to the same parameter on the
PATCH command. The HO~D=YES parameter allows the QP to be initialized
in a hold status which meands that it viII not process any work until
a release is entered through the IMP commands provided.

The QL= parameter on the QH command specifies the number of work queues
that can be stacked for this QH, similar to the same parameter on the
PATCH command. The parameter .SEQ=YES specifies that only one QP may
be p~ocessing work from this QH at any time. The HOLD=YES parameter
specifies that no work is to be processed from this QH. The PATCH=NO
parameter specifies that the PATCH processor is to reject all PATCHes
to this QR. The SEQ=, HOLD= and PATCH= parameters can be modified
during execution through the IMP command processing provided.

Thp inclusion of work queue pooling on a given execution of Special
Real Time Operating System does not effect independent or dependent
task operations. When a PATCH is executed, the PATCH code will search
for a TCBX with the task name equal to that specified on the PATCH.
If the name is not found or a name is not specified (dependent tas~)
a Special Real Time operating System task is crea ted and the work queued
to the new task. If the name is found, the work is added to the work
queue of the TCBS. If the TCBX is a QH, the work participates in the
queue pooling.

The user of Work Queue Pooling has the ability to determine the status
of and control certain functions of the QPs and QHs through th~ IMP
command processor. The user can hold or release either a QP or QH.
If a Q~ is held, it will not accept any new work. If a QH is held,
the QP(s) will not take work from it. The user can set a QR to be
sequential or non-sequential. In the sequential state, only one QP
may be processing work from this QH at any time. Non-sequential is
the normal state where all connected QPs may be processing work from
this QH simultaneously. The QH can be set to a PATCH or NOPATCH state.
In the NOPATCH state all PATCHps to it will be rejected. PATCH is the
normal state. In addition to changing one of the above conditions,
the command can cause all vork to be specified QH to be purged.

The IMP command can cause Special Real Time Operating System messages
to be output to report the status of these states as well as other
information about the QPs or QHs. This information will include the
element (QP and QH) name, the names of the elements connected to it,
and the number of work queue elements awaiting processing.

APPLICATION SERVICES 2-11

When a program receiYes control as the result of a PATCH, Register 1
contains the address of a 3 vord table. The second word of this table
contains the address of a resource table. If the program is executing
under control of a QP, this resource table is associated with the QP.
Every program that is PATCHed to execute under a given QP will receive
this same resource table. In addition. register 0 will also contain
the address of a resource table. If the program is executing under
control of a QP, this .resource table will be associated with the QH
from which the work vas taken. This means that all programs which
execute as the result of a PATCH to a given QR will have access to the
same QH resource table. caution must be exercised by the user if the
QH is connected to two or more QPs, since several programs may be
competing for tbis resource table. If the program is executing under
special Real Time operating system task (not a QP) register 0 will
contain the same address as is in the second word of the table addressed
by register 1.

The following example shows how QP and QH statements in the SYSINIT
input stream can be used to define two queue processors and two queue
holders. All other control statements in the input stream have been
omitted.

//SYSINIT DD

QP 19,QH=(DPPQABC,DPADMNO)
OP 2,QH=(DPADMNO,DPPQABC)
QH DPPQABC
QH DPADMNO

In this example both queue processor 19 (QP19) and queue processor 2
(QP02) have been created to process work from ~ueue holders DPPQABC
and DPADMNO. However, since in the QP statement for QP19, queue holder
DPPQABC has defined first, QP19 will give it a higber logical priority.
Since the inverse is true in the other QP statement, QP02 will process
the work from DPADMNO before processing work from DPPQABC.

Assume the following PATCH macro calls are executed to route work to
the queue holders.

A
B
C
D
E

PATCH
PA~CH

PATCH
PATCH
PATCH

TASK=DPPQABC, •••
TASK=DPADMNO, •• ~
TASK=DPPQABC, •••
TASK=DPPQABC, •••
TASK=DPPQABC, •••

The resulting task/queue structure is illustrated in Figure 2-6.1.

2-12 Description and Operation Manual

QP19 QP02

A(DPPQABC) A(DPADMNO)

A(DPADMNO) A(DPPQABC)

DPADMNO

Work Queue Work Queue

A B

C

o
E

Fi.gure 2- 6 .. 1. Task/Q ueue structure

QP19 will select work queue A from queue holder DPPQABC and QP02 will
sel<:~ct work queue B from queue holder DPADMNO. Assume QP 19 completes
work queue A before QP02 completes work queue B. When QP02 completes
work queue B, QP02 will attempt to select additional work from queue
holder DPADMNO and, finding it empty, will selec~ work queue D from
queue holder DPPQABC. Upon completion of work queue D. QP02 will again
attempt to select work from queue holder DPADMNO and, finding it still
empty, will select work queue E from queue holder DPPQABC.

Using a similar exa mpleto illustrate the functions of some of the
optional parameters on the QP and QH statemtns. assume the following
SYSINIT input stream was specified. Again only the QP and QH 3tatements
viII be shown.

APPLICATION SERVICES 2-13

//SYSINIT DD

QP 19 ,QH= (DPPQABC ,DPADMNO,DPPQXYZ)
QP 2,QH=(DPPQXYZ,DPPQABC) ,PRTY=(JOBSTEP-O)
QH DPPQXYZ,SEQ=YES,QL=10
QH DPPQABC
QH DPADMNO,HOLD=YES

In the second example, queue processor number 19 (QP19) has been created
with a default dispatching priority of the job step task minus 8 to
process work queued in queue holders DPPQABC, DPADMNO, and DPPQXYZ and
queue processor number 2 (QP02) has been created with a dispatching
priority of the job step task minus 3 (the highest allowed to any user
task) to process work queued in queue holders DPPZXYZ and DPPQABC (see
Figure 2-6.2).

Queue holder DPPQXYZ has been created as a sequential queue holder with
a queue length of 10. Queue holders DPPQABC and DPADMNO have been
created with default queue lengths of 255 (see Figure 2-6.2). DPADMNO
has been held, that is PATCHes specifying a task name of DPADMNO will
be accepted but neither queue processor (QP19 or QP02) will be permitted
to select work from that queue holder.

2-14 Description and Operation Manual

OP19 QP02

A(DPPOABC)

A(DPADMNO) A(DPPQXYZ)

A(DPPOXYZ) A(DPPOABC)

DPADMNO

Figure 2-6.2. Queue Processor/Queue Holder Structure

Now assume the following PATCH macro calls are executed to route work
to the three queue holders.

A PA TCH TASK=DPPQXYZ, •••
B PATCH TASK=DPADMNO, •••
C PATCH TA SK=D PPQABC, •••
D PATCH TASK=DPPQXYZ, •••
E PATCH TASK=DPPQXYZ, •••

APPLICATION SERVICES 2-15

The resulting task/queue structure is shown in Figure 2-6.3.

QP19 OP02

A(DPPOABC)

A(DPADMNO) A(DPPOXYZ)

A(DPPOXYZ) A(DPPOABC)

DPPADMNO

A C B

o
E

Figure 2-6.3. Task/Queue Structure

QP02, having the higher priority, will select work queue A from queue
holder DPPQXYZ. QP19 will select work queue C from queue holder
DPPQABC.

2-16 Description and Operation Manual

Assume QP19 completes work queue C before QP02 completes work queue A.
QP19 will try to select additional work from queue holder DPPQABC first;
(see Figure 2-6.4) but since all work for that queue holder has been
exhausted, QP19 will theu try to select work from queue holder DPADMNO.
However, since DPADMNO was defined on the QH statement as being held,
the work queue B cannot be selected by any queue processor. Therefore,
QP19 will then attempt to select work from queue holder DPP~XYZ. Since
queue holder DPPQXYZ was defined on the QH s,tatement as being sequential
and queue proc'essor QP02 is currently executing a work queue from
DPPQXYZ (work queue A), QP19 will be unable to select work from this
queue holder either. Having searched for work on all queue holders'
that QP19 can process and having found none, QP19 will then be placed
in a wait state.

QP19 QP2

A(DPPOABC) Work Queue

A(DPADMNO) A(DPPZXYZ)

A
A(DPPQXYZ) A(DPPQABC)

,DPPQABC DPADMNO

Work Queue Work Queue

o B

E

Figure 2-6.4. Task/Queue Processing

If a QS command of the form r xx,QS,AALQH,REL were to be issued, then
QP19 would then be allowed to select work queue B from queue holaer
DPADMNO.

The OPATCH macro is used to stop the processing of a specified task

APPLICATION SERVICES 2-17

and to cause the program to be deleted. Since the task may have several
entries on its work queue, four types of DPATCHes allow fle~ibility.

First, the TYPE=! causes the task to be DPATCHed immediately. The task
is not allowed to complete the processing of the current WQE, but is
ABTERMed. If EeB= was specified at PATCH time, the ECB is posted with
the ABEND completion code hex'4C'. The ECSs for further WQEs are posted
with a DPATCH completion (hex'42).

Second, the TYPE=U causes the task to be DPATCHed when the current WQE
completes, and the ECBs for remaining WQEs are posted with a DPATCH
completion.

Third, TYPE=C causes the task to be DPATCHed only if there are no WQEs
when the DPATCH request is received.

Fourth, TYPE=W causes the task to be DPATCHed only when the work queue
becomes empty. Additional WQEs can be added after the DPATCH request,
and the DPATCH would only occur after the queue becomes empty.

Fifth, TYPE=A causes the program being executed under th~ specified
task to be ABENDed without deleting the task or any WQE's that may be
awaiting exec ution.

Note: If QPOS=DPATCH was specified on anyone of the PATCHes to a
given task, that WQE is scheduled, and the program executed at
DPATCH time before the task is removed from the system.

The Purge Work Queue Facility provides the capability of selectively
purging work requests to a specified independent task. The selected
work requests will be removed from the active work queue (i.e., a chain
of work requests that have been generated in response to PATCH macro
calls but have not yet been executed) or from the DPATCH work queue
(i.e., a work request generated in response to a PATCH
QPOS=DPATCH, •.•• macro call). Other work requests for that task will
not be purged but will be allowed to execute normally.

PURGEWQ, on request, also notifies the user whenever the last of the
selected work requests has been purged.

The current work request (i.e., work request currently in execution
for the specified task) will not be purged but will be allowed to
complete norma!ly eventhough it may be one of the selected work
requests. PURGEWQ, in this case, will notify the user af!g£ the
specified task has completed the execution of the selected work request.
In addition to providing the synchronization of the completion (or
purging) of selected work requests, PURGEWQ can be used in a "work
shedding" environment as well. For examp!e, work requests deemed to
be of lesser importance can be selectively purged from the queue of
work reques~s for a specified independent task to allow more time for
the more important work requests to execute. The execution of a PURGEWQ
macro call will not prohibit the scheduling of future work reque~ts
(PATCHes) to the specified independent task. PURGEWQ operates only on
those work requests that have previously been scheduled.

The Special Real Time Oper~ting System end of task exit routine (ETXR)
is the program (DPPTETXR) that gains contro! from OS/VS1 upon
termination of a Special Real Time Operating System task. The ETXR

2-18 Description and operation Manual

routine executes under the jobstep task (DPPTSMON) and cleans up after
task termination.

In the event that a task ABENDs, DPPTETXR issues a message through the
real-~ime message handler sp~cifying the task name and the failing
program EP name. The TeBX is saved, and the TCB is detached. DPPTETXR
also posts DPPTSMON to have the TCBX chained to a new TCB.

If the task is terminating normally, the Tea is de~ached. In either
case, normal or abnormal termination, control of all locked resources
is released and GETWA type AT areas are freed.

Two STAE exit routines are used (1) to provide an interface to a user
exit routine and to provide the Special Real Time Operating System with
a DUMP/NODUMP facility upon abnormal termination of a subtask and (2)
to allow cleanup functions to be performed when the real-time job step
task is terminating.

An initialization input stream command, STAEX, allows the user to
specify the name of the user coded load module {exit routine) which is
to be given control when anyone of a list of load modules encounters
an ABEND. A STAE is invoked for every Special Real Time Operating
System task so that when an ABEND occurs in one of the so specified
load modules while executing under a Special Real Time operating System
task, including QPs, the exit routine will be given control before the
DUMP/NODUMP decision is made by the standard Special Real Time Operating
System STAE processor. Within the exit routine, the user may schedule
a retry routine, force the ABEND to proceed with a dump or allow the
Special Real Time Operating System STAE option in effect to determine
if a dum pis to bet a ke n.

On entry to the user exit routine, registers 0, 1, 13, 14 and 15 will
contain the values as defined by OS/VS1 STAE interface routines (see
OS/~~l ~l~nning £llQ Q§g£ Qy!g~, STAE macro instruction). Register 2
will contain the address of the TCBX for the abending task. In a queue
pooling environment this will be the address of the QP TCBX. The user
exit routine is limited by the same restrictions as a normal STAE exit
routine.

The DUMP/NODUMP facility allows control of System ABEND dumps for all
load modules, for a group of load modules, or for'an individual load
module. This facility will not suppress user ABEND dumps. It is
invoked by an entry to the Input Message Processor (IMP) of the form:

(

,DUMP l r xx,STAE[,SLAVE] ,NODUMP
,ONEDUMP,
,STEP
,OPTION

[modulename,modulename, •••]

The first positional operand, STAE, is required and defines the reply
to the Input Message Processor as a command to the DUMP/NODUMP service
interface routine.

The second operand, SLAVE, is used by the Input Message Processor to
route the command to the DUMP/NODUMP service routine in the SLAVE
partition only. It is not a positional operand in that a null field
(double comma) is not required to denote its absence.

APPLICATION SERVICES 2-19

Examples:

r xx,'STAE,NODUMP'

This IMP command will cause all system ABEND dumps to be suppressed
for the MASTER partition.

r xx,'STAE,SLAVE,NODUMP'

This IMP command viII cause all system ABEND dumps to be supp~essed
for the SLAVE partition.

The third operand is used by the DUMP/NODUMP service routine in
establishing the options that viII be in effect for those modules This
operand is a positional operand, and its absence must be dqnoted by a
null field (double comma). If omitted, the DUMP option will be assumed
for those modules specified in this reply.

The valid options are:

DUMP

NODUMP

ONEDUMP

STEP

OPTION

allows a dump to be taken for these modules (provided
there is a SYSUDUMP or SYSABEND DD statement).

suppresses a dump from being taken for these modules.

allovs one dump to be taken for these modules (provided
there is a SYSUDUMP or SYSABEND DD statement) then
suppresses any more dumps for that module.

ABENDs the' job step if one of these modules ABENDs.

allows the operator to choose whether or not to take a
dump following an ABEND of these modules. The operator
is informed of the ABEND via a WTQR (message 850) and
must reply "YES' to receive the dump.

The rema~n~ng operands, if any, are used to indicate the load module(s)
that are to be covered by the specified option. A maximum of 10 load
module names may be specified on anyone reply. Null fields (double
commas) will not be accepted.

Example:

r xx,'STAE,NODUMP'
r xx,'S!AE,ONEDUMP,MODA,MODB i

These two IMP commands will cause all system ABEND dumps to be
suppressed for the MASTER partition except ABENDs for modules MODA
and KODB. One dump viII be taken for MODA on ABEND, and one dump
viII be taken for module MODB on ABEND after the command is entered.

The usc of a question mark (?) to terminate a load module name indicates
that the specified option is in effect for all modules beginning with
the portion of the name specified. The portion of the name specified
must be at least one character and must not exceed seven characters.
The modules are processed as a group and not as individual modules.
This means that if the ONEDUMP option is specified with the module name
OPP?, only one dump would be taken for the first module to ABEND vith
a name beginning with the three characters DPP. Dumps will be
sQPpresRed for any subsequent ABENDs for modules which have names
beginning with DPP.

Example:

r xx,'STAE,NODOKP'

2-20 Description and Operation Manual

r xX,'STAE,STEP,KODUL?

These two IMP commands will cause all system ABEND dumps to be
suppressed for the MASTER partition except that a system ABEND from
any module with a name beginning with KODUL will dump and will ABEND
the ~ntire johstep.

If no load module name is provided on a reply, the specified option
will be in effect for all load modules regardless of any previous
DUKP/NODUKP service command. This will allow the option to De reset
without having to cancel each previous command. Providing one or more
load module names will set (or reset) the option for only those modules
specified on that command. Any previous DUKP/NODUMP service commands
for other modules will not be modified and will remain in effect.

Note: The options in effect at the time of the ABEND are th~ options
that will be honored except that gYm~ for ste£ ~~!~2 ~ n2i
~~~§2~g. It should also be noted that the user exit routine 
invoked in response to the STAEX statement in the SYSINIT input 
stream will receive control before the STAE option processing 
is initiated. Any request by that routine to retry or bypass 
STAE option processing will take precedence over the STAE IMP 
command option in effect. 

Upon abnormal termination of a subtask executing under the real-time 
job step task, one of the Special Real Time Operating system STAE exit 
routines (DPPSTAE) will gain control. This routine will then examine 
the STAE command options in effect at the time of the ABEND to determine 
whether or not a dump should be taken for this task. 

Upon termination of the real-time job step task, another Special Real 
Time Operating System STAE exit routine (DPPISTAE) will gain control. 
This routine will unfix any storage previously fixed by the DPPIPFIX 
routine and clear the external interrupt handler flags. If the job 
step terminating is a KASTER job, the corresponding SLAVE job is also 
terminated (USER ABEND code of 41). If the job step terminating is a 
SLAVE job, the corresponding MASTER job is located, and the MASTER 
job's two-partition flags are turned off. 

It is important to note that there are certain conditions in which the 
STAE routine is not giYen control when the real-time job step is 
terminated (e.g., an operator CANCEL command) and these cleanup 
functions cannot be executed. Therefore, the user must use care and 
terminate a real-time job step by a reply to the Input Message Processor 
of the form 

r xx ,CANCEL[ , ••• ] 

If the SLAVE partition has terminated with a supervisor ABEND code of 
122, 13E, 222, 322, or 122, an IMP command of the form 

r xx,CANCEL,SLAVE 

will ensure that the two-partition flags in the MASTE'R partition will 
be reset even though the SLAVE partition job is no longer active. 

12.Yn,sm!.£ 1.2~g Mogy'le f.!!I.~ 

The Dyoamic Load Module Purge Facility permits the system operator to 
cause a load module, which has been loaded in response to one or more 
PATCH requests, to be deleted from virtual memory. Thus, the user can 
redefine a load module in the library (JOBLIB, STEPLIB, or LINKLIB) 
and purge the in-memory copy, so that when the load module is next 
requested, the new copy will be fetched. The redefinition may entail 

APPLICATION SERVICES 2-21 



replacing the existing copy of the load module or adding a copy on a 
data set that is searched ahead of the one on which it was originally 
found. The redefinition can be done in.a background partition or in 
a backup System/370 which shares disks with the online System/370. 
Through the use of this facility, the new load module can be integrated 
into the online system without otherwise disturbing the job. 

This procedure is not necessary for modules that are link-edited as 
non-reentra~t because they are fetched from the library for each 
execution. ~hose modules that are represented in a system BLDL list 
are not normally affected by this procedure since the disk address of 
those modules is resolved at system IPL time and cannot be re-resolved 
except by re-IPL. Those modules that are identified in a Resident 
Access Method (RAM) list are loaded at IPL time and as such are also 
not affected. This procedure affects only those modules that are 
invoked through a PATCH or PTIME service and not those which may be 
loaded, attached, linked, or XCTLed to outside of the PATCH interface. 

Dynamic Load Module Purge is invoked by a reply to the Special Real 
Time operating System Input Message Processor. 

r xx,DLMP,[SLAVE.]time,modulename,modulename ••• 

DLMP defines the reply as a command to purge the modules specified. 
Up to 10 module na'mes may be specified with one comman,d.. If SLAVE is 
specified. the purge operation is performed in the SLAVE partition; if 
it is-omitted, it is performed in the MASTER (or only) partition. A 
time value may be specified on the command as a decimal integer between 
o and 1200; if omitted, a default of 2 i~ used~ This value defines 
the maximum number of seconds that the DLMP program will wait to allow 
other tasks to complete execution of the specified load modules. 
Therefore, this value plus the necessary time for all DELET·E operations 
is also the time that all other tasks with a request for one of the 
specified modules may have to wait before they are permitted to use 
their module. 

In response to the request, the Dynamic Load Module Purge program 
DPPTDLMP searches the TCB extensions for the Special Real Time operating 
System tasks that have requests for, or are currently using, the 
specified load module (s). If the task is not curr~ntly using one of 
the modules, it will not be permitted to resume using it until the 
purge operation has been completed. If a task is currently using the 
load module, a flag is set, and the current use is permitted to 
complete, but the task cannot process another WQE that requests a module 
in purge until the purge operation is completed. 

However. only those tasks are quiesced that have a WQE on top of the 
queue which requests a module that is in purge; every other execution 
continues undisturbed. DPPTDLMP waits the specified time for the using 
tasks to complete execution of the modules. If the time expires before 
all tasks are through, the operation is abandoned, and messages DPP021 
will specify the name of those modules that were not completed, plus 
message DPP022 will specify that the operation is abandoned. If all 
tasks complete using one or more of the specified modules in time, 
DPPTDLMP causes the module(s) to he deleted and message DPP023 will 
specify that the operation is completed. In either case, all tasks 
that had been quiesced are then allowed to resume normal operation. 

TIME MANAGEMENT 

The Special Real Time Operating System provides time manageDlent 
facilities to meet the requirements of a real-time operating system. 
The special Real Time Opcrc:ting System time management services fall 
into two major categories. First, the Special Real Time operating 

2-22 Description and operation Manual 



System time and date are maintained independently of the 05/VS1 time 
and date. Second, the capability of issuing PATCHes on a cyclic time 
interval is provided through the PTIME macro call. Figure 2-7 is a 
bl~ck diagram of PTIME logic and control flow. 

PTIME 
SVC 

(Type 2) 

I...t.-.- SVC 
~ INT --+ 

DPPCTSVC 

Data 
Base 

I 

DPPCTIMA 

Array 
.L -" , 

_ .... PTQE 

, 

DPPCTIME 

Time 
Update 
Routine 

I 
POST-

1 DPPC PTIM 

PTIME 
Monitor 

Issues 
PATCH 

Figure 2-7. PTIME Logic and Control Flow 

A special Real Time Operating System data base array, DPPCTIMA, contains 
the special Real Time Operating System time and date in several formats 
as shown belo w: 

+TIMED 
+*** 
+* 
+*** 
+TIMEHS 
+TIMETOD 
+TIMEJDAY 
+TIMEMDAY 
+TIMEEBC 

DSECT 

TI ME ARR AY DSECT 

DC F' 0' 
DC F'O' 
DC P' 0' 
DC 1"'0' 
DC CL10' 

TOO IN 10 ~IL UNITS IN HEXADECIMAL 
TOD IN DECIMAL 10 MIL UNIfS-HHKMSSTH 
JULIAN DATE-OOYYDDDC 
DAY OF MONTH DATE-OMMDDYYC 
EBCDIC DATE-hDD/MKK/YY 

The Special Real Time Operating system time and date can be synchronized 
with an external time source or can be adjusted by manual inputs through 
customer-written interface programs. The Special Real Time Operating 
System time is updated at a periodic rate specified at the Special Real 
Time Operating System system build. A PTIME macro call will return 
the current Special Real Time Operating System time and the address of 
the Special Real Time Operating System time data base array. The 
address of the array can also be obtained from a pointer in the SCVT 
at label SCVTTIME or from a GETARRAY macro call for array name DPPCTIMA. 

The Special Real Time Operating System time management facilities 
provide the ability to specify PATCHes which will be issued by a time 
management task at the requested time intervals. The PATCH operands 
(e.g., time of the first PATCH, interval between PATCHes) are defined 
in the PTIME macro call. The PATCH may be issued only once at a 
specified time or repeated for a specified number of PATCHes. Also 
the PATCH may be issued repeatedly at a specified time interval for an 
indefinite period of time. The PTIME macro call can also be used to 
modify or delete a previously defined PTIME. 

APPLICATION SERVICES 2-23 



There are three functional areas of the Special Real Time Operating 
System time management. 

• The PTIME macro and the resulting PTIME SVC, DPPCTSVC, provide the 
user interface to time management .• 

• The time update routine, DPPCTIftE, operates as an OS/VS task and 
is responsible for maintaining the current Special Real Time 
Operating System time in the data base array. 

• The D?PCPTIM monitor routine, which also operates as an OS/VS task, 
is responsible for issuing the PATCHes requested via the P~IME 
macro call. 

The time management programs are described individually in the following 
section. 

The PTIME macro provides the user vith an interface to the Special Real 
Time Operating System time management services. 

PTIME can be used to cause a task to be given control at a given time, 
cyclically at a given interval, or cyclically at a given interval from 
time x to time y. 

There are four types of PTIME service requests: 

• RET -- This causes the system to return the current Special Real 
Time operating System time in register 0 and the address of the 
Special Real Time Op~rating System time array in register 1. 

Note: Since the time contained in ·the array is updated only at a 
periodic rate, the time returned as a result of a PTIME RET 
macro call viII be more exact than the array value. 

• ADD -- This causes the system to build a PTIME queue element (PTQE) 
which exists independently of the creating task. This control 
block contains all information required to issue a PATCH macro; 
that is, the PATCH parameters are built according to the "PATCH 
operands" specified on the PTIME macro and a.r e t.!ontained in the 
PTQE. The PTQE also contains information necessary for issuing 
the PATCH at the specified time; and, if requested, repeatedly 
reissuing the PATCH at a given time interval until the specified 
number of PATCHes has been issued or until a specified stop time 
has been reached. A PTIME ID may be supplied by the or assigned 
by special Real Ti~e Operating System if omitted by the user. The 
ID will be returned to the user in register 1. 

Note: If the interval time is omitted or if the interval time is 
less than the SYSGEN time interval used for updating the 
Special Real Time ope~ating System time array, the SYSGENed 
time interval will be substituted for the interval time. 

• MOD -- Thi~ causes an existing PTQE to be modified. Since the PTQE 
exists independently of the creating task, the PTQE is referred to 
by a combination of task name, entry point name, and/or ID value 

2-24 

of the parameter referred to by the operands TASK=, TASKLOC=, EP=, 
EPLOC=, and/or ID=. Either task name or entry point name must be 
specified, but the remaining tvo are optional. An additional level 
of identification, the PTIME ID, can be used to uniquely identify 
a PTQE eventhough several PTQE's may exist with the same PATCH 
parameters. However, if only a task name or an entry point name 

Description and Operation Manual 



is specified on a PTIME MOD macro call, all PTQEs with ~hat name 
are modified regardless of the original entry point nam~ or task 
name, respectively • 

• DEL -- This causes an existing PTQE to be deleted. Since the PTQE 
exists independent of the creating task, the PTQE is referred to 
by a combination of task name, entry point name, and/or 10 value 
of the parameters referred to by the operands TASK=, TASKLOC=, EP=, 
EPLOC=, and/or ID=. Either task name or entry point name must be 
specified, but the remaining tvo are optional. An additional level 
of identification, the PTIME 10, can be used to uniquely identify 
a PTQE eventhough several PTQE's may exist with the same PATCH 
parameters. However, if only a task name or entry point name is 
specified on a PTIKE DEL macro call, all PTQEs with that name are 
deleted regardless of the original entry point name or task name, 
respectiv ely. 

For example, assume that a given user program vere to be executed 
from a Special Real Time Operating system job step and assume that 
the given program contained the following macro calls~ 

ONE 
TWO 
THREE 
FOUR 
FIVE 
SIX 

PTIHE 
PTIME 
PTIME 
PTIKE 
PTIME 
PTIME 

RET 
ADD,TASK=A,EP=X,ID=4, ••• 
ADO,T~SK=A,EP=X,ID=5, •• _ 
ADD,TASK=B,EP=X,ID=5, ••• 
KOD,TASK=A,"EP=X,IO=4, ••• 
DEL, EP=X, •• 4 

Macro call "ONE" causes the current time and the address of the Special 
Real Time Operating System time array to be returned to the user. 

Macro call "TWO" causes a PTQE cO be built so that PATCHes could be 
issued for task A, entry point X with an 10 of 4. 

Macro call "THREE" causes a PTQE to be buil t so that PATCHes could be 
issued for task A, entry point I, with an ID of 5~ 

Macro call "FOUR" causes a PTQE built so that PATCHes could be issued 
for task B, entry point X, with an 1D of 5. 

Macro call "FIVE" causes the PTQE built by macro call "TWO" to be 
modified. 

Macro call "SIX" causes the PTQEs built by macro call "TWO" and "POUR" 
to be deleted. 

Note: If the PTQE is specified by a combination task name, entry point 
name, and/or 10 value cannot. be located on a PTIME MOD or DEL, 
no action is taken by the system, and the user is notified of 
this condition by a return code of 8. That is, it had not been 
previously defined by a PTIME ADD, it had been deleted through 
a PTIME DEL, it had reached the specified STOP time, or it had 
issued the specified number of PATCHes. 

The PTIME macro allows the user to specify a time to begin issuing 
PATCHes (START=), a time to cease issuing PATCHes (STOP=), or a total 
number of PATCHes to be issued (count=), and a time interval between 
PATCHes (INTERVAL=). All time values are specified in the same format. 
The time is specified explicitly by hours, minutes, seconds, or any 
combination of the three. The time value must not exceed 24 hours. 

APPLICATION SERVICES 2-25 



For example, if a relative start time of three hours is required, the 
PTIME macro could be coded in any of the following three forms: 

PTIME START=(3H) , ••• 
PTIME START=(180M), ••• 
PTIME START= (1H,60 .. , 36005) ; ••• 

If a relative stop time of 1 hour, 3 minutes, 1 and 1/2 seconds is 
required~ the PTIME macr.o could be coded as: 

PTIME STOP=(lH,3M,1.5S), ••• 

If four PATCHes are to be issued regardless of the start time, the 
PTIME macro could be coded as: 

PTIME COUNT=4, ••• 

In addition to explicitly coding the time fields within the PTIME macro, 
the required time values may be loaded in a register or contained in 
a fullword at the address specified. However, the time values must be 
specified in binary hundredths of seconds to use either the register 
or address form of the PTIME macro. 

For example, the following sequence of code 

LA 3,5 
PTIME START=(A=ASTART),COUNT~(3), ••• 

A ST AR T DC F' 5 00 • 

would cause five PATCHeR t~ be issued w~th a relative start time 
of fi ve secon ds. 

To allow greater flexibility in controlling the time of the PATCHes, 
three sub operands are permitted with the START= and STOP= keyword 
parameters of the PTIME macro • 

• REL -- This suboperand is used to indicate that the time value is 
relative to the current Special Real Time Operating System time. 
That is, the time value in the keyword parameter is added to the 
current SpeCial Real Time Operating System time to determine the 
correct start or stop time. This is the default suboperand • 

• TOO -- This suboperand is used to indicate that the time value is 
time of day value. That is,. the first PATCH will occur when the 
Special Real Time Operating System time is equal to the time of 
day specified in the remainder of the operand. If this time value 
is less than the current Special Real Time Operating System time, 
then the first PATCH will not be executed until the next day_ 

• ADJ -- This suboperand is used to indicate that the time value is 
an adjusted time of day value. That is, if the specified time 
value is less than the current Special Real Time Operating System 
time, then the time of the first PATCH is calculated by repeatedly 
adding the time value of the INTRVAL= operand to the specified time 
value until the sum is greater than the current SpeCial Real Time 
Operating System time. This prevents the possibility of 
unintentionally specifying a TOO less than the current SpeCial Real 
Time operating System time and the first PATCH not occurring for 

2-26 Description and Operation Manual 



almost 24 hours. If the specified time value is greater than the 
current Special Real Time Operating System time, the n processing 
would proceed as if the TOO sWboperand had been coded. 

Assume that the current Special Real Time Operating System tim~ is 
11:05, and the following PTIME macro call was executed: 

ONE PTIME START= (TOD,10H) ,STOP=(ADJ, 10H;306) ,INTRVAL=(1H) , ••• 

PTIME macro call "ONE" would cause a PTQE to be built with a start time 
of 10:00.. Since this is less than the current time, a 24-hour value 
is added to the start time so that the actual start time is 10:00 of 
the following day. The specified stop time (10:30) would be adjusted 
to 11:30 (i.e., 10:30 plus the interval of 1 hour). Since the stop 
time would be less than the start time, a 24-hour value is added to 
the stop time so that the actual stop time would be 11:30 the following 
day. 

The remaining PTIKE operands are identical to the PATCH operands, and 
their functions are described in the PATCH macro documentation. Two 
restrictions should be noted. 

1. QPOS=DPATCH cannot be specified. LAST will be substituted. 

2. FREE= Can be specidied, but the FREEMAIN viII not be executed 
until the PTIME queue element (PTQE) generated by this PTIME is 
deleted. If the PTQE is not repeating, this will be like a 
normal PATCH. 

Note: In response to a PTIME DEL request or a return code greater than 
8 on the resulting PATCH macro call, the FREEMAIN will be 
executed when the PTQE is deleted, regardless of any outstanding 
work requests. This may result in abnormal termination of a 
program trying to reference the area that has been freed. 

The time update routine executes under a higb priority task and is in 
a continuous loop repeating at a rate specified during the Special Real 
Time operating System system generation. Each execution causes the 
time value in the data base to be updated. The value retrieved from 
the System/370 TOO clock is adjusted by a conversion factor so that 
the Special Real Time Operating System time can be maintained 
independently of the as time routine. The time update routine detects 
any inconsistency between the TOO clock and the Special Real Time 
Operating System time. If an inconsistency is discovered, a new 
conversion factor is calculated to correct the Special Real Time 
Operating System time. 

After the current Special Real Time 0verating System time has been 
calculated, the time update routine determines whether a PTQE requires 
servicing, and if so, the PTIME monitor routine is notified. 

The PTIME time update routine normally controls its execution rate by 
issuing STIMER to delay for the specified amount of time. Optionally 
the PTIME time update routine can 'be directed to use the optional clock 
comparator feature of the System/370, if OS/VS1 is generated to not 
use this feature. This feature is selected by coding CLOCKCP=YES in 
the VS macro of the Special Real Time operating System SYSGEN. PTIME 
usage of the clock comparator~ if selected, is available to the first 
single partition real-time job step that enters the system or to the 

APPLICATION SERVICES 2-27 



first "MASTER" partition to enter. Use of the clock comparator saves 
STIMER overhead. If other Special Real Time Operating System real-time 
jobs are also run at the same time, they will use the STIMER interface. 

2-28 Description and Operation Manual 



The PTIME monitor routine is responsible for issuing PATCHes requested 
via a PTIME macro call. All active PTQEs with the time of the next 
PATCH less than the current time plus the SYSGENed update interval are 
serviced by issuing a PATCH. If the PTQE is repeating and the count 
of PATCHes has not been exceeded, the next PATCH time is calculated; 
otherwise, the PTIME request is terminated, and the PTQE is deleted. 

Many real-time systems require highly accurate maintenance of time of 
day. The System/370 TOD clock is susceptible to a certain amount of 
drift. As a result, a user may wish to correct this drift by using a 
highly accura te externa I time source to correct for TOD clock drift. 
The time drift correction feature of the Special Real Time Operating 
System allows for correction of long term drift in the System/310 TOO 
clock. Time drift correction is optionally selected during the Special 
Real Time Operating System SYSGEN if support is required for an external 
time source. To include time drift correction in the Special Real Time 
Operating System, the TIMEEXT keyword on the VS macro of the Special 
Real Time Operating System SYSGEN must be coded to specify the external 
signal line (2-1) on which the time interrupt will occur. Tie external 
time source may then interrupt the Special Real T~me operating System 
at the given frequency and allow for correction. 

Time drift correction operates as a Special Real Time Operating System 
subtask with a module name DPPDRIFT. The feature operates by accepting 
external interrupts from the erternal source on a periodic basis from 
one per second to one per ten minutes. A period of one interrupt per 
minute is recommended. To create a time interval of other than one 
minute, the required value must be specified in the TIMERAT keyword of 
the VS macro during the Special Real Time Operating system SYSGEN. 

The external interrupts are assumed to be accurate. If the external 
time standard is not accurate, the TOD clock will appear to have 
excessive drift. An allowance is made for discrepancies caused by 
delay in the handling of the interrupt. This type of delay can occur 
if the interrupt arrives at a point in time when the CPU is disabled 
for external interrupts. 

Drift corrections are made by passing adjustment factors to the Special 
Real Time Operating System time routines which update the Special Real 
Time operating system time conversion factor, not by altering the TOO 
clock. Time drift correction does not supply any initial times, it 
merely accounts for long term drift. The function of passing an 
adjustment factor and the functional relationship between time drift 
correction and the Special Real Time Operating System time management 
is illustrated in Figure 2-8 below. 

APPLICATION SERVICES 2-29 



SPECIAL REAL TIME OPERATING SYSTEM TIME MANAGEMENT 

r-------------------------------------------------------
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

DPPCTIME 

Time Arrav 

Correction 
Factor 

DPPCALCF 

DPPCUPCF 

L__________________________________________ _ _________ _ 

DPPDRIFT 

PATCH 
EP = DPPCUPCF 

Figure 2-8. Time Drift-Special Real Time Operating System Time 
Relationship 

The maximum correction made at one instant is 50 milliseconds; the 
m1n1mum is 10 milliseconds. Errors of greater than 50 milliseconds 
are spread over succeeding corrections until the time error has been 
corrected. Small differences in which the TOD clock appears fast are 
not corrected immediately, as the difference may be due to processing 
or interrupt lockout time. These errors are averaged over many 
interrupts before the correction is made. Errors in which the TOO 
clock appears to be behind are always adjusted immediately. Interrupts 
indicating errors in excess of one second are ignored. Resetting of 
the Special Real Time operating system time (PTIME) by an application 
progra~ has no effect on drift accounting. The resetting of the TOD 
clock by a user program, however, will cause unpredictable results. A 
malfunction in the TOD clock that causes condition code settings of 2 
or 3 on an as STCK instruction will cause the termination of time drift 
correction. 

Time drift correction supplies a user interface to allow a user's 
program to set current time. The first external signal time interrupt 
following the completion of initialization causes a LINK to DPPDRIFE. 
On entry to DPPDRIFE, general register 1 points to a doubleword 
containing the value of the TaD clock qt the time of the external time 
interrupt. The module DPPDRIFE supplied by the Special Real Time 
operating System is a dummy, and the user may replace vith a module to 
set initial time. Using standard OS linkage conventions, DPPDHIFE can 
issue a PATCH to the special Real Time operating System time management 
to adjust the conversion factor (see Figure 2-8). The format of the 
data to be passed is described in the Special Real Time Operating System 
Program Logic Specification. 

2-30 

By vhatever means the user version of DPPDRIPE determines 
the desired system time, the user must be aware that the 
time of its determination is some time later than the time 
stored at interrupt time. The amount of delay can be 
determined by reading the TOO clock and subtracting from it 
the value passed as a parameter (pointed to by register 1). 

Description and Operation Manual 



Drift correction is available to the first single partition Special 
Real Time Operating System real-time job that enters the system or the 
first "MASTER" partition to enter. If more than one Special Real Time 
Operating System is run on the same OS/VS1 system. time correction will 
be suppressed for the other. Special Real Time Operating system systems. 
Thus for testing purposes, an application should be coded such that 
its DPPDRIFE routine does not have to be executed for the application 
to function. Time drift correction is neyer available to "SLAVE" 
partitions, as SLAVE partitions use their MASTER partitions time 
management tables. 

REAL TIME MESSAGE HANDLER 

The Special Real Time Operating System provides facilities for defining 
a series of messages by means of an offline utility program. These 
messages can later be modified and issued in real-time. All messages 
can be predefined and kept in a partitioned data set on a direct access 
storage device. This allows for easy modification of messages without 
making changes to functioning programs. It also allows for easy 
translation of all messages to other languages and avoids duplication 
of messages. The data set is created and updated by the offline utility 
program (DPPXUTIL). It is used online only as input to the message 
writer. Although this data set is built by the offline utility, it is 
a normal partitioned data set and none of tte data base data set 
restrictions apply to it. There are two components to the real-time 
message handler: offline processing and online message processing. 
This is illustrated in Figure 2-9. 

Offline 
Utility 

Message 
Data Set 

Message 
Writer 

Offline Online 

Figure 2-9. Real Time Message Handler Components 

The DEFMSG macro is used to define messages to the offline utility 
program that processes the macro and places the resultant skeleton 
message in the message data set. For further information on the offline 
utility, refer to the section entitled "Offline Utility Progra~". The 
DEFMSG macro defines a un ique mes sa, ge num'ber~ the rou ting code~ action 
code, a date indicator, and the message text. 

The message number identifies a specific message and is the means by 
which online programs refer to that message. The message number has 
a range from 001-999. The Special Real Time Operating System messages 
fall within the range of 001-099 and 800-899. The user should not 
assign message numbers in these ranges. Related' PRPQsshould restrict 
their messages to a defined range. This is by convention only, and no 
restrictions are placed on the user's message numbers. 

The routing code (ROUTE=) is used to specify the output device to which 
the message is to be written. At the Special Real Time Operating System 
SYSGEN time, routing codes 'are established to identify the output device 

APPLICATION SERVICES 2-31 



The routing code has a range of 1-255. It can also identify q user 
program as a device, in which case the message is passed to the program 
as a PATCH parameter. A routing code must be specified with the DEFMSG 
macro. A routing code of 255 results in a no-operation (255 goes to 
no output device) • 

The action code (ACT=) identifies the type of action that the message 
requires. ACT=I identifies the message as being informational only. 
ACT=A means that some action is required. ACT=D requires a decision 
to be made. These codes cause no action within the message output 
process but are intended for user information. 

The date indicator (DATE=) is the date that the message was issued from 
an online program. The date can be inclyded (DATE=YES) or excluded 
(DATE=NO). DATE=NO is the default. 

The message text (TEXT=) contains the text of the message to be written 
or passed to a PATCHed program. Within the text, there can be variable 
data. The variable data will be inserted when the message is issued 
online. Variables are specified to appear in the message by coding, 
in the message definition, information in the following format: 

jcfsj 

where: # (pound sign) is a delimiter character and must appear before 
and after the other specifications. No blanks are allowed 
between them. 

c defines the number of characters to be occupied by this 
variable in the output message. 

f defines the type of data conversion to be performed on the 
data being output. 

s specifies the position of this variable in the variable list 
that is passed by the calling program when the message is 
selected for output. 

The following are examples of the use of the DEFMSG macro. 

EXAMPLE 1: DEFMSG 307,ROUTE=10,ACT=I,DATE=YES,TEXT='THIS MESSAGE HAS 
NO VARIABLES' 

This defines message 307 as being informational; a routing code of 10, 
and the time and date which are to be inserted when the ~essage is to 
be written. 

EXAMPLE 2: DEFMSG 2,ROUTE=250,ACT=D,DATE=NO,TEXT='PROGRAM #8Cl# 
HAS TERMINATED. SHOULD PROGRAM 18C2# CONTINUE?' 

This defines message 2 vhich has a routing code of 250. The date will 
not be formatted in the message, and the text contains two character 
variables. 

EXAMPLE 3: DEFMSG SO,ROOTE=l,ACT=D,TEXT='MSG 13C3# HAS FIVE VARIABLES: 
j2F1#, #1H2#, '6B4., #5X5.' 

Message 50 viII require a decision, bas a routing code of 1, will not 
print the date, and has five variables: 

1. #2Fl# is the first variable with a length of 2 characters and 
integer format, and the user viII provide a fullvord for 
conversion. 

2-32 Description and Operation Manual 



2. #lH2. is the second variable vith a length of 1 character, 
integer format, and the user viII provide a halfvord foe 
conversion. 

3. .3C3. is the third variable with a length of three characters, 
and the user viII provide 3 EBCDIC characters to be inserted. 

4. #6B41 is the fourth variable with a length of 6 characters, 
binary format, and the user will provide one byte for conversion 
(the six low order bits of the byte will be converted). 

5. #515# is the fifth variable with a length of 5 characters, 
hexadecimal format. The user will provide 3 bytes of data for 
conversion (the five low-oDder hexadecimal digits vill be 
converted) • 

Messages are retrieved, formatted, and written during online processing 
through the MESSAGE macro. with the MESSAGE macr~, options selected 
by the DEFMSG macro can be overridden, or omitted from the MESSAGE 
macro, and the DEFKSG options taken. The AREA= operand will indicate 
th.1.t the message is to be returned to the user specified area. The 
area should be defined at least to the maximum length of the message 
plus tvo bytes. The length of the message is put into the first two 
bytes of the virtual storage specified by AREA= and the formatted text 
in the remaining bytes. 

The maximum message length that can be moved is 255 characters. 

If the message contains variables, the user passes the data to be 
inserted in the message (VAR=). The data is inserted in the order 
presented into the variables fields defined by the DEFMSG macro (see 
examples below). 

In online processing, a message can be output to several devices by 
two methods. The MESSAGE macro allows up to 8 routing codes to be 
specified and the MSGRC macro of the Special Real Time Operating System 
SYSGEN can be included, for a given routing code, several times, each 
time specifying a different device. 

If a message is issued to a routing code t.hat does not exist, no attempt 
is made to output the message, and a return code of 12 is returned to 
the user. When a message is issued to multiple devices, and one of 
the devices is out-of-service, an attempt will be made to issue the 
message to the backup (alternate) device defined during SYSGEN. The 
out-of-service route code does not affect the other route codes. The 
message will still be output to these devices. 

The format of the message is an identifier, time, and date (if 
requested), and text. The identifier is: 

DPPnnna 

where: nnn is message number 
a is the action code 

The time and date are represented by: 

HH:MM:SS.t 

where: 

DD/MMM/YY 

HH is hour 
MM is minutes 
SS is seconds 

APPLICATION SERVICES 2-33 



t is tenths of seconds 
MMM is month 

DD is day 
YY is year 

The message will be truncated to conform to the line length of the 
device selected by the routing code. 

When a message is routed to a user program, the PATCH parameters and 
the message will be in the following format. 

Register I 

GPRI -- XCVT 

RESOURCE 

PATCH 
PROBL o 2 3 4 

LGTH I lID 

t Formatted 
Message ..,.0 ___ -,.::2=--___ -, 

Length - Length of PROBL 
Lgth of Message - Length of Message 
,t - Address 
ID-PATCH ID 

Lgth 
~---+~ of 

Message 
Formatted 
Message 

Note: All messages issued prior to the processing of a RESTART card 
and during initialization viII be written to the system console. 
After the RESTART card is processed or if there was no RESTART 
card, the messages will be routed to their respective routing 
code devices. 

The following examples of the MESSAGE macro show the resulting messages 
for the previously defined DEFMSG macro. 

EXAMPLE 1: MESSAGE 301,ROUTE=(1,2,3) ,ACT=A,AREA=MSG. In this example, 
message 301 will be routed to the devices identified by routing codes 
1, 2, and 3. The routing code on the MESSAGE macro overrides the ROUTE= 
from the DEFMSG macro. The formatted message will be returned to the 
user area labeled MSG. The resultant message will appear as follows: 

DPP301A 14:37:21:92 07/JAN/73 THIS MESSAGE HAS NO VARIABLES 

EXAMPLE 2: MESSAGE 2,VAR=«7),(8». In this example, message 2 will 
be routed to the device or program for routing code 250. The date will 
not be printed. The message viII require a decision. The registers 
(7 and 8) point to areas in virtual storage from which eight character.s 
will be moved into the message variables before the message is written. 
Assuming that register 7 points to the eight characters TIMECALL, and 
register 8 points to the eight characters CORRFACT, the resultant 
message would appear as follows: 

DPP002D 12:22:20:21 PROGRAM TIMECALL HAS TERMINATED. 
SHOULD PROGRAM CORRFACT CONTINUE? 

EXAMPLE 3: MESSAGE 50,ROUTE=(21,1) ,ACT=I,VAR=(A,B,C,D,E). In this 
example, message 50 will be routed to the devices or programs specified 
by 21 and 1. The message consists of information, overriding the DEFMSG 
action A. The date viII print as YES on the default. Assuming the 
following pointers: 

2-34 Description and Operation Manual 



A = fullword integer = DC F'320' 
B = halfvord integer = DC H'9' 
C = character DC C'004' 
D = binary integer DC B'011011' 
E = hexadecimal DC X'CA420' 

Tha resultant message vould be: 

DPP0501 14:39:20:07 07/FEB/71 MSG 004 BAS FIVE VARIABLES: 
320,09,011011,CA420. 

H~~ag~ RQ!ltillil £~~ sta t.!!§ ~hallil~ £:S!cililI 

The Message Routing Code status Change Facility provides a service 
which all'olls the user to place a routing code in or out of service. 
The facility will also provide upon request the status of one or all 
of the routing codes in the special Real Time operating system message 
handler. 

The facility is activated by an Input !essaqe Processing (IMP) command. 

The format of the command is: 

!ISG Re. {r~.} {~~T }[ , al trc ] 
STATUS 
STATALL 

MSGRC 

rc 

o 

IN 

OUT 

STATUS 

STATALL 

altrc 

Informs the IMP routine that this reply is for the 
Message Routing Code status Change Facility. 

Routin g code. 

This parameter is 0 if STATALL is specified. 

Place rc in service. 

Place rc out of serwice. 

Di.splay the status" via a system message, of the 
specified roqting code (rc). 

Display the status, via a system message, of all the 
routing codes in the system. 

The routing code to which messages are directed should 
the primary routing code be out of service or the output 
operation fail. This parameter is recognized only if 
IN or OUT is specified. 

REPORT DATA OUTPUT FACILITY 

A facility is provided to transfer report data which is ultimately 
destined to be printed, from one or more working data sets to a QSAM 
supported output data set. 

The Report Data Output Pacility viII write the data as it is generated 
to working data sets (OSAM data set on any QSAM device). Subsequently" 
the data may be transfered to a print device. The data could be 
collected from several working data sets by the report data output 
facility and written to another data set to be printed by a job step 
in another partition or another computer which shares direct access 
(DA) devices with the online computer4 

APPLICATION SERVICES 2-35 



-~ ~ -
INPUT 

WORKING 
DATA 
SeT 

......... ...,... -- ~ ~ 
~ ::= -

INPUT REPORT WORKING DATA COMPOSITE 
DATA .. OUTPUT OUTPUT 
seT 

, 

FACILITY DATA 
SET 

...... ...,... -
~ ::::::: ......... .......... -

INPUT 
WORKING 

DATA 
seT 

......... ....... 

Figure 2-10. Report Data output Facility Overview 

All input and output data sets used by the Report Data output Facility 
must be BSAM data sets. The maximum record length must not be greater 
than 255. For a unit record device the BLKSIZE and LRECL must not 
exceed the maximum for that device. The Report Data Output Facility 
is invoked through IMP commands. 

REPORT. [SLA VE.](1 :~ lJ .OUTPUT DDNAME. INPUT DDNAME. 
[INPUT DDNAME, ... ,INPui DDNAME] 

REPORT 
Informs the input message processing routine that this reply is for 
the Report Data Output Facility. 

SLAVE 
Indicates the PATCHed routine is to run in the SLAVE partition. 

NEW 
Report Data output Facility starts writing data at the beginning of 
the output data set. 

ADD 
Report Data output Facility adds all data at the end of the output 
data set. 

OUTPUT DDNAME 
A DD name which points to a QSA! data set to be used as the output 
data set. The BLKSIZE of the data set must be equal to or greater 
than the maximum BLKSIZE of the input data sets. 

INPUT DDNA!E 
1 DD name which points to a gSAM data set to be used as an input data 
.et. 1 maximum of 10 input DD names may be specified. 

2-36 Description and Operation Manual 



INPUT MESSAGE PROCESSING 

The Special Real Time Operating System provides a facility to allow 
for operator--Special Real Time Operating System communication or for 
the operator to communicate with a sUbsystem. This facility is the 
Input Message Processor (IMP). The Special Real Time Operating System, 
during initialization, issues a WTOR and leaves the reply outstanding. 
At a later time. the operator may reply with a predefined IMP command. 
This IMP command is defined at SYSGEN by the IMP macro and also defines 
the action the Special Real Time Operating System is to take upon 
recei ving the IMP code. The following exam pIe shows the sequence of 
events and alternate methods of invoking Input Message Processor. 

OPERATOR INPUT MESSAGE 
REPLY TO WTOR ROUTINE 

WTOR DPPXIMPW 

OR 

PATCH CARD 
IN INITIALIZATION -

INPUT STREAM ~ 

INPUT MESSAGE A PREDEFINED 

OR --+ PROCESSING SRTOS OR 
ROUTINE SUBSYSTEM 

DPPXIMPP ROUTINE 

PATCH FROM 
A USER r---

PROGRAM 

Input Message Processing will accept IMP commands in the following 
format: "code,param1,param2, ••• ,paramn" where code is the command word 
defined during SYSGEN by the IMP macro. Param corresponds to the 
parameters defined by the IMP macro. Any parameters may be omitted by 
entering double commas (null parameters). 'rhe command will be compared 
with entries in a table (an array in the data base). This table 
contains valid IMP commands, the names of the task and loa.d module 
which process the command (the program to be PATCHed), PATCH ID, and 
parameter conversion codes. If the IMP command is valid, Input Message 
Processing will patch the appro~riate task with the specified input 
parameters. 

New commands can be added to the table through SYSGEN. Input Message 
Processing will accept commands from several different sources (as a 
reply to a WTOR, through a PATCH macro and initialization PATCH Input 
Cards). The different ways of entering IMP commands are described 
below. The keyword SLAVE in all cases is optional; and if omitted, 
should not ha ve the comma included to represent its absence • 

• Input Message Processing will issue the following WTOR: 
Input Message Processing Awaiting Reply'. In response to this 
WTOR, the operator can issue an IMP command. There will always be 
an outstanding WTOR in the system. In response to an IMP command, 
Input Message Processing will issue the following message (WTO). 

IMP COMMAND RECEIVED. 

The IMP commands ar~ in the following format: 

r xx ,comma nd, SLA VE, param 1, para m2, ••• , paramn 

APPLICATION SERVICES 2-31 



where r xx, is the format required by OS/VS • 

• IMP commands issued through initialization PATCH input cards must 
be in the following format: 

P1 PATCH 

EP=DPPXIMPP 

ID=O 

PARAM= 

SLAVE 

EP=OPPXIMPP, IO=O 
PARAM=(C'Command,SLAVE,param1,param2, ••• ,param n 

The entry point of the input message processing 
routine. NO TASK= parameter is specified because 
the taskl!~! ll!! dependent. 

The ID must be O. 

(C'imp comaand ' ) is the IMP command to be processed. 

The command is to be processed in the SLAVE 
part it ion • 

• IMP commands issued through a PATCH macro must be in the following 
forma t: 

P2 

ADDR 

IMPCODE 

where: 

ID = 1 

ADDR 

r 

IMPCODE 

L r, ADDR 

PATCH 

DC 

DC 

EP=DPPXIKPP,ID=1,PARAM=«r» 

AL 1 (LGTH) , AL3 (IMPCOOE) 

The ID must be 1 when entered through PATCH macro. 

This is a 4-byte area. The first byte contains the 
length of the IMP command and the next three bytes 
contain the address of the IMP command. 

Register 2-12 

Th e 1M P comman d. 

The following example shows the parameters as they would appear when 
the task which is patched as a result of the IMP command gains control. 
If no parameters are passed, there viII be no parameter pointer. A 
null parameter results in a zero address being passed for the parameter 
address. 

2-38 Description and Operation Manual 



~ 
LENGTH 
10 
LL 
PARM 

Note: 

REGISTER I 

XCYT 

RESOURCE TBL 
o 

~ LENGTH 

PROBL 

2 3 

ID 

PARAMETERS ~t----,------'-----L.-----I 

LL 

PARAMETER 

= The address of a parameter. 
= Length of PROBL plus FARMS. 
= 10 specified during SYSGEN. 
= Length of this parameter. 
= ADDRESS of parameter~ 

The first LL and PARM parameters may contain zeros if only the 
last parameters of a multiparameter IMP code are specified r 
example: 

'code."param3 r param4'. 

When only the first parameters of a multi-parameter IMP code 
are specified, the last parameters defined during SYSGEN by IMP 
macro will be ignored. A comma followed by a comma(,,) with no 
intervening character constitutes a null parameter. 

EXAMPLE 1: This example shows an IMP command being defined: 

SYMBOL IMP CODE=EXAMPLE1.TASK=DPPTEST, 
LM=DPPTEST,IO=O, 
PARAM= (C10, F4, X3) 

In this example, an IMP command is defined with a command word of 
EXAMPLE1. DPPTEST will accept three parameters: 

1. a character parameter of length 10. 

2. a fullword parameter of length 4. 

3. a hexadecimal parameter of length 3. 

For more details on defining IMP commands see the section on SYSGEN 
macros (IMP macro). 

APPLICA~IO~ SERVICES 2-39 



EXAMPLE 2: In this example, the IMP command defined in EXAMPLE 1 will 
be entered through the system console as a reply to the WTOR "INPUT 
MESSAGE PROCESSING WAITING ON REPLY". 

r xx,'EXAMPLE1,SLAVE,START' 

SLAVE parameter says DPPTEST is to execute in the SLAVE partition. 
When DPPTEST is entered, the parameters will be in the following 
format: 

},,----l REGlS----,TER I I~ 

C XCVT 

h IS A BLANK 

o 

10 

RESOURCE TBL 

PARAMETERS START hhh1>1> 

EXAMPLE 3: In this example, the IMP command defined in EXAMPLE 1 will 
be entered through the initialization input stream. 

PATCH EP=DPPXIMPP,ID=O, 
PARAM= (C'EXAMPLE1 ,START, ,12') 

When DPPTEST is entered, the parameters will be in the following format: 

REGISTER 1 

t XCVT 

t RESOURCE TBL 

t PARAMETERS 

C I START h1>1>1>h 

1> IS A BLANK 

2-40 Description and Operation Manual 



EXA"PLE 4: In this example, the IMP command defined in EXA"PLE 1 will 
be entered by a PATCH macro. 

The IMP code follows: 

L r,ADDR 
P1 PATCH EP=DPPXIMPP,ID=1,PARA"=«r» 

ADDR DC AL1(21),AL3(IMPCODE) 
IMPCODE DC C'EXA"PLE1,START,708,12' 

When DPPTEST is entered, the parameters will be in the following for.at: 

REGISTER I 

t XCYT 

t RESOURCE TBL 

t PARAMETERS 

L'STARTb&bbb 

b IS A BLANK 

APPLICATION SERVICES 2-41 



DATA BASE MANAGEMENT 

The Special Real Time operating system data base is designed to fulfill 
the needs of data storage and access of a realtime operatirig system. 
The Special Real Time operating System data base subroutines provide 
the user with an interface to the information contained in the data 
base. Through the use of these subroutines, data may be retrieved from 
or replaced in the data base. In addition, sections of the data base 
may be copied to a direct access device to provide an historical log. 

Tte data base consists of data items which are logically grouped into 
arrays. These arrays may also contain one or more blocks of related 
information. Each block is identical in size and shape to every other 
block within that array. For example, assume that the temperature and 
volume are to be monitored for three separate storage tanks. The two 
items (temperature and volume) can be grouped into one block. Three 
blocks (one for each storage tank) can be grouped into one array. This 
array can then be logged on a cyclic time interval to provide a history 
of the contents of the storage tanks as shown below. 

Block I 
Storage Tank 1 

Block 2 
Storage Tank 2 

Block 3 
Storage Tank 3 

Item A - Temperature 
Item B - Volume 

Item A - Temperature 
Item B - Volume 

Item A - Temperature 
Item B - Volume 

The Special Real Time Operating System arrays can either reside in VS 
or on a DA device. Duplicate data set support will be provided for 
all data base data sets (i.e., data sets containing DA resident arrays). 
However, it is the user's responsibility to ensure that the data base 
data sets do indeed meet the requirements for duplicate data set 
support, to create the required backup data set(s), and to identify 
these data sets through the normal duplicate data set input stream 
(refer to the section entitled "Duplicate Data Set Support" for a 
detailed description of duplicate data set). VS resident arrays may 
either be blocked or nonblocked arrays and are eligible to be logged. 
All DA resident arrays must be blocked and cannot be logged. An array 
that contains a copy (or copies) of a loggable VS resident array is 
called a log array. All 109 arrays must be DA resident. All arrays 
must be defined by the offline data base utility which is discussed in 
detail in the section entitled "offline Utility Programs." 

The data base utility builds two data sets: (1) a data base 
initialization data set containing all the information necessary for 
the online data base initialization routine to construct the required 
control blocks, and (2) a composite items data set containing all the 
information necessary for the online data base subroutine to locate a 
particular item or items. 

During a normal start, i. e., when the job is initially started through 
standard OS/VS1 Job Control statements with the EXEC card specifying 
PGM=DPPINIT, the data base initialization program will read in the 
initial data for ~ll vs resident arrays that specified "INIT=YES" on 
the ARRAY macro in the offline utility phase. Those VS arrays for 
which "INIT=YES" was not specified have VS storage space allocated, 
but no data is moved into the space. 

During a refresh start, i.e., when the job is reinitialized from a 
restart data set, or during a normal start when the SYSINIT input stream 
does not contain a "DBREr NO" control statement, the data base 

2-42 Description and Operation Manual 



initialization program will refresh all VS resident arrays that 
specified "REINIT=YES" and that requested logging in the offline utility 
phase with the last logged copy of that array_ The log arrays are 
initialized to resume logging with the last logged copy of each loggable 
VS resident array. 

Note that VS resident arrays are arranged in virtual storage by the 
USE code specified during offline utility processing. Arrays with 
similar USE codes are grouped together in virtual storage. This is 
intended to optimize the use of real storage by improving the 
probability that the high usage arrays will remain in real storage. 
Grouping high usage arrays will cause them to be distributed in a 
smaller number of pages to reduce the number of page faults. 

Access to the data base is achieved through a set of six macros: 
GETITEM. PUTITEM, GET BLOCK, PUTBLOCK, GETARRAY, and PUTARRAY as shown 
in the following example. 

User Data Base 
Proaram Subroutines 

DPPDITEM 

GETITEM 
PUTITEM 

.I. oJ 

! 

... DPPDBLOK , 

GETBLOCK 
PUTBLOCK 

""- j 

-.i . .... DPPDARAY 

GETARRAY 
PUTARRAY 

.I. 

! 

GET ITEM 

~ ~ 

Composition 
Items 

Data Set 

'- / 
i 
! 

~ 

DA 
Array 

'-

Data Base 

VS 
Resident 

Array 

::> 

or 

~ 

VS 
Resident 

Non Blocked 
Array 

VS 
Resident 
Blocked 
Array 

The GETITEM macro can be used to retrieve certain infor~ation from one 
or more items' in the data base. This information is stored in the 
address indicated by the DATA= keyword parameter. The user may request 
that the address within the data base of the item(s) and length of the 
item(s) be retrieved (TYPE=ADDR) or that the data contained in each 
item be returned (TYPE=DATA). TYPE=DATA and TYPE=ADDR are valid for 
direct access resident arrays. For blocked arrays, the user must 
specify the number assigned to the data block Which contains the item 
(BLKN=number). The item or items for which information is to be 
retrieved is indicated with the NAME=, NAMELST=, or ADDRLST= keyword 
parameter. The NAME= keyword parameter is an a-character name of a 
single item for which information is to be retrieved. The NAKELST= 
keyword parameter specifies the address of a list of a-character item 

APPLICATION SERVICES 2-43 



names for which information is to be retrieved. The ADDRLST= keyword 
parameter specifies the address of a list of data base item addresses 
which were returned from a previous execution of this macro with NAME= 
or NAMELST= specified and TYPE=ADDR. The PROTECT= keyword parameter 
allows the user the option (PROTECT= YES) of preventing other programs 
from modifying the data base during the execution of this GETITEM. If 
PROTECT=RISK is specified, the information will be moved without regard 
to other programs which may be storing into the data base. 

The following examples indicate how the GETITEM macro may be used to 
retrieve information. 

A 
A1 

B 
B1 

C 
C1 

GETITEM 

GETITEM 

DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 

NAMELST=A,TYPE=ADDR,DATA=B 

ADDRLST=B,DATA=C,TYPE=DATA,PROTECT=YFS.~. 

CLS' ITEM l' 
CL8'ITEM2' 
X'PP' 
A (0) 
A (0) 
4X'PF' 
CL 16' , 
Cl32' , 

The first GET ITEM will move the length and address of items ITEM1 and 
ITEM2 into the data fields Band B1, respectively .• The second GETITE! 
will move t.he data associated wit h the items whose addresses are 
contained in the address list fields, Band B1, into the data fields, 
C and C1, respectively. Therefore, data associated with ITEM1 will 
have been moved into C, and data associated with ITEM2 will have been 
moved into C1. 

PUTITEM 

The PUTITEM can be used to store data into one or more items of the 
data base. This data is moved from the address indicated by the "DATA=" 
keyword parameter. For blocked arrays, the user must specify the number 
assigned to the data block which contains the item (BLOCKNO=number). 
The item or items for which data is to be stored is indicated with the 
NAME=, NAMELST=, or ADDRLST= keyword parameter. The NAME= keyword 
parameter is an 8-character name of a single item for which data is to 
be stored. The NAMELST= keyword parameter specifies the address of a 
list of a-character item names for which data is to be stored. The 
ADDRLST= keyword parameter specifies the address of a list of data base 
item addresses as returned from a previous execution of a GETITEM macro 
with a NAME= or NAMELST= specified and a TYPE=ADDR. 

GETBLOCK 

The GETBLOCK macro can be used to retrieve one or more data blocks from 
one or more blocked arrays. The arrays may be either VS or DA resident 
arrays. The NAME= and NAMELST= keyword parameters are used to indicate 
the a-character name or names of the arrays from which one or more 
blocks of data are to be retrieved. The NUMBER and NUMBLsr= keyword 
parameters are used to indicate the tvo-byte number or numbers assigned 
to a numbered array or arrays from which one or more blocks of data 
are to be retrieved. The DATALST= keyword parameter specifies the 
address of a list of block numbers and associated memory addresses 
where the data blocks are to be written. Each entry in the list will 
contain a byte flag field, a 3-byte area address, and a 2-byte block 
number. A flag byte of 1'40' indicates the last entry to be processed 
for a particular entry in the name list or number list. 

Description and Operation Manual 



The PROTECT= keyword parameter allows the user the option (PROTECT=YES) 
of preventing other programs from modifY1ng the data base during the 
execution of this GETBLOCK. For DA resident arrays, a PROTECT=YES 
request viII reserve the data set containing the specified array. For 
vs resident arrays, the VS resident data base is reserved. If 
PROTECT=RISK is specified, the information viII be moved without regard 
to other programs which may be stpring into the data base. 

For an example of the use of the GETBLOCK macro, assume that array 
FIRST is a VS resident blocked array and array SECOND is a DA resident 
array. For this example, each array is assumed to be composed of three 
40-byte blocks. If the following GET BLOCK macro vere to be executed, 
blocks 1 and 3 of the array FIRST would be moved into the DATA1 and 
DATA2, respectively. 

The entire array SECOND (blocks 1, 2, and 3) would be read into DATA3, 
DATA4, and DATAS, respectively. 

B 

A 

DATAl 
DATA2 
DATA3 
DATA4 
DATAS 

GETBLOCK 

EQU 
DC 
DC 
DC 
DC 
DC 

EQU 
DC 
DC 
DC 

DC 
DC 
DC 
DC 
DC 

DATAl 

DATA2 

DATA3 

DATA4 

DATA5 

'FIRSTl' 

'FIRST3' 

'SEC" 

'SEC2' 

'SEC3' 

NAMELST=A, DATALST=B, •• '. 

* X'0',AL3(DATA1),H'1' 
X' 40', AL3(DATA2) ,H'3' 
X' 00 ' , AL 3 ( DA T A 3) , H ' 1 ' 
X' 0' , AL3 (DATA4), H' 2' 
X' 40' , AL 3 ( D A T A S) , H ' 3 ' 

* CLS' FIRST' 
CL 8' SECOND' 
X'FF' 

10F'0' 
10F'0' 
10F'0' 
10 F' 0' 
10F'0' 

VS Data Base 

Block' 

Block 2 

Block 3 

DA Data Base 

oJ -K: ::> -
'----

Block' 
Block 2 
Block 3 

-

Array 
FIRST 

Array 
SECOND 

APPLICATION SERVICES 2-4~ 



PUTBLOCK 

The PUTBLOCK macro can be used to move data from one or more user 
specified virtual storage locations into one or more blocks of one or 
more blocked arrays. The arrays may be eithe.r VS or DA reoident arrays. 
The NAME= and NAMELST= keyword parameters are used to indicate the 
8-character name or names of the arrays into which one or more blocks 
of data is to be written. 

The NUMBER= and NUMBLST= keyword parameters are used to indicate the 
two-byte numbers ~ssigned to a numbered array(s) into which one or more 
blocks of da~a are to be written. The DATALST= keyword parameter 
specifies the address of a list of block numbers and associated storage 
addresses from which data blocks are to be written~ 

other routines executing data base requests with a PROTECT=YES option 
will be prevented from accessing the VS resident data base (or DA data 
set) during the execution of a PUTBLOCK request. 

GFTARRAY 

The GETARRAY macro can be used to retrieve data which is stored in VS 
resident array(s). to retrieve the address of and certain information 
about VS or DA resident array(s), or to determine specific information 
about all items defined as part of VS or DA resident array(s). Which 
type of data is to be retrieved is specified by the TYPE parameter .. 
The array for which data is to be retrieved is identified through the 
NAME, NAMELST, NUMBER. or NUMBLST keyword operands~ The NAME= parameter 
specifies the 8-character name·of the array as def~ned through the 
offline utility data base definition. The NUMBER= parameter specifies 
the number (1-255) of the array. Associated with the NAME= or NUMBER= 
parameter. the DATA= parameter specifies the address to which the data 
is to be moved. 

The NAMELST= parameter specifies the address of a list of 8-character 
names of one or more arrays for which data is to be retrieved. The 
NUMBLIST= parameter specifies the address of a list of one or more 
halfwords which contain the numbers which identify the arrays for which 
data is to be retrieved. The area(s) into which data is to be moved 
when NAMELST or NUMBLST is specified are identified by the DATALST or 
FINDLST param eters. 

The data to be returned is specified by the TYPE= parameter. If 
TYPE=DATA is specified, the content of the entire array(s) is moved 
into the area specified by the DATA= or DATALST= parameters.. If 
TYPE=SPEC is specified, the specification information (16 bytes) is 
returned for each item contained in the specified array(s). This 
information contains, for each item. item name, length of the item. 
defined data type, displacement into the array of the first byte of 
the item and repetition factor (number of identical items defined by 
one ITEM definition statement). If TYPE=ADDR is specified, 8 or 10 
bytes of data are returned. This data contains a flag byte, the address 
of the array (if VS resident). the number of blocks defined for the 
array, and the size of the array (if unblocked) or the size of each 
block. optionally. the number of items defined for the specified 
array(s) may also be retrieved. 

2-46 Description and Operation Manual 



GET ARRAY EXAMPLE 1: This example will retrieve the content of array 
ABC into the area specified by the symbol ABCAREA. It is assumed that 
array ABC is less than or equal to 100 bytes. 

GETARRAY NAME= ABC, D AT A= ABCA REA, TYPE=DATA, •.• 

ABCAREA DC XL100'O' 

GETARRAY EXAMPLE 2: This example will retrieve the address and 
associated data for array numbe~ 1 into the area specified by symbol 
ADDR1. 

ADDR1 

GETARRAY 

DS OF 
DC XL1'0' 
DC AL3(0) 
DC H'O' 
tt H' 0' 

NUMBER=1,DATA=ADDR1,TYPE=ADDR, ••• 

Flag byte 
Array address 
Number of blocks 
Size of array or block 

GET ARRAY EXAMPLE 3: This example will retrieve the address data for 
each array specified in list 'ADRL'. Since the increment (the second 
subparameter) of the FINDLST is greater than 10, the numbQr of items 
in the array will be returned also. This increment causes the returned 
addresses to be moved into storage IO'cations separated by 12 bytes for 
each entry. 

GETARRAY 

ADRL DC 
DC 
DC 
DC 

FINDL DS 
DC 
DC 
DC 
DC 
DC 
DC 
DC 

DC 

CLS' A 1 ' 
CL S' A2' 
CLS' A3 ' 
X' FF' 

OF 
X' 0' 
AL3' (0) , 
H'O' 
H' O' 
H'O' 
H' 0' 
2XL12' 0' 

XL 4' O' 

NAMELST=ADDL,FINDLST=(FINDL,12),TYPE=ADDR 

Flag byte to terminate the name list 

Flag byte for array A1 
Address of array A1 
Number of blocks in array A1 
Length of array or each block 
Number of i terns in arr ay 1 
Pad list to 12 bytes 
Space for 2 additional lists as above for 

arrays A2 and A3 
Space for list termination flag 

APPLICATION SERVICES 2-47 



GETARFAY EXAMPLE 4: This example will cause the data from the arrays 
for which the ad1resses had been previously retrieved (as in example 
3) to be retrieved. The data from the first array will be moved into 
area A1DATA; from the second array into area A2DATA, etc. It is assumed 
for this example that all three attays are less than or equal to 11)0 
bytes. For this example, it is assumed that the example 3 macro has 
been successfully executed to establish valid data into the following 
fields. 

GETARRAY 

DATAL DC 

A1D DC 

A2D DC 

A3D DC 

FINDL DS 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 

PUT ARPAY 

ADDRLS T= (F IN DL, 12) ,DATALST=DATA L,T YPE=DATA, ••• 

A ( A 1 D , A2 D, A3 D) 

XL100'0' 

XL100'O' 

XL100'O' 

OF 
X'O' 
AL 3' 0' 
H'O' 
H' 0' 
H'O' 
H' 0' 
2XL12'0' 
X' FP' 

Flag byte 
A ddr. of array 
Number of blocks 
Length of block or array 
Number of items 
Unused 
Space for 2 repeats of above 
List terminator flag 

The PUTARRAY macro is similar to the GETARRAY with the difference being 
that data is moved from the user's area to the VS resident data base. 
There is no TYPE= parameter on the PUTARRAY macro, so when compared to 
the GETARRAY macro, execution is always as if TYPE=DATA were specified. 

~~i~ ~~~~ ~Qggill[ 

Data base logging is a Special Real Time Operating System option which 
may be selected at the Special Real Time Operating System SYSGEN time 
by the LOG macro. 

During the offline utility phase, the user specifies which VS resident 
arrays are to be logged. These are called 10ggab1e arrays. A DA 
resident array with the array name specified by the LOGNAME keyword 
parameter in the ARRAY macro is constructed for each array to be logged. 
This array is called a log array. The LOGDD keyword parameter specifies 
the name of a data definition statement which describes a BDAM data 
set where the log array is to reside. The LOGCOPY keyword parameter 
specifies the number of historical copies that can be contained in this 
log array. 

For example, the following ARRAY macro causes the offline utility 
routine to generate the following array structure. 

ARRAY 

2-48 

NA ME=VSARRAY ,LOG NA ME=LOGAR RAY, 
LOGDD=DBLOG1,LOGCOPY=2, ••• 

Description and Operation Manual 

* 
* 



Primary Array Locator Table 

A(VSARRAY) , 

A(LOGARRAY) 

VS Resident Arrays 

VSARRAY 

~ ~ 
r--... ../ -Copy 1 
~ ... ----.", 

Copy 2 
1"--_.----

Loggable Array 
S'VSARRAY 

'LOGARRAY 

}

L09 Array 

The first logging request for VSARRAY would cause the VS resident array 
to be copied into the space allocated for copy 1. The second logging 
request for VSARRAY would cause the vs resident array to be copied into 
the space allocated for copy 2. Since all the space allocated to the 
history files for VSARRAY has now been filled, the third logging request 
for VSARRAY would cause the VS resident array to be copied into the 
space allocated for copy 1 overlaying the data logged as a result of 
the first logging request. 

To prevent a loss of history data, the user may specify the name of a 
user-written load module to be given control when the last block of 
the logging array has been filled through the LOG WRAP keyword parameter 
of the ARRAY macro. This load module will be entered via a PATCH to 
a dependent task. It is that load module's responsibility to preserve 
a record of the contents of the logged array at that time, possibly by 
dumping the log array to a sequential data set by the execution of a 
DUMPLOG macro call. If no user program has been specified, the user 
will not be notified that ~raparound has occurred. The LOGFREQ keyword 
parameter consists of a code from 0 to 3 specifying the frequency at 
which the VS resident array is to be logged. A code of 0 indicates 
that it is to be logged only on demand, i.e., only when the user program 
executes a PUTLOG macro call. Codes 1 to 3 are used in conjunction 
with system generation parameters to specify the log frequency. A code 
of 1 is the highest frequency and 3 is the lowest. The Special Real 
Time operating System logging routines will issue a PUTLOG for all VS 
arrays that are to be logged on the specified log frequency. Three 
macro calls; PUTLOG, GETLOG, and DU~PLOG, provid~ the user interface 
with the log subroutines. 

PUT LOG 

The PUTLOG macro is used to copy the VS resident array to the proper 
copy of the log array. The NA~E and NA~ELST keyword parameters are 
used to specify the 8-character names of the VS resident array(s) from 
which data is to be logged. The NU"BER and NU~BLST keyword parameters 
are used to specify the 2-byte number(s) assigned to a numbered ~S 
resident array(s) from which data is to be logged. 

The user may replace a previously logged copy of the VS resident array 
without interrupting the normal sequential logging process. To 
accomplish this, the user would retrieve a log copy from the log array 
by executing a GETLOG macro call. This would read the requested log 

APPLICATION SERVICES 2-49 



copy along with the log header into vs storage. The logheader contains 
the time this copy of VS resident array was logged and a painter to 
its location in the log array. The user may then modify the data in 
th1s log copy and replace the log copy by executing a PUTLOG with the 
LOGHDR keyword parameter specifying the address of the previously read 
in logheader. The copy of the array that will replace the copy in the 
log array is assumed to immediately follow the specified logheader. 
If the logheader in the log array does not match the logheader indicated 
by the LOGHDR parameter, the logged copy will not be replaced. This 
will prevent the possibility of aocidentally overlaying a newer log 
copv. The LOGHDR parameter is not yalid with the NAMELST and NUMBLST 
keyword parameters. 

The user also has the capability of updating selected blocks of the 
last logged copy in the log array for blocked vs resident arrays through 
the use of the PUTLOG with BLKLIST option. The BLKLIST keyword 
parameter identifies the blocks in the VS resident array that are to 
be logged. Each entry in the list must cont.ain at least a 1-byte flag 
field and a 2-byte block number. A flag byte of X'40' indicates the 
last entry to be processed for a particular entry in the name list or 
number list. The PUTLOG when executed with the BLKLIST option will 
cause the log array block that corresponds to the specified VS resident 
arr~y block to be updated in the last log copy of the log array_ The 
entire log copy is not updated and repeating PUTLOG macro calls with 
the BLKLIST parameter viII update the same log copy. A PUTLOG without 
the BLKLIST parameter will cause the entire VS resident array to be 
logged to a new log copy. 

For example, assume that loggable array, A, consists of four logical 
blocks, and the associated log' array, B, has been defined to contain 
three complete copies of loggable array A. Because of the physical 
block size of the data set that contains a log array, each copy of the 
loggable array may be placed in one or more blocks of the log array. 
Assume that each copy of loggable array A can be placed in two blocks 
of log array B. Therefore, the entire log array, B, would consist of 
six blocks (i.e., three copies and two blocks per copy). 

Array A 
LOG ARRAY B 

BLOCK I 

BLOCK I 
BLOCK 2 

LOG COPY I 

BLOCK 3 

LOG COPY 2 

BLOCK 4 

BLOCK 5 

LOG COpy 3 

BLOCK 6 

The user might issue a PUTLOG to log an entire first copy of array A, 
and at sometime later issue a PUT BLOCK to update block 3 of the VS 

2-50 Description and Operation Manual 



resident array A followed by a PUTLOG, with the BLKLIST option, using 
the same data list. The log block in the log array that contains the 
request loggable array block would be updated. That is, blocks 3 and 
4 from the loggable array A would be moved into block 2 of the Log 
Array B. . 

GETLOG 

The GETLOG macro call can be used to retrieve copies of arrays that 
have been logged to the log array on the basis of time or by specifying 
a particular 10gheader. The NAME keyword parameter specifies the name 
of a VS resident array for which a logged copy is to be retrieved. The 
NUMBER keyword parameter specifies the number of a VS resident numbered 
array for which a logged copy is to be retrieved. The AREA keyword 
parameter specifies the address of the user allocated area of storage 
where the logged copy of the array is to be written upon retrieval from 
the log data set. This area must be large enough to contain the entire 
log copy plus the logheader information. 

The TIME keyword parameter specifies the time and day to be used as a 
comparison value to establish a relative starting point to determine 
which copy of the array will be retrieved from the log data set. An 
attempt will be made to locate a copy of the array logged at the exact 
time specified. If a copy of the array with the exact time cannot be 
found, the first copy of the array logged after that time will be used. 

The LOGHDR keyword parameter specifies the address of an array 
logheader. Information in this logging header will establish a relative 
starting point to determine 'which copy of the array will be retrieved 
from the log data set. The logging header which was retrieved as part 
of a previous GETLOG macro call can be used to retrie.ve addi tional da ta 
by stepping either forward or bac kward in time.", TIME and LOG HDR are 
mutually exc1 usive. 

The STEP keyword parameter is used in conjunction with either the TIME 
or LOGHDR parameter to determine the copy of the VS resident array to 
be retrieved from the log array. The value specified in the STE~ 
parameter is a signed namber which may be either positive, negative, 
or zero. The absolute value of the number specified must be less than 
the number of log copies in the log array. The value indicates the 
number of copies prior to or after the log copy determined by either 
the TIME or LOGHDR parameter. 

If the TIME, LOGHDR, and STEP parameters are omitted, then the latest 
10gge4 copy of the array will be retrieved. For example, assume that 
the log array LOG contains five log copies of VS resident array, ARRAY. 

Log Array - LOG 

t 
Next Log Copy 

This array had been logged hourly for 1 hours starting at 1:00. 
Therefore, copies 1 and 2 would have been overlaid by copies 6 and 1, 
respectively, because of the wraparound processing. The following 
macro calls would all result in retrieving the same log copy, copy 4. 

1.. GETLOG TI ME=T, STEP= 1, ••• 

APPLICATION SERVICES 2-51 



2. GETLOG TIME=X.STEP=-3.AREA=LH •••• 

3. GETLOG LOGHDR=LH.STEP=O 

T DC '2:30' -- Actual value is in 10 millisecond units 
X DC' 7: 00 ' 
LH DC 'COpy 4' -- Actual -logheader. 

Example 1 will find the first time logged after 2:30 and step 1 entry 
forward. Example 2 will find the first time logged after 1:00 and step 
backward 3 entries. Example 3 presumes that the logheader from 
example 2 exists in 'LH'; this example will retrieve the same data, 
since STEP=O. 

DUMPLOG 

The DUMPLOG macro call can be used to dump or unload the historical 
log copies of VS resident arrays from the log array to a user defined 
sequential data set. This sequential data set may then be accessed by 
user';'vrit ten routines. 

Note: Duplicate data set support is not provided for the user-defined 
sequential data set used in DUMPLOG processing. 

The NAME and NAMELST keyword parameters specify the a-character name(s) 
of the VS resident arrays for which the log array(s) are to be dumped. 
The NUMBER or NUMBLST keyword parameters specify the 2-byte number(s) 
assigned to a numbered array(s) for which the log array(s) are to be 
dumped. 

The DrrMPDD keyword parameter specifies the name of a data definition 
(DO) statement which describes a sequential data set to receive the 
dumped copies of the array from the log array. The USRDATA keyword 
parameter specifies t he address of a 256-byte area of user da ta to be
used as a dump header for each array on the sequential dump data set. 

The log copies to be dumped are indicated by the STARTIM and STOP TIM 
keyword parameters. The STARTIM parameter specifies the time and day 
to be used to determine the first log copy to be dumped. An attempt 
will be made to locate a copy of the array with the exact time; if it 
cannot be found, the first copy of the array logged after that time 
will be used as the first log copy to be dumped. If STARTIM is omitted, 
dumping viII commence with the oldest logged copy of the array_ 

The STOPTIM parameter specifies the time and day to be used to determine 
the last log copy to be dumped~ An attempt viII be made to locate a 
copy of the array logged at the exact time specified. If a copy of 
the array with its exact time cannot be found, the log copies of the 
array will be dumped until the most recently logged copy has been dumped 
or until the first copy of the array logged after that time has been 
dumped. If this parameter is omitted, dumping will terminate vhen the 
most recently logged copy of the array has been dumped. 

Note that the DUMPLOG routine viII insert a byte of 'FF' into the first 
byte of the logbeader o~ the last copy of each array dumped to the 
sequential data set. This is done to indicate the end of the dump of 
each array to the user delog routine. 

The data base refresh function w.ill allow the user to replace the 
current contents of one or more loqgable VS arrays with the contents 
of the most recently logged copy(s) of the array(s). To invoke the 

2-52 Description and Operation Manual 



function, the requesting program must PATCH the refresh program 
DPPDUPDL. 

The PATCH request will consist of a list of arrays to be refreshed. 
If no list is specified, all refreshable arrays will be refreshed. A 
refreshable array is any array that was defined via the offline utility 
with the REINIT=YES parameter on the ARRAY macro. These modifications 
do not supersed~ the option of placing a DBREF card in the 
initialization stream if the data base is to be refreshed during 
initialization. 

The PATCH macro format is as follows: 

Symbol 

LIST os 

DC 

DC 

DC 

DC 

DC 

or 

LA 

symbol PATCH 

PATCH 

OH 

TASK=taskname,EP=DPPDUPDL, 
PARAl1= (LIST) ,any o'ther patch parameter 
the user may want to specify 

CLaw name' 

CLaw name' 

H'number,'XL6'O' 

H'number,'XL6'O' 

X'FF 

R,LIST 

TASK=taskname,EP=DPPDUPDL, 
PARAM= «(R) ) 

R is any register (2-12) 

Symbol 

TASK= 

LIST 

or 

PATCH TASK=taskname,EP=DPPDUPDL 

May be omitted to cause the program to execute as a dependent 
task or may specify any valid task name. 

Is the passed parameter list of the data base arrays to 
refresh. The list consists of 8-byte entries terminated by 
a byte of X'FF'. Each entry viII consist of an 8-character 
array name or a half-word array number in 2 bytes followed 
by 6 bytes of zeros. 

DATA RECORDING AND PLAYBACK 

Data recording and playback provide a service which allows user programs 
to write data to a sequential data set and to retrieve that,data at a 
later time. Both are standat;~ Special Real Time Operating-System 
services (not SYSGEN options)j. Data recording collects the data from 
several user programs, adds tio it appropriate control information and 
user-supplied identifications, and writes the data to a sequential tape 
or disk data set. Data recording can be supressed or enabled through 
operator command (see "Input Message Processing"). Recorded data can 
later be selectively read back (based on time and 10) and passed to a 
user program or to the Special Real Time Operating System heJ:adecimal 
data print (hex dump) routine if no user program is supplied. The data 

APPLICATION SERVICES 2-53 



may be printed, used to drive analysis programs, or used as test data 
to drive programs that are being developed. A 10-byte header is added 
to the data; otherwise, it is not changed in the recording playback 
sequence. 

Both data recording and playback can be invoked in a single realtime 
job in one of two ways. 

1. the two functions can use different data sets; that is, the 
playback can be from a data set that vas recorded on a previous 
run and new data written on another data set. 

2. the record function can be invoked, and the playback routine 
can be invoked for the same data set. 

An example of the DRECOUT and DPBIN DD cards needed for the second case 
are as follows: 

IIDRECOUT DD DSN=username,DISP=(NEW,PASS) , ••• 
IIOPBIN DO DSN=*.DRECOUT,DISP=SHR, 
II VOL=REF=*.DRECOUT 

Figure 2-11 shows the functions of data recording and playback. 

User 

Data 
Record ~ Recording 

Routine 

Program 

-< :> 
Data 

Recording 
and 

Playback 
Data Set 

PATCH ../ 
Control Card in T SYSINIT -Initialization User 

Stream Program 

'" 
Playback 

~ 
Playback or Conversion - Routine or 

Separate 
Routine 

, Special Real Time 
(Non-Special Operating System 
'Rell Time -

Operating System) Hex 

Job Step 
Print Routine 

or 

User Program 
"LINK" 

Figure 2-11. Data recording and Playback Processing Overview 

The data recording service is initialized at the Special Real Time 
Operating System initialization, so that any RECORD macro issued prior 
to the activation of data recording will be non-operational with a 
return code of 04. During realtime operation, the writing of data can 
be suppressed or enabled by the user. Data recording is enabled or 
disabled by an input message processing command. 

2-54 Description and Operation Manual 



'DREC 

DREC 

l·ENABLE 

,DISABLE 

EN ABL E/D! SA BLE 

ADD 

DEL 

ALL 

id 

I ,ALL 1 
,ADD 
,DEL 

I id,id ... ] I 
Informs the input message processing routine that 
this reply is for data recording. 

Causes data recording to be either enabled or 
disabled. Disable requires no other parameters. 

Causes the following ID(s) to be placed in the Data 
Recording Table. Up to 20 IDs may be included in 
the table. 

Causes the following ID(s) to be deleted from the 
Data Recording Table. DEL not followed by any 10 
causes all IDs to be deleted. 

Causes all IDs to be enabled. No IDs are required. 

A three-digit hexadecimal number (001-FFF) for which 
data is to be recorded. 

Requests to record data for later playback are passed to the data 
recording function by the RECORD macro. With this macro, the user 
supplies an ID:=(X'001-FFF')', the address (ADDR=) of the data, and the 
COUl't (COUNT=) of bytes of data to be recorded (value of 1 to 65525). 
The data is written to a sequential data set defined by the user and 
is recorded on fixed length records. If the request is to record moce 
data than will fit on one record, the data is split into two or more 
records to be reassembled into a single record when it is read back. 

The data is time-tagged upon receipt (execution of the RECORD macro) 
and recorded in chronological order. 

Data recording requests cannot span the partition boundary, so recording 
must be enabled in the partition where the program executing the RECORD 
macro resides. Recording may be enabled in both the MASTER and SLAVE 
partition simultaneously. When a given ID is enabled (either explicitly 
by entering that. ID or implicitly with the ALL option) it is enabled 
for all programs in that partition. It is the responsibility of the 
user to select IDs that identify the source of the data and be 
meaningful when played back. 

The following DD card is required by data recording: 

//DRECOUT DD defines a sequential data set to which the data will be 
writte n. 

This data set will be opened (QSAM, LOCATE mode) when data recording 
is enabled and closed vhen data recording is disabled. Standard JCL 
conventions apply to this data set, and the user should be aware of 
the effect of all of the paramet.ers that are specified. Some of the 
DD card parameters by which the user may affect data recording operation 
are as follows: 

DISP= If anything except KOD is specified, each time data 
recording is enabled, data viII be written at the 
beginning of the data set. This may have the effect of 
over-writing data which was recorded by previous 
ENABLE/DISABLE sequences. 

APPLICATION SERVICES 2-55 



DCB=BLKSIZE= Defines the size of records written and QSAM buffers. 
The data is packed within the buffer by data recording. 
Specif ying a large block size will reduce the number of 
I/O accesses but increase virtual storage use. A block 
size of less than 200 bytes is not recommended. If not 
specified. a block size of 2K bytes wiLl be used; if 
specified, LRECL should be the same as BLKSIZE. 

DCB=BUFNO= Specifies the number of buffers to be allocated by QSAM 
and, consequently, will affect the amount of waiting 
for I/O by the RECORD function. If not specified, three 
buffers will be allocated. 

The data which has been recorded by the data recording facility may be 
read and passed to a user-supplied routine or to the Special Real Time 
operating System hex data pri~t (hex dump) routine based on time and 
IDs (which were assigned at data recording time). 

The user specifies to the playback routine the data IDs and time range 
(start and stop times) for which data is to be processed. Also, the 
name of a user-supplied load module for data processing may be specified 
to the playback routine. If no user processing module is specified, 
the default processing routine is the Special Real Time Operating System 
hex data print routine~ The user module may process the data according 
to the user's needs. The hex data print routine will supply a hex dump 
of the recorded data in a format similar to that of an ABEND dump. The 
data, when passed to a user load module, will be in the following 
forma t: 

2 

o FLG LGTH 
Header 

4 TIME 

8 REC 

User Data 

The header is a 10-byte field where FLG is four bits of flags set by 
data recording, ID is a 12-bit field that contains the identification 
supplied by the user, and LGTH is a 2-byte field which contains the 
length of the entry (including this 10-byte header). TIME is a 4-byte 
field that contains tbe time (in packed decimal format) that the data 
was recorded. User data is the data passed by the user. REe is data 
recording control data. 

The playback routine may be invoked by any of three methods: 

1. Through the Special Real Time Operating System initialization 
routine by PATCH control cards 

2. As a separate (non-Special Real Time Operating System) job step 

3. Through a LINK issued by a job running under the Special Real 
Time Operating System. 

2-56 Description and Operation Manual 



The following DO cards are required by data playback: 

//DPBIN DO Defines a sequential data set which contains 
data recorded by the RECORD macro. 

/ISRTOOUMP DD Defines a sequential (printer) message data 
set. 

flaIRa£! !i~ Patcl! £Qnt~l £~rd 

To invoke data playback at the Special Real Time Operating System 
SUbsystem initialization time through the use of a PATCH statement, 
the PATCH ,statement should be coded as shown: 

[label] PATCH EP=OPPXPCON, [TASK=name,] [QL=n,] 
[lO=n,] 

[ 
PRTY = I JOBSTEP-n I ' ] 

(taskname, n 
PARM=(C·'STARTOATE' , C'STARTIME', 

C'STOPDATE', C'STOPTIME', 
C'LM',C'COUNT',C'IOI', C'IOIA', 
C'102' ,C'I02A' ,C'103' ,C'103A', ... ) 

See the section entitled "Special Real Time Operating System 
Initialization" for a complete desc::-iption of the PATCH control 
statement. Only the parameters required by data playback are described 
here. 

In some of tl. ~ following parameter definitions, a zero has special 
meaning. In t"ese cases, the parameter should be specified on the 
PATCH statement as a numer ic value, using the F or X format (i.e., 
specified as F'O' rather than C'O'). 

DPPXPCON 
Is the entry point of the playback conversion routine that converts 
the specified parameters to a form recognized by data playback and 
then passes the converted parameters via LINK to data playback. 

STARTDATE 
A date in the form of DD/~"M/YY (where DO is the day, M8M is the month 
(first three letters of the month are specified), YY is the year) 
specifies the day to start the playback process. Zero specifies that 
data playback is to start at the beginning of the data 
recording/playback data set. The characters 'ALL' specify that the 
entire data recording data set is to be played back. If ALL is 
specified, all other parameters are set to zero except the LM 
parameter. 

STAf.TIME 
Specifies the start time of data playback on the start date specified. 
Ti~e is in the form of BHM~SST (where HB is hours, MM is minutes, SS 
is seconds, and T is tenth of seconds). 

STOPDATE 
A da te, i'n the same format as ST ARTD ATE, for which the last da te is 
to be processed. Zero specifies that data recording is to stop at 
the end of the data recording/playback data set. 

STOPTlr1E 
Specifies the latest time on the date specified for which recorded 
data is to be processed. Time is in the same format as STARTIME. 

APPLICATION SERVICES 2-57 



LM 
Is an 8-character entry point name of a load module to which data 
playback will pass the recorded data. If less than ei9ht characters, 
it must be padded on the right with blanks. Zero specifies that the 
recorded data will be passed to the Special Real Time Operating System 
hexadecimal data-print routine. 

ID count 
Is the number of ID pairs (01-20) specified. The maxi&um number of 
ID pairs is 20. 

IDn-IOm 
Specifies a range of IDs to be played back within the time frame 
specified. IOn is the lowest IO in the range, and 10m is the highest 
ID in the range. If only one 10 is to be played hack, IOn and 10m 
must be identical. IO (OOl-FFF) is a three-digit hexadecimal number. 

Example 1 shows three different patch cards for invoking data playback. 

EXAMPLE 1: 

// 
// 
// 

// 

EIEC PG M=OPPI NIT 

OD cards required by the Special Real Time 
Operating System Initialization 

//SYSINIT DD * 
P1 PATCH 

P2 PATCH 

P3 PATCH 

EP=DPPXPCON,~ASK=DPPXPCON, 

QL=5,ID=7,PRTY=JOBSTEP-15, 
PARAM= (C09/JAN/13' ,C'1520207', 
C'09/FEB/73' ,C1730412',C'TESTMOOE', 
C'02',C'F20', C'F76', C'001',C'510') 

EP=DPPIPCON,TASK=DPPXPCON, 
PARAM= (I' 0' ,C' 1521459' ,X '0', 
C' 1643782' , X' 0 ' , C' 01 ' , C· 100' , C ' 200 ' ) 

EP=DPPXPCON,TASK=DPPXPCON, 
QL=10,ID=9,PRTY=JOBSTEP-10, 
PARAM= (C' ALL', X' 0' ,X' 0', X' 0', 

C' TEST MODE ') 

These three PATCH statements will cause data playback to be entered 
three times. PATCH statement P1 will cause any data recorded between 
15 hours, 20 minutes. 20.7 seconds (3:20:20.7 pm) on January 9, 1973 
and 17 hours, 30 minutes, 41.2 seconds (5:30:41.2 pm) on February 9, 
1973 which has record IDs F20 through F76 or 001 through 510 to be 
passed to user load module TEST MODE. 

PATCH statement P2 will cause all recorded data that has an ID 100 
tlrough 200 and was recorded between 15 hours, 31 minutes, 45.9 seconds 
and 16 hours. 43 minutes, and 78.2 seconds to be dumped to a SYSOUT 
data set by the Special Real Time Operating system raw data print 
routine. Because no dates are specified, the data set will be searched 
for the first data which has a time greater than the STARTIME, 
regardless of date and processed through the first data with a time 
greater than the STOPTIME regardless of date. 

PATCH statement P3 will cause all data on the data set to be passed to 
load module TESTMODE. See the Special Real Time Operating System 
Initialization in Chapter 3, for a complete description of the PATCH 
cards. 

2-58 Description and Operation Manual 



Playback asa Separate Jobstep 

When run as a separate (non-Special Real Time Operating System) job 
step, either in a background partition or on an offline CPU, the 
parameters are passed to the data playback non-realtime initialization 
through the PAR~ parameter of the JCL EXEC statement. 

Ilstepname EXEC 

stepname 

PG K=DPPXNRTI, 
PARM=' STARTDATE, STARTIME, 

ST OPDATE, STOPTIME, 
LM,COUNT,ID1, 

ID1A,ID2,ID2A, 
ID3,ID3A, ••• ' 

Is the name of the job step4 

DPPXNRTI 
Is the name of the non-realtime Special Real Time operating System 
program to which the parameters viII be passed. 

STARTDATE, STARTTIME, STOPDATE, STOPTIME, LM, COUNT, ID 
Have the same meaning as described for PATCH control statement. 

Note: Every playback parameter must be specified except when ALL is 
specif ied. 

When ALL is passed to the non-realtime pla.yback routine (DPPXNRTI) with 
a load module name, the parameters should be in the following format: 

Ilstepname EXEC PGM=DPPXNRTI,PARM='ALL ~bbbb, LM' 

where ALL is followed by six blanks as the first parameter and the load 
module name as the second parameter. 

The fields within the PARM string are positional, and each field must 
occupy the exact number of positions allocated to that field as follows: 

STARTDATE 9 
STARTIME 7 
STOPDATE 9 
STOPTIME 7 
LM 8 If a Load Module name is specified or 

1 if zero is specified 
COUNT 
ID 

2 
3 each 

All fields must be separated by commas. 

In examples 2 and 3 the Special Real Time Operating System playback is 
run as a separate (Non-Special Real Time Operating System) job step. 

EXAMPLE 2: 

II EXEC PGM=DPPXNRTI, 
PARM='07/JAN/73,0800000,07/FEB/73, 

0900000,0,02,020,025,040,050' 

All data that has an ID in the range 020 through 025 and 040 through 
050 and that was recorded after 08:00:00.0 on January 7, 1973 and 
09:00:00.0 on February 7, 1913 will be printed by the Special Real Time 
Operating System raw data print routine. 

APPLICATION SERVICES 2-59 



EXAf!Pt.E 3: 

II EXEC PGM=OPPXNRTI. 
PARM='ALL~~~Q~,TESTMOOEt 

All data on the data set will be passed to load module TESfMODE. 

Playbact Via Link 

The LINK ~acro instruction may be used to invoke data playback. The 
LINK macro should be in the following format: 

EXAMPLE 

symbol 

PARM 
STARTDAT 
STARTT1M 
STOP DATE 
STOPTIME 
LM 
1DCOUNT 
1D1 
1D1A 
1D2 
ID2 
ID2A 
ID3 
ID3A 

R 

CSECT 
instructions 

LINK 
or 
LA 
LINK 

OS 
OS 
DS 
DS 
DS 
OS 
DS 
DS 
DS 
DS 
DS 
DS 
DS 
DS 

EP=DPPXDPB.PARAM=(PARM) 

R,PARM 
EP=DPP XDPB ,PAR AM= ( (B) ) 
in structions 
OF 
CL9 
PL4 
CL9 
PL4 
eLa 
AL2 
XL2 
XL2 
XL2 
XL2 
XL2 
XL2 
XL2 

Is a general purpose register. 

DPPXDPB 
Is the data playback entry point name. 

PARM 
Is the address of the playback parameters. 

The playback parameters for the LINK should be in the following format: 

Bytes 

9 
4 
9 
4 
a 
2 
2 
2 

2-60 

Field Name 

STARTDAT 
STARTTIM 
STOPDAT 
STOPTIME 
LM 
1DCOUNT 
ID 
10 

Field Description, Contents, Meaning 

additional IDs in pairs 

Description and Operation f!anual 



Examples 4 and 5 show a LINK to the playback function from a user coded 
program. 

EXAMPLE 4: 

EX AMPLE4 

PARM 

CSECT 
instructions 

LINK .EP=DPPXDPB,PARAM= (PARM) 

DS OF 
DC CL9' 09/J AN/7 3' 
DC PL4'1540071' 
DC CL9'09/FEB/73' 
DC PL4'1650509' 
DC CL8'TESTMODE' 
DC AL 2 (3) 
DC XL2'111',XL2'222' 
DC XL2'100iXL2'110' 
DC XL2'FFO',XL2'FFF' 
END 

A job running under the Special Real Time Ope~ating System will LINK 
to the Special Real Time Operating System data playback routine. All 
data that has an ID in the range 111 through 222, 100 through 110, and 
FFO through FFF and that was recorded between 15 hours, 40 minutes, 
07.1 seconds and 16 hours, 50 minutes, 50.9 seconds on 09/JAN/73 viII 
be passed to load module TESTMODE. 

EXAMPLE 5: 

EXAMPLE5 CSECT 
instructions 

LA 1, PARM 
LINK EP=DPPXDPB,PARAM= «1) ) 

PARM DS OF 
DC CL9' AL L' 
DC PL4'O' 
DC XL9'0' 
DC PL4'0' 
DC CL8' TESTMODE' 

A job running under the Special Real Time Operating System will LINK 
to the Special Real Time Operating system data playback routine. All 
data in the data set will be passed to load module TESTMODE. 

HIGH-LEVEL LANGUAGE INTERFACES 

The Special Real Time operating system routines provide an interface 
to allow PL/I and FORTRAN users to use most of the services provided 
by the Special Real Time Operating system. The in~erface routines are 
independent of the compiler level or the optimizing compilers. Figure 
2-12 lists the Special Real Time Operating System macros supported by 
the interface routines for PL/I. The macros in the figure are also 
supported for FORTRAN, but there are no default structures~ 

APPLICATION SERVICES 2-61 



PL/I 
Macro Name ID 

Structure Name Member Name 

PATCH 0 PATCHSTR PATCHDEF 
PATCH Param 0 PARMSTR PARMDEF 
PTIME 4 PTIMESTR PTIMEDEF 
PTIME 4 PTIMRSTR pTlMRDEF 
DPATCH 8 DPACHSTR DPACHDEF 
REPATCH 12 REPCHSTR REPCHDEF 
GETARRAY 16 ARRAYSTR ARRAYDEF 
GETITEM 20 ITEMSTR ITEMDEF 
GETBLOCK 24 BLOCKSTR BLOCKDEF 
PUTARRAY 16 ARRAYSTR ARRAYDEF 
PUTITEM 20 ITEMSTR ITEMDEF 
PUTBLOCK 24 BLOCKSTR BLOCKDEF 
MESSAGE 40 MESAGSTR MESAGDEF 
PUTLOG 44 PTLOGSTR PTLOGDEF 
GETLOG 48 GTLOGSTR GTLOGDEF 
DUMPLOG 52 DPLOGSTR DPLOGDEF 
RECORD 56 RECRDSTR RECRDDEF 
PATCH WAIT 60 WAITSTR WAITDEF 

Figure 2-12. Macros Supported by FORTRAN-PL/I Interface Routines 

All interface routines are invoked as shown in Figure 2-13. The 
parameters are passed using standard linkage conventions to the 
assem bIer I an guage interface rout ine. The in terface routine adjusts 
the parameter list and then issues an execute form of the appropriate 
macro to invoke the desired service. After the service routine has 
completed execution, the interface routine stores the return code for 
use by the calling program and returns to the caller. 

X SVC/BAL BAL Special Special 

Realtime Realtime 

Operating Operating 

PL/' or FORTRAN System System 

Macro Sevice 
CALL X (PARAM) MF=E. 

Save 
Return 
Code. RETURN 

RETURN 

Figure 2-13. High-Level Language Interfaces for the Special Real Time 
operating System Services 

The high level language user must refer to the Special Real Time 
Operating System macros section when using the language interfaces, as 
more details are given with each macro description. 

The PL/I interfa~es to the Special Real Time Operating System services 
are designed to be independent of the PL/I compiler used. This means 
"dope vectors" or "locator/descriptors" are not referenced by the 
interface routines. To avoid referencing "secondary" pointers, the 
parameter of a CALL statement must point to the first element of the 
structure defining the parameter list. 

DCL 1 PATCHSTR, 
2 MACID, 
2 RC, 

For example, given the above structure, the call statement would have 

2-62 Description and Operation Manual 



to be CALL DPPPIF(PATCHSTR.MACID) for the correct parameter list to be 
passed to the interface routine DPPPIF. 

All Special Real Time Operating System services invoked by a PL/I 
program have unique parameter lists which can be described by a 
structure. An aid to the PL/I .programmer are default structure 
definitions. The programmer may invoke them through the compiler 
preprocessor option - ~INCLUDE. A list of the PL/I structure 
definitions and names is included in Figure 2-12. Each of the default 
structures is explained in the following sections describing the Special 
Real Time operating System services provided for PL/I programs. Any 
option changes made by the PL/I program to a default structure must be 
reset if the structure is reused and the option is not desired. 

In addition, users of the default structure viII notice the two fields 
(MACID and RC) at the beginning of each. They are common to every 
structure used as a parameter when calling DPPPIF. MACIO is initialized 
in the default structures with the correct value to tell the interface 
routine which service is being requested. RC is where the return code 
from the service routine is stored. 

PL/I programs in a normal 'OS/VS1 job shop environment are initiated, 
the PL/I Prolog routines and the user program are executed, and at 
termination the PL/I Epilog routine is executed. In a realtime 
environment where the PL/I prog ram is to be cyclically executed, the 
PL/I Interface routines provide facilities to allow the PL/I program 
to keep its resources across cyclic executions and to execute cyclically 
without incurring the overhead of Prolog and Epilog for each execution 
following the initial execution. This facility applies only to 
independent tasks that are PATCHed with the EP= parameter specifying 
the same EP name. Figure 2-14 shows the coding of a PL/I program using 
this facility. 

PL/I PROGRAM 

PL/I PROLOG 

LOUP: 
CALL DPPPARM (PARMSTRID); 
IF RETeD -, = 0 THEN RETURN; 

PL/I PROGRAM 
GOTO LOOP; AS CODED BY USER 

END; 

PL/I EPILOG 

Figure 2-14. PL/T Example 

APPLICATION SERVICES 2-63 



The following is a series of PATCHes to PL/I programs which will 
illustrate when a program would be forced through Epilog. 

A 
B 
C 
D 
E 
F 
G 

PATCH 
PATCH 
PATCH 
PATCH 
PATCH 
PATCH 
PATCH 

TASK=A,EP=PLIPROG 
TASK=A,EP=PLIPROG 
TASK=A,EP=PLIPROG 
TASK=A,EP=PLIEXKP 
TASK=A,EP=PLIPROG 
TASK=A,EP=PLIEXMP 
TASK=A,EP=PLIEXMP 

where: PLIPROG and PLIEXMP are PL/I programs coded as shown in the 
previous examp~e. 

PATCH A executes Prolog for PLIPROG, then the body of PLIPROG. When 
the body finishes, a second CALL is made to OPPPARM. PATCH 3 then 
executes without going through Prolog. PATCH B in turn finishes and 
again calls OPPPARM. PATCH C then executes - again without going 
through Prolog. When PATCH C finishes, another call is made to DPPPARM. 
The PL/I interface routine determines that the next PATCH (0) is to a 
different program. A non-zero return code forces PATCH C to terminate 
and thus execute PL/I Epilog. PATCh D then executes, going through 
PROLOG and the code body for PLIEXMP. PATCH D finishes and again calls 
OPPPARM. Once again, the interface recognizes that the nextprog.ram 
to be executed is different and returns a non-zero return code. Program 
DPPEXMP is forced through Epilog. PATCH E passes through both Prolog 
and Epilog and PATCH F passes through Prolog and PATCH G executes 
without Prolog. Then, on the next call.to DPPPARM, Task A is placed 
in a wait state until another PATCH to it is received. 

PL/I programs cannat easily retrieve parameters passed via register 1. 
To obtain the parameters in a PL/I program invoked by PATCH, an 
interface routine DPPPARM and a structure PARMSTR, which may be copied 
into the PL/I program by %INCLUDE PARMDEF; ate provided. The following 
PL/I statements define PARMSTR: 

DCL 1 PARMSTR, 
2 ID FIXED BIN INIT(O) , 1* RESERVED *1 
2 RETCD FIXED BIN INIT(1), /* o IF PARMS CHANGED */ 
2 XCVT POI NTER, /* A (XCVT) */ 
2 RESOURCE POINTER, /* A (RESOURCE TABLE) */ 
2 PARMS POINTER; /* A (PATCH PARAMETERS) 

PARMSTR 
Is the name of the structure used to obtain the PATCH problem 
parameters. 

10 
Is reserved halfword initialized to zero. 

RETCD 

*/ 

Is a halfword binary number indicating the validity of the pointer 
value in PARMS. If not zero, the PL/1 program should not use the 
address in PARMS and should return control to the system. If zero, 
PARMS contains a valid address. 

XCVT 
Specifies the address of the special Real Time Operating system 
control block XCVT. 

2-64 Description and Operation Manual 



RESOURCE 
Specifies the address of a tvo fullvord area available to all programs 
executing under the curcent task. 

PARMS 
specifies the address of the problem parameters being passed by a 
PATCH to the program. 

The PL/I program using this interface must declare the structure only 
once and in the highest block. The structure must be reused without 
reinitializing. If the program CALLs for another set of PATCH 
parameters and the task work queue is empty, the program will be placed 
in a wait until a PATCH is issued for the task. 

The example below is the proper method for using the structure. This 
example uses the default structure PARMSTR to obtain the PATCH pointers. 
The structure defining the parameter list is based on the PARMS pointer 
variable. Note that the PLII program loops back to the CALL statement 
and that the only exit occurs if the return code from DPPPARM is not 
zero. This minimizes the execution of PLII Prolog and Epilog. 

DCL 1 PARMSTR, 
2 ID FIXED BIN INIT (0) , 
2 RETCD FIXED BIN INIT(O), 
2 XCVT POI NT ER , 
2 RESOURCE POINTER, 
2 PARMS POINTER; 

DeL 1 PARAMETER BASED (P AR KS) , 
2 LENG FIXED BIN, 
2 PATCHID FIXED BIN; 

LOOP: 
CALL DPPPARM (PARMSTR.ID); 
IF RETCD = 0 THEN RETURN; 

• 
• 
• 

normal execution 
• 
• 
• 

GOTO LOOP; 
END program; 

The default structure which defines the parameter list for invoking 
the PATCH service may be copied into the program by %INCLUDE PATCHDEF. 
The PLII statements and definitions are listed as follows: 

APPLICATION SERVICES 2-65 



DCL 1 
2 
2 
2 
2 
2 
... 
'" 
2 
2 
2 
2 
2 
2 
2 

PATCHSTR 

PATCHSTR, 1* PATCH STRUCTURE *1 
MACID FIXED BIN INIT(O), 1* PATCH MACRO 10 *1 
HC FIXED BIN INIT(O), 1* RETURN CODE *1 
PACHPARM POINTER, 1* A(PARAMETERS) *1 
TASKNAME CHAR(8) INIT(") 1* TASKNAME *1 
EPNAME CHAR(8) INIT('IEFBR14'), 1* LOAD MODULE *1 
NAME CHAR(S) INIT~' ') 1* RELATIVE TASK OF VALUE *1 
QUEUE FIXED BIN INIT(1), 1* DEFAULT = 1 *1 
VALUE FIXED BIN INIT(O), 1* DEFAULT = 0 *1 
EeB POINTER, 1* ECB ADDRESS *1 
FREEL FIXED BIN(31,0) INIT(O), 1* RESERVED *1 
FREEA FIXED BIN(31,0) IN~T(O), 1* RESERVED *1 
TCEX FIXED BIN(31,0) INIT(O), 1* TCB EXTENSION *1 
PFLAGS 1* FLAG OPTIONS IF BIT IS SET ON *1 

3 (FO, 1* RESERVED *1 
MASTER, 1* PATCH MASTER PARTITION *1 
SLAVE, 1* PATCH SLAVE PARTITION *1 
F3, 1* RESERVED *1 
REPCH, 1* ECE REPATCH *1 
QPOS, 1* QPOS=FIRST *1 
DPCH, 1* QPOS=DPATCH *1 
DEL) BIT (1) INIT (' 0' D) ; 1* EP DELETE *1 

The name of the default structure. 

MACID 
Specifies the halfword binary value set to zero to identify the PATCH 
service request. 

BC 
Specifies a halfvord binary field containing the return code from 
the service routine. The return codes are described in the PATCH 
macro definition. 

PACHPABM 
Specifies the address of a parameter list being passed .. The format 
is a halfword binary value (minimum value is 4) describing the length 
of the entire parameter list, followed by a half~ord binary value 
from 0 to 255 called the PATCH 10 with the remainder of the list 
being the parameters. The diagram below represents the format of a 
PATCH parameter list. 

Note: If the list is greater than 8 bytes, the interface routine will 
move it to a GETMAIN area to be freed when processing of the 
vork queue is completed. 

o 2 
length I PATCH ID 

4 

parameters 

TASK NAME 
Specifies a 1 to 8 character name which is the name of the task being 
referenced by this PATCH. If the task does not exist, one by that 
name viII be created. 

EPNAME 
Specifies a 1 to 8 character valid program name which is the name of 
the program to be scheduled under the task being created with the 
PATCH. 

2-66 Description and Operation Manual 



NAKE and VALUE 
Specifies a task name and a value which will determine the priority 
of the new task. VALUE will be subtracted from the dispatching 
priority of t~e specified task. VALUE may range from 0 to 255 with 
zero default. See PRTY option of PATCH macro for further detail. 

QUEUE 
Specifies the number of work queue entries to be provided for the 
new independent task. Any decimal value from 0 to 255 may be 
specified. The default value is 1. A work queue entry provides 
space to queue PATCHes which have not been executed by the task. If 
o is specified as the queue length. the task accepts one PATCH, works 
on that request, and when completed, waits for the next request. If 
a PATCH is issued for that task while the task is busy, it is not 
executed. If the queue length is 1, the task can accept one PATCH 
even while it is busy. Any PATCH parameters waiting in the queue 
when a task completes processing the current request will be executed 
one at a time, with the top of the queue executed next. This 
procedure is the same for all queue values from 0 to 255. 

ECB 
specifies the address of the ECB within a WAITSTR which is to be used 
in a CALL DPPPIF. This ECB is posted when processing for this PATCH 
is completed. The REPCH flag causes the ECB to be posted with the 
address to be used in the REPATCH macro if this PATCH is not executed 
because of a DPATCH or a QPOS=FIRST PATCH with the queue full. 
Default is no ECB. See PL/I PATCH WAIT. 

FREEL and FREEA 
Are reserved. 

TCEX 
Specifies the address of the TCB extension control block (TCBX) for 
an existing independent task. The TCBX address is returned in 
structure after each PATCH. Use of this operand with all PATCHes to 
the same task after the initial PATCH vill reduce system processing 
time. Note that other parameters must still be specified for 
verification or in the event the task has been DPATCHed. 

PFLAGS 
Are PATCH option flags as described below: 

FO and F3 
Are reserved. 

MASTER 
Specifies this is a PATCH to the MASTER partition. 

SLAVE 
specifies this is a PATCH to the SLAVE partition. 

REPCH 
Specifies that the Eca will be posted when a REPATCH control block 
is built. Default is no REPATCH control block. 

QPOS and DPCH 
Specifies in the task work queue where this work request is to go 
if the task is busy. If QPDS is on, the request is to be placed so 
as to be processed before those already on the queue. If DPCH is 
on, the processing for this PATCH will Dot be executed until a DPATCH 
is issued for this task. Defa~t is last on the vork ~ueue. 

DEL 
Specifies that a DELETE is issued for the EP name after processing 
completes for this PATCH. Default is no. 

APPLICATION SERVICES 2-61 



The Special Real Time Operating System PATCH service may be invoked by 
including the PATCHDEP in the PL/I program, completing the required 
information within the structure ~cluding building a parameter list 
and calling the interface routine DPPPIF with the PATCHSTR. Examples 
of using the PATCH facility follow. 

In Example 1, structures are declared for a parameter list an~ the 
PATCH structure. The task DPPZTSOO is created with a queue length of 
1. Program DPPZTS13 is executed, and the parameter list contains only 
the length field and a PATCH ID of 10. The new task must have the same 
priority as the task issuing the PATCH. The PATCHing program does 
not want notification of the completion of the PATCH. Note that if 
the task already exists, the PFLAGS indicate this work request will be 
queued behind any others on the queue. 

DCL 1 PARAMETER, 
2 LENG FIXED BIN, 
2 PATCHID PIXED BIN, 
2 PARAMS (10) FIXED BIN (31,0); 

DCL 1 WAIT STR, 
2 MACI D FIXED BIN INIT (60), 
2 RC FIXED BIN INIT (0), 
2 ECBX FIXED BIN (31,0) INIT (0); 

%INCLUDE PATCHDEF; 

DCL 1 PATCHSTR, 
2 MACID FIXED BIN INIT CO), /* PATCH MACRO ID */ 
2 RC PIXED BIN INIT (0), /* RETURN CODE *1 
2 PACHPARM POINTER, . /* A (PARAMETERS) *1 
2 TASKNAME CHAR(S) INIT C' ') /* TASK NAKE */ 
2 EPNAME CHAR(S) INIT ('IEFBR14') /* LOAD MODULE *1 
2 NAME CHAR(S) INITC' '), /* RELATIVE TASK OF VALUE *1 
2 QUEUE FIXED BIN INIT(l), 1* DEFAULT = 1 *1 
2 VALUE FIXEP BIN INIT(O), /* DEFAULT = 0 *1 
2 Eca POINTER, /* ECB ADDRESS *1 
2 FREEL FIXED BIN(31,O) INIT(O), /* RESERVED *1 
2 PREEA FIXED BIN(31,0) INITCO), /* RESERVED */ 
2 TCBX FIXED BIN (31,0) INIT(O), /* TCB EXTENSION *1 
2 PFLAGS. /* FLAG OPTIONS IF BIT IS SET ON *1 

3 (FO, /* RESERVED *1 
MASTER, /* PARTITION=MASTER *1 
SLAVE, /* PARTITION=SLAVE *1 
F3, 1* RESERVED *1 
REPCH, /* ECB REPATCH *1 
QPOS, 1* QPOS=FIRST *1 
DPCH, 1* QPOS=DPATCH *1 
DEL) BIT(1) INIT('O'B); /* EP DELETE *1 

LENG = 4; 
P A TC HID = 1 0 ; 
PACHPARM = ADDR(PARAMETER.LENG); 
TASKNAME = 'DPPZTSOO'; 
EPNAME = 'DPPZTS13'; 
CALL DPPPIF (PATCHSTR.MACID); 

Ex ample 1 

In Example 2, assume that the CALL in Example 1 has returned, and a 
dependent task is to be created at a priority of 10 less than the task 
DPPZTSOO and that program DEPENDX is to be passed a parameter list of 
10 numbers with a PATCH ID of 2. The PATCHing program will wait for 

2-68 Descri ption and operation Manual 



the dependent task to complete. The WAIT function is done via a CALL 
to the interface routine using the WAITSTR structure. 

DCL 1 PARAMETER, 
2 LENG FIXED BIN, 
2 PATCHID FIXED BIN, 
2 PARAMS (10) FIXED BIN (31,0); 

DCL 1 WAITSTR, 
2 MACID FIXED BIN INIT (60) , 
2 RC FrXED BIN INIT(O), 
2 ECBX FIXED BIN (31,0) INIT(O); 

%INCLUDE PATCHDEF; 

DCL 1 PATCHSTR, 
2 MACID FIXED BIN INIT(O), /* PATCH MACRO 10 *1 
2 RC FIXED BIN INIT(O), 1* RETURN CODE *1 
2 PACHPARM POINTER, /* A(PARAMETERS) *1 
2 TASKNAME CHAR(8) INIT(' '), /* TASK NAME */ 
2 EPNAME CHAR(S) INIT ('IEFBR14'), 1* LOAD MODULE *1 
2 NAME CHAR(S) INIT(' ') /* RELATIVE TASK OF VALUE *1 
2 QUEUE FIXED BIN INIT(l), 1* DEFAULT = 1 *1 
2 VALUE FIXED BIN INIT (0), 1* DEFAULT = 0 *1 
2 ECB POINTER, /* ECB ADDRESS */ 
2 FREEL FIXED BIN(31,0) INIT(O), /* RESERVED *1 
2 FREEA FIXED BIN(31,O) INIT(O), /* RESERVED */ 
2 TCBX FIXED BIN (31, 0) INIT(O)" /* TCB EXTENSION *1 
2 PFLAGS, /* FLAG OPTIONS IF BIT IS SET ON *1 

3 (FO, /* RESERVED *1 
MASTER, 1* PARTITION=MASTER *1 
SLAVE, /* PARTITION=SLAVE *1 
F3, /* RESERVED *1 
REPCH, /* EeB REPATCH */ 
QPOS, /* EPOS=FIRST *1 
DPCH, 1* QPOS=DPATCH */ 
DEU BIT(1) INIT('O'~ 1* EP DELETE *1 

CALL DPPPIF (PATCHSTR.MACID) ;I*EXAMPLE 1*1 
LENG = 44; 
PATCHID = 2; 
TASKNAME = "; 
EPNAME = 'DEPENDX'; 
NAME = 'DPPZTSOO'; 
VALUE = 10; 
ECB = ADDR(ECBX); 
CALL DPPPIF (PATCHSTR. MACrD) ; 

IF PATCHSTR.RC (8 THEN DO; 
CALL DPPPIF (WAITSTR.MACID); 

END; 

Example 2 

PL/I-PTIME Interface 

The Special Real Time Operating System PTIME service provides two 
different functions, time and PATCH, issued on a time queue basis. 
Therefore, tvo default structures may be copied into the program by 

APPLICATION SERVICES 2-69 



%INCLUDE PTIMEDEF and PTIMRDEF which define the parameter lists for 
the PTIME services. The PL/I statements and their meanings are as 
follows: 

DCL 1 PTIMRSTR, 1* STRUCTURE FOR PTIME TYPE=RET 
2 KACID FIXED BIN INIT(4), 1* PTIME SERVICE *1 
2 RC FIXED BIN INIT(O), 1* RETURN CODE *1 
2 TYPE FIXED BIN(31,0) INIT(O) , 1* PTIME CALL TYPE *1 
2 TIME FIXED BIN(31,0) INI T(O) , 1* CURRENT TIME *1 
2 TIMDSECT POINTER; 1* A(TIME ARRAY) *1 

PTIMRSTR 
Is the name of the default structure used to obtain the current time 
and the address of the time array. 

MACID 
Is the half word binary value set to q to identify a PTIME service 
request. 

RC 

*1 

Is a halfword binary value containing the return code from the service 
request. always O. 

TYPE 
Is a fullword binary number identifying the PTTME service being 
requested. For this structure, it is For this structure, it is 
al ways o. 

TIME 
Is a fullvord binary field which will contain the current time of 
day in 10 millisecond units when the interface routine returns. 

TIMDSECT 
specifies the address of the Special Real Time Operating System time 
array when the interface routine returns. 

DCL 1 PTIMESTR, I*PTIME STRUCTURE FOR ADD,MOD,DEL *1 
2 MACID FIXED BIN INIT (4), 1* PTIME SERVICE *1 
2 RC FIXED BIN INIT (0), /* RETURN CODE *1 
2 TYPE FIXED BIN (31,0) INIT(4), /* PTIME CALL TYPE */ 
2 STIME FIXED BI N (31,0) I NIT (0), /* START TI ME *1 
2 ITIME FIXED BIN (31,0) INIT(O), /*INTERVAL TIME *1 
2 ETIME FIXED BIN (31,0) INIT(O), I*STOP TIME *1 
2 PATCH POINTER, /*A(PATCH SUPL)*I 

2 PARMS POINTER, I*A(PARAMETERS) *1 
2 START, I*FLAGS DEFINE STIME CONTENTS *1 

3 (FO,Fl,F2,F3,F4, /*RELATIVE TIME *1 
SADJFLAG, I*ADJUSTED TIME *1 
STODFLAG, /*TIME OF DAY *1 

SRELFLAG) BIT (1) INIT ('O'B), I*RELATIVE TIME *1 
2 PURGE, I*FLAGS DEFINE PTIME PURGE OPTIONS *1 

3 (FO,F1,F~,F3, I*RESERVED *1 
P URGEI, 1* DPATCH = I *1 

PURGEW, I*DPATCH = W *1 
PUR~EC , I*DPATCH = C *1 
PURGEU) BIT (1) INIT ('O'B), I*DPATCH = U *1 

2 STOP, /*FLAGS DEFINE ETlME CONTENTS *1 
3 (FO,Fl,F2,F3, I*RESERVED *1 

ECNTFLAG, I*COUNT VALUE *1 
EADJFLAG, I*ADJUSTED TIME *1 
ETODFLAG, /*TIME OF DAY *1 

ERELFLAG) BIT (1) INIT ('O'B); I*RELATIVE TIME *1 

PTIMESTR 
Is the name of the default structure used to create or modify PATCH 

2-70 Description and Operation Manual 



service requests by time queue. 

MACID 
Is a halfword binary value set to q to identify a PTIME service 
request. 

RC 
Is a halfword binary value containing the return code from the servic~ 
request. If the return code is 8 or larger, the PTIME was not 
successful, and the existing PTIKE specification vas not changed. 
The return codes are defined in the macro description. 

TYPE 
Is a fullword binary number specifying the type of PTIKE service· 
requested. Values may be 4, 8, or 12. If 4, a PTIME queue element 
(PTQE) is created which controls the PATCHes issued according to the 

PTIME request. Since the PTQE exists independently of the creating 
task and may be modified (8) or deleted (12), the PTQE is referred 
to by task name, entry point name, and the PATCH ID value in the 
passed parameter list. Either task name or entry point na~e must be 
given for a modify (8) or delete (12) request. However, if only a 
task. name or entry point name is ~pecified, all PTQEs vith that name 
are deleted or modified. The default is to create a PTQE (q). 

STIME* 
Is a full word binary number specifying the tiae in 10 millisecond 
units of the first PATCH. The flags START specify the value in this 
field. 

SRELFLAG 
If on, the first PATCH will be issued at current time plus the value 
of STIME. 

STODFLAG 
If on, the first PATCH viII be issued when current time equals the 
value of STIME. If STIME is less than current time, the PATCH vill 
occu~ the next day_ 

SADJFLAG 
If on, the time of the first PATCH is c~lculated by assuming STIME 
contains the time of day (TOO), except that the value in ITIME is 
added to STIME until that value is greater than current time. 

ITIME* 
Is a fullword binary number specifying the interval in 10 millisecond 
units between successive PATCHes. 

ETlME* 
Is a fullword binary number specifying when the PTQE is to be deleted. 
The flags STOP identify the value in this field~ 

*All time values are in 10 millisecond units and must not exceed 24 
hours. 

ECNTFLAG 
If on, ETlME contains a count of the number of PATCHes to be issued 
by this PTQE. 

ERELFLAG* 
If on, ETIME contains a time value in 10 millisecond units, when 
added to the current time equals the stop time. 

APPLICATION SERVICES 2-11 



ETODFLAG* 
If on, ETIME contains the stop time 1n 10 millisecond units. 

EADJFLAG* 
If on, the stop time is calculated by assuming ETIME contains the 
time of day (TOO) in 10 millisecond units, except that the value in 
ITIME is added to ETIME until the value is greater than current 
time. 

*Regardless of vhat value is calculated for a stop time, if it is less 
than the calculated start time (see STI~E above), a 24-hour value is 
added to the stop time until the stop time exceeds the start time. 

Note: If all the STOP flags are zero and ETIKE is zero, the PTIME is 
assumed to be infinite, and PATCHes will be issued until a PTIME 
to modify (8) or delete (12) is issued for that task and/or 
entry point name. 

PATCH 
Is the address of the supervisor portion of the PATCH parameters. 
The options provided will be used by PTIME to issue PATCHes based on 
the above time options. If PATCHSTR (the default structure) is used, 
this parameter must point to TASKNAME. All information desired for 
the PATCH by PTIME must be supplied prior to CALLing the interface 
routine. 

RESTRICTION: Queue Position of DPATCH is not permitted (PFLAGS.DPCH 
set to 1) .. 

PARMS 
Is the address of a parameter list to be passed by the PATCH issued 
by PTIME. See PL/I PATCH Interface for format. Note that if this 
parameter list is greater than 8 bytes, the interface routine will 
move it to a GETMAIN area to be freed when the PTQE is destroyed .• 

START 
Specifies t he start time option flags which def ine the contents of 
STIME. only one of the flags must be set. See STIME for flag 
definitions. 

PURGE 
Is the flag that controls the kind of DPATCH which will be issued 
when the PTQE is destroyed. If no flag is set, no DPATCH is issued. 
Flags at a PTIME delete (12) viII override the flags when the PTQE 
was created (4) or modified (8) last. Only one flag may be set. 

PURGEI 
If on, task is deleted regardless of its condition. 

PURGEU 
If on, the task is deleted immediately or ~hen the current work 
queue, if executing, completes. Any work queued to the task is 
posted as deleted. 

PURGEC 
If on, the task is deleted only if its work queue is empty. 

PURGEW 
If on, the task vill be deleted when the work queue becomes empty. 

2-72 Descri ption and Operation Manual 



STOP 
Specifies the stop time option flags which define the contents of 
ETI"E. Only one of the flags may be set. See ETIME for flag 
definitions. 

The PTIME facilities are invoked by calling DPPPIF with the appropriate 
structure properly completed. Examples presented on the next pages 
use the default structure definitions PTIMESTR and PTIMRSTR (explained 
above), which are copied via %INCLUDE PTIMEDEF and %INCLUDE PTIMRDEP, 
respectively. Each example assumes the following PL/I statements: 

DCL 1 PATCHSTR, 
2 MACID FIXED BIN INIT (0) , 1* PATCH MACRO 10 *1 
2 PC FIXED BIN INIT(O), 1* RETURN CODE *1 
2 PACHPARM POINTER, 1* A(PARAMETERS) *1 
2 T AS K N AM E C H A R (8) I NIT (' '), 1* T ASK N A ME * I 
2 EPNAME CHAR(8) INIT('IEFBR14'), 1* LOAD MODULE *1 
2 NAME CHAR(8) INIT(' f), 1* RELATIVE TASK OF VALUE *1 
2 QUEUE FIXED BIN INIT(1), 1* DEFAULT = 1 *1 
2 VALUE FIXED BI N INIT (0) , 1* DEF AULT = 0 *1 
2 ECB POINTER, 1* ECB ADDRESS *1 
2 FREEL FIXED BIN(31,0) INIT(O), 1* BESERVED*I 
2 FREEA FIXED BIN(31,O) INIT(O), 1* RESERVED *1 
2 TCBX FIXED BIN (31,0) INIT(O), 1* TCB EXTENSION *1 
2 PFLAGS, 1* FLAG OPTIONS IF BIT IS SET ON *1 

3 FO, 1* RESERVED *1 
MASTER, 1* PARTITION=MASTER *1 
SLAVE, 1* PARTITION=SLAVE *1 
F3, 1* RESERVED *1 
REPCH, 1* ECB REPATCH *1 
QPOS, 1* QPOS=FIRST *1 
DPCH, 1* QPOS=DPATCH *1 
DEL) BIT(l) INIT('O'B); 1* EP DELETE *1 

DCL 1 PATCHPRM, 

DCL 

2 LENG FIXED BIN, 
2 PATIO FIXED BIN, 
2 PAR X ( 1 0 ) FI XED BI N ( 31 ,0) ; 

1 PTIM RSTR, 
2 MACIO FIXED BIN INIT(4), 
2 RC FIXED BIN INIT(O), 
2 TYPE FIXED BIN(31,0) INIT(~, 
2 TIME FIXED BIN(31,O) INIT(O), 
2 TIMDSECT POINTER; 

1* STRUCTURE FOR PTIME 
/* PTIME SERVICE *1 
1* RETURN CODE *1 
1* PTI filE C ALL TYPE *1 
/* CURRENT TIME *1 
1* A(TIME ARRAY *1 

TYPE=BET *1 

DCL 1 PTIMESTR, 
2 MACIO FIXED BIN INIT(4), 
2 RC FIXED BIN INIT(O) , 
2 TYPE FIXED BIN(31,O) INIT(4)', /* PTIME CALL TYPE *1 
2 STIME FIXED BIN(31,O) INIT(O), 1* START TIME *1 
2 ITIME FIXED BIN(31,O) INIT(O), 1* INTERVAL TIME *1 
2 ETIME FIXED BIN(31,O) INIT(O), 1* STOP TlftE *1 
2 PATCH POINTER, /* A (PATCH SOPL) *1 
2 PARMS POINTER, 1* A(PARAMETERS) *1 
2 START. 1* FLAGS DEFINE STIltE CONTENTS *1 

3 (FO,F1,F2,F3,F4, 1* RESERVED *1 
SADJFLAG, 1* ADJUSTED TIME *1 
STODFLAG, 1* TIltE OF DAY *1 
SRELFLAG) BIT (1) INIT (' O' B), 1* RELATIVE TIME *1 

2 PURGE, 1* FLAGS DEFINE PTIME PURGE OPTIONS *1 
3 (FO,F1,F2,F3, 1* RESERVED *1 

PURGEI, 1* DPATCH=I *1 
PURGEW, 1* DPATCH=W *1 

APPLICATION SERVICES 2-73 



PURGEC r 1* DPATCH=C *1 
PURGEU) BIT(1) INIT('O'B), 1* DPATCH = U *1 

2 STOP, 
3 (FO,F1.,F2,F3, 

ECNTFLAG, 
EADJFL AG, 
ETODFLAG, 

/* FLAGS DEFINE ETIl'1E CONTENTS *1 
1* RESERVED *1 
1* COUNT VALUE *1 
/* ADJUSTED TIME *1 
1* TIME OF DAY *1 

ER EL FL AG) BIT (1 ) INIT('O'B); /* RELATIVE TIME *1 

DCL 1 TIMED BASED ~IMDSECT), 
2 TIMEHS FIXED BIN (31,0) , 
2 TIMETOD FIXED BIN(31,0), 
2 TIMEJDAY FIXED DEC(7,0), 
2 TIMEMDAY FIXED DEC(7,0), 
2 TIl'1EEBC CHAR (10) ~ 
2 TIMEBDAY FIX ED BIN; 

EXAMPLE 1: In the first example, the program uses the default structure 
PTIMRSTR to obtain the current time. Note, that as a result of the 
CAL~, the time array structure TIMED is usable since its base variable 
(a POINTER variable in PTIMRSTR) has been set. The current time is 
used to set the start time in PTIMESTR for PATCHes by PTIME, at current 
time plus 1 hour. The interval is set to 1 hour, and the last PATCH 
is to occur 3 hours later. The PATCH parameters are set to create the 
task TIMETEST with a work queue length of 5, and a dispatching priority 
of 15 less than the PTIME task. The PATCH will execute program TTEST 
and delete it when the processing of each work request completes. The 
parameters passed are day of the year and time of the PTIME request 
with a PATCH ID of 10. 

CALL DPPPIF(PTIMRSTR.MACID); 
PATCH = ADDR (PATCHSTR.TASKNAM~ 

PARMS = ADDR (PATCHPRM.LENG); 
STIME = TIME+360000; 
STODF!. AG = '1' B; 
1TIME = 360000; 
ETIME = STIME+1080000; 
ETODFL AG = '1' B; 
TASK NAME = • TIMETE ST' ; 
QUEUE = 5; 
VALUE = 15; 
EPNAME = 'TTEST'; 
DEL = '1'B; 
LENG = 12; 
PATID = 10; 
PARX(1) = T1MEBDAY; 
PARX (2) = T1 ME; 
CALL DPPP1F(PTIMESTR.MACID); 

/* CURRENT TIME *1 
/* BUILD THE PTIME *1 
1* PAR AMETERS *1 

1* BUILD THE PATCH *1 
1* PARAMETERS *1 

/* BUILD THE PROGRAM *1 
1* PAR AMETERS *1 

1* ISSUE THE PTIME *1 

EXAMPLE 2: For the second example, the PTQE built by Example 1 will 
be modified (TYPE = 8) to start the PATCHes 15 seconds after this PTIME 
is issued, the interval to once a minute, and the stop time to never 
end. The program will not be deleted when a work request is finished 
processing and the work request will be queued first. The PATCH ID 
will be chaRged to 5. Note, that all parameters must be re-spe.cified, 
as a modify acts as a replace. All structures are initially default. 

2-74 Description and Operation Manual 



TYPE = 8; 
PATCH = ADDR(PATCHSTR.TASKNAME); 
PARMS = ADDR (PATCHPRM.. LENG) ; 
STIf'JE = 1500; 
SRELFLAG = '1'B; 
ITIf'JE = 6000; 
TASKNAME = 'TIKETEST'i 
QUEUE = 5; 
VALUE = 15; 
EPNAME = 'TTEST'; 
QPOS = 1; 
LENG = 12. 
PATID = 5, 
PARX(1) = TIMEBDAY; 
PARX (2) = TIME; 
CALL DPPPIF (PTI MESTR. MACID) ; 

1* MODIFY PTQE *1 

1* BUILD PATCH PARAf'JETERS *1 

1* BUILD PROGRAf'J PARAMETERS *1 

1* ISSUE PTIME *1 

EXAMPLE 3: Example 3 shows the use of the a~justed time facility of 
PTIKE. The first PATCH is to occur at 5 a.m. or within 30 minutes of 
when the PTIME was issued and at 30-minute intervals for 6 times. The 
task is to be deleted immediately when the PTQE is destroyed. 

PURGEU = '1'B. 
STlf'JE = 1800000; 
SADJFLAG = '1' B; 
ITIME = 180000; 
ETIME = 6; 
ECNTFLAG = '1' B; 

PATCH PARAMETERS 

PROBLEM PARAMETERS 

CALL DPPPIF(PTIMESTR.MACID); 

1* BUILD PTIME PAFAMETERS *1 

1* ISSUE PTIME *1 

EXAMPLE 4: Example 4 is the example for deleting a PTQE. Since the 
function of this PTIME service request is to locate the PTQE which is 
to be destroyed, only the parameters required to identify the PTQE need 
be given. In this case, the task is to be DPATCHed as well. 

PURGEU = '1'B; 
TYPE = 12; 
PATCH = ADDR (T AS KN At! E) ; 
PARMS = ADDR (LENG) ; 
TASKNAf'JE = 'TIMETEST'; 
EPNAME = 'TTEST'; 
PATID = 10; 
CALL DPPPIF(PTIMESTR.MACID); 

This example would remove the PTQE created by Example 1. 

APPLICATION SERVICES 2-75 



The Special Real Time Operating System DPATCH facility provides the 
programmer the method for destroying tasks which were created by the 
PATCH service. 

A PLII interface exists to provide a DPATCH service. The default 
structure, DPACHSTR, shown below, may be ~opied into the PL/I program 
by a %INCLUDE DPACHDEF. 

DCL 1 DPACHSTR, 
2 MACI D FI XED BI N INIT (8) 
2 RC FIXED BIN INIT (0) , 
2 TYPE PIXED BIN INIT(O) , 
2 T ASK C H A R (8 ) I NI T (' '); 

DPACHSTR 

1* DPATCH STRUCTURE *1 
1* DPATCH ID *1 
1* RETURN CODE *1 
1* DEFAULT PURGE = U *1 
1* TASK NAME *1 

Specifies the name of the default structure used to destroy tasks 
created by a PATCH. 

MACID 
Specifies a halfword binary value set to 8 to identify a DPATCH 
service request. 

RC 
Specifies a halfword binary value containing the return code from 
the service request. The return codes are defined in the macro 
description. 

TYPE 
Specifies halfword binary value specifying the DPATCH service 
requests. If 0 is specified, the task is deleted immediately or at 
the completion of the currently executing work request. Any work 
queued to the task is posted as deleted. If 4 is specified, the task 
is deleted only if its work queue is empty. If 8 is specified, the 
task is deleted when the work queue becomes empty. This does not 
prevent new work from being queued. If 12 is specified, the task is 
del et ed eve'n if it is active. 

TASK 
Specifies the name of the task being deleted. If left blank, the 
current t as k is del eted. 

The example assumes the above default structure. The first DPATCH 
request sets up the current task to be deleted when its work queue 
becomes empty. The second DPATCH requests that the task be deleted 
only if it is not aoing any work. The last DPATCH requests that the 
task be destroyed regardless of its condition. 

TYPE = 8; 
CALL DPPPIF(DPACHSTR.MACID); 
TYPE = 4; 
TA SK = 'TE STDPCH ' ; 
CALL DPPPIF(DPACHSTR.MACID); 
TYPE = 12; 
TASK = 'DPCHTEST'; 
CALL DPPPIF(DPACHSTR.MACID); 

2-76 Description and Operation Manual 



The MESSAGE service is used to cause a predefined message to be printed 
or displayed. The message must have been defined through the offline 
utility system using the DEFMSG macro. 

The PLII structure, MESAGSTR, (defined below) contains the parameters 
for the MESSAGE service and may be copied into the ~rogram via %INCLUDE 
MES AGDEF; 

DCL 1 ·[1ESAGS'!'R, 
2 fUCI D FI XED BI N INI!!' (40) , 
2 RC FIXED BIN INIT(O), 
2 M S G N UM F I XED BIN I NI T (0) , 
2 ACT CHAR (1) INI'!' (' '), 
2 W A IT BIT (1) IN IT ( , 0 ' B) , 
2 RESERVED FIXED BIN(31,O) INIT(O) 
2 AREA POINTER, 
2 ROUTE (8) FI XED BIN INIT (0) , 
2 VAR (10) POI NTER; 

MES AGST R 

1* MESSAGE NUMBER ~/ 

1* ACTION CODE *1 
1* WAIT = NO *1 
1* RES ERVED *1 
1* A(RETURN OF MESSAGE) *1 
1* ROUTING CODES *1 
1* A(VARIABLES) ARRAY *1 

Is the name of the default structure used for the PL/I message 
interface. 

MACID 
Is a halfword binary value of 40'to indicate the· service requested 
to the interface routine. 

RC 
Is a halfword binary value containing the return code from the service 
routine. See MESSAGE macro for possible values. 

APPLICATION SERVICES 2-11 



MSGNUM 
Is a halfword binary value from 1 to 999 identifying the message 
requested. 

ACT 
Is a 1-byte character to be appended to the message number. I denotes 
information; A denotes action is required; and D denotes that a 
decision is required. 

WAIT 
Is a flag bit indicating the program's decision to WAIT for the 
message to be sent. Default is off, which is no wait. 

RESERVED 
Is a fullword binary field reserved for the interface routine. 

AREA 
Is a pointer variable containing the address of an area where the 
service routine will place the formatted message for use by the 
program. 

ROUTE 
Specifies a table of 8 half word binary numbers representing the 
devices on which the message will appear or will be printed. All 
unused entries must be zero. 

VAR 
Specifies a table of 10 pointer variables addressing the variable 
data to be converted and inserted into the message. All unused 
entries must be zero. Only consecutive non-zero entries will be 
used. 

The example below requests the MESSAGE service to output to routing 
code (1) message number 37 with a variable text field of "JOB IS 
FINISHED, PLEASE CANCEL". The message number viII have an action code 
of "A" appended to notify the operator to act. The program will wait 
for the message to be transmitted. The example presumes the above 
MESAGSTR structur e. 

%INCLUDE MESAGDEF; 

DCL A CHAR (50) 
INIT (' JOB IS FINISHED. PLE ASE CA NCEl') ; 

DCL X CHAR(128); 
MSGNUM = 37; 
ACT = 'A'; 
WAIT = '1'B; 
AREA:: ADDR (X) ; 
ROUTE(1) :: 1; 
VAR (1) :: ADDR(A); 
VAR (2) = NULL; 
CALL DPPPIF(MESAGSTR.MACID); 

The RECORD facility provides a method for writing data to a sequential 
data set. The data can be retrieved at a later time for offline 
process ing. 

The default PL/T structure RECRDSTR, defined below, can be copied into 
the program via a %INCLUDE RECRDDEF; 

2-78 Description and Operation Manual 



OCL 1 RECRDSTR, 
2 MACI D FIXED BI N INIT (56) , 
2 RC FIXED BIN INIT(O), 
2 COUNT FIXED BIN(31,O) INIT(O), 
2 DATX POINTER, 
2 10 FIXED BIN INIT(O) ; 

RECRDSTR 

1* RECORD 10 *1 
1* RETURN CODE *1 
1* DATA LENGTH *1 
1* OAT A ADDRESS *1 
1* DATA 10 NO. *1 

Is the name of the default structure used to invoke the RECORD 
service. 

MACID 
Is a halfword binary number used to identify the service being 
requested. Default is 56 for RECORD. 

RC 
Is a halfword binary value containing the completion cod~ from the 
RECORD service routine. See RECORD macro writeup for valid return 
codes. 

COUNT 
Is a fullword binary number which is the number of bytes to be 
recorded. A maximum value of 65535 bytes may be specified. 

DATX 
Is the address of the data to be recorded. 

ID 
Is a halfword binary number from 1 to 4095 which identifies the data 
being recorded. 

The following example presumes the RECROSTR structure above: 

DCL A (16) FIXED BIN INIT(5); 
COUNT = 32; 
10 = 10; 
DATX = AODR (A) ; 
CALL DPPPIF(RECRDSTR.MACID); 

This interface provides the PL/I programmer t.he facility to wait for 
the completion of a work queue element generated by a PATCH. The 
following default structure WAITSTR may be copied into a PL/I program 
by a %INCLUDE WAITDEF. 

DCL 1 WAITSTR, 1* PATCH-WAIT STRUCTURE *1 
2 MACID FIXED BIN INIT (60) , 1* WAIT MACRO ID *1 
2 RC FIXED BIN INIT(O) , 1* ECBPOST CODE *1 
2 EVENT FIXED BIN(31,0) INIT(O); 1* BCB *1 

WAITSTR 
Is the name of the default structure provided for waiting on PATCH 
request completion. 

MACID 
Is a halfword binary number of 60 identifying the service requested 
to the interface routine. 

RC 
Is a halfword binary number containing the completion flag byte from 
POST. See PATCH macro for possible values. 

APPLICATION SERVICES 2-79 



EVENT 
Is a fullword binary field containing the completion code from the 
finished work queue processing or the address of a REPATCH control 
block. The value in this field is governed by the contents of RC. 

Note: For this structure, RC will never be zero when the interface 
routine returns to the PL/I program. 

The following example uses the default structures for PATCHSTR and 
WAITSTR as shown. Note, that the user need not zero the variable EVENT 
as the interface routine will automatically zero the first byte when 
moving it to the RC field. 

DCL 1 PATCHPRM, 
2 LENG FIXED BIN, 
2 PATIO FIXED BIN, 
2 PARX (10) FIXED BIN (31 ,0); 

DCL 1 PATCHSTR, 
2 MACID FIXED BIN'INIT(O), 
2 RC FIXED BIN INIT(O), 
2 PACHPARM POINTER, 
2 TASKNAME CHAR(8) INIT(' '), 
2 EP N A ME C H A R ( 8) I N IT (' I EF BR 1 4 ') , 
2 N A M E C H A R (8) I NI T ( , '), 
2 QUEUE FIXED BIN INIT(1), 
2 VALUE FIXED BIN INIT (0) , 
2 ECB POIN TER, 
2 FREEL FIXED BIN(31,Q) INIT(O), 
2 FREEA FIXED BIN(31,0) INIT(O), 
2 PCBX FIX ED BIN (31,0) IN IT (0) , 
2 PFLAGS, 

3 (FO, 
MA STER, 
SL AVE, 
F3, 
REPCH, 
QPOS, 
DPCH, 
DEL) BIT(l) INIT('O'B); 

DCL 1 WAITSTR,. 
2 MACIO PIXED BIN INIT (60) , 
2 RC PIXED BIN INIT (0) , 
2 EVENT FIXED BIN(3l,0) INIT(O); 

LENG = 4; 
PATIO = 2; 
PACHPARM = ADDR (PATCHPRK.LENG); 
TASKNAME = 'TESTWAIT'; 
EPNAME = 'WAITTEST'; 
ECB = lDDR(EVENT): 
CALL OPPPIF(PATCHSTR.MACID); 

2 EVENT FIXED BIN(31,O) INIT(O); 

This PL/I interface provides the programmer the facilities of the 
Special Real Time operating System BEPATCH service. The default 
structure, REPCHSTR (defined beloW), may be copied into the PL/I program 
via a %INCLODE REPCHOEP;. 

2-80 Description and Operation Manual 



DCL 1 REPCHSTR, 1* REFATCH STRUCTURE *1 
2 r!ACID FIXED BI N I NIT ( 1 2) , 1* REPATCH MACRO 10 *1 
2 RC FIXED BIN INIT (0) , 1* RETURN CODE *1 
2 TYPE FIXED BIN (31,0) INIT (0) , 1* SERVICE TYPE *1 
2 REPCB FIXED BIN(31,O), 1* A(REPATCH CNTL BLK) *1 
2 TASK CH AR (8), 1* TASKNAME *1 
2 EP CH AR (8) 1* LOAD KODULE *1 
2 RELTASK CHAR (8), 1* REL TASK FOR VALUE *1 
2 QUE FIXED BIN, 1* QUEUE LENGTH *1 
2 VAL FIXED BI N, 1* PRIORITY CRG *1 
2 ECB POINTER, 1* ECB ADDRESS *1 
2 RES (2) POINTER, 1* RESERVED *1 
2 TCBX POINTER, 1* TCBX ADDRESS *1 
2 PFLAGS, 1* FLAG OPTIONS IF BIT IS SET ON *1 

3 (FO, 1* RESERVED *1 
MAST, 1* PATCH PARTITION = MASTER *1 
SLAV, 1* PATCH PARTITION = SLAVE *1 
F3, 1* RESERVED *1 
RPECB, 1* ECD REPATCH *1 
QPOS 1, 1* QPOS=FIRST *1 
DPACH, 1* QPOS=DPATCH *1 
DELET) BIT(1), 1* EP DELETE *1 

2 RES1 (3) POINTER; 1* RESERVED SUPERVISOR POINTERS *1 

REPCHSTR 
Name of the default structure provided for the Special Real Time 
Operating System REPATCH service requests. 

MACID 
A halfword binary value of 12 identifying the service required to 
the interface routine. 

RC 
A halfword field containing a binary number return code from the 
REPATCH/PATCH service routine. See REPATCH macro write-up for REPATCH 
and related PATCH return codes. 

TYPE 
A fullword binary value indicating the interface routine service 
required. 

o -- The REPATCH control block is to be copied to the REPCHSTR to 
permit alteration of PATCH parameters prior to REPATCH. 

4 Issue REPATCH TYPE=EXEC. 

8 Issue REPATCH TYPE=PURGE. 

REPCB 
A fullvord binary field to contain the REPATCH control block address 
placed in the WAITSTR.EVENT when WAITSTR.RC equaled 68. The value 
in EVENT must be moved to REPCB before any interface call except the 
first interface call TYPE=4 or 8 following a TYPE~O interface call. 

TASK 
Specifies an 8-character name which is the name of the task being 
referenced by this PATCH. 

EP 
Specifies the 8-character valid program name of the program to be 
scheduled under the task specified in TASK. 

RELTASK and VAL 
specifies an 8-character task name and a halfword value which will 
det~rmine the priority of the new task. VAL will be subtracted from 

APPLICATION SERVICES 2-81 



the dispatching priority of the specified task. VAL may range from 
o to 255 with zero default. See PRTY option of PATCH macro for 
further detail. 

QUE 
A halfword value specif ying the number of w9rk queue en tries to be 
provided for a new independent task. 

ECB 
specifies the address of the ECB within a WAITSTR which is to be used 
in a CALL DPPPIF. This ECB is posted when processing for this PATCH 
completes. The ECB which contained the REPATCH control block address 
may be reused and will be if this parameter is left unchanged. 

TCBX 
Specifies the address of the TCB extension control block for an 
existing independent task .• 

PFLAGS 
The PATCH option flags as described below: 

MAST 
This PATCH is intended for the MASTER partition. 

SLAV 
This PATCH is intended for the SLAVE partition. 

RPECB 
Specifies that if this work request is pushed off the queue r the 
ECB is to be posted with a REP ATCH control block address. 

QPOS1 and DPACH 
Specifies where in the task work queue this work request is to go 
if the task is busy. If QPOS1 is on, the request is to be placed 
first on the queue. If DPACH is on r the processing for this PATCH 
will not be executed until a DEPATCH is issued for this task. Both 
flags off means this request is queued last. 

DELET 
specifies that a DELETE is issued for the EP name after processing 
completes for this PATCH. 

RES and RES1 
The pointers must remain unchanged. 

The Special Real Time Operating System REPATCH service may be invoked 
by including the REPCHDEF in the PL/I program, moving the REPATCH 
control block address from the event control block to REPCB and then 
executing one of the following: 

a4 If the REPATCH is tQ be done without change, set TYPE to 4 or 8 
and CALL DPPPIF. 

b. If the REPATCH is to be changed prior to execution, set TYPE to 0, 
CALL DPPPIF, make changes desired, set TYPE to q and CALL DPPPIF 
again. 

Users of this facility should be aware that only the "supervisor" 
portion of the PATCH parameters can be altered. The problem parameters 
cannot be cbanged. All REPATCH control biocks must be retarned to the 
system through a TYPE=4 or 8 service request. 

2-82 Description and Operation Manual 



The following examples will show the various methods of using REPCHSTR. 

The examples for using the REPCHSTR use the folloving set of structures: 

DCL 

DCL 

1 REPCHSTR, 
2 MACID FIXED BIN INIT(12) , 
2 RC FIXED BIN INIT (0) , 
2 TYPE FIXED BIN(31,0) INIT(O), 
2 REPCB FIXED BIN(31,0), 
2 TASK CHAR (8), 
2 EP CHAR (8), 
2 RELTASK CHAR(8), 
2 QUE FIXED BI N, 
2 VAL FIXED BIN, 
2 ECB POINTER, 
2 RES (2) POINTER, 
2 TC BX POI NTER , 
2 PFLAGS, 

3 (FO, 
£1 AST, 
SLAV, 
F3, 
RPECB, 
QPOS 1, 
DPACH, 
D EL ET) BI T ( 1) , 

2 RESl (3) POI NTER; 
1 WAITSTR, 
2 MACI D FIXED BI N INIT (60) , 
2 RC FIXED BIN INIT (0)" 
2 EVENT FIXED BIN(31,0) INXT(O); 

1* REPATCa STRUCTURE *1 
1* REPATCH MACBO ID *1 
1* RETURN CODE *1 
1* SERVICE TYPE *1 
1* A(REPATCH CNTL BLK) *1 
1* TASKNAME *1 
1* LOAD MODULE *1 
1* REL TASK FOR VALUE *1 
1* QUEUE LENGTH *1 
1* PRIORITY CHG *1 
1* EeB ADDRESS *1 
1* RESERVED *1 
1* TCBX ADDRESS *1 
1* FLAG OPTIONS IF BIT IS SET ON *1 
1* RESERVED *1 
1* PATCH PARTITION = KASTER *1 
1* PATCH PARTITION = SLAVE *1 
1* RESERVED *1 
1* ECB REPATCH *1 
1* QPOS=FIRST *1 
1* QPOS=DPATCH *1 
1* EP DELETE *1 
1* RESERVED SUPERVISOR POINTERS *1 
1* PATCH-WAIT STRUCTURE *1 
1* WAIT KlCBO ID *1 
1* ECB POST CODE *1 
1* ECB *1 

EXAMPLE 1: Example 1 shows the correct method for purging a REPATCH 
control block, should a work request fail to be e~ecuted. The example 
begins with the PATCH-WAIT which is notified about the work request 
not getting done. 

CALL DPPPIF (WAITSTR.MACID); 
IF WAITSTR.RC = 68 THEN DO; 

REPCHSTR.REPCB = WAITSTR.EVENT; 
REPCHSTR.TYPE = 8; 
CALL DPPPIF (REPCHSTR. "ACID) ; 

END; 

Example 1 

APPLICATION SERVICES 2-83 



EXAMPLE 2: Example 2 demonstrates the method for altering a REPATCH 
control block. As with Example 1, this example begins with a WAIT on 
a PATCH. 

X: CALL DPPPIF (WAITSTR.MACID); 
IF WAITSTR.RC = 68 THEN DO; 

REPCHSTR.REPCB = WAITSTR.EVENT; 
REPCHSTR.TYPE = 0; 
CALL DPPPIF (REPCHSTR. MACID) ; 
REPCHSTR.PFLAGS.QPOS1 = "'B: 
WAITSTR.EVENT = 0: 
REPCHSTR.TYPE = 4: 
CALL DPPPIF (REPCHSTR.MACID); 
IF REPCHSTR.RC <8 THEN GOTO X; 

END; 

Example 2 
The above example replaces the work request on the work queue for the 
same task as previously requested, ex~ept that it will be placed first 
on th e queue. 

This PL/I interface provides the programmer the facilities of the 
Special Real Time operating System GETARRAY and PUTARRAY services. The 
default structure, ARRAYSTR (defined below), may be copied into the 
PL/I program via a %INCLUDE ARRAYDEF;. 

DCL 1 ARRAYS'l'R, 1* GET/PUT ARRAY STRUCTURE *1 
2 MACln FIXED BIN INIT (16) , 1* ARRAY MACRO ID *1 
2 RC FIXED BIN INIT (0) , /* RETURN CODE *1 
2 NAME POINTER, /* A (NAMELIST/NUMBERLIST/ADDRLIST) 
2 AR EA POI NTER , /* A (FINDLIS T/DATAAREALIST) *1 
2 NAMEINCR FIXED BIN INIT (0) , 1* LIST INCREMENT *1 
2 ARE AINCR FIX ED BIN INIT (0) , 1* LIST INCREMENT *1 
2 TYPE FIXED BIN I NIT (0) ; /* TYPE OF ARRAY SERVICE *1 

ARRAYSTR 
Name of the default structure provided for the Special Real Time 
Operating System array service tequests. 

MACID 
A halfword bin~ry value of 16 identifying the service required to 
the interface routine. 

RC 
A halfword field containing a binary number return code from the 
array service routine. S~e GET ARRAY and PUTAP.RAY macro write-ups 
for possible values. 

NAME 
The address of one of the following based on the specifications 
implied by the value of TYPE. 

a. If TYPE specifies 'NAMELIST', then NAME points to a list of 
8-character array names followed by an X'FF' after the last name 
where the next name would start. NA!EINCR contains the value 
to be added to the list address to locate the next array name. 

2-84 Description and Operation Manual 

*1 



NAME LIST 

o NAMEI 

K NAME2 

16~ 

b. If TYPE specifies 'NUMBERLIST', then NAME points to a list of 
halfword binary array numbers followed by an X'FF' after the 
last array number where the next number would start. NAMEINCR 
contains the value to be added to the list address to locate 
the next array number in the list. 

NUMBER LIST 

o 1ST NUMBER 

2 2ND NUMBER 

4 FF I 
c. If TYPE specifies 'ADDRESSLIST', then NAME points to a list of 

array addresses as returned from a previous GETARRAY execution. 
The list must be terminated by a fullword binary value of -1 
after the last array address where the next address would be 
located. NAMEINCR contains the value to be added to the list 
address to locate the next array address. 

ADDRESS LIST 

o A(lST ARRAY) 

4 A(2ND ARRAY) 

8 FFFFFFFF 

AREA 
The address of one of the following based on the specifications 
implied by the value of TYPE. 

a. If TYPE specifies 'DATALIST', then AREA points to a list ~f 
addresses into or from which the data of the specified arrays 
(see NAME above) is to be moved. AREAINCF contains the value 
to be added to the list address to locate the next data area 
address in the list. 

DATA AREA ADDRESS LIST 

) A(I ST DATA AREA) 

4iA(2ND DATA AREA 

8 A(3RD DATA AREA) 

b. If TYPE specifies 'FINDLIST', then AREA points to a list of 
10-byte fields to be filled with a flag byte (see GETARRAY macro 
write-up), a 3-byte array address, a halfword block count, a 
halfword array size or block size and a halfword item count. 
The list must contain one entry more than the number of addresses 
expected to allow for an end of list X'FF'. AREAINCB contains 

APPLICATION SERVICES 2-85 



the value to be added to the list address to locate the next 
10-byte field. The minimum value for !REAlNeR under this option 
is 8; in which case, the item count halfword will not be in the 
list. 

FIND LIST 

o FLG ARRAY ADDR NO.BLKS SIZE INO.lTEMS 

10 FLG ARRAY ADDR NO.BLKS SIZE NO.ITEMS 

20 FF 

c. If TYPE specifies 'SPECLlST', then AREA points to a list of 
16-byte fields to be filled with an 8-byte item name, a l-byte 
item length, a l-byte data type, a halfword array displacement 
to the start of the item, a halfword array 10, and a halfword 
number identifying the number of identical and sequential items 
defined by this entry. AREAlNCR contains the value to be added 
to the list address to locate the next l6-byte field. 

ARRAY SPECIFICATIONS LIST 

o ITEM NAME LNG TYPE DISP. AID REPT 

16 ITEM NAME LNG TYPE DISP AID REPT 

32 ITEM NAME LNG TYPE DISP AID REPT 

NAI1EINCR 
A halfword value added to NAME to locate the next entry in the list. 
A value must be specified. 

AREAlNCR 
A halfword value added to AREA to locate the next entry in the list. 
A value must be specified. 

TYPE 
A halfword binary value specifying the array service options selected. 
The values (given in the tables below) identify the contents of NAME 
and AREA, either a GETARRAY or PUTARRAY, the array service (i.e., 
DATALIST, ADORLlST or SPECL1ST) , and the desired protection for 
GET ARRAY s (PROT ECT or RISK) • 

DATALIST 
Specifies that the content of the array(~ is to be returned 
(GETARRAY) or updated (PUT ARRAY) • 

AOORLlST 
Specifies that a 'FlNDLlST' entry is to be completed for each array 
name or number in the list. Option is valid for virtual storage 
resident arrays only. 

SPECLIST 
Specifies that a 'SPECLIST' entry is to be completed for each item 
of each array name or number in the list. 

PROTECT 
Specifies that the array service will lock during processing to 
prevent changes from altering results. 

2-86 "Description and Operation Manual 



RISK 
Specifies that the array service will be processed regardless of the 
possibility of parallel processing changing the array content. 

NAME AREA SERVICE PROTECTION TYPE 
REQUESTED REQUESTED VALUE 

A(NAME LIST) A(DATA LIST) DATA LIST PROTECT 16 

A(NAME LIST) A(DATA LIST) DATA LIST RISK 17 

A(NAME LIST) A(SPEC LIST) SPEC LIST PROTECT 20 

A(NAMELIST) A(SPEC LIST) SPECLIST RISK 21 

A(NAME LIST) A(FIND,LIST) ADDR LIST PROTECT 34 

A(NAME LIST) A(FIND LIST) ADDRLlST RISK 35 

A(ADDR LIST) A(DAT A LIST) DATA LIST PROTECT 48 

A(ADDR LIST) A(DATA LIST) DATA LIST RISK 49 

A(NUMBER LIST) A(DATA LIST) DATA LIST PROTECT 80 

A(NUMBER LIST) A(DA T A LIST) DATA lIST RISK 81 

A(NUMBER LIST) A(SPEC LIST) SPEC LIST PROTECT 84 

A(NUMBER LIST) A(SPEC LIST) SPEC LIST RISK 85 

A(NUMBER LIST) A(FIND LIST) AD DR LIST PROTECT 98 

A(NUMBER LIST) A(FIND LIST) ADDR LIST RISK 99 

Figure 2-15. GETTARRAY Services 

A(NAME LIST) A(DAT A LIST) DATA LIST N/A 128 

A(ADDR LIST) A(DATA LIST) DATA LIST N/A 144 

A(!"JUMBER LIST) A(DATA LIST) DATA LIST N/A 176 

Figure 2-16. PUTARRAY Services 

The GETARRAY/PUTARRAY services are invoked in PL/I by CALLing DPPPIF 
with the properly completed array name/number/address list data address 
list and structure (ARRAYSTR or a similar structure). 

The examples for using GETARRAY or PUTARRAY services in PL/I use the 
following list of structures and variables: 

APPLICATION SERVICES 2-87 



DCL 1 ARRAYS TH, 
2 MACI D FIXED B1 N INIT (16) , 
2 HC FIXED BIN INIT(O), 
2 NA ME POI NTER , 
2 AFEA POINTER, 
2 NAMEINCR FIXED BIN INIT(O), 
2 AREAINCR FIXED BIN INIT(O), 
2 TYPE FIXED BIN INIT(O); 

DCL 1 ARRAY, 
2 NAME (2) CHAR (8), NO (2) FIXED BIN, 
2 FIND (12), 
3 ADDRESS POINTER, 
3 BLKCNT FIXED BIN, 
3 BLKSIZ FIXED BIN, 
3 ITEMCN'r FIXED BIN, 
3 RES FIXED BI N, 
2 CORE (2) POINTER; 

DCL 1 ARRAYITM (255), 
2 NAME CHAR(8), 
2 LNG BIT (8) , 
2 TYP BIT(8), 
2 DISP FIXED BIN; 

DCL ITEM (255) CHAR (16) ; 
DCL Q POINTER BASED(P); 

Note, that the structure ARRAY has the field NAME for use when calling 
arrays by name, or NO for use when calling arrays by number. 

Both of the following examples make use of ·the fact that once a 
structure has been al tered it remains unchanged; i.e., the array name 
in the first example needed to be specified only once. 

The first example will locate array 'B' through the FINDLIST option, 
r·~ad in the item specifications through the SPEC option and then read 
i~ the array. The array is then changed and the new array transmitted. 

ARRAY.NAME(1) = 'B '; 
P = ADDR(ARRAY.,NAME(2»; 
Q = NULL; 
ARRAYSTR. NAME = AODR (ARRAY. NAME (1» ; 
ARRAYSTR.NAMEINCR = 8; 

1* BUILD PARAMETER *1 
1* LIST TO LOCATE *1 
1* NAMED ARRAY *1 

ARRAYSTR.AREA = ADDR(ARRAY.FIND(l).ADDRESS); 
ARRAYSTR.AREAINCR = 12; 
ARR AY S'TR. TYPE = 35; 
CALL PPPPIF(ARRAYSTR.MACID); 

1* THE FIND LIST HAS BEEN BUILT *1 
ARRAY .COR E(l) = ADDR (ARRAYITM (1). NAME); 
ARRAYSTR.AREAINCR = 4; 
ARRAYSTR. AREA = ADDR(ARRAY.CORE(1» ; 
ARRAYSTR.TYPE = 21; 
CALL DPPPIF (ARRAYSTR. MACID) ; , 

1* BUILD PARAMETER */ 
1* LIST TO *1 
1* OBTAIN *1 
1* LIST OF ITEM NAMES *1 

1* THE ITEM SPECIFICATIONS HAVE BEEN OBTAINED *1 
ARRAY. COREll) = ADDR (ITEM (1» 1* READ THE *1 
ARRAYSTR.TYPE = 16; 1* ENTIRE ARRAY *1 
CALL DPPPIF (ARRAYSTR. MACID) ; 

1* THE ARRAY HAS BEEN READ *1 
ITEM(l) = 'THIS BLOCK ZAPED'; 

1* THE ARRAY IS ALTERED *1 
ARRAYSTR.TYPE = 128; 
CALL DPPPIF(ARRAYSTR.MACID); 

1* THE ARRAY IS UPDATED *1 

Example 1 

1* WRITE THE ENTIRE ARRAY *1 

Note that in the above example all services to the array are by name. 

2-88 Description and Operation Manual 



The second example is identical to the first, except that the array is 
numbered. 

ARRAY.NO(1) = 1; 
ARRAY.NO(2) = -1; 
ARRAYSTR.NAME = AODR(ARRAY.NO(1»: 
ARRAYSTR.NAMEINCR = 2: 
ARRAYSTR.AREA = ADDR(ARRAY.FIND(1).ADDRESS); 
ARRAYST R. AREAINCR =' 12"; 
ARRAYSTR.TYPE = 99; 
CALL DPPPIF(ARRAYSTR.MACID): 

1* THE FINDLIST HAS BEEN BUILT *1 
ARRAY.CORE(1) = ADDR(ARRAYITM (1). NAME); 
ARRAYSTR. AREA = ADDR(ARRAY.CORE(1»: 
ARRAYSTR.AREAINCR = 4; 
ARRAYSTR.TYPE = 85; 
CALL DPPPIF(ARRAYSTR.MACID): 

1* THE ITEM SPECIFICATIONS HAVE BEEN OBTAINED *1 
ARRAY.CORE(1) = ADDR(ITE! (1» ; 
ARRAYSTR.NAME = ADDR(ARRAY.FIND(1).ADDRESS): 
ARRAY.FIND(2) .ADDRESS = NULL; 
IARRAYSTR.NA!EINCR = 12; 
ARRAYSTR.TYPE = 48: 
CALL DPP~IF(ARRAYSTR.KACID); 

1* THE ARRAY HAS BEEN READ *1 
ITEM(1) = 'THIS BLOCK ZAPED'i 

1* THE ARRAY IS ALTERED *1 
ARRAYSTR.TYPE = 144: 

CALL DPPPIF(ARRAYSTR.MACID); 
1* THE ARRAY HAS BEEN UPDATED *1 

Example 2 

Note, that the array was read and written using the ADDR option. 

This PL/I interface provides the programmer the facilities of the 
Special Real Time Operating System GETITEK and PUTITEM services. The 
default structore, ITEMSTR (defined below), may be copied into the PLII 
program via a %INCLUDE ITEMDEF:. 

DCL 1 ITEMSTR, 1* GET/PUr ITEM STRUCTURE *1 
2 M A CI D PI XED BI N I NIT (20) , 1* ITEM MACRO ID *1 
2 RC FIXED BIN INIT(O) , 1* RETURN CODE *1 
2 NAME POINTER, 1* A (NAMELIST/ADDRLIST) *1 
2 AR EA POI NTER, 1* A (0 AT A AREA) *1 
2 NAMEINCR FIX ED BIN INIT (0) , 1* LIST INCREMENT *1 
2 AREAINCR FIX ED BIN INIT (0) • 1* LIST INCREMENT *1 
2 TYPE FIXED BIN I NIT (0) ; 1* TYPE OF ITEM SERVICE *1 

ITEMSTR 
Name of the default structure provided for the Special Real Time 
Operating System array-.item service requests. 

MACID 
A halfvord binary value of 20 identifying the service required to 
the interface routine. 

APPLICATION SERVICES 2-89 



FC 
A halfword field containing a binary number return code from the item 
service routine. See GETITEM and PUTITEM macro write-ups for possible 
values. 

NAME 
The address of one of the following based on the specifications 
implied by the value of TYPE. 

a. If TYPE specifies 'NAMELIST', then NAME points to a list of 
8-character item names followed by a X'FF' after the last name 
where the next name would start. NAMEINCR contains the value 
to be added to the list address to locate the next item name. 

NAME LIST 

o NAME I 

8 NAME2 

b. If TYPE specifies 'ADDRESS LIST', then NAME points to a list ~f 
item addresses as returned from a previous execution. The list 
must be terminated by a fullword of -1 where the next address 
would be in the list. NAMEINCR contains the value to be added 
to the list address to locate the next address in the list. 

ADDRESS LIST 

o A(ITEM a) 

4 A(lTEM b) 

8 FFFF FFFF 

ARRA 
the address of one of the following based on the specifications 
implied by the value of TYPE. 

a. If TYPE specifies 'DATALIST', then AREA points to a data area 
into or from which item data is moved. AREAINCR contains the 
value to be added to the area address to locate the next area 
for the next item. If AREAINCR is zero, then the item length 
is used to determine the location for the next item data area. 

b. If TYPE specifies 'ADDRLIST', then AREA points to a list of 
4-byte entries into which the item length and address are stored 
for each item specified in the 'NAMELIST'. The list must be 

2-90 

one entry longer than the number of addresses being obtained to 
allow the service routine to store an end of list X' FF' • 
AREAINCR contains the value to be added to the area address to 
locate the next entry. 

ADDRESS LIST 

o ITEM ITEM ADDRESS LENGTH 
ITEM ITEM ADDRESS LENGTH 4 

8 FF FFFFFF 

Description and Operation Manual 



c. If TYPE specifies 'SPECLlST', then AREA points to a list of 
4-byte entries containing the item length, flags identifying 
data type and a displacement into the array to the first byte 
of the item. AREAlNCR contains the value to be added to the 
area address to locate the next entry. 

ITEM SPECIFICATIONS LIST 

o ITEM TYPE FLAGS ARRAY DISPLACEMENT LENGTH 
ITEM TYPE FLAGS ARRAY DISPLACEMENT LENGTH 4 

ITEM TYPE FLAGS ARRAY DISPLACEMENT LENGTH 8 

NA"EINCR 
A halfword binary value added to the list address in NAME to locate 
the next entry. A value must be specified. 

AREAINCR 
A halfword binary value added to the list address in AREA to locate 
the next entry_ A value must be specified unless TYPE specifies 
'DATALIST' in which case zero may be used .• 

TYPE 
A halfword binary number specifying the item service options selected. 
The values (given in the tables below) identify the kind of service 
(i.e., DATA, ADDR or SPEC), and whether it is a GETlTEM with or 
without protection (PROTECT or RISK) or a PUTITEM. 

DATALIST 
Specifies that the content of the array-item is to be moved from the 
array to AREA or updated by the contents of AREA. 

ADDRLIST 
specifies that the item 'ADDRESSLIST' is to be built in AREA for each 
named item. 

SPECLIST 
Specifies that the item 'SPECIFICATION LIST' is to be built in AREA 
for each named item. 

PROTECT 
Specifies that the GETITEM service will ensure data integrity during 
processing. 

RISK 
specifies that the GETITEM service will process the request regardless 
of the possibility of parallel processing updating the content of 
the named item(s). 

Note: DATALIST and DDDRLIST are invalid service requests for direct 
access resident arrays. 

APPLICATION SERVICES 2-91 



NAME AREA SERVICE PROTECTION TYPE 
REQUESTED REQUESTED VALUE 

A.(NAME LIST) A(DATA LIST) DATA LIST PROTECT 136 

A(NAME LIST) A(DAT A LIST) DATA LIST RISK 137 

A(NAME LIST) A(ADDR LIST) ADDR LIST PROTECT 138 

A(NAME LIST) A(ADDR LIST) ADDRLIST RISK 139 

A(NAME LIST) A(SPEC LIST) SPEC LIST PROTECT 140 

A(NAME LIST) A(SPEC LIST) SPEC LIST RISK 141 

A(ADDR LIST) A(DAT A LIST) DATA LIST PROTECT 152 

A(ADDR LIST) A(DA T A LIST) DATA LIST RISK 153 

Figure 2-17. GETITEM Services 

A(NAME LIST) A(DA T A LIST) DATA LIST N/A 184 

A(ADDR LIST) A(DAT A LIST) DATA LIST N/A 200 

Figure 2-18. PUTITEM Services 

The GETITEM/PUTITEM services. are invoked in PLII by CALLing DPPPIF with 
the properly completed item name/address list, data address list and 
structure (ITEMSrR or a similar structure) • 

The example for using GETITEM or PUTITEM services in PL/I uses the 
following list of structures and variables: 

DCL 1 ITEMSTR, 
2 MACID FIXED BIN INIT (20) , 
2 RC FIXED BIN INIT(O), 
2 NAME POINTER, 
2 AREA POI NTER, 
2 NAMEINCR FIXED BIN INIT(O) , 
2 AREAINCR FIXED BIN I NIT (0) , 
2 TYPE FIXED BIN INIT(O) ; 

DCL 1 ITEMLIST (6), 
2 N A M E C HA R (8) , 
2 ADR POINTER, 
2 LNG BIT(8), 
2 FLGS BIT (8) , 
2 DISP FIXED BIN; 

DCL ITE M (5) CHAR(16) i 
DCL Q POINTER BASED(P); 
DCL F BIT (8) BASED(PT) ; 

The following example will use GETITEM services to obtain the address, 
specifications and data for a list of five items from the same array. 
It will change the data and use PUTITEM services to update the array. 

2-92 Descripticn and Operation Manual 



ITEMLIST(1) .NArtE = 'B01 '; 
ITEMLIST (2) • N AKE = 'B03 ' i 
ITEMLIST(3) .NAME = 'B05 '; 
ITEMLIST(4) .NAME = 'B07 '; 
ITEMLIST(5) .NAME = 'B09 '; 
P = A DO R ( IT EM LIS T (6) • N A M E) ; 
Q = NULL; 
ITEPlSTR.NAKE = ADDR (ITEKLIST(1) .NArtE); 
ITEMSTR.NAMEINCR = 16; 
ITEMSTR.AREA = ADDR (ITEMLIST(1) .ADR); 
ITEMSTR.AREAINCR = 16; 
ITEKSTR.TYPE = 131; 
CALL DPPPIF(ITEMSTR.MACID); 

1* ITEM ADDRESSES ARE RESOLVED *1 
DO I = 1 TO 5; 
PT = ADDR(ITEKLIST(I).ADR); 
F = 'OOOOOOOO'B; 
END; 

1* PREPARE PARM LIST TO GET ITEM SPECS *1 
ITEMSTR.AREA = ADDR (ITEKLIST(1) .LNG); 
ITEMSTR.TYPE = 133; 
CALL DPPPIF (I TE MSTR. M ACID) ; 

1* ITEM SPECIFICATIONS OBTAINED *1 
ITE(1STR. N AM E = ADDR (ITEMLIST (1) • ADR) ; 
ITEMLIST(6) .ADR = NULL; 
ITEMSTR.AREA = ADDR(ITEK(1»; 
ITEMSTR.AREAINCR = 16; 
ITEMSTR.TYPE = 144; 
CALL DPPPIF(ITEMS1R.MACID); 

1* DATA HAS BEEN READ *1 . 
DO I = 1 TO 5; 
ITEM(I) = 'THIS BLOCKS GONE'; 
END; 

1* WRITE ARRAY UPDATES BY ADDRESS *1 
ITEMSTR.TYPE = 192; 
CALL DPPPIF(ITEMSTR.MACID); 

1* UPDATE IS COMPLETE *1 

1* BUILD LIST OF *1 
1* ITEM NAMES *1 

1* TERMINATE LIST *1 
1* BUILD P ARK LIST *1 
1* TO LOCATE ITEMS *1 

1* ZERO UPPER BYTE *1 
1* OF ADDRESS WORDS *1 

1* BUILD *1 
1* PARAMETER LIST *1 
1* TO READ *1 
1* BY ADDRESS *1 

1* ALTER DATA *1 

This PL/I interface provides the programmer the facilities of the 
Special Real Time Operating System GETBLOCK and PUTBLOCK services. The 
default structure, BLOCKSTR (defined below), may be copied into the 
PL/I program via a %INCLUDE BLOCKDEF. 

DCL 1 BLOCKSTR, 1* GETIPUT BLOCK STRUCTURE *1 
2 MACID FIXED BIN INIT( 24) , 1* BLOCK MACRO ID *1 
2 RC FIXED BIN INIT(O). 1* RETURN CODE *1 
2 NAME POINTER, 1* A~NAMELIST/NUMBERLIST) *1 
2 AREA POINTER, 1* A (D AT A ADDR-BLK NO. LIST) 
2 ADD FIXED BIN INIT(8), 1* DATA AREA INCREMENT *1 
2 TYPE FIXED BIN INIT(4); 1* TYPE OF BLOCK SERVICE *1 

BLOCKSTR 
Name of the default structure provided for the Special Real Time 
Operating system blocked arrays service requests. 

MAeIn 
A halfword binary value of 24 identifying the service required to 
the interface routine. 

RC 
A halfword field co-ntaining a binary num,ber return code from the 

*1 

APPLICATION SERVICES 2-93 



blocked array service routine. See GETBLOCK and PUTBLJCK macro 
write-ups for possible values. 

NAME 
The address of one of the following based on the specifications 
implied by TYPE. 

a. If TYPE specifies 'NAME LIST', then NAME points to a list of 
8-character array names followed by a X'FF' in the first byte 
after the last name where the next .name would start. 

ARRAY NAME LIST 

o NAME 

8 NAME 

b. If TYPE specifies 'NUMBER LIST', then NAME points to a list of 
halfword (2-byte) binary array numbers followed by a X'FF' in 
the first byte after the last number where the next number would 
start. 

AREA 

o 

2 

4 

NUMBER LIST 

NUMBER 

NUMBER 

FF I 

The address of a list of 6-byte entries. ADD contains the value to 
be added to the list address to locate the next entry. 

DATA AREA LIST 

o FLO DATA AREA BLK. NO. 

6 FLO DATA AREA BLK. NO. 

12 FLO DATA AREA BLK. NO. 

FLG 
A 1-byte flag field. A X'40' indicates the last data area 
number for a specified array, but not the end of the list. 
indicates the last entry for the last array and the end of 
A X'OO' should appear in all other entries. 

DATA AREA 

and bl:> ck 
A X'8:>' 

the list. 

A 3-byte address of the area into or from which the specified array 
block is moved. 

BLK. NO. 
A halfword binary number specifying the array block being moved. 

ADD 
A halfword binary value added to the contents of AREA to locate the 
next entry in the list. If zero, a length of 6 is assumed. 

2-94 Description and Operation Manual 



TYPE 
A halfvord binary value specifying the blocked array service options 
selected. The values (given in the tables below) identify the 
contents of NAME and whether it is a GETBLOCK with or without 
protection (PROTECT or RISK) or a PUT BLOCK. 

NAME AREA PROTECTION 
REQUESTED 

A(NAME LIST) A(DATA LIST) RISK 

A(NUMBER LIST A(DATA LIST) RISK 

A(NAME LIST) A(DATA LIST) PROTECT 

A(NUMBER LIST) A(DAT A LIST) PROTECT 

Figure 2-19. GETBLOCK Services 

A(NAME LIST) 

A(NUMBER LIST) 

A(DAT A LIST) 

A(DATA LIST) 

Figure 2-20. PUTBLOCK services 

N/A 

N/A 

TYPE 
VALUE 

4 

6 

12 

14 

7 

The GETBLOCK/PUTBLOCK services are invoked in PL/I by CALLing DPPPIF 
with the properly completed structure (BLOCKSTR or ,a similar structure), 
the array name or number list and data address list. 

APPLICATION SERVICES 2-95 



The following ex~mple will GETBLOCK for block 5 from the two arrays 
BLK1 and BLOKB, and PUTBLOCK the block 5 of array BLK1 to block 5 of 
array BLOKE. 

DCL 1 BLOC KSTR, 
2 MACID FIXED BIN INIT (24) , 
2 RC FIXED BIN INIT(O), 
2 NAME POINTER, 
2 AR EA POI NTER , 
2 ADD FIXED BIN INIT(8), 
2 TYPE FIXED BIN INIT(4) ; 

DCL 1 BLK, 
2 NAME (2) CHAR (8) , 
2 NO (2) FIXED BIN, 
2 LI ST (2), 

3 AREA POINTER, 
3 NUf1 FIXED BI N, 
3 RES FIXED BIN; 

DCL BLOCK (2) CHAR (256) ; 
DCL Q POINTER BASED(P); 
DCL F BIT(8) BASED(PT); 
B L K. N AM E ( 1) = 'BL K 1 '; 
B L K. N A M E (2) = 'BL 0 K B I; 
BLK.NOel) = -1; 
BLK. LIST (1) • ARE A = ADDR (BLOCK (1»; 
PT = AODR(BLK.LIST(l) .AREA); 
F = '01000000'B; 
BLK.LIST(1) .NUM = 5; 
BLK.LIST(2) • AREA = ADDR (B.LOCK (2» ; 
PT = ADDR (BLK.LIST (2) • AREA) ; 
F = '10000000'; 
BLK. LIST (2) • NUM :: 5; 
BLOCKSTR. NAME :: ADDR (BLK. NAME (1» ; 
BLOCKSTR.AREA = ADDR(BLK.LIST(1)~AREA); 
BLOCKSTR.TYPE :: 12; 
CALL DPPPIF(BLOCKSTR.MACID); 

1* BLOCK 5 ARRAYS BLK1 AND BLOKB HAVE BEEN READ *1 
ELK. NAME (1) = BLK. NAME (2) ; 
P = ADDR(BLK.NAME(2»; 
Q = NULL; 
PT = ADOR (BLK.LIST(1) .AREA) ; 
F = '10000000'B; 
BLOCKSTR.TYPE = 5; 
CALL DPPPIF(BLOCKSTR.MACID); 

1* BLOCK 5 OF ARRAY BLK1 HAS BEEN WRITTEN TO 
BLOCK 5 OF ARRAY BLOKB *1 

This PL/I interface provides the programmer the facilities of the GETLOG 
service. The default structure (defined below) may be copied into the 
PL/I program via a %INCLUDE GTLOGDEF;. 

2-96 Description and Operation Manual 



DCL 1 GTLOGST R, 
2 MACID FIXED BIN IHIT(qS), 
2 RC FIXED BIN INIT(O) , 
2 TYPE, 

3 (FO, F1, 
LOGHDR, 
F3, 
PROTECT, 
FS, 
NUMBER, 
F7) BIT (1) INIT (' 0' B) , 

2 RES BIT(1) INIT('O'B), 
2 NO FIXED BIN. 
2 AREA POINTER, 
2 STEP FIXED BIN(31,0) INIT(O), 
2 HEAD POINTER, 
2 NAME POINTER; 

GTLOGSTR 

1* GETLOG DEFAULT STRUCTURE *1 
1* GETLOG, MACRO 10 *1 
1* RETURN CODE *1 
1* PARAMETER LIST FLAGS *1 
1* RES ERVED *1 
1* A(LOGHEADER) IN HEAD *1 
1* RESERVED *1 
1* ON IF PROTECTION REQ'D *1 
1* RESERVED *1 
1* NU~BERED ARRAY *1 
1* RESERVED *1 
1* RESERVED *1 
1* ARRAY NUMBER *1 
1* DATA AREA *1 
1* RELATIVE COpy NO *1 
1* A (LOGHEADER/'l'IKE FIELD) *1 
1* A(ARRAY NAM~ *1 

Name of the default structure provided for the Special Real Time 
operating System GETLOG service requests. 

MACID 
A halfword binary value of qa identifying the requested service to 
the interface routine. 

RC 
A halfword binary field containing a binary number return code from 
the GETLOG service routine. See GETLOG macro v~ite-up for possible 
val ues. 

TYPE 
A flag's field indicating to the GETLOG se~vice routine the options 
requested. 

LOGHDR 
If on, HEAD contains the address of a 24-byte log header identifying 
the relative starting point to determine which copy of the array will 
be retrieved from the log data set. 

If off and HEAD is zero, the current COp! becomes the relative 
starting point. If off and HEAD is not zero, then it contains the 
address of a 6-byte time and day field beginning on a fullvord 
boundary. The first four bytes will contain a time in 10 millisecond 
units. The last two bytes will contain a binary value from 1 to 366 
representing the day of the year. This time and day will be used as 
a comparison value to establish a relative starting point to determine 
which copy of the arra~ ~ill be retrieved from the log data set. 

PROTECT 
If on, a lock is set to prevent other programs from modifying the 
data set while this GETLOGis in process. If off, the data is moved 
without regard to other programs which may be storing into the data 
set. 

NUMBER 
If on, specifies that NO contains an array number. If off, NAME 
contains the address of an a-character array name padded on the right 
with blanks if needed. 

NO 
Specifies the number of a numbered array for which a logged copy of 
the array is to be retrieved. 

APPLICATION SERVICES 2-91 



AREA 
Specifies the address of a user-allocated storage drea where the 
logged copy of the array will be written upon r.e~rieval from the log 
data set. This area must be large enough to hold the entire array 
and a logheader (24 bytes). 

STEP 
Is used to determine which copy of a logged array, relative to the, 
HEAD parameter will be retrieved from the log data set. The value 
is a signed number which may be eithAr positive, negative, or zero. 

HEAD 
Zero or the address of an array logging header or of a 6-byte time 
and day field. See LOGHDR, under TYPE above for discussion of the 
contents of HEAD. 

NAME 
The address of the name of a named array for which a logged copy of 
the array is to be retrieved. 

The GETLOG service is invoked in PL/I by CALLing DPPPIF with a properly 
completed GTLOGSTR or a similar c;tructure. 

The following example will execute a GETLOG for the previously logged 
copy of array B referenced from the current copy. Note that the 
structure into which the log copy is read provides space for the log 
header. 

DCL 1 
2 
2 
2 

GTLOGSTR, 
MACID FIXED 
RC FIXED 
TYPE, 

3 (FO,F1, 
LOGHDR. 
F3, 
PROTECT, 
FS, 
NUMBER, 

BIN INIT (4S) , 
BIN INIT (0) , 

F7) BIT (1) INIT (' O' B) , 
2 RES BIT(l) INIT ('O'B)~ 
2 NO FIXED BIN, 
2 AREA POINTER, 
2 STEP FIXED BIN(31,O) INIT(O), 
2 HEAD POINTER, 
2 NAME POINTER; 

DCL A CHAR(S) INIT('B'); 
DCL 1 tARAY, 

2 LOGHD (12) FIXED BIN, 
2 ARRAY (24) FIXED BIN(31,O); 

GTLOGSTR.STEP=-l; 
GTLOGSTR.AREA= ADDR(LARAY.LOGHD(l»; 
GTLOGSTR.NAME= ADDR(A); 
CALL DPPPIF(GTLOGSTR.MACID); 

/* GETtOG DEFAULT STRUCTURE 
/* GETLOG MACRO ID */ 
/* RETURN CODE *1 
1* PARAMETER LIST FLAGS *1 
/* RESERVED *1 
/* A (LOGHEADER) IN HEA D *1 
/* RESERVED */ 
/* ON IF PROTECTION REQ'D *1 
1* RESERVED */ 
/* NUMBERED ARRAY *1 
1* RESERVED *1 
/* RESERVED *1 
/* ARRAY NUMBER *1 
/* DATA AREA */ 
1* RELATIVE COpy NO *1 
/* A (LOGHEADER/TIME FIELD *1 
/* A (ARRAY NAME) *1 

2-98 Descri ption and Operation Manual 

*1 



PLII PUTLOG Interface 

This PL/I interface provi1es the programmer. the facilities of the PUTLOG 
service. The default structure. PTLOGSTR (defined below), may be copied 
into the PLII program via a %INCLUDE PTLOGDEF;. 

DeL 1 PTLOGSTR, 
2 MACID FIXED BIN INIT(44), 
2 RC FIXED BIN INIT(O), 
2 NAKE POINTER, 
2 HEAD POINTER, 
2 TYPE, 

3 (FO, Fl, 
LOGHDR, 
BLOCK, 
PROTECT, 
LIST, 
NU M B ER ) BI T ( 1) I NIT ( , 0 ' B) , 
3 PU T BI T ( 1) I NI T ( , 1 ' B) , 

2 RES BIT(l) INIT('O'B), 
2 BLKADD FIXED BIN INIT(O); 

PTLOGSTB 

1* PUTLOG DEFAULT STRUCTURE */ 
1* PUTLOG MACRO ID *1 
1* RETURN CODE *1 
1* A(NAME/NUMBER/LIST) *1 
1* A (LOGHEADER/BLOCKLIST) *1 
1* PARAMETER L 1ST FLAGS *1 
1* RESERVED *1 
1* A(LOGHEADER) IN HEAD */ 
1* A(BLOCKLIST) IN HEAD *1 
1* ON IF PROTECTIOR REQ'D *1 
1* A (LIST FORM) IN NAME */ 
1* A(NUKBER) IN NkME *1 
1* MUST BE ON *1 
1* RESERVED *1 
1* DISPLACEMENT NEXT BLKNO *1 

Name of the default structure provided for the Special Real Time 
operating System PUTLOG service requests. 

MACID 
A halfword binary value of 44 identifying the requested service to 
the interface routine. 

RC 
A halfword binary field containing a binary number return code from 
the PUTLOG service routine. See POTLOG macro write-up for possible 
val ues. 

NAME 
The address of an array name, number or a list of array names or 
numbers. The flags LIST and NUMBER in the flag field TYPE define 
the contents of this field~ 

LIST = loeB and NUMBER = loeB 

Specifies the address of a name of a named array from which data is 
to be logged. 

LIST = loeB and NUMBER = 'l'B 

Specifies the number assigned to a numbered array from which data is 
to be logged in a halfword field binary field. 

LIST = 'l'B and NUMBER = 'O'B 

Specifies the address of a user-constructed list of array names from 
which data is to be logged. The name list will be a table of 8-byte 
entries with one valid array name in each entry,. The first byte past 
the last valid entry will be set to X'FF' to indicate the end of the 
name list. 

APPLICATION SERVICES 2-99 



EXAMPLE: Name List 

0..-____ -, 

ARRAYNAM 
8 

HOUSTON!; 
16 

TEXAS!;!;!; 
24 

X'FF' I 

LIST = '1'B and NUMBER = '1'B 

specifies the address of a user-constructed list of array numbers 
from which data is to be logged. The number list viII be a table ~f 
halfvord entries with one valid array number in each entry. The 
first byte past the last valid entry viII be set to X'FF' to indicate 
the end of the number list. 

EXAMPLE: Number List 

o 
H'l' 

2 

H'2SS' 
4 

H'139' 
6 

X'FF' I 

HEAD 
The address of a logheader or blocklist or zero. The flags LOGHDR 
and BLOCK in the flag field TYPE define the contents of this field. 
If neither flag is set, HEAD is ignored. 

LOGHDB = '1'B and BLOCK = 'O'B 

Specifies the address of an array logging header. Information in 
this logging header viII identify the copy of the array vhich is to 
be replaced in the log data set. 

The logging header is a 24-byte control block vhich precedes the 
array, both as the array exists in virtual storage and as is written 
to the logging array. The logging header vhich vas retrieved as palt 
of a previous GETLOG macro may be used to replace that copy in the 
log data set. 

BLOCK = '1'B and LOGHDR = loeB 

specifies the address of a user-constructed list of block numbers 
and of core addresses. The data list will be a table of 6-byte 
entr~es. Each entry viII contain a 1-byte flag field, a 3-byte area 
address, and a 2-byte block number. This will allow the user to 
update selected segments of the Dl log array for block VS resident 
arlays on demand basis. The latest log copy will be modified. 
However, the entire vs resident array is not logged; only the log 
block corresponding to the is resident block specified will be 
updated. The actual log copy viII not change; that is repeating 
POTLOG macro calls with the BLOCK parameter will update the same log 
copy. A PUTLOG without the BLOCK parameter will cause the entire 
array to be logged to a new log copy. 

2-100 Description and Operation Manual 



0~ ____ ~ ________ 2 ______ 3 ____ ~4 ______ S~ 

FLAG 
BYTE 

FLAG 

X'40' 

X'80' 

AREA ADORES S 

BLOCK NUMBER 

AREA ADDRESS 

BYTE 

BLOCK 
NUMBER 

Indicates the last entry to be processed for a 
particular entry in the name list or riumber list. 

Indicates the last entry in the data list. 

Ignored. 

The number assigned to the data block to be retrieved 
and placed in the array described in the Name List 
or Number List. 

EXAMPLE: BLKLIST and Name List 

Name List Data list 
FIRSTt>M,> A(Area) H'I' 

A(Area) 

X'4O' A(Area) 

SECONDt>t> ~ 
THIRDt>t>t> ~ L 

~X'FF'---'--I ----' I L 
H'S' 

H'lO' 
} Blocks in first 

array 

TYPE 

LOGHDR 

BLOCK 

PROTECT 

LIST 

NUMBER 

PUT 

BLKADD 

X'4O' A(Area) H'3' - Blocks in second array 

A(Area) H'2SS' 

A(Area) H't' J 
A(Area) H'2' 

A(Area) H'37' 
Blocks in third array 

A(Area) H'186' 

X'80' A(Area) H'249' 

A 1-byte flags field specifying the parameter options. 

See HEAD. 

See HEAD. 

If on, a lock is set to prevent any other modifications 
to the data base during the PUTLOG service. If off, 
the data viII be logged without regard to other 
concurrent modifications. 

See NAME. 

See NAME. 

Must be on for PUT LOG service. 

The value to be added to HEAD to locate the next block 
number. A value must be specified. 

The PUTLOG service is invoked in PL/I by CALLing DPPPIF vith a properly 
completed array name, array number, array name list, array number list, 
logheader address block list address and structure (PTLOGSfR or a 
similar structure). 

APPLICATION SERVICES 2-101 



The following example viII POTLOG Array B. 

DCL 1 
2 
2 
2 
2 

PTLOGST R, 
MACID FIXED 81 N, 
RC FIXED BIN 
NArtE POINTER, 
HEAD POINTER, 

lNlT (44) , 
INIT(O) , 

2 TYPE, 
3 (FO,Fl, 
LOGHDR, 
BLOCK, 
PROTECT, 
LIST, 
NOMBER) BIT(l) INIT('O'B), 
3 PU T BI T ( 1 ) I NIT ( , 1 ' B) , 

2 RES BIT(l) INIT('O'B), 
2 BLKADD FIXED BIN INlT(O); 

D CL A C H A R ( 8) IN 1 T ( I B ') ; 
PTLOGSTR.NAME = ADDR(A); 
CALL DPPPIF(PTLOGSTR,MACID); 

1* PUTLOG DEFAULT STRUCTURE */ 
1* PUT LOG MACRO ID */ 
1* RETURN CODE *1 
1* A (NAME/NUMBER/LIST) *1 
1* A (LOGHEADER/BLOCKL1ST) *1 
1* PARAMET~R LIST FLAGS *1 
/* RESERVED */ 
/* A(LOGHEADEB) IN HEAD */ 
/* A(BLOCKLIST) IN HEAD *1 
1* ON IF PROTECTION REQ'D */ 
1* A(LIST FORM) IN NAME *1 
/* A(NUMBER) IN NAME */ 
1* KUST BE ON */ 
1* RESE.RVED *1 
1* DISPLACEMENT NEXT BLKNO *1 

Note that because HEAD was left zero, the array was logged at the 
current log copy plus 1. 

This PL/I interface provides the programmer the facilities of the 
DUMPLOG service. The default structure DPLOGSTR (defined below), may 
be copied into the PL/I program via a %INCLUDE DPLOGDEF;. 

OCL 1 DPLOGST R, 1* DUMPLOG PARAMETER STRUCTURE 
2 MACIO FIXED BIN I NI T (52) , 1* DUM PLOG MACRO I D */ 
2 RC FIXED BIN INlT (0) , 1* RETURN CODE */ 
2 TYPE, 1* SERVICE OPTIONS FLAGS *1 

3 (FO,Fl,F2, 1* RESERVED */ 
DISP, 1* NEW - IF ON *1 
F4, /* RESERVED */ 
LIST, 1* LIST OF. NAMES/NUMBERS *1 
NOMB, 1* ARRAY NUMBER/NUMB. LIST *1 
F7) BIT (1) INIT('O'B) , 1* RESERVED */ 

2 RES BIT (1) , 1* RESERVED *1 
2 NO FIXED BIN INIT (0) , 1* ARRAY NUMBER */ 
2 START POINTER, 1* A(START TIME) */ 
2 STOP POINTER, 1* (STOP TIME) *1 
2 AREA POINTER, 1* A (USER DATA) */ 
2 DDNAM CHAR(8) I NIT (' DUMPLOG ') , 1* DEFAULT DDNAME */ 
2 LIST POINTER; 1* A (NAME/NUMBER LIST) *1 

DPLOGSTR 
Name of the default structure provided for the Special Real Time 
Operating system DUMPLOG service requests. 

MACID 
A halfword binary value of 52 identifying the requested service to 
the interface routine. 

Re 

*/ 

A halfword binary field containing a binary number return code from 
the DUMPLOG service routine. See DUMPLOG macro write-up for possible 
val ues. 

2-102 Description and operation Manual 



TYPE 
A flags field indicating the requested options to the DUMPLOG service 
routine. 

DISP 
Specifies whether the dumped copies are to be written at the beginning 
of the dump data set (DISP = '1'B;) or added to the existing dumped 
copies (DISP = 'O'B;). 

If the disposition parameter specified on the DD card statement for 
this data set is either OLD or SHR and the data set is empty, then 
the first DUHPLOG -request must specify NEW (DISP='1'B;). 

specifying DISP='1'B; on subsequent OUMPLOG requests will position 
a direct access data set to record one and will cause a tape data 
set to force the EOV before the log copies are written. 

J,IST 
If on, specifies a list of array names or numbers is pointed to by 
the LIST pointer variable. 

NUMB 
If on, specifies numbered array(s) to be processed by this request. 
Either NO contains the array number, or LIST contains the address of 
a number list. 

NO 
Specifies the halfword number assigned to a numbered array for which 
the log array is to be dumped. LIST bit in TYPE must be off. 

START 
Specifies th~ address of a 6-byte time and day field beginning on a 
fullword boundary. The first four bytes will contain a time in 
10-millisecond units. The last two bytes will contain a binary value 
from 1 to 366 representing the day of the year. The logged copies 
of the array will be searched until a copy is found with a log time 
equal to or greater than the start time specified. If this parameter 
is omitted. dumping will commence with the oldest logged copy of the 
array. 

STOP 
Specifies the address of a 6-byte time and day field beginning on a 
fullvord boundary. The first four bytes viII contain a time in 
10-millisecond units. The last tvo bytes viII contain a binary value 
from 1 to 366 representing the day of the year. The logged copies 
of the array will be dumped until the most recently logged copy has 
been dumped or until a copy is dumped with a log time equal to or 
greater than the stop time specified. If this parameter is omitted, 
dumping viII terminate when the most recently logged copy of the 
array has been dumped. 

Note: The DUMPLOG routine will insert a byte of X'FF'into the first 
byte of the logging header of the last copy of each array dumped 
to the sequential data set. This function to indicate the end 
of the dump of each array to the user delog routine. 

AREA 
Specifies the address of a 256-byte area of user data to be contained 
in the dump header for each array on the sequential dump data set. 

ODNAM 
Specifies the name of a data definition statement which described a 
sequential data set to receive the dumped copies of the array from 
the log data set. If this parameter is omitted, the DO name 'DUMPLOG' 
viII be assumed as the default. 

APPLICATION SERVICES 2-103 



The output will consist of spanned variable length records. The 
blocksize of the data set defined by the DDNAK parameter must be at 
least 264 bytes but no more than 32,760 bytes. The blocksize should 
be large enough to contain one array copy, the log header (24 bytes), 
the user dump h~ader (256 bytes), if any, and the descriptor words 
for variable length records (8 bytes) for maximum processing 
efficiency. 

lIST 
Specifies the address of the array name of the log array to be dumped 
(LIST bit of TYPE and NUMB bit are off) or the address of a list of 
array names or numbers (LIST bit of TYPE is on)_ 

The name list will be a table of 8-byte entries with one valid array 
name in each entry_ The first byte past the last valid entry viII 
be set to X'FF' to indicate the end of the name list. 

EXAMPLE: Name List 

0 

ARRAYNAM 
8 

HOUSTON!; 
16 

TEXAS!;!;!; 
24 

X'FF' I 

The number list will be a table of halfword entries with one valid 
array number in each entry. The first byte past the last valid entry 
will be set to X'FF' to indicate the end of the number list. 

EXAMPLE: Number List 

0 

H'I' 
2 

H'255' 
4 

H't39' 
6 

X'FF' 

The DUMPLOG service is invoked in PL/I by CALLing DPPPIF vith a properly 
completed DPLOGSTR or a similar structure. 

The following example viII DUMPLOG all the logged copies of array '13' 
beginning with the oldest copy. The dumped records viII be at the 
start of the data set pointed to by DD name DUMPLOG. 

2-104 Description and Operation Manual 



DCL 1 DPLOGST R, 
2 MACID PIXED BIN INIT(52), 
2 RC FIXED BIN INIT (0) , 
2 TYPE, 

3 (PO, F1 ,F2, 
DISP, 
F4, 
LI ST, 
NU MB, 
F1) BIT ( 1 ) I NI T ( , 0 ' B) , 

2 RES BIT (1) , 
2 NO FIXED BIN INIT(O), 
2 START POINTER, 
2 STOP POINTER, 
2 AREA POINTER, 
2 DDNAK CHAR(8) INIT('DUMPLOG'), 
2 LIST POINTER; 

DCL A CHAR(S) INIT ('B').; 
DPLOGSTR.TYPE.DISP = 'l'B; 
DPLOGSTR.LIST = ADDR(A); 
CALL DPPPIP (DPLOGSTR. MACID) ; 

/* DUMPLOG PARAMETER STRUCTURE *1 
1* DUM PLOG MACRO I D *1 
/* RETURN CODE */ 
/* SERVICE OPTIONS FLAGS *1 
/* RESERVED */ 
/* NEW - IF ON *1 
/* RESERVED */ 
/* LIST OF NAMEINUMBERS *1 
/* ARRAY NUMBER/NUKB.LIST *1 
1* RESERVED *1 
1* RESERVED *1 
1* ARRAY NUMBER *1 
1* A(START TIltE) *1 
1* A (STOP TIME) *1 
1* A(USER DATA) *1 
1* DEFAULT DDNAME *1 
1* A (NAKE/NUMBER LIST) *1 

APPLICATION SERVICFS 2-105 



This portion of the manual explains the programming considerations for 
FORTRAN programs to be 'run under Special Real Time Operating System 
environment. FORTRAN programs which do not use Special Real Time 
Operating system services should follow standard procedures as described 
in the FORTRA,N Pr.Qg~n~.!A Quide, Form No. GC28-6817. 

The remainder of this section explains procedures pertinent only if 
Special Real Time Op~rating system services will be used in FORTRAN 
programs. The user should be aware that these serYices are intended 
for FORTRAN programs which are invoked via the PATCH function. Other 
means of executing FORTRAN (such as LINK, CALL, XCTL) using these 
services should be used only by programmers who are aware of the 
interfaces between FORTRAN and the Special Real Time Operating System. 

The interface routines described here use FORTRAN COMMON areas to pass 
and receive parameters. It should be noted that, when using the G 
level FORTRAN compiler, the variable name that is passed to the 
interface routine(s) must be the name of a variable within the COMMON 
area and not the name of the COKMON area. 

This section describes three enhancements provided to the FORTRAN 
programmer to interface vith Special Real Time Operating System: 

1. Identification of the computer storage address of one variable 
and setting another variable to that value. 

2. Execution of storage bits. 

3. Movement of up to 32,767 computer storage bytes of data from 
one location to another. 

The FORTRAN programmer viII discover that one or more of these 
capabilities is probably needed when using the capabilities described 
in the remainder of this section. 

I ADDR Function 

This function computes and returns to the caller the 32-bit address 
requested and stores it at the desired location. 

X=IADDR (Y) 

ORBIT Subroutine 

This subroutine ORs the specified bit mask into the specified address. 
The location to be modified must be specified first in the CALL 
parameters. 

LOGICAL*1 FF/ZFF/ 

CALL ORBIT(X,FF) 

NDBIT Subroutine 

This subroutine ANDs the specified mask with data at the specified 

2-106 Description and Operation Manual 



address. The location to be .odified must be specified first in the 
call paramet ers. 

LOGICAL*l SF/Z7F/ 

CALL NDBIT(X,SF) 

COpy Subroutine 

This function moves up to 32,767 contiguous bytes of data from one 
location to another. More than one move operation can be specified 
in the same call. The format of the CALL subroutine is as follows: 

CALL COpy (INLIST,OUT, ,OUT 2 - .'. ,OUTn) 

where INLIST specifies an address variable or a common area consisting 
of address variables. (An address variable is one vhich has been set 
using the IADDR function to contain the address of, or point to, a 
data area.) The address variable (s) in IlfLIST should point- to ·the data 
area froll which data is to be moved,. The variable OUT,., ••• ,OUTn should 
be the labels for the data area to which the data is to be moved. The 
number of copy operations viII be equal to the number of OUT 
variables. Data viII be moved to the OUT, data area from the data 
area addressed by the first address variable of INLIST, data viII be 
moved to the OUT

2 
data area from the data area addressed by the second 

address variable of INLIST, and so on until OUTn has been likevise 
processed. 

If either OUT. or the corresponding address variable of inlist is zero 
I 

no move takes place for that OUT
i

• The copy operation proceeds to the 
nE:lxt OUT i+1 • 

The length of each move viII be determined independently for each ODT. 
either by the first halfvord of the OUT data area, or by the first I 

half~ord of the data area pointed to byithe corresponding address 
variable of INLIST. The length of the move viII be equal to the 
smaller positive value of the tvo halfvords, as zero and negative 
values are not recognized. (NO move viII take place for this OUT. if 
neither halfword referred to is positive.) Note that the first haifvord 
of both areas is included in the move, and the two bytes occupied by 
the length must be included in the length specification. 

For example, moving one data area, INA1, to another data 'area, OUTA1, 
is accomplished as follows: 

Given: 

COMMON/INA1/INHALF, INF (30) 
INTEGER INH1LF*2, INF*2 
COMMON/OUTA1/0UTHAF, OUTF (70) 
INTEGER OUTHAF*2, OUTF*2 

Then code: 

INHALF=30*2+ 2 

OUTHAF=70*2+2 

Set the first halfvord of the input area 
equal to its length. 

Set the first halfvord of the output area 
equal to its maximum length - in case the 
input area's length varies. 

APPLICATION SERVICES 2-107 



INADD=IADDR(INHALF) 

CALL COPY(INADD,OUTHAF) 

set the address variable INADO to point to 
la bele d common area IN A 1. 

This causes the common area INA1 to be moved in its entirety (62 bytes) 
to the common area OUTA1. Note that the value of OUTHAF would be 62 
after the MOVE operation. 

The next example describes moving several common areas (COM1, COM2, 
COM3) to output common areas (OUT1, OUT2, COUT3). It is assumed that 
the first halfword of each common area has been set to its desired 
length. 

Given: 

COMMON/COM1/CHALF1 ••• 
COMMON/COM2/CHALF2 ••• 
COKMON/COM3/CHALF3 ••• 
COMMON/INCOM/IN1,IN2,IN3 
INTEGER IN1,IN2,IN3 
COMMON /OUT1/0HALF1 ••• 
COMMON /OUT2/0HALF2 ••• 
COMMON /OUT3/0HALF3 ••• 

Then code: 

IN1=IADDR(CHALF1) Set the address variables 
IN2=IADDR(CHALF2) to point to their common 
IN3=IADDR (CHALF3) areas. 
CALL COpy (IN1 ,OHALF1,OHALF2,OHALF3) 

~Q.£a!.ing In.!U!i Pau.m.~ter (§l. Afi~ I3ei ll9. f.llgj,!!,g, 

This section explains the coding of FORTRAN program to interrogate the 
data which may have been specified via the PATCH function. Refer to 
the section on the PATCH macro for a detailed discussion of the PATCH 
parameters. The only requirement of this discussion is to know that 
the PA~CH macro can specify a list of input parameters to be passed to 
the user in his PROBL. This disc ussion applies to a program which is 
re-entered at the beginning for each execution of the function to be 
processed. A FORTRAN program may be coded to be logically entered 
several times when actually being entered at the beginning only once. 
This is described in the section entitled, "Repeated Execution of a 
FORTRAN Program". 

The FORTRAN program receiving control due to the PATCH can gain access 
to this PROBL parameter list by including a call to a special interface 
routine (DPPFPM) and having a predefined common area properly 
initialized, as described. The common area is described in the 
following example and will be called PARM throughout this write-up. 

PARM 

o +2 

PRMAC I PRMRC 

+4 
PRXCVT 

+8 
PRMRES 

+12 
PRMADD 

While the first two halfwords, PRM1C and PRMRC, must be initialized to 

2-108 Description and Operation Manual 



zero prior to calling DPPFPK, the remainder of the common area need 
not be initia lized. 

Following is a layout of the common area PARM in FORTRAN code, with an 
explanatio-n of each variable as they pertain to this section. 

C 
C COMMON NAMED'PARM'--PARAMETER TABLE FOR RECEPTION OF PATCH 

COKMON/PARM.PRMAC 
INTEGER*2 PRMAC 

COHKON/PARK/PRMRC 
INTEGER*2 PRPlRC 

COHKON/PARM/PRXCVT 
INTEGER*4 PRXCVT 

COKKON/PARK/PRPlRES 
INTEGER*4 PRf1RF.S 

COMKON/PARK/PRPlADD 
INTEGER*4 PRKADD 

C END OF COKMON NAMED 'PARM' 
e 

PRMAC 
A halfword variable reseryed for use by DPPFPM. 
to zero prior to calling DPPFPM (the first call 
viII have no meaning to the FORTRAN programmer. 
altered after the first call to DPPFPK. 

PRMRC 

It must be initialized 
only) and its contents 
It should not be 

A half word variable which 'will contain the return code as set by 
DPPFPK. This variable should be set to zero prior to calling DPPFPM. 
Its subsequent contents have no meaning to the FORTRAN programmer vhen 
calling DPPFPPI solely to gain access to the PATCHed input parameters. 
(The section entitled, "Repeated Execution of FORTRAN Program" 
describes another use of the program DPPFPK and common area PARM in 
which this variable is pertinent). 

PRXCVT 
This fullvord variable, which need not be initialized, contains the 
address of the XCfT after calling DPPFPM. This variable does not 
pertain to the present discussion. 

PRMRES 
This fullword variabl~, which need not be initialized, contains the 
address of the Resource Table for this task after calling DPPPPM. 
This variable is not pertinent to the present discussion on input 
parameters. 

PRMADD 
This fullword variable, which need not be initialized contains the 
address of the Problem Parameter List (PROBL) for the causative PATCH. 
It is through this variable that the FORTRAN programmer gains access 
to his PROBL, which contains the input parameters or pointers to the 
input parameters. 

The PROBL, pointed to by the variable PRftADD (within common PARM), 
should also be described by a labeled common area, which shall 
henceforth be called PROBL. The PROBL has one of two formats, 
depending on whether this program is PATCHed via a PATCH macro (from 
an already executing program) or via an input control stream PATCH 
CAFD. In either case, the length of the table varies with the number 
of parameters passed on the PATCH, so the common area (PROBL) should 
be specified according to the maximum number of parameters expected. 
The following example depicts the two formats of the PROBL. 

APPLICATION SERVICES 2-109 



PROSl from 
PATCH Macro 

length of PROBl 

+2 +3 

10 

4 

8 

PROBl from 
an I nput Control Stream PATCH Card 

length of PROS l I 00 I 10 

(Reserved Flags) 

length Address of 
of first first parameter parameter 

· · J1 · ~f 

(One fullword per parameter) 

length Address of 
of last last parameter parameter 

Note that the first word of both formats is the same and that while 
the format of the remainder is fixed in the PATCH card type, the fornat 
of the remainder is flexible in the PATCH macro type. In most cases 
the PROBL of a PATCH macro, w·hen used in conjunction witti FORTRAN 
programs, will be set up to consist of data rather than pointers to 
data as in the PATCH card type. 

The common area, then, for the PROBL would be coded as follows: 

COMMON/PROBL/PRSLNG 
INTEGER*2 PROBLNG 

COMMON/PROBLjID 
INTEGER*2 10 

COMMON/PROBLjPROSP1 
INTEGER*4 PROBP1 

PRBLNG 
The total length in bytes of this PROSL, including this halfword. 

ID 
The 10 value specified on the PATCH CARD or macro (defaults to zero) • 

PROBP1 
A fullword variable which (1) con~ains the first PATCH parameter or 
(2) contains the address of the first PATCH parameter. (1) or (2) is 
thf user's (caller's) option. 

The special Real Time Operating System initialization process allows 
a PATCH to be executed under control of a PATCH card. The format of 
the parameters that may be specified with the PATCH card are such that 
passing parameters from the PATCH card may not be practical, without 
an assembler language routine specially written for this purpose. 

In the following example, assume that the FORTRAN program will be 
PATCHed by a program (already in execution) with which a common format 
for the PROSL has been previously established. Suppose that the 
following statements describe this PROSL format and appear in the 
FOR'I'RAN program. 

2-110 Description and Operation Manual 



COMMON/PROBL/PRBLNG,ID,PROBP(10) 
INTEGER PBBLNG*2,ID*2,PROBP*4 

These cards indicate that 10 full word parameters will be passed to this 
FORTR AN program. 

Ther, to interrogate the parameters vithin the FORTRAN program, code 
the following: 

COM~ON/PARM/PRMAC,PRMRC,PRXCT.PRMRES,PRMADD 

INTEGER PRMAC*2,PRMRC*2,PRXCVT,PRKRES,PRKADD 

These cards defined the common area PARK previously explained. 

PRMAC=O These statements initialize the 
PRMC=O common area PARM as required • 

. 
CALL DPPFPM(PRMAC) Cause the common area PARM to be properly 

filled in. 

PRBLNG=44 set length of PROBL to maximum expected. 

CALL COPY(PRMADD,PRBLNG) Cause the common area PROBL to be filled in 
as per the PROBL of the PATCHING program. 

The variables PROBP(l) through PROBP(10) viII have the values specified 
in the PATCH and can be referenced normally. 

Thi~ section describes the procedure to be used for a FORTRAN program 
which is to be repeatedly executed in a realtime environment. 

Under standard executing conditions when a FORTRAN program is executed 
a second time after completing one execution, a fresh copy is fetched 
and both prologue and epilogue are executed again. This fetching of 
a fresh copy and the re-executing of the prologue/epilogue can sometimes 
be avoided when executing a FORTRAN program under the Special Real Time 
Operating System. This is done by coding multiple calls to an interface 
program (DPPFPM) in a certain sequence and by having a predefined common 
area properly initialized. 

The description of the common area, hereafter called PARM, was presented 
in the section entitled "Locating Input Parameters after being PATCHed" 
and will be repeated here with explanations pertinent to this section. 
The following example depicts the PARM common area. 

PARM 

o +2 

PRMAC' J PRMRC 

+4 
PRXCVT 

+8 
PRMRES 

+12 
PRMADD 

APPLICATION SERVICES 2-111 



The FORTRAN-coded statements for the specification of the PARM common 
area follows: 

C 
C COMMON NAMED'PARM'--PARAMETER TABLE POR RECEPTION OF PATCH 

COMMON/PARM/PRMAC 
INT EGER*2 PRM AC 

COMMON/PARM/PRMRC 
INT EGER*2 PRM RC 

COMMON/PARM/PRXeVT 
INT EGER*4 PRX eVT 

COMMON~PARM/PRMRES 

INT EGER*4 PRM RES 
COMMON/PARM/PRMADD 

INTEGER*4 PRM ADD 
C END OF COMMON NAMED 'PARM' 
C 

PRMAC 
This halfword variable should be initialized to zero prior to the 
first call to DPPFPM only. It will be used by DPPFPM and should not 
be subsequently altered by this FORTRAN program. Its contents will 
be of no significance to the FORTRAN programmer. 

PRMRC 
This halfword variable should be initialized to zero prior to the 
first call to DPPFPM only. It is used as both an input variable and 
an output variable by the FORTRAN program following An in-depth 
explanation of the use of this vital parameter follows the remaining 
description of the PARM common area. 

PRXCVT 
This fullword variable, which need not be initialized, contains the 
address of the XCVT. This variable is immaterial to our present 
discussion. 

PRMRES 
This fullword variable, which need not be initialized, contains the 
address of this task's resource table. This variable is immaterial 
to our present discussion. 

PRMADD 
Tkis fullword variable, which need not be initialized, contains the 
address of the PROBL (pr'oolem parameter list) for this PATCH. Refer 
to the section entitled "Locating Input Parameters after being PATCHed" 
for a full explanation of accessing the problem parameter list. 

To understand the use of the PARM common area (in particular the 
variable PRMRC) in conjunction with multiple calls to DPPFPM, the 
concept of a work queue for a task must be understood. The FORTRAN 
program should be capable of performing a specified function when 
invoked, and if this function is requested again (or several times) 
under the same task, then the second request will be the first entrY 
in the work queue of that task. 

When the original request is serviced and the FORTRAN program has 
returned, the second request (first entry in the work queue) will be 
h~nored and the FORTRAN program viII be executed again. When the 
FORTRAN program has returned and no addition~l requests are waiting, 
a condition indicated by an empty work queue, the Special Real Time 
Operating System will place this task in wait state until such a request 
is made. If a request is made for a different program to be executed 
un~er this task, the Special Real Time Operating system will allov this 
FO~TR1N program to be purged. 

2-112 Description and Operation Manual 



If the author of the FORTRAN program foresees no entry in the work 
queue for this program's task at the completion of the program or at 
a later time, he should return as in standard FORTRAN (i.e., he need 
not call DPPFPK at all except for input parameter considerations). 

Given that entries in this task's work queue for this program are 
expected on completion of the processing of this PATCH, the programmer 
can avoid the overhead of program fetch and epilogue/prologue by n21 
returning normally but instead, calling DPPFPM again. ~he first call 
to DPPFPKmust have been done). Through the use of the variable PRMAC 
(m~intained by DPPFPK), DPPPPK viII knov that this is not the first 
call and consider it a RETURN. DPPFPK viII then locate,the first entry 
in the work queue for this task (or vait until there is one) and, if 
the entry is for this FORTRAN program, properly fill in the PARM common 
area according to the PATCH causing this work queue entry. 

If the previous PATCH (the one for which processing has just completed; 
had specified an ECB for posting, then that ECB viII be posted vith a 
completion code equal to the value in the variable PRKRC, vhich can be 
set by this program. If the first entry in the work queue was for 
another program, then this FORTRAN program should return normally, 
yielding this task to the new request. This This conditio'n viII be 
indicated by a nOD-zero value in PRKRC. This setting of PRMRC by DPPFPK 
is done on each call, including the first call, so the FORTRAN coder 
can surmise that only one call to DPPFPK is needed, followed by a RETURN 
if PRKRC is not zero. At the end of processing, or anywhere a normal 
RETURN would be coded, he would GO TO the statement of the CALL to 
DPPFPM. 

The following example illustrates the use of the multiple calls to 
DPPFPK for a FORTRAN program written with the expectation that it would 
be PATCHed repeatedly under the same task. 

Given: 

A FORTRAN program that expects to be PATCHed (via PATCH macro) .i.t}, 
different PATCH IDs to indicate various macro processing optioA'C' 
desired. 

Then code: 

COKftON/PARft/PRftAC,PRKRC,PRXCVT,PBftRES,PRftADD 
INTEGER PRKAC*2,PRKRC*2,PRICVT,PRKRES,PRMADD 
COK "ON/PROBL/PRBt NG ,ID, PBOBP1 
INTEGER PRBLNG*2,ID*2,PROBP1 

These cards define the r~quired common areas. 

1000 

PRKAC=O 
PRl'1C=O 

CALL DPPFPft(PRftAq 

IF (PRMRC.NE.O) RETURN 

Initialize the PARM common 
area as required 

Call DPPFPft to get PATCH ID parameters 

Non-zero indicates a different program 
'has been PATCHed to execute under this 
task. Return and give up control of 
this task. This condition viII not 
.Q£.£!l! Q!l !he tI~st cal!. - --- ---

A zero value indicates that variables in the PARM common area 
(especially PRMADD) have been set according to the PATCH. Proceed with 
processing. 

APPLICATION SERVICES 2-113 



PRBLNG=12 Set PRBLNG for a copy operation. 

CALL COPY(PRMADD,PRBLNG) Copy the PROBL for this PATCH to the common 
area PROBL. 

Now inspect ID and proceed processing. 

When processing is completed, set PRMRC according to a previously agreed 
upon return code (agreed upon with the author of the program which 
executed the PATCH this program has been processing). 

PRMRD= return code 

GO TO 1000 This causes another call to DPPFPM indicating that 
processing is completed for this PATCH and the 
program expects another. 

Note: The input parameters of each PATCH could also be interrogated 
in this example. Refer to the previous section for a description 
of this procedure. 

This section explains the coding of each of the online macros provided 
to the FORTRAN programmer by the Special Real Time Operating system. 
Each of these functions is provided to assembler language programmers 
through macro calls. There is a parallel (but more detailed) write-up 
on each function in the online macro section of this manual. Although 
this section may attempt to explain to varying degrees the functions 
themselves~ the main purpose here is to describe the format of the 
COMMON areas required for invoking each function and point out 
peculiarities where pertinent. 

The PATCH service provides the programmer the facility of creating work 
queues for passing parameters to programs executing under the Special 
Real Time Operating System. The following FORTRAN statements define 
the parameter list for this service: 

2-114 Descri ption and Operation Manual 



C 
C COMMON NAMED "PATCH '--PARAMETERS NECESSARY FOR PATCH FROM 
C FORTRAN 
C 

COMKON/PATCH/PATMAC 
INTEGER*2 PATMAC 

COMMON/PATCH/PATRC 
INTEGER*2 PATRC 

COMKON/PATCH/PATPRM 
INTEGER*4 PATPRM 

CO"MON/PATCH/PATASK 
INTEGER*4 PATASK(8) 

CO""ON/PATCH/PATEP 
LOGICAL*1 PATEP(8) 

COMMON/PATCH/PATNAM 
LOGICAL*1 PATNAM(8) 

C.OMMON/PATCH/PATQ 
INTEGER*2 PATQ 

COMMON/PATCH/PATV 
INTEGER*2 PATV 

COMMON/PATCH/PATECB 
INTEGER*4 PATECB 

COMMON/PATCH/PAT RES 
INTEGEa*4 PATRES(2) 

COMMON/PATCH/PATCBX 
INTEGER*4 PATCBX 

COMMON/PATCH/PATFLG 
LOGICAL*1 PATFLG 

C END OF COMMON NAMED 'PATCH' 
C 

PATMAC 
A halfword binary constant value of zero to identify a PATCH service 
request to the interface routine. 

PATRC 
A halfword binary field containing the return code from the service 
routine. See PATCH macro write-up for possible values. 

PATPRM 
A fullword address of the parameter list being passed. The format is 
a halfword binary value (minimum value is 4) describing the length ~f 
the entire parameter list r (including length and patch ID) followed 
by a halfvord binary value from 0 to 255 called the PATCH 10 with the 
remainder of the list being the parameters. The diagram below 
represents the format of a PATCH problem parameter list. 

o 2 

LENGTH I PATCH ID 

4 

PARAMETERS 

PATASK 
An 8-byte 
PATCHed. 
If PATASK 
dependent 

PATEP 

ch aracter field containing the name of the task being 
If the task does not exist, one by that name will be created. 
is all blanks, the PArCHed program will execute under a 
ta sk. 

An 8-byte character field containing a valid entry point name which 

APPLICATION SERVICES 2-115 



is the name of the program to be scheduled under the task being created 
with the PATCH. 

PATNAM and PATV 
Specifies an a-byte character field containing the task name for 
determining priority and a halfword binary value which will determine 
that priority relative to the task name in PATNAM. 

PATQ 
A half word binary value from 0 to 235 specifying the number of work 
queue entries to be allowed for the new independent task. If 0 is 
specified, the task accepts one PATCH, works on that request, and, 
when completed, waits for the next request. If a PATCH is requested 
for that task while it is busy, the request is not executed. If the 
queue length is 1, the task can accept one PATCH even while it is 
busy_ Any PATCH parameters waiting in the queue when a task completes 
processing of the current request vill be executed one at a time, with 
the start of th~ queue being executed first. This procedure is the 
same for all queue values from 0 to 255. 

PATECB 
The address of a fullword event control block (ECB) within a PATCH-WAIT 
parameter list of the common area WAIT. The ECB is posted when 
processing for this PATCH completes. 

PATRES 
Filler position for required space for PATCH MACRO (not usable by 
programmer~ • 

PATCBX 
A full word address of the TCB extension control block (TCBX) for an 
existing independent task. The Tcex address is stored by the interface 
routine after each PATCH service call. Use of this parameter with 
all successive PATCHes to the same independent task after the initial 
PATCH will reduce system processing time. Note that the other 
parameters must still be specified for verification or in the event 
the task has been DPATCHed. 

PATPLG 
The PATCH option flags as described below: 

X'40' 

X'20' 

X'08' 

This PATCH is intended for the MASTER partition. 

This PATCH is intended for the SLAVE partition. 

If this work request is pushed off the queue, the ECB is to 
be posted with a REPATCH control block address. 

X'04' -- Place the work request at the start of the work queue. If 
off, the request is queued last. 

X'02' -- Place this work request on the task DPATCH queue to be 
executed when a DPATCH is issued for this task. 

X'01' -- Specifies a DELETE is to be issued for the load module named 
previously after processing completes for this PATCH. 

X'OO' -- Execute this PATCH last. 

All combinations are valid except X'04' and X'02' must not both be 
set to 1. 

The PATCH service may be invoked by assigning values to the above 
defined variables and CALLing DPPPIF passing the common area as the 
(only) parameter. Exa.ples of using the PATCH facility follow. 

2-116 Description and Operation Manual 



E~amples 1 and 2 use the following parameter lists, variables, and 
constants as expressed in FORTRAN statements: 

BLOCK DATA 
COM"ON/PATCH/PATKAC,PATRC,PATPRM,PATASK(2),PATEP(2) ,PATNA~(2), 

1PATQ,PATV,PATECB,PATRRS(2),PATCBX,PATFLG 
INTEGER PATMAC*2/0/,PATRC*2/0/,PATPRM,PATQ*2/1/,PATV*2/0/, 

lPATECB,PATRES,PATCBX 
LOGICAL PATASK*4/' 'I,' 

1PATFLG*1 
COMMON/WA1T/WTMAC,WTRC,WTECB 

',PATEP*4,PATNA"*4/' 

INTEGER WTMAC*2/60/,WTRC*2/0/,WTECB/OI 
END 

I,' , , 

(The above common areas should be repeated in the main program 
without data initialization. The following statements are in 
MAIN only.) 

-LOGICAL*4 TN(2)/'DPPZ','TSOO'I,TP(2)/'DPPZ','TS13" 
LOGICAL*4 DP(2)/'DEPE','NDX'I,BLK(2)/' ',' 'I 

Example 1 

In this example, the task DPPZTSOO is to be created with a queue length 
of 1. Program DPPSTS13 is to be executed, and the parameter list is 
to contain only the length field and a PATCH ID of 10. The new task 
is to have the same priority as the task issuing the PATCH. Note that 
if the task already exists, the PATFLG (all bits off) indicates this 
work request will be queued behind any others on the queue. 

PRBLNG=4 
ID=10 
PATPRM=1ADDR(PRBLNG) 
DO 100 1=1,2 
PATASK(I)=TN(I) 

100 PATEP(1)=TP(I) 
CALL DPPP1F(PATMAC) 

Example 2 

In this example, assume that the CALL in Example 1 bas returned, and 
a dependent task is to be created at a priority of 10 less than the 
task DPPZTSOO and that program DEPENDX is to be passed a parameter list 
P1TCH ID of 2. The PATCHing program will WAIT for the dependent task 
to complete. The WAIT function is executed via a CALL to the interface 
routine using the WAITSTR structure. 

CALL DPPPIF(PATMAC) 
10=2 
DO 200 I=1,2 
PATASK(I)=BLK(I) 
PATEP(I)=DP(I) 

200 PATNAM(1)=TN{I) 
PATV=10 
PATECB=IADDR(WTECB) 
CALL DPPPIF(PATMAq 
IF(PATRC.GE.8) GO TO 400 
CALL DPPP1F(WTMAC) 

400 CONTINUE 

APPLICATION SERVICES 2-111 



This interface provides the FORTRAN programmer with the facility to 
wa.it for the completioR of a WOE generated by a PATCH. The following 
FORTRAN statements define the interface parameter list: 

C 
C COMMON NAMED 'WAIT'--PARAMETER TABLE FOR WAIT 

COMMON/WAIT/WTMAC 
INTEGER *2 WTMAC 
corHIO N/WA IT/WfI'R C 
INTEGER*2 WTRC 
COMKON/WAIT/WTECB 
INTEGER*4 WTECB 

C END OF COMMON NAMED 'WAIT' 
C 

WTMAC 
A half word binary constant value of 60 id~ntifying the requested 
service to the interface routine. 

WTRC 
A halfword binary number containing the high order byte of the 
completion code from the PATCHed program. See PATCH macro for possible 
values. It should be initialized to zero. 

WTECB 
A fullword binary field containing the 3 low order bytes of the 
completion code from the WQE just processed or the address of a BEPATCH 
control block. The value of,this field is governed by the contents 
of WTRC. It should be initialized to zero. 

Note: For this inter face, WTRC II ill never be zero when the interface 
returns to the FORTRAN program. 

Example 2 of the FORTRAN-PATCH interface shows the correct method for 
using this service. 

The DPATCH facility provides the programmer the method of destroying 
tasks which were created by the PATCH service. The following FORTRAN 
statements define the parameter list for this service: 

C 
C COMMON NAMED 'DPATCH' 

COMKON/DPATCH/DPRES 
INTEGER*2 DPRES 
COMKON/DPATCH/DPMAC 
INTEGER*2 OPM AC 
COMMON/DPATCH/DPRC 
INTEGER*2 DPRC 
COMMON/DPATCH/DPTYP 
INTEGER*2 OPTYP 
COMMON/DPATCH/DPTSK 
LOGICAL*1 OPTSK(8) 

C END OF COMMON NAMED 'DPATCH' 
C 

DPFES 
A halfword field inserted to align DEPTSK on a fullword boundary. 

DPMAC 
A halfword binary constant value of 8 identifying to the interface 
routine the required service. 

2-118 Deseri ption and Operation Manual 



DPRC 
A halfword binary field containing a binary number return code from 
the service routine. See DPATCH macro write-up for return codes. It 
should be initialized to zero. 

DPTYP 
A halfword b.inary value specifying the DPATCH service requested. If 
o is specified, the task is deleted immediately or when the currently 
executing work request completes. Any work queued to the task is 
posted as deleted. If 4 is specified, the task is deleted only if 
its work queue is empty. This does not prevent nev work from being 
queued. If 12 is specified, the task is deleted even if it is active. 
S~e the DEPATCH function under ONLINE KACBO for further explanation 
of the DEPTYP operand in the DEPATCH function. 

DPTSK 
Two logical fullwords specifying the name of the task being deleted. 
If blank, the current task is deleted. If the task is active, the 
program that is running viII be ABENDed. 

The folloving example viII force the task named 'BOLDTASK' to be 
DPATCHed immediately regardless of its active state and the amount of 
queued work. If the task is active, the running program viII be 
ABENDed. 

C FORTRAN DEPATCH EXAMPLE 
BLOCK DATA 

COMMON/DEPTCH/DEPRES,DEPMAC,DEPRC,DEPTYP,DEPTSK(2) 
INTEGER DEPMAC*2/8/,DEPBC*2/0/,DEPTYP*2/0/,DEPRES*2 
LOGICAL DEPTSK*4 

END 

(The above common areas should be repeated in the main program 
without data initialization. The following statements are in 
MAIN only.) 

LOGICAL A*4(2)/'BOLD','TASK'/ 

DEPTSK (1) =A (1) 
DEPTSK (2) =A (2) 
DEPTYP=12 
CALL DPPPIF (DEPMAC) 

!:,ORTRAN-REPAICH !nt~fi.~ 

This FORTRAN interface provides the programmer the facilities of the 
Special Real Time Operating System REPATCH service. The folloving 
FORTRAN statements define the parameter list for this service: 

APPLICATION SERVICES 2-119 



C 
C COMMON NAMED 'RPATCH'--PARAMETER TABLE FOR RPATCH 

COftMON/RPATCH/RPMAC 
INTEGER*2 RPMAC 

COMMON/RPATCH/RPRC 
INTEGER*2 RPRC 

COMMON/RPATCH/BPTYP 
INTEGER*4 RPTYP 

COMMON/RPATCH/RPCB 
INTEGER*4 RPCB 

COMMON/RPATCH/RPTSK 
LOGICAL*l RPTSK(8) 

COMMON/RPATCH/RPEP 
LOGICAL*l RPEP(8) 

COMMON/RPATCH/RPRTK 
LOGICAL*l RPRTK(8) 

COMMON/BPATCH/RPQUE 
JNTEGER*2 RPQUE 

COMMON/RPATCH/RPVAL 
INTEGER*2 RPVAL 

COMMON/RPATCH/RPECB 
INTEGER*4 RPECB 

CO"MON/RPATCH/RPRES 
INTEGER*4 RPRES(2) 

COMMON/RPATCH/RPTCB 
INTEGER*4 RPTCB 

COMMON/RPATCH/RPFLG 
LOGICAL*l RPFLG 

COMMON/RPATCH/PPAD 
LOGICAL*l RPAD(3) 

COMMON/RPATCH/RPPRM 
INTEGER*4 RPPRM(3) 

C END OF COMMON NAMED 'RPATCH' 
C 

RPMAC 
A halfword binary value of 12 identifying to the interface routine 
the required service. 

RPRC 
A halfword field containing a binary num~er return code from the 
REPATCH/PATCH service routine. See REPATCH macro write-up for REPATCH 
and related PATCH return codes. 

RPTYP 
A fullword binary value indicating the interface routine service 
required: 

o The REPATCH control block is to be copied to this parameter list 
for alteration prior to REPATCH. 

4 Issue REPATCH TYPE = EXEC. 

8 Issue REPATCH TYPE = PURGE. 

RPCS 
A fullword binary field to contain the REPATCH control block address 
placed in the WTECB when WTRC equals 68. The value in WTECB must be 
moved to RPCB before any interface call except the first interface 
call RPTYP = 4 or 8 following a RPTYP = 0 interface call. 

RPTSK 
Tvo 4-byte logical words containing the name of the task being 
referenced by this PATCH. 

2-120 Description and Operation Manual 



RPEP 
Two 4-byte logical words containing the nama of the program to be 
scheduled under task specified in RPTSK. 

RPRTK and RPVAL 
Specifies two 4-byte logical words containing a task name and a 
halfword value which will determine the priority of the new task 
relative to the named task in RPRTK. 

RPQUE 
A halfword specifying the number of work queue entries to be provided 
for a new independent task. 

RPECB 
specifies the address of the ECB within a COMMON/WAIT area which is 
to be used in a CALL DPPPIF. This ECB is posted when processing for 
this PATCH completes. The ECB which contained the REPATCH control 
address may be reused and will be if this parameter is left unchanged. 

RPRES 
Filler position required by REPATCH macro (not used by programmer). 

RPTCB 
contains the address of the TCS extension control block for an existing 
independent task. 

RPFLG 
The PATCH option flags as described below: 

X'40' 

X'20' 

X'08' 

This PATCH is intended'for the MASTER partition. 

This PATCH is intended for the SLAVE partition. 

If this work request is pushed off the queue, the ECB is to 
be posted with a REPATCH control block address. 

X'04' -- Place the work request on the front of the work queue. If 
off, the request is queued last. 

X'02' -- Place this work request on the task DPATCH queue to be 
executed when a DPATCH is issued for this task. 

X'01' -- specifies that a DELETE is to be issued for the load module 
named above after processing completes for this PATCH. 

Codes X'04' and X'02' are mutually exclusive; all other combinations 
are allowed. 

RPP AD, an d RPPRM 
Pointers which must not be altered by programmer. 

The Special Real Time Operating System REPATCH service may be invoked 
by ~ FORTRAN program by defining a COKftON area as described above, 
mov1ng the REPATCH control block address from the event control block 
to the RPCS field and then doing one of the following: 

a. If a REPATCH is to be executed without changes, set RPTYP to 4 or 
8 and CALI DPPPIF. 

h. If the FEPATCH is to be changed prior to execution, set RPTYP = 0, 
CALL DPPPIF, make changes desired, set RETYP to 4 and CALL DPPPIF 
again. 

Users of this facility should be aware that only the supervisor portion 
of the PATCH parameters can be altered. The problem parameters cannot 

APPLICATION SERVICES 2-121 



be changed. All REPATCH control blocks must be returned to the system 
through a RPTYP = 4 or 8 service request. 

Examples 1 and 2 show the various methods of using REPATCH. The example 
for using REPATeH service in FORTRAN use the following definitions of 
COM"ON areas and constants: 

BLOCK DATA 
COMMON/RPATCH/REPMAC,REPRC,REPTYP,TEPCB,REPTSK(2) , 

1REPEP(2),REPRTK(2),REPQUE,REPVAL,REPECB,REPRES(2), 
1REPTCB, REPFLG,REPAD (3) , REPPRM (3) 

LOGICAL REPTSK*4,REPEP*4,REPRTK*4,REPFLG*1,REPAD*1 
INTEGER REPKAC*2/12/,REPRC*2,REPTYP*4,REPCB*4,REPQUE*2, 

1RPVAL*2,RPECB*4,RPRES*4,RPTCB*4,RPPRM*4 
CO""ON/WAITjWTKAC,WTRC,WTECB 
INTEGER WTKAC*2/60/,WTRC*2/0/,WTECB/O/ 
END 

(The above common areas should be repeated in the main program 
without data initialization. The following statements are in 
MAIN only.) 

LOGICAL QPOS*1/Z04 

Example ,1 

This example shows the method for purging a REPATCH control block, 
should a work request fail to be executed. The example begins with 
the PATCH-WAIT which is notified that a REPATCH is needed. 

CALL DPPPIF (WTM AC) 
IF(WTRC.NE.68) GO TO 100 
REPCB=W TECS 
REPTYP=8 
CALL DPPPIF (REP MAC) 

200 CONTINUE 

Example 2 

This example demonstrates the method of altering a REPATCH control 
block. In this case, the REPATCH will place the work request in the 
front of the work queue. As in Example 1, this example begins with a 
PATCH":'WAIT. 

100 CALL DPPPIF (iTM AC) 
IF(WTRC.NE.68)GO TO 200 
RPCS=WTECB 
RPTYP=O 
CALL DPPPIF(RPMAC) 
CALL ORSIT(RPFLG,QPOS) 
WTECB=O 
RPTYP=4 
CALL DPPPIF(RPMAC) 
IF(RPRC.LT.8) GO TO 100 

200 CONTINUE 

The PTIME service provides two different functions, return current time 
and PATCHes, issued on a time-queue basis. The following FORTRAN 
statements define the tvo different parameter lists for this service: 

2-122 Description and Operation Manual 



C 
C COMMON NAMED 'PTIMRI--PARAMETER TABLE FOR PTI!E 

COMMON/PTIMRjPTRMAC 
INTEGER*2 PTRMAC 

COMMON/PTIMRjPTRC 
INTEGER*-2 PTRC 

COKftON/PTIMRjPTRTYP 
INTEGER*4 PTRTYP 

COMMON/PTIMRjPTRTIM 
INTEGER*4 PTRTIM 

COMMON/PTIMRjPTRARY 
INTEGER*4 PTRARY 

C END OF COMMON NAMED 'PTIMR' 

PTRMAC 
A halfword binary value of 4 to identify to the interface routine the 
requested service. 

PTRC 
A halfword binary value set to zero by the interface routine. 

PTRTYP 
A halfword binary value identifying the PTIMR service being requested. 
For this parameter list it is always zero. 

PTRTIM 
A fullword binary field which will contain the current time of day in 
10-millisecond units when the interface routine returns. 

PTR ARY 

C 

A fullword field which viII contain the address of the time array 
DPPCTIMA when the interface routine returns. 

C COMMON NAMED 'PTIME--PARAMETER TABLE FOR PTIME 
COMMON/PTIME/PTIMAC 

INTEGER*2 PTIMAC 
COMMON/PTIME/PTIRC 

INTEGER*2 PTIRC 
COMMON/PTIME/PTITYP 

INTEGER*4 PTITYP 
COMMON/PTIME/PTISTR 

INTEGER*4 PTISTR 
COMMON/PTIME/PTITVL 

INTEGER*4 PTITVL 
COMKON/PTIME/PTIEND 

INTEGER*4 PTIEND 
COMMON/PTIME/PTIPAT 

INTEGER*4 PTIPAT 
COMMON/PTIME/PTIPRM 

INTEGER*4 PTIPRM 
COMMON/PTIME/PTIS 

LOGICAL*1 PTI S 
COMMON/PTIME/PTIP 

LOGICAL*1 PTIP 
COMMON/PTIME/PTIE 

LOGICAL*1 PTIE 
C END OF COMMON NAMED IPTIME' 
C 

PTIMAC 
A halfvord binary value of 4 to identify to the interface routine the 
requested service. 

APPLICATION SERVICES 2-123 



PTIRC 
A halfvord binary field containing a binary number return code from 
the service. 

PTITYP 
A fullword binary value identifying the requested PTIME service. 
Values may be 4, 8, or 12. If 4, a PTIME queue element (PTQE) is 
created which controls the PATCHes issued according to the PTIME 
requested. Since the PTQE exists independently of the creating task 
and may be modified (8) or deleted (12), the PTQE is referred to by 
task name, entry point name, and the PATCH ID number in the problem 
parameter list. Either task name or entry point name must be given 
for a modify (8) or delete (12). However, if only a task or entry 
point name is specified, all PTQEs with that name are deleted or 
modified. 

PTISTR 
A fullword binary value specifying the time in 10-millisecond units 
of the first PATCH. The flag bit in PTISTR defines the content of 
this field, according to the following table: 

X~04' -- The first PATCH will be issued at current time plus the 
value of PTISTR. 

X'02' -- The first PATCH viII be issued vhen current time equals the 
v~lue in PTISTR. If PTISTR is less than current time, the 
first PATCH viII occur the next day. 

X'01' -- The time of the first PATCH is calculated by assuming PTISTR 
contains the time of day, except that the value in PTITVL 

PTITVL* 

is added to PTISTR until that value is greater than current 
time. 

A fullword binary value specifying the interval i~ 10-millisecond 
units betveen successive PATCHes. 

PTIEND** 
A fullword binary value specifying wten the PTQE is to be deleted. 
The flag bit in PTIE defines the content of this field. 

X'08' 

X'02'** 

X'01'** 

PTIEND contains the count of the number of PATCHes to 
be issued by this PTQE. 

PTIEND contains a time value in 10-millisecond units, 
when added to current time equals the stop time. 

PTIEND contains the stop tiae in 10-millisecond units. 

The stop time is calculated by assuming PTIEND contains 
the time of day in 10-millisecond units except that the 
value in PTITVL is added to PTIEND until the valQeis 
greater than current time. 

*All time units are in 10-millisecond units and must not exceed 24 
hours. 

**Regardless of what value is calculated start time (see PTISTR above), 
a 24-hour value is added to the stop time until the stop time exceeds 
the start time. 

Note: If PTIEND and PTIE are zero, the PTIME is assumed infinite, and 
PATCHes viII be issued until the PTQE is .odified or deleted. 

2-124 D~scription and operation Manual 



PTIPAT 
contains the address of tke supervisor portion of the PATCH parameters. 
The options provided viII be used by PTIME to issue PATCHes based on 
the above time options. If the common area PATCH is used as defined 
in the FORTRAN PATCH Interface w~te-up, the parameter must point to 
PATASK(l). All information desired for the PATCH by PTIME must be 
supplied prior to CALLing the interface routine. RESTRICTION: Queue 
position of DPATCH (X'02' in PATFLG) is not permitted. 

PTIPRM 
contains the address of the parameter list passed by PTIME's PATCH. 
See FORTRAN PATCH write-up for formats. 

Note: If this parameter list is greater than 8 bytes, the interface 
routine viII move it to a GETMAIN area to be FREEMAINed when 
the PTQE is destroyed. 

PTIS 
A l-byte logical field containing the flag which defines the content 
of PTISTR. See PTISTR above for flag definitions. 

PTIP 
A l-byte logical field containing the flag which controls the kind of 
DPATCH which will be issued when the PTQE is destroyed. Flags at a 
PTIKE delete (12) will override the flags when the PTQE vas created 
(4) or last modified (8). only one flag may be set. 

X'08' Task is deleted regardless of its condition. 

X'04' Task is deleted w~en its work queue becomes empty. 

X'02' Task is deleted only if its work queue is empty. 

X'Ol' Task is deleted immediately or when the current work queue, 
if executing, completes. Any work queue to the task is 
posted as deleted. 

PTIE 
A 1-byte logical field containing the flag which defines the content 
of PTIEND or zero. See PTIEND above for flag definitions. 

The PTIME facilities are invoked by CALLing DPPPIF with the properly 
complet~d parameter list. Exam~es 1 through 4 assumed the following 
FORTRAN statements about COMMON area, variables, and constants: 

BLOCK DATA 
COKftON/PATCH/PATftAC,PATRC,PATPRK,PATASK(2), 

lPATEP(2),P1TNAM(2),PATQ,PATV,PATECB,PATRES(2), 
lPATCBX,PATFLG 

INTEGER PATMAC*2/0/,PATRC*2/0/,PATPRM,PATQ*2/1/, 
lPATV*2/0/,PATECB,PATRES,PATCBX 
LOGICAL PATASK*4/' ',1' '/,PATEP*4 

lPATNAK*4/' I,' '/,PATFLG*1 
C08KON/PTIKE/PTIKAC,PATIRC,PTITYP,PTISTR,PTITVL, 

lPTIEND,PTIPAT,PTIPRM,PTIS,PTIP,PTIE 
INTEGER PTIKAC*2/4/,PTIRC*2iO/,PTITYP.PTISTR~PTITVL, 

1PTIEND,PTIPAT,PTIPRM, 
LOGICAL PTIS*l,PTIP*1,PTIE*1 
COMKON/PTIKR/PTR"AC,PTRC,PTRTYP,PTRTI!,PTRARY 
INTEGER PTRKAC*2/4/,PTRC*2/0/,PTRTYP/O/,PTRTIH,PTRARY 
END 

APPLICATION SERVICES 2-125 



(The above common areas should be repeated in the main program 
without data initialization. The following statements are in 
MAIN only.) 

LOGICAL TOO*1,/Z02/,TN*4(2)/'TIKE','TEST'/, 
1TT*4(2) I'TTES', 'T 'I 
LOGICAL QPOS*1/Z04/,REL*1/Z01/,CNT*1/Z08/,ADJ*1/Z041 
LOGICAL PU*1/Z01/,DEL*1/Z01/ 
COftKOR/PROBL/PRBLNG,ID,PROBPl 
INTEGER PRBLNG*2,ID*2,PROBP1*4 

Include the preceding co •• on areas in MAIN area also. 

Example 1 

In Example 1, the program uses the COliMOR PTIMR to obtain the current 
time. The current time is used to set the start time in PTISTR for 
PATCHes by PTIME, at current time plus 1 hour. The interval is set to 
1 hour, and the last PATCH is to occur 3 hours later. The PATCH 
parameters are set to create the task TIMETEST with a vorkqueue length 
of 5, and a dispatching priority of 15 less than the PTIME task. The 
PATCH viII execute prograa TTEST and delete it when the processing of 
each work request completes. The parameters are passed with a PATCH 
ID of 10. 

CALL DPPPIF (PTBMAC) 
P~IPAT=IADDR(PATASK(1» 
PTIPRM=IAODR(PRBLNG) 
P11STR=PTRTIft + 360000 
CALL ORBIT(PT1S,TOD) 
PT I TV L= 360000 
PTIEND=PTISTR + 1080000 
CALL ORBIT(PTIE,TOD) 
DO 100 1=1,2 
PATASK(I) =TN(I) 

100 PATEP(I)=TT(1) 
PATQ=5 
PATV=15 
CALL ORBIT(PATFLG,DEL) 
PRBLNG=4 
10=10 
PT1TYP=4 
CALL DPPPIF(PTIMAC) 

2-126 Description and Operation Manual 



Example 2 

In example 2, the PTQE built by Example 1 will be modified (TYPE=8) to 
start the PATCHes 15 seconds after this PTIME is issued, the interval 
is changed to once a minute, and the stop time is changed to never end. 
The program will not be deleted when a work request is finished 
processing and the work req~est will be queued first. The PATCH ID 
will be changed to 5. Note that all parameters must be specified, as 
a modify acts as a replace. All COMMONs are initially as defined. 

PTITYP=8 
PTIPAT=lADDR(PATASK(1» 
PTIPRM=IADDR(PRBLNG) 
PTI ST R= 1500 
CALL ORBIT(PTIS,REL) 
PTITVL=6000 
DO 100 1=1,2 
PATASK (1) =TN (I) 

100 PATEP (1) 
PATQ=5 
PATV=15 
CALL OR BIT (PATPLG ,QPOS) 
PRBLNG=4 
1D=5 
CALL DPPPIF (PTI MAC) 

Example 3 

Example 3 shows the use of the adjusted time facility of PTIME. The 
first PATCH is to occur at 5 A.M., or within 30 minutes after the PTIME 
was issued and at 30-minute intervals for six times. The task is to 
be deleted immediately when the PTQE is destroyed. 

CALL ORBIT (PTIP,PU) 
PTISTR=180000 
CALL ORBIT(PTIS,ADJ) 
PTITVL=180000 
PTIEND=6 
CALL ORB1T(PTIE,CNT) 

PATCH parameters 

PROBLEM parameters 

PTITYP=4 
CALL DPPPIF(PTIMAC) 

APPLICATION SERVICES 2-121 



Example 4 

Example 4 shows the method for deleting a PTQE. Since the function of 
this PTIME service request is to locate the PTQE to be destroyed, only 
the parameters required to identify the PTQE need be 9iven~ In this 
case, the task is to be OPATCHed as veIl. 

PTITYP=12 
CALL OR BIT (PTIP ,PO) 
PTIPAT=IAODR(PATASK(1)) 
PT1PRM=IADDR(PRBLNG) 
00 1001=1,2 
PATASK (I) =TN (1) 

100 PATEP(I)=TT(I) 
10=10 
CALL DPPPIF (PTIMAC) 

The MESSAGE service is used to cause a predefined message to be printed 
or displayed. The message must have been defined through the offline 
utility system using the DEFMSG macro. 

The following FORTRAN statements define the parameter list tor this 
service: 
C 
C COMMON NAMED 'MESSAG'--PARAMETER TABLE FOR MESSAGE 

COMMON/MESSAG/MESMAC 
INTEGER*2 MESMAC 

COMMON/MESSAG/MESRC 
INTEGER*2 MESRC 

COMMON/MESSAG/MESNUM 
INTEGER*2 MESNUM 

COMMON/KESSAG/MESACT 
LOGICAL*1 MESACT 

COMMON/MESSAG/MESWT 
LOGICAL*1 MESWT 

COKMON/MESAG/MESRES 
INTEGER*4 MESRES 

COMMON/MESSAG/MESDAT 
INTEGER*4 MESDAT 

COMMON/MESSAG/MESRTE 
INTEGER*2 MESRTE(8) 

COMI10N/KESSAG/MESVAR 
INTEGER*4 MESVAR(10) 

C END OF COMMON NAMED tMESSAG' 
C 

MESMAC 
A halfword binary value of 40 identifying to the interface routine 
the requested service. 

MESRC 
A halfword field containing a binary number return code from the 
MESSAGE service routine. See MESSAGE macro write-up for valid return 
codes. 

MESNOM 
A halfword binary value from 1 to 999 identifying the message 
requested. 

2-128 Description and Operation Manual 



MESACT 
A 1-byte logical field to be appended to the message number. I denotes 
information, A denotes action is required, and D denotes that a 
decision is required. Zero viII indicate that the message definition 
default should be used. 

MESWT 
A 1-byte flag field using a X'08' to indicate the program's decision 
to WAIT for the message to be sent. A X'OO' implies NO WAIT. 

MESRES 
A fullword binary field reserved for the interface routine. 

l1 ESDAT 
A full word binary field containing the address of an area vhere the 
service routine will place the formatted message for use by the 
program. 

MESRTE 
An array of eight halfvord binary numbers representing the devices on 
which the message viII appear or viII be printed. All unused entries 
must be zero or 255. Values must range from 1 to 254. Entries with 
a zero viII use the message definition default routing code. 

MESVAR 
An array of 10 fullvords containing addresses of message variables to 
be inserted into the message. All unused entries must be zero. only 
consecutive non-zero entries viII be used. 

The following example requests the MESSAGE service to output to route 
code (1) message number 37 with a variable text field of "END OF TEST." 
The message number viII have an action coGe of "I" appended to identify 
the message as an advisory. The program viII vait for the message to 
be transmitted. 

BLOCK DATA 
C FORTRAN MESSAGE EXAMPLE 

COMMON/MESSAG/MESMAC,MESRC,MESNUM,MESACT,MESWT,MESRES,~ESDAT, 

1M E S RT E (8) , M E S VA R ( 1 0 ) 
'INTEGER MES MAC*2/140/, KESRC* 2/0/, MESNUM* 2, filE SRES, 

1 ftESDAT, MESR TE, MESVAR 
LOGICAL MESACT*1/100/,MESWT*1 
END 

(The above COMMON areas should be repeated in the main program 
without data initialization. The following statements are in 
ftAIN only.) 

LOGIC AL A*4 (4) I' hEN D', '!!OF!!',' TE ST' , bb h 'I, ACT* 1/' I' /, 
WT*1/Z801 
MESNUM=37 
MESACT=ACT 
CALL OR BIT (ME SW T, WT) 
M ES RT E ( 1) = 1 
MESVAR(l) =IADDR (A(1» 
MESVAR (2) =0 
CALL DPPPIF (MESftAC) 

The RECORD facility provides a method for vriting data to a sequential 
data set. The data can be retrieved at a lRter time for offline 
processing (see section on data playback). The following FORTRAN 
statements define the parameter list for this service: 

APPLICATION SERVICES 2-129 



C 
C COMMON NAMED 'RECORO'--PARAKETER TABLE FOR RECORD 

COMMON/RECORO/RECMAe 
INTEGER*2 RECMAC 

COMMON/RECORD/RECRe 
INTEGER*2 RECRC 

COMMON/RECORD/REceNT 
INTEGER*4 RECCNT 

COMMON/RECORD/RECOAT 
INTEG ER *4 R ECDAT 

COMMON/RECORD/RECIO 
INTEGER*2 RECIO 

C END OF COKMON NAMED'RECORO' 
C 

RECMAC 
A halfword binary value of 56 identifying to the interface routine 
the requested service. 

RECRC 
A halfword field containing a binary number return code from the RECORD 
service routine. See RECORD macro write-up for valid return codes. 

RECCNT 
A fullword binary field con~aining the number of data bytes to be 
recorded. A maximum value of 65535 may be specified. 

RECOAT 
The address of the data to be recorded. 

RECID 
A halfword binary number from 1 to 4095 which identifies the data 
being recorded. 

The foliowing example uses RECORD to write the entire 100 fullwords 
from array ANNUAL with an ID OF 100. 

C FOFTRAN RECORO EXAMPLE 
BLOCK OATA 
COM MON/RECORD,IR ECMAC, RECRC, RECCNT, RECDAT, RECID 
INTEGER RECMAC*2/56/,RECRC*2/0/,RECCNT,RECOAT,RECIO*2/0/ 
END 

(The above COMMON areas should be repeated in the main program 
without data initialization. The following statements are 
in MAIN only.) 

INTEGER ANNUAL (100) 

RECCNT=400 
RECDAT=IADDR(ANNUAL (1» 
RECID=100 
CALL DPPPIF(RECMAq 

This FORTRAN interface provides the program~er the facilities of the 
GET ARRAY and PUTARRAY services. The following FORTRAN statements define 
the interface parameter list: 

2-130 Description and Operation Manual 



C 
C CO~"ON NAMED'ARRAY'--PARAMETER TABLE FOR GETARRAY AND PUTARRAY 

COMMON/ARRAY/ARMAC 
INTEGER*2 AR~AC 

COMMON/ARRAY/ARRC 
INTEGER*2 ARRC 

COMMON/ARRAY/ARNAM 
INTEGER*4 ARNAM 

COMMON/ARRAY/ARAREA 
INTEGER*4 ARAREA 

COMMON/ARRAY/ARNADD 
INTEGER*2 ARNADD 

COMMON/ARRAY/ARADD 
INTEGER*2 ARADD 

COMKON/ARRAY/ARTYPE 
INTEGER*2 ARTYPE 

C END OF COMMON NAMED 'ARRAY' 
C 

ARKAe 
A halfword binary value of 16 identifying the service required ,to the 
interface routine. 

ARRC 
A halfword binary field containing the return code from the array 
service routine. See GETARRAY and PUTARRAY macro write-ups for 
possible val ues. 

ARNAM 
A fullword field containing the address of one of the following based 
on the specifications implied by the value of ARTYPE. 

a. If ARTYPE specifies the 'NAKE LIST' option for ARNAM (sAe Figure 
2-21), then ARNAM contains the address of a list of a-character 
array names followed by an X'FF' after the last name where the next 
name would start. ARNADD contains the value to be added to the 
list address to locate the next array name. 

NAME LIST 

o NAME I 

8 NAME2 

b. If ARTYPE specifies 'NUMBER LIST' then ARNAM contains the address 
of halfword binary array numbers followed by a X'FF' after the last 
array number where the next number would start. ARNADD contains 
the value to be added to the list address to locate the next array 
number in the list. 

NUMBER LIST 

o 1ST NUMBER 

2 2ND NUMBER 

4 FF I 

c. If ARTYPE specifies 'ADDRESS LIST', then ABNAM contains the address 
of a list of array addresses as returned from a previous GETABRAY 
execution. The list must be terminated by a fullword binary value 

APPLICATION SERVICES 2-131 



of -1 after the last array address where the next address would be 
located. !RNAOD contains the value to be added to the list address 
to locate the next array address. 

ADDRESS LIST 4 6 8 10 

o FLAG A(l ST ARRAY) NO. BLKS SIZE NO. ITEMS I 
+ARADD FLAG A(2ND ARRAY) NO. BLKS SIZE 

FFFFFFFF 

This list is the same as returned as the find list specified below 
with the addition of the termination flag which must be added by the 
user. 

ARAREA 
A fullword field containing the address of one of the following based 
on the specifications implied by the value of ARTYPE. 

a. If ARTYPE specifies the flDATA LIST' option for ARAREA (see Figure 
2-21), then ARAREA contains the address of a list of addresses into 
or from which the data of the specified arrays (see ARNAM above) 
is to be moved. ARADO contains the value to be added to the list 
address to locate the next data area address in the list. 

DATA AREA ADDRESS LIST 

o A(IST DATA AREA) 

ARADD*l A(2ND DATA AREA 

ARADD*2 A(3RD DATA AREA) 

b. If ARTYPE specifies 'FIND LIST', then ARAREA contains the address 
of a list of 10-byte fields to be filled: a flag byte (see GETARRAY 
macro write-up), a 3-byte array address, a halfword block count, 
a halfword array size or block si~e, and a ~alfword item count. 
ARADD contains the value to be added to the list address to locate 
the next entry in the list. The minimum value for ARADD under this 
option is 8, in which case, the item count halfword will not be in 
the list. 

FIND LIST 

4 6 8 

o FLO ARRAY ADDR NO. BlKS SIZE NO. ITEMS 

FLO ARRAY ADDR NO. BlKS SIZE NO. ITEMS 

FLG ARRAY ADDR NO.BLKS SIZE NO. ITEMS 

2-132 Description and Operation Manual 



c. If ARTYPE of addresses specifies 'SPEC LIST', the ARAREA contains 
the address of a list of areas to be filled in by the service 
routine. Each area will receive a 16-byte field for each item in 
the array. These 16-byte fields will contain an 8-byte item name, 
a l-byte item length, a 1-byte data type, a halfvord array 
displacement to the start of the item, a half word array 10, and a 
halfvord number identifying the number of identical and sequential 
items defined by this entry. ARADD contains the value to be added 
to the list address to locate the next 16-byte field. 

ARRAY SPECIFICATIONS LIST 
H 9 10 I') 14 -

) ITEM NAME LNG TYPE DISP. AID REPT 

16 ITEM NAME LNG TYPE DISP AID REPT 

ITEM NAME LNG TYPE DISP AID REPT 

ARNADD 
A halfvord value ad:led to ARNAME to locate the next entry in the list. 
A value must be specified. 

ARADD 
A halfword value added to ARAREA to locate the next entry in the list. 
A value must be specified. 

ARTYPE 
A halfword binary value specifying the array service options selected. 
The values (given in the tables below) identify the contents of ARNAME 
and ARAREA, either a GETARRAY or PUTARRAY, the array (i.e., DATALISr, 
ADDRLIST, or SPECLIST). and the desired protection for GET ARRAYs 
(PROTECT or RISK). 

DATALIST 
Specifies that the contents of the arrays are to be returned (GEtARRAY) 
or updated (PUTARRAY). 

ADDRLIST 
Specifies that a 'FIND LIST' entry is to be completed for each array 
name or number in the list. This option is valid for virtual storage 
resident arrays only. 

SPECLIST 
Specifies that a 'SPEC LIST' entry is to be completed for each item 
of each array naae or number in the list. 

PROTECT 
Specifies that the array service will be locked during processing to 
prevent changes from altering results. 

RISK 
Specifies that the array service viII be processed regardless of the 
possibility of parallel processing changing arra y content. 

APPLICATION SERVICES 2-133 



ARNAM ARAREA SERVICE PROTECTION ARTYPE 
REQUESTED REQUESTED VALUE 

A(NAME LIST) A(DATA LIST) DATA LIST PROTECT 16 

A(NAME LIST) A(DAT A LIST) DATA LIST RISK 17 

A(NAME LIST) A(SPEC LIST) SPEC LIST PROTECT 20 

A(NAME LIST) A(SPEC LIST) SPEC LIST RISK 21 

A(NAME LIST) A(FIND LIST) ADDR LIST PROTECT 34 

A(NAME LIST) A(FIND LIST) AD DR LIST RISK 35 

A(ADDR LIST) A(DAT A LIST) DATA LIST PROTECT 48 

A(ADDR LIST) A(DATA LIST) DATA LIST RISK 49 

A(NUMBER LIST) A(DATA LIST) DATA LIST PROTECT 80 

A(NUMBER LIST) A(DATA LIST) DATA LIST RISK 81 

A(NUMBER LIST) A(SPEC LIST) SPEC LIST PROTECT 84 

A(NUMBER LIST) A(SPEC LIST) SPEC LIST RISK 85 

A(NUMBER LIST) A(FIND LIST) ADDR LIST PROTECT 98 

A(NUMBER LIST) A(FIND LIST) ADDR LIST RISK 99 

Figure 2-21. GETARRAY Service 

A(NAME LIST) A(DATA LIST) DATA LIST N/A 128 

A(ADDR LIST) A(DATA LIST) DATA LIST N/A 144 

A(NUMBER LIST A(DATA LIST) DATA LIST N/A 176 

Figure 2-22. PUTARRAY Services 

The GETARRAY/PUTARRAY services are invoked by CALLing DPPPIF with the 
properly completed parameter list. 

The following example shows the use of the array services in locating 
the array B, reading in the item specifications, reading the entry 
array into FORTRAN core, and updating the array. 

BLOCK DATA 
C FORTRAN GET/pUT-ARRAY EXAMPLE 
C 

2-134 

COMMON/ARRAY/ARMAC,ARRC,ARNAft,ARAREA,ARNADD,ARADD,ARTYPE 
INTEGER ARMAC*2/0/,ARRC*2/0/,ARNAM,ARAREA,ARNADD*2/8/, 

1ARADD*2/4/,ARTYPE*2/16/ 
END 

(The above COMMON areas should be repeated in the main program 
without data initializtion. The following statements 
are in MAIN only.) 

Description and Operation Manual 



C 

C 

C 

C 

COKKON/ARAY/ANAKE(2),AEND,AFIND(6,2),ACORE 
INTEGER END*4,AFIND*2,ACORE*4 
LOGICAL ANAKE*" 
COKKON/AITK/INAKE (16.255) 
LOGICAL INAKE*1 
EQUIVALENCE (AFIND(1,1) ,ADRA(1,1) 
INTEGER ADRA(3,2) 
EQUIVALENCE (INAKE (1, 1) ,SPEC(1, 1» 
INTEGER SPEC*2(8,255) 
COKlION/ AREA/D AT A (16,255) 
LOGICAL DATA*1 
LOGICAL A*4 (2)/'B 
ANAME(1)=A(1) 
ANAKE (2) =A (2) 
AEND= 1 

, , , 

ARNAK=IADDR (A.NAKE(1» 
ARN ADD=8 
ARAREA=IADDR(AFIND(1,1» 
ARADD=12 
ARTYPE=35 
BUILD FIND LIST 
CALL DPPPIF (ARMAC) 
ACORE=IADDR(INAME(1,1» 
ARAREA=IADDR (ACORE) 
ARADD=4 
ARTYPE=21 
BUILD ITEM SPEC LIST 
CALL DPPPIF(ARMAC) 
ACORE=IADDR(DATA(1,1» 
ARTYPE= 16 
READ ARRAY 
CALL DPPPIF(ARKAC) 
ARTYPE= 128 
UPDATE ARRAY 
CALL DPPPIF (ARK AC) 

'/ 

This FORTRAN interface provides the programmer the facilities of the 
GETITEM and PUTITEM services. The following FORTRAN statements define 
the interface paramater list: 

C 
C COKMON NAMED 'ITEK'--PARAKETER TABLE FOR GETITEK AND PUTITEM 

COKMON/ITEK/ITMAC 
IN'1'EGEft*2 ITMAC 

COMKON/ITEM/ITMRC 
INTEGER*2 ITMRC 

~OKKON/ITEM/ITMNAM 
INTEGER*4 ITl!NAM 

COKKON/ITEM/ITMDAT 
INTEGER*4 ITMDAT 

COKMON/ITEM/ITMNAD 
INTEGER*2 ITKNAD 

COMKON/ITEM/ITMDAD 
INTEGER*2 ITMDAD 

COKMON/ITEM/ITMTYP 
INTEGER*2 ITMTYP 

C END OF COKMON NAKED 'ITEM' 
C 

ITKAC 
A halfword binary value of 20 identifying the service required to the 
interface routine. 

APPLICATION SERVICES 2-135 



ITKRC 
A halfword field containing a binary number return code from the item 
service routine. See GETITEK and PUTITEK macro write-ups for possible 
values. 

ITMNAM 
A full~ord field containing the address of one of the following based 
on the specifications implied by the value of ITKTYP. 

a. If ITMTYP specifies 'NAMELIST', the ITMNAM contains the address of 
a list of a-character item names followed by a X'FF' after the last 
name where the next name would start. 

ITMHAD contains the value to be added to the list address to locate 
the next item name. 

NAME LIST 

o NAME I 

+ITMNA D NAME 2 

+ITMNAD*2 F F I 
~~--------------~ 

b. If ITMTYP specifies 'ADDRESS LIST', the ITMNAM contains the address 
of a list of item addresses as returned from a previous execution. 
The list must be terminated by a fullword of -1 where the next 
address would be in the' list. ITMNAD contains the value to be 
added to the list address to locate the next item address in the 
list. 

o 
+ITMNAD 

+ITMNAD*2 

ITMDAT 

LENGTH 

LENGTH 

ADDRESS LIST 

A(ITEMA) 

A(ITEMB) 

FFFFFFFF 

A fullword field containing the address of one of the following based 
on the specifications implied by the value of ITMTYP. 

a. If ITMTYP specifies 'DATA LIST', the ITMDAT contains the address 
of a data area into or from which data is moved. ITMDAD contains 
the value to be added to the data area addresss to locate the area 
for the next item. If ITMDAD is zero, the item length is used to 
locate the next item data area. 

b. If ITMTYP specifies 'ADDR LIST', the ITMDAT contains the address 
of a list of 4-byte entries into which an item length and address 
is stored for each item specified in the 'NAME LIST.' The list must 
contain room for one more entry to allow the service routine to 
store an end of list X'FF.' ITMDAD contains the value to be added 
to the list address of locate the next entry. 

ADDRESS LIST 

o LENGTH ITEM ADDRESS 

4 LENGTH ITEM ADDRESS 

8 FF FF FFFF 

2-136 Description and operation Manual 



c. If ITKTYP specifies 'SPECLIST', the ITftDAT contains the address of 
a list of 4-byte entries each containing the item length, flags 
identifying data type, and an array displacement to the first byte 
of the itea. ITKDAD contains the value to be added to the list 
address of loca te the next en try .• 

Item Specification List 
8 9 10 12 14 16 

o ITEM NAME LNG TYPE DISP. AID REPT 

ITEM NAME LNG TYPE DISP. AID REPT 

ITEM NAME LNG TYPE DISP. AID REPT 

ITf! HAD 
A halfword binary value added to the list aadress in ITKNAM to locate 
the next entry A value must be A value must be specified. 

ITf!DAD 
A halfword binary value added to the list address in ITMDAT to locate 
the next entry. A value must be specified unless ITKTYP specifies 
'DATA LIST', in which ·case zero may be used. 

ITKTYP 
A halfvord binary number specifying the item service options selected. 
The values (given in the figures 2-23 and 2-24) identify the kind of 
service (i.e., DATALIS~,ADDBLIST, or SPECLIS~), if it is a GETITEK or 
PUTITEK, and if GETlT!K ~s protected (PROTECT or RISK). A value must 
be speci fied. 

DATALIST 
Specifies the content of the item is to be moved to or updated from 
the da.ta area. 

ADDRLIST 
Specifies the item 'ADDRESS LIST' is to be built for each named item. 

SPECLIST 
specifies the item 'SPECIFICATION LIST' is to be built for each named 
item. 

PROTECT 
Specifies the GETITE" service will ensure data integrity during 
processing. 

RISK 
Specifies the GETITEK service viII process the request regardless of 
the. possibility of parallel processing updating the content of the 
named item (s) • 

Note: DATALIST and ADDRILIST are invalid service requests for direct 
access resident arrays. 

APPLICATION SERVICES 2-131 



ITMNAM liMDAT SERVICE PROTECTION ITMTYP 
REQUESTED REQUIRED VALUE 

A(NAME LIST) A(DATA LIST) DATA LIST PROTECT 136 

A(NAME LIST) A(DATA LIST) DATA LIST RISK 137 

A(NAME LIST) A(ADDR LIST) ADDR LIST PROTECT 138 

A(NAME LIST) A(ADDR LIST) AD DR LIST RISK 139 

A(NAME LIST) A(SPEC LIST) SPEC LIST PROTECT 140 

A(NAME LIST) A(SPEC LIST) SPEC LIST RISK 141 

A(ADDR LIST) A(DATA LIST) DATA LIST PROTECT 152 

A(ADDR LIST) A(DATA LIST) DATA LIST RISK 153 

Figure 2-23. GET ITEM Services 

A(NAME LIST) A(DATA LIST) DATA LIST N/A 184 

A(ADDR LIST) A(DATA LIST) DATA LIST N/A 200 

Figure 2-24. PUTITEM Services 

The GETITEM/PUTITEM services are invoked by CALLing DPPPIF with a 
properly completed parameter list. 

2-138 Description and Operation Manual 



The following example viII use the item service to obtain the addresses, 
specifications, and data for a list of five items from the same array 
and update them in the array. 

BLOCK DATA 
C FORTRAN GET/PUT-ITEM EXAMPLE 

COMMON /ITEM/ ITMAC,IT!RC,ITMNAK,ITMDAT,ITMNAD,ITMDAD, 
lITMTYP 

INTEGER ITMAC*2/20/,ITMRC*2/0/,ITMNAM,ITftDAT,ITMNAD*2, 
1ITMDAD*2,ITMTYP*2/0/ 

COMMON /AREA/ DATA(16,5) 
LOGICAL*l DATA 
COMMON /N/ NAME(2,5),END 
INTEGER END/-1/ 
LOGICAL*4 NAME/1B01 ',' ','a03 ',' ','B05 I,' " 
1'B01~', 'Q~h','B09~','bbbb'/ 

END 

(The above common areas should be repeated in the main program 
without data initialization. The following statements are 
in HAIN only.) 

INTEGER ADR (6) 
LOGICAL*l LNG(4,5} 
ITMNAM=LADDR(NAHE(1,1) 
ITMNAD=8 
ITMDAT=IADDR(ADR(1» 
ITMDAD=4 
ITMTYP=139 

C FIND ARRAY ITEMS 
CALL DPPPIF (ITMAC) 
ITKDAT=IADDR(LNG(1,1)) 
ITMTYP=14l 

C GET ITEM SPECS 
CALL DPPPIF(ITMAC) 
ITMNAM=IADDR(ADR(1» 
ITMNAD=4 
ITMDAT=IADDR(DATA(1,1» 
ITMDAD= 16 
ITMTYP=152 

C P.EAD ITEMS BY ADDRESS 
CAL L DP PPIF (I TM AC) 
ITMTYP=200 

C UPDATE ITEMS BY ADDRESS 
CALL DPPPIF (ITHAC) 

This FORTRAN interface provides the programmer the facilities of the 
GETBLOCK and PUTBLOCK services. The following FORTRAN statements define 
the interface parameter list: 

APPLICATION SERVICES 2-139 



C 
C COM!ON NAKED 'BLOCK'mPARAMETEB TABLE POB GETBLOCK AND 

PUTBLOCK 

COMMON/BLOCK/BLKHAC 
INTEGER*2 BLKHAC 

COMMON/BLOCK/BLKRC 
INTEGER*2 BLKRC 

COMMON/BLOCK/BLKNAM 
INTEGER*4 BLKNAM 

COMMON/BLOCK/BLKDAT 
INTEGER*4 BLKDAT 

COMMON/BLOCK/BLKADD 
INTEGER*2 BLKADD 

COMMON/BLOCK/BLKTYP 
INTEGER*2 BLKTYP 

C END OF COMMON NAMED 'BLOCK' 
C 

BLKMAC 
A halfword binary value of 24 identifying the service requested to 
the interface routine. 

BLKRC 
A halfword field containing a binary number return code from the 
blocked array service routine. Zero indicates successful completion 
while any no.n-zero indicates unsuccessful completion. 

BLKNAM 
A fullword field containing the address of one of the following based 
on the specifications implied by BLKTYP. 

a .• If BLKTYP specifies 'NAME LIST' the BLKNAK contains the address of 
a list of a-character array names followed by a X'FF' in the first 
byte after the last· name where the next name would start. 

NAME LIST 

o NAME 

8 NAME 

16 F F I 

h. If BLKTYP specifies 'NUMBER LIST', the BLKNAM contains the address 
of a list of halfword array number followed by a X'FF' in the first 
byte after the last number where the next number would start. 

NUMBER LIST 

o NUMBER 

2 NUMBER 

4 FF I 

2-1~O Description and Operation Manual 



BLKADD contains the value to be added to the list address to locate 
the next entry. 

DATA AREA LIST 
1 4 

o FlG DATA AREA BlK. NO. 

FlG DATA AREA BlK. NO. 

FlG DATA AREA BlK. NO. 

FLG -- A 1-byte flag field. A X'40' indicates the last data area 
and block number for a specified array b~t not the end of the list. 
A X'SO' indicates the last entry for the last array and the end of 
the list. A X'OO' should appear in all other entries. 

DATA AREA -- A 3-byte address of the area into or from which the 
specified array block is moved. 

ELK. NO. -- A halfvord binary number specifying the array blocK being 
moved. 

BLKADD 
A halfvord binary value added to the contents of BLKDAT to locate the 
next entry in the list. If zero, a value of 6 is assumed. 

BLKTYP 
A halfword binary value specifying the blocked array service options 
selected. The value (given in the tables below) identify the content. 
of BLKNAM and if it is a GETBLOCK with or without protection (PROTE:T 
or RISK) or a PUTBLOCK. 

BLKNAM BLKDAT PROTECTION 
REQUESTED 

A(NAME LIST) A(DA T A LIST) RISK 

A(NUMBER LIST) A(DA T A LIST) RISK 

A(NAME LIST) A(DA T A LIST) PROTECT 

A(NUMBER LIST) A(DA T A LIST) PROTECT 

Figure 2-25. GETBLOCK Services 

A(NAME LIST) 

A(NUMBER LIST) 

A(DA T A LIST) 

A(DA T A LIST) 

Figure 2-26. PUTBLOCK Services 

N/A 

N/A 

BLKTYP 
VALUE 

4 

6 

12 

14 

5 

7 

The GETBLOCK/PUTBLOCK services as invoked by calling DPPPIF with a 
properly completed parameter list. 

APPLICATION SERVICES 2-1~1 



The following example will execute a GETBLOCK for block number 5 from 
array BLK1 and BLOKB. Then the blocks are written out to their 
respective arrays. 

BLOCK DATA 
C FORTRAN GET/PUT-BLOCK EXAMPLE 

COMMON /BLOCK/ BLKMAC,BLKRC,BLKNAM,BLKOAT,BLKAOD,BLKTYP 
INTEGER BLKMAC*2/24/,BLKRC*2,BLKNAK,BLKDAT,BLKADD*2, 

1BLKTYP*2 
COMMON /N/ NAME(2,2),END 
LOGICAL*4 NAME/'BLK1',' ','BLOK','B '/ 
INTEGER *2 END/-1/ 
END 

(The above COftftON areas should be repeated in the main program 
without data initialization. The following statements are in 
MAIN only.) 

COMMON /LIST/ AREA(2,2) 
INTEGER*4 AREA 
E QU IV AL EN CE (1 REA ( 1. 1) , N U M (1 , 1) 
INTEGER*2 NUM(4,2) 
COMMON /BLK/ OATA(256,2) 
LOGICAL*1 DATA 
LOGICAL*1 NEXT/Z40/,STOP/Z80/ 
AREA (1,1) =IADDR (DATA (1,1» 
NUM (3,1) =5 
CALL ORBIT(AREA (1,1) ,NEXT) 
AREA(l, 2) =IADDR (DATA(l, 2» 
NUM(3,2)=5 
CALL ORBIT(AREA(1,1),STOP) 
BLKNAM=IADDR(NAME(l,l» 
BLKDAT=IAODR(AREA(1,1» 
BLKADD=8 
BLKTYP=12 

C READ BLOCK 5 OF ARRAYS BLK1 and BLOKB 
CALL OPPPIF(BLKMAq 
BLKTYP=5 

C UPDATE BLOCK 5 IN ARRAYS 
CALL DPPPIF (BLKMAC) 

This FORTRAN interface provides the programmer the facilities of the 
GETLOG service. The following PORTRAN statements define the interface 
parameter lis t. 

2-142 Description and Operation Manual 



C 
C COMMON NAftED 'GETLOG' PARAKETEB TABLE FOB GETLOG 
C 

COMMON/GETLOG/GETMAC 
INTEGER*2 GET MAC 

COMMON/GETLOG/GETRC 
INTEGER*2 GETRC 

COMKON/GETLOG/GETYPE 
INTEGER*2 GETYPE 

COMMON/GETLOG/GETNO 
INTEGER GETNO*2 

COMMON/GETLOG/GETDAT 
INTEGER*4 GETDAT 

COMMON/GETLOG/GETCPY 
INTEGER*4 GETCPY 

COMMON/GETLOG/GETHD 
INTEGER*4 GETHD 

COMKON/GETLOG/GETNAM 
INTEGER*4 GETNAM 

C END OF COMMON NAMED 'GETLOG' 
C 

GET MAC 
A ha1fvord value of 48 identifying the service required to the 
in terface ro utine. 

GETRC 
A halfword binary field containing a binary number return code from 
the GETLOG service routine. See GETLOG macro write-up for possible 
values. 

GETYPE 
A ha1fvord flags field indicating the requested options to the GETLOG 
service routine. Bits are numbered 0 to 7. 

Bi ts O. 1, 
3. 5, and 77 

Bit 2 

Bit 4 

Bit 6 

Byte 2 

GETNO 

Reserved. 

See GETHD. 

If on. the GETLOG service routine protects the data 
content across the service request. 

If on, GETNO contains the array number of the log 
copy being read. If off. GETNAM contains the address 
of the array name. 

Reserved. 

A halfword field containing the number of the array whose log copy is 
being read. Valid only if Bit 6 of GETYPE is on. If bit 6 is off. 
this field is zeroed by the interface routine. 

GETDAT 
A ful1word field containing the address of the data area into which 
the log copy requested viII be placed. The area must be large enough 
to hold the entire array and its 24-byte log header. 

GETCPY 
A fu11vord binary number used to determine which copy of a logged 
array, relative to the GETHD parameters. viII be retrieved from the 
log data set. 

APPLICATION SERVICES 2-143 



GETHD 
A fu11word field containing one of the following based on Bit 2 in 
GETYPE 

a. If Bit 2 is on. then GETHD contains the address of a 2Q-byte log 
header identifying the relative startinq point to determine which 
copy of the array will be retrieved from the log data set. 

b. If Bit 2 is off and GETHD is zero, then the current copy becomes 
the relative starting point. 

c. If Bit 2 is off and GETHD is non-zero, then GETHD contains the 
address of a 6-byte time and day field. The first Q bytes will 
contain a time in 10-millisecond units. The last two bytes contain 
a binary value from 1 to 366, representi~g the day of the year. 
This time and day will be used as a comparison value to establish 
a relative starting point to determine which copy of the array will 
be retrieved from the log data set. 

GETNAM 
A fullword address of the name of the named array, a log copy of which 
is being requested. Valid only if BIT 6 of GETYPE is off. 

The GETLOG service is invoked by CALLing DPPPIF with a properly 
completed parameter list. 

The following example will GETLOG the previous logged copy of array B 
referenced from the current copy. 

BLOCK DATA 
C FORTRAN GETLOG EXAMPLE 
C 

2-144 

COMMON/GETLOG/GETMAC,GETRC,GETYPE,GETNO,GETDAT"GETCPY, 
1 GET HD , GET N A M 

INTEGER GETMAC*2/48/,GETRC*2/0/,GETYPE*2/0/,GETNO*2, 
1GETDAT, GETCPY ,GETHD,GETNAM 

END 

(The above common areas should be repeat.ed in the main program 
without data initialization. The following statements 
are in MAIN only.) 

COMMON/LOG/HEADR (12) ,LDATA (24) 
INTEGER*2 HEADR,LDATA 
LOGICAL A*4(2)/'B 

GETDAT=IADDR(HEADR(1» 
GETNAM=IADDR(A(1» 
GETCPY=-1 
CALL DPPPIF (GETMAC) 

, , , '/ 

Description and operation Manual 



This FORTRAN interface provides the programmer the facilities of the 
PUTLOG service. The following FORTRAN statements define the interface 
pa'rameter list. 

C 
C COMMON NAMED 'PUTLOG' PARA~ETER TABLE FOR PUTLOG 
C 

c 

eOMMON/PUTLOG/PUTMAe 
INTEGER*2 PUT MAC 

eO~MON/~UTLOG/PUTRe 

INTEGER*2 PUTRC 
COMMON/PUTLOG/PUTNAM 

INTEGER*4 PUTNAM 
eOMMON/PUTLOG/PUTHD 

INTEGER*4 PUTHD 
eOMMON/PUTLOG/PUTYPE 

INTEGER*2 PUTYPE 
eOMMON/PUTLOG/PUTBLK 

INTEGER*2 PUTBLK 

C END OF COMMON NAMED 'POTLOG' 
e 

PUTMAC 
A halfword binary value of 44 ideLtifying the requested service to 
the interface routine. 

PUTRC 
A halfword binary field containing a binary number return code from 
the PUTLOG service routine. See PPUTLOG macro write-up for possible 
values. 

PUTNAM 
A fullword containing the address of one of the following based on 
Bits 5 and 6 in PUTYPE. 

a. If Bits 5 and 6 are zero (where bits in a byte are numbered 0 to 
7), then PUTNAM contains the address of an 8-character array name. 

b. If Bit 5 is off and Bit 6 is on, then PUTNAM contains the address 
of a halfword containing an array number. 

c. If Bit 5 is on and Bit 6 is off, then PUTNAM contains the address 
of a list of 8-character array names. The first byte past the last 
valid entry must be set to X' FF' to indicate the end of the name 
list. 

NAME LIST 

o NAMEI 

8 NAME2 

16~ 

d. If Bits 5 and 6 are on, then PUTNAM contains the address of a list 
of halfword binary array numbers. The first byte past the last 

APPLICATION SERVICES 2-145 



valid entry must be set X IPF' to indicate the end of the number 
list. 

NUMBER LIST 

o 1ST NUMBER 

2 2ND NUMBER 

4 FF I 

PUTHD 
A fullword field containing the address of one of the following based 
on Bits 2 and 3 in PUTYPE. 

a. If Bits 2 and 3 are both off, then PUTHD must be zero. 

b. If Bit 2 is on and Bit 3 is off, then PUTHD contains the address 
of an array logging header. Information in this logging header 
will identify the copy of the array which is to be repla=ed in the 
log data set. The logging header is a 24-byte control block which 
precedes the array, both as the array exists in virtual storage 
and as it is written to the logging array. The logging header 
which was retrieved as part of a previous GETLOG may be used to 
replace that copy in the log data set. 

c. If Bit 2 is off and Bit 3 is on, the PUTHD contains the address of 
a user-constructed list of block numbers and storage addresses. 
The latest log copy will be modified. However, only the log block 
corresponding to the VS resident block specified will be updated. 

014 

I FLG IDATA ADDREssl BLK. No·1 

FLG A l-byte flag field. 

X'40' Indicates the last entry to be processed for a 
particular entry in the name or number list. 

X'80' Indicates the last entry in the data list. 

:b AT A ADORES S Ignored. 

BLK NO. The number assigned to the data block to be updated. 

2-146 Description and Operation Manual 



EXAMPLE: BLKL 1ST an d Name List 

NAME LIST BLKLIST 

FIRSTbbb A(AREA) H'l' 

SECONDbbb A(AREA) H'S' 

THIRDbbb X'40' A(AREA) H'lO' 

QiJ ~ 
~ 

X'40' A(AREA) H'l' 

A(AREA) H't 

X'SO A(AREA) H'3' 

PUTYPE 
A 2-byte flags field specifying the selected options. 

Bits 0 and 1 Reserved. 

Bits 2 and 3 See PUTHD. 

Bit 4 If on, the PUT LOG is protected while processing. 

Bits 5 and 6 See PUTNAM. 

Bit 1 Must be on to indicate a PUTLOG. 

Byte 2 Reserved. 

PUTBLK 
If flag bit 2 is off and Bit 3 is on, then the halfword value in this 
field is used to increment the address in PUTHD. 

The PUTLOG service is invoked by CALLing DPPPIF with the properly 
completed parameter list. 

The following example logs the ar ray B as the current log copy. 

BLOCK DATA 
C FORTRAN PUTLOG EXAMPLE 
C 

COMMON/PUTLOG/pUTMAC,PUTRC,PUTNAM,PUTHD,PUTYPE, 
1 PUTBLK 

INTEGER PUTMAC*2/44/,PUTRC*2/0/,PUTNAM,PUTHD,PUTYPE*2/0/, 
1 PUTBLK *2/0/ 
END 

(The above COMMON areas should be repeated in the main program 
without d.ata initialization. The following sta tellents 
are in MAIN only.) 

LOG I CAL *4 A (2) I ' • B ' , , • 1 
LOGICAL*l PUT/Z011 
CALL ORBIT(PUTYPE,PUT) 
PUTNAM=IADDR(A(l» 
CALL DPPPIF (PUTMAC) 

APPLICATION SERVICES 2-141 



This FORTRAN interface provid.es the programmer the facilities of the 
DUMPLOG service. The following FOBTRAN statements define the interface 
parameter list: 

C COKMON NAKED 'DUKPLG'--PARAKETER TABtE FOR DOKPLOG 
COKMON/DUMPLG/DPLMAC 

INTEGER*2 DPLKAC 
COKMON/DUMPLG/DPLRC 

INTEGER*2 DPLRC 
COMKON/DUMPLG/DPL~YP 

INTEGER*2 DPLTYP 
COMKON/DUKPLG/DPLNO 

INTEGER*2 DPLNO 
COMKON/DOKPLG/DPLSTR 

INTEGER*4 DPLSTR 
COMKON/DOMPLG/DPLEND 

INTEGER*4 DPLEND 
COKKON/DUKPLG/DPLDAT 

INTEGER*4 DPLDAT 
COKKON/DUKPLG/DPLDD 

LOGICAL*1 DPLDD(8) 
COKKON/DUKPLG/DPLIST 

INTEGER*4 DPLIST 
C END OF COMMON NAKED 'DUMPLG' 
C 

DPLMAC 
A halfword binary value of 52 identifying the requested service to 
the interface routine. 

DPLBC 
A halfword binary field containing a binary number return code from 
the DUMPLOG service routine. See DUMPLOG macro write-up for possible 
values. 

DPLTYP 
A halfword flags field indicating the requested options to the GETLOG 
service routine. Bits are numbered 0 to 7. 

Bits 0, 1, 
2, 4 and 1 

Bit 3 

Bit 5 

Bit 6 

2-148 

Reserved 

This flag specifies whether the dumped copies are 
to be written at the beginning of the dump data set 
(Bit 3 is on) or added to the existing dumped copies 
(Bit 3 is off). If the disposition parameter 
specified on the DD card statement for this data 
set is either OLD or SHR and the data set is empty, 
then the first DOKPLOG request must specify 'NEW' 
(Bit 3 is on). Specifying 'NEW' (Bit 3 is ont on 
subsequent DUKPLOG requests will position a direct 
access data set to record one and viII cause a tape 
da ta set to force EOV before the log copies are 
wr itten. 

If on, specifies a list of array names or numbers 
is pointed to by DPLIST. 

If on, specifies array number(s) is to be processed. 
If off, array name(s) is given for processing. 

Description and Operation Manual 



DPLNO 
A halfword number which is the number of a numbered array to be dumped. 
Valid only if Bit 5 is off and Bit 6 of DPLTYP is on. 

DPLSTR 
A fullvord which specifies the address of a 6-byte time and day field. 
The first four bytes viII contain a time in 10-millisecond The last 
tvo bytes viII contain a binary value from 1 to 266 representing the 
date of the year. The logged copies of the array will be searched 
until a copy is found with a log time equal to or greater than the 
start time specified_ If this parameter is zero. dumping commences 
vith the oldest logged copy of t"he array_ 

DPLEND 
A fullvord vhich specifies the address of a 6-byte time and day field 
formatted as in DPLSTR. The logged copies of the array will be dumped 
until the most recently logged copy has been dumped or until a copy 
is dumped whose log time is equal to or greater than the specified 
stop time. If this parameter is zero. dumping viII terminate when 
the most recently logged copy of the array has been dumped. 

Note: DUMPLOG viII insert a byte of X'FF' into the first byte of the 
logging header of the last copy of each array dumped to the 
sequential data set to indicate the end of the dump of each 
array to the user delog routine. 

DPLDAT 
A fullword which specifies the address of a 256-byte user data area 
to be contained in the dump header for each array on the sequential 
damp data set. 

DPLOD 
Tvo 4-byte logical vords containing the name of the data definition 
(00) statement vhich describes a sequential data set to receive the 
dumped copies of the array(s) from the 109 data set. A name must be 
specified. 

The output viII consist of spanned variable length records. The 
blocksize of the data set defined by DPLDD must be at least 264 bytes 
but no more than 32.760 bytes. The blocksize should be large enough 
to contain one array copy. its log heade"r. the user dump header. if 
any, and the variable length descriptor vords (8 bytes) for maximum 
effiency. 

DPLIST 
A full word containing the address of one of the following based on 
Bits 5 and 6 DPLTYP: 

a. If Bits 5 and 6 are off. then DPLIST contains the address of an 
a-character loggable array name to be dumped. 

b. If Bit 5 is on and Bit 6 is off, then DPLIST contains the address 
of a list of loqgable array names to be dumped. 

APPLICATION SERVICES 2-149 



Each name is eight characters long with a X'FF' after the last valid 
name as an end of list indicator. 

NAME LIST 

o ARRAY NAME 

8 ARRAY NAME 

16~ 

c. If Bits 5 and 6 are on, then DPLIST contains the address of a list 
of halfword loggable array numbers. A XIFF' follows the last valid 
number as an end of list indicator. 

NUMBER LIST 

a NUMBER 

2 NUMBER 

4 FF I 

The DUMPLOG service may be invoked by CALLing DPPPIF with a properly 
completed parameter list. 

The following example will damp log array B at the beginning of the 
data set. All log copies of array B will be dumped starting with the 
oldest copy available. 

C FORTRAN DUMP LOG EXAMPLE 
BLOCK DATA 
COMMON /DUMPLG/ DPLMAC,DPLRC,DPLTYP,DPLNO,DPLSrR,DPLEND, 

1DPLDAT,DPLDD(2) ,DPLIST 
INTEGER DPLMAC*2/52/,DPLRC*2/0/,DPLTYP*2/0/,DPLNO*2, 

1DPLSTR,DPLEND,DPLDAT,DPLIST 
LOGICAL DPLDD*4/'DUMP','LOG '/ 
END 

(The above common areas should be repeated in the main program without 
data initialization. The following statements are in MAIN only.) 

LOGICAL A*4(2)/'B , , , 

CALL ORBIT(DPLTYP,DISP) 
DPLIST = IADDR(A(1) 
CALL DPPPIF(DPLMAC) 

'I, DISP*1/Z10/ 

2-150 Description and Operation Manual 



DUPLICATE DATA SET SUPPORT 

The operation of the Special Real Time Operating system and associated 
subsystems is dependent upon several direct access data sets. Some of 
these, such as data base definitions, are only read in realtime 
execution, while others, such as history logs, are read and written. 
The Special Real Time Operating System provides the capability to use 
two identical copies of certain data sets to improve the total system 
availability. While this service is provided primarily for data sets 
which are used by the system, a limited capability is provided to the 
system user to utilize the duplicate data set support. 

The principal purpose of the duplicate data set facility is to provide 
a backup copy of the data should the primary copy experience a failure. 
In maintaining this duplicate data set, the primary and backup are 
updated simultaneously during realtime processing. In case of failure 
of one copy, the system takes that copy out of service and uses the 
other copy. Appropriate messages are output to make the operator aware 
of the trotlble. 

Duplicate data set support (DDS) is a SYSGENable option which is 
selected by coding the DUPDISK macro at Special Real Time Operating 
System SYSGEN time. With DDS SYSGENed, a user can declare via JCL the 
data sets that are duplicates. The user programs include special I/O 
macro codes to use the DDS services. However, this does not prevent 
these programs from functioning when DDS is not supported, because the 
special macros default to their standard OS/VS1 counterparts for data 
sets not supported by DDS. 

DDS services are in three logical areas: 

1. Initialization 

2. Pseudo-SVC routines 

3. I/O CALL routines 

Initialization analyzes the DDS input stream to determine which data 
sets are being declared as duplicate. A control table is established 
for properly declared duplicate data sets, and its address is placed 
in the Special Real Time operating System SCVT. 

The DDS pseudo-SVC routines are given control vhen the user requests 
an I/O function which is normally an SVC under standard os access 
methods. Thus, the OPEN, CLOSE, BLDL, FIND, and STOW macro functions 
require corresponding ~DS macros (OS macros preceded by DDS) which 
expand not to an SVC, but to a branch to the respective nDS routine. 
If the data set has been declared a duplicate, these routines viII 
issue the SVC for both data sets; if not, these routines will issue 
the SVC only once. The DCBOFLGS and SVC return codes are provided to 
the user in either case. 

DDS I/O call routines viII be entered for all I/O requests (READ, WRITE, 
NOTE, POINT, and CHECK) to a data set that was opened vith the DDS OPEN 
macro and was declared a duplicate. These routines viII treat the 
request in the following manner: all requests to alter the data set 
are issued to both data sets, and all requests to read data-are issued 
only to the primary data set. In the update mode, the read request is 
issued twice. In case of an incorrectable IIO failure, the failing 
data set is closed, and processing continues with the reaaininq data 
set. For double I/O failures, the user's SYNAD is given control. To 
prevent double IIO failures, the data sets should be on devices that 
are on different I/O channels. 

APPLICATION SERVICES 2-151 



The user declares which data sets are duplicates via JeL, by including 
the DD card DDSCTLIN. Each duplicate data set should be described by 
a separate 'DDSNAKES' card in the DDSCTIIN stream. The format of the 
DDSNAMES card is as follows: 

[ DDS-DDNAME ] nnSN AM ES (DONAHE1,DDNAKE2=OUT) 

DDS-DDNAME 
Is optional and must begin in column 1. It should be the DDNAME that 
will be referenced in all 1/0 macros for this duplicate data set. If 
left blank, its value will default to that supplied in the DDNA~E1 
field. 

DDS NAMES 
Is the required op code and should be preceded by at least 1 blank. 

DDNAME1 
Is the DDNAME of the DD card for the primary data set of the duplicate 
pair. This field is required. 

DDNAME2 
Is the DDNAME of the DD card for the backup data set of the duplicate 
pair. This field is required and the backup can be initialized out 
of service. 

certain DDS functions can be requested dyr.arnically during realtime 
operation. These functions allow the user, through the input message 
p roce ssor, to: 

o Create a backup 

• Take a backup out of service .. 
• Switch the primary and backUp 

• Replace t he primary 

• Compare primary and backup 

• Give the status of the duplicate data sets. 

The format of the replies required to invoke these routines is 
documented in the section entitled "DDSCNTRL Command. The input message 
command is DDSCNTRL. 

The user can have his current primary data set copied to his backup to 
bring the backup to the same level as the primary. This operation 
requires that the backup data set be out of service for the copy 
operation. The user also may use the DDSCNTRL reply to take the backup 
out of service. 

The DDSCNTRL reply may be used to cause the backup to become the primary 
and have the primary switched to an out of service backup. But backup 
must be in service at the time of the switch request. 

A primary data set may be replaced by another data set specified by 
DDNAME on the DDSCNTRL command provided that no DDSDCB opened for the 
duplicate data set exists at the time of the request. This would cause 
the new DDNAME to become tt,e primary copy and the old primary to become 
the in-service backup copy. 

The user may wish to yerify that his primary and backup copies of a 
DDS are, in fact, the same. He may do this with the COMPARE operand 
of the DDSCNTRL command. To invoke this operation, he must be sure 
that a COMPRINT and DDSCMPIN DD card was supplied. When invoked, the 

2-152 Description and Operation Manual 



OS/VS1 utility IEBCOMPB is used to do the compare. To use this operand, 
LRECL must have been specified on the DDS DD cards for partitioned data 
sets. 

See Section 3, entitled "DDS INITIALIZATION" for a description of DD 
card usage. 

The status of the primary and backup DD names may be determined (in or 
out of service, which is primary, which is backup) by invoking DDSCNTRL 
with the STATUS operand. 

The following is a list of restrictions and guidelines for using the 
DDS servi ces. 

1. All duplicate data sets must begin on a cylinder boundary and 
can have only one extent. 

2. The user should be certain that any tvo data sets being declared 
as duplicates are, in fact, identical in their content. 

3. Tvo tasks can reference the same DDSDCB provided it is treated 
as a serially reusable resource. In update mode the user must 
treat each READ-CHECK and WRITE-CHECK operation as a single 
function. 

4. Only Disk resident data sets can be declared duplicates. 

5. Only one DDS DCB per, DDS can be opened at a time. 

6. No copy and control functions can be used if the DnSDCB is opened 
for update (BPA" or BSAM). 

7. DDS services are available only to the Special Real Time 
operating System tasks. 

8. Only 20 duplicate data set pairs are supported. 

In the following example of typical use of DDS, the user wishes to 
create a duplicate BPAM data set and update an existing BSAM duplicate 
data set. The job step JCL vould include these cards: 

IIBPAM1 DD DSN=BP1,DISP=(NEW,PASS) ,SPACE=(CYL,(1,,1»,UNIT=DISK 
IIBPAM2 DO DSN=BP2,DISP=(NEW,PASS) ,SPACE=(CYL,(1,,1»,UNIT=DISK 
I IBS AM 1 DD D SN=BSM 1, DISP= (OL D, PA SS) 
IIBSAM2 DD DSN=BSM2,DISP=(OLD,PASS) 
IIDOSCTLIN DD * 

DDSNAMES 
DDSNAM ES 

1* 

(BPAI11,BPAM2) 
( BS AM 1 , BS AM 2) 

The OPEN and DDSDCB macros would be coded as follows: 

DDSOPEN 
DDSOPEN 

DDSBP1 
DOSBS!!1 

(DDSBP 1, (OUTPUT) ) 
(DDSBSM1, (UPDAT» 

DDSDCB 
ODSDCB 

DO NAME=BPA M1, ••• 
OONAME=BSAK1, ••• 

The READ, WRITE, and CHECK macros would be coded exactly as if they 
vere standard OS. 

APPLICATION SERVICES 2-153 



The STOW and CLOSE macros would be coded as follows: 

DDSSTOW 
LIST DC 
DDSCLOSE 
DOSCLOSE 

DD SBP 1, LIST, R 
CL8'MEMBER1',XL4'O' 
(DDSBP 1) 
(DDS BSM1) 

DDS FAILOVER/RESTART CONSIDERATIO NS 

The status of each declared DDS will be kept on a disk resident data 
set with ODNAME, DDSTATUS. All changes (via COpy and CONTROL) will be 
recorded on this data set. In the case of failover or restart, the 
status of each obs viII be taken from this data set. 

If the user wishes to use an existing DDSTATUS for his declarations at 
initialization time, he must include in his ODSCTLIN input stream a 
REFRESH card as the first card (REFRESH can begin in any column except 
column 1). All the remaining cards (if any) vill be ignored, and the 
declarations currently on the DDSTATUS data set will be used. 

When initializing a backup computer, the first card in the DDSCTLIN 
input stream must be READONLY which may start in any column except 
column 1. This will inhibit all data transfer to disk by DDS until 
failover occurs and this machine becomes primary. READONLY implies 
REFRESH, so the current declarations on DDSTATUS will be used. 

When DDS is entered during failoYer/restart, it expects all DDSOCB to 
be closed. Any task which has a DDSDCB opened at that time will be 
ABENDed with code 81 decimal (51 hex). Normal task clean up will then 
close the DDSDCB and free the associated storage gotten by DDS. 

FAILOVER/RESTART FEATURE 

The failover/restart feature of the Special Real Time Operating System 
is SYSGENable and optionally provides the continous monitor and probe 
function and the computer status panel. 

Failover/restart operates by copying the contents of virtual storage, 
the OS/VSl job queue, and the SWADS for the one or two partitions that 
encompass the realtime job, into a disk data set. If two-partition 
operation is being used, both SYSINIT streams must contain RESTART 
WRITE statements. The writing of the failover/restart data set is 
delayed until both partitions execute this statement. After this data 
set is written, a "bootstrap" record is vritten at the front of the 
data set, and the IPLl and IPL2 records on the volume containing this 
data, set are adjusted to allow them to read in the bootstrap program. 
Thus, the volume containing the failover/restart data set becomes an 
IPLable volume. IPLing this volume is the method of accomplishing the 
restart. If this occurs on a different CPU, the operation is known as 
a failover. 

The effect of IPLing this volume is to return the System/310 to the 
identical state it was when the RESTART WRITE card was encountered in 
the SYSINIT special Real Time Operating system initialization stream. 
This is illustrated in Figure 2-21. The failover/restart bootstrap 
restores virtual storage, the job queue data set, and one or tvo SWADS 
data sets to the identical state they vere vhen the restart was written • 

... restart was vrittea. No savifl§ QI: Fest:oLilly of the gY51.S¥~PO(H:'-No 
saving or restoring of the SYS1.SYSPOOL data sets occurs. Use of a 
scheduler work area (SWA) in place of SWADS by the MASTER or SLAVE 
partition will cause the SWADS not to be saved. The equivalent 
information is available within the partition. 

2-154 Description and Operation Manual 



/I 
/IS 
PI 

EXEC PGM=DPPINIT 
YSINIT DO * 

PATCH TASK=XX,EP=Y 
WAIT PI 
REST ART WRITE 

:+ PATCH TASK=XX"EP= Z 

OS Job 
Scheduler 

1 

Write 
Failover/Restart 

Data Set 

~ 

IPL Hardware 

~. 

Bootstrap 

-r 
""'" '-,.,) I 

f-+ Disk 
RE-NIP 

...... ~ -
I 

Figure 2-21. Restart Process 

Realtime jobs which use the failover/restart feature must observe the 
following restrictions: 

1. The failover/restart data set and its copies must reside on a 
direct access volume. The volume may be on any device supported 
by OS/VS1. It may not be the volume containing the SYS1.NUCLEUS 
data set (OS IPL volume). No .ore than one failover/restart 
data set may be allocated on a volume. The failover/restart 
data must not be an OS temporary data set; it must reside 
entirely upon one volume and can contain only one extent. (Only 
thefi rst . extent will be used.) 

2. The failover/restart data set should be allocated on a cylinder 
boundary_ SYS1.SYSJOBQE and the SiADS data sets must end on a 
cylinder boundary. 

~. The ~WADS data sets cannot be temporary data sets unless SiA is 
used in place of SiADS. 

4. No data set used by the realtime job should be a temporary data 
set nor should the realtime job be dependent on SYSIN data sets 
after the RESTART WRITE card is executed. Because the job is 
never ending, it should not use DD cards containing the SYSOUT 
parameter. If such SYSIN/SYSOUT data sets are used, contents 
may be lost. This does not apply to the SYSINIT input stream 
as it is read in its entirety prior to executing any of it. 

5. No tape positioning is done by failover/restart. 

6. At the time of restart read, all necessary direct access volumes 
must be mounted and ready. Data sets that are to be referenced 
and w~re allocated prior to restart write must exist on the same 
volume as they did prior to restart write. If DCBs were opened 
for any direct access data sets prior to restart write, these 
data sets must occupy exactly the same physical disk location 
they did prior to restart write. The device address upon which 
a particular volume resides may differ, however. A necessary 
volume is one that contains a system data set or that is 
allocated to the realtime job. 

7. At the time of restart read, multiple volumes with the same 
volume serial number must not be accessible4 There-NIP routine 

APPLICATION SERVICES 2-155 



will attempt to read the volume serial number from all direct 
access devices which were SYSGENed into the OS/VS1 system. 

8. At the time of restart write, the user should take steps to 
ensure that no jobs are active in the CPU other than the realtime 
job and its SLAVE partition job, if any. If this restriction 
is ignored when the failover/restart data set is IPLed, these 
jobs will resume at the point vhere they were written vithout 
the benefit of a restored SWADS and possibly with data extent 
blocks (DEBs) containing invalid disk addresses. Resumption 
could occur in the middle of a DADSM function, thereby 
compromising VToe and data set integrity. 

9. Restrictions 3 through 8 do not apply if the failover/restart 
is to be written, but never read. Restrictions 1 and 2 apply 
in any case. 

10. The special Real Time Opera4;.ing System initialization routine 
invokes restart when the RESTART WRITE card is encountered in 
the execution pass of the SYSINIT input stream. This is executed 
by issuing the WTFAILDS macro (no operands). A user program 
can also issue this macro. Use of this feature repetively (to 
take checkpoints) is not recommended for all the reasons listed 
above. In addition, since each execution of WTFAILDS would 
cause the existing copies of the failover/restart data set to 
be overlayed, a failover in the middle of the restart write 
could result in no usable failover/restart data set, old or new. 
Failover/restart is a method of getting a fast IPL; it is not 
a substitute for checkpoint restart. 

11. If a failover/restart data set is to be written on one CPU and 
potentially read by any CPU other than the creating one, the 
following restrictions should be observed: 

a. The CPUs should have identical configuration or the OS/VS1 
system involved should be a superset of all the CPJs. 

b. The CPUs should all be of the same model at the same 
EC/feature level to ensure thatRMS will operate correctly. 

c. If the CPUs are of different real storage sizes, the 
failover/restart data set must be written by the one with 
the smallest real storage size. When IPLed on the larger 
CPU, this CPU's extra real storage viII not be used. 

12. A copy of a failover/restart data set can be made only by using 
IEHDASDR (an OS/VS1 utility) or DOMIRCPY (a Special Real Time 
Operating System utility to copy failover/restart data set). 
IEHDASDR can be used only in the sense of making a tape backup 
for later restore. 

13. The WTFAILDS macro should not be used by an application program 
if the Time Drift Correction feature is used. This does not 
preclude the use of the RESTART WRITE statement in the DPPINIT 
input stream. 

When failover/restart write is invoked, it copies all of virtual 
storage, SYS1.SYSJOBQE, and the SiADS data set(s) to the data set 
allocated by the DPPFAIL DD card. Copying of virtual storage consists 
of copying all real storage and those entries on the paging data set 
which are active. After the writes to DPPFAIL are completed, the 
desired backup copies of the entire failover/restart are made by copying 
from DPPFAIL to DPPFAILx, where x is a unique character (the method of 
copying the Failover data set is described later in this section) • 
Each DPPFAILx must reside on a unique volume which is of the same device 

2-156 Description and Operation Manual 



type as DPPFAIL. This operation bas no connection with duplicate data 
set support and is independent of it. 

Failover/restart data set write will not write the failover/restart 
data set if another realtime job ("ASTER JOB) reached the Special Real 
Time operating System initialization prior to the job issuing the 
WTFAILDS (or RESTART WRITE card). If this occurs, WTFAILDS will be 
tr.eated as non-operative; although the pre-r~start flag in SYSINIT 
PATCHes will be cleared. When the job having 'ownership' of 
failover/restart eligibility terminates, the next "ASTER realtime job 
that starts will acquire it. In addition, if the byte at displacement 
X'OD' past the eSECT/ENTRY name DPPICINF in the OS/VS1 nucleus is 
nonzero, no job will acquire restart write eligibility. This byte is 
assembled as non-zero, but may be altered by using HMASPZAP, an OS/VS1 
service aid. 

(The name DPPICINF will be a eSECT name in the pageable nucleus in the 
special Real Time Operating system without external interrupt handling; 
that is, without the TIMEEXT option or the CLOCKCP opt.ion on the VS 
SYSGEN macro and without the FAILEXT option on the FAILRST macro. In 
systems with external intp.rrupt handling, it will be an ENTRY name in 
the CSECT IEAXYZ5.) 

The return codes issued by WTFAILDS are listed below: 

GRI5 MEANING Message Written to Routine 
Code 5 

DPPFAIL 
0 data set written successfully 

or failover/restart write DPP090, DPP093 
suppressed by other R/T job. 

4 same return code as 0 except DPP091 restart data set was just read. 

8 Invalid or missing DPPFAIL DPP092 DD card. 

12 I/O error writing DPPFAIL DPP080-DPP087 10 or end of extent 

When IPLing a failover/restart data set, several WAIT states can occur. 
They are listed below: 

X'18' 

X'19' 

X'E2' 

X' 03' 

CPU too small for failover/restart data set or other 
immediate program check in bootstrap. 

Program check in bootstrap while copying data sets 
or I/O error. 

"achine check in restart bootstrap. 

One or more necessary disks missing. 

Program check loop Failover/restart data set has been scratched. 

Hangs in LOAD Failover/restart data set has been scratched or I/O 
error. 

The load module DOMIRCPY is used internally by failover/restart write 
to copy DPPFAIL to DPPFAILx DO cards. It can also be invoked as a 
PATCHed task to perform the same operation in any realtime job, which 
is shown in the example below. 

APPLICATION SERVICES 2-151 



Return codes from DOMIRCPY 

GR15 MEANING Message to Routing 
Code 5 

0 Copy Successful None 

One or more invalid 
X DPPFAIL 01' DPPFAILx DD DPPOX9 

cards. No copy done. 

12 I/O error during COPY. DPP088 COpy terminated. 

//X JOB 1,1,MSGLEVEL=1 
// 
//STEPLIB 
//SYSPRINT 
//DPPFAIL 
//DPPFAIL2 
//SYSINIT 
COpy PATCH 

// 

, WAIT 
ABEND 

EX EC PGM=DPPINIT 
DD 
DD SY SOUT=A 
DD DSN=FAILRST.DS,DISP=SHR 
DD DSN=FAILRS T2. DS, DISP=OLD 
DD * 
EP=DOMIRCPY 
COpy 
o 

Ex ample 1 

OLD F/RD/S 
NEW F/RD/S 

The continuous monitor feature of the Special Real Time Operating System 
is available in all systems having the failover/restart feature. Its 
selection is made by coding the CONTMON parameter on the FAILRST SYSGEN 
macro. 

The continuous monitor is started by PATCHing a task with EP=DOMIRCHN. 
This can be done by a user program, by a PATCH card in the SYSINIT 
input stream, or by the CHON parameter on the RESTART card. DOMIRCMN 
is a never ending program. DOMIRCMN should be invoked after the 
failover data set is written, if a failover/restart data set is being 
written. 

The continuous monitoL tests certain locations within the Special Real 
Time operating System virtual storage data base on a periodic basis. 
The period is determined by the CONTINT parameter on the FAILRST macro. 

If the continuous monitor determines that the test locations have not 
been modified for a certain period of time (indicating that some cyclic 
function has failed), it recommends that failover occur. The action 
taken depends upon the mode of operation of the continuous monitor, 
simplex or duplex. A system without a probe function generated (PROBE 
parameter in FAILRST macro) always operates in the simplex mode. In 
a system with the probe function, the continuous monitor operates in 
duplex mode unless one or both of the following conditions are met: 

• The realtime job under which the continuous monitor is operating 
is not authorized to write a failover/restart data set (see 
Failover/Restart section) • 

• A probe fUnction is running under any job on this cpu. 

If either of these conditions is met, the continuous monitor will 
operate only in simplex mode. In the simplex mode, when the continuous 

2-158 Description and Operation Manual 



monitor recommends failover, it issues message DPP098 and places the 
task under which it is executing in a permanent WAIT. ' In the duplex 
mode, the continuous monitor sends a signal via the direct control 
feature to the backup CPU that the continuous monitor is recommending 
failover. This signal is received by the probe function in the backup 
cpu. The backup CPU then initiates the failover. 

The test locations examined by the continuous monitor are either 
determined implicitly by the options generated into the system, or 
additional customer test locations can be stated explicitly in the 
CONTADL parameter of the FAILRST SYSGEN ma'cro. Each location to be 
tested is a 2-byte named, virtual storage resident data base item. 
This 2-byte item should be defined in an ITEM macro as initially 
zero. The The first byte of the item is the period in seconds at vhich 
the second byte viII be updated. The second byte should be changed 
from 1 to 2, 3, ••• , up to 250, back to 1 again at the rate specified 
in the first byte. If the value fails to change for a time interval 
equal to tvice the first byte, the continuous monitor will recommend 
failov~r. If the second byte is ~ro, it indicates that the data base 
item viII no longer be incremented at th~ rate specified and should 
not be checked again until it is once again nonzero. A value of 255 
(hex FF) in the second byte indicates that the component is recommending 
failover. If this occurs, the If this occurs, the continuous monitor 
viII recommend failover. Values of 251 through 254 are reserved for 
expansion. 

Normally, the continuous monitor sends periodic signals to the probe 
function, but the converse does not occur. To have the continuous 
monitor report if the probe function is no longer checking it, the 
CMCKPRB parameter should be set to YES on the FAILRST SYSGEN macro. 

The probe function is a SYSGENable option of the Special Real Time 
Operating System failover/restart feature. It operates in the backup 
CPU and tests the online CPU (the continuous monitor) via the direct 
control data bus. If the 4-bit value represented on the static signal 
lines fails to change for a time interval of twice the sample period 
(CONTINT parameter), the probe function recommends that the backup cpu 
become" the prime CPU. The location of the 4-bit quantity on the static 
signal lines is determined by the PRO BIT parameter of the FAILRST macro. 
These four lines must be connected between the two CPUs so that a signal 
placed on the lines by WRD in one CPU can be read by RDD in the other 
CPU and vice versa. A value of 15 (hex F) on the lines indicates that 
the continuous monitor is recommending failover to the probe function 
because the continuous monitor found a value of 255 in one of the data 
base items examined, or that the continuou~ monitor is recommending 
failover to the probe function because one of the test locations bas 
failed to change at its specified rate. Thus the probe function viII 
recommend failover when it gets a Continuous Monitor Recommended 
Failover signal or if the continuous monitor fails to change the bits 
on the static signal lines at the specified rate. (This could occur 
if the prime CPU vent down.) In a system without the failover In a 
system without the failover confirmed external interrupt (FAILEXT 
parameter on the FAILRST macro), Failover Recommended is the same as 
Failover Confirmed (see Figure 2-28). 

APPLICATION SERVICES 2-159 



Shared 
I/O 

I 

CPU CPU r-. 

A '-' 
4 Bits of the B 

(Prime) Direct Control 
Probe Static 

Continuous Signal Lines 
(Backup) Monitor 

Figure 2-28. Probe Function Failure/Restart Feature 

The probe function can be started in a realtime or non-realtime job. 
It will not start if another probe function is already operating on 
this CPU, or if a continuous monitor function operating in duplex mode 
is running. The probe can be ztarted by the RESTART card in the Special 
Real Time Operating System SYSINIT stream or by a user program. It 
should be started on the backup CPU after the continuous monitor has 
been started on the primary cpu. If the probe is started first, it 
will immediately recommend failover. 

The action taken by the probe when it enters the Failover Confirmed 
state is determined by its entry point. If the probe was entered at 
EP=DOMIRPRB, it will simulate a hardware IPL to the direct access device 
pointed to by the DPPF1IL DD card. This device should contain a 
successfully written failover/restart data set. If the probe was 
entered at EP=DOMIRPWT, it will return to its caller with a code of 4 
in register 15. coding the PROBE parameter in the RESTART card causes 
the DOMIRPWT entry to be used. 

The DOMIRPRB entry point is intended for use in a duplex CPU environ~ent 
where a system outage of 15 to 60 seconds can be tolerated. Upon 
reaching the Failover Confirmed state, DOMIRPRB will simulate a hardware 
IPt to the failover/restart data set. The realtime system will resule 
at a point after the execution of the RESTARr WRITE card in the SYSINIT 
stream or the issuance of a WTFAltDS macro by an application program. 
The jobs, SYSIN and SYSOUT, and operating system running on the backup 
CPU prior to the simulated IPt will be lost. 

The DOMIRPWT entry point is intended for use in :}uplex environments 
where a faster failover is needed. Using this scheme, the PROBE 
parameter is coded on the RESTART card. This causes the PROBE to be 
invoked after RESTART WRITE, if any. This causes a delay in the Special 
Real Time Operating System initialization until the probe function 
returns. Thus initialization stops until the probe enters the Failover 
Confirmed state. While the realtime job is executing only the probe, 
much of the remainder of it viII be paged out by OS/VS1. Batch jobs 
can then be run. If the offline CPU later becomes the online CPU, 

2-160 Description and Operation Manual 



these batch jobs can be cancelled if they are interfering with the 
realtime job. The following example depicts a sample SYSINIT stream 
for this type of operation. 

1/ EXEC PG M=DP PI NI T 

DD * 
EP=ONE, TASK=! INIT TASKS 
EP=TWO,TASK=Y 

IISYSINIT 
PATCH 
PATCH 

RESTART 
PATCH 
PATCH 

WR ITE, PROB E,CPlON 
EP=ONEONE,TASK=X 
EP=TWOTWO,TASK=Y 

(IMPLIED WIAT ON ABOVE TWO) 

1* 

The Special Real Time Operating System supports the remote system reset 
RPQ (Z06741) in systems with the continuous monitor and probe function. 
This feature allows one CPU to force another CPU to execute a system 
reset. The probe function resets the online CPU which has j~st failed 
when it enters the Failover Confirmed state. Since during a failure 
the online GPU may have degraded to a disabled loop and has 1/0 devices 
reserved, this feature increases system availability by giving the 
backup CPU the ability to force a system reset in the online cpu. The 
RESET parameter in the FAILRST macro is used to include this feature 
in the probe function. The operand of the RESET parameter is a direct 
control signal-out line number (0-1) for the reset feature. Figure 
2-29 depicts a two-CPU configuration with remote system reset. 

CPU A 
(SYSRESET) 

Signal-out Line 

Shared 
I/O 

Direct Control 
Static Data Lines 
(4 Bits Used) 

Signal-out Line 

(SYSRESET) 
CPUB 

Figure 2-29. Remote System Reset Feature 

The Special Real Time Operating System also supports the automatic 2914 
Remote Equipment Switch RPQs (880882 and 880920) in a system with the 
continuous monitor and probe functions. This feature allows devices 
which are connected to two CPUs through a 2914 switch to be 
automatically switched from the prime CPU to the backup cpu. When the 
probe function enters the Failover Confirmed state, it will cause the 
2914 to switch the shared equipment to the backup CPU. The EQUIPSi 
parameter on the FAILRST macro specifies which direct control signal-out 
rine (0-7) is to be used to cause the 2914 to switch shared equipment 
to the CPU issuing the direct control instruction. The EQUIPDY 

APPLICATION SERVICES 2-161 



parameter specifies in milliseconds how long the probe function should 
delay after issuing the 2914 switch command until it returns (DOMIRPWT) 
or IPLs the failover/restart data set (DOMIRPRB). Figure 2-30 depicts 
a two-cPU configuration with 2914 remote switching. The remote system 
reset, 2914 Remote switch, and computer status panel features are all 
independent of each other. 

CPUA 

" Switch to Me " 
Signal-out Lines 

Shared I/O 
(Two Channel 
Switch Type) 

Direct Control 
Static Data Lines 

(4 Bits Used) 

2914 

I/O I/O 

" Switch to Me .. 
Signal-out Lines 

CPUB 

Figure 2-30. System with Automatic 2914 Switch 

The Special Real Time Operating System offers software for the computer 
status panel (see Figure 2-31) as an option for systems with the 
continuous monitor and probe features. In addition a smaller model 
can be supported for systems with only the continuous monitor feature. 

2-162 Description and Operation Manual 



Computer A 
Prime 

Computer A 
Ready 

Computer 
Failover 
Request 

Select 
Auto 

Failover 
Active 

Computer B 
Prime 

Computer B 
Ready 

Computer 
Failover 
Request 

Select 

Buttons 

Computer 
Status 
Panel 

Computer 
Control 
Panel 

Figure 2-31. Computer Status Panel Indicators and Switcnes 

The computer status panel consists of six indicator lights and two or 
three backlighted pushbuttons. The Computer A Prime/Computer B Prime 
lights are mutually exclusive; the one that is lit indicates which 
system is currently the online (prime) cpu. This light is illuminated 
by a pulse from a direct control signal-out line on the system that is 
the online system. It remains lit until a pulse is received on the 
same signal-out line on the other CPU, in which case the other PRIME 
light is lit. The computer A Ready/Computer B Ready lights are 
illuminated by a signal on the direct control signal-out lines. They 
remain lit for approximately two seconds at which point they extinguish 
(time-out) unless they are re-illuminated prior to that time by another 
pulse on the same signal-out line. This light indicates that the CPO 
is successfully executing the online system or is capable of becoming 
the online system if it is the backup computer (probe function is 
running). For systems without a probe function, only these two 
indicators (four bulbs) are supported. 

The Computer Failover Request light is illuminated by a bit on a direct 
control static data line. As long as the bit on the line is one, the 
light remains illuminated. Illumination is by the probe function when 
it enters a Failover Recommended state. The Select light backlighted 
pushbutton is lit by the probe function when it enters tne Failover 
Confirmed state. This indication means that failover has begun. The 
Select and Failover Request lights are extinguished and the prime light 
is lit when the continuous monitor function starts to execute on the 
new failover-to-prime cpu. 

APPLICATION SERVICES 2-163 



In systems without the Pailover Confirmed external interrupt (PAILEXT 
parameter on the PAILRST macro), the Pailover Request and Select lights 
are illuminated simultaneously as the Failover Recommended and Failover 
Confirmed states are the same. In systems with the Failover Confirmed 
external interrupt, the Failover Bequest light will be illuminated when 
the probe fUnction $nters the Pailover Recommended state. If the Auto 
Failover Active switch is on (is backlighted), an external signal 
interrupt occurs in t he CPO lighting the Failover Request light. (Which 
external signal (Which external signal used (2-7) is indicated in the 
FAILEXT operand of the PAILBST macro.) This external interrupt causes 
the probe function to enter the Failover Confirmed state. If the Auto 
Failover Active switch is off, the SELECT backlight pushbutton must be 
pressed to cause the probe to enter the Failover Confirmed state. (The 
SELECT button causes the same external interrupt.) 

If the continuous monitor begins to change the bit configuration on 
the four direct control static data lines, during the time the probe 
function is in the Pailover Recommended state, the probe function 
extinguishes the Failover Request light and resumes normal operation. 

In systems with the Failover Confirmed external interrupt feature, 
SELECT pushbutton may be pressed at any time to' force a failover. 
SELECT pushbutton on the online computer may be pressed to force a 
restart. When the continuous monitor forces an IPt of the 
Failover/Restart data set, it places a special (14 hex E) bit 
configuration on the direct control static data lines to indicate 
the probe function should delay one minute before continuing its 
checking of the online cpu. 

the 
The 

that 

The 1PL that is forced by the continuous monitor is achieved by XCTLing 
to DOMIRIPL. This module exists in all systems with a probe function 
and may also be called by a user program (via CALL, LINK, XCTL, ATTACH, 
or PATCH) to force an 1PL of the failover/restart data set. 

The LTS parameter on the FA1LRST macro is used to indicate which 
signal-out and static data lines are used to support the computer status 
panel. Figure 2-32 depicts a two-cpu configuration with a computer 
sta tus panel. 

The computer status panel is not an RPQ and must be fabricated by the 
customer. 

2-164 Deseri ption and Operation. Manual 



CPUA 

~~ 1 0 11 1 2 3 4 1 5 1 6 1 7 

Shared I/O 

4 Bits of 
Direct Control 

Static Static Signal lines Static 

8 Signal a Signal 
Lines " Lines 

"" I-- -
I-- -
I-- -
I-- -
f-- -
f-- -
f--- -

CPU B 

1 0 11 2 3 4 5 6 1 7 1 Ext Int 
a Signal gnal-Out 1 I ~Out I I I I I I I I I I I I I a Si 

L s lOes Line 
I 
I 

A B ""-, 
Prime Prime 

, 

A B ""-, 
Ready Ready 

A I--- r--
B oJ , 

REO REO 

Select Select ""-, 
Light light 

Select Select 
Pushbutton Pushbutton 

I 
SS ] SS 

, 

Figure 2-32. computer status Panel Connections (Functional) 

APPLICATION SERVICES 2-165 



ADDIrIONAL SPECIAL REAL TIME OPERATING SYSTEM SERVICES 

There are additional Special Real Time Operating System services that 
do not fall into the areas of task management or time management, etc. 
These additional services are: 

CHAIN 

CHAIN 
GETW AI FR EEWA 
LOCK/DEF LOCK 
PAGE FIX 

CHAIN allows a programmer to modify a control block chain without the 
need of ENQ/DEQ to protect against another program modifying the chain 
at the same time. CHAIN operates as a Type I SVC. CHAIN can be used 
to add (ADD) a block (BLOCK=) to a specified chain (ORG=) or delete 
(REMOVE) a block from a chain. The block to be added (BLOCK=) may be 
placed at the start of the chain (POS=FIRST), the end of the chain 
(POS=LAST), or to put the block into the chain in a collating sequence 
(POS=disp). To place the block in collating sequence, the POS=disp 
specifies the displacement into the block to a word which is to be used 
to determine the block's relative position on the chain. This is sh~wn 
below: 

CHAIN 

START 

I f A 

Or- X 

4.-

81--------1 
121--____ --1 

00000052 

ADD,ORG=START,POS=12,BLOCK=X 

~ A 

4 
~ 

S 

8 4 

1\0 12 8 
00000026 12 P 

00000042 "' 4 +-- IWORD~ 

8 

12 
000OOO7C 

In this example, block X will be added to the chain and will be inserted 
between blocks Sand P. 

If the blocks on the chain are not chained together by pointers in the 
first word of each block, the chaining field can be specified by INDEX= 
and supply the displacement into the blocks which are to be used for 
chaining pointers. 

CHAIN will also post an ECB upon completion if the (ECB=) user requests 
t his action. 

All addresses are validity checked and must be within the partition 
(or either partition if two partition operation). 

GETWA/FREEWA 

The GETWA/FREEWA function provides the facility for obtaining short-term 
work areas without adversely increasing paging rates and without 
incurring all the overhead of a GETMAIN. The amount and sizes of GErWA 

2-166 Description and Operation Manual 



areas are determined by the Special Real Time Operating System SYSGEN 
(VS Macro, GETWAS=) and may be changed at the Special Real Time 
Operating System initialization time by a GErMA card. The number of 
unique GETWA sizes is limited to 32. The maximum size of a GETWA area 
is limited to 30710 bytes. All sizes greater than 2048 bytes must be 
defined as a multiple of 2K. All must be defined as a multiple of 8 
bytes. 

Note: The Special Real Time Operating System requires a mini~um GETWA 
size of 1024 bytes. 

GETWA storage is requested via the GETiA macro and may be explicitly 
freed by FREEWA. The requestor may have the Special Real Time Operating 
System free the storage for him and thereby relieve himself of the 
necessity of keeping track of his GETWA storage. To have the Special 
Real Time Operating System free the gotten storage, he must use the 
TYPE= operand on his GETWA request. TYPE=AP requests the Special Real 
Time Operating system to release the GETWA storage when this PATCH 
completes. TYPE=AT frees TYPE=AT frees the storage when t~e task 
terminates (a DPATCH is issued). TYPE=PC is specified when the user 
wishes to free the storage explicitly with the FREEWA macro. St~rage 
obtained with TYPE=PC will be lost to the system if the requesting task 
terminates and does not execute the FREEWA. Programs which are ATTACHed 
rather than PATCHed are defaulted to TYPE=PC and must explicitly release 
the area with a FREEWA macro. 

The amount of space requested on a GETW A macro call all if ill be "rounded 
up" to the size of the smallest GETWA area defined which is as large 
or larger than the amount of space requested. (For example, sizes 8, 
48, 96, and 1024 were generated and the request is for 680 bytes, the 
request will be satisfied with a 1024-byte block.) 

When a GETWA is executed for a valid size area and all allocated blocks 
of that size are in use, the GETWA program will allocate additional 
space to satisfy the request. The additional The additional space 
will always be allocated in multiples of 2K and divided (if necessary) 
into blocks of a size that vould otherwise be used to satisfy the 
request. The space, thus allocated, may be automatically released by 
a subsequent FREEWA when it is determined that there are sufficient 
free blocks of that size do not require immediate expansion again and 
an entire 2K block (or multiple) is not in use. This dynamic expansion 
of GETWA space will ensure that storage space is available as required. 
However, for performance considerations, the size of each GETWA area 
and the number of blocks defined for each size should approximate their 
actual usage during the realtime execution of an application. This 
will minimize both the CPU overhead and the amount of "wasted" storage 
areas. 

GETWA storage area that has been obtained by one task may be passed to 
another task through the task management routines. The GETWA storage 
area may have been obtained originally via "a GETWA macro call specifying 
TYPE=AP, AT, or PC and can be passed to another task by issuing a PATCH 
macro call of the form 

PArCH FREE= ( {:~} • address) •••• 

where "address" is the address of the GETWA storage and "AP" or II AT" 
indicates the GETWA queue to which the GETWA storage is to be chained 
on the receiving task (i.e., PATCHed task). 

An AP request causes the storage to be freed whenever the work queue 
element built in response to this PATCH is completed. An AT request 
causes the storage to be freed whenever the PATCHed task is terminated. 
In this respect, an AP or AT request is analogous to the PATCHed task 

APPLICATION SERVICES 2-167 



acquiring the storage area by issuing a GETWA TYPE=AP or AT, 
respectively. 

Note that if the PATCHing task receiYes a return code equal to or 
greater than 8 from the PATCH macro call, the PATCH cannot be executed, 
and the PATCHing task is responsible for freeing this GETWA storage 
area by executing a FREEWA macro call (eventhough the area may have 
originally been obtained by the PATCHing task through the issuance of 
a GETWA TYPE=AP or AT macro call) • 

If the PATCH is successful (return code less than 8), but the work 
queue built in response to the PATCH is later removed from the PATCHed 
tasks work queue chain before it can be executed, the storage area 
specified is freed by the Special Real Time operating system when the 
work queue is purged eventhough the PATCH may have specified FREE= (AT, 
address). If the PATCH was successful, the PATCHing task must assume 
that the storage area passed has already been freed and no reference 
to that area should be made after the PATCH has been executed. 

DEFLOCK/LOCK 

The DEFLOCK/LOCK routines may be used in combination to define and 
reserve user specified resources without incurring the overhead of the 
ENQ/DEQ routines. 

Each resource to be reserved must be defined to the Special Real Time 
operating System by a DEFLOCK macro call (TYPE=GET). This macro call 
will cause a special Real Time operating System control block to be 
built describing the resourc~. The name of the resource will be 
returned in register 0, and the address of the new control block will 
be returned in register 1. This control block address must be specified 
whenever reserving a resource with a LOCK macro call. Once the control 
block has been defined, the address of the control block can be obtained 
by a DEFLOCK macro call (TYPE=FIND). After all processing for a 
particular resource has been completed, the control block may be 
released by a DEFLOCK macro call (TYPE=REL). Note that once the control 
block has been released, it must be redefined by a DEFLOCK macro call 
(TYPE=GET) before that resource can be reserved again by a LOCK macro 
call. 

A LOCK macro call (TYPE=LOCK) is used to reserve exclusively a resource 
that has been released previously by a DEFLOCK macro call. If the 
resource is unavailable at the time the LOCK macro is executed, the 
requesting task is placed in a WAIT state until that resource becomes 
available. A LOCK macro call (TYPE=UNLOCK) is used to release control 
of the resource. Note that the LOCK macro call used to release the 
resource must be executed from the same task that executed the LOCK 
macro that reserved the resource. If a Special Real Time operating 
System task (i.e., a PATCHed task) is DPATCHed or ABENDs before 
releasing the resource~ the Special Real Time Operating System exit 
routine will release the resource for that task. However, if a 
non-Special Real Time Operating System task (i.e., an ATTACHed task) 
returns or ABENDs before releasing the resource, the LOCK will remain 
set indefinitely. 

2-168 Description and Operation Manual 



PAGE FIX 

The Special Real Time Operating System provides a facility to allow 
users to 'fix' specific storage locations .• To fix the storage, the 
user must create array DPPXFIX and put in it the names or numbers of 
arrays to be fixed and/or load modules to be fixed. Program DPPIPFIX 
will then process array DPPXFtX and LOAD the load modules and fix the 
virtual storage occupied by the specified arrays and load modules. 

'No attempt should be made to fix the storage for load modules which 
are link-edited as other than REENTRANT. The page fix function, when 
applied to load modules, operates by executing a LOAD macro to bring 
the module into storage and determine the address and length of the 
module. This LOAD is independent of the LOAD that is executed by the 
Special Real Time Operating Task Kanagement or a LOAD, LINK or ATTACH 
executed by a user program. The result of this sequence is that if 
the module is not reentrant, each execution of the LOAD for a given 
module will bring into storage a separate copy of the module. Even 
though a non-reentrant load module may be fixed, the copy which is 
fixed cannot be accessed by normal means. 

The format of the array named DPPXlIX is: r- l WORDT2WORDST2WORDS1 

TI LLL I NNNNNNNN I 00000000 

FFFFFFFF I 
AR RA Y DPPXFI X 

where: 
T = 

LLL = 

NNNNNNNN = 

Type of fix request 
L = load module 
A = named array 
N = numbered array 
C = control block 

Length of the fix request; zero indicates fix all storage 
occupied by the module or arra y. 

The left justified name of the load module or named 
array to be fixed or the array number of the numbered 
array to be fixed in the first word followed by a word 
of zeros. For control block requests, the left justified 
name must be 'CBGET' to indicate that CBGET storage is 
to be fixed; 'GETWA' to indicate that GETWA storage is 
to be fixed; or 'USERcccc' to indicate that a user 
control block is to be fixed. 

APPLICATION SERVICES 2-169 



0000000 = Each item must contain two words of zeros to be used by 
the page fix routine. 

The following is an example of the control statements required to create 
a DPPXFIX array_ 

t/DPPXUCTL AREA=DBDEF,INPUT=*,OPTION=REPL 
ARRAY NA"E=DPPXFIX,INIT=YES 

* Request 1 

A ITE" TYPE=C,INIT='L' 
B ITEM TYPE=A, LEN=3, INIT=O 
C ITEM TYPE=C, INIT=' DPPI NIT1 ' 
D ITEM TYPE=F, RPT=2 

* Request 2 

E ITEM TYPE=C, INIT=' N' 
F ITEM TYPE=A,LEN=3,INIT=50 
G ITE" TYPE=F,INIT=1 
H ITEM TYPE=!'", RPT=2 

* Request 3 

I ITEM TYPE=C,INIT='A' 
J ITEM TYPE=A,LEN=3,INIT=150 
K ITEM TYPE=C,INIT='AA 
L ITEM TYPE=F, RPT=2 

* List Terminator 

M ITEM TYPE=F,INIT=-1 

* Request 4 

M ITEM TYPE=C,INIT='C' 
N ITEM T YPE= A, LEN= 3. INIT =0 
0 ITEM TYPE=C,INIT='CBGET' 
P ITEA TYPE= F, RPT=2 

* Request 5 

Q ITEM TYPE=C,INIT='C' 
R ITEM TYPE=A,LEN=3,NAME=ULEN 
S ITEM TYPE=C,INIT='USERXYZ1' 
T ITEM TYPE=F,NAME=USTART 
U ITEM TYPE=F,INIT=O 

The above example creates an array named DPPIFIX for storage at 
initialization time and consists of: 

1. A fix request for all (ITEM card B) of load module (ITEM card 
A) named 'DPPINIT1' (ITEM card C). 

2. A fix request for 50 bytes (ITEM card F) of numbered array (ITEM 
card E) number 1 (ITEM card G) • 

3. A fix request for 150 bytes (ITEM card J) of named array (ITEM 
card I) named AA (ITEM card K) • 

4. A fix request for all (ITEM card N) CBGET storage (ITEM cards 
M and 0). 

2-110 Description and Operation Manual 



5. A fix request for a user defined control block (ITEM cards Q 
and S). On this request, the final 4 characters of the name 
field (ITEM card S) must be 'USER'. The last 4 characters are 
not used by the page fix routine and may be used to further 
identify the control block by the user. 

6. ITEM card M generates a fullvord of binary ones to indicate the 
end of the array. 

Note: On a user defined control block, the user !Y§i supply the length 
(ITEM card R) and the starting address (ITEM card T) before 
PATCHing the page fix routine (DPPIPFIX). By defining ITEM 
names for the length and start address, user PUTITEM macro calls 
could be used to fill in the array. 

with array DPPXPIX created, the user must either have a PATCH card in 
his input stream for EP=DPPIPFIX or have a program which PATCHes 
DPPIPFIX. 

It is also important to note that the user must terminate the realtime 
job step with a reply to the Input Message Processor aMP) of the form 

r xx,CANCEL[, ••• ] 

in order to r elea se t he pages t ha t ha ve been "fix ed" by the S peci al 
Real Time Operating System. 

Note: It is recommended that all arrays being fixed should be created 
with a use count of one (USE=1), that the BNDRY parameter not 
be used and no other 'arrays be created ~ith a use count of 1. 
Also, Array DPPXFIX must not be logged. If it is, a copy viII 
be used which has non-zero for the two fullwords requested by 
page fix, and the page fix function viII be bypassed. 

APPLICATION SERVICES 2-171 



TWO-PARTITION OPERATION 

Two-partition operation may be requested at the Special Real Time 
Operating system SYSGEN time via the TWOPART operand on the VS macro. 
This allows programs running under control of the Special Real Time 
Operating system to communicate with programs running under control of 
the Special Real Time Operating system in a different job step. This 
environment is created by starting a job step and invoking the Special 
Real Time operating System initialization (PGM=DPPINIT) in each of tvo 
partitions. Through this procedure, one of the job steps is designated 
as the MASTER and the other as a SLAVE to it. The MASTER job step has 
complete Special Real Time Operating system facilities included in it; 
the SLAVE has limited Special Real Time Operating system facilities in 
it, but has access to the facilities included in the MASTER partition. 

The MASTER and SLAVE job steps are run in separate partitions of the 
OS/VS1 system and, as such. run under different storage protect keys. 
affording the user some protection for his data base, etc., from 
routines in the SLAVE partition. To attain effective communication 
between the two partitions, fetch protect must not be included in the 
system. This allows the programs in either partition to fetch data 
from the other partition, but prevents inadvertent storage of data into 
the other partttion. Services are provided whereby programs in a SLAVE 
partition can store data into the data base, which is included in the 
MASTER partition. 

Two-partition operation is initiated through normal Special Real Time 
operating system initialization procedures with one additional control 
statement in each job's input stream. The MASTER job is designated by 
including the following control statement anywhere in the job's input 
stream. 

label 

where: 

MASTER 

SLAVE= 

MASTER ~LAVE=jobname 

Label is optional and must start in column 1 

specifies this is the MASTER job step 

Specifies the name on the job card (JCL) of the -job which 
is to be the SLAVE job step. 

The SLAVE job is designated by including the follow.ing control statement 
any where in the SLAVE job's input stream. 

label 

where: 

SLAVE 

MASTER= 

2-172 

SLAVE MASTER=jobname 

Label is option and must start in column 1 

specifies this is the SLAVE job step 

Specifies the name on the job card ~CLl of the job which 
is to be the MASTER job step. 

Description and Opecation Manual 



When initializing the system in this mode, both job steps must be 
started before the Special Real Time Operating System initialization 
can effectively proceed in either partition. When a RESTART WRITE 
statement is encountered in either partition, it must be included in 
both. The restart data sets are written only from the MASrER partition, 
but not before the SLAVE has completed the specified pre-restart 
processing. 

When the MASTER partition terminates, the SLAVE is terminated with a 
USER 041 ABEND by the STAE routine. When the SLAVE terminates, 
two-partition operations are stopped in the MASTER until the SLAVE is 
restarted. 

An attempt to start a SLAVE partition job when the MASTER job already 
has a SLAVE job executing will result in a user q1 ABEND for the second 
SLAVE job step. 

Services not documented in the following two-partition description vill 
exist in both the partitions. 

Both the MASTER and SLAVE partitions are provided Special Real Time 
Operating system task management services. 

The PTN= parameter on the macro calls allows the user to specify the 
target partition for his PATCH, DPATCH and REPATCH: 

{ 
Q.H!. 'J MASTER 

PA TCH ••• , PTN= SLAVE 
FIND 

If not explicitly specified on the macro call, the caller's own 
partition is the target partition for the macro. 

Note on the PATCH macro: 

a. The FREE= area must be in the partition, where the work represented 
by this PATCH will be executed and may not be used otherwise, 
because it is impossible to FREEMAIN storage in another than the 
own partition. For the same reason, FREE= is invalid if a PATCH 
goes to the other partition and REPATCH option is specified. 

b. The PRTY/PRTYLOC parameter, if used, must specify the name of a 
task in the same partition as the created task. 

While it is not a Special Real Time operating System restriction, 
consideration must be given to passing data area addresses across 
partition boundaries. The area cannot be stored into except by programs 
in the same partition as the area or by supervisor services. 

Task management control blocks will reside in both partitions as will 
the task management routines. However, if two-partition operation is 
desired, consideration should be given to the inclusion of certain task 
management routines in the Link Pack Area so that the same copy may be 
used for both partitions (see Coding and Performance Considerations). 

Both the MASTER and SLAVE partitions are provided Special Real Time 
operating System time management services. The Special Real Time 
Operating System time and date are the same for both partitions. 

APPLICATION SERVICES 2-113 



The PTN= parameter on the PTIME macro allovs the user to specify the 
partition in vhich a routine viII be executed as the result of the 
PATCH macro calles) by the time management routines. 

The parameter 

PT I ME ••• , PT N = 

(

QlH! } SLAVE 
MASTER 
FIND 

is identical in form and function with the PATCH parameter (PTN=) and 
is also subject to all restrictions specified for cross partition 
PATCHes~ 

Note that the time management routines and control blocks (PTQES) will 
reside only in the 8ASTER partition and, therefore, all resulting 
PATCHes viII be issued from the MASTER partition. 

Both the MASTER and SLAVE partitions viII be provided Special Real Time 
Operating System data base services. The Special Real Time Operating 
System data base will be the same for both partition. All data 
definition statements required to define the data base must be contained 
in the JCL for the MASTER partition job. The data definition statements 
relative to the data base are not required in the Jct for the SLAVE 
partition job and if present viII be ignored. This includes the DO 
statements for the data base partitioned data set, all data base BDAM 
data sets, and all sequential data sets required for any DUMPLOG macro 
calls. Also, the DBREF statement, if desired, must be included in the 
input stream for the MASTER partition's job. The VS resident arrays 
and all data base control blocks viII reside in the MASTER partition. 
Therefore, it should be noted that the user in the SLAVE partition 
cannot store directly into the VS resident data base but must use the 
Special Real Time Operating System data base macro calls. 

All data base macro calls (i.e., GETLOG, PUTARRAY, etc.) will be 
supported from the SLAVE partition except GET/PUTARRAY vith the ADDRLST 
option and GET/PUTITE! vith the ADDRLST option. A return code 16 will 
be issued for these requests from the SLAVE partition. 

Note: Data base macro calls issued from the SLAVE partition require 
the use of additional SVC routines to resolve the interpartition 
communication problem and, therefore, will incur additional 
system overhead. 

The capability to define and reserve a resource viII be provided for 
the SLAVE partition. However, partition LOCK/DEFLOCK routines will 
operate independently of each other; that is, a resource defined in 
one partition cannot be reserved via a LOCK macro call from the other 
partition. cross-partition LOCK/DEFLOCK requests will not be supported. 

Duplicate data set support is available to programs in both partitions. 
A data set pair which is DDSOPENed in one partition should not be 
accessed by programs in the other partition ~xcept by DDSOPENing it in 
both partitions. 

2-174 Description and Operation Manual 



All messages issued out of the SLAVE partition viII be output from the 
MASTER partition. A message issued in the SLAVE partition will have 
an S affixed to the message when it is output. 

EXAMPLE: 

DPP001S 2:29:23:3 o 1/FEB/14 REAL-TIME MESSAGE 

The MSGDS DD card must be included in the JCL for each partition. 

Input Message Processing (IMP) commands can be issued only to the MASTEl 
partition, but Input Message Processing can accept IMP commands to the 
SLAVE partition. The parameter SLAVE will follow the IMP command word. 
The parameters passed to the processing program will follow SLAVE. 

EXAMPLE: 

'EXAMPLE,SLAVE,PARAK1,PARAK2, ••• PARAM20' 

EXAMPLE: 1M P Code. 

SLAVE: Issue IMP command to SLAVE partition. 

P ARAM: Parameters accept~d by the processing program. 

Data recording and playback vill run in both the MASTER and SLAVE 
partitions. The DRECOOT DD card must be included in the JeL for each 
partition. The DPBIN and SRTODUMP DD cards must be included ia the 
JeL for each partition if Data Playback is to be run as a Special Real 
Time operating System job. 

The report data output facility will run in both the MASTER and SLAVE 
parti tion s. 

APPLICATION SERVICES 2-175 



SPECIAL REAL TIKE OPERATING SYSTEK ~EBOG GUIDE 

User programs which run under the Special Beal Time Operating System 
and ABEND viII appear in a storage dump to be ABENDing in DPPTMON 
because the user programs ate loaded by DPPTPMON which then branches 
to them. As a result, the user progra.s are not represented by a PRB 
on the TCS's actiYe RB chain. They run under the PRB for DPPTPMON. 
Figure 2-33 shows how the special Real Time Operating system and OS 
control blocks would look upon entry to a user program. 

The entry point of the program to which DPPTPMON gave control can be 
determined by. looking 1610 bytes into the register save area pointed 
to by the TCBFSA field. Using the ABEND PSi and the entry point, the 
user can determine the displacement into the failing ~rogram of the 
last instruction e~ecuted prior to the failure. The program name can 
also be found by locating the LPRB with this entry point on the LPRB 
chain. An alternate method of locating the failing program is through 
the TCBUSER-TCBXCWQ-WQLCB-LCBEPAD and LCBEPNAM chain. 

The TCBXNAME field of the TCBX viII contain the task name (TASK=) of 
the task or DEPNDNT if this is a dependent task. 

For additional debug information, refer to the IB~ QaL!~ ~eb~ng 
Gulg~ (GC24-5093). 

2-176 Description and Operation Manual 



n 
o 
I:' 
c+ 
11 
o ..... 
txl ..... 
o 
o 
~ 

* 
REGISTER 0 

TCBX 

NAME 

T 



CODING AND PERFORMANCE CONSIDERATIONS 

Certain considerations are normally made by a programmer when he is 
coding a program which will execute in a batch processing environment. 
However, additional considerations should be made when coding programs 
for a realtime environment. These additional considerations should be 
evaluated to determine if they will impact execution efficiency and 
system reliability. Some of these considerations are discussed on the 
following pag es. 

The Special Real Time Operating System tasks and user programs execute 
as subtasks; as a result, virtual storage gotten for a subtask by an 
OS/VS1 GETMAIN or REG"AIN must be explicitly freed. If it is not, the 
storage is lost and causes fragmentation within the partition. storage 
which the Special Real Time Operating System GETWA routine gets for 
TYPE=PC must also be explicitly freed by FREEWA or this storage is also 
lost. OS/VSl task management routines build control blocks with fixed 
PQA in a partition. If this PQA storage must be expanded during a 
realtime run, it may cause fragmentation of the partition. one 
consideration to help avoid fragmentation by PQA is to get the maximum 
number of TCBs which will be required for the realtime run through the 
use of the TCB control statement. 

Programs coded for the Special Real Time Operating System should be 
coded as reentrant programs, if possible, to avoid having multiple 
copies in storage and to improve the OS/VSl paging frequency. Also, 
because the Special Real Time Operating System PATCH monitor loads then 
branches to user programs, no user program which is to be PATCHed should 
ever issue EXIT (SVC3) or XCTL. 

Careful consideration should be given to the amount of storage which 
is to be fixed by the page fix routine (DPPIPFIX), because page fixing 
has an adverse effect on the paging rate and may lead to thrashing. 

Dependent Special ~eal Time Operating System tasks are initiated, 
execute once only, and are terminated. The additional overhead of 
initialization can be avoided by using independent tasks. This, 
hovever, causes the program (if reentrant) to remain in virtual storage 
and to maintain its resources. Careful consideration should therefore 
be given to whether user programs should be executed as dependent or 
independent tasks. Also, programmers who code programs to execute as 
independent tasks that open DCBs should be aware that the DCBs viII 
not be closed after an execution of the program and that they viII not 
be closed by a DPATCH. This may caUse problems, since the TCB may be 
used by another Special Real Time Operating System task. This is also 
true of tasks which issue STIMER, then continue and never issue a TTIMER 
CANCEL for the STIMER. 

If there is frequent use of GETWA blocks greater than 2K, the paging 
rate in the system may be improved if the user executes an OS/iS PGRLSE 
macro on the GETWA area prior to the FREEWA of ~he area. 

Non-Special Real Time Operating System tasks (created by ATTACH) which 
reserve a resource via LOCK then ABEND, will not cause the Special Real 
Time Operating System ETXR routine to have the resource freed. 

If the Special Real Time operating System job step is to be terminated, 
careful consideration should be given to the method by which it is 
terminated, because the Special Real Time Operating System STAE routine 
will not be entered for ABEND codes 122, 13E, 222, 322, 522, or 722. 

Programs which include the Special Real Time operating System macro 
st.atements can be made more efficient and independent of the user SVC 
numbers generated by coding the DCVTR or DCVTLOC on SpeCial Real Time 
operating System macro statements. 

2-178 Description and operation Manual 



~·.e SYSGEN time interval for the Special Real Time Operating System 
eime update routine (PTI~E= operand on the VS SYSGEN macro) should be 
made as large as practical in order to reduce the Special Real Time 
Operating system time management overhead. This is also true of data 
base logging overhead, which can be reduced by specifying as large as 
practical logging frequencies (LOGFREQ operand of LOG macro for the 
Special Real Time Operating system SYSGEN). 

A logical BLOCK of a OA array will be represented by a physical block 
in the direct access data set. As a result, the DA array block size 
should be as large as possible for more efficient use of direct access 
storage. 

Initialization using a OBREF NO statement will result in the loss of 
previously logged data. 

Blocked arrays should be used whenever possible because they may then 
be used as either OA or VS resident arrays. overhead than named arrays 
when accessed through GETARRAY, PUTARRAY, GETBLOCK, or PUTBLOCK macros. 
Also, when a GETITE" or PUTITE~ macro is executed, 1/0 processing is 
invoked to resolve item names to storage addresses. Therefore, it may 
be more efficient to resolve the item names at one time and to make 
subsequent accesses to the same items via these addresses rather than 
via the item names. 

Programs should use data base macros to access the data base to ensure 
the integrity of the data base and to allow the program to be 
independent of the partition in vhich it executes ("ASTER or SLAVE). 

QPOS=DPATCH is not allowed if the task name represents a QH. 

EP=(name DELETE) viII remove the load module for the QP under which 
the work queue is processed and not necessarily for all QPs that may 
have processed work from this QH. 

The TCBX address returned from the PATCH macro is the address of the 
QH TCBX. If the user is using this address to interrogate the progress 
of the work, the information that is picked up may not be meaningful. 

PRTY= and QL= will never be meaningful when the NAME= specifies a QH. 
These parameters are established when the QH is defined. 

If several PATCHes are executed with the PROBL or other work space to 
be freed by the FREE= parameter on the last PATCH. the last PATCH 
executed may not be the last to complete processing. The result may 
be that the area is freed before the last use of the area. This can 
happen when the PATCH is executed by the PTIME function. 

An immediate DPATCH(DPATCH TYPE=!) to a QP will terminate the vork 
currently active, but will not delete the task. All other DPATCHs for 
a QP and all DPATCH's for a QH are disallowed. 

GETWA TYPE=AT executing under a QP or GETWA areas passed via PATCH to 
the AT chain of a QP will never be freed by Special Real Time Operating 
System (a QP can never be DPATCHed). 

If the user were to set a LOCK while processing one Work Queue and 
return leaving the LOCK set intending the release the LOCK when 
processing the next work queue, it may not work because the next work 
queue may be processed under a different task (QP) and the LOCK must 
be released by the same task Which it vas set. 

APPLICATION SERVICES 2-119 



SPECIAL REAL TIME OPERATING SYSTEM ONLINE "ACROS 

For convenience, all online macros and their calling sequence are 
assembled in alphabetical order by macro naae in the following pages. 

2-180 Description and Operation Manual 



BEGIN 

The BEGIN macro provides standard OS linkage conventions for reentrant 
or non-reentrant routines. In general, the BEGIN statement is designed 
to: 

• Identify and label the main control section or entry point address 

• Save the calling program's general purpose registers. 

• Establish main control section addressability. 

• Prepare a save area. 

• Define register usage through the EQUATE macro. 

The following options are available for the ,BEGIN macro example: 

Note: All register specifications should be absolute numbers rather 
than equated symbols (i.e., 13 rather than R13). 

Programs using the BEGIN macro must be provided a higher save area by 
the calling program. 

[ symbol] BEGIN [csect name] 

~ ENTRY=SymbOl] 

~BASE= (reg, [label] >] 
~ADDB= (reg 1, [reg 2, • •• ,reg n] >] 

~ SAVE- tONE lJ ' - (reg 1, reg 2) [ I( symbol )1 ] ,SAVEA= {~~~~IN} [ , label] 

k LV=number J 
~ sp=numberJ 

[ ENTER=PATCH ] 

APPLICATION SERVICES 2-181 



CSECT name 
The name to be given to the main control section. 

ENTRY= 
The label name to be given to the first instroction and to be declared 
via the ENTRY assembler instruction. 

BASE= 
Specifies the general purpose register to be used as the initial main 
control section base and the label to be given to the point of zero 
displacement. Note that if no save area is requested and "reg" is 
omitted, register 15 is assumed. If a save area is to be assembled 
internally and a "reg" is omitted, register 13 is assumed. If a save 
area is to be obtained via a GETMAIN or GETWA and "reg" is omitted, 
register 12 is assumed. 

ADDB= 
Specifies additional main control section bases to be initialized at 
zero displacement + 4096, zero displacement + 2*4096, etc. 

SAVE= 
Indicates range of general purpose registers to be saved in the 
caller's save area. If omitted, registers 14 through 12 are saved. 

SAVEA= 
Specifies the type of save area to be used by the program. 
"SAVEA=GETMAIN" indicates that a GETMAIN is to be issued to obtain 
the save area.. "SAVEA=GETWA" indicates that GETWA is to be issued to 
obtain the save area. "SAVEA=symbol" indicates that the save area is 
to be expanded within the prog'ra m. Both SAVEA=GETMAIN and S AVEA=GETWA 
will result in reentrant code being generated. SAVEA=symbol is 
non-reentrant. Register 13 will contain the address of the save area. 
If omitted, no save area will be reserved. The "label" operand, if 
specified, will be used as the name of the DSECT describing the work 
area. 

LV= 
The length, in bytes, of the storage area to be obtained via a GETMAIN 
or GETWA. If SAVEA=GETMAIN or GETWA and LV: omitted, 72 bytes viII 
be obtained. If GETWA is specified and the LV= value is greater than 
the largest GETWA size allocated, a system ABEND (probably OC4) will 
occur within the code expanded by the BEGIN macro. 

SP= 
The number of the subpool from which the save area is to be 
obtained. If omitted, 0 is assumed and when executed under OS/VS1, 
the subpool specification viII default to o. 

ENTER=PATCH 
Specifies that the program is always entered via a PATCH interface. 
This operand is used only vhen SAVEA=GETWA is specified. If this 
operand ls omitted or if anything other than PATCH is coded, it is 
assumed that the program may be entered by a linkage other than PATCH. 
Use of this parameter allows a smaller macro expansion. 

2-182 Description and Operation Manual 



CHAIN 

The CHAIN macro provides the facility for allowing multiple tasks to 
modify the sa Ile control block cha ins wi thout the necessity of the user 
issuing ENQ/DEQ or getting himself into a disabled state. 

[symbol] CHAIN [ADD, ] 
REMOVE, 

ORG=! (r) } address 

BLOCK=! (r) } , address 

[ rIRST I ] ,POS= ~ST 
dl.sp. 

[INDEX= { (r) IJ 
' value 

[ECB- t (r) ! , - (address , 
[J (r) 

condition COde!] )] 

D::::::c= r ladd~!ss I P 
fMF=L] ~MF= (E'~ (r) !)] 

ddress 

where 'r' is a general purpose 
register, 2-12. 

APPLICATION SERVICES 2-183 



ADD 
If the control block specified is to be add~d to the chain. This 
value is the default value. 

R.EMOVE 
If the control block is to be removed from the chain. 

ORG= 
Specifies the or1g1n of the chain~ This address must be in the origin 
of the chain and not in a previous control block in the chain. The 
reason is that the task could lose control, and the chain could be 
modified so that the "previous" control block address would no longer 
be valid when the task regained CPU control. However, since CHAIN 
executes disabled, this cannot occur when the origin of the chain is 
used. Any RX-type instruction address format is valid. 

BLOCK= 
Address of control block to be added or removed. An RX-type 
instruction address format is valid. 

POS= 
Only valid with ADD and specifies at which end of the chain to insert 
·~he block. FIRST implies the end of the chain nearest the origin. 
LAST implies the end of the chain farthest from the origin. 'disp' 
is the displacement into the block of a fullvord containing a value 
to be used as a comparand. This value is used to insert the block in 
an increasing collating sequence relative to other blocks on the chain. 

INDEX= 
Specifies the offset in the. control block to the chain point 
(fullword). Note that INDEX does not apply to the ORG address 
i.e., ORG always specifies the exact address of the fullword containing 
the address of the first control block. The index may be loaded in 
a register, r, and INDEX=(r) specified. If this parameter is omitted, 
the chain pointer is assumed to be the first word of the block. 

ECB= 
Specifies an ECB to be posted with the specified completion code after 
the chain is modified. Any RX-type insturction address format is 
valid for the ECB address. The condition code can be loaded in a 
register and specified as ECB=(addr, (r». 

DCVTR=r 
Where 'r' is the general purpose register (2-12) that contains the 
address of the XCVT. 

DCVTLOC= (r) 
Where 'r' is the general purpose register (2-12) enclosed in 
parentheses that has the address of a 4-byte core location that 
contains the address of the XCVT. 

DCVTLOc=address 
Where 'address' is the label of a 4-byte core location that contains 
the address of the xeVT. 

MF= 
The list or execute forms of the CHAIN macro which are generated by 
specifying MF=L or MF=(E, address). 

2-184 Descri ption and Operation Kanual 



CHAIN Return Codes: 

Decimal 
~2S~ __ _ 

00 

08 

12 

Successful completion. 

REMOVE block address not found in chain. When this 
condition exists, the ECB viII not be posted. 

Invalid address in list. When this condition exists~ 
the ECB will not be posted. 

ECB specified had been previous posted. 

APPLICATION SERVICES 2-185 



DDSBLDD 

The DDSBLDL macro is used to construct a note/point list of a DDS the 
same as BLDL for a standard OS data set. Return codes will be the same 
as from the OS BLOL macro. 

lsymbol] DDSBLDL (OS parameters) 
[{'DCVTR=(r) }J 

,DCVTLOC= {ad~1ess I 
The as parameters are the same as in BLDL; that is, DCB address, list 
address. 

DCVTR=r 
Where 'r' is the general purpose register (2-12) that contains the 
address of the XCVT. 

DCVTLOC= (r) 
Where 'r' is the general purpose register (2-12) enclosed in 
parentheses, having the address of a 4-byte core location that contains 
the address of the XCVT. 

OCVTLOC=address 
Where 'address' is the label of a 4-byte core location that contains 
the address of the XCVT. 

2-186 Description and Operation "anual 



DDSCLOSE 

The DDSCLOSE macro is used to close a DDSDCB. only one DDSDCB can be 
specified and TYPE=T is not valid. 

[symbol] DDSCLOSE (OS parameters) Cl'oCVTR_(rl { 11] 
tDCVTLOC- ad~;ess 

The valid OS parameters are DDSDC B address and MF=operand. 

DCVTR=r 
Where 'r' is the general purpose register (2-12) that contains the 
address of the XCVT. 

DCVTLOC= (r) 
Where 'r' is the general purpose register (2-12) enclosed in 
parentheses, that has the address of a 4-byte core location that 
contains the address of the XCVT. 

DCVTLOC=address 
Where 'address' is the label of a 4-byte core location that contains 
the address of the ICVT. 

APPLICATION SERVICES 2-187 



nDSDCB 

The DDSDCB macro is used to define the DCB for a Duplicate Data Set. 
The DDNAME specified in the macro should be the same as the name field 
of the DDSNAMES card in the DDSCTLIN input stream. 

I [symbol] I DDSDCB ( OS parameters) 

This macro is coded identically to the os DCB macro with the following 
notes: 

• DSORG must be PS, PO, or 01. 

• OPTCD can be omitted or W, H, or F. 

• Multi-tracking cannot be specified. 

• only the following parameters are Yalid: BLKSIZE, DDNAftE, DSORG, 
KEYLEN, LRECL, KleRF, NCP, OPTCD, REeFM, and SYNAD. 

The DDSDCB macro performs the same function for the Duplicate Date Set 
(DDS) facility as the DeB macro performs forthe OS/VS1 data management. 
Whenever the address of a DCB is zequired with the other DDS macros, 
the address of a DDSDCB must be specified. The operands of ODSDCB are 
a subset of the DeB operands. The valid operands are listed below by 
access method. Refer to the ~L!~ Rn~ 1l9.ngemen! 11~I.2 IJl.§tructi.QJ!§ 
manual (GC26-3793) for a detailed description of the operands. If an 
operand listed below does not have any restrictions other than those 
listed in the DOS description in Chapter 2, the field to the right of 
the operand is left blank. If the field is not blank, a restriction 
or extension to the OS/VS1 options is noted. 

Operands valid with BDAM are: 

• BLKSIZE= MACRF= 

• DDNAKE=ddsnam e 

• DSORG=DA only OP TCO=W/R, F only 

• EODAD= RECFM= 

• KEYLEN= SYNAD= 

• LHECL= DEVD=DA 

Operands valid with B51M and BP1M are: 

• BLK5IZE= 

• DDNlME=ddsname 

• DEVD= DA only 

• DSORG=PS and PO 

• EODlD 

• KEYLEN= 

LRECL= 

MACRF= 

NCP= 

OPTCD= (W) 

REeFK= 

SYNAD= 

Note: Invalid DeB options or operands must not be specified in the DO 
card DCB=operand. 

2-188 Description and Operation "anual 



DDSFIND 

The DDSFIND macro is used to perform that same function as FIND but 
for a DDSDCB. Return codes vill be the same as from the OS FIND macro. 

[ symbol] DDSFIND (OS parameters) 
[{,DCVTR_(rl lJ 

'DCVTLOc={ad~?ess I 
The as paraaeters are the same as in os FIND, that is, DCB address 
meaber/name/point list, type. 

DCVTR=r 
Where 'r' is the general purpose register (2-12) that contains the 
address of the XCfT. 

DCVTLOC= (r) 
Where 'r' is the general purpose register (2-12) enclosed in 
parentheses that has the address of a 4-byte core location that 
contains the address of the XCVT. 

DCVTLOC=addrecs 
it-ere 'address' is the label of a 4-byte core location that contains 
the address of the XCVT. 

APPLICATION SERVICES 2-189 



DDSOPEN 

The DnSOPEN macro is used to open a DDSDCB. Only one Only one DDSDCB 
can be specified and, for update option, the task opening the nDSDCB 
must maintain exclusive control over it. 

[ symbol] DDSOPEN (OS parameters) [ rCVTR

= r { II ] 
. ,DCVTLOC= ad~~ess 

The valid as parameters are DDSDCB address, OPEN option and KF=. 

DCVTR=r 
where 'r' is the general purpo$e register (2-12) that contains the 
address of the XCVT. 

DCVTLOC= (r) 
Where 'r' is the general purpose register (2-12) enclosed in 
parentheses, having the address of a 4-byte core that contains the 
address of the XCVT. 

DCVTLOC=address 
Where 'address' is the label of a 4-byte core location that contains 
the address of the xeVT. 

2-190 Description and Operation "anual 



DDSSTOW 

The DDSSTOW macro is used to STOW a member of a partitional DDS. Return 
codes viII be the same as from the OS STOW macro. 

[ symbol] DDSSTOW (OS parameters) [t,DCYTRm r 1J 
'DCYTLOc=la:~~ess ] 

The OS parameters are the same as in OS STOW; that is. DCB address. 
member-name, and type. 

DCV'rR=r 
Where 'r' is the general purpose register (2-12) that contains the 
address of the XCVT. 

DCVTLOC= (r) 
Where 'r' is the general purpose register (2-12) enclosed in 
parentheses, having the address of a 4-byte core location that contains 
the address of the XCVT. 

DCVTLOC=address 
Where 'address' is the label of a 4-byte core location that contains 
the address of the XCVT. 

APPLICATION SERVICES 2-191 



DEFLOCK 

Each resource to be reserved must be defined to the Special Real Time 
Operating System by the use of a DEFLOCK macro. The DEPLOCK macro will 
cause a control block to be built describing the resource. The name 
of the resource will be returned in register 0 and the address of the 
control block will be returned in register 1. This co~trol block 
address must be used whenever reserving a resource with the LOCK macro. 
After all processing for a particular resource has been completed, the 
control block may be released by another DEPLOCK macro. Once the 
control block has been released, it must be re-defined by a DEFLOCK 
macro before that resource can be reserved again. In the case of 
two-partition operation, separate lock controls are maintained for each 
partition. Thus a program cannot use a lock control block created in 
th€ other partition. 

The DEFLOCK macro may also be used to obtain the address of a previously 
defined lock cont.rol block .• 

The following operands are available for the DEFLOCK macro: 

[symbol] DEFLOCK { (r)} 
name 

(r) 
name 

[ , TYPE= {
GET }l 
~~~D J 

Is the positional operand that defines the 4-byte resource name. If
(r) is specified, the general purpose register (0 or 2-12) contains
the resource name.

TYPE=
Is used to indicate that a resource control block is being defined
(TYPE=GET) or released (TYPE=REL). The address of the control block
on TYPE=GET requests is returned in register 1.

A DEPLOCK with a TYPE=FIND option wil~ cause the address of a
previously defined lock control block to be returned in register 1.

DCVTR=r
Where 'r' is the general purpose register (2-12) that contains the
address of the xefT.

DCVTLOC= (r)
Where 'r' is the general purpose register (2-12) enclosed in
parentheses that has the address of a 4-byte core location that
contains the address of the XCVT.

DCVTLOC=address
Where 'address' is the label of a 4-byte core location that contains
the address of the leVT.

2-192 Descri ption and operation Manual

When control is returned, register 15 contains one of the following
return codes:

Decimal
cod~ __

o

4

8

12

Successful com plet ion.

Resource already defined. Register 1 contains the
previously defined control block address.

JOD step is not a Special Real Time Operating System
task.

Resource not previously defined. (Valid .only for
TYPE=REL and TYPE=FIND requests.)

APPLICATION SERVICES 2-193

DPATCH

An independent task is created to be executed continuously over an
indefinite time period. When an independent task is no longer required,
it can be deleted by use of the DPATCH macro. Since the task may have
several elements on its work queue an unconditional DPATCH does not
allow these elements to be executed. Any EeBs associated with the work
queue elements are posted with a DPATCH completion code. The DPATCH
can be specified as W, which prevents losing any work queues, or it
can be specified as conditional, which deletes the task only if it is
dormant. A DPATCH immediate can be used to abnormally terminate a task
that executes a long running program (e.g., report-routine). DPATCH
of a queue holder is not allowed. only TYPE=I or A is allowed to a
queue 1)rocessor.

[symbol] DPATCH
[

(r)]
name

, PTN=

-

IOWN } MASTER
SLAVE
FIND

-

[
1 ,DCVTR: (r) }]

l.DCVTLOC= {~ldress}
Where 'r' is a general purpose register (2-12).

I I
name
Is a 1 to 8 character name of the task to be deleted. If register
form is specified, the register contains the address of the task name.
If omitted, the current task is to be deleted .•

TYPE=
If I is specified, the task is to be deleted immediately. It will be
abnormally terminated with a user abend code of 65. However, a WQE
that vas queued with QPOS=DPATCH will still be executed as part of
the cleanup processing.

If U is specified or the operand is omitted, the task specified is to
be deleted unconditionally. Any work queue to the Any work queue
to the task is posted as deleted. The current WQE, if executing, is
allowed to complete. If C is specified, the specified task is deleted
only if its work queue is currently empty. If W is specified, the
task is deleted when the work queue becomes empty. This does not
prevent work being queued to the task. If register form is specified,
the register contains a numeric code of 0, 4, 8, or 12. A numeric
code of O.corresponds to a TIPE=U request, 4 corresponds to a TYPE=C
request, 8 corresponds to a TYPE=W request, and 12 corresponds to a
TYPE=I request. If A is specified, the program executing under the
task will be abnormally terminated with use code 65. The task will
not be deleted as an independent task and any work queues that are
awaiting execution will not be deleted.

2-194 Description and Operation Manual

PTN=
In two-partition operation, this operand defines the target partition
for the DPATCH. OWN means that the target partition is the partition
that executes the DPATCH; MASTER defines the MASTER partition as the
target partition. SLAVE defines the SLAVE partition as the target
partition; if SLAVE is coded and tvo-partition operation is not
initialized (no MASTER/SLAVE control cards in the S.YSINIT input
stream), the DPATCH viII be rejected and a return code passed back in
register 15. FIND causes the SVC to search for the task in its own
partition first, then in the other partition and the first one found
will be DPATCHed.

If register form is used to specify the task name and the PTN= operand
is not specified, the high-order byte (byte 0) of the register also
defines the target partition. The same bits are used as in the PATCH
supervisor list (SUPL). and they have the same meaning.

SOPLPTNS=1 PTN=SLAVE

SOPLPTNK=1 PTN=KASTER

both zero PTN=OWN

both one PTN=FIND

However, if the PTN= operand is specified, the expansion of the ~acro
will insert the proper bit into the high-order byte.

DCVTR=r
Where 'r' is the general purpose register (2-12) that contains the
address of the XCVT.

DCVTLOC= (r)
Where 'r' is the general purpose register (2-12) enclosed in
parentheses having the address of a 4-byte core location that contains
the address of the XCVT.

DCVTLOC=address
Where 'address' is the label of a 4-byte core location that contains
the address of the XCVT.

When control is returned, register 15 contains one of the fdlloving
return codes:

APPLICATION SERVICES 2-195

Decimal
£od! __

0

4

8

12 No

16 No

20 No

22 No

24 No

28 No

2-196

DPATCH

DPATCH

DPATCH

DPATCH

DPATCH

DPATCH

Successful completion.

Task vas already DPATCHed=W

Task vas already DPATCHed=U

Task is ·not dormant (DPATCH=C only)

Task is being removed

Task name not found on independent task chain

PTN=SLAVE requested but not initialized

Invalid pa. rameters passed.

Task name specified a queue processor and type
not I or A or task name specified a queue holder.

Descrl.ption and Operation Manual

DPPXBLKS

The DPPXBLKS mac~o generates DSECTs for various Special Real Time
Operating System and OS/VS1 control blocks. define requested control
blocks. When a keyword is omitted, the When a keyword is omitted, the
control block associated with that keyword is not expanded. with the
exception of the "TY,FE-" parameter, any non-blank character is
acceptable as the keyword operand.

The following operands are ayailable for DPPXBLKS.

[symbol] DPPXBLKS [TYPE= {DSECT}]
CSECT

[,REGS=]

[,TASK=] [,TCBX=] [,TMCT=] [,WQ=]

[,LCB=] [,GFCB=] [,GFMB=]

[,TIME=] [,PTQE=] [,TIMED=] [,PTIMEL=]

[,DDS=] [,DDSDA=]

[, OS=] [,TCB=] [,CVT=] [, RB=]

[,SRTOS=] [,XCVT=] [,SCVT=]

[, SUPL=] [,REPL=]

[, DB=] [,ALTPRI=] [,ALTSEC=] [,DADD=]

[,DIRB=] [,DIRR=] [,DMPHDR=] [, PBT=]

[,LOGCB=] [,LOGHDR=] [,DACNTL=] [LOCK=]

[,MSG=] [, IMP=] [,DREC=] [,GFMB]

APPLICATION SERVICES 2-197

TYPE=
Used in conjunction vith the TCBX, TMCT, WQ, LCB, GFCB, and PTQE
parameters and indicates that the control block is to be expanded as
a DSECT or CSECT. If omitted, DSECT is assumed.

REGS=
Indicates that the macro is to be expanded to provide register equates.

TASK=
Used to indicate that the control blocks related to task management
are to be expanded as OSECTs (CSFX:Ts).. These are the TCBX, T!CT, WQ ..
LCB, and GFCB control block.

TCBX=
Used to indicate that the control block for the TCB extension (TCBX
is to be expanded as a DSECT (CS FX:T) •

TMCT=
Used to indicate that the control block for the task management control
table (TMCT) is to be expand~d as a DSECT (CSECT). The control block
for the GETWA/FREEWA main block (GFMB) viII also be expanded.

WQ=
Indicates that the control block for the vork queue (WQ) is to be
expanded as a OSECT (CSECT).

LCB=
Indicates that the control block for the load control block (LCB) is
to be expanded as a DSECT (CSECT).

GFCB=
Indicates that the control block for the GETWA/FREEWA control block
(GFCB and GlBE) are to be expanded as a DSECTs (CSECTs).

TIME=
Indicates that the control blocks PTQE, TIMED, and PTIMEL, related to
time management are to be expanded as DSECTs (CSECTs).

PTQE=
Indicates that the control block for the PTIME queue element (PTQE)
is to be expanded as a DSECT (CSECT).

TIMED=
Indicates that the time array DSECT (TIMED) is to be expanded.' If
"TIMED-PTIME" is specified, the control blocks used in time management
are also expanded.

PTIMEL=
Indicates that the DSECT describing the PTIME input parameter list
(PTIMEL) is to be expanded.

DDS=
Indicates that the DSE'CT (DDSDA) for duplicate data sets is to be
expanded.

DDSDA=
Indicates that the DSECT describing the duplicate data set data area
(DDS DA) is to be expanded. .

OS=
Indicates that certain os control blocks are to be expanded as DSECTs.
These are the CVT, TCB, and RB control blocks.

2-198 Description and Operation Manual

CVT=
Indicates that the DSECT that describes the OS communications vector
table (CVT) is to be expanded.

TCB=
Indicates that the DSECT that describes the OS Track Control Block
(TCB) is to be expanded.

RB=
Indicates that the DSECT that describes the OS Request Block (RB) is
to be expanded.

SRTOS=
Indicates that the special Real Time operating system communications
table are to b~ expanded as DSECTs. These are the XCVT and SCVT
tables.

XCVT=
Indicates that the DSECT that describes the primary Special Real Time
operating System communication table (XCVT) is to be expanded.

SCVT=
Indicates that the DSECT that describes the secondary Special Real
Time Operating System communication table (SCVT) is to be expanded.

REPL=
Indicates that the DSECT that describes the PATCH supervisor input
parameter list (SUPt) is to be expanded. The PATCH problem program
input parameter list (PROBL) is also expanded.

SUPL=
Indicates that the OSECT that describes the PATCH supervisor input
parameter list (SUPL) is to be expanded. The PATCH problem program
input parameter list (PROBL) is also expanded.

DB=
Indicates that the control blocks for the data base are to be expanded
as OSEcrs. These are the ALTPRI, ALTSEC, OADD, OIRB, DIRR, DMPHDR,
PBT, LOGCB, and LOGHOR.

ALTPRI=
Indicates that the control block for the primary array location table
is to be expanded as a OSECT.

ALTSEC=
Indicates that the control block for the secondary array location
table is to be expanded as a OSECT.

DACNTL=
Indicates that the control block that describes the direct access
array control record is to be expanded as a DSECT

DADD=
Indicates that the control block for the direct access DO name table
is to be expanded as a DSECT.

bIRB=
Indicates that the control block that describes the BLOL directory is
to be expanded as a OSECT.

bIRR=
Indicates that the control block that describes the POS. directory is
to be expanded as DSECT.

APPLICATION SERVICES 2-199

DMPHDR=
Indicates that the control block that describes the DUMPLOG header is
to be expanded as a DSECT.

PBT=
Indicates that the control block that describes the Page Boundary
Table is to be expanded as a DSECT.

LOGes=
Indicates that the control block that describes the 109 control block
is to be expanded as a DSECT.

LOGHDR=
Indicates that the control block that describes the LOG header is to
be expanded as a DSECT.

LOCK=
Indicates that the control block for the LOCK control block (LOCKCSLK)
is to be expanded as a DSECT.

MSG=
Indicates that the control block for the realtime message handler is
to be expanded as a DSECT.

IMP=
Indicates that the DPPXIMP array, input message processing control
block, is to be expanded as a DSECT.

DREC=
Indicates that the control block for data recording is to be expanded
for a DSECT.

GFMB=
Indicates that the control block for the GETWA/FREEWA main block is
to be expanded as a DSECT.

2-200 Description and Operation Manual

DUKPLOG

The DUMPLOG macro is used to dump (unload) logged copies of virtual
storage resident arrays from the log data set to a sequential data set
which may then be accessed by user-written routines.

[symbol] DUMP LOG
I ,
I :::R:a::ndler }

I
~

{ address} I NAMELST= (r)

t NUMBLST= { address} I
\ (r) I

[, STARTIM= { ad~~)ss }]

[, STOPTIM= { ad~~)ss }]

[DUMPDD= {DUMPLOG}]
' ddname

[,USRDATA= { ad~~)ss }]

[, 0 I SP= { ~~~ }]

[!,DCVTR= r IJ
,DCVTLOC= {ad~~)s s }

[,MF=LJ [,MF= (E, {ad~~)ss}]

APPLICATION SERVICES 2-201

The parameters NAME, NUMBER, NAMELST, and NUMBLST are mutually
exclusive. The macro viII not expand if more than one of these
parameters is specified or if all of these parameters are omitted.

NAME=
specifies the name of a named array for which the log array is to be
dumped.

NUf1BER=
Specifies the number assigned to a numbered array for which the log
array is to be dumped.

NAMF.LST=
Specifies the address or a register (2-12) vhich contains the address
of a user-constructed list of array names for which the log arrays
are to be dumped. The name list will be a table of 8-byte entries
with one valid array name in each entry. The first byte past the last
valid entry will be set to X'FF' to indicate the end of the name list.

EXAMPLE: Name List
0..-_____ --.

ARRAYNAM
8

HOUSTONb
16

TEXASbbb
24

X'FF' I

NUMBLST=
specifies the address or a register (2-12) vhich contains the address
of a user-constructed list of array numbers for which the log array
are to be dumped. The number list viII be a table of halfword entries
with one valid array number in each entry. The first byte past the
last valid entry viII be set to X'FF' to indicate the end of the number
list.

EXAMPLE: Number List

0r---__ -.

H'l'
2t--__ -I

H'255'
41--__ --1

H'\39'
61--__ --1

X'FF'

STARTIM=
Specifies an address or a register (2-12) containing the address of
a 6-byte time and day field beginning on a fullword boundary. The
first four bytes will contain a time in 10 millisecond units. The
last tvo bytes will contain a binary value from 1 to 366 representing
the day of the year. The logged copies of the array viII be searched
until a copy is found vi~h a log time equal to or greater than the
start time specified. If this parameter is omitted, dumping viII
commence vith the oldest logged copy of the array..

STOPTIM=
Specifies an address or a r'egister (2-12) containing the address of
a 6-byte time and day field beginning on a fullvord boundary. The
first four bytes viII contain a time in 10-millisecond units. The
last tvo bytes viII contain a binary value from 1 to 366 representing

2-202 Description and Operation Manual

the day of the year. The logged copies of the array vill be dumped
until the .ost recently logged copy has been dumped or until a copy
is dumped with a log time equal to or greater than the stop time
specified. If this parameter is omitted, dumping wi.ll terminate IIhen
the most recently logged copy of the array has been dumped.

Note: The DUKPLOG routine will insert a byte of X'lF' into the first
byte of the logging header of the last copy of each array dumped
to the sequential data set to indicate the end of the dump of
each array is to be a use~ delog routine.

DU~PDD=
Specifies the name of a data definition statement which describes a
sequential data set to receive the dumped copies of the array from
the log data set. If this parameter is omitted, the DD name 'DUMPLOG'
vill be assumed as the default. The output viII consist of spanned
variable length records. The blocksize of the data set defined by
the DUKPDD parameter must be at least 264 bytes but no more than 32760
bytes. The blocksize should be large enough to contain one array
copy, the log header (24 bytes), the user dump header (256 bytes) if
any, and the descriptor vords for variable length records (8 bytes)
for maximum processing efficiency.

USRDATA=
Specifies an address or a register (2-12) containing the address of
a 256-byte area of user data to be contained in the dump header for
each array on the sequential dump data set.

DISP=
Specifies whether the dumpe'd copies are to be vritten at the beginning
of the DUKPDD=data set (DISP=NEW) or added to the existing dumped
copies (DISP=ADD).

If the disposition parameter specified on the DD statement for this
data set is either OLD or SHR and the data set is empty then the first
DUMPLOG request must specify DISP=NEI.

Specifying DISP=K.EW ·on subsequent DUKPLOG requests viII position a
direct access data set to record one and vill cause a tape data set
to force the end of volu.e before the log copies are vritten.

DCVTR=
Specifies a register (2-12) which contains the address of the ICVT.

DCVTLOC=
Specifies the address or a register (2-12) enclosed in parentheses
which contains the address of a core location IIhich contains the
address of the XCVT.

flF=L
Indicates that the list form of the macro is used to create a parameter
list that can be referenced by an execute form of the DUKPLOG macro
instruction.

MF= (,E address

Specifies that the execute form of the DUMPLOG macro instruction and
an existing parameter list are used.

Note: A zero retQrned in register 15 indicates successful co~pletion.
A non-zero in register 15 indicates that one or more errors were
encountered during processing of this DUMPLOG request. The
high-order byte of register 15 contains a count of the number
of errors encountered and the lOll-order 3 bytes contain the
address of the first invalid array name or number.

APPLICATION SERVICES 2-203

EXIT

The EXIT macro is to be used in conjunction with the BEGIN macro and
will perform the exit linkage convention requirements. That is ,
register 13 will be restored to point to the caller's save area; the
other general purpose registers that were saved will be restored; and
the GETftAINed save area, if one exits, will be released.

The following options are availab Ie for the EXIT macro.

[symbol] EXIT [CODE =h~irl]

[FREE ={ ~~s 1]
[(,DCVTR= r 11
~D~TLOC=lad~~is4

CODE=
specifies a return code to be passed to the RETURN macro; if a register
is to contain the return co'de, only 15 is valid.

FREE=
Specifies whether or not EXIT is to FREE the save area allocated by
the corresponding BEGIN macro. Either a FREEMAIN or FREEWA vill be
executed, depending upon how the save area vas gotten.

The following parameters are meaningful only if PREE=YES is specified
and the save area was allocated by GETWA.

DCVTR=
Specifies a register (2-12) which contains the address of the XCVT.

DCVTLOC=
Specifies the address or a register (2-12) enclosed in parentheses
which contains the address of a storage location which contains the
address of the XCfT.

2-204 Description and Operation Manual

FREEWA

The FREEiA macro releases control of a work area obtained via the GETWA
macro. If the GETWA was not TYPE=PC, the PREEWA must be issued under
the same task as the corresponding GETWA.

{ (r) I l symbol] FREEWA address

{,DCYTR_(r) 1
,DCYTLOC- { (ad~:eSS) 1

where 'r' is a general purpose register (2-12)

If 'r' is specified, the register contains the address of the work area
as returned to the caller after a GETWA macro execution.

If an 'address' is specified, it is a label of a full word that contains
the address of the work area as returned to the caller after a GETWA
macro execution.

DCVTR=r
Where 'r' is the general purpose register (2-12) that contains the
address of the XCVT.

DCVTLOC= (r)
Where 'r' is the general purpose register (2-12) enclosed in
parentheses having the address of a 4-byte location that contains
the address of the XCVT.

DCVTLOC=address
Where 'address' is the label of a 4-byte location that contains
the address of the ICVT.

When control is returned, register 15 contains one of the following
return codes:

Decimal
~od~ __ _

o Successful completion.

4 Invalid FREEWA;

• Area already free

• Invalid address

APPLICATION SERVICES 2-205

GETARRAY

The GETARRAY macro is used to retrieve the data contained in one or
more arrays of the data base, the address of those arrays in the data
base, or the specifications of the items in the array(s). When data
is to be retrieved from the data base and the amount cf space required
to contain the data is unknown, the GETARRAY macro with a TYPE=ADDR
option can be used to obtain the size of the array before the macro
with a TYPE=DATA or TYPE=SPEC option is used to retrieve the data. The
macro does not actually return the size of the data area to contain an
array's item names and specifications but instead will ret~rn the number
of items contained in the array. The number of items can then be
multiplied by 16 to obtain the actual size of the area for TYPE=SPEC.
Where incr is specified, it may be any value from 1 to 255.

\
[symbol] GETARRAY NUMBER=number, DATA= { (r) }

address

{(r) }
NAME=narne, DATA= address

1
(r) } I

NAMELST= ({ address [, incr])

I .
({ (r) }

, ,
ADDRLST= address [,incr])

NUMBLST= { { (r) }
address [, iner])

I

I ,DATALST= ({ (r) }
address [, iner])

,FINDLST= ({ (r) }
address [,iner])

[,TYPE= { DATA }] ADDR
SPEC

[,PROTECT= {~~~K}J

[,DCVTR= r \ 1
,DCVTLOC={ (r) }

address

2-206 Description and Operation Manual

The parameters NUMBER=, NAME=, NAMELST=, ADDRLST, NUMBLST, are mutually
exclusive, only one may be specified.

NAME=
Is an 8-character name of a single array for which data is to be
retrieved or the address is to be resolved.

NUMBER=
Is an array number of a single array for which data is to be retrieved
or the address is to be resolved.

DATA=
Is used vith NAME= or NUMBER=,. It specifies the address into which
the content of the array is to be moved (TYPE=DATA) or the address,
number of blocks, length of the array, or size of each block is to be
moved. In the latter case, the address vill occupy a fullword, and
the number of blocks and the length of each block will occupy the next
two halfwords.

NAMELST=
Specifies the address of a list of a-character array names for which
data is to be retrieved or the addresses are to be resolved. Incr is
the value by which this address is to be incremented to locate the
next name. If not specified, a value of a is assumed. A value or
less than 9 must not be specified for incr. The list must be
terminated by a byte containing X'FF' in the position that would be
occupied by the first byte of the next name.

NUMBLST=
Specifies the address of a ,list of 2-byte fields containing arra y
numbers for which data is to be retrieved or the addresses are to be
resolved. Incr is the value by which this address is to be incremented
to locate the next number. If incr is omitted, a value of two is
assumed. A value less than two must not be specified for incr. The
list must be terminated by a byte containing X'FF' in the first byte
of the 2-byte field which would be occupied by the next array number.

EXAMPLE: Number List

0r---_---,

H'I'
2t-----i

H'255'
4t-----i

6
H'139'

X'PF' I

ADDRLST=
Specifies the address of a list of data base array address~s as
returned from a previous execution of this macro with NAKE=, NAMELST=,
or NUMBLST= specified and TYPE=ADDR. Incr is the value by which this
address is to be inc~emented to locate the next array address. If
incr is not specified, a value of a is assumed. This list must be
terminated by four bytes containing X'FFFFFFFF' in the position that
would be occupied by the first four bytes of the address of the next
array. If the GETARRAY macro specifying NAMELST or NUMBLST is used
to build this list, it will place the 4 X'FF' at the ~nd of the list.

DATALST=
Is used vith NAMELST= or NUMBLST= and TYPE=DATA or SPEC or ADDRLST=
and TYPE=DATA. The address of a list of addresses into which the data
from the specified arrays is to be moved. This must contain an entry

APPLICATION SERVICES 2-201

for each array for which data is to be retrieved. This entry will
contain a fullvord address which identifies the memory address to
which the first byte of the array data is to be moved. Incr is the
value by vhich the address within the list is to be incremented to
pick up the memory address to receive the st.art of the next array.

If incr is not coded, a value of 4 is assumed~

FINDLST=
Is used with NAMELST= or NUMBLST= and TYPE=ADDR. It specifies the
address of an area to receive an entry for each array specified. This
entry will be eight bytes if iner is specified as less than 10 (or
omitted) and 10 bytes if incr is specified as 10 or greater. The
entry will be in the following format.

O,....-_+-___ r4 ____ --,.lI:.-___ ---r8 ______ - ------1
number
blocks

number :
items :

L-._.L-___ '-____ -L-____ -'- - - - __ - ___ - - --I

If bit 1 of the flag byte is set to 1, the array is direct access
resident, and the address is not valid. If flag bit £ is set to 1,
it is a blocked array, and the block size must be multiplied by the
number of blocks to determine the total size of the array. The number
of items is the number of item names specified for this array through
the offline definition of the array.

Incr is the value by which the address specified is to be incremented
to determine the location to receive the next entry. If incr is not
specified, a value of a is assumed.

TYPE=
Specifies the type of request. DATA specifies that the content of
the array(s) is to be moved into the area specified by the DATA= or
DATALST= parameter. lDDR specifies that the address of the array(~
and associated data as defined with the FINDLST parameter is to be
moved into the area specified by DATA= (if NAME= or NUMBER= is
specified) or FINDLST= (if NAMELST o~ NUMBLST is specified). SPEC
specifies that the definition specifications as specified to the
offline utility for each named item defined for the array(s) is to be
moved into the area specified.

The data that is returned when the TYPE=SPEC is specified viII contain
a 16-byte entry for each named item in the following format:

I name I len I type I disp I aid rept
o

name

len

type

8 9 to 12 14 16

The a-character ~ame of the item.

The length of the item in bytes.

The data type of this item. An EBCDIC character as defined
through the ITEM macro.

disp The displacement into the array (or block) of the item.

aid The ID of the arra y as assigned by the offline utility program.

2-208 Description and operation Manual

rept The number of identical and sequential. items defined by this
entry.

PROTECT=!]~
RISK

If YES is specified, a LOCK vill be set to prevent other programs that
also specify PROTECT=YES from accessing the data base via the data
base macros while the data is being moved. If another program is in
the process of modifying the data base (a lock is set) when this macro
is executed, this program will be delayed until the lock is released.
The parameter has no effect if TYPE=ADDR or TYPE=SPEC is specified.

DCVTR=
Specifies a register which contains the address of the XCVT.

DCVTLOC=
specifies the address or a register containing the location which
contains the address of the XCVT.

After execution of the GET ARRAY request, the return code in register
15 is set to zero to indicate successful completion or to four to
indicate that the request could not be satisfied because cf one or
more of the following reasons:

• One or more of the named arrays is not defined to the system.

• A numbered array was requested which is higher than the highest
numbered array defined to the system.

• A TYPE=DATA request was made for a direct access resident array.

APPLICATION SERVICES 2-209

GETBLOCK

The GETBLOCK macro viII retrieve the data from blocked arrays and place
that data into user-allocated storage. The maCro may be used to
retrieve one or more blocks of data from one or more arrays. The arrays
may be either virtual storage or direct access resident.

[symbol] GETBLOCK (NAME= \7:fe
j I

) NUMBER= h~er j (
< address
) NAMELST= (r)

t NUMBLST= address I
(r)

,DATALST= address
(r)

~PROTECT= RISK)]
YES

[(,DCVTR= r lJ
DCVTLOC={addressj , (r)

The parameters NAME, NUMBER, NAMELST, and NUMBLST are mutually
exclusive. The macro will not expand if more than one of these
parameters is specified or if all of these parameters are omitted.

DCVTR=
Specifies a register (2-12) which contains the address of the XCYT.

DCYTLOC=
Specifies the address or a register (2-12) enclosed in parentheses
which contains the address of a location which contains the
address of the XCVT.

NAME=
Specifies the name or a register (2-12) from which data is to be
retrieved.

NUMBER=
specifies the number or a register (2-12) from which data is to be
retrieved.

NAMELST=
Specifies the address or a register (2-12) vhich contains the address
of a user-constructed list of array names from vhichdata blocks are
to be retrieved. The name list viII be a table of 8-byte entries with
one valid array name in each entry. The first byte past the last
valid entry will be set to X'FF' to indicate the end of the name list.

2-210 Description and Operation Manual

EXAMPLE: Name List

O'~ _____ --.

ARRAYNAM
8r-_____ ~

HOUSTONb
161--_____ -1

TEXASbbb
241--__ ~-----'

X'FF'j

NUMBLST=
Specifies the address or a register (2-12) which contains the address
of a user-constructed list of array numbers from which data blocks
are to be retrip.ved. The number list viII be a table of halfword
entries with one valid array number in each entry~ The first byte
past the last entry will be set to X'FF' to indicate the end of the
number list.

EXAMPLE: Number List

0r--__,

H't'
21--__ -1

H'255'
4~_--I

6
H'139'

X'FF' I

DATALST=
specifies the address or a register (not register 1) which contains
the address of a user-constructed list of block numbers an.d of core
addresses where the data blocks are to be written. The data list will
be a table of 6-byte entries. Each entry will contain a l-byte flag
field, a 3-byte area address and a 2-byte block number.

PROTECT=
If YES is specified, a LOCK will be set to prevent other programs that
also specify PROTECT=YES from accessing the data base while this
GETBLOCK is in the process of accessing the data base. If RISK is
specified, the data will be moved without regard to other programs
which mav be storing into the data base.

DATA LIST ENTRY DESCRIPTION:

o

FLAG
BYTE

FLAG BYTE
X'40'

2 3

AREA ADDRESS

X'40' or X'SO'

AREA ADDRESS

4

BLOCK
NUMBER

Indicates the last entry to be processed for a
particular entry in the name list or number
list.

Indicates the last entry in the data list.

The 3-byte address of a user-allocated area of storage where the data

APPLICATION SERVICES 2-211

block is to be written. The area must be large enough to contain the
entire data block.

BLOCK NUMBER
The number assigned to 't.hu data block to be retrieved and placed in
the area pointed to by the area address.

EXAMPLE: Data List and Name List

Data List
FIRSTbM; A(Area)

A(Area)

X'40' A(Area)

X'40' A(Area)

SECONObb ~
THIRObbb ~ L

r---X'FF' r------' I L
A(Area)

A(Area)

A(Area)

A(Area)

A(Area)

X'SO' A(Area)

H'I'

H'5'

H'lO'

H'3'

H'255'

H'I'

H'2'

H'37'

H'IS6'

H'249'

I
'---

Blocks in first
array

Blocks in second array

Blocks in third array

Note: A zero returned in register 15 indicates successful completion.
A non-zero returned in register 15 indicates that one· or more
errors were encountered during the processing of this GETBLOCK
request. The high-order byte of register 15 contains a count
of the number of errors encountered and the lov-order three
bytes contain the add~ess of the first invalid array name or
number.

2-212 Description and Operation Manual

GETITEM

The GETITEM macro is used to retrieve the data contained in one or more
items of the data base or, alternately, the address or definition
specification of those items in the data base. When data is to be
retrieved from the data base and the amount of space required to contain
the data is unknown, the GETITEM macro with a TYPE=ADDR option can be
used to obtain the size of the ite~ before the macro with a TYPE=DATA
option is used to retrieve the data. Where incr is specified, it may
be any value from 1 to 255.

[symbol] GETITEM NAME= name

NAMELST= { (r) } I
(address [, iner])

ADDRLST= { (r) }
(address [, iner])

[,TYPE= rATA}] ADDR
SPEC

[,BLKNO= {nJker}]
,DATA= { (r) }

(address [, iner])

[,PROTECT= { ~~~K}]
[I,DCVTR= r

,DCVTLOC= {adJ~!ss} I]
NAME=
Is an a-character name of a single item for which data is to be
retrieved or the address is to be resolved.

NAl1ELST=
Is the address of a list of a-character ITEM names for which data is
to be retrieved or the addresses to be resolved. Incr 1.S the value
by which this address is to be incremented to locate the next name.
If not specified, a value of a is assumed. If specified, must not be
less than 8. The end of the list must be indicated by a byte
containing X'FF' in the position that would be occupied by the first
byte of the next name.

If the items are contained in blocked arrays and TYPE=DATA or TYPE=ADDR
is specified, the block number for which data is to be retrieYed must
be specified in the halfword immediately following the 8-byte name.
Also the BLKNO= parameter should be specified as BLKNO=l, and the iner
must be coded as a value of least 10.

TYPE=
specifies the type of request. DATA specifies that the content of
the ITEM(S) is to be returned. ADDR specifies that the address within
the data base of the item(s) and the length(s) of the item(s) is to
be returned. DATA and ADDR are invalid for direct access resident
arrays. SPEC specifies that the definition specifications associated

APPLICATION SERVICES 2-213

with each item is to be returned. If the ADDRLST parameter is used,
this parameter must be omitted, or DATA must be specified.

ADDRLST=
Is the address of a list of data base item addresses as returned from
a previous execution of this macro with NAME= or NAMELST= specified
and TYPE=AODR. Iner is the value by which this address is to be
incremented to locate the next itP.m address. If incr is not specified,
a value of 4 is assumed. The end of the list must be indicated by a
4-byte field containing X'FFPFFFFF' in the position that would be
occupied by the next address. If the GETITEM macro with NAMELST option
is used to build this list. it will place the 4 X'FF' at the end of
the list.

DATA=
Is the address into which the first data is to be stored. If TYPE:DATA
was coded, DATA is the data from the first item specified, according
to the length defined for the item in the data base. If TYPE=ADDR
was coded, the length of the ITEM as defined in the data base is moved
into the byte specified, and the address in the data base of the item
is moved into the next three bytes. If TYPE=SPEC is coded, th-e
specification for each item as defined to the offline utility viII be
returned. This will occupy an 8-byte field for each requested item
and will have the follow ing format:

I len type I disp I aid I rept
o 2 4 6

len The length of the item in bytes

type

disp

aid

rept

The data type of this item. An EBCDIC character as specified
in the ITEM macro to the offline utility

The displacement into the array (or block) of this item

The ID of the array in which this item resides as assigned by
the offline utilit y

The number of identical and sequential items defined by this
entry.

Incr is the value by which the data address is to be incremented to
determine the next address to move either the next address or data.
If iner is not coded and TYPE=DATA. the length of the moved item viII
be used as the increment. If incr is not coded and TYPE=ADDR or
TYPE=SPEC. a value of 4 is assumed. If incr is coded and TYPE=DATA,
the data viII be moved for the defined length of the item. up to the
number of bytes defined by the incr value. If TYPE=ADDR or TYPE=SPEC
is coded, four bytes of data will be moved in any case, and if the
incr value is less than 4, the movement of data may overlay previously
moved data.

When TYPE=ADDR is coded, a terminator flag (X'FFFFFFFF') viII be moved
into the position that vould be occupied by the next address after
the last to be resolved.

PROTECT=IES
RISK

If YES is specified, a LOCK will be set to prevent other programs that
also specify PROTECT=YES from accessing the data base via the data
base macros while the GETITEM is in the process of accessing the data
base (a lock is set). When this macro is executed, the other program
will be delayed until the lock is released. If RISK is specified,

2-214 Description and Operation Manual

the data will be moved without regard to other programs which may be
storing into the data base.

BLKNO= _lL __
number

If U is specified or if the parameter is omitted, the array is assumed
to be unblocked.

A number is used to specify that the data is to be retrieved from a
blocked array(s). If NAME= was specified, the number is the block
number from which data is to be retrieved. If NAMELST= is specified,
any number from 1 to 32765 may be coded to indicate that the block
numbers are coded as part of the NAMELST.

DCVTR=r
where 'r' is the general purpose register (2-12) that contains the
address of the XCVT.

DCVTLOC= (r)
Where 'r' is the general purpose register (2-12) enclosed in
parentheses that has the address of a 4-byte location that
contains the address of the XCVT.

DCVTLOC=address
Where 'address' is the label of a 4-byte location that contains
the address of the XCVT.

When cont~ol is returned register 15 contains one of the following
return codes:

Decimal
£od!! __

o

8

12

16

Successful execution.

One or more of the item names specified could not be
resolved or data was requested to be moved for an item
with a defined length of 0 bytes.

Invalid options vere passed to the GETITEM routine
(probably the macro expansion had been modified).

A block number vas specified for an unblocked array or
a block number vas specified that is greater than the
highest block number defined for the array.

GETITEM request for an item that is contained in a direct
a·ccess array_

APPLICATION SERVICES 2-215

GETLOG

The GETLOG macro retrieves logged arrays by time or by using array
logging header information.

[symbol] GETLOG NAME= { 7~~e }

NUMBER= {n(~er}

,AREA= { address}
(r)

[,STEP= { v(!je }]

-
,TIME= {ad~~~SS} -

,LOGHDR= { a~~)es s}
- -
[,PROTECT= {~~~K}]
- -

,DCVTR= r

} I ,DCVTLOC= { address
(r)

i- -
[,MF=L] [,MF=(E, {ad~~~SS}]

2-216 Description and operation Manual

The parameters NA"E and NUMBER are mutually exclusive. The macro will
not expand if more than one of these parameters is specified or if both
of these parameters are omitted.

NAME=
Specifies the name or a register (2-12) containing the address of the
name of a named array for which a logged copy of the array is to be
retr ieved.

NUMBER=
Specifies the number or a register (2-12) containing the number of a
numbered array for which a logged copy of the array is to be retrieved.

AREA=
Specifies an address or a register (2-12) containing the address
a user-allocated storage area where the logged copy of the array
be written upon retrieval from the log data set. This area must
large enough to hold the entire array and logheader (24 bytes).
is a required parameter.

STEP=

of
will
be
AREA

Is used to deter mine which copy of a logged array, relative to the
TIME or LOGHDR parameters, v'ill be retrieved from the log data set.
The value is a signed number which may be either positive, negative,
or zero. If the STEP parameter is omitted. a value of zero will be
assumed as the default. If no sign is specified, the number is assumed
to be positi vee

PROTECT=
If YES is specified, a LOCK' will be set to prevent other programs that
specify PROTECT=YES from accessing the data base while this GETLOG is
in the process of accessing the data base. If RISK is specified, the
data will be moved without regard to other programs which may be
storing into the data base.

(See GETLOG examples on the following pages for use of this parameter
in combination with the TIME and LOGHDR parameters.)

TIME=
Specifies an address or a register (2-12) containing the address of
a 6-byte time and day field beginning on a fullword boundary. The
first four bytes will contain a time in 10 millisecond units. The
last tvo bytes viII contain a binary value from 1 to 366 representing
the day of the year. This time and day will be used as a comparison
value to establish a relative starting point to determine which copy
of the array will be retrieved from the log data set. The TIME
parameter cannot be specified if the LOGHDR parameter is specified.

LOGHDR=
Specifies an address or a register (2-12) containing the address of
an array logging header. Information in this logging header will
establish a relative starting point to determine which copy of the
array viII be retrieved from the log data set. The LOGHDR parameter
cannot be specified if the TIME parameter is specified.

The logging header is a 24-byte control block which precedes the array.
both as the array exists in VS and as it is written to the logging
array. The logging header which was retrieved as part of a previous
GETLOG macro can be used to retrieve additional data stepping either
forward or backward in time.

DCVTR=
Specifies a register (2-12) which contains the add.ress of the XCVT.

APPLICATION SERVICES 2-211

DCVTLOC=
Specifies the address or a register (2-12) enclosed in parentheses
which contains the address of a location which contains the
address of the xeVT.

MF=L
Indicates that the list form of the macro is used to create a parameter
list that can be referenced by an execute form of the GETLOG macro
instruction.

MF=(E, address
(r)

specifies that the execute form of the GETLOG macro instruction and
an existing parameter list are used.

When control is returned, register 15 contains one of the following
return codes:

Decimal
£od~ __ _

o

4

8

16

20

GETLOG Examples

Successful completion.

Requested time is later than most recent logged copy.
The most recently logged copy sill be read into the user
defined area.

Invalid STEP parameter value.

The number of lo~ copies -1 will be substituted for the
STEP parameter and that logged copy will be read into
the user defined area.

The specified array had not been defined. No data is
read into the user defined area.

The specified array is not a loggable array. No data
is read into the user defined area.

These examples will not describe the Assembler Language statement used
to call the GETLOG macro, but will describe the response of the GETLOG
routine to the different combinations of the TIME and LO~HDR parameters
with the STEP parameter.

• STEP, TIME, and LOGHDR omitted -- Information will be extracted
from the logging header on the virtual storage resident copy of
the array, and the last logged copy of the array will be retrieved.

• TIME is specified and STEP= 0 or omitted -- An attempt will be made
to retrieve a copy of the array logged at the exact time specified.
If the array was not logged at that exact time, the first copy of
the array logged after that time will be retrieved.

• TIME is specified and STEP=-2 -- The second copy of the array logged
prior to the time specified will be retrieved.

• TIME is specified and STEP=+5 -- The fifth copy of the array logged
after the time specified will be retrieved.

• LOGHDR is specified and STEP=O or omitted -- Information will be
extracted from the logging header specified and the copy represented
by the logging header specified will be retrieved.

2-218 Description and Operation Manual

• LOGHDR is specified and STEP=-3 -- Information will be extracted
from the logging header specified and the third copy prior to the
copy represented by the logging header specified will be retrieved •

• LOGHDR is specified and STEP=+4 -- Information will be ex tracted
from the logging header specified. and the fourth copy after the
copy represented by the logging header specified will be retrieved.

APPLICATION SERVICES 2-219

GETWA

The GETWA macro provides the facility for obtaining. short-term work
areas without adversely increasing paging rates. The work areas can
be freed explicitly with the PREEWA macro or freed automatically at
the end of the current patch queue or at the end of the current task
processing. The address of the work area is returned in register 1.
If the GETIA was unsuccessful, register 1 will contain 32 binary ones.

[symbol] GETWA

where 'r' is a general purpose register, 2-12.
I I

length
Is the length of the requested work area that can be specified in any
RX-type format or in a general purpose register.

TYPE=
Specifies the status of the work area~ If omitted or if TYPE=AP is
specified, the work area will be freed automatically when the
processing of the current PATCH work queue element is completed. If
TYPE=AT is specified, the work area is freed when the current task
terminates. If TYPE=PC is specified and the work area is completely
under program control, a FREEWA must be specified for the work area.
A FREEWA may be specified for any type of GETWA. GETWA TYPE=AT
executing under a QP or GETWA areas passed via PATCH to the AT chain
of a QP will never be freed by Special Real Time operating System (a
QP can never be DPATCHed).

DCVTR=r
Where ,~, is the general purpose register (2-12) that contains the
address of XCVT.

DCVTLOC= (r)
Where 'r' is the general purpose register (2-12) enclosed in
parentheses, having the address of a 4-byte location that contains
the address of XCVT.

DCVTLOC=address
Where 'address' is the label of a 4-byte location that contains
the address of the XCfT.

GETWA RETURN CODES:

Decimal
£QS.~--

o

4

12

2-220

Q.!!~r i tti.2n

Successful c.ompletion.

Invalid size requested.

An attempt vas made to obtain additional GETWA storage.
The attempt vas unsuccessful because there was

Description and Operation Manual

insufficient CBGET storage to build the GETWA control
blocks.

APPLICATION SERVICES 2-221

LOCK

Every resource that has been previously defined by a DEFLOCK macro can
be exclusively reserved by use of a LOCK macro. The address of the
control block (which is returned by the DEFLOCK macro) must be specified
in the LOCK macro. If the resource is unavailable at the time, the
LOCK macro is issued, and the requesting task is placed in a wait state
until that resource becomes available. Another LOCK macro must be used
to release the resource.

Note: The LOCK macro used to release the resource must be executed
from the same task as the LOCK macro used to reserve the
resource.

If a Special Real Time Operating system task (i.e.# a PATCHed task)
terminates or ABENDs before releasing the resource, the Special Real
Time Operating System exit routine will release the resource for that
task. However, if a non-Special Real Time Operating System task (i.e.,
an ATTACHed task) returns or ABENDs before releasing the resource, the
LOCK will remain set indefinitely.

The following operands are available for the LOCK macro:

[symbol]

(r)
name

LOCK {(r) }
name

,CBLOC=
{ (r) }
'address

[,TYPE= {LOCK }]
UNLOCK

[I,DCVTR= r 1
,DCVTLOC= { ad~~~SS}

The positional operand defines the 4-byte resource name. If (r) is
specified, the general purpose register must contain the resource
name.

CBLOC=
The CBtOC= keyword parameter is used to indicate the address of the
control block as defined by the DEFLOCK macro. If (r) is specified,
general purpose register 1 should contain the control block address.
"Address" is the label of a fullword that contains the control block
address.

TYPE=
Is used to indicate that a resource is being reserved (TYPE=LOCK) or
released (TYPE=UNLOCK).

DCVTR=r
Where Ir' is the general purpose regis~er (2-12) that contains the
address of the XCVT.

DCVTtOC= (r)
Where Ir' is the general purpose register (2-12) enclosed in

2-222 Description and Operation Manual

parentheses that has the address of a 4-byte location that
contains the address of the XCVT.

DCVTLOC=address
Where 'address' is the label of a 4-byte location that contains
the address of the XCVT.

When control is ret~rned, register 15 contains one of the following
return codes:

Decimal
Cod~ __

o

4

8

16

Successful completion.

This task has previously reserved and has cont~ol of
the res~urce (TYPE=LOCK).

Th is task: has not previously reserved the resource
(T YPE= UNLOCI<;) •

Invalid resource name and control block address
combination. Resource viII not be reserved.

APPLICATION SERVICES 2-223

MESSAGE

The MESSAGE macro is used by the Special Real Time Operating System
and the programs running under the Special Real Time operating system
are nsed to cause a predefined message to be printed or displayed. The
message must have been defined through the offline utility system using
the DEFMSG macro.

[symbol] MESSAGE 1 (r) l number

[.ACTa { ! }]
[.ROUTED ({J~) I [, {J~) 1· .. , {J~) I])]
[.VARD (Ia~!essll lladA~!ss21···.ladA~!sslol]~
[.AREA. radJ~!ss I] [, WAIT= I ~~s}]

[I'D~R. r I]
,DCVTLOC= Jadd~!ssl

symbol
Is any symbol valid in the assembler language.

number
Is a unique 3-digit nUlRber vhJch identifies the requested message.
(r) is the general purpose register (2-12) enclosed in parentheses
which contains the message number.

ACT=
Is the action code to be appended to the message number. I denotes
information. A denotes action is required, and D denotes that a
decision is required. If not coded, the action code specified through
the offline utility viII be used.

ROUTE=
Is the code or codes that identify the devices on which this message
is to be displayed or printed. unique routing codes are associated
with de~ices during the Special Real Time Operating System build
procedure. If this parameter is not included, the message viII be
routed to the devices specified through the offline utility procedure
using the DEFKSG macro. The maximum number of routing codes that can
be specified is 8. (r) is the general purpose register (2-12) enclosed
in parentheses vhich contains the route code.

VAR=
Is variable data to be converted and inserted into the message to be
output. The variables mnst be in the sequence and lengths specified
through the offline definition of the message~ The maximum number of
variables that can be specified is 10, addr is any address valid in
an Rx-type instruction, and (r) is a general purpose register (2-12)
which contains the address.

WAIT=
Informs the Special Real Time Operating system that performance of
the active task cannot continue until the specified message has been

2-224 Description and Operation Manual

issued. YES specifies that the active task is to go into a wait state;
and NO specifies that the active task is not to wait until the
speci fied message has been issue d.

AREA=
Is the address into which the formatted message is to be returned to
the caller. The term addr is any address valid in an RX-type
instruction and (r) is any register that was loaded with the address.

DCVTR=r
Where 'r' is the general purpose register (2-12) that contains the
address of the ICVT.

DCV't'LOC= (r)
Where (r) is the general purpose register (2-12) enclosed in
parentheses that has the address of a 4-byte location that
contains the address of the XCVT.

DCVTLOC=address
Where 'address' is the label of a 4-byte location that contains
the address of the XCVT.

MESSAGE RETURN CODES:

The Kessage Handler will issue return codes through register 15. If
the return code is 08 or greater, the message is not output.

Decimal
~Qg!!---

o

2

4

8

12

16

~2~I.!~iojl

Normal completion.

Specified numbe'r of variables less than number of
variables specified through offline utility procedure.
The remaining variables are padded with hyphens.

Specified number of variables greater than number of
variables specified through offline utility procudure.
The last variables in the list are dropped until number
of specified variables equals number of variables defined
through offline utility procedure.

Invalid message number.

Invalid routing code.

Input/output error.

APPLICATION SERVICES 2-225

MESSAGE MACRO List Porm

The list form of the MESSAGE macro is used to construct a problem
program parameter list. This problem prog~am para.eter list can be
referred to in the execute form of a MESSAGE macro instruction.

The description of the standard form of the MESSAGE macro instruction
provides the explanation of the function of each operand. The
descciption of the standard form also indicates which operands are
totally optional and which are required in at least one of the pair of
list and execute forms. The format description below indicates the
optional and required operands in the list form only. The message must
have been defined through the offline utility system using the DBFMSG
macro. The message text will be truncated to conform to the length
restrictions of the device(s) it will be routed to.

[symbol] MESSAGE number [,ACT= {~}][ROUTE= (Cl, [C2, ... ,ca])]
[,VAR= {addrl, [addr2, ••• ,addrlO]]

,MF=L [WAIT= {~S}]
symbol
Is any symbol valid in the Assembler Language.

addr
Is any address that may be written in an A-type address constant.

ROUTE=
The MESSAGE macro will expand space for eight route codes if none are
specified.

MF=L
Indicates the list form of the MESSAGE macro instructionJ

2-226 Description and operation Manual

MESSAGE MACRO -- Execute Form

A remote control program parameter list is used in, and can be modified
by, the execute form of the MESSAGE macro instruction. The control
program parameter list is generated by the list form of the MESSAGE
macro instruction.

The description of the standard form of the MESSAGE macro instruction
provides the explanation of the function of each operand. The
description of the standard form also indicates which operands are
totally optional and which are required in at least one of the pair of
list and execution forms. The format description below indicates the
optional and ~equired operands in the execute form only. The message·
must have been defined through the offline utility system using DEFMSG
macro. The message text will be truncated to conform to the length
restrictions of the device(s) to which it will be routed.

[symbol] MESSAGE {n~!r} [ACT: {UJ[ROUTE:Wrl! [. l~~ll \ ~~llJ)]
{ (r) }

[, VAR= (addressl ,[{ad~~~ss2} I"" { ad~~~sslO}]1]
[, AREA= {aJ~~}]

[IMF= E, ~ remote list addresst]
(r)

[WAIT: {NO }J[1 .DCVTR= r ! J
YES ,DCVTLOC= { (r) }

address

symbol
Is any symbol valid in the Assembler Language ..

addr
Is any address that can be written in an A-type address constant.

MF=(E,remote list address)
Indicates the execute form of the MESSAGE macro instruction using a
remote parameter list. The address of the remote parameter list can
be loaded into register 1, in which case MF=(E,(1» should be coded.

ROUTE=
If more route codes are expand~d in the remote list than are required
in the MF=E form, only the number specified on the MF=E form lIi11 be
modified.' For example, if the remote list expanded 5 route codes and
the MF=E only 2, only the first 2 in the remote list lIould be modified
and the message would be routed to all 5 route codes. If this is not
desired, the remote list should be zeroed prior t.o executing the MF=E
form.

APPLICATION SERVICES 2-221

PATCH

The PATCH macro is used to create a Special Real Time Operating System
task and to queue vork to it. If no task name is specified, a dependent
task viII be created. A dependent task can accept only one PATCH and
flags are set which viII cause it to disappear as soon as the work
represented by the single queue element is completed. If a name is
specified, th e PATCH SVC checks to determine if a n independent task by
that name already exists, and if not, an independent task is created.
Then the work is queued to that task. Independent tasks will be kept
available until they are removed from the system explicitly via the .
DPATCH macro; if all queued work is completed, they will go into a
dormant state, ready to accept more vork vith. function. the next PATCH.

The PATCH macro has two different kinds of operands: task-oriented
and work-oriented.

Task-oriented operands are used only at task creation and, if the task
already exists, they are ignored (priority, queue length, target
parti tion) •

Work-oriented operands are relevant with every execution of the PATCH
macro (entry point name, queue position, ECB address, FREE request) •

The various operands available can be used to control overall system
overhead, core usage, task synchronization, and execution times. Their
use should be considered carefully so that they correspond to the
requirements of the task they aff oct.

Each time a program is called or executed as a result of a PATCH, a
parameter list is passed to the program. These parameters may be used
to identify the PATCHing progcam, the reason for the PATCH, to pass
data or an address of data arrays, or, in general, to provide the
PATCHed program any information it might need to execute a given This
parameter list is always headed by one word containing the length of
the parameter area and the 10 of the PATCH. The remainder of the
list can be any combination of values and/or addresses needed by the
PATCHed program.

When the PATCH SVC returns to the caller, register 15 will contain a
return code. In addition; if the return code is less than or equal to
8 and was for an independent task, register 1 will contain the address
of the TCB extension (TCBX). If this address is supplied with the next
PATCH to the same task (TCBX=), it will speed up execution of the PATCH
SVC routine.

When the "called" program gains control as the result of a PATCH,
register 1 viII contain the address of a 3-word block which contains
the address of: (a) XCVT, (b) resource table, (c) the parameters
specified in the PATCH macro. The address of XCVT viII be used as
input to many Special Real Time Operating System macros as the keyword
operand DCVTR or DCVTLOC. The resource table is a doubleword which is
allocated and set to zero when the task is created and is maintained
as a task resource as long as the task is in existence. The user may
store data into the resource table and have the data preserved between
independent task (program) executions eventhough the program may be
deleted or a different program may be executed under the same task.

2-228 Description and Operation Manual

PATCH Input Parameter Format

Rl

8 t

[symbol]

XCVT

RESOURCE
TABLE

PARAMETERS

Parameters
as specified
inPARAM

PATCH

[

TASK - name]

TASKLOC = { (r) } address

[~~L~C
[,QL =

(name [,DELETE]) 1
= (address[,OELETE])J

{n~~er}J

[,QPOS= I ilii:H IJ

ID }

[

PRTY = (taskname, I v~~~e I l]
PRTYLOC =({adJ~~Ss},valUe)

[,ECB =({adJ~~ss} [,REPATCH])]

[,FREE =j(lfeJ I. add~~ss j) I
[,TCBX = I adJ~~ss I J

[PTN = l t~~:R n
[,SUPL = I (~, I ad~~rSS pI]
[,ro = Iv~f~el]
[

PARAM = (r) [(r), ... ,(rn)])]
, PI' P2"",Pn

[,PROBL = I (~, I ad~~iss J> I]
[l ,DCVTR = r !]

,OCVTLOC = {ad~~!ss}

Where 'r' is a general purpose register, 2-12.

LENGTH

APPLICATION SERVICES 2-229

TASK=name
Specifies a 1 to 8 character name which is the name of the task or
queue bolder being referenced by this PATCH. If the task does not
exist, one by that name will be created.

TASKLOC=address
Specifies the address of a 1 to 8 character task name. The name must
be on a fullvord boundary, be left-justified and padded on the right
vith blanks, if necessary, to complete eight characters. The address
can be any format valid with an RX-type instruction.

EP=
specifies a 1 to 8 character valid program name which is the name of
the program to be scheduled under the task being created with the
PATCH. If DELETE is specified and this'is the only task using the
program, a DELETE is issued for the EP name after proces~ing for this
PATCH completes. DELETE may be abbreviated as DEL. If EP is not
specified and an ID other than 255 is specified, the PATCH will fail
during an attempt to LOAD a program with a name of blanks.

EPLOC=address
specifies the address of a 1 to 8 byte program name. The program name
must begin on a fullword boundary, be left-justified and padded on
the right with blanks, if necessary, to complete eight characters.
The address can be in any format valid with an RX-type instruction.
DELETE has the same meaning as with EP=.

QL=
Specifies the limit number of WQEs that may be queued to the
independent task in addition to the one that might be currently
executing. This parameter is meaningful only for new, independent
tasks and is ignored otherwise. Any decimal value from 0 to 255 may
be specified; the default value is 1. If (r) is specified, the value
is assumed to be in the low-order byte of register r.

If ,zero is specified as the queue length, the task accepts one PATCH,
works on it and, when completed, waits for the next request. If a
PATCH is issued for that task while the task is busy, it is not
executed.

If the queue length is 1, the task can accept one PATCH even while it
is busy.

When a task co~pletes processing the current request, the top element
on the queue will be eI:ecuted next.

QPOS=
Specifies where in the task work queue this work request is to go if
the task is currently busy. FIRST indicates that it is to be placed
so as to be processed before those already in the queue. LAST
indicates that those already in the queue should be processed before
this request. If DPATCH is specified, the processing for this PATCH
will not be executed until a DPATCH is issued for this task. Only
one PATCH with QPOS=DPATCH is allowed to each task. QPOS=DPATCH is
not allowed if TASK= specifies a queue holder.

PRTY=
Specifies a task name and a value which viII determine the priority
of the new taSK. The value (0-255) viII be subtracted from the
dispatching priority of the specified task. If (r) is specified, the
value is assumed to be in the low-order byte of register r. If a
value is omitted, zero is assumed.

2-230 Description and Operation Manual

PRTYLOC=
Has the same function as PRTY except that the task name is an a-byte
field at the address specified. The name must be left-justified and
padded on the right with blanks. The value is specified exactly as
with the PRTY=operand.

ID=
specifies a decimal valu~ from 0-254 to be passed as a parameter to
the PATCHed task's program. If (r) is specified. the ID value should
be in the low-order byte of the register. An ID of 255 is special.
A PATCH request with an ID of 255 will cause a task to be created and
initialized if it does not already exist and the module to be loaded.
It will work its way to the top of the queue, but the program will
never be entered •. This provides a task pre-initialization capability.
If ID is omitted. a default value of 0 is assumed. If the ID is 255
and EP is not specified. the task will be created and no program viII
be loaded.

PAR AM=
Specifies one or more parameters which will be passed to the PATCHed
task's program. The parameters may be any values or addresses
meaningful to the program. If (I:') is specified for a parameter, the
value must be contained in the register r; otherwise, the parameter
expands as an A-type address constant. Note that if only one parameter
is specified and it is in a register, two sets of parentheses are
required.

EC13=
Specifies the address of an ECB which may be used in a WAIT macro.
This ECB is posted when proc~ssing for this PATCH completes or when
the work represented by the PATCH is purged. The REPATCH option causes
the ECB to be posted with the address of the REPATCH list (REPL) to
be used in the REPATCH mac~o if this PATCH is not serviced because of
a QPOS=FIRST PATCH with the queue being full. If REPATCH option is
specified and the REPATCH occurs (ECB posted vith a completion code
of X'44'), a REPATCH macro must be issued. See description of the
REPATCH macro. Note that if only ECB address is specified ~nd it is
in a register. two sets of parentheses are required.

FREE=
Specifies that a work space is to be passed to the PATCHed task and
is to be freed after the work queue element built in response to this
PATCH is completed (either GETKAINed area or GETWA area) or after the
PATCHed task has terminated (GETWA storage areas only). The area must
have been obtained via a GET~AIN from subpool zero or a GETWA and must
be part of the partition where the work represented by this PATCH is
to be executed. If REPATCH option is specified and theECB is posted,
the area vill not be freed immediately. However, the area will be
freed as a result of the mandatory REPATCH macro. It is invalid to
code this operand if the PATCH goes to the other partition and the
REPATCH option is specified.

A work area originally obtained via a GETMAIN macro call may be freed
by specifying either the length and address of the work area or FREE=P.
If FFEE=P is specified, the problem program parameters (ID and PARAr1
or PROBL=) are FREEMAINed. A GETftAINed area will be FREEMAINed after
the execution of the work represented by this PATCH.

A work area originally obtained via a GETWA macro call may b~ freed
by specifying either AP or AT and the address of the work area. An
AP request will cause the storage to be FREEWAed after the execution
of the work represented by this PATCH. An AT request will cause the
storage to be freed whenever the PATCHed task is terminated.

APPLICATION SERVICES 2-231

Any storage area associated work queue built in response to a
successful PATCH (return code less than eight) and later removed from
the PATCHed tasks' lIork queue chain before it can be executed, lIill
be freed when the work queue is purged.

Any format valid for an Rx-type instruction can be specified for the
length or address.

TCBX=
Specifies the address of the TCB Extension Control Block (TCBX) for
an existing independent task. If TCBI is specified as a register,
TCBX=(r), that reqister is assumed to contain the actual TCBX address.
If TCBI is specified as a relocatable expression, TXCB=addr, the TCBX
address will be loaded from the specified address. The TCBX address
is returned in reqister 1 after each successful PATCH to an independent
task. Use of this operand with all PATCHes to the same task after
the initial PATCH will reduce system processing time. Note that other
parameters must still be specif1ed for verification or in the event
the task has been DPATCHed.

PTN=
In two-partition operation, this operand defines the target partition
for the PATCH. OWN means that the target partition is the partition
that executes the PATCH; MASTER defines the MASTER defines the master
partition as the target partition. SLAVE defines the slave partition
as the target partition; if SLAVE is coded and two-partition operation
is not initialized (no KASTER/SLAVE control cards in the SYSIBIT input
stream), the PATCH will be rejected, and a return code is passed back
in register 15. FIND causes the SVC to search fer the specified task
in the patchor's own partition; if it is found, it is used and the
search exits. If it is not found, a switch is made to the other
partition which is searched also. If a task by the spec'ified name is
not found in either partition, the SVC routine switches back to the
patchor's own partition and behaves as if OWN was coded.

If the PTN operand is not coded, it defaults to OWN.

If two-position operation is not specified at the Special Real Time
Operati-ng: System SYSGEN. this parameter is ignored.

SOPL=
Specifies a list or execute form of the PATCH supervisor operands •.
If the list form, SUPL=L is specified, no executable code is generated;
therefore, all register notations are ignored as well as TASKLOC,
EPLOC and PRTYLOC. with the execute form, SOPL= (E,addr), the address
specifies a SUPL=L form paramete r list, and any additional operands
specified cause executable code to be generated which modifies the
remote parameter list before the SVC instruction is generated. The
address can be in any format valid with an RX-type instruction.. SUPL=L
and PROBL=L cannot both be specified.

PROSL=
Specifies a list or execute form of the problem parameter operands,
TD and PARA!. PROBL=L generates a parameter list, and PROBL=(E,address)
specifies the address of such a list in an execute form of the PATCH
macro. Both PROBL=L and SUPL=L cannot be specified. Note: If the
length of the Note: If the leng·th of th PROBL parameter is equal to
or less than eight bytes, the entire parameter is moved into a
supervisor area. This will allow the use of a single PROBL list even
though the ID might vary with each individual PATCH execution.

DCVTR=r
Where 'rf is the general purpose register (2-12) that contains the
address of the XCVT.

2-232 Description and Operation Manual

DCVTLOC= (r)
Where 'r' is the general purpose register (2-12) enclosed in
parentheses baving the address of a 4-byte location that contains
the address of the XCVT.

DCVTLOC=address
Where 'address' is the label of a 4-byte location that contains
the address of the XCVT.

When control is returned, register 15 contains one of the following
return codes:

Decimal
Cod! __ _

2

4

6

8

10

12

14

16

18

20

22

28

30

32

PATCH
n~n~

YES

YES

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

TCBX=Address specifies the address of a TCBX
which does not \ave the same name as specified
in the SOPL. The proper TCBX is found or a new
task is created.

QPOS=FIRST caused loss of previous WQ.

Specified task is in the no-PATCH state.

Queue full.

PRTY task name does not exist.

Invalid PROBL parm list or address.

Inv~lid SUPL parm list or address.

DPATCH queue overflow.

Invalid FR EE=operand.

DPATCH in prog ress for this task.

PTN=SLAVE requested but not initialized.

No CBGET storage for TCBX, WQE or LCB.

Task name specified is a queue processor.

Task name specified is a queue processor and
QPOS=DP ATC H.

ECB COMPLETION CODES:

High-order
Byt@ £2g!_

X'40'

X'42'

X'44'

LOll-Order
,-=.§I~~~ Description

Saae as register Successful completion.
contents from program

Zero

Address of block
or zero

Zero

DPATCH occurred before work could
be exe~uted.

REPATCH A PATCH with QPOS=FIRST
forced this PATCH out of queue.

BLOL failed (member not found or
I/O ·error) •

APPLICATION SERVICES 2-233

X'4C'

X'4F'

2-234

ABEND code

Same as
register 15

Task abnormally terminated while
processing this request.

The PATCH Farameters vere specified
as part of a PTIME macro. The PTlftE
specification has been deleted, and
no more PATCHes will be executed.

Description and Operation Manual

Relationship of Patch Operands to type of Task

Operands
or

Subopcrand

TASK/
TASKLOC

EP/
EPLOC

DELETP

PRTY/
PRTYLOC

QL

QPOS

DPATCH*

ECB

REPATCU*

FREE

p*

TCBX

ID

PARAM

R", Required
0- Optional
N - Ignored
(- Invalid

Create Queue Dependent
Independent I nde.r:snkdent Task

Task

R R I

R R R

0 0

0 N 0

0 N N

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0

*Suboperand of Preceding Operand

Figure 2- 34.

Program
Input

Parameters

0

0

APPLICATION SERVICES 2-235

PTIME

The PTIME macro provides Special Real Time operating System time
management services to the user. The macro causes a task to be PATCHed
at a specified or relative time. Optionally, this PATCH can be repeated
at a specified cycle interval continuously or for a certain number of
PATCHes. The PTIME macro also allows previous PTIME calls to be
modified or deleted. An additional function of the PTIME macro allows
access to the correct Special Real Time operating System time and date.

The following operands are available for the PTIME macro.

2-236

[symbol] PTIME
ADD 1 MOD
DEL
RET

[,START= (I :~ I v:!~!:s: n • n S l)]

[

I'STOP=

"COUNT= { (::~ f}orrnat as START) I]
number

[,INTRVAL= (I ::a:~):: .n S I)]

[,PURGE= I r 1]

[PATCH operands (See PATCH Macro)]

where 'r' is a general purpose register 2-12.
I I

Description and Operation Manual

All time values are specified in the same format. The time is specified
explicitly by hours, minutes, seconds, or any combination of the three
as long as one is specified. The timE value must not exceed 24 hours.

Exa.ples are as follows:

3 hours: 3H or 180~ or 10800$
1 hour, 3 minutes, 1-1/2 seconds: lH, 3", 1.55 or 3781.55.

If (r) is specified, the ti.e in hundredths of seconds is in register
r. The A= suboperand allows the time value to be specified in a
fullword at the address specified. The time value in the word must be
specified in hundredth of seconds. The address may be any RX-type
address.

ADD
MOD
DEL
Specifies the type of PTIME service requested. If omitted or if ADD
is specified, a PTI~E queue element (PTQE) is activated which controls
the PATCHes issued according to the PTIME request. since the PTQE
exists independently of the creating task and may be modified or
deleted, the PTQE is referred to by the task name, entry point name,
and 10 value of the parameters referred to by the operands TASK=,
TASKLOC=, EP=, EPLOC=, and 10= as defined in the PATCH macro. Either
task name or entry point name must be specified with a modify (MOD)
or delete (DEL), but the remaining two are optional. However, if only
a task name or entry point name is specified, all PTQEs with that name
are deleted or modified regardless of entry point names or 10 values.

RET
Causes the system to return the current time in 10 millisecond units
in register 0 and the address of the Special Real Time Operating System
time array in register 1. This time is a Special Real Time operating
System time which can be synchronized with an external time source.
The time and date are maintained in several formats and are updated
periodically. Thus one PTI!E RET call gives a routine the current
time as long as the address of the array is retained. See the TIMED
OSECT for a description of time formats. All other operands are
ignored with RET.

START=
Specifies the time of the first PATCH to be executed. The first
suboperand determines the meaning of the time value specified in the
remainder of the operand. If REL is specified, or if the operand is
omitted, the time of the first PATCH equals the current Special Real
Time operating system time plus the time value in the remainder of
the operand. If TOO is specified, the first PATCH occurs when the
Special Real Time Operating System time equals the time of day
specified by the remainder of the operand. If this time. is less than
the current Special Real Time Operating system time, the first PATCH
does not occur until the next day_ If ADJ is specified, the time of
the first PATCH is calculated by assuming the time value in the operand
to be a TOO value, except that the time value in the INTERVAL= operand
is repeatedly added to the assumed TOD or ADJ is specified and the
calculated STOPTIME is less than the calculated START time until that
value is greater than current Special Real Time Operating System time.
This prevents the possibility of unintentionally specifying a TOD less
than the current special Real Time operating System time and the first
PATCH not occurring for almost 24 hours. Also this allows distribution
of the time management processing by offsetting AOJ time relative to
a standard time.

APPLICATION SERVICES 2-231

STOP=
Specifies the Special Real Time Operating System system time after
which no more PATCHes are issued. If REt is specified, or if the
operand is omitted, the stop time is equal to the current Special Real
Time Operating system time plus the time value in the remainder of
the operand. If TOD'is specified, the stop time is equal to the time
value in the .remainder of the operand. If ADJ is specified, the stop
time is calculated by assuming the time value in the operand to be a
TOD value except that the interval time is repeatedly addad to the
assumed TOD time until that value is greater than the current Special
Real Time Operating System time. When either REL, TOO, or ADJ is
specified and the stop time is less than the calculated start time,
a 24-hour value is added to the stop time until the STOP time equals
or exceeds the START time.

COUNT=
Is equal to the number of PATCHes that are issued before the PTIME
control block is deleted. This operand is an alternative to STOP=.
The count value can be specified in a register, but must not exceed
a halfword value.

Note: If both SOPT= and COUNT= operands are specified, the COUNT field
will be ignored. If neither operand is specified, the PTIME is
assumed to be infinite, and PATCHes will be issued until a PTIME
DEL or MOD is issued for that task and/or entry point name.

INTRVAL=
Is the interval between successive PATCHes. If this operand is omitted
or less than. the SYSGENed time. interval, the SYSGENed time interval
will be substituted. The time may be specified with the A= suboperand
as described above.

PURGE=
Provides a method of deleting the task associated with a PTIME. This
operand can be specified when the PTQE is created (i.e., vith ADD or
MOD) or when the PTQE is deleted (DEL). If PURGE= (U,C,or W) is
specified, ~ DPATCH is issued, wh en the PTQE is deleted. The ope'rand
U, C, or W, specifies the type of OPATCH to be issued (see DPATCH
description). If the task is to be deleted when the PTQE is deleted
automatically via the STOP or COUNT operand, the PURGE operand must
be specifieu in an ADD or MOD PTIME for the PTQE. Specification of
the PURGE operand with a DEL type overrides the operand specified when
the PTQE was created.

PTID=
Is a four byte value used to uniquely identify a PTQE. If this operand
is omitted on a PTIME ADD request, the Special Real Time Operating
System viII assign a PTID. The PTID is returned to the user in
Register 1 on PTIKE ADD or KOD requests. PTID of a full word of zeros
or blanks will be ignored. If register notation is used, the specified
register must contain the 10 to be used.

MF=
Are the list and execute forms of PTIME which are generated by
specifying MF=L and "F=(E,addres~, respectively. The list and execute
forms are bot valid with the RET option since this fo+m has no
parameter list. Also, the PATCH operands cannot be specified with
PlF=L.

DCVTR=r
Where r is the general purpose register (2-12) that contains the
addreEs of the XCVT.

DCVTLOC= (r)

2-238 Description and Operation Manual

Where r is the general purpose register (2-12) enclosed in parentheses
having the address of a 4-byte memory location that contains the
address of t he X CVT.

DCVTLOC=address
Where address is the label of a 4-byte memory location that contains
the address of the XCVT.

PATCH Operands
Specifies the PATCH to be issued. Any valid combination of PATCH
operands can be specified. Note that the PATCH supervisor and/or
program parameter list can be expended with the list form of PATCH
and then specified in execute form, i.e., SUPL=(E,addr),
PROBL=(E,addr).

Note that there are some restrictions to the use of PATCH parameters
with PTIME:

QPOS=
DPATCH cannot be specified. LAST will be substituted.

FREE=
Can be specified, but the FREEftAIN viII not be executed until the
PTIME queue element (PTQE) generated by this PTIME is deleted. If
the PTQB is not repeating, this will be like a normal PATCH.

When control is returned, register 15 contains one of the foiloving
retu::n codes:

~ Return
Code RET ADD MOD DEL

0 Successful Successful Successful Successful
4 NA Interval time less Interval time less NA

than SYSGEN time than SYSGEN time
interval--SYSGEN interval--SYSGEN
time interval time interval
substituted substituted

8 NA NA PTQE not found PTQE not found
12 NA NA TASK or EP name TASK or EP name

not sped fied not specified
16 NA No CBGET are"a NA NA
20 NA Duplicate PTQE NA NA

(i.e .• a PTQE
already exists
with the same
PATCH Parameter
and PTIO value.)

24 NA Invalid PATCH Invalid PATCH Invalid PATCH
parameters parameters parameters "
(e.g .• invalid (e .g .• invalid (e .g .• invalid
ECB address) ECB address) ECB address)

When the return code is 8 or greater, the PTIME was not successful,
and the existing ~TIME specification viII not be changed.

APPLICATION -SERVICES 2-239

TIME ARRAY (DPPCTIMA) :

+TIMED DSECT
+***
+* TI ME ARRAY DSECT
+***
+TIMEHS DC F' 0' TOO IN 10 MIL UNITS
+TIMETOD DC F' 0' TOO IN 10 8IL UNITS-HHMMSSTH
+TIMEJDAY DC P' 0' JULIAN DATE-OOYYDDDC
+TI ftEMD AY DC F'O' DAY OF MONTH DATE-OMMDDYYC
+TIMEEBC DC CL10' , EBCDIC DATE-DD/88M/YY

PTI ME I NP UT PAR AMETER S:

+PTIMEL DSECT
+***
+*
+*
+*
+*
+*
+*
+*
+ •• *
+PTIMSFLG
+PTIHSTRT
+PTI·MIFLG
+PTI"I~T:"
+PTIMEFLG
+PTIMSTOP
+
+PTIMCNT
+PTlftPTCH
+PTIMPARM
+PTIMPTQE
+PTIMLNGH
+*
+PTIMFPRG
+PTIMFDPC
+PTIMFDPW
+*
+PTIMCFG
+PTIMREL
+PTIMTOD
+PTIMADJ
+PTIMADDR
+PTIMLN

2-240

PTIME INPUT PARAMETERS

DC
DC
DC
DC
DC
DC
ORG
DC
DC
DC
DC
EQU

EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU

REG1=ADDR OF SUPERVISOR LIST (IF REG 0 ZERO)
REGO=O = RET OPTION

=4 = ADD OPTION
=8 = MOD OPTION
=12= DEL OPTION

XL l' 0' TIME OPTION FLAG
AL3 (0) START TIME VALUE (OR A DDRE SS)
XL l' 0' PURGE OPTION FLAG
AL3 (0) INTERVAL TIME VALUE (OR ADORES S)
XL l' 0" TIME OPTION FLAG
AL3 (0) STOP TIME VALUE (OR ADDRESS)
PTIMSTOP
AL3 (0) COUNT VALUE
A (0) PATCH SUPERVISOR LIST
A (0) PATCH PROBLEM LIST
A (0) PTQE ADORE SS
*-PTIMEL
PURGE OPTION FLAGS
X'01' PU RG E DP ATCH=U
X'02' PU RG E DP ATCH=C
X'04' PURGE DPATCH=W
TI ME OPTIO N FLAGS
X' OS' THIS FIELD CONTAINS COUNT VALUE
X'01' RELATIVE TIf!!E
X'02' TOO TIME
X'04' ADJUSTED TIME
X'SO' THIS FIELD CONTAINS TI ME ADORE S5
*-PTlftEL

Description and Operation Manual

VALID PTIME OPERAND CO"BINATIONS:

Operand

START
STOP
COUNT
INTRVAL
PURGE
MF
DCVTR
DCVTLOC
PATCH operands

R,. Required
0- Optional

Option

ADD MOD

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
R R

DEL RET

0 0
0 0
R

070372

APPLICATION SERVICES 2-241

PURGEWQ

The PURGEWQ macro is used to selectively purge work requests to a
specified independent Special Real Time Operating System task or queue
holder. The selected work requests will be removed from the active
work queus (i.e., a chain of work requests that have been generated in
response to PATCH macro calls but have not been executed yet) or from
the DPATCH work queue (i.e., a work request generated in response to
a PATCH OPOS=DPATCH ••• macro call). Other work requests for that task
will not be purged and will be allowe~ to execute normally.

symbol

where 'r'
I

SUPL=

PURGEWQ SUPL ={ (r) }
addr

EP = {(r) } [TASK= {(r) }] [PTN=1 ~~D l] addr ,. name' MASTER
SLAVE

ID = { (r) }
value

r FREE _ ({ (r) } { (r) })~
~ - length, address ~

,OPT = WAIT (r) [I NOPOST IJ
(POST, {ECB addr})

r. DCVTLOC . =

lDCVTR =

[MF = I (E~
{~~1r}1
(r)

I!~~rj)}]
is a general purpose register (2-12)

I

Specifies a list form of the PATCH supervisor operands. PURGEWQ uses
this list to obtain the entry point name, task name, and partition
reference. The SUPL= option allows the user to use the same SOPL for
PATCH macro calls and the PURGEWQ macro call. If register form is
specified, the register contains the address of the SUPL.

EP=
Specifies a 1 to 8 character valid program name which is the name of
the program that is scheduled to be executed in response to a previous
PATCH macro call. The entry point name is used in conjunction with
the ID value to identify the work requests to be purged. If register
form is specified, the register contains the address of an 8-character
field which contains the program name. The name must be on a full word
boundary, be left-justified and padded on the right, if necessary, to
complete eight characters.

TASK=
specifies a 1 to 8 character name which is the name of a previously
created independent task being referenced by this PURGEWQ. The task
name identifies the task for which work requests are to be purged.
If omitted, the current task is assumed to be the one for which work
requests are to be purged. If register form is specified, the register

2-21.42 Description and operation Manual

contains the address of an 8-character field which contains the task
name. The name must be on a fullword boundary, be left-justified and
padded on the right with blanks, if necessary, to complete eight
chi;i['acters.

PTN:=;
In two-partition operation, this operand specifies the target partition
for this PURGEWQ. OWN means that the target partition is the partition
that executes the PURGEWQ; ~ASTER defines the master partition as the
target partition; SLAVE defines the slave partition as the target
partition; FIND causes the PURGE WQ subroutine to search for the
specified task in the partition that executes the PURGEWQ; if it is
not found, the o~her partition is searched. OWN is the default option.

ID=
Specifies a decimal value from 0 to 254 to be used in conjunction with
the entry point name to identify the work requests to be purged. This
is, the ID that was passed as a parameter on a previous PATCH macro
call. A PURGEWQ request with an ID of 255 will cause all work requests
to the specified task vith the specified entry point name to be purged
regardless of the 10 value specified on the originating PATCH macro.
If ID is omitted, a default value of 0 is assumed. If register form
is specified, the register must contain the ID value in the lov-order
byte.

FREE=
Specifies the length and address of a GETKAINed area that is to be
FREEMAINed when the last specified work queue has been purged. Both
the length and address are required and identify the area of storage
to be freed. Either the length or address or both may be in registers.

OPT=
Specifies the PURGEWQ option used to determine if the user is to be
notified when all specified work requests have been purged or, in the
case when a work request to be purged is currently active, have been
completed. NOPOST indicates that the specified work requests are to
be scheduled for purging but control is to be returned to the user
and no indication will be made when the work requests have actually
been purged. WAIT indicates that the user is to be placed in a wait
·state until all specified work requests have been purged or, if a work
request to be purged is currently active, until that work request has
completed normal processing. POST indicates that the specified work
requests are to be scheduled for purging but control is to be returned
to the user. The user will be notified via a POST to the specified
ECB whenever all specified work requests have been purged or, if a
work request to be purged is currently active, when that work request
has completed normal processing. If register form is specified on
the OPT = POST parameter, the register contains the address of the
F,CB to be posted.

DCVTLOC=
Specifies the address of a q-byte memory location that contains the
address of the XCVT. If register form is specified, the register must
contain the address of the location that contains the address of the
XC7T.

DCVTR=
The register s~ecified contains the address of the XeVT.

KF=
Specifies the list to execute form of the PURGEWQ which are generated
by specifying KF=Land MF=(E, address) respectively. The list form is
not valid wi th the S UPL para mete r.

APPLICATION SERVICES 2-243

Note: The EP, TASK, and/or PTN parameters cannot be used with tbe SUPL
parameter. Eitber the SOPL or the EP parameter must be
specified.

After completion of a PURGEWQ macro call Register 15 will contain a
return code and register 1 will contain a count of the number .of work
requests purged or zero (depending on the return code). This count of
work requests purged does not include the current. work request, if
applicable, since it was not actually purged.

o

4

8

12

16

20

24

28

32

2-244

No. of work
requests purged

o

No. of work
requests purged

o

No. of work
requests scheduled
to be purged

o

o

o

NO. of work
reques ts purged

Successful completion

Task was dormant (no active work
requests

One of the wo~k requests is the
currently active work request

No work requests found to be purged

OPT= (POST, ECB addr) specified but
d.ue to PATCH return code, we are
unable to WAIT until all vork
requests have been purged before
posting the user EeE

DPATCH in progress for this task

Invalid PTN= specified

Invalid input address or unable to
locate specified task.

Task vas for the current task and
OPT=WAIT was specified. This may
cause an interlock situation.
Therefore the WAIT request is
ignored.

Description and Operation Manual

PUTARRAY

The PUTARRAY macro is used to move data into one or more VS resident
arrays of the data base. The data in the entire array based on the
length defined through the offline utility will be replaced. This
macro is not valid for use with blocked arrays. Where incr is
specified, it may be any value from 1 to 255.

I

{ (r) } [symbol] PUTARRAY NUMBER=number,DATA= address

NAME=name,DATA= {J~) } 1 a ress I

I NAMELST= (I aJ~~es s I [, iner)) I
ADDRLST= (I aJ~~ess I [. iner))

NUMBLST~ (I (r) I
, address [.iner)) ,

I DATALST= (I (r) I ' address [,iner)) 1

[! . DCVTR= r lJ
. ,DCVTLOC= {ad~~e s s }

The parameters NUMBER=, NAME=, NAMELST=, ADDRLST=, and NUMBLST are
mutually e~clusive; only one may be specified.

NAME=
Is an a-character name of a single array into which data is to be
moved.

NUMBER=
Is an array number of a singl~'array into which data is to be moved.

DATA=
Is used with NAME= or NUMBER= operand. The address from which data
is to be moved into the specified array.

NAMELST=
Is the address of a list of a-character array names for which data is
to be moved. Incr is the value by which this address is to be
incremented to locate the next name. If not specified, a value of a
is assumed. The list must be terminated by a byte containing X' FF'
in the position that would be occupied by the first byte of the next
name.

ADDRLST=
Is the address of a list of data base array addresses as returned from
a previous execution of the GETARRAY macro with NAME, NAMELST NUMBER,
or NUKBLST specified and TYPE=ADDR. Incr is the value by which this
address is to be incremented to locate the next array address. If
iDcr is not specified, a value of 8 is assumed. 1'f specified, must

APPLICATION SERVICES 2-245

be no less than 8. The list must be terminated by four bytes
containing X'FFFFPFFP' in the position that would be occupied by the
address of the next array. If the GETARRAY macro, TYPE=ADDR, and
NAMELST or NUMBLST is used to build the list, it viII place this flag
at the end of the list.

NUMBLST=
Is the NUKBLST parameter that specifies the address of a list of 2-byte
fields containing array numbers for which data is to be written. Incr
is the value by which this address is to be incremented to locate the
next number. If incr is omitted, a value of 2 is assumed. A value
less than 2 must not be specified for incr. The list must be
terminated by a byte containing X'PF' in the first byte of t~e 2-byte
field which would be occupied by the next array number.

EXAMPLE: Number List

0r---_---,

H'I'
21--_----1

H'255'
41--_----1

6
H'139'

X'FF' I

DATALST=
Is the address of a list of addresses into which the data from the
specified array(s) is to be moved. The list must contain an entry
for each array for which data is to be ~oved. This entry will contain
a fullvord address which identifies the memory address from which the
first byte of the array data is to be moved. Incr is the value by
which the address of the list is to be incremented to pick up the
memory address to which the next array is to be moved. If incr is
not coded, a value of 4 is assumed. If specified, must not be less
than 4.

DCYTR=r
Where Ir' is the general purpose register (2-12) that contains the
address of the XCVT.

DCVTLOC= (r)
Where 'r' is the general purpose register (2-12) enclosed in
parentheses that has the address of a 4-byte location that
contains the address of the XCVT.

DCYTLOC=address
Where 'address' is the label of a 4-byte location that contains
the address of the XCfT.

After execution of tke PUTARRAY request, the return code in register
15 is set to zero to indicate successful completion or to four to
indicate that the request could not be satisfied. This may be because
of one or more of the following reasons:

• One or more of the named arrays is not defined to the system.

• A numbered array was requested which is higher than the highest
nu.bered array defined to the system.

• A TYPE=DATA request vas made for a direct access resident array_

2-246 Description and operation "anual

PUTBLQCK

The PUTBLOCK macro will retrieve the data from user-allocated storage
and place that data into blocked arrays. The macro may be used to
write one or more blocks of data into one or more arrays. The arrays
may be either virtual storage or direct access resident.

[symbol] PUT BLOCK NAME= {name}
(r)

) NUMBER= {nUmber}
(r) t

) NAMELST= {address} I
(r)

NUMBLST= { address
(r) }

,DATALST= { address
(r) }

[,DCVTR= r

1 ,DCVTLOC= {address}
(r)

The parameters NAME. NUMBER, NAMELST and NUMBLST are mutually exclusive.
The macro will not expand if more than one of these parameters is
specified or if all of these parameters are omitted.

D(,VTR=
Specifies a register (2-12) which contains the address of the XC~T.

DCVTLOC=
Specifies the address or a register (2-12) enclosed in parentheses
which contains the address of a location which contains the
address of the XCVT.

NAME=
Specifies the name or a register containing the address of the name
of a nam~d array into which data is to be written.

NUMBER=
Specifies the number or a register containing the number assigned to
a numbered array into which data is to be written.

NAMELST=
Specifies the address or a register (2-12) which contains the address
of a user-constructed list of array names into which data blocks are
to be written. The name list will be a table of 8-byte entries with
one valid array name in each entry. The first byte past the last
valid entry will be set to X'FF' to indicate the end of the name list.

APPLICATION SERVICES 2-247

EXAMPLE: Name List

0

ARRAYNAM
8

HOUSTONb
16

TEXASbbb
24

X'FF' I

NUI1BLST=

o

2

4

6

Specifies the address or a register (2-12) which contains the address
of a user-constructed list of array numbers into which data blocks
are to be written. The number list will be a table of halfword entries
with one valid array number in each entry. The first byte past the
last valid entry viII be set to X'FF' to indicate the end of the number
list.

H'I'

H'255'

H'139'

X'FF' I

DATALST=
Specifies the ~ddress or a register (not register 1) which contains
the address of a user-constructed list of block numbers and of
address from which the data blocks are to be moved. The data list
viII be a table of 6-byte entries. Each entry will contain a 1-byte
flag field, a 3-byte area address and a 2-byte block number.

DATA LIST ENTRY DESCRIPTION:

o 2 4
r-----~-------------------r--------~

FLAG
BYTE

FLAG BYTE

AREA ADDRESS BLOCK
NUMBER

X' 40' In dica tes the last entry to be processed f or a
particular entry in the name list or number list.

X'80' Indicates the last entry in the data list.

AREA ADDRESS The address of a user-allocated area of storage from
which the data block is to be moved. The area must
contain the entry data block to be placed in the
block.

2-248 Description and Operation Manual

BLOCK NUKBER The number assigned to the data block to be retrieved
and placed in the array described in the Name List
or Number List 4

EXAMPLE: Data List and Name List

N .arne 1st Data List

FIRSTbbb A(Area) H'I'

1
SECONDbb A(Area) H'S' Blocks in first

array
THIRDbbt> X'40' A(Area) H'1O'

X'FF' I X'40' A(Area) H'3' - Blocks in second array

A(Area) H'2SS'

A(Area) H'I'

A(Area) H'2'

A(Area) H'37'
Blocks in third array

A(Area) H'186'

X'SO' A(Area) H'249'

Note: A zero returned in register 15 indicates successful completion.
A non-zero returned in register 15 indicates that one or more
errors were encountered during processing of this PUTBLOCK
request. The high~order byte in register 15 contains a count
of the number of errors en co un tered and the low-order three
bytes contain the address of the first invalid array name or
number.

APPLICATION SERVICES 2-249

PUTITEM

The PUTITEM macro is used to store data into one or more items of the
data base. If another user of the data base is executing a data base
access macro with PROTECT=YES, the operation of the PUTITEM macro will
be delayed until all other users of the data base which have specified
PROTECT=YES complete. This macro is not valid for use with direct
access resident arrays. Where incr is specified, it may be any value
from 1 to 255.

[symbol) PUTITEM I NAME= name J

) NAMELST= ({ (r) } [, incr])
) address

) I ADDRLST= ({a~~~ess} [, incr])

[{ ,DCVTR= r
,DCVTLOC= {a~~!ess}l]

[,BLKNO= {nuler}]
,DATA=- ({a~~~ess} [, incr)

The parameters NAME=, NAMELST=, and ADDRLST are mctually exclusive;
only one may be specified.

NAME=
Is an 8-character name of a single item for which data is to be stored.

NAMELST=
Is the address of a list of 8-character ITEM names for which data is
to be moved. Incr is the value by which this address is to be
incremented to locate the next name. If not specified, a value of 8
is assumed. If specified, the value must not be less than 8. The
end of the list must be indicated by a byte containing X'FF' in the
position that would be occupied by the first byte of the next name.

If the items are contained in blocked arrays, the block number for
which data is to be retrieved must be specified in the halfword
immediately following the 8-byte name. Also, the BLKNO=parameter
should be specified and the incr must be coded as at least 10.

ADDRLST=
Is the address of a list of data base item addresses as returned from
a previous execution of the GETITEM macro with NAME= qr NAMELIST=
specified and TYPE=ADDR. Incr is the value by which this address is
to be incremented to locate tbe next item add~ess. If incr is not
specified, a value of 4 is assumed. The end of the list must be
indicated by a 4-byte field containing X'FFFFFFFF' in the position
that would be occupied by the next address. If the GETITE'M macro with
NAl'IELST option is used to build thi~ list, it will. place t.hat value
at the end of the list.

2-250 Description and Operation Manual

DATA=
Is the address from which the first 'data is to be moved. Data ~ill
be moved to the first ITEK specified, according to the length d~fined
for that ITEM in the data base. Incr is the value by which the data
address is to be incremented to determine the address to pick up the
next data. If incr is not coded, the length of the item's .is use'd.

BLKNO= _!L __
number

If U is specified or if the parameter is omitted, the array is
unblocked. A number is used to specify that the data is to be
retrieved from a blocked array(s). If NAME= was specified, number is
the block number from which data is to be retrieved. If NAMELST= is
specified, any number from 1 to 32161 may be coded to indicate that
the block numbers are coded as part of the NAMELIST=.

DCVTR=r
Where Ira is the general purpose register (2-12) that contains the
address of the leVT.

DCVTLOC=r
Where 'r' is the general purpose register (2-12) enclosed in
parentheses that has the address of a 4-byte location that
contains the address of the XCVT.

DCVTLOe=address
Where 'address' is the label of a 4-byte location that contains
the address of the ICVT.

When control is returned, register 15 contains one of the following
return codes:

Decimal
£od~ __

o

4

8

12

16

Successful execution.

One or more of the item names specified could not be
resolved or data was requested to be moved for the item
with defined length of 0 bytes.

Invalid options were passed to the PUTITEM routine
" (probabl'y the .acro expansion had been modified).

A block number was specified for an unblocked array or
a block number was specified that is greater than the
highest block number defined for the array.

PUTITEM request for an item that is contained in a direct
access array.

APPLICATION SERVICES 2-251

PUTLOG

The PUTLOG macro logs data base arrays on demand.

[symbol] PUT LOG NAME= l (~e!
I NUMBER= In(~erl I

J NAMELST= I a~~)ess II
NUMBLST= I a~~)ess f

...
, LOGHDR= I a~~)es s I .

~ 'BLKLIST=~ a~~)eSS['incrl}) .

[, PROTECT= I ~i~K I]
[,DCVTR= r

,DCVTLOC= I address I]
(r) J

The parameters NAKE, NUMBER, NAMELST, AND NU~BLST are mutually
exclusive. The macro will not expand if more than one of these
parameters is specified or if all of these parameters are omitted.

DCVTR=
Specifies a register (2-12) which contains the address of the XCVT.

DCVTLOC=
Specifies the address or a register (2-12) enclosed in parentheses
which contains the address of a memory core location which contains
the address of the XeVT.

NAME=
Specifies the name or a register (2-12) which contains the address of
a name of a named array from which data is to be logged.

NUMBER=
Specifies the number or a register (2-12) containing the number
assigned to a numbered array from which data is to be logged.

NAMELST=
Specifies the address or a register (2-12) which contains the address
of a user-constructed list of array names from which data is to be
logged. The name list will be a table of 8-byte entries with one
valid array name in each entry. The first byte past the last valid
entry will be set to X'FF' to indicate the end of the name list.

2-252 Description and Operation Manual

EXA~PLE: Name List

0

ARRAYNAM
8

HOUSTONh
16

TEXASht;t;
24

X'PF'j

NUPlBLST=
Specifies the address or a reqister (2-12) which contains the address
of a user-constructed list of array numbers from vhich data is to be
logged. The number list viII be a table of halfword entries with one
valid array number in each entry. The first byte past the last valid
entry viII be set to X'Fr' to indicate the end of the number list.

EXAMPLE: Number List

o
H'I'

2

H'2SS'
4

H'139'
6

X'PP' I

LOG3DR=
Specifies an address or a register containing the address of any array
logging header. Information in this logging header viII identify the
copy of the array which is to be replaced in the log data set. The
LOGHDR parameter cannot be speci fied if the BLKLIST parameter is
specified.

The logging header is a 24-byte control block which precedes the array,
both as the array exists in virtual storage and as it is written to
the logging array. The logging header wbich was retrieved·as part of
a previous GETLOG macro may be used to replace that copy in the log
data set.

BLKLIST=
Specifies the address or a register (2-12) which contains the address
of a user-constructed list of block numbers and of core addresses from
which data blocks are to be moved,. The data list .,ill be a table of
6-byte entries. Each entry will contain a l-byte flag field, a 3-byte
area address, and a 2-byte block number. This will allow the user to
update selected segments of the DA log array for block VS resident
arrays on demand basis. The latest log copy will be modified.
However, the entire VS resident block is not necessarily logged; only
the log block which contains the VS resident block specified viII be
updated. The actual log copy will not change when using this
parameter; that is, repeated PUT LOG macro calls with BLKLIST parameters
will update the same log copy.

BLKLIST ENTRY DESCRIPTION:
o 2 3 4 S
~----~-------------------r--------~

FLAG
BYTE

AREA ADDRESS BLOCK
NUMBER

APPLICATION SERVICES 2-253

FLAG BYTE

X'40'

X'80'

AREA ADDRESS

BLOCK NUMBER

Indicates the last entry to be processed for a
particular entry in the name list or number list.

Indicates the last entry in the data list.

Not applicable for PUTLOG. The area is allocated
so that list forms of PUTLOG and PUTBLOCK are the
same.

The number assigned to the data block to be retrieved
and placed in the array described in the name list
or number list.

EXAMPLE: BLKLIST and Name List

Name List Data List
FIRSTbbb A(Area)

SECONDbb A(Area)

THIRDbbb X~40' A(Area)

X'FF' j X'40' A(Area)

A(Area)

A(Area)

A(Area)

A(Area)

A(Area)

X'80' A(Area)

PROTECT=

H'I'

H'5'

H'10'

H'3'

H'255'

H'I'

H'2'

H'37'

H'186'

H'249'

I
r-

Blocks in first
array

Blocks in second array

Blocks in third array

If YES is specified, a lock will be set to prevent other programs that
specify PROTECT=YES from accessing the data base while this PUTLOG is
in the process of modifying the data base. If RISK is specified, the
data will be moved without regard to other programs which may be
accessing the data base.

Note: A zero returned in register 15 indicates successful completion.
A non-zero return~d in register 15 indicates that one or more
errors were encount~red during processing of this PUTLOG request.
The high-order byte of register 15 contains a count of the number
of errors encountered and the low-order three bytes contain the
address of the first invalid array name or number.

2-254 Description and Operation Manual

RECORD

The RECORD macro is used to write data from programs in execution to
a sequential data set. The data in the data set can then be retrieved
at a later time through the playback function.

[symbol] RECORD ID= { (r) }
number , ADDR= {a~~~ess},COUNT= { (r) J

nurnbe

[,DCVTR= r

] {(r) } , DCVTLOC= address

ID=
Is a unique 3-digit hex number (001-FFF) which identifies the data
that is to be recorded (vritte~ to a sequential data set. If (r) is
specified, the register must contain the 3-digit hex number.

ADDR=
Is the address of the data that is to be recorded. If (r) is
specified, the register must contain the address of the data to be
recorded.

COUNT=
Is the number of bytes that is contained in the data. The maximum
size is 65525 bytes. If (r) is coded, the specified register must
contain the number of bytes to be recorded.

DCVTR=r
Where 'r' is the general purpose register (2-12) that contains the
address of the XCVT.

DCVTLOC= (r)
where 'r' is the general purpose register (2-12) enclosed in
parentheses that has the address of a 4-byte location that
contains the address of the XCVT.

DCVTLOC=address
Where 'address' is the label of a 4-byte location that contains
the address of the XCVT.

Code Description

00 Normal Completion
04 ID is Disabled
12 End of data set reached

or ~O error on output
of ata record. All data
recording is disabled for
this job step.

RETURN CODES. RECORD macro viII issue return codes via register 15.

APPLICATION SERVICES 2-255

REPATCH

When a PATCH forces a WQE to fallout of the queue (QPOS=FIRST is
specified and the queue vas full) , a Repatch List (REPL) viIi be
constructed if the failing PATCH had REPATCH option specified. The
user's ECB will be posted vith a completion code of X'44' in the
high-order byte and the address of the Repatch List in the three
low-order bytes.

Note: The three low-order bytes represent a REPt address only if the
REPATCH option was specified and the completion code (high-order
by t e) is X' 4 4 ' •

If the REPATCH option was specified, and the ECB is posted
vith X'44', a REPATCH macro must be executed, so that the
Repatch List built from Special Real Time Operating System
Control Block storage can be freed.

[symbol] REPATCH REPL= l (r) I TYPE= I EXEC I address ' PURGE

[, PATCH operand. . .]

[,DCVTR= r 1
,DCVTLOC= laJ~~essl

REPt= (r)
Where 'r' is the general purpose register (2-12) that contains the
address of the REPt.

REPL=address
Where 'address' is the label of a 4-byte storage location that contains
the address of the REPL, e.g., the label of the ECB that vas posted
with the address of the REPt.

TYPE=
Specifies whether the PATCH is to be retried (EXEC) or deleted (PURGE).
Only one REPATCH is permitted for every original PATCH. If TYPE=EXEC
is specified and the WQE is pushed out again, no REPL will be built.
A 1YPE=PURGE causes the FREE=, if specified in the original PATCH, to
be issued and the Repatch List to be freed.

2-256 Description and Operation Manual

PATCH operands

If any PATCH operands are specified with a REPATCH TYPE=EXEC, the
REPATCH macro will internally invoke the PATCH macro and the code will
be generated that modifies the REPL. Since the REPL supplied by the
Special Real Time Operating System is in protected storage prior to
issuing a REPATCH macro with PATCH operands, the user must obtain
storage (length=REPLLNTH) and copy the supplied REPL (for that same
length) into his ovn storage. Since one of tke words in the Special
Real Time Operating system supplied REPL contains its own address, the
user's REPL vill also have this address so that the REPATCH SVC routine
can free its storage. Several restrictions for PATCH operands follow:

• SUPL, PROSL, ID, and PARA" must not be specified.

• If PiTY or PRTYLOC is specified, both subvalues (name, priority)
must be specified.

• REPATCH option must not be specified .•

• Care must be taken in modifying FREE=operands since the original
FREE request has not been processed.

specifying PATCH operands with a REPATCH TYPE=PURGE will not generate
instructions to modify the Repatch List and will therefore have no
effect on the execution of the REPATCH SVC routine.

DCVTR=r
Where 'r' is the general purpose register (2-12) that Gontains the
adaress of the ICVT.

DCYTLOC= (r)
Where Ir' is the general purpose register (2-12) enclosed in
parentheses having the address of a 4-byte location that contains
the address of the XCVT.

DCYTLOC=address
Where 'address' is the label of a 4-byte location that contains
the address of the XCYT.

Note: The REPt DSECT can be obtained by the macro DPPXBLKS REPt=Y.

REPATCH RETURN CODES:
The REPATCH SVC routine returns a return code of 32 if an invalid TYPE
or REPL address vas specified. If the TYPE and REPL addresses are
valid, the REPITCH SiC routine internally invokes the PATCH SVC routine
and the return codes received upon return from PATCH are passed back
to the user upon return from REPATCH.

APPLICATION SERVICES 2-257

Three distinct phases must be considered prior to building a Special
Real Time Operating System: pre-SYSGEN, SYSGEN, and system
initialization. In addition, there are certain considerations prior
to generating the host OS/VS1 system. These considerations and the
building and running of the Special Real Time operating system are
discussed in the following sections.

The pre-SYSGEN phase of building the Special Real Time Operating System
consists of performing such functions as copying libraries, creating
SYSGEN input, and allocating data sets, i.e., the normal preparatory
work that must be done for any SYSGEN.

The SYSGEN is the procedure by which the customer creates a Special
Real Time operating system tailored to his individual software
requirements and hardware installation. SYSGEN comprises a series of
OS/VS1 job steps for normal functions such as assemblies, link-edits,
and copies.

system initialization is the process through which the Special Real
Time operating System is brought into virtual storage and initialized
for a realtime run. When initialization is completed, the Special Real
Time operating System is operating.

In addition to building and running the Special Real Time Operating
System, modifications may be made, to the data base for example, in an
offline mode. To allow minor modifications without the necessity of
a SYSGEN, an offline utility program is supplied with the Special Real
Time Operating system. The use of this program is described in this
section, as its primary function is the creation and modification of
the customer's data sets.

The installation of the Special Real Time Operating System in an OS/VS1
system does not require any modifications to the VS system. However,
certain OS/VS1 facilities must be provided to the Special Real Time
Operating system through the OS/VS1 SYSGEN, and careful consideration
should be given to other OS/VS1 SYSGEN options,. In addition, the
requirements of related PRPQs being installed along with the Special
Real Time Operating System must be considered.

The Special Real Time operating System requires three user-generated
SVCs: a Type I, a Type II, and a Type IV. The SVC numbers may be any
of the allowable OS/VS1 user SVCs. The SVCs should be generated
disabled. An example of the generation of the Special Real Time
Operating System SVCs during the OS/VS1 SYSGEN is shown belove

SPECSVCS SVCT ABLE SV C-25 5- D1-S 0,
SVC-254-D2-S6,
SV C- 253- 04 -S6

*
*

OS/VS1 has reserved the names IEAXYZ1 through IEAXYZ5 for CSECTs that
must reside in the V=R nucleus. If the installation requires that the
Special Real Time Operating System be SYSGENed with the Computer Status
Panel or an externa~ time source, a CSECT named IEAXYZ5 will be

INSTALLATION GUIDE 3-1

generated. This precludes the use of this CSECT name by other programs
that would reside in the nucleus.

Careful consideration should be given to multiple console support
routing codes in the OS/VS1 SYSGEN, as they will affect the Special
Real Time Operating System. (See MCS operand. on VS SYSGEN macro.)

The allocation for the SYS1.MACLIB data set should be made for
BLKSIZE=6080, if possible, to allow for conformity with the Special
Real Time Operating System source data sets A5799AHE.SOURCE and
A5799AHE.MSGFILE. If this size is not possible or practical, the
Special Real Time Operating System data sets A5799AHE.SOURCE and
A5799AHE.MSGFILE must be reblocked to the blocK size of the customer's
SYS1.MACLIB data set. Also, the data sets named by the MACDSET=keyw~rd
and the ARRDSET=keyword must be allocated with the same block size as
the SYS1.MACLIB data set.

certain preparations must be made prior to the Special Real Time
operating System SYSGEN. Data sets must be allocated, modules moved
or copied, and the Special Real Time Operating System distribution
tapes must be restored to a direct access device.

The Special Real Time Operating System SYSGEN reiuires (as input) the
OS/VS1 Stage 2 input stream in a sequential data set. This input must
be saved when executing the OS/VS1 SYSGEN for this purpose.

The data sets required for the Special Real Time Operating System SYSGEN
fall in to three categories, as shown in Figure 3-1.

INPUT ----.:
I
I
I
I
I
I
I
I
I
I
I

r----
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Distribution

(Supplied)

Data Sets

Definition

Customer
Allocated
(Definition)

Data Sets
L ____________________ _

I

'"

SYSGEN
Procedure

*;. __ OUTPUT
I
I
I
I
I
I
I
I
I
I
I

TarJ!;et

Customer
Allocated

Data Sets

Figure 3-1. The Special Real Time Operating System SYSGEN Data Sets

The Special Real Time Operating System distribution data sets that are
required are distributed to the customer on the tape sent from the IBM
program library. The three distribution data sets are:

A5799AHE. SOURCE

A 57 99AH E. OB JECT

A 5799 AH E. M S GF IL E

The definition data sets are optional and are not required for a Special
Real Time operating System only, or for a Special Real Time Operating

3-2 Description and Operation Manual

System and Display Management SYSGEN. However, if they are used, the
customer must allocate thea. The four definition data sets are
configuration, software options, display, and data base. They will be
named and allocated by the customer and each must be a partitioned data
set.

The configuration and the software options data sets are required as
input to Stage I of SYSGEN, only if the customer chooses to invoke the
SYSGEN utility program DOMXSTG1 to do the SYSGEN. The alternative to
invoking DOMISTG1 is to code the Special Real Time Operating system
SYSGEN macros in card image and to pass the cards to the 05/'51
assembler, as is done for an OS/VS1 SYSGEN.

If DOMXSTG1 is invoked, however, the configuration definition and
software options data sets must be created prior to Stage I. The The
data sets must be partitioned card image and must contain the following:

• Configuration Data Definitions -- Each member must represent one
System/7 or System/370 in the hardware configuration. All
configuration data for each system of a computer hierarchy must be
in this one data set. Each member name must be of the form S7xx
or S370xx, where xx is the CPU identifier of that particular system.
Macro statements in this data set must be those from the section:
"Configuration customer Definition Data Set Macros" •

• Software Options Definition -- Each member must represent one
System/7 or one System/370 in the configuration. All software
options data for either system of a CPU hierarchy must be in this
one data set. Each . II ember name must be of the form s310xx or S1xx,
where xx is the identifier of that. particular system. Macros in
this data set must be those from the section: "Software customer
Definition Data Set Macros".

The display and data base data sets are optional. When these data sets
are used, they provide additional input to the offline utility program
when it is invoked during Stage II of the Special Real Time Operating
System SYSGEN. Their presence, which signifies additional processing
in stage II, is indicated by pointing to the data sets by the DIS~SET
and DBDSET keywords on the GENEMS macro. When used, the data sets must
be partitioned card image, with a BLKSIZE equal to the customer's
SYS1.MACLIB data set and must contain the following:

Data Base Definition -- Each member must contain at least one data
base array definition that the customer desires to be placed in the
final system by the SYSGEN process. All data base definitions for
all system/310s and System/7s may be placed either in one data set or
in separate data sets.

The output is placed in the target data sets by the SYSGEN procedures.
SYSGEN is informed of these data sets through the GENEMS macro, as
described in the SYSGEN macros section of this manual.

A number of OS/VS1 macros are required by the Special Real Time
Operating System. These macros exist on the OS/VS1 distribution library
SYS1.AMODGEN. Prior to the Special Real Time operating system SYSGEN,
the required macros must be moved from SYS1.AMODGEN to SYS1.KACLIB.
Belo~ is an example of the JCL needed to move the required macros. The
members named in the SELECT statements are the equivalent of a list of
members that must be in 5151. If the member is already in SYS1.MACLIB,
it will not be copied.

INSTALLATION GUIDE 3-3

IICOPY JOB !£COYlfT c PROGB!MM],R
II EXEC PG!=IEBCOPY
II DD SYSOUT=A
'/DDIN DD DSN=SYS1.AMODGEN,UNIT=~11!,
II VOL=SER=~~~l,DISP=SHR
I/DDOUT DD DSN=SYS1.KACLIB,DISP=OLD
IISYSIN DD *

COpy OOTDD=DDOOT,INDD=«DDIN,R)
SELECT KEMBER=(IEFTIOT1,IHBPSINR,IKJTCB,IHAFLC)
SELECT MEMBER= (IEFUCBOB,IEFJFCBN, IHAPDDT,IHARB)
SELECT KEKBER=(IEZDEB,IEZXRB,IHBRELNO,CVT,SYNCH)

The data shown underlined in the previous example will need to be
changed to suit each customer's requirements.

The Special Real Time Operating System modules are distributed on tape
from the program library; however, prior to the Special Real Time
Operating System SYSGEN, the distributed data sets must be restored to
a direct access device. A job stream is provided as a first file on
the distribution tape that will move the libraries. To execute this
job stream, the user must first place in his SYS1.PROCLIB a PROC named
PPDSDEF. This procedure is the first job step encountered in the job
stream in the distribution package. The only function of this PROC is
to make DD statements available to succeeding job steps.

The following statements are requ~red in this procedure:

IISTEPABC
IIDOMVOL
II

EXEC
DD

PGM=IEPBR14
UNIT=SYSDA,DISP=OLD,
VOL=SER=PA,£KQ!

The step name must be STEPABC; the DD card must be named DOMVOL and
must have the volume serial number of the pack to which the Special
Real Time Operating System modules are to be moved.

After executing the described procedure as the first job step,
subsequent job steps in the same job stream can determine the target
pack for the Special Real Time Operating System modules by making a
reference of the form:

VOL=REF=*.A.STEPABC.DOKVOL

The following is an example of the JCL and control cards required to
add procedure PPDSDEF to the SYS1.PROCLIB.

IIADDPROC
II
IISYSUT2
IISYSPRINT
IISYSIN
.1 ADD
.1 NUKBER
IISTEPABC
liD OM VOL
·1
1*

JOB
EXEC
DD
DD
DD

EXEC
DD
ENDUP

AC £2ll!L.,!gBQ§B!119C
PGK=IEBOPDTE,PARM=' NEW'
DSN=SYS1.PROCLIB,DISP=OLD
SYSOUT=A
DATA
NAKE=PPDSDEF,LIST=ALL
NEW1=Q.Q,INCR=lQ
PGM=IEFBR14
UNIT=SYSDA,DISP=OLD,VOL=SER=f!CKQ1

The data shown underlined in the preceding example will need to be
changed to the customer' s installation requiremen ts.

3-4 Description and Operation Kanual

with the member PPDSDEF in the SYS1.PROCLIB, the Special Real Time
Operating System modules may be restored by entering the following
start command on the OS/VS1 console.

START RDRT, 181, LA BEL= (1, NL)

Note: 181 should be replaced by the I/O device address where the
distribution tape is mounted.

If related PRPQs or program products are being SYSGENed along with
Special Real Time operating System, the Special Real Time Operating
System libraries should be restored first. If the Display Management

PRPQ 5199-AFD is also being SYSGENed, it should be done next, followed
by the restoration of other related products' tapes.

If supplementary material has been ordered by the customer, the tape
containing this material can be restored to disk by executing the same
start comma nd.

The optional material is added to the existing distribution data sets.
The basic material must be restored to disk before the optional
material. When the optional material is restored, the disk data sets
are already defined and cataloged. consequently, the PRDe PPDSDEF is
not needed.

INSTALLATION GUIDE 3-5

THE SPECIAL REAL TIME OPERATING SYSTEM DATA SET ALLOCATION

The user must, prior to Stage II of SYSGEN, allocate target data sets.
The following example gives the recommended space allocation reg,l1ired
for the Special Real Time operating System SYSGEN:

OBJDSET
LMDSET
MACDSET
ARRDSET
OB1 DSET
OB2,DSET
DB~DSET
PLIDSET
PLSDSET
FORDSET

SP ACE= (CIL, (1, 1,50))
SPA C E= (C IL, (1 , 1 , 50))
SPACE= (CIL, (1,1,50»
SPA C E= (C I L, (1, 1, 50))
SPACE= (CIL, (2, ,50))
SPACE= (CIL, (2»
SPACE= (CYL, (2, ,50))
SPA C E= (C I L, (1 , 1 , 50))
SPACE= (CIL, (1, 1,50))
SP ACE= (elL, (1, 1,50))

These figures can be used in conjunction with the chart in the
description of the GENEMS macro to allocate the Special Real Time
Opera.ting System target data sets. The above space is for a 3330 direct
access storage device and is for a Special Real Time Operating System
only SYSGEN. The DB10SET, DB20SET, and DB4DSET data sets may have to
have larger space allocation depending on the user's data base and
messages. If these data sets are not going to be supported by duplicate
data set support, secondary allocation may be requested.

FAILOVER/RESTART STORAGE REQUIREMENTS

Failover/Restart write requires an amount of virtual address space
determined by the following formula. In addition, the entire area is
page fixed during Restart Write.

Address space required = 12,288 + (k*2048)

where k = (T l + 8 + 2047)/2048
and from the above calculation for k,
k is the. in teger and any fractions
are ignored.

where Tl = Maximum blocksize of the device upon which
the Failover/Restart data set is allocated
(13030 for a 3330, 7294 for a 2314, etc.)

Example
for a 3330, k would.he
k =. (13030 + 8 + 2047)/2048

'k = 7 ignoring the fraction;

therefore, the address space required
= 1 2 , 288 + (7 * 2 048)
= 26,624 bytes.

The entire address space used is released when Restart Write is
completed.

The amount of direct access space required for the Failover/Restart
data set can be compu ted as follows:

Number of tracks required = 1 + A + B + C + 0 + E

where: A

3-6

= Space required for the real storage portion of the
data set

Description and Operation Manual

B = Space required for duplicating the active paCJ.j,.a9
data set entries.

C = Space required for the SYS1.SYSJOBQE dump

D = Space required for the SWADS dump for the MAST ER
partition

E = Space required for the SWADS dump for the SLAVE
partition.

In the following formulas the following terms and functions apply.

TL = Maximum blocksize of the Failover/Restart set

Np = Number of active paging entries on the SYS1.PAGE
data set

Dp = Number of devices containing SYS1.PAGE data sets

R = Real storage size

TRUNC = A function that takes the integer portion of a
quantity only and discards the fraction

NUQ1 = Number of 24-b yte records in SYS1.SYSJOBQE

NUQ2 = Number

N 51 = Numb'er

N52 = Number

A TRUNC(R/2048) + 4
'" TRUNe {T

L
!2048

of

of

of

176-byte records

records in SiADS

records in SiADS

(
NU01) (NU02)

C = TRUNC TRUNC{T
L

/32) + TRUNC TRUNC(T
L

/184 + 2

o = 0 if SWA is used in MASTER partition; or

(
NS1) o = TRUNC TRUNC(T

L
/184) + 1

E s 0 if no SLAVE partition or SWA is used in SLAVE; or

(NS2 \
E - TRUNC \TRUNC(TL/ 184)j + 1

in SYS1.SYSJOBQE

for the MASTER partition

for the SLAVE partition

Estimation of quantity NIP requires consideration of the size of the
link pack area, BLDL list, JES options, numbers of partitions, and size
and current allocation of active partitions.

INSTALLATION GUIDE 3-1

THE SPECIAL REAL TIME OPERATING SYSTEM SYSGEN

System generation (SYSGEN) is the procedure whereby the Special Real
Time Operating System and associa ted PRPQs are combined to create a
realtime system tailored to the needs of an individual user. The
Special Real Time operating system SYSGEN is analogous to the OS/VS1
SYSGEN procedure used to create an operational OS/VS1 system. The
Special Real Time operating System SYSGEN is normally performed only
when major changes to the system occur. Data of a more changeable
nature is entered into the system through the offline utility.

The Special Real Time Operating system SYSGEN process is patterned
after the OS/VS1 SYSGEN procedure. It is comprised of two phases,
Stage I and Stage II. stage I creates the job stream input for Stage
II. stage I can be executed either by using the Special Real Time
operating System utility DOMXSTG1, or by directly invoking the OS/VS1
assembler or the assembler H program product (5734-151) to assemble
the stage I input cards.

The direct implementation of the assembler method can be used if the
Special Real Time Operating System only is being SYSGENed, or if the
Special Real Time Operating System and the Display Management PRPQ
(5799-AFD) are being SYSGENed. For the Special Real Time Operating
System only, the required SYSGEN macros are coded and passed to the
assembler. For the Special Real Time Operating system and the Display
Management PRPQ, the macros are also passed to the assembler; however,
care must be taken to ensure that the SYSGEN macros are properly
sequenced for the member. (CONFIGH, DEFDEV, and GENEMS is the correct
order.)

If other related PRPQ or program products are being SYSGENed, the
utility program DOMXSTG1 should be used.

If the customer has coded his SYSGEN macros and configuration macros
and placed them in configuration and software option definition data
sets, DOMXSTG1 may be used. This is shown in Figure 3-2.

Configuration Software
Data Set Options

Stage 1 Data Sets
Input

I I
Macros

OR

1
DOMXSTGI Assember ,

r SIage2
Job Stream

Figure 3-2. The Special Real Time operating System - SYSGEN - Stage I

3-8 Description and Operation Manual

The following statement is the Jct required to invoke the OOMXSTGl
utility.

IISTG1
II
IISTEPLIB
IISYSLIB
IISOFTOPT
IICONFG
IISYSPRINT
IISYSUTl
LL§.YS!!Il!
~ll.YIJ!
L.L.§.YSQQ!!
II
IISYSIN
II

JOB
EXEC
00
DO
00
DO
DO
DD
DD
DD
DD

DD

ACCOUHL._fROGRAMME!1
PGM=DOKXSTG1,PARM=~37~01'
DSN=A5799AHE.OBJECT,DISP=SHR
DSN=A5799AHE.SOURCE,DISP=SHR
DSN=(Q~~£iJ!TE~) ,DISP=SHR
DSN=(~~R-~EATE~) ,DISP=SHR
SYSOUT=A
UN IT= S YS llclf.!g=.{ CY hll
Y!l1~~~DA~f.!CE='{£!1Lil
UNIT=SYSDA.&.PACE::jCY1Lil
UN I T~!Q2L OJ S f.=1 ... f. AS aL~ ABEL ::1,L1HJ.L
DCB=11!!~CL::§'QLBLKSll~!!Q~R~~~!EFBl.
UNIT~YSDAclPACE.=1£!h1hl11
~B=BLKSllE='§Q80

*Not required for assembler H
**If assembler H is used, SYSGO should be SYSLIN.

The JOB card should contain proper accounting information and any other
data required in the customer's account. The PARM= field on the EXEC
card identifies the system to be built. If the assembler H program
product is to be used for the stage I SYSGEN, the PARM field would be
PARK='H,S37001'. The SOFTOPT and CONFG DO cards must define the
software options and configuration definition data sets respecti¥ely,
as these data sets are customer built. The SYSUT1, SYSUT2, and SYSUT3
DD cards may be coded to suit the customer's account. The The SYSGO
(or SYSLIN for assembler H) DO cards specify the output data set, and
if coded as shown in the previous example, stage II of the Special Real
Time Operating System SYSGEN can be started by starting an OS/VS1 reader
to the data set, e.g., START RDRT,180,LABEL=(1,NL). DOMXSTGl will
place the source code macros from the configuration and software options
data sets in the SYSIN data set and pass it as input to the assembler.

The output from the stage I is an OS/VS1 job stream which, when
executed, comprises the Stage II of SYSGEN. Stage II creates the
Special Real Time Operating system from the input data sets, and places
the components of the system in the target data sets pointed to by the
GENEMS macro. This is shown in Figure 3-3.

Di tribution

A5799AHE.SOURCE
A5799AHE.OBJECT

A5799AHE.MSGFlLEI ___ ~~_-L-_-,

Libraries

p-~i'li!i.9!l ___ ., SYSGEN
I I

: Displays :
: Data Base ~-----------
I I 1. __________ .J

Data Sets

S VS Libraries

SYSI/NUCLEUS
SYSl.SVCLlB

SYS 1. PARMLI B
SYS1.MACLIB

Tar et

User
Created

Data Sets

Figure 3-3. The Special Real Time Operating System
SYSGEN - Stage II

One of the final steps of Stage II invokes the offline utility program.
At this point the system-defined data base macros are processed,

INSTALLATION GUIDE 3-9

followed by the customer definition data base macros (DBDSET=). Then
the system messages and the system displays (if Display Management is
being generated) are processed. Following this, the cUstomer-defined
displays (DISDSET=) are processed by the offline utilit~

The data base data sets are either partitioned or direct
organization, and are built by the offline utility DPPXUTIL.
The records and members of these data sets contain references
to and have dependencies on other records and members. These
references and dependencies are constructed by DPPXUTIL,
and the data sets must not be modiifed except by DPPXUTIL.
concatenation of data base groups for realtime execution is
not allowed. The macros used for SYSGEN and the available
options are described in a following section.

SYSGEN RESTART PROCEDURES

The system generation process may come to an unsatisfactory completion
because of errors that occurred during Stage I or Stage II. This
section contains the information necessary to restart system generation.

The most common errors during Stage I and the restart procedures for
Stage I are discussed, as are the most common error causes during Stage
II, the restart techniques, and the reallocation of data sets.

The most common causes of error during stage I are keypunching errors
in the input deck and contradictory or invalid specifications in the
macro instructions. Keypunching errors are indicated by system
generation error messages or assembler error indications. Invalid
specifications are indicated with the system generation error messages
printed in the SYSPRINT data set. If any errors are found during Stage
I, the job stream is not produced.

Stage I consists of a single assembly of the system generation macro
instructions. It can be restarted only from the beginning. To restart
Stage I, the errors in the input deck or in the definition data sets
must be corrected and the job resubmitted.

The most common error causes during Stage II are:

• Machine interruptions and non-continuous machine time

• Faulty space allocation of the system data sets during the
preparation for system generation

• Errors in the input deck that cannot be detected during Stage I

• Procedural errors such as improper volume mounting

Stage II can be restarted at the beginning of any job step. If any
statements in the job stream are to be changed, the job stream must be
on cards. If no statements are to be changed, the IEBEDIT utility
program can be used to restart a job stream. A later section discusses
the techniques used for restarting the job stream after any other
necessary operations have been performed. The topiCS include restarting
from cards, punching the job stream, and restarting from tape or from
a direct access volume.

If the job stream is on cards, a job step can be restarted by placing
a JOB card ahead of the job step's EXEC card and entering the cards in
the card reader.

If the output from stage I was not a card punch, the IEBPTPCH utility
program can be used to punch the job stream. The following example

3-10 Description and Operation Manual

shows the statements required to punch the job stream using IEBPTPCIl ..
The fields shown underlined may require modification for different
installations.

IIPUNCH JOB
EXEC
00

II
IISYSUT1

PGM=IEBPTPCH
UNIT=l§l,LABEL=(,NL) ,VOLU"E=SER=EX1A§~,
OISP=OLD,DCB= (RECFM=F, BLKSIZE=80)
UNIT=1540-~

II
IISYSUT2
IISYSPRINT
IISYSIN

00
DO
DD

SYSOUT=A

* PUNCH TY PORG=PS

1*

When using the IEBPTPCH utility program to punch the job stream, the
following points should be considered.

• The value of the UNIT parameter of the SYSUT1 DD statement is the
specific unit address of the magnetic tape drive or direct-access
storage device on which the jab stream resides. Unless the job
stream tape or direct-access volume has been demllunted, the value
of this UNIT parameter is the same as the value of the UNIT
parameter of the SYSGO or SYSLIN DD statement in the input deck
for stage I. If the job stream is on a direct access volume, the
LABEL parameter must specify a standard label, and a DSNAME
parameter must be specified.

• The value of the VOLUME parameter of the SYSUT1 DD statement is
either an external serial number assigned to the job stream tape
reel, or the volume serial number of the tape or direct access
volume. The system viII issue a MOUNT command for the specified
volume on the magnetic tape or direct access storage device
indicated by the UNIT parameter.

• Sequence numbers can be specified for the punched cards by putting
the COSEQ or CDINCR parameters in the PUNCH control cards of the
IEBPTPCH input deck.

The IEBEDIT utility program can be used to restart stage II from any
job .step, after the first, ·when the job stream is on tape or a
direct-access volume. To restart form the first" job step, a START RDR
~om.and can be issued for the tape drive or direct-access storage device
that contains the job stream.

IEBEDIT creates a new job stream by editing and selectively copying
the job stream provided as input. The IEBEDIT utility program can copy
an entire set of jobs including JOB statements and associated job step
statements, or selected job steps in a job, as shovn below in the
control statements required by IEBEOIT when the job stream is on tape.

INSTALLATION GUIDE 3-11

IIRESTART
II
IISYSPRINT

JOB
EXEC
DD
DD

PGM=IEBEDIT
SYSOUT=A
UNIT=xxx,LABEL=(,NL) ,
VOLUME=SER =ser ia 1,

IISYSUT1
II

x
X
X
X

II
II

DISP= (OLD, KEEP) ,
DSN=data set name,

II
IISYSUT2 DD

DCB= (DCB i nforma tion)
UNIT=xxx,LABEL=(,N~ ,
VOLUME=SER=serial,

x
X
X
X

II
II
II
II

DISP= (,KEEP) ,
OSN=data set name,
DCB= (DCB i nforma tion)

IISYSIN DD *
EDIT

or EDIT
S'rART=SYSGENnn,STEPNAME=SGXx (, NOPRINT)
START=SYSGENnn,TYPE=INCLUDE,

or EDIT
STEPNAME= (SGxx (,SGxx) •••) (,NOPRINT)
START= SYSGENnn, TYPE=EXCLUDE,
STEPNAME=(SGxx (,SGxx) •••) (,NOPRINT)

1*

When using the IEBEOIT utility program to restart Stage II, the
following should be considered.

• The value of the UNIT parameter of the SYSUT1 DD statement is the
unit address of the magnetic tape drive or direct-access storage
device on which the job stream tape or direct-acess volume is
mounted. Unless the job stream has been demounted, the value of
the UNIT parameter is the same as the value of the UNIT parameter
of the SYSGO or SYSLIN DD statement in the stage I input deck. If
the job stream is on a direct-access volume, the LABEL parameter
must specify a standard label.

• The value of the VOLUKE parameter of the SYSUT1 DD statement is
either any serial number assigned to the job stream tape reel, or
the volume serial number of the tape or direct-access volume. The
system will issue a MOUNT command for the specified volume on the
magnetic tape drive or direct-access storage device indicated with
the UNIT parameter.

• The value of the UNIT parameter of the SYSUT2 DD statement is the
unit address of a magnetic tape drive or direct-access storage
device. If the job stream is on a direct-access volume, the LABEL
parameter must specify a standard label.

• One or more EDIT statements can be specified when executing IEBEDIT.
If the TYPE parameter is omitted, STEPNAME specifies the first job
step in the job specified by the START parameter to be placed in
the new job stream.

• If TYPE=INCLUDE or TYPE=EXCLUDE is specified, STEPNAKE specifies
the job steps to be included or excluded, respectively, from the
new job stream. Individual job steps and sequences of job steps
can be specified for inclusion or exclusion. For example:

START=SYSGEN4,TYPE=INCLUDE,STEPNAME=(SG3,SG6-SG9)

indicates that job steps 3, 6, 7, 8, and 9 of job 4 are to be
included in the restart of. sy stem generation.

• NOPRINT must be included if a listing of the new job stream is not
desired. After the new job stream is created, a START RDR command

3-12 Description and Operation Manual

must be issued for the magnetic tape drive or direct-access storage
device designated by the SYSUT2 DD statement.

An IEBEDIT input deck for restarting Stage II is shown below. In this
example, space allocation for SYS1.SVCLIB vas not sufficient, causing
the subsequent job steps to fail.

IIREST1RT
II
IISYSPRINT
IISYSUTl
II
II
IISYSUT2
II
II
II
IISYSIN

EDIT

1*

JOB
EXEC
DD
DD

DD

DD

PGM=IEBEDIT
SYSOUT=A
UNIT=2400,LABEL=(,NL,) ,DSN=STAGE,
VOL=SER=JOBSTK,DCB=(RECFM=F,
BLKSIZE=80,DEN=2) ,DISP=(OLD,KEEP)
UNIT=2400,DISP=(,KEEP) ,
VOL=SER=001234,DSN=OUTTAPE,
LABEL=(,NL),
DCB=(RECFM=F,BLKSIZE=80,DEN=2)

* START=S37001,TYPE=EXCLUDE,
STEPNAME=(SG1-SG24)

x
X

X
X
X

X

The following section gives guidelines for restarting Stage II.
Restarting may require the scratching and reallocation of space for
the system data sets. When this is necessary, the following guidelines
should be referenced for the procedure to be followed. After the
necessary corrections have been made, the actual restarting of stage
II can be accomplished by one 'of the methods described.

If the problem encountered is other than space allocation, e.g.,
component failures or machine malfunctions, the instructions printed
out in the error messages or error codes should be followed.

The method for reallocating space for a system data set depends on
whether the data set contains data that must be saved. If the data
set does not contain data that needs to be saved (for example, the data
set viII be re-copied completely when system generation is restarted) ,
the IEHPROGM utility program can be used to scratch and reallocate
space for the system data set. If the system data set contains data
that must be saved, the data will have to be copied into a temporary
data set, space for the original data set will have to be reallocated,
and the contents of the data set will be copied from the temporary data
set into the reallocation data set.

The input deck for scratching and reallocating space for system data
sets must contain the following statements in the order shown:

1. A JOB statement with any parameters required by the particular
installation

2. An EXEC statement with the PGM=IEHPROGM parameter

3. A SYSPRINT DD statement defining the system output unit

4. A 00 statement defining the unit address and serial number of
the generating system's system resident volume:

IISYSRES DO UNIT=unit,voLUKE=SER=serial,DISP=OLD

5. A DO statement defining any other permanent volume on which the
system data sets to be reallocated reside:

INSTALLATION GUIDE 3-13

I/OTHERVOL DD UNIT=unit,VOLUME=SER=serial,
DISP=OLD

x

6. A DD statement for each type of removable volume on which the
system data sets to be reallocated reside:

IIDDNAME DD UNIT=(unit"DEFER),
VOLUME=PRIVATE,DISP=OLD

1. A DD * statement (SYSIN)

x

8. A SCRATCH statement for each new system data set to be
reallocated. The SCRATCH statement must have the following
format:

SCRATCH DSNAME=dsname,VOL=device=serial,PURGE

9. A 1* statement

10. An EXEC statement with the PGM=IEHPROGM parameter

11. A DD statement defining the unit address and serial number of
the generating system's system residence volume (example shown
abov~

12. A DD statement for each permanent volume on which the system
data sets to be reallocated reside (example shown above)

13. A DD statement for each type of removable volume on which the
system data sets to be reallocated reside (example shown above)

14. A SYSPRINT DD statement defining the system output unit

15. A DD statement for each of the new system data sets to be
reallocated. This DD statement must be the same as the one used
in the input deck for the original allocation.

Ilddname
II
II
II
II

DD DSNAME=dsname,
VOLUME=(,RETAIN,SER=serial),
UNIT=unit,LABEL=EXPDT=99350,
SPACE=(allocation) ,DISP=(,KEEP),
DCB=(parameter~

16. A DD * statement (SYSIN)

17. A 1* statement

X
X
X
X

If the system data set to be reallocated contains data, one of two
procedures can be followed. If there is enough space on the volume
for a new space allocation, the following procedure may be used.

1. Rename the system data set.

2. Allocate space for the system data set (with its correct name)
on the same volume using the IEHPROGM utility program.

3. Copy the data in the renamed data set onto the newly allocated
system data set using the IEBCOPY utility program.

4. Scratch the renamed data set using the IEHPROGM utility program.

3-14 Description and Operation Manual

The following statement illustrates space reallocation for a data set
on the same volume. The system data set to be reallocated is
SYS1.PARMLIB. It was allocated space during the preparation for system
generation with the following IEHPROGM DD statement:

IIPARKLIB
II
II
II
II
II

DD DSNAME=SYS 1. PARML! B,
VOLUKE= (,R ET AI N, SER=SY STEM) ,
UNIT=2314, DI SP= (, KEEP) ,
SPACE= (TRK , (7, ,3) , , CONTIG) ,
LA BEL=EXPD T= 99 35 0,
DE&: (RECPM=F, BLKSIZE=80)

x
X
X
X
X

The new system residence volume is 2314 volume whose serial number is
SYSTEM. The renamed SYS1.PARKLIB will be called SYS1.TEMPPARM.

IIMOVE
IISTEPl
IISYSPRINT
IINEWRES
//SYSIN

1*
IISTEP2
IIPARMLIB
II
II
II
II
II
1*
/ISTEP3
IISYSPRINT
I/SYSUT1
II
//SYSUT2
IISYSIN

COpy
1*
IISTEP4
IISYSPRINT
IINEWRES
/ISYSIN

1*
II

JOB
EXEC
DD
DD
DD
RENAME

EXEC
DD

EXEC
DD
DD

DD
DD

EXEC
DD
DD
DD
SCRATCH

PGM=IEHPROGK -RENAME-
SYSOUT=A
UNIT=2314,VOLUME=SER=SYSTEM,DI~P=OLD

* DSNAKE=SYS1.PARMLIB, X
VOL=2314=SYSTEK X
NEWNAKE=SYS1.TEKPPARK

-REALLOCATE-PGK=IEFBR14
DSHAKE=SYS1.PARMLIB,
VOLUME=(,RETAIN,SEB=SYSTEM),
UHIT=2 314, DISP= (,KEEP) ,
SPACE=TRK, (8,,3) "CONTIG),
LABEL=EXPDT=99350,
DCB= (RECPK=F, BLKSIZE=8 0)

PGK=IEBCOPY -COPY-
SYSOUT=A

X
X
X
X
X

DSHAME=SYS1.TEMPPARM,DISP=OLD X
UNIT=2314,VOL=SER=SYSTEK
DSNAME=SYS1. PARKLIB,DISP=OLD

* INDD=SYSUT1,OUTDD=SYSUT2

PGM=IEHPROGM -SCRATCH-
SYSOUT=A
UNIT=2314,VOLUME=SER=SYSTEK,DISP=OLD

* DSNAKE=SYS1.TEMPPARM, X
VOL=2314=SYSTEM,PURGE

INSTALLATION GUIDE 3-15

THE SPECIAL REAL-TIME OPERATING SYSTEM SYSGEN "ACROS

The Special Real Time Operating System SYSGEN macros fall into two
categories: configuration and software. The following pages define
the SYSGEN macros and list the calling sequence for each.

CONFIGURATION CUSTOMER DIEFINTION DATA SET MACROS

CONFIGH

This macro defines configuration hierarchy. CONFIGH must be the first
macro in each member of a configuration data set. For a Special Real
Time Operating System only, it is not needed, and neither is the
configuration data set. For a system with Display Management, it
becomes the header macro for configuration information for the CPU it
references.

symbol CONFIGH CPU=S370xx,LEVEL=integer

CPU

Must be of the form S370xx, where xx is a value between 01 and 99.
For a system with the Special Real Time Operating System or the Special
Real Time operating System and Display Management, xx can be any value
between 01 and 99.

LEVEL

Is a number between 01 and 99 which specifies at what level in the
hierarchy this CPU occurs. A 1 indicates the top (highest) level.
The value of this parameter increases by 1 each time a lower-level
CPU is encountered.

The name of the configuration data set member containing the above
macro must be the same as the CPU; parameter.

For a Special Real Time Operating System only, no other macros follow
the CONFIGH macro if it is used. For a system with Display Management,
DEFDEV macros follow the CONFIGH to define each display unit •. Refer
to the ~1§Elay ~~ngg~~~n! Qg2£~1etiQll ~nd QE~£sliQn2 na~ai for a
description of this macro.

SOFTWARE CUSTOMER DEFINITION DATA SET MACROS

This section defines the various macros that can be placed in the
members of a software options data set for the Special Real Time
Operating System portion of a system generation. The name chosen for
a member of the software option data set should be the same name used
for the corresponding member of the configuration data set.

The macros defined below may appear in any order, except that the GENEMS
macro must be last. All statements following the last continuation
card of the GENEMS macro are ignored; as such, an assembler END
statement is not required.

All of the macros are optional except the vs and GENEMS macro, which
are req uired.

3-16 Description and Operation Manual

VS
Defines information relating to the customer's VS system.

l symbol] VS MCS=(integer,[,integer 2 , ••• ,integer
n
])

,DESC=integer

,SVCNO=(value 1 ,value 2 ,value 3)

[,APNDG=<value"ValUe 2)]

[NUCNUM= I char ~c ter I J
[CLOCKCP= I ~~S 1 J
[,RAM=XX]

[PTIME= I nu~er lJ
[TIMEEXT=nUmber J [, TIME RAT = I se~~ndS 1 J
[, GETWAS= (s i ze, number [, size, number, . • •])]

[TWOPART~ I ~~S IJ [,DIRSVC= I ~~S 1 J

Mes
Is a list of integers, each with a value of 1 to 16, indicating which
console routing codes are to be used by WTOs and WTORs issued within
the Special Real Time Operating System.

DESC
Is a number from 1 to 9 indicating which descriptor codes are to be
used by iT Os or iTORs issued within the Special Real Time Operating
System.

SVCNO
Is three decimal integers, in the range of 200 to 255, indicating
which user SVC members the customer has provided for the Special Real
Time operating System to use. The numbers are stated in Type I, Type
II, Type IV order.

APNDG
Is required only if System/370 Energy Management System is being
generated. It specifies the last two characters of the name to be
used by System/370 Energy Management System for its I/O appendages
and must meet the rules for user I/O appendages described in the
publication Q~LY~l ~at~ Mans~~nt t2r ~~2tem§ ~£Qg~gIDID~~' GC28-0631.

CLOCKCP
If YES is specified, the optional PTIME use of ~he System/310 clock
comparator feature is selected.

The CPU upon which the generated Special Real Time Operating System
will be executed must have the clock comparator feature. The OS/VS,
system must be generated to n2! use the clock comparator feature.

INSTALLATION GUIDE 3-17

NUCNUM
Is an alphameric character that specifies the eighth character of the
OS/VS 1 nucleus name to be cr.ea ted by generating the Special Real Time
Operating System. IEANUC01 is alvays used as input to the Special
Real Time Operating System generation. This parameter allows the
output (modified) nucleus to be given a different member name. If
NUCNUM is not specified, the resultant nucleus will have the name
IEANUC01.

RAM
specifies the seventh and eighth characters of the member to be created
in SYS1.PARKLIB, which will contain a list of resident reentrant
routines after the Special Real Time Operating System generation is
completed. If this parameter is omitted, no list is created. If the
data set specified in the LMDSET parameter of the GENEMS ruacro is
concatenated with SYS1.LINKLIB via the LNKLSTOO member of SYS1.PARMLIB,
this RAM list member can be used to place the reentrant module of the
Special Real Time Operating System (and Display Management and
System/370 Energy Management System, if selected) in the link pack
area.

PTIME
Specifies the time interval m1n1mum value and basic cycle interval of
PTIME. The default value is ten 10-millisecond units (100 ms). If
a different Interval is desired, it must be specified as a number of
10-millisecond units.

GETWAS
Specifies the default sizes. and number of blocks of each size to be
reserved by GETWA at the Special Real Time Operating System
initialization. The sizes must be specified in ascending sequence.
It may be overridden at the Special Real Time Operating System
initialization time.

The maximum number of sizes is 32. The maximum size allowed is 30720
bytes. The maximum n~mber of blocks of a given size is 4095. Sizes
greater than 2K must be defined as multiples of 2K.

Note: A GETWA space of sufficient size to satisfy the requirements of
all Special Real Time Operating System programs must be provided.
Failure to define sufficient GETWA space during system generation
on the GETWAS parameter of the VS macro or on the GETiAstatement
in the SYSINIT input stream will result in the termination of

TIMEEXT

the realtime job with a user 46 ABEND code. The Special Real
Time Operating System routines require that blocks of at least
1024 bytes be defined.

.SpeG:ifies on which external signal line (2-7) a periodic time pu Ise
is available. This pulse is used to correct for long-term drift in
the System/370 TOD clock. Its omission indicates that no time sync
pulses are available.

TIMERAT
Specifies the period (in seconds) at which the periodic time pulse
will occur. The default value is 60.

TWOPART
If YES is specified, a two-partition operation will be made available
in the Special Real Time Operating system. If no (default) is
specified, a two-partition operation viII not be available. A
two-partition operation should not be selected unless it is needed as
it increases the size of the pageable nucleus.

3-18 Descri<ption and Operation Manual

DIRSVC
This parameter indicates how the Special Real Time Operating System
macros which issue SVCs are to be expanded vhen the DCVfR and DCVTLOC
parameters are not supplied. It applies only to the usage of the
Special Real Time Operating System .acros by user programs. The
Special Real Time Operating System programs are required to use the
DCVTR/ DCVTLOC parameter or to be assembled at SYSGEN time. If yes
(default) is specified, the .acro expansion vill issue the correct
SVC number inline. This ties the assembly of the user programs to
the SVC numbers used at that installation. If no is specified, the
.acro vill expand 6 load instructions to obtain the XCVT and then
execute the SVC from the ICfT. Thus, the user program is not tied to
the SfC numbers.

INSTALLATION GUIDE 3-19

FAILRsr

This macro causes the Failover/Restart facility to be included in the
system. Also, it optionally includes the continuous monitor or PROBE
and the Computer Status Panel.

[symbol] FAILRST [CONTMON= I ~s!J L CONT INT= I nu~er Ii
[,CONTADL=(name l [,name 2 ,···,namen])

[,PROBE= I ~~slJ [,PROBIT= I ~~~:41J
[,EQUIPSW= I nu~erl] [,EQUIPDy=nUmber]

[,RESET= I nu~er I]
[.STATUSP= I ~~slJ [.LTs=cn l,n2 [,n3 ,n4])]

[,FAILEXT=(number [,static line] tCMCKPRB= I ~~s I]
CONTMON
Causes the continuous monitor facility to be included in the system
if YES is sp ecified.

CONTINT
Specifies the period (in seconds) at which the continuous monitor is
to check the operation of the online CPU and report to the backup CPU
(if PROBE is selected).

CONTADL
Specifies the names of additional 2-byte virtual storage resident data
base items which the continuous monitor is to periodically check.
This is in addition to locations it implicitly =hecks within the
Special Real Time Operating System.

PROBE
Causes the PROBE function
CONTMON=YES is required.
expects to be transmitted
in the CONTINT parameter.

PRO BIT

to be generated if YES is specified.
The period at which the PROBE function
to by the continuous monitor is specified

Specifies whethe~ the low-order (4-7) or high-order (0-3) bits Jf tne
direct control static data lines are to be used for the continuous
monitor to send signals to the PROBE.

E QUIPSW
Specifies to which direct control signal-out line (0-7) the remote
2914 switch is attached. This option This option requires PROBE=YES.

EQUIPDY
Indicates how long (in milliseconds) the PROBE function is to delay
after switching the 2914 before either IPLing the Failover/Restart
data set or returning to allow the realtime job to continue. The
delay is to allow the 2914 to complete the switch.

3-20 De$cription and Operation Manual

RESET

If specified, indicates on which direct control signal-out line (0-7)
a signal can be sent to allow one CPU to system reset the other cpu.
This option requires PROBE=YES.

STATUSP
If specified, indicates that the continuous monitor and/or PROBE is
to support the computer Status Panel. CONT"ON=YES is required.

LTS
Is required if STATUSP=YES. Two values are required if PROBE=NO, and
four values if PROBE=YES. The first (or only) two values indicate
which direct control signal-out line (0-7) is to be used to illuminate
the Online light and the Ready light. The second two values indicate
which bits on the direct control static data lines (0-7) are used to
illuminate the Failover Recommend and Computer Selected for Failover
lights.

FAILEXT
If specified, the first parameter indicates vhich external signal line
(2-7) viII be used to indicate the Failover Confirmed Interrupt of
the Computer status Panel. Requires PROBE=YES and STATUSP=YES. The
second parameter (optional) indicates which static signal line is used
to verify that the Failover Confirmed External Interrupt is to be
honored. This line must be 1 or the interrupt is ignored.

CMCKPRB
This parameter indicates if the PROBE function (backup CPU) is to be
checked by the continuous monitor (online CPU). The PROBE (if
selected) always checks the continuous monitor. If the continuous
monitor detects that the PROBE is no longer running, it issues a
message and continues operation.

If this option is chosen, the PROBE also writes and therefore
it is possible to start a PROBE function in each CPU and
have neither PROBE recommend failover as each PROBE is
receiving data on the static data lines from the other PROBE.
This is not possible without this option as the PROBE
attempts only to "read" from the continuous monitor but
never write to it.

INSTALLATION GUIDE 3-21

DUPDISK

Includes duplicate disk data set support in the special Real Time
operating System.

lsymbol] DUPDISK

3-22 Des:ri ption and Operation Manual

DBASE

Specifies customer arrays to be generated.

DBASE

OSERARR
specifies the member names of customer-supplied data base arrays, in
source format, which are to be processed through the offline utility
during Stage II SYSGEN. The data set containing the array definitions
is defined in the DBDSET parameter of the GENEMS macro.

INSTALLATION GUIDE 3-23

LOG

Includes data base logging in the Special Real Time operating System •.

[symbol] LOGFREQ-(value ,value ,value)

LOGFREQ

Specifies the logging period in seconds corresponding to LOGFREQ values
of 1, 2, and 3 in the ARRAY macro. All three val\les are required.
The values must be in ascending seq\lence.

3-24 Description and Operation Man\lal

PLISUB

Indicates that PL/I structures and library routines are to be included
for the Special Real Time Operating System services. If Display
Management and/or System/310 Energy Management System are being
generated also, structures and library routines are included for their
services as veIl. These routines can be used with PL/I F, the PL/I
Optimizing Compiler and the PL/I Checkout Compiler.

[symbol] PLISUB

INSTALLATION GUIDE 3-25

FOR SUB

Indicates that FORTRAN library routines are to be included for the
Special Real Time Operating System services. If Display Management
and/or System/370 Energy Management System is being generated also,
library routines are included for their services as well. These
routines can be used with the FORTRAN G and H compilers.

[symbol] FORSUB

3-26 Description and Operation Manu~l

MSGRC

Defines devices for routing codes for system messages.

[SYmbOl] MSGRC RC=code ~ALTRC= pde j]
,DEV=

rYSCONS I (OSDEVICE,DDNAME=name)
(DISPLAY,ACCESSA=name [,FUNCA=name]>
(PATCH, EP=narne)

RC
Indicates which routing code is being fully or partially defined.
Valid codes are numeric in the range of 1 to 255. Codes 1 through 9
are reserved for the Special Real Time Operating System. The customer
should define the destination for codes 1 through 9 for the Special
Real Time operating System messages as vell as his own from 10 to 255.
A routing code can be defined to go to multiple devices by including
multiple MSGRC macros with the same RC specification. The KSGR: macros
must be in ascending routing code order. Code 1 will always go to
the system console (in addition to any other defined devices).

ALTRC
Indicates an alternate routing code to use if the device defined is
not available.

DEV
Indicates which device to output the message.

S YSCONS
Indicates that a WTO will be issued.

OSDEV ICE
Indicates that a QSAM PUT vill be done to the DDname sp~cified.

DISPLAY
Is valid only in systems vith Display Management. The message will
be written to the system message zone using the indicated access area
and f~nction area codes, if supplied.

PATCH
In~icates that the message is to be passed to a Special Real Time
Operating System independent task at the entry point indicated. The
task name is the same as the entry point name.

ACCESSA
Indicates the Display Kanagement access area associated with a DISPLAY
routing code.

FUWCA
Indicates the Display Kanagement function area associated with a
DISPLAY routing code.

INSTALLATION GUIDE 3-27

IMP

Indicates input message processing commands in addition to those defined
as part of the Special Real Time Operating System. There is one IMP
macro per code.

[symbol] IMP CODE=name,TASK=name,LM=name,

[, ID= {n um;er}] [,PARAM= (vall GvaI2 , ••• ,vaIn])]

CODE
Is the command which the Input Message Processor is to recognize; it
contains a maximum of eight characters. By specifying a command
implicitly defined by the Special Real Time Operating System the
customer can re-define these codes.

TASK
Is the name of the task which is to be PATCHed as a result of the
command being entered.

LM
Is the load module name which is to be PATCHed.

ID
Is the ID field to be passed to the PATCHed task.

PARAM
Indicates the conversion codes of positional parameters that will be
passed to the task. Each value is of the form TI, where T can be
C (character) , X(hexadecimal), or F (fixed point decimal); I represents
the length of the area into which the data is converted; 1 can be any
values from 1 to 255.

3-28 Description and Operation Manual

DATA SET

Indicates location of noncataloged OS/VS1 data set. If the as/vs, data
set is cataloged, this macro need not be specified.

[symbol] DATASET name,VOL-(serial,type)

nallle
Is a positional parameter that indicates for which as/VS1 data set
location information is being given. Valid values are:

VOL

NUCLEUS
SVCLIB
MACLIB
PARMLI B
TELCML IB

Indicates the volume serial number and device type upon which the data
set in question resides, e.g., VOL=(TST346, SYSDA).

INSTALLATION GUIDE 3-29

GENEMS

Generates the Special Real Time Operating System.

[symbol) GENEMS
{ 370}

CPu- S370xx

[,ASMPRT- {g~F}] [,ASMBLR- {*}]
[,LKPRT- ([{ ~::F}] [LIST])]

, JOBCTL= ([{ jOb~lass}] D·, out~lass}] [,jOb acct] [,step acct])

,OBJDSET=name [,OBJVOL=(serial,type)]

,LMDSET=name [,LMVOL=(serial,type)]

,MACDSJ::T=name [,MACVOL=(serial,type)]

[t DBD) [,DBVOL=(serial,type))

(, LHSDSET=name] [,DISVOL=(serial,type)]

,ARRDSET=name [,ARRVOL=(serial,type)]

,l.l81DSET=name [,DB1VOL=(serial,type) 1

,DB2DSET=name [,DB2VOL (serial, type) J

[,DB3DSET=name] (,DB3VOL=(serial,type»)

,DB4DSET=name (,DB4VOL=(serial,type»)

(,DB5DSET=namel [,DB5VOL=(serial,type)J

[,PLIDSET=name] (,PLIVOL=(serial,type)]

[,PLSDSET=name] (,PLSVOL=(serial,type»)

[,FORDSET=name] [,FORVOL=(serial,type)]

[,OS2DSET-name1 (,OS2VOL=(serial,type)1

3-30 Description and Operation Manual

CPU
May be specified as either 5370 or S370xx, where xx is equal to the
ID assigned to this CPO in the CONFIGH macro CPU keyword.

ASMPRT
Is indicated if assembly listings are to be produced during Stage II.
The default is OFF.

ASMBLR
Indicates which assembler is to be used during stage II. The default
is the OS/VS1 Assembler ~). The Assembler H Program Product,
5734-AS1, may be specified. If the H assembler is specified, it is
assumed that it has been installed using the default DD names.

LKPRT
Indicates which linkage editor listing options are desired.

JOBCTL
Indicates values for job and SYSOUT classes and accounting information
for the Stage II job stream.

jobclass
Specifies the value to be used in the CLASS parameter of the generated
job car d.

outclass
Specifies the output class to be used in the SYSOUT parameter ~n DD
cards and the MSGCLASS parameter on the JOB card.

jo b acct
Is the information to be reproduced in the accounting field of the
JOB card.

step acct
Is step accounting information to be reproduced in the AeeT parameter
of each EXEC card.

The following table summarizes the use of each XXXDSET parameter. The
value specified is in each case the name of a data set allocated and
named by the installing installation. The corresponding XXXVOL
parameter is used to indicate the location of the data set, e.g.,
XXXVOL= (TST346,SYSDA), if it is not cataloged. All of the data sets
must be disk resident, and all are partitioned except the DB2DSET which
is direct organization and the OS2DSET which is sequential or the melBber
of a partitioned data set.

INSTALLATION GUIDE 3-31

Parameter

OBJDSET

LMDSE'r

MACDSE'r

DBOSE'!'

DISDSET

ARRDSI::T

DB 1 OSE'!'

DB2DSI::T

DB3DSI::T

Di; 4 DSI::'l'

DB5DSET

PLIDSI::T

PLSDSI::T

OS2DSLT

Required

Yes

Yes

Yes

Contents

Output of Language
Translator During
Stage II

DCB Info

LRECLaBO,RECFM-FB,

BLKSIZE-XXX 1

Load Modules for real RECFM=U,BLKSIZE=Xxx 2,6
Time Execution

Macros Generated
During Stage II and
For Customer Use

LRECL=BO,RECFM=FB,

BLKSIZE=XXX 3

If USERARR PARM in Customer-Defined Data LRECL=BO,RECFM=FB,
DBASE Macro is Used Base Arrays

BLKSIZE=XXX 3

If DISM in System
and User Displays
Defined

Yes

Yes

Yes

If DISM 1n System

Yes

If DISM in System

If PLISUB Macro
Specified

If PLISUB Macro
Speci f ied

If FORSUB Macro
SpecifieJ

If installing in
Re 1 3. 0 0 rIa te r

Customer-Defined
Display Definition

Arrays Generated
During SYSGEN

Data Base Arrays

Data Base Arrays

Displays

Messages

Displays

LRECL=80,RECFM-FB,

BLKSIZE=XXX 3

LRECL=BO,RECFM=FB,

BLKSIZE=XXX3

RECFM=U,BLKSIZE=XXX
2

RECFM=U,BLKSIZE=XXX 2 ,DSORG-DA

RECFM=U,BLKSIZE=XXX 2

RECFM=U,BLKSIZE=292

RECFM=U,BLKSIZE=XXX 2

PL/I Library Routines RECFM=U,BLKSIZE=Xxx 4,6

PL/I Structures.

FORTRAN Library
Routines

OS/VS Stage II
SYSGEN job stream

BLKSIZE=XXX3,5
LRECL=80,RECFM=FB,

BLKSIZE=XXX3,5

RECFM=U,BLKSIZE=Xxx 4,6

RECFM=FB,LRECL=BO,

IMaximum of 3200 due to OS/VS Linkage Editor restriction.

2Value of at least half track length recommended.

3ShoulJ have same 13LKSIZE as installations SYS1.MACLIB.

4 May be same data set as LMDSET.

5 If PL/IF is to be used, BLKSIZE cannot exceed 400.

6 A value equal to SYS1.LINKLIB recommended. Minimum of 7294.

Figure 3-4. XXXDSET Parameter Values

·3-32 Description and Operation Manual

SYSTEM INITIALIZATION

The Special Real Time Operating System executes as a job step under
control of OS/VS1. The job is started initially through standard OS/VS1
Job control (JCL) statements with the EXEC card specifying PGM=DPPINIT.
The JCL defines to the Special Real Time Operating System the data sets
which have been created by the offline utility and the Special Real
Time operating System SYSGEN procedures. The JCL also defines the
devices such as display and data acquisition, which are to be used by
the online routines. Control statements for the initialization of
subsystems are defined to the special Real Time Operating System through
the //SYSINIT DD card. Also included in the SYSINIT input stream are
certain Special Real Time operating System parameters that can override
SYSGENed values.

The Special Real Time Operating System initializa tion consists of three
processing phases: card read, basic initialization, and SUbsystem
initialization, as shown in Figure 3-5.

Basic Initialization Card Read

CALL
EP = DPPINITO

J ...

,?PPINITO

Subsystem Initialization

ATTACH EP = DP.PINIT1
...

XCTL EP = DPPTSMON

DPPINIT DPPINIT1

Figure 3-5. The Special Real Time operating system Initialization

Program DPPINIT gains control from os and immediately CALLs program
DPPINITO, the control statement read routine. DPPINITO reads control
statements from the input stream specified by the DD card named SYSINIT,
and builds a chain of control blocks to represent the input stream,
with one block built for each PATCH, WAIT, RESTART, and ABEND card
found in the input stream. When End-of-File (EOF) is reached, control
is returned to DPPINIT, with register 1 containing the origin of the
control block chain. DPPINIT initializes the task management control
blocks and when this is completed, attaches program DPPINIT1, then
XCTLs to DPPTSMON. DPPINIT passes the origin of the control block
chain built by DPPINITO to DPPINIT1, which processes and issues the
PATCHes as specified by the user in the input stream. Figure 3-6 shows
the control statements that are valid as input to initialization.

The control statement input stream defines the sequence of events that
is to occur during subsystem initialization. The stream is a series
of card image input statements coded similar to assembler language
macros. The rules for continuation of control statements are the same
as those for continuation of assembler language macro calls.

A control statement consists of a NAME field which is optional, an
OPERATION field, which is required, and operands. The maximum number
of operand characters is 255. There is no limit on the number of
continuation statements, as the limiting factor is the number of
characters of operands.

INSTALLATION GUIDE 3-33

NAME OPERATION

label PATCH

label WAIT

label

label QH

label QP

label STAEX

label RESTART

label TCB

label GETWA

label CBGET

label ABEND

label MASTER

label SLAVE

* comment

label DBREF

OPERANDS

EP=name [,TASK=name] ~QL=n]
[, ID=nl

[
T _IJOBsTEP-n lJ ,PR Y - (taskname,n)

[
,PARAM= (I~:~~:~~~~~~:~ digits'···'l)~

F'decimal number' ~

label

name QL=m , n
NO

,SEQ= YES
NO

,HOLD= YES
YES

,PATCH= NO

number, QH=(name
2

, ••• ,name
n

) PRTY= JOBSTEP-5·
, JOBSTEP-n

NO
,HOLD= YES

I
, WRITE I
,NOWRITE

number

I
, PROBE I
,NOPROBE

(number,value, .•.)

number

t,DUMP

SLAVE=jobname

MASTER=jobname

comment

I
, CHON I I' CANCEL I
, NOCMON , NOCANCEL

Figure 3-6. Control statement Input stream

PATCH
Causes the creation of a task as defined by the PATCH macro. The
PATCH control statement operands are:

EP=name
Is the name, one to eight characters in length, of the program to be
PATCHed. EP= must be specified. The card read routine checks that
the name does not exceed eight characters, but does no other validity
checking on the name. This applies to any other operand that requires
name, taskname, or jobname.

TASK=name
Is the name, one to eight characters in length, to be given to the
task created by this patch.

QL=n
Is the maximum number of work queue entries to be given to the task.
The number (n) must be a decimal number from 0 to 255, with a default
value of 1.

3-34 Description and Operation Manual

ID=n
Must be a decimal number from 0 to 255 which will be passed to the
PATCHed program. The default is 0, and 255 has special meaning as
specified in the PATCH macro documentation.

PRTY=
Is used to determine the priority of the PATCHed task. When JOBSTEP-n
is coded, the PATCHed task's priority is calculated by subtracting
the value "n" from the highest priority available to users, which is
the job step task (DPPTSftON) priority minus three. Value n must be
a decimal number from 0 to 255. When (taskname,n) is coded, the task
is given a priority of the task specified in taskname minus the value
n. In either case, value n is a decimal value from 0 to 255. There
is no default, and value n must be supplied. If PRTY is not
specified, the task vill have the priority of the PATCHor (in this
case the highest possible user priority).

PARAH=
Specifies the parameters to be passed to the PATCHed program. There
are three types of data which can be coded:

C' characters'
Cause a character string to be passed. Th~ single quote character
(') is not alloved in the character string.

X'hexadecimal digits'
Cause hexadecimal data to be passed and must be valid hexadecimal
digits 0-9 or A-F.

F'decimal number'
Causes a fullvord value to be passed and must be a signed decimal
number from 0 to 2 31 • A conversion viII be done by the
initialization program.

WAIT
Causes initialization to vait for the completion of a specified task,
the task being the one PATCHed by the control statement vith the same
name as the operand "label." The wait is only for the task to return
(i.e., the processing of the vork queue that is created as a result
of the patch card to be completed) and has no relationship to any work
that may be created by that task via PATCHes or other means.

QP
Causes the cteation of a queue processor identified by the number
parameter and a logical sequence for processing queue holders defined
by the OH pa'rameter. 'The number and QH parameters are required. The
OP control statement operands are defined as follows:

number
Is a numberic value from 0 to 99 used to uniquely identify a queue
processor. If more than one QP statement is found in the input stream
with the same number, initialization will be terminated. This queue
processor may be referenced in subsequent QS commands by this number.
An internal TCBX (task) name vill be created for each QP in the format
****QPnn, where nn is the number specified here. PATCHes specifying
the queue processor name as the task name vi1l be rejected and a
condition code vil1 be returned to the user.

QH=name
D'ef ines t he names of from 1 to 21 queue holders for "hich work is to
be processed by this queue processor. Anyone queue holder name may
be specified aD up to 21 QP statements. The specified queue holder
names are treated on a priority basis where work from the queue holder
appearing first in the list vill be processed first. This queue
processor vill select work from the first queue holder specified

INSTALLATION GUIDE 3-35

until all work in the queue holder has been selected before selecting
work from the second queue holder specified. Each queue holder name
specified on a QP statement must be defined by a QH statement.

PRTY=
Is an optional parameter used to determine the dispatching priority
of this queue processor task. When JOBSTEP-n is coded the queue
processor task's priority is calculated by subtracting the value, n,
from the highest priority available to users, which is the jobstep
task (DPPTSMON) priority minus three. The value, n, is a decimal
number from 0 to 255. If PRTY is not specified, the queue processor
task will be assigned a priority of JOBSTEP-5 (i.e., the job step
task's priority minus 8).

HOLD=

QH

Is an optional parameter that can be used (HOLD=YES) to inhibit this
queue processor from selecting work from any queue holder until
released by a subsequent QS command specifying r xx,QS,QPnn,REL where
nn is the number specified on this QP statement (or the equivalent
using the ALL or ALL QP operands). If HOLD=YES is not specified,
theis queue processor will be immediately available for normal
processing.

Defines the queue holders and identifies each by the name parameter.
The name parameter is required. The QH control statement operands
are defined as follows:

name
Is a 1 to 8 character name used to uniquely identify a queue holder.
If more than one QH statement is found in the input stream with the
same name, initialization will be terDinated. This queue holder may
be referenced in subsequent QS commands by this name. Work requests
for this queue holder must specify this name as the task name on the
PATCH .macro call.

QL=
Is an optional parameter that is used to limit maximum number of work
queue entries to be given to this queue holder. This number, n, must
be a decimal number from 1 to 255. The default queue length is 255.

SEQ=
Is an optional parameter that can be used (SEQ=YES) to request that
work queued to this queue holder be processed sequentially (i.e.,
whenever work has been selected from this queue holder by a queue
processor, no other queue processor may select work from this queue
holder until that work has been completed) until altered by a
subsequent QS command specifying r xx,QS,name,NONSEQ where "name" is
the name specified on this OH statement. If SEQ=YES is not specified,
work from this queue holder may be processed simultaneously by all
queue processors which are eligible to process vork from it.

HOLD=
Is an optional parameter that can be used (HOLD=YES) to prohibit any
queue processor from selecting work from this queue holder until
released by a subsequent QS command specifying r xx,QS,name,REL where
"name" is the name specified on this QH statement. If HOLD=YES is
not specified, this queue holder will be immediately available for
normal processing.

PATCH=
Is an optional parameter that can be used (PATCH=NO) to cause all
PATCHes to this queue holder to be rejected and a condition code to
be returned to the user until altered by a subsequent QS command
specifying r xx,QS,name,PATCH where "name" is the name specified on

3-36 Description and Operation Manual

this OR statement. If PATCH=HO is not specified, this queue holder
will accept all valid PATCHes.

STAEX
Is used to specify an exit routine load module that will be given
control vhen one of the load modules specified on this STAEX statement
abends. Multiple ST1EX statements may be included in the SYSIHIT
input stream to define additional exit routine and/or load module
names. However, if a particular load module name is specified on more
than one STAEX statement, the exit routine defined on the last STAEX
statement in the input stream that references this load module name
is the exit routine that vill be given control in the event of an
abend of that load module. Unless the exit routine requests that the
STAE processing be bypassed, the STAE options as defined
by the STAE IMP command (i.e., DUMP, NODUMP, etc.) viII remain in
effect.

EXIT=
Is the name of an exit routine load module to be given control through
standard linkage conventions during STAE processing. The same
exit routine may be specified on two or more STAEX statements. This
routine vill be given control while in STAE processing and standard
limitations for STAE routine apply (i.e., a STAE macro cannot be
issued, etc.). On entry to the exit routines, registers 0, 1, 13, 14
and 15 will contain the values as defined by as/VS1 STAE interface
routines. Register 2 will contain the address of the QP TCBX. The
exit routine must specify, by a neturn code in register 15, one of
the following:

Zero Continue STAE processing as defined by
the STAE IMP command (i.e., DUMP, NODUMP, etc.).

Positive Value Bypass STAE processing and return to the
OS/VS1 ABEND processing routine with registers
0, 1, and 15 as returned by the exit routine.
This will allov the user to schedule a retry
routine.

Negati ve 4 Bypass STAE processin9., zero register 15,
and return to the OS/VSl ABEND process1ng
routine. Abnormal termination will continue.

If the load module specified is not.available on the JOBLIB/STEPLIB
data sets at initialization time, initialization viII be terminated.

LM=
Is the name of one or more user load modules for vhich the specified
exit routine is to be given control in the event of an abend of that
load module.

RESTART
The operands are not positional and may be coded in any sequence;
however, if the statement is to be in the input stream, at least one
of the operands must be used.

WRITE or HOW RITE specifies whether or not the failover data set is to
be written.

PROBE causes the PROBE function to be PATCHed after the RESTART
proces~ing whether or not a failover data set is written. NOPROBE
causes no PATCH to the PROBE. If both PROBE and CHON are requested,
the PROBE is PATCHed first.

INSTALLATION GUIDE 3-37

C!ON causes the continuous monitor function to be PATCHed.

NPCMON does not PATCH the continuous monitor.

CANCEL causes the job step task to ABEND with a user code 45
immediately after the RESTART processing. The CANCEL function will
occur prior to the PATCH to PROBE or continuous monitor.

NOCANCEL does not ABEND the jobstep and normal processing continues.

TCB
Causes a change in the number of advance TCBs to be obtained by
initialization. The number (0-99) overrides the value specified at
SYSGEN time. If more than one TCB statement is found, the value used
will be the value on the last statement.

GETWA
Overrides the SYSGENed values for GETWA sizes. The values must be in
parentheses and be paired (i.e., number,value). The maximum number
of pairs is 32, where number represents the number of blocks, and
value represents the size of the GETWA blocks; i.e., (5,12) requests
5 blocks of 12 bytes each. The maximum size of number is 4095, and
the maximum size of value is 30110 bytes. If more than one GETWA
statement is found in the input stream, the values used for
initialization are the values from the last GETWA statement
encountered. If two parameters request the same size, the second
request is unusable. Sizes greater than 2K must be 2K multiples. The
Special Real Time operating system uses GETWA space in blocks up to
1024 bytes. If the GETWA statement is used, it must include blocks
of 1024 bytes or larger.

CBGET
Causes the amount of CBGET (the Special Real Time operating System
control Block) storage to be varied. The initialization default value
is the number of TCBs multiplied by TCBXLNTH, rounded to 2K plus 6K.
The value, specified by number, overrides the initialization default
value and is a decimal number from 1 to 99 representing the number of
2K blocks of storage to get for CBGET core. For example, 10 would
get 20K of CBGET storage. If more than one CBGET statement is in the
input stream, the value used is the value from the last statement
encountered. A CBGET 0 statement viII cause initialization to use a
default value for CBGET storage. This vould be the same as if no
CBGET statements were in the i~put stream.

ABEND
Is a control statement used in a testing environment. When an ABEND
card is processed, the job step will be ABENDed vith a user 22 ABEND
after a time specified by t, where t is the number of seconds from 1
to 999. The default value for t is 30 seconds. A dump can be taken
by coding DUMP, and the default is no dump. Control statements that
follow the ABEND statement in the input stream will never be processed,
as the ABEND causes a STIMER WAIT followed by the user ABEND.

MASTER
Is a statement used to designate this Special Real Time Operating System
initialization as a MASTER partition for two-partition operation.
SLAVE=jobname specifies the jobname of the SLAVE partition.

SLAVE
Indicates this initialization is for a SLAVE partition in tvo-partition
operation. The !ASTER-jobname operand specifies the jobname of the
MASTER partition. Only one MASTER or SLAVE card is allowed in an
input stream, and the jobname on the operand must be unique in the
system.

3-38 Description and Operation Manual

* Is a comment statement. No continuations are allowed on comment
statements and there is no limit to the number of comment statements
in an input stream. Comments do not affect the initialization
sequence, but will appear in the listing of control statements.

DBREl
Indicates to data base logging that the data base should be refreshed
during a normal start operation. That is, the most recently logged
copy is to be used. The operand NO must be coded to stop data base
refresh. The absence of a DBREr statement is the same as a DBREP YES.
A DBREF NO statement in the input stream takes precedence oYer any
DBREP YES statements in the same input stream.

The card read routine reads until EOP is reached and then returns
control to DPP1N1T. All control, statements are processed, and input
statements and any diagnostic error messages are written to the data
set specified by the SYSPRINT DD statement. If any control statements
are in error, the run is aborted with a user 34 ABEND, and a iTO message
is written to the console.

The following example shows the Jet required and a typical input stream
for the Special Real Time Operating system system initialization.

IIREAL JOB
II EXEC
IISTEPLIB DD
IIDBINIT DD'
IIDBINIT2 DD
IIKSGDS DD
I/DPPFAIL DD
IISYSPR1NT DD
IIKSGOUT DO
IISYSUDUKP DD
IISYSINIT DD
P1 PATCH

P2 PATCH

P3 PATCH
W1 WAIT P 2
P4 PATCH

PS PATCH
RESTART

P6 PATCH

P7 PATCH

J.n12Q1....!..E10GRAKKER~g!~~[
PG!=DPPINI T
DSN=A£S370~M01,D1SP=SHR
DSN=~70~~1,DISP=SHR
DSN=A£~70~§1,DISP=SHR
DSN=!£~~~~!,DISP=SHR
DSN=A£~LlAL~I,DISP=OLD
SYSOUT=A
SYSOUT=A
SYSOUT=A

* EP=PINITOO,TASK=STARTER,
QL=5,ID=7,PRTY=JOBSTEP-15
EP=XINIT ,TASK=SUBSYS 1,
QL=10,ID=10,PRTY=JOBSTEP-16
EP=DBUILD, TASK=DATBAS, 10=255

EP=XUSE,TASK=SUBSYS2,
QL=5,ID=15,PRTY=(SOBSYS1,5),
PARAM=(F'47',F'52',X'AOB')
EP=PUSE
WRITE
EP=XREINT,TASK=KCTL,QL=15,
PARAK= (C a P OSTWRS')
EP=DBRST,T ASK- DBUS E,
PR TY=JOB ST EP-2

*
*

*
*

*
*

In this example, the JOB card is standard as, and accoQnting information
must be as required for the indiv idua1 installation. The EXEC card
must specify PGK=DPPINIT. The STEPLIB DD card points to the
library (ies) conta-i-ning the Special Real Time Operating System and user
programs. The library name vi1l depend upon the name given the data
sets at SYSGEN time. The data ~ets required for the data base are
pointed to by the DD cards DBINIT and DBINIT2. The online message
handler requires the KSGDS and KSGOUT DO cards. The SYSPRINT DO card
is re'quired by initialization to print the input control statements.
A SYSUDUMP or SYS1BEND DD card is optional, depending on whether a dump
is required on ABEND conditions. The SYSINIT DD card is required, and

INSTALLATION GUIDE 3-39

it must point to the data set con~ining the control statements for
the online run.

The input control statements in the preceding example show a typical
initialization sequence. The RESTART statement implies a wait on PATCH
statements labeled P1, P2. P3, P4, and P5. There is also an implied
wait on P6 before initialization is completed. The The RESTART WRITE
makes the DPPFAIL DD card necessary.

All programs w~ich are to be PATCHed via a PATCH statement prior to
the RESTART statement mus~ go to termination before the restart data
set can be written. Each program PATCHed prior to the RESTART statement
is PATCHed with the ECB= operand. The ECB will be posted with the POST
bit, plus the contents of register 15 at the time the PATCHed program
returns control to the Special Real Time Operating System. If there
is no RESTART WRITE in the input stream, there is an implied wait before
initialization termination on all PATCHes issued with the PARAM= keyword
coded on the PATCH statement. Any PATCH receiving a non-zero return
code will cause the job step to abend with a user 031 ABEND code.

PATCHes in the input stream that follow a RESTART statement do not
imply WAIT unless the PATCH statement contains the PARAM= keyword.
There is an implied wait on each PATCH with the PARAM= keyword that
follows the RESTART WRITE statement. Explicit waits may be forced on
any PATCH statement through the use of the WAIT statement.

Upon regaining control from DPPINITO, DPPINIT initializes the task
management control blocks. The XCVT and SCVT are initialized in subpool
253. The MASTER and SLAVE partit~ons are synchronized at this point
if the run is for two-partition operation. DPPINIT then creates the
TMCT in subpool 253 and initializes the GETWA control blocks and GETWA
core, and the Special Real Time Operating System control block (CBGET)
core. After creating the advance TCBs, DPPINIT links to other Special
Real Time Operating System initialization routines in the following
order:

• Duplicate Data Set Support (if SYSGENed)

• Data Base

• Realtime Message Handler

• Time Management

• Data Base Logging

Upon completion of these routines, task management is initialized and
ready to process PATCHes. At this time, DPPINIT attaches DDPINIT1 and
then XCTLs to DPPTSMON.

3-40 Description and Operation Manual

frogram DPPINIT1 processes the input stream ~nd PATCHes the sUbsystem
programs. A program that has been PATCHed by initialization receives
control with pointers as shown below.

I Register I I t XCYT 8-bytc Resource Table
I

t Resource Table J 0 1 2 3

t PROBL ~ LENGTH I 00 I ID

4 FLGS Reserved

I
8 I LL I t PARM

I I L ________ ~ ___________________________ :

The PROBL contains the LENGTH, which is the length of the PROBL
including parameter pointers. If PARAM= were coded on the PATCH input
statement, there would be one word appended to the PROBL for each
parameter being passed. The format of this word is that the high-order
byte contains the length of parameter data, and the low-order three
bytes contain the address of the data.

The ID is the value coded in the ID= field of the PATCH statement. rhe
FLGS are as shown below:

FLGS

BIT o 2 3 4, 5 .,.

UNUSED

6 7

I
PRE-REST ART

INITIAL IPL

SAME CPU AS IPL

Through interpretation of the PROBL FLGS, programs can determine if
they were PATCHed prior to the writing of the failover data set (bit
1=1), if the system is being restarted (bit 6=0), or if the system has
been failed-over to a backup CPU (bit 5=0).

INSTALLATION GUIDE 3-41

The following PATCH statement would cause the program na~ed REFNAME to
receive control with parameters as shown below.

PI PATCH EP=REFNAME,IO .. :\5,
PARAM=(C'FIRST',X'FFA',Fn',F'-I')

Register I t XCVT

t Resource TBL

t PROBL

07 Unused

05 t PARM

02 i PARM

04 i PARM

04 t PARM

8-byte Resource TABL

C6C9D9E2E2

O'FFA

00000048

FFFFFFFF

PATCHes issued ptior to RESTART WRITE are issued with ECB=, and upon
completion the post code is checked. MESSAGE DPP044I is issued for
each PATCH prior to RESTART WRITE that is posted with a non-zero post
code. If any ECBs have been posted non-zero, the job step will be
ABENDed with a user 35 ABEND code just prior to the writing of the
resta rt data set.

PATCHes issued for PATCH statements following the RESTART WRITE
statement will be issued with the ECB= keyword also, only if they are
coded with PARAM= or have WAIT statements naming the PATCH statement.
As prior to RESTART WRITE, the ECBs are checked for non-zero post code,
and message DPP0441 will be issued for any task being posted non-zer~.
The job step, however, will not be ABENDed due to post cod~s for PAT:Hes
following RESTART WRITE. If there is no RESTART WRITE statement in
the input stream, the job step will be ABENDed (user 35) for any task
posted non-zero.

When all the input stream control blocks have been processed, DPPINlr
frees all storage obtained, and exits from the system. At this point
Special Real Time Operating System and subsystem initialization is
completed.

~~~ !niiig!iZgiiQ~ 

The initialization of Duplicate Data Set (DDS) support is accomplished 
by including the DUPDISK macro in the Special Real Time Jperating System 
SYSGEN input. This will cause the initialization to link to DDS 
initialization in the prescribed sequence. 

3-42 Description and Operation Manual 



DDS initialization consists of the following functions: 

1. Processing the DDS input control stream (defined by DDSCTLIN DD 
card) for DDS declarations. 

2. Initially writing (and creating if not already done) the DDSTATUS 
data set record (calculating the maximum block size for use in 
later updates to this data set). 

3. Allocating a DDS control header table (DDSCTLHD) and one DDS 
control area (DDSCTLA) for each DDS declared (initializing these 
tables with correct values). 

4. Defining locks for each DDS declared (logically referred to as 
DDS-lock/share-ECB-chain locks). 

5. Loading all DDS load modules (except the large and infrequently 
used modules) and saving their addresses in the DDS control 
table header. 

6. Connecting the DDS control table header to the SCVT and each 
DDS control area to the DDS control table header. 

Detailed Explanations 

The DDS input control stream (consisting of 80-nyte card images) is 
outlined in the following table: 

Name Opcode Parameters 

ddsname DDS NAMES (ddname 1 ,ddname2 {= OUT]) 

blank REFRESH blank 

blank READONLY blank 

DDSNAMES 
This op code is used to declare a data set pair as being duplicates. 
There must be one DDSNAMES card for each data set pair the user wishes 
to be treated as duplicates. The number of declarations cannot be 
changed after initialization. 

ddsname 
Is the name which must be used by all DDS macros and commands which 
refer to this DDS. The The DDSDCB must use this name in its name 
field. If this operand is omitted, the value specified as ddnamel 
will be taken as the DDSNAKE. 

ddname1 
This parameter is required and specifies the DDNAME of the primary 
data set. 

ddname2 
This parameter is required and specifies the DDNAME of the backup 
data set. 

=OUT 
Specifies that the backup should be initialized out-of-service. 

INSTALLATION GUIDE 3-43 



REFRESH . 
This op code indicates that a DDSTATUS data set has already been 
created and that the declarations contained therein should be used 
for this run. This op code is only valid as the first card, and, if 
present, all subsequent cards will be ignored. 

READONLY 
This op code indicates that this is the backup computer and that all 
DDS outputs should be inhibited until failover/restart occurs. This 
op code !mElig§-R!lRESH, so a previously created DDSTATUS data set 
is required. This op code is only valid as the first card, and all 
subsequent cards will be ignored. 

The DDSTATUS data set will be sequential and will consist of one record 
(undefined record format) which viII be the core image of the DDS 
control areas for all duplicate data sets. Thus, the needed information 
is contained for each DDS; primary DO name, backup DO name, and 
serviceability of the backup_ This data set allows DDS to continue 
using the most current status for each DDS after a failover/restart. 

DDS lock/share logic is required since more than one task may be using 
a DDS during the same time period. Some DDS functions require that no 
other tasks be using that same function at the same time, while other 
functions can proceed in parallel with each other. Thus four logical 
states can be defined for tasks with respect to DDS: (1) locking a 
DDS, (2) waiting-to-lock a DDS, (3) sharing a DDS, and (4) 
vaiting-to-share a DDS. 

The implementation of these state~ is accomplished by having a chain 
of DDS Lock ECBs and DDS share ECBs, both starting with the DDS control 
area for each DDS. The DDSLOCK EeB chain viII consist of all tasks 
vaiting-to-Iock this DDS. A non-zero value in the high-order byte of 
the starting DDS lock ECB signifies that DDSLOCK is in effect for that 
task (as opposed to 'waiting-to-Iock'). The DDS share ECB chain 
consists of all tasks vaiting to share this DDS. The high-order byte 
of the starting DDS share EeB will contain a count of the tasks 
currently sharing this DDS. 

The locks that vill be defined during initialization are DO lock/share 
ECB chains just explained. All functions which modify those chains 
(DDSLOCK, DDSUNLOCK, DDSHARE, DDSUNSHARE) must first acquire a lock on 
the DDS lock/share chain in question. 

3-44 Description and Operation Manual 



A sample JCL deck to run a Special Real Time Operating System test 
program using DDS follows: 

//SRTOS 
//STEPLIB 
//DBINIT 
//DBINIT2 
//KSGDS 
//DDSTATUS 
//DDSEQ 
//DDSEQ1 
//DDBPM1 
//DDBPM2 
//DDSCKPIN 

//MSGOUT 
//SYSPRINT 
//SYSUDUMP 
//COMPRINT 
//DDSCTLIN 

DDS BPAK 
//SYSINIT 

TO 

/* 

Card 1 

Card 2 

Cards 3-4 

Card 5 

Card 6 

Cards 7-10 

Card 11 

Card 12 

Card 13 

Card 14 

Card 15 

EXEC PGM=DPPINI T Card 1 
DD DSN=EKS370.LM71,DISP=SHR Card 2 
DD DSN=EKS370.DB171,DISP=SHR Card 3 
DD DSN=EMS370,DB271,DISP=SHR Card 4 
DS DSN=EKS370,DB471,DISP=SHR Card 5 
DD DSN=EMS370,DDS71,DISP=SHR Card 6 
DD DSN=DDS1,DISP=SHR Card 7 
DD DS N=DDS2, D IS P= SHR Card 8 
DD DSN=DDSBP1,DISP=SHR Card 9 
DD DSN=DDSBP2,DISP=SHR Card 10 
DD UNIT=DISK,DISP=(,PASS) , 

SPACE= (TRK, (1, 1» Card 1 1 
DD SYSOUT=A Card 12 
DD SYSOUT=A Card 13 
DD SYSOUT=A Card 14 
DD SYSOUT=A Card 15 
DD * Card 16 
DDSNAMES (DDSEQ, DDSEQ1) Card 17 
DD SNAKES (DDBPM1,DDBPM2=OUT) Card 18 
DD * Card 19 
TCB 1 Card 20 
PATCH EP=TESTPGM1,TASK=TESTPGM1 Card 21 
WAIT TO Card 22 
ABEND 1 Card 23 

Card 24 

The entry point for a Special Real Time Operating System 
execution is DPPINIT. 

The Special Real Time Operating System load modules 
exist on this data set in executable form. 

These data sets contain the required arrays for Special 
Real Time operating System data base. 

This data set contains the messages previously created 
during Special Real Time Operating System SYSGEN. 

The data set will contain a copy of the DDS control 
areas to keep a current status of all DDS declarations. 

These data sets will be the two duplicate data set pairs 
for this test run. 

This data set is a one-track sequential data set which 
will be used by DDS if a DDS COMPARE function is 
requested. 

This data set viII receive Special Real Time Operating 
System output messages. 

This data set viII receive initialization messages 
output. 

This data set will receive a dump if one should occur. 

This data set will receive the output of IEBCOMPR if a 
DDS Compare Function is requested. 

INSTALLATION GUIDE 3-45 



Card 16 

Card 17 

Card 18 

Card 19 

Cards 20-23 

3-46 

This data set contains the DDS input cards. 

This card declares that DDSEQ is a duplicate data set 
name, that DDSEQ is the primary DDNAME, that DDSEQ1 is 
the backup and that the backup is in-service. 

This card declares that DDSBPAM is a duplicate data set 
name, that DDBPM1 is the primary DDname, that DDBPM2 is 
the backup DDname, and that the backup is out-of-service. 

This data set contains the Special Real Time Operating 
System initialization input cards. 

These cards control the Special Real Time operating 
System execution. 

Description and Operation Manual 



OFFLINE UTILITY PROGRAM 

I!!1~duction. 

A realtime system typically requires a detailed description of the 
environment in which it operates. This description contains information 
of two types. The first is the selection of options that are to be 
This includes both hardware and software options, which are selected 
at installation or system generation (SYSGEN) time. The second type 
of environment description encompasses those parameters that are of a 
more dynamic nature. In the Special Real Time Operating system, these 
consist of display, data base, and message definitions. These 
definitions are initially made at SpeCial Real Time operating System 
SYSGEN time through the use of the offline utility program DPPXUTIL. 
This same program (DPPXUTIL) is used, as the realtime system develops, 
to add new definitions or to change old ones. The offline utility 
program may be run in a partition during an online run, or on a backup 
cPU. 

The data base and message data sets are created and updated using the 
offline utility. The control cards and macro statements coded by the 
user result in the data sets being created to the user specification. 
This is shown in Figure 3-7. 

# /DPPXUCTL 
Control 

Statement 

Coded 
Source 
Macro 

Statements 

r------:l*-----------------
Data Base 

Final Phase 
Processor 

Allocated by 

Allocated by 
DO Cards Named 
DBINIT 
DBINIT2 

Message Final I-=D;.=D~C::.=a:..:::rd~M~S:::.::G::.=D~S:....--_____ .w 
Phase Processor 

DPPXUTIL 
Allocated by 
DO Cards Named 
DOOUOD 
DPOUDD2 

Figure 3-7. Offline utility Processing Overveiv 

The control statement (~/ DPPXUCTL) defines to the offline utility data 
set(s) that is to be created or modified, the locations of the source 
macro statements to be used to create or modify the data set, and the 
function to be performed on the data set, i.e., ADD, DEL, REPL, or 
TEST. The format of the required source macro statements is different 
for each of the three types of output data sets, and the description 
of these macros follows in the final phase processor descriptions. 

In addition, a facility is provided by the offline utility to allow 
the user to modify his source macro statement data set prior to its 

INSTALLATION GUIDE 3-47 



use in generating the output data set. The user requests the update 
function with a #/ DPPXOPDT control card. The offline utility program 
invokes the OS/VS1 update utility program IEBUPDTE. Therefore, the 
user can code IEBUPDTE statements, pass them to DPPXUTIL, and have his 
source macro data set updated in the same execution as the creation of 
the output data sets. It should be noted that the offline utility 
processes in the same sequence as the control statements it receives. 
As a result, if the update is to take place before the online data set 
is modified or created, the DPPXUPDT card must precede the DPPXOCTL 
statement in the input stream. NO limit is imposed by the offline 
utility on the number of control statements that may be used in one 
execution. 

Input to the offline utility must be either cards or blocked or 
unblocked card image records from a source library. The input consists 
of control statements, which define the operation to be performed by 
the offline utility and soarce macro statements. The macro statements 
may be in the input stream or in a source library. The macro source 
library cannot contain control cards. The control statement may be in 
the input stream or may be a sequential data set. 

Each control statement consists of an identifier, an operation, and 
parameters. The identifier consists of the characters #/ in columns 
1 and 2 to denote a control card. The operation must be preceded and 
followed by at least one blank. The operation describes the function 
to be performed by the offline utility. DPPXUCTL specifies that an 
online data set is to be created or modified. DPPXUPDT specifies that 
a source macro data set is to be updated. The parameters further The 
parameters further describe the operation to the utility. 

The utility program begins processing by looking in the SYSIN data set 
for a control statement. The first statement should be a control 
statement; if it is not, an error message is issued, and data in SYSIN 
will be bypassed until a control statement is found. When a control 
statement is found, it is validity checked, any errors will cause error 
messages to be issued and a search begins for the next control 
statement. Control statement errors do not terminate the utility 
program; however, processing for the control statement in error will 
be bypassed with appropriate diagnostic messages. The offline utility 
program terminates when no more control statements are to be processed. 

When a valid DPPXUCTL control statement has been processed, all the 
input source macro statements for the control statement are read in 
and rewritten into the data set allocated to the. job by the SYSUT4 DD 
card. This data set is then passed to the assembler. When a valid 
DPPXUPDT control statement is processed, the IEBUPDTE control and data 
statements (which must folIo, the DPPXOPDT statement in the SYSIN input 
stream) are read in and rewritten to the SYSUT4 data set. This data 
set is then passed to IEBUPDTE. 

The source macro statements used to define an online data set may be 
maintained as a sequential data set or as a member of a partitioned 
data set. These source macro data sets may be created and modified by 
the offline utility. The modification of a source macro data set is 
invoked by the #/ DPPXUPDT control statement. Figure 3-8 shows an 
overview of the update processing. 

3-48 Description and Operation Manual 



DPPXUTIL 

Wnteto 
SYSUT4 DO 

Input to 
IEBUPDTE 

Link to 
IEBUPDTE 

Return 

Print 
Output 

Figure 3-8. 

11/ DPPXUPDT CONTROL CARD PROCESSING 

Link 

Return 

IEBUPDTE Input 
Source 
Member 

Update Processing Overview 

Output 
Source 
Member 

INSTALLATION GUIDE 3-49 



The format of the DPPXUPDT control statement is: 

#/ DPPXUPDT OLDSET=ddname,NEWSET=ddname 

#/ Is required in columns 1 and 2. 

DPPXUPDT 
Specifies a source data set update and must be preceded and followed 
by a t least one blan k. 

OLDSET=ddname 
Specifies the ddname of the DD card allocating the data set to be used 
as input (SYSUT1) by IEBUPDTE. 

NEWSET=ddname 
Specifies the ddname of the DD card allocating the data set to be used 
as output (SYSUT2) by IEBUPDTE. 

The IEBUPDTE control statements and input data statements must be coded 
as specified in the Q~VSl Qlilitie§ Man~al, GC35-0005, and must 
immediately follow the DPPXUPDT control statement in the SYSIN input 
stream. Standard assembler language rules apply to comments and 
continuation. 

The following example shows a typical offline utility input stream for 
an update function. 

#/ DPPXUPDT OLDSET=DBASIN,NEWSET=DBASaUT 
./ ADD NA~E=DBAS1,LIST=ALL 

AR RAY N AM E= ARRAYO 1 
ITEM NAME=ITEM101,TYPE=F 
ITEM NAKE=ITEM102,TYPE=F 

ARRAY NAME=ARRAY02 
ITEM NAME=ITEM201,TYPE=C,LEN=16 

./ CHANGE NAME=DBAS2,LIST=ALL 

./ DELETE SEQ1=200,SEQ2=300 
ITEM NAKE=ITEM705,TYPE=F 00000500 

./ REPL NAME=DBAS3,LIST=ALL 
ARRAY NAME=ARRAY05 

ITEM N AME=ITEM50 1, TYPE=A 

source Data set Update Control Card Example 

In this example, DD cards named DBASIN and DBASOUT may define the same 
or different data sets. A new member named DBAS1 will be created in 
the data set defined by DD statement DBASOUT. Existing member DBAS2 
will have statement numbers 200 through 300 deleted, and statement 
number 500 will be replaced. Existing member DBAS3 will be replaced. 

The DPPXUCTL control statement requests the creation or modification 
of a data set which is normally used online. The utility program, 
after reading the source macro data set and rewriting it to the SYSUT4 
data set, links to the assembler. The link will be to the OS/VS1 
assembler unless the user requests the use of the assembler H program 
product (5734-AS1) by coding PARM=H on the JCL EXEC card. The data in 
SYSUT4 is assembled and control is returned to the offline utility. 
If the assembler return code is 8 or greater, processing for this 
control statement is aborted, and the utility attempts to read another 
control card. If the return code is less than 8, the utility loads 
the as/VS1 Loader, which loads the assembled module into virtual 
storage. Control is returned to the utility and if the return code is 
less than 8, the appropriate final phase processor is invoked by a link 

3-50 Description and Operation Manual 



to update the online data set. The appropriate final phase processor 
depends upon which operand vas coded in the AREA= keyword of the control 
statement. Figure 3-9 shows an overview of the online data set 
processing function. 

The format of the DPPXUCTL control statement is shown belove Standard 
assembler language rules apply to comments and continuation with the 
exception that each parameter must not be split across tvo cards; that 
is, each parameter must be wholly contained on one card. 

I D1SPDEF} I·} #/ DPPXUCTL AREA = DBDEF , INPUT = ddname 
MSGDEF ddname (membemame) 

[ { ADD 11 [, TYPE = device type 1 
DEL 

, OPTION = REPL 

TEST 

II Must be in columns 1 and 2~ 

DPPXUCTL 
Specifies an online data set is to be modified or created. This must 
be preceded and follow~d by at least one blank. 

AREA= 
Must be specified and must specify one of three keywords: 

DISPDEF 
Specifies that the operation be performed against the display data 
set. 

DBDEF 
Specifies that the operation be performed against the data base data 
set. 

MSGDEF 
Specifies that the operation be performed against the message data 
set. 

INSTALLATION GUIDE 3-51 



DPPXlJTlL 

---.- AeaolriilU'--- Input 

From Cards 
or Inpul 
Dala SUI 

and Wrrtt! 
II to SYSUT4 

OUlput 

Lmk 

Llflk to 

Loader~_R,-",e=turC!.!..n ---I 

Link lol--_=Lln=.k_----J>I 

SYSUT4 

SYSGO 

Final Phase 1---------; 
Processorl4--_R,-",e=t ,=n_--i 

RETURN 

Pnnt Output 

Figure 3-9. Online Data Set Processing Overview 

INPUT= 
Must be specified and must specify one of the following: 

* Specifies that the input for this execution immediately follows the 
control statement in the,SYSIN input stream. 

ddname 
specifies that the input for this execution is in the sequential data 
set allocated to the job by the named (ddname) DO statement. 

ddname(member name) 
Specifies that the input for this execution is in the "member name" 
member of the partitioned data set allocated to the job by the named 
(ddname) DO statement. The ddname and member name may consist of 
from 1 to 8 alphabetic (A-Z) or numeric (0-9) characters, the first 
of which must be alphabetic. Special characters 0), I, and $ are not 
allowed. 

OPTION= 
Must be specified; it indicates the type of operation to be performed. 
One of the following must be specified: 

ADD 
Add a new member to the online data set. 

3-52 Descri ption and Operation "anual 



HEPL 
Indicates to replace an existing member in the online data set and 
if the member does not exist, to add the new one. 

DEL 
Signifies to delete an existing member from the online data set. 

TEST 
Is similar to REPL; the member is assembled, listing produced and so 
forth, but the content of the online data set is not changed. 

TYPE= 
Is optional and is recognized only when AREA=DISPDEF is specified. 
If AREA=KSGDEF or DBDEF,TYPE= is ignored. When coded, it must specify 
the device type of the display hardware. i.e., 3277-1, 3277-2, 5985. 
The default, if AREA=DISPDEF and TYPE= is not coded, is 3277-2. 

The following example shows a typical input stream to the offline 
utility to process an online data set • 

• / DPPXUCTL 

'/ DPPXUCTL 

'/ DPPXOCTL 

'/ DPPXUCTL 

AREA=DBDEF,INPUT=*,OPTION=ADD 
ARRAY N1KE=ARRAY09 

ITEK NAftE=ITEK901,TYPE=F 
ITEK NAKE=ITEK902,TYPE=F 

AREA=DBDEF,OPTION=REPL, 
INPUT=DBASOUT(DB1S1) 

AREA=KSGDEF,OPTION=REPL 
INPUT=KSGIN(TIMEMSG) 

AREA=MSGDEF,OPTION=DEL, 
INPUT=MSGSEQ 

Online Data Set Update Example 

* 
* 
* 

In the preceding example. the following processing is being requested. 

1. A new member (ARRAY09) is being ADDed to the online data base 
data set. The member will be created from the ARRAY and ITEM 
cards following the control statement in the input stream 
(INPUT=*). 

2. The member named DBAS1 from the source macro input data set 
allocated by DD card DBASOUT is to be assembled. The resulting 
member(s) will R'EPLace corresponding members in the online data 
base data set. 

3. The member named TIMEMSG from the source macro input data set 
allocated to the job by the DD card named MSGIN is to be 
processed. The resulting member(s) will REPLace corresponding 
members in the online aessage data set. 

4. The sequential source macro input data set allocated to the job 
by the DD statement named KSGSEQ is to be processed. The 
resulting member names will be DELeted from the online message 
data set. 

The following example is typical of the JCL required to execute the 
offline utility program (DPPXUTIL). Following is a description of each 
of the JCt statements in the example. The ~nderlined portions of the 
JCL will likely have to be changed by the user to suit the requirements 
of his operation. 

INSTALLATION GUIDE 3-53 



IIBUILD JOB 1!CCOUNTIN~!HFORM AT I01U 
lIS 1 EXEC PGM=DPPXUTIL,~!iM=li 
IISTEPLIB DD DSN=Y§.ll.Jtl1!!LIB,DISP=SHR 
//SYSPRINT DD SYSOOT=A 
//ASMPRINT DD SYSOUT=A 
//UPDPRINT DD SYSOUT=A 
//LODPRINT DD SYSOUT=A 
//SYSLIB DD DSN=Y~ER.MAC1I~,DISP=SHR 
/ / DO OS N=SYS 1.M ACLI B, OISP=SHR 
//SYSUT1 OD UNIT=(SYSDA,SEP=SYSLIB),SPACE=(CYL,(2,2) 
//SYSUT2* 00 UNIT=(SYSDA,SEP=SYSUT1),SPACE=(CYL, (2,2) 
//SYSOT3* 00 UNIT=(SYSOA,SEP=SYSUT1),SPACE=(CYL,(2,2» 
//SYSUT4 DO UNIT=(SYSDA,SEP=SYSUT1) ,SPACE=(CYL,(2,2» 
/ / DCB= (RECF K=FB,LRECL=8 0, BLKS IZ E=3200) 
//DBINIT DO OSN=!!~~~,DISP=OLD 
I/DBINIT2 DD OS N=~ER.O B2, OISP= (MOD, PASS) , DCB= (OSORG=DA) 
//MSGDS DD DSN=USER~~,DISP=OLD 

I/DPOUDD DD DSN=US~~IS~l,OISP=OLD 
I/DPOUDD2 DO DSN=Q~~~P2,DISP=OLD 
I/DBAS1N DD DSN=!!~ER~ggRC~DB~ACRO~,DISP=OLD 

//DBASOUT DD DSN=!!~ER~OUB£~~DB~MACROS,DISP=OLD 
I/MSGIN DD OSN=Q~ER~OURC~KS~MA£ROS,DISP=OLD 
//MSGSEQ DO DSH=USER~OU~£~~SE~~~~AACRQ~,DISP=OLO 
//SYSGO DO UN1T=SYSDA,SPACE=(CYL, (1,1», 
/ / DCB= (RECFM=FB, LRECL=80, BLKS IZ E=3200) 
//SYSIN DO * 
/* 

(Input Control Statements) 

JCL Example 

*Not required when "PAR"=H" is specified on the execute card. 

JOB 
Is a standard OS/VS1 job card; the accounting information is dependent 
upon individual installation requirements. 

EXEC 
Is a standard OS/VS1 EXEC card; it must specify PGM=DPPXUTIL or an 
applicable user PROC. 

PARM 
The offline utility will provide the option to print or not to print 
statements generated by the processing of a macro. This will be 
accomplished by the offline utility inserting or not inserting a PRINT 
NOGEN statement a.'s the first sta tement in the Assembler SYSIN stream. 
Control will be provided through the PAR" keyword operand on the 
execute card for DPPXUTIL. This option is provided in addition to 
the option to select the OS/VS1 assembler or the H assembler. 

The following values may be specified: 

F Selects the OS/VS1 Assembler. 

H Selects the H Assembler. 

GEN Print macro generated statements. 

HOGEN Do not print macro generated statements. 

In all cases, the default values will be "F", and II NOGENII • 

3-54 Description and Operation Manual 



Valid combinations of the values are: 

PARM = 'F' 
PARM = , H' 
PARM = 'GEN' 
PARM = 'NOGEN' 
PARM = 'F,G EN' 
PARM = • F, NOGEN' 
PARM = 'H,GEN' 
PARM = , H, N OGEN' 

If an invalid value is specified for the PARK operand or if the PARM 
operand is omitted, the default of PARK='P,NOGEN' viII be used and 
message DPPXUT25 will be printed. 

STEPLIB DD 
Defines the library containing the DPPXUTIL program and final phase 
processors and is not required if these programs reside in 
SYS1,LINKLIB. 

SYSPRINT DD 
Defines a data set in which printed output will be placed, or may 
specify a standard output class. 

ASMPRINT DD 
(Same as SYSPRINT) for printed output from the assembler. 

UPDPRINT DD 
(Same as SYSPRINT) for printed output from IEBUPDTE. 

LODPRINT DD 
(Same as SYSPRINT) for printed output from the loader. This may be 
a DD DUMMY to reduce printed output. 

SYSLIB DD 
Defines the data set(s) containing the macros used by the assembler. 

SYSUT1 DD 
Defines the assembler work data sets. The device classname SYSDA 
defines a direct-access device. This name (SYSDA), if ased, must have 
been generated into the OS/VS1 system. SEP= is specified to improve 
assembler performance. 

SYSUT2 DD 
(Same as SYSUT1). Not required vhen "PARM=H" is specified on the 
execute card. 

SYSUT3 DD 
(Same as SYSUT2). 

SYSUT4 DD 
Defines a work data set for DPPIUTIL. The DCB parameters must specify 
RECPM=FB and a BLKSIZE that is a multiple of 80. The LRECL must be 
80. 

DBINIT DO 
Defines the data base partitioned data set that contains a member for 
every array in the data base, control information for direct access 
resident arrays and initial data for VS resident arrays. This DD card 
is required if any utility control card specifies AREA=DBDEF. 

DBINIT2 DD 
Defines the BDAK data set which contains the initial data for DA 
resident arrays. This DD card is required if any utility control 
statement specifies AREl-DBDBF. The data set described by this DD 

INSTALLATION GUIDE 3-55 



card must be allocated prior to the execution of the offline utility. 
The DISP= operand on the DD card must specify (MOD, PASS). 

MSGDS DD 
Defines the data set containing online display information. This DD 
card is required if any utility control statement specifies 
AREA=[1SGDEF. 

DPOUDD DD 
Defines the data set containing online display information. This DD 
card is required if any utility control statement specifies 
AREA=DISPDEF. 

DPOU002 DD 
Defines the display online comment data set. This DD card is required 
if any utility control statement specifies AREA=DISPDEF and the DISPGEN 
statement specifies COMMENT=YES. 

DBASIN DD 
May have any 00 NAME. In this example, the DBASIN DD name was used 
to correspond to the OLDSET= name in the source data set update control 
card example. The name chosen on the OLDSET= may be any valid DD 
name; however, it must have a corresponding DD statement. 

DBASOUT DD 
(Same as DBA SIN) for NEWSET= keyword 

MSGIN DD 
(Same as OBASIN) for INPUT= in the online data set update example 

MSGSEQ DO 
(Same as DBA SIN) for INPUT= in the source data set update control card 
example 

SYSGO DO 
Defines the data set to contain the object deck output from the 
assembler. This data set is used as input to the OS/VS1 loader. 

SYSIN DO 
Defines the input from which OPPXUTIL gets its control statements as 
possibly some source macro statements. 

The message final phase processor accepts the load modules created as 
a result of offline utility processing of DEFMSG statements and puts 
them into the online message data set. Each DEFMSG statement results 
in a member being processed in the partitioned data set allocated by 
the MSGDS DD card. 

The type of processing is determined from the request in the control 
card, e.g., ADD, DEL, REPL, or TEST. 

The following is an example of offline utility control statements that 
would result in the invoking of the message final phase processor. 

1/ DPPXUCTL AREA=MSGDEF,INPUT=*,OPTION=ADD 
DEFMSG 7,ROUTE=200,ACT=I,TEXT='DUMMY MESSAGE' 

A control statement such as this would cause message number 7 to be 
added to the online message data set. The message would be a member 
with the name DPP007. 

3-56 Description and Operation Manual 



There are more examples and additional descriptions of the DEFr-tSG in 
this manual in the section describing the online message handler. 

The data base final phase processor receives control from the offline 
utility to process the assembled and loaded input created by the input 
cards following the AREA=DBDEF card. The function of the data base 
final phase processor is to build and modify the online data base data 
sets. 

The input is the assembled and loaded data generated from the user 
coded ARRAY, BLOCK, and ITEM macros. These macros are used offline 
only and are described in detail in the following section. 

For the purpose of the following disc~ssion, an ARRAY is defined as an 
arrangement of data ITEMS in one or more dimensions or BLOCKS. The 
Special Real Time operating System arrays vith data items of one 
dimension only are called UNBLOCKED arrays. Arrays with two or more 
dimensions are BLOCKED arrays. 

Arrays which will reside in virtual storage during online processing 
are known as VS resident arrays. A VS resident array may be either a 
BLOCKED array or an UNBLOCKED array. An array which resides on a direct 
access device during online execution is known as a DA resident array. 
A DA resident array must be a BLOCKED array. 

A 'LOGGABLE' array is a VS array for which logging has been requested. 
A 'LOGGING' array is a DA resident array into vhich a VS resident 
logable array is being logged. For a more detailed description of data 
base logging refer to the section in Chapter 2 entitled, "Data Base 
Logging." 

The Special Real Time Operating System data base consists of VS resident 
arrays and DA resident arrays. Data base logging will be performed on 
a demand basis or on a cyclic basis if cyclic .logging is SYSGENed. 

The offline utility program and the data base final phase processor 
create and update the data base. The type of array and the operation 
to be performed are defined through the utility control statements and 
the offline macros ARRAY, ITEM, and BLOCK. 

The ARRAY macro is used to define the array, its characteristics, and 
its dimensions. The BLOCK macros define the boundaries within the 
dimensions of the array. The ITEM macro defines each item or element 
of the array and its initial values. An item control block is created 
to define each ITEM defined. The item control block contains the item 
name, the type of data, the length of data, the repetition factor of 
the item, and the displacement into the array of the start of the data 
item. 

The operation to be performed on the data base is defined to the offline 
utility by the OPTION= parameter on the #/ DPPXUCTL input control 
statement. The operation types and meanings are shown as follows: 

ADD 
Indicates a new array is to be added to the data base. If the data 
base already contains an array with the same name, the new array viII 
not be added, and an error message will be issued. 

REPL 
Indicates that a new array is to be added to the data base. If the 
data base does not contain an array with the same name, the array will 

INSTALLATION GUIDE 3-57 



be added. If the data base does contain the named array, it will be 
replaced in the data base. 

DEL 
Indicates that an existing array is to be deleted from the data base. 
If the array does not exist, an error message is written. 

TEST 
Is similar to REPL except the data base is not modified. 

Th~ Special Real Time Operating system data base consists of one 
partitioned data set (DSORG=PO) and one or more direct data sets 
(DSORG=DA). The partitioned data set (PDS) is allocated at the Special 
Real Time Operating System SYSGEN time and is referenced in realtime 
by the DD card named DBINIT. The direct data set is also allocated at 
the Special Real Time Operating system SYSGEN time and is referenced 
by the //DBINIT2 DD card. 

The PDS contains a directory entry for every array in the data base. 
Information in the directory entry is used for data base initialization. 
The members of the PDS contain the Item Control Blocks for each arra~ 
in the data base. For VS resident arrays the member containing the 
Item control Block also contains the VS resident array and its initial 
data. For DA resident arrays the PDS member containing the Item Control 
Block also contains control information used to locate the corresponding 
DA array in the direct data ~et. 

There can be only one PDS in the data base. However, additional direct 
data sets can be allocated and become part of the data base. Once an 
additional direct data set has been referenced during execution of the 
offline utility, any further reference to this data set as part of the 
data base must be made through a DD card with the DD name the same as 
the DD name used on the DADD or the LOGDD keyword on the ARRAY macro 
used to create the array. This is because the DO name becomes part of 
the control information written into the PDS member for the array. 

Secondary data bases may be created by the user. To do this, he would 
create a PDS and one or more direct data sets and reference them through 
the OBINIT and DBINIT2 DD cards. 

3-58 

The data base data sets contain records with references to 
and dependencies on other records and members. These 
references and dependencies are constructed by the offline 
utility program OPPXUTIL, and the data sets must not be 
modified except by DPPXUTIL. This precludes moving or 
copying an entire data base data set, and also prohibits 
modifying their content by adding or deleting records or 
members, or by changing block sizes. Concatenation of data 
base data set groups for realtime execution is not allowed. 

Description and Operation Manual 



OFFLINE MACROS 

The following pages describe the operands and functions of the offline 
macros. For convenience they are listed in alphabetical order. 

Some of the operands on the data 
to accept self-defining terms or 
actual value. This will provide 
maintenance of data base arrays. 
this capability are shown below. 

base offline macros have been designed 
absolute expressions in place of an 
greater flexibility in design and 
The macros and operands which provide 

ARRAY 

BLOCK 

ITEM 

EXAMPLE: 

BLKCT= 
BLKSIZE= 

start number 

LEN= 
RPT= 
DISP= 

,stop number 

The following will illustrate some self-defining terms and absolute 
expressions, the format of that can be used in the ARRAY, BLOCK, and 
ITEM macros. 

DATA 
COUNT 
START 
A 
B 
C 
STOP 
SIZE 

Note: 

OSECT 
EQU 10 
DS 00 
DS F 
DS D 
DS F 
DS 00 
EQU STOP - START 
ARRAY NAME=ARAY, BLKCT= (COUNT) ,BLKSIZE= (SIZE) 
BLOCK (L' A) , (C-B) 
ITEM TYPE=C,LEN= (L 'A) ,DISP=(A-START) 
ITEM TYPE=C,LEN=~OUNT),DISP=4,RPT=(L'B) 

• self-defining terms and absolute expressions must be enclosed in 
par enthes is. 

• Care must be taken not to become "H" assembler dependent. 

• No validity checking of block numbers will be done in the BLOCK 
macro if a self-defining term or absolute expression is used on a 
block macro. 

• No validity checking will be done to prevent items from overlapping 
when the "DISP=" operand is used. 

INSTALLATION GUIDE 3-59 



ARRAY 

The ARRAY macro is used to define a data base array to the database 
offline utility. 

[symbol] ARRAY {NAME=name } 
NUMBER=number 

[,INIT= {~~s}J 

[,REINIT= { ~~s}] 

[,LOCATE= {6!} ] 

[,BLKCT= IBLOCK IJ number 
(self-defining term) 
(absol~te expression) 

lBLKsrZE= rUmber n (self-defining term) 
(absolute expression) 

[,DADD= ddnameJ 

[, USE= { vaiue }] 

[,BNDRY= rBLWD! ] PAGE 
MIN 

[LOGNAME= name] 

[LOGDD= ddname] 

[ LOGFREQ= tV~lue}J 
[LOGCOPY= {V:lue }] 

[LOGWRAP=nameJ 

3-60 Description and Operation Manual 



NAME= 
Is a 1 to 8 byte alphameric name that conforms to standard OS naming 
conventions for members of a partitioned data set. The array name 
for each array must be unique for all arrays in the data base. The 
NAME and NUMBER parameters are mutually exclusive. 

NUMBER= 
Is a decimal number from 1 through 255 by which the array may be 
referenced during online data base processing. The total number of 
arrays in the data base is not limited to 255, however, the maximum 
number of NUMBERed arrays is 255. An entry will be allocated in the 
online tables for each number from one to the highest assigned array 
number even though all numbers do not have an array built for them 
(i.e., two arrays are created - NUMBER=2 and NUMBER=10 - this will 
create only two arrays in the data base but will create 10 entries in 
the online tables.) For this reason, numbers should be assigned in 
ascending sequence starting with one. Skipped numbers are valid, but 
will result in wasted virtual storage and extra processing time for 
online data base processing. The NAME and NUMBER parameters are 
mutually exclusive. 

INIT= 
Is used to determine whether a VS resident array is to be initialized 
at data base initialization time. If YES is specified, space will be 
allocated in VS, and the data specified in the ITEM cards for this 
array will be moved from a direct access device into the allocated 
space in VS. If NO is specified, space will be allocated in VS, and 
no data will be moved into the allocated space. (The space may contain 
residue data from previous programs.) The The default value for this 
parameter is NO. This parameter is ignored if DA is specified on the 
LOCATE parameter. 

REINIT= 
Defines reinitialization action to be taken after a'Special Real Time 
Operating System restart. The parameter is valid only if LOCATE=VS 
is specified and if logging is specified for the array. If REINIT=YES 
is specified, the data from the most recently logged copy of the array 
will be read into the space allocated to the array after the restart 
ocCUrs. Reinitialization will be bypassed by the data base online 
initialization routines if the logged copy is not at the same update 
level as the array which was loaded at the Special Real Time Operating 
System initialization. This would occur if the array had been 
redefined through the offline utility programs. 

If REINIT=NO is specified or the parameter is omitted, the content of 
the array will not be modified after a restart occurs. 

LOCATE= 
Is used to determine whether the array is to reside on a direct access 
device or in virtual storage during online data base processing. If 
VS is specified, the array will be initialized in virtual storage in 
accordance with specifications of the INIT parameter. If DA is 
specified, no initialization will take place at data base 
initialization time. The default value for the LOCATE parameter is 
VS~ 

BLKCT= 
Determines whether the array is blocked or unblocked. If this 
parameter is omitted, the array is assumed to be unblocked and, 
therefore, must reside in virtual storage. A number from 1 through 
32767 will specify the exact number of data blocks that will be created 
for this array. The number of data blocks can be implied by specifying 
BLOCK on the BLKCT This indicates that the highest block number 
specified on a BLOCK macro for this array will determine the number 
of data blocks for·this array. BLKCT is required if DA is specified 

INSTALLATION GUIDE 3-61 



on the LOCATE parameter. When BLKCT=n is specified, there cannot be 
either more BLOCK macros than n or a BLOCK macro cannot specify a 
number great er than n. 

Examples: 

ARRAY 
BLOCK 

BLOCK 

BLOCK 

NAME=EXAMP1,BLKCT=2 

ITEM 

ITEM 

ITEM 

This is invalid' because BLKCT=2 is specified but the array has 3 BLOCK 
macros. 

ARRAY 
BLOCK 

NAME=EXAMP2,BLKCT=4 
1,5 
ITEM 

This is invalid because BLKCT=4 vas specified and the BLOCK macro has 
a request for 5 blocks. 

ARRAY 
BLOCK 

NA ME=EXAMP 3, BL KCT= 1 0 
2,5 
ITEM 

This example is valid and viII build an array with 10 blocks in which 
blocks 2 through 5 viII be created with the initial data as requested 
in ITEM cards and blocks 1 and 6 through 10 viII also be created but 
will have initial data of binary zeros. 

If BLKCT=BLOCK were,specified, the number of blocks created would be 
the same as the highest block number generated by a BLOCK macro. 

ARRAY 
BLOCK 

BLOCK 

BLOCK 

NAME=EXAMP4,BLKCT=BLOCK 
1,5 
ITEM 

ITEM 

ITEM 

The above example would result in a block count of 7 as block numbers 
are assigned sequentially when no operands are specified. 

BLKSIZE= 
Specifies the number of bytes to be allocated to each block of data 
in this ~rray. This parameter is ignored if the BLKCT parameter is 
omitted. If the BLKSIZE parameter is omitted and the BLKCT parameter 
is specified, the size of the first data block described by ITEM macros 
for this array will determine the block size for all blocks in this 
array. The maximum block size is limited to the track capacity of 
the device to which the array will be allocated. If the amount of 
data specified in the ITEM cards for the first BLOCK is greater than 
the data set block size, the data block will be truncated to data set 
block size and this will be the size for all subsequent blocks. If 
subsequent blocks generate less data than the first BLOCK, they viII 
be padded with binary zeros to the same size as the first block. If 
subsequent blocks exceed the size of the first block, they will be 
truncated. When BLKSIZE=n is specified, each BLOCK will be created 
n bytes long. 

3-62 Description and Operation Manual 



DADD= 
Specifies the name of a data definition (DD) statement which describes 
a BDAM data set where space for this direct access resident array will 
be allocated. This parameter is required if DA is specified on the 
LOCATE parameter; however, if VS is specified on the LOCATE parameter, 
the DADO parameter is ignored. 

USE= 
Is a code from 1 to 1 which indicates the expected frequency of 
reference to items in the array. The arrays are loaded into virtual 
memory based upon this code. Code 1 indicates the highest usage, and 
code 7 has the lowest usage. If the USE parameter is omitted or if 
an invalid value is specified, a value of 1 will be assumed as the 
default use code. This parameter is ignored if DA is specified on 
the LOCATE parameter. 

BNDRY= 
Is used to determine the boundary alignment for a virtual storage 
resident array at data base initialization time. If the parameter is 
omitted or if DBLWORO is specified, the array may be initialized 
starting on any doubleword boundary. If PAGE is specified, the array 
will be initialized to start on a virtual storage page boundary. 
Specification of MIN will cause Data Base Initialization to do 
calculations based on the array length and position the start of the 
array so that it will be contained in the smallest possible number of 
virtual storage pages. 

Those arrays for which logging is specified will have a 24-byte logging 
header appended to the front of the space allocated in VS. For 
boundary alignment purposes, the first byte of the logging header will 
be considered the start of the array. 

The following operands describe the logging array associated with a is 
array and the logging characteristics of the array being defined. 
Logging of the array will not be allowed if they are not specified. 
Since a OA resident array is allocated in response to these operands, 
they should not be specified if logging is not required. 

LOGNAME= 
Specifies a 1 to 8 character name to be used as the array name of a 
direct access resident array' where the virtual storage resident array 
is to be logged. The log array name must conform to the same standards 
and conventions as set forth under the NAME parameter. This parameter 
is ignored if DA is specified on the LOCATE parameter. If this 
parameter is omitted and VS is specified-on the LOCATE parameter, no 
logging will be performed. 

LOGDD= 
Specifies the name of a data definition statement which describes a 
BDAM data set where space can be allocated for the logging array where 
this array is to be logged. This parameter is required if VS is 
specified on the LOCATE parameter and if a name was specified on the 
LOGNAME parameter. This parameter is ignored if DA is specified on 
the LOCATE parameter. 

LOGFREQ= 
Indicates by a code of 0 to 3 the frequency at which this array is to 
be logged. A code of 0 indicates that it is to be logged only on 
demand. Codes 1 to 3 are used in conjuntion with system generation 
parameters to specify the log frequency. A code of 1 is the highest 
frequency, and 3 is the lowest frequency. If the LOGFREQ parameter 
is omitted, or if an invalid value is specified, a value of 0 will be 
assumed. This parameter is ignored if DA is specified on the LOCATE 
parameter. 

INSTALLATION GUIDE 3-63 



LOGCOPY= 
Specifies the number of history copies of this array for vhich space 
is to be allocated in the logging array. If the LOGCOPY parameter is 
omitted or if 0 is specified, a value of 1 will be assumed as the 
default value. This parameter is ignored if DA is specified on the 
LOCATE parameter. 

LOGWRAP= 
Specifies the name of a user-written load module to be given control 
when the last block of the logging array has been filled and wrap 
around viII occur on the next request to log this array. This 
parameter is ignored if DA is specified on the LOCATE parameter. 

The load module will be entered vLa a PATCH to the load module as a 
dependent task. The parameter field will be eight bytes and contains 
the name of the array for which the logging array wrapped around. 

The following chart shows the ARRAY macro operands, which are required 
and which are optional for the creation of any type array. 

3-64 

VS Array Operands Unblocked 

NAME R 
NUMBER 
INIT 0 

REINIT 0 

LOCATE 0 

BLKCT * 
BLKSIZE I 

DADD I 

USE 0 

BNDRY 0 

LOGNAME ** 
LOGDD I 

LOGFREQ I 

LOGCOPY I 

LOGWRAP I 

R - REQUIRED OPERAND 
0- OPTIONAL OPERAND 
I - IGNORED OPERAND 

VS Array DA Array VS Array 

Blocked Blocked with Logging 
Unblocked 

R R R 

0 I 0 

0 I 0 

0 R 0 

R R * 
0 0 I 

I R I 

0 I 0 

0 I 0 

** I R 

I I R 

I I 0 

I I 0 

I I 0 

• - THE PRESENCE OF THIS OPERAND WOULD CHANGE THE ARRAY FROM 
UNBLOCKED TO BLOCKED 

•• - THE PRESENCE OF THIS OPERAND WOULD CHANGE THE ARRAY INTO 
A LOGABLE ARRAY. 

VS Array 
with Logging 

Blocked 

R 

0 

0 

0 

R 

0 

I 

0 

0 

R 

R 

0 

0 

0 

Description and Operation Kanual 



BLOCK 

The BLOCK macro is used to define data blocks to the Data Base Final 
Phase Processor. Each block in an array will have identical dimensions. 
Two consecutive BLOCK macros are not allowed. The BLOCK macro must be 
followed by an ITEM macro. 

[ { start number I ] symbol BLOCK (self-defining term) 
(absolute expression) 

[ { end number I ] 
(self-defining term) 
(absolute expression) 

start number 
Is the number to be assigned to the data block described by the ITEM 
macro statements following this macro statement. If this parameter 
is omitted, the next sequential block number will be assumed. The 
lowest valid block number is 1. 

end number 
Is the number to be assigned to the last data block described by the 
ITEM macro statements following this macro statement. This parameter 
is not required when only one data block is described by the BLOCK 
macro. This parameter causes the data block described to be duplicated 
and assigned a block number for each consecutive number from the start 
number through the end number'. The value of the end number must be 
greater than the value of the start number. 

Block numbers should be assigned in consecutive, ascending sequence 
starting with the number 1. Missing block numbers between 1 and the 
highest block number specified will cause the generation of a block 
of binary zeros to be generated for each of the missing numbers. 

If the BLKCT parameter was not specified on the ARRAY macro, the BLOCK 
macro will be ignored. The BLOCK macro must not specify a block number 
greater than the value specified in the BLKCT parameter on the ARRAY 
macro. 

EXAMPLES :' 

ARRAY 
BLOCK 

BLOCK 

NAME=BLKEX Aft, BLKCT=BLOCK 

IT EM TYPE= H, IN IT=21 
10 

ITEM TYPE= N 

This example will create an array of 10 blocks with each block two 
bytes long. Block 1 will be initialized to 21, while 2 through 10 will 
be binary zeros. 

ARRAY 
BLOCK 

NAME=XMP,BLKCT=10 
3,5 
ITEM TYPE= F, IN IT=-1 

This example will create an array with ten 4-byte blocks. Blocks 1 
and 2 will be initialized to binary zeros, blocks 3, 4, and 5 to binary 
ones, and blocks 6 through 10 to binary zeros. 

INSTALLATION GUIDE 3-65 



ARRAY 
BLOCK 

BLOCK 

BLOCK 

BLOCK 

BLOCK 

NAME= BLK EX , BLK CT=BLOCK 
4 
ITEM TYPE=C,INIT=' A' ,LEN=10 
6 
ITEM TYPE= C, INIT=' B' ,LEN=6 
7 
ITEM TYPE=F 
10,15 
ITEM TYPE= F, IN IT=-l 

ITEM TYPE=C,LEN=5 

The above example will create an array with 16 blocks, each having 10 
bytes. Blocks 1, 2, and 3 will each have 10 bytes of binary zeros. 
Block 4 will be the character 'A' -(HEX 'Cl') followed by 9 bytes of 
blanks (HEX '40'). Block 5 will be 10 bytes of binary zeros. Block 
6 will be the character 'B' -(HEX 'C2'), 5 bytes of blanks (HEX '40'), 
followed by 4 padding bytes of binary zeros. Block 7 viII be fullvord 
aligned and viII have 4 bytes of zeros (F) followed by 6 bytes of 
padding, also binary zeros. Blocks 8 and 9 will each have 10 bytes of 
binary zeros. Blocks 10 through 15 viII also be full word aligned, each 
containing 4 bytes of binary ones (INIT=-l) followed by 6 bytes of 
padding (binary zeros). Block 16 will be 10 bytes long with the first 
5 bytes being blanks (HEX '40') and 5 bytes of binary zeros. 

3-66 Descript ion and Operation Manual 



ITEM 

The ITEM macro is used to define, to the data base offline utility, a 
data item to be contained in a data base array. 

symbol ITEM TYPE = type 

[ ,NAME= symbol1 

[ ,INIT= value J 

[inumber I] ,LEN (self-defining term) 
(absolute expression) 

1 

[RPT1ValUe I] (self-defining term) 
(absolute expression) 

[rmber I] ,DISP= (self-defining term) 
(absolute expression) 

NAME= 
Is a 1 to 8 byte alphanumeric name. The ITEM name for each ITEM must 
be unique for all items 'in the entire data base. 

ITEM names may be assigned to ITEMs in the first block of a blocked 
array and will be applied to all blocks of that array. Names may be 
coded for ITEMs in succeeding blocks, but the names will be ignored; 
that is, they will not appear in any SpeCial Real Time Operating System 
ITEM name lists and will not be checked for duplication. 

TYPE= 
Is required and must be one of the following: 

TYPE DEFAULT DEFAULT DATA MAXIMUM 
LENGTH ALIGNMENT TYPE LEN-

A 4 Fullword Address Constant 4 

F 4 Fullword Fixed Point 4 

H 2 Halfword Fixed Point 2 

D R Douhleword Floating Point K 

E 4 Fullword Floating Point 4 

P I Byte Packed Decimal 256 

B I Byte Binary 256 

C I Byte Character 256 

X I Byte Hexadecimal 256 

N 0 None None 256 

Note: The "A" type must be specified in non-relocatable terms or 
expressions since it viII not relocate addresses. 

The "N" type allows the user to give an additional name or 'alias 
name' to the ITEK which immediately follows the null item, or 
it allows the user to generate a name which will define one or 
more of the following items vhich have no name assigned. The 
INIT and RPT parameters are ignored. 

INSTALLATION GUIDE 3-67 



The following examples shows the use of the TYPE=N operand: 

ARRAY 
ITEM 
ITEM 
ITEM 

NA ME=N ULLE X 
NAME=NULL01A,TYPE=N 
NAME=NULL01B,TYPE=N 
NAME=NULL01,TYPE=F,INIT=27 

In this example the null items named NULL01A and NULL01B will have 
the same displacement into array NULLEX as item NULL01. A GETITEM 
TYPE=ADDR during online processing for item name NULL01B would return 
the same address as for name NULL01. 

LEN= 
May be any integer value from 1 through 256, inclusive. When LEN= is 
coded, boundary alignment is negated. LEN= coded on a TYPE=N item 
will determine the length of data to be returned by a GETITEM on a 
null or alias name. This is shown in the following example: 

ARRAY 
ITEM 
ITEM 
ITEM 
ITEM 
ITEM 
ITEM 

NA ME=N ULLE Xl 
NAME=NULLALL,LEN=16,TYPE=N 
NAME=NULL1A,TYPE=A 
NAME=NULL1B,TYPE=D 
NAME=NULL1C,TYPE=F 
NA~=NULLPART,LEN=2,TYPE=N 

NAME=NULL2C,TYPE=F 

In this example, an online GETITEM TYPE=DATA for item name NULLALL 
would get all the data for items NULL1A, NULL1B, and NULL1C. A GETITEM 
TYPE=DATA for name NULLPART, however, would get only the first two 
bytes of data from item NULL2C. 

The LEN parameter is required for types Band P if initial data is 
specified on the INIT parameter. 

The LEN parameter can be used vith type N to determine the total length 
of subsequent unnamed items. 

The LEN parameter for types A, E, and F may be specified as a value 
from 1 through 4. If the parameter is omitted. or an invalid value 
is specified, the default length of 4 viII be assumed. 

The LEN parameter for type H may be specified as a value of 1 or 2. 
If the parameter is omitted or an invalid value is specified, the 
default length of 2 will be assumed. 

The LEN parameter for type D may be specified as a value from 1 through 
8. If the parameter is omitted or an invalid value is specified, the 
deta ul t length of 8 will be assu med. 

The LEN parameter may be specified for type C. However, if it is 
omitted, the number of characters, not including the enclosing 
apostrophes, specified on the INIT parameter will be used as the 
length. 

The LEN parameter may be specified for type X. However, if it is 
omitted, the number of characters specified on the INIT parameter will 
be used to determine the length. If the number of characters in the 
INIT parameter is odd, 1 will be added to the number, and the sum is 
divided by 2. If the number of characters in the INIT parameter is 
even, the number will be divided by 2. The result of the division 
will be used as the length. 

INIT= 
Specifies the initial data to be placed on the data base for this 
item. If the INIT parameter is omitted and the TYPE is C, the initial 

3-68 Description and Operation Manual 



data will default to blanks. If the INIT parameter is specified and 
the TYPE is C, the initial data must be enclosed in single apostrophes 
and must conform to assembler language specifications for a 
character-type constant. The default data for all other types will 
be zeroes. 

RPT= 
Is a repetition factor to determine the number of times the initial 
data for this item viII appear on the data base as part of this item. 
If the RPT parameter is omitted or specified as 0, the default value 
of 1 will be assumed. The value specified for this parameter includes 
the original copy of the item data. For example, "RPT=1" gives only 
the original item data; "RPT=2" gives the original item data plus one 
copy of the item data. 

DISP= 
Provides the capability to specify the displacement into an unblocked 
array or the displacement into a block of a blocked array where the 
initial data on the ITEM macro viII start. 

I NSTALLATIOH GUIDE 3-69 



DEFMSG 

The DEFMSG macro is used to define messages to be used by the message 
writer function. The maximum length of a message including variates. 
However, when defining a message, the length should conform to the 
length restrictions of the device(s) to which it will be routed. 

[ s ymbo 1 J DEFMSG number. ROUTE=cod e G ACT=\!} ] [ • .DATE= I ~~S lJ. TEXT= ' da ta ' 

number 
Is a three digit (001-999) unique message number with the first digit 
indicating the sUbsystem. (The numbers from 001-099 and 800-899 are 
reserved for use by the Special Real Time Operating System.) 

ROUTE= 
Defines routing code (0-255). codes are assigned Codes are assigned 
(during SYSGEN) indicating the types of output devices. Examples 
would be a display unit or display group, a printer or printer group. 
By convention the codes 1-9 are reserved for use by the Special Real 
Time Operating System. 

ACT= 
Defines action code. Codes are assigned to indicate the type of action 
required in connection with a message. 

I Information (default if operand omitted). 
A Action required. 
D Operator/user decision required. 

DATE= 
Indicates whether the date will be affixed to the message during online 
operations. 

YES Aff ix date. 
NO Do not affix date. 

TEXT= 
Defines the text of the message and the variables to be supplied by 
the user when the message is requested during online execution. The 
text is a character string, enclosed in apostrophies, with the 
variables positioned in the string at the position they should appear 
in the output message. Variables are specified by coding information 
in th~ following format: 

#cfs# 

Where 

# 

c 

f 

s 

3-70 

is a delimiter character and must appear before and after the 
other specifications. No blanks are allowed between them. 

defines the number of characters to be occupied by this variable 
in the output message. 

defines the type of data conversion to be performed on the data 
being output. 

specifies the position of this variable in the variable list 
that is passed by the calling program when the message is 
selected for output. 

Description and Operation Manual 



The maximum number of variables allowed is 10. The maximum message 
length, including variables, is 255 characters. The message will be 
truncated by the message writer if necessary to conform to the line 
length restrictions of the device to which the message is routed. 

The variable data is converted to alphanumeric characters as defined 
by the variable specification. The ~lid character specifications 
and associated conversion actions are as follows: 

F The four bytes at the address specified will be converted to 
decimal and inserted into the message. 

H The two bytes at the address specified will be converted to 
decimal and inserted into the message. 

C Data beginning at the address specified, for the length specified 
in the format specification (c above) will be moved into the 
message. It is assumed that the data consists of 'printable' 
characters. 

X The data beginning at the address specified is converted to 
hexadecimal characters and moved into the message. If the number 
of characters allocated in the message is even, data is conYerted 
beginning with the first q bits at the address specified, and 
each q bits following are conYerted to a character until the 
message field is filled. If the number of characters allocated 
in the message is odd, the first 4 bits of the byte at the 
address specified are skipped, and conversion proceeds as above. 

B The data beginning with the byte specified by the address is 
converted, each bit being converted to a character (lor 0). 
If the number of characters allocated in the message (c) is an 
even multiple of 8, data conversion begins with the first bit 
of the first byte at the address. 

If c is not a multiple of 8, c is divided by 8, and the value 
1 is added to the quotient (the remainder is dropped). This 
determines the number of bytes (n) from which data viII be 
converted. The right most c bits of the n byte field viII be 
converted to characters and moved to the message. 

The following figure shows how the data would appear in the message if 
converted according to various variable specifications. In all cases, 
assume that the user has passed the address of a 4-byte area which 
contains X'D3042FOO'. 

INSTALLATION GUIDE 3-71 



Variable output Posi tion of Bit 
~E!lcificati.Q!! £hli.a£te~ ~~lected_fQI.~.Q!!~~io.n 

f1Xn# 3 Low-order of 4 bits 
of first byte 

#2Xn# 03 Entire first byte 

#3Xn# 304 Low-order 4 bits of first byte 
and entire second byte 

#6Xn# D3042F En tire first 3 bytes 

#SBn# 11010011 Entire first byte 

#SBn# 10011 Low-order 5 bits of first byte 

#3Bn# 011 Low-order 3 bits of first byte 

#16Bn# 1101001100000100 Entire first two bytes 

#13Bnj 1001100000100 Low-order 5 bits of first byte 
and second byte 

Figure 3-10. Hexadecimal and Binary Variable Descriptions 

3-72 Description and Operation Manual 



DATA BASE BDAM DATA SET COMPRESS 

The data base BDAM data set compress program DPPXDBCP provides the 
capability to recover lost space on data base BDAM data sets. 

A single execution of the compress program can be used to compress ~ll 
BDAM data sets in a single data base. However, a single execution of 
the compress program cannot be used to compress BDAM data sets f~om 
more than one data base. 

JCL requirements are: 

II EXEC PGM=DPPXDBCP Defines program name to be executed. 

IIS'lEPLIB DD Defines the data set which con tains the 
compress program. 

IISYSPRINT DD SYSOUT=A ou tput message data set. 

//SYSUT1 DD De fines a BDAM data set to be used by 
the compress program. 

The space allocated to this data set and the data set block size must 
be at least as large as the largest used by a BDAM data set to be 
compressed. 

I/DBINIT DD 

IIANYDADD DD 

Defines a data base partitioned data 
set. 

Defines a data base BDAM data set which 
is part of the same data base as the 
PDS defined by the DBINIT DD card. The 
DD name used here must be the same as 
the DD name used during execution of 
the offline utilit v. 

There may be a DD statement for every 
BDAM data set associated with the PDC 
defined by the DBINIT DD statement. 

Example 1 is a sample set of JCL to create a data base PDS and three 
associated BDAM data sets. Example 2 shows a sample of how the data 
base data sets are referenced during execution of the offline utility 
program. 

Example 3 is a sample of the JeL required to collapse the BDAM data 
sets described in Examples 1 and 2. Notice that the DD names used to 
describe the data base data sets in Example 3 are identical to those 
DD names used in Example 2. 

The SYSUT1 DO statement in Example 3 allocates two cylinders of space. 
This corresponds to the DBINIT2 DO statement in Example 1 which is the 
largest BDAM data set in this data base. The SYSUT1 DD statement in 
Example 3 specifies a data set BLKSIZE of 13030. This corresponds to 
the USERDADD DD statement in Example 1 which has the largest data set 
BLKSIZE in this data base. 

INSTALLATION GUIDE 3-73 



The SYSUT1 DO statement in Example 3 may be given a disposition of NEW 
or OLD. but must never be given a disposition of MOD. 

II EXEC 
IIDBINIT 
II 
II 
II 
IIDBINIT2 
II 
II 
IIUSERO~DD 
II 
II 
IIANYDADD 
II 
II 

EXAMPLE 1.: 

PGM=IEFBR14 
DO OSN=DATA~!~.UNIT=SYSOA, 
OISP=(,~ATLG).VOL=SER=PPLOQ1, 

SPACE=(CYLL11LLlQll 
DCB= (R ECFM=U, BLKSI ZE=130lQ) 

OD OSN=OATA~!S2.UNIT=SYSOA,OISp=(~!r1Q), 
VOL=SER=PP~~Ql,SPACE=lCY1LJlll, 
OCB=(RECFM=U,BLKSIZE=~~~~,DSORG=DA) 

OD DSN=USERQ!~,UNIT=SYSDA,DISP=(L£!r1Q), 
VOL=SER=PPLOQ1,SPACE=lTR!L121) , 
OCB=(RECFM=U.BLKSIZE=13030,DSORG=OA) 

DO DSN=ANYO!QQ,UNIT=SYSOA,DISP=(L£!I1~), 
VOL=SER=PPLOQ1,SPACE=lIRKL121) , 
OCB=(RECFM=U,BLKSIZE=~04~,DSORG=DA) 

Creating Oa ta Base Oa ta Sets 

Note: The underlined portions of the JCL in Examples 1, 2, and 3 are 
the only portions which may be changed from the liay they appear. 

II EXEC PGM=DPPXUTIL 

IIDBINIT 
IIDBINIT2 
IIUSERDAOD 
IIANYOAOD 

IISYSIN 

EXAMPLE 2: 

II EXEC 
IISTEPLIB 
IISYSPRINT 
IISYSUT1 
II 
IIDBINIT 
IIDBINIT2 
IIANYDADO 
IIUSERDAOO 

EXAMPLE 3: 

3-74 

DO DSN=OATAB!~,OISP=OLO 
OD DSN=Q!TA~AS2,DISP=(MOD,PASS),DCB=DSORG=OA 
DD DSN=USERQ!DD,DISP=(MOD,PASS),DCB=DSORG=DA 
DD DS N= AN YO!,Q.Q, D1 SP= (MOD, PASS) , DC B= DS ORG= OA 

DD * 

Offline Utility use of Data Sets 

PG M=DPPXCBCP 
DD DSN=VAN370~~1IB,DISP=SHR 
DD SYSOUT=A 
DD OSN=~~~~~T1.UNIT=SYSDA,SPACE=(CYLL1~l). 
DCB=(RECFM=U,FLKSIZE=130JQ,DSORG=DA) 
DO DSN=R!~~,DISP=OLD 
DD DSN=DATABA,§l,DISP=OLD. DCB=DSORG=DA 
DD DSN=!!IQ!.Q.Q,D1SP=OLD,DCB=DSORG=DA 
DO DS N=!!§..!R!l!QQ. DISP= OLD, DCB=DSORG=DA 

Compress program JCL 

Description and Operation Manual, INSTALLATION GUIDE 3-75 



This section of the manual is intended to be used at the CPU main 
console as an operator's manual. Certain information that is normally 
found in this section of a Description and Operations Manual is 
dodumented in the previous chapter in the section entitled, "Pre-SYSGEN 
Initialization" and will not be duplicated. 

The Operator's Reference contains the Special Real Time Operating System 
operation information. It is to be used as part of the operator's 
library. This section is intended for the system operator, but some 
sections are also of interest to operators at secondary consoles or 
terminals. 

The user of this section should have a thorough knowledge of as/VS1 
operation. This section is not intended to replace OS/VS1 operator 
reference material. 

The JCL required for realtime execution will vary greatly for each 
account and will most likely be provided to the operator by the system 
programmer. Therefore, the JCL requirements are documented in the 
section entitled, "System Initialization". 

The information in thii section is intended to assist the operator 
running the Special Real Time Operating System and in diagnosing the 
Special Real Time Operating System control statement errors. It is 
organized as follows: 

• Normal Operating Procedures 

• Control Card Information 

• Two-Partition Operation 

• Failover/Restart 

• Normal Termination Procedures 

• Abend Codes 

• The special Real Time Operating system Messages 

The Special Real Time Operating System executes as an OS/VS1 job which 
does not terminate normally. It is entered into the system through 
JeL just as any as/iS1 job. The special Real Time Operating system 
has its own messages with operator action for some, these are described 
in this section under messages. 

OPERATOR'S REFERENCE 4-1 



After the Special Real Time Operating system job has been started and 
the os job started, message appears, the Special Real Time Operating 
System issues a WTOR 'SRTOS INPUT MESSAGE PROCESSING AWAITING REPLY', 
and leaves the reply outstanding. This allows the operator to 
communicate with the Special Real Time Operating System. The commands 
which are defined as part of the Special Real Time Operating System 
are: 

CA NCEL ,operands 
REPORT, operands 
DREC ,operand s 
DDSCNTRL,operands 
DLM P, operands 
MSGRC, operands 
QS ,operands 
STAE,operands 
STOP 

Each of these commands requests a specific service. Other commands 
may be defined by other PRPQs or program products or by the user through 
the IMP macro of SYSGEN. 

The operator may enter a command by replying to the WTOR in the 
following format: 

. d[1 ,SLAVE [,PI,P2, ... ,pnlj]' 
r xx, comman r. PI, P2 ... Pnl 

R xx is the format required by OS/VS1, and xx is the message number 
to vhich the reply responds. The content of the reply viII be in a 
standard format. The command verb is the first element of the entry_ 
It may be selected from any valid IMP command defined at SYSGEN. 

If two-partition operation is SYSGENed and active, the keyword SLAVE 
may be included as the second element. If included, the command viII 
be processed in the SLAVE partition. If SLAVE is omitted or two 
partition operation is not SYSGENed, the command will be processed in 
the master partition. 

Parameters to be associated with the command are entered following the 
command verb or the keyword SLAVE, separated by commas. 

The keyword SLAVE is not referenced in the following command 
descriptions. Unless specifically disallowed, the command may be 
entered to be processed in the slave partition by including the keyword 
following the command verb. 

4-2 Description and Operation Manual 



CANCEL Comman d 

The CANCEL command should be used to terminate a Special Real Time 
Operating sys tem job. 

The format of the command and its operands is: 

r xx, 'C ANCE L [{: ~~~~ M P lJ I ,COMM ENTS I ' 

CANCEL 
Informs the input message processing routine that this reply is to 
cancel the Special Real Time Operating System jobstep for which this 
reply is outstanding. 

DUMP 
Cancel Special Real Time Operating System with a dump. The ABEND 
(dump) code is a user 122. 

NODUMP 
Cancel the Special Real Time operating System without a dump. The 
ABEND code is a user 222. 

Comments 
Operator explanation as to reason for cancelling the Special Real 
Time operating System. MESSAGE 60 will be issued, before cancelling 
the Special Real Time operating System, containing the comment. The 
maximum length of the comment is 80 characters. 

OPERATOR'S REFERENCE 4-3 



REPORT Command 

The REPORT command is used to control the execution of the Report Data 
Output facility of the Special Real Time operating System. The format 
of the REPORT command is: 

r xx, REPORT [, I ~~£ 1 ] , output ddname, input ddname 

[ , input ddname, input ddname, ... ] 

REPORT 
Informs the input message processing routine that this reply is for 
the Report Data Output Facility. 

NEW 
Report Data output Facility viII begin writing data at the beginning 
of the output data set. 

ADD 
Report Data output Facility will begin writing data at the end of 
the output data set. 

output ddname 
A ddname which points to a QSAM data set to be used as an output data 
set. The record length of the data set must be equal to or greater 
than the maximum record length of the input data sets. 

Input ddname 
A ddname which points to a QSAM data set to be used as an input data 
set. A maximum of 10 inpu't DDN AMES may be specified. 

4-4 Description and Operation Manual 



DREC Command 

The DREC command is used to control the exec~tion of the Special Real 
Time Operating System Data Record and Playback function. The format 
of the DR EC Command is: 

I ' ENABLE I : ~~~ I ,I D, I D, I D, .. ·l 
r u,DREC ,ALL 

, DISABLE 

DREC 
Inform the input message processing routine that this reply is to 
initialize data recording. 

ENABLE Initialize data recording. 

DISABLE 
Deinitialize data recording. 

ADD 
Add the following ID's to the data recording table. 

DEL 
Delete the following ID's from the data recording table. 

ALL 
Enable all data recording IDs. 

ID 
Three digit hex numbers (001-FFF) that must be used in recording data 
as (enable ID's). 

OPERATOR'S REFERENCE ij-5 



DDSCNTRL Command 

The DDSCNTRL Command is used to control the functions of duplicate data 
set support. The format of the DDSCNTRL command is: 

. ,TAKE 

r xx, DDSCNTRL { , xxxxxxxx } 
,REPLACE [PRIMARY WITH YYYYYYYY] 
, SWITCH 
,CREATE 
,STATUSG [ddnamel] [,ddname2J] 
,COMPARE 

The DDSNAME specified (or defaulted) on the DDS NAMES input control 
card which declared this duplicate data set. 

TAKE 
Causes the backup to be taken out-of-service. 

REPLACE PRIMARY WITH YYYYYYYY 
Causes the primary to become the backup (still in service), and sets 
the data set with DDNAME YYYYYYYY to become primary. (YYYYYYYY will 
default to the old backup.) This function requires that the DDS DCBs 
be closed. 

CREATE 
Causes the primary to be copied track-by-track onto the backup, and 
sets the backup to be in-service (requires backup to be out-oi-service 
on request) • 

SWITCH 
Causes the backup to become the primary and sets the primary as the 
backup out-oi-service. (Requires backup to be in-service on request). 

STATUS 
Prints a message (#56) stating primary and backup DDNAMES, and if 
backup is out-of-service. 

COMPARE 
Invoke the IEBCOMPR utility against ddnamel and ddname2. ddnamel 
will default to the primary DDNAME and ddname2 will default to the 
backup DDNAME. 

4-6 Description and Operation Manual 



DLMP Command 

The DIMP Command controls the operation of the Dynamic Load Module 
Purge feature of the Special Real Time operating system. It permits 
the system operator to cause a load module to be deleted from virtual 
storage which has been loaded by the Special Real Time Operating System 
task management in response to PATCH requests. 

The format of the command and its operands is: 

r xx,DLMP,time,module-name,module-name ••• 

DLMP 
This input command is for the dynamic load module purge feature. 

time 
Decimal integer value between 0 and 1200; time in seconds that the 
DLMP feature will wait to allow other tasks to complete execution of 
the specified load modules. If time is omitted, a default value of 
2 seconds will be used. 

module name 
Name of the load module(s) that is to be purged from virtual storage. 
Up to 10 module names, separated by commas, may be specified in one 
request. 

OPERATOR'S REFERENCE 4-7 



MSGRC COMMAND 

The MSGRC command is used to place a sjstem message routing code in or 
out of service, determine the status of one or more routing codes, or 
change the alternate routing code. 

l iN l n.: OUT 
r xx. MSGRC. (0 1 · STATUS 

, STATALL 

[ , aItrc] 

MSGRC 
Informs the input message processing routine that this reply is for 
the Message Routing Code status Change Facility. 

Note: This command should not be entered in the SLAVE partition. 

rc 
Routing code. 

o 
This parameter is 0 if STAT ALL is specified. 

IN 
Place RC in service. 

OUT 
Place RC out of service. 

STATUS 
Display the statQs, via a system message, of the specified routing 
code (RC). 

STATALL 
Display the status, via a system message, of all the routing codes in 
the system. 

altrc 
This parameter is recognized only if IN or OUT is specified. 

altrc is the routing code to which messages are directed should the 
primary routing code be out of service or the output operation fail. 

4-8 Description and Operation Manual 



QS COMMAND 

The QS command is an IMP command which may be used to display or alter 
the status of queue holders and queue processors. The format of the 
command and its operands is: 

{

QPnn } ALLQP 
name 

r xX,QS, ALLQH 
ALL 

, 

SEQ 
NONSEQ 
HOLD 
REL 
NOPATCH 
STATUS 
XREF 

[ , PURGE] 

Where the first positional parameter, QS, is the input message 
processing command name for the queue status facility, the second 
positional parameter is a noun used to identify the queue holders, 
queue processors, or independent task, the third positional parameter 
is a verb used to specify the primary action to be taken, and the fourth 
positional parameter is a verb used to specify the secondary action to 
be taken. The first three positional parameters are required. The 
fourth positional parameter is optional. 

QPnn 
The numberic value, nn, of this noun identifies a specific queue 
processor to be serviced on this command. The queue processor is 
identified by the numberic value specified on the QP statement in the 
SYSINIT input stream. This ID has a range 00 to 99. Two characters 
must be supplied. 

ALLQP 
This noun is used to indicate that all queue processors are to be 
serviced on this co.mand. 

name 

The 1 to 8 character name of this noun idnetifies a specific queue 
holder or independent task to be serviced on this command. The queue 
holder is identifed by,the name specified on the QH statement in the 
SYSINIT input stream or an independent task by the name specified by 
the PATCH which created it. . 

ALLQH 
This noun is used to indicate that all queue holders are to be serviced 
on thi s ~ cOllm an d. 

ALL 
This noun is used to indicate that all queue holders, queue processors, 
and independent tasks are to be serviced on this command. 

SEQ 
This verb is used to request that work queued to the specified queue 
holder(s) be processed sequentially, (i.e., whenever work has been 
selected by a queue processor from a sequential queue holder, no other 
queue processor may select vork from that queue holder until that work 
has been completed). Entry of this command will have no effect on 
any vork that has already been selected by any queue processors. 

NONSEQ 
This verb is used to request that work queued to the specified queue 
holder (s) be processed non-sequentially (i.e., two or more queue 
processors may process work from that queue holder concurrently.). A 
NONSEQ QS command will have no effect on any work that has already 
been selected by a queue processor. 

OPERATOR'S REFERENCE 4-9 



HOLD 
This verb is used to request that the specified queue holders, queue 
processors and/or independent tasks be held. As a result, no work 
may be selected from the specified queue holder(s) by any queue 
processor, the specified queue processor(s) will be prohibited from 
selecting work from any queue holder and specified independent tastes) 
will be prohibited from starting processing for any work that may be 
queued. Work may be added to the specified queue holder(s) or 
independent task(s) until the maximum queue length has been reached. 
A HOLD QS command will have no effect on any work that has already 
been selected for processing. 

REL 
This verb is used to release the work from the HOLD state the specified 
queue holders, queue processor and/or independent tasks for normal 
processing. A REL QS command will have no effect on any work that 
has already been selected by a queue processor. 

NOPATCH 
This verb is used to request that the specified queue holder(s) or 
independent task(s) to not accept additional PATCHes. Any PATCHes 
executed to a queue holder or independent task in a NOPATCH state viII 
be rejected and condition code 6 will be returned to the user. Any 
work previously queued to the specified queue holder(s) and/or 
independent task(s) viII be processed normally and will not be effected 
by a NOPATCH QS command. 

PATCH 
This verb is used to request that the specifeid queue holder(s) and/or 
independent task(s) may now accept PATCHes. 

STATUS 
This verb is used to request that the current status of the specified 
queue holder (s), queue processor(s) and/or independent task(s) be 
displayed. This information is output as message 862 and includes: 
TCBX name, element type (QP, QH or TSK), PATCH/NOPATCH status, HOLD/REL 
status, SEQ/NONSEQ status, current queue length and the character 'A' 
if the task for a QP or independent task is currently processing a 
work queue. 

XREF 
This verb is used to request that the current status of the specified 
queue holder(s), queue processor(s) and/or independent tasks to be 
displayed. This information includes message 862 as defined for the 
STATUS verb and in addition, message 863 will be output one or more 
times for each queue holder and/or queue processor specified. It 
includes, for a queue holder, the names of the queue processors which 
may select work from it and for a queue processor, the names of the 
que~e holders from vhich it may select work. 

PURGE 
This verb may be used in conjunction with any primary verb to request 
that any work previously queued to the specified queue holder(s) and/or 
independent task(s) be purged by a PURGEWQ macro. A PURGE command 
will have no effect on any work that has already been selected by a 
queue processor. 

4-10 Description and Operation Manual 



STAE COMMAND 

The STAE command may be used to suppress system ABEND dumps for all or 
selected load modules. 

The format of the command and its operands is: 

r xx,STAE 

STAE 

l
,nuM~ } ,NODUMP 
,ONEDUMP 
,STEP 
,OPTION 

,modenamel, ••• ,modname n 

Is a required positional operand which informs the input message 
processor that his reply is for the Dump/No Dump facility. 

DUMP 
Allow a dump to be taken for these modules (provided there is a 
SYSUDUMP or SYSABEND DD statement). 

NODUMP 
Suppress a dump from being taken for these modules. 

ONEDUMP 
Allow one dump to be taken for these modules (provided there is a 
SYSUDUMP or SYSABEND DD statement) but suppress any additional dumps 
for that module. 

STEP 
ABEND the job step if one of these modules ABEND. 

OPTION 
Allows the operator to choose whether or not to take a dump following 
an ABEND of these modules. The operator is informed of the ABEND via 
a WTQR (message 850) and must reply 'YES' to receive the dump. If no 
reply is issued in five minutes, the dump is automatically suppressed. 

modname1, ••• ,modname n 
Is used to indicate the load modula(~ that are to be covered by the 
specified option. A maximum of 10 load module names may be specified 
on anyone reply. Null fields (double commas) will not be accepted. 

If no load module names are specified, the mode defined by the previous 
parameter will apply to all load modules. 

OPERATOR'S REFERENCE 4-11 



STOP Command 

r XX, STOP 

STOP 
cancel the Special Real Time Operating System without a dump. The 
ABEND code is a user 222. 

4-12 Description and Operation Manual 



The format of the Special Real Time Operating System control statements 
is very similar to the format of JCL statements. That is, there are 
four standard fields in the card. They are: 

LABEL OPERATION OPERANDS COMKENTS 

where: LABEL 
Is the control statement label and must begin in column one. If 
column one contains an asterisk (*), the entire card is a comment 
card. The LABEL cannot exceed eight characters and must be separated 
from the OPERATION by at least one blank. The LABEL field is 
optional. 

where: OPERATION 
Is the type of action that the card represents. This field must 
contain one of the following: 

QP 
OH 
PATCH 
WAIT 
RESTART 
TCB 
GETWA 
CBGET 
ABEND 
MASTER 
SLAVE 
DBREF 
STAEX 

The OPERATION field must be separated from the LABEL (if any) and 
OPERANDS by at least one blank. If no LABEL exists the OPERATION 
must not start in column one. The OPERATION field is required. 

where: OPERANDS 
The OPERANDs field is required for all OPERATION types except ABEND 
and must begin on the same card as the OPERATION. Each OPERATION 
has unique OPERANDs (see System Initialization). The OPERANDs must 
be separated from the OPERATION and COMMENTs by at least one blank. 
There is a limit of 255 OPERAND characters for one OPERATION. 

where: COMMENTS 
The COMMENTs are optional and there is no limit to the length of 
COMMENTs allowed. The COMMENTs must be separated from the OPERANDs 
by at least one blank. 

CONTINUATION 

Control cards may be continued. continuation is requested by 
Continuation is requested by ending the OPERAND's field with a comma 
or putting a nonblank in column 72, or both. If the OPERANDS are 
completed and COMKENTs are to be continued, column 72 must be nonblank. 

OPERATOR'S REFERENCE ~-13 



An example of yalid continuations follows: 

P1 PATCH 

P2 PATCH 

P3 PATCH 

EP=TEST, 
TASK=TEST 

EP=TEST,. 
TASK=T EST 

EP=TEST 
AND RETURN 

COL 72 

* 

TEST PROGAM* 

continuation cards must begin in column 16. PATCH cards ~ith PARAM 
data containing blanks within quotes may be continued to the next card. 
The continuation is assumed to start in column 16. 

EXAMPLE: 

COL 72 
PTCH PATCH EP=TEST,PARAM=(C'ABC~~bb~~~.Q~~~~~~bbbbQebbQQQQQQbbQ.Q* 

~,Q.Q.Qbb .Q,Q.Q.X YZ ' ) 

COL16 
The PARAM data would be 

'ABCQ£~.Q~.Q~bbbbQQbbbbbbbbbbbbQ~bbQhhQbbbbbbbbbbQQbbbbhQXYZ' 

The presence of a MASTER or a SLAVE statement in the input stream 
signifies two-partition operation. When this occurs,. the first job 
started will issue the message DPP0461 and will repeat the message at 
one-minute intervals until the other job has started. The operator 
should ensure that the job names of the SLAVE corresponds to the na me 
given on the MASTER card by the SLAVE=jobname operand and that the 
jobname of the MASTER corresponds to the name given on the SLAVE card 
by the MASTER=jobname operand. If the MASTER job terminates, the SLAVE 
will also be terminated with a USER 41 ABEND code. However, if the 
SLAVE job terminates and the MASTER is still executing, the SLAVE job 
may be restarted in the same or another partition. 

Note: The Special Real Time Operating System job should not be 
terminated by a CANCEL JOBNAME command as STAE processing will 
be bypassed. As a result, the SLAVE will not be terminated when 
the MASTER ends, and the SLAVE will not restart if an attempt 
is made to restart it. 

SINGLE CPU ENVIRONMENT 

The operator may cause a RESTART by dialing the device address which 
contains the RESTART data set into the 'LOAD UNIT ADDRESS' switches of 
the CPU and depressing LOAD (IPLing). This operation will be successful 
only if a RESTART data set had been previously written by a RESTART 
WRITE statement. The data set would have been written to the data set 
allocated to the DPPFAIL DO card. If copies had been made of the 
DPPFAIL data set, a RESTART could be caused by the operator IPLing the 
DA device containing the DPPFAIL data set or a copy of the DPPFAIL data 
set. 

4-14 Description and Operation Manual 



SINGLE CPU ENVIRONMENT WITH CONTINUOUS MONITOR 

The continuous monitor is a program which monitors the online CPU and, 
if any failures are detected, recommends a RESTART. The RESTART is 
recommended by message DPP098. When this message is issued, the operator 
must RESTART the system as described above. 

TWO-CPU ENVIRONMENT WITH CONTINUOUS MONITOR AND PROBE 

With the continuous monitor operating in the realtime CPU and the PROBE 
in the backup CPU, no operator intervention is required on a FAILOVER 
condition. The FAILOVER is initiated by the PROBE when an error 
condition is detected. If, however, the system has a Computer Status 
Panel installed, and the status panel is not switched to auto mode, 
the operator must decide whether to cause a FAILOVER to the backup CPU 
or to RESTART in the online CPU. He must then initiate the action by 
depressing the SELECT button for the CPU which he wants to execute as 
the online CPU. 

The Special Real Time Operating system should be terminated by replying 
to the Input Message, Processor's outstanding message with a CANCEL or 
STOP command. This command and its operands are documented earlier in 
this chapter. The Special Real Time Operating system should not be 
terminated by the OS/VS1 CANCEL command which causes the SrAE processing 
for the job step task to be' bypassed. The effect of bypassing the STAE 
may be to leave certain system functions in a condition which will 
degrade subsequent system operation. If it is necessary to use the 
OS/VS1 CANCEL command, the OS/VS1 system should be re-IPLed at the 
earliest convenience. 

The special Real Time Operating System should be terminated with the 
as CANCEL command only as a last resort. Terminating the Special Real 
Time operating System with the as CANCEL co~mand bypasses STAE cleanup 
routines and will not cause the SLAVE job to be terminated when the 
MASTER ends and the MASTER may cause processing errors for any job that 
starts in the partition the SLAVE ended in. If a SLAVE job is 
terminated with the OS CANCEL command, it will not be able to restart. 

If it-is necessary to use the as CANCEL to terminate a MASTER job, the 
SLAVE must also be terminated with the OS CANCEL command. 

OPERATOR'S REFERENCE 4-15 



:r.!!~ ~PECIll !lEA~ TIME OPERATI!!2 §.YSI~f1 AB~l!J2 ~QDE~ 

USER 001 Issued by: DPPITIMI 

Explanation: 

Action: 

An invalid TCBX address was found in the job step TCBUSER 
field. 

Restart the system. 

USER 002 Issued by: DPPITIMI 

Explanation: 

Action: 

An invalid SCVT or XCVT address was found in the job 
step control block chain. 

Restart the system. 

USER 003 Issued by: DPITIMI1 

Explana tion: The time-of-day (TOD) clock was not operational. 

Action: Probable hardware failure. 

USER 004 Issued by: DPPITIMI 

Explanation: 

Action: 

Time array - DPPCl'IMA - was not found in the data base. 

DD card DBINIT must allocate a data base data set that 
contains a DPPCTIMA array. 

USER 010 Issued by: DPPIDBAS 

Explanation: 

Action: 

An invalid TCBX address was found in the job step TCB[JSER 
field. 

Restart the system. 

USER 011 Issued by: DPPIDBAS 

Explanation: 

Action: 

An invalid SCVT or leVT address was found in the job 
step control block chain. 

Restart the system. 

USER 012 Issued by: DPIDBAS1,DPIDBAS2, or DPIDBAS3 

Explanation: 

Action: 

Data base initialization was unable to open one of the 
following data set s: 

DDname - DBINIT 
DDname - DBINIT2 

or a user specified data base data set. 

DD cards must exist for DBINIT and DBINIT2 and 
user-requested data base sets Be sure that the data set 
exists. 

USER 013 Issued by: DPIDBASl 

4-16 Description and Operation Manual 



E xplana tion: 

Action: 

Data base initialization vas unable to find member ~INIT 
in the OBI NIT data set via BLOL. 

DO card OBINIT must allocate the correct data base data 
set containing member name aINIT. 

USER 020 Issued by: DPP!INIT 

Expla na tion: 

Action: 

The online message handler initialization was unable to 
OPEN the message data set DCB. 

The job's JCL must contain a DD statement with DO name 
MSGDS. 

USER 022 Issued by: DPPI NIT1 

Explana tion: 

Action: 

This ABEND was requested by the user through the presence 
of an ABEND statement in the SYSINIT input stream. 

None. 

USER 023 Issued by: OPPKINIT 

Explanation: 

Action: 

The online message handler initialization could not find 
the message routing code array DOMXSMRC in the data 
base. 

The array should be generated at the Special Real Time 
operating System SYSGEN time by the use of the MSGRC 
macro. DKINIT must have a OD card that allocates the 
correct data set. 

USER 030 Issued by: DPPINIT 

Expla na tion: 

Action: 

The Special Real Time operating System initialization 
(OPPINIT) was not running under the job step task TCB. 

Program DPPINIT cannot be attached, but must be the job 
step task. 

USER 031 Issued by: DPPI NIT1 

Explanation: 

Action: 

A PATCH macro was executed in response to a PATCH 
initialization card. The ret~rn code from the PATCH 
macro was greater than 4 (i.e., the PATCH failed). 

At the time of the dump, Register 3 contains the address 
of a PATCH control block. Four bytes past that address 
is the address of the PATCH PROBL and Xl 14' bytes past 
that address is the PATCH SUPL. The first 9 bytes of 
the SUPL contain the task name and the second 8 bytes 
contain the entry point name specified on the PATCH card 
for which the failure occurred. Register 15 contains 
the PATCH return code. Make appropriate corrections 
and retry. 

USER 032'Issued by: OPPFIXFR 

OPERATOR'S REFERENCE 4-17 



Explanation: 

Action: 

An invalid address range was passed to be either fixed 
in real storage or unfixed. 

Correct the address range and retry, ensure that array 
DPPXFIX is valid. 

USER 033 Issued by: DPINIT3 

Explanation: 

Action: 

Initialization was unable to get enough control block 
(CBGET) storage in which to create a TCBX at 
initializa tion time. 

Increase the CBGET storage with a CBGET statement in 
the SYSINIT input stream and retry_ 

USER 034 Issued by: DPINIT05 

Explanation: 

Action: 

A syntactical error was detected on one or more of the 
in it ializa tion input (SYSI NIT) sta tements. 

Correct the statement(s) in error and retry. 

USER 035 issued by: DPPINIT1 

Explanation: 

Action: 

A pre-WRITE RESTART program which was PATCHed as a result 
of a PATCH statement in the SYSINIT input stream 
completed and returned with a non-zero POST code. 

Correct the failing program and retry. 

USER 036 Issued by: DPINIT5 

Explana tion: 

Action: 

On a two-partition run, a MASTER or SLAVE partition had 
been posted by the other partition; however, the 
corresponding jobname could not be found. 

Correct the MASTER or SLAVE card so that the operands 
give the exact jobname of the job in the corresponding 
partition. 

USER 037 Issued by: DOKIRFLV 

Explana tion: 

Action: 

During an attempt to write a FAILOVER data set 
(WTF AI LDS) , the SL AVE partition could not be found. 

If the SLAVE job has ABENDED or terminated, fix the 
failure and resubmit the run. 

USER 038 Issued by: DOKIRFLV 

Explana tion: 

Action: 

Multiple simultaneous attempts were made to write a 
FAILOVER data set (WTFAILDS) from the same job. 

Correct the progra ms. 

USER 039 Issued by: DOMIRFLV 

4-18 Description and Operation Manual 



Explana tion: 

Action: 

The WTFAILDS macro was issued by a non-real time job. 

The WTFAILDS macro must be issued by a Special Real Time 
Operating System job. 

USER 040 Issued by: DPINIT05 

Explanation: 

Action: 

The SYSINIT DCB could not be opened, no SYSINIT DO card 
was provided or a SYSINIT stream was processed that did 
not contain a PATCH statement. 

The job's JCL must contain a SYSINIT DO card and at 
least one PATCH statement in the input stream. 

USER 041 Issued by: DPPI STAE 

Explana tion: 

Action: 

The SLAVE job is abnormally terminated with this code 
when the MASTER job step terminates. The SLAVE cannot 
continue to run because it does not have full Special 
Real Time Operating System services. 

Restart MASTER and SLAVE jobs. 

USER 042 Issued by: DPINIT5 

Explanation: 

Action: 

During the restart of a SLAVE job, the initialization 
routine cou~d not locate the job named on the MASTER: 
operand of the SLAVE statement. 

Correct the SLAVE statement and retry_ 

USER 043 Issued by: DPINIT5 

Explanation: 

Action: 

The SLAVE job was being restarted after a failure; during 
initialization the SLAVE initialization found the MASTER 
job step to be terminating. 

Restart both MASTER and SLAVE jobs. 

USER 044 Issued by: DPINIT5 

Explanation: 

Action: 

An attempt was made to restart a SLAVE for a MASTER 
which already had a SLAVE job executing. 

verify the jobname on the SLAVE MASTER=jobname control 
statement. It should have a jobname for a MASTER job 
step that does not have a SLAVE job currently executing. 

USER 045 Issued by: DPPINIT1 

Expla na tion: 

Action: 

A RESTART statement was processed in the input stream 
which requested the CANCEL function. 

None. 

USER 046 Issued by: DPPINIT1 

OPERATOR'S REFERENCE 4-19 



Expla nati on: 

Action: 

The maximum size GETWA space allocated was not sufficient 
to satisfy the requirements of the Special Real Time 
Operating System. A GETWA size of 1024 bytes is 
required. 

Allocate a larger GETWA size (1024 bytes) on the GET WAS 
parameter of the is macro and regenerate the system or 
specify appropriate GETWA sizes on the GEfWA statement 
in the SYSINIT input stream and rerun the job. 

USER 050 Issued by: DPXDBIN6 

Explanation: 

Action: 

The offline utility program was unable to OPEN the 
initialization data set for DO name DBINIT. 

The offline utility Jct must include a DBINIT DD card. 

USER 051 Issued by: OPXOBIN4 

Explanation: 

Action: 

The offline utility program had an error while attempting 
to STOW initialization member ~INIT. 

Retry. 

USER 052 Issued by: DPXDBIN1 

Explanation: 

Action: 

The offline utllity program vas unable to obtain 
initialization member ~INIT from the initialization data 
set. 

Retry run. 

USER 053 Issued by: DPXDBIN2 

Explana tion: 

Action: 

A loggable array was created which named a log array. 
The named log array could not be found. 

Recompile the loggable array to have the log array 
recrea ted. 

USER 054 Issued by: DPIDBAS3 

Explana tion: 

Action: 

A BLDt error was encountered while attempting to read 
the PDS directory entry for a loggable array. 

Recompile to loggable array to have the log array 
recreated. 

USER 055 Issued by: DPPXUTIL 

Explana tion: 

Act ion: 

The assembler encountered an error and returned an error 
code greater than 16. 

Correct the problem indicated by the assembler output 
and retry the job. 

USER 064 Issued by: DPPTETXR 

4-20 Description and Operation Manual 



Explanation: 

Action: 

Program DPPTETXR has been entered under a TCB which is 
not a job step TCB. 

If a program is linking to DPPTETXR, correct and retry, 
otherwise retry. 

USER· 065 Issued by: DPPTDSVC 

Explanation: 

Action: 

A DPATCH=I vas issued for the specified task so the 
Special Real Time operating System task management 
terminated it with this code. 

None. 

USER 071 Issued by: DPPXDPB 

Explanation: 

Action: 

Data playback was unable to OPEN the data playback DCB. 

A DD card named DPBIN must exist if data playback is to 
be used. 

USER 072 Issued by: DPPXDPB 

Explanation: 

Action: 

The BLKSIZE and LRECL on the DPBIN DO card is smaller 
than the maximum BLKSIZE and LRECL used when the data 
recording/playback data set was defined and/or when data 
was recorded on the data recording/playback data set. 

The BLKSIZE and LRECL on the DPBIN DD card must be equal 
to the maximum BLKSIZE and LRECL on the data 
recording/playback data set. 

USER 080 Issued by: DPPSINIT 

Explanation: A bad card was found in the DDSCTLIN input stream. 

Action: Correct control card and retry. 

USER 081 Issued by: DPPSCHCK 

Explanation: 

Action: 

User received software I/O error but did not specify a 
SYNAD exit routine for a DDS data set. 

None. 

USER 122 Issued by: DPPXKILL, DPPXI~PW 

Explanation: 

Action: 

The job step task has been ABENDed due to the 
CANCEL, DUMP request. 

None. 

USER 222 Issued by: DPPXKILL 

Explanation: The job step task has been ABENDed due to a 
CANCEL, NOOUMP request. 

OPERATOR'S REFERENCE 4-21 



Action: None. 

SYSTEM 4xx rssued by: A USER-GENERATED SVC 

Explana tion: 

Action: 

A user program made an invalid SVC The request was for 
the SVC number xx. xx is the hexadecimal number of the 
SVC which was issued. 

Correct program and ensure that a valid SVC request is 
made. 

SYSTEM 6xx Issued by: A USER-GEN ERAT ED SVC 

Explanation: 

Action: 

4-22 

A user program made a Special Real Time Operating System 
SVC request from a non-Special Real Time Operating System 
job step task. The SVC requested is indicated by xx. 
xx is the hexadecimal number of the SVC which was issued. 

Check the user program and be sure that services which 
are not available to a non-Special Real Time Operating 
System task are not requested by a non-Special Real Time 
Operating System task. 

Description and Operation Manual 



THE SPECIAL REAL-TIME OPERATING SYSTEM ONLINE MESSAGES 

DPP009I POST-RESTART DATA BASE AND PRE-RESTART DATA BASE ARE 
DIFFER ENT 

Routing code: 1 

Message issued by segment: DPPDWRST 

Explanation: One or more data base arrays have been recompiled onto 
the DBINIT data set that is online at restart time since 
the restart data set was written or a different data 
base is being referenced. Results are unpredictable 
and continued operation ma·y or may not be successful. 

Response: None. 

DPP010I Time date DPPTETXR * EXCEPTL CONDITION BAD WQE XXX XXXIX 

Routing code: 2 

Message issued by segment: DPPTETXR load module DPPTETXR 

Explanation: A subtask running the PATCH monitor DPPTP~ON terminated 
and caused the End-of-Task-Exit Routine to be entered. 
The address of the current WQE XXXXXXXX was found to be 
invalid. Therefore, DPPTETXR cannot perform its full 
service which causes CB-GET storage to be lost. 

Response: None. 

DPP011I time DPPTETXR * ABEND IN MESSAGE OUTPUT TASK 

Routing code: as defined through SYSGEN 

Message issued by segment: DPPTETXM load module DPPTETXR 

Explanation: The Special Real Time Operating System message output 
task DPPMMSG1 ABENDed and callsed the End-of-Task-Exit 
Routine to be entered. This message is issued through 
a WTO macro, because the message output task is not 
available to print/display it. 

Response: None. 

DPP012I time date DPPTETXR * TASK TTTTTTTT ENDED WITH CC XXXXXXXX 
or 
DPP012I time date DPPTETXR * TASK TTTTTTTT ENDED WITH CC XXXXXXXX 

WQID NNN PATCH EP EEEEEEEE 

Routing code: 2 

Message issued by segment: DPPTETXR load module DPPTETXR 

Explanation: The special Real Time Operating System task TTTTTTTT 
terminated and caused the End-of-Task-Exit Routine to 
be entered. The TeB completion code field was XXXXXXXX. 

If the address of the current WQE is available to the 
routine, it also displays the ID NNN and the EP name 
EEEEEEEE that was specified when the originating PATCH 
was issued. 

OPERATOR'S REFERENCE 4-23 



Response: None. 

DPP013I time date DPPTETXR * EXCEPTL CONDITION BAD TCBX XXXXXXXX 

Routing code: 2 

Message issued by segment: DPPTETXR load module DPPTETXR 

Explanation: A subtask running the PATCH monitor DPPTPMON terminated 
and caused the End-of-Task-Exit Routine to be entered. 
The address of the TCB extension XXXXXXXX, which is 
contained in the TCB USER field, was found invalid. 
Therefore, DPPTETXR cannot perform its full service. 
This causes loss of CB-GET storage for TCBX, WQE chain, 
and LCB chain and may also result in system degradation. 

Response: None. 

DPP0141 time date DPPTPMON * TASK TTTTTTTT EP EEEEEEEE WQID NNN 
NOT FOUND BY BLOL 

Routing code: 2 

Message issued by segment: DPTPMON3 load module DPPTPMON 

Explanation: A PATCH macro was issued for task TTTTTTTT that specified 
an ID of NNN and an EP name of EEEEEEEE. The PATCH 
monitor OPPTPMON issued BLDL for the given EP name and 
received a return code of 4, which indicates that the 
module was not found. If an ECB = address was specified 
with PATCH, that ECB is posted with a completion code 
of 48 in the high order byte. 

Response: None. 

DPP015I time date OPPTPMON * TASK TTTTTTTT EP EEEEEEEE WQID NNN 
BLDL I/O ERROR 

Routing code: 2 

Message issued by segment: DPTPMON3 load module DPPTPMON 

Explanation: A PATCH macro vas issued for task TTTTTTTT that specified 
an 10 of NNN and an EP name of EEEEEEEE. The PATCH 
monitor OPPTPMON issued BLDt for the given EP name and 
received a return code of 8, which indicates that a 
permanent I/O error was detected when the OS/VS1 system 
attempted to search the directory. If an ECB= address 
vas specified with PATCH, that ECB is posted with a 
completion code of 48 in the high order byte. 

Response: None. 

DPP016I time date DPPTPKON * TASK TTTTTTTT NOT FOUND ON ACTIVE 
CHAIN 

Routing code: 2 

Message issued by segment: DPTPMON1 load module DPPTPMON 

4-24 Description and Operation Manual 



Explanation: The PATCH monitor attempted to remove a TCB extension 
fro. the active task chain and could not find it on that 
chain. 

Response: None. 

DPP0171 time date DPPTSMON * NO LOAD REQUEST FOUND 

Routing code: 2 

Message issued by segment: DPTSftON1 load module DPPTSMON 

Explanation: The system monitor DPPTSKON was posted and attempted to 
service a request for tOAD of a reentrant load module, 
which is indicated by a flag in the TCBX. However, when 
trying to find the LCB for which the LOAD vas requested. 
no LCB vith the LOAD request flag turned on could be 
found on the TCBX-LCB chain. DPPTSMON POSTs the PATCH 
monitor to continue its processing. 

Response: None. 

DPP018I time date DPPTETXR * TASK TTTTTTTT EP EEEEEEEE WQID NNN 
DID NOT RETURN TO DPPTPMON 

Routing code: 2 

Message issued by segment: DPPTETXR load module DPPTETXR 

Explanation: 

Response: 

A PATCH macro was issued for task TTTTTTTT that specified 
an ID of NNN and an EP name of EEEEEEEE. 

The PATCH monitor scheduled that WQE and passed control 
to the specified module, which did not return control 
to DPPTPMON as required in the Special Real Time 
operating system environment. 

The module returned control to OS/VS1 which scheduled 
the End-of-Task-Exit routine. 

If an ECB= address was specified with PATCH, the ECB is 
posted with 4C in the high order byte. 

Check the module for possible 
SVC 3 EXIT 
ABEND 0 
LINK 
XCTt 
Change to BR to return control to DPPTPMON. 

DPP0191 time date DPPTDLMP * TIME VALUE TOO HIGH REQUEST 
ABANDONED 

Bouting code: 2 

Message issued by segment: DPPTDLMP load module DPPTDLMP 

Explanation: 

Response: 

On an input command DLMP to Dynamic Load Module Purge, 
the time specified was not between 0 and 1200 seconds. 

Use a valid time value and issue the command again. 

OPERATOR'S REFERENCE 4-25 



DPP0201 time date DPPTDLMP * LOAD MODULE PURGE ENTERED. 

Routing code: 2 

Message issued by segment: DPPTDLMP load module DPPTDLMP 

Explanation: A valid DLMP command has been accepted and the Dynamic 
Load Module Purge function is in progress. 

Response: None. 

DPP0211 time date DPPTDLMP * MODULE MMMMMMMM DID NOT COMPLETE 
IN TIME FOR PURGE 

Routing code: 2 

Message issued by segment: DPPTDLMP load module DPPTDLMP 

Explanation: 

Response: 

A DLMP command vas issued but the module MKKMMMMM did 
not finish executing before the time specified on the 
command had expired4 Message DPP0221 will follow to 
indicate the end of the purge function. 

One of the following: 

• Retry command after module completes execution, if known. 

• Try again using a higher time value. 

• If module MKKMKMMM is a long running program, it may be impossible 
to purge it at all. 

• If module KKKMKMMM is either in an endless loop or in a WAIT state, 
it may be impossible to purge it. 

DPP0221 time date DPPTDLKP * LOAD MODULE PURGE ABANDONED 

Routing code: 2 

Message issued by segment: DPPTDLMP load module DPPTDLMP 

Explanation: A DLMP command vas issued but could not be completed. 
This message follows other explanatory messages and 
indicates the end of the purge function. 

Response: Check for previous messages DPP021I. 

DPP0231 time date DPPTDLMP * LOAD MODULE PURGE COMPLETE 

Routing code: 2 

Message issued by segment: DPPTDLMP load module DPPTDLMP 

Explanation: 

Response: 

DPP0241 

4-26 

A DLMP command vas issued and executed successfully. 
This message indicates the end of the purge operation. 

None. 

STAE OPTION xxx IS yyy zzz 

Description and Operation Manual 



Routing code: 2 

Message issued by segment: DPPTIMPS 

Explanation: This message is issued to reply to the Input Message 
Processor of the form: 

R xx,STAE, ••• 

It is used to notify the operator of the results of the 
STAE command. xxx is the option selected on the STAE 
command. yyy is an indication as to whether the STAE 
command was valid (yyy = IN EFFECT) or erroneous (yyy 
= INVALID). 

zzz further defines the result of the STAE command: 

zzz = FOR ALL LM. ALL PREVIOUS STAE REQUESTS ARE 
CANCELLED indicates that the general STAE command was 
accepted. 

zzz = FOR VALID LK NAKES SPECIFIED ON THIS REQUEST 
indicates that the specified STAE command was accepted 
for all load modules specified unless one or more of 
the load modules names are rejected on a subsequent 
DPP0251 message. 

zzz = THIS STAE REQUEST WILL NOT BE HONORED indicates 
that the STAE command option was neither "DUMP", 
"NODUMP",.or "STEP". 

Response: If the STAE option vas invalid, select either "DUMP", 
"NODUl1P"., "ONEDUMP", or "STEP" option and re-issue the 
comman d. 

DPP0251 time LM NAME xxx - SPECIFIED ON STAE REQUEST IS INVALID 
AND WILL NOT BE PROCESSED 

Routing code: 2 

Message issued by segment: DP PTIMPS 

Explanation: 

Response: 

One of the load module names specified on the previous 
STAE command was found to be invalid. Message DPP0241 
was issued to notify the user of the option in effect 
as a result of that STAE command. Multiple DPP025I 
messages may be issued, one for each invalid load module 
name on that STAE command. 

Ensure that all characters in a specified load module 
name are either alphanumeric or one of the special 
characters "$", "#tI, 1I(i)". The special character "?" 
may also be used to delimit the load module name. The 
first character of a load module name cannot be numeric. 
Re-issue the STAE command with the corrected load module 
names. 

DPP0261 time INVALID IMP COMMAND 

Routing code: 1 

Message issued by segment: DPPXIMPP 

OPERATOR'S REFERENCE 4-21 



Explanation: An invalid IMP command vas issued. 

Response: If the IMP command was misspelled, it should be reissued. 
If the specified IMP command was entered correctly, it 
is not known to the system. Therefore, the IMP command 
requested should be defined and added to the system. 

DPP027I time OPERATOR COMMAND NOT DUMP OR NODUMP - THE SPECIAL 
REAL TIME OPERATING SYSTEM NOT CANCELLED 

Routing Code: 2 

Message issued by segment: DPPXKILL 

Explanation: A canc~l IMP command was issued which specified an action 
other than DUMP or NODUMP. 

Response: A cancel IMP command should be issued which specifies 
an action of DUMP or NODUMP or the parameter should not 
be specified. If no parameter is specified, the IMP 
command parameter will default NODUMP. 

DPP028I time TASK - DPPSAMPl WAS ENTERED AT ENTRY POINT DPPSAMP1 

Routing Code: 1 

Message issued by segment: DP PSAI1 Pl 

Explanation: Test message issued by the Special Real Time Operating 
System sample prog,ram. 

Response: None. 

DPP029I time date RC = hhh cccccccccccccccccccccc CONSOLE as 
DESCRIPTOR AND ROUTING CODES xxxx ALTRC hhh 

Routing Code: 1 

Message issued by segment: DPPMMSGV 

Explanation: The message displays the status (In or Out of Service) 
of system messages console routing codes. The message 
is issued in response to an MSGRC IMP command. 

Response: None. 

DPP0301 time date RC = hhh cccccccccccccccccccccc PROGRAM TASK 
,NAME = tttttttt EPNAME = nnnnnnnn ALTRC = hhh 

Routing code: 1 

Message issued by segment: DPPMMSGV 

Expla na tion: 

Response: 

4-28 

The message displays the status Un or out of SerYic~ 
of system messages output program routing codes. The 
message is issued in response to an MSGRC IMP command. 

None. 

Description and Operation Manual 



DPP031I time date BC = hhh cccccccccccccccccccccc as DEVICE 
DDNAME = dddddddd ALTRC = hhh 

Routing code: 1 

Message issued by segm.nt: DPPKMSGV 

Explanation: Tne message displays the status (In or Out-ot-Service) 
of system messages as DEVICE (printer, tape, etc. The 
message is issued in response to an MSGRC IMP command. 

Response: None. 

DPP0321 time date RC = hhh cccccccccccccccccccccc DISPLAY FUNC 
AREA = x ACCESS AREA = x ALTRC = hhh 

Routing code: 1 

Message issued by segment: DP PMI1SGV 

Explanation: The message displays the status (In or out ot Service) 
of system messages display routing codes. The message 
is issued in response to an MSGBC IMP command. 

Response: None. 

DPP033I time INVALID REQUEST - ALTERNATE ROUTE CODE IS OUT OF 
SERVICE 

Routing Code: 1 

Message issued by segment: DPPMMSGV 

Explanation: 

Response: 

DPP034I 

An !SGRC IMP command vas issued that specified an 
alternate route code that is out of service. An MSGRC 
IMP command should be issued that specifies no alternate 
route code or one that specifies an alternate route code 
that is in service. An MSGRC IMP command with a STATALL 
parameter can be specified to determine that route codes 
are in or out of service. 

None. 

time INVALID REQUEST - ROUTE CODE = ALTERNATE ROUTE CODE 

Routing code: 1 

Message issued by segment: DPP!MSGV 

Explanation: 

Response: 

DPP035I 

An MSGRC IMP command vas issued that specified the same 
route code in the priaary and alternate route code 
parameters. 

An MSBRC IKP command should be issued that specifies 
different route codes for the primary and alternate 
route code parameters. 

time ROOTING CODE NOT FOUND OR ACTION (STATUS STATALL, 
IN OR OOT) PARAMETER NOT SPECIFIED 

OPERATOR'S REFERENCE 4-29 



Routing code: 1 

Message issued by segment: DP PMMS GV 

Explanation: An MSGRC IMP command contains a route code not in the 
system or ACTION parameter, STATUS = STATALL-IN-OUT, 
not sp ecified. 

Response: The validity of the route code should be determined 
issuing an MSGRC IMP command with a STATALL parameter 
or a valid action parameter (STATUS-STAT ALL-IN-OUT) 
should be specified. 

DPP036I DDSNAME = XXIXXXXI I COMPARE ENDED WITH I/O ERROR, RESULTS 
ON COMPRINT REPORT DATA SET 

Routing code: 3 

Message issued by segment: DPPSCMPR 

Explanation: If IEBCOMPR returns with a return code G.7. 4, this 
message is ou t pu t. 

Response: None. 

DPP037I USER DATA 

Routing code: 2 

Message issued by segment: None. 

Explana tion: 

Response: 

DPP038I 

Routing code: 2 

This message is comprised of 50 characters of user data 
on which no translation is done. The data is output 
exactly as passed by the user. There is no use of this 
message by the released Special Real Time Operating 
System system. 

None. 

POSSIBLE SPECIAL REAL TIME OPERATING SYSTEM TIME ERROR 
- THE SPECIAL REAL TIME OPERATING SYSTEM TIME OF DAY 
HAS BEEN RECALCULATED 

Message issued by segment: DPPCTIME or DPPCTIM2 

Explanation: The time interval between successive updates to the 
Special Real Time Operating System time array exceeded 
the allowable tolerance, so a new time vas calculated. 

Response: None. 

DPP039I THE OS/SPECIAL REAL TIME OPERATING SYSTEM TIME CONVERSION 
FACTOR HAS BEEN UPGRADED 

Routing code: 2 

Message issued by segment: DPPCUPCF 

4-30 Description and Operation Manual 



Expla na tion: 

Response: 

DPP041I 

A time correction value has been passed to the Special 
Real Time operating System time management services and 
the Special Real Time Operating System time and date 
have been updated accordingly. 

None. 

xxx HAS BEGUN PROCESSING SYSINIT INPUT STREAM 

Routing code: 2 

Message issued by segment: DPPI NI T1 

Explana tion: This message is used to notify the operator that the 
SYSINIT input stream is being processed. It is an 
indication that the Special Real Time Operating System 
has completed initialization. xxx - is used to identify 
the SYSINIT input stream. 

xxx = 

xxx = 

xxx = 

"SLAVE JOB" indicates the SLAVE partition SYSINIT 
in pu t streams. 

"MASTER JOB" indicates the MASTER partition 
SYSINIT input stream. 

"SRTOS JOB" indica tes the real time parti tion 
SYSINIT input stream in a single partition 
en vironmen t. 

Response: None 

DPP042I BLDL FAILED FOR MODULE MMMMMMMM - RETURN CODE WAS 
CCCCCCCC 

Routing code: 2 

Message issued by segment: DDDIDFIX 

Explanation: The page fix routine had a load module fix request for 
module MMMMMMMM, a BLDL for the module failed, the return 
code was CCCCCCCC. 

Response: Check array DPPXFIX and verify that the module to be 
fixed exists as a load module and the array is properly 
built. 

DPP0431 FIX FAILED FOR TTTTTTTTTT - NNNNNNNN - RETURN CODE WAS 
CCCCCCCC 

Routing code: 2 

Message issued by segment: DPPIPFIX 

Explana tion: 

Response: 

An attempt was made to fix virtual storage for TTTTTTTTTT 
- (load module, named array, numbered array) - named 
NNNNNNNN - the return code from the page fix routine 
vas CCCCCCCC. 

The contents of array DPPXFIX should be reviewed; the 
normal cause of this failure is too much real storage 
is becoming fixed. 

OPERATOR'S REFERENCE 4-31 



DPP0441 TASK = TTTTTTTT - EP=EEEEEEEE WAS POSTED WITH A NONZERO 
POST CODE - ECB CONTENTS = CCCCCCCC 

Routing code: 2 

Message issued by segment: DPINITll 

Explanation: Task named TTTTTTTT, with entry point named EEEEEEEE, 
was PATCHed by Special Real Time Operating System 
initialization. The task was PATCHed with the ECB= 
option and, at termination, the ECB had a non-zero 
completion code. The contents of the ECB were CCCCCCCC. 

Eesponse: Notify the responsible programmer. 

DPP045I CONTROL STATEMENT ERROR DETECTED - RUN ABORTED 

Eouting code: 2 

Message issued by segment: DPINIT05 

Explanation: The SYSINIT input stream contained control statement(s) 
which were erroneous. The run is terminated. 

Response: Have the erroneous control statements corrected and 
resubmit the run. 

DPP046I MASTER OR SLAVE PARTITION WAITING FOR CORRESPONDING 
MASTER OR SLAVE TO BE INITIALIZED 

Routing code: 1 

Message issued by segment: DPINIT5 

Explanation: A job has been started whose SYSINIT stream contained 
a MASTER or SLAVE statement. The job has reached a 
point in its initialization where it can go no further 
until its corresponding MASTER or SLAVE has been started. 
This message is issued at one-minute intervals until 
the corresponding MASTER or SLAVE job is initialized. 

Response: Start the corresponding MASTER or SLAVE job. 

DPP047I GETARRAY FAILED FOR DPPXFIX - RETURN CODE WAS CCCCCCCC 
- PAGE FFFFFFFF BYPASSED 

Routing code: 2 

Message issued by segment: DPPIPFIX and DPPDPFRE 

Explanation: 

Response: 

DPP0481 

4-32 

A PATCH to DPPIPFIX was issued; however, array DPPXFIX 
was not located. Theretu rn code from the GET ARRA Y for 
array OPPXFIX was CCCCCCCC. The Function (FIX or FREE) 
was The Function (FIX or FREE)' was bypassed. 

Remove the PATCH to DPPIPFIX or be sure that array 
DPPXFIX exists in the data base being used (DBINIT and 
DBINIT2 cards). 

GETARRAY FAILED FOR TTTTTTTT - NNN - RETURN CODE WAS 
CCCCCCCC. 

Description and Operation Manual 



Routing code: 2 

Message issued by segment: OP PIPFIX 

Explanation: A PATCH vas issued to DPPIPF~X. While processing array 
DPPXFIX. a fix request was found for TTTTTTTT (named 
array or numbered array). a GETARRAY vas issued to locate 
the named or numbered array NNNNNNNN. The GETARRAY 
failed vith return code CCCCCCCC. 

Response: Check that the numbered or named array exists in the 
data base, or that array DPPXFIX is valid. 

DPP0491 ITEK 11111111 IN ARRAY DPPXFIX COULD NOT BE FIXED BECAUSE 
THE TYPE FIELD IS INVALID 

Routing code: 2 

Message issued by segment: DPPIPFIX 

Explanation: A PATCH was issued to DPPIPFIX; while processing array 
DPPXFIX, an Item IIIII!II vas found that contained an 
invalid fix type. 

Response: The only valid fix types are N, A and L. Have array 
OPPXFIX corrected. 

DPP0501 time date' ORECOUT DD CARD MISSING 

Routing code: 2 

Message issued by segment: DPPXRINT 

Explanation: Data recording initialization vas unable to open the 
data recording DCB due to the absence of the DRECOUT DD 
statement in the job step JCL. 

Response: A DRECOUT DD statement ~hould be added to the job step 
JCL. 

DPP0511 time date DPBIN DD CARD MISSING 

Routing code: 2 

Message issued by segment: DPPXDPB 

Explanation: Data playback vas unable to open the data playback DCB 
due to the absence of the DPBIN DD statement from the 
job step JCL. 

Response: A OPBIN DO statement should be added to the job step 
JCL. 

DPP0521 PAGE FIX FUNCTION COMPLETE - ALL ITEMS WERE XXXXXX 

Routing code: 2 

Message issued by segment: DPPIPFIX 

Explanation: A PATCH was issued to DPPIPFIX. Array DPPXFIX vas 
processed; when all processing had been completed, this 

OPERATOR'S REFERENCE 4-33 



message was issued to say all ITEMS were XXXXXX - (FIXED 
or NOT FIXED). 

Response:, If all ITEMS were not fixed, a decision may be required 
whether to continue or terminate this run. 

DPP0531 time date REPORT DATA OUTPUT FACILITY UNABLE TO OPEN 
SPECIFIED DATA SET 

Routing code: 2 

Message issued by segment: DPPXRPRT 

Explanation: Report Data output Facility unable to open specified DO 
statement due to the absence of the DD statement from 
the job step JCL. 

Response: A DD statement should be added to the job step JCL for 
each DO name passed to the Report Date Output Facility 
or the DO name that is not defined by a 00 statem~nt 
should not be passed to the Report Data output Facility. 

DPP0541 WRITING OF FAILOVER DATA SET BYPASSED FOR RESTART OF 
SLAVE PARTITION 

Routing code: 2 

Message issued by segment: DPPI NI T1 

Explanation: A KASTER and a SLAVE had been running, and the SLAVE 
terminated. The SLAVE is being restarted and its SYSINIT 
stream contains a RESTART WRITE statement. A failover 
data set had been written on the initial startup of the 
MASTER and SLAVE, so this function -is bypassed. 

Response: None. 

DPP0551 ERROR ON DDS DECLARATION 

Routing code: 3 

Message issued by segment: DPPSINIT 

Explanation: 

Response: 

Dl>P0561 

One of the DDSNAMES cards has been incorrectly coded 
(II ithin the DDSCTLIN strea m) • 

Correct the bad DDSNAMES card and resubmit the job. 

DDSNAME = XXXXXXXX, PRIMARY = YYYYYYYY, BACKUP = ZZZZZZZZ 
(= OUT-OF-SERVICE) 

Routing code: 3 

Message issued by segment: DPPSMSGI 

Explanation: This message only gives the status of a specified DDS. 

Response: None. 

4-34 Description and Operation Manual 



DPP057I DDSNAME = XXXXXXXX IS LOCKED OUT 

Routing code: 3 

Message issued'by segment: DPPSLOCK 

Explanation: A DDS LOCK is being placed on the DDS in question. 

Response: None. 

DPP058I DDSNAME = XXXXXXXX IS UNLOCKED 

Routing code: 3 

Message issued by segment: DPPSUNLK 

Explanation: A DDS lock is being taken off the DDS in question. 

Response: None. 

DPP059I UNABLE TO CREATE BACKUP FOR DDSNAME = XXXXXXXX 

Routing code: 3 

Message issued by segment: DPPSCRBK 

Explanation: An attempt to create a backup copy is unsuccessful 
because of I/O errors. 

Response: None. 

DPP060I time date (up to 80 characters of user data) 

Routing code: 2 

Message issued by segment: DPPXKILL 

Explanation: The Special Real Time Operating system cancel routine 
displays any operator comments, passed to the cancel 
routine, about the nature of the termination. 

Response: None. 

DPP061I PTIME for TASK X EP I TERMINATED BY PATCH RC Z 

Routing code: 2 

Message issued by segment: DPPCPTIM 

Explanation: 

Response: 

DPP062I 

A PATCH vas issued by a time service routine in response 
to a previous PTIME request to task X and EP I, but 
received an error return code of Z from the PATCH 
routine. Therefore, its PTIME for this task and EP have 
been deleted. The return code is output as a hexadecimal 
value. 

None. 

DDS REQUEST REJECTED 

OPERATOR'S REFERENCE 4-35 



Routing code: 3 

Message issued by segment: DPPS KS GI 

Explanation: 

Response: 

DPP0631 

A switch was attempted while the backup was out of 
service. 

None .. 

DDSNAME = XXXXXXXX WAS NOT DECLARED DURING INITIALIZATION 

Routing code: 3 

Message issued by segment: DPPSMSGI 

Explana tion: 

Response: 

DPP064I 

This message follows DPP062I stating that the DDSNAME 
specified is a user command that could not be found 
among the ones declared as duplicates at iniatization 
time. 

None. 

DDSNAKE = XXXXXXXX. BACKUP IS ALREADY IN SERVICE 

Routing code: 3 

Message issued by segment: DPPSCRBK 

Explanation: 

Response: 

DPP065I 

The backup is already in service, so a user request to 
create a backup will not be executed. 

None~ 

DDSNAME = XXXXXXXX = S CURRENTLY OPENED BY ANOTHER TASK 

Routing code: 3 

Message issued by segment: DP PS MSGI 

Explanation: The user's request for 'REPLACE' cannot be satisfied 
because the DDS is already open. 

Response: None. 

DPP066I time date 

Routing code: 1 

Message issued by segment: DPPZSAMP DPPSAMP1 

Explanation: 

Response: 

DPP067I 

4-36 

Test message issued by the Special Real Time Operating 
System sample prog ram. 

None. 

ABEND sssuuu AT LOCATION xxxxxx DURING THE SPECIAL REAL 
TIME OPERATING SYSTEM SERVICE OF PL/I - FORT MACRO ID 
yy 

Description and Operation Manual 



Routing code: 3 

Message issued by segment: DPPPIF 

Explanation: The message is intended to inform the high level language 
user that a Special Real Time Operating System service 
routine ABENDed with a completion code of sssuuu where 
sss is the system completion code and uuu is the user 
completion code at location xxxxxx for service call 
identified by MACRO ID yy. 

Response: None. 

DPP068I time date .8C1. MACRO PUNCTIONING 

Routing code: 1 

Message issued by segment: DPPZSAMP 

Explanation: Test message issued by the Special Real Time operation 
System sample program. When the sample program executes 
a macro, and the macro executed properly, message DPP068 
will be issued with the macro name. 

Response: None. 

DPP069I time date. ITEM DPPSAMP2 CONTENTS ARE #6C1. 

Routing code: 1 

Message issued by segment: DPPZSAMP 

Explanation: Test message issued by the Special Real Time Operating 
System sample program. A GETITEM macro will be executed 
by the sample program. The contents of item DPPSAMP2 
(in array DPPZSAMP) will be displayed via mes~age DPP069. 

Response: None. 

DPP070I time (content of the IMP command which was received) 

Routing code: 1 

Message issued by segment: DP PXIMPP 

Explanation: Contains the IMP command issued by the operator. 

Response: None. 

DPP071I DDS REQUEST REJECTED - REQUEST NOT UNDERSTOOD 

Routing code: 3 

Message issued by segment: DP PSMS GI 

Explanation: A DDS request was entered with a bad format, and the 
DSS input handler could not interpret it. 

Response: None. 

OPERATOR'S REFERENCE 4-37 



DPP072I time date PROGRAM #8C1# PATCHED AS A RESULT OF AN IMP 
COMMAND APPEARS TO BE IN A LOOP 

Routing code: 2 

Message issued by segment: DPPXIMPP 

Explanation: 

Response: 

An IMP command was issued to the SLAVE partition and 
the routine that processes (routine patched by IMP as 
a result of this command) the command appears to be in 
a loop. 

The loop in the processing routine for this particular 
IMP command should be corrected. The loop will not 
affect the operation of the Special Real Time Operating 
System. 

DPP0731 DDSNAME = XXXXXXXX, UNABLE TO ACCESS DATA SETS COMPARE 
REJECTED 

Routing code: 3 

Message issued by segment: DPPSCMPR 

Explanation: A DDS compare request is being rejected because the 
JFCBs for the data sets cannot be read. 

Response: None. 

DPP074I DDSNAME = XXXXXXXX, DATA SETS NOT SAME TYPE COMPARE 
REJECTED 

Routing code: 3 

Message issued by segment: DPPSCMPR 

Explana tion: 

Response: 

DPP0751 

A DDS compare request Has made for data sets with 
different DSORG fields in the DSCBS, so the request is 
being dropped. 

None. 

DDSNAME = XXXXXXXX, COMPARE IN !ROGRESS 

Routing code: 3 

Message issued by segment: DPPSCMPR 

Explanation: The DDS specified is now being compared. 

Response: None. 

DPP076I DDSNAME = XXXXXXXX, COMPARE ENDED DATA SETS ARE EQUAL 

Routing code: 3 

Message issued by segment: DPPSCMPR 

Explana tioD: 

4-38 

A DDS compare function ended, and the two data sets were 
fo un d to be equal. 

Description and Operation Manual 



Response: None. 

DPP077I DDSNAME = XXXXXXXX, COMPARE ENDED, DATA SETS ARE NOT 
EQUAL 

Routing code: 3 

Message issued by segment: DP PSCM PR 

Explanation: A DDS compare function ended with the data sets not 
being equal; IEBCOMPR output is on the COMPRINT report 
data sets. 

Response: None. 

DPP078I DDSNAME = XXXXXXXX, COMPARE REJECTED, NO //DDSCMPIN DD 
CARD FOR SYSIN 

Routing code: 3 

Message issued by segment: DPPSCMPR 

Explanation: A DDS compare request is being dropped because there is 
no DDSCMPIN DO card in the 1107 to hold IEB COMPR input. 

Response: None 

DPP0791 time IMP PARAMETERS EXCEED MAXIMUM PARAMETERS DEFINED 
FOR IMP COMMAND cccccccc 

Routing code: 1 

Message issued by segment: DPPXIMPP 

Explanation: Too many parameters were passed by the IMP command. 

Response: The IMP command should be issued again, not exceeding 
the maximum number of parameters for this particular 
IMP command. 

DPP080A FAIL/RST DATA SET NOT WRITTEN - END OF EXTENT ON DPPFAIL 

Rou'ting code: 5 

Message issued by segment: DOMIRFL2 

Explanation: The data set named in the DPPFAIL DD card contains 
insufficient space for the failure/restart data set. 

Response: Allocate more space. 

DPP081A FAIL/RST DATA SET NOT WRITTEN - I/O ERROR ON DPPFAIL 

Routing code: 5 

Message issued by segment: DorURFL2 

Explanation: An I/O error occurred on the Failure/Restart data set. 

OPERATOR'S REFERENCE 4-39 



Response: Use a different disk or allocate the space at a different 
place on the disk pack. Hardware error. 

DPP082A FAIL/RST DATA SET NOT WRITTEN - I/O ERROR READING PAGING 
DATA SET 

Routing code: 5 

Message issued by segment: DOMIRFL2 

Explana tion: An I/O error reading the OS/VS1 paging data set. 

Response: An IPL will be required. Hardware error. 

DPP083A FAIL/RST DATA SET WRITTEN - 1/0 READING JOBQUEUE/SYSWADS 

Routing code: 5 

Message issued by segment: DOMIRFL2 

Explanation: 

Response: 

An I/O error occurred while reading the OS/VS1 Job queue 
or SYS1.SYSWADS data sets. 

An IPL will be required. Hardware error. 

DPP084A FAIL/RST DATA SET NOT WRITTEN - 1/0 ERROR READING SiADS 

Routing code: 5 

Message issued by segment: DO MIRFL2 

Explanation: 

Response: 

An 1/0 error occurred while reading the SWADS for the 
MASTER partition. 

Hardware error. A different SWADS will probably be 
required. 

DPP085A FAIL/RST DATA SET NOT WRITTEN - 1/0 READING SWADS FOR 
SLAVEPART 

Routing code: 5 

Message issued by segment: DOMIRFL2 

Explanation: 

Response: 

DPP086A 

An I/O error occurred while reading the SWADS for the 
SLAVE partition. 

Hardware error. A different SWADS will probably be 
required. 

FAIL/RST DATA SET NOT WRITTEN - PROG eK. IN RESTART 
WRITE 

Routing code: 5 

Message issued by segment: DO MIRFL2 

Explanation: An unexplained program check occurred in restart write. 

4-40 Description and Operation Manual 



Response: Probable programming error in Failure/Restart. 

DPP087A FAIL/RST DATA SET NOT WRITTEN - ~ACHINE CHECK IN RESTART 

Routing code: 5 

Message issued by segment: DOMIRFL2 

Explanation: A hardware error occurred in restart write. 

Response: Retry the job. 

DPP088A SECNDRY COPY OF FAIL/RST DATA SET NOT WRITTEN I/O ERROR 
ddname 

Routing code: 5 

Message issued by segment: DOMIRCPY 

Explanation: An I/O error occurred while attempting to make backup 
copies of the failure/restart data set. No backup copies 
were made. Insufficient space in the data set can cause 
this error. 

Response: Possible hardware error. Allocate the backup 
failure/restart data set at a different location or 
increase its size. 

DPP089A DDNAME ddname INVALID FOR COpy OF F/R DATA SET 

Routing code: 5 

Message issued by segment: DO MIRCPY 

Explana ti on: The ddname indicated is invalid for the failure/restart 
data set for one or more of the following reasons: 

• It is not a direct access device of the same type as the primary 
F /R data set. 

• Another F/R data set is on the volume. 

• The volume contains the SYS1.NUCLEUS data set. No backup copies 
were made. 

Response: Correct the JCL. 

DPP0901 FAIL/RST DATA SET WRITTEN 

Routing code: 5 

Message issued by segment: DOMIRFL2 

Explana tion: The Failure/Restart data set has been successfully 
written. 

Response: None. 

DPP0911 FAIL/RST DATA SET READ COMPLETE 

OPERATOR'S REFERENCE 4-41 



Routing code: 5 

Message issued by segment: DOMIRFL2 

Explanation: The Failure/Restart data set had been successfully IPLed. 

Response: None. 

DPP092A FAIL/RST DATA SET NOT WRITTEN - DPPFAIL DD CARD INVALID 
OR MISSING 

Routing code: 5 

Message issued by segment: DOMIRFL2 

Explanation: The Failure/Restart data set was not written because of 
one or more of the following: 

• No DPPFAIL DD card is provided. 

• The data set name in the DPPFAIL DD card is not on direct access. 

• The data set named in the DPPFAIL DD card is on the same volume 
with SYS1.NUCLEUS. 

Response: Correct the JCL and resume the job. 

DPP093I FAIL/RST DATA SET NOT WRITTEN - OTHER R/T JOB IN SYSTEM 

Routing code: 5 

Message issued by segment - DOMIRFL2 

Explanation: Another realtime job in the same OS/VS1 system owns 
restart write eligibility. 

Response: None. 

DPP094A PROBE FUNCTION NOT RUNNING IN OTHER CPU 

Routing code: 5 

Message issued by segment: DOMIRCMN 

Explanation: This message can appear only in systems with CMCKPRB=YES 
specified in the FAILRST SYSGEN macro. It indicates 
that neither a continuous monitor or a PROBE is running 
in the backup CPU. 

Response: Start a PROBE function in the backup CPU if desired. 

DPP095I PROBE FUNCTION IS NOW RUNNING IN OTHER CPU 

Routing code: 5 

Message issued by segment: DOMIRCMN 

Explanation: 

4-42 

This message can appear only in systems with CMCKPRB=YES 
specified in the FAILRST SYSTEN macro. It indicates 
that the continuous monitor has detected that a PROBE 
function is running in the other CPU. 

Description and Operation Manual 



Response: None. 

DPP096I ANOTHER CONT. MON IS IN OTHER CPU 

Routing code: 5 

Message issued by segment: DOMIRCMN 

Explanation: This message can appear only in systems with CMCKPRB=YES 
specified in the FAILRST SYSGEN macros. It indicates 
that each CPU has a continuous monitor running in duplex 
mode. Each CPU is operating as though it were the prime 
cpu. 

Response: Cancel the realtime job in one of the CPUs unless the 
configuration is specified. 

DPP098A CONTINUOUS MONITOR RECOMMENDS FAILOVER 

Routing code: 5 

Message issued by segment: DOMIRCMN 

Explanation: The continuous monitor has d~tected an error in the 
online system and is recommending a failure or restart. 

Response: Allow the failover to occur or invoke a restart as 
appropriate. 

DPP099I ANOTHER CONT. MON/PROBE ON SAME SYSTEM - NO HARDWARE 
FAILOVER RECOM BY THIS CONT. MON 

Routing code: 5 

Message issued by segment: DOMIRCMN 

Explanation: One of the following conditions exists: 

• This realtime job does not ovn restart write eligibility. 

• A PROBE function is running in another job on this cPU. 

• A continuous monitor is already running in duplex mode on this CPU. 

Response: None. 

DPP8001 CONTROL STATEMENT LABEL MUST NOT EXCEED EIGHT CHARACTERS 

Routing code: SYSPRINT 

Message issued by segment: DPPINITO 

Explanation: 

Response: 

DPP8011 

The LABEL field of a control statement had a name that 
exceeded eight characters. Eight is the maximum 
allowable number of characters in this field. 

Correct the name in the LABEL field and resubmit. 

CONTROL STATEMENT MUST HAVE OPERANDS 

OPERATOR'S REFERENCE ij-ij3 



Bouting code: SYSPBINT 

Message issued by segment: DPPINITO,DPINITOA 

Explanation: All control statements except ABEND must have OPERANDS 
that begin on the same card as the OPERATION. 

Response: Supply the proper OPERANDS and resubmit. 

DPP8021 INVALID OPERATION FIELD 

Routing code: SYSPRINT 

Message issued by segment: DPPINITO 

Explanation: An OPERAND other than one of the following was found: 
PATCH, WAIT, WRITE, TCB, GETWA, CBGET, ABEND, MASTER, 
SLAVE, DBREF. 

Response: Correct the OPERATION field and resubmit. 

DPP8031 TOO MANY OPERANDS ON CONTROL STATEMENT 

Routing code: SYSPRINT 

Message issued by segment: DP INIT03 

Explanation: The maximum nUmber of OPERAND characters allowed on any 
one control statement and its continuations is 255 
characters. 

Response: Correct the control statement and resubmit. 

DPP8041 INVALID CONTROL STATEMENT CONTINUATION 

Routing code: SYSPRINT 

Message issued by segment: DPINIT03 

Explanation: A continuation was indicated and the card processed 
either began in column 15 or before, or processing was 
not within quotes and the continuation did not start in 
column 16. 

Response: Correct the control statement and retry. 

DPP805I INVALID OPERAND ON CONTROL STATEMENT 

Routing code: SYSPRINT 

Message issued by segment: DPINIT04,DPINITOA 

Explana tion: 

Response: 

DPP806I 

4-44 

The control statement contains an invalid operand for 
the operation type specified in the operation field. 

Correct the control statement and retry. 

ONLY ONE MASTER OR SLAVE STATEMENT ALLOWED IN INPUT 
STREAM 

Description and Operation Manual 



Routing code: SYSPRINT 

Message issued by segment: DPPINITO 

Explanation: only one MASTER or SLAVE control statement is allowed 
in each SYSINIT input stream. 

Response: Remove the extra MASTER or SLAVE statement(s) from the 
stream and retry. 

DPP807I NAME SPECIFIED ON WAIT STATEMENT NOT A LABEL ON A 
PREVIOUS PATCH CONTROL STATEMENT 

Routing code: SYSPRINT 

Message issued by segment: DPINIT04 

Explanation: The operand on the WAIT statement was not a label from 
a PATCH statement which precedes the WAIT in the input 
stream. 

Response: Correct the WAIT operand r remove the WAITr or place the 
proper PATCH statement ahead of the WAIT in the input 
stream and retry. 

DPP8081 ONLY ONE RESTART STATEMENT ALLOWED IN THE INPUT STREAM 

Routing code: SYSPRINT 

Message issued by segment: DPINIT04 

Explanation: The input stream contained more than one WRITE RESTART 
statement. only one is valid. 

Response: Remove the extra WRITE RESTART statement(s) from the 
SYSINIT stream and retry. 

DPP809I INVALID NAME IN EP=FIELD 

Routing code: SYSPRINT 

Message issued by segment: DPINIT02 

Explanation: The name specified on an EP= keyword of a PATCH statement 
exceeded eight characters. 

Response: Correct the EP= operand and retry. 

DPP810I INVALID NAHE IN TASK= FIELD 

Routing code: SYSPRINT 

Message issued by segment: DPINIT02 

Explanation: The TASK: keyword of a PATCH statement contained a task 
name which exceeded eight char~cters. 

Response: Corre~t the TASK= operand and retry. 

OPERATOR'S REFERENCE 4-45 



DPP811I QL FIELD INVALID 

Routing code: SYSPRINT 

Message issued by segment: DPINIT02,DPPINITOA 

Explanation: The QL= keyword on a PATCH statement contained a value 
of greater than 999. 

Response: Correct the QL= keyword operand and retr~ 

DPP8l2I ID FIELD INVALID 

Routing code: SYSPRINT 

Message issued by segment: DPINIT02 

Explanation: The 10= keyword on a PATCH statement contained an 10 
greater than 255. 

Response: Correct the ID= keyword operand and retry. 

DPP8l3I INVALID KEYWORD 

Routing code: SYSPRINT 

Message issued by segment: DP PI NI TO, DPI NI TOA 

Explanation: The control statement contained an invalid keyword for 
the operation type specified in the operation field. 

Response: Correct the keyword and retry. 

DPP8l4I PRTY REFERENCE VALUE MISSING OR INVALID 

Routing code: SYSPRINT 

Message issued by segment: DPINIT02,DPINITOA 

Explanation: The PRTY= keyword on the PATCH statement was either 
missing the reference value or the value exceeded 255. 

Response: Correct the PRTY reference value and retry. 

DPP815I INVALID DELIMETER IN PRTY OPERAND 

Routing code: SYSPRINT 

Message issued by segment: DPINIT02 

Explanation: 

Response: 

DPP816I 

4-46 

The PRTY= keyword on a PATCH statement was not coded as 
JOBSTEP - or (jobname,). The delimiter must be the 
minus (-) or the comma (,). 

Correct the PRTY= keyword operand and ensure that if 
(jobname,) is used that the specified jobname does not 
exceed eight characters. 

INVALID TASK NAKE IN PRTY REFERENCE FIELD 

Description and Operation Manual 



Routing code: SYSPRINT 

Message issued by segment: DPINIT02 

Explanation: The PRTY= keyword on the PATCH statement contained a 
name in the (jobname,) field which exceeded eight 
characters. 

Response: Correct the PRTY reference jobname and resubmit. 

DPP8171 DUPLICATE KEYWORD ON PATCH STATEMENT 

Routing code: SYSPRINT 

Message issued by segment: DPINIT02 

Explanation: A keyword operand on the PATCH statement appeared twice 
on a single control statement. 

Response: Correct the control statement and retry. 

DPP818I INVALID DELIMETER IN PARAM SUBOPERANDS 

Routing code: SYSPRINT 

Message issued by segment: DPINIT01 

Explanation: All suboperands within a PARAH field must end with a 
single quote (') character and be delimited by a comma. 
This PATCH statement contained a suboperand that was 
not delimited with a comma. 

Response: Correct the control statement and retry. 

DPP819I INVALID DATA IN PARAH FIELD 

Routing code: SYSPRINT 

Message issued by segment: DPINIT 01 

Explanation: The PARAH= keyword operand on a PATCH statement contained 
non-decimal data in an F' I field, or non-hexadecimal 
da ta in an X' I fi e1 d. 

Response: Correct the PARAH data and retry. 

DPP820I INVALID DATA TYPE IDENTIFIER IN PARAH FIELD - MUST BE 
X, F, OR C. 

Routing code: SYSPRINT 

Message issued by segment: DP INIT 01. 

Explanation: 

Response: 

DPP8211 

The PARAM= keyword on a PATCH statement contains a data 
type identifier other than X, F, or C. 

Correct the data type identifier and retry. 

CHARACTER FOLLOWING PARAH DATA TYPE IDENTIFIER MUST BE 
A QUOTE 

OPERATOR'S REFERENCE 4-47 



Routing code: SYSPRINT 

Message issued by segment: DP IN ITOl 

Explanation: The data type identifier (F, C, or X) on a PATCH 
statement must be followed by a single quote (') 
character. 

Response: Correct the PARAM field and retry. 

DPP822I UNBALANCED QUOTES IN PARAH FIELD 

Routing code: SYSPRINT 

Message issued by segment: DPINITOl 

Explanation: A PARAM keyword on a PATCH statement must contain evenly 
balanced single quote (') characters. This character 
is not valid with a PARAM suboperand. 

Response: Correct the PARAM statement and retry_ 

DPP823I PARAM FIELD MUST END WITH RIGHT PARENTHESIS 

Routing code: SYSPRINT 

Message issued by segment: DPINITOl 

Explanation: The PARAM= keyword suboperands on a PATCH statement must 
be enclosed in parentheses (--); the ending or right 
parenthesis is missing on this PATCH statement. 

Operator response: Correct the PARAM field and retry. 

DPP8241 PARAM FIELD MUST START WITH LEFT PARENTHESIS 

Routing code: SYSPRINT 

Message issued by segment: DPINIT01 

Explanation: The PARAM= keyword suboperands on a PATCH control 
statement must be enclosed in parentheses (--); the 
beginning or left parenthesis on this PATCH statement 
is missing. 

Response: Correct the PARAM field and retry_ 

DPP825I INVALID DELIMETER FOLLOWING PARAM OPERAND 

Routing code: SYSPRINT 

Message issued by segment: DPINIT 01 

Explana tion: 

Response: 

4-48 

All operands on a PATCH statement must be delimited with 
a comma or blank. This cohtrol statement has a character 
other than a comma or blank following the ending (right) 
pa rent hesis. 

Correct the statement and retry. 

Description and Operation Manual 



DPP826I QL FIELD CONTAINS NONDECIMAL DATA 

Routing code: SYSPRINT 

Message issued by segment: DP1N1T02 

Explanation: The QL= operand on the PATCH statement contained a value 
that included non-deci~al characters. 

Response: Correct the QL= operand and retry. 

DPP827I ID FIELD CONTAINS NONDEC1MAL DATA 

Routing code: SYSPRINT 

Message issued by segment: DP1N1T02 

Explanation: The 10= keyword on the PATCH statement contained a value 
that included non-decimal data. 

Response: Correct the 10 field and retry. 

DPP828I PRTY FIELD CONTAINS NONDEC1MAL DATA 

Routing code: SYSPRINT 

Message issued by segment: DP1N1T02.DPINITOA 

Explanation: The PRTY = keyword on the PATCH statement contained a 
priority reference value that included a non-decimal 
character(s). 

Response: Correct the PRTY reference value and retry. 

DPP829I CBGET DATA IS NONDECIMAL 

Routing code: SYSPRINT 

Message issued by segment: DPINIT04 

Explanation: The CBGET statement 'operand contained a value which 
included a non-decimal character(s). 

Response: Correct the CBGET operand and retry. 

DPP830I INVALID JOBNAME 

Routing code: SYSPHINT 

Message issued by segment: DPINIT04 

Explanation: A MASTER or SLAVE statement had an invalid jobname on 
its operand. The jobname exceeds eight characters. 

Response: Correct the MASTER or SLAVE statement jobname and retry. 

DPP831I TIME FIELD CONTAINS NONDEC1MAL DATA 

Routing code: SYSPR1NT 

OPERATOR'S REFERENCE 4-49 



Message issued by segment: DPINIT04 

Explanation: The time field on the ABEND card contained a value that 
included a non-decimal character (s). 

Response: Correct the time field on the CBGET statement and retry. 

DPP8321 TIME FIELD CANNOT BE GREATER THAN 999 

Routing code: SYSPRINT 

Message issued by segment: DPINIT04 

Explanation: The time field on the ABEND card contained a value 
greater than 999. 

Response: Correct the time field and retry_ 

DPP833I SECOND OPERAND ON AN ABEND STATEMENT MUST BE DUMP OR 
OMITTED 

Routing code: SYSPRINT 

Message issued by segment: DP INIT 04 

Explanation: The second operand on the ABEND statement contained 
characters other than the word 'DUMP'. This operand 
must be 'DUMP' or omitted. 

Operator response: Correct the ABEND statement and retry. 

DPP8341 NUMBER OF TeBS IS NONDECIMAL 

Routing code: SYSPRINT 

Message issued by segment: DPINIT04 

Explanation: The operand on the TCB statement contained a value that 
included a non-decimal character(s). 

Response: Correct the TCB statement and retry. 

DPP8351 EP= MUST BE SPECIFIED ON A PATCH STATEMENT 

Routing code: SYSPRINT 

Message issued by segment: DPINIT04 

Explanation: The PATCH statement processed did not have the EP= 
keyword specified. 

Response: Correct the EP= and retry. 

DPP8361 INPUT DCB - SYSINIT - FAILED TO OPEN 

Routing code: SYSPRINT 

Message issued by segment: DPPINITO 

4-50 Description and Operation Manual 



Explanation: The input DCB for the SYSINIT data set could not be 
opened. 

Response: Check the SYSINIT DO card and verify that it allocates 
the correct data set. 

DPP837I INVALID SUBPARAMETERS IN LIST 

Routing code: SYSPRINT 

Message issued by segment: DPINIT04 

Explanation: The GETWA statement contained subparameters in its size 
list which vere invalid or had invalid delimiters. 

Response: Correct the GETWA statement and retry. 

DPP838I LIST ENTRY CONTAINS NONDECIMAL DATA 

Routing code: SYSPRINT 

Message issued by segment: DPINIT04 

Explanation: The GETWA suboperand list contained subparameters that 
contained a non-decimal character(s). 

Response: Correct the GETWA statement and retry. 

DPP839I NUMBER OF BLOCKS CANNOT EXCEED 4095 

Routing code: SYSPRINT 

Message issued by segment: DPINIT04 

Explanation: The GETWA statement had a request for a number of blocks 
and the request exceeded the maximum of 4095. 

Response: Correct the GETWA statement and retry. 

DPP840I GETWA SIZE EXCEEDS 30720 OR GREATER THAN 2048 AND NOT 
A 2K MULTIPLE OR NOT A MULTIPLE OF 8 

Routing code: SYSPRINT 

Message issued by segment: DPINIT04 

Explanation: The GETWA statement contained a request for a block size 
that exceeded the maximum size or is an invalid size. 

Response: Correct the GETWA statement and continue. 

DPP841I EXCESSIVE NUMBER OF SUBOPERANDS IN LIST -64 IS THE 
MAXIMUM 

Routing code: SYSPRINT 

Message issued by segment: DPINIT04 

Explanation: The GETWA statement contained a list of subparameters 
with more than 64 subparameters. 

OPERATOR'S REFERENCE 4-51 



Response: Correct the GETWA statement and retry. 

DPP842I SUBLIST MUST END WITH RIGHT PARENTHESIS 

Routing code: SYSPRINT 

Message issued by segment: DPINIT04 

Explanation: the GETWA statement contained a list of subparameters 
that did not end with a right parenthesis. 

Response: Correct the GETWA statement and retry. 

DPP843I SUBLIST MUST BEGIN WITH A LEFT PARENTHESIS 

Routing code: SYSPRINT 

Message issued by segment: DPINIT04 

Explanation: The GETWA statement contained a subparameter list that 
did not begin with a left parenthesis. 

Response: Correct the GETWA statement and retry. 

DPP844I CONTINUATION EXPECTED - NOT RECEIVED 

Routing code: SYSPRINT 

Message issued by segment: DPINIT05 

Explanation: The last statement read from the input str~am indicated 
that a continuation statement was to follow. The 
continuation statement was not in the input stream. 

Response: Correct the last statement or add the continuation 
statement and retry. 

DPP845I TWO-PARTITION FUNCTION NOT AVAILABLE 

Routing code: SYSPRINT 

Message issued by segment: DPINIT04 

Explanation: The input stream contains a MASTER or SLAVE statement; 
however, at SRTOS SYSGEN, two-partition operation was 
no t selected. 

Response: Remove the MASTER or SLAVE statement and retry. 

DPP8461 nnnnnnnn DEFINED AS QUEUE HOLDER BUT NOT REFERENCED BY 
ANY QUEUE PROCESSOR 

Routing code: SYSPRINT 

Message issued by segment: DPINIT05 

Explanation: 

4-52 

A QH statement defined nnnnnnnn as a queue holder but 
that name is not specified on any QP statement. If 
allowed to go into execution, work that is queued to 
this queue ~older could never be executed. 

Description and Operation Manual 



Response: Remove the QH card that specified this name or add this 
name to some QP statement and retry. 

DPP841I nnnnnnnn REFERENCED AS QUEUE HOLDER BY A QUEUE PROCESSOR 
BUT NOT DEFINED 

Routine Code: SYSPRINT 

Message issued by segment: DPINIT05 

Explanation: The name nnnnnnnn appears in the QH= operand of a QP 
statement but is not defined as a queue holder by a QH 
statem ent. 

Response: Define a queue holder by this name or delete this name 
from the QP statement that references it and retry_ 

DPP848I {QH NAME} 

Routing code: SYSPRINT 

Message issued by segment: DPINITOA 

Explanation: A QH name or QP number is required on every QH or QP 
statement as a positional parameter. This parameter is 
missing or invalid on the user statement preceding this 
message. 

Response: Correct the statement and retry. 

DPP849I cccccccc OPERAND CONTAINS TOO ftANY, TOO FEW OR ILLEGAL 
CHARACTERS IN PARAMETER OR SUB-PARAMETER 

Routing code: SYSPRINT 

Message issued by segment: DPINITOA 

Expalanation: The operand specified by cccccccc is invalid on the user 
statement preceding this message. 

Response: Correct the statement and retry. 

DPP850A SxxIN TASK yyyyyyyy. ABEND innn FOR MODULE zzzzzzzz. 
REPLY 'YES' TO ALLOW DUMP OR 'NO' TO SUPPRESS DUMP. 

Routing code: The message is issued as an OS/VS1 WTOR 

Message issued by segment: DPPSTAE 

Explanation: A subtask ABENDed while the "STAE.OPTION" request was 
in effect. The operator may reply 'YES' to allow the 
dump to be formatted or 'NO' to suppress the dump. If 
the operator has not replied to this WTOR in 5 minutes, 
the iTOR Ifill be cancelled and the dump formatting will 
be bypassed. The message defines the type of ABEND and 
the module responsible, where: 

xxx - is the ABEND code 

IIYIYYII - is the task name 

OPERATOR'S REFERENCE 4-53 



Response: 

DPP851I 

nnn - is the total number of ABENDs for this module 

ZZZZZZZZ - is the entry poi~t name of the module 

Messages DPP860 and DPP861 are issued in conjunction 
with this WTOR to provide the PSW and register contents 
at the time of the ABEND. 

Reply 'YES' to allow the dump to be formatted. 
Reply 'NO' to suppress formatting of the dump. 

{YES} 
{NO } DUMP REPLY ACCEPTED 
REPLY NOT RECEIVED IN TIME INTERVAL. DUMP BYPASSED 
XXX IS AN INVALID REPLY 

Routing code: The message is issued as an OS/VS1 WTO 

Message issued by segment: DPPTSTAE 

Explanation: This message is issued in response to the operator reply 
to WTOR DPP850A. 'DPP851I 'YES' DUMP REPLY ACCEPTED' 
indicates that the operator reply was valid and issued 
within the time interval and a dump will be formatted. 
'DPP851I 'NO' DUMP REPLY ACCEPTED' indicates that the 
operator reply was valid and issued within the time 
interval and dump formatting will be bypassed. 'DPP851I 
REPLY NOT RECEIVED IN TIME INTERVAL. DUMP BYPASSED' 
indicates that no operator reply was received within 
the time interval and dump formatting will be bypassed. 
'DPP851I XXX IS AN INVALID REPLY' states that the 
operator reply was not a 'YES' or 'NO' and the WTOR 
DPP850A viII be reissued. 

Response: None. 

DPP852I cccccccc OPERAND CONTAINS INVALID DATA 

Routing code: SYSPRINT 

Message issued by segment: DPINITOA 

Explanation: The operand specified by cccccccc on the user statement 
preceding this message contains invalid data. 

Response: Correct the statement and retry. 

DPP853I cccccccc OPERAND DATA MUST BE ENCLOSED IN PARENTHESIS. 
ONE OR BOTH ARE MISSING 

Routing code: SYSPRINT 

Message issued by segment: DPINITOA 

Explanation: 

Response: 

4-54 

The operand data of the parameter specified by cccccccc 
must be enclosed in parenthesis. Either the opening or 
closing parenthesis or both are missing on the user 
statement preceding this message. 

Correct the statement and retry. 

Description and Operation Manual 



DPP854I cccccccc 

Routing code: SYSPRINT 

Message issued by segment: DPINITOA 

Explanation: The operand specified by cccccccc is required, but not 
correctly provided on the user statement preceding this 
message. Other messages may appear in conjunction with 
this message. 

Response: Correct the statement and retry. 

DPP855I cccccccc SPECIFIED AS EXIT= OPERAND NOT FOUND ON 
STEPLIB/JOBLIB DATA SET 

Routing code: SYSPRINT 

Message issued by segment: DPINITOA 

Explanation: A STAEX command specifies cccccccc as an exit routine 
load module. The initialization routine has executed 
a BLDL and found that the load module could not be 
fetched if it should be needed. 

Response: Add a load module by the specified name to the 
STEPLIB/JOBLIB data set(s) and retry_ 

DPP856I {QP NUMBER} 
{QH NAME} SPECIFIED ON THIS STATEMENT HAS BEEN 
SPECIFIED ON A PREVIOUS STATEMENT 

Routing code: SYSPRINT 

Message issued by segment: DPINITOA 

Explanation: The queue processor number or queue holder name specified 
as a positional parameter on the user statement preceding 
this message has been defined on a previous QP or QR 
statement. 

Response: Remove the duplicate specifications and retry. 

DPP857I cccccccc IS CONNECTED TO MORE THAN 21 OTHER BLOCKS 

Routine code: SYSPRINT 

Message issued by segment: DPINITOA 

Explanation: 

Response: 

the QH= operand of a QP statement is not allowed to 
contain more than 21 queue holder names and a queue 
holder name is not allowed to appear in more than 21 QP 
statement QP= operands. cccccccc is the QH or QP name 
that violates this restriction. A QP name is in the 
format ****QPnn, where nn is the user defined queue 
processor number. 

Reduce the number of references to the specified name 
and retry. 

OPERATOR'S REFERENCE 4-55 



DPP860 PSi AT ABEND XXIX XXXX 

Routing code: 1 

Message issued by segment: DPPTSTAE 

Explanation: Whenever an OS dump is suppressed by the STAE option 
processing (i. e., "STAE, NODUMP") or whenever 
"STAE,OPTION" is in effect, messages DPP860 and DPP861 
are issued to provide a mini dump. Message DPP860 
provides the PSW at the time of the ABEND. 

Response: None. 

DPP861 ·REGS aaaa bbbb cccc dddd 

Routine code: 1 

Message issued by segment: DPPTST AE 

Explanation: 

Response: 

DPP8621 

Whenever an OS dump is suppressed by the STAE option 
processing (i.e., "STAE,NODUMP") or whenever 
"STAE, OPTION" is in effect, messages DPP860 and DPP861 
are issued to provide a mini dump. Message DPP861 is 
issued four times to provide the contents of registers 
0-3, 4-7, 8-11, and 12-15, respectively at the time of 
the dump. 

None. 

QQQQQQQQ: IS 

{HOLD} {S EQ} 

{QP} 
{Q H} , 
{T SK} 

{PATCH} 
{NOPATCH} 

{REL} , {NONSEQ} ,CQL=nnn,[ A] 

Routine code: 2 

Message issued by segment: DPPTQIMP 

Explanation: 

4-56 

This message is output as a result of the entry of every 
QS command. It reports the status of the queue 
processor(s), queue holder(s), and/or independent task(s) 
specified in the QS command. 

QQQQQQQQ is the name of the unit being reported 

QP 

QH 

TSK 

PATCH 

NOPATCH -

HOLD 

REL 

This is a queue processor 

This is a queue holder 

This is an independent task 

This unit is allowed to accept work (PATCHes) 

PATCHes to this unit will be rejected 

This unit is not allowed to start processing 
any new work 

This unit can process any work which it is 
el igib Ie to process 

Description and Operation Manual 



Response: 

DPP8631 

Routing code: 

Message issued 

Explanation: 

Response: 

DPP864I 

SEQ 

NONSEQ 

CQL=nnn -

A 

None. 

QQQQQQQQ IS 

(meaningful for QH only) only one QP may be 
processing work from this QH 

(meaningful for QH only) any QP connected 
to this QR may take work from this QH 

nnn is the number of work queues currently 
awaiting processing 

If present, this unit (TSK or QP only) is 
curren tly processing a piece Of work 

{QH} 
{QP} XREF TO: 

nn nnnnnn, •• ' •• nnn nnn 

2 

by segment: DPPTQIMP 

This message is output as a result of the entry of a QS 
command with the SREF operand. It is output following 
message DPP862. QQQQQQQQ is the unit being reported. 
QP or QR specifies the type of unit, queue processor or 
queue holder. If QP, the names following (nnnnnnnn, ••• ) 
are the queue holders from which this QP may select 
work. If' QR, the names following are the queue 
processors tha t ma y se lect work from this QH. Up to 1 
names of connected units may appear in each message. 
Up to 3 messages may be output to output all connections 
to one uni t. 

None. 

QS COMMAND PARAMETER PPPPPPPP INVALID. COMMAND IGNORED 

Routing code: 2 

Message issued by segment: DPPTQIMP 

Explanation~ A QS IMP command was entered with a misspelled, out of 
sequence or invalid parameter. The unacceptable 
parameter is reproduced as PPPPPPPP. 

Response: Reen ter request IIi th correct parameters. 

DPP865 COpy FAILED FOR 'FROM-OO' TO 'TO-OO' 

Routing code: 3 

Message issued by segment: DPPSRTCP 

Explanation: 

Response: 

DPP866 

The realtime copy operation pursuant to an RTCOPY command 
has failed. 

None. 

UNABLE TO READ UFCBS FOR 'OONAKE' 

OPERATOR'S REFERENCE ij-51 



Routine code: 3 

Message issued by segment: DPPSRTCP 

Explanation: In a realtime copy operation, the JFCB for the DDname 
could not be read. 

Response: None. 

DPP867 UNABLE TO READ COUNT FOR 'DDNAME' 

Routing code: 3 

Message issu'ed by seg ment: DPPSRTCP 

Explanation: In a realtime copy operation the count fields for ddname 
could not be read. 

Response: None. 

DPP868 UNABLE TO READ RO FOR ddname 

Routine code: 3 

Message issued by segment: DPPSRTCP 

Explanation: In a realtime copy operation, RO could not be read for 
ddname. 

Response: None. 

DPP869 UNABLE TO READ DATA FOR ddname 

Routing code: 3 

Message issued by segment: DPPSRTCP 

Explanation; In a ~ealtime copy operation, the data fields could not 
be read for ddname. 

Response: None. 

DPP870 UNABLE TO WRITE DATA FOR DDNAME 

Routine code: 3 

Message issued by segment: DPPSRTCP 

Explanation: In a copy operation, the data could not be written for 
ddname. 

Response: None. 

DPP871 COpy ENDED FOR 'ddname-1' TO 'ddname-2' 

Routing code: 3 

Message issued by segment: DPPSRTCP 

4-58 Description and Operation Manual 



Explanation: The realtime copy operation requested by a RTCOPY command 
for ddname-1 to ddname-2 has ended. 

Response: None. 

DPP880 UNABLE TO OPEN DDSTATUS, RUNNING SINGLE MODE 

Routine code: 3 

~essage issued by segment: DPPSINIT 

Explanation: When attempting to run REFRESH or READONLY mode, the 
DDSTATUS data set could not be opened. 

Response: None. 

DPP881 UNABLE TO WRITE DDSTATUS RECORD 

Routine code: 3 

~essage issued by segment: DPPSWRST 

Explanation: The status of a DDS changed (or was being initialized) 
but the record could not be written to the DDSTATUS data 
set. 

Response: None. 

DPP882 UNABLE TO READ DDSTATU5 RECORD, RUNNING SINGLE ~ODE 

Routing code: 3 

~essage issued by segment: DPPSINIT 

Explanation: When running REFRESH or READONLY, the DDSTATUS data set 
record could not be read. 

Response: None. 

DPP883 DDSTATUS NOT OPEN FOR OUTPUT 

Routing code: 3 

Message issued by segment: DPPSWRST 

Explanation: The status of a DDS changed (or was being initialized) 
but the DDSTATUS data set could not be opened for output. 

Response: None. 

DPP884 DDSTATUS NOT UPDATED, RUNNING IN READONLY MODE 

Routing code: 3 

ftessage issued by segment: DPPSWRST 

Explanation: The status of a DDS changed while running in READONLY 
mode, so the DDSTATUS data set will not be updated. 

OPERATOR'S REFERENCE 4-59 



Response: None. 

DPP885 DDSTATUS HAS BEEN UPDATED 

Routing code: 3 

Message issued by segment: DPPSWRST 

Explanation: The status of a DDS changed or was being initialized 
and the DDSTATUS data set was updated. 

Response: None. 

DPP886 DDSTATUS RECORD HAS MISSING DDSNAMES - USING CURRENT 
DE CL AR AT 10 NS 

Routing code: 3 

Message issued by segment: DP PSRSTR 

Explanation: The DDS declaration for the primary CPU has at least 
one missing declaration from the backup CPU. 

Response: None. 

DPP887 DDSTATUS RECORD HAS EXTRA DDNAMES, SETTING THEM IN SINGLE 
MODE 

Routing code: 3 

Message issued by segment: DPPSRSTR 

Explanation: The primary CPU had at least one DDS declaration that 
the backup did not have. 

Response: None. 

DPP888 DDS RESTART IS COMPLETE 

Routing code: 3 

Message issued by segment: DPPSRSTR 

Explanation: The refresh of the DDS status has been completed at 
failover/restart time. 

Response: None. 

DPP889 COpy REQUEST REJECTED, RUNNING IN SINGLE MODE 

Routing code: 3 

Message issued by segment: DPPSCRBK 

Explanation: 

Response: 

4-60 

A DDS CREATE was attempted against a data set not 
declared duplicate. 

None. 

Description and Operation Manual 



DPP890 UNABLE TO OPEN DO STATUS FOR INFUT RUNNING WITH OLD 
BACKUP CPU DECLARATIONS 

Routing code: 3 

Message issued by segment: DPPSRSTR 

Explanation: At failover/restart time, the DO status data set could 
not be opened for input. The DDS declarations of the 
backup CPU vere used. 

Response: None. 

DPP891 SYNAD READING DDSTATUS RECORD, RUNNING WITH OLD BACKUP 
CPU DECLARATIONS 

Routing code: 3 

Message issued by segment: DPPSRSTR 

Explanation: At failover/restart time, a synad occurred trying to 
read the DDSTATUS record. The backup CPU DD2 
declarations viII be used. 

Response: None. 

DPP892 EOD READING DDSTATUS RECORD, RUNNING WITH OLD BACKUP 
CPU DECLARATIONS 

Routing code: 3 

Message issued by segment: DPPSRTCP 

Explanation: At failoyer/restart time, the attempt to read the 
DDSTATUS record resulted in End of data. The DDS 
declarations for the backup CPU will be used. 

Response: None. 

DPP893 LOAD MODULE cccccccc NOT FOUND BY PLAYBACK 

Routing code: message is issued as an OS/VS WTO 

Message issued by segment: DPPXDPB 

Explanation: A load module name was passed to playback that could 
not be found in the specified JOBLlB of STEPLIB DO cards. 

Response: Resubmit the playback job with a valid load module name 
and/or STEPLIB data set. 

DPP894 INVALID START OR STOP DATA PASSED TO PLAYBACK 

Routing code: message 1s issued as an OS/VS WTO 

Message issued by segment: DPPXDPB 

Explanation: A ,start or stop date was passed to playback that could 
not be converted to a valid julian date. 

OPERATOR'S REFERENCE 4-61 



Response: Resubmit the playback job with correct dates in the 
following format: 

DD/MMM/YY 

where 
DO is the day of year 
MMM is month of year (only first 3 letters of month 
are specified Jan-Dec) 

YY is year. 

DPP0895 DATA RECORD DISABLED DUE TO UNUSUAL CONDITIONS 

Routing code: 1 

Message issued by segment: DPPXDRC 

Explanation: Data record disabled due to one of the following 
conditions: 

• ABEND in data recording task (DPPXPRINT) 

• 1/0 errors 

• Data record data set reached end of volume. 

Response: Data record may be restarted (enabled) after it has been 
disabled by the Sp~cial Real Time Operating system if 
one of the following conditions are found: 

• The data set is still usable and was allocated with a DISP=OLD or 
NEW. 

• The data set was allocated with DISP=MOD and with space remaining 
on the da ta set. 

DPP896 NO DATA FOUND BY PLAYBACK WITHIN SPECIFIED TIME AND IO 
RANGE 

Routing code: Message is issued as an OS/VS WTO 

Message issued by segment: DPPXDPB 

Explanation: No data was found by playback within specified time and 
10 range. 

Response: Assure tha t the ti me and date are properly specified on 
the playback request and that the data set specified 
does contain data within that time interval. 

DPP897 INCOMPLETE RECORD FOUND BY PLAYBACK 

Routing code: The message is issued as an OS/VS1 WTO 

Message issued by segment: DPPXDP B 

Explana tion: 

Response: 

4-62 

The BLKSIZE and LRECL (record length) specified on the 
DPBIN DO card is too small to contain the largest record 
on the data set. 

The BLKSIZE and LRECL on the DPBIN DO card must be equal 

Description and Operation Manual 



to the maximum BLKSIZE and LRECL used when the data vas 
recorded. 

DPP898 DATA SET NOT OPEN FOR DDNAME cccccccc. ROUTE CODES 
WHICH SPECIFY THIS DDNAME OUT OF SERVICE 

Routing code: The message is issued as an OS/VS, WTO 

Message issued by segment: DPPMINIT 

Explanation: 

Response: 

The specified 00 name was defined in the message routing 
code table (RCT) during SYSGEN by the MSGRC macro, but 
no DD card with that name could be found in the JCL. 
ALL routing codes referencing the specified DO name are 
put out of service. 

A DO card with the specified DO name should be placed 
in the JCL. 

OPERATOR'S REFERENCE ij-63 



QFF1JM~ [TILITI. !1.ESSA~~~ 

DPPXDB01 DATA BASE FINAL PHASE PROCESSOR ENTERED 

Routing code: SYSPRINT 

Message issued by segment: DPPXDBAS 

Explanation: The data base final phase processor has been successfully 
entered through execution of a LINK supervisor call by 
the Offline utility. 

Response: None. 

DPPXDB02 INSUFFICIENT DIRECTORY SPACE ALLOCATED 

Routing code: SYSPRINT 

Message issued by segment: DPPXDBAT 

Explanation: 

Response: 

The data base partitioned data set does not have enough 
directory blocks allocated to hold all the arrays being 
added to the data base. The data base remains as it 
was prior to this execution of the data base final phase 
processor. Test mode is set and a return code of 12 is 
returned on completion. 

• 
The data bas~ partitioned data set must be either: 

• Scratched and reallocated with a larger number of directory blocks 
specified, or 

• Copied to a new data set which has been allocated with a larger 
number of directory blocks allocated. 

DPPXDB03 DATA BASE FINAL PHASE PROCESSOR COMPLETION CODE = XX 

Routing code: SYSPRINT 

Message issued by segment: DPPXDBAS 

Explanation: 

. 00 

04 

08 

12 

16 

The data base final phase processor has completed 
execution and is returning control to the Offline 
Utility. XX is a return code with the following 
meanings: 

Successful completion • 

An error~ indicated by previous messages, has occurred 
but processing continued. 

No arrays defined for this con trol card .• 

Test mode set -- An explanation exists in previous 
messages. 

The data set defined by the DBINIT DD card could not be 
opened. 

The data base is modified only if the return code is 00 or 04. For 

4-64 Description and operation Manual 



any other return code, the data base remains as it vas prior to this 
execution of the data base final phase processor. 

Response: If the return code is not 00, make the changes necessary 
to correct the errors indicated by messages or the return 
code. 

DPPXDB04 INVALID OPTION RECEIVED - TEST MODE ASSUMED 

Routing code: SYSPRINT 

Message issued by segment: DPPXDBAS 

Explanation: The procesRing mode specified is not ADD, REPL, DEL, or 
TEST, so the default mode of TEST is assumed. No changes 
are made to the data base. A return code of 12 is 
returned on completion. 

Response: Correct the OPTION= operand on the Offline Utility 
control card and rerun the job. 

DPPXDB05 NO ARRAYS DEFINED - NO PROCESSING PERFORMED 

Routing code: SYSPRINT 

Message issued by segment: DPPXDBAS 

Explanation: The input to the data base final phase processor did 
not define any arrays; therefore, no processing could 
be performed. A return code of 08 is returned on 
completion. 

Response: Correct input and rerun the job. 

DPPXDB06 NO PROCESSING FOR DUP ARRAY NAME - XXXXXXXX 

Routing code: SYSPRINT 

Message issued by segment: DPPXDBAS 

Explanation: XXXXXXXX is an array name or number as specified on the 
NAME=or NUMBER= operand of the ARRAY macro. 

An attempt has been made to add the named array to the 
data base, but an array with the same name already exists 
on the data base. Processing for the named array is 
bypassed, and a return code of 04 is set on completion 
of execution of the data base final phase processor. 

Response: Change the name of the array named in the message and 
rerun the job. 

OPPXDB07 UNABLE TO OPEN OAT A BASE DDNAME - OBINIT 

Routing code: SYSPRINT 

Message issued by segment: DPPXDBAS 

Explanation: The data base partitioned data set defined by the DBINIT 
DD card cannot be opened. No processing is performed, 
and a return code 'of 16 is ret.urned on completion. 

OPERATOR'S REFERENCE 4-65 



Response: Correct the DBINIT DD card and rerun the job. 

DPPXDB08 TEST MODE SET - DUP ITEM NAME - XXXXXXXX 

Routing code: SYSPRINT 

Message issued by segment: DPPXDBAT 

Explana tion: XXXXXXXX is an Item name as specified on the NAME= 
operand of the ITEM macro. 

An attempt has been made to add the named item to the 
data base, but an item with the same name already exists 
on the data base. The remainder of the input is 
processed in TEST mode, and the data base will remain 
as it was prior to this execution of the data base final 
phase processor. A completion code of 12 is returned 
on com plet ion. 

Response: Change the name of the ITEM being added to the data base 
or delete the existing data base array that contains 
the item name being duplicated. 

DPPXDB09 DATA SIZE GT BLKSIZE - TRUNCATION FOR ARRAY NAME -
XXXXXXXX 

Routing code: SYSPRINT 

Message issued by segment: DPPXDBAS 

Explanation: 

Response: 

DPPXDB10 

XXXXXXXX is an array name. The amount of data specified 
for a block in the named array is greater than the array 
block size defined on the ARRAY macro. The data is 
truncated to the array block size and processing is 
continued. A return code of 04 is returned on 
completion. 

Increase the array block size, or reduce the amount of 
data for the named array, and rerun the job. 

ARRAY BLOCK SIZE REDUECED TO DATA SET SIZE FOR ARRAY -
XXXXXXXX 

Routing code: SYSPRINT 

Message issued by segment: DPPXDBAS 

Explanation: 

Response: 

4-66 

XXXXXXXX is an array name. The array block size for 
the named array is greater than the data base data set 
block size. The array block size is reduced to the data 
set block size, and processing is continued. A return 
code of 04 is returned on completion. 

Reduce the array block size or reallocate the data set 
with a larger block size and rerun the job. 

Description and Operation Manual 



DPPXDB11 ARRAY ADDED - XXXXXXXX 

Bouting code: SYSPRINT 

Message issued by'segment: DP PXDBAS 

Explanation: XXXXXXXX is an array name. The named array has been 
added to the data base. 

Response: None. 

DPPXDB12 ARRAY DELETED - XXXXXXXX 

Routing code: SYSPRINT 

Message issued by segment: DPPXDBAS 

Explanation: xxxxxxxx is an array name. The named array has been 
deleted from the data base. 

Response: None. 

DPPXDB13 ARRAY REPLACED - XXXXXXXX 

Routing code: SYSPRINT 

Message issued by segment: , DPPXDBAS 

Explanation: XXXXXXXX is an array name. The named array has been 
replaced on the data base. 

Response: None. 

DPPXDB14 ARRAY TESTED IN REPLACE MODE - XXXXXXXX 

Routing code: SYSPRINT 

Message issued by segment: DPPXDBAS 

Explanation: XXXXXXXX is an array name. The named array was 
successfully processed in TEST mode as if a replace 
operation were being done. The data base is not 
modified. 

Response: None. 

DPPXDB15 ARRAY NOT FOUND - XXXXXXXX 

Bouting code: SYSPRINT 

Message issued by segment: DPPXDBAS 

Expla na ti on: 

Response: 

XXXXXXXX is an array name. An attempt was made to 
replace or delete the named array, but the array did 
not exist on the data base. 

When processing in DEL mode, ensure that the array name 
is correct. When processing in REPL mode, ensure that 
the array name is correct or that a new array is being 
added to the data base. 

OPERATOR'S REFERENCE 4-61 



DPPXDB16 BLOCK COUNT EXCEEDED FOR ARRAY - XXXXXXXX 

Routing code: SYSPRINT 

Message issued by segment: DP PX DBAS 

Explanation: XXXXXXXX is an array name. The number of blocks of data 
specified on BLOCK macros for the named array is greater 
than the block count specified on the ARRAY macro. 
Excessive blocks of data will not be processed. A rerun 
code of 04 will be returned on completion. 

Response: Increase the block count on the ARRAY macro, or reduce 
the number of blocks of data specified on BLOCK macros. 
After corrections are made, rerun the job. 

DPPXDB11 DU~MY BIT SET - NO PROCESSING FOR ARRAY ~ XXXXXXXX 

Routing code: SYSPRINT 

Message issued by segment: DPPXDBAS 

Explana tion: XXXXXXXX is an array name. The dummy bit has been set 
for the named array. The array will not be processed. 
There will be either another data base error message 
for the array or an MNOTE at the time the array was 
assembled. A rerun code of 04 will be returned on 
co mp letion. 

Response: Correct the error indicated by a message or an MKOTE 
and rerun the job. 

DPPXOB18 RC=8 FROM BLOL - PERM 1/0 ERROR ON ARRAY - XXXXXXXX 

Routing code: SYSPRINT 

Message issued by segment: DPPXOBAS 

Explanation: 

Response: 

XXXXXXXX is an array name. A permanent 1/0 error 
indication has been returned by the BLDL SVC while trying 
to read the directory entry for the named array. 
Processing for this array is bypassed. A rerun code of 
04 will be returned on completion. 

Determine and correct the cause of the 110 error and 
rerun the job. 

Note: Ensure that the data base partitioned data set has been allocated 
as a partitioned data set and not a sequential data set. 

DPPXDB19 TEST MODE ENTERED - DUPLICATE ARRAY IN INPUT - XXXXXXXX 
IN INPUT - XXXXXXXX 

Routing code: SYSPRINT 

Message issued by segment: DPPXDBAS 

Explanation: 

4-68 

xxxxxxxx is an array name. The input contains two arrays 
with the same name. Processing will continue in test 
mode, and a rerun code of 12 will be returned on 
completion. 

Description and Operation Manual 



Response: Correct the array names and rerun the job. 

DDPXDB25 TEST KODE ENTERED - UNABLE TO OPEN DDNAME - XXXXXXXX 
OPEN DDNAME - XXXXXXXX 

Routing code: SYSPRINT 

Message issued by segment: DPPXDBLG 

Explanation: XXXXXXXX is a DD name for a data base BDAM data set. 
The named DD The named DD statement could not be opened 
for data base processing. The remainder of the input 
is processed in test mode. The data base is not modified 
by this execution. A return code of 12 will be returned 
on completion. 

Response: Correct the DO statement or the ARRAY macro that 
specified the ddname and rerun the job. 

DPPXDB35 RUN ABORTED - UNABLE TO OPEN ddname - XXXXXXXX 

Routing code: SYSPRINT 

Message issued by segment - DPPXDBCP 

Explanation: 

Response: 

DPPXDB36 

XXXXXXXX is the name of a DD statement. The named DO 
statement is required for the execution of the COMPRESS 
No procesiing is performed. 

Correct the DD statement and rerun the job. 

INVALID DATA BASE DATA SET: ddname - DBINIT 

Routing code: SYSPRINT 

Message issued by segment - DPPXDBCP 

Explanation: The data set described by the DBINIT DD statement is 
nat a valid data base partitioned data set. No 
processing is performed. 

Response: Correct the DP statement and rerun the job. 

DPPXDB37 RC=8 FROM BLOL - PERM 1/0 ERROR 

Routing code: SYSPRINT 

Message issued by segment - DPPXDBCP 

Explanation: 

Response: 

A permanent 1/0 error indication was returned by the 
BLDL SVC while processing the DBINIT DD statement. No 
processing is performed. 

Determine and correct the cause of the 1/0 error and 
rerun the job. 

Note: Ensure that the DBINIT DD statement desc~ibes a partitioned data 
set and not a sequential data set. 

OPERATOR'S REFERENCE 4-69 



DPPXDB38 DATA BASE DOES NOT CONTAIN DIRECT ACCESS ARRAYS 

Routing code: SYSPRINT 

Message issued by segment: DPPXDBCP 

Explanation: No compress operations can be performed, since the data 
base contains no direct access arrays. 

Response: None. 

DPPXDB39 DATA BASE COMPRESS COMPLETED FOR ddname - XXXXXXXX 

Routing code: SYSPRINT 

Message issued by segment: DDPXDBCP 

Explanation: XXXXXXXX is a DO statement name. The data base BDAM 
data set d~scribed by the named DD statement has been 
compressed, and all appropriate changes have been made 
to the PDS described by the DBINIT DD statement. 

Response: None. 

DPPXDB40 ****** THE SPECIAL REAL TIME OPERATING SYSTEM DATA BASE 
BDAM DATA SET COMPRESS ****** 

Routing code: SYSPRINT 

Message issued by segment: DPPXDBCP 

Explanation: This message indicates that the data base BDAM data set 
compress program has started execution. 

Response: None. 

DPPXDB41 ****** END OF DATA BASE BDAM DATA SET COMPRESS ****** 

Routing code: SYSPRINT 

Message issued by segment: DPPXDBCP 

Explanation: This message indicates that the data base BDAM data set 
compress program has completed execution. 

Response: None. 

DPPXDB42 NO DD STATEMENT INCLUDED FOR ddname - XXXXXXXX 

Routing code: SYSPRINT 

Message issued by segment: DDPXDBCP 

Explanation: 

Response: 

4-10 

XXXXXXXX is a DD statement name. The data base contains 
direct access arrays which are referenced by the named 
DO statement, but the JCL does not contain the DO 
statement. The data set referenced by the named DD 
statement is not compressed. 

Include the DD sta tement in the JCL and rerun the job. 

Description and Operation Manual 



DPPXDB50 TEST MODE ENTERED - UNABLE TO OPEN ddname - XXXXXXXX 

Routing code: SYSPRINT 

Message issued by segment: DDPXDBDA 

Explanation: XXXXXIXX is a DD name for. a data base BDAM data set. 
The named DD statement could not be opened for data base 
processing. The remainder of the input is processed in 
test mode. The data base is not modified by this 
execution. A return code of 12 viII be returned on 
completion. 

Response: Correct the DD statement or the ARRAY macro which 
specified the DD name and rerun the job. 

DPPXDB51 TEST MODE ENTERED - NO PROCESSING FOR UNBLOCKED DA ARRAY 
XXXXXIXI 

Routing code: SYSPRINT 

Message issued by segment: DPPXDBDA 

Explanation: XXXXXXXX is an array name. The array macro for the 
named array specified the operand LOCATE=DA but describes 
the array as unblocked. The array cannot be processed, 
since all DA arrays must be blocked. The remainder of 
the input is processed in TEST mode, and the data base 
is not modified by this execution. A return code of 12 
is returned on completion. 

Response: Correct the array macro and rerun the job. 

DPPXDB52 ARRAY BLOCK SIZE REDUCED TO DATA SET BLOCK SIZE FOR 
ARRAY - XXXXXXXX 

Routing code: SYSPRINT 

Message issued by segment: DPPIDBDA 

Explanation: XXXXXXXX is an array name. The array block size for 
the named array is greater than the data base data set 
block size. The array block size is reduced to the data 
set block size and processing is continued. A return 
code of 04 is returned on completion. 

Response: Reduce the array block size or reallocate the data set 
with a larger block size and rerun the job. 

DPPXDB53 DATA SIZE GT BLKSIZE - TRUNCATION FOR ARRAY NAME -
XXXXXXXI 

Routing code: SYSPRINT 

Message issued by segment: DPPXDBDA 

Explanation: XXXXIIXX is an array name. The amount of data specified 
for a block in the named array is greater than the array 
block size defined on the ARRAY macro. The data is 
truncated to the array block size and processing is 
continued. A return code of 04 is returned on 
completion. 

OPERATOR'S REFERENCE 4-11 



Response: Increase the array block size or reduce the amount of 
data for the named array and rerun the job. 

DPPXDB54 BLOCK COUNT EXCEEDED FOR ARRAY - XXXXXXXX 

Routing code: SYSPRINT 

Message issued by segment - DPPXDBDA 

Explanation: XXXXXXXX IS AN ARRAY NAME. The number of blocks of data 
specified on BLOCK macros for the named array is greater 
than the block count specified on the ARRAY macro. 
Excessive blocks of data will not be processed. A return 
code of 04 will be returned on completion. 

Response: Increase the block count on the ARRAY macro or reduce 
the number of blocks of data specified on BLOCK macros. 
After corrections are made, rerun the job. 

DPPXUT01 MISSING DDCARD - XXXXXXXX 

Routing code: SYSPRINT 

Message issued by segment: DPPXUTIL 

Explanation: 

Response: 

XXXXXXXX is a DD statement name. The named DD statement 
is required but is not included in the JCL. DD 
statements ma'y be required because it is specified on 
the INPUT= operand of the control card or may be required 
for offline utility execution. 

Correct the control card or DO statement name and rerun 
the job. 

DPPXUT02 FIRST CARD MUST BE A CONTROL CARD 

Routing code: SYSPRINT 

Message issued by segment: DPPXUTIL 

Explanation: The first card read from the SYSIN data set must be a 
valid offline utility control card. If it is not, no 
processing will be done. 

Response: Correct the SYSIN input and rerun the job. 

DPPXUT03 PARAMETER OR CONTINUATION MARK MISSING 

Routing code: SYSPRINT 

Message issued by segment: DPPXUTIL 

Explanation: 

Response: 

4-72 

The control card being processed is missing a required 
parameter, or a continuation mark is missing if the 
control ca rd is contin ued on another card. Processi ng 
for this control card is bypassed. processing will 
commence with the next control card. 

Correct the control card and rerun the job. 

Description and Operation Manual 



DPPXUT04 EXPECTED CONTINUATION NOT RECEIVED 

Routing code: SYSPRINT 

Message issued by segment: DPPXUTIL 

Explanation: The control card being processed indicated that a 
continuation card existed but no continuation card vas 
received. Processing viII continue with the next control 
card. 

Response: Correct the control card and rerun the job. 

DPPXUT05 COLUMNS 1-15 MUST BE BLANK 

Routing code: SYSPRINT 

Message issued by segment: DPPXUTIL 

Explanation: Card columns 1 through 15 must be left blank on control 
card continuations. on control card continuations. 
Processing will continue with the next control card. 

~ 

Response: Correct the control card and rerun the job. 

DPPXUT06 CONTROL CARD TEXT BEYOND COL 71 

Routing code: SYSPRINT 

Message issued by segment: DPPXUTIL 

Explanation: 

Response: 

DPPXUT07 

The text of a control card must not extend past card 
column 71. If more space is needed, then continuation 
cards must be used. Processing will continue with the 
next control card. 

Correct the control card and rerun the job. 

WRONG PARAMETER: XIXXXXXX 

Routing code: SYSPRINT 

Message issued by segment: DPPXUTIL 

Explanation: 

Response: 

DPPXUT08 

XXXXXXXX is the parameter in error. An invalid value 
has been specified for one of the operands on the control 
card. Processing will continue with the next control 
card. 

Correct the control card and rerun the job. 

MULTIPLE KEYWORD: XXXXXXXX 

Routing code: SYSPRINT 

Messa~e issued by segment: DPPXUTIL 

Explanation: xxxxxxxx is a keyword operand on the offline utility 
control card. The named keyword operand has been 
specified more than once on the same control card. 
Processing will continue with the next control card. 

OPERATOR'S REFERENCE 4-73 



Response: Correct the control card and rerun the job. 

DPPXUT09 PARAMETER IN ERROR: XXXXXXXX 

Routing code: SYSPRINT 

Message issued by segment: DPPXUTIL 

Explanation: XXXXXXXX is a parameter specified on the offline utility 
control card. The named parameter is invalid. 
Processing will continue with the next control card. 

Response: Co rrect the parameter and rerun the job. 

DPPXUT10 RIGHT PARENTHESIS MISSING - TREATED AS VALID 

Routing code: SYSPRINT 

Message issued by segment: DPPXUTIL 

Explanation: 

Response: 

DPPXUT11 

One of the parameters on the offline utility control 
card was started with a left parenthesis but not ended 
with a right parenthesis. with a right parenthesis. 
Processing continues as if the right parenthesis were 
present. 

Correct the control card. 

WRONG KEYWORD: XXXXXXXX 

Routing code: SYSPRINT 

Message issued by segment: DPPXUTIL 

Explanation: XXXXXXXX is a keyword operand on an offline utility 
control card. The named keyword operand is invalid. 
Processing will continue with the next control card. 

Response: Correct the control card and rerun the job. 

DPPXUT12 INPUT SPECIFICATION MISSING 

Routing code: SYSPRINT 

Message issued by segment: DPPXUTIL 

Explanation: The INPUT= operand is required on the DPPXUCTL control 
card, but it has been omitted. Processing will continue 
with the next control card. 

Response: Correct the control card and rerun the job. 

DPPXUT13 AREA SPECIFICATION MISSING 

Routing code: SYSPRINT 

Message issued by segment: DPPXUTIL 

Explanation: The AREA= operand is required on the DPPXUCTL control 

4-74 Description and Operation Manual 



card, but it has been omitted. Processing will continue 
with the next control card. 

Response: Correct the control card and rerun the job. 

DPPXUT15 NEW SET SPECIFICATION MISSING 

Routing code: SYSPRINT 

Message issued by segment: DPPXUTIL 

Explanation: The NEW SET= operand is required on the DPPXUPDT control 
card, but it has been omittted. Processing will continue 
with the next control card. 

Response: Correct the control card and rerun the job. 

DPPXUT16 OLDSET SPECIFICATION MISSING 

Routing code: SYSPRINT 

Message issued by segment: DPPXUTIL 

Explanation: The OLDSET= operand is required on the DPPXUPDT control 
card, but it has been omitted. Processing will continue 
with the next control card. 

Response: Correct the control card and rerun the job. 

DPPXUT17 NO OPERAND FOUND 

Routing code: SYSPRINT 

Message issued by segment: DPPXUTIL 

Explanation: A DPPXUPDT or DPPXUCTL control card has been encountered, 
bu t no opera nds we re s peci fied. P roce ssing will continue 
with the next control card. 

Response: Correct the control card and rerun the job. 

DPPXUT18 INVALID OPERATION 

Routing code: SYSPRINT 

Message issued by segment: DPPXUTIL 

Explanation: An offline utility control card has been encountered, 
but the operation field is invalid. Processing will 
continue with the next control card. 

Response: Correct the control card and rerun the job. 

DPPXUT19 NO OPERATION FOUND 

Routing code: SYSPRINT 

Message issued by segment: DPPXUTIL 

OPERATOR'S REFERENCE 4-75 



Explanation: An offline utility control card has been encountered, 
but no operation or operands have been specified. 
Processing will continue with the next control card. 

Response: Correct the control card and rerun the job. 

DPPXUT20 SYSIN END-OF-FILE 

Routing code: SYSPRINT 

Message issued by segment: DPPXUTIL 

Explanation: An end-of-file has been encountered on the data set 
described by the SYSIN DD statement. 

Response: None. 

DPPXUT21 CONTROL CARD INVALID, SKIPPING FOR NEXT CONTROL CARD 

Routing code: SYSPRINT 

Message issued by segment: DPPXUTIL 

Explanation: An invalid offline utility control card has been 
encountered, and processing will continue with the next 
control card. 

Response: Correct the control card and rerun the job. 

DPPXUT22 ****** THE SPECIAL REAL TIME OPERATING SYSTEM OFFLINE 
UTILITY DPPXUTIL ****** 

Routing code: SYSPRINT 

Message issued by segment: DPPXUTIL 

Explanation: The Special Real Time Operating System offline utility 
program has started execution. 

Response: None. 

DPPXUT23 ****** END OF THE SPECIAL REAL TIME OPERArING SYSrEM 
OFFLINE UTILITY DPPXUTIL ****** 

Routing code: SYSPRINT 

Message issued by segment: DPPXUTIL 

Explanation: The Special Real Time Operating system offline utility 
program has completed execution. 

Response: None. 

DPPXUT24 END-OF-FILE ON INPUT DATA SET 

Routing code: SYSPRINT 

Message issued by segment: DPPXUTIL 

4-76 Description and Operation Manual 



Explanation: An end-of-file has been reached on the input data set 
described by the INPUT= operand of the DPPXUCTL control 
card. 

Response: None. 

DPPXUT25 PARM FIELD INVALID - PAR~='F,NOGEN' ASSUMED 

Routing code: SYSPRINT 

Message issued by segment: DPPXUTIL 

Explanation: The value specified in the PARM field of the execute 
card is invalid. The default PARM value of 'F,NOGEN' 
will be assumed. 

Response: Correct the PARM field on the EXEC card and rerun the 
job. 

DPPXUT26 PROCESSING ABORTED DUE TO BAD RETURN CODE FROM - XXXXXXXX 

Routing code: SYSPRINT 

Message issued by segment: DPPXUTIL 

Explanation: XXXIXXI! is either ASSEMBLY or LOADER. A return code 
of 8 or greater from the assembler or from the loader 
will cause processing to be aborted for the current 
control card. Processing will continue with the next 
control card. 

Response: Correct the errors indicated by the assembler or the 
loader and rerun the job. 

DPPXUT99 CONTROL CARD ACCEPTED 

Routing code: SYSPRINT 

Message issued by segment: DPPXUTIL 

Explanation:The current control card has been accepted by the offline 
utility program for processing. 

Response: None. 

OPERATOR'S REFERENCE 4-77 



The Special Real Time Operating System Sample Program provides a minimal 
test of the functioning of the Special Real Time Operating system. It 
also provides a demonstration of the Special Real Time Operating System. 
It can be used as an example and training tool, as well as an 
instructional aid for application program education. The sample program 
consists of two programs (DPPZSAMP, DPPSAMP1). 

DPPZSAMP will test and provide examples of the following Special Real 
Time Operating System subsystems: 

Task Management (PATCH Macro) 
Data Base Management (GETARRAY, GETITEM, PUTARRAY, PUTITEM, 

GETLOG and PUTLOG Macros). 
TIME Management (PTIME Macro) 
Realtime Message Handler (MESSAGE Macro) • 

DPPZSAMP will require the following array (DPPZSAMP} to be built by 
the Special Real Time Operating System Offline Utility: 

#/ DPPXUCTL AREA=DBDEF,INPUT=*,OPTION=ADD 
ARRAY NAME=DPPZSAMP,INIT=YE~,REINIT=YES, 

LOCATE=VS,LOGNAME=DPPSAMP1, 
LOGDD=DBINIT2,LOGFREQ=O 

ITEM NAME=DPPSAMP2,TYPE=C,LEN=6,INIT=ARRAY 
ITEM NAME=DPPSAMP3,TYPE=C,LEN=9,INIT=DPPZSAMP 
ITEM NAME=DPPSAMP4,TYPE=C,LEN=3,INIT=IS 
ITEM NAME=DPPSAMP5,TYPE=C,LEN=5,INIT=USED 
ITEM NAME=DPPSAMP6,TYPE=C,LEN=3,INIT=BY 
ITEM NAME=DPPSAMP7,TYPE=C,LEN=6,INIT=SRTOS 
ITEM NAME=DPPSAMP8,TYPE=C,LEN=7,INIT=SAMPLE 
ITEM NAME=DPPSAMP9,TYPE=C,LEN=8,INIT=PROGRAM 
ITEM NAME=DPPSAMPA,TYPE=C,LEN=4,INIT=FOR 
ITEM NAME=DPPSAMPB,TYPE=C,LEN=5,INIT=TEST 
ITEM NAME=DPPSAMPC,TYPE=C,LEN=8,INIT=PURPOSES 

APPENDIX A A-l 



The following example is typical of the JCL required to define the 
sample array. Following is a description of each of the JCL statements 
in the example. The underlined portions of the JCL will likely have 
to be changed by the user to suit the requirements of his operation. 

//BUILD 
//S1 
//STEPLIB 
//SYSPRINT 
IIASMPRINT 
I/LODPRINT 
IISYSLIB 
II 
IISYSUTl 
IISYSUT2 * 
IISYSUT3 * 
IISYSUT4 
II 
IIDBINIT 
IIDBINIT2 
IISYSGO 

I/SYSIN 

/* 

JOB 

JOB 
EXEC 
DD 
DD 
DD 
DD 
DD 
DD 
DD 
DD 
DD 
DD 

DD 
DD 
DD 

DD 

(ACCOUNTING INFORMATION) 
PG K=DP PX UTIL, gAEl'!!=!! 

DSN=USER~ROC~IB,DISP=SHR 

SYSOUT=A 
SYSOUT=A 
DUMMY 
DSN=Q~ER~AC1!~,DISP=SHR 
DS N=SYS 1. M ACLI B, DISP=S HR 
UNIT=(SYSD!,SEP=SYSLIB),SPACE=(CYL, (2,2» 
UNIT=(SYSD!,SEP=SYSUT1),SPACE=(CYL, (2,2» 
UNIT=(~ISD!,SEP=SYSUT1),SPACE=(CYL,(2,2» 
UNIT= (SYSD!, SEP=SYSUT1) , SP ACE= (CYL, (2,2) ) 
DC B= (RECFM =F B, LR ECL=80, BLKSIZE=3200) 
DSN=Q~ER~B1,DISP=OLD 
DSN=Q~ER.DB2,DISP=(MOD,PASS),DCB=(DSORG=DA) 
UNIT=~YSDA ,SPACE= (CYL, (1,1» , 

DCB= (R ECFM =FB, LR ECL=80, BLK SIZE=J.lQ.Q.) 

* 
(Input Control statements) 

Jct Example 

Is a standard OS/VSl job card; the accounting information is dependent 
upon individual installation requirements. 

EXEC 
Is a standard OS/VSl EXEC card; it must specify PGM=DPPXUTIL or an 
applicable user PROC. 

PARM 
The offline utility will provide the option to print or not to print 
statements generated by the processing of a macro. This will be 
accomplished by the offline utility inserting or not inserting a PRINT 
NOGEN statement as the first statement in the Assembler SYSIN stream. 
control will be provided through the PARM keyword operand on the 
execute card for DPPXUTIL. This option is provided in addition to 
the option to select the OS/VS1 assembler or the H assembler. 

The following values may be specified: 

F Selects the OS/VS1 Assembler. 

H selects the H Assembler. 

GEN Print macro generated statements. 

NOGEN Do not print macro generated statements. 

In all cases, the default values will be "F" and "NOGEN". 

---------*Not required when "PARM=H" is specified on the execute card. 

A-2 Description and Operation"Manual 



Valid combinations of the values are: 

PARM = • F • PARM = 
• H • PARM = • GEN' 

PARM = , N OGEN' 
PARM = 'F,GEN' 
PARM = 'F,NOGEN' 
PARM = 'H,GEN' 
PARM = 'H,NOGEN' 

If an invalid value 
operand is omitted, 

STEPLIB DD 

is specified for the PARM operand or if the PARM 
the default of PARM='F,NOGEN' will be used. 

Defines the library containing the DPPXUTIL program and final phase 
processors and is not required if these programs reside in SYS1,LINKLIB. 

SYSPRINT DD 
Defines a data set in which printed output vill be placed, or may 
specify a standard output class. 

ASMPRINT OD 
(Same as SYSPRINT) for printed output from the assembler. 

LODPRINT DD 
(Same as SYSPRINT) for printed output from the loader. It is 
recommended that this be a DO DUMMY to reduce printed output. 

SYSLIB OD 
Defines the data set(s) containing the macros used by the assembler. 

SYSUT1 DD 
Defines the assembler work data sets. SYSDA defines a direct-access 
device. This name (SYSDA), if This name (SYSDA), if used, must have 
been generated into the OS/VS1 system. SEP= is specified to improve 
assembler performance. 

SYSUT2 DD 
(Same as SYSUT1). Not required when "PARM=H" is specified on the 
execute card. 

SYSUT3 DD 
(S ame as SYS UT 2) • 

SYSUT4 DD 
Defines a work data set for DPPXUTIL. The DCB parameters must specify 
RECFM=FB and a BLKSIZE that is a multiple of 80. The LRECL must be 
80. 

DBINIT DD 
Defines the data base partitioned data set that contains a member for 
every array in the data base, control information for direct access 
resident arrays and initial data for VS resident arrays. This DD card 
is required if any utility control card specifies AREA=DBDEF. 

DBINIT2 DD 
Defines the BDAM data set which contains the initial data for DA 
resident arrays. This DO card is required if any utility control 
statement specifies AREA=DBDEF. The data set described by this DD 
card must be allocated prior to the execution of the The DISP= operand 
on this DD card must be specified as (MOD,PASS). 

SYSGO 00 

APPENDIX A A-3 



Defines the data set to contain the object deck output from This data 
set is used as input to the OS/VS1 loader. 

SYSIN DD 
Defines the input from which DPPXUTIL gets its control statements as 
possibly some source macro statements. 

The sample programs (DPPZSAMP and DPPSAMP1) are not copied to the target 
data sets at SYSGEN time. Therefore, to execute them, the user must 
copy them or use a STEPLIB OD card to allocate data set A5799AHE.OBJECT. 

The Special Real Time Operating System Sample Program can be executed 
by adding the following PATCH and WAIT input cards to the Special Real 
Time Operating system subsystem Initialization stream: 

P1 PATCH TASK=DPPZSAMP,EP=DPPZSAMP 
WAI T Pl 

The following example is typical of the JCL required to execute the 
sample problem. 

//REAL 
// 
IISTEPLIB 
//DBINIT 
//DBINIT2 
I/MSGDS 
IIDPPFAIL 
IISYSPRINT 
I/MSGOUT 
IISYSUDUMP 
//SYSINIT 

JOB 
EXEC 
DD 
DD 
DD 
DD 
DD 
DD 
DD 
DD 
DD 

3DE5Q1L'PROGRAl1l1ER~CL!~S=I 
PGM=DP PINIT 

DSN=ACS370~M01,DISP=SHR 
DSN=ACS370~~,DISP=SHR 
DSN=!£S370~~l,DISP=SHR 
DSN=ACS370~~~,DISP=SHR 
DSN=!£S370£EALRSI,DISP=OLD 
SYSOUT=A 
SYSOUT=A 
SISOUT=A 

* 

In the previous example, the JOB card is standard as, and accounting 
information must be as required for the individual installation. The 
EXEC card must specify PGM-DPPINIT. The STEPLIB OD card points to the 
library (ies) containing the Special Real Time Operating system and user 
programs. The library name will depend upon the name given the data 
sets at SYSGEN time. The data sets required for the data base are 
pointed to by the DO cards DBINIT and DBINIT2. The online message 
handler requires the MSGDS and MSGOUTDD cards. The SISPRINT OD card 
is required by initialization to print the input control statements. 
A SYSUDUMP or SYSABEND DD card is optional, depending on whether a dump 
is ~equired on ABEND conditions. The SYSINIT DD card is required, and 
it must point to the data set containing the control statements for 
the online run. 

DPPZSAMP will issue the folloving .messages, if all tested SUbsystems 
are functioning properly: 

DPP068I 
DPP066I 

DPP068I 
DPP066I 

DPP068I 
DPP069I 
DPP0681 
DPP068I 

HH:MM:SS.TH DD/MMM/IY PATCH MACRO FUNCTIONING 
HH:MM:SS.TH DD/MMK/YY ARRAY DPPZSAMP IS USED BY 
SRTOS SAMPLE PROGRAM FOR TEST PURPOSES 
HH:MM:SS.TH DD/MMM/YY PUTLOG MACRO FUNCTIONING 
HH:MM:SS.TH DD/KMK/YI ARRAY DPPZSAMP IS USED BY SRTOS 
SAMPLE PROGRAM FOR TEST PURPOSES 
HH:MM:SS.TH DD/MMK/IY PUTARRAI MACRO FUNCTIONING 
HH:MM:SS.TH DD/MMM/YY ITEM DPPSAMP2 CONTENTS ARE ARRAY 
HH:MM:SS.TH DD/MMM/Yl PUTITEM MACRO FUNCTIONING 
HH:MM:SS.TH DD/MMM/YY PTIME MACRO FUNCTIONING 

The only function of DPPSAMP1 is to issue messages. It is used to 

A-4 Description and Operation Manual 



EXTERNAL SYHBOL DICTIONARY PAGE 

SYMBOL TYPE 10 ADDR LENGTH LD 10 ASH H V 04 09.15 11/04115 

OPPlSAMP SO 0001 000000 0004AC 

DPPlSAMP 

LOC OBJECT CODE 

000000 

SAMPLE PROGRAM PAGE 2 

ADDR1 ADDR2 STMT SOURCE STATEMENT ASM H V 04 09.15 11/04115 

18 *********************************************************************** 00002000 
19 * MODULE NAME =DPPlSAMP * 00002100 
20 * DESCRIPTIVE NAME = SPECIAL REAL TIME OPERATING SYSTEM SAMPLE PROGRAM* 00002200 
21 * FUNCTION = DPPlSAMP FUNCTION IS TO PROVIDE A MINIMAL TEST OF THE * 00003000 
22 * FUNCTIONING OF THE SPECIAL REAL TIME OPERATING SYSTEM. * 00003100 
23 * NOTES: IT ALSO PROVIDES A DEMONSTRATION AND CAN BE USED AS A * 00003200 
24 * TRAINING TOOL FOR APPLICATION PROGRAM EDUCATION. * 00004000 
25 * DEPENDENCIES = ARRAY'DPPlSAMP'MUST BE GENERATED BY THE USER. A * 00004100 
26 * DESCRIPTION Of THE ARRAY CAN BE FOU~D IN THE SPECIAL REAL TIME * 00004200 
27 * OPERATING SYSTEM DOM APPENDIX 1 * 00005000 
28 * RESTRICTIONS = NONE * 00005100 
29 * REGISTER CONVENTIONS = ALL REGS ARE ASSIGNED AS $R WHERE REGS 0-15 * 00005200 
30 * ARE $0-$15 * 00006000 
31 * MODULE TYPE = SAMPLE PROGRAM * 00006100 
32 * PROCESSOR = ASSEMBLER F * 00006200 
33 * MODULE SIZE = L192 DECIMAL BYTES • 00001000 
34 * ATTRIBUTES = REENTRANT * 00007100 
35 * ENTRY POINT = OPPZSAMP * 00007200 
36 * INPUT: ARRAY DPPZSAMP * 00008000 
37 * OUTPUT = SPECIAL REAL TIME OPERATING SYSTEM MESSAGES 68 , 66 ,69 * 00008100 
38 * RETURN = NORMAL OSIVS RETURN. NO RETURN CODES * 00008200 
39 * EXTERNAL REFERENCES * 00008300 
40 * ROUTINES = DPPSAMPI * 00008400 
41 * DATA AREAS = SPECIAL REAL TIME OPERATING SYSTEM DATA BASE * 00008500 
42 * (ARRAY OPPlSAMP) * 00008600 
43 * CONTROL BLOCKS = XCVT * 00008100 
44 * TABLES = NONE * 00008800 
45 * MACROS : BEGIN,EXIT,MESSAGE,PATCH,GETARRAY,PUTlOG,GETLOG,PUTARRAY, * 00008900 
46 * GETITEM,PUTITEM,PTIME * 00008910 
47 *********************************************************************** 00008920 
48 * * 00009000 
49 ** THE BEGIN MACRO WILL ESTABLISH AN ENTRY POINT FOR THE ** 00010000 
50 ** SAMPLE PROGRAM(DPPZSAMP) , A BASE R.EGISTER(BASE =) AND SAVE ** OOOllOOO 
51 ** THE CALLING PRUGRAM REGISTERS(SAVEA= AND lV:1 00012000 
52 * * 000L3000 
53 BEGIN DPPlSAMP,SAVEA=(GETMAIN,WORK),BASE:(12),LV=72 00014000 
54+DPPZSAMP CSECT • 'MAIN' CONTROL SECTlON 01-BEGIN 

HI 
o ..... 
..... 
o 
c 
Ul 

:to'::I: 
~::I: 

~3 
2:3 
~ .. 
!:tItIl 
~tIl 

tt71-3 
O::I: 
H 
Z~ 
1-3~ , 
13 

3 
013: 
tt7' 
tt7t< 
tilt< 
:to' 
31-3 
t-cI:to' 
~tIl 

:,.;: 



OPPlSAMP SAMPLE PROGRAM PAGE 3 

laC OBJECT CODE ADDR1 AOoR2 STMT SOURCE STATEMENT ASH H V 04 09.15 11/04/75 

000000 

000000 41FO FOOE 
000004 08 
000005 C407o7E9E2Cl0407 
000000 00 
OOOOOE 90EC DOOC 
000012 5800 F034 

000016 4510 FOIA 
OOOOIA OAOA 
00001C 5001 0004 
000020 50LD 0008 
000024 1801 
000026 5810 0004 
00002A <}AEI 100C 

000000 
000000 
00002E 

00002E 0700 
000030 45CO F038 
000034 
000034 00000048 

00000 
00001 
00002 
00003 
00004 
00005 
00006 
00001 
00008 
00009 
OOOOA 
OOOOB 
OOOOC 
00000 
OOOOE 
OOOOF 
00000 
00002 
00004 
00006 

:)0000 
OOOOE 

OOOOC 
00034 

0001A 

00004 
00008 

00004 
OOOOC 

00000 

00038 

00034 

56+* 
51+$0 
58+$1 
59+$2 
60+$3 
61+$4 
62+$5 
63+$6 
64+$ 7 
65+$8 
66+$9 
67+$10 
68+$11 
69+$12 
70+$13 
11+$14 
72+$15 
13 +FPRO 
14+F PR2 
15+FPR4 
76+FPR6 

18+ 
79+ 
80+ 
81+ 
82+ 

83+ 
84+ 
85+* 
86+ 
87+ 
88+ 
89+ 
90+ 
91+ 
92+ 

EQV O? 
EQU I? 
EQU 2? 
EQV 3? 
EQU 4? 
EQU 5? 
EQU 6? 
EQU 7? 
EQU 8? 
fQU 9? 
EQU 10? 
EQV 11? 
EQU 12? 
EQU 13? 
EQU 14? 
EQU 15? 
EQU a 
EQU 2 
EQU 4 
EQV 6 

OS 00. 
USING *,15 • 
B 14(0,15) 
DC AL U 8t 
DC CLB'DPPZSAMP' 

STM 14,12,12(13t 
l O.TKGOOOIG 
GETMAIN R.LV=(Ot 
BAL 1. *+4 
SVC 10 
ST 13.4(1). 
ST 1,8( 13) • 
lR 13,1. 
l 1, 4( 13) • 
LM 14tltl2( it 

94+ WORK oSECT • 
95+ OS 90. 
96+oPPZSAMP CSECT 
91+ USI NG WORK, 13 

99+ CNOP 0.4 

GOES THRU REGISTER EQUATE ONLY ONCE 
** 
** 
** 
** 
** 
** 
**IF THESE SUBSTITUTES ARE USED AS 
**REGISTFR NUMBERS THE CROSS-REFERENCE 
**TARlE WIll PROVIDE A LIST OF WHERE 
**EACH REGISTER WAS USED 
** 
** 
** 
** 
** 
** 

FOR BOUNDARY ALIGNMENT 
TEMPORARY BASE DECLARATION 

BRANCH AROUND 10 
LENGTH OF IDENTIFIER 
IDENTIFIER 

SAVE REGISTERS 
LOAD SP AND lV PARAMETERS 

INDICATE GETMAIN 
ISSUE GETMAIN SVC 

SAVE CALLER'S SAVE AREA POINTER 
FOR DOWNWARD SAVE AREA TRACE 
ESTABLiSH OWN SAVE AREA POINTER 

RESTORE 15,0,1 
RESTORE GET REGS 

BEGIN GETMAINED AREA 
OWN SAVE AREA 

100+ 
101+TKGOOOIM 
102+TKG0001G 

BAL 12.*+8 ESTAALISH INITIAL 'MAIN' CSECT BASE 

103+ 
104+ 
105 * 

OS OF. BASE REfERENCE 
DC ALl(O),AL3(72) • SUBPOOL, LENGTH 

DROP 15 
USING TKG0001M,12 

106 ** UPON ENTRY PASS PARA METE RS TO DPP ZS AMP AS FOLLOWS 
101 ** 
108 ** 

************** ****************** 
*RESIGISTER 1*----) * XCVT * 

* 
** 
** 
** 

02-EQUAT 
02-EQUA T 
02-EQUAT 
02-EQUA T 
02-EQUA T 
02-EQUAT 
02-EQUA T 
02-EQUAT 
02-EQUAT 
02-EQUA T 
02-EQUAT 
02-EQUAT 
02-EQUAT 
02-EQUAT 
02-EQUAT 
02-EQUAT 
02-EQUAT 
02-EQUAT 
02-EQUAT 
02-EQUAT 

o i-BEGIN 
Ol-BEGIN 
02- SAVE 
02-SAVE 
02-SAVE 

02-SAVE 
Ol-BEGIN 

02-GETMA 
02-GETMA 
Ol-BEGIN 
01-BEGIN 
01-BEGIN 
Oi-BEGIN 
01-BEGIN 

Ol-BEGIN 
01-BEGIN 
01-BEGIN 
Oi-BEGIN 

01-BEGIN 
01-BEGIN 
o i-BEGIN 
01-8EGIN 
01-BEGIN 
01-BEGIN 
00015000 
00016000 
00017000 
00018000 



DPPZSAMP SAMPLE PROGRA,.. PAGE 4 

LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT ASM H V 04 09.15 11/04/75 

000038 5821 0000 

00003C 4110 COLO 
OOOO~O 47FO C03C 
0000~4 

000044 C4D7D7E2CID4D7Fl 
00004C C4D7D7E2CID4D7Fl 
000054 4040404040404040 
00005C 00 
000050 01 
00005E 0000 
000060 00000000 
000064 0000000000000000 
00006C 00000000 

000010 41FO C 044 
000074 
000074 4500 C 048 

000078 0004 
00007A 0000 

00007C 18F2 
00007E BH8 C051 
000082 4700 0004 
000086 440f 0004 

00008A 12FF 
00008C 4710 COAO 

000090 
000090 4510 C070 
000094 01 
000095 01 
000096 0000 
000098 00 
000099 000000 
00009C 0000 
00009E 00000000 
0000A4 
0000A4 4100 0044 

00000 

00044 
00070 

00070 
00078 

0007C 
00078 

0001C 

000S5 
00004 
00004 

00004 

000A4 

00044 

109 ** ************** *RESOURCE TABLE * ** 
110 ** *PATCH PARAMETERS* ** 
111 ** ****************** ** 
llZ * * 
113 L S2,0(Sll PLACE XCVT ADDRESS IN REG 2 
114 * * 
115 ** THE FOLLOWING PATCH MACRO WILL CREATE AN INDEPENDANT TASK * 
116 ** NAMEDITASK=I DPPSAMPI • THE TASK ENTRY POINT(EP=I IS DPPSAMPl** 
117 ** NOTE: THE DCVTR OR DCVTLOC OPERAND SHOULD BE USED ON ONLINE ** 
liS ** MACROS TO INCREASE THEIR OPERATION EFFICIENCY. DCVTR ** 
119 ** AND DCVTLOC POINTS TO THE XCVT. ** 
120 * * 
121 PATCH TASK=DPPSAMP1, EP=DPPSAMP1,DCVTR=(S2) 
122+ LA l,IHB0005 SET UP PARAM liST ADDRESS 
123+ 8 IHB0005A BRANCH AROUND liST 
124+IHB0005 OS OF 
125+ DC CLS'DPPSAMPl' 
126+ DC CLS'DPPSAMP1' 
127+ DC CLS" 
l2B+ DC ALl(O) 
129+ DC AL1(1) 
130+ DC H' 0' 
131+ DC A( 0) 

132+ DC 2F'O' 
133+ DC ACO) 
134+IHBO005A EOU * 
135+ LA 15,IHP0005 
136+ CNOP 0,4 
131+ BAL 0,IHP0005A 
13S+IHP0005 EOU * 

TASK NAME 
ENTRY POINT NAME 
PRTY REFERENCE NAME 
FLAG BYTE 
QUEUE LENGTH 
PRTY RELAT IVE VALUE 
ECB ADORE SS 
FREE LENGTH, FREE ADDRESS 
TCF3X 

SET UP LIST ADDRESS 

seT UP REG 0 WITH PARAM LIST 

139+ DC AL~IHP0005A-IHP00051 LENGTH OF PARAMS 
140 + DC At 2 ( 0 ) I D 
141+IHP0005A EQU * 
142+ LR 15,(S2) 
143+ ICM 15,8,*+1 
144+ NOP 4 
145+ EX 0,4(15J 
146 ** IF RETURN CODE FROM PATCH SVC 
141 IF F,CU5J,IS,ZERO,THEN 
148+ LTR S15,S15 
149+ BC 7,IFI0007 
150 ** OUTPUT MESSAGE 68 
151 ** THE SYSTEM CONSOLEIROUTE=I). 

CVT ADDRESS· 
ID IN HIGH ORDER BYTE OF REG 
CONS TANT FOR 10 
EXECUTE SVC FROM CVT 

IS ZERO THEN 

,WHICH CONTAINS MSGleVAR=J,TO 

152 MESSAGE 6S,VAR=(MSGlI ,DCVTR=U2J,ROJTE=1 
153+ CNOP 0,4 
154+ BAL 1,MSG0008 
155+ DC ALleO+I) 
156 + DC ALlIl ) 
157+ DC AL2( OJ 
15S+ DC X'OO' 
159+ DC AL3(0) 
160+ DC AL2 (OJ 
161+ DC 1AL4( OJ 
162+MSG0008 OS OF 
163+ LA 0,68 

ROUTI NG 

,VARIABLE COUNT 
ROUTING CODE COUNT 

MESSAGE NUMBER 
AC TI ON CODE 
USER RETURN AREA 

CODe 
MESSAGE VARIABLE 

LOAD MSG j INTO REGISTER 0 

** 

** 

00019000 
00020000 
00021000 
00022000 
00023000 
00024000 
00025000 
00026000 
00027000. 
00028000 
00029000 
00030000 
00031000 
Ol-PATCH 
01-PATCH 
o t-PATCH 
Ol-PATCH 
Ol-PATCH 
01-PA TCH 
Ot-PATCH 
Ot-PATCH 
01-PA TCH 
01-PATCH 
Ot-PATCH 
Ol-PATCH 
01-PATCH 
Ol-PATCH 
Ot-PATCH 
Ot-PATCH 
01-PATCH 
Ol-PATCH 
01-PA TCH 
Ot-PATCH 
02-0PPSV 
02-0PPSV 
02-DPPSV 
02-DPPSV 
00032000 
00033000 
Ol-IF 
01-IF 
00034000 
00035000 
00036000 
Ot-MESSA 
01-ME SSA 
Ol-MESSA 
Ot-MESSA 
Ot-MESSA 
Ol-MESSA 
Ol-MESSA 
Ol-MESSA 
01-MESSA 
OI-ME SSA 
Ol-MESSA 



==, 
CD 

OPPZ SAMP SAMPLE PROGRAM PAGE 5 

lOC OBJECT CODE ADORI ADOR2 STMT SOURCE STATEMENT ASM H V 04 09.15 11/04175 

0000A8 4001 0002 
OOOOAC 4100 0001 
OOOOBO 4001 0008 
000084 9680 1008 
000088 1BFF 
OOOOBA 43Fl 0001 
00008E 89FO 0001 
0000C2 4100 C450 
0000C6 5001 F008 
OOOOCA 58F2 0020 
OOOOCE 58FF 0090 
000002 05EF 

000004 

000004 
000004 4510 COAC 

00008 

000008 C4D1D7E9E2C10401 
OOOOEO 
OOOOEO 4100 C3FC 
0000E4 58F2 0020 
0000E8 58FF 0078 
OOOOEC 45EO e OBE 
OOOOFO 0200 
0000F2 8FFS EOOO 
0000F6 05EF 

OOOOFS 12FF 
OOOOFA 4170 e22S 
OOOOFE 5830 C 3FC 

000102 0700 
000104 4510 COEO 
000108 01 
000109 00 
00010A 0000 
00010e 00 
000100 000000 
00011 0 00000000 
000114 
000114 4100 0042 
000118 4001 0002 
OOOllC 1BFF 
OOOllE 43Fl 0001 
000122 89FO 0001 
000126 5031 FOOS 
00012A 5SF 2 0020 

00002 
00001 
00008 

00001 
00001 
00484 
00008 
00020 
00090 

OOOEO 

00430 
00020 
00078 
000F2 

00000 

0025C 
00430 

00114 

00042 
00002 

00001 
00001 
00008 
00020 

164+ 
165+ 
166+ 

0.2(1) MOVE MSG • TO PARAMETER LIST 
0.1 LOAD ROUTING CODE INTO REGISTER 0 
0.8(1) STORE ROUTING CODE INTO PARAMETER LIST 

167+ 

STH 
LA 
STH 
01 8(lJ.X'80' SET HIGH BIT OF LAST ROUTINE CODE 

168+ SR 15,15 ZERO REG 15 FOR IC 
169+ IC 

Sll 
LA 

15,U 11 II CF ROUTE CODES IN PARAMETER LIST 
170+ 15.1 LENGTH OF ROUTE CODE IN PARAM LIST 
171+ 
112+ 
113+ 
174+ 
175+ 
176 
171+IFI0007 
178* 

ST 
L 
L 
BALR 
ENOIF 
OS 

0,MSG1 VARIABLE ADDR 
0.8(1,15) STORE INTO MESSAGE LIST 
15.32(($2>1 ADDRESS OF CVT 
15,116+28(15) MESSAGE SUPPORT ROUTINE 
14,15 CALL SUPPORT ROUTINE 

OH 

179 ** THE FOLLOWING GETARRAY MACRO WILL RETRIEVE THE ADDRESS 
180 ** (TYPE=ADDR) OF ARRAY (NAME=) DPPZSAMP AND PLACE THE ADDRESS 
181 ** IN LOCATION'ARRAY' (DATA=) • 
182 • 
183 
184+ 
185+ 
186+GOOll 
lS7+GA 0011 
188+ 
189+ 
190+ 
191+ 
192+ 
193+ 
194+ 

GET ARRAY NAHE=DPPZSAMP, OATA=ARRAY, TYPE=ADDR ,DC VTR=( S2) 
CNOP 0,4 
BAL I, GAOOll 
DC CLS'OPPZSAHP' 
CNOP 0,4 
LA O.ARRAY ADDRESS OF DATA 
l 15,32(S2)1 ADDRESS OF CVT 
l 15 el16+4( 15) GETARRAY SUPPORT ROUTINE 
BAL 14, *+6 
DC All(2),AL1CO) 
ICM 15,8,0(14) INSERT THE MACRO 10 
8ALR 14,15 CALL SUPPORT ROUTINE 

195 ** IF 
196 

THE ARRAY ADDRESS WAS RETRIEVED FROM THE DATA BASE THEN 
IF F,IS15),IS,ZERO,THEN 

197+ UR $15,$15 
198+ BC 7,IF100L3 

L S3,ARRAY PLACE ARRAY ADDRESS IN REG 3 199 
200 ** 
201 ** 
202 
203+ 

OUTPUT MESSAGE 66 ,WHICH CONTAINS ARRAY(VAR=) 
DPPZSAMP,TO THE SYSTEM CONSOLE(ROUTE=l) 

204+ 
205+ 
206+ 
207+ 
208+ 
209+ 
210+ 
Zll+MSG0014 
212+ 
213+ 
214+ 
215+ 
216+ 
217+ 
218 + 

MESSAGE 66,VAR=((S3)),DCVTR=(S2) 
CNOP 0,4 
BAL 1,HSG0014 
DC ALl(O+l) 
DC Al1l 0) 

DC AL2( O' 
DC X'OO' 
DC AL 3( 0) 
DC 1AL4(0) 

OS Of' 
LA 0,66 LOAD MSG 
STH O,Z(1) MOVE MSG II 
SR 15,15 
IC 15,11 U 
SLL 15,1 
ST S3,8( 1,15) 
L 15,321($2») 

VAR IABLE COUNT 
ROUTING CODE COUNT 

MESSAGE NUMBER 
ACTION CODE 
USER RETURN AREA 

MESSAGE VA~ IABLE 

II INTO REGISTER 0 
TO PARAMETER LI Sf 

ZERO REG 15 FOR IC 
/I. OF ROUTE CODE SIN PARAME TER 
LENGTH OF ROUTE CODE IN PARAM 
STORE VARIABLE INTO PARAMETER 

ADDRESS OF CVT 

• *. 
** 
** 
* 

** 

*. 
** 

LI S T 
LI ST 
LIST 

01-MESSA 
01-HE SSA 
01-MESSA 
01-MESSA 
01-ME SSA 
01-MESSA 
01-ME SSA 
o I-ME SSA 
01-MESSA 
02-DPPSU 
02-DPPSU 
02-DPPSU 
00037000 
01-ENDIf 
00038000 
00039000 
00040000 
00041000 
00042000 
00043000 
01-GE TAR 
01-GETAR 
01-GE TAR 
o I-GE TAR 
Ol-GETAR 
02-DPPSU 
02-0PPSU 
02-DPPSU 
02-0PPSU 
02-0PPSU 
02-DPPSU 
00044000 
00045000 
01-IF 
o L-IF 
00046000 
00047000 
00048000 
00049000 
o l-HESSA 
Ol-MESSA 
Ol-ME SSA 
01-MESSA 
01-MESSA 
01-MESSA 
01-MESSA 
01-MESSA 
Ot-ME SSA 
01-MESSA 
01-HE SSA 
OL-MESSA 
Ol-MESSA 
01-ME SSA 
OI-MESSA 
OZ-DPPSU 



OPPZSAMP SAMPLE PROGRAM PAGE 6 

LOC 08JEC T CODE 

00012E 58FF 0090 
000132 05EF 

ADDRI ADDR2 STMT SOURCE ST AT EMENT ASM H V 04 09.15 11/04115 

000134 4510 CIOC 
000138 C~7D7E9E2CID4D7 
000140 58F2 0020 
000144 58FF 0088 
000148 45EO ellA 
00014C 0100 
00014E 8FF8 EOOO 
000152 05EF 

000154 12FF 
000156 4770 C228 

00015A 0700 
00015e 4510 C138 
000160 01 
000161 00 
000162 0000 
000164 00 
000165 000000 
000168 00000000 
00016C 
00016C 4100 0044 
000110 4001 0002 
000174 18FF 
000116 43Ft 000 1 
00011A 89FO 0001 
00011E 4100 C458 
000182 5001 F008 
0001S6 5E\F2 0020 
00018A 58FF 0090 
00018E 05EF 

000190 
000190 4510 C 118 
000194 00000LA4 
000198 00000438 
00019C 00000000 
0001AO 00000000 
0001A4 e4D1D1E9E 2C 10401 
OOOLAe 58F2 0020 
000180 58FF 0084 
000184 05EF 

00090 

00140 

00020 
000B8 
0014E 

00000 

0025C 

0016C 

00044 
00002 

0000 L 
00001 
0048e 
DODOS 
00020 
00090 

OOLAC 

00020 
00084 

219+ 
220+ 
221 • 
222 ** 
223 • 
224 
225+ 
226+ 
221+ 
228+ 
229+ 
230+ 
231+ 
232+ 
233 •• 
234 
235+ 
236+ 
237 •• 

238 *. 
239 
240+ 
24l+ 
242+ 
243+ 
244+ 
245+ 
246+ 

l 
BALR 

15.116+28(15) 
14t-l5 

MESSAGE SUPPORT ROUT INE 
CALL SUPPORT ROUTINE 

* THE FOllOWING PUTlOG MACRO Will LOG OUT ARRAY (NAME= I OPPISAMP** 

PUTlOG NAME=DPPZS AMP, DCVTR= (52 I 
8Al 1,.+L2 A(ARRAY NAME) 
DC ClS'DPPISAMP' AR~AY NAME 
l 15,32(l52)1 ADDRESS OF CVT 
l 15,lL6+68(15) 
BAl 14,*+6 
DC All( 1) ,All lO) 
leM 15,8,0(14) INSERT THE MACRO 10 
BAlR 14,15 CALL SUPPORT ~OUTINE 

IF ARRAY DPPZSAMP WAS lOGGED OUT THEN 
IF F,lSI5),IS,ZERO,THEN 

lTR $15,$15 
BC 1,IF20018 

OUTPUT MESSAGE 68 WHICH CONTAINS MSG2(VAR=) TO 
THE SYSTEM CONSOLElROUTE=ll. 

MESSAGE 68,VAR=(MSG2),OCVTR=IS21 
CNOP 0,4 
BAL I,MSGOOI9 
DC ALllO+ll 
DC All (OJ 
DC Al 2l 0) 

DC X'OO' 
DC AUlO) 

VARIABLE COUNT 
ROUTING CODE COUNT 

MESSAGE NUMBER 
AC HON CODE 

* 

** 

** 

241+ 
248+MSGOOI9 

DC 1Al4( 0) 
OS OF 

USER RETURN AREA 
ME S SAGE VAR I A8l E 

249+ 
250+ 
251+ 
252+ 
253+ 
254+ 
255+ 
256+ 
251+ 
258+ 
259 * 

LA 0,68 lOAD MSG 
STH 0.2l11 MOVE MSG # 
SR 15,15 
IC l.5,L1Lt 
Sll 15.1 
lA 0,MSG2 
ST 0,8(1,15) 
l 15,32«S2» 
l L5,Ll6+28(L5) 
BAlR 14,15 

N INTO REGISTER 0 
TO PARAMETER LIST 

ZERO REG 15 FOR IC 
N IF ROUTE CODES I N PARAMETER LIST 
lENGTH OF ROUTE CODe IN PARAM LIST 
V A R IABLE ADDR 
STORE INTO MESSAGE liST 

ADDRESS OF CVT 
MESSAGE SUPPORT ROUTINE 

CAll SUPPORT ROUTINE 

* 260 .* THE FOllOWING GETlOG MACRO WIll lOG IN ARRAYlNAME=1 DPPISAMP ** 
261 ** AND PlACElAREA=1 THE ARRAY AT lOCATION lOGCOPY • * 
262 * 
263 
264+ 
265+ 
266+ 
261+ 
268+ 
269+ 
210+ 
211+ 
212+ 
213+ 

GETLOG NAME=DPPZSAMP,AREA=lOGCOPY,DCVTR=(S21 
CNOP 0,4 
BAl 1.*+28 
DC Al l( 0) , A l 3 l *+ 15) 
DC A(lOGCOPYI 
DC AlOI 
DC AlOI 
DC el8' DPPZSAMP' 
L 15,32(S2» 
L 15,116+64(151 
BALR 14,15 

BRANCH ARROUND PARMS 
ARRAY IDENTIFIER 

OUTPUT AR EA 
RELATIVE COpy 
lOG COpy REFERENCE 

ADDRESS OF CVT 

CALL SUPPORT ROUTINE 

* 

02-DPPSU 
02-DPPSU 
00050000 
00051000 
00052000 
00053000 
Ol-PUTlO 
01-PUTlO 
02-DPP SU 
02-DPPSU 
02-DPPSU 
02-DPPSU 
02-DPPSU 
02-DPPSU 
00054000 
00055000 
01-IF 
Oi-IF 
00056000 
00051000 
00058000 
01-ME SSA 
Ol-MESSA 
OI-MESSA 
01-ME SSA 
Ol-MESSA 
OI-ME SSA 
Ot-MESSA 
Oi-MESSA 
OI-MESSA 
Ol-MESSA 
OI-MESSA 
OI-ME SSA 
01-MESSA 
OI-ME SSA 
o I-MESSA 
01-MESSA 
02-DPPSU 
02-DPPSU 
02-DPPSU 
00059000 
00060000 
00061000 
00062000 
00063000 
01-GE TLO 
o 1-GETlO 
01-GETLO 
OI-GElLO 
OI-GElLO 
Ol-GElLO 
Ol-GE TlO 
02-DPPSU 
02-0PPSU 
02-DPPSU 



DPPlSAMP SAMPLE PROGRAM PAGE 1 

lOC OBJECT CODE A ODR 1 A DDR 2 S TMT SOURCE STATEMENT ASM H V 04 09.15 11/04/75 

0001B6 12FF 
0001B8 4770 C228 

OOOISC 4140 C41C 

0001CO 
0001CO 4510 CIAO 
0001C4 01 
0001C 5 01 
0001C6 0000 
0001C8 00 
0001C9 000000 
0001CC 0000 
0001CE 00000000 
000104 
000104 4100 0042 
000 108 4001 0002 
OOOIDC 4100 0001 
0001EO 4001 OOOS 
0001E4 9680 1008 
0001E8 1 BFF 
000 lEA 43F 1 0001 
OOOlEE 89FO 0001 
0001F2 5041 F008 
0001F6 5SF2 0020 
0001FA 58fF 0090 
OOOIFE 05Ef 

000200 
000200 4510 C1D8 

00008 

000204 C407D1E9E2CID407 
00020C 
00020C 1804 
00020E 58FZ OOZO 
000212 58FF 007C 
000216 45EO ClE8 
0002lA 7000 
00021C BfFS EOOO 
0002Z0 05EF 

000222 12FF 
000224 4710 C 228 

000228 

0025C 

00450 

00104 

00042 
00002 
00001 
OOOOS 

00001 
00001 
00008 
00020 
00090 

0020C 

00020 
0001C 
0021C 

00000 

0025C 

274 ** 
215 
276+ 

IF ARRAY DPPlSAMP WAS LOGGED IN THEN 
IF F,(S15),IS,lERO,THEN 

lTR Sl5,Sl5 
8C 7, If30023 

OUTPUT MESSAGE 66 ,WHICH CONTAINS THE lOGGED IN 
ARRAY(VAR=) DPPlSAMP, TO THE SYSTEM CONSOLE(ROUTE=I) 

** 
277 + 
278 ** 
219 ** 
280 
281 ** 

lA S4.l0GCOPY+24 lOGGED AR~AY AODRESS(IST 24BYTES OF A 
LOGGED ARRAY CONTAINS A HEADER 

282 
283+ 
2S4+ 
285+ 
286+ 
287+ 
28S+ 
289+ 
290+ 
291+ 
292+MSG0024 
293+ 
294+ 
295+ 
296+ 
297+ 
298+ 
299+ 
300+ 
301+ 
302+ 
303+ 
304+ 
305 * 

CNOP 
BAl 
DC 
DC 
DC 
DC 
DC 
DC 
DC 

OS 
lA 
STH 
lA 
STH 
OI 
SR 
IC 
Sll 
ST 
l 
l 
BAlR 

MESSAGE 66,VAR=((S4),DCVTR=(S2),ROUTE=1 
0,4 
1 ,MSG0024 
ALl( 0+1) 
All (1) 

AlZ( 0) 
X'OO' 
Al3(O) 
AL2( 0) 

1Al4(0) 
Of 

ROUTI NG 

VAR[ ABLE COUNT 
ROUT ING CODE COUNT 

MESSAGE NUM8ER 
AC nON CODE 
USER RETUR~ AREA 

COOE 
MESSAGE VA~IABLE 

0,66 lOAD MSG II INTO REGISTER 0 
0.2(1) MOVE MSG II TO PARAMETER LIST 
0,1 lOAD ROUTING CODE INTO REGISTER 0 
O,S(l) STORE ROUTING CODE INTO PARAMETER lIST 
8(1),X'80' SET HIGH BIT Of lAST ROUTINE 
15,15 lERO REG 15 FOR IC 
15,1(11 II OF ROUTE CODES IN PARAMETER 
15,1 LENGTH OF ROUTE CODE IN PARAM 
S4,S(1.15) STORE VARIABLE INTO PARAMETER 
15,32(($2)) ADDRESS Of CVT 
15,116+28(15) MESSAGE SUPPORT ROUTINE 
14,15 CALL SUPPORT ROUTINE 

306 ** THE FOLLOWING PUTARRAY MACRO WILL PLACE(OATA=) THE 
307 ** LOGGED IN ARRAY(NAME=) DPPlSAI1P IN THE DATA BASE. 
30S * 
309 
310+ 
311+ 
312+A0026 
313+PA0026 
314+ 
315+ 
316+ 
311+ 
318 + 
319+ 
320+ 
321 ** IF 
322 
323+ 

PUTARRAY NAME=DPPlSAMP,OATA=(S4),DCVTR=(S2) 
CNOP 0,4 
SAL I,PA0026 
DC ClS'DPPISAMP' ARRAY NAME 
CNOP 0,4 
LR 0, S4 ADDRESS OF OAT A 
l 15,32(($2)) ADDRESS OF CVT 
l 15,116+8(15) PUT ARRAY SUPPORT ROUTINE 
BAl 14.*+6 
DC All(112),All(0) 
ICM 15,S,01-14. INSERT THE MACRO 10 
BAlR 14,15 CAll SUPPORT ROUTINE 

THE lOGGED ARRAY WAS PLACED IN THE DATA BASE THEN 
IF F.(U5) ,IS,ZERO,THEN 

L TR $15, Sl5 
BC 7.IF40028 324+ 

325 ** 
326 ** 
327 
328+ 

OUTPUT MESSAGE 68,WHICH CONTAINS MSG3(VAR=J, TO THE 
SYSTEM CONSOlE (ROUTE=U 

MESSAGE 6S,VAR=OISG31 , DCVTR= ($2) 
CNOP 

CODE 

LI ST 
LIST 
LI ST 

,. 
** 

* 

** 
** 

00064000 
00065000 
01- If 
01-IF 
00066000 
00067000 
00068000 
00068100 
00068200 
Ol-MESSA 
Ol-MESSA 
Ol-MESSA 
01-ME SSA 
o I-MESSA 
ai-MESSA 
Ol-MESSA 
01-MESSA 
Ol-ME SSA 
01-MESSA 
01-MESSA 
o I-ME SSA 
01-MESSA 
Ol-MESSA 
01-ME SSA 
01-MESSA 
01-MESSA 
01-ME SSA 
Oi-MESSA 
02-DPPSU 
02-DPPSU 
02-DPPSU 
00069000 
00070000 
00071000 
00072000 
00013000 
01-PUTAR 
01-PUTAR 
01-PUTAR 
01-PUTAR 
01-PUTAR 
02-0PPSU 
02-DPP SU 
02-0PPSU 
02-0PPSU 
02-DPPSU 
02-DPPSU 
00074000 
00075000 
01-IF 
01-IF 
00016000 
00011000 
00018000 
01-MESSA 



:z
I 
~ -

OPPI SAMP SAMPLE PROGRAM PAGE 8 

LOC ORJECT CODE ADORL AOOR2 STMI SOURCE STATEMENT ASM H V 04 09.15 11/04/75 

000228 4510 C204 
00022C 01 
000220 00 
00022E 0000 
000230 00 
000231 000000 
000234 00000000 
000238 
000238 Itl 00 0044 
00023C 4001 0002 
000240 lRFF 
000242 43F1 0001 
000246 89FO 0001 
00024A 4100 C460 
0002~E 5001 FOOS 
000252 58F2 0020 
000256 58H 0090 
00025A 05H 

00025C 

OOOl5C 

00025C 

00025C 

OOOl5C 
000l5C ~510 C238 
000260 C4D7D7E2C104D7F2 
000268 000004 7E 
00026C 
00026C 5800 C234 
000210 58F 2 0020 
000274 58FF 0080 
000278 45EO (24A 
00027C 1800 
00027E SFF8 EOOO 
000282 05EF 

000284 12FF 
000286 4770 C310 

00028A 0700 
00028C 4510 C26C 
000290 01 
000291 01 

00238 

00044 
00002 

00001 
00001 
00494 
00008 
00020 
00090 

0026C 

00268 
00020 
00080 
0027E 

OO~OO 

00344 

OOZAO 

329+ BAL 1.MSG0029 
330+ DC ALI10+11 
331 + D( AL U 0 I 
33Z+ DC Al2 10 I 
333+ DC X'OO' 
334+ DC AL3(0) 
335+ DC lAL4(01 
336+HSG0029 OS OF 
337+ LA 0.68 LOAD MSG 
338+ STH 0.2( 1) MOVE HSG fI 
339+ SR 15,15 

VARIABLE CWNT 
ROUTING CODE COUNT 

MESSAGE NU"4BER 
AC nON CODE 
USER RETURN AREA 

MESSAGE VARIABLE 

• INTO REGISTER 0 
TO PARAMETER LIST 

ZERO REG 15 fOR IC 
340+ IC 15.1111 
341+ SLL 15.1 
342+ LA 0,MSG3 

• OF ROUTE CODES IN PARAMETER LIST 
LENGTH OF ROUTE CODE IN PARAM LIST 
VAR fABLE AOOR 

343+ ST 0.8(1.151 
344+ L 15.32«S2)) 
345+ L 15,116+28(151 
346+ 8AlR 14.15 
347 ENDIF 
348+1F40028 OS OH 
349 ENDIF 
350+IF30023 OS OH 
351 ENOIF 
352+tF20018 OS OH 
353 END IF 
354+IF 10013 OS OH 

STOOE INTO MESSAGE LIST 
ADDRESS OF (VT 

MESSAGE SUPPORT ROUTINE 
CALL SUPPORT ROUTINE 

355 • * 
356 ** THE FOLLOWING GETITEH MACRO WIll RETRIEVE THE CONTENTS * 
357 ** ITYPE=DATA) OF ITEH(NAME=I OPPSAMP2 AND PLACEIDATA=) THE OATA*. 
358 ** AT LOCATION'ITEH'. ** 
359 * * 
360 GETtTEM NAHE=OPPSAMP2,OATA=ITEH.TYPE=DATA,DCVTR=(SZI 
361+ CNOP 0.4 
362+ BAL 1.G10035 
363+10035 DC CL8'DPPSAMP2' IJE M NAME 
364+ DC All (0) .AL3 (ITEM) 
365+GI0035 CNOP 0,4 
366+ L 0.10035+8 ADORE SS OF DATA 
367+ L 15.32(($21) ADDRESS OF (VT 
368+ L 15,116+12(15) GETITEM SUPPORT ROUTINE 
369+ 8AL 14,*+6 
370+ DC AL1(1201.AL1(O) 
37l+ ICM l5~8,O(14) I~SERT THE MACRO ID 
372+ BALR 14.15 (ALL SUPPORT ROUTINE 
373 ** IF ITEM DPPSAMP2 WAS RETRIEVED THEN 
314 IF F.(S15).IS.IERO.THEN 
375+ LTR S15.S15 
376+ BC 7,tFI0037 
377 **WTPUT MESSAGE 69.WHICH CONTAtN.S (VAR=) THE ITEH. TO THE 
378 ** SYSTEH CON50LE(ROUTE=11 
379 MESSAGE 69.VAR=(ITEH),DCVTR=(SZJ.ROUTE=1 
380+. CNOP 0.4 
381+ SAL 1.HSG0038 
3B2+ DC AL l( 0+1) 
383+ DC Al1(1) 

VARIABLE COUNT 
ROUT ING CODE COUNT 

** 

** 
** 

01-ME SSA 
o I-MESSA 
01-HESSA 
01-HE S5A 
01-MESSA 
01-MESSA 
01-HESSA 
01-MESSA 
01-HESSA 
01-HESSA 
01-HESSA 
01-ME SSA 
01-HESSA 
01-HESSA 
01-HESSA 
02-DPPSU 
02-DPPSU 
02-0PPSU 
00079000 
01-ENOlf 
00080000 
01-ENOIF 
00081000 
01-ENDIf 
00082000 
Ol-ENDlf 
00083000 
00084000 
00085000 
00086000 
00087000 
00088000 
01-GETIT 
Ol-GETIT 
01-GETIT 
o I-GETl T 
01-GETIT 
01-GETIT 
02-DPPSU 
02-DPPSU 
02-DPPSU 
02-DPPSU 
02-DPPSU 
02-DPPSU 
00089000 
00090000 
Ol-IF 
01-1 F 
00091000 
00092000 
00093000 
01-MESSA 
01-HESSA 
01-HESSA 
01-HE 5SA 



>' 
I 

N 

OPPZ SAMP SAMPlf PROGRAM PAGE 9 

LOC OBJECT CODE ADDRI ADOR2 STMT SOURCE STATEMENT ASM H V 04 09.15 11/04115 

000292 0000 
000294 00 
000295 000000 
000?98 0000 
00029A 00000000 
0002AO 
0002AO 4100 0045 
0002A4 4001 0002 
0002A8 4100 0001 
0002AC 4001 0008 
000280 9680 1008 
000284 lBFF 
0002B6 43Fl 0001 
0002AA 89FO 0001 
OOO?BF 4100 C44A 
0002C2 5001 FOOa 
0002(6 58F2 0020 
OOOlCA 5BFF 0090 
0002CF 05EF 

000200 
000200 4510 C?AC 

00008 

000204 C40707E2C1D407F2 
00020C 0000047E 
0002EO 
OQ02EO 5800 C2A8 
0002E4 58F2 0020 
0002E 8 5eFF 0084 
0002EC 45EO C 2BE 
0002FO A800 
0002F2 8FF8 EOOO 
0002 F6 05EF 

0002F8 12FF 
0002FA 4770 C310 

0002H 0100 
000300 4510 C2EO 
000304 01 
000305 01 
000306 0000 
000308 00 
000309 000000 
00030C 0000 
00030E 00000000 
000314 
000314 4100 0044 
000318 4001 0002 

00045 
00002 
00001 
00008 

00001 
00001 
0041E 
00008 
000'20 
00090 

002EO 

0020t 
00020 
00084 
002F2 

00000 

00344 

00314 

00044 
00002 

384+ 
385+ 
386+ 
381+ 
3118+ 
389+MSG0038 
390+ 
391+ 
392+ 
393+ 

DC 
DC 
DC 
DC 
DC 

AL2( 0) 
X'OO' 
Al3(O) 
AL2( 0) 
lAl4 (0) 

OF 

MESSAGE NUMBER 
Ae nON CODE 
USEk RETURN AREA 

ROUTING CODE 
MESSAGE VARIABLE 

0,69 LOAD MSG # INTO REGISTER 0 
0,2(11 MOVE'MSG # TO PARAMETER LIST 
0,1 LOAD ROUTING CODE INTO REGISTER 0 
0,8(1) STORE ROUTING CODE INTO PARAMETER LIST 

394+ 

OS 
LA 
STH 
LA 
STH 
OI 
SR 
IC 
Sll 
LA 
ST 

8(1),X I 80" SET HIGH BIT OF LAST ROUTINE CODE 
395+ 15,15 ZERO REG L5 FOR Ie 
396+ 15,1(1) N OF ROUTE CODES IN PARAMETER LIST 
391+ 15,1 LENGTH OF ROUTE' CODE IN PARAM LIST 
398+ 
399+ 
400+ 
401+ 
402+ 
403 * 

L 
L 
BALR 

O,ITEM VARIABLE ADDR 
0.8(1,15) STORf INTO MESSAGE LIST 
15,32«$2») ADDRESS OF CVT 
15,116+28(15) MESSAGE SUPPORT ROUTINE 
14,15 CALL SUPPORT ROUTINE 

404 ** THE FlLOW ING PUT IT EM MACRO WILL PL ACE( DATA=) THE RETRIE VED 
405 ** ITEMINAME=) DPPSAMP2 IN T~E DATA BASE. 
406 * 
407 PUTITEM NAME=DPPSAMP2,DATA=TTEM,OCVTR=($2) 
408+ CNOP 0.4 
409+ BAL I,PI0040 
410+P0040 OC CL8 I OPPSAMP2" IT FM NAME 
411+ DC ALHO),AL3(ITEM) 
412+PI0040 CNOP 0,4 
413+ l 0, P0040+8 ADDRESS OF DATA 
414+ l 15,32«$2)) ADDRESS OF CVT 
415+ L 15,116+16(15) PUTITEM SUPPORT ROUTINE 
416+ BAL 14,*+6 
4l7+ DC AL1(168),ALl(0) 
418+ ICM 15,8,0(14) INSERT THE MACRO 10 
419+ BALR 14,15 CALL SUPPORT ROUTINE 
420 ** IF ITEM DPPSAMP2 WAS UPDATED THEN 
421 IF F,($151,IS,ZERO,THEN 
422+ L TR U5,Sl5 
423+ BC 7,IF20042 
424 **OUTPUT MESSAGE 68, WHICH CONTAINS MSG4(VAR=) ,TO THE SYSTEM 
425 ** CONSOLE (ROUTE= 1) • 
426 MESSAGE 68,VAR=(MSG4),DCVTR=($2),ROUTE=1 
427+ CNOP 0,4 
428+ BAL 1,MSG0043 
429+ DC AL1(0+1) 
430+ DC ALl(1) 
431+ DC AL2(0) 
432+ DC X' 00' 
433+ DC AL3( 0) 
434+ DC Al2(0) ROUTING 
435+ DC lAL4( 0) 
436+MS G0043 OS OF 

VARIABLE COUNT 
ROUTING CODE COUNT 

MESSAGE NUMBER 
ACT ION CODE 
USER RETURN AREA 

CODE 
MESSAGE VARIABLE 

431+ LA 0,68 LOAD MSG N INTO REGISTER 0 
438+ STH O,l( LI MOVE MSG # TO PARAMETER LIST 

* ** 
** 
* 

** 

** 
** 

o I-MESSA 
01-MESSA 
OI-ME SSA 
01-MESSA 
01-ME SSA 
OI-MESSA 
01-MESSA 
OI-ME SSA 
Ol-MESSA 
01-MESSA 
Ol-ME SSA 
01-MESSA 
OI-ME SSA 
OI-MESSA 
01-MESSA 
o l-ME SSA 
02-0PPSU 
02-DPPSU 
02-0PPSU 
00094000 
00095000 
00096000 
00097000 
00098000 
o l-PUTIT 
01-PUTIT 
01-PUTIT 
o L-PUT IT 
01-PUTIT 
OI-PUTI T 
02-DPPSU 
02-DPPSU 
02-0PPSU 
02-DPPSU 
02-DPPSU 
02-DPP SU 
00099000 
00100000 
Ol-IF 
OI-IF 
00101000 
00102000 
00103000 
o I-ME SSA 
OI-MESSA 
01-ME SSA 
Ol-MESSA 
OI-MESSA 
OI-ME SSA 
01-MESSA 
OI-ME SSA 
o I-MESSA 
01-MESSA 
01-ME SSA 
Ol-MESSA 



;roo 
I 

W 

DPPZ SAMP SAMPLE PROGRAM PAGE 10 

LOC OBJECT CODE AODRI AOOR2 STMT SOURCE STATEMENT ASM H V 04 09.15 11/04/75 

00031C 4100 0001 
000320 4001 0008 
000324 9680 1008 
000328 IBH 
00032A 43fl 0001 
OOOHE 89FO OOOL 
000332 4100 (468 
000336 5001 F008 
OOOHA 58F 2 0020 
00033E 58FF 0090 
000342 05E'F 

000344 

000344 

000344 4110 C 318 
000348 47FO C344 
OOOHC 

00008 

00034( (4070 1E'2C ID4D7F 1 
000354 C4D7D7 E2( 104D7F 1 
00035C 4040404040404040 
000364 00 
000365 01 
000366 0000 
000368 00000000 
00036C 0000000000000000 
000374 00000000 

000378 41FO C34C 
00037( 
00037C 4500 C350 

000380 0004 
000382 0000 

000384 
000384 50LO C36C 
000388 5000 C 370 
00038e 4100 0004 
000390 4510 C378 
000394 01000064 
000398 00000000 
00039C 08000003 
0003 AO 00000000 
0003A4 00000000 
0003A8 40404040 
0003A( 
OOOlA( laF2 

00001 
00008 

00001 
00001 
0049C 
00008 
00020 
00090 

0014C 
00178 

00378 
00380 

00384 
00180 

00384 

003AO 
003A4 
00004 
003AC 

439+ 
440+ 
441+ 
442+ 
443+ 
444+ 
445+ 
446+ 
441+ 
448+ 
449+ 
450 
451+IF20042 
452 
453+Ifl0037 
454 * 

LA 0,1 LOAD ROUTING CODE tNTO REGISTER 0 
STH 0,8(1) STORE ROUTING CODE INTO PARAMETER LIST 
01 8(l),X I 80' SET HIGH BIT OF LAST ROUTINE CODE 
SR 15,15 ZERO REG 15 FOR Ie 
IC 15,1(lJ II (F ROUTE CODES IN PARAMETER LIST 
SLl 15,1 LENGTH OF ROUTE CODE IN PARAM LIST 
LA 0, MSG4 V AR 1A8L E ADDR 
ST 0,8(1,15) STORE INTO MESSAGE LIST 
L 15,32«($2)) ADDRESS OF eVT 
L 15,116+28(15) MESSAGE SUPPORT ROUTINE 
BALR 14,15 CALL SUPPORT ROUTINE 

ENDIF 
OS OH 
ENDIF 
OS OH 

* 455 ** THE FOllOW ING PT IME MAC.RD WI Ll CRE ATE A PTQE (ADD) WHICH WI lL ** 
456 ** CAUSE DPPSAMP1UASKs: AN) EP=) TO BE PATCHED THREE TIMES ** 
457 ** (CoUNT=) WITH A 1 SECoND(START=) INTERVAL BETWEEN EACH PATCH** 
458 * 
459 

460+ 
461+ 
462+IHB0048 
463+ 
464+ 
465+ 
466+-
461+ 
468+-
469+-
470+-
471+ 
472+IH80048A 
413+ 
474+ 
475+ 
476+IHP0048 
477+-
478+ 
479+THP0048A 
480+-
481+ 
482+ 
483+ 
484+ 
485+-
486+-
487+ 
488+-
489 + 
490+ 
491 +P T 004 7ND 
492+ 

PTI ME 

LA 
B 
OS 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
EQU 
LA 
CtWP 
BAL 
EQU 
DC 
DC 

EQU 
CNOP 
ST 
ST 
LA 
BAL 
DC 
DC 
DC 
DC 
DC 
DC 

LR 

* 

* ADD,START=(REL,lS),COUNT=3,DCVTR=(S2),EP=DPPSAMPl, 
TASK=DPPSAMP 1 
1, IHB004 8 
IHB0048A 
OF 
C L8' DP PSAMPl' 
CL8'DPPSAMPl' 
CL8' • 
All (0) 
ALl( 1) 
HIO' 
AIO) 
2F'0' 
AIO) 

* 15,IHP0048 
0,4 
0,IHP0048A 

SET UP PARAM LIST ADDRESS 
BRANCH AROJND LIST 

T ASK NAME 
ENTRY POlNT NAME 
PRTV REFERENCE NAME 
flAG BYTE 
QUEUE LENGTH 
PRTY RELATIVE VALUE 
FCB ADDRESS 
FREE LENGTH,FREE ADDRESS 
TC8X 

SE T UP 1I S T AD ORE S S 

SET UP REG 0 WITH PARAM LIST 

* AL21IHP0048A-IHP0048) LENGTH OF PARAMS 
AL2( 0) 10 

0,4 
1,*+12+16 
0,*+16+12 
0,4 
I,PT0041ND 
lllIU,AL1UOO) 
ALl( O),ALl( 0) 
All (8 ) , A L3 13 ) 
A( 0) 

AIO) 
CL4' 
OS OH 
15,(S2) 

SAVE PATCH SUPERVISOR LIST ADDRESS 
SAVE PATCH PROBLEM LIST ADDRESS 
REOUES T TYPE 
BRANCH AROUND PTIME PARAMETERS 

ST ART TIME 
INTERVAL TIME 
STOP TIME 

PATCH SUPERVISOR LIST 
PATCH PROBLEM PARAMETER LIST 
PTOE 10 

CVT ADDRESS 

01-MESSA 
01-MESSA 
01-MESSA 
01-ME SSA 
01-MESSA 
01-MESSA 
01-ME SSA 
Ol-MESSA 
02-0PPSU 
02-0PPSU 
02-DPPSU 
00104000 
Ol-ENDlf 
00105000 
01-ENOlf 
00106000 
00101000 
00108000 
00109000 
00110000 

XOOl11000 
00112000 
02-PA TCH 
02-PATCH 
02-PATCH 
02-PATCH 
02-PATCH 
02-PATCH 
02-PATCH 
02-PATCH 
02-PA TCH 
02-PATCH 
02-PATCH 
02-PATCH 
02-PATCH 
02-PATCH 
02-PATCH 
02-PATCH 
02-PATCH 
02-PATCH 
02-PATCH 
02-PATCH 
o L-PTIME 
01-PTIME 
Ol-PTIME. 
01-PTIME 
Ol-PTIME 
01-PTH4E 
Ol-PTIME 
01-PTI ME 
o l-PTIME 
01-PTIME 
01-PTlME 
o I-PT IME 
02-DPPSV 



OPPZSAMP 

lOC OBJECT CODE 

0003AE BFF8 C381 
0003B2 4100 0004 
0003B6 440F 0008 

0003BA 59FO C 3F 4 
0003AE 4780 C304 

OOOJe 2 0700 
0003C4 4510 C3A4 
0003C8 01 
0003CQ 01 
0003CA 0000 
0003CC 00 
0003eo 000000 
000300.0000 
000302 00000000 
000308 
000308 4100 0044 
00030C 4001 0002 
0003EO 4100 OOOl 
0003E4 4001 0008 
0003E8 9680 1008 
0003EC 1 BFF 
0003EE 43Ft 0001 
0003F2 89FO 0001 
0003F6 41.00 C470 
0003FA 5001 F 008 
0003FE 58F2 0020 
000402 58FF 0090 
000406 05EF 

000408 

000408 
000408 1810 
00040A 5800 0004 
00040E 5800 C 000 

000412 4111 0000 
000416 OAOA 
000418 98EC Dooe 
00041C 92FF DOOC 
000420 41F0 0000 
000424 07FE 

000426 0000 

SM1PlE PROGRAM PAGE 11 

AOOPI AOOR2 STMT SOURCE ST ATEMENT ASM H V 04 09.15 11/04115 

00008 

OOOOC 

003B5 
00004 
00008 

00428 
00408 

00308 

00044 
00002 
00001 
00008 

00001 
00001 
004A4 
00008 
00020 
00090 

00004 
00034 

00000 

OOOOC 

00000 

493+ 
494+ 
495,+ 
496 ** 
491 
498+ 
499+ 
500 ** 
501 •• 
502 
503+ 
504+ 
505+ 
506+ 
501+ 
508+ 
509+ 
510+ 

ICM 15,8,*+1 10 IN HIGH ORDER BYTE OF REG 
NOP 04 CONSTANT FOR 10 
EX 0,8(15) EXECUTE SVC FROM CVT 

IF RETURN CODE FROM TIME MANGEMENT IS lESS THAN EIGHT THEN 
IF F,(SI5),LT,EIGHT,THEN 
C Sl5,EIGHT 
BC 11.1 F 10050 

** 

OUTPUT MESSAGE 68, WHICH CONTAINS MSG5(VAR=), TO THE SYSTEM ** 
CONSOLE (ROUTE=U 

MESSAGE 68,VAR=(MSG5),OCVTR=(S21,ROUTE=1 
CNOP 0,4 
BAL I,MSG0051 
DC ALl! 0+1) 
DC All (1) 

DC AL2( 0) 
DC x'oo· 
DC AL3(0) 
DC AL2(0) ROUTI NG 

VARIABLE COUNT 
ROUTING CODE COUNT 

MESSAGE NUMBER 
AC nON CODE 
USER RETURN AREA 

CDOE 

** 

511+ 
512+MSG005l 
513+ 

DC IAL4(0) MESSAGE VARIABLE 
OS OF 

LA 0,68 LOAD MSG N INTO REGISTER 0 
STH 0,2(11 MOVE MSG N TO PARAMETER LIST 514+ 

515+ LA 0,1 LOAD ROUTING CODE INTO REGISTER 0 
516+ STH 0,8(1) STORE ROUTING CODE INTO PARAMETER LIST 
511+ 01 8(II,X'80' SET HIGH BIT OF LAST ROUTINE CODE 
518+ SR 15,15 ZERO REG 15 FOR IC 
519+ IC 15,1(1) • OF ROUTE CODES IN PARAMETER LIST 
520+ Sll 15,1 LENGTH OF ROUTE CODE IN PARAM LIST 
521+ LA 0,MSG5 VARIABLE AOOR 
522+ ST 0,8(1,15' STORE INTO ~ESSAGE LIST 
523+ L 15,32((S2)) ADDRESS OF CVT 
524+ L 15,116+28(15) MESSAGE SUPPORT ROUTINE 
525+ BALR 14,15 CALL SUPPORT ROUTINE 
526 
527+IFI0050 
528 * 

ENDIF 
OS OH 

• 
529 ** THE EXIT MACRO WILL RESTORE ALL REGISTERS AS THEY WERE WHEN ** 
530 ** OPPZSAMP WAS ENTERED AND RETURN BACK TO THE SYSTEM. ** 
531 '" 
532 
533+ 
534+ 
535+ 
536+ 
531+* 
538+ 
539+ 
540+ 
541+ 
542+ 
543+ 
544 * 

EXIT 
OS 
LR 
L 
L 

FREEMAIN 
LA 
SVC 
LM 
MVI 
LA 
BR 

CODE=O 
OH 
1,13 • 
13,4( 13) • 
0, TKGOOO IG 
R,LV=(O) ,A=( U 
1,0(1,0) 
10 
14,12,12(13' 
12(3),X'FF' 
15,0(0,0) 
14 

* 

SUB POOL ADDRESS 
GET CALLER'S SAVE AREA 

LOAD SP AND LV PARAMETERS 

CLEAR 
ISSUE 

THE HIGH ORDER BYTE XM4511 
FREEMAIN SVC P2504 

RESTORE THE REGISTERS 
SET RETURN INDICATION 
LOAD RETURN CODE 
RETURN 

545 •• SRTOS SAMPLE PROGRAM DATA AND CONSTANT AREA 
546 • 

* •• 
* 

02-DPPSV 
02-DPPSV 
02-DPPSV 
00113000 
00114000 
01-1 F 
01-1 F 
00115000 
00116000 
00111000 
01-MESSA 
o 1-ME SSA 
01-MESSA 
01-MESSA 
OI-MESSA 
01-MESSA 
OI-MESSA 
01-MESSA 
Ol-MESSA 
Ol-MESSA 
OI-MESSA 
01-MESSA 
OI-MESSA 
01-MESSA 
01-HE SSA 
01-MESSA 
01-MESSA 
01-MESSA 
01-MESSA 
o I-HE SSA 
02-DPPSU 
02-DPPSU 
02-DPPSU 
00118000 
Ol-ENOIF 
00119000 
00120000 
00121000 
00122000 
00123000 
01-EXIT 
01-EX IT 
Ol-EXIT 
01-E XI T 

02-FREEM 
02-FREEM 
02-RETUR 
02-RETUR 
02-RETUR 
02-RETUR 
00124000 
00125000 
00126000 



OPPISAMP SAMPLE PROGRAM 

lOC OBJECT CODE AOOR1 AOOR2 STMT 

000428 00000008 
000430 
000438 
00047E 

000484 01C1E3C3C840404O 
00048C 01E4E30306C74040 
000494 01E4E3CID9D9CIE8 
00049C 01E4E 3C9E 1t 50 41t0 
0004A4 D7E3 C9Df.CSlt04040 

POS.I0 REl.IO FLAGS 

0001 
0001 
0001 
0001 

0001 
0001 
0001 
0001 

08 
oc 
08 
08 

AODRESS 

000195 
000t«~8 
000269 
000200 

541 
548 
549 
550 
551 
552 
553 
554 
555 
556 
551 
558 
559 

SOURCE 

EIGHT 
ARRAY 
lOGCOPY 
ITEM 

• 
** 
* MSGI 
MSG2 
MSG3 
MSG4 
MSG5 

PAGE 12 

STATEMENT ASM H V 04 09.15 11/04115 

DC F 181 CONSTANT OF 8 USED IN IF INSTRUCTION 00126100 
OS 0 ADDRESS OF ARRAY DPPISAMP 00127000 
OS CLlO lOGGEO COpy OF ARRAY OPPZSAMP 00128000 
OS Cl6 CONTENTS OF ITEM DPPSAMP2 00129000 

* 00130000 
SAMPLE PROGRAM DIAGNOSTIC MESSAGES VARIABlES ** 00131000 

* 00132000 
DC ClS' PATCH' PATCH MACRO DIAGNOSTIC MESSAGE 00133000 
DC ClS' PUTlOG' PUTlOG MACRO DIAGNOSTIC MESSAGE 00 131t000 
DC Cl8'PUTARRAY' PUTARRAY MACRO DIAGNOSTIC MESSAGE 00135000 
DC ClSI PUTITEM' PUT ITEM MACRO DIAGNOSTIC MESSAGE 00136000 
DC ClS'PTH4E' PTIME MACRO DI AGNOSITC MESSAGE 00131000 
END 00138000 

RELOCATION DICTIONARY PAGE 13 

AS M H V 04 09.15 11/04115 



):01 CROSS REFERENCE PAGE 14 
I 

0'1 SYMBOL LEN VALUE DEFN REFERENCES ASH H V 04 09.15 11/0lt/15 

Sl 00001 00000001 0058 0113 
$15 00001 OOOOOOOF 0012 0148 0148 0191 0191 0235 0235 0216 0216 0323 0323 0315 0315 0422 Olt22 Olt98 
$2 00001 00000002 0059 0113 0142 0173 0189 0218 0221 0256 0271 0302 0315 0344 0361 OitOO 0414 0441 

0492 0523 
$3 00001 00000003 0060 0199 0211 
$4 00001 00000004 006L 0280 0301 0314 
ARRAY 00008 000430 0548 0188 0199 
DPPZSAMP 00001 00000000 0054 0096 

'=' EIGHT 00004 000426 0541 0498 ro GAOOll 00001 OOOOEO 0181 0185 en GI0035 00001 00026C 0365 0362 () ,.., IF10007 00002 000004 0117 0149 .... IFI0013 00002 00025C 0354 0198 
"t1 I Fl 0031 00002 0003lt4 0453 0316 
rt' IFI0050 00002 000408 0527 0499 .... IF20018 00002 00025C 0352 0236 
0 IF20042 00002 00034~ 0451 0ltZ3 
:::J 

IF 30023 00002 00025C 0350 0217 
~ IF40028 00002 00025C 0348 0324 
l:1 IHBOO05 00004 000044 0124 0122 
AI IHBOO05A 00001 00000070 0134 0123 

0 IHB0048 00004 00034C 0462 0460 

"t1 IHB0048A OOOOL 00000318 0412 0461 
ro IHPOO05 00001 00000078 0138 0135 0139 ,.., I HPOO05A 00001 0000001C 0141 0137 0139 
~ IHP0048 OOOOL 00000380 0476 0473 0471 
t+ IHP0048A 00001 00000384 0419 0415 0477 .... 
0 nEM 00006 00041E 0550 0364 0398 0411 
::s 10035 00008 000260 0363 0366 

LOGCOPY 00070 000438 0549 0267 0280 
:3 MSGOO08 00004 0000A4 0162 0154 
~ MSGOO14 00004 000114 0211 0204 

= MSGOO19 00004 00016C 0248 0241 
~ 
~ HSG0024 00004 000104 0292 0284 
~ MSG0029 00004 000238 0336 0329 

MSG0038 00004 0002AO 0389 0381 
MSG0043 00004 000314 0436 0428 
MSG0051 00004 000308 0512 0504 
MSG1 00008 000484 0554 0171 
MSG2 00008 00048C 0555 0254 
MSG3 00008 000494 0556 0342 
MSG4 00008 00049C 0551 0445 
MSG5 00008 0004A4 0558 0521 
PA0026 00001 00020C 0313 0311 
PI0040 00001 0002EO 0412 0409 
PT0047ND 00002 0003AC 0491 0484 
POO40 00008 000204 0410 0413 
TKGOO01G 00001 000034 0102 0084 0536 
TKGOO01M 00004 000034 0101 0104 
WORK 00001 00000000 0094 0091 



> 
I 

DIAGNOSTIC CROSS REFERENCE AND ASSEMBLER SUMMARY PAGE 15 

AS~ H V 04 09.15 11/04/75 

NO STATEMENTS FLAGGED IN THIS ASSFMBLY 

OVERRIDING PARAMETERS- NOOFCK.NOLOAD,XREF(SHORT) 
OPTIONS FOR THIS ASSEMBLY 

NOOECK. NOOBJECT, LIST, XREF( SHORT), NORENT, NOTEST, NOBATCH, ALIGN, ESD, RLD, lINECOUNT(55), FLAGIOI, SYSPAR~() 
NO OVERRIDING 00 NAMES 

165 CARDS FROM SYSIN 
654 LINES OUTPUT 

4267 CARDS FRCM SYSLIB 
o CARDS OUTPUT 



> 
I -(X) 

EXTERNAL SYMAOL DICTIONARY PAGE 

SYMBOL TYPE 10 ADDR LENGTI-I LD ID ASM H V 04 09.15 11/04/75 

OPPSAMPI SD 0001 000000 0000C9 

lOC 

000000 

DPPSAMP1 - SAMPLE PROGRAM PATCH ENTRY ROUTINE PAGE. 2 

OAJfCT CODE ADORl AODR2 SIMT SOURCE STA IEMENT ASM H V 04 09.15 11/04/75 

00000 
00001 
00002 
00003 
00004 

18 *********************************************************************** 00002000 
19 * MODULE NAME = DPPSAMPI * 00002100 
20 * DESCRIPTIVE NAME = SAMPLE PROGRAM PATCH ENTRY ROUTINE * 00002200 
21 * FUNCTION = QPPSAMPl FUNCTION IS TO BE PATCHED BY THE SPECIAL REAL * 00003000 
22 * TIME OPERATING SYSTEM SAMPLE PROGRAMIOPPISAMP) * 00003100 
23 * NOTES = THE PROGRAM IS ~NTERED FOUR TIMES. ONE TIME BY A PATCH MACRO* 00003200 
24 * ISSUED BY DPPZSAMP AND THREE 1 SECU~D CYCLIC PATCHES ISSUED BY * 00004000 
25 * A PTIME MACRO IN DPPZSAMP. * 00004100 
26 * DEPENDENC IES = NONE * 00004200 
27 * RESTRICTIONS = NONE * 00005000 
2R * REGISTER CONVENTIONS = ALL REGS ARE ASSIGNED AS $R WHERE REGS 0-15 * 00005100 
2q * ARE $0-$15 * 00005200 
30 * MODULE TYPE = SAMPLE PROGRAM * 00006000 
31 * PROCESSOR = ASSEMBLER F * 00006100 
32 * MODULE SIZE = 208 DECIMAL BYTES * 00006200 
33 * ATTRIBUTES = REENTRANT * 00007000 
34 * ENTRY POINT = DPPSAMPI * 00007100 
35 * INPUT = NONE * 00007200 
36 * OUTPUT = SPECIAL REAL TIME OPERATING SYSTEM MESSAGE 66 * 00008000 
37 * RETURN = NORMAL OS/VS RETURN VIA BR14. NO RETURN CODES * 00008100 
38 * EXTERNAL REFERENCES = NONE * 00009000 
39 * MACROS = BEGIN EXIT MESSAGE * 00010000 
40 *********************************************************************** 00011000 

42 *** 
43 *** THf BEGIN MACRO WILL ESTABLIS~ A BASE REGISTER FOR DPPSAMPI 
44 *** 
45 BEGIN OPPSAMPl.BASE=(12).SAVEA=(GETMAIN.WORK).LV=72 
46+0PPSAMPl CSECT • 'MAIN' CUNTROL SECTION 

48+* GOES THRU REGIST ER EQUAT E ONLY ONCE 
49+$0 EQU 0 ? ** 
50+$1 EQU 1 ? ** 
51+$2 EQU 2 ? ** 
52 +$3 EQU 3 ? ** 
53+ $4 EQU 4 ? ** 

00013000 
00014000 
00015000 
00016000 
01-BEGIN 

02-EQUAT 
02-EQUA T 
02-EQUAT 
OZ-EQUAT 
02-EQUA T 



DPPSAMPl - SAMPLE PROGRAM PATCH ENTRY ROUTINE PAGE 3 

LOC OBJEC T CODE ADDRI AODR2 STMT SOURCE STATEMENT ASM H V 04 09.15 11/04/75 

000000 

000000 47fO fOOE 
000004 08 
000005 C40707E2CI04D7Fl 
000000 00 
00000 E 90 EC DOOC 
000012 5800 F034 

000016 4510 fOIA 
OOOOIA OA OA 
OOOOIC 5001 0004 
000020 5010 0008 
000024 1801 
000026 5810 0004 
00002A 98El tOOC 

000000 
000000 
00002E 

00002E 0700 
000030 45CO F03A 
000034 
000034 00000048 

000038 5821 0000 

00003e 
00003C 4510 C 018 
000040 01 
000041 00 
000042 0000 
000044 00 
000045 000000 
000048 00000000 

00005 
00006 
00007 
00008 
00009 
OOOOA 
OOOOB 
OOOOC 
00000 
OOOOE 
OOOOF 
00000 
00002 
00004 
00006 

00000 
OOOOE 

OOOOC 
00034 

OOOIA 

00004 
00008 

00004 
OOOOC 

00000 

00038 

00034 
00000 

0004C 

54+S5 
55+S6 
56+S7 
57+S8 
58+S9 
59+UO 
60+$11 
61+$12 
62+$13 
63+ S14 
64+ $15 
65+fPRO 
66+FPRZ 
61+FPR4 
68+FPR6 

70+ 
11+ 
7Z+ 
13+ 
74+ 

75+ 
16+ 
77+* 
76+ 
79+ 
80+ 
81+ 
82+ 
83+ 
84+ 

EQU 
EOU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EOU 
EQU 
EOU 
EOU 
EQU 
EQU 

5 ? 
6 ? 
7 ? 
8 ? 
9 ? 
10 ? 
11 1 
12 1 
13 ? 
14 1 
15 1 
o 
2 
4 
6 

OS 00. 
USING *,15 • 
B 14(0,15) 
DC All (8) 
DC CL 8'DPPSAMP I' 

STH 14,12~IZ(13) 

L O,TKGOOOIG 
GETMAIN R,LV=(O) 
BAL 1, *+4 
SVC 10 
ST 13,4(1). 
ST 1,8(13). 
LR 13~1. 
L 1,4(13). 
LM 14,1,12(1) 

** 
**IF THESE SUBSTITUTES ARE USED AS 
**REGISTER NUMBERS THE CROSS-REFERENCE 
**TABLE WILL PROVIDE A LIST Of WHERE 
**EACH REGISTER WAS USED 
** 
** 
** •• 
** 
** 

fOR BOUNDARY ALIGNMENT' 
TEMPORARY 8ASE DECLARATION 

BRANCH AROUND 10 
LENGTH OF IOENT IflER 
IDENTI FI ER 

SAVE REG 1ST ERS 
LOAD SP AND LV PARAMETERS 

INDICATE GETMAIN 
ISSUE GETMAIN SVC 

SAVE CALLER'S SAVE AREA POINTER 
fOR Dn~NWARD SAVE AREA TRACE 
ESTABLISH OWN SAVE AREA POINTER 

RESTORE 15,0,1 
RE STORE GET REGS 

66+WORK OSECT • BEGIN GETMAINED AREA 
OWN SAVE AREA 87+ OS 90. 

88+DPPSAMPl CSECT 
89+ USING WORK,13 

91+ 
9Z+ 
93+TKGOOOIM 
94+TKGOOOIG 
95+ 
96+ 
97 
98 
99+ 

100+ 
101+ 
102+ 
103+ 
104+ 
105+ 
106+ 

CNOP 0,4 
SAL 12,*+8 ESTABLISH J~JTIAL 'MAIN' CSECT BASE 
OS OF. BASE REFERENCE 

DC ALIIO),AL3(72) • SUBPOOL, LENGTH 
DROP 15 
USING TKGOOOIM,12 
L S2,OCS11 ADDRESS OF XCVT 
MESSAGE 66,VAR=(MSGI,DCVTR=ISZI ISSUE MESSAGE 
C,...,OP 0,4 
BAL I, MSGOOO 5 
DC ALl( 0+1) 
DC AL l( 0) 
DC AL2 (0) 
DC X' 00' 
DC AL3(0) 
DC LAl4(0) 

VARIABLE CruNT 
ROUTI NG CODE COUNT 

MESSAGE NU~BER 
AC TI ON CODf 
USER RETURN AREA 

MESSAGE VAR IABlE 

02-EQUAT 
02-EQUAT 
OZ-EQUA T 
02-EQUAT 
02-EQUAT 
02-EQUAT 
02-EQUAT 
02-EQUA T 
02-EQUAT 
02-EQUAT 
02-EQUAT 
02-EQUAT 
02-EQUAT 
02-EQUAT 
02-EQUAT 

OI-BEGIN 
01-BEGIN 
02- SAVE 
02-SAVE 
02-SAVE 

02-SAVE 
01-BEGIN 

02-GETMA 
02-GETMA 
01-BEGIN 
OI-BEGIN 
OI-BEGIN 
01-BEGIN 
OI-BEGIN 

OI-BEGI N 
o I-BEGIN 
Ol-BEGIN 
OI-BEGIN 

Ol-BEGIN 
Ol-BEGIN 
o I-BEGIN 
01-BEGIN 
OI-BEGIN 
OI-BEGIN 
00017000 
00018000 
OI-MESSA 
01-ME SSA 
OI-MESSA 
01-MESSA 
OI-ME SSA 
01-MESSA 
Ol-MESSA 
Oi-MESSA 



>
I 

tv 
o 

DPPSAMP1 - SAMPLE PROGRAM PATCH ENTRY ROUTINE PAGE 4 

LOC OBJECT CODE ADDR1 ADDR2 STHT SOURCE STATEMENT ASM H V 04 09.15 11/04/75 

00004C 
00004C ~100 0042 
000050 4001 0002 
000054 IBFF 
000056 43Fl 0001 
00005 A 89 FO 0001 
00005E 4100 (056 
000062 5001 F 008 
000066 58F2 0020 
00006A 58FF 0090 
00006E 05EF 

000010 
000070 1810 
000012 5800 0004 
000016 5800 COOO 

00001A 4111 0000 
00001E OAOA 
000080 98EC DOOC 
000084 92FF Dooe OOOOC 
000088 01FE 
00008A E3CIE20240604OC4 
000092 o101E2C104D1F140 

00042 
00002 

00001 
00001 
0008A 
00008 
00020 
00090 

00004 
00034 

00000 

OOOOC 

107+MSG0005 
108+ 
109+ 
110+ 
111+ 
112+ 
113+ 
114+ 
ll5+ 
116+ 
117+ 
118 *** 

OS 
lA 
5TH 
SR 
IC 
SLl 
LA 
ST 
L 
l 
BALR 

OF 
0.66 LOAD MSG 
0.2(11 MOVE MSG , 
15.15 
15,1(1) 
15.1 
O.MSG 
0,8(1,15) 
15,32(U2)) 
15.116+28( 15) 
14,15 

/I INTO REGI STER 0 
TO PARAMETER LIST 

ZERO REG 15 FOR IC 
/I OF ROUTE CODES IN PARAMETER liST 
LENGTH OF ROUT E CODE IN PARAM LIST 
VAR IABLE AODR 
STORE INTO MESSAGE LIST 

ADDRESS OF CVT 
MESSAGE SUPPORT ROUTINE 

CALL SUPPORT ROUTINE 

119 *** THE EXIT MACRO WIll RESTORE ALL REGISTERS AS THEY WERE WHEN *** 
120 *** OPPSAMPI WAS ENTERED AND WIll RETURN BACK TO THE SYSTEM 

01-MESSA 
01-MESSA 
Ol-ME SSA 
01-MESSA 
01-MESSA 
01-MESSA 
01-MESSA 
Ol-ME SSA 
02-DPPSU 
02-DPPSU 
02-DPPSU 
00020000 
00021000 
00022000 
00023000 
00023100 
Ol-EXIT 
01-EXIT 
01-EXI T 
01-EX IT 

121 *** 
122 
123+ 
124+ 
125+ 
126+ 
127+* 
128+ 
129+ 
130+ 
131+ 
132+ 
133 MSG 

134 

EXIT 
OS 
lR 
L 
l 

FREEMAIN 
lA 
SVC 
LM 
MVI 
BR 
DC 

END 

OH 
1.13 • 
13.4 (131 • 
O.TKGOOOIG 
R , l V = ( 0 ) • A= ( 1) 
1,0(1,0) 
10 
14.12,12(13. 
12(13),XtFFt 
14 

SUSPOOl ADORE SS 
GET CAL l ER' S S AV E AR EA 

LOAD SP AND LV PARAMETERS 

CLEAR 
ISSUE 

THE HIGH ORDER BYTE XM4511 
FREEMAI N SVC P2504 

RESTORE THE REGISTERS 
SET RETURN INDICATION 
RETURN 

02-FREEM 
02-FREEM 
02-RETUR 
02-RETUR 

Cl63' TASK - OPPSAMPl WAS ENTERED 
Pl' 

AT ENTRY POINT -
02-RETUR 

DPP SAMX00024000 
00025000 
00026000 

CROSS REFERENCE PAGE 5 

SYMBOL lEN VALUE OEFN REFERENCES ASM H V 04 09.15 11/04115 

Sl 00001 00000001 0050 0091 
$2 00001 00000002 0051 0097 0115 
DPPSAMP1 00001 00000000 0046 0088 
MSG 00063 00008A 0133 0113 
MSGOO05 00004 00004C 0101 0100 
TKGOO01G 00001 000034 0094 0016 0126 
TKGOOOIM 00004 000034 Oeq3 0096 
WORK 00001 00000000 0086 0089 



> 
I 
~ -

DIAGNOSTIC CROSS REfERENCE AND ASSEMBLER SUMMARY PAGE 6 

ASH H V 04 09.15 11/04/15 

NO STATEMENTS FLAGGED IN THIS ASSEMBLY 

OVERRIDING PARAMETERS- NODECK.NOLOAD.XREFCSHORT) 
OPTIONS fOR THIS ASSEMBLY 

NODECK. NOOBJECT. LIST. XREflSHORT). NORENT. NOTEST. NOBATCH. ALIGN, ESD, RLD, LINECOUNTC5S), FLAGIO). SYSPARM() 
NO OVERRIDING DO NAMES 

40 CARDS FROM SYSIN 
163 LINES OUTPUT 

1508 CARDS FROM SYSlIB 
o CARDS OUTPUT 



~uch of the source code for the Special Real Time operating System is 
written in OS/VS1 assembler language using structured programming 
techniques. The structured programming vehicles for the Special Real 
Time Operating System are a set of macro instructions know as HLAL. 
HLAL is not a part of the Special Real Time Operating System PRPQ, but 
is distributed with it as a necessary aid in assembling most of the 
modules of the Special Real Time Operating System. 

Most assembler language programs written in structured code are easier 
to read if the nesting level of the various statements is p.rinted along 
with the listing Also, the various statements should be indented to 
show the nest ing level in a gra ph ic manner. Nest ing level refers to 
a statement being in a basis IF/THEN/ELSE structure, or structures 
within that structure. 

Two listing aid programs are provided with the Special Real Time 
Operating System PRPQ to facilitate the showing of the nesting level 
of the Special Real Time Operating System source modules. One of these 
programs, PPLPTPCH, post-processes the IEBPTPCH listing of a module; 
the other, PPLUPDTE, post-processes the IEBUPDTE listing of a module. 
Each program shifts th~ print line of its input to produce a structured 
listing. It does not alter (shift) the columns in which the source 
is actually resident in the source partitioned da ta set. It will 
automatically shift each member whose first card image does not contain 
the operation code of MACRO. 

Example 1 depicts the JCL which could be used to run both the PPLPTPCH 
and PPLUPDTE utility programs. Example 2 shews sample output from both 
programs. Example 3 shows the output from IEBUPDTE and IEBPTPCH as it 
would appear if the post-processor were not used. IEBUPDTE and IEBPTPCH 
are described in the SBL: Q§L!~ Utiliti~, GC35-0005. 

PPLUPDTE and PPLPTPCH are contained in data set A5199AHE.OBJECT. 

APPENDIX B B-1 



IIJOB 1 
IIA EXEC 
IISYSPRINT 
IISYSUTI 
IISYSUT2 
II 
IISYSIN 

PRI~T 
MEMBER 
RECORD 

lIB EXEC 
IISYSUTI 
IISYSUT2 
IISTEPLIB 
IIC EXEC 
IISYSPRINT 
II 
IISYSUTI 
IISYSUT2 
IISYSIN 

DO 
DO 
00 

DO 

00 
DO 
00 

DO 

DO 
DO 
00 

I CHANGE 

GORP OS 
lID EXEC 
IISYSUT1 DO 
IISYSUT2 DO 
IISTEPLIB DO 

MEMBER NAME MEMI 

JOB 
PGM=lEBPTPCH 
DUMMY 
DSN=SOURCEOS. OISP-SHR 
UNIT=SYSDA. SPACE=(CYL.(ll). OISP-(NEW.PASS), 
OCB=(RECFM=FBA, LRECL=121. B~KSIlE-3630) 

* 
TYPORG=PO. MAXNAM=10. MAXFLOS-I0 
NAME=MEMI 
FIELO=(SO> 
PGM=PPLPTPCH 
DSN=*.A.SYSUT2.DISP=(OLO,OELETE) 
SYSOUT=A 
DSN=A5799AHE.OBJECT,DISP=SHR 
PGM-IEBUPDTE 
UNIT=SYSDA.SPACEc(CYL,Cl,l,),OISP=(NEW,PASS). 
DCB=(RECFM=FBA.LRECL=121, BLKSIZE=3630) 
OSN-SOURCEOS. OISP=SHR 
DSN=SOURCEDS. OISP=OLD 

* 
LIST=ALL.NAMEcMEM1 
ST 56,GORP SAVE REG 
F 
PGM=PPLUPDTE 
DSN·*.C.SYSPRINT, OISP.(OLo,PASS) 
SYSOUT·A 
DSN=A5799AHE.OBJECT, DISP=SHR 

EXAMPLE 1 

* SAMPLE MODULE TO ILLUSTRATE INDENTION 
IF C,ONE,EQ,TWO,THEN 

01 * INDENTED COMMENT CAUSED BY ABOVE 
01 UNTIL (B,LOC,NE,3)OR 
01 UNTIL (F,($6),EQ,X),OO 
02 STH 7,LOC 
02 L ETC ***** 
01 ENDDO 
01 * NOTE INDENTION MOVES BACK 

ENDIF 
END 

EXAMPLE 2 

01000000 
11000000 

PAGE 0001 

01000000 
02000000 
03000000 
04000000 
05000000 
06000000 
07000000 
08000000 
09000000 
10000000 
12000000 



tlJ 
I 

w 

MEMBER NAME MEMl 
* SAMPLE MODULE TO ILLUSTRATE INDENTION 

IF C.ONE.EQ.TWO.THEN 
* INDENTED COMMENT CAUSED BY ABOVE 

UNTIL (B.LOC.NE.3).OR 

ENDDO 

UNTIL (F.(S6).EQ.X),DO 
STH 7.LOC 
L ETC ***** 

* NOTE INDENTION MOVES BACK 
ENDIF 

END 

SYSIN NEW MASTER 
.1 CHANGE LIST=ALL.NAME=MEMl 

IEB820I MEMBER NAME FOUND IN OM DIRECTORY AS 
* SAMPLE MODULE TO ILLUSTRATE INDENTION 

01 
01 
01 
02 
02 
01 
01 

ST $6.GORP SAVE REG 
IF C.ONE.EQ.TwO,THEN 

* INDENTED COMMENT CAUSED BY ABOVE 
UNTIL (B.LOC,NE.3).OR 
UNTIL (F.($6).EQ.X).DO 

5TH 7.LOC 
L ETC ***** 

ENDDO 
* NOTE INDENTION MOVES BACK 

ENDIF 
GORP 
END 

DS F 

AN ALIAS-

PAGE 0001 

01000000 
02000000 
03000000 
04000000 
05000000 
06000000 
07000000 
08000000 
09000000 
10000000 
12000000 

IEBUPDTE LOG PAGE 0001 

01000000 
01100000 
02000000 
03000000 
04000000 
05000000 
06000000 
07000000 
08000000 
09000000 
10000000 
11000000 
12000000 

IE88161 
IEB8l8I 
IEB819I 

MEMBER NAME (MEMl ) FOUND IN NM DIRECTORY. TTR IS NOW ALTERED 
HIGHEST CONDITION CODE WAS 00000000 
END OF JOB IEBUPDTE. 

EXAMPLE 3 



SYSIN NEW MASTER 
.1 CHANGE LIST=ALL,NAME=MEMl 

lEB8261 MEMBER NAME FOUND IN OM DIRECTORY AS 
CHANGED TO TRUE NAME IN NM DIRECTORY. 

* SAMPLE MOOULE TO ILLUSTRATE INDENTION 
ST $6.GORP SAVE 
IF C,ONE.EQ,TWO,THEN 

* INDENTED COMMENT CAUSED BY ABOVE 
UNTIL (B.LOC,NE,3).OR 

ENDDO 

STH 
L 

UNTIL (F.(S6).EQ,X),DO 
7.LOC 
ETC ***** 

* NOTE INDENTION MOVES BACK 
ENDIF 

GORP OS F 
END 

AN ALIAS-

REG 

IEBUPDTE LOG PAGE 0001 

01000000 
01100000 
02000000 
03000000 
04000000 
05000000 
06000000 
07000000 
08000000 
09000000 
10000000 
11000000 
12000000 

IEB8161 MEMBER NAME (MEM1 ) FOUND IN NM DIRECTORY. TTR IS NOW ALTERED. 
IEB818I HIGHEST CONDITION CODE WAS 00000000 
IEB819I END OF JOB IEBUPDTE. 



DOMICEXT 

DOMIRBT 
DOKIRCMN 
DOMIRCPY 
DOMIRFLV 
DOMIRFL2 
DOMIRINT 
DOMIRNIP 
DOMIRPRB 
DOMIRWT 

DOMISVCl 
DOMISVC2 
DOMISVC4 
DOMXLIST 
DOKXSTGl 
DPPCALCF 
DPPCPTlr. 
DPPCTIME 
DPPCTIME2 
DPPCTSVC 
DPPCUPCF 
DPPDARAY 
DPPDBLOK 
DPPDBSIF 
DPPDFREQ 
DPP,DGETL 
DPPDITEM 
DPPDPUTL 
DPPDRIFE 
DPPDRIFT 
DPPDSUB2 
DPPDUMPL 
DPPDUPDL 
DPPDWRST 
DPPFAONC 

DPPFIXFR 
DPPIDBAS 
DBPIIRP 
DPPILOGN 
DPPINIT 
DPPINITl 
DPPILOGN 
DPPIPFIX 
DPPIPFRE 
DPPISTAE 
DPPITIMI 
DPPMINIT 
DPPMMSG 
DPPMMSGV 
DPPMMSGl 
DPPPARM 

SUBSTITUTE EXTERNAL FIRST LEVEL INTERRUPT 
HA NDLER 
FAILOVER/RESTART BOOTSTRAP AND PROBE 
CONTINUOUS MONITOR 
COpy A FAILOVER/RESTART DATA SET 
LOAD 1 F /R SVC 
LOAD 2 F/R SVC 
F/R-EXTERNAL INTERRUPT INIT. 
RE-NIP 
PROBE 
FAILOVER/RESTART WRITE 

THE FOLLOWING 3 MODULES ARE NAMED AT 
SYSGEN TIME ACCORDING TO NUMBERS SUPPLIED 

TYPE 1 SVC PREFIX HANDLER 
TYPE 2 SVC PREFIX HANDLER 
TYPE 4 SVC PREFIX HANDLER 
PREPARE IEHLIST INPUT 
STAGE 1 OF SYSGEN UTILITY 
,CALCULATE TIME CORRECTION FACTOR 
PTIME MONITOR ROUTINE 
TIME UPDATE ROUTINE 
ALTERNATE TIME UPDATE ROUTINE 
PTIME TYPE 2 SVC 
UPDATE TIME CORRECTION FACTOR 
GET/PUTARRAY PROCESSOR 
GET/PUT BLOCK SUBROUTI NE 
DATA BASE SLAVE PARTITION INTERFACE 
CYCLIC LOGGING ROUTINE 
GETLOG ROUTINE 
GET/PUTITEM PROCESSOR 
PUTLOG ROUTINE 
DUMMY INIT. TIME SETTER 
TIME DRIFT CORRECTION 
SLAVE PARTITION INTERFACE ROUTINE 
DUMPLOG ROUTINE 
LOGGING REFRESH ROUTINE 
DATA BASE OPEN/CLOSE FOR RESTART 
FORTRAN SUBROUTINE FOR 
COPY/ADDR/BIT SET 
PAGE FII/FREE HANDLER 
DATA BASE INITIALIZATION 
SCHEDULE IRB FOR DPPDWRST 
LOGGING INITIALIZATION 
SY STEK I NI TI ALIZATION 
INITIALIZATION SUBSYSTEM PATCHOR 
LOGGING INITIALIZATION 
PAGE FIX ROUTINE 
PAGE FREE/UNFI X ROUTINE 
JOB STEP TASK STAE ROUTINE 
TIME INITIALIZATION 
KSG HANDLER INITIALIZATION 
SYSTEK MESSAGE FORMATTER 
SYSTEM MESSAGE ROUTING CODE CHANGE 
SYSTEM MESSAGE OUTPUT ROUT~NE 
PL/I AND FORTRAN PARAMETER INTERFACE ROUTINE 

APPENDIX C C-l 



DPPPIF 
OPPSASOC 
DPPSBFl 
DPPSBFST 
DPPSCHCK 
DPPSCHPR 
DPPSCL1 
DPPSCLUP 
DPPSCMPR 
DPPSCRBK 
DPPSCT2T 
DPPSINIT 
DPPSLOCK 
DPPSMSGI 
DPPSMSGO 
DPPSNOTE 
DPPSNTPT 
OPPSOPl 
DPPSOPCL 
DPPSPNTF 
DPPSRCIO 
DPPSRDWT 
DPPSRSTR 
DPPSSHAR 
DPPSSRCH 
DPPSSTl 
DPPSSWCH 
DPPSTBOS 
DPPSUNLK 
DPPSUNSH 
DPPSWRST 
DPPSXTCB 
DPPTCBGT 
DPPTCSVC 
DPPTDLMP 
DPPTDSVC 
OPPTETXR 
DPPTGWFW 
DPPTIMPS 
DPPTPMON 
DPPTPSVC 
OPPTPWQE 
DPPTQIMP 
DPPTRSVC 
DPPTSMON 
OPPTSTAE 
DPPTWAIT 
DPPTWQOL 
DPPTWSVC 
OPPUMSG 
DPPXDBAS 
DPPXDBAT 
DPPXDBCP 
DPPXDBDA 

OPPXDBIN 
DPPXDBLG 

DPPXDBPT 
DPPXOEFL 
DDPPXDPB 
DPPXDRC 
DPPXDRCX 

C-2 

PL/I AND FORTRAN INTERFACE ROUTINE 
DDS ASYNCHRONIS OPEN OR CLOSE 
BLDL FIND TYPE D FOR A DDS 
BLDL FIND TYPE 0 STOW FOR A DDS 
DDS CHECK MODULE 
SET A PRIMARY OECB AND A BACKUP DECB 
CLOSE A DO S 
DDS CLEAN UP ROUTINE 
COMPARE FOR DDS 
CREATE A DDS BACKUP 
COpy TRACK TO TRACK 
INITIALIZE THE DDS SYSTEM 
LOCK A DDS 
DDS INPUT MESSAGE PROCESSOR 
DDS MESSSAGE OUTPUT PROCESSOR 
PERFORM NOTE ON A DDS 
BRANCH CODE FOR NOTE POINT 
OPEN A DDS DCB 
OPEN CLOSE HALF OF A DDS 
PERFORM POINT FIND TYPE C ON A DDS 
RECREATE I 0 FOR A DDS HALF 
READ WRITE MODULE FOR DDS 
DDS FAILOVER/RESTART 
SHARE A DDS 
SEARCH A FIXED LENGTH TABLE FOR AN ENTRY WHO 
STOW FOR A DDS 
SWITCH PRIMARY TO BACKUP FOR A DDS 
TAKE A BACKUP OUT OF SERVICE 
UNLOCK A DPS 
UNSHARE A DDS 
DDS WRITE STATUS 
LOCATE ALLOCATE A DDSXTCBC FOR AN INPUT TASK 
CBGET TYPE 1 SVC ROUTINE 
CHAIN TYPE 1 SVC ROUTINE 
LOAD MODULE PURGE 
DPATCH SVC RTN 
END OF TASK EXIT 
GETWA/FREEWA INTERFACE 
STAE I NITI ALIZ ATIO N 
PATCH MONITOR 
PATCH SVC RTN 
PU RGEWQ RO UTIN E 
QS IKP COKMANO PROCESSOR 
REPATCH SVC RTN 
SYSTEM MONITOR 
STAE OUMP/NODUMP ROUTINE 
PURGEWQ WAIT ROUTINE 
WQE DELETE RTN 
GETWA-FREEWA TYPE 1 SVC ROUTINE 
SYSTEM MESSAGE OFFLINE PROCESSOR 
DATA BASE FINAL PHASE PROCESSOR, FIRST LOAD 
DATA BASE FINAL PHASE PROCESSOR, SECOND LOAD 
DATA BASE BDAM DATA SET COMPRESS 
DATA BASE FINAL PHASE PROCESSOR SUPPORT ROUTINE 
TO WRITE DATA TO DATA BASE BDAM DATA SETS 
OFFLINE DATA BASE TABLE CONSTRUCT 
DATA BASE FINAL PHASE PROCESSOR 
SUPPORT ROUTINE TO CALCULATE 
LOGGING ARRAY BLOCK COUNT AND 
BLOCK SIZE 
DATA BASE PRINT UTILITY 
DEFINE LOCK ROUTINE 
DATA RECORDING AND PLAYBACK 
DATA RECORDING COLLECTION ROUTINE 
DUMMY DATA RECORDING COLLECTION 

Description and Operation Manual 



DPPXIMPP 
DPPXIKPW 
DPPXKILL 
DPPXLOCK 
DPPXNRTI 
DPPXPCON 
DPPXRDR 
DPPXRINT 
DPPXRPRT 
DPPX525C 

DPPXSVCP 
DPPXUTIL 
IEAXYZ5 

INPUT MESSAGE PROCESSOR 
INPUT KESS AGE PROCESSOR WTOR ROUTINE 
ORDERLY TERMINATION ROUTINE 
LOCK ROUTI NE 
DATA PLAYBACK OFFLINE ENTRY ROUTINE 
PLAYBACK REQUEST INTERPRETER 
DATA PLAYBACK PRtNT ROUTINE 
DATA RECORDING INITIALIZATION 
REPORT DATA OUTPUT PROCESSOR 
LOCATE INSERT CARDS IN OS/VS1 STAGE II 
SYSGEN DECK 
SETPSW TYP E 1 SVC 
OFFLINE UTILITY CONTROL PROGRAM 
ALTERNATE NAKE FOR DOMICEXT 

APP EN DIX C C-3 



Below are programs/macros that comprise the Special Real Time operating 
system program package. Macros a re noted with asterisks. 

1a!§is: ~Q!!f£~ tt2g[!1!§.LI1!££2§ 

ARRAY * DnSDCB * DPPTNOTE * ARRAIDEF DDSFIND * DPPTPSVC 
BEGIN * DDSOPEN * DPPTRSVC 
BGNSEG * DDSSTOW * DPPTSETB * BIT * DECDEC * DPPTWQDL 
BLOCK * DECHEX * DPPXBLKS * BLOCKDEF DEFLOCK * DPPXBRT * BYTE * DEFMSG * DPTDEBUG 
CASE * DO * DPTDSVC1 
CBFREE * DOMBOOTH * DPTECBCC 
CBGET * DOMICEXT * DPTPSVC1 
CHAIN * DOMIRBT * DPTPSVC2 
CINFD * DOMIRCME * DPTPSVC3 
CLOSESEG * DOMIRCMN * DPTPSVC4 
CONFIGH * DOMIRPRB * DPTPSVC5 
CONF1 * DOMIRSIO DRECBLKS * DATASET * DOMISVC1 * DUMPLOG * DBALTPRI * DOMISVC2 * DUPDISK * DBALTSEC * DOMISVC,", * ELSE * DBARRAID * DOMSVCN * ENDDO * DBASE * DPACHDEF ENDIF * DBBLOCKD * DPATCH * ENDLOOP * DBDACNTL * DP INIT1 ENDSEG * DBDADD * DPINIT2 ENDSRCH * DBDEF * DPINIT3 ENTER * DBDEFD * DPINIT4 RQUATE * DBDIRB * DPINIT5 ERRENTER * DBDIRR * DPLOGDEF ERRETURN * DBDMPHDR * DPPERMAC * ERREXIT * DBEND * DPPFIX * ERRMSG * DBGBLPAK DPPFIX2 * EXIT * BGNWHILE * DPPFREE * EXITIF * DBITEMD * DPPPINIT * FAILRST * DBLOGCB * DPPLEVEL FORSUB * DBLOGHDR * DPPSUB * FREEWA * DBPBT * DPPSVC * GENCOMCK 
DBWAR EA * DPPSVC9 * GENEMS * DDSBLDL * DPPTDSVC GENINIT * DDSCLOSE * DPPTETXM * GEN30 * GEN370 * ORSELSE * GEN370CK * PARM * GEN3702 * PARMDEF * GEN73A * PATCH * GEN73LE * PATCHDEF 
G!N73NG PLISUB * GEN73Z * PNCHASM * GETABRAY * PNCHDD * GETBLOCK * PNCHLE * GETITEM * PRN * GET LOG * PTIME * GETWA * PTIMEDEF 
GLOBAL PTIMEL * GLOBAL! PTIMRDEP 

APPENDIX D 0-1 



GRETURN * PTLOGDEF 
GTLOGDEF' PURGEWQ * HEADC * PUTARRAY * HEXDEC * PUTBLOCK * IF * PUTITEM * IMP * PUTLOG * IMPBLKS * RECORD * ITEM * RECRDDEF 
ITEMDEF REPATCH * LENGTH * REPCHDEF 
LOCK * SETPSW * LOCKCBLK * STRTSRCH * LOG * SUPL * LOG2 * SYSLEVEL 
MAINBLOK * TIMED * MATH * TMBIT * MESAGOEF UNTIL * MESSAGE * VS * MSGBLKS * WAITDEF 
MSGOEF' * WHILE * MSGEND * WTFAILOS * MSGRC * XIBIT * NIBIT * OIBIT * OPENSEG * 

0-2 Description and Operation Manual 



DOMIRCPY 
DO~ IRFLV 
DOMIRFL2 
DOMIRINT 
DOMIRNIP 
DOMIRWT 
DOMXLIST 
DOMXSTG1 
DPPCALCF 
DPPCPTIM 
DPPCPTIME 
DPPCTIM2 
DPPCTSVC 
DPPCUPCF 
DPPDARAY 
DPPDBLOK 
DPPDBSIF 
DPPDFREQ 
DPPDGETL 
DPPDITEM 
DPPDPUTL 
DPPDRIFE 
DPPDRIFT 
DPPDSUB2 
DPPDUMPL 
DPPDUPDL 
DPPDWRST 
DPPFAONC 
DPPFIXFR 
DPPIDBAS 
DPPIIRB 
DPPILOGN 
DPPINITO 
DPPINITl 
DPPIPFIX 
DPPIPFRE 
DPPISTAE 
DPPITIMI 
DPPMINIT 
DPPMMSG 
DPPMMSGV 
DPPMMSG1 
DPPPARM 
DPPPIF 

DPPS AM Pl 
DPPSASOC 
DPPSBFST 
DPPSBF 1 
DPPSCHCK 
DPPSCHK2 
DPPSCHK3 
DPPSCHK4 
DPPSCHPR 
DPPSCLUP 
DPPSCL 1 
DPPSCMPR 
DPPSCP2B 
DPPSCRBK 
DPPSCT2T 
DPPSDDSX 
DPPSDSCB 
DPPSINIT 
DPPSINI2 
DPPSINI3 
DPPSINI4 
DPPSINI5 
DPPSINI6 
DPPSLOCK 
DPPSMSGI 
DPPSMSGO 
DPPSNOTE 
DPPSNTPT 
DPPSOPCL 
DPPSOPl 
DPPSOP2 
DPPSPNTF 
DPPSRCIO 
DPPSRDWT 
DPPSRDW2 
DPPSRLSE 
DPPSRSRV 
DPPSRSTR 
DPPSSHAR 
DPPSSRCH 
DPPSST 1 
DPPSSWCH 
DPPSTBOS 
DPPSTKCK 

DPPSUNLK 
DPPSUNSH 
DPPSWRST 
DPPSXTCB 
DPPTCBGT 
DPPTCSVC 
DPPTDLMP 
DPPTETXR 
DPPTGWFW 
DP PTIMPS 
DPPTPMON 
DPPTPWQE 
DPPTQIMP 
DPPTRGWA 
DPPTSMON 
DPPTSTAE 
DPPTWAIT 
DPPTWSVC 
DPPUMSG 
DPPXDBAS 
DPPXDBAT 
DPPXDBCP 
DPPXDBDA 
DPPXDBLG 
DPPXDBLG 
DPPXDBPT 
DPPXDEFL 
DPPXDPB 
DPPXDRC 
DPPXDRCX 
DPPXIMPP 
DPPXIMPW 
DPPXKILL 
DPPXLOCK 
DPPXNRTI 
DPPXPCON 
DPPXRDR 
DPPXRINT 
DPPXRPRT 
DPPXSVCP 
DPPXS2SC 
DPPXUTIL 
DPPZSAMP 

APPENDIX D 0-3 



DDSMSG 
ETXRMSG 
F AILRBT 
FAILRPRB 
FAILRSTM 
INITMDCS 
SRTOSMSG 

D-4 Description and Operation Manual 



QE.iio!!g! §Qy£~ ~&.Qg~ams/Ma£~Q2 

BIGMOVE * DPINIT08 DPPPARM 
CVDEBC * DPINIT09 DPPPIF 
DBARBLDL * DPPINITOA DPPSAMP1 
DBIITEMR * DPINIT11 DPPSASOC 
DBREFRSH * DPINIT12 DPPSBFST 
DBSORT * DPINIT13 DPPSBF 1 
DDSDSECT DPINIT14 DPPSCHCK 
DDSNTPT DPITIMI1 DPPSCHK2 
DDSSULU * DPPCALCF DPPSCHK 
DDSTSSC DPPCPTIM DPPSCHK4 
DOMIRCPY DPPCTIME DPPSCHPR 
DOM IRFLV DPPCTIM2 DPPSCL UP 
DOMIRFL2 DPPCTSVC DPPSCL1 
DOMIRINT DPPCUPCF DPPSCMPR 
DOMIRNIP DPPDARAY * DPPSCP2B 
DOMIRWT DPPDASUB DPPSCRBK 
DOMXLIST DPPDBLOK DPPSCT2T 
DOMXSTG1 DPPDBSIF DPPSDDSX 
DPCALCF 1 DPPDFREQ DPPSDSCB 
DPCTIME1 DPPDGETL DPPSINIT 
DPCTIME2 DPPDITEM DPPSINI2 
DPCTIM21 DPPDPUTL DPPSINI3 
DPCTIM22 DPPDRIFE DPPSINI4 
DPCTSVC1 DPPDRIFT * DPPSINI5 
DPCTSVC2 DPPDSTRT DPPSINI6 
DPCTSVC3 DPPDSUB2 DPPSLOCK 
DPCTSVC4 DPPDUMPL DPPSMSGI 
DPCUPCF1 DPPDUMPL DPPSMSGO 
DPCUPCF2 DPPDWRST DPPSNOTE 
DPCUPCF3 DPPFAONC DPPSNTPT 
DPCUPCF4 DPPFIXFR DPPSOPCL 
DPIDBAS 1 DPPIDBAS DPPSOP 1 
DPIDBAS2 DPPIIRB DPPSOP2 
DPIDBAS3 DPPILOGN DPPSPNTF 
DPIDBAS5 DPPINITO DPPSRCIO 
DPIDBAS6 DPPINIT1 DPPSRDWT 
DPINIT01 DPPIPFIX DPPSRDW2 
DPINIT02 DPPIPFRE DPPSRLSE 
DPINIT03 DPPISTAE DPPSRSRV 
DPINIT04 DPPITIMI DPPSRSTR 
DPINIT05 DPPMINIT DPPSSHAR 
DPINIT06 DPPMMSG DPPSSRCH 
DPINIT01 DPPMMSGV DPPSST1 
DPPSSWCH DPPMMSG1 PSECTEND * DPPSTBOS DPPXS~CP PWQE * DPPSTKCK DPPXS2SC QHBK * 
DPPSUNLK DPPXUTIL QPBK * DPPSUNSH DPPZSAMP RCALL * DPPSWRST DPTCSVC1 RCSHEAD * DPPSXTCB DPTDLMP1 RLMHEAD * DPPTCBGT DPTDLMP2 SETO * DPPTCSVC DPTDLMP3 SETPM * DPPTDLMP DPTDLMP4 STAEBLK * DPPTETXR DPTDLMP5 STAEXBK * DPPTGWFW DPTPMON1 
DPPTIMPS DPTPMON2 
DPPTPMON DPTPMON3 
DPPTPWQE DPTPMON4 
DPPTQIMP DPTPMON5 
DPPTRGWA DPTSMON1 
DPPTSMON DPTWSVC1 
DPPTSTAE DPTWSVC2 
DPPTWAIT DPTWSVC3 

APPENDIX D D-5 



DPPTWSVC DPXDBIN1 
DPPUMSG DPXDBIN2 
DPPUMSG1 DPXDBIN3 
DPPUMSG2 DP XDBI N4 
DPPXDBAS DPXDBIN5 
DPPXDBAT OPXDBIN6 
DPPXDBCP FINDPARM * DPPXDBDA GMSG * DPPXDBIN HEXEBC * DPPXDBLG INITCB * DPPXDBPT IPROB * DPPXDEFL LTYP * DPPXDPB MARKMASK * DPPXDRC MASKDATA * DPPXDRCX MXSTG101 
DPPXIMPP MXSTG102 
DPPXIMPW MXSTG103 
DPPXKILL MISTG104 
DPPXLOCK MXSrG105 
DPPXNRTI PPLPTPCH 
DPPXPCON PPLSCAN 
OPPXRDR PPLSCAN2 
DPPXRINT PPLUPOTE 
DPPXRPRT PSECT * 

0-6 Descri ption and operation Manual 



This manual introduces many new terms and acronyms not commonly used 
in data processing. This glossary defines those terms unique to or 
having a special meaning in this program and this manual. Accordingly, 
terms which are included in the IBM Data Processing Glossary (GC20-1699) 
are not included here. 

Array 

Block 

Blocked 

Backup 

continuous 

DA Resident 

Data Base 

An arrangement of data items in one or more dimensions. 

One or more data items. One or more blocks of equal 
dimensions make up an array. 

An array consisting of one or several blocks. A blocked 
array may be either VS or DA resident and may be accessed 
through GETBLOCK and PoTBLOCK. 

The secondary copy Qf a duplicate data set pair. 

A program that resides and executes in the monitor online 
CPO and monitors specified storage locations to ensure 
that the online system is functioning. 

A term used to group arrays by their residence during 
online operation. DA'resident specifies that the array 
resides on direct access storage during online operation. 

The collection of data arrays and control information 
consisting of one partitioned data set, and one or more 
direct data sets. Durin9 real-time processing, part of 
data base will be loaded into virtual storage. 

Dependent Task A task created by the Special Real Time Operating System 
without a task name. A dependent task executes only 
once. 

Duplicate 
Data Set 

Failover 

Independent 
Task 

Item 

Lock 

Log (Logging) 

A feature of the Special Real Time Operating System that 
allows for duplicate copies of critical data sets to be 
maintained by executing duplicate I/O accesses. 

The procedure by which the backup CPU is made to become 
the primary CPU. 

A task created by the Special Real Time Operating System 
with a task name. An independent task remains in 
existence after it has executed and is capable of 
executing program cyclicly_ 

One member of a group, one or more items make up an 
array. 

A method of controlling a resource so that only one 
program may use the resource at a time. 

The process of copying a VS resident array to a log 
dataset (DA resident). 

APPENDIX G G-1 



Log Array 

Log Header 

Master 

Normal Start 

Offline 

Online 

Playback 

Primary 

PROBE 

Record 

Refresh 

A DA resident array that will contain the copy or copies 
of the VS resident loggable array. 

The control information associated with the VS resident 
loggable array. 

The controlling partition in a two partition operation. 

The process by which the Special Real Time Operating 
System is initializing from the control statements in 
the input stream using the initial data loggable arrays. 

That processing which is executed not under control of 
the special Real Time Operating System, i.e., processing 
in another CPU or in a non-real time partition. 

That processing which is executed under control of the 
Special Real Time Operating System, i.e., as a subtask 
of the Special Rea 1 Time job step task itself. 

The process by which the data previously collected by 
the data record routine is retrieved and deformatted. 

The main CPU in a multiple CPU environment; i.e., the 
CPU which is currently controlling the functions for 
the real-time environment. Also the main copy of a 
duplicate data set group. 

That program that runs in the backup computer and tests 
the continuous monitor in the online cpu. If the value 
on the direct control static data lines fails to change 
during twice of the update interval, the PROBE recommends 
a failure. 

The processing of collecting specified data and saving 
it in a formatted mode for later retrieval by the 
playback function. 

The process by which the Special Real Time Operating 
System is initialized using the most recent copies of 
loggable arrays. A refresh start may be from the input 
stream or from a failure data set. 

Resource Table An 8-byte area provided by the Special Real Time 
Operat ing System f or each real-time task. 

Restart 

SLAVE 

Sta tus Panel 

Time Drift 

G-2 

The procedure by which a real-time CPU is reinitialized 
to the point at which the failover restart data set was 
written. 

That partition in a tvo-partition real-time operating 
system which contains only some of the Special Real Time 
operating system services. The services not contained 
in the SLAVE partition are provided by the MASTER 
partit ion. 

A user fabricated hardware panel used to indicate which 
CPU is primary and which is backup in a real-time 
environment and also to indicate when and how a failover 
is to occur. 

The variation of the System/370 Time of Day Clock from 
the absolute time. 

Description and Operation Manual 



Unblock 

Unblocked 

VS Resident 

The freeing of a resource that had previously been 
reserved by the LOCK function. 

The freeing of a resource that had previously been 
reserved by the LOCK function. 

An array that resides in virtual storage. 

APPENDIX G G-3 



--..- .... ----- - ---- ----- -. -~-- - - -------------- _.-
International Business Machines Corporation 

General Systems Division 
57750 Glenridge Drive N.E. 
P.O. Box 2150 
Atlanta, Georgia 30301 
(U.S.A. only) 

I BM World Trade Corporation 
821 United Nations Plaza 
New York, New York 10017 
(I nternational) 

SH20-1773-0 

C/) 
'0 
CD n 
eI 
::lJ 
CD 
~ 

-i 
3' 
CD 

o 
'0 
~ 
Ql ..... 
:;' 
co 
C/) 
-< 
'" <it 
3 

" a 
~ 
Ql 

3 
3 
:;' 
co 
::lJ 

" o 

~ 
:::J ..... 
CD a. 
:::J 

C 
C/) 

» 


	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	2-001
	2-002
	2-003
	2-004
	2-005
	2-006
	2-007
	2-008
	2-009
	2-010
	2-011
	2-012
	2-013
	2-014
	2-015
	2-016
	2-017
	2-018
	2-019
	2-020
	2-021
	2-022
	2-023
	2-024
	2-025
	2-026
	2-027
	2-028
	2-029
	2-030
	2-031
	2-032
	2-033
	2-034
	2-035
	2-036
	2-037
	2-038
	2-039
	2-040
	2-041
	2-042
	2-043
	2-044
	2-045
	2-046
	2-047
	2-048
	2-049
	2-050
	2-051
	2-052
	2-053
	2-054
	2-055
	2-056
	2-057
	2-058
	2-059
	2-060
	2-061
	2-062
	2-063
	2-064
	2-065
	2-066
	2-067
	2-068
	2-069
	2-070
	2-071
	2-072
	2-073
	2-074
	2-075
	2-076
	2-077
	2-078
	2-079
	2-080
	2-081
	2-082
	2-083
	2-084
	2-085
	2-086
	2-087
	2-088
	2-089
	2-090
	2-091
	2-092
	2-093
	2-094
	2-095
	2-096
	2-097
	2-098
	2-099
	2-100
	2-101
	2-102
	2-103
	2-104
	2-105
	2-106
	2-107
	2-108
	2-109
	2-110
	2-111
	2-112
	2-113
	2-114
	2-115
	2-116
	2-117
	2-118
	2-119
	2-120
	2-121
	2-122
	2-123
	2-124
	2-125
	2-126
	2-127
	2-128
	2-129
	2-130
	2-131
	2-132
	2-133
	2-134
	2-135
	2-136
	2-137
	2-138
	2-139
	2-140
	2-141
	2-142
	2-143
	2-144
	2-145
	2-146
	2-147
	2-148
	2-149
	2-150
	2-151
	2-152
	2-153
	2-154
	2-155
	2-156
	2-157
	2-158
	2-159
	2-160
	2-161
	2-162
	2-163
	2-164
	2-165
	2-166
	2-167
	2-168
	2-169
	2-170
	2-171
	2-172
	2-173
	2-174
	2-175
	2-176
	2-177
	2-178
	2-179
	2-180
	2-181
	2-182
	2-183
	2-184
	2-185
	2-186
	2-187
	2-188
	2-189
	2-190
	2-191
	2-192
	2-193
	2-194
	2-195
	2-196
	2-197
	2-198
	2-199
	2-200
	2-201
	2-202
	2-203
	2-204
	2-205
	2-206
	2-207
	2-208
	2-209
	2-210
	2-211
	2-212
	2-213
	2-214
	2-215
	2-216
	2-217
	2-218
	2-219
	2-220
	2-221
	2-222
	2-223
	2-224
	2-225
	2-226
	2-227
	2-228
	2-229
	2-230
	2-231
	2-232
	2-233
	2-234
	2-235
	2-236
	2-237
	2-238
	2-239
	2-240
	2-241
	2-242
	2-243
	2-244
	2-245
	2-246
	2-247
	2-248
	2-249
	2-250
	2-251
	2-252
	2-253
	2-254
	2-255
	2-256
	2-257
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-52
	3-53
	3-54
	3-55
	3-56
	3-57
	3-58
	3-59
	3-60
	3-61
	3-62
	3-63
	3-64
	3-65
	3-66
	3-67
	3-68
	3-69
	3-70
	3-71
	3-72
	3-73
	3-74
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	4-55
	4-56
	4-57
	4-58
	4-59
	4-60
	4-61
	4-62
	4-63
	4-64
	4-65
	4-66
	4-67
	4-68
	4-69
	4-70
	4-71
	4-72
	4-73
	4-74
	4-75
	4-76
	4-77
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	B-01
	B-02
	B-03
	B-04
	C-01
	C-02
	C-03
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	G-01
	G-02
	G-03
	xBack

