ity
THA]
|
-
8 .
§
@
mm <
g g
3q 2
32 -
g o
g5 o

8QUDS

&
C

SQL/DS

Diagnosis Guide and Reference
for IBM VM Systems

Version 3 Release 4

“Restricted Materials of IBM™
Licensed Materials — Property of IBM
LH09-8081-03 © Copyright IBM Corp. 1987, 1993

LH09-8081-03

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

— Note!

Before using this information and the product it supports, be sure to read the general information
under “Notices” on page ix.

Fourth Edition (April 1993)

This edition applies to Version 3 Release 4, Modification Level 0, of the SQL/DS Program 5688-103 and to all
subsequent releases and modifications until otherwise indicated in new editions. Make sure you are using the
correct edition for the level of the product.

Changes or additions to the text and illustrations are indicated by a vertical line to the left of the change or
addition.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications
are not stocked at the address given below.

A form for readers' comments is provided at the back of this publication. If the form has been removed, address
your comments to:

IBM Canada Ltd. Laboratory
Information Development
21/986/844/TOR

844 Don Mills Road

North York, Ontario, Canada M3C 1V7

You can also send your comments by facsimile to (416) 448-6057 addressed to the attention of the RCF Coordi-
nator. If you have access to Internet, you can send your comments electronically to torrci@vnet.lbm.com;
IBMLINK, to toribm(torrcf); IBM/PROFS, to torolab4(torrcf); IBMMAIL, to ibmmalii(caibmwt8)

If you choose to respond through Internet, please include either your entire Internet network address, or a postal
address.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright international Business Machines Corporation 1987, 1893. All rights reserved.

Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

IBM is a registered trademark of International Business Machines Corporation, Armonk, N.Y.

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

Contents

Notices e e
Programming Interface Information U
Trademarks and Service Marks e

About This Manual e
Purpose e e
Audience e e
Contents e e
Components of the SQL/DS System
Syntax Notation Conventions

Summary of Changes for SQL/DS Version 3Release 4
Enhancements, New Functions, and New Capabilities
Support for the IBM DATABASE 2 AIX/6000 Database Manager
Cascade Delete Enhancement for Referential Integrity
Improved EXPLAIN Capabilities
Host Structure Variables
Removal of 512 Host Variable Restriction
Enhanced SHOW STORAGE Command
Usability Enhancements
Package Dbspace Full Condition Handling
The Connectable and Unconnected State
Dual Logging Enhancement
Reliability, Availability, and Serviceability Improvements
Processing a DROP TABLE Statement
Enhancement to COLDLOG Processing
Improved Storage Trace i e
Library Enhancements
SQL/DS Performance Tuning Handbook
Revised Manuals

Chapter 1. Introduction to Problem Diagnosis
Diagnosis Flowcharts e

Chapter 2. SQL/DSConcepts
Introduction L e
SQL/DS Components in the Application Requester
Database Services Utility (DBSU)
Interactive SQL (ISQL) e
Preprocessors (PREP) i e
VM Resource Adapter (VRA)
SQL/DS Components in the Application Requester and the Application
SerVer . .. e e e e
Data System Control (DSC) e
Data Conversion (CONV) i
Distributed Relational Resource Manager (DRRM)
SQL/DS Components in the Application Server
Work Unit Manager (WUM) i i
Relational Data System (RDS)
Database Storage Subsystem (DBSS)

LH09-8081-03 © Copyrignt IBM Corp. 1987, 1993

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

The SQL/DS RDBMS in Single User Mode 10
The SQL/DS RDBMS in Multiple UserMode 10
When Using the SQL/DS-only Protocol 10
When Using the DRDA Protocol 11
Logical Unitof Work Concepts 11
Agent Handling Concepts 12
Agent Handling Functions 13
Allocating Users to Agent Structures 13
Dispatcher Components e 14
Conceptual Overview of Prioritization Scheme 14
Conceptual Overview of the Fair Share Auditing Process 15
Finding “Deprived” Agents 15
Setting Fair Share Interval Size 16
Locating and Dispatching a Dispatchable Agent 16
Agent Processing atthe Endofan LUW 17
Communications Concepts e 17
Concepts on the Application Requester 17
Concepts on the Application Server 18
Inter-User Communications Vehicle (IUCV) Protocol 18
Advanced Program-to-Program Communications/VM (APPC/VM) Protocol 20
Application Program Use of IUCV or APPC/VM 25
Package Management Concepts 25
RDIINS . . . e 26
Preprocessing e 26
Execution-Time Processing 28
Package Cache Management, 29
Repreprocessing e 30
Authorization e 30
Storage Management Concepts 31
Memory Management Concepts 0. 31
Logical Storage Management Concepts 32
Physical Storage Management Concepts 36
Buffer Storage Management Concepts 39
Index Concepts e 39
Basic Index Structure 39
Index Space Management e 40
Invalid Indexes a1
TransientIndexes 41
Clustering Index e 42
Clustered Indexes i 42
Index Fragmentation e 43
Sorting Concepts L e e e e e 44
Logging/Recovery Concepts e 46
Locking Concepts e 55
Specifying Isolation Levels 56
Locking Hierarchy e 57
Lock Modes e e 58
Lock Durations e 59
Lock Compatibility e 59
Types of Internal Data ManipulationCalls 60
Locking for Different InternalDM Calls 60
Deadlock Detection 65
Escalationof Locks 65
Access to Private DBSPACES 66

lv sQuDS Diagnosis for VM LH09-8081-03 © Copyright iBM Corp. 1987, 1983

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

Termination Concepts e 66
Chapter 3. ReportingDefects 69
Developing the First (Two) Keyword(s) 70
Component Identification Keyword (PIDS) 70
Release Level Keyword (LVLS), 71
Developing the Remaining Keywords 72
Abnormal Termination o o 72
Message e e e 74
First Failure Data Capture 76
NO RESPONSE e e 80
Waitor Loop e e 80
Slow ReSpoNse e e 81
Incorrect or Missing Output 81
Document e e 81
Additional Keywords e e 82
SQLCODES e 82
SQL Statements 82
Start-up Parameters 82
Data Type e 82
Application Type e 83
EXECS e 83
Application Program Generated SQLCODES 83
Invocation e 83
Interactions 85
Reporting a Problem e 85
Materials e e e e e e e e e e 85
Environments e 87
Chapter 4. Functional Problems g5
System-Related Error Codes 95
SQL COMMAND FAILED (-801) i 95
ROLLED BACK DUE TO A DEADLOCK (-811) 96
ROLLED BACK DUE TO EXCESSIVE (SYSTEM WIDE) LOCK REQUESTS
(-912) . . . 96
ROLLED BACK DUE TO EXCESSIVE LOCKS HELD FOR THIS LUW (-915) 96
Common User-related ErrorCodes 96
SQL COMMAND LIMITATION EXCEEDED (-101) 96
CREATOR.TABLE WAS NOT FOUND (-204) 97
INPUT VARIABLE DATA TYPE NOT COMPATIBLE WITH COLUMN (-301) 97
INPUT HOST VARIABLE TOO LARGE (-302) 98
AN INDICATOR VARIABLE IS MISSING (-305) 99
MISMATCH BETWEEN NUMBER OF HOST VARIABLES (-313) 99
Functional Deviations e 99
Lockout with Cursor Stability 99
FETCH with Cursor Stability 99
Chapter 5. Dlagnosing Performance Problems 101
Performance Analysis Glossaries 102
Glossary of Performance Index Headers 102
Glossary of Performance Indicator Terms 102
Glossary of Performance Terminology 103
Performance Problem Indexes uvu... 105
Application Function Indexes to Performance Problems 106

LH09-8081-03 © Copyright IBM Corp. 1887, 1993 Contents V

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

General Performance Problems 107
Data Authorization Performance Problems 108
Data Definition Performance Problems 108
Data Manipulation Performance Problems 109
Data Utilities Performance Problems 110
Recovery Control Performance Problems L1
Performance Problems by Performance Symptom 111
Agent Related Performance Problems 111
CPU Related Performance Problems 112
I/0 Related Performance Problems 113
Locking Related Performance Problems 114
Storage Related Performance Problems 114
Special Case Performance Problems 115
Analysis of Performance Problems 115
Adjacent Key LockinginUserData 115
Agents Being Held 119
Bad Data Distribution 122
BLOCK I/0, APPC/VM and IUCV Not Resident 125
Blocking Suppression for INSERTCURSORs 125
Buffer Pool Too Big 126
Buffer Pool TooSmall 128
CHARNAME Not Set Correctly 130
Checkpoint is Being Forced at End-LUW 130
CHKINTVL Too Big e e e 131
CHKINTVL Too Small e e 132
CMS Work Unit Support SetOn oo 134
Conflict in Catalog Key Locking 134
Conflict on Key HashinUserData 136
CREATE INDEX Requires a Large Sort 138
Data Not Cached 139
Database Machine Favored Too Little 139
DBSPACE Scan Being Performed 141
Deadlocks 146
DRDA Protocol Used to Access an SQL/DS Database 147
DRDA Usage e e 147
ECMODE ON for Accounting 147
Excessive /Os on INSERT e 147
Excessive Locking inUserData e 149
Frequent Checkpoints caused by SOSLEVEL 152
Hot Spot in the Catalog Tables 153
Hot SpotinUserTables J 158
I/O Capacity Exceeded 160
I/ONotBalanced e 161
Inaccurate Statistics L o e 162
Index Disqualified e 164
Index Maintenance e 167
Index No Longer Highly Clustered 168
Indexes Are Fragmented 169
Inefficient Search e 170
Inefficient SELECT List, 174
Insufficient Indexing e 174
Invalid Entities Exist 175
Large Tables Share Same DBSPACE 175
Lock Level Too High i e 178

vl sQUDS Diagnosis for VM LH09-8081-03 ® Copyright IBM Corp. 1987, 1993

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

Lock Level Too Low e 179
Locks Held for Long Duration 180
Logging during Load 183
Long DBSS Calls Delaying Checkpoint 184
Missing Search Condition 185
Need a Highly Clustered Index 187
Need More CPU e 188
Need More Real Storage 189
NLRB Parameters TooLarge, 190
NLRB Parameters TooSmall 191
No Selective Index 192
One Database Machine Needs TooMuch CPU 193
Package Needs Re-preprocessing 194
Package Cache Too Big or Threshold Too High 195
Package Cache Too Small or Threshold TooLow 196
Page Fault Serialization, 197
Query Block Size Too Small 198
Range Predicate Used with Host Variables 199
Sequential Processing 200
Session LimitExceeded 203
SET QDROP OFF USERS or SET QUICKDSP ON Not Used 203
SQL/DS Code Not Shared 204
Storage Pool Full 204
Synchronous APPC/VM NotUsed 205
Too Few Agents e 205
Too Many Agents 206
Too Many Joins e 208
UPDATE STATISTICS by DATALOAD 210
Very Nonunique Index Key Prefix 211
Chapter 6. Recovering fromDBSSErrors 213
Interpreting the Diagnostic Display 213
Action to Take for FORWARD Processing Failures 219
Action to Take for ROLLBACK Processing Failures 221
Action to Take for UNDO Processing Failures 221
UNDO Processing Failure DuringaWarm Start 221
UNDO Processing Failure Duringa Restore 222
Action to Take for REDO Processing Failures 223
REDO Processing Failure During a Warm Start 223
REDO Processing Failure Duringa Restore 224
Filtered Log Recovery i e 224
Extended Processing e 225
Bypassing an UNDO WORK Failure 228
Rolling Back Committed Work 231
Filtered Log Recovery and Referential Integrity 237
Disabling a DBSPACE e 240
Enabling @a DBSPACE e 241
Chapter 7. Recovering from Directory Verify Errors 243
Guidelines for Using Directory Verification 243
Recovery Actions for an Inconsistency 243
Chapter 8. Problem IsolationandHandling 247
System Problems 247

LHO8-8081-03 © Copyright IBM Corp. 1987, 1883 Contents Vil

vill

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

SQL/DS Database Machine Problems 247
SQL/DS Virtual Machine Dump Processing 249
Problem Isolation 250
SQL/DS DUMPS e e e 250
SQL/DS Link Maps and Access e 252
Dump Navigation 253
Storage Layout after Initialization 256
Major Control Blocks e 260
Locating SQL/DS Statements Associated with a System Error 262
DBSS OP Codes e 265
Problem Isolation and The Trace Facility 267
Trace Facility e 267
Tracein Storage e 267
Using Trace for Deadlocks 267
Appendix A. RDIIN 273
Appendix B. Catalog Updates and References 283
Authorization 283
Interpretive Commands 286

Appendix C. SQL/DS Distributed Data Management (DDM) Command

Support . .. e 297
How to Read the Tables, 297
Command Tables 298
Reply Tables e 298
Glossary e e 311
Bibllography 313
IndeX e 315

SQL/DS Diagnosis for VM LH08-8081-03 © Copyright IBM Corp. 1987, 1993

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

Notices

References in this publication to IBM products, programs, or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM licensed program in this publication is not
intended to state or imply that only IBM's licensed program may be used. Any
functionally equivalent product, program, or service that does not infringe any of
IBM’s intellectual property rights may be used instead of the IBM product,
program, or service. Evaluation and verification of operation in conjunction with
other products, except those expressly designated by IBM, is the user's respon-
sibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Commercial Relations, IBM Corporation, Purchase, NY 10577.

This publication may contain examples of data and reports used in daily busi-
ness operations. To illustrate them as completely as possible, the examples
include the names of individuals, companies, brands, and products. All of these
names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

Programming Interface Information

This publication is intended to help the customer to do diagnosis of SQL/DS*
problems and primarily documents Diagnosis, Modification or Tuning Informa-
tion.

Warning: Do not use this Diagnosis, Modification or Tuning Information as a pro-
gramming interface.

However, this publication also documents Product-sensitive Programming inter-
face and Associated Guidance Information provided by the SQL/DS product.

Product-sensitive programming interfaces allow the customer installation to
perform tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or
tuning of the SQL/DS product. Use of such interfaces creates dependencies on
the detailed design or implementation of the IBM software product. Product-
sensitive programming interfaces should be used only for these specialized pur-
poses. Because of their dependencies on detailed design and implementation, it
is to be expected that programs written to such interfaces may need to be
changed in order to run with new product releases or versions, or as a result of
service.

Product-sensitive Programming Interface and Associated Guidance Information is
identified where it occurs, either by an introductory statement to a chapter or
section or by the following marking:

LHO08-8081-03 © Copyright IBM Corp. 1687, 1983 Ix

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

I Product-sensitive programming interface |

Product-sensitive Programming Interface and Associated Guidance Information...

I End of Product-sensitive programming interface |

Trademarks and Service Marks

The following terms, denoted by an asterisk (*), used in this publication, are
trademarks or service marks of IBM Corporation in the United States or other

countries:

DATABASE 2 DB2 DB2/2

DB2/6000 Distributed Relational DRDA
Database Architecture

IBM 08/2 08/400

SQL/DS VM/ESA VM/XA

VTAM AIX/6000

X SQU/DS Diagnosis for VM LHO9-8081-03 © Copyright IBM Corp. 1987, 1893

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

About This Manual

Purpose

This manual is a task oriented publication. It provides background information
which will allow you to better perform the tasks listed below. This manual
should be used for one of these tasks:

1. Determining if there is a problem with the SQL/DS* RDBMS. This could be a
defect, a functional problem, or a performance problem.

2. Gaining insight on what you can do to recover from certain situations or
problems.

3. Developing a symptom string that describes a defect and reporting that
defect along with the necessary documentation of the problem.

If your problem is occurring during distributed processing, you should also refer
to the Distributed Relational Database Problem Determination Guide.

Wherever the term VM is used in this document, the reference applies to VM/SP,
VM/XA*, or VM/ESA*. The term VM/SP refers to VM/SP Release 6 with or
without High Performance Option (HPO). The term VM/XA refers to VM/XA SP
Release 2. The term VM/ESA refers to VM/ESA Release 1.0 or above.

Audience

This manual is intended for persons responsible for diagnosing and fixing prob-
lems with the SQL/DS RDBMS.

Contents

SQL/DS Diagnosis Guide and Reference has eight chapters:

e Chapter One, “Introduction to Problem Diagnosis,” gives a general
description of the diagnosis task. It offers a “flowchart” as a means of
directing you to the proper area within the manual.

* Chapter Two, "SQL/DS Concepts,” introduces the primary characteristics of
the Structured Query Language/Data System and discusses their use and
interaction.

* Chapter Three, “Reporting Defects,” shows you how to build a symptom
string that describes a defect, how to report a problem, and how to list the
documentation that should accompany your defect report.

¢ Chapter Four, “Functional Problems,” describes analysis of problems that
you might encounter in using the SQL/DS RDBMS. It gives possible causes
and actions to take in resolving problems.

* Chapter Five, “Diagnosing Performance Problems,” assists you in deter-
mining the ultimate cause of a performance problem. It includes analyses,
corrective actions, and problem indexes that help you get to the right spot to
perform the next item.

LH09-8081-03 © Copyright IBM Corp. 1887, 1993 xi

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

¢ Chapter Six, “Recovering from DBSS Errors,” tells you how to interpret the
diagnostic information following message ARIO126E and the actions to take to
recover from the error(s).

¢ Chapter Seven, “Recovering from Directory Verify Errors,” tells you when to
use the Directory Verify function and how to recover from errors discovered
by the Directory Verify function.

¢ Chapter Eight, “Problem Isolation and Handling,” describes the tools you can
use to correct a problem.

* Appendix A, “RDIIN," lists the RDIIN.

¢ Appendix B, "Catalog Updates and References,” contains information about
how catalogs are searched and updated when specific statements are exe-
cuted.

¢ Appendix C, "SQL/DS Distributed Data Management (DDM) Support,” con-
tains information on the DDM commands that the SQL/DS product supports
for DRDA" (Distributed Relational Database Architecture*) level 1.

e Glossary contains definitions of SQL/DS terms.

| Components of the SQL/DS System

| Figure 1 on page xiii depicts a typical SQL/DS configuration with one database
| and two users.

xll sQL/DS Diagnosis for VM LHO08-8081-03 © Copyright iBM Corp. 1987, 1983

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

Communication Link (IUCV or APPCVM)

User
Machine

|Appueat|on Server

Figure 1. Basic Components of the SQL/DS RDBMS

The database is composed of:

¢ A collection of data contained in one or more storage pools, each of which in
turn is composed of one or more database extents (dbextents). A dbextent is
a VM minidisk.

e A directory that identifies data locations in the storage pools. There is only
one directory per database.

e A log that contains a record of operations performed on the database. A
database can have either one or two logs.

The database manager is the program that provides access to the data in the
database. It is loaded into the database virtual machine from the production
disk.

The application server is the facility that responds to requests for information
from and updates to the database. It is composed of the database and the data-
base manager.

The application requester is the facility that transforms a request from an appli-
cation into a form suitable for communication with an application server.

LH09-8081-03 © Copyright IBM Corp. 1987, 1883 About This Manual Xl

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

Syntax Notation Conventions
Throughout this manual, syntax is described using the structure defined below.

* Read the syntax diagrams from left to right and from top to bottom, following
the path of the line.

The »»— symbol indicates the beginning of a statement or command.

The — symbol indicates that the statement syntax is continued on the next
line.

The »— symbol indicates that a statement is continued from the previous
line.

The —»< symbol indicates the end of a statement.

Diagrams of syntactical units that are not complete statements start with the
»— symbol and end with the — symbol.

*« Some SQL statements, Interactive SQL (ISQL) commands, or database ser-
vices utility (DBS Utility) commands can stand alone. For example:

»>—SAVE e

Others may be followed by one or more keywords and/or variables. For
example:

»>—SET AUTOCOMMIT OFF >4

+ Keywords may have parameters associated with them which represent user-
supplied names or values. These names or values can be specified as
either constants or as user-defined variables called host-variables (host-
variables can only be used in programs).

»>—DROP SYNONYM—synonym

1

* Keywords appear in either uppercase (for example, SAVE) or mixed case (for
example, CHARacter). All uppercase characters in keywords must be
present; you can omit those in lowercase.

* Parameters appear in lowercase and in italics (for example, synonym).

* If such symbols as punctuation marks, parentheses, or arithmetic operators
are shown, you must use them as indicated by the syntax diagram.

* All items (parameters and keywords) must be separated by one or more
blanks.

* Required items appear on the same horizontal line (the main path). For
example, the parameter integer is a required item in the following command:

xlv SQUDS Diagnosis for VM LHO09-8081-03 © Copyright IBM Corp. 1987, 1893

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

}

»—SHOW DBSPACE—integer

This command might appear as:
SHOW DBSPACE 1
¢ Optional items appear below the main path. For example:

»d

»»>—CREATE INDEX >
l-—UNIQUEJ

This statement could appear as either:
CREATE INDEX
or ‘
CREATE UNIQUE INDEX
¢ If you can choose from two or more items, they appear vertically in a stack.

If you must choose one of the items, one item appears on the main path. For
example:

»»>—SHOW LOCK DBSPACE—[ALL <
tntegerJ

Here, the command could be either:
SHOW LOCK DBSPACE ALL

or
SHOW LOCK DBSPACE 1

If choosing one of the items is optional, the entire stack appears below the
main path. For example:

nteger—

»»>—BACKWARD <
l
tﬁAX

Here, the command could be:
BACKWARD
or
BACKWARD 2
or
BACKWARD MAX
* The repeat symbol indicates that an item can be repeated. For example:

LH08-8081-03 © Copyright IBM Corp. 1987, 1983 About This Manual XV

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

»»—ERASE ‘uame I —>d

This statement could appear as:
ERASE NAME1

or
ERASE NAME1 NAME2

A repeat symbol above a stack indicates that you can make more than one
choice from the stacked items, or repeat a choice. For example:

]

——VALUES—(constant |)
host-vartiable-1list
NULL :
spectal-register—

v

If an item is above the main line, it represents a default, which means that it
will be used if no other item is specified. In the following example, the ASC
keyword appears above the line in a stack with DESC. If neither of these
values is specified, the command would be processed with option ASC.

l—ASCj
] ‘—DESC'J

v

When an optional keyword is followed on the same path by an optional
default parameter, the default parameter is assumed if the keyword is not
entered. However, if this keyword is entered, one of its associated optional
parameters must also be specified.

In the following example, if you enter the optional keyword PCTFREE =, you
also have to specify one of its associated optional parameters. If you don‘t
enter PCTFREE =, the system will set it to the default value of 10.

»—

10

¢ Words that are only used for readability and have no effect on the execution

of the statement are shown as a single uppercase default. For example:

PRIVILEGES
»»—REVOKE ALL L 1

I

SQL/DS Diagnosis for VM LH09-8081-03 © Copyright IBM Corp. 1987, 1983

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

‘ | Here, specifying either REVOKE ALL or REVOKE ALL PRIVILEGES means the
same thing.
I * Sometimes a single parameter represents a fragment of syntax that is

| expanded below. In the following example, fieldproc-block is such a frag-
| ment and it is expanded following the syntax diagram containing it.

| >

>]j‘ fieldproc-block | —

LNOT NULL }:

UNIQUE—
PRIMARY KEY—

|
L fieldproc-block:
|

—F1ELDPROC—program-name L J
’
(———Econs tan t——-l—)

LH09-8081-03 © Copyright IBM Corp. 1987, 1983 About This Manual xvii

xvill

SQUDS Diagnosis for VM

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

LH08-8081-03 ® Copyright IBM Corp. 1887, 1883

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

Summary of Changes for SQL/DS Version 3 Release 4

This is a summary of the technical changes to
the SQL/DS* Version 3 Release 4 database man-
agement system. All manuals are affected by
some or all of the changes discussed here. This
summary does not list incompatibilities between
releases of the SQL/DS product; see either the
SQL Reference or the System Administration
manual for a discussion of incompatibilities.
Version 3 Release 4 of the SQL/DS database
management system is intended to run in the
following VM environments:

* Virtual Machine/System Product (VM/SP)
Release 6, with or without the High Perform-
ance Option (HPO)

¢ Virtual Machine/Extended Architecture*
(VM/XA*) SP Release 2

e Virtual Machine/Enterprise Systems Archi-
tecture® (VM/ESA™*) Release 1 or later.

Enhancements, New Functions, and
New Capabilities

Support for the IBM DATABASE 2
AIX/6000 Database Manager

The IBM* DATABASE 2* AIX/6000" (DB2/6000%)
database manager implements the DRDA*
remote unit of work feature. Your VM SQL/DS
database manager can function as an applica-
tion server for your DB2/6000 database man-
agers.

Cascade Delete Enhancement for
Referential Integrity

Referential integrity ensures that references in
one table to data in another table are always
valid. In previous releases, you could specify
cascade delete constraints to ensure that if a
value was deleted from a parent table, the corre-
sponding row of a dependent table would also
be deleted.

Version 3 Release 4 expands the capabilities of

the cascade delete constraint. When a row is
deleted from a dependent table because of a

LHO08-8081-03 © Copyright IBM Corp. 1887, 1893

cascade delete, the delete rule that exists

between the dependent table and any tables that
are its dependents will be processed. For
example, suppose a cascade delete constraint
exists for Table_A that results in a row being
deleted from Table_B. Table_B, in turn, might
have a delete rule that then causes a value in |
Table_C to be set to NULL. |

This enhancement can ensure integrity across
several tables and reduce the programming
effort needed to develop an application. }

Improved EXPLAIN Capabilities

The EXPLAIN statement is used to analyze data
manipulation statements to provide information
about the structure, execution, and approximate
cost of the SQL statement being analyzed.

In Version 3 Release 4, the EXPLAIN function has |
been enhanced as follows: ‘

e Several new columns have been added to }
the existing EXPLAIN tables. :

* The EXPLAIN function can now be used as a !
preprocessing option for all static SQL state- |
ments embedded in an application program.

e A DBS utility job file is shipped with the !
SQL/DS product to generate EXPLAIN tables,
indexes, and views.

The enhanced EXPLAIN facility is more compat-
ible with the DB2* EXPLAIN facility. |

Host Structure Variables

|
Several of the host languages that are supported |
by the SQL/DS database manager let you define
variables in structured formats. For example, a 1
COBOL program might specify the following

structure for a three line address.

04 ADDRESS
05 LINE-1
05 LINE-2
05 LINE-3

A programmer can specify ADDRESS to refer to
all three lines.

xl)q‘

The SQL/DS database manager has been
enhanced to provide this kind of support for two
levels of structured variables. If you code a host
structure in an SQL declaration, you can use the
name of that host structure in any SQL state-
ment where you would otherwise code a list of
host variables. This facility is available for SQL
code embedded in application programs written
in C, COBOL, PL/I and RPG. If you code a struc-
ture with more than two levels, all of the lowest
two level substructures can be used as host
structures by the SQL/DS database manager.

Removal of 512 Host Variable
Restriction

The previous maximum number of host variables
allowed in a program module was 512. This
restriction has been removed. The number of
host variables is now restricted only by the size
of storage.

Enhanced SHOW STORAGE
Command

A new SHOW STORAGE operator command is
provided to let you determine the system load
and avoid problems caused by insufficient
storage. This command displays information
about system storage currently being used and
the maximum total storage usage.

The SHOW STORAGE command can be used
together with the RESET HIGHSTOR command.
By resetting the HIGHSTOR value, performing a
function and then invoking the SHOW STORAGE
command, you can determine the maximum
storage needed to perform the function.

Usability Enhancements

Package Dbspace Full Condition
Handling

Previously, when a package was dynamically
repreprocessed and a package dbspace full con-
dition occurred, the repreprocess would fail with
an SQLCODE of -946 and the user would then
need to explicitly recreate the package.

If this condition occurs with Version 3 Release 4,
the database manager will automatically search

XX SQU/DS Diagnosis for VM

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

for a non-full package dbspace that can accom-
modate the repreprocessed package. Manual
intervention will only be required if all package
dbspaces are full (if they already contain 255
packages or do not have enough free space to
hold the additional package).

The Connectable and Unconnected
State

When a severe error occurs, the logical unit of
work is rolled back and the communication link
is severed. This causes the application to enter
a “connectable and unconnected” state. Previ-
ously, if the next SQL statement was not a
CONNECT statement, SQL/DS caused the appli-
cation to abend.

However, if this condition occurs in Version 3
Release 4, SQL/DS does not cause the applica-
tion to abend, but issues a severe error code
instead; SQLCODE of -900 and SQLSTATE of
51018.

Dual Logging Enhancement

If you are using dual logs and one is damaged, it
can be replaced with a new minidisk. SQL/DS
will then copy the good log to the new one
without the necessity of doing a COLDLOG.

Reliability, Availability, and
Serviceability Improvements

Processing a DROP TABLE Statement

When a DROP TABLE statement is executed, the
rows of the specified table are not dropped
immediately; instead, the table is marked for
deletion by adding a row to the SYSDROP
system catalog table. After the current logical
unit of work (LUW) is committed, a new LUW is
started and the table is dropped.

For each page that contains data for the table
being dropped, an equal number of shadow
pages must be retained until the delete opera-
tion is completed, and the LUW can be com-
mitted. If the table occupies a large number of
pages, it is possible to run out of physical pages,
or to encounter a storage pool full condition.

LHO09-8081-03 70 Copyrignt I1BM Corp. 1987, 1983

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

With this enhancement, checkpoints are possible
as rows are deleted, freeing shadow pages more
quickly. As well, the database manager will no
longer abend if a storage pool full condition
occurs during a DROP TABLE operation.

Enhancement to COLDLOG
Processing

Previously, running a COLDLOG operation could
destroy log data needed for recovery if any
logical units of work were unresolved when the
database was last shut down. In Version 3
Release 4, the operator will get a warning
message if this condition exists and will be able
to cancel the COLDLOG operation before any
data is lost.

Improved Storage Trace

The storage trace facilities have been enhanced
to provide relevant trace point information about
the SQL/DS application server. The new facility
provides consolidated trace information for
system and working storage.

_LHO08-8081-03 © Copyright IBM Corp. 1987, 1983

It can be invoked either during database startup
with a new STARTUP command parameter or
after the database is started with the TRACE
operator command.

Library Enhancements

SQL/DS Performance Tuning
Handbook

A new manual provides information to enable
you to tune your SQL/DS system more effec-
tively.

Revised Manuals

The Database Administration and System Admin-
istration manuals have been revised to provide
you with better information.

Chapter 6 of the Database Administration manual
and Chapter 8 of the System Administration
manual have been removed; this information has
been included in the SQL/DS Performance
Tuning Handbook.

Summary of Changes for SQL/DS Version 3 Relesse 4 xxI

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

xxil sQL/DS Diagnosis for VM LH08-8081-03 © Copyright IBM Corp. 1987, 1993

"Restricted Materials of IBM”
Licensed Materials — Property of IBM

Chapter 1. Introduction to Problem Diagnosis

This chapter:

e Describes the tasks to be performed by persons involved in diagnosing prob-
lems that may be encountered with the SQL/DS RDBMS.

e Describes some tasks that you might use to solve particular types of prob-
lems.

e Offers guidance on using this book to effectively accomplish those tasks.

« Offers a “flowchart” to help you determine the correct chapter(s) and pages
to use to perform a task for a given condition(s).

If you have used this book before, you can skip the introductory remarks and go
directly to the flowchart or to the appropriate chapter.

You are here because someone has a problem using the SQL/DS RDBMS in a
VM environment. The problem may not be one of failure. It might be one of
poor performance, for example. In this case you would go to Chapter 5, “Diag-
nosing Performance Problems” on page 101 to attempt to isolate and diagnose
the problem. Completion of a diagnosis task could result in your going to
Chapter 3, “Reporting Defects” on page 69 to:

1. Systematically develop a keyword string to describe the problem.

2. Check whether this same problem is already documented and corrected.

3. Report the problem to IBM if it is a new one.
Using this book will expedite an IBM-supplied correction for a defect problem.
Use this book even when you are not thoroughly convinced that the SQL/DS
RDBMS caused the problem. Instead, one of these might be causing the
problem: a subtle user error, the current management of SQL/DS resources, or
another IBM* product. If your problem is occurring during distributed proc-

essing, you should also refer to the Distributed Relational Database Problem
Determination Guide.

This book also includes things you might want to do to aid in avoiding problems.

Diagnosis Flowcharts

Use the following flowchart to help you decide where you want to start using this
book. For example, if you are experiencing a performance problem associated
with a specific application or application function, this chart directs you to “Appli-
cation Function Indexes to Performance Problems” on page 106 which will lead
you through the path(s) to follow for diagnosing the problem. You may or may
not need to return from one of the paths to the starting point. Need is deter-
mined by the path selected and/or the results of the task performed along the
path.

LH09-8081-03 ® Copyright IBM Corp. 1987, 1983 1

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Problem Type;——y—v Report ProbableL—bPage 69 (Follow this section J

or Task | ! SQL/DS Defect | step—~by-step,
-

—_— ’ beginning to end)

_—

Performance‘<——————* Functional

Problem Problem
System Related
Error Codes Page 95
| .
A DBSS Error (via
j (—’ HSG ARID126E)
Page 3 SQL Command Failed(-901)
> Page 95
Page 213
Rolled Back Due to
Deadlock (-911)
—| Inconsistency » Page 96

in Database
Directory Rolled Back Due to
Excessive Lock

Requests (-912)

v + Page 96
Page 243
4 Rolled Back Due to Locks
} Held for this LUW (-915)
> Page 96
— | DBSS error (via
MSG AR10G46E Common User—Related
with module Error Codes: Page 96
prefix ARIY)
-101 .
> Page 96
-204
» Page 97
-301
> Page 97
-302
[—> Page 98
-305
> Page 99
-313
» Page 99

Functional)
Deviations: Page 99

—

Figure 2 (Part 1 of 2). Diagnosis Flowchart

2 3QUDS Diagnosis for VM LH09-8081-03 © Copyright IBM Corp, 1987, 1893

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

-

Performance
i

Symptom

Performance Problem
Indexes by Performance

Performance
Problem Indexes
by Function

Agent Related
Indexes
—— Page 111

CPU Related
Indexes
——— Page 112

1/0 Related
Indexes
————— Page 113

Locking Related
Indexes
— Page 114

Storage Related
Indexes
——— Page 114

Special Case
Indexes

L > Page 115

General Problem Indexes

»>Page 107

Data Definition
Problem Indexes
———————>Page 108

Data Manipulation
Problem Indexes
>Page 109

Data Authorization
Problem Indexes

»>Page 108

Data Utilities
Problem Indexes

»>Page 110

Recovery Control
Problem Indexes

+Page 111

Figure 2 (Part 2 of 2). Diagnosis Flowchart

LH09-8081-03 © Copyright IBM Corp. 1887, 1893

Chapter 1. Introduction to Probiem Diagnosis

3

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

4 sSQUDS Diagnosis for VM LHO09-8081-03 © Copyright iBM Corp. 1987, 1993

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Chapter 2. SQL/DS Concepts

This chapter presents an overview of the SQL/DS RDBMS, including its purpose
and function, and how it interacts with other programs. It is intended to provide
background information to enable more efficient tuning, monitoring and problem
determination. In particular, this chapter discusses the following concepts:

SQL/DS Components

Logical Unit of Work

Agent Handling
Mailbox/Communication
Package Management
Memory Management
Logical Storage Management
Physical Storage Management
Buffer Storage Management
Index

Sorting

Logging/Recovery

Locking

Termination.

LH09-8081-03 © Copyright IBM Corp. 1887, 1983]

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

Introduction

Figure 3 depicts the SQL/DS components and shows where they are executed in
the VM environment when using SQL/DS-only protocol.

p | VRA RDS
R
E
P
]
D
I D D B
3 s s s
L (o (o S
D
B DATA
le CONV.
Application Requester Application Server

Figure 3. SQL/DS Structure and Components when using SQL/DS-only Protocol.

Figure 4 depicts the SQL/DS components and shows where they are executed in
the VM environment when using DRDA protocol.

p | vRa WUM
E ——— DRRM ———— DRRM
P R DDM GENERATOR/ R DDM GENERATOR/
S) PARSER D PARSER
: :
t||IN D olllN B
s g S S M FD OCA B S
L R D (o] (] ' R S
e
DATA
D DATA A
B CONV. CONV.
S
V]
Application Requester Applioation Server

Figure 4. SQL/DS Structure and Components when using DRDA Protocol.

6 sSQuDS Diagnosis for VM LH098-8081-03 © Copyright IBM Corp. 1987, 1983

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

L SQL/DS Components in the Application Requester

Database Services Utility (DBSU)

The SQL/DS DBS utility is an SQL/DS application program. It is usually run as a
batch program and is used to load, unioad and reload data and packages, and
process SQL statements.

interactive SQL (ISQL)
ISQL is an interactive query environment that allows you to access an applica-
tion server from a display terminal.

Preprocessors (PREP)

The preprocessors compile the SQL statements in an application source
program and create a modified copy of the source program so that it is suitable
for language processing (compiling, assembling).

L VM Resource Adapter (VRA)
The VM resource adapter communicates between the user application and an
application server.

SQL/DS Components in the Application Requester and the Application Server

Data System Control (DSC)
| The DSC component provides the following control services. The majority of
L | these services are provided on the application server. Only the system-
| dependent routines and the communications services are provided on the appli-
[cation requester.

1. Initialization

DSC Initialization includes establishing the initial environment, and driving
the initialization and recovery process of the other SQL/DS components.

2. SQL/DS System Services

DSC provides Operator, Message, Trace, and Storage services for the other
‘ SQL/DS components.

3. Agent Handling and Communications

DSC allows other SQL/DS components to handle multiple concurrent users
and to communicate with them. The dispatcher function is provided for
multi-threading multiple application requests in the SQL/DS database
machine.

4. System-Dependent Routines

These routines shield the other SQL/DS components from the VM system
functions, allowing them to be system-independent.

5. SQL/DS Termination

DSC termination manages normal (SQLEND) and abnormal termination of the
SQL/DS database machine.

LHO09-8081-03 ® Copyright IBM Corp. 1887, 1983 Chapter 2. SQL/DS Concepts 7

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

Data Conversion (CONV)

Data Conversion is used for performing CCSID conversion on character and
graphic data. When the DRDA protocol is used, Data Conversion also performs
conversion of numeric data from one representation to another.

Distributed Relational Resource Manager (DRRM)

The DRRM component is only invoked when the DRDA protocol is used. It
resides in both the application server and the application requester. This com-
ponent provides the following services:

1. DDM/FD:OCA Generator and Parser

The DRRM component in the application requester generates requests to be
sent to an application server and parses replies received from an application
server.

The DRRM component in the application server parses requests received
from an application requester and generates replies to be sent to an applica-
tion requester.

2. DDM/FD:OCA Dictionary

The dictionary provides the definition of DDM and FD:OCA terms. These are
used by the DDM/FD:OCA Generator and Parser to build and interpret DRDA
data streams.

3. RDIIN Manager

The RDIIN manager is invoked by the DRRM Parser and Generator to inter-
pret or build the RDIIN structure. The RDIIN structure contains the
SQL/DS-specific internal format of SQL queries and replies.

SQL/DS Components in the Application Server

Work Unit Manager (WUM)

The WUM component is only invoked when the DRDA protocol is used. It acts as
the central control point between application requester and application server
conversations. It tracks the status of those conversations, the current unit of
work, and enforces the various DRDA protocol rules. It manages and provides
the interface between the DRRM and RDS components.

Relational Data System (RDS)
The RDS component provides the following services:

1. Executives
The executives manage all work done in RDS:

¢ The invocation of the parser, optimizer, authorization, statement gener-
ator, access generator and interpreter

¢ The block storage needed for statement compilation

* The loading and storing of packages.

2. SQL/DS Parser

The parser performs the primary syntactical analysis of the user’s SQL state-
ment and converts it into parse tree format.

8 SQUDS Diagnosis for VM LH09-8081-03 © Copyright IBM Corp. 1987, 18983

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

‘ A 3. Optimizer
The optimizer attempts to choose the optimal path to fulfill a user DML SQL
request, and represents it as an access plan for the access generator to
| implement. For more information on accessing data, see the Performance
| Tuning Handbook.

4. Gen-Time Access Generator

The Access Generator translates access plans generated by the optimizer
into easily interpretable control blocks.

5. Run-Time Access Generator

The Access Generator reads the control blocks representing the SQL/DS
DML and interprets them to perform the DML statement.

6. Statement Generator

The Statement Generator creates SQL/DS statements, turns them into easily
" interpretable control blocks, and adds them to the output of the Gen-Time
Access Generator.

7. Authorization

This component manages authorization functions. It controls recording of
privileges and ensures that only authorized operations are performed by
© SQL/DS users and applications.

8. Interpreter

ments by translating the parser representation of the statements and then

E The interpreter handles execution of data definition and of control SQL state-
immediately executing the appropriate database operation.

Database Storage Subsystem (DBSS)
The DBSS component provides the following services:

1. DBSS Initialization

The DBSS initialization process initializes the Work, Trace, Lock, Storage,

and Log components; opens the Directory, DBEXTENT(s), Logs, and

DBSPACEsS; sets the system counters to zero; and performs filtered log
L recovery if necessary.

2. DBSS Data Control

Data control operations manage the definition and operation of objects within
the database: DBSPACEs, tables, and indexes.

3. DBSS Data Manipulation

The Data Manipulation component retrieves and updates data in the data-
base.

4. Index Management

The Index component controls the space on index pages, and acts on behalf
of data manipulation calls to maintain indexes when tables are modified.

5. Sort Component

; The Sort component creates a sorted list of rows from an existing table. Sort
& order is based on values in one or more columns.

LH09-8081-03 ® Copyright IBM Corp. 1987, 1993 Chapter 2. SQUDS Concepts 9

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

6. Update Statistics

The Update Statistics component gathers statistics on DBSPACEs, tables,
and indexes, which are used by the RDS optimizer in path selection.

7. Logging and Recovery

The Log component maintains a record of all changes completed by each
logical unit of work, retaining old and new values for each updated object.

8. Work Component

The Work component controls the beginning and ending of LUWs (Logical
Unit of Work). It commits updates to the database or schedules rollbacks of
all work done by an LUW since the previous COMMIT or ROLLBACK.

9. Lock Component
The Lock component controls concurrent resource access.
10. Storage Component

The Storage component maps logical DBSPACEs to physical DBEXTENTs on
DASD, and does all database I/0.

The SQL/DS RDBMS in Single User Mode

In single user mode, DSC initializes the application server and creates three
agent structures: the operator agent, the checkpoint agent, and the user agent.
In addition to establishing the application server, DSC loads the application
program, be it a user routine or an SQL routine (preprocessors, DBS utility,
DBMS function, and so forth), and passes control to it.

The user application issues SQL requests, which are processed by the SQL/DS
Resource Adapter. The Resource Adapter passes the requests directly to RDS.
After a request has been processed, RDS first uses the DSC reply function to
return the data to the application program, and then returns control to the
Resource Adapter, which in turn passes control to the application program.
When the application program finishes processing all of its SQL requests, it
returns to the application server at the point where it was invoked by DSC, and
control is then passed to the SQL/DS termination routine.

The DSC termination function then closes the database files and returns control
to the host system.

DRDA protocol is not supported in single user mode.

The SQL/DS RDBMS in Mulitiple User Mode

When Using the SQL/DS-only Protocol

In multiple user mode, DSC initializes the application server and creates three
system agent structures: the operator, checkpoint and recovery agents. One or
more user agent structures, as specified by the NCUSERS initialization param-
eter, are also created. The requests are processed by the Resource Adapter
which uses DSC mailbox functions to package the request into a message and
invokes the DSC communication function to send the message to the SQL/DS
machine. The DSC dispatcher function dispatches an agent to process the SQL
request and passes the request to RDS for processing. The DSC reply function
packages the data in a message and sends the data back to the user machine.

10 SQUDS Disgnosis for VM LHO09-8081-03 © Copyright IBM Corp. 1987, 1883

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

After the reply function is complete, the DSC receive function gets the next SQL
request. This process continues until the SQL/DS operator issues a SQLEND
command. After this command is issued, no new users are allowed to establish
a connection with the application server. When the last connected user discon-
nects, control is passed to the DSC termination routine which closes the data-
base files and returns control to the host system.

When Using the DRDA Protocol

The SQL/DS Application Requester: The SQL request is processed by the
Resource Adapter. The Resource Adapter calls DRRM to convert the request
from its SQL/DS internal format and generate the DRDA DDM/FD:OCA format
suitable to be sent to a DRDA application server. The DDM portion contains the
request information, and the FD:OCA portion contains the data and its format.
The Resource Adapter then uses the DSC communication function to send the
request to the application server for execution.

When the reply is received from the application server, DSC receives the reply
and passes it to the Resource Adapter. The Resource Adapter then invokes
DRRM. The reply received is in the DRDA DDM/FD:OCA format. DRRM parses
this reply into the SQL/DS internal format, performing any necessary data con-
version. Parsing involves verification of syntax and semantics, and data conver-
sion.

The SQL/DS Application Server: The DSC dispatcher function calls the WUM
component to process the request sent by the application requester. The WUM
component calls DSC to receive the request. The request received is in the
DRDA DDM/FD:OCA format. When a request is received, WUM then invokes
DRRM to parse the request into the SQL/DS internal format. Parsing involves
verification of syntax and semantics, and numeric data conversion. WUM then
passes the request to RDS for processing. RDS returns the reply to WUM, but
before sending it, WUM calls DRRM to generate the DRDA DDM/FD:OCA format
of the reply. WUM then invokes the DSC communication function to send the
reply back.

Logical Unit of Work Concepts

The logical unit of work (LUW) serves as the unit of consistency, allocation, and
recovery for a user. Also, at the boundaries of a logical unit of work, the real
agent structure is reset.

In general, a logical unit of work supports a set of one or more SQL statements.
When these statements are issued by an application, a logical unit of work is
automatically started. In general, the user application controls the length of the
LUW by the SQL COMMIT WORK and SQL ROLLBACK WORK statements. There
are other mechanisms that control the length of a logical unit of work. These are
discussed under the headings “Explicit Termination of an LUW"” on page 12 and
“Implicit Termination of an LUW" on page 12.

Atomicity of SQL Statements:

SQL statements are atomic. This means that the SQL/DS database manager
does not allow a statement to be only partially completed; for example, when a
statement that makes several changes to the database is being processed, and
an error occurs after some changes have already been made, the database

LH09-8081-03 © Copyright IBM Corp. 1987, 1993 Chapter 2. SQUDS Concepts 11

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

manager undoes those changes before returning to the calling application. The
net effect is as if the SQL statement was never issued.

Note: Atomicity is not supported for objects stored in nonrecoverable storage
pools. Also, when LOGMODE =N, the atomicity of a statement can only be
enforced by rolling back the entire logical unit of work.

Agent Handling:

While a logical unit of work is in process, the user is associated with a real
agent. In the SQL/DS RDBMS, the number of real agents is limited by the
NCUSERS initialization parameter. Thus NCUSERS is the maximum number of
active logical units of work at any one time.

End of LUW Processing:

Whenever a logical unit of work terminates, normally or abnormally, internal
DBSPACEs that were allocated are freed and any remaining locks are released.

Explicit Termination of an LUW:

There is no explicit invocation to start a unit of work. All explicit invocations
have to do with termination or recovery of a logical unit of work. The following
actions result in explicit termination of a logical unit of work:

e Commit. This is invoked when a user issues the SQL COMMIT WORK state-
ment.

¢ Rollback. This is invoked when a user issues the SQL ROLLBACK WORK
statement.

Implicit Termination of an LUW:

The following cause an implicit termination of a logical unit of work.
e The SQL/DS FORCE command. In general, this supports only rollback.

* Specific abnormal conditions. These conditions include log full, deadlock,
and storage pool full.

e Return to CMS command line.
¢ The SQLRMEND exec

Agent Handling Concepts

The SQL/DS RDBMS uses a set of control blocks called an agent structure (or
real agent) to service requests from multiple users to access a common data-
base.

There are always two SQL/DS agent structures created: the Operator and the
Checkpoint agents. (The initialization process is executed under the Operator
agent. The checkpoint agent is activated whenever a checkpoint is to be taken.)
In single user mode, there is also a User agent structure under which the user’s
SQL requests are executed. In multiple user mode, one or more real agent
structures are allocated; the number is equal to the value of the NCUSERS
initialization parameter. There is also a set of agent structures called "pseudo-
agents.” (See "Pseudo-Agent and Real Agent Structures” on page 13). The

12 squos Diagnosis for VM LHO09-8081-03 © Copyright IBM Corp. 1987, 1983

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

number of pseudo-agents allocated is equal to the value of MAXCONN specified
in the VM directory less the number of CMS DASDs used for the database and
one for the connection to *IDENT. Also, in multiple user mode, a
Ready/Recovery system agent structure is created.

The User agents are either general purpose or “in-doubt” agents. An agent is
in-doubt when it has reached a point in processing where the work may either
be committed or rolled back. If the database manager (or CICS) abnormally ter-
minates at such a time, the next time it is restarted, the SQL/DS (or CICS) log is
coordinated by way of the Ready/Recovery agent, and the in-doubt agents have
the suspended work either committed or rolled back. Normally, agents are
general purpose; however, in a Guest Sharing CICS environment, the general
purpose agents can be in-doubt agents. There are also prototype agent struc-
tures created. This type of agent is not dispatchable and is used for storage pur-
poses only.

Agent Handling Functions
Agent handling consists of:

e Allocating users to agent structures
* Dispatching agent structures
e Agent processing at the end of a logical unit of work (LUW).

Allocating Users to Agent Structures
There are differences in agent handling between single user mode and multiple.

In single user mode this process is quite simple. There are three agents
created: the Operator, Checkpoint, and User agents. At initialization time, the
Operator agent performs the initialization functions. When initialization is com-
plete, it becomes dormant and passes control to the User agent, which is said to
be "dispatched.” The User agent executes until a checkpoint or archive is
required, at which point the Checkpoint agent is dispatched, and the User agent
waits until the checkpoint has been completed. When the checkpoint is com-
plete, the User agent is redispatched to continue processing. When the applica-
tion program terminates, it returns control to the database for termination.
Termination ensures that a final COMMIT or ROLLBACK is executed as neces-
sary, based on the state of the last LUW.

In multiple user mode (MUM), when initialization has been completed, all the
user agents are dormant (not allocated). When the user issues an SQL state-
ment, a connection is established between the user machine and the database
machine. This connection is made to a pseudo-agent structure by way of an
IUCV or APPC/VM CONNECT.

Note: The IUCV or APPC/VM CONNECT results in an external interrupt in the
database machine. The SQL/DS external interrupt handler allocates the pseudo-
agent to the user and attempts to allocate a real agent, if available, to the
pseudo-agent.

Pseudo-Agent and Real Agent Structures:

Each real agent requires approximately 110K bytes of storage. (This does not
include dynamic storage requirements such as package storage.) Because it
would not be practical in terms of storage and performance to allocate a real

LH08-8081-03 © Copyright IBM Corp. 1987, 1993 Chapter 2. SQUDS Concepts 13

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

agent for each user, pseudo-agents that use less than 600 bytes of storage were
developed. Pseudo-agents allow many users to share (but not concurrently) a
few real agent structures. Pseudo-agents are allocated to the real agent struc-
tures in FIFO order.

When a user virtual machine CONNECTSs to the database machine, that user is
allocated a pseudo-agent. The pseudo-agent is then placed in an “in use”
queue until the user associated with that pseudo-agent sends a message to the
database machine. That pseudo-agent is then allocated a real agent (assuming
one is available). If all real agents are in use, any users having sent messages
to the database machine have their pseudo-agents placed on a “wait" queue
until a real agent is available. A real agent becomes available whenever an
active user (one whose pseudo-agent already owns a real agent) completes a
logical unit of work. At this point, the first waiting pseudo-agent is allocated to
the newly available real agent. If the pseudo-agent that has just completed the
unit of work sends another message, it is added to the end of the waiting
pseudo-agent queue.

With Guest Sharing, the SQL/DS Online Resource Adapter, running under the
control of CICS, can establish the number of communication links specified
during Online Resource Adapter Initialization. Each of the links is associated
with a pseudo-agent to which a real agent is permanently assigned. These
pseudo and real agents are not available to other users until the Online
Resource Adapter is terminated.

After real agents are connected to a user, they are dispatched in a
nonpreemptive priority fashion. The following discussion describes the SQL/DS
dispatching scheme for real agents.

Dispatcher Components

The SQL/DS dispatcher is a nonpreemptive dispatcher, which means agents
must be willing to give up control of the processor. When agents give up control
of the processor, they turn control of the processor over to the SQL/DS dis-
patcher. When given control, the dispatcher accomplishes the following actions:

* Agent Prioritization
* Fair Share Auditing
* Locating and dispatching a dispatchable agent.

The prioritization scheme ensures that agents are prioritized so that shorter
LUWs are given preferential treatment over longer ones. Fair share auditing is a
scheme that ensures that no LUW is denied a share of the processor indefinitely.
Finally, among all the agents, the dispatcher is responsible for locating a
dispatchable agent (that is, an agent that is not waiting for some event to occur—
I/0 completion, communications with a user, and so forth) and allowing the
agent to use the processor (dispatching it).

Conceptual Overview of Prioritization Scheme
Prioritization of agents, which occurs after each dispatch, is based on the
amount of referencing of database pages that agents do. Agents are sorted in

ascending order in the dispatch queue based on their database page reference
count values.

14 sQL/DS Diagnosis for VM LH09-8081-03 ® Copyright IBM Corp. 1987, 1893

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

The priority dispatcher selects dispatchable agents by scanning the dispatch
queue from the top to bottom in search of a dispatchable agent. Upon return to
the dispatcher, the returning agent must undergo reprioritization in the dispatch
queue.

The reprioritization process scans the disbatch queue to find the appropriate
position in the dispatch queue for the returning agent. The process assumes
that the dispatch queue is always sorted by agents’ database page reference
count. Thus, for performance reasons, the queue is scanned, beginning with the
agent (in the dispatch queue) that follows the returning agent. By scanning the
dispatch queue, the reprioritization process looks for the first agent with a data-
base page reference count greater than the database page buffer reference
count for the returning agent. If an agent with a database page buffer reference
count is encountered before the end of the dispatch queue is reached, the
returning agent is placed between the agent with the higher database page ref-
erence count and its predecessor. If the scan reaches the bottom of the dispatch
queue, the returning agent is placed at the bottom of the dispatch queue. This
mechanism ensures that the dispatch queue is always ordered. Note that
reprioritization applies to user or general purpose agents only. “Special
purpose” or “system” agents—operator and checkpoint—are not reprioritized
after each dispatch; rather, they permanently reside at the top of the dispatch
queue so that they receive the highest priority assigned to any agent.

After the above process has been completed, the reprioritization scheme is com-
plete and the Fair Share Auditing process is invoked.

Conceptual Overview of the Fair Share Auditing Process
The function of the Fair Share Auditing process is to scan the dispatch queue
bottom-up, find one “deprived” (see description of deprived below) agent, and
enqueue that agent at the top of the dispatch queue (just below the system
agents). Being enqueued at the top of the dispatch queue allows a deprived
LUW the highest priority given to a general purpose agent for the next dispatch.

Finding “Deprived” Agents
When Fair Share Auditing is invoked, the “fair number” of buffer references that
an agent should have received during the interval is computed. The fair number
of buffer references is expressed by the formula:

total-buffer-references-during-the-interval

number-completed-LUWs + NCUSERS

The Fair Share Auditor scans the dispatch queue bottom-up and searches for the
first general purpose agent that has an interval buffer reference count value less
than the computed value of the above formula. If an agent is found that has an
interval buffer reference count value less than the computed “fair number” it is
called deprived.

LHO09-8081-03 © Copyright IBM Corp. 1987, 1993 Chapter 2. SQU/DS Concepts 15

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

Setting Fair Share Interval Size

Users can control the frequency of Fair Share Auditing by changing the value of
the SQL/DS parameter DISPBIAS. The frequency of Fair Share Auditing (Fair
Share Interval Size) is measured in dispatches. The table shown below
describes the mapping from a particular DISPBIAS setting to a Fair Share
Interval Size. For example, selecting DISPBIAS =1 causes Fair Share Auditing to
occur every seven dispatches, 2 causes it to occur every seventeen dispatches
and so forth, as follows.

Fair Share
DISPBIAS Interval Size

7

17

39

97
263
753
2215
6593
19719
0 59089

2 O oOONOOO S WN

The DISPBIAS setting can be used to control the way the dispatcher treats
various LUWs. A setting of 10 causes short LUWs to be strongly favored and
long LUWSs to be strongly disfavored whereas a setting of 1 causes less
favoritism among long and short LUWs. The default for DISPBIAS is 7.

After Fair Share processing has been completed, the function concludes by
scheduling the time of the next auditing interval. After the next interval has been
scheduled, the dispatcher starts scanning the prioritized dispatch queue from top
to bottom in search of a dispatchable agent to actually be dispatched and
receive control of the processor.

Locating and Dispatching a Dispatchable Agent

Agents are prioritized in the dispatch queue by the prioritization scheme. The
Fair Share ‘Auditor completes its fair share auditing process if a Fair Share
Interval has expired. The dispatcher scans the agents starting from the top of
the dispatch queue, testing its associated wait flags to determine whether the
agent is dispatchable. An agent is dispatchable only if it is not waiting. The
various wait state conditions are tested in the order listed below. The first agent
encountered by the dispatcher that is dispatchable.is given control of the
processor (dispatched). When no agent is dispatchable, the database manager
performs a system wait. If an agent is waiting, it is in one of eight wait states,
which are mutually exclusive:

1. /0 Wait
In I/0 wait, the agent is waiting for an I/O operation to be completed.
2. Inactive

This condition occurs only at initialization time and when the agent is not
connected to a communication link.

16 sQU/DS Diagnosis for VM LH09-8081-03 © Copyright IBM Corp. 1987, 1993

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

‘ 3. Lock Wait

In lock wait, the agent is waiting to obtain a lock held by another agent.
4. Latch Wait

in latch wait, the agent is waiting for a latch on a page or block buffer which
is in use by another agent who is reading into the buffer.

5. APPC/VM Wait

This wait state is entered by an agent when an APPC/VM RECEIVE or
SENDDATA is not completed immediately. The APPC/VM function is com-
plete when VM has moved the data into or out of the message buffer.

6. Communication Wait

In communication wait, the agent is waiting for a message to be sent from
the user.

‘ 7. General Wait

This wait state condition is entered by other agents whenever the Checkpoint
agent is dispatched.

8. Buffer Wait

This wait occurs when an agent requests a data pagé or directory block
buffer to transfer data to or from, but none is available. The agent waits for
one to become available.

following order: 1/0 wait, lock wait, latch wait, APPC/VM wait, communication

The above wait state conditions and dispatchability of an agent are tested in the
L wait, general wait, and buffer wait.

Agent Processing at the End of an LUW
When a user compietes an LUW (end-of-LUW), that user relinquishes ownership
of the real agent (see “Pseudo-Agent and Real Agent Structures” on page 13).
A user maintains ownership of a real agent only if no other users are waiting for
a real agent, and the current user has issued another SQL request.

L Communications Concepts

SQL/DS communications support is provided by IUCV in a VM/XA environment
and by APPC/VM in a VM/SP and a VM/ESA environment. The communications
concepts differ slightly depending on the selected protocol. When using the
SQL/DS-only protocol, requests are sent and replies are received through mail-
boxes. When using the DRDA protocol, communication takes place in the form of
request and reply data streams.

Concepts on the Application Requester

When the selected protocol is SQL/DS-only, the Resource Adapter uses DSC to
package the user's SQL statement into a “mailbox.” Then, DSC sends the
| mailbox to an SQL/DS application server and waits for a reply. The mailbox is
| stored in one buffer. One send action is required to transmit it. When the reply
is detected by the Resource Adapter, it uses DSC to receive the mailbox. The
L Resource Adapter unpackages the reply and moves it to the user’s application
| area. The mailbox is received in one or more receive actions using the same
| buffer.

LH09-8081-03 © Copyright IBM Corp. 1987, 1983 Chapter 2. SQL/DS Concepts 17

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

When the selected protocol is DRDA, the Resource Adapter uses DRRM to
convert the user’s SQL statement from its SQL/DS internal format and package it
into a DRDA request data stream. This format is suitable to be sent to a DRDA
application server. The Resource Adapter then uses DSC to send the request
data stream to an SQL/DS or non-SQL/DS application server and waits for a
reply. The data stream is stored in a list of buffers and is transmitted with
exactly one send action. When the reply is detected by the Resource Adapter, it
uses DSC to receive the reply data stream. The Resource Adapter then invokes
DRRM which converts the data stream into its SQL/DS internal format before it is
moved to the user’s application area. The data stream is received in one or
more buffers.

Concepts on the Application Server

When the protocol selected is SQL/DS-only, the application server uses DSC to
receive the mailbox. RDS then interprets the request in the mailbox and calls
DBSS one or more times to process it. Having processed the request, RDS
packages the reply in a mailbox and uses DSC to send it to the application
requester. The entire mailbox or a section is transmitted with each send action.
If the mailbox is large, several send actions are required to transmit it.

When the protocol selected is DRDA, the application server uses DSC to receive
the request data stream. The DRRM component is used to convert the request
from its DRDA format into the SQL/DS internal format. RDS then interprets the
request and calls DBSS one or more times to process it. If the request gener-
ates any reply data rows, this data is contained in an output mailbox. DRRM
must be used again to convert the reply into the form of a DRDA reply data
stream before being sent back to the application requester by DSC. The reply
data stream is stored in a list of buffers (if more than one buffer is required) and
is transmitted with exactly one send action.

Inter-User Communications Vehicle (IJUCV) Protocol

Figure 5 on page 19 shows how an SQL/DS application server uses IUCV in a
VM/XA environment. Both the application requester and the application server
use the HNDIUCV macro to enable IUCV communications. This allows the appli-
cation requester to connect to the application server and communicate.

Note: VM does not queue subsequent connections after the maximum number
of connections has been reached.

The application requester calls CMSIUCV CONNECT to establish an IUCV con-
nection to the application server. This causes an external interrupt to be pre-
sented to the application server. VM passes control to the External Interrupt
Handler (EIH). The EIH calls CMSIUCV ACCEPT to accept the connection and
allocates a pseudo-agent to represent it. IUCV reflects the connection com-
pletion to the application requester.

At this point, the application requester calls IUCV SEND (with reply) and waits for
the reply. This causes a message pending interrupt to be presented to the appli-
cation server. EIH gets control and posts the RECEIVE ECB (RECB) associated
with the pseudo-agent. If a real agent is not allocated to the pseudo-agent, one
is allocated to it if available; otherwise, the pseudo-agent is placed in the wait
queue. When a real agent is allocated to the pseudo-agent the SQL/DS Dis-
patcher moves it to the active queue and initiates execution.

18 sQuUDS Diagnosis for VM LH09-8081-03 © Copyright IBM Corp. 1987, 1993

"Restricted Materials of IBM"

Licensed Materials — Property of IBM

‘ When the request has been processed, the application server calls I[UCV REPLY
to send the reply to the application requester. The application requester posts
the SEND ECB (SECB) and proceeds to process the next request (if one exists).

When all requests have been processed, the application requester calls
CMSIUCYV SEVER to sever the communications link. This causes a sever
pending interrupt to be presented to the application server. The EIH receives

control and calls CMSIUCV SEVER to sever its half of the link. The agent is reset

and reassigned to another connection.

Having severed the link, the application requester uses the HNDIUCV macro to
disable IUCV communications.

Application Requester

; INITIALIZE COMMUNICATIONS (HNDIUCV)

CONNECT to SQL/DS Application Server——|

(CMSTUCVY)
Watt for connection
(WAITECB CECB)

SQL/DS EIH post CECBe |

Application Server

INITIALIZE COMMUNICATIONS (HNDIUCV)

j——=>sQL/DS External Interrupt
Handler (EIH). Allocates a
pseudo-agent and puts it in
the "In-Use" queue.

"
SEND(with REPLY)to SOL/DS——|

'
WAIT for REPLY
(WAITECB SECB)

I »SQL/DS EIH. Accepts
pending connection (CMSIUCV).

j——— sQL/DS EIH. Post the RECB.

If pseudo-agent has been
allocated to a real agent,
return. If not, and a real
agent is available, allocate
it to the pseudo-agent and
return. Else place the pseudo
agent at end of wait queue.

RDS

’
SQL/DS EIH post SECB <—

—RECLEN=0
(SENDR) EOP?

T
YES

» Dispatcher (WAITECB
RECB)
RECEIVE

Call DBSS

——N0— End of Command

T
YES

DISCONNECT from SQL/DS

REPLY
1

EOP? —YES
T
KO

(cHstucy)
LOGOFF from IUCV
(HNDIUCY)

— Dispatcher(WAIT RECB)

|
| RECEIVE

+SQL/DS EIH. If pseudo-agent has
been allocated, a real agent
posts the RECB. If not, then
SEVER the application server
side of the connection (CMSIUCV).

Figure 5. SQL/DS Use of the VM IUCV Functions

- ~ LHO0%-8081-03 ® Copyright IBM Corp. 1987, 1993

Chapter 2. SQL/DS Concepts

19

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

| Advanced Program-to-Program Communications/VM (APPC/VM) Protocol

Figure 6 on page 23 and Figure 7 on page 24 show how an SQL/DS application
server uses APPC/VM in a VM/SP and VM/ESA environment.

APPC/VM is not supported in a VM/XA environment. APPC/VM can be used
when either the SQL/DS-only protocol or DRDA protocol is selected.

Both the SQL/DS application requester and the SQL/DS application server use
HNDIUCV SET to enable APPC/VM communications. This enables an SQL/DS
application requester to communicate with either an SQL/DS or non-SQL/DS
application server. It also enables an SQL/DS application server to communi-
cate with an SQL/DS or non-SQL/DS application requester.

The SQL/DS application server also establishes a connection to the *IDENT
system service to identify itself as the application server for a particular
resource (database). The connection is maintained until the application server is
deactivated.

Note: VM does not queue subsequent connections after the maximum number
of connections has been reached. But if an outbound connection is routed
through an AVS gateway and all sessions are in use, AVS queues the connection
until a session becomes available or until the session limit between the AVS
gateway and the remote LU is increased. There is no time-out mechanism and a
connection can be pended indefinitely. It is recommended that you define your
session limit high enough to contain peak periods of usage.

The SQL/DS application requester calls CMSIUCV CONNECT to establish an
APPC connection with an application server. This causes a connection pending
interrupt to be presented to the application server. In the case of an SQL/DS
application server, VM passes control to the External Interrupt Handler (EIH).
The EIH calls CMSIUCV ACCEPT to accept the connection and allocates a
pseudo-agent to represent it. APPC/VM reflects the connection completion to
the ‘application requester.

If an SQL/DS application requester chooses to use SQL/DS-only protocol to com-
municate with an SQL/DS application server in the TSAF collection or some-
where in the SNA network, the SQL/DS application requester uses the APPC/VM
SENDCNF function to request an acknowledgement from the SQL/DS application
server that the connection request has been accepted. The SQL/DS application
server uses the APPC/VM SENDCNFD function to acknowledge its acceptance.

The SQL/DS application requester uses the APPC/VM SENDDATA function with
the RECEIVE =YES option to transmit the individual request to the application
server and waits for a reply. This causes an external interrupt to be presented
to the application server. In the case of an SQL/DS application server, VM
passes control to the EIH which posts the Receive ECB (RECB) associated with
the pseudo-agent. If a real agent is not allocated to the pseudo-agent yet, one is
allocated to it if available; otherwise, the pseudo-agent is placed in the wait
queue. When a real agent is allocated to the pseudo-agent the SQL/DS Dis-
patcher moves it to the active queue and initiates execution.

For the first request in a logical unit of work (LUW), the SQL/DS application
server uses the APPC/VM RECEIVE function to buffer the request. Initially it uses
a default 1K buffer. If the default 1K buffer can not contain the entire request,
overflow buffers are allocated and one or more calls to APPC/VM RECEIVE are

20 SQL/DS Diagnosis for VM LH09-8081-03 ©® Copyright IBM Corp. 1887, 1993

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

issued to buffer the entire request. Eventually, in both private and DRDA flows,
the entire request is contained in one buffer. This buffer becomes the default
receive buffer for the remainder of the logical unit of work or until an even larger
request is received. Subsequent requests within the same LUW are automat-
ically moved into this default buffer. If there is overflow, again the same proce-
dures are used to buffer the entire request.

If an insufficient storage situation arises in the process of buffering the request,
the SQL/DS application server uses the APPC/VM SENDERR function to purge
the buffered portion of the request plus any portion pending to be received.
Then it uses the APPC/VM RECEIVE function to return to Receive state so that it
can process the next request.

After the request has been processed, the SQL/DS application server uses the
APPC/VM SENDDATA function with RECEIVE =YES and RECEIVE=NO when
appropriate to transmit the reply back to the application requester.

SQL/DS-only Protocol: The reply is stored in a 32K buffer (mailbox) in its
entirety or a 32K segment at a time. If the reply is longer than 32K, several calls
to APPC/VM SENDDATA are issued to transmit the entire reply to the application
requester. The 32K buffer is simply reused to transmit a segment each time.

If the entire reply fits in the buffer, one call to APPC/VM SENDDATA suffices to
transmit it. If an end-of-LUW condition is detected, RECEIVE =YES with a zero
reply length is specified; otherwise RECEIVE =YES is specified with a reply
length set to the length of the default buffer.

If the reply is segmented, APPC/VM SENDDATA is called several times with
RECEIVE =NO and reply length set to zero. To send the last segment of the
reply, APPC/VM SENDDATA is called with RECEIVE =YES and zero reply length
(when end-of-LUW) or RECEIVE=YES and reply length set to the length of the
default buffer (when not end-of-LUW).

DRDA Protocol: The reply is stored in a single linked-list of buffers. One call to
APPC/VM SENDDATA with RECEIVE =YES always suffices to transmit the entire
reply. If the agent is at the end-of-LUW, a zero reply length is specified to cause
the application server to issue an APPC/VM RECEIVE to buffer the next request.
Otherwise, a reply length equal to the length of the default buffer is specified to
cause the next request to be moved automatically to the reply area. Synchro-
nous communications are used to ensure that the buffer list is released only
after the reply is received by the application requester. If while processing the
request, the application server detects a severe error relating to its contents,
APPC/VM SENDERR is called to purge the request and send an error indication
to the application requester.

When the SQL/DS (or non-SQL/DS) application server issues an APPC/VM
SENDDATA (or equivalent), an external interrupt is presented to the SQL/DS
application requester. VM passes control to.the EIH which posts the Send ECB
(SECB). This action Is treated as the completion of the original APPC/VM
SENDDATA with RECEIVE =YES issued by the SQL/DS application requester to
send the request to the application server. If the reply overflows the default
reply buffer, then one or more calls to APPC/VM RECEIVE are issued to receive
the entire reply. After the ECB has been posted, the application requester can
continue processing. This involves moving the reply data to the application area
and sending the next request.

LHO09-8081-03 © Copyright IBM Corp. 1987, 1983 Chapter 2. SQL/DS Concepts 21

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

When all requests have been processed, the SQL/DS application requester uses
the CMSIUCV SEVER function to terminate the connection. The SQL/DS applica-
tion server is presented with an external interrupt and informs the real agent, if
one is allocated to the pseudo-agent, that the application requester has termi-
nated its half of the connection. If a real agent has not been allocated to the
pseudo-agent, the EIH uses the CMSIUCV SEVER function to terminate its half of
the connection. Otherwise, the SQL/DS Dispatcher deallocates the real agent
from the pseudo-agent and terminates its half of the connection likewise.

Finally, the SQL/DS application requester uses the HNDIUCV CLEAR function to
disable APPC/VM communications.

22 sQL/DS Diagnosis for VM LH09-8081-03 © Copyright IBM Corp. 1987, 1993

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

Application Regquester

Enable for
Communications
(HNDIUCV SET)

Connect to Resource -
CMSIUCV CONNECT —_—
WAITaYES

(Remote route only)
Request Confirmation
SENDCNF to Resource —»

WAITaYES I
Acknowledgement -—
completes request I

Connection complete ———

Build Input Mailhox

SENDDATA,RCV=Y,
ANSLEN=32K-1
BUFLIST=NO
WAIT=YES/NO

WAIT for Reply

Application Server

Enable for
Communications
(HNDIUCV SET)

CONNECT to *IDENT
(Identify Resource ID to VM)

SQL/DS EIH RECEIVEs 'Allocate Data',
Copies synclevel from Allocate Data to
pseudo-agent and puts on "In Use® queue

SQL/DS EIH RECEIVEs Confirmation
Request and sends Acknowledgement
using

SENDCNFD

SQL/DS EIH ACCEPTs pending connection

— SQL/DS EIH Posts RECB

If allocated to Real Agent RETURN
If Real Agent available allocate and RETURN
Else put at end of wait queue.

]

EIH post SECB ———

Data Moved W(W
into Output
Mailbox Buffer

<« SENDDATA,RCV=N ,ANSLEN=8

YES—| EOP?
T
NO
RECEIVE ——
WAIT=YES/NO
End of
Application?
NO YES

+ Dispatcher
RDS

If 1st Send in LUW then RECEIVE
If LEN > default buffer len then RECEIVE
Call DBSS

»Bulld Output MailBox

EOP? l—VES-O End Of LUW—>YES—

T | SENDDATA, RCV=Y, —
NG NO ANSLEN=8
L »SENDDATA,RCVaY,—»
ANSLEN=de fault

buffer length

Disconnect from
Application Server 1
(CMSTUCY)

Disable Communications
(HNDIUCV CLR)

*>SQL/DS EIH

Sever pseudo-agent 1f not connected
to real agent.

Post Flags

Return

—————(Dispatcher)
Deallocate real agent from
pseudo-agent,
Sever pseudo-agent

Figure 6. SQL/DS APPC/VM Communication Protocol with SQL/DS Flows.

LH09-8081-03 © Copyright IBM Corp. 1987, 1893

Chapter 2. SQL/DS Concepts

23

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

Application Requester Application Server
Enable for Enable for
Communications Communications
(HNDIUCV SET) (HNDIUCV SET)

CONNECT to *IDENT
(Identify Resource ID to VM)

Connect to Resource -
CMSIUCV CONNECT — SQL/DS EIH RECEIVEs from 'Allocate Data'.
WAIT=YES T Copies synclevel, conversation type

and LUWID from Allocate Data to pseudo-
agent and puts on "In Use" queue.

Connection complete «——— SQL/DS EIH ACCEPTs pending connection

Build DRDA Request(s)

SENDDATA,RCV=Y, ~—————T—> SQL/DS EIH Posts RECB

ANSLEN=32K-1
BUFLIST=YES
WAIT=YES/NO If allocated to Real Agent RETURN

1f Real Agent available allocate and RETURN
Else put at end of wait queue.
WAIT for Reply

—— Dispatcher
RDS

EIH post SECB «———

If 1st Send in LUW then RECEIVE LEN=1K
In Send State?—N
Move data to
other buffer RECEIVE LEN=32K-1
YES WAIT=YES
YES— In Send
State?
Call DBSS
Build DRDA Reply(ies) in Buffer List
Move to NO
single End of LUW?——sYES
buffer
SENDDATA RCV=YES,BUFLIST=YES,
RECEIVE —— NO ANSLEN=8,WAIT=YES:
WAIT=YES |
SENDDATA RCV=YES,BUFLIST=YES,
End of ——— ANSLEN=default buffer length,
ApTHcation? WAIT=YES
NO YES
—
Disconnect from *SQL/DS EIH
Application Server T Sever pseudo-agent if not connected
(CMSIUCY) to real agent.
Disable Communications Post Flags
(HNDIUCV CLR) Return

—=(Dispatcher)
Deallocate real agent from
pseudo-agent.
Sever pseudo-agent

Figure 7. SQL/DS APPC/VM Communication Protocol with DRDA Flows.

24 sQU/DS Diagnosis for VM

LH09-8081-03 ® Copyright IBM Corp. 1887, 1883

C

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

Application Program Use of IUCV or APPC/VM

Use of IUCV or APPC/VM does not preclude application programs from using
IUCV or APPC/VM while using the SQL/DS RDBMS. This applies to application
programs running in both muitiple user mode and single user mode. When
invoking IUCV or APPC/VM, the application program must follow the same proto-
cols that the SQL/DS RDBMS follows when it uses IUCV or APPC/VM:

1. Issue an HNDIUCV macro with the SET option to identify the application as
an IUCV or APPC/VM program.

2. Issue a CMSIUCV macro with the CONNECT option to establish a connection
to another virtual machine, and issue a CMSIUCV macro with the ACCEPT
option to accept a connection from another virtual machine.

3. Perform application communications, as appropriate.

4. Issue a CMSIUCV macro with the SEVER option to terminate a connection
with another virtual machine.

5. Issue an HNDIUCV macro with the CLR option to indicate that the application
no longer uses IUCV or APPC/VM services.

In single user mode, the SQL/DS RDBMS uses IUCV to communicate to the VM
DASD BLOCK /0 System Service. In this case, the CMS HNDIUCV and
CMSIUCV macros are issued to establish the communication paths to the data-
base devices. The Resource Adapter does not use IUCV or APPC/VM in single
user mode, because it communicates directly with the application server.

in addition to using the CMS IUCV support, the user must also ensure that the
MAXCONN value for the directory of the virtual machine is large enough to
handle all the communication links that may be active at one time. In muitiple
user mode, the SQL/DS Resource Adapter requires only one communication link.
In single user mode, the SQL/DS communication paths to the database devices
are allocated prior to the application program being invoked. Therefore, the
number of communication paths available to the application program is the
MAXCONN value minus the number of database devices.

For further information on IUCV or APPC/VM, refer to the Connectivity Planning,
Administration, and Operation manual for your IBM VM System Product.

Package Management Concepts

A package is the internal representation of an application program. It is made
up of:

* A header, containing control information about the package, like the preproc-
essing options in effect.

* A series of sections. In general, a section is created for each DML or DDL
statement in the application program. The section contains the internal form
of the SQL statement.

* The statement itself (to be used for dynamic repreprocessing).

LH09-8081-03 ® Copyright IBM Corp. 1887, 1983 Chapter 2. SQL/DS Concepts 25

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

The RDIIN is the control block passed to the application server by the application
program. It contains all the information necessary for the application server to
fulfill an application request. The RDIIN is received by the RDS component of the
application server and then passed to the appropriate handler to perform the
requested function.

When using the DRDA protocol, the RDIIN on the SQL/DS application requester
is first translated into DDM commands by the RDIIN Manager before it is sent to
the application server. Each DDM command received on the SQL/DS application
server is then translated back into an RDIIN format by the RDIIN Manager.

Preprocessing

There are certain RDIIN calls that are specifically reserved for language pre-
processor functions. The RDIIN call types for preprocessors and their functions
are as follows:

¢ Preprocessor Initialization Call: results in the binding of the preprocessed
program and its creator to an unused package. A row of the SYSACCESS
table is updated and bound to the package being preprocessed.

¢ SQL Statement Call: results in the passed SQL statement being parsed and
then, if appropriate, optimized and transformed into control blocks that
describe how the statement is to be performed. Only data manipulation
statements (SELECT, UPDATE, DELETE, and INSERT) are optimized and
transformed into control blocks. In general, all other statements are consid-
ered interpretive and are stored in a parse tree format only.

¢ Preprocessor Finish Call: is issued by the preprocessor after all SQL state-
ments in the application have been processed. It causes the finalization of
the package in the case of successful preprocessing. The preprocessor then
issues a COMMIT WORK to end the logical unit of work (LUW) started by the
preprocessor initialization call. Unsuccessful preprocessing resuits in a
rollback of the preprocessor logical unit of work.

There are four basic functions performed during SQL statement call processing:
Parsing, Optimization, Access Generation, and Statement Generation.

e Parsing

The parsing function does the primary syntactical analysis of the user’s SQL

statement and converts it into an internal form called a parse tree. It is used
either at preprocessing time (invoked by the preprocessor) or at run-time (for
dynamic statements).

e Optimization

The objective of the optimization function is to prepare a single SQL state-
ment for execution. Input consists of the parse tree for that statement,
created by the parsing function. The following functions are performed
during optimization:

— Authorization checking: The authorization control function is invoked to
ensure that the requestor of an operation has the appropriate authority.
Authorizations to perform specific operations on tables (for example,
SELECT, INSERT, DELETE, UPDATE) are program dependencies and are
recorded in the system table SYSTABAUTH.

26 sSQuUDS Diagnosis for VM LH09-8081-03 © Copyright IBM Corp. 1987, 1993

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

— Symbol resolution: Names of tables, views, and columns are verified
against the contents of the catalog. Internal identifiers of such are saved
for use in preparing the run-time structures to communicate with DBSS.
Program dependencies for object existence are stored in the SYSUSAGE
system table.

— Semantic checking: The SQL statement is checked for validity of
meaning. For example, the operands of each comparison operator are
checked to see that they are comparable.

— Access path selection: A plan for executing each database request is
determined by considering both the access paths (including indexes)
available and statistics on the data to be accessed.

For more information on access path selection, see the Performance Tuning
Handbook.

* Access Generation

During access generation the output from the optimization phase is trans-
formed into control blocks that describe how the statement is to be executed.
Only data manipulation statements (SELECT, UPDATE, DELETE and INSERT)
require access generation.

* Statement Generation

Statement Generation occurs when an SQL/DS data manipulation statement
is preprocessed. Currently, statements are generated to enforce referential
integrity and the CHECK option in updateable views.

For referential integrity, the Statement Generator has three main functions:
1. It creates an SQL/DS data manipulation statement.

2. It changes the SQL statement into an SQL/DS internal representation (a
section of a package) by invoking the optimizer, and access generator.

3. It combines the original SQL/DS statement with the internally generated
statement.

For enforcing the CHECK option in updateable views, the Statement Gener-
ator does the same as for referential integrity except that it does not work on
a complete data manipulation statement. Instead, it works only on the predi-
cates that are to be checked. The predicates are defined in the views which
are created with the CHECK option. In this case, the Statement Generator
does the following:

1. It creates a SELECT statement for the predicates to be checked.

2. It changes the predicates of the SELECT statement into an internal repre-
sentation (run-time tables which process the predicates) by invoking the
parser, optimizer, and access generator.

3. It attaches the run-time tables of the predicates to the run-time block of
the original SQL/DS statement.

LH09-8081-03 © Copyright IBM Corp. 1987, 1993 Chapter 2. SQU/DS Concepts 27

“Restricted Materials of IBM”
Licensed Materials — Property of |BM

Execution-Time Processing

An application program communicates with the database manager using code
placed in the application by the SQL/DS preprocessor, which replaces the ori-
ginal SQL statements in the application. This code passes an RDIIN control
block to the database manager identifying the function to be performed. Part of
the RDIIN identifies the package and its section. The identified section within the
package can be empty (an indefinite section) or can contain control blocks that
describe how the statement is to be performed (a compiled section) or a parse
tree (a parsed section or an interpretive section).

* Static Statements

Most statements embedded in an application program are static statements.
These statements are converted into compiled sections or interpretive
sections.

* Parsed Section

Parsed sections result from an SQL statement that causes a preprocessing
warning (for example, it references a table that does not yet exist). For such
statements, the SQL statement is parsed and the result is stored as a
section in the package. The intent is to allow the user to correct the warning
condition before the program is executed. When a parsed section is exe-
cuted, it is handled somewhat like an EXECUTE IMMEDIATE statement from
optimization through execution; the stored parsed data is treated as a
dynamic statement starting at the optimization step because the parsing was
already done at preprocessing time. If it is a frequently executed SQL state-
ment, and if performance and storage requirements are important, consider
repreprocessing the program after the object is created or after the user is
properly authorized.

* Dynamic Processing

Applications can be written to dynamically preprocess SQL statements using
a PREPARE or EXECUTE IMMEDIATE statement. An application containing
these statements has an indefinite (or empty) section created in the package
for each different PREPARE statement and one for all EXECUTE IMMEDIATE
statements.

When a package with an indefinite section is loaded, an actual section does
not exist. As soon as a PREPARE or EXECUTE IMMEDIATE statement is exe-
cuted, the actual section is generated and stored so that a subsequent user’s
EXECUTE (or an implicit one, in the case of EXECUTE IMMEDIATE) can be
processed successfully.

¢ Extended Dynamic Processing

There are two types of packages created by Extended Dynamic Statements.
These types are known as modifiable and nonmodifiable.

A nonmodifiable package cannot be altered after it is created and committed.
Sections can be added to the package in a consecutive manner using an
extended PREPARE statement, but the sections can be added only in the
same logical unit of work in which the CREATE PROGRAM has been exe-
cuted to create the package. The sections cannot be executed until the
package is committed. This type of package is created in the same fashion
as those created by the Assembler, C, PL/I, and COBOL preprocessors with
a CREATE PROGRAM statement analogous to a PREP INIT Call, the
EXTENDED PREPARE statement analogous to the PREP SQL Call, and the

28 sQUDS Disgnosis for VM LH09-8081-03 © Copyright IBM Corp. 1987, 1903

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

COMMIT/ROLLBACK statement analogous to the PREP FINISH Call. The
FORTRAN and RPG preprocessors create this type of package.

The other type of package is a modifiable package. This type of package
may have sections added to or deleted from it using the extended PREPARE
and DROP STATEMENT respectively. Additionally, the sections of the
package can be executed in the same logical unit of work in which the
package was created.

Note: The support for extended dynamic processing is restricted in the
DRDA protocol environment. For more information on the restrictions, see
the System Administration manual.

Package Cache Management
The RDS component manages and keeps track of the status of packages that
have been loaded from the database into memory. The package cache, named
PROGS, is used to hold information about all packages that have been loaded.

The package cache is an array of elements. The number of elements in the
package cache is calculated using two initialization parameters, NPACKAGE and
NCUSERS:

number of elements in package cache = NPACKAGE x NCUSERS

NPACKAGE defines the maximum number of packages in a logical unit of work.
The default value of NPACKAGE is 10. NCUSERS represents the number of con-
current active users. The default value of NCUSERS is 5. The default number of
elements in the package cache is 50.

During a logical unit of work, each package is loaded from the database into
memory, if it is not already available in memory, and is assigned an element in
the package cache. Each logical unit of work maintains its own chained list of
loaded packages.

The package cache has a threshold. The purpose of the threshold is to control
the amount of storage consumed by the loaded packages. The threshold is |
derived using the following calculation:

threshold = # of elements in the package cache x NPACKPCT / 100
The default value of NPACKPCT is 30, the default threshold is 15.

At the end of the logical unit of work, if the threshold is exceeded, the assigned

elements that map to the loaded package are freed and returned to the package
cache for use. This continues until either all elements assigned to a logical unit
of work have been freed, or until the number of assigned elements drops below
the threshold.

If the threshold is not exceeded, the package stays in memory but is no longer
associated with the LUW that just completed.

Changing the initialization parameters NPACKAGE, NCUSERS and NPACKPCT
can impact performance. For more information, see the Performance Tuning
Handbook manual.

LH09-8081-03 ® Copyright IBM Corp. 1887, 1993 Chapter 2. SQL/DS Concepts 29

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Repreprocessing

Repreprocessing, or “reprep,” is initiated when a package is loaded and is found
to be invalid. Execution of a RELOAD PROGRAM command will also force a
reprep to occur. This reprep is transparent to the user’'s application except that,
after the package is invalidated, extra time is required to reprep the program the
first time the application is run. This is because during repreprocessing, each
SQL statement stored in a package is preprocessed and the resulting generated
code or parsed output replaces its predecessor. This is a significant function of
package management.

When packages are created, an entry is made into the table SYSUSAGE for
every database object on which the package depends. DBSPACEs, tables, and
indexes are examples of such objects.

When any object is dropped from the database, SYSUSAGE is scanned to deter-
mine which packages are dependent on the existence of the object. Packages
that are found to have dependencies on the dropped object are marked invalid.
SQL/DS also checks SYSTABAUTH to find and invalidate packages when the
necessary privilege or authority of the creator of the package has been revoked.
(Privileges granted to a package are those granted to the creator of the
package.)

Marking a package invalid implies that its SYSACCESS table row is updated so
that the column named VALID is updated to a value of N. Additionally, the
entries in the package cache are affected. Occurrences of the affected package
tied to an active logical unit of work have their cache entry marked invalid so
that they are removed from the cache at the end of their logical unit of work.

The effect of marking the package invalid is that the package has to be loaded
the next time it is needed by an application at the beginning of a logical unit of
work. During the load process, the database manager recognizes that the
package is invalid and initiates the repreprocessing. At successful completion of

this transparent reprep, the package is marked valid again in its SYSACCESS
row.

Authorization

Authorizations are classified into two categories, (1) privileges and (2) system
authorities.

Privileges are the capabilities you possess to perform specific operations on
tables and views (for example, SELECT, INSERT, DELETE, and UPDATE) or the
RUN privilege for a package. Authorities are the levels of authorization you
possess in the SQL/DS database (for example, CONNECT, RESOURCE,
SCHEDULE, and DBA). Privileges and authorities are recorded in the following
system catalog:

* SYSTABAUTH contains table and view privileges

¢ SYSCOLAUTH contains the column privileges when UPDATE is granted on
specific columns and not on the whole table

* SYSPROGAUTH contains the RUN privilege for packages
* SYSUSERAUTH contains the authorities that a user has.

30 sQuUODS Disgnosis for VM LH09-8081-03 ©® Copyright IBM Corp. 1987, 1983

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

Privileges and authorities of static statements are checked at preprocessing
time. Privileges and authorities of dynamic statements are checked at execution
time.

When a package is preprocessed, the authorization component determines the
RUN privilege that should be given to the creator. This depends on the creator’s
existing privileges and authorities as well as the type of statements in the
package. Refer to the Application Programming manual for more detail.

Storage Management Concepts
This section discusses several different types of storage management concepts:
1. Memory Management

Virtual memory, or virtual storage, is the storage required during execution.
It is required, for example, to hold packages, agent structures and dynam-
ically assigned variables.

2. Logical Storage Management

|

I

|

|

I

|

|

| The actual data in the database is stored in DBSPACEs. A DBSPACE is a

| portion of the database that can contain one or more tables and their associ-
| ated indexes. A DBSPACE, however, is not a physical space. It represents a
| logical allocation of space in a storage pool. Each DBSPACE is assigned to a
| specific storage pool.

|

|

I

I

3. Physical Storage Management

DBEXTENTs are the physical medium where the data in the database is
stored. Each DBEXTENT is a VM minidisk. A storage pool is a collection of
one or more DBEXTENTS.

Memory Management Concepts
Storage Services:

System storage is used for two things: stack storage and working storage.
Storage is obtained and released by calling SQL/DS modules that execute the
host system’s storage request macros DMSFREE, DMSFRET, and CMSSTOR.

To judge current and future storage requirements, and to assist in problem
determination, use the SHOW STORAGE command. This command displays
information about the system storage currently in use as well as maximum total
storage usage. For information on how to use this command to monitor and
assess storage usage, see the Performance Tuning Handbook.

Stack Storage:

Stack storage functions allocate the dynamic storage required by a module
during its execution, that is, storage required by its dynamically assigned vari-
ables. This storage is allocated when the module is invoked and deallocated
when the module returns to its calling module.

| When a called module requires more stack storage than is available in the

| current stack, a stack extension occurs, allocating a minimum of 12K of storage.
This stack extension is added to the end of the stack chain and pointed to as the
current stack. Subsequent calls to other modules cause them to obtain their

_ LH08-8081-03 © Copyright IBM Corp. 1987, 1993 Chapter 2. SQUDS Concepts 31

32 sQUDS Diagnosis for VM

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

storage from the stack extension (unless another stack extension occurs). As
each module returns to the caller, the stack extension is freed and removed from
the stack chain.

Working Storage:

The working storage functions allocate storage for an agent structure. This
storage is more permanent than stack storage; it is typically allocated and used
across module calls. When an agent structure is created, it is allocated two
initial working storage areas that are placed on two free queue chains. One
queue is for requests for storage that must be below the 16M line. The other
queue is for storage that can be above the 16M line. Initially, the entire working
storage areas are available for suballocation. Additional working storage exten-
sions are allocated and freed as required. At end-of-LUW, all remaining working
storage extensions are returned to the host system.

When a module requests working storage, from one of the two areas, storage is
removed from the appropriate working storage area and allocated to the
requester. The remaining storage stays on that free queue chain. Whenever a
module frees an area of working storage, it is returned to the working storage
area from which it was suballocated by inserting it into the free queue chain.

Subsequent requests for working storage attempt to get storage from one of the
working storage areas by navigating its free queue chain until it finds an area
large enough to satisfy the request. If a large enough area cannot be found, a
request is made for additional storage. This additional storage, called a working
storage extension, is placed on the appropriate working storage extension chain
and its free storage (if any) is added to the corresponding free queue chain.
Additional working storage extensions are added to the end of this extension
chain. In some cases if all the area in a working storage extension becomes
free, it is returned to the system at that time. At end-of-LUW, all remaining
working storage extensions are returned to the host system.

There is also prototype working storage. This storage is managed much like

regular working storage but it is not freed at end-of-LUW. Prototype working
storage extensions are chained to the working storage extension chain of the
prototype agent rather than that of the agent requesting the storage.

Storage for each loaded package is also maintained in a working storage queue.
All extensions and the initial pool are freed to the system when the package is
purged from memory.

Logical Storage Management Concepts

A DBSPACE is logically divided into three sections: header pages, data pages
and index pages. The size of each of these sections is determined when the
DBSPACE is ACQUIREd. Logical pages from these sections are allocated from
the top of each section when they are required.

LHO09-8081-03 0 Copyright 18M Corp. 1987, 1883

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

HEADER PAGES
(1-8)

L]

I —
TOTAL # OF —— DATA PAGES
PAGES (IN TOTAL — (HEADER) - (INDEX)
MULTIPLES OF

128)

INDEX PAGES
TRUNC (PCTINDEX *
TOTAL PAGES)

Figure 8. DBSPACE Structure (Logical View)

A page in a DBSPACE is 4096 bytes in size. Sixteen of these bytes are reserved
for the page header. Since SQL/DS does not support rows that span DBSPACE
pages (except when using long fields), the maximum row length is 4080
(including row overhead).

The following diagram shows the format of a data page. The page slots at the
end of the page contain offsets to the rows on the page. A row is uniquely iden-
tified in a DBSPACE by a tuple identifier (TID) which consists of the page number
of the page on which it resides and the number of the slot which points to the
row.

—_—
|
v

PG#

: PAGE HEADER STORED ROW

’——-> HEADER | DATA |

‘ OFFSET FROM
< START OF
PAGE

A paGe SLOTS

0 3 4

PAGE # SLOT#

TID (4 bytes)

Figure 9. Layout of a DBSPACE Data Page

PCTFREE is the minimum free space to be reserved on each data page of the
DBSPACE on an INSERT operation.

LH09-8081-03 © Copyright IBM Corp. 1887, 1993 Chapter 2. SQU/DS Concepts 33

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

The following objectives are factors in free space management:
1. Preservation of at least PCTFREE free space on an INSERT
2. Minimize overflow due to row expansion
3. Minimize I/Os to find room for an INSERT.

The actual free space seldom works out to be exactly the PCTFREE specification.
For INSERT operations, SQL/DS overallocates free space with one exception:
SQL/DS always allows at least one row on a page regardless of the PCTFREE
specification.

For example, a table with fixed length 3K byte rows always results in approxi-
mately 25% free space. Even if you specify PCTFREE =10, you get 25% actual.
SQL/DS can put only one 3K row on a 4K page. If you specify PCTFREE =50,
SQL/DS will still insert the 3K row even though the 50% free space request
cannot be honored.

The purpose of PCTFREE is to minimize overflow due to row expansion. When
UPDATE commands are executed on an existing row and the length of the row
increases, the row could expand into the free space reserved with PCTFREE. If
the expansion exceeds the free space, the page becomes full, and it causes an
overflow. The row is relocated to a new page and a pointer chaining to the new
location is set in the old page. If this row has to be moved again, the pointer in
the original page is set to mark the newest location. Therefore, SQL/DS never
reads more than two pages for one row, (except when using long fields).

To minimize I/O operations in finding room for an INSERT, the system must have
some notion about the free space of the DBSPACE pages that can accommodate
the row to be inserted. To achieve this, SQL/DS maintains summary information
in the DBSPACE Page Map tables. DBSPACE Page Map tables are blocks in the
Directory, each block having entries for 128 consecutive pages. In particular,
each page map table entry contains a FREE CLASS designation that identifies
the range of free space (bytes) available on the referenced page. The relevant
free classes that a page might have are identified in Figure 10.

Figure 10. Free Classes

FREE MIN MAX
CLASS FREE FREE
2 0 14

3 15 29

4 30 49

5 50 99

6 100 249

7 250 499

8 500 999

9 1000 1999
10 2000 4017
1 4018 4077
12 4078 4078

34 sQuDSs Diagnosis for VM

LHO09-8081-03 © Copyright IBM Corp. 1887, 1983

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

To determine whether or not a page qualifies for insertion of a row, SQL/DS
looks at the FREE CLASS of the page and checks the following condition to
qualify the page:

ROWLENGTH + PCTFREE * 40 <= MIN FREE

(The value 40 is from 4080/100.)
If the condition is true, the page qualifies and is used for the insertion. That is, if

the condition is true, insertion of the row does not compromise the current
PCTFREE specification.

| MAX FREE |

MIN FREE

DATA —PCTFREE—
—ROW—

Figure 11. Qualifying a Page Based on FREE CLASS

ACTUAL FREE

Figure 11 illustrates the case where the row fits in the difference between MIN
FREE and PCTFREE. Notice that the use of MIN FREE is a conservative check;
the actual free space is somewhat larger.

Figure 12 illustrates the results of the insertion and an attempt to insert another
row.

| —O0LD MIN FREE—]|

| ——MAX FREE |
| —MIN FREE—|
oLD NEW
DATA ~ROW— | —ROW— | —PCTFREE—
DOESN'T * 40
FIT

| —ACTUAL FREE——|

Figure 12. State of the Page after the Insertion

As a result of the insertion, the page had to be assigned a new FREE CLASS. In
this illustration, the new FREE CLASS has a MAX FREE value that is one byte
less than the old MIN FREE. Note that if another INSERT is attempted with a row
as shown, the page no longer qualifies for an insertion (ROWLENGTH > MIN
FREE - PCTFREE * 40).

Figure 12 also shows that the row would have actually fit without compromising

the PCTFREE, even though this page did not qualify for the insertion. Because
FREE CLASS does not identify the exact amount of actual free space, the data-

LH09-8081-03 ® Copyright IBM Corp. 1887, 19883 Chapter 2. SQL/DS Concepts 35

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

base manager cannot determine precisely whether a particular row fits. The
result of this design is that the actual free space may be somewhat larger than
the amount suggested by PCTFREE. The degree to which the database manager
overallocates free space depends on the PCTFREE specification, the lengths of
rows being inserted, and the FREE CLASS range involved.

Physical Storage Management Concepts
Directory, LOGs, and DBEXTENTS:

The Directory, LOGs, and DBEXTENTSs are reserved minidisks with a blocksize of
512 bytes for the Directory and 4096 bytes for the LOGs and DBEXTENTs. These
minidisks have CMS-like files that are in a format to be used with the VM
BLOCKIO process. The VM BLOCKIO process is used to read and write records
to these files. These minidisks are called reserved because they have been
processed by the CMS RESERVE command. The RESERVE command specifies
that the minidisk consists of a single CMS file, which is allocated using all avail-
able disk blocks. This CMS file cannot be processed by most CMS file system
commands and must never be modified, except by the database manager. For
an example of physical database concepts, see the System Administration
manual.

Mapping of DBSPACEs to DASD:

Logical DBSPACEs must be mapped to physical DBEXTENTS on DASD. SQL/DS
does this by maintaining a page map table, for each DBSPACE, which is used to
map a given DBSPACE page to its location on DASD. The page map table is a
collection of constant size blocks (512 bytes) in the directory. Each entry of a
page map table is four bytes. Thus, the size of a DBSPACE is rounded up to the
nearest multiple of 128 pages (512/4=128). Each logical page of a DBSPACE
takes eight bytes of Directory space: four bytes for the current version of the
page and four bytes for its shadow page. Shadow pages are discussed in
“DBSPACE Recovery” on page 38.

36 SQuU/DS Diagnosis for VM LH09-8081-03 ® Copyright IBM Corp. 1987, 1993

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

DBSPACE PAGE MAP TABLE STORAGE POOL
(LOGICAL VIEW) (REAL VIEW) (PHYSICAL VIEW)
Entry 1
Page 1 4K ————| 4 bytes
Entry 2
Page 2 4K —»| 4 hytes
Entry 3
Page 3 4K —»| 4 bytes
/ . / / . /
P r |_J J
Entry 128 y
Page 128 4K ——»| 4 hytes
Entry|1 D
Page 129 4K ——»| 4 bytes >D
/ / / / =ﬂ
/ / / /
Entry 128
Page 256 4K | 4 bytes
Entry 1
Page 257 4K 4 bytes
/ / / . /
/ / / . /

Figure 13. Mapping of DBSPACEs to DASD

Logical To Physical Page Relationships: Physical page slots in the storage pool
are allocated to the DBSPACEs dynamically upon first reference. Once a logical
page has had a physical page slot allocated to it, it will continue to have a phys-
ical page allocated, even if empty, until the DBSPACE is dropped. This is illus-
trated in the following example.

Example: A SHOW DBSPACE indicates number of pages occupied = 2000 and
number of empty pages = 29000.

This means that 29000 pages are allocated and are all free space. New pages
are required from the DBEXTENT when pages are needed for shadow page use.
Shadow pages are given back to the storage pool at checkpoint time.

Example: A SHOW POOL indicates total pages in use = 32000

This example shows that 32000 pages are in use. Assuming that the only
DBSPACE in this storage pool is the one in the previous example, only 31000
pages are actually assigned to the DBSPACE. This means that 1000 pages are
in use as shadow pages, which will be released at checkpoint time. (For more
information regarding shadow pages, refer to “DBSPACE Recovery” on

page 38.)

Storage Pools:

A storage pool is a collection of one or more DBEXTENTS, which can be used to
control the distribution of the database across DASDs. The maximum number of

LH09-8081-03 © Copyright IBM Corp. 1987, 1893 Chapter 2. SQL/OS Concec:s 37

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

storage pools for a given database is specified by the database generation
keyword MAXPOOLS. A storage pool does not exist until a DBEXTENT is
assigned to it. DBSPACEs are assigned to a given storage pool when they are
defined. That means when physical page slots are allocated to the DBSPACE,
they are allocated from the storage pool to which the DBSPACE belongs. In
addition, if the storage pool contains more than one DBEXTENT, a physical page
slot may be allocated from any of these DBEXTENTS.

DBSPACE Recovery:

The DBSPACE recovery mechanism is the use of “shadow pages.” Two page
map table entries are associated with each permanent (not internal) DBSPACE.
The entries are called “current” and “shadow.” The shadow page contains the
original page data at the time of the last checkpoint, and the current page con-
tains all updates made to the page since the last checkpoint. (See
“Logging/Recovery Concepts” on page 46 for a discussion of checkpoints.)

After a checkpoint, the current and shadow entries are identical. When there is
a request to update a page, and it is the first request since the last checkpoint, a
new physical page slot is allocated from the storage pool, and the current page
map table entry is set to the new page location. When the page is written to
DASD it is directed to the new location, whereas the shadow page and the
shadow page map entries are left intact. At a checkpoint, the physical pages
bound to the DBSPACE are brought up to date by writing out all buffer pages that
have been updated. Effectively, the shadow page map entries are set equal to
the current page map entries, and the physical pages in the shadow page map
entries that have been changed are released.

Note that only one additional page is allocated for all updates made by any LUW
since the last checkpoint. Also, the pages are physical pages from the storage
pool and do not deplete the available data pages of the DBSPACE.

Reserved Pages:

Twenty pages are reserved in each storage pool to enable recovery from situ-
ations where the storage pool becomes full. In addition, if more than 20 new
pages in a recoverable storage pool are used since the last checkpoint and
logging is being performed, the database manager reserves one page in that
storage pool for each new page used in excess of 20 pages. The reserved
pages in excess of 20 are freed at checkpoint time. If an LUW requires a new
page which would cause the number of reserved pages to exceed the number of
free pages in the storage pool, a storage pool full condition occurs and the LUW
is rolled back. During rollback the reserved pages may be used. If the number
of free pages in the storage pool reaches 10 or less during rollback, a checkpoint
is triggered. This enables the database manager to recover shadow pages and
allows the rollback to continue without running out of pages in the storage pool.

For nonrecoverable storage pools, or when logging is not being performed
(LOGMODE =N), a maximum of 20 pages are always reserved.

38 sQL/DS Diagnosis for VM LH09-8081-03 © Copyright IBM Corp. 1987, 1993

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

Buffer Storage Management Concepts

The Storage component manages the allocation of virtual storage buffers for
data pages and Directory blocks. The number of page and Directory buffers are
specified by the SQL/DS initialization parameters NPAGBUF and NDIRBUF
respectively. Pages and blocks are fetched and fixed to a particular buffer until
the agent is through referencing data and explicitly unfixes the page or block
buffer for reuse. Modified pages or blocks are not written to DASD at “unfix”
time but are written before the buffer is reused for another page or block. The
buffer replacement strategy incorporated is a least recently used algorithm. This
is predicated on the assumption that a recently used page is most likely to be
referenced in the near future, thus eliminating the overhead of I/0 to refetch it
from DASD.

Buffer storage management works differently with the VM Data Spaces Support
feature. For more information, see the Performance Tuning Handbook and the
VM Data Spaces Support manual.

Index Concepts

This section describes the internal format of SQL/DS indexes. It also describes
the two important aspects of indexes from the user’s point of view: fragmentation
and clustering.

Basic Index Structure

SQL/DS indexes are B-tree structures as illustrated in the following diagrams.

HIKEY/| ROOT PAGE
PAGE#

HIKEY/ NON-LEAF PAGES
PAGE#

KEY/ LEAF PAGES
TID

Figure 14. The Balanced Tree Index Structure for Unique Indexes

LHO09-8081-03 © Copyright IBM Corp. 1987, 1983 Chapter 2. SQU/DS Concepts 39

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

HIKEY/
HITID/| ROOT PAGE
PAGE#
HIKEY/ HIKEY/| NON-LEAF PAGES
HITID/ HITID/
PAGE# PAGE#
KEY/ LEAF PAGES
TIDs

Figure 15. The Balanced Tree Index Structure for Nonunique Indexes

In Figure 14 on page 39, the root page would contain the high key value and
page number for each of the nonleaf pages at the next (second) level. Similarly,
the nonleaf pages would contain the high key value and page number for each of
the leaf pages. The leaf pages would contain the uncompressed key and the TID
of the row in the table.

In Figure 15, the root page would contain the high key value, the corresponding
high TID value, and the page number for each of the nonleaf pages at the next
(second) level. Similarly, the nonleaf pages would contain the high key value,
the corresponding high TID value, and the page number for each of the leaf
pages. The leaf pages would contain the uncompressed key and the TIDs of the
rows in the table.

A balanced tree structure means that the number of pages read to traverse the
index from the root page to any one of the leaf pages is the same. It does not
necessarily mean that the keys are balanced across the pages.

Index Space Management

The Index component manages the space in its index pages. Unlike the Data
Manipulation component, which searches for free space in an available data
page to store a row, the Index component knows where the submitted key
belongs. The keys are stored in a particular physical order (ascending or
descending), and a particular key value has a specific position in an index page.

When an index page becomes full with key/TID pairs (or page numbers for
nonleaf pages) and another key is to be inserted in the page, a new page is allo-
cated and the full one is split. The low-key-range half of the page is moved to
the new page and the high-key-range half is moved to the top of the previously
full page.

If all keys that reside on an index page are deleted, the page is logically empty
but cannot be reused for other key values. Index pages that have been allocated

40 sSQU/DS Diagnosis for VM LH09-8081-03 ® Copyright iBM Corp. 1987, 1983

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

to an index are normally reclaimed only when the index is either dropped or
reorganized. The exception to this occurs when there are no more free pages
available and a page is needed during ROLLBACK or UNDO WORK operations.
In this case, an attempt is made to reclaim empty index leaf pages and merge
partially full index pages to enable rollback to continue. Index pages are not
reclaimed for DBSPACE SYS0001 (which contains the catalog tables), nor are the
indexes on catalog tables marked invalid.

Invalid Indexes
An index can become invalid in the following ways.

¢ During a ROLLBACK or UNDO operation, if the database manager requires a
free index page but is unable to reclaim any, the index is marked invalid.
More than one index can become invalid during the LUW. SQL/DS rollback,
UNDO, or REDO processing continues, but no updates are made to invalid
indexes, and thus they no longer reflect the data. These indexes cannot be
used until they have been reorganized, or, dropped and recreated.

* An index can be marked invalid if duplicates have occurred in a unique
index. This can only happen if:

— a checkpoint occurs during a searched UPDATE deferring checking of
uniqueness,

— a system failure occurs before the end of the statement, and

— the database is started with an empty log.

At the end of initialization, any unique indexes that contain duplicates are
marked invalid.

¢ An index can also be marked invalid if the following events occur in order:

— A checkpoint occurs during a CREATE or REORGANIZE INDEX

— A system failure occurs before the database manager can complete the
CREATE or REORGANIZE statement

— The application server is restarted with an empty log.

When an index is marked invalid, packages that use that index are not marked
invalid; however, the packages will become invalid if the index is dropped. If the’
index is reorganized, the packages will remain valid.

Additional details about invalid indexes can be found under the SHOW INVALID
command in the Operation manuali.

Transient Indexes
An index can be marked transient in the following ways.

e An index is marked transient during a CREATE INDEX statement or REOR-
GANIZE INDEX command. In this case, the index remains transient for the
duration of the statement. When the index has been created or reorganized
successfully, the index is marked valid.

¢ A unique index can be marked transient during a searched UPDATE state-
ment where uniqueness checking is being deferred. In this case, the index
remains transient for the duration of the LUW. The index is marked transient
when the first duplicate is inserted. When the statement is completed, if
duplicates still exist SQLCODE -803 is issued, and the UPDATE statement is
rolled back. The index is marked valid at the end of the LUW.

LH09-8081-03 © Copyright IBM Corp. 1987, 1993 Chapter 2. SQL/DS Concepts 41

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

Additional details about transient indexes can be found under the SHOW
INVALID command in the Operation manual.

Clustering Index

A clustering index is used to determine placement of rows in pages of a .
DBSPACE. The first index created on a table is, by default, the clustering index.
SQL/DS uses this index to attempt to put rows with similar index key values onto
the same data pages.

When data is inserted into a table, there are two strategies for finding a place for
the data in the DBSPACE: default logic and clustering index logic.

If the CLUSTERTYPE column in SYSTEM.SYSCATALOG for the table contains a
“D,” the default logic strategy is used. This strategy uses the value in the
column CLUSTERROW in SYSTEM.SYSCATALOG for the table to determine the
starting point to look for available space for the insert. The value in
CLUSTERROW is a pointer to the end of the table. If the value in CLUSTERROW
is significantly incorrect, the database manager has to do extra work to find a
page that has sufficient free space to hold the row to be inserted. The value of
CLUSTERROW can be significantly incorrect if UPDATE STATISTICS has not been
executed recently or an application program that is doing the insert has not been
preprocessed (prepped) recently. Because a preprocessed program that inserts
with the default logic stores the value of CLUSTERROW in the package, you must
periodically repreprocess this kind of program to update the CLUSTERROW
value in the package.

The clustering index strategy is used when there is a clustering column in
SYSTEM.SYSCATALOG. This strategy attempts to place the new row on the
same page as rows with similar key values. This determines the starting point
to look for available space for the insert. If there is no available space on the
pages at or near this starting point then the database manager must do addi-
tional work to find a page that has sufficient free space to. hold the row to be
inserted. Insufficient free space can occur because no free space was estab-
lished for the DBSPACE or because inserts have used all the free space. If you
reorganize the DBSPACE you can establish free space for inserts.

When you create a table, CLUSTERTYPE is set to “D” and CLUSTERROW is set
to zero. When you create the first index on a table, CLUSTERTYPE is set to “I.”
If you REORGANIZE the clustering index it will remain the clustering index. If
you drop the clustering index, CLUSTERTYPE is set back to “D.” To establish a
different index as the clustering index you must drop all indexes. on the table,
create the new clustering index as the first index, and then create any other
indexes.

Clustered Indexes

An index is classified as either CLUSTERED or NOT CLUSTERED. An index is
considered clustered if the data is physically stored in the DBSPACE in an order
which closely matches the key sequence of the index. This means that the data
can be sequentially retrieved using the index with a minimal number of 1/0s.

Assume that all rows of a table are to be retrieved. A measure is taken of the
data page referencing pattern that occurs in terms of data pages referenced. A

42 sSQU/DS Diagnosis for VM LH09-8081-03 © Copyright IBM Corp. 1987, 1893

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

count is incremented whenever the immediately preceding reference to a row
was to a different data page.

In the best case, the number of pages to be accessed is exactly equal to the

number of pages occupied by that table within the DBSPACE. A data page is
read, all the rows of the subject table in that page are retrieved, and then the
next page is read. In this case, the pages are read sequentially - each page

read only once.

A clustered index can be identified by either the CLUSTERRATIO or the
CLUSTER column in the SYSINDEXES catalog table.

The CLUSTERRATIO value is used by the optimizer to choose a suitable index
for access path selection. This value represents a percentage, with the two
decimal places implied. The value is calculated by:

ROWCOUNT - PAGE JUMPS
CLUSTERRATIO = 10000 * -ecccceccccccancna.
ROWCOUNT - PAGE COUNT

where: PAGE COUNT
PAGE JUMPS

the number of pages the table occupies

the number of times a different data page is
referenced to access all the data in the table
in index order

The CLUSTER column, in addition to giving a general idea about whether or not
the index is clustered, is also used to identify the clustering index for the table.
If the value of the CLUSTER column is “F” or “C” then the index is clustered,
and a value of “F” means that the index is also the clustering index. A value of
“W” or “N” means that the index is no longer clustered, where “W” denotes the
clustering index. The CLUSTER column will show an index to be clustered if the
following is true:

#page jumps <= 110% of page count

Data is initially made clustered by loading it in the order of the clustering index.
If the clustering index becomes unclustered, the data should be unloaded and
reloaded to make it clustered again.

Index Fragmentation

A fragmented index is characterized by excessive amounts of free space in the
index pages, which usually is spread unevenly among the pages. Free space
distributed unevenly implies that index keys are also distributed unevenly.
Indexes can become fragmented by insert, delete, and update activity on the
table.

To help prevent index fragmentation, indexes should be created after the data
has been loaded into the table, and an adequate PCTFREE value should be spec-
ified for the index.

If the index is created before the data is loaded, page splits occur and the index
becomes fragmented when the data is loaded. In fact, if the data is loaded in
clustering order, each index page of the clustering index has 50% free space.

LH09-8081-03 © Copyright IBM Corp. 1987, 1983 Chapter 2. SQUDS Concepts 43

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

If a sufficient PCTFREE value is specified for the index when it is created, subse-
quent inserts do fit on the existing index page, avoiding index page splits.

Indexes must either be reorganized or dropped and recreated to correct the
fragmentation. If they are dropped and recreated, any packages with dependen-
cies on them are marked invalid. In addition, if a clustering index is dropped, it
no longer functions as the clustering index if there are other indexes on the
table. In this case, all indexes would have to be dropped, the clustering index
recreated, and then the rest of the indexes recreated. If indexes are reorgan-
ized, dependent packages are not marked invalid, and the clustering properties
do not change.

Sorting Concepts

The SQL/DS Sort component sorts the rows of a table according to the values of
one or more of the table’s columns. A sort is performed whenever an index is
created, or whenever an SQL statement is executed which requires that the
manipulated rows be ordered (such as a SELECT statement with an ORDER BY
clause) and no index providing that ordering exists, or the Optimizer does not
use the index.

The Sort component can sort all the rows in the table (such as when creating an
index on the table) or a subset of the rows (such as when ordering the results of
a query with an ORDER BY clause and a predicate that retrieves only part of the
table). It can sort the rows according to any or all columns in the table, in any
combination of ascending or descending order. If DRDA protocol is used, sorting
is always performed based on the application server encoding scheme. A
maximum of 16 ordering columns can be used, and the resulting ordering key
cannot exceed 255 bytes.

The result of a sort is an ordered list of rows. This list is stored in an INTERNAL
DBSPACE. The rows can then be retrieved from the INTERNAL DBSPACE to
build an index or to participate in the next phase of the execution of a query, as
appropriate.

When a sort is performed implicitly as part of creating an index, the INTERNAL
DBSPACE that holds the ordered list of rows is released before index creation is
completed. Whenever a sort is performed for any other reason, the INTERNAL
DBSPACE is not released until the current LUW is complete. The INTERNAL
DBSPACE and the space it occupies on DASD are not available until the end of
the LUW. In all cases, sorting requires either one or two additional INTERNAL
DBSPACEs to be used as work areas during the sort process, as described
below. These INTERNAL DBSPACEs are always released before sorting is com-
pleted.

The table whose rows are being sorted is never modified by the sorting. The
Sort component scans the table and retrieves each row that must participate in
the sort. For index creation, a DBSPACE scan is always used, and all the rows
of the table are retrieved. In all other cases, the access path used and the
number of rows retrieved depend on the SQL statement being processed. For
each row retrieved by the scan, the appropriate column values are extracted and
are encoded into a sort key so that they are easy to compare to other sort keys.
The encoding of a sort key is similar to the encoding of a key in an index.

44 squos Dlagnosis for VM LH08-8081-03 ® Copyright IBM Corp. 1987, 1883

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

The data being sorted includes at least the ordering columns, but it also includes
any other columns that must participate in the ordered result. For example, con-
sider the following query:

SELECT COLUMN1, COLUMNZ2, COLUMN3
FROM MYTABLE
ORDER BY COLUMN1, COLUMN2

A sort key for this query consists of the encoded values of the ordering columns
COLUMN1 and COLUMN2 and, appended to it, the corresponding {(non-encoded)
value of COLUMNS3. The sort key together with the other columns (if any) is
called the sort row. The resulting sorted list contains all the information
requested in the select-list, avoiding the need to rescan MYTABLE to retrieve the
values of COLUMNS.

Sorting is completed in successive passes. Because it is not generally feasible
to retrieve all the required rows into virtual storage and sort them, the Sort
facility retrieves some of the rows (enough to fill an internal sort buffer), sorts
them, and then stores this sorted partial result in an INTERNAL DBSPACE. This
continues until all the input rows are sorted. Now the partial results must be
merged to create the final sorted list. This merging process is usually the most
costly part of a sort, requiring several passes through the partial results with
each pass reading and writing each sort row once. These multiple passes use
two INTERNAL DBSPACEs as sort work areas: one from which the partial results
are read, and another where the merged results are stored. In the next pass,
the partial results are read from the INTERNAL DBSPACE into which they were
stored by the previous pass. The number of passes is determined by the
number of partial results to be merged as well as the number of partial results
that can be merged at one time. If the number of rows is small enough, or the
data is essentially in the correct sequence to begin with, only one pass (and one
INTERNAL DBSPACE work area) may be required.

Sort keys often need to be decoded during the creation of the final ordered list.
In the example above, the sort key consisting of the values of COLUMN1 and
COLUMN2 is decoded so that the column values can be returned to the user in
the expected form. In the case of an ordered list that is used to build an index,
decoding is usually not required. In some cases, decoding of the last sort key
column is done to transform the sort key into an index key.

The resuit of a sort may not be what you expected if the DRDA protocol is used.
For example, if the encoding schemes of the application requester and applica-
tion server are different, sorting is done based on the encoding scheme of the
application server. For more information, refer to the SQL Reference manual.

For information on calculating the size of the INTERNAL DBSPACE(s), and DASD
space required to perform a sori, refer to the Database Administration manual.

LH09-8081-03 © Copyright IBM Corp. 1987, 1993 Chapter 2, SQUODS Concepts 45

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

Logging/Recovery Concepts

The database manager maintains a log of all the database changes affecting
data in recoverabie storage pools completed by each logical unit of work. For
changes made in nonrecoverable storage pools, the following rules apply to the
logging of updates:

« Data definition operations are logged and are thus recoverable. This
includes: CREATE TABLE/INDEX, DROP TABLE/INDEX, REORGANIZE INDEX,
ALTER TABLE, and ACQUIRE/ALTER/DROP DBSPACE. This ensures that
SQL/DS catalog tables are consistent with the state of the database.

* Row update operations (UPDATE,DELETE,INSERT) are not logged and are
therefore not recoverable.

Note: The adding and deleting of DBEXTENTs and the adding of DBSPACEs to
the database are not logged and are thus not recoverable. It is recommended
that a database archive be taken immediately following these operations to
ensure that your current database archive reflects the added DBSPACESs or
DBEXTENTs. For more information reference the System Administration manual.

The Log:

The SQL/DS log is a minidisk with a block size of 4096 bytes. The last two pages
of the log are reserved for information to control the archiving and restoring
processes.

The log is an integral part of the physical configuration of the database, and one
must be defined because certain control information is written to the log even if
no logging is specified. With single logging, any I/O error on the log causes the
log component to terminate the application server.

Dual Logging:

The SQL/DS dual logging option protects the database from log failures due to
DASD failures on the log devices. With dual logging, database updates are
recorded in both logs. Ideally, one log should be an exact copy of the other. An
unrecoverable error is unlikely to occur on both logs at the same time. The log
component continues processing as long as it can read or write from either log.

When specifying the logs for dual logging, both must be identical in size.
The processing done by the log component for dual logging is as follows:

For a log write operation:
1. Write a log record to the first log; if an error occurs, issue an error message.

2. Write the same log record to the second log; if an error occurs, issue an
error message.

3. If an error occurs on both write operations, terminate the procedure.

For a log read operation:

1. Read a log record from the first log; if an error occurs, issue an error
message, and try the second log.

46 sQUDS Diagnosis for VM LH09-8081-03 © Copyright IBM Corp. 1987, 1993

e

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

2. Read a log record from the second log; if an error occurs, issue an error
message, and terminate the procedure.

Checkpoint:

The database manager takes periodic checkpoints. At a given point in time,
taking a checkpoint involves recording the state information in the log and taking
a “snapshot” of the database. This snapshot includes updates from completed
logical units of work as well as updates from logical units of work that are still in
progress. At the checkpoint, all updates are written to the database regardiess of
the state of their LUWSs.

The SQL/DS RDBMS provides functions to recover the database to a consistent
state with respect to logical units of work in the event of a system crash. In a
consistent state, each logical unit of work is either completely reflected in the
database (all updates) or is not present in the database (no updates).

A disk-oriented mechanism is used to recover from a “soft” failure (which
causes the contents of memory to be lost), and is oriented toward frequent
checkpoints and rapid recovery. This mechanism is dependent on the DBSPACE
recovery functions and the log.

The DBSPACE recovery mechanism is the use of “shadow pages.” Two versions
of each DBSPACE are maintained: the “current pages” reflect all updates up to
the current point in time and the “shadow pages” reflect the state of the data-
base at the time of the last checkpoint. Note that, until a page is updated, its
“current” and “shadow” versions are the same. The checkpoint process con-
sists of making the current pages of the DBSPACEs become the shadow pages
and making the old shadow pages available for reuse. In addition, a special
checkpoint log record is written to the log to synchronize the log with the state of
the database. Another way of looking at a checkpoint is that a picture of the
database is taken, regardless of the state of the LUWSs in progress, and the fact
that the picture was taken is recorded in the log.

A checkpoint is scheduled when:

¢ The number of log pages specified by the CHKINTVL initialization parameter
have been written to the log.

¢ During rollback, the total number of free pages in a storage pool is less than
or equal to 10. (This does not apply when LOGMODE = N))

¢ The percentage of free pages in a storage pool reaches the minimum speci-
fied by the SOSLEVEL initialization parameter. (This does not apply when
LOGMODE = N.)

e A DROP DBSPACE is processed.

* A COMMIT WORK is processed in single user mode with no logging
(LOGMODE =N).

¢ Soft recovery processing is complete during startup.

e An archive is about to be taken and after the archive has completed suc-
cessfully.

¢ During shutdown in multiple user mode (MUM) and single user mode (SUM).

¢ A log-full condition occurs.

* An LUW that has updated row data in a nonrecoverable storage pool is com-
mitted or rolled back. A checkpoint is scheduled and completed before the
commit or rollback operation is complete. This ensures that all updates are

LHO09-8081-03 © Copyright IBM Corp. 1987, 1993 Chapter 2. SQUDS Concepts 47

— - — e —

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

committed to the database and minimizes the user recovery effort in the
event of a subsequent application or system failure.

When a checkpoint has been scheduled, no new access to DBSS is allowed; that
is, no DBSS operations are started until the checkpoint process is complete. A
checkpoint must wait until currently running DBSS operations (but not their
logical units of work) are complete. Most long-running DBSS operations period-
ically exit from DBSS to allow a pending checkpoint to be executed.

When a soft failure occurs and the application server is restarted, the database
is restored to the point of the last checkpoint by using DBSPACE page map
tables that reflect the current pages at that point. The checkpoint log record,
whose location on the log is saved in the Directory by the checkpoint, is obtained
and used to synchronize the log with the state of the database at the checkpoint.
Now the LUW recovery process can begin.

LUW Recovery:

The LUW recovery process determines the state of each LUW at the time of
failure and. at the time of checkpoint:

e If the LUW starts and ends before the checkpoint, no processing has to be
done because all the updates are reflected in the database at the checkpoint.

* If the LUW starts before the checkpoint and commits work after the check-
point but before the failure, those updates made after the checkpoint must be
redone. The updates made prior to the checkpoint are reflected in the data-
base by the checkpoint.

* If the LUW starts before the checkpoint and is not completed before the
failure, those updates made prior to the checkpoint must be undone. The
updates made after the checkpoint are not reflected in the database.

* |f the LUW starts after the checkpoint and commits work before the failure,
its updates must be redone. No updates are reflected in the database at the
checkpoint.

* [fthe LUW starts after the checkpoint and is not completed before the failure,
no recovery has to be done because none of the updates are reflected in the
database.

The following diagram illustrates the LUW Recovery process for the five cases
described above:

48 sQUODS Diagnosis for VM LH09-8081-03 © Copyright IBM Corp. 1987, 1993

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

Checkpoint Sys Failure
Time —» occurs —» occurs —» //

| //
—Luw-A : /!
no action required //

' LUW-B ' //

no action required |<¢—redo—> //

' LUW-C //
<+—undo—> no action required //

—Luw-D ' //
+—redo———— //

L LW E //
no action required //

Figure 16. LUW Recovery Actions
Freeing Log Space:

This section describes how log space is freed when the database manager is not
archiving (LOGMODE =Y). Freeing log space when the database manager is
archiving (LOGMODE =A|L) is discussed in topic “Archiving” on page 52.

The SQL/DS log can be visualized as a straight line with the records for all
logical units of work being written on it. (See Figure 17)

Time —»

L A J L ¢ |

Figure 17. SQL/DS Log

Notes:

1. Logical unit of work B starts before logical unit of work A finishes. Logical
unit of work C starts before B finishes.

2. The log is sequential. Records for B are interspersed with those for A, and
so forth.

In time, the log fills up. When this happens, new records would overwrite those
at the beginning of the log. (See Figure 18.)

LH09-8081-03 © Copyright IBM Corp. 1987, 1983 Chapter 2. SQU/DS Concepts 49

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

R T e T < ..

Figure 18. SQL/DS Log Wrap-Around

This “wrap-around” condition is undesirable and is prevented; overlaying of log
records restricts the ability of the database manager to recover correctly. To
prevent this situation, periodic checkpoints are taken.

Taking a checkpoint involves recording status information in the log and
recording the current status of the database. Updates from all logical units of
work are written to the database regardiess of the state of the LUW. Log
records for LUWs that end before the checkpoint are no longer needed and can
be reclaimed, because the logical unit of work was complete when the updates
were written to the database by the checkpoint. Log records for LUWs that were
not ended before the checkpoint remain in the log file in case they need to be
undone or redone (either because of an SQL/DS failure, or an application-
specified ROLLBACK WORK).

Figure 19 shows a checkpoint at a time when only logical unit of work D is in
progress. For this illustration, designate this checkpoint C1.

C1

Figure 19. Checkpoint C1

After checkpoint C1 is taken, the database manager can reuse the log space for-
merly holding log records for logical units of work A, B, and C. (See Figure 20.)

Cl
Time —»

—0 — 5 —

Figure 20. Logical Unit of Work D Wraps Around

As time passes, new logical units of work E and F occur. They start and end
before D finishes. Another checkpoint, C2, occurs, as shown in Figure 21.

50 sQU/DS Diagnosis for VM LH09-8081-03 ® Copyright IBM Corp. 1987, 19983

"Restricted Materials of IBM”
Licensed Materials — Property of IBM

c2 Cl
'i'ime — |

— 0D

i
|

I —
L F —

Figure 21. Checkpoint C2

Because of the sequential nature of the log, checkpoint C2 does not free any log
space. Logical unit of work D is still in progress; and it started before logical
units of work E and F. Log space used for E and F cannot be reclaimed until D
finishes.

In a worst-case condition, logical unit of work D continues until the log is almost
full. When the log reaches the percentage limit set by the SLOGCUSH initializa-
tion parameter (which defaults to 90%), a log-full message is issued to the oper-
ator. If log space cannot be made available, the longest running logical unit of
work is rolled back so that log space can be reclaimed when the next checkpoint
occurs. Then, when checkpoint C3 occurs, SQL/DS reclaims the entire log
space. (See Figure 22.)

c2 C3 Cl
}ime—D | |
—0 X L D —»
I_E_J
—F —
D is
stopped
when SLOGCUSH
is reached.

Figure 22. Checkpoint C3

Note: The situation described here rarely occurs if an adequate log is defined
for the database.

There are alternatives to stopping work in progress. The obvious one is to have
a log large enough to hold the longest logical unit of work expected. When
installing the SQL/DS RDBMS for the first time, this size cannot be easily judged.
it can be worthwhile to monitor the log usage by periodic use of the SHOW LOG
operator command. This command can be issued from the SQL/DS operator
console or by any ISQL user.

The database manager does not discriminate when it stops a logical unit of
work. The work stopped can be a long-running program, or it can be an ISQL
user who has gone home without signing off. Periodic use of SHOW LOG tells
you how much log space remains so that you can begin to take action before
SQL/DS begins stopping logical units of work. This action could be:

* In the case of the long-running ISQL user, contact the user and ask that
person to end the logical unit of work.

LH09-8081-03 © Copyright IBM Corp. 1987, 1983 Chapter 2. SQUDS Concepts 51

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

¢ You can issue an SQL/DS FORCE operator command to immediately roll
back the logical unit of work.

Archiving:

Archiving protects the database against media failures, such as a DASD head
crash. The archive process copies either:

¢ An image of the entire database onto a magnetic tape (a database or user
archive), or onto disk (a user archive).

¢ An image of the current SQL/DS log onto magnetic tape or disk (a log
archive).

The LOGMODE SQL/DS initialization parameter indicates the type of archiving to
be used. If LOGMODE =A, only database or user archiving is performed. If
LOGMODE =L, database or user, and log archiving are performed. If
LOGMODE =Y or N, archiving is not performed. For more information on
LOGMODEsS, see the System Administration manual.

The archiving process can be driven by an SQL/DS facility or by both an SQL/DS
and a non-SQL/DS facility. When driven entirely by an SQL/DS facility, the
archive process (database or log) has three steps:

1. The database manager takes a base checkpoint for the archive. All other
SQL/DS work waits while the base checkpoint is being taken. For log
archives, the database manager must wait until all active LUWs are com-
plete and prevent any new LUWSs from starting.

2. The database manager writes an image copy of the database (database
archive) to tape or an image copy of the log (log archive) to tape or disk.
Other SQL/DS work can be done while this archiving is occurring. |If,
however, a condition arises (during the image copying) that requires a
checkpoint to be taken, this checkpoint (and all other SQL/DS work) must
wait until the archive process is complete.

3. The database manager takes another checkpoint, called an after archive
checkpoint. All other SQL/DS work waits while this checkpoint is being
taken.

User archives are initiated by way of the SQLEND UARCHIVE command. During
a user archive operation, the database manager is interrupted after Step 1
(above) and a non-SQL/DS facility is used to perform the actual database
archive. After the non-SQL/DS utility has compieted the user archive, step 3
(above) is performed on the subsequent warm start (after verification that the
user archive was performed).

When an SQLEND ARCHIVE, SQLEND LARCHIVE, or SQLEND UARCHIVE
command is used to shut down the database, the base checkpoint becomes the
start of the log. Log space preceding the base checkpoint is freed.

Note: When using SQLEND UARCHIVE for a user archive, log space is not freed
until the user archive is verified on the subsequent warm start.

The following situation applies to online database or log archives taken with the
ARCHIVE or LARCHIVE commands. Figure 23 shows the log with its logical units
of work (A through E) and the base and after-checkpoints.

52 sQuUDS Diagnosis for VM LH09-8081-03 © Copyright IBM Corp. 1987, 1993

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

LH09-8081-03 © Copyright |BM Corp. 1987, 1993

Base “After®
Checkpoint Checkpoint
Time —»
||_A_l |_C__J Lp< L___E___I
L— g

Archive is

written to

tape.

Figure 23. Base and "After” Checkpoints

At the base checkpoint, logical units of work A, B, and C are committed to the
database and their log space could be freed. The image copy of the database or
the log is then written to tape. While this copying is going on, logical unit of
work D starts and finishes, and logical unit of work E starts but does not finish.

After the image has been written to tape, the database manager takes the after
checkpoint. This checkpoint frees the log space used by logical units of work A,
B, and C. Even though logical unit of work D has been committed to the data-
base by the after checkpoint, the database manager does not free its log space
because the base checkpoint serves as the starting point of the log. The reason
for this arrangement is to protect against a media failure at some later time, as
shown in Figure 24.

Media
Base "After® Failure
Checkpoint Checkpoint Occurs
]I'ime — // |
//—
Free Log Space Lp- b—n~rAb—e— y/
- F—//
Archive is //
written to //
tape. //

Figure 24. Media Failure Occurs after Archiving

Recovery from the situation shown in Figure 24 is done by restoring the data-
base from the last database archive and, if LOGMODE =L, any subsequent log
archives. The application server is started using the STARTUP =R initialization
parameter. This restores the database to its state at the base checkpoint.

Because the archive tape or disk was created just after the base checkpoint, the
database manager must apply all changes recorded in the log after the base
checkpoint. This action includes the entire logical unit of work D. (For this
reason, the log space used by D was not freed when the after-checkpoint was
taken.) This action also includes the entire logical unit of work E. The changes
made by logical unit of work F are not applied because it was not finished when
the media failure occurred, (a partially completed logical unit of work is never
committed) and since it occurred after the checkpoint it is not reflected in the
database.

Chapter 2. SQUDS Concepts 53

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

The situation in which the base checkpoint cannot be used as the start of the
new log arises as shown in Figure 25. In this situation, an LUW spans the base
checkpoint. This situation only applies to online database archives because for
log archives to begin, all active LUWs have to be compieted and no new LUWs
are aliowed to start.

Base "After®
Checkpoint Checkpoint
Time —»
‘LA_I — —
L_g -

Archive is

written to

tape.

Figure 25. Base Checkpoint Occurs during Logical Unit of Work C

Here, the database manager cannot use the base checkpoint as the start of the
log because some of the changes in logical unit of work C occur after the base
checkpoint. In this situation, the database manager uses the start of logical unit
of work C as the start of the log. (C was the “oldest” logical unit of work not
finished at the base checkpoint.) Log space prior to the start of logical unit of
work C is freed. If a media failure occurs later and application server has to be
started by first recovering the database from the tape, the database manager
can redo logical unit of work C using the log records.

When LOGMODE =A or L, a normal checkpoint does not free log space. The log
space that can be freed is determined by the archive base checkpoint and freed
by the archive “after” checkpoint. This is because the log is needed at least
from the point of the last database or log archive when a media failure occurs.
Consider checkpoint C in Figure 26.

Base vAfter* Checkpoint
Checkpoint Checkpoint o
{1‘me-—>
l_A_I L—¢ — L—p— l
L— g
Archive is
written to
tape.

Figure 26. Checkpoint C Occurs after Archive Tape or Disk Written

Even though all logical units of work are finished at checkpoint C, the database
manager cannot reclaim the log space of logical unit of work C; the log records
are needed to enable recovery if a media failure occurs after the archive base
checkpoint but before the next database or log archive. When the next database
or log archive occurs, log space up to the o/dest logical unit of work not yet fin-
ished at that time can be reclaimed.

54 squos Diagnosis for VM LHO08-8081-03 © Copyright IBM Corp. 1987, 1883

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

L Because normal checkpoints do not reclaim log space when LOGMODE=A or L,
a database or log archive must be taken when the log approaches overflow. (If

the log actually overflowed, log records needed for database recovery would be
lost when they were overwritten. The log would then be useless.) When the log
approaches overflow, as denoted by initialization parameter ARCHPCT, the data-
base manager automatically activates the archive process if it is not already
activated. If LOGMODE=A, this is a database archive. If LOGMODE =L, this is
a log archive.

The database manager usually allows work to continue while the database or log
archive tape is being written; however, if the log approaches overflow, as
denoted by SLOGCUSH, while the archive tape is being written, the database
manager suspends all other SQL/DS processing until the archive is complete.

Although normal checkpoints occurring while LOGMODE =A or L do not reclaim
log space, they are valuable because:

L * When data is changed, the database manager maintains a duplicate physical
page called a shadow page to retain the state of that page before the change
occurred. Committing a logical unit of work to the database does not free
shadow pages, because they are needed in case recovery must be done.
When a checkpoint occurs, all shadow pages are freed because those pages
are no longer needed for recovery. (The log is sufficient for recovery after a
checkpoint.)

* A checkpoint minimizes the updates that the database manager must do
when recovering from a system failure. If a system failure does occur, the
L database manager recovers when the application server is started again by
redoing the work done after the last checkpoint. The database manager
does not redo all the work since the last database or log archive operation.

Locking Concepts

This section explains the type of locking done when specific DML and DDL state-
ments are executed. This is a very important concept to understand when
designing SQL/DS applications and in diagnosing locking problems.

L Because the SQL/DS RDBMS is a concurrent-user system, locking techniques
have been employed to resolve various synchronization problems, both at the
logical level of objects (like tables) and at the physical level of pages.

At the logical level, the database manager must try to ensure that two concur-
rent logical units of work (LUWs) do not read the same value and then try to
write back the updated values. If these LUWs are not synchronized, the second
overwrites the first, and the effect of one update is lost.

At the physical level of pages, locking techniques are required to ensure that the
database gives correct results. For example, a data page may contain several
rows from one or more tables. Even if no logical conflict occurs between two
LUWSs (because each is accessing different tables or different rows in the same
table) a problem can occur at the physical level. If, for example, one LUW
causes an access to a row on some page, while another LUW updating a second

L row on the same page causes data compaction (because of lack of contiguous
free space), row locations are reassigned within the page.

LH09-8081-03 © Copyright IBM Corp. 1887, 1893 Chapter 2. SQU/DS Concepts 55

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Specifying Isolation Levels

The user can improve performance by specifying a lower isolation level for
appropriate applications. An isolation level is the degree of independence that
one SQL/DS application has from another.

There are two isolation levels: repeatable read and cursor stability. The user
can set or change the isolation level when preprocessing. The ISOLATION
parameter can be used to establish the isolation level for a program. The user
specifies ISOLATION(RR) for repeatable read and ISOLATION(CS) for cursor sta-
bility. An alternative to setting the isolation level during preprocessing would be
to allow the program to set and change isolation levels during the running of the
program. This requires that ISOLATION(USER) be specified when the program is
preprocessed. If the user wants to change the isolation level that has already
been set, that user must preprocess, compile(assemble), and link the program
again.

The DRDA architecture defines two additional isolation levels, Uncommitted
Read (UR), and Read Stability (RS). The SQL/DS application server, upon
receiving a request at UR, will escalate it to CS and proceed without informing
the application requester. Similarly, RS will be escalated to RR.

kepeatable Read:

Repeatable read (RR) ensures that within a logical unit of work a user can
repeatedly read the same row of data without having it changed by some other
user. With repeatable read, the user is completely isolated from interference by
other applications. The price of this high degree of isolation is a reduction in
concurrency; other users must wait until the logical unit of work is complete
before they can access data being used under repeatable read conditions
(unless the data is not being modified).

The following rules specify the isolation that repeatable read provides:

1. A logical unit of work cannot modify any data that another active logical unit
of work has modified. Modify includes SQL INSERT, PUT, DELETE, or
UPDATE.

2. A logical unit of work cannot see (read) any data that another active logical
unit of work modifies.

3. A logical unit of work cannot modify any data that another active logical unit
of work reads.

in terms of the data it reads or modifies, a logical unit of work is “unaware” of
the existence of any other concurrent logical unit of work.

Cursor Stability:

Cursor stability (CS) places a lock on the row or page of data the user’s cursor
is pointing to. Rows in a table, or pages in a DBSPACE, that the user has
already read are subject to change by other users. This means that more than
one user can work on the same data at the same time. It also means that the
data can appear to be inconsistent. For example, it is possible for a user to
issue the same query twice within a logical unit of work and get different results.
Users must be very careful when deciding to use cursor stability for their appli-
cations.

56 sQUDS Diagnosis for VM LH09-8081-03 © Copyrignt IBM Corp. 1987, 1893

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

Note that cursor stability applies only to tables in PUBLIC DBSPACEs with PAGE
or ROW level locking. Tables in PRIVATE DBSPACEs or PUBLIC DBSPACEs with
DBSPACE level locking always have the repeatable read isolation level.

Cursor stability provides the following:

1. Another logical unit of work cannot modify any data the user’s active logical
unit of work has modified. “Modify” implies SQL INSERT, PUT, DELETE, or
UPDATE.

2. Another logical unit of work cannot see (read) any data the user’s active
logical unit of work has modified.

Note: When the database manager uses a DBSPACE scan (does not use an
index) to access a table in a DBSPACE with ROW level locking using isolation
level cursor stability, the effect is similar to repeatable read: no other logical unit
of work can update the table until the logical unit of work performing the
DBSPACE scan ends. Also, if one logical unit of work has updated a table,
another logical unit of work (using cursor stability) cannot access that table with
a DBSPACE scan until the updating logical unit of work ends. This reduced con-
currency for DBSPACE scans does not apply for tables in DBSPACEs with PAGE
level locking, or when accessing through indexes.

Guidelines for Selecting an Isolation Level:

The effects of using cursor stability can be very subtle. Specific guidelines for
selecting isolation levels are in the appropriate SQL/DS manuals. For guidelines
on selecting an isolation level in application programs, see the Application Pro-
gramming manual. For guidelines that apply to the DBS utility, see the Database
Services Utility manual. For ISQL guidelines, see the ISQL Guide and Reference
manual.

Isolation Level and Updates:

Note that the isolation level does not affect the duration of the locks held on data
that has been inserted, deleted, or updated in an LUW. Locks on this data are
always held until the end of the LUW, regardless of the isolation level.

Locking Hierarchy

The locking protocol uses a locking hierarchy that allows conflicts to be detected
at the highest level. The locking hierarchy used is shown in Figure 27.

DBSPACE
TABLE
f]
DATA PAGE INDEX PAGE
ROW INDEX KEY VALUE

Figure 27. Locking Hierarchy

LH09-8081-03 © Copyright iBM Corp. 1987, 1983 Chapter 2. SQL/DS Concepts 57

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

The protocol ensures that an agent issues lock requests in the order of the hier-
archy. Thus, an agent accessing a row in table X of DBSPACE Y, would first
have to obtain a lock on DBSPACE Y, then obtain a lock on table X, then obtain a
lock on the page on which the row resides, and finally, obtain the lock on the
row.

Note: After the first row is locked, it is not necessary to get the DBSPACE and
table locks again, uniess the required lock mode changes.

Before rows are accessed by an agent, the agent must first obtain a lock on the
DBSPACE that identifies the agent’s intentions within that DBSPACE. Any other
agent does the same thing. For example, if one agent obtains EXCLUSIVE use of
the DBSPACE, other agents are locked out immediately when they attempt to
obtain any kind of lock on the DBSPACE.

Note: |f a DBSPACE is defined to have PAGE level locking, row locks are not
obtained. Having a lock on the appropriate page guarantees that other agents
do not conflict on the row in question.

Lock Modes
There are six modes in which a data object may be locked:
IS Intent Share
IX Intent Exclusive
S Share
U Update

SIX Share with Intent Exclusive

X Exclusive

Intent modes describe low level locking intentions at a higher level in the hier-
archy. For example, an agent wanting to read data in a DBSPACE that has
PAGE level locking needs to obtain SHARE locks on the pages read. To do this,
the agent must first obtain INTENT SHARE locks on the DBSPACE and table.

SHARE locks are obtained for read operations at the lowest level of the locking
hierarchy. They can also be obtained at higher levels. For example, a lock
escalation can promote SHARE locks on pages to one SHARE lock on the
DBSPACE, or an SQL LOCK TABLE statement can be used to obtain a SHARE
lock on a table. For more information on lock escalation, see "Escalation of
Locks” on page 65.

EXCLUSIVE locks are obtained for UPDATE operations at the lowest level of the
locking hierarchy. They can also be obtained at higher levels. For example, a
lock escalation can promote EXCLUSIVE locks on pages to one EXCLUSIVE lock
on the DBSPACE, or an SQL LOCK TABLE statement can be used to obtain an
EXCLUSIVE lock on a table.

Note: PRIVATE DBSPACEs are locked with SHARE or EXCLUSIVE locks. With
DBSPACE level locking, the lower level locks are not obtained.

UPDATE locks are obtained at the lower levels of the locking hierarchy for read

operations with an intent to update. A lock escalation can promote UPDATE
LOCKS on pages to one share lock on the DBSPACE. If an UPDATE lock is

58 sQuDSs Disgnosis for VM LH09-8081-03 © Copyright 1IBM Corp. 1987, 1983

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

requested at the low level, the agent must first obtain INTENT SHARE locks at
the higher levels.

Lock Durations
The length of time that a lock is held can be one of the following:

INSTANT The lock is acquired and then freed immediately.
SHORT The lock is held for the duration of the DBSS operation.

MEDIUM The lock is held over multiple DBSS operations, but can be freed
- before the end of the LUW.

LONG The lock is held until the end of the LUW.

UPDATE locks are not held for the duration requested. Instead, they are down-
graded to SHARE locks (RR) or released (CS) when the agent has moved past
the data. For repeatable read, the SHARE locks are then held for the requested
duration.

Lock Compatibility

The matrices in Figure 28 through Figure 30 on page 60 indicate the modes that
are compatible with each other. Yes means the requested lock is compatible
with the held lock (and therefore is granted). No means the request is denied or
the requesting agent is put in a LOCK WAIT. The lock component chooses
whether the agent is to wait for the lock or to be given control immediately if the
lock is not available.

Figure 28. Compatibility of Row Lock Modes

MODE OF LOCK B
MODE OF S V) X
LOCK A
S Yes Yes No
U Yes No No
X No No No
Figure 29. Compatibility of Page & Table Lock Modes

MODE OF LOCK B
MODE OF 1] IX S U SIX X
LOCK A
IS Yes Yes Yes Yes Yes No
IX Yes Yes No No No No
S Yes No Yes Yes No No
V) Yes No Yes No No No
SIX Yes No No No No No
X No No No No No No

~ LH03-8081-03 © Copyright 1BM Corp. 1987, 1983 Chapter 2. SQU/DS Concepts 59

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

Figure 30. Compatibility of DBSPACE Lock Modes

MODE OF LOCK B
MODE OF 1S IX S SIX X
LOCK A
IS Yes Yes Yes Yes No
IX Yes Yes No No No
S Yes No Yes No No
SIX Yes No No No No
X No No No No No

Types of Internal Data Manipulation Calls

Following is a list of the basic internal data manipulation operations performed
by the database manager. These are to be used in conjunction with Figure 31 to
understand the locking done for each operation.

OPEN SCAN: The OPEN SCAN operation causes a scan (the internal equivalent
of a cursor) to initiate access to:

* Rows in a table through a specified index. Index keys and key search condi-
tions are supplied to support selective searching. This is an INDEX scan.

* Rows in a table in their inserted order without an index. Column values and
column search conditions can be supplied to support selective searching.
This is a DBSPACE scan.

* Rows in a sequential list (for example the output of a sort operation).

NEXT: causes the "next” row in an opened scan to be retrieved. For scans,
optional search arguments can be supplied and are used to determine whether
rows in the scan “qualify” as the desired next row. If a row does not qualify, the
scan continues to the next row.

CLOSE SCAN: terminates the scan.

FETCH: retrieves a table row by way of either its row identifier or an index key.
It does not use an open scan.

INSERT: inserts a row into a table and inserts a corresponding key into each
index on the table.

DELETE: deletes a specified row from a table and deletes the corresponding
key from each index on the table.

UPDATE: replaces one or more columns in a specified row with user supplied
values and updates the affected indexes on the table.

Locking for Different Internal DM Calls

The following is a table of the locking that is done for the different internal data
manipulation calls.

60 sSQL/DS Diagnosis for VM LHO8-8081-03 © Copyright IBM Corp. 1987, 1993

“Restricted Materials of IBM"

Licensed Materials — Property of IBM

Figure 31 (Page 1 of 2). Locking for Different Internal DM Calls

SQL DBSS LOCKED PAGE ROW DBSPACE
FUNCTION FUNCTION OBJECT LOCKING LOCKING LOCKING
INSERT INSERT DBSPACE LONG IX LONG IX LONG X
TABLE LONG IX LONG IX none
PAGE LONG X SHORT X none
ROW none LONG X none
DELETE DELETE DBSPACE LONG IX LONG IX LONG X
TABLE LONG IX LONG IX none
PAGE LONG X SHORT IX none
ROW none LONG X none
UPDATE UPDATE DBSPACE LONG IX LONG IX LONG X
TABLE LONG IX LONG IX none
PAGE . LONG X SHORT IX none
PAGE LONG X SHORT X none
ROW none LONG X
DML with FETCH DBSPACE LONG IS LONG IS LONG S
unique index TABLE LONG IS LONG IS none
and equal PAGE LONG S SHORT IS none
predicate (3). ROW none LONG S none
IPAGE LONG S SHORT S none
IKEY none LONG S none
OPEN/FETCH OPEN/NEXT DBSPACE LONG IS LONG IS LONG S
with DB SCAN DB SCAN TABLE LONG S LONG S none
Repeatable Read PAGE MEDIUM S SHORT 8§ none
ROW none none none
OPEN/FETCH OPEN/NEXT DBSPACE LONG IS LONG IS LONG S
with DB SCAN DB SCAN TABLE LONG IS LONG S none
Cursor Stability PAGE MEDIUM S SHORT S none
ROW none none none
OPEN/FETCH OPEN/NEXT DBSPACE LONG IS LONG IS LONG S
with INDEX SCAN TABLE LONG IS LONG IS none
INDEX SCAN PAGE LONG S (4) SHORT IS none
Repeatable Read ROW none LONG S (4) none
IPAGE LONG S SHORT S none
KEY none LONG S none
OPEN/FETCH OPEN/NEXT DBSPACE LONG IS LONG IS LONG S
with INDEX SCAN TABLE LONG IS LONG IS none
INDEX SCAN PAGE MEDIUM S SHORT IS none
Cursor Stability ROW none MEDIUM S none
IPAGE MEDIUM S SHORT S none
KEY none INSTANT S none
DML with unique FETCH using DBSPACE LONG IS LONG IS LONG S
index and INDEX TABLE LONG IS LONG IS none
equal predicate. PAGE LONG U (2) SHORT IS none
Update only ROW none LONG U (2) none
Repeatable Read IPAGE LONG S SHORT § none
(1)) IKEY none LONG § none
DML with unique FETCH using DBSPACE LONG IS LONG IS LONG S
index and INDEX TABLE LONG IS LONG IS none
equal predicate. PAGE LONG U (2) SHORT IS none
Delete only ROW none LONG U (2) none
Repeatable Read IPAGE LONG U SHORT $ none
(1) (3) IKEY none LONG U none

LH08-8081-03 © Copyright IBM Corp. 1987, 1893

Chapter 2. SQUDS Concepts 61

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

62 sQL/DS Diagnosis for VM

(4)

Figure 31 (Page 2 of 2). Locking for Different Internal DM Calls
SQL DBSS LOCKED PAGE ROW DBSPACE
FUNCTION FUNCTION OBJECT LOCKING LOCKING LOCKING
OPEN/FETCH OPEN/NEXT DBSPACE LONG IS LONG IS LONG S
with DB SCAN DB SCAN TABLE LONG U LONG U none
Repeatable Read PAGE MEDIUM U SHORT S none
Update/Delete ROW none none none
OPEN/FETCH OPEN/NEXT DBSPACE LONG IS LONG IS LONG S
with DB SCAN DB SCAN TABLE LONG IS LONG U none
Cursor Stability PAGE MEDIUM U SHORT S none
Update/Delete ROW none none none
OPEN/FETCH OPEN/NEXT DBSPACE LONG IS LONG IS LONG S
with INDEX INDEX SCAN TABLE LONG IS LONG IS none
SCAN PAGE LONG U SHORT IS none
Repeatable Read ROW none LONG U none
Update and IPAGE LONG S SHORT S none
Format 2 delete KEY none LONG § none
OPEN/FETCH OPEN/NEXT DBSPACE LONG IS LONG IS LONG S
with INDEX INDEX SCAN TABLE LONG IS LONG IS none
SCAN PAGE MEDIUM U SHORT IS none
Cursor Stability ROW none MEDIUM U none
Update and IPAGE MEDIUM s SHORT S none
Format 2 delete KEY none INSTANT S none
OPEN/FETCH OPEN/NEXT DBSPACE LONG IS LONG IS LONG S
with INDEX INDEX SCAN TABLE LONG IS LONG IS none
SCAN PAGE LONG U SHORT IS none
Repeatable Read ROW none LONG U none
Format 1 delete IPAGE LONG U SHORT § none
only KEY none LONG U none
OPEN/FETCH OPEN/NEXT DBSPACE LONG IS LONG IS LONG S
with INDEX INDEX SCAN TABLE LONG IS LONG IS none
SCAN PAGE MEDIUM U SHORT IS none
Cursor Stability ROW none MEDIUM U none
Format 1 delete IPAGE MEDIUM U SHORT § none
only KEY none INSTANT S none
(1 U locks are only used for calls of this type when all the search arguments are
sargable. This guarantees that if a row is found, it is updated and prevents U
locks from being held until the end of the LUW when the row is not being
updated.
(2) These U locks are always upgraded to X locks on the next DBSS call involving
the scan for which they have been acquired.
(3) Locks on data pages and rows are acquired only if the page must be accessed.

This is the case only where there are search arguments that are not part of the
index key or when domains are requested.

Locks on data rows or pages will only be acquired if data page access is
required. This is the case only where there are search arguments which are not
part of the index key or when domains are requested and are not part of the
index key or when a variable length domain is requested.

Note: There are three additional lock types that are not mentioned in the pre-
vious tables:

1. Rollback Lock: a special system lock, acquired during roliback at the begin-

ning of a particular operation that requests page locks during the rollback.

2. Internal DBSPACE Lock: a lock on an internal DBSPACE.

LH09-8081-03 ® Copyright IBM Corp. 1987, 1983

"Restricted Materials of IBM”
Licensed Materials — Property of IBM

3. Database Lock: a special system lock that is acquired in IX mode at the
beginning of each LUW. It is acquired in X mode at checkpoint time if a log
archive is to be performed. This prevents new LUWs from starting when a
log archive is scheduled.

These locks may appear as lock type SYS (rollback lock), INT (internal- DBSPACE
lock), or DB (database lock) in the output of the SHOW LOCK operator command.

Locking on Indexes: SHARE and EXCLUSIVE locks are obtained on the pages
and keys of an index. The root and leaf pages that are traversed to obtain a
submitted key are locked for either a SHORT, MEDIUM or LONG duration
depending on the operation locking level (page or row), and isolation level
(repeatable read or cursor stability). Non-leaf pages are never locked.

With row level locking the successor key in the index is locked for an index
insert or delete, as well as the inserted or deleted key. Similarly, with page
level locking, the successor page may be locked if the successor key is on the
next page. This is referred to as “adjacent key locking.”

Detailed locking on indexes is described in the following tables for each of the
more common internal data manipulation operations.

OPEN SCAN, NEXT and FETCH — REPEATABLE READ

LOCKED PAGE ROW

OBJECT LOCKING LOCKING
ROOT PAGE SHORT SHARE SHORT SHARE
LEAF PAGE LONG SHARE SHORT SHARE
KEY none LONG SHARE

OPEN SCAN, NEXT and FETCH — CURSOR STABILITY

LOCKED PAGE ROW

OBJECT LOCKING LOCKING

ROOT PAGE SHORT SHARE SHORT SHARE
LEAF PAGE MEDIUM SHARE SHORT SHARE
KEY none INSTANT SHARE

OPEN SCAN, NEXT and FETCH — for DELETE — REPEATABLE READ

LOCKED PAGE ROW

OBJECT LOCKING LOCKING
ROOT PAGE SHORT SHARE SHORT SHARE
LEAF PAGE LONG UPDATE SHORT SHARE
KEY none LONG UPDATE

LH08-8081-03 © Copyright IBM Corp. 1987, 1983

Chapter 2. SQL/DS Concepts

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

OPEN SCAN, NEXT and FETCH — for DELETE — CURSOR STABILITY

LOCKED PAGE ROW

OBJECT LOCKING LOCKING

ROOT PAGE SHORT SHARE SHORT SHARE
LEAF PAGE MEDIUM UPDATE SHORT SHARE
KEY none INSTANT SHARE

INDEX DELETE (DELETE or UPDATE for Deleted key)

LOCKED PAGE ROW

OBJECT LOCKING LOCKING

ROOT PAGE SHORT SHARE SHORT SHARE

LEAF PAGE LONG EXCLUSIVE SHORT EXCLU-
SIVE

DELETED KEY none INSTANT/LONG
EXCLUSIVE

SUCCESSOR KEY none LONG
EXCLUSIVE/none

INDEX INSERT (INSERT or UPDATE for Added key)

LOCKED PAGE ROW

OBJECT LOCKING LOCKING

ROOT PAGE SHORT SHARE SHORT SHARE

LEAF PAGE LONG EXCLUSIVE SHORT EXCLU-
SIVE

INSERTED KEY none LONG EXCLUSIVE

SUCCESSOR KEY none INSTANT EXCLU-
SIVE

INDEX UPDATE WITH DEFERRED CHECKING OF UNIQUENESS

LOCKED PAGE ROW

OBJECT LOCKING LOCKING

ROOT PAGE SHORT SHARE SHORT SHARE

LEAF PAGES OF LONG EXCLUSIVE SHORT EXCLU-

INSERTED AND SIVE

DELETED KEYS

INSERTED KEY none LONG EXCLUSIVE

DUPLICATE OF none MEDIUM EXCLU-

INSERTED KEY SIVE

SUCCESSOR OF none INSTANT EXCLU-

INSERTED KEY SIVE

DELETED KEY none INSTANT EXCLU-
SIVE

SUCCESSOR OF none LONG

DELETED KEY EXCLUSIVE/none

64 sQU/DS Diagnosis for VM

LH09-8081-03 ® Copyright IBM Corp. 1887, 1883

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

Notes:

1. For OPEN SCAN, NEXT, and FETCH, index locking occurs only for the index
used (if any) to retrieve the rows.

2. For UPDATE and DELETE operations, OPEN SCAN and NEXT are used to
locate the rows to be updated or deleted.

3. UPDATE causes index locking as described above for any index where a key
column value was updated.

4. INSERT and DELETE cause every index on the table to be updated.

Deadlock Detection

The database manager performs deadlock detection prior to placing any agent
into a lock wait. An example of a deadlock is: agent A holds resource X and
agent B wants resource X while holding resource Y, which agent A wants. There
is an impasse, which the system removes by rolling back the youngest LUW.
Agents that are in the process of being rolled back are never chosen as dead-
lock “victims.”

Escalation of Locks

In managing the lock requirements of a LUW, the database manager uses
internal control blocks called lock request blocks (LRBs). Each time a lock is
acquired one or more LRBs are used. The number of LRBs that can be held by
any given agent is defined by the SQL/DS initialization parameter NLRBU. The
sum of the number of LRBs held by all agents cannot exceed the limit defined by
the SQL/DS initialization parameter NLRBS. When either of these limits is
reached, lock escalation is initiated for the agent that caused the limit to be
exceeded.

Lock escalation is the act of trading low level locks (page, row, table, index page,
or key value locks) for the appropriate DBSPACE lock for one of the DBSPACEs
in which the victim agent holds locks. The DBSPACE chosen is the one in which
the agent holds the most locks.

Note that the lock manager is selective about the locks it escalates. A request
for data in DBSPACE X does not necessarily cause escalation to go after a lock
on DBSPACE X.

if the agent holds any EXCLUSIVE locks in the DBSPACE, an EXCLUSIVE lock is
requested on the DBSPACE chosen. Otherwise, a SHARE lock is requested. If
the DBSPACE lock cannot be granted, the system checks for a possible dead-
lock. If no deadlock is found, the DBSPACE lock request is queued. After the
DBSPACE lock is granted, the lower level locks are freed, except those which
are required to support the atomicity of SQL statements. For more information
on atomicity of SQL statements, see the Database Administration manual. When
calculating NLRBU, you will need to allocate extra LRBs when applications
contain SQL statements which affect muitiple rows (such as UPDATE).

As the user resumes access to the DBSPACE (which is now locked at the
DBSPACE level), lower level locks are not required and are not obtained. Thus,
for any given LUW, the user can escalate only once on a particular DBSPACE.
Or another way of looking at it, the maximum number of times an LUW can be
escalated is the number of DBSPACEs accessed during that LUW.

LH09-8081-03 © Copyright IBM Corp. 1987, 1983 Chapter 2. SQL/DS Concepts 65

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

Access to Private DBSPACEs
More than one user can have concurrent access to a private DBSPACE, but for
read operations only. That is, multiple users can hold a shared lock on the
DBSPACE.

Termination Concepts

The application server can be terminated normally or abnormally. Normal termi-
nation occurs in single user mode (SUM) when the application program returns
to the application server. In multiple user mode (MUM), normal termination
occurs when the SQL/DS operator issues an SQLEND command without the
QUICK keyword, and after all users have disconnected their communication link
with the application server. If DVERIFY was specified, the directory is then veri-
fied. For SQLEND with ARCHIVE or LARCHIVE, the appropriate archive operation
is performed.

During normal termination in the VM environment, the database manager severs
the IUCV connection to the *IDENT system service to relinquish ownership of the
database as a resource, so new users are not able to establish a connection.

Abnormal termination occurs when the database manager detects an internal
error, a resource limitation, a hardware error, a program check (or similar situ-
ation), or the operator issues an SQLEND QUICK command, as follows:
* In the case of an internal error, the detecting module issues the message:
ARIOO40E SQL/DS system error occurred-ARIXxxx nn
ARIxxxx is the name of the module detecting the error and nn is the point
within the module where the error was detected. This message is accompa-

nied by the SQL/DS mini-dump and a dump of the database machine
according to the DUMPTYPE initialization parameter specification.

* Whenever the database manager cannot obtain sufficient resources, usually
storage, it issues a limit error message, and normally there is an accompa-
nying message preceding it:

ARIOO39E SQL/DS 1imit error occurred—ARIxxxx nn

where ARIxxxx is the name of the module detecting the limit error and nn is
the detection point within the module. Because the accompanying message
indicates the cause of the error, no dump is taken.

* Whenever a hardware error is detected, the database manager issues the
message:

ARIOO41E System hardware error occurred—ARIxxxx nn

where ARIxxxx is the module detecting the hardware error and nn the error
detection point. This message is normally preceded by a message indicating
the cause of the error. No dump is taken for a hardware error.

Note: For limit and hardware errors, the message
ARIO042I SQL/DS reason code is nl-X'n2'

is issued where n1 (decimal representation) and n2 (hexadecimal representation)
is the host system return code associated with the failure.

66 sSQUDS Diagnosis for VM LH09-8081-03 ® Copyright IBM Corp. 1987, 1993

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

If a program check occurs, control is given to the SQL/DS abnormal termination
routines. The abnormal termination exit is established by way of a DMSABN
command. The action taken depends upon the environment (SUM or MUM) and
the time when the condition occurs (in DBSS, RDS, and so forth). The action can
be as simple as passing a return code to the application program, or as drastic
as terminating the database machine. These actions are described in “System
Problems” on page 247.

LH09-8081-03 © Copyright IBM Corp. 1887, 1993 Chapter 2. SQL/DS Concepts 67

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

68 sQL/DS Diagnosis for VM LH09-8081-03 © Copyright IBM Corp. 1987, 1993

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

Chapter 3. Reporting Defects

This chapter introduces you to the concepts that you need in order to build a
symptom string that describes a defect. You are here because someone has a
problem with the SQL/DS product and you are fairly certain that it was being
used correctly at the time of the failure. However, if a non-SQL/DS application
requester or server was accessed at the time the problem was encountered, you
should also refer to the Distributed Relational Database Problem Determination
Guide. A problem reported on an SQL/DS application requester could, for
example, be caused by a non-SQL/DS application server.

This chapter will help you determine whether the SQL/DS failure has been previ-
ously documented and corrected. If it has not, the chapter will help you commu-
nicate with IBM* support personnel to isolate and correct the problem.

Specifically this chapter will help you to:
+ Systematically develop a set of "keywords” to describe the failure.

¢ Use these keywords to identify your problem when contacting the IBM
support center for assistance.

* Gather the necessary documentation to aid IBM support personnel in deter-
mining and correcting the problem.

Using this chapter will therefore expedite your getting an IBM-supplied cor-
rection for the problem.

For your convenience, a set of blank forms has been included (the first is on
page 89) to aid you in constructing a symptom string to describe your problem.
Figure 32 on page 70 is the hierarchy of keywords that are required for devel-
oping a keyword string to describe your problem. The two topmost elements are
required for any problem you might encounter. The first (component id) is
already completed on the forms provided, and you need only to place a
checkmark for the second element (release level). Depending on what your
symptom is, follow the branch for the third-level element (ABNORMAL TERMI-
NATION, NO RESPONSE, etc.) that describes your symptom, specifying the
information requested on the appropriate form. A separate form is provided for
each of the third-level elements.

LH09-8081-03 ® Copyright 1BM Corp. 1987, 1893 69

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

PIDS / component id

I
LVLS / release level

ABNORMAL NO SLOwW INCORRECT MESSAGES | |DOCUMENT®
TERMINATN:| [RESPONSE?2 RESPONSE3 OUTPUT4
AB/Snnnn PDOSYM = NON AUTOMATED MS/message id

EXTSYM = ABRATE | |EXTSYM=RESULT| |PRCS/return code
I |

RIDS / module name

NON EXECUTION
I

PUB KEYED
I

PUBS / document number

PDCOND

PDAID

Use form on page 89.
Use form on page 91.
Use form on page 92.
Use form on page 93.
Use form on page 90.
Use form on page 94.

o v s WN -

Figure 32. Anatomy of a Keyword String

Developing the First (Two) Keyword(s)
All keyword strings contain keywords of the following two types:
¢ Component Identiﬂcétion Keyword (PIDS)
¢ Release Level Keyword (LVLS)

Component Identification Keyword (PIDS)

The first keyword in the string holds the number by which IBM support personnel
identify the SQL/DS database manager as the component detecting the error.
This is included on each of the forms. (If you choose not to use one of the forms
provided in this book, you must supply: PIDS/568810301.)

70 SQUDS Diagnosis for VM LH09-8081-03 © Copyright IBM Corp. 1987, 1993

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

Release Level Keyword (LVLS)

The second keyword in the string shows the Component Level Code number for
the release. For previous releases and this release, check the appropriate level
on the form or (if you do not choose to use the form) specify the element as

follows:
Version 2 Release 2 :

- For all problems which are not specific to NLS Language type,

use LVLS/220

- For NLS specific problems, use the keyword for the language

in the 1ist below
English Upper Case:
French
German
Italian :
Spanish :
Japanese :
Korean :
Chinese :
Version 3 Release 1 :

o oo oo

LVLS/221
LVLS/222
LVLS/223
LVLS/224
LVLS/225
LVLS/226
LVLS/227
LVLS/228

- For all problems which are not specific to NLS Language type,

use LVLS/310

- For NLS specific problems, use the keyword for the language

in the 1ist below
English Upper Case:
French :
German :
Italian :
Spanish :
Japanese :
Korean :
Version 3 Release 2 :

LVLS/311
LVLS/312
LVLS/313
LVLS/314
LVLS/315
LVLS/316
LVLS/317

- For all problems which are not specific to NLS Language type,

use LVLS/320

- For NLS specific problems, use the keyword for the language

in the 1ist below

English Upper Case:
French :
German :
Italian :
Spanish :
Japanese :

Korean :
Version 3 Release 3 :

LVLS/321
LVLS/322
LVLS/323
LVLS/324
LVLS/325
LVLS/326
LVLS/327

- For all problems which are not specific to NLS Language type,

use LVLS/330

- For NLS specific problems, use the keyword.for the language

in the 1ist below
English Upper Case:
French
German
Italian
Spanish
Japanese
Korean
Chinese

ee eo oo oo oo oo oo

LHO08-8081-03 © Copyright IBM Corp. 1987, 1883

LVLS/33A
LVLS/33B
LVLS/33C
LVLS/33D
LVLS/33E
LVLS/33F
LVLS/336
LVLS/33N

Chapter 3. Reporting Defects 71

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Version 3 Release 4
- For all problems which are not specific to NLS Language type,
use LVLS/340
- For NLS specific problems, use the keyword for the language
in the 1ist below
English Upper Case: LVLS/34A

French ¢ LVLS/34B
Italian ¢ LVLS/34D
Spanish ¢ LVLS/34E
Japanese : LVLS/34F
German ¢ LVLS/34H
Chinese + LVLS/344

Developing the Remaining Keywords

Abnormal Termination
To complete the keyword string for an abnormal termination, the system abend
code is necessary, and can be obtained from the SQL/DS minidump provided
when the abend occurred. The keyword is specified as follows:

AB/Snnnn
RIDS/module name
ADRS/

where nnnn is the system abend code; module name is obtained from the
SQL/DS minidump. For example, the keyword for an operation exception would
be AB/S00C1.

Figure 33 is an example of a minidump of an abend situation. The line displayed
before the ARIO032] message is the SQL/DS-generated symptom string.

DMSITP141T Operation exception occurred at 800FB852 in routine ARISDBBT

SQL/DS MINIDUMP FOLLOWS:
IF DUMPTYPE = N NO DUMP IS PRODUCED

SQL/DS ABEND SAVEAREA :
ADDR OFFSET DUMP DATA

007870F0 000000 00OOCEEE OOOOOOO0 00787000 GOOFB7EQ *ceevevennnn.
00787100 000010 OOOGFB3EO OCOFB850 004F0151 OG4EF152 *

00787110 000020 00000000 0OOOOOO1 OO4E48C4 0OOFB520 * +.D....
00787120 000030 O0O01DEABO GO4EE153 804ED154 00OFBB50 *

00787130 000040 00OFBB50 OO4ED19E O3EC1EGO 800FB8S2 * ...

00787140 000050 0EECOOOE COOOOOCO 0OOCEOOO OOOOOOOO *coovevees
00787150 TO 007871CO0 SUPPRESSED LINE(S) SAME AS ABOVE

007871C6 000000 000COOO0 00666000 Cevenaas *

+

+

[49

20 . o
* % * % % *

Figure 33 (Part 1 of 2). SQL/DS Minidump, Example for Abend

72 sQUDS Diagnosis for VM LH09-8081-03 © Copyright IBM Corp. 19887, 1993

“Restricted Materials of IBM"

Licensed Materials — Property of IBM

GPR
GPR
GPR
GPR

ADDR

1

000FB830 000000
000FB840 000010
000FB850 000020
000FB860 000030
00OFB870 000040

ARI0032I SQL/DS
ARI0042I SQL/DS
ARI0043I SQL/DS

ABTERM CODE 0C1 AT

PROGRAM OLD PSW IS

00787000
004F0151
004E48C4
804ED154

Do O

FAILURE AT OFFSET
FAILURE AT OFFSET

CALLED FROM OFFSET
CALLED FROM OFFSET

SUMMARY OF USERS

DS2CvT RDC
00787000 007

00OFB8S50
: O3EC1E00

O0OFB7EO
004EF152
000FBS520
000FB850

+000307F0
+00000190

+0000E9C2
+0000036A

800FB852

000FB3EO
00000000
001DEABO
000FB850

IN ARISQLDS PROGRAM (607F1000)

000FB850
00000001
004EE153
004ED19E

IN ARIYMOO 93.090

IN ARIXRDS PROGRAM (0066A000)

IN ARIXEDB 93.090

vT YRSSCVT
87888 00787540

USERID PROGRAM NAME

001 OPERATOR
002 CHECKPT
003 RECOVERY
004 SQLUSRS

BE THE CURRENT VALUES

STORAGE NEAR FAILURE :

OFFSET DUMP DATA

SYMPTOM STRING:
AB/S00C1

CURRENTLY RUNNING DCE 001800A0

DSCAREA YTABLE1l

001DESBAG 001DEABO
001F7D80 0O1F7F90
001F9230 001F9440
00206388 00206598

PIDS/568810301

has terminated.
reason code is 193 - X'Cl’'
return code is 516.

NOTE: USERID AND/OR PROGRAM NAME MAY BE RESIDUAL AND MAY NOT NECESSARILY

00000039 00000000 0CCEEEEC GO1DEABO *
000FB8OO 004E4900 OOOFBSB8 000FB724 *
000FB870 0OOFB790 00000000 0000000 *
00000000 00000000 0000000 00000000 *
003A0000 C1D9CIYFO FOF6F3CY9 40EB96A4 *

RIDS/ARIYMOO

RDAREA DCE
001800A0
001801D8

00202BF0 00180310

0020FCEQ 00180448

oooooooooooooooo

* * * % *

ADRS /00000190

Figure 33 (Part 2 of 2). SQL/DS Minidump, Example for Abend

Note:

The situation here was that module ARIXEDB called module ARIYMOO,
and an operation exception occurred at offset 00000190 in ARIYMOO.

LHO08-8081-03 © Copyright IBM Corp. 1987, 1683

Chapter 3. Reporting Defects 73

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Use the following keywords to describe message-associated problems, such as:
e The user received the SQL/DS “system error” (ARIO040E) message.

e The user received message ARI2909I indicating a First Failure Data Capture
dump is produced. For details see the next section, “First Failure Data
Capture” on page 76.

¢ The user had a problem with a message of format ARInnnnx.
The following keywords should be specified for the ARIOO40E messages:

MS/message id
RIDS/module name
PRCS/return code

where message id is ARIOO40E;
module name is ARIxxxx from the message text;
return code is the nn from the message text.

Figure 34 on page 75 is an example minidump of an SQL/DS system error. The
last line displayed in the minidump is the SQL/DS-generated symptom string.

The following keywords should be specified for messages having a format of
ARInnnnx (excluding ARIO0O40E and ARI2908I):

MS/message id
PRCS/return code

where message id is the ARInnnnx, return code is the return code from the
message text if available. Pad the return code with zeroes on the left hand side.

74 sQuos Diagnosis for VM LHO8-8081-03 © Copyright IBM Corp. 19887, 1893

“Restricted Materials of IBM"

Licensed Materials — Property of IBM

GPR
GPR
GPR
GPR

ADDR

007870F0 000000
00787100 000010
00787110 000020
00787120 000630
00787130 000040
00787140 000050

1

DS2CVT
00B8DOOO

SQL/DS MINIDUMP FOLLOWS:
IF DUMPTYPE =

SQL/DS ABEND SAVEAREA :

OFFSET DUMP DATA

00000000
0082C134
00000001
009C8668

N oo~

FAILURE AT OFFSET

CALLED FROM OFFSET
CALLED FROM OFFSET

SUMMARY OF USERS

USERID PROGRAM NAME
001 OPERATOR
002 CHECKPT
003 RECOVERY
004 SQLUSRS

009C91FO
00000001
007E8270
0082C008

N NO DUMP IS PRODUCED

00000000 00000000 00787000 OOOFB7EO
OOOFB3EO OOOFB850 004FO151 0O4EF152
00000000 00000001 OO4E48C4 OOOFBS20
©001DEABO OO4EE153 804ED154 0OOFB8SO
00OFB850 0G4ED19E O3EC1E00 806FB8S2
00000000 06000000 00OOOEEO 6OOEEOEO
00787150 TO 007871CO SUPPRESSED LINE(S) SAME AS ABOVE
007871C0 0000DO 00000000 00000000

0082C130
00000000
0081EF30
4E9C9166

ARIO040E SQL/DS system error occurred - ARICMUD 03

* % % % * *

00880000
00822810
0082C008
0092EE58

oooooooo

+00003162 IN ARIXRDS PROGRAM (009C6000)

+00000796 IN ARIXRDS PROGRAM (069C6000)
+000004DE IN ARIXERD 93.090 PLX

RDCVT
00B8D660

BE THE CURRENT VALUES

SYMPTOM STRING:
MS/ARI0040E

YRSSCVT
00B8D3A0

CURRENTLY RUNNING DCE 007E8270

DSCAREA YTABLE1

00806688 00806858
00809ECO 0O80A090
0080C628 008OC7F8

0081ED6O 0O81EF30.

PIDS/568810301

RIDS/ARICMUD

RDAREA

00817208
0082BA10

NOTE: USERID AND/OR PROGRAM NAME MAY BE RESIDUAL AND MAY NOT NECESSARILY

PRCS /00000003

ooooo

o
.
.
.
.
* * * * * *

DCE

007E£8048
007E8100
007E81B8
007E8270

Figure 34. SQL/DS Minidump, Example for SQL/DS System Error

Note:

The situation here was that module ARIXERD called module ARICMUD.
ARICMUD then detected an internal system error at error detection point 3.

LH08-8081-03 © Copyright IBM Corp. 1987, 1883

Chapter 3. Reporting Defects 75

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

First Failure Data Capture
First Failure Data Capture support is only provided when using the DRDA pro-
tocol. With this support, it may not be necessary to re-create an error in order to
report it to the IBM support center. All relevant diagnostic information, control
blocks and data streams are captured at the error detection point in the VM
console log of the application requester or application server and held in the
print queue.

This support is provided on both the application requester and the application
server, but the formats are different. It is invoked automatically when an error in
the communication data stream is detected, or an internal error is detected. At
that time, you will receive message ARI2909| which tells you that the error
occurred and that data is being captured for the dump. When you receive
message ARI2910l, you will know that the data capture process has completed
successfully.

The information captured includes:

¢ System information

— LU 6.2 logical unit of work identifier
— time and date

— communication information

— symptom string

— probable cause string

¢ Failure point specific data area
e Control blocks
* request/reply data streams

The number of control blocks and data streams depend on the point at which the
error was detected. These are used by IBM Support personnel for diagnosis.

To complete the keyword string for a First Failure Data Capture, the following
keywords should be specified:

MS/message id
RIDS/module name
PRCS/return code

where message id is ARI2909I,
module name is ARIxxxx from the dump,
return code is the nn.

The keywords are found in the symptom string of the dump.

Following is a modified example of an application requester First Failure Data
Capture dump. This type of dump is typically several pages long.

76 squos Diagnosis for VM LH09-8081-03 ® Copyrignt IBM Corp. 1987, 1983

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

BEGIN FIRST FAILURE DATA CAPTURE DUMP
APPLICATION REQUESTER DUMP

LUWID = SNANETID.*IDENT.A36973962095.0001 DATE/TIME = 02-05-91/15:15:52

EXTNAM: JONES

RDBMS : PAYROLL1 SQLDS/WM Vv3.3.0

PACKAGE: JONES .PAYROLL SECTION: 0001
LU: *IDENT

TPN: PAYROLL1 X('D7C1E8DIDED3ID3F1')

SYMPTOM STRING: MS/ARI29091 PIDS/568816361 RIDS/ARITFQA PRCS/01

PROBABLE CAUSE OF FAILURE:
NULL POINTER

DATA AREA BLHBUFP
00000010 00000CE6 00006480 * e *
END DATA AREA

CONTROL BLOCK DUMP FOR VMCBLOCK

00386DC8 00000000 ESD4C3C2 D3D6C3D2 00000128 00000EOO * VMCBLOCK........ *
003860D8 00000010 00000000 O0OOEOCO OFOOOOOF 0BEOBBAO * ...cceveeerennns *
00386DE8 00000020 00000000 00OOCOCO 0OOOOOOO OGO * ...cvvvveerenans *
00386DF8 TO 0O3B6EE8 SUPPRESSED LINE(S) SAME AS ABOVE

00386EE8 00000120 00000000 OOOEEEOO ¥ oeieeies *

END CONTROL BLOCK DUMP

CONTROL BLOCK DUMP FOR BLHEADER

002F5000 00000000 D9D4C2E4 C6C64040 00000030 OOBO7FFF * RMBUFF

002F5010 00CCEO16 0O2F5030 0000002D 0OOOEEEO 00319060 * ..&.....cvcceen.

002F5020 00000020 00329060 00D50000 00000000 00000000 * ...-.N.......... *

END CONTROL BLOCK DUMP

####4# REPLY DATA STREAM #####

002F5630 00000060 002DDOO3 03C50027 24130019 00100676 * Evvvvinnnn *

002F5040 00000010 DOO20004 0971E054 0001DOOO O10671F0 *covenn. o~
»* *

002F5050 0OOEEE20 EOOCOOOGO OA147AFF 00000000 OC A R
###4# END DATA STREAM DUMP #####

#4¥4%# END FIRST FAILURE DATA CAPTURE DUMP #####

Figure 35. Application requester First Failure Data Capture Dump

LH09-8081-03 © Copyright IBM Corp. 1987, 1993 Chapter 3. Reporting Defects 77

78

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

Following are descriptions of all possible fields contained in an application
requester dump. In general, a First Failure Data Capture Dump may contain all
or only some of these fields.

LUWID This field contains an LU 6.2 Logical Unit of Work Identifier.
DATE/TIME Date and time in MM-DD-YY/HH:MM:SS format.
EXTNAM Name of the user task on the application requester.

RDBMS Name of the application server the application requester is connected
to. This includes 18 byte application server name, the product name
of the application server and the version of the product the applica-
tion server is running.

PACKAGE and SECTION These parameters appear on the same line. The
PACKAGE parameter is in the format “collection-id.package-name”.
The SECTION parameter contains the section in the package that is
currently being executed.

LU Logical unit name. This identifies the gateway used to establish the
connection to the application server. With an SQL/DS application
‘requester, the LU is either *IDENT (for a local or TSAF collection) or
an AVS gateway name. With a non-SQL/DS application requester, the
LU is the LU name of the application server.

TPN Transaction Program Name. This is the name used to identify the con-
nection to the application server on the target network.

SYMPTOM STRING The symptom string consists of a set of keywords and
values.

PROBABLE CAUSE OF FAILURE: The line following this parameter should
contain a short description of why the error occurred.

The parameters PACKAGE, SECTION, LU, and TPN may or may not appear in a
given dump. They do not appear if the current DDM request does not concern a
specific package, and the LU and TPN may not appear if the connection is local.

Following is a modified example of an application server First Failure Data
Capture dump. This type of dump is typically several pages long.

SQL/DS Diagnosis for VM LH09-8081-03 © Copyright IBM Corp. 1987, 1983

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

EXTNAM:

007E393A

END

00706300

END

00798FD8
00798FES
00798FF8
00799008
06799018
00799028
00799038
00799048

####% END

007CCEDO
007CCEEO

#4444 END

VM USERID:

REQUESTER:
PACKAGE: -

SYMPTOM STRING:

APPLICATION SERVER DUMP

LUWID = SNANETID.*IDENT.A3DDO74FE6BF.0001

BEGIN FIRST FAILURE DATA CAPTURE DUMP

SECTION: 0001

JONES SQLID: JONES

JONES. 1

SQLDS/VM ve3.03.0 AT TORVMLBS8
JONES .PAYROLL

PROBABLE CAUSE OF FAILURE:
INVALID CORRELATION ID IN DDM HEADER

DATA AREA ASPCORID

00000060 0068

DATA AREA #####

DATA AREA DDMSVCOR

06000008 FFFFFFFF

DATA AREA #####

CONTROL BLOCK DUMP FOR VMQ

00000000 ESDA4D8CS D3C5D440
00000010 ©OECOCOO 0OCEEEEO
00000020 ©0GOOO00 0GEEEEO
00000030 000EC000 007983F0
00000040 50204004 00000000
00000050 00000060 00EEO000
00000060 00000000 A3DDO762
00000070 OBS7E800 02000000

CONTROL BLOCK DUMP #####

##44# REQUEST DATA STREAM ####4#

00000000 00200001 00G8001A
00000010 D3D4CIC3 C8D44040

DATA STREAM DUMP #####4

#H###4

00000078
00000660
00000000
00799050
000000060
00000000
10E9C800

200F0016
40404040

00799188
00000000
00000000
00B58410
00000000
00000000
A3DDO750

2110E208
40404040

##44# END FIRST FAILURE DATA CAPTURE DUMP #####

*+ %

MS/ARI29091 PIDS/568810301 RIDS/ARIWDDM PRCS/04

s ecesscee

seaelocee

Yoo

DRI I Y

LDBA

DATE/TIME = 05-08-91/14:15:12

ZH.t..&

[~
(=8
* % % * * * * *

eeedSQ ¥
*

Figure 36. Application server First Failure Data Capture Dump

LH09-8081-03 © Copyright IBM Corp. 1687, 1883

Chapter 3. Reporting Defects

79

No Response

Wait or Loop

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

Following are descriptions of all possible fields contained in an application
server dump. In general a First Failure Data Capture dump may contain all or
only some of these fields.

LUWID This field contains an LU 6.2 Logical Unit of Work Identifier.
DATE/TIME Date and time in MM-DD-YY/HH:MM:SS format.

VM USERID This is the VM userid received by the application server. Note that
in a remote connection, this may not be the original userid on the
originating system due to userid translation.

SQLID This is the SQL/DS user id of the application requester.
EXTNAM Name of the user task on the application requester.

REQUESTER This is the type of application requester connected to the applica-
tion server. This includes the product name of the application server,
the version of the product the application server is running, and the
server name of the application requester.

PACKAGE and SECTION These parameters appear on the same line. The
PACKAGE parameter is in the format “collection-id.package-name”.
The SECTION parameter contains the section in the package that is
currently being executed.

SYMPTOM STRING The symptom string consists of a set of keywords and
values.

PROBABLE CAUSE OF FAILURE: The line following this parameter should
contain a short description of why the error occurred.

The PACKAGE and SECTION parameters may not appear in a given dump. They
do not appear if the current DDM request does not concern a specific package.

No Response can be either a wait or loop condition. Before contacting IBM
support center, you should go to Chapter 5, “Diagnosing Performance
Problems” on page 101 and determine if your situation may be caused by a per-
formance problem within your system.

For a wait or loop condition, the following keywords should be specified:

PDSYM = NON AUTOMATED
EXTSYM = ABRATE
RIDS = module name

The module name (identified above by RIDS =) should be provided if it can be
determined. If the specific module name cannot be determined, it is recom-
mended you use the following names depending on which environment you are
running:

ISqQL - ARIISQL
DBS Utility - ARIDBS
SQL/DS - ARISQLDS

80 sQUDS Diagnosis for VM LHO08-8081-03 ® Copyright IBM Corp. 1987, 1983

<

c

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

Slow Response

Slow response is a performance related problem that you feel is caused by the
SQL/DS product and not due to application design. Before contacting the IBM
support center, you should go to Chapter 5, “Diagnosing Performance
Problems” on page 101 and determine if your situation may be caused by a per-
formance problem within your system. For a slow response problem the fol-
lowing keywords should be specified:

PDSYM = NON AUTOMATED
EXTSYM = ABRATE
RIDS = module name

The module name (identified above by RIDS =) should be provided if it can be
determined. If the specific module name cannot be determined, it is recom-
mended you use the following names depending on which environment you are
running:

ISqL - ARIISQL
DBS Utility - ARIDBS
sQL/DS - ARISQLDS

Incorrect or Missing Output

Document

When incorrect or incomplete output is delivered to the user, specify the fol-
lowing keywords:

PDSYM = NON AUTOMATED
EXTSYM = RESULT
RIDS = module name

The module name (identified above by RIDS =) should be provided if it can be
determined. If the specific module name cannot be determined, it is recom-
mended you use the following names depending on which environment you are
running:

1SQL - ARTISQL
DBS Utility - ARIDBS
sqQL/DS - ARISQLDS

When you find incorrect or misleading information in an SQL/DS publication, or
cannot find information that should be there, the keywords below should be
specified. Before you do this, however, consider the simpler alternative:
Describe your problem on the Reader’'s Comment Form in the back of the book
with the apparent defect. Then mail the completed form to IBM according to the
form’s instructions. Only extremely severe defects warrant the procedure in this
section, such as when a documented procedure causes permanent damage to
the database.

The following keywords should be specified for severe documentation problems:

PDCOND = NON EXECUTION
PDAID = PUB KEYED
PUBS/document number

where document number is the xxnn-nnnn-vv from the publication’s cover.

_LH09-8081-03 © Copyright IBM Corp. 1987, 1883 Chapter 3. Reporting Defects 81

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

Additional Keywords

Additional keywords can be used to describe failures related to SQLCODES, SQL
Statements, Start-up Parameters, Data Types, Application Languages, and
EXECs. These keywords will provide more information to expedite the search for
previously identified problems and resolutions.

SQLCODES
If the failure is related to an SQLCODE, use the following keywords:

PRCS/SQLCODE (absolute value)
PRCS/SQLERRD1 (absolute value)
PRCS/SQLERRD2 (absolute value)
PRCS/SQLERRP

Note: The code must be 8 digits long, and left padded with zeroes.

For the following SQLCA vaiues:
SQLCODE -901, SQLERRD1 -1, SQLERRD2 -30, SQLERRP ARIXRSS
You would use these keywords:
PRCS/00000901, PRCS/00000001, PRCS/00000030, RIDS/ARIXRSS

SQL Statements

Use all SQL/DS reserved keywords that are related to the failure. For an SQL
statement the following keywords should be specified.

PCSS/keyword
For example, if the failing statement was:

SELECT * FROM SQLDBA.ACTIVITY -
WHERE ACTNO IN (85,95)

then the symptom string would be:
PCSS/SELECT PCSS/WHERE PCSS/IN

Start-up Parameters

If the failure is related to the value of a start-up parameter, use the following
keyword:

PCSS/PARAMETER
PCSS/n (where n is the parameter value)

For example, if the failure only occurs in single user mode, (SYSMODE =S8), then
the keywords would be:

PCSS/SYSMODE
PCSS/S

Data Type
If the failure is dependant on the field data type, use the keyword:
FLDS/DATA TYPE

Here is a list of data types and keywords which can be used:

82 sSQUDS Diagnosis for VM LH08-8081-03 © Copyright IBM Corp. 1987, 1883

"Restricted Materials of IBM”
Licensed Materials — Property of IBM

SMALL INTEGER
INTEGER
DECIMAL
DECIMAL(5,2)
FLOATING POINT
CHARACTER
VARYING CHARACTER
VARYING GRAPHIC
LONG VARCHAR
LONG VARGRAPHIC
HOST VARIABLE
DATE

TIME

TIMESTAMP

FLDS/SMALLINT
FLDS/INTEGER
FLDS/DECIMAL
FLDS/DECIMAL VALU/C0502
FLDS/FLOAT

FLDS/CHAR

FLDS/VARCHAR
FLDS/VARGRAPHIC
FLDS/LONG FLDS/VARCHAR
FLDS/LONG FLDS/VARGRAPHIC
FLDS/HOSTVAR

FLDS/DATE

FLDS/TIME
FLDS/TIMESTAMP

Note: The keyword DECIMAL should be used for table columns defined as

NUMERIC.

Application Type

If the failure is dependant on the language of the application program, use one of

these keywords:

RIDS/PLI
RIDS/ASSEMBLER
RIDS/C

EXECs

RIDS/FORTRAN
RIDS/COBOL

If the failure occurs as a result of running an EXEC, use the following keyword:

RIDS/exec name

For example, if the failure occurred while running a COLDLOG (EXEC SQLLOG),

the keyword would be:

RIDS/SQLLOG

Application Program Generated SQLCODES

An interface is provided allowing application programs to format a symptom
string which can be used as another search argument to identify application

problems.

Invocation

The interface is composed of two modules that can be called from an application
program. The modules receive an SQLCA and return a formatted symptom
string in the form of five character strings.

For FORTRAN application programs, the invocation is:

===> CALL ARISSMF(SQLCOD,SQLERP,S1,52,53,54,55) /* FORTRAN */

For application programs of other languages, the invocations are as follows:

LH08-8081-03 © Copyright IBM Corp, 1987, 1983

Chapter 3. Reporting Defects 88

N}

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

===> CALL ARISSMA(SQLCA,S1,52,53,54,55); /* PL/I */
===> CALL 'ARISSMA' USING SQLCA S1 S2 S3 S4 S5. /* COBOL */
===> ARISSMA(&sqlca,S1,52,53,54,S5) /¥ 'c */
===> CALL ARISSMA, (SQLCA,S1,52,53,54,S5),VL /* Assembly Language */
===> CALL ARISSMA(SQGLCA,S1,52,53,54,55) /* RPG >/

(Note: For Assembly Language and RPG, this is pseudocode only.
See the Application Programming manual for syntax.)

Module

ARISSMA ARISSMA can be called by any PL/I, RPG,
Assembler, COBOL and 'C’ application
program.

ARISSMF ARISSMF can be called by any FORTRAN
application program.

Input

SQLCA The SQLCA causing the error.

Output Length Symptom string for

SQLCSTR1 13 SQLCODE

SQLCSTR2 13 SQLERRD1

SQLCSTR3 13 SQLERRD2

SQLCSTR4 12 SQLERRP (part 1)

SQLCSTRS 14 SQLERRP (part 2)

Figure 37. Symptom String invocation

The values returned by ARISSMA and ARISSMF are as follows:

SQLCSTR1 PRCS/nnnnnnnn; where n is the decimal representation of the
absolute value of the SQLCODE, right justified, padded with 0’s, for
a total length of 8 digits.

SQLCSTR2 PRCS/nnnnnnnn; where n is the decimal representation of the
absolute value of the SQLERRD1, right justified, padded with 0’s, for
a total length of 8 digits.

SQLCSTR3 PRCS/nnnnnnnn; where n is the decimal representation of the
absolute value of the SQLERRD?2, right justified, padded with 0’s, for
a total length of 8 digits.

SQLCSTR4 FLDS/SQLERRP. This value is always returned in the string.

SQLCSTRS VALU/Caaaaaaaa; where a is left justified, padded by blanks, and is
the module name provided in field SQLERRP.

Suppose the SQLCA fields have the following values when the error occurred:

84 sSQU/DS Diagnosis for VM LHO09-8081-03 © Copyright IBM Corp. 1987, 1893

C

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Interactions

SQLCODE = -901
SQLERRD1 = -160
SQLERRD2 = -33
SQLERRP = ARIXOEX

then the values of the strings will be:

SQLCSTR1 ==> PRCS/00000901
SQLCSTR2 ==> PRCS/00000160
SQLCSTR3 ==> PRCS/00000033
SQLCSTR4 ==> FLDS/SQLERRP

SQLCSTR5 ==> VALU/CARIXOEX

An application program can format a symptom string by calling ARISSMA or
ARISSMF, passing the SQLCA structure, and the 5 output strings.

The application program can then display or write the symptom string to a file as
required.

No messages are issued by ARISSMA and ARISSMF. The symptom strings are
built based on the SQLCA received.

Reporting a Problem

Materials

This section describes the types of material that can be sent to the IBM change
team when the problem reported to the IBM support center (using the keyword
string constructed) is a unique problem. The type of material required depends
on the problem encountered.

If your problem is occurring during distributed processing, you should also refer
to the Distributed Relational Database Problem Determination Guide for further
information on the types of material to collect.

This is the list of materials. See the Environments section for which material is
necessary for your problem.

¢ Environment

— Operating system including version and mode, where applicable (for
example, VM/ESA 1.0 XA mode).

= Other environment specifics (for example, fullscreen or VTAM*).

— 8SQL/DS release level.

— Indication as to whether or not the DRDA code is installed.

— Protocol parameter being used by the application server (AUTO or
SQLDS) and the application requester (AUTO, SQLDS, or DRDA).

= Identification of the SQL products involved (for example, SQL/DS applica-
tion server and OS/400* Database Manager application requester).

— Virtual storage size.

— CHARNAME (or CCSIDs) being used by the application server and the
application requester. If the CHARNAME being used is not an
IBM-supplied CHARNAME, provide specifics for that CHARNAME (that is,
the CCSID(s), the conversion table(s) and the entry into the
SYSCHARSETS catalog table).

LH09-8081-03 © Copyright IBM Corp. 1987, 1993 7 Chapter 3. Reporting Defects 85

86 sSQU/DS Diagnosis for VM

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Maintenance History

— VM PUT service level applied.
— System configuration changes.

SQL/DS User Tables

— Tables used as input to the failing request.
— Table definitions, index definitions, and optionally table data.
— Obtained via an SQL SELECT statement issued from ISQL or DBS Utility.

Failing SQL Statement or Sequence of Statements
— |Is necessary for some problems.
The Entire SQLCA

— From the SQL/DS user application.
— Obtaining the entire SQLCA requires coding in the application program.

SQL Codes

— Usually indicate errors in use of the SQL language.
— May appear in SQL/DS error messages.
— May also appear in SQLCA control block in user application.

Output from EXPLAIN statement

— Is necessary for some problems.

— Obtained via an SQL SELECT statement issued from ISQL or DBS Utility.

— For details on the EXPLAIN statement refer to the Database Adminis-
tration manual.

SQL/DS Accounting Record Information

— |Is necessary for some problems.
— For more information on accounting records, refer to the System Admin-
istration manual.

VM Dump

— Taken by the operator for loops and waits.
— Either the SQL/DS machine or the user machine must be dumped.

Database Machine Dump

— Optionally taken by the database manager for abnormal terminations and
detected system errors (DUMPTYPE = F in SQLSTART).
= Output to the SQL/DS operator console and/or job listing.

SQL/DS Minidump

— Taken by the database manager for abnormal terminations in the data-
base machine.

— Output to the SQL/DS operator console and/or job listing.
Job Output Listings

— From the database machine.
— From the SQL/DS user application.

First Failure Data Capture Dump
— From the print queue

LH08-8081-03 © Copyright IBM Corp. 1687, 1993

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

¢ SQL/DS Operator Console

— Error messages.

— SQL return codes.

— Output from the SQL/DS SHOW SYSTEM command.
— Output from the SQL/DS SHOW CONNECT command.

¢ Terminal Input and Output

— 8QL or ISQL commands entered.

— Error messages.

— Display resulits.

— Output from SQL/DS SHOW SYSTEM command.

* SQL/DS System Catalog

— Obtained via SQL SELECT statement issued from ISQL or DBS Utility.
— For names of the system catalog tables and their contents refer to the
SQL Reference manual.

e SQL/DS Trace Output
— For details on Trace usage and output refer to the Operation manual.
* Instruction Trace

— For small loops.
— Use hardware instruction step or PER trace.

e SQL/DS Error Messages

— May appear on operator console, job listing, or ISQL terminal.
— Record message id numbers, as well as exact message text.

e VM PER Trace

— For large loops.

Environments

This section describes what materials would be required for the different types of
failures in each environment. For the following descriptions, it is assumed that
the failure occurred in multiple user mode. If the application server is running in
single user mode, the database machine and the user machine will be one and
the same.

Note: Maintenance history is required for all problems. Items in square
brackets [] indicate optional materials.

LHO08-8081-03 © Copyright IBM Corp. 1887, 1983 Chapter 3. Reporting Defects 87

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

PROBLEMS IN PROBLEMS IN
THE DATABASE THE USER ISQL
PROBLEM TYPE MACHINE MACHINE PROBLEMS
ABNORMAL SQL/DS Minidump VM Dump VM Dump
TERMINATION SQL/DS Machine JOB Output Termtinal Input
Dump Listings and Output
First Failure First Failure [SQL/DS Operator
Data Capture Dump” Data Capture Dump”® Console]
[SQL/DS Operator [SQL/DS Operator
Console] Console]
[SQU/DS Trace
Output]
MESSAGE SQL/DS Operator The Entire SQLCA
Console SQLU/DS Error
SQU/DS Error Messages
Messages First Failure
First Failure Data Capture Dump”
Data Capture Dump”*
[SQL/DS Machine
Dump]
[SQU/DS Trace
Output]
WAIT VM Dump SQL/DS SHOW SQL/DS SHOW
SQU/DS SHOW SYSTEM Command SYSTEM Command
SYSTEM Command VM Dump VM Dump
[SQL/DS Operator JOB Output Terminal Input
Console] Listings and Output
[SQL/DS Trace [SQL/DS Operator [SQL/DS Operator
Output] Console] Console]
LOOP Instruction Trace Instruction Trace Instruction Trace
(small loops) (small loops) (small loops)
VM PER Trace VM PER Trace VM PER Trace
(large loops) (large loops) (large loops)
SQU/DS SHOW SQU/DS SHOW SQU/DS SHOW
SYSTEM Command SYSTEM Command SYSTEM Command
VM Dump VM Dump Terminal Input
[SQL/DS Operator JOB Output and Output
Console] Listings [SQL/DS Operator
[SQU/DS Trace [SQL/DS Operator Console]
Output] Console]
INCORRECT OUTPUT Application Server SQL Codes Terminal Input
CHARNAME Value SQL/DS Error and Output
Messages SQU/DS Error
JOB Output Messages
Listings [SQL/DS System
Application requester Catalog]
CHARNAME Value [SQU/DS User
[SQL/DS System Tables]
Catalog]
[SQUDS User
Tables]
[SQUDS Trace
Output]

Figure 38. Materials for Defect Problems

* The First Failure Data Capture Dump is only available when using the DRDA
protocol. Even then it is not always available. When it is present, it is required
information that must be sent to the IBM change team when reporting a problem.

88 sSQL/DS Diagnosis for VM LH09-8081-03 © Copyright IBM Corp. 1887, 1983

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

SYMPTOM KEYWORD STRING FOR ABNORMAL TERMINATIONS
(for the SQL/DS Licensed Program)

SECTION I (PRODUCT IDENTIFICATION)

COMPONENT 1ID: 568800401 (for Version 2 Release 2)

COMPONENT 1ID: 568810301 (for Version 3 Release 1, 2, 3, 4)

LEVEL CODE: __LvLs/220 (for Version 2 Release 2, English) (check one)
_Lvs/__ (for Version 2 Release 2, other languages)
__LvLs/310 (for Version 3 Release 1, English)
_LvLs/__ (for Version 3 Release 1, other languages)
__LvLs/320 (for Version 3 Release 2, English)
_Lvis/__ (for Version 3 Release 2, other languages)
__LvLs/330 (for Version 3 Release 3, English)
Lvws/ (for Version 3 Release 3, other languages)
__LvLS/340 (for Version 3 Release 4, English)
Lvs/ (for Version 3 Release 4, other languages)

SECTION II (PROBLEM IDENTIFICATION)

ABEND CODE: AB/S

MODULE NAME: RIDS/

SECTION III (PROBLEM RESOLUTION)

SERVICE RESPONSE: __ RET (Return)

(check one) __ PER (Program Error)
__boc (Documentation error)
__ USER (User Error)
__ NTF (No trouble found)

APAR: (APAR number)

SERVICE: PUT/ (PUT Tevel)
PTF = (Corrective Fix)

NOTES:

This page may be reproduced without written permission from IBM

LH0$-8081-03 © Copyright IBM Corp. 1987, 1983 Chapter 3. Reporting Defects 89

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

SYMPTOM KEYWORD STRING FOR MESSAGE
(for the SQL/DS Licensed Program)

SECTION I (PRODUCT IDENTIFICATION)

COMPONENT 1ID: 568800401 (for Version 2 Release 2)

COMPONENT 1ID: 568810301 (for Version 3 Release 1, 2, 3, 4)

LEVEL CODE: __LvLsy220 (for Version 2 Release 2, English) (check one)
_Lvs/ (for Version 2 Release 2, other languages)
__LvLs/310 (for Version 3 Release 1, English)
_Lvsy (for Version 3 Release 1, other languages)
__LvLs/320 (for Version 3 Release 2, English)
Lvs/ (for Version 3 Release 2, other languages)
__LVLs/330 (for Version 3 Release 3, English)
_Lvts/ (for Version 3 Release 3, other languages)
__LVLS/340 (for Version 3 Release 4, English)
_Lvsy (for Version 3 Release 4, other languages)

SECTION II (PROBLEM IDENTIFICATION)

MESSAGE ID: MS/ (ARInnnnX)

MODULE NAME: RIDS/ (if MS/ARIGO4QE)

RETURN CODE: PRCS/ (Return code or absolute

value of SQLCODE in decimal)

SECTION III (PROBLEM RESOLUTION)

SERVICE RESPONSE: __RET (Return)
(check one) __ PER (Program Error)
__ boc (Documentation error)
__ USER (User Error)
__NTF (No trouble found) '
APAR: (APAR number)
SERVICE: PUT/ (PUT level)
PTF = (Corrective Fix)
NOTES:

This page may be reproduced without written permission from IBM

80 sSQL/DS Disgnosis for VM LH09-8081-03 © Copyright IBM Corp. 1987, 1983

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

SYMPTOM KEYWORD STRING FOR NO RESPONSE
(for the SQL/DS Licensed Program)

SECTION I (PRODUCT IDENTIFICATION)

COMPONENT 1D: 568800401 (for Version 2 Release 2)

COMPONENT 1D: 568810301 (for Version 3 Release 1, 2, 3, 4)

LEVEL CODE: __LvLs/220 (for Version 2 Release 2, English) (check one)
_Lvs/ (for Version 2 Release 2, other languages)
__LVLs/310 (for Version 3 Release 1, English)
_Lvs/ (for Version 3 Release 1, other languages)
__LvLs/320 (for Version 3 Release 2, English)
Lvis/ (for Version 3 Release 2, other languages)
__LvLs/330 (for Version 3 Release 3, English)
_Lvis/__ (for Version 3 Release 3, other languages)
__LvLS/340 (for Version 3 Release 4, English)
_LvLs/__ (for Version 3 Release 4, other languages)

SECTION II (PROBLEM IDENTIFICATION)

PD SYMPTOM: PDSYM = NON AUTOMATED

EXTERNAL SYMPTOM: EXTSYM = ABRATE

MODULE NAME: RIDS/

SECTION III (PROBLEM RESOLUTION)

SERVICE RESPONSE: __ RET (Return)

(check one) __ PER (Program Error)

__boc (Documentation error)
__ USER (User Error)
__ NTF (No trouble found)

APAR: (APAR number)

SERVICE: PUT/ (PUT level)
PTF = (Corrective Fix)

NOTES:

This page may be reproduced without written permission from IBM

LH09-8081-03 © Copyright IBM Corp. 1987, 1983

Chapter 3. Reporting Defects

9

SYMPTOM KEYWORD STRING FOR SLOW RESPONSE
(for the SQL/DS Licensed Program)

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

SECTION I (PRODUCT IDENTIFICATION)

COMPONENT 1ID: 568800401 (for Version 2 Release 2)

COMPONENT 1ID: 568810301 (for Version 3 Release 1, 2, 3, 4)

LEVEL CODE: __Lvis/220 (for Version 2 Release 2, English) (check one)
_Lvs/__ (for Version 2 Release 2, other languages)
__LvLs/310 (for Version 3 Release 1, English)
Lvis/ (for Version 3 Release 1, other languages)
__LvLs/320 (for Version 3 Release 2, English)
_LvLs/__ (for Version 3 Release 2, other languages)
__LvLS/330 (for Version 3 Release 3, English)
_LVLs/___ (for Version 3 Release 3, other languages)
__LVLS/340 (for Version 3 Release 4, English)
Lvis/ (for Version 3 Release 4, other languages)

SECTION II (PROBLEM IDENTIFICATION)

PD SYMPTOM: PDSYM = NON AUTOMATED

EXTERNAL SYMPTOM: EXTSYM = ABRATE

MODULE NAME: RIDS/

SECTION III (PROBLEM RESOLUTION)

SERVICE RESPONSE: __RET (Return)

(check one) __PER (Program Error)

__boc (Documentation error)
__ USER (User Error)
__NTF (No trouble found)

APAR: (APAR number)

SERVICE: PUT/ (PUT level)
PTF = (Corrective Fix)

NOTES:

This page may be reproduced without written permission from IBM

92 sSQUDS Disgnosis for VM

LHO0$-8081-03 © Copyright IBM Corp. 1987, 1883

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

SYMPTOM KEYWORD STRING FOR INCORRECT OR MISSING OUTPUT
(for the SQL/DS Licensed Program)

SECTION I (PRODUCT IDENTIFICATION)

COMPONENT 1D: 568800401 (for Version 2 Release 2)

COMPONENT ID: 568810301 (for Version 3 Release 1, 2, 3, 4)

LEVEL CODE: __LvLs/220 (for Version 2 Release 2, English) (check one)
Lvis/ (for Version 2 Release 2, other languages)
__LvLs/310 (for Version 3 Release 1, English)
_Lvis/__ (for Version 3 Release 1, other languages)
__LvLs/320 (for Version 3 Release 2, English)
_LvLs/__ (for Version 3 Release 2, other languages)
__LvLs/330 (for Version 3 Release 3, English)
_Lvsy (for Version 3 Release 3, other languages)
__LvLs/340 (for Version 3 Release 4, English)
Lvsy (for Version 3 Release 4, other languages)

SECTION II (PROBLEM IDENTIFICATION)

PD SYMPTOM: PDSYM = NON AUTOMATED
EXTERNAL SYMPTOM: EXTSYM = RESULT
MODULE NAME: RIDS/

SECTION III (PROBLEM RESOLUTION)

SERVICE RESPONSE: __ ReT (Return)
(check one) __ PER (Program Error)
__boc (Documentation error)
__ USER (User Error)
__ NTF (No trouble found)
APAR: (APAR number)
SERVICE: PUT/ (PUT 1evel)
PTF = (Corrective Fix)
NOTES:

This page may be reproduced without written permission from IBM

LHO08-8081-03 © Copyright IBM Corp. 1987, 1983 Chapter 3. Reporting Defects

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

SYMPTOM KEYWORD STRING FOR DOCUMENTATION PROBLEMS

(for the SQL/DS Licensed Program)

SECTION I (PRODUCT IDENTIFICATION)

COMPONENT 1ID: 568800401 (for Version 2 Release 2)

COMPONENT ID: 568810301 (for Version 3 Release 1, 2, 3, 4)

LEVEL CODE: __LvLs/220 (for Version 2 Release 2, English) (check one)
_Lvisy (for Version 2 Release 2, other languages)
__LvLs/31e (for Version 3 Release 1, English)
_Lvs/__ (for Version 3 Release 1, other languages)
__LvLs/320 (for Version 3 Release 2, English)
_Lvs/__ (for Version 3 Release 2, other languages)
__LVLS/330 (for Version 3 Release 3, English)
_Lvisy (for Version 3 Release 3, other languages)
__LvLs/340 (for Version 3 Release 4, English)
_Lvis/__ (for Version 3 Release 4, other languages)

SECTION II (PROBLEM IDENTIFICATION)

PD CONDITION: PDCOND = NON EXECUTION
PD AID: PDAID = PUB KEYED
PUBLICATION: PUBS/ (document number)
SECTION IIT (PROBLEM RESOLUTION)
SERVICE RESPONSE: __ RET (Return)
(check one) __ PER (Program Error)
__ boc (Documentation error)
__ USER (User Error)
__ NTF (No trouble found)
APAR: (APAR number)
SERVICE: PUT/ (PUT Tevel)
PTF = (Corrective Fix)
NOTES:

This page may be reproduced without written permission from I1BM

84 sQUDS Diagnosis for VM

LH09-8081-03 ® Copyright IBM Corp. 19887, 1983

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

Chapter 4. Functional Problems

This chapter describes analysis of functional problems that might be encount-
ered in the use of the SQL/DS product. Problems are defined in this chapter by
symptoms; a symptom might be an SQL/DS error code or a functional deviation.

For each symptom identified, possible causes of the problem are listed along
with the corresponding actions that should be taken. In some cases the action
will involve use of problem determination facilities or suggestions to further
isolate and identify the problem. This chapter is meant to supplement the Mes-
sages and Codes manual. If an error code is sufficiently described in that
manual so that no additional suggestions are necessary, that code will not be
listed in this chapter.

This chapter is organized into the following sections:
» System-Related Error Codes

e Common User-related Error Codes

* Functional Deviations

System-Related Error Codes

The error codes listed here usually require action by the Systems Programmer.
Those for which the probable cause is INTERNAL SYSTEM ERROR’ will usually
require the Systems Programmer to record appropriate data and contact the
designated IBM support group.

SQL COMMAND FAILED (-901)

sSQL RDS DETECTED
CODE CODE BY REASON
(SQLERRD1)| (SQLERRP)
-901 -100 ARIXSUT Alert the system programmer.

The SQL/DS database manager
cannot use the STORE CLOCK
value provided by the oper-
ating system because of any of
the following reasons:

1. The clock value repres-
ents elapsed time instead of
time of day,

2. The clock is not in an
operational state,

3. The clock is in an error
state.

Note: For System Error related SQL Code -801 occurrences, Diagnostics should
be run by the System Programmer before contacting the IBM support group.

LH09-8081-03 © Copyright IBM Corp. 1987, 1993 95

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

ROLLED BACK DUE TO A DEADLOCK (-911)

If this occurs frequently, have the system programmer investigate via SHOW
LOCKS and the guidelines in Chapter 5, “Diagnosing Performance Problems” on
page 101 where the bottleneck is, to determine whether design or system alter-
ations would alleviate the problem.

EXCESSIVE DEADLOCKS: An unusually large number of deadlocks occur
between your applications.

Deadlocks are inherent to a DBMS with concurrent access. The SQL/DS data-
base manager does deadlock detection before placing any user in a lock wait.
The classic example of a deadlock situation is: User A holds resource X, which
User B wants, while User B is holding resource Y, which user A wants. There is
an impasse which the deadlock detector removes by rolling back the LUW which
started last.

If the applications are accessing the same table(s), then the deadlocks are most
likely due to the sequence of access to those tables. If the deadlocks are occur-
ring between two applications that are accessing different user data, then the
contention is with the system catalogs.

ACTIONS: To try to theorize the possible points of contention that would result
in a deadlock would be futile in this publication. Therefore, it is recommended
that the Trace facility be used to collect locking information to determine the
points of contention resulting in a deadlock. To do this, refer to “Using Trace for
Deadlocks” section in Chapter 8, “Problem Isolation and Handling” on page 247.

ROLLED BACK DUE TO EXCESSIVE (SYSTEM WIDE) LOCK
REQUESTS (-912)

If this happens frequently, the system programmer should monitor lock requests
and refer to guidelines in Chapter 5, “Diagnosing Performance Problems” on
page 101 of this book. (See “NLRB Parameters Too Small” on page 191.)

ROLLED BACK DUE TO EXCESSIVE LOCKS HELD FOR THIS LUW
(-915) \

Either the number of lock request blocks per user is too small (check with the
system programmer), or the locks are at too low a level (check with the system
or application programmers), or the program should be reviewed to see if all
accesses are necessary or if COMMIT WORKs issued within the program could
free up some of the locks. (See “NLRB Parameters Too Small” on page 191 in
Chapter 5, “Diagnosing Performance Problems” on page 101.)

Common User-related Error Codes

SQL COMMAND LIMITATION EXCEEDED (-101)

Occurring when using ISQL, DBSU or when preprocessing an application
program, or executing a PREPARE or EXECUTE IMMEDIATE SQL statement, this
error is usually because of an internal SQL/DS storage limitation. The storage
limitation was caused by one of the following:

96 sSQUDS Diagnosis for VM LH09-8081-03 © Copyright IBM Corp. 1687, 1993

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

1. The query is too long.

An SQL command cannot exceed 8192 characters. It is highly unlikely that
you have exceeded this limit, but you should check to make sure. Do not
count extra blanks and do not worry about the expansion of a view.

2. Too many columns.
3. Too many predicates.

4. View expansion of the request.

ACTIONS:

1. Shorten the query. If inspection of the query shows that it is more than 8192
bytes in length, then it must be shortened by using table labels, by using
views with shorter column names or by reorganizing the formulation of the
query.

2. Break up the query. If the query references too many columns, then it may
be necessary to break it up into multiple requests. If the end result does not
reference too many columns, then you may be able to do the desired func-
tion in a series of steps using tables for holding intermediate results.

3. Simpiify the query.

If none of the above are indicated, then you probably have more predicates than
the SQL/DS database manager can handle or some internal storage space has
been exceeded. For a list of -101 SQLCODES and an explanation indicating
which limit is being exceeded, see the Messages and Codes manual.

CREATOR.TABLE WAS NOT FOUND (-204)

This error may be generated because the table really does not exist, or because
CREATOR was not specified and the userid by which the user was connected to
the database is appended as the creator.

To resolve this, create the table, connect with appropriate userid, or define a
synonym for the table so that “CREATOR" need not be coded.

INPUT VARIABLE DATA TYPE NOT COMPATIBLE WITH COLUMN
(-301)

The database manager was attempting to do conversion of an input host variable
to the data type of a column or expression in an SQL statement. Possible
reasons for getting the -301 SQLCODE are:

LH09-8081-03 ©® Copyright IBM Corp. 1987, 1983 Chapter 4. Functional Problems 97

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

DATA TYPE OF TARGET DATA TYPE OF INPUT HOST
COLUMN OR EXPRESSION VARIABLE WAS NOT:
FLOAT NUMERIC: FLOAT, DECIMAL,
INTEGER, SMALLINT
DECIMAL NUMERIC: FLOAT, DECIMAL,
INTEGER, SMALLINT
INTEGER NUMERIC: FLOAT, DECIMAL,
INTEGER, SMALLINT
SMALLINT NUMERIC: FLOAT, DECIMAL,
INTEGER, SMALLINT
CHAR CHAR, VARCHAR, OR
LONG VARCHAR
GRAPHIC GRAPHIC,

VARGRAPHIC, OR
LONG VARGRAPHIC

VARCHAR CHAR, VARCHAR, OR
LONG VARCHAR
VARGRAPHIC GRAPHIC,

VARGRAPHIC, OR
LONG VARGRAPHIC

DATE CHAR, VARCHAR
TIME CHAR, VARCHAR
TIMESTAMP CHAR, VARCHAR

Figure 39. Possible Reasons for -301 SQLCODE

INPUT HOST VARIABLE TOO LARGE (-302)

The database manager is attempting to convert an input host variable to the data
type of a column or expression in an SQL statement. The length of the input
host variable is too long if the target is graphic or character. The numeric value
of the input host variable is too large if the target column or expression is
numeric. Possible reasons for getting the -302 SQLCODE are:

DATA TYPE OF TARGET

COLUMN OR EXPRESSION HOST VARIABLE:
DECIMAL VALUE TOO LARGE
INTEGER VALUE TOO LARGE
SMALLINT VALUE TOO LARGE
FIXED CHAR OR GRAPHIC LENGTH TOO LONG
VARYING CHAR OR GRAPHIC LENGTH TOO LONG

Figure 40. Possible Reasons for -302 SQLCODE

98 sSQU/DS Diagnosis for VM LH08-8081-03 © Copyright IBM Corp, 1887, 1883

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

‘ AN INDICATOR VARIABLE IS MISSING (-305)
If a NULL value is fetched, an indicator variable must be supplied with the output
host variable. See “Using Indicator Variables"” in the Application Programming
manual,

This indicator variable should be checked before manipulating data retrieved by
the select.

MISMATCH BETWEEN NUMBER OF HOST VARIABLES (-313)

The number of input host variables supplied in the SQLDA or host variable list
on an OPEN, PUT, or EXECUTE SQL statement does not match the number of
host variables specified in the original Data Manipulation Language (DML) SQL
statement. The original statement may be a SELECT statement specified in a
DECLARE CURSOR or PREPARE. Or it may be an INSERT, UPDATE, or DELETE
specified in a PREPARE or EXECUTE IMMEDIATE.

c This condition most likely occurs when an-application prepares (via PREPARE)
an SQL statement that contains “?" parameters. The application must supply
the host variables to be substituted for the “?” on a subsequent SQL statement.

The number of host variables in the SQLDA descriptor or host variable list sup-
plied in the EXECUTE, OPEN, or PUT statements must be the same as the
number of question marks (“?"}) in the original statement.

c Functional Deviations

Following are situations which do not result in SQL/DS error codes, but which
may represent a problem.

Lockout with Cursor Stability

When SQL/DS uses a DBSPACE scan to access a table in a DBSPACE with row
level locking using isolation level cursor stability, the effect is the same as
repeatable read. That is, no other LUW can update the table until the LUW per-
forming the DBSPACE scan ends. Also, if one LUW has updated a table, another

(v LUW cannot access that table with a DBSPACE scan until the updating LUW
ends.

Possible actions that can be taken to avoid the lockout situations are:
¢ Ensure that the table is accessed via an index.

* Alter the DBSPACE specifying page level locking.
¢ Place the table in a DBSPACE with page level locking.

FETCH with Cursor Stability

When the isolation level is CS, the use of a DBSS FETCH is prevented at run
time for statements that can be updated. Instead, a DBSS OPEN SCAN is per-
formed. In this case, isolation level RR may prove to be more efficient to allow a
DBSS FETCH operation and avoid the overhead of opening an internal scan. See
) “Types of Internal Data Manipulation Calis” on page 60, for a description of
L OPEN SCAN and FETCH.

LH09-8081-03 © Copyright IBM Corp. 1987, 1983 Chapter 4. Functional Problems 99

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

100 sQL/DS Diagnosis for VM LH09-8081-03 © Copyright IBM Corp. 1987, 1993

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

Chapter 5. Diagnosing Performance Problems

This chapter covers performance problem diagnosis. It takes problem symptoms
and leads the reader through problem isolation and problem determination activ-
ities to identify the ultimate cause of the problem. If your problem is occurring
during distributed processing, you should also refer to the Distributed Relational
Database Problem Determination Guide.

Sometimes it may not be obvious which kind of performance problem you have.
The first step in performance problem diagnosis is isolating the problem to a
particular type of problem. Once you have isolated the problem to a specific
type, you then do the analysis for that type of problem.

This chapter is organized into the following sections:
1. Performance Analysis Glossaries

This section provides three glossaries of terms used in this chapter. The
glossaries may be used for reference to assist you in interpretation of the
performance problem indexes and problem analysis sections.

2. Performance Problem Indexes

The performance problem indexes provide a list of possible problems based
on what functions are being performed and what symptoms are being
observed. There are two sets of indexes: the first set is organized by appli-
cation function, and the second is organized by performance symptom.

The performance problem indexes serve as an index into the specific
problem descriptions and their corrective actions. By using the application
function indexes starting on page 106, you can find the problems that might
be causing specific application functions to perform poorly. By using the
performance symptom indexes starting on page 111, you can find the prob-
lems that might be causing a specific performance symptom to occur.

3. Analysis of Performance Problems

For each performance problem, a problem description is provided and a list
of possible corrective actions is identified. The problem description will
identify the cause of the problem and secondary symptoms that should help
confirm that you do or do not have that problem.

The list of possible corrective actions includes possible circumventions to the
problem, as well as actions that might completely eliminate the problem.

LH09-8081-03 © Copyright IBM Corp. 1887, 1993 101

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

Performance Analysis Glossaries

Three glossaries are provided in this section to assist in your interpretation of
the performance problem indexes and problem descriptions. The three glossa-
ries are:

1. Performance Index Headers

This glossary explains how to interpret the columns in the performance
problem indexes.

2. Performance Indicator Terms

This glossary explains how to interpret some of the column values that
appear in the performance problem indexes.

3. Performance Terminology

This glossary provides a quick reference to terminology used in the perform-
ance problem descriptions.

Glossary of Performance Index Headers

Figure 41 lists the definitions of the headers used in the performance problem
indexes. It is important that you understand what each of the columns of the
indexes represent.

INDEX
HEADER DESCRIPTION
APPLICATION FUNC- This refers to the SQL function being performed when
TION the performance problem occurs. It is not necessarily
the function which caused the problem.
PAGE A page reference to the description of the problem
listed in the index line.
PERFORMANCE INDI- A performance indicator is a performance symptom
CATOR that indicates the possible existence of a problem.
POSSIBLE PROBLEM A possible problem is a performance problem that
might exist for the conditions shown in the index.

Figure 41. Glossary of Index Header Terms

Note: The APPLICATION FUNCTION column in the indexes refers to functions
that can show poor performance as a result of the listed problem.

Glossary of Performance Indicator Terms

Figure 42 on page 103 lists the definitions of performance indicator terminology
used in the performance problem indexes. The indicator terms are abbreviated
references to problem symptoms and may not be self-explanatory. Figure 42
provides a brief definition of symptoms implied by the indicator terms.

102 sQU/DS Diagnosis for VM LH09-8081-03 © Copyright IBM Corp. 1987, 1993

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

PERFORMANCE

INDICATOR DESCRIPTION

COMMUNICATION There is a high frequency of communication waits, or communication waits are of
WAITS INDICATOR long duration. (Note: A communication wait is the time an SQL/DS agent spends

in-LUW waiting for the application requests)

CONSISTENTLY HIGH The response time is consistently higher than expected.
RESPONSE TIME INDI-

CATOR

ESCALATES INDI- There is a high frequency of lock escalations, as measured by COUNTER ESCA-

CATOR LATE and COUNTER LOCKLMT. (NOTE: ESCALATE counts successfu/ escalations,
and LOCKLMT counts unsuccessful escalations.) '

HIGH CPU USAGE The amount of CPU time for an application is high.

INDICATOR

HIGH 1/0 INDICATOR The number of |/0’s to database DASD devices is high given the application or
work being done on the system. (Note: HIGH I/O usually also implies HIGH CPU
USAGE). -

HIGH 1/0 UTILIZATION A high device or channel utilization on any one device or channel.
INDICATOR

INDICATOR This refers to performance indicators used in the indexes into the performance
problem descriptions.

LINK WAITS INDI- There is a high frequency of link wait conditions, or link waits are of /ong duration.
CATOR

LOCK WAITS INDI- There is a high frequency of lock wait conditions, or lock waits are of fong

CATOR duration.

LOG 1/0’S INDICATOR There is a high number of log 1/0’s occurring for the application or system.

LOW CPU UTILIZA- The percentage of time the CPU is busy is fow. A CPU Utilization of 30 or 40%
TION INDICATOR would be considered low.

LOW 1/0 UTILIZATION A low device or channel utilization on any one device or channel.
INDICATOR

PAGING INDICATOR Page faults are occurring on the system at a noticeable rate. (Could be considered
a high paging rate).

PERIODIC HIGH Unexplained phenomenon that result in users getting widely varying, unpredictable
RESPONSE TIME INDI- response times for repeated executions of the same query or application.
CATOR

Figure 42. Glossary of Index Indicator Terms

Note: The HIGH 1I/O indicator also implies some level of unnecessary CPU over-
head as well. Thus, HIGH I/0 problems can also be investigated in situations
where your CPU usage is high.

Glossary of Performance Terminology
Figure 43 on page 104 defines some of the terms used in the performance
problem indexes and performance problem descriptions. You may want to famil-
iarize yourself with some of the terms before using this chapter, or you may
simply use this figure as a reference.

LHO09-8081-03 © Copyright IBM Corp. 1987, 1983 Chapter 5. Diagnosing Performance Probiems 103

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

PERFORMANCE
TERM

DESCRIPTION

BUFFER HIT RATIO

This is the ratio of “looks in the page buffers” to actual page reads (LPAGBUFF
divided by PAGEREAD).

BUFFER POOL
THRASHING

This is term for the condition when data for an application must be read from
DASD every time the application references it.

COMMUNICATION
WAIT

A communication wait occurs when an active (IN-LUW) agent returns control to the
application machine and is waiting for the next request from the application.

DATA AUTHORI-
ZATION COMMANDS

This refers to SQL commands that control data authorization (that is, GRANT and
REVOKE).

DATA DEFINITION
LANGUAGE (DDL)

This refers to SQL commands for maintaining data definitions (CREATE, ALTER,
ACQUIRE and DROP).

DATA MANIPULATION
LANGUAGE (DML)

This refers to SQL commands for reading and maintaining user tables (DELETE,
INSERT, SELECT and UPDATE).

ESCALATE A lock escalation occurs when the database manager trades several low level
locks (page or row and key locks) for one DBSPACE lock. Lock escalations are not
always successful. '

INDEX ELIGIBLE This is a predicate that can be used as an argument of an index scan in the DBSS

PREDICATE component.

KEY LOCKING This refers to locking of key hash values on non-unique key accesses. Key locking
is done in DBSPACEs where row level locking is in effect.

LINK WAIT A link wait is a wait condition that occurs when an application needs an agent, but

all the agents are in use by other applications. The application waits until an
agent frees up.

LINK WAIT RATIO

Refers to the ratio of number of users in a link wait state to the NCUSERS value.

LOADING This is used in the generic sense and refers to both the DBS Utility DATALOAD
and RELOAD functions.

LOCK LEVEL This refers to the amount of data locked when SQL/DS requests SHARE (S) or
EXCLUSIVE (X) locks. SQL/DS supports DBSPACE, page and row level locking.

LOCK WAIT A lock wait is a wait condition that occurs when an application requests a “piece”

of data being used by one or more other applications for a conflicting purpose (For
example, Read access conflicts with update access).

LOCK WAIT RATE

This is the rate at which lock waits are occurring in terms of the number of lock
waits per LUW. (LOCKWAIT divided by BEGINLUW).

PREPROCESS This refers to the execution of the SQL/DS preprocessors

(PL/1, COBOL, C, RPG, FORTRAN or Assembler).
QCE This refers to the Query Cost Estimate displayed by ISQL for SELECT commands.
RECOVERY CONTROL This refers to SQL commands that control data recovery (that is, COMMIT WORK
COMMANDS and ROLLBACK WORK).

SELECTIVE INDEX

This is an index that matches an index eligible predicate of a particular query.
Note: This does not refer to the data characteristics of the index. It is meaningful
only in the context of a specific query.

UNLOADING

This is used in the generic sense and refers to both the DBS Utility DATAUNLOAD
and UNLOAD functions.

VERY NONUNIQUE
INDEX

This is an index which has very few different key values (compared to the number
of rows in the indexed table).

VERY NONUNIQUE
KEY PREFIX

Refers to an index for which the first 6-bytes of the key values are very nonunique.

Figure 43. Glossary of Performance Analysis Terms

104 sQU/DS Diagnosis for VM

LH09-8081-03 © Copyright IBM Corp. 1987, 1993

C

"Restricted Materials of IBM"

Licensed Materials — Property of IBM

Performance Problem Indexes
The performance problems in this chapter are indexed by application function

and performance symptom. |f the performance problem can be observed when
using specific applications or application functions, then you should look directly
to “Application Function Indexes to Performance Problems” on page 106.

If the problem is not observed with any particular application or application func-

tion, but you can observe some symptoms of poor performance (such as lock

waits, high CPU usage, etc.), then you should start with the “Performance Prob-
lems by Performance Symptom” on page 111. Access to the performance
problem diagnosis information in this chapter is diagrammed below:

Performance

Performance Problem
Indexes by Performance

Symptom

Performance
Problem Indexes
by Function

Agent Related
Indexes
—— Page 111

CPU Related
Indexes
—— Page 112

1/0 Related
Indexes
——— Page 113

Locking Related
Indexes
———— Page 114

Storage Related
Indexes
—— Page 114

Special Case

Indexes
——» Page 115

General Problem indexes
———— > Page 107

Data Definition
Problem Indexes

—> Page 108

Data Manipulation
Problem Indexes
—————————> Page 109

Data Authorization
Problem Indexes

—> Page 108

Data Utilities
Problem Indexes

» Page 110

Recovery Control

Problem Indexes

> Page 111

Figure 44. Diagnosis and Recovery Flowchart - Performance

LHO09-8081-03 © Copyright IBM Corp. 1987, 1963

Chapter 5. Diagnosing Performance Problems

105

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

Application Function Indexes to Performance Problems

APPLICATION FUNCTION INDEXED FUNCTION PAGE

General (for any SQL) ANY SQL 107

Data Authorization GRANT 108
REVOKE

Data Definition ACQUIRE 108
ALTER
CREATE
DROP

Data Manipulation DELETE 109
INSERT

SELECT
UPDATE

Data Utilities LOADING 110
PREPROCESSOR
UNLOADING
UPDATE STATISTICS

Recovery Control COMMIT WORK 111
ROLLBACK WORK

Figure 45. Indexes For Performance Problems by Application Function

The following sections provide six problem indexes by application function. The
functions covered by each of the indexes are identified in Figure 45.

If all users are experiencing performance problems, you might want to start with
the “General Performance Problems” on page 107. If only the users issuing
data definition commands are experiencing performance problems, you should
start with “Data Definition Performance Problems” on page 108. However, for
completeness, you may want to review the problems in “General Performance
Problems” on page 107 as well. General problems are not all repeated in the
other indexes.

If you are experiencing performance problems with a specific function (such as
DATALOADs), then you should start with the index that corresponds to that func-
tion. In the case of DATALOAD, you would start with the “Data Utilities Perform-
ance Problems” on page 110.

Note: The functions used to index the problems are the functions being per-
formed when the problem was observed. They are not necessarily the functions
that are causing the performance problem. You do not have to know the function
that is causing your problems to use these indexes. You need to know only the
function or functions that are impacted by the problem.

106 sQL/DS Diagnosis for VM LH08-8081-03 © Copyright IBM Corp. 1987, 1693

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

General Performance Problems

Figure 46. General Performance Problems.

APPLICATION FUNCTION PERFORMANCE INDICATOR POSSIBLE PROBLEM PAGE

ANY SQL ESCALATES NLRB Parameters Too Small 191

HIGH CPU USAGE Need More CPU 188

Invalid Entities Exist 175

CHARNAME Not Set Correctly 130

BLOCK 170, APPC/VM and IUCV Not Resident 125

SQL/DS Machine Favored Too Little 139

ECMODE ON for Accounting 147

CMS Work Unit Set On 134

DRDA protocol to Access an SQL/DS Database 147

HIGH 110 Buffer Pool Too Small 128

and/or Sequential Processing 200

HIGH CPU Indexes are Fragmented 169

USAGE CHKINTVL Too Small 132

Data not Cached 139

Frequent Checkpoints caused by SOSLEVEL 152

HIGH 110 110 Capacity Exceeded 160

UTILIZATION 170 Not Balanced 161

LINK WAITS Agents Being Held 119

Too Few Agents 205

Session Limit Exceeded 203

LOCK WAITS Locks Held for Long Duration 180

NLRB Parameters Too Small 191

Conflict in Catalog Key Locking 134

Hot Spot in the Catalog Tables 153

LOW CPU One DB Machine Needs Too Much CPU 193
UTILIZATION (Multiprocessor systems only)

PAGING Page Fault Serialization 197

SET QDROP OFF USERS/SET QUICKDSP ON 203

SQL/DS Code Not Shared 204

Buffer Pool Too Big 126

Too Many Agents 206

NLRB Parameters Too Large 190

Need More Real Storage 189

PERIODIC HIGH CHKINTVL Too Big 131

RESPONSE TIME Checkpoint Being Forced at End-LUW 130

Long DBSS Calls Delaying Checkpoint 184

Buffer Pool Too Big 126

Sequential Processing 200

Logging during Load 183

Storage Pool Full 204

DRDA protocol to Access an SQL/DS Database 147

DRDA usage 147

Note: The possible problems listed in Figure 46 are problems that can be expe-
rienced when using any SQL functions. That is, most of the problems listed here
will impact any SQL work you would be doing. However, it should be noted that
some of the problems will impact some types of SQL work more than others.
For specific functions that are particularly sensitive to a general problem, the
general problem is repeated in the index for the specific function.

For example, although “Conflict in Catalog Key Locking” can impact any SQL
work; SQL DDL, SQL authorization commands and preprocessing will be partic-
ularly sensitive to this problem. Thus, “Conflict in Catalog Key Locking” is
repeated in the indexes for those functions. On the other hand, SQL DML com-

LH09-8081-03 © Copyright IBM Corp. 1987, 1683

Chapter 5. Diagnosing Performance Problems

107

“Restricted Materials of IBM"”
Licensed Materials — Property of IBM

mands are less sensitive to the problem, and therefore, the problem is not
repeated in the index for SQL DML problems.

Data Authorization Performance Problems

Figure 47. Data Authorization Performance Problems.

APPLICATION FUNCTION PERFORMANCE INDICATOR POSSIBLE PROBLEM PAGE

SQL AUTH LOCK WAITS Conflict in Catalog Key Locking 134

- GRANT Hot Spot in Catalog Tables 153

- REVOKE

Also See: il Index on: 107

ANY SQL General Performance Problems

Data Definition Performance Problems

Figure 48. Data Definition Performance Problems.

APPLICATION FUNCTION PERFORMANCE INDICATOR POSSIBLE PROBLEM PAGE

SQL DDL LOCK WAITS Contflict in Catalog Key Locking 134

- ACQUIRE Hot Spot in Catalog Tables 153

- ALTER

- CREATE

- DROP

CREATE INDEX HIGH 110 Create Index Requires a Large Sort 138
and/or Large Tables Share Same DBSPACE 175
HIGH CPU DBSPACE Scan Being Performed 141
USAGE Frequent Checkpoints caused by SOSLEVEL 152

DROP TABLE HIGH 110 Large Tables Share Same DBSPACE 175
and/or DBSPACE Scan being performed 141
HIGH CPU
USAGE

Also See: bbbl Index on: 107

ANY SQL General Performance Problems

108 sQu/DS Diagnosis for VM

LH08-8081-03 © Copyright IBM Corp. 1987, 1883

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

Data Manipulation Performance Problems

Figure 49. Data Manipulation Performance Problems.
APPLICATION FUNCTION PERFORMANCE INDICATOR POSSIBLE PROBLEM PAGE
SQL DML ESCALATES Lock Level Too Low 179
- DELETE HIGH 110 Inaccurate Statistics 162
- INSERT
. SELECT and/or Insufficient Indexing 174
- UPDATE HIGH CPU Need a Highly Clustered Index 187
USAGE Index No Longer Highly Clustered 168
No Selective Index 192
Index Disqualified 164
Indexes are Fragmented 169
Very Nonunique Index Key Prefix 211
Bad Data Distribution 122
Inefficient Search 170
Missing Search Condition 185
Large Tables Share Same DBSPACE 175
DBSPACE Scan Being Performed 141
Package Needs Re-Preprocessing 194
Range Predicate Used With Host Vars 199
. Blocking Suppression for INSERT CURSORs 125
LOCK WAITS Lock Level Too High 178
Lock Level Too Low 179
Excessive Locking In User Data 149
Hot Spot in User Tables 158
Conflict on Key Hash in User Data 136
Adjacent Key Locking in User Data 115
SQL DML HIGH 110 Index Maintenance 167
- DELETE and/or
- INSERT HIGH CPU
- UPDATE USAGE
SQL DML HIGH CPU Inefticient SELECT List 174
- SELECT HIGH 110 Too Many Joins 208
- INSERT FMT 2
and/or
HIGH CPU
USAGE
SQL DML CONSISTENTLY HIGH Query Block Size Too Small 198
- SELECT RESPONSE TIME
Also See: bt Index on: 107
ANY SQL General Performance Problems

LH09-8081-03 ® Copyright IBM Corp. 1987, 19883

Chapter 5. Diagnosing Performance Problems

109

Data Utilities Performance Problems

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

Figure 50. Data Utilities Performance Problems.

APPLICATION FUNCTION PERFORMANCE INDICATOR POSSIBLE PROBLEM PAGE
LOADING ESCALATES Lock Level Too Low 179
HIGH 1/0 Index Maintenance 167
and/or UPDATE STATISTICS by DATALOAD 210
HIGH CPU Frequent Checkpoints caused by SOSLEVEL 152
USAGE Blocking Suppression for INSERT CURSORs 125
LOCK WAITS Excessive Locking in User Data 149
Lock Level Too Low 179
Lock Level Too High 178
Conflict on Key Hash in User Data 136
Adjacent Key Locking in User Data 115
Log I/O’s Logging during Load 183
UNLOADING ESCALATES Lock Level Too Low 179
HIGH CPU Inefficient SELECT List 174
USAGE :
HIGH 110 Large Tables Share Same DBSPACE 175
and/or DBSPACE Scan Being Performed 141
HIGH CPU Insufficient Indexing 174
USAGE Need a Highly Clustered Index 187
Index No Longer Highly Clustered 168
No Selective Index 192
Index Disqualified 164
Very Nonunique Index Key Prefix 211
Inefficient Search 170
Missing Search Condition 185
Too Many Joins 208
Inaccurate Statistics 162
Bad Data Distribution 122
LOCK WAITS Excessive Locking in User Data 149
Lock Level Too Low 179
Lock Level Too High 178
Conflict on Key Hash in User Data 136
Adjacent Key Locking in User Data 118
CONSISTENTLY HIGH Query Block Size Too Small 198
RESPONSE TIME
PREPROCESSOR ESCALATES NLRB Parameters Too Small 191
LOCK WAITS Conflict in Catalog Key Locking 134
NLRB Parameters Too Small 191
UPDATE HIGH 110 Large Tables Share Same DBSPACE 175
STATISTICS and/or DBSPACE Scan Being Performed 141
HIGH CPU
USAGE
Also See: e Index on: 107
ANY SQL General Performance Problems

110 sSQuDS Diagnosis for VM

LH09-8081-03 © Copyright iBM Corp. 1887, 1983

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Recovery Control Performance Problems

Figure 51. Recovery Control Performance Problems.

APPLICATION FUNCTION PERFORMANCE INDICATOR POSSIBLE PROBLEM PAGE

RECOVERY PERIODIC HIGH Checkpoint Being Forced at End-LUW 130
CONTROL RESPONSE TIME Storage Pool Full 204

- COMMIT

- ROLLBACK

Also See: bainiaidnieisitd Index on: 107
ANY SQL General Performance Problems

Performance Problems by Performance Symptom

Figure 52. Indexes For Performance Problems by Symptom
PERFORMANCE AREA SYMPTOM INDEXED PAGE
Agent Related Problems Communication Waits 11
, Link Waits
CPU Related Problems High CPU Usage 112
Low CPU Utilization
/0 Related Problems High 1/0’s 113
High 1/0 Utilization
Log I/0’s
Locking Related Problems Escalates 114
Lock Waits
Storage Related Problems Paging 114
Special Case Problems Periodic High 115
Response Times
Communication Delays

The following sections provide six problem indexes by performance symptom.
The symptoms covered by each of the indexes are identified in Figure 52.

If you are experiencing performance problems with a specific symptom, then you
should start with the corresponding index. For example, if the primary symptom
of the problem you want to solve is lock waits, then you should start with the
index for "“Locking Related Performance Problems” on page 114.

Agent Related Performance Problems

Figure 53. Agent Related Performance Problems.

PERFORMANCE INDICATOR APPLICATION FUNCTION POSSIBLE PROBLEM PAGE

COMM WAITS ANY SQL Agents Being Heid 119
Locks Held for Long Duration 180

LINK WAITS ANY SQL Too Few Agents 205
Agents Being Held 119
Locks Held for Long Duration 180

LHO08-8081-03 © Copyright IBM Corp. 1987, 1983 Chapter 5. Diagnosing Performance Problems 111

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

CPU Related Performance Problems

Figure 54. CPU Related Performance Problems
PERFORMANCE INDICATOR APPLICATION FUNCTION POSSIBLE PROBLEM PAGE
HIGH CPU ANY SQL Indexes are Fragmented 169
USAGE Buffer Pool Too Small 128
BLOCK 1/0, APPC/VM and IUCV Not Resident 125
Database Machine Favored Too Little 139
SET QDROP OFF USERS/SET QUICKDSP ON 203
CHKINTVL Too Small 132
Sequential Processing 200
Logging during Load 183
Need More CPU 188
Synchronous APPC/VM Not Used 205
CHARNAME Not Set Correctly 130
Package Cache Too Big/Threshold Too High 195
Package Cache Too Small/Threshold Too Low 196
SQL DDL Create Index Requires a Large Sort 138
- CREATE INDEX Frequent Checkpoints caused by SOSLEVEL 182
SQL DDL Large Tables Share Same DBSPACE 175
- CREATE INDEX DBSPACE Scan Being Performed 141
- DROP TABLE
SQL DML
- DELETE
- INSERT FMT 2
- SELECT
- UPDATE
UNLOADING
UPDATE
STATISTICS
SQL DML Package Needs Re-Preprocessing 194
- DELETE Range Predicate Used With Host Vars 199
- INSERT FMT 2
- SELECT
- UPDATE
SQL DML Insufficient Indexing 174
- DELETE Need a Highly Clustered Index 187
- INSERT FMT 2 Index No Longer Highly Clustered 168
- SELECT No Selective Index 192
- UPDATE Index Disqualified 164
UNLOADING Very Nonunique Index Key Prefix 211
Inaccurate Statistics 162
Bad Data Distribution 122
Inetficient Search 170
Missing Search Condition 185
SQL DML Inefficient SELECT List 174
- SELECT Too Many Joins 208
- INSERT FMT 2
UNLOADING
LOADING UPDATE STATISTICS by DATALOAD 210
Frequent Checkpoints caused by SOSLEVEL 152
Blocking Suppression for INSERT CURSORs 125
LOADING Index Maintenance 167
SQL DML
- DELETE
- INSERT
- UPDATE
LOW CPU One DB Machine Needs Too Much CPU 193
UTILIZATION (Multiprocessor systems only)

112 sQU/DS Diagnosis for VM

LH09-8081-03 © Copyright IBM Corp. 1987, 1993

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

I/0 Related Performance Problems

Figure 55. 110 Related Performance Problems.
PERFORMANCE INDICATOR APPLICATION FUNCTION POSSIBLE PROBLEM PAGE
HIGH 11O ANY SQL Indexes are Fragmented 169
Buffer Pool Too Small 128
CHKINTVL Too Small 132
Sequential Processing 200
Too Many Agents 206
Data not cached 139
Package Cache Too Big/Threshold Too High 195
Package Cache Too Small/Threshold Too Low 196
SQL DDL Create Index Requires a Large Sort 138
- CREATE INDEX Frequent Checkpoints caused by SOSLEVEL 152
SQL DDL Large Tables Share Same DBSPACE 175
- CREATE INDEX DBSPACE Scan Being Performed 144
- DROP TABLE
SQL DML
- DELETE
- INSERT FMT 2
- SELECT
- UPDATE
UNLOADING
UPDATE
STATISTICS
SQL DML Excessive 1/0Os on INSERT 147
- INSERT
SQL DML Package Needs Re-Preprocessing 194
- DELETE Range Predicate Used With Host Vars 199
- INSERT FMT 2
- SELECT
- UPDATE
SQL DML Insufficient Indexing 174
- DELETE Need a Highly Clustered Index 187
- INSERT FMT 2 Index No Longer Highly Clustered 168
- SELECT No Selective Index 192
- UPDATE Index Disqualified 164
UNLOADING Very Nonunique Index Key Prefix 211
Inaccurate Statistics 162
Bad Data Distribution 122
Inetficient Search 170
Missing Search Condition 188
SQL DML Too Many Joins 208
- SELECT
- INSERT FMT 2
UNLOADING
LOADING UPDATE STATISTICS by DATALOAD 210
Frequent Checkpoints caused by SOSLEVEL 152
Blocking Suppression for INSERT CURSORS 125
LOADING Index Maintenance 167
SQL DML
- DELETE
- INSERT
- UPDATE
HIGH 110 ANY SQL 1/0 Capacity Exceeded 160
UTILIZATION 170 Not Balanced 161
LOG 110 LOADING Logging during Load 183
LH0$-8081-03 ® Copyright IBM Corp. 1987, 1993 Chapter §. Dlagnosing Performance Problems 113

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

Locking Related Performance Problems

Figure 56. Locking Related Performance Problems.
PERFORMANCE INDICATOR | APPLICATION FUNCTION POSSIBLE PROBLEM PAGE
ESCALATES ANY SQL NLRB Parameters Too Small 191
LOADING Lock Level Too Low 179
SQL DML Excessive Locking in User Data 149
UNLOADING
LOCK WAITS ANY SQL NLRB Parameters Too Small 191
Locks Held for Long Duration 180
Agents Being Held 119
Conflict In Catalog Key Locking 134
Hot Spot in Catalog Tables 153
Too Many Agents 206
SQL DDL DBSPACE Scan Being Performed 141
- CREATE INDEX Large Tables Share Same DBSPACE 175
- DROP TABLE
SQL DML
UNLOADING
UPDATE
STATISTICS
LOADING UPDATE STATISTICS by DATALOAD 210
LOADING Adjacent Key Locking in User Data 115
SQL DML Contlict on Key Hash in User Data 136
UNLOADING Excessive Locking in User Data 149
Lock Level Too High 178
. Lock Level Too Low 179
SQL DML Hot Spot in User Tables 158
SQL DML Too Many Joins 208
- SELECT
- INSERT FMT 2
UNLOADING
DEADLOCKS ANY SQL Excessive Deadlocks 146
Storage Related Performance Problems
Figure 57. Storage Related Performance Problems.
PERFORMANCE INDICATOR | APPLICATION FUNCTION POSSIBLE PROBLEM PAGE
PAGING ANY SQL SET QDROP OFF USERS or QUICKDSP ON 203
SQL/DS Code Not Shared 204
Too Many Agents 206
Butffer Pool Too Big 126
NLRB Parameters Too Large 190
Page Fault Serialization 197
Need More Real Storage 189
Package Cache Too Big/Threshold Too High 185
Package Cache Too Smali/Threshold Too Low 196

114 sQUDS Diagnosis for VM

LH09-8081-03 © Copyright 1BM Corp. 1987, 1983

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

Special Case Performance Problems

Figure 58. Special Case Performance Problems.

PERFORMANCE INDICATOR | APPLICATION FUNCTION POSSIBLE PROBLEM PAGE

PERIODIC HIGH ANY SQL CHKINTVL Too Big 1 131

RESPONSE TIME Butter Pool Too Big 126

COMMUNICATION Checkpoint Being Forced at End-LUW 130

DELAYS Long DBSS Calls Delaying Checkpoint 184

CHKINTVL Too Small 132
Sequential Processing 200
Logging during Load 183
Storage Pool Full 204
Frequent Checkpoints caused by SOSLEVEL 152
DRDA usage 147

CONSISTENTLY HIGH SQL DML Query Block Size Too Small 198

RESPONSE TIME - SELECT

UNLOADING

Analysis of Performance Problems

Adjacent Key Locking in User Data

Problem Description: Adjacent key locking in user data refers to locking done
“around” a key that is locked for access. This problem addresses locking con-
flicts on access to user tables that occur as a result of adjacent key locking.
That is, the locking conflict is in the indexes, rather than the data rows (data
pages), and the conflicting users are using “neighboring” keys, not the same
keys (or same key hash values).

Adjacent key locking is discussed in “Locking Concepts” on page 55. Basically,
when the database manager updates a key, an EXCLUSIVE lock is obtained on
the next higher key, as well as the key being updated. Similarly, when an index
scan is performed (read access) and if all matching rows are retrieved (that is
until SQLCODE 100 returned), the database manager will read one key beyond
the last key requested (obtaining a SHARE lock on both the key requested and
the next higher key). In the case of repeatable read this lock is held until the end
of the LUW.

One of the results of adjacent key locking is that you can experience locking con-
flicts on indexes even when the keys addressed are different. If they are consec-
utive (in key sequence), a lock conflict can occur.

The primary symptom of the “Adjacent Key Locking in User Data” problem is
lock waits, where the lock waits are occurring on index pages or key hash
values. Note that the “Adjacent Key Locking in User Data” problem can occur
under either row (key) or page level locking. The problem is not just a row level
locking phenomenon. An adjacent index page is locked under page level locking
when an adjacent key is in the next index page.

Another characteristic of the “Adjacent Key Locking in User Data” problem is a
relatively small number of lock requests. That is, if your applications are

obtaining many locks in the index, your problem probably goes beyond the con-
flicts that might be occurring on adjacent keys. You probably should be investi-

LH09-8081-03 ® Copyright IBM Corp. 1987, 1983 Chapter 5. Diagnosing Performance Problems 115

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

gating one of the other lock wait problems, such as “"Excessive Locking in User
Data” on page 149.

Note: This section specifically addresses adjacent key locking problems in user
DBSPACEs. For a discussion of adjacent key locking problems in the SQL/DS
catalog DBSPACE, see “Conflict in Catalog Key Locking” on page 134. Adjacent
key locking problems in the SQL/DS catalog DBSPACE will look just like the
“Adjacent Key Locking in User Data” problem, except that the DBSPACE
involved will be DBSPACE 1.

A problem with symptoms that are identical to the “Adjacent Key Locking in
User Data” problem is the “Conflict on Key Hash in User Data” problem. In
observing SHOW LOCK results showing lock conflict on indexes, you will not be
able to tell whether the confiict is on users going after “adjacent keys” or the
same keys (or same key hash values). Knowledge of the conflicting applications
will be necessary to distinguish these two problems. For a discussion of con-
flicts on the same keys (or same key hash values), see “Conflict on Key Hash in
User Data” on page 136.

A problem with similar symptoms is the “Hot Spot in User Tables” problem. For
a discussion of this problem, see “Hot Spot in User Tables” on page 158.

Fosslble Actions:

ACTION PAGE
Decrease Lock Level Below
Use Cursor Stability Below
Change Key Structures Below
Drop Unnecessary Indexes Below
Use Redundant Data Below
Use Multiple LUWSs Below
Re-Design Application Below
For problems with similar symptoms, see:

- “Conflict on Key Hash in User Data"” 136

- “Hot Spot in User Tables” 158
If lock conflicts in catalogs, see:

- “Conflict in Catalog Key Locking” 134

- “Hot Spot in the Catalog Tables” 153

Figure 59. Adjacent Key Locking in User Data - Actions
There are four basic approaches to resolving a lock contention problem due to
adjacent key locking in user data:
1. Reduce locking done by applications
a. Decrease Lock Level

If the contention is in a DBSPACE with page level locking, changing the
DBSPACE to row level locking may help. Adjacent key locking will still
occur, but only the adjacent key will be locked (not the entire page of the
adjacent key).

116 sSQL/DS Diagnosis for VM LH09-8081-03 © Copyright IBM Corp. 19887, 1993

"“Restricted Materials of IBM”
Licensed Materials — Property of IBM

b. Use Cursor Stability Isolation Level

Another easy action that reduces the potential lock conflict is to use the
Cursor Stability Isolation Level wherever possible. This will reduce the
locking done by applications, and possibly reduce or eliminate the inci-
dents of adjacent key locking conflicts. Adjacent key locking will still be
done under Cursor Stability, but the key locks with which they are con-
flicting may be released sooner (maybe even before the conflict occurs).

Note: This action applies only when adjacent key locking done by
updaters is conflicting with read access through the index. With cursor
stability, the readers may release their SHARE locks before the
“updaters arrive.”

¢. Use Multiple LUWs

The use of multiple LUWSs to reduce adjacent key locking conflicts uses
the same principle as the use of the cursor stability isolation level. By
issuing COMMIT WORK (or ROLLBACK WORK) commands more fre-
quently, locks that are conflicting are held for shorter periods of time. As
a result, the conflicts might not even occur, but if they do, the lock waits
will be shorter.

2. Change the index such that keys are not adjacent

Another way of reducing locking done by applications is to look for alternate
access paths for some of the applications, such that the index accesses do
not conflict. Specifically, two alternatives should be considered:

a. Change Key Structures

Since the conflict is on adjacent keys, one approach would be to change
the index definition (re-create the index) such that the key values have a
different sequence. In this way, you would be changing the definition of
what key value is the “adjacent key” value.

For example, in an index on PROJNO and DEPTNO columns of the
PROJECT table, the key value (AD3100,001) would be adjacent to the key
value (AD3110,D21). However, in an index on DEPTNO and PROJNO, the
adjacent key value for (D01,AD3100) would be (D01,MA2100). Thus, by
redefining the index you could avoid conflicts between keys (AD3100,D01)
and (AD3110,D21).

b. Drop Unnecessary Indexes

Of course, the most effective way to avoid the adjacent key locking con-
flicts is to drop the index in which the conflict occurs. The indexes in
which conflicts are occurring should be reviewed for their necessity. |t
may be better to use a less efficient index and avoid lock contention,
than to use the current index and experience lock wait problems.

3. Change the table designs such that conflicting actions don‘t occur

The third approach to adjacent key locking problems is to review the data
required by your applications, and consider alternative data designs. Specif-
ically, you might consider alternative designs that would mean your con-
flicting applications (users) would not be accessing the same tables with
conflicting requests.

One variation of this approach is to use redundant data to avoid the lock
contention problems. Three types of redundant data designs you can try are:

LHO08-8081-03 © Copyright IBM Corp. 1987, 1993 Chapter 5. Diagnosing Performance Probiems 117

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

a. Table Splitting

This refers to creating multiple tables from one table that is the source of
the lock contention. By splitting the tables based on type of reference
(read or write), and the mapping of columns used by the conflicting appli-
cations, you may be able to achieve a design such that the rows locked
by the conflicting applications are in different tables.

b. Stored Resuits

This refers to storing the same data in multiple tables. This could be
complete duplication of a table, duplication of some of the rows, or dupli-
cation of column information.

For example, storing intermediate query results in a separate table,
rather than running multiple queries against a “production” table can
reduce lock contention in the production table. Another example would
be to maintain “popular” column information in multiple tables, rather
than using joins to get the information from a single source table.

Note, for example, that CREATOR and TNAME appear in
SYSTEM.SYSCOLUMNS as well as SYSTEM.SYSCATALOG. From a
storage consumption point of view, it would have been “cheaper” to use
the internal table ID information for supporting joins of these two cata-
logs. However, CREATOR and TNAME are almost always desired in
queries to SYSTEM.SYSCOLUMNS. Thus, those columns are
“duplicated,” thus avoiding SYSCATALOG contention on accesses to
SYSCOLUMNS.

c. Transaction Tables

This refers to doing data entry and editing in a “mirror” copy of the
target (production) table, and later batch replacing rows in the production
table. The use of transaction tables avoids lock contention by consol-
idating update access to the production table in one, less frequently exe-
cuted, batch application. This can be very effective at alleviating lock
contention due to continuous data entry and edit activity.

4. Change applications such that actions don’t conflict

The last approach to resolving adjacent key locking problems is to change
the applications such that the accesses they make to the data do not conflict.

If you are not sure that the lock contentions are due to adjacent keys, then you
should also review “Conflict on Key Hash in User Data" on page 136 and “Hot
Spot in User Tables” on page 158. Not all of the solutions to the “Adjacent Key
Locking in User Data” problem will work if you have one of these problems.

If the lock contention problems are in the catalog DBSPACE (DBSPACE 1), then
you should be reviewing “Conflict in Catalog Key Locking” on page 134 and “Hot
Spot in the Catalog Tables” on page 153. Solutions to these problems are quite
different from lock contention problems in user DBSPACEs.

118 sqQups Diagnosis for VM LH09-8081-03 ® Copyright IBM Corp. 1887, 1983

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Agents Being Held

Problem Description:

This problem refers to agents being held for long periods of time and the ill
effects this can cause. If agents are held for long periods of time, then users of
the system may experience long link waits or long lock waits.

If response time is long or erratic in multiple user mode, but OK when only one
user is on the system, then the problem could be agents held by other users.
This can occur when the system is extremely busy, or as a result of users (or
applications) holding their agents while they are not actively using them.

The most likely symptom of the “Agents Being Held" problem is link waits. A
link wait occurs when a user (or application) is waiting for an agent in the data-
base machine. Link waits could be due to applications (or users) that are not
freeing agents when they should.

If the users are experiencing link waits, but no other performance problems, then
you may not have enough agents. This is particularly true if you are not experi-
encing lock wait or paging problems. If this is the case, refer to "Too Few
Agents” on page 205.

Another possible symptom of the “Agents Being Held"” problem is /ock waits. A
lock wait occurs when a user (or application) is waiting for data being used by
another user. If the other user is active (holding its agent) for a long period of
time, the lock waits on that user will be a problem to the waiting users. If the
lock waits are more of a problem than the link waits, see “Locks Held for Long
Duration” on page 180.

Another symptom to look for is communications waits. A communications wait
occurs when the SQL/DS agent is waiting for communications from the user’s
machine. If agents are spending a lot of time in communications waits, then the
agents could be being held unnecessarily. (Note: Communications waits can be
detected using the SHOW ACTIVE or SHOW LOCK ACTIVE SQL/DS operator
commands).

The user or application that causes or contributes to the “Agents Being Held"
problem will not necessarily notice a performance problem. Users that are
holding agents could be doing aimost any SQL function. However, some
common examples of situations that could cause the agents being held problem
are:

1. ISQL Users running with AUTOCOMMIT set OFF

When an ISQL user runs with AUTOCOMMIT set OFF, the agent that services
its requests is held between commands (until a COMMIT WORK, ROLLBACK
WORK or CANCEL command ‘is issued). If commands are issued from a
routine, this would typically not be a problem. However, if the user is
entering commands ‘by hand’, there could be substantial delays between
commands. During those delays, the agent is just sitting there doing
nothing, but no other user can use it.

2. Conversational Programs

A conversational program is a program that ‘talks’ to the user of the
program during a logical unit of work. That is, it iIssues reads to the terminai
without committing the work it was doing. In this case, the agent is held for

LH09-8081-03 © Copyright IBM Corp. 1987, 1983 Chapter 5. Diagnosing Performance Problems 119

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

the application while it is waiting for the application user to respond to the
terminal read. Again, this could be a long time.

3. Batch-Online Processing

Long running batch programs can also cause agents to be held for long
periods of time. Sometimes this is necessary, but sometimes it can be
avoided. Examples of long running batch programs that could cause a

problem include:

¢ Batch programs without periodic COMMIT WORKs
* Large DBS Utility DATALOADs without the COMMITCOUNT option.

Note: The “Agents Being Held” problem can affect any SQL application or user.
The contention is for SQL/DS agents. If an agent is not available, it does not
matter what function the user wants to perform, the user must wait.

Possible Actions:

ACTION PAGE
Increase NCUSERS Below
Use Multiple LUWs Below
Use AUTOCOMMIT ON Below
Use Routines for AUTOCOMMIT OFF Processing Below
Use Pseudo-Conversational Programming Below
Use COMMITCOUNT On DATALOAD Processing Below
If no lock or communication waits, see also: 205
- “Too Few Agents”

If also experiencing lock waits, see: 180
- “Locks Held for Long Duration”

Figure 60. Agents Being Held - Actions

There are two basic approaches to addressing the “Agents Being Held”
problem:

1. Increase the number of available agents

The simplest approach to resolving an “Agents Being Held” problem is to
increase the number of available agents (by increasing NCUSERS) and the
corresponding connection “ports” to SQL/DS. That is, increasing NCUSERS
and possibly increasing MAXCONN. Refer to the System Administration
manual and the Performance Tuning Handbook.

Increasing NCUSERS may not be practical due to virtual storage limitations
on your system or the number of users that will be holding agents. A large
number of agents may result in a high paging rate which can be detrimental
to all applications. If increasing the connections to the database machine is
not practical, then you need to review your applications and their need to
hold agents.

2. Reduce the length of time agents are required

If increasing NCUSERS is not practical, then you need to see what can be
done to reduce the length of time agents are being held. By reducing the

120 sSQU/DS Diagnosis for VM LH09-8081-03 © Copyright IBM Corp. 1887, 19893

“Restricted Materials of IBM”

Licensed Materials — Property of IBM

amount of time agents are held, you may be able to increase the amount of
time your existing agents will be available.

Even if the total amount of time an agent is needed is not reduced, reducing
the duration of each agent holding period will tend to minimize the occur-
rence of long link waits by allowing other users to get processing time on a
more frequent basis.

The way you reduce the length of time agents are held is by having the
users and applications release the agents as soon as possible. Some of the
ways of doing this include:

a. Use of Multiple LUWs

This means issuing COMMIT WORK or ROLLBACK WORK commands
whenever practical, rather than doing work as one large LUW. If an
application does not need to be one LUW, then COMMIT WORK com-
mands should be used.

. Use of COMMITCOUNT in DATALOAD processing

A special case of “use of multiple LUWs" is the use of the
COMMITCOUNT option on DATALOADs.

. Use of AUTOCOMMIT ON in ISQL Sessions

A special case of “use of multiple LUWs" is the use of the AUTOCOMMIT
ON during ISQL sessions. With AUTOCOMMIT set to OFF, agents are
held while the user views command output and enters his/her next
command. This time could be used to process requests from other
users. (Note: The use of AUTOCOMMIT ON causes ISQL to COMMIT
WORK, and therefore release locks, at the end of many commands.
However, COMMIT WORK commands are not automatically issued when
the user is in display mode or input mode).

If AUTOCOMMIT OFF is needed for multiple command LUW processing
from ISQL, it is recommended that the commands be executed from rou-
tines. In this way there is minimal delay between the completion of one
command and the start of the next.

. Use of Pseudo-Conversational Programming Techniques

This refers to programming such that terminal read operations are not
done while the application has an LUW in progress. More specifically, it
means issuing the COMMIT (or ROLLBACK) WORK statement as the last
SQL statement before issuing a terminal read request.

if you are not experiencing lock waits or communications waits, then you may
not have enough agents. See “Too Few Agents” on page 205 for more informa-
tion on this case.

If you are also experiencing lock waits, then the lock waits could be a factor con-
tributing to why the agents are being held for long periods of time. You may
want to treat the problem as a lock wait problem, rather than a link wait
problem. See “Locks Held for Long Duration” on page 180 for more information
on this case.

LH09-8081-03 © Copyright IBM Corp. 1987, 1993 Chapter 5. Diagnosing Performance Problems 121

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

Bad Data Distribution

Problem Description:

If the statistics in the SQL/DS catalogs do not accurately reflect the actual char-
acteristics of the data, or if a query involves a predicate which prevents the
SQL/DS optimizer from taking those characteristics into account, the optimizer
may choose an inefficient access path. This will not cause the SQL request to
fail, but the response time experienced may be longer than expected.

Inaccurate statistics might exist if the statistics have never been updated or are
out of date (See “Inaccurate Statistics” on page 162 for more information on this
case). However, it could also reflect the fact that the data, itself, defies charac-
terization. The optimizer takes account of non-uniformity of distribution of data
values of certain columns by maintaining percentile points for 10%, 50% and
90%, together with statistics on the frequency of the two most common values.
These statistics are maintained only for columns which are the first column of an
index. They are held in the SYSCOLSTATS catalog table.

For other columns, only the following statistics are maintained:

* number of distinct values
-» second-lowest value
* second-highest value

and for these columns the optimizer assumes an “even” distribution of data
values.

The optimizer takes this distribution into account when considering the selec-
tivity of certain predicates such as equality, range, BETWEEN. However, in the
case where the predicate involves a column with a non-uniform distribution of
data, then the optimizer takes that non-uniformity into account only if the value
against which the column is being compared is a literal value, not a host vari-
able. If it is a host variable, then an even distribution is assumed. (And, as
mentioned above, if the column is not the first column of an index, then an even
distribution is assumed). For more information on problems associated with
predicates containing host variables, refer to “Range Predicate Used with Host
Variables” on page 199.

For example, if the catalog statistics indicate that 75% of the employees in the
EMP_ACT table are assigned to activity number 95, then the optimizer will
assume that a predicate of:

ACTNO=95
will select 75% of the rows in the table.

Similarly if 80% of the employees are assigned to an activity number in the
range 30 to 985, then the optimizer will recognize that a predicate of:

ACTNO>95
will select no more then 10% of the rows in the tabie.

However, if the catalog statistics indicate that there are 20 different project
numbers in the EMP_ACT table, the optimizer will assume that a predicate of:

PROJNO=DD3000

122 sSQUDS Diagnosis for VM LH09-8081-03 © Copyright IBM Corp. 1987, 1683

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

will select only 5% of the rows in the EMP_ACT table since PROJNO is not the
first column in any index and so an even distribution of values is assumed. If the
actual distribution is not uniform, for example if 0% of the employees are
assigned to project number DD3000, then the optimizer will be making a bad
assumption. In cases such as this, the optimizer may choose to use an index
that will be very inefficient, or it may fail to choose an index that, for most cases,
would work fine.

Note: - the distributions in the above examples are not the same as the distrib-
utions in the supplied SQL/DS sample tables.

In general, whenever, for any of the reasons described above, the optimizer
does not correctly take account of the true distribution of data values, problems
can arise. Consider the following situations:

1. False sense of High Selectivity

A column may appear to be highly selective (based on ROWCOUNT divided
by COLCOUNT), but actually have very low selectivity. This is the case cited
above. An index on project number would look very attractive in the pres-
ence of queries based on project numbers. Unfortunately, if most of your
queries use PROJNO =DD3000 just to limit the answer set to that particular
project, the optimizer might choose an index on PROJNO over an index on
ACTNO (if there were fewer activities than project numbers).

2. False sense of Low Selectivity

Equally frustrating is the case where the optimizer has a false sense of low
selectivity. If most of your queries are on other project numbers, the opti-
mizer might choose the index on ACTNO over an index on PROJNO (if there
are more activities than projects).

The optimizer can be similarly misled when considering other predicates such
as range predicates and join conditions.

The bad data distribution problem can extend to indexes as well. That is, in con-
sidering access through muitiple column indexes, the optimizer will consider:

ROWCOUNT
FIRSTKEYCOUNT
and,
ROWCOUNT
FULLKEYCOUNT

Again, if the distributions of key values are not “even,” the optimizer can get a
false sense of either high or low selectivity.

Note: You can sometimes benefit from bad data distributions. However, most of
the time they will hurt your performance more than help it. Thus, it is recom-
mended that you avoid bad data distributions unless you really think you know
what you are doing.

LH09-8081-03 © Copyright IBM Corp, 1987, 1983 Chapter 5. Diagnosing Performance Problems 123

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

Possible Actions:

ACTION PAGE
Make the optimizer take account of non-uniformity Below
Smooth Key Distributions Below
Hide Bad Column in the Index Below
Avoid Bad Distributions in Columns Below
For cases with Bad Query Cost Estimates, also see:

- “Inaccurate Statistics” 162
For other high CPU usage problems, see “CPU Related Per- 112
formance Problems”

For other high I/O problems, see “I/O Related Performance 113
Problems”

Figure 61. Bad Data Distribution - Actions

There are several ways of approaching problems due to “Bad Data Distribution™:
1. Make the optimizer take account of non-uniformity
-Change your query and/or table to meet the conditions described earlier:

a. column in predicate must be first column of an index
b. value in predicate must be a literal

The second condition may require use of Dynamic SQL instead of Static SQL;
this incurs an overhead cost in itself, so a trade-off is involved.

2. Special index design to achieve uniform distribution.

This technique affects the “accuracy” of the SQL/DS index selection algo-
rithms.

If key values of an index are “uneven,” you can achieve a smoothing effect
by adding another column to the index. By adding a column, you can make
the distribution of values more even for whole keys. However, uniess the
column added is made the first column of the index, it will have no effect on
the distribution inferred from FIRSTKEYCOUNT.

3. Redefine Columns with better distributions

Actual distribution of column values in columns is less of a concern.
However, it can have some effect on performance in cases where the opti-
mizer has choices among columns to be used as arguments defining how to
scan an index (called "key domains”) or used as search arguments (called
SARGSs) after the index scan has found a “candidate” row.

Thus, you may want to reconsider the design of your table such that you get
column statistics that more accurately reflect an “even” distribution of
values. For example, if you have a table that contains date information
(month, day and year), you have a choice of storing the date as one column,
two columns or three columns. If the distribution of months, days and years
is even, then you can store the date any of the possible ways without
concern. On the other hand, if all possible dates are valid, but most of the
months are June or December, you may want to combine month with day (or
all three).

124 sQUDS Diagnosis for VM LH09-8081-03 © Copyright IBM Corp. 1987, 1893

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

Before you consider the actions for correcting for bad data distributions, you
should verify that your system is currently operating with up-to-date statistics.
See “Inaccurate Statistics” on page 162.

You may also want to investigate other possible causes of the high I/0 symptom
before taking the more radical step of changing the table (column) definitions.
Refer to “I/0 Related Performance Problems” on page 113 for the complete list
of problems that could give you excessive database 1/O’s.

BLOCK 1/0, APPC/VM and IUCV Not Resident

in 370 mode operation, DMKBIO and all high use IUCV modules are placed in the
resident CP nucleus by default.

In XA and XC mode operation, HCPBIO and all IUCV modules are placed in the
resident CP nucleus by default. If they are not placed in the resident CP
nucleus, unnecessary CPU overhead will be caused. (VM/XA does not support
APPC/VM.)

Possible Actions:

ACTION PAGE
Make BLOCK /O, APPC/VM and IUCV Modules Resident Below

Figure 62. Block 1/0,APPCIVM and IUCV Not Resident - Actions

Make these modules part of the CP resident nucleus. This can be done by
moving these modules above DMKCPE or HCPCPE in the CP load list (CPLOAD
| EXEC) and regenerating the CP nucleus. This process is explained in the VM/SP
| Planning Guide and Reference. Consult your operating system programmer.

Note: These changes are only necessary if your CP nucleus has been previ-
ously modified by your operating system programmer.

Blocking Suppression for INSERT CURSORs

Problem Description:

Note: This problem is not applicable in a DRDA environment. Blocking is not
supported for PUT statements in this environment.

Two problems may occur:

1. A program receives a "W" in SQLWARNA while performing an INSERT
CURSOR (that is, programs that use OPEN, PUT, and CLOSE).

2. You are running a DBS utility DATALOAD and receive the following
message: “ARI8002| Blocked INSERT processing was suppressed for &1
&2.."

These problems occur even though the data row involved is small (for example,
a few hundred bytes) compared to the 8K-byte block. Normally, blocking should
have been done.

LH09-8081-03 © Copyright IBM Corp. 1987, 1993 Chapter 5. Diagnosing Performance Problems 125

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Possible Actions:

Blocking for INSERT CURSOR will be suppressed when two rows cannot fit into
an 8K block. This does not mean two times the row size of the rows to be
inserted. It is derived using the following calculation:

Minimum mailbox size to perform blocking =
2 * row size +

length of RDIIN structure +

size of SQLDA +

length of the mailbox header

For a table with a large number of columns, the SQLDA grows in size quickly
and carries a heavy weight in the above calculation.

For more information about INSERT blocking and suppressed blocking, see the
Performance Tuning Handbook manual.

Buffer Pool Too Big

Problem Description:

Generally speaking, you want to run with the buffer pools (NPAGBUF and
NDIRBUF) as large as you can afford to make them. This is because you can
realize substantial savings in DASD I/0 costs. DASD I/0’s are “expensive” in
terms of both CPU time and I/0 wait time.

However, you can make the buffer pools too big. How big “too big” is will
depend on the configuration of your system, and the workload on your system.
More specifically, “too big” depends on how much “paging” is being done by
your system.

Database 1/0 is better than page fault I/0. Database I/0 is more expensive than
paging I/0 in terms of CPU cycles required, but SQL/DS processing does not
stop for database I/0. Since the database manager can process other requests
while doing database 1/0 (but not during page faults), you want to keep the
buffer pools small enough to avoid high paging.

The primary symptom of "Buffer Pool Too Big” is a relatively high paging rate.
The effect of the high paging rate will be generally poor performance (response
time) for a/l SQL applications and queries. Performance will be worse for the
less frequently used functions. The single user response time may be better
than multiple user response time, but if there is enough non-SQL activity on the
system, even this case will perform poorly.

There are other problems that can also cause paging problems. Some of these
are listed in Figure 63 on page 127. However, you can distinguish “Buffer Pool
Too Big" problems from these other paging problems by looking at your Buffer
Hit Ratio. Buffer hit ratio (BHR) is the ratio of “looks in the page buffer”
(LPAGBUFF) to actual DASD read operations (PAGEREAD).

This can be determined from COUNTER information as follows:

LPAGBUFF
PAGEREAD

1268 sQU/Ds Diagnesis for VM LH08-8081-03 ©® Copyright IBM Corp. 1987, 1993

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

A Buffer Hit Ratio of 7 would mean that 6 out of 7 requests for data pages are
being satisfied out of the page buffer pool. For most environments, this would be
considered a very good buffer hit ratio.

On the other hand, a buffer hit ratio between 1 and 2 would mean that your
buffer pool is not saving you database 1/0’s very often. As a result, if your buffer
pool is large, it probably isn’t worth it. (Note: The buffer hit ratio cannot be less
than 1).

Possible Actions:

ACTION PAGE
Decrease Page Buffers Below
Add More Real Storage Below
If your buffer hit ratio is not so good, see:

- “Too Many Agents” 206

- “NLRB Parameters Too Large” 190

- “SET QDROP OFF USERS or SET QUICKDSP ON Not Used” 203

- “SQL/DS Code Not Shared” 204

Figure 63. Buffer Pool Too Big - Actions

For the “Buffer Pool Too Big” problem, there are basically two ways of
approaching the problem:

1. Reduce the demand for Real Storage

If your buffer hit ratio is good, you can probably afford to reduce the size of
your buffer pools without causing major problems with your
applications/queries. In fact, to the extent that reducing the size of the buffer
pools reduces the paging on your system, your users should see a response
time improvement.

If your buffer hit ratio is not impressive, then reducing the size of the buffer

pool will only make it worse. However, if your buffer pool is also large, you
may be able to decrease its size without making your buffer hit ratio signif-

icantly worse. Thus, decreasing the size of the buffer pool can be a reason-
able alternative even when your buffer hit ratio is not so impressive.

There is no easy way to estimate the optimal size for your buffer pool. You

must use trial and error. Decrease the size of your buffer pool until you see
a significant degradation in your buffer hit ratio. At that point, you probably
have reached the best trade-off between buffer pool size and the paging on

your system.

2. Get more Real Storage

At the point where database I/0’s increase sharply, you should consider
other alternatives, such as adding more real storage to your system.

Note: Before you consider adding more real storage, you may want to investi-
-gate the related paging problems listed in Figure 63.

LH09-8081-03 © Copyright IBM Corp. 1987, 1993 Chapter 5. Diagnosing Performance Probiems 127

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Buffer Pool Too Small
Problem Description:

The buffer pools maintained by the database manager (and established by the
NPAGBUF and NDIRBUF initialization parameters) are intended to minimize the
need to access DASD every time data is needed. The larger the buffer pools,
the less likely DASD accesses will be required. Conversely, the smaller the
buffer pools, the more likely it will be that the database manager will have to
perform actual DASD |/0 to get the data.

The buffer pool sizes needed will depend on the nature of your SQL workload.
There is no one size that suits all situations. The defaults for NPAGBUF and
NDIRBUF are reasonable defaults for some environments. However, they may
not be appropriate for yours. In particular, for any given workload, there will
usually be a specific size where buffer pools are too small.

When buffer pools are too small, you will experience an unusually high number
of database I/0’s. This is due to something known as buffer pool thrashing.
Buffer pool thrashing is a condition where an application that references the
same page(s) of data multiple times has to do database 1/0 each time because
other users have ‘stolen’ its buffers for their own data. As a result, each user (or
application) keeps dragging in the same pages of data over and over again until
they are done. Just when one user has established its data in the buffer pools,
another user gets control and replaces the data with its own.

Buffer pool thrashing, of course, means your applications are doing more data-
base I/0 than they really need to. If the buffer pools were large enough, all
users (agents) would be able to have all (or most) of their data in the buffer
pools at the same time.

In addition to experiencing a high number of I/0’s, you should also be able to
observe a very poor buffer hit ratio. That is,

LPAGBUFF
PAGEREAD

will be a very small value (For example, less than 2).

Note: A low buffer hit ratio can also occur when you have a lot of applications
that do large, sequential accesses to data (such as large sorts, CREATE INDEX
on large tables, DBSPACE scans, etc.). In these cases, the large, sequential
applications are flooding the buffer pools with large amounts of data. As a
result, the smaller applications will get their buffers ‘stolen’. For more informa-
tion on this problem, see "Sequential Processing” on page 200.

In summary, you probably have the “Buffer Pool Too Small” problem when you
have all of the following conditions:

1. Few (if any) large, sequential applications,

2. A large number of database 1/0’s, and

3. A very poor buffer hit ratio

Note: The “Buffer Pool Too Small” problem will usually occur when the applica-
tions are performing SQL data manipulation operations. If the applications are
performing data definition operations (such as, CREATE INDEX or DROP TABLE),

128 sQL/DS Diagnosis for VM LH0$-8081-03 ® Copyright IBM Corp. 1987, 1993

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

loading/unloading or large reports, then you probably have the “Sequential
Processing” problem. For more information on this problem see “Sequential
Processing” on page 200.

Possible Actions:

ACTION PAGE
Increase Page Buffers Below
Decrease NCUSERS Below
Use Redundant Data to Avoid 1/0’s Below
Re-design Application Below
For other problems with a poor buffer hit ratio, see:

- "Sequential Processing” 200
For other high CPU usage problems, see “CPU Related Per- 112
formance Problems”

For other high /O problems, see “I/O Related Performance 113
Problems”

Figure 64. Buffer Pool Too Small - Actions

There are basically three ways of approaching the “Buffer Pool Too Small”
probiem:

1. Increase the size of the buffer pools

The first approach is obvious. However, under your current workload, it may
not be practical to increase the size of the buffer pools to the size necessary
to avoid buffer pool thrashing. Thus, the first approach may, in fact, not be
appropriate for your situation. If the size is impractical, you need to investi-
gate the other possible actions. If you do increase the buffer pool size, be
aware that is may also increase system paging I/0.

2. Decrease the number of users needing buffers

If increasing the size of the buffer pools is not practical, the next thing to
consider is reducing the contention for buffers by reducing the number of
users that are using the buffer pools. That is, reduce the number of users
that can be active at the same time.

For more information on problems relating to the number of users and
reducing the number of users, see “Too Many Agents” on page 206.

3. Decrease the number of buffers needed

In some cases, neither of the first two approaches will be desirable and it
will be necessary to consider a third approach. Specifically, you can also
reduce buffer contention by reducing the number of buffers each application
requires. This can be done in one of two ways:

a. Data design changes

In the first case, the objective is to get the highly referenced data stored
on as few pages as possible. That is, if the average application
accesses 10 pages of data, you want to try to get the average down to
say 5 pages by reorganizing or restructuring the data. Clustering data,
lowering freespace allocations, dropping and recreating indexes,

LH09-8081-03 © Copyright IBM Corp. 1987, 1863 Chapter 5. Diagnosing Performance Problems 129

“Restricted Materials of IBM"
Licensed Materials — Property of 1BM

changing the mappings of tables to DBSPACEs, and even some uses of
redundant data can be used to do this.

b. Application design changes

In the second case, the objective is to get the applications to be more
specific in their data requests. That is, you would review your applica-
tions to make sure they are not referencing more data than they really
need to. Some of the techniques discussed under “Inefficient Search” on
page 170 might apply.

| CHARNAME Not Set Correctly

Problem Description:

The CHARNAME parameter specifies the CCSIDs to be used as the defaults for
either the application server or the application requester. If the CHARNAMES of
the application server and the application requester are different, then in a
request the elements of predicates may have different CCSIDs. In any predicate
where the elements of the predicate have different CCSIDs, the database
manager usually has to perform a CCSID conversion. This changes any sargable
predicate into a residual predicate. Both the data conversion and the sargability
have an impact on performance. For more information on the performance
impact of CCSIDs, see the Performance Tuning Handbook.

Different CHARNAMEs may be unavoidable to ensure data integrity. For
example, in some situations the application server and the application requester
must be set differently to reflect the code page of the terminal. However, the
CHARNAME of the application server and the application requester should be
the same unless there is a specific reason they should be different.

For additional information on CCSIDs, see the SQL Reference manual. For
details on choosing a CHARNAME, or CCSID conversion, see the System Admin-
istration manual.

Checkpoint is Being Forced at End-LUW

Problem Description:

Normally, an SQL/DS checkpoint is taken every time CHKINTVL log pages have
been filled (CHKINTVL is an SQL/DS initialization parameter).” There are two
cases, however, where a checkpoint is forced at the end of every logical unit of
work (LUW):

1. The SQL/DS application server is being run in single user, nolog mode
(LOGMODE =N). A checkpoint is forced even if the LUW is read-only.

2. An LUW modifies data in one or more nonrecoverable DBSPACEs.
Under normal, intended use of nolog mode or nonrecoverable DBSPACES, these

forced checkpoints have no significant performance effect. They can however,
significantly degrade performance if such LUWs occur frequently.

130 sQU/0S Disgnosis for VM LH0$-8084-03 © Copyright IBM Corp. 1987, 1993

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Possible Actions:

ACTION PAGE
Avoid Short LUWs Below
Run with Logging Below

Figure 65. Checkpoint Being Forced at End-LUW - Actions

When running in single user mode with LOGMODE =N, package the work into
one or a few LUWs. If this is not practical, you should consider running with
logging in effect (LOGMODE = Y, AorL).

In general, the only modifications to nonrecoverable DBSPACESs should be due to
the bulk loading of data from an external source. These bulk load operations
should be packaged into one or a few LUWs to minimize checkpoint overhead.
Read-only use of nonrecoverable DBSPACEs involves no special performance
considerations, since in that case there is no forced checkpoint at end-LUW. If
you need to make updates to the data once it has been loaded, you probably
should be using a recoverable DBSPACE instead.

CHKINTVL Too Big

Problem Description:

If the checkpoint interval is set too high, the result can be unacceptably long
response time delays each time a checkpoint occurs. This is because:

1. The time required to process a checkpoint increases as CHKINTVL
increases.

2. All users must wait while a checkpoint is in progress.

This condition can be verified by issuing the SHOW ACTIVE operator command
each time a long, unexpected delay is being experienced. If you frequently see
“CHECKPOINT AGENT IS PROCESSING A CHECKPOINT” as a response, check-
point processing delays may be a significant factor and a reduction in the check-
point interval should be considered.

If you often see “CHECKPOINT AGENT IS WAITING TO START CHECKPOINT" as
a response, the database manager is in the process of quiescing activity in the
DBSS in preparation for doing a checkpoint. This problem is addressed under
“Long DBSS Calls Delaying Checkpoint” on page 184. If the results usually
show that the checkpoint agent is inactive, checkpoint-related delays are not the
problem.

LH09-8081-03 © Copyright IBM Corp. 1987, 1983 Chapter 5. Disgnosing Performance Problems 131

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

Possible Actions:

ACTION PAGE
Reduce CHKINTVL 132
If buffer pool is very large, see: 126

“Buffer Pool Too Big"

If delays are during quiesce for checkpdint, see: 184
“Long DBSS Calls Delaying Checkpoint”
If checkpoint is inactive during delays, see:

“Sequential Processing” 200

Figure 66. CHKINTVL Too Big - Actions

Reduce the CHKINTVL initialization parameter. Proceed with caution, however,
since there are significant advantages to keeping CHKINTVL as high as is prac-
tical. Review the discussion under “CHKINTVL Too Small.”

CHKINTVL Too Small

Problem Description:

The checkpoint interval, as specified by the CHKINTVL initialization parameter, is
too short. This results in significant additional database 1/0 and associated
processing overhead.

A short checkpoint interval also increases the likelihood that a long-running
DBSS call (for example, to implement a DROP TABLE) will delay the initiation of
the checkpoint process. This delay will add to the response time of all other
users that concurrently have an SQL statement in progress. See “Long DBSS
Calls Delaying Checkpoint” on page 184 for a discussion of this problem.

Possible Actions:

ACTION PAGE
Increase CHKINTVL Below
Decrease Logging Rate Below
See “Long DBSS Calls Delaying Checkpoint” 184

If high log 1/0, see: 183
“Logging during Load"

Figure 67. CHKINTVL Too Small - Actions

Consider increasing the CHKINTVL initialization parameter. With proper allow-
ance for the additional secondary storage requirements (see below), many
installations will find that the optimum CHKINTVL setting is in the 50-300 range.
Installations with large, randomly modified databases will be in the lower end of
that range, while installations with small databases or large databases having a
relatively low frequency of random modifications will tend to be in the upper end
of that range.

Increasing CHKINTVL will realize the following advantages:

132 sQuUDS Diagnosis for VM LH08-8081-03 © Copyright I1BM Corp. 1887, 1993

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

» The overhead associated with the checkpoint process will decrease. This
can have a very beneficial effect on overall performance.

* The frequency of checkpoint-related response time delays is reduced. There
are two different types of delays:

1. The time it takes to quiesce all DBSS activity before the checkpoint can
be started.

2. The time it takes to do the actual checkpoint.

The advantages of increasing CHKINTVL should be weighed against the fol-
lowing adverse side effects:

|t will take more time to restart the application server after a system failure.

* |f you are running with LOGMODE =Y, the possibility of a log full condition is
increased because the database manager only reclaims log space as part of
checkpoint processing. This consideration does not apply if you are doing
archiving (LOGMODE =A) because in that case log space is reclaimed only
when the database is archived.

¢ Checkpoints will be less frequent, but when a checkpoint does occur, check-
point processing will take longer (quiesce time stays the same). This delays
all users who currently have an SQL statement in progress.

This will be an important effect if the workload includes a significant amount
of random data modifications over a relatively large area (for example, more
than 100 megabytes). This will be an unimportant effect if the database is
small or there is very little random data modification activity. Bulk sequen-
tial data modifications generally do not pose a problem.

* Secondary storage requirements will increase.

Whenever a page in the database is modified and it has to be written out to
secondary storage, the database manager does not overlay the original copy
of that page, but instead writes it out to a free page in that same storage
pool. The original, unmodified copy is referred to as a shadow page.

The shadow page mechanism is useful in facilitating system recovery, but it
does require that sufficient empty pages be available in each storage pool.
The secondary storage occupied by shadow pages is only reclaimed when
the database manager takes a checkpoint. Therefore, the amount of extra
space that must be set aside in each storage pool increases in proportion to
the CHKINTVL setting.

Of these side effects, it is the secondary storage requirements that usually
require the most attention. See “Estimating Database Storage” in the System
Administration manual.

You can check secondary storage availability by issuing the SHOW DBEXTENT or
SHOW POOL operator command.

Since an SQL/DS checkpoint is triggered by the number of log pages that have
been filled, another way to reduce the checkpoint rate is to reduce the rate at
which log pages are filled. This may be useful in conjunction with a moderate
increase in CHKINTVL if larger CHKINTVL settings are precluded due to the side
effects cited above.

LHO09-8081-03 © Copyright IBM Corp. 1987, 1893 Chapter 5. Diagnosing Performance Problems 133

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

One way to slow down the logging rate is to run big DATALOADs and other bulk
update operations off-line in single user mode with LOGMODE =N. Another
technique is to bulk load data into nonrecoverable DBSPACEs. This is appli-
cable if the data is read-only and can be easily reconstructed from an external
source in the event of a DASD failure. See “Nonrecoverable Storage Pools” in
the System Administration manual for guidelines.

CMS Work Unit Support Set On

Problem Description:

When the database machine is running in a VM/SP or VM/ESA environment, it is
preferable that CMS work unit support be set OFF. Applications running with this
support set ON use more of the CPU because each call to the Resource Adapter
results in a CMS call to query the work unit identifier. The default parameter,
set in the SQLINIT EXEC, is ON. Details on the SQLINIT EXEC are in the Data-
base Administration manual.

CMS work unit support does not apply to VM/XA SP.

Conflict in Catalog Key Locking
Problem Description:

SQL Data Definition and Control statements result in update, insert and/or delete
operations on the catalog tables. Thus, they acquire EXCLUSIVE locks in the
catalog DBSPACE. This can result in conflicts with almost any other kind of SQL
activity.

In an attempt to minimize the contention in the catalog tables, the database
manager does row and key level locking in the catalog DBSPACE. However,
conflicts can arise. As with row (and key) locking on user tables, the following
types of conflicts can arise:

1. Conflicts on Key hashes on non-unique indexes

As a result of key level locking, conflict can arise when “names” of objects
(tables, indexes, programs, etc.) hash to the same value. If you observe
locking conflicts between objects with dissimilar “names,” the problem is
probably a conflict on the hash values of the keys.

This applies only to non-unique indexes. See Figure 68 on page 135 to find
the catalogs that have non-unique indexes. For more information on key
hashing conflicts see “Conflict on Key Hash in User Data” on page 136.

2. Adjacent Key locking

Adjacent key locking conflicts can also arise in the catalogs. If you observe
locking conflicts between objects with similar “names,” the problem is prob-
ably an adjacent key locking problem.

For more information on adjacent key locking problems see “Adjacent Key
Locking in User Data” on page 115.

3. Multiple statements contending for the same catalog entries.

For more information on this conflict, see “Hot Spot in the Catalog Tables"
on page 153.

134 sQL/DS Diagnosis for VM LHO09-8081-03 ® Copyright IBM Corp. 1987, 1863

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

In order to understand the type of catalog key locking problem you have, you

need to know the indexing done on the catalogs. Figure 68 identifies the
indexes on the SQL/DS catalog tables.

CATALOG UNIQUE INDEX COLUMNS
SYSACCESS IACCESS TNAME,CREATOR,TABTYPE
SYSCATALOG U ICAT TNAME,CREATOR
SYSCCSIDS U ICCSIDS CCSID
SYSCHARSETS U ICHARSETS NAME
SYSCOLAUTH - ICOLAUTH1 CREATOR, TNAME,COLNAME ,GRANTEE
- ICOLAUTH2 TIMESTAMP COLNAME
- ICOLAUTH3 GRANTEE, TIMESTAMP,COLNAME
SYSCOLSTATS U ICOLSTAT TNAME,CREATOR,CNAME
SYSCOLUMNS U IcoL TNAME,CREATOR,CNAME
SYSDBSPACES - IDBSPACE OWNER,DBSPACENAME
- IDBSPACE2 DBSPACETYPE,OWNER,NPAGES
v |DBSPACE3 DBSPACENO
SYSDROP - IDROP DBSPACENO,QUALF
SYSFIELDS u IFLD TNAME, CREATOR, CNAME
SYSINDEXES - IINDX TNAME,CREATOR
U 1INDX2 INAME,ICREATOR
SYSKEYCOLS - ISYSKEYCOLS 1 TNAME, TCREATOR,KEYTYPE,KEYNAME,KEYORD
SYSKEYS - ISYSKEYS1 TNAME, TCREATOR,KEYTYPE
- ISYSKEYS2 REFTNAME,REFTCREATOR
SYSLANGUAGE - SYSLANGINDEX LANGUAGE
- SYSLANGIDINDEX LANGID
SYSOPTIONS U IOPTIONS SQLOPTION
SYSPROGAUTH - IPROGAUTH1 CREATOR,PROGNAME,GRANTEE,RUNAUTH
- IPROGAUTH2 GRANTOR,GRANTEE,CREATOR,PROGNAME
SYSSTRINGS U ISTRINGS INCCSID,OUTCCSID
SYSSYNONYMS U ISYN USERID,ALTNAME
SYSTABAUTH - ITABAUTH1 GRANTEE, TCREATOR, TTNAME,GRANTEETYPE
- ITABAUTH2 GRANTOR,SCREATOR, STNAME
- ITABAUTH3 GRANTOR,GRANTEE,SCREATOR,STNAME,GRANTEETYPE
- ITABAUTH4 SCREATOR,STNAME
- ITABAUTHS TCREATOR, TTNAME
SYSUSAGE - IUSAGE BNAME,BCREATOR,BTYPE
- IUSAGE2 DNAME,DCREATOR,DTYPE
SYSUSERAUTH U IUSERAUTH AUTHOR,NAME
SYSVIEWS U IVIEWS VIEWNAME,VCREATOR,SEQNO

Figure 68. Indexes on SQL/DS Catalog Tables

As can be seen from Figure 68, there are many ways in which a key locking con-
flict might arise. For example, the USER1.INVENTORY key would presumably be
adjacent to the USER2.INVENTORY key in SYSTEM.SYSCATALOG and
SYSTEM.SYSTABAUTH, and possibly SYSTEM.SYSINDEXES and
SYSTEM.SYSUSAGE. Thus, creating an index on USER2.INVENTORY (which is
an SQL Data Definition statement inserting into SYSINDEXES) could conflict with
an ad hoc query on USER1.INVENTORY (which references SYSINDEXES for index
information on USER1.INVENTORY). The conflict, in this case, would be an
“adjacent key lock” conflict in IINDX (SYSINDEXES).

Key hashing conflicts are less obvious. If SHOW LOCK WANTLOCK indicates a
conflict on a catalog key hash, and there is no evidence that the keys involved

LH08-8081-03 © Copyright IBM Corp. 1987, 1893

Chapter 5. Diagnosing Performance Problems

135

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

are similar, then the conflict is probably a key hash conflict. This can only occur
for non-unique indexes.

Possible Actions:

ACTION PAGE

Schedule jobs with SQL data definition and control state- Below
ments in sequence

For other catalog locking problems, see:
- “"Hot Spot in the Catalog Tables" 163

Figure 69. Conflict in Catalog Key Locking - Actions

You cannot change the indexing on the catalogs. Even if you add indexes, the
database manager will not use them for Data Definition or Data Authorization
statements. To avoid the contention in the catalog tables, schedule the con-
tending jobs so that they run in sequence.

Conflict on Key Hash in User Data
Problem Description:

This section applies only to non-unique indexes. For unique indexes, the tuple
identifier (TID) is used as the gatename.

When a DBSPACE is defined to have row level locking (LOCKMODE="T"),
locking on non-unique index data in the DBSPACE is done at the ‘key’ level.
With key level locking, locks are not actually obtained on individual key values.
Instead, they are obtained on a 4-byte hash of the key values. Different key
values can hash to the same 4-byte hash value, resulting in the same
“gatename.” That is, for locking purposes, the key values will look like they are
the same. This, of course, is the “Conflict on Key Hash in User Data” problem.

The “Conflict on Key Hash in User Data” problem will look like any other locking
conflict problem. That is, you will see lock waits. In addition, the lock waits you
will see, will be in the indexes.

A problem with almost identical symptoms is “Adjacent Key Locking in User
Data” on page 115. :

A special case of conflicts on key hashing is the “Conflict in Catalog Key
Locking” problem. This case is where the key hash conflict occurs on non-
unique indexes on the catalog tables. See "Conflict in Catalog Key Locking” on
page 134 for more information.

Normally the key hash conflicts occur in user data and show up as conflicts
between data manipulation statements, or conflicts between data manipulation
statements and load or unload operations. However, the conflict can also occur
between data manipulation statements (DELETE, INSERT, SELECT and UPDATE)
and data definition or control statements (CREATE, DROP, GRANT or REVOKE) in
some cases. In particular, dynamic SQL data manipulation statements (for
example, SELECT from ISQL or the DBS Utility) will require references to the cat-
alogs. This can conflict with data definition or data control statements which
update the catalogs. Since the catalog DBSPACE has row level (and therefore

136 sQL/DS Diagnosis for VM LH09-8081-03 © Copyright IBM Corp. 1887, 1993

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

key level) locking, conflicts on key hashes in the catalogs can occur. More detail
on these cases are provided in “Conflict in Catalog Key Locking” on page 134.

Possible Actions:

ACTION PAGE
Change Key Structure to Avoid Key Conflicts Below
Increase Lock Level Below
For other problems with similar symptoms, see:

- “Adjacent Key Locking in User Data” 1156

- "Hot Spot in User Tables” 158
If lock waits are in catalog DBSPACE, see:

- “Conflict in Catalog Key Locking” 134

- “Hot Spot in the Catalog Tables” 153
For other lock wait problems, see:

- "Locking Related Performance Problems” 114

Figure 70. Conflict on Key Hash in User Data - Actions

Conflicts on Key hash values are not easily avoided. There are basically two
approaches that can be considered:

1. Changing the structure of the key

Since the hash value for keys is a function of the key values, one approach
to avoiding the conflict is to change the key values. That is, you can redefine
the index to be a different combination of columns, or a different sequence of
the same columns. By doing this, you may not totally eliminate hash value
conflicts, but can change the frequency of conflicts. It can also change the
characteristics of which keys conflict.

Another way to eliminate key hash conflicts is by redefining the index as
unique instead of non-unique.

2. Increasing the lock level

Since key hash conflicts occur only with key level locking, another approach
would be to use page level locking. Under page level locking, index pages
are locked instead of the key hash values. This means locks on “similar”
keys will conflict, but this may be more desirable than the conflict on key
hash values.

You might also review the problems with similar symptoms (see Figure 70 for
the list) before concluding that your problem is the key hash problem. The dif-
ferences between these problems and the key hashing problem are very subtle.
However, the solutions can differ significantly.

If the key locking problems are in the catalog DBSPACE (DBSPACE 1), then you
should refer to the problems dealing with catalog locking (see Figure 70 for the
list).

LHO09-8081-03 © Copyright IBM Corp. 1887, 1883 Chapter 5. Diagnosing Performance Problems 137

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

CREATE INDEX Requires a Large Sort

Problem Description:

CREATE INDEX processing includes a sort of all index key values. This step can
be time-consuming for a large table, especially if the keys are large.

Possible Actions:

ACTION PAGE
Define Fewer Key Columns Below
Make the Key Column(s) Smaller Below
Spread Sort Across a Number of Devices Below
Ensure NPAGBUF is Large Enough Below
REORGANIZE INDEX 169
Also see: 141
“DBSPACE Scan Being Performed”

Figure 71. CREATE INDEX Requires a Large Sort - Actions

1. Define fewer Key Columns

In the case of a multicolumn key, check to see if any of the columns can be
eliminated from the index definition.

2. Make the Key Columns smaller

Consider the feasibility of redefining the key columns so as to make them
smaller. For example, a part number might currently be stored in a
CHAR(12) column. If all valid part numbers are numeric, you might be able
to store the part number in binary form in a 4-byte INTEGER column. This
will result in about a 3:1 reduction in the volume of data that has to be
sorted, which reduces sort time.

3. Spread Sort across a Number of Devices

For a very large son, it is frequently the case that the time required to do the
sort is dominated by DASD seek time. This situation is indicated if, during
CREATE INDEX processing on a dedicated system, CPU utilization is not high
(less than 50 percent) and channel utilization is low (less than 5 percent).

This problem can be alleviated by putting the internal DBSPACEs into their
own storage pool which is associated with a number of DBEXTENTSs, each on
a separate drive.

The size of each DBEXTENT is important because SQL/DS will not store
pages in the next-defined DBEXTENT in a storage pool until all previously
defined DBEXTENTs have been filled. When you are deciding on how big to
make each DBEXTENT, consider the following:

* The number of bytes that have to be sorted to accomplish a given
CREATE INDEX can be estimated by multiplying key length + 8 by the
number of rows in the table.

138 sQL/DS Diagnosis for VM LH09-8081-03 © Copyright IBM Corp. 1887, 1993

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

* The amount of space that is used during sorting is approximately twice
this number.

Suppose that you wish to spread sort processing across six devices and that
you have estimated the number of bytes to be sorted for your largest
CREATE INDEX to be N. One approach, then, would be to make the size of
the six DBEXTENTs 0.1N, 0.2N, 0.3N, 0.4N, 0.5N, and 0.6N respectively. By
graduating the sizes, a wider range of sort sizes will result in /O activity that
is spread across two or more devices. Actually, the sixth (last defined)
DBEXTENT should be made extra large so that unusually large sorts can still
be accommodated.

4. Ensure NPAGBUF is large enough

The merge phase of a large sort uses 25% of the page buffers, up to a
maximum of 64 buffers. If NPAGBUF is less than 256, the merge phase can
have many unnecessary merge passes.

Data Not Cached

Problem Description:

DASD or Expanded Storage caching can improve SQL/DS performance by pro-
viding faster access to data than can be obtained with normal DASD 1/0.
Caching support varies by operating system. Consult the operating system doc-
umentation for your installation for instructions on how to utilize caching.

Caching is frequently used by the operating system to benefit all users. Consult
your System Programmer to see if more cache resource can be made available.

Possible Actions:

ACTION PAGE
Read-only Applications Below

Figure 72. Data Not Cached - Actions

1. Read-only Applications

Caching is of most use for applications that are read-only. It is not recom-
mended that the directory and logs be candidates for caching. However, the
most important primary read-only database extents should be made eligible
for caching.

Database Machine Favored Too Little

Problem Description: The SQL/DS database machine was run with default dis-
patching priority or with too little favoring, resulting in a disproportionate
increase in the response time experienced by SQL/DS users during periods of
high processor utilization.

If all virtual machines are run with default dispatching priority, the CP scheduler
will attempt to distribute the CPU equally among them. A database machine,
however, may be supporting a large number of users, whereas a user virtual
machine just has to support one user. In such situations, truly equitable distrib-
ution of the CPU resource requires that the database machine be given a dis-
patching priority that is better than the default.

LH09-8081-03 © Copyright 1BM Corp. 1987, 1893 Chapter 5. Diagnosing Performance Problems 139

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

VM tries to optimize system throughput by monitoring the execution status of
virtual machines. When a virtual machine becomes idle, VM drops it from the
run list. The virtual machine’s page and segment tables are scanned, and resi-
dent pages are invalidated and put on the flush list. If this cycle of queue drop-
ping and reactivation is executed repeatedly, the overhead of invalidating and
revalidating the virtual machine’s pages can become large.

Possible Actions when using VM/SP and VM/ESA 370 Feature

ACTION PAGE
Increase SET PRIORITY and/or SET FAVORED Below
SET QDROP OFF USERS 203

Figure 73. Actions under VM/SP and VMI/ESA 370 Feature

VM/SP and VM/ESA 370 Feature offer two different CP operator commands to
change the dispatching priority associated with a virtual machine: SET PRIORITY
and SET FAVORED. Priority can be raised by using one or both of these com-
mands. SET PRIORITY requires less overhead then SET FAVORED, but SET
FAVORED can have a larger effect.

The exact values to use can be determined only by trial and error. First try “SET
PRIORITY userid 1,” and if this does not have a large enough effect, additionally
issue “"SET FAVORED userid 50.” After observing the effect of this combination,
adjust the SET FAVORED percentage value upward or downward as necessary.

For further information, see “Performance” in VM/SP Administration for VM/SP
or in VM/ESA CP Planning and Administration for 370.

Note: Priority 1 is the best; larger values mean less priority.

Possible Actions when using VM/XA SP and VM/ESA ESA Feature

ACTION PAGE
Increase SET SHARE Below
SET QUICKDSP ON Below
SET RESERVED Below

Figure 74. Actions under VM/XA SP and VM/ESA ESA Feature

Increase SET SHARE: The VM operator can use the SET SHARE command to
control the percentage of system resources a user receives. These system
resources include processors, real storage, and paging I/O capability. The
SQL/DS database machine is usually a heavily loaded machine. If more system
resources can be allocated, users will usually benefit from better system
response.

A virtual machine receives its proportion of any scarce resource according to its
share setting. An ABSOLUTE share allocates to a virtual machine an absolute
percentage of all available system resources. A RELATIVE share allocates to a
virtual machine a portion of the total system resources minus those resources
allocated to virtual machines with an ABSOLUTE share. Also, a virtual machine
with a RELATIVE share receives access to system resources with respect to

140 sSQU/DS Diagnosis for VM LH09-8081-03 © Copyright IBM Corp. 1987, 1993

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

other virtual machines with RELATIVE shares. If the SQL/DS RDBMS is the
major application on your VM system, you may want to specify an ABSOLUTE
share; otherwise, specify a RELATIVE share.

SET QUICKDSP ON: An SQL/DS database machine usually requires critical
system response time and it is always expected to be in service to all user
machines. Having the database machine always available in the dispatch list is
one of the most important aspects of improving the database machine response
time.

VM offers a system operator command, SET QUICKDSP ON, to allow designated
virtual machines to not wait in the eligible list when they have work to do.
Therefore, a virtual machine with a QUICKDSP setting is assigned an eligibie list
class of EO and is added to the dispatch list immediately.

When a virtual machine has both QUICKDSP and SHARE settings, it does not
wait in the eligible list and may spend a proportionally greater percentage of
time in the dispatch list. Because of this, a QUICKDSP virtual machine’s SHARE
setting is spread out over a longer period of time. It is advisable to give a
QUICKDSP virtual machine a higher SHARE setting than normali.

SET RESERVED: To work with SET SHARE and SET QUICKDSP ON, users should
also consider using SET RESERVED to obtain the best effects under some condi-
tions.

A virtual machine that has pages reserved with the SET RESERVED command

gets to hold the reserved pages essentially 100% of the time, when the virtual
machine is dormant. Thus, no paging delays are incurred (normally) when the
virtual machine wants to use storage.

The CP scheduler allows a QUICKDSP virtual machine to enter the dispatch list
regardless of the virtual machine’s storage requirements and the system’s
current storage load. Also, when a virtual machine is dormant it is likely that CP
will steal some or all of its pages. When it leaves the dormant state, this virtual
machine will need its working set to be brought back into storage. This heavy
paging requirement will hurt the virtual machine’s performance. The solution
may be to use SET RESERVED for at least some of the virtual machine’s pages.

For further information, see “Performance” in VM/XA SP or VM/ESA ESA Feature
Planning and Administration.

DBSPACE Scan Being Performed

Problem Description:

A DBSPACE scan is one of the "access paths” available for accessing a table. A
DBSPACE scan does exactly that. All active data pages in the DBSPACE are
read in search of the desired rows. This frequently results in some rather
unpleasant performance characteristics. In particular, you will probably observe:

1. A high number of database 1/0’s

It usually requires a substantial number of database I/0’s (to read all the
active data pages).

LH09-8081-03 © Copyright IBM Corp. 1987, 1983 Chapter 5. Diagnosing Performance Problems 141

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

2. A high CPU usage

In addition to the I/0 wait time implied, a substantial number of CPU cycles
are used in doing the 1/0’s.

3. Lock wait conditions

Furthermore, since all active pages are going to be read, the database
manager usually gets a table lock to do the scan, even when the DBSPACE
is defined to have row or page level locking. The only exception to this is
when the scan is done under the cursor stability isolation level in a
DBSPACE defined to have page level locking.

Clearly, you do not want to use DBSPACE scans any more often than is neces-
sary. However, for many requests, a DBSPACE scan is the only reasonable way
for the database manager to proceed.

For data manipulation operations (DELETE, INSERT, SELECT and UPDATE), the
database manager may have other access paths from which to choose (such as,
Index scans). In these cases, DBSPACE scans are usually the least efficient
access path. However, if the proper indexes or clustering have not been set up,
it may be the most efficient path available. Nonetheless, DBSPACE scans are
usually unattractive.

Some operations are done only through DBSPACE scans because the DBSPACE
scan is the only reasonable way to do them. In particular, CREATE INDEX, DROP
TABLE and UPDATE STATISTICS are always done with DBSPACE scans. In any
of these cases, the table in question might be quite small. But ifitisin a
DBSPACE with a large number of active pages, all the pages will be read, and
you will get a lot of database I/0O’s. In cases where a CREATE INDEX is pre-
ceded by DROP INDEX, the DBSU REORGANIZE INDEX command could be used,
and the DBSPACE scan is avoided.

For data manipulation statements, DBSPACE scans could be occurring because
of the lack of alternatives to choose from. If you are experiencing DBSPACE
scans on data manipulation statements, refer to some of the other problems doc-
umented in this manual. Specifically, you might want to look at problems that
can result in DBSPACE scans, as listed in Figure 75.

142 sQuDS Diagnosis for VM LH08-8081-03 ® Copyright IBM Corp. 1987, 1883

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Possible Actions:

ACTION PAGE
Try to Avoid DBSPACE Scans Below
Minimize the Impact of Scans Below
CREATE INDEX Before Loading Below
Run Offending Jobs Off-hours Below
For other possible DBSPACE scan problems, see:

- "Package Needs Re-preprocessing” 194

- “Bad Data Distribution” 122

- “Inaccurate Statistics” 162

- “Index Disqualified” 164

- “Index No Longer Highly Clustered” 168

- “No Selective Index” 192

- “Inefficient Search” 170

- “Insufficient Indexing” 174

- “Large Tables Share Same DBSPACE" 175

- "Missing Search Condition” 185

- “Need a Highly Clustered Index"” 187

- “Range Predicate Used with Host Variables" 199

- “Too Many Joins" 208

- “Very Nonunique Index Key Prefix” 211
For similar CREATE INDEX problems, see:

- "CREATE INDEX Requires a Large Sort” 138
REORGANIZE INDEX 169
For similar UPDATE STATISTICS problems, see:

- "UPDATE STATISTICS by DATALOAD" 210

Figure 75. DBSPACE Scan Being Performed - Actions

There are basically four approaches to addressing “DBSPACE Scan Being

Performed” probiems:
1. Try to Avoid DBSPACE Scans

For data manipulation operations, you should try to avoid DBSPACE scans
when they are not really necessary. Usually this means proper indexing or
some type of data reorganization. See the actions for the problems listed in
Figure 75 under “For other possible DBSPACE scan problems.”

2. Minimize the impact of the scans

If DBSPACE scans cannot be avoided (as in the case for CREATE INDEX,
DROP TABLE and UPDATE STATISTICS), and the REORGANIZE INDEX
command is not appropriate, then the next thing you might consider is mini-
mizing the impact of a scan when it is done. That is, minimize the number of
1/0’s needed to do the scan. This could be done by:

a. Minimizing freespace allocations

By using a low freespace setting for the DBSPACE, you maximize the
number of rows that fit on a page. This will minimize the number of
pages needed to hold all the rows.

b. Using the most space efficient data types

Some data types are more efficient than others. VARCHAR might be
considered instead of CHAR for character data that has many values

LHO08-8081-03 © Copyright IBM Corp. 1987, 1983

143

Chapter 5. Diagnosing Performance Problems

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

shorter than the maximum. Use SMALLINT instead of INTEGER where
possible. For information about the space used by the various data
types, see “Estimating Storage for a Table” in the Database Adminis-
tration manual.

c. Correctly sequencing columns for storage efficiency

The following left-to-right arrangement of table columns may reduce the
amount of space required to contain a table:

¢ Fixed-length columns for which NOT NULL is specified.

e Variable-length columns for which NOT NULL is specified.
¢ Variable-length columns with nulls allowed.

¢ Fixed-length columns with nulls allowed.

This technique takes advantage of the fact that if a row is inserted with
the nullable columns being implicitly set to null (that is, the columns are
not explicitly stated in the INSERT statement) and the nullable columns
are the rightmost columns in the table definition, then no storage is allo-
cated for the nullable columns explicitly stated (see Figure 76 on

page 145). This method of reducing the space required by a table is
only recommended in the case of “write-once” data, where table data is
loaded and never changed.

The following factors should be considered before a table is organized in
this fashion:

1) If the null data is updated, the storage required for the row con-
taining the data will be larger than was initially allocated. This can
cause data fragmentation, where table data is spread across multiple
data pages, resulting in poorer performance of data manipulation
statements.

2) If the DBS utility is used to unload the table or DBSPACE, the reload
processing will result in more storage being required to contain the
same table. This is because the utility always explicitly specifies all
columns being reloaded, even when they contain null values.

In all cases where data rows will be updated, or where the DBS utility
unload facility is required, tables should be organized so that the last
column is not nullable or you should explicitly list all columns when data
is inserted.

144 sQuUDS Diagnosis for VM LH08-8081-03 © Copyright iIBM Corp. 1987, 1993

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

CREATE TABLE T1 (A SMALLINT NOT NULL, B VARCHAR(10) NOT NULL,
C VARCHAR(10), D SMALLINT)

INSERT INTO T1 (A,B) VALUES(1,A’)

INSERT INTO T1 (A,B,C) VALUES(2,'B".NULL)

INSERT INTO T1 (A,B,C,D) VALUES(3,'C’,’'D’,NULL)

PAGE HEADER ROW HDR1|00@1|01|A |ROW HDR2|0062|01|B

O1|FF|ROW HDR3|0003(01|C [02(00(D |FF|...

Note: As each row is inserted, a 6 byte row header and a 2 byte
page offset field (at the end of the data page) are allocated.
Row 1 consists of the 6 byte header, 2 bytes for the small integer
column, 1 byte for the length of the VARCHAR column and one byte
for the data that was entered. The columns that were not specified
take up NO space. The second row is like the first but because the
third column was explicitly set to null it takes up 2 additional
bytes (one for the length of the field (including the null byte) and
one for the null byte). When the third row is inserted all columns
are specified explicitly. The third field in that row has one byte
for the length, one byte for the null byte and one byte for the data
entered. The fourth field, though null, takes up 3 bytes because it
is a fixed length field. It uses 1 byte for the null byte and 2 bytes
containing unknown data.

Figure 76. Internal View of Data Base Page

3. Create INDEX before loading the table(s)

Normally you want to create indexes after loading the table. However, for
tables that have a small number of large rows (such as tables with LONG
VARCHAR columns), it may be more efficient to create the index before
loading. The time lost doing index maintenance during load in such cases
may be less of a problem than the time lost scanning the active pages after
the load.

4. Run Offending Jobs Off-hours

If all else fails, you should consider running the applications or commands
that cause the scans when the impact to other users is the least. That is,
run the offending jobs during non-peak hours.

LH09-8081-03 © Copyright IBM Corp. 1987, 1983 Chapter 5. Diagnosing Performance Probiems 145

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

Deadlocks
Problem Description:

When two update applications run concurrently, deadlock occurs and one appli-
cation is rolled back. Note that in this context the SQLPREP preprocessor is
considered to be an update application; it updates the catalog tables.

Possible Actions:

ACTION PAGE

For High I/O problems, see:

- “I/O Related Performance Problems"” 113
SET ISQL AUTOCOMMIT ON 180
see also - “Locks Held for Long Duration”

Revise application logic Below
Schedule preprocessing jobs which relate Below

to a common set of tables in sequence.

For other lock-related problems, see:
- "Locking Related Performance Problems” 114

Figure 77. Deadlocks - Actions

Deadlocks can arise for a variety of reasons. Four causes are listed here.
These are not the only causes.

1. Excessive number of DASD 1/0s

When a DASD 1/0 is required, that user’s work (agent) is suspended and
another user’s agent may be dispatched. Often, when an agent is sus-
pended waiting for DASD 1/0, it holds SHORT locks, (locks which would be
released at the end of the DBSS call). The longer duration that such locks
are held, the greater the likelihood of lock conflict and hence of deadlock.

2. 1ISQL AUTOCOMMIT OFF

This is one instance of the more general case of holding locks for an exces-
sive duration. If two ISQL users are both updating the same table with
AUTOCOMMIT OFF, and also issuing occasional SELECT statements inter-
spersed with the UPDATE/DELETE/INSERT statements, then there is a high
likelihood of deadlock.

3. Application logic

The classical example of deadlock due to application logic is where one user
tries to update row A followed by row B while another user tries to update
row B followed by row A. If both users succeed in performing their respec-
tive first updates before either commences their second, deadlock occurs.

However, deadlock can also occur where an application does:

a. INSERT a row
b. SELECT or FETCH the row just inserted

when the table has a nonunique index.

If two users U and V say run this application, and U successfully inserts a
row with a particular key, and then V attempts to insert a different row but

146 sQL/DS Diagnosis for VM LH09-8081-03 © Copyright IBM Corp. 1987, 1983

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

having the same key value, and then U attempts to SELECT or FETCH the
row he inserted, deadlock occurs.

4. Concurrent preprocessing of programs which all access a common set of
tables

If several users are concurrently preprocessing programs which all access a
common set of tables and if those programs are large enough that the pre-
processing step takes an appreciable amount of time, to the extent that
several preprocessing tasks are in progress concurrently, then there is a
likelihood of deadlock involving updates to the Catalog tables which relate to
package usage (SYSUSAGE).

DRDA Protocol Used to Access an SQL/DS Database

DRDA Usage

Problem Description:

When the application server is an SQL/DS server and the application requester
is an SQL/DS user machine, the DRDA protocol should only be used in specific
cases where the extra processing involved is not a concern (for example, proto-

typing).

There is additional overhead when the DRDA protocol is used. The extra over-
head is primarily caused by the generation and parsing of application requests
and replies from SQL/DS internal format to DRDA DDM/FD:OCA format, and
DRDA DDM/FD:OCA format to SQL/DS internal format.

If your problem is occurring during distributed processing, it may be unrelated to
the performance of the database or application. It may be a communication sub-
system performance problem. Refer to the Distributed Relational Database
Problem Determination Guide for additional information on problem diagnosis.

ECMODE ON for Accounting

Problem Description:

When running in 370 mode, it is preferable that ECMODE be set OFF when using
the SQL/DS accounting facility. ECMODE OFF uses less CPU than ECMODE ON.
Details on using the SQL/DS accounting facility are detailed in the System
Administration manual. ECMODE does not apply in XA or XC mode.

Excessive 1/0s on INSERT

Problem Description:

When an application issues the SQL INSERT statement to insert a row or rows
into a table, there is a high number of DASD I/0s, on the DBSPACE DASD and/or
Directory DASD. “High” here means “significantly higher than normally occurs."”

If you can be sure that the DASD |/Os are caused by the INSERT statement and
not by other activity, then it is likely that the database manager is unable to find
free space to insert each row in its "preferred” page, and is searching through

the DBSPACE to determine where the insertion will occur.

The "preferred” page is determined as follows:

LH09-8081-03 © Copyright 1BM Corp. 1987, 1893 Chapter 5. Diagnosing Performance Problems 147

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

+ If there is an index, then it is the page containing the first row whose key is
greater than or equal to the key of the row to be inserted. If there is more
than one index, this is determined by the “clustering” index, i.e. the one
which has CLUSTER = ‘F" or ‘"W’ in SYSINDEXES. SQL/DS assigns which-
ever index was created first to be the “clustering” index. When the “clus-
tering” index is also highly clustered (it has a high CLUSTERRATIO, which
can be achieved by loading the table in clustering sequence), then the data-
base manager will keep that index highly clustered when new rows are
inserted.

You can see if there is a “clustering” index on the table by executing the
following SQL statement:

SELECT * FROM SYSTEM.SYSINDEXES
WHERE TNAME=table_name AND CREATOR=table_creator
AND (CLUSTER='F' OR CLUSTER = 'W')

Either one or no indexes will match this query.

If there is an index matching this query, then you can check its precise
degree of clustering from the CLUSTERRATIO column. Refer to “Need a
Highly Clustered Index” on page 187 for a discussion on
CLUSTERRATIO. Also, If the entry for this index has CLUSTER = F’
then this is a rough guide that the index is well clustered, whereas if the
entry has CLUSTER = ‘W’ then this is a rough guide that the index is
poorly clustered.

If there is no index matching this query, then you have no clustering
index.

e If there is no index, then it is the page identified by CLUSTERROW in the
table’s entry in SYSCATALOG. (This is known as the “default insert rule”).
However, the value in CLUSTERROW is used only on the first INSERT of a
Logical Unit of Work; for all subsequent INSERTS in the same Logical Unit of
Work, the “preferred” page is the one used for the previous INSERT.

In the case where there is at least one index, the cause of the high DASD 1/Os is
a lack of free space in the vicinity of the “preferred” page.

In the case where there is no index, the cause of the high DASD 1/Os is either
that the value of CLUSTERROW is out of date (many rows have been inserted
since statistics were last updated) or that there are one or more other tables
sharing the same DBSPACE and occupying the space starting at the page
pointed to by CLUSTERROW.

148 sQL/DS Diagnosis for VM LH09-8081-03 © Copyright IBM Corp. 1987, 19983

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

Possible Actions:

ACTION PAGE
If there is an index, Re-organize the table with more Below
free space

If there is no index, Re-organize the table in a key Below

sequence and with sufficient free space.
Then create a clustering index

If there is no index, move other tables to another Below
DBSPACE and UPDATE STATISTICS

For other High 1/0 problems, see:
- “I/0 Related Performance Problems” 113

Figure 78. High 1/10s on INSERT - Actions

1. Re-organize the Table with more free space

If the intended clustering index is the first created index, re-cluster the table
by using the DBS Utility to UNLOAD and then RELOAD the table. This proce-
dure is described in the Performance Tuning Handbook.

If you anticipate a large amount of additional INSERT activity against the
table, consider increasing the amount of free space that is reserved on each
page as this will increase the amount of time that the index will retain its
clustering. Free space is determined by the PCTFREE parameter on the
ALTER DBSPACE statement. Set PCTFREE to the desired value just prior to
doing the RELOAD and then set it to a low value after the RELOAD has com-
pleted.

2. Create a Clustering Index

If you wish to keep the rows of the table in some logical sequence as rows
are inserted, then create an index on that sequence. If the table is not
already ordered in that sequence, then you will first need to re-organize it.
This can be done by creating the new index, UNLOADING and RELOADING,
as described in the Performance Tuning Handbook.

3. Move other tables to another DBSPACE and UPDATE STATISTICS

If you don’t want newly inserted rows to be inserted in any particular logical
sequence, then you should arrange that rows from other tables in the same
DBSPACE are not inserted into pages beyond the start of the table under dis-
cussion. The easiest way to ensure this is not to have any other tables in
the same DBSPACE. In addition, you need to update statistics after every so
many rows have been inserted.

If the problem is neither lack of free space nor out of date statistics nor interfer-
ence from other tables in the same DBSPACE, then you should go back to the
index on “high 170" problems and look for another possible cause.

Excessive Locking in User Data
Problem Description:

The database manager locks all data it has to read in order to satisfy a user’s

request. In particular, more data may be locked than what is specifically identi-
fled by the request (in the WHERE clause). As a result, you may experience

LH09-8081-03 © Copyright 1BM Corp. 1987, 1983 Chapter 5. Diagnosing Performance Problems 149

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

“Excessive Locking in User Data” due to the amount of data the database
manager had to search in order to satisfy the request.

In many cases, the amount of locking will vary widely depending on which
access path is used to find the data. For example, a DBSPACE scan will typi-
cally lock more data than an index scan. See “Locking Concepts” on page 55
for more information on locking done by scans.

This excessive locking may not be necessary for the application and in many
cases can be avoided. Excessive locking in user data can have several kinds of
symptoms, but the most common will be lock walts. That is, if an application or
request is locking more than it logically needs to, it will probably encounter more
lock waits or cause others to encounter lock waits.

Other symptoms that might be experienced are many locks or lock escalations.
A large index scan in a DBSPACE with row level locking will generate a lot of
lock requests. These can be seen by observing SHOW LOCK GRAPH userid or
SHOW LOCK GRAPH agent-number output. These statements show how much
locking an application or user is doing. If a user is doing a lot of locking, some
of the locks may get escalated.

Escalations can be detected using the COUNTER ESCALATE and COUNTER
LOCKLMT statements. COUNTER ESCALATE gives you the count of successful
escalations, and COUNTER LOCKLMT gives you the count of unsuccessful esca-
lations. These tells you if escalations are occurring on your system. You can
detect if a particular user is experiencing escalations by looking for S or X locks
at the DBSPACE level in the output of SHOW LOCK USER or SHOW LOCK
AGENT.

Possible Actions:

ACTION PAGE
Decrease Lock Level Below
Increase Lock Level Below
Index to Avoid DBSPACE Scans Below
Reorganize DBSPACE to Avoid DBSPACE Scans Below
Use Cursor Stability Isolation Level Below
Use Multiple LUWSs to Avoid Lock Contention Below
For other problems with similar symptoms, see:

- "NLRB Parameters Too Small" 191

- “Lock Level Too Low" 179

- “Lock Level Too High" 178
For other lock wait problems, see:

- “Locking Related Performance Problems” 114

Figure 79. Excessive Locking in User Data - Actions

There are basically three ways of approaching the “Excessive Locking in User
Data” problem in applications:

150 sQU/OS Diagnosis for VM LH09-8081-03 © Copyright IBM Corp. 1987, 1983

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

1. Change the locking level for the data

Changing the locking level on the data being accessed can reduce some of
the excessive locking. This can be true of increasing locking level, as well
as decreasing locking level.

e Decreasing Locking Level

By reducing the locking level on data from DBSPACE to page, or page to
row level locking, you can reduce the amount of data locked by any one
row access. However, this probably won‘t help if your application
accesses a lot of rows.

¢ Increasing Locking Level

Increasing the locking level on the data can help if you are experiencing
lock escalations. By increasing row locking to page locking, you might
avoid escalations to DBSPACE locks.

If you are already using page locking in the DBSPACE where the locks
are being escalated, you might be able to avoid the escalations by using
the SQL LOCK TABLE statement. This will be effective if your access to
the table is read only (that is, SHARE mode).

2. Reorganize data to obtain a better access path

In cases where the excessive locking can be blamed on the use of an ineffi-
cient access path to the data, a data reorganization may be called for. That
is, locking might be significantly reduced by organizing the data such that a
more efficient access path is used.

Generally, this means avoiding DBSPACE scans. A DBSPACE scan will lock
(SHARE or EXCLUSIVE, depending on the SQL statement) the entire table.
This, of course, may lock a lot more data than intended.

¢ Indexing to avoid DBSPACE scans

For requests that access a relatively few number of rows {compared to
the total number of rows in the table), indexing can be the most effective
way to avoid DBSPACE scans.

* Reorganizing DBSPACEs to avoid DBSPACE scans

In some cases, indexing alone will not be enough to avoid a DBSPACE
scan. If a large number of rows are being accessed, a DBSPACE scan
may be chosen over an index. There are organization techniques that
can be used to favor an index.

Specifically, if the table being scanned is not too large, you can cause
the database manager to “favor” index scans by storing the table in a
large DBSPACE with other tables, such that PCTPAGES for the table is a
small value (such as 5 or 10%). When PCTPAGES is very small, the esti-
mated 1/0’s for the DBSPACE scan will look less favorable when com-
pared to the estimated 1/0’s using an index.

3. Release locks earlier or more frequently

If no way can be found to avoid the excessive locking that is being done,
then the next alternative is to try to minimize the locking by releasing the
locks as soon as possible. There are two ways this might be done:

LH09-8081-03 © Copyright |1BM Corp. 1987, 1693 Chapter 5. Diagnosing Performance Problems 151

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

* Use of Cursor Stability Isolation Level

The use of the cursor stability isolation level will, in most cases, release
SHARE locks before the end of an LUW. If repeatable read capability is
not required, the use of cursor stability should be considered.

* Use of Multiple LUWSs

Another way of releasing locks earlier is to do COMMIT WORK state-
ments more frequently.

* Use of AUTOCOMMIT ON

For ISQL usage, one way of releasing locks as early as possible is
through the use of AUTOCOMMIT ON.

If AUTOCOMMIT OFF is to be used, it is recommended that it be used
within routines. This is to avoid long delays while users dynamically
respond.

if you are experiencing lock escalations, then you should also review “NLRB
Parameters Too Small” on page 181 and “Lock Level Too Low” on page 179.
These problems are the primary causes of lock escalations.

If you are not experiencing lock escalations, then you might want to consider
“Lock Level Too High” on page 178. This problem addresses “excessive
locking” where the excess is due to applications that request locks larger than
they really need.

Frequent Checkpoints caused by SOSLEVEL

Problem Description:

The percentage of free pages in a storage pool is very close to the SOSLEVEL
(short on storage level) defined at initialization. When DBSPACES in the storage
pool are updated, SOSLEVEL is reached and a checkpoint is triggered. This can
happen repeatedly until the checkpoint no longer frees enough pages to bring
the storage pool above the SOSLEVEL. This problem can cause multiple check-
points in a short period of time, especially during a dataload or an index creation
which causes the SOSLEVEL to be reached. It can cause checkpoints to become
so frequent that no other work can get done on the application server.

Possible Actions:

ACTION PAGE
Add a DBEXTENT to the Storage Pool Below

Figure 80. Frequent Checkpoints caused by SOSLEVEL - Actions

A DBEXTENT could be added to the storage pool to prevent SOSLEVEL from
being reached. If this is temporarily inconvenient or impossible, you could
decrease SOSLEVEL. However, you should make more space available as soon
as possible.

152 sQU/DS Diagnosis for VM LH08-8081-03 © Copyright IBM Corp. 1887, 1993

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

L Hot Spot in the Catalog Tables

Problem Description:

“Hot Spot in the Catalog Tables” is a condition that occurs when multiple users
(or applications) are accessing the same catalog information in conflicting
modes (multiple updaters or multiple readers and one updater). Since the cata-
logs are heavily used by the database manager and store a wealth of informa-
tion, conflicts may not be uncommon. The conflicts can also be quite subtle due
to the “where used” information kept and maintained. If you have a lock wait
problem but not very many locks are being obtained, then it may be a hot spot in
the catalog tables.

A hot spot in the catalog tables is a relatively small portion of the catalogs that

is frequently referenced by multiple users. Since the catalog DBSPACE is

defined with row level locking, a hot spot would typically be a small number of
L rows, or a hashed key value.

As you might expect, a hot spot in the catalog tables can have a much greater
impact than locking on user data. Since the data being referenced by users is
concentrated in the catalogs, aimost any SQL work can be impacted.

Read access to the catalog tables is unavoidable. The database manager is

designed to make heavy use of the catalogs. Update access, however, is some-

thing that should be exercised with discretion. The key to understanding the

“Hot Spot in the Catalog Tables” problem is knowledge of when and where

SQL/DS functions obtain EXCLUSIVE locks in the catalog tables. This is summa-
t rized in Figure 81:

LHO09-8081-03 © Copyright IBM Corp. 1987, 1983 Chapter 5. Diagnosing Performance Problems 153

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

FUNCTION CATALOG ROWS LOCKED
LOADING SYSCATALOG for table(s) being loaded.
(with SET UPDATE SYSCOLSTATS for column statistics.
STATISTICS ON) SYSCOLUMNS for certain columns.
SYSDBSPACES for DBSPACE being loaded.
SYSFIELDS for field procedures on columns.
SYSINDEXES for indexes on tables.
PREPROCESSOR SYSACCESS to register program.
SYSPROGAUTH for owner of program.
SYSUSAGE for tabies, indexes, views and
DBSPACEs used.
SQL AUTH SYSACCESS if package invalidated.
- GRANT SYSCOLAUTH for column update authority on
- REVOKE individual columns.
SYSPROGAUTH if RUN authority.
SYSTABAUTH for tables authorizations.
SYSUSERAUTH for special authorities.
SQL DDL SYSDBSPACES for the DBSPACE acquired or
- ACQUIRE altered.
- ALTER SYSCATALOG on create, for table or view
- CREATE created.
- DROP on drop, for table or view dropped.
SYSCOLUMNS to verify CCSID column attributes
on a table.
on alter, for table altered/dropped.
columns for table or view created
or dropped.
columns of dependent views
dropped.
on alter, row for column added.
SYSINDEXES for index created/dropped.
SYSVIEWS for view created/dropped.
SYSTABAUTH row(s) for grant.
revoke “cascades.”
SYSCOLAUTH revoke of colauth on drop of view
or table. .
SYSUSAGE for any dependency established or
dropped.
SYSACCESS for program or view being created
or dropped.
for invalidated programs when
dependent object dropped.
SYSKEYS on create/drop, for activate or
deactivate primary key, foreign
key or unique constraint
SYSKEYCOLS on create/drop, for activate or

deactivate primary key, foreign
key or unique constraint

Figure 81 (Part 1 of 2). Exclusive Locking in Catalog Tables

154 sQUODS Diagnosis for VM

LH09-8081-03 ® Copyright IBM Corp. 1987, 1993

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

FUNCTION

CATALOG

ROWS LOCKED

UPDATE

SYSDBSPACES

for DBSPACE involved.

STATISTICS SYSCATALOG for table(s) involved.
SYSCOLSTATS for column statistics.
SYSCOLUMNS for certain columns.

SYSFIELDS for field procedures on columns.
SYSINDEXES for indexes on tables.

Figure 81 (Part 2 of 2). Exclusive Locking in Catalog Tables

Notes on Figure 81:

1. Loading

Loading user tables does not do any exclusive locking in the catalog tables,
unless the load is done with STATISTICS set on. If statistics are updated as
part of the load, then the SYSCATALOG row (or rows) for the table (or
tables) being loaded are locked exclusively to update the table statistics.
Furthermore, NACTIVE in SYSDBSPACES is updated for the DBSPACE(s)
being loaded.

. Preprocessing

Preprocessing does exclusive locking in SYSACCESS to record the package
created. An exclusive lock is also obtained on a row (and keys) in
SYSPROGAUTH to record the fact that the creator of the program is author-
ized to run the program.

Multiple exclusive locks will typically be obtained in SYSUSAGE to record the
dependencies the program has on tables, views, indexes and DBSPACEs. If
you are experiencing lock contention with preprocessor executions, one of
the places you want to look is in SYSUSAGE. Concurrent preprocessing of
programs that access the same data can result in conflicts in SYSUSAGE.

. SQL Authorization (GRANT/REVOKE)

GRANT and REVOKE do exclusive locking in several tables, but they are typi-
cally short operations. Serious conflicts due to GRANT and REVOKE are not
likely. However, they can get caught in a lock wait behind long running
operations such as preprocessing. When this happens, other users (such as
users of data manipulation statements) may see an impact as authorization
checks are attempted.

Another consideration on authorization statements are “cascading REVOKE
operations.” |f your installation makes heavy use of the GRANT OPTION, the
exclusive locking done on REVOKE statements can be quite extensive, as the
REVOKE is propagated to other users.

. SQL DDL

Naturally, data definition statements do a lot of exclusive locking in the cata-
logs. Most data definition statements have relatively short execution times
and should not be a problem. However, CREATE INDEX and DROP TABLE
are exceptions. They can have rather long execution times.

Note: Adding or activating a primary key, foreign key or unique constraint
requires a CREATE INDEX operation.

LHO09-8081-03 © Copyright IBM Corp. 1987, 1993 Chapter 5. Diagnosing Performance Problems 155

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Another factor in data definition locking are the implicit operations that typi-
cally will occur. For example, on a CREATE TABLE operation, entries are
made in SYSTABAUTH as well as SYSCATALOG and SYSCOLUMNS.

Perhaps the most extensive locking will occur on DROP statements. The
“change propagation” that occurs on DROP statements can be quite exten-
sive. For example, dropping a table will typically cause entries to be deleted
from SYSACCESS, SYSCATALOG, SYSCOLAUTH, SYSCOLSTATS,
SYSCOLUMNS, SYSINDEXES, SYSKEYCOLS, SYSKEYS, SYSTABAUTH, and
SYSVIEWS.

5. UPDATE STATISTICS

The amount of exclusive locking done by UPDATE STATISTICS will vary
depending on the options used and whether or not indexes exist. If an index
exists, some amount of exclusive locking will be done in all the catalog
tables shown in Figure 81. If the ALL option is specified, all the
SYSCOLUMNS rows for the table(s) will be updated (locked exclusive). If the
statistics are being updated for a whole DBSPACE, then multiple
SYSCATALOG rows will be locked, as well as the corresponding rows in
SYSINDEXES and SYSCOLUMNS.

Also note that UPDATE STATISTICS can be a long running operation. That
- is, locking done by UPDATE STATISTICS can be held for a long time.

As you can see, the potential for locking conflicts in the catalog DBSPACE is
quite impressive. However, the situation is better than you might think. If you
are careful about the use of long running operations that get exclusive locks in
the catalog tables, you should not experience too many problems.

However, there are some considerations that you should make when using any
of the functions that do exclusive locking in the catalog tables:

1. Avoid long running LUWs

Even if you are performing a “short” operation that does exclusive locking in
the catalogs, the effect can be significant if the function is performed at the
start of a long running LUW. For example, doing CREATE functions from
ISQL with AUTOCOMMIT set OFF has the potential of holding up other users
quite noticeably. The user doing the CREATE statements may see very good
response time. But other users may get stuck in a lock wait until the
“creator” commits the LUW.

2. Beware of Catalog Queries

While it is convenient to be able to query the catalog tables, discretion
should be used. Queries on the catalogs acquire SHARE locks on the data
queried, and can hold up the operations shown-in Figure 81.

Use of the cursor stability isolation level or running such queries at discrete
times during the day is recommended.

156 sQL/DS Diagnosis for VM LHO09-8081-03 © Copyright IBM Corp. 1987, 1983

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Possible Actions:

ACTION PAGE
Run Offending Jobs Off-hours Below
Re-design Offending Applications Below
You should also investigate: 134

- “Conflict in Catalog Key Locking”

Figure 82. Hot Spot in the Catalog Tables - Actions

Since you cannot change the implementation of the SQL/DS catalogs, your
options for resolving a “Hot Spot in the Catalog Tables” problem are limited.
There are basically three approaches that you can try:

1. Run Offending Jobs Off-hours

The most effective approach to addressing the problem is to reschedule the
offending jobs. That is, you would identify the jobs that are causing the most
lock waits in the catalog tables and run them at a time when they are less
likely to conflict with other work.

Rescheduling of offending jobs is probably the most effective solution for

conflicts due to:
a. Preprocessing jobs

b. SQL Authorization Statements
c. SQL Data Definition Statements

d. Large Catalog Queries

2. Re-design Offending Applications

If rescheduling of the offending jobs is not attractive for your situation, then
you might be able to do some redesign of your applications such that con-
flicts are less of a problem. Some of the possible changes are quite easy to
make and can be very effective. Consider the following possibilities:

a. Use Cursor Stability on Catalog Queries

Since catalog queries can block functions that need to update the cata-
logs, the use of the cursor stability isolation level is recommended for
user queries on the catalogs.

b. Load Jobs

Running DATALOAD jobs with STATISTICS set OFF, and postponing the

updating of statistics (via an explicit UPDATE STATISTICS) to a later time !
is more costly due to the DBSPACE scan.

Catalog statistics are automatically accumulated during the DATALOAD
(and RELOAD) command when UPDATE STATISTICS is set ON. This

avoids the DBSPACE scan performed by an explicit UPDATE STATISTICS. i

c. UPDATE STATISTICS

You might consider restricting the statistics you update during peak
hours. That is, avoid the DBSPACE or ALL options during peak hours.

Note: Similar symptoms occur on adjacent key locking or key hash conflicts in

the catalog tables. See “Conflict in Catalog Key Locking” on page 134 for more '

information.

'LH09-8081-03 © Copyright IBM Corp. 1987, 1893

Chapter 5. Diagnosing Performance Problems 157

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

Hot Spot in User Tables
Problem Description:

“Hot Spot in User Tables"” is a condition that can occur when applications are
locking at a reasonable level (row or page), but they conflict because they are
going after the same data (row or page).

If response time is long or erratic in multiple user mode but satisfactory when
only one user is connected to an application server, then it is probably a lock
wait problem. If you have a lock wait problem but not very many locks are being
obtained, then it may be a hot spot in user tables.

A hot spot in user tables is a relatively small portion of a table or DBSPACE, or a
small table, that is frequently referenced by muitiple users. A hot spot can be a
data page, a small number of rows, or a hashed key value.

A hot spot in user tables will behave similar to a high lock level, but it can occur
with page or row level locking. Since the data being referenced by users is con-
centrated in one spot in the database, locking a “popular” page, row or key can
be equivalent to locking the whole DBSPACE.

A hot data page is most likely to show up with page level locking. If you are
already using row level locking, then it may be a hot set of rows or a hot key
hash.

If the table being accessed is-a small table (low ROWCOUNT), then it may be a
hot spot problem. However, a hot spot can also occur on large tables (high
ROWCOUNT), if the table has a small number of very popular rows, or a small,
very popular key range.

If many different rows and pages are being accessed (no hot rows or pages),
then the problem could be a hot key range, and you need to investigate the
indexing on the tables in question. EXCLUSIVE locks on keys or index pages are
obtained on INSERT and DELETE operations. They are also obtained on UPDATE
operations when a column being updated is part of the index key. If ROWCOUNT
divided by FULLKEYCOUNT is a large value, then the problem could very well be
locking on the index keys or index pages.

Note: Similar symptoms occur on adjacent key locking or key hash conflicts.
See "Adjacent Key Locking in User Data” on page 115 and “Conflict on Key
Hash in User Data” on page 136 for more information.

158 sQU/DS Diagnosis for VM LH09-8081-03 © Copyright IBM Corp. 1987, 1993

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

Possible Actions:

ACTION PAGE
Decrease Lock Level Below
Change Key Structures Below
Use Redundant Data Below
For problems with similar symptoms, see:

- “Adjacent Key Locking in User Data” 115

- “Conflict on Key Hash in User Data” 136
For catalog locking problems, see:

- “Hot Spot in the Catalog Tables” 153

- “Conflict in Catalog Key Locking” 134
For other lock wait problems, see:

- “"Locking Related Performance Problems” 114

Figure 83. Hot Spot in User Tables - Actions

There are basically three approaches to resolving a “Hot Spot in User Tables”

problem:

1. Decrease Lock Level

If the DBSPACE is not already defined to have row level locking, altering the
DBSPACE to row level locking is probably the simplest action to take.
However, this may not be appropriate if the users and applications access a
lot of rows. Using row level locking when many rows are accessed can
result in lock escalations.

. Re-design index keys

If a “hot key range” is indicated, you may want to re-design the indexes such
that FULLKEYCOUNT is closer to ROWCOUNT. If the current indexes are
needed, then it may be sufficient to add columns to the index definition to
achieve a higher FULLKEYCOUNT.

. Re-design tables

If the above solutions do not work, consider using redundant data. Specif-
ically, if update access to the data is conflicting with read access to the data,
separate copies of the data may be needed, one for the updaters for
dynamic maintenance and the other for readers. The read only copy would
have to be periodically refreshed from the updater’s copy.

You might also want to investigate the other problems that have similar symp-

toms. In particular, if the locking conflicts are in the indexes, see “Adjacent Key
Locking in User Data” on page 115 and “Conflict on Key Hash in User Data” on

page 136.

Furthermore, if the locking conflicts are in the catalog DBSPACE (DBSPACE 1),
then you should be investigating “Hot Spot in the Catalog Tables” on page 153
and “Conflict in Catalog Key Locking” on page 134.

LH09-8081-03 © Copyright IBM Corp. 1887, 1983

Chapter 5. Diagnosing Performance Problems 159

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

1/0 Capacity Exceeded

Problem Description: The database is not spread across enough channels
and/or devices. This condition is verified by examining the reports generated
from VM monitor data. For VM/SP and the VM/ESA 370 Feature, the VM/370 Per-
formance Monitor Analysis Program (VMMAP) generates reports called “Channel
Activity Summary” and “Disk and Tape I/0 Summary” that should be examined.
For VM/XA and VM/ESA ESA Feature, the VM Performance Reporting Facility
(VMPRF) generates reports called “Channel Busy” and "DASD By Activity” that
should be examined.

Insufficient channels is indicated if the utilization of each channel supporting the
database exceeds 30 percent. If some are high and some are low, see “I/0O Not
Balanced” on page 161.

insufficient DASD actuators is indicated if the utilization of each device sup-
porting the database exceeds 60 percent. If some are high and some are low,
see “1/0 Not Balanced” on page 161.

Possible Actions:

ACTION PAGE
Increase the Number of Buffers Below
Perform Tuning to Achieve More Efficient Access Below
Identify the Usage that Generates the Most I/0 Below
Eliminate Contention due to non-SQL/DS 110 Below
Add More Channels/Devices Below
If some utilizations are low, see:

“I/O Not Balanced” 161
For mostly Read Only data, see:

“Data Not Cached” 139

Figure 84. 1/10 Capacity Exceeded - Actions

1. Increase the Number of Buffers

Consider increasing the size of the buffer pools. This is a good first step
since it is easy to try and will sometimes cause a large reduction in data-
base I/0. See “Buffer Pool Too Small” on page 128 for a discussion of the
factors you should consider before doing so.

2. Perform Tuning to Achieve More Efficient Access

Review how the database manager is being used in your installation to see if
there are tuning steps that can be taken that would allow the requested data

to be accessed more efficiently. See “I/O Related Performance Problems”
on page 113.

3. Identify the Usage that Generates the Most |/0

See if most of the database I/0 is being generated by one or two applica-
tions. The count of looks in the page buffer provided in the SQL/DS user
accounting records can be useful for this purpose. If so, see if this work can
be done more efficiently or at a different time.

160 sQL/Ds Diagnosis for VM LH09-8081-03 © Copyright IBM Corp. 1987, 1883

_ LHO09-8081-03 © Copyright IBM Corp. 1987, 1993

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

4. Eliminate Contention due to non-SQL/DS 170

Check to see if the problem is being caused by accesses to non-SQL/DS
data that happens to be stored on the same channels and/or devices that
contain the database. If this is the case, consider moving the non-SQL/DS
data elsewhere.

5. Add More Channels/Devices

Increase the capacity of the 1/0 subsystem used to support the database. If
there are insufficient channels, move some of the devices to one or more
additional channels. If there are insufficient devices, move some of the data
to one or more additional DASD actuators. You can do this either by moving
tables/DBSPACEs or by moving or copying DBEXTENTs. Moving
tables/DBSPACEs is discussed under "Maintaining your Database” in the
Database Administration manual. Moving and copying DBEXTENTS is dis-
cussed in the System Administration manual.

1/0 Not Balanced

Problem Description:

Database I/0 activity is not evenly balanced across the channels and/or devices
that are being used to support the database. This condition is verified by exam-
ining the reports generated from VM monitor data. For VM/SP and VM/ESA 370
Feature, the VM/370 Performance Monitor Analysis Program (VMMAP) generates
reports called “Channel Activity Summary” and “Disk and Tape I/0O Summary"”
that should be examined. For VM/XA and VM/ESA ESA Feature, the VM Perform-
ance Reporting Facility (VMPRF) generates reports called "Channel Busy” and
“DASD By Activity” that should be examined.

Unbalanced channel usage is indicated if the utilization of one or more of the
channeis supporting the database exceeds 30 percent, while the utilizations of
the remaining channels are lower. If they all exceed 30 percent, see “I/0
Capacity Exceeded” on page 160.

Unbalanced device usage is indicated if the utilization of one or more of the
DASD supporting the database exceeds 60 percent, while the utilizations of the
remaining devices are lower. If they all exceed 60 percent, see “1/0 Capacity
Exceeded” on page 160.

Possible Actions:

ACTION PAGE
Look for Ways to Reduce the I/O Rate Below
Balance Channel Usage Below
Balance Device Usage Below
If all utilizations are high, see:

“I/O Capacity Exceeded” 180

Figure 85. 1/0 Not Balanced - Actions

Chapter 5. Diagnosing Performance Probiems 461

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

1. Look for Ways to Reduce the I/0 Rate

Before trying to redistribute the data, consider looking for ways to reduce
either the overall I/0 rate or the I/0Q rate associated with the overloaded
devices/channels. See “I/O Related Performance Problems” on page 113.

2. Balance Channel Usage

To balance channel usage, first study the VMMAP or VMPRF device usage
report to determine what grouping of devices would resuit in a rough
balance of I/0 load across the available channels. Then either, physically
move the device to another channel, or, copy its contents to a device on
another channel. Copying the contents can be achieved by moving the
DBEXTENT. For details on moving DBEXTENTS, see the System Adminis-
tration manual.

3. Balance Device Usage

First determine what DBEXTENTSs reside on each of the devices that show a
utilization in excess of 60 percent.

Then, for each such device, determine how much each DBEXTENT contrib-
utes to the overall I/0 load on that device. This can be done by collecting
VM monitor data with the SEEK class enabled and reducing the data using
VMMAP. The seek report provided by VMMAP will show the distribution of
I/0s across the database minidisks. On VM/XA or VM/ESA ESA Feature
systems, the VM Performance Reporting Facility (VMPRF) provides the same
function as VMMAP.

Use this information to make and carry out a plan to add or copy one or
more DBEXTENTS to, or delete from one or more DBEXTENTSs to the low-
usage devices. The procedure for doing this is described under “Managing
Storage Pools” in the the Systemn Administration manual.

Inaccurate Statistics
Problem Description:

If the statistics in the SQL/DS catalogs do not accurately reflect the actual char-
acteristics of the data, the SQL/DS optimizer may choose an inefficient access
path. This will not cause the SQL request to fail, but the response time experi-
enced may be longer than expected. In fact, ISQL query users may notice
strange query cost estimates for the queries. Queries with small query cost esti-
mates may take a reiatively long time.

Note: You can also have cases where the query cost estimate is quite large, but
the query runs relatively fast.
Inaccurate statistics might exist if:

1. Statistics have never been generated 1 for the data, or

2. The data has changed significantly since the statistics were last updated.?

1 Statistics can be updated by the UPDATE STATISTICS statement, or, as a result ot a DBSU DATALOAD or RELOAD command
with UPDATE STATISTICS set ON.

2 Some statistics are generated when the CREATE INDEX statement is processed.

162 sQuOS Disgnosis for VM LHO08-8081-03 © Copyright IBM Corp. 1987, 1983

“Restricted Materials of IBM"
Licensed Materials — Property of iBM

If UPDATE STATISTICS has never been run on the table, the database manager
will use default values for the statistics. For the table in question, these values
may not come close to the statistics for the actual data. This, of course, can
result in a very bad choice of access path.

A similar result can occur if the statistics in the catalog become out of date.
This can occur if the table had a lot of INSERT, UPDATE and/or DELETE activity
since the last time UPDATE STATISTICS was run.

Catalog statistics are relevant only to the SQL DML statements (and not data
definition or authorization statements). Other SQL statements are not subjected
to access path selection. Thus, you will experience the “Inaccurate Statistics”
problem only on the DML statements. This is true of DML statements embedded
in application programs, as well as those issued dynamically (through ISQL or
the DBS Utility).

With inaccurate statistics, there will be little difference between response times
in single user environments and multiple user environments. The statistics will
be just as inaccurate for either case.

One symptom you might observe is that the query cost estimate (QCE) for
queries on the table in question may appear to be unrealistic because the QCE
is based on out-of-date statistics.

Another problem that has symptoms similar to “Inaccurate Statistics” is the
“Bad Data Distribution” problem. With the “Bad Data Distribution” problem, the
statistics can exist and be up-to-date, but are misleading because of peculiarities
in the data. See “Bad Data Distribution” on page 122 for more information on
this problem.

Possible Actions:

ACTION PAGE
Update Data Statistics Below
For other problems with similar symptoms, see:

- “Bad Data Distribution” 122
For other high CPU usage problems, see “CPU Related Performance 112
Problems”

For other high 1/0 problems, see “I/O Related Performance Problems” 113

Figure 86. Inaccurate Statistics - Actions

There is basically only one action that can be taken for the “Inaccurate
Statistics” problem. That is to update the statistics for the problem table(s).
However, there are variations that you may want to consider. You need to
decide whether or not you need to update the statistics for only the table, or to
update the statistics for all the tables in the DBSPACE. Furthermore, you may
also want to specify the ALL option to update the statistics for all the columns in
the table. The application must be reprocessed for the updated statistics to be
used. See “Package Needs Re-preprocessing” on page 194 for more informa-
tion.

.

LH09-8081-03 ® Copyright IBM Corp. 1887, 1893 Chapter 5. Diagnosing Performance Problems 163

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

If your statistics are up-to-date and you still have the same (or similar) symp-
toms, then you may have the “Bad Data Distribution” problem. You should
review that problem (on page 122) next.

If the problem is neither inaccurate statistics nor bad data distributions, then you
should go back to the index on “high I/0” problems and look for another-pos-
sible cause.

Index Disqualified
Problem Description:

An index was either completely disqualified as a possible way to access the
table (Case 1 below), or it was disqualified as a means of gaining selective
access to the table (all remaining cases).

1. The index was disqualified as a possible way to access the table because
one of its columns is being updated by this SQL statement, or by another
SQL statement based upon cursor position provided by this SQL statement.
However, the index is not disqualified if the SET clause of the UPDATE state-
ment has the form “column = value,” and there is a predicate in the WHERE
clause which identifies a particular index key value. For example, the state-
ment “UPDATE TABLE1 SET C1 = 125 WHERE C1 = 100" would be able to
use an index on C1.

2. The index could not be used to selectively access the table because the data
type of the value in the predicate could not be converted to the data type of
the indexed column.

Note: Such a predicate is also not eligible as a Database Storage Sub-
system (DBSS) search argument (SARG).

For the numeric data types, the conversions that can be done are summa-
rized by the following diagram:

SMALLINT-->INTEGER-->DECIMAL-->FLOAT

A value’s data type can be converted into any of the data types that lie to its
right. For example, INTEGER can be converted into DECIMAL or FLOAT, but
not SMALLINT.

If the data type of the column is CHAR(n) or GRAPHIC(n), that column is eli-
gible for use with an index if the length of the predicate value is less than or
equal to “n”,

If the data type of the column is VARCHAR(n) or VARGRAPHIC(n), that
column is eligible for use with an index if the predicate value is any char-
acter data type (fixed or variable, any length).

A join predicate (for example, column1 =column2), is eligible only for use
with an index if the data types of the two columns are identical (except for
whether the columns support NULLS):

* |In the case of CHAR(n), VARCHAR(n<254), GRAPHIC(n), and
VARGRAPHIC(n<£127), the lengths must match.

* In the case of DECIMAL (m,n), precision and scale must both match.

3. An index was not used to selectively access the table because OR was used
in the WHERE clause.

164 sQuUDS Diagnosis for VM LH09-8081-03 © Copyright IBM Corp. 1987, 1993

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

4. A multicolumn index was not used to selectively access the table because
the selective column specified in the predicate was not first in the index key.

5. The database manager does not provide index support for the predicate as
written. A predicate can generally be written in two or more equivalent
ways. For example, you could write “BALANCE +100=1000" or
“BALANCE =900."” Only the second case is eligible for selective index access
consideration, (“submitted key=value”). In the first case, a nonselective
index scan is used.

Possible Actions:

ACTION PAGE
Replace UPDATE with DELETE/INSERT Below
Create Another Index that Excludes
Updated Column
Redesign so that the Updated Data is Not
Indexed
Use Compatible Data Types ' Below
Use IN or UNION instead of OR Below
Create Another Index with Selective Column First Below
Write Index-Eligible Predicates Below
See the following closely related problems:
“Inefficient Search” 170
“No Selective Index” 192
For other high CPU usage problems, see “CPU Related Perform- 112
ance Problems”
For other high I/0 problems, see “I/0 Related Performance 113
Problems”

Figure 87. Index Disqualified - Actions

1. Index key column is being updated:
* Replace UPDATE with DELETE/INSERT

If you need to update the column corresponding to the most selective
index into the table, it may be more efficient to delete and then reinsert
the row instead of updating it. The reason for this is that an index on an
updated column may be ineligible for use in accessing the table,
whereas no such restriction applies to the INSERT and DELETE SQL
statements.

The index will be eligible if the SET clause of the UPDATE statement has
the form “column = value,” and there is a predicate in the WHERE
clause which identifies a particular index key value. For example, the
statement “"UPDATE TABLE1 SET C1 = 125 WHERE C1 = 100" would be
able to use an index on C1.

¢ Create Another Index that Excludes Updated Column

Take a look at the WHERE clause of the UPDATE statement and see if
selective access to the table could be achieved by creating another index
on a different column.

LHO08-8081-03 © Copyright IBM Corp. 1987, 1993 Chapter 5. Diagnosing Performance Problems 165

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

In the case of a multicolumn index where the updated column is not the
first column in the index key, reconsider whether the index has to include
the updated column. If it doesn‘t, drop and re-create the index excluding
the updated column. If it does, consider creating an additional index that
is just on the first column. Such an index could be used to get efficient
table access when the column that participates in the multicolumn index
is being updated.

* Redesign so that the Updated Column is Not Indexed

Try to redesign the table in such a way that the data that has to be
updated is in a different, unindexed column. For example, it may be the
case that only the right-hand portion of the column is ever updated. In
that case, it may be possible to split the column into two equivalent
columns and index only the column derived from the left-most portion.

2. Use Compatible Data Types

When writing an SQL/DS application, make sure that the data type of each
program variable is compatible with the data type of the column it is associ-
ated with. The index compatibility requirements are provided above in the
Problem Description. For best performance, data types and lengths should
match exactly.

3. Use IN or UNION instead of OR

Rewrite the SQL statement using IN or UNION, as applicable. See Point 2 on
page 172 for further information.

4, Create Another Index with Selective Column First

Consider creating an index on the column that appears in the predicate.
This is also a good time to rejustify the multicolumn index. Perhaps there
only needs to be an index on the first column.

5. Write Index-Eligible Predicates

Write predicates in index-eligible form whenever possible. A predicate must
be in one of the following forms to be eligible for use with an index to
provide selective access to a table:

colname op value

('Op' is (LN u<=u’ L L u>u)

colnamel op colname2
(uopu is u<u’ u<.u, u,n’ u>,n’ or n>u)

This case applies only to joins. Either colname1 or colname2 will be
considered for use with an index, depending on the join sequence
chosen by the optimizer.

colname BETWEEN valuel AND value?
colname IS NULL
colname IN (valuel, value2, ...)

colname LIKE value
(if value does not start with "_* or "%*)

166 sQuUDS Diagnosis for VM LH09-8081-03 © Copyright IBM Corp. 1987, 1993

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Index Maintenance

Problem Description:

You can expect execution times for data maintenance operations to be notice-
ably longer if the target table has several indexes defined on it. This is partic-
ularly true for DATALOAD, bulk INSERT or bulk DELETE operations. However, it
is also possible with bulk UPDATE operations when the column(s) being updated
occur in one or more indexes.

DATALOAD execution time can be expected to be much longer if the target table
has one or more indexes defined on it. For each row inserted into the table,
index maintenance has to be done for each index on that table. Consequently,
the more indexes, the larger the effect.

Possible Actions:

ACTION PAGE
Drop Some Indexes Below
Create Indexes after Load Below
DROP/Re-CREATE INDEX Below
REORGANIZE INDEX 169
Increase the Number of Buffers Below
For other high CPU usage problems, see “CPU Related Performance 112
Problems”

For other high 1/0 problems, see “I/O Related Performance Problems” 113

Figure 88. Index Maintenance - Actions

1.

Drop Some Indexes

First, evaluate the indexes on the table and eliminate any indexes that are
not of significant value. Most very nonunique indexes can be removed
because they cannot provide very selective access to the table anyway.
Indexes on heavily updated columns should also be avoided.

Create Indexes after Load

For DATALOAD or bulk INSERT activity, it is preferable to create indexes
after rows are loaded/inserted. Two exceptions: 1) the number of rows
being loaded is much smaller than the number of rows already in the table,
and 2) the table contains a small number of very large rows (for example,
10,000 bytes).

DROP/Re-CREATE INDEX

The most common reason for wanting to do DATALOADs against an indexed
target table is that new batches of data periodically need to be added to an
existing table.

If the table is not too large, or the percentage of the dataload to the overall
table small, it is faster to drop the indexes on that table, load the new data
and then re-create the indexes. An advantage of this approach, is that when
the index has been recreated, the index tree is balanced, however, packages
will need to be repreprocessed. Similarly, for bulk DELETE operations, it
may be more efficient to DROP indexes before the DELETE, and recreate

LH09-8081-03 © Copyright IBM Corp. 1987, 1993 Chapter 5. Diagnosing Performance Problems 167

"Restricted Materials of IBM”
Licensed Materials — Property of IBM

them after the DELETE. This is certainly true when all the rows of the table
are being deleted. The same approach can be used with bulk INSERT and
DATALOAD:s, if the number of rows in the existing table is smaller than the
number of rows being loaded/inserted.

4. Increase the Number of Buffers

If none of the above actions can be employed, consider increasing the size
of the buffer pool. This will keep many of the index pages in virtual storage,
thus minimizing database 1/0 to the indexes.

Index No Longer Highly Clustered

Problem Description:

A query involving a sequential scan of some significant number of rows (for
example, more than 20) is being performed inefficiently, for example, by a
DBSPACE scan, because the degree of clustering of a previously highly clus-
tered index dropped so low that SQL/DS no longer considers it to be highly clus-
tered. The database manager calculated the degree of clustering the last time
UPDATE STATISTICS was explicitly run for this table, or when it was implicitly
run while data was being loaded (using the DBSU DATALOAD with UPDATE STA-
TISTICS SET ON, or the DBSU RELOAD command).

We say that an index is highly clustered if the sequence in which the table’s
rows are stored in pages in the database corresponds closely to the index key
sequence. Whether or not an index is highly clustered does not have a signif-
icant effect on performance if the number of rows examined by scanning the
table with that index is small (for example, less than 20). In that case a drop in
the degree of clustering of an Index is probably not the problem.

If a table does not have a highly clustered index, access to that table will be less
efficient for sequential scans because the database manager must access the
table using a DBSPACE scan or using an index scan via an unclustered (or only
slightly clustered) index. In the case of a DBSPACE scan, all active pages in the
DBSPACE are examined, not just those that contain rows of the desired table. In
the case of an unclustered index scan, each row examined will often require
another I/0O to the database.

This problem can arise either because you never created a highly clustered
index or because a highly clustered index became less clustered. The former
problem is covered in “Need a Highly Clustered Index” on page 187, this section
deals with the latter. Note however that the symptoms are the same.

Information as to whether or not a given index is highly clustered is maintained
in the CLUSTERRATIO column of the row corresponding to that index in the
SYSTEM.SYSINDEXES catalog table. For more information on CLUSTERRATIO
refer to the following:

e discussion in “Need a Highly Clustered Index” on page 187
¢ the Performance Tuning Handbook.

You can determine the current clustering status of all the indexes on a table by
issuing the following SQL statement:

SELECT INAME,ICREATOR,CLUSTERRATIO
FROM SYSTEM.SYSINDEXES
WHERE TNAME=table_name AND CREATOR=table_creator

168 sQUDS Disgnosis for VM LHO08-8081-03 © Copyright IBM Corp. 1987, 1993

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

The result will show you if the index you intended to be highly clustered is cur-
rently considered to be so.

Possible Actions:

ACTION PAGE
Make the Index you want Highly Clustered the First Created Index Below
Re-cluster the Table Below
For other high CPU usage problems, see "CPU Related Performance 112
Problems”

For other high 1/0 problems, see “I/O Related Performance Problems” 113

Figure 89. Index No Longer highly clustered - Actions

A table can be loaded in any order you choose, but any given table loading has
only one ordering associated with it. As a result, you can force only one of the

table’s indexes to be highly clustered. Occasionally, one (or more) of the other
indexes on a table will also be highly clustered, but this is fortuitous and cannot
be directly controlled.

1. Make the Index you want Highly Clustered the First Created Index

The index you intend to be highly clustered should always be the first index
created on that table. This is because the database manager always tries to
maintain clustering of the first created index. This index is known as the
“clustering” index. Use the query shown in the problem description for
Excessive I/0s on Insert on page 148 to make sure that the index you
intended to be highly clustered is the first created index. If not, make it the
first created index. The procedure for doing so is described in the Perform-
ance Tuning Handbook.

2. Re-cluster the Table

If the intended highly clustered index is the first created index, re-cluster the
table by using the DBS Utility to UNLOAD and then RELOAD the table. This
procedure is described in the Performance Tuning Handbook.

If you anticipate a large amount of additional INSERT activity against the
table, consider increasing the amount of free space that is reserved on each
page as this will increase the amount of time that the index will retain its
high degree of clustering. Free space is determined by the PCTFREE param-
eter on the ALTER DBSPACE statement. Set PCTFREE to the desired value
just prior to doing the RELOAD and then set it to a low value after the
RELOAD has completed.

Indexes Are Fragmented
Problem Description:

Extensive modifications to a table have fragmented its indexes, resulting in
increased I/O and associated processing overhead when those indexes are
used. This condition should be suspected if there has been a large amount of
data modification activity on the table since the time its indexes were created.

Keep in mind that any index can become fragmented, including the indexes on
the system catalog tables. Catalog table INSERTs occur implicitly as part of

LH09-8081-03 © Copyright IBM Corp. 1987, 1893 Chapter 5. Diagnosing Performance Problems 169

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

ALTER TABLE, CREATE INDEX, CREATE TABLE, CREATE VIEW, CREATE
SYNONYM, GRANT, preprocessing a new program, and re-preprocessing a
program. Catalog table DELETEs occur implicitly as part of DROP INDEX, DROP
PROGRAM, DROP TABLE, DROP VIEW, DROP SYNONYM, REVOKE, and re-
preprocessing a program.

Use the SHOW DBSPACE operator command to determine whether or not a
DBSPACE needs to be reorganized.

Possible Actions:

ACTION ' PAGE
REORGANIZE INDEX Below
For other high CPU usage problems, see "CPU Related Performance 112
Problems”

For other high I/O problems, see “1/0 Related Performance Problems” 113

Figure 90. Indexes Are Fragmented - Actions

1. REORGANIZE INDEX

Reorganize the index using the DBSU REORGANIZE INDEX command. This
command performs faster than a DROP/Re-CREATE because neither a
DBSPACE scan nor a sort is performed.

An additional advantage of this feature is that packages do not need to be
repreprocessed.

In the case of the system catalog tables, use the catalog index reorganization
utility SQLCIREO. For more information, see the Database Administration
manual.

Inefficient Search
Problem Description:

1. The WHERE clause is not restrictive enough, resulting in a very large answer
set.

2. The OR connector is used in the WHERE clause. When this is done, all pred-
icates become ineligible for use in conjunction with an index to achieve
selective access to the table.

Note: The above rule applies only to the outermost grouping of predicates.
For example, all predicates in the following query are ineligible for use with
an index:

SELECT * FROM PROJ_ACT
WHERE PROJNO='AD3100'
AND ACTNO=60 OR ACTNO=70

By way of contrast, in the following similar (but not equivalent) query
“PROJNO =AD3100" is eligible for use with an index, while the other two
predicates are not:

SELECT * FROM PROJ_ACT
WHERE PROJNO='AD3100'
AND (ACTNO=66 OR ACTNO=70)

170 sQU/DS Diagnosis for VM LH09-8081-03 ©® Copyright IBM Corp. 1987, 1993

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

. Nullable expressions may cause quantified predicates to be processed in an
inefficient way.

. Even precision decimal can cause predicates to be processed in an ineffi-
cient way.

. The SQL statement contains a subquery. This may force SQL/DS to satisfy
the query in an inefficient way.

. Host variables are used for values in one or more predicates in the WHERE
clause. This problem applies only to precompiled applications.

If one or more of the predicate operators are BETWEEN or an inequality, the
database manager may choose a suboptimal way to access the table. This
is because the database manager normally uses linear interpolation to esti-
mate how many of the table’s rows will satisfy these types of predicates. If,
however, the comparison value is a host variable, the actual value is not

known at precompilation time so the database manager is forced to make a
much less accurate estimate based on default rules. See "Range Predicate

Used With Host Variables” on page 199.

7. The NOT modifier is used in conjunction with a predicate in the WHERE

clause. When this is done, the predicate must be evaluated at the RDS level,

resulting in increased processing overhead.

8. An indicator variable is used with a predicate in the WHERE or HAVING

clause. When this is done, the predicate must be evaluated at the RDS level,

resulting in increased processing overhead.

Possible Actions:

ACTION PAGE
Use More ANDed Predicates Below
Use IN or UNION Below
Avoid Nullable Expressions in Quantified Predicates Below
Avoid Even Precision Decimal in Predicates Below
Formulate as a Join Below
Use Dynamic Statements Below
Use Negative Form of Predicate Below
Avoid Indicator Variables on Predicates Below
See the following closely related topics:
“Insufﬁcier!t Indexing” :;;
“No Sele.ctlve Index" 164
“Index Disqualified”
For other high CPU usage problems, see "CPU Related Performance 112
Problems”
For other high 1/0 problems, see “I/O Related Performance Problems” 113

Figure 91. Inefficient Search - Actions

1. Use More ANDed Predicates

Put in all valid predicates, even if they are not needed to give the desired

answer set.

LH08-8081-03 © Copyright IBM Corp. 1987, 1893 Chapter 5. Diagnosing Performance Problems

172

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

Reconsider what information you really need. Then see if you can further
qualify the WHERE clause by ANDing it with additional predicates.

Instead of giving end users access to an entire table, provide them with a

view on just the portion of the table that they need. This has the effect of

adding the predicates provided in the view definition to the predicates that
appear in the queries formulated by the users.

2. Use IN or UNION
Consider the following alternatives to the use of OR:

* If all predicates connected by OR are for the same column, substitute the
equivalent IN predicate. The database manager will then be able to use
an index on the IN column to selectively access just those rows that
satisfy the values in the IN list. For example, instead of:

SELECT * FROM PROJ_ACT
WHERE PROJNO='AD3100'
AND (ACTNO=66 OR ACTNO=70)

write:

SELECT * FROM PROJ_ACT
WHERE PROJNO='AD3106'
AND ACTNO IN (60,70)

Note: When the predicate columns are the same, the IN formulation is
generally the best, but the UNION approach (see below) is also
applicable and may occasionally give better performance.

* |f one or more of the predicates connected by OR are for a different
column, consider rewriting the query as the UNION of two or more
SELECTs. For example, instead of:

SELECT * FROM EMPLOYEES
WHERE JOB='CLERK'
OR NAME='JONES'

write:

SELECT * FROM EMPLOYEES WHERE JOB='CLERK'
UNION
SELECT * FROM EMPLOYEES WHERE NAME='JONES'

3. Avoid Nullable Expressions in Quantified Predicates
To avoid this case, consider either of the following:
* Define the column to be NOT NULL

e Rewrite the query to avoid the use of the nullable expression. For
example, instead of:

Cl+5=10
write:
Cl=35

4. Avoid Even Precision Decimal in Predicates

Some application languages such as Assembler do not support even preci-
sion decimal. When such table columns are referenced in a predicate con-

SQU/DS Diagnosis for VM LH09-8081-03 ® Copyright IBM Corp. 1987, 1993

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

taining a comparative host variable in these applications, the host variable
must be declared with a precision one higher than the column. As a result,
you get inefficient processing because the predicate is residual.

Redefine the table columns to odd numbered precision to avoid this situ-
ation.

5. Formulate as a Join

in general, correlated subqueries will perform better than subqueries without
correlation. Furthermore, in many cases, a join can be used in place of
either. Joins will typically outperform either correlated or uncorrelated sub-
queries.
For example, assume you want to find activity numbers and their
descriptions for all projects (in the PROJ_ACT table). The natural way to
express this in SQL is:

SELECT ACTNO, ACTDESC

FROM SQLDBA.ACTIVITY

WHERE ACTNO IN (SELECT ACTNO
FROM SQLDBA.PROJ_ACT)

However, the correlated subquery version of this query would usually run
faster:

SELECT ACTNO, ACTDESC

FROM SQLDBA.ACTIVITY A

WHERE ACTNO IN (SELECT ACTNO
FROM SQLDBA.PROJ_ACT P
WHERE P.ACTNO=A.ACTNO)

Furthermore, you would normally get the best performance by expressing
the query using a join:

SELECT DISTINCT A.ACTNO, ACTDESC
FROM SQLDBA.ACTIVITY A,SQLDBA.PROJ_ACT P
WHERE P.ACTNO=A.ACTNO

6. Use Dynamic Statements

instead of using host variables, execute the SQL statement dynamically with
fixed values.

7. Use Negative Form of Predicate

Whenever possible, use the negative form of a predicate rather than
negating it with the NOT modifier. For example:

e Use “colname < > or = = value” rather than “NOT colname =value.”
e Use “colname < = value” rather than “NOT colname > value.”

e Use “colname < value1 OR colname > value2” rather than
“NOT BETWEEN value1 AND value2.”

8. Avoid indicator Variables on Predicates

Do not use an indicator variable with a predicate unless it is specifically nec-
essary.

LH09-8081-03 ® Copyright IBM Corp. 1987, 1993 Chapter 5. Diagnosing Performance Problems 173

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

Inefficient SELECT List

Problem Description:
1. The data types of one or more program variables do not match the data
types of the corresponding columns specified in the select list of a SELECT

statement. As a result, the database manager has to do extra processing to
perform the data conversions.

2. The select list includes more columns than are actually needed. As a result,
extra processing must be done to return the additional data.

Possible Actions:

ACTION PAGE
Use Same Data Types Below
Select Only Required Columns Below

Figure 92. Inefficient SELECT LIST - Actions

1. Use Same Data Types

To avoid data conversion processing, make sure that the data types of the
program variables and the corresponding columns in the select list match.

2. Select Only Required Columns

Make sure that the select list includes only those columns that will actually
be used. In particular, avoid overuse of the “SELECT *” notation.

Insufficient Indexing
Problem Description:

1. There are no indexes on the table. As a result, the database manager is
forced to use a DBSPACE scan to access the table.

2. The absence of a suitable index forced an internal sort. This was required to
eliminate duplicates (SELECT DISTINCT), satisfy an ORDER BY or GROUP
BY, or support a join. When in doubt, the presence of an internal sort can be
verified by executing EXPLAIN PLAN for the SQL statement in question. For
more information on using the explanation tables, see the Performance
Tuning Handbook.

Possible Actions:

ACTION PAGE
Create Indexes Below
Create Index on Sort Column(s) Below
For other high CPU usage problems, see “CPU Related Performance 112
Problems”

For other high I/0 problems, see “I/O Related Performance Problems” 113

Figure 93. Insufficient Indexing - Actions

174 sQU/DS Diagnosis for VM LH09-8081-03 © Copyright IBM Corp. 1987, 1993

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

1. Create Indexes

Create one or more appropriate indexes on the table. For recommendations
on the number and placement of indexes, see the Performance Tuning Hand-
book.

2. Create Index on Sort Column(s)

Try creating an index on the column(s) being sorted. If this index is used to
access the table, the rows returned will already be in sort order and the
internal sort will be bypassed. Bear in mind, however, that if the database
manager estimates that it can more efficiently access the table using some
other index, it will use that index instead. In that case, an index on the sort
column(s) will not affect performance.

This action is appropriate only if a large number of rows need to be sorted.
The database manager does small sorts very quickly.

Invalid Entities Exist

Problem Description: Before any index operation, DBSS verifies that the index
is valid. If there are invalid indexes, then this verification increases processing
time.

Possible Actions:

ACTION PAGE

Drop invalid indexes and recreate them. Below

Figure 94. Invalid Entities Exist- Actions

1. Drop invalid indexes and recreate them.

Use the SHOW INVALID command to display the invalid indexes. For more
information on invalid indexes, see “Invalid Indexes” on page 41. For more
information on the SHOW INVALID command, see Operation manual.

You can also force an invalid index to be dropped and recreated by using the
REORG statement.

Large Tables Share Same DBSPACE

Problem Description:

When large tables share the same DBSPACE, DBSPACE scans can be exces-
sively long. That is, each of the large tables will use up a large number of pages
in the DBSPACE. This will typically result in a large value for NACTIVE (active
pages in the DBSPACE), and a small to medium value for PCTPAGES (the per-
centage of active pages occupied by any given table in the DBSPACE). A
DBSPACE scan reads all active pages in the DBSPACE.

Note: The value used in path selection is calculated dynamically as

SYSCATALOG. NPAGES
SYSDBSPACES.NACTIVE

If the calculated value is small, SQL/DS path selection will tend to favor INDEX
scans over DBSPACE scans. If the calculated value is medium to high, then
SQL/DS path selection will tend to favor DBSPACE scans over index scans.

LH09-8081-03 © Copyright IBM Corp. 1987, 1983 Chapter 5. Diagnosing Performance Problems 4175

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

If a DBSPACE scan is used for one of the tables, all the pages for the other large
table(s) will also be read. This, of course, means the scan will be doing a lot of
useless I/0O’s for pages that do not contain rows of the table being searched.

For example, if you have a DBSPACE that contains a table that occupies 500
pages and another table that occupies 600 pages, and NACTIVE for the
DBSPACE is 900, you may experience the “Large Tables Share Same DBSPACE"
problem. If a DBSPACE scan is done on the 500 page table, 400 pages (900
minus 500) will be read with no rows found. Similarly, a DBSPACE scan of the
600 page table will result in 300 page reads with no rows found.

As you can see, the problem is most severe for large tables. However, you can
also see the same basic problem if you have an unindexed table sharing a
DBSPACE with a large table. For example, if you add a 2 page table to the
DBSPACE in the previous example and do not index it, all accesses to the 2
page table will be via DBSPACE scans. Such accesses would result in 902
pages being read just to get 2 pages of rows!

Note, however, PCTPAGES for the 2 page table would be 0. If any index were
created on the two page table, the index would be used on almost all accesses
to the table.

When PCTPAGES is this small, the database manager will typically use an index
rather than a DBSPACE scan to find pages with rows of the table.

In summary, you probably have the “Large Tables Share Same DBSPACE"
problem if:

1. You have a large number of database 1/0’s,

2. The applications are doing DBSPACE scans,

3. You have a Large table in a DBSPACE with other large tables (or small
tables that are not indexed), and

4. The problem persists in single user environments

Note: There are other problems that show similar symptoms (high 1/0’s with
high CPU usage). See “I/O Related Performance Problems” on page 113 for the
list of other possible “high 1/0” problems.

The “Large Tables Share Same DBSPACE"” problem can show up in the fol-
lowing situations:
1. On Data Manipulation Statements

Data manipulation statements (DELETE, INSERT, SELECT and UPDATE) can
result in DBSPACE scans. In the case of INSERT, this would apply only to
format 2 INSERTs.

2. On CREATE INDEX, DROP TABLE or UPDATE STATISTICS Statements
These statements are always done as DBSPACE scans.
3. DATALOAD Statements with SET UPDATE STATISTICS ON

DBSPACE scans are not performed during loading of data, when UPDATE
STATISTICS is set ON. However the following are exceptions. Under these
conditions, a DBSPACE scan will be performed.

* |f data is being loaded into more than one table.

176 sQUDS Diagnosis for VM LH09-8081-03 © Copyright IBM Corp. 1967, 1983

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

e If there are indexes on the table.
* If the table being loaded already contains data.

The above will require an explicit UPDATE STATISTICS following the
DATALOAD, which will cause a DBSPACE scan.

4. Unloading (DATAUNLOAD or UNLOAD)

If whole (or large portions of) tables are unloaded, then the unload operation
would typically be done as a DBSPACE scan.

Possible Actions:

ACTION PAGE

Index tables Below
Reorganize DBSPACEs Below
Redesign Applications to avoid DBSPACE scans Below
For other problems that result in DBSPACE scans, see:

- “DBSPACE Scan Being Performed” 141

- “Need a Highly Clustered Index” 187

- “Index No Longer Highly Clustered" 168

- "Inaccurate Statistics” 162
For other high CPU usage problems, see “CPU Related Perform- 112
ance Problems”

For other high 1/0 problems, see “I/O Related Performance 113
Problems”

Figure 95. Large Tables Share Same DBSPACE - Actions

There are basically three ways you can try to resolve the “Large Tables Share
Same DBSPACE" problem:

1. Index the tables in the DBSPACE

In the first approach, the objective is to eliminate the problem by indexing
tables such that DBSPACE scans never (or rarely) occur. Clearly they are
going to occur on CREATE INDEX, DROP TABLE or UPDATE STATISTICS, but
you might be able to avoid DBSPACE scans on your data manipulation state-
ments through proper indexing. Clustering indexes are particularly important
for avoiding DBSPACE scans.

This approach can be quite effective at eliminating DBSPACE scans for
searches on the smaller tables in the DBSPACE. It is less likely to be effec-
tive if you have multiple large tables in the same DBSPACE. However, a lot
depends on how the large tables are being accessed and whether or not the
tables have a clustering index.

2. Reorganize the DBSPACEs

In many cases, you will probably have to address the “Large Tables Share
Same DBSPACE" problem by redefining where your tables are stored. That
is, eliminate the problem by not storing large tables in the same DBSPACE.

3. Redesign Applications to avoid DBSPACE scans

DBSPACE scans can be avoided through index and DBSPACE reorganiza-
tion. They can also be avoided during DATALOADs with SET UPDATE STA-

LH09-8081-03 © Copyright IBM Corp. 19887, 1893 Chapter 5. Diagnosing Performance Problems 177

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

TISTICS ON, with restrictions. For a list of restrictions see "DATALOAD
Statements with SET UPDATE STATISTICS ON” under Problem Description.

If these do not sufficiently eliminate DBSPACE scans, then you might want to
then consider the third approach. That is, redesign your applications to be
more selective such that DBSPACE scans are less frequent.

In the first and third approaches, you would be trying to optimize performance
within the constraint that large tables must share the same DBSPACE. The
second approach more directly addresses the problem.

For other problems that could be causing high 1/0’s or DBSPACE scans, see “I/O
Related Performance Problems” on page 113. You may want to specifically
review the problems that are likely to result in DBSPACE scans (see list shown
in Figure 75 on page 143).

Lock Level Too High

Problem Description:

“Lock Level Too High” is a condition that occurs when applications are locking
more data than is necessary. Locking done by applications is determined by the
lock level defined for the DBSPACESs referenced (as defined by the LOCKMODE
option on ACQUIRE or ALTER DBSPACE). However, the level of locking can also
be overridden by the application through use of the SQL LOCK statement.

If response time is long or erratic in multiple user mode, but OK when only one
user is connected to the application server, then it could be a LOCK WAIT
problem.

If it is a lock wait problem, check to see what DBSPACE(s) the lock waits are
occurring in and the level of locking being done in the DBSPACE(s). If the data
being accessed is in a DBSPACE defined with DBSPACE locking level
(LOCKMODE =S in SYSDBSPACES), then the lock level is probably too high.

Since SHARE locks conflict with EXCLUSIVE locks, and EXCLUSIVE locks conflict
with all other locks, DBSPACE locking should not be used when multiple users
are updating the data, or when only one user is doing frequent updates while
other users are trying to read the data.

A similar problem can occur with LOCKMODE =P (page level locking). The
locking level may be too high if LOCKMODE =P, but the number of pages occu-
pied by the table (NPAGES in SYSCATALOG) is small. See "Hot Spot in User
Tables” on page 158 for more information on this case.

If the DBSPACES being accessed are already defined with page or row level
locking, then the problem could be lock escalations or adjacent key locking. For
more information on these problems, refer to “NLRB Parameters Too Small” on
page 191, “Lock Level Too Low” on page 179, “Excessive Locking in User Data”
on page 149 or "Adjacent Key Locking in User Data” on page 115.

If the applications are using row level locking, then you may also want to investi-
gate “Conflict on Key Hash in User Data” on page 136.

178 sQUDS Disgnosis for VM LH09-8081-03 © Copyright IBM Corp. 1987, 1903

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Possible Actions:

ACTION PAGE
Decrease Lock Level Below
If using PAGE or ROW locking, see also:

- "Hot Spot in User Tables” 158

- “Excessive Locking in User Data” 149

- “Lock Level Too Low” 179

- “Adjacent Key Locking in User Data” 115

If using ROW locking, see also
- “Conflict on Key Hash in User Data” 136

Figure 96. Lock Level Too High - Actions

There is basically only one solution to the “Lock Level Too High” problem. |f
you currently are operating with DBSPACE level locking, use the ALTER
DBSPACE statement to reduce the LOCKMODE to page (P) or row (T) level
locking.

If you currently are operating with page or row level locking, continue the anal-
ysis of the problem with the problems listed in Figure 96.

Lock Level Too Low
Problem Description:

Generally speaking, a low lock level (row or page locking) will allow more users
to access the same data (table) at the same time. However, if applications are
accessing a lot of rows, then a lot of data will be locked anyway. It will just take
more lock requests to get them. Thus, it is possible to access data with the lock
level too low.

If the application performs satisfactorily in single user mode but has erratic or
long response time in multiple user mode, then the problem could be a lock wait
problem.

If your applications are experiencing lock waits and you are also experiencing
lock escalations, then the problem may be that the locking level is too low. This
will occur if the locking level is page or row locking, and the application(s)
access a lot of rows.

Note: Rows accessed include rows inspected by the database manager to find
the rows requested. The rows accessed are not necessarily limited to just those
requested.

When applications access many rows, then page or row level locks can get esca-
lated to DBSPACE locks. This escalation means that the applications are effec-
tively running with DBSPACE locks. This is described more fully under
“Excessive Locking in User Data” on page 149.

Note: If the applications are not accessing that many rows, then the escalations
could be due to your NLRB initialization parameters being set too small (see
“NLRB Parameters Too Small” on page 191).

LH09-8081-03 © Copyright IBM Corp. 1987, 1993 Chapter 5. Dlagnosing Performance Probiems 179

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Possible Actions:

ACTION PAGE
Increase Lock Level Below
Use LOCK Statement to Avoid Escalations Below
Use Cursor Stability Isolation Level Below
For other problems with similar symptoms, see:

- “Excessive Locking in User Data” 149

- “NLRB Parameters Too Small” 191
For other lock wait problems, see: 114

- “Locking Related Performance Problems”

Figure 97. Lock Level Too Low - Actions

If the DBSPACE in which locks are escalated is defined with row level locking,
then increasing the lock level to page level locking is the easiest corrective
action you can take, and may be sufficient,

If the locking level is already defined to be page level locking, changing the
locking level may help, but probably not much. If the DBSPACE is changed to
DBSPACE locking from page locking, all applications on the DBSPACE will
contend at the DBSPACE level.

Another approach to the problem is to reduce the number of locks held by an
application at any one point in time by using the Cursor Stability Isolation Level
in the applications that obtain many read locks. The use of Cursor Stability can
drastically reduce the number of locks held by an application and the length of
time SHARE locks are held.

For other reasons that might be causing lock escalations, see “Excessive
Locking in User Data” on page 149 and “NLRB Parameters Too Small” on
page 191.

For other possible lock wait problems, refer to “Locking Related Performance
Problems” on page 114.

Locks Held for Long Duration
Problem Description:

Locks protect data and applications in multiple user, read/write environments.
However, they also are a potential source of long response times due to long
lock waits. Thus, locking facilities should not be used indiscriminately. The
“Locks Held for Long Duration” problem is the condition that can occur when
users or applications hold locks longer than necessary.

If you are experiencing long or erratic response times in Multiple User Mode, but
the response time is OK when only one user is connected to the application
server, then you could have a lock wait problem.

One of the types of lock wait problems that can occur is locks being held for long

duration. This is when a user or an application obtains locks, but delays or post-
pones freeing them when it should.

180 sQU/DS Diagnosis for VM LH08-8081-03 ® Copyright IBM Corp. 1987, 1993

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

The symptoms of the “Locks Held for Long Duration” problem are lock waits and
possibly link waits. However, there are other “lock wait" problems that have the
same symptoms.

Another condition to look for is communication waits. If users are waiting for
locks held by a user in a long communication wait, then you probably have the
“Locks Held for Long Duration” problem. A user in communication wait is not
actively processing SQL requests, or using the data he/she has locked.

This problem is most likely to occur if you have the following types of activity on
your system:

1.

ISQL query usage

ISQL query usage is not necessarily a problem. However, if query users
spend a lot of time in display mode (looking at query results), then you might
experience the “Locks Held for Long Duration” problem. This is particularly
true if the ISQL users run with isolation level set at “repeatable read”
(ISOL=RR). While in ISQL display mode with ISOL=RR, ISQL will hold all
the locks obtained to get the query result. The locks will not be freed until
the user ENDs display mode.

. 1SQL usage in AUTOCOMMIT OFF mode

Use of the ISQL AUTOCOMMIT OFF function is another possible source of

the “Locks Held for Long Duration” problem. With AUTOCOMMIT set OFF,
all locks obtained between COMMIT (or ROLLBACK) WORK statements are
held until the user explicitly enters COMMIT (or ROLLBACK) WORK.

. Conversational Applications

A conversational application is an application that holds resources (such as
SQL/DS locks) as it “converses” with the user. Such applications leave the
system at the mercy of the user. Users that delay responding to such an
application delay releasing of locks.

. Long Batch jobs

Long batch jobs can create the problem, if they do not issue periodic
COMMIT WORK statements.

Large Load jobs

Large load jobs can create the problem, if they do not use the
COMMITCOUNT option of the DATALOAD command.

LH08-8081-03 © Copyright IBM Corp. 1887, 1993 Chapter 5. Diagnosing Performance Problems 181

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Possible Actions:

ACTION PAGE
Use Multiple LUWs Below
Use Cursor Stability Isolation Level Below
Run Offending Jobs Off-Hours Below
Use Redundant Data to Avoid LLock Contention Below
For other problems with similar symptoms, see:

- “Agents Being Held” 119

- “Too Few Agents” 205
For other lock wait problems, see: 114

- “Locking Related Performance Problems”

Figure 98. Locks Held for Long Duration - Actions

There are two basic approaches to resolving a “Locks Held for Long Duration”
problem:

1. Free locks earlier

The first approach that is recommended is to see what can be done to have
the offending applications or users free locks earlier. Two techniques that
might be explored are:

¢ Use Multiple LUWs

By having the offending applications COMMIT WORK more frequently,
you can reduce the amount of lock contention caused by the application.

¢ Use of Cursor Stability Isolation Level

By having the offending applications use the Cursor Stability isolation
level, fewer locks are held until the end of the LUW. This may be suffi-
cient to resolve the conflicts caused by the applications.

2. Isolate the Offending Work

The second fundamental approach to the problem is to try to isolate the
offending applications. While multiple user read/write sharing is a desirable
capability, it may not be practical in all cases. When an application cannot
share data with other applications without causing undesirable contention
probiems, then the application should be isolated.

There are basically two ways that an application can be isolated:
* Reschedule Offending Jobs

By running the offending application at a time when other applications
don’t need the data, you can avoid contention while retaining the concept
of common data. With this solution, you would be trading off application
availability to minimize storage and data maintenance costs.

¢ Use of Redundant data to avoid lock contention

By running the offending application against a copy of the data, you can
avoid the lock contention problems while retaining the ability to run the
offending application on a more flexible (and presumably convenient)
schedule. With this solution, you would be trading off storage and “real
time data” for application function availability.

182 sQu/DS Diagnosis for VM LHO09-8081-03 © Copyright IBM Corp. 1987, 1963

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

Before pursuing application isolation, you might want to investigate problems
with similar symptoms. Specifically, you may want to investigate “Agents Being
Held” on page 119 or “Too Few Agents” on page 205. This is particularly true if
you are experiencing significant link wait conditions.

Logging during Load

Problem Description:

When loading a large amount of data with LOGMODE =Y, A or L, all rows
inserted into the table(s) are also written to the log. In addition to consuming log
space, the logging can noticeably affect the performance of the load operation.

A high volume of logging will tend to aggravate checkpoint-related problems.
See “"CHKINTVL Too Small” on page 132 and “Long DBSS Calls Delaying
Checkpoint” on page 184.

Possible Actions:

ACTION PAGE
Load in Single User, NOLOG Mode Below
Increase CHKINTVL Below
Use Nonrecoverable DBSPACES Below

Figure 99. Logging during Load - Actions

1. Load in Single User, NOLOG Mode

The most effective way to reduce the overhead of loading is to perform the
load in single user mode with LOGMODE =N. See “Switching Log Modes” in
System Administration manual for a discussion on how to do this. However,
if you normally run with LOGMODE =A, data loaded with LOGMODE =N will
not be recoverable from a DASD failure until after the first archive following
the load operation. Therefore it is wise to use this solution when the load(s)
can be done just before an normal archive operation is scheduled.

2. Increase CHKINTVL

Another action that can relieve logging-related overhead during a load oper-
ation is to set the CHKINTVL initialization parameter to a high value (for
example, 200 or higher). The resulting reduction in checkpoint frequency will
greatly reduce the amount of I/0 and processing time associated with the
checkpoint function. There are some trade-offs you should consider before
increasing CHKINTVL. These are described in “CHKINTVL Too Smalil” on
page 132.

3. Use Nonrecoverable DBSPACES

Yet another possible alternative is to use nonrecoverable DBSPACEs for the
data being loaded. This should be considered if the data can be recovered
from an external source. Guidelines for the use of nonrecoverable
DBSPACEs are provided under “Nonrecoverable Storage Pools”, in System
Administration manual. A multiple user mode DATALOAD into a nonrecover-
able DBSPACE will generally yield performance similar to loading in single
user mode with LOGMODE =N.

LH09-8081-03 © Copyright IBM Corp. 1987, 1883 Chapter 5. Diagnosing Performance Problems 183

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

Long DBSS Calls Delaying Checkpoint

Problem Description:

In order to perform a checkpoint, all execution in the DBSS must first be qui-
esced. To do this, SQL/DS first keeps any new requests from entering the DBSS,
and then waits until all currently executing DBSS calls leave the DBSS. Check-
point processing is then able to begin. Once the checkpoint has been com-
pleted, the processing of DBSS calls is resumed.

Nearly all SQL statements that can be issued by a user are ultimately imple-
mented by one or more DBSS calls. Effectively, then, the response times of all
users currently executing an SQL statement at the time checkpoint is initiated
will be delayed by the time it takes all users currently executing in the DBSS to
leave the DBSS plus the actual time to perform the checkpoint. This delay is
normally a few seconds. However, if one of the currently executing DBSS calls
is long-running, this delay can be much longer.

Most potentially long-running DBSS calls will make frequent checks to see if a
checkpoint.is pending, and if so, temporarily leave the DBSS. Therefore, most
such calls should not cause undue delays at checkpoint time. The known
exceptions to this are the DBSS calls that implement the SQL statements DROP
TABLE and DROP INDEX, as well as the operator command SHOW DBSPACE.

This condition can be verified by issuing the SHOW ACTIVE operator command
each time a long, unexpected delay is being experienced.

The long DBSS call problem is indicated if you often see “CHECKPOINT AGENT
IS WAITING TO START CHECKPOINT” in the resuit. Then you will typically see
one agent in I/O wait, while the remaining agents are either inactive, in commu-
nications wait, or in checkpoint wait. The one agent that is in I/0 wait is the one
that is holding up the checkpoint. You may be able to contact that user and see
what was being executed at that time.

If you often see "CHECKPOINT AGENT IS PROCESSING A CHECKPOINT” in the
result, delays are occurring because of the time it takes to actually do the check-
point. This problem is addressed under “CHKINTVL Too Big” on page 131. If
the results show that the checkpoint agent is inactive, checkpoint-related delays
are not the problem.

Possible Actions:

ACTION PAGE
Schedule Long-Running DROP TABLE, etc Below
Set CHKINTVL As High As Possible Below
If delays are due to checkpoint processing, see:

“CHKINTVL Too Big” 131

If checkpoint is inactive during delays, see:

“Sequential Processing” 200

Figure 100. Long DBSS Calls Delaying Checkpoint - Actions

184 sQuUDS Diagnosis for VM LH09-8081-03 © Copyright IBM Corp. 1987, 1993

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

1. Schedule Long-Running DROP TABLE, etc

Schedule the execution of long-running cases of DROP TABLE, DROP INDEX,
and SHOW DBSPACE for periods when potential delays to other users will
not pose a problem.

2. Set CHKINTVL As High As Possible

Set the CHKINTVL initialization parameter to as high a value as is practical.
This will minimize the likelihood that a long-running DROP TABLE or DROP
INDEX will coincide with a checkpoint. See "CHKINTVL Too Small” on
page 132 for a discussion of the factors that you should consider before
changing CHKINTVL.

Missing Search Condition
Problem Description:

A superior access strategy was overlooked during the preprocessing of a join
due to a missing search condition.

The SQL/DS optimizer will automatically add to your query certain types of pred-
icates, described below. However, there are other types of predicate which, if
you omit them, will not be added by the optimizer.

It is important to explicitly state all predicates other than those described below
when writing a join. Otherwise, the optimizer will sometimes choose an inferior
access path, e.g. fail to consider a useful index or choose “inner” and “outer”
tables of the join the wrong way around.

Predicates are automatically added by the optimizer when:

The query (or subquery) is a join, and there is an equijoin condition relating
two tables, that is of the form

A.COL1=B.COL2

and there are one or more local predicates on either of the join columns, of
the form

A.COL1 <comparison_operator> <value>
or
B.COL2 <comparison_operator> <value>

then for each such local predicate, if it meets the following two conditions:
1. it is sargable
2. the query does not already contain a sargable predicate of the same kind
on the other join column
then the optimizer will add the implied predicate on the other join column, of
the form

B.COL2 <comparison_operator> <value>
or
A.COL1 <comparison_operator> <value>

respectively.
Consider the following example:

SELECT * FROM EMPLOYEE , DEPT
WHERE EMPLOYEE.DEPTNO = DEPT.DEPTNO
AND EMPLOYEE.DEPTNO = 288

LHO08-8081-03 ® Copyright IBM Corp. 1987, 1993 Chapter 5. Diagnosing Performance Problems 185

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

The SQL/DS optimizer will automatically add the implied predicate
AND DEPT.DEPTNO = 288

and thus is able to consider a search strategy of accessing DEPT as the outer
table, and EMPLOYEE as the inner table within DEPT, as well as the other way
round. It will then choose whichever of these strategies is best.

However, in the following examples, the optimizer will not add any predicates :

SELECT * FROM EMPLOYEE , DEPT
WHERE EMPLOYEE.DEPTNO = DEPT.DEPTNO
AND EMPLOYEE.DEPTNO IN (288, 388, 488)

The optimizer will not add an additional predicate because the local predicate is
not sargable. EMPLOYEE will become the outer table (the one first accessed)
because this is the only table for which there is any selective access.

SELECT * FROM VEHICLES , BRIDGES
WHERE VEHICLES.WEIGHT < BRIDGES.MAXLOAD
AND VEHICLES.WEIGHT > 15

The optimizer will not add an additional predicate because the join condition is
not an equijoin. VEHICLES will become the outer table (the one first accessed)
because this is the only table for which there is any selective access.

Possible Actions:

ACTION PAGE
Explicitly Write All Search Conditions other than those added by the Below
Optimizer

For other high CPU usage problems, see “CPU Related Performance 112
Problems”

For other high I/O problems, see “I/O Related Performance Problems” 113

Figure 101. Missing Search Condition - Action

When writing a join, always make any implicit data relationships explicit by
writing additional search conditions other than those added by the optimizer.
This will allow the optimizer to consider all possible alternatives.

Continuing the example shown in the problem description, we know that if
VEHICLES.WEIGHT < BRIDGES.MAXLOAD AND VEHICLES.WEIGHT > 15 then it
is also true that BRIDGES.MAXLOAD > 15. This implicit relationship must be
stated explicitly in the form of an additional search condition for SQL/DS to be
able to use it during the optimization process. Consequently, it is better to write
the example join as follows:

SELECT * FROM VEHICLES , BRIDGES

WHERE VEHICLES.WEIGHT < BRIDGES.MAXLOAD
AND VEHICLES.WEIGHT > 15

AND BRIDGES.MAXLOAD > 15

Now the optimizer will consider both VEHICLES and BRIDGES as realistic candi-
dates for being the outer table. Depending on the situation, this may resuit in a

better access strategy and, hence, yield better performance when the join is exe-
cuted.

186 sQUODS Disgnosis for VM LHO09-8081-03 ©® Copyright IBM Corp. 1987, 1993

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

Similarly, for the other example, you should explicitly state the predicate
AND DEPT.DEPTNO IN (288, 388, 488)

Need a Highly Clustered Index

Problem Description:

A query involving a sequential scan of some significant number of rows (more
than 20) is being performed inefficiently by a DBSPACE scan, because there is
no highly clustered index.

We say that an index is highly clustered if the sequence in which the table’s
rows are stored in pages in the database corresponds closely to the index key
sequence. Whether or not an index is highly clustered does not have a signif-
icant effect on performance if the number of rows examined by scanning the
table with that index is small (for example, less than 20). In that case lack of a
Highly Clustered Index is probably not the problem.

If a table does not have a highly clustered index, access to that table will be less
efficient for sequential scans because SQL/DS will have to access the table
using a DBSPACE scan or using an index scan via an unclustered (or only
slightly clustered) index. In the case of a DBSPACE scan, SQL/DS will have to
examine all active pages in the DBSPACE, not just those that contain rows of the
desired table. In the case of an unclustered index scan, each row examined will
often require another I/0 to the database.

This problem can arise either because you never created a highly clustered
index or because a highly clustered index became less clustered. The latter
problem is covered in “Index No Longer Highly Clustered” on page 168; this
section deals with the former. Note however that the symptoms are the same.

Information as to whether or not a given index is highly clustered is maintained
in the CLUSTERRATIO column of the row corresponding to that index in the
SYSTEM.SYSINDEXES catalog table. This information is initially filled in when
the index is created and is updated whenever an UPDATE STATISTICS statement
is explicitly issued for the associated table, or during a DBSU DATALOAD with
SET UPDATE STATISTICS ON. Some restrictions apply for the DATALOAD. For

| details see “Large Tables Share Same DBSPACE” on page 175. For more infor-

| mation on data clustering, see the Performance Tuning Handbook.

CLUSTERRATIO is a value in the range 0 to 10000. The higher the value, the
more efficient will be an index scan on the table. The SQL/DS Optimizer con-
siders CLUSTERRATIO when deciding whether to use a DBSPACE scan or index
scan to scan a table, and to choose between indexes. There is no absolute
value of CLUSTERRATIO which you can use as a criterion for whether the
degree of clustering of an index is “good enough”; the criterion will vary from
table to table and also depend on the queries you run. For example, if there are
two similar tables with identical definitions, and each has a single index defined
on the same column or set of columns, and if one table has many more rows
than the other but both tables have the same number of “out-of-sequence” rows,
then the CLUSTERRATIO of the larger table will be larger than that of the smaller
table. However, for larger tables an index whose CLUSTERRATIO is less than
6000 is unlikely to give good performance when used for sequential scans, and a
preferable value is 9500 or more. Also, you can create a totally clustered index
(CLUSTERRATIO = 10000) by following the procedure below. Refer to “Index No

LHO09-8081-03 © Copyright I1BM Corp. 1987, 1993 Chapter 5. Diagnosing Performance Problems 187

Need More CPU

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

Longer Highly Clustered” on page 168 for actions needed to maintain a sufficient
degree of clustering thereafter.

You can determine whether there are any highly clustered indexes on a table by
issuing the following SQL statement:

SELECT INAME,ICREATOR,CLUSTERRATIO
FROM SYSTEM.SYSINDEXES
WHERE TNAME=table_name AND CREATOR=table_creator

This query tells you the CLUSTERRATIO of all indexes on the table.

* For very small tables, the value of CLUSTERRATIO is not too important, and
the only important thing to check is that there is at least one index.
" e For larger tables, you should check that the value of CLUSTERRATIO is suffi-
ciently high, based on the discussion above and on your own rules of thumb.

Possible Actions:

ACTION PAGE
Create a Highly Clustered Index Below

Figure 102. Need a Highly Clustered Index - Actions

Most tables should be supplied with one or more indexes. The main exception
to this would be very small tables for which optimum performance is not
required. These should be put into one or more DBSPACESs that do not contain
any large tables.

For each indexed table, you should make one of these indexes highly clustered.
This will usually be the “clustering” index. The process of creating a clustering
index, and guidelines for deciding which indexes to make highly clustered, are
described in “Clustering rows of a table on an Index” in the Database Adminis-
tration manual. Guidelines for deciding which index to make the clustering index
are provided under “Clustering Rows of a Table on an Index” in the Database
Administration manual.

Problem Description:

If you have a high CPU utilization and generally poor response times, it could
mean that you are simply trying to do too much work on the CPU you have. That
is, you may need a larger CPU. Obviously, before you conclude that this is the
case, you want to make sure that your problem is not one of the other probiems
that result in high CPU usage. For more information on problems that may
cause high CPU usage, see "CPU Related Performance Problems” on page 112.

There are, however, other symptoms that suggest that you might need a larger
CPU. In particular, consider the following possible companion conditions:

1. Paging

If the paging rate is low on your system, then you are not using up CPU
cycles doing paging. On the other hand, if your paging rate is high, then you
might be able to “buy back” some CPU cycles by trying to reduce the
paging.

188 sQL/DS Diagnosis tor VM LH09-8081-03 © Copyright IBM Corp. 1987, 1993

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

Need More Real

2. Database I/0’s

You will use fewer CPU cycles by working out of the buffer pools, rather than
doing a lot of database I/O’s. As a result, if you have a low buffer hit ratio,
you might be able to “buy back” some CPU cycles by trying to improve your
buffer hit ratio.

Note: A high CPU utilization on your system could be due to non-SQL applica-
tions. If you have a substantial amount of non-SQL work on your system, tuning
your application server may not be of any great benefit.

Possible Actions:

ACTION PAGE
Upgrade your CPU Below
For other high CPU usage problems, see: 112

- “CPU Related Performance Problems”

Figure 103. Need More CPU - Actions

If you cannot find another way to reduce the demand for CPU cycles, then your
only alternative is to upgrade your CPU.

Before resorting to upgrading your CPU, you should review problems that can
result in high CPU utilizations. Refer to “CPU Related Performance Problems”
on page 112 for problems that cause high CPU usage.

Storage
Problem Description:

If you have a significant paging rate, it could mean that you simply need more
real storage to support the work on your system. That is, it may not be possible
to support your workload with your current real storage configuration. Obvi-
ously, before you conclude that this is the case, you want to make sure that your
problem is not one of the other problems that result in high paging rates. For
more information on problems that may cause high paging rates, see “Storage
Related Performance Problems” on page 114.

There are, however, other symptoms that suggest that you might need more real
storage. In particular, consider the following possible companion conditions:

1. CPU Utilization

If the CPU Utilization is low on your system, and most of your workload is
SQL work, then your database machine is not using up CPU cycles because
it is spending too much time waiting on paging I/0. On the other hand, if
your CPU utilization is high, then you might conclude that your database
machine is still getting enough time on the CPU to get a reasonable amount
of work done.

2. Database I/O’s

You will use fewer CPU cycles by working out of the buffer pools, rather than
doing a lot of database 1/0’s. On the other hand, a large buffer pool could
be contributing to your paging problems. Thus, it may be more advisable to
run with a smaller buffer pool and do more database 1/0’s, than do the
paging. That is, a high buffer hit ratio would indicate that you might be able

LH09-8081-03 © Copyright IBM Corp. 1887, 1993 Chapter 5. Diagnosing Performance Probiems 189

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

to reduce paging by reducing the size of the buffer pools. See "“Buffer Pool
Too Big” on page 126 for more information on this case.

Note: A high paging rate on your system could be due to non-SQL applications.
If you have a substantial amount of non-SQL work on your system, tuning your
application server may not be of any great benefit.

Possible Actions:

ACTION PAGE
Add more Real Storage Below
For list of other paging problems, see: 114

- “Storage Related Performance Problems”

Figure 104. Need More Real Storage - Actions

If you cannot find another way to reduce the demand for real storage, then your
only alternative is to add more real storage.

NLRB Parameters Too Large
Problem Description:

The NLRB initialization parameters (NLRBS and NLRBU) control the number of
lock request blocks that are allocated for use (in multiple user mode). The more
you allocate, the less likely you are to experience lock escalation problems.
However, LRBs are control blocks that consume storage. Thus, there is a prac-
tical limit to how many you can afford to have allocated. If you allocate too
many, you may introduce paging problems.

With a large number of LRBs, you might cause a lot of page fault activity in the
database machine. High paging can be very detrimental to the SQL/DS perform-
ance for all applications. See “Page Fault Serialization” on page 197 for more
information on the effects of high paging rates.

Paging problems can be caused by many other problems. It really isn‘t likely
that your NLRB initialization parameter settings are your problem. LRB control
blocks each use only 24 bytes of storage. Thus, you would have to have them
set extremely high for them to cause paging problems. Furthermore, just having
them set high does not necessarily mean you will have a paging problem. You
would also have to be using them. (Note: You can tell how many you are using
through the SHOW LOCK MATRIX statement).

One way of considering this is that you would have.to be using about 43000
LRBs in order to generate a demand for 1 million bytes of real storage. While
this may seem ridiculous, it also means that 4300 LRBs will generate a demand
for 100 thousand bytes of real storage. With row level locking, it is not that diffi-
cult to generate a demand for 4300 LRBs (and the corresponding need for 100
KB of real storage).

If you are experiencing paging problems, and you are using a large number of
lock request blocks, you may have the “NLRB Parameters Too Large” problem.
This will depend on whether or not you really need the LRBs you are using. You
can determine this by checking the amount of lock escalation that is occurring on
your system. You can check this by using COUNTER ESCALATE and COUNTER

190 sQL/DS Diagnosis for VM LH09-8081-03 ® Copyright IBM Corp. 1887, 18983

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

LOCKLMT. If you are experiencing few or no lock escalations
(ESCALATE + LOCKLMT), and none of them are failing (LOCKLMT), then you
probably can afford to reduce the NLRB allocations.

Possible Actions:

ACTION PAGE
Decrease NLRB Parameters Below
For other problems with similar symptoms, see: 114

- “Storage Related Performance Problems”

Figure 105. NLRB Parameters Too Large - Actions

If you suspect you have your NLRB parameters set too high, the obvious action
1o take is to decrease the NLRBU and/or NLRBS settings. This is easy enough
to do, but not necessarily easy to do right. That is, you need to determine what
settings can be done without causing other problems. You should use the SHOW
LOCK MATRIX command to see how many lock request blocks are being used.

Before assuming that your problem is “NLRB Parameters Too Large,” you
should check the other potential paging problems (see “Storage Related Per-
formance Problems” on page 114).

NLRB Parameters Too Small
Problem Description:

The NLRBU and NLRBS initialization parameters define how many lock request
blocks are to be available per agent and for the whole system, respectively.
When either one of these parameters is exceeded, locks held by the agent that
causes the limits to be exceeded will be “escalated.” Lock escalation “trades”
many page or row {(and key) level locks for a single DBSPACE level lock. In
many cases, this does not cause a problem. However, in other cases conflicts
arise when the database manager tries to obtain the DBSPACE lock.

If you are experiencing lock waits and Lock escalations, you may have the
“NLRB Parameters Too Small” problem.

Other problems with similar symptoms include “Lock Level Too Low” on

page 179, and “Excessive Locking in User Data” on page 149. If your users (or
applications) are requesting a large number of locks, you may want to check for
those problems as well.

Specific situations where you might expect to encounter the “NLRB Parameters
Too Small” problem include:

1. Preprocessor Usage

Preprocessing of applications involves numerous catalog references. This
frequently results in a large number of lock requests. The actual number of
locks obtained will vary depending on the SQL statements in the programs
being preprocessed.

Lock escalations due to preprocessing activity are particularly severe
because most of the locks obtained are in the catalog DBSPACE (DBSPACE
1). Furthermore, preprocessing does updating to some of the catalog tables.

LH09-8081-03 © Copyright IBM Corp. 1987, 1993 Chapter 5. Diagnosing Performance Problems 191

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Thus, the escalation attempt is for an EXCLUSIVE lock on the catalog
DBSPACE. This, of course, will conflict with most SQL operations.

2. High Loading/Unloading Usage

Loading or unloading can result in large numbers of locks being obtained.
Bulk loading of rows into a DBSPACE with row or page level locking can
result in numerous EXCLUSIVE lock requests. This, in turn, can result in a
lock escalation for an EXCLUSIVE lock on the DBSPACE being loaded.

Unload operations are less likely to cause the LRB limits to be exceeded.
But they can if they are accomplished through an index scan.

3. Large Query/Reports Activity

Like unload operations, queries and reports are less likely to cause the LRB
limits to be exceeded. But they can if they are accomplished through an
index scan.

Possible Actions:

ACTION PAGE
Increase NLRB Parameters Below
For other problems with similar symptoms, see:

- “Excessive Locking in User Data" 149

- “Lock Level Too Low” 179

Figure 106. NLRB Parameters Too Small - Actions

There is basically only one solution to the “NLRB Parameters Too Small”
problem. That is to increase NLRBU and/or NLRBS.

If your NRLB parameters are already large and you do not have enough virtual
storage to support the needed NLRB parameter values, you should then treat
your problem as an “Excessive Locking in User Data” or “Lock Level Too Low”
problem. See “Excessive Locking in User Data” on page 149 and “Lock Level
Too Low” on page 179 for more information on these cases. Note however, sol-
utions to these problems will not generally work if the problem is due to preproc-
essing activity.

No Selective Index
Problem Description:

No suitable index is available to support selective access to the table being ref-

erenced. As a result, every row in the table is accessed with one of the indexes
on that table, with every row in the DBSPACE using a DBSPACE scan.

192 sQuUDS Diagnosis for VM LH09-8081-03 ©® Copyright IBM Corp. 1987, 1993

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

Possible Actions:

ACTION PAGE
Create Index(es) on Selective Columns Below
See the following closely related problems:
"Insufficient Indexing” 174
“Index Disqualified” 164
"Inefficient Search” 170
For other high CPU usage problems, see "CPU Related Performance 112
Problems”
For other high 1/0 problems, see “I/O Related Performance Problems" 113

Figure 107. No Selective Index - Actions

Take a look at each search condition associated with the SQL statement in ques-
tion and determine whether or not it is eligible to be supported by an index.
Then create an index on the column associated with each eligible search condi-
tion. When the SQL statement is preprocessed, the database manager will
decide which index offers fastest access to the desired data.

This comprehensive indexing approach is most applicable when index mainte-
nance overhead and index secondary storage requirements are not important
factors. If they are, it would be better to just create one index. This should be
placed on the column corresponding to the most selective search condition that
is eligible for index support.

For more information on indexes and predicate processing, see the Performance
Tuning Handbook.

One Database Machine Needs Too Much CPU

Problem Description:

In a multiprocessing environment, a virtual machine can be executing on just
one processor at any given moment in time. Consequently, if the CPU demand
rate of a database machine exceeds that of one of the processors, the result will
be poor SQL/DS response times. This will be due to processor contention, even
though there may be much unused processing capacity in the multiprocessing
configuration as a whole.

This problem is indicated by the following combination of symptoms:
* A multiprocessing environment.

* SQL/DS response times are long, while the response times of non-SQL/DS
requests are adequate.

* One database machine is using nearly one processor’s worth of capacity.

To determine if this is the case, obtain VM monitor data for a representative
ten minute interval when SQL/DS response times are long. Reduce this
interval with the VM/370 Performance/Monitor Analysis Program (VMMAP)
and then look at the “User Resource Utilization Summary”. SQL/DS is using
nearly one processor’s worth of capacity if total CPU-seconds consumed by
the SQL/DS database machine (including its use of CP services) is within 10
percent of the number of seconds in the measured interval. On VM/XA and

LH09-8081-03 © Copyright IBM Corp. 1987, 1993 Chapter 5. Diagnosing Performance Problems 193

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

the VM/ESA ESA Feature systems, the VM Performance Reporting Facility
(VMPREF) provides the same function as VMMAP.

Possible Actions:

ACTION PAGE
Split Load across Two or More DB Machines Below
Larger Processor Below

Figure 108. One Database Machine Needs Too Much CPU - Actions

As a rule of thumb, try to keep the total CPU usage of any database machine
less than 40 percent of total CPU usage.

1. In some cases, the best way to accomplish this is to split the SQL/DS usage
across two or more database machines.

2. In other cases, the solution may be to move to a larger processor so that the
same SQL/DS load uses a smaller percentage of the overall processing
capacity. Other, non-SQL/DS work could be moved to that processor to use
the processing capacity not needed by the database machine.

Package Needs Re-preprocessing
Problem Description:

A package can incorporate suboptimal access strategies if conditions in the
database have changed significantly since the last time it was preprocessed.
Probably the most dramatic example is the case where no indexes existed on
the tables accessed by the application when it was preprocessed, but suitable
indexes were created later.

Another example of when a package should be re-preprocessed is when the
package was preprocessed with warning messages because one or more of the
referenced base objects (for example, tables) did not exist in the database. If
the missing base objects are later added to the database, such a package will
execute. However, performance will be degraded for the SQL statements that
reference those base objects since the database manager has to dynamically
preprocess them every time they are executed.

Possible Actions:

ACTION PAGE
Reprep or Invalidate Package Below

For other high CPU usage problems, see "CPU Related Per- 112
formance Problems”

For other high I/O problems, see “I1/O Related Performance 113
Problems”

Figure 109. Package Needs Re-preprocessing - Actions

A package should be re-preprocessed whenever any of the following situations
apply:

194 sQU/DS Diagnosis for VM LH09-8081-03 © Copyright IBM Corp. 1987, 1983

¢

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

* A new index was added to one of the tables referenced by that package and
there is some possibility that the package may be able to make use of it.

¢ The last time the package was preprocessed, warning messages were gen-
erated because one or more base objects did not exist, which now exist.

¢ The contents of one or more of the tables referenced by that package have
changed significantly.

¢ The last time the package was preprocessed, the statistics for one or more
of the tables it references were not up to date, but are now up to date.

There are three ways to re-preprocess a package. The preferred way is to use
the DBS utility REBIND PACKAGE command. This command is not supported on
a non-SQL/DS application server or if you are using the DRDA protocol. A
second way is to run the appropriate preprocessor against the source code
(recompilation is not necessary). The third way is to use the DBS utility
UNLOAD PACKAGE command followed by a RELOAD PACKAGE command. This
is faster than rerunning the preprocessor.

In any case, make sure that the statistics for all accessed tables are up to date.

You can use the following query to obtain a list of these tables:

SELECT BCREATOR,BNAME FROM SYSTEM.SYSUSAGE
WHERE BTYPE='R'

AND DNAME=package_name

AND DCREATOR=package_creator_name

Package Cache Too Big or Threshold Too High

Problem Description:

n

In general, you want the package cache size to be as large as possible for the
best performance. That is, you want the size of the package cache and the
threshold to be as high as possible. The larger the cache, the more packages
that are loaded into storage, and the higher the threshold. The higher the
threshold the more packages that remain loaded in storage at the end of the
logical unit of work.

However, the package cache and threshold consume storage, and the imposed
additional storage requirement can cause performance problems. The higher
the value of NPACKAGE, NCUSERS and NPACKPCT, the more storage is
required. If you set the values of these parameters high, and experience per-
formance problems as a result, then the package cache is “too” large or the
threshold is “too” high.

Thus, there is a practical limit to how much you can afford to have allocated.
How large is “too large,” depends on your system and the workload on your
system. More specifically, “too large” can introduce paging problems. See
“Page Fault Serialization” on page 197 for more information on the effects of
high paging rates.

For more information on how these initialization parameters affect performance,
see the Performance Tuning Handbook.

The size of the package cache is calculated by initialization parameters:
NPACKAGE x NCUSERS. The number of agents established by the NCUSERS

LH09-8Q81-03 © Copyright IBM Corp. 1987, 1983 Chapter 5. Diagnosing Performance Problems 195

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

parameter determines the level of concurrency. If you set the NCUSERS param-
eter too high, your users can experience paging and lock wait problems. See
“Too Many Agents” on page 206 for more information on this case.

Possible Actions

ACTION PAGE
Decrease Package Cache Size Below
Decrease NPACKPCT Below
Too Many Agents 206

Figure 110. Package Cache Too Large - Actions

1. Decrease package cache size.

To decrease the size of the package cache, decrease the value of the
NPACKAGE initialization parameter. This decreases the amount of storage
required for the cache.

2. Decrease NPACKPCT.

Performance can be improved by decreasing the threshold. When the
threshold is decreased, the same number of packages are loaded into
storage, but a lower number of packages remain in storage at the end of the
logical unit of work. Decreasing the value of the NPACKPCT initialization
parameter decreases the threshold.

For more information on performance improvements using the package cache,
see the Performance Tuning Handbook.

Package Cache Too Small or Threshold Too Low
Problem Description:

The size of the package cache and size of the threshold determines how fre-
quently loaded packages are released from storage. This has a direct effect on
performance. If either the cache size is too small or the threshold is too low,
sufficient packages are not kept in storage and performance problems can occur.

Possible Actions

ACTION PAGE
Increase NPACKPCT Below
Increase NPACKAGE Below

Figure 111. Package Cache Too Small - Actions

1. Increase NPACKPCT.

Performance can be improved by increasing the threshold. When the
threshold is increased, the same number of packages are loaded into
storage, but a higher number of packages remain in storage at the end of
the logical unit of work. Increasing the value of the NPACKPCT initialization
parameter increases the threshold.

4196 sQUDS Diagnosis for VM LH09-8081-03 © Copyright IBM Corp. 1987, 1993

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

When increasing NPACKPCT, it is recommended to increase the value in
large increments. For example, if NPACKPCT is set to 30, increase
NPACKPCT to 50.

2. Increase NPACKAGE

Increasing the value of the NPACKAGE initialization parameter increases the
size of the package cache. More packages are now able to be loaded into
storage.

Increasing the size of the package cache also increases the threshold
(threshold = package cache size x NPACKPCT / 100). Although the value of
the NPACKPCT initialization parameter remains unchanged, the size of the
threshold increases. As a result, not only is the cache larger, but more
loaded packages remain in storage at the end of the logical unit of work.

This enlarges the cache, and increases the threshold.

For more information on performance improvements using the package cache,
see the Performance Tuning Handbook.

Page Fault Serialization
Problem Description:

Whenever a page fault occurs in a database machine, each user request cur-
rently being processed must wait for that page fault to be resolved. This source
of serialization normally has only a minor effect on response time, but can be
important under the following worst case conditions:

* The system paging rate is high.

* A database machine supports a large number of concurrently active users.

e Page I/0 is slow due to slow paging devices and/or high contention in the
portion of the I/0 subsystem used for paging.

Possible Actions:

ACTION PAGE
Specify SET QDROP OFF USERS or SET QUICKDSP ON Below
Split Load Across Two or More SQL Machines . Below
Add Real Storage Below
Improve real storage usage efficiency Below
Offload Some Work Below
More/Faster Paging Devices Below

Figure 112. Page Fault Serialization - Actions

1. Specify SET QDROP OFF USERS or SET QUICKDSP ON

Make sure that the database machine is being run with SET QDROP OFF
USERS or SET QUICKDSP ON in effect. See "SET QDROP OFF USERS or
SET QUICKDSP ON Not Used” on page 203.

LH09-8081-03 © Copyright IBM Corp. 1987, 1993 Chapter 5. Diagnosing Performance Problems 197

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

2. Split Load Across Two or More SQL Machines

Split the database into two or more databases. This will spread the load
across two or more database machines. This helps because page faults in
one database machine do not serialize the users being serviced by a dif-
ferent database machine. If you do this, be sure to install the RDS and DBSS
into saved segments so that just one copy is required. An explanation of
how to do this is provided in the System Administration manual.

3. Add Real Storage
Reduce the paging rate by adding real storage.
4. Improve real storage usage efficiency

Reduce the paging rate by improving real storage usage efficiency (see
“Storage Related Performance Problems” on<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>