SY28-0763-0
File No. S370-36

Systems | 0S/VS2
System Logic Library
Volume 3
VS2.03.804

VS2.03.807
VS2.03.810

Pages numbered as duplicates in this publication must be retained because
each of these documents information specific to individual Selectable Units.

This minor revision incorporates the following Selectable Units:

Scheduler Improvements VS2.03.804
Supervisor Performance #2 VS2.03.807
IBM 3800 Printing Subsystem VS2.03.810

The selectable unit to which the information applies, is noted in the upper corner-of the page.

First Edition (July, 1976)

This is a reprint of SY28-0715-0 incorporating changes released in the following
Selectable Unit Newsletters:

SN28-2683 (dated May 28, 1976)
SN28-2692 (dated May 28, 1976)
SN28-2698 (dated May 28, 1976)

This cdition applies to Release 3.7 of OS/VS2 and to all subsequent releases of OS/VS2 until
otherwise indicated in new editions or Technical Newsletters. Changes are continually made to
the information herein; before using this publication in connection with the operation of I1BM
systems, consult the latest JBM System/370 Bibliography, GC20-0001, for the editions that are
applicable and current.

Requests for copics of IBM publications should be made to your IBM representative or to the
1BM branch office serving your locality.

A form for readers’ comments is provided at the back of this publication. If the form has been
removed, comments may be addressed to IBM Corporation, Publications Development,
Department DS8, Building 706-2, PO Box 390, Poughkeepsie, N.Y. 12602. Comments become
the property of IBM.

© Copyright International Business Machines Corporation 1976

“_7

System Logic Library comprises seven volumes.
Following is the content and order number for each
volume.
OS/VS2 System Logic Library,
Volume 1 contents: SY28-0713
MYVS logic introduction
Abbreviation list
Index for all volumes
Volume 2 contents: SY28-0714
Method of Operation diagrams for
Communications Task
Command Processing
Region Control Task (RCT)
Started Task Control (STC)
LOGON Scheduling
Volume 3 contents: SY28-0715
Method of Operation diagrams for
System Resources Manager (SRM)
System Activity Measurement Activity (MF/1)
JOB Scheduling
—Subsystem Interface
—Master Subsystem
—Initiator/ Terminator
—SWA Create Interface
—Converter/Interpreter
—SWA Manager
—Allocation/Unallocation
-—System Management Facilities (SMF)
—System Log
—Checkpoint/Restart

" Volume 4 contents: SY28-0716

Method of Operation diagrams for
Timer Supervision
Supervisor Control
Task Management
Program Management
Recovery/Termination Management (R/TM)
Volume 5 contents: SY28-0717
Method of Operation diagrams for
Real Storage Management (RSM)
Virtual Storage Management (VSM)
Auxiliary Storage Management (ASM)
Volume 6 contents: SY28-0718
Program Organization
Volume 7 contents: SY28-0719
Directory
Data Areas
Diagnostic Aids

Preface

Please note that if you use only one order
number, you will only receive that volume. To
receive all seven volumes, you must either use all
seven form numbers or, simply the following
number: SBOF-8210. If you use SBOF-8210, you
will receive all seven volumes.

‘The publication is intended for persons who are
debugging or modifying the system. For general
information about the use of the MVS system, refer
to the publication Introduction to OS/VS Release
2, GC28-0661.

How This Publication is Organized

This publication contains six chapters. Following, is
a synopsis of the information in each section:

o Introduction and Master Index — an
overview of each of the functions this
publication documents, an abbreviation list of
all acronyms used in the publication, and a
complete index for all seven volumes.

e Method of Operation — a functional
approach to each of the subcomponents, using
both diagrams and text. Each subcomponent
begins with an introduction; all the diagrams
and text applying to that subcomponent
follow.

e Program Organization — a description of
module-to-module flow for each
subcomponent; a description of each module’s
function, including entry and exit. The
module-to-module flow is ordered by
subcomponent. The module descriptions are
in alphabetic order without regard to
subcomponent.

e Directory — a cross-reference from names in
the various subcomponents to their place in
the source code and in the publication.

o Data Areas — a description of the major
data areas used by the subcomponents (only
those, however, that are not described in
OS/VS Data Areas, SYB8-0606, which is
on microfiche); a data area usage table,
showing whether a module reads or updates a
data area; a control block overview diagram
for each subcomponent, showing the various
pointer schemes for the control blocks
applicable to each subcomponent; a table
detailing data area acronyms, mapping macro
instructions, common names, and symbol
usage table.

Preface 3

o Diagnostic Aids — the messages issued,
including the modules that issue, detect, and
contain the message; register usage; return
codes; wait state codes; and miscellaneous

aids.

4 OS/VS2 System Logic Library Volume 3 (VS2 Release 3.7)

Corequisite Reading
The following publications are corequisites:
e OS/VS2 JES2 Logic, SY28-0622
o OS/VS Data Areas, SYB8-0606 (This
document is on microfiche.)
e« OS/VS2 System Initialization Logic,
SY28-0623

NS

VS2.03.807

Contents

Section 2: Method of Operation 3-1
System Resources Manager (SRM) 33
SRM Interfaceo e e e e e 3-5
Locking Considerations 3-5
Method-of-Operation Diagrams, 3-6
6-1. SRM Interface IRARMINT) 3-6
6-1. SRM Interface (IRARMINT) (vS2.03.807) 3-6
6-1A. SRM Service Routine (IRARMSRV) (vS2.03.807) 3-9.2
6-1B. Obtain/Free SQA Storage (IRARMI04) (VS2.03.807) 3-9.6
6-1C. Requeue SRM TQE (IRARMIO5) (VS2.03.807) 3-9.8
SYSEVENT Processor o v v v v v vt v v v 3-11
List of SYSEVENTs (VS2.03807) 3-11
6-2. SYSEVENT Processor e e e e e e e e e e 3-12
SRM Control o e e e e e e e e e 323
6-3. SRM Control (IRARMCTL) 3-24
6-4. Timer Action Analysis IRARMCAT) 3-26
6-5. Deferred Action Processor IRARMCEN) 3-28
6-6. Algorithm Processor IRARMCEL) 3-30
6-7. Periodic Entry Point Scheduling (IRARMCET) 3-32
6-8. Full Analysis IRARMCAS)« o v v v v .. 3-34
6-9. Partial Analysis IRARMCAP) 3-36
6-9. Swap Analysis IRARMCAP) 3-36
6-10. Control Swap-In IRARMCSI) 3-40
6-11. Control Swap-Out IRARMCSO) 3-42
6-11A. Select User for Swap-In IRARMCPI) (VS2.03.807) 3-43.0
6-11B. Select User for Swap-Out (IRARMCPO) (vS2.03.807) 3-43.2
6-11C. User Evaluation IRARMCVL) (vS2.03.807) 3-43.4
Resource Use Algorithms 3-45
Storage Management 3-45

I/O Management o . e e ... 3-45

CPU Management v v v v v v vt e e e 3-45
Resource Monitor (VS2.03807) 3-45

6-12. Storage Management (IRARMSTM) 3-46
6-12. Main Storage Occupancy Analysis (lRARMMSZ) 3-52
6-14. I/0 Management (IRARMIOM) 3-54
6-15. I/0 Load Balancing Swap Analysis {IRARMIL2) 3-56
6-16. I/0 Load Balancing User I/O Monitoring (IRARMILO) 3-58
6-17. CPU Management (IRARMCPM) 3-62
6-18. CPU Load Balancing Swap Analysis IRARMCL2) 3-66

6-18. Resource Monitor Periodic Monitoring (IRARMRM]1) (vS2.03.807) . . 3-66
6-18A. Resource Monitor MPL Adjustment Processing IRARMRM?2)

(VS2.03.807). . . . v v v v e e e e e e e e e e e e e e 3-68
Workload Management00 3-69
Workload Management(IRARMWLM) (VS2.03.807) 3-69
6-19. Swappable User Evaluation IRARMWM?2) (vS2.03.807) 3-70
6-20. Individual User Evaluation IRARMWM3) (VS2.03.807) 3-73.0
6-21. User Ready Processing (IRARMHIT) (vS2.03.807) 3-73.2
6-22. Initialize for MF/1 IRARMWR1) (vS2.03.807) 3-73.6
6-23. Collect Data for MF/1 (IRARMWR?2) (VS2.03.807) 3-73.8

System Activity Measurement Facility (MF/1) 3-75
Method-of-Operation Diagrams 3-80
7-1. Measurement Facility Control (MFC) Mainline (IRBMFMFC) 3-80
7-2. Input Merge Control (IRBMFINP) 3-82
7-3. Syntax Analyzer IRBMFANL) 3-84
7-4. List Option Subroutine (MFLISTOP) 3-86
7-5. MESTART Mainline (IGX00013) 3-88
7-6. Initialization Mainline (MFIMAINL) 390
7-7. CPU Activity Initialization IRBMFICP) or Paging Activity Initialization

(IRBMFIPP) i i i it et e . 3996
7-8. Workload Initialization IRBMFIWK) 3-98
7-9. Channel Initialization (IRBMFIHA) 3-100
7-10. Device Initialization (IRBMFIDV) 3-104
7-11. Data Control IRBMFDTA) 3-106
7-12. Termination Processor IRBMFTMA) 3-110
7-13. MF/1 Message Processor IRBMFMPR) 3-112
7-14. MFDATA SVC Mainline (IGX00014) 3-114
7-15. Interval MG Routine for CPU IRBMFDCP) 3-118

Contents 5§

7-16. Interval MG Routine for Paging (IRBMFDPP) 3-122
7-17. Interval Routine for Workload (IRBMFDWP) 3-126
7-18. Interval MG Routine for Channels IRBMFDHP) 3-130
7-19. Interval MG Routine for Devices IRBMFDDP) 3-134
7-20. MFROUTER SVC Processor (IRBMFEVT) 3-138
7-21. Channel Sampling Module IRBMFECH) 3-140
7-22. Second CPU Test Channel Sampling Module IRBMFTCH) 3-142
7-23. Device Sampling Module IRBMFEDV) 3-144
7-24. Report Generator Control IRBMFRGM) 3-146

7-25. Report Generators for CPU, Paging, Workload, Channels, and Devices
(IRBMFRCR, IRBMFRPR, IRBMFRWR, IRBMFRHR, and IRBMFRDR)

3-150

Job Scheduling Overview0 3-153
Subsystem Interface L. Lo 3-159
Method of Operation Diagram 3-164
8-1. Subsystem Interface 3-164
Master Subsystem 0 L0 0oL Lo e 3-169
Method-of-Operation Diagrams 3-172
9-1. Common Request Router (IEFJRASP) 3-172
9-2. Subsystem Determination (IEFISDTN) 3-174
9-3. Subsystem Initiation (IEFJJOBS) 3-176
9-4. Converter/Interpreter Interface IEFJCNTL) 3-178
9-5. Pseudo Access Method (IEFJACTL) 3-182
9-6. Subsystem Initiation Message Writer (IEFJWTOM) 3-186
9-7. Data Set Name Assignment (IEFDSNA) 3-188
9-8. Subsystem Job Termination (IEFJJTRM) 3-190
Initiator/Terminator 3-193
Method-of-Operation Diagrams 3-196
10-1. Initiator: Job Initiation 3-196
10-2. Initiator: Step Initiation 3-200
10-3. Initiator: Step and Job Deletion 3-208
10-4. Initiator: Recovery Processing 3-212
SWA Create Interfaceo e e 3-215
Method-of-Operation Diagram 3-216
11-1. SWA Create Interface (IEFIB600) 3-216
Converter/Interpretert e e u e e e e e e e 3-223
Method-of-Operation Diagrams e e e e e e 3-223
12-1. Converter: Initialization (IEFVH1) 3-224
12-2. Converter: Identifying Verbs on JCL Statements 3-226
12-3. Converter: Processing Commands in the Input Stream (IEFVHM) . 3-230

12-4. Converter: Processing In-Stream and Cataloged Procedures
(IEFVINA) e e e e e e e d e e e 3-232
12-5. Converter: Processing Symbolic Parameters (IEFVFA, IEFVFB) . . 3-234
12-6. Converter: Converting Statements to Internal Text IEFVFA) . . . 3-236
12-7. Converter: Entering Defaults into Internal Text (IEFVFA) 3-240
12-8. Converter: Termination IEFVHF) 3-242
12-9. Interpreter: Initialization (IEFNB903) 3-246
12-10. Interpreter: Analyzing Parameter Values 3-248
12-11. Interpreter: Creating and Chaining Tables (IEFVGT) 3-252
12-11. Interpreter: Writing Tables into SWA (IEFVHH) 3-256
12-13. Interpreter: Termination IEFVHN) 3-258
SWA Manager L0 e e e e e e 3-261
Method-of-Operation Diagrams 3-264
13-1. SWA Manager: Move Mode (IEFQB550) 3-264
13-2. SWA Manager: Locate Mode (IEFQB555) 3-266
Allocation/Unallocation e e e 3-269
Introduction to Allocation/Unallocation 3-271
Batch Initialization and Control 3-271
Dynamic Initialization and Control 3-271
JFCB Housekeeping0 i o e e 3-271
Common Allocation Control 3-271
Data Set Requests and Unit Requests 3-271
Order of Processing Requests 3-271
Generic Allocation Control 3-272
Recovery Allocation 3-273
The Retry Sitwation 3273
Processing Tape Requests e e e e e e e e e 3-273
Common Unallocation Control 3-275
Volume Mount: & Verify (VM&V) Control 3.275
Allocation/Unallocation Module Name Conventions 3-275

Organization of Allocation/Unallocation Method-of-Operation Diagrams . 3-275

6 OS/VS2 System Logic Library Volume 3 (VS2.03.807)

VS2.03.807

Selected Terms Used in Allocation/Unallocation

Method-of-Operation Diagrams

14-1. Common Allocation Control (IEFAB421)
14-2. Fixed Device Control (IEFAB430)
14-3. Specific Volume Allocation Control (IEFAB433)
14-4. Allocate Request to Unit (IEFAB434)
14-5. Nonspecific Volume Allocation Control (IEFAB436)
14-6. JFCB Housekeeping Control (IEFAB451)
14-7. DD Function Control (IEFAB454)
14-8. JLOCATE (IEFAB469)
14-9. Generic Allocation Control (IEFAB471)
14-10. Allocation Via Algorithm (IEFAB476)
14-11. Demand Allocation (IEFAB479)
14-12. Recovery Allocation (IEFAB485)
14-13. Offline/Allocated Device Allocation (IEFAB486)
14-14. Common Allocation Cleanup (IEFAB490)
14-15. Allocation/Volume Mount & Verify (VM & V) Interface (IEFAB492)
14-16. Volume Mount & Verify (VM &V) Control (IEFAB493)
14-17. Initiator/Allocation Interface (IEFBB401)
14-18. Initiator/Unallocation Interface (IEFBB410)
14-19. Job Unallocation (IEFBB416) :
14-20. SVC 99 Control (IEFDB400)
14-21. Dynamic Allocation Control (IEFDB410)
14-22. Dynamic Unallocation Control (IEFDB4AO)
14-23. Dynamic Concatenation (IEFDB450)
14-24. Dynamic Deconcatenation (IEFDB460)
14-25. Dynamic Information Retrieval (IEFDB470)
14-26. Remove In-Use Attribute (IEFDB480)
14-27. Ddname Allocation (IEFDB490)
14-28. Common Unallocation Control (IEFAB4A0)
14-29. Disposition Processing IEFAB4A2)
14-30. Unit Unallocation (IEFAB4A4)

System Mangement Facilities (SMF)
Method-of-Operation Diagrams

15-1. Writing SMF Records (IEEMB829, IEEMB830)
15-2. Switching SMF Data Sets (IEEMB829)
15-3. STAE Exit Processing for SMF (IEEMB825)
15-4. SMF Cross-Memory POST Error Exit (IEEMB827)

SystemLog L e e e e e e e e e e e e e
Method-of-Operation Diagrams e e e e e e

16-1. System Log Initialization (IEEMB803)
16-2. Terminating the System Log (IEEMB803)
16-3. Switching Log Data Sets (IEEMB803)
16-4. Log Writer Processing (IEEMB803)
16-5. Processing Log Task Abnormal Termination (IEEMB806)
16-6. Writing Data on the System Log (IEEMB804)

Checkpoint/Restart v i e e e e e e e e e e e e
DSDR Processingo e e e e e
TheJobJournalo oo
Journal Routineso Lo oL Lo
Method-of-Operation Diagrams

17-1. Processing Data Set Descriptor Records (IEFXB609)
17-2. Job Journal to SWA Merging (IEFXB601)
17-3. Step Continue Processing (IEFXB601)
17-4. System Restart Processing (IEFXB601)
17-5. Automatic Checkpoint Restart (IEEXB601)
17-6. Automatic Step Restart (IEFXB601)
17-7. Merge Cleanup (IEFXB601)
17-8. Updating the Virtual Addresses in SWA (IEFXB601)
17-9. Journal Merge Reading (IEFXB601)
17-10. Journal Merge Error Processing (IEFXB601)
17-11. Restart Interface Processing (IEFXB602)
17-12. Building a Step Header Record for Job Journal (IEFXB604)
17-13. Preparing Abended Job Step for Restart (IEFRPREP)
17-14. Writing Blocks to the Job Journal (IEFXB500)

- 17-15. Journal for Restarted Jobs (IEFXB500)

3-378
3-386
3-390

Contents 7

vS2.03.807

Figure 29
Figure 2-9A
Figure 2-9B
Figure 2-9C

Figure 2-10
Figure 2-11
Figure 2-12
Figure = 2-13
Figure 2-14
Figure 2-15
Figure 2-16
Figure ~2-17
Figure 2-17A
Figure 2-17B
Figure 2-18
Figure 2-19
Figure 2-20
Figure 2-21
Figure 2-22
Figure 2-23
Figure 2-24
Figure 2-25
Figure 2-26
Figure 2-27
Figure 2-28
Figure 2-29
Figure 2-30
Figure 2-31

System Resources Manager (SRM) Visual Contents 3-4
SRM Module/Entry Point Cross Reference (VS2.03.807) 3-3.2
Processing Algorithms and Actions in IRARMCTL (VS2.03.807) 3-23.2
RMEP Algorithm and Action Invocation Flags (VS2.03.807) . . 3-23.3
System Activity Measurement Facility (MF/1) Visual Contents . . 3-79
Job Scheduling: Initiation of the Master Scheduler 3-164
Job Scheduling: Initiation of the Job Entry Subsystem 3-165
Job Scheduling: START/LOGON/MOUNT Initiation 3-166
Job Scheduling: Normal Job Entry and Initiation 3-167
Subsystem Interface Summary 3-171
Master Subsystem Visual Contents 3-179
Initiator/Terminator Visual Contents 3-203
Converter Visual Contents 3-223
Interpreter Visual Contents 3-245
General Format of a SWA Control Block and an Example of the JFCB
asit AppearsinSWA 3-262
SWA Manager Visual Contents 3-263
Relationship of the Six Major Functions of Allocation/Unallocation . .
.............................. 3-267
Allocation/Unallocation Functions and Related Method-of-Operation
Diagrams00 000 0o e 3-270
The Division of Generic Device Types into Device Groups . . . 3-272
Tape Device Types and Supported Densities 3-274
Tape Device Eligibility, 3-274
Batch and Dynamic Allocation/Unallocation Visual Contents . . 3-277
Common Allocation Visual Contents 3-279
Function Map of Common Allocation Parameter List 3-293
Function Map of JFCB Housekeeping Parameter List 3-321
System Management Facilities (SMF) Recording: Visual Contents 3-449
System Log Visval Contents 3-465
Job Scheduler Checkpoint/Restart: Visual Contents 3-485

8 . OS/VS2 System Logic Library Volume 3 (VS2.03.807)

This section uses diagrams and text to describe the
functions performed by the scheduler, supervisor,
MF/1, SRM, and ASM functions of the 0S/VS2
operating system. The diagrams emphasize
functions performed rather than the program logic
and organization. Logic and organization is
described in "Section 3: Program Organization."
The method-of-operation diagrams are arranged
by subcomponent as follows:
+ Communications Task.
+« Command Processing (includes
Reconfiguration Commands).
o Region Control Task (RCT).
« Started Task Control (STC) (includes
START/LOGON/MOUNT).
e LOGON Scheduling
« System Resources Manager
« System Activity Measurement Facility
(MF/1)
« Job Scheduling:
- Subsystem Interface.
- Master Subsystem.
- Initiator/Terminator.
- SWA Create Interface.
- Converter/Interpreter.
- SWA Manager.
- Allocation/Unallocation.
- System Management Facilities (SMF).
- System Log.
- Checkpoint/Restart.
« Timer Supervision.
e Supervisor Control.
+ Task Management.
¢ Program Management.

Section 2: Method of Operation

+ Recovery/Termination Management (R/TM).
« Real Storage Management (RSM).

 Virtual Storage Management (VSM).

» Auxiliary Storage Management (ASM).

The diagrams for each subcomponent are
preceded by an introduction that summarizes the
subcomponent’s function. Following each
introduction is a visual table of contents that
displays the organization and hierarchy of the
diagrams for that subcomponent.

The diagrams cross-reference each other using
diagram numbers and module names. As an aid in
locating the diagrams that are cross-referenced, an
alphabetic list of all diagram names and their
corresponding page numbers follows this
introduction.

Method-of-operation diagrams are arranged in
an input-processing-output format: the left side of
the diagram contains data that serves as input to
the processing steps in the center of the diagram,
and the right side contains the data that is output
from the processing steps. Each processing step is
numbered; the number corresponds to an amplified
explanation of the step in the "Extended
Description' area. The object module name and
labels in the extended description point to the code
that performs the function.

Note: The relative size and the order of fields
within input and output data areas do not always
represent the actual size and format of the data
area.

Section 2: Method of Operation 3-1

b Primery processing — indicates major functionel flow.

- Secondary processing — indicates functional flow within a diagram.

:> Data movement, modification, or use.

— —= Data reference — indicates the testing or reading of a data area to
determine the course of subsequent processing.

————» Pointer — indicates that a data area contains the address of another
data area.

——— Indirect pointer — indicates intermediate pointers have been omitted.

—-D Connector — indicates that a diagram is continued on the next page.

Figure 2-1. Key to Symbols Used in Method-of-Operation Diagrams

32 OS/VSZ System Logic Library Volume 3 (VS2 Release 3.7)

T

N

In Mvs, address spaces may be swapped into or
out of real storage. When an address space is
swapped out, its entire working storage is moved to
auxiliary storage, and the real page frames it
formerly occupied may be used for paging activity
or to swap in a previously swapped-out address
space. The system resources manager (SRM) is the
system’s swap decision maker. By swapping, the
SRM attempts to manage the system to
predetermined multiprogramming levels (MPLs)
within domains of work as indicated in the IPS.

Domains provides a mechanism of controlling
how many of a group of users are swapped in at
one time. That is, a domain associates a
multi-programming level (MPL with aggregate or
group users. The total MPL is the number of
swappable memories in real storage at a given time.
When the SRM’s resource monitor determines that
the total MPL may increase, the MPL of one domain
will be incremented by one. Similarly, the MPL of
one domain is decremented when the total MPL
should be lowered. The domain descriptions in the
IPS indicate ranges for the MPL of each domain and
a weighting factor for each domain which indicates
to the SRM which domain to increment or
decrement should a change in the system MPL be
required.

Also, SRM monitors the system resources of
CPU, I/0, and storage. It keeps statistics and uses
them .to make swap decisions that can prevent
either a depletion or an under-utilization of these
resources.

Specifically:

« SRM maintains data concerning real and
auxiliary storage. It uses the real storage
manager (RSM) and the auxiliary storage
manager (ASM) to keep track of frame (RSM)
and slot (ASM) usage. Using this data SRM is
able to detect shortages and use swapping to
correct them.

e SRM monitors the I/0 resource and makes
decisions concerning the allocation of devices
based on 1/0 load balancing considerations.

« SRM monitors and controls CPU utilization
through its ability to balance the CPU load
through swapping and by its ability to
maintain the automatic priority group (APG).

VS2.03.807

System Resources Manager (SRM)

The SRM’s structure consists of five functional

groupings:

« - The interface function is the means through
which other system components communicate
with the SRM, and through which the SRM
requests the services of other system
components.

» The SYSEVENT processor analyzes
communications to the SRM and translates
them into requests for specific SRM services.
It also formulates responses as required by
the SYSEVENTS.

o The control function performs swapping
analyses, obtains swap recommendations from
other SRM components, and translates these
recommendations into specific swapping
decisions. It also requests that previously
deferred SRM functions be performed when it
is possible to do so.

o The resource use algorithms consist of CPU,
1/0, and storage management functions,
which monitor the utilization of these
resources, and make swapping
recommendations that affect their future use.
Also, as a result of this monitoring,
recommendations to raise or lower individual
domain multiprogramming levels (MPLs) are
made and adjustments to the MPLs occur
within the constraints of the IPS.

o The workload manager function attempts to
maintain each address space’s usage of system
resources (their service) as specified for
different user classes in the 1PS (Installation
Performance Specification). It exercises this
control by influencing the Control function’s
swapping decisions. Additionally, the
workload manager interfaces with MF/1 so
that reports concerning the rates of system
resources usage can be easily obtained.

The primary way in which the installation may
affect the functioning of the SRM is by changing
the tuning parameters and the IPS parameters.
These are explained in more detail in the OS/VS2
MVS Initialization and Tuning Guide. The SRM's
principal control block is the resources manager
control table (RMCT). All SRM routines and
subroutines have access to this table and can access
most other SRM blocks via pointers in the RMCT or
by displacements from the origin of the RMCT. The
origin of the RMCT is the entry point of

Section 2: Method of Operation 3-3

IRARMCNS, the SRM constants module. This
module contains all the control tables, constants
and parameters of execution of the SRM as well as
pointers to all the key SRM routines.

The SRM maintains a control block (OUCB)
associated with each active address space. OUCBs
are maintained on one of three queues, depending
on the status of the associated address space:

"IN" queue - corsists of address spaces

' currently in real storage.
"OUT" queue - consists of address spaces
currently swapped out of real
storage and awaiting SRM
analysis for swap-in.

3-3.0 0S/VS2 System Logic Library Volume 3 (VS2.03.807)

VS2.03.807

"WAIT" queue - consists of address spaces
currently swapped out of real
storage and in "long wait"
status. '

SRM is packaged as several modules, but each
module does not directly correspond to a unique
SRM function. Specifically, each function in SRM is
identified by an entry point in one of the modules
that comprise the SRM component. Figure 2-9A
summarizes all SRM entry points and shows in what
module the entry point exists. A description of
each entry point is included at the end of the
section in which its containing module is
diagrammed.

AN

Section 2: Method of Operation 3-3.1

vS2.03.807

SRM
MODULES

SRM
ENTRY POINTS

IRARMCPM

IRARMCTL

IRARMERR

IRARMEVT

IRARMINT

IRARMIOM

IRARMRMR

IRARMSRV

IRARMSTM

IRARMWAR

IRARMWLM

CHAP

CPLRVSWF

CPUTLCK

CPUWAIT

XIX|X|[X

1GC095

IRAPRCSR

IRARMAP1

IRARMASM

X |x

IRARMCAP

IRARMCED

IRARMCEL

IRARMCEN

IRARMCET

XX X|X]|X

IRARMCLO

IRARMCL1

x

- IRARMCL3

IRARMCP|

{RARMCPO

IRARMCQT

IRARMCRD

IRARMCRL

IRARMCRN

IRARMCRT

IRARMCRY

IRARMCSI

IRARMCSO

IRARMCVL

XIX]| XXX X|X]|X|X]|XxX] X

IRARMDEL

IRARMEQ1

IRARMHIT

IRARMIOO

IRARMI01

IRARMI02

IRARMI03

IRARMI04

IRARMIO5

IRARMIO6

IRARMI07

IRARMIO0S

XIX| X[X|X|X]|X

IRARMI10

IRARMI48

IRARMILO

IRARMIL1

IRARMIL3

IRARMIL4

X X X[X[x| X

IRARMIPS

IRARMMS2

IRARMMS6

IRARMNOP

IRARMPR1

Figure 2-9A. SRM Module/Entry Point Cross Reference (Part 1 of 2)

.3-3.2 0S/VS2 System Logic Library Volume 3 (V$2.03.807)

AN

VvS$2.03.807

SRM
MODULES

SRM
ENTRY POINTS

IRARMCPM

IRARMCTL

IRARMERR

IRARMEVT

iRARMINT

IRARMIOM
IRARMRMR
IRARMSRV
IRARMSTM
IRARMWAR
IRARMWLM

IRARMPRS

x

IRARMRM1

IRARMRM2

X|x

IRARMRPS

IRARMRR1

IRARMRR2

IRARMSQA

IRARMTRC

IRARMUXB

IRARMWM1

IRARMWM2

IRARMWM3

IRARMWM4

IRARMWMS

IRARMWM7

IRARMWMI

IRARMWMJ

IRARMWMK

IRARMWMN

IRARMWMO

IRARMWMQ

IRARMWMR

XIXIX XXX | X]| X X|X]|X]|X]|x

IRARMWMY

IRARMWR 1

IRARMWR2

IRARMWR3

IRARMWR4

IRARMWRS5

IRARMWRG6

IRARMWR7

IRARMWRS

XX X[X[X]X|X]|XxX

IRARMXPS

IRARMXTL

LCHUSE

NEWDP

RMRR1CKQ

RMRR2GST

RMRR2INT

RMRR2PER

RMRR2REQ

RMRR2RTY

RMRR2SPR

RMRR2VFB

RMRR2VLD

XKIXIX[X[X[X]|X[X][X

STEAL

Figure 2-9A. SRM Module/Entry Point Cross Reference (Part 2 of 2)

Section 2: Method of Operation 3-3.3

Vv§2.03.807

6-1
SRM
Interface
(IRARMINT)
I 6-2
SYSEVENT
Processor
(IRARMEVT)
——————————
T
l SRM
Control l
I (IRARMCTL) ' CONTROL
— L CONTROL _
i l 6-6 I 6-5 l
Algorithm Deferred |
l Processor Action l
(IRARMCEL) Processor
l (IRARMCEN) l
| l
l &9 | 6-7 |
Swap N |
. Period
' Analysis Ent[ry :’coint l
l (IRARMCAP) Scheduling |
I (IRARMCET)
I 6-10 :
Control I 6-11A
| Swap-In Select User I
| (IRARMCSI) For Swap-In |
l (IRARMCP}) I
| 6-11 |
I Control | 6-11B '
| Swap-Out Select User I
(IRARMCSO) For Swap-Out
| {IRARMCPO) l
| |
| l 6-11C |
| User I
l Evaluation [
l (IRARMCVL) |
L]

Figure 2-9. System Resources Manager (SRM) Visual Contents (Part 1 of 3)

3-4 0S/VS2 System Logic Library Volume 3 (VS$2.03.807)

~

Figure 2-9. System Resources Manager (SRM) Visual Contents (Part 2 of 3)

SERVICE

6-1A

SRM Service
Routine

(IRARMSRV)

6-1B

Obtain/Free
SQA Storage

(IRARMI04)

6-1C

Requeue
SRM TQE

(IRARMI05)

VS§2.03.807

RESOURCE MONITOR

ND

SRM Resource
Monitor

(IRARMRMR)

6-12

SRM Storage
Management

(IRARMSTM)

6-18

Resource
Monitor
Periodic
Monitoring

(IRARMRM1)

I 6-18A

Resource
Monitor
MPL
Adjustment
Processing

(IRARMRM?2)

I

WORKLOAD MANAGER

C T T T T

ND

SRM
Workload
Manager

(IRARMWLM)

L 6-19

Swappable
User
Evaluation

(IRARMWM2)

6-20

Individual
User
Evaluation

(IRARMWM3)

6-21

User Ready
Processing

(IRARMHIT)

|
I
I
I
I
I
I
I
|
I
I
|
|
I
|
|
I
I
|
|
I

-Section 2;: Method of Operation 3-4.1

VS2.03.807

MF/1 INTERFACE 1/0 MANAGEMENT

r—— - — _| r—— 7

| I
| |

ND 6-17 | 6-14 |

| Supply SRM I SRM CPU | SRM 1/0 |

' Data to MF/1 | Management Management

. | "(IRARMWAR) | (IRARMCPM) i (IRARMIOM) |

| | I

I 6-22 | | | 616 |

| Initialize | | SRM 1/0 Load I

For MF/1 I Balancing User |

| (IRARMWR1) I | 1/0 Monitoring l

| | | (IRARMILO) l
I I

| 6-23 | e _l
e]
| (IRARMWR3) |
| I
1

Figure 2-9. System Resources Manager (SRM) Visual Contents (Part 3 of 3)

3-4.2 0S/VS2 System Logic Library Volume 3 (VS$2.03.807)

SRM Interface

Other system components communicate with the
SRM by means of the SYSEVENT macro instruction.
SYSEVENTS fall into three classes:

e Address space SYSEVENTs are issued to notify
the SRM of a change in status for a particular
address space.

« System status SYSEVENTSs are issued to notify
the SRM of a change in status applicable to
the system as a whole.

« SRM services SYSEVENTS are issued to request
particular SRM support functions.

The SRM interface receives control as a result of
the execution of a SYSEVENT macro instruction.
The ‘SYSEVENT macro serves as an extended
routing function based on the SYSEVENT code
generated by the SYSEVENT macro from the
specified mnemonic name operand. Each individual
SYSEVENT code represents a logically distinct
interface to the system resources manager, with its
own circumstances, its own input and output
conventions, and its own resultant system resources
manager actions. The use of the SYSEVENT macro
is restricted to those components/modules which
have reached prior agreement with system
resources manager module owners. The SYSEVENT
macro instruction generates either a branch or SVC
entry (SVC 95) into the SRM. Branch entry callers
must be in supervisor state, key 0-7, and associated
data areas must be fixed. Disabled page faults that
occur when user data areas are referenced will
cause the SYSEVENT issuer to be abnormally
terminated (ABEND code ’15F’). Branch entry
callers must also pass, in register 13, the address of
a 72-byte save area, which can be stored into by
using the caller’s key. The SYSEVENT issuer is
responsible for serializing the use of this save area
(via disablement, global or local lock).

SYSEVENT 38 requires no authorization.
SYSEVENTS 41 and 42 either require APF
authorization or must be issued from a program
that the initiator recognizes as “DONTSWAP”
authorized (ASCBNSWP="1" at initiator attach
time). All other SYSEVENT issuers using the SVC
entry facility must be APF authorized, and
associated data areas must be fixed. Unauthorized
use of the SVC entry, or page faults occurring while
referencing user data areas, will cause the
SYSEVENT issuer to be abnormally terminated
(ABEND code ’15F’).

The SRM interface passes control to the
SYSEVENT processor for processing related to the
particular SYSEVENT; depending upon the

VS2.03.807

SYSEVENT, the SRM may then perform further
processing not necessarily related to the invoking
SYSEVENT. Thus many SYSEVENTS serve not only
as status change notifiers or service requestors, but
also as occasions for performing a wide-range of
SRM processing.

The SRM interface also processes requests from
internal SRM routines servicing system components.
These include such services as cross memory post,
obtaining SQA storage and issuing a
Write-to-Operator (WTO) message. The interface
function is used to provide a common point of
invocation and simplified access for internal SRM
routines. The service interface routines are
packaged together in the IRARMSRV module, each
routine having its own entry and exit point. See the
M.0. Diagrams for more detail.

SRM Error Recovery

One functional recovery routine (FRR) provides
recovery for all of the SRM routines. The address
of this routine is identified to the recovery
termination manager (RTM) at the beginning of
SRM processing, when obtaining the SRM lock for
non-globally locked entries and upon entry for
globally locked entries. The FRR (address) is
cancelled upon exit from SRM processing. The only
section of the SRM component not covered by the
functional recovery routine is the (non-globally
locked) code preceding the obtaining of the SRM
lock; such code is restricted from performing any
updating of system data.

The functional recovery routine recovers SRM
from a percolated error, from machine checks, from
the restart key, and from program checks. The
routine requests that error recording/storage
dumping be performed, supplying additional
information about the error.

The processing performed by SRM’s FRR
depends upon the nature of the error. The actions
taken for different errors are described below.

1. If the ABEND macro was issued by SRM, or
if the restart key was depressed recursively,
the error is percolated.

2. If the error occurred in the SRM workload
activity recording routine, the MF1 task is
abended. If SRM was running in the same
address space as the MF1 task, the error is
percolated.

3. If a translation or protection exception
occurred in SYSEVENT processing, the
abend code is changed to X’15F’. The FRR

Section 2: Method of Operation 3-5

validates queues and status data maintained
by SRM and percolates the error.

4. For other errors occurring within SRM, the

. FRR validates queues and status data

maintained by SRM and performs a retry of
the SRM routine that failed. If the error is
repeated, and if the error is associated with
an action or algorithm, another retry is
attempted bypassing the routine in error.
Otherwise, the error is percolated.

The SRM interface also processes requests from
internal SRM routines, servicing other system
components. The SRM interface M.O. diagram
illustrates the functioning of this subcomponent.

The issuing of most SYSEVENTS prior to SRM
NIP processing (performed by IEAVNP10) will result
in a direct return to the issuer without any SRM
processing. An exception is SYSEVENT RSMCNSTS
(22), for which normal processing will be
performed.

Locking Considerations

All issuers of enabled, branch entry SYSEVENTS
must hold the local lock when the SYSEVENT is
issued.

The SRM lock will be obtained by the SRM on
all SYSEVENT entries to the SRM except the
following SYSEVENTS:

3-5.0 OS/VS2 System Logic Library Volume 3 (VS2.03.807)

VS2.03.807

USERRDY (4)

SWOUTCMP (15)

SWPINST (16)

RSMCNSTS (22)

AVQLOW (23)

AVQOK (24)

SQALOW (25)

SQAOK (26)

SYQSCST (35)

SYQSCCMP (36)

It is required that issuers of the above
SYSEVENTS be disabled on issuing the SYSEVENT,
because the SRM uses CPU-related save areas while
processing these SYSEVENTS. Issuers of other
SYSEVENTS (those not listed above) must not hold
any global locks higher in the system locking
hierarchy than the SRM lock when they issue the
SYSEVENT. These issuers must not hold the SRM
lock. SRM must be able to obtain the SRM lock
when entered via any of these SYSEVENTS.

The method-of-operation diagrams that follow
describe the specific functions performed by the
SRM interface. The functions are:

e SRM Interface (IRARMINT).

« SRM Service Routine (IRARMSRYV).

Section 2: Method of Operation 3-5.1

(L08'€0°ZSA) ¢ swmjoA Aresqry 180T WAIAS ZSA/SO 9€

Diagram 6-1. SRM Interface IRARMINT) (art 1 of 4)

From
SYSEVENT lIssuer Prowss

Output

Input
H SRM Interface
1 Verify that the SRM invocation is valid.
IRASECHT
Functional Recovery
SYSEVENT . N t
Characteristics J> 2 Obtain SRM lock, if required. Routine Stack
Table
SRM FRR
3 Establish an error recovery environment.) Address
ASCB
ASCBOUCB RMCT
> 4 Perform initialization for SYSEVENT > RMOTTOD
processing.
.(I;ie':teu?f To SYSEVENT
Y Processor
Clock From SYSEVENT § Process the SYSEVENT. - (IRARMEVT)
Processor or (See
SRM Control SYSEVENT
(IRARMCTL) Processor MO.)
Registef 0 GTF Data Set
Register 1 > 6 Trace the SYSEVENT via GTF
e (generalized trace facility)
Register 15
7 Release the SRM error environment,

z uondes

(¢ uoneradQ Jo poylol

Diagram 6-1. SRM Interface (IRARMINT) (Part 2 of 4)

Extended Description

The SRM Interface receives control when a SYSEVENT
macro instruction is issued, or when the SRM requests
the services of another system component. When the
interface receives a SYSEVENT, it performs the locking
necessary to ensure that SRM functions which must be
serialized are not performed simultaneously on more than
one CPU. SRM requests the SRM lock unconditionally
before passing control to the SYSEVENT processor. if
the lock is held by another CPU, the lock manager will
spin waiting for the lock to be released. Otherwise, SRM
will acquire the lock and continue processing. In either
case the SRM lock serializes SRM processing in a
multi-CPU environment.

1 Forall SYSEVENTSs that generate supervisor call
entries to the SRM (SVC 95), except for SYSEVENT
REQSERVC (38), the issuer must be authorized. For
SYSEVENTS 41 and 42, "DON'T SWAP" authorization
is valid. For all other SYSEVENTS, the user is
considered authorized only if he is executing in supervisor
state or protection keys 0-7, or is authorized by APF
(authorized program facility).

For SYSEVENTS that generate a branch entry to the
SRM, the issuer must be executing in protection key 0-7,
and must be in supervisor state.

2 The SYSEVENT characteristics table indicates, for
each SYSEVENT entry, whether or not the SRM
lock must be obtained for SRM serialization purposes.

3 The SRM is protected from unexpected errors via

a functional recovery routine (FRR). The processing
will be performed for an error situation depends upon
whether or not the SRM lock was held (see ERROR
PROCESSING, below).

N
Module Label
IRARMINT
IRARMSRV
IRARMINT 1GC095
TIRARMIOO

IRARMINT IRARMO0OO

IRARMINT RMINTOO05

Extended Description

4 Before passing control to the SYSEVENT proc-

essor, a pointer is obtained to the SRM user
control block {OUCB) corresponding to the input
ASID (address space identifier); for SYSEVENT
MEMCREAT, there will not yet be an OUCB (an
QUCB is obtained by IRARMEVT if no Resource
shortages exist). The current time-of-day is obtained
and formatted for SRM use. The time-of-day clock
value is stored and shifted 22 bits to the right, and
the rightmost 32 bits of the resulting value are used
by the SRM. Therefore, SRM constants representing
time are in units of 1024 microseconds
{approximately 1 millisecond).

B The interface invokes the SYSEVENT processor
to initiate the appropriate processing {see
SYSEVENT PROCESSOR table).

6 A GTF trace record is produced (via the HOOK
macro) if GTF is active. This record includes:

@ Register 0 {as input, except that the ASID is placed
here even when it was not included as input).

o Register 1 (as input, with the addition of possible
return indicators which may overlay input data).

o Register 15 (containing any necessary return code
in byte 3).

7 Theaddress of the SRM FRR is removed from the
system FRR stack.

Module Label

IRARMINT IRARMOO1

IRARMEVT

IRARMINT

IRARMINT IRARMIO1

L08'€0°TSA

(L08°€0°TSA) € SwNoA ATeIqy] o180 waIsAS ZSA/SO 8-€

Diagram 6-1.-SRM Interface (IRARMINT) (Part 3 of 4)

Input

Register 4

Register 5

Process

8 Release the SRM lock if it was obtained
in step 2.

Register 1

9 Return the service data if this entry was

Register 6

due to SYSEVENT REQSERVC.

Return to

Issuer

SYSEVENT §

User Data
Area

LO8’'E€0°TSA

7 uonoag

6-€¢ uonerddQ jo poyry

=

Diagram 6-1. SRM Interface (IRARMINT) (Part 4 of 4)

Extended Description Module

8 The SRM lock will have been obtained if the invok-
ing routine did not already hold a lock higher in the

locking hierarchy than the SRM lock (except for

SYSEVENTS SYQSCST and SYQSCCMP).

Q9 To prevent disabled page faults and an invalid SRM

invocation, and to insure system integrity, the
service data is stored while not holding the SRM lock, and
in the user's protection key.

Error Processing
The issuer of a SYSEVENT will be abnormally terminated
(ABEND code *15F X} if:

e an invalid ASID or SYSEVENT code was supplied
(reason code 4).

IRARMINT

@ the program was not authorized to issue the SYSEVENT
(reason code 8).

@ a page fault occurred in referencing a data area assumed
to be fixed (reason code 12).

@ the program did not have the correct storage key for
storing into a parameter data area (reason code 16).

o the SRM lock was held on entry to the SRM (reason
code 20).

A SYSEVENT issuer will be terminated (ABEND code
‘25F’) if the SRM determines that a system failure has
resulted in the loss of data used by the SRM in con-
trolling an address space. Similarly, the System Activity
Measurement Facility (MF/1) task, and the Set IPS task
will be terminated {(ABEND code ‘25F ‘) when the SRM
receives an error occurring during SRM processing relating
to a Set to New IPS command or to the collection of
workload activity data for MF/1.

Label

RMINTO10

Extended Description Module Label

A functional recovery routine (FRR) provides the error IRARMERR
recovery environment for SRM processing. When an error
occurs during SRM processing (or when an error occurring in
a routine invoked by the SRM has been passed back (per-
colated) to the SRM), the recovery/termination manager
gives control to the SRM FRR. If the SRM was operating
without holding the SRM lock when the error occurred, error
processing will consist of making one attempt at retrying
the failing routine; a second failure will result in the error
being passed to the previous routine in the FRR stack. If
the SRM was operating under the SRM lock when the

error occurred, the FRR will perform queue validation
before making an attempt at retrying the failing

routine; queue validation consists of verifying that the
three OUCB queues are properly chained (re-chaining where
necessary), and that OUCBs, OUXBs (user control block
extensions), and OUSBs (user swappable blocks) exist and
are valid, where they are required. Likewise, the pointers
between the ASCBs and OUCBs is checked. Where it is
necessary to create a new OUCB or OUXB, a bit is set in
the OUCB to indicate that the data reflected in these
newly created blocks may not be valid.

IRARMRR1

IRARMRR2

RMRR2VLD

On errors occurring during SRM locked processing, retry
action depends upon whether the error occurred during
SYSEVENT related or non-SYSEVENT related proc-
essing. For SYSEVENT-related processing, 1 retry will be
attempted. Subsequent failure will result in the error
being passed to the previous routine in the FRR stack.
For non-SYSEVENT-related processing (i.e., processing
which SRM control was driving), 1 retry of the failing
routine will be attempted. A second error will case an
attempt to bypass the twice failing routine. Subsequent
errors will result in the error being passed to the previous
routine in the FRR stack.

LOS'E€0'TSA

VS2.03.807

IRARMINT Module Entry Point
Summary

IGC095 - SVC entry point to SRM.
IRARMIOO - Branch entry point to SRM.

Handle all external SYSEVENTS.
IRARMI48 - Branch entry point to SRM.

Handle the internal SYSEVENT. (48).
IRARMIOI - Entry point from RARMEVT or

RARMCTL.

Return to the SYSEVENT issuer.
IRARMIN0 - Entry point to SRM.

Abend a user of SRM.

3-9.0 0S/VS2 System Logic Library Volume 3 (VS2.03.807)

Section 2;: Method of Operation 3-9.1

(L08°€0°TSA) € 2wnjoA Areiqr] o180 wasAg ZSA/SO T6-€

Diagram 6-1A. SRM Service Routine (IRARMSRYV) (Part 1 of 6)

From IRARMCPM,
IRARMCTL or IRARMEVT

Input Process

Register 1

List of ASCBs IRARMIO2. IEAVEACO
Invoke ASCBCHAP to reorder the
listed ASCBs on the dispatching ASCBCHAP
queue.

Return to
Caller
(IRARMCPM,
IRARMCTL, or
IRARMEVT)

From Storage Management
(IRARMSTM)

Register 1

List of ASCBs IEAVRFR

IRARMIO03.
Call real page frame replacement.

Real Page
Frame Repl.

Return to
Storage
Management
(IRARMSTM)

Output

Dispatching Queue

LOS'E0'TSA

£6€ uoneradQ Jo POYIOW g UONOSS

g

Diagram 6-1A. SRM Service Routine (IRARMSRYV) (Part 2 of 6)

Extended Description

This module is a collection of several independent routines
which act as interfaces between SRM and various system
services.

IRARMI02
Reposition the listed ASCBs in the ASCB dispatching
queue to reflect their new dispatching priorities.

IRARMIO3
Update UICs in pages belonging to all users listed.
Steal pages from users which then have UICs that
meet the steal criterion.

Module

IRARMSRV

IRARMSRYV
IEAVEACO

IRARMSRV
IEAVRFR

Label
(or Segment)

IRARMSRV

IRARMI02

IRARMIO3

LOS’€0°TSA

(L08’E0°TSA) € 2wnjoA Areaqr 918077 wolshg ZSA/SO +°6-€

Diagram 6-1A. SRM Service Routine (IRARMSRYV) (Part 3 of 6)

From SRM
Routines

Input Process

Register 1
l ‘0 or Free Address}

1
1

IRARMIO04.
Obtain free storage in SQA.

Register 0

Request Size

From Periodic Entry
Point Scheduler (IRARMCET)

Register 1

| Timer Value [

IRARMIO05.
Update the SRM TQE and queue
it on the system timer queue.

M1

IEAVGTCL

GETCELL

or

IEAVGMO0

Register 1

‘ Storage

Return Code

GETMAIN/

FREEMAIN

Return to
Caller

IEAQTEOQO

=" Routine

ENQ TQE

Return to
Caller
{IRARMCET)

TQE

TQEVAL

LO8€0°TSA

$°6-€ uoneradQ Jo poyloN :7 uonddg

Diagram 6-1A. SRM Service Routine (IRARMSRYV) (Part 4 of 6)

Extended Description

IRARMI04
Obtain free SQA storage either from a cell in
‘RM1’ cellpool or from other available SQA.
(See Obtain/Free Storage (IRARMI04) M.O.)

IRARMI05
Store a new timer value in the SRM TQE and queue
the TQE on the system timer queue. (See Requeue
SRM TQE (IRARMI05) M.O.)

Label
Module (or Segment)

IRARMSRV IRARMI04
IEAVGTCL or
IEAVFRCL or
IEAVGMOO

IEAVBLDP

IRARMSRV IRARMIO5
IEAVRTIO IEAQTDOO
IEAVRTIO IEAQTEOO

LOS’€0°TSA

(L08°€0°TSA) € swnjoA Arexqr s1807 wasAS ZSA/SO 9°6-€

Diagram 6-1A. SRM Service Routine (IRARMSRYV) (Part 5 of 6)

From SRM
Routine

Process

Input

Register 1
A ecs

IRARMIO06.
Post an ECB in another memory.

Register 5

“ ASCB

From Control
Swap-tn (IRARMCSH)

Register 5

IRARMIO7.
Schedule an SRB to initiate a
swap in,

IEAOPTO1

Cross
Memory Post

Return to
Caller

IEAVESC1

SRB
Schedule

Return Code

From Storage
Management (IRARMSTM)

Register 1 IRARMIO9.

Invoke record facility to issue a
WTO to the system operator.

List Form of
WTO Message

Return to
Storage
Management
(IRARMSTM)

Return to
Caller

IEAVTRER

Msg to
Operator

LOS’€0'TSA

T uondweg

.

uoneradQ jo poyrol

L6¢

Diagram 6-1A. SRM Service Routine (IRARMSRY) (Part 6 of 6)

Extended Description

IRARMIO06
This entry point is used by the swap-out routine to
post the region control task (for example).
If an error is encountered during the cross memory
post, the error routine (IRARMXPE) gets control
and attempts cleanup while running under an FRR.

IRARMI07
Initiates a swap-in, gets an SRB and schedules it to
run the RSM swap in routine (1EAVSWIN) in the
master memory.

IRARMI09
The record facility is invoked to issue a WTO to the
system operator console because the requesting
SRM routines hold the lock and cannot therefore
issue aWTO.

Module

IRARMSRV

IEAOPTO1
IRARMSRV

IRARMSRV
IEAVGTCL
IEAVESCO

IRARMSRV

IEAVTRER

Label
(or Segment)

IRARMI06

IEAQOPTO1
IRARMXPE

IRARMI07
IEAVGTCL
IEAVESC1

IRARMI09

IEAVTRER

LO8'€0TSA

(LOS'€0°ZSA) € WNJoA ATeiqr ABoT WAISAS ZSA/SO §°6:€

Diagram 6-1B. Obtain/Free SQA Storage (IRARMIO4) (Part 1 0f2)

From SRM
Routines
Input Process Output
Cellsize r- _—— Register 1
I Constant J 1 If request size = cellsize, call IEAVGTCL :"1 >
"y ge
getcell or freecell. I
Register 0 7 £ ' GETCELL I
4 . Ise Ret Cod
l 0 or Free Address I | or | [——————]e it
IEAVFRCL
Register 1 - Gotostep 4. | FREECELL :
I Request Size | L _J
2 For non-zero return codes,
get or free a 2K block.
Else, return to caller. IEAVGMO0 Register 1
GETMAIN/ | — | A storage |
FREEMAIN ,
3 For successful getmains y
issue BLDCPOOL. i Return Code
|
IEAVBLDP Return Code
Go to step 1. 5‘“'2'2 g?gzk - _—:1>
4 Do GETMAIN IEAVGMOO Return Code
0 or
FREEMAIN. gg;'&"@:‘m

Return to
Caller <;

LOS'E0°TSA

6'6-C UonEIdQ JO POIW :Z UONIIS

Diagram 6-1B. Obtain/Free SQA Storage (IRARMIO4) (Part 2 of 2)

Label
Extended Description Module (or Segment)
This routine is used by the SRM for obtaining and freeing IRARMSRV IRARMI0O4

control blocks in key 0, subpool 245 storage (SQA).

Request processing follows the same procedure for both
obtaining and freeing storage. [f register O contains zero,
the request is a get.

1 If the request length matches the cellsize for the
IRARMRM1 cellpool, call GETCELL or FREECELL. IEAVGTCL IEAVGTCL
Otherwise, go to step 4. IEAVFRCL

2 If the GETCELL or FREECELL fails, call GETMAIN
or FREEMAIN, for a 2048-byte block. Otherwise, IEAVGMOO
return to caller of IRARMI04 and the GETMAIN/
FREEMAIN return code becomes the IRARMI04 return
code.

3 1fa GETMAIN was done and was successful, IEAVBLDP IEAVBLDP
issue BLDCPOOL to segment the returned storage

into cells. If BLDCPOOL succeeds, go to step 1.

Otherwise, return to the caller.

4 Get the SALLOC lock and perform a GETMAIN IRARMSRVY GETSTOR or
or FREEMAIN for the original request size. Then 1EAVELK FREESTOP
release the SALLOC lock. The GETMAIN/FREEMAIN 1EAVGMOO

return code becomes the IRARMI04 return code.

LO8°€0°TSA

(LOS'€0°ZSA) € dwnjoA Areiqr] oBo] woysAS ZSA/SO 01°6-€

Diagram 6-1C. Requeue SRM TQE (FRARMIOS) Part 1 of 2)

From Periodic Entry
Point Scheduler (IRARMCET)

Input Process Output

Registers 6, 7

Register 1

1 Convert timer value to
64 bit format.

Timer Value

RMCT

RMCTTOC

RMCTTBS

TQE
IEAQTDOO
- TQEOFEQ 2 I currently on system
timer queue, dequeue TQE. ;gfﬁg:queue
Otherwise go to step 3. ;

TQE

Registers 6, 7

3. Enqueue the TQE with
‘the new converted timer-
-value.

TQEVAL

IEAQTEOO

TQE Enqueue |
Routine

‘Return to Caller
(Periodic Entry
Point Scheduler)
{IRARMCET)

L0S'€0'TSA

11'6:€ uoneIsd Jo poysajy iz Uonods

Diagram 6-1C. Regqueue SRM TQE (IRARMIOS) (Part 2 of 2)

Label
Extended Description Module (or Segment).
This routiﬁe updates the SRM timer queue element with IRARMSRV IRARMI0OS
" a new timer value and enqueues the element on the system

timer queue.

1 Convert timer value to hexidecimal format. . IRARMSRV IRARMIOS
2 Dequeue timer queue element (TQE) if currently IEAVRTIO IEAQTDOO

queued. This is done under the dispatcher lock.
3 Enqueue the TQE. This is done while holding IEAVRTIO IEAQTEO0O.

the dispatcher lock.. .

LOB'E0'TSA

3-9.12 0S/VS2 System Logic Library Volume 3 (V$2.03.807)

%

VS2.03.807

IRARMSRYV Module Entry Point
Summary

IRARMIO2 - ASCB CHAP entry point.

IRARMIO3 - Real Page Frame Replacement entry
point. '

IRARMIO4 - Obtain or Free SQA Storage.

IRARMIOS - Requeue SRM TQE Routine:.

IRARMIO06 - Cross-Memory Post entry point.

IRARMI07 - Swap SRB SCHEDULE Routine.

IRARMI09 - RECORD entry point.

IRARMERR Module Entry Point
Summary

IRARMRR1 - Functional Recovery for Globally
Locked Entries (entries to SRM in
which the SRM lock could not be
obtained).

Retry the failing SRM routine when
possible. Otherwise percolate the error.

RARMRR?2 - Functional Recovery for Non-Globally
Locked Entries (entries to SRM in
which the SRM lock was obtained).
Validate queues and cleanup. Retry the
failing routine if possible; otherwise,
percolate the error.

RMRR2RTY - Return to RTM indicating retry.

RMRR2PER - Return to RTM indicating percolation.

RMRR2INT - FRR initialization.

RMRR2VLD - Validate control blocks.

RMRR2GST - Release the dispatcher lock in order
to call IRARMIO4, ‘

RMRR2CKQ - Verify the location of an OUCB.

RMRRI1VFB - Verity addresses.

RMRR2REQ - OUCB enqueue routine entry point.

RMRR2SPR - Return with the return code in register
15.

Section 2: Method of Operation 3-9.13

3-10 0S/VS2 System Logic Library Volume 3 (VS$2.03.807)

)

SYSEVENT Processor

| The SYSEVENT processor function (IRARMEVT)
receives control from the interface function to
perform processing related to the SYSEVENT, and,
in most cases, to request the services of other
internal SRM routines. In a multiprocessing
environment the system may not be able to
perform some of these routines immediately
because of concurrent SRM processing on another
CPU. In these cases, execution of the requested
routines is deferred until a later SRM invocation.
Listed are all SYSEVENT; in alphabetical order
along with their associated codes.

The next diagram lists the SYSEVENTS
(numerically by code), the situation occasioning
their issuance, information passed to and returned
from them, internal SRM routines that they may
explicitly invoke, the functions of these routines,
and any exceptional notes about the SRM action
taken as a result of a SYSEVENT. Also, this
diagram indicates for each SYSEVENT whether the
SRM lock is obtained by the SRM interface routine
and where control passes after the SYSEVENT is
processed. All SYSEVENTS receive the associated
SYSEVENT code (listed below the SYSEVENT name)
as input information (in byte 3 of register 0),
although this information is not explicitly
mentioned in the figure. Where an ASID is listed as
input, it is passed in register 0, bytes 0 and 1.

Note that some SYSEVENTSs do not hold the SRM
lock. These SYSEVENTS return directly to the SRM
interface for return to the issuer. Most other
SYSEVENTS exit to the SRM control function, which
may then invoke algorithm processing. Thus, for a
given SYSEVENT entry to the SRM, processing may
be performed that is unrelated to the purpose of
the original SRM entry.

vS2.03.807

ALTCPREC (33)
AVQOK (24)
AVQLOW (23)
BRINGIN (44)
CONFIGCH (29)
COPYDMDT (40)
DEVALLOC (28)
DONTSWAP (41)
ENQHOLD (20)
ENORLSE (21)
INITATT (10)
INITDET (11)
JOBSELCT (8)
JOBTERM (9)
MEMCREAT (6)
MEMDEL (7)
NEWIPS (32)
NIOWAIT (3)
OKSWAP (42)
QSCEFL (18)
QSCEMCP (13)
QSCEST (12)
RSMCNSTS (22)
REQPGDAT (39)
REQSERVC (38)
REQSVDAT (49)
REQSWAP (43)
RESETPG (31)
RSTORCMP (19)
SETDMN (37)
SQALOW (25)
SQAOK (26)
SWINFL (17)
SWOUTCMP (15)
SWPINST (16)
SYQSCCMP (36)
SYQSCST (35)
TERMWAIT (2)
TGETTPUT (34)
TIMEREXP (1)
USERRDY (4)
VERIFYPG (30)
WKLDCOLL (46)
WKLDINIT (45)
WKLDTERM (47)
(48)

Section 2: Method of Operation 3-11

(LO8'€0'TSA) £ 2wnjoA Arexqiy o180 walsAS ZSA/SO TI€

Diagram 6-2. SYSEVENT Processor (Part 1 of 16)

and an ASID
disassociated with
an address space.

must wait.
—04 (register 1,
byte 3).

that memory delete

processing may proceed

by issuing XMPOST to
the Master Memory.

action request routine.

Information .
SYSEVENT | When lssued Routines Invoked | Function of Invoked SRM Action |SRMLockl gy 7q
Passed Returned)
TIMEREXP | SRM timer interval | Indication whether | None Periodic Entry Resets the ‘‘time due’” | This SYSEVENT Yes SRM
(1) has expired. TOD clock Point Initialization | fields of the time provides the exclusive Control
initialization (01) (IRARMWMY). driven queue accord- means for invoking the (IRARMCTL)
or not (00). ing to the current majority of the SRM
(register 1, byte 3). time, for TOD algorithms.
initialization.
Periodic Entry Point | See Periodic Entry
Scheduling Point Scheduling
(IRARMCET). M.O.
TERMWAIT | issued by TGET or | @ ASID. None Control Swapout See Control Swapout Yes SRM
(2) TPUT when auser | e Input (00) or (IRARMCSO). M.O. called for Control
enters terminal output (80) swappable users. (IRARMCTL)
wait. indication.
(register 1,
byte 0).
NIOWAIT Issued by WAIT e ASID. None .Control Swapout See Control Swapout Yes SRM
(3) macro processing (IRARMCSO). M.O. called for Control
when some task in swappable users. {IRARMCTL)
an address space
enters long wait.
USERRDY | An SRB has been e ASID. None User Ready The ready user is User-ready processing No Invoker Via
(4) scheduled for fan Processing placed on the “OUT" | is performed through {RARMIO1
ﬁ?iz;ssasgfggc(g is (IRARMHIT). queue, the action request
running, or for a routine.
swapped out
address space.
MEMCREAT | An ASID has been | @ ASID. Indication whether | Storage Request Obtain storage for an Yes SRM
(6) associated with a o START(01)/ or not memory (IRARMI04). OUCB and OUXEB if Control
new address space | LOGON(02)/ creation should not no resource shortages (IRARMCTL)
and space has been MOUNT(03) proceed because of }— — — — —1 exist e e — e —]
obtained for an indication. a resource shortage. | User Control Block | Place user on “‘in"’ User Control Block
ASCB and OUSB. (register 1, (00—proceed Repositioning ‘queue. Repositioning is
byte 0). 80—do not (IRARMRPS). performed through the
proceed). action request routine.
(register 1, byte 0).
MEMDEL Storage associated e ASID. Indication that OUCB and OUXB Free storage associated | OUCB and OUXB Yes SRM
(7 with an ASCB is i memory delete may | delete with an OUCB and an | delete is performed Control
about to be freed, not proceed and {IRARMDEL). OUXB, and indicate indirectly, through (IRARMCTL)

LOS'€0°TSA

Z uonodag

.
.

€1-¢ uonexsdQ Jo pos

Diagram 6-2. SYSEVENT Processor (Part 2 of 16)

Information .
SYSEVENT | When Issued Routines Invoked | Function of Invoked SRM Action [SRMLock(o o ro
Passed Returned Routine Held
JOBSELCT | An address space ® ASID. None Control Swapout Called to swapout an This SYSEVENT Yes SRM
(8) has begun using (IRARMCSO). address space if a authorizes the Control
system services, on | @ Address of job- second level auxiliary accumulation of service (IRARMCTL)
behalf of a new job, name or user-id. page shortage exists or | for the job. SRM
START or MOUNT an excess of fixed validates the perfor-
command, or a @ Performance frames exists. mance group number
TSO session. Group number —— — —— — —— ——— indicated for the
(register O, Transaction Stop Updates the accumu- address space, If it is
byte 2). Routine tated time and service not valid, a default
{(IRARMWMOQ). for a job. Also value is assigned.
indicates that the
current transaction has
ended or been sus-
pended, If workload
activity reporting is
active, invokes
IRARMWR4 to
accumulate report
information.
JOBTERM An address space ® ASID. None Transaction Stop Updates the accumu- This SYSEVENT Yes SRM
(9) has completed Routine lated time and service | revokes authorization Control
using system ® Address of job- {(IRARMWMO). for a transaction. Also { for starting new (IRARMCTL)
resources on behalf name or user-id. indicates that the transactions.
of a job, START or current transaction has
MOUNT command, ended. {f workioad
or a TSO session. activity reporting is
active, invokes
IRARMWRA4 to
accumulate report
information.
INITATT Whenever an ® ASID. None Transaction Resumes a suspended SRM validates the Yes SRM
(10) initiator attaches ® Performance Resume Processing | transaction, if the performance group Control
a task. Group number. (IRARMWMR). performance group number indicated for (IRARMCTL)
(register 1, number for a new non- | the address space. If it
byte 2). TSO job step is the is not valid, a default
same as for the value is assigned. If
previous step; other- the input dispatching
wise starts a new priority is in the APG,
transaction. the SRM will follow
— —— ———t— — — — the IPS specification
o Dispatching Change Dispatching | Move ASCB to correct | for this user.
Priority. Priority position on dispatcher
(register 1, (IRARMI02). queue.
byte 3).

LOS'E€0°TSA

(LOS'E0°TSA) € swnjoA Areiqr] oiBoy waysAs ZSA/SO +I-€

Diagram 6-2. SYSEVENT Processor (Part 3 of 16)

SYSEVENT

Information

When | d

Passed

Returned

Routines invoked

Function of Invoked
Routine

SRM Action

SRM Lock
Held

Exit To

INITATT
(10)
{continued)

o Nonswap
Authorization
(ASCBNSWP bit
of ASCB).

Start New
Transaction
(IRARMWMN).

Indicate the start of

a new transaction. If
workload activity
reporting is active,
calls IRARMWRG6 to
indicate that a
transaction has ended.

INITDET
(11)

Whenever an
initiator detaches
a task.

e ASID.

o Dispatching
Priority.
(register 1,
byte 3).

None

Transaction Stop
Routine
(IRARMWMO).

O Load
Balancing IMCB
Deletion
(IRARMILAY).

Change Dispatching
Priority
(IRARMI02).

»—T/—-————»—

Updates the accumu-
lated time and service
for a transaction. Also
indicates that the
current transaction has
ended or been suspend-
ed. If workioad
activity reporting is
active, invokes
IRARMWRA4 to
accumulate report
information.

Frees 1/0O measure-
ments control block
(which has been
created if the user is
a heavy 1/0 user).

Move ASCB to correct
position on dispatcher
queue.

{MCB deletion is
performed through
action request.

Yes

SRM
Control
{IRARMCTL)

QSCEST
(12)

Issued during
quiesce processing
when the status of
all associated tasks
has been deter-
determined.

e ASID.

o Long wait
indication.
(00—not in long
wait

80—in fong wait).

(register 1,
byte 0).

@ Continue with
{00) or terminate
{08) quiesce
processing.
(register 1,
byte 3).

1/0O Load Balancing
User 1/0 Monitor-
ing (IRARMILO).

An 1/O measurement
control block is
created for heavy 1/0O
users. The IMCB is
updated with channel
useage data from the
Timing Contro! Table
1/O Tabte (TCTIOT).
(See 1/0 Management
M.O. (IRARMIOM)
and 1/O Load
Balancing User 1/0
Monitoring M.O.
(IRARMILO.)

Note: After this

SYSEVENT, no further

quiesce processing is

performed for:

® non-swappable users,
and

® users being swapped
because of a long
wait, and who are
no longer in a long
wait status.

Yes

SRM
Control
(IRARMCTL)

LO8'€0°TSA

¢i-¢ uoneiad(Jo POYId| 7 UONIAS

= N _
Diagram 6-2. SYSEVENT Processor (Part 4 of 16)
Information .
SYSEVENT When Issued Routines Invoked Fumt::u‘fi,:: voked SRM Action SR:\:G:.:CR Exit To
Passed Returned
QSCECMP Issued when the ® ASID. e Indication User Control Block | Changes the status of User Control Block Yes SRM
(13) RCT has completed | ® Long wait whether Repositioning the memory to out- Repositioning is Control
quiesce processing indicator. USERRDY (IRARMRPS). of-real-storage and performed indirectly (IRARMCTL)
for an address {(00—not in long SYSEVENT {4) positions it on the through action request
space. wait has been received correct queue routine.
80—in long wait). for this task (normally the "out”
(register 1, since quiesce queue; however, will
byte 0). start be the “wait’’ queue
(00—received for users entering fong
80--not received). wait, or for users
(register 1, swapped because a
byte 0). resources shortage
@ indication L exists).
whether to CPU Load Updates mean time to | T T
initiate swa'pout Balancing Profile wait indication for use
(00} or begin Adjustment by CPU load balancing
restore (08). (IRARMCLO). (see CPU Load

(register 1,
byte 3).

o If Reg 1 byte 3
is 00, Reg 1
byte 2 contains
the swap out
reason code.

Transaction Quiesce
Processing
(IRARMWMOQ).

Balancing Swap
Analysis M.O.) and
users in the APG.

Increments the
cumulative service
received by a trans-
action by the amount
received during a real
storage residence
period. Also updates
the performance group
period indication if a
transaction has
completed a perfor-
mance group period.
Determines whether to
continue the trans-
action, or to stop or
suspend it at this point
for the reason that
caused ;he swapout. If
workload activity
reporting is active,
invokes IRARMWR4
to accumulate report
information.

Note: After this

SYSEVENT, no further

quiesce processing is

performed for:

® non-swappable users,
and

® users being swapped
because of a iong
wait, and who are
no fonger in a long
wait status.

LOS'E0'TSA

(L08°€0"ZSA) € Jwn[oA Arexqr] 9807 walshS ZSA/SO 91-€

LOS'€0"TSA

Diagram 6-2. SYSEVENT Processor (Part S of 16)
Information " Function of Invoked SBM Lock
SYSEVENT When Issued Routines Invoked Routi SRM Action Exit To
Passed Returned outine Held
SWOUTCMP| Ali I/O required to | e ASID. None Free QUXB Free storage associated { IRARMUXB is No Invoker Via
(15) | swapout a memory | e Pointer to para- Storage : with an OUXB, when performed indirectly, IRARMI01
has completed. meter list (IRARMUXB). the address space is through action request.
(register 1) swapped out.
containing: — — — —
— number of Swap Analysis Swap analysis is Swap Analysis is
pages swapped (IRARMCAP). requested when a user | invoked through
out. (word 1, is voluntarily swapped | algorithm request
bytes 0 & 1). out. rotuine.
— working set — —_— et — —— —— —] —
size, in number User Ready See SYSEVENT User Ready processing
of pages to be Processing USERRDY (4). is invoked if user
swapped in. (IRARMEO4). ready indicator is off,
(word 1, bytes but an indication of an
28&3). unfinished RSM
— indication service is received.
whether address
space is waiting
for an unfinish-
ed RSM service.
(word 2, byte
3, bit 7 on
means the
address space
is waiting for
service).
SWPINST By RSM to notify ® ASID None None None No Invoker Via
(16) of Swap Status @ Code in Reg 1: IRARMIO1
01—Swap-in
Starting
02—Stage one of
Swap-In complete
SWINFL Swapin processing. | e ASID None User Control Changes the status of User Control Block Yes SRM
(17) failed to obtain or Biock Reposition- the address space to Repositioning is Control
initialize the LSQA ing (IRARMRPS). | “‘out of real storage” performed indirectly, (IRARMCTL)
storage for an and positions the through an action
address space. OUCB on the correct routine.
queue (normally the
“out’’ queue).
s anepma— — pr— c— — e —— ——— ——]
Free Storage Free OUXB
(IRARMI104).

7 uonoes

.

L1-€ uonerad(Jo poyrs

Diagram 6-2.

SYSEVENT Processor (Part 6 of 16)

’ Information Function of Invoked SRM Lock
SYSEVENT When Issued Routines Invoked Routine SRM Action Held Exit To
Passed Returned
QSCEFL The RCT failed to e ASID. None User Control Block | Changes the current User Control Block Yes SRM
(18) complete quiesce Repositioning status of the user Repositioning is Control
processing because (IRARMRPS). from “‘out of real performed indirectly, (IRARMCTL)
of an abnormal storage’’ to “'in real through an action
situation. storage”’. routine.
RSTORCMP | The RCT has o ASID. None Restore Completed | Invoked so the work- Yes SRM
(19) completed restore | o Long wait Processing load manager can Control
processing for an indicator. (IRARMWMR). initialize the fields (IRARMCTL)
address space. (00—not in long used for monitoring
wait service during a period
80—in long wait), of real storage
(register 1, residence.
byte 0). User Control Block | Changes the current User Control Block
Repositioning status of the user Repositioning is
{IRARMRPS). from "‘out of real performed indirectly,
storage’’ to “‘in real through an action
storage’’. routine.
Control Swapout Requests that a swap-
(IRARMCSO). pable user still in long
wait status be swapped
out.
ENQHOLD | A user’s execution | e ASID of memory | None None Users in real storage, Yes SRM
(20) is delayed because holding resource. holding resources in Control
of a request for a ® Address of QCB demand by other users, (IRARMCTL)
resource being held for resource. are given a “‘spurt’’ of
by another user. (register 1). non-swappable service
equal to the Enqueue
Residence Value (ERV)
(see CPU Management
M.O.). Users out of
storage are marked as
holding a resource so
that CAP will initiate
aswap in.
ENQRLSE A contention e ASID. None None If user has freed all Yes SRM
(21) situation has o Address of QCB resources in conten- Control
disappeared for resource. tion, eliminate special (IRARMCTL)
because of the (register 1). treatment.
release of a resource
by a user for whom
an ENQHOLD
SYSEVENT had
previously been
received.

LOS’€0°TSA

(L0S°€0°TSA) € ownjop Arexqry oo walskg ZSA/SO 81-€

Diagram 6-2. SYSEVENT Processor (Part 7 of 16)
tion i
SYSEVENT When lssued informa Routines lnvoked Funcn;:uc:fh::voked SRM Action SR:\-l/le:.dock Exit To
Passed Returned
RSMCNSTS | Real storage has o Number of pages None None None No Invoker Via
(22) been configured of functioning IRARMIO1
into or out of the real storage.
system (because of g%?";‘t)er 1, bytes
a VARY storage ® New Available
command, or a Page Queue low
storage error). limit. (register
1, bytes 2 & 3).
AVQLOW The number of @ Indication of None Main Storage For level 1, 2, or 3, Because it is impor- No Invoker Via
(23) available real cause. Occupancy initiate page stealing tant that the Main IRARMIO1
storage page frames (register 1, byte Analysis (see Main Storage Storage Occupancy
has fallen below 3). (IRARMMS2). Occupancy Analysis Analysis algorithm be
the Available Page 1— Available M.O.). For level 4, run as soon as possible,
Queue low limit. queue (AVQ) swap out user an SRB is scheduled
is below limit. acquiring fixed frames | after requesting the
2—-AVQis 1 at the fastest rate. algorithm; the SRB
when a page Notify system will issue SYSEVENT
fault occurred. operator and inhibit 48 when it is dispatch-
3—-AVQis 0 creating memories. ed, which will result in
when a page Repeat swap outs the CONTROL func-
fault occurred. until shortage is tion being invoked.
4— Ratio of fixed relieved. This algorithm will
frames to total then be executed.
real frames is
above a limit.
AVQOK Enough real None None SRM ceases its special No Invoker Via
(24} storage pages have efforts to free up real IRARMI01
been freed to storage.
alleviate a shortage
condition.
SQALOW There exists a @ Indication None SQA Shortage Inform System The Message Writer No Invoker via
(25) critical shortage of whether shortage Message Writer operator of the SOA algorithm is scheduled IRARMI01
SQA pages. is of severity 1 (IRARMSQA). shortage (see Storage for execution the next
(01) or 2 (02). Management M.O.). pass thru the CON-
(register 1, TROL function.
byte 3). SRM does not permit
the creation of new
address spaces when
an SQA shortage exists.

LOS’E€0'TSA

61-¢ uoneIsd(JO POYR T UORDIS

Diagram 6-2. SYSEVENT Processor (Part 8 of 16)
Information .
SYSEVENT | When Issued Routines Invoked | Function of Invoked SRM Action SR Lokl ExitTo
Passed Returned Routine e
SQAOK An SQA page Code indicating the | None SQA Shortage Inform system opera- Issue a message if all No Invoke Via
(26) shortage has been level of the relieved Message Writer tor of the fact that an SQA shortages are IRARMIO1
relieved. shortage (register (IRARMSOQA). SQA shortage has been | relieved (i.e. level 1).
1, byte 3): relieved (see Storage
above level 1 (01) Management M.0.).
above level 2 (02)
DEVALLOC | A device allocation | e ASID. e Pointer to same None The UCB is selected by Yes SRM
(28) choice must be e Pointer to a three three word list applying the following Control
made from two or word list as on entry selection principles in (IRARMCTL)
more candidates. (register 1) (register 1), the order indicated:
containing: with return area ® Avoid contention
— address of a list containing: (reallocating same
of candidate — address of the UCB to same user)
UCB addresses. candidate list for Direct Access.
{word 1). entry that was ® Avoid allocation on
— address of a list selected units with premount-
of UCB {word 1). ed volumes.
addresses @ Successful (00) o Give preference to
already or unsuccessful less heavily utilized
allocated to (08) indication. logical channels,
requestor. (Register 15, assuming that each
{word 2). byte 3). previous allocation
— address of a for this user has
two word know projected
return area. constant impact on
(word 3). utilization.
o For direct access
devices, pick the one
with the lowest
allocated user count.
@ Choose randomly,
if more than one
candidate remains.
CONFIGCH | A VARY e ASID. None None Update SRM control Yes SRM
(29) command has been | ® SMF record information for logical Control
issued for a describing the channel utilization (IRARMCTL).
channel or CPU. change. {pointed monitoring. .
to by register 1).
VERIFYPG | An interpreter has ® Performance e Valid (00})/ None The IPS is checked for Yes SRM
(30) received a per- group number. Invalid (01— performance group Control
formance group (register 1, non-TSO user; number validity. If (IRARMCTL)
number which byte 3). 02—-TSO user the number is invalid,
needs verification. ASID) indication. a default is provided.
(register 1,
byte 2).

LO8'E€0°TSA

(L0S°€0°TSA) € dumnjop Arexqry 980T walsAS ZSA/SO 0T-€

Diagram 6-2. SYSEVENT Processor (Part 9 of 16)

configured out of
the system.

imbalances.

Information)
SYSEVENT | When Issued Routines Invoked | ' "etion of Invoked SRM Action | hem | ExitTe
' Passed Returned
RESETPG The system e ASID. Return code Start New For users in real Starting a new trans- Yes SRM
(31) operator has @ New performance | indicating Transaction storage, a new trans- action results in the Control
entered a RESET group number. — request honored (IRARMWMN). action is started. For user being associated (IRARMCTL)
command for a (register 1, (00) swapped out users a with the performance
particular address byte 3). or new transaction will be| objective and domain
space. —performance started upon swapin. corresponding to the
group number if workload reporting first period of the
invalid (04) is active, IRARMWRG6 | performance group
or is called to indicate definition.
—ASID aot that a transaction has
currently ended.
assigned (08).
(register 1,
byte 2).
NEWIPS The system e ASID. o Old IPS descrip- | Set to New IPS If Workload Activity The IRARMSET Yes SRM
(32) operator has o Pointer to WMST tion. (IRARMSET). reporting is active for routine is called by Control
-entered a SET describing new o Indication MF/1, the reporting is { IRARMIPS, which is (IRARMCTL)
command with the IPS. (register 1). whether SET terminated (it will performed indirectly,
IPS keyword. command may later be re-established through the action
‘ proceed (indicat- by MF/1}. The per- request routine.
ed by posting an formance group
ECB). number of all active
transactions are
examined. If the
corresponding per-
formance group has
changed in the new
{PS, a new transaction
is begun; if it is the
same, the old trans-
action continues; if the
performance group
number is not defined
in the new IPS, a
default performance
group number is
substituted.
ALTCPREC | As a result of an o CPU address. None None Updates SRM control Yes SRM
(33) error some CPU (register 1). information for logical Control
has had to be channel utilization (IRARMCTL)

LOS'E0°TSA

1Z7-¢ uoneradQ Jo POYIS :T UOKDIS

- N o
Diagram 6-2. SYSEVENT Processor (Part 10 of 16)
'SYSEVENT | When Issued Information Routines Invoked | Funcotion of Invoked SRM Action |SRMLocki £ i To
Passed Returned outine Held
TGETTPUT | ATGET or TPUT e ASID. None Start New Trans- For TGET, indicates Starting a transaction Yes SRM
(34) instruction has o TGET (0} or action the start of a new results in the user being Control
completed some TPUT (1) (IRARMWMN). TSO transaction. If associated with the (IRARMCTL)
1/0 to a terminal. indication. workload reporting first period of his
(register 1, byte is active, IRARMWRG | performance group.
0, bit 0). is called to indicate ’
@ (for TGET) entire that a transaction has
message trans- ended. If the
ferred indicator. TGETTPUT
{0—all transferred; SYSEVENT was pre-
1—at least one ceeded by a TERM-
more TGET WAIT condition the
required). IRARMWMN routine
(register 1, byte was instead called at
0, bit 0). the time the address
space was swapped in.
SYSQSCT The system start/ None None None The SRM saves the No Invoker Via
(35) stop routine has time at which the IRARMI01
been entered to system was stopped.
stop the system.
SYQSCCMP | The system start/ None Steps forward trans- No Invoker Via
(36) stop routine is action starting times IRARMIO1
about to restart by the duration of the
the system. system stoppage.
SETDMN The operator Data area address Return code None Update the domain Yes Invoker Via
(37) entered a SETDMN | (register 1). (register 15) control table with the tRARMIO1
command to Byte 0— 0: Successful new ranges or weights.
change constraint Domain number 4: Invalid
values for a Byte 1— domain
domain. Flags 8: Minimum
Bit 0—New exceeds
minimum passed maximum
Bit T—New
maximum passed
Bit 2—New
weight passed.
Byte 2— New
minimum
Byte 3—New
maximum
Byte 4—New
weight.

LO8'E€0'TSA

(LOS’€0°'TSA) € ownjop Arexqr] 21807 wisAS ISA/SO TT-€

Diagram 6-2. SYSEVENT Processor (Part 11 of 16)
SYSEVENT When Issued Information Routines Invoked | Function of Invoked SRM Action SRM Lock| g, 1o
Passed Returned Routine Held
REQSERVC | Issued by the TSO | @ ASID. ® Return area for Service Calculation | Calculates the service Accumulated service Yes Invoker Via
(38) TIME command, to | ® Address of 4-word| a TSO user: Routine accumulated during information is stored IRARMIO1
obtain user related return area. — Total service {(IRARMWM1), the current “‘in real in the user’s area
service data. (register 1). (word 1). storage’’ interval. This | (while not holding the
— Total trans- is added to previous SRM lock) and under
action active accumulated service the user’s protect key.
time for all to obtain total service.
transactions
{word 2).
— Last per-

formance group
number (word
3,bytes 0 & 1).

— Total number
of transactions
(word 3, bytes
28&3).

@ Return area for a
- non-TSO user:

— Total service
(word 1).

— Total trans-
action active
time (word 2).

— Last per-
formance group
number (word
3,bytes 0 & 1).

o Indication
whether data was
successfully
returned (00) or

not (04).

(register 15,

byte 3).

LOS'€0°TSA

Z uondag

.

1'Z7-€ uonerxdQ jo poylo

-Diagram 6-2. SYSEVENT Processor (Part 12 of 16)

OUXB are reset to
zero on readout. If
requested by
another caller, the
data would be lost
to SMF.

— Pages swapped
out {(word 8).

— Swapouts
(word 9).

— Common area
page-ins
(word 10).

— Common area
reclaims
{(word 11).

— Pages stolen
(word 12).

— CPU page-
seconds
(words 13,14).

Indication

whether data was

successfully
returned (00) or

not (04).

(register 15,

byte 3).

Information :
SYSEVENT When Issued Routines Invoked | “N°tion of Invoked SRM Action |SRMULocki g iiTo
outine Held
Passed Returned
REQPGDAT | Issued by SMF ® ASID. o Return area: None The SRM obtains Yes SRM
(39) during step e Address of 14- — Non VIO page- paging data from SRM Control

termination, to word return area. ins (word 1). control blocks and (IRARMCTL)
obtain user paging (register 1). — Non V10 page- resets related fields in
data. outs (word 2). these blocks to zero.

- Non VIO
Note: This reclaims
SYSEVENT is {word 3).
intended for use — VIO page-ins
only by SMF. It {word 4).
should not be — VIO page-outs
issued by callers {word 5).
others than SMF,. — VIO reclaims
because the related {word 6).
data fields in the — Pages swapped
OUSB and the in {(word 7).

LO8°€0°TSA

Diagram 6-2. SYSEVENT Processor (Part 13 of 16)

(LOS°€0°TSA) € 2wn[oA Arexqiy o807 waysAS ZSA/SO T°TT€

SYSEVENT, may
again be considered
for swapping.

was not authoriz-
ed (08).

(register 1,

byte 3).

SYSEVENT When issued Information Routines Invoked Functl;: zf':nvoked SRM Action SR:" :'d°°k Exit To
Passed Returned utine e
COPYDMDT | Issued when a Pointer to a fixed Pointer to same None Duplicate Domain Yes Invoker Via
{40) “DISPLAY"" area of 2584 bytes. | area. (register 1) Information IRARMIO1
command with the | (register 1). Byte 0and 1 —
keyword “DMN** Count of Domains.
has been entered. Byte 2and 3 —
Reserved.
Byte 4 —
2583 contain copy
of Domain Table.)
DONTSWAP { Issued to notify ® ASID. @ Indication Swap Status Determine SRM Yes SRM
(41) SRM that the whether request Change Request algorithms applicable Control
issuing address was honored (IRARMWMK). to user, and reposition (IRARMCTL)
space must not be {00), was dis- user on SRM swap
swapped out until honored because queue.
either a OKSWAP it was not for the
(42) or INITDET current address
(11) SYSEVENT. space (04), or
was dishonored
because it was
not authorized
(08). (register 1,
byte 3).
OKSWAP Issued to notify e ASID. ® Indication Swap Status Same as for Yes SRM
(42) SRM that issuing whether request | Change Request DONTSWAP (41). Control
address space, was honored (00} | (IRARMWMK). (IRARMCTL)
which had was not for the
previously issued a current address
DONTSWAP space (04), or

LOS’€0'TSA

7 uonoss

€'TT-€ uonerddQ jo poypey

e ~ e
Diagram 6-2. SYSEVENT Processor (Part 14 of 16)
Information 5
SYSEVENT When | i Routines Invoked Functn;:uot\;':: voked SRM Action SR;\:G:': ok Exit To
Passed Returned
REQSWAP Issued when a e ASID. o Indication Control Swapout Initiates the swapout Quiesce is posted to Yes SRM
(43) VARY storage -@ Address of ECB whether request (IRARMCSO). of the address space begin the swapout. If Control
command to be posted (if was honored (see CONTROL swap completion (IRARMCTL)
has been issued, to dependency (00}, was SWAPOUT M.O.). notification is re-
swapout the exists on ignored because quested (by providing
address space that requested swap). the address space an ECB), the ECB will
occupies the (register 1). is non-swappable be posted when the
storage to be taken {04), or was address space is next
offline. ignored because swapped in.
Issued also at job the address space
step initiation of a is in the process
non-swappable of swapout (08).
user, so that, when (register 1,
swapped back in, byte 3).
the user may be
allocated particular
page frames to
enhance recovery
from real storage
errors.
BRINGIN Issued when the ® ASID. Indication Simulate User Invokes IRARMWMU Expedite the swap-in Yes SRM
(44) system operator whether request Ready Notification | to make the memory of a memory that is Control
has issued a was honored (00),| (IRARMHIT). eligible for swap-in. swapped-out. (IRARMCTL)
CANCEL com- or was not hon-
mand for a ored because the
particular job. ﬁdsr?: stggace
process of being
swapped (08).
(register 1,
byte 3).
WKLDINIT | Issued by MF/1to | @ ASID. o Indication Workioad Activity | Constructs and Yes SRM
(45) request that SRM | e Data collection whether request | Recording initializes the work- Control
begin collecting buffer address. was honored Initialization Ioad activity (IRARMCTL)
workload activity (register 1), (00}, was not (IRARMWR1). measurement table
data. honored be- (WAMT)
cause of in- .
correct buffer
size (08), or data
collection is
already active
(20).
(register 15,
byte 3).

LOS'E0'TSA

(L08"€0°TSA) € Swnjo Arexqry 9807 wayshAS ZSA/SO +°CT-€

Diagram 6-2. SYSEVENT Processor (Part 15 of 16)
Information .
SYSEVENT | When Issued Routines Invoked | Function of Invoked SRM Action |ShM Lock| o i To
outine Held
Passed Returned
WKLDCOLL| Issued by MF/1 at e ASID. o Indication Workload Activity | Moves the contents of Yes SRM
(46) the end of a o Data Buffer whether request Recording Data the WAMT into a Control
reporting interval, address. was honored Collection collection buffer. (IRARMCTL)
to collect work- (register 1). (00), whether an | (IRARMWRS3).
load activity data. IPS change has
occurred (04), or
data buffer had
not yet been
established (40).
{register 15,
byte 3).
WKLDTERM | Issued by MF/1to | e ASID. ® Address of the The SRM indicates Yes SRM
(47) terminate work- buffer no longer that workload activity Control
load activity data used by SRM. data collection no (IRARMCTL)
recording, at (register 1). longer be performed.
MF/1 termination e Indication
or when an IPS whether the
change has request was
occurred. honored (00) or
the data collec-
tion buffer had
not yet been
established (40).
(register 15,
byte 3).
Issued by the SRM | @ ASID. None SRM Control Performs control Frees up SRM Yes SRM
(48) when the control ® Address of (IRARMCTL). mainline processing, SRB for reuse. Control
function must be issuing SRB. in the course of which (IRARMCTL)

invoked immediate-
ly (i.e., without
waiting for the next
SYSEVENT issued
by another
component).

(register 1).

a scheduled critical
function will be
performed (see SRM
Control M.O.).

LOS'E0CSA

¢'77-€¢ uoneradQ jo poyd :T uUonodg

Diagram 6-2. SYSEVENT Processor (Part 16 of 16)

number {word
3, bytes 0& 1).

— Total number
of transactions
{word 3, bytes
2&3).

— Session
Residency
time (word 4).

o Return area for

a non-TSO user:

— Total service
(word 1).

— Total trans-
action active
time (word 2).

— Last perform-
ance group
number {word
3, bytes 0& 1).

— Session
Residency
time (word 4).

o Indication
whether data was
successfully
returned (00) or

not (04).

(register 15,

byte 3).

: " SRM
SYSEVENT When Issued Information Routines Invoked Function of SRM Action Lock Exit To
invoked Routine
Passed Returned Held
REQSVDAT | Issued by SMF ® ASID. ® Return area for Service Calculation | Calculates the service | Accumulated service Yes Invoker Via
(49) during job session e Address of 4- a TSO user: Routine ‘accumulated during information is stored IRARMIO1
termination to word return area. — Total service {IRARMWM1). the current “in real in the caller’s area
obtain user related (register 1). (word 1). storage” interval. This | under the caller’s
service data. — Total trans- is added to previous protect key.
action active accumulated service
time for all to obtain total service.
transactions
(word 3).
— Last perform-
ance group

LO8’€0'TSA

IRARMEVT Module Entry Point
Summary

IRARMEVT - SYSEVENT processor.
Begin to process the indicated
SYSEVENT.
IRARMXVT - SYSEVENT retry.
Prepare a retry of a sysevent that had
N incurred a system error.

3-22.6 OS/VS2 System Logic Library Volume 3 (VS2.03.807)

VS2.03.807

IRARMDEL - Synchronize memory delete
processing.
IRARMIPS - Set new IPS.

Invoke IRARMSET to establish a new
IPS.

IRARMUXB - Synchronize OUXB deletion at
swapout completion time.

SRM Control

SRM Control is the dispatcher of SRM. It is
packaged in the module IRARMCTL along with the
swap analysis algorithm and various other SRM
routines (see volume table of contents, figure 2-9).
Most SYSEVENTs which execute holding the SRM
lock exit to SRM Control to perform the following
functions.

+ SRM Control executes deferred actions
(routines which execute on behalf of a single
user memory). Examples of actions are:

« moving a user control block from one SRM
queue to another.

« memory delete processing.

« SRM Control executes deferred algorithms
(routines which execute on behalf of the
entire operating system). Examples of
algorithms are:

+ Real Page Shortage Prevention.

« Real Page Shortage Page Replacement.

« Following the TIMEREXP SYSEVENT, SRM

Control schedules timed algorithms. Examples of

timed algorithms are:

« assigning swappable users their current
workload level (Swappable User Evaluation
Algorithm).

« Keeping the multiprogramming level (MPL)
at its target level in each domain by
performing user swaps (Swap Analysis
Algorithm).

Action/Algorithm Scheduling

Actions and algorithms can be requested/scheduled
by any of the components of SRM. These requests
are processed by request handling subroutines
within IRARMCTL. Requests for actions are
processed in one of the following ways:

« The action is called inline if the SRM lock is
held and if the action was not requested by
another action.

« Otherwise, the action.is deferred. A flag is set
in the OUCB to indicate that the action was
requested.

Requests for algorithms are always deferred. A
flag is set in the RMCT to indicate that the
algorithm was requested. If an action or algorithm
which has been deferred is critical, the request
handling subroutine schedules an SRB to another
entry point, IRARMCED, within IRARMCTL.
IRARMCED executes SYSEVENT 48. SYSEVENT 48
exits to SRM Control where the deferred action or
algorithm is executed.

VS2.03.807

Non-critical actions and algorithms which have
been requested but deferred are executed the next
pass through SRM Control. This execution will
normally occur after processing the next SYSEVENT
while holding the SRM lock.

SRM Control identifies which actions and
algorithms to execute by bit strings in the OUCB
(for actions) and the resource manager control
table (RMCT) (for algorithms). “On”’ bits in the
OUCB (OUCBACN field) and in the RMCT
(RMCTALA and RMCTALR fields) identify deferred
action and algorithm requests, respectively. The
actual addresses of the individual routines that
process actions and algorithms are located in
resource manager entry point elements (RMEPS)
which are chained together. One RMEP chain exists
for actions and another for algorithms. SRM
Control compares the “on” bits in the bit string
(the OUCB or RMCT) against each RMEP in the
action/algorithm RMEP chain. When a match is
found, the entry point address in the isolated RMEP
identifies the action or algorithm routine that will
get control. As a part of routing to the identified
routine, SRM Control turns off the bit in the OUCB
or RMCT used in finding the proper RMEP. When
all bits in the OUCB and RMCT bit strings are “off”’
SRM Control has processed all deferred actions and
algorithms and exits to a return point in the SRM
interface module IRARMINT. Figures 2-9B and
2-9C show in more detail the routines and bit
settings used in processing algorithms and actions.

Swap Analysis

The swap analysis algorithm is concerned with
maintaining the multiprogramming level at the
target value in each domain defined to the system.
A domain is a group of user memories defined in
the installation performance specification (IPS)
which have common execution characteristics (for
example, all TSO users might be assigned to one
domain). The multiprogramming level (MPL) in a
domain is the number of users in that domain
which are in real storage. The target
multiprogramming level is the number of users in
real storage which the SRM resource monitor has
determined is optimal for this domain.

SRM recognizes user memories, (i.e. address
spaces) as being in one of three states. Each state
corresponds in concept to a queue on which OUCBs
that describe address spaces are placed. The three
possible states of an address space are:

IN - The working set of an address space in this
state occupies real storage.

Section 2: Method of Operation 3-23

WAIT- The working set of an address space in this
state does not occupy real storage (that is,
has been swapped out), and the address
space is incapable of being placed into
execution.

OUT - The working set of an address space in this
state does not occupy real storage,
however, the address space is capable of
executing, and may be considered for
swap-in.

The decision to swap address spaces is made
based on a number of input factors supplied by
other SRM functions. The workload manager
provides workload levels for each user. The
resource-use algorithms tell which users are
significant users of system resources (via individual
recommendation values). Swap analysis combines
the individual recommendations of the workload
manager and resource managers into a. composite
recommendation value. The steps of the swap
analysis algorithm are defined below in the order of
execution. In steps one and three all domains are
considered in numerical order. The algorithm is
terminated at the end of any step which has
resulted in at least one swap.

1. Unilateral Swap-Out. In each domain the
required number of user memories are
swapped out to lower the MPL to its target
value. Users which have the smallest
recommendation values (RVs) in each domain
are selected for swap out.

2. Express Swap-In. If there is a user out of real
storage which is enqueued on a resource
requested by another user, the enqueued user
is swapped in if this can be done without
exceeding the target MPL in that domain. If
the MPL would be exceeded, the user with the
smallest RV in that domain is swapped out to
lower the MPL. The enqueued user will be
swapped in on the next invocation of swap
analysis. If no user is swappable, the

3-23.0 OS/VS2 System Logic Library Volume 3 (VS2.03.807)

vS2.03.807

enqueued user is swapped in. This raises the
MPL in that domain above its target
temporarily.

3. Unilateral Swap-In. In each domain, the
required number of user memories are
swapped in to raise the MPL to its target
value. Users which have the largest Rvs in
each domain are selected for swap in.

4. Exchange Swap. For a domain having its MPL
at the target, an in-real-storage user memory
and an out-of-real-storage memory are
selected for an exchange. The user in real
storage with the smallest recommendation
value are selected. The difference in their
recommendation values must exceed a limit
(RMPTXCHT) to proceed with the exchange.
If an exchange is justified, the swap out of
the in-real-storage user is initiated, and the
swap in of the out-of-real-storage user
memory is deferred until a subsequent
invocation of swap analysis.

The following M.O.s describe SRM Control
processing and other important routines within
IRARMCTL:

« Swap analysis (IRARMCAP), which analyzes
users and, if it determines a swap desirable,
requests it.

« Control swap-out (IRARMCSO), which
initiates requested user swap-outs.

« Control swap-in (IRARMCSI), which initiates
requested user swap-ins.

« Select user for swap-in (IRARMCPI), which
finds the user with the highest
recommendation value in its domain.

¢ Select user for swap-out (IRARMCPO), which
finds the user with the lowest
recommendation value in its domain.

o User evaluation (IRARMCVL), which
calculates a recommendation value for a
specific user.

Section 2: Method of Operation 3-23.1

VS2.03.807

SRM Lock Scheduling RMEP Bit SRM Lock Executing RMEP

Held Routine Chain String Held Routines Chain

ACTIONS NO IRARMCRN EPDT OUCBACN** YES {(IRARMCEN, EPDT
YES* IRARMCRT)

ALGORITHMS NO IRARMCRL EPAT RMCTALA i YES (IRARMCEL, EPAT
YES IRARMCRL EPAT RMCTALR IRARMCRT)

TIMED ALGORITHMS YES IRARMCET | IRACTMQE | RMCTALR YES (IRARMCEL, EPAT
IRARMCRT)

*1f SRM lock is held when an action is requested, it is not deferred (except where an action
invokes another action). Contro} passes to IRARMCRY (if the action is IRARMCSI or
IRARMCSO) or to IRARMCRN (for all other actions) and then diréctly to the action.

**During execution this field is inspected only in OUCBs which have been queued on the
action queue by the action-scheduling routine (IRARMCRN).

Figure 2-9B. Processing of Algorithms and Actions in IRARMCTL

3-23.2 08/VS2 System Logic Library Volume 3 (V$2.03.807)

VS§2.03.807

RMEP Algorithm Invocation Flags

Attributes

RMEPFLG 421 21 | 8

T A
*IRARMIL1

*IRARMCL1
IRARMSQA

*IRARMAP1
*IRARMPR1
*IRARMEQ1

*IRARMASM
*IRARMMS6
IRARMPRS

IRARMMS2

Critical
Timed
= 0 (algorithm)

*IRARMRM1
*IRARMRM2

*IRARMWM2
*IRARMCAP

*indicates Timed Algorithm

RMEP Action Invocation Fiags

Attributes

"

RMEPFLG

e s ——— — — — — ——— s —— ——

4

[n

A

W\

[}
IRARMDEL —T

IRARMUXB
IRARMIL4
IRARMIPS

IRARMHIT
IRARMRPS

Figure 2-9C. RMEP Algorithm and Action Invocation Flags

Critical —? I
Timed (algorithms only}

= 1 (action)

Section 2;: Method of Operation 3-23.3

(LO8’€0°TSA) € dwnjoA Arexqry o150 wosAS ZSA/SO ¥T-€

Diagram 6-3. SRM Control IRARMCTL) (Part 1 of 2)

Register 0

Address of SRB

From SYSEVENT
Processor
(IRARMEVT)

Process

Process all actions that have been deferred
and can now be performed.
(See Deferred Action Processor M.O.).

Route control to all algorithms that were

From SYSEVENT . To
Promsorwhen ooy i, and o on e parfred
SYSEVENT gorithm Requ L Return Point
Timerpop (1) is (IRARMI01)
Received)
3 Request the invocation of time-driven
algorithms.
From Dispatcher (See Periodic Entry Point Scheduling M.O.). Step 1
(IEAVEDSO)
Issue SYSEVENT 48 to perform control
‘mainline processing (steps 1 and 2). To
IRARMINT
Entry Point

(IRARMI48)

Control
Mainline
Processing

LO8'€0'TSA

T uoijoas.

§z-¢ uoneradQ jo poyn

Diagram 6-3. SRM Control (IRARMCTL) (Part 2 of 2)
Extended Description Module Label

SRM Control routes control to actions and algorithms IRARMCTL
which have been requested and also to timed algorithms
which have come due.

1 Route control to actions which have been requested IRARMCTL IRARMCEN
but deferred. Actions are SRM functions performed
on behalf of a single user.

2 Route control to algorithms which have been IRARMCTL IRARMCEL
requested. Algorithms are SRM functions performed
on behalf of the system.

3 Request the invocation of time-driven aigorithms IRARMCTL IRARMCET
which are now due. The queue of time-griven

algorithms is scanned, and all algorithms which are due

are requested by turning on representative bits in

RMCTALR. SRM Control now branches to step 1 above.

Continuing with step 2, SRM Control will route control

to those time-driven algorithms which were requested.

4 This SRM Control entry point receives control under IRARMCTL IRARMCED
an SRB which was scheduled by another component

of SRM. The SRB was scheduled on behalf of routines

not holding the SRM lock to execute critical actions and

algorithms. Upon receiving control under the SRB, SRM

Control makes a branch entry into the interface module,

IRARMINT, to execute SYSEVENT 48. The SYSEVENT

processor will in turn branch to SRM Control at step 1.

Control will then be routed to the critical actions and

algorithms which were requested.

LOS'€0°TSA

VS2.03.807

This blank leaf represents pages 3-26 - 3-27 which were deleted by Supervisor Performance *2.

3-26 thru 3-27 OS/VS2 System Logic Library Volume 3 (VS§2.03.807)

A 4

Section 2: Method of Operation 3-27

(LOS’E0'TSA) € swnjoA Arexqiy o180 wajsAS ZSA/SO 8T-€

Diagram 6-5. Deferred Action Processor (IRARMCEN) (Part 1 of 2)

Sequential Flow in
SRM Control
(IRARMCTL)

Input Poce

Deferred Action Processor (IRARMCEN)

RMCTAQHD —— 1 Verify that more users remain on the
deferred action queue.

Continue SRM
Control Mainline
Processing

No OUCBs Remaining
OUCBs

2 Remove the next OUCB from the
deferred action queue,

" Deferred | OUCBACN
Action
Queue L=

Shortened
Deferred
Action
Queue

3 Route control to the action routines
requested for this user,
RMCT

RMCTEPDT

L08'€0°TSA

67-€ uonedQ Jo POYIIW :Z UONTS

Diagram 6-5. Deferred Action Processor (IRARMCEN) (Part 2 of 2)

Extended Description

The Deferred Action Processor routes control to each
requested routine for all OUCBs on the deferred action
queue. The entry point descriptors for all possible
action routines are contained in RMCTEPDT,

1 If the action queue header is pointing to the dummy
pre-assembled QUCB (that is, RMCTAQHD=
RMCTOUCB), then the action queue is empty.

2 The top OUCB is dequeued via compare-and-double-
swap, to prevent multi-processing interaction
problems. CUCBACT is set to zero.

3 IRARMCRT scans the EPDT entry point table
looking for entry point blocks (RMEPs) whose invo-

cation flags match ““one’’ bits in the input bit pattern.

For each successful match, the corresponding entry point

is invoked. The invocation bit of each routine invoked

is set to zero in the input bit pattern. It is possible for

an action routine to call another action routine. In this

case, the new routine request is inserted into the

QUCBACN field, to be picked up during the processing

of this OUCB.

Module Label

IRARMCTL IRARMCEN

IRARMCTL IRARMCEN

IRARMCTL IRARMCEN

IRARMCTL IRARMCRT

LOS'€0°ZSA

(LOS'€0°TSA) € swinjop Arexqry 218077 wdAS ZSA/SO 0€-€

Diagram 6-6. Algorithm Processor IRARMCEL) (Part 1 of 2)

Sequential Flow in

SRM Control
Mainline
(IRARMCTL)

Input

RMCT

Process

RMCTALA

Verify that some algoritﬁms have

i

RMCTALR

been requested.

Continue SRM
Control Processing

No Algorithms Requested

Combine deferred and immediate

algorithm requests.

RMCT

RMCTALA

RMCTALR

RMCTEPAT

3 Route control to the necessary <

algorithms.

Continue SRM
Control Processing

L08°€0°TSA

Z uonoag

1€-€ uoneixdQ jo poyre

Diagram 6-6. Algorithm Processor IRARMCEL) (Part 2 of 2)

Extended Description

Algorithm request routes control to all algorithms that
have been requested and can now be executed. The entry
point descriptors for all possible aigorithm routines are
contained in RMCTEPAT.

1 Some algorithms have been requested if RMCTALA

and RMCTALR are not both zero. Algorithm re-
quests are stored in RMCTALR by SRM locked routines,
and in RMCTALA by SRM unlocked routines.

2 Compare and swap logic is used to insure that all
current requests are obtained for a multiprocessing
environment.

3 IRARMCRT scans the EPAT entry point table
looking for entry point blocks (RMEPs) whose

invocation flags match “one’’ bits in the input bit pattern.

For each successful match, the corresponding entry
point is invoked. For each algorithm called, the invo-
cation bit is set to “zero’’ in the request bit pattern.
Input parameters:

o reg. 1 — address of first entry point block (RMEP)
in the EPAT chained table

o reg. 6 — address of input bit pattern (RMCTALR)

Module Label

IRARMCTL IRARMCEL

IRARMCTL IRARMCEL

IRARMCTL RMCELL1

IRARMCTL IRARMCRT

LO8'€0°TSA

(L08°€0°ZSA) € dwnjoA Azexqr] o807 waysAg ZSA/SO ZE-€

Diagram 6-7. Periodic Entry Point Scheduling IRARMCET) (Part 1 of 2)

Input

IRACTMQE

RMCT

RMCTTMQE

RMCTTOD

RMPT

RMPTTOM

RMPTTOL

FlMEP1

+ FWD

RMEPFLG

RMEPFWD

RMEPTME

RMEPINT

F!MEF’2

From SYSEVENT
Processor as a Result
of SYSEVENT 1

(TN

Process

Periodic Entry Point Scheduling (IRARMCET)

1 Pick up the first algorithm entry point
block from the timed algorithm gueue.

2 Verify that this algorithm is due.

Set a request for executing this

algorithm,

If more algorithms are due, step to the
next one.

Reset the timer expiration,

invoke SRM Control
(IRARMCTL)

RMCTALR

IRARMSRV

IRARMI05

L08°€0°TSA

€€-€ uonendQ Jo poYlN T UOoHISS

Diagram 6-7. Periodic Entry Point Scheduling IRARMCET) (Part 2 of 2)

Extended Description

Periodic Entry Point Scheduling is invoked following an
SRM TQE timer expiration. It sets up requests for all
SRM periodically scheduled algorithms which are then
due. It also requests the resetting of the SRM TQE to
cause an interruption when next required.

1 The timer algorithm queue is ordered by the
RMEPTME value of the RMEP blocks on the
queue.

2 Analgorithm on the time-driven queue is ““due”
if the RMEPTME value is less than the current time
(RMCTTOD) + an allowable tolerance (RMPTTOL).

3 Thealgorithm request field is set up for later action
by algorithm control routing (IRARMCEL).

4 The next RMEP block is obtained from the queue.

B A new timer interruption is requested for the greater

of: the minimum scheduling period (RMPTTOM),
and the smallest time due of a scheduled routine (see
SRM Interface M.O.).

Module

IRARMCTL

IRARMCTL

IRARMCTL

IRARMCTL

IRARMCTL

IRARMSRV

Label

IRARMCET

IRARMCET

IRARMCET

IRARMCET

IRARMCET

IRARMIO0S5

VS2.03.807

This blank leaf represents pages 3-34 - 3-35 which were deleted by Supervisor Performance #2.

334 thru 3-35 0S/VS2 System Logic Library Volume 3 (V$2.03.807)

A 4

Section 2: Method of Operation 3-35

(LOS'€0°TSA) € ownjoA Arexqr o180 wasA§ ZSA/SO 9€-€

Diagram 6-9" Swap Analysis IRARMCAP) (Part 10f2)

Input

Register 2
1 RMCT
Vi

RMCT

RMCTINQE 4

RMCTOTQE

t RMCTDMDT

Domain Descriptor Table

DMDT

From Algorithm
Request (IRARMCEL)

oucs
“IN"
Queue

“IN'
Queue
Header

oucB
“OUT"”
Queue

“OUT"
Queue
Header

Process
Swap Analysis (IRARMCAP)

1 Reinitialize domain descriptor
table.

Swap-out users in domains having
multi-programming level (MPL)
greater than target.

if any swaps

3 Perform EXPRESS SWAP-IN.
Swap-in oldest user who is
enqueued on a critical resource.

If swap

4 Perform UNILATERAL SWAP-IN.
Swap-in users in domains having
MPL less than target.

If any swaps

B Perform EXCHANGE SWAP,
Swap-out user with lowest
recommendation value (RV) in
each domain whose highest user
RV exceeds the lowest by a
threshold.

Return to
Algorithm
Request
(IRARMCEL)

Output

Domain
Descriptor Table
DMDT

2 Perform UNILATERAL SWAP-OUT. .

Return to
Algorithm
Request

(IRARMCEL)

Return to
Algorithm
Request

(IRARMCEL)

Return to
Algorithm
Request

{(IRARMCEL) |

L08'€0°TSA

Z uondes

L£-€ uonessdQ Jo poys

Diagram 6-9. Swap Analysis (IRARMCAP) (Part 2 of 2)

Extended Description

Swap Analysis is performed on a time-driven basis. It is an
algorithm activated by IRARMCET. It is also activated by
the processing of two SYSEVENTS: USERRDY (4) and
SWOUTCMP (15).

1 The Domain Descriptor Table has one entry for each
domain defined by the IPS. Each OUCB on the IN

and OUT queues is examined. Swappable, valid users on

the IN gueue which are not in the process of being swapped

out or moving from one SRM queue to another are

counted in the current multiprogramming level (MPL)

for a domain, as well as users on the OUT queue which

are going in or moving from one SRM queue to another.

Fields in each domain descriptor table entry are

reinitialized with the above MPL count information.

2 Search the domain descriptor table entries for a

domain with an MPL higher than the target value
and swap out the user with lowest recommendation
value (RV). Repeat until the MPL reaches the target
value in every domain.

If at least one swap is performed in this step, swap
analysis ends here. Otherwise, continue at step 3.

3 I there is a user on the OUT queue enqueued on

a critical resource, attempt to swap the user in, If
MPL in that domain is less than the target, swap that
user in. Otherwise, make room for it by a swap out of
the user with the lowest RV. Repeated calls to swap
analysis may be necessary to reduce MPL below target
value to allow the enqueued user to be swapped in. If
there is no enqueued user, continue to step 4. Otherwise
swap analysis ends here.

Label (or
Module Segment)

IRARMCTL IRARMCAP

IRARMCTL IRARMCAP

IRARMCTL IRARMCPO
IRARMCSO

IRARMCTL IRARMCS!

IRARMCTL IRARMCPO
IRARMCSO

Extended Description

4 Search the domain descriptor table entries for a

domain with an MPL less than target and swap in
user with highest RV. Repeat until the MPL (plus users
in the process of being swapped out) reaches the target
in each domain. If at least one swap is done in this step,
swap analysis ends here.

B Search the domain descriptor table entries for a

MPL that equals the target for that domain. In each
of these domains, find the out-of-storage user with the
largest RV to come in, and the in-storage user with the
smallest RV to remain in. If the difference of their RVs
exceeds a threshold (RMPTXCHT), swap out the user
with the lower RV.

Error Processing:

— IRARMERR handles all unexpected errors.

- Any non-zero return codes from called routines
causes Swap Analysis (IRARMCAP) to end without
finishing its processing.

Label (or
Module Segment)

IRARMCTL IRARMCPI
IRARMCS!

IRARMCTL IRARMCPO
IRARMCPI
{RARMCSO

LOS'€0°TSA

V§2.03.807

This blank leaf represents pages 3-38 - 3-39 which were deleted by Supervisor Performance ¥2.

3-38 thru 3-39 OS/VS2 System Logic Library Volume 3 (VS2.03.807)

Section 2: Method of Operation 3-39

(L08'€0°ZSA) € umnjoA Areqry 21807 wolshS ZSA/SO Ob-€

Diagram 6-10. Control Swap-In (IRARMCSI) (Part 1 of 2)

From Swap Status Change

Request (IRARMCRY)
Input ques

Register 4 QucB

} oucs OUCBOUT

Process

1 Check to see if user is already
swapped in.

Obtain user control block
extension (OUXB) for the
user being swapped in.

If unable to obtain OUXB.

3 Initiate swap:in.

If successful, return.

Otherwise, free OUXB
storage.

Output

Return Code

Return to
Swap Status
Change
Request
(IRARMCRY)

IRARMSRV

IRARMID4 entry point
{obtain storage)

D8

Return Code

8

Return to
Swap Status
Change
Request
(IRARMCRY)

IRARMSRV

IRARMI07 entry point
(swap-in request)

Return Code

Return to
Swap Status
Change
Request
(IRARMCRY)

[o]

Return Code

IRARMSRV

IRARMI104 entry point
(free storage)

Return to
Swap Status
Change
Request
(IRARMCRY)

LOS'€0°TSA

I14-¢ uonexadQ Jo poylel g UONIIS

=

Diagram 6-10. Control Swap-In (IRARMCSI) (Part 2 of 2)

Extended Description

Control Swap-In accepts a request that an address space
be swapped in. If the address space is already swapped
in, this is indicated by a return code; if not, control
swap-in initiates a swap-in of the address space.

1 Control swap-in returns to the calling routine
with a return code of 8 if the user for which

a swap-in has been requested has already been

swapped-in. Otherwise, control goes to step 2.

2 The user control block extension (OUXB) is
obtained. It remains in existence as long as
the user is swapped in and is released at swap-out.

3 If the swap-in is successfully initiated

(return code from IRARMI07 equals 0},
the OUXB is cleared, the address of the OUXB is
placed into the ASCB (ASCBOUXB), and the
OUCB going-in bit is set (OUCBGOI).

Otherwise, the storage for the OUXB is freed.

Error Processing:

If an attempt to obtain storage for an OUXB fails
(step 2), or an attempt to initiate a user swap-in
fails (step 3), the user remains on the OUT queue,
and Control Swap-in returns to the caller with an
error return code.

Module

IRARMCTL

IRARMCTL

IRARMSRV

IRARMSRV

IRARMSRV

IRARMCTL

Label {or
Segment)

IRARMCSI

IRARMCSI

IRARMI104

IRARMI07

IRARMI04

IRARMCSI

LO8'€0°TSA

(L08"E0°TSA) € dwnjoA Arexqr] o1BoT wayshs ZSA/SO TH-€

Diagram 6-11. Control Swap-Out (IRARMCSO) (Part 1 of 2)

| Input

Register 4
= |doucs

oucB

From Swap Status
Change Request
(IRARMCRY)

OUCBQFL

OUCBASCB

2

ASCB

ASCBECB

Process

Control Swap-Out (IRARMCSO)

Output

Return
Code

1 Check to see if the user is already

swapped out.

2 Initiate a swap-out of the
current user, by posting
the Region Control Task

3 If swap-out is successfully initiated,
place user at top of dispatching
queue and

pass back “‘successful’ return code;

Return to Swap
Status Change
Request
(IRARMCRY)

IRARMSRV

IRARM106
Cross Memory
Post

IRARMSRV

IRARMI02
ASCBCHAP
Request

Return
-- Code

Return to Swap
Status Change
Request

Otherwise, return unsuccessful.

Return
(IRARMCRY) Code
I N
Return to
Swap Status
Change
Request

(IRARMCRY)

LOS’€0°TSA

¢ uonoes

€y-¢ uoneradg jo poyls

Diagram 6-11. Control Swap-Out (IRARMCSO) (Part 2 of 2)

Extended Description

Control Swap-Out accepts a request that an address space
be swapped out. If the address space is already swapped-
out, this is indicated by a return code; if not, control
swap-out initiates the swap-out of the address space.

1 Control swap-out returns to the calling routine

if the user for which a swap-out has been requested
has already been swapped out. Otherwise, control goes
to step 2.

2 The supervisor service request routine requests the

initiation of quiesce processing for the user to be
swapped out. This request results in the posting of an
ECB for the indicated address space, so that the RCT
will begin quiesce processing.

3 To expedite quiesce processing, request that
the user’s ASCB be moved.

A successful return indicates that the post of quiesce
processing has been scheduled for the address

space. The progress of quiesce processing will be
indicated to the SRM by future SYSEVENTSs
(typically, quiesce started, followed by quiesce
completed, followed by swap-out complete).

Module

IRARMCTL

IRARMCTL

IRARMSRV

IRARMSRV

Label
(or Segment)

IRARMCSO

IRARMCSO

IRARMI06

IRARMI02

LOB'€0°'TSA

(LOS"€0°ZSA) € dunjoA Axe1q)] 91807 WAISAS ZSA/SO 0'€h-€

Diagram 6-11A. Select User for Swap-In (IRARMCPI) (Part 1 of 2)

Input

Register 11

Domain Table Entry

RMCT

RMCTOTQE

From Swap
Analysis (IRARMCAP)

Process

1 Compute composite recommendation
value (RV) for each user (in domain)
on OUT queue, which is not already
scheduled for swap-in.

2 Select user with highest RV,

Return to Swap
Analysis (IRARMCAP)

Output

Register 4

1 oucs

LOS'€0°TSA

7 uonoasg

.
.

I'ep-€ uonesxdq Jo poyrol

Diagram 6-11A. Select User for Swap-In (IRARMCPI) (Part 2 of 2)

Extended Description

This routine chooses the user with the highest RV in a
particular domain on the OUT queue. |f one of the users
represented by an OUCB in this domain is assigned to'a
different domain, for example, because of a period
change, return a code of zero indicating no user found.
In this case, swap analysis (IRARMCAP) is rescheduled
to ensure that the domain descriptor table is initialized
to reflect this domain change. The following two steps
are performed in a loop until all OUCBs on the OUT .
queue have been evaluated.

1 Examine each OUCB on the OUT queue for users
in the specified domain. Use the user evaluation
subroutine to compute the composite RV for each user.

2 Compare the computed RV to that of the highest

RV found up till now. Save this OUCB as the best
candidate for a swap-in if its RV is greater. Otherwise,
continue until all OUCBs on the OUT queue in this
domain have been evaluated.

Module Label

IRARMCTL IRARMCPI

IRARMCTL 1RARMCPI

IRARMCTL IRARMCVL

IRARMCTL IRARMCP!

L08'€0°TSA

(L0OS'€0°TSA) € dWInjoA Areiqr] o80T wsAS ZSA/SO T'EH-€

Diagram 6-11B. Select User for Swap-Out (IRARMCPQ) (Part 1 of 2)

Input

Register 11

Domain Table Entry

RMCT

RMCTINQE

From Swap
Analysis (IRARMCAP)

Process

1 Compute composite recommendation
value (RV) for each user {in domain)
on IN queue which is not already
scheduled for swap-out.

2 Select user with lowest RV.

Return to Swap
Analysis (IRARMCAP)

Output

Register 4

1 oucs

L08°€0°TSA

Z uondeg

€€y uoneradQ jo poyIdN

Diagram 6-11B. Select User for Swap-Out (IRARMCPO) (Part 2 of 2)
Extended Description Module Label

This routine chooses the user with the lowest RV in a IRARMCTL IRARMCPO
particular domain on the IN queue. If one of the users

represented by an OUCB in the domain is assigned to a

different domain, for example, because of a period change,

return a code of zero indicating no user found. In this

case swap analysis (IRARMCAP) is rescheduled to ensure

that the domain descriptor table is initialized to reflect

this domain change.

The following two steps are performed in a loop until all
QUCB'’s on the IN queue have been evaluated.

1 Examine each OUCB on the IN queue for users IRARMCTL IRARMCPO
in the specified domain. Use the user evaluation

subroutine to compute the composite RV for each user. IRARMCTL IRARMCVL

2 Compare the computed RV to that of the lowest IRARMCTL IRARMCPO

RV up till now. Save this OUCB as the best
candidate for a swap-out if its RV is lower.

Otherwise, continue until all OUCBs in this domain on
IN queue have been evaluated.

LO8’€0°TSA

Diagram 6-11C. User Evaluation (IRARMCVL) (Part 1 of 2)

From Select User for Swap-In (IRARMCPI) or
Select User for Swap-Out (IRARMCPO)

(L08°€0°TSA) € dumjo Areiqr] o180 waIsAS ZSA/SO bEh-€

Input

RRPA

RRPATOD

oucs

OUCBTMA

WPGD

oucB

Performance OUCBTMP
Group WPGLISV
Descriptor

WPGLDUR OuUCBWMS

RRPA OouUXB
RRPATOD OUXBPRS
OUXBTRS
Performance
WMST Objective
Workload
Manager l j I J
Specification ASCB OUXB
Table I I l l
QuCB
OUCBWMR
OUCBRMA

Process

1

3

Check to see if a workload manager
recommendation value has been
computed within a time less than a
threshold.

‘

If the computation is.recent. Go to Step 3

Calculate the new workload

Output

manager recommendation value.

OUCBWMR

If RTB=1 (OUCBRMA) then

calculate the composite RV,
based on 1/0 and CPU usage.

Return to Caller
Select User for Swap-in (IRARMCPI) or
Select User for Swap-Out (IRARMCPO)

OUCBIRV

OUCBCRV

OUCBCMRV

LOS’€0°TSA

0-STLO-8TAS Jo a8eg

§'ep-¢ uoneradQ Jo POYIIW T UONOAS

Diagram 6-11C. User Evaluation (IRARMCVL) (Part 2 of 2)

Extended Description

User evaluation computes a recommendation value (RV)
for one user based on its workioad manager
recommendation value and its |/O and CPU recommenda-
tion values.

1 A new value is calculated for the workload manager
RV only if sufficient time has elapsed since its

previous calculation. This time is called threshoid 2.

{Swap Analysis evaluating threshold RMPTSAET).

2 Compute the workload manager recommendation

value (the normalized workload level) representing
the desirability of a swap of this user. This value is based
on the rate at which he has recently been receiving
service and on the IPS.

3 If the applicable RTB is 1, add to the workload level
an 1/0 manager recommendation value (for

significant users of 1/0) and add a CPU manager

recommendation value (for significant users of the CPU

resource). A positive RV favors the swap-in of a user

to correct a CPU or 1/O imbalance and a negative RV

favors the swap-out of a user.

Module

IRARMCTL

IRARMCTL

IRARMWLM

IRARMIOM

IRARMCPM

Label

IRARMCVL

IRARMCVL

IRARMWM3

IRARMIL3

IRARMCL3

xo ¥

L08'€0°TSA

IRARMCTL Module Entry Point
Summary

IRARMCTL - Mainline Control Processing.
Transfers to deferred user action
processing (IRARMCEN) and then to
the algorithm request routine
(IRARMCEL).

IRARMCEN - Deferred User Action Processing.
Examines the OUCBACN field of the
OUCB to determine the users on the
action queue and routes control to all
routines whose request bits have been
set in the OUCBACN field. Dequeues
each OUCB after its indicated actions
have been performed.

IRARMCEL - Algorithm Request Routine.
Examines the RMCTALR and
RMCTALA fields in the RMCT and
routes control (via IRARMCRT) to
each algorithm whose request bit has
been set in either of the two fields.
Resets the individual request bit after
each algorithm completes.

IRARMCET - Periodic Entry Point Scheduler.
Accepts timer interrupts, schedules
the algorithm currently due for
execution and requeues the SRM timer
element to permit interrupts again
when the next algorithm is due for

; execution.

IRARMCED - SRB Dispatched Original Entry
Processor.

Receives control under an SRB
scheduled by the dispatcher and sets
up an entry to the mainline of
SRM(IRARMCEN) by issuing
SYSEVENT 48.

IRARMCQT - Periodically-Invoked Entry Point
Rescheduler.

Accepts a request to reschedule the
execution of a periodically invoked
algorithm and requeues the
corresponding RMEP block on the
timed entry queue.

IRARMCRD - SRB Scheduling Routine.

Accepts a request to schedule the
SRM SRB which if available is
scheduled to obtain the SRM lock.

IRARMCRL - Algorithm Scheduling Routine.
Accepts requests for an algorithm to
be run. Turns on the bit associated
with the algorithm in the RMCTALA
or RMCTALR.

3-43.6 0OS/VS2 System Logic Library Volume 3 (VS2.03.807)

vS2.03.807

IRARMCRN - Action Request Routine.
Accepts requests for an action which
must run under the SRM lock. If the
SRM lock is held, control passes
immediately to the action via a
routing routine. If the SRM lock is not
held, the bit is set in the OUCBACN
field of the OUCB associated with the
requesting user that identifies that the
action requested is deferred.

IRARMCRT - Entry Point Table Scanner.
Accepts an invocation bit pattern and
an entry point table address.
Compares the bit pattern to
invocation flags in the entry point
table entries. Invokes the routine
identified by the entry point when a
match is found between the bit
pattern and the invocation flags.

IRARMCRY - User Swap Request Receiving
Routine.
Accepts a request for a user swap
and checks to see if such a swap is
already in progress. Routes control to
IRARMCSO or IRARMCSI if a swap is
not in progress and the SRM lock is
held.

IRARMCSI - User Swap-In Request.
Accepts a swap-in request, allocates
an OUXB for the user and initiates the
swap-in.

IRARMCSO - User Swap-out Request.
Accepts a swap-out request and posts
the region control task’s quiesce
routine to initiate the swap-out.

IRARMRPS - OUCB Repositioning Routine.
Dequeues an OUCB and requeues it at
the end of the queue specified in its
OUCBQFL field.

IRARMWMY - Periodic Entry Point Requeuing
Routine.
Requeues all of the members on the
Timed Algorithm Queue and adjusts
all the time-due fields.

IRARMCAP - Swap Analysis Algorithm.
Attempts to keep the
multiprogramming level (MPL) at its
targei level in each domain by
performing user swaps.

IRARMCPI - Select Swap-In Candidate Subroutine.

' Scans the OUT queue for the user in

a particular domain with the highest
recommendation value.

hE- 4

™

vVS2.03.807

IRARMCPO - Select Swap-Out Candidate
Subroutine.
Scans the IN queue for the user in a
particular domain with the lowest
recommendation value.

IRARMCVL - User Swap Evaluation Routine.
Computes a numerical value
representing the recommendation of a

user to be swapped in. This
recommendation value is the sum of
the user’s workload level and the
recommendations of the I/0 and CPU
resource managers.

Section 2: Method of Operation 3-43.7

3-44 0S/VS2 System Logic Library Volume 3 (VS$2.03.807)

NSl 4

Resource Use Algorithms

The resource management algorithms are concerned
with improving overall system resource utilization.
These include:

Storage Management

« Page Replacement - This function maintains
an up-to-date indication of which frames have
gone unreferenced for the longest period of
real time and the age of the oldest
unreferenced frame in the system. This is
accomplished by invoking the real storage
manager’s (RSM) routine IEAVRFR, real frame
replacement (RFR), at periodic real time
intervals so that RFR may increment the
unreferenced interval count (UIC) for those
unreferenced since the last RFR invocation. If
RFR finds that an allocated frame was
referenced in the last interval it resets the UIC
to zero. When the page replacement algorithm
completes updating the UIC’s for all allocated
frames it then saves the highest UIC in the
system for use by the real page shortage
prevention algorithm and the resource
monitor algorithm.

« Real Page Shortage Prevention - This
function is invoked by SRM when the
available frame queue falls below the
available frame queue LOW threshold
(PVTAFCLO) so that SRM can take action to
remedy the existing real page shortage. When
the real page shortage prevention algorithm is
notified of a real page shortage it will steal
frames from all users and the system pageable
area (SPA). It steals the oldest unreferenced
allocated frames in the system starting with
the highest UIC as saved by the page
replacement algorithm until the count of
available frames plus the count of the pages
stolen exceeds the available frame queue OK
threshold. (PVTAFCOK).

« Auxiliary Slot Shortage Prevention - This
function is invoked at periodic intervals to
check for two levels of auxiliary slot
shortages. Reaching the first level threshold
causes the creation of memories to be
prevented, the swap-out of the batch user
who is acquiring auxiliary storage slots at the
greatest rate, the delay of newly initiated
jobs, and the setting of all domains to their
minimal MPL. Messages are written to the
operator indicating the occurrence of either of
the shortages and the jobnames of the users

VS2.03.807

swapped out because of the shortage.
Additionally, when this function determines
that the auxiliary slot shortage is relieved a
message is written to the operator indicating
the alleviation of the slot shortage. Creation
of memories is again allowed and those
memories that were swapped out are again
made eligible for swap-in.

SQA Shortage Prevention - This function is
invoked by the virtual storage manager (VSM)
when a shortage of system queue area (SQA)
space is detected. This function will then
prohibit the creation of memories for the
duration of the SQA shortage and notifies the
operator of the existence and severity of the
shortage. Also, a message is written to the
operator when VSM informs this function that
the SQA shortage has been relieved and the
creation of memories is again permitted.
Pageable Real Storage Shortage Prevention -
This function is invoked by the real storage
manager (RSM) when the percentage of fixed
frames to total frames exceeds a predefined
limit. This function will then prohibit the
creation of memories, initiate a swap-out for
the swappable user who has allocated the
greatest number of fixed frames, deiay newly
initiated jobs, and set all domains to their
minimal MPL. The operator is notified of the
existence and severity of the pageable storage
shortage and of the identity of the swapped
users. Additionally, when this function
determines that the shortage has been
relieved, a message is written to the operator
indicating the alleviation of the shortage.
Creation of memories is again allowed, and
those memories that were swapped-out are
again made eligible for swap-in.

I/0 Management

Device Allocation - This function makes
device allocation decisions, based on 1/0 load
balancing considerations when a choice must
be made from more than one device
candidate. The device allocation decision is
made by applying the following rules to the
list of candidates (in the order indicated):

1. If the request is for tape, eliminate all
candidates on ready devices (eliminate
premounted tape drives) and on devices
that contain passed volumes.

Section 2: Method of Operation 3-45

2. Choose the candidates on the logical
channel with the lowest utilization. The
utilization takes into account any datasets
previously allocated to the logical channel.

3. Choose the direct access candidates with
the lowest allocated user counts.

4. From a list of equal candidates, choose one
at random.

5. Insure that the selected candidate device
has not been previously allocated to the
same user.

1/0 Load Balancer Swap Analysis - Consists of a
set of routines that monitor 1/0 logical channel
usage of certain users. Users are recommended for
swapping based on the extent to which the swap-in
or swap-out of a user would correct a detected 1/0
system imbalance. The I/0 load balancer
recommendation is scaled so that it will never be
greater than one-fifth the highest possible workload
level possible with the IPS currently in effect. This
recommendation will then be multiplied by the 10C
resource factor coefficient (RFC) as specified in
parmlib member, IEAOPTXX.

CPU Management

« Automatic Priority Group (APG) Management
- Records a subset (16 dispatching priorities)
of the ASCB dispatching queue. The APG.
contains three groups. Users in one group will
have their dispatching priorities based on the
user’s mean execution time before entering a
wait state. This wait is defined as any time a
task issues WAIT, goes into page wait, or
enters terminal wait and there are no other
ready tasks in this address space. Users who
quickly release the CPU are given a high
dispatching priority within the subset. A
second group contains users having fixed
priorities. A third group consists of users at
one.rotate priority where each user at this
priority is periodically moved to the top of
the priority group.

3-45.0 OS/VS2 System Logic Library Yolume 3 (VS2.03.807)

VS2.03.807

e ENQ/DEQ Algorithm - Inhibits the swap-out
of users who are in control of (enqueued
upon) resources in demand by other system
users. Swap-out is prevented until the
resource is released or the user has executed
for the interval specified in the enqueue
residence value (ERV) installation tuning
parameter.

« ,CPU Load Balancer Swap Analysis - Consists
of a set of routines that monitor the
system-wide CPU load. They recommend users
for swapping when the system is under-or
over-utilized, and when users exist who would
improve the imbalance- by being swapped in
or out. The CPU load balancer’s
recommendation is scaled so that it will never
be greater than one-fifth the highest possible
workload level possible with the 1PS currently
in effect. This recommendation will then be
multipled by the CPU resource factor
coefficient (RFC) as specified in the parmlib
number, IEAOPTXX. :

Resource Monitor

» Resource Monitor - This function monitors
several system resource usage indicators.
After a number of sample intervals have
completed, the resource monitor will average
the resource usage over the sample intervals,
and based on resource usage thresholds, will
recommend to the domain MPL adjustment
routine that the system multi-programming
level (MPL) be either raised, lowered, or
remain the same.

¢ Domain MPL Adjustment Routine - This
routine will raise or lower individual domain
multi-programming levels based on input from
the resource monitor and the domain weight
factor as provided in the domain descriptor in
the 1IPS.

Section 2: Method of Operation 3-45.1

(L08'€0°ZSA) € dunjop Arexqr] o180 walsAS ZSA/SO 9p-€

Diagram 6-12. Storage Management (IRARMSTM) (Part 1 of 8)

From Algorithm Processor (IRARMCEL)
as a Result of a Request by Periodic Entry

Point Scheduling (IRARMCET) Process

Input

RMCT

1 Examine each user in main storage
and the system pageable area and
call RSM real frame replacement
for each user to update their UICs.

RMCTINQE 4

IRARMSRV

17| 1rRARMIO3
RFR Interface

oucsB
“In Queue’”
2

“In Queue”’
Header

|

OUXBs

| PVT

Output

RFR Parm List

ouxs

count of pages

flags

OouXBUIC

criteria number

OUXBSTCT

A ascB

-

PVT

count of pages

flags

PVTCHUIC

criteria number

A Ascs

MCT

2 Find the highest system UIC.

PVTCHUIC - OUXBUIC

. MCT PR1 RMEP

MCVSTCRI

PRI RMEP

3 Adijust invocation interval for this

MCVSTCRI

routine.

Invocation
Interval

Interval |
Thresholds

p To Algorithm
Processor
(IRARMCEL)

RMEPINT

LOS’€0°TSA

Lp-¢ uonerad(Jo Poylel :g UORDIS

—r

Diagram 6-12. Storage Management (IRARMSTM) (Part2 of 8)
Extended Description ‘ Module

Storage Management consists of essentially independent IRARMSTM
routines that are invoked by SRM Control or by the

SYSEVENT Processor to control the usage of main and

auxiliary storage by all users. For non-swappable users

(users whose fixed storage must remain in real storage),

the mechanism of page stealing (freeing non-fixed pages

for other use) is used for storage management control.

For swappable users, both page-stealing and swapping

provide the necessary control.

1 For each user in main storage and for the system IRARMSTM
pageable area build an entry in the parameter list
for RSM’s real frame replacement routine, IEAVRFR, IRARMSRV

In these entries indicate that the unreferenced interval
counts are to be updated. RSM examines the UICs
associated with each of the user's pages. If the page
reference bit is on, the UIC for this page is set to zero,
and the reference bit reset.

If the reference bit is off, the corresponding UIC is
incremented by one. RSM then saves the highest

UIC count for each user in the corresponding OUXB.
The highest UIC for the system pageable area is saved
in PVTCHUIC.

2 The highest UIC found in any memory or system IRARMSTM
pageable area is identified and saved in MCVSTCRI.

This value will be used by the force steal routine

(Step 4) as the criteria at which RSM will begin stealing

pages.

3 If the highest UIC found in any memory or system IRARMSTM
pageable area, MCVSTCRIU, is greater than a thres-

hold (MCCUICBD), the invocation interval for

IRARMPR1 is incremented.

Label

IRARMPR1
STEAL
IRARMI09

IRARMPR1

IRARMPR1

LO8'€0°TSA

(LOS'€0°TSA) € awnjop Arexqr] o180 WSAS ZSA/SO 84-€

Diagram 6-12. Storage Management (IRARMSTM) (Part 3 of 8)

From Algorithm Processor as a Result of
a Request by Algorithm Request
Input (IRARMCRL)

MCT RMCT

MCVFRCNT RMCTINQE -

MCVSTCRI

-

“In Queue’’
1 oucs
Header “In Queue”

4

From Algorithm
Processor as a
Result of a
Request by
Algorithm Request
(IRARMCRL)

PRI RMEP

Initial RMEPINT
" Value

MCT PVT

MCTAVQI PVTAFCOK

PVTAFC

Process

Steal as many pages as required to

relieve the real page shortage. The
decision to steal is made at
IRARMMS2 (see step 5).

IRARMSRV

IRARMIO3
RFR Interface

Return, To Algorithm Processor
: (IRARMCEL)
Reset IRARMPR1 invocation
interval.
if AVQLOW level 1,2 0r 3
calculate number of pages needed
to be stolen and schedule
IRARMPRS5 (step 4) to be executed.
Return. To Algorithm Processor

(IRARMCEL)

Output

RFR Parm List

CNT pages

flags

steal
criteria

A AscB

ouXxsB

OUXBSTCT

PRI REMP

RMEPINT

MCT

MCTFRCNT

RMCTALA

LOS'€0°TSA

7 uonoag

6¥-¢ uoneradQ jo poyoW

Diagram 6-12. Storage Management (IRARMSTM) (Part 4 of 8)

Extended Description Module Label

4 ' The Real Page Shortage force steal routine is a IRARMSTM IRARMPRS
co-operative effort between the SRM and RSM. STEAL

SRM calls the RSM routine, IEAVRFR, passing a IRARMSRV IRARMIO3

parameter list identifying an in storage user, the number of
pages needed and a steal criteria number, MCVSTCRI.
All pages associated with this user that have a UIC
greater than the steal criteria are no longer considered
part of the user’s working set and are stolen. If not
enough pages were stolen, another user is identified
and IEAVRFR will steal all pages associated with this
user that have a UIC greater than the steal criteria.

If, after all eligible users have been stolen from at

this criteria, pages are still required, the steal criteria
will be decremented by one and the process repeated
until no further pages are required. The result of this
procedure is that the oldest unreferenced system wide
pages are stolen first. Pages in the common system
area and link pack area are not associated with any
specific user. RSM examines these pages when SRM
page replacement calls it with an ASCB address of zero.

B The SRM will have received an AVQLOW IRARMSTM IRARMMS2
SYSEVENT if there is a shortage of real page

frames. Reset the IRARMPR1 interval back to its

original value. If the invocation is due to AVQLOW

level 1, 2 or 3 (real page shortage) caiculate the

number of pages needed to get the available frame

queue back to the OK threshold and invoke the IRARMCTL IRARMCRL '

forced steal algorithm via the algorithm request
mechanism.

LO8’€0°TSA

(LOS'€0°TSA) € suwmjop Arexqr] o807 waysAS ZSA/SO 0S-€

Diagram 6-12. Storage Management (IRARMSTM) (Past 5 of 8)

Input
MCT PVT
MCTFAVQ PVTCNTFX
PVTMAXFX
PVTPOOL
PVTFIXOK
RMCT
RMCTINQE |
oucsB
“In Queue”
“‘In Queue”’
Header 1
oucs ASCB
“In Queue”’

Execution
Time

ouUXxs

Base
Values

Process

@ If there is a shortage of pageable

real storage frames, notify the
operator.

Set the domain targets to the
minimum and request the swap-out
of selected users.

From Algorithm
Processor
(IRARMCEL) as
a Result of a
Request by
Periodic Entry
Point
Scheduling
(IRARMCET)

Return.

7 Request the swapping of users

determined to be in a wait state
for a sufficient period of time.

Return.

IRARMSRV

Process

= 7] \raRMIO9

Issue Msg

IRARMCTL

B "| I1RARMCSO

Control

Swap Out

——

DMDT

To Algorithm
Processor
(IRARMCEL)

IRARMCTL

IRARMCSO
Control
Swap Out

TARGETS

To Algorithm Processor

(IRARMCEL)

LO8'E0°TSA

15-¢ uoneradQ Jo poylol :z UondIAS

Diagram 6-12. Storage Management (IRARMSTM)

Extended Description

6 Pageable Real Frame Shortage, indicated by

AVQLOW Level 4, checks for two levels of
shortages. A first level shortage causes the prevention
of further memory creates, the setting of domain targets
to minimums, the delay of newly-initiated jobs and-
the swap out of the user which has the greatest number
of fixed frames. When the second level is reached,
another swappable user with the greatest number of
fixed frames is also swapped-out. Messages indicating
the occurrence of both levels and a message identifying
the users swapped are written to the console. A
message is also written indicating the alleviation of the
shortage. '

7 Users who issue a long wait macro instruction will
be detected by the SRM when the wait macro
processor issues the NIOWAIT SYSEVENT. Users who
do not issue a long wait macro instruction to notify
the SRM that they will be in the wait state for a “long"”’
time will be detected when they have gone without
executing for a sufficient period. At this time, swappable
users will be swapped-out.

(Part 6 of 8)
Module

IRARMSTM

IRARMSRV

IRARMSTM

Label

IRARMMS2

IRARMI09

IRARMMS6

e F

L08'€0°TSA

Diagram 6-12. Storage Management (IRARMSTM) (Part 7 of 8)

From Algorithm processor (IRARMCEL) as a request
by Periodic Entry Point Scheduling (IRARMCET) '
Input

Process Output

(LOS€0°TSA) € SwnjoA Arexqry o180 wolsAS ZSA/SO 0'1S-€

| mcT RMCT

MCCASTM1 RMCTINQEY
MCCASMT2

“In Queue” |
Header

oucs
“In Queue”’

ASMVT

ASMSLOTS
ASMVSC | From Algorithm

ASMNVSC) ! Processor as a

| Resultofa
ASMERRS ‘ | Requestby
i | Algorithm Request
(IRARMCRL)

MCT

MCTSFLGS

MCTOFLGS

To Algorithm
Processor
(IRARMCEL)

IRARMSRV
IRARMI09 Message to
Issue Msg Operator
IRARMCTL
\ IRARMCSO
8 If there is a shortage of auxiliary Control
storage pages, notify the system Swap Out DMDT
operator, and request the swap-out
of selected users. Targets
To Algorithm
Return. Processor
(IRARMCEL)
MCT
Inform system operator of a critical MCTOFLGS
system queue area page shortage,
or of the alleviation of such a
shortage.
- IRARMSRV
- IRARMI09 Message
Return. Issue Msg w

LO8’€0°TSA

FAL I EEIN

I'Is-€ uonesadQ Jo poyIoN

Diagram 6-12. Storage Management (IRARMSTM)
Extended Description

8 Auxiliary Storage Shortage Monitoring checks for
two levels of auxiliary storage page shortages. The
first level shortage causes: the prevention of memory
creates, the setting of domain targets to minimums,
the swapout of the swappable user who is acquiring
auxiliary storage pages at the greatest rate, and the
delay of newly-initiated jobs. Messages indicating the
occurrence of either shortage level and the users
swapped due to the shortage are written to the console;
likewise messages are written indicating the alleviation
of shortages.

9 The system queue area message writer is invoked by

SYSEVENT SQALOW or SQAOK to write shortage
messages to the system operator. The messages cannot
be written directly by the invoking routines since the
SRM lock must be held. The SRM will not permit the
creation of new address spaces when an SQA shortage
exists.

(Part 8 of 8)
Module

IRARMSTM

IRARMCTL

IRARMSRV

IRARMSTM
IRARMEVT
IRARMEVT

Label

IRARMASM

IRARMCSO

IRARMI09

IRARMSQA
IRARME25
IRARME?26

LOS’€0'CSA

VS2.03.807

IRARMSTM Module Entry Point IRARMMS6 - Main Storage Occupancy Long Wait

Summary Detection.
Discover users who have gone into

long wait without notifying SRM.
Swapout such users, if swappable.

IRARMASM - Auxiliary Storage Shortage
Monitoring.

Monitor extent of auxiliary shortage
allocation. If auxiliary pages are in
short supply, inform operator and
direct swaps of users who are most
rapidly acquiring auxiliary storage
slots,

IRARMSQA - SQA Shortage Message Writer.
Inform operator of system queue area
shortages.

STEAL - Internal STM Steal Subroutine.

Add users to RFR interface list until
full, then call RSM Real Frame
Replacement (RFR) routine (via
IRARMI03) and record the number of
pages stolen.

IRARMPR1 - Page Replacement Normal Processing.
Examine each user in main storage
and the system pageable area and call
RSM real frame replacement for each
user to update UICs.

IRARMPRS - Page Replacement Real Page Shortage
Force Steal.

Steal as many pages as required to
relieve a real page frame shortage.
The steal decision is made at entry
IRARMMS2. The oldest unreferenced
system-wide pages are stolen first.

IRARMMS?2 - Real Page Shortage Prevention.
Calculate the number of frames
necessary to reach the O0.K. threshold
and schedule IRARMPRS processing (if
a real page shortage exists). Inform
the operator of users which have the
greatest number of fixed frames and
direct the swaps of these users (if a
pageable real page shortage exists).

3-51.2 0S/VS2 System Logic Library Volume 3 (VS2.03.807)

Section 2: Method of Operation 3-51.3

VS§2.03.807

This blank leaf represents pages 3-52 - 3-53 which were deleted by Supervisor Performance *2.

3-52 thru 3-53 0S/VS2 System Logic Library Volume 3 (VS2.03.807)

Section 2: Method of Operation 3-53

(LOS'€0°TSA) € swnjop Arexqry 21807 wasdS ZSA/SO #S-€

Diagram 6-14. I/O Management (IRARMIOM) (Part 1 of 2)

From Algorithm
Processor (IRARMCEL)
as a Result of a Request
by Periodic Entry Point
Scheduling

Input {IRARMCET) Process

1/0 Management (IRARMIOM)

10S Logical
Channel Table

RLCT

Output.

RLCT

RLCTUTIL

1 Compute logical channel utilization values.

SRM Logical
Channel Table

ICT

| 1/0 Management
. Control Table

ouxs
(Extension block
for users in real
storage)

2 Initiate the updating of user {/O profiles for
heavy 1/0O users who have not recently been
monitored (swapped).

‘| FromQSCEST (12)
1/0 Usage 21 in Sysevent Processor
Information i1 (IRARMEVT)

ICT

3 Update user /O profiles.

ICVLCBPT

From User Swap

Evaluation

(IRARMCVL)
T . | During Partial Swap

IMCB Analysis

(1/0 measurements .| (IRARMCAP)

control block) :

Return to
Sysevent
Processor
(IRARMEVT)

RLCTRQRT

RLCTRVUF

oucB

4 Compute a value representing the

Recommendation
Value
(OUCBIRV)

RLCT

L 1

desirability of the swap-in or swap-out
of a user.

Return to Swap
Evaluation
(IRARMCVL)

Time of
Recommendation
(OUCBTIO)

LOS'€0°TSA

6S-€ uonerad(Jo oy :g Uonoeg

Diagram 6-14. 1/0 Management (IRARMIOM) (Part 2 of 2)

Extended Description

1/0 Management consists of a set of routines that monitor
the 1/0 logical channel usage of certain users. They recom-
mend users for swapping based upon the extent to which
the swap-in or swap-out of a user would correct a detected
/O system imbalance. One 1/0 management function is
described elsewhere:

@ 1/0 load balancing IMCB (1/0 measurement control
block) deletion is performed due to execution of the
INITDET(11) SYSEVENT and is described in the
SYSEVENT Processor M.O.

1 For each logical 1/O channel in the system, the follow-
ing are calculated:

e Logical channel utilization (the percentage of recent 1/0
requests for the channel that encountered a busy
condition.

e Logical channel request rate (rate of recent 1/0 requests
per second).

® Logical channel utilization factor (difference between a
threshold utilization and actual utilization, squared, with
a sign indicating whether the logical channel is over-
utilized or under-utilized; for logical channels with a
balanced 1/O utilization, the factor equals zero).

Module Label

IRARMIOM

IRARMIOM IRARMIL4

IRARMIOM IRARMIL1

LCHUSE

LCHUSE

LCHUSE

Extended Description

2 1/O management generates a request that the heavy

1/0 user, who has not recently been monitored, be
swapped out {via Control Swap-Out IRARMCSO), solely
for the purpose of obtaining addressability to the user’s
TCTIOT (1/O timing control table). When the quiesce
started SYSEVENT is received by the SRM, the measure-
ments will be obtained, and quiesce processing will be told
to ‘‘turn the user around”’ (i.e., do not continue with quiesce
processing}. See SYSEVENT Processor M.O., SYSEVENT
QSCEST.

3 See 1/O load balancing user I/O monitoring M.O.

4 The I/O swap recommendation value for a user varies
with the extent to which the user makes use of out-of-

balance logical channels and the degree to which the chan-

nels are out of balance. The maximum for this recommenda-

tion value is one-fifth of the largest work load level. The

1/0 resource factor coefficient (RMPTIOC) is factored in

to produce the final user swap recommendation value.

Module Label

IRARMIL1

IRARMEVT IRARME12

IRARMIOM IRARMILO

IRARMIOM IRARMIL3

IRARMCTL IRARMCVL

LO8'€0°TSA

VS2.03.807

This blank leaf represents pages 3-56 - 3-57 which were deleted by Supervisor Performance *2.

3-56 thru 3-57 0S/VS2 System Logic Library Volume 3 (VS$2.03.807)

Section 2: Method of Operation 3-57

(LO8'€0°TSA) € 2wnjop Arexqr] o0 WsISAS ZSA/SO 8S-€

Diagram 6-16. 1/O Load Balancing User I/O Monitoring (IRARMILO) (Part 1 of 4)

input

oucs

oucsIMCB

From QSCEST
SYSEVENT (12)
in IRARMEVT

Process

)

ASCB

b ASCBASXB

ASXB

. ASXBLCTB

Lowest TCB

Job Step TCB

TCBTCT

L

TCT

L TCTIOTBL

TCTIOT

!

> 1 Obtain and initialize IMCB

if not already available.

4> 2 Access total cumulative EXCP

counts for all devices of alt DD
statements by logical channel.

Output

IMCB

RLCT

RLCTUMWA

6S-€ uoneiadQ Jo poysop :Z uoreg

Diagram 6-16. 1/0 Load Balancing User I/O Monitoring (IRARMILO) (Part 2 of 4)
Extended Description Module Label

1/0 load balancing user /O monitoring maintains detailed IRARMIOM IRARMILO
information on logical channel (LCH) utilization for heavy

1/0 users. This LCH information is used by other 1/0 load

balancing functions to influence swapping decisions when

heavy users are using out-of-balance logical channels

(over-utilized or under-utilized).

This monitoring is done at the time of the quiesce-started
SYSEVENT (SYSEVENT 12). At this time, the 1/0 Timing
Control Table (TCTIOT), which contains monitoring

source data, is addressable. Entry through the quiesce-
started SYSEVENT may be forced for a user who has not
been monitored recently (see 1/0 Management (IRARMIOM)
M.O.).

1 1f1/O load balancing is active and the user does not
have an IMCB, obtain an IMCB if the user’s total 1/0
request rate is high enough (that is, higher than ICCMNIOR).

2 Access TCTIOT, looking at all user data set
declarations, and access all devices allocated to each
data set. Through the UCB, associate the device to a logical
channel, and sum the user’s EXCPs by logical channel using
RLCTUMWA as a working variable for the summation.

(L€ a5eaoy ZSA) € Swinjo Arexqrry o180 weIsAS ZSA/SO 09-€

OUCBIMCB

Diagram 6-16. 1/0 Load Balancing User I/O Monitoring (IRARMILO) (Part 3 of 4)

Process

3 Create or update user LCH usage

RLCT

RLCTUMWA

entry for each logical channel
on which user has made requests.

Return to SYSEVENT (12)
QSCEST in IRARMEVT

IMCBLBGN

IMCBLEND

IMCBSLCB

IMCBLCTX

IMCBLCUR

IMCBBLCC

ouUXxB

OUXBITD

OUXBILS

LCH

usage
entries

19-¢ uoneiad(Jo Poyop :g UOKOAS

Diagram 6-16. I/0 Load Balancing User 1/0 Monitoring (IRARMILO) (Part 4 of 4)
Extended Description Module Label

3 Step through all logical channels (RLCT entries), IRARMIOM
and determine if the user has been monitored for LCH

utilization. That is, determine if an LCH usage entry is

established in the IMCB. Update various utilization fields.

If an IMCB LCH usage entry is not established, make room

for an entry by relocating other LCH usage entries so that

entries are kept in RLCT order. Various IMCB fields are

initialized for the new entry.

Fields updated or created in the LCH usage entries are:

@ IMCBBLCC — previous cumulative number of EXCP
requests made on the channel

® IMCBLCTX — pointer to corresponding RLCT entry
o IMCBLCUR — logical channel usage rate

Fields updated in the OUXB are:
o OUXBITD — 1/0 load balancing base time
o OUXBILS — 1/0 service base count

Additionally, the IMCBSLCB field is maintained as a
summary flag field that indicates all logical channels on
which this user is a heavy user.

IRARMIOM Module Entry Point
Summary

IRARMILO - 1/0 Load Balancing User 1/0
Monitoring.
Compute 1/0 Usage Profile for all
swappable problem state users.
IRARMIL1 - 1/0 Load Balancing Logical Channel
Utilization Monitoring.
Compute channel utilization values
for 1/0 load balancing, page
replacement algorithms, and the
device allocation SYSEVENT.

3-61.0 OS/VS2 System Logic Library Volume 3 (VS2.03.807)

vS2.03.807

IRARMIL3 - 1/0 Load Balancing User Swap
Evaluation.
Compute numerical recommendation
value which reflects desireability of
swapping a user based on its Logical
Channel utilization.

IRARMIL4 - 1/0 Load Balancing IMCB Deletion
Routine.
Clean up control blocks used in
monitoring a heavy 1/0 user at the
end of the user job step.

LCHUSE - Internal IOM Subroutine.
Compute logical channel utilization,
request rate, and 1/0 load balancing
recommendation value computation
factor.

Section 2: Method of Operation 3-61.1

(L0S'€0°TSA) € dwmnjop Arerqiy o180 wasAS ZSA/SO T9-€

Diagram 6-17. CPU Management (IRARMCPM) (Part 1 of 4)

From Algorithm Processor
(IRARMCEL) as a Result
of a Request by Periodic
Entry Point
Scheduling
Input (IRARMCET)

Process Output

CPU Management (IRARMCPM)

0ouUCB
APG 1 Recompute dispatching priorities for N oucsDP
Values OUXB certain users in the automatic priority v
group (APG). Change the position on IRARMSRV

the dispatching queue of users whose <

priority has changed. IRARMI02 c'g

CI"\ange) °

P Dispatching w
) Priority *x
RMCT ASCB Queue Return. S

Execution
LRMCTINQE || | Time

CCT

oucCB “IN"
Queue | Queue

N,]

2 Monitor users previously given permission CCVENQCT
to accumulate extra CPU service because
of their use of a serially reuseable (ENQ)

resource in demand by other users.

4

ouUCB

3 Revoke a user’s permission to accumulate =
extra CPU service, if he has accumulated
a threshold amount of extra service.

N oucsena
=

CCT RMPT

CCVENOQCT RMPTERV

Return,

Logll Configuration
. Communication Area (one per CPU)

LCCAs

Same as cCT

above

Return to

LCCAWTIM Algorithm Processor CPU Utilization
(IRARMCEL) (CCVUTILP)
CPU Management 4 Compute CPU utilization variables. > System Wait
|| Control Table - — Factor
~ CSOA (CCVRVSWF)

€9-¢ uonerad() Jo POy :Z UOLISS

Diagram 6-17. CPU Management (IRARMCPM) (Part 2 of 4)

Extended Description Module

CPU Management consists of a set of routines that monitor IRARMCPM
the system-wide CPU load. They recommend users for

swapping when the system is under or over-utilized. One

CPU management function is described elsewhere:

o CPU load balancing system profile adjustment is performed IRARMCPM
when the SRM receives a QSCECMP SYSEVENT (13); it

is described in the SYSEVENT Processor table.

1 An optional parameter of the period definition in IRARMCPM
the IPS has the following format: APG=I where | is
an integer between O and 15, this parameter applies only
to those transactions whose beginning dispatching priority
(from the job or step JCL) lies within the APG range
defined in IEASYSxx. It is ignored for those transactions
which lie outside the range. The effect of this parameter
is that the initial dispatching priority (at transaction
start and initiator attach) is set to the | value plus the
lowest APG dispatching priority. If the parameter is not
coded, it defaults to the highest mean time to wait
priority in the APG: 6. If the value | is 6 or less, subsequent
dispatching priorities will be calculated based on the
address space’s mean time to wait; that is, the average time
he was in execution before entering the wait state. The
lower his mean time to wait, the higher will be a user’s
priority within the APG. This computation is performed
for all APG users in main storage who have executed for
greater than a threshold of time (CCCAPMET) since their
last computation. If the value | is 11 the address space
will enter a rotate group. At a timed interval, SRM will
examine all address spaces in the rotate group. If there
is more than one, SRM will move the first dispatchable
address space in the group to become the last address
space of the group on the dispatching queue.

If the value | is any other valid integer, the dispatching
priority will be unchanged until the APG parameter is
changed on the IPS period specification. Since it is also
possible for a user’s dispatching priority to be recalculated
while he is being swapped out (See SYSEVENT
QSCECMP (13) — profile adjustment, in SYSEVENT
Processor table), periodically both “IN’* and ““OUT"" users
are checked to see if their order must be changed on the
dispatching queue. This function re-sets its time of next

Label
(or Segment)

IRARMCLO

IRARMAP1

NEWDP

Extended Description Module
invocation, based upon the percentage of APG users that
had their dispatching priorities changed.

2 A user is given permission to accumulate extra CPU IRARMCPM
service when an ENQHOLD SYSEVENT (20) is

received by the SRM, indicating that he holds a resource

in demand by other system users. The mechanism for

giving him this extra service is the prevention of his swap

out by the SRM because of service rate considerations.

3 The Enqueue Residence Value (ERV), an OPT IRARMCPM

parameter, specifies the length of the privileged
“spurt” of service for a user for whom an ENQHOLD
SYSEVENT (20) has been issued (see 2). When this
time is exceeded, the user is made eligible for swap-out,
and his OUCB is so flagged. The individual user
evaluation routine is called to assign a current workload
manager recommendation value to this user.

IRARMWLM

4 The CPU utilization is the average percentage of IRARMCPM
time any CPU in the system was not in the wait

state. It is computed by the following formula:

(sum of wait routines on each CPU) *100

utilization = 100 —
l:(elapsed time since last entry) *(number of CPUs)

CPU utilization is artifically set to 101% if actual
utilization is 100% and one or more users have not
been dispatched. This allows the CPU to be considered
over-utilized even if the CPU threshold is 100%. The
system wait factor is calculated for use in determining
the swap recommendation value for a user (see CPU
Management M.O., step 5); it is a multiple of the square
of the difference between a threshold value and the
utilization, with the sign indicating the direction of the
imbalance (over- or under-utilized). If the CPU
utilization falls between the high and low thresholds,
the factor equals zero.

Label
{or Segment)

IRARMEQ1

IRARMEQt1

IRARMWM3

IRARMCL1

CPUWAIT
CPLRVSWF

LO8'€0'TSA

(LOS'E0°TSA) € swnjop Arerqr] o130 walsAS ZSA/SO +9-€

Diagram 6-17. CPU Management (IRARMCPM) (Part 3 of 4)

input

CCT

CCVRVSWF

From User
Evaluation
(IRARMCVL)
during Swap
Analysis
(IRARMCAP)

Process

oucs

OUCBCRV

oucs

5 Compute a value representing the

desirability of the swap-in or swap-out
of a user, based on the user’s effect on
system CPU utilization.

Return to User
Evaluation
(IRARMCVL)

>

Recommendation
Value
(OUCBCRYV)

Time of
Evaluation
(OUCBTCP)

LOS'€0°TSA

7 uondeg

.
.

§9-¢ uoperadQ jo poye

Diagram 6-17. CPU Management (IRARMCPM)

Extended Description

5 The CPU swap recommendation value for a

significant CPU user varies with the degree to which
the CPU load is out of balance. The recommendation
value can not be greater than one-fifth the highest work-
load level. For insignificant CPU users, the
recommendation value is zero.

The time of this evaluation and the swap recommenda-
tion are saved in the OUCB. The user swap evaluation
routine, IRARMCVL, then multiplies the
recommendation value by the CPU resource factor
coefficient (RMPTCPU) to produce the final CPM
swap recommendation value.

(Part 4 of 4)

Module

IRARMCPM

IRARMCTL

Label
(or Segment)

IRARMCL3

IRARMCVL

hEUE-

LOS’E0'TSA

IRARMCPM Module Entry Point
Summary

IRARMAP1 - Automatic Priority Group Reorder
Processing.
Recompute dispatching priorities for
all APG users in main storage. Invoke
ASCBCHAP for each user whose
dispatching priority has changed.

IRARMEQ1 - ENQ/DEQ Algorithm ENQ Time
Monitoring.
Stop giving extra CPU service to users
with ENQHOLD SYSEVENTS
outstanding who have already
received their quaranteed CPU service.

IRARMCLO - CPU Load Balancing User Swap
Processing.
Compute user CPU usage profile at
QSCECMP SYSEVENT.

IRARMCL1 - CPU Utilization Monitoring.
Compute CPU utilization variables for
CPU load balancing and resource
management algorithms.

IRARMCL3 - CPU Load Balancing User Swap
Evaluation.
Produce a numerical recommendation
value which reflects the desireability
of swapping a user based on its CPU
utilization.

3-65.0 OS/VS2 System Logic Library Volume 3 (VS2.03.807)

VS2.03.807

CHAP - IRARMCPM Internal Chapping Subroutine.
Search queue for APG users with
changed dispatching priorities, put
them in a list and call ASCBCHAP.

CPLRVSWF - IRARMCPM Internal Wait Factor
Computation Subroutine.

Compute system wait factor for CPU
load balancing recommendation value
computation.

CPUWAIT - IRARMCPM Internal Wait Time and
CPU Utilization Compute. Subroutine
Compute accumulated system wait
time total for all CPUs and compute
recent CPU utilization.

CPUTLCK - IRARMCPM Internal CPU Utilization
Checking Routine.

Insure that the computed CPU
utilization percentage falls between 0
and 100 percent. If 100 percent and
lowest priority user has not been
dispatched, set it to 101 percent.

NEWDP - IRARMCPM Internal APG Computation
Routine.

Compute mean time to wait and a
new dispatching priority for the APG
user.

Section 2: Method of Operation 3-65.1

(L08'€0°TSA) € awnjoA Areiqry o1So] wayshS ZSA/SO 99-€

Diagram 6-18. Resource Monitor Periodic Monitoring (IRARMRM1) (Part 1 0f2)

; From Algorithm
Input Request (IRARMCEL) Process Output

-RCVUICC

MCT
MCVSTCRI

1 Sample system and domain RCVCPUC

resource contention
indicators. RCVASMQ
CCT
CCVLGUTL RCVCTMC
ASMVT
DMDT
ASMIORQR DMDTRUC
I
ASMIORQC
Return to Algorithm
MD
DMDT Request (IRARMCEL)
DMDTCMPL

DMDTOUTU

LOB'€0°TSA

L9-€ uone1ad(jo pOYISW :Z UoBOSS

Diagram 6-18. Resource Monitor Periodic Monitoring (IRARMRM1) (Part 2 of 2)

Extended Description Module Label

1 This routine is invoked at one second intervals and IRARMRMR IRARMRM1
accumulates the highest system unreferenced frame

interval count (MCVSTCRI), the current CPU utilization

(CCVLGUTL), and the number of un-completed ASM

requests (ASM requests minus ASM completed requests).

Additionally the number of ready users (the number of

users on the IN queue plus the number of users on the

OUT queue) for each domain is accumulated.

LO8'€0°TSA

89-¢

(L08'€0°TSA) € dwnjoA Areiqry J1307T WwasAS ZSA/SO

Diagram 6-18A. Resource Monitor MPL Adjustment Processing IRARMRM?2) (Part 1 of 2)

From Aigorithm

lnput Request (IRARMCEL)

Process

1 Compute the system contention

RCVUICC MCVAVQC

RCVCPUC

PVT

M
Revasma PVTNPIN

RCVCTMC

PVTNPREC

DMDT

DMDTRUC

DMDT

DMDTRUA

DMDTMPLT

DMDTRUA

DMDTWT

and average the ready users by
domain.

3 Adijust the domain
multiprogramming
levels (MPLs)

— raise the MPL.
— lower the MPL.
or

— equalize the MPL.

Output

RCT
DMDT

RCVUICA

DMDTRUA U

RCVCPUA

RCVAvQC

RCVAVQP

RCVASMQA

RCVPTR

I ? Minimum Contention Domain]

2 Compute the domain contention.

Return to Algorithm
Request (IRARMCEL)

I T Maximum Contention Domain 1

DMDT

DMDTMPLT h

LO8'€0°TSA

7 uonosg

1'89-€ uoneradQ jo POYIN

Diagram 6-18A. Resource Monitor MPL Adjustment Processing IRARMRM?2)

Extended Description Module Label

This routine is invoked at 30 second intervals and IRA
processes the data accumulated by IRARMRM1 to
compute the average unreferenced frame interval count
(RCVUICA), the number of “AVQ Lows’’ over the last
RM2 interval (for tracking only), the average ASM queue
length (RCVASMOQA), the system page fault rate per
second (RCVPTR), and the average number of ready
users for each domain (DMDTRUA). IRARMRM2 also
computes the system-wide logical channel utilization.

If the average logical channel utilization is above a
threshold value or if an individual logical channel has

a high utilization and request rate above threshold values,
a contention indicator, RCVIOUSE, is set. The above
system and domain contention factors are used to

adjust the domain target MPLs as follows:

2 Each used domain contention index is computed
by the formula:

average ready users x weight

max (current target MPL or one)

This yields a measure of contention for this domain
weighted by the user specified importance factor
(weight) for the domain.

3 The Resource Monitor will then determine if the

system MPL should be raised or lowered by
comparing the system contention indicators against pre-
defined limits. All positive conditions must be met to
increase and only one condition need be met to force a
decrease in the MPL,

RMRMR IRARMRM2

LIMITS
INCREASE DECREASE

MPL MPL
uic* GT 1 LT 1
CPU utilization LT 95% GT 99%
PAGE FAULTS LT 30/sec GT 40/sec
ASMQ LT 10 requests GT 20 requests
Average logical channel utilization LT 20% GT 20%
Logical channel utilization LT 30% GT 30%

and

Logical channel request rate LT 50 requests GT 50 requests

*unreferenced internal count

(Part 2 of 2)
Extended Description Module

e If any domain is unused (average number of ready

users less than target minus one) that domain’s
MPL is decreased by one if the decrease does not
drop it below the minimum MPL or one.

If the system MPL should be raised, the Resource Monitor
will pick the domain that has the highest contention
index and has not yet reached its maximum MPL and
increase this domain’s MPL by one.

If the system MPL should be decreased, the Resource
Monitor will pick the domain with the lowest

contention index which has not yet reached its minimum
MPL and decrease this domain’s MPL by one.

If the system MPL should not be increased or decreased,
the Resource Monitor will attempt to equalize the
domain’s contention index; such that if the highest
domain contention index is greater than the lowest,

the Resource Monitor will increase the MPL for the

high contention domain and decrease the MPL for the
lowest contention domain.

Label

LOR'€0'TSA

VS2.03.807

IRARMRMR Module Entry Point

Summary

IRARMRM1 - Resource Monitor Periodic
Monitoring.
Accumulate several system resource
contention indicators and the number
of ready users for each domain at
periodic sample intervals.

IRARMRM?2 - Resource Monitor MPL Adjustment
Processing.
Compute the average system resource
utilization and determine if the
system MPL should be raised or
lowered.

3-68.2 OS/VS2 System Logic Library Volume 3 (V$2.03.807)

Workload Management

The workload manager is a collection of
subroutines which perform three main functions:

« Monitoring the rate at which system resources
are being provided to individual address
spaces.

» Providing swapping recommendations (based
on installation specifications and resource
usage) requested by SRM Control
(IRARMCTL).

¢ Collecting data for MF/1 workload activity
reporting.

Subroutines that support the first two functions
above are packaged in the workload manager
module (IRARMWLM), and the data collecting
subroutines are in the workload activity recording
module (IRARMWAR).

Nonswappable address spaces and certain
privileged system control program functions are not
under the control of the workload manager.

In providing swapping recommendations to SRM
Control, the workload manager affects the relative
rates at which processing resources are provided to
active address spaces. By comparing an address
space’s resource usage (service rate) against the
installation performance specifications, the
workload manager computes the address space’s
workload level (also called workload manager
recommendation value) which is used by SRM
Control as a swapping recommendation.

The workload activity recording facility
(IRARMWAR) collects data for MF/1 when MF/1
workload activity reports have been requested. This
facility is invoked periodically by the workload
manager and the SYSEVENT processor to collect
data, that is placed in the workload activity
measurement table (WAMT). The workload activity

VS2.03.807

reports may be analyzed by an installation and
used to determine the appropriate installation
performance specification parameters to meet their
needs.

(See the MF/1 and SRM sections of the OS/VS?2
(MVS) Initialization and Tuning Guide on using
workload activity reports).

Several workload management functions are of a
housekeeping nature, and are triggered by the
receipt of certain SYSEVENTS. These are described
in the SYSEVENT Processor M.O., and include:

« Service calculation routine - invoked by

SYSEVENTS WKLDINIT(45) and REQSERVC

(38).
Module Label
IRARMWLM IRARMWMI1
IRARMEVT IRARMEA4S,
E38

o Workload level calculation - invoked by
SYSEVENT WKLDCOLL(46).

Module Label
IRARMWLM IRARMWM4
IRARMEVT IRARME46

« Start new transaction - invoked by
SYSEVENTS RESETPG(31), TGETTPUT(34)
and INITATT(10), and module IRARMSET
after a NEWIPS(32) SYSEVENT is received.

Module Label

IRARMWLM IRARMWMN

IRARMEVT IRARME31,
E34,E10

IRARMSET

IRARMEVT IRARME32

« Swap status change request - invoked by
SYSEVENTS DONTSWAP(41) and

OKSWAP(42).
Module Label
IRARMWLM IRARMWMK
IRARMEVT IRARMEA41,
E42

« Stop old transaction - invoked by SYSEVENTS
JOBTERM(9), INITDET(11) and

JOBSELECT(8).
Module Label
IRARMWLM IRARMWMO
IRARMEVT IRARME09,
E11,E8

» Restore completed processing - invoked by
SYSEVENTS RSTORCMP(19) and INITATT(10).

Module
IRARMWLM

Label
IRARMWMR

Section 2: Method of Operation 3-69

IRARMEVT IRARMEI19,
E10
« Quiesce completed processing - invoked by

SYSEVENT QSCECMP(13).

Module Label
IRARMWLM IRARMWMQ
IRARMEVT IRARME13

The following workload manager M.O.s describe
3 major functions performed by the IRARMWLM
module:

« Swappable user evaluation.

o Scanning the IN queue and OUT queue,
evaluating each non-privileged, swappable
user, and assigning a current workload level.

« Individual user evaluation - evaluating a (one)
non-privileged, swappable user, and assigning
a current workload level.

3-69.0 0S/VS2 System Logic Library Volume 3 (VS2.03.807)

VS2.03.807

» User ready processing - initializing user
control blocks and repositioning the user from
the WAIT queue to the OUT queue so the user
is eligible for swap-in.

The following workload activity recording M.O.s
describe 2 major functions performed by the
IRARMWAR module:

« WAMT initialization

« updating the workload activity
measurement table (WAMT) with
information from the workload manager
specification table (WMST).

e WAMT reinitialization

e copying the WAMT data to a temporary
buffer and then updating service values and
workload levels.

Section 2: Method of Operation 3-69.1

(LOS'€0°ZSA) € swmnjop Areiqry o180 wasAS ZSA/SO 0L°€

Diagram 6-19. Swappable User Evaluation (IRARMWM?2) (Part 1 of 4)

From Algorithm

Input Routine (IRARMCRT) Process

RMCT

N

RMCTINQE / Queue

Header 1 Pick user from queue for
. evaluation.

RMCTOTQE

oucs

Workload Manager : 2 Obtain user service ‘
ificati e~ N
Specification Table ~ N WMST - : (IRARMWM1). OUCBWMS
| oucsioc
oucs ; OUCBMSO
OUXB : OUCBCPU

OUXBPSS
OUXBMSS
ASCB OUXBIOS

ASCBEJST
ASCBIOSM

ouCBPSS

ouxs

Performance WPGD ! | OUXBPRS

Group WPGLDUR

Descriptor WPGPAPGV : 3 Check for Performance oucs
WPGPDMN Group Period change
{IRARMWMS). : OuCBPGP
; OUCBDMN

ouxs | OUCBDMO

OUCBWMS o

OUCBTMP I OUXBPRS , OUCBNDP
OUCBDMN o , ; OUCBTMP
OUCBAPG

oucs

LOS’€0°TSA

IL-€ uoneradQ Jo poyla :Z uondwsg

Diagram 6-19. Swappable User Evaluation (IRARMWM?2) (Part 2 of 4)

Extended Description

The WM2 routine is invoked by IRARMCET
approximately every second to evaluate all users that
have not been evaluated during the past second and
whose period duration is specified in real time. If no
periods have real time specified anywhere in the IPS,
IRARMWM2 will not be invoked. This ensures that
users with period durations specified in real time
units are evaluated for period change even though
they may be in an inactive domain.

1 Both the IN and OUT queues are scanned,
evaluating non-privileged swappable users.

2 WM1 isinvoked to calculate the service
accumulated during the “‘in real storage

interval’’ for users currently in storage.

3 Depending on the units code in the IPS {service

units or time units), the transaction’s accumulated

service or time units are checked to determine whether
a period has ended. If a period has ended, the current
period indication is updated. |f workload reporting is
also active, IRARMWR4 is invoked to communicate
the period change. If in switching periods, the user
also changes domains, he will be repositioned at the
end of the appropriate queue. The user dispatching
priority is also updated, if applicable.

Module

IRARMWLM

IRARMWLM

{IRARMWLM

IRARMWAR

IRARMCTL

Label

IRARMWM2

IRARMWM1

IRARMWMS

IRARMWR4

IRARMRPS

LO8'€0°TSA

(LOS'€0°TSA) € sumoA Areiqry o807 wayshg ZSA/SO TL-€

Diagram 6-19. Swappable User Evaluation (IRARMWM2) (Part 3 of 4)

input Process

Performance
Group
Descriptor

WPGD
WPGLISV

Performance
oucs Objective

OuUCBWMS
oucsTMw

receiving service
(IRARMWM?7).

evaluation.

4 Determine the workload
level at which this user is

5 Obtain the next user for

Return to Algorithm
Routine (IRARMCRT)

oucs

OUCBWMR
OUCBTMA

Step 1

L08°€0°TSA

z uondog

€L-€ uonerad(Jo poyron

Diagram 6-19. Swappable User Evaluation (IRARMWM?2) (Part 4 of 4)
Extended Description Module Label

4 The workload level is a means of comparing users IRARMWLM IRARMWM7
to other users in the same domain. If a user has

not yet received enough service to be controlled by the

workload manager (that is, his service is less than his

interval service value-1SV) or if the user is between job

steps, a workload level corresponding to a zero service

rate is returned. In calculating his recent service rate,

a user's accumulated service is reset to zero when he is

swapped-in; his accumulated time is reset to zero when

he is swapped-out.

B Processing continues until all users on the IN and
OUT queues are evaluated.

LOS'€0°TSA

Diagram 6-20. Individual User Evaluation IRARMWM3) (Part 1 of 2)

From User
Evaluation (IRARMCVL)

Inut Process Output

(L08°€0°TSA) € own[oA Arerqry 918077 woysAS ZSA/SO - 0°€L-€

Workload

oucs

Manager
Specification
Table

OouUXB

OuUXBPSS

OUXBMSS

ouXxBlOs

Performance
Group Description

WPGD

WPGLDUR
WPGPAPGV
WPGPDMN

Performance
Group Description

WPGD

WPGLISV

| OUCBPSS I

ASCB
ASCBEJST
ASCBIOSM

oucs

OuUCBWMS
oucBTMP
OUCBDMN
OUCBAPG

ouxs
OUXBPRS

oucCB

OUCBWMS
oucBTMW

Performance
Objective

L]

1 Obtain User Service

(IRARMWM1).

2 Check for Performance Group
Period change (IRARMWMS).

3 Determine the workioad level at
which this user is receiving service
(IRARMWM7).

Return to User
Evaluation (IRARMCVL)

oucs

OUCBCPU
oucsloC
OucCBMSO
OUCBWMS

ouXxs

OUXBPRS

oucs

OuUCBPGP

OuUCBDMN
oucBDMO
OUCBNDP
QuUCBTMP

oucs

OUCBWMR
OUCBTMA

LOS’€0°TSA

1°¢L-¢ uoneradQ Jo pOYIOl 7 UoNddS

Diagram 6-20. Individual User Evaluation (IRARMWM3) (Part 2 of 2)

Extended Description

The IRARMWMS3 routine is invoked by the user evaluation

routine (IRARMCVL) during analysis of users in a
particular domain. The major output of the routine is
the workload level (recommendation value) of the user
being evaluated. Non-swappable and privileged users
are not evaluated.

1 WM1 isinvoked to calculate the service
accumulated during the ‘‘in real storage interval’’
for users currently in storage.

2 Depending on the units code in the IPS (service

units or time units), the transaction’s
accumulated service or time units is checked to
determine whether a period has ended. If a period has
ended, the current period indication is updated. If
workload reporting is also active, IRARMWR4 is
invoked to communicate the period change. If in
switching periods, the user also changes domains, he
will be repositioned at the end of the appropriate
queue, The user dispatching priority is also updated,
if applicable.

3 The workload level is a means of comparing
users to other users in the same domain. If a
user has not yet received enough service to be
controlled by the workioad manager (that is, his
service is less than his interval service value-ISV)
or if the user is between job steps, a workload level
corresponding to a zero service rate is returned.
In calculating his recent service rate, a user’s
accumulated service is reset to zero when he is
swapped-in; his accumulated time is reset to zero
when he is swapped-out.

Module

IRARMWLM

IRARMWLM

IRARMWAR

IRARMCTL

IRARMWLM

Label

IRARMWM1

IRARMWMS

IRARMWR4

IRARMPRS

IRARMWM?

LO8'€0'TSA

(L08°€0°TSA) € ownjop Arexqyr] o180 woysAS ZSA/SO T'E€L-€

Diagram 6-21. User Ready Processing (IRARMHIT) (Part 1 of 2)

From Control Routing Routine

(IRARMCRT, IRARMCRN, or IRARMCRY)
Input Process Output

Performance WPGD
Group OUXB

X WPGLDUR
Descriptor WPGPAPGV OUXBPRS
WPGPDMN

oucs
1 Check for Performance Group oucs

OUCBWMS OUXE Period change (IRARMWMS). OUCBPGP

OUCBTMP OUXBPRS OUCBDMN
OUCBDMN OUCBDMO
OUCBAPG OUCBNDP
OUCBTMP

oucs oucs

oucCBPVL OUCBOFF
OUCBENQ .2 Reset Transaction Indicators. QUCBSTR

OUCBINC OUCBNTR
OUCBATR OUCBPGP
OUCBTRM OUCBDMN
OUCBCIM OUCBDMO
OUCBINC OUCBTMP
v OUCBTMS
OUCBTMW
OUCBWMR
OUCBTMA

RMCT
RMCTWTQE .

RMCT

RMCTOUTQ “ouT"
Queue

“Wait"] : Header
Queue
Header

3 Make user eligible for swap-in.

4 Request SRM Analysis to

Expedite Swap-In (IRARMCAP). Ready User
OUCB'on

Ready User
OJC\B(on “OUT" Queue

“Wait"' Queue

| I Return to Control Routine

(IRARMCRT, IRARMCRN,
or IRARMCRY)

LO8'E0'CSA

Z uonoog

.

€'€L-€ uonerndQ jo pope

Diagram 6-21. User Ready Processing (IRARMHIT) (Part 2 of 2)

Extended Description Module

IRARMHIT is requested by IRARMEVT when it receives
a user ready SYSEVENT(4) from the dispatcher. The
major function of this routine is to make users eligible
for swap-in by repositioning them from the WAIT,

queue to the OUT queue.

1 Depending on the units code in the IPS (service IRARMWLM
units or time units), the transaction’s accumulated

service or time units are checked to determine whether

a period has ended. If a period has ended, the current

period indication is updated. |f workload reporting is

also active, IRARMWR4 is invoked to communicate IRARMWAR

the period change. If in switching periods, the user

also changes domains, he will be repositioned at the

end of the appropriate queue. The user dispatching IRARMCTL

priority is also updated, if applicable.

2 The transaction indicators are reset based on the
type of user and the user’s transaction status
when swapped-out. That is:

a) OUCBs for users between job steps remain
effectively unchanged.

b) OUCBs for Terminal wait users are updated to
reflect transaction. Indicators are set to the first
period characteristics.

A workload level is assigned which is equal to the IRARMWLM
first period objective “‘zero point”’.

c) OUCBSs for users which have suspended transactions
(may be due to issuing “‘long wait"’) are updated so
that they look as if the swap-out had just ended.

3 The “ready” user OUCB is repositioned from the IRARMCTL
WAIT queue to the end of the OUT queue.

4 The SRM analysis function is requested in order IRARMCTL
to have the user swapped in as soon as possible.

Label

IRARMWMS

IRARMWR4

IRARMRPS

IRARMWM4

IRARMRPS

IRARMCAP

S

LO8'€0°CSA

IRARMWLM Module Entry Point
Summary

IRARMWM1 - Workload Manager Service
Calculator Routine.

The IRARMWMI routine calculates the
amount of service provided to an user

since the beginning of the current
workload manager reasurement
interval for that user. Service is
calculated using the following
equation: '

Service = (MP)/K)+(CT)/K)+EI WHERE:

T = The job step time elapsed in the current

interval.

K = The time required to execute 10,000

instructions. (Dependent on the CPU Model)

M = The MSO service coefficient scaled by 1/50.

P = The number of Page-Seconds used by the

user.

C = The CPU service coefficient.

E = The EXCP count for this interval.

I = The I/0 service coefficient.

This routine calculates each of the three service
factors and the total service for the user for the
interval.

IRARMWM?2 - Swappable User Evaluation Routine.
The IRARMWM?2 routine scans the
in-storage queue and the
out-of-storage-but-ready queue, and
evaluates each swappable user
assigning each his current workload
level.

IRARMWMS3 - Individual User Evaluation Routine.
The IRARMWMS3 routine evaluates
swappable users on the IN and OUT
queue, assigning each a current
workload level.

IRARMWM4 - Workload Manager Workload Level
Calculator Subroutine.

The IRARMWM4 routine accepts a
service rate and a performance
objective, and calculates the
corresponding workload level.

IRARMWMS - Workload Manager Update
Performance Group Period
Subroutine.

The IRARMWMS subroutine tests
whether an user has accumulated

enough service/time to be assigned to

a new performance group period. If
so, IRARMWMS adjusts the pointers

which indicate the performance group

period, performance objective and

3-73.4 OS/VS2 System Logic Library Volume 3 (VS2.03.807)

VS2.03.807

domain applicable to the transaction
current for the user. Note that the
frequency (resolution) at which the
test for period end is made depends
on how often IRARMWMS is called for
any given user.

IRARMWM?7 - WLM Recommendation Calculation
Routine.

The IRARMWM?7 routine calculates a
workload manager recommendation
value for a user based on the service
which was received and on the
performance objective currently
associated with the user. Users which
have not yet received an amount of
service equal to their interval service
value (ISV) specification while in core
are given a recommendation value
boost. The boost gives preferential
treatment to users in their ISV as
compared to users not in their ISV
and users between job steps.

IRARMHIT - Workload manager User Ready SYSEVENT
Swap-In Scheduling Routine.

The IRARMHIT routine receives
control as the result of a decision to
apply swapin processing to a now
ready user. It repositions the now
ready user from the WAIT queue to
the OUT queue.

IRARMWMI - Workload Manager In Storage
Interval Change Subroutine.

The IRARMWMI subroutine updates
the transaction accumulators with the
service and the time received by the
user during the preceding in-storage
interval.

IRARMWM]J - Routine To Determine The Scope of
Applicability of Analysis Processing
to a User.

The IRARMWMIJ routine examines the
current swap status and the
performance specification for a user.
It indicates if the resource manager
algorithms are applicable to this user.

IRARMWMK - WLM Dontswap/Okswap User
Analysis Routine.

The IRARMWMK routine calculates
the current service and ensures that
the user is in the correct performance
group period. Applicable algorithm
indicators are set based on the new
swap status of the user.

IRARMWMO - Workload Manager Transaction Start

Routine.

The IRARMWMN routine receives
control as the result of a SYSEVENT
that has been defined by the
workload manager to signify that a
new transaction should be started for
that user. If the user is not in storage,
a flag is set to cause the IRARMWMN
routine to be reentered during the
swap-in of the user. Otherwise, any
existing transaction is stopped by
calling IRARMWMO, and the user
transaction fields are reset to reflect
the new transaction being started.

IRARMWMO - Workload Manager Transaction Stop

Routine.

The IRARMWMO routine receives
control as the result of a SYSEVENT
that has been specified by the
workload manager as defining the end
of any current user transaction. If a
new transaction is to be created for
the user, IRARMWMO indicates the
end of the current transaction. If the
next user event is not known,
IRARMWMO leaves the transaction
accumulated values for later
resumption of the transaction. In any
case, IRARMWMO causes the

vS2.03.807

preceding time and service to be
properly recorded for the current
transaction.

IRARMWMQ - Workload Manager Quiesce

Completed SYSEVENT Processing
Routine.

The IRARMWMQ routine receives
control when a user has stopped
executing, and is being swapped out,
so that the workload manager may
record the service given that user
while he was in storage. The
workload manager determines if a
user event caused the swap-out, and
flags the user to indicate whether
such previous service is to be
considered when the user is next
swapped-in.

IRARMWMR - Workload Manager Restore

Completed SYSEVENT Processing
Routine.

The IRARMWMR routine receives
control when a user has been
swapped in, and is ready to begin
executing, so that the workload
manager can set up the fields used to
calculate the service rate received by
the user during the forthcoming
in-storage residency period.

Section 2: Method of Operation 3-73.5

(LOS'€0°TSA) € dwnjoA Areiqry 1807 waysAS ZSA/SO 9°€L-€

Diagram 6-22. Initialize for MF/1 (IRARMWR1) (Part 1 of 2)

Input

Register 6

From SYSEVENT Processor
(IRARMEVT) (SYSEVENT 45)

Workload
Manager
Specification
Table

Process Output

Initialize The WAMT Register 6
(IRARMWR1)

WAMT

1 Update header.

Header

2 Build index structure and
initialize buffer
{call IRARMWR2).

WAMPDMN
WAMPOBJ
WAMPSRV

WAMPDMN Performante
Group Period

3 Update period service values - WAMPOBJ Entries
{call IRARMWM1). WAMPSRYV (WAMPs)

Register 15
Return Code

To SYSEVENT Processor
(IRARMEVT)

LOS’€0°TSA

L'€L-€ uonerddQ Jo poyId T UoKIIS

Diagram 6-22. Initialize for MF/1 (IRARMWR1) (Part 2 of 2)

Extended Description

IRARMWR 1 constructs and initializes the workload
activity measurement table (WAMT) in the buffer
(Storage from SQA) obtained by MF/1 and input
with Sysevent 45,

1

2 Theindex is used to locate the period entries in

WAMT which correspond to a particular
performance group. The period entries are updated
with their respective domain and performance
objective numbers. All other period entry values are
zeroed.

3 Service values in the period entries are initialized
such that service already received by active user

transactions will not be included in the MF/1 interval

service totals.

Return Codes in Register 15 byte 3

X‘00’ — Data area accepted and initialized.

X'08’ — Length of data area incorrect.

Module

IRARMWAR

IRARMWAR

Label

IRARMWR1

IRARMWR2

LO8’€0°ZSA

(LOS€0°TSA) € owmjoA Arexqiy o180 waIsAS ZSA/SO 8'€ELE

Diagram 6.23. Collect Data for MF/1 (IRARMWR3) (Part 1 of 2)

From SYSEVENT Processor IRARMEVT

Input (SYSEVENT 46) Process Output
’ S = Recorded “RRPAINP
Register 6 Collect Data Recorded In B
uffer Area
WAMT (IRARMWR3) '
1 Copy WAMT to provide area.
WAMT
Register 6
I . I WAMT
RRPAINP Header
@ Index |
E Table T
Buffer 2 Reinitialize the WAMT WAMPSRV
Area (call IRARMWR2). WAMPSRYV
3 Update period service values : M : :F
(call IRARMWM1).
WAMPSRV
I Rﬂltﬁ-D/l Buffer Area
SRV +WLL
4 Calculate the workload level
for each period SRV +WLL
(call IRARMWRS). L L
SRV + WLL

Register 16

Performance
Group
Period
Entries
{WAMPs)

Period
Entries

LO8'€0°TSA

7 uond9g

H

6°€L-€ uopesadQ jo poyrel

Diagram 6-23. Collect Data for MF/1 (IRARMWR3) (Part 2 of 2)
Extended Description Module

IRARMWR3 copies the contents of the WAMT into a IRARMWAR
collection buffer. The buffer is obtained by MF/1
from LSQA and is fixed in core.

1 The WAMT is copied into the buffer.

2 If aset to new IPS occurred, workload collection
was terminated and the WAMT was updated
to reflect the statistics at that point in time. If the IRARMWAR
IPS has not been changed, the WAMT is updated for
a new collection interval.

3 Both the WAMT and the collection buffer are IRARMWLM
updated to reflect the actual service (SRV)

received within each resp. interval.

4 The Workload Levels (WLL) are updated in the
collection buffer for MF/1.

Return codes in Register 15 byte 3

X'00" — Successful Data collection

X‘04' — Successful Data collection, but an IPS
change occurred terminating workload

collection

X‘40" — Data collection not active, or data buffer
non-existent or copy buffer incorrect size.

Label

IRARMWR3

IRARMWR2

IRARMWM1

LOS’€0°TSA

IRARMWAR Module Entry Point

Summary
IRARMWRI -

IRARMWR?2 -

IRARMWR3 -

IRARMWR4 -

3-73.10 OS/VS2 System Logic Library Volume 3 (VS2.03.807)

Workload Activity Recording
Initialization Subroutine.

Constructs and initializes the
Workload Activity Measurement
Table (WAMT) in the buffer (storage
from SQA obtained by MF/1 and
input with SYSEVENT 45).

Workload Activity Recording WAMT
Initialization Subroutine.

Builds the WAMT in a format suitable
for updating by the SRM.

SRM Workload Activity Recording
Data Collection Subroutine.

Moves the contents of the WAMT
into a collection buffer capable of

containing the data. Note: The buffer-

is obtained by MF/1 from LSQA,
storage key 0, and must be fixed in
storage.

If the IPS has not been changed, then
add to the collected data the
transaction data for the current
in-storage interval for each in-storage
memory with an active transaction
re-initialize the data collection buffer
for the next collection interval, and
calculate the workload level for each
performance group period that
contains transaction data.

SRM Workload Activity Recording
Transaction Data Update Subroutine.
Adds the service and transaction
active time to the appropriate WAMT
performance group period
accumulator in the data collection
buffer.

VS2.03.807

IRARMWRS -

IRARMWRG6 -

IRARMWRY7 -

IRARMWRS -

SRM Workload Activity Recording
Workload Level Calculation
Subroutine.

Calculates the workload level for
each WAMT performance group
period entry in which transaction data
has been accumulated during the last
data collection interval.

Note: For those WAMT entries in
which the service rate calculated can
be associated with multiple workload
levels or is zero even though at least
one transaction has been active
during the data collection interval, the
negative value of the workload level
will be calculated to indicate to MF/1
an estimated value.

SRM Workload Activity Recording
Transaction End Update Subroutine.
Adds to the appropriate WAMT
performance group period
accumulator the transaction elapsed
time and counts the number of
transactions that terminated during
the current data collection interval.
SRM Workload Activity Recording
WAMT Entry Determination
Subroutine.

Obtains addressability to the WAMT
performance group period entry in
which to accumulate user transaction
information.

SRM Workload Activity Recording.
Terminates workload activity data
collection whenever an IPS change
occurs.

==

Section 2: Method of Operation 3-73.11

3-74 0S/VS2 System Logic Library Volume 3 (VS$2.03.807)

System Activities Measurement Facility (MF/1)

System Activities Measurement Facility (MF/1)
collects information about system activity in order
to produce System Management Facilities (SMF)
data records or printed reports or both. MF/1 can
monitor the following five classes of system
activity:

CPU

Paging

Workload

Channel

Input/Output Device

Nk~

MF/1 information collection can be initiated by
the issuing of a START command and can be
terminated either by the expiration of a specified
collection period or by an operator STOP command.
MF/1 is always generated with the system, but its
execution is completely optional. When it is not
operating, it causes little or no performance or
storage overhead. When it is executing, storage and
performance overhead depends on the set of
control options under which it is running.

Options are available to specify the reporting of
any of the five classes of system activity. In
addition, the time interval for gathering and
reporting measurements is an option. Channel and
device data are sampled more frequently than once
per measurement gathering interval, and the
frequency of this sampling rate is an input option.
Printed reports and/or SMF records can be
obtained once per gathering interval or at the end
of the period of MF/1 operation.

MF/1 has three major components:

1. Measurement Facility Control (MFC), which
controls the collection, recording, and
reporting of system activity measurements, in
compliance with specified options.

2. System Activity Measurement Gathering
(SAMG), which obtains measurements of
system activity, by collecting data at timer
interruptions and. remote-pending IPC
(interprocessor communication) interruptions,
and which records measurements on the SMF
data set.

3. System Activity Report Generation (SARG),
which produces formatted, printed reports
from system activity measurements.

Figure 3-11 in the Program Organization section
illustrates the flow of control among the major
components and main modules of MF/1.

The operator’s START command causes MFC
Mainline, the system task controlling MF/1
execution, to receive control. MFC Mainline
establishes the operating parameters for MF/1
execution from specified options and loads the MG
(measurement gathering) routines required by these
parameters, it then enables the routing of control
to these routines.

MFC Mainline passes control to interval-driven
MG routines to gather measurements at a
parameter-specified time interval. These routines
move collected data into SMF-record-formatted
areas and optionally record the data on the SMF
data set.

System components outside MF/1 maintain data
that is obtained by SAMG at measurement
gathering intervals. These include:

1. System Measurement Facility (SMF), which

maintains CPU wait time.

2. Real Storage Management (RSM), which

maintains VIO paging statistics.

3. Auxiliary Storage Manager (ASM), which

maintains auxiliary page statistics.

4. System Resources Manager (SRM), which

maintains workload activity data.

5. Input/Output Supervisor (10S), which

maintains 1/0 activity statistics.

The SARG function is given control at reporting
intervals to produce summary reports of the
measurements obtained by SAMG and routed to it
by MFC. These reports are routed to a SYSOUT
data set, which is made available for printing at a
parameter-specified time (either immediately or
after MF/1 termination).

MEC allows the operator to use the STOP
command to terminate MF/1, overriding any
parameter-specified duration of execution.
Otherwise, MFC terminates measurement gathering,
recording, and reporting at the end of the specified
duration.

Operational Considerations
MF/1 operation is controlled by input parameters.
These parameters are obtained from four sources
during MF/1 initialization:
1. START command PARM field.
2. EXEC statement PARM field (MF/1 cataloged
procedure).
3. Partitioned data set number (the partitioned
data set is specified in the cataloged

Section 2: Method of Operation 3-75

procedure — normally it will be
SYS1.PARMLIB); the member name is of the
form IRBMF1lnn, where nn is an input
parameter.

4. Program default values.

The parameters can be grouped into three
classes:

1. Parameters affecting the initial parameter
merge.

2. Parameters causing the loading of MG
(measurement gathering) routines.

3. Parameters affecting the mechanics of MF/1
operation.

Class 1 consists of the following merge control
keywords:

MEMBER (nn) - the value to be appended to
IRBMF1 to name the member of the partitioned
data set from which parameters are to be obtained
during the input merge. (The default is 00,
indicating member IRBMF100.

OPTIONS/NOOPTIONS - specifies whether or not
the results of the input merge will be printed on
the operator’s console, to permit changes to be
made. The default value is OPTIONS.

Class 2 consists of the following measurement
gathering keywords. (Program default values are
underlined.)

CPU/NOCPU

PAGING/NOPAGING

CHAN/NOCHAN

WKLD (PERIOD/GROUP/SYSTEM) /NOWKLD

DEVICE (devicereport list) /NODEVICE

where the device report list may consist of the

following elements:

UNITR/NOUNITR

TAPE/NOTAPE

DASD/NODASD

COMM,/NOCOMM

GRAPH/NOGRAPH

CHRDR/NOCHRDR

Specification of the first of any of the above sets
of two measurement gathering keywords (CPU,
PAGING, and so on.) causes the loading, during
MF/1 initialization, of the interval MG routine
associated with the keyword, so that reports
and/or record copies are produced for that
measurement type. If the second of any of the
above sets of two is chosen (NOCPU, NOPAGING,
and so on.), then no MG routines are loaded for
this measurement type, and little or no ‘
performance or storage overhead is caused by these
routines.

3-76 OS/VS2 System Logic Library Volume 3 (VS2 Release 3.7)

Class 3 consists of the remaining MF/ 1
keywords: (Program default values are underlined.)

REPORT (REALTIME/DEFER) /NOREPORT -
specifies whether formatted reports are to be
written to SYSOUT, and, if they are, whether they
are to be printed when available, or at MF/1
termination.

SYSOUT (class) - specifies the SYSOUT class for
all printed reports. The default is class A.

RECORD/NORECORD - specifies whether or not
data records are to be written to the SMF data set
at specified intervals.

INTERVAL (value/valueM) - specifies the length
of time in minutes between gathering measurements
and (optionally) preparing records and printing
reports.

CYCLE (value) - specifies the frequency in
milliseconds with which channel and device
statistics are to be obtained within the specified
interval.

STOP (value/valueM/valueH)/NOSTOP -
specifies a length of time after which MF/1 will
automatically terminate or, alternatively, that MF/1
can only be terminated by an operator’s STOP
command. The default value is 15M.

Measurement Facility Control (MFC)

MEC is the system task controlling MF/1 operation.
It performs the input merge to establish the
parameters controlling MF/ 1, initializes for MF/1
data collection by loading the appropriate MG
routines, issues SVC MF DATA A at reporting
intervals to initiate data collection for active report
printing, and controls MF/1 termination.

See the following method-of-operation diagrams:

Measurement Facility Control (MFC) Mainline

(IRBMFMFC)

MFSTART Mainline (IGX00013))

Input Merge Control (IRBMFINP)

Syntax Analyzer (IRBMFANL)

List Option Module (MFLISTOP)

Initialization Mainline (MFIMAINL)

CPU Activity Initialization (IRBMFICP) or Paging

Activity Initialization (IRBMFIPG)

Workload Initialization (IRBMFIWK)

Channel Initialization (IRBMFIHA)

Device Initialization (IRBMFIDV)

Data Control (IRBMFDTA)

Termination Processor (IRBMFTMA)

MF/1 Message Processor (IRBMFMPR)

System Activity Measurement
Gathering (SAMG)

SAMG consists of a set of measurement gathering .

(MG) routines whose function is to collect data
from the various system components for eventual
reporting through SARG, and to copy the
information to the SMF data set if so required by
the RECORD/NORECORD option. There are two
classes of MG routines—interval MG routines and
cycle MG routines. There is one interval MG

routine associated with each active reporting class;
it is activated at reporting intervals (as determined

by the INTERVAL keyword to collect interval
measurements and, optionally, copy the SMF
record. Cycle MG routines are associated with the

device and channel reporting classes. If active, they

are entered at periods determined by the CYCLE
keyword to sample queue lengths and maintain
other intermediate device and channel-related data
that the related interval MG routines collect at
reporting intervals.
See the following method-of-operation diagrams:
MFDATA SVC Mainline (1GX00014)

Interval MG Routine for CPU (IRBMFDCP)
Interval MG Routine for Paging (IRBMFDPP)
Interval Routine for Workload (IRBMFDWP)
Interval MG Routine for Channels (IRBMFDHP)
Interval MG Routine for Devices (IRBMFDDP)
MFROUTER SVC Processor (IRBMFEVT)
Channel Sampling Module (IRBMFECH)
Second CPU Test Channel Sampling Module
(IRBMFTCH)

Device Sampling Module (IRBMFEDV)

System Activity Report Generating
(SARG)

SARG produces all the formatted reports about the
activities being monitored. These reports are made
available for printing at a time specified in the
REPORT parameter.

See the following method-of-operation diagrams:
Report Generator Control (IRBMFRGM)
Report Generators for CPU, Paging, Workload,

Channels, and Devices (IRBMFRCR, IRBMFRPR,
IRBMFRWR, IRBMFRHR, and IRBMFRDR)

Section 2: Method of Operation 3-77

3-78 0S/VS2 System Logic Library Volume 3 (VS2 Release 3.7)

6L uonendQ Jo POYRW :7 UONdS

L

System Activity
Measurement Facility
(MF/1) (no diagram)

I 7-1

Measurement Facility

MFC iSAMG

Measurement

SARG]

|}
Control (MFC) | ﬁ:::’;‘j;;’:g 'SAMG’ | [_724
Mainline
tol
(IRBMFMFC) l | Report Generator
| | I (IRBMFRGM)
7-2 | 7-5 7-13 l 7-14 l 7-20 l
Input Merge MFSTART Message MFDATA SVC MFROUTER SVC l l 7-25
Control Mainline Processor l Mainline Processor Processor l Report Generators
(IRBMFINP) (1GX00013) (IRBMFMPR) | | (1GX00014) (IRBMFEVT) (IRBMFRCR
4 | IRBMFRPR
r — IRBMFRWR
l IRBMFRHR
L 73 [74 | | IRBMFRDR)
Syntax List Options l
Analyzer Subroutine 7-21 7-22 7-23 '
(IRBMFANL) (MFLISTOP) | Se
cond CPU Test ice Sampting | L = —m s —
Channgl Channel Sampling Device Sampling
I Sampling Module Module Module
|] | (IRBMFECH) = TCH) (IRBMFEDV)
| 76 711 732] |
Initialization Data Controlb Termination I
Mainline (IRBMEDTA) Processor 1 J
(MFIMAINL) (IRBMFTMA) | L __ __ | 716 | AT
Interval MG Interval MG
I Routine for Routine for
l Paging Channels
= (IRBMFDPP) (IRBMFDHP)
: [= [[70|
CP:;J (!RBMFICP) Workload Chapqel) De:v.ice:) I 7-15 7-17 I 7-19
or Faging Initialization Initialization Initialization
(IRBMFIPG) (RBMFIWK) | | (IRBMFIHA) | | URBMFIDV) | | | jorerval MG nterval MG Interval MG
Initialization . Routine for Routine for
I Routine for CPU Workload Devices
' (IRBMFDCP) {IRBMEDWP) (IRBMFDDP)
]

Figure 2-10. System Activity Measurement Facility (MF/1) Visual Contents

(L°€ 5839y TSA) € dwmnjop Axerqry 91807 wosAS ZSA/SO 08-€

Diagram 7-1. Measurement Facility Control (MFC) Mainline (IRBMFMFC) (Part 1 of 2)

From Dispatcher
After Recognition
Input of START Command Process

Measurement Facility Control (MFC)

Mainline (IRBMFMFC)

MFENQAPL
Return to caller

Ensure that only one MFC task runs at if MF/1 already
any one time by checking that another running
MFC task is not already running.

MFEXECPA

Enable the MFC task to be stopped
by an operator-entered stop

EXEC Parameters

MFPCT
T T N

command.

IRBMF 1xx Member
of PARMLIB

Combine input options from all sources
and prepare consolidated list of input
options. (See MO diagram Input

Merge Control (IRBMFINP).)

Command
Input Block {CIB)

START Parameters

Allocate storage for message Sysout
data set and open the Sysout
data set.

Permanent
Measurement
Vector Table ~

MFCOA

Permanent Common
Option Area

Initialize to begin measurement
gathering (MG) and to begin report
generation, both according to
consolidated input options.

MFPCT

Permanent Problem
Control Table

Wait for completion of reports.
Then close out each report subtask
as it completes.

Close Sysout data set, and indicate
MF/1 is not running, and issue)
operator message that MF/1 is
terminated.

to Caller

MFPCSEAD

CERRIR R R

IRBMFINP

Input Merge Control

IRBMFALL

Dynamic Allocation

1GX00013

MFESTART Mainline

IRBMFMPR

Message Processor

Z uoIag

18€ uonedQ jo poyreN

Diagram 7-1. Measurement Facility Control (MFC) Mainline (IRBMFMFC) (Part 2 of 2)

Extended Description

The Measurement Facility Contro! (MFC) Mainline module
(IRBMFMFC) is the first MF/1 module to receive control as
a result of the operator starting MF/1. Its main functions are
to initialize MF/1 option control blocks, to issue an SVC to
cause monitoring of system variables by MF/1, and to assist
in terminating MF/1.

1 The return from an enqueue on a global name indicates

whether another MFC Mainline task is dispatched, even
if it has been dispatched in another virtual area. If so, this
MFC Mainline task issues an operator message and then
terminates.

2 MFC Mainline obtains an ECB address so Data Control
(IRBMFDTA) can later accept a stop command from
the operator.

3 MFC Mainline loads and calls input Merge (IRBMFINP)

to merge input options, analyze the syntax of these
options, and indicates the option values specified in the
PMA and COA.

Module

IRBMFMFC

IRBMFMFC

IRBMFINP

Label

Extended Description

4 MFC Mainline calls the Dynamic Allocation module
(IRBMFALL) to aliocate storage for the Sysout data
set and then opens the data set.

B Issue SVC MFSTART to initialize the monitoring,

reporting and recording of system measurements by
MF/1. Control will not return to this point until MF/1 is
ready to terminate (when the specified duration is reached,
or MF/1 is stopped by the operator).

6 Detach each SARG subtask, and free all associated con-
trol blocks.

7 Issue CLOSE to close the message SYSOUT data set,

and issue DEQ to indicate that MF/1 is not active. Call
the message processor (IRBMFMPR) to indicate termination
to the system operator.

Module

IRBMFALL

1GX00013

IRBMFTMA

IRBMFMFC

Label

(L°¢ osea[oy TSA) £ Swnjop Arexqry J1807 WSS ZSA/SO I8€

Diagram 7-2. Input Merge Control IRBMFINP) (Part 1 of 2)

From MFC Mainline

Input (IRBMFMFC) via CALL Process

Command
Input Block {CIB)

Input Merge Control (IRBMFINP)

1 Process input options in the following
order:

START parameters

a. Parameters in the START command.

MFEXECPA

EXEC parameters

b. Parameters in

IRBMF1XX

the EXEC statement.

c. Specified or default data set.

Member of
SYS1.PARMLIB

e

MFMVT

Measurement
Vector Table

MFCOA

Common
Option Area

d. Default options.

2 Perform validity checks of all
merged input options.

3 List the options in effect in a
SYSOUT data set and, if the
operator so requested, list them

Output

MEMVT PMA

Permanent
Measurement :_r\V
Vector

Table

MFCOA

Permanent
Common
Option
Area

IRBMFANL

Syntax Analyzer

on the master-console.

Operator’s Console

Return to MFC Mainline
(IRBMFMFC)

£8-€ uonendQ JO POYIN 7 UOHISS

Diagram 7-2. Input Merge Control (IRBMFINP) (Part 2 of 2)

Extended Description Module Label

The Input Merge Control module (IRBMFINP) receives con- IRBMFINP
trol from MFC Mainline (IRBMFMFC) early in the execu-
tion of IRBMFMFC. IRBMFINP controls the preparation of
tables that represent consolidated input parameters and con-
trols the printing of this set of input parameters if required
either by an input request or because of invalid or conflict-
ing inputs. Inputs to IRBMFINP are from Start command
parameters, EXEC statement parameters, input-specified
data set parameters, or from default options. IRBMFINP
controls the interpretation of inputs, the merging of these
inputs into a set of control blocks that indicate the re-
quested options, and the communication with the console
operator to obtain approval or correction of the list of
options prepared in response to inputs. The four input
sources have the following priority, from highest to lowest:
START command, EXEC statement, member data set, and
default.

Extended Description

1 The processing of input options from each input source

is essentially similar: for each source, the input data is
separated into recognized fields and initialized in temporary
control blocks, and then these fields are merged into perma-
nent control blocks that represent input options combined
from all sources of input. Routines check for invalid values
in input data, for mutually exclusive options, and for syntax
errors, Such errors are reported to the operator, who may
request new options or instruct the program to ignore the
inputs (if ignore is requested, lower priority inputs or
defaults are used).

2 Routine MFVALCHK performs the following validity
checks between different option types:

a) The report option must not be set to DEFER if NOSTOP
is requested.

b) Options NOREPORT and NORECORD must not both be
set.

c) The STOP value must be such that the time in operation
is not less than the INTERVAL value.

3 The set of options is written to a SYSOUT data set and

if so requested is printed on the console. Subroutine
MFLISTOP writes to SYSOUT, and to the console if
required. (See List Option Subroutine (MFLISTOP)
diagram.)

Module Label
IRBMFINP
MFMERGE
MFSRCPRO
IRBMFMPR

IRBMFINP MFVALCHK

IRBMFINP MFLISTOP

(L°€ 9seafoY TSA) € ownjoA Arexqry 91807y wAsAS ZSA/SO $8-€

Diagram 7-3. Syntax Analyzer (IRBMFANL) (Part 1 of 2)

From Input Merge Control

Syntax Analyzer (IRBMFANL) °

Scan Control Buffer Control
Block (SCB) Biock (BCB)

Current
* Item Entry / BCB _/
P> Obtain next recursive work
* SCB g"'";e"t h la-‘:?fg:r of area element from pushdown
ex stack.
Recursive No. of Bytes ’ N
Work Area) Left in Buffer Buffer)
Pushdown Input Character String 2 If the input item is from a IRBMFINP
Stack . terminal, call the appropriate MFRINTGR
. izer. If
il ez, 1
///////// / - MERTEXT
SYITEMnn MFRTEXT
‘ Structure MFRRERR

U

SYSTRAN ////////////

A Ordinary Alternatives

3 if the input is a structure,
recursively call IRBMFANL
again to examine each
alternative of the structure,

IRBMFANL

‘ Recursive Alternatives

7 7727777777
syaLTan < L LS
‘ ftem List
‘ Initialization Routine
VS
0 1stitem Entry
0 2nd item Entry

Recognizer Routine

Last Item Parameter List
Entry

Syntax
Analyzer

4 For identified alternatives, IRBMFINP
call an initialization routine,
if one exists, to make

appropriate entries in tables

of input options,

MFOPINIT INMVT

B If structure is recursive,
indicate use of alternatives
of recursive structure and
return to step 2.

6 Returr} this invocation’s Return to Input Merge (IRBMFINP) or
recursive work area to the Syntax Analyzer (IRBMFANL) if
pushdown stack. called recursively.

68-¢ uonerdQ jJo poyle| :g uoieg

Diagram 7-3. Syntax Analyzer IRBMFANL) (Part 2 of 2)

Extended Description

The Syntax Analyzer parses the string of characters from an
input source and attempts to identify the intended set of
input options. If successful, the Syntax Analyzer builds
these options into control biocks to be merged with input
options from other sources.

The general logic flow of the Syntax Analyzer is to scan the
source of input and attempt to establish correspondence
between the input and one of the valid inputs described in
the Syntax table (MFSYNTAB). Essential to the recognition
of valid options is MFSYNTARB, which defines all possible
valid inputs in terms of structures, alternatives, items, and
terminals. A structure is a high-level description of an
option. A structure points to a list of alternatives. Each
alternative describes a possible way the input could appear
in a character string. Each alternative is made up of one or
more items. An item is a terminal item (called simply a
terminal) if the item is a string of characters to be matched
in the input. Or, an item may point to another structure,
which in turn, is made up of alternatives, each of which

has one or more items.

The Syntax Analyzer examines each item one by one, and,
if all items of an alternative consist of valid terminals,
appropriate entries are made in control blocks that represent
input options from this source. If any item points to a struc-
ture, the alternatives of that structure are examined, item by

-item, until terminals can be compared on a character for

character basis to establish valid items. Valid items are used
to establish valid alternatives. When a valid alternative is
established no other alternative of the structure needs to be
examined.

The Syntax Analyzer uses a Scan Control Block (SCB) to
keep track of where in the input string the current compari-
son is being made.

Module Label

IFBMFANL

Extended Description

1 The address of the pushdown stack is provided as an
input to the syntax analyzer on each invocation.

2 The input item entry identifies the appropriate recog-
nizer to call.

3 The initial word of each item entry contains a bit that
identifies the item as a terminal (that is, a character
string capable of verification by a terminal recognizer) or
as part of a structure. |f the item is part of another struc-
ture, the second word of the item entry contains the address
of the structure entry (SYSTRnn). The structure entry
points to lists of alternatives (SYALTnn), each of which
point to item lists (SYLTMExx).

4 The third word in each alternative entry contains the
address of the Initialization routine MFOPINIT, if
initialization is to be done.

B A recursive bit is located in the first word of each
structure entry. If the bit is on, a recursive list of alter-
natives is examined.

6 Onreturn to the SYNTAX ANALYZER on a recursive
invocation, this invocation’s recursive workarea is re-
turned to the pushdown stack.

Module Label

IRBMFANL

IRBMFINP MFRINTGR
MFRALPHA
MFRBLANK
MFRTEXT
MFRRERR

IRBMFANL

IRBMFINP MFOPINIT

IRBMFANL

(L°€ 9seopoy ZSA) € SwmjoA AmIqry J180 wosAS ZSA/SO 98-€

Diagram 7-4. List Option Subroutine (MFLISTOP) (Part 1 of 2)

From input Merge

MFCOA

List Option Subroutine (MFLISTOP)

1 If the list of input options is to be
printed online for the operator,
print it and allow the operator to
“reply with more options or GO."”

MFCOOPI

I Operator’s

Console

INREPBUF

If option list is not to be printed
for the operator, or if printed for g IRBMFALL
the operator and he replies GO,
allocate a data set, open it, and
list the options in the data set.

Operator’s Reply

Dynamic
Allocation

Return to caller.

Return to
Caller
(IRBMFINP)
MFCOA

Permanent Common
Option Area

If the operator reply contained more
options, merge these options with the
previous input options and validity
check the merged set of options. MEMVT MFPMAs

Return to step 1.

L8-€ uopeIdQ Jo POyl :Z UoldIs

Diagram 7-4. List Option Subroutine (MFLISTOP) (Part 2 of 2)

Extended Description

The List Option module (MFLISTOP) lists options, as re-
quested by the input source or in response to errors in
specifying the MF/1 options.

1 if the OPTN option (list input options on the console)

is set on, either by direct operator request as an input
option or as a result of an error in input options, the list is
printed.

2 Routine IRBMFALL is used to allocate space for

listing the SYSOUT data set. If the opening of the data
set is successful, the final list of options in effect is written
to the data set.

3 i the operator replied with more options in response

to REPLY WITH MORE OPTIONS OR GO, his reply
is scanned for errors and control blocks (permanent) are
initialized. This cycle of actions continues until he replies
GO to the message, then a final list of options is written to
the SYSOUT data set.

Module Label

IRBMFINP MFLISTOP

IRBMFINP MFLISTOP
IRBMFMPR

IRBMFALL

IRBMFINP MFSRCPRO
IRBMFANL MFVALCHK

(L°€ aseafoy TSA) € swnjop Arexqry o8o] WoIsAS TSA/SO 88-€

Diagram 7-5. MFSTART Mainline (IGX00013) (Part 1 of 2)

From MFC Mainline
Input (IRBMFMFC) via SVC Process Output

MFSTART Mainline (IGX00013)

Set up for recovery routine to
handle errors in MFSTART.

Set up for measurement gathering.

MFIMAINL

Initialization
Mainline

Input Parameters

SYNCH

3 Set interval time for requested
interval and perform
measurement gathering when
there is an interval timer

interruption,

addr: MFMVT IRBMFDTA

Data Controi

addr: MFCOA

Delete MG routines and resources IRBMFTMA
for both interval and cycle MG

activities,

Termination
Mainline

B Cancel recovery setup of Step 1,

Return to MFC Mainline
(IRBMFMFC)

Z uonoeg

68-¢ uonerdQ jo poylol

Diagram 7-5. MFSTART Mainline (IGX00013) (Part 2 of 2)

Extended Description

The MFSTART Mainline (IGX00013) processor controls the
initialization and termination of routines that perform MF/1
functions.

1 Issue an ESTAE macro instruction to provide entry to
routine IRBMFSDE, which receives control in event of
MF/1 errors.

2 Call the Initialization routine (MFIMAINL), which, in
turn, calls other initialization routines (see the first

paragraph in the MFC Mainline (IRBMFMFC) M.O. diagram).

3 Use SYNCH macro instruction to change to problem

state and to transfer control to the Data Control rou-
tine (IRBMFDTA), which sets the interval timer and initi-
ates measurement gathering after each interval.

4 After the last interval, Data Control returns controi to
MFSTART Mainline, which calls Termination Mainline
(IRBMFTMA).

5 MFSTART Mainline cancels the ESTAE routine entry.

Module Label

1GX00013

1GX00013

IRBMFSDE

MFIMAINL

IRBMFDTA

IRBMFTMA

(L€ 9820y TSA) € oWNOA Areaqry 518077 WRISAS ZSA/SO 06€

Diagram 7-6. Initialization Mainline (MFIMAINL) (Part 1 of 6)

From
MFSTART Mainline
Input (1IGX00013) via CALL

IMGSTSRG

IMMMVSRG

MFCOA
Input Option

CYCLE

Process

Initialization Mainline

(MFIMAINL)
Global Storage
1 Obtain global fixed storage needed . MFROUTER
by MG routines that operate at Vector
intervals. Table
(MMV)

-

2 Obtain local pagable storage needed
by MF/1 control programs.

3 Initialize controt blocks STGST
and STMMYV and set up controls
for MG routines that run at cycles
(specified in input options).

4 Initialize more tables.

DHEEREE

STGSCYC

\

5 Validate the minimum cycle time

and make it available for global ' Cycle Time

reference.

& Control

Blocks

Control
Blocks

Control
Blocks

16-€ uoneadQ Jo POYISI :T UOIDAS

Diagram 7-6. Initialization Mainline (MFIMAINL) (Part 2 of 6)

Extended Description

The Initialization Mainline (MFIMAINL) procedure controls
the allocation of space for and the initialization of control
blocks. It also calls routines whose purposes are to initialize
different functions essential to measurement gathering
(MG). Finally, it issues the MFDATA SVC to collect initial
values of requested measurements.

1 MFIMAINL uses the GETMAIN macro instruction to

obtain storage for the Global Storage Table (STGST)
and for the MFROUTER (control routine for sample col-
lecting routines) Vector Table (STMMV).

2 MFIMAINL uses the GETMAIN macro instruction to
obtain storage for the Supervisor Control Table
(STSCT), Measurement Vector Table (STMVT), the Com-
mon Option Area (STCOA), Supervisor Measurement Area
(STSMA), and the Resource Vector Table (STRVT).

3 MFIMAINL places initial values into the control blocks
for which space was obtained in step 1.

4 MFIMAINL places initial values into the control blocks
for which space was obtained in step 2.

B The time specified by the cycle input option must not
be less than 50 milliseconds.

Module Label

IGX00013 © MFIMAINL

IGX00013 MFIMAINL

1GX00013

IGX00013

1GX00013

IGX00013

(L€ 9s%3]0Y TSA) € oumjop Areiqry o807 wayss ZSA/SO T6€

Input

MFMVT

MFPMA

MFMVCPU

MFMVPAG

MFPMAOPT

MFPMA

MFPMAOPT

r———

MFPMA
e

MFMVWRK

MFMVCHL

MFMVDEV

=

STMVT
N

MFPMAOPT
W
MFPMA

MFPMAOPT

MFPMA

MFPMAOPT

STSMA CPU
T —— ey

STMVCPU

STMVPAG

STMVWRK

STMVCHL

STMVDEV

STSMINIT .

e
STSMA Paging
P

STSMINIT
-

STSMINIT
LA e p—a————
STSMA Channel

STSMINIT

]
STSMA Devices

STSMINIT

p————

STSMA Workload |
N s k-

Diagram 7-6. Initialization Mainline (MFIMAINL) (Part 3 of 6)

Process

Initialize for interval-driven
measurement gathering

(MG) routines as specified by
input options.

Output

Initialize MG
Routine
(IRBMFICP)
CPU Meas.

(IRBMFIPG)
Paging Meas.

(IRBMFIWK)
Workload Meas.

(IRBMFIHA)

Channel Meas,

(IRBMFIDV)
Device Meas.

z uoiag

£6-€ uonendQ Jo poyap

Diagram 7-6. Initialization Mainline (MFIMAINL) (Part 4 of 6)

Extended Description Module : Label

6 MFIMAINL calls the routines that initialize the MG IRBMFICP
routines, Only those MG routines required for the re- IRBMFIPG

quested kinds of reports are called. For example, IRBMFIWK

if CPU is the only requested report, then IRBMFIHA

IRBMFICP is the only MG routine called. IRBMFIDV

x3

(L°g 2589foY TSA) € owmjoA Areiqiy o180 wWapAS ZSA/SO

Diagram 7-6. Initialization Mainline (MFIMAINL) (Part 5 of 6)

Input Process Output

IMCYCTOD

Cycle Value (TOD) 7 Enable sample MG routines

- (event-driven), if required, and
establish time for the sample
period, if required.

Enable for 1/0 data collection, IRBMFIOI
if required.

. Initialize 10S

for Data
Collect.

CINITDAT

First Call ,

Flag for O Obtain initial values of 1GX00014

MFDATA measurements for the] i

requested measurements. . i MFDATA SVC
1 " Processor

Return to MFSTART
Mainline (IGX00013)

z uonoag

.

§6-€ uoneradQ jo poyrop

R

Diagram 7-6. Initialization Mainline (MFIMAINL) (Part 6 of 6)

Extended Description

7 If channel or device reports are requested, MFIMAINL

sets a flag in the Communications Vector Tabie (CVT)
in CVT item CVTMFACT. MFIMAINL aiso puts the time of
the next sample into MF/1’s Timer Quene Element (TQE).
Before calling Routine IEAQTEQO to enqueue the TQE on
the timer queue, MFIMAINL obtains the dispatcher lock and
establishes a Functional Recovery Routine (FRR) exit; after
setting the TQE, these actions are reversed.

8 MFIMAINL calls routine IRBMFI0I to change instruc-
tions in the system 10S functions so that channel and
device measurements are collected as 10S operates.

9 MFIMAINL issues the MFDATA SVC (SVC 109, code

14) to collect data as requested by input options. This
first call to each, however, is indicated as the initial call and
results in taking initial values against which later values are
compared.

Module Label

1GX00013

IEAQTEOO

IRBMFI01

1GX00014

(L°€ oseopy TSA) € swnjop Areqry o180 woisAS ZSA/SO 96-€

Diagram 7-7. CPU Activity Initialization (IRBMFICP) or Paging Activity Initialization (IRBMFIPG) (Part 1 of 2)

From Initialization
Mainline (MFIMAINL)
Input via BAL

Output

Process
CPU Activity Initialization
{(IRBMFICP) or Paging Activity
Initialization (IRBMFIPG)

STSMA

Return if
Error in
Request

STSMOPT

1 Verify the request for the option.

Program
Resource Table

2 Obtain storage for tables.

D STPRT

STPRNAME

STPRADDR

STPRLGTH

STSMA

3 Load required interval MG routine
and place name in resource list.

STSMINTP

CVT

— T T N ———

CVTMAXMP

STSMIGMC

4 Calculate storage for interval data area.

Return to Initialization
Mainline (MFIMAINL)

Z uonoog

.
.

L6€ uonexndQ jo poyop

Diagram 7-7. CPU Activity Initialization (IRBMFICP) or Paging Activity Initialization (IRBMFIPG) (Part 2 of 2)

Extended Description

The CPU Initialization (IRBMFICP) and the Paging initiali-
zation (IRBMFIPG) both have very similar functions, inputs,
and outputs. Therefore, one M.O. diagram is used to
describe the functions of both. IRBMFICP and IRBMFIPG
allocate storage space for control blocks, ensure that copies
of the required interval MG routine are in the virtual storage
space, and calculate the length of the required data area.

1 The CPU or Paging Initialization routine ensures that

the input option has been specified by checking the
STSMSTA bit in the STSMOPT word of the Supervisor
Measurement Area (STSMA).

2 The CPU or Paging Initialization routine uses the
GETMAIN macro instruction to obtain the necessary
storage.

3 After adding the entry to the Program Resource Table

(STPRT), the initialization routine indicates in the
Resource Vector Table (STRVT) the next available entry in
the STPRT. The entry point address is placed in the System
Measurement Area (STSMA) for use by the MFDATA SVC
Processor (IGX00014).

4 The storage length for CPU data is:

4 + length of (SMFRCD70) + length of (SMF70A) +
(CVTMAXMP + 1) times fength of (SMF70B).
The storage length for paging data is:
4 + length of (SMFRCD71) + length of (SMF71A) + length
of (SMF71B).

Module

IRBMFICP
or
IRBMFIPG

IRBMFJCP
or
IRBMFIPG

IRBMFJCP
or
IRBMFIPG

IRBMFJCP
or
IRBMFIPG

Label

(L°¢ 3swaoy ZSA) € dwnjop Azeaqry 9NBo] wasAS ZSA/SO 86€

Diagram 7-8. Workload Initialization (IRBMFIWK) (Part 1 of 2)

From Initialization
Mainline (MFIMAINL)

Input via BAL

STSMA (workload)

S

Workload Initialization (IRBMFIWK)

STSMOPT

e ———

WMST

WMSTPGHI

WMSTPGPC

e

1 Verify the request for a workload

option.

Allocate storage for tables; ioad into
virtual storage and page-fix the
System Resource Manager (SRM)
routine IRARMWAR, and place
addresses in the necessary tables.

Load into virtual storage the interval-
driven MG workioad routine
IRBMFDWP, and place its name and
address in required tables.

Initiate workload activity data
collection and obtain space for
interval data area.

Return to Initialization
Maintine (MFIMAINL)

Output
Error R
return to
Initialization
Mainline L
(MFIMAINL) |

o

Senbena e e R

STPRT
STPRNAME

STPRADD

STPRLGTH

R

STSGT

Storage Resource
Table

DWWIN
Y e e R

SWWIWAML

M

s

66-€ uOeIdQ JO POYION T UOHISS

Diagram 7-8. Workload Initialization IRBMFIWK) (Part 2 of 2)

Extended Description Module

The Workioad Initialization (IRBMFIWK) routine allocates
storage for control blocks, ensures that a copy of the
Interval MG routine for Workload (IRBMFDWP) is in stor-
age, and calculates the length of the data area.

IRBMFIWK

1 IRBMFIWK ensures that the workload option has been

selected as an input option by checking the STSMSTA
bit of the STSMOPT of the Supervisor Measurements Area
(STSMA).

IRBMFIWK

2 IRBMFIWK uses the GETMAIN macro instruction to

obtain the required storage. IRBMFIWK also uses the
PGFIX macro instruction to fix IRARMWAR. Then,
IRBMFIWK issues a WAIT macro instruction for page fix
completion. The name and address of IRARMWAR are
placed in the Program Resource Table (PRT) and the
Resource Vector Table (RVT) is marked to indicate the
next entry in the PRT.

IRBMFIWK

3 The name of the Interval MG Routine for Workioad
(IRBMFDWRP) is placed into the STPRT, and its
address into STSMINTP of the System Measurement Area

(STSMA).

IRBMFIWK

Label

Extended Description Module

4 IRBMFIWK calls routine MFIIPSWA, which uses a IRBMFIWK
GETMAIN macro instruction to obtain storage for the

interval workload data area. The length of this area is:

length (WAMT) + (highest performance group number times

(length (WAMTNDX entry)) + (total number of performance

group periods) times (length of WAMP). (A performance

group is a term of the System Resources Manager (SRM).)

The length and address of the area are inserted into Storage
Resource Table (STSGT). The address of IRARMWAR is
inserted into the gotten area, and IRBMFIWK issues a
SYSEVENT WKLDINIT macro instruction to initiate SRM
workload data collection. Return code 00 from the
SYSEVENT is the good return. Return code 08 indicates
that the installation performance specification (IPS) was
changing when the SYSEVENT macro instruction was
issued; another SYSEVENT is therefore issued. Return code
20 from the SYSEVENT indicates that MF/1 data collection
is already active; therefore a bad return is made to
IRBMFIWK.

Label!

MFIIPSWA

Diagram 7-9. Channel Initialization (IRBMFIHA) (Part 1 of 4)

From
Initialization Mainline
Input (MFIMAINL) viaBAL Process Output

Channel Initialization (IRBMFIHA)

(L°€ 95%o19Y ZSA) € awnjop Areiqry 21807 WSS ZSA/SO - 001-€

STSMA (Channel)
i e

STSMOPT

_\’M

cvt

CVTMAXMP
W

CsD

CSDCHAD

e]

PCCA,
W
? PCCA; or0 PCCACAT

e~

* PCCA, or 0

e o 0

* PCCA,¢ OF 0

1 Verify the request for this option.

STPRT
STPRNAME

Allocate space for tables STPRT
and STSGT. Load and page-fix
the event-driven MG routines,

e e S

Store address of MFROUTER

service routine into CVT,

CVTMFRTR

e — e —

Load into virtual storage interval -

driven channel routine IRBMFDHP,
and place its name and address

STSMA (Channel)
T

in required tables,

STSMINTP

Allocate storage for Channel

Event Data Table (ECCED),
and initialize it and related

STSMEDAD

STPRADDR
STPRLGTH

ECCED
e e

ECCECPEQ

e

—))

tables.

ECCPE

ECCPE (1)

ECCPE (2)

ECCPE (n)

ECCDB

ECCDB (1)

ECCDB (2}

ECCDB (n}

Z uooag

.

101-¢ uoneradQ jo poylp

Diagram 7-9. Channel Initialization (IRBMFIHA) (Part 2 of 4)

Extended Description

The Channet Initialization (IRBMFIHA) performs the ini-
tialization functions required to cause MF/1 to begin col-
lecting channel data. These functions include initializing
both event-driven and interval-driven MG routines.

1 IRBMFIHA checks bit STSMSTA of SYSMOPT in the
System Measurement Area (STSMA) to ensure that
channel data has been specified as an input option.

2 IRBMFIHA activates modules IRBMFEVT (to respond

to MFROUTER requests), IRBMFECH (to collect
event-driven sample data on the channels of the CPU that
executes the instructions when IRBMFEVT receives con-
trol), and IRBMFTCH (to collect event-driven sampled data
on the channels of any CPU not executing the instructions
when IRBMFEVT assumes control). The activation consists
of adding the modules to the Program Resource Table
(STPRT) and adding IRBMFECH and IRBMFTCH to
IRBMFEVT routing table entries, STMMMGRL1 and
STMMMGRL2.

Module

IRBMFIHA

IRBMFIHA

IRBMFIHA

Label

IHLOADM1
IHPAGFX1
IHLOADM2
IHPAGF X2
IHLOADM3
IHPAGFX3

Extended Description

3 Set the MF/1 MFROUTER pointer (CVTMFRTR)
in the Communication Vector Table (CVT) to point
to IRBMFEVT.

4 The name IRBMFDHP is placed into the STPRT and
the STRVNPRT is updated to show the addition of

IRBMFDHP. The address of IRBMFDHP is placed into

STSMINTP of the STSMA for use by IRBMFEVT.

B A CPU element (ECCPE) is allocated and initialized

for each possible CPU (MAXMP + 1), and then for each
ECCPE, channel Data Block (ECCDB) entries are formed
for each possible channel (CSDCHAD + 1). These CDBs are
used to store data collected at each sampling event,

Module Label
IRBMFIHA

IRBMFIHA IHLOADM4
IRBMFIHA IHGETMN3

(L€ o5®I[Y ZSA) € SWN[OA Areiqi 9180 wolsAS ZSA/SO 70T-€

Diagram 7-9. Channel Initialization (IRBMFIHA) (Part 3 of 4)

Process

@ Store the address of the ECCED into
required tables.

Output

STMMV
STMMEVTL1 ;

_:> - STMMMGRL1

STMMMEVTL2 -D

(-b STMMMGRL?2

S

STSGT
I g

STSGFREE

STSGADD

STSMA (Channel)

7 Calculate the storage required for the

STSMIGMC

interval data areas.

8 Request start of 108 data collection,
request that the MFROUTER be
enabled, and indicate that sampling
is required.

Return to Initialization
Mainline (MFIMAINL)

T uonoag

.

£01-€ uoneradQ Jo poyjel

Diagram 7-9. Channe! Initialization (IRBMFIHA). (Part 4 of 4)

Extended Description Module Label

6 The address of the Channel Event Data Table (ECCED) IRBMFIHA
is stored in STMMMGRL1 and STMMMGRL2 of the

MFROUTER Measurement Vector Table (STMMV) for use

by the MFROUTER Processor (IRBMFEVT). The ECCED

address is also stored into the Storage Resource Table

(STSGT) and the System Measurement Area (STSMA).

7 The storage length for interval data is:

4 + length of (SMFRCD73) + length of (SMF73A)
+ (CVTMAXMP + 1) times (CSDCHAD + 1) times length
of (SMF73B).

8 The return code from IRBMFIHA is set to indicate - IRBMFIHA
that 10S data collection should be requested, that the

MFROUTER should be enabled, and that sampling of

channel data is required.

(L°€ 95e319Y ZSA) € FWN[OA Arexqr 980T welsAS ZSA/SO +01-€

Diagram 7-10. Device Initialization (IRBMFIDV) (Part 1 of 2)

From Initialization

Mainline (MFIMAINL
fain |r|l- () Process Error Output
. . Return to ; 7

Initialization
Mainline :
(MFIMAINL)}

Input

Device Initialization (IRBMFIDV)

STSMA (Device)
i T

STSMOPT

STPRT

1 Verify the request for this option.

STPRNAME
2 Allocate space for STPRT and STSGT > STPRADDR
tables; load into virtual storage
and page-fix device event-driven MG STPRLGTH.
routines, CVvT e
3 Store MFROUTER address in CVT and CVTMFRTR
set up device work area. = p— STSMA (Device)
IDDEVTBL
‘ UCB, or 0O 4 Load into virtual storage interval-) STSMINTP
1 driven, device MG routine IRBMFDDP,
uUcs, or 0 and place its name and address in
‘ 2 required tables. > STSMEDAD
e O o ~
N e P S N
* UCBn or 0 EDDED
FF R e g
5 Allocate storage for Device Event Data N EDDEDCDT |
Table (EDDED), and initialize it and i
C UCBi refated tables. STMMV
EDDCD
MM
Device Class 6 Store the address of the EDDED in STMMGRL1 J EDDCT (1)
required tables. P ———
STSGT EDDCT (2)
Device Addr [~ XX
-
e —e N STSGFREE EDDCT (6)
. STSGADD
7 Calculate storage for the interval data A ——— EDDDBs
area. STSMA (Device) Dovic Dom
M—,—‘
Blocks
- ~ 8 Request start of 10S data coliection, STSMIGMC ,
- request that the MFROUTER be P———e—— 4
enabled, and indicate that sampling is
required.
S - Device Unit Control

Return to fnitialization Mainline (MFIMAINL)

Z uonoss

SO0T-€ uoneradQ jo poyRN

Diagram 7-10. Device Initialization (IRBMFIDV) (Part 2 of 2)
Extended Description Module Label

The Device Initialization (IRBMFIDV) routine activates the IRBMFIDV
MFROUTER Processor (IRBMFEVT) to respond to calls

for event-driven sampling of device data. In addition

IRBMFIDV initializes the interval-driven device data MG

routine IRBMFDDP. Required storage and table initializa-

tion are also performed so that device data can be collected

and stored.

1 IRBMFIDV checks that STSMOPT in the System IRBMFIDV
Measurement Area (STSMA) is on. If not, IRBMFIDV
returns immediately.

2 IRBMFIDV adds the MFROUTER Processor IRBMFIDV
(IRBMFEVT) and the event-driven device MG module

(IRBMFEDV) to the Program Resource Table (STPRT).

The Resource Vector Table (STRVT) is also changed to

indicate the next STPRT entry.

3 Set CVTMFRTR in the Communication Vector Table IRBMFIDV
(CVT) to point to IRBMFEVT.

4 The module name, IRBMFDDP, is placed into the IRBMFIDV
STPRT, and as in step 2, STRVNPRT is changed. The

address of IRBMFDDP is placed in the SMA (specifically,

STSMINTP) for use by the MFDATA SVC Processor

(IGX00014).

B To allocate and initialize the Device Event Data Table IRBMFIDV
(EDDEDT) the following phases are necessary:

a) The number of nonzero entries in the 10S UCB lookup
table is determined. The result is the maximum number
of devices possible. A work table is allocated on the
basis of this count.

b) For each class of devices to be monitored, the |10S UCB
lookup table is used to search for existing devices in the
class. As a device is found, its UCB address is put into
the work area and a class count is increased by one if that
UCB address had not already been processed.

Extended Description

¢) The preceding phase is repeated without modifying the
work area as a check that the.lookup table is not in the
process of being changed. If an error is found, both the
preceding phase (b) and this one (c) is repeated.

d) Finally the EDDED, the Device Class Data Table
(EDDCD), and the Device Data Blocks (EDDDBS) are
allocated and initialized, based on the work area
information.

The EDDCD entries consist of one entry for each of the
following device classes in the order listed:

® tape

® communication equipment
o direct access

@ graphics

@ unit record

o character reader

Each entry is zero if no device exists for that class; other-
wise it contains the address of the EDDDB table and num-
ber of DDBS for the devices that do exist.

6 The address of the EDDED is stored into STMMMGRL
of the MFROUTER Measurement Vector Table
(STMMV), into STSGT, and into STMEDAD of the SMA.

7 The storage length is;

n
4 + length (DDDVT) + > bk times
k=1
[tength of (SMFRCD74} + length of (SMF74A) + Ck times
(length of (SMF74B))}

where, DDDVT is a table of entries for each device class
n = number of device classes
Ck = number of devices in class K
bk=1 if Ck # 0 and
bk =0ifCk=0

8 The return code for IRBMFIDYV is set to indicate that

10S data collection should be started, that
MFROUTER should be enabled, and that sampling of device
data is required.

Module

IRBMFIDV

IRBMFIDV

Label

(L'€ 3sea|9Y ZSA) € 2wmjop Areiqy] 918077 uisAg ZSA/SO 901-€

Diagram 7-11. Data Control (IRBMFDTA) (Part 1of 4)

Input

From MFSTART

(1IGX00013) via SYNCH Process

MFPCT

Problem Control

Data Control (IRBMFDTA)

1 Provide for recovery in event of an

Table

Permanent Common
Option Area

MFCOA

e et e ™)

error in the Data Control module.

2 Issue message to operator:
MF/1 ACTIVE.

MFCOINTV

3 Convert the interval (input option

T ——

MFPCT
™ e e e

MFPCMINT

e ————a P

MFCOA
I e

MFCOSTPV

MFPCT

Error
Linkage
Only

IRBMFDEA

ESTAE Routine

-

IRBMFMPR

Message
Processor

data) to time-of-day form.

MFPCT
T ————,

4 Unless the input option indicates

NOSTOP, calculate the number
of intervals to the stop time.

MFPCNINT

B Reduce the interval count by one.

When the count is zero, cancel
the ESTAE and return.

Return to
MFSTART
(1GX00013)

> MFPCNINT

e e e

Z uoiag

LOT-¢ uoneIadQ Jo poyIol

Diagram 7-11. Data Control (IRBMFDTA) (Part 2 of 4)
Extended Description Module Label

Data Control (IRBMFDTA) is executed in problem state IRBMFDTA
in response to a SYNCH macro instruction issued by the

MFSTART module. This change from supervisor state in

MFSTART represents the entry into the main measurement

gathering operations, which are controlled from the Data

Control Module. Control includes establishing the interval

of measurement gathering, as specified by an input option,

and the queueing of report generation subtasks if real time

reporting was requested. In addition, Data Control performs

a number of event control block and storage control func-

tions.
1 Establish ESTAE routines. IRBMFDEA
2 This message is the first normal operation message to IRBMFMPR

the operator. It is issued after he indicates GO.

3 Interval time is entered in minutes. This time is con- IRBMFDTA
verted to microseconds and placed in a doubleword
such that a one in bit 51 equals one microsecond.

4 A stop time (input option) is specified or NOSTOP IRBMFDTA
is specified. If NOSTOP is specified, the stop command

is used to stop MF/1 operation. If a stop value is given, the

amount of time from the current time until the stop time

is divided by the interval length to obtain the number of

intervals.

5 Data Control reduces the number of such intervals IRBMFDTA
each time through this code. When this interval count
is zero, MF/1 measurements are ended.

(L°€ 9seaoy TSA) € Swn[oA Arerqry 21807 WoISAS ZSA/SO 801-€

Diagram 7-11. Data Control (IRBMFDTA) (Part 3 of 4)

Input Process Output

6 Setinterval timer to alert Data Control
when the end of the current interval
is reached.

MFPCT
i e P

MFPCELAD #0 if a previous list of event control blocks
exists, free that storage, set up storage
for a new ECB list, and set ECB

addresses into new ECB list.

e ——————]

8 Wait for the posting of one of the
following events (9, 10, or 11) in
an event control block (ECB).

Operator STOP Command

\STOP Command ECB

If the ECB for an operator-entered
STOP command is posted,
cause measurement gathering
for this interval. If reports are .
to be printed, attach report
generation subtasks in accord
with input options. Cancel

the ESTAE, and end
measurement gathering by
returning.

1GX00014

Start measurement
gathering routines

. [IRBMFRGM
=¥ Report Generator

Return to MFSTART
(1GX00013)

SARG Subtask Ended

MFSEL

MFSESECB
QT

10 If the ECB for the end of a report
generator subtask is posted, indicate
its completion and free its main
storage.

(SVC 109)

11 If the ECB for the end of the

IGX00014

L STIMER Time Ended current interval is posted, cause : _ .

measurement gathering for this

Start MG Routines

\ STIMER ECB interval and, if reports are to be

printed, attach report generation

e |

I DTSTIECB subtasks in accord with input

IRBMFRGM

options.

Report Generator

To Step 6

601-¢ uoneradQ Jo poyRp :g uondes

Diagram 7-11. Data Control (IRBMFDTA) (Part 4 of 4)

Extended Description Module Label

6 The routine sets the STIMER macro instruction for
the. length of the current interval and compensates for
any stop during the interval.

IRBMFDTA

7 It uses one FREEMAIN macro instruction to free

storage of any existing event control blocks (ECBs).
Then the routine uses GETMAIN to obtain storage for
pointers to ECBs: one ECB for the STOP command, one
for the STIMER alert, and one for each report generation
(SARG) subtask.

IRBMFDTA

8 One of three conditions has occurred when an ECB is IRBMFDTA

posted:

a) The operator has issued a stop command. If so, create
short interval data, and end measurements. Return to
caller of Data Control.

b} A report generator subtask has ended. If so, detach the
subtask, and dequeue its subtask element (SEL) from the
subtask queue (SQU).

c) The STIMER interval has been reached {the current
interval has ended). If so, issue an MFDATA SVC to cause
measurement gathering for this interval and attach a
report generation subtask unless no report of these
measurements was requested. Build a (SARG) subtask
queue element (MFSQU) for the subtask.

Extended Description

9 An EXTRACT macro instruction is used to obtain the
command input buffer (CIB) address of the STOP.

A short interval results when the STOP command is issued.

The MFDATA SVC controls the collection of requested

measurement data. Report generation subtasks are called

by attaching the Report Generator control (IRBMFRGM).

10 Data Control issues a DETACH macro instruction to

remove a completed subtask and then shortens the:
subtask queue. The subtask’s main storage (its element sub-
pool space) is freed by means of a FREEMAIN macro in-
struction.

11 The MFDATA SVC controls the collection of

requested measurement data. Report generation
subtasks are called by attaching the Report Generator con-
trol (IRBMFRGM).

Module

IRBMFDTA

1GX00014

{IRBMFRGM

IRBMFDTA

1GX00014

IRBMFRGM

Label

(L€ %319y TSA) € SWNJOA Areiqiy B0 waIsAS ZSA/SO OTT-€

Diagram 7-12. Termination Processor IRBMFTMA) (Part 1 of 2)

Input

From MFSTART
SVCviaCALL process Output

B

Termination Processor (IRBMFTMA)

ESTAE PARAM

] Establish connection to recovery ESTAE Routine

routine.

CVTMFRTR

Disconnect event driven (MFROUTER)

STSCT

i e

Supervisor Control
Table

routines,

Stop workload MG activity,

Stop 108, device, and channel MG
activity.

IRBMFI01

Terminate 10S MG
Activities

-

Dequeue the MF1 timer queue IEAQTDOO

element (TQE).

Dequeue TQE

IRBMFTRM

© Free resources obtained for MG

STGST

Global Supervisor
Table

routines,

Terminate MG
Routine Resources

7 Free event-driven (MFROUTER) MG
vector table, local, pageable storage,
and global, fixed storage.

Set termination variables,

Return to MFSTART
Mainline Processor
(1IGX00013)

Cancel connection to recovery
routine and then return,

7 uoiog

.

1116 uoneiadQ jo poyrdo

Diagram 7-12. Termination Processor (IRBMFTMA) (Part 2 of 2)
Extended Description Module Label

The Termination Processor (IRBMFTMA) disconnects IRBMFTMA
MF/1 from the resident nucleus. The Termination Proc-

essor dequeues the Timer Queue Element (TQE), discon-

nects the event driven (cycle) MG routines, disables work-

load activity data collection, releases global storage, and

restores the changes made in the system 1/O processor (10S)

to enable channel and device data collection.

1 The Termination Processor provides ESTAE parameters IRBMFTMA
to provide for retrying while releasing resources.

2 The linkage to the MFROUTER service routine IRBMFTMA
(IRBMFEVT) is changed so that if an attempt is made

to transfer control to IRBMFEVT, immediate return will

be made by a BR 14. The Termination Processor also

ensures that no CPU is currently executing event-driven MG

code when this code is disconnected.

3 The Termination Processor causes the workload man- IRBMFTMA
ager to stop workload activity data collection. IRARMWLM
4 The Termination Processor calls the 108 Initiation/ IRBMFIOI

Termination Module (IRBMF{0l) to restore the
changes it made to 10S.

Extended Description

5 The Termination Processor dequeues the MF/1 timer

queue element (TQE) by disabling (using the
SETLOCK macro instruction); providing a functional
recovery routine (FRR) link (because of having disabled);
and using the TQE Dequeue routine (IEAQTDO0O) to
dequeue the TQE. The Termination Processor then cancels
the FRR link, and enables by means of the SETLOCK
macro instruction.

6 The Termination Processor calls routine IBBMFTRM
to release the resources of each MG routine.

7 The Termination Processor uses the FREEMAIN macro
instruction to release the measurement Vector Table
(STMMV), the MF/1 local storage, and MF/1 global storage.

8 The Termination Processor dequeues the MF/1

enqueue resource by use of the DEQ macro instruction,

O The ESTAE connection is canceled by use of the
ESTAE macro instruction.

Module Label

IRBMFTMA

IEAQTDO0O

IRBMFTRM

IRBMFTMA

IRBMFTMA

IRBMFTMA

(L°€ aseajoy ZSA) € dwnjoA Arexqry o80T weISAS ZSA/SO TIT-€

Diagram 7-13. MF/1 Message Processor (IRBMFMPR) (Part 1 of 2)

From Caller of
Input Message Processor

MPMDL MPLIST

MPVPLADR -

Message
Text Module
IRBMFLMV IRBMFLMP

MPVTXLST (Variable Text List)
L 2 BN 2
MPRTNUM | MPVTLEN | mpvTEXT

2
<
>
ity

MPMSGBUF

Output Buffer

e

MP1STLIN

Process Output

MF/1 Message Processor
(IRBMFMPR)

MPMSGBUF

Output Buffer
(84 Bytes)

1 Assemble the parts of the message
and fiil the output buffer with the
assembled message text for one
line,

2 Output the buffer (one line of the
message) to:

Operator’s

a. Operator’s console. Console SYSOUT
or
b. Data set. > Data
Set
or
System
c. System Message (WTP Message

messages) area. Area

First Line

3 !f another buffer load (message

Indicator

line) is required, return to Step 1.

Otherwise, return. Return to Caller

T uorjoesg

€11-¢ uonesadQ jo poye |

Diagram 7-13. MF/1 Message Processor (IRBMFMPR) (Part 2 of 2)

Extended Description

The Message Processor (IRBMFMPR) is called from several
places in the MF/1 program to print output messages.
(These are: IRBMFDTA, IRBMFINP, IRBMFRGM,
IRBMFMFC, and IRBMFMLN.) The Message Processor
assembiles the required message from parts in the Message
Text module (IRBMFLMP), moves the parts into an output
buffer, one message line at a time, and writes the message
lines to the required output device or data set.

1 Input parameters define the message in terms of fixed

and/or variable text portions. Fixed text portions are
obtained from IRBMFLMP through an index in table
MPLIST. When an MPLIST entry contains a zero, a variable
text entry is obtained from the variable text list
{(MPVTXLST). If the variable text length (MPVTLEN) is
non-zero, the variable text is moved into the buffer. If the
variable text length is zero and the MPRTNUM field is non-
zero, the MPRTNUM value is used to index into
IRBMFLMYV, to obtain fixed text from IRBMFLMP. Up to
80 bytes of message text and message identifier are assem-
bled in the buffer.

2 The message Processor calls routine MFOUTMSG to
write the buffer to the operator’s console or required

data set and then returns to the Message Processor

as soon as the message is sent.

3 The message Processor controls the assembling of
message lines and writing them until the entire message
is sent.

Module Label

IRBMFMPR

IRBMFMPR

MFBLDMSG

IRBMFMPR MFOUTMSG

IRBMFMPR

(L€ oseooy ZSA) € SwnjoA Arexqry o180 waisAg ZSA/SO PII-€

Diagram 7-14. MFDATA SVC Mainline Processor (IGX00014) (Part 1 of 4)

From Data Control
(IRBMFDTA) and MFSTART
Iinput (1GX00013) via SVC Call Process

= - e
MFDATA SVC Mainlin
STMVT (1GX00014)
STMVNUM
A ——
STSCT
BT T DTMVT
STSCMVLE 1 Obtain local storage for determining h\//l::tsg:e -g:,?:

the measurement options and
initialize control block.

STSCMF1V

STOCA
Headers or SMF
STOCYCV 2 Obtain header items for records
measurement records. SMF 70 through
N
SMF74

SMCA
Release no. A ‘

SMCASID
S g

CVISMCA 4
M

STT-€ uonerad(jo poyjojy :g UOHdeS

Diagram 7-14. MFDATA SVC Mainline Processor (IGX00014) (Part 2 of 4)
Extended Description Module Label

The MFDATA SVC Mainline (IGX00014) processor exe- 1GX00014
cutes in response to an MFDATA SVC issued by the Data

Control module (IRBMFDTA), once each interval, and by

MFSTART (GX00013) during initialization. When called,

1GX00014 controls the operation of measurement gathering

routines. Each MG routine collects measurements of one of

the following kinds if called for by input option:

o CPU wait time
o Paging activity
@ Workload

o Channel activity
@ Device activity

The measurements for the interval are placed in records
that have the format of System Management Facilities
(SMF-70-74). Internal Copies of these records are used by.
report generation routines (SARG) to provide printed
reports specified by input options.

1 Issue the GETMAIN macro instruction to obtain 1GX00014
storage for the Measurement Vector Table (DTMVT)

and initialize the table area by setting ail option pointers to

zero.

2 Obtain SMF record header items for:

a) !dentifying the record as an OS/VS2 record.
b) System identification.

c) MF/1 version number.

d) Operating system release and level.

e) Cycle length {from input option).

Diagram 7-14. MFDATA SVC Mainline Processor (IGX00014) (Part 3 of 4)

Input

STMVT :
e e

CPU SMA

addr: Paging MG
routine

Process

addr: CPU MG 3 Call each measurement gathering
routine {MG) routines three times For CPU
- (for prolog, move, and epilog), IRBMFDCP
:?:;ig: U move disabling before move and :)
enabling afterword. All prologs
e~ are called before any move, For paging
Paging SMA and all moves before any (IRBMFDPP)

epilog.

MG Routines

For Workload

(IRBMFDWP)

For channel

(L°¢ 9svaoy ZSA) € SWIN[OA Arexqry 9180 WsAS ZSA/SO 9TT-€

addr: Device MG
routine

addr: Device
move or epilog

N

addr: Paging move

or epilog (IRBMFDHP)
addr:

P
CPUSMA Workload SMA For device
addr: (IRBMFDDP)
Pag. SMA) addr: Workload Return to caller of
addr: - —/ MG routine MFDATA SVC.
Wkid SMA -
poror addr: Workload
e N move or epil

Chan SMA it
addr: d Channel SMA
Device SMA

addr: Channel Return to Data Controi

- MG routine (IRBMFDTA) or
MFSTART (IGX00013)
addr: Channel
move or epilog
—\/\ﬁN 5
Device SMA

Z uondeg

.
H

L11-€ uopesadQ jo poyr

Diagram 7-14. MFDATA SVC Mainline Processor (IGX00014) (Part 4 of 4)

Extended Description Module Label

3 Each MG routine has a prolog, a move part, and an IRBMFDCP
epilog. The prologs for all the required (by input IRBMFDPP

option) MG routines are called first in the order listed in the IRBMFDWP

first paragraph of this explanation. When the prologs have IRBMFDHP

been called, the required move parts are called, and thenthe IRBMFDDP
epilogs are called. The effect on each MG routine, however,
is as though it executed from start to end without inter-
ruption. This arrangement is used to allow the move parts
of these routines and 1GX00014 to execute disabled. Before
the move parts of the MG routines, which contain the code
to move measurement data into record formats, are exe-
cuted, interruptions are disabled by obtaining and releasing
the dispatcher lock. When the SETLOCK is released, it is
released disabled. The reverse technique is used to enable,
after all the move parts of the MG routines have been
executed.

4 Upon return to the caller, IGX00014 save the Measure- 1GX00014
ment Vector Table (DTMVT) address in register 1.

(L'€ 358319y TSA) € SWnjoA Aresqry o180 WaysAS ZSA/SO STI-€

Diagram 7-15. Interval MG Routine for CPU (IRBMFDCP) (Part 1 of 4)

From MFDATA SVC Mainline
Processor {(IGX00014)

Input

Parameter List

STSMA (CPU)
e e et/

STSMIGMC

Q STSMA

e P

SMF Header

A e

STSMA (CPU)
M A e —.

STSMEDAD

L~

CsD

From
MFDATA
svC
(1GX00014)

Process

Interval MG Routine for CPU
(IRBMFDCP)

Prolog

Output

STSMA
e N

1 Obtain storage area for new data.

™ sTsmiapp

STSGT
Mw

Storage

2 Initialize and fix (in real storage) the

new data area and fix IRBMFDCP.

Resource
Table

3 Save entry point for Move routine

STSMENTR

(see the MFDATA SVC Mainline
Processor {1IGX00014) diagram).

Move

4 Update tables for CPU activity status
and change in status since last interval.

CSDCPUAL

st o st el

LCCA;
e e

5 Move all CPU waiting times into

Return to
MFDATA
Processor

STSLCOM

new data area.

New Data Area

LCCAWTIM

6 Ssave entry point for Epilog routine

V
PCCAi
™™

PCCAPCID

e e —)

(see the MFDATA SVC Mainline
Processor (IGX00014) diagram).

Return to
MFDATA SVC
Mainline
Processor

T UoiPag

611-¢ uonesxdo jo poyRK

Diagram 7-15. Interval MG Routine for CPU (IRBMFDCP) (Part 2 of 4)

Extended Description

The Interval MG Routine for CPU (IRBMFDCP) receives
control from the MFDATA SVC Processor at the end of
each interval if CPU activity reports are required.
1RBMFDCP copies CPU wait times for all CPUs into a con-
tiguous storage area and builds an internal image of the
MF/1 CPU activity record (SMFRCD70) for the SMF data
set. IRBMFDCP calculates wait time for each CPU by sub-
tracting the wait time read at the end of the current interval
from that read at the end of the previous interval, after
adjusting for the possibility of wrap-around readings.

Prolog

1 Use the GETMAIN macro instruction to obtain the
required storage in key zero.

2 Store the subpool and length of the storage obtained
into the first word of the area. Use the PGFIX macro
instruction to fix the data and IRBMFDCP.

3 Save the entry point, as described in the M.O. diagram
MFDATA SVC Mainline Processor (IGX00014), for
use in returning to the Move part of IRBMFDCP.

Move

4 1f a CPU is now online whose flag is not set in
STSMEDAD of the Supervisor Measurement Area
{STSMA), set its flag to indicate that it has been online.

B Partially initialize the SMF record image, set online
status flags for all valid CPUs, and move in wrap-
around wait time measurement counters for those CPUs.

6 See Step 3.

Module

IRBMFDCP

IRBMFDCP

IRBMFDCP

IRBMFDCP

IRBMFDCP

IRBMFDCP

Label

DCGETMN1

DCMOVE

DCEPILOG

(L€ 35%91¥ ZSA) € swnjoA Arexqr oi80] WasAS ZSA/SO . OZT-€

Diagram 7-15. Interval MG Routine for CPU (IRBMFDCP) (Part 3 of 4)

From MFDATA SVC
Mainline Processor '
(1GX00014)
Input Process Output

Epilog

Parameter List
T —————————

7 If this is the initializing call of this
routine, return to MFDATA SVC
processor; otherwise, proceed to
next step.

Initial Call Flag

8 Complete the SMF record image by Return to
calculating CPU data for this interval MFDATA
and moving it into the area that Processor

contained previous interval data.

9 If RECORD is requested, write the
SMF record. Otherwise, proceed
to the next step.

SMF Data Set

Record Flag

10 Obtain storage in TCB key
(also called user’s key), move
calculated data into it, and return
the data address to MFDATA SVC
caller,

DCRETDTA

J> Output Data
Address

11 Free area obtained for the last
interval’s new data.

Return to MFDATA SVC
Mainline Processor
(1GX00014)

Z uonosg

171€ uoneradQ jo poyo|

Diagram 7-15. Interval MG Routine for CPU (IRBMFDCP) (Part 4 of 4)

Extended Description Module Label

Epilog

7 On the first call to the MFDATA SVC, the MFDATA IRBMFDCP
SVC Processor calls the interval MG routines to obtain

a first set of wrap-around measurements for later calcula-

tions (subtraction).

8 Move through all possible CPU entries in old and new IRBMFDCP
data areas, and calculate CPU wait times for CPUs

active throughout the interval. Allow for wrap-around

values when subtracting current from previous values.

O Use the SMFWTM macro instruction to write the image IRBMFDCP
of the SMFRCD70 record to the SMF data set.

10 Use the GETMAIN macro instruction to obtain the IRBMFDCP
required storage in user key; use the MODESET
macro instruction to change to the TCB key.

11 Release the storage of the internal SMF image using IRBMFDCP
a FREEMAIN macro instruction.

(L'g 388319y TSA) € PWN[OA Arexqy] d1B0 wsIsAS ZSA/SO TTI-€

. Diagram 7-16. Interval MG Routine for Paging IRBMFDPP) (Part 1 of 4)

From MFDATA SVC
Mainline Processor
Input (IGX00014) via CALL Process
Paramete = Interval MG Routine for Paging ,
L STSMA (Paging) (IRBMFDPP) 5 STSMA
; Prolog :
STSM
4 SMA STSMIGMC 1 Obtain storage area for new data. :) STSMIADD
| STSGT
2 Initialize and fix {in real storage) the new
data area and fix IRBMFDPP.
3 Save entry point for Move routine N STSMENTR
ASMVT | From « (see the MFDATA SVC Mainline
IGX00014 | Processor (1IGX00014) diagram).
via CALL -
ASM Vector
Table Move Return to
- MFDATA
I [4 Move header data and PVT and ASMVT Processor
SMF Header . data into new data area. Jv) New Data Area
vt || f
Paging
Vector Table From %
IGX00014
viaCALL | D Save next entry point. STSMENTR
e P ——]
Epilog &
. @ Free previously fixed areas. 1 Return to
. | MFDATA
— : 1 Processor
::':""' Call 7 1 this is the first time through this routine, |
'l return to MFDATA SVC Mainline i
Processor (IGX00014); otherwise, proceed |
to next step.
~ ~

€71-€ uoneadQ JO POYIRN T UORIS

Diagram 7-16. Interval MG Routine for Paging IRBMFDPP) (Part 2 of 4)

Extended Description Module Label

The Interval MG Routine for Paging (IRBMFDPP) builds an IRBMFDPP
internal image of an SMF-71 paging record and, optionally,
copies this image to the SMF data set. IRBMFDPP uses, for
the internal image, data collected by the paging supervisor
and the auxiliary storage manager. As described in the M.O.
for the MFDATA SVC Processor, IRBMFDPP executes in
three parts, PROLOG, MOVE, and EPILOG, but no break
in execution is apparent except for the need to save entry
points for the MOVE and EPILOG parts.
1 The GETMAIN macro instruction is used to obtain IRBMFDPP
storage in key zero. The data for this interval is to be
moved into this storage.

2 Use macro instruction PGFIX to inhibit paging of IRBMFDPP

both the data area and routine IRBMFDPP.

3 Theentry point is to be used to enter the Move IRBMFDPP
part of IRBMFDPP. Between the PROLOG and Move
a mechanism is used that avoids freeing data that would be

freed in a normal return. IRBMFDPP DPMOVE

Extended Description

4 IRBMFDPP moves a standard SMF record header and
MF/1 control section and then fills in data fields in the
internal record image (SMFRCD71).

5 IRBMFDPP provides entry to its EPILOG.

6 |RBMFDPP uses the PGFREE macro instruction to
allow paging in previously fixed area.

7 On being called as part of initialization via the

Initialization Mainline (MFMAINL) and MFDATA
SVC Processor (IGX00014), IRBMFDPP returns to
1GX00014, leaving initial-value data in an SMF record to be
used at the end of the interval.

Module

IRBMFDPP

IRBMFDPP

IRBMFDPP
IRBMFDPP

IRBMFDPP

Label

DPRTO0017

DPEPILOG

DPRT00018
DPPAGFX4

(L°¢ s3]y TSA) € dumjoA Arexqry 0!30’1 woishS ZSA/SO ¥TI-€

Diagram 7-16. Interval MG Routine for Paging (IRBMFDPP) (Part 3 of 4)

Input

Record Flag

Previous
internal
Data Area

Process

DCSMFLEN

Complete the SMF record by
calculating paging data for this interval
and moving it into the area that

contained previous interval data.

If RECORD is requested, write
the SMF record. Otherwise

Previous Interval
Data Area

proceed to next step.

SMF Data Set

DCRETDTA

Obtain storage in TCB key

{also called user's key), move
calculated data into it, and return
the address to MFDATA SVC

Address of Data

caller.

Free the area that contains previous-
interval data.

Return to MFDATA SVC
Mainline Processor
(1GX00014)

Current Interval
Data Area

T uondag

STI-€ uonerad(jo poyrp

ST

Diagram 7-16. Interval MG Routine for Paging (IRBMFDPP) (Part 4 of 4)

Extended Description

8 Values of paging data are calculated by comparing data
at the start and end of the interval. Calculated values
are placed in the old data area.

O If the input option of recording data is requested,
IRBMFDPP writes the SMFRCD71 internal image to
the SMF data set using the SMFWTM macro instruction.

10 IRBMFDPP uses the GETMAIN macro instruction to
obtain storage in user key. Change to user key by
means of the MODESET macro instruction.

11 IRBMFDPP uses the FREEMAIN macro instruction
to free storage.

Module Label

IRBMFDPP

IRBMFDPP

IRBMFDPP

IRBMFDPP

(L€ 5e3[9Y TSA) € swnjoA Areiqry 91807 wasAS ZSA/SO 9T1-€

Diagram 7-17. Interval MG Routine for Workload (IRBMFDWP) (Part 1 of 4)

From MFDATA SVC
Mainline Processor
Input ' (1IGX00014) via CALL Process

o Sl

Interval Routine for Workload
(IRBMFDWP)

Prolog

1 Obtain storage for workload activity
data area (local Workload Activity
Measurement Table (WAMT)).

DWWIN
W

DWWIWAML

STSGT

Storage Resource

2 Page-fix the data area obtained in
step 1, page-fix IRBMFDWP storage,
and save the storage area address and
the data area address.

DWWIN

3 Save the next entry point.

From
DWWIWAML 1GX00014 Return to
via CALL MFDATA
P W R
Processor =
(Global) WAMT Move (IGX00014) |
Wontk!oad . V (Local) WAMT
Activity 4 Invoke the workioad activity data
Measurement B collection facility of the System Workload
Table Resources Manager (SRM). ;) Activity
Measurement
Table
CVTOPTE
Return to
e
B Save the next entry point. MFDATA
Processor
(1IGX00014)

Diagram 7-17. Interval MG Routine for Workload (IRBMFDWP) (Part 2 of 4)

Extended Description Module Label Extended Description Module Label

Z vorpog

LTI-€ uone1adQ jo poypn

The Interval Routine for Workload (IRBMFDWP) builds the IRBMFDWP
internal image of SMF-72 records from data collected by

the Workload manager of the System Resources Manager

(SRM). If required by input option selection, IRBMFDWP

also copies the SMF record image to the SMF output

data set.

Prolog

1 The Interval Routine for Workload (IRBMFDWP) IRBMFDWP
uses the GETMAIN macro instruction to obtain

storage in supervisor key for the Workload Activity

Measurement Table (WAMT).

2 IRBMFDWP uses the PGFIX macro instructions to IRBMFDWP
page-fix the data area and instructions of IRBMFDWP.

Item STRVNSGT is updated to indicate the next available

slot in the Storage Resource Table (STSGT).

3 Theentry point of the Move part of IRBMFDWP is

saved in the Supervisor Measurement Area (STSMA)
to implement a special return sequence, which does not
free storage and does not invalidate addressing. The purpose
of this return sequence is to separate each interval MG
routine into three parts: Prolog, Move, and Epilog. The
Prologs of all MG routines are all executed before any Move,
and all the Move parts before any Epilog. Because of the
special return sequences used, however, each interval MG
routine appears to be executed without any break, from
start of Prolog through end of Epilog.

Move

4 Issue a SYSEVENT WKLDCOLL, which generates a IRARMINT
branch entry to the SRM. SRM copies workload data
from the global WAMT to the local WAMT.

B Save entry point in STSMA for epilog segment.

IRBMFDWP DWMOVE

IRBMFDWP DWEPILOG

("¢ aseapoy ZSA) € dwnjoA Areiqry o180] woysAS ZSA/SO 8TI-E

Diagram 7-17. Interval MG Routine for Workload (IRBMFDWP) (Part 3 of 4)

Input Process
From
1GX00014
via CALL Epilog

Free previously fixed areas except the
address of the local WAMT in the
STSGT.

6

IRBMFTRM

7 If the return from invoking the
SRM in step 4 indicated that
the Installation Performance
Specification was changed
since the last check, stop

collecting workload data and

reinitialize.

Resource Release

IRBMFIWK

Workload
Initialization

Input Parameters

if this is the initializing call of

Ini{ial Call Flag

this routine, free local WAMT and Return to

return. Otherwise, proceed. MFDATA
Processor
{(1GX00014)

SMF -72 Records

O Obtain storage for SMF records.

SMF Header

10 Format an SMF record for each valid
performance group. Write the data
if RECORD option is requested in
input options.

SMF Data Set

Record Option Flag

P e

Return to
MFDATA
Processor
(1IGX00014)

Free local WAMT and return.

Z uoipeg

6T1-€ uoneiadQ jo poype

Diagram 7-17. Interval MG Routine for Workload (IRBMFDWP) (Past 4 of 4)

Extended Description Module Label
Epilog
6 Remove the address of the storage, from the Storage IRBMFDWP-

Resource Table (STSGT). (The address of the local
WAMT in the STSGT is not removed until its storage is
freed in step 8 or 9.)

7 I the IPS changes, issue a SYSEVENT WKLDTERM IRARMINT
to terminate the recording of workload data. Call IRBMFTRM
General Resource Release to free the global WAMT and IRBMFIWK

MF/1 workload measurement resources. Then call workload
initialization to re-initialize workload activity data collection
for the new IPS.

8 IRBMFDWP issues a FREEMAIN macro instruction IRBMFDWP MFFREWAM
to release storage for the local WAMT.

O The amount of storage obtained in user’s key (the {IRBMFDWP
key in-the TCB) is determined as follows:

No. of bytes required = 8 + (highest performance group

no.) times (length of WAMTNDX) + (total number of per-

formance groups) times (length of SMF72B) + (total no.

of valid performance group numbers) times (length of

SMFRCD72 + length of SMF72A)

Extended Description

10 Following is the SMF records area
format:

Start Length

highest perf group number
WAMTNDX,
WAMTNDX2

WAMTNDX highest perf group number
SMFRCD72,

SMF72A,

SMF72B1,

SMF72B1,

SMFRCD72,

Where WAMTNDX is the it index to ‘the SMF72 record
associated with PGi {(or zero if PGi is not a valid performance
group).

IRBMFDWP issues an SMFWTM macro instruction to copy
each record to the SMF data set if RECORD was requested.

11 Seestep 8.

Module Label

IRBMFDWP MFFREWAN

(L€ *sea19Y ZSA) € owmjop Arerqry oBoT wsAS ZSA/SO OE1-€

Diagram 7-18. Interval MG Routine for Channels (IRBMFDHP) (Part 1 of 4)

From MFDATA SVC
Mainline Processor
(1IGX00014) via CALL Process

i

input

Interval MG Routine for Channels

STSMA (Channel) (IRBMFDHP) STSMA
B g Prolog
STSMIGMC - — 1 Obtain storage for new data area. > STSMIADD

M
Parameter List

A stsma

2 Initialize and fix (in real storage) the new
data area and fix IRBMFDHP.

3 Save the entry point for Move (see MO
diagram for MFDATA SVC Processor).

SMF Header

Q STSMENTR

N —
From

ECCED IGX00014

} Eccecrea Move

(1IGX00014)

ECCESAMP 4 Check the Channel Data Blocks

(ECCDBs) of all CPUs, and move
valid channel data into the new
data area.

New Data Area

ECCPE Queue ECCDB Queue
EccrE, | ECCDB,

ECCPE

ECCDB2

2
5 Save the next entry point.

[] e o o
Vg W e N W B G S

Return to
MFDATA Processor
(1IGX00014)

I€1-€ uonerdQ jo poyel :Z uoKpas

Diagram 7-18. Interval MG Routine for Channels (IRBMFDHP) (Part 2 of 4)
Extended Description Module Label

The Interval MG Routine for Channels (IRBMFDHP) IRBMFDHP
receives control from the MFDATA SVC Main'ine

Processor at the end of each interval if channel

activity reports are required. IRBMFDHP obtains

and formats (sample) cycle data collected by the

event-driven channel routines IRBMFECH and

IRBMFTCH. IRBMFDHP records the data on the

SMF data set {via the SMFWTM macro instruction)

if RECORD is specified as an input option.

Prolog

1 Use the GETMAIN macro instruction to obtain the IRBMFDHP
required storage in key zero.

2 Store the subpool number and the length of the storage

area obtained into the first word of the area. Use the
PGFIX macro instruction to fix the data area and
IRBMFDHP.

3 Save the entry point, as described in the M.O. IRBMFDHP DHMOVE
diagram, MFDATA SVC Mainline Processor

(1IGX00014), for use in returning to the Move part

of IRBMFDHP.

Move

4 Partially initialize the SMF record image in storage. IRBMFDHP
Then check through the channel Data Blocks

(ECCDBs) associated with each CPU. (There is a CPU

Element (ECCPE) entry for each CPU; each CPE entry

points to one or more ECCDB entries.) Move data from

each ECCDB to an associated part of the new data area.

B Save the entry point for returning to the Epilog IRBMFDHP DHEPILOG
segment.

(L°€ 99e919 ZSA) € dwnjoA Areqr] oBo] wyshS TSA/SO TETE

Diagram 7-18. Interval MG Routine for Channels (IRBMFDHP) (Part 3 of 4)

From

Input IGxo0014 Process Output

Parameter List Epilog

6 |f this is the initializing call of
this routine, return to MFDATA SVC
Processor; otherwise, proceed
to the next step.

Initial Call Flag

Return to
7 Complete the SMF record image by MFDATA
calculating data for this interval Processor

from previous interval data. (1GX00014)

Record Flag

8 |f record is required, copy the
calculated data; otherwise, proceed
to the next step.

SMF Data Set

DCSMFLEN

O Obtain storage in TCB key, move
SMF record image into it, and
return the data address to
MFDATA SVC caller.

DCRETDTA

> Output Data Addr.

10 Free storage area that contains
previous interval data.

Return to MFDATA
Processor (IGX00014)

Diagram 7-18. Interval MG Routine for Channels IRBMFDHP) (Part 4 of 4)
Extended Description Module Label

¢ uones

€€1-€ uoneradQ jo poyRW

Epilog

6 On the initializing call to the MFDATA SVC,

the MFDATA SVC Processor calls the interval MG
routine to obtain initial values of measurement data, which
are required at the end of the measurement interval to cal-
culate data for that interval. Processing ends here on that
call.

7 There is an SMF73B entry for each channel whether

or not it was detected online during the interval. At
this point, entries for channéls not online during the inter-
val are eliminated from the record image and remaining
entries are compressed together.

8 Theinternal image of the SMF record is copied to the
SMF data set by use of the SMFWTM macro
instruction.

9 Use the GETMAIN macro instruction to obtain the
required storage in user key. Use the MODESET
macro instruction to switch to the user’s (TCB) key.

10 Release the storage used for the internal image of
the SMF record, using a FREEMAIN macro
instruction.

IRBMFDHP

IRBMFDHP

IRBMFDHP

IRBMFDHP

(L°€ asea[oy TSA) € 2wnjo; Arexqi] 9180 WaNAS TSA/SO VEI-E

Diagram 7-19. Interval MG Routine for Devices (IRBMFDDP) (Part 1 of 4)

From MFDATA SVC
Mainline Processor
|nput (1IGX00014) via CALL Process
= - 3 : i Srdmae 4 S ke
| Interval MG Routine for Devices
STSMA (Devices) | (IRBMFDDP) STSMA
. Parameter List STSMIGMC “~N 1 Obtain storage area for new data. J'> STSMIADD
A stsma N . STSGT
Storage
2 Initialize and fix (in real storage) the Resource
; new data area and fix IRBMFDDP. Table

SMF Header :

: 3 Save the entry point for the Move STSMENTR
EDDED Erom = routine (see the MO diagram for
.y A Y e : LA N\

IGX00014 | MFDATA SVC Processor).
EDDESAMP .
' | New Data Area
Move

EDDECDT - ASMFRCD74, (or 0)

O et o 7
4 Check all device classes and move data 4SMFRCD %2 for 0)
EDDDB into new data area. | e o o
EDDCD L f I | SMFRCD74,)
EDDCD1 / Device
Data \ SMFRCD74,
EDDCD, Block, | 2

e e e : B Save next entry point. A

Return to
MFDATA Processor
(1IGX00014)

uopneradQ JO POYId T UOIIIRS

131 &

Diagram 7-19. Interval MG Routine for Devices (IRBMFDDP) (Part 2 of 4)
Extended Description Module Label

The Interval Routine for Devices (IRBMFDDP) receives con- |RBMFDDP
trol from the MFDATA SVC Mainline Processor (IGX00014)

at the end of each interval if any device reports are required.

IRBMFDDP builds the internal image of one or more

device data SMF records {SMFRCD74; one record for each

class of device report requested) from data collected in

event control blocks by the device data event-driven sam-

pling routine (IRBMFEDV). If requested in the input options,

IRBMFDDP copies the internal record images to the SMF

data set (via the SMFWTM macro instruction).

Prolog

1 Use the GETMAIN macro instruction to obtain the IRBMFDDP
required storage in key zero.

2 Store the subpool and length of the storage obtained IRBMFDDP
into the first word of the area. Use the PGFIX macro
instruction to fix the data area and IRBMFDDP.

3 Save the entry point, as described in the M.O. diagram, |RBMFDDP DDMOVE
MFDATA SVC Mainline Processor (IGX00014), for
use in returning to the Move part of IRBMFDDP.

Move

4 Initialize the images of the SMF records. Check all IRBMFDDP
device classes {one class is associated with each

EDDCD), and move data from the Device Data Block

(EDDDB) entries and the Device Event Data Table (EDDED)

into the SMF74 record image corresponding to that device

class. If no devices exist for a class or if no measurements

are required for a class, the pointer for the SMF74

record image is set to zero.

B Save entry for returning to Epilog segment. IRBMFDDP

(L€ 9sea[9Y ZSA) € dWNJOA Arexqry 180T WaIsAS ZSA/SO 9€1-€

Diagram 7-19. Interval MG Routine for Devices (IRBMFDDP) (Part 3 of 4)

From '

Input 1Gxo00014 Process

Epil
Parameter List piog

i e N, P

© If this is the first time through this
routine, return to MFDATA SVC
Processor; otherwise, proceed to the
next step.

Initial Call Flag

7 Complete the SMF record images
{one for each valid device class) for
this interval and move it into the
area that contained previous interval
data.

Record Flag

8 f RECORD is requested, write
the SMF record. Otherwise,

Return to
MFDATA
Processor
(IGX00014)

proceed directly to the next step.
s

9 Obtain storage in TCB key (also
called user’s key), move the data
images into it, and return the data
addresses to the caller of

SMF Data Set

DCRETDTA

MFDATA SVC.

> Output Data

10 Free area containing the key zero
copy of the SMF record just moved.

Return to MFDATA
Processor {(IGX00014)

Addresses

z uonoog

LEI-€ uoneiadQ Jo PoIS

Diagram 7-19. Interval MG Routine for Devices (IRBMFDDP) (Part 4 of 4)

Extended Description Module Label
Epilog
© On the initializing call to the MFDATA SVC, it calls IRBMFDDP DDEPILOG

interval-driven MG routines to obtain a first set of
wrap-around measurements for use at the end of the first
interval in calculating values for that interval. Processing
ends here on that call.

7 For each device class for which a device exists and for IRBMFDDP
which measurements are required, place the data for

the interval just ended in the record for previous interval,

overlaying previous data where necessary. For each SMF74B

record, which exists for a device whether or not it appears

at all online during the interval, the determination is made

of whether or not to keep it.

If no device measurements are associated with the SMF74B
record, the record is eliminated and the other records com-
pressed. All the SMF74 records retained are sorted into
order of ascending device address.

8 Use the SMFWTM macro instruction to copy the inter- IRBMFDDP
nal images to the SMF data set.

9 Use the GETMAIN macro instruction to obtain the IRBMFDDP
required storage in user key. Use the MODESET
macro instruction to change to user key.

10 Use the FREEMAIN macro instruction to release IRBMFDDP
the storage obtained for the internal images of SMF
records.

(L€ 980319y ZSA) € SWNOA A1eIqrT 91B0T WAISAS ZSA/SO SEI-E

Diagram 7-20. MFROUTER SVC Processor (IRBMFEVT) (Part 1 of 2)

From external Interrupt

—

ister 0 MFROUTER Processor
Register (IRBMFEVT)

Index
STMMV

STMMEVTL 1 Obtain list of MG routines to be called

for this cycle.

STMMMGRL 2 Collect measurement samples as

required by input options.

IRBMFEDV

h IRBMFTCH

ﬁ——’\/\’\

MF/t TQE
\/__
TQEVAL

MF
3 Utilize exit routines: /1 TQE

a. To cause timer interruption for
next cycie time to be reset and
return to caller,

> TQEVAL

MF/1 Global Supervisor and/or

b. To return to caller.

Return to External
Interrupt Handler
(IEAVEXS)

6€1-€ uoneradQ Jo poyRN g Uond9s

Diagram 7-20. MFROUTER SVC Processor (IRBMFEVT) (Part 2 of 2)

Extended Description

The MFROUTER Processor (IRBMFEVT) calls the
event-driven MG routines and a routine to reset the MF/1
Timer Queue Element (TQE) after the time expires in the
TQE. The routines called are:

@ Channel Event MG (IRBMFECH)

@ Second CPU Channel Event MG (IRBMFTCH)
o Device Event MG (IRBMFEDV)

o Timer Enqueue (|EAQTEOO)

1 Events are timer interruptions or remote pending

interruptions on CPU-to-CPU communications. Timer
interruptions are at the rate of sample time periods for
device and/or channel sampling. CPU-to-CPU communica-
tion interruptions are at the same rate, but are only caused
by one CPU requesting another to sample channe! data.

Module

IRBMFEVT

IRBMFEVT

Label

Extended Description

2 The MFROUTER Processor branches to the MG

routines in the order set up by their entry addresses
in the MFROUTER Vector Table (STMMV), which was
set according to entry options by MFSTART and modules
connected with MFSTART.

3a If IRBMFEVT was entered in response to a timer

interruption, it branches last to a subroutine
(IRBMFEVE) to reset the timer (enque the TQE onto the
timer queue). The address of the subroutine is placed in
the MG routine loop (MFROUTER Vector Table) by the
MFSTART SVC Processor (IGX00013).

3b If IRBMFEVT was entered in response to a CPU-to-

CPU interruption, it branches last to a subroutine
(IRBMFEVL) to restore status and return to the caller of
IRBMFEVT.

Module Label
IRBMFECH

IRBMFTCH
IRBMFEDV

IRBMFEVE

1GX00013

IRBMFEVT IRBMFE

(L*€ 5%019Y TSA) € dwnjoA Arexqy] 9180 wasg ZSA/SO OFI-€

Diagram 7-21. Channel Sampling Module (IRBMFECH) (Part 1 of 2)

From .
MFROUTER SVC
Input Processor (IRBMFEVT) via BAL Process Output

Channel Sampling Module ECCED
(IRBMFECH) i
1 Add one to the number samples taken. ECCESAMP
PCCACAT e
EC(IDBi
PSACPUPA 2 For all channels of all CPUs, sample ECCDSIOS
the number of start 1/O instructions, : py -
and either: Remote Pending |\REMFEVT
IPC Interruption [MFROUTER| T s
a. If the CPU is not the one il VC
PSATOLD executing these instructions, Processor ECCDB,
signal the CPU to collect channel -
M‘N eus M
busy and CPU -waiting- for -channel
indications on all its channels. ECCDBUSY
ECCPE List . If the CPU is the one executing ECCDOLAP
e S S . .
these instructions, check for
ECCPE{ A channel-busy and CPU-waiting.
Update appropriate counters,
ECCPE2 R
\ | eccos Lists
®e o ———
ECCPE ECCDB1 <]
) 3 [f this is time for a configuration check, ECCDBi Flags
B2 make the check and post results.
oo o
ECCDBn
I~
ECCDB List2
M——'\
ECCDB,
Returnto -
ECCDB, MFROUTER SVC
oo o Processor (IRBMFEVT)

ECCDBn

7 uoiag

1p1-€ uonessdo Jo POy

Diagram 7-21. Channel Sampling Module (IRBMFECH) (Part 2 of 2)
Extended Description Module Label

The Channel Sampling Module (IRBMFECH) receives con-
trol from MFROUTER SVC Processor at each cycle sample
time. IRBMFECH collects the channel measurement samples
10S provides and monitors channel status with regard to the
channels being online or offline.

IRBMFECH

1 The Channel Sampling Module increases counter
ECCESAMP in the Channel Event Data Table
(ECCED).

IRBMFECH

2 IRBMFECH checks channels through CPU Entry

Tables (ECCFE), which contain a pointer to a Channel
Data Block (ECCDB) list for each CPU. If item ECCDVALD
in the CDB is on, that CPU was online at one or more con-
figuration checks, and therefore, IRBMFECH obtains the
count of Start 1/0 (S10) instructions issued to the channel.
This count of SIOs is obtained from the Physical Configura-
tion Communication Area (PCCA).

IRBMFECH

Extended Description

2a IRBMFECH signals the other CPU with the RPSGNL

macro instruction, with the PCCA address in register 1.

2b IRBMFECH uses entries from the Channel Avail-
ability Table (CAT) to increase the count of Start
1/0 (S10) instructions since the last sample. If this channel
is not offline and is not a byte multiplexor, IRBMFECH
issues a TCH instruction to test whether the channel is now
busy. If the channel is busy, the routine adds one to the
count of busy samples. If the CPU was waiting when
MF/1 was given control, IRBMFECH adds one to the
count of CPU waiting and channel busy (ECCDOLAP).

3 The Channe!'s Configuration is checked if the number
of samples taken is multiple of the configuration

check field. If the CPU is online, set appropriate flags

in the ECCED. If a change in configuration has occurred

since the last check, the routine sets appropriate flags.

Module Label

IRBMFECH

IRBMFECH

IRBMFECH

(L'€ seoloy TSA) € swnjoA Arexqr 80T wolsAS TSA/SO THI-€

Diagram 7-22. Second CPU Test Channel Sampling Module (IRBMFTCH) (Part 1 of 2)

From MFROUTER
SVC Processor via

* Input BAL (IRBMFEVT) Process

Second CPU Test Channel Sampling
Module (IRBMFTCH)

1

Obtain a pointer to a Channel Data
Block (ECCDB) for a channel of the
CPU.

ECCDB

2 If the channel is valid, was online at
the last cycle, and is not a byte
multiplex channel, test whether the
channel is busy. If it is not to be

ECCDFLGS

N

Output

TCWRKRG1

Result of

tested, return to step 1.

test channel

3 If the channel is busy, add one to the
busy count for this channel.

M

instruction

if it is not busy, return to step 1.

ECCDBUSY

PSATOLD

4 If channel was busy and the CPU
was entered from the wait state,
add one to the appropriate count

for this channel,

ECCDOLAP

B If this is the last channel of this CPU
to be tested, return to IRBMFEVT.
Otherwise return to step 1.

Return to
MF ROUTER SVC
Processor {IRBMFEVT)

£p1-€ uonesdndQ Jo POYIdN i U0

Diagram 7-22. Second CPU Test Channel Sampling Module (IRBMFTCH) (Part 2 of 2)

Extended Description

The Second CPU Test Channel Sampling Module
(IRBMFTCH) collects data for each channel (of one CPU)
that has been active during the entire previous cycle period.
The data is collected by issuing a Test Channel instruction
and noting the response of the channel.

1 Each Channei Data Block (ECCDB) is storage for data
on one channel. An ECCDB is defined for each channel
possible to be connected to a CPU.

2 IRBMFTCH tests bits set by other modules and, if any
test fails, passes over this channel.

3 Acountis kept of the times the channel is found busy
during a cycle test. The busy status is read as a result
of the Test Channel instruction.

4 A CPU-waiting count is accomplished similarly to
the channel-busy count.

5 A DO loop is used to step through tests for all channels
of a CPU.

Module

IRBMFTCH

IRBMFTCH

IRBMFTCH

IRBMFTCH

IRBMFTCH

IRBMFTCH

Label

1245%

(L'€ 958919y TSA) € dunjoA Arexqr] 91807 waisAS ZSA/SO

Diagram 7-23. Device Sampling Module (IRBMFEDV) (Part 1 of 2)

From MFROUTER SVC Processor
lnput (IRBMFEVT) via BAL Process Output

bév}ce Saniplin oJuIe
(IRBMFEDV)

1 Add one to the count of the number
of samples for this interval.

EDDED

EDDESAMP
Unit Control
Blocks — one
for each
device

2 Update counts of start 1/O
instructions and enqueued SRBs
for each valid, on-line device in
each device class.

EDDDSIOS

> EDDDBUSY

EDDDNENQ

EDDED
[e

EDDESAMP

3 Ifitis time for a configuration
check to see that each device is on-line
and active, If itis not time fora

configuration check, return.

Return after configuration checks.

> EDDDB flags

——

EDDECCHK

Return to MFROUTER SVC
Processor {(IRBMFEVT)

SY1-€ uoneiadQ JO POYIdI T UOIRS

Diagram 7-23. Device Sampling Module (IRBMFEDYV) (Part 2 of 2)
Extended Description Module Label

The Device Sampling Module (IRBMFEDV) receives control IRBMFEDV
from the MFROUTER SVC Processor (IRBMFEVT) at each

cycle sample time. IRBMFEDV gathers sample data on the

use of 1/O devices, as maintained by 10S.

1 The Device Sampling Module increases counter IRBMFEDV
EDDESAMP in the Device Event Data Table (EDDED).

2 The Device Sampling Module checks the Device Class IRBMFEDV
Data Table (EDDCD) entry for devices that exist in

that class. Nonzero entries in the EDDCD point to one or

more Device Data Blocks (EDDDB) for that class. Each

EDDDSB entry points to a Unit Control Block (UCB), which

contains data with which to add to-the following wrap-

around counts in the EDDDB:

a. EDDDSIOS, which is the current number of S10s for that
device in this interval.

b. EDDDBUSY, which is the current number of samples,
in which the device was busy.

c. EDDDNENQ, which i3 the current number of SRBs
enqueued on this device.

3 The configuration of devices is checked if the number IRBMFEDV

of samples is an even muitiple of the configuration
check field (EDDECCHK): if the online flag in the UCB
(UCBONLI) and the alive flag (EDDDALIV) in the Device
Data Block (EDDDB) do. not match, turn on the configura-
tion changed flag (EDDDCCHG) in the EDDDB, and record
the proper status (EDDDAL.IV). If the device address in the
UCB (UCBNAME) and in the EDDDB (EDDDADDR) do
not match, turn on the configuration changed flag in the
EDDDB and move the current address of the device into
EDDDADDR in the EDDDB.

(L°€ B[y TSA) € SuM[OA Axexqr] o180 wayshs ZSA/SO 9P I-€

Diagram 7-24. Report Generator Control (IRBMFRGM) (Part 1 of 4)

From MFDATA SVC
Mainline Processor

Input

MFPCALST

(IGX00014) via ATTACH Process

identity of

Output.

Report Generator Control
{(IRBMFRGM)

Last Subtask

1 Estabiish a recovery environment.

to Complete

MFSEL

2 Check that all subtasks from the
previous interval have completed,

RGDDNAME

MFSESTID

and wait if necessary.

(Subtask Elements Table)

MFCOA

/—v’\,\, ,

Sysout ddname

Calculate and store the IRBMFCNV
DDNAME for this Sysout

data set.

Convert

4 Allocate space for and

MFCOOUT

SEman e NS
(Common Option Area)
.

MFPMA (CPU)

Table)

MFPMAs for channels
and devices

MFMVT / MFPMSARG
b cru 1 ~
* - § MFPMA (Paging)
4 Workload . MFPMSARG
e — T ————]
+ Channels . MFPMA (Workload)
- e ——
’ Devices
, MFPMSARG
(Measuremeﬂ,t Vector]

open the Sysout data set. IRBMFALL

Allocate

Call the report generator
for each active report

type.

IRBMFRCR
IRBMFRPR
IRBMFRWR
IRBMERHR
IRBMFRDR

6 Close Sysout data set for this
subtask.

Lp1-€ uoperadQ Jo POYISI :Z uondes

Diagram 7-24. Report Generator Control (IRBMFRGM) (Part 2 of 4)

Extended Description

The Report Generator Control {IRBMFRGM) controls the
allocation of SYSOUT data space, the calling of report gen-
erators for each report type requested, and the freeing of
interval measurement data space. IRBMFRGM also informs
the operator when reports are ready to print if REALTIME
reporting was requested.

1 Establish an ESTAE recovery routine.

2 Waiting for all previous subtasks to complete ensures
the correct association of reports for each report
interval.

3 TheSYSOUT DDNAME is converted into the form
MFRnnnnn, where nnnnn are the characters that
represent the subtask ident.

4 The IRBMFALL is called to allocate SYSOUT data
space as needed during program execution. It issues
SVC 99 to attempt allocation.

B For each report type, IRBMFRGM loads, calls, and,

when the report type has been produced, deletes the
required report generator. IRBMFRGM provides an ESTAE
data linkage during report generation.

6 If the REALTIME option for report printing is in
effect, the SYSOUT data set is printed immediately;
otherwise it is printed upon termination of MF/1,

Moduie

IRBMFRGM

IRBMFSAR

IRBMFRGM

IRBMFCNV

IRBMFALL

IRBMFRCR
IRBMFRPR

IRBMFRWR
IRBMFRHR
IRBMFRDR

IRBMFRGM

Label

(L°€ 358319 TSA) € SWnfoA Areiqi] o107 WISAS ZSA/SO SYI-€

Diagram 7-24. Report Generator Control (IRBMFRGM) (Part 3 of 4)

input

MFSEL (Subtask Elements Table)
M\

Process

MFPCALST

MFSETID

7 Indicate that this is the last subtask Last Subtask

et e

Paging Interval
Paging < Data

/ CPU Interval Data

Workload

Workidad Interval Data

Channels Channels Interval
Data

Device Devices Interval
Data

MFCOA

to complete processing.

mEsmREEE

8 Free interval data storage areas
and interval data measurement
vector table area.

MFCOREP

S U P
{Common Option Area)

RGREALTM

Realtime Flag

9 1f report option is REALTIME, Message
send message to operator that Processor
report is ready to print. (IRBMFMPR)

Delete the established recovery
routine.

Return to MFDATA SVC
Mainline Processor
(IGX00014)

6F1-€ uoneIadQ JO POYRW T UONISS

Diagram 7-24. Report Generator Control IRBMFRGM) (Part 4 of 4)
Extended Description Module Label

7 The identity of the last subtask to terminate is updated IRBMFRGM
to establish serialization of reports on the printer.

8 The main storage for this interval’s data is not needed IRBMFRGM
after the required reports are written on the SYSOUT
data set.

9 The operator message is MF1 REPORT AVAILABLE IRBMFMPR
FOR PRINTING.

10 Cancel the previously established ESTAE routine. IRBMFSAR

ERROR PROCESSING: If an error occurs while a report
is being written, another attempt is made to write all re-
ports. A second error, or an error occurring prior to report
writing, will cause an ABEND.

(L€ s5v3l0¥ TSA) € 2wnjop Areiqry 8oy waish§ ZSA/SO 0SI-€

Diagram 7-25. Report Generators for CPU, Paging, Workload, Channels, and Devices
(IRBMFRCR, IRBMFRPR, IRBMFRWR, IRBMFRHR, and IRBMFRDR) (Part 1 of 2)

From Report
Generator Control

Input (IRBMFRGM) via CALL Process Output

-
Report Generators for CPU, Paging,
Workload, Channels, and Devices
(IRBMFRCR, IRBMFRPR, IRBMFRWR,

Only
* PMAOPT

IRBMFRGM

MFHDRISR
Insert
Header

1 Insert page header and data column
headings into internal page image.

Input
Parameter

//
f Data

2 Convert binary data from SMF
records to BCD in character
strings, compute entry values, and
insert into internal page image,
along with any required line
headings.

IRBMFCNV

Convert
Binary to
BCD

f DDDVT

3 Write formatted internal page
image to Sysout data set and
then blank the internal page.

IRBMFRGM

Set of pages
represents one
report

MFISRTXT
Insert Text

STWVT

A sTWvT T work- | Workload
load Vector
report | Table
only

except

for device data
report, which has:

IRBMFRGM

MFWRTPAG
Write Page

Typical Inputs; See “Explanation” for
differences for workload report, and
device report.

One set of
pages for a
report of

each device
type

Return to Report
Generator Control
(IRBMFRGM)

T 'uoijdeg

ISI-€ uone1adQ Jo POy W

Diagram 7-25. Report Generators for CPU, Paging, Workload, Channels, and Devices
(IRBMFRCR, IRBMFRPR, IRBMFRWR, IRBMFRHR, and IRBMFRDR) (Part 2 of 2)

Extended Description Module Label
This M.O. diagram covers the five report generator modules:

o CPU Activity (IRBMFRCR) IRBMFRCR

@ Paging Activity (IRBMFRPR) IRBMFRPR

o Workload (IRBMFRWR) IRBMFRWR

@ Channel Activity (IRBMFRHR) IRBMFRHR

@ Device Activity (IRBMFRDR) IRBMFRDR

Each report generator formats interval data for its report
type and writes it to a SYSOUT data set for either REAL-
TIME or deferred printing.

1 Each report generator subtask calls procedure
MFHDRISR whenever a header is to be written on a
new page (see note after step 3).

IRBMFRGM MFHDRISR

2 After the page and column headers are written, the

report generator extracts data from the SMF record
image, manipulates it, and writes entries into the internal
image of the report page. Parameter MFPMAOPT is used
only for the workload report to determine the depth of
workload reporting.

IRBMFRGM MFISRTXT

The report generator routine calls routine IRBMFCNV to
convert a signed binary number into its equivalent as a char-
acter string. The resulting string is supplied as a fixed length
string parameter. The following are provided as input param-
eters (starting address in register 1) to IRBMFCNV:

IRBMFCNV

a) the input signed binary value.

b) the signed decimal scaling factor for the input value.
c) the address of the output string.

d) the length of the output string.

e) the no. of digits to the right of the decimal pt.

f) commas or no commas.

g) floating point or no floating point.

Extended Description

If commas in the output could cause loss of significant
digits, they are not inserted. |f the output string is shorter
than necessary, commas are removed first. If the output
string still cannot accept the entire value, least significant
digits to the right of decimal point are next removed, up
to and including the decimal point itself. If this action is
sufficient, the return code is 4; otherwise the entire field is
filled with asterisks and the return code is 8. If the output
string is larger than necessary, it is right justified. The insert
text routine is used to put data into the RGM internal page
image.

3 Subroutine MFWRTPAG writes the internal page

image, line by line, to the SYSOUT data set using a
QSAM PUT. Blank lines are consolidated, and a single
record is written with carriage control characters indicating
the number of lines to skip.

Note: input data formats differ among the five report
generators:

e CPU, paging, and channel report generators each receive
a single SMF record image and each produce a single
report.

The device report generator receives a fixed length list of
SMF record images and produces a report for each one.
There is input data for each defined device type unless the
corresponding Device Vector Table (DDDVT) entry is zero.

The workload report generator receives a variable length
list of SMF record images, preceded by a count, and pro-
duces a single report. There is input data for each perfor-
mance group number {(PGN) uniess the corresponding
Workload Vector Table (STWVT) entry is zero.

Module Label

IRBMFRGM MFISRTXT

IRBMFRGM MFWRTPAG

IRBMFRCR
IRBMFRPR
IRBMFRHR

IRBMFRDR

IRBMFRWR

3-152 O0S/VS2 System Logic Library Volume 3 (VS2 Release 3.7)

~ i

The following four figures illustrate the relationship
among some of the job scheduling subcomponents
(Details of module-to-module flow within a
subcomponent are in ‘Section 3: Program
Organization.’):

o Figure 2-11 shows the first use of job
scheduling code: master scheduler
initialization attaches the initiator to start the
master scheduler. The initiator attaches
IEEMB860, which continues the initialization
process and finally passes control to the
master scheduler wait module. Starting the

master scheduler in this manner allows several"

system and TSO data sets to be allocated
normally. These data sets are then available
during the last portion of master scheduler
initialization. Note that the master subsystem,
rather than a job entry subsystem, converts
and interprets the master scheduler’s JCL. For
more information on master scheduler
initialization, refer to OS/VS2 System
Initialization Logic, SY28-0623.

« Figure 2-12 shows the second use of job
scheduling code: the START command for a
job entry subsystem is processed. This START
command was in the master scheduler JCL
that was interpreted during the initiation of
the master scheduler. Note that the master
subsystem, rather than a job entry subsystem,
converts and interprets the job entry
subsystem’s JCL. The master subsystem starts
job entry subsystems and also starts
subsystems defined by the installation. For

Job Scheduling Overview

more information on the master subsystem,
see ‘Master Subsystem’ in this section.

Figure 2-13 depicts general
START/LOGON/MOUNT processing. This
processing begins with a START, LOGON, or
MOUNT command and culminates in the
attach of an initiator, a terminal monitor
program (TMP), the MOUNT processor, or a
started system task (TCAM, for example). A
new address space is created for each START,
LOGON, or MOUNT command. The value of
the new address space ID (ASID) is at least
four (master scheduler’s ASID is one; auxiliary
storage manager’s ASID is two; and the
primary job entry subsystem’s ASID is three).
Figure 2-14 shows how a normal job enters
the system and is attached as a problem
program by the initiator. A new address space
is not created for each job entering the
system; a job executes in the address space of
the initiator that attached it. When the job
entry subsystem first receives a job’s JCL, it
stores it on the spool data set. It then passes
the JCL through the converter and puts the
resultant internal text in another data set.
When initiator requests the selection of a job
(via the subsystem interface), the job entry
subsystem chooses a job and passes the
already-existing internal text through the
interpreter, creating SWA control blocks. The
initiator can now continue with the initiation
of the job.

Section 2: Method of Operation 3-153

LINK from IEAVNIPX

IEEVIPL
Master | _ _ _ _| For detail, refer to System
Scheduler . Initialization Logic, SY28-0623.
Base
Initialization
ATTACH SYS1.LINKLIB
IEFSD160 Subsystem
Data Areas
I———-——-—-———--———————\
IEFSD 161] l
IEFJSUBI_ Ke———] I
MSTR JCL | |
e Master |
Subsystem I I
i (Job entry 1 JCLS
Initiator subsystem not: r>
available.) | I
IEFVH1 K :"—_‘—“l
| viasvc 34 CSCB for Starting | |
ATTACH | —>| Job Entry
onverter I Subsystem l
IEFI1B600 I] Y I
LINK lag——3 SWA Create I Internal '
Interface | Text l
y LINK |
IEFNB9O3 | |
IEFW21SD P — WA |
IEFSD 162 BALR Device Allocation for: lnmfpfetef > Con"°'
< > | Blocks
internal readers
(TSOINRDR and v | |
STCINRDR)
SYS1,PROCLIB N ——
SYS1.PARMLIB
SYS1.UADS
SYS1.BRODCAST
SYS1.MANX
SYS1.MANY
1EFSD263
l ATTACH _
For detail, refer to
IEEMB860 [— — — - System Initialization
Meste Logic, SY28-0623. IEEVWAIT IEAVEMCR
S:hod:!lef XCTL] Master ‘__A__"_Ti?_“_, Start the | _ _ _| For detail,
Region Scheduler job entry see Figure 2-12.
Initialization Wait subsystem

Note: Refer to the index for the page numbers of function diagrams
{hipos) that describe the functions of particular modules.

Figure 2-11. Job-Scheduling: Initiation of the Master Scheduler

3-154 O0S/VS2 System Logic Library Volume 3 (VS2 Release 3.7)

XCTL from |IEEMB860

IEEVWAIT
Master
Scheduler
Wait
QATTACH
IEAVEMCR
Address
Space
Creation The region control task is the first
______ task dispatched in the newly -created
address space. (The ASID for the job
entry subsystem is 3.)
IEAVAROO
Region
Control
Task
ATTACH
IEEPRWI2
Started
Task IEFJSDTN
Control
Subsystem | Is a subsystem
IEESB605 interface being
started ?
Yes B
LINK
| IEFSD160 - |EFJSUBH 1EFVH1
Subsystem ATTACH
Interface Master
{EFSD161 Subsystem r_—"' Converter
(Job entry
subsystem not
available.) IEF 18600
LINK
3| SWA Create
Interface
Initiator
LINK
IEFW21SD IEFNB903
BALR]
IEFSD162 = Device Interpreter
Allocation
IEFSD263
l ATTACH
Job Entry
Subsystem

Figure 2-12. Job Scheduling: Initiation of the Job Entry Subsystem

Section 2: Method of Operation 3-155

‘ CSCB + POST ’

i

Master
Scheduler ATTACH Memory
Wait > Create
IEEVWAIT IEAVEMCR
ASID =
—————-———————-—0———-——-———————-—-——
| ASID 2 4
Region SvC
Control ATTACH Dump
Task Task
IEAVAROO) IEAVTSDT
ATTACH Y
WAIT
Started
Task . XCTL
Control (for LOGON)
IEEPRWI2
XCTL IKJEFLA
(for START/ LOGON
MOUNT) Schedullng
/ IKJEFLB
Started Task
Control XCTL
IEEVSTAR/
IEEVMNT1 : ATTACH Converter
; IEFVH1
XCTL
Subsystem
Task . Primary
Control < Job Entry
|EESB605 Subsystem LINK | SWA Create
‘ Subsystem i |EF IB60O
Interface
LINK
A
IEFSD160
LINK
Initiator/
Terminator | BALR
IEFSD263
Allocation Interpreter
ATTACH 1 IEFW21SD IEFNB903

[

e For START INIT: Initiator (IEFSD 160 at IEFIIC).

e For LOGON: Terminal Monitor Program (IKJEFTO1).
e For MOUNT: MOUNT Processor (IEEVMNT2).

°

For other STARTSs: Started system task.

Figure 2-13.. Job Scheduling: START/LOGON/MOUNT Initiation

3-156 OS/VS2 System Logic Library Volume 3 (VS2 Release 3.7)

Local Remote User
Reader Reader TSO Program
SUBMIT

Job Entry DATA
Subsystem

\ JCcL
ATTACH

/

Converter
1IEFVHI

TEXT

nitiator
(For START Interface Job Entry LINK | SWA Create
INIT < Subsystem 1 IEFIB60O
processing,
see Figure A
2-13.) LINK
LINK Aliocation /
IEFW21SD
interpreter
A |IEFNB903
ATTACH
Y
Problem
Program
Jos

Figure 2-14. Job Scheduling: Normal Job Entry and Initiation

Section 2: Method of Operation 3-157

3-158 OS/VS2 System Logic Library Volume 3 (VS2 Release 3.7)

The subsystem interface is the means by which
0S/VS2 system routines request services of either
the master subsystem or a job entry subsystem. To
request subsystem services, a system routine issues
the IEFSSREQ macro instruction after placing the
correct function code in the SSOB and placing the
name of the desired subsystem in the SSIB. The
macro instruction causes control to pass to the
subsystem interface routine, IEFJISREQ. The
specified function code and subsystem name tell
the interface routine which subsystem routine gets
control. Figure 2-15 lists all existing function
codes, their meanings, and the subsystem modules
that get control.

A job entry subsystem performs functions
related to entering jobs into the system. For
example, it handles SYSIN and SYSOUT data sets; it
also passes a job’s JCL through the converter and
interpreter, thus creating SWA control blocks for
the job. See ‘Job Scheduling’ in this section.

On the other hand, the master subsystem does
not handle normal jobs. It is used by the system to

Subsystem Interface

start the master scheduler and subsystems. A
subsystem can be a job entry subsystem (JES2, for
example) or another subsystem defined by the
installation. Once a job entry subsystem is initiated
and ready to accept jobs, the master subsystem is
no longer needed for initiation processing.
However, if an installation wishes to replace the
active job entry subsystem with another version (or
to start another subsystem), the master subsystem
must be used to start this new version (or the new
subsystem).

In addition to starting subsystems, the master
subsystem broadcasts requests to all active
subsystems. (See note at bottom of Figure 2-15.)
For a detailed description of the master subsystem,
refer to ‘Master Subsystem’ in this section. JES2, a
job entry subsystem, is described in OS/VS2
JES2 Logic, SY28-0622.

SUB SYS
INTER

Section 2: Method of Operation 3-159

(L€ 95ealoY ZSA) € dwnjop Areiqr o307 waSAS ZSA/SO 091-€

Function
Code

1

10

1

12

sSOoB
Extension ID

SO

Cs

cs

ET

JS

AL

AL

EN

CM

us

JT

Subsystem Function

Process SYSOUT data sets.

Cancel a job.

Find the status of a job.

Notify the subsystem of end-of-task.

Subsystem job selection. (Provides a job that has a

complete SWA.)

Allocation of SYSIN/SYSOUT data sets (and internal
readers.)

Unallocation of SYSIN/SYSOUT data sets (and internal
readers.)

Notify subsystem of end-of-address space.

Notify subsystem of a WTO message.

Notify subsystems of an operator command.

Request subsystem to validate a remote destination userid.

Notify the subsystem of job termination.

*|EFJRASP broadcasts the indicated request to all active subsystems.
Each active subsystem then performs the requested function.

Figure 2-15. Subsystem Interface Summary (Part 1 of 3)

Subsystem

JES2
JES3

JES2
JES3

JES2
JES3

Master

JES2
JES3

Master
JES2
JES3

Master
JES2
JES3

Master
JES2
JES3

Master

JES2
JES3

Master
JES2
JES3

Master
JES2
JES3

JES2
JES3

Master
JES2
JES3

Module Name

HASPSSSM
IATSIOP

HASPSSSM
IATSICN

HASPSSSM
IATSIST

IEFJRASP*

HASPSSSM
IATSWIIS

IEFJJOBS
HASPSSSM
IATSIIS

IEFJDSNA
HASPSSSM
IATSIDM

IEFJDSNA
HASPSSSM
IATSIDM

IEFJRASP*

HASPSSSM
IATSIJS

IEFJRASP*
HASPSSSM
IATSIWO

IEFJRASP*
HASPSSSM
1ATSI34

HASPSSSM
IATSIVL

IEFJJTRM
HASPSSSM
IATSIJS

Module Label

HOSSOUT
IATSIOP

HOSCANC
IATSICN

HOSSTAT
IATSIST

HOSEOT
EOT

HOSJBSL
IATSIJS

HOSALLOC
IATSIDMA

HOSUNAL
IATSIDMU

HOSEOM
EOM

HOSWTO
IATSIWO

HOSCMND
IATSI34
HOSUSER
IATSIVL

HOSTERM
JOBTERM

Primary Caller

TSO OUTPUT
TSO OUTPUT

TSO CANCEL
TSO CANCEL

TSO STATUS
TSO STATUS

svcC 87

IEFSD161
IEFSD161
IEFSD161

Allocation
Allocation
Allocation

Unallocation
Unallocation
Unallocation

Subsystem interface resource
manager

SVC 35

SVC 34

TSO LOGON, Unallocation
TSO LOGON, Unallocation

IEFSD166
IEFSD166
IEFSD166

Z uondag

191-€ uoperadQ jo poyldN

Function
Code
13

14

15

16

17

18

19

20

21

22
23
24
25
26
27
28

30

SSOB
Extension ID

RQ

DM

VS

DA

DA

DA

DA

RR

RR

Sl

DY
CA
cuU
DD
NQ
DR
DR
DR

Subsystem Function

Request subsystem to re-enqueue a job.

Notify all subsystems of a delete operator message (DOM)

Request master subsystem to verify a subsystem name.

Oben a subsystem data set.

Close a subsystem data set.

Checkpoint a subsystem data set.

Restart a subsystem data set.

Request job id.

Return job id.

Notify subsystem of step initiation.
Dynamic allocation.

Common allocation.

Common unallocation.

Change DDNAME.

Change ENQ use attribute.

DDR device candidate selection.
DDR device candidate verification.

DDR UCB swap notification.

* |[EFJRASP broadcasts the indicated request to all active subsystems.
Each active subsystem then performs the requested function.

Figure 2-15. Subsystem Interface Summary (Part 2 of 3)

W

Subsystem

JES2
JES3

Master
JES3
Master

JES2
JES3

JES2
JES3

JES2
JES3

JES2
JES3

JES2
JES3

JES2
JES3

JES3
JES3
JES3
JES3
JES3
JES3
JES3
JES3
JES3

Module Name

HASPSSSM
IATSIJS

IEFJRASP*
IATSIDO
IEFJSDTN

HASPSSSM
IATSIDM

HASPSSSM
IATSIDM

HASPSSSM
IATSIDM

HASPSSSM
IATSIDM

HASPSSSM
IATSIJS

HASPSSSM
TATSHJS

IATSIBS

IATSICA
IATSICA
IATSICA
IATSICA
IATSICA
IATSIDR
IATSIDR
IATSIDR

Module Label

HOSRENQ
JOBREQ

IATSIDO

HOSOPEN
IATSIDMO

HOSCLOS
IATSIDMC

HOSCKPT
IATSIDMK

HOSREST
IATSIDMR

HOSREQID
REQJBID

HOSRETID
RETJBID

IATSIBS

IATSIDA
IATSICA
IATSICU
IATSIDD
IATSIDQ
IATSIRC
IATSIRV
IATSIRS

A ="4

Primary Caller

IEFSD166
IEFSD166

Subsystem interface resource
manager

STC

OPEN
OPEN

CLOSE
CLOSE

Checkpoint
Checkpoint

Restart
Restart

System Log
System Log

System Log
System Log

IEFSD162
Dynamic allocation
Allocation
Unailocation
Allocation
Allocation

DDR

DDR

DDR

(L°¢ aseapoy TSA) € swnjoA Areiqry 918077 WayshS ZSA/SO Z9T-€

Function SSOB

Code Extension ID Subsystem Function Subsystem Module Name Module Label Primary Caller
31 DR DDR swap completion. JES3 IATSIDR IATSIRE DDR
32 CF Failing START command. Master IEFJRASP*
JES3 IATSISF IATSISF SVC 34
33 WT Notify subsystem of console switch.** JES3 IATSIWO IATSIWO IEAVSWCH
34 WT Notify subsystem of WTL message.** JES3 IATSIWO ' IATSIWO SVC 36

*1EFJRASP broadcasts the indicated request to all active subsystems.
Each active subsystem then performs the requested function.

**Functions 14, 33, and 34 are not supported by JES2.

Figure 2-15. Subsystem Interface Summary (Part 3 of 3)

Section 2: Method of Operation 3-163

(L€ 9sea19Y ZSA) € SwNjoA Areiqry o180 waISAS ZSA/SO YIT-€

Diagram 8-1. Subsystem Interface IEFJSREQ) (Part 1 of 4)

From a system
routine requesting a .
subystem service. Prooessmg

L

-

; Subsystem Interface

] Check validity of request.

e Valid SSOB pointer ?

Input

[}

| SS0B
function code
A ssiB

- ® Valid SSIB pointer in

TCB
Jscs ssiB
b ssiB | C'SS name’

job 1D
cvT
CVTJESCT
JESCT
SSCVT chain

c'SS name’

SSOB or in JSCB ?

o Valid length and format for

S§SOB and SSIB ?
return to

'Q{ invalid request caller
Not found
2 Find the subsystem CVT (SSCVT)
for the requested subsystem.
no SSCVT return to
caller

S91-€ uoneradQ Jo poyRy :7 uooIg

Diagram 8-1. Subsystem Interface (IEFJSREQ) (Part 2 of 4)
Ftended Description Module Label

The subsystem interface handles requests for services to be IEFJSREQ
performed by a job entry subsystem or the master sub-

system. When a system routine issues the macro instruction

IEFSSREQ, the subsystem interface gets control. It deter-

mines which subsystem is requested and which function

routine in that subsystem is to be executed. The initialization

of the subsystem interface is described in 0S/VS2 System

Initialization Logic, SY28-0623.

1 The requestor creates an SSIB and SSOB before
invoking the subsystem interface: the SSIB identifies
the subsystem requested, and the SSOB identifies the sub-
system function routine that is to be executed. The sub-
system interface ensures that the requestor made no errors |EFJSREQ
in its request. If the SSOB has a zero SSIB pointer, the sub-
system interface uses the SSIB pointer in the current JSCB.

2 There is one SSCVT for each subsystem defined at
system generation time. The four-character sub- IEFJSREQ
system name in each SSCVT is compared to the subsystem
name in the SSIB. If a match is found, the subsystem name
in the SSIB is valid.

(L°€ 952319y TSA) € 2wnjoA Areiqiy 91807 wAISAS TSA/SO 991-€

Diagram 8-1. Subsystem Interface (IEFJSREQ) (Part 3 of 4)

function code

SSCVT

SSVT

of functions

function
matrix

pointers to
function
routines

Process

no SSVT found

3 Obtain address of the subsystem
routine which performs the
function requested.

invalid
function code

requested function
not offered

return to

request cannot be processed
caller

4 Give control to the function
routine.

R1
h SsOB J

R15

M function routine I

To the requested
subsystem function
routine

7 uondsg

L91-€ uoneradQ jo poyjol

Diagram 8-1. Subsystem Interface (IEFJSREQ) (Part 4 of 4)

Extended Description Module Label

3 If the SSVT pointer in the SSCVT (the SSCVT
located during Step 2 above) is zero, the subsystem
has not been initialized yet and therefore is inactive. If
the SSVT exists, it is used to find the address of the sub- IEFJSREQ
system function routine.

In the SSOB is the function code, a number between 1 and
256, which refers to a single byte in the SSVT's function
matrix. The number 1 refers to the 1st byte in the matrix,
2 refers to the 2nd byte, and so on. The matrix byte con-
tains a value that is an index into the list of entry point
addresses for the subsystem function routines. A value of 1
refers to the 1st address, a value of two refers to the 2nd
address, and so on. A value of 0 in the matrix byte indicates
that the function is not supported by this subsystem.

4 Finally, the subsystem interface passes control to the IEFJSREQ
subsystem routine at the address obtained in Step 3

above. When the subsystem routine completes its process-

ing, it returns directly to the system routine that requested

the service.

3-168 OS/VS2 System Logic Library Volume 3 (VS2 Release 3.7)

The master subsystem is a collection of routines
that perform functions required to initiate certain
system tasks. Job scheduling normally initiates a
task or a user job using the services of a job entry
subsystem to obtain and interpret the job’s JCL.
But, certain system tasks are initiated when a job
entry subsystem is not available. These tasks
include the master scheduler, which is the first
initiated task in the system, and job entry
subsystems. In fact, any subsystem defined as such
at SYSGEN time is initiated via the master
subsystem rather than via a job entry subsystem.
The converter and interpreter, when invoked by
the master subsystem to interpret the JCL for a
task, do not use the normal access method (VSAM)
to read and write the JCLS and internal text chains;

Master Subsystem

rather, they use the pseudo access method. The
pseudo access method manipulates data located in
real storage, whereas VSAM manipulates data
located in external storage. Since the pseudo access
method uses the standard RPL/ACB interface, the
converter and interpreter can use the pseudo access
method as if it were VSAM.

The master subsystem performs additional
functions related to initiating subsystems:
subsystem determination, common request routing,
data set name assignment, and subsystem
termination. These functions, as well as subsystem
initiation itself, are invoked via the subsystem
interface.

MASTER
SUB SYS

Section 2: Method of Operation 3-169

3-170 OS/VS2 System Logic Library Volume 3 (VS2 Release 3.7)

ILT-€ uone1ddQ Jo POYR 7 UONIdS

Master Subsystem
(no diagram)

9-1

Common Request
Router
(IEFJRASP)

L

[s5]

Subsystem Job
Termination
(IEFJJTRM)

9-2 9.3 [97
Subsystem Subsystem Data Set Name
Determination Initiation Assignment
(IEFJSDTN) (IEFJJOBS) (IEFJDSNA)
Lo«
Converter Interpreter
Interface
(IEFJCNTL)
| Converter/Interpreter l :
I interface to SWA
create |
| (no diagram) |
I _l S |
95 [96
Pseudo Access Subsystem Initiation
Method Message Writer
(IEFJACTL) (IEFJWTOM)

Figure 2-16. Master Subsystem Visual Contents

(L€ 358919y ZSA) € awnjop Arerqry o130 wISAS ZSA/SO TLIE

Diagram 9-1. Common Request Router (IEFJRASP) (Part 1 of 2)

From a system routine .
Input via the subsystem Processing Output
: interface

) (IEFJSREQ)

Common Request Router

SSOB parameter
list
SSOBSSIB
SSOBFUNC Route the specified request SsoB
{SSOBFUNC) to all active
subsystems, one at a time, > SSOBSSIB
via the subsystem interface.
ssiB ' ubsys SSOBFUNC
SSIBSSNM
g : ssi8
CVT SSIBSSNM | Name of
! subsystem
CVTJESCT : being invoked
‘ Repeat call for IEFJSREQ
JESCT g each active bsvst
subsystem -su system SSOB
interface
I . SSOBRETN
R15
return codes
from
SSCVT chain) [interface from subsystem
subsystem | :]
name
2 e Save the lowest return code : R156
from the subsystem inter-
face.
R1
SSO8
e Save the corresponding i
subsystem return code. J‘> SSOBRETN

Return to the
system routine

7 uonoog

€LI-€ uonedQ Jo poyIs

Diagram 9-1. Common Request Router (IEFJRASP) (Part 2 of 2)
Extended Description Module

The common request router, a function of the master sub- IEFJRASP
system, routes a single request to all the active subsystems

except the master subsystem. This request may be for com-

mand processing, for notification of address space or task

termination, for WTOs, and for DOMs.

1 The common request router obtains the numerical IEFJRASP
code of the requested function from the SSOB and

notifies each active subsystem to perform the requested

function, To accomplish this, the router first places the

name of an active subsystem in the SSIB and the function

code in the SSOB. Then, the router invokes the subsystem

interface which passes control to the routine that performs

the function. The router invokes the interface once for

each active subsystem, changing the subsystem name in the

SSiB each time.

2 Following each invocation of the subsystem interface, IEFJRASP
the router analyzes the return codes from the sub-

system interface and from the subsystem. The router saves

the lowest code returned by the interface. It also saves the

highest subsystem return code that was passed back with

the lowest interface code.

Label

(L'€ asea[oYy TSA) € SWnjoA ATerqr o180 WAISAS ZSA/SO PLI-€

Diagram 9-2. Subsystem Determination (IEFJSDTN) (Part 1 of 2)

Input

SSIB

task name

From STC (IEESB605) via the

subsystem
interface,

IEFJSREQ)

ssisJBID

CVT
CVTJESCT

JESCT

JESSSCT

SSCVTs
SSCTSNAM

JESCT

JESPJESN

primary job entry
subsystem name

Processing

Subsystem Determination

1 Determine if the task being started
is a subsystem.

® The task is a subsystem.

o The task is not a subsystem.

SSOBRETN
=0

SSOBRETN
=4

SSiB

SsisJBID

primary

SSIBPJES

JES name
Return to STCL.

(IEESB605)

z uonoag

SLI-€ uoneradQ Jo poyRK

Diagram9-2. Subsystem Determination (IEFJSDTN) (Part 2 of 2)

. Extended Description

The master subsystem provides a subsystem determination
function, Subsystem determination is used by the initiator

- during the processing of a START command to determine

if a subsystem is being started. A subsystem must be
started using the master subsystem, whereas other tasks are
started using the primary job entry subsystem.

1 Subsystem determination compares the task name in
the job ID field of the SSIB to the subsystem name in
each of the subsystem CVTs. If a match is found, the task
being started is a subsystem. In this case, the name of the
master subsystem is left in the SSIB. If no match is found,
the task is not a subsystem. In this case, the name of the
primary job entry subsystem is placed in the SSIB.

Module

IEFJSDTN

IEFJSDTN

Label

~EI

(L°€ 9530y TSA) € awnjop Arerqry 91807 WoIsAS ZSA/SO 9LI-€

Diagram 9-3. Subsystem Initiation (IEFJJOBS) (Part 1 of 2)

From the initiator (IEFSD161) via

the sub-
Input system Processin
. - = e interface e 2 s
,& A 0EFISREQ) | e
, R1 Subsystem Initiation
. SYS1. 1 Obtain the access method work text entry
;' LINKLIB area.
L
. 2 Formaster scheduler initiation only: JCLS entry
- MSTRJCL ® Obtain the master JCL from
- SYS1.LINKLIB. common area
e Convert the master JCL to a
" SSOB JCLS chain.
- JCLS chain
g Ss18
. Input to
. Step 4
g SSIBJBID
: SSIBSUSE 3 For subsystem initiation only:
/E e Put JCLS pointer from the
- SSOB It SSIB into the AMWA. SP 241 or 237
. E SWA
(4 Convert the JCLS chain to SWA con- control
o LCT trol blocks. See the diagram blocks
w; QMP_A__ Converter/interpreter Interface.
-~ SSJS 5 Free the storage that is no longer
i needed by the initiated task:
\ ® AMWA and other control
- blocks — subpool 10.
. ® JCLS chain — subpool 253.
- AMWA
text entry © Clean up before exit. SSIBUSE =0
JCLS entry
common area

JCLS | Return to the initiator
Output of chain "'I o . (IEFSD161)
Step 2 |

- — ———

Z uonodg

.

LL1-€ uoneradQ Jo poyrop

Diagram 9-3. Subsystem Initiation (IEFJJOBS) (Part 2 of 2)

Extended Description

The initiator issues IEFSSREQ specifying “job select” to
invoke subsystem initiation, a function of the master
subsystem, to obtain and interpret the JCL for tasks that
cannot use the services of a job entry subsystem. These
tasks include the master scheduler, which is the first
initiated task in the system, the job entry subsystems
themselves, and any other subsystems defined at
SYSGEN time.

Subsystem initiation obtains the JCL that defines the
resources needed by the master scheduler or by a sub-
system and invokes the converter and interpreter to create
SWA (scheduler work area) control blocks from that JCL.

1 The access method work area (AMWA) contains

information about the JCLS (JCL set) and internal
test chains. AMWA contains information for use by the
pseudo access method when it reads and writes these
chains of records.

2 I the address of the JCLS (a set of chained JCL

records) in the SSIB is zero, subsystem initiation
assumes that the master scheduler is being started and
obtains the JCL card images from the MSTRJCL member
of SYS1.LINKLIB. A listing of this JCL appears under
the topic ‘‘Master Scheduler Initialization” in OS/VS2
System Initialization Logic, SY 28-0623.

The JCL to JCLS chain conversion routine first checks
that each 80-byte JCL card image begins with // or /*. If
an error is found, a return code of four is passed back to
the caller. One at a time, the card images are stored in 88-
byte areas of subpool 253. The first 8 bytes of each area
comprise a chaining field and a reserved field.

Subsystem initiation places the address of the first chained
JCLS record into the JCLS entry of the AMWA.

3 A non-zero JCLS pointer in the SSIB indicates that a
subsystem is being started. In this case, subsystem

initiation moves the JCLS pointer to the JCLS entry in the

AMWA, skipping the JCL to JCLS chain conversion.

Module

IEFJJOBS

IEFJJOBS

IEFJJOBS

IEFJJCLS

IEFJJOBS

IEFJJOBS

Label

Extended Description

4 The JCLS-chain-to-SWA conversion routine invokes
first the converter, then the SWA-create routine.
The converter converts the JCLS chain to internal text;
the SWA-create routine invokes the interpreter to create
SWA control blocks using the internal text as input. For
imore detail, refer to the diagram, Converter/interpreter
Interface.

B The storage deletion routine frees the storage in

subpool 253 used by the JCLS chain and frees all
control blocks residing in subpool 10. (The control
blocks in subpool 10 were obtained in step 4 before the
converter was invoked.) The only ACB remaining is the
one for error messages located in the SWA subpool
(subpool 241 for the master scheduler, subpool 237 for a
subsystem). Allocation uses this ACB when issuing its
error messages.

6 The final step of subsystem initiation sets both the

JCLS pointer (in the SSIB) and register 15 to zero.
Return codes passed back to the initiator indicate whether
or not SWA control blocks were created.

Error Processing

All ABENDs issued by master subsystem routines cause
the caller's ESTAE routine to get control (the caller being
the system routine that invoked the master subsystem via
the subsystem interface).

Subsystem initiation issues a 0B1 user ABEND if the
initiator passes it either of the following two invalid
addresses:

o A zero SSOB address passed in register 1.

® A zero address for the JCLS chain when a subsystem is
being started.

If subsystem initiation passes a zero SSOB or AMWA
pointer to the converter/interpreter interface, the inter-
face issues a 0B1 ABEND. The interface issues a 0B4
ABEND if SYS1.PROCLIB was not opened successfully
or if the block size contained in the PROCLIB DCB is not
a multiple of 80. If the attach of the converter is
unsuccessful, the interface issues a 0B5 ABEND.

Module Label

IEFJCNTL

IEFJCDLT

IEFJJOBS

IEFJJOBS

IEFJCNTL

(L°€ 958319 ZSA) € swnjop Arexqry 8o wolsAS ZSA/SO SLE€

Diagram 9-4. Converter/Interpreter Interface (IEFJCNTL) (Part 1 of 4)

From Subsystem

Initiation :
input _ : (IEFJJ0BS), Frocessing S ; ?utput — : .
g ; Step 4. AR MMNREL ZRE, S "
parameter list Converter/Interpreter Interface .
+ _ssos 1 Prepare to convert JCLS: t QMP:A
 AMWA e Obtain and initialize initiator § exit list
[Ye]:} entrance list. option switches
r J converter defaults
in_ initiali i ACB pointers
§SJS o Obtain, initialize, and chain AMWA
(I ACB:s. DCB pointer
_ 4 JCLS
LCT chain
QMPA e For initiating a subsystem,
—_———— obtain, initialize, and chain JCLS ACB f text
SWA subpool a DCB for SYS1.PROCLIB. Chain
g! common
AMWA 2 area
1 et internal
—] text ACB
IEFJACTL
2 For initiating a subsystem, open pseudo-
| SYS1.PROCLIB,. card image access
ACB methods
IEFJWTOM
error mes- writer-to- 5
sage ACB operator o
routine 3
NFL :
SYS1. 5
ACB pointers PROCLIB |
DCB 5
SYS1. -
PROCLIB -
JCLS ACB text ACB 4
AMWA (JCLS ent) AMWA (text entry) :
4 JCLS chain $text chain
3 Convert JCLS chain to internal text internal text return-code 5
via the converter. i . I:!E

i

continued

Z uonoag

6L1-€ uonerndQ jo poypn

Diagram 9-4. Converter/Interpreter Interface (IEFICNTL) (Part 2 of 4)

Extended Description Module

The converter/interpreter interface, a master subsystem IEFJCNTL
routine, controls the conversion of a JCLS chain to SWA

control blocks. The JCLS chain, passed from subsystem

initiation (1EFJJOBS), defines the resources needed by the

started task (that is, by the master scheduler, a job entry

subsystem, or any other defined subsystem).

1 The converter/interpreter interface creates the environ- IEFJCNTL
ment for the converter to operate. It builds the NEL as

an interface with the converter. |t also builds the ACBs to

allow the converter to interface with the pseudo access

method as if it were the normal access method (VSAM).

Refer to the diagram, Pseudo Access Method.

2 When starting a subsystem, started task control IEFJCNTL
(STC) builds a JCLS chain which the initiator passes

to the master subsystem, This JCLS defines a step that

executes a JCL. procedure located in SYS1,PROCLIB. The

converter/interpreter interface opens SYS1.PROCLIB so

that the converter can obtain the procedure and convert it

to internal text.

3 The address of the NEL (interpreter entrance list) is IEFVH1
passed to the converter which then proceeds to con-
vert the JCLS chain to internal text. The converter uses the
pseudo access method to read the JCLS chain record-by-
record and then to write a chain of internal text. The sub-
system initiation message writer handles the error messages
normally issued by the converter/interpreter. The messages
are sent to hardcopy according to the MSGLEVEL specifi-
cation in the JCL. All the error messages, and card images,
in addition to having their usual message 1D, will be pre-
fixed by the master subsystem message ID (c'|lEF1961°).
Refer to the diagram, Subsystem Initiation Message Writer.

Label

(L'€ o530y ZSA) € dwnjoA Lrexqry NBoy ureIsAS ZSA/SO 081-€

Diagram 9-4. Converter/Interpreter Interface (IEFJCNTL) (Past 3 of 4)

Input

Converter
attach ECB

ABEND code

or

4 Set error flags.

return code

AMWA (common area)

bypass-
interpreter
flag
(BYPINTER)

=0

SSOB

- — — — — —

ACB
pointers

AMWA

SSOBERR #0

R15

#0

no SWA created

interpreter error:

continued

Processing

Output

SSOB

AMWA

{common area)

B When Initiating a subsystem only,
close SYS1.PROCLIB.

6 Prepare to-interpret the internal text:
Reset text entry to read internal

text.

e |Initialize ACB pointers in SSOB

extension.

7 Create SWA control blocks from
internal text via the interpreter.

8 Check whether a SWA was created.
If no SWA was created

Save the return code from the inter-
preter, unless a non-zero converter
return code has already been saved.

X‘24’ for }ﬁL error
ABEND or
converter (CONVERR)
return code bypass-
(SSJSSERR) interpreter
flag
(BYPINTERY)
SSOB
SSOBINDY
SSJS
SSJSMACB
SSJfJACB error mes-
0 sage ACB
SSJSTACB
SSJS=.:)MR internal
text ACB
AMWA internal
: text
text entry
subpool 241 or 237 Return
SWA code
control
blocks
SSOB
stop-
initiation
code = 16
(SSOBRETN)
R15 return
code

(SSJSERR)
L

Return to Subsystem
Initiation (IEFJJOBS)

T uonoag

181-€ uoperadQ jo poyro

Diagram 9-4. Converter/Interpreter Interface (IEFJCNTL) (Part 4 of 4)

Extended Description

4 Depending on the success of the converter, flags are

set that affect subsequent processing. If the converter
abnormally terminated or passed back a return code greater
than four, the bypass-interpreter flag is turned on. In this
case, the interpreter is not invoked. The converter return
code is placed in the SSJSSERR field as a preliminary indi-
cation that no SWA control blocks were created.

B SYS1.PROCLIB is closed since it is no longer needed
by the converter.

6 The SSJS extension of the SSOB is initialized with the
addresses of the ACBs required by the interpreter. The
JMR field is set to zero because SMF records are not being
coliected; the journal ACB address is set to zero because
journal records for checkpoint/restart are not being kept.

7 The converter/interpreter interface passes control to

the SWA-create interface (IEFIB600), passing it the
address of an SSOB in register one. The SWA-create inter-
face invokes the interpreter to create SWA control blocks
from the internal text. (The SWA is located in subpool 241
for the master scheduler and subpool 237 for a subsystem.)
The interpreter uses the pseudo access method to read the
internal text and, like the converter in Step 3, uses the
message writer to issue its error messages. (Refer to the
diagrams, Pseudo Access Method and Subsystem Initia-
tion Message Writer.)

Module

IEFJCNTL

IEFJCNTL

IEFJCNTL

|IEFIB600

IEFNB903

Label

Extended Description

8 If a SWA was not created because a converter error or

an interpreter error occurred, the SSOBRETN field is
set to indicate that the initiation of this task is to be ended.
If there was an interpreter error but no converter error, the
contents of register 15 are placed in the return code field
of the SSOB. If a converter error occurred previously, the
SSOBERR field is not changed thus preserving the con-
verter return code.

Error Processing

If subsystem initiation passes a zero SSOB or AMWA
pointer to the converter/interpreter interface, the interface
issues a 0B1 ABEND. The interface issues a 0B4 ABEND if
SYS1.PROCLIB was not opened successfully or if the
block size contained in the PROCLIB DCB is not a multiple
of 80. If the attach of the converter is unsuccessful, the
interface issues a 0B5 ABEND.

Module
IEFJCNTL

IEFJCNTL

Label

(L°€ aseaay ZSA) € SWNJOA Arexqi] 918077 weysAS ZSA/SO Z8I-E

Diagram 9-5. Pseudo Access Method (IEFJACTL) (Part 1 of 4)

From converter

(IEFVHA) or :
Input interprater Processing
(IEFVHE) |~ ’ ;
Al RPL ‘ RPL
Pseudo Access Method
= <« - performs one of four different types :
RPLREQ =0 1 of data movement as follows: . R::AREA:
RPLDIR = 1 |~ —}—=————1 Address o
record just
RPLUPD = 1 |egg——-J ! read
» i (RPLDDDD)
RPLAREA H
RPLARG :
RPL6RBA i
RPLDDOP !
‘ { B
r Header I Record text 1 Perform a direct read. mc: dartzi ::ontammg
R1 RPL RPL
RPLREQ = 1 == RPLARG
RPLDIR = 1 -_+—— ___} Address of RPLG6RBA
RPLUPD =1 |-~} | record just
| written RPLDDDP
RPLAREA - | (RPLDDDD) L
RPLARG !
RPLBRBA |
[|
RPLDDDP :
|
w_
New record 2 Perform a direct write. - Write area containing
text ! new record text

rHeader I Write areaJ

continued

£81-€ UOnEIdQ JO POYIOW i UOLIAS

Diagram 9-5. Pseudo Access Method (IEFJACTL) (Part 2 of 4)

Extended Description

The pseudo access method provides the master subsystem
with a data manipulation service at a time when no access
methods services are available via the RPL/ACB interface.
Rather than accessing data that resides on an extemal
storage device, the pseudo access method manipulates data
located in real storage. The converter and interpreter use
the pseudo access method when a task is being started

via the master subsystem and not by a job entry subsystem.

The subsystem initiation function of the master subsystem
sets up the standard RPL/ACB interface for the converter
and interpreter but places the address of the appropriate
pseudo access method routine in the ACBs instead of the
address of the VSAM routines. The switch is not detectable
to the converter and interpreter.

Pseudo access method control determines which of four
types of data movement is being requested by checking
flags in the RPL and AMWA. Each of the four steps in the
diagram indicate the flag settings required for its
particular processing.

1 The converter uses the direct read to obtain a

particular internal text record for updating. First, the
control routine must determine that a direct read is being
requested by checking flags in the RPL. The read routine
moves the text record to the specified area. The length of
the move is specified in the header on the text record being
read.

2 After the converter has updated the internal text

record obtained by a direct read operation, it writes
the new record over the original record by requesting a
direct write operation. First, the control routine must
determine that a direct write is being requested by checking
flags in the RPL. The direct write routine moves the new
record text to the specified area.

Module Label

IEFJACTL

IEFJCNTL

1IEFJACTL

IEFJACTL

IEFJDIRD

IEFJACTL

IEFJIDWRT

=4

(L€ e[y TSA) € SUIMjoA AreIqry 91807 woIsAS ZSA/SO +8I-€

Diagram 9-5. Pseudo Access Method (IEFJACTL) (Part 3 of 4)

continued

Input ' Processing Output

RPL RPL

RPLREQ=0
|RPLSEQ =1

RPLDACB
RPLAREA
address of

record just

read
(RPLDDDD)

RPLDACB
RPLAREA

AMWA 3 Perform a sequential read from

ACB

AMWA

address of
next sequen-
tial record
(AMWDLAST){

3 4first record in chain
feacares (AMWAFRST)

AMWDLAST
AMWDEOF = 0 —

Ty

of the next record in the chain or
indicate that the last record has
been read (end of file).

r a chain of records. Save the address

end-of-file
flag

- (AMWDEOF
=1)

|f nextl Iengthl record text

Read area containing record texﬂ

=

Address of first record in AMWA

R1
k. Chained records
RPLREQ =1
next length
RPLSEQ =1 4 Perform a sequential write:
Ieb_gth of record to be a) Obtain a write area in
written (RPLRLEN) subpool 10.
RPLDACB E
RPLAREA
ACB récord text b) Write the record and chain Z
| it to the previous record,
AMWA if there is one.

PRL

the chain
2 £ th or . o AMWDLAST address of
ero if there is no chain yet " " record just
Return to first record in "
(AMWDLAST) either the chain (AMWAFRsT)| | writeen
4 last record (AMWDLAST) converter (IEFVHA) (RPLDDDD)

or the interpreter (IEFVHE)

$8I-€ uoneiadQ Jo poyje :z uondsg

Diagram 9-5. Pseudo Access Method (IEFJACTL) (Part 4 of 4)

Extended Description

3 The converter and interpreter use the sequential read
to read records from in-storage record chains (the
JCLS chain and the internal text chain, respectively). First,
the control routine must determine that a sequential read is
being requested by checking flags in the RPL. If the bit
AMWDEOF is on, indicating an end-of-file condition, a

return code of 8 is passed back to the caller.

The read is performed by moving a record in the chain to a
specified area. The header in the record just read contains a
pointer to the next record in the chain. This pointer is
saved in preparation for the next sequential read. If the
pointer to the next record is zero, the end-of-file flag is
turned on to prevent another read operation.

4 The converter uses the sequential write to write and
chain together internal text records.

a} First, the control routine must determine that
a sequential write is being requested by checking
flags in the RPL.

b

The write is performed by first obtaining an area
in subpool 10. The new record is moved to the
area just obtained. If the AMWDLAST field
indicates that a previous record exists in the chain,
that record is chained to the newly-written record.

Module

IEFJACTL

IEFJREAD

IEFJACTL

IEFJWRTE

Label

Diagram 9-6. Subsystem Initiation Message Writer IEFJWTOM) (Part 1 of 2)

From the converter (IEFVHEB or IEFVGM), the

interpreter (IEFVGM), or allocation (IEFAB4FD) Processing Output

Input

(L°€ 95%IU ZSA) € SWNIOA Are1qi] 018077 WoSAS ZSA/SO 98T€

RPL

RPLAREA

length of
message

(RPLRLEN)

Output
of Step 1

Message text

WTO list

max. # of
bytes for
message

Subsystem Initiation Message
Writer

1 Obtain and initialize the WTO list.

Remove any blanks following the
message text; adjust
message-length field.

Move message text to a buffer until
maximum message length is reached;
issue a WTO to the hardcopy device.

Repeat Step 3 until the entire message
has been issued.

Delete the WTO list.

Return
to the
requester

WTO list

max. # of
bytes for
message

Common ID

Input to

|EF 1961

hardcopy

__/

L8I-€ UolIeIad() JO POYPRW :Z UOIIAS

Diagram 9-6. Subsystem Initiation Message Writer (IEFJWTOM) (Part 2 of 2)

Extended Description

The converter, the interpreter, and allocation normally
issue their messages to a SYSOUT data set. The sub-
system initiation message writer issues these messages

to hardcopy instead. This message writer is used for tasks
being started via the master subsystem. These tasks include
the master scheduler, job entry subsystems, and other
defined subsystems.

1 The message writer issues the list form of the WTO
macro instruction. In this way, it obtains the maxi-
mum length allowed for a hardcopy record.

2 The message text is scanned backwards starting at the
end in order to eliminate any trailing blanks.

3 The writer issues a WTO macro instruction to write
the message to hardcopy device. The hardcopy device
is defined at system generation time. Each message, in
addition to having its usual identifier, is prefixed by the
common identifier IEF1961 to indicate that the master
subsystem issued this message on behalf of a starting task.

4 If the message is longer than the maximum length
allowed for a single hardcopy record, the message is

split, and the WTO macro instruction is issued repeatedly

until the entire message text has been issued to hardcopy.

B The writer deletes the WTO list area after the ..
message is issued.

Module

IEFIWTOM

IEFIWTOM

IEFJWTOM

IEFJWTOM

IEFIWTOM

IEFIWTOM

Label

(L' Se3oY TSA) € wmnjop Arerqry 91807 wvISAS ZSA/SO 881-€

Diagram 9-7. Data Set Name Assignment (IEFDSNA) (Part 1 of 2)
From an allocation routine (IEFAB425)

Input

CVTJESCT

Primary
JES name
(JESPJESN)

via the subsystem .
Processing Output

interface
(IEFJSREQ)

SSOB
SSOBSSIB

SSiB

Job ID
(SS1BJBID)

SSALJFCB

DD name

Data Set Name Assignment

1 Assign a data set name to the

SYSOUT data set.

Return to the allocation
routine (IEFAB425)

681-€ uonessdQ Jo POYRI :Z UOHOSS

Diagram 9-7. Data Set Name Assignment (IEFDSNA) (Part 2 of 2)
Extended Description Module Label

The master subsystem provides a data set name assignment IEFJDSNA
function. Data set name assignment assigns a data set name
to each SYSOUT data set specified in the master JCL (that
JCL used to start the master scheduler) and in the JCL used
- to start a job entry subsystem.

1 The data set name is constructed aécording to the IEFJDSNA
following format:

XXXX.YYYYYYYY.aabbbb.ccccecee

where xxxx = primary job entry subsystem name
YYYyyyyy = job ID specified in the SSIB
aa = ¢'MS’
bbbb = ¢'0000’
ccccecece = DD name of the JCL record for
the SYSOUT data set.

s

(L€ asea[oy ZSA) € swnjop Arerqiy o130 waisAs ZSA/SO 061-€

Diagram 9-8. Subsystem Job Termination (IEFJJITRM) (Part 1 of 2)
From the initiator (IEFSD166)
Input via the sub- Processing
system
interface ‘
(IEFJSREQ)

Subsystem Job Termination

SSOB (Master Subsystem)

1 Check whether job termination
is being requested.

function code

not job
termination

Return to
requester

2 Check whether the job being
terminated is a subsystem.

not a
subsystem
Return to
requester
request is

valid

Return to the

SSOBRETN
=36

SSOBRETN
= 36

SSOOBRETN

initiator (IEFSD166)

161-€ uopesadQ jo poypdly :Z uondes

Diagram 9-8. Subsystem Job Termination (IEFJJTRM) (Part 2 of 2)
Extended Description Module Label

The master subsystem provides a subsystem job termination

function. Subsystem job termination is a dummy routine IEFJJTRM
which, when the job being terminated is a subsystem,

replaces the normal job termination function.

1 Subsystem job termination verifies that job termina- 1EFJJTRM
tion was actually requested.

2 Subsystem job termination also verifies that the job IEFJJTRM
being terminated is a subsystem.

g

3192 0S/VS2 System Logic Library Volume 3 (VS2 Release 3.7)

The purpose of the initiator/terminator is to make
all necessary preparations for the execution of a
job step/task. A task can be defined either as a
unit of work which competes for system resources
and is described by a task control block, (TCB), or
as a request for the execution of some code.
To prepare a task for execution, the initiator
performs the following functions:
« Obtains storage for and initializes the control
blocks for a task.
« Assigns special properties to a task.
« Oversees the allocation of data sets and
devices for a task.
« Opens any required catalogs and libraries for
a task.
« Attaches the task.

When each task has completed execution, the
terminator portion of the initiator/terminator
performs these functions:

« Deletes the control blocks no longer needed.

« Deletes the RACF accessor environment, if

one exists.

« Oversees the freeing of data sets and devices

used by the task.

o Detaches the task.

When an entire job is complete, the
initiator/terminator clears or deletes the control
blocks and data areas the job used and the storage
space it occupied.

The initiator provides the above functions for
these situations:

« Completing master scheduler initialization.

« Starting a subsystem.

« Processing a START, MOUNT or LOGON

command.

« Initiating a normal job.

In the first three situations the initiator is used as a
subroutine to initiate a single job. When the job is
completed, the initiator subroutine returns to its
caller.

In the last case, the initiator itself is a task created
as a result of a command to start an initiator. This
Initiator can, in turn, attach a task. When that task
has completed, the initiator requests another job by

VS2.03.804

Initiator / Terminator

invoking the job entry subsystem (JES). JES then
returns to the initiator either another job or an
indicator to stop processing.

Important Considerations

There are two new concepts in MVS that are
important to the understanding of
initiator/terminator processing: the scheduler work
area and SYSEVENT macro instructions.

Scheduler Work Area

In MVS, most scheduler control blocks used by the
initiator reside on a pageable portion of virtual
address space called the scheduler work area
(SWA). The purpose of SWA is to reduce
contention for job queue resources. A more
thorough discussion of SWA, including a list of
resident control blocks, appears in the section of
this book entitled SWA Manager.

SYSEVENT Macro Instructions
An entirely new concept for MVS is a SYSEVENT
macro instruction. Use of a SYSEVENT macro
instruction results in an SVC that invokes the
systems resources manager (SRM) routines. The
purpose of SRM is to determine those address
spaces that can remain in real storage at any one
time and can still maintain the most effective use
of system resources or meet user-specified
installation objectives.
The initiator/terminator issues these SYSEVENT
macro instructions:
o JOBSELCT, indicating to SRM that a job has
been selected by JES for initiator processing.
+ REQSWAP, indicating that a task is to become
non-swappable.
+ INITATT, indicating that a task has been
attached.
e INITDET, indicating that a task has been
detached.
« JOBTERM, indicating that a job has
terminated.
« DONTSWAP, indicating that ar address space
is not to be swapped.

Section 2: Method of Operation 3-193

INIT/
ERM

3-194 OS/VS2 System Logic Library Volume 3 (VS2.03.804)

S61-€ uoneradQ Jo POYRN T UOKAS

Initiator/
Terminator

(no diagram)

Initiator:
Job Initiation

10-1

10-2

Initiator:

Step Initiation

| 10-3
Initiator:

Step and Job
Deletion

104
Initiator l—

Recovery
Processing
(IEFIB620 and
IEFIB621

Figure 2-17. Initiator/Terminator Visual Contents

(L€ a9y TSA) € swnjop Areqry o18077 wajsAS ZSA/SO 961-€

Diagram 10-1. Initiator: Job Initiation (Part I of 4)

Input

Current TCB

Current JSCB

From IEFSD263
via ATTACH

Process

Initiator, Job Initiation

Output

1 Build the initiator’s entrance,

options, and exit list (1EL).

2 Build the subsystem identification

SWA
Subpool

v_/\

y STEPL

From Master
Scheduler
Initialization
(IEEVIPL),
or from STC,
or from
IEFUC

block (SSIB) and the subsystem

options block (SSOBI). L

S
L

LCT

3 Build the linkage control

table (LCT).

4 Build the STAE parameter

list (STEPL).

5 1 LOGON, MOUNT, or a started

task is terminating, begin stop
processing.

Otherwise, request a job from the
job entry subsystem.

L6T-€ uonerddq Jo poylely 7 uonsag

Diagram 10-1. Initiator: Job Initiation (Part 2 of 4)
Extended Description Module Label

The initiator interface control module (IEFIIC) issues a
MODESET macro instruction to put the initiator task into
supervisor state; it then begins building the control blocks
required to process a jobstep or task.

1 1EFHC issuesa GETMAIN macro for storage to build IEFIIC
the initiator’s entrance, options, and exit list (IEL).

2 IEF1IC gets storage to construct the subsystem identi-

fication block (SSIB) and the subsystem options block
(SSOB). It determines the name of the subsystem which will
select jobs for this initiator and places it in the SSIB:

If the subsystem name was specified on a START command,
a command input buffer (CIB) exists for it and the subsystem
name is taken from there.

If no CIB exists, |IEFIIC checks for a subsystem name in the
PARM field of the EXEC statement for this step and uses it.

If no subsystem has been specified on an EXEC statement,
the default value (the primary subsystem name found in
the JESCT) is used.

LEFI1C deletes the RACF accessor environment if one
was obtained for the initiator.

IEFIIC sets an initiator indicator in the command schedul-
ing control block {CSCB) and passes control to IEFSD160.

IEFSD160, the initiator subroutine receives control from
IEFIIC for a normally initiated job or task, from started
task control processing for a started task, or from master
scheduler initialization.

Extended Description Module

3 IEFSD160 gets storage for the linkage control table IEFSD160
(LCT) from the SWA subpool pointed to by the cur-
rent job step control block (JSCB); it then moves informa-

tion from the IEL into the LCT.

4 After initializing the queue management parameter

area {QMPA) in the LCT, IEFSD160 builds a 16-byte
parameter list for a STAE exit routine, then issues an ESTAE
macro instruction. It places a pointer to this private STAE
parameter list (STEPL) in the LCT. IEFSD160 passes control
to 1EFSD161.

5 IEFSD161, the job select routine, checks an indicator IEFSD161
in the LCT to determine if STOP processing is required.

If so, it frees the SSOB, SSIB, and the STEPL pointer if

one exists, and passes control to a termination routine spec-

ified in the initiator's exit list.

If STOP processing is not required, IEFSD161 issues the
IEFSSREQ macro instruction, a routine that interfaces with
the subsystem interface routine. When control is returned
to IEFSD161 along with job status information, it checks
the return code in the SSOB or register 15 to determine if
the initiator should stop at this point. If so, it frees the
SSOB, SSIB and the STEPL and passes control to a termi-
nation routine specified in the initiator’s exit list.

IEFSD161 next checks an indicator in the LCT to deter-
mine if the selected job is being warmstarted. If it is, control
passes to the step delete routine, IEFSD 164, to delete the
current step.

Label

08°€0°TSA

(b0S'€0°ZSA) € 2wnjoA Arerqry oS0 wasAg ZSA/SO 861-€

Diagram 10-1. Initiator: Job Initiation (Part 3 of 4)

Input Process

Local
Parameter List

Scheduler Work 6 Build a data set tree structure for

Output

Local Parameter List
SVA
Data Set Address

Area Virtual data set integrity processing.

Address (SVA)

Data Set
Address

0000

7 Update the tree structure with the
new data set name for the current
jobstep.

Starting Step

Number

Scheduler
. Work Area

Data Set

ENQUEUE

Table

8 Build the ENQUEUE parameter list
from the entries in the tree.

To step initiation (IEFSD101)

b Tree Address
Starting Step Number

Tree
A NextTree or 0

4 First Entry

Address of Last Word in Tree
* Current Entry

0000
SVA of Current Data Set

Associated Step Number
Data Set Attribute (Exclusive or Shared)
Length of Data Set Name

ENQUEUE Parameter List
Major Name

Heading Info

Data Set Flags

4 Major Name

LA Minor Name # 1
Data Set Flags

A Major Name

A Minor Name #2

-l
N

Minor Name Data Set # 1
Minor Name Data Set # 2

Z uoneg

661-€ uonesadQ Jo poyPR

Diagram 10-1. Initiator: Job Initiation (Part 4 of 4)

Extended Description Module Label

6 IEFSD161 then checks an indicator in the JCT to IEFSD161
determine if data set integrity processing is necessary for IEFDSTBL

this job. If it is, IEFSD161 reads each data set name and

passes it in a parameter list to IEFDSTBL. To process data

set integrity (the assignment of the exclusive or shared

attribute to a data set), IEFDSTBL builds a data set tree

structure. The purpose of the tree is to eliminate duplicate

data set names in the ENQUEUE parameter list which will

ultimately be built for a job. The parameter list passed to

IEFDSTBL contains the step number at which the job

started, as well as a data set name and its current associated

step number. The entire-procedure ensures that a data set

in use for a job will not be freed until after the last step

needing it has used it.

If this is the first entry into IEFDSTBL for a job, IEFDSTBL
issues a GETMAIN for storage for the tree and initializes it
with control information.

7 |EFDSTBL determines if the job is a restart by com- IEFDSTBL
paring the starting step number in the parameter list

with the current step number in the data set entry. If the

current step number is larger, the job is a restart. No further

data set integrity processing is needed since a DSENQ list

already exists for a restarted job. IEFDSTBL simply returns

control to IEFSD161.

For jobs that are not restarts or a first entry, IEFDSTBL
compares the data set name in the parameter list with the
first data set entry in the tree.

If the two data set names match, IEFDSTBL compares the
associated step number in the tree to the current step num-
ber. If the current step number is higher, IEFDSTBL
replaces the step number in the tree with the current step
number. It also replaces the associated data set attribute
(exclusive or shared) in the tree if the current attribute is
more restrictive (exclusive).

If the data set names do not match, IEFDSTBL continues
searching through the tree until it does find a match; then,
if necessary, it updates the step number and data set attri-
bute in the tree. :

Extended Description

If IEFDSTBL reaches the end of the tree without finding a
match, it adds the new data set name , its associated step
number, and its attribute to the end of the tree. It

returns control to IEFSD161.

IEFSD161 looks at the CPU-task affinity indicator in the
program properties table (PPT). When affinity is required,
IEFSD161 calls IEFICPUA to assign CPU-task affinity to
the job. If the return code from IEFCPUA is not zero,
affinity cannot be assigned and IEFSD161 issues an appro-
priate message via IEFIMASK which converts the CPU
information in the PPT to readable text.

8 Once the tree structure contains all the data set entries
for a job, IEFSD161 passes control to IEFDSLST to
build the ENQUEUE parameter list. IEFDSLST places the
system data set name {major name) and the individual data
set names (minor names) from the tree into the ENQUEUE

parameter list and frees the tree, since it is no longer needed.

Control returns to IEFSD161.

Module

IEFSD161

IEFSD161
IEFDSLST

Label

(L°€ 958312y ZSA) € swnjoA Areiqyy o180 woisAS ZSA/SO 00Z-€

Diagram 10-2. Initiator: Step Initiation (Part 1 of 8)

From job initiation (IEFSD161)
for the first step of a job or
- from step deletion (IEFSD164)

Input for subsequent steps Process ou tpu t

X e et ad) Type 20
Register 1 Initiator, Step Initiation , SMF Record

j LCT

1 Perform SMF processing as

PPT
(accessed by VCON)

Non-cancelable

Special protect key
—a, CSCB

Non-swappable _ 2 Analyze the program properties —__
Privileged for the current jobstep/task. Non-cancelable Non-cancelable

Privileged

System task
System task Current TCB

Data set integrity \ L
- ! ! Data Set integrit
CPU affinity 1 egrity Protect Key

ASCB JSCB

Non-swappable Bypass
CPU-affinity password

protection

3 Build a GETPART work table
(GWT) for the current jobstep.

S

Data Set
Enqueue
(DSENQ) List

4 Enqueue on the data set enqueue
list for this jobstep/task.

z uondag

.

107-€ uonesadQ Jo POy

Diagram 10-2. Initiator: Step Initiation (Part 2 of 8)

Extended Description Module Label

1 IEFSD161 passes controi to the PPT scan routine,

IEFSD101, which in turn calls IEFSMFIE for SMF
processing. Once |EFSMFIE has determined that SMF
options are to be performed, it stores the current time
and date in the JCT.

For the first step of a job, IEFSMFIE, the SMF initialization
exit support routine, constructs a timing control table (TCT).
At this point, if a user job initiation routine is provided, it

is executed. When control returns to IEFSMFIE, it builds a
type 20 SMF record.

IEFSD101
IEFSMFIE

For every step in a job, IEFSMFIE executes a user step
initiation routine, if one is provided. When control returns
to {EFSMFIE, it passes control to IEFSD101 with an indica-
tor in the JCT if either the user’s job or step initiation
routine caused job cancellation.

2 By checking a protect key in the JCT, IEFSD101

determines if the current job step is to run in V=R or
V=V. In either case, it moves the protect key into the cur-
rent TCB. (When a user has specified V=R for a job step,
his program is allocated a contiguous area of real storage
and of virtual storage, both with identical addresses. His
entire program is loaded into real storage at one time and
cannot be paged.)

IEFSD101

Before assigning any other special properties to this program,
IEFSD101 sets to zeroes the special properties indicators
that were set for a previous step. It then scans the program
properties table (PPT) for the following properties:

Special protect key — If a special protect key is indicated in
the PPT, IEFSD101 moves it into the current TCB.

Non-cancelable job — If the non-cancelable property is indi-
cated in the PPT, IEFSD101 sets an indicator in the LCT
and marks the CSCB non-cancelable.

Non-swapable — If the program is marked non-swapable in
the PPT, IEFSD101 sets the appropriate indicator in the
ASCB.

Privileged — If the program is marked privileged in the PPT,
IEFSD101 sets an indicator in the LCT. The privileged
property ensures that a program will not be swapped unless
it is in a long wait.

System task that is also a one-step started task — IEFSD101
sets an indicator in the LCT that indicates that the task
need not be timed.

Extended Description

System task that is an initiated task and/or consists of more
than one step — IEFSD101 sets an indicator in the LCT to
assign some of the normal program properties to the task
and to issue an appropriate message.

No data set integrity — For a one step job, IEFSD101 sets
an indicator in the LCT to assign this property to a pro-
gram. For a job consisting of more than one step, an indica-
tor is set in the LCT to assign some of the normal program
properties to the program and to issue an appropriate
message.

By pass password protection — IEFSD101 sets an indicator
in the JSCB.

CPU task affinity — IEFSD101 checks this property for all
steps in a job other than the first. When affinity is required,
{EFSD101 calls IEFICPUA to assign CPU task affinity to
the step via an indicator in the address space control block
(ASCB). If the return code from IEFCPUA is not zero,
affinity cannot be assigned and IEFSD101 issues an appro-
priate message by invoking IEFIMASK to convert the CPU
information in the PPT to readable text.

3 IEFSD101 builds a GETPART work table (GWT) for

the current job step if the user specified the REGION
parameter or V=R mode or if a region beginning at a spe-
cific address is required for a checkpoint restart. A pointer
to the GWT is placed in the LCT and control passes to
IEFSD102.

4 f no data set enqueue list exists and the job is success-
ful to this point, IEFSD102 passes control to the
device allocation interface routine, IEFSD162.

If a data set enqueue (DSENQ) list exists, but the job is
unsuccessful, IEFSD102 frees the DSENQ list before it
passes control to IEFSD162.

If a data set enqueue list exists, this is the first step of a job
that requires non-temporary data sets. IEFSD102 marks

the CSCB cancelable and issues an ENQUEUE macro instruc-
tion for the DSENQ list.

If the ENQUEUE is unsuccessful, IEFSD 102 issues an error
message; otherwise, |IEFSD 102 waits for the ENQUEUE
ECB to be posted (indicating that the specified data sets
are now available) or the CANCEL ECB to be posted as a
result of an operator CANCEL. In any case, controi passes
to the device allocation interface routine, IEFSD162.

Module

IEFICPUA

IEFIMASK

IEFSD101

IEFSD102

IEFSD162

IEFSD102

IEFSD102

Label

(L°€ €910y ZSA) € Swn[oA ATeiqi] 21807 WIS ZSA/SO 41743

Diagram 10-2. Initiator: Step Initiation (Part 3 of 8)

input ' ' Process Output
LeT : - 2
s JCT - B Calculate the time limit for this ———
, jobstep/task. Time Limit
-
W .
SCT = 6 Set jobstep/task cancelable if

. possible,

w; Parameter List
. 7 Call subsystem to notify

3 of step initialization. LCT

SSOBINDV 1
8 Perform checkpoint/restart

L éﬁ processing. Journal

-
. 9 Perform allocation processing for
[the current jobstep/task.
: .

10 Update the job journal. Job
] Journal
. E P 8 ek A
11 Build IEFPARAM and an IEFPARAM ATTACH

ATTACH parameter list, .
Epseaiyes R TR Parameter List

} LeT

£0Z-¢ uonerad(JO POYIRW :T UOHOIS

Diagram 10-2. Initiator: Step Initiation (Part 4 of 8)
Extended Description

B IEFSD162 first calculates the step time limit using
input from the SCT, JCT and LCT; the resultant time
limit for the current job step is stored in the LCT.

6 If the current jobstep task is a started task (this is

indicated in the CSCB), IEFSD162 sets up fields in
the command scheduling control block (CSCB) so that the
task will have a name that can be specified on a CANCEL
command.

7 IEFSD162 builds the SSOBSI extension in the
LCT work area. Then, using the IEFSSREQ
macro, it calls the subsystem to notify it of step
initialization, providing step names and step number.
On return from the interface, if register 15 does not

‘indicate a “‘successful call’” or “function not

supported by subsystem”, issue a X’'OBA’ ABEND.

8 if checkpoint/restart processing is required, IEFSD162

calls IEFXB604 to set appropriate job status bits in
the job step control block (JSCB) and JCT to indicate that
allocation processing is beginning for the current jobstep/
task. IEF XB604 also writes the step’s header record in the
job journal before returning control to fEFSD162.

Module

IEFSD162

IEFSD162

IEFXB604

Label

IEFJSREQ

Extended Description

O IEFSD162 gets storage for both a save area and param-
eter list for the allocation routines. At this time, if the
current jobstep/task is a system task, IEFSD162 marks the
CSCB cancelable for the duration of allocation processing:
it then branches to the device allocation load module,
IEFW21SD. When IEFSD162 again receives control, if
necessary, it restores the non-cancelable status of the task.

If allocation was unsuccessful, IEFSD162 sets an indicator
in the initiator exit list (IEL) and passes control to
IEFSD164 to delete the jobstep/task.

10 After allocation processing, IEFSD162 updates the
JSCB and JCT and calls IEFXB500 to write the
updated information into the job journal.

11 In preparation for ATTACH processing, IEFSD162
issues a GETMAIN for storage for IEFPARAM,
which will serve as the initiator’s internal parameter list, and
for an ATTACH parameter list. IEFSD162 places a pointer

to the LCT and to jobstep/task TIOT (created by the alloca-

tion routines) in IEFPARAM. it next places a pointer to
IEFPARAM in the STEPL. IEFSD162 then calls SWA man-
ager to write the SCT and JCT into the job journal.

Module

IEFSD162

IEFW21SD

IEFSD162

IEFSD162
IEF XB500

IEFSD162

Label

$08°€0'TSA

(Y08°€0°TSA) € SwnjoA Areiqy] 180T waysAs TSA/SO p0T-€

Diagram 10-2. Initiator:

Input

DEB

R1

IEFPARAM

is this library
[— defined to —
contain pgms
| with special __]
properties ?

i

ATTACH
Parameter List

Step Initiation (Part 5 of 8)

Process

12 Open the catalogs required by
this jobstep/task,

13 Open the JOBLIB, STEPLIB,
and/or FETCHLIB as required
by this jobstep/task.

14 Assign special properties to
programs if possible.

Data sets
marked “OPEN"’
L

ATTACH
Parameter List

15 Initialize the ATTACH

parameter list,

T uonoag

S0Z-€ uoneadQ Jo poyrN

Diagram 10-2. Initiator: Step Initiation (Part 6 of 8)
Extended Description

12 Before beginning OPEN processing, IEFSD162
places a pointer to the jobstep/task TIOT in the
initiator's own TCB. It then checks the jobstep/task JSCB
to see if there are catalogs to be opened. If so, IEFSD162
calls the initiator interface to catalog control, IEFICATL.
This routine scans the DSAB (data set association block)
chain associated with the jobstep/task to identify the
required catalogs. It then invokes IEFAB4F5 to open these

Moduie

IEFSD162

catalogs and update the private catalog control blocks (PCCBs),

and returns control to IEFSD162. If OPEN processing is
unsuccessful, IEFSD162 branches to IEFSD164 to delete
the jobstep/task.

13 IEFSD162 issues an OPEN macro instruction for the

JOBLIB, if one exists, or for the STEPLIB if a
STEPLIB exists. It issues another OPEN macro instruction
for FETCHLIB if it is also required. When OPEN process-
ing has completed successfully, IEFSD102 restores the
TIOT pointer in the initiator’s TCB so that it once again
points to the initiator’s own TIOT.

14 |EFSD162 checks the related data event blocks
(DEBs) to see if the job library or step library just

opened is an authorized library (this is indicated in the
DEB). If the library is authorized, complete the
assignment of special properties. If the library is not
authorized, assign normal properties to the job step
and issue an appropriate message. When this is done,
IEFSD 162 branches to IEFSD103 for ATTACH
processing. (Special and normal properties are
discussed in 0S/VS2 SPL: Job Management.)

IEFSD162

IEFSD162

Label

Extended Description

15 IEFSD103, the ATTACH interface routine, places
the following information in the ATTACH param-
eter list passed to it:

® The entry point of the problem porgram to be attached
in behalf of the jobstep/task.

o The address of the ATTACH ECB.
® The address of the FETCHLIB DCB.
® The address of the STEPLIB or JOBLIB DCB.

@ The identification of which SWA subpool (236 or 237)
cannot be shared.

If the DPRTY parameter was specified for the jobstep,
IEFSD103 calculates an address space priority for the job.
If DPRTY was not specified, the automatic priority group
(APG) from the CVT is used. In either case, IEFSD103
puts the memory priority, along with the performance
group number, into IEFPARAM. It then branches to

the ATTACH routine, IEFSD263.

Module Label

IEFSD103

(L€ 95%9108 ZSA) € WNJOA ATeIqi] 91807 WoISAS ZSA/SO 90T-€

Diagram 10-2. Initiator: Step Initiation (Part 7 of 8)

Input

Process Output

16 Geta region for the current

jobstep/task.

TCTIOT

Perform SMF processing. °

Attach the task and wait for it

A list of
end-of-task and
cancel ECBs

to complete processing.

Detach the task when it has
completed processing.

To step deletion
(IEFSD164)

T uonosg

.
.

L0Z-€ uoneradQ jo poyra

Diagram 10-2. Initiator: Step Initiation (Part 8 of 8)

Extended Description Modulev Label
16 |f the jobstep/task is not swapable, IEFSD263 issues IEFSD263
a SYSEVENT macro instruction, REQSWAP, that

" causes the initiator’s own address space to be swapped out.

It also frees the initiator’s region. ‘

When no GETPART work table (GWT) exists for a
jobstep/task, IEFSD263 cbtains a V=V region of default
size.

If there is a GWT, a special type of region is required for

the jobstep/task. IEFSD263 issues a GETMAIN for a region.
If the request cannot be immediately satisfied, IEFSD263
waits for a GETPART or CANCEL ECB to be posted
indicating whether the GETMAIN completed successfully

or failed.

17 IEFSD263 calls IEFAB820 to build a TCTIOT] IEFAB820

(timing control TIOT), if one is required. f

Extended Dgscription Module

18 Whe’hflEFSD263 regains control from IEFAB820, IEFSD263
it moves the jobstep parameter area from subpool

253 to subpool 0, issues an ATTACH for the jobstep/task,

and sets a time limit in the ASCB. It takes the task's ASCB

priority from IEFPARAM, issues the STATUS macro

instruction to make the newly created TCB dispatchable, and

then issues a WAIT macro instruction. It waits for the

end-of-task and for the cancel ECBs associated with the

attached task to be posted.

19 if the cancel ECB is posted, IEFSD263 invokes the IEFSD263
abnormal termination routines via SVC 34 and
issues another WA IT macro instruction for abnormal

termination processing to complete.

When the cancel ECB is posted a second time, or when the
end-of-task ECB is posted once, IEFSD263 begins DETACH
processing.

If the jobstep was timed, IEFSD263 saves the time allowed IEFSD263
for the job and the time used by the job step (both in the

LCT) and calculates the time remaining. It builds a param-

eter list to be used for step deletion processing, frees the

jobstep/task region and if one exists, the GWT, and finally

branches to the step delete routine, IEFSD164.

Label

(L' 9seapoy ZSA) € dwnjoA AreIqly o180] WoISAS ZSA/SO 807-€

Diagram 10-3. Initiator: Step and Job Deletion (Part 1 of 4)

From IEFSD263 (the end of step
initiation) or from IEFIB621 for

ad]
o

s

TR

.

i
&

;

s

i

g

|nput attempted retry Process
SRR e e R -
. Register 1 L o
’ E s 1 Step and Job Deletion . -
4 - -
f IEFPARAM LCT : : - 1 Close FETCHLIB and JOBLIB or i&\ s’%
-] . STEPLIB if necessary. E %2 LeT
FETCHLIB - L ;@2
A L JOBLIB/ . 0 .
STEPLIB - i @5
- 1)) -
;g . - =
1 3 o]
o : [-
“é z . Job Journal
: 2 Calculate time elapsed and time . -
. . . remaining for the current : - ACT
W I] jobstep/task. ‘ -
5 - | ACT
. =] - .
i@ “j b - JcT
JcT SCT 3 -
. L s scT
Y ACT = 3 Free IEFPARAM and the ATTACH 0
. Y ACT %; 5 parameter fist. .
e § ﬂ. |
g i L §;
b Bl | L
"§ . ¢ 1
- 4 Build adummy TCB to be used by
. the unallocation routines. &
- []
. | L
45 5 Determine status of the current job, o | L~
- EEEREEREE
BT L A e et

a

T—

s
e

To step initiation to begin another step if
the last step in a job has not been completed.

s

R
e

60Z-€ uoneradQ Jo poylsl :z UONOeS

Diagram 10-3. Initiator: Step and Job Deletion (Part 2 of 4)

Extended Description

When the step delete routine |IEFSD164 receives control,
it checks indicators in the JCT and LCT to determine if
the jobstep is being deleted for warmstart processing or
because of an error during allocation. If either of these
conditions exists, |EFSD164 begins processing at step 3.

1 |EFSD164 closes FETCHLIB if it was used by the
jobstep/task and frees the storage its DCB occupied;
it does the same for a JOBLIB or STEPLIB.

2 |EFSD164 calculates the SRB time for the jobstep and
writes it the SCT. It calculates the execution time for

the jobstep and writes it into the step account table (ACT).

It does the same calculations for the job and writes the

resultant figures in the JCT and the job account table

(ACT) respectively. |EFSD164 then calls SWA manager

to write the updated block into the job journal.

3 IEFSD164 frees IEFPARAM, sets to zero the
pointer to it in STEPL, and also frees the ATTACH
parameter list.

4 1EFSD164 builds a dummy TCB to be used by the
unallocation routines; the dummy TCB contains the

jobstep/task status and completion codes. When the

dummy TCB is completed, control passes to the unalloca-

tion routines to free the data sets and devices used by

the jobstep/task.

B When IEFSD 164 regains control from unallocation, it
frees the dummy TCB and checks the return codes.

Module

IEFSD164

IEFSD164

IEFSD164

IEFSD164

IEFSD164

IEFSD164

Label

(L0S'€0°ZSA) € dwnjoA Areiqi o180 woIsAS ZSA/SO 01Z-€

Diagram 10-3. Initiator: Step and Job Deletion (Part 3 of 4)

Input

QMPA

7

SWA
Subpool

~

|~

Process

Delete the security accessor
environment.

Delete, suspend, or re-enqueue
this job.

Free all control blocks. associated
with this job in the LSQA, SQA,
and SWA, :

indicate that this job should stop.

To job initiation to
begin the next job.

LCT

Internal Stop

LOS°€0°TSA

112-€ uonesadQ JO PO T UODSS

Diagram 10-3.- Initiator: Step and Job Deletion (Part 4 of 4)

Extended Description Module Label

6 I RACINIT processing was performed for this job

step/started task by the SWA create routine
(1IEFIB600), then delete the RACF environment since the
task has completed.

7 | another step in the job is to be initiated, control IEFSD101
passes to IEFSD101, the step initiation routine.

If the job step just completed was the last step in a job,
control passes to.IEFSD 166, the job delete routine. IEFSD166

-If the job associated with the jobstep/task is to be suspended,

control passes to IEFSD166 to do this.

If the job ran in V=R mode, IEFSD166 releases the job's
protect key. It gets storage for job delete or job enqueue

‘processing. The decision to delete or re-enqueue a job

depends on the function code in a two-word parameter
list pointed to by register one. IEFSD166 sets.appropriate
indicators in the SSOB and issues the IEFSSREQ macro
instruction requesting the job entry subsystem to delete
or re-enqueue the job.

If no error occurs in job entry subsystem processing, IEFSD166
IEFSD166 puts the return code from the subsystem into
the IEL.

8 IEFSD166 frees all the control blocks associated

with this job in the LSQA and SQA. It passes
control to the SWA management routines requesting
deletion of job related blocks in SWA. It then calls the
auxiliary storage manager routine (ILRJTERM) that
frees any ASM control blocks still existing for VIO data
sets created by the job being terminated.

O If the completed job was a normally initiated task, IEFSD166
IEFSD166 removes the job name from the initiator's
TIOT.

If the completed task was not begun by the initiator,
IEFSD166 sets an internal stop indicator in the LCT.

Control passes to IEFSD161. IEFSD161

R

LO8'€0°TSA

(LOS'€0°TSA) € dwnjoA Areiqry 180 WaIsAS ZSA/SO ZT1T€

Diagram 104. Initiator: Recovery Processing (Part 1 of 2)

From recovery
termination

Input management Process " Output

Register 1

\ SDWA

——

Initiator Recovery 3

The initiator task recovery routines receive
control when:

a) A program check occurs.
b) An ABEND occurs,
¢} The operator pushes the RESTART key.,

d) A machine check occurs.

e) Percolation occurs.

1 Contribute to system error recording.

SYS1.LOGREC
Data Set

2 Takeadump.

System
. DUMP
Data Set

3 Exit to IEFSD 164, either to delete the
jobstep/task and retry|it or to terminate the
entire job.

To step deletion
(IEFSD164)

T uoijoeg

o
H

€17-€ uoneiadQ jo poylop

Diagram 104. Initiator: Recovery Processing (Part 2 of 2)
Extended Description Module Label

The initiator task recovery routine (IEFIB620) receives
control when:

a) a program check occurs,

b) an ABEND occurs,

c) the operator pushes the RESTART key,

d) a machine check occurs,

e) percolation occurs,

1 I1EFIB620 receives control from recovery/termination IEFIB620
management (R/TM). If R/TM does not provide a STAE

diagnostic work area (SDWA), IEFIB620 simply sets an

indicator .in register 15 to continue termination processing

and returns to R/TM.

Unless the error that occurred was an OPEN failure or unless
the routine received control as a result of percolation,
IEF1B620 records the error in the SDWA.

2 |fentry into this routine is not the result of percolation,
recursion, an OPEN failure, or a machine check,
IEFI1B620 issues an SDUMP macro instruction,

3 If thisis not a recursion or if the LCT does not contain

both a JCT SWA address and an SCT SWA address,
IEFIB620 sets a retry indicator in the SDWA and places the
address of the retry routine in the SDWA. It then returns
to its caller, R/TM.

R/TM, in turn, passes control to IEFIB621, the initiator IEFIB621
task recovery retry routine, which will enable the retry and

then pass control to IEFSD 164, the initiator step delete

routine to delete the step currently in progress.

3-214 0S/VS2 System Logic Library Volume 3 (VS2 Release 3.7)

A=

The SWA create interface routines receive control
from either the master subsystem or the job entry
subsystem. Their main function is to, prepare a job
for the interpreter by setting up its job step control
block (JSCB) chain. One of the SWA create
interface routines, IEFIB600, passes control to the
interpreter, and when control returns, it places the
SWA address of the JCT in the JSCB for a job. It is
the interpreter that actually builds the SWA and
many of the control blocks that reside in SWA, for
example, the JCT.

i

SWA Create Interface

Whenever the current job is not a started task,
the SWA create interface routines build a command
scheduling control block (CSCB) to represent the
job. (The CSCB for a started task is created by the
started task control routines.)

The SWA create interface routines also
reconstruct SWA for restarted jobs.

Section 2: Method of Operation 3-215

(#08°€0°TSA) € dwnjop Lrexqig d180] wWoISAS TSA/SO 9IT-€

Diagram 11-1. SWA Create Interface (IEFIB600) (Part 1 of 2)

Input

Register 1

SSOB

A LeT
A JMR

From the master
subsystem or the job
entry subsystem

Lot

LCT

LCT

Is this a
started task ?

Register 1

SSOB

Process

//A~

SWA Create

Interface

Create an ESTAE environment in case an

error occurs.

Initialize the JSCB f
or task.

invoke the interpret
control blocks.

Initialize RACF acce

if RACF is active.

Build a CSCB for th

If this jobstep/task i
reconstruct SWA.

Return t

or the starting jobstep

er to build required

2$SOr environment

s task if necessary.

caller

Output

LCT

) Jscs

~ Job Status Flags ~

JsCB

’ Message RPL

§ Journal RPL

Register 1

CscB

NEL

’ Message Text

} Acs

} ampa

Cancel Status

s part of a restarted job,

Updated

$08°€0°CSA

LIZ-€ uoneisdQ Jo POYRW :g UOHILS

Diagram 11-1. SWA Create Interface (IEFIB600) (Part 2 of 2)

Extended Description Module

The SWA create interface routines set up the control
btocks for a job before the job enters the interpreter. The
SWA in which the control blocks will reside is created
during interpreter processing.

1 |EFIB60O0 first creates an ESTAE environment by IEFIB600

issuing an ESTAE macro instruction. As a result, if
an error occurs during SWA create interface processing,
control will first pass to a recovery/termination routine,
and from there, back to a SWA create exit routine,
IEFIB645. The exit routine takes a dump of storage if it is
required, and specifies retry. It then returns control to
recovery/termination.

Once the ESTAE environment is established, [EFIB600 sets
the job status flags in the LCT indicating whether the job

is an automatic checkpoint restart, a step restart, or a
warmstart.

IEFIB645

IEF1B600

2 IEFIB600 next issues a GETJSCB macro instruction IEFIB600
and when that is done, it chains the job’s JSCBs and
places a pointer to the first JSCB in the LCT. It initializes

the JSCB with the following information:

e The address of the message request parameter list (RPL).
® The address of the journal RPL.
o The address of the QMPA.

-@ The address of the CSCB for the job, if one exists.

@ An indicator that the job is entering the interpreter.
e An indicator that no journaling is required.

@ A restart indicator.

® The SWA subpool number.

o The ASID for the job.

3 IEFIB600 then initializes the interpreter entrance IEFIB600
list (NEL) and issues a LINK macro instruction to pass
control to IEFNB903, the first routine of the interpreter,

Register 1 points to the NEL.

When control has returned, if an error occurred during
interpreter processing, |EFIB600 frees appropriate control
blocks, places an error return code in register 15, and returns
to the original calling routine.

When interpreter processing has completed successfully,
IEFIB600 invokes a SWA manager routine to read the job
control table (JCT) created by the interpreter. It places the

Label

Extended Description

SWA address of the JCT in the first JSCB, in the JCT itself,
and in the LCT.

4 If the RACF function is active, check if the userid is
valid. If not, fail the job and issue an error message
(IEF7221). If successful, check if automatic data set
protection was requested. If it was, set the JSCBADSP in
the active job step control block for use by allocation.

B If the job in processing is not a started task, |IEFIB600
builds a command scheduling control block (CSCB)

to represent the job. (If the job is a started task, the started

task control routines have already built the CSCB.)

6 Finally, IEFIB600 checks indicators in the SSOB and

LCT to determine if the SWA for this job must be
reconstructed. For restarted jobs, SWA must be rebuilt to
reflect previous processing, as well as newly begun restart
processing.

Whenever SWA reconstruction is necessary, | EF1B600
passes control to |EFIB605, the SWA reconstruct module, *
otherwise, it returns control to the original caller.

IEFIB605 first determines if the job is an automatic restart,
step restart, a warmstart, or deferred restart. For any case
but deferred restart, {EFIB605 invokes the SWA merge
routine (IEFXB601).

Before calling the merge module, IEFIB605 builds a param-
eter list, the merge entrance list (MEL) and places a pointer
to it in register 1.

When merge processing has completed and control is
returned, |EFIB605 checks job status again for an automatic
or deferred restart. In both cases, it invokes the data set
descriptor record processor, IEFXB609, and it passes it a
pointer to the LCT.

This time, when control returns to |EFI1B605, a subroutine
checks job status for a warmstart. If the job is a warmstart,
IEF1B605 determines whether the error that caused the
warmstart occurred in allocation, execution, or termination
and sets appropriate indicators.

in every case, IEFIB605 returns control to IEFIB600, who
then returns to the caller.

*This module is part of Checkpoint/Restart processing.

Module Label

IEFIB600

IEFIB605

IEFXB601
IEF1B605

IEFXB609

IEFIB605

Y08°€0'TSA

3-218 08/VS2 System Logic Library Volume 3 (VS2.03.804)

The Purpose of the Converter

The following is a brief overview of converter
functions. For a thorough look at converter
processing see the method-of-operation diagrams
and extended descriptions.

In MVS, the converter/interpreter performs most
of the functions performed by the
reader/interpreter in 0S. However, the
converter/interpreter does not read in-stream JCL
statements or any input stream data. The converter
executes as a subroutine of the job entry subsystem
(JES). JEsS actually reads JCL statements and input
stream data and spools them to appropriate data
sets. The converter then takes the records from
these data sets and converts them into internal JCL
text to be used by the interpreter. It also merges
JCL that it reads from the procedure library with
the JCL and input stream data spooled by JES.

Identifying JCL Statements

Once initialization is complete, the converter GET
routine, IEFVHA, begins processing by obtaining a
JCL statement (an 80-byte card image) from the
JCL data set and/or from a cataloged or in-stream
procedure.

Comments and Continuation

The next converter routine, IEFVHC, continues
processing JCL statements by checking for a valid
continuation. It branches to IEFVHESB if a
continuation was expected and was or was not
received, to IEFVHCB if a continuation was not
expected, and to IEFVHA if a comment was
received.

JOB, EXEC, DD Statements

Once a JOB, EXEC, or DD statement is identified,
the converter pre-scan (IEFVHEB) performs some
initialization functions and branches to the scan
routine, IEFVFA. It is IEFVFA that converts all JCL
card images taken from the JCL data set into
internal text and then moves them to a text data
set that will be used by the interpreter.

NULL Statements
The NULL statement processor, IEFVHL, analyzes
the conditions under which it was entered.

If the NULL statement represents the end of an
input stream job and more statements must be read

Converter/Interpreter

from a procedure, control returns to the converter’s
GET routine, IEFVHA. When IEFVHA encounters a
procedure end-of-file, it generates a NULL
statement to signify the end of the procedure.

If the NULL statement indicates that there are
no more JCL statements to be read and that the
JCL data set and all procedures have been
processed by the converter, IEFVHL invokes the
converter termination routine, IEFVHF.

PROC and PEND Statements

An EXEC PROC statement identifies a procedure
that exists in the system’s procedure library. A
PROC statement marks the beginning of an
in-stream procedure. When the converter
encounters a PROC statement in the input stream, it
converts it to an EXEC PROC statement. For both
cases, control passes to an in-stream procedure
control routine, IEFVINA, that in turn calls a series
of special processors.

The first of these, IEFVINE, is a syntax check
routine. If it finds the PROC statement valid, it
returns this information to the control routine.

The next module called, IEFVINB, scans the
entries in the In-Stream Procedure Directory. If
IEFVINB does not find an entry for the procedure
name sepcified on the PROC statemert, the control
routine invokes another module, IEFVINC, to build
a new entry.

When the entry is complete, the control routine
branches to another module, IEFZNCODE; this one
compresses the JCL statement and stores an pointer
to the statement next to the procedure name in a
local work area.

The control routine, IEFVINA, continues reading
and compressing data until it encounters some kind
of delimiter. When it reaches a PEND statement
signifying the end of a procedure, it returns control
to the converter GET routine, IEFVHA, for the next
statement.

Symbolic Parameters
A user defines symbolic parameters either in
statements within a procedure itself or in
statements that override the statements in a CONV/
referenced procedure (for example, one in the INT
procedure library). Therefore, the Converter may
encounter symbolic parameters in three places:

« In an EXEC statement that calls a procedure.

Section 2: Method of Operation 3-219

¢ In input stream statements that override
procedure statements.
« In statements within a procedure.

When a symbolic parameter is specified on an
EXEC statement, the converter scan routine,
IEFVFA, uses the symbolic parameter processing
routine, IEFVFB, to place an entry in a table of
symbolic parameters and assigned values
(SYMBUF).

When a symbolic parameter appears in an
input-stream statement or in a statement in a
procedure, IEFVFB, substitutes a corresponding
value already in a symbolic parameter table entry
for the symbolic parameter.

Command Statements

When the converter verb identification routine,
IEFVHCB, cannot recognize a verb, it assumes that
the verb is a command. The command validation
routine, IEFVHM, verifies that the verb is one
allowed in the input stream and issues an SVC 34
(the command scheduling supervisor call) to
execute the command.

Service Routines

During converter processing, most converter
routines use a set of service routines that perform
some common functions.

The message module, IEFVGM, puts the
converter messages into the message data set and
JCL statements into the list data set.

The operator message module, IEFVHR, places
messages intended for the operator into the
message data set.

The SWA (shceduler work area) manager
interface module, IEFVHQ, enables the converter
routines to assign control blocks to SWA, to locate
blocks there, and to read from them and update
them on SWA, as well.

The Purpose of the Interpreter

The interpreter operates as a subroutine of the
Initiator but is actually called by SWA create
interface. The purpose of the interpreter is to build
the scheduler control blocks rquired to execute a
job. The interpreter transforms the keywords and
parameters specified in the JCL statements to
specific table entries. In the interpreter, the JCL
statements appear in the form of JCL text, the
output of converter processing.

3-220 0S/VS2 System Logic Library Volume 3 (VS2 Release 3.7)

When interpreter initialization is done, the
interpreter GET routine, IEFVHE, receives control.
It determines whether a statement it is processing is
a JOB, EXEC, or DD statement and then routes it to
an appropriate processor.

The JOB Statement

The JOB statement processor (IEFVJA), initializes a
job control table (JCT) and the job account control
table (JACT) for a job. It also checks the validity
of the JOB statement keyword values and enters
them into the tables.

The EXEC Statement

IEFVEA processes EXEC statements. It creates a
step control table (SCT) and a step account table
(ACT) for each EXEC statement. IEFVEA also
chains the job file control blocks (JFCB) whenever
a JOBLIB has been specified, and chains the SCT
for data set concatenations.

The DD Statement

The DD statement processor (IEFVDA) creates the
step input/output tables (SIOTs) and JFCBs for a
step and a data set enqueue table (DSENQ table)
entry for all data sets explicity named by the
DSNAME parameter. IEFVDA marks each data set
entry in the DSENQ table as exclusive or shared
according to the user’s specifications.

Service Routines

The interpreter initialization routines, perform
several common functions by using a set of service
routines.

The message module, IEFVGM, puts the
interpreter messages into the message data set.

The operator message module, IEFVHR, also puts
messages intended for the operator into the
message data set.

The SWA manager interface module, IEFVHQ,
enables the interpreter to assign control blocks to
SWA, to locate blocks there, and to read from them
and write to them.

The statement processors, IEFVJA, IEFVEA, and
IEFVDA, use a special set of service routines for
functions common to them.

The interpreter GET parameter routine, IEFVGK,
locates each parameter for the command statement
processor. It branches to an appropriate keyword
subroutine to perform a basic check for errors and
then returns to the command statement processor.

RN

The test and store routine, IEFVGT, enables the
command statement processor to determine what
processing must be done for each parameter. There
is a parameter descriptor table (PDT) that lists each
keyword, the operation to be performed for it, and
the location at which the results must be stored.

The EXEC and DD statement processors, IEFVEA
and IEFVDA, respectively, use a dictionary entry
routine (IEFVGI) to place an entry in the
"refer-back'' table. They also use a dictionary
search routine, IEFVGS to search the 'refer-back"
table for the address of an existing SCT, SIOT, or
JFCB. Both IEFVGI and IEFVGS return to the calling
routines.

Section 2: Method of Operation 3-221

3-222 0S/VS2 System Logic Library Volume 3 (VS2 Release 3.7)

£77€ uoneredQ Jo POYRW T YRS

- .
From the job entry
subsystem or the
M

input aster Subsystem

Initialize the converter. (See M.O.
Diagram — Converter:
Initialization (IEFVH1).)

JCL data set i
Pointers PROCLIB :
TEXT data set

2 lIdentify verbs on JCL statements. If
necessary, merge them with statements
from a cataloged procedure. (See M.O.
Diagram — Converter: ldentifying
Verbs in JCL Statements (IEFVHA,
IEFVHC, IEFVHCB, IEFVHEB).)

3 Process any commands in the input
stream. (See M.O. Diagram —
Processing Commands in the Input
Stream (1IEFVHM).)

4 Process in-stream and cataloged
procedures. (See M.O. Diagram —
Converter: Processing In-stream and
Cataloged Procedures (IEFVINA).)

B Process symbolic parameters.
(See M.O. Diagram — Converter:
Processing Symbolic Parameters
(IEFVFA, IEFVFB).)

6 Convert JCL statements to internal
text. (See M.O. Diagram —
Converter: Converting Statements
to Internal Text (IEFVFA).)

7 Enter defaults into internal text.
(See M.O. Diagram — Converter:
Entering Defaults into Internal Text
(IEFVFA).)

8 Terminate converter processing.
(See M.O. Diagram — Converter:
Termination (IEFVHF).)

Return to job
entry subsystem or
Master Subsystem

Figure 2-17a. Converter Visual Contents

SYS1.LOGREC
Data Set

In-stream Directory
and Records

Symbolic Parameter
Buffers

| .
L

(L€ 95%319Y TSA) € owmjop Axeiqry 218077 woIsAS ZSA/SO #TT€

Diagram 12-1. Converter: Initialization IEFVH1) (Part 1 of 2)

From the master subsystem or
the job entry subsystem

Input _ » Process

Register 1

Output

ESTAE
parameter list

1 Establish an ESTAE environment
over the converter.

M

Register 12

Converter Work Area

2 Initialize the converter work area.

3 If SMF processing is required, get

storage for and initialize a job
management record (JMR).

To IEFVHA, the converter
GET routine

Z uonoes

STT-€ uonerad(Jo poyr

Diagram 12-1. Converter: Initialization (IEFVH1) (Part 2 of 2)
Extended Description Module

This module, IEFVH1, is the converter initialization
routine. It receives control from the job entry subsystem
or the master subsystem via a link macro instruction.

1 |EFVH1 obtains storage for and initializes an ESTAE IEFVH1
parameter list for the converter, then issues an ESTAE
macro instruction.

2 IEFVH1 initializes the converter work area with the IEFVH1
following information:

o The address of the interpreter entrance list (NEL).

@ The address of the calling routine’s save area.

® The address of the input statement buffer.

o The address of the internal text buffer.

® The address of the procedure library’s DCB.

@ The address of the procedure statement buffer.

@ The address of the message buffer.

® The address of a local work area.

o The address of the converter’s own register save area.

@ The entire queue management parameter area (QMPA)
passed by the calling routine.

) 3 |EFVHI1 checks an indicator in the NEL to determine IEFVH1

if SMF processing is required. If it is, IEFVH1 obtains
storage for and initializes the job management record (JMR) for
this job. It then passes control to IEFVHA, the converter
GET routine.

Label

(L°€ 95%910Y ZSA) € dumjoA Areiqry o180 waysk§ ZSA/SO 97T€

Diagram 12-2. Converter: Identifying Verbs on JCL Statements (Part 1 of 4)

From IEFVH1, the converter
Input initialization routine Process Output

Converter Work Area
} amea
\’

VA
<>

JCL Data
Set

Register 9

b))

‘] Read a JCL statement from the
JCL data set, the procedure
library, or an in-stream procedure.

Input Buffer

|]
3

Set

~o

PROCLIB

Check each statement for
continuation or comment.

3 Check JCL statement for valid
verb.

Register 10

; input Buffer

L JCL Statement 1

JCL Statement
‘parameter list

Update statement parameter-
lists as required.

JCL Statement
and parameters

T uondsg

LTT-€ uoneradQ jo poylely

——r

Diagram 12-2. Converter: Identifying Verbs on JCL Statements (Part 2 of 4)

Extended Description Module

IEFVHA is the converter GET routine that reads JCL
statements from the JCL data set or in-stream procedures
spooled by the job entry subsystem and/or from the
procedure library. |EFVHA receives control from the
converter initialization routine, IEFVH1.

1 IEFVHA issuesa GET macro instruction for a statement |EFVHA
from the JCL data set or the procedure library according

to indicators in the converter work area. The statement

is placed in an input buffer.

Whenever |EFVHA encounters an end-of-file condition,

it moves a NULL statement into the input buffer.. In any

case, it branches to |EFVHC, the comment or continua-

tion validation routine.

2 IEFVHC determines whether a valid comment or IEFVHC
continuation is indicated on the JCL statement in the

input buffer.

If IEFVHC expects a continuation of the statement or if

it receives a comment, it passes control to a print routine

in IEFVHEB. (See Step8.)

If IEFVHC does not expect.a continuation, it passes
control to {EFVHCB, the verb identification routine.

3 IEFVHCB checks the JCL statement for a valid verb. IEFVHCB
4 It updates the statement parameter list based on its IEFVHCB
findings.

Label

(L°¢ %sva[oY ZSA) € sumjoA Arexqry oS0y weisAS ZSA/SO STTE

Diagram 12-2. Converter: Identifying Verbs on JCL Statements (Part 3 of 4)

Input

Register 12 Overrides ldentified

| x/

[x/

Converter Work Area

Merge JCL statements from
JCL data set and from the
procedure library.

1/

PROCLIB

JCL Data
Set

Register 12

Perform checkpoint/restart
processing.

Converter Work Area

SYSCHK
processing must
be done

Register 9

FI

SYSCHKDD |

7 Pass control to appropriate
routine.

Register 9

; lnput Buffer

JCL Statement |

List JCL statements.

Perform SMF processing, if
required.

Branch to appropriate routine.

To IEFVHA or IEFVFA

7 uoneg

677-€ uoneradQ jo poyrop

Diagram 12-2. Converter: Identifying Verbs on JCL Statements (Part 4 of 4)

Extended Description Module Label

5 I|EFVHCB merges JCL. statements from the JCL data set |EFVHCB

and the procedure library as follows:

When it encounters a procstepname.ddname in a DD
statement from the JCL data set, it sets an indicator in its
parameter list and continues normal processing. Each time
IEFVHCB again receives control to examine a DD statement
from the procedure library, it compares the procstepname
from the JCL data set to the one from the library. If it
finds a match, it uses the override information from the

- statement in the JCL data set to process the statement from

the procedure library.

If IEFVHCB does not find a match before it encounters the
next EXEC statement from the JCL data set, it simply adds
the DD statement with the override information to the
other DD statements for the previous step.

6 Whenever IEFVHCB recognizesa RESTART keyword IEFVHCB
parameter on a JCL statement and has previously found

a SYSCHK DD statement, it sets an indicator in the converter

work area before it passes control to {EFVHEB.

IEFVHEB (see Step 8) continues processing JOB, EXEC, and

DD statements.

IEFVHEB

E xtended Description Module

7 ¥ IEFVHCB has identified a NULL verb on a statement,
it passes control to {EFVHL.

If it has identified a PROC statement, it branches to
IEFVINA,

If it has not been able to identify the verb, it assumes the
verb is a command and passes control to [EFVHM, the
command verb validation routine. IEFVHM uses the print
routine in IEFVHEB to print the command statement.
(See Step 8.)

IEFVHM

8 When the print routine in 1EFVHEB has received IEFVHEB
control from IEFVHC or IEFVHM, it moves the JCL

statement passed to it into an output buffer and branches to

IEFVGM, the converter/interpreter message module.

1EFVGM puts the statement into the list data set. The list

data set contains all the JCL statements that must be

printed on an output listing.

When |EF VHEB has received control from IEFVHCB, it
performs pre-scan processing as well printing the JCL
statement.

9 |If necessary, IEFVHEB branches to an SMF user exit {EFVHEB

routine,

10 When a comment has been completely processed, and IEFVHEB
there are more statements to be processed, |EFVHEB
returns control to |EFVHC which returns to the GET

routine, IEFVHA, for the next statement.

Otherwise, IEFVHEB branches to IEFVFA, the post-scan
routine for further processing.

Label

(L€ 958919y ZSA) € swnjoA Arerqi 91807 waisAS ZSA/SO 0€T-€

Diagram 12-3. Cenverter: Processing Commands in the Input Stream (IEFVHM) (Part 1 of 2)

From |IEFVHCB, the Verb

Identification routine

Input

Regisfer 5

Process

JCL Verb

e

Converter
Work Area

/J\’\

Register 12

Command Compare Table
{in IEFVHM)

1 Validate the command by checking

it against the command compare
table.

2 If the command is valid, issue

SVC 34, the command processor
supervisor call.

To IEFVHA, the converter
GET routine.

1€2-¢ uoneIadQ JO POYISW :Z UOfIdeg

Diagram 12-3. Converter: Processing Commands in the Input Stream (IEFVHM) (Part 2 of 2)

Extended Description Module Label

When the verb identification routine, IEFVHCB, is unable
to recognize a verb on a JCL statement, it assumes the

verb is a command and passes control to the command verb
validation routine, IEFVHM.

1 IEFVHM verifies that the command is one that is IEFVHM
allowed in the input stream by checking it against a
command compare table.

2 |EFVHM checks a disposition associated with the IEFVHM
command in the interpreter entrance list (NEL).

If the disposition is 0, IEFVHM causes the command to be
executed by issuing an SVC 34.

If the disposition is 1, |IEFVHM writes the command into
the list data set by branching to IEFVGM, then it displays
the command to the operator by branching to the operator
message module, |EFVHR,; finally, |EFVHM executes the
command by issuing SVC 34.

If the disposition is 2, | EFVHM displays the command to
the operator and requests his authorization to execute the
command, When the operator replies in the affirmative,
1EFVHM executes the command by issuing SVC 34.

If the disposition is 3, IEFVHM ignores the command.

In any case, |EFVHM returns control to the GET routine,
IEFVHA.

(L€ asealoY ZSA) € dwInjop Arexqr] 91307 wAISAS ZSA/SO TET€

Diagram 12-4. Converter: Processing In-stream and Cataloged Procedures (IEFVINA) (Part 1 of 2)

Input

Register 9

From IEFVHCB, the Verb
Identification routine

1

JCL statement

l

in-stream Procedure
Parm. List

Procedure name

- ;

} Converter Work Area

fﬂ—’\

In-stream
Work Area

In-stream
procedure
directory

—> 4

. Process

Output

In-stream

For the first in-stream procedure

statement in a job, build a QMPA.

> Work Area
QMPA

Converter Work Area

Check for errors on in-stream

*> Indicator that

procedures.

job failed

l Error Message]

Search the in-stream procedure
directory for the specified procedure.

> SVA of first

record in procedure

L J

In SWA:

In-stream

If the specified procedure is not

found, build a directory entry for it.

To IEFVHA

> procedure directory

New
procedure

entry

€€7-€ uonerdd(Jo POYII g UOHAS

Diagram 12-4. Converter: Processing In-stream and Cataloged Procedures (IEFVINA) (Part 2 of 2)

Extended Description

IEFVINA is the controf and GET routine for in-stream
procedures. |t receives control from |EFVHCB, the verb
identification routine.

1 When IEFVHCB encounters a PROC statement that is

the first statement in an in-stream procedure, it
obtains storage for a queue management parameter area
{(QMPA) and an in-stream procedure work area; then it
branches to IEFVINA.

2 When IEFVINA receives control, it in turn branches

to IEFVINE, the in-stream procedure syntax chéck
routine. This routine checks the validity of the label and
operation fields in the PROC statement and passes a
return code to IEFVINA.

If the return code is 0, 12, or 16, the PROC statement
contains syntax errors and 1EFVINA sets a job-fail
indicator in the JCT and uses the message module,
IEFVGM, to issue an appropriate error message.

If the return code is 8, there are no syntax errors in the
PROC statement, and |IEFVINA initializes the QMPA

and checks the converter work area to determine if the
procedure being processed is the first in-stream procedure
in this job. If it is, control passes to |EFVINC, the in-
stream procedure directory build routine. If it is not, the
module builds a parameter list and branches to IEFVINB,
the in-stream procedure directory search routine, instead.

Module

IEFVHCB

IEFVINA
IEFVINE

IEFVINA
IEFVCM

IEFVINA

IEFVINC

IEFVINB

Label

Extended Description Module Label

3 IEFVINB scans the entries in the in-stream procedure IEFVINB
directory searching for the procedure name specified in

the PROC statement. When the procedure name is found,

this routine obtains the SWA virtual address of the first record

containing the procedure and places it in the return code

field of its parameter list. If the procedure is not found, the

routine sets a return code of zero in the parameter list before

branching to IEFVINC, which will build a procedure directory IEFVINC

entry.

4 IEFVINC enters the procedure name in the directory

and invokes the SWA manager interface routine, IEFVHQ,
to assign the entry to SWA. IEFVINC then takes the SWA
address of the entry returned from |IEFVHQ and places it
in the directory next to the procedure name. IEFVINC
returns to |IEFVINA; IEFVINA then branches to IEFVHA
for the next statement in the procedure.

IEFVINC

(L€ 3sea[oy ZSA) € swnjop Areiqr] 218077 woisAS ZSA/SO $ET-€

Diagram 12-5. Converter: Processing Symbolic Parameters (IEFVFA and IEFVFB) (Part 1 of 2)

From IEFVHEB,
the converter

Input.

Register 9 i i Register 2

" Input Buffer 1 Identify symbolic parameters.
I JCL statement ‘ . ; Error message

Symbolic parameter table entry

Address of this entry - For an EXEC PROC statement,
i enter the values assigned to the
symbolic parameter into the
symbolic parameter table.

Address of next entry

Entry Parameter
length length

Symbolic Parameter

Value
length

Make required substitutions for
symbolic parameters. | Intermediate statement
buffers

L

Register 9

Continue scan processing in
Input Buffer : 4 IEFVFA. P 9

JCL statement

To |IEFVHF, the post-scan
and termination routine

T uonoeg

SE€T-€ uoneradQ Jo poylN

Diagram 12-5. Converter: Processing Symbolic Parameters (IEFVFA and IEFVFB) (Part2of 2) .

Extended Description Module Label

IEFVFA is the converter scan routine. It scans each JCL
statement for syntax errors and, if necessary, uses IEFVGM,
the message module, to issue an appropriate message.

IEFVFA performs three other major functions:

1. Detecting symbolic parameters.
2. Converting JCL statements to internal text.
3. Default processing.

This method-of-operation diagram describes the detection
and processing of symbolic parameters. The other two
functions are described in the two method-of-operation

" diagrams following this one.

1 IEFVFA may encounter symbolic parameters in EXEC IEFVFA
statements that call procedures, in input stream

statements that override procedure statements, or in

statements within a procedure.

A symbolic parameter that appears in an EXEC state-

ment that calls a procedure has the format of an EXEC
statement keyword parameter. |EFVFA searches a scan
dictionary for each JCL statement it processes. |If it does

not find a match for an EXEC statement keyword, it assumes
that the keyword and its associated parameter are a

symbolic parameter and its assigned value.

A symbolic parameter that appears in an input stream
statement that overrides a procedure statement, or in a
statement in a procedure, is immediately preceded by
an ampersand (&).

Whenever IEFVFA detects a symbolic parameter, it
branches to the symbolic parameter processor, { EFVFB.

Extended Description - - Module Label

2 Foran EXECPROC statement, IEFVFB verifies that IEFVFB
the EXEC statement calls a procedure, then determines

whether a symbolic parameter table has been initialized for

this procedure.

If not, the routine initializes one, and creates an entry
containing the symbolic parameter and its value.

If a symbolic parameter table has been initialized, IEFVFB
searches it for an entry corresponding to the current
symbolic parameter. If no such entry exists, the routine
creates one; if an entry exists, the routine ignores the
current assigned value.

3 For symbolic parameters in overriding statements or in IEFVFB
a procedure, |EF VFB searches the symbolic parameter

table for an entry that matches the current symbolic

parameter. Ifit finds it, it substitutes the value assigned to

the parameter in the table in an intermediate statement

buffer.

After making the substitution, IEFVFB invokes the message
module, IEFVGM, to issue a substitution message.

4 In any case, IEFVFB returns to IEFVFA, which continues
scanning the JCL parameters in the intermediate
statement buffer.

When |EFVFA has completed all processing, it branches to
|IEFVHF, the post-scan and termination routine.

(L€ 3sea[oY ZSA) € swmnjop Areiqry 21807 WoishS ZSA/SO 9ET-€

Diagram 12-6. Converter: Converting Statements to Internal Text (IEFVFA) (Part 1 of 4)

Input

From IEFVHEB, the
converter pre-scan routine

Process Output

Register 9

Input Buffer

L JCL statement Register 2

1 Identify keyword parameters
in the scan dictionary and
check for mutual exclusivity.

Register 10 Error message

JCL statement
parameter list

Scan dictionary entry

Length of this entry

Keyword
Internal text string
Keyword code
No. of Length of

Mutually exclusive code 7 A ' : Keyword | i sitional | parms. and

Overridden code | code parms. subparms.

—

SRR ~ —
e , Positional |\ of Length of

rm.
2 Convert keyword and f::. 1. subparms. subparms,
parameters by entering them !
in internal text string.

Register 9

Input Buffer : ' » Subparm no. 1
L JCL statement '

Register 10

JCL statement
parameter list

uonoag

.
.

LET-€ uoneiadg jo poype

Diagram 12-6. Converter: Converting Statements to Internal Text IEFVFA) (Part 2 of 4)

Extended Description

IEFVFA is the converter scan routine. It scans each JCL
statement for syntax errors and, if necessary, uses IEFVGM,
the message module, to issue an appropriate message.

IEFVFA performs three other major functions:

1. Detecting symbolic parameters.
2. Converting JCL statements to internal text.
3. Default processing.

This method-of-operation diagram describes the conversion
of JCL statements to internal text. The other two
functions are described in two method-of-operation
diagrams, the one preceding and the one following this one.

1 As|EFVFA examines a statement, it looks up each

keyword in its own scan dictionary. For each valid
keyword, the scan dictionary entry corresponding to it
contains a one-byte binary code for that keyword and a
code for each keyword mutually exclusive with it. IEFVFA
sets flags in the duplicate table in the converter work area
for the codes corresponding to the mutually exclusive
codes. Every time another keyword is encountered, its
flag is checked in the duplicate table. If the flag is set,
tEFVFA branches to IEFVGM to issue a mutually
exclusive message,.

Module

IEFVFA

Label

Extended Description

2 |EFVFA converts keywords and parameters into
internal text. Internal text contains the following
information:

® The keyword code.

® The number of parameters for the keyword.
e The length of the first parameter.

o The parameter in EBCDIC.

o The length of the next parameter, if any.

@ The next parameter, if any, in EBCDIC.

If the keyword is comprised of parameters and subparameters,
internal text contains this information:

o The keyword code.

® The number of parameters for the keyword.
® The length of the first parameter.

® The parameter in EBCDIC.

@ The number of subparameters.

o The length of the first subparameter.

e The subparameter in EBCDIC.

@ The length of the second subparameter.

® The second subparameter in EBCDIC.

The information in internal text varies with the number of
parameters and subparameters.

Module

IEFVFA

Label

(L’€ e3oy TSA) € dwnjop Arexqr o180] wapsAS ZSA/SO 8E€T-€

Diagram 12-6. Converter: Converting Statements to Internal Text (IEFVFA) (Part 3 of 4)

Put internal text string to
text data set.

Text-Data Set

invoke the job entry subsystem.

Converter work area:

No continuation
indicated

5 When the entire job has been
converted to internal text,
invoke converter termination.

To IEFVHF, the post-scan and
termination routine,

T uonpdeg

6€7-€ uoneisd(Jo poyrep

Diagram 12-6. Converter: Converting Statements to Internal Text (IEFVFA) (Part 4 of 4)

Extended Description

3 IEFVFA setsa flag in the converter work area to
indicate that the current statement has been converted
to internal text. - Later on, IEFVHCB witll check that flag
and write the converted statement into the text data set
before beginning pre-scan processing of the next statement.

4 |EFVFA contains an interface to the job entry

- subsystem (JES). JES makes any required .changes in
the internal text string for SYSIN and SYSOUT processing
and then returns control to IEFVFA.

5 When IEFVFA has completed all processing, it branches
to |EFVHF, the post-scan and termination routine.

Module Label
IEFVFA

IEFVHCB

IEFVFA

IEFVFA

(L°€ asea[oY TSA) € wnjop Arexqey o180 WoISAS ZSA/SO OVZ-€

Diagram 12-7. Converter: Entering Defaults into Internal Text (IEFVFA) (Part 1 of 2)

From IEFVHEB,
the converter
Input pre-scan routine Process Output

Register 9

]

JCL Statement

1 Check JCL statement for
"omitted’’ parameters with
default values.

In IEFVFA:
Skeletal text

|

REGION ———-

Text Data
Set

2 Add prepared skeletal text
(keywords) to internal text.

MSGCLASS "—~———
B)

NEL

To IEFVHF, the post-scan
and termination routine

Default
parameters
-~

d ~

(49

)N
(e

7 uondss

.
.

I47-€ uonesadQ Jo poylol

Diagram 12-7. Converter: Entering Defaults into Internal Text (IEFVFA) (Part 2 of 2)

Extended Description

IEFVFA is the converter scan routine. It scans each JCL
statement for syntax errors and, if necessary, uses IEFVGM,
the message module, to issue an appropriate message.

IEFVFA performs three other major functions:

1. Detecting symbolic parameters.
2. Converting JCL statements to internal text.
3. Default processing.

This method-of-operation diagram describes default
processing. The other two functions are described in the
two method-of-operation diagrams immediately
preceding this one.

1 IEFVFA checks each JCL statement in the input buffer
for omitted parameters that have default values assigned
to them.

2 !|tappends skeletal text that represents the omitted
keyword parameters to the JCL statement that has
already been converted into internal text.

In addition to the keyword parameters, IEFVFA also places
their associated default values obtained from a list in the
NEL into the JCL statement. This completes default
processing.

When |EFVFA has completed all processing, it branches to
IEFVHF, the post-scan and termination routine.

Module Label

IEFVFA

IEFVFA

(L€ 958919y ZSA) € ownjoA Arexqiy o180 WsAS ZSA/SO THT€

Diagram 12-8. Converter: Termination (IEFVHF) (Part 1 of 2)

From modules (IEFVHL) or (IEFVFA) within the
Input diagram ldentifying Verbs on JCL Statemepu Process (o) utput

Register 12 Register 2

1 When termination is due to an
error, issue jobfail message.

Converter Work Area

[Error Message I »

Perform SMF. processing if
required.

Converter Work Area

Free tables and work areas
used by the converter.

Local
Work Areas

Deactivate the converter ESTAE
environment.

Register 1

Reset register 1 to point to NEL
and return to original caller

(job entry subsystem or master
subsystem).

. To job entry subsystem or
the master subsystem

€YT-€ UONRIAAQ JO POYRI T UOHIRS

Diagram 12-8. Converter: Termination (IEFVHF) (Part 2 of 2)

Extended Description

IEFVHF is the converter post-scan and termination routine;
it receives control from 1EF VHL when an end-of-file
condition occurs on a procedure or on the JCL data set; it
also receives control from IEFVFA when scan processing

of a JCL statement has been completed.

1 IEFVHF checks an indicator in the converter work area

to see if a warning message has been issued during
converter processing. If one has, this routine uses the
operator message module, |EF VHR, to write a message to
the operator.

2 f SMF processing is required, IEF VHF branches to an
SMF user exit routine.

3 When control returns, |EFVHF frees the storage
occupied by the JMR, local work areas, and the converter
work area.

4 1EFVHF deactivates the ESTAE environment over the
converter.

B if an end-offile condition exists and converter processing
is to end, |IEFVHF restores the pointer to the NEL in
register 1 and returns to the job entry subsystem.

{EFVHA checks an indicator in the converter work area to
see if more JCL statements must be read. If so, it branches
to IEFVHA, the GET routine, for the next statement.

Module

IEFVHF

IEFVHF

IEFVHF

IEFVHF

IEFVHF

Label

IEFVHF

|IEFVHF

|EFVHF

|IEFVHF

IEFVHF

N

3-244 0S/VS2 System Logic Library Volume 3 (VS2 Release 3.7)

SYZ-€ uoneadQ Jo POyl 7 UONISS

g S~

From SWA create interface
(IEFIB600) via LINK or JES3
Process

NEL

List of
options

Initialize the interpreter. (See
M.O. Diagram — Interpreter:
Initialization (IEFNB903).)

SYS1.LOGREC
Data Set

Analyze parameter values and issue
error messages, if necessary.

(See M.O Diagram - Interpreter:
Analyzing Parameter Values).

These control blocks and
tables reside in SWA

JFCBE
JFCBX
JFCB
SIoT
SCT

JCT

JOB statement Create required tables and enter

parameter values into tables.
(See M.O Diagram — Interpreter:
Creating and Chaining Tables
(IEFVGT).)

EXEC statement

DD statement Write tables into scheduler work

area (SWA). (See M.O. Diagram —
Interpreter: Writing Tables into
SWA (IEFVHH).)

Terminate interpreter processing.
(See M.O. Diagram — Interpreter:
Termination (IEFVHN).)

Return to SWA Create Interface
(IEF1B600) or JES3

Figure 2-17b. Interpreter Visual Contents

0I8°€0°ISA

O18°€0°ZSA) € 2wnjoA Arexqry o80T WasAS ZSA/SO IPT€

Diagram 12-9. Interpreter: Initialization (IEFNB903) (Part 1 of 2)

Input

Register 1

l l\. NEL

From IEFIB600, the SWA
create interface routine
or from JES3

Process

1 Obtain storage for and initialize the

following:

e Interpreter work area.
e /O buffer

e JMR

e DSENQ table.

2 Establish an ESTAE environment for

the interpreter.

3 [f recovery is in progress, load the

journal merge routine,

To |EFVHE, the interpreter
GET and router

n rprr '
Register 12 Work Area

%

1/0 Buffer

—/\.-\

/‘N—/__
DSENQ Table

L

Interpreter ESTAE
Parameter List

Journal Merge
Routine '

Updated
Job
Journal

T uonxng

.

LyT€ uonexdQ Jo poyN

Diagram 129. Interpreter: Initialization (IEFNB903) (Part 2 of 2)
Extended Description Module Label

IEFNBI03 is the interpreter initialization routine; it receives
control form |EFIB600, the SWA create interface routine.

1 IEFNB903 obtains storage for and initializes: - - IEFNB903
® The interpreter work area.

@ The interpreter’s 1/0 buffer.

o The job management record (JMR),

@ Some local work areas.

® A data set ENQUEUE (DSENQ) table.

® A message buffer.

This module sets a pointer to the interpreter work area in
register 12 for the duration of interpreter processing.

2 IEFNB903 builds a parameter list for ESTAE processing |EFNB903
and then issues an ESTAE macro instruction to enable
the interpreter to recover from an error.

3 IEFNB903 checks an indicator in the NEL to deter- IEFNB903
mine if a recovery attempt is currently in progress. If

it is, this module looks for the address of the journal

merge interface routine in the NEL exit list. If it finds the

address, it loads the routine and branches to it for journal

merge processing. The journal merge interface routine

returns to IEFNB903.

In any case, when initialization processing is complete,
IEFNB903 branches to IEFVHE, the interpreter
GET and router routine.

(L€ 3e3[0Y TSA) € ownjoA ATeiqr] oiF0T WAISAS ZSA/SO 8YT-€

Diagram 12-10. Interpreter: Analyzing Parameter Values (Part 1 of 4)

From IEFNB903, the interpreter
initialization routine
Process

Input

Register 9

Internal text buffer 1 Route text string for the JCL
statement to appropriate
processor.

Z uonosg

6vT-€ uonerndQ jo poyro |

Diagram 12-10. Interpreter: Analyzing Parameter Values (Part 2 of 4)
Extended Description Module Label

Each of the JCL statement processors receives control from
the interpreter GET and router routine, IEFVHE. The
statement processors, IEFVJA, IEFVEA, and |EFVDA,
first perform initialization functions, and then branch to
IEFVGK, the GET parameter service routine. IEFVGK
returns control to a keyword routine in the appropriate
statement processor.

The keyword routine branches to IEFVGT, the test and
store service routine for parameter processing. |EFVGT
returns to the keyword routine in the statement
processor.

IEFVJA is the JOB statement processor. |t initializes a IEFVJA
job control table (JCT) and the job account control table
(ACT) for a job. It also checks the validity of the JOB
statement keywords, and in some cases, their values.
|EFVEA processes EXEC statements. |t creates a step IEFVEA
control table (SCT) for each EXEC statement, SCT
extensions for parameter information, and any required
override or ‘“‘refer-back’’ tables. |IEFVEA also chains the
step input/output tables (SIOTs) and the job file control
blocks (JFCBs) for a JOBLIB or JOBCAT DD when they
have been specified, and the SCTs and SIOTs for data set
concatenations,

IEFVDA is the DD statement processor; it creates a IEFVDA
DSENQ table entry for all data sets explicitly named by

the DSNAME parameter, It then marks each data set entry

as exclusive or shared according to the user’s specifications.

IEFVDA also creates SIOTs and JFCBs for a DD statement,

JFCB extensions (JFCBX) for “VOL=SER" parameters, and

JFCB extension (JFCBE) for JCL parameters (CHARS,

BURST, MODIFY, FLASH) related to the 3800 printer.

Extended Description

IEFVHE is the interpreter GET and router routine; it
receives controf from IEFNB903, the interpreter
initialization routine.

1 |EFVHE gets each JCL statement from the internal text

data set, identifies its verb as a JOB, EXEC, or DD, and
branches to the appropriate statement processor: |EFVJA
for JOB, IEFVEA for EXEC, or IEFVDA for DD. These
three processor routines are similar in construction; each
one consists of a single control section containing a header
routine, a keyword routine for each keyword in the
statement, a branch table of entries to keyword routines, a
parameter descriptor table for each keyword, and a clean-up
routine.

When a statement processor routine is first entered, the
header routine performs initializing functions which include
clearing the storage area occupied by the tables to be
created by the routine (except for fields filled in by
previously executed routines) and initializing the local work
area. It then uses a BALR instruction to pass control to
IEFVGK, the GET parameter routine.

Modute

IEFVHE

IEFVJA
IEFVEA
IEFVDA

Label

018°€0°CSA

(018°€0°ZSA) € ownjoA Arexqry 918077 WoIsAS ZSA/SO 0ST-E

Diagram 12-10. Interpreter: Analyzing Parameter Values (Part 3 of 4)

Input Process

Interpreter
work area

Register 2

2 Check parameter format and
determine address of appropriate
keyword routine.

| Error message

Keyword branch table entry

Maximum number of
parameters

Register 2

Length of
positional
parameter

Subparameter check

Address of keyword
routine '

Register 3

. Parameter
To appropriate statement length byte
processor {(within modules

IEFVDA, IEFVEA, or Register 4

1EFVJA) | § PoTentry

Address of parameter
descriptor table
entry

7 uonoag

.
.

1SZ-€ uonesxadQ jo poye|

Diagram 12-10. Interpreter: Analyzing Parameter Values (Part 4 of 4)

Extended Description

2 The GET parameter routine is used by the JCL
statement processor routines to find the next

parameter in a statement, perform basic error checking of

that parameter, and find and pass control to the appropriate

keyword routine with pointers to the parameter and to

the appropriate parameter descriptor table (PDT).

When IEFVGK is initially entered, the only non-zero
portion of the interpreter work area is the address of the
keyword branch table and the address of the processor
cleanup routine. The keyword branch table is a table of
offsets that allows the GET parameter routine to determine
the actual main storage address of the appropriate
keyword routine and parameter descriptor table entry.
Additional fields in the table allow basic error checking to
be done.

When IEFVGK is entered to find the first parameter in a
new statement, it extracts the base key (the key number
that represents JOB, EXEC, or DD) from the internal text
buffer and stores it. There are three sets of key numbers:
one set for the JOB statement, one set for the EXEC
statement, and one set for the DD statement. The base key,
which corresponds to the verb in the statement, is the
highest number in the set. Itis the offset of the last entry
in the table from the first entry. Whenever the routine is
entered, it subtracts the current key from the base key,
multiplies the result by 6 (the size of a keyword branch
table entry), and adds the product to the machine address
of the first entry in the table. The result is the machine
address of the keyword branch table entry corresponding
to the current keyword.

Module

IEFVGK

IEFVGK

Label

Extended Description Module

IEFVGK first finds the proper keyword branch table entry, IEFVGK
then determines whether the maximum number of parameters
for the keyword has been exceeded, and stores the
subparameter check byte in its work area. Each bit in the
subparameter check byte corresponds to a positional
parameter; if the bit is on, it means that the corresponding
parameter. may have subparameters associated with it. For
example, if the first positional parameter associated with a
keyword were the only one that could consist of a
subparameter list, the high-order bit in the field would be on.
if the seventh and eighth positional parameters could have
subparameters, the two low-order bits would be on.

The two offset fields are used to compute the actual main
storage address of the appropriate keyword routine and of the
appropriate parameter descriptor table entry; the positional
parameter length, the parameter length byte address (in
internal text) and the parameter descriptor table entry
address are placed in general registers, and control is passed
to the keyword routine in the appropriate statement
processor.

On subsequent entries to IEFVGK, the pointers are

updated so that they-point to the next operand (positional
parameter or subparameter), and control is returned to the
keyword routine at the instruction after the branch to
IEFVGK. When the next keyword is encountered, however,
the branch table is again used, and control is passed to a

new keyword routine in the appropriate statement processor.

Label

(L€ B3y ZSA) € swnjoA Arexqry 91807 WaISAS ZSA/SO TST€

Diagram 12-11. Interpreter: Creating and Chaining Tables (IEFVGT) (Part 1 0f 4)
From IEFVGK, the GET

Input parameter routine Process

s

Register 9

“"1' > 1 Perform keyword processing
by invoking the test and store
routine.

7 uondes

€67-€¢ uoneiadQ jo poyrN

Diagram 12-11. Interpreter: Creating and Chaining Tables (IEFVGT) (Part 2 of 4)

Extended Description

1 The test and store routine, IEFVGT, is a service

routine invoked by the statement processor keyword
routine to determine the processing required for a
parameter (as described in the parameter descriptor
table), and to perform that processing.

The parameter descriptor table included in each JCL
statement processor describes the processing to be done
for each parameter that may be found in the statement.
There is an entry. for each keyword, which begins with
a field containing the length of the keyword entry. The
keyword entry is made up of positional parameter
entries describing the processing to be done on the
positional parameters associated with the keyword.

Each parameter entry contains two kinds of information:
length and error checking information is followed by
oontrol information, which describes the functions to

be performed on the parameter, and the tables

{created above) and displacements in which the result is

. to be stored.

The first byte in each parameter entry (the parameter
descriptor table length field) contains the length of the
entry; the first half of the second byte (the control
field length field) contains the length of the control
information, The format of the remainder of the
entry depends on the type of parameter and on the
functions to be performed.

Module
IEFVGT

Label

E xtended Description Module

There are four types of parameters:

® A required -format parameter is a known string of
characters. The first positional parameter following the
DISP= keyword, for example, must be either “OLD",
“NEW", “MOD"”, or ““SHR". " in this case, since there
are four possibilities, there are four parts to the entry;
the test and store routine compares the parameter to the
constant in each of the four parts, and performs the
function specified in the contro! information field of the
part in which it obtained an equal compare.

@ A variable-format parameter may be any string of
characters up to a known maximum length.

@ A no-action parameter specifies a default option.

@ An unconditional-action parameter indicates that the
presence of the parameter requires that the same functions
be performed regardless of the form or content of the
parameter.

Label

(L°€ as8a[OY TSA) € ownjop Arexqyy 91507 WaIsAS ZSA/SO ¥ST-€

Diagram 12-11. Interpreter: Creating and Chaining Tables (IEFVGT) (Part 3 of 4)

Input

WA

PDT entry

R

Parameter
PDT length

Control
Field
length

|
1-Variable

Control information

Process

2 Place values in appropriate tables.

To |IEFVHE, the interpreter
GET and router routine

Output

//JoB

JCT

‘“Refer-back’’
tables

Override
tables

S e P

DSENQ table

Z uonag

.
M

$ST-€ uoperad(Jo poye

~F

Diagram 12-11. Interpreter: Creating and Chaining Tables (IEFVGT) (Part 4 of 4)

Extended Description Module Label

2 The control information portion of a parameter PDT IEFVGT
entry defines the operations to be performed when the

parameter is processed, specifies the location in which the

results are to be stored, and may contain data to be used in

the operation, The control information portion may be up

to 15 bytes in length; it consists of the following fields:

o Function: The first four bits of a control information
field contain a number from 0 to 7, which specifies one
of the following operations:

® OR (Code 0): A fogical OR operation is performed,
using the bit pattern field in the contro! information
portion of the entry, against the bit pattern at the
location specified by the table and offset fields.

o CVBT1 (Code 1): A convert to binary operation is
performed and a maximum value check is made. The
converted information is stored (right justified) in the
one-byte field specified by the tabie and offset fields,
and compared against the maximum value, which is
right-justified in the third byte of the control
information part of this entry.

e CVB2 (Code 2): This operation is similar to CVB1,
except that the result is right-justified in a two-byte
field, and the maximum value is found right-justified
in the third and fourth byte of the control
information portion of the entry.

o CVB3 (Code 3): This operation is similar to the CVB1
and CVB2 operations, except that the result is right-
justified in a three-byte field, and the maximum value
is found in the third, fourth, and fifth byte of the
control information portion of the entry,

e AND (Code 4): A logical AND operation is performed,
using the bit pattern field in the control information
portion of the entry against the bit pattern at the
location specified by the table and offset fields.

e MVC (Code 5): A move characters operation is
performed, using the parameter length specification
in the internal text buffer. The parameter is moved
to the location specified in the table and offset fields
in the entry, .

@ First Character Alpha Check and MVC (Code 6):
This function is similar to the MVC function, except
that before the move is performed the first character
of the parameter is inspected to insure that it is
alphabetic.

E xtended Description Module Label

e Alpha/Numeric Check and MVC (Code 7): This function 1EFVGT
is similar to the MVC function, except that before the
move is performed a character (a one character parameter)
in the text buffer is inspected to determine whether it
is alphabetic or numeric.

o Table: The second four bits of the control information
portion of a parameter PDT entry contains a number
between 0 and 15 that specifies the table in which the result
of the operation is to be stored.

Code Number Table
[v] Local work area
1 Job control table (JCT)
2 Step control table (SCT)
3 Job account control table (ACT)
4 Step input/output table {SIOT)
5 Job file control block (JFCB)
6 JFCB extension (JFCBX)
7 Reserved
8 Data set name table (DSNT)
9 Refer-back Dictionary 1
10 Refer-back Dictionary 2
11 Procedure override table
12 Step account control table (ACT)
13 Reserved
14 Reserved
15 Interpreter work area

e Offset: The second byte of the control information of an
entry contains the offset, from the beginning of the table,
of the field in which the results of the operation are to be
stored.

e Bit Pattern/Maximum Number: The third through fifth
bytes of the control information portion of the entry are
used for those operations that require data for logical or
comparison functions. If the operation is AND or OR, the
third byte contains the bit pattern. |If the operation is a
CVB operation, the third, fourth and fifth bytes contain
the binary representation of the maximum value allowed
for that parameter.

When IEFVGT has performed the functions described in the
PDT, it returns to the keyword routine in the statement
processor from which it received control.

Each statement processor determines that parameter processing
for a JCL statement is complete. It then performs
miscellaneous clean-up functions before returning to its

caller, IEFVHE.

(b08°€0°TSA) € dwnjop Areiqr NS0T welIsAS ZSA/SO 9ST-€

Diagram 12-12. Interpreter: Writing Tables into SWA (IEFVHH) (Part 1 of 2)

From |EFVHE, the interpreter
GET and router routine

Input : Process Output

Register 12

E___Tj WA

1 Perform miscellaneous clean-up
functions

Updated JMR

2 Perform SMF processing as
required.

3 Write the JCT, JCTX, and SCTs
for this job into SWA.

See diagram of Analyzing Parameter Values (IEFVHE)
or
Interpreter Termination (IEFVHN)

Y08°€0°TSA

§Sz-¢ uonendQ Jo poylepy g uondeg

Diagram 12-11. Interpreter: Creating and Chaining Tables (IEFVGT) (Part 4 of 4)

Extended Description

2 The control information portion of a parameter PDT

entry defines the operations to be performed when the
parameter is processed, specifies the location in which the
results are to be stored, and may contain data to be used in
the operation. The control information portion may be up
to 15 bytes in length; it consists of the following fields:

e Function: The first four bits of a control information
field contain a number from 0 to 7, which specifies one
of the following operations:

® OR (Code 0): A logical OR operation is performed,
using the bit pattern field in the control information
portion of the entry, against the bit pattern at the
location specified by the table and offset fields.

e CVB1 (Code 1): A convert to binary operation is
performed and a8 maximum value check is made. The
converted information is stored (right justified} in the
one-byte field specified by the table and offset fields,
and compared against the maximum value, which is
right-justified in the third byte of the control
information part of this entry.

e CVB2 (Code 2): This operation is similar to CVB1,
except that the result is right-justified in a two-byte
field, and the maximum value is found right-justified
in the third and fourth byte of the control
information portion of the entry.

e CVB3 (Code 3): This operation is similar to the CVB1
and CVB2 operations, except that the result is right-
justified in a three-byte field, and the maximum value
is found in the third, fourth, and fifth byte of the
control information portion of the entry.

® AND (Code 4): A logical AND operation is performed,
using the bit pattern field in the control information
portion of the entry against the bit pattern at the
location specified by the table and offset fields.

® MVC (Code 5): A move characters operation is
performed, using the parameter length specification
in the internal text buffer. The parameter is moved
to the location specified in the table and offset fields
in the entry,

e First Character Alpha Check and MVC (Code 6):
This function is similar to the MVC function, except
that before the move is performed the first character
of the parameter is inspected to insure that it is
alphabetic.

Module
IEFVGT

Label

E xtended Description Module
e Alpha/Numeric Check and MVC {(Code 7): This function |EFVGT

is similar to the MV C function, except that before the
move is performed a character (a one character parameter)
in the text buffer is inspected to determine whether it

is alphabetic or numeric.

@ Table: The second four bits of the control information
portion of a parameter PDT entry contains a number
between 0 and 15 that specifies the table in which the result
of the operation is to be stored.

Code Number Table
0 Local work area
Job control table (JCT)
2 Step control table (SCT)
3 Job account control table (ACT)
4 Step input/output table (SIOT)
5 Job file control block (JFCB)
6 JFCB extension (JFCBX)
7 Data set name table (DSNT)
8 Refer-back Dictionary 1
9 Refer-back Dictionary 2

10 Procedure override table

11 Step account control table (ACT)
12 JFCB extension for 3800 (JFCBE)
13 Reserved

14 Reserved

15 Interpreter work area

o Offset: The second byte of the control information of an
entry contains the offset, from the beginning of the table,
of the field in which the results of the operation are to be
stored.

e Bit Pattern/Maximum Number: The third through fifth
bytes of the control information portion of the entry are
used for those operations that require data for logical or
comparison functions. If the operation is AND or OR, the
third byte contains the bit pattern. If the operation is a
CVB operation, the third, fourth and fifth bytes contain
the binary representation of the maximum value allowed
for that parameter.

When |[EFVGT has performed the functions described in the
PDT, it returns to the keyword routine in the statement
processor from which it received control.

Each statement processor determines that parameter processing
for a JCL statement is complete. It then performs
miscellaneous clean-up functions before returning to its

caller, IEFVHE.

~_

Label

0I8°€0°TSA

(O18°€0°'ZSA) € oumjoA Areqry o180 wayshS ZSA/SO 95T

Diagram 12-12. Interpreter: Writing Tables into SWA (IEFVHH) (Part 1 of 2)

From |EFVHE, the interpreter
GET and router routine

Input Process

o VA 1 Perform miscellaneous clean-up | Updated JMR
A gcr functions.
A scT
4 JMR
2 Perform SMF processing as
L~ required.

3 Write the JCT and SCTs for this
job into SWA.

See diagram of Analyzing Parameter Values (|l EFVHE)
or
Interpreter Termination (IEFVHN)

LST-€ uonerad(Jo poylel :T uondag

Diagram 12-12. Interpreter: Writing Tables into SWA (IEFVHH) (Part 2 of 2)

E xtended Description

IEFVHH is called the ENQUEUE routine; it receives control
from the interpreter GET and router routine, IEFVHE.

1 1EFVHH ensures that all EXEC statement overrides
have been completed at procedure end-of-file.

2 |f SMF processing is required, IEFVHH branches to
a user routine, and when it is returned control, it

enters the time at which the interpreter stopped in the JMR.

3 Based on indicators it checks in the interpreter work
area, |EFVHH branches to the SWA manager interface

routine (IEFVHQ) to write the job and step tables into

SWA. If the SCT was written, IEFVHH branches to

IEFVHE to continue processing.

If the JCT and JCT X were written, IEFVHH branches to

IEFVHN, the interpreter termination routine,

Module

IEFVHH

IEFVHH

IEFVHH

Label

S~

08°€0°TSA

(F08°'€0°TSA) € duInjoA Arexqry o180 wosAg ZSA/SO 8ST-€

Input

Diagram 12-13. Interpreter: Termination (IEFVHN) (Part 1 of 2)

From IEFVHH, the interpreter
ENQUEUE routine
‘ Process

Register 12

IWA
1 Issue message informing operator
that the job was failed.

Input/Output Buffers

l

2 Freework areas and control
blocks used by the interpreter.

DSENQ Table

3 Perform SMF processing, if
required.

4 Deactivate the interpreter
ESTAE environment.

B Set return code and return to
original caller (SWA create
interface).

To SWA create interface
(IEF1B600)
or JES3

Updated JMR

Register 15

Return Code

657€ uopessdQ Jo POyl iz uondeg

Diagram 12-13. Interpreter: Termination (IEFVHN) (Part 2 of 2)
Extended Description) Module

IEFVHN is the interpreter termination routine; it receives |IEFVHN
control from IEFVHH.

1 If an error occurred during interpreter processing,
IEFVHN uses |IEFVHR the operator message module to
issue an error message. '

2 I|EFVHN frees the interpreter’s input/output buffers and
its local work area. |f the SWA manager routines were
loaded during interpreter processing, it deletes those.

3 IEFVHN checks to see if SMF processing was performed

by the interpreter. 1f it was, a user routine was used;
IEFVHN deletes the user routine and writes the JMR
updated by SMF into the calling routine’s storage.

4 'EFVHN deactivates the ESTAE environment over
the interpreter.

5 Finally, IEFVHN frees the DSENQ table and the
interpreter work area. It then sets a return code in
register 15 and returns to its caller, SWA create interface.

Label

3-260 OS/VS2 System Logic Library Volume 3 (VS2 Release 3.7)

=

In MVS, to eliminate contention for job queue
resources, both the job queue and the queue
manager routines have been replaced. The
scheduler control blocks for all jobs now reside on
a pageable portion of virtual address space called
the scheduler work area (SWA). To access SWA,
system subcomponents must invoke a small set of
routines called the SWA manager.

Figure 2-18 illustrates the general format of a
control block in SWA, and an example of a specific
control block, the JFCB, as it appears in SWA. All
SWA blocks are preceded by prefixes.

The first field in the prefix contains a relative
block number (RBN). The RBN enables the system
to keep track of each job’s SWA control blocks at
various points during its execution. In the event
that restart processing is necessary, the system can
use the RBN to reconstruct the SWA for a restarted
job.

The second field in the prefix indicates whether
or not the prefix has been initialized with the
appropriate control block ID and acronym.

The third field contains the SWA viriual address
(SVA), a pointer back to the beginning of the
prefix. This is for validity checking.

The fourth field is the SWA manager ID for the
specific control block. The following is a list of
SWA IDs and the associated control blocks:

00 JCT

01 ACT
02 SCT
03 SIOT
07 DSNT
0A POT
0C SCT extension table
OF DSENQ
1B JMR
1C JFCB
1D JFCX
20 PDID
21 PDIB
22 PDIQ
23 GDGN
25 IWAB
26 vuT
27 DDNT
28 AMPX
29 JFCE
30 JCTX

VS2.03.804

SWA Manager

The fifth field contains the length of the control
block.

The sixth field is the control block acronym.
The SWA manager routines, identified as load
module, IEFQB5350, consist of four object modules:
two that actually perform SWA functions. IEFQB550
and IEFQBS5SS, and two that intercept calls to
previously existing queue managcer routines.

The two function modules each operate in a
different mode. IEFQB550 processes ''move mode"
requests from calling routines; ''move mode"
requests result in actual movement of data to or
from control blocks residing in SWA. IEFQBS53
performs "'locate mode" operations for calling
routines. A "locate mode' operation will return to
the calling routine either a SWA virtual address
(SVA) or a pointer to.a SWA control block; no
actual movement of data occurs.

The following is a list of possible move mode
requests:

¢ ASSIGN results in initialization of a SWA
control block in a SWA subpool. An ASSIGN
request must be made for each control block
that is to be initialized by the SWA manager.

+ ASSIGN/START results in ASSIGN processing
for a job that is just beginning.

o WRITE results in movement of data from the
calling routine’s buffer into a SWA control
block.

« READ results in movement of data from a
SWA control block into a calling routine’s
buffer.

« DELETE results in a FREEMAIN for a SWA
subpool.

e WRITE/ASSIGN results in the movement of
data into one SWA control block and the
initialization of another block in SWA.

This is a list of valid locate mode requests:

« ASSIGN/LOCATE results in initialization of a
SWA control block in a SWA subpool.

* WRITE/LOCATE causes a SWA control block
to be updated.

e« READ/LOCATE returns the address of the
beginning of a SWA block, the block ID and
the block length, to the calling routine.

« DELETE BLOCK results in a FREEMAIN for a
SWA block.

. Section 2: Method of Operation 3-261

RELATIVE
BLOCK
NUMBER
SWA PREFIX FLAGS 1
1D | LENGTH
ACRONYM
17
80 .
"L ~A 1C BO
I T
JFCB
The JFCB

Figure 2-18. General Format of a SWA Control Block and an Example of the JFCB as it Appears in SWA

3-262 0S/VS2 System Logic Library Volume 3 (VS2.03.804)

€9Z-€¢ uoneradQ JO POYRW 7 uondds

SWA Manager
(no diagram)

=_F

EEX]

SWA Manager
Move Mode
(1EFQB550)

Figure 2-19. SWA Manager Visual Contents

122

SWA Manager
Locate Mode
(IEFQB555)

(L°€ osea1oy TSA) € swnjo, Areiqry 918077 WeISAS TSA/SO $9Z-€

‘Diagram 13-1. SWA Manager Move Mode (IEFQB550) (Part 1 of 2)

Via IEFQMREQ
Input macro instruction Process

L

Register 1 SWA Manager Move Mode

QMPA

Check QMPA for valid function
request:

‘00'X = ASSIGN/START
‘01°'X = ASSIGN

‘02'X = WRITE/ASSIGN
‘03'X = WRITE

‘04'X = READ

‘08X = DELETE

> ~]

Function Code

Created by the
calling routine

SWA Prefix

Process the indicated request by
branching to appropriate
subroutine.

S

v

SWA Block

Caller’s Buffer

LA N

Return to issuer of
IEFQMREQ macro Caller’s Buffer

Job
Journal

§9Z-¢ uoneradQ Jo poyRW :z uonseg

Diagram 13-1. SWA Manager Move Mode (IEFQBS550) (Part 2 of 2)

Extended Description

Control routine passes to the SWA manager move mode
function either directly from a routine requesting move
mode processing or from one of two modules that intercept
calls to previously existing queue management routines.

The first intercept module, {lEFQB580, is the QMNGR10O
macro interface handler. It first checks for valid input
parameters in the parameter list pointed to by register 1.

The parameter list should contain a request for a READ or
WRITE function. If it doesn’t, IEFQB580 issues a 0BO
ABEND. When the input parameters are correct,

IEFQB580 uses them to build and initialize a queue man-
agement parameter area (QMPA) and an external parameter
area (EPAY}; it then invokes the move mode processor,
EFQB550.

When IEFQB550 completes processing, it returns control
directly to the original calling routine.

The other module that intercepts references to previous
queue management routines is [EFQB585. Depending on
the entry point supplied by the calling routine, IEFQB585
inserts an appropriate function code in the OMPA. This
list outlines the possible entry points and their related
functions.

IEFOQBVMS

IEFQMLK1 ANY FUNCTION
|IEFQMSSS

IEFOMRAW READ or WRITE
IEFQAGST ASSIGN/START
IEFQASGQ ASSIGN
IEFQASGN

IEFQDELQ DELETE
IEFQDELE

|EFQB58S also calls |[EFQB550. IEFQB550 returns control
directly to the original calling routine.

1 If the calling routine has specified an invalid function,
|EFQB550 places an appropriate error code in register
15 and issues a 0BO ABEND.

2 Foran ASSIGN/START request, IEFQB550 branches

to a subroutine that sets the relative block number in
the QMPA to 0 and then branches to the ASSIGN
subroutine.

Module Label

{EFQB580

IEFQB550

|EFQB585

IEFQB550

IEFQB550

IEFQB550

Extended Description Module
For one or more ASSIGN requests, the ASSIGN subroutine

issues a GETMAIN macro instruction for 192 bytes from the

SWA subpool specified in the QMPA (queue management

parameter area).* It places the virtual address of the SWA

storage in the external parameter area (EPA) and paritially

initializes a SWA prefix for the new block in SWA storage.

The ASSIGN subroutine repeats this entire process for as
many ASSIGN requests as there are; when it has finished,
it returns control to the calling module.

For a WRITE request, the WRITE subroutine first deter-
mines whether the SWA virtual address (SVA) in the EPA

is valid. If it is, it moves 176 bytes of data from the caller’s
buffer to the specified SWA control block, and then updates
the SWA prefix if this is the first time the control block has
been written. It repeats this process as many times as neces-
sary and then calls a journal write routine to update these
same SWA control blocks in the job journal. When that’s
done, control returns to the original calling routine.

When a READ request is made, the READ subroutine checks
for a valid SVA and then moves 176 bytes of data from a
SWA block into the caller’s buffer. It repeats the operation
for each READ request and then returns control to the
caller.

The DELETE subroutine simply issues a FREEMAIN macro
instruction for the subpool specified in the QMPA and then
returns to the caller.

If a WRITE/ASSIGN code is specified, the calling routine
is requesting a WRITE for one SWA block and an ASSIGN
for another block. IEFQB550 processes these requests
sequentially by branching to the appropriate subroutine.

* An important consideration in the assignment of SWA stor-
age is the alternation of SWA subpools. During normal exe-
cution of problem programs, SWA consists of subpools 236
and 237, (During master scheduler initialization, the SWA
subpool is 241.) The SWA blocks for a task attached by
started task control (STC) routines reside in subpool 237;
STC’s own control blocks reside in 236, SWA blocks for a
jobstep/task begun by the initiator are in subpool 236,
while the initiator's own blocks remain in 237. The aiter-
nation of SWA subpools ensures that STC’s control blocks,
the initiator’s control blocks, and the problem control
blocks always exist in separate subpools.

Label

(L€ 9sealay TSA) € unjo Arexqi 21807 walsAS ZSA/SO 997-€

Diagram 13-2. SWA Manager Locate Mode (IEFQB555) (Part 1 of 2)

Input

Register 1

Parameter
List

M

Next EPA

;-V'\-—-\
Next EPA

=

e

e

EEEEE

—

[
n
O
[+

T

,,,\,,
waa

=
L

;
3
[52]

Via SWAREQ
macro instruction

SWA Manager Locate Mode

1 Check QMPA for valid function
request:

‘AL’ = ASSIGN/LOCATE
‘WL’ = WRITE/LOCATE
‘RL’ = READ/LOCATE
‘DB" = DELETE/LOCATE

2 Perform indicated function.

Return to caller of
SWAREQ macro

y SWA Prefix

———_

SWA Block

Journal

Next EPA

7 uoneg

L97-€ uonesddQ jo poyreW

Diagram 13-2. SWA Manager Locate Mode (IEFQBS55) (Part 2 of 2)

Extended Description Module Label Extended Description Module
The SWA manager locate mode function IEFQB555 IEFQB555 *An important consideration in the assignment of SWA stor-
receives control from routines that issue a SWAREQ macro age is the alternation of SWA subpools. During normal exe-
instruction. cution of problem programs, SWA consists of subpools 236
. and 237. (During master scheduler initialization, the SWA
1 1EFQBSS5 begins processing by checking for a valid subpool is 241.) The SWA blocks for a task attached by
function code in the second field of the parameter list started task control (STC) routines reside in subpool 237;
passed by the calling routine. If 'the function code.is invalid, STC's own control blocks reside in 236. SWA blocks for a
IEFQB555 places an error code in register 15 and issues a jobstep/task begun by the initiator are in subpool 236,
080 ABEND. while the initiator's own blocks remain in 237, The alter-
2 If the calling routine requested an ASSIGN/LOCATE, IEFQB555 nation of SWA subpools ensures that STC's control blocks,

IEFQBb555 issues a GETMAIN macro instruction for
192 bytes of storage from the SWA subpool specified in
the QMPA . * It places the SWA virtual address (SVA) of
those 192 bytes in the EPA (external parameter area),
increases the relative block number in the QMPA, and
initializes a SWA prefix in the SWA storage it just
obtained, |EFQBB555 repeats this entire process for each
ASSIGN request made by the caller.

If the WRITE/LOCATE function was specified by the
caller, IEFQB555 updates the SWA prefix as required and
repeats the operation for each WRITE request. It also calls
the journal write routine to copy the newly updated SWA
blocks into the job journal.

If READ/LOCATE was requested, IEFQB555 places the
specified SWA block address, 1D, and block length in the
EPA. This enables the calling routine to directly address
the SWA block, bypassing the SWA prefix.

If DELETE/LOCATE was specified. IEFQB555 simply
issues a FREEMAIN macro instruction for the SWA block.

3 When IEFQB555 has successfully completed process-
ing, it places a zero return code in register 15 and
returns to the calling module.

the initiator's control blocks, and the problem program
control blocks always exist in separate subpools.

Label

3-268 0S/VS2 System Logic Library Volume 3 (VS2 Release 3.7)

~—

~NF

Allocation/Unallocation can be divided into six
major functions:

« Batch Initialization and Control, which is
invoked by the initiator to provide allocation
and unallocation functions for jobs and
logons.

« Dynamic Initialization and Control, which is
invoked by SVC 99 or the dynamic allocation
interface routine (DAIR) to provide dynamic
functions for both the foreground and
background user.

« JFCB Housekeeping, which retrieves the
information necessary for allocation.

« Common Allocation Control, which processes

allocation requests, both batch and dynamic.

Batch
Initialization
and Control

Allocation
Control

Housekeeping

Allocation/Unallocation

¢« Common Unallocation Control, which
processes unallocation requests, both batch
and dynamic.

« Volume Mount & Verify (VM &V) Control,
which processes requests from Common
Allocation and Common Unallocation to
unload and/or mount and verify volumes.

The relationship of these functions is illustrated
in Figure 2-20. Background information on these
functions is presented in the following paragraphs
Figure 2-21 lists the method-of-operation (M.0.)
diagrams that describe each major function.

USER

Dynamic
Initialization
and Control

Common
Unallocation
Control

Volume Mount
and Verify

Note: Shaded area iilustrates functions common to both batch and dynamic functions.

Figure 2-20. Relationship of the Six Major Functions of Allocation/Unallocation

Section 2: Method of Operation 3-269

Allocation/Unallocation Function

Related Method -Of -Operation Diagrams

Batch Initialization and Control

IEFBB401 — Initiator/Allocation Interface
IEFBB410 — Initiator/Unallocation Interface
IEFBB416 — Job Unallocation

Dynamic Initialization and Control

IEFDB4A0 — Dynamic Unallocation Control
IEFDB400 — SVC 99 Control

IEFDB410 — Dynamic Allocation Control
IEFDB450 — Dynamic Concatenation
IEFDB460 — Dynamic Deconcatenation
IEFDB470 — Information Retrieval
IEFDB480 — Remove In-use Attribute
IEFDB490 — Ddname Allocation

JFCB Housekeeping

IEFAB451 — JFCB Housekeeping Control
IEFAB454 — DD Function Control
IEFAB469 — JLOCATE

Common Allocation Control

IEFAB421 — Common Allocation Control
IEFAB430 - Fixed Device Control

IEFAB433 — Specific Volume Allocation Control
IEFAB434 — Allocate Request to Unit
{EFAB436 — Nonspecific Volume Allocation Control
IEFAB471 - Generic Allocation Control
IEFAB476 — Allocation via Algorithm
IEFAB479 — Demand Allocation

{EFAB485 — Recovery Allocation

IEFAB486 — Offline/Allocated Device Allocation
IEFAB490 — Common Allocation Cleanup

Common Unallocation Control

IEFAB4A0 — Common Unallocation Control
IEFAB4A2 — Disposition Processing
IEFAB4A4 — Unit Unallocation

Volume Mount and Verify (VM&V)

|IEFAB492 — Allocation/VM & V Interface
IEFAB493 — VM&V Control

Figure 2-21. Allocation/Unallocation Functions and Related Method -of -Operation Diagrams

3-270 0S/VS2 System Logic Library Volume 3 (VS2 Release 3.7)

Batch Initialization and Control

Batch Initialization and Control, invoked by the
initiator, provides allocation and unallocation
functions for job/steps and logons. Common
Allocation Control and Common Unaliocation
Control are called to process the allocation and
unallocation requests; the processing performed by
Batch Initialization and Control is basically
preparation: issuing status messages, testing
condition codes, building parameter lists for the
common functions.

Dynamic Initialization and Control
Dynamic Initialization and Control, invoked by SVC
99 or the dynamic allocation interface routine
(DAIR), provides dynamic functions for both the
foreground and background user. Dynamic
functions include: dynamic allocation, dynamic
unallocation, dynamic concatenation, dynamic
deconcatenation, information retrieval, removal of
the in-use attribute, and ddname allocation.
Common Allocation Control and Common
Unallocation Control are called to process dynamic
allocation and dynamic unallocation requests.

JFCB Housekeeping

JFCB Housekeeping is a common function, invoked
by both Dynamic and Batch Initialization and
Control when allocation requests are being
processed. JFCB Housekeeping determines what
additional data set information is needed to allocate
each request, places the information in tables
(SIOTs, JFCBs, and JFCBXs), and generates
additional tables if necessary.

Common Allocation Control

Common Allocation Control, invoked by both
Batch and Dynamic Initialization and Control,
processes allocation requests. Common Allocation
Control itself is divided into several functions;
basically, each function processes a certain type of
request or processes requests in a certain way.
Each distinct function is presented in a separate
method-of-operation diagram (listed in Figure 2-21
and illustrated in Figure 2-26). The basic
philosophy of common allocation and background
information on the more complex functions are
presented in the following paragraphs.

Data Set Requests and Unit Requests

Data set requests are represented by SIOTs; each
SIOT (that requires units) is represented by entries
in a volunit table built by Common Allocation
Control. The volunit table contains an entry for
every possible unit that each request might need. It
is'these volume/unit requests (each identified by a
volunit entry) that Common Allocation Control
considers when it allocates requests — not the data
set request as a whole.

For example, a data set was requested by means
of the following DD statement:

//DYD DD DSN=DATA,DISP=0OLD,
// VOL=SER=(A,B,C),UNIT=(3330)

Three volunit entries are created for this data set
request. The three volunit entries indicate unit
affinity, which is implied by requesting more
volumes than units. To allocate this data set,
Common Allocation Control will allocate the three
requests represented by the three volunit entries
(even though, in total, only one unit is allocated).

Order of Processing R'equests

To allow as many allocations as possible to process
concurrently, Common Allocation Control is
designed to minimize serialization between different
allocations (that is, allocations for different users).
(Serialization can be defined as sequential
processing, as opposed to -concurrent processing.)
To accomplish this, Common Allocation Control
processes requests in the following order:

1. Requests that do not require units and
volumes to be allocated: dummy data set
requests; VIO requests; subsystem (SYSIN or
SYSOUT) data set requests. No serialization is
required for this processing.

2. Requests that can be allocated to
permanently resident or reserved volumes on
direct access devices. Since these units are
inherently shareable, serialization is required
only with other system functions that might
modify UCBs — for example, pending-unload
processing and pending-offline processing.
Fixed Device Control processes requests in
this category; multiple allocations can occur
concurrently.

3. Requests for teleprocessing devices.
Serialization is required only with other
allocations of teleprocessing devices and with
other system functions that might modify

Section 2: Method of Operation 3-271

UCBs — for example, pending-unload
processing and pending-offline processing.

4. Remaining requests. Since the units to be
allocated are not inherently shareable, the
processing of these requests must be
serialized with other allocations and with
other system functions that might modify
UCBs. Generic Allocation Control, which is
invoked by Common Allocation Control to
try to allocate all remaining requests,
minimizes this serialization by serializing only
a subset of units. If all requests cannot be
satisfied by Generic Allocation Control,
Recovery Allocation is invoked; the units
serialized by Generic Allocation that are still
needed by unallocated requests remain
serialized for Recovery Allocation. Both
Generic Allocation Control and Recovery
Allocation are described in greater detail in
the following paragraphs.

Generic Allocation Control

Generic Allocation Control serializes only a subset
of units; it processes only one generic device type
at a time and, within that generic, it serializes only
those units (device groups) needed by unallocated
requests. (The order in which Generic Allocation
Control selects device types to process is dictated
by the installation device precedence list,
established during system generation.)

Device Groups

Generic device types are divided into device groups,
as illustrated in Figure 2-22. The existence of
device groups allows an allocation to serialize on a
subset of units within a generic. For example, using
Figure 2-22, if 3330A is requested, the 'alloc‘ation
needs to reserve only device group 4, rather than
all 3330 devices. As a result, more than one
allocation can process the same generic group as
long as the allocations require different device
groups within that generic.

The guidelines by which the system determines

device groups are:

o Ifa user—assigned name (for example, SYSDA)
includes different generic device types, the
units in each generic belong to different
device groups. ' ,

« If a user-assigned name (for example, 3330A)
includes only a subset of the units in a
generic, that subset is a distinct device group.

« The intersection of any subgroups is a distinct
device group.

Note: For specific unit requests (that is, a unit
address was specified), all device groups within a
generic must be serialized.

Group Masks

Device groups are indicated in group masks, which
are simply fields containing bit positions for all the
device groups within all the generics in the system.
There is a mask in the eligible device table (EDT; a
sysgen table) for every possible unit grouping
(either generic device type or user-assigned name).
For example, the masks representing the unit
groupings illustrated in Figure 2-22 would contain
five bit positions, one for each device group. The
group mask for each unit grouping would be:

2400 10000
2314 01100
3330 00011
SYSDA 00111
3330A° 00010
3330B 00001

The masks are used to determine what device
groups must be serialized and when serialized
device groups can be released. Every data set
request (represented by a SIOT) is associated with
a list of the device types and devices to which it is
eligible (that is, to which it can be allocated). This
eligible device list (EDL) points to the mask(s) in
the EDT for the unit group(s) to which it is eligible.

Generic Device Type 2400 2314 3330
. SYSDA
Group Names —) .
(defined by the installation) 3330A 33308
; .
Unit Addresses 131 132 133 134 181 182 183 184 191 192 193 194 195
© ® | 0 0] ®

Figure 2-22. The Division of Generic Device Types into Device Groups

3-272 O0S/VS2 System Logic Library Volume 3 (VSZ Release 3.7)

Recovery Allocation

Recovery Allocation receives control if all requests
were not satisfied by or prior to Generic Allocation
Control. (Recovery Allocation, however, will not
be called if a retry situation was detected in
Generic Allocation Control — see '""The Retry
Situation.") Recovery Allocation handles the
following four situations:

« One or more tape requests could not be
allocated because the needed volumes are
mounted on a generic different from the
generic selected for allocation. (For
background information on tape requests, see
"Processing Tape Requests.")

o Nonspecific DASD volume requests indicate
volume affinity; although at least one request
was successfully allocated, a subsequent
request could not be allocated because of a
DADSM error.

« Nonspecific tape or DASD requests could not
be allocated to mounted volumes.

« Needed units are offline or allocated to
another job.

Recovery Allocation results in one of the

following situations: ’

« The retry situation is detected. (See the
description under '"The Retry Situation.')

« The allocation is failed because of operator
intervention or an error detected by Recovery
Allocation.

« All requests are satisfied; it is unnecessary to
wait for units allocated to othier users.

« All requests can be satisfied only by waiting
for a needed device(s) to become available. If
the operator authorizes, the allocation will
wait for the needed device(s) to be
unallocated, either with or without holding
resources already allocated (as directed by the
operator). If this allocation will wait without
holding resources;, Common Allocation
Cleanup unallocates all requests successfully
processed by Generic and Recovery
Allocation and then calls Common Allocation
Control to reattempt this allocation when the
needed units are unallocated.

The Retry Situation

It is possible to encounter a situation called retry, in
which a subset of the units on which a specifically
requested volume may be mounted are serialized.
Retry occurs when a request could be allocated if
additional device groups were serialized, or if a
different eligible generic (tape only) were being
processed. For example (using Figure 2-22), a
request specified 3330A, causing device group 4 to
be serialized. The request, however, requires a
volume currently mounted on a unit in device
group 5. Because that device group is not
serialized, the volume cannot be unloaded. This
request is marked for. retry.

Retry situations are handled by Common
Allocation Cleanup; Common Allocation Cleanup
unallocates all requests processed by Generic
Allocation Control and by Recovery Allocation (if
it was called) and then calls Common Allocation
Control. For each request marked for retry, all
device groups within the compatible generics will
be serialized.

Retry situations are detected by Generic
Allocation Control or Recovery Allocation. If a
needed tape volume is mounted on a different
generic device type, Generic Allocation does not
determine if that generic is serialized — the request
is marked for retry processing. See the following
description of "Processing Tape Requests."

Processing Tape Requests

The dual‘dens‘ity feature for tape devices allows a
tape device to support more than one density. If
tape device types support the same density, they
are considered compatible; a tape volume can be
mounted on different device types, as long as those
device types are compatible. Figure 2-23 lists the
tape device types and the densities they support.
Using Figure 2-23, device type 2400-4 is
compatible to device types 2400, 2400-3, 3400-3,
3400-4, and 3400-6, because they all support a
common density; a tape volume that can be
mounted on a 2400-4 can also be mounted on any
of the compatible device types.

Note: Seven-track and nine-track tape devices are
never compatible with each other, even though
they might support a common density.

Section 2: Method of Operation 3-273

Generic Device Type Density
Nine-track tape device types - 2400 800 bpi
2400-3 1600 bpi
2400-4 800 or 1600 bpi
3400-3 1600 bpi
3400-4 800 or 1600 bpi
340056 6250 bpi
3400-6 1600 or 6250 bpi
Seven -track tape device types 2400-1 200, 556, or 800 bpi
2400-2 200, 556, or 800 bpi
3400-2 200, 556, or 800 bpi

Figure 2-23. Tape Device Types and Supported Densities

Requested Generic Device Type

Generic Device Types Eligible to be Allocated to the Request

2400
2400-1
2400-2
2400-3
2400-4

134002
3400-3
3400-4
34005
3400-6

2400, 2400-4, 3400-4

2400-1, 2400-2, 3400-2

2400-2, 34002

2400-3, 2400-4, 3400-3, 3400-4, 3400-6
2400-4, 3400-4

3400-2

3400-3, 3400-4, 3400-6

34004

34005, 3400-6

3400-6

Figure 2-24. Tape Device Eligibility

3-274 0S/VS2 System Logic Library Volume 3 (VS2 Release 3.7)

AN

Not all device types that are compatible,
however, are eligible to satisf); a single request.
Figure 2-24 illustrates the device types to which a
request for a generic device type can be allocated.
For example, a user requested a 2400-4 tape
device for a data set. The data set can be allocated
only to a 2400-4 or 3400-4 device, although a
volume requested for this data set could be
mounted on any of the compatible device types
(2400, 2400-3, 2400-4, 3400-3, 3400-4, or .
3400-6). An installation can define a user-assigned
name that includes one or more tape device types.
In this case, the eligible device types are only those
included in the user-assigned name. For example,
TAPEA includes all 2400-4 devices. A request that
specifies TAPEA is only eligible to the 2400-4
devices. It is not eligible to all the devices that can
be allocated to a request that specified the generic
name 2400-4.

Tape requests are first processed by Generic
Allocation Control. If Generic Allocation Control
finds a needed tape volume mounted on a device
type different from the device type selected for
allocation, it determines if the volume is mounted
on a compatible device type. If so, the request is
marked for retry processing. Retry processing will
mark the request for processing by Recovery
Allocation. Otherwise, the request is failed.

Recovery Allocation determines if the volume is
mounted on a device type eligible to the request. If
it is, the request will be allocated where the volume
is mounted. Otherwise, the volume must be
unloaded. If the device group containing the
required volume is not serialized, the request will
be marked for retry. (Retry is described under
"The Retry Situation.")

Common Unallocation Control

Common Unallocation Control, invoked by both
Batch and Dynamic Initialization and Control,
processes unallocation requests. Its functions
include disposition processing, private catalog
unallocation, data set release, unit unallocation, and
volume release.

Volume Mount & Verify (VM&YV)
Control

Volume Mount & Verify (VM &V) Control
processes requests from both Common Allocation
and Common Unallocation to unload, to rewind,
and/or to mount and verify volumes. (Common
Unallocation calls VM &V Control only to unload
and/or rewind volumes.) Volumes are rewound

and/or unloaded as the need arises; volume
mounting and verifying, however, is not performed
until the end of Common Allocation Control
(during Common Aliocation Cleanup).

Allocation/Unallocation Module Name
Conventions

Each allocation/unallocation module name has the
following format:

IEF B4

The IEF indicates the routine is part of the
scheduler; the B4 identifies the module as an
allocation/unallocation module. (A few allocation
modules begin with 1EE; these allocation modules
are part of the Master Scheduler.) The fourth
character indicates the following:

« If A, the module is common to both batch

and dynamic processing.

« If B, the module performs batch processing

only.

« If D, the module performs dynamic processing

only.

The last two characters are a unique module
identifier.

Organization of
Allocation/Unallocation
Method-of-Operation Diagrams

Figure 2-25 illustrates the processing hierarchy of
the diagrams for batch and dynamic processing;
Figure 2-26, the processing hierarchy of common
allocation diagrams. Figures 2-25 and 2-26 do not
indicate all calls to each module represented by an
M.O. diagram; they are intended only to provide a
general structure to the M.O. diagrams.

The method-of-operation (M.0.) diagrams are
arranged in alphabetic order according to the
module name of the major module described by the
diagram. As a result, diagrams for all functions
common to both batch and dynamic processing
(module titles of the form IEFAB4nn) precede the
diagrams for batch only processing (module titles
of the form IEFBB4nn), which in turn precede the
diagrams for dynamic only processing (module
titles of the form IEFDB4nn).

Section 2: Method of Operation 3-275

Selected Terms Used in
Allocation/Unallocation

Following ‘are definitions of selected terms that are
not discussed in the preceding paragraphs but that
have special meaning to allocation/unallocation.

demand request: a request that requires a specific
unit; that is, a unit address was specified (for
example, UNIT=190).

nonshareable request: a direct access request that
might require demounting and that therefore must
be allocated to a nonshareable device. A direct
access request is considered nonshareable if more
volumes than units were requested (implicit unit
affinity), if DEFER was specified in the UNIT
parameter, or if, in the case of explicit unit affinity,
more than one volume will use the unit.

private request: (1) for tape requests, a request
that specified PRIVATE; or that requires a specific
volume; or that does not request a temporary data
set. (2) for direct access requests, a request that
specified PRIVATE. (Note: Storage requests can be
changed to private requests if sufficient storage
volumes are not available.)

public request: for both tape and direct access

3-276 0S/VS2 System Logic Library Volume 3 (VS2 Release 3.7)

requests, a request that did not specify PRIVATE,
that does not require a specific volume, and that
requests a temporary data set.

Segment: functional division of code in a module.
scratch request: identical to public request.

specific volume request: a request that requires a
particular volume; for example, a volume serial
number was specified; the data set is passed; the
data set is cataloged.

storage request: a direct access data set request
that did not specify PRIVATE, that does not require
a specific volume, and that is not temporary. (Note:
Storage requests can be changed to private requests
if sufficient storage volumes are not available.)

unit affinity: more than one request requires the
same unit. Unit affinity can be either explicit
(between data set requests when UNIT=AFF is
specified) or implicit (within a single data set
request when more volumes than units are
requested).

volume affinity: more than one request requires
the same volume. For example, two requests
specified the same volume serial number or a
request made volume reference to another request.

LLT€ uopexd(Jo POyl :T Uonoas

Note: Shaded areas indicate functions common
to batch and dynamic processing. Initializing and
Controlling Batch
Allocation/Unallocation
(no diagram)

I i
L1+7] [1+18]

IE'FPB401 - IEFBB410 —
Initiator/AHlocation Initiator/Unallocation
Interface Interface

|14-19

{EFBB416 —
Job
Unallocation

IEFAB451 —
JFCB Housekeeping
Control

IEFAB421 —
Common Allocation
Control

(see common allocation
visual contents)

IEFAB4AO —
Common Unallocation
Control

IEFAB454 —
DD Function
Control

IEFAB469 — IEFAB4A2 — IEFAB4AS —
JLOCATE Disposition Unit
Processing Unallocation

IEFAB493 —
VM & V
Control

Figure 2-25. Batch and Dynamic Allocation/Unallocation Visual Contents (Part 1 of 2)

(L'g 958919 ZSA) € swnjoA Arexqry o1for wosAS ZSA/SO 8LT-E

Note: Shaded areas indicate functions common to
batch and dynamic processing. Initializing and
Controlling Dynamic
Allocation/Unallocation
(no diagram)

[_
l 14-20
IEFDB400 —

SvCc 99
Control

1
[1 l | 1
l 14-21 | 14-22 | 14-23 14-25 l 14-27

IEFDB410 — IEBDB4AO — IEFDBA450 — IEFDBA470 — |EFDB490 —
Dynamic Allocation Bzgﬂ:}né:tion Dynamic ?n:l‘:az:t:ion Ddname
Control Control Concatenation Retr?eval Allocation

|14-24 | | 14-26

JEFAB451 — IEFAB421 — . IEFDB460 — IEFAD480 —
JFCB Housekeeping Common Allocation . Dynamic Remove In-use
Control Control Unallocation Control Deconcatenation Attribute

{see common
allocation
visual contents)

IEFAB454 — l 14-26

DD Function I
Control IEFAB4A2 — IEFAB4A4 — IEEDB481 —

Disposition Unit Remove In-use
Processing Unallocation Processor

Note: The processing of module IEFDB481 is
~ described on the diagram for IEFDB480, part
IEFAB469 — | . ‘ | 3of 4.

JLOCATE IEFAB493 —

VM & V
Control

Figure 2-25. Batch and Dynamic Allocation/Unallocation Visual Contents (Part 2 of 2)

6LT-€ UONEIdQ JO POy :T UOIDSE

e g g
141
IEFAB421 —
Common
Allocation
Control
|
[I] 1
14-2 149 | 14-12 14-14
|EFAB430 — IEFAB471 — IEFAB4S0 —
Fixed Device Generic IEFABABS ~ Common
Control Allocation Recovery Allocation Allocation
Control Cleanup
I I
1 = 1 |
14-3 145 I 14-13 l 14-15
IEFAB433 — |EFABA436 — IEFAB486 — IEFAB492 —
Specific Volume e Offline/Allocated Allocation/
. Nonspecific Volume X
Allocation Allocation Control Device VM &V
Control Allocation Interface
[I | |
I 144 144 l 144 l 14-16
IEFAB434 — IEFAB434 — IEFAB434 — IEFAB493 —
Allocate Allocate Allocate VM & V
Request to Request to Request to Control
Unit Unit Unit
[| 1
] 14-11 14-3 | 145 | 14-10
IEFAB479 — IEFAB433 — |EFAB436 — IEFAB476 —
Demand Specific Volume Nonspecific Volume Allocation
Allocation Allocation Allocation via
Control Control Algorithm
I I q I]]
144 144 14-4
14-3 | 14-4 I
IEFAB434 — IEFAB434 — IEFAB434 —
IEFABA33 — IEFAB434 — Allocate Allocate Allocate
Specific Volume Allocate Request to Request to Request to
Allocation Request to Unit Unit Unit
Control Unit

IEFAB434 —
Aliocate
Request to
Unit

| 144

Figure 2-26. Common Allocation Visual Contents

(L€ 95839y TSA) € ownjop Arexqry 91807 wesAs ZSA/SO 08Z€

Diagram 14-1. IEFAB421 — Common Allocation Control (Part 1 of 12)

ENTRY from IEFBB404 (see IEFBB401 — Initiator/Allocation
interface) or IEFDB413 (see IEFDB410 — Dynamic
Allocation Control) or IEFAB490 — Common

Input Allocation Cleanup Process
R LR
.| Common
b Allocation
f"j Parameters Common Allocation Control:

Function Map allocate units and volumes to requests.

Ry

Output

?1 's't SIOT to CVvT |EEBASEA Message to

allocate

- 1 Change status of devices, :»

: AJSCB oSUcE Ucs if necessary.

- Arosuce LuT I Ty

Reason Code Area
. TCB
TIOT header .
Allocation
Work Area
N (ALCWA)

UCB s—updated

volumes
unloaded-

2 Prepare for allocation.

| ALcwa

Operator Issued

Count Table
#Dummy Requests
#VI10 Requests
Teleprocessing Requests

Specific Volume Requests

#Private Nonspec. Vol. Req

#Public Volume Requests

Storage Volume Requests

JJ) ALCWA count

Count 3 Process requests that do not
| Table require units or volumes to be
- allocated:

f I Eligible
- Device Table
. -\[% (EDT) a) dummy data set requests
. S
- Ist
- sIoT b) VIO requests
c) subsystem requests

Last P

x SIOT
Count If all requests are satisfied, go to

Table

TOTREQS
=0

step 14.

W

Processed
SIOTs

Subsystem Requests

Graphic Unit Record Req
#Req to Allocate {variable)
Total Requests (static)
#VOLUNIT entries

Table counts
decreased

TIOT

DSAB

z DSAB

187-€ UonEIadQ JO POYIR :7 UK

Diagram 14-1. IEFAB421 — Common Allocation Control (Part 2 of 12)

Extended Description Module Segment

ENTRY Common Allocation Control (IEFAB421) -
controls the allocation of units and volumes

to requests. It is called by:

o Step Allocation Control (IEFBB404), when the allo-
cation is batch (jobs and logons).

® Dynamic Allocation Control (IEFDB410), when the
allocation is dynamic.

o Common Allocation Cleanup (IEFAB490), when the
allocation is being reattempted because of a retry situa--
tion or because the operator authorized the allocation -
to wait for a device(s) without holding resources.

1 f IEEBASEA indicates that units are pending a IEFAB421 OFFLINES
change of status (MSSUM=1), Common Allocation

Control searches the I0S UCB LUT to locate UCBs whose

status is to be changed. Depending on indicators in the UCB,

Common Allocation Control:

@ Takes a unit offline.

® Unloads the volume on the unit.

@ Changes a device's status to an active console.

Common Allocation Control issues a message to the oper-
ator informing him of the changed status.

2 Common Allocation Control issues a GETMAIN IEFAB421 INITWORK
macro instruction for the allocation work area
(ALCWA) and places information from the common
allocation parameter list in ALCWA. The allocation work-
area serves as the communications area for all subsequent
processing. (For details on ALCWA, see “‘Section 5: Data
Areas.”’) Common Allocation Control also builds a count
table in ALCWA, containing both the total number of
requests and the different types of requests (see output
of step 2) that must be processed. At this time, the counts
in the count table reflect the number of SIOTs. The
TOTVOLUN field, representing the number of unallo-
cated volunit entries in the volunit table (which is built in
step 4), is not initialized at this time. The count table is
updated to reflect unallocated volunit entries, rather than
SIOTs, in step 6. The counts in the count table are
decreased during allocation processing, as each request is
satisfied.

IEFAB421 BLDCOUNT

Extended Description

3 To eliminate unnecessary processing, Common Allo-
cation Control first processes requests that do not
require units and volumes to be allocated:

a) Dummy data set requests. If the DMYREQS field in the
count table does not equal 0, Common Allocation Con-
trol searches the SIOTs for the indicator that DUMMY
or DSN=NULLFILE (SCTDUMMY=1),

QNAME (SIOTQNAM=1)}, or TERM=TS (SIOTTERM=1)
was specified. For each of these requests, Common
Allocation Control:
o Creates a DSAB and a TIOT entry.
® Marks the SIOT allocated (SIOTALCD=1).
@ Decreases the DMYREQS and TOTREQS fields in

the count table.

b) V10 requests. If the VAMREQS field in the count table
is not equal to 0, VIO Allocation searches the SIOTs
for the VIO indicator (SIOTVAM=1). For each VIO
request, V10 Allocation:
® Places default space information in the JFCB, if
space information does not exist. (Default space
information is included in the non-executable
module IEFAB445.)

o Interfaces with DADSM to obtain a virtual UCB
address and places the address in the SIOT.

o Creates a DSAB and a TIOT entry.

@ Marks the SIOT allocated (SIOTALCD=1).

o Decreases the VAMREQS and TOTREQS fields in
the count table.

c) Subsystem requests; for example, sysin and sysout.
If the SUBREQS field in the count table does not
equal 0, Subsystem Request Allocation searches the

SIOTs for the subsystem data set indicator {(SIOTSSDS=1).

For each such request, Subsystem Request Allocation:

@ Interfaces with JES2 to allocate the request.

o Creates a DSAB and a TIOT entry.

® Marks the SIOT allocated (SIOTALCD=1).

o Decreases the SUBSREQS and TOTREQS fields in
the count table.

If the TOTREQS field in the count table reaches O, all
requests have been satisfied and processing continues
with step 14.

Module

IEFAB421

IEFAB421

IEFAB428
IEFAB421
IEFAB421

IEFAB431

IEFAB431

|{EFAB431

IEFAB428
IEFAB431
IEFAB431

IEFAB427

|IEFAB427
IEFAB428
|EFAB427
|EFAB427

IEFAB421

Segment

PROCSDMY

PROCSDMY
PROCSDMY

VAMSPACE

VAMDADSM

BILDSSAL

(L°¢ 98wy TSA) € dwnjoA Arerqy] oSo] waisAS ZSA/SO T8T€

Diagram 14-1. IEFAB421 — Common Allocation Control - (Part 3 of 12)

Input

1st SIOT

JFCB

Last
SIOT

JFCB

ALCWA Eligible
Device
1st SIOT Table
(EDT) CSD
Last
SIOT

10S UCB LUT

Process

4 Determine device requirements for
requests not yet allocated.

a) Create volunit table, summarizing
volume and unit requirements for
each unallocated requests.

b) Create eligible device lists (EDLSs)
summarizing the devices eligible

Serialize further processing of this
allocation with other processing
that can modify UCBs.

to satisfy each unallocated request.

Output

Volunit Table

ALCWA
1st
sioT Volunit
. Entry
Last :
- Volunit
SIOT Entry

o3

b

SIOT EDL

T Uoidsg

.

€87-¢ uonerddQ jo poyloN

Diagram 14-1. IEFAB421 — Common Allocation Control (Part 4 of 12)

Extended Description

4

a) Device Requirements Determination issues a
GETMAIN macro instruction to obtain space

for a volunit table. The volunit table summarizes the
volume and unit requirements of each request not allo-
cated in step 3. For each unallocated SIOT, Device
Requirements Determination creates one or more volunit
entries in the volunit table; an entry is created for every
possible unit the request might need. As the entries are
created, Device Requirements Determination assigns the
same unitid to the entries for SIOTs that requested unit
affinity. (A unitid is an internal number used to identify
a unique unit request.) After the volunit table is built,
Affinity Resolution receives control to resolve volume
affinities. For direct access requests, where duplicate
volids are found (whether or not the unitids match),
Affinity Resolution creates a new unitid and propagates
the new unitid to all duplicate volids. For tape requests,
if duplicate volids exist and the unitids are different,
Affinity Resolution creates a new unitid and propagates
the new unitid to all duplicate volids. The volunit table is
then completed by initializing the status field of each
volunit entry. The status field includes bits that indicate
the type of request (for example, specific volume request,
public request, storage request, private request) and the

device class (for example, tape, direct access, unit record).

For details on the volunit table, see OS/VS2 Data Areas,
SYB8-0606.

b) EDL Build creates an eligible device list (EDL) for each

unallocated SIOT; information in the eligible device table
(EDT) is used to construct the EDLs. Each EDL summa-
rizes the devices eligible to satisfy a request. EDL Build
issues a GETMAIN macro instruction to obtain space for
the EDLs. Before the EDLs are created, EDL Build saves
the DDR (dynamic device reconfiguration) count from
the CSD (common system data area). After the EDLs
are created, EDL Build again obtains the DDR count
from the CSD and compares it to the saved DDR count.
If the count has changed, DDR was invoked during crea-
tion of the EDLs and, therefore, the EDLs might be
invalid — EDL Build then frees the EDLs and repeats
this processing to build new EDLs.

Module Segment

IEFAB423

IEFAB423 BLDVOLUN

IEFAB423 INITVOLN

IEFAB423 UNAFFPRC
IEFAB426

IEFAB424

IEFAB438

Extended Description

5 Common Allocation Control-enqueues shared on

SYSIEFSD (minor names Q4, CHNGDEVS,
DDRTPUR, DDRDA) in order to serialize the processing of
this allocation with other processing that might modify the
UCBs (for example, pending-unload processing, pending-
offline processing for units that become unallocated during
this allocation).

Module

IEFAB421

Segment

(L°€ 9sea1oy TSA) € dwnjoA Areiqr] 9180 wISAS ZSA/SO $8TE

i

Diagram 14-1. IEFAB421 — Common Alocation Control (Part 5 of 12)

Input Process

ALCWA

EDLs
—

Updated -

6 Set up to handle any
device selections made -
by the JES3 subsystem.

First SIOT EDL

AT]

« I VOLUNIT Table
Last SIOT

1

SI0Ts
—

SSOB Updated* -
List of UCB
ey Addresses
e Selected by JES3 VOLUNIT Table
not make Undsted®
selection pda
* ':rii::d'd T T *Updated only if JES3
selecfion makes device selections.
SSOBINDY, e

SSCA

Common allocation ALCWA :

function area in { SSCAPUAR - Count Table TIOT JFCB
SSOB extension.]

counts
= decreased /
73 Allocated
ALCWA 1st Volunit DSAB ucB
SIOT EDL Table
f 7 Allocate direct access requests that !

Count
Table Last

——ﬁfl’ SIOT

Installation Device
\ EDT Precedence List
L_J1L]

Count Table
TOTREQS=0

can be allocated to permanently
resident or reserved volumes,

space obtained
(except for ISAM)

(IEFAB430)

e |f all requests are satisfied,
go to step 13.

§87-€ uonesd(Jo POYION :7 UOF3S

Diagram 14-1. IEFAB421 — Common Allocation Control (Part 6 of 12)

Extended Description Module

© For each unallocated request, the JES3 interface IEFAB422
routine invokes the JES3 subsystem (via the SSOB

interface) to determine if JES3 has made device selections.

if it has, the EDL is updated so that only those devices

selected by JES3 are eligible for allocation. It alsa stores

the selected UCB addresses in the VOLUNIT table and

turns on the SIOTJES3 bit to indicate that this is a JES3

request. If JES3 did not make device selections, all

units which are managed by JES3 are marked ineligible

for allocation in the EDL.

7 Fixed Device Control allocates requests eligible to per- |EFAB430
manently resident and reserved direct access volumes.

During Fixed Device Control, the count table is updated to IEFAB430

reflect the number of volunit entries still to be allocated,

rather than the number of SIOTs. (The TOTREQS field is

the only field that continues to represent a number of

unallocated SIOTs.) Individual fields (for example,

SPECREQS) aind the TOTVOLUN field are decreased as

unit requests (that is, volunit entries) are allocated; the

TOTREQS field is decreased as SIOTs are completely

aliocated. If the TOTREQS field in the count table reaches

0, all requests have been satisifed and processing continues

with step 13. For details on Fixed Device Control, see the

M.O. diagram Fixed Device Control (IEFAB430).

Label

UPDTCNT

(L°¢ 958319y TSA) € dwnjoA Arerqry oS0y WoIsAS ZSA/SO 98¢-€

Diagram 14-1. IEFAB421 — Common Allocation Control (Part 7 of 12)

Process

Count Table

8 Allocate requests for teleprocessing
devices,

-

ALCWA

- e If all requests are satisfied, go to
Count Table - step 13.

TOTREQS=0

Volunit Table

O Reserve removable volumes
specifically requested by requests
not yet allocated.

Count

Table

counts

decreased

DSAB

volume serial
numbers enqueued

T uoiag

.

L8T-€ uoneadQ jo poylep

Diagram 14-1. IEFAB421 — Common Allocation Control (Part 8 of 12)

Extended Description

8 If the number of teleprocessing requests in the count
table is not zero (TPREQS#0), Common Allocation
Control calls IEFAB425 (Process TP Requests). IEFAB425

. enqueues exclusive on the allocation resource SYSIEFSD

(minor name ALLOCTP) to serialize its processing with
other allocations of teleprocessing devices. IEFAB425 then
searches the status field of each volunit table entry for the
indicator that a teleprocessing (communications) device is
requested. When it finds the indicator, IEFAB425:

@ Selects a teleprocessing device from the EDL for this
SIOT.

@ Allocates the device to the request (see the M.O. diagram
Allocate Request to Unit (IEFAB434), if the device
is unallocated, is not an active console, and is not in use
by a system service. Otherwise, this allocation is failed.

® Marks the volunit entry as allocated.

® Marks the SIOT allocated (SIOTALCD=1) if all volunit
entries for the SIOT are allocated.

IEFABA425 repeats this processing for each teleprocessing
request, decreasing the TPREQS and TOTREQS fields of
the count table as each SIOT is allocated. When ali teleproc-
essing requests are completed, |EF AB425 dequeues from the
allocation resource SYSIEFSD (minor name ALLOCTP).

9 Common Aliocation Control enqueues on the

volume serial numbers of removable volumes specif-
ically requested by unallocated requests. The enqueue is
either shared or exclusive, depending on whether other
requests can share the volume. (For example, if the
volume might be demounted during execution of the
problem program or if the volume is tape, the enqueue
must be exclusive.) The status field in each volunit entry
indicates if a volume is specifically requested and if the
volume is shareable.

Module

IEFAB421
IEFAB425

|IEFAB425

IEFAB434

IEFAB425
IEFAB425

v

IEFAB421

Segment

TPEDLSEL

DOVOLENQ

(L°€ 95019y TSA) € SwmjoA Arexqry NBo] woysAS TSA/SO 88T-€

Diagram 14-1. IEFAB421 — Common Allocation Control (Part 9 of 12)

Process

see
Generic
Allocation

ALCWA 1st SIOT

10 Attempt to allocate all remaining
requests by means of Generic
Allocation.

Table [| " sioT

L l l
Installation Device

\ EDT Precedence List

L JL 1]

1st SIOT

Count / Last

DSAB

EDL DSAB

11 If necessary, call Recovery
Allocation.

Count Last Volunit see space obtained
T tl:l SIOT Table | Recovery | (except for ISAM)
able Allocation |

1 (1IEFAB48S5)| -

Algorithm
\ Tables

687-¢ uonesdQ Jo poylel :Z UopIdg

Diagram 14-1. IEFAB421 — Common Allocation Congrol (Part 10 of 12)

Extended Description Module Segment

10 Generic Allocation Control attempts to allocate IEFAB471
remaining requests. |t chooses the first generic

device type in. the installation device precedence list

that includes devices required by unallocated requests

and serializes the needed device group(s) within that

generic. (For a description of device groups, see ‘'Device

Groups’’ in the “Introduction to Allocation/Unallocation.’’)

Generic Allocation Control then allocates requests eligible

to this device type in the following order:
IEFAB479
|IEFAB433

a) Specific unit requests.

b) Specific volume requests for tape or DASD, if the
volume is mounted.

c) Specific volume requests for tape or DASD, if the IEFAB476
volume is not mounted; non-DASD and non-tape
requests; nonspecific requests for private tape or

DASD volumes.

d) Nonspecific non-private tape or DASD requests to
public mounted volumes.

IEFAB436

If all requests eligible to this generic device type are IEFAB471
allocated, Generic Allocation Control releases the

device group(s). Otherwise, the device group(s) remain
serialized until the outstanding requests are allocated or
until wait-without-holding-resources (part of step 11) is
processed. Generic Allocation Control then chooses the
next generic device type from the installation device
precedence list that includes required devices and repeats
this processing until all requests have been considered.
For details on Generic Allocation Control, see the M.O.
diagram “IEFAB471 — Generic Allocation Control.”

11 Recovery Allocation receives control if the
following conditions are true:

|EFAB485

@ Requests still remain to be allocated (the TOTREQS
field in the count table does not equal 0).

® Retry is not indicated — INDRETRY=0 in ALCWA.
(Retry is indicated if step 10 found a needed DASD or tape
volume mounted on a unit not included in the
serialized device groups. For retry, all allocated
requests are unallocated and the entire allocation is
reattempted; therefore, it is unnecessary to perform
recovery allocation. For a description of retry, see
“The Retry Situation’’ in the “‘Introduction to Allo-
cation/Unallocation.”

The following situations result in recovery allocation:

® A tape request(s) could not be allocated because the
needed volume(s) is mounted on a generic device type
different from (but compatible to) the generic selected
for allocation. This request will go through retry
processing before it is processed by Recovery Allocation.

@ Nonspecific DASD volume requests ask for volume
affinity; although at least one request was successfully
allocated, a subsequent request could not be allocated
because of a DADSM error.

e Nonspecific non-private tape or DASD requests could
not be allocated to public mounted volumes.

o Needed units are offline or allocated (and are not shareable)
to another job.

If Recovery Allocation can satisfy the unallocated requests
only by waiting for devices to be unallocated, the operator
is queried; he can cancel the job or instruct allocation to
wait with or without holding resources:

o If the job is cancelled, Recovery Allocation returns to
Common Allocation Control, which completes the proc-
essing of this allocation,

o For wait-without-holding-resources, Recovery Aliocation
returns to Common Allocation Control. Common Allo-
cation Clean-up will unallocate the requests that have -
been allocated and the allocation will be reattempted
when the awaited device(s) becomes available.

o For wait-with-holding-resources, IEFAB491 (Wait Holding
Resources) waits until the needed device(s) become
available and then allocates it.

For details on Recovery Allocation, see the M.O. diagram
“IEFAB485 — Recovery Allocation.’”

(L°€ asea[ay SA) € dwnjoA Arexqyy o180 woyshs ZSA/SO 06Z-€

Diagram 14-1. IEFAB421 — Common Allocation Control (Part 11 of 12)

Volunit
Table

SIOT

SIOT

Algorithm

Tables

12 |f necessary and if authorized by
operator, wait for needed devices,
holding resources already allocated,
and allocate remaining requests
when devices become awvailable.

End the serialization of this
allocation with other processing
that can modify UCBs.

14 Cleanup allocation processing.

Return to IEFBB404
(See Inijtiator/Allocation Interface (IEFBB401)) or
IEFDB413 (see Dynamic Allocation Control

| See

Common
Allocation
Cleanup

(IEFAB490)}

(IEFDB410)) or Common Allocation Cleanup (IEFAB490)

Algorithm
Tables

Count Table

new data sets
created
{except for ISAM)

[62-€ uohieIad(JO POYIIW :T UOIAS

Diagram 14-1. IEFAB421 — Common Allocation Control (Part 12 of 12)

Extended Description

12 This step is performed only if this allocation must
wait for a needed device(s) to be unallocated and
only if the operator authorized allocation to wait holding
the resources already allocated. Common Allocation Con-
trol calls IEFAB491 (Wait Hoiding Resources) to wait for
the needed device(s). The following steps are performed:

a) IEFABA491 informs the Allocation Queue Manager of

the device groups from which an allocated unit is needed.

The Allocation Queue Manager allows other allocations
that cannot wait for devices (for example, dynamic allo-
cation requests) to use the device groups serialized by
this allocation until a needed device becomes available.

b) When a needed device becomes available, IEFAB491
first tries to allocate demand requests, if any have not
yet been satisfied. Demand Allocation is called to proc-
ess any outstanding demand requests — see the
M.O. diagram “|IEFAB479 — Demand Allocation’’

c) To determine if non-demand requests cannot be satis-
fied by using only online and unallocated (or allocated

but shareable) devices, IEFAB491 calls the Cover/Reduce

Algorithm. If all requests can be satisfied, IEFAB478
(Allocate from Groups the Algorithm Picked) allocates
the outstanding requests, interfacing with ICBME for
Mass Storage System (MSS) mount equalization and the
System Resources Manager, to select the device to be
allocated. |EFAB434 actually allocates the device — see

the M.O. diagram “IEFAB434 — Allocate Request to Unit.”"

If all requests cannot be satisfied by considering only
online, unallocated devices, IEFAB491 calls the
Cover/Reduce Algorithm to determine if requests can
still be satisfied if allocated units are considered. If
not, the environment has changed and this allocation
cannot be successfully completed — for example, a
volume on a needed atlocated unit has become
reserved and that volume cannot be used. lEFAB491
returns to Common Allocation Control; this allocation
is failed. Otherwise, IEFAB491 waits for the needed
units — processing is repeated with step 12a.

d) When alt requests are satisfied, the Allocation Queue
Manager releases the device groups no longer needed.
(Only device groups that contain units on which
public volumes must be mounted will remain
serialized.)

Modute Segment

IEFAB491

IEFAB4FA

IEFAB491

|IEFAB479

IEFAB480
IEFAB478

IEFAB434

|IEFAB480

IEFAB491

IEFAB4FA

Extended Description

13 Common Allocation Control dequeues from
SYSIEFSD (minor names Q4, CHNGDEVS,
DDRTPUR, DDRDA); since this allocation will no longer
modify UCBs, further processing need not be serialized

with other processing that might change the UCBs.

14 Common Allocation Cleanup completes allocation
processing. One of three situations exists:

a) All requests still are not satisfied and either retry is
indicated or the operator authorized allocation to wait
without holding resources.

b) All requests are satisfied.

c) A terminating error occurred during allocation or the
operator cancelled the job.

The processing that occurs in each of these cases is
described in the M.O. diagram “IEFAB490 — Common
Allocation Cleanup.”

Error Processing

An error occurring in any routine causes control to be
returned to the calling routine. In this diagram, errors in
steps 1-12 cause control to be passed to step 13.

When IEFAB421 receives control, it creates an ESTAE

environment so that its exit receives control if the
program abnormally terminates.

Module

|IEFAB421

IEFAB490

Segment

$08°€0°CSA

3292 O0S/VS2 System Logic Library Volume 3 (VS2.03.804)

Common Allocation
Parameter List

Function Map

2 bytes

XXXX[XXXX[XXXX[XXXX
Conditions When Bit is On (=1)
Caller is Step Allocation | Caller is Dynamic
Bit Control or Common Allocation Control or
Location Meaning if Bit is On (=1) Allocation Cleanup for Common Allocation
batch allocation Cleanup for dynamic
allocation
1 Volumes can be mounted Always Depends on what user
specifies
Allocation messages to be written MSGLeVEL=(,1) was coded
3 Allocation can wait for units allocated Only if request is not Only in two situations
to another user a logon described in note 1
4 Allocation can wait for volumes Only if request is not Only in two situations
a logon described in note 1
Reserved
6 Allocation can consider offline devices Always Depends on what user
specifies
7 Mount requests to be issued in form Never If bit number 1 is set on
of WTOR
8 Entire generic to be reserved for some . .
specific volume requests Retry is being performed
9 Reserved
10 Allocation header message to be written Always Never
" Allocation message for unit record L .
devices to be issued to console Monitor jobnames in effect
12 Unallocation should indicate that Never Always
scratch function should not enqueue
on TIOT
13-16 Reserved
Note 1: Bits 3 and 4 are set on (=1) if the caller is Dynamic Allocation and if:

* A checkpoint data set is being allocated for use by the scheduler,
* A private catalog is being allocated for use by JFCB Housekeeping.

Figure 2-27. Function Map of Common Allocation Parameter List

Section 2:

Method of Operation 3-293

(L°€ *sealoy TSA) € 2umjoA Arexqry 130 waISAS ZSA/SO v6T-€

Diagram 14-2. IEFAB430 — Fixed Device Control (Part 1 of 4)

ENTRY from IEFAB421 —
Common Allocation Control

Input

Allocation Work
Area (ALCWA)

R
ALCWA 1st SIOT

Volunit Table

ALCWA Count Table

Volunit Table

1st SIOT

Last SIOT

10S UCB LUT

o o I l

Process

Fixed Device Control: Aliocate
requests eligible to permanently
resident or reserved direct
access volumes,

1 Allocate requests for

specific direct access
volumes that are
permanently resident
or reserved,

2 Update count table to
refiect number of volunit
entries remaining to be
allocated.

3 Build list of units on which
permanently resident or
reserved direct access
volumes are mounted.

For details,
see

Specific
Volume
Allocation
Control
(IEFAB433)

ALCWA Count Table

counts
decreased

DSAB

DSAB

- space obtained

—4 lexcept for ISAM)

Count Table
updated

Parameter PRLIST
List (Permanently
. Resident/Reserved List)

Z uondag

$67-¢ uoneiadQ jo poyreo

Diagram 14-2. IEFAB430 — Fixed Device Control (Part 2 of 4)

Module

Extended Description Segment

ENTRY Fixed Device Control (Main Path Control) is
called by Common Allocation Control) to alio-
cate direct-access requests that can be assigned to perma-
nently resident or reserved volumes and to update the

count table.

1 This step is performed only if the SPECREQS field |EFAB433
in the count table is not zero — that is, only if there

are specific volume requests to be processed. Specific

Volume Allocation Control allocates specific volume

requests if the requested volume is a permanently resident

or reserved direct access volume. For details, see the

M.O. diagram Specific Volume Allocation Control

(IEFAB433).

2 Foreach SIOT not yet allocated (SIOTALCD=0), IEFAB430 UPDTCNT
Fixed Device Control examines the unallocated

volunit entries and updates the count table to reflect the

number of volunit entries to be allocated. (Up to this

point, the count table represented the number of SIOTs

to be allocated.) The following fields in the count table

are updated:

o TOTVOLUN — total number of volunit entries remain-
ing to be allocated.

o SPECREQS — number of specific requests.

o PVTNREQS — number of private, nonspecific requests.
o PUBLREQS -- number of public requests.

o STRGREQS — number of storage requests.

~—

Extended Description Module Segment

3 This step is performed only if there are storage or IEFAB430 BLDPRLST
public requests to be processed (in the count

table, STRGREQS # 0 or PUBLREQS # 0). Fixed Device

Control builds a list of pointers to devices on which per-

manently resident or reserved direct access volumes are

mounted. To do this, Fixed Device Control searches

through the 10S UCB LUT for direct access UCBs that

meet the following conditions:

@ The volume mounted on the direct access device is
permanently resident (UCBPRES=1) or reserved
(UCBRSVD=1).

o The unit is not pending offline (UCBCHNGS=0) and
not pending unload (UCBUNLD=0).

e The unit is online (UCBONLI=1) and ready
(UCBNOTRD=0).

o The unit is not being used by a system task
(UCBNALOC=0).

This permanent resident/reserved list (PRLIST) is used
by Nonspecific Volume Allocation Control — see step 4.

(L°€ %219y TSA) € oUmMoA Areaqry o180 wasAS ZSA/SO 96Z-€

Diagram 14-2. IEFAB430 — Fixed Device Control (Part 3 of 4)

input

Parameter
List PRLIST

" Volunit
1st SIOT Table

EDL

Count Table

"D—Iﬁ. Last sno-r‘

Volunit Table

4 Allocate nonspecific direct
access volume requests that
can be allocated to
permanently resident or
reserved volumes.

For details,
see
Nonspecific
Volume
Allocation
Control
(IEFAB436)

§ Perform validity check for
demand requests.

Return to Common-
Allocation Control
(IEFAB421)

Count Table

Counts
Decreased

DSAB

TIOT

DSAB

space obtained
(except for ISAM)

L67-€ uoneiadQ JO POYRW :T UKD

Diagram 14-2. IEFAB430 — Fixed Device Control (Part 4 of 4)

Extended Description Module

4 Nonspecific Volume Allocation Control processes
nonspecific volume requests that can be allocated

to permanently resident or reserved volumes. Fixed Device

Control calls this routine to aliocate:

- IEFAB436

1IEFAB430

- -a) Storage requests to storage volumes if STRGREQS # 0

in the count table.

b) Public requests to public volumes if PUBLREQS # 0 in
the count table.

¢} Public requests to storage volumes if all public requests
were not allocated in the preceding call (4b).

The parameter list includes a function map that indicates
the type of request Nonspecific Volume Allocation Control
should allocate. The parameter list also contains a pointer
to the permanently resident/reserved list (PRLIST) built

in step 5 — Nonspecific Volume Allocation Control uses

the PRLIST to build a list of units eligible to satisfy

individual requests. For details on Nonspecific Volume
Allocation Control, see the M.O. diagram Nonspecific
Volume Allocation Control (IEFAB436).

When processing is complete, Fixed Device. Control
issues a FREEMAIN macro instruction to release the
permanently resident/reserved list.

IEFAB430

Segment

- Extended Description

Module Segment

5 Two or more requests can specifically request the
same unit (for example, two DD statements specify
UNIT=190) only if the following conditions are true:

a) The unit is a direct access device.
b) The same volume can be used for both requests:

@ Identical volume serial numbers are coded or
volume affinity is indicated; or,

e For nonspecific volume requests, none of the
requests are private or nonshareable.

To-determine if the preceding conditions are satisfied
when two or more requests specify the same unit,
Fixed Device Control searches the SIOTs for demand
requests (SIOTDMND=1) and checks the status field
of the volunit entries for those SIOTs that request the
same unit. If the preceding conditions are not satisfied,
further processing of this allocation is terminated.

IEFAB430 CHEKDMNC

Error Processing
An error in any routine causes control to be returned to
the calling routine.

In the event of an abnormal termination, the ESTAE
exit routine established by IEFAB421 performs any
necessary cleanup.

$08°€0°TSA

(108°€0°TSA) € swnjop Areiqry (80T WoIsAS ZSA/SO 867-€

Diagram 14-3. IEFAB433 — Specific Volume Allocation Control (Part 1 of 4)

ENTRY from caller

ot
(see extended description) Process Output

Input

Specific Volume Allocation Control:
Allocate specific volume requests to
mounted volumes,

1st SIOT Volunit Table

‘ Last SIOT

ALCWA 1st SIOT

P [L J Volunit Table
SIOT being
J\‘ processed Pl

EDL uce

1st SIOT

SIOT to be
processed

Locate specific volume request.

o If ail eligible specific volume
requests are processed, go to
step 7.

ALCWA Volunit
Table—

Algorithm updated
Tables—updated*

2 Determine.if volume is on eligible
unit.

e If not, go to step 1 to process
next specific volume request.

* Algorithm tables do not exist if
caller is Fixed Device Control.

If volume is permanently resident or
reserved, cancel unit affinities to.
this request.

Volunit Table

e

667-€ uolieIad() JO POYIW :7 UOIES

Diagram 14-3. IEFAB433 — Specific Volume Allocation Control (Part 2 of 4)

Extended Description

Specific Volume Allocation Control
(IEFAB433) allocates specific volume
requests if the volume is mounted. It is called by:

ENTRY

@ Fixed Device Control (IEFAB430) to allocate specific
volume requests if the volume is a permanently resident
or reserved direct access volume.

@ Demand Allocation (IEFAB479) to allocate specific
volume requests (if the volume is mounted) when a
specific unit was also requested.

o Allocation Within Generic (IEFAB475) to allocate
specific volume requests not allocated during Fixed
Device Control — if the volume is mounted.

® Recovery Allocation (IEFAB485) to allocate specific
tape volume requests marked for recovery processing.
(This occurs when a needed tape volume is mounted on
a generic device type different from the generic selected
for allocation, but still eligible to the request — see
"Processing Tape Requests’’ in the “Introduction to
Allocation/Unallocation.”’)

The processing described in this diagram is a loop per-
formed for every specific volume request.

Note: Every request that requires a particular volume is
considered a specific volume request; for example, a volume
serial number was coded, the data set was passed, the data
set is cataloged.

1 Specific Volume Allocation Control (IEFAB433)

searches the SIOT chain for a SIOT that is not yet
allocated (SIOTALCD=0) and that is not marked ineli-
gible {(SIOTGIGN=0). (When the caller is Fixed Device
Control or Recovery Allocation, no SIOTs are marked
ineligible. Demand Allocation and Alfocation Within
Generic are part of Generic Allocation Control; when
they call IEFAB433, all SIOTs except those eligible to
the generic being processed are marked ineligible.)

For an eligible SIOT, IEFAB433 checks the status field
of volunit entries that are unallocated and are not marked
for recovery, to determine if a specific volume was re-
quested. (Recovery Allocation turned off the recovery
indicator for volunit entries that should be processed.)

Module

IEFAB433

IEFAB433

Segment

~_7

Extended Description Module

Processing of nonspecific volume requests is deferred; if
the SIOT does not include specific volume requests,
IEFABA433 searches the SIOT chain for the next eligible
SIOT. Steps 2-5 are performed for every volunit entry
requesting a specific volume (an eligible volunit entry).
All eligible volunit entries are processed for a SIOT, one
at a time, before the next SIOT is selected. When all
eligible SIOTs have been processed, control passes to
step 7 — IEFAB433 returns to the caller.

2 |EFABA433 checks the UCBs pointed to by the EDL IEFAB433
for this SIOT to determine if the requested volume

is mounted on a unit eligible to this request. If not, the

next specific volume request is located (step 1). Otherwise,

IEFABA433 determines if the unit meets the following

conditions:

o The unit is online.

@ The unit is not being used by a system task.

o No mount is pending for this unit, unless mounting is
allowed for this allocation.

e If the caller is Fixed Device Control, the volume on the
unit is a permanently resident or reserved direct access
volume.

@ The unit is not requested specifically by a request
requiring a different volume.

‘If these conditions are not met, the unit cannot be allocated
at this time. Further processing of this request is deferred
and |IEFAB433 selects the next eligible request — see

step 1.

If the preceding conditions are met, the unit can be
allocated.

3 This step is performed only if the volume is per- IEFAB442

manently resident or reserved. If another request
indicates unit affinity to this request, IEFAB442 cancels
the unit affinity by increasing the number of units
required. (Unit affinity can be either implied or explicit —
see ‘‘Selected Terms Used in Allocation/Unallocation’’ in
the "Introduction to Allocation/Unallocation.”) If, as a
result of increasing the unit requirements, a SIOT would
require more than 59 units, the allocation is failed. Other-
wise, the unit requirements are increased and |IEFAB4F2
updates the algorithm tables, if necessary, to reflect the
changed unit requirements.

IEFAB4F2

Segment

FINDSPC

(L€ 95800y TSA) € awnjop Arexqry 9180 wAISAS ZSA/SO 00€€

Diagram 14-3. IEFAB433 — Specific Volume Allocation Control (Part 3 of 4)

Input

ALCWA . SI0T Volunit Table

]

EDL Algorithm*
Tables

EDL

* Algorithm tables do not exist if caller is Fixed
Device Control.
e e

ALCWA 1st SIOT Volunit
Table

SIOT being
processed

s
L

to it.

and EDL.

7 Return to caller.

4 Allocate this request and
requests that specify affinity

5 Update volunit table, count
table, and, if necessary, SIOT

6 Go to step 1 to locate next
specific volume request.

Allocate
Request
to Unit .
(IEFAB434)

s
SaEe e

Return to Caller

Algorithm Tables*

=

Count Table

" Processed
SIOTs DSAB TIOT

DSAB

space obtained
(except for ISAM) JFCB

* Algorithm Tables do not exist if caller
is Fixed Device Control,

1st SIOT Volunit

Table—
updated

SIOT being
processed

EDL

Count Table

updated if
counts necessary
decreased

10€-€ UONERd(JO POYRI T UOIAS

Diagram 14-3. IEFAB433 — Specific Volume Allocation Control (Part 4 of 4)

Extended Description Module Segment Extended Description Module Segment
4 IEFABA434 (Allocate Request to Unit) allocates the IEFAB434 6 |EFABA433 locates the next specific volume request IEFAB433

request and any requests that specify affinity to it. to be processed — go to step 1.
For details, see the M.O. diagram Allocate Request
to Unit (IEFAB434). 7 |EFABA433returns to the caller. {See the beginning of IEFAB433

the Extended Description for a list of callers.)

5 IEFAB433 marks the volunit entry allocated and IEFAB433

decreases the TOTVOLUN field in the count table. Error Processing Py
The SPECREQS field of the count table is also decreased, An error in any routine causes control to be returned to
unless the caller is Fixed Device Control. (If the caller is the calling routine.

Fixed Device Control, the count table reflects the number
of unaliocated SIOTs and cannot be decreased until all
volunit entries for a SIOT are allocated.)

|EFAB433 also updates the EDL if the following condi- IEFAB433° VUSCAN
tions are true:

In the event of an abnormal termination, the ESTAE
exit routine established by IEFAB421 performs any
necessary cleanup.

@ The unit just allocated is the first volunit entry allo-
cated for the SIOT; and,

o The SIOT is a multi-unit request that must be allocated
to a single generic.

All device types in the EDL are marked ineligible, except IEFAB433 UPDEDL
for the device type just allocated.

If all volunit entries for this SIOT are now allocated, IEFAB433
IEFAB433 marks the SIOT allocated (SIOTALCD=1) and

decreases the TOTREQS field in the count table. If the

caller is Fixed Device Control (and, therefore, the count

table represents the number of unallocated SIOTs), the

SPECREAQS field of the count table is also decreased.

Y08°€0'TSA

(#08'€0°TSA) ¢ ownjop Arexqry o180 WSAS ZSA/SO ZOE-€

Diagram 14-4. IEFAB434 — Allocate Request to Unit (Part 1 of 6)

ENTRY from caller — see

extended description
Input
[

|IEFAB434
Parameter List SIOT being processed

IEFAB441 .
Parameter List Volunit Table

ucs

ALCWA

SIOT being VM&V
processed Request Block

L+

IEFAB435 :
Parameter List Volunit Table

|EFAB435
Parameter List

Volunit
Table

Process

2 Allocate unit.

a)

b)

c)

d)

Allocate Request to Unit

Create or update DSAB and
TIOT entry,

Output

SIOT being

processed

Perform validity check, if
necessary.

o If error, retry, or recovery
situation detected, return
to caller.

Return
to
Caller

Unload volume, if

necessary.

Build VM &V request block,

volume
unloaded, if
necessary

SIOT being VM &V

processed request block

if necessary.

Update UCB.

SIOT being
processed

[: DSAB

z uoipog

.
.

€0€-€ uoneradQ Jo poyrel

S

Diagram 14-4. IEFAB434 — Allocate Request to Unit (Part 2 of 6)

Extended Description Module Segment

ENTRY IEFAB434 (Allocate Request to Unit) is the
common service routine that actually allocates

a request to a unit. It is called by:
o IEFABA425 to allocate teleprocessing requests.

o |[EFAB432 to allocate requests that specified affinity to
an allocated request.

o IEFAB433 to allocate specific volume requests if the
volume is mounted.

e |EFABA436 to allocate nonspecific volume requests if a
volume is mounted.

o IEFABA441 to allocate requests when the needed volume
is found on an eligible unit other than the unit being con-
sidered (for example, a unit affinity request is being proc-
essed) and the volume is permanently resident or reserved.

o IEFAB478 to allocate requests processed by the algorithm.

e IEFAB479 to allocate a unit that was specifically
requested.

o IEFAB489 to allocate online devices during recovery
allocation.

1 |EFAB428 creates or updates a DSAB and TIOT IEFAB428
entry for this request, based on the parameter list it

receives as input from IEFAB434. If the volunit entry

being processed is the first volunit entry to be allocated

for this SIOT, the DSAB and TIOT entry must be created;

a group ID list is also created, indicating the device group

allocated to this request. If this is not the first volunit entry

to be allocated for the SIOT, IEFAB428 updates the exist-

ing DSAB, TIOT entry, and group ID list.

Extended Description Module

2 |EFABA435 (Update UCB Routine) allocates the unit; IEFAB435
the processing of IEFAB435 includes the following

steps:

a) If indicated by the caller of IEFAB434, IEFAB441
(Volume Validity Checker) receives control to validity
check this request. (T he validity check is indicated
only if a specific volume was requested and that
volume is not mounted on the unit to be aliocated.)
IEFAB441 scans the UCBs pointed to by the EDT
group entries to determine if the volume is mounted. If
the volume is not mounted, the validity check is
unnecessary; processing continues with step 2b. Other-
wise, |[EFAB441 determines if the request can be allo-
cated. The following are the possible error conditions
that can be detected:

e The unit is in use by a system task (UCBNALOC=1).

IEFAB441

@ The device type of the unit containing the volume is
not compatible with the requested device type.

@ The volume is permanently resident or reserved and is
mounted on a unit that is not eligible to this request.

e The volume is mounted on a unit allocated to another
user, and this allocation is not allowed to wait for
units, as indicated in the common allocation param-
eter list (see figure 2-27). (If this allocation can wait
for units, the request is marked for recovery
processing.)

If the volume is located on a device group that is not
serialized, the request is marked for retry processing
(SIOTRTRY=1); ALCWA is also updated to indicate
retry is necessary (INDRETRY=1).

If no error, retry, or recovery situation is detected,
allocation of this request continues.

b) IEFAB49C unloads the volume currently mounted on IEFAB49C

the unit, if that volume cannot be used.

c) IEFABA435 builds a VM&V request block for this
SIOT, if a volume must be mounted on the unit. (The
volume will be mounted after all requests have been
satisfied — see the M.O. diagram Common Allocation
Cleanup (IEFAB490).

d) IEFAB435 updates the UCB to indicate it is allocated.

IEFAB435

IEFAB435

Segment

VMVSETUP

uPDUCB

(L€ osea[oY ZSA) € swnjoA Areiqr] o80T WAISAS ZSA/SO +OE-€

L4

Diagram 14-4. IEFAB434 — Allocate Request to Unit (Part 3 of 6)

Input

DADSM
Parameter List S1o1 JFCB

ucs

IEFAB4F2

Volunit Table

Parameter List
-1 /\L

ucs

Algorithm Tables

IEFAB432 SIOT just
Parameter List allocated
] ucs Volunit Table

saraes

Process

3 Interface with DADSM for

space if this isa new direct
access data set.

o If space not obtained,

unallocate unit and return to
caller.

4 Update algorithm tables,

Return
to
Caller

if they exist.

5 Process requests that specify
affinity to the request just
allocated.

space
obtained

Algorithm
Tables—updated

Processed
Affinity

SIOTs

space obtained,
if needed

Algorithm
Tables

Count Table

updated

S0€-€ uoneIad(Q Jo POYIR T UOKIIS

~—

Diagram 14-4. IEFAB434 — Allocate Request to Unit (Part 4 of 6)

Extended Description

3 IEFAB434 interfaces with DADSM to obtain space
for new non-ISAM (see M.O. diagram Common
Allocation Cleanup 1EFAB490 for a description of the
ISAM process) direct access data sets. |f DADSM is
unable to allocate space, |EFAB434 unallocates the
unit, if no other requests were allocated to it, and
removes the device entry for this UCB from the
TIOT entry. If the use attribute for the volume was
changed for this request, the original use attribute is
restored. |IEFAB434 then returns to the caller. Further
processing of this allocation depends on whether the
DADSM error is recoverable (for example, if a specific
volume was requested, the error is unrecoverable and this
allocation is failed).

4 1EFABA4F2 updates the algorithm tables to reflect

the request that was just allocated, if the algorithm
tables exist. (The algorithm tables are not created until the
beginning of Generic Allocation Control.)

Note: The “permanently ignore’’ indicator {CVRIGNOR)
in the algorithm tables is not set at this time for non-
specific volume requests. (When this indicator is set, the
allocation of this request is no longer considered by the
algorithm.) This is necessary because affinity requests have
not yet been processed — if nonspecific requests that
specify affinity to each other cannot all be allocated to
the current volume, recovery processing will be necessary.
If affinity requests are successfully processed, the “’perma-
nently ignore’’ indicator will be set in step 6.

B If indicated by the caller, IEFAB432 (Affinity Proc-
essor) processes requests that specify affinity to the

request just allocated. (Affinity processing is not performed

when IEFAB434 is called to allocate an affinity request —

see step 5a and 5c). |EFAB432 searches the volunit table

for affinity requests. The following steps are performed

for each request:

a) A validity check is necessary if only unit affinity was
requested and if the affinity request needs a specific
volume. |IEFAB441 (Volume Validity Checker) scans
the UCBs pointed to by the EDT group entries to deter-
mine if the needed volume is mounted. If the volume is
not mounted, further validity processing is unnecessary

Module Segment

IEFAB434 DADSMINT

IEFAB434 DADSMERR

IEFAB4F2

IEFAB432

Extended Description Module

and processing continues with step 5b. Otherwise,
IEFAB441 checks for error, recovery and retry
situations:

@ This allocation will be failed if the unit is inuse by a
system task (UCBNALOC=1) or if the device type
of the unit containing the volume is not compatible
with the requested device type.

o This allocation will be failed if the volume is perma-
nently resident or reserved and the unit containing
the volume is not eligible to this request.

o If the volume is mounted on a unit allocated to
another user, this allocation will be failed if it is
not allowed to wait for units (as indicated in the
common allocation parameter list — see figure 2-27).
If this allocation can wait for units, the request is
marked for recovery processing.

- @ If the volume is located on a device group that is not

serialized, the request is marked for retry processing
(SIOTRTRY=1); ALCWA is also updated to indicate
retry is necessary (INDRETRY=1).

If none of these situations are detected, one of the fol-
lowing situations exists:

® The volume is not permanently resident or reserved,
the device group containing the unit is serialized, and
the unit is unallocated. IEFAB49C receives control
to unload the volume. Processing of this request then
continues with step 5b.

IEFAB49C

e The volume is permanently resident or reserved and
the unit containing the volume is eligible to this
request. If another request indicates unit affinity to
this request, |EFAB442 cancels the unit affinity by
increasing the number of units required. (Unit affinity

‘can be either implied or explicit — see ‘‘Selected
Terms Used in Allocation/Unallocation’’ in the ‘‘intro-
duction to Allocation/Unallocation.”) If, as a result

of increasing the unit requirements, a SIOT would
require more than 59 units, the allocation is failed.

IEFAB442

Step 5 continued on Part 6

Segment

(L°€ o5e019Y ZSA) € 2wnjop Arexqry 918077 wosAS ZSA/SO 90€-€

Diagram 14-4. IEFAB434 — Allocate Request to Unit (Part 5 of 6)

{EFAB4F2
Parameter List

Volunit Table

4

_.__N

6 Update algorithm tables, if

Algorithm Tables

they exist,

Return to Calier.
(See beginning of
Extended Description)

Output

Algorithm
Tables—updated

LOE-€ uonesadQ Jo poyIe iz UOI0Ag

Diagram 14-4. IEFAB434 — Allocate Request to Unit (Part 6 of 6)
Extended Description Module Segment

5 (Continued)
Otherwise, the unit requirements are increased,

IEFAB428 creates a larger DSAB/TIOT entry, and IEFAB428
|EFAB4F2 updates the algorithm tables to reflect the IEFAB4F2
changed unit requirements. |EFAB434 allocates the IEFAB434
request to the unit containing the needed volume.

IEFAB441 marks the volunit entry as allocated and IEFAB441

decreases the appropriate counts in the count table.

If the SIOT is now completely allocated, the SIOT is

also marked allocated and the TOTREQS field in the

count table is decreased. IEFAB432 then selects the |IEFAB432
next affinity request to be processed (that is, steps

5b through 5d are skipped for this request)

b) IEFAB432 ensures that the device type just allocated IEFAB432 FINDEDL2
is eligible to the affinity request being processed. If
not, this allocation is failed.

Note: The affinity request need not be eligible to the
particular unit allocated, only to the generic device type.
For example, 3330 is divided into two separate unit
groups, 3330A and 3330B. The request just allocated
had specified 3330A; the affinity request specified
3330B. The affinity request is considered eligible to the
unit allocated from 3330A.

Extended Description

c) IEFABA434 is called to allocate the affinity request. |f
the request (volunit entry) is successfully allocated
and, as a result, all volunit entries for this SIOT are
allocated, |IEFAB432 marks the SIOT allocated and
decreases the TOTREQS field in the count table.

d) IEFAB432 updates the EDL if the following conditions
are true:

e The unit just allocated is the first volunit entry allo-
cated for this S1I0T; and,

o The SIOT is a multi-unit request that must be allo-
cated to a single generic.

All device types in the EDL are marked ineligible
except for the device type just allocated.

G |EFABA4F2 is called to update the algorithm tables;

if affinity requests were successfully processed, the
“permanently ignore’’ indicator {CVRIGNOR) — which
was not updated in step 4 — can now be set on.

Error Processing

An error in any routine causes control to be returned to
the calling routine.

In the event of an abnormal termination, the ESTAE
exit routine established by IEFAB421 performs any
necessary cleanup.

Module

IEFAB434

IEFAB432

IEFAB432

IEFAB4F2

Segment

AFFPROC

UPDEDL

Y08°€0°TSA

(H08°€0°'TSA) € SwnjoA Arexqry oS0y walsAS ZSA/SO 80E-€

Diagram 14-5. IEFAB436 — Nonspecific Volume Allocation Control (Part 1 of 6)

ENTRY from IEFAB430 — Fixed Device Control;
IEFAB475 (see IEFAB471 — Generic Allocation Control)
or IEFAB485 Recovery Allocanon

Input Process

.- Nonspecific Volume Allocation Control:
Allocate nonspecific, non-private volume
requests to mounted volumes,

1st SIOT

1 Select SIOT to be processed.

e If all eligible SIOTs processed,
go to step 10.

1st SIOT Volunit

m Table
/1

SIOT being

lﬁsed/'

2 Locate eligible volunit entry to be
processed,

e |If all eligible volunit entries
processed, go to step 1 to select
next SIOT.

SI0T being
processed

T uoRg

60€-€ uoneradQ jJo poyro

Diagram 14-5. IEFAB436 — Nonspecific Volume Allocation Control (Part 2 of 6)

Extended Description Module Segment

ENTRY Nonspecific Volume Allocation Control
(IEFABA436) is cailed by Fixed Device Con-
trol (IEFAB430), Aliocation Within-Generic (IEFAB475),
and Recovery Allocation (IEFAB485) to-allocate non-
specific volume requests to mounted volumes. IEFAB436
allocates one of the following types of requests each time

it is called:

® Storage requests to storage voiumes.
@ Public requests to public volumes.

@ Public requests to storage volumes.

The type of request to be allocated is indicated in the
function map of the parameter list passed to |EFAB436.

Note: The processing of IEFAB436 is.a series of loops.
Step 1 locates a SIOT to be processed; steps 2-8 are per-
formed to locate and process each eligible volunit entry
for a selected SIOT. The processing of a single volunit
entry can involve loops through steps 3-6 or through
steps 3-7, if the volume mounted on a unit selected for
the volunit entry cannot be used. The extended descrip-
tion of each step describes the circumstances under which
it is performed.

Extended Description

1 IEFAB436 scans the SIOT chain to locate a SIOT that

is not allocated (SIOTALCD=0) and that is not marked
ineligible (SIOTGIGN=0). (When the caller is Fixed Device
Control, no SIOTs are marked ineligible; Allocation Within
Generic is part of Generic Allocation Control, which proc-
esses only one generic device type at a time — all SIOTs
except those eligible to the device type being processed are
marked ineligible; when the caller is Recovery Allocation,
all SIOTs except those to be processed are marked ineli-
gible.) If all eligible SIOTs have been processed, step 10
receives control.

2 . |EFABA436 checks the status field of unallocated
volunit entries for this SIOT to locate a unit request

. to.be processed: a request for a public volume if public

requests are being processed; or a request for a storage
-volume if storage requests are being processed. If no eli-
gible volunit entries are located, |EF AB436 selects another
‘SIOT — see step 1.

Module

IEFAB436

IEFAB436

(L°g asB32Y ZSA) € 2wnjoA Areiqry 9!301 walsAS ZSA/SO OI€€

Diagram 14-5. IEFAB436 — Nonspecific Volume Allocation Control (Part 3 of 6)

Parameter List

PRLIST**

PSLIST* * if updating PSLIST
- ** if creating PSLIST and
caller is [EFAB430
UCB candidate *** if creating PSLIST and
list*** caller is IEFAB475 or
IEFAB485.

Volunit
Table

SIOT being
processed

Process

4 Build allocated UCB list, if
necessary.

Build or update list of UCBs
eligible to this volunit entry
(PSLIST).

If PSLIST does not contain
entries:

a) Change storage requests to
private, if necessary,

b) Go to step 1 to select next
SIOT,

Output

| Public/Storage List
- (PSLIST) —created or updated

Allocated
UCB List

Z uonpas

11€-€ uoneradQ Jo poyoW

Diagram 14-5. IEFAB436 — Nonspecific Volume Allocation Control (Part 4 of 6)

Extended Description

3 The purpose of this step is to build a list of units

eligible to the volunit entry being processed — a
public/storage list (PSLIST). The unit allocated to the
volunit entry is chosen from this PSLIST.

Because the processing of IEFAB436 is a series of loops,
this step can be performed after step 2 — the first eligible
volunit entry for a SIOT is initially being processed; after
steps 6 or 7 — the processing of a volunit entry is being
repeated because of a recoverable error; or after step 9 —
an additional volunit entry is being processed for this
SIOT. Depending on when this step is being performed,
the PSLIST is either created or, updated:

a) The PSLIST is created if this volunit entry is the first
to be processed for this SIOT — that is, this step
receives control from step 2. In this case, input to this
step is a UCB candidate list of available units that do
not contain private volumes (if the caller is Allocation
Within Generic or Recovery Allocation) or a list of
UCBSs containing permanently resident or reserved
direct access volumes (PRLIST, if the caller is Fixed
Device Control).

After the list is created, IEFAB436 determines if it
contains sufficient units to allocate all the units
required by this SIOT. If it does not, the entries in the
PSLIST are deleted and no requests are allocated unless
one of the following conditions is true:

@ The caller is Recovery Allocation.

® The request is eligible to more than one generic and
can be allocated across generics.

b) The PSLIST is updated in the following cases:

® A volunit entry was just allocated for this SIOT and
another volunit entry is being processed. The PSLIST
is updated to eliminate the unit just allocated. In
addition, if the PSLIST includes units from different
generic device types and allocation across generics is
not allowed, IEFAB436 eliminates all entries in the
PSLIST that represent a device type different from
that just allocated. The EDL is also updated to
eliminate those generics that are no longer eligible.

< F

Module Segment

IEFAB436 PSLSTBLD

IEFAB436 PSLSTMNT

IEFAB436 PSLSTMNT

IEFAB436 PSLSTBLD

IEFAB436 PSLSTMNT

Extended Description

@ A unit was selected from the PSLIST to be allocated
to this volunit entry, but the volume on the unit
could not be used because of a volume enqueue
error — see step 6. IEFAB436 eliminates the entry for
this unit from the PSLIST.

® A unit was selected from the PSLIST to be allocated
to this volunit entry, but the volume on the unit did
not contain sufficient space for the data set. |EFAB436
eliminates the entry for this unit from the PSLIST.
(This unit, however, can be considered for other
volunit entries for this SIOT, once a unit has been
allocated to the current volunit entry.)

It is possible, after the PSLIST is created or updated,
that it does not contain entries. If storage requests are
being processed, IEFAB436 changes all storage volunit
entries remaining to be allocated to private requests.
Any other allocated volunit entries for this SIOT that
require the same volume and unit are also changed to
private. IEFAB436 also updates the PUBLREQS and
PVTNREQS fields in the count table.

If there are no entries in the PSLIST, no further proc-
essing for this SIOT can be performed at this time.
IEFAB436 selects the next SIOT — see step 1.

4 The purpose of this step is to build a list of allocated

units. The System Resources Manager uses the allo-
cated UCB list and the PSLIST to determine which unit
should be allocated to a request. This step is not per-
formed in either of the following situations:

® The PSLIST (built or updated in step 3) contains only
one entry. There is no choice of units and, therefore,
no need to interface with the System Resources
Manager.'

o An allocated UCB list already exists and can be reused;
this is true if the processing of a volunit entry is being
repeated due to a volume enqueue or DADSM error.

IEFAB440 (Build Allocated- UCB List) builds the allo-
cated UCB list by obtaining the UCB addresses from
TI1OT entries.

Module

Segment

IEFAB436 PSLSTMNT

IEFAB436 PSLSTMNT

IEFAB436

IEFAB436

IEFAB440

PVTUPDTE

PSVOLUN

(L°€ %5v39Y TSA) € ownjo Arexqry 918077 WoISAS ZSA/SO TIE€

Diagram 14-5. IEFAB436 — Nonspecific Volume Allocation Control (Part 5 of 6)

PSLIST

Parameter

List selected

5 - Interface with System Resources - | entry

Manager to select device, if
necessary.

Parameter
List

Allocated |
UCB List 6 Enqueue on volume serial number,

Algorithm Tables

unless volume is permanently |
resident or reserved.] @

. e If volume can’t be used, go
1st SIOT Volunit Table to step 3 to update PSLIgT. Count
Algorithm . 1 Table
EDL Tables . _ : TIOT

7 Allocate request. | . DSAB
e If unsuccessful: ;

updated

o a) Dequeue from volume, if
PSLIST =] necessary.

Pa.arameter b) If recoverable DADSM
List selected error, go to step 3 to

D/ entry | | ﬁ update PSLIST,

e

Allocated
UCB List

space obtained
8 Release allocated UCB list. : (except for ISAM)

9 Go to step 2 to select next

volunit entry. Allocated UCB

List released.

AR | ' .
10 Release PSLIST and, if necessary,

the allocated UCB list.

UCB List *if not aiready

released) i i ! PSLIST and, if necessary, Allocated
' UCB L.ist released.

Return to Fixed

Device Control

(IEFAB430); IEFAB475

{See Generic Allocation Control (IEFAB471));
or Recovery Termination (1EF AB485)

z uonog

€1€-€ uonesnd(Jo poyroW

Diagram 14-5. IEFAB436 — Nonspecific Volume Allocation Control (Part 6 of 6)

Extended Description Module

5 IEFAB436 interfaces with the System Resources IEFAB436
Manager, which selects a device to be allocated
to this request. This step is not performed if the PSLIST

contains only one entry.

6 If the volume on the selected unit is not perma- IEFAB4FO
nently resident or reserved, IEFAB4FO0 (Condi-
tional ENQ/DEQ Routine) enqueues on the volume. The

enqueue can result in one of the following situations:

o The enqueue is unsuccessful because the volume is
already owned by this job. The volume can be used
if the enqueue is share and no unallocated specific
volume requests need this volume.

® The enqueue is unsuccessful because another user
owns the volume; the volume cannot be used.

® The enqueue is successful; the volume can be used.

If the volume cannot be used, the PSLIST must be
rebuilt to exclude the entry for this unit and a new unit
must then be selected — go to step 3.

7 |EFAB434 (Allocate Request to Unit) allocates this IEFAB434
request and any requests that specified affinity to
it. For details, see the M.O. diagram Allocate

Request to Unit (IEFAB434).

If the allocation is unsuccessful and the volume was
enqueued, IEFAB4FO dequeues from the volume. If

the allocation is unsuccessful because of a DADSM error,
the PSLIST is rebuilt to exclude the entry for this unit
and a new unit is selected — go to step 3.

IEFAB4FO

Segment

PSALLOC

Extended Description Module

8 [IEFABA436 issues a FREEMAIN macro instruction IEFAB436

to release the allocated UCB list.

Note: This list is not released if the request could not
be allocated due to a volume enqueue or DADSM error;
the list can be reused.

O IEFABA436 selects the next volunit entry to be IEFAB436

processed — see step 2,

10 Atterall eligible SIOTs have been processed,

IEFAB436 issues a FREEMAIN macro instruc-
tion to release the storage obtained for the PSLIST, If
the allocated UCB list has not been released, IEFAB436
also releases it. (The Allocated UCB list will not have
been released if a request was not allocated because of
an enqueue or DADSM error and, when the PSLIST was
rebuilt, it contained no entries.)

IEFAB436

Error Processing

An unrecoverable error in any routine causes control to be
returned to the calling routine.

In the event of an abnormal termination, the ESTAE

exit routine established by IEFAB421 performs any
necessary cleanup.

Segment

PSALLOC

08°€0°TSA

(H08'€0°TSA) € SWN[OA Areqry IS0 wolsAS ZSA/SO YIEE

Diagram 14-6. IEFAB451 — JFCB Housekeeping Control (Part 1 of 6)

ENTRY from |IEFBB404 (see |IEFBB401 —Initiator/Allocation Interface)
or
1EFDB413 {see |EFDB410—Dynamic Allocation Control)

Input Process

JFCB Housekeeping JFCB Housekeeping Control: Retrieve information

Paramefers necessary for allocation,
Function Map

} 1st SIOT to process
Step Number

AJCT

AscT ,

A Last EPA Pointer

) Special EPA Chain or 0
A Initiator's JSCB
hilosucs LUT

reason code area

1 Establish ESTAE environment and prepare for
JFCB Housekeeping processing.

2 Process STEPCAT request(s) if present; for
each request:

Current . .
SIOT a) Prepare for further processing.

{output of
step 2.)

Current b) L . .
Retrieve information required for catal
Controls SioT a o9

allocation and complete tables. \
i I I Current » See DD

- JFCB =, Function

Control
(output of (IEFAB454)
step 2a.) for details.

Initiator c) Create private catalog control block

JSCB (PCCB) to represent catalog.

Output

HSKPWA

HSKPWA

Housekeeping
Workarea (HSKPWA)

Controls

Data Area

Return info

Current
SIOT JFCB

]

current SIOT = SIOT to be
processed

Current
SIOT
Current
o JFCB

Updated
HSKPWA

Controls
Updated

4

HSKPWA

~

L1

Current
SIOT updated

Current
/I:J JFCB updated

Initiator
J
Sce Active (Problem
Program) JSCB

SIE-€ uonesnd(Jo poylely i UOHOSS

Diagram 14-6. IEFAB451 — JFCB Housekeeping Control (Part 2 of 6)

Extended Description

ENTRY JFCB Housekeeping Control, called by either
Step Allocation Control (IEFBB404) or
Normal Dynamic Allocation (IEFDB413), is responsible
for retrieving the information necessary to allocate each
request. The only functions actually performed by JFCB
Housekeeping Control are initialization and clean-up. To
process the requests, JFCB Housekeeping Control calls
other routines. DD Function Control, which retrieves
necessary information and completes tabies (SIOTs,
JFCBs, and JFCBXs), is described in detail in the

M.O. diagram DD Function Control (IEFAB454).

Input to JFCB Housekeeping Control is the parameter list
created by Dynamic Allocation Control or Step Allocation
Control. In the parameter list, the pointer to the special
EPA chain is passed only from Dynamic Allocation Con-
trol; it is used for SIOTs, JFCBs, and JFCBXs created by
JFCB Housekeeping. The pointer to the last EPA is used
for updated tables (such as the JCT), when housekeeping
is called by dynamic allocation; and for generated S10Ts,
JFCBs, and JFCBXs, as well as the JCT, when house-
keeping is called by step allocation. The function map is
illustrated in figure*18.

Module

Segment

Extended Description Module

1 After establishing an ESTAE environment, JFCB IEFAB451
Housekeeping Control issues a GETMAIN macro
instruction to obtain space for the housekeeping workarea
(HSKPWA) and places the JFCB Housekeeping parameter
list into HSKPWA. The HSKPWA includes a control area

that indicates what processing should be performed; it
consists of global controls, local controls, and counters.
Global controls are set according to the input function
map and pertain to all data set requests to be processed
during this invocation of JFCB Housekeeping. Local con-
trols are set by the individual routines and pertain only
to the current SIOT (the specific SIOT being processed;
S10Ts are processed one at a time); they are turned off as
the functions they indicate are performed. Global con-
trols always override local controls if indicators in each
conflict. The counters are used to monitor the processing
of generated SIOTs in the case of DSN recursion or
volume/unit recursion. For details on HSKPWA, see
0S/VS2 Data Areas, SY 38-0606.

2 DD Processing Control is responsible for selecting IEFAB452
SI0Ts to be processed; one SIOT is completely
processed before the next SIOT is selected. DD Proc-
essing Control first selects STEPCAT requests, if present.
(Note: JOBCAT requests are treated as STEPCAT re-
quests; each JOBCAT DD statement is propagated to
every step in the job that does not include a STEPCAT DD
statement.) In the SCT, the SCTPCAT field contains a
pointer to the first STEPCAT request and the SCTCATCT
field contains the number of STEPCAT requests.
(STEPCAT requests are chained together within the
SIOT chain.) For each STEPCAT request:

a) DD Preparation places the address of the JFCB for the IEFAB453

current DD request (SIOT) into the HSKPWA.

b) DD Function Control controls the retrieval of required IEFAB454
volume and unit information. For details, see the

M.O. diagram DD Function Control (IEFAB454).
c) The PCCB Routine creates a private catalog control

block (PCCB) for the STEPCAT request and adds it to
the chain of PCCBs for this step.

IEFAB4EF

Segment

HSKPINIT

FINDPCCB

(L°€ 5eaoy TSA) € dwnjoA Arexqry 91807 woisAS ZSA/SO 9T€-€

Diagram 14-6. IEFAB451 — JFCB Housekeeping Control (Part 3 of 6)

Input

HSKPWA

1st SIOT Next SIOT

e g I |

HSKPWA Current SIOT
Controls

1

Controls

HSKPWA Current SIOT
{output of step 3)

Referenced
- HSKPWA SCT SI0T

Process Output

3 Process data set requests other than

- HSKPWA

Current SIOT

STEPCATSs; for each request:

ot to be processed

Current SIOT = SIOT

a) Prepare for further processing.

Current SIOT

b} Determine if further processing
can be eliminated:

Current JFCB

® Data sets do not require units
or volumes to be allocated.

=

Current SIOT

g

1st SIOT

Current JFCB

Current SIOT
—] 7T 1

EDT (eligible
device
table)

10S UCB LUT

Last SIOT

77

Current SIOT

Current SIOT

Current JFCB

o PGM parameter refers to
previous DD statement.

HSKPWA

HSKPWA

Controls
Updated

Current SV‘I OT‘;updated N

If no further processing is required
for this request, process next

Current JFCB —updated

request; return to step 3.

c) Retrieve unit information:

® Convert unit information, if

-y m——

HSKPWA

Current SIOT—updated

unit name was specified.

Controls
Updated

® Copy unit information, if unit

/ Unit

Conversion List

A

affinity was specified.

updated

® Check for V10O -eligible or

‘u

HSKPWA—

pdated

CurrentSIOT— Generated
updated JFCBX, if

subsystem data set,

Controls
Updated

needed
Current JFCB— | I, _}

d) Retrieve information required for
allocation and complete tables,

updated

See DD Function Control
(IEFABA454) for details.

(A —

L1g-€ uonerad(Jo poylap :Z Uoidag

S

Diagram 14-6. IEFAB451 — JFCB Housekeeping Control (Part 4 of 6)

Extended Description

3 After STEPCAT requests are processed, DD Proc-
essing Control selects remaining requests, one at a
time, for processing; each SIOT is completely processed
before the next is selected. When all SIOTs have been
processed, control is returned to JFCB Housekeeping
Control for clean-up processing (step 4). For each SIOT:

a) DD Preparation places the address of the JFCB for the
current SIOT into the HSKPWA.,

b) DD Preparation determines if any further processing
can be eliminated:

o If ONAME (SIOTQNAM=1 in the SIOT) or
TERM=TS (SIOTTERM=1 in the SIOT) was speci-
fied for this request, DD Preparation sets the local
controls to indicate that no further processing is
required (HWDDDONE=1). If the request is a dummy
data set (DUMMY or DSN=NULLFILE was speci-
fied; SCTDUMMY=1 in the SIOT), a subsystem data
set (for example, sysin or sysout; SIOTSSDS=1 in the
SI10T), or a VIO data set (SIOVAMDS=1 in the
SI0T; for checkpoint restart only}, DD Preparation
indicates in the local controls that Dsname Resolu-
tion is not required (HWDSNRQD=0).

® When PGM=* stepname.ddname or

PGM=* procstepname.ddname was specified, DD Prep-

aration calls the SWA Manager Interface to read the
SIOT and JFCB of the referenced DD statement; the
SCTGOTTR field in the SCT contains the SWA virtual

address (SVA) of the referenced SIOT. DD Preparation
copies unit, volume, and data set information from the

referenced SIOT and JFCB to the current SIOT and
JFCB and sets the local controls to indicate no further
processing is required (HWDDDONE=1). If the refer-
enced SIOT was not allocated, processing is
terminated.

If no further processing is indicated (HWDDDONE=1),
DD Preparation returns to DD Processing Control,
which selects the next SIOT (step 3).

Module

|EFAB452

IEFAB453

|IEFAB453

IEFAB453

IEFAB453

IEFAB4F7

IEFAB453

IEFAB453

Segment

FASTPATH

FETCHLIB

FETCHLIB

Extended Description

c) DD Preparation is responsible for retrieving unit infor-

mation, if unit information was not previously con-
verted (SIOUCNVT=0, in the event of check point
restart):

o If the first subparameter of the UNIT parameter was
coded (i.e., a unit address, device type or group name
was specified), Unit Name Conversion searches:

— The eligible device table (EDT) for a matching
unitname. If a match is found, Unit Name Con-
version places the EDT look-up value (LUV) in the
unit conversion list in HSKPWA and sets local
controls to indicate: the unit was converted from
the EDT (HWEDT=1); the unit is VIO eligible
(HWVAME=1) if the EDT LUV is VIO eligible;
the unit is an override candidate (HWOVCAND=1),
if the matching unitname in the EDT consists of
only one generic device type. The generic device
type is also placed in the unit conversion list.
(Note: The unit information is placed in the SIOT by
IEFAB464 — see the M.O. diagram DD Function
Control (IEFAB454).

— The UCBs (by means of the I0S UCB LUT), if a
matching unitname was not found in the EDT.
Unit Name Conversion searches the UCBs for a
unit address that matches the specified unit
information. If a match is found, Unit Name
Conversion places the device type and UCB
address in the unit conversion list in HSKPWA
and sets local controls to indicate: the unit
was converted from a UCB (HWUCB=1); the
unit is an override candidate (HWOVCAND=1).

if the specified unit information is not found in the
EDT or in a UCB, processing is terminated.

Step 3 continued on Part 6

Module

|IEFAB453

IEFAB470

IEFAB470

Segment

(L°€ asea[oY TSA) € swnjoA Areiqry 91807 waysAS ZSA/SO STE-€

Diagram 14-6. IEFAB451 — JFCB Housekeeping Control (Part 5 of 6)

HSKPWA

Controls

-

HSKPWA

Jscs
(Problem

Program)
JSCB

1st PCCB

/

EPA used
for reads

Additional
Volume List

: (if obtained) |

| S ——

Sr

Process Output

4 Cleanup housekeeping processing:

Private catalogs
unallocated;

a) If housekeeping was invoked by Step
Allocation Control, unallocate private
catalogs allocated during housekeeping
processing,

workarea and
storage released.

p) Release any storage obtained during
processing, release JFCB Housekeeping
workarea, and release ESTAE

environment.

Return to IEFBB404
(See Initiator/Allocation Interface (IEFDB401)) or
IEFDB413 (See Dynamic Allocation Control (IEFDB410))

61¢-¢ uoneradQ jo PO :Z oIS

Diagram 14-6. IEFAB451 — JFCB Housekeeping Control (Part 6 of 6)
Extended Description Module Segment

3 c) continued

o If unit affinity was specified, DD Preparation locates IEFAB453 SRCHSIOT
the referenced SIOT by comparing the affinity-DD
number in the current SIOT (SIOTUNAF field) to
the DD numbers of the SIOTs in the SIOT chain
(SCTDDINO field).

The following processing occurs:

— If the referenced SIOT contains converted unit
information, DD Preparation copies it into the
unit conversion list in HSKPWA.

~— If the referenced SIOT indicates a VIO data
set (SIOVAMDS=1), DD Preparation indicates
in the local controls that the unit is VIO-
eligible (HWVAME=1).

— If the referenced SI10OT indicates a subsystem
data set (SIOTSSDS=1), Unit Name Conversion IEFAB470
converts the unitname SYSALLDA and places
the converted information into the unit con-
version list in HSKPWA.

d) DD Function Control controls the retrieval of |EFAB454
volume and unit information required for alloca-
tion; if necessary, DD Function Control also gener-
ates a JFCBX(s). For details, see the M.O. diagram
“tEFAB454 — DD Function Control.”

Extended Description

4

a) If JFCB Housekeeping was called by Step Allocation
Control and private catalogs were allocated during
housekeeping processing (see the M.O. diagram
JLOCATE (IEFAB469)):

e Close Private Catalog (a data management rou-
tine) closes the catalogs.

® Unallocate Private Catalog Routine issues SVC 99
to unallocate the catalogs.

- @ The PCCB Routine releases the private catalog
control blocks (PCCBs).

The active {problem program’s) JSCB is used to
determine if any private catalogs have been allo-
cated (the pointer to the PCCB chain does not
equal 0).

b) JFCB Housekeeping Control issues. FREEMAIN
macro instructions to release any storage obtained
during housekeeping processing (for example, storage
for a volume list if the CRI is too small), to release the
housekeeping workarea (HSKPWA), and to release the
ESTAE environment.

Error Processing

In general, an error occurring in any routine causes con-
trol to be returned to the calling routine with appropriate
return and reason codes. Return and reason codes are
listed in Section 6, Diagnostic Aids. Errors occurring in
steps 1-3 cause control to be passed to step 4.

When IEFAB451 receives control, it creates an ESTAE
environment so that its exit routine receives control if
an abnormal termination occurs.

Module

|IEFAB451

IDACAT12

IEFAB4F4

IEFAB4EF

IEFAB451

Segment

HSKPCLUP

FINDPCCB

HSKPCLUP

Y08°€0°TSA

3-320 0S/VS2 System Logic Library Yolume 3 (VS2.03.804)

~

JFCB Housekeeping

Parameter List

i

Function Map

2 bytes

—— o o—

AXXX]IXXXXIXXXX]|XXXX

Bit v Conditions when Bit is Oni (=1)
Location Meaning if Bit is On (=1) Caller is Step Caller is Dynamic
Allocation Control Allocation Control
1 PDI can be searched , Always Never
2 Do not update last SIOT pointer in Never Always
SCT, if S10T created
3 Catalogs may be mounted Always Depe}\ds on what
user specified
4 Wait for units during catalog allocation Always Depends on what
user specified
Perform catalog recovery Alv_vays Never
Do not create SIOT and JFCB for Never Always
catalogs ; . . .
7 Wait for volumes during catalog Always Depends on what
allocation user specified
Do not process JOBCATs/STEPCATSs Never Always
Consider offline devices during Always Depends on what
catalog alloca;ion , user specified
10 Do not enqueue on TIOT Never Always
" Change active JSCB to allocate Always Never
catalog to initiator
12 Add EPA to chain if JCT is updated Never Always
13 Bypass data set integrity ENQ Never Depends on what
i user specified
14 Program authorized to bypass data If program is Never
set integrity if no JOBLIB or STEPLIB authorized
15-16 Reserved

Figure 2-28. Function Map of JFCB Housekeeping Parameter List

Section 2: Method of Operation 3-321

(L'€ 95833y TSA) € SWNJOA Arexqr] 980T WaIsAS ZSA/SO ZTE-€

Diagram 14-7. IEFAB454 — DD Function Control (Part 1 of 12)

ENTRY from IEFAB452 (See IEFAB451 —
JFCB Housekeeping Control)

Input Process
JFCB . :) DD Function Control: retrieve
Housekeeping ; required information and complete Current SIOT
Workarea tables necessary for allocation.

(HSKPWA) Current SIOT

Controls ﬂ]
~~aCurrent JFCB

1 Locate existing cataloged or passed
data set.

Current JFCB

HSKPWA
Controls Current SIOT

PDI /'l___] : a) Search passed data set informatio
} PD1or 0 (PDV), if caller of JFCB

Housekeeping was Step Allocation ;

\\Current JECB Control.

DSNAME | |

Controls
Updated

Referenced
SIOT

Current
SIOT

Current
JFCB

b) If data set was not found in CRI updated

PDI or if PD1 was not searched, .

HSKPWA

Controls

talog.
search catalog Updated Volume List
obtained if
— CRI not large
| enough.

. |

9 '

| E

Current
SIOT

T uondsg

€7€-€ uonendQ jo poylow

Diagram 14-7. IEFAB454 — DD Function Control (Part 2 of 12)

Extended Description Module Segment

ENTRY DD Function Control, called by DD Proc-
essing Control (IEFAB452; see the M.O, diagram
JFCB Housekeeping Control (IEFAB451)), determines
what additional information is needed to allocate a request,
obtains that information, and places it in tables to be used
by allocation. Every SIOT that does not complete pro-
cessing during DD Preparation (HWDDDONE=1 in the local
controls if no further processing is required) is processed
by DD Function Control. However, not all the steps in DD
Function Control are performed for every SIOT — the type
of request (for example, GDGALL request, existing cat-
aloged data set) determines what DD Function Control will
do to retrieve needed information. The extended descrip-.
tion for each step describes when that step is performed.

in general, steps 1-4 are concerned with retrieving unit
and volume information; step 5 copies unit and volume
information into the SIOT, JFCB, and, if needed, JFCB
extension (JFCBX); steps 6 and 7 complete DCB and
DISP information in the JFCB and SIOT.

Extended Description Module

1 When this step is processed, two functions are IEFAB454

performed:

o This step determines if a request is GDGALL (all levels
of a generation data group are requested).

o If the request is not GDGALL, this step retrieves data
set name, volume, and unit information from the PDI
(passed data set information) or from a catalog. (Dsname,
volume, and unit information for a GDGALL request
is retrieved in step 2b.)

This step is processed only if the following conditions are
true:

o The unit requested is tape or direct access (HWTAPE=1
or HWDA=1 in the local controls).

o The data set is not a single generation data set
(SCTSGDGS=0 in the SIOT), or it is a single
generation data set at restart. (Dsname, volume,
and unit information for a single generation data
set is retrieved in step 2a.)

o The data set disposition is not new (SCTSNEW=0 in
the SI0T).

o Volume information is not specified: by explicit
volume serial numbers, or by a volume reference
(SCTVOLAF=0 and SCTVOLCT=0 in the SIOT),
or by volume serials which were retrieved from the
catalog.

® The SIOT being processed is not a SIOT generated in
response to a GDGALL request (DSN recursion;
HWDSNREC=0 in the local controls) or a SIOT
generated in response to a request for a data set residing
on more than one device type {volume/unit recursion;
HWVUREC=0 in the local controls).

® The data set is not a subsystem, or dummy data set
(HWDSNRQD=1 in the local controls).

DD Function Control calls JLOCATE to search the PDI
and/or catalog(s) for the required information, or to
update the PDI and allocate a VSAM private catalog or
CVOL. For details on the processing of JLOCATE,
see the M.O. diagram JLOCATE (IEFAB469).

IEFAB469

Segment

ESTABDSN

(L°€ e[y TSA) € SwnjoA Arexqry 8o woyshS ZSA/SO $TE€

Diagram 14-7. IEFAB454 — DD Function Control (Part 3 of 12)

Input

HSKPWA

Controls

Process

_JCT

2 If request is GDG, resolve data set

GDGNT
or0

Current . name and retrieve unit and volume
SIOT information; current SIOT isone
s of the following:

Current

JFCB a) GDG-single request.

CRI (catalog
return information)

b) GDGALL request.

CRI

R,

HSKPWA

Controls

Current SIOT

(generated) & c) SIOT generated in response to -

GDGALL request.

Current JFCB
{generated)

HSKPWA GDGNT

Controls
Updated

- Current SIOT
11

N Current JFCB—
N updated

CRI updated

Volume List *

* Volume List
obtained if CRI not large enough

e

HSKPWA SCT—updated

Controls
Updated Current
» SIOT

Current
JFCB

) updated

CRI updated Volume Generated
i JFCBs

Generated
SI0Ts

* Volume List
obtained if CRI not large enough
-

HSKPWA Current SIOT

Controls

Updated Current JFCB—
updated

T

CRI{ updated Vplume _
List *
—-————

] '
- d

* Volume List exists if CRI too small.

7 uonpog

STE-€ uonesdQ jo poyro

Diagram 14-7. IEFAB454 — DD Function Control (Part 4 of 12)

Extended Description

2 The purpose of this step is to obtain the fully-

qualified dsname of a generation data group (GDG)
and to locate volume and unit information for the GDG
request. A SIOT processed by this step is: a) a SIOT
representing a GDG-single request (SCTSGDGS=1 in the
SIOT); or, b) a SIOT representing a GDGALL request
(HWGDGALL=1 in the local controls); or, ¢) a SIOT
generated in response to a GDGALL request (DSN
recursion; HWDSNREC=1 in the local controls). The
following processing is performed:

a) For a SIOT representing a GDG-single request, GDG
Single Processing:

@ Checks the data set name for correct syntax. If the
base name (not including the level number) is greater
than 35 characters, control is returned to the caller
and processing is terminated.

e Obtains the base level of the GDG:

— If any GDG name tables (GDGNTs) exist for the
job (JCTGDGNT#0), GDG Single Processing
searches the GDGNTs for the dsname. (If
HSKPWA does not include a pointer to the
GDGNT(s), the SWA manager is called to read
the GDGNT (s} for the job and a pointer is placed
in HSKPWA)

— If the dsname is not found in a GDGNT or if no
GDGNT;s exist for the job, GDG Single Processing
calis JLOCATE to obtain the base level. The proc-
essing of JLOCATE is described in the M.O. dia-
gram “|EFAB469 — JLOCATE.” If JLOCATE
returns with the base level, an entry is created in
a GDGNT, which itself is created if necessary.
1f JLOCATE is unable to locate the base level,
processing terminates; IEFAB454 returns to the
caller,

o Calls JLOCATE to obtain the fully-qualified data
set name and unit and volume information for the
data set. JLOCATE is described in the M.O, dia-
gram JLOCATE (IEFABA469).

Module

IEFAB456

IEFAB461

|IEFAB461

IEFAB461
IEFAB461

IEFAB461
|IEFAB4F7

|IEFAB461
IEFAB469

IEFAB4F7

IEFAB469

Segment

GNTLCUPD
GNTSCAN

GNTRDLOC

Extended Description

b) For a SIOT representing a GDGALL request, two

functions are performed:

o Tables are created for all the levels of the GDG except
the zero level. DSN Resolution turns on the DSN
recursion indicator in the focal controls
(HWDSNREC=1) and updates the counter in the
contro! area with the number of SIOT/JFCB pairs to
be created (HWDDSTEP=n}. Table Creation generates
the required number of SIOTs and JFCBs and chains
them to the zero level SIOT. DD Processing Control
(see the M.O. diagram JFCB Housekeeping

Module

|EFAB456

IEFAB456

IEFAB466

IEFAB452

Control (IEFAB451)) will select the generated SIOTs, one

at a time, for processing immediately after the
SIOT representing the zero-level of the GDG is com-
pletely processed.

o JLOCATE obtains the fully-qualified dsname and
unit and volume information for the zero-leve! of
the GDG. For details on JLOCATE, see the
M.O. diagram JLOCATE (IEFAB469).

c) For a SIOT generated in response to a GDGALL

request, DSN Resolution:

@ increases the generated-DD counter (HWDDCTR)
in the control area of HSKPWA by 1.

@ Modifies the dsname in the JFCB to appear as a
request for the desired level of the GDG; the
relative generation number is the negative of the
generated-DD counter.

o Turns off the DSN recursion indicator (HWDSNREC=0)
and sets the counters in the control area to Q if this is
the last generated SIOT — that is, if the generated-DD
counter (HWDDCTR) equals the number of DDs
generated (HWDDSTEP).

o Calls JLOCATE, which obtains the fully-qualified
data set name and unit and volume information for
the data set. For details on JLOCATE, see the
M.O. diagram JLOCATE (IEFAB469).

IEFAB469

IEFAB456

IEFAB469

Segment

GDGACODE

(L°€ 35e3[3Y TSA) € dWnjoA Arerqry o180] waISAS ZSA/SO 9Z€-€

Diagram 14-7. IEFAB454 — DD Function Control (Part5 of 12)

Input

Process

HSKPWA Current
Controls sioT

3 If data set spans device types, set -

Controls
Updated

Current
SIOoT

-y

Current up volume/unit recursion.

N JFCB

T

Vol
CRI Ligr

—-———

R

4 if VOL=REF was specified, resolve

HSKPWA

Generated

Generated

HSKPWA . scr reference:
Controls Zglt\laTset
A Current name
‘PD' - SIOT table) a) reference to dsname.
47T 11
~ Current
CRI JFCB

HSKPWA Current
Controls SIOT

Referenced
SIOT

Controls
Updated

-

If found in PDI:

Referenced
. SIOoT

7 Current
SIOoT

Current
JFCB

I

CRI

If found in catalog:

Volume
List *

pdated |or|

[U l

b) reference to ddname.

Current
- JFCB

y

if CRI too small.

—— -y

[p— |

* Volume List obtained

Controls
Updated

v

Referenced
SIOT

LTE-€ uonesdQ Jo POYRN g Uodss

Diagram 14-7. IEFAB454 — DD Function Control (Part 6 of 12)

Extended Description

3 The purpose of this step is to determine if volume/
unit recursion is necessary. If the data set was

located in a catalog (HWDSNCAT=1 in the local controls,

set by JLOCATE), the data set resides on more than one
volume, and the current SIOT was not generated in
response to a GDGALL request (HWDSNREC=0), Mul-
tiple Device Type Determination searches the CRI
(volume list) for a change in device type. If more than
one device type is found, Volume/Unit Resolution

sets the generated-DD counter in the control area

to the total number of different device types minus 1
and sets the volume/unit recursion indicator in the local
controls (HWVUREC=1). Table Creation creates SIOT/
JFCB pairs for the total number of different device
types minus 1 and chains them to the current SIOT. DD
Processing Control (see the M.O. diagram JFCB House-
keeping Control (IEFAB451)) selects the generated
SI0Ts, one at a time, for processing immediately after
this SIOT is completely processed.

Module

Segment

IEFAB463

|EFAB466

|EFAB452

Extended Description

4 If VOL=REF was specified, Volume/Unit Resolu-
tion locates the source of volume and unit
information:

a) For a reference to a dsname (SCTDSNRF=1 in the
SI10T), Volume/ Unit Resolution reads the data set
name table (DSNT) to obtain the dsname. The
SCTADSTB field of the SCT contains the SWA
virtual address (SVA) of the DSNT for this step.
JLOCATE searches the PD1 and/or the catalog for
the dsname. (For details on JLOCATE, see the
M.O. diagram JLOCATE (IEFAB469)). If
JLOCATE determines that the dsname is GDGALL,
processing is terminated.

b) For a reference to a previous DD statement, either
in this step (intra-step) or in a previous step (inter-
step), Volume/Unit Resolution reads the SIOT of
the referenced DD statement and places a pointer
to it in HSKPWA. (The SWA virtual address (SVA)
of the referenced SIOT is in the SIOTVRSB field of
the current SIOT.) If the reference is inter-step, the
JFCB and JFCBXs are read. If the reference is
inter-step (SCTVREF=0 in the current SIOT) and
the referenced data set was not allocated
(SIOTALCD=0 in the referenced SIOT), processing
is terminated. Volume/Unit Resolution also updates
the local controls to indicate the referenced SIOT
is present (HWRESIOT=1).

Module

IEFAB457

IEFAB469

IEFAB457

Segment

VOLREF

VOLREF

(L°€ osu3[9Y TSA) € SWNJoA Areiqyy o180 woSAS TSA/SO 8TEE

Diagram 14-7. IEFAB454 — DD Function Control (Part 7 of 12)

" Input

HSKPWA

Controls

Current SIOT

Current JFCB

_/olume List *
-==

-__-J

HSKPWA

SRR

Current SIOT

Controls

(l__J

Referenoed

HSKPWA

SRR

™—

Current SIOT

HSKPWA
Controls

SioT Volume
T{::l Lot

One of following
is present:

Referenced

—

Unit Conversion List

Controls

Current

SI0T

Unit
Conversion
List

* Volume |

Process

5 Place unit and volume information
in tables.

a) Copy information from:

e

HSKPWA
Current SIOT—
Controls updated
Dl /I_____ZI
A
Current JFCB—

e CRI (volume list)

— updated

e referenced SIOT/JFCB

b) Process VIO -eligible requests,

c) If a unit was specified and unit
information was also retrieved
(from PDI, catalog, or volume
reference), check if specified
unit overrides retrieved unit,

Generated
JFCBX

) (it '
1| needed) |
.

HSKPWA

Current SIOT—
/J a, updated

HSKPWA

Controls
Updated

HSKPWA
Current SIOT~
Controls updated

d) Copy information from unit

== A

conversion list.

T uon0dg

67€-€ uonendQ jo poyoW

Diagram 14-7. IEFAB454 — DD Function Control (Part 8 of 12) -

Extended Description

B The purpose of this step is to:

a) Place volume information and certain unit information
retrieved in the previous steps into the SIOT and JFCB.

b) Process V10-eligible requests.

c) Determine if specified unit information overrides
retrieved unit information.

d) Copy unit information into the SIOT.

Step 5 is performed for every SIOT that enters DD
Function Control and whose request hasn’t already failed.

a) Volume/Unit Table Completion copies retrieved
volume information and certain unit information
from a referenced SIOT or from the CR! (volume
list) into the current SIOT and JFCB. The retrieved
source of volume and unit information (CRI or
referenced SIOT) was determined in a previous step:

@ Unit and volume information exists in the CRI (or
volume list) in three cases:

— Volume/unit recursion is indicated (HWVUREC=1
in the local controls, set in step 3).

— VOL=REF=dsname was specified and the dsname
was found in the catalog (HWDSNCAT=1 in the
local controls, set in step 4a).

— A cataloged data set was located by searching the
catalog (HWDSNCAT=1 in the local controls, set
in step 1b or step 2).

o Unit and volume information is copied from a
referenced SIOT in two cases:

— Volume reference was coded toa ddname
(HWRESIOT=1, set in step 4b).

— The referenced data set was located in the PDI if
VOL=REF=DSN (HWRESIOT=1, set in step 1a
or 4a).

Unit information is copied into a local field; for

volume/unit recursion, Multiple Device Type Deter-

mination uses the generated-DD counter to reference
the correct device type in the CRI. The only unit
information placed in the SIOT at this time is unit
count (SCTNMBUT).

Volume information is copied into the JFCB. Volume/
Unit Table Completion copies all the volume serial
numbers from the CRI or referenced SIOT, except in
two situations:

Module Segment

|IEFAB464

IEFAB464 CRIRFCMP

IEFAB464 DDREFCMP

IEFAB464
IEFAB463

|IEFAB464

Extended Description

Module

o If information is copied from the CRI and more than |IEFAB464
one device type exists (volume/unit recursion),

volume serial numbers are copied only for one device

type. (The generated-DD counter is used to reference

the correct device type in the CRI.)
IEFAB464

If the data set resides on tape and VOL=REF was
coded, only the last volume serial number is copied

(if more than one exists), because a volume reference
implies that the volume can be shared and tape volumes
cannot be shared. (This precaution, however, does not
guarantee that the data set can be successfully opened.)
The volume count in the current SIOT is set to 1 for
tape volume references.

Before copying the volume serial numbers, Volume/ IEFAB464
Unit Table Completion determines if a JFCB exten-

sion (JFCBX) is needed; up to five volume serial num-

bers can be placed in a JFCB and up to fifteeh in a

JFCBX. If more space is needed and sufficient

JFCBXs were not generated by the interpreter or by

Dynamic Allocation, Volume/Unit Table Compietion

generates the required JFCBXs.

Volume/Unit Table Completion also updates the
volume counts in the SIOT (SCTVOLCT) and the
JFCB (JFCBNVOL).

For volume reference to tape volumes, the following
additional processing is performed:

— If the referenced SIOT contains volume information IEFAB464
that was itself copied from a previous SIOT, Volume/
Unit Table Completion reads that SIOT and copies

information from it.

— If the device type is tape, Volume/Unit Table |IEFAB464
Completion updates the unit type to reflect the

greatest device range that can satisfy this request.

For example, the user specified 2400-4 for a data

set with a density of 1600 bpi. Volume/Unit

Table Completion updates the device type to

2400-3, which includes dual-density devices (which

would have been included in 2400-4) and tape

devices that can read only in 1600 bpi.

Step 5 continued on Part 10

Segment

CRIRFCMP

DDVLCOPY

JFCBXGEN

TAPEVREF

TAPEONLY

(L'€ 9sea9Y TSA) € swmjoA Arexqr o180 wopsAS ZSA/SO 0EE-€

Diagram 14-7. IEFAB454 — DD Function Control (Part 9 of 12)

Input

Current
HSKPWA SIoT

HSKPWA Current SIOT

Current

g — P
Current
W JFCBX—updated
' Referenc
JFCBX Current
JFCB

HSKPWA Current 1 :
SIoT 6 Update JFCB with data set
characteristics:

Current k
JFCB ; a) when request is for single level
of GDG.. 7

HSKPWA

Current JFCB—
updated

AL

Current
SIOT

Current
JFCB

Z uondag

I€€-€ uonexdQ jo poyol

Diagram 14-7. IEFAB454 — DD Function Control (Part 10 of 12)

Extended Description Module Segment

5 (continued)

b) Volume/Unit Table Completion marks the current SIOT IEFAB464 VIOCOMP
as a VIO data set (SIOVAMDS=1) if the data set has a

system-generated dsname, is not ISAM, is not dummy, and:

@ The referenced SIOT (either from the PDI or a volume
reference) is V10; or

o No information was retrieved from a catalog or
referenced SIOT, the disposition is NEW, no volumes
were specified, and the unit is VIO-eligible.

¢} Volume/Unit Table Completion determines if specified IEFAB464 UNOVERID
unit information overrides retrieved unit information.

This step is performed when:

® A unit was coded and is an override candidate
(HWOVCAND-=1 in the local controls, set by
IEFAB470 (Unit Conversion Routine) — see the
M.O. diagram JFCB Housekeeping Control
(IEFAB451)).

@ Unit information was retrieved from the PDI or an
inter-step volume reference (HWRESIOT=1 in the
tocal controls and SCTVREF=0 in the current SIOT)
or from the catalog (HWDSNCAT=1 in the local
controls).

Volume/Unit Resolution compares the unit infor-
mation in the unit conversion list to the unit informa-
tion in the CRI or in the referenced SIOT. If the unit
information in the unit conversion list is' the same device
type group as the retrieved unit information, the ““unit
overridden’’ indicator is set (HWOVRDN=1) in the

local controls. This indicator is not set, however, if the
referenced SIOT is a dummy, VIO, or subsystem data
set. (A specified unit cannot override a retrieved unit

in these cases.)

d) Volume/Unit Table Completion copies unit information IEFAB464 NOREFCMP
into the SCTUTYPE field of the current SIOT. If the

unit was converted from a UCB (that is, a unit address

was specified; HWUCB=1 in the local controls), the

S1OT is also marked as a demand request (SIOTDMND=1).

Extended Description

e) Volume/Unit Table Completion creates a JFCBX (if
none exists) and updates the JFCBX with the device
type retrieved from the catalog. This allows the
unallocation routine IEFAB4A2 (Disposition Proc-
essing) to recatalog the data set using the device type
from the catalog.

6 DCB Resolution updates the JFCB with data set

characteristics from the DSCB (for example, data
set organization, record format, logical record length,
expiration date}. DCB Resolution is performed in two
cases: DCB=dsname was specified (SIOTDCBR field in
the SIOT); the request is a single level of a GDG
(SCTSGDGS=1 in the SIOT). The method of obtaining
the DSCB differs in the two cases.

a) If DCB=dsname was specified, DCB Resolution obtains
the dsname from the data set name table (DSNT).
JLOCATE issues a system locate using the dsname to
determine the volume serial number of the volume
containing the DSCB. For details on JLOCATE, see the
M.O. diagram JLOCATE (IEFAB469).

b) For a new single-GDG request, DCB Resolution obtains
the base level data set name from the JFCB and the
volume serial number of the pattern DSCB from the
CRI. (The volume serial number of the volume on which
the GDG is cataloged was placed in the CRI when the
GDG-single request was located — see step 2. The
pattern DSCB exists on this volume.)

DCB Resolution issues SVC 27 to obtain the Format 1
DSCB and transfers the data set characteristics from it to
the JFCB.

Module Segment

IEFAB464 CATDEVT

IEFAB458

IEFAB458

IEFAB469

IEFAB458

IEFAB458 OBTNDSCB
IEFAB458 UPDTJFCB

(L°€ ase3)9Y ZSA) € own[oA Aresqry 918077 washs ZSA/SO TEEE

Input.

HSKPWA

A PDIor 0

\

Current -
SIOT

Current
JFCB

g

HSKPWA

Controls

7

p—

Current
SIOT

e

Current
SIOT

Current

Diagram 14-7. IEFAB454 — DD Function Control (Part 11 of 12)

Process

7 Resolve data set disposition
information: &

a) Complete default dispositions.in.

SIOT.

b) - Update passed data set.information =
(PD1), if necessary.

¢) Update SIOT to indicate private -
tape, if necessary.

HSKPWA

Controls

!

(.::urrent
SIOT

Current
JFCBX

d) Retrieve catalog information, if
necessary.

e) Enqueue alias-named, or GDG,

1l

or temporary data sets.

] Current JFCB
~N I |

dsname

DSENQT

Y

L |

Referenced JFCB

Return to IEFAB452
(See JFCB Housekeeping
(IEFAB451))

HSKPWA .

updated

PDI-—

Current SIOT —

JCT updated

(if PDI pointer in
HSKPWA#0)

(if PDI pointer in
HSKPWA#0)

Current SIOT—
updated

Current SIOT

HSKPWA

SIOT

SIOT for JFCB for
catalog catalog
O sFee-
Current updated or

created

Updated

~a DSENQT-

L

Z uonag

€€€-€ uonerdQ jo poyrol

Diagram 14-7. IEFAB454 — DD Function Control (Part 12 of 12)

Extended Description
7 The purpose of this step is to resolve data set
disposition information.

a) DISP Resolution completes the data set disposition
information in the SIOT:

o An existing JOBLIB request is marked PASS
(SIOTPASS=1).

e If no disposition is specified, data sets that existed

at the beginning of the job are marked KEEP

(SIOTKEEP=1); and data sets that specified MOD
but for which no unit or volume information could

be located are marked DELETE (SIOTDLET=1).

{The Interpreter marked as DELETE data sets that
specified NEW but that did not specify a disposition.)

b} If the request specified PASS (SIOTPASS=1) and PDI
processing is allowed (HWDOPDI=1 in the globai con-
trols), DISP Resolution updates the PDI with an entry
for this data set. If the data set was received by this
step (SCTRECVD=1), the original PDI entry (PDIE)

is updated; otherwise, a PDIE is created.

c) This step marks a tape data set as private {SIOTPRIV=1),
so that it will not be deleted, if attributes of the data

set indicate it should be kept.

Module Segment

|EFAB459

|IEFAB459 PDIBUILD

|IEFAB459

Extended Description

d) DISP Resolution calls JLOCATE to retrieve catalog
information for a data set which has a qualified
name (JFCBDSNM field in the JOCB), if the
following conditions are true:

® A disposition of CATLG was specified
(SIOTCTLG=1 in the SIOT), and no STEPCATSs
exist for this step (SCTPCAT=0 in the SCT).

® A disposition of UNCATLG (SIOTUNCT=1 in
the SIOT) was specified, and no STEPCAT: exist.

® A disposition of DELETE (SIOTDLET=1 in the
SIOT) was specified, and volume information was
retrieved from the catalog.

For details on JLOCATE, see the M.O. diagram
JLOCATE (IEFAB469).

e} If an alias name or GDG was specified for a passed
or cataloged data set, DISP Resolution creates a
JFCBX (if none exists), updates the JFCBX with
the alias data set name, and enqueues the major
data set name. Non-VIO temporary data set
names are enqueued.

Error Processing

An error in any routine causes control to be returned to
the calling routine. In the event of an abnormal termina-
tion, the ESTAE exit routine established by IEFAB451
performs any necessary cleanup.

Module

IEFAB459
IEFAB469

|EFAB459
{EFAB469

IEFAB459

Segment

REALDSN

ENQDSN

Y08°€0°TSA

(b08°€0°ZSA) € 2unjop Arexqry 918077 wasAS ZSA/SO $EE-E

Diagram 14-8. IEFAB469 — JLOCATE (Part 1 of 4)
ENTRY from caller
(see extended
Input description) Process Output

A PDI or 0 Current JFCB

L

1

HSKPWA JCT _GDGNT*

Controls

1 * GDGNT exists as input
only when catler is GDG
Single Processing.

** 3 new volume list exists
if CRI too small or if

. obtained during previous

call to JLOCATE.

DSNAME
CRI

Volume List**

1 Search passed data set information,
if indicated.

e If information found in PDI,
return to caller.

2 Issue system locate to search
catalog, if indicated.

a) System locate is successful —
go to step 5.

b) System locate is unsuccessful
because catalog is not allocated —
go to step 3.

c) System locate is unsuccessful
because CRI (volume list) is too
small — o to step 4.

d) Data set name not found.

PDI-—-
HSKPWA JLOCATE: Retrieve dsname, HSKPWA updated
Controls Current SIOT volume, and unit information Controls
from the PDI or a catalog. Updated

A

Return
to
Caller

"‘I:I

Referenced
SIOT

T 1T

Current SIOT

HSKPWA

Current JFCB

* only if system locate

Controls
Updated*

is successful.

Volume List
| |

CRI

CRI or volume list
updated.

Return Code

L)

Return to Caller
(See beginning of
extended description)

SE€-€ uonerd(Jo poyd iz uondeg

Diagram 14-8. IEFAB469 — JLOCATE (Part 2 of 4)
Extended Description

ENTRY JLOCATE is a service routine used by

several housekeeping routines to retrieve
dsname, volume, and unit information from the passed
data set information (PDI) or from a catalog. It is called
by the following modules (all these modules are described

in the M.O. diagram DD Function Control (IEFAB454)):

o DD Function Control {IEFAB454) to determine if a re-
quest is GDGALL (all levels of a GDG are requested).
If the request is not GDGALL, retrieves dsname, volume,
and unit information for the data set, or updates PDI for
restarting steps, or allocates private catalogs for restarting
steps.

o GDG Single Processing (IEFAB461) to obtain the base
level of a GDG and to obtain the fully-qualified dsname
and volume and unit information for the data set.

e DSN Resolution (IEFAB456) to obtain volume and unit
information for a specific level of a GDGALL request.

o Volume/Unit Resolution (IEFAB457) to locate volume
and unit information when VOL=REF=dsname was
coded.

o DCB Resolution (IEFAB458) to obtain the volume
serial number of the volume containing the DSCB for a
data set, when DCB=dsname was coded.

@ DISP Resolution (1EFAB459) to make a private
catalog available for unallocation.

Most of these routines use JLOCATE only to search

catalogs; the PDI is searched only when:

o JLOCATE is called by DD Function Control, GDG
Single Processing, or Volume/Unit Resolution, and,

o the SIOT does not represent a STEPCAT request,
and,

o JFCB Housekeeping Control was called by Step Allo-
cation Control (that is, this is a batch request).

Module

Segment

Extended Description

1 PDI Scan searches the PD! if allowed, as indicated in

the local and global controls (HWPDISCN=1;
HWDOPDI=1). If the PDI pointer in the housekeeping
workarea is nonzero, PDI Read and Chain updates the
HSKPWA with pointers to the first and last PDI entries.
if the dsname is found in the PDI, PDI Scan:

® Reads in the SIOT and JFCB of the request that passed
the data set.

o Marks the PDI entry as received.

@ Sets the local controls to indicate that the referenced
SIOT is present (HWRESIOT=1).

2 This step is performed only if both of the following
conditions are true:

e The dsname was not found in the PD! or the PDI was
not searched.

o Local controls indicate a system locate should -be
issued (HWSYSLOC=1).

Input to this step is the data set name or, if JLOCATE was
invoked by GDG Single Processing, the data set name and
the GDG base level.

JLOCATE issues a system locate (SVC 26) to search:
1) private catalogs defined for this step by means of
JOBCAT or STEPCAT DD statements; 2) the master
catalog; 3) catalogs implied by the data set name.

The system locate results in one of the following

situations:

a) The system locate is successful; the dsname is found.
Catalog management places unit and volume infor-
mation in the CRI (volume list), if the request is not
GDGALL. If the request is GDGALL, catalog manage-
ment places the number of levels of the GDG in the

" CRI (volume list).

b} The system locate is unsuccessful because the catalog
to be searched is unallocated. Catalog management
returns the name of the catalog to be allocated and
the catalog connector (alias), if any, in the QBI
(volume list). See step 3.

Note: A catalog will already be allocated only if it

was previously allocated during JLOCATE processing
and if it was not subsequently unallocated to release

Step 2 continued on Part 4

Module Segment
IEFAB455
IEFAB4EB

IEFAB455 PDIDDRD

|IEFAB455
|IEFAB455

IEFAB469 PARMINIT

IEFAB469 LOCATECT

IEFAB469 LOCATECT

(L°€ 95319y ZSA) € ounjo Arexqry ooy watshs ZSA/SO 9€€-€

Diagram 14-8. IEFAB469 — JLOCATE (Part 3 of 4)

Initiator
HSKPWA JSCB.

Controls

) Active JSCB
R Volume

List

R

| F |
CRI or volume list contains
dsname of catalog and
catalog connector (alias),
if any.

HSKPWA

Volume

CRI or existing volume list
contains required size of
new volume list.

HSKPWA Initiator . Active
JscB JSCB

Controls

' Current
SIoT

g -

Current

-aJFCB
\

Volume -
List

Process

3 Allocate catalog, if necessary.

e Reissue system locate;
go to step 2.

Initiator

JSCB

Active JSCB

PCCB

HSKPWA

4 Obtain new volume list, if

necessary.

® Reissue system locate;
go to step 2.

5 Update tabies and controls.

Return to Caller (See
beginning of extended
description)

Volume List

g —

HSKPWA

Initiator

Controls
Updated

JscB

Current
SI0T—
updated

gy

Current
JFCB —
updated

(i]

Z uonoss

LEE€ uoneradQ Jo poyial

Diagram 14-8. IEFAB469 — JLOCATE (Part 4 of 4)

Extended Description Module Segment

2 (Continued)
needed resources. Catalogs are allocated during

JLOCATE to retrieve information needed for allo-
cation, if JFCB Housekeeping has not been called
by Dynamic Allocation. All catalogs will be
unallocated during housekeeping clean-up processing,
before JFCB Housekeeping Control returns to its
caller, if the request is batch (that is, Step Allocation
Control called JFCB Housekeeping Control) (see the
M.O. diagram JFCB Housekeeping Control
(IEFAB451)).

c) The system locate is unsuccessful because the CRI (or
volume list, if one was obtained during a previous call
to JLOCATE) is too small. Catalog management re-
turns the required size of the volume list in the CRI
or existing volume list. See step 4.

IEFAB469 REDOPREP

d) The system locate is unsuccessful because the dsname
could not be found. If this occurs, control is returned
to the caller and processing terminates.

3 If the catalog to be searched is not allocated, the IEFAB469 REDOPREP

system locate is unsuccessful. JLOCATE will
attempt to have the catalog allocated. Allocate Catalog
Control issues SVC 99 to have the catalog dynamically
allocated; Open Catalog Routine (a data management
routine) opens a private catalog and catalog management
opens a CVOL (control volume); the PCCB Routine
builds or updates a private catalog control block (PCCB)
for the catalog. If Housekeeping was called by Step Allo-
cation Control, Table Creation also creates a SIOT and
JFCB to represent the catalog (HWMAKTAB=1 and
HWDNCCDD=0 in the controls).

IEFAB4F5 ALCATLG
IDACAT11

|IEFAB4EF FINDPCCB

IEFAB466

if allocation of the catalog is unsuccessful, processing is IEFAB4F5 RECOVERY
terminated unless the failure is due to insufficient
resources and Step Allocation Control invoked JFCB
Housekeeping. In this case, Unallocate Private Catalog
issues SVC 99 to dynamically unallocate all private
catalogs previously allocated during housekeeping proc-
essing and marks the PCCBs of the unallocated catalogs
as inactive (PCCACTIV=0) (so that they will not be
searched when the system locate is re-issued). Allocate
Private Catalog then reattempts the allocation; if the
catalog still cannot be allocated, processing is terminated.

|IEFAB4F4

IEFAB4F5 ALCATLG

Extended Description Module

JLOCATE reissues the system locate if the required
catalog is successfully allocated.

4 The system locate is unsuccessful if the CRI (or IEFAB469
volume list, if one was obtained during a previous

call to JLOCATE) is too small. JLOCATE:

o Issues a FREEMAIN macro instruction to release a
previous volume list if one existed (HWNEWVL=1).

® Issues a GETMAIN macro instruction for the required
amount of storage.

® Places a pointer to the volume list in the HSKPWA.

® Sets local controls to indicate an additional volume
list is in use (HWNEWVL=1).

This volume list is used for all subsequent JLOCATE
processing unless it is too small; in this case, it is
released and JLOCATE obtains a new volume list.

If the required volume list is successfully obtained,
JLOCATE reissues the system locate.

5 If information is successfully retrieved from a IEFAB469

catalog, JLOCATE:

o Copies DSORG information from the CRI (or volume
list) into the current JFCB.

o Ensures that the disposition is KEEP (SIOTKEEP=1)
if the data set is a VSAM data set.

o Sets the GDGALL indicator in the local controls
(HWGDGALL=1) if the system locate determined
this request was GDGALL.

@ Sets the local controls to indicate the data set was
found in the catalog (HWDSNCAT=1).

o Updates the PCCBs with the catalog connector (alias),
if any, and ensures that all the PCCBs are marked
active (PCCACTIV=1) so that the associated catalogs
can be searched on subsequent calls to JLOCATE.

Error Processing

An error in any routine causes control to be returned to
the calling routine.

In the event of an abnormal termination, the ESTAE
exit routine established by IEFAB451 performs any
necessary cleanup.

Segment

REDOPREP

CLEANUP

Y08°€0°TSA

Diagram 149. IEFAB471 — Generic Allocation Control (Part 1 of 10)

ENTRY from IEFAB421 —
Common Allocation Control
Allocation

Work Area
(ALCWA)

Process

_ Output

Function Map Algorithm (Cover/Reduce
r—l Interface ist:
Generic Allocation Control: Attempt ALCWA Tables 223:,7%;2;329
SIOT to allocate remaining requests. ' p Group List;

Group Count
Table)

Volunit Tabl

EDL

1 Build tables needed for generic
allocation,

Last

N Allocation Mask Table

(408°€0°TSA) € awnjop Arexqiy o180 wasAS ZSA/SO 8€€-€

SIOoT

Extended Description

Common Allocation Control calls Generic
Allocation Control (IEFAB471) to attempt
to allocate all remaining requests. The processing of
IEFAB471 must be serialized with all other allocations.
{For a description of serialization and when it is required
see ‘‘Common Allocation Control” in the “Introduction
to Allocation/Unallocation.”) To minimize serialization,
IEFAB471 processes one generic device type at a time;
within a generic, it serializes only those device groups
needed by unallocated requests. (Device groups and their
representation in group masks are described under
“*Generic Allocation Control’ in the “Introduction to
Allocation/Unallocation.’’)

ENTRY

To avoid deadlock situations, all allocations must choose
generics in the same order. The installation device
precedence list (defined during system generation) dic-
tates the order in which generics are chosen. The generic
to be processed is selected in step 2 of this diagram; steps
3-12 are a loop performed for every generic selected.
Within this loop, there are four basic allocation processes:

Module

Segment

Queue-Manager
\ Request Block

Extended Description Module

@ Demand (specific unit) allocation (step 6).
@ Specific volume allocation {step 8).

@ Allocation via algorithm (step 9).

o Nonspecific volume allocation (step 10).

Not all of these processes are necessarily performed for
each generic group selected in step 2 — the processes
performed depend on the types of unallocated requests
that are eligible to the generic. See the individual steps
for details.

1 Generic Table Build issues a GETMAIN macro

instruction to obtain storage for the following
tables required by generic allocation: a) algorithm
tables; b) a request-id-mask table; ¢) an allocation queue
manager request block; d) three work masks.

IEFAB472

a) The purpose of the algorithm tables is to summarize
the unit requirements of each request, the device
groups to which a.request is eligible, and information
about the units in each device group. Allocation via

Segment

Z uoiog

.

6£€-€ uoneadQ jo poyiap

Diagram 14-9. IEFAB471 — Generic Allocation Control (Part 2 of 10)

Extended Description Module Segment

1 a) {Continued) Algorithm (IEFAB476 — step 9) selects
device groups from which requests should be allo-
cated when a choice of units exists; it uses the algorithm
tables to determine from which device groups units should
be allocated so that all requests can be satisfied. There are
three main sections in the algorithm tables:

@ The cover/reduce request list (CVRRQLST) contains
an entry for every unallocated volunit entry — that is,
for every unallocated possible request for a unit. The
entries are updated as they are allocated; each entry
points to a corresponding entry in the cover/reduce
group list.

o The cover/reduce group list (CVRGPLST) contains an
entry for each request in the cover/reduce request
list; the entry lists the device groups to which the
request is eligible. Each device group listed points to a
corresponding entry in the group count table.

@ The group count table (CRPCOUNT) includes an entry
for every device group. Each entry summarizes the
number of units available, the number allocated, the
number offline, the total number of units, and the
number of units not used by the allocation.

For details on these tables, see Section 5, Data Areas.

To initialize the tables, Generic Table Build (IEFAB472)
scans the SIOT chain for SIOTs that have not been
allocated; for every unallocated volunit entry of each
unallocated SIOT, it creates an entry in the cover/reduce
request list. The EDL for each SIOT contains the
generic groups eligible to this request and, within each
generic group, the eligible device groups. This informa-
tion is used to initialize the cover/reduce group list. The
group count table is initialized by means of the EDT,
which contains all the device groups; an entry is created
" for each device group but is not further initialized
until step 3.

IEFAB472 DOALGTAB

b) The request-id-mask table is used to determine when IEFAB472 DORIMTAB
device groups must be serialized and when serialized

device groups can be released. Each entry in the

request-id-mask table contains a request identifier (id),

the number of unallocated SIOTs associated with the

request id, and a group mask indicating the device

Extended Description Module

groups required by the associated SIOTs. (For a
description of group masks, see ““Group Masks” in the
“Introduction to Allocation/Unallocation.”)

To build the request-id-mask table, IEFAB472 does
multiple scans of the SIOT chain to find unallocated
SIOTs whose group masks intersect. (The EDT con-
tains group masks of the unit groups to which each
SI0T is eligible; the EDL for each SIOT points to the
group masks in the EDT.) All SIOTs whose group
masks intersect are assigned the same request id
(SIOTGIID in the SIOT) and are represented by the
same entry in the request-id-mask table. The mask
placed in the entry is a composite mask of the indi-
vidual masks, showing all the device groups required
by the associated SIOTs.

For example, there are four unallocated S10Ts, each
with the following group mask:

device groups

siIoT |1 2 3 45
sioTt | 0 0 0 0 1
sIoT2 fo 00 10
SIoT3 |0 0 1 10
SI0T4 | 1 0 1 00

The mask of SIOT1 does not intersect with any of the
other masks. It is assigned a distinct request id and has a
single entry in the request id mask table; the mask in the
entry isitsgroupmask, 0 0 O O 1. The masks of
SI0T2, SIOT3, and SIOT4 intersect.)

Note: Although the mask of SIOT2 does not intersect
with the mask of SIOT4, both intersect with the mask
of SIOT3.

These three SIOTs are assigned the same request id and
are represented by the same entry in the request-id-mask
table; the mask in the entry is the combination of the
threemasks, 1 0 1 1 O.

The purpose of associating SIOTs is to allow allocations
to be rearranged; none of the device groups for the
associated SIOTs are released until all the SIOTs are
allocated. (For more information on rearranging
allocations, see the M.O. diagram Allocation via

Algorithm (IEFAB476)). .
Step 1 continued on Part 3

Segment

(L€ 9se3[9Y ZSA) € sumjoA Areiqry oo woISAS ZSA/SO OVE<

Diagram 14-9. IEFAB471 — Generic Allocation Control (Part 3 of 10) .

Input Process

ALCWA

1st SIOT

2 Select generic device type to
process and serialize needed device
groups.

device groups
searialized

LGENLOCK
updated

installation Device
Precedence

List ALCWA Last
SIOT

e If all generic device types
have been considered or
all requests are allocated,
go to step 14,

Algorithm
Tables Group Count
Table

Request-1D-
Mask Table

iy

updated

3 Determine availability of devices

in device groups serialized in step 2. 7
4 Parame Generic
Mask of List UCB List
Serialized
| Groups 4 Do AVR processing if generic device I_—‘],
| } type is tape or non-MSS direct access. |

a) Build list of UCBs,

Parameter Generic
List UCB List

b) Read premounted volumes.
o If error, unioad volume.

volumes
unloaded

'Extended Description Module Segment 2 The purpose of this step is to:
1 (Continued) @ Select the fil:St generic group from the installation device IEFAB471
precedence list that has not yet been selected and that
c} The allocation queue manager request block (AQMRB) IEFAB472 contains devices required by one or more unallocated
serves as the interface to the allocation queue manager, requests.
which actually serializes and releases device groups. In . . L
the AQMRB, Allocation Within Generic indicates if this ° Senal'nze the needed device groups within the selected IEFAB4FA
allocation can wait for units; the Allocation Queue generic.
Manager then builds the necessary data structures for To determine what generic group and which device groups
handling requests from this ailocation. are needed, the following processing is performed:
d) The work masks are workareas, pointed to by ALCWA, |IEFAB472 a) To obtain a mask of all needed device groups, Generic IEFAB471

that are used in determining the group mask of device Allocation Control combines (by means of an “‘or’"’
groups that must be serialized and the group mask of function) all the group masks in the request-id-mask
device groups that can be released. table associated with entries that include unallocated
SI10Ts. Step 2 continued on Part 4

TPE-€ uoneIndQ Jo POy T UoHdS

Diagram 14-9. IEFAB471 — Generic Allocation Control (Part 4 of 10)
Extended Description Module Label

2 (Continued)

b) Generic Allocation Control selects the first generic
listed in the installation device precedence list that has
not yet been selected.

c) Generic Allocation Control combines (by means of an
““and’’ function) the mask of the selected generic group
(from the EDT) with the mask obtained in step 2a to
determine if the generic group contains needed device
groups. If no common device groups are found (the
resulting mask contains only zeroes), step 2b is repeated
to select the next generic. If common device groups are
found, the LGENLOCK field in ALCWA is updated with
the id of this generic. (The generic id is included in the
EDT.)

d) If a retry is being performed (GENLOKSW=1 in the IEFAB471 DETLOCK
function map), Generic Allocation Control determines
if the entire generic device type must be serialized for
direct access, or for additional compatible generic
device types, or for tape. (Retry is described under
‘“The Retry Situation’’ in the “Introduction to
Allocation/Unallocation.”} Generic Allocation Control
searches the SIOT chain for a SIOT marked for retry
(SIOTRTRY=1). If the SIOT is eligible to the selected
generic, the mask of device groups to be
set to the mask of 1) the generic device type for direct
access, or 2) all compatible device types for tape.

The entire generic must also be serialized if a specific
unit was requested. Otherwise, the mask of device
groups to be serialized is the mask obtained in step 2c.

e) The Allocation Queue Manager serializes the device IEFAB4FA
groups indicated in the mask.

3 Generic Allocation Control determines the status of IEFAB471 DESTATUS
the UCBs in the serialized device groups and updates

the unit information in the group count table. The EDT

contains the device groups and indexes into the

10S UCB LUT for the units in each device group. The

group count table is updated to indicate the number of

units that are:

o Offline (UCBONLI=0).
e Allocated (UCBALOC=1).
® Available.

Extended Description Module

4 Automatic volume recognition (AVR) allows the

operator to premount tape and direct access volumes
prior to the initiation of the job step that requires the

volumes. The purpose of this step is to recognize that
these volumes have been mounted.

a) If the generic group is tape or direct access, IEFAB471

Generic Allocation Control builds a list of the UCBs in
the serialized device groups (generic UCB list). The EDT
contains the device groups and indexes into the 10S
UCB LUT for the units in each device group.

b) AVR Control checks the generic UCB list to locate IEFAB473

UCBs that are unallocated, online, ready, and do not

contain a volume serial number. For each such unit,

Direct Access Label Read (if the device is direct access) |IEFAB4F8
or Tape Label Read (if the device is tape) reads the label IEFAB4F9
of the volume. If no error is encountered in reading the

label, AVR Control places the volume serial number in

the UCB and, for tape, sets the label-type indicator in

the UCB. If an error is encountered, AVR Control

issues an appropriate error message to the operator and

the Unload Interface has the volume unloaded. Errors IEFAB49C
are encountered in the following situations:

® A tape volume does not have labels. (Unlabeled
volumes cannot be premounted.)

® A tape volume has non-standard labels and a user
routine to read non-standard labels was not included
in the system or the user routine did not return a
volume serial number.

o A tape volume has ANSI labels and the ANSI con-
verter routine was not included in the system at sys-
tem generation.

o Duplicate volume serial numbers were found. (AVR IEFAB473
Contro! uses the 10S UCB LUT to check if the volume
serial number it has read is a duplicate.)

After AVR Control completes processing, Allocation IEFAB471
Within Generic issues a FREEMAIN macro instruction
to release the generic UCB list.

Segment

CALLAVR

B473DPCK

CALLAVR

(L€ 95e3[oY TSA) € dwnjoA Areiqr 807 wasAS ZSA/SO THE-E

Diagram 14-9. IEFAB471 — Generic Allocation Control (Part 5 of 10)

Input Process

1st SIOT

[I\ EDL

&
LGENLOCK Last SIOT

5 Prepare to allocate demand requests
eligible to this generic device type.

LEDL ‘

R

s

Output

ALCWA 1st SIOT

SIOTs
updated if

Last SIOT ineligible

Algorithm
Tables

updated
Count Table

ALCWA 1st SIOT Volunit Table
‘ Algorithm 6 Allocate demand requests eligible
EDL Tables to this generic device type.
Count l \,.
Table Last SIOT

ALCWA 1st SIOT -\r/aogl‘lenit

For details,
see Demand
Allocation
(IEFAB479)

LGENLOCK|| Last EDL 7 Prepare to allocate remaining

SIOT

requests eligible to this generic
device type.

R

SR

-

Processed
SIOTs DSAB TIOT JFCB
Uucs
DSAB
—JaJFCB
space \ uce

obtained '
(except for ISAM) :

st SIOT
: updated if

(;Last sior neligible

€pE-€ UonedQ Jo POyl :T UOKAS

Diagram 14-9. IEFAB471 — Generic Allocation Control (Part 6 of 10)
Extended Description Module Segment

B Allocation Within Generic marks as ineligible IEFAB475 FLAGDMAN
(SIOTGIGN=1) all unallocated SIOTs except those

representing demand requests (a unit address was specified;

for example, UNIT=190) that are eligible to the generic

device type selected in step 2. The LGENLOCK field in .

ALCWA contains the id of the selected generic; the EDL

for each SIOT contains the ids of the generic device types

to which the SIOT is eligible; the SIOT itself indicates if it

represents a demand request (SIOTDMND=1).

If no demand requests eligible to this generic are found,
processing continues with step 7.

6 Demand Allocation processes those SIOTs that were IEFAB479
not marked ineligible in-step 5 — that is, all SIOTs

representing demand requests that are eligible to the

generic device type being processed. Demand Allocation is

not called if step 5 determined that there are no demand

requests eligible to this generic. For details, see the

M.O. diagram Demand Allocation (IEFAB479).

Extended Description Module

7 This step has two functions: a) to determine which {EFAB475
SIOTs are to be processed; b) to determine what
processing is required for those SIOTs.

a) Allocation Within Generic marks as ineligible
(SIOTGIGN=1) all unallocated SIOTs except those
that are eligible to this generic and that do not represent
demand requests. (Demand requests eligible to this
generic were processed in step 6.)

b) To determine what processing is required for the
unallocated SIOTs eligible to this generic, Allocation
Within Generic categorizes the requests by examining
the volunit entries:

o Specific volume requests. These will be processed
in step 8 by Specific Volume Allocation Control if
the volume is mounted. (If the volume is not mounted,
step 8 will indicate that Allocation via Algorithm must
process the request.)

o Non-tape and non-DASD requests; nonspecific volume
requests for private volumes. These will be processed
in step 9 by Allocation via Algorithm. {Allocation via
Algorithm will also process specific volume requests
if indicated by step 8.)

o Nonspecific requests for public volumes. These
requests will be processed in step 10 by Nonspecific
Volume Allocation Control.

If one of the preceding types of requests is not found,
the corresponding allocation processing is not performed;
for example, if there are no specific volume requests,
Specific Volume Allocation Control (step 8) is not
called.

Segment

FLAGIGEN

(L€ o5e3[9Y TSA) € SWnjoA Areiqi o107 WAISAS ZSA/SO PPE-E

Diagram 14-9. IEFAB471 — Generic Allocation Control (Part 7 of 10)

Input

Volunit

A A
Lew Table

1st SIOT

EDL Tables

]

Last SIOT
——

\

ALCWA 10S UCB LUT

T
R EDT

Volunit Table

L

Mask of serialized groups
mrEeaE
Parameter List

1st
ALCWA SIOT

P

Volunit Table

Algorithm
Tables

| EDL
LI

Last SIOT

Algorithm -

Process

8 Allocate specific volume requests,
if volume is mounted.

O Allocate requests by means of the
algorithm?

® non-tape and non-DASD requests.

e nonspecific volume requests for
private volumes,

o specific volume requests not
allocated in step 8.

10 Allocate nonspecific volume
requests for public volumes to
mounted volumes:

ALCWA

Algorithm Tables _

For details,
see Specific

Volume

Count Table

Allocation

Control L
(IEFAB433)

Processed

SIOTs . DSAB TIOT ucs

For details,
see
Allocation
Via
Algorithm
(IEFAB476)

3

List

DSAB
a UCB

Parameter

Y. JFCB

g |

space 3
obtained Fcs

(except for ISAM)

Eligible
UCB List

a) Build list of eligible devices,

=

ALCWA

9 s

o Algorithm Tables

[==

Count Table

b) Allocate requests.

Processed
SIOTs

c) Reiease UCB list,

DSAB TIOT JFCB

/A ucs

DSAB
' JFCB

space ucB
obtained
(except for ISAM)

s

UCB List released.

et

z uonoeg

Spe-€ uoneiado jo poyrow

Diagram 14-9. IEFAB471 — Generic Allocation Control (Part 8 of 10)

Extended Description Module

8 This step is performed only if step 7 determined that IEFAB433
unallocated-specific volume requests are eligible to

this generic-device type. Specific Volume Allocation Con-

‘trol allocates specific volume requests if the volumes are

mounted. If a volume is not mounted, the request will be

processed by Allocation.via Algorithm (step 9). For details

on Specific Volume Allocation Control, see the

M.O. diagram Specific Volume Allocation Control

(IEFAB433).

O This step is performed if any of the following condi- 1EFAB476

tions are true:

o Step 7 determined that unallocated requests for non-
DASD or non-tape devices are eligible to this generic
device type.

o Step 7 determined that unallocated nonspecific volume
requests for private volumes are eligible to this generic
device type and volume mounting is allowed (as indi-
cated in the common allocation function map — see
figure 17).

® Specific volume requests were not allocated in step 8
because the volumes were not mounted and volume
mounting is allowed (as indicated in the common alloca-
tion function map — see figure 2-27).

Alfocation via Algorithm processes the requests; for details, IEFAB476

see the M.O. diagram Allocation via Aigorithm
(IEFAB476).

Segment

Extended Description

10 Thisstep is performed only if step 7 determined
that unallocated nonspecific volume requests for
public volumes are eligible to this generic device type.

a) Allocation Within Generic (IEFAB475) builds a list
of all the UCBs in the device groups serialized for
this generic that meet the following conditions:

e The unit is online, ready, and is not pending offline.

¢ The unit is not pending an unload or a mount.

@ Theunitis.not in use by asystem task (UCBNALOC=0).
® The unit is not allocated as nonshareable.

o The unit contains a non-private volume,

. -@ Another request within this allocation is not waiting
for this unit.

The EDT contains indexes into the 10S UCB LUT for
all the units in each device group. The mask of the
serialized groups indicates which device groups should
be searched.

b) Nonspecific Volume Allocation Control (IEFAB436)
allocates nonspecific volume requests for public
volumes to mounted volumes. If a request cannot be
allocated to-a mounted volume, it will be processed
during the processing of another generic device type
(if the request is eligible to more than one generic)
or by Recovery Allocation (see the M.O. diagram
Recovery Allocation (IEFAB485)). For details on
Nonspecific Volume Allocation Control, see the
M.O. diagram Nonspecific Volume Allocation
Control (IEFAB436).

©) Ailocation within Generic (IEFAB475) issues a
FREEMAIN macro instruction to release the
UCB list. ’

Module

IEFAB475

IEFAB436

IEFAB475

Segment

ASCRMONT

ASCRMONT

(L€ 9sealoY ZSA) € Swn[oA Areiqry o180F woisAS ZSA/SO 9veE-€

Diagram 14-9. IEFAB471 — Generic Allocation Control (Part9 of 10)

Input

1st SIOT

Process

Last SIOT

ST)

> 11 Clean up processing of this .
” generic device type.

12 Release device groups no longer
needed.

13 Go to step 2 to select next generic
device type.

14 Return to caller.

Return to Common
Allocation Control
(IEFAB421)

Request-ID-
3y Mask Table

J

Output
ALCWA 1st SIOT. =
Last
SI10T
&- updated

LyE-€ uonerdQ Jo poYId :7 uondag

Diagram 14-9. IEFAB471 — Generic Allocation Control (Part 10 of 10)

Module Segment

Extended Description

11 Ailocation Within Generic (IEFAB475) scans IEFAB475 UNFLGGEN

all the SIOTs and does the following:

a) If a SIOT was eligible to this generic device type
(SIOTGIGN=0) and it is fully allocated (SIOTALCD=1),
Allocation Within Generic decreases the number of
unallocated S10Ts in the request-id-mask table entry
associated with this SIOT.

b) If a SIOT was not eligible to this generic device type
(SIOTGIGN=1), Allocation Within Generic turns off the
ineligible indicator.

12 In determining what device groups can be released, IEFAB471 UNLKDEV
Generic Allocation Control considers a// device
groups, not merely the device groups within the generic
being processed. This is done because device groups
serialized for a previous generic might still be serialized
but no longer be needed. For example, SIOTA is eligible
to two generic device types, 3330 and 2314. SIOTA was
not allocated when generic 3330 was processed, so the
device groups in 3330 were not released. When generic
2314 is processed, the request is satisfied; it is no longer
necessary to serialize the device groups in either generic
3330 or generic 2314 (provided that SIOTA was the only

unallocated SIOT eligible to the generics).

To determine what device groups can be released, the
following processing is performed:

a) Generic Allocation Control initializes a mask to repre-
sent all the device groups still needed (RIMNEEDM).
This mask, pointed to by WMASK2P in ALCWA, is
originally set to zeroes.

b) If an entry in the request-id-mask table indicates that
any of the associated SIOTs are not yet allocated, the
device groups required by those SIOTs cannot be
released. Generic Allocation Control combines (by
means of an "‘or’’ function) the group mask for every
entry that includes unallocated SIOTs with RIMNEEDM.,

c) The group masks in the request-id-mask table do not "«,//‘
indicate if all devices in a generic device type were W
serialized because a retry allocation is being processed
(for a description of retry, see ''The Retry Situation’
in the "‘Introduction to Allocation/Unallocation”).

If this allocation is a retry (GENLOKSW=1 in the
function map of the Common Allocation Parameter

List), Generic Allocation Control searches the SIOT
chain to locate SIOTs marked for retry (SIOTRTRY=1)
that are not allocated (SIOTALCD=0). For such SIOTs,
all device groups within the eligible generics must
remain serialized. The EDL for the SIOT contains the
eligible generic device types; the EDT contains a group
mask for each generic. The group mask(s) for the
eligible generic(s) are combined {by means of an “or’’
function) with RIMNEEDM.

d)} Generic Allocation Control inverts RIMNEEDM to
obtain the mask of device groups that can be released
(UNLKMASK). WMASKPTR in ALCWA points to the
UNLKMASK.

e} If all requests eligible to the generic being
processed are satisfied, all device groups within the
generic can be released. Generic Allocation Control
combines (by means of an *‘or’’ function) the group
mask of the generic with the mask of device groups
that can be released (UNLKMASK), thereby indicating
that all device groups in the generic can be released.

Volumes are not mounted on allocated units until all
requests have been satisfied; therefore, a device group
containing a unit on which a nonspecific or private
direct access volume will be mounted cannot be
released until the volume is mounted. WORK3MP in
ALCWA points to a group mask of the device groups
that must remain serialized for volume mounting.
Generic Allocation Control subtracts this mask from
the current UNLKMASK to obtain an updated
UNLKMASK.

¥ The Allocation Queue Manager (IEFAB4FA) releases the
device groups indicated in the updated UNLKMASK.

f

Note: Because Generic Allocation Control considered

all device groups in building the UNLKMASK, UNLKMASK
can indicate that device groups that were never serialized
should be released. The Allocation Queue Manager ignores
such contradictions.)

Error Processing
An error in any routine causes control to be returned to
the calling routine.

In the event of an abnormal termination, the ESTAE
exit routine established by IEF AB421 performs any
necessary cleanup.

|IEFAB4FA

Y08°€0°TSA

(FO8'€0°TSA) € dumjop Arexqry o180 WaISAS ZSA/SO 8YE€

Diagram 14-10. IEFAB476 — Allocation via Algorithm (Part 1 of 6)

ENTRY from IEFAB475 (see IEFAB471 —
Generic Allocation Control) or IEFAB485 —
Recovery Allocation

Input

Process Output

Algorithm Allocation via Algorithm: Allocate Ta%tl)lerls—rpdated

__ Tables requests when a choice of units
exists.

1 Use algorithm to determine
from which device groups
requests should be allocated.

ALCWA 1stSIOT

4

Last

. . updated if
Algorithm EDL necessary
Tables

2 Ensure that each multi-unit/ Algorithm
multi-generic request will be N\ Tables—updated
allocated to a single generic,
if necessary.

Volunit

ALCWA Table—

DSAB TIOT ' ALCWA
Table . v Supdated SIOT sl

Volunit

/] A | Group ID Y

. List—
3 Unallocate requests that must) | ~ \Q updated

be rearranged.

space
released for

Group ID
unallocated List —

requests updated

Algorithm Group ID
Tables List

6E-€ uopendQ Jo poyjey iz uondes

N

Diagram 14-10. IEFAB476 — Allocation via Algorithm (Part 2 of 6)

Extended Description

ENTRY Allocation via Algorithm is called by Alloca-
tion within Generic (IEFAB475) and Recovery
Allocation (IEFAB485) to process requests when a choice
of units exists: a specific unit was not requested; the
request cannot be satisfied by allocating it to a mounted
volume; the request cannot be allocated to a permanently

resident or reserved volume.

1 The Cover/Reduce Algorithm selects device groups

from which unallocated requests should be allocated;
the caller indicates in the cover/reduce request list of the
algorithm tables the requests that should be processed by
the algorithm (CVRSKFLG=0). The Cover/Reduce
Algorithm updates the algorithm tables to indicate its
selections; a return code indicates if all or only part of the
requests to be considered were processed. Further proc-
essing of requests not processed by the algorithm (that is,
for which the algorithm did not select a device group) is
deferred.

2 When the algorithm chooses device groups from

which requests should be allocated, it does not ensure
that a multi-unit request eligible to more than one generic
is allocated to a single generic. Only certain multi-unit tape
requests can be allocated to more than one generic because
of the dual density feature. Each multi-unit request that
must be allocated to a single generic — each MUG request —
was assigned an id (SIOTAFID#0 in the SIOT) by
IEFABA472 during generic allocation. Requests that specify
affinity to a MUG request were assigned the same
SIOTAFID. The purpose of this step is to ensure that each
MUG request will be allocated to a single generic.

IEFAB474 (Process Multi-Unit/Generic Requests) locates
MUG requests with the same SIOTAFID that were assigned
to more than one generic by the algorithm, and that were
completely processed by the algorithm. (If requests with
the same SIOTAFID were not completely processed by
the algorithm, further processing of them is deferred.)

IEFABA474 tries to satisfy each such MUG request by
considering the units that the algorithm selected for
the request and:

o The excess (unused) units in the last generic acquired
if the caller is Allocation Within Generic.

Module Segment

IEFAB480

IEFAB474 HOWALGC

IEFAB474 FORCEGEN

Extended Description Module

@ The excess (unused) units in each acquired generic to
which the request is eligibie if the caller is Recovery
Allocation.

If the MUG request can be satisfied with a single generic,
|EFAB474 indicates its selection in the algorithm tables;
IEFAB481 (Eliminate Ineligible Groups) updates the
EDL and the algorithm tables to mark every other generic
ineligible (thereby preventing the algorithm from later
rearranging this request to another generic) and sets to
zero the SIOTAFID field (thereby indicating that the
MUG request is successfully processed). IEFAB481 is also
called to update t