
Systems

5Y28-0763-0
File No. 5370-36

OS/VS2
System Logic Library
Volume 3

VS2.03.804
VS2.03.807
VS2.03.810

Pages numbered as duplicates in this publication must be retained because
each of these documents information specific to individual Selectable Units.

This minor revision incorporates the following Selectable Units:

Scheduler Improvements
Supervisor Performance #2
IBM 3800 Printing Subsystem

VS2.03.804
VS2.03.807
VS2.03.810

The selectable unit to which the information applies, is noted in the upper comer-of the page.

First Edition (July, 1976)

This is a reprint of SY28-071S-0 incorporating changes released in the following
Selectable Unit Newsletters:

SN28-2683 (dated May 28, 1976)
SN28-2692 (dated May 28, 1976)
SN28-2698 (dated May 28,1976)

This edition applies to Release 3.7 of OS/VS2 and to all subsequent releases of OS/VS2 until
otherwise indicated in new editions or Technical Newsletters. Changes are continually made to
the information herein; before using this publication in connection with the operation of IBM
systems, consult the latest IBM System/370 Bibliography, GC20-0001, for the editions that are
applicable and current.

Requests for copies of IBM publications should be made to your IBM representative or to the
IBM branch office serving your locality.

A form for readers' comments is provided at the back of this pUblication. If the form has been
removed, comments may be addressed to IBM Corporation, Publications Development,
Department D58, Building 706-2, PO Box 390, Poughkeepsie, N.Y. 12602. Comments become
the property of IBM.

© Copyright International Business Machines Corporation 1976

~,

) System Logic Library comprises seven volumes.
Following is the content and order number for each
volume.
OS / VS2 System Logic Library,
Volume 1 contents: SY28-0713

MVS logic introduction
Abbreviation list
Index for all volumes

Volume 2 contents: SY28-0714
Method of Operation diagrams for
Communications Task
Command Processing
Region Control Task (RCT)
Started Task Control (STC)
LOGON Scheduling

Volume 3 contents: SY28-071 S
Method of Operation diagrams for
System Resources Manager (SRM)
System Activity Measurement Activity (MF /1)
JOB Scheduling

-Subsystem Interface
-Master Subsystem
-Initiator /Terminator
-SW A Create Interface
-Converter /Interpreter
-SW A Manager
-Allocation/U nallocation
-System Management Facilities (SMF)
-System Log
-Checkpoint/Restart

Volume 4 contents: SY28-0716
Method of Operation diagrams for
Timer Supervision
Supervisor Control
Task Management
Program Management .
Recovery /Termination Management (R/TM)

Volume S contents: SY28-0717
Method of Operation diagrams for
Real· Storage Management (RSM)
Virtual Storage Management (VSM)
Auxiliary Storage Management (ASM)

Volume 6 contents: SY28-0718
Program Organization

Volume 7 contents: SY28-0719
Directory
Data Areas
Diagnostic Aids

Preface

Please note that if you use only one order
number, you will only receive that volume. To
receive all seven volumes, you must either use all
seven form numbers or, simply the following
number: SBOF-8210. If you use SBOF-8210, you
will receive all seven volumes.

The publication is intended for persons who are
debugging or modifying the system. For general
information about the use of the MVS system, refer
to the publication Introduction to OS/VS Release
2, GC28-0661.

How This Publication is Organized
This publication contains six chapters. Following, is
a synopsis of the information in each section:

• Introduction and Master Index - an
overview of each of the functions this
publication documents, an abbreviation list of
all acronyms used in the publication, and a
complete index for all seven volumes.

• Method of Operation - a functional
approach to each of the subcomponents, using
both diagrams and text. Each subcomponent
begins with an introduction; all the diagrams
and text applying to that subcomponent
follow.

• Program Organization - a description of
module-to-module flow for each
subcomponent; a description of each module's
function, including entry and exit. The
module-to-module flow is ordered by
subcomponent. The module descriptions are
in alphabetic order without regard to
subcomponent.

• Directory - a cross-reference from names in
the various subcomponents to their place in
the source code and in the publication.

• Data Areas ~ a description of the major
data areas used by the subcomponents (only
those, however, that are not described in
OS / VS Data Areas, SYB8-0606, which is
on microfiche); a data area usage table,
showing whether a module reads or updates a
data area; a control block overview diagram
for each subcomponent, showing the various
pointer schemes for the control blocks
applicable to each subcomponent; a table
detailing data area acronynts, mapping macro
instructions,common names, and symbol
usage table.

Preface 3

• Diagnostic Aids - the messages issued,
including the modules that issue, detect, and
contain the message; register usage; return
codes; wait state codes; and miscellaneous
aids.

4 OS/VS2 System Logic Library Volume 3 (VS2 Release 3.7)

Corequisite Reading
The following publications are corequisites:

• OS/VS2 JES2 Logic, SY2S-0622
• OS/VS Data Areas, SYBS-0606 (This

document is on microfiche.)
• OS/VS2 System Initialization Logic,

SY28-0623

VS2.03.807

Contents

Section 2: Method of Operation ..
System Resources Manager (SRM)

SRM Interface
Locking Considerations

Method-of-Operation Diagrams
6-1. SRM Interface (IRARMINT)
6-1. SRM Interface (IRARMINT) (VS2.03.807) ..
6-1 A. SRM Service Routine (IRARMSRV) (VS2.03.807)
6-lB. Obtain/Free SQA Storage (IRARMI04) (VS2.03.807)
6-1C. Requeue SRM TQE (IRARMI05) (VS2.03.807)
SYSEVENT Processor
List of SYSEVENTs (VS2.03.807)
6-2. SYSEVENT Processor
SRM Control
6-3. SRM Control (IRARMCTL)
6-4. Timer Action Analysis (IRARMCA T) .
6-5. Deferred Action Processor (IRARMCEN)
6-6. Algorithm Processor (IRARMCEL) . . .
6-7. Periodic Entry Point Scheduling (IRARMCET)
6-8. Full Analysis (IRARMCAS)
6-9. Partial Analysis (IRARMCAP) . .
6-9. Swap Analysis (IRARMCAP)
6-10. Control Swap-In (IRARMCSI)
6-11. Control Swap-Out (IRARMCSO)
6- 11 A. Select User for Swap-In (IRARMCPI) (VS2.03.807)
6-1 lB. Select User for Swap-Out (IRARMCPO) (VS2.03.807)
6-11 C. User Evaluation (IRARMCVL) (VS2.03.807)
Resource Use Algorithms

Storage Management
I/O Management
CPU Management
Resource Monitor (VS2.03.807)

6-12. Storage Management (IRARMSTM)
6-12. Main Storage Occupancy Analysis (IRARMMS2)
6-14. I/O Management (IRARMIOM) ... :
6-15. I/O Load Balancing Swap Analysis (IRARMIL2)
6-16. I/O Load Balancing User I/O Monitoring (IRARMILO)
6-17. CPU Management (IRARMCPM)
6-18. CPU Load Balancing Swap Analysis (IRARMCL2)
6-18. Resource Monitor Periodic Monitoring (IRARMRM 1) (VS2.03.807)
6-18A. Resource Monitor MPL Adjustment Processing (IRARMRM2)

(VS2.03.807).
Workload Management
Workload Management(IRARMWLM) (VS2.03.807)
6-19. Swappable User Evaluation (IRARMWM2) (VS2.03.807)
6-20. Individual User Evaluation (IRARMWM3) (VS2.03.807)
6-21. User Ready Processing (IRARMHIT) (VS2.03.807)
6-22. Initialize for MF /1 (IRARMWR 1) (VS2.03.807) . .
6-23. Collect Data for MF/l (IRARMWR2) (VS2.03.807) ..

System Activity Measurement Facility (MF /1)
Method-of -Operation Diagrams

7-1. Measurement Facility Control (MFC) Mainline (IRBMFMFC)
7-2. Input Merge Control (IRBMFINP)
7-3. Syntax Analyzer (IRBMFANL) ...
7-4. List Option Subroutine (MFLISTOP)
7-5. MFSTART Mainline (IGXOOOI3)
7-6. Initialization Mainline (MFIMAINL)

3-1
3-3
3-5
3-5
3-6
3-6
3-6

3-9.2
3-9.6
3-9.8

· 3-11
· 3-11
· 3-12
· 3-23
· 3-24
· 3-26
· 3-28
· 3-30
· 3-32
· 3-34
· 3-36
· 3-36
· 3-40
· 3-42
3-43.0
3-43.2
3-43.4
· 3-45
· 3-45
· 3-45
· 3-45
· 3-45
· 3-46
· 3-52
· 3-54
· 3-56
· 3-58
· 3-62
· 3-66
· 3-66

· 3-68
· 3-69
· 3-69
· 3-70
3-73.0
3-73.2
3-73.6
3-73.8
· 3-75
· 3-80
· 3:-80
· 3-82
· 3-84
· 3-86
· 3-88

3-90
7-7. CPU Activity Initialization (IRBMFICP) or Paging Activity Initialization

(IRBMFIPP)
7-8. Workload Initialization (IRBMFIWK)
7-9. Channel Initialization (IRBMFIHA) ..
7-10. Device Initialization (IRBMFIDV) ..
7-11. Data Control (IRBMFDT A)
7-12. Termination Processor (IRBMFTMA)
7-13. MF/l Message Processor (IRBMFMPR)
7-14. MFDATA SVC Mainline (IGXOOOI4)
7-15. Interval MG Routine for CPU (IRBMFDCP)

3-96
3-98

3-100
3-104
3-106
3-110
3-112
3-114
3-118

Contents 5

VS2.03.807

7-16. Interval MG Routine for Paging (IRBMFDPP) 3-122
7-17. Interval Routine for Workload (IRBMFDWP) 3-126
7-18. Interval MG Routine for Channels (IRBMFDHP) 3-130
7-19. Interval MG Routine for Devices (IRBMFDDP) 3-134
7-20. MFROUTER SVC Processor (IRBMFEVT) . . . 3-138
7-21. Channel Sampling Module (IRBMFECH) 3-140
7-22. Second CPU Test Channel Sampling Module (IRBMFTCH) 3-142
7-23. Device Sampling Module (IRBMFEDV) 3-144
7-24. Report Generator Control (IRBMFRGM) 3-146
7-25. Report Generators for CPU, Paging, Workload, Channels, and Devices

(IRBMFRCR, IRBMFRPR, IRBMFRWR, IRBMFRHR, and IRBMFRDR)
3-150

Job Scheduling Overview 3-153
Subsystem Interface 3-159

Method of Operation Diagram 3-164
8-1. Subsystem Interface . 3-164

Master Subsystem 3-169
Method-of-Operation Diagrams 3-172

9-1. Common Request Router (IEFJRASP) 3-172
9-2. Subsystem Determination (IEFJSDTN) 3-174
9-3. Subsystem Initiation (IEFJJOBS) . . . 3-176
9-4. Converter/Interpreter Interface (IEFJCNTL) 3-178
9-5. Pseudo Access Method (IEFJACTL) 3-182
9-6. Subsystem Initiation Message Writer (IEFJWTOM) 3-186
9-7. Data Set Name Assignment (IEFDSNA) 3-188
9-8. Subsystem Job Termination (IEFJJTRM) 3-190

Initiator/Terminator 3-193
Method-of-Operation Diagrams 3-196

10-1. Initiator: Job Initiation 3-196
10-2. Initiator: Step Initiation 3-200
10-3. Initiator: Step and Job Deletion 3-208
10-4. Initiator: Recovery Processing . 3-212

SW A Create Interface 3-215
Method-of-Operation Diagram 3-216

11-1. SW A Create Interface (IEFIB600) 3-216
Converter/Interpreter 3-223

Method-of-Operation Diagrams 3-223
12-1. Converter: Initialization (IEFVH 1) 3-224
12-2. Converter: Identifying Verbs on JCL Statements 3-226
12-3. Converter: Processing Commands in the Input Stream (IEFVHM) 3-230
12-4. Converter: Processing In-Stream and Cataloged Procedures

(IEFVINA) 3-232
12-5. Converter: Processing Symbolic Parameters (IEFVFA, IEFVFB) 3-234
12-6. Converter: Converting Statements to Internal Text (IEFVFA) 3-236
12-7. Converter: Entering Defaults into Internal Text (IEFVFA) 3-240
12-8. Converter: Termination (IEFVHF) 3-242
12-9. Interpreter: Initialization (IEFNB903) 3-246
12-10. Interpreter: Analyzing Parameter Values 3-248
12-11. Interpreter: Creating and Chaining Tables (IEFVGT) 3-252
12-11. Interpreter: Writing Tables into SWA (IEFVHH) 3-256
12-13. Interpreter: Termination (IEFVHN) 3-258

SW A Manager 3-261
Method-of-Operation Diagrams 3-264

13-1. SWA Manager: Move Mode (IEFQB550) 3-264
13-2. SWA Manager: Locate Mode (IEFQB555) 3-266

Allocation/Unallocation 3-269
Introduction to Allocation/Unallocation 3-271

Batch Initialization and Control 3-271
Dynamic Initialization and Control . 3-271
JFCB Housekeeping 3-271
Common Allocation Control 3-271

Data Set Requests and Unit Requests 3-271
Order of Processing Requests 3-271
Generic Allocation Control 3-272
Recovery Allocation 3-273
The Retry Situation 3-273
Processing Tape Requests 3-273

Common Un allocation Control . 3-275
Volume Mount- & Verify (VM&V) Control 3-275
AllocatioIi/Unallocation Module Name Conventions 3-275
Organization of Allocation/Unallocation Method-of-Operation Diagrams 3-275

6 OS/VS2 System Logic Library Volume 3 (VS2.03.807)

VS2.03.807

Selected Terms Used in Allocation/Unallocation
Method-of-Operation Diagrams

14-1. Common Allocation Control (IEFAB42l)
14-2. Fixed Device Control (IEFAB430) ...
14-3. Specific Volume Allocation Control (IEFAB433)
14-4. Allocate Request to Unit (IEFAB434)
14-5. Nonspecific Volume Allocation Control (IEFAB436)
14-6. JFCB Housekeeping Control (lEFAB45t)
14-7. DD Function Control (IEFAB454) . . .
14-8. JLOCATE (IEFAB469)
14-9. Generic Allocation Control (IEFAB471)
14-10. Allocation Via Algorithm (IEFAB476)
14-11. Demand Allocation (IEFAB479)
14-12. Recovery Allocation (IEFAB485) ...
14-13. Offline/Allocated Device Allocation (IEFAB486)
14-14. Common Allocation Cleanup (IEF AB490) . . .

'.

14-15. Allocation/Volume Mount & Verify (VM&V) Interface (IEFAB492)
14-16. Volume Mount & Verify (VM&V) Control (IEFAB493)
14-17. Initiator/Allocation Interface (lEFBB40t) .
14-18. Initiator/Unallocation Interface (IEFBB4I0)
14-19. Job Unallocation (IEFBB416)
14-20. SVC 99 Control (IEFDB400)
14-21. Dynamic Allocation Control (IEFDB41O)
14-22. Dynamic Unallocation Control (IEFDB4AO)
14-23. Dynamic Concatenation (IEFDB450) ...
14-24. Dynamic Deconcatenation (IEFDB460) ..
14-25. Dynamic Information Retrieval (IEFDB470)
14-26. Remove In-Use Attribute (IEFDB480)
14-27. Ddname Allocation (IEFDB490)
14-28. Common Unallocation Control (IEFAB4AO)
14-29. Disposition Processing (IEFAB4A2)
14-30. Unit Unallocation (IEFAB4A4)

System Mangement Facilities (SMF)
Method-of-Operation Diagrams

15- 1. Writing SMF Records (IEEMB829, IEEMB830)
15-2. Switching SMF Data Sets (IEEMB829)
15-3. ST AE Exit Processing for SMF (IEEMB825)
15-4. SMF Cross-Memory POST Error Exit (IEEMB827)

System Log
Method-of-Operation Diagrams

16-1. System Log Initialization (IEEMB803) .
16-2. Terminating the System Log (IEEMB803)
16-3. Switching Log Data Sets (IEEMB803)
16-4. Log Writer Processing (IEEMB803)
16-5. Processing Log Task Abnormal Termination (IEEMB806)
16-6. Writing Data on the System Log (IEEMB804)

Checkpoint/Restart .
DSDR Processing
The Job Journal .
Journal Routines .
Method-of-Operation Diagrams

Index

17-1. Processing Data Set Descriptor Records (IEFXB609)
17-2. Job Journal to SW A Merging (IEFXB601)
17-3. Step Continue Processing (IEFXB60l)
17 -4. System Restart Processing (IEFXB60 t) . .
17-5. Automatic Checkpoint Restart (IEFXB60t)
17-6. Automatic Step Restart (IEFXB60t) . . .
17-7. Merge Cleanup (IEFXB60t)
17-8. Updating the Virtual Addresses in SW A (IEFXB601)
17-9. Journal Merge Reading (IEFXB60t)
17-10. Journal Merge Error Processing (IEFXB60I)
17-11. Restart Interface Processing (IEFXB602)
17-12. Building a Step Header Record for Job Journal (IEFXB604)
17-13. Preparing Abended Job Step for Restart (IEFRPREP)
17-14. Writing Blocks to the Job Journal (IEFXB500)
17-15. Journal for Restarted Jobs (IEFXB500)

3-276
3-280
3-280
3-294
3-298
3-302
3-308
3-314
3-322
3-334
3-338
3-348
3-354
3-358
3-366
3-378
3-386
3-390
3-396
3-402
3-410
3-412
3-414
3-416
3-418
3-420
3-422
3-424
3-428
3430
3-440
3-444
3-447
3-450
3-450
3-454
3-458
3-460
3-463
3-466
3-466
3-470
3-472
3-474
3-476
3-480
3-483
3-483
3-483
3-483
3-486
3-486
3-492
3-494
3-496
3-498
3-500
3-502
3-504
3-506
3-508
3-510
3-512
3-516
3-520
3-525

1-1

Contents 7

VS2.03.807

Figure 2-9
Figure 2-9A
Figure 2-9B
Figure 2-9C
Figure 2-10
Figure 2-11
Figure 2-12
Figure 2-13
Figure 2-14
Figure 2-15
Figure 2-16
Figure 2-17
Figure 2-17 A
Figure 2-17B
Figure 2-18

Figure 2-19
Figure 2-20

Figure 2-21

Figure 2-22
Figure 2-23
Figure 2-24
Figure 2-25
Figure 2-26
Figure 2-27
Figure 2-28
Figure 2-29
Figure 2-30
Figure 2-31

System Resources Manager (SRM) Visual Contents 3-4
SRM Module/Entry Point Cross Reference (VS2.03.807) 3-3.2
Processing Algorithms and Actions in IRARMCTL (VS2.03.807) 3-23.2
RMEP Algorithm and Acti()n Invocation Flags (VS2.03.807) 3-23.3
System Activity Measurement Facility (MF/t) Visual Contents . 3-79
Job Scheduling: Initiation of the Master Scheduler . . 3-164
Job Scheduling: Initiation of the Job Entry Subsystem 3-165
Job Scheduling: START/LOGON/MOUNT Initiation 3-166
Job Scheduling: Normal Job Entry and Initiation 3-167
SiJbsystem Interface Summary . . . 3-171
Master Subsystem Visual Contents . 3-179
Initiator/Terminator Visual Contents 3-203
Converter Visual Contents 3-223
Interpreter Visual Contents 3-245
General Format of a SW A Control Block and an Example of the JFCB
as it Appears in SW A . 3-262
SW A Manager Visual Contents 3-263
Relationship of the Six Major Functions of Allocation/Unallocation ..

. 3-267
Allocation/Unallocation Functions and Related Method-of-Operation
Diagrams 3-270
The Division of Generic Device Types into Device Groups. 3-272
Tape Device Types and Supported Densities 3-274
Tape Device Eligibility 3-274
Batch and Dynamic Allocation/Unallocation Visual Contents 3-277
Common Allocation Visual Contents 3-279
Function Map of Common Allocation Parameter List 3-293
Function Map of JFCB Housekeeping Parameter List 3-321
System Management Facilities (SMF) Recording: Visual Contents 3-449
System Log Visual Contents 3-465
Job Scheduler Checkpoint/Restart: Visual Contents 3-485

8 OS/VS2 System Logic Ubrary Volume 3 (VSl.03.807)

This section uses diagrams and text to describe the
functions performed by the scheduler, supervisor,
MF /1, SRM, and ASM functions of the OS/VS2

operating system. The diagrams emphasize
functions performed rather than the program logic
and organization. Logic and organization is
described in "Section 3: Program Organization."

The method-of-operation diagrams are arranged
by subcomponent as follows:

• Communications Task.
• Command Processing (includes

, Reconfiguration Commands).
• Region Control Task (RCT).
• Started Task Control (STC) (includes

START/LOGON/MOUNT).

• LOGON Scheduling
• System Resources Manager
• System Activity Measurement Facility

(MF/l)
• Job Scheduling:

- Subsystem Interface.
- Master Subsystem.
- Initiator /Terminator.
- SW A Create Interface.
- Converter /Interpreter.

SWA Manager.
- Allocation/Unallocation.
- System Management Facilities (SMF).

- System Log.
- Checkpoint/Restart.

• Timer Supervision.
• Supervisor Control.
• Task Management.
• Program Management.

Section 2: Method of operation.

• Recovery/Termination Management (R/TM).
• Real Storage Management (RSM).
• Virtual Storage Management (VSM).
• Auxiliary Storage Management (ASM).

The diagrams for each subcomponent are
preceded by an introduction that summarizes the
subcomponent's function. Following each
introduction is a visual table of contents that
displays the organization and hierarchy of the
diagrams for that subcomponent.

The diagrams cross-reference each other using
diagram numbers and module names. As an aid in
locating the diagrams that are cross-referenced, an
alphabetic list of all diagram names and their
corresponding page numbers follows this
introduction.

Method-of -operation diagrams are arranged in
an input-processing-output format: the left side of
the diagram contains data that serves as input to
the processing steps in the center of the diagram,
and the right side contains the data that is output
from the processing steps. Each processing step is
numbered; the number corresponds to an amplified
explanation of the step in the "Extended
Description" area. The object module name and
labels in the extended description point to the code
that performs the function.

Note: The relative size and the order of fields
within input and output data areas do not always
represent the actual size and format of the data
area.

Section 2: Method of Operation 3-1

... Primary pr !ng -Indl malor functional flow .

.... _~ Secondary processing - indicates functional flow within a diagram.

'--_--.> Data movement, modification, or use.

- -~ Data reference - indicates the testing or reading of a data area to
determine the course of subsequent proceSSing.

----...... Pointer - indicates that a data area contains the address of another
data area.

- t~' ---..... Indirect pointer - indicates intermediate pointers have been omitted.

--D Connector - indicates that a diagram is continued on the next page.

Figure .2-1. Key to Symbols Used in Method~f-operation Diaarams

3-2 OS/VS2 System Logic Libruy Volume 3 (VS2 Release 3.7)

1
/

In MVS, address spaces may be swapped into or
out of real storage. When an address space is
swapped out, its entire working storage is moved to
auxiliary storage, and the real page frames it
formerly occupied may be used for paging activity
or to swap in a previously swapped-out address
space. The system resources manager (SRM) is the
system's swap decision maker. By swapping, the
SRM attempts to manage the system to
predetermined multiprogramming levels (MPLS)
within domains of work as indicated in the IPS.

Domains provides a mechanism of controlling
how many of a group of users are swapped in at
one time. That is, a domain associates a
multi-programming level (MPL with aggregate or
group users. The total MPL is the number of
swapp able memories in real storage at a given time.
When the SRM's resource monitor determines that
the total MPL may increase, the MPL of one domain
will be incremented by one. Similarly, the MPL of
one domain is decremented when the total MPL
should be lowered. The domain descriptions in the
IPS indicate ranges for the MPL of each domain and
a weighting factor for each domain which indicates
to the SRM which domain to increment or
decrement should a change in the system MPL be
required.

Also, SRM monitors the system resources of
CPU, I/O, and storage. It keeps statistics and uses
them. to make swap decisions that can prevent
either a depletion or an under-utilization of these
resources.

Specifically:
• SRM maintains data concerning real and

auxiliary storage. It uses the real storage
manager (RSM) and the auxiliary storage
manager (ASM) to keep track of frame (RSM)
and slot (ASM) usage. Using this data SRM is
able to detect shortages and use swapping to
correct them ..

• SRM monitors the I/O resource and makes
decisions concerning the allocation of devices
based on I/O load balancing considerations.

• SRM monitors and controls CPU utilization
through its ability to balance the CPU load
through swapping and by its ability to
maintain the automatic priority group (APG).

VS2.03.807

System Resources Manager (SRM)

The SRM's structure consists of five functional
groupings:

• The interface function is the means through •
which other system components communicate •
with the SRM, and through which the SRM
requests the services of other system
components.

• The SYSEVENT processor analyzes
communications to the SRM and translates
them into requests for specific SRM services.
It also formulates responses as required by
the SYSEVENTs.

• The control function performs swapping
analyses, obtains swap recommendations from
other SRM components, and translates these
recommendations into specific swapping
decisions. It also requests that previously
deferred SRM functions be performed when it
is possible to do so.

• The resource use algorithms consist of CPU,
I/O, and storage management functions,
which monitor the utilization of these
resources, and make swapping
recommendations that affect their future use.
Also, as a result of this monitoring,
recommendations to raise or lower individual
domain multiprogramming levels (MPLS) are
made and adjustments to the MPLs occur
within the constraints of the IPS.

• The workload manager function attempts to
maintain each address space's usage of system
resources (their service) as specified for
different user classes in the IPS (Installation
Performance Specification). It exercises this
control by influencing the Control function's
swapping decisions. Additionally, the
workload manager interfaces with MF/l so
that reports concerning the rates of system
resources usage can be easily obtained.

The primary way in which the installation may
affect the functioning of the SRM is by changing
the tuning parameters and the IPS parameters.
These are explained in more detail in the OS/VS2
MVS Initialization and Tuning Guide. The SRM's
principal control block is the resources manager
control table (RMCT). All SRM routines and
subroutines have access to this table and can access
most other SRM blocks via pointers in the RMCT or
by displacements from the origin of the RMCT. The
origin of the RMCT is the entry point of

Section 2: Method of Operation 3-3

IRARMCNS t the SRM constants module .. This
module contains all the control tables t constants
and parameters of execution of the SRM as well as
pointers to all the key SRM routines.

The SRM maintains a control block (OUCB)
associated with each active address space. OUCBs
are maintained on one of three queues, depending
on the status of the associated address space:

"IN" queue - consists of address spaces
currently in real storage.

"OUT" queue - consists of address spaces
currently swapped out of real
storage and awaiting SRM
analysis for swap-in.

3-3.0 OS/VSl System Logic Ubnry Volume 3 (VSl.03.807)

VS1.03.807

"WAIT" queue • consists of address spaces
currently swapped out of real
storage and in "long wait"
status.

SRM is packaged as several modules, but each
module does not directly correspond to a unique
SRM function. Specifically, each function in SRM. is
identified by an entry point in one of the modules
that comprise the SRM component. Figure 2·9A
summarizes all SRM entry points and shows in what
module the entry point exists. A description of
each entry point is included at the end of the
section in which its containing module is
diagrammed.

Section 2: Method of Operation 3-3.1

VS2.03.807

~
MODULES ~ ..J 0: l- t- ~

0: > ~ 0: ~
no t- o: > Q ~ 0: t- « ..J
U U w w Z 0: (I) (I) ~ ~
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0:

SRM « « « « « « « « « « «
ENTRY POINTS !:!: !:!: !:!: !:!: !:!: !:!: !:!: !:!: !:!: !:!: !:!:

CHAP X
CPLRVSWF X
CPUTLCK X
CPUWAIT X
IGC095 X
IRAPRCSR X
IRARMAP1 X
IRARMASM X
IRARMCAP X
IRARMCEO X

IRARMCEL X
IRARMCEN X
IRARMCET X
IRARMCLO X
IRARMCL1 X

,IRARMCL3 X
IRARMCPI X
IRARMCPO X
IRARMCOT X
IRARMCRO X
IRARMCRL X
IRARMCRN X
IRARMCRT X
IRARMCRY X
IRARMCSI X
IRARMCSO X
IRARMCVL X
IRARMOEL X
IRARME01 X
IRARMHIT X
IRARMIOO X
IRARMI01 X
IRARMI02 X
IRARMI03 X
IRARMI04 X
IRARMI05 X
IRARMI06 X
IRARMI07 X
IRARMI09 X
IRARMI10 X
IRARMI48 X
IRARMILO X
IRARMIL1 X
IRARMIL3 X
IRARMIL4 X
IRARMIPS X
IRARMMS2 X
IRARMMS6 X
IRARMNOP X
IRARMPR1 X

Figure 2-9A. SRM Module/Entry Point Cross Reference (Part 1 of 2)

,3-3.2 OS/VS2 System Logic Library Volume 3 (VS2.03.807)

VS2.03.807

~
MODULES :! ..J 0: l- I- :! 0: > :! 0: :!

Q. I- 0: > z Q :! 0: I- « ..J
(,) (,) w w 0: en en 3: 3:
:! :! :! :! :! :! :! :! :! :! :!
0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0:

SRM « « « « « « « « « « «
ENTRY POINTS ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

IRARMPR5 X
IRARMRM1 X
IRARMRM2 X
IRARMRPS X
IRARMRR1 X
IRAAMRR2 X
IRARMSOA X
IRARMTRC X
IRARMUXB X
IRARMWM1 X
IRARMWM2 X
IRARMWM3 X
IRARMWM4 X
IRARMWM5 X
IRARMWM7 X
IRARMWMI X
IRARMWMJ X
IRARMWMK X
IRARMWMN X
IRARMWMO X
IRARMWMO X
IRARMWMR X
IRARMWMY X
IRARMWR1 X

" I
IRARMWR2 X

/ IRARMWR3 X
IRARMWR4 X
IRARMWR5 X
IRARMWR6 X
IRARMWR7 X
IRARMWR8 X
IRARMXPS X
IRARMXTL X
LCHUSE X
NEWDP X
RMRR1CKO X
RMRR2GST X
RMRR21NT X
RMRR2PER X
RMRR2REO X
RMRR2RTY X
RMRR2SPR X
RMRR2VFB X
RMRR2VLD X
STEAL X

Figure 2-9A. SRM Module/Entry Point Cross Reference (Part 2 of 2)

Section 2: Method of Operation 3-3.3

I--

I
I
I
I

VS2.03.807

I 6-1

SRM
Interface

(IRARMINT)

I
I 6-2

SYSEVENT
Processor

(lRARMEVT)

---t---
I 6-3

SRM
Control

(lRARMCTL)

--,

I
I
I
I

r--~
I

LE~"!!!OL I

I
I
I
I
I
I
I
I
I

l 6-6

Algorithm
Processor

(IRARMCEL)

Swap
Analysis

l 6-9

(lRARMCAP)

Control
Swap-In

l 6-10

(lRARMCSI)

Control
Swap-Out

I 6-11

(lRARMCSO)

I 6-5

Deferred
Action
Processor

(lRARMCEN)

I 6-7

Periodic
Entry Point
Scheduling

(lRARMCET)

I 6-11A

Select User
For Swap-In

(lRARMCPI)

l 6-118

Select User
For Swap-Out

(lRARMCPO)

I 6-11C

User
Evaluation

(lRARMCVL)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

-- __________ J
Figure 2-9. System Resources Manager (SRM) Visual Contents (Part 1 of 3)

3-4 OS/VS2 System Logic Library Volume 3 (VS2.03.807)

SERVICE r-------l
I I
I I 6-1A I
I SRM Service I

Routine

I (lRARMSRV) I
I I
I I
I I 6-18 I
I Obtain/Free I

SOA Storage

I (lRARMI04) I
I I
I I I I 6-1C I
I Requeue I

SRM TOE I
I (lRARMI05)

I I
L _______ ..J

VS2.03.807

l NO

SRM Resource
Monitor

(lRARMRMR)

Resource
Monitor
Periodic

I 6-18

Monitoring

(lRARMRM1)

Resource
Monitor
MPL

16-18A

Adjustment
Processing

(lRARMRM2)

Figure 2-9. System Resources Manager (SRM) Visual Contents (Part 2 of 3)

I 6-12

SRM Storage
Management

(lRARMSTM)

WORKLOAD MANAGER
r--------,
I I
I l NO I
I SRM I

Workload
Manager

(lRARMWLM)

I 6-19

Swappable
User
Evaluation

(lRARMWM2)

I 6-20

Individual
User
Evaluation

(lRARMWM3)

I 6-21

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

User Ready I
Processing I

I (lRARMHIT) I
L _______ J

Section 2: Method of Operation 3-4.1

MFI1INTERFACE r-------l

I NO

Supply SRM
Data to MF/1

O(IRARMWAR)

I 6·22

Initialize
For MF/1

(lRARMWR1)

I 6·23

Collect Data
ForMF/1

(IRARMWR3)

L ______ -.J

VS2.03.807

I 6·17

SRM CPU
Management

(lRARMCPM)

I/O MANAGEMENT
r-------l
I
I
I
I
I
I
I
I
I
I

I 6·14

SRM I/O
Management

(lRARMIOM)

I 6·16

SRM I/O Load
Balancing User
I/O Monitoring

(lRARMILO)

L ______ -.J

Figure 2-9. System Resources Manager (SRM) Visual Contents (Part 3 of 3)

3-4.2 OS/VS2 System Logic Library Volume 3 (VS2.03.807)

SRM Interface
Other system components communicate with the
SRM by means of the SYSEVENT macro instruction.
SYSEVENTs fall into three classes:

• Address space SYSEVENTS are issued to notify
the SRM of a change in status for a particular
address space.

• System status SYSEVENTs are issued to notify
the SRM of a change in status applicable to
the system as a whole.

• SRM services SYSEVENTs are issued to request
particular SRM support functions.

The SRM interface receives control as a result of
the execution of a SYSEVENT macro instruction.
The 'SYSEVENT macro serves as an extended
routing function based on the SYSEVENT code
generated by the SYSEVENT macro from the
specified mnemonic name operand. Each individual
SYSEVENT code represents a logically distinct
interface to the system resources manager, with its
own circumstances, its own input and output
conventions, and its own resultant system resources
manager actions. The use of the SYSEVENT macro
is restricted to those components/modules which
have reached prior agreement with system
resources manager module owners. The SYSEVENT
macro instruction generates either a branch or svc
entry (SVC 95) into the SRM. Branch entry callers
must be in supervisor state, key 0-7, and associated
data areas must be fixed. Disabled page faults that
occur when user data areas are referenced will
cause the SYSEVENT issuer to be abnormally
terminated (ABEND code '15P'). Branch entry
callers must also pass, in register 13, the address of
a 72-byte save area, which can be stored into by
using the caller's key. The SYSEVENT issuer is
responsible for serializing the use of this save area
(via disablement, global or local lock).

SYSEVENT 38 requires no authorization.
SYSEVENTs 41 and 42 either require APF
authorization or must be issued from a program
that the initiator recognizes as "DONTSW AP"
authorized (ASCBNSWP='I' at initiator attach
time). All other SYSEVENT issuers using the SVc
entry facility must be APF authorized, and
associated data areas must be fixed. Unauthorized
use of the svc entry, or page faults occurring while
referencing user data areas, will cause the
SYSEVENT issuer to be abnormally terminated
(ABEND code ' 15P').

The SRM interface passes control to the
SYSEVENT processor for processing related to the
particular SYSEVENT; depending upon the

VS2.03.807

SYSEVENT, the SRM may then perform further
processing not necessarily related to the invoking
SYSEVENT. Thus many SYSEVENTs serve not only
as status change notifiers or service requestors, but
also as occasions for performing a wide-range of
SRM processing.

The SRM interface also processes requests from
internal SRM routines servicing system components.
These include such services as cross memory post,
obtaining SQA storage and issuing a
Write-to-Operator (WTO) message. The interface
function is used to provide a common point of
invocation and simplified access for internal SRM
routines. The service interface routines are
packaged together in the IRARMSR V module, each
routine having its own entry and exit point. See the
M.O. Diagrams for more detail.

SRM Error Recovery
One functional recovery routine (FRR) provides
recovery for all of the SRM routines. The address
of this routine is identified to the recovery
termination manager (RTM) at the beginning of
SRM processing, when obtaining the SRM lock for
non-globally locked entries and upon entry for
globally locked . entries. The FRR (address) is
cancelled upon exit from SRM processing. The only
section of the SRM component not covered by the
functional recovery routine is the (non-globally
locked) code preceding the obtaining of the SRM
lock; such code is restricted from performing any
updating of system data.

The functional recovery routine recovers SRM
from a percolated error, from machine checks, from
the restart key, and from program checks. The
routine requests that error recording/storage
dumping be performed, supplying additional
information about the error.

The processing performed by SRM's FRR
depends upon the nature of the error. The actions
taken for different errors are described below.

1. If the ABEND macro was issued by SRM, or
if the restart key was depressed recursively,
the error is percolated.

2. If the error occurred in the SRM workload
activity recording routine, the MFI task is
abended. If SRM was running in the same
address space as the MFI task, the error is
percolated.

3. If a translation or protection exception
occurred in SYSEVENT processing, the
abend code is changed to X'ISF'. The FRR

Section 2: Method of Operation 3·~

validates queues and status data maintained
by SRM and percolates the error.

4. For other errors occurring within SRM, the
FRR validates queues and status data
maintained by SRM and performs a retry of
the SRM routine that failed. If the error is
repeated, and if the error is associated with
an action or algorithm, another retry is
attempted bypassing the routine in error.
Otherwise, the error is percolated.

The SRM interface also processes requests from
internal SRM routines, servicing other system
components. The SRM interface M.O. diagram
illustrates the functioning of. this sUbcomponent.

The issuing of most SYSEVENTs prior to SRM
NIP processing (performed by lEA VNPlO) will result
in a direct return to the issuer without any SRM
processing. An exception is SYSEVENT RSMCNSTS
(22), for which normal processing will be
performed.

Locking Considerations
All issuers of enabled, branch entry SYSEVENTs
must hold the local lock when the SYSEVENT is
issued.

The SRM lock will be obtained by the SRM on
all SYSEVENT entries to the SRM except the
following SYSEVENTs:

3-5.0 OS/VSl System LogIc Ubrary Volume 3 (VS1.03.807)

VS1.03.807

USERRDY (4)
SWOUTCMP (15)
SWPINST (16)
RSMCNSTS (22)
AVQLOW (23)
AVQOK (24)
SQALOW (25)
SQAOK (26)
SYQSCST (35)
SYQSCCMP (36)
It is required that issuers of the above

SYSEVENTs be disabled on issuing the SYSEVENT,
because the SRM uses cPu-related save areas while
processing these SYSEVENTs. Issuers of other
SYSEVENTs (those not listed above) must not hold
any global locks higher in the system locking
hierarchy than the· SRM lock when they issue the
SYSEVENT. These issuers must not hold the SRM
lock. SRM must be able to obtain the SRM lock
when entered via any of these SYSEVENTS.

The method-of-operation diagrams that follow
describe the specific functions performed by the
SRM interface. The functions are:

• SRM Interface (IRARMINT).
• SRM Service Routine (IRARMSRV).

/

Section 2: Method of Operation 3-5.1

~ Diagram 6-1. SRM Interface (IRARMINT) (part 1 of 4)

i
~
~

~

i
i
t"'I az
~

i
w

~
~
Q
w
00
S -

From
Input SYSEVENT Issuer Process
. ... r'--~

Output

SYSEVENT
Characteristics
Table

ASCB

IRASECHT

D

I ASCBOUCB I

Time of
Century
Clock

Register 0

Register 1

Register 15

IJ
From SYSEVENT
Processor or
SRM Control
(tRARMCTL)

SRM Interface

1 Verify that the SRM invocation is valid.

2 Obtain SRM lock. if required.
Functional Recovery
Routine Stack

SRM FRR
Address 3 Establish an error recovery environment. VlI-------~

RMCT

4 Perfor":, initialization for SYSEVENT i/I
processIng.

5 Process the SYSEVENT.

6 Trace the SYSEVENT via GTF
(generalized trace facility)

7 Release the SRM error environment.

To SYSEVENT
Processor
(tRARMEVT)
(See
SYSEVENT
Processor M.O.)

GTF Data Set ,

CI.l
(D
(') g.
=
~

s::
(D s-
o
t:\.
o
o

't:I

~ o·
=
loW

..:...

~ '" /"

Diagram 6-1. SRM Interface (IRARMINT) (Part 2 of 4)

Extended Description

The SRM Interface receives control when a SYSEVENT
macro instruction is issued, or when the SRM requests
the services of another system component. When the
interface receives a SYSEVENT, it performs the locking
necessary to ensure that SRM functions which must be
serialized are not performed simultaneously on more than
one CPU. SRM requests the SRM lock unconditionally
before passing control to the SYSEVENT processor. If
the lock is held by another CPU, the lock manager will
spin waiting for the lock to be released. Otherwise, SRM
will acquire the lock and continue processing. In either
case the SRM lock serializes SRM processing in a
multi-CPU environment.

1 For all SYSEVENTs that generate supervisor call
entries to the SRM (SVC 95), except for SYSEVENT

REQSERVC (38), the issuer must be authorized. For
SYSEVENTS 41 and 42, "DON'T SWAP" authorization
is valid. For all other SYSEVENTs, the user is
considered authorized only if he is executing in supervisor
state or protection keys 0-7, or is authorized by APF
(authorized program facility).

ForSYSEVENTs that generate a branch entry to the
SRM, the issuer must be executing in protection key 0-7,
and must be in supervisor state.

2 The SYSEVENT characteristics table indicates, for
each SYSEVENT entry, whether or not the SRM

lock must be obtained for SRM serialization purposes.

3 The SRM is protected from unexpected errors via
a functional recovery routine (FRR). The processing

will be performed for an error situation depends upon
whether or not the SRM lock was held (see ERROR
PROCESSING, below)'

Module Label

IRARMINT

IRARMSRV

IRARMINT IGC095

"IRARMIOO

IRARMINT IRARMOOO

IRARMINT RMINT005

Extended Description

4 Before passing control to the SYSEVENT proc-
essor, a pointer is obtained to the SRM user

control block (OUCB) corresponding to the input
ASID (address space identifier); for SYSEVENT
MEMCREAT, there will not yet be an OUCB (an
OUCB is obtained by IRARMEVT if no Resource
shortages exist). The current time-of-day is obtained
and formatted for SRM use. The time-of-day clock
value is stored and shifted 22 bits to the right, and
the rightmost 32 bits of the resulting value are used
by the SRM. Therefore, SRM constants representing
time are in units of 1024 microseconds
(approximately 1 millisecond).

5 The interface invokes the SYSEVENT processor
to initiate the appropriate processing (see

SYSEVENT PROCESSOR table).

6 A GTF trace record is produced (via the HOOK
macro) if GTF is active. This record includes:

• Register 0 (as input, except that the ASID is placed
here even when it was not included as input).

• Register 1 (as input, with the addition of possible
return indicators which may overlay input data).

• Register 15 (containing any necessary return code
in byte 3).

7 The address of the SRM FRR is removed from the
system FRR stack.

'- _efT

Module Label

IRARMINT IRARM001

IRARMEVT

IRARMINT

IRARMINT IRARMI01

<:
CI.l
N

o
loW

00
o
-...J

'of I Diagram 64. SRM Interface (IRARMINT) (part 3 of 4)
co

~
~
N
fIl

I
b'
~.
t"'" a:
!
<
~ a
(D

c..I

'< fIl
N
Q
c..I
00

~

Register 4

Register 5

Register 6

8 Release the SRM lock if it was obtained
in step 2.

'" y 9 Return the service data if this entrywas
due to SYSEVENT REQSERVC.

~ Retumto
. SYSEVENT.

Issuer

Register 1

t
..... ~ User Data
VI Area

1

I < fIl
N
Q
c..I
00
~

c;n
(p
() g.
N

is::
(p

S-
O
~

o
o
'0

~ o·
::l

~

~

""'~

Diagram 6-1. SRM Interface (IRARMINT) (Part 4 of 4)

Extended Description

8 The SRM lock will have been obtained if the invok­
ing routine did not already hold a lock higher in the

locking hierarchy than the SRM lock (except for
SYSEVENTS SYQSCST and SYQSCCMP).

9 To prevent disabled page faults and an invalid SRM
invocation, and to insure system integrity, the

service data is stored while not holding the SRM lock, and
in the user's protection key.

Error Processing

The issuer of a SYSEVENT will be abnormally terminated
(ABEND code '15F'X) if:

• an invalid ASID or SYSEVENT code was supplied
(reason code 4).

• the program was not authorized to issue the SYSEVENT
(reason code 8).

• a page fault occurred in referencing a data area assumed
to be fixed (reason code 12).

• the program did not have the correct storage key for
storing into a parameter data area (reason code 16).

• the SRM lock was held on entry to the SRM (reason
code 20).

A SYSEVENT issuer will be terminated (ABEND code
'25F') if the SRM determines that a system failure has
resulted in the loss of data used by the SRM in con­
trolling an address space. Similarly, the System Activity
Measurement Facility (MFI1) task, and the Set IPS task
will be terminated (ABEND code '25F') when the SRM
receives an error occurring during SRM processing relating
to a Set to New IPS command or to the collection of
workload activity data for MF/1.

Module

IRARMINT

Label

RMINT010

Extended Description

A functional recovery routine (FRR) provides the error
recovery environment for SRM processing. When an error
occurs during SRM processing (or when an error occurring in
a routine invoked by the SRM has been passed back (per­
colated) to the SRM), the recoveryltermination manager
gives control to the SRM FRR. If the SRM was operating
without holding the SRM lock when the error occurred, error
processing will consist of making one attempt at retrying
the failing routine; a second failure will result in the error
being passed to the previous routine in the FRR stack. If

the SRM was operating under the SRM lock when the

error occurred, the FRR will perform queue validation
before making an attempt at retrying the failing

routine; queue validation consists of verifying that the
three OUCB queues are properly chained (re-chaining where
necessary), and that OUCBs, OUXBs (user control block
extensions), and OUSBs (user swappable blocks) exist and
are valid, where they are required. Likewise, the pointers
between the ASCBs and OUCBs is checked. Where it is
necessary to create a new OUCB or OUXB, a bit is set in
the OUCB to indicate that the data reflected in these

newly created blocks may not be valid.

On errors occurring during SRM locked processing, retry
action depends upon whether the error occurred during
SYSEVENT related or non-SYSEVENT related proc­
essing. For SYSEVENT-related processing, 1 retry will be
attempted. Subsequent failure will result in the error
being passed to the previous routine !n the FRR stack.
For non-SYSEVENT-related processing (i.e., processing
which SRM control was driving), 1 retry of the failing
routine will be attempted. A second error will case an
attempt to bypass the twice failing routine. Subsequent
errors will result in the error being passed to the previous

routine in the FRR stack.

~_ J

Module Label

IRARMERR

IRARMRR1

IRARMRR2

RMRR2VLD

<:
c;n
N
o
~

00
o
-...J

IRARMINT Module Entry Point
Summary
IGC095 - SVC entry point to SRM.

IRARMIOO - Branch entry point to SRM.

Handle all external SYSEVENTs.

IRARMI48 - Branch entry point to SRM.

Handle the internal SYSEVENT. (48).
IRARMIOI - Entry point from RARMEVT or

RARMCTL.

Return to the SYSEVENT issuer.
IRARMIIO - Entry point to SRM.

Abend a user of SRM.

3-9.0 OS/VS2 System Logic Library Volume 3 (VS2.03.807)

VS2.03.807

/

Section 2: Method of Operation 3-9.1

w
~
~

o
CIl

"< CIl
~

CIl
'<
~ ;-
9
r-' o

'G.
(")

r-' s:
~
~ c
9
(II

w

'< CIl
~ o w
00
o, -

Diagram 6-1A. SRM Service Routine (IRARMSRV) (part 10(6)

Input

Register 1

Register 1

From I RARMCPM,
IRARMCTL or IRARMEVT

Process

IRARMI02.

F rom Storage Management
(JRARMSTM)

Invoke ASCBCHAP to reorder the
listed ASCBs on the dispatching
queue.

IRARMI03.
Call real page frame replacement.

ASCBCHAP

Return to
Caller
(JRARMCPM,
IRARMCTL, or
IRARMEVT)

Return to
Storage
Management
(JRARMSTM)

Output

--'" >
I"

Dispatching Queue

~ ;;j
~

o w
00
S

fI'l
(D
n g.
::t
~

f
[
o
o
1 a g.

~
~
CN

~.3!1"" "._/

Diagram 6-1A. SRM Service Routine (IRARMSRV) (Part 2 o(6)

Extended Description

This module is a collection of several independent routines
which act as interfaces between SRM and various system
services.

IRARMI02
Reposition the listed ASCBs in the ASCB dispatching
queue to reflect their new dispatching priorities.

IRARMI03
Update UICs in pages belonging to all users listed.
Steal pages from users which then have UICs that
meet the steal criterion.

Label
Module (or Segment)

IRARMSRV IRARMSRV

IRARMSRV IRARMI02
IEAVEACO

IRARMSRV IRARMI03
IEAVRFR

.,

<:
fI'l
N
b
CN

00
Q
......

~ I Diagram 6-1A. SRM Service Routine (IRARMSRV) (part 3 of 6)
\C :..

~
"< 1;12
~

1;12
'<
i
9
r-
ei.
n
r-
§=
~
<
~
9
(II

!,N

< 1;12
~
Q
!,N

00
S -

Input

Register 1

or Free Address

Register 0

Request Size

FromSRM
Routines

From Periodic Entry

Obtain free storage in SOA.

Point Scheduler (I RARMCET)

Register 1 I· I IRARMI05.
I Timer Value ~ Update the SRM TOE and queue

it on the system timer queue.

Output

GETCELL

or

or

IEAVGMOO

GETMAIN/. /
FREEMAIN

Return to
Caller

ENOTOE
Routine

Return to
Caller
(lRARMCET)

Register 1

14 Storage

Return Code

TOE

[TQEVAL I

~
~
Q
!,N

00
S

fI)

~

i
~

~

i
o
"" o

}.
~
i.A

Diagram 6-1A. SRM Service Routine (IRARMSRV) (part 4 of6)

Extended Description

IRARMI04
Obtain free SQA storage either from a cell in
'RM1' cellpool or from other available SQA.
(See Obtain/Free Storage (lRARMI04) M.O.)

IRARMI05
Store a new timer value in the SRM TQE and queue
the TQE on the system timer queue. (See Requeue
SRM TQE (lRARMI05) M.O.)

Module

IRARMSRV
IEAVGTCL or
IEAVFRCL or
IEAVGMOO
IEAVBLDP

IRARMSRV
IEAVRTIO
IEAVRTIO

Label
(or Segment)

IRARMI04

IRARMI05
IEAQTDOO
IEAQTEOO

<:
fI)
~

b
~

Co
Q
.......

~ I Diagram 6-1A. SRM Service Routine (IRARMSRV) (put 5 of6)
\0
~

o
rI'.l

~
~

rI'.l

i
t"'"

~.
f')

t"'"
0:

~
~ a
(D

(.oN

~
~
(:,
(.oN

00
Q -

Input

Register 1

[1- ECB

Register 5

[+ ASCB

Register 5

[TUASCB

Register 1

• List Form of
I WTO Message

From SRM
Routine

Il
From Control
Swap-In (lRARMCSI)

IRARMI06.
Post an ECB in another memory.

IRARMI07.
- • " Schedule an SRB to initiate a

swap in.

From Storage
Management (lRARMSTM)

IRARMI09.
Invoke record facility to issue a
WTO to the system operator.

Return to
Storage
Management
(lRARMSTM)

Cross
Memory Post

Return to
Caller

ESC1

Output

ECB

: > I ~

Return Code

D

<
rI'.l
N
o
W

00
o

c:I:l

~
::t.
g
~

== (D

[
o
o

'tS

~ g.

w
~
:....

~

Diagram 6-1A. SRM Service Routine (IRARMSRV) (part 6 of 6)

Extended Description Module

IRARMI06 IRARMSRV
This entry point is used by the swap-out routine to
post the region control task (for example).
If an error is encountered during the cross memory IEAOPT01
post, the error routine (lRARMXPE) gets control IRARMSRV
and attempts cleanup while running under an FRR.

IRARMI07 IRARMSRV
Initiates a swap-in, gets an SR8 and schedules it to IEAVGTCL
run the RSM swap in routine (lEAVSWIN) in the IEAVESCO
master memory.

IRARMI09 IRARMSRV
The record facility is invoked to issue a WTO to the
system operator console because the requesting IEAVTRER
SRM routines hold the lock and cannot therefore
issue a WTO.

>7 ?

Label
(or Segment)

IRARMI06

IEAOPT01
IRARMXPE

IRARMI07
IEAVGTCL <
IEAVESC1 c:I:l

N
(:,
w
00
0

IRARMI09 -..l

IEAVTRER

l.f I Diagram 6-18. Obtain/Free SQA Sto~ge (IRARMI04) (Part 1 of 2)
\C)

00

~
<-f'-I
~

f'-I
'<
fI)

S-
51
r""

~.
(")

r""
;:

8
~
~
w

~
~
Q
w
00
S -

Input

Cellsize

From SRM
Routines

[Constant ./

Register 0

rO~r Free Address I]
Register 1

I Request Size I

1 If request size = cellsize, call
getcell or freecell.

Else a. Go to step 4.

2 For non-zero return codes,
get or free a 2K block.

Else, return to caller.

--
3 For successful getmains

issue B LDCPOO L.

Go to step 1.

4 Do GETMAIN or
FREEMAIN.

Return to
Caller

GETMAINI
FREEMAIN

Return Code

->1--._--

Return Code

->

fIl

i
~

I
~
o
1
i
:::a

w
~
\0

~
,,_ f

Diagram 6-1B. Obtain/Free SQA Storage (IRARMI04) (Part 2 of 2)

Extended Description

This routine is used by the SRM for obtaining and freeing
control blocks in key 0, subpool 245 storage (SQA).

Request processingfollow5 the same procedure for both
obtaining and freeing storage. If register 0 contains zero,
the request is a get.

1 If the request length matches the cellsize for the
IRARMRM1 cellpool, call GETCELL or FREECELL.

Otherwise, go to step 4.

2 If the GETCELL or FREECELL fails, call GETMAIN
or FREEMAIN, for a 2048-byte block. Otherwise,

return to caller of IRARMI04 and the GETMAINI
FREEMAIN return code becomes the IRARMI04 return
code.

3 If a GETMAIN was done and was successful,
issue BLDCPOOL to segment the returned storage

into cells. If BLDCPOOL succeeds, go to step 1.
Otherwise, return to the caUer.

4 Get the SALLOC lock and perform a GETMAIN
or FREEMAIN for the or1ginal request size. Then

release the SALLOC lock. The GETMAIN/FREEMAIN
return code becomes the IRARMI04 return code.

Label
Module (or Segment)

IRARMSRV IRARMI04

IEAVGTCL
IEAVFRCL

IEAVGMOO

IEAVBLDP

IRARMSRV
IEAVELK
IEAVGMOO

IEAVGTCL

IEAVBLDP

GETSTOR or
FREESTOP

"~-'

< en
~

Q
CoN

00
C
'-01

w
\0 ..
o

~
~
N
C'Il
'<

~
b
~.
roe

J
~ g
w

~
N

S
00
,§

Diagram 6-le. Requeue SRM TQE (1RAItMIOS) tput 1 of 2)

From Periodic ,Entry
Point Scheduler (JRARMCET)

t Process ..
Register 1

I I "> 1 Convert timer value to Timer Value

I I

r 64 bit format.

RMCT

RMCTTOC

I I
RMCTTSS

TOE

I TOEOFF.O I t.> 2 If currently on system
r timer queue, dequeue TOE. ...

Otherwise go to step 3. ...

Registers 6# 7

I 1

to. > 3. Enqueue the TOE with .. the new converted timer.
value. ,'. ..

(lRARMCET)

IEAOTDOO
II.

r TOE Dequeue
Routine

IEAOTEOO .. TOE Enqueue -Routine

Outout

Registers 6, 7

>B

TOE

> I TOEVALI

<:
C'Il
N
Q
w
00
Q

fI)

i· :s
~

iC
CD

~
2-
o

I
w
~
;..

~

Diagram6;.lC. Requeue SRM'TQE (lRARMIOS) (part 2 of 2)

Extended Description

This routine updates the SRM timer queue element with
a new timer value and enqueues the element on the system
timer queue ..

1 Convert timer value to hexidecimal format.

2 Dequeue·timer queue element (TQE) if currently
queued. This is done under the. dispatcher lock.'

3 Enqueue the TQE. This is done while holding
the dispatcher lock;

Label
Module (or Segment)

IRARMSRV IRARMI05

IRARMSRV IRARMI05

IEAVRTIO IEAQTDOO

IEAVRTIO IEAQTEOO <
fI)
N o
W
00
S

3-9.12 OS/VS2 Sy.temLopc Libruy Volume 3 (VS2.03.807)

I!>;.\

)
v

IRARMSRV Module Entry Point
Summary

IRARMI02 - ASCB CHAP entry point.
IRARMI03 - Real Page Frame Repla7ement entry

point.
IRARMI04 - Obtain or Free SQA Storage.
IRARMI05 - Requeue SRM TQE Routine;
IRARMI06 - Cross-Memory Post entry point.
IRARMI07 - Swap SRB SCHEDULE Routine.
IRARMI09 - RECORD entry point.

IRARMERR Module Entry Point
Summary

IRARMRR 1 - Functional Recovery for Globally
Locked Entries (entries to SRM in
which the SRM lock could not be
obtained).
Retry the failing SRM routine when
possible. Otherwise percolate the error.

RARMRR2 - Functional Recovery for Non-Globally
Locked Entries (entries to SRM in
which the SRM lock was obtained).
Validate queues and cleanup. Retry the
failing routine if possible; otherwise,
percolate the error.

RMRR2RTY - Return to RTM indicating retry.
RMRR2PER - Return to RTM indicating percolation.
RMRR2INT - FRR initialization.
RMRR2VLD - Validate control blocks.
RMRR2GST - Release the dispatcher lock in order

to call IRARMI04.

RMRR2CKQ - Verify the location of an OUCB.

RMRRIVFB - Verity addresses.
RMRR2REQ - OUCB enqueue routine entry point.
RMRR2SPR - Return with the return code in register

15.

VS2.03.807

Section 2: Method of Operation 3-9.13

3-10 OS/VS2 System Logic Library Volume 3 (VS2.03.807)

SYSEVENT Processor
The SYSEVENT processor function (IRARMEVT)
receives control from the interface function to
perform processing related to the SYSEVENT, and,
in most cases, to request the services of other
internal SRM routines. In a multiprocessing
environment the system may not be able to
perform some of these routines immediately
because of concurrent SRM processing on another
cpu. In these cases, execution of the requested
routines is deferred until a later SRM invocation.
Listed are all SYSEVENTs in alphabetical order
along with their associated codes.

The next diagram lists the SYSEVENTs
(numerically by code), the situation occasioning
their issuance, information passed to and returned
from them, internal SRM routines that they may
explicitly invoke, the functions of these routines,
and any exceptional notes about the SRM action
taken as a result of a SYSEVENT. Also, this
diagram indicates for each SYSEVENT whether the
SRM lock is obtained by the SRM interface routine
and where control passes after the SYSEVENT is
processed. All SYSEVENTs receive the associated
SYSEVENT code (listed below the SYSEVENT name)
as input information (in byte 3 of register 0),
although this information is not explicitly
mentioned in the figure. Where an ASID is listed as
input, it is passed in register 0, bytes ° and 1.

Note that some SYSEVENTs do not hold the SRM
lock. These SYSEVENTs return directly to the SRM
interface for return to the issuer. Most other
SYSEVENTs exit to the SRM control function, which
may then invoke algorithm processing. Thus, for a
given SYSEVENT entry to the SRM, processing may
be performed that is unrelated to the purpose of
the original SRM entry.

VS2.03.807

ALTCPREC (33)
AVQOK (24)
AVQLOW (23)
BRINGIN (44)
CONFIGCH (29)
COPYDMDT (40)
DEV ALLOC (28)
DONTSWAP (41)
ENQHOLD (20)
ENORLSE (21)
INIT A TT (to)
INITDET (11)
JOBSELCT (8)
JOBTERM (9)
MEMCREAT (6)
MEMDEL (7)
NEWIPS (32)
NIOWAIT (3)
OKSWAP (42)
QSCEFL (18)
QSCEMCP (13)
QSCEST (12)
RSMCNSTS (22)
REQPGDA T (39)
REQSERVC (38)
REQSVDAT (49)
REQSW AP (43)
RESETPG (31)
RSTORCMP (19)
SETDMN (37)
SQALOW (25)
SQAOK (26)
.sWINFL (17)
SWOUTCMP (15)
SWPINST (16)
SYQSCCMP (36)
SYQSCST (35)
TERMW AIT (2)
TGETTPUT (34)
TIMEREXP (1)
USERRDY (4)
VERIFYPG (30)
WKLDCOLL (46)
WKLDINIT (45)
WKLDTERM (47)

(48)

Section 2: Method of Operation 3-11

cr I Diagram 6-2. SYSEVENT Processor (part 1 of 16)
t

~
fI)
w
fI)

I
r"'" o
~.
r"'" c;:

8
~
a
(D

1M

'< til
W
Q
1M
00
S -

SVSEVENT

TIMEREXP
(1)

TERMWAIT
(2)

NIOWAIT
(3)

USERRDY
(4)

MEMCREAT
(6)

MEMDEL
(7)

When Issued

SRM timer interval
has expired.

Issued by TGET or
TPUT when a user
enters terminal
wait.

Issued by WAIT
macro processing
when some task in
an address space
enters long wait.

An SRB has been
scheduled for an
address space for
which QUI ESCE is
running, or for a
swapped out
address space.

An ASID has been
associated with a
new address space
and space has been
obtained for an
ASCB and OUSB.

Storage associated
with an ASCB is
about to be freed,
and an ASID
disassociated with
an address space.

Information

Passed Returned

Indication whether None
TOD clock
initialization (01)
or not (00).
(register 1, byte 3).

• ASID. None
• Input (00) or

output (SO)
indication.
(register 1,
byte 0).

• ASID. None

• ASID. None

.ASID. Indication whether
• START(01)/ or not memory

LOGON(02)/ creation should not
MOUNT(03) proceed because of
indication. a resource shortage.
(register 1, (OO-proceed
byte 0). SO-do not

proceed).
(register 1, byte 0)_

• ASID. Indication that
memory delete may
not proceed and
must wait.
-04 (register 1 ,
byte 3).

Function of Invoked
Routines Invoked Routine

Periodic Entry Resets the "time due"
Point Initialization fields of the time
(lRARMWMY). driven queue accord-

ing to the current
time, for TOD
initialization.

~------~- ---- ---
Periodic Entry Point See Periodic Entry
Scheduling Point Scheduling
(IRARMCET). M.O.

Control Swapout See Control Swapout
(lRARMCSO)' M.O. called for

swappable users.

. Control Swapout See Control Swapout
(lRARMCSO). M.O. called for

swappable users.

User Ready The ready user is
Processing placed on the "OUT"
(IRARMHIT). queue.

Storage Request Obtain storage for an

(lRARMI04)' OUCB and OUXB if
no resource shortages
exist. ----- -- ---- ---

User Control Block Place user on "in"
Repositioning queue.
(IRARMRPS).

OUCB and OUXB Free storage associated
delete with an OUCB and an
(lRARMDEL). OUXB, and indicate

that memory delete
processing may proceed
by issuing XMPOST to
the Master Memory.

SRM Action

This SYSEVENT
provides the exclusive
means for invoking the
majority of the SRM
algorithms.

User-ready processi ng
is performed through
the action request
routine.

------- -
User Control Block
Repositioning is
performed through the
action request routine.

OUCB and OUXB
delete is pe.rformed
indi rectly, through
action request routine.

SRM Lock
Held

Yes

Yes

Yes

No

Yes

Yes

Exit To

SRM
Control
(lRARMCTL)

SRM
Control
(lRARMCTL)

SRM
Control
(lRARMCTL) I

!

Invoker Via
IRARMI01

SRM
Control
(lRARMCTL)

SRM
Control
(IRARMCTL)

<:
til
W
Q
1M
00
S

til
(D
()

g.
=
~

~
(D

:r
8-
o
~

o
~ ;
g.
=
'of -w

Diagram 6-2. SYSEVENT Processor (part 2 of 16)

Information
SYSEVENT When Issued

Passed

JOBSELCT An address space • ASIO. None
(8) has begun using

system services, on • Address of job-
behalf of a new job, name or user-id.
START or MOUNT
command, or a • Performance
TSO session. Group number

(register 0,
byte 2).

JOBTERM An address space • ASIO. None
(9) has completed

using system • Address of job-
resources on behalf name or user-ide
of a job, START or
MOUNT command,
or a TSO session.

INITATT Whenever an • ASIO. None
(10) initiator attaches • Performance

a task. Group number.
(register 1,
byte 2).

• Dispatching
Priority.
(register 1,
byte 3).

Returned
Routines Invoked

Control Swapout
(lRARMCSO).

f---- -- ---

Transaction Stop
Routine
(IRARMWMO).

Transaction Stop
Routine
(JRARMWMO).

Transaction
Resume Processing
(lRARMWMR).

1---- -- ---

Change Dispatching
Priority
(JRARMI02).

Function of Invoked
Routine

Called to swapout an
address space if a
second level auxiliary
page shortage exists or
an excess of fixed
frames exists.
~-------

Updates the accumu-
lated time and service
for a job. Also
indicates that the
current transaction has
ended or been sus-
pended. If workload
activity reporting is
active, invokes
IRARMWR4 to
accumulate report
information.

Updates the accumu-
lated time and service
for a transaction. Also
indicates that the
current transaction has
ended. If workload
activity reporting is
active, invokes
IRARMWR4to
accumulate report
information.

Resumes a suspended
transaction, if the
performance group
number for a new non-
TSO job step is the
same as for the
previous step; other-
wise starts a new
transaction.

f-- -- -- ---
Move ASCB to correct
position on dispatcher
queue.

SRM Action

This SYSEVENT
authorizes the
accumulation of service
for the job. SRM
validates the perfor-
mance group number
indicated for the
address space. I f it is
not valid, a default
value is assigned.

This SYSEVENT
revokes authorization
for starting new
transactions.

SRM validates the
performance group
number indicated for
the address space. I f it
is not valid, a default
value is assigned. If
the input dispatching
priority is in the APG,
the SRM will follow
the IPS specification
for this user.

SRM Lock
Held

Yes

Yes

Yes

··_~7

Exit To

SRM
Control
(lRARMCTL)

SRM
Control
(lRARMCTL)

SRM
Control
(JRARMCTL)

~
N

o
W

00
Q
-...I

~ I Diagram 6-2. SYSEVENT Processor (part 3 of 16) .,..

~
<
f'-I
~

f'-I

~ ;-
a
t"'"

~.
t"'" ;:

~
<
~ a
(D

eN

~
~

b
eN
00 o
.::!

SVSEVENT When Issued

INITATT
(10)

(continued)

INITDET Whenever an
(11) initiator detaches

a task.

QSCEST Issued during
(12) quiesce processing

when the status of
all associated tasks
has been deter-
determined.

- -

Information

Passed Returned

• Nonswap
Authorization
(ASCBNSWP bit
of ASCB).

• ASID. None
• Dispatching

Priority.
(register 1,
byte 3).

• ASID. • Conti nue with
• Long wait (00) or terminate

indication. (08) quiesce
(OO-not in long processing.
wait (register 1,
SO-in long wait). byte 3).
(register 1,
byte 0).

Routines Invoked

Start New
Transaction
(lRARMWMN).

Transaction Stop
Routine
(lRARMWMO).

t---- -----
110 Load
Balancing IMCB
Deletion
(lRARMIL4)'

1---- ---
Change Dispatching
Priority
(lRARMI02).

110 Load Balancing
User 110 Monitor-
ing (lRARMILO).

Function of Invoked
Routine

I ndicate the start of
a new transaction. If
workload activity
reporting is active,
calls IRARMWR6 to
indicate that a
transaction has ended.

Updates the accumu-
lated time and service
for a transaction. Also
indicates that the
current transaction has
ended or been suspend-
ed. If workload
activity reporting is
active, invokes
IRARMWR4 to
accumulate report
information.
~--------

Frees 110 measure-
ments control block
(which has been
created if the user is
a heavy 110 user).
~-------

Move ASCB to correct
pOSition on dispat~her
queue.

An 110 measurement
control block is
created for heavy 110
users. The IMCB is
updated with channel
useage data from the
Timing Control Table
1/0 Table (TCTIOT).
(See 110 Management
M.O. (lRARMIOM)
and I/O Load
Balancing User I/O
Monitoring M.D.
(I RAR MILO.)

SRM Action

-- -- ----.-
IMCB deletion is
performed through
action request.

~-------

Note: After this
SYSEVENT, no further
quiesce processing is
performed for:
• non-swappable users,

and
• users being swapped

because of a long
wait, and who are
no longer in a long
wait status.

SRM Lock
Held

Yes

Yes

Exit To

SRM
Control
(lRARMCTL)

SRM
Control
(lRARMCTL)

~
~

b
eN
00
o

CI:l
(D
(") g.
N

== (D

So
8-
o
o

'1:1
(D

~ o·
=
"f -<Jt

~

Diagram 6-2. SYSEVENT Processor (part 4 of 16)

Information
SVSEVENT When Issued

Passed Returned

QSCECMP Issued when the • ASID. • Indication
(13) RCT has completed • Long wait whether

quiesce processing indicator. USERRDY
for an address (OO-not in long SYSEVENT (4)
space. wait has been received

80-in long wait). for this task
(register 1, since quiesce
byte 0). start

(DO-received
80-not received).
(r~gister 1,
byte 0).

• Indication
whether to
initiate swapout
(00) or begin
restore (08),
(register 1,
byte 3).

• If Reg 1 byte 3
is 00, Reg 1
byte 2 contains
the swap out
reason code.

~ .7

Routines Invoked

User Control Block
Repositioni ng
(lRARMRPS) .

1------ ---
CPU Load
Balancing Profile
Adjustment
(lRARMCLO).

Transaction Quiesce
Processing
(JRARMWMQ).

Function of Invoked
Routine

Changes the status of
the memory to out-
of-real-storage and
positions it on the
correct queue
(normally the "out"
queue; however, will
be the "wait" queue
for users entering long
wait, or for users
swapped because a
resources shortage
exists).

I-- -- -----
Updates mean time to
wait indication for use
by CPU load balancing
(see CPU Load
Balancing Swap
Analysis M.O'} and
users in the APG.
f-------

I ncrements the
cumulative service
received by a trans-
action by the amount
received during a real
storage residence
period. Also updates
the performance group
period indication if a
transaction has
completed a perfor-
mance group period.
Determines whether to
continue the trans-
action, or to stop or
suspend it at this point
for the reason that
caused the swapout. If
workload activity
reporting is active,
invokes IRARMWR4
to accumulate report
information.

SRM Action

User Control Block
Repositioning is
performed indirectly
through action request
routine.

f------- -

I--- -- -- -- -
Note: After this
SYSEVENT, no further
quiesce processing is
performed for:
• non-swappable users,

and
• users being swapped

because of a long
wait, and who are
no longer in a long
wait status.

SRM Lock
Held

Yes

:i7

Exit To

SRM
Control
(JRARMCTL)

<:
CI:l
N
(:)
IN
Oc
C
-..J

Cf I Diagram 6-2. SYSEVENT Processor (part 5 of 16)
01

~
"< en
N
en

1
r"" o
~.

5
i
~
~
(D

w

'< en
N
Q
w
00
S -

SVSEVENT When Issued

SWOUTCMp· All I/O required to
(15) swapout a memory

has completed.

SWPINST By RSM to notify
(16) of Swap Status

SWINFL Swapin processing.
(17) failed to obtain or

initialize the LSQA
storage for an
address space.

Information

Passed Returned

• ASID. None
• Pointer to para-

meter list
(register 1)
containing:
- number of

pages swapped
out. (word 1,
bytes 0 & 1).

- working set
size, in number
of pages to be
swapped in.
(word 1, bytes
2& 3).

- indication
whether address
space is waiting
for an unfinish-
ed RSM service.
(word 2, byte
3, bit 7 on
means the
address space
is waiting for
service).

• ASID None
• Code in Reg 1 :

01-Swap-in
Starting
02-Stage one of
Swap-I n complete

.ASID None

F unction of Invoked Routines Invoked
Routine

Free OUXB Free storage associated
Storage with an OUXB, when
(lRARMUXB). the address space is

swapped out.
r------- - -- ------

Swap Analysis Swap analysis is
(lRARMCAP). requested when a user

is voluntarily swapped
Out.

~ -- -- - ----- ---
User Ready See SYSEVENT
Processing USERRDY (4).
(lRARME04).

None

User Control Changes the status of
Block Reposition- the address space to
ing (lRARMRPS)' "out of real storage"

and positions the
OUCB on the correct
queue (normally the
"ou~" queue).

~---- -- r-- -- ----
Free Storage
(lRARMI04L

SRM Action

IRARMUXB is
performed indirectly,
through action request.

~-- -----
Swap Analysis is
invoked through
algorithm request
rotuine.

... -- --- ---
User Ready processing
is i nvo ked if user
ready indicator is off,
but an indication of an
unfinished RSM
service is received.

None

User Control Block
Repositioning is
performed indirectly,
through an action
routine.

~------.-
Free OUXB

SRM Lock
Held

No

No

Yes

Exit To

Invoker Via
IRARMI01

Invoker Via
IRARMI01

SRM
Control
(lRARMCTL)

-< en
N
Q
w
00
S

c:.n
~
(") g.
=
~

s::
~

;.
o
c;:l.

o
o

"0
~ ...
g.
=
~ ---.l

~

Diagram 6-2. SYSEVENT Processor (part 6 of 16)

Information
SYSEVENT When Issued

Passed

OSCEFL The RCT failed to • ASID. None
(18) complete quiesce

processing because
of an abnormal
situation.

RSTORCMP The RCT has • ASID. None
(19) completed restore • Long wait

processing for an indicator.
address space. (OO-not in long

wait
80-in long wait).
(register 1,
byte 0).

ENOHOLD A user's execution • ASID of memory None
(20) is delayed because holding resource.

of a request for a • Address of OCB
resource being held for reSOurce.
by ~nother user. (register 1).

ENORLSE A contention • ASID. None
(21) situation has • Address of OCB

disappeared for resource.
because of the (register 11.
release of a resource
by a user for whom
an ENOHOLD
SYSEVENT had
previously been
received.

/

Routines Invoked
Returned

User Control Block
Repositioning
(IRARMRPSI.

Restore Completed
Processing
(JRARMWMR).

--- ----
User Control Block
Repositioning
{lRARMRPSI.

r-- -- ----
Control Swapout
(IRARMCSOI.

None

None

Function of Invoked
Routine SRM Action

Changes the current User Control Block
status of the user Repositioning is
from "out of real performed i ndi rectly,
storage" to "in real through an action
storage" . routine.

I nvoked so the work-
load manager can
initialize the fields
used for monitoring
service during a period
of real storage
residence.
~---- -- r-- -- -- ---

Changes the current User Control Block
status of the user Repositioning is
from "out of real performed indirectly,
storage" to "in real through an action
storage" . routine.
------- ---- ---
Requests that a swap-
pable user still in long
wait status be swapped
out.

Users in real storage,
holding resources in
demand by other users,
are given a "spurt" of
non-swappable service
equal to the Enqueue
Residence Value (ERV)
(see CPU Management
M.O.!. Users out of
storage are marked as
holding a resource so
that CAP will initiate
a swap in.

I f user has freed all
reSOurces in conten-
tion, eliminate special
treatment.

SRM Lock
Held

Yes

Yes

Yes

Yes

\,--.~

Exit To

SRM
Control
(JRARMCTL)

SRM
Control
(JRARMCTL)

I

SRM
Control
(lRARMCTL) I

SRM
Control
(JRARMCTL)

<:
c:.n
~

(:,
~

00
o

~ I Diagram 6-2. SYSEVENT Processor (part 7 of 16)
C»

o en
"<
til
N
en
'<
~
('I)

:3
l""'
o
te.
n
l""'
0:

~
-< o

= :3
('I)

Y-l

'< en
N
o
Y-l
00
o
-I
'-'

SYSEVENT

RSMCNSTS
(22)

AVOLOW
(23)

AVOOK
(24)

SOALOW
(25)

When Issued

Real storage has
been configured
into or out of the
system (because of
a VARY storage
command, or a
storage error).

The nu mber of
available real
storage page frames
has fallen below
the Available Page
Oueue low limit.

Enough real
storage pages have
been freed to
alleviate a shortage
condition.

There exists a
critical shortage of
SOA pages.

Information

Passed

• Number of pages None
of functioning
real storage.
(register 1, bytes
0& 1),

• New Available
Page Oueue low
limit. (register
1 , bytes 2 & 3),

• Indication of None
cause.
(register 1, byte
3).
1- Available

queue (AVO)
is below limit.

2-AVO is 1
when a page
fault occurred.

3-AVO is 0
when a page
fault occurred.

4- Ratio of fi xed
frames to total
real frames is
above a limit.

None

• Indication None
whether shortage
is of severity 1
(01) or 2 (O2).
(register 1,
byte 3).

Function of Invoked
Routines Invoked Routine

Returned

None

Main Storage For level 1, 2, or 3,
Occupancy initiate page stealing
Analysis (see Main Storage
{lRARMMS21. Occupancy Analysis

M.O.>. For level 4,
swap out user
acquiring fixed frames
at the fastest rate.
Notify system
operator and inhibit
creating memories.
Repeat swap outs
until shortage is
relieved.

None

SOA Shortage I nform System
Message Writer operator of the SOA
(lRARMSOA). shortage (see Storage

Management M.O.!.

SRM Action

None

Because it is impor-
tant that the Main
Storage Occupancy
Analysis algorithm be
run as soon as possible,
an SRB is scheduled
after requesting the
algorithm; the SRB
will issue SYSEVENT
48 when it is dispatch-
ed, which will result in
the CONTROL func-
tion being invoked.
This algorithm will
then be executed.

SRM ceases its special
efforts to free up real
storage.

The Message Writer
algorithm is scheduled
for execution the next
pass thru the CON-
TROL function.
SRM does not permit
the creation of new
address spaces when
an SOA shortage exists.

SRM Lock
Held Exit To

No Invoker Via
IRARMI01

No Invoker Via
IRARMI01

No Invoker Via
IRARMI01

No Invoker via
IRARMI01

--

-<
til
N
o
Y-l
00
o
-I

~
(1)
n
C'.
o
= ~
s::
(1)

;.
8-
o
o
'e
(1)

;3

i'
'of -IC

~

Diagram 6-2. SYSEVENT Processor (part 8 of 16)

Information
SYSEVENT When Issued

Passed Returned

SQAOK An SQA page Code indicating the None
(26) shortage has been level of the relieved

relieved. shortage {register
1, byte 3):

above level 1 (01)
above level 2 (02)

DEVALLOC A device allocation e ASID. e Pointer to same
(28) choice must be e Pointer to a three three word list

made from two or word list as on entry
more candidates. (register 1) (register 1),

containing: with return area
- address of a list conta.ning:

of candidate - address of the
UCB addresses. candidate list
(word 1). entry that was

- address of a list selected
of UCB (word 1).
addresses e Successful (00)
already or unsuccessful
allocated to (08) indication.
requestor. (Register 15,
(word 2). byte 3).

- address of a
two word
return area.
(word 3L

CONFIGCH A VARY eASID. None
(29) command has been e SMF record

issued for a describing the
channel or CPU. change. (pointed

to by register 1).

VERIFYPG An interpreter has e Performance • Valid (00)/
(30) received a per- group number. Invalid (01-

formance group (register 1, non-TSO user;
number which byte 3). 02-TSO user
needs verification. ASI D) indication.

(register 1,
byte 2).

Function of Invoked
Routines Invoked

Routine
SRM Action

SQA Shortage I nform system opera- Issue a message if all
Message Writer tor of the fact that an SOA shortages are
(IRARMSOA). SOA shortage has been relieved (i.e. level 1).

relieved (see Storage
Management M.O.).

None The UCB is selected by
applying the following
selection principles in
the order indicated:
e Avoid contention

(reallocating same
UCB to same user)
for Direct Access.

e Avoid allocation on
units with pre mount-
ed volumes.

e Give preference to
less heavily utilized
logical channels,
assuming that each
previous allocation
for this user has
know projected
constant impact on
utilization.

e For direct access
devices, pick the one
with the lowest
allocated user count.

e Choose randomly,
if more than one
candidate remains.

None Update SRM control
information for logical
channel utilization
monitoring.

None The IPS is checked for
performance group
number validity. If
the number is invalid,
a default is provided.

-- L-___________ --

SRM Lock
Held

No

Yes

Yes

Yes

--

Exit To

Invoke Via
IRARMI01

SRM
Control
(IRARMCTL)

SRM
Control
(IRARMCTL).

SRM
Control
(lRARMCTL)

i

<:
en
N o
W

00
o

I.f I Diagram 6-2. SYSEVENT Processor (part 9 of 16)
N
Q

o
f'-)

"< f'-)
N
f'-)

'< ;
b
~.

5
~
~
2' a
(D

w

'< f'-)
N

<=>
W
00
9 -

SVSEVENT

RESETPG
(31)

NEWIPS
(32)

ALTCPREC
(33)

When Issued

The system
operator has
entered a RESET
command for a
particular address
space.

The system
operator has
~ntered a SET
command with the
IPS keyword.

As a result of an
error some CPU
has had to be
configured out of
the system.

Information

Passed Returned

eASID. Return code
e New performance indicating

group number. - request honored
(register 1, (00)
byte 3). or

-performance
group number
invalid (04)

or
-ASID oot

currently
assigned (08),
(register 1,
byte 2).

• ASID. • Old IPS descrip-
• Pointer to WMST tion.

describing new • Indication
IPS. (register 1). whether SET

command may
proceed Ondicat-
ed by posting an
ECB).

• CPU address. None
(register 1).

Function of Invoked
Routines Invoked Routine

Start New For users in real
Transaction storage, a new trans-
(lRARMWMN). action is started. For

swapped out users a
new transaction will be
started upon swapin.
If workload reporting
is active, IRARMWR6
is called to indicate
that a transaction has
ended.

Set to New IPS If Workload Activity
(tRARMSET). reporting is active for

MF/1, the reporting is
terminated (it will
later be re-established
by MF/1L The per-
formance group
number of all active
transactions are
examined. If the
corresponding per-
formance group has
changed in the new
IPS, a new transaction
is begun; if it is the
same, the old trans-
action continues; if the
performance group
number is not defined
in the new IPS, a
default performance
group number is
substituted.

None

SRM Action

Starting a new trans·
action results in the
user being associated
with the performance
objective and domain
corresponding to the
first period of the
performance group
definition.

The IRARMSET
routine is called by
IRARMIPS, which is
performed indirectly,
through the action
request routine.

UpdatesSRM control
information for logical
channel utilization
imbalances.

SRM Lock
Held

Yes

Yes

Yes

-

Exit To

SRM
I Control

(tRARMCTL) I

I

SRM
Control
(IRARMCTL)

SRM
Control
(lRARMCTL)

~
N

<=>
t.J

00
Q
-..I

C"Il
C'Il

~
=
~

a::
C'Il g
Q.

o
"'" o
1 g.
w
N -

~

Diagram 6-2. SYSEVENT Processor (part 10 of 16)

Information
SYSEVENT When Issued

Passed Returned

TGETTPUT A TGET or TPUT • ASID. None
(34) instruction has • TGET (0) or

completed some TPUT (1)

1/0 to a terminal. indication.
(register 1, byte
0, bit 0).

• (for TGET) entire
message tra ns-
ferred indicator.
(O-all transferred;
1-at least one
more TGET
required);
(register 1, byte
0, bit 0).

SYSQSCT The system startl None None
(35) stop routine has

been entered to
stop the system.

SYQSCCMP The system startl None
(3S) stop routine is

about to restart
the system.

SETDMN The operator Data area address Return code
(37) entered a SETDMN (register 1). (register 15)

command to Byte 0- 0: Successful
change constraint Domain number 4: Invalid
values for a Byte 1- domain
domain. Flags 8: Minimum

Bit O-New exceeds
minimum passed maximum
Bit 1-New
maximum passed
Bit 2-New
weight passed.

Byte 2- New
minimum
Byte 3-New
maximum
Byte 4-New
weight.

J '\ . .,

Function of Invoked SRM Lock Routines Invoked SRM Action Exit To
Routine Held

Start New Trans- For TG ET, indicates Starting a transaction Yes SRM
action the start of a new results in the user being Control
(lRARMWMN). TSO transaction. If associated with the (lRARMCTL)

workload reporting first period of his
is active, IRARMWRS performance group.
is called to indicate I

that a transaction has
I

ended. If the
TGETTPUT
SYSEVENTwas pre-
ceeded by a TERM- i

WAIT condition the
IRARMWMN routine
was instead called at

~.
N
<:> w

the time the address
space was swapped in.

00
~

None The SRM saves the No Invoker Via
time at which the IRARMI01
system was stopped.

Steps forward trans- No Invoker Via I

action starting times IRARMI01
by the duration of the
system stoppage.

None Update the domain Yes Invoker Via
control table with the IRARMI01
new ranges or weights.

w
~
~

o
Ie
<:
f'-)
~
f'-)

'<
~ ;-
:3
t""
~ n·
t""

8:
~
:3
c
w

'< f'-)
~
Q
w
00
Q

~

Diagram 6-2. SYSEVENT Processor (part 11 of 16)

Information
SVSEVENT When Issued

Passed Returned

REQSERVC I ssued by the TSO • ASID. • Return area for
(38) TIME command, to • Address of 4-word a TSO user:

obtain user related return area. - Total service
service data. (registe r 1). (word 1).

- Total trans-
action active
time for all
transactions
(word 2).

- Last per-
formance group
number (word
3, bytes 0 & 1).

- Total number
of transactions
(word 3, bytes
2& 3).

• Return'area for a
non-TSO user:
- Total service

(word 1).
- Total trans-

action active
time (word 2).

- Last per-
formance group
number (word
3, bytes 0 & 1).

• Indication
whether data was
successfully
returned (00) or
not (04).
(register 15,
byte 3).

Routines Invoked Function of Invoked
Routine

Service Calculation Calculates the service
Routine accumulated during
(lRARMWM1). the current "in real

storage" interval. This
is added to previous
accumulated service
to obtain total service.

SRM Action

Accumulated service
information is stored
in the user's area
(while not holding the
SRM lock) and under
the user's protect key.

SRM Lock
Held

Yes

Exit To

Invoker Via
IRARMI01

<:
f'-)
~
Q
w
00
S

c:I.l
(1)
()

f
t-..

a::
(1)

~
8-
o
~

o
"C:I

~ g.
~

~
~ -

Diagram 6-2. SYSEVENT Processor (part 12 of 16)

Information
SYSEVENT When Issued

Passed Returned

REQPGDAT Issued by SMF • ASID. • Return area:
(39) during step • Address of 14- - Non via page-

termination, to word return area. ins (word 1).
obtain user paging (register 1). - Non via page-
data. outs (word 2).

-Non via
Note: This reclaims
SYSEVENT is (word 3).
intended for use - VIO page-ins
only by SMF. It (word 4).
should not be - via page-outs
issued by callers (word 5).
others than SM F , - via reclaims
because the related (word 6).
data fields in the - Pages swapped
OUSB and the in (word 7).
OUXB are reset to - Pages swapped
zero on readout. If out (word 8).
requested by -Swapouts
another caller, the (word 9),
data would be lost - Common area
to SMF. page-ins

(word 10).
- Common area

reclaims
(word 11).

- Pages stolen
(word 12).

-CPU page-
seconds
(words 13,14).

• Indication
whether data was
successfully
returned (00) or
not{Q4).
(register 15,
byte 3).

"

Function of Invoked
Routines Invoked Routine SRM Action

None The SRM obtains
paging data from SRM
control blocks and
resets related fields in
these blocks to zero.

- --

SRM Lock
Held

Yes

'~Y'

Exit To

SRM
Control
(IRARMCTL)

<:
c:I.l
t-.. o
~

00
o
.......

~

N
N
~

~
"<
f:I'l
N
f:I'l

I
b

Cl9. n
r0-

t
~ c:
:3
('II

~

'< f:I'l
N

S
00 o, -

Diagram 6-2. SYSEVENT Processor (part 13 of 16)

Information
SYSEVENT When Issued

Passed Returned

COPYDMDT Issued when a Pointer to a fixed Pointer to same
(40) "DISPLAY" area of 2584 bytes. area. (register 1)

command with the (register 1). Byte 0 and 1 -
keyword "DMN" Count of Domains.
has been entered. Byte 2 and 3-

Reserved.
Byte 4-
2583 contain copy
of Domain Table.

DONTSWAP Issued to notify • ASID. • Indication
(41) SRM that the whether request

issuing address was honored
space must not be (00), was dis-
swapped out until honored because
either a 0 KSWAP it was not for the
(42) or INITDET current address
(11) SYSEVENT. space (04). or

was dishonored
because it was
not authorized
(08). (register 1,
byte 3).

OKSWAP Issued to notify • ASID. • Indication
(42) SRM that issuing whether request

address space, was honored (00)
which had was not for the
previously issued a current address
DONTSWAP space (04). or
SYSEVENT, may was not authoriz-
again be considered ed (08L
for swappi ng. (register 1,

byte 3).

Function of Invoked
Routines Invoked

Routine

None

Swap Status Determine SRM
Change Request algorithms applicable
(lRARMWMK). to user, and reposition

user on SRM swap
queue.

Swap Status Same as for
Change Request DONTSWAP (41).
(lRARMWMK).

SRM Lock
SRM Action Held

Duplicate Domain Yes
Information

Yes

Yes

Exit To

Invoker Via
IRARMI01

SRM
Control
(lRARMCTL)

SRM
Control
(IRARMC.TL)

-<
f:I'l
N
Q
~

00
~

CIl

~ g
~

a::
(D

[
o
"'" o

'C
~
IIa

g'
w
N
~

tH

~

Diagram 6-2. SYSEVENT Processor (part 14 of 16)

Information
SYSEVENT When Issued

Passed Returned

REQSWAP Issued when a • ASID. • Indication
(43) VARY storage -. Address of ECB whether request

command to be posted (if was honored
has been issued, to dependency (00), was
swapoutthe exists on ignored because
address space that requested swap). the address space
occupies the (register 1). is non-swappable
storage to be taken (04), or was
offline. ignored because
Issued also at job the address space
step initiation of a is in the process
non-swappable of swapout (08),
user, so that, when (register 1,
swapped back in, byte 3).
the user may be
allocated particular
page frames to
enhance recovery
from real storage
errors.

BRINGIN Issued when the .ASID. • Indication
(44) system operator whether request

has issued a was honored (00),
CANCEL com- or was not hon-
mand for a ored because the

particular job. add ress space
was in the
process of being
swapped (08).
(register 1,
byte 3).

WKLDINIT Issued by MF/1 to • ASID. • Indication
(45) request that SRM • Data collection whether request

begin collecting buffer address. was honored
workload activity (register 1). (00), was not

data. honored be-
cause of in-
correct buffer
size (08), or data
collection is
already active
(20).
(register 15,
byte 3).

" ,

Routines Invoked
Function of Invoked

Routine

Control Swapout Initiates the swapout
(IRARMCSO). of the address space

(see CONTROL
SWAPOUT M.O.).

Simulate User Invokes IRARMWMU
Ready Notification to make the memory
(IRARMHIT). eligible for swap-in.

Workload Activity Constructs and
Recording initializes the work-
Initialization load activity
(IRARMWR1). measurement table

(WAMT).

SRM Lock
SRM Action Held

Quiesce is posted to Yes
begin the swapout. If
swap completion
notification is re-
quested (by providing
an ECB), the ECB will
be posted when the
address space is next
swapped in.

Expedite the swap-in Yes
of a memory that is
swapped-out.

Yes

,~,

Exit To

SRM
Control
(lRARMCTL)

SRM
Control
(IRARMCTL)

SRM
Control
(lRARMCTL)

-<
CIl
~

o
w
00
~

\,0.1

~
~
;,;.

o
C'-l

~
~

C'-l

~
;-
3
f"'" o

Cf:9.
(')

f"'"
0:

~
~
3
(D

\,0.1

'<
C'-l
~
Q
\,0.1

00 o
.::::!

Diagram 6-2. SYSEVENT Processor (part 15 of 16)

Information
SYSEVENT When Issued

Passed Returned

WKLDCOLL Issued by MF/1 at .ASID. • Indication
(46) the end of a • Data Buffer whether request

reporting interval, address. was honored
to collect work- (register 1). (00), whether an
load activity data. IPS change has

occurred (04), or
data buffer had
not yet been
established (40).
(register 15,
byte 3).

WKLDTERM Issued by MF/1 to • ASID. • Address of the
(47) terminate work- buffer no longer

load activity data used by SRM.
recording, at (register 11.
MF/1 termination • Indication
or when an IPS whether the
change has request was
occurred . honored (00) or

the data collec-
tion buffer had
not yet been
established (40).
(register 15,
byte 3).

Issued by the SRM • ASID. None
(48) when the control • Address of

function must be issuing SRB.
invoked immediate- (register 1).
Iy (i.e., without
waiting for the next
SYSEVENT issued
by another
component) .

-

Function of Invoked
Routines Invoked

Routine

Workload Activity Moves the contents of
Recording Data the WAMT into a
Collection collection buffer.
(lRARMWR3L

SRM Control Performs control
(lRARMCTLL mainline processing,

in the course of which
a scheduled critical
function will be
performed (see SRM
Control M.O.).

SRM Lock
SRM Action Held

Yes

The SRM indicates Yes
that workload activity
data collection no
longer be performed.

Frees up SRM Yes
SR B for reuse.

Exit To

SRM
Control
(lRARMCTLl

SRM
Control
(lRARMCTLl

SRM
Control
(lRARMCTLl

<:
C'-l
~

Q
\,0.1

00
o
"

til
(D
n

~
N

r==
(D

~
8-
o
o
't:I ;
g'
IN

N
N
~

Diagram 6-2. SYSEVENT Processor (Part 16 of 16)

Information
SYSEVENT When Issued

Passed Returned

REQSVDAT Issued by SMF .ASID. • Return area for
(49) during job session • Address of 4- a TSO user:

termination to word return area. - Total service
obtain .user related (register 1). (word 1).
service data. - Total trans-

action active
time for all
transactions
(word 3).

- Last perform-
ance group
number (word
3, bytes 0& 1).

- Total number
of transactions
(word 3, bytes
2& 3).

-Session
Residency
time (word 4).

• Return area for
a non-TSO user:
- Total service

(word 1).
- Total trans-

action active
time (word 2).

- Last perform-
ance group
number (word
3, bytes 0& 1).

-Session
Residency
time (word 4).

• Indication
whether data was
successfully
returned (00) or
not (04).
(register 15,
byte 3) .

Function of
Routines Invoked

Invoked Routine

Service Calculation Calculates the service
Routine accumulated during
(IRARMWM1). the current "in real

storage" interval. This
is added to previous
accumulated service
to obtain total service.

SRM
SRM Action Lock

Held

Accumulated service Yes
information is stored
in the caller's area
under the caller's
protect key.

Exit To

Invoker Via
IRARMI01

I

<
til
N
Q
IN
00
o
~

lRARMEYT Module Entry Point
Summary
IRARMEVT - SYSEVENT processor.

Begin to process the indicated
SYSEVENT.

IRARMXVT - SYSEVENT retry.
Prepare a retry of a sysevent that had
incurred a system ~rror.

3-22.6 OS/VSl System Logic Ubrary Volume 3 (VS1.03.807)

VS1.03.807

IRARMDEL - Synchronize memory delete
processing.

IRARMIPS - Set new IPS.
Invoke IRARMSET to establish a new
IPS.

IRARMUXB - Synchronize OUXB deletion at
swap out completion time.

\

SRM Control
SRM Control is the dispatcher of SRM. It is
packaged in the module IRARMCTL along with the
swap analysis algorithm and various other SRM
routines (see volume table of contents, figure 2-9).
Most SYSEVENTS which execute holding the SRM
lock exit to SRM Control to perform the following
functions.

• SRM Control executes deferred actions
(routines which execute on behalf of a single
user memory). Examples of actions are:
• moving a user control block from one SRM

queue to another.
• memory delete processing.

• SRM Control executes deferred algorithms
(routines which execute on behalf of the
entire operating system). Examples of
algorithms are:
• Real Page Shortage Prevention.
• Real Page Shortage Page Replacement.

• Following the TIMEREXP SYSEVENT, SRM
Control schedules timed algorithms. Examples of
timed algorithms are:

• assigning swapp able users their current
workload level (Swappable User Evaluation
Algorithm).

• Keeping the multiprogramming level (MPL)
at its target level in each domain by
performing user swaps (Swap Analysis
Algorithm).

Action/Algorithm Scheduling
Actions and algorithms can be requested/scheduled
by any of the components of SRM. These requests
are processed by request handling subroutines
within IRARMCTL. Requests for actions are
processed in one of the following ways: .

• The action is called inline if the SRM lock IS
held and if the action was not requested by
another action.

• Otherwise, the action. is deferred. A flag is set
in the OUCB to indicate that the action was
requested.

Requests for algorithms are always deferred. A
flag is set in the RMCT to indicate that the
algorithm was requested. If an action or algorithm
which has been deferred is critical, the request
handling subroutine schedules an SRB to another
entry point, IRARMCED, within IRARMCTL.
IRARMCED executes SYSEVENT 48. SYSEVENT 48
exits to SRM Control where the deferred action or
algorithm is executed.

VS2.03.807

Non-critical actions and algorithms which have
been requested but deferred are executed the next
pass through SRM Control. This execution will
normally occur after processing the next SYSEVENT
while holding the SRM lock.

SRM Control identifies which actions and
algorithms to execute by bit strings in the OUCB
(for actions) and the resource manager control
table (RMCT) (for algorithms). "On" bits in the
OUCB (OUCBACN field) and in the RMCT
(RMCTALA and RMCTALR fields) identify deferred
action and algorithm requests, respectively. The
actual addresses of the individual routines that
process actions and algorithms are located in
resource manager entry point elements (RMEPS)
which are chained together. One RMEP chain exists
for actions and another for algorithms. SRM
Control compares the "on" bits in the bit string
(the OUCB or RMCT) against each RMEP in the
action/ algorithm RMEP chain. When a match is
found, the entry point address in the isolated RMEP
identifies the action or algorithm routine that will
get control. As a part of routing to the identified
routine, SRM Control turns off the bit in the OUCB
or RMCT used in finding the proper RMEP. When
all bits in the OUCB and RMCT bit strings are "off"
SRM Control has processed all deferred actions and
algorithms and exits to a return point in the SRM
interface module IRARMINT. Figures 2-9B and
2-9C show in more detail the routines and bit
settings used in processing algorithms and actions.

Swap Analysis
The swap analysis algorithm is concerned with
maintaining the multiprogramming level at the
target value in each domain defined to the system.
A domain is a group of user memories defined in
the installation performance specification (IPS)
which have common execution characteristics (for
example, all TSO users might be assigned to one
domain). The multiprogramming level (MPL) in a
domain is the number of users in that domain
which are in real storage. The target
multiprogramming level is the number of users in
real storage which the SRM resource monitor has
determined is optimal for this domain.

SRM recognizes user memories, (i.e. address
spaces) as being in one of three states. Each state
corresponds in concept to a queue on which OUCBs
that describe address spaces are placed. The three
possible states of an address space are: ..
IN - The working set of an address space III thIS

state occupies real storage.

Section 2: Method of Operation 3-23

WAIT - The working set of an address space in this
state does not occupy real storage (that is,
has been swapped out), and the address
space is incapable of being placed into
execution.

OUT - The working set of an address space in this
state does not occupy real storage,
however, the address space is capable of
executing, and may be considered for
swap-in.

The decision to swap address spaces is made
based on a number of input factors supplied by
other SRM functions. The workload manager
provides workload levels for each user. The
resource-use algorithms tell which users are
significant users of system resources (via individual
recommendation values). Swap analysis combines
the individual recommendations of the workload
manager and resource managers into a· composite
recommendation value. The steps of the swap
analysis algorithm are defined below in the order of
execution. In steps one and three all domains are
considered in numerical order. The algorithm is
terminated at the end of any step which has
resulted in at least one swap.

1. Unilateral Swap-Out. In each domain the
required number of user memories are
swapped out to lower the MPL to its target
value. Users which have the smallest
recommendation values (RVS) in each domain
are selected for swap out.

2. Express Swap-In. If there is a user out of real
storage which is enqueued on a resource
requested by another user, the enqueued user
is swapped in if this can be done without
exceeding the target MPL in that domain. If
the MPL would be exceeded, the user with the
smallest RV in that domain is swapped out to
lower the MPL. The enqueued user will be
swapped in on the next invocation of swap
analysis. If no user is swappable, the

3-23.0 OS/VS2 System Logic Library Volume 3 (VS2.03.807)

VS2.03.807

enqueued user is swapped in. This raises the
MPL in thai domain above its target
temporarily.

3. Unilateral Swap-In. In each domain, the
required number of user memories are
swapped in to raise the MPL to its target
value. Users which have the largest RVs in
each domain are selected for swap in.

4. Exchange Swap. For a domain having its MPL
at the target, an in-real-storage user memory
and an out-of-real-storage memory are
selected for an exchange. The user in real
storage with the smallest recommendation
value are selected. The difference in their
recommendation values must exceed a limit
(RMPTXCHT) to proceed with the exchange.
If an exchange is justified, the swap out of
the in-real-storage user is initiated, and the
swap in of the out-of-real-storage user
memory is deferred until a subsequent
invocation of swap analysis.

The following M.O.s describe SRM Control
processing and other important routines within
IRARMCTL:

• Swap analysis (IRARMCAP), which analyzes
users and, if it determines a swap desirable,
requests it.

• Control swap-out (IRARMCSO), which
initiates requested user swap-outs.

• Control swap-in (IRARMCSI), which initiates
requested user swap-ins.

• Select user for swap-in (IRARMCPI), which
finds the user with the highest
recommendation value in its domain.

• Select user for swap-out (IRARMCPO), which
finds the user with the lowest
recommendation value in its domain.

• User evaluation (IRARMCVL), which
calculates a recommendation value for a
specific user.

Section 2: Method of Operation 3-23.1

ACTIONS

ALGORITHMS

TIMED ALGORITHMS

SRM Lock
Held

NO
YES*

NO
YES

YES

VS2.03.807

Scheduling
Routine

IRARMCRN

IRARMCRL
IRARMCRL

IRARMCET

RMEP
Chain

EPDT

EPAT
EPAT

IRACTMQE

Bit
String

OUCBACN**

RMCTALA
RMCTALR

RMCTALR

*If SRM lock is held when an action is requested, it is not deferred (except where an action
invokes another action). Control passes to IRARMCRY (if the action is IRARMCSI or
IRARMCSO) or to IRARMCRN (for all other actions) and then directly to the action.

**During execution this field is inspected only in OUCBs which have been queued on the
action queue by the action-scheduling routine (JRARMCRN).

Figure 2-9B. Processing of Algorithms and Actions in IRARMCTL

3-23.2 OS/VS2 System Logic Library Volume 3 (VS2.03.807)

SRM Lock
Held

YES

~ YES

YES

Executing
Routines

(JRARMCEN,
IRARMCRT)

(JRARMCEL,
IRARMCRT)

(lRARMCEL,
IRARMCRT)

RMEP
Chain

EPDT

EPATf

EPAT

11.,

\.

VS2.03.807

Attributes
RMEP Algorithm Invocation Flags

I~--~~~--I~~~~~---I----~~I RMEPFLG I-~~~--~~

=ill *IRARMIL 1

*IRARMCL1

IRARMSOA

*IRARMAP1

*IRARMPR1

*IRARME01

*IRARMASM

*IRARMMS6

IRARMPR5

IRARMMS2

*IRARMRM1

*IRARMRM2

*IRARMWM2

*IRARMCAP

*indicates Timed Algorithm

RMEPFLG

IRARMDEL

IRARMUXB

IRARMIL4

IRARMIPS

IRARMHIT

IRARMRPS

~

RMEP Action Invocation Flags

Figure 2-9C. RMEP Algorithm and Action Invocation Flags

Critical ~=ill
Timed ===-.J
= 0 (algorithm)

Attributes

Critical ~=lli
Timed (algorithms only~ ~
= 1 (action)

Section .2: Method of Operation 3-23.3

'of I Diagram 6-3. SRM Control (IRARMCTL) (part I of 2)
~
~

o
CIl

< CIl
~

CIl
'<
i a
t"""
Q

~.
t"""

J
~
= a
(I)

~

'<
CIl
~

o
~

00
§

Input

Register 0

Address of SR B

From SYSEVENT
Processor
(/RARMEVT)

From SYSEVENT
Processor when
SYSEVENT
Timerpop (1) is
Received

1 Process all actions that have been deferred
and can now be performed.
(See Deferred Action Processor M.O').

2 Route control to all algorithms that were
previously requested. and can now be performed.
(See Algorithm Request M.O.).

3 Request the invocation of time-driven
algorithms.
(See Periodic Entry Point Scheduling M.O.). I I

4 Issue SYSEVENT 48 to perform control
mainline processing (steps 1 and 2),

To
IRARMINT
Return Point
(/RARMI01)

Step 1

To
IRARMINT
Entry Point
(lRARMI48)

Control
Mainline
Processing <:

CIl
~ o
~

00
S

fIl g

f
~

iC
(D

[
e.
o
"0

I-
w
~
til

Diagram 6-3. SRM Control (IRARMCTL) (Part 2 of 2)

Extended Description

SRM Control routes control to actions and algorithms
which have been requested and also to timed algorithms
which have come due.

1 Route control to actions which have been requested
but deferred. Actions are SRM functions performed

on behalf of a single user.

2 Route control to algorithms which have been
requested. Algorithms are SRM functions performed

on behalf of the system.

3 Request the invocation of time-driven algorithms
which are now due. The queue of time-driven

algorithms is scanned, and all algorithms whi~h are due
are requested by turning on representative bits in
RMCT ALR. SRM Control now branches to step 1 above.
Continuing with step 2, SRM Control will route control
to those time-driven algorithms which were requested.

4 This SRM Control entry point receives control under
an SRB which was scheduled by another component

of SRM. The SRB was scheduled on behalf of routines
not holding the SRM lock to execute critical actions and
algorithms. Upon receiving control under the SRB, SRM
Control makes a branch entry into the interface module,
IRARMINT, to execute SYSEVENT 48. The SYSEVENT
processor will in turn branch to SRM Control at step 1.

Control will then be routed to the critical actions and
algorithms which were requested.

Module Label

IRARMCTL

IRARMCTL IRARMCEN

IRARMCTL IRARMCEL

IRARMCTL IRARMCET

IRARMCTL IRARMCED

,7 , ,:~ -:"!I'

<
{J:l
~

o w
00
Q
-...J

VS2.03.807

This blank leaf represents pages 3-26 - 3-27 which were deleted by Supervisor Performance #2.

3-26 thru 3-27 OS/VS2 System Logic library Volume 3 (VS2.03.807)

\,
/

Section 2: Method of Operation 3-27

~ I Diagram 6-5. Deferred Action Processor (IRARMCEN) (part 1 of 2)
00

~
<:
r.fJ
N
r.fJ
'<
i a
r­o
~.
r­
so
~
~
~
w

<:
r.fJ
N o
W
00 o -

Input

Deferred
A ct.i on
Queue

RMCT

RMCTAOHD

(
QUCSs

QUCSACN

RMCT

AMCTEPDT .1

Sequential Flow in
SRM Control
(lRARMCTL)

Deferred Action Processor (I RARMCEN)

1 Verify that more users remain on the
deferred action queue.

No QUCSs Remaining Continue SRM
Control Mainline
Processing

Output

QUCSs
r---

2 Remove the next OUCS from the: : :>I
deferred action queue.

3 Route control to the action routines
requested for this user.

Shortened
Deferred
Action
Queue

<:
r.fJ
N
o
W
00
S

i o·
=
~
;c
~

[
o
o
'E a o·
=
IN
N

'"

~ _f

Diagram 6-5. Deferred Action Processor (IRARMCEN) (part 2 of 2)

Extended Description

The Deferred Action Processor routes control to each
requested routine for all OUCBs on the deferred action
queue. The entry point descriptors for all possible
action routines are contained in RMCTEPDT.

1 If the action queue header is pointing to the dummy
pre-assembled OUCB (that is, RMCTAQHD=

RMCTOUCB), then the action queue is empty.

2 The top OUCB is dequeued via compare-and-double­
swap, to prevent multi-processing interaction

problems. OUCBACT is set to zero.

3 IRARMCRT scans the EPDT entry point table
looking for entry point blocks (RMEPs) whose invo­

cation flags match "one" bits in the input bit pattern.
For each successful match, the corresponding entry point
is invoked. The invocation bit of each routine invoked
is set to zero in the input bit pattern. It is possible for
an action routine to call another action routine. In this
case, the new routine request is inserted into the
OUCBACN field, to be picked up during the processing
of this OUCB.

Module Label

IRARMCTL IRARMCEN

IRARMCTL IRARMCEN

IRARMCTL IRARMCEN

IRARMCTL IRARMCRT

'_:#'

~
~

o
IN
00 o
.......

~ I Diagram 6-6. Algorithm Processor (IRARMCEL) (put 1 of 2)
=
~
< fI)
N
fI)
'<
~ a
r-
ei.
(")

r­
es:
8
~
i
IN

~
N

S
00 s -

Input -RMCT

RMCTALA

RMCTALR

RMCTEPAT

Sequential Flow in
SRM Control
Mainline
(IRARMCTL)

L-...J
1 Verify that some algorithms have

been requested.

No Algorithms Requested

2 Combine deferred and immediate
algorithm requests.

3 Route control to the necessary
algorithms.

Continue SRM
Control Processi.ng

Continue SRM
Control Processing

Output

RMCT

~
I-.J
C
IN
00 =,

c;f.)
(D

~
0'
=
~

;s::
(D

[
o
o

"0
~
a-
0' =
w
W -

~7 " ./

Diagram 6-6. Algorithm Processor (IRARMCEL) (part 2 of 2)

Extended Description

Algorithm request routes control to all algorithms that
have been requested and can now be executed. The entry
point descriptors for all possible algorithm routines are
contained in RMCTEPAT.

1 Some algorithms have been requested if RMCT ALA
and RMCTALR are not both zero. Algorithm re­

quests are stored in RMCTALR by SRM locked routines,
and in RMCTALA by SRM unlocked routines.

2 Compare and swap logic is used to insure that all
current requests are obtained for a multiprocessing

environment.

3 IRARMCRT scans the EPAT entry point table
looking for entry point blocks (RMEPs) whose

invocation flags match "one" bits in the input bit pattern.
For each successful match, the corresponding entry
point is invoked. For each algorithm called, the invo­
cation bit is set to "zero" in the request bit pattern.
Input parameters:

• reg. 1 - address of first entry point block (RMEP)
in the EPAT chained table

• reg, 6 - address of input bit pattern (RMCTALR)

Module Label

IRARMCTL IRARMCEL

I RARMCTL I RARMCEL

IRAHMCTL RMCELL 1

IRARMCTL IRARMCRT

'-~

<:
c;f.)
~

(:)
w
00
<:)
.......

~ Diagram 6-7, Periodic Entry Point Scheduling (IRARMCET) (part 1 of 2)
N

~
~
N
til
'S
;-
a
~ o

11:9,
n
~ a:
~
g:
= a
CD
w

~
N
Q
w
00
~

Input

RMCT

RMCTTMQE

RMCTTOD

RMPT

RMPTTOM

RMPTTOL

, IRACTMQE
RMEP1

+ FWD V RMEPFLG

RMEPFWD

RMEPTME

RMEPINT

RMEP
2

From SYSEVENT
Processor as a Result
of SYSEVENT 1

--

• I

II

Process
-

Periodic Entry Point Scheduling (lRARMCET)

1 Pick up the first algorithm entry point
block from the timed algorithm queue.

" ~ 2 Verify that this algorithm is due.

'1

'") 3 Set a request for executing this

L
algorithm.

4 If more algorithms are due, step to the
next one.

I\.

"
5 Reset the timer expiration.

.L

...

~

Outl t

RMCT
L

k '" RMCTALR
y

' ,

. '1IIlr'4C1I\tva\'_

-'" IRARMSRV
~

IRARMI05

<: en
N
Q
w
00
o

C"'-l
(D

a e·
;:I

~

a::
(D

[
o
000)

o
't.S
Q
~ o·
;:I

~

~
~

~

Diagram 6-7. Periodic Entry Point Scheduling (IRARMCET) (part 2 of 2)

Extended Description

Periodic Entry Point Scheduling is invoked following an
SRM TOE timer expiration. It sets up requests for all
SRM periodically scheduled algorithms which are then
due. It also requests the resetting of the SRM TOE to
cause an interruption when next required.

1 The timer algorithm queue is ordered by the
RMEPTME value of the RMEP blocks on the

queue.

2 An algorithm on the time-driven queue is "due"
if the RMEPTME value is less than the current time

(RMCTTOD) + an allowable tolerance (RMPTTOL).

3 The algorithm request field is set up for later action
by algorithm control routing (JRARMCEL).

4 The next RM EP block is obtained from the queue.

5 A new timer interruption is requested for the greater
of: the minimum scheduling period (RMPTTOM),

and the smallest time due of a scheduled routine (see
SRM Interface M.O.!.

Module Label

IRARMCTL IRARMCET

IRARMCTL IRARMCET

IRARMCTL IRARMCET

IRARMCTL IRARMCET

IRARMCTL IRARMCET

IRARMSRV IRARMI05

'--~

VS2.03.807

This blank leaf represents pages 3-34 - 3-35 which were deleted by Supervisor Performance #2.

3-34 thru 3·35 OS/VS2 System Logic Library Volume 3 (VS2.03.807)

",
,JI

'""',
i

/

I

Section 2: Method of Operation 3-35

~ I Diagram 6-9'. Swap Analysis (IRARMCAP) (Part I of 2)
~
0'\

~
< c:Il
N
c:Il
'<
S
::3
I'"'" o
~.
I'"'"
;:

~
<: o
=­::3
~

~

'< c:Il
N
Q
~

00
§

Input -Register 2

Queue
Header

CUCB
"IN"

Domain Descriptor Table
DMDT

From Algorithm
Request (IRARMCEL) Process Output

Swap Analysis (IRARMCAP)

1 Reinitialize domain descriptor
table. I II

2 Perform UNILATERAL SWAP-OUT. ,,.,._--------....--.
Swap-out users in domains having
multi-programming level (MPL)
greater than target.

If any swaps

3 Perform EXPRESS SWAP-IN.
Swap-in oldest user who is
enqueued on a ;ritical resource.

If swap

Return to
Algorithm
Request
(lRARMCEL)

Return to
Algorithm
Request
(lRARMCEL)

4 Perform UNILATERAL SWAP-IN. \lib Ail!

Swap-in users in domains having
MPL less than target.

If any swaps

5 Perform EXCHANGE SWAP.
Swap-out user with lowest
recommendation value (RV) in
each domain whose highest user
RV exceeds the lowest by a
threshold.

Return to
Algorithm
Request
(IRARMCEL)

Return to
Algorithm
Request
(lRARMCEL)

Domain
Descri ptor Table
DMDT

~
N
Q
~

00
<:>

fI)

g

f
~

s:
(D

i
o
o

I
w
W

~ ",-_7

Diagram 6-9. Swap Analysis (IRARMCAP) (Part 2 of 2)

Extended Description

Swap Analysis is pe'rformed on a time-driven basis, It is an
algorithm activated by IRARMCET, It is also activated by
the processing of two SYSEVENTS: USERRDY (4) and
SWOUTCMP (15).

1 The Domain Descriptor Table has one entry for each
domain defined by the IPS. Each OUCB on the IN

and OUT queues is examined. Swappable, valid users on
the IN queue which are not in the process of being swapped
out or moving from one SRM queue to another are
counted in the current multiprogramming level (MPL)
for a domain, as well as users on the OUT queue which
are going in or moving from one SRM queue to another.
Fields in each domain descriptor table entry are
reinitialized with the above MPL count information.

2 Search the domain descriptor table entries for a
domain with an MPL higher than the target value

and swap out the user with lowest recommendation
value (RV). Repeat until the MPL reaches the target
value in every domain.

If at least one swap is performed in this step, swap
analysis ends here. Otherwise, continue at step 3.

3 If there is a user on the OUT queue enqueued on
a critical resource, attempt to swap the user in. If

MPL in that domain is less than the target, swap that
user in. Otherwise, make room for it by a swap out of
the user with the lowest RV. Repeated calls to swap
analysis may be necessary to reduce MPL below target
value to allow the enqueued user to be swapped in. If
there is no enqueued user, continue to step 4. Otherwise
swap analysis ends here.

Module
Label (or
Segment)

IRARMCTL IRARMCAP

IRARMCTL IRARMCAP

IRARMCTL IRARMCPO
IRARMCSO

IRARMCTL IRARMCSI

IRARMCTL IRARMCPO
IRARMCSO

Extended Description

4 Search the domain descriptor table entries for a
domain with an MPL less than target and swap in

user with highest RV. Repeat until the MPL (plus users
in the process of being swapped out) reaches the target
in each domain. If at least one swap is done in this step,
swap analysis ends here.

5 Search the domain descriptor table entries for a
MPL that equals the target for that domain. I n each

of these domains, find the out-of-storage user with the
largest RV to come in, and the in-storage user with the
smallest RV to remain in. If the difference of their RVs
exceeds a threshold (RMPTXCHT). swap out the user
with the lower RV.

Error Processing:

IRARMERR handles all unexpected errors.

Any non-zero return" codes from called routines
causes Swap Analysis (I RARMCAP) to end without
finishing its processing.

Module
Label (or
Segment)

IRARMCTL IRARMCPI
IRARMCSI

IRARMCTL IRARMCPO
IRARMCPI
IRARMCSO <:

fI)
N
Q
w
00
Q

VS2.03.807

This blank leaf represents pages 3-38 - 3-39 which were deleted by Supervisor Performance #2.

3-38 thru 3-39 OS/VS2 System Logic Ubrary Volume 3 (VS2.03.807)

Section 2: Method of Operation 3-39

~ I Diagram 6-10. Control Swap-In (IRARMCSI) (Part 1 of 2)
~
<:>

o
til

~
til
N
til
'<
r4
(I>

3
r-'
o

<r.9.
('l

r-'
a:
~
<:
52-
c
3
(I>

w

':2
til
N

b w
00
<:>
~

Input

Register 4 OUCB

F rom Swap Status Change
Request (lRARMCRY)

OUCBOUT 1 Check to see if user is already
swapped in.

2 Obtain user control block
extension (OUXB) for the
user being swapped in.

If unable to obtain OUXB.

3 Initiate swaR~in.

If successful, return.

Otherwise, free OUXB
storage.

Return to
Swap Status
Change
Request
(lRARMCRY)

IRARMI04 entry point
(obtain storage)

Return to
Swap Status
Change
Request
(IRARMCRY)

IRARMSRV

IRARMI07 entry point
(swap-in request)

Return to
Swap Status
Change
Request
(lRARMCRY)

IRARMSRV

IRARMI04 entry point
(tree storage)

Return to
Swap Status
Change
Request
(IRARMCRY)

Output

Return Code

Q

Return Code

8

Return Code

o

Return Code

#=0

~
N
b w
00
<:>
.......

I;Il
(p

~
O·
::s
N

~
(p

;.
o
~

o
o
"0
(p ...
~
O·
::s

~

.i:.

--,---,

Diagram 6-10. Control Swap-In (IRARMCSI) (Part 2 of 2)

Extended Description

Control Swap-I n accepts a request that an address space
be swapped in. If the address space is already swapped
in, this is indicated by a return code; if not, control
swap-in initiates a swap-in of the address space.

1 Control swap-in returns to the calling routine
with a return code of 8 if the user for which

a swap-in has been requested has already been
swapped-in. Otherwise, control goes to step 2.

2 The user control block extension (OUXB) is
obtained. It remains in existence as long as

the user is swapped in and is released at swap-out.

3 If the swap-in is successfully initiated
(return code from IRARMI07 equals 0),

the OUXB is cleared, the address of the OUXB is
placed into the ASCB (ASCBOUXB), and the
OUCS going-in bit is set (OUCBGOIl.

Otherwise, the storage for the OUXB is freed.

Error Processing:

If an attempt to obtain storage for an OUXB fails
(step 2), or an attempt to initiate a user swap-in
fails (step 3), the user remains on the OUT queue,
and Control Swap-in returns to the caller with an

error return code.

Label (or
Module Segment)

IRARMCTL IRARMCSI

IRARMCTL IRARMCSI

IRARMSRV IRARMI04

IRARMSRV IRARMI07

IRARMSRV IRARMI04

IRARMCTL IRARMCSI

<:
I;Il
N
(:,
~

00
0
-..I

~ Diagram 6-11. Control Swap-Out (IRARMCSO) (part 1 of 2)
~

o
rIl

~
~

~
i
~
~.
r"" a:
~
e:
= 51
(\)

c...J

'<
rIl
~
(:,
c...J
00
C>
.::!

Input

Register 4

140UCB 1
~ OUCB

OUCBQFL

OUCBASCB

ASCB

ASCBECB

~

From Swap Status
Change Request

(lRARMCRY) .p.ro.ceisis ••••••••••••••• 1
Control Swap-Out (lRARMCSO)

Output

Return
Code

1 Check to see if the user is alreadY. • v1 ... __ _
swapped out. Return to Swap

2 Initiate a swap-out of the
current user, by posting
the Region Control Task

3 If swap-out is successfully initiated,
place user at top of dispatching
queue and

Status Change
Request
(IRARMCRY)

pass back "successful" return code; _____ .,_----.----------,

Otherwise, return unsuccessful.

Return to Swap
Status Change
Request
(lRARMCRY)

Return to
Swap Status
Change
Request
(IRARMCRY)

Cross Memory
Post

Return
Code

<:
rIl
t-J
(:,
c...J
00
C>
o..J

til
(D
n
go
:=
N

~
(D

[
o
o
'g

t·
w
J:.
w

J

Diagram 6-11. Control Swap-Out (IRARMCSO) (part 2 of 2)

Extended Description

Control Swap-Out accepts a request that an address space
be swapped out. If the address space is already swapped­
out, this is indicated by a return code; if not, control
swap-out initiates the swap-out of the address space.

1 Control swap-out returns to the calling routine
if the user for which a swap-out has been requested

has already been swappe~ out. Otherwise, control goes
to step 2.

2 The supervisor service request routine requests the
initiation of quiesce processing for the user to be

swapped out. This request results in the posting of an
ECe for the indicated address space, so that the RCT
will begin quiesce processing.

3 To expedite quiesce processing, request that
the user's ASCe be moved.

A successful return indicates that the post of quiesce
processing has been scheduled for the address
space. The progress of quiesce processing will be
indicated to the SRM by future SYSEVENTs
(typically, quiesce started, followed by quiesce
completed, followed by swap-out complete).

Label
Module (or Segment)

IRARMCTL IRARMCSO

IRARMCTL IRARMCSO

IRARMSRV IRARMI06

IRARMSRV IRARMI02

<:
til
N

<=> W
Co
0

~ I Diagram 6-11A. Select User for Swap-In (IRARMCPI) (Part 1 of 2)
~
w
<:>

o
CI)

< CI)
~

CI)

'< go

;-
3
r'"' o
'5. n
r'"' ;:

~
<:
o

= 3
(II

w

'< CI)
~

<:>
w
00
Q

.:::!

Input

Register 11

Domain Table Entry

RMCT

RMCTOTQE

From Swap
Analysis (IRARMCAP)

VUI

OUCBs
_____ -----_ / 1 Compute composite recommendation

- - value (RV) for each user (in domain)
on OUT queue, which is not already
scheduled for swap-in.

2 Select user with highest RV.

Return to Swap
Analysis (IRARMCAP)

Output

<:
CI)
~

<:>
Register 4

w
00

I t OUCB
S

CIl
(D
()

g'
~

~
(D

~
8-
o
o

't:S

S g
c...I

~
~ -

Diagram 6-11 A. Select User for Swap-In (IRARMCPI) (Part 2 of 2)

Extended Description

This routine choos!'!s the user with the highest RV in a
particular domain on the OUT queue. If one of the users
represented by an OUCB in this domain is assigned toa
different domain, for example, because of a period
change, return a code of zero indicating no user found.
In this case, swap analysis (lRARMCAP) is rescheduled
to ensure that the domain descriptor table is initialized
to reflect this domain change. The following two steps
are performed in a loop until all OUCBs on the OUT
queue have been evaluated.

1 Examine each OUCB on the OUT queue for users
in the specified domain. Use the user evaluation

subroutine to compute the composite RV for each user.

2 Gompare the computed RV to that of the highest
RV found up till now. Save this OUCB as the best

candidate for a swap-in if its RV is greater. Otherwise,
continue until all OUCSs on the OUT queue in this
domain have been evaluated.

Module Label

IRARMCTL IRARMCPI

IRARMCTL IRARMCPI

IRARMCTL IRARMCVL

IRARMCTL IRARMCPI

~
~

Q
c...I
00
9

~ I Diagram 6-11B. Select User for Swap-Out (IRARMCPO) (part 1 of 2)
w
N

&1
~
w
f'-)

I
r-
~.
f')

~
8
<
~ a
(D

w

~
w
Q
w
00
9 -

Input

Register 11

I Domain Table Entry

RMCT

I RMCTINQE l-
...

l-

i-

From Swap
Analysis (tRARMCAP)

- - '" 1 Compute composite recommendation

--.
--.

value (RV) for each user (in domain)
on I N queue which is not already
scheduled for swap-out.

2 Select user with lowest RV.

Return to Swap
Analysis (tRARMCAP)

Output

;;3
w
Q
w

Register 4 00
9 I t OUeB

f.f)

~

g'
t-J

i'
~

;.
&.
Q
o

"1:1

t-
c.I
J:..
c.I
~

~=-y

Diagram 6-11B. Select User for Swap-Out (IRARMCPO) (part 2 of 2)

Extended Description

This routine chooses the user with the lowest RV in a
particular domain on the IN queue. If one of the users
represented by an OUCS in the domain is assigned to a
different domain, for example, because of a period change,
return a code of zero indicating no user found. In this
case swap analysis (lRARMCAP) is rescheduled to ensure
that the domain descriptor table is initialized to reflect
this domain change.

The foUowing two steps are performed in a loop until all
OUCS's on the IN queue have been evaluated.

1 Examine each OUCS on the I N queue for users
in the specified domain. Use the user evaluation

subroutine to compute the composite RV for each user.

2 Compare the computed RV to that of the lowest
RV up till now. Save this OUCS as the best

candidate for a swap-out if its RV is lower.

Otherwise, continue until all OUCSs in this domain on
IN queue have been evaluated.

Module Label

IRARMCTL IRARMCPO

IRARMCTL IRARMCPO

IRARMCTL IRARMCVL

IRARMCTL IRARMCPO

" "

< f.f)
t-J
0
c.I
00
0

~ I Diagram 6-11C. User Evaluation (IRARMCVL) (Part 1 of 2)
~
I.H

~

&S
"<
tI)
~

tI)
'<
"" ;-
3

S
<e.
n

~
~
~
E'
3
(D

I.H

'< tI)
~

o
I.H

00
o

,:;;!

Performance
Group
Descriptor

Workload
Manager

From Select User for Swap-In (lRARMCPI) or
Select User for Swap-Out (lRARMCPO)

RRPA ..
I -.

RRPATOD
I

I I

OUCB

OUCBTMA

«'

WPGD OUCB

OUCBTMP
WPGLlSV

WPGLDUR OUCBWMS

RRPA OUXB

1 RRPATOD ·1 OUXBPRS
,

OUXBTRS

Performance
WMST Objective

I II I
Specification ASCB OUXB

I II I Table

OUCB

OUCBWMR

OUCBRMA

p
<'

--

'" ,,> 1 Check to see if a workload manager
recommendation value has been
computed within a time less than a

" threshold.
')

or

If the computation is recent
...

Go to Step 3 ..

") 2 Calculate the new workload
v manager recommendation value.-

") 3 If RTB=1 (OUCBRMA) then
v calculate the composite RV,

based on I/O and CPU usage.

Return to Caller
Select User for Swap-In (lRARMCPI) or
Select User for Swap-Out (I RARMCPO)

OUCB

...
) OUCBWMR v

..
') OUCBIRV

"
OUCBCRV

OUCBCMRV

~
~

(:)
I.H

00
o
.......

"1:1
Ilo'

~
o
tI)

-<
~
00
6
....... -<II

6

en
(!)

~
cS-
=
~

~
~
Q.
o
o

"CI
(!)

e. o·
=
~

J:,.
~ u.

~

Diagram 6-11C. User Evaluation (IRARMCVL) (Part 2 of 2)

Extended Description

User evaluation computes a recommendation value (RV)
for one user based on its workload manager
recommendation value and its I/O and CPU recommenda­
tion values.

1 A new value is calculated for the workload manager
RV only if sufficient time has elapsed since its

previous calculation. This time is called threshold 2.
(Swap Analysis evaluating threshold RMPTSAET).

2 Compute the workload manager recommendation
value (the normalized workload level) representing

the desirability of a swap of this user. This value is based
on the rate at which he has recently been receiving
service and on the IPS.

3 If the applicable RTB is 1, add to the workload level
an I/O manager recommendation value (for

significant users of I/O) and add a CPU manager
recommendation value (for significant users of the CPU
resource). A positive RV favors the swap-in of a user
to correct a CPU or I/O imbalance and a negative RV
favors the swap-out of a user.

Module Label

IRARMCTL IRARMCVL

IRARMCTL IRARMCVL

IRARMWLM IRARMWM3

IRARMIOM IRARMIL3

IRARMCPM IRARMCL3

-y "'~

<:
~
N
o
~

00
o,

IRARMCTL Module Entry Point
Summary
IRARMCTL - Mainline Control Processing.

Transfers to deferred user action
processing (IRARMCEN) and then to
the algorithm request routine
(IRARMCEL).

IRARMCEN - Deferred User Action Processing.
Examines the OUCBACN field of the
OVCB to determine the users on the
action queue and routes control to all
routines whose request bits have been
set in the OUCBACN field. Dequeues
each OUCB after its indicated actions
have been performed.

IRARMCEL - Algorithm Request Routine.
Examines the RMCT ALR and
RMCT ALA fields in the RMCT and
routes control (via IRARMCRT) to
each algorithm whose request bit has
been set in either of the two fields.
Resets the individual request bit after
each algorithm completes.

IRARMCET - Periodic Entry Point Scheduler.
Accepts timer interrupts, schedules
the algorithm currently due for
execution and requeues the SRM timer
element to permit interrupts again
when the next algorithm is due for
execution.

IRARMCED - SRB Dispatched Original Entry
Processor.
Receives control under an SRB

scheduled by the dispatcher and sets
up an entry to the maihline of
SRM(IRARMCEN) by issuing
SYSEVENT 48.

IRARMCQT - Periodically-Invoked Entry Point
Rescheduler.
Accepts a request to reschedule the
execution of a periodically invoked
algorithm and requeues the
corresponding RMEP block on the
timed entry queue.

IRARMCRD - SRB Scheduling Routine.
Accepts a request to schedule the
SRM SRB which if available is
scheduled to obtain the SRM lock.

IRARMCRL - Algorithm Scheduling Routine.
Accepts requests for an algorithm to
be run. Turns on the bit associated
with the algorithm in the RMCTALA

or RMCTALR.

3-43.6 OS/VS2 System Logic Library Volume 3 (VS2.03.807)

VS2.03.807

IRARMCRN - Action Request Routine.
Accepts requests for an action which
must run under the SRM lock. If the
SRM lock is held, control passes
immediately to the action via a
routing routine. If the SRM lock is not
held, the bit is set in the OUCBACN

field of the OUCB associated with the
requesting user that identifies that the
action requested is deferred.

IRARMCRT - Entry Point Table Scanner.
Accepts an invocation bit pattern and
an entry point table address.
Compares the bit pattern to
invocation flags in the entry point
table entries. Invokes the routine
identified by the entry point when a
match is found between the bit
pattern and the invocation flags.

IRARMCRY - User Swap Request Receiving
Routine.
Accepts a request for a user swap
and checks to see if such a swap is
already in progress. Routes control to
IRARMCSO or IRARMCSI if a swap is
not in progress and the SRM lock is
held.

IRARMCSI - User Swap-In Request.
Accepts a swap-in request, allocates
an OUXB for the user and initiates the
swap-in.

IRARMCSO - User Swap-out Request.
Accepts a swap-out request and posts
the region control task's quiesce
routine to initiate the swap-out.

IRARMRPS - OVCB Repositioning Routine.
Dequeues an OUCB and requeues it at
the end of the queue specified in its
OUCBQFL field~

IRARMWMY - Periodic Entry Point Requeuing
Routine.
Requeues all of the members on the
Timed Algorithm Queue and adjusts
all the time-due fields.

IRARMCAP - Swap Analysis Algorithm.
Attempts to keep the
multiprogramming level (MPL) at its
target level in each domain by
performing user swaps.

IRARMCPI - Select Swap-In Candidate Subroutine.
Scans the OUT queue for the user in
a particular domain with the highest
recommendation value.

IRARMCPO - Select Swap-Out Candidate
Subroutine.
Scans the IN queue for the user in a
particular domain with the lowest
recommendation value.

IRARMCVL - User Swap Evaluation Routine.
Computes a numerical value
representing the recommendation of a

VS2.03.S07

user to be swapped in. This
recommendation value is the sum of
the user's workload level and the
recommendations of the I/O and CPU

resource managers.

Section 2: Method of Operation 3·43.7

3·44 OS/VS2 System Logic Library Volume 3 (VS2.03.807)

Resource Use Algorithms
The resource management algorithms are concerned
with improving overall system resource utilization.
These include:

Storage Management
• Page Replacement - This function maintains

an up-to-date indication of which frames have
gone unreferenced for the longest period of
real time and the age of the oldest
unreferenced frame in the system. This is
accomplished by invoking the real storage
manager's (RSM) routine lEA VRFR, real frame
replacement (RFR), at periodic real time
intervals so that RFR may increment the
unreferenced interval count (UIC) for those
unreferenced since the last RFR invocation. If
RFR finds that an allocated frame was
referenced in the last interval it resets the UIC
to zero. When the page replacement algorithm
completes updating the UIC's for all allocated
frames it then saves the highest UIC in the
system for use by the real page shortage
prevention algorithm and the resource
monitor algorithm.

• Real Page Shortage Prevention - This
function is invoked by SRM when the
available frame queue falls below the
available frame queue LOW threshold
(PVTAFCLO) so that SRM can take action to
remedy the existing real page shortage. When
the real page shortage prevention algorithm is
notified of a real page shortage it will steal
frames from all users and the system pageable
area (SPA). It steals the oldest unreferenced
allocated frames in the system starting with
the highest UIC as saved by the page
replacement algorithm until the count of
available frames plus the count of the pages
stolen exceeds the available frame queue OK
threshold. (PVTAFCOK).

• Auxiliary Slot Shortage Prevention - This
function is invoked at periodic intervals to
check for two levels of auxiliary slot
shortages. Reaching the first level threshold
causes the creation of memories to be
prevented, the swap-out of the batch user
who is acquiring auxiliary storage slots at the
greatest rate, the delay of newly initiated
jobs, and the setting of all domains to their
minimal MPL. Messages are written to the
operator indicating the occurrence of either of
the shortages and the jobnames of the users

VS2.03.807

swapped out because of the shortage.
Additionally, when this function determines
that the auxiliary slot shortage is relieved a
message is wriften to the operator indicating
the alleviation of the slot shortage. Creation
of memories is again allowed and those
memories that were swapped out are again
made eligible for swap-in.

• SQA Shortage Prevention - This function is
invoked by the virtual storage manager (VSM)
when a shortage of system queue area (SQA)
space is detected. This function will then
prohibit the creation of memories for the
duration of the SQA shortage and notifies the
operator of the existence and severity of the
shortage. Also, a message is written to the
operator when VSM informs this function that
the SQA shortage has been relieved and the
creation of memories is again permitted.

• Page able Real Storage Shortage Prevention -
This function is invoked by the real storage
manager (RSM) when the percentage of fixed
frames to total frames exceeds a predefined
limit. This function will then prohibit the
creation of memories, initiate a swap-out for
the swapp able user who has allocated the
greatest number of fixed frames, deiay newly
initiated jobs, and set all domains to their
minimal MPL. The operator is notified of the
existence and severity of the pageable storage
shortage and of the identity of the swapped
users. Additionally, when this function
determines that the shortage has been
relieved, a message is written to the operator
indicating the alleviation of the shortage.
Creation of memories is again allowed, and
those memories that were swapped-out are
again made eligible for swap-in.

110 Management
• Device Allocation - This function makes

device allocation decisions, based on I/O load
balancing considerations when a choice must
be made from more than one device
candidate. The device allocation decis~on· is
made by applying the following rules to the
list of candidates (in the order indicated):

1. If the request is for tape, eliminate all
candidates on ready devices (eliminate
premounted tape drives) and on devices
that contain passed volumes.

Section 2: Method of Operation 3-45

2. Choose the candidates on the logical
channel with the lowest utilization. The
utilization takes into account any datasets
previously allocated to the logical channel.

3. Choose the direct access candidates with
the lowest allocated user counts.

4. From a list of equal candidates, choose one
at random.

5. Insure that the selected candidate device
has not been previously allocated to the
same user.

I/O Load Balancer Swap Analysis - Consists of a
set of routines that monitor I/O logical channel
usage of certain users. Users are recommended for
swapping based on the extent to which the swap-in
or swap-out of a user would correct a detected I/O
system imbalan<!e. The I/O load balancer
recommendation is scaled so that it will never be
greater than one-fifth the highest possible workload
level possible with the IPS currently in ,effect. This
recommendation will then be multi'plied by the 10C
resource factor coefficient (RFC) as specified in
parmlib member, IEAOPTXX.

CPU Management
• Automatic Priority Group (APG) Management

- Records a subset (16 dispatching priorities)
of. the ASCB dispatching queue. The APG
contains three groups. Users in one group will
have their dispatching priorities based on the
user's mean execution time before entering a
wait state. This wait is defined as any time a
task issues WAIT, goes into page wait, or
enters terminal wait and there are no other
ready tasks in this address space. Users who
quickly release the CPU are given a high
dispatching priority within the subset. A
second group contains users having fixed
priorities. A third group consists of users at
one· rotate priority where each user at this
priority is periodically moved to the top of
the priority group.

3-45.0 OS/VSl System Logic Library Volume 3 (VS1.03.807)

VS1.03.807

• ENQ/DEQ Algorithm - Inhibits the swap-out
of users who are in control of (enqueued
upon) resources in demand by other system
users. Swap-out is prevented until the
resource is released or the user has executed
for the interval specified in the enqueue
residence value (ERV) installation tuning
parameter.

• • CPU Load Balancer Swap Analysis - Consists
of a set of routines that monitor the
system-wide CPU load. They recommend users
for swapping when the system is under-or
over-utilized, and when users exist who would
improve the imbalance· by being swapped in
or out. The CPU load balancer's
recommendation is scaled so that it will never
be greater than one-fifth the highest possible
workload level possible with the IPS currently
in effect. This recommendation will then be
multipled by the CPU resource factor
coefficient (RFC) as specified in the parmlib
number,IEAOPTXX.

Resource Monitor
• Resource Monitor - This function monitors

several system resource usage indicators.
After a number of sample intervals have
completed, the resource monitor will average
the resource usage over the sample intervals,
and based on resource usage thresholds, will
recommend to the domain MPL adjustment
routine that the system multi-programming
level (MPL) be either raised, lowered, or
remain the same.

• Domain MPL Adjustment Routine - This
routine will raise or lower individual domain
multi-programming levels based on input from
the resource monitor and the domain weight
factor as provided in the domain descriptor in
the IPS.

Section 2: Method of Operation 3-45.1

~ I Diagram 6-12. Storage Management (IRARMSTM) (Part 1 of 8)
~
0'1

o
C'I.)

"< C'I.)
~
C'I.)

~
;-
:I
t"'" o

'!S.
(")

t"'" a:
~
<: o
=­:I
~

~

'<
C'I.)
~

o
~

00
Q

~

From Algorithm Processor (lRARMCEL)
as a Result of a Request by Periodic Entry

Input Point Scheduling (lRARMCET) _ Process ..
RMCT

RMCTINQE)
'" ,., 1 Examine each user in main storage

and the system pageable area and -

OUCB
call RSM real frame replacement

/ "In Queue"
for each user to update their UICs. -,

"In Queue" V(J]
~

Header -

'"

ASCBs OUXBs

OJ OJ
PVT OUXBs

! PVTCHUIC! ~
...
')2

"'V
Find the highest system UIC.

MCT PRI RMEP

MCVSTCRI
..

-y') 3 Adj~st invocation interval for this
routine.

Interval Invocation

Thresholds Interval

L.... IRARMSRV .,..
IRARMI03
RFR Interface

Return. ~ To Algorithm
Processor

- IIRARMCEU

Output

RFR Parm List OUXB
...J-

L-count of pages
rv

flags OUXBUIC

criteria number OUXBSTCT

-+ ASCB
~

-
'"- -:10" PVT

~ount of pages I PVTCHUIC I
flags

criteria number

+ ASCB

MCT
..

'V MCVSTCRI
----.,

~ -
PRI RMEP

...

I v

RMEPINT

I
I
I

,
-1
I
I
I

<:
C'I.)
~

o
~

00
Q
......

tI}
(D
(")

g.
= "-l

s::
~

Er
8-
o
o
'tS
~

ill
g'
w
~
.......

Diagram 6-12. Storage Management (IRARMSTM) (Part 2 of 8)

Extended Description

Storage Management consists of essentially independent
routines that are invoked by SRM Control or by the
SYSEVENT' Process9r to control the usage of main and
auxiliary storage by all users. For non-swappable users
(users whose fixed storage must remain in real storage),
the mechanism of page stealing (freeing non-fixed pages
for other use) is used for storage management control.
For swappable users, both page-stealing and swapping
provide the necessary control.

1 For each user in main storage and for the system
pageable area build an entry in the parameter list

for RSM's real frame replacement routine, IEAVR FA.
In these entries indicate that the unreferenced interval
counts are to be updated. RSM examines the UICs
associated with each of the user's pages. If the page
reference bit is on, the UIC for this page is set to zero,
and the reference bit reset.
If the reference bit is off, the corresponding UIC is
incremented by one. RSM then saves the highest
UIC count for each us.er in the corresponding OUXB.
The highest UIC for the system pageable area is saved
in PVTCHUIC.

2 The highest UIC found in any memory or system
pageable area is identified and saved in MCVSTCR I.

This value will be used by the force steal routine
(Step 4) as the criteria at which RSM will begin stealing
pages.

3 If the highest UIC found in any memory or system
pageable area, MCVSTCR I, is greater than a thres­

hold (MCCUICBD), the invocation interval for
IRARMPR 1 is incremented.

Module Label

IRARMSTM

IRARMSTM IRARMPR1
STEAL

IRARMSRV IRARMI09

I RARMSTM I RARMPR 1

I RARMSTM I RARMPR 1

'~

<::
r.n
~

b w
00
o
-....I

-eN

"'-co

~
~
N
fIl
':i
[
r-
ei.
t')

~
~
<
~ g
eN

'< fIl
N
Q
eN
00
9 -

Diagram 6-12. Storage Management (IRARMSTM) (part 3 of 8)

.. .

MCT RMCT

MCVFRCNT RMCTINQE

MCVSTCRI

"In Queue" J>.) 4 Steal as many pages as required to
~OUCB Header v relieve the real page shortage. The

"In Queue" From Algorithm

lJl
Processor as a decision to steal is made at ... IRARMSRV

Result of a IRARMMS2 (see step 5). ..
Request by ~

IRARMI03

Algorithm Request ... R F R Interface

(lRARMCRL) .. Return. To Algorithm Processor
(lRARMCEU

MCT PRI RMEP

I RMEPINT i " . .
Initial) 5 Reset I RARMPR 1 invocation

v interval. Value

MCT PVT I MCTAVQI I ...
PVTAFCOK If AVQLOW level 1, 2 or 3) .. calculate number of pages needed

to be stolen and schedule
PVTAFC IRARMPR5 (step 4) to be executed.

Return ... To Algorithm Processor
(lRARMCEU

RFR Parm List

CNT pages

flags

steal
criteria

+ ASCB ~
N
Q

.. OUXB
~

00
.. 9

OUXBSTCT

PRIREMP

...
RMEPINT ..

MCT

....

"
MCTFRCNT

RMCTALA

I I

tI.I
(D
n

g'
~

a::
(D

~
8.
e.
o

"CI

i
w
J;,.
\Q

~

Diagram 6-12. Storage Management (IRARMSTM) (part 4 of 8)

Extended Description

4 The Real Page Shortage force steal routine is a
co-operative effort between the SRM and RSM.

SRM calls the RSM routine, IEAVRFR, passing a
parameter list identifying an in storage user, the number of
pages needed and a steal criteria number, MCVST~RI.
All pages associated with this user that have a U IC
greater than the steal criteria are no longer considered
part of the user's working set and are stolen. If not
enough pages were stolen, another user is identified
and IEAVRFR will steal all pages associated with this
user that have a UIC greater than the steal criteria.
If, after all eligible users have been stolen from at
this criteria, pages are still required, the steal criteria
will be decremented by one and the process repeated
until no further pages are required. The result of this
procedure is that the oldest unreferenced system wide
pages are stolen first. Pages in the common system
area and link pack area are not associated with any
specific user. RSM examines these pages when SRM
page replacement calls it with an ASCB address of zero.

5 The SRM will have received an AVOLOW
SYSEVENT if there is a shortage of real page

frames. Reset the IRARMPR1 interval back to its
original value. If the invocation is due to A VOLOW
level 1,2 or 3 (real page shortage) calculate the
number of pages needed to get the available frame
queue back to the OK threshold and invoke the
forced steal algorithm via the algorithm request
mechanism.

Module Label

IRARMSTM IRARMPR5
STEAL

IRARMSRV IRARMI03

IRARMSTM IRARMMS2

IRARMCTL IRARMCRL

] , ./

;;j
~
Q
w
00
Q,

~ I Diagram 6-12. Storage Management (IRARMSTM) (part 5 of 8)
<:>

~
<-
CIl
~

CIl
'<
fI)

~ a
r0-c
~.
ro­
;:

~
<:
g.
c a
~

~

'< CIl
~
Q
~

00
<:>
~

Input

MCT

I MCTFAVQ I

RMCT

,

RMCTINQE

"In Queue"
Header

OUCB
"In Queue"

l

I~
Base
Values

-r:;::

PVT

PVTCNTFX

PVTMAXFX

PVTPOOL

PVTFIXOK

OUCB
"In Queue"

ldJ
ASCB

From Algorithm
Processor
(lRARMCEL) as
a Result of a
Request by
Periodic Entry
Point
Scheduling
(lRARMCET) ...

Process

~6

I: : >7

If there is a shortage of pageable
real storage frames, notify the
operator.

Set the domain targets to the
minimum and request the swap-out
of selected users.

Return.

Request the swapping of users
determined to be in a wait state
for a sufficient period of time.

IRARMI09
Issue Msg

liliiii

Control
Swap Out

• To Algorithm
Processor
(lRARMCEL)

_10..

...
L

...

IRAR

IRARMCSO
Control
Swap Out

Return. To Algorithm Processor
(lRARMCEL)

Process

DMDT

~

v _____ -;

~

v

OUXBs

~----II
Base
Values

<:
CIl
~

Q
~

00
S

en
g
g
N

a::
(I>

;.
8-
o -.
o

"0
(I>

i
<.oJ
V.

~ '- ,,-

Diagram 6-12. Storage Management (IRARMSTM) (Part 6 of 8)

Extended Description

6 Pageable Real Frame Shortage, indicated by
A VQLOW Level 4, checks for two levels of

shortages. A first level shortage causes the prevention
of further memory creates, the setting of domain targets
to minimums, the delay of newly-initiated jobs and
the swap out of the user which has the greatest number
of fixed frames. When the second level is reached,
another swappable user with the greatest number of
fixed frames is also swapped-out. Messages indicating
the occurrence of both levels and a message identifying
the users swapped are written to the console. A
message is also written indicating the alleviation of the
shortage.

7 Users who issue a long wait macro instruction will
be detected by the SRM when the wait macro

processor issues the NIOWAIT SYSEVENT. Users who
do not issue a long wait macro instruction to notify
the SRM that they will be in the wait state for a "long"
time will be detected when they have gone without
executing for a sufficient period. At this time, swappable
users will be swapped-out.

Module Label

IRARMSTM IRARMMS2

IRARMSRV IRARMI09

I RARMSTM I RARMMS6

'cf

-< en
N
o
<.oJ
00
o,

~ I Diagram 6-12. Storage Management (IRARMSTM) (Part 7 0(8)
tit -Q

~
"<
C"Il
IV

~.
~
<D
3
I"'" o
~.
I"'" a:
~
<:
~
3
<D
f.I.I

'<
C"Il
IV
Q
f.I.I
00
o
.::!

Input

MCT

MCCAsTM1

RMCT

From Algorithm processor (J RARMCEU as a request
by Periodic Entry Point Scheduling (J RARMCEn

RMCTINQE

MCCAsMT2 I L.I ___ ~

"In Queue"
Header

OUCB

8 If there is a shortage of auxiliary
storage pages, notify the system
operator, and request the swap-out
of selected users.

...

'"

..tIL

...

--.,., IRARMSR'

...

.. ..

IRARMI09
Issue Msg

IRMCTL

IRARMCsO
Control
Swap Out

To Algorithm

ASMVT
"In Queue" Return. Processor

AsMsLOTs

AsMVsC

AsMNVsC

AsMERHs

MCT

Q F rom Algorithm
Processor as a
Result of a
Request by
Algorithm Request
(JRARMCRU ..

(JRARMCEL)

Output

DMDT

MCT

9 I nform system operator of a critical _--.....--__________ --.,
system queue area page shortage,

~ MCTOFLGs
MCTsFLGs

MCTOFLGs

or of the alleviation of such a
shortage.

Return.
..tIL

...

To Algorithm
Processor
(JRARMCEU

... 1 IRARMSR' ..
IRARMI09
Issue Msg

t--: ~ Message
to Operator

~

~
IV
Q
f.I.I
00
o

en
(II

a g.
N

a::
(II

go
8-
o
o
'0

i
(,H

~
~

Diagram 6-12. Storage Management (IRARMSTM) (Part 8 of 8)

Extended Description

8 Auxiliary Storage Shortage Monitoring checks for
two levels of auxiliary storage page shortages. The

first level shortage causes: the prevention of memory
creates, the setting of domain targets to minimums,
the swapout of the swappable user who is acquiring
auxiliary storage pages at the greatest rate, and the
delay of newly-initiated jobs. Messages indicating the
occurrence of either shortage level and the users
swapped due to the shortage are written to the console;
likewise messages are written indicating the alleviation
of shortages.

9 The system queue area message writer is invoked by
SYSEVENT SQALOW or SQAOK to write shortage

messages to the system operator. The messages cannot
be written directly by the invoking routines since the
SRM lock must be held. The SRM will not permit the
creation pf new address spaces when an SQA shortage
exists.

Module Label

IRARMSTM IRARMASM

IRARMCTL IRARMCSO

IRARMSRV IRARMI09

IRARMSTM IRARMSQA
IRARMEVT IRARME25
IRARMEVT IRARME26

',~_7

<: en
N
(:,
(,H

00
0
-.oJ

lRARMSTM Module Entry Point
Summary
IRARMPRI - Page Replacement Normal Processing.

Examine each user in main storage
and the system page able area and call
RSM real frame replacement for each
user to update VIes.

IRARMPR5 - Page Replacement Real Page Shortage
Force Steal.
Steal as many pages as required to
relieve a real page frame shortage.
The steal decision is made at entry
IRARMMS2. The oldest unreferenced
system-wide pages are stolen first.

IRARMMS2 - Real Page Shortage Prevention.
Calculate the number of frames
necessary to reach the O.K. threshold
and schedule IRARMPR5 processing (if
a real page shortage exists). Inform
the operator of users which have the
greatest number of fixed frames and
direct the swaps of these users (if a
pageable real page shortage exists).

3-51.2 OS/VS2 System Logic· Library Volume 3 (VS2.03.807)

VS2.03.807

IRARMMS6 - Main Storage Occupancy Long Wait
Detection.
Discover users who have gone into
long wait without notifying SRM.

Swap out such users, if swappable.
IRARMASM - Auxiliary Storage Shortage

Monitoring.
Monitor extent of auxiliary shortage
allocation. If auxiliary pages are in
short supply, inform operator and
direct swaps of users who are most
rapidly acquiring auxiliary storage
slots.

IRARMSQA - SQA Shortage Message Writer.
Inform operator of system queue area
shortages.

STEAL - Internal STM Steal Subroutine.
Add users to RFR interface list until
full, then call RSM Real Frame
Replacement (RFR) routine (via
IRARMI03) and record the number of
pages stolen.

~"
1./

Section 2: Method of Operation 3-51.3

VS2.03.807

This blank leaf represents pages 3-S2 - 3-S3 which were deleted by Supervisor Performance #2.

3-52 thru 3-53 OS/VS2 System Logic. Ubrary Volume 3 (VS2.03.807)

I
JY

Section 2: Method of Operation 3-53

~

~
~

~
"< tI}
~

tI}

'<
~
3
r-
~.
/")

r­
;:

~
<::
~
3
(D

~

'< tI)
~

o
~

00
Q

~

Diagram 6-14. I/O Management (IRARMIOM) (part 1 of 2)

Input

LCH

lOS Logical CJ Channel Table

RLCT
SRM Logical I I Channel Table

ICT
~ /0 Management I I Control Table

OUXB
(Extension block
for users in real
storage)

I/O Usage
I riformation

ICT

[ICVLCBPT I
IMCB
(I/O measurements
control block)

I I
RLCT

I I

F rom A Igorith m
Processor (lRARMCELl
as a Result of a Request
by Periodic Entry Point
Scheduling
(lRARMCET) Process .. I/O Management (lRARMIOM)

"'>1 v
Compute logical channel utilization values.

-'") 2 Initiate the updating of user I/O profiles for
... heavy I/O users who have not recently been

From OSCEST (12)
monitored (swapped).

in Sysevent Processor

IIRARME_

...
3 Update user I/O profiles.

F rom User Swap
Evaluation
(lRARMCVLl
During Partial Swap
Analysis
(lRARMCAP) --...

...
... 4 Compute a value representing the ...

desirability of the swap-in or swap-out
of a user.

Return to
Sysevent
Processor
(lRARMEVT)

.I. Return to Swap
Evaluation
(IRARMCVLl

Output,

RLCT

RLCTUTIL

--1\
-V RLCTRORT

RLCTRVUF

OUCB

Recommendation
Value

""
(OUCBIRV)

--,.I'
Time of
Recommendation
(OUCBTIO)

<:
tI)
t.)

c
~

00
Q
'-l

CI.l
~
g.
o·
=
~

ac
~

~
8-
o
000)

o
"0
~
Co) g.
=
~

&.
VI

Diagram 6-14. I/O Management (IRARMIOM) (part 2 of 2)

Extended Description

I/O Management consists of a set of routines that monitor
the I/O logical channel usage of certain users. They recom­
mend users for swapping based upon the extent to which
the swap-in or swap-out of a user would correct a detected

I/O system imbalance. One I/O management function is
described elsewhere:

• I/O load balancing IMCB (I/O measurement control
block) deletion is performed due to execution of the
INITDET(11) SYSEVENT and is described in the
SYSEVENT Processor M.O.

1 For each logical I/O channel in the system, the follow­
ing are calculated:

• Logical channel utilization (the percentage of recent I/O
requests for the channel that encountered a busy
condition.

• Logical channel request rate (rate of recent I/O requests
per second) .

• Logical channel utilization factor (difference between a
threshold utilization and actual utilization, squared, with
a sign indicating whether the logical channel is over­
utilized or under-utilized; for logical channels with a
balanced I/O utilization, the factor equals zero).

Module Label

IRARMIOM

IRARMIOM IRARMIL4

IRARMIOM IRARMI L 1

LCHUSE

LCHUSE

LCHUSE

Extended Description

2 I/O management generates a request that the heavy
I/O user, who has not recently been monitored, be

swapped out (via Control Swap-Out IRARMCSO), solely
for !he purpose of 'obtaining addressability to the user's
TCTIOT % timing control table). When the quiesce
started SYSEVENT is received by the SRM, the measure­
ments will be obtained, and quiesce processing will be told
to "turn the user around" (i.e., do not continue with quiesce
processing). See SYSEVENT Processor M.D., SYSEVENT
QSCEST.

3 See I/O load balancing user I/O monitoring M.O.

4 The I/O swap recommendation value for a user varies
with the extent to which the user makes use of out-of­

balance logical channels and the degree to which the chan­
nels are out of balance. The maximum for this recommenda­
tion value is one-fifth of the largest work load level. The

'c~

Module Label

IRARMILl

IRARMEVT IRARME12

IRARMIOM IRARMILO

IRARMIOM IRARMIL3

I/O resource factor coefficient (RMPTIOC) is factored in IRARMCTL IRARMCVL
to produce the final user swap recommendation value.

.,

$

<
CI.l
N

<=>
~

00
o
.......

VS2.03.807

This blank leaf represents pages 3-56 - 3-57 which were deleted by Supervisor Performance #2.

3-56 tluu 3-57 OS/VS2 System Logic Ubrary Volume 3 (VS2.03.807)

~ .•

/

Section 2: Method of Operation 3-57

~ Diagram 6-16. I/O Load Balancing User I/O Monitoring (IRARMlLO) (part 10(4)
00

~
~
N
til
'<
=-a
b
~.
t:
2'
~
~
~
CD
CN

~
N
b
CN
00
C
-...J -

Input

OUCB

~
ASCB

ASCBASXB

ASXB

ASXBLCTB

LowestTCB

Job Step TCB

TCBTCT

TCTIOTBL

From QSCEST
SYSEVENT (12)
in IRARMEVT Process

1 Obtain and initialize IMCB
if not already available.

2 Access total cumulative EXCP
counts for all devices of all DO
statements by logical channel.

Output

IMCB

r
u

RLCT

RLCTUMWA

fIJ
G

Sl.
8'
=s
N

ac
G

[
~
o
1
~
8'
=s

eN u­
\Q

Diagram 6-16. I/O Load Balancing User I/O Monitoring (IRARMlLO) (part 2 of 4)

Extended Description

I/O load balancing user I/O monitoring maintains detailed
information on logical channel (LCH) utilization for heavy
I/O users. This LCH information is used by other I/O load
balancing functions to influence swapping decisions when
heavy users are using out-of-balance logical channels
(over-utilized or under-utilized).

This monitoring is done at the time of the quiesce-started
SYSEVENT (SYSEVENT 12). At this time, the I/O Timing
Control Table (TCTIOT), which contains monitoring
source data, is addressable. Entry through the quiesce­
started SYSEVENT may be forced for a user who has not
been monitored recently (see I/O Management (lRARMIOM)
M.O.).

1 If I/O load balancing is active and the user does not
have an IMCB, obtain an IMCB if the user's total I/O

request rate is high enough (that is, higher than ICCMNIOR).

2 Access TCTIOT, looking at all user data set
declarations, and access all devices allocated to each

data set. Through the UCB, associate the device to a logical
channel, and sum the user's EXCPs by logical channel using
RLCTUMWA as a working variable for the summation.

Module Label

IRARMIOM IRARMILO

'~~_7

~ Diagram 6-16. I/O Load Balancing User I/O Monitoring (IRARMILO) (part 3 of 4)
c

o en

~
N
en
~
~
~

«2
n'
~

J
< Q

e­a
(II

1M

'< en
N

~

i
~
1M

~

OUCB ~
~i " OUCBIMCB) 3 Create or update user lCH usage

v
entry for each logical channel

(Mca
on which user has made requests,

RLCT

I RLCTUMWA I Return to SYSEVENT (12)
QSCEST in IRARMEVT

" b
j,

IMCB

....
IMCBlBGN

IMCBlEND

IMCBSlCB

;~
~;

~! I MCBlCTX

} LCH
IMCBlCUR usage

entries
IMCBBlCC

OUXB

OUXBITD

OUXBllS

r.n
~

a
5'
= N

s::
~

[
o
o

't:I
~
a
5'
=
w
0.,

.. f

Diagram 6-16. I/O Load Balancing User I/O Monitoring (IRARMlLO) (part 4 of 4)

Extended Description

3 Step through all logical channels (RLCT entries),
and determine if the user has been monitored for LCH

utilization. That is, determine if an LCH usage entry is
established in the IMCB. Update various utilization fields.
If an IMCB lCH usage entry is not established, make room
for an entry by relocating other lCH usage entries so that
entries are kept in RlCT order. Various IMCB fields are
initialized for the new entry.

Fields updated or created in the LCH usage entries are:

• IMCBBlCC - previous cumulative number of EXCP
requests made on the channel

• IMCBlCTX - pointer to corresponding RlCT entry

• IMCBlCUR - logical channel usage rate

Fields updated in the OUXB are:

• OUXBITD - I/O load balancing base time

• OUXBI lS - I/O service base count

Additionally, the IMCBSlCB field is maintained as a
summary flag field that indicates all logical channels on
which this user is a heavy user.

Module Label

IRARMIOM

"';~

IRARMIOM Module Entry Point
Summary
IRARMILO - I/O Load Balancing User I/O

Monitoring.
Compute I/O Usage Profile for all
swapp able problem state users.

IRARMILl - I/O Load Balancing Logical Channel
Utilization Monitoring.
Compute channel utilization values
for I/O load balancing, page
replacement algorithms, and the
device allocation SYSEVENT.

3-61.0 OS/VS2 System Logic Library Volume 3 (VS2.03.807)

VS2.03.807

IRARMIL3 - I/O Load Balancing User Swap
Evaluation.
Compute numerical recommendation
value which reflects desire ability of
swapping a user based on its Logical
Channel utilization.

IRARMIL4 - I/O Load Balancing IMCB Deletion
Routine.
Clean up control blocks used in
monitoring a heavy I/O user at the
end of the user job step.

LCHUSE - Int{(rnal 10M Subroutine.
Compute logical channel utilization,
request rate, and I/O load balancing
recommendation value computation
factor.

~
.1

Section 2: Method of Operation 3-61.1

~ Diagram 6-17. CPU Management (IRARMCPM) (part 1 of 4)
t..a

o
C"Il

"< C"Il
t..a
C"Il
'<
i
9
roe o

'19.
()

t"'" s:
~
-< o
2'
9
~

~

'< til
t..a
<=>
~

00
o
.::!

Input

CCT ASCB

D
~ APG

Values OUXB

D

RMCT ASCB Queue

Execution -
RMCTlNQE Time

~
T

"IN" OUCB "IN"
~Queue Queue

Header

~
-

CCT RMPT

ICCVENQCTI I RMPTERV I

Logical Configuration
Communication Area (one per CPU)

~ LCCAWTIM _

CPU Management
Control Table I CSDA CCT

I I I I

From Algorithm Processor
(lRARMCEL) as a Result
of a Request by Periodic
Entry Point
Scheduling
(lRARMCET) Process .. CPU Management (IRARMCPM)

\1 Recompute dispatching priorities for
y

certain users in the automatic priority
group (APGL Change the position on
the dispatching queue of users whose
priority has changed. ~

'II

Return.

Same as a_
..

2 Monitor users previously given permission
y

to accumulate extra CPU service because,
of their use of a serially reuseable (ENQ)
resource in demand by other users.

.. ") 3 Revoke a user's permission to accumulate

II Y extra CPU service, if he has accumulated
a threshold amount of extra ~ervice.

Return.

Same as ab'" ..
) 4 Compute CPU utilization variables. ."

6

0

. A

Return to
Algorithm Processor
(lRARMCEU

II

Output

OUCB

...
OUCBDP

"

IRARMSRV ..
IRARMI02
Change
Dispatching
Priority

CCT

CCVENQCT
"

OUCB

..
OUCBENQ

"

CCT

CPU Utilization
(CCVUTlLP) ..

"
System Wait
Factor
(CCVRVSWF)

~
t..a
<=>
~

00 o
-...l

rI'.l
(D
t')

g.
= ~

~
(D

:;
8-
o
o

"0
(D

;1 g.
=
w
0-
w

Diagram 6-17. CPU Management (IRARMCPM) (part 2 of 4)

Extended Description

CPU Management consists of a set of routines thaf monitor
the system-wide CPU load. They recommend users for
swapping when the system is under or over-utilized. One
CPU management function is described elsewhere:

• CPU load balancing system profile adjustment is performed
when the SRM receives a QSCECMP SYSEVENT (13); it
is described in the SYSEVENT Processor table.

1 An optional parameter of the period definition in
the IPS has the following format: APG=I where I is

an integer between 0 and 15, this parameter applies only
to those transactions whose beginning dispatching priority
(from the job or step JCLl lies within the APG range
defined in I EASYSxx. It is ignored for those transactions
which lie outside the range. The effect of this parameter
is that the initial dispatching priority (at transaction
start and initiator attach) is set to the I value plus the
lowest APG dispatching priority. If the parameter is not
coded, it defaults to the highest mean time to wait
priority in the APG: 6. If the value I is 6 or less, subsequent
dispatching priorities will be calculated based on the
address space's mean time to wait; that is, the average time
he was in execution before entering the wait state. The
lower his mean time to wait, the higher will be a user's
priority within the APG. This computation is performed
for all APG users in main storage who have executed for
greater than a threshold of time (CCCAPMET) since their
last computation. If the value I is 11 the address space
will enter a rotate group. At a timed interval, SRM will
examine all address spaces in the rotate group. If there
is more than one, SRM will move the first dispatchable
address space in the group to become the last address
space of the group on the dispatching queue.

If the value I is any other valid integer, the dispatching
priority will be unchanged until the APG parameter is
changed on the IPS period specification. Since it is also
possible for a user's dispatching priority to be recalculated
while he is being swapped out (See SYSEVENT
QSCECMP (13) - profile adjustment, in SYSEVENT
Processor table), periodically both "IN" and "OUT" users
are checked to see if their order must be changed on the
dispatching queue. This function re-sets its time of next

Module

IRARMCPM

IRARMCPM

IRARMCPM

Label
(or Segment)

IRARMClO

IRARMAP1

NEWDP

Extended Description

invocation, based upon the percentage of APG users that
had their dispatching priorities changed.

2 A user is given permission to accumulate extra CPU
service when an ENQHOlD SYSEVENT (20) is

received by the SRM, indicating that he holds a resource
in demand by other system users. The mechanism for
giving him this extra service is the prevention of his swap
out by the SRM because of service rate considerations.

3 The Enqueue Residence Value (ERV), an OPT
parameter, specifies the length of the privileged

"spurt" of service for a user for whom an ENQHOLD
SYSEVENT (20) has been issued (see 21. When this
time is exceeded, the user is made eligible for swap-out,
and his OUCB is so flagged. The individual user
evaluation routine is called to assign a current workload
manager recommendation value to this user.

4 The CPU utilization is the average percentage of
time any CPU in the system was not in the wait

state. It is computed by the following formula:

Module

IRARMCPM

IRARMCPM

IRARMWLM

IRARMCPM

r:(sum of wait routines on each CPU) *100]
utilization = 100 -L:

(elapsed time since last entry) *(number of CPUs)

CPU utilization is artifically set to 101% if actual
utilization is 100% and one Or more users have not
been dispatched. This allows the CPU to be considered
over-utilized even if the CPU threshold is 100%. The
system wait factor is calculated for use in determining
the swap recommendation value for a user (see CPU
Management M.D., step 5); it is a multiple of the square
of the difference between a threshold value and the
utilization, with the sign indicating the direction of the
imbalance (over- or under-utilized). If the CPU
utilization falls between the high and low thresholds,
the factor equals zero.

'''"'--'

Label
(or Segment)

IRARMEQ1

IRARMEQ1

IRARMWM3

IRARMCL1

CPUWAIT
CPLRVSWF

<:
rI'.l
~

0
w
00
0
........

eM

~ .a:.

o
CIl

"< CIl
t-J
CIl
'<
i
9
f"'"
Q

'19.
f')

f"'"
&

~
< Q

2'
9
(D

eM

!
~

Diagram 6-17. CPU Management (IRARMCPM) (Part 3 of 4)

during Swap
Analysis

CCT

URARM_

I J

CCVRVSWF r) 5 Compute a value representing the

I J desirability of the swap-in or swap-out
of a user, based on the user's effect on

OUCS
system CPU utilization.

OUCSCRV

r

..,.. Return to User
Evaluation
(lRARMCVL)

OUCS

Recommendation
Value
(OUCSCRV)

Time of
Evaluation
(OUCSTCP)

<
CIl
t-J
b
eM

00
<:)
.....

CIl
(1)
(")

g.
=
~

s::
(1)

;;
8.
o
o
'e
(1) ... a c)"
=
w
0-.
VI

Diagram 6-17. CPU Management (IRARMCPM) (Part 4 of4)

Extended Description

5 The CPU swap recommendation value for a
significant CPU user varies with the degree to which

the CPU load is out of balance. The recommendation
value can not be greater than one-fifth the highest work­
load level. For insignificant CPU users, the
recommendation value is zero.

The time of this evaluation and the swap recommenda­
tion are saved in the OUCS. The user swap evaluation
routine, IRARMCVL, then multiplies the
recommendation value by the CPU resource factor
coefficient (RMPTCPU) to produce the final CPM
swap recommendation value.

Label
Module (or Segment)

IRARMCPM IRARMCL3

I RARMCTL I RARMCVL

~~~ 

< 
CIl 
N o 
W 
00 
c: 
-..J 



IRARMCPM Module Entry Point 
Summary 
IRARMAPl - Automatic Priority Group Reorder 

Processing. 
Recompute dispatching priorities for 
all APG users in main storage. Invoke 
ASCBCHAP for each user whose 
dispatching priority has changed. 

IRARMEQl - ENQ/DEQ Algorithm ENQ Time 
Monitoring. 
Stop giving extra CPU service to users 
with ENQHOLD SYSEVENTs 
outstanding who have already 
received their quaranteed CPU service. 

IRARMCLO - CPU Load Balancing User Swap 
Processing. 
Compute user CPU usage profile at 
QSCECMP SYSEVENT. 

IRARMCLl - CPU Utilization Monitoring. 
Compute CPU utilization variables for 
CPU load balancing and resource 
management algorithms. 

IRARMCL3 - CPU Load Balancing User Swap 
Evaluation. 
Produce a numerical recommendation 
value which reflects the desire ability 
of swapping a user based on its CPU 
utilization. 

3·65.0 OS/VS2 System Logic Library Volume 3 (VS2.03.807) 

VS2.03.807 

CHAP - IRARMCPM Internal Chapping Subroutine. 
Search queue for APG users with 
changed dispatching priorities, put 
them in a list and call ASCBCHAP. 

CPLRVSWF - IRARMCPM Internal Wait Factor 
Computation Subroutine. 
Compute system wait factor for CPU 
load balancing recommendation value 
computation. 

CPUWAIT - IRARMCPM Internal Wait Time and 
CPU Utilization Compute. Subroutine 
Compute accumulated system wait 
time total for all CPUs and compute 
recent CPU utilization. 

CPUTLCK - IRARMCPM Internal CPU Utilization 
Checking Routine. 
Insure that the computed CPU 
utilization percentage falls between 0 
and 100 percent. If 100 percent and 
lowest priority user has not been 
dispatched, set it to 101 percent. 

NEWDP - IRARMCPM Internal APG Computation 
Routine. 
Compute mean time to wait and a 
new dispatching priority for the APG 
user. 



Section 2: Method of Operation 3-65.1 



~ 

'" 0'1 

o 
C"I'J 

"< C"I'J 
~ 

C"I'J 

~ 
:I 
~ 

~. 
(') 

~ 
0: 

~ 
< 
S2. 
c 
:I 
~ 

~ -< 
C"I'J 
~ 

o 
~ 

00 
o ..... -

Diagram 6-18. Resource Monitor Periodic Monitoring (IRARMRM1) (part 1 of 2) 

Input 

MCT 

I MCVSTCRI 

CCT 

I CCVLGUTL 

ASMVT 

ASMIOROR 

ASMIOROC 

DMDT 

DMDTCMPL 

DMDTOUTU 

I 
I 

I 

I 

I-~ 

From Algorithm 
Request (lRARMCEU .. 

I I 

Process 

II. 

') 1 Sample system and domain 
... resource contention 

indicators. 

Return to Algorithm 
Request (lRARMCEU 

Output 

'" ) 
... 

... 
) 

... 

RCT 

RCVUICC 

RCVCPUC 

RCVASMO 

RCVCTMC 

DMDT 

I DMDTRUC 

I 
I tb 

~ 
~ 

o 
~ 

00 o ..... 



~ 
til n 
~. 
N 

a: 
til 

[ 
So 
o 
'C 
~ 
~ 
g' 
CN 

~ 
....a 

~ '- j' 

Diagram 6-18. Resource Monitor Periodic Monitoring (IRARMRMI) (part 2 of 2) 

Extended Description 

1 This routine is invoked at one second intervals and 
accumulates the highest system unreferenced frame 

interval count (MCVSTCRI), the current CPU utilization 
(CCVLGUTL), and the number of un·completed ASM 
requests (ASM requests minus ASM completed requests). 
Additionally the number of ready users (the number of 
users on the IN queue plus the number of users on the 
OUT queue) for each domain is accumulated. 

Module Label 

IRARMRMR IRARMRM1 

,~--; 

<: 
til 
N 

o 
~ 

00 
<:> 
....a 



I.f I Diagram 6-18A. Resource Monitor MPL Adjustment Processing (IRARMRM2) (Part 1 of 2) 
~ , 

00 

~ 
< til 
N 
til 

~ 
S­a 
~ o ce. 
(') 

~ 
s: 
~ 
<: o c a 
(1) 

w 

~ 
til 
N 
(:, 
W 

00 
o 
.:::! 

From Algorithm 
Request (lRARMCEU Process Input .... "- "-:1" 

RCT MCT 

I MCVAVQC I ">1 Compute the system contention 

RCVUICC I 
v 

and average the ready users by 
domain. 

RCVCPUC 

PVT 

RCVASMQ 
PVTNPIN 

RCVCTMC 
PVTNPREC 

DMDT 

I ~ DMDTRUC 
I 

I 
'N , .. ".. 

DMDT .... ) 2 Compute the domain contention. 
" 

DMDTRUA ':;t, 

DMDTMPLT 
~ ~, 

3 Adjust the domain 
DMDTRUA mu Iti programmi ng 

levels (MPLs) 
DMDTWT I - raise the MPL. 

- lower the MPL. 

or 

- equalize the MPL. 

q 

~ 

" 

-'" 

v 

A 

< 
: II 
< 
~ I .. 

v 

Output 
~ ~ 

RCT 
DMDT 

I, ~MDTRUA tn RCVUICA 

RCVCPUA 
Pit: 

RCVAVQC 

RCVAVQP 

RCVASMQA 

RCVPTR 

I t Minimum Contention Domain I 

I t Maximum Contention Domain , 

~. 

DMDT 

I ~ DMDTMPLT 
I 

I I ii 

I ITJ 

<: 
til 
N 
(:, 
W 

00 
o ...... 



en 
('II 

~ o· 
= 
N 

~ 
('II 

;. 
8-
o .... 
o 
~ 
('II 
'"t 
I» 

g' 
t..I 

0.­
~ -

Diagram 6-18A. Resource Monitor MPL Adjustment Processing (IRARMRM2) (Part 2 of 2) 

Extended Description 

This routine is invoked at 30 second intervals and 
processes the data accumulated by IRARMRM1 to 
compute the average unreferenced frame interval count 
(RCVUICA), the number of "AVQ Lows" over the last 
RM2 interval (for tracking only), the average ASM queue 
length (RCVASMQA), the system page fault rate per 
second (RCVPTR), and the average number of ready 
users for each domain (DMDTRUA). IRARMRM2 also 
computes the system-wide logical channel utilization. 
If the average logical channel utilization is above a 
threshold value or if an individual logical channel has 
a high utilization and request rate above threshold values, 
a contention indicator, RCVIOUSE, is set. The above 
system and domain contention factors are used to 
adjust the domain target MPLs as follows: 

2 Each used domain contention index is computed 
by the formula: 

average ready users x weight 

max (current target MPL or one) 

This yields a measure of contention for this domain 
weighted by the user specified importance factor 
(weight) for the domain. 

3 The Resource Monitor will then determine if the 
system MPL should be raised or lowered by 

comparing the system contention indicators against pre­
defined limits. All positive conditions must be met to 
increase and only one condition need be met to force a 
decrease in the MPL. 

UIC* GT 
CPU utilization LT 
PAGE FAULTS LT 
ASMQ LT 
Average logical channel utilization LT 

LIMITS 
INCREASE 

MPL 

95% 
30/sec 
10 requests 
20% 

Module Label 

IRARMRMR IRARMRM2 

LT 
GT 
GT 
GT 
GT 

DECREASE 
MPL 

99% 
40/sec 
20 requests 
20% 

Logical channel utilization LT 30% CT 30% ) and 
Logical channel request rate LT 50 requests GT 50 requests 

*unreferenced internal count 

Extended Description 

• If any domain is unused (average number of ready 
users less than target minus one) that domain's 
MPL is decreased by one if the decrease does not 
drop it below the minimum MPL or one. 

• If the system MPL should be raised, the Resource Monitor 
will pick the domain that has the highest contention 
index and has not yet reached its maximum MPL and 
increase this domain's MPL by one. 

• If the system MPL should be decreased, the Resource 
Monitor will pick the domain with the lowest 
contention index which has not yet reached its minimum 
MPL and decrease this domain's MPL by one. 

• If the system MPL should not be increased or decreased, 
the Resource Monitor will attempt to equalize the 
domain's contention index; such that if the highest 
domain contention index is greater than the lowest, 
the Resource Monitor will increase the MPL for the 
high contention domain and decrease the MPL for the 
lowest contention domain. 

... -_......--7 

Module Label 

< en 
N 

o 
~ 

Oc 
C 
-....J 



IRARMRMR Module Entry Point 

Summary 
IRARMRM 1 - Resource Monitor Periodic 

Monitoring. 
Accumulate several system resource 
contention indicators and the number 
of ready users for each domain at 
periodic sample intervals. 

IRARMRM2 - Resource Monitor MPL Adjustment 
Processing. 
Compute the average system resource 
utilization and determine if the 
system MPL should be raised or 
lowered. 

3-68.2 OS/VS2 System Logic Library Volume 3 (VS2.03.807) 

VS2.03.807 



~, 

Workload Management 
The workload manager is a collection of 
subroutines which perform three main functions: 

• Monitoring the rate at which system resources 
are being provided to individual address 
spaces. 

• Providing swapping recommendations (based 
on installation specifications and resource 
usage) requested by SRM Control 
(IRARMCTL). 

• Collecting data for MF/l workload activity 
reporting. 

Subroutines that support the first two functions 
above are packaged in the workload manager 
module (IRARMWLM), and the data collecting 
subroutines are in the workload activity recording 
module (IRARMWAR). 

Nonswappable address spaces and certain 
privileged system control program functions are not 
under the control of the workload manager. 

In providing swapping recommendations to SRM 
Control, the workload manager affects the relative 
rates at which processing resources are provided to 
active address spaces. By comparing an address 
space's resource usage (service rate) against the 
installation performance specifications, the 
workload manager computes the address space's 
workload level (also called workload manager 
recommendation value) which is used by SRM 
Control as a swapping recommendation. 

The workload activity recording facility 
(IRARMWAR) collects data for MF/l when MF/l 
workload activity reports have been requested. This 
facility is invoked periodically by the workload 
manager and the SYSEVENT processor to collect 
data, that is placed in the workload activity 
measurement table (w AMT). The workload activity 

VS2.03.807 

reports may be analyzed by an installation and 
used to determine the appropriate installation 
performance specification parameters to meet their 
needs. 

(See the MF/l and SRM sections of the OS/VS2 
(MVS) Initialization and Tuning Guide on using 
workload activity reports). 

Several workload management functions are of a 
housekeeping nature, and are triggered by the 
receipt of certain SYSEVENTS. These are described 
in the SYSEVENT Processor M.O., and include: 

• Service calculation routine - invoked by 
SYSEVENTS WKLDINIT(45) and REQSERVC 
(38). 

Module 

IRARMWLM 
IRARMEVT 

Label 

IRARMWMI 
IRARME45, 
E38 

• Workload level calculation - invoked by 
SYSEVENT WKLDCOLL(46). 

Module 

IRARMWLM 
IRARMEVT 

Label 

IRARMWM4 
IRARME46 

• Start new transaction - invoked by 
SYSEVENTS RESETPG(31), TGETTPUT(34) 
and INITATT(10), and module IRARMSET 
after a NEWIPS(32) SYSEVENT is received. 

Module Label 

IRARMWLM IRARMWMN 
IRARMEVT IRARME31, 

E34,ElO 
IRARMSET 
IRARMEVT IRARME32 
• Swap status change request - invoked by 

SYSEVENTs DONTSW AP( 41) and 
OKSWAP(42). 

Module 

IRARMWLM 
IRARMEVT 

Label 

IRARMWMK 
IRARME41, 
E42 

• Stop old transaction - invoked by SYSEVENTS 
JOBTERM(9), INITDET(1l) and 
JOBSELECT(8). 

Module 

IRARMWLM 
Label 

IRARMWMO 
IRARMEVT IRARME09, 

Ell,E8 
• Restore completed processing - invoked by 

SYSEVENTs RSTORCMP(19) and INITATT(10). 

Module 

IRARMWLM 
Label 

IRARMWMR 

Section 2: Method of Operation 3-69 



IRARMEVT IRARMEI9, 
EIO 

• Quiescecompleted processing - invoked by 
SYSEVENT QSCECMP(13). 

Module 

IRARMWLM 
Label 

IRARMWMQ 
IRARMEVT IRARME 13 

The following workload manager M.O.s describe 
3 major functions performed by the IRARMWLM 
module: 

• Swappable user evaluation. 
• Scanning the IN queue and OUT queue, 

evaluating each non-privileged, swappable 
user, and assigning a current workload level. 

• Individual user evaluation - evaluating a (one) 
non-privileged, swappable user, and assigning 
a current workload level. 

3-69.0 OS/VS2 System Logic Library Volume 3 (VS2.03.807) 

VS2.03.807 

• User ready processing - initializing user 
control blocks and repositioning the user from 
the WAIT queue to the OUT queue so the user 
is eligible for swap-in. 

The following workload activity recording M.O.s 
describe 2 major functions performed by the 
IRARMW AR module: 

• W AMT initialization 
• updating the workload activity 

measurement table (w AMT) with 
information from the workload' manager 
specification table (WMST). 

• W AMT reinitialization 
• copying the W AMT data to a temporary 

buffer and then updating service values and 
workload levels. 



Section 2: Method of Operation 3-69.1 



~ I Diagram 6-19. Swappable User Evaluation (IRARMWM2) (part I of 4) 
c 

o 
CIl 

~ 
CIl 
N 
CIl 
'< 
=-a 
r-
~. 

C": 

r-

i 
< 
2-c 
:3 
(II 

CoN 

< CIl 
N 
Q 
CoN 

00 
C 
-..I -

From Algorithm 
Routine (lRARMCRT) Process Input .. RMCT 

OUCB 
"IN" 

? "IN" "'t-:::.. Queue 
RMCTINQE Queue 

n Header to. 
1 ) Pick user from queue for 

RMCTOTQE 
--v evaluation. 

~ OUCB 
"OUT", "OUT" 
Queue r-:.. Queue 
Header n I 

Workload Manager ... 
Specification T able ~..:::- B ) 2 Obtain user service ... 

(IRARMWM1). 
" WMST 

OUCB 

I I OUXB 
OUCBPSS 

OUXBPSS 

ASCB 
OUXBMSS 
OUXBIOS 

ASCBEJST 
ASCBIOSM 

Performance 
WPGD 

Group """-- WPGLDUR 
Descriptor "- .. 

" WPGPAPGV 3 Check for Performance 

" " WPGPDMN Group Period change 

" OUCB 
(IRARMWM5). 

OUXB 
OUCBWMS I I OUCBTMP OUXBPRS 

OUCBDMN 
OUCBAPG 

I. 

Output 

.. 
) 

.. 
r1 

OUCB 

OUCBWMS 
OUCBIOC 
OUCBMSO 
OUCBCPU 

OUXB 

I OUXBPRS 

OUCB 

OUCBPGP 
OUCBDMN 
OUCBDMO 
OUCBNDP 
OUCBTMP 

I 

< 
CIl 
N 
Q 
CoN 
00 
C 
-..I 



til g 
g. 
= t.J 

== ~ :;. 
&. 
o .... 
o 
"0 

l 
= 
w 
~ 

~~ 

Diagram 6-19. Swappable User Evaluation (IRARMWM2) (Part 2 of 4) 

Extended Description 

The WM2 routine is invoked by I RARMCET 
approximately every second to evaluate all users that 
have not been evaluated during the past second and 
whose period duration is specified in real time. If no 
periods have real time specified anywhere in the IPS, 
IRARMWM2 will not be invoked. This ensures that 
users with period durations specified in real time 
units are evaluated for period change even though 
they may be in an inactive domain. 

1 Both the IN and OUT queues are scanned, 
evaluating non-privileged swappable users. 

2 WM1 is invoked to calculate the service 
accumulated during the "in real storage 

interval" for users currently in storage. 

3 Depending on the units code in the IPS (service 
units or time units), the transaction's accumulated 

service or time units are checked to determine whether 
a period has ended. If a period has ended, the current 
period indication is updated. If workload reporting is 
also active, IRARMWR4 is invoked to communicate 
the period change. If in switching periods, the user 
also changes domains, he will be repositioned at the 
end of the appropriate queue. The user dispatching 
priority is also updated, if applicable. 

Module Label 

IRARMWLM IRARMWM2 

IRARMWLM IRARMWM1 

IRARMWLM IRARMWM5 

I RARMWAR I RARMWR4 

IRARMCTL IRARMRPS 

< 
til 
t.J 
o 
W 

00 
<:> 
-....J 



~ I Diagram 6-19. Swappable User Evaluation (IRARMWM2) (Part 3 of 4) 
N 

~ 
~ 
N 
fIl 

I 
i=: 
~. 
r-

f 
~ 
a 
CD 
~ 

~ 
N 
Q 
~ 

00 

~ 

Input 

Performance 
Group 
Descriptor 

OUCB 

OUCBWMS 
OUCBTMW 

WPGD 

WPGLlSV 

Performance 
Objective 

Process 

,.~------~.r~J 
4 Determine the workload 

level at which this user is 
receiving service 
(lRARMWM7L 

5 Obtain the next user for 
evaluation. 

Go to 
Step 1 

Return to Algorithm 
Routine (lRARMCRT) 

Output 

OUCBWMR 
OUCBTMA 

<: 
fIl 
N 
Q 
~ 

00 
S 



rI'.l 
~ 
t':l 

g. 
::s 
N 

a:: 
~ 

~ 
8-
o -. 
o 
"d 
~ ... 
~ 
g' 
IN 
..!J 
IN 

~ '-~# 

Diagram 6-19. Swappable User Evaluation (IRARMWM2) (Part 4 of 4) 

Extended Description 

4 The workload level is a means of comparing users 
to other users in the same domain. If a user has 

not yet received enough service to be controlled by the 
workload manager (that is, his service is less than his 
interval service value-ISV) or if the user is between job 
steps, a workload level corresponding to a zero service 
rate is returned. In calculating his recent service rate, 
a user's accumulated service is reset to zero when he is 
swapped-in; his accumulated time is reset to zero when 
he is swapped-out. 

5 Processing continues until all users on the IN and 
OUT queues are evaluated. 

Module Label 

IRARMWLM IRARMWM7 

<: 
rI'.l 
N 
(:, 
IN 
00 
S 



.!.f Diagram 6-20. Individual User Evaluation (IRARMWM3) (part 1 of 2) 

...... 
IN 
Q 

~ 
~ 
t-J 
t:I:l 

~ 
S­a 
S 
~. 
t"'" ;: 

~ 
-< 
~ 
a 
~ 

IN 

~ 
t-J 
Q 
IN 
00 o ...... -

Input .. 
Workload 

Manager EJ 
Specification WMST 
Table 

OUXB 

OUXBPSS 

OUXBMSS 

OUXBIOS 

Performance 
Group Description 

WPGD 

WPGLDUR 
WPGPAPGV 
WPGPDMN 

Performance 
Group Description 

WPGD 

U 

From User 
Evaluation (IRARMCVL) 

... Process 

OUCB 
, I 

I OUCBPSS 

ASCS ; i > 1 Obtain User Service 
(lRARMWM1). 

ASCBEJST 

ASCBIOSM 

OUCB 

OUCBWMS 
OUCBTMP 
OUCBDMN 
OUCBAPG 

OUXB 

OUXBPRS 

OUCB 

OUCBWMS 
OUCBTMW 

Performance 
Objective 

" ..... _ .} 2 Check for Performance Group 
Period change (lRARMWM5). 

: : >3 Determine the workload level at 
which this user is receiving service 
(lRARMWM7). 

Return to User 
Evaluation (lRARMCVL) 

Output 

" ... 

'" ) 
" 

'" ) 
" 

OUCB 

OUCBCPU 
OUCBIOC 
OUCBMSO 
OUCBWMS 

OUXB 

(-OUXBPRS 

OUCB 

OUCBPGP 
OUCBDMN 
OUCBDMO 
OUCBNDP 
OUCBTMP 

OUCB 

OUCBWMR 
OUCBTMA 

-< t:I:l 
t-J 

<=> IN 
00 
~ 



r/} 
(11 
(") 

g' 
~ 

i: 
~ 
8-
Q .... 
o 

"C 

S 
go 
::I 

~ 

~ 
~ -

'IIE'-.3I"'" 

Diagram 6-20. Individual User Evaluation (IRARMWM3) (part 2 of 2) 

Extended Description 

The IRARMWM3 routine is invoked by the user evaluation 
routine (lRARMCVL) during analysis of users in a 
particular domain. The major output of the routine is 
the workload level (recommendation value) of the user 
being evaluated. Non-swappable and privileged users 
are not evaluated. 

1 WM1 is invoked to calculate the service 
accumulated during the "in real storage interval" 

for users currently in storage. 

2 Depending on the units code in the IPS (service 
units or time units), the transaction's 

accumulated service or time units is checked to 
determine whether a period has ended. If a period has 
ended, the current period indication is updated. If 
workload reporting is also active, IRARMWR4 is 
invoked to communicate the period change. If in 
switching periods, the user also changes domains, he 
will be repositioned at the end of the appropriate 
queue. The user dispatching priority is also updated, 
if applicable. 

3 The workload level is a means of comparing 
users to other users in the same domain. If a 

user has not yet received enough service to be 
controlled by the workload manager (that is, his 
service is less than his interval service value-ISV) 
or if the user is between job steps, a workload level 
corresponding to a zero service rate is returned. 
In calculating his recent service rate, a user's 
accumulated service is reset to zero when he is 
swapped-in; his accumulated time is reset to zero 
when he is swapped-out. 

Module Label 

IRARMWLM IRARMWM1 

IRARMWLM IRARMWM5 

IRARMWAR IRARMWR4 

IRARMCTL IRARMPRS 

IRARMWLM IRARMWM7 

~ 
N 
(:, 
~ 

00 
S 



~ I Diagram 6-21. User Ready Processing (IRARMHIT) (part 1 of 2) .... 
~ 

N 

o 
~ 

~ 
~ 

~ 

I 
b 

«19. 
n 
t'"" 

J 
~ c a 
(D 

~ 

'< rI) 
~ 

<:> 
~ 

00 
§ 

Input 

From Control Routing Routine 
(lRARMCRT, IRARMC~Nt or IRARMCRY) 

Performance WPGD 
.. 

Group 
WPGLDUR Descriptor 
WPGPAPGV 
WPGPDMN 

OUCB 

OUXB 
OUCBWMS 

I I OUCBTMP OUXBPRS 
OUCBDMN 
OUCBAPG 

OUCB 

OUCBPVL 
OUCBENQ 
OUCBINC 
OUCBATR 
OUCBTRM 
OUCBCIM 
OUCBINC 

RMCT 

RMCffl? 

"Wait" 

) Queue 
Header 

~ Ready User 
OUCB on 
"Wait" Queue 

l 

Process 
"" 

... 
) 1 Check for Performance Group 

v Period change (I RARMWMS). 

... 

.? . 2 Reset Transaction Indicators. 

" !; 

... 
v'> 3 Make user eligible for swap-in. 

4 Request SRM Analysis to 
Expedite Swap-In (IRARMCAP). 

Return to Control Routine 
(lRARMCRT,IRARMCRN, 
or IRARMCRY) 

Output 

-

OUXB 

1 I OUXBPRS 

"- OUCB 

v 
OUCBPGP 

1 OUCBDMN 
OUCBDMO 
OUCBNDP 
OUCBTMP 

OUCB 

.... OUCBOFF 
) OUCBSTR 

--y 

OUCBNTR 
OUCBPGP 
OUCBDMN 
OUCBDMO 
OUCBTMP 
OUCBTMS 
OUCBTMW 
OUCBWMR 
OUCBTMA 

.. RMCT 
-y I RMCTOUTQ 

~ Ready User 
OUCB'on 
"OUT" Queue 

ta;i W 'TIi£tUi,_k1[0;W!fitJIIttili. ~ 

I 

"OUT" D Queue 
Header 

~ 
N 
<:> 
~ 

00 
o 
-.J 



~ ... ""'----:-" 

Diagram 6-21. User Ready Processing (IRARMHIT) (part 2 of 2) 

Extended Description 

IRARMHIT is requested by IRARMEVT when it receives 
a user ready SYSEVENT(4) from the dispatcher. The 
major function of this routine is to make users eligible 
for swap-in by repositioning them from the WAIT, 
queue to the OUT queue. 

1 Depending on the units code in the IPS (service 
units or time units), the transaction's accumulated 

service or time units are checked to determine whether 
a period has ended. If a period has ended, the current 
period indication is updated. If workload reporting is 
also active, IRARMWR4 is invoked to communicate 
the period change. If in SWitching periods, the user 
also changes domains, he will be repositioned at the 
end of the appropriate queue. The user dispatching 
priority is also updated, if applicable. 

2 The transaction indicators are reset based on the 
type of user and the user's transaction status 

when swapped-out. That is: 

a) OUCBs for users between job steps remain 
effectively unchanged. 

b) OUCBs for Terminal wait users are updated to 
reflect transaction. I ndicators are set to the first 
period characteristics. 

A workload level is assigned which is equal to the 
first period objective "zero point". 

cl OUCBs for users which have suspended transactions 
~ (may be due to issuing "long wait") are updated so 
a that they look as if the swap-out had just ended. 
'0' 
= 
~ 

a= 
~ 

So 
8-
o .... 
o 
"d 

i. 
= 
~ 

.!.. 
~ 

W 

3 The "ready" user OUCB is repositioned from the 
WAIT queue to the end of the OUT queue. 

4 The SRM analysis function is requested in order 
to have the user swapped in as soon as possible. 

Module Label 

IRARMWLM IRARMWM5 

IRARMWAR IRARMWR4 

IRARMCTL IRARMRPS 

IRARMWLM IRARMWM4 

IRARMCTL IRARMRPS 

IRARMCTL IRARMCAP 

,~ 

<: 
c;f.J 
N o 
~ 

00 
o 
-...J 



lRARMWLM Module Entry Point 
Summary 
IRARMWM 1 - Workload Manager Service 

Calculator Routine. 
The IRARMWM 1 routine calculates the 
amount of service provided to an user 
since the beginning of the current 
workload manager reasurement 
interval for that user. Service is 
calculated using the following 
equation: 

Service = (MP)/K)+(CT)/K)+EI WHERE: 

T = The job step time elapsed in the current 
interval. 

K = The time required to execute 10,000 
instructions. (Dependent on the CPU Model) 

M = The MSO service coefficient scaled by 1/50. 
P = The number of Page-Seconds used by the 

user. 
C = The CPU service coefficient. 
E = The EXCP count for this interval. 

= The I/O service coefficient. 
This routine calculates each of the three service 

factors and the total service for the user for the 
interval. 
IRARMWM2 - Swappable User Evaluation Routine. 

The IRARMWM2 routine scans the 
in-storage queue and the 
out-of-storage-but-ready queue, and 
evaluates each swapp able user 
assigning each his current workload 
level. 

IRARMWM3 - Individual User Evaluation Routine. 
The IRARMWM3 routine evaluates 
swappable users on the IN and OUT 

queue, assigning each a current 
workload level. 

IRARMWM4 - Workload Manager Workload Level 
Calculator Subroutine. 
The IRARMWM4 routine accepts a 
service rate and a performance 
objective, and calculates the 
corresponding workload level. 

IRARMWM5 - Workload Manager Update 
Performance Group Period 
Subroutine. 
The IRARMWM5 subroutine tests 
whether an user has accumulated 
enough service/time to be assigned to 
a new performance group period. If 
so, IRARMWM5 adjusts the pointers 
which indicate the performance group 
period, performance objective and 

3-1l.4 OS/VS2 System Logic Library Volume 3 (VS2.03.807) 

VS2.03.807 

domain applicable to the transaction 
current for the user. Note that the 
frequency (resolution) at which the 
test for period end is made depends 
on how often IRARMWM5 is called for 
any given user. 

IRARMWM7 - WLM Recommendation Calculation 
Routine. 
The IRARMWM7 routine calculates a 
workload manager recommendation 
value for a user based on the service 
which was received and on the 
performance objective currently 
associated with the user. Users which 
have not yet received an amount of 
service equal to their interval service 
value (Isv) specification while in core 
are given a recommendation value 
boost. The boost gives preferential 
treatment to users in their ISV as 
compared to users not in their ISV 

and users between job steps. 
IRARMHIT - Workload manager User Ready SYSEVENT 

Swap-In Scheduling Routine. 
The IRARMHIT routine receives 
control as the result of a decision to 
apply swapin processing to a now 
ready user. It repositions the now 
ready user from the WAIT queue to 
the OUT queue. 

IRARMWMI - Workload Manager In Storage 
Interval Change Subroutine. 
The IRARMWMI subroutine updates 
the transaction accumulators with the 
service and the time received by the 
user during the preceding in-storage 
interval. 

IRARMWMJ - Routine To Determine The Scope of 
Applicability of Analysis Processing 
to a User. 
The IRARMWMJ routine examines the 
current swap status and the 
performance specification for a user. 
It indicates if the resource manager 
algorithms are applicable to this user. 

IRARMWMK - WLM Dontswap/Okswap User 
Analysis Routine. 
The IRARMWMK routine calculates 
the current service and ensures that 
the user is in the correct performance 
group period. Applicable algorithm 
indicators are set based on the new 
swap status of the user. 



IRARMWMO - Workload Manager Transaction Start 
Routine. 
The IRARMWMN routine receives 
control as the result of a SYSEVENT 

that has been defined by the 
workload manager to signify that a 
new transaction should be started for 
that user. If the user is not in storage, 
a flag is set to cause the IRARMWMN 

routine to be reentered during the 
swap-in of the user. Otherwise, any 
existing transaction is stopped by 
calling IRARMWMO, and the user 
transaction fields are reset to reflect 
the new transaction being started. 

IRARMWMO - Workload Manager Transaction Stop 
Routine. 
The IRARMWMO routine receives 
control as the result of a SYSEVENT 

that has been specified by the 
workload manager as defining the end 
of any current user transaction. If a 
new transaction is to be created for 
the user, IRARMWMO indicates the 
end of the current transaction. If the 
next user event is not known, 
IRARMWMO leaves the transaction 
accumulated values for later 
resumption of the transaction. In any 
case, IRARMWMO causes the 

VS2.03.807 

preceding time and service to be 
properly recorded for the current 
transaction. 

IRARMWMQ - Workload Manager Quiesce 
Completed SYSEVENT Processing 
Routine. 
The IRARMWMQ routine receives 
control when a user has stopped 
executing, and is being swapped out, 
so that the workload manager may 
record the service given that user 
while he was in storage. The 
workload manager determines if a 
user event caused the swap-out, and 
flags the user to indicate whether 
such previous service is to be 
considered when the user is next 
swapped-in. 

IRARMWMR - Workload Manager Restore 
Completed SYSEVENT Processing 
Routine. 
The IRARMWMR routine receives 
control when a user has been 
swapped in, and is ready to begin 
executing, so that the workload 
manager can set up the fields used to 
calculate the service rate received by 
the user during the forthcoming 
in-storage residency period. 

Section 2: Method of Operation 3-73.5 



~ I Diagram 6-22. Initialize for MF /1 (IRARMWRI) (Part 1 of 2) 
...... 
~ 

~ 

o 
CI.l 

"< CI.l 
N 
CI.l 
'< 
~ 

.3 
r-
«§. 
(') 

r­a: 
~ 
<:: a 
= 3 
(D 

~ 

'< 
CI.l 
N o 
~ 

00 
o 
~ 

Input 

Register 6 

WAMT 

Workload 
Manager 
Specification 
Table 

From SYSEVENT Processor 
(lRARMEVT) (SYSEVENT 45) 

WMST 

Process 

I nitialize The WAMT 
(lRARMWR1) 

.. ) 1 Update header. .. 

JI. 2 Build index structure and 
" initialize buffer 

(call IRARMWR2). 

3 Update period service values 
(call IRARMWM1). 

Output 

Register 6 

WAMT 
J.. 

" Header 

Index 

r.. ~;: Table 

.. 

WAMPDMN 

" WAMPOBJ 
) 

" WAMPSRV 

WAMPDMN 
J-. WAMPOBJ 
" WAMPSRV 

• 

t • 
• 

Register 15 
.... 
)I Return Code 

.. I 

:;: 

-., 

r. 

Performante 
Group Period 
Entries 
(WAMPs) 

<:: 
CI.l 
~ 

o 
~ 

00 
o ...... 



'" ~ (') 

S· 
= 
N 

s: 
~ 

~ 
8-
o 
~ 

o 
"0 
~ ... 
~ o· 
= 
I.IJ 

~ 
I.IJ 

~ 

'- -> 

Diagram 6-22. Initialize for MF/I (IRARMWRI) (Part 2 of 2) 

Extended Description 

IRARMWR1 constructs and initializes the workload 
activity measurement table (WAMT) in the buffer 
(Storage from SQA) obtained by MF/1 anq input 
with Sysevent 45. 

1 

2 The index is used to locate the period entries in 
WAMT which correspond to a particular 

performance group. The period entries are updated 
with their respective domain and performance 
objective numbers. All other period entry values are 
zeroed. 

3 Service values in the period entries are initialized 
such that service already received by active user 

transactions will not be included in the MF/1 interval 
service totals. 

R~turn Codes in Register 15 byte 3 

X'OO' - Data area accepted and initialized. 

X'08' - Length of data area incorrect. 

Module Label 

IRARMWAR IRARMWR1 

IRARMWAR IRARMWR2 

':~ 

<: 
'" N 

o 
I.IJ 

00 
o 
-...J 



tN 
..!..a 
tN 
00 

~ 
"< C"Il 
~ 

C"Il 
'< go, 

S­a 
r­o 
~. 
r-

J 
< o 
2' a 
(D 

tN 

'< 
C"Il 
~ 

S 
00 o 
~ 

Diagram 6-23. Collect Data for MF/l (IRARMWR3) (part 1 of 2) 

Froin SYSEVENT Processor IRARMEVT 
p 

Register 6 .. Collect Data Recorded In 

l I WAMT (lRARMWR3) 
, 

") 1 

\.WAMT 

Copy WAMT to provide area. ... 

RRPAINP 

I I 

\ ... 
Buffer ) 2 Reinitialize the WAMT 

.. (call IRARMWR2L Area 

... 
) 3 Update period service values I' (call IRARMWM1). 

A 4 Calculate the workload level 
v 

for each period 
(call I RARMWR5)_ 

o 
RRPAINP 

I Cl--Buffer Are. 

I >1 
Register 6 

l ~. J WAMT 

~ Header 
~ 
II.J 

<=> tN 
00 

Index 
'"f.; :~ ~ Table 

S 

... WAMPSRV 
) 

Performance ... WAMPSRV 
Group 

") ;~ • >- Period 
~ • Entries v • (WAMPs) 

WAMPSRV , ... 

l RRPf-IND J Buffer Area 

~ 
v 

... SRV+ WLL 
) 

v SRV+WLL 
> Period 

-c f Entries 

[SRV+WLL J 

Register 15 

")I Return Code J II' 



tI.) 
(D 
n 

g 
~ 

~ 
(D 

[ 
o 
"'" o 

.~ 

i 
~ ..... 
c..J 
\0 

~7 
_7 

Diagram 6-23. Collect Data for ~F/1 (IRARMWR3) (Part 2 of 2) 

Extended Description 

IRARMWR3 copies the contents of the WAMT into a 
collection buffer. The buffer is obtained by MF/1 
from LSQA and is fixed in core. 

1 The WAMT is copied into the buffer. 

2 If a set to new IPS occurred, workload collection 
was terminated and the WAMT was updated 

to reflect the statistics at that point in time. I f the 
IPS has not been changed, the WAMT is updated for 
a new collection interval. 

3 Both the WAMT and the collection buffer are 
updated to reflect the actual service (SRV) 

received within each resp. interval. 

4 The Workload Levels (WLL) are updated in the 
collection buffer for MF/1. 

Return codes in Register 15 byte 3 

X'OO' - Successful Data collection 

X'04' - Successful Data collection, but an IPS 
change occurred terminating workload 
collection 

X'40' - Data collection not active, or data buffer 
non-existent or copy buffer incorrect size. 

Module Label 

IRARMWAR IRARMWR3 

IRARMWAR IRARMWR2 

IRARMWLM IRARMWM1 

<: 
tI.) 
~ 

o 
c..J 
00 
o ..... 



IRARMWAR Module Entry Point 
Summary 
IRARMWR 1 - Workload Activity Recording 

Initialization Subroutine. 
Constructs and initializes the 
Workload Activity Measurement 
Table (w AMT) in the buffer (storage 
from SQA obtained by MF/l and 
input with SYSEVENT 45). 

IRARMWR2 - Workload Activity Recording WAMT 

Initialization Subroutine. 
Builds the W AMT in a format suitable 
for updating by the SRM. 

IRARMWR3 - SRM Workload Activity Recording 
Data Collection Subroutine. 
Moves the contents of the W AMT 

into a collection buffer capable of 
containing the data. Note: The buffer" 
is obtained by MF/l from LSQA, 

storage key 0, and must be fixed in 
storage. 
If the IPS has not been changed, then 
add to the collected data the 
transaction data for the current 
in-storage interval for each in-storage 
memory with an active transaction 
re-initialize the data collection buffer 
for the next collection interval, and 
calculate the workload level for each 
performance group period that 
contains transaction data. 

IRARMWR4 - SRM Workload Activity Recording 
Transaction Data Update Subroutine. 
Adds the service and transaction 
active time to the appropriate W AMT 

performance group period 
accumulator in the data collection 
buffer. 

3-73.10 OS/VS2 System Logic Library Volume 3 (VS2.03.807) 

VS2.03.807 

IRARMWR5 - SRM Workload Activity Recording 
Workload Level Calculation 
Subroutine. 
Calculates the workload level for 
each W AMT performance group 
period entry in which transaction data 
has been accumulated during the last 
data collection interval. 
Note: For those W AMT entries in 
which the service rate calculated can 
be associated with multiple workload 
levels or is zero even though at least 
one transaction has been active 
during the data collection interval, the 
negative value of the workload level 
will be calculated to indicate to MF / I 

an estimated value. 
IRARMWR6 - SRM Workload Activity Recording 

Transaction End Update Subroutine. 
Adds to the appropriate W AMT 

performance group period 
accumulator the transaction elapsed 
time and counts the number of 
transactions that terminated during 
the current data collection interval. 

IRARMWR7 - SRM Workload Activity Recording 
W AMT Entry Determination 
Subroutine. 
Obtains addressability to the W AMT 

performance group period entry in 
which to accumulate user transaction 
information. 

IRARMWR8 - SRM Workload Activity Recording. 
Terminates workload activity data 
collection whenever an IPS change 
occurs. 



~\ 
I 

" 

Section 2: Method of Operation 3-73.11 



3-74 OS/VS2 System Logic Library Volume 3 (VS2.03.807) 



t, 
I 

il.
1 

System Activities Measurement Facility (MF /1) 

System Activities Measurement Facility (MF /1) 
collects information about system activity in order 
to produce System Management Facilities (SMF) 
data records or printed reports or both. MF /1 can 
monitor the following five classes of system 
activity: 

1. CPU 
2. Paging 
3. Workload 
4. Channel 
5. Input/Output Device 

MF /1 information collection can be initiated by 
the issuing of a START command and can be 
terminated either by the expiration of a specified 
collection period or by an operator STOP command. 
MF /1 is always generated with the system, but its 
execution is completely optional. When it is not 
operating, it causes little or no performance or 
storage overhead. When it is executing, storage and 
performance overhead depends on the set of 
control options under which it is running. 

Options are available to specify the reporting of 
any of the five classes of system activity. In 
addition, the time interval for gathering and 
reporting measurements is an option. Channel and 
device data are sampled more frequently than once 
per measurement gathering interval, and the 
frequency of this sampling rate is an input option. 
Printed reports and/or SMF records can be 
obtained once per gathering interval or at the end 
of the period of MF /1 operation. 

MF/l has three major components: 
1. Measurement Facility Control (MFC), which 

controls the collection, recording, and 
reporting of system activity measurements, in 
compliance with specified options. 

2. System Activity Measurement Gathering 
(SAMG), which obtains measurements of 
system activity, by collecting data at timer 
interruptions and. remote-pending IPC 
(interprocessor communication) interruptions, 
and which records measurements on the SMF 
data set. 

3. System Activity Report Generation (SARG), 
which produces formatted, printed reports 
from system activity measurements. 

Figure 3-11 in the Program Organization section 
illustrates the flow of control among the major 
components and main modules of MF /1. 

The operator's START command causes MFC 
Mainline, the system task controlling MF /1 
execution, to receive control. MFC Mainline 
establishes the operating parameters for MF /1 
execution from specified options and loads the MG 
(measurement gathering) routines required by these 
parameters; it then enables the routing of control 
to these routines. 

MFC Mainline passes control to interval-driven 
MG routines to gather measurements at a 
parameter-specified time interval. These routines 
move collected data into SMF-record-formatted 
areas and optionally record the data on the SMF 
data set. 

System components outside MF /1 maintain data 
that is obtained by SAMG at measurement 
gathering intervals. These include: 

1. System Measurement Facility (SMF), which 
maintains CPU wait time. 

2. Real Storage Management (RSM), which 
maintains VIO paging statistics. 

3. Auxiliary Storage Manager (ASM), which 
maintains auxiliary page statistics. 

4. System Resources Manager (SRM), which 
maintains workload activity data. 

5. Input/Output Supervisor (Ios), which 
maintains I/O activity statistics. 

The SARG function is given control at reporting 
intervals to produce summary reports of the 
measurements obtained by SAMG and routed to it 
by MFC. These reports are routed to a SYSOUT 
data set, which is made available for printing at a 
parameter-specified time (either immediately or 
after MF /1 termination). 

MFC allows the operator to use the STOP 
command to terminate MF /1, overriding any 
parameter-specified duration of execution. 
Otherwise, MFC terminates measurement gathering, 
recording, and reporting at the end of the specified 
duration. 

Operational Considerations 
MF /1 operation is controlled by input parameters. 
These parameters are obtained from four sources 
during MF /1 initialization: 

1. START command PARM field. 
2. EXEC statement PARM field (MF /1 cataloged 

procedure) . 
3. Partitioned data set number (the partitioned 

data set is specified in the cataloged 

• 

Section 2: Method of Operation 3-75 



procedure - normally it will be 
SYS1.PARMLIB); the member name is of the 
form IRBMF1nn, where nn is an input 
parameter. 

4. Program default values. 

The parameters can be grouped into three 
classes: 

1. Parameters affecting the initial parameter 
merge. 

2. Parameters causing the loading of MG 
(measurement gathering) routines. 

3. Parameters affecting the mechanics of MF/1 
operation. 

Class 1 consists of the following merge control 
keywords: 

MEMBER (nn) - the value to be appended to 
IRBMFl to name the member of the partitioned 
data set from which parameters are to be obtained 
during the input merge. (The default is 00, 
indicating member IRBMF100. 

OPTIONS/NOOPTIONS - specifies whether or not 
the results of the input merge will be printed on 
the operator's console, to permit changes to be 
made. The default value is OPTIONS. 

Class 2 consists of the following measurement 
gathering keywords. (Program default values are 
underlined. ) 

CPU/NOCPU 
PAGING/NOPAGING 
CHAN/NOCHAN 
WKLD(PERIOD/GROUP/SYSTEM)/NOWKLD 
DEVICE (devicereportlist)/NODEVICE 
where the device report list may consist of the 
following elements: 
UNITR/NOUNITR 
TAPE/NOTAPE 
DASD/NODASD 
COMM/NOCOMM 
GRAPH/NOGRAPH 
CHRDR/NOCHRDR 
Specification of the first of any of the above sets 

of two measurement gathering keywords (CPu, 
PAGING, and so on.) causes the loading, during 
MF /1 initialization, of the interval MG routine 
associated with the keyword, so that reports 
and/ or record copies are produced for that 
measurement type. If the second of any of the 
above sets of two is chosen (NOCPU, NOPAGING, 
and so on.), then no MG routines are loaded for 
this measurement type, and little or no 
performance or storage overhead is caused by these 
routines. 

3-76 OS!VS2 System Logic Library Volume 3 (VS2 Release 3.7) 

Class 3 consists of the remaining MF /1 
keywords: (Program default values are underlined.) 

REPORT (REALTIME/DEFER) /NOREPORT -
specifies whether formatted reports are to be 
written to SYSOUT, and, if they are, whether they 
are to be printed when available, or at MF /1 
termination. 

SYSOUT (class) - specifies the SYSOUT class for 
all printed reports. The default is class A. 

RECORD/NORECORD - specifies whether or not 
data records are to be written to the SMF data set 
at specified intervals. 

INTERVAL (value/valueM) - specifies the length 
of time in minutes between gathering measurements 
and (optionally) preparing records and printing 
reports. 

CYCLE (value) - specifies the frequency in 
milliseconds with which channel and device 
statistics are to be obtained within the specified 
interval. 

STOP (value/valueM/valueH)/NOSTOP -
specifies a length of time after which MF /1 will 
automatically terminate or, alternatively, that MF /1 
can only be terminated by an operator's STOP 
command. The default value is 15M. 

Measurement Facility Control (MFC) 
MFC is the system task controlling MF /1 operation. 
It performs the input merge to establish the 
parameters controlling MF /1, initializes for MF /1 
data collection by loading the appropriate MG 
routines, issues SVC MF DATA A at reporting 
intervals to initiate data collection for active report 
printing, and controls MF /1 termination. 

See the following method-of-operation diagrams: 
Measurement Facility Control (MFC) Mainline 
(IRBMFMFC) 
MFSTART Mainline (IGXOOO13») 
Input Merge Control (IRBMFINP) 
Syntax Analyzer (IRBMFANL) 
List Option Module (MFLISTOP) 
Initialization Mainline (MFIMAINL) 
CPU Activity Initialization (IRBMFICP) or Paging 
Activity Initialization (IRBMFIPG) 
Workload Initialization (IRBMFIWK) 
Channel Initialization (IRBMFIHA) 
Device Initialization (IRBMFIDV) 
Data Control (IRBMFDT A) 
Termination Processor (IRBMFTMA) 
MF/l Message Processor (IRBMFMPR) 



System Activity Measurement 
Gathering (SAMG) 

SAMG consists of a set of measurement gathering 
(MG) routines whose function is to collect data 
from the various system components for eventual 
reporting through SARG, and to copy the 
information to the SMF data set if so required by 
the RECORD/NORECORD option. There are two 
classes of MG routines-interval MG routines and 
cycle MG routines. There is one interval MG 

routine associated with each active reporting class; 
it is activated at reporting intervals (as determined 
by the INTER v AL keyword to collect interval 
measurements and, optionally, copy the SMF 

record. Cycle MG routines are associated with the 
device and channel reporting classes. If active, they 
are entered at periods determined by the CYCLE 

keyword to sample queue lengths and maintain 
other intermediate device and channel-related data 
that the related interval MG routines collect at 
reporting intervals. 

See the following method-of-operation diagrams: 
MFDATA SVC Mainline (IGXOOO14) 

Interval MG Routine for CPU (IRBMFDCP) 

Interval MG Routine for Paging (IRBMFDPP) 

Interval Routine for Workload (IRBMFDWP) 

Interval MG Routine for Channels (IRBMFDHP) 

Interval MG Routine for Devices (IRBMFDDP) 

MFROUTER SVC Processor (IRBMFEVT) 

Channel Sampling Module (IRBMFECH) 

Second CPU Test Channel Sampling Module 
(IRBMFTCH) 

Device Sampling Module (IRBMFEDV) 

System Activity Report Generating 
(SARG) 

SARG produces all the formatted reports about the 
activities being monitored. These reports are made 
available for printing at a time specified in the 
REPORT parameter. 

See the following method-of-operation diagrams: 

Report Generator Control (IRBMFRGM) 

Report Generators for CPU, Paging, Workload, 
Channels, and Devices (IRBMFRCR, IRBMFRPR, 

IRBMFR WR, IRBMFRHR, and IRBMFRDR) 

Section 2: Method of Operation 3-77 



3·78 OS/VS2 System Logic Library Volume 3 (VS2 Release 3.7) 



'~-? 

System Activity 
Measurement Facility 
(MF/1) (no diagram) 

I 

r 
I 

---± - MFe jSAMG - - t- - - ~A~ - I 
I 
I 
I 

CI'.l 
(D 

~ o· 
= 
~ 

a:: 
(D 

So 
8-
o 
~ 

o 
1 
~ o· 
= 
w 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
L 

l 7-1 
I Measurement Measurement Facility 
I Gathering (SAMG) Control (MFC) 

Mainline I 
(no diagram) 

(lRBMFMFC) 

I 
I I 

7-2 I 7-5 1 7-13 I 7-14 I 7-20 

Input Merge MFSTART Message I 
MFDATASVC MFROUTER SVC 

Control Mainline Processor Mainline Processor Processor 
(lRBMFINP) (lGXOO013) (lRBMFMPR) I (lGXOO014) (lRBMFEVT) 

I r-.J I I 
I 7-3 7-4 I J Syntax List Options I Analyzer Subroutine 7-21 7-22 I 7-23 

(lRBMFANL) (MFLISTOP) I Second CPU Test 
Channel Device Sampling 

I Sampling Module 
Channel Sampling 

Module 
I I I Module 

(lRBMFECH) (lRBMFTCH) (lRBMFEDV) 

7-6 7-11 1 7-12 I 
Initialization Data Control Termination I Mainline Processor I (MFIMAINL) 

(lRBMFDTA) 
(lRBMFTMA) L __ 

1 1 7-16 

I I 
Interval MG 

I 
J J J 

Routine for 

I I Paging 

I 7-7 
(lRBMFDPP) 

L 7-9 I 7-10 I 7-8 
CPU (lRBMFICP) Workload Channel Devicc I I 7-15 1 7-17 or Paging Initialization Initialization Initialization 
(lRBMFIPG) (lRBMFIWK) (lRBMFIHA) (lRBMFIDV) I Interval MG 

Interval MG 
Initialization 

Routine for CPU 
Routine for 

I (lRBMFDCP) 
Workload 
(lRBMFDWP) 

I ~ --- - ~ 

>-
~ Figure 2~lO. System Activity Measurement Facility (MF/I) Visual Contents 

7-24 I 
I 

Report Generator 
Control 

I 

(lRBMFRGM) 
I 

7-25 I 
Report Generators 
(lRBMFRCR 
IRBMFRPR 
IRBMFRWR 
IRBMFRHR 

J IRBMFRDR) 

I 
I 

L _____ -J 
I 
I J 

I 7-18 

Interval MG 
Routine for 
Channels 
(lRBMFDHP) 

L 7-19 

Interval MG 
Routine for 
Devices 

I 
I 
I (lRBMFDDP) 

........ J __ :.J 



w 

~ 
o 
se 
;;3 
N 
til 
'< 
~ a 
i n 
t:: 
~ 
~ 
~ = a 
(1) 

w 

~ 
N 

::c 
t 
~ 
w 
~ -

Diagram 7-1. Measurement Facility Control (MFC) Mainline (IRBMFMFC) (part 1 of 2) 

Input 

MFENQAPL 

I 
I 

MFEXECPA 

EXEC Parameters 
I 
L 

IRBMF1xx Member 
of PAR¥LlB 

Command 
Input Block (CIB) 

L 

START Parameters r 

MFMVT 
Permanent 
Measurement 
Vector Table -

MFCOA 

Permanent Common l 
Option Area 

MFPCT 

Permanent Problem L 

Control Table J 

From Dispatcher 
After Recognition 
of START Command 

: .. 
! 

I 

Process 

Measurement Facility Control (MFC) 
Mainline (lRBMFMFC) 

-l) 1 Ensure that only one MFC task runs at 
v anyone time by checking that another 

MFC task is not already running. 

2 Enable the MFC task to be stopped 
by an operator-entered stop 
command. 

Jo. 3 Combine input options fr~m all ~ources 
v and prepare conSOlidated list of mput 

options. (See MO diagram Input 
Merge Control (lRBMFINP).) 

4 Allocate storage for message Sysout 
data set and open the Sysout 
data set. 

1'-. 
Initialize to begin measurement 5 iF v gathering (MG) and to begin report 
generation, both according to 
consolidated input options. 

6 Wait for completion of reports. 
Then close out each report subtask 
as it completes. 

7 Close Sysout data set, and indicate 
MF/1 is not running,and issue 
operator message that MF /1 is 
terminated. 

'w .• 

Output 

Return to caller 
if MF/1 already 

running 
-11. 

y 

MFPCT 
c-- --:J 
~ MFPCSEAD 

! Y'L 
.J 

; 

..... 
IRBMFINP , 

~ I nput Merge Control 

"'" 
" ... """ . 

..... 
IRBMFALL , 

~ Dynamic Allocation 
". 

;: ,g., ':: .• ., •. :O,.:./:C.i, . .,..... ... , .... ·;·;:.·r·:·</ ~r·::.'.,,;" .', /"'#. .< 

.; !, 

~ ..... 
IGXOOO13 

f: , 
i ~ 

MFST ART Mainline .. 

..... ., 

:.:: 
.::; 

:. 
j;;;,,' :.~: ; . 7; 

~ 
t 

:i ..... 
IRBMFMPR 

'j y 

~ 

Message Processor ;:.2 
"'" 

Return 1) 
to Caller ¥>«<CXL" ·<u<··y:· Y·······; ·;··:/<\2; .... > ·:S·.·.·.>;:;.;;:;::.:> .. L 



til 
(D 

~ 
5· 
= ~ 
a: 
(D .... 
6' 
~ 

e. 
o 
~ 
Q 
a 
5· 
= 
w 
00 -

Diagram 7-1. Measurement Facility Control (MFC) Mainline (IRBMFMFC) (part 2 of 2) 

Extended Description 

The Measurement Facility Control (MFC) Mainline module 
(lRBMFMFC) is the first MF/1 module to receive control as 
a result of the operator starting MF/1. Its main functions are 
to initialize MF/1 option control blocks, to issue an SVC to 
cause monitoring of system variables by MF/1, and to assist 
in terminating MF/1. 

Module 

IRBMFMFC 

1 The return from an enqueue on a global name indicates IRBMFMFC 
whether another MFC Mainline task is dispatched, even 

if it has been dispatched in another virtual area. If so, this 
MFC Mainline task issues an operator message and then 
terminates. 

2 MFC Mainline obtains an ECB address so Data Control 
(lRBMFDTA) can later accept a stop command from 

the operator. 

3 MFC Mainline loads and calls Input Merge (lRBMFINP) IRBMFINP 
to merge input options, analyze the syntax of these 

options, and indicates the option values specified in the 
PMAand COA. 

Label Extended Description 

4 MFC Mainline calls the Dynamic Allocation module 
(lRBMFALL) to allocate storage for the Sysout data 

set and then opens the data set. 

5 Issue SVC MFST ART to initialize the monitoring, 
reporting and recording of system measurements by 

MF/1. Control will not return to this point until MF/1 is 
ready to terminate (when the specified duration is reached, 
or MF 11 is stopped by the operator). 

Module 

IHBMFALL 

IGX00013 

6 Detach each SARG subtask, and free all associated con- IRBMFTMA 
trol blocks. 

7 Issue CLOSE to close the message SYSOUT data set, 
and issue DEQ to indicate that MF/1 is not active. Call 

the message processor (I R BM FMPR) to indicate termination 
to the system operator. 

IRBMFMFC 

Label 



~ 
~ 
~ w 
!t .. 
9 
i n 
t: r 
~ 
~ r 
w 

~ 
w 

i 
~ 
w 

~ 

Diagram 7-2. Input Merge Control (IRBMFINP) (put 1 of 2) 

Input 
,j 

Command 
Input Block (CIB) 

START parameters 

MFEXECPA 

EXEC parameters 

IRBMF1XX 

Member of 
SYSt.PARMLIB 

MFMVT 

Measurement 
Vector Table 

MFCOA 

Common 
Option Area 

From MFC Mainline 
(lRBMFMFC) via CALL Process .. 

; 

I .. 
I > ... 

I .... 

v 

.... 
} 

v 

I .... 

I 
y 

ili 

Input Merge Control (lRBMFINP) 

1 Process input options in the following 
order: 

a. Parameters in the START command. 

b. Parametersin 
the EXEC statement. 

c. Specified or default data set. 

d. Default options. 

2 Perform validity checks of all 
merged input options. 

3 List the options in effect in a 
SYSOUT data set and, if the 
operator so requested, list them 
on the master-console. 

Return to MFC Mainline 
(lRBMFMFC) 

Output 
''}, 

MFMVT 1" 

" PMA 
Permanent 

~~ 
,,: .... Measurement F=;> ) Vector 

~ 
~\ y -:' 
,:, Table 
:," 
;" 

, 

:\ s" 
, 

" 

" ;;: MFCOA i 

2 Permanent :' 
ie,,: ... ;j Common " 

I: y Option 
Area 

,.;" 
, 

i 

; 
<, _ .. IRBMFANL 
~; f'; 

... ',; 

~ ? 
Syntax Analyzer 

". 

.' " 

:Zf, 

,;, 
:,: 

"" 
SYSOUT ; 

Data 
, 

r;' ... 
Set, 

\', 

'f : 
;; >; 

'" 

:':' :: 
:': 

~~ :' 
;::~ 

)I Operator's Console j II B ... 



if 
() g. 
1:1 

~ 

ar:: 
«t 

l 
o ... 
o 
'I a 
!' 
1:1 

~ 
~ 

Diagram 7-2. Input Merge Control (IRBMFINP) (part 2 of 2) 

Extended Description 

The Input Merge Control module (lRBMFINP) receives con· 
trol from MFC Mainline (lRBMFMFC) early in the execu· 
tion of IRBMFMFC. IRBMFINP controls the preparation of 
tables that represent consolidated input parameters and con· 
trois the printing of this set of input parameters if required 
either by an input request or because of invalid or conflict· 
ing inputs. Inputs to IRBMFINP are from Start command 
parameters, EXEC statement parameters, input-specified 
data set parameters, or from default options. IRBMFINP 
controls the interpretation of inputs, the merging of these 
inputs into a set of control blocks that indicate the reo 
quested options, and the communication with the console 
operator to obtain approval or correction of the list of 
options prepared in response to inputs. The four input 
sources have the following priority, from highest to lowest: 
START command, EXEC statement, member data set, and 
default. 

Module 

IRBMFINP 

Label Extended Description 

1 The processing of input options from each input source 
is essentially similar: for each source, the input data is 

separated into recognized fields and initialized in temporary 
control blocks, and then these fields are merged into perma· 
nent control blocks that represent input options combined 
from all sources of input. Routines check for invalid values 
in input data, for mutually exclusive options, and for syntax 
errors. Such errors are reported to the operator, who may 
request new options or instruct the program to ignore the 
inputs (if ignore is requested, lower priority inputs or 
defaults are used). 

Module 

IRBMFINP 

IRBMFMPR 

Label 

MFMERGE 

MFSRCPRO 

2 Routine MFVALCHK performs the following validity IRBMFINP MFVALCHK 
checks between different option types: 

a) The report option must not be set to DEFER if NOSTOP 
is requested. 

b) Options NOREPORT and NORECORD must not both be 
set. 

c) The STOP value must be such that the time in operation 
is not less than the INTERVAL value. 

3 The set of options is written to a SYSOUT data set and IRBMFINP MFLISTOP 
if so requested is printed on the console. Subroutine 

MFLISTOP writes to SYSOUT, and to the console if 
required. (See List Option Subroutine (MFLISTOP) 
diagram.) 



t 
o 
fIj 

~ 
N 
fIj 

1 
I 

i-
t"" 
SZ 

! 
~ e­
El 
(D 

w 

'< fIj 
N 

~ 

t 
I 
w 
~ 

Diagram 7·3. Syntax Analyzer (IRBMF ANL) (put 1 of 2) 

From Input Merge Control 

Input (lRBMFINP) via CALL Process 
'~A 

¥ 

Scan Control Buffer Control 
Syntax Analyzer (lRBMFANL) ~ 

Block (SCB) Block (BCB) 

t Item Entry \/ t Current .v BCB 

t SCB 
, 
~ , Current ~ Length of 

1 Obtain next recursive work 

Text ~ Buffer 
area element from pushdown 
stack. " 

, Recursive No. of Bytes t Buffer 
:' 

Work Area 

~ Left in Buffer -~ 
me , ': 

~ Pushdown I ">2 If the input item is from a 
Input Character String 

Stack 'if r terminal, call the appropriate 

I MFSNTAB ~1 terminal recognizer. If not, 
proceed to step 3. .... 

~'/////////// .. 
SYITEMnn 

• Structure " 

-~ ;' 
L L 

SYSTRnn ( //////////// .. ) 3 If the input is a structure, 4 Ordinary Alternatives -

) 
r recursively call1RBMFANL 

4 Recursive Alternatives again to examine each 
alternative of the structure. 

.... 
",//,,.,/// .. 

SYALTnn C ____ V/////////// i 
• Item List _ 

~ 4 Initialization Routine 4 For identified alternatives, 
call an initialization routine, 

C __ //////////// ;; if one exists, to make .... 
; 

appropriate entries in tables " 
0 1st Item Entry of input options. ; 

0 2nd Item Entry 

5 If structure is recursive, ~,; 

SYITMEXX .. ~ }: indicate use of alternatives :: 
of recursive structure and 

~. return to step 2. >. 

{ Recognizer Routine s 

Last Item Parameter List 
; 

i: 
Entry 6 Return this invocation's 

" recursive work area to the 
pushdown stack. 

% 

Output 

.. 
IRBMFINP .. 
MFRINTGR 
MFRALPHA 
MFRBLANK 
MFRTEXT 
MFRRERR 

,<" .';,'."".<'< 

... 
IRBMFANL .. 

Syntax 
Analyzer 

," i;', i,,' "i":':," ,L '.C., ::x ;':+>:. " , •. /. ;iit<<<t" 
INCOA 

10. 

~ I IRBMFINP .. 
MFOPINIT INMVT 

~ I 'f 

C: PMA fJi;' 
;~;{ 

~ l I ~; 
".' 

Return to Input Merge (tRBMFINP) or 
Syntax Analyzer (JRBMFANL) if 
called recursively. 



til 
~ 

s:a. e· 
= 
~ 

ac 
~ 

[ 
o .... 
o 
1 
~ 
e' 
= 
w 
do 
U\ 

~ 

Diagram 7-3. Syntax Analyzer (IRBMFANL) (part 2 of 2) 

Extended Description 

The Syntax Analyzer parses the string of characters from an 
input source and attempts to identify the intended set of 
input options. If successful, the Syntax Analyzer builds 
these options into control blocks to be merged with input 
options from other sources. 

The general logic flow of the Syntax Analyzer is to scan the 
source of input and attempt to establish correspondence 
between the input and one of the valid inputs described in 
the Syntax table (MFSYNTAB). Essential to the recognition 
of valid options is MFSYNTAB, which defines all possible 
valid inputs in terms of structures, alternatives, items, and 
terminals. A structure is a high-level description of an 
option. A structure points to a list of alternatives. Each 
alternative describes a possible way the input could appear 
in a character string. Each alternative is made up of one or 
more items. An item is a terminal item (called simply a 
terminal) if the item is a string of characters to be matched 
in the input. Or, an item may point to another structure, 

which in turn, is made up of alternatives, each of which 
has one or more items. 

The Syntax Analyzer examines each item one by one, and, 
if all items of an alternative consist of valid terminals, 
appropriate entries are made in control blocks that represent 
input options from this source. If any item points to a struc­

ture, the alternatives of that structure are examined, item by 
item, until terminals can be compared on a character for 
character basis to establish valid items. Valid items are used 
to establish valid alternatives. When a valid alternative is 
established no other alternative of the structure needs to be 
examined. 

The Syntax Analyzer uses a Scan Control Block (SCB) to 
keep track of where in the input string the current compari­
son is being made. 

Module 

IFBMFANL 

Label 

" , 

Extended Description 

1 The address of the pushdown stack is provided as an 
input to the syntax analyzer on each invocation. 

2 The input item entry identifies the appropriate recog­
nizer to call. 

3 The initial word of each item entry contains a bit that 
identifies the item as a terminal (that is, a character 

string capable of verification by a terminal recognizer) or 
as part of a structure. I f the item is part of another struc­
ture, the second word of the item entry contains the address 
of the structure entry (SYSTRnn). The structure entry 
points to lists of alternatives (SYAL Tnn), each of which 
point to item lists (SYLTMExx). 

4 The third word in each alternative entry contains the 
address of the Initialization routine MFOPINIT, if 

initialization is to be done. 

5 A recursive bit is located in the first word of each 
structure entry. I f the bit is on, a recursive I ist of alter­

natives is examined. 

'. ~~ 

Module Label 

IRBMFANL 

IRBMFINP MFRINTGR 

IRBMFANL 

MFRALPHA 
MFRBLANK 
MFRTEXT 
MFRRERR 

IRBMFINP MFOPINIT 

6 On return to the SYNTAX ANALYZER on a recursive IRBMFANL 
invocation, this invocation's recursive workarea is re-

turned to the pushdown stack_ 



~ 
~ 
;;i 
~ 
fJ') 

'< 
fQ. 

~ 
b 
~. 
t: 
~ 
~ 
~ 
~ 
(D 

C.H 

~ 
~ 

i 
~ 
C.H 
:...a -

Diagram 74. List Option Subroutine (MFLISTOP) (part 1 of 2) 

Input 
M c' 

:." MFCOA - - -
MFCOOPI 

- -

INREPBUF 

I 
Operator's Reply 

From Input Merge 
URBMFINP) Process .. List Option Subroutine (MFLISTOP) 

L~ 1 If the list of input options is to be .. printed online for the operator, 
print it and allow the operator to 

:.' "reply with more options or GO." 

~ 
i": 

);' 

.< '" 
") 2 If option list is not to be printed 

v for the operator, or if printed for 
the operator and he replies GO, 

:. allocate a data set, open it, and 
list the options in the data set. 

Return to caller. 

!: 

\ ..... 
3 If the operator reply contained more 

v options, merge these options with the 
previous input options and validity 
check the merged set of options. 

Return to step 1. 

i: 

.. 
... 

Output 

I 
i 

; .. 
:: <. 
~ ~.~ 

;., 
I>; ",I Operator's 

V"I Console " I .. :" 
:~.: 

~;" <; 

.< I,; ." .......• 
"" ". ',,' 

" . 
... 

IRBMFALL ::' ., 
" 

Dynamic 

" Allocation 

~:) :> t·; 
..•. ". ···.t ." .... 

&" (: .'<". ".' •..•• "' •. 'S. '., · •• ·pv" .• · 

:~ 2: .: 
i Return to ~~ 
;: Caller 
) (lRBMFINP) i:s 

MFCOA t:c 
:.: 

~i ";\ 
-". Permanent Common 

)I Option Area t v 
, 

MFPMAs 
( MFMVT 

~ 
:; -" 
;; 

~i 
v 

. ['''' 

I;; . f' 
ft; 
~;. 



ff 
g. 
l:I 

~ 

a: 
CII 

I 
o .... 

f 
o 
l:I 

w 

~ 

Diagram 7-4. Ust Option Subroutine (MFLISTOP) (Part 2 of 2) 

Extended Description 

The List Option module (MFLISTOP) lists options, as re­
quested by the input source or in response to errors in 
specifying the MF/1 options. 

1 If the OPTN option (list input options on the console) 
is set on, either by direct operator request as an input 

option or as a result of an error in input options, the list is 
printed. 

Module Label 

IRBMFINP MFLISTOP 

IRBMFINP MFLISTOP 
IRBMFMPR 

2 Routine IRBMFALL is used to allocate space for IRBMFALL 
listing the SYSOUT data set. If the opening of the data 

set is successful, the final list of options in effect is written 
to the data set. 

3 If the operator replied with more options in response 
to REPLY WITH MORE OPTIONS OR GO, his reply 

is scanned for errors and control blocks (permanent) are 
initialized. This cycle of actions continues until he replies 
GO to the message, then a final list of options is written to 
the SYSOUT data set. 

IRBMFINP MFSRCPRO 
IRBMFANL MFVALCHK 

""-J' 



'of Diagram 7-5. MFSTART Mainline (IGXOOO13) (part 1 of 2) 
00 
00 

~ 
~ 
~ 

fIl 
'< 
f4. 
a 
b 
~. 
t"'" e: 
! 
~ = a 
(D 

w 

'< 
fIl 
~ 

f 
w 
~ 

Input 

Input Parameters 

I addr: MFMVT 

r addr: MFCOA 

From MFC Mainline 
(lRBMFMFC) via SVC .. 

, 

L 
I 

J 

L 

J 

Process 

...II. 
~ 

F 

--1\. 
) 

y 

" 
y 

MFSTART Mainline (lGXOOO13) 

1 Set up for recovery routine to 
handle errors in M FST ART. 

2 Set up for measurement gathering. 

3 Set interval time for requested 
interval and perform 
measurement gathering when 
there is an interval timer 
interruption. 

4 Delete MG routines and resources 
for both interval and cycle MG 
activities. 

5 Cancel recovery setup of Step 1. 

,,",,'" 

Return to MFC Mainline 
(lRBMFMFC) 

Output 

CALL ... 
r MFIMAINL 

""- Initialization , Mainline 

""0'" '" .", .'··,·.'\it •.. We.iiL 

;: SYNCH 
-'". IRBMFDTA .. 

.... 
Data Control , 

., .;'e, "0, .0: 

" 
", 0.· •• ;;' 

CALL ... IRBMFTMA .. 
.... Termination 
... Mainline 

;'1 
;" . 

)U.hFTx!;1/.';C A; ".i 



fI:l 
(D 

sa. o· 
::I 

!'! 
at 
(D 

So 
8-
o 
101) 

o 
"0 
~ 

=­o· 
::I 

w 
do 
\.Q 

~ 

Diagram 7-5. MFSTART Mainline (IGXOOO13) (part 2 of 2) 

Extended Description Module 

The MFSTART Mainline OGX00013) processor controls the IGX00013 
initialization and termination of routines that perform MF/1 
functions. 

1 Issue an EST AE macro instruction to provide entry to IGX00013 
routine IRBMFSDE, which receives control in event of IRBMFSDE 

MF /1 errors. 

2 Call the Initialization routine (MFIMAINL), which, in 
turn, calls other initialization routines (see the first 

paragraph in the MFC Mainline (lRBMFMFC) M.O. diagram). 

3 Use SYNCH macro instruction to change to problem 
state and to transfer control to the Data Control rou­

tine OR BMFDT A), which sets the interval timer and initi­
ates measurement gathering after each interval. 

4 .A:fter the last interval, Data Control returns control to 
MFSTART Majnline, which calls Termination Mainline 

IRBMFDTA 

(lRBMFTMAI. IRBMFTMA 

5 MFSTART Mainline cancels.the ESTAE routine entry. 

Label 

MFIMAINL 



't' Diagram 7-6. Initialization Mainline (MFIMAINL) (put 1 of 6) 
! 

2 
~ 
N 
fIJ 

i 
l"'" 

i 
j 
~ 
I 
w 

~ 
N 

'" f 
w :... -

Input 

- " 

... ~ 

IMGSTSRG 

I L 
L 

• 
IMMMVSRG 

[ I 

%/i" 

MFCOA 

I 1 Input Option 
CYCLE • I 

' .... "'. 

From 
MFST ART Mainline 
(lGXOOO13) via CALL .. 

~N <, 

Process 
w;· < • 

Initialization Mainline 
(MFIMAINL) 

.. 
,,> 1 Obtain global fixed storage needed 

by MG routines that operate at 
intervals. 

2 Obtain local pagable storage needed 
by MF 11 control programs. 

3 Initialize control blocks STGST 
and STMMV and set up controls 
for MG routines that run at cycles 
(specified in input options). 

4 Initialize more tables. 

.. 
> 5 Validate the minimum cycle time 

-y and make it available for global 
reference. 

I 

Output 
""-, 

STGST . ... 

1 Global Storage 

" MFROUTER > Control 
'V Vector Blocks 

Table 
~ 

(MMV) 
J 

... 
.. 

I-
'V STSCT 

~ 

I STMVT ~ > Control 

l 
~ Blocks 

STCOA 

I STSMA 

I STRVT 

.'. 

.. ,. 
v --STSCT 

~ 

1 STMVT f- > Control 

I 
Blocks 

STSMA ~ 

l STRVT 

I STCOA 
..J 

.·.C.' AC'.·0."", ..• "...·· ........... "?...... ... 
STGSCYC 

" . )I Cycle Time 
; .,. L 



(I.) 
(D 

sa. 
0· 
::I 

~ 

a: 
(D 

[ 
o ..... 
o 
"tI 

I 
0· 
::I 

eN 
~ -

~--

Diagram 7-6. Initialization Mainline (MFIMAINL) (part 2 0(6) 

Extended Description Module Label 

The Initialization MainJine (MFIMAINL) procedure controls IGXOOO13 MFIMAINL 
the allocation of space for and the initialization of control 
blocks. It also calls routines whose purposes are to initialize 
different functions essential to measurement gathering 
(MGL Finally, it issues the MFDATA SVC to collect initial 
values of requested measurements. 

·1 MFIMAINL uses the GETMAIN macro instruction to 
obtain storage for the Global Storage Table (STGST) 

and for the MFROUTER (control routine for sample col­
lecting routines) Vector Table (STMMV). 

2 MFIMAINL uses the GETMAIN macro instruction to 
obtain storage for the Supervisor Control Table 

(STSCT), Measurement Vector Table (STMVT), the Com­
mon Option Area (STCOA), Supervisor Measurement Area 
(STSMA), and the Resource Vector Table (STRVT). 

IGX00013 MFIMAINL 

IGX00013 

3 MFIMAINL places initial values into the control blocks IGX00013 
for which space was obtained in step 1. 

4 MFIMAINL places initial values into the control blocks IGX00013 
for which space was obtained in step 2. 

5 The time specified by the cycle input option must not 
be less than 50 milliseconds. 

IGX00013 



:b 
N 

i 
~ 
N 

1 
i 
j 
~ 
J 
(I 

w 

~ 
N 

~ 
i 
R 
w 
:...a -

Diagram 7-6. Initialization Mainline (MFIMAINL) (put 3 of 6) 

Input 

MFPMA 
~---~-~ 

/'1 MFPMAOPT ~ 
-.I 

MFMVT 

MFPMAOPT 
MFMVCPU 

...... 
r--

MFMVPAG MFPMA 

MFMVWRK FMFPMAOPT~ ...... 
r-

MFMVCHl 

MFMVDEV 

'STMVT 

STMVPAG 

STMVWRK 

STMVCHl 

STMVDEV " 

~ 

[ 

...... 
r--

MFPMAOPT r--
.... 

STSMACPU 
~--- --. 

STSMINIT ~ ----
...... 
r--

~IT -Fin 
STSMA Devices 

~ --

Process 

L...-........, 

Fr 6 
',¥:~~ 
~<;:: : 
,\; 
", 
~"\ 

I;' 
t~ 

~' 

_9 Output 

Initialize for interval-driven Initialize MG 
measurement gathering Routine 
(MG) routines as specified by (lRBMFICP) ~ 
input options. CPU Meas. 

• (lRBMFIPG) I-­
Paging Meas. 

(lRBMFIWK) I--­
Workload Meas. 

(lRBMFIHA) I-­
Channel Meas. 

, (IRBMF IDV) 
Device Meas. 



til 
(D 

Sl. 
e' 
::s 
~ 

a: 
(D 

[ 
Q 

""" o 
1 a 
e' 
::s 

w 
~ 
w 

~ 

Diagram 7-6. Initialization Mainline (MFIMAINL) (part 4 of 6) 

Extended Description 

6 MFIMAINL calls the routines that initialize the MG 
routines. Only those MG routines required for the re­

quested kinds of reports are called. For example, 
if CPU is the only requested report, then 
IRBMFICP is the only MG routine called. 

Module' Label 

IRBMFICP 
IRBMFIPG 
IRBMFIWK 
IRBMFIHA 
IRBMFIDV 



~ Diagram 7-6. Initialization Mainline (MFIMAINL) (part 5 of 6) 
'i 
o 
fI1 

~ 
~ 

i 
r-
~. 
r-

J 
f 
CD 
~ 

~ 
~ 

~ 
II" 

5 
~ 

~ 

Input 

IMCYCTOD 

Cycle Value (TOO) 

CINITDAT 

First Call 
Flag for 
MFDATA 

7 Enable sample MG routines 
(event-driven), if required, and 
establish time for the sample 
period, if required. 

8 Enable for I/O data collection, 
if required. 

9 Obtain initial values of 
measurements for the 
requested measurements. 

Return to M FST ART 
Mainline (lGXOO013) 

IRBMFIOI 

IGXOO(l14 

MFDATA SVC 
Processor 



CIl 
(1) 

~ e· 
:::s 
~ 

~ 
(1) 

[ 
Q 
~ 

o 
1 
~ e· 
:::s 

w 
~ 

Diagram 7-6. Initialization Mainline (MFIMAINL) (part 6 of 6) 

Extended Description Module 

7 If channel or device reports are requested, MFIMAINL IGX00013 
sets a flag in the Communications Vector Table (CVT) 

in CVT item CVTMFACT. MFIMAINL also puts the time of 
the next sample into MF/l's Timer Ouene Element (TOE). 
Before calling Routine IEAOTEOO to enqueue the TOE on IEAOTEOO 
the timer queue, MFIMAINL obtains the dispatcher lock and 
establishes a Functional Recovery Routine (FRR) exit; after 
setting the TOE, these actions are reversed. 

8 MFIMAINL calls routine IRBMFIOI to change instruc- IRBMFIOI 
tions in the system 105 functions so that channel and 

device measurements are collected as 105 operates. 

9 MFIMAINL issues the MFDATA SVC (SVC 109, code 
14) to collect data as requested by input options. This 

first call to each, however, is indicated as the initial call and 
results in taking initial values against which later values are 
compared. 

IGX00014 

Label 



~ Diagram 7-7. CPU Activity Initialization (IRBMFICP) or Paging Activity Initialization (IRBMFIPG) (part 1 of 2) 
\.Q 
Q\ 

o 
I:Il 

~ 
N 
I:Il 
'< 
~ 

B 
b 
~. 

f 
~ 
~ 
;: 
a 
(I) 

~ 

< I:Il 
N 

~ 

t 
~ 
~ 

=... -

Input 

CPU 
Only 

STSMA 

STSMOPT 

CVT 

CVTMAXMP 

From Initialization 
Mainline (MF IMAINL) 
via BAL 

CPU Activity Initialization 
(I RBMFICP) or Paging Activity 
Initialization (lRBMFIPG) 

1 Verify the request for the option. ""I II 

2 Obtain storage for tables. 

3 Load required interval MG routine 
and place name in resource list. ____ -"""""L' _____ ----''''''"-______ ----1 

Program 
Resource Table 

STPRNAME 

STPRADDR 

4 Calculate storage for interval data area. ' . '" 
"'It---------t 

Return to Initialization 
Mainline (MFIMAINL) 



CIl 
(D 

~ e· 
= N 

ac 
(D 

~ 
o 
1"0) 

o 
"tI 
~ a e· 
= 
~ 

~ ...... 

~ -,< ~ 

Diagram 7-7. CPU Activity Initialization (IRBMFICP) or Paging Activity Initialization (IRBMFIPG) (part 2 of 2) 

Extended Description Module 

The CPU Initialization (lRBMFICP) and the Paging Initiali· IRBMFICP 
zation (lRBMFIPG) both have very similar functions, inputs, or 
and Oljtputs. Therefore, one M.O. diagram is used to IRBMFIPG 
describe the functions of both. IRBMFICP and IRBMFIPG 
allocate storage space for control blocks, ensure that copies 
of the required interval MG routine are in the virtual storage 
space, and calculate the length of the required data area. 

1 The CPU or Paging Initialization routine ensures that IRBMFJCP 
the input option has been specified by checking the or 

STSMSTA bit in the STSMOPT word of the Supervisor IRBMFIPG 
Measurement Area (STSMA). 

2 The CPU or Paging Initialization routine uses the IRBMFJCP 
GETMAIN macro instruction to obtain the necessary or 

storage. IRBMF IPG 

3 After adding the entry to the Program Resource Table IRBMFJCP 
(STPRT), the initialization routine indicates in the or 

Resource Vector Table (STRVT) the next available entry in IRBMFIPG 
the STPRT. The entry point address is placed in the System 
Measurement Area (STSMA) for use by the MFDATA SVC 
Processor (lGX00014). 

4 The storage length for CPU data is: 
4 + length of (SMFRCD70) + length of (SMF70A) + 

(CVTMAXMP + 1) times length of (SMF70B). 
The storage length for paging data is: 
4 + length of (SMFRCD71) + length of (SMF71A) + length 
of (SMF71 B). 

Label 

~ -_.7' 



~ 
00 

~ 
N 
C'Il 

1 ; 
i n 
t"" 
C;Z 

! 

f 
w 

~ 
N 

~ r 
II 
w 
~ 

Diagram 7-8. Workload Initialization (IRBMFIWK) (put lof 2) 

- - -.- --

}7-''''''''''''''-' ·· .. ·x·." 

STSMA (workload) -- - -
STSMOPT ---

WMST --
WMSTPGHI 

WMSTPGPC 

-

-

From Initialization 
Mainline (MFIMAINL) .. 

} 

I 

" ) 
v 

~ 

-.II. 
> ." 

Workload Initialization (lRBMFIWK) 

1 Verify the request for a workload 
option. 

2 Allocate storage for tables; load into 
virtual storage and page-fix the 
System Resource Manager (SRM) 
routine IRARMWAR, and place 
addresses in the necessary tables. 

3 Load into virtual storage the interval-
driven MG workload routine 
IRBMFDWP, and place its name and 
address in required tables. 

4 Initiate workload activity data 
collection and obtain space for 
interval data area. 

~J} @JIlffIi.1IM! • --
Return to Initialization 
Mainline (MFIMAINL) 

Error '" 

return to 
Initialization 
Mainline 
(MFIMAINL) 

... 
P' 

STPRT 

STPRNAME 
" ... STPRADD 

; 

STPRLGTH 

" - --
, 

STSGT 

to Storage Resource 
)I 

v Table 

DWWIN 
-~ ... -.. SWWIWAML 

y 

-



ir g. 
:s 
~ 

a:: a 
[ 
2-
o 
'I 
!!t 
8" 
:s 

~ 

Diagram 7-8. Workload Initialization (IRBMFIWK) (part 2 of 2) 

Extended Description 

The Workload Initialization (lRBMFIWK) routine allocates 
storage for control blocks, ensures that a copy of the 
Interval MG routine for Workload (lRBMFDWP) is in stor­
age, and calculates the length of the data area. 

1 IRBMFIWK ensures that the workload option has been 
selected as an input option by checking the STSMST A 

bit of the STSMOPT of the Supervisor Measurements Area 
(STSMA). 

2 IRBMFIWK uses the GETMAIN macro instruction to 
obtain the required storage. IRBMFIWK also uses the 

PGFIX macro instruction to fix IRARMWAR. Then, 
IRBMFIWK issues a WAIT macro instruction for page fix 
completion. The name and address of IRARMWAR are 
placed in the Program Resource Table (PRT) and the 
Resource Vector Table (RVT) is marked to indicate the 
next entry in the PRT. 

3 The name of the Interval MG Routine for Workload 
(lRBMFDWP) is placed into the STPRT, and its 

address into STSMINTP of the System Measurement Area 
(STSMA). 

Module 

IRBMFIWK 

IRBMFIWK 

IRBMFIWK 

IRBMFIWK 

'=-__ .7 

Label Extended Description 

4 IRBMFIWK calls routine MFIIPSWA, which uses a 
GETMAIN macro instruction to obtain storage for the 

interval workload data area. The length of this area is: 
length (WAMT) + (highest performance group number times 

(length (WAMTNDX entry» + (total number of performance 
group periods) times (length of WAMP). (A performance 
group is a term of the System Resources Manager (SRM).) 

The length and address of the area are inserted into Storage 
Resource Table (STSGT). The address of IRARMWAR is 
inserted into the gotten area, and IRBMFIWK issues a 
SYSEVENT WKLDINIT macro instruction to initiate SRM 
workload data collection. Return code 00 from the 
SYSEVENT is the good return. Return code 08 indicates 
that the installation performance specification (IPS) was 
changing when the SYSEVENT macro instruction was 
issued; another SYSEVENT is therefore issued. Return code 
20 from the SYSEVENT indicates that MF/1 data collection 
is already active; therefore a bad return is made to 
IRBMFIWK. 

't~? 

Module Label 

IRBMFIWK MFIIPSWA 



~ .... 
8 

~ 
tw 
fI.) 

1 
9 
i. n 
r-
f 
~. 

~ 
E" 
I 
w 

~ 
tw 
::c 

f 
w 
~ 

Diagram 7-9. Channel Initialization (IRBMFDlA) (part 1 of 4) 

From 
Initialization Mainline 
(MFIMAINU via BAL Process Input 

"' 

- .. ~ 
STSMA (Channel) I, - I I 

STSMOPT L 11.> 1 Verify the request for this option. I 
..J .,," 
I -- -

2 Allocate space for tables STPRT 
and STSGT. Load and page-fix 
the event-driven MG routines. 

I' 

3 Store address of MFROUTER 
service routine into CVT. 

CVT 
; 

~-, 

I CVTMAXMP 
4 Load into virtual storage interval-

driven channel routine IRBMFOHP, ..J 

'-- ~ and place its name and address 
in required tables. 

CSO ,-----
l CSOCHAO lJ\ 5 Allocate storage for Channel 

I" Event Data Table (ECCEO), "- - -~ and initialize it and related 

PCCAi 
tables. 

,J- ~ t PCCA1 orO '-1 PCCACAT 
I 
I 

L ----a t PCCA2 or 0 I 

V ••• , 

t PCCA16 or 0 

Output 

STPRT 

STPRNAME 
JI.. 

rv STPRAOOR 
I STPRLGTH 

~A I 
" I CVT 

11\ ~ 
CVTMFRTR , 

.... - .I - -'._ ~4\~_ .. '; 
STSMA (Channel) -~ -" " 

" 
STSMINTP 

; ECCEO 
,to. 

STSMEOAO -- , 
ECCECPEa 1 I " - ...... :9 -

• ECCPE 
1 

ECCPE (1) 

ECCPE (2) 

••• ... 

ECCPE (n) ~ 
~ ECCOB 

ECCOS (1) 

ECCOS (2) 

••• 
ECCOS (n) 



r:Il a 
~. 

= 
~ 

ac: a 
8: 
So 
o 

"'CI 

i 
~. 

::I 

:r:: 
Q -

Diagram 7-9. Channel Initialization (IRBMFIHA) (part 2 of 4) 

Extended Description 

The Channel Initialization (lRBMFIHA) performs the ini­
tialization functions required to cause MF/1 to begin col­
lecting channel data. These functions include initializing 
both event-driven and interval-driven MG routines. 

1 IRBMFIHA checks bit STSMSTA of SYSMOPT in the 
System Measurement Area (STSMA) to ensure that 

channel data has been specified as an input option. 

2 IRBMFIHA activates modules IRBMFEVT (to respond 
to MFROUTER requests), IRBMFECH (to collect 

event-driven sample data on the channels of the CPU that 
executes the instructions when IRBMFEVT receives con­
trol), and IRBMFTCH (to collect event-driven sampled data 
on the channels of any CPU not executing the instructions 
when IRBMFEVT assumes control). The activation consists 
of adding the modules to the Program Resource Table 
(STPRT) and adding IRBMFECH and IRBMFTCH to 
IRBMFEVT routing table entries, STMMMGRL 1 and 
STMMMGRL2. 

Module Label 

IRBMFIHA 

IRBMFIHA 

IRBMFIHA IHLOADM1 
IHPAGFX1 
IHLOADM2 
IHPAGFX2 
IHLOADM3 
IHPAGFX3 

Extended Description 

3 Set the MF/1 MFROUTER pointer (CVTMFRTR) 
in the Communication Vector Table (CVT) to point 

to IRBMFEVT. 

Module Label 

IRBMFIHA 

4 The name IRBMFDHP is placed into the STPRT and IRBMFIHA IHLOADM4 
the STRVNPRT is updated to show the addition of 

IRBMFDHP. The address of IRBMFDHP is placed into 
STSMINTP of the STSMA for use by IRBMFEVT. 

5 A CPU element (ECCPE) is allocated and initialized IRBMFIHA IHGETMN3 
for each possible CPU (MAXMP + 1), and then for each 

ECCPE, channel Data Block (ECCDB) entries are formed 
for each possible channel (CSDCHAD + 1). These CDBs are 
used to store data collected at each sampling event. 



~ Diagram 7-9. Channel Initialization (IRBMFIHA) (part 3 of 4) 

S 
o 
~ 
~ 
N 
til 
'< 
=-9 
b 
~. 
l"'" 

~ 
~ 
~ 
[ 
(I) 

~ 

'< 
til 
N 

" i 
~ 
~ 

!..I -

Process 

6 Store the address of the ECCED into ./\ 
required tables. 

7 Calculate the storage required for the 
interval data areas. 

8 Request start of lOS data collection, 
request that the MFROUTER be 
enabled, and indicate that sampling 
is required. 

Return to Initialization 
Mainline (MFIMAINL) 

Output 

STMMV 

STMMEVTL1 
) 

c..... STMMMGRL1 

STMMMEVTL2 ~ 
) 

<-. STMMMGRL2 

STSGFREE 

STSMIGMC 



til 
(D 
(') g. 
:s 
~ 

i: 
!1 
[ 
o 
""" o 

I 
~. 

:s 

~ 
c:> 
~ 

~ 

Diagram 7-9. Channel Initialization (IRBMFIHA). (Part 4 of 4) 

Extended Description Module 

6 The address of the Channel Event Data Table (ECCED) IRBMFIHA 
is stored in STMMMGRL1 and STMMMGRL2 of the 

MFROUTER Measurement Vector Table (STMMV) for use 
by the MFROUTER Processor (lRBMFEVT). The ECCED 
address is also stored into the Storage Resource Table 
(STSGT) and the System Measurement Area (STSMA). 

7 The storage length for interval data is: 
4 + length of (SMFRCD73) + length of (SMF73A) 

+ (CVTMAXMP + 1) times (CSDCHAD + 1) times length 
of (SMF73B). 

8 The return code from IRBMFIHA is set to indicate 
that lOS data collection should be requested, that the 

MFROUTER should be enabled, and that sampling of 
channel data is required. 

IRBMFIHA 

-? "'----' 

Label 



~ 

2 
o 
fIl 

~ 
N 
fIl 

'i 
a 
S' 

OQ 

ti" 
r-
~ 
~ 
< o c 
a 
(D 

~ 

'< 
fIl 
N 

~ 

t 
~ 
~ 

~ 

Diagram 7-10. Device Initialization (IRBMFIDV) (part I of 2) 

STSMA (Device) --
STSMOPT 

IDDEVTBL 

• UCB 1 or 0 

• UCB2 or 0 

• • • 
+ UCBn or 0 

FF 

C UCBi 

Device Class 

From Initialization 
Mainline (MFIMAINL) 
-- - - .. -

- --
,~. 

.. 

--
Device Addr 

'- - - --- - - --

Device Initialization (lRBMF IDV) 

" ., 1 Verify the request for this option. 

2 Allocate space for STPRT and STSGT 
tables; load into virtual storage 
and page-fix device event-<iriven MG 
routines. 

3 Store MFROUTER address in CVT and 
set up device work area. 

4 Load into virtual storage interval-
driven, device MG routine IRBMFDDP, 
and place its name and address in 
required tables. 

.. 
) 5 Allocate storage for Device Event Data 

t" I' Table (EDDED), and initialize it and 
related tables. 

6 Store the address of the EDDED in 
required tables. ,Pc' 

:,.; 

7 Calculate storage for the interval data _ 
area. 

8 Request start of lOS data collection, 
request that the MFROUTER be 
enabled, and indicate that sampling is 
required. 

\.·M.~k' 
,..1 

Return to Initialization Mainline (MFIMAINL) 

Return to 
Initialization 
Mainline 
(MFIMAINL) .. 

...... 

r-

,'.', ' /,i,,/-<'.":;-
: 

~ 
STPRT ~ 

f: STPRNAME 

~ ... STPRADDR 
i:; ,7" ~-v 

STPRLGTH. 

;~ 
CVT ---- -- -~ 

" CVTMFRTR 1 )I 
I' 

I......-- STSMA (Device) -.... 
r- --~ STSMINTP 

~j " 
"-
) STSMEDAD 

-y -
EDDED 

-- - -, 
-..lI. 

) EDDEDCDT ~ 
h 

-v 

" 
.. --

± 
STMMV C EDDCD r- - - , 

" '" )I STMMGRL1 EDDCT (1) 
:.\ I' -r-, , 
h - EDDCT (2) 
? STSGT - ...... - : • •• 

.. STSGFREE EDDCT (6) 
v STSGADD 

EDDDBs 
STSMA (Device) 

Device Data 
r 

.. I Blocks 
)I STSMIGMC 

J y I 

... 

f ~ 
~ UCB 

I Device Unit Control 
Block 



l:Il 
(D 

~ 
CS" 
::I 

~ 

a: 
~ 
6' 
~ 

e. 
o 

1 
::I 

I.f -~ 

Diagram 7-10. Device Initialization (IRBMFIDV) (part 2 of 2) 

Extended Description Module 

The Device Initialization (lRBMFIDV) routine activates the IRBMFIDV 
MFROUTER Processor (lRBMFEVT) to respond to calls 
for event-driven sampling of device data. In addition 
IRBMFIDV initializes the interval-driven device data MG 
routine IRBMFDDP. Required storage and table initializa-
tion are also performed so that device data can be collected 
and stored. 

1 IRBMFIDV checks that STSMOPT in the System 
Measurement Area (STSMA) is on. If not, IRBMFIDV 

returns immediately. 

2 IRBMFIDV adds the MFROUTER Processor 
(lRBMFEVT) and the event-driven device MG module 

(IRBMFEDV) to the Program Resource Table (STPRT). 
The Resource Vector Table (STRVT) is also changed to 
indicate the next STPRT entry. 

3 Set CVTMFRTR in the Communication Vector Table 
(CVT) to point to IRBMFEVT. 

4 The module name, IRBMFDDP, is placed into the 
STPRT, and as in step 2, STRVNPRT is changed. The 

address of IRBMFDDP is placed in the SMA (specifically, 
STSMINTP) for use by the MFDATA SVC Processor 
(IGX00014) . 

IRBMFIDV 

IRBMFIDV 

IRBMFIDV 

IRBMFIDV 

5 To allocate and initialize the Device Event Data Table IRBMFIDV 
(EDDEDT) the following phases are necessary: 

a) The number of nonzero entries in the lOS UCB lookup 
table is determined. The result is the maximum number 
of devices possible. A work table is allocated on the 
basis of this count. 

b) For each class of devices to be monitored,· the lOS UCB 
lookup table is used to search for existing devices in the 
class. As a device is found, its UCB address is put into 
the work area and a class count is increased by one if that 
UCB address had not already been processed. 

Label Extended Description 

c) The preceding phase is repeated without modifying the 
work area as a check that the. lookup table is not in the 
process of being changed. If an error is found, both the 
preceding phase (b) and this one (c) is repeated. 

d) Finally the EDDED, the Device Class Data Table 
(EDDCD), and the Device Data Blocks (EDDDBS) are 
allocated and initialized, based on the work area 
information. 

The EDDCD entries consist of one entry for each of the 
following device classes in the order listed: 

• tape 
• communication equipment 

• direct access 
• graphics 
• unit record 
• character reader 

Each entry is zero if no device exists for that class; other­
wise it contains the address of the EDDDB table and num­
ber of DDBS for the devices that do exist. 

Module 

6 The address of the EDDED is stored into STMMMGRL IRBMFIDV 
of the MFROUTER Measurement Vector Table 

(STMMV), into STSGT, and into STMEDAD of the SMA. 

7 The storage length is; 
n 

4 + length (DDDVT) + L bk times 
k=1 

[length of (SMFRCD74) + length of (SMF74A) + Ck times 
(length of (SMF74B))] 

where, DDDVT is a table of entries for each device class 
n = number of device classes 
Ck = number of devices in class K 
bk = 1 if Ck '" 0 and 
bk = 0 if Ck = 0 

8 The return code for IRBMFIDV is set to indicate that IRBMFIDV 
lOS data collection should be started, that 

MFROUTER should be enabled, and that sampling of device 
data is required. 

Label 



~ Diagram 7-11. Data Control (IRBMFDTA) (part 1 of 4) 

i 
From MFSTART 

~ 
~ 

Input (lGXOOO13) via SYNCH Process 

~ 
fI) 

I 
i-
f 
~ 
j 
(II 

w 

~ 
~ 

~ 
i 
18 
w 
!..I -

MFPCT 

Problem Control 
Table 

;, *=J~;Wt'i ••• &1.0!Br?ljYf3ii.-jj_,§!t~. 

Permanent Common 
Option Area 

MFCOA - --
MFCOINTV 

L..--

MFPCT 
~ - -- - 1 

MFPCMINT I 

I 
I - J -
MFCOA 
r--- --I 

MFCOSTPV I, 
1 

r .-I .... -

MFPCT 
~ 

MFPCNINT 

- - -
,~ 

" 

.. Data Control (lRBMFDTA) 
,1 ... 

) 1 Provide for recovery in event of an 
~ v error in the Data Control module. 

'> 

2 Issue message to operator: 
MF/1 ACTIVE. 

, 

.... 3 Convert the interval (input option ) 
v data) to time-of-day form. 

I ... 4 Unless the input option indicates > 

I 
.. NOSTOP, calculate the number 

of intervals to the stop time. 

... 5 Reduce the interval count by one. ) 
v When the count is zero, cancel 

the ESTAE and return. 

0'0" 

Output 

" 
Error ~ 

Linkage IRBMFDEA 
Only 

~ ESTAE Routine 
r' 

... 
IRBMFMPR 

r' 

Message 

"" Processor 

MFPCT 

r:::::-- - --""I 
-"')I MFPCMINT 

~ v~_ --J -

MFPCT 

~--
J\ 

MFPCNINT ., 

--- -- -

_~ Returnto MFSTART 
(lGXQOO13) 



rn 
(I) 

~ 
e' 
1:1 

~ 

a:: 

[ 
a. 
o 
"0 

~ 
5' 
1:1 

I.f -S 

Diagram 7-11. Data Control (IRBMFDT A) (part 2 of 4) 

Extended Description 

Data Control (lRBMFDTA) is executed in problem state 
in response to a SYNCH macro instruction issued by the 
MFSTART module. This change from supervisor state in 
MFST ART represents the entry into the main measurement 
gathering operations, which are controlled from the Data 
Control Module. Control includes establishing the interval 

of measurement gathering, as specified by an input option, 
and the queueing of report generation subtasks if real time 
reporting was requested. In addition, Data Control performs 
a number of event control block and storage control func­
tions. 

1 Establish ESTAE routines. 

2 This message is the first normal operation message to 
the operator. It is issued after he indicates GO. 

3 Interval time is entered in minutes. This time is con­
verted to microseconds and placed in a doubleword 

such that a one in bit 51 equals one microsecond. 

Module 

IRBMFDTA 

IRBMFDEA 

IRBMFMPR 

IRBMFDTA 

4 A stop time (input option) is specified or NOSTOP IRBMFDTA 
is specified. If NOSTOP is specified, the stop command 

is used to stop MF/1 operation. If a stop value is given, the 
amount of time from the current time until the stop time 
is divided by the interval length to obtain the number of 
intervals. 

5 Data Control reduces the number of such intervals 
each time through this code. When this interval count 

is zero, MF/1 measurements are ended. 

IRBMFDTA 

Label 



~ Diagram 7·11. Data Control (IRBMFDTA) (part 3 of 4) ... 
i 

i 
~ 
N 
fIl 

1 
i-n 
r­az 
! 
< 
2. 
§ 
(D 

eN 

~ 
N 

f 
eN 

~ 

!ill' 

MFPCT 
~-

MFPCELADI=O 

--

I Operator STOP Command 
-' 

\.... STOP Command ECB 

I 

~ARG Subtask' Ended 1 
MFSEL 

MFSESECB I 
I 

--- - - ...I 

J STIMER Time Ended 1 
~STIMERECB 

DTSTIECB I 

'"h< 

6 Set interval timer to alert Data Control 
when the end of the current interval 
is reached. 

,! ... 

IV 7 If a previous list of event control blocks 
exists, free that storage, set up storage 
for a new ECB list, and set ECB 
addresses into new ECB list. 

8 Wait for the posting of one of the 
following events (9, 10, or 11) in 
an event control block (ECB). 

1\ 
.... rJ> 9 If the ECB for an operator-entered 

STOP command is posted, 
cause measurement gathering 
for this interval. If reports are ~ 

to be printed, attach report '" 
generation subtasks in accord 
with input options. Cancel 
the ESTAE, and end ~ 

measurement gathering by -, 
returning. 

.... 
n;) 10 If the ECB for the end of a report 

generator subtask is posted, indicate 
its completion and free its main 
storage. 

11 If the ECB for the end of the 
current interval is posted, cause .. 
measurement gathering for this -, 
interval and, if reports are to be 

"- printed, attach report generation ') 
II' subtasks in accord with input 

options. 
" 
-, 

p <~< "". 

- -- -

f 

f 

SVC 109 to. IGXOOO14 

... Start measurement 
gathering routines 

to. 
IRBMFRGM 

... Report Generator 

Return to MFSTART 
UGXOOO13) 

(SVC 109) .. 
IGXOOO14 

r' 

Start MG Routines 

(ATTACH) .. 
IRBMFRGM 

"'='> ... 
Report Generator 

: ' 



1;1) 
(D 

::a. c)" 
::I 
~ 

ac 
sa. 
5' 
Q. 

~ 
o 
1 a­s· 
::I 

~ -$ 

Diagram 7-11. Data Control (IRBMFDT A) (part 4 of 4) 

Extended Description 

6 The routine sets the STIMER macro instruction for 
the length of the current interval and compensates for 

any stop during the interval. 

7 It uses one FREEMAIN macro instruction to free 
storage of any existing event control blocks (ECBs). 

Then the routine uses GETMAIN to obtain storage for 
pointers to ECBs: one ECB for the STOP command, one 
for the STIMER alert, and one for each report generation 
(SARG) subtask. 

8 One of three conditions has occurred when an ECB is 
posted: 

a) The operator has issued a stop command. If so, create 
short interval data, and end measurements. Return to 
caller of Data Control. 

b) A report generator subtask has ended. If so, detach the 
subtask, and dequeue its subtask element (SEL) from the 
subtask queue (SQU). 

c) The STIMER interval has been reached (the current 
interval has ended). If so, issue an MFDATA SVC to cause 
measurement gathering for this interval and attach a 
report generation subtask unless no report of these 
measurements was requested. Build a (SARG) subtask 
queue element (MFSQU) for the subtask. 

Module 

IRBMFDTA 

IRBMFDTA 

IRBMFDTA 

" __ 7 

Label Extended Description Module 

9 An EXTRACT macro instruction is used to obtain the IRBMFDTA 
command input buffer (CIB) address of the STOP. 

A short interval results when the STOP command is issued. 
The MFDATA SVC controls the collection of requested IGXOOO14 
measurement data. Report generation subtasks are called 
by attaching the Report Generator control (JRBMFRGM). IRBMFRGM 

10 Data Control issues a DETACH macro instruction to IRBMFDTA 
remove a completed subtask and then shortens the 

subtask queue. The subtask's main storage (its element sub­
pool space) is freed by means of a FREEMAIN macro in­
struction. 

11 The MFDATA SVC controls the collection of 
requested measurement data. Report generation 

subtasks are called by attaching the Report Generator con­
trol (lRBMFRGM). 

IGX00014 

IRBMFRGM 

)7 

Label 



~ --o 

o 
rIl 

~ 
W 
rIl 

I 
s 
~. 
~ 

~ 
~ 

i 
(D 

CN 

~ 
w 

~ r 
it 
CN 
!.J -

Diagram 7-12. Termination Processor (IRBMFI'MA) (part 1 of 2) 

From MFSTART 

Input SVC via CALL Process Output 
US: .. :.. • ZBJ1iiiG .. 1r-=::1 •..• ".ITil* el'rli;;,I'dil~I~ltilol~lpl'rl:lce!; Issl·~I';W-I(I';RIi.IBI:I·FI~IIM·lil~)lIil, •.. 

ESTAE PAR AM 

CVT 
,........--

CVTMFRTH 

-

STSCT 

Supervisor Control 
Table 

STGST 

Global Supervisor 
Table 

Error 

: :> 1 
I Linkage I I Esta?lish connection to recovery ~ q a 

routme. 

;,,-
-y 

.. 
') r·'··,:·:·., :;,:,;.:.' 

~ ,'" 

~: 

2 Disconnect event driven (MFROUTER) 
routines. 

3 Stop workload MG activity. 

4 Stop 105, device, and channel MG 
activity. 

5 Dequeue the MF1 timer queue 
element (TOE). 

6 Free resources obtained for MG 
routines. 

7 Free event-driven (MFROUTER) MG 
vector table, local, pageable storage, 
and global, fixed storage. 

8 Set termination variables. 

~ .... 
... 

~ ... 
... 

t1 ... 
""f 

9 Cancel connection to recovery Return to MFST ART 
routine and then return. Mainline Processor 

OGXOOO13) 

ESTAE Routine 

IRBMFIOI 

Terminate 105 MG 
Activities 

IEAOTDOO 

Dequeue TOE 

IRBMFTRM 

Terminate I'y'IG 
Routine Resources 



ell a 
~. 

= N 

== ~ 

i 
o 
"'" o 
'0 ; 
g. 
= 
~ --

Diagram 7-12. Termination Processor (IRBMFTMA) (part 2 of 2) 

Extended Description Module 

The Termination Processor (lRBMFTMA) disconnects IRBMFTMA 
MFI1 from the resident nucleus. The Termination Proc-
essor dequeues the Timer Oueue Element (TOE), discon-
nects the event driven (cycle) MG routines, disables work-
load activity data collection, releases global storage, and 
restores the changes made in the system I/O processor (lOS) 
to enable channel and device data collection. 

1 The Termination Processor provides ESTAE parameters IRBMFTMA 
to provide for retrying while releasing resources. 

2 The linkage to the MFROUTER service routine 
(lRBMFEVT) is changed so that if an attempt is made 

to transfer control to IRBMFEVT, immediate return will 
be made by a BR 14. The Termination Processor also 
ensures that no CPU is currently executing event-driven MG 
code when this code is disconnected. 

3 The Termination Processor causes the workload man­
ager to stop workload activity data collection. 

4 The Termination Processor calls the lOS Initiation/ 
Termination Module (lRBMFIOI) to restore the 

changes it made to lOS. 

IRBMFTMA 

IRBMFTMA 
IRARMWLM 

IRBMFIOI 

Label Extended Description 

5 The Termination Processor dequeues the MF/1 timer 
queue element (TOE) by disabling (using the 

SETLOCK macro instruction); providing a functional 
recovery routine (FRR) link (because of having disabled); 
and using the TOE Dequeue routine (lEAOTDOO) to 
dequeue the TOE. The Termination Processor then cancels 
the FRR link, and enables by means of the SETLOCK 
macro instruction. 

6 The Termination Processor calls routine I BBMFTRM 
to release the resources of each MG routine. 

Module 

IRBMFTMA 

IEAOTDOO 

IRBMFTRM 

7 The Termination Processor uses the FREEMAIN macro IRBMFTMA 
instruction to release the measurement Vector Table 

(STMMV), the MF/1 local storage, and MF/1 global storage. 

8 The Termination Processor dequeues the MF/1 
enqueue resource by use of the DEO macro instruction. 

9 The EST AE connection is canceled by use of the 
ESTAE macro instruction. 

IRBMFTMA 

IRBMFTMA 

Label 



"f --w 

~ 
~ 
w 
rn 
'< 
fQ. 

a 
~ 
~. 
r-

I 
< 
~ a 
(D 

w 

'< rn 
w 

i 
~ 
w 
~ -

Diagram 7-13. MF/l Message Processor (IRBMFMPR) (part 1 of 2) 

Input 

MPMDL MPLIST 

Message 
Text Module 
IRBMFLMP 

MPMSGBUF 

Output Buffer 

MP1STLIN 

First Line 
Indicator 

From Caller of 
Message Processor 

II 
,zi 

''TJ 

,~; 
-C;;" 

Process 

r' ,.,> 

J.', 

;.'~ 

MF /1 Message Processor 
(lRBMFMPR) 

1 Assemble the parts of the message 
and fill the output buffer with the 
assembled message text for one 
line. 

2 Output the buffer (one line of the 
message) to: 

a. Operator's console. 

or 

b. Data set. 

or 

c. System Message (WTP 
messages) area. 

3 If another buffer load (message 
line) is required, return to Step 1. 

Otherwise, return. 

}::j '. VI 

;;; '1 r;~ 

MPMSGBUF 

Output Buffer 
(84 Bytes) 

~ SYSOUT 

~ Data 
Set 

System 
Message 
Area 



tI.l a 
~. 

::I 
N 

a:: 
sa. 
6' 
Q. 

o .... 
o 
1 a 
~. 

::I 

~ --CN 

~ 

Diagram 7-13. MF/l Message Processor (IRBMFMPR) (part 2 of 2) 

Extended Description 

The Message Processor (lRBMFMPR) is called from several 
places in the MF/1 program to print output messages. 
(These are: IRBMFDTA, IRBMFINP, IRBMFRGM, 
IRBMFMFC, and IRBMFMLN.) The Message Processor 
assembles the required message from parts in the Message 
Text module (lRBMFLMP), moves the parts into an output 
buffer, one message line at a time, and writes the message 
lines to the required output device or data set. 

1 Input parameters define the message in terms of fi?<ed 
and/or variable text portions. Fixed text portions are 

obtained from IRBMFLMP through an index in table 
MPLIST. When an MPLIST entry contains a zero, a variable 
text entry is obtained from the variable text list 
(MPVTXLST). If the variable text length (MPVTLEN) is 
non-zero, the variable text is moved into the buffer. If the 
variable text length is zero and the MPRTNUM field is non­
zero, the MPRTNUM value is used to index into 
IRBMFLMV, to obtain fixed text from IRBMFLMP. Up to 
80 bytes of message text and message identifier are assem­
bled in the buffer. 

Module 

IRBMFMPR 

IRBMFMPR 

Label 

MFBLDMSG 

2 The message Processor calls routine MFOUTMSG to 
write the buffer to the operator's console or required 

data set and then returns to the Message Processor 

IRBMFMPR MFOUTMSG 

as soon as the message is sent. 

3 The message Processor controls the assembling of IRBMFMPR 
message lines and writing them until the entire message 

is sent. 



~ .... .... 
~ 

o 

~ 
i 
S-
1· 
C! 
Sf 
~ 
~ 
~ 
CD 
c.H 

~ 
~ 

~ r 
5 
c.H 
:... -

Diagram '.14. MFDATA SVC Mainline Processor (IGXOOOI4) (part 1 of 4) 

Input 

STMVT 
-, 

STMVNUM 
I 
I 

.J 

STSCT 
~---

STSCMVLE 

STSCMF1V 

STSCCOA ... 

-
CVT -- -
Release no. 

From Data Control 
(tRBMFDTA) and MFSTART 
(lGXOOO13) via SVC Call Process 

'!Ii ... MFDATA SVC Mainline 

• (tGXOOO14) 
, 

.. ) 1 Obtain local storage for determining 

" the measurement options and 
initialize control block. 

STOCA 

~-I STOCYCV Po..) 2 Obtain header items for 
j --y measurement records. 

L - I -
j 
j) 

SMCA 
r' -/l SMCASID 

~- .-. - .... 
CVTSMCA ~ 

~--' 

., 
~ r ... 1..., 

Output 
,'" 

,j 

;~ 

;~ 

DTMVT 

Po.. Measurement 
v Vector Table 

~. 

Headers or SMF ... records 
y SMF70 through 

SMF74 



fIl 

11 e· 
= 
~ 

a:: 

i 
a 
o 
." 

i e· 
= 
"f --(.II 

Diagram 7-14. MFDATA SVC Mainline Processor (IGXOOOI4) (part 2 of 4) 

Extended Description Module 

The MFDATA SVC Mainline (lGXOOO14) processor exe- IGXOOO14 
cutes in response to an MFDATA SVC issued by the Data 
Control module (lRBMFDTA), once each interval, and by 
MFSTART (lGXOOO13) during initialization. When called, 
IGXOOO14 controls the operation of measurement gathering 
routines. Each MG routine collects measurements of one of 
the following kinds if called for by input option: 

• CPU wait time 
• Paging activity 
• Workload 

• Channel activity 
• Device activity 

The measurements for the interval are placed in records 
that have the format of System Management Facilities 
(SMF-70-74L Internal Copies of these records are used by 
report generation routines (SARG) to provide printed 
reports specified by input options. 

1 Issue the GETMAIN macro instruction to obtain 
storage for the Measuremerit Vector Table (DTMVT) 

and initialize the table area by setting all option pointers to 
zero. 

2 Obtain SMF record header items for: 

a) Identifying the record as an OS/VS2 record. 
b) System identification. 
c) MF/1 version number. 
d) Operating system release and level. 
e) Cycle length (from input option). 

IGXOOO14 

Label 



Cf .... .... 
0\ 

~ 
~ 
fIJ 

i 
~ 

t· 
i 
< 
2-
§ 
(D 

w 

~ 
~ 

t 
~ 
w 
!..I -

Diagram 7-14. MFDATA SVC Main1ine Processor (IGXOOOI4) (part 3 of 4) 

Input 

STMVT 

addr: 
CPU SMA 

addr: 
Pag. SMA 

addr: 
Wkld SMA 

addr: 
Chan SMA 

addr: 
Device SMA 

~~ -

Process 9 
~----t ~----'II i > 3 

Call each measurement gathering 
(MG) routines three times 

addr: CPU move 
or epilog --~ Paging SMA 

n== --
addr: Paging MG 
routine 

addr: Paging move 
or epilog 

addr: Channel 

I 

I MG routine II.~, I 
addr: Channel 
move or epilog ........ m ... Jjr---. 

~ 

Device SMA 

~ 
addr: Device MG 
routine 

addr: Device 
move or epilog 

~ 

(for prolog, move, and epilog), 
disabling before move and 
enabling afterword. All prologs 
are called before any move, 
and a II moves before any 
epilog. 

.. 

4 Return to caller of 
MFDATA SVC. 

..." 

Return to Data Control 
(lRBMFDTA) or 
MFSTART UGXOO013) 

Output 

MG Routines 

I I-I For CPU 
(lRBM FDCP) t----

For paging I-­
(lRBMFDPP) 

For Workload 
(lRBMFDWP) ~ 

For channel 
(lRBMFDHP) 

I--

For device 
URBMFDDP) 



til a 
~. 

::I 
t-.,) 

iC 
a 
8' 
Q. 

o 
""l 

o 
"0 
~ a 
~)" 
::I 

~ -..., 

~ 

Diagram 7-14. MFDATA SVC Mainline Processor (IGXOOOI4) (part 4 of 4) 

Extended Description 

3 Each MG routine has a prolog, a move part, and an 
epilog. The prologs for all the required (by input 

option) MG routines are called first in the order listed in the 
first paragraph of this explanation. When the prologs have 
been called, the required move parts are called, and then the 
epilogs are called. The effect on each MG routine, however, 
is as though it executed from start to end without inter­
ruption. This arrangement is used to allow the move parts 
of these routines and IGX00014 to execute disabled. Before 
the move parts of the MG routines, which contain the code 
to move measurement data into record formats, are exe­
cuted, interruptions are disabled by obtaining and releasing 

the dispatcher lock. When the SETLOCK is released, it is 
released disabled. The reverse technique is used to enable, 
after all the move parts of the MG routines have been 
executed. 

Module 

IRBMFDCP 
IRBMFDPP 
IRBMFDWP 
IRBMFDHP 
IRBMFDDP 

4 Upon return to the caller, IGXOO014 save the Measure- IGX00014 
ment Vector Table (DTMVT) address in register 1. 

Label 



~ --00 

&$ 

~ 
N 
f.I.) 

1 
~ 
s 
~. 
Co 
~ 
~ 
~ 
~ 
(II 

~ 

~ 
N 

~ 

i 
~ 
~ 

!..! -

Diagram 7-1 S. Interval MG Routine for CPU (IRBMFDCP) (part I of 4) 

From MFOATA SVC Mainline 

Input Processor (lGXOO014) Process 
".,.,', .... :."/ .. " "", 

Interval MG Routine for CPU 
(lRBMFDCP) 

, 
STSMA (CPU) : Prolog 

,; .. -- .... 
,'. (I STSMIGMC ) 1 Obtain storage area for new data. ... 
':' ( L.. __ 

;,; Parameter List 
2 Initialize and fix (in real storage) the 

;, + STSMA new data area and fix IRBMFDCP. 
0-

';: 

SMF Header 
From 3 Save entry point for Move routine 
MFDATA (see the MFOATA SVC Mainline ~ -- SVC Processor (lGXOOO14) diagram). 
(tGXOOO14) 

STSMA (CPU) .. Move --
STSMEOAD 

- ~ 4 Update tables for CPU activity status 
~- and change in status since last interval. 

CSO - ::I 
I .... 

CSDCPUAL ) 5 Move all CPU waiting times into 
J f '" J new data area. -

LCCAi .... - - ..... 6 Save entry point for Epilog routine LCCAWTIM 
J I 

y 
(see the MFOATA SVC Mainline 

~ ---- Processor (tGXOO014) diagram). -
PCCAi 
,.-- - -

PCCAPCID 

-.,. - - I 

Output 

: .''''''" 

i 
; 

STSMA 

~; :: ~ 

1>. 
STSMIADD ... 

STSGT --
~ Storage 

Resource \;," 
Table 

.... 
STSMENTR 

" 
A 

Return to 
MFOATA ~ Processor .... 

STSLCOM ... --..... -- ~ 
,~;. ,/'+ <;';"" ;;2" "c 
.}~.·0."%"",:.· ., ~.,., '" ',·c,; , ..•. 

.... ~ I New Data Area 

... L 

~ Return to 
MFOATASVC 
Mainline 
Processor 



I:I'J 
(D 

~ 
~. 

::s 
!'! 
a:: 
sa. 
[ 
So 
o 

"C:S 
~ a 
~. 

::s 

~ --\C 

~ 

Diagram 7-1S. Interval MG Routine for CPU (IRBMFDCP) (part 2 of 4) 

Extended Description 

The Interval MG Routine for CPU (lRBMFDCP) receives 
control from the MFDATA SVC Processor at the end of 
each interval if CPU activity reports are required . 
. IRBMFDCP copies CPU wait times for all CPUs into a con­
tiguous storage area and builds an internal image of the 
MF/1 CPU activity record (SMFRCD70) for the SMF data 
set. IRBMFDCP calculates wait time for each CPU by sub­

tracting the wait time read at the end of the current interval 
from that read at the end of the previous interval, after 
adjusting for the possibility of wrap-around readings. 

Prolog 

1 Use the GETMAIN macro instruction to obtain the 
required storage in key zero. 

2 Store the subpool and length of the storage obtained 
into the first word of the area. Use the PGFIX macro 

instruction to fix the data and IRBMFDCP. 

3 Save the entry point, as described in the M.D. diagram 
MFDATA SVC Mainline Processor OGXOOO14), for 

use in returning to the Move part of IRBMFDCP. 

Move 

4 If a CPU is now online whose flag is not set in 
STSMEDAD of the Supervisor Measurement Area 

(STSMA), set its flag to indicate that it has been online. 

5 Partially initialize the SMF record image, set online 
status flags for all valid CPUs, and move in wrap­

around wait time measurement counters for those CPUs. 

6 See Step 3. 

Module Label 

IRBI'ylFDCP 

IRBMFDCP DCGETMN1 

IRBMFDCP 

IRBMFDCP DCMOVE 

IRBMFDCP 

IRBMFDCP DCEPILOG 



~ Diagram 7-15. Interval MG Routine for CPU (IRBMFOCP) (part 3 of 4) 

~ From MFDATA SVC 

o 
(I) 

"< (I) 
N 
(I) 

'< 
~ 

9 
i 
(Ii)" 

r-
0: a 
'< 
< o 

~ 
(D 

w 

'< (I) 
N 

~ 
(D 

Input 

Parameter List 

Initial Call Flag 

Mainline Processor 
(JGXOOO14) 

Process 

Epilog 

7 If this is the initializing call of this 
routine, return to MFDATA SVC 
processor; otherwise, proceed to 
next step. 

8 Complete the SMF record image by 
calculating CPU data for this interval 
and moving it into the area that 
contained previous interval data. 

Output 

i' 
Y6 
w Record Flag 9 If RECORD is requested, write the VI 

~ 

DCSMFLEN 

SMF record. Otherwise, proceed 
to the next step. 

10 Obtain storage in TCB key 
(also called user's key), move 
calculated data into it, and return 
the data address to MFDATA SVC 
caller. 

11 Free area obtained for the last 
interval's new data. 

Return toMFDATA SVC 
Mainline Processor 
(JGX00014) 

SMF Data Set 

Output Data 
Address 



r 
~. 

:= 
~ 

tiC 

i 
a 
o 

I 
~. 

:= 

Cf -t-J -

~ 

Diagram 7-1 S. Interval MG Routine for CPU (IRBMFDCP) (part 4 of 4) 

Extended Description 

Epilog 

7 On the first call to the MFDATA SVC, the MFDATA 
SVC Processor calls the interval MG routines to obtain 

a first set of wrap-around measurements for later calcula­
tions (subtraction). 

8 Move through all possible CPU entries in old and new 
data areas, and calculate CPU wait times for CPUs 

active throughout the interval. Allow for wrap-around 
values when subtracting current from previous values. 

Module 

IRBMFDCP 

IRBMFDCP 

9 Use the SMFWTM macro instruction to write the image IRBMFDCP 
of the SMFRCD70 record to the SMF data set. 

10 Use the GETMAIN macro instruction to obtain the IRBMFDCP 
required storage in user key; use the MODESET 

macro instruction to change to the TCB key. 

11 Release the storage of the internal SMF image using 
a FREEMAIN macro instruction. 

IRBMFDCP 

Label 

'--_ .1' "'-.-Y 



::;: 
t1 

~ 
w 
{'IJ 

I 
S­
~. 

i 
~ 
~ 
J 
(D 

w 

'< {'IJ 
w 

i s 
w 
:.... -

Diagram 7-16. Interval MG Routine for Paging (IRBMFDPP) (part 1 of 4) 

Input 

List 

• STSMA 

SMF Header 
, 

I 
Initial Call 
Flag 

From MFDATA SVC 
Mainline Processor 
(lGXOOO14) via CALL Process 

Interval MG Routine for Paging 
STSMA (Paging) (lRBMFDPP) 

Prolog 
STSMIGMC 1 Obtain storage area for new data. 

2 Initialize and fix (in real storage) the new 
data area and fix IRBMFDPP. 

3 Save entry point for Move routine 
From (see the MFDATA SVC Mainline ASMVT IGXOOO14 Processor (IGXOOO14) diagram). 
via CALL 

ASM Vector 
Table 

Move 

4 Move header data and PVT and ASMVT 
data into new data area. 

PVT 

Paging 
Vector Table From 

IGXOOO14 
via CALL 5 Save next entry point. 

Epilog 

6 Free previously fixed areas. 

7 If this is the first time through this routine, 
return to MFDATA SVC Mainline 
Processor UGXOOO14); otherwise, proceed 
to next step. 

Output 

STSMA 

STSMIADD 

STSGT 

STSMENTR 

Return to 
MFDATA 
Processor 

New Data Area 

STSMA 

Return to 
MFDATA 
Processor 



til 

$t 
e' 
= 
~ 

at:: 
sa. 
8' 
Q. 

S­
O 
"0 

~ 
5· 
= 
~ -N 
tN 

Diagram 7-16. Interval MG Routine for Paging (IRBMFDPP) (part 2 of 4) 

Extended Description Module 

The Interval MG Routine for Paging URBMFDPP) builds an IRBMFDPP 
internal image of an SMF-71 paging record and, optionally, 
copies this image to the SMF data set. IRBMFDPP uses, for 
the internal image, data collected by the paging supervisor 
and the auxiliary storage manager. As described in the M.O. 
for the MFDATA SVC Processor, IRBMFDPP executes in 
three parts, PROLOG, MOVE, and EPILOG, but no break 
in execution is apparent except for the need to save entry 
points for the MOVE and EPILOG parts. 

1 The GETMAIN macro instruction is used to obtain IRBMFDPP 
storage in key zero. The data for this interval is to be 

moved into this storage. 

2 Use macro instruction PGFIX to inhibit paging of 
both the data area and routine IRBMFDPP. 

3 The entry point is to be used to enter the Move 

IRBMFDPP 

IRBMFDPP 

Label 

part of IRBMFDPP. Between the PROLOG and Move 
a mechanism is used that avoids freeing data that would be 
freed in a normal return. IRBMFDPP DPMOVE 

Extended Description Module Label 

4 IRBMFDPP moves a standard SMF record header and IRBMFDPP DPRTOO17 
MF/1 control section and then fills in data fields in the 

internal record image (SMFRCD71 ). 

5 IRBMFDPP provides entry to its EPILOG. IRBMFDPP DPEPILOG 

6 IRBMFDPP uses the PGFREE macro instruction to IRBMFDPP DPRTOOO18 
allow paging in previously fixed area. IRBMFDPP DPPAGFX4 

7 On being called as part of initialization via the IRBMFDPP 
Initialization Mainline (MFMAINL) and MFDATA 

SVC Processor (lGXOOO14), IRBMFDPP returns to 
IGXOO014, leaving initial-value data in an SMF record to be 
used at the end of the interval. 



~ Diagram 7-16. Interval MG Routine for Paging (IRBMFDPP) (part 3 of 4) 

~ 

i 
~ 
N 
fIl 

1 
~ 
ci 
n' 

f 
~ r 
CD 
w 

~ 
N 

~ 

f 
w 
~ 

1'01 I'rI 

Record Flag 

Previous 
Internal 
Data Area 

DCSMFLEN 
I 
I 
I 

.~. , ~. 

8 Complete the SMF record by 
calculating paging data for this interval 
and moving it into the area that 
contained previous interval data. 

... 
> 9 If RECORD is requested, write 

the SM F record. Otherwise 
proceed to next step. 

.. 
> 10 Obtain storage in TCB key 

... (also called user's key), move 

11 

calculated data into it, and return 
the address to MFDAT A SVC 
caller. 

Free the area that contains previous-
interval data . 

V·'" __ fiC'W~» • 
Return to MFDATA SVC 
Mainline Processor 
(lGXOO014) 

" 

~ Previous Interval .. Data Area 

.. 
I )I SMF Data Set 

! " o/:!v 
.. I 

I DCRETDTA I "I Address of Data 
~ II 

II 
11.)1 Current Interval 

<! ... Data Area 

. 
w 

~ 



CI.l a 
5· 
::s 
N 

at 

i 
So 
o 
." 

! e· 
::s 

"f -~ 

~ 

Diagram 7-16. Interval MG Routine for Paging (IRBMFDPP) (part 4 of 4) 

Extended Description Module 

8 Values of paging data are calculated by comparing data IRBMFDPP 
at the start and end of the interval. Calculated values 

are placed in the old data area. 

9 If the input option of recording data is requested, IRBMFDPP 
IRBMFDPP writes the SMFRCD71 internal image to 

the SMF data set using the SMFWTM macro instruction. 

10 IRBMFDPP uses the GETMAIN macro instruction to IRBMFDPP 
obtain storage in user key. Change to user key by 

means of the MODESET macro instruction. 

11 IRBMFDPP uses the FREEMAIN macro instruction 
to free storage. 

IRBMFDPP 

Label 



~ -~ 
o 

~ 
~ 
fI} 

'< 

I 
i n· 
t: 
2" 
~ 
~ 
[ 
c 
w 

'< fI} 
~ 

~ 
i 
lC 
w 
:.... -

Diagram 7-17. Interval MG Routine for Workload (IRBMFDWP) (part 1 of 4) 

Input 

From MFDATA SVC 
Mainline Processor 
(lGXOOO14) via CAI,.L Process 

".'" 

Interval Routine for Workload 
(lRBMFDWP) - --1""""'- Prolog 

" DWWIWAML } 1 Obtain storage for workload activity .. 
data area (local Workload Activity 

~ ----- Measurement Table (WAMT)). -
2 Page-fix the data area obtained in 

step 1, page-fix IRBMFDWP storage, 

: and save the storage area address and 
the data area address. 

; 
;; 

DWWIN 3 Save the next entry point. -- , From 
DWWIWAML J=::1 IGXOOO14 

via CALL - -~ -- -
(Global) WAMT Move 

Workload .. Activity I--- > 4 Invoke the workload activity data 
Measurement I-- t' collection facility of the System 
Table Resources Manager (SRM). 

CVT ---
CVTOPTE --

.------ 5 Save the next entry pOint. 

Output 

fi 

STSGT 

" Storage Resource ) 
y Table 

STSMA - ---....-. 
r' 

"~ STSMENTR 
v 

L...-. 
• Return to 

MFDATA 
Processor 
(lGXOOO14) 

;; 
(Local) WAMT 

Workload 

" Activity 

" Measurement 
Table 

Return to TMFDATA Processor 
(lGXOOO14) 



til 
(D 

$l 
eS" 
:s 
N 

ac 

i 
o .... 
o 

1 g. 
:s 

"f -N ...... 

~ 

Diagram 7-17. Interval MG Routine for Workload (IRBMFDWP) (part 2 of 4) 

Extended Description Module 

The Interval Routine for Workload (lRBMFDWP) builds the IRBMFDWP 
internal image of SMF-72 records from data collected by 
the Workload manager of the System Resources Manager 
(SRM). If required by input option selection, IRBMFDWP 
also copies the SM F record image to the SM F output 

data set. 

Prolog 

1 The Interval Routine for Workload (lRBMFDWP) 
uses the GETMAIN macro instruction to obtain 

storage in supervisor key for the Workload Activity 
Measurement Table (WAMT). 

IRBMFDWP 

2 IRBMFDWP uses the PGFIX macro instructions to IRBMFDWP 
page-fi x the data area and instructions of I R BM F DWP . 

Item STRVNSGT is updated to indicate the next available 
slot in the Storage Resource Table (STSGT). 

Label Extended Description Module Label 

3 The entry point of the Move part of IRBMFDWP is IRBMFDWP DWMOVE 
saved in the Supervisor Measurement Area (STSMA) 

to implement a special return sequence, which does not 
free storage and does not invalidate addressing. The purpose 
of this return sequence is to separate each interval MG 
routine into three parts: Prolog, Move, and Epilog. The 
Prologs of all MG routines are all executed before any Move, 
and all the Move parts before any Epilog. Because of the 
special return sequences used, however, each interval MG 
routine appears to be executed without any break, from 
start of Prolog through end of Epilog. 

Move 

4 Issue a SYSEVENT WKLDCOLL, which generates a 
branch entry to the SRM. SRM copies workload data 

from the global WAMT to the local WAMT. 

5 Save entry point in STSMA for epilog segment. 

IRARMINT 

IRBMFDWP DWEPILOG 



~ Diagram 7-17. Interval MG Routine for Workload (IRBMFDWP) (part 3 of 4) 
N 
00 

o 
~ 

~ 
N 

~ 
~ 
r-
Ji 
n' 
r­
eT 

! 
~ 
a 
(II 

CN 

~ 
N 

~ 
i 
rd 
CN 

~ 

t-rom 
IGXOOO14 
via CALL .. 

Input Parameters 

Initial Call Flag 

SMF Header 

~ 

Record Option Flag 

1""""-"--"""- ---"-

~ 

'..;.:-, 'O!' ,..;.:- .« 

Epilog 

6 Free previously fixed areas except the 
address of the local WAMT in the 
STSGT. 

7 If the return from invoking the 
SRM in step 4 indicated that ~ 

the Installation Performance .... 
Specification was changed 

'c since the last check, stop 
collecting worklOad data and 
reinitialize. 

~ 

.. 

" If this is the initializing call of ) 8 r this routine, free local WAMT and Return to 
return. Otherwise, proceed. MFDATA 

l! Processor 
UGXOOO14) 

9 Obtain storage fo, SMF "co'lls. --u 
II 
"Ji! 

" -.,> 10 Format an SM F record for each valid ~~ 
performance group. Write the data 
if RECORD option is requested in 
input options. 

~ Retumto 11 Free local WAMT and return. MFDATA 

~ 
" Processor 

OGXOOO14) 
~ .. 

-»~, »>: 

.. 

.. IRBMFTRM 

Resource Release 

.. 
IRBMFIWK 

P' 

Workload 
~, Initialization 

i' " )I SMF -72 Records 
r 

)f SMF Data Set -y 



~ a eo 
= 
~ 

~ 

[ 
o 
"'" o 
"g 
&t eo 
= 
~ -~ 
\C 

~ '--" 

Diagram 7-17 ° Interval MG Routine for Workload (IRBMFDWP) (part 4 of 4) 

Extended Description 

Epilog 

6 Remove the address of the storage, from the Storage 
Resource Table (STSGT). (The address of the local 

WAMT in the STSGT is not removed until its storage is 
freed in step 8 or 9J 

7 If the IPS changes; issue a SYSEVENT WKLDTERM 
to terminate the recording of workload data. Call 

General Resource Release to free the global WAMT and 

MF/1 workload measurement resources. Then call workload 
initialization to re-initialize workload activity data collection 
for the new IPS. 

8 IRBMFDWP issues a FREEMAIN macro instruction 
to release storage for the local WAMT. 

9 The amount of storage obtained in user's key (the 
key in the TCB) is determined as follows: 

No. of bytes required = 8 + (highest performance group 
noJ times (length of WAMTNDX) + (total number of per­
formance groups) times (length of SMF72B) + (total no. 
of valid performance group numbers) times (length of 
SMFRCD72 + length of SMF72A) 

Module 

IRBMFDWP' 

IRARMINT 
IRBMFTRM 
IRBMFIWK 

Label 

IRBMFDWP MFFREWAM 

IRBMFDWP 

Extended Description 

10 Following is the SMF records area 
format: 

Start Length 

highest perf group number 

WAMTNDX
1 

WAMTNDX
2 

... 
WAMTNDX highest perf group number 

SMFRCD72, 

SMF72A 1 

SMF72B1 t 

SMF72B1 2 

SMFRCD72
2 

. .. 

Where WAMTNDX is the ith index to the SMF72 record 
associated with PGi (or zero if PGi is not a valid performance 
group). 

IRBMFDWP issues an SMFWTM macro instruction to copy 
each record to the SMF data set if RECORD was requested. 

11 See step 8. 

"<_::' 

Module Label 

IRBMFDWP MFFREWAN 



~ ... 
~ 

i 
~ 
N 
en 
'< 

I 
i 
ro­
er 
~ 
~ 
E' 
51 
(D 

w 

~ 
N 

t s 
w 
:.., -

Diagram 7-18. Interval MG Routine for Channels (IRBMFDHP) (part 1 of 4) 

From MFDATA SVC 
Mainline Processor 

Input UGXOOO14) via CALL Process Output 

STSMA (Channel) 
~ 

-. Interval MG Routine for Channels 
(lRBMFDHP) 
Prolog 

to. r1 STSMIGMC I ti i;> 1 Obtain storage tor new data area. 11 If STSGT 1 STSMIADD - -
Parameter List 

, + STSMA 

SMF Header 
L 

ECCED 
~ 

~ ECCECPEQ 

I 
ECCESAMP 

~ ~ -

ECCPE Queue ECCDB Queue .... 

ECCPE1 ECCDB1 

ECCPE2 ECCDB2 

••• 

From 
IGXOO014 

Jo.. 2 Initialize and fix (in real storage) the new «$ =-; Y1 
data area and fix IRBMFDHP. +1 W, 

Storage 
Resource 
Table 

3 Save the entry point for Move (see MO STSMENTR 
diagram for MFDATA SVC Processor). 

Move Return to 
MFDATA 
Processor 
UGXOOO14) : :" > 4 Check the Channel Data Blocks 

(ECCDBs) of all CPUs, and move 
valid channel data into the new 
data area. 

; ; ~ New~taA~ 

to. 5 Save the next entry point. ______ ..,...".._,/\ 

, 

Return to 
MFDATA Processor 
(lG XOOO 14) 



C"Il 
(II 

sa. 
~. 

= 
~ 

a:: 
a 
[ 
e. 
o 
'C a 
5' 
= 
~ -w -

Diagram 7-18. Interval MG Routine for Channels (IRBMFDHP) (part 2 of 4) 

Extended Description 

The Interval MG Routine for Channels (lRBMFDHP) 
receives control from the MFDATA SVC Main'lne 
Processor at the end of each interval if channel 
activity reports are required. IRBMFDHP obtains 
and formats (sample) cycle data collected by the 
event-driven channel routines IRBMFECH and 
IRBMFTCH. IRBMFDHP records the data on the 
SMF data set (via the SMFWTM macro instruction) 
if RECORD is specified as an input option. 

Prolog 

1 Use the GETMAIN macro instruction to obtain the 
required storage in key zero. 

2 Store the subpool number and the length of the storage 
area obtained into the first word of the area. Use the 

PGFIX macro instruction to fix the data area and 
IRBMFDHP. 

3 Save the entry point, as described in the M.O. 
diagram, MFDATA SVC Mainline Processor 

(lGXOOO14), for use in returning to the Move part 
of IRBMFDHP. 

Move 

4 Partially initialize the SMF record image in storage. 
Then check through the channel Data Blocks 

(ECCDBs) associated with each CPU. (There is a CPU 
Element (ECCPE) entry for each CPU; each CPE entry 
points to one or more ECCDB entries') Move data from 
each ECCDB to an associated part of the new data area. 

5 Save the entry point for returning to the Epilog 
segment. 

Module Label 

IRBMFDHP 

IRBMFDHP 

IRBMFDHP DHMOVE 

IRBMFDHP 

IRBMFDHP DHEPILOG 

~<-' ";:.~ 



"fI Diagram 7-18. Interval MG Routine for Channels (IRBMFDHP) (put 3 of 4) ... 
w 
N 

~ 
~ 
N 

1 
i 
r­ea 
! 

f 
w 

~ 
N 

~ r 
w ,:, 

Parameter List - - ---- -
Initial Call Flag 

Record Flag 

DCSMFLEN 

.. 
Ji.. 

> 
II" 

f .. 

> 
!I" 

,to. 
I > 
I ,.. 

Epilog 

6 If this is the initializing call of 
this routine, return to MFDATA SVC 
Processor; otherwise, proceed 
to the next step. 

7 Complete the SMF record image by 
calculating data for this interval 
from previous interval data. 

8 If record is required, copy the 
calculated data; otherwise, proceed 
to the next step. 

f 

9 Obtain storage in TCB key, move 
SMF record image into it, and 
return the data address to 
MFDATA SVC caller. 

10 Free storage area that contains 
previous interval data. 

5\ '~~&ih· W'~~lr1%1i'M1'iiltEiihiiii0L 

Return to MFDATA 
Processor (JGXOOO14) 

:~ 

, 

Return to 
MFDATA 
Processor 
(JGXOOO14) 

.... 1 
J )I SMF Data Set 

I" l 

DCRETDTA 

~cl J 1"1 Output Data Addr. 

'--



fIl 

it e· 
::I 

!':» 
s: 

t 
2-

f e· 
::I 

~ -CoN 
CoN 

Diagram 7-18. Interval MG Routine for Channels (IRBMFDHP) (part 4 of 4) 

Extended Description 

Epilog 

6 On the initializing call to the MFDATA SVC, 
the MFDATA SVC Processor calls the interval MG 

routine to obtain initial values of measurement data, which 

are required at the end of the measurement interval to cal­
culate data for that interval. Processing ends here on that 
call. 

7 There is an SMF73B entry for each channel whether 
or not it was detected online during the interval. At 

this point, entries for chann~ls not online during the'inter­
val are eliminated from the record image and remaining 
entries are compressed together. 

8 The internal image of the SMF record is copied to the 
SMF data set by use of the SMFWTM macro 

instruction. 

9 Use the GETMAIN macro instruction to obtain the 
required storage in user key. Use the MODESET 

macro instruction to switch to the user's (TeB) key. 

10 Release the storage used for the internal image of 
the SMF record, using a FREEMAIN macro 

instruction. 

Module Label 

IRBMFDHP 

IRBMFDHP 

IRBMFDHP 

IRBMFDHP 



~ -~ 
o 

~ 
~ 
fI.) 

'< 
lQ. 
; 

i 
r-' 

J 
~ 
E' a 
(D 

w 

~ 
~ 

~ r 
! 
w 
:..a -

Diagram 7-19. Interval MG Routine for Devices (IRBMFDDP) (part 1 of 4) 

Input 

From MFDATA SVC 
Mainline Processor 
UGXOOO14) via CALL Process Output 

Interval MG Routine for Devices 
STSMA (Devices) 
~ ~ ... ~ol~ J i~ ~ .. 

(lRBMFDDP) STSMA 

~MIA~ Parameter List 

+ STSMA 

SMF Header 

~ 

EDDED 

~ 
EDDESAMP 

L1DDECDT -D 
't: I 
, EDOCD 

EDDCD 1 ,r---
EDDCD2 

• • • 
~ 

~ 1 i i~; > 1 Obtain storage area for new data. 

From 
IGXOO014 .. 

2 Initialize and fix (in real storage) the --~.,------,.,i/I 
new da'ta area and fix IRBMFDDP. 

3 Save the entry point for the Move 
routine (see the MO diagram for ----zt.-------..,.....-- r--------..11 
MFDAT A SVC Processor). t-----....... 

STSMENTR 
~ 

Move 

~SMFRCD741 

4 ~heck all device classes and move data 4 SMFRCD742 

EDDDB mto new data area. 
1 • • • 

Device SMFRCD741 

Data Block
1 

SMFRCD742 

-I-. -
5 Save next entry point. '" v --

l ~ Returnto 

L7~z4 ~~~~~:{ocessor 

It 



rn 
! 
e' ::s 
~ 

rc a 
5' 
Co 

2. 
o 
1 
! 
o ::s 

~ 
~ 

Diagram 7-19. Interval MG Routine for Devices (IRBMFDDP) (Part 2 of 4) 

Extended Description Module 

The Interval Routine for Devices (lRBMFDDP) receives con- IRBMFDDP 
trol from the MFDATA SVC Mainline Processor OGXOOO14) 
at the end of each interval if any device reports are required. 
IRBMFDDP builds the internal image of one or more 
device data SMF records (SMFRCD74; one record for each 
class of device report requested) from data collected in 
event control blocks by the device data event-driven sam-
pling routine (lRBMFEDV). If requested in the input options, 
IRBMFDDP copies the internal record images to the SMF 
data set (via the SMFWTM macro instruction). 

Prolog 

1 Use the GETMAIN macro instruction to obtain the 
required storage in key zero. 

2 Store the subpool and length of the storage obtained 
into the first word of the area. Use the PGFIX macro 

instruction to fix the data area and IRBMFDDP. 

IRBMFDDP 

IRBMFDDP 

Label 

3 Save the entry point, as described in the M.O. diagram, IRBMFDDP DDMOVE 
MFDATA SVC Mainline Processor (lGXOO014), for 

use in returning to the Move part of IRBMFDDP. 

Move 

4 Initialize the images of the SMF records. Check all IRBMFDDP 
device classes (one class is associated with each 

EDDCD), and move data from the Device Data Block 
(EDDDB) entries and the Device Event Data Table (EDDED) 
into the SMF74 record image corresponding to that device 
class. If no devices exist for a class or if no measurements 
are required for a class, the pointer for the SMF74 
record image is set to zero. 

5 Save entry for returning to Epilog segment. IRBMFDDP 

',,-~ 



!of Diagram 7-19. Interval MG Routine for Devices (IRBMFDDP) (part 3 of 4) -CN 
0\ 

~ 
~ 
~ 

rI'J 
'< 
~ 

~ 

oi 
r)" 
t"" 

J 
~ 
~ 
('D 

CN 

'< 
rI'J 
~ 

~ 
i 
~ 
CN :... -

From 
Input IGX00014 Process Output 

Parameter List 

Initial Call Flag 

II ~ ~~~~~~~~~~~~~~~ 

Epilog 

6 If this is the first time through this 
routine, return to MFDATA SVC 
Processor; otherwise, proceed to the 
next step. 

7 Complete the SMF record images 
(one for each valid device class) for 
this interval and move it into the 
area that contained previous interval 
data. 

Record Flag"') 8 If RECORD is requested, write 
the SMF record. Otherwise, 
proceed directly to the next step.) ,; 1 SMF Data Set 

.·.··
·:.·; .... ·.··.,.1.. I.: .. :.·,··.·.·.· 

9 Obtain storage in TCB key (also 
called user's key), move the data 
images into it, and return the data 

"'.:.,' , 
~ ~ . .9 

,";"~' '.:.' 

addresses to the caller of;, I~ Output Data 
MFDATA SVC. ;.; " Addresses 

">':, ,.' 
~<:.:t; :/ 

10 Free area containing the key zero 
copy of the SMF record just moved. 

Return to MFDATA 
Processor UGXOOO14) 



rI'.l 
CD a 
~. 

= ~ 

a:: 
a 
[ 
sa. 
o 
"0 

! 
5· 
= 
~ -~ -.J 

Diagram 7-19. Interval MG Routine for Devices (IRBMFDDP) (part 4 of 4) 

Extended Description 

Epilog 

Module Label 

6 On the initializing call to the MFDATA SVC, it calls IRBMFDDP DDEPILOG 
interval-driven MG routines to obtain a first set of 

wrap-around measurements for use at the end of the first 
interval in calculating values for that interval. Processing 
ends here on that call. 

7 For each device class for which a device exists and for 
which measurements are required, place the data for 

the interval just ended in the record for previous interval, 
overlaying previous data where necessary. For each SMF74B 
record, which exists for a device whether or not it appears 
at all online during the interval, the determination is made 
of whether or not to keep it. 

If no device measurements are associated with the SMF74B 
record, the record is eliminated and the other records com­
pressed. All the SMF74 records retained are sorted into 
order of ascending device address. 

IRBMFDDP 

8 Use the SMFWTM macro instruction to copy the inter- IRBMFDDP 
nal images to the SMF data set. 

9 Use the GETMAIN macro instruction to obtain the IRBMFDDP 
required storage in user key. Use the MODESET 

macro instruction to change to user key. 

10 Use the FREEMAIN macro instruction to release 
the storage obtained for the internal images of SMF 

records. 

IRBMFDDP 

~,_T 



Cf -w 
00 

o 

~ 
N 
fIl 

i 
i 
f) 

t: 
2" 
~ 
~ 
[ 
(D 

w 

~ 
N 

i 
I 
w 
~ -

Diagram 7-20. MFROUTER SVC Processor (IRBMFEVT) (part 1 of 2) 

From external Interrupt 

Handler (lEAVEXS) Process 
;i;~:~;~~~;·~~;~~~0~~~~~.:~L~~~'~'0~~~·!~'0.m~j~2~~!r>~<~t,~05A.~?r:~~·i~~~!i~b~~~·f*o/%1(~.j~!!m&¥~;*~4t III ~ ii:~:r~~~~~~~~~~~!1~~~~~~~~ 

STMMMGRL 

MFROUTER Processor 
(lRBMFEVT) 

1 Obtain list of MG routines to be called 
for this cycle. 

2 Collect measurement samples as 
required by input options. 

3 Utilize exit routines: 

Output 

a. To cause timer interruption for '" 

MF/1 Global Supervisor 
Table 

next cycle time to be reset and 
return to caller, 

and/or 

b. To return to caller. 

Return to External 
Interrupt Handler 
(lEAVEXS) 

IRBMFEDV 
IRBMFECH 
IRBMFTCH 



fIl 
(D 

~ 
!' 
1:1 

~ 

a:: 
sa. 
8' 
Q. 

S­
O 
'0 

i 
!' 
1:1 

Cf -~ \C 

~ 

Diagram 7-20. MFROUTER SVC Processor (IRBMFEVT) (part 2 of 2) 

Extended Description 

The MFROUTER Processor (lRBMFEVT) calls the 
event-driven MG routines and a routine to reset the MF/1 
Timer Queue Element (TQE) after the time expires in the 
TQE. The routines called are: 

• Channel Event MG (lRBMFECH) 
• Second CPU Channel Event MG (lRBMFTCH) 
• Device Event MG (lRBMFEDV) 
• Timer Enqueue (I EAQTEOO) 

1 Events are timer interruptions or remote pending 
interruptions on CPU-to-CPU communications. Timer 

interruptions are at the rate of sample time periods for 
device and/or channel sampling. CPU-to-CPU communica­
tion interruptions are at the same rate, but are only caused 
by one CPU requesting another to sample channel data. 

Module Label 

IRBMFEVT 

IRBMFEVT 

Extended Description 

2 The MFROUTER Processor branches to the MG 
routines in the order set up by their entry addresses 

in the MFROUTER Vector Table (STMMV), which was 
set according to entry options by MFSTART and modules 
connected with MFSTART. 

3a If IRBMFEVT was entered in response to a timer 
interruption, it branches last to a subroutine 

(lRBMFEVE) to reset the timer (enque the TQE onto the 
timer queue). The address of the subroutine is placed in 
the MG routine loop (MFROUTER Vector Table) by the 
MFSTART SVC Processor (lGXOO013). 

3b If IRBMFEVT was entered in response to a CPU-to­
CPU interruption, it branches last to a subroutine 

(lRBMFEVL) to restore status and return to the caller of 
IRBMFEVT. 

Module 

IRBMFECH 
IRBMFTCH 
IRBMFEDV 

IRBMFEVE 

IGXOOO13 

Label 

IRBMFEVT IRBMFE 



~ ... 
~ 

~ 
w 

I 
i 
1;' 
r-c 

i 
~ 
2' 
i 
w 

'< fIj 
w 
~ a. 
I 
w 
~ 

Diagram 7·21. Channel Sampling Module (IRBMFECH) (part 1 of 2) 

From 
MFROUTER SVC 

Input Processor (lRBMFEVT) via BAL Process 
, 

Channel Sampling Module 
(lRBMFECH) 

PCCAi 1 Add one tQ the number samples taken . .-

PCCACAT 

~ - -IJ - ~ 

PSA -- .-- -
PSACPUPA 

... 2 For all channels of all CPUs, sample > 
¥ the number of start I/O instructions, JII . 

and either: Remote Pendhlg IRBMFEVT 
IPC Interruptio~ MFROUTER 

a. If the CPU is not the one VC 
PSATOLD executing these instructions, .. 

Processor 
.-- - signal the CPU to collect channel-

busy and CPU-waiting-for-channel 
indications on all its channels. 

II ECCPE List 
.- - b. If the CPU is the one executing 

these instructions, check for 
ECCPE1 channel-busyand CPU-waiting, ; 

ECCPE2 
Update appropriate counters. ~ ECCDB List, ••• ------

ECCPEn ECCDB1 ~ )- ... 
~ 3 If this is time for a configuration check, 

ECCDB2 
¥ 

make the check and post results. 

• • • 
ECCDBn 

~ -
\ ECCDB Lis~ 

r-- - ..... 

ECCDB1 
Return to 

ECCDB2 MFROUTER SVC 

••• Processor (lRBMFEVT) 

ECCDBn 
L- ---

Output 

ECCED 
,,--... 

... ECCESAMP ~ .. 
~ 

ii~ 

ECCDBi - ~ r-
... ECCDSIOS )I ,. 

.-. - -
" .. ""'" 

ECCDBi 
--- -- -... 

ECCDBUSY ... 

... 
-,. ECCDOLAP 

.... 
ECCDBi Flags .. 

-..... - -
:¥tl 



~ 
~ 

~ 
e' 
= 
~ 

~ 
~ 

8: 
So 
o 

"0 
~ a o· 
= 
~ -~ -

~~ 

Diagram 7-21. Channel Sampling Module (IRBMFECH) (part 2 of 2) 

Extended Description 

The Channel Sampling Module (lRBMFECH) receives con­
trol from MFROUTER SVC Processor at each cycle sample 
time. IRBMFECH collects the channel measurement samples 
lOS provides and monitors channel status with regard to the 
channels being online or offline. 

Module 

IRBMFECH 

1 The Channel Sampling Module increases counter IRBMFECH 
ECCESAMP in the Channel Event Data Table 

(ECCED). 

2 IRBMFECH checks channels through CPU Entry IRBMFECH 

Tables (ECCFE), which contain a pointer to a Channel 
Data Block (ECCDB) list for each CPU. If item ECCDVAlD 
in the CDB is on, that CPU was online at one or more con­
figuration checks, and therefore, IRBMFECH obtains the 
count of Start I/O (SIO) instructions issued to the channel. 
This count of SIOsis obtained from the Physical Configura­
tion Communication Area (PCCAI. 

". J 

label Extended Description Module 

2a IRBMFECH signals the other CPU with the RPSGNl IRBMFECH 
macro instruction, with the PCCA address in register 1. 

2b IRBMFECH uses entries from the Channel Avail-
ability Table (CAT) to increase the count of Start 

I/O (SIO) instructions since the last sample. If this channel 
is not offline and is not a byte multiplexor, IRBMFECH 
issues a TCH instruction to test whether the channel is now 

busy. If the channel is busy, the routine adds one to the 
count of busy samples. If the CPU was waiting when 
MF/1 was given control, IRBMFECH adds one to the 
count of CPU waiting and channel busy (ECCDOLAPI. 

3 The Channel's Configuration is checked if the number 
of samples taken is multiple of the configuration 

check field. If the CPU is online, set appropriate flags 
in the ECCED. If a change in configuration has occurred 
since the last check, the routine sets appropriate flags. 

IRBMFECH 

IRBMFECH 

.. '7 

label 



'of Diagram 7-22. Second CPU Test Channel Sampling Module (IRBMFTCH) (part 1 of 2) -• ~ From MFROUTER 

o 

~ 
~ 

!f .. 
.51 

oi ;. 

j 
~ 
E" a 
fD 

w 

~ 
~ 

'" i 
fI 
w 
:..., -

t -

~ 

SVC Processor via 

ECCPE 
.. 

-----
" - -

, .. 
, . 

ECCDB 

ECCDFLGS 

",. -

PSA -
PSATOLD 

- - ~ 

CVT 

- --
CVTWTCB -- ~ 

p 

..... 

, .. 

~ ... 
") 

v 

..... 
") 

y 

Second CPU Test Channel Sampling 
Module (lRBMFTCH) 

1 Obtain a pointer to a Channel Data 
Block (ECCDB) for a channel of the 
CPU. 

2 If the channel is valid, was online at 
the last cycle, and is not a byte 
multiplex channel, test whether the 
channel is busy. If it is not to be 
tested, return to step 1. 

3 If the channel is busy, add one to the 
busy count for this channel. 
If it is not busy, return to step 1. 

4 If channel was busy and the CPU 
was entered from the wait state, 
add one to the appropriate count 
for this channel. 

5 If this is the last channel of this CPU 
to be tested, return to IRBMFEVT. 
Otherwise return to step 1 . -

Return to 
M F ROUTER SVC 
Processor (lRBMFEVT) 

I 

. 
TCWRKRG1 ; 

Result of : ... 
test channel y 

instruction 
, 

';,,·"/:·:;:l;'i:l: '<. " 

ECCDB 

..... . 
ECCDBUSY 

y 

~ 
:<i 

}"~ 
;t! ... 

ECCDOLAP -v r -- - - '(;' 

. ..... ';;"'" . :. :'/': ..... : ..... .~.~, 



f;Il 
('1) 

a 
~. 

::I 
N 

~ 
~ 

8: 
Q 
""l 

o -= 
i 
~. 

::I 

If 
~ 

~ 
~ 

~~7 

Diagram 7-22. Second CPU Test Channel Sampling Module (IRBMFTCH) (part 2 of 2) 

Extended Description 

The Second CPU Test Channel Sampling Module 
(lRBMFTCH) collects data for each channel (of one CPU) 
that has been active during the entire previous cycle period. 
The data is collected by issuing a Test Channel instruction 
and noting the response of the channel. 

Module 

IRBMFTCH 

1 Each Channel Data Block (ECCDB) is storage for data IRBMFTCH 
on one channel. An ECCDB is defined for each channel 

possible to be connected to a CPU. 

2 IRBMFTCH tests bits set by other modules and, if any 
test fails, passes over this channel. 

3 A count is kept of the times the channel is found busy 
during a cycle test. The busy status is read as a result 

of the Test Channel instruction. 

IRBMFTCH 

IRBMFTCH 

4 A CPU-waiting count is accomplished similarly to IRBMFTCH 
the channel-busy count. 

5 A DO loop is used to step through tests for all channels IRBMFTCH 
of a CPU. 

Label 



~ -.s;.. .s;.. 

o 
til 

~ 
N 
til 
'< 
~ 

B 
i' 
~ 
& 

! 
~ 
E" a 
(D 

~ 

~ 
N 

~ 

f 
~ 

~ 

Diagram 7-23. Device Sampling Module (IRBMFEDV) (part 1 of 2) 

Input 
From MFROUTER SVC Processor 
(lRBMFEVT) via BAL Process .. 

UCBi 

Unit Control --Blocks - one 
for each " device 

I 
I 

'\ ••• 

EDDED 

-
'I; ,. 

EDDESAMP 

EDDECCHK 

---

.... 
) 

'v 

~ .. 

Device Sampling Module 
(lRBMFEDV) 

1 

2 

3 

Add one to the count of the number 
of samples for this interval. 

Update counts of start I/O 
instructions and enqueued SRBs 
for each valid, on-line device in 
each device class., I 

If it is time for a configuration 
check to see that each device is on-line 
and active. If it is not time for a 
configuration check, return. 
Return after configuration checks. 

-
Return to MFROUTER SVC 
Processor (lRBMFEVT) 

Output 
m y .$W¥,·,,,·,,,.·,,····.·, 

EDDED 
~- ..... 

.... 
EDDESAMP 

v 

.- -----
\;11'"' .·.,~",m." 

" 

EDDDBj 

EDDDSIOS 

'" ) ... EDDDBUSY 

EDDDNENQ 

~ " EDDDB flags 
ti> 

v 

-..... ..... 



i e' 
::I 

~ 

a:: 
!. 
[ 
Sa 
o 
1 a. 
e' 
::I 

~ -". <II 

.,.. 

Diagram 7-23. Device Sampling Module (IRBMFEDV) (part 2 of 2) 

Extended Description Module 

The Device Sampling Module (lRBMFEDV) receives control IRBMFEDV 
from the MFROUTER SVC Processor (lRBMFEVT) at each 
cycle sample time. IRBMFEDV gathers sample data on the 
use of 1/0 devices, as maintained by 105. 

1 The Device Sampling Module increases counter IRBMFEDV 
EDDESAMP in the Device Event Data Table (EDDED). 

2 The Device Sampling Module checks the Device Class IRBMFEDV 
Data Table (EDDCD) entry for devices that exist in 

that class. Nonzero entries in the EDDCD point to one or 
more Device Data Blocks (EDDDB) for that class. Each 
EDDDB entry points to a Unit Control Block (UCB), which 
contains data with which to add to the following wrap­
around counts in the EDDDB: 

a. EDDDSIOS, which is the current number of SIOs for that 
device in this interval. 

b. EDDDBUSY, which is the current number of samples, 
in which the device was busy. 

c. EDDDNENQ, which il the current number of SRBs 
enqueued on this device. 

3 The configuration of devices is checked if the number IRBMFEDV 
of samples is an even multiple of the configuration 

check field (EDDECCHK): If the online flag in the UCB 
(UCBONLI) and the alive flag (EDDDALlV) in the Device 
Data Block (EDDDB) do. not match, turn on the configura­
tion changed flag (EDDDCCHG) in the EDDDB, and record 
the proper status (EDDDALlV). If the device address in the 
UCB (UCBNAME) and in the EDDDB (EDDDADDR) do 
not match, turn on the configuration changed flag in the 
EDDDB and move the current address of the device into 
EDDDADDR in the EDDDB. 

"'~-~ '--.~ 

Label 



~ .... 
~ 

i 
~ 
~ 

fI.2 

I 
i 
t: 
~ 
~ 
~ r 
(II 

w 

~ 
~ 

i 
" w 
:.... -

Diagram 7-24. Report Generator Control (IRBMFRGM) (part 1 of 4) 

From MFDATA SVC 
Mainline Processor 

Input (lGXOOO14) via ATTACH Process Output 

" " c ••• '~- .. Re;"";GeneratorControl' 

MFPCALST (lRBMFRGM) 

I Identity of .. 
Last Subtask ") 1 Establish a recovery environment. 
to Complete ' ... 

MFSEL *, ; ,< ... ~ 2 Check that allsubtasks from the 
, v previous interval have completed, RGDDNAME 

MFSESTID I and wait if necessary. 
I -1 ")I Sysout ddname 

(Subtask Elements Table) I r --y'IL-______ --' 
.. '< 

~ '---_&\Illi..I,,~ 3 Calculate and store the .. IRBMFCNV 
• DDNAME for this Sysout.. .. t-------~ 

data set. Convert 
MFCOA ' 

,...., ~ .. 
MFCOOUT I ") 4 Allocate space for and, .. ,---------

L- '.-i ... open the Sysout data set. IRBMFALL - .. 
(Common Opti?n Area) .. Allocate 

"'~"0." ' 
MFPMA (CPU) -

MFMVT "-1 .. 
MFPMSARG I ") 5 Call the report generator +, CPU _ ~ -v for each active report .. IRBMFRCR 

type " IRBMFRPR 
, P . _ MFPMA (Paging)· IRBMFRWR 
T agmg '""r - _ - --..., .. IRBMFRHR 

4 Workload ... t'\ MFPMSARG 1 ! ,- IRBMFRDR 
, ____ _ ..... r 

T Channels ... ~ 6 Close Sysout data set for this 
I , MFPMA (Workl~) subtask. ., 

, DeviceS) --, 
T MFPMSARG I 

(Measurement Vector _ 1 I 
Table) - - l 

MFPMAs for channels 
and devices , 



g 
g. 
= 
~ 

a: 

i 
2-
i 
i 
8' = 
~ .... ... ..., 

~ 

Diagram 7-24. Report Generator Control (IRBMFRGM) (part 2 of 4) 

Extended Description 

The Report Generator Control (lRBMFRGM) controls the 
allocation of SYSOUT data space, the calling of report gen­
erators for each report type requested, and the freeing of 
interval measurement data space. IRBMFRGM also informs 
the operator when reports are ready to print if REAL TIME 
reporting was reque~ted. 

1 Establish an ESTAE recovery routine. 

2 Waiting for all previous subtasks to complete ensures 
the correct association of reports for each report 

interval. 

3 The SYSOUT DDNAME is converted into the form 
MFRnnnnn, where nnnnn are the characters that 

represent the subtask ident. 

4 The IRBMFALL is called to allocate SYSOUT data 
space as needed during program execution. It issues 

SVC 99 to attempt allocation. 

5 For each report type, IRBMFRGM loads, calls, and, 
when the report type has been produced, deletes the 

required report generator. IRBMFRGM provides an ESTAE 
data linkage during report generation. 

6 If the REALTIME option for report printing is in 
effect, the SYSOUT data set is printed immediately; 

otherwise it is printed upon termination of MF/1. 

Module 

IRBMFRGM 

IRBMFSAR 

IRBMFRGM 

IRBMFCNV 

IRBMFALL 

IRBMFRCR 
IRBMFRPR 
IRBMFRWR 
IRBMFRHR 
IRBMFRDR 

IRBMFRGM 

Label 

'<7 'L~ 



~ Diagram 7-24. Report Generator Control (IRBMFRGM) (part 3 of 4) 
t 

~ 
~ 
N 
fIl 

I 
i-n 
r"'4 
c;: 

! 
f 
(II 

w 

~ 
N 

~ 
i' 
~ 
w 

~ 

r' " ». ,~ x,~ 
, 

'" < 

I 
MFSEL (Subtask Elements Table) 

r - --, 
I 

MFSETID I 

I ............ - _I 
-~ -- ~ 

.- - v-I CPU Interval Data 
I r-

+ CPU 1'1 -/1 Paging Interval + Paging Data I 

II. .VI Workload + Workload I 
Interval Data 

II I 
• Channels ~ Channels Interval I 

Data I I , Device ...:~I Devices Interval I 
Data -.... - I -

(Measurement 
Vector T 

MFCOA -r-- ~ 

MFCOREP 

(Common OPt~ 

RGREALTM 
I 

Realtime Flag I 
I 

" 

; .. 
7 > Indicate that this is the last subtask 

; .. to complete processing . 

. 

""> 8 Free interval data storage areas 
' r and interval data measurement 

vector table area . 

, .. > 9 If report option is REALTIME, 
! r send message to operator that 

report is ready to print. 

10 Delete the established recovery 
routine. 

Return to MFDATA SVC 
Mainli ne Processor 
OGXOO014) 

, -

MFPCALST 

'" ". Last Subtask .. ~ 

~ 

" 

; 
1 
;, 

> 

, 
... 

" 
Message 

..,., Processor 

"' 
(lRBMFMPR) 

.~ 
:;;; 



C"'-l 

a 
5' 
= I-.j 

~ 
sa. 
[ 
S­
o 

'tS 
~ 

i 
5' 
= 
'of -~ 
I.Q 

Diagram 7-24. Report Generator Control (IRBMFRGM) (part 4 of 4) 

Extended Description Module 

7 The identity of the last subtask to terminate is updated IRBMFRGM 
to establish serialization of reports on the printer. 

8 The main storage for this interval's data is not needed 
after the required reports are written on the SYSOUT 

data set. 

9 The operator message is MF1 REPORT AVAILABLE 
FOR PRINTING. 

10 Cancel the previously established ESTAE routine. 

ERROR PROCESSING: If an error occurs while a report 
is being written, another attempt is made to write all re­
ports. A second error, or an error occurring prior to report 
writing, will cause an ABEND, 

IRBMFRGM 

IRBMFMPR 

IRBMFSAR 

Label 



~ Diagram 7-25. Report Generators for CPU, Paging, Workload, Channels, and Devices 
~ (IRBMFRCR, IRBMFRPR, IRBMFRWR, IRBMFRHR, and IRBMFRDR) (part 1 of 2) 

o 
CIl 

~ 
~ 

CIl 

~ 
e 
~ 
~. 
t"'" 
~ 
~ 
~ 
2" a 
(D 

w 

'< 
CIl 
~ 

i 
3 
w 
:;" -

From Report 
Generator Control 

Input (lRBMFRGM) via CALL Process .. Report Generators for CPU, Paging, 
Workload, Channels, and Devices 
URBMFRCR, IRBMFRPR, IRBMFRWR. 

IRBMFRWR IRBMFRHR, and IRBMFRDR) 

Only 

l t PMAOPT 
J-. 

L 1 Insert page header and data column 
.y Input headings into internal page image. 

Parameter _ ... ... 
fData 

.~ 

~ " ' , 

SMF ~I Record .") 2 Convert binary data from SMF 
,y 

records to BCD in character 
strings, compute entry values, and 
insert into internal page image, 

~ 
along with any required line .. 

DDDVT headings. ... 
t DDDVJ:" 

r-- ,. 
Device Device 

'-l\ 
report Vector : l 3 Write formatted internal page 
only Table 

! image to Sysout data set and 
then blank the internal page. , ... 

... 
• STWVT ~; 

+STWVT 
~ 

Work- Workload 
load Vector 
report Table 
only 

... 
Typical Inputs; See "Explanation" for ... 
differences for workload report, and 
device report. 

" 

,-"" i.M"',_",_, -'i', ",' 

Return to Report 
Generator Control 
(lRBMFRGM) 

Output 

---. 
IRBMFRGM 

~ 

MFHDRISR 
Insert 
Header 

,,""',*'*',,'"-, 

. 
IRBMFCNV ,. 

Convert 
Binary to 
BCD 

;K<"",;' 
~' 

~ 
IRBMFRGM Set of pages 

represents one 
MFISRTXT report 
Insert Text 

.... -
b 

''&~i, .'i'IJ{."," except 

device data --.. 'C IRBMFRGM which has: 
~ 

MFWRTPAG 

~ 
Write Page One set of 

' pages for a 
~::;i+;','< ; ..... , report of 

{:: 

~ v !i' -

[\~ 

! ~moo~ type 

-



til 
('D 

~ 
e' ::s 
~ 

a: 
~ 
5 
Q. 

e. 
o 

"'CI 

~ 
e' ::s 

~ 
~ 

Diagram 7-25. Report Generators for CPU, Paging, Workload, Channels, and Devices 
(IRBMFRCR, IRBMFRPR, IRBMFRWR, IRBMFRHR, and IRBMFRDR) (part 2 of 2) 

Extended Description Module Label 

This M.O. diagram covers the five report generator modules: 

• CPU Activity (lRBMFRCR) IRBMFRCR 

• Paging Activity (lRBMFRPR) IRBMFRPR 

• Workload (lRBMFRWR) IRBMFRWR 

• Channel Activity (lRBMFRHR) IRBMFRHR 

• Device Activity (lRBMFRDR) IRBMFRDR 

Each report generator formats interval data for its report 
type and writes it to a SYSOUT data set for either REAL-
TIME or deferred printing. 

1 Each report generator subtask calls procedure 
MFHDRISR whenever a header is to be written on a IRBMFRGM MFHDRISR 

new page (see note after step 3). 

2 After the page and column headers are written, the 
report generator extracts data from the SMF record 

image, manipulates it, and writes entries into the internal 
image of the report page. Parameter MFPMAOPT is used IRBMFRGM MFISRTXT 
only for the workload report to determine the depth of 
workload reporting. 

The report generator routine calls routine IRBMFCNV to IRBMFCNV 
convert a signed binary number into its equivalent as a char-
acter string. The resulting string is supplied as a fixed length 
string parameter. The following are provided as input param-
eters (starting address in register 1) to IRBMFCNV: 

a) the input signed binary value. 
b) the signed decimal scaling factor for the input value. 

c) the address of the output string. 
d) the length of the output string. 
e) the no. of digits to the right of the decimal pt. 
f) commas or no commas. 
g) floating point or no floating point. 

Extended Description 

If commas in the output could cause loss of significant 
digits, they are not inserted. If the output string is shorter 
than necessary, commas are removed first. If the output 
string still cannot accept the entire value, least significant 
digits to the right of decimal point are next removed, up 

to and including the decimal point itself. If this action is 
sufficient, the return code is 4; otherwise the entire field is 
filled with asterisks and the return code is 8. If the output 
string is larger than necessary, it is right justified. The insert 
text routine is used to put data into the RGM internal page 
image. 

3 Subroutine MFWRTPAG writes the internal page 
image, line by line, to the SYSOUT data set using a 

OSAM PUT. Blank lines are consolidated, and a single 
record is written with carriage control characters indicating 
the number of lines to skip. 

Note: Input data formats differ among the five report 

generators: 

• CPU, paging, and channel report generators each receive 
a single SMF record image and each produce a single 
report. 

The device report generator receives a fixed length list of 
SMF record images and produces a report for each one. 
There is input data for each defined device type unless the 
corresponding Device Vector Table (DDDVT) entry is zero. 

The workload report generator receives a variable length 
list of SMF record images, preceded by a count, and pro­

duces a single report. There is input data for each perfor­
mance group number (PGN) unless the corresponding 

Workload Vector Table (STWVT) entry is zero. 

Module Label 

IRBMFRGM MFISRTXT 

IRBMFRGM MFWRTPAG 

IRBMFRCR 
IRBMFRPR 
IRBMFRHR 

IRBMFRDR 

IRBMFRWR 



3-152 OS/VS2 System Logic Library Volume 3 (VS2 Release 3.7) 



The following four figures illustrate the relationship 
among some of the job scheduling subcomponents 
(Details of module-to-module flow within a 
subcomponent are in 'Section 3: Program 
Organization. '): 

• Figure 2-11 shows the first use of job 
scheduling code: master scheduler 
initialization attaches the initiator to start the 
master scheduler. The initiator attaches 
IEEMB860, which continues the initialization 
process and finally passes control to the 
master scheduler wait module. Starting the 
master scheduler in this manner allows several· 
system and TSO data sets to be allocated 
normally. These data sets are then available 
during the last portion of master scheduler 
initialization. Note that the master subsystem, 
rather than a job entry subsystem, converts 
and interprets the master scheduler's JCL. For 
more information on master scheduler 
initialization, refer to OS / VS2 System 
Initialization Logic, SY28-0623. 

• Figure 2-12 shows the second use of job 
scheduling code: the START command for a 
job entry subsystem is processed. This START 

command was in the master scheduler JCL 

that was interpreted during the initiation of 
the master scheduler. Note that the master 
subsystem, rather than a job entry subsystem, 
converts and interprets the job entry 
subsystem's JCL. The master subsystem starts 
job entry subsystems and also starts 
subsystems defined by the installation. For 

Job Scheduling Overview 

more information on the master subsystem, 
see 'Master Subsystem' in this section. 

• Figure 2-13 depicts general 
START /LOGON/MOUNT processing. This 
processing begins with a START, LOGON, or 
MOUNT command and culminates in the 
attach of an initiator, a terminal monitor 
program (TMP), the MOUNT processor, or a: 
started system task (TCAM, for example). A 
new address space is created for each START, 

LOGON, or MOUNT command. The value of 
the new address space ID (ASID) is at least 
four (master scheduler's ASID is one; auxiliary 
storage manager's ASID is two; and the 

• Figure 2-14 shows how a normal job enters I • 

primary job entry subsystem's ASID is three) .• 

the system and is attached as a problem I 

program by the initiator. A new address space 
is not created for each job entering the 
system; a job executes in the address space of 
the initiator that attached it. When the job 
entry subsystem first receives a job's JCL, it 
stores it on the spool data set. It then passes 
the JCL through the converter and puts the 
resultant internal text in another data set. 
When initiator requests the selection of a job 
(via the subsystem interface), the job entry 
subsystem chooses a job and passes the 
already-existing internal text through the 
interpreter, creating SW A control blocks. The 
initiator can now continue with the initiation 
of the job. 

Section 2: Method of Operation 3-153 



7 LINK from IEAVNIPX 

IEEVIPL 

Master 
Scheduler 
Base 
Initialization 

~ ___ {For detail, refer to System 
. Initialization Logic, SY28-0623. 

!ATTACH SYS1.LINKLIB 

IEFSDI60 ~ Subsystem ",-
""""" Interface ~ ~ 

~ IEFSD161 A '- ..../ 
IEFJSUBI 

~ 
,-MSTR JCL~ ,. - Master 

Subsystem ....,/ 

Data Areas r-----------
I-

I 
I 

Initiator 
(Job entry 
subsystem not: 

~----------------------~I~~ JCLS 

available.) 

ATTACH -

LINK -

IEFW21SD 

...... -IE-F-S-D-1-62-~ ,.BALR... Device Allocation for: 

...... ----~- -

IEFSD263 

! ATTACH 

internal readers 
(TSOINRDR and 
STCINRDR) 
SYS1.PROCLIB 
SYS1.PARMLIB 
SYS1.UADS 
SYS1.BRODCAST 
SYS1.MANX 
SYS1.MANY 

-U
For detail, refer to 

I EEMB860 ~ - - - System Initialization 
Logic, SY28-0623. 

Malter 
Scheduler XCTL 
Region 
Initialization 

-

... -

-

IEFVH1 

Converter 

IEFIB600 

SWA Create 
Interface 

J LINK 

IEFNB903 

Interpreter 

IEEVWAIT 

Master 
Scheduler 
Wait 

Note: Refer to the index for the page numbers of function diagrams 
(hipos) that describe the functions of particular modules. 

Figure 2-11. Job-Scheduling: Initiation of the Master Scheduler 

3-154 OS/VS2 System Logic Library Volume 3 (VS2 Release 3.7) 

A 

"" 

... 

... 

, "'--~-.---... 
I 
I ViaSVC34 

I 

I 
I 

Internal 
Text 

r 

CSCB for Starti ng 
Job Entry 
Subsystem 

r 

SWA 
Control 
Blocks 

L _________ ..J 

A 
r-

"" ATTACH - ... -
IEAVEMCR 

Start the 
job entry 
subsystem 

r- ___ rFor detail, 
~ee Figure 2-12 



Y XCTL from IEEMB860 

IEEVWAIT 

Master 
Scheduler 
Wait 

+ ATTACH 

IEAVEMCR 

Address 

S~~ { Creation The region control task is the first t ------ task dispatched in the newly -created 
address space. (The ASID for the job 
entry subsystem is 3.) 

IEAVAROO 

Region 
Control 
Task 

~ ATTACH 

IEEPRWI2 

Started 
Task IEFJSDTN 
Control 

.. Subsystem ... Is a subsystem 
IEESB605 Interface being 

started ? 

- Yes I 
LINK 

-. - IEFSD160 IEFJSUBI IEFVH1 
... Subsystem ATTACH Interface 

,. 
Master . -IEFSD161 - ,. Converter Subsystem - (Job entry -
subsystem not 
available.! 

IEFIB600 

LINK - -- SWA Create - .. 
Interface 

Initiator 

fUNK 

IEFW21SD IEFNB903 
BALR 

IEFSD162 
.. Device Interpreter -

Allocation 

IEFSD263 

~ ATTACH 

Job Entry 
Subsystem 

Figure 2-12. Job Scheduling: Initiation of the Job Entry Subsystem 

Section 2: Method of Operation 3-155 

... _a.aM • ..,:;: 



CSCB + POST 

Master 
Scheduler .- ATTACH 
Wait ~ 

IEEVWAIT 

Memory 
Create 
IEAVEMCR 

ASID = 1 - -- -,-- ----~---- - - - ---

Region 
Control 
Task 
IEAVAROO 

ATTACH 

Started 
Task 

ATTACH ... 

XCTL 
Control (for LOGON) 
IEEPRWI2 

TXCTL 
I (for STARTI 
• MOUNT) 

Started Task 
Control 
IEEVSTARI 
IEEVMNT1 

SVC 
Dump 
Task 
IEAVTSDT 

WAIT 

IKJEFLA 

LOGON 
Scheduling 

IKJEFLB 

XCTL 

ASID? 4 

ATTA~ 

Started 
Task 
Control 
IEESB605 

~ 

Subsystem 
Interface ~----~-~----------~~ 

LINK 
~ 

Primary 
Job Entry 

~ 
Subsystem _ LINK _ 

Subsystem _ -- po 

Interface '---~.--.....,r---_J 
-----' 

IEFSD160 

Initiatorl ~ ~ ____________________________________ ..J 

Terminator ~ BALR 
IEFSD263 

ATTACH 
Allocation 
IEFW21SD 

• For START INIT: 
• For LOGON: 
• For MOUNT: 

Initiator (lEFSD160at IEFIIC). 
Terminal Monitor Program (lKJEFT011. 
MOUNT Processor (lEEVMNT2). 

• For other STARTs: Started system task. 

Figure 2-13., Job Scheduling: START/LOGON/MOUNT Initiation 

3-156 OS/VS2 System Logic Library Volume 3 (VS2 Release 3.7) 

Converter 
IEFVH1 

SWA Create 
IEF IB600 

LINK 

, 

Interpreter 
IEFNB903 



~\ 
! 

/ 

Initiator 
(For START 
INIT 
processing, 
see Figure 
2-13.) 

ATTACH 

Problem 
Program 
JOB 

LINK 

Subsystem 
Interface 

Allocation 
IEFW21SD 

Job Entry 
Subsystem 

Converter 
IEFVHI 

LINK 

Figure 2-14. Job Scheduling: Normal Job Entry and Initiation 

Job Entry 
Subsystem 

LINK 

User 
Program 

SWA Create 
IEFIB600 

LINK 

Interpreter 
IEFNB903 

Section 2: Method of Operation 3-157 



3-158 OS/VS2 System Logic Library Volume 3 (VS2 Release 3.7) 



The subsystem interface is the means by which 
OS/VS2 system routines request services of either 
the master subsystem or a job entry subsystem. To 
request subsystem services, a system routine issues 
the IEFSSREQ macro instruction after placing the 
correct function code in the SSOB and placing the 
name of the desired subsystem in the SSIB. The 
macro instruction causes control to pass to the 
subsystem interface routine, IEFJSREQ. The 
specified function code and subsystem name tell 
the interface routine which subsystem routine gets 
control. Figure 2-15 lists all existing function 
codes, their meanings, and the subsystem modules 
that get control. 

A job entry subsystem performs functions 
related to entering jobs into the system. For 
example, it handles SYSIN and SYSOUT data sets; it 
also passes a job's JCL through the converter and 
interpreter, thus creating SWA control blocks for 
the job. See 'Job Scheduling' in this section. 

On the other hand, the master subsystem does 
not handle normal jobs. It is used by the system to 

Subsystem Interface 

start the master scheduler and subsystems. A 
subsystem can be a job entry subsystem (JES2, for 
example) or another subsystem defined by the 
installation. Once a job entry subsystem is initiated 
and ready to accept jobs, the master subsystem is 
no longer needed for initiation processing. 
However, if an installation wishes to replace the 
active job entry subsystem with another version (or 
to start another subsystem), the master subsystem 
must be used to start this new version (or the new 
subsystem) . 

In addition to starting subsystems, the master 
subsystem broadcasts requests to all active 
subsystems. (See note at bottom of Figure 2-15.) 
For a detailed description of the master subsystem, 
refer to 'Master Subsystem' in this section. JES2, a 
job entry subsystem, is described in OS / VS2 
JES2 Logic, SY28-0622. 

• 

Section 2: Method of Operation 3-159 



"f Function SSOB - Code Extension 10 Subsystem Function Subsystem Module Name Module Label Pri mary Caller 01 
Q 

0 SO Process SYSOUT data sets. JES2 HASPSSSM HOSSOUT TSO OUTPUT 

~ JES3 IATSIOP IATSIOP TSO OUTPUT 
< ('I) 

2 CS Cancel a job. JES2 HASPSSSM N HOSCANC TSO CANCEL 
('I) JES3 IATSICN IATSICN TSO CANCEL '< 
=-
~ 3 CS Find the status of a job. JES2 HASPSSSM HOSSTAT TSO STATUS 

i JES3 IATSIST IATSIST TSOSTATUS 

4 ET Notify the subsystem of end-of-task. Master IEFJRASP* SVC87 l""' ;: ... 
JES2 HASPSSSM HOSEOT ~ 

< JES3 IATSIJS EOT 
0 
C 5 JS Subsystem job selection. (Provides a job that has a Master IEFJJOBS IEFSD161 
9 
(D complete SWA.) JES2 HASPSSSM HOSJBSL IEFSD161 
1M JES3 IATSIJS IATSIJS IEFSD161 

< ('I) 6 AL Allocation of SYSI N/SYSOUT data sets (and internal Master IEFJDSNA Allocation N 

'" readers') JES2 HASPSSSM HOSALLOC Allocation 

i JES3 IATSIDM IATSIDMA Allocation 

~ 
7 AL Unallocation of SYSI N/SYSOUT data sets (and internal Master IEFJDSNA Unallocation 1M 

~ readers.) JES2 HASPSSSM HOSUNAL Unallocation 
JES3 IATSIDM IATSIDMU Unallocation 

8 EN Notify subsystem of end-of-address space. Master IEFJRASP* Subsystem interface resource 
manager 

JES2 HASPSSSM HOSEOM 
JES3 IATSIJS EOM 

9 WT Notify subsystem of a WTO message. Master IEFJRASP* SVC 35 
JES2 HASPSSSM HOSWTO 
JES3 IATSIWO IATSIWO 

10 CM Notify subsystems of an operator command. Master IEFJRASP* SVC 34 
JES2 HASPSSSM HOSCMND 
JES3 IATSI34 IATSI34 

11 US Request subsystem to validate a remote destination userid. JES2 HASPSSSM HOSUSER TSO LOGON, Unallocation 
JES3 IATSIVL IATSIVL TSO LOGON, Unallocation 

12 JT Notify the subsystem of job termination. Master IEFJJTRM IEFSD166 
JES2 HASPSSSM HOSTERM IEFSD166 
JES3 IATSIJS JOBTERM IEFSD166 

* IEFJRASP broadcasts the indicated request to all active subsystems. 
Each active subsystem then performs the requested function. 

Figure 2-15. Subsystem Interface Summary (part 1 of 3) 



-- "'-_7 ~~ 

I" 

Function SSOB 
Code Extension 10 Subsystem Function Subsystem Module Name Module Label Primary Caller 

13 RO Request subsystem to re-enqueue a job. JES2 HASPSSSM HOSRENO IEFSD166 
JES3 IATSIJS JOBREO IEFSD166 

14 OM Notify all subsystems of a delete operator message (DOM) Master IEFJRASP* Subsystem interface resource 
manager 

JES3 IATSIDO IATSIDO 

15 VS Request master subsystem to verify a subsystem name. Master IEFJSDTN STC 

16 DA Open a subsystem data set. JES2 HASPSSSM HOSOPEN OPEN 
JES3 IATSIDM IATSIDMO OPEN 

17 DA Close a subsystem data set. JES2 HASPSSSM HOSCLOS CLOSE 
JES3 IATSIDM IATSIDMC CLOSE 

18 DA Checkpoint a subsystem data set. JES2 HASPSSSM HOSCKPT Checkpoint 
JES3 IATSIDM IATSIDMK Checkpoint 

19 DA Restart a subsystem data set. JES2 HASPSSSM HOSREST Restart 
JES3 IATSIDM IATSIDMR Restart 

20 RR Request job id. JES2 HASPSSSM HOSREOID System Log 
JES3 IATSIJS REOJBID System Log 

21 RR Return job id. JES2 HASPSSSM HOSRETID System Log 
JES3 IATSIJS RETJBID System Log 

22 SI Notify subsystem of step initiation. JES3 IATSIBS IATSIBS IEFSD162 

23 DY Dynamic allocation. JES3 IATSICA IATSIDA Dynamic allocation 

24 CA Common allocation. JES3 IATSICA IATSICA Allocation 

25 CU Common unallocation. JES3 IATSICA IATSICU U nallocation 

26 DO Change DDNAME. JES3 IATSICA IATSIDD Allocation 
C"J'.I 
(D 

NO Change ENO use attribute. JES3 IATSICA I ATS IDO Allocation () 27 g. 
= 28 DR DDR device candidate selection. 
~ 

JES3 IATSIDR IATSIRC DDR 

a:: 29 DR DDR device candidate verification. JES3 IATSIDR IATSIRV DDR 
a 
6' 30 DR DDR UCB swap notification. JES3 IATSIDR IATSIRS DDR 
Q. 

Q .... 
0 
'e 
(D 

IiJ g. * IEFJRASP broadcasts the indicated request to all active subsystems. 
= Each active subsystem then performs the requested function. 

tf -0\ Figure 2-15. Subsystem Interface Summary (part 2 of 3) -



~ -0\ 
W 

~ 
~ 
w 

~ 
=-B 

i-
f 
< o 
E' 
i 
w 

~ 
w 

f 
w 
~ 

Function SSOB 
Code Extension 10 Subsystem Function 

31 DR ooR swap completion. 

32 CF Failing START command. 

33 WT Notify subsystem of console switch. --

34 WT Notify subsystem of WTL message. --

-IEFJRASP broadcasts the indicated request to all active subsystems. 
Each active subsystem then performs the requested function. 

--Functions 14, 33, and 34 are not supported by JES2. 

Figure 2·15. Subsystem Interface Summary (Part 3 of 3) 

Subsystem Module Name Module Label Primary Caller 

JES3 IATSIDR IATSIRE ooR 

Master IEFJRASP-
JES3 IATSISF IATSISF SVC 34 

JES3 IATSIWO IATSIWO IEAVSWCH 

JES3 IATSIWO IATSIWO SVC36 



) 

Section 2: Method of Operation 3-163 



~ Diagram 8-1. Subsystem Interface (IEFJSREQ) (part 1 of 4) 
~ 
~ 

o 
fIl 

~ 
N 
fIl 
'< 
:l 
fa 
b' 
~. 

f 
~ 
~ 
E' a 
(11 

w 

~ 
N 

~ 
i 
iC 
w 
:.... -

From a system 
routine requesting a p 

OutDut t .~ subystem se ... rv;.... m 

R 1 Subsystem Interface Y 

No ..•• R15 

11 _ r ~ 1 Check validity of request. k~ :~ ,...---1-6----1 
( SSOB • Valid SSOB pointe, ? t I \ i 

function code ;~ \ 

+ SSIB ~ • Valid SSIB pointer in ~:. No . 

'-------' ') Y SSOB or in JSCB ? i R 15 

CVT I · Valid length and format for 'S No r-:-"';;"-20----'1 
SSOB and SSIB ? ... 

CVTTCBP 
_--....~TCB I invalid request - ~ ::::,n to 

1 JSCB 0 1 SSIB 

V
~----- " R15 

~+---........ ..... Not found ..... ,...-------
SSIB c'SS name' r:==;.> 2 Find the subsystem CVT (SSCVT) 12 1 

job 10 for the requested subsystem. .... 

no SSCVT - ~ return to 
CVT - r"""" caller 

CVTJESCT w 

'- ___ JESCT 

-1. 1 ~ 

-. SSCVT chain 
~ 

c'SSname' ~~ 
~ I--.II ___ --.J 

~~-----~ I I I ~ 



rI'J a e' 
= 
~ 

a:: 

i 
~ 

f 
e' 
= 
~ -~ 

Diagram 8-1. Subsystem Interface (IEFJSREQ) (part 2 of 4) 

F~tended Description 

The subsystem interface handles requests for services to be 
performed by a job entry subsystem or the master sub­
system. When a system routine issues the macro instruction 
IEFSSREQ, the subsystem interface gets control. It deter­
mines which subsystem is requested and which function 
routine in that subsystem is to be executed. The initialization 
of the subsystem interface is described in OS/VS2 System 
Initialization Logic, SY28-0623. 

1 The requestor creates an SSIB and SSOB before 
invoking the subsystem interface: the SSIB identifies 

the subsystem requested, and the SSOB identifies the sub­
system function routine that is to be executed. The sub­
system interface ensures that the requestor made no errors 
in its request. If the SSOB has a zero SSIB pointer, the sub­
system interface uses the SSIB pointer in the current JSCB. 

2 There is one SSCVT for each subsystem defined at 
system generation time. The four-character sub­

system name in each SSCVT is compared to the subsystem 
name in the SSIB. If a match is found, the subsystem name 
in the SSIB is valid. 

Module 

IEFJSREQ 

IEFJSREQ 

IEFJSREQ 

,,~ 

Label 



~ Diagram 8-1. Subsystem Interface (IEFJSREQ) (Part 3 of 4) 
0'1 
0'1 

~ 
~ 
~ 
f'-) 

'< 
~ 

a 
i 
() 

t"" 

i 
~ 

~ 
w 

< f'-) 
~ 

~ 
i 
~ 
w 
~ 

Input 

SSOB 

ction code I "ql 

pointers to 
function 
routines 

no SSVT found 
3 Obtain address of the subsystem ",i h 

routine which performs the 
function requested. 

request cannot be processed 

4 Give control to the function 
routine. 

To the req uested 
subsystem function 
routine 

return to 
caller 

R15 

8 

R15 

16 

R15 

4 

RO 

t SSCVT 

R1 

1+ SSOB 

R15 

If function ro~ I 



f:I) 

g 
g. 
= ..... 

iC 
('II 

[ 
e. 
o 
." 

i <5. 
= 
~ -0\ 
-...I 

Diagram 8-1. Subsystem Interface (IEFJSREQ) (pad 4 of 4) 

Extended Description 

3 If the SSVT pointer in the SSCVT (the SSCVT 
located during Step 2 above) is zero, the subsystem 

has not been initialized yet and therefore is inactive. If 
the SSVT exists, it is used to find the address of the sub­
system function routine. 

In the SSOB is the function code, a number between 1 and 
256, which refers to a single byte in the SSVT's function 
matrix. The number 1 refers to the 1st byte in the matrix, 
2 refers to the 2nd byte. and so on. The matrix byte con­
tains a value that is an index into the list of entry point 
addresses for the subsystem function routines. A value of 1 
refers to the 1 st address. a value of two refers to the 2nd 
address. and so on. A value of 0 in the matrix byte indicates 
that the function is not supported by this subsystem~ 

4 Finally. the subsystem interface passes control to the 
subsystem routine at the address obtained in Step 3 

above. When the subsystem routine completes its process­
ing. it returns directly to the system routine that requested 
the service. 

Module 

IEFJSREQ 

IEFJSREQ 

'~ 

Label 



3-168 OS/VSl System Logic Library Volume 3 (VSl Release 3.7) 



The master subsystem is a collection of routines 
that perform functions required to initiate certain 
system tasks. Job scheduling normally initiates a 
task or a user job using the services of a job entry 
subsystem to obtain and interpret the job's JCL. 

But, certain system tasks are initiated when a job 
entry subsystem is not available. These tasks 
include the master scheduler, which is the first 
initiated task in the system, and job entry 
subsystems. In fact, any subsystem defined as such 
at SYSGEN time is initiated via the master 
subsystem rather than via a job entry subsystem. 

The converter and interpreter, when invoked by 
the master subsystem to interpret the JCL for a 
task, do not use the normal access method (VSAM) 

to read and write the JCLS and internal text chains; 

Master Subsystem 

rather, they use the pseudo access method. The 
pseudo access method manipulates data located in 
real storage, whereas VSAM manipulates data 
located in external storage. Since the pseudo access 
method uses the standard RPL/ ACB interface, the 
converter and interpreter can use the pseudo access 
method as if it were VSAM. 

The master subsystem performs additional 
functions related to initiating subsystems: 
subsystem determination, common request routing, 
data set name assignment, and subsystem 
termination. These functions, as well as subsystem 
initiation itself, are invoked via the subsystem 
interface. 

• 

Section 2: Method of Operation 3-169 



3-170 OS/VS2 System Losic Library Volume 3 (VS2 Release 3.7) 



fIl 
(D 

g. 
:= 
~ 

I 
~ 

Common Request 
Router 
(lEFJRASP) 

I 
~ 

Subsystem 
Determi nation 
(lEFJSDTN) 

Pseudo Access 
Method 
(lEFJACTL) 

~ Figure 2-16. Master Subsystem Visual Contents 

[ 
e. 
o 
~ 

I-:= 

~ -.... -

Master Subsystem 
(no diagram) 

~ 
Subsystem 
Initiation 
(lEFJJOBS) 

~ 
Converter Interpreter 
Interface 
(lEFJCNTL) 

r---------, 
I Converter /I nterpreter I 
I interface to SWA I 

create 
I (no diagram) I L ________ ...J 

I 
~ 

Data Set Name 
Assignment 
(lEFJDSNA) 

Subsystem Initiation 
Message Writer 
(lEFJWTOM) 

.~ 

I 
L§ 

Subsystem Job 
Termination 
(lEFJJTRM) 



~ -..... N 

o 

~ 
N 
fIl 
'< 
f!'4. ; 
SO 
~. 
t: 

I 
~ 
;: 
~ 
w 

~ 
N 

i 
~ 
w :.., -

Diagram 9-1. Common Request Router (IEFJRASP) (part 1 of 2) 

From a system routine 
Input via the subsystem t'rocessing 
..... ~_)I.i ••• tSii~·~stttiliEit.Q\~tr!f11 interface I!t:""'~r~<~~vt",~~,~,~.%%~~.j;!!!:·i;W!!l&:.i"'~~~:~j:~;~X:;'··;."!';;::."'l',!\I!"!'·/~#%::\!!?L!""\.:!""·E"'F.0"'~\0"«~Z!'!:·:;·>"'~5"':'Z~.·~\!"": .. ;:":"'f)!"".iL"'!.:jl!l!}#~'P«¥:!!;-~o"'+"'f.7~"!!;;;I!l!:?:"'~!II!~~:j 

SSOB 

SSOBFUNC 

SSIB 

~~ UEFJSREQ) 

Common Request Router 

1 Route the specified request 
(SSOBFUNC) to all active 
subsystems, one at a time, 
via the subsystem interface. 

Repeat call for 
each active 
subsystem 

2 • Save the lowest return code , , 
from the subsystem inter­
face. 

• Save the corresponding 
subsystem return code. 

Return to the 
system routine 

SSIBSSNM 

from 
interface 

SSOBSSIB 

SSOBFUNC 

Name of 
subsystem 
being invoked 

SSOB 

ISSOBRETN I 

from subsystem 



CI.I 

it g. 
~ 

~ 

t 
Q. 

Q 

""" o 
'1:1 
e: 
!a­
IS· 
= 
~ -....,j w 

Diagram 9-1. Common Request Router (IEFJRASP) (part 2 of 2) 

Extended Description 

The common request router, a function of the master sub­
system, routes a single request to all the active subsystems 
except the master subsystem. This request may be for com­
mand processing, for notification of address space or task 
termination, for WTOs, and for DOMs. 

1 The common request router obtains the numerical 
code of the requested function from the SSOB and 

notifies each active subsystem to perform the requested 
function. To accomplish this, the router first places the 
name of an active subsystem in the SSIB and the function 
code in the SSOB. Then, the router invokes the subsystem 
interface which passes control to the routine that performs 
the function. The router invokes the interface once for 
each active subsystem, changing the subsystem name in the 
SSIB each time. 

2 Following each invocation of the subsystem interface, 
the router analyzes the return codes from the sub­

system interface and from the subsystem. The router saves 
the lowest code returned by the interface. It also saves the 
highest subsystem return code that was passed back with 
the lowest interface code. 

Module 

IEFJRASP 

IEFJRASP 

IEFJRASP 

~=-

Label 



~ -.... 
~ 

o 
C"Il 

"< C"Il 
~ 

C"Il 
'< 
~ 

a 
i 
f) 

r"" 

i 
~ 
[ 
(D 

~ 

'< 
C"Il 
~ 

~ 

t 
~ 
~ 

~ 

Diagram 9-2. Subsystem Determination (IEFJSDTN) (Part 1 of 2) 

From STC (lEESB605) via the 

Input ~ubsystem Processing 
2 ,. 21Ii •• (~~e;j~~EQ) ••••• ;1I!ltlllI ••• m •••• 

Output 

CVT 

JE5CT 

task name 

subsystem 
names 

iE5PJE5N I ::; 
primary job entry 
subsystem name 

Subsystem Determination 

1 Determine if the task being started 
is a subsystem. 

• The task is a subsystem. Pt. to ......... 

• The task is not a subsystem.~ lZi' ....... 

S50B 

550BRETN 
=0 

SSOB 

551B 

S51BJBID 

551BPJE5 



C"'-l 

a 
~r 
= 
~ 

~ 
a go 
Q. 

e. 
o 
"0 ; 
g. 
= 
I.f -~ 

Diagram9-2. Subsystem Determination (IEFJSDTN) (part 2 of 2) 

Extended Description 

The master subsystem provides a subsystem determination 
function. Subsystem determination is used by the initiator 
during the processing of a START command to determine 
if a subsystem is being started. A subsystem must be 
started using the master subsystem, whereas other tasks are 
started using the primary job entry subsystem. 

1 Subsystem determination compares the task name in 
the job 10 field of the 551 S to the subsystem name in 

each of the subsystem CVTs. If a match is found, the task 
being started is a subsystem. In this case, the name of the 
master subsystem is left in the SSIS. If no match is found, 
the task is not a subsystem. In this case, the name of the 
primary job entry subsystem is placed in the SSIS. 

Module 

IEFJSDTN 

IEFJSDTN 

'~~ 

Label 



~ -~ 
o 
til 

~ 
N 
til 
'< 
~ 
§ 

i (:). 
~ 
~ 
~ = a 
ftj 

w 

'< 
til 
N 

~ r 
~ 
w 
~ 

Diagram 9-3. Subsystem Initiation (IEFJJOBS) (Part I of 2) 

In 

S51B 

SSOB 

LCT 

SSJS 

AMWA 

text entry 

JCLS entry 

JCLS 
Output of chain '-' "t;:==~ 
Step 2 '. 

From the initiator (IEFSD161) via 
the sub-

Subsystem Initiation 

1 Obtain the access method work "J '/ .......... 

area. 

2 For master scheduler initiation only: 
• Obtain the master JCL from 

SYS1.LlNKLIB. 
• Convert the master JCL to a 

JCLS chain.",. 

3 For subsystem initiation only: 
• Put JCL5 pointer from the 

5SIB into the AMWA."---~~_-..J 

4 Convert the JCL5 chain to 5WA con- '. h ...... 

trol blocks. See the diagram 
"Converter/Interpreter Interface." 

5 Free the storage that is no longer 
needed by the initiated task: 

• AMWA and other control 
blocks - subpool 10. 

• JCL5 chain - subpool 253. 

6 Clean up before exit. ______ __."...---,---..,,. ....... 

common area 

S51BUSE = 0 



C"I) 
Q 

~ o· 
= ~ 
::: 
Q 

[ 
o .... 
o 

't:I 
Q 

~ o· 
= 
~ 
...... 
...... 

Diagram 9-3. Subsystem Initiation (IEF JJOBS) (Part 2 of 2) 

Extended Description 

The initiator issues IEFSSREQ specifying "job select" to 
invoke subsystem initiation, a function of the master 
subsystem, to obtain and interpret the JCL for tasks that 
cannot use the services of a job entry subsystem. These 
tasks include the master scheduler, which is the first 
initiated task in the system, the job entry subsystems 
themselves, and any other subsystems defined at 
SYSG EN time. 

Subsystem initiation obtains the JCL that defines the 
resources needed by the master scheduler or by a sub­
system and invokes the converter and interpreter to create 
SWA (scheduler work area) control blocks from that JCL. 

1 The access method work area (AMWA) contains 
information about the JCLS (JCL set) and internal 

test chains. AMWA contains information for use by the 
pseudo access method when if reads and writes these 
chains of records. 

2 If the address of the JCLS (a set of chained JCL 
records) in the SSIB is zero, subsystem initiation 

assumes that the master scheduler is being started and 
obtains the JCL card images from the MSTRJCL member 
of SYS1.LlNKLIB. A listing of this JCL appears under 
the topic "Master Scheduler Initialization" in OS/VS2 
System Initialization Logic, SY2S-0623. 

The JCL to JCLS chain conversion routine first checks 
that each SO-byte JCL card image begins with / / or /*. If 
an error is found, a return code of four is passed back to 
the caller. One at a time, the card images are stored in 88-
byte areas of subpool 253. The first S bytes of each area 
comprise a chaining field and a reserved field. 

Subsystem initiation places the address of the first chained 
JCLS record into the JCLS entry of the AMWA. 

3 A non-zero JCLS pointer in the SSIB indicates that a 
subsystem is being started. In this case, subsystem 

initiation moves the JCLS pointer to the JCLS entry in the 
AMWA, skipping the JCL to JCLS chain conversion. 

Module 

IEFJJOBS 

IEFJJOBS 

IEFJJOBS 

IEFJJCLS 

IEFJJOBS 

IEFJJOBS 

Label 

Extended Description 

4 The JCLS-chain-to-SWA conversion routine invokes 
first the converter, then the SWA-create routine. 

The converter converts the JCLS chain to internal text; 
the SWA-create routine invokes the interpreter to create 
SWA control blocks using the internal text as input. For 
more detail, refer to the diagram, Converter/Interpreter 
Interface. 

5 The storage deletion routine frees the storage in 
subpool 253 used by the JCLS chain and frees all 

control blocks residing in subpool 10. (The control 
blocks in subpool 10 were obtained in step 4 before the 
converter was invoked.) The only ACB remaining is the 
one for error messages located in the SWA subpool 
(subpool 241 for the master scheduler, subpool 237 for a 
subsystem). Allocation uses this ACB when issuing its 
error messages. 

6 The final step of subsystem initiation sets both the 
JCLS pointer (in the SSIB) and register 15 to zero. 

Return codes passed back to the initiator indicate whether 
or not SWA control blocks were created. 

Error Processing 

All ABENDs issued by master subsystem routines cause 
the caller's EST AE routine to get control (the caller being 
the system routine that invoked the master subsystem via 
the subsystem interface). 

Subsystem initiation issues a OBl user ABEND if the 
initiator passes it either of the following two invalid 
addresses: 

• A zero SSOB address passed in register 1. 

• A zero address for the JCLS chain when a subsystem is 
being started. 

If subsystem initiation passes a zero SSOB or AMWA 
pointer to the converter/interpreter interface, the inter­
face issues a OBl ABEND. The interface issues a OB4 
ABEND if SYS1.PROCLIB was not opened successfully 
or if the block size contained in the PROCLIB DCB is not 
a multiple of 80. If the attach of the converter is 
unsuccessful, the interlace issues a OB5 ABEND. 

Module Label 

IEFJCNTL 

IEFJCDLT 

IEFJJOBS 

IEFJJOBS 

IEFJCNTL 



~ -~ 00 

~ 
N 
fIl 

'i 
~ 

i 
n' 
t-

J 
~ c a 
(D 

w 

'< 
fIl 
N 

f 
w 
~ 

Diagram 94. Converter/Interpreter Interface (IEFJCNTL) (part 1 of 4) 

from Subsystem 
Initiation 

---.--- . .. . .......... (JEFJJOBS) ~ .. =-~-"':\",-.'!!'!--m--~-~WI~~~~~~~~~~~!!!'m r .... < '),;':y,?, '/; :.t~4::iA0\k\iISA0;0)t#'df"v/\;,t!l Step 4. ' 1~0f~#:1t:;,;>xflY€<&ii:;hft<:tt"'~:!.'?fJ;K<;:ff'?14!)i!f;;I1~'i¥f1:+£5M\\$,C')ZtlsY:d"'k:'/:' 

Converter/Interpreter Interface 
1 Prepare to convert JCLS: '<' . . 

• Obtain anl~ initialize initiator ,,:J! ~'x ~ t_~~:~~lst 
entrance 1st. 

:~"Y:~I 1-.>.". ., 

• Obtain, initialize, and chain;'!!) I I 1(0, V I .. _- .... - .. --_.-
ACBs. 

• For initiating a subsystem, 
obtain, initialize, and chain 
a DCB forSYS1.PROCLlB. 

2 For initiating a subsystem, open 
SYS1.PROCLIB. 

3 Convert JCLS chain to internal text 
via the converter. 7111 'i'" 

continued 

return code 

~ 



a 
e' 
= 
~ 

a: 

i 
2. 
o 
1 =. 
e' 
= 
~ -~ \C 

Diagram 9-4. Converter/Interpreter Interface (IEFJCNTL) (part 2 of 4) 

Extended Description 

The converter/interpreter interface, a master subsystem 
routine, controls the conversion of a JCLS chain to SWA 
control blocks. The JCLS chain, passed from subsystem 
initiation (lEFJJOBS), defines the resources needed by the 
started task (that is, by the master scheduler, a job entry 
subsystem, or any other defined subsystem). 

Module 

IEFJCNTL 

1 The converter/interpreter interface creates the environ- IEFJCNTL 
ment for the converter to operate. It builds the NEL as 

an interface with the converter. It also builds the ACBs to 
allow the converter to interface with the pseudo access 
method as if it were the normal access method (VSAML 
Refer to the diagram, Pseudo Access Method. 

2 When starting a subsystem, started task control 
(STC) builds a JCLS chain which the initiator passes 

to the master subsystem. This JCLS defines a step that 
executes a JCL procedure located in SYS1.PROCLIB. The 
converter/interpreter interface opens SYS1.PROCLIB so 
that the converter can obtain the procedure and convert it 
to internal text. 

3 The address of the NEL (interpreter entrance list) is 
passed to the converter which then proceeds to con­

vert the JCLS chain to internal text. The converter uses the 
pseudo access method to read the JCLS chain record-by­
record and then to write a chain of internal text. The sub­
system initiation message writer handles the error messages 
normally issued by the converter/interpreter. The messages 
are sent to hardcopy according to the MSGLEVEL specifi­
cation in the JCL. All the error messages,.and card images, 
in addition to having their usual message 10, will be pre­
·fixed by the master subsystem message 10 (c'IEF1961'L 
Refer to the diagram, Subsystem Initiation Message Writer. 

IEFJCNTL 

IEFVH1 

Label 

'e:=-~ 



~ Diagram 9-4. Converter/Interpreter Interface (IEFJCNTL) (Part 3 of 4) -! 
~ 
N 
fI) 

'< 
=-9 
i 
n' 
r-
~ 
~ 
~ 
f 
(D 

eM 

'< fI) 
N 

i s 
eM :..., -

III.,UL 

Converter 
attach ECB 

I ABEND code I 
~ ...... " 

or )l, 

I return code I .....1 

i 
I 

AMWA (common area) 

bypass- =0 ' 
interpreter ~------ ~l-~ flag 
(BYPINTER) 

t I 
I I 
, I 

I 
" I 

I 
R1 I 

I 
SSOB L-.. 

~ ACB 
pointers .... 

AMWA Converter Ir 
no SWA createc orlr SSOBERR:# 0 I 

R15 

• +0 L D .......... I 
~ interpreter error: 

no SWA created 

, ' 

"V' ..- I U\ia;»IIIH 

4 Set error flags. 

5 When Initiating a subsystem only, 
close SYS1.PROClIB. 

6 Prepare to- interpret the internal text: 

• Reset text entry to read internal 
text. 

• Initialize ACB pointers in SSOB 
extension. 

I' 

7 Create SWA control blocks from 
internal text via the interpreter. 

8 Check whether a SWA was created. 
If no SWA was created 

Save the return code from the inter-
preter, unless a non-zero converter 
return code has already been saved. 

j 

" 

~, 

" 
~ 

..i:: 

~ $, 1"- ",.=.'_"= 

AMWA 
SSOB (common area) 

X'24' for JCL error 
',," ABEND or flag 

V (CONVERR) converter 
return code bypass-
(SSJSSERR) interpreter 

flag 
(BYPINTER) 

SSOB 
L I 

SSOBINDY 

Ie. SSJS 

SSJSMACB ----....... 
....... SSJSJACB 

=0 
error mes-
sage ACB y 

SSJSTACB 

~ t 
SSJSJMR 

=0 internal 
"",',-

text ACB 

AMWA 
~ 

internal 

~ 
~ ... text 

text entry 
L 

~ I 
L 

L 

subpool241 or 237 
Return code 

..... SWA 

D control 
' ..... blocks 

SSOB 

~ stop-

( 
initiation 
code = 16 ': (SSOBRETN) > 
R15 return , 

code ,,; 
~ (SSJSERR) 

',,', """""",.\t"-:; "'i":,i>,,\ j 

Return to Subsystem 
Initiation (lEFJJOBS) 



rIl 

it 
e" 
= 
~ 

I:: a 
[ 
~ 
o 

"0 
~ 

! e' 
= 
~ .... 
00 .... 

Diagram 9-4. Converter/Interpreter Interface (IEFJCNTL) (part 4 of 4) 

Extended Description 

4 Depending on the success of the converter, flags are 
set that affect subsequent processing. If the converter 

abnormally terminated or passed back a return code greater 
than four, the bypass-interpreter flag is turned on. In this 
case, the interpreter is not invoked. The converter return 
code is placed in the SSJSSERR field as a preliminary indi­
cation that no SWA control blocks were created. 

Module 

IEFJCNTL 

5 SYS1.PROCLIB is closed since it is no longer needed IEFJCNTL 
by the converter. 

6 The SSJS extension of the SSOB is initialized with the IEFJCNTL 
addresses of the ACBs required by the interpreter. The 

JMR field is set to zero because SMF records are not being 
collected; the journal ACB address is set to zero because 
journal records for checkpoint/restart are not being kept. 

7 The converter/interpreter interface passes control to 
the SWA-create interface (lEFIB600), passing it the 

address of an SSOB in register one. The SWA-create inter- IEFIB600 
face invokes the interpreter to create SWA control blocks 
from the internal text. (The SWA is located in subpool 241 
for the master scheduler and subpool 237 for a subsystem.) 
The interpreter uses the pseudo access method to read the IEFNB903 
internal text and, like the converter in Step 3, uses the 
message writer to issue its error messages. (Refer to the 
diagrams, Pseudo Access Method and Subsystem I nitia-
tion Message Writer.) 

Label Extended Description 

8 If a SWA was not created because a converter error or 
an interpreter error occurred, the SSOBRETN field is 

set to indicate that the initiation of this task is to be ended. 
If there was an interpreter error but no converter error, the 
contents of register 15 are placed in the return code field 
of the SSOB. If a converter error occurred previously, the 
SSOBERR field is not changed thus preserving the con­
verter return code. 

Error Processing 

Module 

IEFJCNTL 

If subsystem initiation passes a zero SSOB or AMWA IEFJCNTL 
pointer to the converter/interpreter interface, the interface 
issues a OB1 ABEND. The interface issues a OB4 ABEND if 
SYS1.PROCLIB was not opened successfully or if the 
block size contained in the PROCLIB DCB is not a multiple 
of 80. If the attach of the converter is unsuccessful, the 
interface issues a OB5 ABEND. 

~ 

Label 



~ -00 
~ 

o 
rIl 

~ 
~ 

rIl 

I 
i 
n' 
t"" c;: 

! 
~ 
E' 
i 
w 

'< 
rIl 
N 

i 
R 
w 
~ 

Diagram 9-5. Pseudo Access Method (IEFJACTL) (part 1 of 4) 

From converter 
(lEFVHA) or Processing 79/ 

1~;~ ••••••••••••• liJinterpreter 1&& ~~1 I iflEFVHE) Em ~ £ 

-, 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pseudo Access Method 
performs one of four different types 
of data movement as follows: 

1 Perform a direct read. 

2 Perform a direct write. 

continued 

Output 

RPL 

Read area containing 
record text 

Write area containing 
new record text 



en a s· 
::s 
~ 

a: 
[ 
e. 
o 
1 
= f 
~ -00 
w 

~ 

Diagram 9-5. Pseudo Access Method (IEFJACTL) (part 2 of 4) 

Extended Description 

The pseudo access method provides the master subsystem 
with a data ma'1ipulation service at a time when no access 
methods services are available via the RPLI ACe interface. 
Rather than accessing data that resides on an external 
storage device, the pseudo access method manipulates data 
located in real storage. The converter and interpreter use 
the pseudo access method when a task is being started 
via the master subsystem and not by a job entry subsystem. 

The subsystem initiation function of the master subsystem 
sets up the standard RPLI ACe interface for the converter 
and interpreter but places the address of the appropriate 
pseudo access method routine in the ACes instead of the 
address of the VSAM routines. The switch is not detectable 
to the converter and interpreter. 

Pseudo access method control determines which of four 
types of data movement is being requested by checking 
flags in the RPL and AMWA. Each of the four steps in the 
diagram indicate the flag settings required for its 
particular processing. 

1 The converter uses the di rect read to obtain a 
particular internal text record for updating. First, the 

control routine must determine that a direct read is being 
requested by checking flags in the RPL. The read routine 
moves the text record to the specified area. The length of 
the move is specified in the header on the text record being 
read. 

2 After the converter has updated the internal text 
record obtained by a direct read operation, it writes 

the new record over the original record by requesting a 

Module 

IEFJACTL 

IEFJCNTL 

IEFJACTL 

IEFJACTL 

IEFJDIRD 

direct write operation. First, the control routine must IEFJACTL 
determine that a direct write is being requested by checking 
flags in the RPL. The direct write routine moves the new IEFJDWRT 
record text to the specified area. 

"- -' ,~ 

Label 



l.f -00 
~ 

o 
til 

~ 
~ 

til 
'< 
~ a 
£ 
(=j. 

t"" 
~ 
~ 
~ c 
= (D 

I.H 

'< til 
~ 

~ 
(D 

i 
~ 
I.H 

~ 

Diagram 9-5. Pseudo Access Method (IEFJACTL) (part 3 of 4) 

Input 

Address of first record in 
the chain 

or 
Zero if there is no chain yet 
(AMWDLAST) 

continued 

Output 

3 Perform a sequential read from 
a chain of records. Save the address I '-. ---,.:-'.--..-----------

end-of-fi Ie 
flag 
(AMWDEOF 
= 1) 

of the next record in the chain or 
indicate that the last record has 
been read (end of file). 

4 Perform a sequential write: 

a) Obtain a write area in 
subpool10. 

b) Write the record and chain" ." 
it to the previous record, 
if there is one. 

Return to 
either the 
converter (lEFVHA) 
or the interpreter (lEFVHE) 

area containing record text 



til 
(1) 
(") g. 
= N 

::: 
(1) 

g 
Q. 

a. 
o 

"'0 

~ o· 
= 
~ 
QO 
U\ 

Diagram 9-5. Pseudo Access Method (IEFJACTL) (Part 4 of 4) 

Extended Description 

3 The converter and interpreter use the sequential read 
to read records from in-storage record chains (the 

JCLS chain and the internal text chain, respectively). First, 
the control routine must determine that a sequential read is 
being requested by checking flags in the RPL. If the bit 
AMWDEOF is on, indicating an end-of-file condition, a 
return code of 8 is passed back to the caller. 

The read is performed by moving a record in the chain to a 
specified area. The header in the record just read contains a 
pointer to the next record in the chain. This pointer is 
saved in preparation for the next sequential read. If the 
pointer to the next record is zero, the end-of-file flag is 
turned on to prevent another read operation. 

4 The converter uses the sequential write to write and 
chain together internal text records. 

a) First, the control routine must determine that 
a sequential write is being requested by checking 
flags in the RPL. 

b) The write is performed by first obtaining an area 
in subpool 10. The new record is moved to the 
area just obtained. If the AMWDLAST field 
indicates that a previous record exists in the chain, 
that record is chained to the newly-written record. 

Module 

IEFJACTL 

IEFJREAD 

IEFJACTL 

IEFJWRTE 

~ 

Label 



~ -~ 
o 
~ 
fI) 
N 

1 
i n· 
r­
c;: 

! 
~ 
E' 
I 
w 

~ 
N 

i 
I 
w 
~ 

Diagram 9-6 .. Subsystem Initiation Message Writer (IEF JWTOM) (part 1 of 2) 

From the converter (lEFVHEB or IEFVGM); the 

In interpreter (lEFVGM), or allocation (lEFAB4FD) Processi 
iiii'iiii:tfi_.l~.4J •• m..%t.:w;wifii~iI.. 1\t:tY;\\i0j;:r;FJ!${#;';1£#leX1j:K'fjiJ\Y£~4[Z,;;j;);:,>#:ii,'1F\;:SiJ.sBt!(JJ.a0.1tj§{;:;,;;j;hsvj 

RPL 

text 

WTO list 

Subsystem Initiation Message 
Writer 

1 Obtain and initialize the WTO list. 

2 Remove any blanks following the 
message text; adj ust 
message-length field. 

3 Move message text to a buffer until 

Output 

WTO list 

max.#of 
bytes for 

Common 10 

Output 
of Step 1 

max. ff of 
bytes for 
message 

maximum message length is reached; 7' ,«" 
issue a WTO to the hardcopy device. 

4 Repeat Step 3 until the entire message 
has been issued. 

5 Delete the WTO list. 

Return 
to the 
requester 

Input to 
Step 3 

hardcopy 



I:I.l a 
~. 

::I 

~ 

a: 
[ 
~ 
o 
." 
(D 

i 
~. 

::I 

Cf -00 ..... 

Diagram 9-6. Subsystem Initiation Message Writer (IEFJWTOM) (part 2 of 2) 

Extended Description 

The converter, the interpreter, and allocation normally 
issue their messages to a SYSOUT data set. The sub· 
system initiation message writer issues these messages 
to hardcopy instead. This message writer is used for tasks 
being started via the master subsystem. These tasks include 
the master scheduler, job entry subsystems, and other 
defined subsystems. 

1 The message writer issues the list form of the WTO 
macro instruction. In this way, it obtains the maxi­

mum length allowed for a hardcopy record. 

2 The message text is scanned backwards starting at the 
end in order to eliminate any trailing blanks. 

3 The writer issues a WTO macro instruction to write 
the message to hardcopy device. The hardcopy device 

is defined at system generation time. Each message, in 
addition to having its usual identifier, is prefixed by the 
common identifier IEF1961 to indicate that the master 
subsystem issued this message on behalf of a starting task~ 

4 If the message is longer than the maximum length 
allowed for a single hardcopy record, the message is 

split, and the WTO macro instruction is issued repeatedly 
until the entire message text has been issued to hardcopy. 

5 The writer deletes the WTO list area after the 
message is issued. 

Module Label 

IEFJWTOM 

IEFJWTOM 

IEFJWTOM 

IEFJWTOM 

IEFJWTOM 

IEFJWTOM 



tf 
~ 
co 
00 

~ 
~ 
N 
fI} 

'i 
B 

i-
t: 
2' 
~ 
~ 
E" 
~ 
~ 

~ 
N 

~ r 
R 
~ 

~ -

Diagram 9.,7. Data Set Name Assignment (IEFDSNA) (part 1 of 2) 
. From an allocation routine (lEFAB425) 

via the subsystem • 
__ -.- _ _ interface Processmg 
• Hi! T a .. UEFJSREQ) ..... -~I!I!I!-.kl!l!l!fi*'I!I!I!Ji.~.I!I!I!.I!I!I! .• , ...... n ••. _m.l!I!I! •.. !!'l!!. ~ii6n; .: ___ .. "m .. I!I!I!.I!I!I!. ~I!I!I!_"'.-I!I!I!.' !!'P~!!l!!I 

Output 

Data Set Name Assignment 

JESCT 

1 Assign a data set name to the 
Primary 
JES name 
(JESPJESN) SYSOUT data set. .. .. 

55IB 

Job 10 
(SSIBJBID) 

DO name 

Return to the allocation 
routine (lEFAB425) 

JFCB 

OS name 



rn a e· 
::I 

~ 

J: 
$l 

[ 
~ 

1 
=­e· 
::I 

"f -00 
\Q 

.......... 

Diagram 9-7. Data Set Name Assignment (IEFDSNA) (part 2 o(2) 

Extended Description Module 

The master subsystem provides a data set name assignment IEFJOSNA 
function. Data set name assignment assigns a data set name 
to each SYSOUT data set specified in the master JeL (that 
JeL used to start the master scheduler) and in the JeL used 

- to start a job entry subsystem. 

1 The data set name is constructed according to the 
following format: 

xxxx.yyyyyyyy.aabbbb.cccccccc 

where xxxx = primary job entry subsystem name 
yyyyyyyy = job 10 specified in the SSIB 
aa= c'MS' 
bbbb = c'OOOO' 
cccccccc = DO name of the JeL record for 
the SYSOUT data set. 

IEFJOSNA 

? "'!8§11'" 

Label 



If -\Q 
C 

~ 
~ 
N 
fIl 

l 
a 
i 
n' 
t"'" 

J 
~ 
:; 
<D 
~ 

~ 
N 

t 
~ 
~ 

~ 

Diagram 9-8. Subsystem Job Termination (IEFJJTRM) (part 1 of 2) 
From the initiator (IEFSD166) 

Input via the sub- Processing 
system 
interface 
(lEFJSREQ) 

Output 

SSOB 

Ifunction code I d ....... 

Subsystem Job Termination 
(Master Subsystem) 

1 Check whether job termination 
is being requested. 

not job 
termination 

2 Check whether the job being 
terminated is a subsystem. 

not a 

~ Return to 
requester 

subsystem,.... b· .......... 

~ Return to 
requester 

SSOB 

RETN 

SSOB 

request is, <'"' V 
valid vI I,;v t:1 ===::::::::1 

Return to the 
initiator (I E FSD 166) 

R15 

o 

R15 

o 



fI) 

3 g. 
:s 
~ 

I: 

I 
2-

f 
l-
i 
~ -~ -

Diagram 9-8. Subsystem Job Termination (IEFJJTRM) (Part 2 of 2) 

Extended Description Module 

The master subsystem provides a subsystem job termination 
function. Subsystem job termination is a dummy routine IEFJJTRM 
which. when the job being terminated is a subsystem. 
replaces the normal job termination function. 

1 Subsystem job termination verifies that job termina­
tion was actually requested. 

2 Subsystem job termination also verifies that the job 
being terminated is a subsystem. 

IEFJJTRM 

IEFJJTRM 

Label 



3-192 OS/VS2 System Logic Library Volume 3 (VS2 Release 3.7) 



The purpose of the initiator/terminator is to make 
all necessary preparations for the execution of a 
job step/task. A task can be defined either as a 
unit of work which competes for system resources 
and is described by a task control block, (TCB), or 
as a request for the execution of some code. 

To prepare a task for execution, the initiator 
performs the following functions: 

• Obtains storage for and initializes the control 
blocks for a task. 

• Assigns special properties to a task. 
• Oversees the allocation of data sets and 

devices for a task. 
• Opens any required catalogs and libraries for 

a task. 
• Attaches the task. 

When each task has completed execution, the 
terminator portion of the initiator/terminator 
performs these functions: 

• Deletes the control blocks no longer needed. 
• Deletes the RACF accessor environment, if 

one exists. 
• Oversees the freeing of data sets and devices 

used by the task. 
• Detaches the task. 

When an entire job is complete, the 
initiator/terminator clears or deletes the control 
blocks and data areas the job used and the storage 
space it occupied. 

The initiator provides the above functions for 
these situations: 

• Completing master scheduler initialization. 
• Starting a subsystem. 
• Processing a START, MOUNT or LOGON 

command. 
• Initiating a normal job. 

In the first three situations the initiator is used as a 
subroutine to initiate a single job. When the job is 
completed, the initiator subroutine returns to its 
caller. 
In the last case, the initiator itself is a task created 
as a result of a command to start an initiator. This 
initiator can, in turn, attach a task. When that task 
has completed, .the initiator requests another job by 

VS2.03.804 

Initiator ITerminator 

invoking the job entry subsystem (JES). JES then 
returns to the initiator either another job or an 
indicator to stop processing. 

Important Considerations 
There are two new concepts in MVS that are 
important to the understanding of 
initiator/terminator processing: the scheduler work 
area and SYSEVENT macro instructions. 

Scheduler Work Area 
In MVS, most scheduler control blocks used by the 
initiator reside on a pageable portion of virtual 
address space called the scheduler work area 
(SWA). The purpose of SWA is to reduce 
contention for job queue resources. A more 
thorough discussion of SW A, including a list of 
resident control blocks, appears in the section of 
this book entitled SWA Manager. 

SYSEVENT Macro Instructions 
An entirely new concept for MVS is a SYSEVENT 

macro instruction. Use of a SYSEVENT macro 
instruction results in an SVC that invokes the 
systems resources manager (SRM) routines. The 
purpose of SRM is to determine those address 
spaces that can remain in real storage at anyone 
time and can still maintain the most effective use 
of system resources or meet user-specified 
installation objectives. 

The initiator/terminator issues these SYSEVENT 

macro instructions: • 
• JOBSELCT, indicating to SRM that a job has 

been selected by JES for initiator processing. • 
• REQSW AP, indicating that a task is to become 

non-swappable. 
• INIT A TT, indicating that a task has been 

attached. 
• INITDET, indicating that a task has been 

detached. 
• JOBTERM, indicating that a job has 

terminated. 
• DONTSWAP, indicating that an address space 

is not to be swapped. 

Section 2: Method of Operation 3-193 



3-194 OS/VS2 System Logic Library Volume 3 (VS2.03.804) 



fI.) 

it 
!" 
::t 
~ 

J: 
$l 

[ 
s. 
~ 
I eo 
::t 

\f -~ 

~ 

, 
~ 

Initiator: ---Job Initiation 

Initiatorl 
Terminator 
(no diagram) 

,IP 

~ 
Initiator: 
Step Initiation 

Initiator 
Recovery 
Processing 
(lEFIB620 and 
IEFIB621 

Figure 2-17. Initiator/Terminator Visual Contents 

y~ 

"'~ 

; 

~ 
- Initiator: 

Step and Job 
Deletion 



~ 

~ 
o 
~ 
;;3 
~ 

fIl 
'< 
~ 

~ 

i 
(i)' 

r-r 
~ 
~ 
[ 
(D 

w 

'< 
fIl 
~ 

i 
iI 
w 
~ -

Diagram 10-1. Initiator: Job Initiation (part 1 of 4) 

Input 

CurrentTCB 

K I 
JSCB 

J 
CSCB 

L LJ 
'" CIS 

l 

Current JSCB 

t SWA 
Subpool 

~ 

LCT 

~ I \ SSOB 

~ 
[ 

* STEPL 

J 

1 

From IEFSD263 
via ATTACH Process Output 

~""RR""~~~ 
Initiator, Job Initiation 

" 1 Build the initiator's entrance, .' V1Zo/G 
options, and exit list (lELL ®til § 

: ~: > 2 Build the. subsystem identification ::!J ~1§i 
block (55IB) and the subsystem Ld) 

From Master 
Scheduler 
Initialization 
(IEEVIPL), 
or fromSTC, 

options block (SSOB). '~31 ~ .. 
I I : v,:ill 

" :: : > 3 Build the linkage control .\ JI"ItI 
table (LCT) :::,1 . ~ 

IEL 

I 110.--' ---

SSOB 

/ I 
<... 55IB 

r ] 

LCT 

f,~ A.-I QMPA I 
J~ .\ ... ,.;... 0;"', 

~ STEPL , 

.

,.ii;;:£7. ;c; "~'~;i';"y:,; :';;~;"2:c].:"> .. [;"""'I5'';>j 

-" 4 Build the STAE parameter .A VI;'; 
list (STEPL), '::,l1 0 

;; r :> 5 If LOGON. MOUNT. o~ a ''"<ted:'! ~ JCT 7" 1 tl ~~; task IS ~ermlnatmg, begm stop d v 
proceSSing, 

1 
Otherwise, request a job from the 
job entry subsystem, 

6 
v---- - ........ 



C"n 
('D 
o 
S· 
= N 

s:: 
('D 

~ 
Q. 

o .... 
o 

"'C 
('D 

~ o· 
= 
:t 
\I) 
'-I 

-
Diagram 10-1. Initiator: Job Initiation (part 2 of 4) 

Extended Description 

The initiator interface control module (I E F IIC) issues a 
MODESET macro instruction to put the initiator task into 
supervisor state; it then begins building the control blocks 
required to process a jobstep or task. 

1 IEFIIC issues a GETMAIN macro for storage to build 
the initiator's entrance, options, and exit list (lEU. 

2 IEFIIC gets storage to construct the subsystem identi-
fication block (SSIB) and the subsystem options block 

(SSOBl. It determines the name of the subsystem which will 
select jobs for this initiator and places it in the SSIB: 

If the subsystem name was specified on a START command, 
a command input buffer (CIB) exists for it and the subsystem 
name is taken from there. 

If no CIB exists, IEFIIC checks for a subsystem name in the 
PARM field of the EXEC statement for this step and uses it. 

If no subsystem has been specified on an EXEC statement, 
the default value (the primary subsystem name found in 
the JESCT) is used. 

I EF IIC deletes the RACF accessor environment if one 
was obtained for the initiator. 

IEFIIC sets an initiator indicator in the command schedul­
ing control block (CSCB) and passes control to IEFSD160. 

IEFSD160, the initiator subroutine receives control from 
I"EFIIC for a normally initiated job or task, from started 
task control processing for a started task, or from master 
scheduler initialization. 

Module Label 

IEFIIC 

Extended Description 

3 I EFSD160 gets storage for the linkage control table 
(LCT) from the SWA subpool pointed to by the cur­

rent job step control block (JSCB); it then moves informa­
tion from the IE L into the LCT. 

4 After initializing the queue management parameter 
area (QMPA) in the LCT, IEFSD160 builds a 16-byte 

parameter list for a STAE exit routine, then issues an ESTAE 
macro instruction. It places a pointer to this private ST AE 
parameter list (STEPU in the LCT. IEFSD160 passes control 
to IEFSD161. 

Module 

IEFSD160 

5 IEFSD161, the job select routine, checks an indicator IEFSD161 
in the LCT to determine if STOP processing is required. 

If so, it frees the SSOB, SSIB, and the STEPL pointer if 
one exists, and passes control to a termination routine spec­
ified in the initiator's exit list. 

If STOP processing is not required, IEFSD161 issues the 
IEFSSREQ macro instruction, a routine that interfaces with 
the subsystem interface routine. When control is returned 
to IEFSD161 along with job status information, it checks 
the return code in the SSOB or register 15 to determine if 
the initiator should stop at this point. If so, it frees the 
SSOB, SSIB and the STEPL and passes control to a termi­
nation routine specified in the initiator's exit list. 

IEFSD161 next checks an indicator in the LCT to deter­
mine if the selected job is being warmstarted. If it is, control 
passes to the step delete routine, IEFSD164, to delete the 
current step. 

Label 

-< en 
N 
<:> 
w 
00 
o 
~ 



~ Diagram 10-1. Initiator: Job Initiation (part 3 of 4) 
IoC 
00 

o 
~ 
~ 
N 
~ 
~ 
~ 

~ 

.i o· 
t"'" 

J 
~ a 
(D 

~ 

~ 
N 
b 
~ 

00 
~ -

/ 

~ 

Local 
Parameter List 

Scheduler Work 
Area Virtual 
Address (SVA) 

Data Set 
Address 

0000 

Starting Step 
Number 

Scheduler 
Work Area 

---
Data Set 
ENQUEUE 
Table 

II 

r> 6 Build a data set tree structure for 
data set integrity processing. 

7 Update the tree structure witH' the 
new data set name for the current 
jobstep. 

~ 
,. 

8 Build the ENQUEUE parameter list 
from the entries in the tree. 

To step initiation (lEFSD101) 

",. "" 

Local Parameter List 

SVA 

Data Set Address 
to. 

" 
a.- Tree Address 

Starting Step Number 

Tree 

+ Next Tree or 0 

• First Entry 

Address of Last Word in Tree 

• Current Entry 

0000 

SV A of Current Data Set 

Associated Step Number 

Data Set Attribute (Exclusive or Shared) 

Length of Data Set Name 

Data Set Name 
~ h- --

.... ENQUEUE Parameter List 

" Major Name 

Heading Info 

Data Set Flags 

• Major Name 

• Minor Name # 1 

I Data Set Flags 

• Major Name 

"I • Minor Name #2 

,\ ~ ~~ 
Minor Name Data Set # 1 

~inor Name Data Set # 2 

- -
w 

--rfi 



I:I'.l 
nI 
~ 
e' 
= N 

~ 
a 
8: 
o ..... 
o 
-g 
i 
c:)" 
= 
~ 
IC 
IC 

-
Diagram 10-1. Initiator: Job Initiation (part 4 of 4) 

Extended Description Module 

6 IEFSD161 then checks an indicator in the JCT to IEFSD161 
determine if data set integrity processing is necessary for IEFDSTBL 

this job. If it is, IEFSD161 reads each data set name and 
passes it in a parameter list to IEFDSTBL. To process data 
set integrity (the assignment of the exclusive or shared 
attribute to a data set), IEFDSTBL builds a data set tree 
structure. The purpose of the tree is to eliminate duplicate 
data set names in the ENQUEUE parameter list which will 
ultimately be built for a job. The parameter list passed to 
IEFDSTBL contains the step number at which the job 
started, as well as a data set name and its current associated 
step number. The entire procedure ensures that a data set 
in use for a job will not be freed until after the last step 
needing it has used it. 

If this is the first entry into IEFDSTBL for a job, IEFDSTBL 
issues a GETMAIN for storage for the tree and initializes it 
with control information. 

7 IEFDSTBL determines if the job is a restart by com- IEFDSTBL 
paring the starting step number in the parameter list 

with the current step number in the data set entry. If the 
current step number is larger, the job is a restart. No further 
data set integrity processing is needed since a DSENQ list 
already exists for a restarted job. I EFDSTBL simply returns 
control to IEFSD161. 

For jobs that are not restarts or a first entry, IE F DSTB L 
compares the data set name in the parameter list with the 
first data set entry in the tree. 

If the two data set names match, IEFDSTBL compares the 
associated step number in the tree to the current step num­
ber. If the current step number is higher, IEFDSTBL 
replaces the step number in the tree with the current step 
number. It also replaces the associated data set attribute 
(exclusive or shared) in the tree if the current attribute is 
more restrictive (exclusive). 

If the data set names do not match, IEFDSTBL continues 
searching through the tree until it does find a match; then, 
if necessary, it updates the step number and data set attri­
bute in the tree. 

label Extended Description 

If IEFDSTBL reaches the end of the tree without finding a 

match, it adds the new data set name, its associated step 
number, and its attribute to the end of the tree. It 
returns control to IEFSD161. 

Module 

IEFSD161 looks at the CPU-task affinity indicator in the IEFSD161 
program properties table (PPT). When affinity is required, 
IEFSD161 calls IEFICPUA to assign CPU-task affinity to 
the job. If the return code from IEFCPUA is not zero, 
affinity cannot be assigned and IEFSD161 issues an appro-
priate message via IEFIMASK which converts the CPU 
information in the PPT to readable text. 

8 Once the tree structure contains all the data set entries IEFSD161 
for a job, IEFSD161 passes control to IEFDSLST to IEFDSLST 

build the ENQUEUE parameter list. IEFDSLST places the 
system data set name (major name) and the individual data 
set names (minor names) from the tree into the ENQUEUE 
parameter list and frees the tree, since it is no longer needed. 
Control returns to IEFSD161. 

label 



~ 
8 
,0 

~ 
t\oJ 

~ 
~ 

~ 

i 
f;' 
r-
f 
.$ 
~ 
~ 
(D 

CN 

~ 
t\oJ 

~ r 
~ 
CN 

=...t -

Diagram 10-2. Initiator: Step Initiation (part 1 of 8) 

Input 

Register 1 
I 

~ LCT 

lo-

...... ----JCT 

~ 

SCT 

~ 

LCT 

From job initiation (lEFSD161) 
for the first step of a job or 
from step deletion (IEFSD164) 
for subsequent steps .. 

PPT 
(accessed by VCON) 

Non -cancelable 

Special protect key 

Non-swappable 

Privileged 

System task 

Data set integrity 

CPU affinity 

Data Set 
Enqueue 

-~ (DSENQ) List 

-~ 

p e 
,>." .. ".", '@ 

Initiator, Step Initiation 

~ 1 Perform SMF processing as 
required. 

;;, 

... 
v> 2 Analyze the program properties 

for the current jobstep/task. 

.... 
3 Build a GETPART work table 

" (GWT) for the current jobstep. 

... 
4 Enqueue on the data set enqueue 

" list for this jobstep/task. 

6 

r. ',wC~""" ,,~ .,,-

, ji Type 20 
SMF Record 

JCT 

§ ... L Time and ; 

date ,: 

~ 
v 

~ :) 

;. 

"' " """"'::""'~'\'" '.',.>:c<> < .... ':< "co,,', .," 

;:; LCT 
,'+/', "', '7*,: 

{", 
... >" -~CSCB ;:' 

; I' :i Non-cancelable ~-cancela~ ::~ 
Privileged - i: 
System task Current TCB i;: 

Oa .. Set integrity VL Protect Key f 
-" - -,;j ,::::;;0>\ ;; 

L~ :, 

P'"' 1 ASCB JSCB ~~ 
" Non-swappable Bypass 

~~ CPU-affinity password 
protection 

'----- - ....-~ ": 

':0;::'>;:',:;:':::t,,:~i: .';;,;;, '<'·"'i:'/'?:"";<'.i/ 
i 

,,><,;~~;! 

.... GWT : 

I' 

~ 
:; 
; 

': 

" \; 

" 
""<' ,'." .. ". ,./.,; ";"<:" .,."",':':/",:, '. ,.'i.;\' 



CI} 
(\) 

~ o· 
= N 

a:: 
(\) 

[ 
o 
1"0) 

o 
'"d 
~ 
a o· 
= 
~ 

N 
I:> -

~ 

Diagram 10-2. Initiator: Step Initiation (part 2 of 8) 

Extended Description 

1 I EFSD161 passes control to the PPT scan routine, 
IEFSD101, which in turn calls IEFSMFIE for SMF 

processing. Once IEFSMFIE has determined that SMF 
options are to be performed, it stores the current time 
and date in the JCT. 

For the first step of a job, IEFSMFIE, the SMF initialization 
exit support routine, constructs a timing control table (TCT). 
At this point, if a user job initiation routine is provided, it 
is executed. When control returns to IEFSMFIE, it builds a 
type 20 SM F record. 

For every step in a job, IEFSMFIE executes a user step 
initiation routine, if one is provided. When control returns 
to IEFSMFIE, it passes control to IEFSD101 with an indica­
tor in the JCT if either the user's job or step initiation 
routine caused job cancellation. 

2 By checking a protect key in the JCT, IEFSD101 
determines if the current job step is to run in V=R or 

V=V. In either case, it moves the protect key into the cur­
rent TCB. (When a user has specified V=R for a job step. 
his program is allocated a contiguous area of real storage 
and of virtual storage, both with identical addresses. His 
entire program is loaded into real storage at one time and 
cannot be paged.) 

Before assigning any other special properties to this program, 
IE FSD 1 01 sets to zeroes the special properties indicators 
that were set for a previous step. It then scans the program 
properties table (PPT) for the following properties: 

Special protect key - If a special protect key is indicated in 
the PPT, IEFSD101 moves it into the current TCB. 

Non-cancelable job - If the non-cancelable property is indi­
cated in the PPT, I EFSD1 01 sets an indicator in the LCT 
and marks the CSCB non-cancelable. 

Non-swapable - If the program is marked non-swapable in 
the PPT, IEFSD101 sets the appropriate indicator in the 
ASCB. 

Privileged - If the program is marked privileged in the PPT, 
IEFSD101 sets an indicator in the LCT. The privileged 
property ensures that a program will not be swapped unless 
it is in a long wait. 

System task that is also a one-step started task - IEFSD101 
sets an indicator in the LCT that indicates that the task 
need not be timed. 

Module 

IEFSD101 
IEFSMFIE 

IEFSD101 

Label Extended Description 

System task that is an initiated task and/or consists of more 
than one step - I EFSD101 sets an indicator in the LCT to 
assign some of the normal program properties to the task 
and to issue an appropriate message. 

No data set integrity - For a one step job, I EFSD 1 01 sets 
an indicator in the LCT to assign this property to a pro­
gram. For a job consisting of more than one step, an indica­
tor is set in the LCT to assign some of the normal program 
properties to the program and to issue an appropriate 
message. 

Bypass password protection - I EFSD101 sets an indicator 
in the JSCB. 

CPU task affinity - IEFSD101 checks this property for all 
steps in a job other than the first. When affinity is required, 
IEFSD101 calls IEFICPUA to assign CPU task affinity to 
the step via an indicator in the address space control block 
(ASCB). If the return code from IEFCPUA is not zero, 
affinity cannot be assigned and IEFSD101 issues an appro­
priate message by invoking IEFIMASK to convert the CPU 
information in the PPT to readable text. 

3 IEFSD101 builds a GETPART work table (GWT) for 
the current job step if the user specified the REGION 

parameter or V=R mode or if a region beginning at a spe­
cific address is required for a checkpoint restart. A pointer 
to the GWT is placed in the LCT and control passes to 
IEFSD102. 

Module 

IEFICPUA 

IEFIMASK 

IEFSD101 

4 If no data set enqueue list exists and the job is success- IEFSD102 
ful to this point, IEFSD102 passes control to the 

device allocation interface routine, IEFSD162. IEFSD162 

If a data set enqueue (DSENQ) list exists, but the job is 
unsuccessful, IEFSD102 frees the DSENQ list before it 
passes control to IEFSD162. 

If a data set enqueue list exists, this is the first step of a job IEFSD102 
that requires non-temporary data sets. IEFSD102 marks 
the CSCB cancelable and issues an ENQUEUE macro instruc­
tion for the DSENQ list. 

If the ENQUEUE is unsuccessful, IEFSD102 issues an error IEFSD102 
message; otherwise, IEFSD102 waits for the ENQUEUE 
ECB to be posted (indicating that the specified data sets 
are now available) or the CANCEL ECB to be posted as a 
result of an operator CANCEL. In any case, control passes 
to the device allocation interface routine, IEFSD162. 

Label 



w 

~. 

~ 
"< "-l 
N 
"-l 
'< 
fQ. 
; 
t"" 

~. 
t"" cr 
! 
< 
~ 
i 
w 

~ 
N 

~ 
i 
! 
w 
:.... -

Diagram 10-2. Initiator: Step Initiation (part 3 of 8) 

input 

LCT 
I 

9 
JCT 

---' 

I 
""--'" 

J 
J 

J 

~SCT 
J 
J 
J 

~ ,/-.J 

Process 

LCT 

~ 5 ~alculate the time limit for this :. ~}I 
Jobstep/task. ,g VOw 

fJ~Tc' 

A 6 Set j.obstep/task cancelable if ~.,.~ .. '.' ~ \ ~ ~ 
-V possible. .ij~ YEry; c: ::::::l r::::::::=:::t 

<'t-:"ik/1'.vu~{Ji~,:Z~0;:E;: ~ ,;~~z,{P,:::::·fNJ{1t. : ·~,x'<~:f~~~·~::)~~9/;t~~~::· ?:.~;<~.'::"! :2' y'r ':j ';;Y ~.:' '.~ 
. R1 

\ I Parameter List 

~ 7 Call subsystem to notify : ~ 550B !/tCT 

of step Initialization. :,,1 Y~, I SSOBINDV ( .. ~~~:::SS:O::B:S:I :~ 

i 
~ 8 Perfor":, checkpoint/restart .~~ ~i 

processlng.:;;1 y~? 

TIOT 

~ 9 Perform all~cation processing for:: ~!. J====l 
the current Jobstep/task. ;,1 v'l t:=:::::::j 

:>10 Update the job journal. :: >til 

=> 11 IEFPARAM ATTACH 



CI) 
CD a a· 
::t 

!':» 
51: 

t 
c:a. 
o .... 
o 

1 s· 
= 
w 
N 
S 

Diagram 10-2. Initiator: Step Initiation (Part 4 of 8) 

Extended Description 

5 IEFSD162 first calculates the step time limit using 
input from the SCT, JCT and LCT; the resultant time 

limit for the current job step is stored in the LCT. 

6 If the current jobstep task is a started task (this is 
indicated in the CSCB), IEFSD162 sets up fields in 

the command scheduling control block (CSCB) so that the 
task will have a name that can be specified on a CANCE L 
command. 

7 IEFSD162 builds the SSOBSI extension in the 
LCT work area. Then, using the IEFSSREO 

macro, it calls the subsystem to notify it of step 
initialization, providing step names and step number. 
On return from the interface, if register 15 does not 
indicate a "successful call" or "function not 
supported by subsystem", issue a X'OBA' ABEND. 

8 If checkpoint/restart processing is required, IEFSD162 

Module Label 

IEFSD162 

IEFSD162 IEFJSREO 

cans IEFXB604 to set appropriate job status bits in IEFXB604 
the job step control block (JSCB) and JCT to indicate that 
allocation processing is beginning for the current jobstep/ 
task. IEFX8604 also writes the step's header record in the 
job journal before returning control to tEFSD162. 

Extended Description Module 

9 IEFSD162 gets storage for both a save area and param- IEFSD162 
eter list for the allocation routines. At this time, if the 

current jobstepltask is a system task, I EFSD162 marks the 
CSCB cancelable for the duration of allocation processing: 
it then branches to the device allocation load module, 
IEFW21SD. When IEFSD162 again receives control, if 
necessary, it restores the non-cancelable status of the task. 

If allocation was unsuccessful, IEFSD162 sets an indicator 
in the initiator exit list (I E U and passes control to 
IEFSD164 to delete the jobstepltask. 

10 After allocation processing, IEFSD162 updates the 
JSCB and JCT and calls IEFXB500 to write the 

updated information into the job journal. 

11 In preparation for ATTACH processing, IEFSD162 
issues a GETMAIN for storage for IEFPARAM, 

which will serve as the initiator's internal parameter list, and 
for an ATTACH parameter list. IEFSD162 places a pointer 
to the LCT and to jobstep/task TIOT (created by the alloca­
tion routines) in IEFPARAM. It next places a pointer to 
IEFPARAM in the STEPL. IEFSD162 then calls SWA man­
ager to write the SCT and JCT into the job journal. 

IEFW21SD 

IEFSD162 

IEFSD162 
IEFXB500 

IEFSD162 

Label 

~ 
N 
o 
W 
00 
~ 



I.f Diagram 10-2. Initiator: Step Initiation (part 5 of 8) 
N 

~ 

o 
til 

~ 
N 
til 

~ 
9 
E 
n' 
~ 
~ 

~ 
~ 
2" 
:I 
('D 

I.N 

~ 
N 
o 
I.N 
00 
o 
~ 

LCT 

\. JSCB 

\ 

~CB 
I I 
I 1 
L- J 

LCT 

~ 
LCT 

DCB DEB 

? Is this library 
4 - defined to -

r--- contain pgms 
_ with special _ 

properties? 

-:::::;:7 ~ 

R1 ATTACH -
~ lEFPARAM Parameter List 

(...A"" 
/ 

....... --- ~ ......., 

... 
12 Open the catalogs required by 

y 
this jobstep/task. 

TIOT 

" v 
Data sets 
marked "OPEN" 
~ 

"- 13 Open the JOBUB, STEPLlB, 
v and/or F ETCH LIB as required 

by th is jobstep/task. 

"-) 14 Assign special properties to 
v programs if possible. 

ATTACH 
Para meter List 

'" 15 Initialize the ATTACH 
"-

v> --y parameter list. 

.~ 
~ 



Diagram 10-2. Initiator: Step Initiation (part 6 of 8) 

Extended Description Module 

12 Before beginning OPEN processing, IEFSD162 IEFSD162 
places a pointer to the jobstep/task TlOT in the 

initiator's own TCB. It then checks the jobstep/task JSCB 
to see if there are catalogs to be opened. If so, IEFSD162 
calls the initiator interface to catalog control, IEFICATL. 
This routine scans the DSAB (data set association block) 
chain associated with the jobstep/task to identify the 
required catalogs. It then invokes IEFAB4F5 to open these 
catalogs and update the private catalog control bfocks (PCCBs), 
and returns control to IEFSD162. If OPEN processing is 
unsuccessful, IEFSD162 branches to IEFSD164 to delete 
the jobstepltask. 

13 IEFSD162 issues an OPEN macro instruction for the IEFSD162 
JOBUB, if one exists, or for the STEPLIB if a 

STEPLI B exists. It issues another OPEN macro instruction 
for FETCHUB if it is also required. When OPEN process­
ing has completed successfully, IEFSD102 restores the 
TIOT pointer in the initiator's TCB so that it once again 
points to the initiator's own TIOT. 

14 IEFSD162 checks the related data event blocks 
(DEBs) to see if the job library or step library just 

opened is an authorized library (this is indicated in the 
DEB). If the library is authorized, complete the 
assignment of special properties. If the library is not 
authorized, assign normal properties to the job step 
and issue an appropriate message. When this is done, 
IEFSD162 branches to IEFSD103 for ATTACH 
processing. (Special and normal properties are 

IEFSD162 

{"I.l discussed in OS/VS2SPL: Job Management.) 

a 
e' 
= 
~ 

at:: 

[ 
~ 

1 a. 
e' 
= 
~ 
N 

~ 

Label Extended Description Module 

15 IEFSD103, the ATTACH interface routine, places IEFSD103 
the following information in the ATTACH param-

eter list passed to it: 

• The entry point of the problem porgram to be attached 
in behalf of the jobstep/task. -

• The address of the ATTACH ECB. 

• The address of the FETCHLIB DCB. 

• The address of the STEPLIB or JOBUB DCB. 

• The identification of which SWA subpool (236 or 237) 
cannot be shared. 

If the DPRTY parameter was specified for the jobstep, 
IEFSD103 calculates an address space priority for the job. 
If DPRTY was not specified, the automatic priorit~ group 
(APG) from the CVT is used. In either case, IEFSD103 
puts the memory priority, along with the performance 
group number, into IEFPARAM. It then branches to 
the ATTACH routine, IEFSD263. 

''II!''!''!!II'' 

Label 



; 
i 
~ 
N 
f'-) 

1 
i 
f 
~ 
;: 
a 
~ 

w 

~ 
N 

~ 
r 
~ 
w 
~ 

Diagram 10-2. Initiator: Step Initiation (part 7 of 8) 

LCT 

~ 

R1 

1 ,I 
~ 

A list of 
end-of-task and 
cancel ECBs 

'om,m, 

" 16 Get a region for the current 
y 

j obstep/task. 

17 Perform SMF processing. 

") 18 Attach the task and wait for it 

" 

'" 
f;!:' " 

~ 
:~ 
\" 

~ 

to complete processing. 

19 Detach the task when it has 
completed processing. 

,. 
To step deletion 
(tEFSD164) 

, 

TCTIOT 

..... D j 
y 

" TCB 
y 

CJ :' 

,itt 
,l~ 



til a 
5' 
= 
~ 

a:: a 
6 
Q. 

o .... 
o -= ; 
g. 
= 
w 
W c ..... 

Diagram 10-2. Initiator: Step Initiation (part 8.of 8) 

Extended Description 

16 If the jobstep/task is not swapable, IEFSD263 issues 
a SYSEVENT macro instruction, REQSWAP, that 

. causes the initiator's own address space to be swapped out. 
It also frees the initiator's region. 

When no GETPART work table (GWT) exists for a 
jobstep/task, IEFSD263 CJbtains a V=V region of default 

size. 

If there is a GWT, a special type of region is required for 
the jobstep/task. IEFSD263 issues a GETMAIN for a region. 
If the request cannot be immediately satisfied, IEFSD263 
waits for a GETPART or CANCEL ECB to be posted 
indicating whether the GETMAIN completed successfully 

or failed. 

17 IEFSD263 calls IEFAB820 to build a TCTIOT 1 
(timing control TIOT), if one is required. J 

Module 

IEFSD263 

IEFAB820 

Label 

.,: ......... . . . :- ;i 
j: 

. ;;'. 

" ' .. '~"" 

Extended D~ription Module 

18 WhehlEFSD263 regains control from IEFAB820, IEFSD263 
it moves the jobstep parameter area from subpool 

253 to subpool 0, issues an ATTACH for the jobstep/task, 
and sets a time limit in the ASCB. It takes the task's ASCB 
priority from IEFPARAM, issues the STATUS macro 
instruction to make the newly created TCB dispatchable, and 
then issues a WAIT macro instruction. It waits for the 
end-of-task and for the cancel ECBs associated with the 
attached task to be posted. 

19 If the cancel ECB is posted, IEFSD263 invokes the IEFSD263 
abnormal termination routines via SVC 34 and 

issues another WAIT macro instruction for abnormal 
termination processing to complete. 

When the cancel ECB is posted a second time, or when the 
end-of-task ECB is posted once, IEFSD263 begins DETACH 
processing. 

If the jobstep was timed, IEFSD263 saves the time allowed 
for the job and the time used by the job step (both in the 
LCT) and calculates the time remaining. It builds a param-
eter list to be used for step deletion processing, frees the 
jobstep/task region and if one exists, the GWT, and finally 
branches to the step delete routine. IE FSD164. 

IEFSD263 

~ 

Label 



CoN 

~ 
o 
til 

"< til 
N 
til 
'< 
fQ. 

~ 
b 
~. 
t: 
2" 
~ 
~ 
[ 
c 
CoN 

~ 
N 

i 
~ 
CoN 
:... -

Diagram 10-3. Initiator: Step and Job Deletion (part 1 of 4) 

nput 

Register 1 

J 

From IEFSD263 (the end of step 
initiation) orfrom IEFIB621 for 
attempted retry Process 

Step and Job Deletion 

~ I EFPARAM LCT ; II ; > 1 Close F ETCH LIB and .IOBLIB or a-+J !J"f$, STEP LIB If necessary. 

4 FETCHLIB 

~ 

LCT 

"'" 

, JOBUBI 
I STEPLIB 

~ 

v 
~ ---

'k: ~ JCT 1 __ t SCT 

tACT 
• ACT 

~ .~ 

~: : : :: > 2 Calc~la.te time elapsed and time yl 

remammg for the current 
jobstep/task. 

.... :;.> 3 Free IEFPARAM and the ATTACH 
parameter list • 

Output 

J.. 

r--v 

L.J\, 
v 

.... 
4 Build a dummy TCB to be used by ". 1/1 

the unallocation routines. ,,£I 

5 Determine status of the current job. 

LCT 

~ 
Job Journal 

ACT 

ACT 

JCT 

SCT 

"-----
DummyTCB 

~ 
Q To step initiation to begin another step if 

the last step in a job has not been completed. 

~) 
f;'~1 

~i211 



~ 
nI 
~ ci" 
= N 

a:: 
~ 
S 
Q. 

o ..... 
o 

"0 

~ o· 
= 
~ 

~ o 
\0 

~ 

Diagram 10-3. Initiator: Step and Job Deletion (part 2 of 4) 

Extended Description 

When the step delete routine IEFSD164 receives control, 
it checks indicators in the JCT and LCT to determine if 
the jobstep is being deleted for warmstart processing or 
because of an error during allocation. If either of these 
conditions exists, I EFSD164 begins processing at step 3. 

1 IEFSD164 closes FETCHLIB if it was used by the 
jobstepltask and frees the storage its DCB occupied; 

it does the same for a JOB LI B or STEP LI B. 

Module 

IEFSD164 

IEFSD164 

2 IEFSD164 calculates the SRB time for the jobstep and IEFSD164 
writes it the SCT. It calculates the execution time for 

the jobstep and writes it into the step account table (ACT). 

r· It does the same calculations for the job and writes the 
resultant figures in the JCT and the job account table 
(ACT) respectively. I EFSD164 then calls SWA manager 
to write the updated block into the job journal. 

3 IEFSD164 frees IEFPARAM, sets to zero the 
pointer to it in STEPL, and also frees the ATTACH 

parameter list. 

4 IEFSD164 builds a dummy TCB to be used by the 
una"ocation routines; the dummy TCB contains the 

jobstepltask status and completion codes. When the 
dummy TCB is completed, control passes to the unalloca­
tion routines to free the data sets and devices used by 
the jobstep/task. 

5 When I EFSD164 regains control from unallocation, it 
frees the dummy TCB and checks the return codes. 

IEFSD164 

IEFSD164 

IEFSD164 

""---.-? 

Label 



!of Diagram 10-3. Initiator: Step and Job Deletion (part 3 of 4) 
N -o 

o 
til 

"< 
til 
N 
til 
'< 
~ 
(I> 

:3 
r-
t2 ;:;. 
r­a: 
; 
-< 
< o 

= :3 
(I> 

~ 

'< til 
N 
b 
~ 

00 
o 
.::! 

LCT 

1 QMPA 1 
If~b~' I 
~ 

'If 

6 Delete the security accessor 
environment. 

7 Delete, suspend, or re-enqueue 
this job. 

'" . . ) 8 Free all control blocks associated 
Y with this job in the LSOA, SOA, 

and SWA. 

9 Indicate that this job should stop. 

To job initiation to 
begin the next job. 

LCT 

'" 
Y 

Internal Stop 

l/"'--'- -~ 

< 
til 
N 
b 
~ 

00 
o ...... 



rn 
(1) 
n 

S· 
= N 

is: 
(1) 

8-
~ 

o ..., 
o 

"0 
(1) 

~ 
S· 
= 
I.N 
~ --

..,. 

Diagram 10-3.' Initiator: Step and Job Deletion (part 4 of 4) 

Extended Description 

6 If RACINIT processing was performed for this job 
step/started task by the SWA create routine 

(lEFIB600), then delete the RACF environment since the 
task has completed. 

7 If another step in the job is to be initiated, control 
passes to IEFSD101, the step initiation routine. 

If tl:le job step just completed was the last step in a job, 
control passes to IEFSD166, the job delete routine. 

If the job associated with the jobstepltask is to be suspended, 
control passes to IEFSD166 to do this. 

If the job ran in V=R mode, IEFSD166 releases the job's 
protect key. It gets storage for job delete or job enqueue 
processing. The decision to delete or re-enqueue a job 
depends on the function code in a two-word parameter 
list pointed to by register one. IEFSD166 sets appropriate 
indicators in the SSOB and issues the IEFSSREO macro 
instruction requesting the job entry subsystem to delete 
or re-enqueue the job. 

If no error occurs in job entry subsystem processing, 
IEFSD166 puts the return code from the subsystem into 
the IEL. 

8 IE FSD 166 frees all the control blocks associated 
with this job in the LSOA and SQA. It passes 

control to the SWA management routines requesting 
deletion of job related blocks in SWA. It then calls the 
auxiliary storage manager routine (I LRJTERM) that 
frees any ASM control blocks still existing for VIO data 
sets created by the job being terminated. 

9 If the completed job was a normally initiated task, 
IEFSD166 removes the job name from the initiator's 

TIOT. 

If the completed task was not begun by the initiator, 
IEFSDl66 sets an internal stop indicator in the LCT. 

Control passes to IEFSD161. 

Module 

IEFSD101 

IEFSD166 

IEFSD166 

IEFSD166 

IEFSD161 

"< ;? 

label 

... 

"''.':..Y'' 

<: 
rn 
N 
o 
I.N 
00 o 
...;j 



w 
oN -N 

o 
C"'-l 

~ 
N 
C"'-l 
'< 
~ 

3 

i 
Co 
g-

~ 
~ 
~ 
(D 

w 

'< 
C"'-l 
N 
o 
W 
00 
c::> 
~ 

Diagram 104. Initiator: Recovery Processing (part 1 of 2) 

From recovery 
termination 

Input management Process 

Register 1 .. 
Initiator Recc very 

~ SDWA 

... The initiator task recover " routines receive 
" control when: 

~ - a) A program check OCCl rs. 

(STEPL ~ b) An ABEND occurs. 

cl The operator pushes t ,e REST ART key. 

d) A machine check OCCl rs. 

e) Percolation occurs. 
~ 

........ 

LCT 

1 Contribute to system rror recording. 

--' ........ 

JCT 

2 Take a dump. 

---" ~ 

3 Exit to IEFSD164, ei her to delete the 
jobstep/task and retry it or to terminate the 
entire job. 

, 
(Ie 
16 

Output 

SDWA 

~ 
......... 

STEPL 

--- ~ 

,..- ~ 

... '- -"" 
y 

SYS1.LOGREC 
Data Set 

'-.. 

... ,..-
""""'" " "'- ~ 

~ System 
.DUMP 

Data Set 

"-



f:IJ 

11 
e' 
= 
~ 

~ 

[ 
2-
-i 
£1 =. 
e' 
= 
~ -(N 

~ 

Diagram 10-4. Initiator: Recovery Processing (part 2 of 2) 

Extended Description 

The initiator task recovery routine (lEFIB620) receives 
control when: 
a·) a program check occurs, 
b) an ABEND occurs, 
c) the operator pushes the RESTART key, 
d) a machine check occurs, 
e) percolation occurs. 

Module 

1 IEFIB620 receives control from recovery/termination IEFIB620 
management (RITM). If RITM does not provide a STAE 

diagnostic work area (SDWA), IEFIB620 simply sets an 
indicator in register 15 to continue termination processing 
and returns to RITM. 

Unless the error that occurred was an OPEN failure or unless 
the routine received control as a result of percolation, 
IEFIB620 records the error in the SDWA. 

2 If entry into this routine is not the result of percolation, 
recursion, an OPEN failure, or a machine check, 

IEFIB620 issues an SDUMP macro instruction. 

3 If this is not a recursion or if the LCT does not contain 
both a JCT SWA address and an SCT SWA address, 

IEFIB620sets a retry indicator in the SDWAand places the 
address of the retry routine in the SDWA. It then returns 
to its caller, R/TM. 

R/TM, in turn, passes control to IEFIB621, the initiator 
task recovery retry routine, which will enable the retry and 
then pass control to IEFSD164, the initiator step delete 
routine to delete the step currently in progress. 

IEFIB621 

Label 



3-214 OS/VS2 System Logic Library Volume 3 (VS2 Release 3.7) 



The SW A create interface routines receive control 
from either the master subsystem or the job entry 
subsystem. Their main function is to. prepare a job 
for the interpreter by setting up its job step control 
block (JSCB) chain. One of the SW A create 
interface routines, IEFIB600, passes control to the 
interpreter, and when control returns, it places the 
SW A address of the JCT in the JSCB for a job. It is 
the interpreter that actually builds the SW A and 
many of the control blocks that reside in SW A, for 
example, the JCT. 

SW A Create Interface 

Whenever the current job is not a started task, 
the S·w A create interface routines build a command 
scheduling control block (CSCB) to represent the 
job. (The CSCB for a started task is created by the 
started task control routines.) 

The sw A create interface routines also 
reconstruct SW A for restarted jobs. 

Section 2: Method of Operation 3-215 



~ 

N -01 

o 
rI:I 

"< {I} 
~ 

rI:I 
'< 
~ 

9 
E 
n' 
r-

~ 
-< 
t-
2' 
3 
(D 

~ 

~ 
~ 
Q 
~ 

00 
~ 

Diagram 11-1. SW A Create Interface (IEFIB600) (part 1 of 2) 

From the master 
subsystem or the job 

Input entry subsystem p 
II ~ illolcellssllllllllllll~1I1I1I1I1I1I1I1I1I 

I I:;: 1 I I -N SWA Create i'nterfa~ I 
Output 

SSOB 

• LCT 

(~ LCT 

~ ---... 

LCT 

Is this a 
started task? 

l--- -

Register 1 

CC:SSO~ 

~ 

" 
v 

J\ 

v 

J-.. 

v 

1 Create an EST AE erlvironment in case an 
error occurs. 

2 Initialize the JSCB fpr the starting jobstep 
or task. 

3 Invoke the interpret~r to build required 
control blocks. 

4 Initialize RACF acc,ssor environment 
if RACF is active. 

I, ~ 

L-...J\. 

v 

_Jo... 

-v 

...Jo.. 5 Build a CSCB for th~s task if necessary. fudi VII 

6 If this jobstep/task if part of a restarted job, 511 ,-
reconstruct SWA. d V 

Return tel> caller 

LCT 

1· ~CB 1 
T Job Status Flags J 
JSCB 

~ Message RPL 

+ Journal RPL 

f ?f 
NEL 

Register 1 ,,~ Message Text 

0...--__ 1 + ACB 

+OMPA 

CSCB 

Cancel Status 

N N 

T T 
LCT 

Updated 

<: 
rI:I 
~ 
Q 
~ 

00 
~ 



CI.l 

a 
~. 

::I 
~ 

a:: a 
S 
Q. 

S­
o 
~ ; 
g. 
::I 

eN 
N -...... 

~ 

Diagram 11-1. SW A Create Interface (IEFIB600) (part 2 of 2) 

Extended Description 

The SWA create interface routines set up the control 
blocks for a job before the job enters the interpreter. The 

SWA in which the control blocks will reside is created 

during interpreter processing. 

1 IEFIB600 first creates an ESTAE environment by 
issuing an EST AE macro instruction .. As a result, if 

an error occurs during SWA create interface processing, 
control will first pass to a recovery/termination routine, 

and from there, back to a SWA create exit routine, 
IEF1B645. The exit routine takes a dump of storage if it is 
required, and specifies retry. It then returns control to 
recovery/termination. 

Once the ESTAE environment is established, IEFIB600 sets 
the job status flags in the LCT indicating whether the job 
is an automatic checkpoint restart, a step restart, or a 
warmstart. 

Module 

IEFIB600 

IEFIB645 

IEFIB600 

2 IEFIB600 next issues a GET JSCB macro instruction IEFIB600 
and when that is done, it chains the job's JSCBs and 

places a pointer to the first JSCB in the LCT. It initializes 
the JSCB with the following information: 

• The address of the message request parameter list (RPLl. 
• The address of the journal RP L. 
.The address of the QMPA. 
.• The address of the CSCB for the job, if one exists. 

• An indicator that the job is entering the interpreter. 
• An indicator that no journaling is required. 
• A restart indicator. 
• The SWA subpool number. 
• The ASI 0 for the job. 

3 IEFIB600 then initializes the interpreter entrance IEFIB600 
list (NEL) and issues a LINK macro instruction to pass 

control to IEFNB903, the first routine of the interpreter. 
Register 1 points to the NEL. 

When control has returned, if an error occurred during 
interpreter processing, I EF I B600 frees appropriate control 
blocks, places an error return code in register 15, and returns 
to the original calling routine. 

When interpreter processing has completed successfully, 
IEFIB600 invokes a SWA manager routine to read the job 
control table (JCT) created by the interpreter. It places the 

'---_7 

Label Extended Description 

SWA address of the JCT in the first JSCB, in the JCT itself, 
and in the LCT. 

4 If the RACF function is active, check if the userid is 
valid. If not, fail the job and issue an error message 

(lEF7221). If successful, check if automatic data set 
protection was requested. If it was, set the JSCBADSP in 
the active job step control block for use by allocation. 

5 If the job in processing is not a started task, IEFIB600 
builds a command scheduling control block (CSCB) 

to represent the job. (If the job is a started task, the started 
task control routines have already built the CSCBJ 

6 Finally, IEFIB600 checks indicators in the SSOB and 
LCT to determine if the SWA for this job must be 

reconstructed. For restarted jobs, SWA must be rebuilt to 
reflect previous processing, as well as newly begun restart 
processing. 

Whenever SWA reconstruction is necessary, IEFIB600 
passes control to IEFIB605, the SWA reconstruct module, * 
otherwise, it returns control to the original caller. 

Module 

IEFIB600 

IEFIB605 first determines if the job is an automatic restart, IEFIB605 
step restart, a warmstart, or deferred restart. For any case 

but deferred restart, IEFIB605 invokes the SWA merge 
routine (lEFXB601)' IEFXB601 

Before calling the merge module, IEFIB605 builds a param- IEFIB605 
eter list, the merge entrance list (MEL) and places a pointer 
to it in register 1. 

When merge processing has completed and control is 
returned, IEFIB605 checks job status again for an automatic 
or deferred restart. In both cases, it invokes the data set 
descriptor record processor, IEFXB609, and it passes it a IEFXB609 
pointer to the LCT. 

This time, when control returns to IEFIB605, a subroutine IEFIB605 
checks job status for a warmstart. If the job is a warmstart, 
IEFIB605 determines whether the error that caused the 
warmstart occurred in allocation, execution, or termination 
and sets appropriate indicators. 

In every case, I !=FIB605 returns control to I EFIB600, who 
then returns to the caller. 

*This module is part of Checkpoint/Restart processing . 

... ~~ 

Label 

~ 
~ 
(:, 
eN 
00 
~ 



3·218 OS/VS2 System Logic Library Volume 3 (VS2.03.804) 



, 

The Purpose of the Converter 
The following is a brief overview of converter 
functions. For a thorough look at converter 
processing see the method-of -operation diagrams 
and extended descriptions. 

In MYS, the converter/interpreter performs most 
of the functions performed by the 
reader /interpreter in os. However, the 
converter /interpreter does not read in-stream JCL 

statements or any input stream data. The converter 
executes as a subroutine of the job entry subsystem 
(JES). JES actually reads JCL statements and input 
stream data and spools them to appropriate data 
sets. The converter then takes the records from 
these data sets and converts them into internal JCL 

text to be used by the interpreter. It also merges 
JCL that it reads from the procedure library with 
the JCL and input stream data spooled by JES. 

Identifying JCL Statements 
Once initialization is complete, the converter GET 

routine, IEFYHA, begins processing by obtaining a 
JCL statement (an 80-byte card image) from the 
JCL data set and/or from a cataloged or in-stream 
procedure. 

Comments and Continuation 
The next converter routine, IEFYHC, continues 
processing JCL statements by checking for a valid 
continuation. It branches to IEFYHEB if a 
continuation was expected and was or was not 
received, to IEFYHCB if a continuation was not 
expected, and to IEFYHA if a comment was 
received. 

JOB, EXEC, DD Statements 
Once a JOB, EXEC, or DD statement is identified, 
the converter pre-scan (IEFYHEB) performs some 
initialization functions and branches to the scan 
routine, IEFYFA. It is IEFYFA that converts all JCL 

card images taken from the JCL data set into 
internal text and then moves them to a text data 
set that will be used by the interpreter. 

NULL Statements 
The NULL statement processor, IEFVHL, analyzes 
the conditions under which it was entered. 

If the NULL statement represents the end of an 
input stream job and more statements must be read 

Converter /Interpreter 

from a procedure, control returns to the converter's 
GET routine, IEFYHA. When IEFVHA encounters a 
procedure end-of-file, it generates a NULL 

statement to signify the end of the procedure. 
If the NULL statement indicates that there are 

no more JCL statements to be read and that the 
JCL data set and all procedures have been 
processed by the converter, IEFYHL invokes the 
converter termination routine, IEFYHF. 

PROC and PEND Statements 
An EXEC PROC statement identifies a procedure 
that exists in the system's procedure library. A 
PROC statement marks the beginning of an 
in-stream procedure. When the converter 
encounters a P~oc statement in the input stream, it 
converts it to an EXEC PROC statement. For both 
cases, control passes to an in-stream procedure 
control routine,· IEFYINA, that in turn calls a series 
of special processors. 

The first of these, IEFYINE, is a syntax check 
routine. If it finds the PROC statement valid, it 
returns this information to the control routine. 

The next module called, IEFYINB, scans the 
entries in the In-Stream Procedure Directory. If 
IEFYINB does not find an entry for the procedure 
name sepcified on the PROC statement, the control 
routine invokes another module, IEFVINC, to build 
a new entry. 

When the entry is complete, the control routine 
branches to another module, IEFZNCODE; this one 
compresses the JCL statement and stores an pointer 
to the statement next to the procedure name in a 
local work area. 

The control routine, IEFYINA, continues reading 
and compressing data until it encounters some kind 
of delimiter. When it reaches a PEND statement 
signifying the end of a procedure, it returns control 
to the converter GET routine, IEFYHA, for the next 
statement. 

Symbolic Parameters 
A user defines symbolic parameters either in 
statements within a procedure itself or in 
statements that override the statements in a 
referenced procedure (for example, one in the 
procedure library). Therefore, the Converter may 
encounter symbolic parameters in three places: 

• In an EXEC statement that calls a procedure. 
• 

Section 2: Method of Operation 3-219 



• In input stream statements that override 
procedure statements. 

• In statements within a procedure. 

When a symbolic parameter is specified on an 
EXEC statement, the converter scan routine, 
IEFVF A, uses the symbolic parameter processing 
routine, IEFVFB, to place an entry in a table of 
symbolic parameters and assigned values 
(SYMBUF). 

When a symbolic parameter appears in an 
input-stream statement or in a statement in a 
procedure, IEFVFB, substitutes a corresponding 
value already in a symbolic parameter table entry 
for the symbolic parameter. 

Command Statements 
When the converter verb identification routine, 
IEFVHCB, cannot recognize a verb, it assumes that 
the verb is a command. The command validation 
routine, IEFVHM, verifies that the verb is one 
allowed in the input stream and issues an SVC 34 
(the command scheduling supervisor call) to 
execute the command. 

Service Routines 
During converter processing, most converter 
routines use a set of service routines that perform 
some common functions. 

The message module, IEFVGM, puts the 
converter messages into the message data set and 
JCL statements into the list data set. 

The operator message module, IEFVHR, places 
messages intended for the operator into the 
message data set. 

The SW A (shceduler work area) manager 
interface module, IEFVHQ, enables the converter 
routines to assign control blocks to sw A, to locate 
blocks there, and to read from them and update 
them on SW A, as well. 

The Purpose of the Interpreter 
The interpreter operates as a subroutine of the 
Initiator but is actually called by SW A create 
interface. The purpose of the, interpreter is to build 
the scheduler control blocks rquired to execute a 
job. The interpreter transforms the keywords and 
parameters specified in the JCL statements to 
specific table entries. In the interpreter, the JCL 

statements appear in the form of JCL text, the 
output of converter processing. 

3-220 OS/VS2 System Logic Library Volume 3 (VS2 Release 3.7) 

When interpreter initialization is done, the 
interpreter GET routine, IEFVHE, receives control. 
It determines whether a statement it is processing is 
a JOB, EXEC, or DD statement and then routes it to 
an appropriate processor. 

The JOB Statement 
The JOB statement processor (IEFVJA), initializes a 
job control table (JCT) and the job account control 
table (JACT) for a job. It also checks the validity 
of the JOB statement keyword values and enters 
them into the tables. 

The EXEC Statement 
IEFVEA processes EXEC statements. It creates a 
step control table (SCT) and a step account table 
(ACT) for each EXEC statement. IEFVEA also 
chains the job file control blocks (JFCB) whenever 
a JOBLIB has been specified, and chains the SCT 

for data set concatenations. 

The DD Statement 
The DD statement processor (IEFVDA) creates the 
step input/output tables (SlOTs) and JFCBs for a 
step and a data set enqueue table (DSENQ table) 
entry for all data sets explicity named by the 
DSNAME parameter. IEFVDA marks each data set 
entry in the DSENQ table as exclusive or shared 
according to the user's specifications. 

Service Routines 
The interpreter initialization routines, perform 
several common functions by using a set of service 
routines. 

The message module, IEFVGM, puts the 
interpreter messages into the message data set. 

The operator message module, IEFVHR, also puts 
messages intended for the operator into the 
message data set. 

The SWA manager interface module, IEFVHQ, 

enables the interpreter to assign control blocks to 
sw A, to locate blocks there, and to read from them 
and write to them. 

The statement processors, IEFVJA, IEFVEA, and 
IEFVDA, use a special set of service routines for 
functions common to them. 

The interpreter GET parameter routine, IEFVGK, 

locates each parameter for the command statement 
processor. It branches to an appropriate keyword 
subroutine to perform a basic check for errors and 
then returns to the command statement processor. 



) 

The test and store routine, IEFVGT, enables the 
command statement processor to determine what 
processing must be done for each parameter. There 
is a parameter descriptor table (PDT) that lists each 
keyword, the operation to be performed for it, and 
the location at which the results must be stored. 

The EXEC and DO statement processors, IEFYEA 

and IEFVDA, respectively, use a dictionary entry 
routine (IEFYGI) to place an entry in the 
"refer-back" table. They also use a dictionary 
search routine, IEFYGS to search the "refer-back" 
table for the address of an existing SCT, SlOT, or 
JFCB. Both IEFVGI and IEFYGS return to the calling 
routines. 

Section 2: Method of Operation 3-221 



3-222 OS/VS2 System Logic Library Volume 3 (VS2 Release 3.7) 



C"Il 

it 
~. 

= 
~ 

a:: 
~ 
~ 

e. 
o 

"CI 

I· = 
~ 
~ 
eN 

Input 

NEL 

NEL 

List of 
parameters 

LJ 

From the job entry 
subsystem or the 
Master Subsystem 

Figure 2-17a. Converter Visual Contents 

,----" 

1 Initialize the converter. (See M.O. 
Diagram - Converter: 
Initialization (lEFVH1).) 

2 Identify verbs on JCL statements. If 
necessary, merge them with statements 
from a cataloged procedure. (See M.O. 
Diagram - Converter: Identifying 
Verbs in JCL Statements (I EFVHA, 
IEFVHC, IEFVHCB, IEFVHEB).) 

3 Process any commands in the input 
stream. (See M.O. Diagram­
Processing Commands in the Input 
Stream UEFVHM).) 

4 Process in-stream and cataloged 
procedures. (See M.O. Diagram­
Converter: Processing In-stream and 
Cataloged Procedures (JEFVINA).) 

5 Process symbolic parameters. 
(See M.O. Diagram - Converter: 
Processing Symbolic Parameters 
(lEFVFA,IEFVFB).) 

6 Convert JCL statements to internal 
text. (See M.O. Diagram­
Converter: Converting Statements 
to Internal Text (lEFVFA).) 

7 Enter defaults into internal text. 
(See M.O. Diagram - Converter: 
Entering Defaults into Internal Text 
(JEFVFA).) 

8 Terminate converter processing. 
(See M.O. Diagram - Converter: 
Termination (JEFVHF).) 

In-stream Directory 
and Records 

D 
Symbolic Parameter 
Buffers 

,,-~~y 



w 
N 
~ 

o 

~ .., 
fI'.l 

~ 
a 
i 
(') 

j 
~ 
E' a c 
w 

'< 
fI'.l .., 

t 
! 
w 
:... -

Diagram 12-1. Converter: Initialization (IEFVH1) (part 1 of 2) 

Input 

Register 1 

From the master subsystem or 
the job entry subsystem 

~D 
1 Establish an ESTAE environment 

over the·converter. 

2 I nitialize the converter work area. 

3 If SMF processing is required, get 
storage for and initialize a job 
management record (JMR). 

To IEFVHA, the converter 
GET routine 

E 
r list 

Register 12 



~ 

Diagram 12-1. Converter: Initialization (IEFVHI) (part 2 of 2) 

Extended Description 

This module, IEFVH1, is the converter initialization 
routine. It receives control from the job entry subsystem 
or the master subsystem via a link macro instruction. 

Module 

1 IEFVHl obtains storage for and initializes an ESTAE IEFVHl 
parameter list for the converter, then issues an ESTAE 

macro instruction. 

2 IEFVHl initializes the converter work area with the 
following information: 

• The address of the interpreter entrance list (NEU. 

• The address of the calling routine's save area. 

• The address of the input statement buffer. 

• The address of the internal text buffer. 

• The address of the procedure library's DCB. 

• The address of the procedure statement buffer. 

• The address of the message buffer. 

• The address of a local work area. 

• The address of the converter's own register save area. 

• The entire queue management parameter area (QMPA) 
passed by the calling routine . 

. 3 IEFVHl checks an indicator in the NEL to determine 

IEFVHl 

IEFVHl 
if SMF processing is required. If it is, IEFVHl obtains 

storage for and initializes the job management record (JMR) for 
this job. It then passes control to IEFVHA, the.converter 

foil GET routine. 
(D 
n g. 
::I 
~ 

f 
[ 
Q 
~ 

o 

I 
~. 

::I 

CoN 

N 
~ 
UI 

Label 



~ Diagram 12-2. Converter: Identifying Verbs on JeL Statements (part 1 of 4) 

~ 

o 
C'I) 

"< 
C'I) 
l-.J 
C'I) 

'< 
~ 

a 
i 
(S. 

f"" 

~ 
~ 

~ a 
(D 

~ 

'< 
C'I) 
l-.J 

~ 
(D 

i 
x 
~ :... -

From IEFVH1, the converter 
Input initialization routine Process " . ~~~~~~~~~~~~~~~~~ 

Register 9 

Input Buffer 

JCL Statement 

JCL Statement 
and parameters 

1 Read a JCL statement from the 
JCL data set, the procedure 
library, or an in-stream procedure. 

2 Check each statement for 
oontinuation or oomment. 

3 Check JCL statement for valid 
verb. 

4 Update statement parameter' 
lists as required. 

Register 9 

Input Buffer 

Register 10 

JCL Statement 
parameter list 



~ 

a ". 1:1 

~ 

a:: 

[ 
<:> 
~ 

o 

I e· 
1:1 

~ 
to.J 
to.J .... 

~ 

Diagram 12-2. Converter: Identifying Verbs on JCL Statements (part 2 of 4) 

Extended Description 

IEFVHA is the converter GET routine that reads JCL 
statements from the JCL data set or in-stream procedures 
spooled by the job entry subsystem and/or from the 
procedure library. I EFVHA receives control from the 
oonverter initialization routine, IEFVH1. 

Module 

1 IEFVHA issues a GET macro instruction fora statement IEFVHA 
from the JCL data set or the procedure library according 

to indicators in the converter work area. The statement 
is placed in an input buffer. 

Whenever I EFVHA encounters an end-of-file condition, 
it moves a NULL statement into the input buffer. In any 
case, it branches to I EFVHC, the comment or continua­
tion validation routine. 

2 I EFVHC determines whether a valid comment or 
oontinuation is indicated on the JCL statement in the 

input buffer. 

If IEFVHC expects a continuation of the statement or if 
it receives a oomment, it passes control to a print routine 
inIEFVHEB. (seeStepS.) 

If IEFVHC does not expect a continuation, it passes 
oontrol to I EFVHCB, the verb identification routine. 

3 rEFVHCB checks the JCL statement for a valid verb. 

4 It updates the statement parameter list based on its 
findings. 

IEFVHC 

IEFVHCB 

IEFVHCB 

Label 



~ Diagram 12-2. Converter: Identifying Verbs on JCL Statements (part 3 of 4) 
N 

~ 

~ 
N 
fI) 

~ 
B 
i 
n' 

j 
~ 
f 
<D 
W 

~ 
N 

~ 
f 
II 
w 
~ 

. 
Register 12 

Converter Work Area 

7~ 
~ .::: ~ ........ 
,......"". 

"""" 
-" -

JCL Data PROCLIB 
Set 

'-- --"'" ...... -
Register 9 

S 
I 

SYSCHK DO I 
~ 

Register 9 

CnPllt Buffer 

1 

I JeL Statement I 

... 
) 5 MergeJCL statements from 

,-y 
JCL data setand from the 
procedure library, 

~ 

6 Perform checkpoint/restart 
processing. 

" 

7 Pass control 10 appropriate 
routine. 

... 
} 8 List JC L statements. 

-y 

9 Perform SMF processing, if 
required. 

10 Branch to appropriate routine. 

i£_M<c"",,,, 

Overrides Identified 

I X/ 

~ 
... 

I 
II I X/ 

I" 
..: ->:h. 'h 

Register 12 

... ~ Converter Work Area 
... 

SYSCHK 
processing must 

-

be done 

-- - --- - - --
~ .... "«- = ".,...lIRJ , " 

.... ~ 
-... --., 

List Data 
Set 

~ 

• To IEFVHA or IEFVFA 



fIl 
(D 

~ e' 
= ~ 
a: 
sa-
5" 
Q. 

S. 
o 
." 
(D 

; 
~. 

= 
~ 
N 
N 
IoC 

~~ ~~ 

Diagram 12-2. Converter: Identifying Verbs on JCL Statements (part 4 of 4) 

Extended Description Module 

5 IEFVHCB merges JCL statements from the JCL data set IEFVHCB 
and the procedure library as follows: 

When it encounters a procstepname.ddname in a DD 
statement from the JCL data set, it sets an indicator in its 
parameter list and continues normal processing. Each time 
IEFVHCB again receives control to examine a DD statement 
from the procedure library, it compares the procstepname 
from the JCL data set to the one from the library. If it 
finds a match, it uses the override information from the 
statement in the JCL data set to process the statement from 
the procedure library. 

If IEFVHCB does not find a match before it encounters the 
next EXEC statement from the JCL data set, it simply adds 
the DD statement wit-h the override information to the 
other DD statements for the previous step. 

6 Whenever IEFVHCB recognizes a RESTART keyword IEFVHCB 
parameter on a JCL statement and has previously found 

a SYSCHK DD statement, it sets an indicator in the converter 
work area before it passes control to IEFVHEB. IEFVHEB 
IEFVHEB (see Step 8) continues processing JOB, EXEC, and 
DD statements. 

Label Extended Description 

7 If IEFVHCB has identified a NULL verb on a statement, 
it passes control to IEFVHL. 

If it has identified a PROC statement, it branches to 
IEFVINA. 

Module 

If it has not been able to identify the verb, it assumes the IEFVHM 
verb is a command and passes control to IEFVHM, the 
command verb validation routine. IEFVHM uses the print 
routine in IEFVHEB to print the command statement. 
(See Step 8,) 

8 When the print routine in IEFVHEB has received IEFVHEB 
control from I EFVHC or IEFVHM, it moves the JCL 

statement passed to it into an output buffer and branches to 
IEFVGM, the converter/interpreter message module. 
I EFVGM puts the statement into the list data set. The list 
data set contains all the JCL statements that must be 
printed on an output listing. 

When IEFVHEB has received control from IEFVHCB, it 
performs pre~scan processing as well printing the JCL 
statement. 

9 If necessary, IEFVHEB branches to an SMF user exit IEFVHEB 
routine. 

10 When a comment has been completely processed, and 
there are more statements to be processed, I EFVHEB 

returns control to I EFVHC which returns to the GET 
routine, I EFVHA, for the next statement. 

Otherwise, IEFVHEB branches to IEFVFA, the post-scan 
routine for further processing. 

IEFVHEB 

~- _7 

Label 



~ Diagram 12-3. Converter: Processing Commands in the Input Stream (IEFVHM) (part 1 of 2) 

~ 

&5 

~ 
~ 

rIl 

1 
a 
i-n 
t"" a: 
~ 

i 
(D 

~ 

~ 
~ 

~ 
i' 
~ 
~ 
~ 

Input 

From IEFVHCB, the Verb 
Identification routine 

Command Compare Table 
(in IEFVHM) 

D 

1 Validate the command by checking 
it against the command compare 
table. 

2 If the command is valid, issue 
SVC 34, the command processor 
supervisor call. 

To IEFVHA, the converter 
GET routi ne. 

Output 

Error 
message 

cJ) 

~:~ Data 
Set 

~ --'" 



en 

i ::s 
~ 

a: 
[ 
2-
o 

I 
15· 
::s 

t w -

"'---.7 

Diagram 12-3. Converter: Processing Commands in the Input Stream (IEFVHM) (part 2 of 2) 

Extended Description 

When the verb identification routine, IEFVHCB, is unable 
to recognize a verb on a JCL statement, it assumes the 
verb is a command and passes control to the command verb 
validation routine, IEFVHM. 

1 IEFVHM verifies that the command is one that is 
allowed in the input stream by checking it against a 

command compare table. 

2 IEFVHM checks a disposition associated with the 
command in the interpreter entrance list (NE LL 

If the disposition is 0, IEFVHM causes the command to be 
executed by issuing an SVC 34. 

If the disposition is 1, I EFVHM writes the command into 
the list data set by branching to I EFVGM, then it displays 
the command to the operator by branching to the operator 
message module, IEFVHR; finally, IEFVHM executes the 
command by issuing SVC 34. 

If the disposition is 2, IEFVHM displays the command to 
the operator and requests his authorization to execute the 
command. When the operator replies in the affirmative, 
IEFVHM executes the command by issuing SVC 34. 

If the disposition is 3, IEFVHM ignores the command. 

In any case, IEFVHM returns control to the GET routine, 
IEFVHA. 

Module Label 

IEFVHM 

IEFVHM 

'- -, 



~ 

~ 
~ 
~ 

~ 
~ 
~ 
1:1) 

~ 
a 
r-
.i r;-
r-

J 
~ 
f! 
~ 

< 1:1) 
~ 

~ 
(1) 

i 
r6 
~ 

:.... -

Diagram 124. Converter: Processing In-stream and Cataloged Procedures (IEFVINA) (part I of 2) 

Input 

Register 9 

From IEFVHCB, the Verb 
Identification routine 

'\ 
'\-1 --JC-L-sta-te-me-n-t-----, 

In-stream Procedure 
Parm. List 

Procedure name 

In-stream 
procedure 
directory 

1 For the first in-stream procedure 
statement in a job, build a QMPA. 

2 Check for errors on in-stream 
procedures. 

3 Search the in -stream procedure 
directory for the specified procedure. 

4 If the specified procedure is not 
found, build a directory entry for it. 

To IEFVHA 

Output 

In-stream 

CJo 
Converter Work Area 

Error Message 1 

SVA of first 
record in procedure 

J 

InSWA: 

In-stream 
procedure directory 
i i 

New 
procedure 
entry 



en 
(D 

~ 
5' 
= N 

~ 
~ go 
Q. 

o .... 
o 
"0 
(D 

~ 
5' 
= 
IN 

N 
IN 
IN 

~ '~ 

Diagram 12-4. Converter: Processing In-stream and Cataloged Procedures (IEFVINA) (Part 2 of 2) 

Extended Description 

IEFVINA is the control and GET routine for in-stream 
procedures. It receives control from IEFVHCB, the verb 
identification routine. 

1 When IEFVHCB encounters a PROC statement that is 
the first statement in an in-stream procedure, it 

obtains storage for a queue management parameter area 
(OMPA) and an in-stream procedure work area; then it 
branches to IEFVINA. 

2 When IEFVINA receives control, it in turn branches 
to IEFVINE, the in-stream procedure syntax check 

routine. This routine checks the validity of the label and 
operation fields in the PROC statement and passes a 
return code to IEFVINA. 

If the return code is 0, 12, or 16, the PROC statement 
contains syntax errors and IEFVINA sets a job-fail 
indicator in the JCT and uses the message module, 
IEFVGM, to issue an appropriate error message. 

If the return code is 8, there are no syntax errors in the 
PROC statement, and IEFVINA initializes the OMPA 
and checks the converter work area to determine if the 
procedure being processed is the first in-stream procedure 
in this job. If it is. control passes to I EFVINC. the in­
stream procedure directory build routine. If it is not, the 
module builds a parameter list and branches to IEFVINB, 
the in-stream procedure directory search routine, instead. 

Module 

IEFVHCB 

IEFVINA 
IEFVINE 

IEFVINA 
IEFVCM 

IEFVINA 

IEFVINC 

IEFVINB 

Label Extended Description Module 

3 IEFVINB scans the entries in the in-stream procedure 
directory searching for the procedure name specified in 

the PROC statement. When the procedure name is found. 
this routine obtains the SWA virtual address of the first record 
containing the procedure and places it in the return code 
field of its parameter list. If the procedure is not found. the 
routine sets a return code of zero in the parameter list before 

IEFVINB 

branching to IEFVINC. which will build a procedure directory IEFVINC 
entry. 

4 IEFVINC enters the procedure name in the directory IEFVINC 
and invokes the SWA manager interface routine, I EFVHO, 

to assign the entry to SWA. I EFVI NC then takes the SWA 
address of the entry returned from I EFVHO and places it 
in the directory next to the procedure name. IEFVINC 
returns to IEFVINA; IEFVINA then branches to IEFVHA 
for the next statement in the procedure. 

Label 



t Diagram 12-5. Converter: Processing Symbolic Parameters (IEFVFA and IEFVFB) (part 1 of 2) 
eN • 
i 
"< fI.) 
N 
fI.) 
'< 
~ 

~ 
b 

4!9. n 
t"" 

i 
~ 
<. o 
[ 
(II 

eN 

~ 
N 

'" t 
I 
eN 
:...:. -

Input 

Register 9 

, Input Buffer 

JCL statement 

Symbolic parameter table entry 

Address of this entry 

Address of next entry 

Entry I Parameter I 
length length 

~ Symbolic Parameter ~~ 

Value I length 

L.. 
Value .. 

T T 

Register 9 

Input Buffer 

JCL statement 

From IEFVHEB, 
the converter 

routine Process 

1 Identify symbolic parameters. 

2 For an EXEC PROC statement, 
enter the values assigned to the 
symbolic parameter into the 
symbolic parameter table. 

3 Make required substitutions for 
symbolic parameters. 

4 Continue scan processing in 
IEFVFA. 

To IEFVHF, the post-scan 
and termination routine 

Output 

Register 2 

rt---, 
Error message 

I ntermediate statement 
buffers 



rn 
it 
e' 
1:1 
~. 

I 
Co) 

"'" o 

1 
e' 
1:1 

~ 
CM 
CII 

~ "---~ 

Diagram 12-5. Converter: Processing Symbolic Parameters (IEFVFA and IEFVFB) (part 2 of 2) 

Extended Description 

IEFVFA is the converter scan routine. It scans each JCL 
statement for syntax errors and, if necessary, uses IEFVGM, 
the message module, to issue an appropriate message. 

IEFVFA performs three other major functions: 

1. Detecting symbolic parameters. 
2. Converting JCL statements to internal text. 
3. Default processing. 

This method-of-operation diagram describes the detection 
and processing of symbolic parameters. The other two 
functions are described in the two method-of-operation 
diagrams following this one. 

Module 

1- IEFVFA may encounter s\,mbolic parameters in EXEC IEFVFA 
statements that call procedures; in input stream 

statements that override procedure statements, or in 
statements within a procedure. 

A symbolic parameter that appears in an EXEC state­
ment that calls a procedure has the format of an EXEC 
statement keyword parameter. IEFVFA searches a scan 
dictionary for each JCL statement it processes. If it does 
not find a match for an EXEC statement keyword, it assumes 
that the keyword and its associated parameter are a 
symbolic parameter and its assigned value. 

A symbolic parameter that appears in an input stream 
statement that overrides a procedure statement, or in a 
statement in a procedure, is immediately preceded by 
an ampersand (&)'. 

Whenever IEFVFA detects a symbolic parameter, it 
branches to the symbolic parameter processor, IEFVFB, 

Label Extended. Description 

2 For an EXEC PROC statement, IEFVFB verifies that 
the EXEC statement calls a procedure, then determines 

whether a symbolic parameter table has been initialized for 
this procedure. 

If not, the routine initializes one, and creates an entry 
containing the symbolic parameter and its value. 

If a symbolic parameter table has been initialized, IEFVFB 
searches it for an entry corresponding to the current 
symbolic parameter. If no such entry exists, the routine 
creates one; if an entry exists, the routine ignores the 
current assigned value. 

Module 

IEFVFB 

3 For symbolic parameters in overriding statements or in IEFVFB 
a procedure, IEFVFB searches the symbolic parameter 

table for an entry that matches the current symbolic 
parameter. If it finds it, it Substitutes the value assigned to 
the parameter in the table in an intermediate statement 
buffer. 

After making the substitution, IEFVFB invokes the ,message 
module, IEFVGM, to issue a substitution message. 

4 In any case, IEFVFB returns to IEFVFA, which continues 
scanning the JCL parameters in the intermediate 

statement buffer. 

When IEFVFA has completed all processing, it branches to 
I EFVHF, the post-scan and termination routine. 

Label 



~ 
~ 

~ 
N 
fI} 

'< 

I 
i-
t'"" 

J 
f 
w 

~ 
N 

'" (D 

i 
~ 
w 
~ 

Diagram 12-6. Converter: Converting Statements to Internal Text (lEFVFA) (part 1 of 4) 

Input 

JCL statement 

Register 10 

JCL statement 
parameter list 

Scan dictionary entry 

Length of this entry 

Keyword 

Keyword code 

From IEFVHEB, the 
converter pre-scan routine 

Mutually exclusive code 

..... 

Overridden code 

-

JCL statement 
parameter list 

1 Identify keyword parameters 
in the scan dictionary and 
check for mutual exclusivity. 

2 Convert keyword and 
parameters by entering them 
in internal text string. 

Output 

Error message 

Internal text string 

No. of Length of 
Keyword positional parms. and 
code parms. subparms. 

Positional No. of Length of 
parm. subparms. subparms. 
no. 1 



1:1.1 

it 
~. 

::I 

~ 

a:: a 
[ 
a. 
i 
~ 

=-8' 
::I 

~ 
W 
'-I 

~ ~_7 

Diagram 12-6. Converter: Converting Statements to Internal Text (IEFVF A) (part 2 of 4) 

Extended Description 

I EFVFA is the converter scan routine. It scans each JCL 
statement for syntax errors and. if necessary. uses IEFVGM. 
the message module, to issue an appropriate message. 

I EFVFA performs three other major functions: 

1. Detecting symbolic parameters. 
2. Converting JCL statements to internal text. 
3. Default processing. 

This method-of-operation diagram describes the conversion 
of JCL statements to internal text. The other two 
functions are described in two method-of-operation 
diagrams, the one preceding and the one following this one. 

Module 

1 As IEFVFA examines a statement, it looks up each IEFVFA 
keyword in its own scan dictionary. For each valid 

keyword, the scan dictionary entry corresponding to it 
contains a one-byte binary code for that keyword and a 
code for each keyword mutually exclusive with it. IEFVFA 
sets flags in the duplicate table in the converter work area 
for the codes corresponding to the mutually exclusive 
codes. Every time another keyword is encountered, its 
flag is checked in the duplicate table. If the flag is set, 
IEFVFA branches to IEFVGM to issue a mutually 
exclusive message •. 

Label Extended Description 

2 IEFVFA converts keywords and parameters into 
internal text. Internal text contains the following 

information: 

• The keyword code. 

• The number of parameters for the keyword. 

• The length of the first parameter. 

• The parameter in EBCDIC. 

• The length of the next parameter. if any. 

• The next parameter, if any, in EBCD IC. 

If the keyword is comprised of parameters and subparameters, 
internal text contains this information: 

• The keyword code. 

• The number of parameters for the keyword. 

• The length of the first parameter. 

• The parameter in EBCDIC. 

• The number of subparameters. 

• The length of the first subparameter. 

• The subparameter in EBCD IC. 

• The length of the second subparameter. 

• The second subparameter in EBCDIC. 

The information in internal text varies with the number of 
parameters and subparameters. 

Module Label 

IEFVFA 



---------

~ Diagram 12-6. Converter: Converting Statements to Internal Text (IEFVFA) (part 3 of 4) 
N 
eN 
00 

~ 
N 
C'I.I 

i 
i. n 
r-

J 
~ 
[ 
c 
~ 

~ 
N 

~ 
i' 
~ 
eN 
:.... -

Input 

Converter work a rea 

No continuation 
indicated 

Process 

3 Put internal text string to 
text data set. 

4 Invoke the job entry subsystem. 

5 When the entire job has been 
converted to internal text, 
invoke converter termination. 

To I EFVHF, the post-scan and 
termination routine. 

o 



g 
g. 
:I 

~ 

r: 
a 
[ 
Sa 
o 

1 g. 
:I 

~ 
eN 
\C 

~ "-___ 7 

Diagram 12-6. Converter: Converting Statements to Internal Text (IEFVFA) (part 4 of 4) 

Extended Description Module 

3 IEFVFA sets a flag in the converter work area to IEFVFA 
indicate that the current statement has been converted 

to internal text. Later on, IEFVHCB will check that flag IEFVHCB 
and write the converted statement into the text data set 
before beginning pre·scan processing of the next statement. 

4 IEFVFA contains an interface to the job entry IEFVFA 
subsystem (JES). JES makes any required changes in 

the internal text string for SYSIN and SYSOUT processing 
and then returns control to IEFVFA. 

5 When IEFVFA has completed all processing, it branches IEFVFA 
to I EFVHF, the post-scan and termination routine. 

Label 



~ Diagram 12-7. Converter: Entering Defaults into Internal Text (IEFVFA) (Part 1 of 2) 
~ 

~ 
w 
fI.) 

1 
~ 
b 
~. 
.t"'" ez 
! , 
~ 

~ 
w 

'" i 
fC 
~ 

d 

Input 

Register 9 

A---~ 

r- JCL Statement 

In IEFVFA: 
Skeleta I text 

,----

NEL 

Default 
parameters 

T ~ T 

From IEFVHEB, 
the converter 
pre-scan routine Process 

1 Check JCL statement for 
"omitted" parameters with 
default values. 

2 Add prepared skeletal text 
(keywords) to internal text. 

To IEFVHF, the post-scan 
and termination routine 

Output 



f:Il 
~ g. 
= 
~ 

~ 
(D 

[ 
o 
~ 

o 
"0 

~ 
5· 
= 
'"fJ 
~ 
~ -

~ ~y 

Diagram 12-7. Converter: Entering Defaults into Internal Text (IEFVFA) (part 2 of 2) 

Extended Description 

IEFVFA is the converter scan routine. It scans each JCL 
statement for syntax errors and, if necessary, uses IEFVGM, 
the message module, to issue an appropriate message. 

IEFVFA performs three other major functions: 

1. Detecting symbolic parameters. 
2. Converting JCL statements to internal text. 
3. Default processing. 

This method-of-operation diagram describes default 
processing. The other two functions are described in the 
two method-of-operation diagrams immediately 
preceding this one. 

Module 

1 IEFVFA checks each JCL statement in the input buffer IEFVFA 
for omitted parameters that have default values assigned 

to them. 

2 It appends skeletal text that represents the omitted IEFVFA 
keyword parameters to the JCL statement that has 

already been converted into internal text. 

In addition to the keyword parameters, IEFVFA also places 
their associated default values obtained from a list in the 
NEL into the JCL statement. This completes default 
processing. 

When I EFVFA has completed all processing, it branches to 
I EFVHF, the post-scan and termination routine. 

Label 

'_7 



~ 

~ 
N 
fI) 

I 
i. n 
r­
ea 
! 

f 
w 

< 
~ 
i: r 
I 
w 
~ 

Diagram 12-8. Converter: Termination (IEFVHF) (put 1 of 2) 

From modules (lEFVHL) or (lEFVFA) within the 

Input diagram Identifying Verbs on JCL Stateme~ts Process 
, i i J4 - t 1I1f!ai1Bii.Jll&lWiiii1JJiiBii#i.....,l 

Register 12 

Converter Work Area 

1 When termination is due to an 
error. issue jobfail message. 

2 Perform SMF processing if 
required. 

3 Free tables and work areas 
used by the converter. 

4 Deactivate the converter ESTAE 
environment. 

5 Reset register 1 to point to NEL 
and return to original caller 
(job entry subsystem or master 
subsystem) . 

To job entry subsystem or 
the master subsystem 

o 

Register 2 

<! ___I 
I Error Message 

d 

Register 1 



fIl a eo 
:t 
N 

a:: 
Sl 
[ 
a. 

t 
i 
~ 
~ w 

~ 

Diagram 12-8. Converter: Termination (IEFVHF) (part 2 of 2) 

Extended Description 

IEFVHF is the converter post-scan and termination routine; 
it receives control from IEFVHL when an end-of-file 
condition occurs on a procedure or on the JCL data set; it 
also receives control from IEFVFA when scan processing 
of a JCL statement has been completed. 

Module 

1 IEFVHF checks an indicator in the converter work area IEFVHF 
to see if a warning message has been issued during 

converter processing. If one has, this routine uses the 
operator message module, IEFVHR, to write a message to 
the operator. 

2 If SMF processing is required, IEFVHF branches to an IEFVHF 
SMF user exit routine. 

3 When control returns, IEFVHF frees the storage IEFVHF 
occupied by the JMR, local work areas, and the converter 

work area. 

4 IEFVHF deactivates the ESTAE environment over the IEFVHF 
converter. 

5 If an end-of-file condition exists and converter processing IEFVHF 
is to end, I EFVHF restores the pointer to the NE L in 

register 1 and returns to the job entry subsY$tem. 

IEFVHA checks an indicator in the converter work area to 
see if more JCL statements must be read. If so, it branches 
to IEFVHA, the GET routine, for the next statement. 

"".~f "<i..~ .:7 

Label 

IEFVHF 

IEFVHF 

IEFVHF 

IEFVHF 

IEFVHF 



3-244 OS/VS2 System Logic Library Volume 3 (VS2 Release 3.7) 



(I) 
(D 

~ o· 
= N 

== (D g 
~ 

o .... 
o 

"0 

S 
5-
= 
CN 

Input 

NEL 

List of 
options 

Data 
Set 

JOB statement 

EX EC statement 

DD statement 

From SWA create interface 
(I EFIB600) via LINK or JES3 

~ Figure 2-17b. Interpreter Visual Contents 
VI 

1 Initialize the interpreter. (See 
M.D. Diagram - Interpreter: 
Initialization (lEFNB903l.l 

2 Analyze parameter values and issue 
error messages, if necessary. 
(See M.O Diagram - Interpreter: 
Analyzing Parameter Values). 

3 Create required tables and enter 
parameter values into tables. 
(See M.O Diagram - Interpreter: 
Creating and Chaining Tables 
(lEFVGT).) 

4 Write tables into scheduler work 
area (SWA). (See M.D. Diagram -
Interpreter: Writing Tables into 
SWA (lEFVHHl.) 

5 Terminate interpreter processing. 
(See M.D. Diagram - Interpreter: 
Termination (lEFVHN).) 

Return to SWA Create Interface 
(IEFIB600) or JES3 

Output 

These control blocks and 
tables reside in SWA 

< 
(I) 
N 
<:> 
CN 

00 -o 



If 
N 

~ 

o 
!!! 
~ 
N 
fIl 

I 
i-
r­
c;: 

! 
< 
~ a 
(I) 

CN 

'< 
fIl 
N o 
CN 
00 -s 

Diagram 12-9. Interpreter: Initialization (IEFNB903) (part 1 of 2) 

From IEFIBSOO, the SWA 
create interface routine 

Input or from JES3 Output 

Register 1 

h,NEL 

~w 
1 Obtain storage for and initialize the 

following: 

• Interpreter work area. 

• I/O buffer 

• JMR 

• DSENQ table. 

2 Establish an ESTAE environment for ,..l1li 
the interpreter. 

3 If recovery is in progress, load the 
journal merge routine. 

To I EFVHE, the interpreter 
GET and router 

nterpreter 
Register 12 Work Area 

I v-c:=J 
I/O Buffer 

c:::J 
JMR 

~ 
DSENQ Table , 

L--J 
I nterpreter EST A E 
Parameter List 

D 

Updated 
Job 
Journal 

Journal Merge 
Routine 
r---



I:Il 

a 
e' 
::I 

!':» 
I: 

[ 
o 
"'" o 
1 g. 
::I 

~ 
t 
.....a 

~ 

Diagram 12-9. Interpreter: Initialization (IEFNB903) (part 2 of 2) 

Extended Description 

IEFNB903 is the interpreter initialization routine; it receives 
control form IEFIB600, the SWA create interface routine. 

1 IEFNB903 obtains storage for and initializes: 

• The interpreter work area. 

• The interpreter's 1/0 buffer. 

• The job management record (JMR). 

• Some local work areas. 

• A data set ENQUEUE (DSENQ) table. 

• A message buffer. 

This module sets a pointer to the interpreter work area in 
register 12 for the duration of interpreter processing. 

Module 

IEFNB903 

2 IEFNB903 builds a parameter list for ESTAE processing IEFNB903 
and then issues an EST AE macro instruction to enable 

the interpreter to recover from an error. 

3 IEFNB903 checks an indicator in the NEL to deter-
mine if a recovery attempt is currently in progress. If 

it is, this module looks for the address of the journal 
merge interface routine in the NEL exit list. If it finds the 
address, it loads the routine and branches to it for journal 
merge processing. The journal merge interface routine 
returns to IEFNB903. 

In any case, when initialization processing is complete, 
IEFN.B903 branches to IEFVHE, the interpreter 
GET and router routine. 

IEFNB903 

Label 



w 

~ 
00 

o 
CI.I 

~ 
~ 

CI.I 
'< 
fQ. 

~ 

i-
(") 

l"'" 

I 
< o c a 
(D 

w 

~ 
~ 

~ 
if 
~ 
w 
~ -

:Diagram 12·10. Interpreter: Analyzing Parameter Values (part 1 of 4) 

Register 9 

I nterna I text buffer 

From IEFNB903, the interpreter 
initialization routine 

1 Route text stri~ for the JCL 
statement to appropriate 
processor. 



{jf.l 
(D 

~ 
e' 
::I 

~ 

a:: a 
8: 
o 
"'" o 

"1:1 
~ a 
e' 
::I 

w 
N 
~ 
\D 

Diagram 12-10. Interpreter: Analyzing Parameter Values (Part 2 of 4) 

Extended Description 

Each of the JCL statement pro~ssors re~ives control from 
the interpreter GET and router routine, IEFVHE. The 
statement processors, IEFVJA, IEFVEA, and IEFVDA, 
first perform initialization functions, and then branch to 
tEFVGK, the GET parameter service routine. IEFVGK 
returns control to a keyword routine in the appropriate 
state ment processor. 

The keyword routine branches to IE FVGT, the test and 
store service routine for parameter processing. I EFVGT 
returns to the keyword routine in the statement 
processor. 

I EFVJA is the JOB statement processor. It initializes a 
job control table (JCT) and the job account control table 
(ACT) for a job. It also checks the validity of the JOB 
statement keywords, and in some cases, their values. 

IEFVEA processes EXEC statements. It creates a step 
control table (SCT) for each EXEC statement, SCT 
extensions for parameter information, and any required 
override or "refer-back" tables. IEFVEA also chains the 
step input/output tables (SlOTs) and the job file control 
blocks (JFCBs) for a JOBUB or JOBCAT DD when they 
have been specified, and the SCTs and SlOTs for data set 
con catenations. 

Module 

IEFVJA 

IEFVEA 

IEFVDA is the DD statement processor; it creates a IEFVDA 
DSENQ table entry for all data sets explicitly named by 
the DSNAME parameter. It then marks each data set entry 
as exclusive or shared according to the user's specifications. 
I EFVDA also creates SlOTs and JFCBs for a DD statement, 
JFCB extensions (JFCBX) for "VOL=SER" parameters, and 
JFCB extension (JFCBE) for JCL parameters (CHARS, 
BURST, MODIFY, FLASH) related to the 3800 printer. 

label Extended Description 

IEFVHE is the interpreter GET and router routine; it 
receives control from I EF NB903, the interpreter 
initialization routine. 

1 IEFVHE gets each JCL statement from the internal text 
data set, identifies its verb as a JOB, EX EC, or DD, and 

branches to the appropriate statement processor: I EFVJA 
for JOB, IEFVEA for EXEC, or IEFVDA for DD. These 
three processor routines are similar in construction; each 
one consists of a single control section containing a header 
routine, a keyword routine for each keyword in the 
statement, a branch table of entries to keyword routines, a 
parameter descriptor table for each keyword, and a clean-up 
routine. 

When a statement processor routine is first entered, the 
header routine performs initializing functions which include 
clearing the storage area occupied by the tables to be 
created by the routine (except for fields filled in by 
previously executed routines) and initializing the local work 
area. It then uses a BALR instruction to pass control to 
IEFVGK, the GET parameter routine. 

Module 

IEFVHE 

IEFVJA 
IEFVEA 
IEFVDA 

Label 

-< 
{jf.l 
N o 
W 

00 
o 



~ Diagram 12-10. Interpreter: Analyzing Parameter Values (part 3 of 4) 
CIt 
Q 

ss 
~ 
N 
fIl 

1 
9 
t"" 
ci n· 
t"" 

J 
< o a­
S 
(D 

w 

'< fIl 
N o 
W 
00 -S 

Interpreter 
work area 

io"" -
Keyword branch table entry 

Maximum number of 
parameters 

Subparameter check 

Address of keyword 
routine 

Address of parameter 
descri ptor tab Ie 
entry 

-.I. 

..... 

v 2 ,Check parameter format and 
determine address of appropriate 
keyword routine. 

To appropriate statement 
processor (within modules 
IEFVDA, IEFVEA, or 
IEFVJA) 

Register 2 

..... C J 
y 

1 Error message J 
Register 2 

Length of 
..... positional 
v parameter 

Register 3 

I t Parameter 

J length byte 

Register 4 

I t PDT entry I 



(I.l 
~ 

~ 
~. 

= 
~ 

~ a 
6' 
t:Io 

S­
o 
." 

i e· 
= 
CN 
N 
(It 

""~ 

Diagram 12-10. Interpreter: Analyzing Parameter Values (part 4 of 4) 

Extended Description Module 

2 The GET parameter routine is used by the JCL IEFVGK 
statement processor routines to find the next 

parameter in a statement, perform basic error checking of 
that parameter, and find and pass control to the appropriate 
keyword routine with pointers to the parameter and to 
the appropriate parameter descriptor table (PDT). 

When IEFVGK is initially entered, the only non-zero 
portion of the interpreter work area is the address of the 
keyword branch table and the address of the processor 
cleanup routine. The keyword branch table is a table of 
offsets that allows the GET parameter routine to determine 
the actual main storage address of the appropriate 
keyword routine and parameter descriptor table entry. 
Additional fields in the table allow basic error checking to 
be done. 

When IEFVGK is entered to find the first parameter in a IEFVGK 
new statement, it extracts the base key (the key number 
that represents JOB, EXEC, or DO) from the internal text 
buffer and stores it. There are three sets of key numbers: 
one set for the JOB statement, one set for the EXEC 
statement, and one set for the DO statement. The base key, 
which corresponds to the verb in the statement, is the 
highest number in the set. It is the offset of the last entry 
in the table from the first entry. Whenever the routine is 
entered, it subtracts the current key from the base key, 
mUltiplies the result by 6 (the size of a keyword branch 
table entry), and adds the product to the machine address 
of the first entry in the table. The result is the machine 
address of the keyword branch table entry corresponding 
to the current keyword. 

Label Extended Description Module 

IEFVGK first finds the proper keyword branch table entry, IEFVGK 
then determines whether the maximum number of parameters 
for the keyword has been exceeded, and stores the 
subparameter check byte in its work area. Each bit in the 
subparameter check byte corresponds to a positional 
parameter; if the bit is on, it means that the corresponding 
parameter may have subparameters associated with it. For 
example, if the first positional parameter associated with a 
keyword were the only one that could consist of a 
subparameter list, the high-order bit in the field would be on. 
If the seventh and eighth positional parameters could have 
subparameters, the two low-order bits would be on. 

The two offset fields are used to compute the actual main 
storage address of the appropriate keyword routine and of the 
appropriate parameter descriptor table entry; the positional 
parameter length, the parameter length byte address (in 
internal text) and the parameter descriptor table entry 
address are placed in general registers, and control is passed 
to the keyword routine in the appropriate statement 
processor. 

On subsequent entries to IEFVGK, the pointers are 
updated so that they-point to the next operand (positional 
parameter or subparameter), and control is returned to the 
keyword routine at the instrliction after the branch to 
IEFVGK. When the next keyword is encountered, however, 
the branch table is again used, and control is passed to a 
new keyword routine in the appropriate statement processor. 

Label 



"f 
~ 
N 

o 
fI) 

~ 
N 
fI) 

'< 

! 
i 
n' 
t"" 

~ 
.$ 

~ 
~ 
w 

~ 
N 

" t 
fB 
w :... -

Diagram 12-11, Interpreter: Cr.eating and Chaining Tables (IEFVGT) (part 1 of 4) 

From IEFVGK, the GET 
Input parameter routine Process 
'J!tr&t,l:i}1::;%;%0.4i¥:;l;}o!S;!;i;i;l;i.~"t):t;:;);f:t;>';i'J>fPi;'~'I</J.{X.<:, ijJ;,~·:·+;:::.·.·.··\.I. F"'i "":"""'"'~"":"""'"'..---~.."...----~~"":"""'"'--. 

Register 9 

Internal text buffer 
1 Perform keyword processing 

by invoking the test and store 
routine . 



fI.) a 
IS· 
::s 
~ 

a:: 
[ 
2-
~ 

" a 
IS· 
::s 

~ 
N 
eft 
W 

~ ''"<J 

Diagram 12-11. Interpreter: Creating and Chaining Tables (IEFVGT) (part 2 of 4) 

Extended Description Module 

1 The test and store routine, IEFVGT, is a service IEFVGT 
routine invoked by the statement processor keyword 

routine to determine the processing required for a 
parameter (as described in the parameter descriptor 
table), and to perform that processing. 

The parameter descriptor table included in each JCL 
statement processor describes the processing to be done 
for each parameter that may be found in the statement. 
There is an entry for each keyword, which begins with 
a field containing the length of the keyword entry. The 
keyword entry is made up of positional parameter 
entries describing the processing to be done on the 
positional parameters associated with the keyword. 

Each parameter entry contains two kinds of information: 
length and error checking information is followed by 
control information, which describes the functions to 
be performed on the parameter, and the tables 
(created above) and displacements in which the result is 
to be stored. 

The first byte in each parameter entry (the parameter 
descriptor table length field) contains the length of the 
entry; the first half of the second byte (the control 
field length field) contains the length of the control 
information. The format of the remainder of the 
entry depends on the type of parameter and on the 
functions to be performed. 

Label Extended Description 

There are four types of parameters: 

• A required -format parameter is a known string of 
characters. The first positional parameter following the 
OISP= keyword, for example, must be either "OLD", 
"NEW", "MOD", or "SHR". In this case, since there 
are four possibilities, there are four parts to the entry; 
the test and store routine compares the parameter to the 
constant in each of the four parts, and performs the 
function specified in the control information field of the 
part in which it obtained an equal compare. 

• A variable-format parameter may be any string of 
characters up to a known maximum length. 

• A no-action parameter specifies a default option. 

• An unconditional-ection parameter indicates that the 
presence of the parameter requires that the same functions 
be performed regardless of the form or content of the 
parameter. 

~'" ? 

Module Label 



~ Diagram 12-11. Interpreter: Creating and Chaining Tables (IEFVGT) (Part 3 of 4) 

~ 

o 
C'IJ 

~ 
~ 

C'IJ 

I 
i (S. 

r­
;: 

~ 

i 
(D 

w 

~ 
~ 

~ 

f 
w 
~ 

In 

PDT entry 

Parameter 
PDT length 

Control 
Field 
length 

I 
I I 
I ,variable I 
I I 

Control information 

2 Place values in appropriate tables. 

To IEFVHE, the interpreter 
GET and router routine 

Output 

/ / JOB 

b ,ACT 

liDO 

Override 
tables 

.-

oSENQ table 

"Refer-back" 
tables 

L------J 



c:n 
(D 

g, 
5' 
= 
~ 

a:: 

[ 
o 
~ 

o 

I 
5' 
= 
w 
N 
(1\ 
(1\ 

~ ~J' 

Diagram 12-11. Interpreter: Creating and Chaining Tables (IEFVGT) (part 4 of 4) 

Extended Description Module 

2 The control information portion of a parameter PDT IEFVGT 
entry defines the operations to be performed when the 

parameter is processed, specifies the location in which the 
results are to be stored, and may contain data to be used in 
the operation. The control information portion may be up 
to 15 bytes in length; it consists of the following fields: 

• Function: The first four bits of a control information 
field contain a number from 0 to 7, which specifies one 
of the following operations: 

• OR (Code 0): A logical OR operation is performed, 
using the bit pattern field in the control information 
portion of the entry, against the bit pattern at the 
location specified by the table and offset fields. 

• CVB1 (Code 1): A convert to binary operation is 
performed and a maximum value check is made. The 
converted information is stored (right justified) in the 
one-byte field specified by the table and offset fields, 
and compared against the maximum value, which is 
right-justified in the third byte of the control 
information part of this entry. 

• CVB2 (Code 2): This operation is similar to CVB1, 
except that the result is right-justified in a two-byte 
field, and the maximum value is found right-justified 
in the third and fourth byte of the control 
information portion of the entry. 

• CVB3 (Code 3): This operation is similar to the CVB1 
and CVB2 operations, except that the result is right­
justified in a three-byte field, and the maximum value 
is found in the third, fourth, and fifth byte of the 
control information portion of the entry. 

• AND (Code 4): A logical AND operation is performed, 
using the bit pattern field in the control information 
portion of the entry against the bit pattern at the 
location specified by the table and offset fields. 

• MVC (Code 5): A move characters operation is 
performed, using the parameter length specification 
in the internal text buffer. The parameter is moved 
to the location specified in the table and offset fields 
in the entry. 

• First Character Alpha Check and MVC (Code 6): 
This function is similar to the MVC function, except 
that before the move is performed the first character 
of the parameter is inspected to insure that it is 
alphabetic. 

Label Extended Description Module 

• Alpha/Numeric Check and MVC (Code 7): This function I EFVGT 
is similar to the MVC function, except that before the 
move is performed a character (a one character parameter) 
in the text buffer is inspected to determine whether it 
is alphabetic or numeric. 

• Table: The second four bits of the control information 
portion of a parameter PDT entry contains a number 
between 0 and 15 that specifies the table in which the result 
of the operation is to be stored. 

Code Number Table 

o Loca I work a rea 
1 Job control table (JCT) 
2 Step control table (SCT) 
3 Job account control table (ACT) 
4 Step input/output table (SlOT) 
5 Job file control block (JFCB) 
6 JFCB extension (JFCBX) 
7 Reserved 
8 Data set name table (DSNT) 
9 Refer-back Dictionary 1 

10 Refer-back Dictionary 2 
11 Procedure override table 
12 Step account control table (ACT) 
13 Reserved 
14 Reserved 
15 Interpreter work area 

• Offset: The second byte of the control information of an 
entry contains the offset, from the beginning 'of the table, 
of the field in which the results of the operation are to be 
stored. 

• Bit Pattern/Maximum Number: The th ird through fifth 
bytes of the control information portion of the entry are 
used for those operations that require data for logical or 
comparison functions. If the operation is AND or OR, the 
third byte contains the bit pattern. If the operation is a 
CVB operation, the third, fourth and fifth bytes contain 
the binary representation of the maximum value allowed 
for that parameter. 

When I EFVGT has performed the functions described in the 
PDT, it returns to the keyword 'routine in the statement 
processor from which it received control. 

Each statement processor determines that parameter processing 
for a JCL statement is complete. It then performs 
miscellaneous clean -up functions before return ing to its 
caller, I EFVHE. 

__ '17 

Label 



w 

~ 
0\ 

~ 
"< Ci'.l 
N 
Ci'.l 
'< 
~ 

3 

i-
t"'" 
0: 

~ 
~ 
8" 
3 
~ 

w 

~ 
N 

<=> 
W 
00 
~ 

Diagram 12-12. Interpreter: Writing Tables into SWA (IEFVHH) (part 1 of 2) 

Input 

Register 12 
IWA 

• JCT 

• JCTX 
+ SCT 

• JMR 

From I EFVHE, the interpreter 
GET and router routine 

1 Perform miscellaneous clean -up 
functions 

2 Perform SMF processing as 
required. 

3 Write the JCT, JCTX, and SCTs 
for this job into SWA. 

Output 

Updated JMR 

D 
InSWA: 
JCT JCTX 

CJCJ 
SCTs 

See diagram of Analyzing Parameter Values (I EFVH E) 
or 
Interpreter Termination (lEFVHN) 

< 
Ci'.l 
N 

<=> 
W 

00 
o 
~ 



{I} 
~ 

~ o· 
= N 

~ 
~ g 
Q. 

o .... 
o 

"0 
~ 

~ 
S· 
= 
<oN 

N 
tit 
tit 

,----' 

Diagram 12-11. Interpreter: Creating and Chaining Tables (IEFVGT) (part 4 of 4) 

Extended Description 

2 The control information portion of a parameter PDT 
entry defines the operations to be performed when the 

parameter is processed, specifies the location in which the 
results are to be stored, and may contain data to be used in 
the operation. The control information portion may be up 
to 15 bytes in length; it consists of the following fields: 

• Function: The fi rst four bits of a control information 
field contain a number from 0 to 7, which specifies one 
of the following operations: 

• OR (Code 0): A logical OR operation is performed, 
using the bit pattern field in the control information 
portion of the entry, against the bit pattern at the 
location specified by the table and offset fields. 

• CVB1 (Code 1): A convert to binary operation is 
performed and a maximum value check is made. The 
converted information is stored (right justified) in the 
one-byte field specified by the table and offset fields, 
and compared against the maximum value, which is 
right-justified in the third byte of the control 
information part of this entry. 

• CVB2 (Code 2): This operation is si milar to eVB 1, 
except that the result is right-justified in a two-byte 
field, and the maximum value is found right-justified 
in the third and fourth byte of the control 
information portion of the entry. 

• CVB3 (Code 3): This operation is similar to the CVB 1 
and CVB2 operations, except that the result is right­
justified in a three-byte field, and the maximum value 
is found in the third, fourth, and fifth byte of the 
control information portion of the entry. 

• AND (Code 4): A logical AND operation is performed, 
using the bit pattern field in the control information 
portion of the entry against the bit pattern at the 
location specified by the table and offset fields. 

• MVC (Code 5): A move characters operation is 
performed, using the parameter length specification 
in the internal text buffer. The parameter is moved 
to the location specified in the table and offset fields 
in the entry. 

• First Character Alpha Check and MVC (Code 6): 
This function is similar to the MVC function, except 
that before the move is performed the first character 
of the parameter is inspected to insure that it is 
a I phabeti c. 

Module Label 

IEFVGT 

Extended Description Module 

• Alpha/Numeric Check and MVC (Code 7): This function I EFVGT 
is similar to the MVC function, except that before the 
move is performed a character (a one character parameter) 
in the text buffer is inspected to determine whether it 
is alphabetic or numeric. 

• Table: The second four bits of the control information 
portion of a parameter PDT entry contains a number 
between 0 and 15 that specifies the table in which the result 
of the operation is to be stored. 

Code Number Table 

0 Loca I work a rea 
1 Job control table (JCT) 
2 Step control table (SCT) 
3 Job account control table (ACT) 
4 Step input/output table (SlOT) 
5 Job file control block (JFCB) 
6 JFCB extension (JFCBX) 

7 Data set name table (DSNT) 

8 Refer-back Dictionary 1 

9 Refer-back Dictionary 2 

10 Procedure override table 
11 Step account control table (ACT) 

12 JFCB extension for 3800 (JFCBE) 

13 Reserved 
14 Reserved 
15 I nterpreter work area 

• Offset: The second byte of the control information of an 
entry contains the offset, from the beginning of the table, 
of the field in which the results of the operation are to be 
stored. 

• Bit Pattern/Maximum Number: The th ird through fifth 
bytes of the control information portion of the entry are 
used for those operations that require data for logical or 
comparison functions. If the operation is AND or OR, the 
third byte contains the bit pattern. If the operation is a 
eVB operation, the third, fourth and fifth bytes contain 
the binary representation of the maximum value allowed 
for that parameter. 

When I EFVGT has performed the functions described in the 
PDT, it returns to the keyword routine in the statement 
processor from which it received control. 

Each statement processor determines that parameter processing 
for a JCL statement is complete. It then performs 
miscellaneous clean-up functions before returning to its 
caller, I EFVHE. 

'---3' 

Label 

<: 
{I} 
N 
o 
W 
00 
o 



~ 
~ 
0\ 

~ 
~ 
N 
fIl 

1 
~ 
SO 
~. 
t"" r 
~ 
~ 
[ 
CD 
W 

~ 
N 
Q 
w 
00 -S 

Diagram 12-12. Interpreter: Writing Tables into SWA (IEFVHH) (part 1 of 2) 

Input 

IWA 

• JCT 

.SCT 

+ JMR 

From I EFVHE, the interpreter 
GET and router routine 

1 Perform miscellaneous clean -up 
functions. 

2 Perform SMF processing as 
required. 

3 Write the JeT and SCTs for this 
job into SWA. 

Output 

Updated JMR 

D 
InSWA: 
JCT 

P 
SCTs 

See diagram of Analyzing Parameter Values (lEFVHE) 
or 
Interpreter Termination (lEFVHN) 



til 
(D 
(") g. 
= 
~ 

== ~ 
5 
~ 

o .... 
o 
~ 
(D 

~ 
~. 

= 
IN 
~ 
VI 
-..J 

~ 

Diagram 12-12. Interpreter: Writing Tables into SWA (IEFVHH) (Part 2 of 2) 

Extended Description 

I EFVHH is called the ENQUEUE routine; it receives control 
from the interpreter GET and router routine, I EFVHE. 

1 IEFVHH ensures that all EXEC statement overrides 
have been completed at procedure end-of-file. 

2 If SMF processing is required, IEFVHH branches to 
a user routine, and when it is returned control, it 

enters the time at which the interpreter stopped in the JMR. 

3 Based on indicators it checks in the interpreter work 
area, I EFVHH branches to the SWA manager interface 

routine (lEFVHQ) to write the job and step tables into 

SWA. If the SCT was written, IEFVHH branches to 
IEFVHE to continue processing. 

If the JCT and JCTX were written, IEFVHH branches to 
IEFVHN, the interpreter termination routine. 

Module Label 

IEFVHH 

IEFVHH 

IEFVHH 
< 
til 
N 
o 
IN 
00 
o 
~ 



~ 
~ 
00 

~ 
~ 
N 
fI.) 
'<. 
f4. 

9 
t"'" 
~ 
t)' 

t"'" 
;: 

~ 
~ 
2' 
:I 
(D 

w 

~ 
N 

<=> W 

00 
$ 

Diagram 12-13. Interpreter: Termination (IEFVHN) (part 1 of 2) 

From IEFVHH, the interpreter 
ENQUEUE routine p 

Register 12 .. 
1 I 
~IWA 

U 
Input/Output Buffers 

I ~ I 
DSENQ Table 

CJ 
JMR 

0 

.... 
> y 

.. 1\. 

I' 

" 
I' 

1 Issue message informing operator 
that the job was failed. 

2 Free work areas and control 
blocks used by the interpreter. 

3 PerformSMF processing, if 
required. 

4 Deactivate the interpreter 
ESTAE environment. 

5 Set return code and return to 
original caller (SWA create 
interface), 

(I EFIB600) 
orJES3 

o 

d ..... 

I' 

Updated JMR 

jI.. 0 " 

Register 15 
..... 

I I Return Code 
" 



til 
(1) 
t') g. 
= 
N 

fie 
(1) 

~ 
~ 

o 
""' o 

"C ; 
g. 
= 
~ 
N 
(II 
IC 

Diagram 12-13. Interpreter: Termination (IEFVHN) (Part 2 of 2) 

Extended Description Module 

IEFVHN is the interpreter termination routine; it receives IEFVHN 
control from I EFVHH. 

1 If an error occurred during interpreter processing, 
IEFVHN uses IEFVHR the operator message module to 

issue an error message. 

2 IEFVHN frees the interpreter's input/output buffers and 
its local work area. If the SWA manager routines were 

loaded during interpreter processing, it deletes those. 

3 IEFVHN checks to see if SMF processing was performed 
by the interpreter. If it was, a user routine was used; 

I EFVHN deletes the user routine and writes the JMR 
updated by SMF into the calling routine's storage. 

4 IEFVHN deactivates the ESTAE environment over 
the interpreter. 

5 Finally, IEFVHN frees the DSENQ table and the 
interpreter work area. It then sets a return code in 

register 15 and returns to its caller, SWA create interface. 

Label 



3-260 OS/VS2 System Logic Library Volume 3 (VS2 Release 3.7) 



In MVS, to eliminate contention for job queue 
resources, both the job queue and the queue 
manager routines have been replaced. The 
scheduler control blocks for all jobs now reside on 
a pageable portion of virtual address space called 
the scheduler work area (SWA). To access SWA, 

system subcomponents must invoke a small set of 
routines called the SW A manager. 

Figure 2-18 illustrates the general format of a 
control block in SW A, and an example of a specific 
control block, the JFCB, as it appears in SWA. All 
SW A blocks are preceded by prefixes. 

The first field in the prefix contains a relative 
block number (RBN). The RBN enables the system 
to keep track of each job's sw A control blocks at 
various points during its execution. In the event 
that restart processing is necessary, the system can 
use the RBN to reconstruct the SWA for a restarted 
job. 

The second field in the prefix indicates whether 
or not the prefix has been initialized with the 
appropriate control block 10 and acronym. 

The third field contains the SWA vir;~ual address 
(SVA), a pointer back to the beginning of the 
prefix. This is for validity checking. 

The fourth field is the SWA manager 10 for the 
specific control block. The following is a list of 
SWA lOs and the associated control blocks: 

00 JCT 

01 ACT 

02 SCT 

03 SlOT 

07 OSNT 

OA POT 

OC SCT extension table 

OF OSENQ 

IB JMR 

IC JFCB 

10 JFCX 

20 POlO 

21 POIB 

22 POIQ 

23 GOGN 

25 .JWAB 

26 VUT 

27 DONT 

28 AMPX 

29 JFCE 

30 JCTX 

VS2.03.S04 

SWA Manager 

The fifth field contains the length of the control 
block. 

The sixth field is the control block acronym. 
The SW A manager routines, identified as load 

module, IEFQB550, consist of four object modules: 
two that actually perform SWA functions, IEFQB:i:iO 

and I EFQB555, and two that intercept calls to 
previously existing queue manager routines. 

The two function modules each operate in a 
different mode. IEFQB550 processes "move mode" 
requests from calling routines; "move mode" 
requests result in actual movement of data to or 
from control blocks residing in SWA. IEFQB555 

performs "locate mode" operations for calling 
routines. A "locate mode" operation will return to 
the calling routine either a SW A virtual address 
(SVA) or a pointer to a SWA control block; no 
actual movement of data occurs. 

The following is a list of possible move mode 
requests: 

• ASSIGN results in initialization of a SWA 

control block in a SWA subpool. An ASSIGN 

request must be made for each control block 
that is to be initialized by the SW A manager. 

• ASSfGN/ST ART results in ASSIGN processing 
for a job that is just beginning. 

• WRITE results in movement of data from the 
calling routine's buffer into a SWA control 
block. 

• READ results in movement of data from a 
SW A control block into a calling routine's 
buffer. 

• DELETE results in a FREEMAIN for a SW A 

subpool. 
• WRITE/ASSIGN results in the movement of 

data into one SW A control block and the 
initialization of another block in SW A. 

This is. a list of valid locate mode requests: 
• ASSIGN/LOCATE results in initialization of a 

SW A control block in a SW A subpool. 
• WRITE/LOCATE causes a SW A control block 

to be updated. 
• READ/LOCATE returns the address of the 

beginning of a SWA block, the block ID and 
the block length, to the calling routine. 

• OELETE BLOCK results in a FREEMAIN for a 
SWA block. 

Section 2: Method of Operation 3-261 



S{IIA PREFIX 

80 

1C BO 

JFCB 

The JFCB 

Figure 2-18. General Format of a SWA Control Block and an Example of the JFCB as it Appears in SWA 

3-262 OS/VS2 System Logic Library Volume 3 (VS2.03.804) 



rI) 

a 
(5' 

= ..., 
ac 
S1 
[ 
o 
""" o 

I 
e' 
= 
CoN 

~ 
CoN 

~ 
~., 

~_._7 

SWA Manager 
(no diagram) 

~ .~ 

SWA Manager SWA Manager 
Move Mode Locate Mode 
(IEFOB550) (lEFOB555) 

--- -_. - ---~.-.-

Figure 2-19. SWA Manager Visual Contents 



~ 

N 
0'1 
~ 

&1 
"< til 
N 
til 
'< 
~ 

~ 

&' 
(5. 

t-g: 
~ 
~ 
C 
:3 
~ 

~ 

'< 
til 
N 

~ 
~ 

i 
ril 
~ 

~ 

:Diagram 13-1. SWA Manager Move Mode (IEFQB550) (part 1 of 2) 

Input 

Register 1 

OMPOP Function Code 

Created by the 
calling routine 

Via IEFOMREO 
macro instruction Process Output 

SWA Manager Move Mode 

1 Check OMPA for valid function 
request: 

'OO'X = ASSIGN/START 

'01'X = ASSIGN 

'02'X = WR ITE/ASSIGN 

'03'X = WR ITE 

'04'X = READ 

'08'X = DELETE 

2 Process the indicated request by ,/IT; 

branch ing to appropriate 
subroutine. 

Return to issuer of 
IEFOMREO macro 

OMPA 

Caller's Buffer 



c:n 
(t 
(") 

S· 
= N 

~ 
(t g 
Q. 

o ..... 
o 
'g 
~ 
S· 
= 
t..I 
~ 
0\ 
CoIl 

~ 

Diagram 13-1. SWA Manager Move Mode (lEFQB550) (Part 2 of 2) 

Extended Description 

Control routine passes to the SWA manager move mode 
function either directly from a routine requesting move 
mode processing or from one of two modules that intercept 
calls to previously existing queue management routines. 

The first intercept module, IEFOB580, is the OMNGRIO 
macro interface handler. It first checks for valid input 
parameters in the parameter list pointed to by register 1. 

The parameter list should contain a request for a READ or 
WRITE function. If it doesn't, I EFOB580 issues a OBO 

ABEND. When the input parameters are correct, 
IEFOB580 uses them to build and initialize a queue man­

agement parameter area (OMPA) and an external parameter 
area (EPA); it then invokes the move mode processor, 
IEFOB550. 

When IEFOB550 completes processing, it returns control 
directly to the original calling routine. 

The other module that intercepts references to previous 
queue management routines is IE FOB585. Depending on 
the entry point supplied by the calling routine, IEFOB585 
inserts an appropriate function code in the OMPA. This 
list outlines the possible entry points and their related 
functions. 

IEFOBVMS 

IEFOMLK1 ~ ANY FUNCTION 
IEFOMSSS 
IEFOMRAW READ or WRITE 
IEFOAGST ASSIGN/START 

IEFOASGO 1 ASSIGN 
IEFOASGN 
IEFODELO DELETE 

IEFODELE 

Module 

IEFOB580 

IEFOB550 

IEFOB585 

IEFOB585 also calls IEFOB550. IEFOB550 returns control IEFOB550 

directly to the original calling routine. 

1 If the calling routine has specified an invalid function, IEFOB550 
IEFOB550 places an appropriate error code in register 

15 and issues a OBO ABEND. 

2 For an ASSIGN/START request, IEFOB550 branches IEFOB550 
to a subroutine that sets the relative block number in 

the OMPA to 0 and then branches to the ASSIGN 
subroutine. 

'-~ 

Label Extended Description 

For one or more ASSIGN requests, the ASSIGN subroutine 
issues a GETMAIN macro instruction for 192 bytes from the 
SWA subpool specified in the OMPA (queue management 
parameter area). * It places the virtual address of the SWA 
storage in the external parameter area (EPA) and paritially 
initializes a SWA prefix for the new block in SWA storage. 

The ASSIGN subroutine repeats this entire process for as 
many ASSIGN requests as there are; when it has finished, 
it returns control to the calling module. 

For a WRITE request, the WRITE subroutine first deter­
mines whether the SWA virtual address (SVA) in the EPA 
is valid. If it is, it moves 176 bytes of data from the caller's 
buffer to the specified SWA control block, and then updates 
the SWA prefix if this is the first time the control block has 
been written. It repeats this process as many times as neces­
sary and then calls a journal write routine to update these 
same SWA control blocks in the job journal. When that's 
done, control returns to the original calling routine. 

When a READ request is made, the READ subroutine checks 
for a valid SVA and then moves 176 bytes of data from a 
SWA block into the caller's buffer. It repeats the operation 
for each READ request and then returns control to the 
caller. 

The DELETE subroutine simply issues a FREEMAIN macro 
instruction for the subpool specified in the OMPA and then 
returns to the caller. 

If a WRITE/ASSIGN code is specified, the calling routine 
is requesting a WRITE for one SWA block and an ASSIGN 
for another block. I EFOB550 processes these requests 
sequentially by branching to the appropriate subroutine. 

* An important consideration in the assignment of SWA stor­

age is the alternation of SWA subpools. During normal exe­
cution of problem programs, SWA consists of subpools 236 
and 237. (During master scheduler initialization, the SWA 
subpool is 241,) The SWA blocks for a task attached by 
started task control (STC) routines reside in subpool 237; 
STC's own control blocks reside in 236. SWA blocks for a 
jobstep/task begun by the initiator are in subpool 236, 
while the initiator's own blocks remain in 237. The alter­

nation of SWA subpools ensures that STC's control blocks, 
the initiator's control blocks, and the problem control 
blocks always exist in separate subpools. 

Module Label 



~ 

N 
0\ 
0\ 

o 
til 

"< til 
~ 

til 
'< 
~ 
(D 

3 
r'" 
~ 
n' 
r'" 
c: 
i3 
-< 
<: o 
=-3 
(D 

~ 

'< 
til 
~ 

~ 
(D 

n> 
'" ~ 
~ 

~ 

Diagram 13-2. SWA Manager Locate Mode (IEFQBSSS) (Part 1 of 2) 

Via SWAREO 

t 

fRegister 1 

Parameter 
List EPA 

? ... 

V' - ~ -
Next EPA Next EPA 

I J 

macro instruction p rocess 

-..; >A 

~ 
SWA Manager Locate Mode 

/, 

: 
-'" ) 1 Check OMPA for valid function 

- 1 r request: 

-D;; 'AL' = ASSIGN/LOC~TE 

~ 
'WL' = WRITE/LOCATE 

'RL' = READ/LOCATE 
,J 

'DB' = DELETE/LOCATE ; 

[,! 
~ 

~ 

PSA " { 

l;{ ~, ~ 

2 Perform indicated function . .... f----. TCB 

~ 
;;,--y 

" ~ t~ 
~; t~ = ; 

~, : 
~ JSCB ~::; "". :i' 3 Return to caller. 

I~ ~ I,:: 
.:1H "'", 11 

JSCB 

Return to caller of 

€ _=A 

SWAREO macro 

r I .; 

I r 
1:: :::::j 

Output 

1 

" 

:~ 
OMPA 

~ .~. § -
"'V,; 

',~, ;; 
if ': c 

1\. 

l' 
':.: • """W, '" ; 

r:r " 
"1,: 

i; 
;;;< 

\\:1 ;;;' EPA 

'" ::' ; 

: > 

~ ~~fiX 
, 

;-

~ D 
;.!~ ;, 

'.~ ~ , 
r :< 

, Next EPA i Jo. 

"'V 

- - - - - > - v "'-
:' 

- - ,; 

SWAB~~ i 

,..... ......... 

'" r-....... -' 
"'V ;1 

Job 
Journal 

'- ~ 



til 
(D 

sa. 
~. 

= 
~ 

ac 
(D 

l 
~ 
o 

"0 
~ 

=­~. 
= 
~ 
t-.J 
0\ 

" 

~"~ 

Diagram 13-2. SWA Manager Locate Mode (IEFQB555) (Part 2 of 2) 

Extended Description Module 

The SWA manager locate mode function IEFOB555 IEFOB555 
receives control from routines that issue a SWAREO macro 
instruction. 

1 IEFOB555 begins processing by checking for a valid 
function code in the second field of the parameter list 

passed by the calling routine. If the function code is invalid, 
IEFOB555 places an error code in register 15 and issues a 
aBO ABEND. 

2 If the calling routine requested an ASSIGN/LOCATE, IEFOB555 
IEFOB555 issues a GETMAIN macro instruction for 

192 bytes of storage from the SWA subpool specified in 
the OMPA.* It places the SWA virtual address (SVA) of 
those 192 bytes in the EPA (external parameter area), 
increases the relative block number in the OMPA, and 
initializes a SWA prefix in the SWA storage it just 
obtained. I EFOB555 repeats this entire process for each 
ASSIGN request made by the caller. 

If the WRITE/LOCATE function was specified by the 
caller, IEFQB555 updates the SWA prefix as required and 
repeats the operation for each WR ITE request. It also calls 
the journal write routine to copy the newly updated SWA 
blocks into the job journal. 

If READ/LOCATE was requested, IEFOB555 places the 
specified SWA block address, 10, and block length in the 
EPA. This enables the calling routine to directly address 
the SWA block, bypassing the SWA prefix. 

If DELETE/LOCATE was specified. IEFOB555 simply 
issues a FREEMAIN macro instruction for the SWA block. 

3 When IEFOB555 has successfully completed process­
ing, it places a zero return code in register 15 and 

returns to the calling module. 

Label 

"---"" 

Extended Description 

*An important consideration in the assignment of SWA stor­

age is the alternation of SWA subpools. During normal exe­
cution of problem programs, SWA consists of subpools 236 

and 237. (During master scheduler initialization, the SWA 
subpool is 241.) The SWA blocks for a task attached by 
started task control (STC) routines reside in subpool 237; 
STC's own control blocks reside in 236. SWA blocks for a 
jobstepltask begun by the initiator are in subpool 236, 
while the initiator's own blocks remain in 237. The alter­
nation of SWA subpools ensures that STC's control blocks, 
the initiator's control blocks, and the problem program 
control blocks always exist in separate subpools. 

Module label 



3-268 OS/VS2 System Logic Library Volume 3 (VS2 Release 3.7) 



~ 
) 

Allocation/Unallocation can be divided into six 
major functions: 

• Batch Initialization and Control, which is 
invoked by the initiator to provide allocation 
and unallocation functions for jobs and 
logons. 

• Dynamic Initialization and Control, which is 
invoked by SVC 99 or the dynamic allocation 
interface routine (DAIR) to provide dynamic 
functions for both the foreground and 
background user. 

• JFCB Housekeeping, which retrieves the 
information necessary for allocation. 

• Common Allocation Control, which processes 
allocation requests, both batch and dynamic. 

Batch 
Initialization 
and Control 

AIlocation/Unallocation • 

• Common Un allocation Control, which 
processes unallocation requests, both batch 
and dynamic. 

• Volume Mount & Verify (VM&V) Control, 
which processes requests from Common 
Allocation and Common U nallocation to 
unload and/ or mount and verify volumes. 

The relationship of these functions is illustrated 
in Figure 2-20. Background information on these 
functions is presented in the following paragraphs 
Figure 2-21 lists the method-of-operation (M.O.) 
diagrams that describe each major function. 

USER 

Dynamic 
Initialization 
and Control 

Note: Shaded area illustrates functions common to both batch and dynamic functions. 

~ Figure 2-20. Relationship of the Six Major Functions of Allocation/UnaUocation 

Section 2: Method of Operation 3-269 



Allocation/Unallocation Function Related Method -Of-Operation Diagrams 

Batch Initialization and Control IEFBB401 - Initiator/Allocation Interface 

IEFBB410 - Initiator/Unallocation Interface 

IEFBB416 - Job Unallocation 

Dynamic Initialization and Control IEFDB4AO - Dynamic Unallocation Control 

IEFDB400 - SVC 99 Control 

IEFDB410 - Dynamic Allocation Control 

IEFDB450 - Dynamic Concatenation 

IEFDB460 - Dynamic Deconcatenation 

IEFDB470 - Information Retrieval 

IEFDB480 - Remove In -use Attribute 

IEFDB490 - Ddname Allocation 

JFCB Housekeeping IEFAB451 - JFCB Housekeeping Control 

IEFAB454 - DO Function Control 

IEFAB469 -2JLOCATE 

Common AlloOBtion Control IEFAB421 - Common A lIocation Control 

IEFAB430 - Fixed Device Control 

IEFAB433 - Specific Volume Allocation Control 

IEFAB434 - Allocate Request to Unit 

IEFAB436 - Nonspecific Volume Allocation Control 

IEFAB471 - Generic Allocation Control 

IEFAB476 - Allocation via Algorithm 

IEFAB479 - Demand Allocation 

IEFAB485 - Recovery Allocation 

IEFAB486 - Offline/Allocated Device Allocation 

IEFAB490 - Common Allocation Cleanup 

Common Unallocation Control IEFAB4AO - Common Unallocation Control 

IEFAB4A2 - 0 isposition Processing 

IEFAB4A4 - Unit Unallocation 

Volume Mount and Verify (VM& V) IEFAB492 - Allocation/VM & V Interface 

IEFAB493 - VM & V Control 

Figure 2-21. Allocation/UnaUocation Functions and Related Method-of-Operation Diagrams 

3-270 OS/VS2 System Logic Library Volume 3 (VS2 Release 3.7) 



I~ 
) 

Batch Initialization and Control 
Batch Initialization and Control, invoked by the 
initiator, provides allocation and unallocation 
functions for job/steps and logons. Common 
Allocation Control and Common Unallocation 
Control are called to process the allocation and 
unallocation requests; the processing performed by 
Batch Initialization and Control is basically 
preparation: issuing status messages, testing 
condition codes, building parameter lists for the 
common functions. 

Dynamic Initialization and Control 
Dynamic Initialization and Control, invoked by SVC 
99 or the dynamic allocation interface routine 
(DAIR), provides dynamic functions for both the 
foreground and background user. Dynamic 
functions include: dynamic allocation, dynamic 
unallocation, dynamic concatenation, dynamic 
deconcatenation, information retrieval, removal of 
the in-use attribute, and ddname allocation. 
Common Allocation Control and Common 
Unallocation Control are called to process dynamic 
allocation and dynamic un allocation requests. 

JFCB Housekeeping 
JFCB Housekeeping is a common function, invoked 
by both Dynamic and Batch Initialization and 
Control when allocation requests are being 
processed. JFCB Housekeeping determines what 
additional data set information is needed to allocate 
each request, places the information in tables 
(SlOTS, JFCBs, and JFCBXS), and generates 
additional tables if necessary. 

Common Allocation Control 
Common Allocation Control, invoked by both 
Batch and Dynamic Initialization and Control, 
processes allocation requests. Common Allocation 
Control itself is divided into several functions; 
basically, each function processes a certain type of 
request or processes requests in a certain way. 
Each distinct function is presented in a separate 
method-of -operation diagram (listed_in Figure 2-21 
and illustrated in Figure 2-26). The basic 
philosophy of common allocation and background 
information on the more complex functions are 
presented in the following paragraphs. 

Data Set Requests and Unit Requests 
Data set requests are represented by SlOTs; each 
SlOT (that requires units) is represented by entries 
in a volunit table built by Common Allocation 
Control. The volunit table contains an entry for 
every possible unit that each request might need. It 
is/these volume/unit requests (each identified by a 
volunit entry) that Common Allocation Control 
considers when it allocates requests - not the data 
set request as a whole. 

For example, a data set was requested by means 
of the following DD statement: 

IIDYD 
II 

DD DSN=DATA,DISP=OLD, 
VOL=SER=(A,B,C),UNIT=(3330) 

Three volunit entries are created for this data set 
request. The three vol unit entries indicate unit 
affinity, which is implied by requesting more 
volumes than units. To allocate this data set, 
Common Allocation Control will allocate the three 
requests represented by the three vol unit entries 
(even though, in total, only one unit is allocated). 

Order of Processing Requests 
To allow as many allocations as possible to process 
concurrently, Common Allocation Control is 
designed to minimize serialization between different 
allocations (that is, allocations for different users). 
(Serialization can be defined as sequential 
processing, as opposed to concurrent processing.) 
To accomplish this, Common Allocation Control 
processes requests in the following order: 

1. Requests that do not require units and 
volumes to be allocated: dummy data set 
requests; via requests; subsystem (SYSIN or 
SYSOUT) data set requests. No serialization is 
required for this processing. 

2. Requests that can be allocated to 
permanently resident or reserved volumes on 
direct access devices. Since these units are 
inherently shareable, serialization is required 
only with other system functions that might 
modify UCBs - for example, pending-unload 
processing and pending-offline processing. 
Fixed Device Control processes requests in 
this category; mUltiple allocations can occur 
concurrently. 

3. Requests for teleprocessing devices. 
Serialization is required only with other 
allocations of teleprocessing devices and with 
other system functions that might modify 

Section 2: Method of Operation 3-271 



UCBS - for example, pending-unload 
processing and pending-offline processing. 

4. Remaining requests. Since the units to be 
allocated are not inherently shareable, the 
processing of these requests must be 
serialized with other allocations and with 
other system functions that might modify 
UCBs. Generic Allocation Control, which is 
invoked by Common Allocation Control to 
try to allocate all remaining requests, 
minimizes this serialization by serializing only 
a subset of units. If all requests cannot be 
satisfied by Generic Allocation Control, 
Recovery Allocation is invoked; the units 
serialized by Generic Allocation that are still 
needed by unallocated requests remain 
serialized for Recovery Allocation. Both 
Generic Allocation Control and Recovery 
Allocation are described in greater detail in 
the following paragraphs. 

Generic Allocation Control 
Generic Allocation Control serializes only a subset 
of units; it processes only one generic device type 
at a time and, within that generic, it serializes only 
those units (device groups) needed by u!1allocated 
requests. (The order in which Generic Allocation 
Control selects device types to process is dictated 
by the installation device precedence list, 
established during system generation.) 

Device Groups 
Generic device types are divided into device groups, 
as illustrated in Figure 2-22. The existence of 
device groups allows an allocation to serialize on a 
subset of units within a generic. For example, using 
Fig\lre 2-22, if 3330A is requested, the allocation 
needs to reserve only device group 4, rather than 
all 3330 devices. As a result, more than one 
allocation can process the same generic group as 
long as the allocations require different device 
groups within that generic. 

Generic Device Type 2400 

Group Names 
(defined by the installation) 

Unit Addresses 131 132 133 134 

Device Groups CD 

The guidelines by which the system determines 
device groups are: 

• If a user-assigned name (for example, SYSDA) 
includes different generic device types, the 
units in each generic belong to different 
device groups. 

• If a user-assigned name (for example, 3330A) 
includes only a subset of the units in a 
generic, that subset is a distinct device group. 

• The intersection of any subgroups is a distinct 
device group. 

Note: For specific unit requests (that is, a unit 
address was specified), all device groups within a 
generic must be serialized. 

Group Masks 
Device groups are indicated in group masks, which 
are simply fields containing bit positions for all the 
device groups within all the generics in the system. 
There is a mask in the eligible cievice table (EDT; a 
sysgen table) for every possible. unit grouping 
(either generic device type or user-assigned name). 
For' example, the masks representing the unit 
groupings illustrated in Figure 2-22 would contain 
five bit positions, one for each device group. The 
group mask for each unit grouping would be: 

2400 10000 

2314 01100 

3330 00011 

SYSDA 00111 

3330A 0Q01O 
3330B 00001 

The masks are used to determine what device 
groups must be serialized and when serialized 
device groups can be released. Every data set 
request (represented by a SlOT) is associated with 
a list of the device types and devices to which it is 
eligible (that is, to which it can be allocated). This 
eligible device list (EDL) points to the mask(s) in 
the EDT for the unit group(s) to which it is eligible. 

2314 3330 

SYSDA - 3330A 
- --

33308 

----. ~ 

181 182 183 184 191 192 193 194 195 

0 G) G) G) 
Figure 2-22. The Division of Generic Device Types into Device Groups 

3-272 OS/VS2 System Logic Library Volume 3 (VS2 Release 3.7) 



Recovery Allocation 
Recovery Allocation receives control if all requests 
were not satisfied by or prior to Generic Allocation 
Control. (Recovery Allocation, however, will not 
be called if a retry situation was detected in 
Generic Allocation Control- see "The Retry 
Situation.") Recovery Allocation handles the 
following four situations: 

• One or more tape requests could not be 
allocated because the needed volumes are 
mounted on a generic different from the 
generic selected for allocation. (For 
background information on tape requests, see 
"Processing Tape Requests.") 

• Nonspecific DASD volume requests indicate 
volume affinity~ although at least one request 
was successfully allocated, a subsequent 
request could not be allocated because of a 
DADSM error. 

• Nonspecific tape or DASD requests could not 
be allocated to mounted volumes. 

• Needed units are offline or allocated to 
another job. 

Recovery Allocation results in one of the 
following situations: 

• The retry situation is detected. (See the 
description under "The Retry Situation. ") 

• The allocation is failed because of operator 
intervention or an error detected by Recovery 
Allocation. 

• All requests are satisfied~ it is unnecessary to 
wait for units allocated to other users. 

• All requests can be satisfied only by waiting 
for a needed device(s) to become available. If 
the operator authorizes, the allocation will 
wait for the needed device(s) to be 
unallocated, either with or without holding 
reSources already allocated (as directed by the 
operator). If this allocation will wait without 
holding resources, Common Allocation 
Cleanup unallocates all requests successfully 
processed by Generic and Recovery 
Allocation and then calls Common Allocation 
Control to reattempt this allocation when the 
needed units are unallocated. 

The Retry Situation 
It is possible to encounter a situation called retry, in 
which a subset of the units on which a specifically 
requested volume may be mounted are serialized. 
Retry occurs when a. request could be allocated if 
additional device groups were serialized, or if a 
different eligible generic (tape only) were being 
processed. For example (using Figure 2-22), a 
request specified 33 30A, causing device group 4 to 
be serialized. The request, however, requires a 
volume currently mounted on a unit in device 
group 5. Because that device group is not 
serialized, the volume cannot be unloaded. This 
request is marked for retry. 

Retry situations are handled by Common 
Allocation Cleanup~ Common Allocation Cleanup 
unallocates all requests processed by Generic 
Allocation Control and by Recovery Allocation (if 
it was called) and then calls Common Allocation 
Control. For each request marked for retry, all 
device groups within the compatible generics will 
be serialized. 

Retry situations are detected by Generic 
Allocation Control or Recovery Allocation. If a 
needed tape volume is mounted on a different 
generic device type, Generic Allocation does not 
determine if that generic is serialized - the request 
is marked for retry processing. See the following 
description of "Processing Tape Requests." 

Processing Tape Requests 
The dual density feature for tape devices allows a 
tape device to support more than one density. If 
tape device types support the same density, they 
are considered compatible~ a tape volume can be 
mounted on different device types, as long as those 
device types are compatible. Figure 2-23 lists the 
tape device types and the densities they support. 
Using Figure 2-23, device type 2400-4 is 
compatible to device types 2400, 2400-3, 3400-3, 
3400-4, and 3400-6, because they all support a 
common density~ a tape volume that can be 
mounted on a 2400-4 can also be mounted on any 
of the compatible device types. 

Note: Seven-track and nine-track tape devices are 
never compatible with each other, even though 
they might support a common density. 

Section 2: Method of Operation 3-273 



Generic Device Type Density 

Nine-track tape device types 2400 800 bpi 
2400-3 1600 bpi 
2400-4 800 or 1600 bpi 
3400-3 1600 bpi 
3400-4 800 or 1600 bpi 
3400-5 6250 bpi 
3400-6 1600 or 6250 bpi 

Seven -track tape device types 2400-1 200,556, or 800 bpi 
2400-2 200, 556, or 800 bpi 
3400-2 200,556, or 800 bpi 

Figure 2-23. Tape Device Types and Supported Densities 

Requested Generic Device Type Generic Device Types Eligible to be Allocated to the Request 

2400 2400, 2400-4, 3400-4 

2400-1 2400-1,2400-2,3400-2 

2400-2 2400-2, 3400-2 

2400-3 2400-3,2400-4,3400-3,3400-4,3400-6 

2400-4 2400-4,3400-4 

3400-2 3400-2 

3400-3 3400-3, 3400-4, 3400-6 

3400-4 3400-4 

3400-5 3400-5, 3400-6 

3400-6 3400-6 

Figure 2-24. Tape Device Eligibility 

3-274 OS/VS2System Logic Library Volume 3 (VS2 Release 3.7) 



Not all device types that are compatible, 
however, are eligible to satisfy a single request. 
Figure 2-24 illustrates the device types to which a 
request for a· generic device type can be allocated. 
For example, a user requested a 2400-4 tape 
device for a data set. The data set can be allocated 
only to a 2400-4 or 3400-4 device, although a 
volume requested for this data set could be 
mounted on any of the compatible device types 
(2400, 2400-3, 2400-4, 3400-3, 3400-4, or 
3400-6). An installation can define a user-assigned 
name that includes one or more tape device types. 
In this case, the eligible device types are only those 
included in the user-assigned name. For example, 
T APE A includes all 2400-4 devices. A request that 
specifies T APEA is only eligible to the 2400-4 
devices. It is not eligible to all the devices that can 
be allocated to a request that specified the gen~ric 
name 2400-4. 

Tape requests are first processed by Generic 
Allocation Control. If Generic Allocation Control 
finds a needed tape volume mounted on a device 
type different from the device type selected for 
allocation, it determines if the volume is mounted 
on a compatible device type. If so, the request is 
marked for retry processing. Retry processing will 
mark the request for processing by Recovery 
Allocation. Otherwise, the· request is failed. 

Recovery Allocation determines if the volume is 
mounted on a device type eligible to the request. If 
it is, the request will be allocated where the volume 
is mounted. Otherwise, the volume must be 
unloaded. If the device group containing the 
required volume is not serialized, the request will 
be marked for retry. (Retry is described under 
"The Retry Situation.") 

Common UnaUocation Control 
Common Unallocation Control, invoked by both 
Batch and Dynamic Initialization and Control, 
processes unallocation requests. Its functions 
include disposition processing, private catalog 
unallocation, data set release, unit unallocation, and 
volume release. 

Volume Mount & Verify (VM&V) 
Control 

Volume Mount & Verify (VM&V) Control 
processes requests from both Common Allocation 
and Common Un allocation to unload, to rewind, 
and/ or to mount and verify volumes. (Common 
Unallocation calls VM&V Control only to unload 
and/ or rewind volumes.) Volumes are rewound 

and/ or unloaded as the need arises; volume 
mounting and verifying, however, is not performed 
until the end of Common Allocation Control 
(during Common Allocation Cleanup). 

AIlocation/UnaUocation Module Name 
Conventions 

Each allocation/unallocation module name has the 
following format: 

IEF_B4_ 

The IEF indicates the routine is part of the 
scheduler; the B4 identifies the module as an 
allocation/unallocation module. (A few allocation 
modules begin with lEE; these allocation modules 
are part of the Master Scheduler.) The fourth 
character indicates the following: 

• If A, the module is common to both batch 
and dynamic processing. 

• If B, the module performs batch processing 
only. 

• If D, the module performs dynamic processing 
only. 

The last two characters are a unique module 
identifier. 

Organization of 
AIIocation/Unallocation 
Method-of-Operation Diagrams 

Figure 2-25 illustrates the processing hierarchy of 
the diagrams for batch and dynamic processing; 
Figure 2-26, the processing hierarchy of common 
allocation diagrams. Figures 2-25 and 2-26 do not 
indicate all calls to each module represented by an 
M.O. diagram; they are intended only to provide a 
general structure to the M.O. diagrams. 

The method-of-operation (M.O.) diagrams are 
arranged in alphabetic order according to the 
module name of the major module described by the 
diagram. As a result, diagrams for all functions 
common to both batch and dynamic processing 
(module titles of the form IEF AB4nn) precede the 
diagrams for batch only processing (module titles 
of the form IEFBB4nn), which in turn precede the 
diagrams for dynamic only processing (module 
titles of the form IEFDB4nn). 

Section 2: Method of Operation 3-275 



Selected Terms Used in 
AIIocation/UnaUocation 

Following 'are definitions of selected terms that are 
not discussed in the preceding paragraphs but that 
have special meaning to allocation/unallocation. 

demand request: a request that requires a specific 
unit; that is, a unit address was specified (for 
example, UNIT= 190). 

nomhareable request: a direct access request that 
might require demounting and that therefore must 
be allocated to a nonshareable device. A direct 
access request is considered nonshareable if more 
volumes than units were requested (implicit unit 
affinity), if DEFER was specified in the UNIT 

parameter, or if, in the case of explicit unit affinity, 
more than one volume will use the unit. 

private request: (1) for tape requests, a request 
that specified PRIVATE; or that requires a specific 
volume; or that does not request a temporary data 
set. (2) for direct access requests, a request that 
specified PRIVATE. (Note: Storage requests can be 
changed to private requests if sufficient· storage 
volumes are not available.) 

public request: for both tape and direct access 

3-276 OS/VS2 System Logic Library Volume 3 (VS2 Release 3.7) 

requests, a request th~t did not specify PRIV ATE, 

that does not require a specific volume, and that 
requests a temporary data set. 

Segment: functional division of code in a module. 

scratch request: identical to public request. 

specific volume request: a request that requires a 
particular volume; for example, a volume serial 
number was specified; the data set is passed; the 
data set is cataloged. 

storage request: a direct access data set request 
that did not specify PRIV ATE, that does not require 
a specific volume, and that is not temporary. (Note: 
Storage requests can be changed to private requests 
if sufficient storage volumes are not available.) 

unit affinity: more than one request requires the 
same unit. Unit affinity can be either explicit 
(between data set requests when UNIT =AFF is 
specified) or implicit (within a single data set 
request when more volumes than units are 
requested) . 

volume affinity: . more than one request requires 
the same volume. For example, two requests 
specified the same volume serial number or a 
request made volume reference to another request. 



fIl 
(II 

~ e-
:t 

~ 

a:: 
~ 

[ 
~ 
o 

I 
eN 

~ 

Note: Shaded areas indicate functions common 
to batch and dynamic processing. 

________ =iT 

I nitializing and 
Controlling Batch 
Allocation/Unallocation 
(no diagram) 

~ Figure 2-25. Batch and Dynamic Allocation/Unallocation Visual Contents (Part 1 of 2) 
~ 

IEFBB410 -
Initiator/Unallocation 
Interface 



~ 
~ 

~ 

o 

~ 
~ 

til 

1 
I 

i 
t"'I ez 
! 
~ 
E' g 
~ 

~ 
~ 

~ 
i 
~ 
~ 

,::, 

Note: Shaded areas indicate functions common to 
batch and dynamic processing. Initializing and 

Controlling Dynamic 
Allocation/Unallocation 
(no diagram) 

IEFDB400 -
SVC99 
Control 

Control 

Figure 2-25. Batch and Dynamic Allocation/Unallocation Visual Contents (part 2 of 2) 

IEFDB450 -
Dynamic 
Concatenation 

IEFDB470 -
Dynamic 
Information 
Retrieval 

IEFDB490 -
Ddname 
Allocation 

IEFDB460 -
Dynamic 
Deconcatenation 

IEFAD480 -
Remove In-use 
Attribute 

IEFDB481 -
Remove In-use 
Processor 

Note: The processing of module IEFDB481 is 
described on the diagram for IEFDB480, part 
30f 4. 



(I} 
(D 

~ er 
= 
~ 

a:: 
(D 

[ 
o 
~ 

o 
"1:S 
ti 
=-g" 

I 
, 14-3 

IEFAB433 -
Specific Volume 
Allocation 
Control 

I 
T14.4· 

IEFAB434 -
Allocate 
Request to 
Unit 

r 
E 

IEFAB433 -
Specific Volume 
Allocation 
Control 

I 
114-4 

IEFAB434 -
Allocate 
Request to 
Unit 

r 
1 14-2 

IEFAB430 -
Fixed Device 
Control 

I 

r 

1 
~ 

IEFAB436 -
Nonspecific Volume 
Allocation Control 

I 

E 
IEFAB434 -
Allocate 
Request to 
Unit 

~ 
IEFAB479 -
Demand 
Allocation 

1 
1 

1 14-4-

IEFAB434 -
Allocate 
Request to 
Unit 

~ Figure 2-26. Common Allocation Visual Contents 
..... 
\0 

I 
' 14-1 

EFAB421~ 
Common 
Allocation 
Control 

~ 
IEFAB471 -
Generic 
Allocation 
Control 

t 14-3 

IEFAB433 -
Specific Volume 
Allocation 
Control 

1 14-4 

IEFAB434 -
Allocate 
Request to 
Unit 

I 
114-12 

IEFAB485 -
Recovery Allocation 

=r 
1 

, 14-13 

IEFAB486 -
Offlinel Allocated 
Device 
Allocation 

I 
E 

IEFAB434 -
Allocate 
Request to 
Unit 

I 
t 14-5-

IEFAB436 -
Nonspecific Volume 
Allocation 
Control 

I r144-

IEFAB434 -
Allocate 
Request to 
Unit 

"'---" 

1 
114-14 

IEFAB490 -
Common 
Allocation 
Cleanup 

1 
114-15 

IEFAB492 -
Allocationl 
VM&V 
Interface 

T 
114-16 

IEFAB493 -
VM&V 
Control 

1 
T14-10 

IEFAB476 -
Allocation 
via 
Algorithm 

1 

~ 
IEFAB434 -
Allocate 
Request to 
Unit 



~ 
N 
00 
Q 

~ 
~ 
N 
Ul 
'< ; 
b 
~. 
l"" 

J 
~ 
J 
(II 

w 

'< 
Ul 
N 

i 
II 
w 
~ -

Diagram 14-1. IEFAB421 - Common Allocation Control (part 1 of 12) 

ENTRY from IEFBB404 (see IEFBB401 - Initiator/Allocation 
Interface) or IEFDB413 (see IEFDB410 - Dynamic 
Allocation Control) or IEFAB490 - Common 

InDut Allocation Cleanup 
~ /0 ~,- '''~.,/F;:J.;:<,,~>;.::Y··/ 

OutDut 

Common 
Allocation 

Common Allocation Control: 
allocate units and volumes to requests. 

1 Change status of devices, J 
if necessary. 

2 Prepare for allocation. 

3 Process requests that do not 
require units or volumes to be 
allocated: 

a) dummy data set requests 

b) V 10 requests 

c) subsystem requests 

If all requests are satisfied, go to 
step 14. 

UCBs-updated 

I., lli A volumes 
~UnlOaded 

Count Table 

J #Dummy Requests 

, #VIO Requests 

#Teleprocessing Requests 

B 
# Specific Volume Requests 

#Private Nonspec. Vol. Req 

#Public Volume Requests 

# Storage Volume Requests 

# Subsystem Requests 

#Graphic Unit Record Req 

#Req to Allocate (variable) 

\ #Total Requests (static) 

\ #VOLUNIT entries 

ALCWA Count 

BTI
able counts 

decreased 

DSAB 

Processed 
SlOTs 

TIOT 



CIJ 
~ 

:4. o· 
= 
~ 

i::: 
~ 

[ 
o 
~ 

o 
"0 
~ 
~ o· 
= 
~ 
N 
00 

""'" 

~ ~ 

Diagram 14-1. IEFAB421 - Common Allocation Control (part 2 of 12) 

Extended Description 

ENTRY Common Allocation Control (I E F AB421) 
controls the allocation of units and volumes 

to requests. It is called by: 

• Step Allocation Control (lEFBB404), when the allo­
cation is batch (jobs and logons). 

• Dynamic Allocation Control (lEFDB410), when the 
allocation is dynamic. 

• Common Allocation Cleanup (lEFAB490), when the 
allocation is being reattempted because of a retry situa-" 
tion or because the operator autporized the allocation 
to wait for a device(s) without holding resources. 

Module Segment 

1 If IEEBASEA indicates that units are" pending a IEFAB421 OFFLINES 
change of status (MSSUM=1), Common Allocation 

Control searches the lOS UCB LUT to locate UCBs whose 
status is to be changed. Depending on indicators in the UCB, 
Common Allocation Control: 

• Takes a unit offline. 

• Unloads the volume on the unit. 

• Changes a device's status to an active console. 

Common Allocation Control issues a message to the oper­
ator informing him of the changed status. 

2 Common Allocation Control issues a GETMAIN 
macro instruction for the allocation work area 

(ALCWA) and places information from the common 
allocation parameter list in ALCWA. The allocation work­
area serves as the communications area for all subsequent 
processing. (For details on ALCWA, see "Section 5: Data 
Areas.") Common Allocation Control also builds a count 
table in ALCWA, containing both the total number of 
requests and the different types of requests (see output 
of step 2) that must be processed. At this time, the counts 
in the count table reflect the number of SlOTs. The 
TOTVOLUN field, representing the number of unallo­
cated volunit entries in the volunit table (which is built in 
step 4), is not initialized at this time. The count table is 
updated to reflect unallocated volunit entries, rather than 
SlOTs, in step 6. The counts in the count table are 
decreased during allocation processing, as each request is 
satisfied. 

IEFAB421 INITWORK 

IEFAB421 BLDCOUNT 

Extended Description 

3 To eliminate unnecessary processing, Common Allo­
cation Control first processes requests that do not 

require units and volumes to be allocated: 

"""":"'-:7 

Module Segment 

IEFAB421 

a) Dummy data set requests. If the DMYREOS field in the IEFAB421 PROCSDMY 
count table does not equal 0, Common Allocation Con­
trol searches the SlOTs for the indicator that DUMMY 
or DSN=NULLFILE (SCTDUMMY=1), 
ONAME (SIOTONAM=1), or TERM=TS (SIOTTERM=1) 
was specified. For each of these requests, Common 
Allocation Control: 
• Creates a DSAB and a TIOT entry. IEFAB428 
• Marks the SlOT allocated (SIOTALCD=1). IEFAB421 PROCSDMY 
• Decreases the DMYREOS and TOTREOS fields in 

the count table. 

b) VIO requests. If the VAMREOS field in the count table 
is not equal to 0, VIO Allocation searches the SlOTs 
for the VIO indicator (SIOTVAM=1). For each VIO 
request, VIO Allocation: 
• Places default space information in the JFCB, if 

space information does not exist. (Default space 
information is included in the non-executable 
module IEFAB445.) 

• Interfaces with DADSM to obtain a virtual UCB 
a~dress and places the address in the SlOT. 

• Creates a DSAB and a TIOT entry. 
• Marks the SlOT allocated (SIOTALCD=1). 
• Decreases the VAMREOS and TOTREOS fields in 

the count table. 

IEFAB421 PROCSDMY 

IEFAB431 

IEFAB431 VAMSPACE 

IEFAB431 VAMDADSM 

IEFAB428 
IEFAB431 
IEFAB431 

c) Subsystem requests; for example, sysin and sysout. IE FAB427 
If the SUBREOS field in the count table does not 
equal 0, Subsystem Request Allocation searches the 
SlOTs for the subsystem data set indicator (SIOTSSDS=1). 
For each such request, Subsystem Request Allocation: 
• I nterfaces with J ES2 to allocate the request. IE F AB427 B I LDSSA L 
• Creates a DSAB and a TIOT entry. IEFAB428 
• Marks the SlOT allocated (SIOTALCD=1). IEFAB427 
• Decreases the SUBSREOS and TOTREOS fields in IEFAB427 

the count table. 

If the TOTREOS field in the count table reaches 0, all IEFAB421 
requests have been satisfied and processing continues 
with step 14. 



H 

~ 
N 

i 
i 
5: 
! 
i 
CD 
w 

~ 
N 

~ 

f 
~ 

Diagram 14-1. IEFAB421 - Common Allocation Control (part 3 of 12) 

Input 

A LCWA 

A LCWA 

CSD 

D 

Process Output 

4 Determine device requirements for 
requests not yet allocated. 

a) Create volunit table, summarizing: ::I 
volume and unit requirements for 
each unallocated requests. 

b) Create eligible device lists (EDLs) '"3 ~ 
summarizing the devices eligible 
to satisfy each unallocated request. 

5 Serialize further proceSSing of this 
allocation with other processing 
that can modify UCBs. 

A LCWA 

ALCWA 
~ 

Volunit Table 

Vol unit 
Entry 

Volunit 
Entry 

. - Last 
\....SIOT EDL 

r=::r--L:J 



.. 

tI.l 
~ a (5. 

= t-.J 

::: 
~ 

[ 
o ..... 
o 
"0 
~ 
g. 
= 
w 
~ 
00 
w 

~ ''Z-.3'' 

Diagram 14-1. IEFAB421 - Common Allocation Control (part 4 of 12) 

Extended Description 

4 a) Device Requirements Determination issues a 
GETMAIN macro instruction to obtain space 

for a volunit table. The volunit table summarizes the 
volume and unit requirements of each request not allo­
cated in step 3. For each unallocated SlOT, Device 
Requirements Determination creates one or more volunit 
entries in the volunit table; an entry is created for every 
possible unit the request might need. As the entries are 
created, Device Requirements Determination assigns the 
same unitid to the entries for SlOTs that requested unit 
affinity. (A unitid is an internal number used to identify 
a unique unit request.) After the volunit table is built, 
Affinity Resolution receives control to resolve volume 
affinities. For direct access requests, where duplicate 
volids are found (whether or not the unitids match), 

Affinity Resolution creates a new unitid and propagates 
the new unitid to all duplicate volids. For tape requests, 
if duplicate volids exist and the unitids are different, 
Affinity Resolution creates a new unitid and propagates 
the new unitid to all duplicate vol ids. The volunit table is 
then completed by initialiZing the status field of each 

volunit entry. The status field includes bits that indicate 
the type of request (for example, specific volume request, 
public request, storage request, private request) and the 
device class (for example, tape, direct access, unit record). 
For details on the vdlunit table, see OS/VS2 Data Areas, 
SYB8-0606. 

Module Segment 

IEFAB423 

IEFAB423 BLDVOLUN 

IEFAB423 INITVOLN 

IEFAB423 UNAFFPRC 
IEFAB426 

b) EDL Build creates an eligible device list (EDL) for each IEFAB424 
unallocated SlOT; information in the eligible device table 
(EDT) is used to construct the EDLs. Each EDL summa-
rizes the devices eligible to satisfy a request. EDL Build 
issues a GETMAIN macro instruction to obtain space for IEFAB438 
the EDLs. Before the EDLs are created, EDL Build saves 
the DDR (dynamic device reconfiguration) count from 
the CSD (common system data area). After the EDLs 
are created, EDL Build again obtains the DDR count 
from the CSD and compares it to the saved DDR count. 
If the count has changed, DDR was invoked during crea-
tion of the EDLs and, therefore, the EDLs might be 
invalid - EDL Build then frees the EDLs and repeats 
this processing to build new EDLs. 

Extended Description 

5 Common Allocation Control·enqueues shared on 
SYSIEFSD (minor names Q4, CHNGDEVS, 

DDRTPUR, DDRDA) in order to serialize the processing of 
this allocation with other processing that might modify the 
UCBs (for example, pending-unload processing, pending­
offline processing for units that become unallocated during 
this allocation). 

Module Segment 

IEFAB421 



~ 
N 

~ 

~ 
N 

i 
i-n 

i 
~ 
~ 
§ 
fD 
W 

~ 
N 

~ 
if 
tI 
w 
:.... -

.... 

Diagram 14-1. IEF AB421 - Common Allocation Control (part 5 of 12) 

Input 

A LCWA 

~ 
~stSIOT 

SSOB 

Return Code 
0: JES3did 

not make 
selection 

4: JES3did 
make 
selection 

SSOBINDV 

I 

Common allocation 
function area in 
SSOB· extension. 

A LCWA 

EDL 

1 J 
VOlUNIT Table 

l J 
List of UCB 
Addresses 
Selected by JES3 

q t 
" 

Process (( 
Jo. 

. 'J i,'" tl 6 Set up to handle any 
device selections made 
by the'JES3 subsystem. 

Output 

JI. 

If 

ALCWA ,....--

EDLs 

I U I Updated 

SlOTs 

I' U~· U 
VOLUNIT Table 

I U~· 
*Updated only if JES3 

makes device selections. 

Count Table TIOT JFCB 

r---

Count 
Table 

'bb i. '>, 1 f Pr_~ Volunot ~, ~ . C, SlOTs 

,Table. \ .. :,;. ;.~~." 7 Allocate direct access requests that : ..... ' ......•.•.. , .....•...... " .. : .•.. : ..... ; ...... ::......... ----71 space obtained 
i ~ • can be.nocated to pemoanently '=.~ (except tor ISAM) 

resident or reserved volumes. ~ ~ ...... __ _ 

.;.A 

Count Table 

I TOTREOS=O I 
> It r 

• If all requests are satisfied, 
go to step 13. 

Q 

see 
Fixed 
Device 
Control 
(lEFAB430) 



fI) 
CD 
$4-
e' :s 
!'t 
~ 
CD 

[ 
o 
""" o 

I 
e' :s 

::! 
8: 

~ 

Diagram 14-1. IEFAB421 -Common Allocation Control (Part 6 of 12) 

Extended Description 

6 For each unallocated request, the JES3 interface 
routine invokes the JES3 subsystem (via the SSOB 

interface) to determine if JES3 has made device selections. 
If it has, the EDL is updated so that only those devices 
selected by JES3 are eligible for allocation. It also stores 
the selected UCB addresses in the VOLUNIT table and 
turns on the SlOT JES3 bit to indicate that this is a JES3 
request .. If JES3 did not make device selections, all 
units which are managed by JES3 are marked ineligible 
for allocation in the EDL. 

7 Fixed Device Control allocates requests eligible to per~ 
manently resident and reserved direct access volumes. 

During Fixed Device Control, the count table is updated to 
reflect the number of volunit entries still to be allocated, 
rather than the number of SlOTs. (The TOTREOS field is 
the only field that continues to represent a number of 
unallocated SlOTs.) Individual fields (for example, 
SPECREOS) and the TOTVOLUN field are decreased as 
unit requests (that is, volunit entries) are allocated; the 
TOTREOS field is decreased as SlOTs are completely 
allocated. If the TOTREOS fieldin the count table reaches 
0, all requests have been satisifed and processing continues 
with step 13. For details on Fixed Device Control, see the 
M.O. diagram Fixed Device Control (lEFAB430). 

Module Label 

IEFAB422 

IEFAB430 

IEFAB430 UPDTCNT 



~ Diagram 14-1. IEFAB421 - Common Allocation Control (part 7 of 12) 

~ 

~ 
~ 
N 
rn 

i 
i ;;. 
t"" er 
! 

f 
~ 

~ 
N 

'" t 
~ 
~ 

~ 

Input 

A LCWA 

ALCWA 

ALCWA 

~ 
Volunit Table , 

8 Allocate requests for teleprocessing y, ~: 

devices. 

• If all requests are satisfied, go to 
step 13. 

9 Reserve removable volumes 
specifically requested by requests 
not yet allocated. 

volume serial 
numbers enqueued 



r:I'.l 
~ 

~ 
5· 
:= 
N 

ac 
t 
~ 
Q 

""" o 
1 a e· 
:= 

w 
N 
00 ..... 

~ '-.7 

Diagram 14-1. IEFAB421 - Common Allocation Control (part 8 of 12) 

Extended Description 

8 If the number of teleprocessing requests in the count 
table is not zero (TPREOSf(}), Common Allocation 

Control calls IEFAB425 (Process TP Requests). IEFAB425 
.. enqueues exclusive on the allocation resource SYSIEFSD 

(minor name ALLOCTP) to serialize its processing with 
other allocations of teleprocessing devices. IEFAB425 then 
searches the status field of each volunit table entry for the 
indicator that a teleprocessing (communications) device is 
requested. When it finds the indicator, IEFAB425: 

• Selects a teleprocessing device from the EDL for this 
SlOT. 

• Allocates the device to the request (see the M.O. diagram 
Allocate Request to Unit (lEFAB434), if the device 
is unallocated, is not an active console, and is not in use 
by a system service. Otherwise, this allocation is failed. 

• Marks the volunit entry as allocated. 

• Marks the SlOT allocated (SIOTALCD=1) if allvolunit 
entries for the SlOT are allocated. 

IEFAB425 repeats this processing for each teleprocessing 
request, decreasing the TPREOS alld TOTREOS fields of 
the count table as each SlOT is allocated. When all teleproc­
essing requests are completed, IEFAB425 dequeues from the 
allocation resource SYSIEFSD (minor name ALLOCTP). 

9 Common Allocation Control enqueues on the 
volume serial numbers of removable volumes specif­

ically requested by unallocated requests. The enqueue is 
either shared or exclusive, depending on whether other 
requests can share the volume. (For example, if the 
volume might be demounted during execution of the 
problem program or if the volume is tape, the enqueue 
must be exclusive.) The status field in each volunit entry 
indicates if a volume is specifically requested and if the 
volume is shareable. 

Module 

IEFAB421 
IEFAB425 

Segment 

IEFAB425 TPEDLSEL 

IEFAB434 

IEFAB425 

IEFAB425 

IEFAB421 DOVOLENO 



:c Diagram 14-1. IEFAB421 - Common Allocation Control (part 9 of 12) 
co co 

~ 
~ 
CIJ 
N 
f'-l 
'< 
~ 

~ 

i 
(s' 

t: 
~ 
~ 
~ 
[ 
(I) 

CoW 

~ 
N 

i 
fe 
CoW 
~ -

Input 

A LCWA 
r----

Count 
Table 

Count 
Table 

Process 

Attempt to allocate all remaining 
requests by means of Generic 
Allocation, 

If necessary, call Recovery 
Allocation, 

see 
Generic 
Allocation 
Control 
(lEFAB471) 

see 
Recovery 
Allocation 

Output 

.. DSAB 

A space obtained L-.3 (except for ISAM) 

-.- " (I EFAB485)1.....i.........:.,;;.;;.:.,..._--'-.......:.,;;_..:........;.;....,.,..;.;..;.;.;~ ___ .......-........-. .................. _ 



fIl 
<D 
sa. 
~. 

::s 
~ 
ac 
<D 

i 
o .... 
o 
'i =. 
~. 

::s 

w 
N 
00 
\0 

~ 

Diagram 14-1. IEFAB421 - Common Allocation Control (part 10 of 12) 

Extended Description Module 

10 Generic Allocation Control attempts to allocate IEFAB471 
remaining requests. It chooses the first generic 

device type in. the installation device precedence list 
that includes devices required by unallocated requests 
and serializes the needed device group(s) within that 
generic. (For a description of device groups, see "Device 
Groups" in the "Introduction to Aliocation/Unaliocation.") 
Generic Allocation Control then allocates requests eligible 
to this device type in the following order: 

a) Specific unit requests. IEFAB479 

b) Specific volume requests for tape or DASD, if the IEFAB433 
volume. is mounted. 

c) Specific volume requests for tape or DASD, if the IEFAB476 
volume is not mounted; non-DASD and non-tape 
requests; nonspecific requests for private tape or 
DASD volumes. 

d) Nonspecific non-private tape or DASD requests to 
public mounted volumes. 

If all requests eligible to this generic device type are 
allocated, Generic Allocation Control releases the 
device group(s). Otherwise, the device group(s) remain 
serialized until the outstanding requests are allocated or 
until wait-without-holding-resources (part of step 11) is 
processed. Generic Allocation Control then chooses the 
next generic device type from the installation device 
precedence list that includes required devices and repeats 
this processing until all requests have been considered. 
For details on Generic Allocation Control, see the M.D. 
diagram "IEFAB471 - Generic Allocation Control." 

IEFAB436 

IEFAB471 

Segment 
11 Recovery Allocation receives control if the 

following conditions are true: 

• Requests still remain to be allocated (the TOTREQS 
field in the count table does not equal 0). 

• Retry is not indicated - INDRETRY=O in ALCWA. 
(Retry is indicated if step 10 found a needed DASD or tape 
volume mounted on a unit not included in the 
serialized device groups. For retry, all allocated 
requests are unallocated and the entire allocation is 
reattempted; therefore, it is unnecessary to perform 
recovery allocation. For a description of retry, see 
"The Retry Situation" in the "Introduction to Allo­
cation/Unallocation." 

The following situations result in recovery allocation: 

• A tape request(s) could not be allocated because the 
needed volume(s) is mounted on a generic device type 
different from (but compatible to) the generic selected 
for allocation. This request will go through retry 
processing before it is processed by Recovery Allocation. 

• Nonspecific DASD volume requests ask for volume 
affinity; although at least one request was successfully 
allocated, a subsequent request could not be allocated 
because of a DADSM error. 

• Nonspecific non-private tape or DASD requests could 
not be allocated to public mounted volumes. 

• Needed units are offline or allocated (and are not shareable) 
to another job. 

If Recovery Allocation can satisfy the unallocated requests 
only by waiting for devices to be unallocated, the operator 
is queried; he can cancel the job or instruct allocation to 
wait with or without holding resources: 

• If the job is cancelled, Recovery Allocation returns to 
Common Allocation ContrOl, which completes the proc­
essing of this allocation. 

• For wait-without-holding-resources, Recovery Allocation 
returns to Common Allocation Control. Common Allo­
cation Clean-up will unallocate the requests that have· 
been allocated and the allocation will be reattempted 
when the awaited device(s) becomes available. 

• For wait-with-holding-resources, IEFAB491 (Wait Holding 
Resources) waits until the needed device(s) become 
available and then allocates it. 

For details on Recovery Allocation, see the M.D. diagram 
"IEFAB485 - Recovery Allocation." 

IEFAB485 



~ 
il 
~ 
N 
C"I.) 

1 
~ 
r-

t· 
j 
~ ;: 
a 
(D 

IN 

~ 

f 
IN 

~ 

Diagram 14-1. IEF AB421 - Common Allocation Control (part 11 of 12) 

Input 

ALCWA 

Process 

If necessary and if authorized by 
operator, wait for needed devices, 
holding resources already allocated, 
and allocate remaining requests 
when devices become available. 

13 End the serialization of this 
allocation with other processing 
that can modify UCBs. 

14 Cleanup allocation processing. 

Return to IEFBB404 
(See Initiator/Allocation Interface (lEFBB401) or 
IEFDB413 (see Dynamic Allocation Control 
(lEFDB410» or Common Allocation Cleanup (lEFAB490) 

Output 

updated 



~ 
~ 

$4. o· 
= 
!':-I 
~ 
~ 

[ 
o .... 
o 

"C 
~ a o· 
= 
w 
N 
~ 

Diagram 14-1. IEFAB421 - Common Allocation Control (part 12 of 12) 

Extended Description 

12 This step is performed only if this allocation must 
wait for a needed device(s) to be unallocated and 

only if the operator authorized allocation to wait holding 
the resources already allocated. Common Allocation Con­
trol calls IEFAB491 (Wait Holding Resources) to wait for 
the needed device(sl. The following steps are performed: 

a) IEFAB491 informs the Allocation Queue Manager of 
the device groups from which an allocated unit is needed. 

Module 

IEFAB491 

The Allocation Queue Manager allows other allocations IEFAB4FA 
that cannot wait for devices (for example, dynamic allo-
cation requests) to use the device groups serialized by 
this allocation until a needed device becomes available. 

b) When a needed device becomes available, IEFAB491 IEFAB491 
first tries to allocate demand requests, if any have not 
yet been satisfied. Demand Allocation is called to proc- IEFAB479 
ess any outstanding demand requests - see the 
M.O. diagram "IEFAB479 - Demand Allocation" 

c) To determine if non-demand requests cannot be satis­
fied by using only online and unallocated (or allocated 
but shareable) devices, IEFAB491 calls the Cover/Reduce IEFAB480 
Algorithm. If all requests can be satisfied, IEFAB478 IEFAB478 

(Allocate from Groups the Algorithm Picked) allocates 
the outstanding requests, interfacing with ICBME for 
Mass Storage System (MSS) mount equalization and the 
System Resources Manager, to select the device to be 
allocated. I EFAB434 actually allocates the device - see I EFAB434 
the M.O. diagram "IEFAB434 - Allocate Request to Unit." 

If all requests cannot be satisfied by considering only 
online, unallocated devices, IEFAB491 calls the 
Cover/Reduce Algorithm to determine if requests can 
still be satisfied if allocated units are considered. If 
not, the environment has changed and this allocation 
cannot be successfully completed - for example, a 
volume on a needed allocated unit has become 
reserved and that volume cannot be used. IEFAB491 
returns to Common Allocation Control; this allocation 
is failed. Otherwise, IEFAB491 waits for the needed 
units - processing is repeated with step 12a. 

d) When all requests are satisfied, the Allocation Queue 
Manager releases the device groups no longer needed. 
(Only device groups that contain units on which 
public volumes must be mounted will remain 
serialized.) 

IEFAB480 

IEFAB491 

IEFAB4FA 

Segment Extended Description 

13 Common Allocation Control dequeues from 
SYSIEFSD (minor names Q4, CHNGDEVS, 

DDRTPUR, DDRDA); since this allocation will no longer 
modify UCBs, further processing need not be serialized 
with other processing that might change the UCBs. 

14 Common Allocation Cleanup completes allocation 
processing. One of three situations exists: 

a) All requests still are not satisfied and either retry is 
indicated or the operator authorized allocation to wait 
without holding resources. 

b) All requests are satisfied. 

c) A terminating error occurred during allocation or the 
operator cancelled the job. 

The processing that occurs in each of these cases is 
described in the M.O. diagram "IEFAB490 - Common 
Allocation Cleanup." 

Error Processing 

An error occurring in any routine causes control to be 
returned to the calling routine. In this diagram, errors in 
steps 1-12 cause control to be passed to step 13. 

When IEFAB421 receives control, it creates an ESTAE 
environment so that its exit receives control if the 
program abnormally terminates. 

Module 

IEFAB421 

IEFAB490 

Segment 

<:: 
~ 
N 
o 
W 
00 
o 
01:>0 



3-292 OS/VS2 System Logic Library Volume 3 (VS2.03.804) 



Common Allocation 2 bytes 

Parameter List _,...£===;::===:::===;::==~ ... 
:=~F=u=n=ct=io=n:=M=a=p==:= = = == I ~ X X xl X X X xl X X X xl X X X X" 

Conditions When Bit is On (=1) 

Caller is Step Allocation Caller is Dynamic 

Bit 
Control or Common Allocation Control or 

Location 
Meaning if Bit is On (=1) Allocation Cleanup for Common Allocation 

batch allocation Cleanup for dynamic 
allocation 

1 Volumes can be mounted Always Depends on what user 
specifies 

2 Allocation messages to be written MSGLeVEL=(,1) was coded 

3 Allocation can wait for units allocated Only if request is not Only in two situations 
to another user a logon described in note 1 

4 Allocation can wait for volumes Only if request is not Only in two situations 
a logon described in note 1 

5 Reserved 

6 Allocation can consider offline devices Always Depends on what user 
specifies 

7 Mount requests to be issued in form Never If bit number 1 is set on 
ofWTOR 

8 Entire generic to be reserved for some Retry is being performed 
specific volume requests 

9 Reserved 

10 Allocation header message to be written Always Never 

11 Allocation message for unit record Monitor job names in effect 
devices to be issued to console 

12 Unallocation should indicate that Never Always 
scratch function should not enqueue 
on TIOT 

13-16 Reserved 

Note 1: Bits 3 and 4 are set on (=1) if the caller is Dynamic Allocation and if: 
* A checkpoint data set is being allocated for use by the scheduler. 
* A private catalog is being allocated for use by JFCB Housekeeping. 

Figure 2-27. Function Map of Common Allocation Parameter List 

Section 2: Method of Operation 3-293 



C.N 

~ 
~ 

~ 
~ 
N 
t"'-I 

~ 
9 
~ 
(is" 
~ 
CT 

8 
< e. 
§ 
<D 
C.N 

~ 
N 

::c 

f 
C.N 

~ 

Diagram 14-2. IEFAB430 - Fixed Device Control (part 1 of 4) 

ENTRY from IEFAB421 -
Common Allocation Control 

Input Process 

ALCWA 

ALCWA ---

ALCWA 

Allocation Work 
Area (ALCWA) 

D 

Count Table 

Vol unit Table 

Fixed Device Control: Allocate 
requests eligible to permanently 
resident or reserved direct 
access volumes. 

1 Allocate requests for ""'"" At 
specific direct access 
volumes that are 
permanently resident 
or reserved. 

For details, 
see 
Specific 
Volume 
Allocation 
Control 

space obta i ned 
(except for ISAM) 

(I E F AB 433) k;rJj~;;;fi\;?%J';:{;i;::;:X~~;;,.v2i;;1>':,?/<;ji::;.;~:{~ 

2 Update count table to 
reflect number of volunit 
entries remaining to be 
allocated. 

3 Build list of units on which .L 
perma nently resident or 
reserved direct access 

ALCWA 
r----

Parameter 
List 

PRUST 
(Permanently 
Resident/Reserved List) .... 



til 
(D 

sa. 
5' 
= !'t 
a:: 
[ 
o 
~ 

o 
"I:t 
q 
a 
e' 
= 
w 
~ 
\C 
(A 

~ 

Diagram 14-2. IEF AB430 - Fixed Device Control (part 2 of 4) 

Extended Description 

ENTRY Fixed Device Control (Main Path Control) is 

called by Common Allocation Control} to allo­
cate direct-access requests that can be assigned to perma­
nently resident or reserved volumes and to update the 
count table. 

1 This step is performed only if the SPECREQS field 
in the count table is not zero - that is, only if there 

are specific volume requests to be processed. Specific 
Volume Allocation Control allocates specific volume 
requests if the requested volume is a permanently resident 
or reserved direct access volume. For details, see the 

M.O. diagram Specific Volume Allocation Control 
(lEFAB433). 

2 For each SlOT not yet allocated (SIOTALCD=O), 
Fixed Device Control examines the unallocated 

volunit entries and updates the count table to reflect the 
number of volunit entries to be allocated. (Up to this 
point, the count table represented the number of SlOTs 
to be allocated.) The following fields in the count table 
are updated: 

• TOTVOLUN - total number of volunit entries remain-
ing to be allocated. 

• SPECREQS - number of specific requests. 

• PVTNREQS - number of private, nonspecific requests. 

• PUBLREQS - number of public requests. 

• STRGREQS - number of storage requests. 

Module Segment 

IEFAB433 

IEFAB430 UPDTCNT 

~ 

Extended Description 

3 This step is performed only if there are storage or 
public requests to be processed (in the count 

table, STRGREQS +- 0 or PUBLREQS +- 0). Fixed Device 
Control builds a list of pointers to devices on which per­
manently resident or reserved direct access volumes are 
mounted. To do this, Fixed Device Control searches 
through the lOS UCB LUT for direct access UCBs that 
meet the following conditions: 

• The volume mounted on the direct access device is 
permanently resident (UCBPRES=1) or reserved 
(UCBRSVD=1 ). 

• The unit is not pending offline (UCBCHNGS=O) and 
not pending unload (UCBUNLD=O). 

• The unit is online (UCBONLI=1) and ready 
(UCBNOTR 0=0). 

• The unit is not being used by a system task 
(UCBNALOC=O). 

This permanent resident/reserved list (PR LIST) is used 
by Nonspecific Volume Allocation Control - see step 4. 

Module Segment 

IEFAB430 BLDPRLST 



~ Diagram 14-2. IEFAB430 - Fixed Device Control (part 3 of 4) 

~ 

~ 
~ ..., 
~ 
~ 

II 
i. 
n 
t: 

f 
i 
(II 

eN 

~ ..., 

i 
R 
eN 
:.., -

Input 

] 

A LCWA 

ALCWA 1st SlOT t:1 
Y; 

=VOIUnitTabl 

lLast SlOT 

I 
e 

Allocate nonspecific direct 
access volume requests that 
can be allocated to 
permanently resident or 
reserved volumes. 

Perform validity check for 
demand requests. 

Return to Common 
Allocation Contro1 
(lEFAB42U 

@ space obtained 
(except for ISAM) 



I:'-l 
(D 

~ 
(5' 

= ~ 
a:: 
(D 

g 
Q. 

o 
"00) 

o 
't:I 
Q 

=­(5' 
= 
\N 

N 
IC ....., 

Diagram 14.,2. IEFAB430 - Fixed Device Control (part 4 of 4) 

Extended Description 

4 Nonspecific Volume Allocation Control processes 
nonspecific volume requests that can be allocated 

to permanently resident or reserved volumes. Fixed Device 
Control calls this routine to allocate: 

a) Storage requests to storage vol umes if STR G R E as " 0 
in the count table. 

b) Public requests to public volumes if PUBLREas " 0 in 
the count table. 

c) Public requests to storage volumes if all public requests 

were not allocated in the preceding call (4b). 

The parameter list includes a function map that indicates 
the type of request Nonspecific Volume Allocation Control 
should allocate. The parameter list also contains a pointer 
to the permanently resident/reserved list (PR LIST) built 
in step 5 - Nonspecific Volume Allocation Control uses 
the PRLlST to build a list of units eligible to satisfy 
fndividual requests. For details on Nonspecific Volume 
Allocation Control, see the M.O. diagram Nonspecific 
Volume Allocation Control (lEFAB436). 

When processing is complete, Fixed Device Control 
issues a FREEMAIN macro instruction to release the 
permanently resident/reserved list. 

Module 

IEFAB436 

IEFAB430 

IEFAB430 

Segment Extended Description 

5 Two or more requests can specifically request the 
same unit (for example, two DD statements specify 

UN IT=190) only if the following conditions are true: 

a) The unit is a direct access device. 

b) The same volume can be used for both requests: 

• Identical volume serial numbers are coded or 
volume affinity is indicated; or, 

• For nonspecific volume requests, none of the 
requests are private or nonshareable. 

To determine if the preceding conditions are satisfied 
when two or more requests specify the same unit, 
Fixed Device Control searches the SlOTs for demand 
requests (SIOTDMND=1) and checks the status field 
of the volunit entries for those SlOTs that request the 
same unit. If the preceding conditions are not satisfied, 
further processing of this allocation is terminated. 

Error Processing 

An error in_any routine causes control to be returned to 

the calling routine. 

In the event of an abnormal termination, the EST AE 
exit routine established by I EFAB421 performs any 
necessary cleanup. 

Module Segment 

IEFAB430 CHEKDMNC ~ 
~ o 
\N 

00 
~ 



~ 
N 

~ 

o 
{Il 

~ 
N 
{Il 

'< 
ff4. 
§ 

i-
t:; 
~ 

~ 
~ 
[ 
<D 
W 

~ 
N 
Q 
w 

~ 

Diagram 14-3. IEFAB433 - Specific Volume Allocation Control (part" of 4) 

ENTRY from caller 
(see extended description) Process OutDut Input 

A LCWA V I . T· bl - S ·f· V I A· II . C I fllIIIIAIL1clwIAIIIIIIIIIIIIIIIIIIIIIIIIIIIIII." 

I r 
1st SlOT 0 Unit a e peCI Ie 0 u~e ocatlon ontro: 1st SlOT 

~ ~ I 
~~~~t~~ s~~I~~~:olume requests to -~ 1 

_Last SlOT . . SlOT to be
processed

1 Locate specific volume request. 1 1
l-

• If all eligible specific volume
A LCWA 1st SlOT requests are processed, go to v---.-r] Volunit Table step 7. ALCWA Vol unit

'" - Table-
2 Determine if volume is on eligible Algorithm updated

SlOT being _ unit. Tables"':'updated*
processed ~ I h,

T l' • If not, go to step 1 to process ",/ ~ I
,_.. UCB next specific volume request.
~EDL

1::[I * Algorithm tables do not exist if
UCB caller is Fixed Device Control.

1

A LCWA I 3 If volume is permanently resident or ~ I r Tuni' TabI IV :~r::~e~~~ceilunit affinities to 1

r.n
~ a o·
:I

~

ac
~ g
Q.

o
"'0)

o
"0
~
~ o·
:I

IN
~
\C
\C

~

Diagram 14-3. IEFAB433 - Specific Volume Allocation Control (part 2 of 4)

Extended Description

ENTRY Specific Volume A"ocation Control
(lEFAB433) allocates specific volume

requests if the volume is mounted. It is called by:

• Fixed Device Control (lEFAB430) to allocate specific
volume requests if the volume is a permanently resident
or reserved direct access volume.

• Demand A"ocation (lEFAB479) to allocate specific
volume requests (if the volume is mounted) when a
specific unit was also requested.

• A"ocation Within Generic (lEFAB475) to allocate
specific volume requests not allocated during Fixed
Device Control - if the volume is mounted.

• Recovery A"ocation (lEFAB485) to allocate specific
tape volume requests marked for recovery processing.
(This occurs when a needed tape volume is mounted on
a generic device type different from the generic selected
for allocation, but still eligible to the request - see
"Processing Tape Requests" in the "Introduction to
Allocation/Unallocation.")

The processing described in this diagram is a loop per­
formed for every specific volume request.

Note: Every request that requires a particular volume is
considered a specific volume request; for example, a volume
serial number was coded, the data set was passed, the data
set is cataloged.

Module

1 Specific Volume Allocation Control (lEFAB433) IEFAB433
searches the SlOT chain for a SlOT that is not yet

allocated (SIOTALCD=O) and that is not marked ineli­
gible (SIOTGIGN=O)' (When the caller is Fixed Device
Control or Recovery Allocation, no SlOTs are marked
ineligible. Demand Allocation and Allocation Within
Generic are part of Generic A"ocation Control; when
they call IEFAB433, all SlOTs except those eligible to
the generic being processed are marked ineligible.)

For an eligible SlOT, IEFAB433 checks the status field IEFAB433
of volunit entries that are unallocated and are not marked
for recovery, to determine if a specific volume was re-
quested. (Recovery Allocation turned off the recovery
indicator for vol unit entries that should be processed.)

Segment

~?

Extended Description

Processing of nonspecific volume requests is deferred; if
the SlOT does not include specific volume requests,
IEFAB433 searches the SlOT chain for the next eligible
SlOT. Steps 2-5 are performed for every volunit entry
requesting a specific volume (an eligible volunit entry).
A" eligible volunit entries are processed for a SlOT, one
at a time, before the next SlOT is selected. When all
eligible SlOTs have been processed, control passes to
step 7 - IEFAB433 returns to the caller.

Module

"0_7

Segment

2 IEFAB433 checks the UCBs pointed to by the EDL IEFAB433 FINDSPC
for this S lOT to determine if the requested volume

is mounted on a unit eligible to this request. If not, the
next specific volume request is located (step 1). Otherwise,
IEFAB433 determines if the unit meets the following
conditions:

• The unit is online.
• The unit is not being used by a system task.
• No mount is pending for this unit, unless mounting is

allowed for this allocation.
• If the caller is Fixed Device Control, the volume on the

unit is a permanently resident or reserved direct access
volume.

• The unit is not requested specifically by a request
requiring a different volume.

If these conditions are not met, the unit cannot be allocated
at this time. Further processing of this request is deferred
and IE FA B433 selects the next el igible request - see
step 1.

If the preceding conditions are met, the unit can be
allocated.

3 This step is performed only if the volume is per- IEFAB442
manently resident or reserved. If another request

indicates unit affinity to this request, IEFAB442 cancels
the unit affinity by increasing the number of units
required. (Unit affinity can be either implied or explicit -
see "Selected Terms Used in Allocation/Unallocation" in
the "Introduction to Allocation/Unallocation.") If, as a
result of increasing the unit requirements, a SlOT would
require more than 59 units, the allocation is failed. Other-
wise, the unit requirements are increased and IEFAB4F2 IEFAB4F2
updates the algorithm tables, if necessary, to reflect the
changed unit requirements.

~ Diagram 14-3. IEFAB433 - Specific.Volume Allocation Control (part 3 of 4)

8

~
N
fIl

i
i
~.

t­
&

!
~
E"
iI
w

~
N

~ r
w
~

Input

A LCWA SlOT --- Volunit Table
~

* Algorithm tables do not exist if caller is Fixed
Device Control.

A LCWA

Count
Table

1st SlOT Volunit
Table

Process

4 Allocate this request and
requests that specify affinity
to it.

5 Update volunit table, count
table, and, if necessary, SlOT
and EDL.

6 Go to step 1 to locate next
specific volume request.

7 Return to caller.

See
Allocate
Request
to Unit
(lEFAB434)

Return to Caller

Output

Volunit
Table­
updated
r----

t------+-t-____ Count Table } • • up
necessary

en
(I)

~ o·
=
~

a::
(I)

[
o
""'I

o
"C
Q
e. o·
=
w
~
S

~

Diagram 14-3. IEFAB433 - Specific Volume Allocation Control (Part 4 of 4)

Extended Descr1ption

4 IEFAB434 (Allocate Request to Unit) allocates the
request and any requests that specify affinity to it.

For details, see the M.a. diagram Allocate Request
to Unit (lEFAB434).

5 I EFAB433 marks the volunit entry allocated and
decreases the TOTVOLUN field in the count table.

The SPECREOS field of the count table is also decreased,
unless the caller is Fixed Device Control. (If the caller is
Fixed Device Control, the count table reflects the number
of unallocated SlOTs and cannot be decreased until all
volunit entries for a S lOT are allocated.)

IEFAB433 also updates the EDL if the following condi·
tions are true:

• The unit just allocated is the first volunit entry allo­
cated for the SlOT; and,

• The SlOT is a multi-unit request that must be allocated
to a single generic.

All device types in the EDL are marked ineligible, except
for the device type just allocated.

If all volunit entries for this SlOT are now allocated,
IEFAB433 marks the SlOT allocated (SIOTALCD=1) and
decreases the TOTREQS field in the count table. If the
caller is Fixed Device Control (and, therefore, the count
table represents the number of unallocated SlOTs), the
SPECREOS field of the count table is also decreased.

Module Segment

IEFAB434

IEFAB433

I EFAB433 VUSCAN

IEFAB433 UPDEDL

IEFAB433

"'-:5'

Extended Description

6 IEFAB433 locates the next specific volume request
to be processed - go to step 1.

7 IEFAB433 returns to the caller. (See the beginning of
the Extended Description for a list of callers.)

Error Processing

An error in any routine causes control to be returned to
the calling routine.

In the event of an abnormal termination, the ESTAE
exit routine established by IEFAB421 performs any
necessary cleanup.

Module

IEFAB433

IEFAB433

•

-"-'

Segment

-< en
I-.J

o
W

00
~

~
~ o
N

o
tf}

~
N
tf}

~
§

~
~.

t"'4
e:
!
~
2'

= (D

~

~
N

<=>
~

00
~

Diagram.14-4. IEFAB434 - Allocate Request to Unit (part 1 of 6)

Input

IEFAB434

ENTRY from caller - see
extended description

raramep __ rlOT beiT processed

IEFAB441
Parameter List Vol unit Table

SlOT being VM&V
processed __ OBIOCk r
IEFAB435
Parameter List Vol unit Table

~
IEFAB435
Parameter List UCB

Process

Allocate Request to Unit

1 Create or update DSAB and
TIOT entry.

2 Allocate unit.

a) Perform validity check, if
necessary.

• If error, retry, or recovery
situation detected, return
to caller.

b) Unload volume, if
necessary.

c) Build VM&V request block,
if necessary.

d) Update UCB.

Output

DSAB
TIOT

Return
to
Caller

cB volume
unloaded, if
necessary

SlOT being VM&V
processed

yfuestbr I

rI}
CD
$4
t;.
=
~

a:: l'II
CD ..
S
Q.

0
0

"C:I
~ a t;.
=
w
W
Q
w

Diagram 14-4. IEFAB434 - Allocate Request to Unit (part 2 of6)

Extended Description

ENTRY IEFAB434 (Allocate Request to Unit) is the
common service routine that actually allocates

a request to a unit. It is called by:

• IEFAB425 to allocate teleprocessing requests.

• IEFAB432 to allocate requests that specified affinity to
an allocated request.

• IEFAB433 to allocate specific volume requests if the
volume is mounted.

• IEFAB436 to allocate nonspecific volume requests if a
volume is mounted.

• IEFAB441 to allocate requests when the needed volume
is found on an eligible unit other than the unit being con­
sidered (for example, a unit affinity request is being proc­
essed) and the volume is permanently resident or reserved.

• IEFAB478 to allocate requests processed by the algorithm.

• IEFAB479 to allocate a unit that was specifically
requested.

• IEFAB489 to allocate online devices during recovery
allocation.

1 IEFAB428 creates or updates a DSAB and TIOT
entry for this request, based on the parameter list it

receives as input from IEFAB434. If the volunit entry
being processed is the first volunit entry to be allocated
for this SlOT, the DSAB and TIOT entry must be created;
a group ID list is also created, indicating the device group
allocated to this request. If this is not the first volunit entry
to be allocated for the SlOT, IEFAB428 updates the exist­
ing DSAB, TIOT entry, and group ID list.

Module

IEFAB428

'----.Y

Segment Extended Description

2 IEFAB435 (Update UCB Routine) allocates the unit;
the processing of I EFAB435 includes the following

steps:

a) If indicated by the caller of IEFAB434, IEFAB441
(Volume Validity Checker) receives control to validity
check this request. (The validity check is indicated
only if a specific volume was requested and that
volume is not mounted on the unit to be allocated.)
IEFAB441 scans the UCBs pointed to by the EDT
group entries to determine if the volume is mounted. If
the volume is not mounted, the validity check is
unnecessary; processing continues with step 2b. Other­
wise, IEFAB441 determines if the request can be allo­
cated. The following are the possible error conditions
that can be detected:

• The unit is in use by a system task (UCBNALOC=l).

• The device type of the unit containing the volume is
not compatible with the requested device type.

• The volume is permanently resident or reserved and is
mounted on a unit that is not eligible to this request.

• The volume is mounted on a unit allocated to another
user, and this allocation is not allowed to wait for
units, as indicated in the common allocation param­
eter list (see figure 2-27). (If this allocation can wait
for units, the request is marked for recovery
processing.)

If the volume is located on a device group that is not
serialized, the request is marked for retry processing
(SIOTRTRY=l); ALCWA is also updated to indicate
retry is necessary (lNDRETRY=l).

If no error, retry, or recovery situation is detected,
allocation of this request continues.

b) IEFAB49C unloads the volume currently mounted on
the unit, if that volume cannot be used.

c) IEFAB435 builds a VM&V request block for this
SlOT, if a volume must be mounted on the unit. (The
volume will be mounted after all requests have been
satisfied - see the M.a. diagram Common Allocation
Cleanup (lEFAB490).

d) IEFAB435 updates the UCB to indicate it is allocated.

Module Segment

IEFAB435

IEFAB441

IEFAB49C

IEFAB435 VMVSETUP

IEFAB435 UPDUCB

~
w
2
0
f:I)

~
N
f:I)

'<
=-~
ci ..
n·
t!
2"
~
~ cr a
<D
w

~
N

:a:I

t
~
w
:....t -

Diagram 14-4. IEFAB434 - Allocate Request to Unit (part 3 of 6)

Input Process Output

DADSM . SlOT J FCB '€I Iv) '\

P~" 11 .

TI
IEFAB4F2 Volunit Table

3 Interface with DADSM for iR

space if this is a new direct ' j ~*
access data set.

• If space not obtained,
unallocate unit and return to
caller.

UII :eturn

Caller

4 ~pdate al~orithm tables, '~:]i
If they eXist. .~.~.

5 Process requests that specify '311 ~;L
affinity to the request just
allocated.

space
obtained

ALCWA Algorithm

. -'I, ~
r Tables-updated

~ space obtained,
if needed

Algorithm

UCB

Tables
b

} u~ted

tf.l
~

~
5'
=
~

s::
~
5
(:l.

o
~

o
"d
~ a.
5'
=
eN
c:w
~

~

Diagram 144. IEFAB434.....; Allocate Request to Unit (part 4 of 6)

Extended Description

3 IEFAB434 interfaces with DADSM to obtain space
for new non-ISAM (see M.O. diagram Common

Allocation Cleanup IEFAB490 for a description of the
ISAM process) direct access data sets. If DADSM is
unable to allocate space, IEFAB434 unallocates the
unit, if no other requests were allocated to it, and
removes the device entry for this UCB from the
TIOT entry. If the use attribute for the volume was
changed for this request, the original use attribute is
restored. IEFAB434 then returns to the caller. Further
processing of this allocation depends on whether the
DADSM error is recoverable (for example, if a specific
volume was requested, the error is unrecoverable and this
allocation is failed).

4 IEFAB4F2 updates the algorithm tables to reflect
the request that was just allocated, if the algorithm

tables exist. (The algorithm tables are not created until the
beginning of Generic Allocation Control.)

Note: The "permanently ignore" indicator (CVRIGNOR)
in the algorithm tables is not set at this time for non­
specific volume requests. (When this indicator is set, the
allocation of this request is no longer considered by the
algorithm.) This is necessary because affinity requests have
not yet been processed - if nonspecific requests that
specify affinity to each other cannot all be allocated to
the current volume, recovery processing will be necessary.
If affinity requests are successf~lIy processed, the "perma­
nently ignored indicator will be set in step 6.

5 If indicated by the caller, IEFAB432 (Affinity Proc-
essor) processes requests that specify affinity to the

request just allocated. (Affinity processing is not performed
when IEFAB434 is called to allocate an affinity request -
see step 5a and 5c). IEFAB432 searches the volunit table
for affinity requests. The following steps are performed
for each request:

a) A validity check is necessary if only unit affinity was
requested and if the affinity request needs a specific
volume. IEFAB441 (Volume Validity Checker) scans
the UCBs pointed to by the EDT group entries to deter­
mine if the needed volume is mounted. If the volume is
not mounted, further validity processing is unnecessary

Module Segment

IEFAB434 DADSMINT

IEFAB434 DADSMERR

IEFAB4F2

IEFAB432

Extended Description

and processing continues with step 5b. OtherWise,
IEFAB441 checks for error, recovery and retry
situations:

• This allocation will be failed if the unit is in use by a
system task (UCBNALOC=1) or if the device type
of the unit containing the volume is not compatible
with the requested device type.

• This allocation will be failed if the volume is perma­
nently resident or reserved and the unit containing
the volume is not eligible to this request.

• If the volume is mounted on a unit allocated to
another user, this allocation will be failed if it is
not allowed to wait for units (as indicated in the

common allocation parameter list - see figure 2-27).
If this allocation can wait for units, the request is
marked for recovery processing.

• If the volume is located on a device group that is not
serialized, the request is marked for retry processing
(SIOTRTRY=1); A LCWA is also updated to indicate
retry is necessary (INDRETRY=1).

If none of these situations are detected, one of the fol­
lowing situations exists:

• The volume is not permanently resident or reserved,
the device group containing the unit is serialized, and
the unit is unallocated. IEFAB49C receives control
to unload the volume. Processing of this request then
continues with step 5b.

• The volume is permanently resident or reserved and
the unit containing the volume is eligible to this
request. If another request indicates unit affinity to

Module

IEFAB49C

this request, IEFAB442 cancels the unit affinity by IEFAB442
increasing the number of units required. (Unit affinity
can be either implied or explicit - see "Selected
Terms Used in Allocation/Unallocation" in the "Intro-
duction to Allocation/Unallocation.") If, as a result
of increasing the unit requirements, a SlOT would
require more than 59 units, the allocation is failed.

Step 5 continued on Part 6

Segment

Cf Diagram 14-4. IEF AB434 - Allocate Request to Unit (part 5 of 6)
w
i

~
~
~

~

1 ;
i
n'
t"'"

J
~ c a
(D

w

~
~

:=
i
Kl
w
~

Input

IEFAB4F2
Parameter List

Vol unit Table

Process

6 Update algorithm tables, if
they exist,

Return to Caller.
(See beginning of
Extended Description)

Output

c;f.l
(»

s:;
o·
= N

~
(»

[
o
o

'"0
~

=­o·
=
eN
~
o
-...J

~ ~

Diagram 144. IEFAB434 - Allocate Request to Unit (part 6 of 6)

Extended Description

5 (Continued)
Otherwise, the unit requirements are increased,
IEFAB428 creates a larger DSAB/TIOT entry, and
IE FAB4F2 updates the algorithm tables to reflect the
changed unit requirements. I EFAB434 allocates the
request to the unit containing the needed volume.
IE FAB441 marks the volunit entry as allocated and

decreases the appropriate counts in the count table.
If the SlOT is now completely allocated, the SlOT is
also marked allocated and the TOTREOS field in the
count table is decreased. IEFAB432 then selects the
next affinity request to be processed (that is, steps
5b through 5d are skipped for this request)

b) IEFAB432 ensures that the device type just allocated
is eligible to the affinity request being processed. If
not, this allocation is failed.

Note: The affinity request need not be eligible to the
particular unit allocated, only to the generic device type.
For example, 3330 is divided into two separate unit
groups, 3330A and 3330B. The request just allocated
had specified 3330A; the affinity request specified
3330B. The affinity request is considered eligible to the
unit allocated from 3330A.

Module

IEFAB428
IEFAB4F2
IEFAB434

IEFAB441

IEFAB432

Segment

IEFAB432 FINDEDL2

Extended Description

c) IEFAB434 is called to allocate the affinity request. If
the request (volunit entry) is successfully allocated
and, as a result, all volunit entries for this SlOT are
allocated, IEFAB432 marks the SlOT allocated and
decreases the TOTREOS field in the count table.

d) IEFAB432 updates the EDL if the following conditions
are true:

• The unit just allocated is the first volunit entry allo­
cated for this SlOT; and,

• The SlOT is a multi-unit request that must be allo­
cated to a single generic.

All device types in the EDL are marked ineligible
except for the device type just allocated.

6 I EFAB4F2 is called to update the algorithm tables;
if affinity requests were successfully processed, the

"permanently ignore" indicator (CVRIGNOR) - which
was not updated in step 4 - can now be set on.

Error Processing

An error in any routine causes control to be returned to
the calling routine.

In the event of an abnormal termination, the EST AE
exit routine established by I EFAB421 performs any
recessary cleanup.

"" __ iT

Module Segment

IEFAB434

IEFAB432 AFFPROC

I EFAB432 UPDEDL

IEFAB4F2

<
c;f.l
N o
eN
00
o ...

~

i
~
"< f'-)
~
f'-)

l
9
i n·
t:

!
~
E' a
(D

w

~
~

<=> w
00
~

Diagram 14-5. IEFAB436 - Nonspecific·Yolume Allocation Control (part 1 of 6)

ALCWA

I

ALCWA

ENTRY from I EPAB430 - Fixed Device Control;
IEFAB475 (see IEFAB471 - Generic Allocation Control); ..

1st SlOT

~~

~ . SlOT

1st SlOT Volunit

/VfJbeing

Table

~

. Nonspecific Volume Allocation Control:
Allocate nonspecific, non-private volume
requests to mounted volumes.

) 1 Select SlOT to be processed.

• If all eligible SlOTs processed,
go to step 10.

2 Locate eligible volunit entry to be
processed.

• If all eligible volunit entries
processed, go to step 1 to select
next SlOT.

ALCWA
1st
SlOT

/~LJ
\ SlOT being

processed

LJ

en
(D

a
~.

::I

~

iC
(D

[
Sa
o
."

9 g.
::I

eN
W
$

Diagram 14-5. IEFAB436 - Nonspecific Volume Allocation Control (part 2 o(6)

Extended Description

ENTRY Nonspecific Volume Allocation Control
(lEFAB436) is called by Fixed Device Con­

trol (lEFAB430), Allocation Within Generic (lEFAB475),
and Recovery Allocation (IEFAB485) to allocate non­
specific volume requests to mounted volumes. IEFAB436
allocates one of the following types of requests each time
it is called:

• Storage requests to storage volumes.

• Public requests to public volumes.

• Public requests to storage volumes.

The type of request to be allocated is indicated in the
function map of the parameter list passed to IEFAB436.

Note: The processing of IEFAB436 isa series of loops.
Step 1 locates a SlOT to be processed; steps 2-8 are per­
formed to locate and process each eligible volunit entry
for a selected SlOT. The processing of a single volunit
entry can involve loops through steps 3-6 or through
steps 3-7, if the volume mounted on a unit selected for
the volunit entry cannot be used. The extended descrip­
tion of each step describes the circumstances under which
it is performed.

Module Segment Extended Description

1 IEFAB436 scans the SlOT chain to locate a SlOT that
is not allocated (SIOTALCD=O) and that is not marked

ineligible (SIOTGIGN=O). (When the caller is Fixed Device
Control, no SlOTs are marked ineligible; Allocation Within
Generic is part of Generic Allocation Control, which proc­
esses only one generic device type at a time - all SlOTs
except those eligible to the device type being processed are
marked ineligible; when the caller is Recovery Allocation,
all SlOTs except those to be processed are marked ineli­
gibleJ If all eligible SlOTs have been processed, step 10
receives control.

2 . IEFAB436'checksthe status field of unallocated
volunit entries for this SlOT to locate a unit request

. to be processed: a request for a public volume if public
requests are being processed; or a request for a storage

-volume if storage requests are being processed. If no eli­
gible volunit entries are located, IEFAB436 selects another
SlOT - see step 1.

Module Segment

IEFAB436

IEFAB436

«f Diagram 14-5. IEFAB436 - Nonspecific Volume Allocation Control (part 30(6)
w -e

o
~
til
N
til

'i
9

i-
t-

J
~
2' a
CD
w

'<
til
N
:;a

f
w
~

Input ..
Parameter List PSLlST* * if updating PSLlST
~~ uifcreatingPSLlSTand <.J "-

ALCWA---

ALCWA
~

1st

caller is IEFAB430
u* if creating PSLlST and

caller is IEFAB475 or
IEFAB485.

SlOT Vol unit
Table
~

TIOT UCB

3 Build or update list of UCBs
eligible to this volunit entry
(PSLlST).

• If PSLlST does not contain
entries:

a) Change storage requests to
private, if necessary.

b) Go to step 1 to select next
SlOT.

Build allocated UCB list, if
necessary.

PUblic/Storage List
(PSLlST) -created or updated

Allocated
UCB List

D

rIl
(D

~
~.

I:'

~

a::
(D

~
~
Q
o
1 a
~.

I:'

w
W
'""' '""'

..... ,~

Diagram 14-5. IEF AB436 - Nonspecific Volume Allocation Control (part 4 of 6)

Extended Description

3 The purpose of this step is to build a list of units
eligible to the volunit entry being processed - a

public/storage list (PSLIST). The unit allocated to the
volunit entry is chosen from this PSLlST.

Because the processing of IEFAB436 is a series of loops,
this step can be performed after step 2 - the first eligible
volunit entry for a SlOT is initially being processed; after
steps 6 or 7 - the processing of a volunit entry is being
repeated because of a recoverable error; or after step 9 -
an additional volunit entry is being processed for this
SlOT. Depending on when this step is being performed,
the PSLlST is either created or, updated:

a) The PSLlST is created if this volunit entry is the first
to be processed for this SlOT - that is, this step
receives control from step 2. I n this case, input to this
step is a UCB candidate list of available units that do
not contain private volumes (if the caller is A"ocation
Within Generic or Recovery A"ocation) or a list of
UCBs containing permanently resident or reserved
direct access volumes (PRLlST, if the caller is Fixed
Device Control).

After the list is created, IEFAB436 determines if it
contains sufficient units to allocate all the units
required by ttlis SlOT. If it does not, the entries in the
PSLlST are deleted and no requests are allocated unless
one of the following conditions is true:

• The caller is Recovery Allocation.

• The request is eligible to more than one generic and
can be allocated across generics.

b) The PSLlST is updated in the following cases:

• A vol unit entry was just allocated for this SlOT and
another volunit entry is being processed. The PSLlST
is updated to eliminate the unit just allocated. In
addition, if the PSLlST includes units from different
generic device types and allocation across generics is
not allowed, IEFAB436 eliminates a" entries in the
PSLlST that represent a device type different from
that just allocated. The EDL is also updated to
eliminate those generics that are no longer eligible.

Module Segment

IEFAB436 PSLSTBLD

IEFAB436 PSLSTMNT

IEFAB436 PSLSTMNT

IEFAB436 PSLSTBLD

IEFAB436 PSLSTMNT

Extended Description

• A unit was selected from the PSLlST to be allocated
to this volunit entry, but the volume on the unit
could not be used because of a volume enqueue
error - see step 6. IEFAB436 eliminates the entry for
this unit from the PSLlST.

• A unit was selected from the PSLlST to be allocated
to this volunit entry, but the volume on the unit did
not contain sufficient space for the data set. IEFAB436
eliminates the entry for this unit from the PSLIST.
(This unit, however, can be considered for other
volunit entries for this SlOT, once a unit has been
allocated to the current volunit entry.)

It is possible, after the PSLlST is created or updated,
that it does not contain entries. If storage requests are
being processed, IEFAB436 changes all storage volunit
entries remaining to be allocated to private requests.
Any other allocated volunit entries for this SlOT that
require the same volume and unit are also changed to
private. IEFAB436 also updates the PUBLREOS and
PVTNREOS fields in the count table.

If there are no entries in the PSLIST, no further proc­
essing for this SlOT can be performed at this time.
IEFAB436 selects the next SlOT - see step 1.

4 The purpose of this step is to build a list of allocated
units. The System Resources Manager uses the allo­

cated UCB list and the PSLlST to determine which unit
should be allocated to a request. This step is not per­
formed in either of the following situations:

• The PSLlST (built or updated in step 3) contains only
one entry. There is no choice of units and, therefore,
no need to interface with the System Resources
Manager:

• An allocated UCB list already exists and can be reused;
this is true if the processing of a volunit entry is being
repeated due to a volume enqueue or DADSM error.

IEFAB440 (Build Allocated UCB List) builds the allo­
cated UCB list by obtaining the UCB addresses from
TIOT entries.

'7

Module Segment

IEFAB436 PSLSTMNT

IEFAB436 PSLSTMNT

IEFAB436 PVTUPDTE

IEFAB436 PSVOLUN

IEFAB440

~ Diagram 14-5. IEF AB436 - Nonspecific Volume Allocation Control (part 5 of 6)
w -N

o
~
rI.l
N
rI.l
'<

i
i-
t:
2'
~
~
f
(D

w

'< rI.l
N

i
~
w
~ -

ALCWA

PSLlST

D

PSLlST

Volunit Table

Allocated
UCB List

D
Allocated
UCB List*

*if not already
released D

Process

'" '"t'\. 5 Interface with System Resources '" ~;
Manager to select device, if
necessary.

. 6 Enqueue on volume serial number,
unless volume is permanently
resident or reserved.

• If volume can't be used, go
to step 3 to update PSLlST.

;'"'1 .,' '\. 7 Allocate request.

• If unsuccessful:

a) Dequeue from volume, if
necessary.

b) If recoverable DADSM
error, go to step 3 to
update PSLlST.

8 Release allocated UCB list.

9 Go to step 2 to select next
volunit entry.

--1 ____ , '" 10 Release PSLlST and, if necessary, --""'''''''71'----....

the allocated UCB list.

Return to Fixed
Device Control
(JEFAB430); IEFAB475

PSLIST
J=::=
selected
entry

Algorithm Tables

~ } updated

TIOT
~

PSLlST and, if necessary, Allocated
UCB List released.

(See Generic Allocation Control OEFAB471));
or Recovery Termination (JEFAB485)

c:I.l
(1)

g.
5'
= t-J

a::
(1)

g-
Q.

o
o

"0
Si
~
5'
=
(H

~ -(H

... '-'

Diagram 14-5. IEF AB436 - Nonspecific Volume Allocation Control (part 6 of 6)

Extended Description

5 IEFAB436 interfaces with the System Resources
Manager, which selects a device to be allocated

to this request. This step is not performed if the PSLlST
contains only one entry.

6 If the volume on the selected unit is not perma-
nently resident or reserved, IEFAB4FO (Condi­

tional ENO/DEO Routine) enqueues on the volume. The
enqueue can result in one of the following situations:

• The enqueue is unsuccessful because the volume is
already owned by this job. The volume can be used
if the enqueue is share and no unallocated specific
volume requests need this volume.

• The enqueue is unsuccessful because another user
owns the volume; the volume cannot be used.

• The enqueue is successful; the volume can be used.

If the volume cannot be used, the PSLlST must be
rebuilt to exclude the entry for this unit and a new unit
must then be selected - go to step 3.

7 IEFAB434 (Allocate Request to Unit) allocates this
request and any requests that specified affinity to

it. For details, see the M.O. diagram Allocate
Request to Unit (lEFAB434).

If the allocation is unsuccessful and the volume was
enqueued, IEFAB4FO dequeues from the volume. If
the allocation is unsuccessful because of a DADSM error,
the PSLlST is rebuilt to exclude the entry for this unit
and a new unit is selected - go to step 3.

Module Segment

IEFAB436 PSALLOC

IEFAB4FO

IEFAB434

IEFAB4FO

Extended Description

8 IEFAB436 issues a FREEMAIN macro instruction
to release the allocated UCB list.

Note: This list is not released if the request could not
be allocated due to a volume enqueue or DADSM error;
the list can be reused.

9 IEFAB436 selects the next volunit entry to be
processed - see step 2.

10 After all eligible SlOTs have been processed,
IEFAB436 issues a FREEMAIN macro instruc­

tion to release the storage obtained for the PSLlST. If
the allocated UCB list has not been released, IEFAB436
also releases it. (The Allocated UCB list will not have
been released if a request was not allocated because of
an enqueue or DADSM error and, when the PSLlST was
rebuilt, it contained no entries.)

Error Processing

An unrecoverable error in any routine causes control to be
returned to the calling routine.

In the event of an abnormal termination, the EST AE
exit routine established by IEFAB421 performs any
recessary cleanup.

'-.j'

Module Segment

IEFAB436 PSALLOC

IEFAB436

IEFAB436
~
t-J
(:)
(H

00
o
~

~
tN
~

~

o
(Ij

~
N
(Ij

'<
r4.
9
~
(;.

t"'"
~.

~
~ c: e
(II

tN

~
N
<:>
tN
00
~

Diagram 14-6. IEF AB45 1 - JFCB Housekeeping Control (part 1 of 6)

ENTRY from IEFBB404 (see IEFBB401-lnitiator/Aliocation Interface)
or

IEFDB413 (see IEFDB410-Dynamic Allocation Control)

,.
JFCB Housekeeping JFCB Housekeeping Control: Retrieve information
Parameters necessary for allocation.
Function Map

, 1 st SlOT to process
1 Establish EST AE environment and prepare for

Step Number JFCB Housekeeping processing .
• JCT

tSCT

... ~ Last EPA Pointer

4 Special EPA Ch~in or 0

• Initiator's JSCB

.IOS UCB LUT

reason code area

. 2 Process STEPCAT request(s) if present; for HSKPWA SCT
"\ each request:

I yo
HSKPWA Current

: .. a) Prepare for further processing. SlOT JFCB . v n L-J ~

(output of
step 2.)

HSKPWA Current ,...
b) Retrieve information required for catalog

Controls SlOT v
allocation and complete tables.

~ -~ I Current
JFCB " -- I I

(output of
step 2a.)

HSKPWA Initiator) c) Create private catalog control block IV ~JSCB (PCCB) to represent catalog. I
T 1 Active dsname "

,,~ JSCB 6 I I .'
:,,~

- -- -.- ---

.. ~
Housekeeping
Workarea (HSKPWA)

Controls
r Data Area

Return Info

~

" ""

HSKPWA
Current
SlOT JFCB

"'-~ I 0
current SlOT = SlOT to be .. processed

" ,

HSKPWA Current
~

~ I j:"OT I Current " JFCB >, ,
Updated

Current ... HSKPWA
SlOT updated

v Controls I Current

See DD Updated J FCB updated

Function - , ,
Control
(lEFAB454)
for details. HSKPWA Initiator

JSCB
Active (Problem • VI]

,,/ --'- Program) JSCB

1 , I
~PCCB

LJ

C"I'J
(l)

~ o·
=
~

s::
(l)

g
Q.

o
o

"C
~
~ o·
=
IN
W -<.II

~

Diagram 14-6. IEFAB451 - JFCB Housekeeping Control (part 2 of6)

Extended Description

ENTRY JFCB Housekeeping Control, called by either
Step A"ocation Control (I EFBB404) or

Normal Dynamic A"ocation (lEFDB4l3), is responsible
for retrieving the information necessary to allocate each
request. The only functions actually performed by JFCB
Housekeeping Control are initialization and clean-up. To
process the requests, JFCB Housekeeping Control calls
other routines. DD Function Control, which retrieves
necessary information and completes tables (SlOTs,
JFCBs, and JFCBXs), is described in detail in the
M.O. diagram DD Function Control (lEFAB454).

Input to JFCB Housekeeping Control is the parameter list
created by Dynamic A"ocation Control or Step A"ocation
Control. In the parameter list, the pointer to the special
EPA chain is passed only from Dynamic Allocation Con­
trol; it is used for SlOTs, JFCBs, and JFCBXs created by
JFCB Housekeeping. The pointer to the last EPA is used
for updated tables (such as the JCT), when housekeeping
is called by dynamic allocation; and for generated SlOTs,
JFCBs, and JFCBXs, as we" as the JCT, when house­
keeping is called by step allocation. The function map is
illustrated in figure" lB.

Module Segment

~

Extended Description

1 After establishing an ESTAE environment, JFCB
Housekeeping Control issues a GETMAIN macro

instruction to obtain space for the housekeeping workarea
(HSKPWA) and places the JFCB Housekeeping parameter
list into HSKPWA. The HSKPWA includes a control area
that indicates what processing should be performed; it
consists of global controls, local controls, and counters.
Global controls are set according to the input function
map and pertain to all data set requests to be processed
during this invocation of JFCB Housekeeping. Local con­
trols are set by the individual routines and pertain only
to the current SlOT (the specific SlOT being processed;
SlOTs are processed one at a time); they are turned off as
the functions they indicate are performed. Global con­
trols always override local controls if indicators in each
conflict. The counters are used to monitor the processing
of generated SlOTs in the case of DSN recursion or
volume/unit recursion. For details on HSKPWA, see
OS/VS2 Data Areas, SY38-0606.

2 DD Processing Control is responsible for selecting
SlOTs to be processed; one SlOT is completely

processed before the next SlOT is selected. DD Proc­
essing Control first selects STEPCA T requests, if present.
(Note: JOBCA T requests are treated as STEPCAT re­
quests; each JOBCA T DD statement is propagated to
every step in the job that does not include a STEPCAT DD
statement.) In the SCT, the SCTPCAT field contains a
pointer to the first STEPCAT request and the SCTCA TCT
field contains the number of STEPCAT requests.
(STEPCAT requests are chained together within the
SlOT chain.) For each STEPCAT request:

a) DD Preparation places the address of the JFCB for the
current DD request (SlOT) into the HSKPWA.

b) DD Function Control controls the retrieval of required
volume and unit information. For details, see the

M.O. diagram DD Function Control (lEFAB454).

c) The PCCB Routine creates a private catalog control
block (PCCB) for the STEPCAT request and adds it to
the chain of PCCBs for this step.

Module Segment

IEFAB451 HSKPINIT

IEFAB452

IEFAB453

IEFAB454

IEFAB4EF FINDPCCB

~ Diagram 14-6. IEFAB4S1 - JFCB Housekeeping Control (part 3 of6) -CP\

~
~

~

~
§

i n·
to-

I
f c
CM

~
~

i
16
CM
:.... -

Input

Process data set requests other than
STEPCATs; for each request:

a) Prepare for further processing.

b) Determine if further processing
can be eliminated:

• Data sets do not require units
or volumes to be allocated.

• PGM parameter refers to
previous DD statement.

If no further processing is required
for this request, process next
request; return to step 3.

c) Retrieve unit information:

• Convert unit information, if II
unit name was specified. ~

• Copy unit information, if unit
affinity was specified.],;;'

• Check for VIO·eligible or ~;
subsystem data set.

d) Retrieve information required for ul

allocation and complete tables.

Controls
Updated

C"J'.l
~

~ o·
= ~
~
~

~
Q.

o
o
1 a
~.

=
~

~
"

~

Diagram 14-6. IEF AB451 - JFCB Housekeeping Control (part 4 of 6)

Extended Description

3 After STEPCAT requests are processed, DD Proc-
essing Control selects remaining requests, one at a

time, for processing; each SlOT is completely processed
before the next is selected. When all SlOTs have been
processed, control is returned to JFCB Housekeeping
Control for clean-up processing (step 4). For each SlOT:

a) DD Preparation places the address of the JFCB for the
current SlOT into the HSKPWA.

b) DD Preparation determines if any further processing
can be eliminated:

• If ONAME (SIOTONAM=1 in the SlOT) or
TERM=TS (SIOTTERM=1 in the SlOT) was speci­
fied for this request, DD Preparation sets the local
controls to indicate that no further processing is
required (HWDDDON E=1). If the request is a dummy
data set (DUMMY or DSN=NULLFI LE was speci­
fied; SCTDUMMY=1 in the SlOT), a subsystem data
set (for example, sysin or sysout; SIOTSSDS=1 in the
SlOT), or a via data set (SIOVAMDS=1 in the
SlOT; for checkpoint restart only), DD Preparation
indicates in the local controls that Dsname Resolu­

tion is not required (HWDSNROD=O).

• When PGM=*.stepname.ddname or

PGM=* .procstepname.ddname was specified, DO Prep­
aration calls the SWA Manager Interface to read the
SlOT and JFCB of the referenced DO statement; the
SCTGOTTR field in the SCT contains the SWA virtual
address (SVA) of the referenced SlOT. DD Preparation
copies unit, volume, and data set information from the
referenced SlOT and JFCB to the current SlOT and
JFCB and sets the local controls to indicate no further
processing is required (HWDDDONE=1). If the refer­
enced SlOT was not allocated, processing is
terminated.

If no further processing is indicated (HWDDDONE=1),
DO Preparation returns to DO Processing Control,
which selects the next SlOT (step 3),

Module Segment

IEFAB452

IEFAB453

IEFAB453

IEFAB453 FASTPATH

IEFAB453 FETCHLIB

IEFAB4F7

IEFAB453 FETCHLIB

IEFAB453

Extended Description

c) DD Preparation is responsible for retrieving unit infor­
mation, if unit information was not previously con-
verted (SIOUCNVT=O, in the event of check point
restart):

• If the first subparameter of the UNIT parameter was
coded (i.e., a unit address, device type or group name
was specified), Unit Name Conversion searches:

- The eligible device table (EDT) for a matching
unitname. If a match is found, Unit Name Con­
version places the EDT look-up value (LUV) in the
unit conversion list in HSKPWA and sets local
controls to indicate: the unit was converted from
the EDT (HWEDT=1); the unit is via eligible
(HWVAME=1) if the EDT LUV is via eligible;
the unit is an override candidate (HWOVCAND=1),
if the matching unitname in the EDT consists of
only one generic device type. The generic device
type is also placed in the unit conversion list.
(Note: The unit information is placed in the SlOT by

IEFAB464 - see the M.a. diagram DO Function
Control (lEFAB454).

Module

IEFAB453

IEFAB470

- The UCBs (by means of the lOS UCB LUT), if a IEFAB470
matching unitname was not found in the EDT.
Unit Name Conversion searches the UCBs for a
unit address that matches the specified unit
information. If a match is found, Unit Name
Conversion places the device type and UCB
address in the unit conversion list in HSKPWA
and sets local controls to indicate: the unit
was converted from a UCB (HWUCB=1); the
unit is an override candidate (HWOVCAND=1).

If the specified unit information is not found in the
EDT or in a UCB, processing is terminated.

Step 3 continued on Part 6

Segment

~ Diagram 14-6. IEF AB4S 1 - JFCB Housekeeping Control (part 5 of 6) ...
co

~
~
N
fI.)

'<
~ a
i
~;-

t""

J
<
~
~
w

~
N

~

f
w
~

In

HSKPWA

HSKPWA

Additional
Volume List -------, I (if obtained) I
'-------~

Process

4 Cleanup housekeeping processing:

a) If housekeeping was invoked by Step
Allocation Control, unallocate private
catalogs allocated during housekeeping
processing.

b) Release any storage obtained during
processing, release JFCB Housekeeping
workarea, and release ESTAE
environment.

Return to IEFBB404

Output

(See Initiator/Allocation Interface OEFDB401)) or
IEFDB413 (See Dynamic Allocation Control (lEFDB410))

CI.l
(11

~ o·
=
~

~
(11

[
o
o
"C
~ a o·
=
w
W -\0

~

Diagram 14-6. IEF AB451 - JFCB Housekeeping Control (Part 6 of 6)

Extended Description

3 c) continued

• If unit affinity was specified, DD Preparation locates
the referenced SlOT by comparing the affinity-DD
number in the current SlOT (SIOTUNAF field) to
the DD numbers of the SlOTs in the SlOT chain
(SCTDDINO field).

The following processing occurs:

- If the referenced SlOT contains converted unit
information, DD Preparation copies it into the
unit conversion list in HSKPWA.

- If the referenced SlOT indicates a via data
set (SIOVAMDS=l), DO Preparation indicates
in the local controls that the unit is VIO­
eligible (HWVAME=l).

- If the referenced SlOT indicates a subsystem
data set (SIOTSSDS=l), Unit Name Conversion
converts the unitname SYSALLDA and places
the converted information into the unit con­
version list in HSKPWA.

d) DO Function Control controls the retrieval of
volume and unit information required for alloca­
tion; if necessary, DO Function Control also gener­
ates a JFCBX(s). For details, see the M.a. diagram
"tEFAB454 - DD Function ControL"

Module Segment

IEFAB453 SRCHSIOT

IEFAB470

IEFAB454

"----'

Extended Description

4
a) If JFCB Housekeeping was called by Step Allocation

Control and private catalogs were allocated during
housekeeping processing (see the M.a. diagram

JLOCATE (lEFAB469)):

• Close Private Catalog (a data management rou­
tine) closes the catalogs.

• Unallocate Private Catalog Routine issues SVC 99

to unallocate the catalogs.

.The PCCB Routine releases the private catalog
control blocks (PCCBs).

The active (problem program's) JSCB is used to
determine if any private catalogs have been allo­
cated (the pointer to the PCCB chain does not
equalO).

b) JFCB Housekeeping Control issues FREEMAIN
macro instructions to release any storage obtained
during housekeeping processing (for example, storage
for a volume list if the CRI is too small), to release the
housekeeping workarea (HSKPWA), and to release the

EST AE environment.

Error Processing

In general, an error occurring in any routine causes con­
trol to be returned to the calling routine with appropriate
return and reason codes. Return and reason codes are
listed in Section 6, Diagnostic Aids. Errors occurring in
steps 1-3 cause control to be passed to step 4.

When I EFAB451 receives control, it creates an EST AE
environment so that its exit routine receives control if

an abnormal termination occurs.

,_7

Module Segment

I EFAB451 HSKPCLUP

IDACAT12

IEFAB4F4

IEFAB4EF FINDPCCB

IEFAB451 HSKPCLUP

<:
CI.l
N
(:)
W
00
o
~

3-320 OS/VS2 System Logic Libruy Volume 3 (VS2.03.804)

JFCB Housekeeping 2 bytes ..
~P_ar_a~me~te_r~l~i_st~ __ ~ ____ -p ______ -p ______ ~ ______ ~ ______ ~

~F_u_n_ct_io_n_M_a_p_~ _ _ _ _ I X X X X I X X X X I X X X X I X X X X I
Bit Conditions when Bit is On (=1)

location Meaning if Bit is On (=1) Caller is Step Caller is Dynamic
Allocation Control Allocation Control

1 POI can be searched Always Never

2 Do not update last SlOT pointer in Never Always
SCT, if S10T created

3 Catalogs may be mounted Always Depends on what
user specified

4 Wait for units during catalog allocation Always Depends on what
user specified

5 Perform catalog recovery Always Never

6 Do not create SlOT and JFCB for Never Always
catalogs

7 Wait for volumes during catalog Always Depends on what
allocation uSer specified

8 Do not process JOBCATs/STEPCATs Never Always

9 Consider offline devices during Always Depends on what
catalog allocation user specified

10 Do not enqueue on TlOT Never Always

11 Change active JSCB to allocate Always Never
catalog to initiator

12 Add EPA to chain if JCT is updated Never Always

13 Bypass data set integrity ENQ Never Oepends on what
user specified

14 Program authorized to bypass data If program is Never
set integrity if no JOBllB or STEPllB authorized

15-16 Reserved

Figure 2-28. Function Map of J'FCB Housekeeping Parameter List

Section 1: Method of Opeution 3-321

eM

W
N
N

~
~
N
fI'J

I
i
n'
r-

J
~
!" a
(II

eM

~
N

~ r
fC
eM

~

Diagram 14-7. IEFAB4S4 - DO Function Control (Part 1 of 12)

ENTRY from IEFAB452 (See IEFAB451 -

Input
ali

JFCB
Housekeeping
Workarea
(HSKPWA)

Controls

HSKPWA

Controls

+ POI or 0

OSNAME

JFCB Housekeeping Control)

Current SlOT ,

Current SlOT

DO Function Control: retrieve
required information and complete
tables necessary for allocation.

1 Locate existing cataloged or passed '2' "-

data set.

a) Search passed data set information tl .Ai
(POI), if caller of JFCB
Housekeeping was Step Allocation
Control.

b) If data set was not found in
PO I or if PO I was not searched,
search catalog.

ut

HSKPWA
i

OSNAME

HSKPWA
i

Controls
Updated

JFCB

Volume List
obtained if
CR I not large
enough.

til

i-
1:1

~

== (D

~
j:I.

o
"'" o
~

~

=­e·
1:1

CN
~
N
CN

~

Diagram 14·7. IEFAB4S4 - DO Function Control (part 2 of 12)

Extended Description

ENTRY DO Function Control, called by DO Proc-
essing Control (lEFAB452; see the M.O. diagram

JFCB Housekeeping Control (lEFAB451)), determines
what additional information is needed to allocate a request,
obtains that information, and places it in tables to be used
by allocation. Every SlOT that does not complete pro­
cessing during DO Preparation (HWoooONE=l in the local
controls if no further processing is required) is processed
by DO Function Control. However, not all the steps in DO
Function Control are performed for every SlOT - the type
of request (for example, GoGALL request, existing cat­
aloged data set) determines what DO Function Control will
do to retrieve needed information. The extended descrip­
tion for each step describes when that step is performed.

In general, steps 1-4 are concerned with retrieving unit
and volume information; step 5 copies unit and volume
information into the SlOT, JFCB, and, if needed, JFCB
extension (JFCBX); steps 6 and 7 complete oCB and
olSP information in the JFCB and SlOT.

Module Segment

~

Extended Description

1 When this step is processed, two functions are
performed:

• This step determines if a request is GoGALL (all levels
of a generation data group are requested).

• If the request is not GoGALL, this step retrieves data
set name, volume, and unit information from the POI
(passed data set information) or from a catalog. (osname,
volume, and unit information for a GoGALL request
is retrieved in step 2b.)

This step is processed only if the following conditions are
true:

• The unit requested is tape or direct access (HWTAPE=1
or HWoA=1 in the local controls).

• The data set is not a single generation data set
(SCTSGoGS=O in the SlOT), or it is a single
generation data set at restart. (osname, volume,
and unit information for a single generation data
set is retrieved in step 2a.)

• The data set disposition is not new (SCTSNEW=O in
the SlOT).

• Volume information is not specified: by explicit
volume serial numbers, or by a volume reference
(SCTVOLAF=O and SCTVOLCT=O in the SlOT),
or by volume serials which were retrieved from the
catalog.

• The SlOT being processed is not a SlOT generated in
response to a GoGALL request (oSN recursion;
HWoSNREC=O in the local controls) or a SlOT
generated in response to a request for a data set residing
on more than one device type (volume/unit recursion;
HWVUREC=O in the local controls).

• The data set is not a subsystem, or dummy data set
(HWoSNRQo=1 in the local controls).

DO Function Control calls JLOCATE to search the POI
and/or catalog(s) for the required information, or to
update the POI and allocate a VSAM private catalog or
CVOL. For details on the processing of JLOCATE,
see the M.O. diagram JLOCATE (lEFAB469)'

Module Segment

IEFAB454 ESTABoSN

IEFAB469

~ w
~

~
~
~

til
'<
=-;
i-n

t:
2"
~
~.
E' a
(D

w

'< til
~

i
~
w
:..., -

Diagram 14-7. IEFAB4S4 - DD Function Control (part 3 of 12)

Input

HSK~A JCT

Controls

t ~rDoGNT J?I I

Process 7
2 If request is GOG, resolve data set

name and retrieve unit and volume
information; current SlOT is one
of the following:

Output

HSKPWA

Controls
Updated

GDGNT

1

l' Current
..... JFCB

I-I
'; :: > a) GOG-single request. 1\:1 ~;;

j

CRI updated

I?

,~ -

~ LCRI (catalog
'-----......... ' \ \ return information)

HSK~A

Controls

HSKPWA

Controls

I

SCT

I
• Current J FCB

I
CRI

~

~
volume

List *
CRI. ---,

I I
I I L... ___ .J

* Volume List exists if CR I too small.

t

, .. ,) .' ') b) GOG ALL request.

..Jo..
c) SlOT generated in response to

GOGALL request. ['. v

1

j

- J

[:"

Volume List * - --,
I I

* Volume List
'- ___ .J

obtained if CRI not large enough

HSKPWA

Controls
Updated

I I 6 L-___ .J <,

Generated

JEiCBS "

* Volume List­
obtained if CRI not large enough

;.:;~+~:;>f.;: ,.>< :,>~:tf;'~'.>:;)'L...r< <:.~:' ,':,""';"' ;: ""0", .<..:: ",::.:"./ ',. ;~. >~ :.~. ,~', ,"; '" ,.,\""'" /":" ~~':'0:;;:.Y;

HSKPWA Current SlOT

Controls
Updated

CRI updated Volume
List *
r-- ---.
I I '- ___ .J

til
(D

a c)"
::I

~

r:c:
(D

[
o
"'0)

o

I
~.

::I

CoN
W
N
~

~ '~

Diagram 14-7. IEF AB454 - DD Function Control (part 4 of 12)

Extended Description

2 The purpose of this step is to obtain the fully-
qualified dsname of a generation data group (GDGI

and to locate volume and unit information for the GDG
request. A SlOT processed by this step is: al a SlOT
representing a GDG-single request (SCTSGDGS=1 in the
SlOT); or, bl a SlOT representing a GDGALL request
(HWGDGALL=1 in the local controlsl; or, cl a SlOT
generated in response to a GDGALL request (DSN
recursion; HWDSNREC=1 in the local controlsl. The
following processing is performed:

al For a SlOT representing a GDG-single request, GDG
Single Processing:

• Checks the data set name for correct syntax. If the
base name (not including the level number) is greater
than 35 characters, control is returned to the caller
and processing is terminated.

• Obtains the base level of the GDG:

- If any GDG name tables (GDGNTsl exist for the
job (JCTGDGNT'IOI, GDG Single Processing
searches the GDGNTs for the dsname. (If
HSKPWA does not include a pointer to the
GDGNT(sl, the SWA manager is called to read
the GDGNT(sl for the job and a pointer is placed
in HSKPWA.I

- If the dsname is not found in a GDGNT or if no
GDGNTs exist for the job, GDG Single Processing
calls JLOCATE to obtain the base level. The proc­
essing of JLOCATE is described in the M.O. dia­
gram "IEFAB469 - JLOCATE." If JLOCATE
returns with the base level, an entry is created in
a GDGNT, which itself is created if necessary.
If JLOCATE is unable to locate the base level,
processing terminates; IEFAB454 returns to the
caller.

• Calls JLOCATE to obtain the fully-qualified data
set name and unit and volume information for the
data set. JLOCATE is described in the M.O. dia­

gram JLOCATE (lEFAB4691.

Module Segment

IEFAB456

IEFAB461

IEFAB461

IEFAB461 GNTLCUPD

I EFAB461 GNTSCAN

IEFAB461 GNTRDLOC
IEFAB4F7

IEFAB461
IEFAB469

IEFAB4F7

IEFAB469

Extended Description Module

bl For a SlOT representing a GDGALL request, two
functions are performed:

• Tables are created for all the levels of the GDG except
the zero level. DSN Resolution turns on the DSN
recursion indicator in the local controls
(HWDSNREC=11 and updates the counter in the
control area with the number of SIOT/JFCB pairs to
be created (HWDDSTEP=nl. Table Creation generates
the required number of SlOTs and JFCBs and chains
them to the zero level SlOT. DD Processing Control

(see the M.O. diagram JFCB Housekeeping
Control (I EFAB451II will select the generated SlOTs, one
at a time, for processing immediately after the
SlOT representing the zero-level of the GDG is com­
pletely processed.

• JLOCATE obtains the fully-qualified dsname and
unit and volume information for the zero-level of
the GDG. For details on JLOCATE, see the
M.O. diagram JLOCATE (lEFAB4691.

IEFAB456

IEFAB456

IEFAB466

IEFAB452

IEFAB469

cl For a SlOT generated in response to a GDGALL IEFAB456
request, DSN Resolution:

• Increases the generated-DD counter (HWDDCTRI
in the control area of HSKPWA by 1.

• Modifies the dsname in the JFCB to appear as a
request for the desired level of the GDG; the
relative generation number is the negative of the
generated-DD counter.

• Turns off the DSN recursion indicator (HWDSNREC=OI
and sets the counters in the control area to 0 if this is
the last generated SlOT - that is, if the generated-DD
counter (HWDDCTRI equals the number of DDs
generated (HWDDSTEPI.

• Calls JLOCATE, which obtains the fully-qualified IEFAB469
data set name and unit and volume information for
the data set. For details on JLOCATE, see the

M.O. diagram JLOCATE (lEFAB4691.

.. 7

Segment

GDGACODE

~ Diagram 14-7. IEFAB454 - DD Function Control (partS of 12)
w
~

~
~
~

tI.l

I
i
rs'
to­
&

~
~ c
i
w

~
~

f
w
~

HSKPWA Current

Controls SlOT

~
r1 J

Current
...... "" JFCB

" I J

i\tIU

-
CRI

List * ---,
I I
'-- ---' * Volume List exists if CRI too small.

HSKPWA SCT

J DSNT Controls
(data set

..,.1/ Current name
SlOT table)

lPDI or 0
.~ J I J
.. ~ Current

JFCB CRI

1 J

HSKPWA Current
Controls SlOT

,~ J
~. Referenced

SlOT

I I
Current

-t--..... JFCB

I I

"') 3 If data set spa~s devi~ types, set
" up volume/Unit recurSion.

4 If VOL=REF was specified, resolve
reference:

..
a) reference to dsname.)

y

....
b) reference to ddname.)

v

1

>~,

HSKPWA Current
Controls SlOT

t Updated 14]
.. ~ Generated

SlOTs /'l, .

J 'fi

(Genemw~
JFCBs

r

HSKPWA

Controls If found in PDI: ,
Updated Referenced

.. SlOT -- - -, J t Current
SlOT J If found In catalog: t Current _ Volume JFCB

/{ CRI List * ---, 1)1 updated Jor L ___ j
rr* Volume List obtained

if CRI too small.

:,~",

~

HSKPWA
" Controls Referenced

Updated SlOT

./ ~]

~
~

~
5'
= ~
:::
~

~
Q.

o
~

o
"0
~
~
5'
=
~

~
~

~

Diagram 14-7. IEF AB454 - DD Function Control (part 6 of 12)

Extended Description

3 The purpose of this step is to determine if volume/
unit recursion is necessary. If the data set was

located in a catalog (HWDSNCAT=1 in the local controls,
set by J LOCA TE), the data set resides on more than one
volume, and the current SlOT was not generated in
response to a GDGALL request (HWDSNREC=O), Mul­
tiple Device Type Determination searches the CR I
(volume list) for a change in device type. If more than
one device type is found, Volume/Unit Resolution
sets the generated-DO counter in the control area
to the total number of different device types minus 1
and sets the volume/unit recursion indicator in the local
controls (HWVUREC=1). Table Creation creates SlOT/
JFCB pairs for the total number of different device
types minus 1 and chains them to the current SlOT. DO
Processing Control (see the M.a. diagram JFCB House­
keeping Control (lEFAB451)) selects the generated
SlOTs, one at a time, for processing immediately after
this SlOT is completely processed.

Module

IEFAB463

IEFAB466

IEFAB452

'-...-y

Segment Extended Description

4 If VOL=REF was specified, Volume/Unit Resolu­
tion locates the source of volume and unit

information:

a) For a reference to a dsname (SCTDSNRF=1 in the
SlOT), Volume/ Unit Resolution reads the data set
name table (DSNT) to obtain the dsname. The
SCT ADSTB field of the SCT contains the SWA
virtual address (SVA) of the DSNT for this step.
JLOCATE searches the POI and/or the catalog for
the dsname. (For details on JLOCATE, see the
M.a. diagram JLOCATE (lEFAB469)). If
JLOCATE determines that the dsname is GDGALL,
processing is terminated.

b) For a reference to a previous DO statement, either
in this step (intra-step) or in a previous step (inter­
step), Volume/Unit Resolution reads the SlOT of
the referenced DO statement and places a pointer
to it in HSKPWA. (The SWA virtual address (SVA)
of the referenced SlOT is in the SIOTVRSB field of
the current SlOT.) If the reference is inter-step, the
JFCB and JFCBXs are read. If the reference is
inter-step (SCTVREF=O in the current SlOT) and
the referenced data set was not allocated
(SlOT ALCD=O in the referenced SlOT), processing
is terminated. Volume/Unit Resolution also updates
the local controls to indicate the referenced SlOT
is present (HWRESIOT=1L

Module Segment

IEFAB457 VOLREF

IEFAB469

IEFAB457 VOLREF

t Diagram 14-7. IEFAB4S4 - DD Function Control (Part 7 of 12)

~

o

~
N
fIl
'<
fQ.

~
~
't9.
()

t:
Sf
~
~
[
CD
W

'< fIl
N

i
~
w :... -

HSKPWA

Controls

CRI

HSKPWA

Controls

HSKPWA

I
"

HSKPWA

Controls

HSKPWA

Controls

~-,

Current SlOT V
~ 1 * olume

list
Current J FCB exists if

, -1 1 CRI

Volume List * too

---" small.
I I ...
l. ____ .J)

fA "V

'jr.. '" Current SlOT)

Iff 1 ~
"V

Current
JFCB -- Referenced T

-~ SlOT

1 1 Referenced
~JFCB

',; I ~ <

~ ~ t Current SlOT
)

(Y
:; I I

One of following ~

is present: icY
Referenced ;

" I,t". SlOT I- Volume
T 1 List ,:

'- CRI I 1 i

;:-tJ 1
,,':';

~ Unit COn{erSiOn List
::,

t

t!:.",;,:::; :,::;

"
"V

Current

5 Place unit and volume information
in tables.

a) Copy information from:

• CRI (volume list)

J'~
• referenced SIOT/JFCB

>:

b) Process VIO-eligible requests.

c) If a unit was specified and unit
information was also retrieved
(from PO I, catalog, or volume ;

reference), check if specified ~\ unit overrides retrieved unit.
,,?

'f

",

>
d) Copy information from unit

conversion list.
,'C

i

Unit '" SlOT :;X:"'< '" :' ;+ c,'" .,,.":,' {,'nt",'(,!,.' 'H<;>:,;::':

Conversion L 1 : 6 List f
i

HSKPWA
Current SIOT-

Controls updated
Updated

l!l 1
../

Current JFCB-
- r--:.. updated

II I I Generated
~IJFCBX r----' "

I (if I

'needed) I ' L ___ .J

,,' "','. '.,' ,',"'" " ',.'
"'''' "" "",

HSKPWA
Current SlOT -

i;'
.- f......IiI.. updated

?~: I I ;
,'!;;'
"

" ~:j
,;;

;,,,,:','¥'.',, ';<i:>{J';'!;;'J"i~:
HSKPWA >

J' .>: Controls
) , Updated ,~;'

~;
,

il;

rf.

m
HSKPWA "

L,:;;
Current SlOT -

') Controls
~h:, Updated

updated
')" Vt 1

,

,..

:;, .. '

:

'j'", ",' ",', " " '" " , ',",

rJ'.)
(I)

~
5·
=
~

a:
(I)

i
o
o

"1::1
~ a
5·
=
w
~
~
I,Q

"IIII!!!!!!III

Diagram 14-7. IEF AB4S4 - DD Function Control (Part 8 of 12)

Extended Description

5 The purpose of this step is to:

a) Place volume information and certain unit information
retrieved in the previous steps into the SlOT and JFCB.

b) Process VIO-eligible requests.

c) Determine if specified unit information overrides
retrieved unit information.

d) Copy unit information into the SlOT.

Step 5 is performed for every SlOT that enters DD
Function Control and whose request hasn't already failed.

a) Volume/Unit Table Completion copies retrieved
volume information and certain unit information
from a referenced SlOT or from the CRI (volume
list) into the current SlOT and JFCB. The retrieved
source of volume and unit information (CR I or
referenced SlOT) was determined in a previous step:

• Unit and volume information exists in the CRI (or
volume list) in three cases:
- Volume/unit recursion is indicated (HWVUREC=l

in the local controls, set in step 3).
- VOL=REF=dsname was specified and the dsname

was found in the catalog (HWDSNCAT=l in the
local controls, set in step 4a).

- A cataloged data set was located by searching the
catalog (HWDSNCAT=l in the local controls, set
in step 1 b or step 2) .

• Unit and volume information is copied from a
referenced SlOT in two cases:
- Volume reference was coded to a ddname

(HWRESIOT=l, set in step 4b).
- The referenced data set was located in the PDI if

VOL=REF=DSN (HWRESIOT=l, set in step 1a
or4a).

Unit information is copied into a local field; for
volume/unit recursion, Multiple DeviCe Type Deter­
mination uses the generated-DD counter to reference
the correct device type in the CRI. The only unit
information placed in the SlOT at this time is unit
count (SCTNMBUT).

Volume information is copied into the JFCB. Volume/
Unit Table Completion copies all the volume serial
numbers from the CRI or referenced SlOT, except in
two situations:

Module

IEFAB464

IEFAB464

IEFAB464

IEFAB464
IEFAB463

IEFAB464

"'--__ 7

Segment

CRIRFCMP

DDREFCMP

~

Extended Description Module Segment

• If information is copied from the CRI and more than IEFAB464 CRIRFCMP
one device type exists (volume/unit recursion),
volume serial numbers are copied only for one device
type. (The generated-DD counter is used to reference
the correct device type in the CRI J

• If the data set resides on tape and VOL=REF was IEFAB464 DDVLCOPY
coded, only the last volume serial number is copied
(if more than one exists), because a volume reference
implies that the volume can be shared and tape volumes
cannot be shared. (This precaution, however, does not
guarantee that the data set can be successfully opened.)
The volume count in the current SlOT is set to 1 for
tape volume references.

Before copying the volume serial numbers, Volume/ IEFAB464 JFCBXGEN
Unit Table Completion determines if a JFCB exten-
sion (JFCBX) is needed; up to five volume serial num-
bers can be placed in a JFCB and up to fifteeh in a
JFCBX. If more space is needed and sufficient
JFCBXs were not generated by the Interpreter or by
Dynamic Allocation, Volume/Unit Table Compietion
generates the required JFCBXs.

Volume/Unit Table Completion also updates the
volume counts in the SlOT (SCTVOLCT) and the
JFCB (JFCBNVOL).

For volume reference to tape volumes, the following
additional processing is performed:

- If the referenced SlOT contains volume information IEFAB464 TAPEVREF
that was itself copied from a previous SlOT, Volumel
Unit Table Completion reads that SlOT and copies
information from it.

- If the device type is tape, Volume/Unit Table IEFAB464 TAPEONLY
Completion updates the unit type to reflect the
greatest device range that can satisfy this request.
For example, the user specified 2400-4 for a data
set with a density of 1600 bpi. Volume/Unit
Table Completion updates the device type to
2400-3, which includes dual-density devices (which
would have been included in 2400-4) and tape
devices that can read only in 1600 bpi.

Step 5 continued on Part 10

~ Diagram 14-'. IEFAB4S4 - DD Function Control (part 9 of 12)

~

~
~
~
fI)

i
i
r­
;Z

!

f
eN

~
~

~

f
eN

~

Input

HSKPWA

CRI

HSKPWA
i

CRI

HSKPWA ,

Process Output

5 e) Copy altalog device type.

6 Update JFCB with data set
characteristiCs:

al ~lh~'b~eqUest is lor single level -n
.JJ-'

b) when DCB=dsname was specifi~.

HSKPWA

HSKPWA

Current
SlOT

CurrentJFCB­
~upd~~

/f - L..-I _-J

1:"1)
(D

g.
=
~

a::
(D

[
o ...,
o
1
IIJ g.
=
~
CN
CN

"""

~ "'-_'?

Diagram 14-7. IEFAB4S4 - DD Function Control (part 10 of 12)

Extended Description Module Segment

5 (continued)

b) Volume/Unit Table Completion marks the current SlOT IEFAB464 VIOCOMP
as a VIO data set (SIOVAMDS=1) if the data set has a
system-generated dsname, is not ISAM, is not dummy, and:

• The referenced SlOT (either from the POI or a volume
reference) is VIO; or

• No information was retrieved from a catalog or
referenced SlOT, the disposition is NEW, no volumes
were specified, and the unit is VIO-eligible.

c) Volume/Unit Table Completion determines if specified
unit information overrides'retrieved unit information.
This step is performed when:

• A unit was coded and is an override candidate
(HWOVCAND=1 in the local controls, set by
IEFAB470 (Unit Conversion Routine) - see the

M.O. diagram JFCB Housekeeping Control
(lEFAB451)).

• Unit information was retrieved from the POI or an
inter-step volume reference (HWRESIOT=1 in the
local controls and SCTVREF=O in the current SlOT)
or from the catalog (HWDSNCA T=1 in the local
controls).

Volume/Unit Resolution compares the unit infor­
mation in the unit conversion list to the unit informa­
tion in the CRI or in the referenced SlOT. If the unit
information in the unit conversion list is' the same device
type group as the retrieved unit information, the "unit
overridden" indicator is set (HWOVRDN=1) in the
local controls. This indicator is not set, however, if the
referenced SlOT is a dummy, VIO, or subsystem data
set. (A specified unit cannot override a retrieved unit
in these cases.)

d) Volume/Unit Table Completion copies unit information
into the SCTUTYPE field of the current SlOT. If the
unit was converted from a UCB (that is, a unit address
was specified; HWUC.B=1 in the local controls), the
SlOT is also marked as a demand request (SIOTDMND=1).

IEFAB464 'UNOVERID

IEFAB464 NOREFCMP

Extended Description

e) Volume/Unit Table Completion creates a JFCBX (if
none exists) and updates the JFCBX with the device
type retrieved from the catalog. This allows the
unallocation routine IEFAB4A2 (Disposition Proc­
essing) to recatalog the data set using the device type
from the catalog.

6 DCB Resolution updates the JFCB with data set
characteristics from the DSCB (for example, data

set organization, record format, logical record length,
expiration date). DCB Resolution is performed in two
cases: DCB=dsname was specified (SIOTDCBR field in
the SlOT); the request ,is a single level of a GOG
(SCTSGDGS=1 in the SlOT). The method of obtaining
the DSCB differs in the two cases.

a) If DCB=dsname was specified, DCB Resolution obtains
the dsname from the data set name table (DSNT).
JLOCATE issues a system locate using the dsname to
determine the volume serial number of the volume
containing the DSCB. For details on JLOCATE, see the
M.O. diagram JLOCATE (lEFAB469).

b) For a new single-GDG request, DCB Resolution obtains
the base level data set name from the JFCB and the
volume serial number of the pattern OSCB from the
CRI. (The volume serial number of the volume on which
the GOG is cataloged was placed in the CRI when the
GDG-single request was located - see step 2. The
pattern DSCB exists on this volume.)

DCB Resolution issues SVC 27 to obtain the Format 1
DSCB and transfers the data set characteristics from it to
the JFCB.

'-~

Module Segment

IEFAB464 CATDEVT

IEFAB458

IEFAB458

IEFAB469

IEFAB458

IEFAB458 OBTNDSCB
IEFAB458 UPDTJFCB

t Diagram '14-7. IEF AB4S4 ~ DO Function Control (part 11 of 12)
w
N

~
N

i
i
r-

f
~
§
CD
W

~
N

~ r
I
w
~ -

Input

HSKPWA Current

I I Ii. SlOT .

HSKPWA Current·
SlOT

rKPNA t ~~~nl I

HSKPWA

Controls

HSKPWA

Controls

Resolve data set disposition
information:

a) Complete default dispositions in is
SlOT.

b) Update passed data set·information ~"
(PO I), if necessary.

c) Update SlOT to indicate private .,...-""""------,
tape, if necessary.

d) Retrieve catalog information; jf
necessary. ,j

e) Enqueue alias-named, or GOG,~
or temporary data sets.

Return to IEFAB452
(See JFCB Housekeeping
(lEFAB451))

HSKPWA Current SlOT -I t updared -., I

HSKPWA
JCT

til
~

~
5'
::I

~

a:
~

[
So
o
"0
~ a
5'
::I

I.f
~
~
~

~

Diagram 14-7. IEFAB4S4 - DD Function Control (part 12 of 12)

Extended Description

7 The purpose of this step is to resolve data set
disposition information.

a) DISP Resolution completes the data set disposition
information in the SlOT:

• An existing JOBLIB request is marked PASS
(SIOTPASS=1).

• If no disposition is specified, data sets that existed
at the beginning of the job are marked KEEP
(SIOTKEEP=1); and data sets that specified MOD
but for which no unit or volume information could
be located are marked DELETE (SIOTDLET=1).
(The Interpreter marked as DELETE data sets that
specified NEW but that did not specify a disposition.)

Module

IEFAB459

~

Segment

b) If the request specified PASS (SIOTPASS=1) and POI
processing is allowed (HWDOPDI=1 in the global con-

IEFAB459 PDIBUILD

trols), DISP Resolution updates the POI with an entry
for this data set. If the data set was received by this
step (SCTRECVD=1), the original POI entry (POlE)
is updated; otherwise, a POI E is created.

c) This step marks a tape data set as private (SIOTPRIV=1), IEFAB459
so that it will not be deleted, if attributes of the data
set indicate it should be kept.

Extended Description

d) DISP Resolution calls JLOCATE to retrieve catalog
information for a data set which has a qualified
name (JFCBDSNM field in the JOCB), if the
following conditions are true:

• A disposition of CATLG was specified
(SIOTCTLG=1 in the SlOT), and no STEPCATs
exist for this step (SCTPCAT=Q in the SCT).

• A disposition of UNCATLG (SIOTUNCT=1 in
the SlOT) was specified, and no STEPCATs exist.

• A disposition of DELETE (SIOTDLET=1 in the
SlOT) was specified, and volume information was
retrieved from the catalog.

For details on JLOCATE, see the M.O. diagram

JLOCATE (lEFAB469).

e) If an alias name or GOG was specified for a passed
or cataloged data set, DISP Resolution creates a
JFCBX (if none exists), updates the JFCBX with
the alias data set name, and enqueues the major
data set name. Non-VIC temporary data set
names are enqueued.

Error Processing

An error in any routine causes control to be returned to
the calling routine. In the event of an abnormal termina­
tion, the ESTAE exit routine established by IEFAB451
performs any necessary cleanup.

Module

IEFAB459
IEFAB469

~.-~

Segment

IEFAB459 REALDSN
IEFAB469

IEFAB459 ENQDSN

<:
r.n
N

o
~

00
o
~

~ Diagram 14-8. IEFAB469 - JLOCATE (part I of 4)

~

o
til

~
~

til
'< rc. a
i (;.

t'" a:
~
~ a
(D

(,N

~
~
(:)
(,N

00
~
'-'

In

HSKPWA

dsname

HSKPWA

Controls

DSNAME

CRI

JCT GDGNT*

ENTRY from caller
(see extended
description)

* GDGNT exists as input
only when caller is GOG
Single Processing.

** a new volume list exists
if CRI too small or if
obtained during previous
call to JLOCATE.

Output

JLOCATE: Retrieve dsname,
volume, and unit information
from the POI or a catalog.

1 Search passed data set information,
if indicated.

• If information found in POI,
return to caller.

2 I ssue system locate to search
catalog, if indicated.

Return
to
Caller

a) System locate is successful -

ga ta step 5. -u
bl System lacate Is unsuccessful' ~

because catalog is not allocated 1]''If
go ta step 3. I

dill

c) System locate is unsuccessful
because CRI (volume list! is too
small - flO to step 4.

d) Data set name not found.

Return to Caller
(See beginning of
extended description)

HSKPWA

Controls
Updated

HSKPWA

Controls
Updated*

CRI

.-

POI­
updated

* on Iy if system locate
s successful.

lume List ----, ___ ...J

CRI or volume list
pdated.

Return Code

CI.)
(I)

a
~.

= ~
== (I)

g
Q.

o
100)

o
1 a
~.

=
w
~
w
VI

~

Diagram 14-8. IEFAB469 - JLOCATE (part 2 of 4)

Extended Description

ENTRY JLOCATE is a service routine used by
several housekeeping routines to retrieve

dsname, volume, and unit information from the passed
data set information (POI) or from a catalog. It is called
by the following modules (all these modules are described
in the M.O. diagram DO Function Control (lEFAB454)):

• DO Function Control (I EFAB454) to determine if a re­
quest is GOGALL (all levels of a GOG are requested).
If the request is not GOGALL, retrieves dsname, volume,
and unit information for the data set, or updates POI for
restarting steps, or allocates private catalogs for restarting
steps.

• GOG Single Processing (JEFAB461) to obtain the base
level of a GOG and to obtain the fully-qualified dsname
and volume and unit information for the data set.

• OSN Resolution (lEFAB456) to obtain volume and unit
information for a specific level of a GOGALL request.

• Volume/Unit Resolution (lEFAB457) to locate volume
and unit information when VOL=REF=dsname was
coded.

• OCB Resolution (JEFAB458) to obtain the volume
serial number of the volume containing the OSeB for a
data set, when OCB=dsname was coded.

• OISP Resolution (I EFAB459) to make a private
catalog available for unallocation.

Most of these routines use JLOCATE only to search
catalogs; the POI is searched·only when:

• JLOCATE is called by DO Function Control, GOG
Single Processing, or Volume/Unit Resolution, and,

• the SlOT does not represent a STEPCAT request,
and,

• JFCB Housekeeping Control was called by Step Allo­
cation Control (that is, this is a batch request).

~~i?'

Module Segment Extended Description

1 POI Scan searches the POI if allowed, as indicated in
the local and global controls (HWPOISCN=1;

HWOOPOI=1). If the POI pointer in the housekeeping
workarea is nonzero, POI Read and Chain updates the
HSKPWA with pointers to the first and last POI entries.
If the dsnarne is found in the POI, POI Scan:

• Reads in the SlOT and JFCB of the request that passed
the data set.

• Marks the POI entry as received.
• Sets the local controls to indicate that the referenced

SlOT is present (HWRESIOT=1).

2 This step is performed only if both of the following
conditions are true:

• The dsname was not found in the POI or the POI was
not searched.

• Local controls indicate a system locate should-be
issued (HWSYSLOC=1).

Input to this step is the data set name or, if JLOCATE was
invoked by GOG Single Processing, the data set name and
the GOG base level.

JLOCATE issues a system locate (SVC 26) to search:
1) private catalogs defined for this step by means of
JOBCAT or STEPCAT DO statements; 2) the master
catalog; 3) catalogs implied by the data set name.
The system locate results in one of the following
situations:

'~.7

Module Segment

IEFAB455

IEFAB4EB

IEFAB455 POIOORO

IEFAB455
IEFAB455

IEFAB469 PARMINIT

a) The system locate is successful; the dsname is found. IEFAB469 LOCATECT
Catalog management places unit and volume infor-
mation in the CRI (volume list), if the request is. not
GOGALL. If the request is GOGALL, catalog manage-
ment places the number of levels of the GOG in the
CRI (volume list).

b) The system locate is unsuccessful because the catalog IEFAB469 LOCATECT
to be searched is unallocated. Catalog management
returns the name of the catalog to be allocated and
the catalog connector (alias), if any, in the CRI
(volume list). See step 3. . .

Note: A catalog will already be allocated only if it
was previously allocated during JLOCATE processing
and if it was not subsequently unallocated to release

Step 2 continued on Part 4

~ Diagram 14-8. IEF AB469 - JLOCATE (part 3 of 4)
~ .

0'1

o
f'-I

~
N
f'-I

I
b
~.
t:

!
i
(II

~

~
N

i
~
~
:.., -

-- -.-

tq,:

:'

'."

%

-
. ,'::'s

lnitiator
HSKPWA JSCB

Controls VI I
l Active JSCB

,

'--~OIU_ I I List ---,
CRI

L ___ .J

CR I or volume list contains
dsname of catalog and
catalog connector (alias),
if any.

HSKPWA

Volume
List

~---,
, L __ J

CRI
CRI or existing volume list
contains required size of
new volume list.

HSKPWA Initiator Active
JSCB JSCB

Controls)PI ;f'

~CBS /
Current

... SlOT

~
,.

I I
"

Current I
_!-..JFCB 1 L

"P'
I I

\

CRI
Volume
List
--]

..

HSKPWA Initiator
a JSCB

.. V-, . 1 \ 3 Allocate catalog, if necessary. /

\ Active JSCB
." ~

• Reissue system locate;
l 1 go to step 2.

-' PCCB

I I
'\:ACB

CJ

HSKPWA

4 Obtain new volume list, if > __ Volume List
necessary. / l I
• Reissue system locate;

go to step 2.

HSKPWA Initiator Active 5 Update tables and controls. JSCB _ JSCB
Controls 1fL---f -r I Updated

Curren, Z J
SlOT - PCCBs ,-

~ updated updated

L-J

~ Th Return to Caller (See Current
beginning of extended JFCB.-
description) ___ updated "0 - I 1

~

Diagram 14-8. IEFAB469 - JLOCATE (part 4 of 4)

Extended Description

2 (Continued)
needed resources. Catalogs are allocated during

JLOCATE to retrieve information needed for allo-
cation, if JFCB Housekeeping has not been called
by Dynamic Allocation. All catalogs will be
unallocated during housekeeping clean-up processing,
before JFCB Housekeeping Control returns to its
caller, if the request is batch (that is, Step Allocation
Control called JFCB Housekeeping Control) {see the
M.O. diagram JFCB Housekeeping Control
(I EFAB451) l-

c) The system locate is unsuccessful because the CRI (or
volume list, if one was obtained during a previous call
to JLOCATE) is too small. Catalog management re-
turns the required size of the volume list in the CRI
or existing volume list. See step 4.

d) The system locate is unsuccessful because the dsname
could not be found. If this occurs, control is returned
to the caller and processing terminates.

3 If the catalog to be searched is not allocated, the
system locate is unsuccessful. JLOCATE will

attempt to have the catalog allocated. Allocate Catalog
Control issues SVC 99 to have the catalog dynamically
allocated; Open Catalog Routine (a data management
routine) opens a private catalog and catalog management
opens a CVOL (control volume); the PCCB Routine

builds or updates a private catalog control block (PCCB)
for the catalog. If Housekeeping was called by Step Allo-

{/) cation Control, Table Creation also creates a SlOT and
(D

a JFCB to represent the catalog (HWMAKTAB=l and
5' HWDNCCDD=O in the controls). = N .. If allocation of the catalog is unsuccessful, processing is
a:: terminated unless the failure is due to insufficient (D

;. resources and Step Allocation Control invoked JFCB
8- Housekeeping. In this case, Unallocate Private Catalog
0 issues SVC 99 to dynamically unallocate all private
0 catalogs previously allocated during housekeeping proc-'0
(D

essing and marks the PCCBs of the unallocated catalogs ...
a
5' as inactive (PCCACTIV=O) (so that they will not be

= searched when the system locate is re-issued). Allocate

w Private Catalog then reattempts the allocation; if the
W catalog still cannot be allocated, processing is terminated. w

',,---~

Module Segment

IEFAB469 REDOPREP

IEFAB469 REDOPREP

IEFAB4F5 ALCATLG

IDACATll

IEFAB4EF FINDPCCB

IEFAB466

IEFAB4F5 RECOVERY

IEFAB4F4

IEFAB4F5 ALCATLG

Extended Description

JLOCA TE reissues the system locate if the required
catalog is successfully allocated.

4 The system locate is unsuccessful if the CR I (or
volume list, if one was obtained during a previous

call to JLOCATE) is too small. JLOCATE:

• Issues a FREEMAIN macro instruction to release a
previous volume list if one existed (HWNEWVL=l).

• Issues a GETMAIN macro instruction for the required
amount of storage.

• Places a pointer to the volume list in the HSKPWA.

• C)ets local controls to indicate an additional volume
list is in use (HWNEWVL=l).

This volume list is used for all subsequent JLOCATE
processing unless it is too small; in this case, it is
released and JLOCATE obtains a new volume list.
If the required volume list is successfully obtained,
JLOCATE reissues the system locate.

5 If information is successfully retrieved from a
catalog, JLOCATE·:

• Copies DSORG information from the CRI (or volume
list) into the current JFCB.

• Ensures that the disposition is KEEP (SIOTKEEP=l)
if the data set is a VSAM data set.

• Sets the GDGALL indicator in the local controls
(HWGDGALL=l) if the system locate determined

this request was GDGALL.

• Sets the local controls to indicate the data set was
found in the catalog (HWDSNCAT=l).

• Updates the PCCBs with the catalog connector (alias),
if any, and ensures that all the PCCBs are marked
active (PCCACTlV=l) so that the associated catalogs
can be searched on subsequent calls to J LOCA TE.

Error Processing

An error in any routine causes control to be returned to
the calling routine.

In the event of an abnormal termination, the EST AE
exit routine established by I EFAB451 performs any
necessary cleanup .

--"

Module Segment

IEFAB469 REDOPREP

IEFAB469 CLEANUP

<
{I)
N

<=>
W

00
o
~

~
w w
00

~
~
~

CIl

~
a
i
()

~
c;:

~
~ s­a
(II

w

< CIl
~

o w
00
~ --

Diagram 14-9. IEFAB471 - Generic Allocation Control (part 1 of 10)

Input ..
Function Map
I

Extended Description

ENTRY from IEFAB421 -
Common Allocation Control

Allocation
Work Area
(ALCWA) ,

Volunit Table
, i

ENTRY Common Allocation Control calls Generic
Allocation Control (lEFAB471) to attempt

to allocate all remaining requests. The processing of
IEFAB471 must be serialized with all other allocations.
(For a description of serialization and when it is required
see "Common Allocation Control" in the "Introduction
to AliocationlUnallocation.") To minimize serialization,
IEFAB471 processes one generic device type at a time;
within a generic, it serializes only those device groups
needed by unallocated requests. (Device groups and their
representation in group masks are described under
"Generic Allocation Control" in the "Introduction to
Allocation/Unallocation. ")

To avoid deadlock situations, all allocations must choose
generics in the same order. The installation device
precedence list (defined during system generation) dic­
tates the order in which generics are chosen. The generic
to be processed is selected in step 2 of this diagram; steps
3-12 are a loop performed for every generic selected.
Within this loop, there are four basic allocation processes:

Module

Output

Generic Allocation Control: Attempt
to allocate remaining requests.

ALCWA

1 Build tables needed for generic
allocation.

Segment Extended Description

• Demand (specific unit) allocation (step 6).

• Specific volume allocation (step 8).

• Allocation via algorithm (step 9).

• Nonspecific volume allocation (step 10).

Not all of these processes are necessarily performed for
each generic group selected in step 2 - the processes
performed depend on the types of unallocated requests
that are eligible to the generic. See the individual steps
for details.

1 Generic Table Build issues a GETMAIN macro
instruction to obtain storage for the following

tables required by generic allocation: a) a,lgorithm
tables; b) a request-id-mask table; c) an allocation queue
manager request block; d) three work masks.

a) The purpose of the algorithm tables i.s to summarize
the unit requirements of each request, the device
groups to which a.request is eligible, and information
about the units in each device group. Allocation via

Algorithm
Interface
Tables

(Cover/Reduce
Request List;
Cover/Reduce
Group List;

, I 'I Group Count
II Table)

Module Segment

IEFAB472

tf.)
(I)

S4. o·
= t-.)

a::
(I)

[
So
o

"t:I
~

=­o·
=
(N

~
(N
\Q

~ ',- .7

Diagram 14-9. IEFAB471 - Generic Allocation Control (part 2 of 10)

Extended Description

1 a) (Continued) Algorithm (lEFAB476 - step 9) selects
device groups from which requests should be allo­

cated when a choice of units exists; it uses the algorithm
tables to determine from which device groups units should
be allocated so that all requests can be satisfied. There are
three main sections in the algorithm tables:

• The cover/reduce request list (CVRRQLST) contains
an entry for every unallocated volunit entry - that is,
for every unallocated possible request for a unit. The
entries are updated as they are allocated; each entry
points to a corresponding entry in the cover/reduce
group list.

• The cover/reduce group list (CVRGPLST) contains an
entry for each request in the cover/reduce request
list; the entry lists the device groups to which the
request is eligible. Each device group listed points to a
corresponding entry in the group count table.

• The group count table (CRPCOUNT) includes an entry
for every device group. Each entry summarizes the
number of units available, the number allocated, the
number offline, the total number of units, and the
number of units not used by the allocation.

For details on these tables, see Section 5, Data Areas.

To initialize the tables, Generic Table Build (I EFAB472)
scans the SlOT chain for SlOTs that have not been
allocated; for every unallocated volunit entry of each
unallocated SlOT, it creates an entry in the cover/reduce
request list. The EDL for each SlOT contains the
generic groups eligible to this request and, within each
generic group, the eligible device groups. This informa­
tion is used to initialize the cover/reduce group list. The
group count table is initialized by means of the EDT,
which contains all the device groups; an entry is created
for each device group but is not further initialized
until step 3.

b) The request-id-mask table is used to determine when
device groups must be serialized and when serialized
device groups can be released. Each entry in the
request-id-mask table contains a request identifier (id),
the number of unallocated SlOTs associated with the
request id, and a group mask indicating the device

Module Segment

IEFAB472 DOALGTAB

IEFAB472 DORIMTAB

Extended Description

groups required by the associated SlOTs. (For a
description of group masks, see "Group Masks" in the
"Introduction to Allocation/Unallocation.")

To build the request-id-mask table, IEFAB472 does
multiple scans of the SlOT chain to find unallocated
SlOTs whose group masks intersect. (The EDT con­
tains group masks of the unit groups to which each
SlOT is eligible; the EDL for each SlOT points to the
group masks in the EDT.) All SlOTs whose group
masks intersect are assigned the same request id
(SIOTGIID in the SlOT) and are represented by the
same entry in the request-id-mask table. The mask
placed in the entry is a composite mask of the indi­
vidual masks, showing all the device groups required
by the associated SlOTs.

For example, there are four unallocated SlOTs, each
with the following group mask:

device groups
SlOT 1 2 3 4 5

SIOT1 0 o 0 0 1
SIOT2 0 o 0 0
SIOT3 0 0 0
SIOT4 0 1 o 0

The mask of SIOT1 does not intersect with any of the
other masks. It is assigned a distinct request id and has a
single entry in the request id mask table; the mask in the
entry is its group mask, 0 0 0 0 1. The masks of
SIOT2, SIOT3, and SIOT4 intersect.

Note: Although the mask of SIOT2 does not intersect
with the mask of SIOT4, both intersect with the mask
of SIOT3.

These three SlOTs are assigned the same request id and
are represented by the same entry in the request-id-mask
table; the mask in the entry is the combination of the
three masks, 1 0 1 1 O.

The purpose of associating SlOTs is to allow allocations
to be rearranged; none of the device groups for the
associated SlOTs are released until all the SlOTs are
allocated. (For more information on rearranging
allocations, see the M.O. diagram Allocation via
Algorithm (lEFAB476)).

Step 1 continued on Part 3

':_7

Module Segment

~
w
~

o

~
N
rn

I
~
~.

j
~
[
(D

w

~
N

i
II
w
~ -

Installation Device
Precedence

List UCB List

VI I
Extended Description

1 (Continued)

c) The allocation Queue manager request block (AQMRB)
serves as the interface to the allocation queue manager,
which actually serializes and releases device groups. In
the AQMRB, Allocation Within Generic indicates if this
allocation can wait for units; the Allocation Queue
Manager then builds the necessary data structures for
handling requests from this allocation.

d) The work masks are workareas, pointed to by ALCWA,
that are used in determining the group mask of device
groups that must be serialized and the group mask of
device groups that can be released.

Module

IEFAB472

IEFAB472

ALCWA

2 Select generic device type to
LGENLOCK device groups

process and serialize needed device searialized
groups. updated

• If all generic device types
have been considered or
all requests are allocated, ALCWA
go to step 14. Group Count

Table

updated

3 Determine availability of devices

4

in device groups serialized in step 2.

Parameter Generic
List

Do AVR processing if generic device rlCBLinl
type is tape or non-MSS direct access.

a) Build list of UCBs.

b) Read premounted volumes.

•

Segment

If error, unload volume .

2 The purpose of this step is to:

• Select the first generic group from the installation device IEFAB471
precedence list that has not yet been selected and that
contains devices required by one or more unallocated
requests.

• Serialize the needed device groups within the selected IEFAB4FA
generic.

To determine what generic group and which device groups
are needed, the following processing is performed:

a) To obtain a mask of all needed device groups, Generic IEFAB471
Allocation Control combines (by means of an "or"
function) all the group masks in the request-id-mask
table associated with entries that include unallocated
SlOTs. Step 2 continued on Part 4

tI.l
('D

a
5'
=
~

ac:
('D

[
o
o
~
Q
a
5'
=
~

~
~ -

~ "--'"

Diagram 14-9. IEFAB471 - Generic Allocation Control (part 4 of 10)

Extended Description

2 (Continued)

b) Generic Allocation Control selects the first generic
listed in the installation device precedence list that has
not yet been selected.

c) Generic Allocation Control combines (by means of an
"and" function) the mask of the selected generic group
(from the EDT) with the mask obtained in step 2a to
determine if the generic group contains needed device
groups. If no common device groups are found (the
resulting mask contains only zeroes), step 2b is repeated
to select the next generic. If common device groups are
found, the LGENLOCK field in ALCWA is updated with
the id of this generic. (The generic id is included in the
EDT.)

d) If a retry is being performed (GENLOKSW=1 in the
function map), Generic Allocation Control determines
if the entire generic device type must be serialized for
direct access, or for additional compatible generic
device types, or for tape. (Retry is described .under
"The Retry Situation" in the "Introduction to
Allocation/Unallocation.") Generic Allocation Control
searches the SlOT chain for a SlOT marked for retry
(SIOTRTRY=1). If the SlOT is eligible to the selected
generic, the mask of device groups to be
set to the mask of 1) the generic device type for direct
access, or 2) all compatible device types for tape.
The entire generic must also be serialized if a specific
unit was requested. Otherwise, the mask of device
groups to be serialized is the mask obtained in step 2c.

e) The Allocation Queue Manager serializes the device
groups indicated in the mask.

3 Generic Allocation Control determines the status of
the UCBs in the serialized device groups and updates

the unit information in the group count table. The EDT
contains the device groups and indexes into the
lOS UCB LUT for the units in each device group. The
group count table is updated to indicate the number of
units that are:

• Offline (UCBONLI=Ol.
• Allocated (UCBALOC=1l.

• Available.

Module Label

IEFAB471 DETLOCK

IEFAB4FA

IEFAB471 DESTATUS

Extended Description

4 Automatic volume recognition (AVR) allows the
operator to premount tape and direct access volumes

prior to the initiation of.the job step that requires the
volumes. The purpose of this step is to recognize that
these volumes have been mounted.

a) If the generic group is tape or direct access,
Generic Allocation Control builds a list of the UCBs in
the serialized device groups (generic UCB list!. The EDT
contains the device groups and indexes into the lOS
UCB LUT for the units in each device group.

b) AVR Control checks the generic UCB list to locate
UCBs that are unallocated, online, ready, and do not
contain a volume serial number. For each such unit,
Direct Access Label Read (if the device is direct access)
or Tape Label Read (if the device is tape) reads the label
of the volume. If no error is encountered in reading the
label, AVR Control places the volume serial number in
the UCB and, for tape, sets the label-type indicator in
the UCB. If an error is encountered, AVR Control
issues an appropriate error message to the operator and
the Unload Interface has the volume unloaded. Errors
are encountered in the following situations:

• A tape volume does not have labels. (Unlabeled
volumes cannot be premounted.!

• A tape volume has non-standard labels and a user
routine to read non-standard labels was not included
in the system or the user routine did not return a
volume serial number.

• A tape volume has ANSI labels and the ANSI con­
verter routine was not included in the system at sys­
tem generation.

• Duplicate volume serial numbers were found. (AVR
Control uses the lOS UCB LUT to check if the volume
serial number it has read is a duplicate.!

After AVR Control completes processing, Allocation
Within Generic issues a FREEMAIN macro instruction
to rE!lease the generic UCB list.

Module Segment

IEFAB471 CALLAVR

IEFAB473

IEFAB4F8
IEFAB4F9

IEFAB49C

IEFAB473 B473DPCK

IEFAB471 CALLAVR

~ Diagram 14-9. IEF AB471 - Generic Allocation Control (part 5 of 10)
~
~

~
~

rIl

1
~
E
(S'
r­
c;:

!
~
E"
~
w

'<
rIl
~

::a
t
~
w
~

InDut

ALCWA

LGENLOCK

Count
Table

ALCWA Volunit
Table

Qutput.

ALCWA

5 Prepare to allocate demand requests "\:'
eligible to this generic device type,

6 Allocate demand requests eligible
to this generic device type,

"," , SlOTs r Last SlOT updated if a ineligible

Algorithm
Tables

E@ space
obtained
(except for ISAM)

7 Prepare to allocate remaining ~
requests eligible to this generic
device type, l ' ' SlOTs

{Last SlOT updated if
~ineligible

C"Il
CD
14-e' ::s
!'t
iC
~
8.
e.
o
1
l-
f
~

t
~

"IIIII[!!!!!!! '-~7

Diagram 14-9, IEF AB471 - Generic Allocation Control (part 6 of 10)

Extended Description

5 Allocation Within Generic marks as ineligible
(SIOTGIGN=1) all unallocated SlOTs except those

representing demand requests (a unit address was specified;
for example, UNIT=190) that are eligible to the generic
device type selected in step 2. The LGENLOCK field in
ALCWA contains the id of the selected generic; the EDL
for each S lOT contains the ids of the generic device types
to which the SlOT is eligible; the SlOT itself indicates if it
represents a demand request (SIOTDMND=1)~

If no demand requests eligible to this generic are found,
proCessing continues with step 7.

6 Demand Allocation processes those SlOTs that were
not marked ineligible instep 5 - that is, all SlOTs

representing demand requests that are eligible to the
generic device type being processed. Demand Allocation is
not called if step 5 determined that there are no demand
requests eligible to this generic. For details, see the
M.a. diagram Demand Allocation (lEFAB479);

Module Segment

IEFAB475 FLAGDMAN

IEFAB479

Extended Description

7 This step has two functions: a) to determine which
SlOTs are to be processed; b) to determine what

processing is required for those SlOTs.

a) Allocation Within Generic marks as ineligible
(SIOTGIGN=1) all unallocated SlOTs except those
that are eligible to this generic and that do not represent
demand requests. (Demand requests eligible to this
generic were processed in step 6,)

b) To determine what processing is required for the
unallocated SlOTs eligible to this generic, Allocation
Within Generic categorizes the requests by examining
the volunit entries:

• Specific volume requests. These will be processed
in step 8 by Specific Volume Allocation Control if
the volume is mounted. (If the volume is not mounted,
step 8 will indicate that Allocation via Algorithm must
process the request.)

• Non-tape and non-DASD requests; nonspecific volume
requests for private volumes. These will be processed
in step 9 by Allocation via Algorithm. (Allocation via
Algorithm will also process specific volume requests
if indicated by step 8.)

• Nonspecific requests for public volumes. These
requests will be processed in step 10 by Nonspecific
Volume Allocation Control.

If one of the preceding types of requests is not found,
the corresponding allocation processing is not performed;
for example, if there are no specific volume requests,
Specific Volume Allocation Control (step 8) is not
called.

Module Segment

IEFAB475 FLAGIGEN

t Diagram 14-9. IEFAB471 - Generic Allocation Control (part 7 of 10)

t

~
w
C'n

1
~

i-
t-
r
~
~ r
CD
w

~
N

i
!
w
~ -

Count
Table

ALCWA

Parameter List Eligible UCB List

-----..Y- -I 1
1st

ALCWA SlOT Volunit Table
~

Process

8 Allocate specific volume requests,
if volume is mounted.

9 Allocate requests by means of the
algorithm :'

• non-tape and non-DASD requests.

• nonspecific volume requests for
private volumes.

• specific volume requests not
allocated in step 8.

10 Allocate nonspecific volume
requests for public volumes to
mounted volumes:

a) Build listof eligible devices.

For details,
see Specific
Volume
Allocation
Control
(lEFAB433)

b) Allocate requests. .~

d ReleaseUCB list. ------..........,,.,,...----,

ut

@ space
obtained
(except for ISAM)

Parameter Eligible
List UCB List

~Ial. I
Algorithm Tables } updated

fI'.)
~

~ e· =
!'!
~
~

[
0
~

0
"a

i e· =
w
c:w
-110
CI'I

~

Diagram 14~9. IEFAB4,71 - Generic Allocation Control (part 8 of 10)

Extended Description

8 . This step is performed only if step 7 determined that
unallocated· specific volume requests are eligible to

this generic device type. Specific Volume Allocation Con­
trol allocates specific volume requests if the volumes are
mounted. If a volume is not mounted, the request will be
processed by Allocation via Algorithm (step 9). For details
on Specific Volume Allocation Control, see the

M.O. diagram Specific Volume Allocation Control
(I E F AB433).

9 This step is performed if any of the following condi­
tions are true:

• Step 7 determined that unallocated requests for non­
DASD or non-tape devices are eligible to this generic
device type.

• Step 7 determined that unallocated nonspecific volume
requests for private volumes are eligible to this generic
device type and volume mounting is allowed (as indi­
cated in the common allocation function map - see
figure 17).

• Specific volume requests were not allocated in step 8
because the volumes were not mounted and volume
mounting is allowed (as indicated in the common alloca­
tion function map - see figure 2-27).

Aliocation via Algorithm processes the requests; for details,
see the M.O. diagram Allocation via Algorithm
(lEFAB476).

..

Module Segment

IEFAB433

IEFAB476

IEFAB476

Extended Description

10 This'step is performed only if step 7 determined
that unaltocated nonspecific volume requests for

public volumes are eligible to this generic device type.

a) Allocation Within Generic (lEFAB475) builds a list
of all the UCBs in the device groups serialized for
this generic that meet the following conditions:

• The unit is online, ready, and is not pending offline.

• The unit is not pending an unload or a mount.

• The unit is not in use by a system task (UCBNALOC=O).

• The unit is not allocated as nonshareable.

• The unit contains a non-private volume.

• Another request within this allocation is not waiting
for this unit.

The EDT contains indexes into the 105 UCB LUT for
all the units in each device group. The mask of the
serialized groups indicates which device groups should
be searched.

b) Nonspecific VOlume Allocation Control (lEFAB436)
allocates nonspecific volume requests for public
volumes to mounted volumes. If a request cannot be
allocated to a mounted volume, it will be processed
during the processing of another generic device type
(if the request is eligible to more than one generic)
or by Recovery Allocation (see the M.O. diagram
RecOvery Allocation (lEFAB485)). For details on
Nonspecific Volume Allocation Control, see the
M.O. diagram Nonspecific Volume Allocation
Control (lEFAB436)'

c) Allocation within Generic (lEFAB475) issues a
FREEMAIN macro instruction to release the
UCB list.

Module Segment

IEFAB475 ASCRMONT

IEFAB436

IEFAB475 ASCRMONT

~

~
.a:.
Q\

~
"< C"-I
N
C"-I .. e
i n
r"" ez
AI
~
<:
a a
<D
~

'< C"-I
N

i
~
~

~ -

Diagram 14-9. IEF AB471 - Generic Allocation Control (Part 9 of 10)

Output

11 Clean up processing- of this _ "-
generic device type.

12 Release device groups no longer
needed.

13 Go to step 2 to select next generic
device type.

14 Return to caller.

Return to Common
Allocation Control
(lEFAB421)

~
~ n
S·
= t-J

~
~

g
Q.

o ...,
o
"0
~
~ o·
=
w
W ...
.......

Diagram 14-9. IEF AB471 - Generic Allocation Control (part 10 of 10)

Extended Description

11 Allocation Within Generic (lEFAB475) scans
all the SlOTs and does the following:

a) If a SlOT was eligible to this generic device type
(SIOTGIGN=O) and it is fully allocated (SIOTALCD=1),
Allocation Within Generic decreases the number of
u~nallocated SlOTs in the request-id-mask table entry
associated with this SlOT.

b) If a SlOT was not eligible to this generic device type
(SIOTGIGN=1), Allocation Within Generic turns off the
ineligible indicator.

12 In determining what device groups can be released,
Generic Allocation Control considers all device

groups, not merely the device groups within the generic
being processed. This is done because device groups
serialized for a previous generic might still be serialized
but no longer be needed. For example, SlOT A is eligible
to two generic device types, 3330 and 2314. S I aT A was
not allocated when generic 3330 was processed, so the
device groups in 3330 were not released. When generic
2314 is processed, the request is satisfied; it is no longer
necessary to serialize the device groups in either generic
3330 or generic 2314 (provided that S I aT A was the only
unallocated SlOT eligible to the generics) ..

To determine what device groups can be released, the
following processing is performed:

a) Generic Allocation Control initializes a mask to repre­
sent all the device groups still needed (RIMNEEDM).
This mask, pointed to by WMASK2P in ALCWA, is
originally set to zeroes.

b) If an entry in the request-id-mask table indicates that
any of the associated SlOTs are not yet allocated, the
device groups required by those SlOTs cannot be
released. Generic Allocation Control combines (by
means of an "or" function) the group mask for every
entry that includes unallocated SlOTs with R IMNEEDM.

c) The group masks in the request-id-mask table do not
indicate if all devices in a generic device type were
serialized because a retry allocation is being processed
(for a dflscription of retry, see "The Retry Situation"
in the "Introduction to Allocation/Unallocation").
If this allocation is a retry (GEN LOKSW=1 in the
function map of the Common A"ocation Parameter

Module Segment

IEFAB475 UNFLGGEN

IEFAB471 UNLKDEV

: ... ~ .
,~

List), Generic A"ocation Control searches the SlOT
chain to locate SlOTs marked for retry (SIOTRTRY=1)
that are not allocated (SIOTALCD=O). For such SlOTs,
all device groups within the eligible generics must
remain serialized. The EDL for the SlOT contains the
eligible generic device types; the EDT contains a group
mask for each generic. The group mask(s) for the
eligible generic(s) are combined (by means of an "or"
function) with RIMNEEDM.

d) Generic Allocation Control inverts RIMNEEDM to
obtain the mask of device groups that c~n be released
(UNLKMASK). WMASKPTR in ALCWA points to the
UNLKMASK.

e) If a" requests eligible to the generic being
processed are satisfied, a" device groups within the
generic can be released. Generic A"ocation Control
combines (by means of an "or" function) the group
mask of the generic with the mask of device groups
that can be released (UN LKMASK), thereby indicating
that a" device groups in the generic can be released.

f) Volumes are not mounted on allocated units until all
requests have been satisfied; therefore, a device group
containing a unit on which a nonspecific or private
direct access volume wi" be mounted cannot be
released until the volume is mounted. WaR K3MP in
ALCWA points to a group mask of the device groups
that must remain serialized for volume mounting.
Generic Allocation Control subtracts this mask from
the current UN LKMASK to obtain an updated
UNLKMASK.

t The A"ocation Queue Manager (I EFAB4FA) releases the I EFAB4FA
device groups indicated in the updated UNLKMASK.

Note: Because Generic Allocation Control considered
a" device groups in building the UNLKMASK, UNLKMASK
can indicate that device groups that were never serialized
should be released. The Allocation Queue Manager ignores
such contradictions.)

Error Processing

An error in any routine causes control to be returned to
the calling routine.

In the event of an abnormal termination, the EST AE
exit routine established by I EF AB421 performs any
necessary cleanup.

~--~

-<
CI')
t-J

o
W

00
o ...

~ Diagram 14-10. IEFAB476 - Allocation via Algorithm (part 1 of 6)

~

o rn

~
N
rn
'<

~
b
~.

~
~
t­
[
n>
~

~
N o
~

00 o
~
'-'

Input

ALCWA
1st

ENTRY from IEFAB475 (see I EFAB471 -
Generic Allocation Control) or IEFAB485 -
Recovery Allocation

SlOT Vol unit
Table

Output

A LCWA Algorithm
Allocation via Algorithm: Allocate
requests when a choice of units
exists.

r Tables-updated

1 Use algorithm to determine L..-__ -I LJ
from which device groups
requests should be allocated.

2 Ensure that each multi-unit/ ulJiD

multi-generic request will be
allocated to a single generic,
if necessary.

3 Unallocate requests that must .£0£'

be rearranged.

ALCWA 1st SlOT

ALCWA

EJ

or---

space
released for
unallocated
requests

EDLs & SlOTs
updated if
necessary

DSAB TIOT-

Vl
fD

l4. er
= N

::::
fD

~
Q.

e.
o

"c::I
~ a
(5'

=
~

~
~
IC

... ~J

Diagram 14-10. IEFAB476 - Allocation via Algorithm (Part 2 of 6)

Extended Description

ENTRY Allocation via Algorithm is called by Alloca·
tion within Generic (lEFAB475) and Recovery

Allocation (I EFAB485) to process requests when a choice
of units exists: a specific unit was not requested; the
request cannot be satisfied by allocating it to a mounted
volume; the request cannot be allocated to a permanently
resident or reserved volume.

1 The Cover/Reduce Algorithm selects device groups
from which unallocated requests should be allocated;

the caller indicates in the cover/reduce request list of the
algorithm tables the requests that should be processed by
the algorithm (CVRSKF LG=O). The Cover/Reduce
Algorithm updates the algorithm tables to indicate its
selections; a return code indicates if all or only part of the
requests to be considered were processed. Further proc·
essing of requests not processed by the algorithm (that is,
for which the algorithm did not select a device group) is
deferred.

2 When the algorithm chooses device groups from
which requests should be allocated, it does not ensure

that a multi-unit request eligible to more than one generic
is allocated to a single generic. Only certain multi-unit tape
requests can be allocated to more than one generic because
of the dual density feature. Each multi·unit request that
must be allocated to a single generic - each MUG request -
was assigned an id (SIOTAFIDI0 in the SlOT) by
IEFAB472 during generic allocation. Requests that specify
affinity to a MUG request were assigned the same
SIOTAFID. The purpose of this step is to ensure that each
MUG request will be allocated to a single generic.

IEFAB474 (Process Multi-Unit/Generic Requests) locates
MUG requests with the same SIOTAFID that were assigned
to more than one generic by the algorithm, and that were
completely processed by the algorithm. (If requests with
the same SIOTAFID were not completely processed by
the algorithm, further processing of them is deferred.)

IEFAB474 tries to satisfy each such MUG request by
considering the units that the algorithm selected for
the request and:

• The excess (unused) units in the last generic acquired
if the caller is Allocation Within Generic.

Module Segment

IEFAB480

IEFAB474 HOWALGC

IEFAB474 FORCEGEN

Extended Description

• The excess (unused) units in each acquired generic to
which the request is eligible if the caller is Recovery
Allocation.

If the MUG request can be satisfied with a single generic,
IEFAB474 indicates its selection in the algorithm tables;
IEFAB481 (Eliminate Ineligible Groups) updates the
EDL and the algorithm tables to mark every other generic
ineligible (thereby preventing the algorithm from later
rearranging this request to another generic) and sets to
zero the SIOTAFID field (thereby indicating that the
MUG request is successfully processed). IEFAB481 is also
called to update the algorithm tables and the EDL and to
set to zero the SIOTAFID field for MUG requests that
the algorithm did assign to a single generic.

If IEFAB474 cannot successfully process the MUG
request, it updates the algorithm tables to cancel the
algorithm's selection of device groups for this request.
The request is not further processed at this time. (When
the caller is Allocation Within Generic, the MUG request
might be satisfied with a single generic when a subsequent
generic is serialized; otherwise, the request will be processed
during recovery allocation. When the caller is Recovery
Allocation, MUG requests that cannot be successfully
processed at this time will be handled by Offline/
Allocated Device Allocation - IEFAB486.)

3 In order to find sufficient units to allocate a request,
the algorithm might have had to rearrange requests

already allocated - that is, indicate that an allocated
request must be assigned to a different device group in
order to free units needed to satisfy an unallocated
request. Requests to be rearranged are indicated in the
group list entry of the algorithm tables - the number
of units already allocated (CVRGRPAL) is greater than
the number of units the algorithm can select for alloca­
tion (CVRGALL). The purpose of this step is to unallocate
requests that must be rearranged.

IEFAB477 (Unallocate Requests to be Rearranged)
updates the TlOT, volunit table, SlOT, group id list, and
the UCB for each request to be unallocated; Common
Unallocation Control releases any space obtained for
the request.

'--'

Module Segment

IEFAB481

IEFAB474 GIVEBACK

IEFAB477

IEFAB4AO

Cf Diagram 14-10. IEFAB476 - Allocation via Algorithm (part 3 of 6)
~
Q

~
N

i: ;
r-
~.
r-

i
~ eo
~
w

'< fI.l
N

~
(D

r
tc
w
~

Inout

ALCWA--

CVT ~ IEZSCC

I~V I.ICBMEI
Parameter List UCB Candidate List

~t ---1

OutP~t

4 Allocate request.
For each request:

a) Build list of eligible units. "

b) Perform mount equalization if
for Mass Storage System
(MSS) requests.

c) If necessary, interface with
the Systems Resources
Manager to select unit to
allocate.

Parameter
List

UCB
Candidate List

~l

Parameter
List

UCB Candidate
List-Updated

r---

Lrl

Parameter
List

UCB
Candidate List

selected
entry

I

til
(1)

~ e·
=
~

~
(1) g
Q.

o
'"0)

o

1 e·
=
w
W
CIt

"-2"'" "---'

Diagram 14-10. IEF AB476 - Allocation via Algorithm (Part 4 of 6)

Extended Description

4 IEFAB478 (Allocate from Groups the Algorithm
Picked) allocates requests to units in the device

groups selected by the algorithm. IEFAB478 searches
the SlOT chain for unallocated requests that are not
part of a MUG group (SIOTAFID=O). For each unallo­
cated volunit entry processed by the algorithm (the algo­
rithm tables indicate that the algorithm chose a device
group from which to allocate the entry), the following
steps are performed:

a) IEFAB478 builds a list of UCBs (UCB candidate list)
that are included in the device group selected by the
algorithm and that meet the following conditions:

• The unit is online and unallocated.

• The unit is not in use by a system task.

• The volume on the unit is not permanently resident
or reserved.

The-EDL for the SlOT contains the addresses of
UCBs in the device groups eligible to the request.

b) If the request is for an MSS device, I EFAB478
interfaces with ICBME, which will return a preferred
list of UCBs. This list will then be used to merge into
and update the UCB candidate list. (See OS/VS2 Mass
Storage System Communicator (MSSC) Logic for
information on module ICBME.)

c) If the UCB candidate list contains more than one
entry, IEFAB478 interfaces with the System Resources
Manager to select the device to be allocated. IEFAB440
builds a list of allocated UCBs. The System Resources
Manager uses this list and the UCB candidate list to
determine which unit should be allocated.

Module Segment

IEFAB478

IEFAB478 GENAPREP

I EFAB478 MONTEQAL
ICBME

IEFAB478 GALGALOC

IEFAB440

-~

I.f Diagram 14-10. IEFAB476 - Allocation via Algorithm (part 5 of 6)
~
N

o se
~
N
fI.)
'<
5t
a
i r;.
r-

J
~
[
(II

w

'< fI.)
N

i
~
w
:.... -

Input

Parameter List UCB Candidate List

-r ~ ::cted
ALCWA ~

Count
Table

SlOT

UCB Candidate List
I I
ALCWA

Volunit
Table

Process

d) Allocate request to unit.

e) Release UCB candidate list;
update volunit table, count
table, and if necessary, SlOT.

Return to IEFAB475
(See Generic Allocation Control
(lEFAB471) or Recovery
Allocation (IEFAB485))

See
Allocate
Request
to Unit
(lEFAB434)

Output

ALCWA -

Processed
SlOTs

Algorithm Table}s

Q Updated
Count Table

I I

space
obtained
(except for ISAM)

Updated

Vl
(D
n

5'
==
~

== (D g
~

o
o

"C
~
~ o·
==

w
W
VI
W

~

Diagram 14-10. IEFAB476 - Allocation via Algorithm (Part 6 of6)

Extended Description

d) IEFAB434 (Allocate Request to Unit) allocates the
unit. For details, see the M.a. diagram Allocate
Request to Unit (lEFAB434l.

Module

IEFAB434

"'-----3'

Segment

e) IEFAB478 releases the UCB candidate list, marks the IEFAB478 GENAPREP
volunit entry as allocated, and decreases the TOTVOLUN IEFAB478 GARURTN
field in the count table. If the SlOT is completely allo-
cated, IEFAB478 also marks the SlOT as allocated and IEFAB478
decreases the TOTREQS field in the count table.

Error Processing

An error in any routine causes control to be returned to
the calling routine.

In the event of an abnormal termination, the EST AE
exit routine established by I EFAB421 performs any

necessary cleanup.

~
t-.J

o
W
00
~

l.fJ
IN
CIt
~

o
c:I.l

"< c:I.l
~

c:I.l

'i
~

i
r"'I
0:

!
< sa. c: a
(II

IN

~
~
Q
IN
00

~

Diagram 14-11. IEFAB479,- Demand Allocation (part 10f4)

ENTRY from IEFAB475 (see IEFAB471 -
Generic Allocation Control); IEFAB485-

Input .. Recovery Allocation; or IEFAB491 (see
I EF AB421 - Cemmon Allocation Control)

ALCWA 1 st SlOT . Volunit Table

A LCWA
~

function map
~

Volunit Tabl~

Process

Demand Allocation: Allocate specific
unit requests eligible to the generic
being processed.

1 Allocate eligible specific volume
requests, if the volume is mounted.

Output

ALCWA
Algorithm
Tables

~ space obtained L9 (except for ISAM)

ALCWA Volunit Table

2 Do initial ~earc.h for error and lUI oA1
recovery situations.

• If error situation found,
return to caller.

JFCB

en
(1)

a o·
=
N

a::
(1)

~
Q.

o
o
'0
~ a o·
=
~ w
VI
ell

~ "'-,--'

Diagram 14-11. IEF AB479 - Demand Allocation (Part 2 of 4)

Extended Description

ENTRY A demand request is a specific unit request;
that is, a unit address was specified, such as

UNIT=190. Demand Allocation allocates demand requests
that were not allocated by Fixed Device Control. (Fixed
Device Control allocated demand requests for direct access
devices, if the volumes on the units were permanently resi­
dent or reserved.) Demand Allocation is called by:

• IEFAB475 (Allocation Within Generic) to allocate
demand requests within the generic being processed by
IEFAB475.

• IEFAB485 (Recovery Allocation) to allocate demand
requests for tape devices when the needed volume is
mounted on a tape device type different from the
requested device type. (Recovery Allocation turns off
the recovery indicator in requests that are to be pro­
cessed before it calls Demand Allocation.)

• IEFAB491 (Wait Holding Resources) when a needed
unit becomes unallocated and demand requests remain
to be allocated.

Note: When a unit address is specified, all device groups
within the generic are serialized.

1 This step is performed only if the caller indicated
that specific volume requests were included in the

demand requests to be processed. Specific Volume Allo­
cation Control allocates these requests if the volume is
mounted. If the volume is not mounted, the request is
processed in step 3. For details on Specific Volume Allo­
cation Control, see the M.O. diagram Specific
Volume Allocation Control (lEFAB433).

2 Demand Allocation checks for error and, if the
caller is IEFAB475, recovery situations in unallo­

cated demand requests eligible to the generic being
processed. The difference between error and recovery
situations depends to a great extent on what is allowed
for this allocation, as indicated in the function map:
whether this allocation can consider offline devices;
whether volumes can be mounted; whether this allo­
cation can wait for units. (The function map is part of
the Common Allocation Parameter list and is illustrated
in figure 17.) To check for error and recovery situations,
Demand Allocation examines the UCB for the requested
unit.

Module Segment

IEFAB479

IEFAB433

IEFAB479 FIRSTSCN

Extended Description

If an error situation is detected, Demand Allocation
returns to the caller; further processing of requests is
terminated. The possible error situations detected at
this time are:

• The unit is in use by a system task (for example,
OL TEP) or is an active console.

• More than one unit is needed. (When processing affini­
ties to a prior request, the Affinity Processor
(lEFAB432; see the M.O. diagram Allocate
Request to Unit (lEFAB434) increased the
unit count for a request if the needed volume
was mounted on a different unit and was reserved.)

• The unit is offline and either: 1) this allocation cannot
consider offline devices; or 2) this allocation can con­
sider offline devices but volume mounting is not allowed.
(The second condition applies only to tape and direct
access devices.)

• The unit is tape or direct access, is allocated to another
user (and is either nonshareable or is being requested
nonshareable); this allocation does not allow waiting.

• The unit is tape or direct access and is not allocated, but
either no volume or the wrong volume is mounted and
volume mounting is not allowed.

• The unit is neither tape nor direct access, is allocated to
another user, and waiting is not allowed.

• The unit is direct access, contains a permanently resident
or reserved volume, and a different volume is requested,
or the request is non-specific and private but the mounted
volume is public.

• The unit is tape, contains a reserved volume, and a different
volume is requested, or the request is non-specific and
private but the mounted volume is public.

If a recovery situation is detected (possible only when the

'_f

Module Segment

caller is IEFAB475), Demand Allocation updates the IEFAB479 MARKVUS
volunit entry and the algorithm tables to indicate that the
request must be processed by retry. Requests that specify
affinity are also marked for recovery. The only recovery
situation detected at this time is:

• The unit is offline, but this allocation can consider off­
line devices and, for tape or direct access, volume
mounting is allowed.

~ Diagram 14-11. IEFAB419 - Demand Allocation (Part 3 of 4)

01

i
~
N

i
i. n
r-c
or
8
~
J
c
CM

~
N

t
Wl
CM
~ -

function map , ,

Extended Description

3 Demand Allocation processes the following demand
requests if they are eligible to this generic group

(SIOTGIGN=O) and are not marked for recovery
(VUDNALOC=O in the volunit entry):

• Specific volume requests when the volume is not
mounted on the requested unit. (Specific volume
requests to mounted volumes were allocated in step 1.)

.• Private non-specific volume requests.

• Non-tape and non-DASD requests.

IEFAB434 allocates each request. (For details, see the
M.O. diagram Allocate Request to Unit (lEFAB434)).
When allocating specific volume requests and when the
caner of Demand Allocation is IEFAB475, Allocate
Request to Unit can encounter the following special
situations, resulting in recovery or termination:

Process Output

Module

3 Allocate following requests,
if eligible:

• Specific volume requests not
allocated in step 1.

• Nonspecific volume requests
for private volumes.

• Non-tape and non~DASD
requests.

4 Allocate eligibte nonspecific
requests for public volumes.

Segment

Return
to Caller

Extended Description

~

IEFAB479 ALOCSPFC • The·needed volume is mounted on a device that is
allocated to another user. If this allocation can wait for
allocated units (as indicated in the function map of the
common allocation parameter list; see figure 17), this
request and any requests specifying affinity to it are
marked for recovery (VUDNALOC=1 in the volunit
entry). If waiting is not allowed, Demand Allocation
returns to Allocation within Generic and further proc­
essing of requests is terminated .

IEFAB434

• The request is tape and the needed volume is mounted
on a different generic device type. The request is
marked for retry processing.

As requests are successfully allocated, Demand Alloca­
tion marks the volunit entry and SlOT as allocated and
decreases the TQTREQS and TOTVOLUN fields in the
count table.

space obtained
{except for ISAM)

JFCB

Module Segment

IEFAB479 ALOCSPFC

en
~
n g.
= N

~
~

[
o
o

"0
~

;
g.
=
IN
~
<It

"III!lI!II" <c: _,

Diagram 14-11. IEFAB479 - Demand Allocation (part 4 of 4)

Extended Description

4 Demand Allocation processes demand requests for
nonspecific public volumes if the request is eligible

to this generic (SIOTGIGN=O) and is not marked for
recovery (VUDNALOC=O in the volunit entry). Proc­
essing depends on the caller. If the caller is IEFAB485,
this step is never performed. If the caller is IEFAB491,
step 4b is performed. If the caller is IEFAB475, proc­
essing depends on whether a volume is mounted on the
unit: if a volume is mounted, step 4a is performed; other­
wise, step 4b is performed.

a) If a volume is mounted on the requested unit and
I EFAB475 called'Demand Allocation, the Conditional

ENQ/DEQ Routine enqueues on the volume. The
enqueue results in one of the following situations:

• The enqueue is unsuccessful because another request
within this allocation already owns the volume. The
volume can be used.

• The enqueue is successful; the volume can be used.

'. The enqueue is unsuccessful because another user
(that is, a different allocation) owns the volume and
the volume cannot be shared with this allocation. If
this allocation can wait for units, this request and
requests that specify affinity to it are marked for
recovery processing. If this allocation cannot wait
for units, Demand Allocation returns to Allocation
Within Generic and further processing is terminated.

Module Segment

IEFAB479 SECNDSCN

IEFAB4FO

IEFAB479 MARKVUS

Extended Description

If the volume can be used, IEFAB434 allocates the unit.
For anew non-ISAM data set, IEFAB434.also interfaces
with DADSM for space. If sufficient space is not
av~Hable, processing depends on whether this alloca­
tion already owned the volume:

• The volume is already owned by this allocation. If
the request previously allocated to the volume is a
specific volume request, Demand Allocation returns
to Allocation Within Generic and further processing
is terminated. Otherwise, the request just allocated
is una.llocated; this request and the previously­
allocated request are marked for processing by
Recovery Allocation.

• The volume is not already owned by this allocation.
The Conditional ENQ/DEQ Routine dequeues from
the volume and Demand Allocation recalls IEFAB434
indicating that the volume is unacceptable. IEFAB434
unloads that volume and builds a volume mount and
verify request block for this request. (The volume is
not mounted until all requests are successfully allo­
cated; see the M.O. diagram Common Allocation
Cleanup (lEFAB490).)

For details on IEFAB434, see the M,O. diagram
Allocate Request to Unit (lEFAB434)'

b) If the caller is IEFAB491, or if the caller is IEFAB475
and a volume is not mounted dn the unit, IEFAB434
allocates the unit and builds a volume mount and
verify request block for this request. For details on

IEFAB434,see the M.O. diagram Allocate
Request to U nit (I E F AB434).
If the unit is successfully allocated, Demand Allocation
marks the volunit entry and SlOT as allocated and
decreases the TOTREQS and TOTVOLUN fields in the

count table.

Error Processing

An error in any routine causes control to be returned to
the calling routine.

In the event of an abnormal termination, the EST AE
exit routine established by IEFAB421 performs any
necessary cleanup.

Module Segment

IEFAB434

IEFAB479

IEFAB479 MARKVUS

IEFAB4FO
IEFAB434

IEFAB434

IEFAB479

<::
en
N
o
IN
Oc o

"""

~ Diagram 14-12. IEFAB485 - Recovery Allocation (part 1 of 8)
Ul
00

o
l:Il

"< l:Il
~

l:Il

l
9
~

c§.
n
~

i
~
is"
9
(D

~

'<
l:Il
~

<=>
~

00 o
"" -

ENTRY from Common

ut Allocation Control (lEFAB421) Process

• ,ii 2 arnl moon Mmm

ALCWA lOS UCB LUT

n
ALCWA

Count
Table

1st SlOT
Volunit
Table

Count Table

ITOTREQS~I

Recovery Allocation: Attempt
to allocate o~tstanding requests.

1 Process tape requests marked
for recovery processing.

a) If a device is not required
(implicit unit affinity),
unload volume.

b) If a device is required,
attempt to allocate
request.

If all requests are satisfied,
return to caller.

o ut

ALCWA

Return to
Common Allocation
Control (IEFAB421)

Q Tape volumes unloaded

Algorithm
Tables

JFCB

til
~

Po o·
::s
N

:::
~

;.
o
Q.

o
o
'0

S g.
::s

~ w
VI

'"

~

Diagram 14-12. IEFAB485 - Recovery Allocation (Part 2 of 8)

Extended Description

ENTRY Recovery Allocation is called by Common
Allocation Control if both of the following

conditions are true:

• Requests still remain to be allocated. (The TOTREQS
field in the count table does not equal 0.)

• Retry is not .indicated (lNDRETRY=O in ALCWA).
(Retry is indicated 1) when a needed DASD volume was
mounted on a unit not included in the serialized device
groups, or 2) a needed tape volume was found on a unit
of a different device type, but the device type is com­
patible with the one being processed by Generic Allocation.
For retry, allocated requests are unallocated and the
allocation is reattempted; therefore, it is unnecessary to
perform recovery allocation.)

Recovery Allocation attempts to allocate all remaining
requests; the four steps in this diagram reflect the four
different situations that result in Recovery Allocation. In
the first three steps, only unallocated, allocated but
shareable, and online devices are considered for allocation;
in the fourth step, Recovery Allocation will consider off­
line andlor allocated (nonshareable) devices, if allowed for
this allocation (as indicated in the function map of the
common allocation parameter list).

In the first three steps, unsuccessful attempts to allocate
requests do not necessarily. result in failure of the alloca­
tion, because of the possibility that the requests can be
satisfied in step 4 if offline andlor allocated devices can be
considered.

1 During Generic Allocation Control, tape requests were
marked for retry processing. Then in retry processing

such tape requests were also marked for recovery processing,
if a needed volume was located on a generic different from
the generic selected for allocation. This step processes these
requests. (For background information, see "Processing Tape
Requests" in the "Introduction.to Aliocation/Unaliocation.")

Recovery Allocation scans the volunit table for tape
requests (VOLTAREQ=l) that indicate recovery proc-
essing is necessary and that indicate the needed volume
was mounted on a device type other than the one selected
by Generic Allocation. Processing of these requests depends
on if 1) a device is not required for this volunit entry; Or

2) a device is required for this volunit entry.

Module

IEFAB485

~.~

Segment

TAPEVALI

Extended Description'

a) A device is not required if more volumes than units
were requested (implicit unit affinity) - for example,

the user coded:

/IDOl DO DSN=ALLOC,DISP=OLD,UNIT=2400, *
II VOL=SER=(A,B)

During generic allocation, volume A was successfully
allocated to a 2400 device but volume B was mounted
on a device of a different generic type. Recovery Allo­
cation searches the UCBs (by means of the lOS UCB
LUT) to locate the needed volume. If the volume is
found, the Unload Interface unloads the volume. (If
the volume is not found, it has already been unloaded;
for example, another request needed the unit on
which it was mounted and had the volume unloadedJ

b) If a device is required, Specific Volume Allocation
Control tries to allocate the volume where it is mounted.
(For details on Specific Volume Allocation Control,
see the M.O. diagram Specific Volume Allocation
Control (IEFAB433). If the request cannot be allo­
cated where it is mounted (for example, although the
volume is mounted on a compatible device type, the

request is not eligible to that generic - see "Proc-
essing Tape Requests" in the "Introduction to
Allocation/Unallocation") and if volume mounting
is allowed (as indicated in the function map of the
common allocation parameter list):

• Demand Allocation receives control, if there are
demand requests. For details on Demand Alloca­
tion, see the M.O. diagram Demand Allocation

(lEFAB4791.

• Allocation via Algorithm receives control if there
are requests other than demand requests. For details
on Allocation via Algorithm, see the M.O. diagram
Allocation via Algorithm (JEFAB476).

If volume mounting is not allowed, this allocation is
failed. Recovery Allocation returns to Common Allo­
cation Control.

Note: Unsuccessful attempts to allocate requests by
Demand Allocation or Allocation via Algorithm do
not result in failure, because of the possibility of allo­
cating these requests in step 4 if offline andlor allo­
cated devices can be considered.

~_3'

Module Segment

IEFAB485 TVALUNLD

IEFAB49C

IEFAB433

IEFAB479

IEFAB476

~ Diagram 14-12. IEFAB48S ~ Recovery Allocation (part 3 of 8)

c

~
~
fI.)

I
~
1·

j
~
a"
!
C.H

~
~

~ r
IS
C.H
:.... -

Input

List UCB -:=r- Candidate List

,---~ 1 st SlOT L:J Volunit Table

UCB Candidate. List

I

Count Table

I TOTR EQS"Il I

Process

2 Process affinity requests that
were not allocated due to a
recoverable DADSM error.

a) Unallocaterequests that
must be rearranged.

b) Build UCB candidate list.

c) Allocate requests to
mounted volumes.

d) Release. UCB candidate
list.

If all requests are satisfied,
return to caller.

Output

ALCWA -

Rspace
UreleaSed

Parameter List UCB Candidate List

L t---- i
ALCWA ---

Return to Common

UCB candidate
list released

Allocation Control OEFAB421)

CI.l
('D
() g.
= ~

== ('D

g
Q.

o
o

"0
(1)

;
g.
=
~

W
0'1 -

.., ~~

Diagram 14-12. IEFAB485 - Recovery Allocation (Part 4 of 8)

Extended Description

2 This step .handles the following situation: two or
more nonspecific direct-access volume requests

specified volume affinity to each other; at least one of
these requests was successfully allocated, but a subse-
quent request could not be allocated to the same volume
because of insufficient space (that is, a recoverable DADSM
error). Recovery Allocation unallocates the request(s) that
were allocated and tries to find a volume to which all the
requests specifying affinity to each other can be allocated.

Recovery Allocation searches the volunit table for entries
that indicate a recoverable DADSM error occurred while
allocating an affinity request (VUDADSME=l). The follow­
ing steps are performed for these requests:

a) IEFAB477 unallocates the requests that were success­
fully allocated: this routine updates the TIOT, volunit
table, SlOT, and UCB; Common Unallocation Control
releases the direct access space.

Module Segment

IEFAB485 DADAFFER

IEFAB477

IEFAB4AO

Extended Description

b) Recovery Allocation uses the SYSALLDA entry of the
EDT to search the lOS UCB LUT for direct access units
with mounted volumes that are eligible to satisfy non­
specific volume requests. To be eligible, a UCB must
meet the following conditions:

• The UCB is online, ready, and not pending offline.

• The UCB is not in use by a system task
(UCBNA LOC=O l.

• No unload or mount is pending for the UCB.

• The volume on the unit is shareable and has a use
attribute of public or storage.

• No other request is waiting for this unit to be unallo­
cated so that the volume mounted on the unit can be
moved to another unit.

Pointers to eligible UCBs are placed in a UCB candidate
list; this list is used by Nonspecific Volume Allocation
Control to determine the units eligible to satisfy
unallocated requests.

c) Recovery Allocation calls Nonspecific Volume Alloca­
tion Control to allocate:

• Storage volume requests if there are any.

• Public volume requests if there are any.

The parameter list for Nonspecific Volume Allocation
Control includes a function map that indicates what
type of request should be processed and a pointer to
the UCB candidate list. For details on Nonspecific
Volume Allocation Control, see the M.O. diagram
Nonspecific Volume Allocation Control (lEFAB4361.

d) Recovery Allocation issues a FREEMAIN macro instruc­
tion to release the UCB candidate list.

"'../

Module Segment

IEFAB485 DAFERLST

IEFAB485 DADAFFER
IEFAB436

IEFAB485 DADAFFER

~

~
N

~
~
N
fI}

'<

~
i (is.
t-

J
i
(D

~

'<
fI)
N

~

i
~
~

~ -

Diagram 14-12. IEFAB485 - Recovery Allocation (part 5 of 8)

Input

ALCWA

ALCWA IOSUCBLUT n
ALCWA

Count
Table

Parameter
List

UCB
Candidate
List

r- r "1L..-__ ---6

EDL

Process

3 Allocate scratch requests that could
not be entirely allocated to
mounted volumes.

a) Process multi-unit/multiiJeneric
requests that must be allocated
to a single generic.

• Choose generic from which
to allocate.

• Build UCB candidate list.

• Try to allocate secondary
unit requests to mounted
volumes.

• Release UCB candidate list.

Output

ALCWA
,.-..-- Vol unit

Table

space obtained
(except for ISAM)

SlOT

1:1}
(I)

a e·
::I

~

a::
(I)

~
o
o
"0
~ a o·
::I

~

W
0\
~

~-CY

Diagram 14-12. IEFAB48S - Recovery Allocation (part 6 of 8)

Extended Description

3 Generic allocation allocated scratch requests only
if they could be completely allocated to mounted

volumes - for example, if a SlOT needed two volumes
and two units, it was allocated only if two mounted

volumes were available. In this step, Recovery Allocation
processes scratch requests not allocated during generic
allocation. This step is not performed if volume mounting
is not allowed (as indicated in the function map of the
common allocation parameter list - see figure 2-27).

a) Recovery Allocation first processes mUlti-unit/multi­
generic requests (that is, multi-unit requests that are
eligible to more than one generic) that must be allo­
cated to a single generic. (Allocation of a single request
to more than one generic device type is allowed only
for tape requests; this is possible because of the dual­
density feature.) Nonspecific Volume Allocation Con­
trol will try to allocate as many of the secondary unit
requests as possible to mounted volumes. The follow­
ing steps are performed:

• For each multi-unit/multi-generic request, Recovery
Allocation determines which generic eligible to the
request contains the most mounted volumes that
can be allocated to scratch requests. (If no mounted
volumes are found in any of the eligible generics,
the SlOT is marked ineligible (SIOTGIGN=1) so that
Nonspecific Volume Allocation Control will not try
to process it.) The EDLNSCNT field of the EDL con­
tains the number of mounted volumes that can be
allocated to nonspecific requests. IEFAB481 (Elim­
inate Ineligible Groups) updates the EDL and the
algorithm tables by marking as ineligible all generics
except the generic selected.

Module Segment

IEFAB485 SCRATALG

IEFAB485 SCRATALG

IEFAB485 PICSCRAG

IEFAB481

-~,

Extended Description

• Recovery Allocation searches the lOS UCB LUT for
units eligible to satisfy scratch requests. To be eligible,
a UCB must meet the following conditions: the unit
is an unallocated tape or a shareable direct access
device; the unit is online, ready, and not pending
offline; no mount or unload is pending for the unit;
the unit is not in use by a system task UCBNA LOC=Q);
the use attribute is public or storage, not private; and
no other request is waiting for this unit. Pointers to
eligible UCBs are placed in a UCB candidate list to be
used by Nonspecific Volume Allocation Control.

• Nonspecific Volume Allocation Control allocates as
many secondary unit requests as possible to mounted
volumes. (The function map in the parameter list for
Nonspecific Volume Allocation Control indicates
"partially allocate" - that is, allocate only secondary
unit requests.) For details on Nonspecific Volume
Allocation Control, see the M.O. diagram
Nonspecific Volume Allocation Control
(lEFAB436L

• Recovery Allocation issues a FREEMAIN macro
instruction to release the UCB candidate list.

'-_7

Module Segment

IEFAB485 SCRAMLST

IEFAB436

IEFAB485 SCRATALG

~ Diagram 14-12. IEFAB485 - Recovery Allocation (part 7 of 8)

...
.@
~
N

I
i
f
~
[
CD
W

'< fIj
N

i
w
~ -

Input

ALCWA

Count
Table

A LCWA

1st SlOT

Count Table

I TOTREQS=O I

Process

3 (continued)

B) Try to allocate remaining
scratch requests via
algorithm.

If all requests are satisfied,
return to caller.

4 Consider offline and/or

Return to
Common
Allocation
Control
(lEFAB42U

Output

Requests satisfied
or

Job cancelled
or

Allocation instructed to wait with or without
holding resources already allocated.

Return
to

See Offiine/ Allocated Device Allocation
OEFAB486)

Common
Allocation
Control
(lEFAB421)

t"-l
(1)
n

S·
::I
~

~
~
:::s­
O
Q,

o
o
'0
(1)

i3
S·
::I

IN
W
0\
VI

~

Diagram 14-12. IEFAB485 - Recovery Allocation (Part S'of S)

Extended Description

3 (Continued)

b) Allocation via Algorithm attempts to allocate all remain­

ing scratch requests, including those secondary unit
requests that Nonspecific Volume Allocation Control

was unable to allocate. For details on Allocation via

Algorithm, see the M.O. diagram Allocation via

Algorithm (lEFAB476l.

4 This step is performed only if:

• all requests still have not been allocated; and

• this allocation is allowed to consider offline and/or
allocated devices (as indicated in the function map of

the common allocation parameter list - see

figure 2-27).

If requests remain to be allocated, but neither offline nor

allocated devices can be considered, Recovery Allocation
returns to the caller and further processing is terminated.

Otherwise, Offline/Allocated Device Allocation receives

control.

Offline/Allocated Device Allocation first determines if

all requests can be satisfied by considering offline and/or

allocated devices. If not, this allocation is terminated. If

all requests can be satisfied, the following processing

occurs:

Module

IEFAB476

IEFAB485

IEFAB486

~,--~7

Segment Extended Description

a) Requests eligible to available devices are allocated.

b) For each request that cannot be allocated to an avail­

able device, IEFAB487 (Allocation Recovery Interface

with Operator) queries the operator for instructions.
The operator can:

• Cancel the job. Recovery Allocation returns to
Common Allocation Control.

• Instruct allocation to use an offline device, which
allocation will then bring online .

• Instruct allocation to wait for an allocated device(s),
holding resources. Recovery Allocation returns to
Common Allocation Control, which calls I EFAB491
(Wait Holding Resources). IEFAB491 waits for the

needed unit(s) to be unallocated and then allocates

the outstanding requests. For details, see the

M.O. diagram Common Allocation Control
(lEFAB421).

• Instruct allocation to wait for an allocated device(s),
without holding resources. Recovery Allocation

returns to Common Allocation Control. Common

Allocation Cleanup handles the wait-without­

holding-resources situation - see the M.O. diagram

Common Allocation Cleanup (IEFAB490).

For details on Offline/Allocated Device Allocation, see

the M.O. diagram Offline/Allocated Device Allocation
(lEFAB486).

Error Processing

An error in any routine causes control to be returned to the

calling routine.

In the event of an abnormal termination, the EST AE

exit routine established by IEFAB421 performs any

necessary cleanup.

Module

IEFAB478

IEFAB487

"'~_J

Segment

<:
C/J
N

o
W

00
o
~

~
~
0'1

o
fIl

~
N
fIl

I
ci
(1;'

j
< o
E' a
(D

C.N

~
N
Q
C.N
00

~

Diagram 14·13. IEFAB486 - Offline/Allocated Device Allocation (part 1 of 12)

Input

ALCWA

ENTRY from
IE F AB485 - Recovery Allocation

Function Map , Offline/Allocated Device Allocation

1 Update algorithm tables to
indicate offline and/or allocated
devices should be considered.

Output

"--___ IAL~tf~:~~;tth } Offline and/or
allocated devices
marked eligible

ALCWA Algorithm

2 Determine if all requests can be - ..
satisfied by considering offline
and/or allocated devices.

• If not, return to Caller.

ALCWA

3 Ensure that each mUlti-unit/ - ...
multi-generic request can be
allocated to a single generic
device type, if necessary.

• If multi-unit/multi-generic
request cannot be
allocated to single generic,
return to caller.

Return to Recovery
Allocation· (I E F AB485)

Tables - updated by Cover/Reduce
--- Algorithm

1st SlOT
-----,

} SlOTs and
EDLs updated
if necessary

CIl
~
n g.
=
~

== ~ g
Q.

o
o

"0
~
~ o·
=
~
~
0\

~ "'-_J

Diagram 14-13. IEFAB486 - Offline/Allocated Device Allocation (part 2 of 12)

Extended Description Module Segment

ENTRY Offline/Allocated Device Allocation is called by
Recovery Allocation (lEFAB485) only if the

following conditions are true:

• all requests still have not been allocated; and,

• this allocation is allowed to consider offline and/or
allocated device (as indicated in the function map of
the common allocation parameter list - see figure 2-27).

1 Offline/Allocated Device Allocation updates the IEFAB486 AlGAPREP
algorithm tables to indicate that:

• Allocated devices can be considered if the function map
indicates this allocation can wait for allocated devices.

• Offline devices can be considered if the function map
indicates this is allowed.

Note: The algorithm tables are always updated inat least
one of the preceding ways; if neither offline nor allocated
devices could be considered, Offline/Allocated Device
Allocation would not have received control.

2 The Cover/Reduce Algorit~m is called to determine: IEFAB480

• If all outstanding requests can be satisfied by consider­
ing offline and/or allocated devices.

• The device groups from which unallocated requests should
be allocated. The algorithm's selections are indicated in the
algorithm tables.

If all requests cannot be satisfied, this allocation is ter­
minated; Offline/Allocated Device Allocation returns to
Recovery Allocation.

3 When the algorithm chooses devices to be allocated to
requests, it does not ensure that a multi-unit request

eligible to more than one generic is allocated to a single
generic. (Only multi-unit tape requests can be allocated to
more than one generic, because of the dual density feature.
Each multi-unit request that must be allocated to a single
generic - each MUG request - was assigned an id
(SIOTAFID'i 0 in the SlOT) by IEFAB472 during generic
allocation. Requests that specify affinity to a MUG request
were assigned the same SIOTAFID.) The purpose of this
step is to ensure that each MUG request will be allo~ted
to a single generic. If this is not possible, the allocation is
failed .

IEFAB486

'-~ __ 7

Extended Description Module Segment

Two processes are performed to ensure that MUG requests
can be allocated correctly:

a) IEFAB474 (Process Multi-Unit/Generic Requests) locates IEFAB474 HOWAlGC
and processes each MUG request assigned to more than
one generic by the algorithm. IEFAB474 tries to satisfy IEFAB474 FORCEGEN
each such request by considering the units that the
algorithm selected for the requests and the excess
(unused) units in each acquired generic to which the
request is eligible. If one of the eligible generics can
satisfy the request (by considering only the excess units
and the units already assigned to the request), IEFAB474
indicates its selection in the algorithm tables; IEFAB481 IEFAB481
(Eliminate Ineligible Groups) updates the EDl and the
algorithm tables to mark every other generic ineligible
(thereby preventing the algorithm from rearranging
this request to other generics) and sets to zero the
SIOTAFID field (thereby indicating that the MUG
request is successfully processed). If IEFAB474 cannot IEFAB474 GIVEBACK
successfully process the MUG request, it updates the
algorithm tables to cancel the algorithm's selection of
units for this request; the request will then be handled
in step 3b.

IEFAB481 is also called to update the algorithm tables IEFAB481
and EDl and to set to zero the SIOTAFID field for
MUG requests that the algorithm did assign to a single
generic.

b) Offline/Allocated Device Allocation processes any MUG IEFAB486 FORCMUlT
requests that were not successfully handled by the
algorithm or by IEFAB474 (SIOTAFID'iO). For each
request, IEFAB486 considers each generic eligible to the
request: it temporarily marks all other generics ineligible
in the algorithm tables and then recalls the algorithm.
This is repeated for each eligible generic until a generic
is found that can satisfy the request or until all eligible
generics have been considered. If no single generic can
satisfy this request, the allocation is failed; IEFAB486
returns to Recovery Allocation. Otherwise, IEFAB481 IEFAB481

updates the algorithm tables and the EDl to permanently
mark every other generic ineligible and sets to zero the
SIOTAFID field.

~ \ Diagram 14-13. IEFAB486 - Offline/Allocated Device Allocation (part 3 of 12)
00

~
N
fI'J
'< ..
9
i n
t:

f
f
w

~
N
.:;0

t
II
w
~ -

Input

ALCWA DSAB TlOT UCB

.Process

4 Unallocate requests. that must
be rearranged.

5 Validity check unallocated
requests that require a specific
volume:

Output

ALCWA

U
· space released

. . ·for unal.,ocated
requests

ALCWA

• If volume is permanently
resident or reserved and
unit;is eligible'lto the
request, allOCate request.- ...,

{':.<.""

~.spaceobtained L.::::1 (exceptfor-ISAM)

DSAB TIOT-

~ '----'"

Diagram 14-13. IEFA8486 - Offline/Allocat«i Device Allocation (Part 4 of 12)

Extended Description Module Segment Extended Description Module Segment

4 In order to find sufficient units to allocate a request, • If another request(s) indicates unit affinity to this< IEFAB442
the algorithm (called in step 2 and step 3b) might request, IEFAB442 cancels the unit affinity by IEFAB442 INCRUNIT'

have had to rearrange requests already aHocated - that is, increasing the number of units required. (Unit·
indicate that an allocated request must be assigned to a affinity can be either implied or explicit- see
different device group in order to free units needed to "Selected Terms' Used in Allocation/Unallocation"
satisfy an unallocated request. Requests to be rearranged in the "Introduction to Allocation/Unallocation.")
are indicated in the request list entry of the algorithm If, as a result of increasing the unit requirements, a
tables - the number of units already allocated SlOT would require more'than 59 units; the alloca-
(CVRGRPAL) is greater than the number of units the tion is failed. Otherwise, the unit requirements are
algorithm selected for allocation ·(CVRGAlU. The increased and IEFAB4F2 updates the algorithm IEFAB4F2
purpose of this step· is to unallocaterequests that must tables to reflect the changed unit requirements.
be rearranged. • IEFAB434 (Allocate Request to Unit) allocates the IEFAB434
IEFAB477 (Unallocate Requests to be Rearranged) IEFAB477 request. For details onIEFAB434, see the
updates the TlOT, volunit table, SlOT and the UCB for M.O. diagram Allocate Request to Unit
each request to be unallocated; Common Unallocation IEFAB4AO (I E FAB434).
Control releases any space obtained for the requests. • IEFAB441 (Volume Validity Checker) marks the IEFAB441 DOARURTN·

5 The purpose of this step is to validity check. unal- volunit entry as allocated and decreases the

located requests: to determine if.a volume needed appropriate counts in the count table. If the SlOT

by an unallocated request is mounted, and if the volume is now completely allocated, the SlOT is also

is mounted, whether the request can be allocated. marked allocated and the TOTR EQS field in the

Offline/ Allocated Device Allocation scans the volunit IEFAB486 ENDVAlID count table' is decreased,

table to find unallocated requests that require a specific d) If the volume is not permanently resident or reserved,
volume; IEFAB441 (Volume Validity Checked performs IEFAB441 I EFAB441 (Volume Validity Checked determines if IEFAB441
the validity check for each needed volume. the device group containing the unit has.been serialized:

IEFAB441 scans the EDT group entries to determine if the • For the direct access device class, .retry ismecessary if
volume is mounted. If the volume is not mounted, the the device group on which the volume is mounted is not
validity check is unnecessary and processing continues with serialized. For the tape device class~ the-group on which
step 6. Otherwise, IEFAB441 performs'the following the volume is mounted may be serialized, but a retry is

!;Il checks: still necessary if the devices are compatible, but the' (D

Sl a) The unit containing the volume must not be in use by device on which the volume is mounted belongs to a e' ::s a system task (UCBNALOC=O). If it is, this allocation generic device type' other tham the.first device type in
~

is failed. the eligible devices ·!ist·(.EDL). Offline/Allocated

== b) The device type of the unit containing. the volume is IEFAB441 CHEKTYPE
Device Allocation returns to Recovery Allocation; the

(D

;.
compatible with the requested device type. If not,

retry situation will be handled by Common Allocation
.&. Cleanup (seethe.M.O. diagram Common Allocation
0 this allocation is failed; Cleanup (lEFAB490).)
"'" 0 c) If the unit containing the volume' is in a serialized IEFAB441

• If the device group is serialized, but the unit allocated "C
(D device group and the volume is permanently resident .. to another user, IEFAB441 (Volume Validity Checker} ~

or reserved, theUCB must be included in the EDl IEFAB441 SERCHEDl g. indicates that this allocation must w~t for the unit. (The
:I for this request - that is, the unit is eligible.to this wait condition is processed in step 9 of this diagram.)
IoN reqiJest. If not, this allocation is failed. If the unit is
W eligible, the following processing is performed: • If the device group is serialized and the unit is not
0'1
\Q allocated, IEFAB49C unloads the volume. IEFAB49C

~ Diagram 14-13. IEF AB486 - Offline/Allocated Device Allocation (part 5 of 12)

~

i
~
~

~
i
51

i t)'

r-' r
~
~
J
(II

w

~
~

'" i-
S
w
~ -

Input

ALCWA

Count
Table

SlOT
Volunit
Table Algorithm

Tables

CVT . ~ I EZSSC

I CVTICB V I. ICBME 1
Parameter List) UCB Candidate List

~ ~ I~----~

UCB
Candidate List

Process Output

5 (continued)

• If volume is removable,
device group is serialized,
and unit is unallocated, '., I't;{
unload volume.

• If error or retry situation is
detected, return to caller.

6 Allocate requests that can be
allocated to available devices.

a) Build list of eligible units.

b) Perform mount equalization ,,%I ,-A;
for Mass Storage System
(MSS) request.

c) If necessary, interface with
System Resources Manager
to select unit to allocate.

~ volume unloaded

Parameter List

UCB
Parameter Candidate List
List

selected
entry

~
(D

~
~.

:::I

~

~

Diagram 14-13. IEF AB486 - Offline/Allocated Device Allocation (part 6 of 12)

Extended Description

6 IEFAB478 (Allocate from Groups the Algorithm
Picked) allocates requests that can be allocated

at this time to available devices. IEFAB478 scans the SlOT
chain for unallocated SlOTs; for each unallocated volunit
entry, the following steps are performed:

a) IEFAB478 builds a list of UCBs (UCB candidatelisd
that are included in a device group selected by the
algorithm and that meet the following conditions:

• The UCB is online and unallocated.

• The UCB is not in use by a system task.

• The volume on the unit is not permanently resident
or reserved.

The EDL for the SlOT contains the addresses of UCBs
in the device groups eligible to the request. If the UCB
candidate list contains no entries - that is, no eligible
units meet the preceding conditions - IE F AB478
locates the next unallocated volunit entry to be
processed.

b) If the request is for a Mass Storage System (MSS)
device, I EFAB478 interfaces with ICBME, which
will return a preferred list of UCBs. This list will
then be used to merge into and update the UCB
candidate list. (See OS/VS2 Mass Storage System
Communicator (MSSC) Logic for information on
module ICBMEJ

c) If the UCB candidate list contains more than one entry,
IEFAB478 interfaces with the System Resources
Manager to select the device to be allocated. IEFAB440
builds a list of allocated UCBs. The System Resources
Manager uses this list and the UCB candidate list to

Module Segment

IEFAB478

IEFAB478 GENAPREP

IEFAB478 MONTEQAL
ICBME

IEFAB478 GALGALOC
IEFAB440

at: determine which unit should be allocated.
(D

[
Q
0-1)

o
"C
~ a
~.

:::I

~
w
~ .-

~ Diagram 14-13. IEFAB486 - OfOine/Ailocated Device Allocation (part 7 of 12)
.....
N

i
~
N
fIJ

I
i-
f
~
g-
o
w

~
N

i: r
5
w
~

Input

Parameter UCB
List Candidate List

~ selected. I
~

ALCWA SlOT -

A LCWA Volunit Table
..--~

Volunit Table

Process Output

6 d) Allocate request to unit. 1&1 ...

e) Release UCB .candidate list; UM "Q
update volu"'t table, count
table, and if necessary,
SlOT.

7 Release device groups no AU ~Jj
longer needed.

ALCWA

~ space obtained
(except for ISAM)

ALCWA 1st SlOT Volunit Table
~

Device groups no longer needed released

updated

fI'.)

S!
S-
:J

~

a:: .[
2-
o ..,
i e-
:J

~
w
w

~ ~~J'

Diagram 14-13. IEFAB486 - Offline/Allocated Device Allocation (part 8 of 12)

Extended Description

6 (Continued)

d) IEFAB434 (Allocate Request to Unit) allocates theunit.
For details, see the M.O. diagram, Allocate Request to
Unit (lEFAB434).

e) IEFAB478 releases th~ UCB candidate list, marks the
volunit entry as allocated, and decreases the TOTVOLUN
field in the count table. If the SlOT is completely
allocated, IEFAB478 also marks the SlOT as allocated
and decreases the TOTREQS field in the count table.

7 Offline/Allocated Device Allocation determines which
device groups are no longer needed and can be released.

Device groups that must remain serialized include those
that:

• The algorithm indicates might be used to satisfy an
unallocated request.

• Include a specific offline or allocated unit that is needed
by this allocation.

• Include an allocated volume that is needed by this
allocation (for example, the volume must be moved to
another unit when it is unallocated)'

• Include a direct access unit that requires a scratch
volume to be mounted.

The Allocation Queue Manager is called to release the
device groups that are no longer needed.

Module Segment

IEFAB434

IEFAB478 GENAPREP
IEFAB478 GARURTN
IEFAB478

IEFAB486 FREGROUP

IEFAB4FA

--~

~ Diagram 14-13. IEFAB486 - Offline/Allocated Device Allocation (part 9 of 12)
.....
~

i
~
N
fI'J

I
i
(s'

t:

!
~
~
(II

~

'<
fI'J
N

i
PB
~

~

Input

ALCWA ~IOS UCB LUT .------..--- ~ ,

ALCWA Function Map
i

A LCWA 1st SlOT

Process

8 Determine if requests that
are waiting for volumes can
be allocated to available
deviCes when the volume
becomes unallocated.

Output

ALCWA updated
~

9 Inform operator of recovery ". r---vfL\
situation.

Process requests that must wait
for a specific allocated unit.

a) Issue messages to
operator.

b) Process operator's reply.

• If CANCEL, return
to caller.

• If WAIT, continue.

c) Update volunit entry.

11 Process remaining unallocated
requests.

a) If request requires offline or
allocated device:

• Issue message to
operator.

• Process operator's reply.
If CANCEL, return to
caller.

ALCWA

Volunit Table­
updated

Return to Recovery Allocation (I EFAB485)

(I}
I'D a o·
= ~
a::
I'D

[
o
o-t)

o
"t:I
~
e!­
o"
=
<...I
c:w
til

~ "'-~

Diagram 14-13. IEF AB486 - Offline! Allocated Device Allocation (part 10 of 12)

Extended Description

8 This step determines if requests that must wait for
a needed volume(s) to be unallocated (so the volume

can be moved to an eligible device) can be allocated to an
available unit, once the volume is unallocated. IEFAB486
searches:

• the units in each serialized device group (by means of
the EDT and lOS UCB LUT) to locate available units;
and,

• the algorithm tables to determine if an available unit
can be used to allocate a request waiting for a volume.

For each request that can be allocated to an available
unit, IEFAB486 updates the algorithm tables to bind
the request to the device group containing the available
unit, and updates the volunit table to indicate that the
request can be allocated to an available unit
(VURCVYPR=1) .

The Cover/Reduce Algorithm is called to limit its final
selection of device groups from which to allocate.

9 IE F AB487 (Allocation Recovery I nterface with
Operator) issues message IEF2441, informing the

operator of the number of units needed to complete
this allocation. If there are requests that require either
an offline or an allocated unit (but are not eligible to
both), a second line of the message is issued, indicating
the minimum number of offline and/or allocated devices
that are needed. This message is for information only
and does not require an operator response.

To determine the number of units needed, IEFAB487
searches the volun~t table (for demand requests) and the
algorithm tables (for non-demand requests) for each
unallocated volunit entry.

10 IEFAB487 (Allocation Recovery Interface with
Operator) first processes demand requests if the

needed unit is allocated, and requests for a specific volume
that is mounted on an ineligible allocated unit. IEFAB487
searches volunit entries of each unallocated SlOT to locate
these requests.

a) IEFAB487 issues message IEF4881 for each request,
informing the operator and appropriate device pools
of the allocated unit or the volume on an allocated
unit that is required. No operator response is required

Module Segment

IEFAB486 SETHANDL

IEFAB480

IEFAB487 RHDRMSGS

IEFAB487 SPECWAIT

IEFAB487 SPECWAIT

Extended Description

to this message. IEFAB488 (Allocation Recovery Reply
Options Processor) then issues message IE F238D,
requesting a reply from the operator. In this case
(specific waits), the only valid replies are CANCEL or
WAIT .

b) IE F AB488 processes the operator's reply:

• If the reply is invalid (it is not CANCEL or WAIT),
IEFAB488 issues an invalid reply message (lEF4901)
and then reissues message IEF238D .

• If the reply is CANC E L, IE F AB488 returns to the
caller; this allocation will be failed.

• If the reply is WAIT, IEFAB488 sets an indicator to
note a reply of WAIT was processed; this allocation
continues to process unallocated requests.

c) IEFAB487 updates the volunit entry of each request
requiring a specific allocated unit to indicate that no
further recovery processing should be done
(VURCVVPR=1).

11 IEFAB48A (Process Offlines/Allocateds) searches
the volunit entries of each unallocated SlOT to

locate requests that have not yet been processed
(VURCVVPR=O). Remaining requests fall into two
categories: a) an offline or allocated device is needed to
satisfy the request; b) the request is not allocated but is
not eligible to any offline or allocated devices. (This
situation can occur if a needed device was brought online
before this step.)

a) If an offline or allocated device is needed for the request,

'_3'

Module Segment

IEFAB488 BLDRMSG

IEFAB488

IEFAB487 SPECWAIT

IEFAB48A

IEFAB48A issues the following messages to the operator IEFAB48A
(and to appropriate device pools):

• Message IEF4891 informs the operator of the number IEFAB48A BLDDDHDR
of units that must be made available before the
request can be allocated.

• If offline devices are needed, message IEF2471 lists IEFAB48A BLDOLMSG
the devices that could be allocated to the request, if
the status of the devices were changed. The message
indicates which devices are offline or not accessible
(for example, the channel is offline).

Step 11 continued on Part 11

~ Diagram 14-13. IEFAB486 - Offline/Allocated Device Allocation (part 11 of 12)
.....
0\

i
~
W
til

'i a
t"'"
ti
~.

t"'" cr
!
< a c
:I
CD
w

'< til
W

'" 2. ::
I:
w
~

Input

A LCWA 1st SlOT

ceifwAITrePlied

Process Output

ALCWA

b) If no offline or allocated ~«
device is eligible to the
request, try to allocate
request to devices that have
become available.

.A ,/ 12 If operator replied WAIT,
query operator for type of
wait.

Return to Recovery Allocation
(lEFAB485)

Extended Description Module Label Extended Description

11 a) (Continued) IEFAB488 issues message IEF238D to IEFAB488 BLDRMSG
the operator, listing the possible replies, and then

processes the operator's reply:

• If the reply is invalid, IEFAB488 issues message
IEF4901, indicating an invalid reply, and then
reissues message IEF238D.

• If the reply is CANCEL, this allocation is failed;
IEFAB488 returns to its caller.

• If the reply is WAIT, the Cover/Reduce Algorithm is
called to select the device group to wait for and to
update the algorithm tables; an indicator is set to note
that a WAIT reply was processed. This allocation
continues to process unallocated requests.

Step 11 continued on Part 12

Module Label

IEFAB488 PRCWAIT

'_7

Diagram 14-13. IEF AB486 - Offline/ Allocated Device Allocation (Part 12 of 12)

Extended Description Module Segment Extended Description Module Segment

11 a) (Continued)

• If the reply is a valid device name, IEFAB488 checks IEFAB488 PRCDEV allocating from the UCB candidate list, I EFAB489 ensures IEFAB489 CHKCANDS
to ensure that the device is useable and is needed by that it will not be allocating an available unit intended for
an unallocated request. If not, IEFAB488 issues IEFAB488 INVLRPLY a request that is waiting for a volume - see step 8.)
message IEF490l, indicating an invalid reply, and
then reissues message I EF238D. If the device is useable • If the request is for a Mass Storage System (MSS) device, IEFAB489 MONTEOAL
and needed, I EEVDEV determines if the device can IEEVDEV I EFAB489 interfaces with ICBME, which will return ICBME
be brought online and IEFAB4F8 brings the device IEFAB4F8 a preferred list of UCBs. This list will then be used to
online (if the operator did not). IEFAB489 allocates IEFAB489 merge into and update the UCB candiate list. (See
the device - IEFAB489 searches the rest of the SlOT OSIVS2 Mass Storage System Communicator (MSSC)
chain to try to allocate any remaining requests to Logic for information on module ICBME.!

< available devices. For details on the processing of en
IEFAB489, see step 11b. • If the UCB candidate list contains more than one entry

N

0
IEFAB489 interfaces with the System Resources Manager. IEFAB489 ALOCENT

w
b) If no offline or allocated device is eligible to the Oc

request, an eligible offline unit must have been brought IEFAB440 builds an allocated UCB list. The System IEFAB440 0
.;;:..

online by the operator. IEFAB489 (Recovery Allocation IEFAB489 Resources Manager uses this list and the UCB candidate list

of Online Devices) tries to allocate this request and to determine which unit should be allocated.

any other unallocated requests to online, unallocated • IEFAB434 (Allocate Request to Unit) allocates the request. IEFAB434
units. (lEFAB489 searches the SlOT chain to allocate For details, see the M.O. diagram Allocate Request

as many requests as possible to devices that have become to Unit (I EFAB434).
available')

• The Cover/Reduce Algorithm updates the algorithm tables_ IEFAB480
IEFAB489 first attempts to allocate demand requests IEFAB489 CHKDMNDS
that needed an offline unit. For each demand request, 12 If the reply to any of the requests processed in steps IEFAB487 GWAITYPE

IEFAB489 determines if the needed unit is now online. 10 or 11 was WAIT, IEFAB487 issues message

If it is, IEFAB434 (Allocate Request to Unit) allocates IEFAB434 IEF433D, asking the operator if this allocation should wait

the request. (For details on IEFAB434, see the with or without holding resources. ALCWA is updated to

M.O. diagram Allocate Request to Unit (I EFAB434).) indicate the type of wait (INDWAIT=1 or INDREOV=1)

IEFAB489 then determines, for each device group in IEFA8489
and IEFA8487 returns to its caller.

en the system, if the number of offline units in the group If \he reply is NOHOLD (indicating wait without holding IEFAB490
(;)

has decreased. For each device group, IEFAB489 builds resources), Common Allocation Cleanup will unallocate (") g.
a count of offline units by examining the group entry in the requests that have been allocated and reattempt the alloca-

:s
N EDT. If the count of offline devices is less than the number tion - see the M.O. diagram Common Allocation

::: of offline devices in the algorithm tables (GRPOFFLN), Cleanup (IEFAB490). If the reply is HOLD, IEFAB491 IEFAB491
(;) IEFAB489 updates the algorithm tables and attempts to (Wait Holding Resources) waits until the needed devices
;.

allocate non-demand requests eligible to that device group: are unallocated and then allocates the requests -- see the c
Q.

M.O. diagram Common Allocation Control (lEFA8421). c • IEFA8489 determines if any of the unallocated volunit IEFAB489 CHKNDMND -,
0 entries are eligible to the device group being processed Error Processing -:s
(;) (that is, the device group whose count of offline units has

An error in any routine causes control to be returned to the ~

decreased). For each eligible request, IEFAB489 builds a g.
calling routine. In the event of an abnormal tl'rmination, :s UCB candidate list containing the units that are eligible, IEFAB489 ALOCREO

available, and not needed by a demand request. (Before
the ESTAE exit routine establishf~d by IEFA8421 performs

w any necessary cleanup. ~
-...J
-...J

~ Diagram 14-14. IEFAB490 c- Common Allocation Cleanup (part 1 of 8)
.....
00

~
~
N
("I)

'<

I
~
~.
t::

!
~ c a
(D

~

~
N
(:)
~

00
~ -

Input -ALCWA

ALCWA

D

ENTRY from IEFAB421 -
Common Allocation Control

Common Allocation
Parameter List _ D (output of step A21

Process Output

Common Allocation Cleanup:
Complete and cleanup allocation
processing, depending on the existing
situation - see Situation A, B, and C
in this diagram.

Situation A: All requests are not
satisfied; retry is indicated or operator
authorizes allocation to wait without
holding resources.

A 1 Unallocate allocated requests.

A2 Build parameter list to
reinvoke Common Allocation
Control.

A3 Release device groups; for wait- --' ------0
without-holding resourceS':J]ait
for needed units.

A4 Release allocation tables.

AS Reinvoke Common Allocation
Control.

ALCWA 1st SlOT JFCB rn :r~LJ
Last ~IOT ~JFCB c:::r L:J

A Volumes
Ureleased

DSABs and TIOT
entries released;
UCBs updated as
unallocated.

Common Allocation
Parameter List

o
Device groups
and allocation
tables released.

Return to Common Allocation
Control (lEFAB421)

CI}
~
(") g.
= N

s:
~

[
o

6
'1:1
~
~
0'
=
w
~
\l:)

~

Diagram 14-14. IEFAB490 - Common Allocation Cleanup (part 2 of 8)

Extended Description

Note: The processing performed by Common Allocation
Cleanup depends on the situation that exists when Common
Allocation Cleanup is called by Common Allocation Con­
trol. One of three distinct situations exists:

A All requests still are not satisfied and either retry is
indicated or the operator authorized allocation to wait
without holding resources. See Situation A (steps
A 1-A51.

B All requests are satisfied. See Situation B (steps
B1-B8)'

C A terminating error occurred during allocation or the
operator cancelled the allocation. See Situation C
(steps C1-C2).

SITUATION A If not all requests have been satisfied,
the allocation will be reattempted in
two cases:

• Retry is indicated in ALCWA (lNDRETRY=l). Retry sit­
uations are detected within Generic Allocation Control

and within Recovery Allocation: a needed volume is
mounted on a unit 1) included in a device group that
has not been serialized, or 2) in the case of tapes, on
a unit not of the generic device type being considered.
The allocation will be reattempted and all needed
device groups will be serialized. For a further
explanation of retry, see "The Retry Situation"
in the "Introduction toAllocation/Unaliocation."

• A request(s) could not be satisfied because a required unit
or volume is allocated to another user. If the operator
authorizes, Common Allocation Cleanup will wait without
holding resources until the needed unit or volume is unal­
located. At that time, the allocation will be reattempted.
(The operator can still cancel the job while allocation is
waiting for the required resources to become available.)

Module Segment

,,~'"

Extended Description Module

A1 Common Unallocation Control is called by Common IEFAB4AO
Allocation Cleanup to unallocate all requests already

satisfied except for: (1) dummy, subsystem, and via
requests; and (2) requests that were completely allocated to
permanently resident or reserved direct access volumes. For

details on Common Unallocation Control, see the M.a. dia­
gram "IEFAB4AO - Common Unallocation ControL"

'- -""

Segment

A2 Common Allocation Cleanup builds the Common IEFAB490 FINISALC
Allocation Parameter List, which will be the input to

Common Allocation Control when it is reinvoked. For retry,

the function map indicates that all device groups in a generic
must be serialized; during allocation processing, the perti­
nent generic is determined by checking the generic device
types to which a SlOT marked for retry (SIOTRTRY=l) is
eligible.

A3 The Allocation Queue Manager releases any device IEFAB4FA
groups still serialized by this allocation. If this alloca­

tion is to wait for a needed unit(s) to become available, the
Allocation Queue Manager is informed of the device groups
from which an allocated unit is needed. Processing continues
when the needed units are unallocated.

A4 Common Allocation Cleanup issues FREEMAIN IEFAB490 FREEGETS
macro instructions to release the volunit table,

the EDLs, any volume mount and verify request blocks,
the algorithm tables, and ALCWA.

AS Common Allocation Cleanup reinvokes Common IEFAB490
Allocation Control. (See the M.a. diagram

"IEFAB421 - Common Allocation ControL")

~

!
~
~
N ,
i ;;.
t­
az
!
<
t
(D

w

~
N

~
i
II
w
~ -

Diagram 14-14. IEFAB490 - Common Allo.cation Cleanup (part lor 8)

Input Process, 9 Output

A LCWA 1st SlOT 07 I
·'UstSIOj

Situation B: All requests are satisfied:

: : >B1 Issue messages, if s~orage requests • IIQI
. were changed to pnvate~ '2:1 &-

VM&V
A. LCWA "st SlOT. Request Block • o 1LJ

. . VM&V
Last SlOT' R'equest Block *

to.

_ • ,) B2 Mount and verify volumes.

* Exists if volume mounting required

n(:I:::~.
I 1·L.-J

: :: > 83 Obtain space for new I SAM data ~ .A;
sets.

to.

II
~1i w.,") 84 Check multi-unit tape requests.

.J\

6

Messages
Issued

~

Volumes mounted.
Space assigned for
new data sets
(except ISAM).

~ Space obtained for
~. new ISAMdata sets.

TIOTentries'
rearranged, 'if
necessary

~ "'--7

Diagram 14-14. IEFAB490 - Common Allocation Cleanup (part 4 of B)

CZl

Extended Description

SITUATION B Steps B1-B8 are performed if all requests
have been satisfied.

B1 Common Alloca·tion Cleanup searches the SlOT
chain for requests that were changed from storage to

private (SPVTAMSG=1 in the SlOT). (If insufficient storage
volumes were available to satisfy storage requests, Nonspe­
cific Volume Allocation Control changed the requests to
private.) The System Message Interface Routine issues a
"private-assumed" message for each such request.

B2 The Allocation/Volume Mount & Verify (VM&V)
Interface (I EFAB492) receives control to mount

and verify needed volumes. During allocation, a VM&V
request block was built for every request that required a
volume to be mounted. For details, see the M.a. diagram
AllocationlVolume Mount & Verify Interface (IEFAB492).

B3 Different areas of ISAM data sets (index, prime, over-
flow) can be defined on separate DD statements.

Because allocation does not necessarily allocate requests .in
the order they were coded, space for ISAMdata sets could
not be obtained as each SlOT (representing a single DD
statement) was allocated. Now that all requests are satisfied,
Common Allocation Cleanup can obtain space for ISAM·
data sets.

An ISAM request is indicated in the JFCB, pointed to by
the request's SlOT. Common Allocation Cleanup checks for
the following error conditions in ISAM requests:

• Four or more ISAM data sets are concatenated ..

a • ISAM and non-ISAM data sets are concatenated.
5·
::2 • New and old ISAM data sets are concatenated.
~

a:
~

[
o -.
o
"0
(D a
5·
::2

~ w
00 -

I. Data sets with and without automatic data set protection
are concaterated.

If any of these errors is detected, this allocation is failed -
the cleanup processing described in Situation Cis
performed.

If no error is found, Common Allocation Cleanup interfaces
with DADSM for space for new ISAM data sets.

Module Segment

IEFAB490 ASUMPVTS

IEFAB4FD

IEFAB492

IEFAB490 CHEKISAM

IEFAB490 ISAMSPAC

Extended Description

B4 This step is performed for multi-unit tape data sets
that have been allocated to both single-density and

dual-density devices. Common Allocation Cleanup switches
device entries in the TIOT, if necessary, to ensure that the
first device entry in the TIOT entry for this data set is a
single-<iensity device. (This is necessary to ensure that a
useable density will be the default, in the event that no
density wascoded.l

Module Segment

IEFAB490 DUAL TIOT

< en
t-.J

o
1...1
ex:
~

IN
~
00
t.J

o
~
<:
C"I}
t.J
C"I}

'<
~

9
S
~.
£:':
~
~
~
~
(D

w

~
~
(:,
w
00
~ -

Diagram 14-14. IEFAB490 -- Common Allocation Cleanup (part Sof 8)

ALCWA

CFi'st SlOT

I :') 85 Check multi-unit, non-specific VOLUNIT Entries

---I 1
tV JES3 requests_

DSAB

"t.. Last SlOT

l I
~. I

TIOT Device- Entries

CueB I

I I

A LCWA ... 1st SlOT .') 86 Write allocation messages, if

'~~ TIOT
v requested_

I DSAB - UCB -- l.---I
I

Function
I.,.ast SlOT

~DSABJ=
UCB

Map c:::::J
L-.5

TlOT Device Entries

-)I.

Rearranged, - ---v
if necessary

.

"'."

" Messages

I v Issued

-'x

" ~ ~., ~

~
~ e·
1:1

~

I:
~

I
o
"'" -i
I e·
1:1

~
~
w

~ ' __ 7

Diagram 14-14. IEFA8490 - Common Allocation Cleanup (part 6 of 8)

Extended Description

85 This step is performed if JES3 selected devices
for a request that required more than one non­

specific volume. Common Allocation Cleanup switches
device entries in the TI aT, if necessary, to ensure that the
order of the TIOT device entries corresponds to the order
in which JES3 selected the devices.

86 The purpose of this step is to build and issue alloca-
tion messages if they were requested (as indicated in

the common allocation function map - see figure 17).

The Allocation Message Routine (lEFAB4EE) builds the
allocation messages by scanning the SlOT chain and
locating the device entries in the TlOT for the units
allocated to each SlOT. The System Message Interface
Routine issues the messages.

Module Segment

I EFAB490 MOVETIOT

IEFAB4EE

IEFAB4FD

~ DiagrcllD 14-14. IEFAB490 -Common AUocation Cleanup (part 7 of 8)
:
~
<
rI.I
N

~ • g
I
~
e-

J
i
~
w

~
N

~

f
w
:.... -

Input

A LCWA .-----. JSCB

Process

87 Release device groups.

Output

Device groups
and allocation·
tables released.

88 Release allocation tables,.

Situation C: A terminating error
occurred or the operator cancelled the
job.

C 1 Release device groups.

- Wi " C2 Release allocation tables.

Return to Common Allocation
Control (lEFAB421)

Return to Common Allocation
Control (JEFAB421)

I ~ Device groups
and allocation
tables released.

til
g
g.
=:I

~

~
~
g
c­
o -.
o

't:S

a g.
=:I

w
~
00
CIt

~ ~,

Diagram 14-14. IEFAB490 - Common Allocation Cleanup (part 8 of 8)

Extended Description

B7 The Allocation Queue Manager (I EFAB4FA)

releases any device groups still serialized by this
allocation. (Device groups that contained units on

which nonspecific volumes were to be mounted have
not yet been released,)

B8 Common Allocation Cleanup issues FREEMAIN
macro instructions to release the volunit table, the

EDLs, any volume mount & verify request blocks, the
algorithm tables, and ALCWA.

Module Segment

IEFAB4FA

IEFAB490 FREEGETS

Extended Description

SITUATION C Steps Cl and C2 are performed if the

operator cancelled the allocation or if
an error occurred during allocation processing.

C1 The Allocation Queue Manager (I EFAB4FA)

releases any device groups still serialized by
this allocation.

C2 Common Allocation Cleanup OEFAB490)
issues FREEMAIN macro instructions to

release the volunit table, the EDLs, any volume
mount & verify request blocks, the algorithm
tables, and ALCWA.

Error Processing

Any errors during cleanup processing cause the processing
described under Situation C to be performed.

In the event of an abnormal termination, the EST AE
exit routine established by IE FAB421 performs any
necessary cleanup.

"z __ ,

Module Segment

IEFAB4FA

IEFAB490 FREEGETS

< :;r.
N

C
<..J
00
o
~

~ Diagram 14-15. \IEFAB492 - Allocation/Volume Mount and Verify (VM&V) Interface (part 1 of 4)
w
00
Q'I

ENTRY from
o
til

~
IEFAB490 - Common Allocation Cleanup Process -..& Input

2 IEFAB492 a VM & V 2
Output

N
til
'<
~

~
~
~~
t'"" g:
~
~
i:
:3
CD
w

~
N

<=>
W
00
$

* VM&V request block exists if volume(s)
must be mounted for this request.

JEFAB493 1st VM&V
Parameter Request Block

r 1~~uv~&v
DADSM
Parameter
List

I

VM&V request

Request Block

block being Volunit

'Tssed

~ Table +-1 SlOT I

IEFAB493
Parameter VM & V

List Request Block

I ti I

2

- (VM& V) Interface: Mount and verify
volumes.

: : > 1 Prepare for VM & V proc~ssing. - ..

'----

.---­
r-

: "2 Mount all volumes and verify •
v' v?lumes mounted for nonspecific ----'!iiMII--------'.ml

dIrect access volume requests.

• If mount unsuccessful, go to
step 7.

3 Process nonspecific direct access
volume requests. For each request:

a) Enqueue on volume.

• If volume cannot be used,
go to step 3c.

b) Interface with DADSM for space
(except for ISAM data sets),
• If recoverable DADSM error

occurs, go to step 3c.
• If unrecoverable DADSM

error occurs, go to step 6.
e) If volume can't be used or

recoverabl,~ DADSM error
occurred:
• Delete any data sets allocated _""""" _____ ..."

to this volume. ii0JI

• Dequeue from volume, if
necessary.

• Unload this volume and • r.J

mount and verify new volume.
- If mount unsuccessful,

go to step 6.
• Process new volume - go to

step 3a.

o

IEFAB493 1st VM&V
Parameter Request
Ust 7 Block

~' . Last VM&V >- Updated if
duplicate

Mount
Messages
Issued

,.
Request
Block

~

L.----- EJ Volume mounts
verified for
nonspecific
direct access
requests.

E§ Space obtai ned
(except for ISAM)

U Space relea",d

EJ Unacceptable volume unloaded;
new volume mounted and
verified.

til
(!l

a o·
=
~

~:::
':(!l

[
o
o
'e
~ g.
=
Cof
w
00
-..J

~ '~----.. ~ ""='----'"

Diagram 14-15. IEFAB492 - AllocationNolume Mount and Verify (VM&V) Interface (part 2 of 4)

Extended Description

ENTRY The AliocationlVolume Mount & Verify
(VM&V) Interface (IEFAB492) is called by

Common Allocation Cleanup (IEFAB490) to process
requests that require volume mounting. I EFAB492 pre­
pares for VM&V processing, calls VM&V Control to mount
and verify volumes, and interfaces with DADSM for space
for new data sets on di rect access devices.

1 To prepare for VM&V processing, the Allocation/
VM&V Interface:

• Searches the SlOT chain for VM&V request blocks,
chains them together, and places a pointer to the first
request block in a parameter list.

• If more than one request block needs the same volume,
marks as duplicates all but the first request block for
that volume.

2 VM&V Control is called to issue all mount messages
and to verify volumes mounted for nonspecific direct

access volume requests. For details on VM&V Control, see
the M.O. diagram VM&V Control (lEFAB493).

If the return code from VM&V Control indicates that the
operator cancelled the job (if the allocation is batch),
cancelled this request (it the allocation is dynamic), or the
mount failed for a Mass Storage System (MSS) volume,
control is passed to step 7. This allocation will be failed.

3 The AliocationlVM&V Interface completes the proc-

Module Label

IEFAB492

IEFAB492 VMVCHAIN

IEFAB492 VMVDUPCK

IEFAB493

IEFAB492

IEFAB492 NSPDACTL
essing of all nonspecific direct access volume requests. IEFAB492 NSPDAVOL

For each request:

a) IEFAB4FO (Conditional ENQ/DEQ Routine) enqueues IEFAB4FO
on the volume just mounted. The enqueue results in
one of the following situations:

• The enqueue is unsuccessful because the volume is
already owned by this job. The volume can be used if
the enqueue is share and no unallocated specific volume
requests need this volume .

• The enqueue is unsuccessful because another user owns
this volume and this allocation cannot share the volume;
the volume cannot be used.

• The enqueue is successful; the volume can be used.

If the volume cannot be used, processing continues with

step 3c.

Extended Description Module Segment

b) If the volume can be used and the data set is not an IEFAB492 DADSMINT
ISAM data set, the Allocation/VM&V Interface interfaces
with DADSM for space. (Space for new ISAM data sets
is obtained by Common Allocation Cleanup - see the

M.O. diagram Common Allocation Cleanup
(lEFAB490). One of the following conditions results:

• The space is successfully obtained; the next non­
specific direct access request is processed. If all
requests are processed, go to step 4.

• A recoverable DADSM error occurred (for example,
the volume does not contain sufficient space to
satisfy the request). Processing continues with
step 3c .

• An unrecoverable DADSM error occurred (for
example, the SPACE parameter was not coded). Proc­
essing continues with step 6.

c) This step receives control if the volume cannot be used
because of an enqueue error or a recoverable DADSM
error. The following processing is performed in the
event of a recoverable DADSM error:

• If any other requests were allocated to this volume,
IEFAB4AO (Common Unallocation Control)
releases the space obtained for those requests. (This
situation occurs when more than one nonspecific
request needs the same volume and one or more of
the duplicate requests has already been successfully
allocated to this volume.)

• IEFAB4FO dequeues from the volume.

For both enqueue and recoverable DADSM errors, the
Allocation/VM&V Interface rebuilds the VM&V request
block to indicate the current volume must be unloaded
andanew volume mounted and verified. IEFAB493

receives control to perform the unload, mount, and
verify. Step 6 receives control if the operator cancels
this job (for a batch allocation) or the request (for a

dynamic allocation), or if the mount Or verify fails for
an MSS volume. OtherWise, the newly mounted
volume is processed - go to step 3a.

IEFAB492 DADSERR3

IEFAB492

IEFAB4AO

IEFAB4FO

IEFAB492 VMVRQBLD

IEFAB493

Cf
~
00

&1
"< C'Il
N

i
~
~.
r'"
5'

!
~
2" a
CD
w

~
N

~

i-s
w
~

Diagram 14-1 S. IEF AB492 - AUocationN olume Mount and Verify (VM& V) Interface (Part 3 of 4)

Input

IEFAB493
Parameter 1 st VM & V rn-·stjIOck

~ LastVM&V
Reguest Block

DADSM
Parameter

~r.,JFCB

Process 9
I ~ 4 Release processed VM & V request

blocks and release device groups
still serialized.

5 Process WTOR tape and specific direct
access volume requests:

~ a) Update chain of VM & V requests.

~ b) Verify WTOR tape and specific
direct access volume requests.

W

i
R r c) Interface with DADSM if space

is required on direct access

f% volumes (except for ISAM
data sets).

: : > 6 If an error occurr~d in step 3, delete
mount messages, If necessary, and
release mount control blocks.

..

I

- m

11

I m' •

Output

Processed request blocks and device
groups releaSed.

Local 1st VM&V
Pointer iReqUest Block

c:::J-' I
'" Last VM&V

Request Block
I I

~ Volume mounts
~Verified.

~ Space obtained.

"""

> Updated

J

r M-;';;;- - -, Mount control
I Messages I blocks for this
I Deleted ..J allocation released.

L ,..--

Local : : >7 Release remaining VM & V request ,:: OW
blocks. *.11

Remaining VM&V request blocks
released.

"'I
~ Return to Common Allocation

Cleanup (lEFAB490)

CI}
<I> a
5·
= N

::
~
Q.

o,
o

'"C:I

~
5·
=
(,H

~
00
\0

~ '----- ~-J'

Diagram 14-15. IEFAB492 - Allocation/Volume Mount and Verify (VM&V) Interface (part 4 of4)

Extended Description

4 After all nonspecific direct access volume requests
are successfully processed, the Allocation/VM&V

Interface releases the request blocks associated with them.
The Allocation Queue Manager (I EFAB4FA) then releases
all device groups that are still serialized for this allocation.

5 The AllocationlVM&V Interface next processes all
tape and specific direct access volume requests:

a) The AllocationlVM&V Interface updates the chain of
VM&V request blocks so that it contains only specific
direct access requests and WTOR tape requests. (If the
mount message for a tape was issued in the form of a
WTO, it is unnecessary to verify the volume - the
volume verification is done when the data set is opened.
No further processing is required for these requests and
therefore they are released from the chain of VM&V
requests.)

b) VM&V Control verifies all remaining requests _. specific
direct access volume requests and WTOR tape volume

requests. For details, see the M.a. diagram Volume
Mount & Verify Control (I EFAB493l.

c) The AllocationlVM&V Interface interfaces with DADSM
for space if the data set is new and is not ISAM. (Space
for new ISAM data sets is obtained by Common Allo­

cation Cleanup - see the M.a. diagram Common
Allocation Cleanup (lEFAB490).) If a DADSM
error occurs, this allocation will be failed.

Module Label

I EFAB492 NSPDACTL

IEFAB4FA

IEFAB492

IEFAB492 UPDCHAIN

IEFAB493

IEFAB492 DADSMINT

IEFAB492 DADSERR2

Extended Description

6 This step is performed only if an error occurred in
step 3. In step 2, IEFAB493 issued all mount

messages and verified volumes mounted for nonspecific
volume requests; to verify volumes, IEFAB493 created
mount control blocks. (For details on both the mount
control blocks and when they are created, see the
M.a. diagram Volume Mount & Verify Control
(IEFAB493).) If an error occurs in step 3, the
mount control blocks must be released.

IEFAB49A (VM&V DOMR and Cleanup Routine)
receives control to delete mount messages for direct
access and WTOR tape volume requests; when all
messages have been deleted, IEFAB498 (MVCA Chain
Processor) releases the mount control blocks for this
allocation.

7 The AliocationlVM&V Interface issues a
FREEMAIN macro instruction to release remaining

VM&V request blocks.

Error Processing

An error in any routine causes control to be returned to
the calling routine.

An ESTAE exit routine established by IEFAB493
deletes mount control blocks for this allocation if an
abnormal termination occurs in step 3.

"-_7

Module Segment

IEFAB49A

IEFAB498

IEFAB492

< c;n
N
o
~

00
o
+:-

w

~
Q

~
"< f'-)
N
f'-)

'<
~
§

i
(;'

i
~
i
(D

w

~
N
b w
00

~

Diagram 14-16. IEFAB493 -Volume Mount and Verify (VM&V) Control (Part 10f6)

Input -B493 1st VM&V

ENTRY from caller­
(see extended description)

I ~p:JeqUestrock
,ast VMrV Request Block

VM&VCount
Table

D
Parameter
List

Process

Volume Mount and Verify
(VM& V) Control: Unload,
mount and verify volumes.

1 Build VM & V count table to
determine types of requests
to be processed,

2 If there are unload or rewind
request(s) to be processed,
unload or rewind volume(s).

Output

Local VM&V

rOinte
,] .1 Count rable

Unload
Message(s)
Issued

VM&V Count
Table - Updated

D

tI)
(1)
(') g.
::I
t-.J

3:
(1)

[
o
o

"'0
(1) ...
~ g.
::I

~
~
-..0 -

~ '~7

Diagram 14-16. IEFAB493 - Volume Mount and Verify (VM&V) Control (Part 20f6)

Extended Description

ENTRY Volume Mount & Verify (VM&V) Control
has three functions: to unload or rewind a

volume; to mount a volume; and to verify that a volume
mounted by the Mount Control Routine is an acceptable
volume (verify label or verify device end!' Not all of these
functions are necessarily performed each time VM&V Con­
trol is called - the functions performed depend on the
caller:

• The Unload Interface (IEFAB49C) calls VM&V Control
to unload or rewind a volume.

• The Allocation/VM&V Interface (IEFAB492) calls
VM&V Control to do one qf the following: mount all
volumes and verify those volumes mounted for non­
specific volume requests; unload an unacceptable volume
and mount and verify a new volume; verify volumes
mounted for specific direct access volume requests and
WTOR tape volume requests.

• The Verify Control Routine (IEFAB496) calls VM&V
Control to unload an unacceptable volume and to mount
an acceptable volume.

The parameter list passed to VM&V Control includes a
pointer to the chain of VM&V request blocks - the VM&V
request blocks indicate what functions must be performed.

1 To determine what functions must be performed
(unload/rewind, mount, or verify), VM&V Control

searches through the chain of VM&V request blocks and
builds a VM&V count table. The VM&V count table con­
tains fields that indicate the number of:

• Unload or rewind requests.

• Mount requests.

• Verify requests (to verify a direct access label or to
verify that a device has become ready).

The VM&V count table also includes a field called the
DOM count. The DOM count represents both the number
of mount messages to be deleted and the number of
volume mounts to be verified - direct access volume
mounts and WTOR tape volume mounts are verified;
after the mount is verified, the message is deleted. (For
WTO tape mounts, the data management OPEN routine
verifies the volume and deletes the mount message.)

Module Label

IEFAB493 VMVSETUP

Extended Description

2 If the count table indicates that unload or rewind
requests exist, IEFAB494 (Volume Unload Con­

trol) receives control. IEFAB494 searches the chain of
VM&V request blocks to locate unload/rewind
requests.

For each unload request, the following steps are
performed:

Module

IEFAB494

• For volumes not used for the Mass Storage System I EFAB499
(MSS), IEFAB499 (VM&V WTO/R Format Routine) IEFAB494

builds the unload message; IEFAB494 issues the
message. (The message text exists in the message
module IEFAB4M4.)

Segment

• If a tape volume is being unloaded, IEFAB494 initializes IEFAB494 ISUEEXCP
and issues the channel commands necessary to have the
tape rewound and unloaded.

If an MSS volume is being unloaded, IEFAB494 interfaces IEFAB494 VIRTDEMT
with the 3850 Mass Storage System to demount the
volume.

• IEFAB494 clears all fields in the UCB that pertain to IEFAB494 UCBCLEAN
this volume.

• IEFAB494 decreases the count of unload/rewind
requests in the VM&V count table. If this count reaches
0, IEFAB494 returns to VM&V Control.

For e~ch rewind request, IEFAB494:

• Initializes and issues the channel commands necessary
to have the tape rewound.

• Clears the file sequence number and file sequence count
in the UCB.

• Decreases the count of unload/rewind requests in the
VM&V count table. If this count reaches 0, IEFAB494
returns to VM&V Control.

IEFAB494

IEFAB494 ISUEEXCP

IEFAB494

IEFAB494

~ Diagram 14-16. IEFAB493 - Volume Mount and Verify (VM8tV) Control (part 30f6)
\Q
N

~
~
N
fIj

'< .. ;
i ;.
t"" ;:

!.
i
CD
w

~
N

i
I
w
~

VM&VCount
Table

D
IEFAB495
Parameter
List

VM&V'
Count
Table

D

Parameter
~ '"

List

3 If there are mount requestCs)

last VM&V to be processed, mount
Request volume(s):
Block

--I

a) If necessary,
build mount control
blocks.

b) Build and issue mount
messages for non-MSS
mount requests.

c) Handle MSS mount
requests.

VM&V Count
Table-
Updated Mount

Messages
Issued

fn

it e'
::I

~

a:
[
2.
o

1
::I

eN
W ..c
eN

~ '--'*""

Diagram 14.:.16. IEF AB493 - Volume Mount and V erify(VM8tV) Control (part 4 of 6)

Extended Description Module

3 If the.counuable indicates that mount requests must IEFAB495
be processed, lEFAB495 (Mount Control Routine)

receives :control. The following steps are performed:

a) Ihhe' DOM count in the VM&V count table does not
" equal 0 (that is, mount requests will have to be verified),

mount control blocks are built if none exist. (Mount
control blocks are necessary to keep track of which direct
access and WTOR tape mount requests are not yet com­
pleted and what messages must be deleted.)

The mount control blocks include:

• An MVCA and MVCA extension (MVCAX), which
include general information such as pointers to ECBs
and pointers to other MVCAs on the MVCA chain.
These blocks are created the first time IEFAB495 is
called by this allocation, if they are necessary (the
DOM count does not equal 0).

• Mount entries. One mount entry exists for each
call to tEFAB495; each mount entry points to a list
of device entries, 'which identify the units on which
volumes must be mounted and verified, and a list of
domid entries, which identify the messages that must
be deleted once the volumes are mounted and
verified.

For details on the mount control blocks, see OS/VS2
Data Areas, SYB8-0606.

Label Extended' Description

IE-FAB498 (MVCA Chain Processor) Searches the
existing MVCA chain' to determine if an MVCA exists
for this alloCation. (An MVCA will not exist if this is
the first time IEFAB495 is called by this allocation.)
If an MVCA does not exist, IEFAB495 obtains space
for the mount control blocks and IEFAB498 adds
them to the chain.

b) For each non-MSS mount request, IEFAB499 builds
a mount message; I EFAB495 then issues the message.
If the mount must be verified and the message deleted
(that is, if .it isa direct access or WTOR tape mount
message), IEFAB495 places the id of the message
(DOMI D) into the list of domid entries (which is pointed
to by the mount entry .,.. see step Ja). As each mount
message is issued, IEFAB495 decreases the mount
request count in the VM&V count table - when the
reaches 0, IEFAB495 returns to VM&V Control.

c) For each MSS request I EFAB495 interfaces with the
3850 Mass Storage System to mount the volume.

Module Segment

IEFAB498

IEFAB495 B495MSPC
IEFAB498

IEFAB499
IEFAB495 B4951WTO

IEFAB495

IEFAB495 VIRTMONT

~ Diagram 14-16. IEFAB493 - Volume Mount and Verify (VMAV) Control (partS of 6) :

~
N
til

i
oi
n'
t::

J
~ r
w

'<
til
N

i
I
w
:... -

VM&VCount
Table

D
1st VM&V

I EFAB496 Request
Parameter List Block

I i1~~&v a Block

VM&VCount
Table o

MVCA
for this
allocation --

Process

4 If there are verify requesds)
to be processed, verify that
correct volume(s) is
mounted:

a) Update device entries
for all requests to be
verified.

b) Wait for mount(s) to
be completed.

c) As devices become
ready and volumes
are mounted, verify
volume.

• If an unacceptable
volume was mounted,
unload it and, if
necessary, mount new
volume; wait for
mount to be
completed - go to
step 4b.

d) Cleanup verify
processing.

Return to Caller (see beginning
of extended description)

VM&VCount

TIT~

r----,
I Mount I
I Message(s)

I
· Deleted I

........ ..J
L_

Device entries of
mount control
blocks updated

Mount control blocks
released, if all mount
messages deleted.

tI.l
CD
n g.
:;:,

!':J
~
CD g-
o.
o,
o

"0
~
~ o·
:;:,

w
W
~
Va

~ '_.-'

Diagram 14-16. IEFAB493 - Volume Mount and Verify (VM&V) Control (part 6 of6)

Extended Description

4 If the count table indicates that verify requests
must be processed, IEFAB496 (Verify Control

Routine) receives control. Verify processing includes
four steps:

a) The device entries of all requests to be verified are
updated to indicate that verify processing is being per­
formed; IEFAB498 locates the mount control blocks
and IEFAB496 locates and updates the device entry.
IEFAB496 also notes if the UCB pointed to by the
device entry is ready (that is, a volume is mounted
on it).

b) IEFAB496 waits for all mounts that have not been
completed and that need to be verified. As each mount
is completed, step 4 is performed to verify that an

acceptable volume was mounted.

Module Segment

IEFAB496

IEFAB498
IEFAB496 B496SRUP

IEFAB496 B496WAIT

c) If any waits are completed or if devices were found I EFAB496 B496POST
ready in step 4a, IEFAB49B (Device End Post Handled IEFAB49B
receives control. The following processing occurs:

• If the label is to be verified, IEFAB4F8 reads the direct IEFAB4F8
access label. (Tape lables are verified by the data
management OPEN routine. The only verification done
by allocation for tape volumes is to ensure that the
device is ready, if the mount message was issued in the
form of a WTOR as indicated by the common allocation
parameter list - see figure 2-27.)

The volume can not be used if any of the following
conditions occur:

• IEFAB4F8 was not able to read the direct access
label.

• For specific volume requests, the volume serial
number of the mounted volume does not match
the volume serial number in the UCB.

• For non-specific volume requests, the volume
serial number-of the mounted volume duplicates
the volume serial number of another mounted
volume.

Extended Description

If the third condition occurs for an MSS volume, or if
any of the conditions occur for a non-MSS volume,
IEFAB493 is called to unload the volume and to mount
an acceptable volume. If the first or second condition
occurs for an MSS volume request, I EFAB493 is called
to unload the volume and the job is terminated.

If none of the above conditions occurs, the volume is
acceptable, and IEFAB496 updates the UCB with the
volume serial number (for non-specific requests),
updates the device entry to indicate verify processing
is complete, and decreases the count of mounts being
waited for.

• I f the request is to verify that a device is ready,
IEFAB496 updates the device entry to indicate that
verify processing is complete and decreases the count
of mounts being waited for.

As each request is successfully verified, IEFAB496 indi­
cates that cleanup is needed for that request (see
step 4d).

If the operator cancels the job (batch allocation) or
replies NO to a requested mount (dynamic allocation),
IEFAB496 indicates that complete cleanup is necessary;
this allocation will be failed.

d) IEFAB49A performs cleanup processing in two cases:

• A request has been successfully mounted and verified.
The mount message for the request is deleted; if all
messages have been deleted, IEFAB498 releases the
mount control blocks for this allocation.

• The allocation is being 'failed. IEFAB49A deletes all
mount messages for ,this allocation and IEFAB498
releases the mount control blocks.

Error Processing

An error in any routine causes control to be returned to
the calling routine .

When IEFAB493 receives control, it creates an ESTAE
environment so that its exit routine receives control if
an abnormal termination occurs.

Module

IEFAB493

IEFAB496

IEFAB496

IEFAB496

IEFAB49A

IEFAB49A
IEFAB498

IEFAB49A
IEFAB498

'--_:7

Segment

~
N
(:)
w
00
o
~

~ Diagram 14-17, IEF 8840 1 - Initiator/Allocation Interface (part 1 of 6)

~

o
ell

~
N
ell
'<
~ a
t""'
«i
(;'

:,t""'
e=
~
< o c a
<1>
w

~
N
<::>
w
00
~
'-'

ENTRY from
Initiator (I EFSD 162)

"put it ocess L i i
, ,. I f • -

InitIator nter ace
Register 1 Parameter List

.. LCT

--. JCT
: ::> Initiator/Allocation Interface

JCT CVT IEEBASEA

Output

TCT

Allocation
Start Time

1st EPA * virtual address

JFCBX

L* I D C3-1 I ~" : =:> 1 Perform job/step preparation. 53' .. •

ReturnLi~ ~
I '~1nSI£ .YB
Initiator ,Last EPA ~Last SlOT .-

I

TCT

* SWA virtual address

LCT SCT

~

JCT Data Set
r-:J. Enqueue Table

L-..J -I '-___ _

JFCB

:t:=:=J
JFCBX

c=J

- =') 2

LCT
I",

~
NY

Determine if step should be
executed:

• If step to be bypassed,
release data sets; go to
step 5.

1

l'

Interface I I 5FCBX

Parameter List
~TIOT Lin T. lOT

J I~_-,rl ... _--,
JSCB DSAB ODB

11

u Data Sets
Dequeued

~I.· 7 -

~

Diagram 14-17. IEFBB401 - Initiator/Allocation Interface (part 2 of 6)

Extended Description

ENTRY The Initiator/Allocation Interface initializes and
controls batch allocations; that is, jobs and

logon requests.

1 To prepare the job/step for allocation, the Initiator/
Allocation Interface:

• Issues one of three job status messages, if necessary: job
not run, job started, or user logged on. The message issued
depends on several factors. If the job failed prior to allo­
cation of the first step (determined by checking the step
number, which is included in the LCT, and the failure
indicator in the JCT JST AT field of the JCT), message
IEF4521 is issued: job not run. If thejob didn't fail prior
to allocation of the first step and if th is is the first step,
IEFBB401 determines if MONITOR JOBNAMES or SES­
SIONS is active. (tEEBASEA includes three fields­
BASFL, BAMONITR, and MSBTN - that indicate
whether MONITOR JOBNAMES or SESSIONS is active.)
I f so, it issues either message IE F 1251, job started, or
message IEF4031, user logged on.

• Issues the time macro instruction and places allocation
start time in the TCT (timing control table), if it exists.

Module Segment

IEFBB401 JSTPPREP

IEFBB401 JOBINIT
IEFBB401 BUILDMSG

IEFBB401 STEPI""IT

• Locates SlOTs, JFCBs, and JFCBXs in SWA, via the SWA IEFAB4FE
Manager, and chains them together by means of the virtual
addresses the SWA Manager returns. In SWA, each of these
control blocks includes a prefix to which the SWA virtual
address (SVA) points. The Initiator/Allocation Interface
creates a SWA Manager external parameter area (EPA) for
each control block; the EPA includes both the SVA and

~ the virtual address of the actual beginning of the block,
~ not including the prefix.
CS·
=
~

~
(1)

;.
&.
o -.
o

"0

S g.
=
1M
W
\C
......

"---~, '--j

Extended Description Module Segment

• Builds the TIOT Manager request block; the TlOT size (in
multiples of 4K) is in the LCTTSIZ field of the LCT; if
this is 0, the Initiator/Allocation Interface sets the TlOT
size to 32K.

IEFBB401 STEPINIT

• Calls the TIOT Manager to create and initialize the TIOT
and DSAB QDB (queue descriptor block).

IEFAB4FC

2 To determine if a step should be executed, the Initia- IEFBB402
tor/Allocation Interface processes step condition codes

as specified in the COND parameter of the EXEC statement.
Return codes from previous steps are included in the SCT.

If the step is to be bypassed, Data Set Release releases data IEFAB4A6
sets enqueued by the initiator. The data set enqueue table
includes, for each data set, the step number of the last job
step that needs the data set. The SCT contains the current
step number. If the current step number matches the step
number associated with a data set in the data set enqueue
table, Data Set Release issues the DEQ macro instruction
for that data set. After the data sets are released, control is
passed to step 5.

~ Diagram 14-17. IEFBB401 - Initiator/Allocation Interface (part 3 of 6)
\Q
00

o
tIJ

~
N

Input Process Output
tIJ
'<
~

~
t""
ci:,
c:r
Et
~
~
~
~
(D

~

~
N

~

i
~
~

~

CVT IEEBASEA CSCB

~ r
LCT SCT First SlOT c::r--Lj -, I

Step
Allocation
Parameters

D See output of
step 3 for details

JFCB Housekeeping

D

If step to be executed, prepare for'''' ~
step allocation processing.

4 Perform step allocation processing.

a) Prepare to retrieve the information "j J
necessary for allocation.

b) Retrieve the information
necessary for allocation.

Housekeeping
Control
(IEFAB451)

Step Allocation Parameters
Function Map

~ Initiator JSCB

+ Problem Pgm JSCB

~ JCT

Step number

• SCT + TCB
Reason code area

~ First SlOT

• Last EPA

• lOS UCB LUT
• Cancel ECB

+ TIOT

4 EST AE parameters

Function Map

41st SlOT to allocate
Step Number

• JCT

• SCT
• Last EPA

o
• Initiator JSCB

• lOS UCB LUT

'-----Fl __ e~~n_Code Area __

i

I

!

(see extended
description for
details of function
mapJ

(See figure 18 for
details of function
map.)

1st SlOT

I
' 1 SIO~s. JFCBs. and JFCBXs updated

'-. ____ --'. and If necessary. created

tI.l
~
(')

~.
::s
~

~
~
g-
o
Q.

o
o
"0
~ a o·
::s

w
~
\Q
\Q

~ "-~

Diagram 14-17. IEFBB401 -Initiator/Allocation Interface (Part4of6)

Extended Description

3 If the step is to be executed, the Initiator/ Allocation
Interface constructs the parameter list for step alloca·

tion processing. The function map indicates if allocation
should:

• Wait for units. This indicator is set on if the request is not
a logon.

• Wait for volumes or data sets. This indicator is set on if
the request is not a logon.

• Consider offline devices for recovery. This indicator is
always set on by the Initiator/Allocation Interface.

• Issue an allocation message to the operator for unit
record devices. This indicator is set on if MONITOR JOB­
NAMES is active.

The CHTRKID field of the CSCB indicates if this request is
a logon; the BASFL field in IEEBASEA indicates if MONI­
TOR JOBNAMES is active.

Module Segment

IEFBB401 CALLALOC

Extended Description

4 Step Allocation Control (lEFBB404) performs step
allocation processing:

a) Step Allocation Control (lEFBB404) constructs the
parameter list for JFCB Housekeeping Control. For
details on the function map, see figure 2-28.

b) JFCB Housekeeping Control (lEFAB451) places the
information necessary for allocation in the SlOTs,
JFCBs, and JFCBXs, and creates additional tables if
necessary. For details, see the M.O. diagram JFCB
Housekeeping Control (I EF AB451).

c) Step Allocation Control (lEFBB404) constructs the
parameter list for Common Allocation Control. For
details of the function map, see figure 2-27.

d) Common Allocation Control OEFAB421) allocates
units and volumes to the data set requests. For details
on Common Allocation Control, see the M.O. diagram
Common Allocation Control OEFAB421).

e) The TIOT Manager (lEFAB4FC) compresses the TIOT
and re-orders the TIOT entries and DSABs to conform
to the order of the SlOTs.

f) If steps 4b or 4d indicated errors (return codes of 4 or
8 were returned), Step Allocation Control searches each
SlOT for a non-zero reason code and the System Message
Interface Routine issues the appropriate error message.

Module Segment

IEFBB404

IEFBB404 SETFUNMP

IEFAB451

IEFBB404 SETFUNMP

IEFAB421

IEFAB4FC

IEFBB404
IEFAB4FD

:t. Diagram ! 4-17. IEF BB40 1 - Initiator/Allocation Interface (part 5 of 6)

g

~
~
N
f'-I
'<
=-
~
r-
i n·
r­
&

8
~ r
w

'<
f'-I
N

~

f
w

~

Input

Step Allocation
Parameters

0 ' See output of step 3
for details.

Common Allocation
Parameters

O See output of step 4c
for details.

Step Allocation
Parameters

DSAB

Process Output

Common Allocation Parameters

4 d Prepare to allocate units
and volumes to the data
set requests.

..J , Function Map •
.... + 1st SlOT to allocate

• JSCB

• IOSUCB LUT

See Reason Code Area

Common TCB
Allocation • T lOT Header

- 15i1~ d) Allocate units and Control • Cancel ECB
volumes to data set (lEFAB421)
requests.

mounted; space
obtained.

(See figure 17 for
details of function map.)

n e) Reorder TlOT to
'----.... ., conform to order of :~ .,.

'requests. - t,jIl.

@ VOlumes

SlOTs DSAB TIOT

6 tr:~'---I Step Allocation 1 st SlOT

Poramet'" ;:t ~
I . 1(UdSIOT , =j~o
1st EPA

!~
I~asf I EPA

I

srOTs,
JFCBs,and
JFCBXs

o Step Allocation
Parameters

I Reason Code I

~ 1)

~5
!
f
f

~6
I :t

Issue DO related error II
messages.

I Release tables and storage
used by EP As. H

Issue step-related error
messages.

Return to Initiator
(lEFSD162)

:
11

lM~edl

l Storage released; tables I
released in SWA

c;n
CD a o·
= !t,
:::
CD~

i"
Q.

o
~

o
"0

i o·
=
eN

~
g

~~

Diagram 14~ 17. IEF BB40 1 - Initiator/Allocation Interface (Part 6 of 6)

Extended Description

5 The Initiator/Allocation Interface:

• Releases control of the tables in SWA used during
allocation.

• Issues the FREEMAIN macro instruction to release the
storage used by each EPA.

6 The System Message Interface Routine (lEFAB4FO)
issues step·related messages for any error (non-zero)

reason code returned by means of the step allocation

parameter list.

RETURN The Initiator/Allocation Interface returns to
the Initiator. The Initiator Interface Param­

eter List is updated with a pointer to the TIOT list, which
points to the TIOT created by the Initiator/Allocation
Interface. The LCTERROR field of the LCT indicates if~

• The job failed.

• Any data sets were allocated for the job.

• Any data sets were allocated for the step.

• The step was not run due to condition codes.

Error Processing

An error in any routine causes control to b~ returned to
the calling routine.

When IEFBB401 receives control, it creates an ESTAE

environment so that its exit routine receives control if
the program abnormally terminates.

Module Segment

IEFBB401 B401CLNP

I:=FAB4F7

IEFBB401 B401CLNP

IEFAB4FO

',---7

< c;n
N
o
W

00
~

~ Diagram 14-18. IEFBB410 - Initiator/Unallocation Interface (part 1 of 8)
o
N

o
CIl

~
N
CIl
'<
~

~
~
~.

j
~ c a
c
(,H

~
N.
Q
(,H

00

~

Input

R1 Initiator Interface
Parameter List

+ LCT

ENTRY from
Initiator (lEFSD164)

~~

+ JCT Length
of TIOT

+ TIOT List"

JCT

!!.~~ !-;:r~"'''S -i X JCTWARMS I : ::> 1 Prepare for unallocation.

LCT
I

.~ JSCB

1 JSCB

LCT

First +
Last DSAB

;SABQDB-'1------~
1__~1

~

L..--

.....

~ a) Issue end -of . step status
message.

: >2 Determine if step is to be
restarted.

Output ...
First SlOT JFCB

: = :> It ~I';;; ro---u
.....
~

JCT

End -of ·Step

D

If on, step will automatically
restart from beginning

~ Ifon, step will automatically
restart from checkpoint.

~ If on, job will continue with the
next step.

C'-l
(D

II o·
:=
~

a:
(D

g
Q.

o
o
"0
~
a o·
:=

~

J:. o
~

......

Diagram 14-18. IEFBB410 - Initiator/Unallocation Interface (part 2 of 8)

Extended Description

ENTRY The Initiator/Unallocation Interface initializes
and controls batch unallocations, that is, job

step and logoff requests. Step unallocation is called if at
least one of the step's data sets was allocated. During step
unallocation, data set dispositions are processed, units are
unallocated, and data sets and volumes are released. If the
step being processed is the last step or if the job has been
failed because of a job condition code, job unallocation is
invoked. During job unallocation, disposition processing
is done for all passed, unreceived data sets, and the job's
private volumes are unloaded. Also, at end of job, this
routine issues a generic dequeue to release all volumes and
data sets associated with this job.

The major functions of this routine are to:

• Use the SWA manager read/locate function to obtain the
addresses of SlOTs, JFCBs, and JFCB extensions (JFCBX)
and chain them together.

• Issue step status messages.

• Determine whether steps will automatically restart.

• Call step unallocation.

• Call SMF to perform end-of-step processing.

• Free the TIOT.

• Process job condition codes.

• Call job unallocation if the present step is the last step to
be executed, or if the job is being failed.

• If the job is ending or failing, call SMF to perform
end-of-job processing, and issue job status messag~.

• Use the SWA manager to release the control of tables
used by unallocation.

Module Segment

IEFBB410

~_:f ~-~,

Extended Description Module Segment

1 The function of this step is to locate in the scheduler IEFBB410 B410lNIT
work area (SWA) all SlOTs, JFCBs, and JFCBXs. The

job control table (JCT) contains an indicator (JCTWARMS)
that indicates if the job is in a warm start environment. If
the environment is a warm start, the SlOTs are read via the
first SlOT pointer in the step control table (SCT) and the
chain pointers in the SlOT themselves; otherwise, they are
read via the chain of data set association blocks (DSABs).
An EST AE environment is created so that the exit
routine receives control if the program abnormally
terminates.

a) One of the following messages is sent to the programmer: IEFBB410 ISSUMSGS

• Step was executed.

• Step was not executed.

• Step was abnormally terminated. (This message is also
issued to the operator.)

2 In this step the "DUMMY" TCB is checked to see if
the job has abnormally terminated (except for cancel

ABEND). If it has, IEFRPREP is invoked, IEFRPREP will
determine if a restart is possible and is authorized by the
operator. It then sets the proper indicators in the JCT.
Then the restart information from the SCT and JCT is used
to decide whether the job is eligible for an automatic
step or checkpoint restart, or a continue restart.

Note: Because the original TCB was removed by a
DETACH command from the initiator, a "DUMMY" TCB
created by the initiator contains the ABEND indicator
and completion code.

IEFRPREP

~
t-J
(:,
~

00
<:>
~

i
&1
~
"-J
C'Il
'<
,Ii/)

~, a
i c;.
t""
51

~
<
~
,~
w

'< C'Il'
"-J
(:,
W

~

Diagram '14-18. IEFB8410....,- Initiator/Unallocation Interface (part 3 of 8)

Input -LCT "D.ummy" TCB

II LCTTCBAB J---=l _______
k ... JCT

Warm Start Indicator ---;,' , .. _x __ --1

Restart Switches ---i: .. __ x __ --1

Process
y

~

If,on, MSGLEVEL=1 ~ x : ::> 3 Set up for step unallocation.

SCT ,..;:C;...;VT~ ___ ,

I SCTSNUMB ·1 CVTMSER

. IEEBASEA

rt--x
------'

Mo

Step
Unallocation os

Count

(5eeoutput of step 3
for details.) n, ',' 4 Invoke common unallocation.

(For details, see the M.O.
diagram Common Unallocation

. Control (I E FAB4AO).)

-0

Output ...
Parameters for Step Unallocat~n ...:::t'

. I
• F unction Map • Job Step Proc Name

• PIP JSCB Step Number
• FirstSIOT VUT SVA orO

DSENQ Tbl SVA Reason code
N "'" Function Map Byte 1

xxxxxxx-
Free DSAB : : :> ~pdate JFCB for MOD data set

MOnitor status

'"
If

Ifon, unaHocate units
L.........'ff on, issue DISP MSGS

......., If on, issue allocat~on MSGS
L-If on, process disposition

Function Map Byte 2

I xxxxxxxx I
I I I I I I I I Check initial status

Purge D.A. data sets
Always process PASS as PASS

L--- UCB addresses in SlOT invalid
L-'If on, keep old, delete new

L--Ifon, use conditional DISP
L-. If on, keep a II data sets

'--If on, process normal DISP

Build ETIOT for 'scratch'
Treat public tape volume as private

Bypass VUT processing

Data sets disposed of, volumes released, data sets
released, units unallocated

Return Codes

o I Step Unallocation Successful J
4 I Step Unallocation Not Successful I

til a er
::s
~

a::
a
8:
o
o

"tS

i
~r
::s

w
Ja.
~

~
~

Diagram 14-18. IEFBB410 -' Initiator/Unallocation Interface (part 4 of 8)

Extended Description Module Segment

3 The function of this routine is to use the informa- IEFBB410 CALLUNAL
tion in the LCT, JCT, SCT,and CVT; and to construct

the parameter list for step unallocation, indicating the
unallocation processing to be done.

4 The common unallocation function map and common
unallocation request blocks are built requesting

common unallocation to release volumes and data sets,
unallocate units, and process data set dispositions. (For
details, see the M.O. diagram: Common Unallocation
(lEFAB4AO),Disposition Processing (lEFAB4A2), and
Unit Unallocation Process (lEFAB4A4).

IEFBB414 BLDCMRBS
IEFBB414 SETRBDSP

~ Diagram 14-18 ° IEFBB410 - Initiator /UnaUocation Interface (part S of 8)
~

i
~
~

~
r4.
~

i
(i)0

Co

I
~
[
~

~

'< til
~

i s
~

:.... -

,

~ ,<

,

LCT
... "Dummy" TCB

LCTTCBAD _ ---- I I .,> 5 End-of-step processing.

DSAB ODB
LCTJSCB

'\ \ ~ JSCB

[I J

LCT "Dummy"TCB .. 6 Process job statement condition V:1 TCBFA
.. codes.

LCTTCBAD ... If on. step abended

... SCT

-D

6 C:CT SCTSEXEC

JCTTCODE

JCTJDEC r

TIOT and DSAB ODB freed; ..
> SMF Accounting Routine invoked.

I"

Return Codes

I 0 I Job can continue I
I 4 I Fail the job I

....
LCT ..

~
LCTJFAIL set on
if job to be failed.

C'-I
til n g.
= N

ac
til

[
e
~

o
~

5 g.
=
w

~
-.J

'IIJIIII!!III" ~'----'

Diagram 14-18. IEFBB410 - Initiator/Unallocation Interface (part 6 of 8)

Extended Description

5 In this step the TIOT manager (lEFAB4FC) is
invoked to free the TlOT and the OSAB OOB (queue

descriptorbloek). The SMF accounting routine is invoked
to do end·of-step processing_

6 Job statement condition codes from the JCT are
checked against the return code of the current step

to determine whether the job is to continue.

Module Segment

IEFBB410 ENOOSTEP

IEFBB412

,~

~

~
&1
"< fIl
~

fIl

I
ro-
<i
(1;'
r0-
c;:

!
~ a­a
(D

~

'<
fIl
~

:;.:I

f
~

~

Diagram 14-18. IEFBB410 -lnitiator/Unallocation Interface (part 7 of 8)

Input Process 9 Output -SCT LCT Parameter List for

~ ~
JobUnaliocation

SCTANSC.T LCT JFAI. L Function Map

+JSCB

IT U, lOalcates 'If on, job I.JCT
last step failed • STESDA

L--- 7 Process job unallocation.
(For details, see the M.O
diagram Job Unallocation
(lEFAB416U

: :>u Job's private
volumes unloaded

Passed, unreceived data sets
disposed of

Retained volumes released
Function Map • Last EPA

I X X X x---- I Reason Code

LCT JCT~:: :~"

~
/': ... '> 8 Performend-of-J·obprocess·lng ia U2 *f iis . . 'd ")

JCTTSOID 20211 Fxx Ii'

~~x-------
LLCTJFAIL - indicates job

has been failed

LCT

I
It

SCT

SCTANSCT :lit 0, indicates
last step

SCTSNAME

I x------jl SCTSCLPC
JCT

Reason Code

o I JCTJNAME I

pull P' ~ 9 Perform clean up.
n
·~1

v
c;>

l'

Return to Initiator
(\EFSD164)

...
p

Job Status Msg

D
SM F accounting routine
invoked

Return Code to Initiator

o I Continue normal
initiation

4 I Step will automatically
restart

8 I Job has ended or has
been failed

CJ
Unallocation error
message,s

rn a o·
= !':J
a::
a
6'
Q.

So
o
"0
~

=­o·
=
~
~

~ "'-__ 7'

Diagram 14-18. IEFBB410 - Initiator/Unallocation Interface (part 8 of 8)

Extended Description

7 Job Unallocation performs the following functions:

• Process final dispositions of passed, unreceived data
sets.

• Unload the job's private volumes.

• Release any volumes retained for the job.
This step is performed only if the job is ending. For
details, see the M.O. diagram Common Unallocation
(lEFAB4AO) and Job Unallocation Processing
(lEFBB416).

Note: Common unallocation is called to do any disposition
processing necessary.

8 The SMF/User Accounting (lEFBB410) routine
is invoked to issue an end-of-job record. One of

the following messages is issued to the operator:
"Iogged off," "job ended," "job failed - JCL error."
This step is performed only if the job is terminating.

9 The SWA manager (lEFBB410)is used to write
in locate mode all records read in for unalloca­

tion processing. If any error conditions occur during
the unallocation process that required messages, the
messages are now issued. The reason code(s) set
during unallocation processing determines what
messages to issue. The EST AE environment is
cancelled. Any unallocation messages still in
write-to-programmer buffers are written.

Module

IEFBB416

IEFAB4AO

Segment

IEFBB410 ENDOFJOB
IEFBB410 ENDJMSG

IEFBB410 B410CLNP

"""--'"

~ .aa.
Q

~
< {IJ
N
{IJ

'i
a

i
r-
f
~
~
f
fD
W

'< {IJ
N

i
I
w
:... -

Diagram 14-19. IEFBB416 - Job Unallocation (Part t of 2)

ENTRY from IEFBB410-
Initiator/Unaliocation Interface L.proceu Input

Job Unallocation ParametE'rs

Function
Map

4 JSCB

+ JCT

It IOSVUT

r xxxx - - --=J

Tuse conditional
dispositions

Issue disp msgs

Do disp processing

Monitor status is
active

Next
POI JCT

9,
C'-a.

:)
:'I'

Job Unallocation

!

Output

EJ Data Sets Scratched
Catalog Updated

Disposition
Messages
Issued D

- : :~ > 1 Process disposition of this =:::===::::;>ti~
" job's passed, unreceived

SlOT SlOT JFCB

r::J
JFCB
~ YFC1 SlOT

Volume Unload
JCT Table (VUT) VUT

I VUTSVA rIVOUER Y"';'I ~-
T
IVOLSER

105 UCB LUT r lrf- I + UCB :l
T. UCB I FFFF_J

JCT

JCTJNAME

-ASIO

- Via Extract
Macro

1

I

~

data sets via common
unallocation.

2 Unload the job's private
volumes and public MSS
volumes, rewind it's
public tape volumes,
update the UCB's.

:#: > 3 I. Release volumes retained
for this job.

A

.".

to.

.".

Return to Initiator/Unaliocation

Dismount
Message(s)
Issued to
Operator

- Public Tape VOls
Rewound. Private Tape
Vols Unloaded.

0[[5
Release
Message
Issued to
Operator

Interface (I EFBB41 0) li,m>Y:\?f£f"lill&;A;;',Z&4it:0/45hikMw&mti:t""!llfaYiBTikf.S'cl

til
<D
~ o·
= N

~
<D
go
8-
o
o
"0
~
~ o·
=
w

t

"t~5'

Diagram 14-19. IEFBB416 - Job Unallocation (Part 2 of 2)

Extended Description Module

ENTRY The functions of job unallocation are to process IEFBB416
final dispositions of unreceived passed data sets

and to perform volume clean-up:

• Unload the job's private volumes and rewind scratch

tapes.

• Issue messages for r~leased volumes.

Segment

1 All passed data set information (POI) blocks are IEFBB416 REAOPOIS
located via the SWA manager locate function. There IEFAB416 BLOCOMRB

is one POI entry per data set passed within the job. For
each passed, unre<;eived data set, the associated SlOT and
JFCB are located via the SWA manager read/locate func-
tion. The POI entry, SlOT, and JFCB are used to construct
a common unallocation request block for each data set.
When all the request blocks are built and chained, they are
passed as input to the common unallocation routine
(I EFAB4AO). Common unallocation performs all disposi­
tion processing and issues any disposition messages for the
data set(s) associated with this job. For details, see the
M.a. diagram "IEFAB4AO - Common Unallocation."

'------~

Extended Description

2 The volume unload table (VUT) blocks are located
and chained via the SWA manager. The VUT contains

the volume serial numbers for all private VOlumes, public
MSS volumes, and for volumes containing passed data sets
used within the job. A list of unique volume serial
numbers is built. This list is used to search the UCBs for
this job's volumes, which should be rewound and unloaded.
To serialize with other allocations, a list of UCBs is built.
(See note below-l When serialization is complete,

volume mount and verify request blocks are built and
chained together. When the entire lOS look-up table has
been searched, Volu me Mount & Verify Control is called
(via the Unload Interface) to rewind public tapes, rewind

and unload demountable private tapes, and issue "KEEP"
messages for demountable private volumes, both tape and
direct access. (For details on Volume Mount & Verify

Control, see the M.a. diagram Volume Mount &
Verify Control (IEFAB493).)

The UCBs are updated to reflect the unloading and
rewinding of volumes via volume mount and verify. After
all rewinding and un.oading is completed, units which
were targetted for scratch tape mounts, but didn't have
tape volumes mounted, are reset by setting the VOLSER
and volume status in these units UCBs back to zero.

Note: During this processing, serialization with other
component's device processing such as the VARY
OFFLINE, UNLOAD, and DDR, is accomplished by
enqueueing sharable on major name SYSIEFSD, minor
names CHNGDEVS, Q4, DORTPUR, and DDROA, and
locking on the groups represented in a list of UCBs via
the allocation Queue Manager.

3 Private volumes or volumes containing passed data
sets may have been dismounted during this job's

processing. If they were, a retain-type dismount message
was issued to the operator. If such volumes are still not
mounted, a message to the operator is issued indicating

that the volumes are no longer needed bv this job.
Volumes mounted on units for the 3850
Mass Storage System will not appear in this message
since these volumes do not require any operator
action.

______ -.7

Module Segment

IEFBB416 VOLCLNP
IEFBB416 BVOLLIST

IEFBB416 UPOUCBS
IEFBB416 SCANUCBS

IEFAB4EC LOCKINIT

I EFAB493

IEFAB4EC

IEFBB416 RLSEMSG

<:
til
N
o
W

00
o
~

w
J. -N

o
(Il

~
N
(Il

~
~

i
(:)'

t'"'

i
<: o
E" g
w

~
N o
W

~

Diagram 14-20. IEFDB400 - SVC 99 Control (part 1 of 2)

..

ENTRY from SVC Interrupt Handler
) ..

Register 1 . 1 l 1 1+ Request Block 1)
Parameter List Request Block Text Unit Pointers

(, + Text Unit (or 0) Length = 20 Verb Code 0

~I Error Code = 0 Info. Code=O ~ ~ ~ ~
+ Text Unit Pointers

r- 1

~

SVC 99 Control: Route Copy of parameter list

control to appropriate
(scheduler key, fetch protected)

function. Request Block

List of text unit ptrs.

Installation Rtn. Work Area

~ 1 Copy and check caller's r
Text Units

parameter list. F

t Text Unit (or 0) Read from scheduler work area: 0
r-- .~ 2 Enqueue on TIOT. JCT SCT DSAB

Flags

Job Acctg. Step Acctg.
+SIOT

,Text Unit "'2 3 Read SWA information.
PI SVA SVA
.. I Length I Parm. I I Key I No. I Length I Parm. 1 ;~

Job Acctg. Step Acctg. 4 Call installation routine
to examine request. .

1 Job Acctg. Step Acctg. SlOT
Fields Fields

Register 4 ~ I Tj Register 7 5 If request is allowed: '/ +JFCB --/'
+JFCBX , a) Build input for f TCB ASCB requested function. 1

JFCB JFCBXs !Jl
ASID I b) Invoke function.

Tj 6 When function completes:
.~

a) Write new or updated r
, JSCB SWA control blocks. I Register 15 I I Register 0 I ---

b) Dequeue off TIOT.
0- Successful, possible Error code, -] c) Restore parameter info. code Info. co~e

DSAB aDB
list. 4 - Environment error

r -
8 - Request denied by

r " ~ installation rtn.
, Active JSCB 7 Set return codes.

t First DSAB
12 - Parameter list error

- I-J + Last DSAB

Return to SVC
Interrupt Handler

I

I

I
I

I

CI.I g
g.
=
~

ac:
~

[
e.
o
"0
~

~ o·
=
~
,J:o. -tN

~ "-~.f

Diagram 14-20. IEFDB400 - SVC 99 Control (part 2 of 2)

Extended Description

ENTRY SVC 99 control OEFDB400) routes control
from the SVC interrupt handler to a func-

tion that processes a request from a currently processing job
step. The request may be from a background job step or
from a foreground TSO job step.

I 1 The EST AE envi ronment is establ ished so that the
exit (IEFDB402) that will receive control if there is an

abnormal termination, such as an abend, cancel, or machine
check. If one of these situations occurs, the exit routine will
clean up and release resources that were obtained by SVC
99 Control.

The caller's parameter list (request block, text unit pointer
list, and text units) is copied into a scheduler-key, fetch­
protected storage area to ensure the integrity of the param­
eter list and to allow reference by SVC 99, which runs in the
scheduler key.

The format of the request block pointer, and the request
block, is verified. If privileged functions are requested, the
caller's authorization is checked. Any error found in these
checks will cause step 7 to be done next.

2 To serialize dynamic allocation with data management
and other dynamic allocations under the same job step,

SVC 99 control enqueues on the caller's TIOT, if not al­
ready enqueued (shown by bit 5 in FLAGSON). The major
name is SYSZTIOT, and the minor name is the two-byte
ASID field of the caller concatenated to the address of the
DSAB queue descriptor block.

3 svc 99 Control reads the SWA information by calling
an allocation service routine to interface with the SWA

manager, which reads in the JCT, SCT, and ACT for the job
and step. Another service routine is called to read in the
SlOTs, JFCBs, and JFCBXs from the SWA, chaining them
to each other and to the DSABs. This is done either on the
first execution of SVC 99 Control for a job step, or on the
first execution (that is, in which processing abnormally
terminated following an ESTAE exit).

Module

IEFDB400
IEFDB400

Segment

SCAN
COPY

S99CHKRB

IEFDB400 READSWA
IEFAB4F7
IEFAB4FE

Extended Description

4 To provide each installation the capability of checking
the accounting information of a dynamic request and

the capability of examining or modifying the SVC 99
parameter list, SVC 99 Control calls an installation

Module

replaceable routine. Return codes from the installation rou- IEFDB401
tine can accept or reject the allocation request.

5 If the dynamic request is allowed, SVC 99 Control sets
up the input to the requested function and calls one of

the following routines:

• Dynamic Allocation Control

• Dynamic Unallocation Control

• Concatenate

• Deconcatenate

• Ddname Allocation

• Remove in-use Control

• Dynamic I nformation Retrieval.

Each of these routines is described in a separate M.O.
diagram - see Figure 11: Allocation/Unallocation Func­
tions and Related Method-of-Operation Diagrams.

IEFDB410

IEFDB4AO

IEFDB450

IEFDB460

IEFDB490

IEFDB480

IEFDB470

Segment

6 After the requested function has completed, any up- IEFAB4F7 RESTORE
dated SWA control blocks are written to the SWA.

SVC 99 Control dequeues Qff the caller's TIOT (if it
~ enqueued) and restores the parameter list with any returned
. information. The EST AE environment is canceled.

7 After the return code is set in register 15 and the rea­
son code (two-byte error code and two-byte informa­

tion code) is set in register 0, SVC 99 Control returns to the
SVC interrupt handler.

~
N

<=> tN

00
0
,J:o.

t -~
~
"< CI.l
N
CI.l

I
i-
t:
~
~
~
~
(D

w

~
N

S
00

~

Diagram 14-21. IEFDB410 - Dynamic Allocation Control (part 1 of 2)

ENTRY from SVC 99 Control (lEFDB400)
(see extended description) p ..

+~ Text Ptrs. Reason Code

/ I I I Error Code Info. Code
I,

--... Text Unit
0 +Text Unit

Paramo l_:J l Key No-l Length
I~ ~ ~~ ".

1 +Text Unit

TSO Only PSCB

+ JSCB 'i L ___

.·ASCB ~ PSCBVMNT - - - -..,

+ TCB
JSCB I

• On ifTSO

4 JCT user can have
volume

-~DSAB aDB • SCT mounting

ASCB I"'--

No~zero--~
Indicates
TSO User

Function Map ~ DSAB TIOT Entry

Includes VlDDNAME I
flags from

• TIOT Entry -caller's
parm.list

• SlOT Tl + Last ~PA
on write
chain "SIOT JFCB

ESTAE exit • JFCB

VI DSNAME I
parms. + JFCBX

o
Dynamic Allocation Control Blocks Updated for Freed DDNAME
Control: Dynamically DSAB JCT
allocate a data set.

r---1' I. TIOT Entry 1 1 JCTNARST I
[""""l'

l4 SlOT ; '" 1 Check .for valid text SlOT
units. l DDNChanged J

-Control Blocks Updated for Converted DDNAME

DSAB SlOT JFCB

.J\. 2 If possible, convert l.-I I· TIOTEn.ry JII+ JFCB r l I
an existing allocation.

• SlOT • JFCBX

Updated for SWA
Control Blocks It
to be written Last EPA I

Control Blocks Created

3 If no conversion, do
I

DSAB SlOT JFCB
normal allocation. 1 + TIOT Entry 1 rl4 JFCB "I I

14 SlOT 1+ JFCBX JFCBX

Control Blocks Updated I 1
TCTIOT UCB

4 Return requested

I I I I information.

Updated for
SWA control blocks
to be written Messages Reason Code

I. Last EPA I c::"J I I Return to
SVC99
Control ,,- ~

(lEFDB400) '- ,/ I'-.. ./

Catalog Data Set
Updated Created

'- / '- ./

~ a
~.

:I

~

a::
~ ::r
8.
o
o
."

i
~.

:I

~ .. -(,A

~ ~y

Diagram 14-21. IEFDB410 ~ Dynamic AUocation Control (part 2 of 2)

Extended Description

ENTRY Dynamic allocation control (lEFDB410) is
called by SVC 99 control to allocate a data set

that was requested by a currently processing job step.

1 The internal text is checked for format errors and for
invalid, duplicate, mutually exclusive or inclusive keys,

or for conflicting values specified for the keys. A key table
of text unit pointers is built with the addresses of the speci­
fied text units at fixed table offsets. If a keyword is not
specified, the table pointer for that key is set to zero. After

Module Segment

IEFDB412

the key table is built, the text units are edited to supply IEFDB410 FXSYNTX
default values or to modify values as required.

2 If possible, dynamic allocation control will convert
an existing allocation to satisfy a request, rather

than perform a normal allocation. The existing allocation
environment is checked to see if this is possible.

3 If an existing allocation cannot be converted, normal
allocation control is called to create and fill in the

necessary control blocks and perform the new allocation.
To retrieve additional information required for allocation,
I EFDB413 calls JFCB Housekeeping Control (see the M.O.
diagram JFCB Housekeeping Control (tEFAB451).) To
perform the allocation, IEFDB413 calls Common
Allocation Control (see the M.O. diagram Common
Allocation Control (tEFAB421).)

IEFDB410 CKCONVRT
IEFDB411

IEFDB413

IEFDB413 HSKPINTF

IEFDB413 ALLOCINT

4 Following conversion, or a normal allocation, dynamic I EFDB41 0 CLEANUP
allocation control returns to SVC 99 control. The text

units will indicate the ddname, DSNAME, DSORG, and
VOLSER parameters used to satisfy the request, if they
were requested by the caller. The error and informa-
tion code fields of the reason code contain appropriate
information.

~ .. -0'1

&1
~
N
fIl

1
"~

'i
'n'
'r-'

J
.~

2' a
(D

~

< fIl
N
.l'I'

t
~
~

~

, .Diagram ·14 .. 22~ ·IEFDB4AO ~ Dynamic Unallocation Control (part 1 of 2)

ENTRY from SVC99 Control HEFDB400)
(see extended description)

- - -.-- -- -

' .. . ,.:<: •. w i ..•. , .• '\.!C<';: n.

Reason Code

,+ i Text Ptrs. I. I Error Code I Info. Code I
\. Text Unit

length I param.I:~ • te~t,/
.,..

Key I No . 0 umt
. ~ ~ ~ ~ ~~

1 ' + te~t UOit ..

JSCB DSAB ODB ;

'4 JSCB ,. ~T+ DSABOOB - • IstDSAB~
:. ASCB

~ASCB 4 TCB

• JCT
, DSABs

4 TIOT Entry l-
4SCT

• SlOT t-4 TSB. Nonzero 'I ndicates - - .,... I
TSOUser

Function Map

Includes + Last ~PA I ESTAE
'. flags from on write exit parms.

caller's chain
parm.list

...
d

: ..
-y

...
-..

Dynamic Unallocation DSAB SlOT
Control: Dynamically

! I DSABNUSE=O I Alternate ,.... VIO
unallocate a data set. ~

Disposition -
DSAB Moved to Removed Paging
End otChain Space

,.--...I Released 1 Check for valid text
~ ~ units.

,;
:(+ To Last Write EPA ~ - - - - Updated for

. SWA Records

,2 Find DSABs to
process TIOT Entry

DSAB -I DDNAME 1 • Remove in-use I + TIOT Entry DSABs. ,....J Restored

"
3 Check unallocation DSAB TIOT Entry UCBs

environment.

I ~?if I I Updated I
4 If required, do

Updated
Deleted c5 ~eason Code deconcatenatioii.

I,
SlOT JCT SCT

5 If allowed, unallocate Marked
data set. Unallocated '

or
SlOT, JFCB r- -.....
and JFCBX

""" -'
deleted r-l+ To Last I 6 Set return codes. Data Sets

:: Uncataloged, : 'Write EPA

Recataloged,
f

;. f B Cataloged. 0<
f

--- Updated for
: Return to

' 'Scratched SWARecords Messages ' •
SVC99

. as requlf~d
JS~F Recordsl

Control -" Written
(lEFDB400)

~

Diagram 14-22. IEFDB4AO- Dynamic Unallocation Control (part 2 of 2)

Extended Description

ENTRY Dynamic unallocation control (lEFDB4AO) is
called by SVC 99 control to un allocate a data

set that was requested by a currently processing job step.

Module Segment

1 The Dynamic Unallocation Control routine first checks IEFDB4AO VALIDCHK

the input request for valid text units by calling the
syntax checker. The input is checked for invalid, mutually
exclusive or duplicate keys, and for invalid number and
length values. The key table, which contains pointers to
specified keys, is filled in by the syntax checker. If there
were no errors found in the previous checks, inclusive keys
and invalid parameter values are checked. Any error condi-
tion detected in this step will cause step 6 to be done next.

2 Depending on the request, the ddname or dsname
search routine is used to find the DSABs to be unallo­

cated. If both dsname and ddname were specified, the
search is by ddname, and the dsname is checked to ensure
that it matches. For each DSAB found, processing is as .
follows:

• If unallocation or remove-in-use was specified, the
appropriate processing is done.

• If neither of the above options was specified and ·the
DSAB is not permanently aUocated, unallocation process"
ingis done; otherwise, remove-in-use processing is done.

• If the DSAB is for a nonpermanently allocated non­
&dsname data set with a disposi·tion of delete, it is unallo-'
cated regardless of the input option specified.

If there are DSABs for remove-in-use, the remove-in-use

IEFDB4FF

IEFDB4FC DDNPRCSS
IEFDB4FA DSNPRCSS

IEFDB481
rI) • g processor IS cal1ed.

5-:s
~

iC
~

[
o
o

"C:S
ell
;I
g.
:s

~

~ --..J

Extended-Description

3 Dynamic Unallocation Control scans the DSABs to be
unallocated. It checks for open or cataloged data sets,

or overriding dispositions of delete for-shared data sets. If
any of these conditions is detected, the DSAB is not
unallocated.

Module Segment

IEFDB4AO UNAENVCK

For a dsname specified, Dynamic Unallocation checks each IEFDB4AO PCATCHKS
DSAB to be unallocated to ensure that a permanently con·
catenated group is either a GDGALL dsname,group.or a
VSAM group spanning device types. Otherwise, the data set,
is not unallocated.

4 Deconcatenation (lEFDB460) is called to process
any DSABs to be unallocated thatare·members of

a concatenated group.

5' Dynamic Unallocation Control calls the Unallocation
Processor to do the required unatlocation for the eligi­

ble DSABs.

6 On completion of processing, the reason code field is
set (two-byte error code and two-byte information

code) and control is returned to the SVC 99·controlroutine-.

IEFDB460

IEFDB4A1

~
;;

o
~
~
N
{I)

l
~

{.
l-

f
~
~ = a
(»

CoN

~
N

~
if
r.l
CoN
:.... -

Diagram 14-23. IEFDB4S0 - Dynamic Concatenation (Part I of 2)

Entry from SVC 99 Control
(lEFDB400)

Via standard PUS linkage

,:1 Len 1 Parm 1

4 J5CB - --See environment

+ ASCB

+ TCB

+ JCT

+ SCT

ALFNCMAP •

DEPARMS

I + Last EPA on chain -)

• Common input
not used in this
routine

i'D'\f4f-tt, :::""10l:. (

Dynamic Concatenation

1 Syntax check internal text.

Invalid text
Valid text • 2 Search T lOT for

OONAMES specified.
DO N not found
DON found

+ 3 Make environmental
checks.

Env. conflicts
No env. conflicts

4
4 Reorder DSABs and

TIOT entries.
Error in reordering
No error

* 5 Blank ODNAMES,
update OSABs.

.f.
6 Write SlOTs when

permanently 4- concatenated.

7 Invoke Change
ODNAME/JES3
exit when
permanently
concatenated.

J
8 Clean up and return.

To SVC 99 ContrOl
(lEFDB400)

0

I

DSAB chain nOT SlOTs

+ Next

I r OSAB

+ Prevo
DONAME

DSAB II" ,~ ODNAME t TlOT ~ 1 DDNAME J entry

+ SlOT

~ -

DSABTCBP
L

OONAME blanked in TIOT.
DONAME blanked in SlOT for permanent
concatenation' only.

Reason code

Reg .15 '- -If syntax error,
I I failing key

Return code ~ Always 0

(I)
(1)

~
~.

:=
l\J

== sa.
6'
Q.

o
o
"d
~
a­
S'
:=

~ -\0

~ "'---...../""

Diagram 14-23. IEFDB4S0 - Dynamic Concatenation (Part 2 of 2)

Environment

bSABODB '*';'lb~~B'~~i~~: ' TIOT

I ~ ,", .. /1 DDNAME

+ TIOT entry - ~ L ,~ t DSABO + 1st DSAB ...
• SlOT entry . ~ ~NAME - I

I

Extended Description

Dynamic concatenation provides the user with a means of
logically connecting allocated data sets into a concaten­
ated group. These data sets must not be OPEN, or the
request for dynamic concatenation is denied and an error
return code is returned to the user.

All members of the dynamically concatenated group will
be assigned the 'In-Use' attribute. The permanently
concatenated attribute may optionally be assigned. If one
member of the permanently concatenated group is per­
manently allocated the entire group becomes permanently
allocated.

1 Text is checked for invalid syntax or duplicate text
units. If the ddname key is not specified or one of

the specified ddnames is blank or JOBUB, STEPUB,

JOBCAT, or STEPCAT, an error code is set.

2 The DSAB chain is searched for a TIOT entry with
the specified ddname (done for each ddname

supplied). If a ddname is not found or a duplicate
ddname was specified: 'an error code is set.

Module Label

IEFDB450

IEFDB4FF CCSYNCHK

IEFDB4FC CCDDSRCH

DDNAME

Extended Description

3 An error code is set if any of the specified ddnames
is associated with an OPEN data set.

4 TIOT entries and DSABs are re-ordered prior to
concatenation, i.e., entries are made contiguous in

the order of ddname specification.

5 The ddnames in the TIOT are blanked. DSABDCAT,
DSABNUSE and DSABCATM are set to 1. The TCB

address (from the input parameters) is stored in
DSABTCBP. If permanent concatenation was requested,
(DSABPCAT is set to 1); if any member of a PCAT group
is permanently allocated (DSABPALC is set to 1), all
members of the group are marked permanently allocated.
To reflect the concatenation, the TCTlOT is updated
and an SMF record 40 is written.

6 For a permanent concatenation request, SlOT
ddnames are blanked and the SlOTs are written.

7 For a permanent concatenation request, invoke the
Change DDNAME/JES3 exit to notify the subsystem

of any changes in DDNAME and relative position number.

8 Return is made to the caller with register 15 set to O.

"-~

Module Label

CCDDSRCH

IEFAB4FC CONCATIO
IEFAB4FC CCATDSAB

IEFAB4FC CONCATIO
IEFDB450 CONCAT

IEFDB4F9

IEFAB4F7

IEFDB4FB

!
N
C

o
~
<
f'-I
N
f'-I

1
a
i
(i)'

I:"'"
e;:
lot

~

f
(D

~

< f'-I
N

~
i
~
~

~

Diagram 14~24, IEFDB460 - Dynamic Deconcatenation (part 1 of 2)

Input
Entry from IEFDB400,
IEFDB410, or IEFDB4AO

Via standard PL/S linkage

+ Text ptrs

Reason code

+ JSCB - - --See environment

4 ASCB

+ TCB

+·JCT
I

+ SCT

ALFNCMAP * *Common input not
used by th is routine

DEPARMS

I + Last EPA on chain

Environment

JSCB DSABQDB DSAB chain

~ v + TIOT entry"
+ DSABQ - + 1st DSAB _ • SlOT entry'

Dynamic Deconcatenation

1 Syntax check internal text.

Env. conflicts
No conflicts •

o

4 Restore DDNAMEs & ./Ie'
clear DSAB bits.

5 Clean up and return. ~1i •. /t':

To IEFDB400, IEFDB410,
or IEFDB4AO

TIOT SlOTs

v1 DDNAME !
'!:~ ~

DDNAME

1\
I ,

ut

DSAB chain TIOT

t Prevo
DSAB

t TIOT
entry

+ SlOT
entry

error,
failing

R~15 ~y

Return code I-Always 0

til
(D

$l
~.

=
~

a:
~ g:
sa.
o
~

~ o·
=
CoN
.;:..
N -

~

Diagram 14-24. IEFDB460 - Dynamic Deconcatenation (Part 2 of 2)

Extended Description

Dynamic deconc;:atenation provides the user with a
means of logically disconnecting the members of a
concatenated group. The user must specify the
ddname of the concatenated group. No data set
within the concatenated group may be OPEN. A
permanently concatenated group or members of a
concatenated group which are permanently
concatenated will remain concatenated.

When a concatenated group is dynamically deconcatenated,
the ddnames that were associated with the data sets before
they were concatenated are restored unless this would
result in duplicate ddnames. This situation could arise if
a dynamic allocation with the ddname to be restored
occurred after a dynamic concatenation. In this case the
deconcatenation request is failed.

Note: Dynamic deconcatenation has no effect on the
"In-Use" attribute.

Module Label

IEFDB460

'-----'

Extended Description

1 Text is checked for invalid syntax or duplicate text
units. If the ddname key is not specified, or the

specified ddname is blank or is JOBLlB, STEPLlB,
JOBCAT, or STEPCAT, an error code is set.

2 The DSAB chain is searched for a TIOT entry with
the specified ddname. If the ddname is not found, an

error code is set.

3 An error code is set if the specified ddname is associ­
ated with any OPEN data set or if deconcatenation

would cause duplicate ddnames in the TIOT.

4 For permanently concatenated members, DSABDCAT
is set to O. For temporarily concatenated members,

DSABDCAT and DSABCATM are set to 0 and ddnames
from the appropriate SlOT are restored in the appropriate
TIOT entry.

5 Return is made to the caller with register 15 set to O.

Module Label

IEFDB4FF SYNCK460

IEFDB4FC ENVIRNCK

ENVIRNCK

SIOTDDCK

IN

~
I-.J
I-.J

o
ell

< ell
I-.J
ell
'<
~
~

3

~ n·
r--
~
.$
~
= 3
~

IN

'<
ell
I-.J

~

i
r6
IN

~

Diagram 14-25. IEFDB470 - Dynamic Information Retrieval (Part 1 of 2)

In Entry from SVC 99 Control (lEFDB400) P rocess

Via standard PUS linkage Dynamic Information Retrieval

• JSCB

+ ASCB

+ TCB - V + JCT SCTNIUSL

+ SCT ~

ALFNCMAP * *Common input not
used in this routine

DEPARMS

1+ Last EPA on chain

Environment

4 DSABQ

Syntax check internal text.

Invalid
Valid

• 2 Search for DSAB by
DDNAME, DSNAME or
relative number.

Not found
Found • 3 Retrieve data requested A

and store into text units.

4 Cleanup and return.

To SVC 99 Control
(I EFDB400)

JFCB

Reason code If syntax

Error Info t--error.
code code fai ling key

Reg 15

I Return Code r-- Always 0

til
n>
$a. o·
= ~

3:
n>

[
o
'"0)

o
"0
~
~ o·
=
"'" ~
~

"'"

~ ' __ ..Y?

Diagram 14-25. IEFDB470 - Dynamic Information Retrieval (part 2 of 2)

Extended Description

Information retrieval provides the user with informa­
tion about his current allocation environment. The
user can request the information via the ddname or
dsname. In addition, the user may ask for informa­
tion about any of his currently allocated requests by
specifying a relative entry number. For example,
information about all requests can be acquired by
asking for information about the first, second, and
successive entries in order. A unique return code is
provided when information is requested for a non­
existent relative entry number.

1 Text is checked for invalid syntax or duplicate text
units

2 The DSAB chain is searched by ddname, dsname, or
relative number. If the entry is not found, an

error code is set.

3 Requested data from appropriate control block
(see environment) is stored into text units.

4 Return is made to the caller with register 15 set
toO.

Module Label

IEFDB470

IEFDB4FF DINSYNCK

DINRTSRC

RETRIEVE

w

t ...

~
N
fIl

1
~

.i
n
r-

J
<

f
w

'<
fIl
N

~

i-
S
w
~

Diagram 14-26. IEFDB480 ~ Remove In-Use Attribute (Part I of 4)

Entry from SVC 99

iliiilllll"IIIEII§lIIBlilEClo~ntarO~I(lEF~400) iPirioice~sis~II~IDII~~IIIIIIIIII~
Via standard PL/S linkage Remove "In -use"

1 Syntax check internal text.

.JSCB -- See environment

• ASCB

+TCB

Output

.JCT 2 Search DSABs for "REMOVE sa vfLt
'IN -USE' ".

+
4

4SCT

ALFNCMAP* *Common input
not used by this
routine

DEPARMS

Environment

JSCB DSABQDB

I+OSABot + 1st DSAB

4
,--_----'ltili ""_ List of DSABPTRs

,..---..... P;;;;-- for "REMOVE

Input to
Step 3.

'IN-USE' " processor

I xx X I
Count of
DSABPTRs
in list

rI'.I a o·
= N

a::
a
[
o
100)

o
"0 a o·
=
~

~
N
Ul

~~

Diagram 14-26. IEFDB480 - Remove In-Use Attribute (part 2 of 4)

Extended Description Module

The function of the Remove "In-Use" routine is to handle IEFDB480

dynamic allocation (SVC 99) requests for Remove "In-Use"
processing.

1 Checks are made to ensure that exactly one of the two
valid remove in-use keys was specified, and that

valid number and length fields were also specified for it.
The syntax checker is called to assist in these checks. If an
error is detected, step 4 is processed.

2 The DSABs for remove in-use processing are deter­
mined as follows:

• If the current task option key was specified, a scan up the
mother TCB chain to the initiator's TCB (or, if 0, the job
step TCB) is made. Looking at each in-use DSAB in the
DSAB chain not for a private catalog, remove in-use process­
ing will be done for any of these DSABs whose TCB address
does not match that of a TCB found in the TCB scan .

• If the TCB address key was specified, a scan of the DSAB
chain is made and remove in-use processing will be done
for any in-use, non-private catalog DSAB which has the
specified TCB address.

IEFDB4FF

Label

CUTSKSCH

TCBADSCH

t Diagram 14-26. IEFDB480 - Remove In-Use Attnoute (put 3 of 4)

~

i
~
w

~ ..
I
b
1·
E:

f
:. r
G
w

~
w

i
w
~ -

14 Last write EPA I JI..> 3 Invoke "REMOVE 'IN-USE' II • JSCB
y processor .

• ASCB

4 TCB

4 JCT

4 SCT

4 Clean up and return.

Return to SVC 99
Control (lEFDB400)

~
)

'"

....

...

DSABCHAN DSABsprocessed

I ID
have DSABNUSE
turned off and are

'" , , placed at end of

DSABQDB
dlain.

I
• First DSAB - Updated if

necessary

4 Last DSAB - Updated

EJ I TIOT J
entry I Messages L

VAM paging
Updated: SCT, data sets released
JSCB, TCTIOT ;
SlOTs, UCBs

EJ
Ptr to last EPA

Written "

SMF
record 40 .

Data sets
cataloged! DSENQ table
recataloged! DSNAME uncataloged! entry .. '

scratdled deleted

-.~

Register 15 - always 0

I I

I ~~r If syntax I = j-:~r:r, failing

~
(1)

a
5'
= ~

a::
sa. =-8-
o
o

"0
~ a
5'
=
~

J:.
~
......

~

Diagram 14-26. IEFDB480 - Remove In-Use Attribute (Part 4 of 4)

Extended Description

3 The remove in-use processor is invoked for any
DSABs found as a result of the search in step 2. It

performs the following functions:

a. When a DSAB pointed to in the input list is either OPEN
or a member of a concatenated group, functions band
c are bypassed.

b. When a DSAB is not permanently allocated with a DISP
of DELETE:

• If the DSAB is for a non-&DSN its address will be
placed in the list for unallocation and the unallocation
count updated. Functions c and d are bypassed for
this DSAB .

• If the DSAB is for an &DSN V AM data set, V AM
paging space is scratched and function d is processed.

c. When a DSAB is either not permanently allocated, or has
a disposition other than DELETE, a check is made to see

if the conditional disposition was specified. If it was
specified and is different from the normal disposition,
it is removed from the SlOT and an EPA for the updated
SlOT is placed on the write chain.

d. The in-use bit in the DSAB is "turned off and the DSAB
is moved to the end of the DSAB chain. (If the DSAB
is concatenated, this processing is done for all members
of the group.)

e. If there are DSABPTRs in the list for unallocation from
function b above, the unallocation processor is invoked.

4 Return is made to the caller.

Module

IEFDB481

IEFDB4A1

"-7 ~'--7

Label

VAMSCTCH

DISPPRCR

DSABCHNR

t Diagram ,14-27. IEFDB490- Ddname ADoeation (Part 1 or 2)
~

~
~
W
fIl
'< ..
I

i
r­
c;:

!
<
~
it
w.

~
w

~

I
w
~

Entry from SVC 99 Control (IEFDB400)

Via standard P.USlinkage· . .~ DDNAME Allocation

Ir-+~, -T-ex-t-p-tr-s-, ---~"', < " \ :) 1 Syntax check internal text.

/ i 0 I + Text unit 1 " Invalid text.
I '):: ; , Valid

I ~ -f 1 ,+ Text unit .' K • {,'
I "" 2 Search TIOT for , I Key 1#1 Len ·1 Parmi DDNAME. \ .N~~~

IKey 1# I Len I Parm I lnd
~R_e_a~ __ n_'~~,~e_~ ____ __

I E I I f
"

3 Make environmental- Updated DSAB TIOT entry,
rror n 0 checks.

code code, .1'......-.-----1
• ,TIOT entry... DDNAME '

• JSCB - ~---See environment ... TCBPTR
Ij ASCB 4 . Assign, "'n-use" attribute' """: __ /F'p)

1 TCB and store TCBPTR in -y

• DSAB(s). -
j JCT * SCT ti:?,\;ifi:g1~~;:;}J'sll*;il;;;;;tt'j;'*3';);,;,,,,:}t;;*\ttVir?~!r03!fuz;;;;12#£\~?:ie.~c~~pJ$i{f0~r:tt:.

I ALFNCMAP * I *Common input not 0; (, 5 If necessary, check'for: " II.. 1 Text ptrs I fo" Text unit) ,
used by this routine :~ ~l dummy data set. ~;.. /',t.~:

I DEPARMS " 1;(:; If a dummy datat:- -T1 14 Text unit T
~ ~ :: set X'80' ,4" -
:;i ' /' I. Last EPA on chain I : 6 Clean up and return. ", return~ I 1-------......-------.. f > otherwIse, Key # Len Parm
:;;;,:;::',,:,,::;;' ;: X'OO' '.... 0002 0001 0001. 80

Environment l{ ""Ito"

~1I1I1I!l1I1I1I1I1I1I1I1I1I1I~1I~~~~~~~~~~'E0"~\'''~;~~s:£~s~'''~.~"~0~"'~'~~~' t
JSCB DSABQDB DSAB thain TIOT Etntries:' . f+;Y;J<{/" ':<:/,:.;;::~\,

/ I
; R~~

"'"", "'":, LJ I I " " II I-) To SVC 99 ,. Error Info I ~ If sy.ntax }
• DSAB.Q .. + 1st DSAB ~.. . + nOT entr,y _II DDNAME ",Control :; code code error,:'"

:. OEFD8400) failing key :;{

UCBPTR;' Reg 15 j

, I Return cOOe I -Always 0 1,

, -",.,' (,X/::<',' '.J,"\Y :',<, , " .;:;

i
::t

ht
~

[
2.

f
e' ::s

~
\C

~

Diagram 14-27. IEFDB490 - Ddname Allocation (part 2 of 2)

Extended Description

This module assigns the "In-Use" attribute to the
resources associated with the specified ddname. This
function can be specified using the verb code X'06'
with one or both valid textkeys~

• Key X '000 1 ' - This key is used to specify the ddname
to be allocated. This key must be specified.

• Key X'OOO2' - This key is used to request an indica­
tion that a DUMMY data set is being associated with
the specified ddname.

1 A subroutine is invoked to check text for invalid
or duplicate keys. If an error is found, step 6 is

processed.

If key '0001' is not present, an error code is set. and
step.6 is processed~ If specified ddname is JOBUB,
STEPLlB, JOBCAT, or STEPCAT, an error codeis
set and step 6 is processed.

Module Label

IEFDB490

IEFDB490 DDNLCCHK
IEFDB4FF

Extended Description

2 A subroutine is invoked to search the DSAB chain
for a TIOT entry with the specified ddname. If

the ddname is not found, an error code is set and step 6
is processed.

3 The following checks are made on the DSAB entry:

If entry is not in-use
If entry is permanently allocated
If entry is not convertible .
If entry is member of concatenated
If group entry is not OPEN

DSABNUSE=O
DSABPALC=1
DSABCONV=O
DSABCATM=1
DSABOPCT=O

If any of the above are not true, an error code is set and
step 6 is processed.

4 The "In-Use'! attribute is assigned. If member of a
concatenated group, the in-use bit is turned on for

each entry. The TCB address.is stored in the DSAB(s).

5 If text key '0002' is present, a check is made to
determine if data set isa dummy .. Ifit is, '80'X is

returned in parameter field of key '0002'. Otherwise,.
'OO'X is returned.

Note: All members of a concatenated group must be dummy
in order to have the dummy indicator returned.

6 Return is made to thftcallerwith register 15 set
to zero.

Module Label

IEFDB4FC

IEFDB490 DDNLCCHK

~
J;.
~
Q

o
CIl -<:
CIl
~

CIl
'<
~ a
b
'!S.
f')

t:
~

~
~ = 3
(D

~

'<
CIl
~

" i
~
~

~

Diagram 14-28. IEFAB4AO - Common Unallocation Control (Part 1 of 10)

Overa II Input

....-

Function map
/ I/", • Next RB or 0

• First request blk , + SlOT

JSCB pointer DISP Unalloc Sub- DISP

• First alloc'd SlOT processing flags system error
indicators flags flags

DSENQ table SVA

Step number
Override Override Informational
DISP SYSOUT return code

VUT SVA class

Reason code area Optional field
-- - - -- -----

.....
te 1 Function map byte 2

I xxxxxxxx I

....
.... c

i- Pre

--- Mor
1.--.. Irr •• .o.

ree DSABs
ease volumes
locate units

se data sets
nect private catalogs
dispositions
tatus
sition msgs

TIOT is ENQ'D on
Use purge option of scratch

Issue no error msgs
Release TIOT DD entries

Do generic dequeue for volumes
Change VOL attribute in UCB being unallocated

Bypass VUT processing
Bypass POST function

e3 Function map byte 4

I X -- - - -- -]

-UTITInVOke.JES3 L Last call to JES3 for step
L '-n~:queue DSNs from current TeB

Dequeue volumes from current TCB
Build ETIOT for scratch

Change public tape to private
Scratch from first volume only

D()n't issue SM F record at scratch
Release all data sets with step number in DSENQ table

(See extended description for Callers) Process

Parameter list to
disposition processing

+
J

Function map

First req blk

JSCB

Build ETiOT for 'scratch'
Scratch from 1 st vol only

Suppress SMF record at scratch
'Purge' D.A. data. sets

Scratch not to ENQ on TIOT
Don't issue error msgs

Monitor status active
Issue DISP msgs

Common Unallocation Control

1 Perform disposition processing, if 0/1
necessary (for details, see
M.O. Diagram: Disposition
Processing).

i
t5'
::s
~

a:
<D

[
o
o
~
q
a t5.
::s

w • w -

Diagram 14-28. IEFA84AO - Common Unallocation Control (part 2 of 10)

Extended Description

The functions of the common unallocation routine are:

• Data set disposition - Disposing of a data set as directed
by the user through the DISP parameter in the job control
language or as specified through the dynamic interface.

• Data set release - Releasing the data set for use by other
jobs, after the data set's last use by this job.

• Unit unallocation - Unallocating the unit(s) to which a
data set is allocated.

• Volume release - Releasing volumes allocated to requests.

Note: All four processes are not always performed for every
request for unallocation. For example, a unit record device
may not have a volume associated with it, or a data set
may not be released if it is required in a later step of the job.

The callers of this routine are: IEFBB414,IEFBB416,
IEFAB477, IEFAB490, IEFAB4DE, IEFAB492,
IEFDB4A 1, IEFDB413, and IEFDB418.

1 Disposition processing is invoked unless the input
function map indicates that it is to be bypassed. The

subsystem interface is invoked for all subsystem data sets,
i.e., SYSOUT and SYSIN data sets.

Module Label

IEFAB4AO

IEFAB4A2

~
~
1M
~

o se
~.
~

fIl

~
<II =. i;:
n'
r-

I
< o c
i
1M

< fIl
~

liIO

i
~
1M

~

Diagram 14-28. IEFAB4AO - Common Unallocation Control (Part 3 of 10)

Input

Parameter list to PVTCAT

t 4 Function map « I
7
I-~-"":-x-x I

I [Free all
catalog

Close all catalog ACBs ----I PCCBs

Input
Parameter List

Function
map

t First req
blk

4 Init, TCB

~

DSENO
tabieSVA

Step
number

/

t Request block

~ Next req blk

11-----­
(
~
~I --------.

F unction map

If on, release
all data sets
for this step

If on, do data
set release

)
SlOT

D

Process 9 Output

"
....

-v 2 Invoke routine to close private 0 V'I;{
catalogs and free PCCBs. ,J

....
)

....
3 Dequeue data sets if necessary. <ri VJ% y

It

Private catal

EJ
clOSed og Private catal

f
control bIOC~
reed

[[[]

Updated DSENO table

Data set
name entry
deleted

Data sets released

CI)

it
8'
:;t

~

I:
Sl g
~

2-
o

I
8"
:;t

w .;,.
w
w

~ ,,_~ .-7~

Diagram 14-28. IEF AB4AO - Common Unallocation Control (Part 4 of 10)

Extended Description

2 A routine is invoked to close private catalogs and
free PCCBs.

3 If all data sets for the step are being released, the
entire DSENO table is located via the SWA manager

read/locate function, and the DEO parameter list is built.
Each data set used for the last time by the job in the cur­
rent step is placed in the DEO parameter list. If a subset of
the current step's data sets (in the form of a data set name
list) is to be released, the DSENO table is read until all
the data sets in the subset have been found or the DSENO
table has been exhausted. When the DEO parameter list is
completed, a conditional DEO is issued for all names in the
DEO parameter list. The input TCB pointer is used to
direct the DEO to the appropriate task. Data sets being
dequeued are removed from the DSENO table.

Module Label

IEFAB4AO DSCPCATS
IEFAB4F4

IEFAB4A6 A4A61NIT
READDSNO
DEOLBILD

IEFAB4A6 A4A6CLNP
DEODSNS

"'--~

~
~

~
N
C'I.)

I
i
t­c;:

!
< eo
i
w

~
N

~
~

f
lC
w
~ -

Diagram 14-28. IEFAB4AO - Common Unallocation Control (part 5 of 10)

Input Process 9 Output

Request
block SlOT

r--

~
DSAB

1/ __ , __
h.

VOL list

Build I.ist of volumes to be ; >ff ~ I # entries to
released, if required. ~ ~1t be released

entries in list

i%tl/ 4

JFCB I' TIOT entry

VOLSERs I; ~B
JFCBXs "'- UCB

~ ~ IVOLSER

--XX----

Check for multiply alloatted
volumes

check for multiply alloatted
volumes-DA only

Unit unallocation 5 Do unit unallocation, if required
. function map (for details, see M.a. diagram

Parameter hst for . 1 Unit Unallocation).
unit unallocation X XX - - - - -

• + Function map L Change use
• First req blk attribute

6
• DSAB aDB Bypass .VUT

processing

+ VUT SVA - Bypass POST

+ ESTAE parm area function

........

I/'

VOLSER I *Flags

'*' *
VOLSER n I

t--- 8~ytes ---t

* Flags
o and 1 - Unused by common

unallocation
2 - Check for multiplyalloc'd

3 thru 7 - Reserved

Units unalloatted (UCBs updated).

Volume unload table (VUT) entries made.

til
(Il

g.
o·
::I
!';J

is:
(Il

~
Q.
o
o

"C:S
~
fa. o·
::I

~
~
~
VI

~ "'_.f

Diagram 14-28. IEFAB4AO - Common Unallocation Control (part 6 of 10)

Extended Description Module Label

4 If volume release is to be done, a list of volumes to IEFAB4AO BVOLRLST
be released is built unless a generic DEO is to be GETVLSER

issued. The list contains all the VOLSERs in the JFCBs and

JFCBXs for the request as well as those from the UCBs of
the unit(s) allocated to the request.

5 If unit unallocation is to be done, the following func­
tions are performed:

1. Updating the unit control blocks (UCBs) associated with
the requests being unallocated.

2. Creating/updating the volume unload table (VUTI.

3. Posting generic allocation via the allocation O-manager,
for all device groups unallocated.

IEFAB4A4

,--_/

~ Diagram 14-28. IEFAB4AO - Common Unallocation Control (part 7 of 10)

~

~
N

f
I
i n
t:
2"
~

i
ft
W -~
N

'" i
I
w
~

... .---

Input
parameter list

Function map
..........

I x-------J
+ VOL list * L Do generic
• TCB wlume DEQ

t First aim SlOT

l + Reason code
area *See output from

step 4.

Functionf #to t TIOT_ I CP req blk map free

+ JSCB

~~ ~

DSAB list

+ DSAB1 • DSAB list
• DSAB2

d~~ 1. DSABN j
~ I-- 2-bytes -1

C I------x-x--- J

L Ifon,
free DSABs

- If on, free DSABs
and release TIOT
entries

~--'

.
< ~:

J. 6 Release volumes (DEQ).
r

~) 7 Invoke TIOT manager to free
F DSABs, if required.

,

Volumes released.
v

..
DSABs freed.

v TlOT entries released.

(I.)
(I>

~
(5'

=
~

ac:
(I>

[
o
"'" o

'C
~ a cs·
=
w
J.
(N
'-.I

'2#

Diagram 14-28. IEFAB4AO - Common Unallocation Control (part 8 of 10)

Extended Description

6 If a generic DEQ is requested the DEQ is issued
specifying the major name SYSZVOLs. Otherwise,

the DEQ parameter list is built and a conditional DEQ is
issued for the volumes that can be released (Volumes still
in use by the job cannot be released). The major name used
is SYSZVOLs and the minor names are the VOLSERs that
can be released.

The input TCB pointer is used to direct the DEQ to the
owning task.

Module Label

IEFAB4A8

'-,

7 If DSABs are to be freed~a TIOT manager request IEFAB4AO FDSABINT
block is"built. If storage is available for the list of" IEFAB4FC UNALCTIO

DSABs, the list is built, and the TIOT manager (lEFAB4FC)
is invoked. The core for the DSABs is freed. The TIOT DD
entries are released if required.

'-'---""

! Diagram 14-28. IEFAB4AO - Common Unallocation Control (part 9 of 10)
~
00

~
"< !:I}
~
!:I}

~
~

£
~.

r-

I
<: o = 9
(D

~

'< !:I)
~

:=
t
~
~

~

(

"

~1 11 ~ ~11 Parameter List
8 Invoke JES3 subsystem to

~ Function Map
" notify it of release of data i5 t 1 st Request set and associated resources. iii

Block ;;'j
/

Step Number

I--- 4 bytes ---1

r X X I

~tL L Last call to
9 Clean up and return to caller.

JES3 for step

Invoke JES3

(See Common Unallocation Control,
Part 1 of 8.1

Callers are named at beginning
of extended description

'4/,9 ," ",. ";i
;:\,

~ "J SSOB :,f
1 \OBINDVl i

~1
i
;

;(.:
;;:; SSCU

{

·Z,
:.

~; • DDNAME !

t Relative Position
C',

Number (

• Step Number ~ ,
• Unload Routine

' ";~" ' ,'~""',

'<>," " ',.

Register 15

EJ ~

I Reason code array
'" ~ 2-bytes ~ ;;

~ OR
::

~; +0
; EJ& +4 2. If data sets not ;

'" released, 7=0.
?i

+8
3. If VO Ls not ;;

released. 7=0.

4. If unable to
+12 create ESTAE

l}
environment,

\ 7=0.
:~;

.'W" .,., .••. ,:i' .. , v,., ,. c .. "",i;(f

ff
~ eo
::t
~.

a:
[
c
o

I eo
::t

r
w
\0

""!'"'~

Diagram 14-28.IEFAB4AO - Common Unallocation Control (Part-IOof 10)

Extended Description

8 If the JES3 subsystem is to be invoked, build the
subsystem interface and invoke JES3 once for

each request block (except for DUMMY. TERM,
QNAME, SYSIN, and SYSOUT). JES3 tables are
updated to reflect the unallocation~

9 Control is returned to the caller with a return code
in register 15.

Module Label·

IEFAB4AO EXITJES3

IEFAB4AO

,----'" ----

i
&l
~
~

fIl
'<
=-a
i ;:;.
t::
2"
~
~ c
a
(D

w

~
~

~
8 s
w
~ -

Diagram 14-29. IEF AB4A2 - Disposition Processing (Part I of 3)

Entry from Common Unallocation
Cont,oIIiEFAB4AOI ~ Input ..

t--1 byte---t

I lillilF' Build 'dummy' ETIOT
for scratch

Scratch from first volume only

.... If on suppress SMF record issued
by scratch

.... If on purge D .A. data set when
scratch

L If on TIOT is enqueued
L. If on suppress error msg(s)

L.. If on monitor status is active
L If on issue msg(s) to SYSOUT

Function
map

Job name

Step name

PRoe

" '. Disposition Processing

,r=:>'
For each request block

Build volume list for
request, if necessary.

2 Determine processor to
invoke, and build processor
function map.

Output

VOL list

JI ~ ____ ------~v~--____ __ .,. 1 entrylVOLSER

KEEP (+PASS) DELETE

Function map

~
F unction map

~1
.VOL list • VOL list

~ tData set t Data set
name name

.DSCB TTR + UCB or 0

DISPIDIMSGID + TIOT DO
entry

DISPID I MSGID
step name .' ~ L ===:!> 3 Invoke appropriate processor. «_ ---. CATALOG

RECATA­
LOG

Last
request block

o
t SlOT to

. process

DISP
info

Status
info

Bits to indicate
• Data set was located
• VOLSER list changed

4 Return to caller.

Return to Common
Unallocation Control
(IEFAB4AO)

L-.J...
'----.

~ F unction map

• VOL list

t Data set
name

DISPIDI MSGID

EJ
Catalog
updated

D
Message
issued

~
Uncatlg

F unction map 0
• VOL list t

DISPIDI MSGID

EJ
Data set
scratched

,.

{I'}
I'D
~
5·
::s
~

a::
I'D

[
o
o
"0
~ a
5·
::s

c.t
~
t

Diagram 14-29. IEFAB4A2 - Disposition Processing (Part 2 of 3)

Input

Indicators

@
Byte 1 Byte 2 (55 interface flag)

Bit 0 Bypass DISP proc Bit 0 Delete at unallocation
1 Use normal D ISP 1 Hold at unallocation
2 Use condo DISP 2 Dynamic unallocation
3 Use override DISP. 3 WAn
4 Use override userid for 4 Use override SYSOUT class

SYSOUT 5-7 Reserved
5 Don't check UCB status
6 Reserved
7 Reserved

.""- ---- -
Override DISP

®
Bit 0-3 Reserved

4 KEEP
5 DELETE
6 CATLG
7 UNCATLG

Extended Description

This routine controls the processing required to dispose of the data sets associated
with the input requests.

Before any disposition processing can be done on a non-subsystem data set, a volume
list must be successfully built.

If the volume list is successfully built, this routine will perform the appropriate
process from among the following:

• Process KEEP or PASS disposition, and build and issue the appropriate message.

• Process DE LETE disposition, and build and issue the appropriate message.

• Process CATLG disposition, and build and issue the appropriate message.

• Process UNCATLG disposition, and build and issue the appropriate message .

• Unallocate subsystem request, and build and issue appropriate message.

If the volume list is not successfully built the routine will:

• Process DELETE (tape only), KEEP, PASS, and UNCATLG.

• Build a disposition message, using JFCBs and JFCBXs via the alternate
disposition message routine (IEFAB4B2).

Module Label

IEFAB4A2

Output

Suppress
error msg

Monitor status
active

D.A. data set
Suppress error msg

Monitor 5tatl,lS active Issue msg to
SYSOUT Issue msg to SYSOUT

Suppress SMF record
Purge D.A. data sets

TIOT is enqueued
UCB addr not valid

Msg only for VIO data sets

VIO data set
UNCATLG data set

No rewind
Tape da ta set

D .A. data set
Suppress error msgs

Monitor status active
Issue msgs to SYSOUT

3-442 OS/VS2 System LOJic Libnry Volume 3 (VS2 Release 3.7)

CI'l
t1)
()

S·
:I
N

::
~ :s­
o
Q..

o
o
~

~
Ql

S·
:I

<.H

t
<.H

~

Diagram 14-29. IEF AB4A2 - Disposition Processing

Extended Description

1 Unless the data set is a subsystem data set, a volume
list is built containing the va LSERs and device type

of the current data set. The device type is obtained from a
UCB allocated to the data set, unless the data set is to be
recataloged, in which case the cataloged device type is used.
The volume list is used as an interface to the various disposi­
tion processors and to the message processing routine,

(lEFAB4BO)' Function maps and other indicators are set as
required for the disposition to be processed.

Note: For a DADSM scratch only data set, a dummy
ETIOT entry will be created if it is indicated in the com­
mon unallocation function map.

' ___ ::T

(part 3 of 3)

Module Label

IEFAB4A2 BVOLLST

IEFAB4A3

2 Each request block is checked to determine what proc- IEFAB4A2 PRCSDSP
essor should be invoked. One of the following processes BDSPINT

will be performed:

3
a. KEEP (and PASS)

Identify message to issue (KEPT or PASSED).
Invoke the message processor, IEFAB4BO.
Update DSCB TTR in catalog, if required, using
RECATLG interface in segment CTLGPRCR.

b. DELETE disposition
If the data set is direct access:

Set up for DADSM SCRATCH.
Invoke DADSM SCRATCH function.

Whether the data set is direct access or not:
If the data set was cataloged invoke UNCATLG. Invoke
IEFAB4BO, to issue DELETE and/or NOT DELETED
message(s). A data set may be partially deleted, in
which case both messages will be issued.

If tape, indicate 'REWIND NEEDED LATER' in the
UCB(s).

KEEPPRCR

DELPRCR

Extended Description

c. CATLG disposition
If tape data set:

Check density and update device type field of VOL
LIST, to allow the widest possible range of devices,
unless the data set is being recataloged, in which case
use the cataloged device type.

If necessary invoke catalog management to catalog (or
recatalog) the data set.
Determine the message to issue, if any, and call
I EFAB4BO to issue message.

Note: IfCTLGPRCR is being used only to update the
DSCB TTR in the catalog, no message will be issued. If
data sets were cataloged when allocated, the "cataloged"
message will be issued, but catalog management will not
be invoked.

d. UNCATALOG disposition
Indicate uncatalog in parameter list for CATLG manage­
ment.
Invoke CATLG management to uncatalog data set.
Invoke message processor, IEFAB4BO, if disposition
messages are to be issued.

e. Subsystem data sets
Build the subsystem interface, using information from
the data set's SlOT, JFCB, DSAB, and common unalloca­
tion request block.
Issue IEFSSREQ macro to generate a CALL statement
for the subsystem interface routine, SSREQ, so that the
subsystem can dispose of the data set.

Note: If no core is available for the volume list, a special
message routine, IEFAB4B2, is invoked, which uses the
JFCBs and JFCBXs to obtain volume information for the
disposition message. If the disposition being processed is
DELETE (DASD data sets only), CATALG, or RECATLG,
a "NOT DISP 5" message is issued but no processor (j.e.,
Catalog Management or DADSM) is invoked.

4 Control is returned to Common Unallocation
Control (I E F AB4AO).

Module Label

CTLGPRCR

UNCPRCR

PRCSSSDS

NVLSTPRC

w

t
~
~
N
C"I.l
'<
~

~
.... S'
"QQ ;:;.

!:
~

~
~
~
(D

w

'<
C"I.l
N

l=I'
(D

i
~
w

~

Diagram 14-30. IEF AB4A4 -Unit Unallocation (Part I of 3)

Input Entry from Common Unallocation ContrOl (lEF~AO) Process .-.
UCB Unit Unallocation

For each request:

'') 1
DOMiDI

DOM pending MOUNT
" message(s) .

VUT
0

SVA next VUT blk

entries this blk ..
VOLSER

') 2 Update VUT.
v

I

VOLSER }up to 28

t:~ I VOLSERs T per blk
176t I

Output

UCB

! "- §] Message I D cleared
"

VUT

" VOLSER added
·V toVUT

New VOLSER

I:'-l

it
~.

=
~

f
~
o
1 ..
e'
=

i

~

Diagram 14-30. IEFAB4A4 - Unit Unallocation (part 2 (if 3)

Extended Description

This routine unallocates the devices associated with each
input request. Functions performed are:

- Unallocating units no longer needed - A direct access
unit is not unallocated until the use count becomes zero.

- Rewinding tape volumes - Volumes on tape units being
unallocated will be rewound or unloaded if necessary via
the volume mount and verify function.

- Deleting outstanding messages - Any mount message
pending for a tape data set is deleted.

-Identifying volumes to be unloaded - VOLSERs for
private volumes, for public MSS volumes, and for
volumes containing passed data sets are placed into
the volume unload table (VUT).

1 If there is a mount message pending for tape, it is
deleted using the DOM macro, and the DOM identi­

fier and mount pending indicator in the UCB are cleared.

2 If VUT processing is requested, the volume serial of
any volume which is private, public MSS, or contains

a passed data set is placed in the VUT.

Module Label

IEFAB4A4

IEFAB4A4 DOMMSG

IEFAB4A4 CRVUTAB

"',~ ~?

-< r.IJ
to..)

(:)
w
00
~

~

~
~
0\

o
C"I)

"< C"I)
N
C"I)

'<
~

~

£ ;:;.
t"'"

J
<
2-a
(D

~

~
~
o
~

00
~

Diagram 14-30. IEFAB4A4 - Unit Unallocation (Part 3 of 3)

Input

_-----O-v..,crall input

I· Function map T I X X X - - - - -­

• 1st req blk
4 DSAB ODB

(

VUT SVA(or 0)

ESTAE parm
area

DSAB ODB

l L Change va L attribute

Bypassing VUT processing

L... Bypass POST

DSAB

• First DSAB Previous DSAB

• Last DSAB TIOT entry

Request block

4 Next blk (or 0)

4 Group ID list

SlOT

4 SlOT to be unalc'd

~ X I

\E
Device type

.t UI', "11'ti ~ IU

multiplyalloc'd
units

• DSAB

set on VOL . pending

DSAB

Passed d8t5UCB .. MOUNT

Use count X Allocated
(a.A. bit
only)

It TlOT entry ~

N ,.... ~

Msg ID, if pending
MOUNT

DDNAME

list 10 Device t Group UCB1}

Group ID list UCBN r entries

Length

Group 101
Group 102 Tape volume

Use attribute must be rewound
,.,." changed from Use attribute T Group IDNI p~blic to changed from

prtvate none to private

Process 7 Output

)

3 Unallocate units.

'" 4 Build request block and invoke
allocation a-manager to POST III
allocation.

~

Updated UCBs
Tapes
rewound/unloaded

~
O-HCR Request block
, Code=61--

4 Group mask

ASID

... :.".. .. .,..- U
I 5 Return to caller. t ,-l" N

T T
Return to Common Unallocation
Control (lEFAB4AO)

Extended Description

3 For direct access devices, the use count is decreased
and if the count is zero the allocated bit in the UCB

is turned off, and other required fields are cleared (e.g.,
attention table index, data management count, and ASIO).

For non-direct access devices, the allocated bit is turned
off unless the unit is to remain allocated to the step.

Tape volumes are rewound or unloaded if needed (via
volume mount and verify), unless they are reserved or
they contain passed data sets.

4 Allocations which are waiting for units just unallo-
cated are allowed to proceed by invoking the

allocation queue manager.

Note: The local lock and CMS lock are held while UCBs
are being updated in step 3.

5 Control is returned to Common Unallocation Control
(lEFAB4AO).

Module Label

IEFAB4A4 UNALUNIT
CHKMALCD

IEFAB4A4

~
N
Q
~

00
~

System management facilities (SMF) routines collect
data, provide for user-supplied data collection
routines, and record the collected data in a data
set. There are two cataloged direct access data sets,
SYS1.MANX and SYSl.MANY, that are filled
alternately. While the system records on one of the
data sets, the other may be written out (or
'dumped').

Master scheduling task routines initialize the
SMF routines. Then, the scheduling task uses the
A TT ACH macro instruction to establish the SMF

task. The following components contain SMF data
collection routines and exits for user-supplied data
collection routines:

• The interpreter.
• The initiator/terminator.
• The command processor.
• The timer supervisor.
• The real and auxiliary storage manager.
• The real and virtual storage manager.
• The system resource manager.
• The JEs2 subsystem.

As these various components record and collect
data, they are building records. Eventually they use

System Management Facilities

SVC 83 to transfer the records to an SMF buffer.
The SVC 83 routine also writes the records to the
SMF data set and, as needed, initializes and •
switches data sets.

The following list contains the types of record
information that may be recorded on the SMF data
sets:

• Records describing the resources used by
tasks the systet.J1 processes.

• Records describing changes in status of the
system, such as changes brought about by use
of VARY and HALT commands.

• Records describing the usage of data sets and
volumes by users.

• Records describing the resources used by a
TSO user.

Some components collect a single data item and
accumulate the value of the item in an SMF control
block. Some components format a record of various
data items and transfer the record to a central SMF

buffer. Other components provide control program
interfaces to installation-supplied exit routines for
data-collection functions.

Section 2: Method of Operation 3-447

3-448 OS/VS2 System Logic Library Volume 3 (VS2 Release 3.7)

til

a o·
=
~

~f
.;:="
~.&.

o
""' o
."

S g.
=
w
~
~
\0

Writing SMF
Records
(lEEMB829
and
IEEMB830)

Switching SM F
Data Sets
(lEEMB829)

System
Management
Facilities
Recording
(no diagram)

.~

STAE Exit
Processing
for SMF
(IEEMB825)

Figure 2-29. System Management Facilities (SMF) Recording: Visual Contents

SMF Cross­
Memory Post
Error Exit
(IEEMB827)

~ . Diagram IS-I. Writing SMF Records (IEEM8829 and IEEMB830) (part 1 of 4)
~ o

~
~
N
fI.)

'< =.
B
i
n'
t""

J
~ r
w

~
N

~

t
R
w
~

In

SMF Recording
Initialization (IEEMB822)

CVT
~

JFCB

~JFCBDSNM
~JFCBVOLI

R1

~sMF/user Record

'1 I~ I
User Type

SMCA

SMCASWA
SMCABSIZ' ~
SMCAOPT

Steps 1-3: Initialization

1 Set up STAEenvironment. ,.~ !i)
~. • I

43 i .12 Open the SMF data sets..' 1:
0
;",

Issuer of
SVC83 -

Error: fail to open the SMF ; " t;~"
data sets.

.........Caller
~(via

POST)

)1 Fii' 3 Inform operator of SMF data set ."
ready -for -record ing condition.
Wait for notification of function.

Steps 4-10: Handling Buffer Data

!mI"-~-----'~'; 4 Enqueue on SMF buffer and provide ,.;1 Il"'"
.wEi 15, time stamp for records.

)1 It;:
'V4 h. ,; 5 Take user exit if specified. "

STAE Exit SMF Writer

O
Routine T~CB .,jSCB

C]-

SM~CA SMCAPOEV O~CB
. . SMCAAOEV .

SMCAPMTY
OCBBlKSI

10

r;n
(D

a o·
=
~

~
(D

g-
Q.

o
o
't:I

~
6·
=
w
J:..
til

'---~
~

Diagram IS-I. Writing SMF Records (IEEMB829 and IEEMB830) (part 2 of 4)

Extended Description

This routine places SMF records in a buffer and
writes the buffer to the recording SMF data set.

Initialization

1 This environment protects the SMF record writing
function by handling abnormal end situations.

2 The data sets SYS1.MANX and SYS1.MANY are
opened (via OPENJ) and one is selected for

recording data.

3 The routine uses a WTO macro instruction to
inform the operator that'SMF is recording.

Note: Modules IEEMB829 and IEEMB830 communicate
with each other via the cross-memory posting facility.
After the initialization phase, module IEEMB829 enters
the wait state, having been set dispatchable (via the
STATUS SVC) by module IEEMB822. When module
IEEMB829 completes its processing, it issues a POST

macro instruction for module IEEMB830, then waits
for the next function to process . .If an error occurs in the
cross-memory posting process, module IEEMB827 gets
control to perform cleanup processing. This eventually
leads to a termination of the SMF function.

Handling Buffer Data

4 This procedure serializes the SMF record processing
resource. (A time stamp is omitted from records

4,5,34,35, and 128-255.)

Note: For a record for a HALT (EOD) situation, the
active SMF data set is closed and a switch is made to the
alternate data set.

5 User exits may be specified at initialization. If exits are
specified (via field SMCAOPT), the exit I EFU83 is taken.

Module Label

IEEMB829 WTRINIT

INITOPEN

WRITEMSG

IEEMB830 IEEMB830

USEREXT

"""'-_7

~Diagram 15-1. WritingSMF Recerds(IEEMB&29'and IEEMB830) ,(part 3 of 4)

N

~
'N

1
i
t'" r .s
f
CD
w

~
N

~ r
w
~

Input

SMFRecord

~TU:s~ -1

SMF'Record

SMCABSIZ·~
User Size

'Process Output

,_--------. ... ~,....O/ ·6 Split (~ntl recordi! necessary: .A - :> G } Record Segmenu

7 Put SMFrecordin a buffer. / ,ua .L~ __

a) If buffer not full., 0 .1 Step 9

b) If buffer full, continue.

8 Write the buffer to the SMF && ;/

data set.

, • If the alternate data set is. I I Step 10
needed, but is unavailable,

9 'Dequeue off the SM Fbuffer
resource.

Issuer of
SVC83

EEMB830)

10 ' Error: -Build record type 7 with Ita ilMl if
a count of the records lost.

Waits on writer ECB

Buffer
SMF Record

SMF DataSet

New SMF Buffer

I
\::: Record 7

fI)

a
~.

:I

~

~

t
o
""" o

"0
~ a
~.

:I

w
~
w

Diagram IS-I. Writing SMF Records (IEEMB829 and IEEMB830) (Part 4 of 4)

Extended Description

Handling Buffer Data (Continued)

6 Record splitting occurs if the record size is greater
than the buffer size. Before splitting a record, the

following steps occur:

• The SMF buffer is emptied.

• The routine determines whether the number of seg­
ments required to hold the record will fit into the
space remaining in the actively-recording data set.

• The routine switches to the alternate SMF data set if
the current data set lacks the necessary space for the
record. (Record truncating may be necessary if a

, segmented - 'split - record is too large for an empty
SMF data -set.) (See the diagram Switching SMF Data
Sets for data set switching.)

7 This assumes that the record size is less than or
equal to the empty buffer size.

Module Label

IEEMB830 SPLITREC

EMPTYBUF

IEEMB829 SPACECHK

DSWITCH

IEEMB830 RECPROC

Extended Description

8 The routine uses a BSAM write mode to transfer
the buffer contents. Before writing, the following

processing occurs:

• A check is made for available space on the currently­
recording SMF data set.

• If the current data set lacks space for the record
waiting to be written, data set switching occurs. (See
the diagram Switching SMF Data Sets.)

• The routine closes the former (currently active)
'primary' data set and issues a message to have the
operator dump the full data set.

.The routine opens the new 'primary' data set.

The writing of the buffer occurs if either of the follow­
ing conditions are true:

• The current size of the record waiting to be written
is greater than the remaining buffer space. (That is,
the buffer must be emptied before it can hold another
record.)

• A HALT command is being processed and the buffer
contains at least one record.

• After writing the buffer to the recording data set, a
TCLOSE macro instruction is used to close the active
data set for the writing of an end-of-file label that will
preserve any already accumulated data in case a subse­
quent system failure occurs. The next buffer written to
the same data set will overlay the label and another
TCLOSE action is performed.

9 This procedure removes the serialization protection
on the buffer resource. (That is, the routine no

longer controls the use of the resource.)

10 Recovery will occur when an SMF data set becomes
available after being dumped and successfully

re-opened.

Module Label

IEEMB829 BWRITER

RECWRITE

DSSWITCH

SMFOPEN

SMFOPEN

IEEMB830

! Diagram 15-2. Switching SMF Data Sets (IEEMB829) (Part I of 4)
CIl
~

o
CI'.I

"< CI'.I
N
CI'.I
'<
=-9
t""

C§.
()

t""
CT

8
~ c a
(I)

w

'<
CI'.I
N

~

t
~
w
~

Input
SMF Writer
(tEEMB829)

r~~W·[]N ~.~
CVTSMCA SMCAPDCB

~
work Area ~MCA ~

, '\.

JFCB
JFCBVOLI

JFCBDSVM SMCAPDCB

DSCB

D
SMCA

~ MANX} SMF Dat~ Set
Information

MANY Areas .

Output

1 Clo.se the currently active data set.
, , ' .. ", "

Issue dump message to operator.

2 Open alternate SMF data set.

• If unable to open. ---... ~1,.. Step 4

3 Switch data sets and issue message i. ,/

to operator.

DCB

D

DCB

~DCBOFLG5

SMCA
~MANY

~MANX
(Note Reversal)

ell a
5' :s
~

a::
a
[
2-
i
!
8·
:s

t u. u.

~
jlF

Diagram IS-2. Switching SMF Data Sets (IEEM8829) (Part 2 of 4)

Extended Description

This routine switches recording data sets for SMF
records. If switching is impossible, lost records are
counted.

1 The WTO message requests the operator to dump
the full data set.

2 The routine checks the OSCB to see if an alternate
data set is available for recording. A data set must

be empty before it is opened. The routine uses an OPENJ
macro instruction to open the currently non-recording SMF
data set.

3 The currently-recording data set is the one listed first
in the SMCA. The indicated areas (MANX and MANY)

in the SMCA contain information about the active and
alternate data sets. A WTO message informs the operator
that SMF recording now occurs on the alternate data set.,

Module Label

IEEMB829 OOSWITCH

SMFOPEN

WRITEMSG

'---""

t Diagram 15-2. Switching SMF Data Sets (IEEMB829) (part 3 of 4)
u-
0\

o
~

"<
~
~

~

i
i n·
t::
2"
5
~
[
(D

w

~
~

i
~
w
:.... -

.. -.---
'/ ,:<:'::~'>,

t):

~;~ SMCA
j:;

~SMCAPSTA

SMCA

B-SMCADSCT

SMCA

·~SMCADSTM

•

Open Failure
....
~ 4 Record time/date of failure. ...

Issue message to operator.

to.
) 5 Update count of last SMF records. v

'f ...
) 6 Build "last data" record and put ..

it in buffer.

(lEEMB830)

",",,'

SMCA

.>~ [Message~
I" '. SMCAPSTA

R15 SMCA

\1 16

I~ .
MANX

MANY

\ Buffer
I"

I Ij --r-- SMF Record 07

CIl
<» a o·
::s
N

a::
~
6
~

e.
o

"I:S

i o·
::s

w
~
....oJ

~:::Y
',,--_7

Diagram IS-2. Switching SMF Data Sets (IEEMB829) (part 4 of 4)

Extended Description

4 If the alternate data set contains data, switching is
prohibited. A WTO message informs the operator and

an indicator is set in the field SMCAPSTA.

5 For each subsequent attempt, beyond the first, to
write an SMF record, the count of lost records is

updated. A return code of 16 indicates the failure to
write a record. The data sets are then switched for the
next attempt.

6 SMF data set recovery occurs when a data set is
dumped and successfully opened. At that time,

recording on the data set is possible. The "Iost data"
record includes the count of SMF records lost during
the non-recording time, and it resides in a new SMF
buffer.

Module Label

IEEMB829 WRITEMSG

RECOVERY

RECOVERY

"'<,--,

~
00

~
fIl
N
fIl

I
i
r­ea
!
i
g
w

'< fIl
N
:;c

i-
S
w
~

Diagram 15-3. STAE Exit Processing for SMF (IEEMB82S) (part 1 of 2)

SMF Writer

Input (I EEMB829) Process

STAEWork,..
Area

~SDWAABCC
; 1 Dump the storage in response to a
;, ~. program check entry or a

" PSW restart.

(ABEND completion
code) ..

') 2 Issue operator message. --v

---""~,.p,~

CVT

h SMCA C3-
3 Prompt operator for continuation

response.

1
" CVTSMCA

> ...
") 4 Provide clean up operations after 'V

" operator responds "U".

R1

~STAE I 'Work Area Exit
_ Parameters

~
....

[11
') 5 Clean up SMF (SVC 83). ,"Y

I ~

SDWAPARM •
Reason Code

ToRTM .,

Output
"'

"*~"

~~Q
R15

l~ I
Dump

Core Dump Indicator

"--,
...

"'Y [Message J
-.

')
LMessage l 'V

,-
.. SMCA
..) ~SMCAUSER

,SMCAMAN

....
') SMCA

r'V
~SMCABECB

1;';

.

'--~

Diagram 15-3. STAE Exit Processing for SMF (IEEMB825) (part 2 of 2)

Extended Description

This routine provides clean up processing for abnormal
end situations that occur during SMF writer processing.

(The same routine handles ABEND occurrences during SMF
initialization - see the publication, OSNS2 System Ini­
tialization Logic.

Module

1 The SVC Dump service (via the SDUMP macro instruc- IEEMB825
tion) provides this function. Register 15 = 0 indicates

a successful dump.

2 A WTO macro instruction issued to the operator indi­
cates the ABEND completion code, the existence of a

termination condition, and an indication of a successful
dump (if R 15 = 0).

3 The message (step 2) prompts the operator to respond
with a "u" or a re-IPL. Until he responds with a "U",

other job terminations are suspended. A non-"U" response
results in a reprompting.

4 The routine frees the SMF buffers and frees the DCB
storage. The recording flags in the SMCA are also set

to zero.

5 If the reason code (see step 2) is 0, the STAE rou-
tine is operating for the SMF writer and the

SMF SVC (83) routine must be cleaned up. The routine
issues a conditional ENO macro instruction for the SMF
buffer resource cleanup. The writer routine must then
post the SVC routine before the SVC routine can continue.
(The flag SMCABECB carries the posted indication.) If

~ the ENO is not obtained, the SVC routine is not waiting
a for the SMF writer routine to complete the function that
§' failed and the buffer resource cleanup is unnecessary.

~

~
~
5'
~

o
'"0)

o
~

~
5'
=
w
J:,.
~
\0

IEEMB825

Label

i
i
~
w

1
i
t)

~
~
~
~
J
CD
w

~
i
I
w ,:,

Diagram 15-4. SMF Cross-Memory POST Error Exit (IEEMB827) (part 1 of 2)

Input

R1

RO

D-.

SMCA

BSMCAMAN

SMF STAE
(lEEMB825)

or
SMF Writer
(lEEMB829)

1 Serialize a save area.

2 Determine SMF activity.

SMF not active. I I Step 4

3 Abnormally end the SM F writer I I Step 5
function.

4 Abnormally end the task that is
currently waiting for ECB to be
posted.

5 Release the save area resource.

Dispatcher
(lEAVEDSO)

~ g
g.
::t

!'t
iC a­
S
Co
o
o
'C ;
g.
::t

w

~ -

~C:JT

Diagram 154. SMF Cross-Memory POST Error Exit (IEEMB827) (part 2 of 2)

Extended Description

This routin~ handles the abnormal ending of the
SMF cross-memory posting function.

1 Routine gets a iocal lock to serialize the resource in
the ASCB extension. This routine was entered to

handle a failure in the SMF Writer (module IEEMB829).

2 If SMF recording is inactive, the failure occurred
when the SMF STAE routine (lEEMB82S) posted

the SVC 83 routine after an abnormal end situation
occurred in the SMF writer routine.

If SMF recording is active, the failure occurred either
when the SMF Recording (SVC 83) routine posted the
SMF writer routine or when the writer routine posted
the SVC 83 routine.

3 The routine issues a CALLRTM macro instruction.
This causes the SMF STAE routine to receive con­

trol to stop the system's SMF function.

4 This routine was entered from the SMF STAE
routine (lEEMB82S). The routine issues a

CALLRTM macro instruction to set up an ABEND for
the current task that is waiting in the SMF recording
(SVC 83) routine.

5 The routine releases the local lock.

Module Label

IEEMB827

j' '- _7

3-462 OS/VS2 System Logic Library Volume 3 (VS2 Release 3.7)

The system log provides a record of system
activity. The log function handles the logging of
messages from a system operator, from user
routines, and from the operating system routines.
All MVS systems contain the log function. Previous
systems had to request the log function as a
SYSGEN option. Now, after the job entry
subsystem (JES2) is active, module IEEVWAIT (the
master scheduler wait routine) automatically
attaches the system log task. The system procedure
library (SYS 1.LINKLIB) contains the process
defining the initialization of the system log. After
the system log data set is open, it may receive
messages 'resulting from a WTL macro instruction or
a LOG command. When a given data set is full
(based on a limit value previously supplied in the
parameter library member IEASYSXX), a new log
data set is obtained.

For MVS systems, the log task operates in the
master scheduler's region and has its own job
identification. To replace the system data sets
(SYS1.LOGX and SYS1.LOGY) used in previous
systems, the log task dynamically produc,es
internally-created data sets which the job entry
subsystem (JES2) and JES3 processes as output data
sets.

For MVS, a WRITELOG command with the
START operand causes reactivation of the system
log should the log become inactive due to system

System Log

failure or the issuance of a WRITE LOG CLOSE
command. A re-IPL procedure is unnecessary.

In order to close a system log that is also the
system hardcopy device, it is necessary for an
operator to issue a V AR Y command to re-define the
hardcopy device. Then the operator may close the
log by issuing a WRITE LOG CLOSE command.

Users communicate with the system log through
the use of the WTL (Write-to-Log) macro
instruction and the commands LOG and
WRITELOG. The WTL macro instruction (which
results in an SVC 36 instruction) is used to
schedule the entering of information into the log.
To enter information into the system log from an
operator's console, a user issues a LOG command.
By using a WRITELOG command, a user may
request the closing of the currently recording log
data set (with subsequent queueing of the data set
to a SYSOUT writer). If the system log is acting as
the hardcopy log, write-to-operator/reply
(WTO/WTOR) messages and the system and
operator LOG and WRITELOG commands with their
responses may be entered on the system log.
Depending on the source of the message or
command, either the communications task or the
command scheduler (SVC 34) routines convert the
message/command into a Write-to-Log macro
instruction in order to enter it into the system log.

Section 2: Method of Operation 3-463

3-464 OS!VS2 System Logic Library Volume 3 (VS2 Release 3.7)

c;n
tD
54 e·
=
~

ac
~

[
o
~

o
" ;
g.
=
eM

~
U\

~

System Log
Initialization
(J E EMB803).

Terminating the
System Log
(JEEMB803)

Figure 2-30. System- Log Visual Contents

Switching Log
Data Sets
(lEEMB803)

"----.7

The System Log
(no diagram)

Log Writer
Processing
(lEEMB803)

Processing Log
Task Abnormal­
Termination
(lEEMB806)

""----"

Writing Data
on the
System Log
(JEEMB804l

~

~
o
Ie
~
N
rn
'<
=-a
i
t"" cr
!
~

f
w

'< rn
N

~
i
~
w
~

Diagram 16 .. 1. System Log Initialization (IEEM8803) (part I of 4)

Input
"

CVT BASEA

c::a--V"" crT\
MSLOGIPL

{MSLOGCLS }
MSLOGLMT

.' .

TCB

Et JSCB

"' I
».".

• ECB for WRITELOG CLOSE

D
. '

Initial Entry at
IPL from Master
Scheduler Wait
Routine (lEEVWAIT).
Subsequent Entry from
Terminating the system log
(lEEMB803) - - Process ...

...
> 1 Check for entry status.

y

2 (First time entry):
Set ESTAE environment.
(See step 13).

3 (OtherthA!'l first time):
~, Issue a wait on the ECB for a

WRITE LOG START command.
,

"

....
} 4 Obtain and initialize storage.

Y Verify user IPL parameters.

.. ,'
> 5 Initialize job entry subsystem

, Y blocks.

~

, > 6 Assign job 10 to log task.
,Y

t

Output
~ ~

I
I

I ..
Step 4 IEASYSxx

I y Values

~ DD I
I

WTLQueue '0$,

I I
"

Allocation Parameter Area

-'" I I
y

~
c '" ""Jfilll,~

~

SSIB

I I
SSOB

TCB I
"

I~ I

:
},

Y

JSCB

I ~:'

" ~ ~

_:l~~~.·ffi ¥tRfif.i&x.1t0 »",~>. "~~', .' .:, . , . < ~ ~ ,f''--y

55IB ...
~JOBID I Y

I
,,",Y,"'P', ",,> ""

.'

~
~
5"
::I
N

ac:
S1
5'
Q.

Q

""" o

I
5'
::I

w

~,

~ '-----'

Diagram 16-1. System Log Initialization (IEEMBS03) (Part 2 of 4)

Extended Description

This routine initializes the system log; opens and
closes the log data set; writes information to the log
data set; and shuts down the system log.

1 Entrance is either IPL-initiated or via WRITELOG.

(For WRITELOG, the log is waiting on a POST macro
instruction.)

2 The EST AE routine will handle abnormal (error)
situations.

3 The routine waits for indication that a WRITELOG
ST ART command is ready to be executed.

4 Parameters LOGMT and LOGCLS refer to WTL
number and output class. They are in the PARMLIB

member. The format of the allocation parameter list
(used when terminating the system log) is as follows:

tSYSOUT class 4
Ddname of log data set to be unallocated 4

5 Storage comes from subpool 0 (LSOA).

6 This permits JES2 to process the log data sets as
SYSOUT data sets. The macro instruction IEFSSREO

causes JES2 to be invoked for this purpose.

Module Label

IEEMB803 IEEMB803

LOGSTART

IEEMB805 LOGPVRTN

GETCBLKS

'-~

i
~
w

i
i
t:
~

~
~
E'
!I
(D

w

'< fI)
w

'" i-
II
w
:.., -

Diagram 16-1. System Log Initialization (lEEMB803) (part 3 of 4)

Input Process Output

7 Establish ACB and RPL;
Initialize allocation parameter list.

BASEA
~BALOG

From Log Data
Set Switcher
(lEEMB803) or
from Log Writer
(IEEMB803)

8 Allocate SYSOUT data set for
log output.

9 Open log data set.

• If error, write message.

10 Activate log if it was inactive.

11 Issue waits for log ECBs.

12 Check the posted ECB and
process accordingly.

• For Log termination ..

• For Data set switching.

• For Log writer.

13 For ESTAE/ABEND (error)
situations see the diagram
Processing Log Task Abnormal
Termination.

I I log
Termination
(lEEMB803)

...
. Diagram Terminating

the System log

Diagram Switching
Log Data Sets

Diagram Log Writer
Processing

Processing Log Task Abnormal
Termination (lEEMB806)

WTO Message

I

i e· ::s
~

rc
~
0-
o
o
1
i e·
::s

CN

~
\Q

___ ,>-7

Diagram 16-1. System Log Initialization (IEEMBS03) (part 4 of 4)

Extended Description

7 VSAM routines use the access control block (ACB)
information to build a DCB. The log writer uses the

request parameter list (RPL).

8 The routine issues SVC 99 for this allocation function.

9 Use an access control block "open".

a. Error routine writes message.

10 Post the communications task.

11 The log function to be performed determines the
routine that may post the ECB.

12 Module IEEMB803 contains subroutines to perform
each task.

• Log termination: IEEMB804
IEE1603D
IEE70110
JES2 processing

• Switching log data sets: I E EM 8804
IEE1603D

• Log writer: IEEMB804

13 The abnormal end situations are handled by the
EST AE routine.

Module Label

I EEMB803 ACBINIT
RPLINIT

IEEMB803 OPENRTN

IEEMB807

NEWLOG

CHKPOST

IEEM8803 LOGTERM

SWITCHDS

WTLREC

?

;
c:>

o
til

"<
til
t-J
til
'<
=-
~
~
~.
r-
~
~
~ c a
(D

w

~
t-J

~ r
~
w
~

Diagram 16-2. Terminating the System Log (IEEMB803) (part 1 of 2)

Input

WTLQueue

Allocation
Parameter Area

I

(See Diagram System
Log Initialization)

I I

55IB
~JOBID

* LCA Fields Referenced
LCACBONE}
LCACBTWO ACB Addresses

LCADDONE} Current Log Data
LCADDTWO Set DO Names

Diagram System
Log Initialization,
Step 12

1 Deactivate the log function.

2 Issue WAIT to clean up any
executing Write-to- Log
situations (indicated by
MSLOGSVC :/: 0).

3 Close and unallocate the log
data set.

4 Release log data set 10.

5 Release all storage obtained for
this process.

6 Set up for reactivation of the log.. VI,'

Diagram System Log
Initialization, Step 1

Purged Queue

B
WTO Message

I I

Closed Log Data Set

U

f:Il a
!So
::I

~

~
~

[
o
o

"CS
(D

t.1 o·
::I

1M

J.

~

Diagram 16-2. Terminating the System Log (lEEMBS03) (Part 2 of 2)

Extended Description Module Label

This routine closes the system log.

1 Set BALOG field to zero. Issue a POST macro IEEMB803 SHUTDOWN
instruction to the Communications task.

2 The last WTL will post the wait condition. IEEMB803

The WTL queue is emptied by writing to the log data WTLREC
set. PUTREC

3 Unallocation may fail, in which case the error routine IEEMB803 CLOSRTN
receives control. UNALLOC

4 This job I D was assigned by the job entry subsystem FRESUBS

and is now released by JES2 or JES3.

5 The routine uses a FREEMAIN macro instruction. WTLCLOSE

6 A WAIT is issued for a WRITELOG START command. IEEMB803 LOGSTART

~ Diagram 16-3. Switching Log Data Sets (IEEMB803) (Part 1 0(2)
.....
N

o en

~
N
en
~ ;
i f!j.
r­
;:

~
-< o c a o
w

~
N

~

i
I
w
~

Input

Diagram System
Log Initialization
Step 12

1 Allocate and open another
(new) log data set.

a) If unsuccessful:

If step 1 is successful:

2 Close and dynamically unallocate
the current (old) log data set.

a) If unsuccessful:

If step 2 is successful:

3 Issue successful allocation
message.

Diagram
System Log
Initialization
Step 11

Diagram
System Log
Initialization
Step 11

Diagram
System Log
Initialization
Step 11

Output

U Log Data Set

Message

I

Message

Message

l"'-I

a
~.

::s
~

a:
~
~

So
o

"C

I
~.

::s

w
~,
w

~

Diagram 16-3. Switching Log Data Sets (IEEMB803)· (part 20f2)

Extended Description Module Label

This routine switches log data sets when the currently
recording set is full.

IEEMB803 SWITCHDS

1 This will be done after a specified limit of write-to-Iog
commands have been executed 'or after. an operator

IEEMB803 ALLOCRTN

issues a WRITELOG command ..

a. Issue write-to-operator message. Continue to use existing IEEMB807
log data set.

2 Write-to-operator message. An unallocation failure may IEEMB807
occur before the log data set is queued to an output

class. This may result in a loss of data.

OPENRTN

3 The routine was able to close the system log data set IEEMB803 CLOSERTN
and queue it to a SYSOUT class, for disposition by UNALLOC

JES. Message is issued by IEEMB807.

J;: Diagrani- 164. Log Writer Processing (IEEMB803) (Part 1 of 2)
~
~

o
fIl

"< fIl
W

i
i
n'
r-
f
~
~ ;r
a
(II

~

'<
fIl
W

~
(II

i
3
~

~

Input

RPLDACB

(fASCB)

I """--OJ"'" 1- RPLAREA

RPLRLEN
(Message Length)

(+ Message)

WTLQueue

Diagram System
Log Initialization
Step 12

I I JiS EMV

Posted ECB

I M:a IM4 r/

1 Put records from the WTL
Queue to the log data set.

a) Check for continuation.

b) For I/O error.

2 Check ECBs.

PUT

......... Diagram
~ Processing Log

Task Abnormal
Termination

Diagram System Log Initialization
Step 11

Output

~ LogDa~~1

Return Code

C"'-I
g
g.
= ~
a::
!l
6
Q.

o
~

o
"0

! s·
=
w
~
-...I
U.

Diagram 16-4. Log Writer Processing (IEEMB803) (Part 2 of 2)

Extended Description

This routine writes records to the log data set.

1 The routine first moves the queue element having the
lowest chain pointer in the LCA. (Remaining pointers

are decremented after each element (record) is put on the
log.)

a. After each record is put on the log, the termination and
data-set-switch ECBs are tested for posting.

b. If an I/O error occurs during this process, a SDUMP
macro instruction (SVC 51) provides a dump. Then
an ABEND macro instruction causes control to go to
the ESTAE routine (lEEMB806L The ESTAE (-ABEND)
control interface routine then returns control to
IEEMB803.

2 After all records on the WTL queue are put on the
log data set, control loops back to check ECB posting.

Module Label

IEEMB803 WTLREC

CHKPOST

PUTREC

IEEMB806 ESTAE1

IEEMB803 CHCKPOST

! Diagram 16-5. Processing'Log Task Abnormal Termination (IEEMB806) (Part 1 of 4)

~

~
~
~

CI.l
'< • 9

Diagram System Log Initialization
(lEEMB803), step 2 or 13

+ Progra m Base
For Log Task

Output

Second Level
Parameter List

E
n'
r- • Data Base

1 Initialize second level ESTAE macro ,/f B (see Input}

r
~ a
<D
~

< CI.l
~

'" i
~
~

~

For Log Task

L-__ ~ + Log Task Save
Area

Second Leve I
Parameter
List

~

~. . / Work Area •.. Availability
~Indicator'

"
XX = 12

XX 1=12

From
Execution
of SYNCH

'Macros

instruction parameters and issue
ESTAE maao instruction.

Error

2 Initi~lize first level ESTAE macro
instruction parameters and issue
ESTAE macro instruction.

1 Error

Success

3 Cancel second level EST AE
environment.

4 Initialize - on basis of work area
availability - parameters for
first level ESTAE processing.

5 Restore and/or save registers
contai ning information needed
for ESTAE.

-Log Task
(JEEMB803)

Log Task
(lEEMB803)

Log Task
(lEEMB803)

R15

.. Return Code
~ (0 = Success)

R15

r---::l.- Return Code
L--J --.... (0 = Success)

(4 = Unsuccessful)

First Level Parameter List

B
First Level

~terust

R~O L~~ rR12

s.~:114
Program Address
Base

Log Task
; Work Area Data Base Return
.: Availability Register
Code

fn

a
e' ::s
~

rc
2-
[
e.
o
'g
ill g.
::s

w
Ja.

"'--e-7

Diagram 16-5. Processing Log Task Abnormal. Termination (IEEMB806) (part 2 of 4)

Extended Description

This processing sets up and uses EST AE environ­
ments to handle abnormal termination conditions that
may exist in log task processing.

1 This level of ESTAE handles ABEND situations that
may occur during the first level ESTAE processing.

2 This level of EST AE handles ABEND situations that
may occur during the system log task processing.

3 Second level ESTAE, sometimes referred to as "per­
colation EST AE," is unneeded since the first level

EST AE routine is inoperative.

4 The inputs to this step reflect whether the EST AEI
ABEND interface'hhat is, the ESTAE macro instruc­

tion) obtained a work area.

Entry at this point indicates an ABEND occurring in the
log module IEEMB803.

5 These registers are restored from'the ESTAE param­
eter list.

Module Label

IEEMB806 IEEMB806
(Load Mod-
ule

IEEMB803)

ESTAE1

~ Diagram-16·S. Processing Log Task Abnormal Termination (IEEMBS06) (Part 3 of 4)
....,
00

o
VJ

~
N
VJ

'i ;
E
(:;.

r-
~
~
~ c a
(D

eN

~
N

i
~
eN
:..:. -

Input Process

LCASTAE

If RO = 12, Work Area Unavailable

R1

LCASTAE = 0 [%.n tV "'-

(in LCA) From
Work Execution of

RO Area SYNCH Macro
r-x"X"""1 Availability Instruction
~ Indicat()r _

6 For recursion (other than first
time entry) entries, inactivate
the system log.

7 Check for EST AE work area,
and initialize area for retry
procedure.

S For first entry, dump log storage
if RO is other than 12 and entry
is neither due to a second level
ESTAE nor due to an ABEND
macro instruction.

9 Unallocate and close current
log data set.

10 Inactivate the log task and set
retry to occur at IEEMBS03.

11 Indicate to the communications
task that the log is inactive.

12 Release resources.

Message
Module
OEEMBS07)

RTM via
SETRP
macro

Output

Message

D

LCASTAE I- 0

RO ~+STAEREGS
L..:J (in I EEMBS03)

Ul a e·
:I
N

s:
[
2.
o

1 e·
:I

l:
~

~, J'

Diagram 16-5. Processing Log Task Abnormal Termination (IEEMB806) (Part 4 of 4)

Extended Description

6 Log task subroutines will set indicators, write the
WTL queue to the log data set, unallocate and close the

109 data set, and free resources.

7 This routine uses the SETRP macro instruction for
this retry initializing. For further description of the

macro instruction, see the Recovery Termination Manager
section of this book.

8 The routine uses SVC 51 to produce the dump. A
dump is not taken if entry is due to percolation or to

an ABEND macro.

Module Label

IEEMB806 SHUTDOWN
IEEMB803 WTLREC

LOGERROR
WTLCLOSE

IEEMB806 RESTRT

9 The routine turns on the recursion switch (LCASTAE), IEEMB806
establishes return codes, and returns control to the

ESTAE/ABEND interface.

10 Entry at this point indicates an ABEND occurring ESTAE2
in the first level ESTAE exit routine. See label

ESTAE1, step 4.

11 The switch MSLOGTHD (in BASEA) indicates the
log activity condition.

12 The log task module handles cleanup. IEEMB803 WTLCLOSE

!oN
J;.
00
Q

&1
"< ell
N
ell

~
~
t-'

c2 t;.
r."" r
'<
<
So c a
(\)

!oN

.-.
<
ell
N

~

f
!oN

~

Diagram 16-6. Writing Data on the System Log (IEEMB804) (Part 1 of 2)

R1 r---i'. WTL L-...J Message Text

R15

D

BASEA

~ MSLOGLMT

Issuer of WT L
Macro (SVC 36)

1 Set up ESTAE environment.

2 Serialize the use of SVCs.

3 Determine if system log is active.

Log Inactive. Step 8

4 Verify user authority and
fetch/protect consideration.

5 Pass input buffer to subsystem.

6 Move record text into a WT L
queue element.

7 Determine if log data set
switching should occur

8 Check post code to determine if
all outstanding SVCs (36) for a
terminated log task have been
processed.

9 For inactive log task, convert
WT L message to a WTO message
and issue message.

Issuer of WTL macro
(SVC 36)

Issuer of
WTL
macro
(SVC 36)

Output

Log Queue

eMes~e

BASEA

Er" MSLGCLOZ
(Posted ECB
for Task)

Message

D

Diagram 16-6. Writing Data on the System Log (IEEMB804) (part 2 of 2)

Extended Description

This routine processes requests resulting from the use
of a WTL macro instruction.

1 The EST AE routine will handle Fetch/protect errors
involving user data.

2 Routine uses a COMPARE and SWAP (CS) instruction
to achieve serialization of the SVC resource.

3 A zero in field BALOG indicates an inactive log.

4 The TEST AUTH macro instruction and CS instruction
are used here. R 15=0 for valid authority.

5 The IEFSSREQ interface passes the record to the
subsystem. JES3 will send a return code to continue

processing the record (RC=O) or not to continue because
JES3 has processed it (RC =1= 0). JES2 does not support
this function.

6 The routine truncates all record characters beyond
130 bytes. When the number of elements on the

queue reaches 20, the routine posts the log writer to write
the queue to the log data set.

7 Posting the ECB will allow closing the current log data
set and opening another one.

8 The termination of a log task may have occurred
during the processing of an SVC 36.

rJ'l 9 Routine issues a WTO macro instruction.

a
~r
::s
N

LC

~
~

o
"'" o
"0
«D ; g.
::s

~
~
00 -

Module Label

IEEMB804 IEE0003F

IEEMB804

3-482 OS/VS2 System Loaic Library Volume 3 (VS2 Release 3.7)

The job scheduler restart facility consists of
routines that collect job-related information and
process this information in the event of a job or
system failure. This information is recorded either
at programmer-designated checkpoints or whenever
SW A-contained control blocks that are critical to a
job's processing are updated. This permits
termination of active jobs in the event of a system
failure. It also allows the restarting of a job step
from the beginning, its most recent checkpoint if
automatic restart is requested, or from a
programmer-designated checkpoint if deferred
restart is r~quested.

DSDR Processing
DSOR processing routines use data from a
checkpoint data set to update the control blocks in
the scheduler work area (SWA). A CHKPT macro
instruction results in the issuing of a checkpoint
svc to save information in the checkpoint data set.
Checkpoint/restart routines use this information
when a job restarts at the designated checkpoint.
The information required by the scheduler is saved
in the DSDR.

The Job Journal
The job journal, a logical sequential data set
residing on JEs2's or JES3's direct access spool
volume, provides backup direct access storage for
the scheduler work area. It contains copies of SW A
control blocks that are critical to the restart
processing of a job. Each job has its own job
journal, which is a temporary data set that exists
for the life of the job. For each job, the initial
entry to the job journal is a Job Header Record
(JHR). A Step Header Record (SHR) is journalled
just prior to the job step allocation processing for
'each step. At the completion of allocation
processing, the critical SWA control blocks for the
job step are written to the job journal.

As SW A updating occurs during the processing
of each job step, a copy of each critical control
block for the step is written to the job journal.
Thus, an audit trail of the necessary control blocks
for-each job is maintained to provide for the
reconstruction of the SWA for the following forms
of restart:

Automatic checkpoint restart.
Automatic step restart.
System restart.

VS2.03.810

Checkpoint/Restart

Continue restart.
To support multiple subsequent restarts, all

critical blocks for all steps up to the failing step are
re-journalled.

Job-processing routines write the following
critical SW A control blocks to the job journal:

JCT (Job Control Table).
SCT (Step Control Table).
SlOT (Step Input/Output Table).
JFCB (Job File Control Block).
JFCBE (Job File Control Block Extension for
3800 printer).
JFCBX (Job File Control Block Extension).
POI (Passed Data Set Information Block).
GDGNT (Generation Data Group Name Table).
ACT (Account Control Table).
VUT (Volume Unload Table).
VOSCB (Virtual Data Set Control Block).
OSPCT (Data Set Page Control Table Header).

Journal Routines
The journal write routine is responsible for
maintaining the job journal. The journal write
routine determines which control blocks are
necessary for restart and writes those blocks to the
job journal. As critical blocks are altered during the
processing of a job step (for example, due to an
open, scratch, close, checkpoint, or dynamic
allocation procedure) the journal write routine
writes the updated blocks to the journal.

The SWA resides in virtual (pageable) storage
and contains the control blocks used by the
scheduler during job processing. When initiator
routines perform termination processing at job step
failure time, they free the SW A. If a failing job step
is authorized for automatic restart, the SW A must
be reconstructed using the information preserved in
the job journal. The SW A contents are
unrecoverable in the event of a system failure. For
this situation, restart routines use the information
preserved in the job journal to reconstruct the SW A
in order to perform termination processing for all
active jobs.

For system and automatic restart processing, the
journal merge routine reconstructs the SW A so it
appears as follows:

• When used for automatic checkpoint restart,
the SW A contains the control blocks in effect
at the time the checkpoint was taken.

Section 2:¥~thod of Operation 3-483

• When used for automatic step restart, the
SWA contains the control blocks in effect at
the beginning of the failing step.

3-483.0 OS/VS2 System Logic Library Volume 3 (VS2.03.810)

VS2.03.810

Section 2: Method of Operation 3-483.1

• When a system failure occurs, the SW A

contains the control blocks in effect at the
point of failure. If a system failure occurs
during job step termination processing, the
job is reenqueued for step-continue
processing.

3-484 OS/VS2 System Logic Library Volume 3 (VS2.03.810)

• When used for step-continue processing, the
SW A contains the control blocks· necessary to
permit a restart at the next job step.

~ . .:7

DE
Processing
Data
Set
Descriptor
Records
(lEFXB609)

I
lJI[

Step
Continue
Processing
(lEFXB601)

I
117-2

Job Journal
toSWA
Merging
(lEFXB601)

I
1
~

System
Restart
Processing
(JEFXB601)

17-11

Restart
Interface
Processing
(lEFXB601)

Automatic
Checkpoint
Restart
(lEFXB601)

a Figure 2-31. Job Scheduler Checkpoint/Restart Visual Contents

g'
~

ac
~
5'
~
o
~

o
'e

i
s'
=
(N • 00
VI

Automatic
Step
Restart

'c~.7

Scheduler
Checkpoi ntl
Restart
(no diagram)

Building
Step Header
Record for
Job Journal
(lEFXB604)

(lEFXB601)

""---'

Preparing Writing Journal
Abended Blocks to for
Job Step the Job Restarted
for Restart Journal Jobs
(lEFRPREP) (lEFXB5OO) (lEFXB5OO)

Merge
Updating Journal Journal

Cleanup
the Virtual Merge Merge

(lEFXB601)
Addresses Reading Error

inSWA (lEFXB601) Processing

(JEFXB601) (IEFXB601)

~ Diagram 17-1. Processing Data Set Descriptor Records (IEFX8609) (Part lof6)
oe
0\

~
< C'-l
~

C'-l
'<
~

9
i
fS·
r-
~
.$
~
[
(D

w

'<
C'-l
~

~

i
~
w
:...t -

SWA Reconstruct
Input "(JEFIB605) Process
~ ""~6!lfimE~~~m~~~~8'j~1

~LCTRFBDC

~
: ;:"' > 1 Determine type of entry.

Output

/ Chain for Deferred Restart

, JCT SCT SlOT JFCB

m~~
: : > 2 Set up parameter list for dynamic

allocation's use.

....

y
)

pointer for Automatic Restart

Initiator's Active
JSCB .JSCB

I ~""'"------'_T
: : > 3 D~namically allocate the check-"'] Vb" !-

POI nt data set.

DCB

~SYSCHK : :: > 4 Open the checkpoint data set. MI !

ECBLlST :t:: Complete

I cancel

SCT §f PGMNAME ~~ II

~

y

~

[

.. .ty

",';;:.

5 Wait for posted,ECB.

• If the restart is cancelled, free
the checkpoint data set.

6 Change program name to
tEFRSTRT.

,~

R1

~ Parameter List

I

CI'.I

a o·
=
~

a::
a
S
Q.
o
o

"tS

~ o·
=
w
J.
00
.......

~

"'Diagram 17~L.Ptocessing·Data.·Set Descriptor Records (IEf'XB609) (part 2 of6)

Extended Description

o This routine·.processes theSWA information in the
checkpoint data set DSDR recorduo that the SWA

entries reflect the checkpoint environment.

'1 The field LCTRFDBC indicates whether the entry
is 'for ·automaticrestart .or deferred restart.

• If the entry is for automatic restart, the JCT contains
the virtual address of the JFCB used for the check­
PQint data set. The SWA merge routine (lEFXB601) has
already merged the job journal to the SWA. The JFCB
information will be used in dynamically allocating the
checkpoint data set.

.If the entry is for deferred restart, interpreter routines

. have created the control blocks for the step. Control
,block. pointers will .Iocate the JFCB for the checkpoint
data set to be dynamically allocated.

2 Dynamic allocation routines use this list; which con-
tains information from the JFCB. Entries in the

parameter list include the ddname (SYSCHK), the
data set name (DSNAME), the volume serial number,
and the unit specification.

Module Label

IEFXB609 SETUP

ALOCCHEK

Extended Description

3 The routine issues,the DYNALLOCmacro instruc-
tion (via SVC 99). Prior to issuing the macro instruc­

tion, the routine sets the initiator's JSCB to point to itself
as the active JSCB. This permits dynamic allocation rou­
tines to use the initiator's SWA. After the checkpoint data
set is allocated, IEFXB609 resets the pointer so the active

JSCB pointer indicates the problem program's SWA.

If the dynamic allocation fails, the DAIRFAIL routine
(I KJEFFIS) is invoked to issue a write to programmer
(WTP) indicating the nature of the failure.

If VSAM private catalogs exist, they are allocated to
ensure proper catalog search during DSDR merge
processi ng .

4 The routine attaches the module IEFXB610 to open
the data set. Then it waits on the ECBs (see step 5).

5 The ECBsindicate either successful 'open' proc-
essingor an external job cancellation during the

'open' processing.

If cancelling occurs, the routir:'e posts the subtask,
(lEFXB610) that was to open the checkpoint data set.
This permits module IEFXB610 to terminate its
processing.

6 The program name is that of the restart program
that issues the SVC REST ART to cause data sets

to be repositioned.

Module Label

ALOCCHEK

<:
IEFXB609 ALOCAT CI'.I

N
0
W
00
0

IEFXB609 OPENCHEK

O'PENCHEK

IEFXB609 RNAMEPGM

~ Diagram 17-1. Processing Data Set Descriptor Records (IEFX8609) (part),of6)

00

~
N
C"I.)

1
9

i
t­
ez
!
< ·0 = a
(D

~

~
N
Q
~

00 -s

Input

. SWA

A~DSDRg
l2J ~
Checkpoint
Data Set

DSDR

IpI::J1 c:::JCJ ~I

Process Output

7 Process DDname table (DDNT) _ _ ,/
entry/entries in the checkpoint
data set.

DSENG
Table SWA .---, r-
L-J j. ~DDNT ~l

L I _ ..J

SCTDDN;

DSDR SlOT

the fields to the SlOT and JFCB. =:;;; . Ii For matdling DDnames, merge. ;:> I~

9 For unmatched DO names,
rechain the unmatched SlOT
to the end of the chain.
More SlOTs to check. __ ."I~Step8

seT

til
(D

2-
5'
= N

a(
(D

g
Q.

o
o
~
(D

;
g.
=
~

ct
\C

~ ~f

Diagram 17-1. Processing Data Set Descriptor Records (IEFXB609) (part 4 of 6)

Extended Description Module Label

7 Prior to processing the ddname table, the routine IEFXB609 DDNTPROC
processes the checkpoint header record (CHR) and

saves the CHR for the restart parameter list.

The format of the checkpoint header record (CHR)
appears below. (The OSNS2 Checkpoint/Restart Logic
publication, Form SY26-3820, contains further infor­
mation about the CHRJ

Number of 21 Length of checkpoint
checkpoints taken data set entry's 10

10 of checkpoint data set entry

Ddname of chElCkpoint data set

Beginning (low order) address of
problem program storage

Size of problem program area

Checkpoint data set 21 TIOT length user's blocksize

Flagbyte 1* 1 Checkpoint work area size
Flagbyte 2** 1 t Checkpoint work area

t SVRB used by checkpoint routines

Unused

System 10 1\

CHR identifier

Meaning

Track overflow is specified.
Checkpoint data set is on tape.

2

16

8

4

4

2

3

3

4

8

19

*Flagbyte 1

X'40'
X'20'
X'08'
X'02'
X'Ol'

Task is in real storage (that is, request is V = R).
Checkpoint modules opened the checkpoint data set.
The checkpoint is using (was opened for) BPAM.

**Flagbyte 2

X'04'
Other than

X'04'

Meaning

A user has suppl ied the checkpoint data set entry.
The operating system supplied the checkpoint data set entry.

The DDNT contains ddnames for all JCL-specified data
sets dynamically unallocated prior to the checkpoint. The
routine insures that alloCation for these data sets does not
occur at restart time.

Extended Description

The module places the DDNT record in the SWA. After
all DDNTs are processed, they are chained together in
the SWA. The module also updates the SlOT chain and
the DSENO table. The updated data set enqueue
(DSENO) table reflects data set changes resulting from
dynamic allocation processing.

8 The first available SlOT in the SWA is obtained. Then,
the module matches the ddname in the SlOT with the

ddname field in the DSDR being processed. The format of
the DSDR appears below.

Identifier 21 196

- JFCB at checkpoint time

DDnames from TIOT (or from SlOT if
the entry is dynamically concatenated)

Unittype(s) descriptors

SCT fields (from SIOT)** 31 flags

DEB volume 1\
~quence

*Flag Bit
7

Meaning
Data set dynamically allocated (from DSAB)
Data set dynamically concatenated (from
DSAB)

6

5 Data set was open at checkpoint time
0-4 reserved

-
8

4

1

Module

**SCT fields (1 byte each) in order from low to high block location.
Status field from SlOT; Disposition field from SlOT;
Conditional disposition field from SlOT

Status and data set disposition fields are merged from the
DSDR to the SlOT. Non-volume information is moved
from the "DSDR to the JFCB in the SWA. Volume informa-

~

Label

DDNTSIOT

SIOTPROC
JFCBPROC

tion (for example, VOLSERs) is conditionally moved to the VOLSERS
JFCBto reflect the SWA environment at checkpoint time. JFCBXJOB

The DEB volume sequence field of the DSDR is used
by the checkpoint data set utility to obtain the correct
volume of a multiple volume data set.

9 By putting unmatched SlOTs at the end of the chain, IEFXB609 NOMATCH
the final order of the SlOT chain will be that of the

DSDRs on the checkpoint data set. For deferred restarts, a
SIOT/JFCB pair is built for a dynamically-allocated data set.

t Diagram 17-1. Processing Data Set Descriptor Records (IEFXB609) (Part S of6)

8

~
N

I
,i
~.

r-
f
~
~ a­a
G
w

~
N

t
I
w
:.... -

Input

FSIOT

LSIOT

SlOT Chain
r-;:-

SCT

SCT SCTX

I~R

Process

!!WI M "\. 10 After all DSDRs have been processed
for the remaining unprocessed
SlOTs:
a. For automatic restart, remove

SIOT(s) from SlOT main.

b. For deferred restart, leave
SIOT(s) on chain.

il!!!!I w; ''\. 11 Set the checkpoint data set for
a restart.

SWA Reconstruct
(lEFIB605)

Output

Same as Input

SCTX
~p.rameter List

CIl

it o·
::s
N

a::
~
Q.

o
"'" o
~

! o·
::s

w
~
~

""-c:.Y"

Diagram 17-1. Processing Data Set Descriptor Records (IEFXB609) (part 6 of 6)

Extended Description

10 These SlOTs are the ones remaining on the SlOT
chain after all DSDRs have been processed.

a) 'Automatic restart' SlOTs are those created dynamically
after the checkpoint was taken. They are deleted so the
user can re-allocate them.

b) 'Deferred restart' SlOTs represent DO cards added to the
JCL input stream when the job was resubmitted. The
number of DDs is updated to reflect these SlOTs.

11 The routine sets up a parameter list for the restart
SVC. The list contains the TTR of the core image

record (CIR) on the checkpoint data set and checkpoint
header record information. To pass the list to the restart
SVC, the routine uses the SCTX control block.

Module Label

LEFTOVER

SCTXPROC
RNAMEPGM

~
N

~
~
N
C'Il
'<
f4.
~
l"""
~
n~

l"""

J
~ a
(D

w

'<
C'Il
N

~
i
~
w
~

Diagram 17-2. Job Journal to SWA Merging (lEFXB60I) (Part 1 of 2)

Input

R1 MEL
~~)~~~----I

~e~rt
Indicator

Location 16

TCB

* The CVT actually points to a
double word, the last half of
which points to the TeB.

SWA Reconstruct
(lEFIB605)

1 Determine type of restart and do
either step 2, 3,4, or 5. Then
do steps 6 -9.

2 For system restart:

3 For step continue processing:

4 For automatic checkpoint restart:

5 For automatic step restart:

6 Process non-SWA control blocks
if system, automatic checkpoint
restart, or step continue.

7 Update chaining fields in SWA.

8 Error processing.

9 Free resources.

SWA Reconstruct
(lEFIB605)

Output

See Appropriate Diagrams

Diagram, System Restart Processing

Diagram, Step Continue Processing

Diagram, Automatic Checkpoint Restart

Diagram, Automatic Step Restart

Diagrams, System Restart Processing or
Automatic Checkpoint Restart or
Step Continue Processing

Diagram, Updating the Virtual Addresses in SWA

Diagram, Journal Merge Error Processing

Diagram, Merge Cleanup

fI)

!t
e'
~

~

a:

t
Sa
o
'C

S g.
~

~
w

~

Diagram 17-2. Job Journal to SWA Merging (IEFXB60 1) (Part 2 of 2)

Extended Description

This routine reconstructs the SWA (from the job
journal) so it has the control blocks in effect at the

time indicated:

• For automatic checkpoint restart: Control blocks at time
checkpoint was taken.

• For automatic step restart: Control blocks at beginning of
the failing step.

• For system failure: Control blocks at the point of failure.

This diagram refers to several other diagrams covering the
checkpoint/restart functions. Each of the latter diagrams
represents a subroutine (within module IEFXB601) that has
a given function to-perform. This present diagram contains
general module entry-information that is also applicable to
these subsequent diagrams. (See also, the introduction to
this section.)

1 In the 6th byte of the merge entrance list (MEL) con-
tains the restart indicator as follows:

X'OS' = system restart
X'20' = step continue
X'40' = automatic checkpoint restart
X'SO' = automatic step restart
The MEL also contains the address of the LCT (in the first
word) and the failing step's number (in the last two bytes).

2 For this case, a full merge of all control blocks for all
steps is performed.

Module Label

IEFXB601 IEFXB601

SYSMERGE

Extended Description

3, 4, 5 For each case, a full merge of the control blocks
for the non-failing steps is performed, and selec­

tive merging of fields in critical control blocks for the fail­
ing step is performed.

6 For each non-SWA control block on the job journal,
an appropriate exit routine performs the required

processing.

7 The routine updates the SWA control block chaining
fields to reflect the new virtual addresses reSUlting

from the SWA reconstruction.

8 The Routine sets a return code of X'24' in register 15
and sends an appropriate message to the programmer

and/or the operator.

9 The routine releases the virtual address table and any
extensions to it.

Note: There is one entry in the virtual address table (V AT)
for each control block that the interpreter writes to the
SWA. This entry points to the 16-byte prefix to the control
block. When dynamic allocation routines cause the SWA's
control block structure (that is, the relative control block
addresses) to change during restart, the VAT updating
routines insert the new control block addresses (of other
journalled control blocks) into the appropriate fields of the
control blocks in the SWA.

Module Label

SYSMERGE
CKPTMRGE
STEPMRGE

VATPUT
VAMPROC

IEFXB601 ADDRUPDT

ERRPROC

~
~ •
~
~
N
f'-I
'<
~ a
i
r-
~
~
~ c
a
(D

~ --<
f'-I
N

~
i
~
~

~

Diagram 17·3. Step Continue Processing (IEFXB60 I) (Part 1 of 2)
J

Input

JCT

Failing step's
number

SCTANSCT

(For failing
step)

. SCT

Job Journal to
SWA Merging
(I EFXB601) Process Output

1 Merge the journal entries for each
step onto the SWA in the
manner shown for system restart.
(see Diagram System Restart
Prooessin!;lJ

2 Replace the JCT pointer to the first . . ;/
step's SCT with the SCT pointer %&I 14M

in the failing step's SCT .

(lEFXB601)

SCT (Restarting step)
----,

til a
5·
:s
~

~
~

&:
S­
o
1
i3 g.
:s

w

~
VI

Diagram 17-3. Step Continue Processing (IEFX8601) (Part 2 of 2)

Extended Description

This routine handles the processing that allows a
user's job to continue at the next step.

1 This processing occurs when a step was being termi­
nated at the time a system failure occurred. Since the

job journal entries are complete, they are processed in the
same manner as for system restarts.

2 By resetting the JeT pointer (to the SCT), the
restart will occur at the job step following the failing

step.

Module Label

IEFXB601 SYSMERGE

CLEANUP

! Diagram 17-4. System Restart Processing (IEFX8601) (part 1 of 2)
\Q
~

~
~
W
fIl

l
~

i-
ro­
&

8
~ = a
(II

w

< fIl
W

i
R
w
~

Job Journal to
SWA Merging

Input UEFXB601) Process
"Ii liUillin.J ... __ .. U'.... - t ·iin}= •. ~=_!FJ'!I!l"n.;n:. Z;;;= .. =',:l!!' !!m::!m .. lli1!mn.!m.rr~'lI:!m.~=" !!I!atJn!m:.:m. na='!'!"jTilq"'!!!:,i!!l:t!m,_rr':!Ir: Zl",!Ir!Ir,.n:!m;*I_

Output

Daughter Virtual Address
JSCB Table (VAT)

I t=i]wffd1' entry

JSCBVATA

Job Journal

~
Control block

RBN in record's
prefix

Job Journal

~
VIObIOCk

::: Prefix

- -..&..I_(_~~_-----,

1 Check SWA for the control blocks
corresponding to the ones read from
the job journal. Look for matching
entries.

2 For a match, update the V AT entry - m"
and overlay the control block in. til V------I,
SWA with the journal version of
the block.

3 If the SWA lacks a block ___ _
corresponding to a job journal block,
a specific 'assign' is performed.
Update the VAT to reflect the new
block's entry. Write the block to
the SWA.

!WI 'eW"

4 For non-SWA (for example, VIO) WIll I%t "'-

control blocks on the job journal,
create new entry in VAT and give
control to the non-SWA merge
routine.

R1

Parameter List

» 4 Block

f~ · 1--1 VA_T ----I

5 Update block's VAT entry after
non-SWA merge.

B lock address

VATNVA

:SCBVATA

(lEFXB601)

Job journal

VAT

f:'-I
(D

~ o·
=
~

ac
[
Q
~

o
"0

~ o·
::I

w
~
IC
'-01

~ ,,~

Diagram 17-4. System Restart Processing (IEFX8601) (part 2 of 2)

Extended Description

For a system restart, all control blocks for all steps
in a job will be fully merged from the job journal to
the SWA. (See also the diagrams Merge Cleanup and
Updating the Virtual Addresses in SWAJ

1 The SWA prefix (in the block) contains journal
record identifications. The V AT contains represen­

tations of all blocks in the SWA. The relative block num­
ber (RBN) and block 10 fields in the SWA prefix (for the
block on the journal) are matched against entries in the
VAT.

2 If the RBN and 10 fields of the prefix match those
in the VAT, the old virtual address is placed in the

VAT entry and the job journal form of the control block
overlays the corresponding form in the SWA. (In the
'output' part of this diagram, the SCT is used as an
example.)

3 The SWA manager assign routine uses the 'assign'
function in the IEFQMREQ macro instruction to get

storage for control blocks initially created by allocation
routines and JFCB housekeeping routines. The assign rou­
tine uses the RBN in the block prefix. An entry for the
new block is made in the VAT, and the corresponding
block is written to the SWA.

4 Based on the control block's 10 (in the block prefix)
the journal merge routine creates a new entry in the

VAT and fills in the R BN, control block 10, and the old
virtual address. The merge routine then calls a subroutine
(lOOWIMRG or IDAVBPJ2) to merge the block to the
SWA.

The subroutine uses an interface parameter list to obtain
the merge information.

Module Label

IEFXB601 VATPUT

VATPUT
FLOMERGE

ASGNRITE

IEFXB601 VATPUT
VAMPROC

Extended Description

The parameter list used for this appears as follows:

t Block being merged 4

10 of block 11 Length of block 3

being merged* being merged

Relative block number 4

New virtual address* * 4

t GETMAIN storage area*** 4

*The block 10 field has the following meanings:

VIO Routine
Block 10 Control Block

X'FE' Data set page control
table (OSPCT) header

Performing the Merge

Virtual Block
Processor (VBP)

X'FC' Virtual data set Window Intercept (WI)
control block (VOSCB)

**The new virtual address is that passed to the
appropriate V 10 merge routine for all except the first
occurrence of the control block on the job journal.

***The GETMAIN area address is passed back to the
journal merge routine by a VIO merge routine when
the VIO merge routine issues a GETMAIN macro
instruction for the block to be merged.

All merges subsequent to the first one (for this non-SWA
block) use this information.

The control block's 10 given in the block prefix is com­
pared against an internal table of block IDs in the SWA to
determine if the block (on the journal) is also in SWA.

The journal version of the block overlays the block as it
resides in storage. After the block has been updated, the
pointer fields in the block and the block's address (as given
in the VAT) are updated.

5 The information returned from the non-SWA merge
routine indicates the location of the merged control

block. This address is placed in the block's VAT entry.

Module

': __ 7

Label

VAMPROC
VATPUT

i
~ ...,

i
i
t:
2"
.5
~ r o

·eM

'<
fIJ ...,
i: r
I
eM :... -

Diagram 17-S.Automatic Checkpoint Restart (IEFXB601) (Part 1 of 2)

Input Job Journal to
Also,. see Input for the Diagram Step Continue SWA Merging
Processing (IEFXB601) Process Output

A1 MEL

~
.FailingsteP

. ..

number 1 Check for failing step's journal entries.
(MELSTCNO)

I ...

2 For non-failing steps, process the
step's control block entries as for a
system restart.

~. Control block records

-3t' I Job Joumal

-'} 3 For the failing step, read the control
-.-.-------... Ii-·· . V block records from the job journal

, Block prefix
Stepn --.

Job Journal

U
A'8-interpreted
SWA

t---....... ",- APLABAA

~ This is the A BA for
the JCT that is
written by the
checkpoint SVC

to find critical- information blocks.
Update VAT entries.

Job Journal

: :> 4 Selectively merge the failing step's ::~ - :',' ." L \...J Aeconstructed
, control blocks. ,-V - SWA Ii" *I • .. 1-----

5 Restore blocks created by dynamic
allocation routines. Create V AT
entries.

6 Merge nOI1-SWA blocks.
r::.

Job Journal

.......
~

Point where .. ~ .~
checkpoint was taken : :> 7 Reposition both the job journal data: :: >

; set and system message data set.~· f¥£ \......... ----\)

(lEFXB601)

Y
Also done for System Message
Data Set.

tf.l
(1)
o
5·
= N

a::
a
S
~

o
o
~ a o·
=
~

.l:..
I.C
I.C

'----,' \'-_/

Diagram 17-5. Automatic Checkpoint Restart (IEFXB601) (part 2 of 2)

Extended Description

This routine merges control blocks from the job
journal to the 5WA for failed jobs that are eligible

for an automatic checkpoint restart (checked via indicator
in MEL). See also Diagrams, Merge Cleanup and Updating
the Virtual Addresses in SWA.

1 Compare the step number in the step header record
with the step number in the MEL. For a step header

record, the SWPID field of the block prefix is X'CO'.

2 See the Diagram, System Restart Processing for
processing of steps prior to the failing step.

3 For example, the checkpoint and job statu~ informa-
tion fields of the JCT, the volume and label informa­

tion fields of the JFCB, and the chain pointer fields of the
SCT, SlOT, and JFCB. In addition, the routine updates the
old virtual address field of the block's entry in the V AT.

4 The fields containing the critical information are
merged from the job journal to the SWA.

5 See the Diagram, System Restart Processing for assign
details. The blocks include the SlOTs, JFCBs, JFCBEs, and

JFCBXs created by dynamic allocation and JFCB house­
keeping routines. The SWA manager assign and write rou­
tines specifically assigns these blocks and writes them to the
SWA. The newly-created VAT entries for these blocks con­
tain the RBN, 10, old virtual address, and new virtual
address.

6 See the Diagram, System Restart Processing, step 3.

7 From the job control table written by the checkpoint
SVC routine, save the RBA (relative block address)

field for the system message data set. From the journal
RPL (JNL RPL), save the RBA of the JCT written by the
checkpoint SVC.

Module

IEFXB601

Label

CKPTMRGE
VATPUT

FLDMERGE

ASGNRITE
VATPUT

CKPTMRGE

,~

<:
tf.l
~

o
~

00 -o

~ Diagram 17-6. Automatic Step Restart (IEFXB601) (part 1 of 2)
8
o
til

~
~

i
r-
~.
r­a:
!
<

~
~
(N

'< til
~

b
(N

be -S

Input

~BIOCk

~stepnu.-r
MEL

F ailing step nu mber •• "-""1t:::t:::.......J

Job Journal

A-Control block

~ RBN in block prefix

jdr:l
RBA
for job journal

u
Job Journal

RBA for
system message
data set

Reinterpreted
SWA

Job Journal to
SWA Merging
(I EF XB601) Process

1 For eadl step header record read
from job journal, dleck for failing
step number.

Output

SWA

JSCB
.....---

2 For non-failing steps, process as for _ _1.1

a system restart.
(Diagram, System Restart Processing).

3 For failing step:

• Save RBA fields.

• Update eadl block's entry in VAT.

• Merge selective fields from job
journal to SWA.

4 Reposition the job journal and system
message data sets.

(lEFXB601)

Job Journal

VAT rrl Reconstituted SWA

L.:::Sl.
1

Block

Job Journal Message
Data Set

CI)
(D

~ o·
= N

s::
(D

~
Q.

o
o
'0

i
0'
=
eN
~
o -

,---'

Diagram 17-6. Automatic Step Restart (IEFXB601) (part 2 of 2)

Extended Description

This routine merges control blocks from the job
journal to the SWA for failed jobs that are eligible for

an automatic step restart (checked via indicator in MEL).
See also Diagrams, Merge Cleanup and Updating the
Virtual Addresses in SWAI.

1 Check the step number field in the step header
record and compare it against the failing step number

given in the merge entrance list (MEL). (See Diagram,
Automatic Checkpoint Restart.)

2 See Diagram, System Restart Processing.

Note: If the step numbers do not match, the step is non­
failing.

3 The RBA fields saved are for the job journal and the
system message data set. The fields are located in the

step header refords.

For each critical control block associated with the step, the
routine updates the old virtual address field in the VAT.

For example, selective merging involves the following fields
in the indicated blocks:

JCT: job status information and restart switches.

JFCB and JFCBX: volume information.

JFCB: MOD data set information for TTR and track
balance considerations.

JFCBE: 3800 printer parameters.

4 Pointers are established using the RBAs saved from
the step header record. The pointers show the step's

entry in each data set.

Module Label

IEFXB601 STEPMRGE

VATPUT

FLDMERGE

\,_/ ,-~

~
N
<:>
eN
00 -o

~ s
~
~
N
~

i
~
~.
t:
2'
~
~
[
~

~

< (;I'l
N
b
~

00 -S

Diagram 17-7. Merge Cleanup (IEFXB60 1) (part 1 of 2)

Input

JCT BJCTJSB

VAT

D SWA

D

Job Journal to
SWA Merging
(lEFXB601) Process Output

1 Update job status byte. "

2 For automatic checkpoint and step
restarts, reposition the job journal
and the system message data sets. i!!i!!I -"

3 Free the VAT.

4 Set appropriate return code.

(lEFXB601)

JSCB Daughter

lor;:§l
JSCBJJSB

SWA

(Updated entries)

R15

D

CI.l

a o·
= ~

~
!1 g
Q.

o
100)

o
1 g.
=
~

V!
Q
~

'--_I

Diagram 17-7. Merge Cleanup (IEFX8601) (part 2 0(2)

Extended Description

This routine does the clean-up functions for automatic
checkpoint or step restart or for step continue
processi ng.

Module Label

1 The latest version of this field information comes from IEFXB601 CLEANUP
the job journal (the JCT block). The JCT JSB informa-

tion overlays that in the JSCBJJSB.

2 The relative block addresses used for repositioning
the data sets are obtained from the step header record

for automatic step restart or from the JCT and request
parameter list (APt) for automatic checkpoint restart.

3 The VAT and any extensions to it are released.

4 An error return code of X'24' causes the job to be
purged from the system. A normal return code of

X'OO' permits restart to continue.

"'--_/ 'c~

~
2

&1
"< CIl
~

~
=-a
i rs·
t"I

J
~
2'
~
~

< CIl
~

f
~

~

Diagram 17-8. Updating the Virtual Addresses in SWA (IEFX8601) (part 10(2)

Job Journal to
SWA Merging

Input (tEFXB601) Process
~ ~"'IE!llElIsnlElIlIlIlIlIlIlIlIlI~1

I £::3} ~IVAT • v-- An entry

VATNVA

;: ::;> 1 Determine which control block is
being processed.

VATBLK~
Control block (Merged SWA
and prefix ' ,

-
Update Information
Table

m: Displacement of
. field from beginning

of block.

Length of field.

This table consists of one 2 byte entry
(as shown) for each pointer field
(in the control block) requiring an

(update.

": !"": > 2 Find the block's location in SWA.

va :: > 3 Determine fields to be updated.

....
L..-------'hl!!ir*i j.> 4 Replace old virtual addresses (that

is, pointers to other control blocks)
currently in the block being updated
with new addresses from the VAT
based on the reconstructed SWA.

(lEFXB60U

Output

Updated SWA

~
~ ~

;' I
/ '

/ I
I

!)

~I Typical

.' control block

Updated pointer field
y

f

~
Another control
block on SWA

,

CI.I
(D
() g.
=
~

a::
a
[
o
o
"d
(D

i o·
=
IN
~
~

~31" ~

. Diagram 17-8. Updating the Virtual Addresses in SWA (IEFXB60 1) (part 2 of 2)

Extended Description

For each entry in the VAT, this routine updates the
virtual address of all the block's fields that are changed.

1 The block 10 field in the VAT contains an indication
of the control block being processed. The routine then

processes consecutively all entries in the VAT.

2 The new virtual address field in the VAT entry for the
block provides the new location in the merged SWA.

The routine then reads the control block being processed.
The SWPID field in the SWA prefix indicates the control
block that is being updated.

3 An internal table contains the necessary update infor­
mation. This information. includes the displacements

and lengths.of all fields that require updating. There is one
table per control block being updated.

4 For each address to be updated, the value in the new
virtual address field (of the V AT entry for the changed

control block field) replaces the existing old virtual address
field in the control block.

Module Label

IEFXB601 ADDRUPDT

UPDATE
PTRUPDTE

.-~

/'
/

//

t
i
0

~
N
(I.)

'i
~

i
to-e;:

8
~ c a
(D

w

'< (I.)
N

'" i
I
w
~

Diagram 17-9. JoumaI Merge Reading (lEFXB60 1) (part 1 of 2)

Input

Job Journal to
SWA Merging
(lEFXB60U

"Process Output

JSCB .-R_PL __ .--,

I JSCBJNLR ~ tBuffer

~ ------If-.. '" 1 Read a record from the job
r"1 ___ ...,jJLIllOiI%L,j: !\ journal.

'"
--v

Read Buffer (JNLBUF)

I SWA Prefix Record

RBA

Job Journal

EJ
RPL Read Buffer I !J1 SWA Prefix ~ReCOrd I
RPLAREA "

Register 15

I 0

/ \
/ ,

(JHRJRBA I

RPL
4

I RPLFDBK I

I
I
I

...----'

--v

JSCB RPL

;> 2 If the record is a Job Header i 1 JSCBJNLR RBA
Record (JHR), save Its :4\ A~
address in the JSCB. IT,: '"

~3 If the record is a JHR
modified by a restart,
reposition the job journal
to the proper entries.

4 If an error is encountered
during a GET or POINT
operation, set the return
code to indicate a journal
error .

error:

5 If no error is encountered,
continue journal merge
processing.

(lEFXB60U

%2) " 151 V

ERRPROC

JSCBFRBA

Job Journal

Journal
f)Ositioned to
proper entries

~ based upon
data in
JHRJRBA
field of JHR

~

f'-)

a
e'
=
~

a:

i
~
o
'a

i
S'
=
~

til
S

Diagram 17 -9, Journal Merge Reading (IEFXB60 I) (part 2 of 2)

Extended Description

This routine is responsible for all reading from the job
journal required for merge processing.

1 A record is read from the job journal using the request
parameter list (RPL) pointed to by the active JSCB

(JSCBJN LR).

2 A job header record has a control block 10 (X'Cl') in
the SWA prefix. Save the address, which was passed

~ck in the RPL, (RPLRBAR) in the active JSCB
(JSCBFRBA) for journal data set repositioning.

3 A job header record written as a result of a restart
contains job journal repositioning information in the

field JHRJRBA. This value is used to issue the POINT macro
to position the job journal to the proper entries.

4 Any non-zero return code in register 15 (other than
a logical error indicating end of file - R15=8,

RPLERRCO=OOO4) is considered an error condition. An
error return code is set and ERRPROC receives control.
(Refer to Journal Merge Error Processing diagram), If
normal return code, journal merge processing is continued.

Module Label

IEFXB601 REAOPROC

///
.~

i

~
N

j
i
r-r
~
~ r
G
w

'< f'-)
N

'" S!-a
I
w
:..a -

Diagram 17-10. ,-Journal Merge Error Processing (IEFXB60 1) (part 1 of 2)

Input

Job Journal to
SWAMerging
(IEFXB601l Output

JSCB --

Request Parameter
. List (RPL)

~
RPLERRCD

VAT

VATOVA

1 If JES return code while accessing
job journal is not equal to zero, or
indicates end of file. set the error
return code.

2 If interpreter -created control block
is not found in SWA, set return code.I] I,

¥it

3 If the virtual address being updated
is not found in the V AT, set return W&i

code.

4 For system restart processing, write 1& Ftt a/
message.

5 Fornon-system-restart processing,
write message.

6· . Set error indicator.

7 Free VAT and extension(s). : : :)

(tEFXB60U

RCAREA I V Return Code

V
X 'OS' JES Error
X '04' SWA Error

I Console
. Message '--------

JSCB
JSCBJNLE

VATX

Free

rn

st <5.
~

N

a::
11
S
""" ~

w u-
~

~

Diagram 17-10. Journal Merge Error Processing (IEFX8601) (part 2 of 2)

Extended Description

This processing handles errors that may be encountered
during SWA reconstruction or in accessing the job
journal. It issues an appropriate message and, for either
automatic step or automatic checkpoint restart, it informs
the operator that the job has been cancelled.

1 The return code is set to X '08' .

2 The return code is set to X'04'.

3 The return code is set to X'04'.

4 This message is intended for the programmer and is
written to the SYSOUT data set.

5 The message is written to the programmer via the
SYSOUT data set, and a message is written to the

operator via the WTO macro instruction.

6 The journal error bit in the JSCB is turned on.

7 The routine releases the V AT resource, and returns a
code of X'24' in register 15.

Module Label

IEFXB601 ERRPROC

,_ jT ~~

I
w I ~

) ~'

fIl

~
a
l""
c2 n·
l"" a: ..
~
<
~ a
CD
w -<:
fIl
N

:=
~ a
~
w
:.... -

-------------__ ~telface Processing (IEFXB602) (part I of 2)

Interpreter
(JEFVHO) Process Output

R1 OMPA

~ OMPOP

I , , , , ,
/ I \

, I \
OMPCM OMPNC

i~EPA, t \~ID
~ SWA Virtual

OMPCL address

OMPOP

I SWA prefix for
BLOCK I

... " First time entry:

Subsequent entry:

....

1 Ge, storage for virtual address ,able. "1 I.' :., .. ": J)
;.>~.

!>
0.->

]

0W

Ii . ested and * .". requ ~ .. 2.@ ... ::.':.. 2 Determine fun~::~o make in VAT. ~. number of en'"

t.i,

~«

n:
';

3 Make initial entries in VAT. ;'~ :;';,?
.... r.~;~ ~:£}

""iI pA l 4 1 r"-Invoke SWA manager to perform : .. ~:: ::: :>
specified function. A~% 2?

_.1'\

y
5 If the SWA manager function is

successful, place more information
in VAT for each entry handled.

.....
)

y

6 Pass information to interpreter. :7: :~, :>
1M

* If request is other than 'Write' or
'Write Assign', omit steps 3 and 5.

~

Interpreter
(lEFVHO)

JSCB VAT
r---

~~ I

VAT

A
VATNVA VATBLKID

Update
SWA

R1

SWA

D
VAT

D

Updated
EPA

o OMPA

-IC3l-o

f'-l g
g.
=
N

at:
~
6'
0-

S.
o

'C ;
g.
=
w
Q. -

~

Diagram 17-11. Restart Interface Processing (IEFXB602) (part 2 of 2)

Extended Description

This routine builds a virtual address table (VAT) to be
used by the journal merge routine during SWA recon­

struction processing.

1 The VAT is an 800-byte table. The JSCB pointer to
the V AT is constructed.

2 If either a 'write' or a 'write/assign' function is
requested, the routine determines the number of

entries to be made in the VAT after the SWA manager
performs its function.

3 The routine uses the external parameter area (EPA) to
get the SWA virtual address (used for the initial

VATNVA field in the VAT) and the block 10 if one exists.

4 The routine uses the IEFOMREO macro instruction to
give control to module IEFOB550. The operation field,

OMPQP, indicates whether the function is a 'write,' a 'write/
assign,' an 'assign,' or a 'read' operation. The EPA updating
occurs only for a 'write/assign' or an 'assign' operation.

5 The relative block number (RBN) is placed in the VAT
for each entry, and the block 10 field of the V AT is

filled in if not alreadY there.

6 The routine returns control to the interpreter. The
output to the interpreter is the same as the input from

the interpreter but with additional information that was
filled in by the SWA manager routine.

Module Label

IEFXB602 VATBUILO

CN
U. -N

~
N
Cl)

~
I
i n

&:
Sf
~

i
(D

CN

~
N

i
S·
CN
:... -

Diagram 17-12. Building Step Header Record for Job Journal (IEFXB604) (part 1 of 4)

Initiator: Step

Input Initiation (lEFSD162) Process
-.

JSCB

~
..
) 1 Check for no job journal or

,v
journal error.

"',%

....

Register 1
2 If this step is the first step of a

'" v normal job in process or the

L I ,- -- first step of C! restart job:

, LCT JCT I

l! I a. Write the Job Header Record
(JHR) and the Step Header I

LCTJCTAD JCTJSBAL
Record (SHR) in the journal.

I
J '" b. Save the Relative Byte ")

LCTSCTAD I v Address (R BA) of the SH R
...... I

/" record.
~ . I

~ SCT _..L_ 3 If this step is a checkpoint - - -
Step

restart for a step other than

Number
the first step (step n):

(SCTSNUMB) __ h

a. Write the JHR and the SHR
for step (n-U, and all blocks .' from step 1 up to step n in
the journal.

JSCB RPL

V Relative Byte '" Address) b. Save the RBA of the SHR
JSCBJNLR (RPLRBAR)

v for step (n-1).

c. Write the SH R for step n
in the journal.

:«< "",

,~

~l

Output
~ ~~, VA

1- - ~

JHR SHR I '" I I I I I I v

Register 1 JNLPARM

" ~SCB 11 I

1
m

18 I

I JSCBJRBA I
~»A:0~~.i •. JJ![.~,:r©{;i~. 'y'if~

Job Journal

Normal Job C Processing or / Deferred
Restart Job ~I SHR 15 ~ ~ ~

"./
- .--

Job Journal

~ Restart Job ~
Processing ~ SHR1\.-/ LJ\ ~

.......". ~.IJCT I
J5

'-- .-/

Job Journal

i'-- .-/

~i, .-/ n-1

'" ~ -v' JHR-15 '- ~
"-. ISHR1/ n

~

sa.
5·
::s
~

a::
t
~

So
o
~

! o·
::s

w
c:,. -w

""'-----"""

Diagram 17-12. Building Step Header Record for Job Journal (IEFXB604) (part 2 of 4)

Extended Description

1 Check the JSCBJNLF and JSCBJNLE bits in the
JSCBJJSB field to determine whether there is no

job journal or there is a journal error. Change job state
in the JSCB to "in allocation."

2 If the failing step is the first step of the job or if it
is the first step of a non-restart job, write the JHR

and the SHR in the journal. Set JCT JSBAL to indicate
that the job state is "in allocation", and write the job
control table (JGT) in the journal for all jobs except
automatic checkpoint restart jobs, to record the "in
allocation" status.

3 If the failing step (step n) is any step but the first
step of an automatic checkpoint job, write the

JHR and the SHR for step n-1 in the journal, and all the
control blocks of all previous steps up to but not
including the failing step. This information must be
saved to permit a possible subsequent restart. Finally,
write the SHR for step n in the journal.

Module Label

IEFXB604

t Diagram 17-12. Building Step Header Record for Job Journal (IEFXB604) (part 3 of 4) -•
~
~
N

f
I
i n·
r-

I
f
~

~
N

i
~

~ -

Input

~
~-

LCTSCTAD

~-----,~
Step
Number
(SCTSNUMB)

JSCB RPL I VI Relative Byte

JSCBJNLR .. f~:~R~AR)

Register 1

I
~LCT

r--
Restart
Bits
(LCTRFB)

pr~~
#.<,' .:~,,<, :6i:. > . <" , " .. ': ",,' :; A\ :~:

I DQ
t-- ___

14
I
I I <4)

I '\~

I
I I I
I

~ ."

I
I
I

I
L ... _

....
)

4 If this is a step restart for any
step but the first step (step n):

a. Write the SHR for step n
in the journal.

b. Write the JHR and the SHR
for step (n-1), and all blocks
from step 1 up to step n in
the journal.

C. Save the RBA of the SHR
for step (n-H.

d. Write the SHR for step n
in the journal.

5 If this is a non-restart job for
any step but the first step:

a. Write the SHR for the
current step in the journal.

6 Turn off all restart bits in the
linkage control table (LCT).

Initiator: Step
Initiation (lEFSD162)

Output

... ...

~

...
....

Job Journal

Job Journal

~
Restart
Bits
(LCTRFB)

n

n-1

I"

til
g
6' ::s
~

a:
(D

S-
o
~

o
"'" o
'0

i
5'
::s

w u--c,.

Diagram 17-12~ Building Step Header Record for Job Journal (IEFXB604) (Part 4 of 4)

Extended Description

4 tf the failing step is any step but the first step of a
step restart job, write the SHR for step n, and then

write the JHR and the SHR for step n-1 in the journal.
Write all the control blocks for steps 1 thru n-1, and
lastly write the SHR for step n in the journal once again.
As in step 3, this information is saved to permit a
possible restart.

5 If the failing step is any step but the first step of a
non-restart job, write the SHR of the C!Jrrent step

in the journal. Again, this information is saved to permit
a possible restart.

6 Turnoff all restart bits (lCTRFBSM, lCTRFBCR,
and lCTRFBDC) before exiting.

Module Label

IEFXB604

~ Diagram 17-13. Preparing an Abended Job Step for Restart (IEFRPREP) (part 1 of 4) ...
0\

~
<-rn
N

1
I

i
. ' ro-
f

oS
~ e­

.g
CD
W

.~
N

~

f
w
~ -

. Input

R1

(For the (active)
Problem Program)

Unallocation
(IEFBB410)

1 Check for the-following to.determine
if restart can occur.

a . Is restart requested.

b.ls job restartable.

c. Was a checkpoint taken.

d. Is abend code valid.

e.'s job journal available.

f. Did error occur on a previous
journal write.

2 Check for-operator authorization.

3 If "positive" response to 1 'and 2,
prepare for restart.

If restart denied. - ' I I· Step 7

Output

c::1
Message

C'I)

a
~.

::I

~

== a
8'
Q.

o
""" o

"0
(D

i
~.

::I

w
<i. --.J

Diagram 17-13. Preparing an Abended Job Step for Restart (IEFRPREP) (part 2 of 4)

Extended Description

This routine determines if an .abended (abnormally
terminated) job step task can be restarted. If it can,
the routi ne prepares the task for a restart.

1 a) Test JCTNORST.

b) The job cannot restart if, after a checkpoint was
taken, dynamic allocation routines have scratched a
dynamically allocated data set that is used by the job.

c) Test JCTCKFT.

d) Check TCBCMP against the IEFYRCDS table of eligible
restart ABEND cod~s. This table is contained in a SYSGEN
module.

e) The job journal must have been specified as a SYSGEN·
option or atlPL time. Test JSCBJNLF.

f) Test JSCBJNLE. The routine IEFXB500 will· have set
this flag if an error occurred during a previous writing of
information to the job journal.

2 Routine issues a WTOR macro instruction for the
operator to give decision regarding a restart.

3 For any negative response in steps 1 and 2, go to
step 7.

Module Label

IEFRPREP IEFPREP

JNL03

JNL02

JNL01

RP130

~ Diagram ~7-13. Preparing an Abended Job S~ep for Restart (IEFRPREP) (part 3 of 4) -00

o rn

~
N
rn
'< =.
I

i
t'"'I ez
!

f
~

'< rn
N

'" CD r
~
eN

~

Input

JCTRSW1

~CTWARMS
SCT TCB

D D
JCT (in SWA)

D

SWA

I
SCT JCT

0 0

Process

4 Release job journal override
indicator, if this is a warm start.

-
5 Fill in selected control block

fields.

6 Write updated JCT to job
journal.

7 Release override indicator for job
journal, if job is a warm start job.

S F ill in selected control block field.

I
9 Write updated JeT and SCT to

job journal.
&)

10 Set override indicator for the job
journal.

Output

JCT JSCB

t<t D

Un-
allocation
(lEFBB410);,

Job Journal

SCT

Unallocation
(lEFBB410)

C"Il a
~.

::I

~

J::
~
&.
o
"'"' o

I
~.

::I

eN
~
~

Diagram 17-13. Preparing an Abended Job Step for Restart (IEFRPREP) (part 4 of 4)

Extended Description Module

4 The override indicator in the JSCB is set off to allow IEFRPREP
writing on the journal if the job is a warm start job.

Otherwise, the indicator is already off at entry time.

5 Field indicators affected:
• JCTACODE (same information as TCBCMP).
• JCTCKPTR (if checkpoint restart).
• JCTSTEPR (if step restart).
• JCTSCT (with value from SCTSNUMB). Based on operator

reply, either hold job or re-enqueue job for immediate
restart. Save restart step'sSCT pointer (in field JCTSSTR).

• JCT JSBEX and JSCBJSBX (same information; that is, the
job is executing).

• JCT JSBTM and JSCBJSBT (same information; that is, the
job is terminating).

6 This prohibits writing on the job journal (see step 4).

7 Set override bit as in step 4 to allow updating of job
journal.

IEFXB500

IEFRPREP

Label Extended Description

8 Fields (indicators) affected:

• JCTCKPTR (see step 5)
• JCTSTEPR (see step 5)
• JCTRESTT (no-restart indicator)
• JCTACODE (see step 5)
• JCTABEND
• SCTONLYC (condition code, for use by allocation)

• SCTABEND

9 The routine writes the JCT and SCT to the job journal.

10 The routine sets the override bit on to suppress
further writing to the job journal until the job has

restarted.

Module Label

IEFPREP CABEND2
IEFQB550
IEFXB500

IEFRPREP

~
~

~
~
w

i
i n·
r-"

i
~ r
til
w

'<
C'Il
w

f
w
:... -

Diagram 17-14. Writing Blocks to the Job Journal (IEFXBSOO) (part 1 of 4)

• Initiator (lEFSD162),
• SWA Manager (lEFOB550 or IEFOB555),
• Step Header Create (lEFXB604), or Direct Write (lODWIJRN)

JSCBACT

R1

Daughter
Task
JSCB

c:J

JSCBJNL

JNLPARM

JNLPPTRX

1 Determine if job journal can be written
(updated). Unable to write. •• CaUer

" Writing possible.

2 Determine which routine called for the journal
write routine.

A consideration of the calling routine determines
which step will be executed. The following list
associates a symbol with each calling routine.

The symbols, in turn, are associated with
processing steps that are required to respond to
the indicated calling routine.

Calling Routine

SWA Write Routine
(lEFOB550)

Symbol

A

SWAWrite/Locate Routine B
(lEFOB555)

Initiator (Allocation) D
(lEFSD162)

Direct Write
(lDDWIJRN)

c

Ul
(II

~ o· =

a::
~
S
Q.
o
'"' o
1
~ =
w u­..... -

I Diagram 17·14. Writing Blocks to the Job Journal (IEFXB500) (Part 2 of 4)

Extended Description

This routine writes (updates) critical control blocks to
the job journal for restart or termination preparation
processing.

1 Flags (JSCBJNLN, JSCBJNLF, and JSCBJNLE) in
the JSCB field JSCBJNL indicate if a journal over·

ride condition exists, if a job journal exists, or if an error
exists on the journal (from a previous 'write' situation).

2 The first field, JNLPCALL, of the parameter list at
JNLPARM contains the indicator tested at this point.

The second word of the journal parameter list contains the
value indicated below:

Calling
Routine

SWAWrite
SWA Write/Locate

Initiator

Direct Write
(of non-SWA
blocks)

Value
QMPA address
External Parameter
Area (EPA) chain address
Linkage Control Table
(LCT) address
Extension Block Address
(In this case, a chain of control
blocks can exist. Each block
contains the address of the
block to be journaled. its
identifier, its length, and the
R BN (relative block number).)

Module Label

IEFXB500 IEFXB500

< Ul
<:>
IN

00
o
'-l

~ Diagram 17-14. Writing Blocks to the Job Journal (IEFXBSOO) (Part 3 of 4)
N
N

o
C'Il

~
N
C'Il
'<
=-
~

£
(;.

~

I
~ c a
(D

1M

~
N o
1M
00 -s

Input Process

! !> S;bOI
JNLPARM OMPA

I~ GJ--'n".JNL£ I
A,B

I OMPA EPA

fV

JNLPARM

IO-§
i C
IY

C
JNLPARM

QRBN I C

LCT JCT GDGNT GDGNT

_ __--:> A,B,
~~~_ C,D 

JFCBX JFCBX 

A,B, 
C,D 

Step 

3 Check for "journal all" 
indicator. 
• If yes I _ Step 8 

4 Determine if block(s) are 
critical for restart. I _ Step 8 

5 Determine it'block to be 
written is valid. 

In~alid block I _ Step 9 

6 Build prefix for block 
(similar to prefix for SWA 
blocks). 

7 Check relative block number 
(RBN). 

Output 

Non-SWA 
Prefix RBN 

...., 

I I 1 Block Virtual -f Address 

~ I ..... 

~ 1 ...... B lock Length 

Block 10 

JNLPARM 

• If first time for this 
block, assign a RBN. 

: :> I 1- New RBN 

8 Write all valid block(s) to 
the job journal. 

lJ\. 

!Y 

9 If journalling error occurs, II -" 
IV 

if Needed 

U Job Journal 

JFCB 

o ·0-----·0 
issue message and stop 
journalling. If invalid 
block is present, set 
return code. I :pCalle, 

JSCB 

~JSCBJJSB 

<: 
C'Il 
N 

o 
(".J 

00 -o 



en 
~ 
n g. 
= N 

a:: 
~ 
S 
Q. 

o .... 
o 
~ 
~ a 
5' 
= 
(.H 

~ 
N 
(.H 

Diagram 17-14. Writing Blocks to the Job Journal (IEFXB500) (part 4 of 4) 

Extended Description 

3 SWA Write (and Move): 

If this indicator (QMSJNL) is on, the routine journals the 
control block regardless of the job state (see step 4). Only 
the terminator modules use this indicator. 

4 The journal-write module contains a list of all 

critical control blocks for the four main job states: 

• I nterpreter state 
• Allocation state 
• Problem program execution state 
• Termination state 
This list (or template) also indicates critical non-SWA 
('direct write') control blocks (e.g., step header record, 
via data sets such as data set page control table header 
and via data set control block). 

The 10 of each block that is scheduled to be journalled is 
found in the SWA prefix for the block. The lOis matched 
with the list in the template for the particular job state 
involved, to determine if the block is critical for restart. 

The format of the EPA appears below: 

For SWA locate' 

t Block to be written or read 

t SWA virtual address 31 Block 10 

Length of block written or read 

o or t next EPA 

For SWA move: 

4 1 

1 

4 

4 

t Buffer to which block is read 4 
or from which block is written 

t SWA virtual address from which block 1 BI kiD 
is read or to which block is written oc 

For SWA assign: 

SWA virtual address 
(from SWA manager) 

o 

3\ o 
4 

Module Label 

IEFXB500 SWAWRT 

SWAWRT 

SWAWRTL 

Extended Description 

5 Direct Write: 

The parameter list contains the block ID. This lOis 
matched against the template as in step 4. 

6 The routine builds the prefix before it journals the 
block. 

7 For the first journalling of the block, the RBN (in the 
fourth word of the parameter list) is zero. This routine 

assigns a unique RBN that will be used if subsequent 
journalling of the block is required. 

8 Except when journalling control blocks at allocation-
time, the order in which the blocks are journalled 

depends on the order in which they are updated on SWA. 
At allocation-time, the blocks are journalled in the follow­
ing order: JCT, SCT (of current step), one or more GOGNT 
(generation data group name table), one or more POI 
(passed data set information), one or more VUT (volume 

unload table), first SlOT plus JFCB plus JFCBX (one or 
more) or JFCBE, additional SIOT-JFCB-JFCBXs chains 
and SIOT-JFCB-JFCBE chains. 

For the allocation-time journalling, the pointer chain 
beginning at the LCT gives block addresses. 

When writing to the journal, the routine uses the request 
parameter list (RPL) that was built by the SWA create 
routine (lEFXB600)' It passes the RPL to the subsystem 
routine (JES2) as a parameter in the PUT macro instruc­
tion that results in a JES2 routine putting the block on 
the journal. 

9 Error indicator in the JSCB is set, a WTP macro 
instruction is used to issue a message, a return code 

is placed in the parameter list JNLPARM, and control 
returns to the caller. 

',-~ 

Module Label 

ORTWRT 

IEFXB500 RUNCHAIN 

JOURNAL 

ERRMSG 

< en 
t-.J 
o 
(.H 

00 -o 



t 
t 

~ 
N 
fIl 

1 
J 

i 
l: 

f 
~ 
f 
CD 
w 

~ 
N 
Q 
w 
00 -s 

Diagram 17-15. Journal for Restarted Jobs (IEFXB500) (part 10f2) 

Input 

LCT 

JSCB 

jSCBFRBA 

JSCBJRBA 

From 
IEFXB604 

From 
IEFSD162 

1 For an automatic restart 
job, rewrite all control 
blocks up to but not 
including the failing step 
in the journal. 

2 For an automatic step 
restart, update the first Job 
Header Record (JHR) with 
the relative byte address 
(RBA) pointing to the 
proper journal record. 

3 For a checkpoint restart, 
after allocation of the 
failing step, update the JHR 
with the proper job-journal 
repositioning information. 

(I Ei=XB604) 

o t 

JHR Job Journal 



CIl 

a t5. 
= to.J 

a:: 

[ 
o 
~ 

o 
'1:1 a 
5" 
= 
~ 
to.J 
VI 

Diagram 17-15. Journal for Restarted Jobs (IEFXBSOO) (part 2 of 2) 

Extended Description 

1 For an automatic step restart or a checkpoint restart, 
write all critical control blocks from step one up to 

but not including the failing step in the journal. Blocks 
are written as if they were all part of step n-1, where n is 
the failing step's number. Critical control blocks are: 
JCT, POI, GDGNT, VUT, SCT, SlOT, JFCB,JFCBX, and 
JFCBE. VIO blocks are also written if SIOVAMDS is on. 

2 For an automatic step restart, a GET macro with 
update is issued, using the relative byte address (RBA) 

saved in JSCBFRBA by the merge routine. The job header 
record (JHR) is then updated by inserting an RBA which 
was saved in JSCBJRBA by IEFXB604. This RBA points 
to the SHR for step n-1 and will be used by the merge 
routine after restart. 

3 For a checkpoint restart, after allocation of the 
failing step, update the JHR by inserting JSCBJRBA 

and the RBA returned from the last PUT macro. This 
RBA will be used at restart-time to reposition the journal 
data set. 

Module Label 

IEFXB500 RUNCHAIN 
RUNSIOT 

JHRUPDT 

JHRUPDT 

~ 
to.J 
o 
W 
Oc -o 



3-526 OS/VS2 System Loaic LibruyVolume 3 (VS2.03.810) 



ABDUMP initialization (See OS/VS2 System Initialization 
Logic) 

ABEND 
in SW A manager move mode 3-265 

ABENDed jobstep, preparing for restart 3-516 
abnormal end of SMF writer function 3-460 
abnormal termination of log task 3-476 
ACB (access control block) 

creation for eseudo access method 3-178 
in converter/interpreter interface 3-178 
in JFCB housekeeping control 3-318 
in JLOCATE 3-333 
in pseudo access method 3-184 
in subsystem initiation message writer 3-186 
in SW A create interface 3-216 

access control block (see ACB) 
access method, pseudo (see pseudo access method) 
account tables (see ACT) 
ACT (account tables) 

in interpreter 3-254 
in job deletion 3-208 
in step deletion 3-208 

action queue, deferred, in SRM 3-28 
action/algorithm scheduling in SRM 3-23,3-23.2,3-23.3 

(VS2.03.807) 
active subsystem 

notification 3-172 
requests 3-172 

addresses, virtual in SW A, updating 3-504 
affinity (see CPU affinity) 
affinity processor 

function 3-304-3-305 
affinity removed 

function 3-304, 3-298, 3-368 
affinity requests, allocating 3-300 
ALCW A (allocation work area) 

in allocate request to unit 3-304, 3-306 
in allocating offline devices 3-376 
in allocation via algorithm 3-348 
in common allocation cleanup 3-378 
in common allocation control 3-280 
in demand allocation 3-355 
in fixed device control 3-294 
in generic allocation control 3-338 
in nonspecific volume allocation control 3-308 
in recovery allocation 3-358 
in specific volume allocation 3-298 

algorithm, allocating via 3-348 
cover/reduce algorithm 3-349 
interface to SRM 3-351 
multi-unit requests 3-349 
UCB candidates list 3-351 

algorithm tables 
in allocate request to unit 3-304-3-306 
in allocating offline devices 3-366 
in allocation via algorithm 3-339 
in common allocation cleanup 3-378-3-379 
in demand allocation 3-355 
in generic allocation control 3-342, 3-344 
in multi-unit request processing 3-366 
in nonspecific volume allocation control 3-312 
in recovery allocation 3-358 
in specific volume allocation 3-298 

algorithms, SRM 3-30 
in periodic entry point scheduling 3-32 
scheduling 3.23.2 (VS2.03.807) 

alias-named data sets, processing 3-332-3-333 
all active subsystem notification 3-172-3-173 
allocate catalog control 

function 3-336 
allocate from groups picked by algorithm (see IEF AB478 

object module) 
allocate function control (see IEFDB410 object module) 
allocate request to unit 3-302 
allocate via the algorithm 

VS2.03.810 

function 3-348 
allocate VIO data sets 

function 3-280-3-281 
allocate within a generic 

function 3-342, 3-344, 3-346 
allocating affinity requests 

in allocating requests to units 3-304 
in allocating requests to specify volumes 3-300 
in allocation recovery 3-358 

allocating direct-access request 3-294 

Index 

allocating non-specific volume requests 3-308 
allocating permanently resident volume requests 3-294 
allocating reserved volume requests 3-294 
allocating system log 3-472 
allocating teleprocessing requests 3-286 
allocating a unit 
, building a VM & V request block 3-302 

unloading a volume 3-302 
allocating volumes and units to requests 3-280 , 
allocation common EST AE exit routine (IEF AB4ED) 

(VS2.03.804) 
error processing 3-291-3-413 (VS2.03.804) 

allocation environment, current, providing information 
about 3-422 

allocation message routine 
function 3-380-3-381 

allocation queue manager (see IEFAB4FA object module) 
allocation queue manager request block (see AQMRB) 
allocation/unallocation 3-269 . ' 

affinity request 3-300 
catalog search 3-334 I 
common allocation clean-up 3-378 
common control (see also common allocation control) 

3-280 
common control for unallocation 3-430 
common unalloaction functions 3-402 
DD function control 3-322 
ddname allocation 

function 3-412, 3-428 
demand allocation 3-355 
device, offline, allocation of 3-366 
disposition processing 3-440 
dynamic allocation control 3-414 
dynamic environment, current, providing information 

about 3-423 
dynamic information retrieval 3-422 
dynamic unallocation control 3-416 
fixed device control 3-294 
function map, building (in initiator/unallocation 

interface) 3-404 
generic de vie type control 3-317 
installation routine verification (in SVC 99 control) 

3-412 
interface to initiator 

allocation 3-396 
unallocation 3-402 

introduction to allocation/unallocation 3-269 
ISAM request error checking (in common allocation 

cleanup) 3-380 
JES2 notified of unallocation of data set and associated 

resources 3-438-3-439 
JFCB housekeeping control 3-314 
JLOCATE, functions of 3-334 
major functions of allocation/unallocation 3-271 
mount equalization for MSS volumes 3-291, 3-350, 

3-370 
MSS interface to obtain preferred UCB list to update 

UCB candidate list 3-371, 3-377 
offline device allocation 3-366 
overview of allocation/unallocation 3-269 
passed data set information, obtaining 3-334 
processing job step (SVC 99 control) 3-412 
reattempted allocation, criteri'a for 3-378 
recovery 3-358 
remove in-use attribute 3-424 

Index I-I 



remove in-use processing 3-424 
r~quests to unit 3-302 
retry 3-378 
SRM interface 

in common. allocation clean-up 3-382 
in non-specific volume allocation 3-312 

step allocation control 
function 3;.398 

step initiator 
in initiator/allocation interface 3-396 
in step initiation 3-200 

SVC 99 control 3-412 
termination error, processing 3-382 
unit unallocation 3-444 
via algorithm 3-348 
volume list (in disposition processing, IEF AB4A2) 

3-440 
volume mount and verify (VM & V) 

interface 3-386 
processing 3-390 

allocation work area (see ALCW A) 
ALTCPREC SYSEVENT code (33) 

processing -in SRM SYSEVENT code processor 3-18 
alternate disposition message routine 

function 3-443 
alternation of SW A subpool 3-267 
AMW A (access method work area) 

in converter/interpreter interface 3-178 
in pseudo access method 3-184 
in subsystem initiation 3-176 

analyzer, MF /1 syntax 3-86 
APF (see authorized program facility) 
APG (automatic priority group) 

changing priorities in 3-62 
in step initiation 3-205 

AQMRB (allocation queue manager request block) 
in generic allocation control 3.;338 

ASCB (address space control block) 
in CPU management (SRM) 3-62 
in dynamic allocation control 3-414 
in SMF cross~memory post error exit 3-460 
in SRM interface 3-6 
in SRM service routine (IRARMSRV) 3-9.2 

(VS2.0l.807) 
in step initiation 3-200 
in storage management (IRARMSTM) 3-46 

(VS2.03.807) 
in storage management (SRM) 3-46 
iri SVC 99 control 3-412 
in swappable user evaluation (IRARMWM2) 3-70 

(VS2.03.807) 
in swap-io 

control 3-40 
in swap-out 

control 3-42 
in SYSEVENT processing in SRM SYSEVENT code 

processor 3-11 
in user evaluation (IRARMCVL) 3-43.4 (VS2.03.807) 

ASCB priority 
in step initiation 3-200 

ASID (address space identifier) 
in job unallocation 3-410 

ASM (see auxiliary storage manager) 
ASMCNSTS SYSEVENT code (27) 

processing in SRM SYSEVENT code processor 3-17 
ASMVT 

in interval measurement gathering routine for paging 
3-122 

in resource monitor periodic monitoring (IRARMRM 1) 
3-66 (VS2.03.807) 

in storage management (IRARMSTM) 3-46 
(VS2.03.807) 

in storage management (SRM) 3-48 
ASSIGN 

processing 3-264 
ASSIGN/LOCATE processing 3-266 
ASSIGN/START processing 3-264 
assignment of CPU task affinity 

function 3-201, 3-199 
ASXB (address space extension block) 

1-2 OS/VS2 System Logic Library Volume 3 (VS2.03.810) 

VS2.03.810 

in SMF cross memory post error exit 3-460 
asynchronous exits (see exit asynchronous) 
ATCA 

in allocation/volume mount and verify (VM & V) 
interface 3-388 

in volume mount and verify (Vl\1& V) 3-394 
attributes, user (see V APS) 
automatic checkpoint/restart 

processing 3-498 
SWA create interface 3-216 

automatic priority group (see APG) 
automatic step restart 3-500 
auxiliary page shortage 3-48 
auxiliary storage manager I/O request area (see AlA) 
available queue element (see AQE) 
AVQLOW SYSEVENT code (23) 

processing in SRM storage management (IRARMSTM) 
3-49 

processing in SRM SYSEVENT code processor 3-16 
A VQOK SYSEVENT code (24) 

processing in SRM storage management (IRARMSTM) 
3-49 

processing in SRM SYSEVENT code processor 3-16 
A VR (automatic volume recognition) 

in generic allocation 
function 3-340, 3-341 

BASEA (see MSRDA) 
batch allocation 

in common allocation control 3-280 
BRINGIN SYSEVENT (44) 

processing in SRM SYSEVENT processor 3-21 
broadcast data set (see SYS1.BRODCAST) 
build eligible devices list (EDL) 

function 3-282-3-283 
building step header record for job journal 3-512 

CAT (channel availablity table) 
in MF /1 channel sampling module 3-140 

catalog, allocating (see SVC 99) 3-337 
catalog, implied by data set names 3-334 
catalog, master 3-335 
catalog, private, searching 3-334 
catalog processing 3-204 
catalog searching 3-334 
catalog unallocation control 

function 3-336, 3-318, 3-432 
cataloged procedures 3-232 
CCT 

in CPU load balancin~ swap analysis 3-66 
in CPU management (lRARMCPM) 3-62 (VS2.03.807) 
in CPU management (SRM) 3-62 
in reSource monitor periodic monitoring (IRARMRM 1) 

3-66 (VS2.03.807) 
in storage management (SRM) 3-48 

change ddname/JES3 exit (IEFDB4FB) 
function 3-418-3-419 

channel, logical 
analysis of I/O load 3-56 
imbalance 3-54 
in I/O mangement 3-54 

channel, measurement 
MF/l initialization for 3-100 

channel availability table (see CAT) 
channel data collected by MF/l 

interval 3-130 
sampling 3-140 
se.cond CPU 3-142 

checkpoint data set 3-486 
checkpoint/restart 3-202, 3-483 

ABENDed job step, preparing for restart 3-516 
automatic 

in SWA create interface 3-216 
processing 3-498 

data set descriptor records processing 3-486, 3-483 
deferred 3-216 
dynamic allocation interface 3-486 
header record 3-489 



... ;:)L~P mitiation 3-202 
job journal writing 3-520 

CIB (command input block) 
in measurement facility control 3-80 

CIB (command input buffer) 
in job initiation 3-196 

clean-up processing 
in common allocation 3-378 
in volume mount & verify (VM & V) 3-394 

clock, TOD (see TOD clock) 
coefficients, resource (see resource factor coefficient) 
collect data for MP/l (IRARMWR3) 3-73.8 (VS2.03.807) 
command, reconfiguration (see reconfiguration commands) 
command. processing 

in the input stream 3-230 
commands 

in the input stream 3-230 
WRITELOG START 3-466 

comment or continuation statement processing . 3-226 
common allocation clean-up 

called by 3-378 
common allocation parameter list, building 3-378 
functions 3-378 
requests excluded (see also requests, allocation) 3-378 

common allocation control 
called by 3-280 
fixed device control 3-290 
function 3-280 
function map 3-430 
generic allocation control, use with 3-288 
order of allocation 3-280 
parameter list, function map 3-280 
recovery, occasions for use 3-288 
serialization of 3-282 
waiting for devices 3-280 

common allocation parameter list 
building 3-378 

common request router 
processing 

function 3-172 
request block construction 3-412 

common unallocation functions 3-430 
comparator, clock (sec clock comparator) 
COMW A (converter/interpreter common work area) 

converter usc of in 
identifying verbs or JCL statements 3-226 
initialization 3-224 
processing commands in the input stream 3-230 
processing in-stream and cataloged procedures 

3-232 
termination 3-242 . 

interpreter use of in initialization 3-246 
concatenation, dynamic 

function 3-418 
CONFIGCH SYSEVENT code (29) 

processing in SRM SYSEVENT code processor 3-17 
continuation statement processing 3-226-3-229 
control, common allocation (see common allocation 

control) 
control blocks (see data areas) 
conversion of bit mask 

function 3-200-3-201 
converter (see also interpreter) 

command verb validation routine 
function 3-230, 3-228 

comment or continuation validation routine 
function 3-226 

converting statements to internal text 3-236-3-239 
entering defaults'into internal text 3-240-3-241 
error messages 

processing by subsystem initiation message writer 
3-186-3-187 

get routine 
function 3-226 

identifying verbs on J CL statements 3-226-3-229 
initialization 

function 3-224-3-225 
instream procedure routines 

function 3-232 
pre-scan routine 

VS2.03.810 

function 3-228 
processing commands in the input stream 3-230-3-23 
processing in-stream and cataloged procedures 

3-232-3-233 
processing symbolic parameters 3-234-3-235 
pseudo-access method 3-182-3-185 
scan routine 

function 3~236, 3-240, 3-234, 3-226 
SW A manager interface routine 

function 3-233 
symbolic parameter routine 

function 3-234 
termination routine 

function 3-242-3-243 
test and store utility routine 

function 3-252 
use by master subsystem 3-178-3-181 
verb identifier routine 

function 3-226, 3-228, 3-232, 3-238 
con verter / interpreter 

interface 3-178-3-181 
operator message module 

function 3-258-3-259 
converting an allocation in dynamic allocation control 

3-414 
COPYDMDT SYSEVENT code (VS2.03.807) 

code processor 3-11 (VS2.03.807) 
processing in SRM SYSEVENT 3-22 (VS2.03.807) 

corequisite publications iv (preface) 
count table 

in allocation via algorithm 3-350 
in common allocation control 3-280 
in demand allocation 3-355 
in fixed device control 3-294 
in nonspecific volume allocation control 3-312 
in specific volume allocation 3-300 

cover/reduce algorithm 
function 3-366, 3-348, 3-374, 3-280 

CPU activity initialization in MF /1 3-96 
CPU affinity 

in job initiation 3.;.199 
in step initiation 3-20 I 

CPU load balancin~ swap analysis 3-66 
CPU management III SRM 3-62 
CPU measurements in MF/J 

in interval MG routine 3-118-3-121 
CPU tltililation (VS2.03.807) 

in CPU management (IRARMCPM) 3-63,3-64 
(VS2.03.807) 

CRI (catalog return information) 
in DD function control 3-322-3-330 
in JLOCATE 3-334 

cross-memory posting of SMFerror exit .-460 
CSCB (command scheduling control bloR) 

in allocation/initiator interface ~98 
in initiator/allocation interface ' 
in job initiation 3-196 
in step initiation 3-200 6 
in SWA create interface 3-' 

CSJ? (common syste~ data aTe'{ 3-282 
m common allocatIOn contttCPM) 3 
in CPU management (IRflP 3 -62 (VS2.03.807) 
in MP/I channel jnitiali~'t<>nrovjd~OO. . 

current allocation environ,..' , P ng informatIOn 
about 3-42~ . .,e" table) 

CV:r (comm~ntc~t~~n . Ulterface 3-396 
!n allocat!on/tntt~ IJlOunt and verif (VM & V) 
tn allocahon/v6 y 

interface .p header record for th . b . 
in building . e JO Journal 

3-512 equest router 3-172 
in compilame assignment 3-188 
!n ~~tri/al1ocation interface 3-396 
~n ~~"or/unaJ1ocation interface 3-404 
tn • vaJ measurement th . 
i,..6 ga ermg routine for workload 
.Ierging job journal to SW A 3-492 

.J ~~/J channel ~n!tia!i~a!ion 3-100 
/ I CPU actIVIty lUltlalization 3-96 

Index 1-3 



n MF /1 device initialization 3-104 
m MF/l paging activity initialization 3-96 
in MF/l second CPU test channel sampling module 

3-142 
in MF/l termination processor 3-110 
in ST AE exit processing for SMF 3-458 
in subsystem determination 3-174 
in subsystem interface 3-164 
in switching SMF data sets 3-454 
in unallocation/initiator interface 3-404 
in volume mount and verify (VM&V) 3-394 
in writing blocks to the job journal 3-520 
in writing SMF records 3-450 

DADSM' 
allocation interface 3-304 
parameter list in allocate request to unit 3-304 
VM & V interface 3~386 

;DAIRFAIL (IKJEFFI8) failure in dynamic allocation 
• 3-486 (VS2.03.810) 
Data Area section 7-1855 

data control (IRBMFDTA) in MF/l 3-106 
data set assignment 3-188 
data set descriptor record processor (see also 

checkpoint/ restart) 
in SW A create interface 

function 3-486, 3-216, 3-217 
data set enqueue parameter list building 

function 3-198-3-199 
data set name (see also DSN resolution) 

in data set tree processing 3-198-3-199 
data set name assignment 

function 3-188 
data set name resolution 

function 3~324 
data set tree structure processing in job and step initiation 

function 3-198-3-199 
data sets, releasing 

in common unallocation control 3-432-3-433 
data sets, SMF 3-454 . 
DCB (data control block) 

in converter/interpreter interface 3-178 
in data set descriptor records processing 3-486 
in switching SMF data sets 3-454 
in writing SMF records 3-450 
resolution in DD function control 

function 3-330-3-331 
DD function control (IEF AB454) 

DCB res<-tution 3-331 
DISP reso1ltion 3-332-3-333 
GDG (~enelltion data group) processing 3-324-3-325 
processmg 

functio": -322 
volume/u!llt re~'ution 3~328-3-331 

DD preparation 
function 3-314-3"'\5 

DD processing control 
function 3-324, 3-3t-

ddname allocatio~ 3-4~~"-412 
ddname and relative posltlCt}'lumber 

informing the JE~3 subS'ttm 3-418-3-419 
ddname search routme 

function 3-416, 3-418, 3""" 
DEB (data extent block) . .~ 

deconcatenatioI}, dyna2~ , 
step initiation, In. 3-

deconcatenation routme 
function 3-420 . into JCL'~ 

defaults, converter, entertn(fRARMCEN)\al text 3-240 
deferred action processor 7) "'RM 3-28 
deferred actic:i q(eue ::!!~~3'~_28 (VS1.&, 

in deferre rta~ lb°'determination (in SW A l~ 
deferred resta ]0 '\ 

interface) ~-2h17. SRM 3-23 (VS1.03.8tft\ 
deferring algont ~s m \ 
DELETE subrouttne d 3-265 \, 

in SW A manager fmovf m~ne SWA manager loc~ 
DELETE/LOCATE unc ion 1 \:le 

3-266-3-267 

1-4 
I ~ Lib-- Volume 3 (VS1.03.810) 

OS/VSl System ........ '" .-J 

VS1.03.8Iu 

demand allocation 
processing 

function 3-355 
use with generic allocation 3-407 

demand requests 
definition 3-355 
operator replies 3-375 
processing 3-375, 3-377 
volunit entry, updating 3-372, 3-373 

DEQ macro instruction (see ENQ/DEQ/RESERVE 
routine) 

determination of subsystem name 3-175 
determine device requirements 

function 3-282-3-283 
determining device requests 

for request not yet allocated 3-289 
DEV ALLOC SYSEVENT code (28) 

processing in SRM. SYSEVENT code processor 3-17 
device allocation/unallocation (see allocation/unallocation) 
device data collected by MF /1 3-145 
device end post handler 

function 3-394. 
device groups no longer needed, determining 3-372 
device groups that must remain serialized 3-373 
device sampling in MF/l 

initialization 3-104 
processing 3-145 

device selections from lES3 3-284-3-285 
devices, generic (see generic allocation control) 
devices, waiting for . 

in common allocation control 3-289 
direct access data set (see DADSM) 
direct access label read 

function 3-340, 3-394 
direct read 

in pseudo access method 3-182 
direct write 

in pseudo access method 3-182 
OISP (disposition) information (see also disposition 

processing) 
completing in JFCB R IN SlOT 3-322 

DISP (disposition) resolution (see also disposition 
processing) 

associated with commands in the input stream 3-231 
in DD function control 3-333 

dispatching 
priority, changing 

iIi CPU management 3~62 
disposition message routine 

function 3-443 
disposition processing control 

function 3-440 
disposition processing in IEFAB4A2 (see also OISP 

resolution, DISP information) 3-440 
in common unallocation control (IEFAB4AO) 3-430 
in DO function control (IEFAB454) 

function 3-332-3~333 
OMDT (domain descriptor table) (VS2.03.807) 

in resource monitor MPL adjustment processing 
(IRARMRM2) 3-67.0 (VS2.03.807) 

in resource monitor periodic monitoring (lRARMRM 1) 
3-66 (VS2.03.807) 

in swap analysis (IRARMCAP) 3-36 (VS2.03.807) 
DOM count in VM&V (volume mount and verify) tables 

3-391 
DOM (delete operator message) 10 entries 

in allocation/volume mount and verify (VM & V) 
interface 3-388 

in volume mount and verify (VM & V) 3-392-3-393 
domains (VS2.03.807) 

definition/description 3-3 (VS2.03.807) 
of work indicated in IPS 3-3 (VS1.03.807) 

DONTSWAP SYSEVENT code (code 41) 
exception to authorization 3-5 
in SYSEVENT processor 3-20 
in workload manager 3-71 

DSAB (data set association block) 
in allocate request to unit 3-302 
in allocating offline devices (IEF AB486) 3-368 
in allocation via algorithm 3-348 

o 



) 

_ iif@ •.• ~" £ ,~ 

in step initiation 3-202 
job journal writing 3-520 

CIB (command input block) 
in measurement facility control 3-80 

CIB (command input buffer) 
in job initiation 3-196 

clean-up processing 
in common allocation 3-378 
in volume mount & verify (VM & V) 3-394 

clock, TOD (see TOD clock) 
coefficients, resource (see resource factor coefficient) 
collect data for MF/l (IRARMWR3) 3-73.8 (VS2.03.807) 
command, reconfiguration (see reconfiguration commands) 
command. processing 

in the input stream 3-230 
commands 

in the input stream 3-230 
WRITELOG START 3-466 

comment or continuation statement processing . 3-226 
common allocation clean-up 

called by 3-378 
common allocation parameter list, building 3-378 
functions 3-378 
requests excluded (see also requests, allocation) 3-378 

common allocation control 
called by 3-280 
fixed device control 3-290 
function 3-280 
function map 3-430 
generic allocation control, use with 3-288 
order of allocation 3-280 
parameter list, function map 3-280 
recovery, occasions for use 3-288 
serialization of 3-282 
waiting for devices 3-280 

common allocation parameter list 
building 3-378 

common request router 
processing 

function 3-172 
request block construction 3-412 

common unallocation functions 3-430 
comparator, clock (see clock comparator) 
COMW A (converter/interpreter common work area) 

converter use of in 
identifying verbs or JCL statements 3-226 
initialization 3-224 
processing commands in the input stream 3-230 
processing in-stream and cataloged procedures 

3-232 
termination 3-:-242' 

interpreter use of in initialization 3-246 
concatenation, dynamic 

function 3-418 
CONFIGCH SYSEVENT code (29) 

processing in SRM SYSEVENT code processor 3-17 
continuation statement processing 3-226-3-229 
control, common allocation (see common allocation 

control) 
control blocks (see data areas) 
conversion of bit mask 

function 3-200-3-201 
converter (see also interpreter) 

command verb validation routine 
function 3-230, 3-228 

comment or continuation validation routine 
function 3-226 

converting statements to internal text 3-236-3-239 
entering defaults'into internal text 3-240-3-241 
error messages 

processing by subsystem initiation message writer 
3-186-3-187 

get routine 
function 3-226 

identifying verbs on JCL statements 3-226-3-229 
initialization 

function 3-224-3-225 
instream procedure routines 

function 3-232 
pre-scan routine 

,,¥ 4P ("i·fijJ£tE;f\i\ii)iM4I\;';; ;**",*""'*44.£4.\.$.4;;'. 6, ... 44$ .\$ @lUlU n4A; 

VS2.03.810 

function 3-228 
processing commands in the input stream 3-230-3-231 
processing in-stream and cataloged procedures 

3-232-3-233 
processing symbolic parameters 3-234-3-235 
pseudo-access method 3-182-3-185 
scan routine 

function 3:"236, 3-240, 3-234, 3-226 
SWA manager interface routine 

function 3-233 
symbolic parameter routine 

function 3-234 
termination routine 

function 3-242-3-243 
test and store utility routine 

function 3-252 
use by master subsystem 3-178-3-181 
verb identifier routine 

function 3-226, 3-228, 3-232, 3-238 
converter/interpreter 

interface 3-178-3-181 
operator message module 

function 3-258-3-259 
converting an allocation in dynamic allocation control 

3-414 
COPYDMDT SYSEVENT code (VS2.03.807) 

code processor 3-11 (VS2.03.807) 
processing in SRM SYSEVENT 3-22 (VS2.03.807) 

corequisite publications iv (preface) 
count table 

in allocation via algorithm 3-350 
in common allocation control 3-280 
in demand allocation 3-355 
in fixed device control 3-294 
in nonspecific volume allocation control 3-312 
in specific volume allocation 3-300 

cover/reduce algorithm 
function 3-366, 3-348, 3-374, 3-280 

CPU activity initialization in MF /1 3-96 
CPU affinity . 

in job initiation 3-199 
in step initiation 3-201 

CPU load balancing swap analysis 3-66 
CPU management in SRM 3-62 
CPU measurements in MF/l 

in interval MG routine 3-118-3-121 
CPU utilization (VS2.03.807) 

in CPU management (IRARMCPM) 3-63,3-64 
(VS2.03.807) 

CRI (catalog return information) 
in DO function control 3-322-3-330 
in JLOCATE 3-334 

cross-memory posting of SMF error exit 3-460 
CSCB (command scheduling control block) 

in allocation/initiator interface 3-398 
in initiator/allocation interface 3-398 
in job initiation 3-196 
in step initiation 3-200 
in SWA create interface 3-216 

CSD (common system data area) 
in common allocation control 3-282 
in CPU management (IRARMCPM) 3-62 (VS2.03.807) 
in MF /1 channel initialization 3-100 

current allocation environment, providing information 
about 3-422 

CVT (communication vector table) 
in allocation/initiator interface 3-396 
in allocation/volume mount and verify (VM & V) 

interlace 3-388 
in building a step header record for the job journal 

3-512 
in common request router 3-172 
in data set name assignment 3-188 
in initiator/allocation interface 3-396 
in initiator/unallocation interface 3-404 
in interval measurement gathering routine for workload 

3-126 
in merging job journal to SW A 3-492 
in MF /1 channel initialization 3-100 
in MF/l CPU activity initialization 3-96 

;; 4T4;J.$Ib£ 44.'(',·,; 'I ,'r; I '*' a 

Index 1-3 



in MF /1 device initialization 3-104 
in MF /1 paging activity initialization 3-96 
in MF /1 second CPU test channel sampling module 

3-142 
in MF /1 termination processor 3-110 
in ST AE exit processing for SMF 3-458 
in subsystem determination 3-174 
in subsystem interface 3-164 
in switching SMF data sets 3-454 
in unallocation/initiator interface 3-404 
in volume mount and verify (VM & V) 3-394 
in writing blocks to the job journal 3~520 
in writing SMF records 3-450 

DADSM 
allocation interface 3-304 
parameter list in allocate request to unit 3-304 
VM&V interface 3-386 

!DAIRFAIL (IKJEFFI8) failure in dynamic allocation 
! 3-486 (VS2.03.8tO) 
Data Area section 7-1855 

data control (IRBMFDTA) in MF/l 3-106 
data set assignment 3-188 
data set descriptor record processor (see also 

checkpoint/restart) 
in SW A create interface 

function 3-486, 3-216, 3-217 
data set enqueue parameter list building 

function 3-198-3-199 
data set name (see also DSN resolution) 

in data set tree processing 3-198-3-199 
data set name assignment 

function 3-188 
data set name resolution 

function 3-324 
data set tree structure processing in job and step initiation 

function 3-198-3-199 
data sets, releasing 

in common unallocation co.ntrol 3-432-3-433 
data sets, SMF 3-454 
DCB (data control block) 

in converter/interpreter interface 3-178 
in data set descriptor records processing 3-486 
in switching SMF data sets 3-454 
in writing SMF records 3-450 
resolution in DD function control 

function 3-330-3-331 
DD function control (IEFAB454) 

DCB resolution 3-331 
DISP resolution 3-332-3-333 
GDG (generation data group) processing 3-324-3-325 
processing 

function 3·322 
volume/unit resolution 3-328-3-331 

DD preparation ' 
function 3-314-3-315 

DO processing control 
function 3-324, 3-314 

ddname allocation 3-428, 3-412 
ddname and relative position number 

informing the JES3 subsystem 3-418-3-419 
ddname search routine 

function 3-416, 3-418, 3-420 
DEB (data extent block) 

deconcatenation, dynamic 3-420 
step initiation, in 3-204 

deconcatenation routine 
function 3-420 

defaults, converter, entering intoJCL internal text 3-240 
deferred action processor (IRARMCEN) in SRM 3-28 
deferred action queue (VS2.03.807) 

in deferred action process 3-28 (VS2.03.807) 
deferred restart job determination (in SW A create 

interface) 3-217 
deferring algorithms in SRM 3-23 (VS2.03.807) 
DELETE subroutine 

in SWA manager move mode 3-265 
DELETE/LOCATE function in SW A manager locate mode 

3-266-3-267 

1-4 OS/VSl System Logic Ubrary Volume 3 (VS2.03.810) 

VS2.03.810 

demand allocation 
processing 

function 3-355 
use with generic allocation 3-407 

demand requests 
definition 3-355 
operator replies 3-375 
processing 3-375, 3-377 
volunit entry, updating 3-372, 3-373 

DEQ macro instruction (see ENQ/DEQ/RESERVE 
routine) 

determination of subsystem name 3-175 
determine device requirements 

function 3-282-3-283 
determining device requests 

for request not yet allocated 3-289 
DEV ALLOC SYSEVENT code (28) 

processing in SRM. SYSEVENT code processor 3-17 
device allocation/unallocation (see allocation/unallocation) 
device data collected by MF/l 3-145 
device end post handler 

function 3-394 
device groups no longer needed, determining 3-372 
device groups that must remain serialized 3-373 
device sampling in MF/l 

initialization 3-104 
processing 3-145 

device selections from JES3 3-284-3-285 
devices, generic (see generic allocation control) 
devices, waiting for 

in common allocation control 3-289 
direct access data set (see DADSM) 
direct access label read 

function 3-340, 3-394 
direct read 

in pseudo access method 3-182 
direct write 

in pseudo access method 3-182 
DISP (disposition) information (see also disposition 

processing) 
completing in JFCB R IN SlOT 3-322 

DISP (disposition) resolution (see also disposition 
processing) 

associated with commands in the input stream 3-231 
in DD function control 3-333 

dispatching 
priority, changing 

in CPU management 3-62 
disposition message routine 

function 3-443 
disposition processing control 

function 3-440 
disposition processing in IEF AB4A2 (see also DISP 

resolution, DISP information) 3-440 
in common unallocation control (IEFAB4AO) 3-430 
in DD function control (IEF AB454) 

function 3-332-3-333 
DMDT (domain descriptor table) (VS1.03.807) 

in resource monitor MPL adjustment processing 
(IRARMRM2) 3-67.0 (VS2.03.807) 

in resource monitor periodic monitoring (IRARMRM 1) 
3-66 (VS2.03.807) 

in swap analysis (IRARMCAP) 3-36 (VS2.03.807) 
DOM count in VM&V (volume mount and verify) tables 

3-391 
DOM (delete operator message) ID entries 

in allocation/volume mount and verify (VM & V) 
interface 3-388 

in volume mount and verify (VM & V) 3-392-3-393 
domains (VS2.03.807) 

definition/description 3-3 (VS2.03.807) 
of work indicated in IPS 3-3 (VS2.03.807) 

DONTSWAP SYSEVENT code (code 41) 
exception to authorization 3-5 
in SYSEVENT processor 3-20 
in workload manager 3-71 

DSAB (data set association block) 
in allocate request to unit 3-302 
in allocating offline devices (IEF AB486) 3-368 
in allocation via algorithm 3-348 

( 



in allocation/initiator interface 3-396 
in common allocation cleanup 3-378 
in common allocation control 3-280 
in common unallocation control 3-434 
in ddname allocation 3-428 
in demand allocation 3-355 
in dynamic allocation control 3-414 
in dynamic concatenation 3-418 
in dynamic deconcatenation 3-420 
in dynamic information retrieval 3-422 
in dynamic unallocation control 3-416 
in fixed device control (IEF AB430) 3-294 
in generic allocation control (IEFAB47t) 3-342 
in initiator/allocation interface 3-396 
in initiator/unallocation interface 3-402 
in recovery allocation (IEFAB485) 3-360 
in remove in-use attribute routine (IEFDB480) 3-424 
in SVC 99 control (IEFDB400) 3-412 
in unit unallocation processing (IEFAB4A4) 3-446 

DSAB entry checks made (in ddname allocation) 3-428 
DSAB QDB (data set association block queue descriptor 

block) 
in allocation/initiator interface 3-396 
in common allocation cleanup 3-380 
in ddname allocation 3-428 
in dynamic allocation control 3-414 
in dynamic concatenation 3-418 
in dynamic deconcatenation 3-420 
in dynamic information retrieval 3-422 
in dynamic unallocation control 3-416 
in initiator/allocation interface 3-396 
in initiator/unallocation interface 3-402 
in nonspecific volume allocation control 3-310 
in remove in-use attribute routine 3-424 
in SVC 99 control (IEFDB400) 3-412 
in unallocation/initiator interface 3-402 
in unit un allocation processing 3-446 

DSCB (data set control block) 
iiI switching SMF data sets 3-454 

DSDR (data set descriptor record) 
checkpoint/restart, processing of 3-483 

DSENQT (data set enqueue table) 
in DD function control (IEFAB454) 3-332 
in interpreter 

creating and chaining tables 3-254 
initialization 3-246 

in step initiation 3-200 
DSN resolution in data set tree processing 3-198-3-199 
dsname search routine 

function 3-416 
DSNT (data set name table) 

in DD function control 3-326 
DTMVT (measurement vector table for trace and report 

data, see also INMVT, MFMVT, STMVT, TMMVT) 
in MFDATA SVC mainline 3-114 
in MF/l report generator control (IRBMFRGM) 3-148 

DWWIN 
in interval measurement gathering routine for workload 

3-126 
in MF /1 workload initialization 3-98 

dynamic allocation 
convert routine 

function 3-414 
DAIRFAIL processing 3-486 (VS2.03.810) 
ESTAE exit 

function 3-413 
function validity checker 

function 3-414 
processing 3-414 
SVC 99 control (IEFDB400) 3-412 

dynamic allocation request for unit and volume, processing 
3-280 

dynamic concatenation 
criteria for 3-418 
processing 3-418 

dynamic deconcatenation 
criteria for 3-420 
processing 3-420 

dynamic information retrieval 
function 3-422 

VS2.03.8tO 

dynamic support system (see DSS) 
dynamic unallocation 3-416 

ECB (event control block) 
in converter/interpreter interface 3-180 
in swap-out control 3-43 

ECCDB 
in MF /1 channel interval measurement gathering routine 

3-130 
in MF/l channel initialization 3-100 
in MF /1 channel sampling module 3-140 
in MF /1 second CPU test channel sampling module 

3-142 
ECCED 

in MF /1 channel interval measurement gathering routine 
3-130 

in MF /1 channel initialization 3-100 
in MF /1 channel sampling module 3-140 

ECCPE 
in MF/l channel initialization 3-100 
in MF /1 channel sampling module 3-140 

EDDCD 
in interval measurement gathering routine for devices 

3 .. 134 
in MF /1 device initialization 3-104 

EDDDB 
in interval measurement gathering routine for devices 

3-134 
in MF /1 device initialization 3-104 

EDDED 
in interval measurement gathering routine for devices 

3-134 
in MF/l device initialization 3-104 
in MF /1 device sampling module 3-144 

EDL (eligible device list) 
building 3-122, 3-283 
contents 3-283 
in allocating offline devices 3-366 
in allocation via algorithm 3-348 
in common allocation cleanup 3-382 
in common allocation control 3-282 
in demand allocation 3-355 
in fixed device control 3-294 
in generic allocation control 3-338 
in nonspecific volume allocation control 3-312 
in recovery allocation 3-358 
in specific volume allocation 3-298 

EDT 
in allocate request to unit 3-302 
in allocating offline device 3-366 
in common allocation control 3-280 
in generic allocation control 3-338 
in JFCB housekeeping control 3-316 
in recovery allocation 3-360 

eligible units, determining 
in specific volume allocation control 3-298-3-299 

eliminate ineligible groups and generics 
function 3-348, 3-362, 3-366 

end of task (see EOT) 
ENQ/DEQ routine for allocation 

function 3-386, 3-357, 3-312 
ENQ macro instruction (see ENQ/DEQ/RESERVE 

routine) 
ENQRLSE SYSEVENT code (21) 

processing in SRM SYSEVENT code processor 3-16 
enqueue parameter list, use of in job initiation 

3-198-3-199 
enqueueing on volume serial number 3-312 
entry point scheduling in SRM, periodic 3-32 
entry point summary for SRM (VS2.03.807) 

control function (IRARMCTL) 3-43.6 (VS2.03.807) 
CPU management (IRARMCPM) 3-65.0 (VS2.03.807) 
functional recovery routine (IRARMERR) 3-9.13 

(VS2.03.807) 
interface function (IRARMINT) 3-9.0 (VS2.03.807) 
I/O management (IRARMIOM) 3-61.0 (VS2.03.807) 
MF/l interface (IRARMWAR) 3-73.10 (VS2.03.807) 
resource monitor (IRARMRMR) 3-67.2 (VS2.03.807) 
service routine (IRARMSRV) 3-9.13 (VS2.03.807) 

Index 1-5 J 



storage management (IRARMSTM) 3-51.2 
(VS2.03.807) 

sysevent processor (IRARMEVT) 3-22.6 (VS2.03.807) 
workload manager (IRARMWLM) 3-73.4 (VS2.03.807) 

environment current allocation, providing information 
about (IEFDB470) 3-422 

EPA (external parameter area) 
format 3-523 
in allocation/initiator interface 3-396 
in dynamic allocation control 3-414 
in dynamic unallocation ~ontrol 3-416 
in initiator/allocation interface 3.;.396 
in JFCB housekeeping control 3-318 
in remove in-use attribute routine 3-426 
in SW A manager locate mode 3-266 
in SW A manager move mode 3-264 

EPAL (external parameter area locate mode, see EPA) 
EPAM (external parameter area move mode, see EPA) 
EPFA 

in full analysis (IRARMCAS) 3-34 
error codes 

set in dynamic concatenation (IEFDB450) 3-418 
error messages 

processing by subsystem initiation message writer 
3-186-3-187 

error processing (see also error recovery EST AE processing) 
in allocation via algorithm 3-351 
in allocation recovery 3-365 
in common allocation clean-up 3-378 
in common allocation control 3-307 
in DD function control 3-333 
in demand allocation 3-355 
in fixed device allocation control 3-297 
in generic allocation control 3-341 
in initiator/allocation interface 3-399 
in JFCB housekeeping control 3-317, 3-319 
in JLOCATE (IEFAB469) 3-337, 3-335 
in job journal merge 3-508 
in non-specific volume allocation control 3-313, 3-377 
in offline/allocated device allocation 3-369 
in specific volume allocation control 3-301 
in subsystem initiation 

IEFJCNTL 3-177 
IEFJJOBS 3-177 

in volume mount and verify 3-395 
error recursion (see recursion processing of errors) 
error, syntax, detecting in converter (IEFVFA) 3-234 
ESTAE 

for SWA create interface 3-217 
in converter initialization 3-224 
in interpreter initialization 3-246 
in job initiation 3-196 

event-driven MF /1 functions 
in MFROUTER 3-138 
in MF/l termination processor (IRBMFTMA) 3-110 

exchange swap 3-23.0,3-36 (VS2.03.807) 
exclusive control (see XCTL routine) 
exclusive data set attribute 

handling in initiator 3-199 
EXEC statement 

in interpreter 3-257 
exit, attention (see attention exit) 
exit handling (see EXIT routine) 
exit, initiator 3-200-3-201 
expressswap-in 3-23.0,3-36 (VS2.03.807) 
external parameter area (see EPA) 
external parameter area locate mode (see EPA) 
external parameter area move mode (see EPA) 

faults (see page faults) 
fetch (see program fetch) 
FETCHLIB 3-204 
five functional groups in SRM 3-3 (VS2.03.807) 
fixed device control (IEFAB430) 

count fields updated 3-294 
direct access UCB use 3-294 
processing 

function 3-294 
use with common allocation control 3-283 

·1-6 OS/VS2 System Logic Ubrary Volume 3 (VS2.03.810) 

VS2.03.810 

use with nonspecific volume allocation control 3-297 
frame (see page frame) 
FRR (see functional recovery' routine) 
full analysis (see system resources manager) 
function codes 

in subsystem interface 3-161 
in SW A manager move mode 3-264 
in SW A manager locate mode 3-266 
used by JES2 and JES3 3-161 

functional recovery routine (see also termination conditions) 
'for SRM 3-9, 3-7 

GDG (generation data group) processing 
function 3-323-3-325 

GDGALL requests, processing 3-325 
GDGNT (generation data group name table) 

in DD function control 3-324 
in JLOCATE 3-334 

generation data group (see GDG) 
generic allocation control (IEF AB471) 

AVR 3-341 
function 3-338 

generic processing, build tables for 
function 3-338-3-339 

generic table build processing 3-338 
GET 

in pseudo access method 3-184 
group ID list 

in allocation via algorithm 3-348 
group lock/unlock ESTAE exit (IEFAB4E7) (VS2.03.804) 

function 3-411 (VS2.03.804) 
group lock/unlock interface (IEFAB4EC) (VS2.03.804) 

function 3-411 (VS2.03.804) 
GWT 

in step initiation 3-200 

header record for job journal; step, building 
HIPO (see Method-of.;.Operation section) 
housekeeping (see JFCB housekeeping) 
HSKPW A (JFCB housekeeping work area) 

in DD function control 3-322 
in JFCB housekeeping control 3-314 
in JLOCATE 3-334 

ICBME object module 
function 3-350-3-351, 3-377 

ICT 
in I/O load balancing swap analysis (SRM) 
in I/O management (SRM) 3-54 
in storage management (SRM) 3-48 

IDACATll object module 
function in JLOCATE 3-337 

lEA VPFTE object module 
IEEMB803 object module 

function 3-466, 3-470, 3-474, 3-472 
IEEMB804 object module 

function 3-480 
IEEMB806 object module 

function 3-476 
IEEMB807 object module 

function 3-472, 3-468 
IEEMB825 object module 

function 3-458 
IEEMB827 object module 

function 3-460 
IEEMB829 object module 

function 3-450-3-451, 3-456, 3-452, 3-454 
IEEMB830 object module 

function 3-452, 3-450-3-451 
IEEMSER (see MSRDA) 
IEF AB4AO object· module 

function 3-430 
function map for 3-430 

IEF AB4A2 object module 
function 3-440 

IEFAB4A4 object module 
function 3-444 

3-512 

3-56 



') 
/ 

IEFAB4A6 object module 
function 3-396-3-397 

IEF AB4A8 object module 
function 3-436-3-437 

IEF AB4BO object module 
function 3-443 

IEFAB4B2 object module 
function 3-443' 

IEF AB4EB object module 
function 3-334-3-335 

IEFAB4EC object module (VS2.03.804) 
function 3-411 (VS2.03.804) 

IEFAB4ED object module (VS2.03.804) 
function 3-291-3-413 (VS2.03.804) 

IEF AB4EE object module 
function 3-380-3-381 

IEF AB4EF object module 
function 3-336-3-337, 3-314-3-315 

IEFAB4EO object module 
function 3-340-3-341 

IEF AB4E7 object module (VS2.03.804) 
function 3-411 (VS2.03.804) 

IEF AB4F A object module 
function 3-341, 3-346, 3-388, 3-290, 3-378, 3-435, 3-372 

IEF AB4FC object module 
function 3-396, 3-398, 3-418, 3-436 

IEF AB4FD object module 
function 3-380, 3-398, 3-400 

IEF AB4FE object module 
function 3-396, 3-412 

IEF AB4FO object module 
function 3-386, 3-357, 3-312 

IEF AB4F2 object module 
function 3-368-3-369 

IEFAB4F4 object module 
function 3-336, 3-318, 3-432 

IEF AB4F5 object module 
function 3-336 

IEF AB4F7 object module 
function 3-316, 3-412, 3-418, 3-400, 3-322 

IEFAB4F8 object module 
function 3-340, 3-394 

IEF AB4F9 object module 
function 3-340, 3-418 

IEFAB421 object module 
function 3-280 

IEFAB422 object module 
function 3-282-3-283 

IEF AB423 object module 
function 3-282-3-283 

IEF AB424 object module 
function 3-282-3-283 

IEF AB425 object module 
function 3-286-3-287 

IEFAB426 object module 
function 3-282-3-283 

IEF AB428 object module 
function 3-280-3-281, 3-302-3-303 

IEF AB430 object module 
function 3-294 

IEFAB431 object module' 
function 3-280-3-281 

IEFAB432 object module 
function 3-304-3-305 

IEFAB433 object module 
function 3-298 

IEF AB434 object module 
function 3-302 

IEFAB435 object module 
function 3-302 

IEF AB436 object module 
function 3-308 

IEF AB438 object module 
function 3-282-3-283 

IEF AB440 object module 
function 3-350, 3-310 

IEFAB441 object module 
function 3-368, 3-302 

IEF AB442 object module 
function 3-304, 3-298, 3-368 

VS2.03.8tO 

IEF AB451 object module 
function 3-314 

IEFAB452 object module 
function 3-324, 3-314 

IEF AB453 object rnodule 
function 3-314-3-315 

IEFAB454 object module 
function 3-322 

IEFAB455 object module 
function 3-334 

IEFAB456 object module 
function 3-324 

IEFAB457 object module 
function 3-326 

IEFAB458 object module 
function 3-330-3-331 

IEFAB459 object module 
function 3-332-3-333 

IEF AB461 object module 
function 3-323-3-325 

IEFAB463 object module 
function 3-326, 3-328 

IEFAB464 object module 
function 3-328, 3-330 

IEFAB466 object module 
function 3-326, 3-334 

IEF AB469 object module 
function 3-334 

IEF AB470 object module 
function 3-316-3-317 

IEF AB471 object module 
function 3-338 

IEF AB472 object module 
function 3-338-3-339 

IEFAB473 object module 
function 3-340, 3-341 

IEFAB474 object module 
function 3-348, 3-366 

IEFAB475 object module 
function 3-342, 3-344, 3-346 

IEF AB476 object module 
function 3-348 

IEF AB477 object module 
function 3-360, 3-348, 3-368 

IEF AB478 object module 
function 3-370, 3-350, 3-290 

IEF AB479 object module 
function 3-355 

IEF AB48A object module 
function 3-374-3-375 

IEFAB480 object module 
function 3-366, 3-348, 3-374, 3-280 

IEF AB481 object module 
function 3-348, 3-362, 3-366 

IEFAB485 object module 
function 3-358 

IEFAB486 object module 
function 3-366 

IEFAB487 object module 
function 3-374, 3-364 

IEFAB488 object module 
function 3-374, 3-376 

IEFAB489 object module 
function 3-377 

IEFAB49A object module 
function 3-394, 3-388 

IEFAB49B object module 
function 3-394 

IEF AB490 object module 
function 3-378 

IEFAB491 object module 
function 3-280, 3-366 

IEFAB492 object module 
function 3-386 

IEFAB493 object module 
function 3-390 

IEF AB494 object module 
function 3-390 

IEFAB495 object module 
function 3-392 

Index 1-7 

I 



IEF AB496 object module 
function 3-394 

IEF AB498 object module 
function 3-390, 3-388, 3-394 

IEF AB499 object module 
function 3-392 

IEF AB820 object module 
function 3-206 

IEFBB401 object module 
function 3-396 

IEFBB402 object module 
function 3-396 

IEFBB404 object module 
function 3-398 

IEFBB410 object module 
function 3-402, 3-404 

IEFBB412 object module 
function 3-406, 3-414 

IEFBB414 object module 
function 3-404-3-405 

IEFBB416 object module 
function 3-410 

IEFDB4AO object module 
function 3-416 

IEFDB4Al object module 
function 3-416, 3-426 

IEFDB4FA object module 
function 3-416 

IEFDB4FB object module 
function 3-418-3-419 

IEFDB4FC object module 
function 3-416, 3-418, 3-420 

IEFDB4FF object module 
function 3-424, 3-420, 3-422, 3-428, 3-418, 3-416 

IEFDB4F9 object module 
function 3-418 

IEFDB400 object module 
function 3-412 

IEFDB402 object module 
function 3-413 

IEFDB"41O object module 
function 3-414, 3-412 

IEFDB411 object module 
function 3-414 

IEFDB412 object module 
function 3-414 

IEFDB413 object module 
function 3-414 

IEFDB450 object module 
function 3-418 

IEFDB460 object module 
function 3-420 

IEFDB470 object module 
function 3-422 

IEFDB480 object module 
function 3-424 

IEFDB481 object module 
function 3-416, 3-426 

IEFDB490 object module 
function 3-412 

IEFDSLST object module 
function 3-198-3-199 

IEFDSTBL object module 
function 3-198-3-199 

IEFIB600 object module 
function 3-216 

IEFIB605 object module 
function 3-216 

IEFIB645 object module 
function 3-216-3-217 

IEFICPUA object module 
function 3-201, 3-199 

IEFIIC object module 
function 3-196 

IEFIMASK object module 
function 3-200-3-201 

IEFJACTL object module 
function 3-182, 3-184 

IEFJCDLT object module 
function 3-176-3-177 

1-8 OS/VS2 System Logic Library Volume 3 (VS2.03.810) 

VS2.03.810 

IEFJCNTL object module 
function 3-177, 3-179 

IEFJDIRD object module 
function 3-182-3-183 

IEFJDSNA object module 
function 3-188 

IEFJDWRT object module 
function 3-182-3-183 

IEFJJCLS object module 
function 3-176-3-177 

IEFJJOBS object module 
function 3-176 

IEFJJTRM object module 
function 3-190 

IEFJRASP object module 
function 3-172 

IEFJREAD object module 
function 3-184-3-185 

IEFJSDTN object module 
function 3-174 

IEFJSREQ object module 
function 3-161-3-167 

IEFJWRTE object module 
function 3-184-3-185 

IEFJWTOM object module 
function 3-186 

IEFNB903 object module 
function 3-246 

IEFP ARAM {initiation parameter list) 
in step initiation 3-202 

IEFQB550 object module 
function 3-264 

IEFQB555 object module 
function 3-266 

IEFQB580 object module 
function 3-264 

IEFQB585 object module 
function 3~264 

IEFRPREP object module 
function 3-516 

IEFSD101 object module 
function 3-200-3-201 

IEFSD 102 object module 
function 3-200-3-201 

IEFSD160 object module 
function 3-196 

IEFSD 161 object module 
function 3-196, 3-198 

IEFSD 162 object module 
function 3-200 

IEFSD164 object module 
function 3-208 

IEFSD 166 object module 
function 3-210 

IEFSD263 object module 
function 3-206 

IEFSMFIE object module 
function 3-200-3-201 

IEFVDA object module 
function 3-248-3-249 

IEFVEA object module 
function 3-248-3-249 

IEFVF A object module 
function 3-236, 3-238, 3-240, 3-234, 3-226 

IEFVFB object module 
function 3-234 

IEFVGK object module 
function 3-250 

IEFVGT object module 
function 3-252 

IEFVHA object module 
function 3-226 

IEFVHC object module 
function 3-226 

IEFVHCB object module 
function 3-226, 3-228, 3-232, 3-238 

IEFVHE object module 
function 3-248 

IEFVHEB object module 
function 3-228 



IEFVHF object module 
function 3-242-3-243 

IEFVHH object module 
function 3-256 

IEFVHM object module 
function 3-230, 3-228 

IEFVHN object module 
function 3-258 

IEFVHQ object module 
function 3-233 

IEFVHR object module 
function 3-258-3-259 

IEFVHl object module 
function 3-224-3-225 

IEFVINA object module 
function 3-232 

IEFVINB object module 
function 3-232 

IEFVINC object module 
function 3-232 

IEFVJA object module 
function 3-248 

IEFXB500 object module 
function 3-521, 3-202, 3-524, 3-520, 3-512, 3-518 

IEFXB590 object module 
function 3-525 

IEFXB601 object module 
function 3-492, 3-496, 3-498-3-509, 3-216, 3-494 

IEFXB602 object module 
function 3-510-3-511 

IEFXB604 object module 
function 3-512, 3-514, 3-202 

IEFXB609 object module 
function 3-486, 3-216 

IEFXB610 object module 
function 3-487 

IEL (initiator entrance list) 
in job initiation 3-196 

IGXOOO13 object module 
function 3-82, 3-80, 3-91 

IGXOOO14 object module 
function 3-114 

IKJEFFl8 object module 3-486 (VS2.03.810) 
IMCB (SRM user I/O measurement control table) 

in I/O management (SRM) 3-54 
in SYSVENT processing in SRM SYSEVENT code 

processor 3-13 
INCOA (common option area for input source options, see 

also MFCOA, STCOA, TMCOA) 
in MF /1 input merge control 3-84 
in MF/l list option module 3-88 
in MF /1 syntax analyzer 3-86 

INITATT SYSEVENT code (0) 
in work load manager 3-73 
processing in SRM SYSEVENT code processor 3-13 

INITDET (SYSEVENT code 11) 
in I/O management 3-54-3-55 
in workload manager 3-70-3-71 
processing in SRM SYSEVENT code processor 3-13 

initialize for MF/l (IRARMWR1) 3-73.6 (VS2.03.807) 
initiation 

of the master scheduler 3-176-3-177 
data set name assignment 3-188-3-189 

of a subsystem 3-176-3-177 
data set name assignment 3-188-3-189 

step 3-200 
notify subsystem of step initiation 3-202 

initiator attach module 
function 3-206 

initiator builder of completion code interface 3-458 
initiator control initialization 

function 3-196 
initiator data set enqueue 

function 3-200-3-201 
initiator device allocation interface routine 

function 3-200 
initiator interface control and interface to allocate catalog 

function 3-196 
initiator job initiation 3-196 
initiator job select routine 

VS2.03.810 

function 3-196, 3-198 
initiator recovery processing 3-212 
initiator SMF exit 3-200-3-201 
initiator/terminator 

processing 3-193 
SW A sub pool for 3-267 

initiator /unallocation interface 
functions 3-402 
when called 3-402 

input stream (see converter) 
INMVT (measurement vector table for temporary input 

options, see also DTMVT, MFMVT, STMVT, TMMVT) 
in MF /1 input merge control 3-84 
in MF /1 syntax analyzer 3-86 

input to MF/l, analyzing 3-86 
input options for MF/l (see options, MF/I) 
IN queue for SRM (VS2.03.807) 

definition 3-23 (VS2.03.807) 
in CPU management (IRARMCPM) 3-62 (VS2.03.807) 
in resource monitor periodic monitoring (IRARMRMI) 

3-67 (VS2.03.807) 
in select user for swap-out (IRARMCPO) 3-43.2 

(VS2.03.807) 
in storage management (IRARMSTM) 3-46 

(VS2.03.807) 
in swap analysis (IRARMCAP) 3-36 (VS2.03.807) 
in swappable user evaluation (IRARMWM2) 3-70 

(VS2.03.807) 
installation performance specifications (see IPS values) 
in-stream procedures (see JCL statements) 

director entry build, directory search, processing 
3-232-3-233 

instructions (see also macro instructions) 
integrity (see data set integrity processing) 
interface, subsystem 3-159 
internal text 

converting JCL to 3-236 
data set, getting JCL statement from 3-249 
entering defaults into 3-240 

interpreter (see also converter/interpreter) 
creating and chaining tables 3-252 
enqueue routine 

function 3-256 
error messages 

processing by subsystem initiation message writer 
3-186-3-187 

EST AE, setting up 3-246 
EXEC statement processor 

function 3-248-3-249 
get and route routine 

function 3-248 
get key/positional utility routine 

function 3-250 
initialization 3-246 

function 3-246 
interface to SW A create 3-216 
job statement processor 

function 3-248 
parameter values, analyzing 3-248 
pseudo access method 3-182-3-185 
termination 

function 3-258 
use by master subsystem 3-178-3-181 
writing tables into SW A 3-256 

interval, MF /1 
in MFDATA SVC mainline 3-114 
timed (in MFSTART mainline) 3-82 

interval-driven MF /1 routines 
for data (IRBMFDTA) 3-106 
for CPU (IRBMFDCP) 3-118 
for devices 3-134 
for paging (IRBMFDPP) 3-126 
for workload (IRBMFDWP) 3-126 
initialization of in MFIMAINL 3-90 
termination processor (IRBMFTMA) 3-110 

I/O load balancing in SRM 
swap analysis (IRARMIL2) 3-56 
user I/O monitoring (IRARMILO) 3-58 

I/O management in SRM (IRARMIOM) 3-54 

Index 1-9 

I 



lOS UCB LUT (I/O supervisor unit control block logical 
unit table) 

in allocating offline devices 3-374 
in common allocation control 3-282 
in fixed device control 3-294 
in generic allocation control 3-340 
in JFCB housekeeping control 3-316 
in job unallocation 3-410 
in recovery allocation 3-358 

IRARMCAP 
function 3-36 

IRARMCAP entry point in IRARMCTL (YS2.03.807) 
function 3-36,3-43.6 (YS2.03.807) 

IRARMCAS 
function 3-34 

IRARMCAT 
function 3-26 

IRARMCEL 
function 3-30 

IRARMCEL entry point in IRARMCTL (VS2.03.807) 
function 3-30,3-43.6 (YS2.03.807) 

IRARMCEN 
function 3-28 

IRARMCEN entry point in IRARMCTL (VS2.03.807) 
function 3-28,3-43.6 (YS2.03.807) 

IRARMCET 
function 3-32 

IRARMCET entry point in IRARMCTL (VS2.03.807) 
function 3-32,3-43.6 (VS2.03.807) 

IRARMCL2 
function 3-66 

IRARMCPI entry point in IRARMCTL (VS2.03.807) 
function 3-43.0,3-43.6 (VS2.03.807) 

IRARMCPM object module 
function 3-62 

IRARMCPM object module (VS2.03.807) 
entry point summary 3-65.0 (VS2.03.807) 
function 3-62 (VS2.03.807) 

IRARMCPO entry point in IRARMCTL (VS2.03.807) 
function 3-43.2,3-43.7 (VS2.03.807) 

IRARMCSI 
function 3-40 

IRARMCSI entry point in IRARMCTL (VS2.03.807) 
function 3-40,3-43.6 (YS2.03.807) 

IRARMCSO ) 
function 3-42 

IRARMCSO entry point in IRARMCTL (VS2.03.807) 
function 3-42,3-43.6 (VS2.03.807) 

IRARMCTL object module 
function 3-24 

IRARMCTL object module (VS2.03.807) 
entry point summary 3-43.6 (YS2.03.807) 
function 3-24,3-43.6 (VS2.03.807) 

IRARMCVL entry point in IRARMCTL (VS2.03.807) 
function 3-43.4,3-43.7 (VS2.03.807) 

IRARMERR object module 
function 3-9 

IRARMERR object module (YS2.03.807) 
entry point summary 3-9.13 (VS2.03.807) 
function 3-5 (VS2.03.807) 

IRARMEVT object module 
function 3-12 
overview of functions 3-11 

IRARMEVT object module (YS2.03.807) 
entry point summary 3-22.6 (VS2.03.807) 
function 3-12 (VS2.03.807) 

IRARMHIT entry point in IRARMWLM (VS2.03.807) 
function 3-73.2,3-73.4 (VS2.03.807) 

IRARMILO entry point in IRARMIOM (YS2.03.807) 
function 3-58,3-61.0 (VS2.03.807) 

IRARMIL2 
function 3-56 

IRARMINT object module 
function 3-6 

IRARMINT object module (VS2.03.807) 
entry point summary 3-9.0 (VS2.03.807) 
function 3-6 (YS2.03.807) 

(IRARMIOM object module 
function 3-54 

IRARMIOM object module (YS2.03.807) 

I-tO OS/VS2 System Logic Library Yolume 3 (VS2.03.8tO) 

YS2.03.810 

entry point summary 3-61.0 (VS2.03.807) 
function 3-54 (VS2.03.807) 

IRARMIPS entry point in IRARMEVT (YS2.03.807) 
entry point description 3-22.6 (VS2.03.807) 

IRARMI04 entry point in IRARMSRV (VS2.03.807) 
function 3-9.6,3-9.13 (VS2.03.807) 

IRARMI05 entry point in IRARMSRV (VS2.03.807) 
function 3-9.8,3-9.13 (VS2.03.807) 

IRARMMS2 
function 3-52 

IRARMRMR object module (VS2.03.807) 
entry point summary 3-67.2 (VS2.03.807) 
function 3-45.1 (YS2.03.807) 

IRARMRM 1 entry point in IRARMRMR (YS2.03.807) 
function 3-66,3-67.2 (VS2.03.807) 

IRARMRM2 entry point in IRARMRMR (YS2.03.807) 
function 3-67.0,3-67.2 (YS2.03.807) 

IRARMSET object module 
function 3-32 

IRARMSRV object module 
function 3-48, 3-32, 3-42, 3-40, 3-6 

IRARMSRV object module (YS2.03.807) 
entry point summary 3-9.13 (YS2.03.807) 
function 3-9.2 (VS2.03.807) 

IRARMSTM object module 
function 3-46 

IRARMSTM object module (YS2.03.807) 
entry point summary 3-51.2 (VS2.03.807) 
function 3-46 (VS2.03.807) 

IRARMW AR object module 
function 3-70 

IRARMW AR object module (VS2.03.807) 
entry point summary 3-73.10 (VS2.03.807) 
function 3-69 (VS2.03.807) 

IRARMWLM object module 
function 3-70 

IRARMWM2 entry point in IRARMWLM (YS2.03.807) 
function 3-70,3-73.4 (VS2.03.807) 

IRARMWM3 entry point in IRARMWLM (VS2.03.807) 
function 3-73.0,3-73.4 (VS2.03.807) 

IRARMWR 1 entry point in IRARMW AR (YS2.03.807) 
function 3-73.6,3-73.10 (VS2.03.807) 

IRARMWR3 entry point in IRARMW AR (VS2.03.807) 
function 3-73.8,3-73.10 (VS2.03.807) 

IRBMF ALL object module 
function 3-80-3-81 

IRBMF ANL object module 
function 3-86 

IRBMFCNV object module 
function 3-147, 3-151 

IRBMFDCP object module 
function 3-118 

IRBMFDDP object module 
function 3-134 

IRBMFDEA object module 
function 3-106-3-107 

IRBMFDHP object module 
function 3-130 

IRBMFDPP object module 
function 3-122 

IRBMFDTA object module 
function 3-106 

IRBMFDWP object module 
function 3-126 

IRBMFECH object module 
function 3-140 

IRBMFEDV object module 
function 3-144 

IRBMFEVT object module 
function 3-138 

IRBMFICP object module 
function 3-96 

IRBMFIDV object module 
function 3-104 

IRBMFIHA object module 
function 3-100 

IRBMFINP object module 
function 3-84 
use of 3-80, 3-86 

IRBMFIOI object module 



function 3-95, 3-111 
IRBMFIPG object module 

function 3-96 
IRBMFIPP 

function 3-96 
IRBMFIWK object module 

function 3-98 
IRBMFMFC object.module 

function 3-80 
IRBMFMPR object module 

function 3-112 
IRBMFRCR object module 

function 3-150 
IRBMFRDR object module 

function 3-150 
IRBMFRGM object module 

function 3-146 
IRBMFRHR object module 

function 3-150 
IRBMFRPR object module 

function 3-150 
IRBMFRWR object module 

function 3-150 
IRBMFSAR object module 

function 3-147 
IRBMFSDE object module 

function 3-82-3-83 
IRBMFTCH object module 

function 3-142 
IRBMFTMA object module 

function 3-110 
IRBMFTRM object module 

function 3-111 
ISV (internal service value) (VS2.03.807) 

in individual user evaluation (IRARMWM3) 3-73.0 
(VS2.03.807) 

in swappable user evaluation (IRARMWM2) 3-70 
(VS2.03.807) 

item, defined in MF/l syntax analyzer 3-86 

JCL data set reading from 3-226 
JCL statement (see also converter) 

comment, checking for 3-226 
continuation, checking for 3-226 
converting statements to internal text 3-236 
DD processing 3-229 
EXEC processing 3-229 
identifying verbs on 3-226-3-229 
merging from JCL data set and procedure library 

3-229 
null processing 3-229 

JCL to JCLS conversion 
function 3-176-3-177 

JCLS to SWA conversion 
function 3-177, 3-179 

JCT (job control table) 
in ABENDed job restart preparation 3-516 
in allocation/initiator interface 3-396 
in automatic checkpoint/restart 3-498. 
in building a step header record for the job journal 

3-512 
in DD function control 3-322 
in dynamic allocation control 3-414 
in dynamic unallocation 3-416 
in initiator/al1ocation interface 3-396 
in initiator/unallocation interface 3-402 
in interpreter 

creating and chaining tables 3-252 
writing tables into SW A 3-256 

in JLOCATE 3-334 
in job deletion 3-208 
in job initiation 3-196 
in job unallocation 3-410 
in merge cleanup 3-502 
in step continue processing 3-494 
in step deletion 3-208 
in step initiation 3-200 
in SVC 99 control 3-412 
in unallocation/initiator interface 3-402 

VS2.03.810 

JCTX (job control table extension) (VS2.03.804) 
SWA manager id 3-261 (VS2.03.804) 
writing tables into SW A 3-256,3-257 (VS2.03.804) 

JES exit in converting JCL statements to internal text 
3-238-3-239 

JESCT (job entry subsystem control table) 
in common request router 3-172 
in data set name assignment 3-188 
in subsystem determination 3-174 
in subsystem interface 3-159 

JES2/3 
function codes 3-161 
notified of step initiation 3-202 
system interface 3-171-3-191 

JES3 
flags used by common unallocation control 3-430 
interf ace routine 

function 3-282-3-283 
multi-unit, nonspecific volume requests, checking 3-382 

JFCB (job file control block) 
DCB information in, completion 3-322 
DISP information in, completing 3-322 
in allocate request to unit 3-302 
in allocating offline devices 3-366 
in allocation via algorithm 3-348 
in allocation/initiator interface 3-396 
in allocation/volume mount and verfiy (VM & V) 

interface 3-386 
in common allocation cleanup 3-378 
in common allocation control 3-280 
in common un allocation 3-432 
in data set descriptor records, processing 3-486 
in data set name assignment 3-188 
in DD function control 3-322 
in demand allocation 3-355 
in disposition processing 3-440 
in dynamic allocation control 3-414 
in dynamic information retrieval 3-422 
in fixed device control 3-294 
in generic allocation control 3-338 
in initiator/allocation interface 3-396 
in initiator/unallocation interface 3-402 
in interpreter 3-252 
in JFCB housekeeping control 3-314 
in JLOCATE 3-334 
in job unallocation 3-410 
in nonspecific volume allocation control 3-308 
in recvery allocation 3-358 
in SVC 99 control 3-414 
in switching SMF data sets 3-454 
in unallocation/initiator interface 3-402 
in volume mount and verify (VM & V)/allocation 

interface 3-386 
in writing SMF records 3-450 

JFCB housekeeping 
functions 3-314 
STEPCA T request processing 3-314 

JFCBE (job file control block extension for 3800 printer) 
(VS2.03.810) 

in checkpoint/restart 3-483, 3-499, 3-501, 3-522, 3-523, 
3-525 (VS2.03.810) 

in interpreter 3-245, 3-249, 3-255 (VS2.03.810) 
JFCBX (job file control block extension) 

in allocation/initiator interface 3-396 
in checkpoint/restart 3-483 (VS2.03.810) 
in common allocation control 3-280 
in disposition processing 3-440 
in dynamic allocation control 3-414 
in initiator/allocation interface 3-396 
in initiator/unallocation interface 3-402 
in interpreter 3-245 (VS2.03.810) 
in SVC 99 control 3-412 
in unallocation/initiator interface 3-402 

JLOCATE (IEFAB469) processing 3-334 
JMR (job management record) 

in converter initialization 3-224 
in converter termination 3-242 
in interpreter, initialization 3-246 
in interpreter, writing tables into SW A 3-256 
in SW A create interface 3-216 

Index 1-11 j 



JNLPARM 
in writing blocks to the job journal 3-520 

job account table, use in step and job deletion (initiator) 
3-208 

job control language (see JCL) 
job entry subsystem (JES) 

interface 3-159 
job initiation 3-196 
job journal 

building step header record for 3-512 
changes for VS2 Release 3 3-483 
errors during reconstruction 3-508 
in step initiation 3-202-3-203 
journal for restarted jobs 3-524 
journal merge error processing 3-508 
journal merge reading 3-506 
merge cleanup 3-502-3-503 
merging job step entries onto the SW A 3':'494, 3-492 
overview 3-483 
step header record, building 3-512 
writing 

blocks to 3-520-3-523 
in preparing ABENDed job for restart 3-518-3-519 

JOB statement, checking 3-249 
JOBCA T DD statement, processing 3-249 
JOBLIB 

in interpreter 3-249 
in step initiation 3-204 

job delete routine 
function 3-210 

job scheduler 
overview 3-153 

job select routine 
function 3-196, 3-198 

job status indicators 
in SWA create interface 3-216-3-217 
setting in JSCB and JCT by step initiator 3-203 

job step, ABENDed, preparing for restart 3-516 
job, step allocation (see step allocation) 
job termination 

for a subsystem 3-190 
job time limit, calculating in step initiator 3-202 
job unallocation 

functions 3-410 
interface with initiator 3-402 
parameter list for initiator interface 3-402 

JOBSELCT SYSEVENT code (8) 
in workload manager 3-71 
processing in SRM SYSEVENT code processor 3-13 

JOBTERM SYSEVENT code (9) 
in workload manager 3-71 
processing in SRM SYSEVENT code processor 3-13 

journal (see job journal) 
journal merge 

loading journal merge routine 3-246 
processing 3-492 

journal merge routine 
function 3-492, 3-496, 3-498!3-509, 3-216, 3-494 

journal write routine 
function 3-520, 3-202, 3-524, 3-512, 3-518 

JSCB (job step control block) 
in ABENDed job restart preparation 3-516 
in allocation/initiator interface 3-396 
in automatic step restart 3-500 
in building a step header record for the job journal 

3-512 
in common allocation cleanup 3-378 
in common allocation control 3-280 
in data set descriptor records processing 3-486, 3-492 
in ddname allocation control 3-428 
in dynamic allocation 3-414 
in dynamic concatenation 3-418 
in dynamic deconcatenation 3-420 
in dynamic information retrieval 3-422 
in dynamic unallocation control 3-416 
in initiator/allocation interface 3-396 
in initiator/unallocation interface 3-402 
in JFCB housekeeping control 3-314 
in JLOCATE 3-334 
in job initiation 3-196 

1-12 OS/VS2 System Logic Library Volume 3 (VS2.03.810) 

VS2.03.810 

in journal merge error processing 3-508 
in log initialization 3-466 
in merge cleanup 3-502 
in merging job journal to SW A 3-492 
in nonspecific volume allocation control 3-308 
in remove in-use control routine 3-424 
in remove in-use attribute 3-424 
in restart interface processing 3-510 
in subsystem interface 3-159 
in SVC 99 control 3-412 
in SWA create interface 3-216 
in SW A manager locate mode 3-266 
in system restart processing 3-496 
in unallocation/initiator interface 3-402 
in updating virtual addresses in SW A 3-504 
in writing blocks to the job journal 3-520 
in writing SMF records 3-450 

keyword processing 
in converting JCL statements to internal text 3-236 
in parameter value analysis 3-248-3-249 

LCA (log control area) 
in log initialization 3-466 
in terminating the system log 3-470 
in writing data on the system log 3-480 

LCCA (logical communications configuration area) 
in CPU load balancing swap analysis 3-66 
in CPU management (SRM) 3-62 
in interval measurement gathering routine for CPU 

3-118 
in MFD AT A mainline 3-114 

LCH 
in I/O load balancing swap analysis 3-56 
in I/O management (SRM) 3-54 

LCT (linkage control table)' 
in ABENDed job restart preparation 3-516 
in allocation/initiator interface 3-396 
in building a step header record for the job journal 

3-512 
in converter/interpreter interface 3-178 
in initiator/allocation interface 3-396 
in initiator/unallocation interface 3-402 
in job initiation 3-196 
in job deletion 3-208 
in step continue processing 3-494 
in step deletion 3-208 
in step initiation 3-200 
in subsystem initiation 3-176 
in SWA create interface 3-216 
in SW A manager locate mode 3-266 
in unallocation/initiator interface 3-402 

link pack area (see LP A) 
listing MF /1 options 3-88 
load balancing in SRM swap analysis 

CPU 3-62 
I/O 3-56 

locating specific volume request 3-298 
lock manager (see SETLOCK) 
lock, SRM 3-25 
locking services/considerations 

in SRM 3-5 
log data set (see system log) 
log hardcopy (see hardcopy of system log) 
log, system (see system log) 
log task abnormal termination, processing 

function 3-476 
logical reconfiguration (see reconfiguration commands) 
long wait processing in the SRM 3-49 

main storage occupancy analysis (IRARMMS2) 3-52 
mainline, initialization MFI 3-90 
major name 

in job initiation 3-198-3-199 
master catalog, searching in JLOCA TE (IEF AB469) 

3-334-3-335 
master JCL 



conversion to SW A control blocks in 
converter/interpreter interface 3-178 

in data set name assignment 3-188-3-189 
in sybsystem initiation 3-176-3-177 

master subsystem 
common request router 3-172 
converter/interpreter interface 3-178 
in data set name'assignment 3-188 
in subsystem determination 3-174 
in subsystem initiation 3-176 
in subsystem initiation message writer 3-186 
in subsystem job termination 3-190 
interface overview 3-159 
pseudo access method 3-182 

MCT 
in main storage occupancy analysis 3-52 
in resource monitor MPL adjustment processing 

(IRARMRM2) 3-67.0 (VS2.03.807) 
in resource monitor periodic monitoring (IRARMRM 1) 

3-66 (VS2.03.807) 
in storage management (IRARMSTM) 3-46 

(VS2.03.807) 
in storage management (SRM) 3-46 
in swap-in control 3-40 
in timer action analysis 3-26 

MEL (merge entrance list) 
in automatic checkpoint/restart 3-498 
in automatic step restart 3-500 
in merging job journal to SW A 3-492 
in step continue processing 3-494 
in SW A create interface 3-216 

MEMCREAT SYSEVENT code (6) 
in SRM interface 3-7 
processing in SRM SYSEVENT code processor 3-12 

MEMDEL SYSEVENT code (7) 
processing in SRM SYSEVENT code processor 3-12 

merge of MF /1 options (see also options, MF /1) 
in MF /1 control 3-80 

merge cleanup for restart or step continue processing 
3':502 

merging job step entries in job journal 3-494 
message processor for MF/l (IRBMFMPR) 3-112 
MF/l 

binary to channel conversion routine 
function 3-147 

channel event data sampling module 
function 3-140 

channel interval measurement gathering routine 
function 3-130 

channel measurements 
initialization 

function 3-100 
sampling 3-140, 3-142 

channel report generator 
function 3-150 

CPU measurement 
initialization 

function· 3-96 
gathering 

function 3-118 
interval 3-118-3-121 

CPU report generator 
function 3-150 

data control routine 
function 3-106 

data control EST AE recovery routine 
function 3-106-3-107 

device event data sampling module 
function 3-144 

device interval measurement gathering routine 
function 3-134 

device measurements 
initialization routine 

function 3-104 
interval 3-134 
sampling 3-144 

device report generator 
function 3-150 

dynamic allocation 
function 3-80-3-81 

VS2.03.810 

event driven measurement routines 
calling from MFROUTER 3-139 

flowchart, inter-module 6-1577 
function 3-111 

general resource resource release routine 
function 3-111 

initialization (mainline) 3-90 
initialization 

for channel measurement 3-100 
for CPU activity 3-96 
for device measurement 3-104 
for paging activity measurement 3-96 
for workload measurement 3-98 

input merge control 
function 3-84 

lOS initialization/termination routine 
function 3-95, 3-111 

list option module 3-88 
mainline initialization 3-90 
measurement facility control module 

function 3-80 
merge of options 3-84, 3-80 
message processor 

function 3-112 
MFC (measurement facility control) module 3-80 
MFDATA SVC mainline 3-114 
MFROUTER SVC processor 

function 3-138 
MFST ART mainline processor 

EST AE routine 
function 3-82-3-83 

options, listing 3-88 
options, merging 3-84, 3-80 
overview of MF/l 3-75 
paging activity initialization 3-96 
paging measurements 

initialization 
function 3-96, 3-92 

interval measurement gathering routine 
function 3-122 

paging report generator 
function 3-150 

recovery routine, EST AE 3-83 
report generation 

control EST AE routine 
function 3-147 

control module 
function 3-146 

modules for CPU, paging, workload, channels, and 
devices 3-150 

SARG function 3-77, 3-75 
second CPU test channel sampling module 

function 3-142 
SMF-related records 

for channels 3-133 
for CPU 3-119 
for devices 3-135 
for paging 3-123 

START parameters, processing of 3-81 
stopping MF /1 3-81 
syntax analyzer 

function 3-86 
SYSEVENT code (WKLDINIT) issued 3-99 
termination 

in measurement facility control 3-81 
processing 

function 3-110 
visual table of contents 3-79 
workload measurement 

initialization 3-98 
interval measurement gathering routine 

function 3-126 
report generator 

function 3-150 
MFC (measurement facility control), IRBMFMFC in MF/l 

3-80 
MFCOA (measurement facilities common options area, see 

also INCOA, STCOA, and TMCOA) 
in input merge control 3-84 
in mainline initialization of MF/l 3-90 

Index 1-13 



in measurement facility control 3-80 
in MFST ART mainline 3-82 
in MF /1 data control 3-106 
in MF /1 report generator control 3-146 

MFDATA SVC routine (MF/l) 
function 3-114 
processing 3-114 

MFIMAINL 
function 3-90 

MFLISTOP 
function 3-88 

MFMVT (measurement vector table for problem state 
options, see also DTMVT, INMVT, STMVT, TMMVT) 

in input merge control 3-84 
in mainline initialization of MF/l 3-90 
in measurement facility control 3-80 
in MFST ART mainline 3-82 
in MF/l report generator control 3-146 

MFPCT (problem control table) 
in measurement facility control 3-80 
in MF /1 data control 3-106 

MFPMA (problem measurement area, see also TMPMA) 
in input merge control 3-84 
in mainline initialization of MF/l 3-90 
in MF/l rep rot generator control 3-146 

MFROUTER service routine (IRBMFEVT) 3-138 
MF/l channel initialization 3-100 

MFSEL (subtask elements table) 
in MF/l report generator control 3-146 

MFST ART mainline (MF /1) 
function 3-82, 3-80, 3-91 

minor name (rname) 
in job initiation enqueue parameter list 3-198-3-199 

mount control blocks 
building and contents 

function 3-392-3-393 
mount equalization for MSS volumes 3-291, 3-350, 3-370 
mount failure for MSS volume 3-387 
mount message, building, issuing; and verifying volumes 

3-392-3-395 
mounting a volume (see volume mount & verify) 
MP (see multi-processor system) 
MSRDA or BASEA (master scheduler resident data area) 

in aUocation/initiator interface 3-398 
in common allocation control 3-280 
in initiator/allocation interface 3-398 
in log initialization 3-466 
in log task abnormal termination 3-478 
in terminating the system log 3-470 
in writing data on the system log 3-480 

MSS 
mount equalization 3-291, 3-350, 3-370 
no A VR processing 3-341 

MUG (multi-unit generic) 
ensuring each request is allocated to a single generic 

3-366 
not successfully handled by algorithm 3-367 

multiprogramming level (VS2.03.807) 
definition/description 3-3 (VS2.03.807) 
management to 3-3,3-23 (VS2.03.807) 
in resource monitor periodic monitoring 3-66 

(VS2.03.807) 
in resource monitor MPL adjustment processing 3-67.0 
sampling and adjusting 3-66,3-67.0 (VS2.03.807) 

multi-unit generic (see MUG) 
multi-unitlmulti-generic requests processing 

function 3-348, 3-366 
multi-unit requests 

tape data sets, processing 3-380 
unsuccessful processing 3-379 
within a generic 3-317 

multiple device type determination 
function 3-326, 3-328 

multiple request for the same unit 
processing in fixed device control 3-299 

MVCA 
in allocation/volume mount and verify (VM & V) 

interface 3-388 
in volume mount and verify (VM & V) 3-392 

MVCA chain processor 

1-14 OS/VS2 System Logic Library Volume 3 (VS2.03.810) 

VS2.03.8tO 

function 3-390, 3-388, 3-394 
MVCAX 

in allocation/volume mount and, verify (VM & V) 
interface 3-394 

NEL (interpreter entrance list) 
creation by master subsystem 3-178 
in converter 

initialization 3-224 
processing commands in the input stream 3-230 
termination 3-242 

in SWA create interface 3-216 
new address space (see address space) 
NEWIPS SYSEVENT code (32) 

in workload manager 3-71 
processing in SRM SYSEVENT code processor 3-18 

NIOW AIT SYSEVENT code (3) 
in SRM storage management 3-47 
processing in SRM SYSEVENT code processor 3-12 

non-cancellable property as indicated in PPT 3-201 
nonshareable device allocation 3-359 
nonspecific volume allocation 

allocation recovery 3-358 
processing (IEF AB436) 3-308 
types of requests 

public volumes 3-308, 3-356 
storage volumes 3-308 

use with fixed device control in allocating to 
permanently resident or reserved volumes 
3-296-3-297 

use with generic allocation in allocating to private 
volume or public volume 3-344-3-345 

non-swapable property as indicated in PPT 3-200 
normal dynamic allocation control 

function 3-414 
"not ready" devices (in recovery allocation) 3-364-3-365 
notification 

to active subsystem (function codes) 3-161 

occupancy analysis of main storage in SRM 3-52 
offline/allocated device allocation 3-366 

operator interface 3-374 
processing 

function 3-366 
offline allocation requests 3-366 
offlines/ allocateds, processing 

function 3-374-3-375 
OKSW AP SYSEVENT code (42) 

in SRM interface 3-7 
in workload manager 3-71 

. processing in SRM SYSEVENT code processor 3-20 
open checkpoint data set routine 

function 3-487 
OPEN processing 3-204 
Operation (see Method of Operation Section) 
operator cancelled jobs 

processing in common allocation cleanup 3-382 
operator console (see console) 
options for MF/l 

in. channel initialization 3-100 
in CPU initialization 3-96 
in device initialization 3-104 
in the MFDATA SVC Mainline 3-114 
in paging initialization 3-96 
in workload initialization 3-98 
listing 3-88 
merging on input 3-84 
validity checking 3-86 

Organization (see Program Organization Section) 
OUCB (system resources manager use control block) 

in control swap-in (IRARMCSI) 3-40 (VS2.03.807) 
in CPU management (IRARMCPM) 3-64 (VS2.03.807) 
in CPU load balancing swap analysis 3-66 
in deferred action processing 3-28 
in individual user evaluation (IRARMWM3) 3-73.0 

(VS2.03.807) 
in partial analysis 3-36 
in SRM interface 3-9 



in storage management (IRARMSTM) 3-46 
(VS2.03.807) 

in swapp able user evaluation (IRARMWM2) 3-70 
(VS2;03.807) 

in swap-in control 3-40 
in swap-out control 3-42 
in timer action analysis 3-26 
in user evaluation (IRARMCVL) 3-43.4 (VS2.03.807) 
in user ready processing (IRARMHIT) 3-73.2 

(VS2.03.807) 
in workload management 3-70 

OUT queue for SRM (VS2.03.807) 
definition 3-23.0 (VS2.03.807) 
in resource monitor periodic monitoring (IRARMRM 1) 

3-67 (VS2.03.807) 
in select user for swap-in (IRARMCPI) 3-43.0 

(VS2.03.807) 
in swap analysis (IRARMCAP) 3-36 (VS2.03.807) 
in swappable user evaluation (lRARMWM2) 3-70 

(VS2.03.807) 
in user ready processing (IRARMHIT) 3-73.2 

(VS2.03.807) 
OUXB (system resources manager user extension block) 

in control swap-in (lRARMCSI) 3-40 (VS2.03.807) 
in CPU management (SRM) 3-62 
in individual user evaluation (IRARMWM3) 3-73.0 

(VS2.03.807) 
in I/O management (IRARMIOM) 3-54 (VS2.03.807) 
in storage management (IRARMSTM) 3-46 

(VS2.03.807) 
in SRM interface 3-9 
in Swappable User evaluation (IRARMWMZ) 3-70 
in user evaluation (IRARMCVL) 3-43.4 (VS2.03.807) 
in user ready processing (IRARMHIT) 3-73.2 

(VS2.03.807) 
in control swap-in 3-41 
in SYSEVENT processing in SRM SYSEVENT code 

processor 3-12 
in workload management 3-70 

override processing in interpreter 
in creating and chaining tables 3-254 
in writing tables into SW A 3-257 

packaging of SRM 3-3.2 (VS2.03.807) 
page free request (see PGFREE) 
page load (see PGLOAD) 
page stealing 3-46-3-47 
paging measurements for MF/l 

initialization 3-97 
parameter value analysis in interpreter 3-248 
parse (see IKJP ARSE) 

. parse of MF 11 syntax 3-86 
passed data set information scan 

function 3-334 
path, device (see device path) 
PCCA (physical communications configuration area) 

in interval measurement gathering routine for CPU 
3-118 

in MF/l channel initialization 3-101 
in MF/l channel sampling module 3-140 

PCCB (private catalog control block) 
in JFCB housekeeping control 3-314 
in JLOCA TE 3-336 
in step initiation 3-204 

PCCB routine 
function 3-336-3-337,3-314-3-315 

PDI (passed data set information) 
in DD function control 3-322 
in JLOCATE 3-334 
in job unallocation 3-410 
searching 3-334 

PD I read and chain 
function 3-334-3-335 

performance group descriptor (see WPGD) (VS2.03.807) 
performance group period change 

by workload manager 3-70, 3-72 
performance objective 

use by workload manager 3-71 
permanently resident volumes 

VS2.03.810 

allocating request for 3-294 
PFK (see program function key) 
pool (see quick cell) 
posting SMF 

error exit 3-460 
PPT (program properties table) 

in step initiation 3-200 
scan 

function 3-200-3-20 I 
r,rimary job entry subsystem initialization 3-176 
'privileged" property (as indicated in program properties 
table) 3-200-3-201 

PRLIST 3-294 
PROC statement 3-233 
procedure, cataloged, processing 3-232 
procedure, in-stream, processing 3-232 
process job condition codes 

function 3-406, 3-414 
process TP requests 

function 3-286-3-287 
processors, command (see command processing) 
PROCSTEP (procedure step) 3-226 
program properties table 

function 3-200-3-201 
programmer, writing to (see WTP) 
prompting exit (see pre-prompt exit, LOGON) 
PSA (prefixed save area) 

in MF 11 channel sampling module 3-140 
in MF II second CPU test channel sampling module 

3-142 
PSCB (protected step control block) 

in dynamic allocation control 3-414 
pseudo access method in subsystem initiation 

control 
function 3-182, 3-184 

direct read and write 
function 3-182-3-183 

sequential read and write 
function 3-184-3-185 

PSLIST (public storage list) 
in nonspecific volume allocation control 3-308 

public volume allocation requests 
in allocating nonspecific volume requests 3-308 
in demand allocation 3-356 
processing in fixed device control 3-294 

PVT (page vector table) . 
in interval measurement gathering routine for paging 

3-122 
in main storage occupancy analysis 3-52 
in resource monitor MPL adjustment processing 

(IRARMRM2) 3-67.0 (VS2.03.807) 
in storage management (lRARMSTM) 3-46 

(VS2.03.807) 
in swap-in control 3-40 

QDB (queue descriptor block) 
in dynamic allocation 3-414 
in dynamic unallocation 3-416 
in SVC 99 control 3-412 

QMNGRIO macro interface handler 
function 3-264 

QMPA (queue management parameter area) 
in converter 

initialization 3-225 
processing in-stream and cataloged procedures 

3-232 
in converter linterpreter interface 3-178 
in job deletion 3-210-3-211 
in job initiation 3-196 
in restart interface processing 3-510 
in step deletion 3-210-3-211 
in SW A create interface 3-216 
in SW A manager locate mode 3-266 
in SW A manager move mode 3-264 
in writing blocks to the job journal 3-520 

QSCEFL SYSEVENT code (18) 
processing in SRM SYSEVENT code processor 3-15 

QSCECMP SYSEVENT code (13) 
in SRM CPU load balancing swap analysis 3-67 

Index 1-15 



in SRM CPU management 3-63 
in SRM SYSEVENT code processor 3-14 
in SRM workload manager 3-71 

QSCEST SYSEVENT code (12) 
in SRM I/O management (IRARMIOM) 3-54-3-55 
in SRM SYSEVENT code processor 3-14 

queue manager processing 
in SW A manager move mode 3-264 

quiesce processing 
in SRM swap-out control 3-42 

RACF accessor environment (YS2.03.804) 
deleting 3-193,3-197 (YS2.03.804) 
initializing 3-216,3-217 (YS2.03.804) 
writing JCTX into SW A 3-256,3-257 (YS2.03.804) 

RCT (YS2.03.807) 
in resource monitor MPL adjustment processing 

(IRARMRM2) 3-67.0 (YS2.03.807) 
in resource monitor periodic monitoring (IRARMRM 1) 

3-66 (YS2.03.807) 
read 

in pseudo access method 3-182 
READ macro instruction 

in SW A manager move mode 3-264-3-265 
READ/LOCATE commands 3-266 
real frame (see page frame) 
real page shortage in SRM 3-52-3-53 
real timer interval requests 3-508 
recording, error (see error recording) . 
recovery allocation (IEF AB485) (see also allocation) 

conditions that cause execution of 3-289 
interface with operator 

function 3-374, 3-364 
online devices 

function 3-377 
processing 

function 3-358 
type requests that need recovery or retry 3-305 

recovery, error (see error recovery EST AI) 
recovery, FRR (see functional recovery routine) 
recovery reply options processor 

function 3-374, 3-376 
recovery routine (see also functional recovery routine) 

for MF/l 3-83 
REGION parameter 3-201 
release data set 

function 3-396-3-397 
remove in-use attribute routine (IEFDB480) 

functions 3-424 
remove in-use control routine 

function 3-424 
remove in-use processor 

function 3-416, 3-426 
report generators, MF /1, calling 

in data control 3-109 
in report generation control 3-146-3-147 

REQSERVC sysevent code, processing 3-19 
REQSVDAT SYSEVENT code (YS2.03.807) 

processing in SRM SYSEVENT code processor 3-22.5 
(YS2.03.807) 

request router, common 3-172 
request subsystem services function codes 3-161 
requests, allocation 

not satisfied 
processing in common allocation clean-up 

(IEF AB490) 3-378 
retry criteria 3-379 

satisfied 
processing in common allocation clean-up 3-378 
multi-unit tape data sets, processing 3-380 
volume mount & verify interface 3-380 

requests, region (see region requests) 
reserved volume allocation requests 

processing in fixed device control (IEF AB430) 3-294 
RESETPG SYSEVENT code (31) 

processing in SRM SYSEVENT code processor 3-17 
use by workload manager 3-71 

resource factor coefficient, use of (RFC) 
in SRM CPU management 3-65 

1-16 OS/VS2 System Logic Library Yolume 3 (VS2.03.810) 

YS2.03.810 

in SRM I/O management 3-55 
resources manager (see system resources manager) 
resource monitor MPL adjustment (YS2.03.807) 

processing (IRARMRM2) 3-67.0,3-67.3 (YS2.03.807) 
resource monitor periodic monitoring (YS2.03.807) 

(IRARMRMl) 3-66,3-67.3 (YS2.03.807) 
restart (see also checkpoint/restart, DSS) 

automatic step 3-500 
interface routine 

function 3-510-3-511 
system 

processing 3-496 
restart preparation routine 

function 3-516 
restarting (see restart) 
retry 

overview 3-273 
processing in common allocation clean-up 3-379 

rewinding requests, processing in volume mount and verify 
3-390 

RLCT 
in I/O load balancing swap analysis 3-56 
in I/O management (SRM) 3-54 

RMCA 
in CPU load balancing swap analysis 3-66 
in CPU management (SRM) 3-62 
in I/O load balancing swap analysis 3-56 
in I/O management (SRM) 3-54 
in partial analysis 3-36 
in workload management 3-72 

RMCT (system resources manager control table) 
in algorithm request 3-30 
in CPU load balancing swap analysis 3-66 
in deferred action processing 3-28 
in full analysis 3-34 
in I/O load balancing swap analysis 3-56 
in I/O management (SRM) 3-54 
in main storage occupancy analysis 3-52 
in partial analysis 3-36 
in periodic entry point scheduling 3-32 
in select user for swap-in (IRARMCPI) 3-43.0 

(YS2.03;807) 
in select user for swap-out (IRARMCPO) 3-43.2 

(YS2.03.807) 
in SRM control 3-23 
in SRM interface 3-5 
in SRM service routine (IRARMSRV) 3-9.8 

(YS2.03.807) 
in storage management (IRARMSTM) 3-46 

(YS2.03.807) 
in swap analysis (IRARMCAP) 3-36 (YS2.03.807) 
in swappable user evaluation (IRARMWM2) 3-70 

(YS2.03.807) 
in swap-in control 3-40 
in timer action analysis 3-26 
in user ready processing (IRARMHIT) 3-73.2 

(YS2.03.807) 
in workload management 3-69 

RMEP 
in periodic entry point scheduling 3-32 
in storage management (IRARMSTM) 3-46 

(YS2.03.807) 
used in processing actions/algorithms 3-23.2,3-23.3 

(YS2.03.807) 
RMPT 

in CPU management (SRM) 3-62 
in partial analysis 3-36 
in periodic entry point scheduling 3-32 

route requests to active subsystems 3-172 
RPL (request parameter list) 

in log writer processing 3-474 
in pseudo access method 3-182 
in subsystem initiation message writer 3-186 

RPL/ ACB interface 
in subsystem initiation message writer 3-186 
in pseudo access method 3-182 

RRPA 
in collect data for MF/l (IRARMWR3) 3-78.8 

(YS2.03.807) 
in full analysis 3-34 



) 
.' 

in user evaluation (IRARMCVL) 3-43.4 (VS2.03.807) 
RSM (see real storage manager) 
RSMCNSTS SYSEVENT code (22) 

processing in SRM SYSEVENT code processor 3-16 
RSTORCMP SYSEVENT code (19) 

processing in SRM SYSEVENT code processor 3-15 
use by SRM workload manager 3-71 

RTB (response/throughput bias) (VS2.03.807) 
in user evaluation (IRARMCVL) 3-43.4 (VS2.03.807) 

R/TM (see recovery termination) 
RV (recommendation value) (VS2.03.807) 

in CPU management (IRARMCPM) 3-63 (VS2.03.807) 
in select user for swap-in 3-43.0 (VS2.03.807) 
in select user for swap-out 3-43.2 (VS2.03.807) 
in swap analysis 3-37 (VS2.03.807) 
in user evaluation 3-43.5 (VS2.03.807) 

scan dictionary 
in converting statements to internal text 3-236 

scheduler (see job scheduler) 
scheduling, SRM periodic entry point IRARMCET 3-32 
scratch requests 3-358 
screen image buffer (see SIB) 
SCT (step control table) 

in ABENDed job restart preparation 3-518 
in allocation/initiator interface 3-396 
in data set descriptor records, processing 3-486 
in DD function control 3-322 
in dynamic allocation 3-414 
in dynamic information retrieval 3-422 
in dynamic unallocation control 3-416 
in initiator/allocation interface 3-396 
in interpreter 

creating and chaining tables 3-252 
writing tables into SW A 3-256 

in JFCB housekeeping control 3-314 
in job deletion 3-208 
in step continue processing 3-494 
in step deletion 3-208 
in step initiation 3-200 
in SVC 99 control 3-412 

searching for volser in UCBs (in job unallocation) 3-411 
SECHT 

in SRM interface 3-5 
second CPU test channel sampling module (IRBMFTCH), 

function 3-142 
second level interrupt handler (see SLIH) 
security environment (RACF) (VS2.03.804) 

deleting 3-193,3-197 (VS2.03.804) 
initializing 3-216,3-217 (VS2.03.804) 
writing JCTX into SW A 3-256,3-257 (VS2.03.804) 

select user for swap-in (IRARMCPI) 3-43.0 (VS2.03.807) 
select user for swap-in (IRARMCPO) 3-43.2 (VS2.03.807) 
SETDMN SYSEVENT code (VS2.03.807) 

processing in SRM SYSEVENT code processor 3-20 
(VS2.03.807) 

setting domains 3-20 (VS2.03.807) 
sequential read 

in pseudo access method 3-182 
sequential write 

in pseudo access method 3-182 
serialization 

in common allocation control 3-282 
service rate 

explanation of use by SRM workload manager 3-69 
shared data set attributes, replacing in job initiation 3-199 
SIB (screen image buffer) 
signal processor (see SIGP instruction) 
single line message (see WTO) 
SlOT (step I/O table) 

completing DCB information in 3-329 
completing DISP information in 3-333 
copying unit information into 3-331 
in allocate request to unit 3-302 
in allocating offline devices 3-366 
in allocation/initiator interface 3-396 
in allocation/volume mount and verify (VM & V) 

interface 3-386 
in allocation via algorithm 3-348 

VS2.03.810 

in common allocation cleanup 3-378 
in common allocation control 3-280 
in common unallocation 3-432 
in data set descriptor records processing 3-486 
in DD function control 3-322 
in demand allocation 3-355 
in disposition processing 3-440 
in dynamic allocation control 3-414 
in dynamic concatenation 3-418 
in dynamic information retrieval 3-422 
in dynamic deconcatenation 3-420 
in dynamic unallocation control 3-416 
in fixed device control 3-294 
in generic allocation control 3-338 
in initiator/allocation interface 3-396 
in initiator/unallocation interface 3-402 
in interpreter 3-252 
in JFCB housekeeping control 3-314 
in JLOCATE 3-334 
in job unallocation 3-410 
in nonspecific volume allocation control 3-308 
in recovery allocation 3-358 
in remove in-use processor 3-424 
in specific volume allocation 3-298 
in SVC 99 control 3-412 
in unallocation/initiator interface 3-402 
in unit unallocation processing 3-444 
selecting in non-specific allocation control 3-308 

SMCA (system management control area) 
in SMF cross-memory post error exit 3-460 
in ST AE exit processing for SMF 3-458 
in switching SMF data sets 3-454, 3-456 
in volume mount and verify (VM & V) / allocation 

interface 3-386 
in writing SMF records 3-450 

SMF (System Measurement Facility) 
cross-memory post error exit routine 

function 3-460 
in converter 

initialization 3-224 
dynamic dd routine 

function 3-418 
exit in step initiation 3-200 
initialization exit support module 

function 3-200-3-201 
interface to interpreter 3-256 
record manager 

function 3-452, 3-450-3-451 
record writing 

function 3-450-3-451, 3-456, 3-452, 3-454 
records, writing 

in MF /1 routine for channels 3-131 
in MF/l routine for CPU 3-119 
in MF/l routine for devices 3-135 
in MF/l routine for paging 3-123 
in MF/l routine for workload 3-127-3-129 
in step initiation 3-200 

ST AE exit processing 
function 3-458 

SYSEVENT REQPGDAT (39) issued to obtain paging 
data 3-20 

TCTIOT construction interface 
function 3-206 

SMF data set 
in MFDATA mainline 3-115 
opening of 3-450 
opening of alternate 3-454 
splitting 3-454, 3-453 
switching 3-454, 3-452, 2-303 

SMF records 
count of, updating 3-456 
splitting 3-452 

space, address (see address space) 
special protect key 3-200 
specific volume allocation control 

processing 
function 3-298 

use with fixed device control 3-295 
use with generic allocation 3-344 

SQA 

Index 1-17 



in MF /1 device initialization 3-46 
SQALOW SYSEVENT code (25) 

processing in SRM SYSEVENT code processor 3-16 
in SRM storage management 3-50-3-51 

SRM (see also system resources manager) 
algorithm processor 3-23, 3-23.2, 3-23.3, 3-24 

(YS2.03.807) 
collect data for MF/1 3-73.8 (YS2.03.807) 
control algorithm 3-23 
control swapin routine 3-40 
control swapout routine 3-42 
CPU load balancing swap analysis 3-66 
CPU management routines 3-62 
deferred action processor 3-28 
FRR 3-9 
full analysis retry function 3-34 
individual user evaluation 3-73.0 (YS2.03.807) 
initialize for MF/1 3-73.6 (YS2.03.807) 
interface module 3-6 
I/O load balancing swap analysis routine 3-56 
I/O management routines 3-54 
I/O load balancing user I/O monitoring 3-58 
. (YS2.03.807) 

main storage occupancy routine 3-52 
module/entry point cross reference 3-3.2, 3-3.3 

(YS2.03.807) 
nonresident set to new IPS routine 3-32 
obtain/free SQA storage 3-9.6 (YS2.03.807) 
partial analysis routine 3-36 
periodic entry point scheduling routine 3-32 
processing algorithms and actions 3-23, 3-23.2, 3-23.3 

(YS2.03.807) 
requeue SRM TQE 3-9.8 (YS2.03.807) 
resource monitor MPL adjustment processing 3-67.0 

(YS2.03.807) 
resource use algorithms, overview 3-45 
resource monitor periodic monitoring 3-66 

(YS2.03.807) 
RMEP algorithm and action invocation flags 3-23.3 

(YS2.03.807) 
select user for swap-in 3-43.0 (YS2.03.807) 
select user for swap-out 3-43.2 (YS2.03.807) 
service routine 3-9.2 (YS2.03.807) 
storage management routines 3-46 
supervisor service request routine 3-48, 3-32, 3-42, 3-40 
swap analysis 3-36 (YS2.03.807) 
swappable user evaluation 3-70 (YS2.03.807) 
sysevent processor 3-11 
sysevent routers and processors 3-12 
timer action analysis 3-26 
user evaluation 3-43.4 (YS2.03.807) 
user ready processing 3-73.2 (YS2.03.807) 
uses ASM and RSM 3-3 (YS2.03.807) 
workload activity recording routine 3-70 
workload management function, overview 3-69 
workload manager algorithm module 3-70 

SSCVT (subsystem communications vector table) 
in common request router 3-172 
in subsystem determination 3-174 
in subsystem interface 3-159 

SSIB (subsystem identification block) 
in common request router 3-172 
in data set name assignment 3-188 
in job initiation 3-196 
in log initialization 3-466 
in subsystem determination 3-174 
in subsystem initiation 3-176 
in subsystem interface 3-159 
in switching log data sets 3-472 
in terminating the system log 3-470 

SSOB (subsystem options block) 
in common request router 3-172 
in converter/interpreter interface 3-178 
in data set name assignment 3-188 
in job initiation 3-196 
in log initialization 3-466 
in subsystem determination 3-174 
in subsystem initiation 3-176 
in subsystem interface 3-159 
in subsystem job termination 3-190 

1-18 OS/YS2 System Logic Library Yolume 3 (VS2.03.810) 

YS2.03.810 

SSVT (subsystem vector table) 
in subsystem interface 3-159 

stack, FRR ( see FRR stack) 
ST AE (set task asynchronous exit) 

for SMF 3-458 
START command (see also START/LOGON/MOUNT 

overview) . 
parameters used by MF / 1 START command 3-84, 

3-80 
statement (see JCL statement) 
status, console (see console status) 
STC (started task control) 

SW A sub pool for 3-267 
step allocation processing in initiator/allocation interface 

3-396 
step continue processing (IEFXB60l) 3-494 
step delete routine 

function 3-208 
step header reocrd, for job journal, building 

function 3-512, 3-514, 3-202 
step initiation 3-200 
step, preparing for allocation 3-396 
step restart 

automatic, job journal processing for 3-500 
reconstructing SW A for 3-216 

step time processing if job step is canceled 3-207 
step unallocation 3-402 
STEPCAT requests 3-314 
STEPL (ST AE exit parameter list) 

in job initiation 3-196 
STCOA (common option area for supervisor state options, 

see also INCOA, MPCOA, TMCOA) 
in mainline initialization of MF/l 3-90 

STGST (global supervisor table) 
in mainline initialization of MF/l 3-90 
in MF /1 workload initialization 3-98 

STMMV 
in MFROUTER processor 3-138 
in MF/1 channel initialization 3-100 
in MF /1 device initialization 3-104 

STMVT (measurement vector table for supervisor state 
options, see also DTMVT, INMVT, MFMVT, TMMVT) 

in mainline initialization of MF/l 3-90 
STOP command 

MF /1 enabling use of 3-80 
STOP command for MF/l 

in data control routine 3-108, 3-106 
in measurement facility control 3-80 

STOP processing 3-196-3-197 
STOP MONITOR command 
storage deletion routine 

function 3-176-3-177 
storage volume allocation requests 

in fixed device allocation (IEFAB430) 3-295 
in nonspecific volume allocation control 3-309 

storage management (see real storage manager, virtual 
storage management, system resources manager) 

STPRT 
in MF /1 channel initialization 3-100 
in MF /1 CPU initialization 3-96 
in MF /1 device initialization 3-104 
in MF/l l'aging initialization 3-96 
in MF/l workload initialization 3-98 

stream, input (see converter) 
structure, examining alternatives in MF/1 syntax analyzer 

3-86 
STRVT (resource vector table) 

in mainline initialization of MF /1 3-90 
STSCT (supervisor control table) 

in mainline intialization of MF /1 3-90 
in MF /1 termination processor 3-110 

STSGT 
in channel interval measurement gathering routine 

3-130 
in interval measurement gathering routine for CPU 

3-118 
in interval measurement gathering routine for devices 

3-134 
in interval measurement gathering routine for paging 

3-122 



in interval measurement gathering routine for workload 
3-126 

in MFDATA mainline 3-114 
in MFROUTER processor 3-138 
in MF /1 channel initialization 3-100 
in MF/l CPU initialization 3-96 
in MF /1 device initialization 3-104 
in MF /1 paging. initialization 3-96 
in MF /1 termination processor 3-110 

STSMA (supervisor measurement table) 
in channel interval measurement gathering routine 

3-130 
in interval measurement gathering routine for CPU 

3-118 
in interval measurement gathering routine for devices 

3-134 
in interval measurement gathering routine for paging 

3-122 
in mainline initialization of MF /1 3-90 
in MFDATA mainline 3-114 
in MF /1 channel initialization 3-100 
in MF /1 CPU initialization 3-96 
in MF /1 device initialization 3-104 
in MF /1 paging initialization 3-96 
in MF /1 workload initialization 3-98 

subsystem allocation requests, processing in common 
allocation control 3-281 

subsystem determination 
function 3-174 

subsystem initiation 3-176 
in converter/interpreter interface 3-178 
in data set name assignment 3-188 
in pseudo access method 3-182 
message writer 

function 3-186 
processing 

function 3-176 
subsystem/initiator SW A interface 

function 3-216 
subsystem interface 

function codes 3-161 
introduction 3-159 

subsystem job termination 
function 3-190 

subsytem name, determination of 638 
subsystem, routing request to 3-172 
supervisor state, putting initiator task into 3-197 
SVC interruptions (see supervisor interruptions handler) 
SVC 34 

commands in the input stream, processing 3-230 
SVC 99 control (IEFDB400) 3-412 

in JLOCATE 3-337 
SVC 109 (see extended SVC routing) 
SVC 116 (see extended SVC routing) 
SVC 122 (see extended SVC routing) 
SVCIH (see supervisor interruption handler) 
SW A (scheduler work area) 

block length 3-265 
in automatic checkpoint/restart 3-498 
in automatic step restart 3-500 
in converter/interpreter interface 3-180 
in data set descriptor records processing 3-486 
in job initiation 3-196 
in merge cleanup 3-502 
in SW A manager locate mode 3-266 
in SW A manager move mode 3-264 
in system restart processing 3-496 
interface to in-stream and cataloged procedures 3-233 
interpreter writing tables into SW A 3-256 
merging from job journal 3-492 
virtual address in SW A, updating 3-504 

SW A conversion from JCLS 
function 3-177, 3-179 

SW A create interface 
function 3-216-3-217 

SWA manager 
function code 3-264 
interface to in-stream and cataloged procedure 

processing 3-233 
interface to interpreter 3-256 

VS2.03.810 

interface to job step allocation 3-397 
interface to job unallocation 3-411 
interface module 

function 3-264 
locate mode 

function 3-266 
move mode 

function 3-264 
SW A merge processing 3-492, 3-503 

SWA prefix 
in SW A manager move mode 3-265 
in SW A manager locate mode 3-267 

SW A reader routine 
function 3-396, 3-412 

SW A reconstruction processing 
in journal merge error processing 3-509 
in restart processing 3-511 

SWA subpool 
alternation 3-267 

SW A virtual address 
in SW A manager move mode 3-265 
in SW A manager locate mode 3-267 

swap (VS2.03.807) 
in SRM exchange swap 3-23.0 (VS2.03.807) 

swap analysis 3-36 (VS2.03.807) 
swap analysis in SRM 

CPU 3-62 
in partial analysis routine (IRARMCAP) 3-36 
I/O load 3-56 

"swap package", definition of 3-37 
swap-in (VS2.03.807) 

in SRM express swap-in 3-23.0 (VS2.03.807) 
in SRM select use for swap-in (IRARMCPI) 3-43.0 

(VS2.03.807) 
in SRM unilateral swap-in 3-23.0, 3-40 (VS2.03.807) 

swap-in, address space 
in SRM control swap-in (IRARMCSI) 3-40 
in SRM I/O management routine (IRARMIOM) 3-54, 

3-57 
storage evaluation for in SRM partial analysis 3-36 

swap-in, timer dependent, in SRM timer action analysis 
(IRARMCA T) 3-26 

swap-out (VS2.03.807) 
in SRM select use for swap-out (IRARMCPO) 3-43.2 

(VS2.03.807) 
in SRM unilateral swap-out 3-23.0, 3-42 (VS2.03.807) 

swap-out, address space 
in SRM control swap-out 3-42 
in SRM I/O load balancing swap analysis 3-56 
in SRM partial analysis 3-36 
timer dependent, in SRM timer action analysis 

(IRARMCAT) 3-26 
SWINFL SYSEVENT code (17) 

processing in SRM SYSEVENT code processor 3-15 
switching SMF data sets 3-454, 3-452, 2-303 
switching system log data sets (IEEMB803) 3-472 
SWOUTCMP SYSEVENT code (15), processing in SRM 

SYSEVENT code processor 3-15 
SWPINST SYSEVENT code (VS2.03.807) 

processing in SRM SYSEVENT code processor 3-16 
(VS2.03.807) 

symbolic parameters, processing in the converter 3-234 
syntax analyzer of MF/l input (IRBMFANL) 3-86 
syntax checker for allocation 

function 3-424, 3-420, 3-422, 3-428, 3-418, 3-416 
syntax errors in JCL symbolic parameters, scanning for in 

converter 3-235 
SYQSCCMP SYSEVENT code (36) 

processing in SRM SYSEVENT code processor 3-18 
SYQSCST SYSEVENT code (35) 

processing in SRM SYSEVENT code processor 3-18 
SYSCHK DD statement processing in converter 3-229 
SYSEVENT codes 

MF /1 related 3-98 
processing 3-12-3-22 
in SRM CPU management 3-63 
in SRM CPU swap load balancing analysis 3-67 
in SRM interface 3-5-3-9 
in SRM workload manager 3-71 
tracing 3-6 

Index 1-19 



SYSEVENT List 3-11 (YS2.03.807) 
SYSOUT data set name 

assigning for subsystem initiation 3-188 
System Activities Measurement Facility (see MF/t) 
system log 

allocating new 3-472 
EST AE processor 

function 3-476 
initialization 3-466 
initializing log data set 3-466 
message module 

function 3-472, 3-468 
switching 3-472 
terminating 3-470 

abnormally 3-476 
unallocating 

current 3-472 
during termination 3-470 

writer processing 3-474 
writing 3-480, 2-306 

system log data set (see system log) 
system log initialization 

writer module 
function 3-466, 3-470, 3-474, 3-472 

System Measurement Facility (see SMF) 
system message interface routine 

function 3-380, 3-398, 3-400 
system parameter library (see SYS1.PARMLIB) 
system reconfiguration (see reconfiguration commands) 
system resources manager (SRM) (see also workload 

manager) 3-3 
algorithms 

in periodic entry point scheduling 3-32 
resource use algorithms, introduction to 3-45 

algorithm request routine 3-30 
allocated UCB list, use of 3-310-3-311 
analysis routines 

full 3-34 
partial 3-36 

automatic priority group (APG) management 3-45.1 
(YS2.03.807) 

auxiliary slot shortage prevention 3-45 (YS2.03.807) 
consists of five functional groups (YS2.03.807) 

control function 3-3 (YS2.03.807) 
interface function 3-3 (YS2.03.807) 
resource use algorithm 3-3 (YS2.03.807) 
sysevent processor 3-3 (YS2.03.807) 
workload manager 3-3 (YS2.03.807) 

control routine 3-23,3-25 
control swap-in routine 3-40 
control swap-out routine 3-42 
CPU management 3-62 
CPU load balancing swap analysis 3-66 
deferred action processor 3-28 
domain MPL adjustment routine 3-67.0 (YS2.03.807) 
ENQ/DEQ algorithm 3-9.8 (YS2.03.807) 
error processing 3-9 
functional recovery routine 3-9, 3-7 
how packaged 3-3.2 (YS2.03.807) 
interface, general 3-5 
interface 

to UCB cnadidates list in offline/allocated device 
allocation 3-371 

interface routine (IRARMINT) 3-6, 3-5 
in non-specific volume allocation control 

3-312-3-313 
with allocation in common allocation cleanup 3-382 

introduction, general 3-3 
I/O load balancing swap analysis 3-56 
I/O management routine 3-54 
lock, obtaining and releasing in full analysis routine 

3-34 
locking considerations for SYSEVENTs 3-5 
main storage occupancy analysis 3-52 
page replacement 3-45 (YS2.03.807) 
pageable real storage shortage prevention 3-45 

(YS2.03.807) 
periodic entry point scheduling routine 3-32 
PSLIST use 3-311 
real page shortage prevention 3-45 (YS2.03.807) 

1-20 OS!VS2 System Logic Library Yolume 3 (VS2.03.810) 

VS2.03.810 

resource monitor 3-45.1 (YS2.03.807) 
resource use algorithms, introduction to 3-45 
SQA shortage prevention 3-45 (YS2.03.807) 
SRB analysis processing 3-34 
SRB scheduling 3-23 (YS2.03.807) 
storage management routine 3-46 
swap evaluation 3-37 
swap-in control routine 3-40 
swap-out control 3-42 
SYSEVENT code 

locking considerations 3-5 
MF/l related (WKLDINIT) 3-99 
processing 3-11-3-22 

time-driven queue 
defintion of 3-3 

timer action analysis 3-26 
TQE 

in periodic entry point scheduling 3-33 
visual contents for HIPO diagrams 3-4 
visual table of contents 3-4 (YS2.03.807) 
workload manager 

introduction to 3-69 
routine 3-70 

system restart 
processing to cause restart at the next step 3-494 

system, stopping (see stopping) 
system trace (see trace, system) 
system trace termination (see trace termination) 
SYS1.LINKLIB, obtaining master JCL from in subsystem 

initiation 3-176 
SYS 1.PROCLIB 

not opened successfully in subsystem initiation 3-177 

tape label read 
function 3-340, 3-418 

tape unloading (YS2.03.804) 
in unit allocation 3-445,3-446 (YS2.03.804) 

TCB (task control block) 
in allocation/initiator interface 3-396 
in ABENDed job restart preparation 3-516 
in common unallocation 3-430 
in dynamic allocation control 3-414 
in initiator/allocation interface 3-396 
in initiator/unallocation interface 3-402 
in job deletion 3-208 
in log initialization 3-466 
in merging job journal to SW A 3-492 
in MFDA T A mainline 3-114 
in remove in-use attribute 3-424 
in step deletion 3-208 
in step initiation 3-200 
in subsystem interface 3-159 
in SVC 99 control 3-412 
in unallocation/initiator interface 3-402 
in writing blocks to the job journal 3-520 

TCT (timing control table) 
in initiator/allocation interface 3-396 

TCTIOT (timing control table I/O table) 
in allocate request to unit 3-302 
in dynamic allocation control 3-414 
in step initiation 3-200 

teleprocessing 
allocation of device requests 3-286 

terminal recognizer, calling in MF/l syntax analyzer 3-86 
terinating allocation error processing (common allocation 

cleanup) 3-378 
termination, abnormal, log task 3-476 
termination, system activities measurement 3-110 
terminator (see initiator/terminator) 
TERMW AIT SYSEVENT code (2) 

processing in SRM SYSEVNET code processor 3-12 
use by workload manager 3-69 

text EXEC statement condition codes 
function 3-500 

test if device is ready 
function 3-340-3-341 

text, internal (see converter, internal text) 
text keys, in ddname allocation 3-429 
TGETTPUT SYSEVENT code (34) 



\ 
I 

! 

processing in SRM SYSEVENT code processor 3-18 
use by workload manager 3-71 

time dependent swap-in processing 3-26 
time driven queue (in SRM), definition of 3-3 
time limit, step 3-202 
timer action analysis in SRM 3-26 
timer second level interrupt handler (see timer SLIH) 
TIMEREXP SYSEVENT code (1) 

processing in SRM SYSEVENT code processor 3-12 
in periodic entry point scheduling 3-32-3-33 

timing control in step initiation 3-202 
TIOT (task input/output table) 

in allocating offline devices 3-366 
in allocation via algorithm 3-348 
in common allocation cleanup 3-378 
in common allocation control 3-280 
in ddname allocation control 3-428 
in demand allocation 3-355 
in dynamic allocation control 3-414 
in dynamic concatenation 3-418 
in dynamic deconcatenation 3-420 
in dynamic unallocation control 3-416 
in dynamic information retrieval 3-422 
in generic allocation control 3-338 
in nonspecific volume allocation control 3-308 
in recovery allocation 3-358 
in remove in-use processor 3-426 
in specific volume allocation 3-298 
in step initiation 3-200 

TIOT, expandable, build, update, rebuild 
function 3-280-3-281, 3-302-3-303 

TIOT manager control routine 
function 3-396, 3-398, 3-418, 3-436 

TPCA (see TPC) 
TQE (timer queue element) 

in MFROUTER processor 3-139 
in requeue SRM TQE (IRARMI05) 3-9.8 (VS2.03.807) 
in SRM periodic entry point scheduling 3-33 

TSB (terminal status block) 
in dynamic allocation control 3-414 

TSO LOGON (see LOGON) 

UCB (unit control block) 
in allocate request to unit 3-302 
in allocating offline devices 3-366 
in allocation/initiator interface 3-396 
in allocation/volume mount and verify (VM & V) 

interface 3-386 
in allocation via algorithm 3-348 
in common allocation cleanup 3-378 
in common allocation control 3-280 
in common unallocation 3-430 
in demand allocation 3-355 
in dynamic allocation control 3-414 
in dynamic unallocation control 3-416 
in fixed device control 3-294 
in generic allocation control 3-338 
in initiator/allocation interface 3-396 
in initiator /unallocation interface 3-402 
in job unallocation 3-410 
in MF/l device initialization 3-104 
in MF /1 device sampling module 3-144 
in nonspecific volume allocation control 3-308 
in recovery allocation 3-358 
in specific volume allocation 3-298 
in unallocation/initiator interface 3-402 
in volume mount and verify (VM&V)/allocation 

interface 3-386 
UCB candidate list in offline/allocated device allocation 

building, and interfacing with SRM 3-371 
UCB list in nonspecific volume allocation control 

building 
function 3-350, 3-310 

interfacing with SRM 3-312 
releasing 3-312 

UCB update routne 
use in allocate request to unit 3-303 

UCM (unit control module) 
in communications task overview 3-418 

VS2.03.810 

in unit unallocation processing 3-444 
UCME (unit control module entry) 

in communications task overview 3-418 
UIC (in referenced internal count) (VS2.03.807) 

in resource monitor periodic monitoring 3-67.1 
(VS2.03.807) 

in SRM service routine 3-9.3 (VS2.03.807) 
in storage management (IRARMSTM) 3-46 

(VS2.03.807) 
unallocate requests to be rearranged 

function 3-360, 3-348, 3-368 
unallocated volunit entries, processing 3-371 
unallocating current system log 3-472 
unallocation (see also allocation/unallocation) 

control, common 
function 3-430 

dynamic unallocation control and processor 
function 3-416, 3-426 

job unallocation 
function 3-410 

step unallocation control 
function 3-404-3-405 

unallocation deserialization (VS2.03.804) 
in common allocation cleanup 3-381 (VS2.03.804) 
in job unallocation 3-411 (VS2.03.804) 

unallocation/initiator interface 
function 3-402, 3-404 

unilateral swap-out/swap-in 3-23.0, 3-36 (VS2.03.807) 
unit affinity (see allocating affinity requests) 
unit, allocating request to (see allocating requests to units) 
unit allocation 

in offline/allocated device allocation 3-369 
unit, eligible 

in specific volume allocation control 3-299 
unit information 

copying in dd function control 3-323 
retrieving in dd function control 3-323 
in JFCB housekeeping 3-316 

unit name conversion 
function 3-316-3-317 

unit unallocation (IEFAB4A4) 
direct access device processing 3-446 
in common unallocation 3-434 
non-direct access device processing 3-446 
tape processing 3-446 

units code 
in workload manager 3-71 

unload requests, processing in volume mount and verify 
3-390 

for an MSS volume 3-391 
unmounted volumes, processing in demand allocation 

3-357 
update algorithm tables 

function 3-368-3-369 
update DDR count routine 

function 3-282-3-283 
update UCB routine 

function 3-302 
user evaluation (IRARMCVL) 3-43.4 (VS2.03.807) 
user ready processing (IRARMHIT) 3-73.2 (VS2.03.807) 
user, swapping (see swap-in, swap-out) 
USERRDY SYSEVENT code (4) 

processing in SRM SYSEVENT code processor 3-12 
use by workload manager 3-71 

validity checking unallocated device or data set requests 
that need a specific volume 3-368 

values, IPS (see IPS values) 
VA T (virual address table) 

in automatic step restart 3-500 
in journal merge error processing 3-508 
in merge cleanup 3-502 
in merging job journal to SW A 3492 
in restart interface processing 3-510 
in system restart processing 3-496 
in updating virtual addresses in SWA 3-504 

verbs, converter identifying on JCL statement 3-226 
verify control routine 

function 3-394 

Index 1-21 



VERIFYPG SYSEVENT code (30) 
processing in SRM SYSEVENT code processor 3-17 

VIO allocation requests 
processing in common allocation control 3-280 

VIO eligible requests, processing in dd function control 
3-328 

virtual address in SW A, updating 3-504 
VM & V count tables, contents 3-391 
VM & V request block 

building in allocate request to unit 3-302 
in allocation/volume mount and verify (VM & V) 

interface 3-386 
in common allocation cleanu~ 3-378 
in volume mount and verify (VM & V) 3-390 

VOLSER searching in job unallocation 3-411 
volume allocation control, nonspecific 

function 3-308 
volume demounting for an MSS volume 3-391 
volume, determining if it is on an eligible unit 3-298 
volume, enqueueing on in nonspecific volume allocation 

control 3-312 
volume information 

copying and retrieving in dd function control 3-327 
volume list 

building 
in common unallocation control 3-434 
in disposition processing 3-440 

obtaining new 3-336 
volume mount and verify (VM & V) 

conditions under which a volume cannot be used 3-395 
control 

function 3-390 
determining fu"nctions to be performed 3-390 
DOMR and cleanup routine 

function 3-394, 3-388 
functions 3-390 
interface with allocation 

function 3-386 
interface to common allocation cleanup 3-395 
MSS mount request, handling 3-392 
routines used 3-390 
WTO/WTOR format routine 

function 3-392 
volume, releasing 

function 3-434, 3-436-3-437 
volume serial number (see VOLSER) 
volume, specific allocation (see specific volume allocation 

control) 
volume/unit resolution 

function 3-326 
volume validity checker 

function 3~368, 3-302 
volume, requests for 

permanently resident or reserved 
processing in fixed device allocation 3-294 

specific 3-298 
volume unload control (see IEF AB494 object module) 
volume unload for an MSS volume 3-391 
volumes, verifying 3-394-3-395 
volunit affinity processing 

function 3-282-3-283 
volunit table 

eligible entries, locating in nonspecific volume allocation 
control 3-308 

in allocate request to unit 3-302 
in allocating offline devices 3-366 
in allocation/volume mount and verify (VM & V) 

interface 3-386 
in allocation via algorithm 3-348 
in common allocation cleanup 3-378 
in common allocation control 3-280 
in demand allocation 3-356 
in fixed device control 3-294 
in generic allocation control 3-338 
in nonspecific volume allocation control 3-308 
in recovery allocation 3-358 
in specific volume allocation 3-298 
in volume mount and verify (VM&V)/allocation 

interface 3-386 
obtaining space for 3-282-3-283 

1-22 OS/VS2 System Logic Library Volume 3 (VS2.03.810) 

VS2.03.810 

VSM (see virtual storage management) 
VUT (volume unit table) 

in job unallocation 3-410 
in unit unallocation processing 3-444 

wait holding resources 
function 3-280, 3-366 

wait queue (deferred action queue) in SRM 3-28 
WAIT queue for SRM (VS2.03.807) 

definition 3-23.0 (VS2.03.807) 
in user ready processing (IRARMHIT) 3-73.2 

(VS2.03.807) 
WAMT 

in collect data for MF/l (IRARMWR3) 3-73.8 
(VS2.03.807) 

in initialize for MF/l (IRARMWRl) 3-73.6 
(VS2.03.807) 

in interval measurements gathering routine for workload 
3-126 

is SYSEVENT processing in SRM SYSEVENT code 
processor 3-11 

warmstart 
in SWA create interface 3-217 
locating JFCBs and JFCBXs in initiator /unallocation 

interface 3-403 
WKLDCOLL SYSEVENT code (46) 

processing in SRM SYSEVENT code processor 3-21 
use by workload manger 3-71 

WKLDTERM SYSEVENT code (47) 
processing in SRM SYSEVENT code processor 3-21 

WLLDINIT SYSEVENT code (45) 
processing in SRM SYSEVENT code processor 3-21 
use by workload manager 3-71 

WMST (workload manager specification table) 
in individual user evaluation (IRARMWM3) 3-73.0 

(VS2.03.807) 
in swappable user evaluation (IRARMWM2) 3-70 

(VS2.03.807) 
in user evaluation (IRARMCVL) 3-43.4 (VS2.03.807) 
in workload management 3-69 
initialize for MF/l (IRARMWRl) 3-73.6 (VS2.03.807) 

work masks (group masks) in device allocation 
definition 3-272 
use of 3-339 

workload level, introduction 3-69 
workload manager 

function 3-69-3-73 
workload measurement in MF /1 

initialization 3-98 
interval routine (RBMFDWP) 3-126 

WPGD (performance group descriptor) (VS2.03.807) 
in individual user evaluation (IRARMWM3) 3-73.0 

(VS2.03.807) 
in swapp able user evaluation (IRARMWM2) 3-70 

(VS2.03.807) 
in user evaluation (IRARMCVL) 3-43.4 (VS2.03.807) 
in user ready processing (IRARMHIT) 3-73.2 

(VS2.03.807) 
WPGDT 

in workload mangement 3-69 
wrap-around CPU values in MF/l, adjusting for 3-119 
write 

in pseudo access method 3-184 
WRITE/ ASSIGN function 

in SW A manager move mode 3-264-3-265 
WRITE/LOCATE function 

in SW A manager locate mode 3-267 
WRITE request 

in SW A manager move mode 3-264-3-265 
WRITELOG command 

in switching system log data sets 3-473 
write-to-log 

writing data to system log 
function 3-480 

write-to-programmer (see WTP) 
WTL (write to log) 3-480 
WTO (write-to-operator) macro instruction 

in subsystem initiation message writer 3-186 



3800 printing subsystem (VS2.03.810) 
in interpreter 3-245 (VS2.03.810) 
related JCL parameters 3-249 (VS2.03.810) 
(see also .JFCBE and JFCBX) (VS2.03.810) 

VS2.03.810 

Index 1-23 



1-24 OS/VS2 System Logic library Volume 3 (VS2.03.810) 



n 
S. 
~ 
." o a: 
» 
0' 
::l 

OQ 

r-
:i" 
(I) 

OS/VS2 
System Logic Library 
Volume 3 
SY28-0763-0 

Your views about this publication may help improve its usefulness; this form 
will be sent to the author's department for appropriate action. Using this 
form to request system assistance or additional publications will delay response, 
however. For more direct handling of such requests, please contact your 
IBM representative or the IBM Branch Office serving your locality. 

Possible topics for comment are: 

Clarity Accuracy Completeness Organization Index Figures Examples Legibility 

What is your occupation? 

Number of latest Technical Newsletter (if any) concerning this publication: 

Please indicate your name and address in the space below if you wish a reply. 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. 

READER'S 
COMMENT 
FORM 



SY28-0763-0 

Your comments, please ... 

This manual is part of a library that serves as a reference source fLiT system analysts, 
programmers, and operators of IBM systems. Your comments on the other side of this 
form will be carefully reviewed by the persons responsible for writing and publishing 
this material. All comments and suggestions become the property of IBM. 

I 
Fold Fold 

- - - -' - - - - - - - - - - - - - - - -~ 

Business Reply Mail 
No postage stamp necessary if mailed in the U.S.A. 

Postage will be paid by: 

International Business Machines Corporation 
Department D58, Building 706-2 
PO Box 390 
Poughkeepsie, New York 12602 

First Class 
Permit 81 

I 
I 
I 

.Poughkeepsie I 
New York 

'W 
• 

I 
I 
I 
I 
I 
I 
I 
I 
I 

----------~------------~ 
Fold 

~J]j~ 
(!) 

International BUsiness Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, New York 10604 
(U.S.A. only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(International) 

Fold I 
I 
I 
I 
I 
I 
I 
I 

·1 

I 
I 
I 
I 
I 
I 


