CLASSROOM NOTES ON VSAM FOR SYSTEM PROGRAMMING - COURSE A3754

REVISED - JANUARY 1979
- MARCH 1979
- JUNE 1979

Dick Yezek

Sr. Marketing Support Representative
Central Region 10

Minneapolis, Minn.

Location:
611 E. Wisconsin Ave.,
Milwaukee, WI., 53202

JUNE, 1979

\is edition contains major rewrites to the first two sections, i.e.,
~~ Structure of a VSAM Catalog
VSAM Sharing in OS/VS.

If you have a previous edition of this paper, discard it and use only this one. Because this paper
represents a set of three papers consolidated into one, the page numbering is a bit awkward. Here
is a list of what you should have:
Product Notes | page.
Introduction 1 page.
The Structure of a Catalog 25 pages, numbered 1 to 25.
Sharing in OS/VS VSAM 40 pages, numbered 1 to 40.
VSAM Backup & Recovery Part 1 - 17 pages numbered 1 to 17,
Part 2 - 5 pages numbered 1 to 5.
Part'3 - 17 pages numbered 1 to 17.
Part 4 - 2 pages, numbered 1 and 2.
Part 5 - 7 pages, numbered 1 to 7.

Because of this numbering scheme, problems in reproduction have been known to occur, so please check
to be sure you have all the pages.

Product Notes.

. This course covers the VSAM product currently available in VST, SVS, and MVS systems. It does NOT
b\include a discussion of the VSAM Program Product 5746~AM2 announced for the DOS/VSE System.
he program product is commonly known as VSE/VSAM and was announced on January 30, 1979,

The following features of VSE/VSAM are not in the OS/VS VSAM system:

* kK

* k%

k% %k

‘V\

Support of the 3310 and 3370 DASD drives, which use a new fixed block architecture.
Support of new physical record sizes from .5K to 8K in multiples of .5K.

Support of the NOIMBED feature for catalogs.

Writing portable copies of VSAM clusters and volumes in Cl mode.

A new AMS command, CANCEL, which can cancel the job or job step.

The ability to specify that space remaining on a volume is to owned by VSAM.
The ability to DEFINE a cluster in a catalog without allocating any space to it.

The ability for OPEN/CLOSE to allocate/deallocate space to a cluster defined in a catalog
without space.

Improvements in SHAREOPTIONS(4, 4) that reduce path lengths and use system provided
integrity for files shared across partitions, regions, or address spaces, and in loosely-coupled
environments, between CPUs.

[temsmarked with (xxx) represent loss of compatibility between a DOS/VSE system and VS1, SVS, or MVS,
To process any one of the files described with (**%), the user will have to rebuild the item in a DOS/VSE
system using options that are compatible with VS1, SVS, or MVS; IBM does not provide any conversion
aids at the time of this writing.

Y

C

NOTES FOR VSAM FOR SYSTEM PROGRAMMING (A3754)

This handout represents a collection of notes on VSAM | wrote over several years dealing with various
aspects of VSAM, the most important of which are sharing and backup and recovery. To read this, you
need to know the basic principles of VSAM, i.e., the functioning of KSDS, ESDS, and RRDS clusters
and the AMS commands that work with them. These prerequisites can normally be met by attending
course A3750 - VSAM Coding in OS/VS, or course A3681 - VSAM-USING ACCESS METHOD SERVICES,
the VSAIA Concepts and Access Method Service Usage ISP, or equivalent experience. In addition,
some familiarity with Assembler Language is essential to understand some of the arguments advanced.
Please note that the current (January, 1979) course does not include Global Shared Resources (GSR),
Local Shared Resources (LSR), or Control Blocks in Common (CBIC). They are included in the sharing
section to remind the reader that there are other ways of doing sharing if you decide that the more
common options do not fit your situation.

While the notes are grouped into sections, | have deliberately omitted an index because | want you

to read all of these notes, if possible while you are here in class. In my experience, the most dangerous
VSAM programmer is one with a little knowledge, so | want you to read all the notes, even if you
think you are 'never' going to use that; | have heard that so many times before.

| have included some 'war' stories. They are neither contrived nor meant to scare you off; they are
meant to illustrate the bizarre logic that is implemented when, for one reason or another, sufficient

VSAM knowledge is not at hand.

About resources. You should always have access to the latest IBM publications dealing with VSAM,
Nincluding the PLMs and microfiche if necessary. | have observed that in many accounts, this need is

not recognized. If there is any question about the currency of your materials, ask your IBM representative
to check your SLSS - System Library Subscription Service - list. SLSS is a service available to users of
[BM CPUs, IBM Program Products, and other IBM equipment. Basically, SLSS means that [BM will ship
you new publications, in the quantity needed, without your ordering them. Most of the manuals are

free of charge to IBM customers, but there are specific exceptions. Again, check with your IBM
representative for details about your account.

Most larger accounts maintain a complete set of both PLMs and microfiche. Both are rather expensive
so individuals do not normally have their own sets of these things. If you are going to be the person in

charge of VSAM however, you should have your own set of VSAM PLMs.

It is best to inform your IBM System's Engineer and Program Support Representative about your plans for
VSAM. They have the latest information on announcements past the publication date of these notes and
information about APARs that might temporarily restrict your use of VSAM. [f you are a new customer,
you should remember that while IBM will assist you in determining your VSAM problems and make specific
recommendations, we do not write code unless contracted to do so through custom contracts Data Service.

Finally, this is not a course in IMS or CICS. We do not cover VSAM usage in those products, or any
other IBM products. While this course will help you solve VSAM problems in general, it is not designed
to cope with another product's specific problems. If you assumed that, you are in the wrong course and
you should call your manager and explain the situation immediately .

—.
~

‘: THE STRUCTURE OF A VSAM CATALOG

Amplification of this material can be found in the MVS Catalog Management PLM - SY26-3826.
Most of the material can also be located in the VS1 PLM - VSAM Logic, SY26-3841. However,
since VSI does not support all of the VSAM catalog options, users considering migrating to the
MVS system in the near future should obtain MVS manuals and use them in planning their catalog
requirements.

Page 1.
Disclaimer.

L_\These notes are intended for students attending the VSAM for System Programmers class, course code
A3754. The purpose is to present information that is found in many current 1BM publications in a
single paper to facilitate reading assignments in the course. The paper is not intended to be comprehensive.
Rather, it serves to allow a student to quickly assimilate the vocabulary of the catalog and some of the
philosophy behind it's design. After reading this paper, serious students responsibile for VSAM catalog
implimentation at their organizations will undoubtably consult relevant SRLs and PLMs in the field.

Basic Thoughts.

The catalog is really a specialized KSDS cluster. In fact, it has an index component, data component,
and cluster record just like a KSDS. When | first heard that, | thought to myself: "ls a catalog cataloged
in some other catalog? If so, where is the first catalog cataloged?" The answer is that no, a catalog
is NOT cataloged in some other catalog; that's why | used the word 'specialized' in the first sentence
in this paragraph. Now this takes some explaination, especially in MVS, because if any of you have
ever done a LISTCAT ALL, you know that user catalog information prints if you direct the LISTCAT to
the master catalog.
Before we get to that, there is the question of VSAM volume ownership to settle. You all know that if
you DEFINE SPACE on a volume with no VSAM space on it, the space is allocated via DADSM, but
the FMT1 DSCB in that volume's VTOC will contain a name of the form:

29999992.VSAMDSPC. Taaaaaaa. Thbbbbbb
where the acaaaaabbbbbbb is the timestamp value. The FMT1 DSCB also has it's password protect bit
turned on (even though there is no password), but more importantly, the VSAM bit is turned on in the
FMT4 DSCB on the volume and a VSAM timestamp is put in that FMT4 DSCB. Finally, a volume record
Ns written in the catalog used to do the DEFINE. A volume record is a type 'V' record in the language
of VSAM catalogs. This volume record is very important because it contains a bit map that describes
the whole volume to VSAM, NOT JUST THE VSAM PORTION OF THE VOLUME. A single bit in the
map represents a track on the volume in question. If the bit is a 'l', the track is NOT allocated to
VSAM; if it's a '0', it is allocated to VSAM. Additional fields in the volume record (called Data
Space Group Set of Fields) describe whether VSAM has used any of the space assigned to it on the
volume. [t is unlikely that all of this will fit in just one catalog record, so volume extensions, type
code W, are allocated when required and chained to the type V record.

From this point on, if you try to execute any VSAM command against our volume, it will detect the
so called volume ownership flag in the FMT4 DSCB. Then it will search the catalog controlling the
operation for the 'V' and 'W' records. If it finds them, the command will proceed; if not, the command
will be rejected on the grounds that you have violated VSAM volume ownership ! Simply stated, VSAM
volume ownership means:

- The FMT4 DSCB on the volume has the VSAM ownership flag turned on.

- The catalog in question has a type 'V' record in it with the volume's serial number.
If any other command using a different catalog is executed against our volume, it will be rejected
because the catalog will not have a matching type 'V' record.

Now, back to the question of who owns a catalog. If you try to first DEFINE SPACE on a volume and
then put a catalog in it, you can't because a catalog already owns the space by the rules described above.
You can't just DEFINE a KSDS cluster either because that requires VSAM space (except for UNIQUE
—~clusters), and | just covered that. That leaves two possibilities; either the catalog owns itself, or it is
L owned by the master catalog.

Page 2.

Now if the catalog is owned by the master catalog, we should expect to find type 'V' and ‘W' records
" in MCAT. You will not. Therefore, the catalog must own itself! This makes sense because it solves the
Lproblem of what to do with the ownership of the master catalog = MCAT owns itself also!

How a Catalog Is Defined.

To solve the problem of how you place a specialized KSDS cluster (a catalog) on a volume that is not
now owned by VSAM (no space defined on it), the AMS commands DEFINE MCAT and DEFINE UCAT
allocate both VSAM space and a catalog in that space at the same time. There are two basic ways

of doing it:
1. DEFINE UCAT(...... CYL(P,Q)......)
2. DEFINE UCAT(...... CYL(P,Q)......) -

DATA(...... REC(A,B)......)

In method one, the amount of space allocate to VSAM is 'P' cylinders and all of it is used for the

catalog.

In method two, the amount of space allocated to VSAM is still 'P' cylinders, but only ‘A’ records of

it form the catalog. The reason record allocation is chosen is that a table appears in the AMS manual
which defines the size of a catalog in records; if you use the DEFINE shown, you put the output of the
table calculation directly in the DATA component.

You can also DEFINE the index component separately if you wish, but you will see later that it doesn't
have much effect on the size of the index; if you code the index component, it's size is simply added

to the amount you specified in the data component and VSAM goes right ahead and DEFINEs the catalog

‘ according to it's internal specs.

The AMS manual also contains some formulae for estimating the size of the secondary allocation. More
about that later.

When the DEFINE is finished, you will find the following has been done:

Space will have been allocated on the volume. It will have the usual FMT1 identifier in the
VTOC, but the first qualifier will be 29999994 instead of Z9999992. The '4' indicates a

catalog is present in this space.

THE CATALOG ALWAYS OCCUPIES THE FIRST TRACKS IN THE SPACE.

The first three records in the catalog will be a type D for data component, type | for index
component, and type C for cluster component. These three form the definition of a KSDS
cluster, in this case the catalog itself. Among other things, these records contain the name
of the catalog and it's passwords if any are used.

The fourth record in the catalog (numbered 3, VSAM starts counting catalog records at zero)
will be a special type L record - the catalog control record or CCR for short. It is very
important because VSAM commands that manipulate catalogs (like REPRO) check the format
of this record to determine if the object being processed is indeed a catalog.

The next 5 records in a catalog are type E - extensions of the cluster definition. More about
these later.

-

Starting at the tenth record, you will find a type V record and the necessary type W extensions.
These describe the volume upon which the catalog resides. They also prove that the catalog
owns itself!

Page 3.

The sum of all these records is termed the catalog's Self Describing Records - SDR. Just to make sure you
got it, let's assume you are searching for a catalog and have located the volume where you think it
should be. You search the VTOC for a FMT1 DSCB that has a first qualifier of 29999994 . If you find it,
't gives the extent of the space. You then read the fourth record in the extent and it should be a type L
catalog record. If it is, you use all the other SDR to establish the proper catalog control blocks and
OPEN the catalog.

One last point. Why does the LISTCAT to the MCAT list user catalog information? Because one of the
final things done in a DEFINE UCAT is to put a single entry in MCAT called a type U - user catalog
record. A type U record NEVER implies VSAM volume ownership - it just informs the user that a user
catalog is expected to be on volume such and such. By the way, you can get a type U record placed
in MCAT by doing an IMPORT CONNECT. This is one of the few VSAM commands that is not checked;

VSAM simply takes you word that the designated volume contains a catalog .
Internal Structure.

Now that the ownership and MCAT type U record have been explained, | can begin to tell you about
those 5 special records in the SDR | skipped over previously. Now the catalog is a KSDS cluster, but
it is physically laid out defferently. It has three parts, allocated in this order:

- The low key range = LKR - which occupies about 90% of the space allocated to the catalog.

- The index set. This is always one, and only one, control area.

- The high key range =HKR - which occupies about 10% of the space allocated to the catalog.

Every record in a catalog is a keyed record, and the key always is in the first 44 bytes of the record.
The catalog then is really a keyrange KSDS cluster where the two ranges are defined as follows:

N KR x'00000000. 00000000" total of 44 bytes
x'3FFFFFFF...... FFFFFFFF'
HKR x'40000000. 00000000
x'FFFFFFFF...... FFFFFFFF’

The idea here is simple. A data set name, VSAM or nonVSAM, must have at least one character to
be coded on a JCL statement. That character collates higher than x'40' which is a blank. Thus a data
set name will always be placed in the HKR. The LKR contains all the information in the catalog about
the data set. When a name is cataloged, a LKR record is selected from a free chain maintained by
catalog management and the information is formatted and written. Now a LKR record is ALWAYS a
full Clin size, so to find it later, all you need to know is the Cl number. The Cl number is tacked
on to the HKR name entry as a 3 byte field and a total of 47 bytes is inserted into the HKR. We now
have a HKR record that has a 44 byte name and a 3 byte Cl number. The catalog information about
that entry is in the LKR at the Cl number specified in the HKR entry !

All Cls in a catalog are 512 bytes, regardless of circumstances. Therefore, a single entry in a catalog
requires a 47 byte HKR entry and a 512 byte LKR Cl for a total of 559 bytes. The size of common

catalog entries is:

KSDS Three entries, cluster, data, and index. (1679 bytes) Names omitted are supplied by VSAM.
ESDS Two entries, cluster and data. (1118 bytes) Names omitted are supplied by VSAM.

RRDS - same as ESDS. -
nonVSAM One entry - 559 bytes.

C

Page 4.

This neatly explains the 90 - 10 ratio of LKR to HKR; exactly 10 records can fit in the Cl of the HKR so
for every 10 LKR records you need exactly 1 HKR Cl. (10% of 10 is 1.) The index needs more work.

“or a catalog, the IMBED option is forced. Now IMBED imbeds and replicates the sequence set of the
index in the first track of every data component control area. This leaves only the index set of the index
component to be explained. Since a catalog cannot span volumes, the index set is expected to be very
small; in many cases it is only a single Cl. Since one track of all current supported devices holds many

512 byte blocks, one control area for the index set seems ample; after all, the index set is only higher
level index Cls. For a catalog, THE INDEX SET IS ALWAYS A SINGLE CONTROL AREA.

This brings use to the size of the control area. It is forced, just like the CISIZE, but is device dependent:
CA Size In Tracks Device

3330

3350

2305 Model 2

2305 Model 1

3340/3344

2314

OL A~ WoLw

Just for fun, let's allocate a one cylinder catalog on a 3350. Now a control area is also known as an
Allocation Unit = AU in VSAM lingo because a control area is the smallest quantity that can be
allocated during a CA split. Our 3350 holds a total of 10 AUs in one cylinder.

One AU is always set aside by VSAM for the index set, leaving 9 for the data component.

The HKR is 10% of the data component. 10% of 2 is .9, rounded high yields 1.

The remaining 8 AUs form the LKR. ’

Looking at it another way, there are a total of 9 AUs for the data. But the sequence set is always imbedded
in a catalog, so one track of every data AU is used for the sequence set. In the case of the 3350, that
leaves two tracks per AU or 18 out of the original 30 tracks for actual data. Extending this to a larger
catalog, you see that about 1/3 of the catalog space is used to house the index and 2/3 is used for data.
This means that VSAM catalogs are considerably larger than the older SYSCTLG structure, now simply
termed CVOLs - control volumes. Recalling that a nonVSAM entry in a catalog takes 559 bytes, and

that a simple entry in a CVOL might take only 60 bytes, a VSAM catalog used only for nonVSAM entries
can take 10 times the space required for CVOLs plus another 1/3 for the VSAM index !

This fact alone MUST NEVER be the sole determinator of the type of catalog you use - backup and
recovery becomes quite important as well as utility support for the catalog you eventually choose.

Most customers wind up with some of both kinds, but you should 'prove' to yourself that the VSAM

catalog will not do. More about this later.

Review.

A catalog is a specialized key range KSDS cluster with the CISIZE forced to 512, the key always 44
bytes at offset zero, and the CA size forced to 3 tracks for the common 3330/3350 devices.

The catalog is always composed of a LKR (90%), index set (one CA), and a HKR (10%) allocated in
that order.

—All LKR records occupy a full Cl (sometimes more than one); a HKR record is 47 Bytes and the the data
set name (44 bytes) and the Cl number of the associated LKR record (3 bytes).

Page 5.

Unexplained so far are the five special records in the catalog's SDR. Remember, the first three were
the type D, I, and C records that defined the catalog as a cluster and the fourth was the type L, the
L\ccfclog control record. Remembering that the Cl numbers in the LKR start with zero, we have:
CI Number Description.

0 Type D, describes the data component.

1 Type |, describes the index component.

2 Type C, cluster definition of the catalog. The catalog's passwords are here.

3 Type L, the catalog control record (CCR).

4 Type £, an extension of Cl #1, this record describes the location of the index set.

5 Type E, an extension of CI #0, this record describes the LKR. .
6 Type E, an extension of CI 1, this record describes the sequence set imbedded in the LKE
7 Type £, an extension of Cl 0, this record describes the HKR.

8 Type E, an extension of Cl f1, this record describes the sequence set imbedded in the HKP
? Type V, the volume record for the volume upon which this catalog resides.

1

0-13 Type W, these are extensions to Cl #9 as required by the device type.

The reader should understand that the three parts of the catalog can be printed quite easily using the
PRINT command of AMS. Since the FROMKEY parameter of that command supports generic keys,
you can use it to print a specific HKR record by coding:

PRINT IDS(PAY.VSAMCAT . X/PASSWORDX)FKEY (MY .DATA . SET)COUNT(1)

The IDS above is an MVS exclusive and would be coded as [FILE in VS1 and SVS. Once you read
the result of this printout, you can print the associated LKR record by coding:
PRINT IDS(PAY.VSAMCAT.X/PASSWORDX)FKEY (X'00xxxxxx')COUNT(1)

L"‘The 'xxxxxx' in the previous coding is the Cl number obtained from the HKR. The reason for the leading
byte of zeros is that all LKR records are formatted that way to force them in the LKR even if some error
in formatting should occur. You can print the SDR by omitting the FKEY and specifying a count of 14 -

the COUNT parameter starts at one, not zero. If you wanted to print just the CCR, you could specify:
PRINT IDS(PAY.VSAMCAT . X/PASSWORD)SKIP(3)COUNT(1)

It should be obvious to you that in all the above examples, PAY.VSAMCAT.X is the name of your
catalog and PASSWORD in the catalog is the master level password. If you think you have had just
about enough of the SDR for the time being, consider this actual problem.

A customer fired a system programmer who knew the master password to MCAT and all UCATs. This
programmer then used the ALTER command of AMS to change all the passwords to eight hexadecimal
characters of the form x'0001020304050607" . These are unprintable on most print train arrangements.
Of course no AMS command would print or list those passwords in hex because to print or to list the
passwords of a catalog, you must know the master password. The account spent three whole days
trying to find out what went wrong and how to fix it. How would you fix it?

Answer .
First, do a LISTVTOC of the volumes in question to locate the FMT] that has 29999994 as the first
qualifier. In VST and SVS, the master catalog will have 7.9999996 a4 the first qualifier. You now
know the location of the catalogs on their volumes. The master password of cach catalog is in C1*2.
You can use an old listing of the catalogs to determine the exact location of the master password
—in the Cl if you have such a listing; if not, you will have to use the PLMs (or the-information you
learn in this class) to figure out the layout of a type C record. (It's not too bad, but you should try
to figure one out BEFORE you have to do it.) Then, you will have to SUPERZAP the master passwords

Page 6.

in each of the catalogs to a known combination. The ALTER command of AMS can be used to change

the rest of the passwords.

Note: You can't use the master password of MCAT to ALTER passwords in a UCAT; you must know the
UCAT's passwords to ALTER them. This is also true of LISTCAT and PRINT.

Note2: See page 18 in this section for some other ways to 'fix' a catalog in today's environment.
How the Catalog Uses Its Space.

You already know that the SDR always occur first in a catalog and that the index set is physically
between the LKR and HKR. You may think that catalog manogement simply continues to assign LKR

Cl numbers in ascerding sequence as needed. Such is not the case. In a new catalog, the LKR Cl's

that remain after the SDR are generated are all chained together by a preformat routine and are called
'free' records. The chain is high to low, and the chain is anchored in the CCR at offset x'36'. The
number of free Cl's in the LKR is in the CCR at offset x'33'. Note that the exact usage of the CCR

has changed slightly from the early release of VSAM, i.e., at one time, the chaining described above
was not done unless the Cl was available due to deletion. The Catalog Management PLM still describes
the old method of using the CCR. In the present system, LKR records will be assigned from the high Cl's
down to the low ones because of the way the free records are chained together. The reason for the chain
being in the order described is to minimize seek time between the index set, HKR, and LKR. The HKR
must be used in ascending sequence, but because the index set is physically between the HKR and LKR,
the free record chaining technique will tend to group the records used daily physically close together.

If you analyze the CCR at offset x'2D' and x'30',. you will find that it contains two fields: the number

of the highest Cl number in the first extent of the LKR and the number of the 'next' free Cl that was

never assigned (preformatted). What these two fields actually do is to reserve a few Cl's for use by the
LEOV routines in case of errors encountered in extending the catalog. The reserved Cl's are not preformatted

nor are chained together themselves; they can be located by using the CCR without a chain because they

are always physically adjacent. The number reserved is currently either 2 or 3 depending on the PTF
level of VSAM.

Master Catalog vs. User Catalog.

The internal structure of MCATs and UCATs is identical. A minor difference in MVS systems is that all
catalogs will have the prefix 29999994 in their FMT1 DSCB because all catalogs in MVS are generated
on a system that already has VSAM active (i.e., MVS), and since there cannot be two MCATs in a
single system, a DEF MCAT in MVS will be changed to a DEF UCAT automatically. In VS1 and SVS,
VSAM is optional, so at the time VSAM is installed, the driving system theoretically does not have
VSAM active, so the DEF MCAT generates a 29999996 prefix in those systems. (It really doesn't matter
if VSAM is active in VS1 or SVS; a DEF MCAT in those systems generates the 29999996 prefix.)

THIS HAS NO BEARING ON CATALOG INTERCHANGABILITY IN OS/VS SYSTEMS!

In MVS, any catalog can become the MCAT, regardless of the prefix, because the MCAT is designated
via a member of the SYS1.NUCLEUS data set (SYSCATLG) rather than by a prefix.

Far more important than the Z999999x qualifier is the content of the proposed MCAT. VSI and SVS

have no MCAT requirements other than the fact that one must exist if you want to use VSAM, but MVS

does have special requirements for its MCAT. This affects the backup and recovery of the MCAT.

In a V51 or SVS system, a small MCAT can be used which contains only the UCAT connectors and the

7~SDR; if this catalog is lost, it is a relatively simple matter to construct another MCAT on some other

L/olume and connect the UCATs to it via IMPORT CONNECT. If the old MCAT is partially usable, it

can be connected to the new MCAT in a similiar mariner and data sets controlled by it can be exported.

All of this is controlled using appropiate JOBCAT/S1 EPCAT statements.

Page 7.

The MVS MCAT is quite another situation. It is the system's catalog - the one that will be used by the
schedular to handle the DISP=(, CATLG) and DISP=(, UNCATLG) parameters if no other catalog is specified.
As such, it must be online at all times, so it is allocated at IPL. IF IT CANNOT BE ALLOCATED AT |PL,
‘HE IPL FAILS!
Earlier, | stated that the MVS MCAT was located via the member SYSCATLG of the SYS1.NUCLEUS
data set. That member contains the name, volume serial number, and device type of the MCAT. This
means you cannot have a small 'duplicate’ MCAT to 'get you going' in the event of a disaster unless you
are willing to have an EXACT duplicate satisfying the requirements of SYSCATLG. While utilities
can certainly create a backup copy of your MCAT, if you plan on having this EXACT duplicate, what
will be your frequency of running your backup job in the light of the fact that the MVS schedular can
update your MCAT in MVS? In addition to this, the following are also requirements for the MVS
master catalog:

= All SYS].xxxxxxxx data sets must be cataloged in it,***

- All data sets named in LINKLIST (the concatenations to SYS1.LINKLIB) must be cataloged in it,

regardless of the first level qualifier of the concatenations.

- All data sets used in the procedure to start JES must be cataloged in it.
Up to this point, you might have decided that the only inconvenience might be buying another 3350
unit if you decide on those EXACT duplicate catalogs, or changing the names of the items in the linklists,
but let us look further into these requirements.

The MVS Page, Swap, and SMF Data Set Problem.

MVS commonly uses at least 5 page data sets and 3 swap data sets. (These are averages - the combined

maximum is 64.) Most users like to spread these out across channels and control units for performance

reasons. If a user had a total of 8 of these data sets, and put each one on a separate volume, then because

of the fact that these data sets are named SYS].xxxxxxxx, and because of the fact that they must be

available at IPL, and because only the MCAT is available at IPL, they all MUST be cataloged in MCAT!
Uut they are all VSAM clusters. Therefor, the MCAT in the example now has volume ownership to nine

volumes - itself and the eight page and swap data sets.

What this means is that if you want to place any other VSAM clusters on the nine volumes in question,

you MUST catalog the entry in the MCAT, regardless of the fact that your naming convention dictated

a UCAT, and regardless of the fact that having such entries in MCAT may complicate your backup

and recovery procedures (remember that EXACT copy you were going to keep), and regardless of the

fact that you may be forced to divulge the master password of MCAT to those doing maintenance on the

'other' VSAM clusters on these nine volumes.

There is one more data set involved with MVS paging - SYST.STGINDEX - which is a VSAM cluster.

It is quite small and can be placed on one of the volumes already owned by MCAT, usually on the MCAT

volume itself. (It is used to support journaling of VIO data sets.)

In MVS/SE Release 2, (hereafter called SE2), all SMF data sets will be specialized VSAM clusters

and will react exactly like the page and swap data sets described above. They are named SYS1.MANxx

where xx is a max of 36; it is likely that no more than 4 will ever be defined by the average user.

Unless you put these clusters on volumes already owned by MCAT, your MCAT volume ownership

problems will be aggravated by this change to SMF.

The Space Reclaimation Problem.

Since the catalog is really a KSDS cluster, the keys in the index are compressed just like any other KSDS

cluster. The keys in any index are therefore generic keys, which has great significance with respect to

catalogs. In the following example, I'm qgoing to show you logically what the sequence set looks like
Cn a catalog, and I'm going to use decimal rather then hiex to simplily thinge.,

***% Some customers have attempted to modify VSALL <o as to remove: volume ownership from the MCAT,
As fur ay | know, it work., bot with Timitations Do not attemt any mods except ay a last vesort

Page 8.

First, examine these Cls where | show only the first and last logical records.

clifo 49, 1784.. ... RDF-CIDF
u Cl#] 2106, 3824, RDF-CIDF
Cl#2 4001........ 4598 RDF-CIDF
C1#3 5005........ 5678..... RDF-CIDF

Cl#4 6342 etc.

We could build a simple index as follows: (Cl #4 is shown only for future development.)
CI Number High Key in Index

0 1784
] 3824
2 4898
3 5678

This index will work. It's the type of index used by ISAM and it will insert all records between 1784
and 3824 into Cl #1. Suppose we change the index in the following manner:
Cl Number High Key in Index

0 1999
1 3999
2 4999
3 5999

The keys shown are a type of generic key. They change the range of the numbers that 'belong to the
various Cls - all records between and including 2000 and 3999 will go in Cl #1. Why do this?
Well, in ISAM, no record deletion was permitted, so the possibility of deleting the record that
represented the high key in an index record didn't exist. But in VSAM, you are allowed to delete
record 1784. If we left the index like the [SAM system, we would have to modify the index if a
user happened to delete 1784 in my example, which implies we would ALWAYS have to check the
index on any deletion because the user might have deleted a high key.
Now if we use the generic key, and ALWAYS LEAVE IT IN THE INDEX, we will never have to
check the key on a delete. VSAM uses this technique. VSAM goes one step further - it compresses
the key in the index. Key compression is too lengthy to describe here, so just take it on faith for
the time being that the index in VSAM would appear LOGICALLY as:

Cl Number High Key in Index

0 1

1 3
2 4
3 5

This is an example of what is known as rear compression ONLY . If all the keys are generic, then
you need record only the nongeneric portion; the algorithms can fill in the proper number of 9s
based on how much of the key is missing. VSAM also employs front compression, for for studying
the catalog, you need not understand that. For a catalog, the most important idea to grasp here
is that if you delete every record between 2000 and 3999, VSAM WILL NOT CHANGE THE INDEX
ENTRY!
THE ONLY WAY TO REUSE THE SPACE ALLOCATED TO THE RANGE 2000 TO 3999 IS TO INSERT
RECORDS WITH KEYS BETWEEN 2000 AND 3999 INCLUSIVE.

—~VSAM does all of this using hexadecimal keys and the generic 'fill' character is x'FF', but the idea

‘ s the same.

C

Page 9.

Now, imagine a VSAM catalog. It has many compressed generic keys in it's sequence sets. As you
use your catalog you catalog new data sets daily and delete others from time to time. Long ago you
established a data set naming convention of A.B.C.date for all your data sets. This means that every
"new data set cataloged is ALWAYS in higher collating sequence than all previous data sets. This means
that VSAM is forced to place an entry in the LAST control interval in the HKR; if it's full, VSAM is
forced to do a Cl split because all other Cls have compressed generic keys in the index that collate
lower than your new data set.
Further, because VSAM does the insert into the HKR using direct insert strategy (split 50% of the
records), the HKR control areas will have only 25% utilization presuming you delete nothing. The
net result of all of this is that:
- If you get an error message that indicates your catalog is full, you can delete every last
data set, but if the new data set names collate higher, the catalog will still appear full
due to the compressed generic keys.

- If your data set naming convention causes new data sets to always collate higher than old
ones, your HKR can fill up 4 times faster than normal. Since there is no way to control
the size of the HKR (it's always 10% of the data component), you might be forced to
allocate a catalog 4 times larger than you really need! (The latter assumes you don't
care to reorganize from time to time.

- The is no way to reorganize a catalog 'in place', i.e., there is no way to compress a
catalog like you compress a PDS.
The only way to reorganize a catalog is.to DELETE the catalog and start over !

At this point, I'm sure you are convinced that you will NOT choose a data set naming convention that

~includes something like the date as the only distinguishing factor.

NOTE: CNVTCAT converts a CVOL by reading it in strict ascending sequence. If you use it, you
will need a HKR of 4 times the size actually required, which may mean a VSAM catalog
4 times the design size. You might be able to use the CNVTCAT command for a partial
conversion however.

If you are a VSI1 or SVS user, you are finished with this section, but you might as well read on to see
what you are going to have to consider when you move to MVS. Now you can modify your naming
conventions to fit the VSAM catalog in all respects except one = GDGs. In MVS, you don't have to
use any CVOLs at all, so VSAM must allow GDGs to be cataloged in a VSAM catalog - and GDGs
always have .GxxxxVyy as the last 9 characters of the name. Since the generation number increases
by one for most cases, GDGs cataloged in a VSAM catalog produce the problem described above.

The GDG case is a bit more problematical because you cannot afford to reorganize the catalog every
time a GDG starts using up too much catalog space, yet you have no alternative to the GDG . Of
course you can specify that a GDG is to reset to G0001 after so many iterations, but what if you
have already designed the GDG to increase 'forever'? You may not be able to change your design.

This represents one of the toughest questions you will have to answer - a question that arises from the
internal structure of the catalog. It's tough because by having one type of catalog in your system,

you can streamline recovery procedures - a very worthwile end if you have a requirement to 'get back

up in so many (fill in blank)" after a disaster. Paradoxically, because you do that, you may have

—~ to execute those procedures more frequently because of the catalog structure.

Page 10.
The Catalog Search Algorithm Problem.

Lln VS1 and SVS, the the only way any entry is placed in the SYSCTLG (now termed CVOL) is via the
“ JCL DISP parameter, the IEHPROGM utility, or the CAMLIST and related macros. Similarly, the only
way entries are placed in the VSAM catalog is via the AMS commands. Thus there are really two
separate catalog systems.
Further, if @ UCAT is to be utilized, JOBCAT/STEPCAT statements must appear in order to direct VSAM
to search those catalogs. Even if you use the CATALOG parameter in AMS commands, you must use
JOBCAT, STEPCAT, or a separate DD statement to identify the catalog you wish used.

Let's look at the following JCL, which represents a step in some job.

//STEPX EXEC PGM=IDCAMS

//STEPCAT DD DSN=VSAM,USERCAT,DISP=SHR

//DA DD DSN=VSAM.CLUSTERA, DISP=SHR

//DB DD DSN=NONVSAM.FILEX, DISP=SHR

//DC DD DSN=NONVSAM.FILEY,DISP=(,CATLG), UNIT=TAPE
//SYSPRINT DD SYSOUT=A

//SYSIN DD *

REPRO INFILE(DB)OUTFILE(DC)
REPRO INFILE(DC)OUTFILE(DA)

All VSI and SVS users would quickly agree that VSAM.CLUSTERA is in VSAM USERCAT because

Waof the presence of the STEPCAT and absence of any CATALOG directive; NONVSAM . FILEX may be
in the UCAT, MCAT, or a CVOL (they will be searched in that order); and NONVSAM FILEY will
be cataloged in the CVOL because there is no facility in VSAM in these systems to handle the DISP
parameter of JCL.

In MVS, you may have only VSAM catalogs if you wish, so MVS MUST be able to handle JCL
dispositions. The method used for this service is to add the capability of a UCAT alias to the catalog
structure. This alias entry is a single level of qualification. It is used by VSAM to 'direct' the search
of catalogs based on THE FIRST LEVEL QUALIFIER OF THE DATA SET NAME, assuming you have not
specified otherwise via JOBCAT/STEPCAT or the CATALOG parameter of AMS.

Suppose you place an alias of XXX in an MVS master catalog for the UCAT named USERX.VSAM.CAT.
Suppose further that you execute a simple step with no JOBCAT, STEPCAT, or AMS command that uses
the CATALOG parameter. If the following JCL statement appears:

//DX DD DSN=XXX.A.B,DISP=(,CATLG), UNIT=TAPE
the data set will be cataloged in USERX.VSAM.CAT because the first qualifier of the data set name
matches the alias XXX in MCAT. Let's examine the effects of that one characteristic.

- No JOBCAT/STEPCAT is needed. At the very least, a user who formerly ALWAYS used

JOBCAT/STEPCAT now needs them 'sometimes'. Just when, exactly when, are those times?

- As you might suspect, a single alias cannot point to different catalogs - only one. Suppose
your present naming convention uses a unique first level qualifier for some application
and you MUST split the entries among at least two catalogs to solve GDG problems? You
L will probably have to change your naming convention in this situation. Do you have a way
of locating all occurances of that old name?

Page 11.

To understand the implications of this alias further, it is necessary to understand that the alias can be
used for CVOLs as well as UCATs. Thus the general rule for using all catalogs, not just VSAM catalogs,
L(in the MVS system is:
The first level qualifier of a data set name controls the catalog to be used to hold the entry.

Again, let me point out that the general rule assumes there is no JOBCAT/STEPCAT, the exact opposite
of VS1 and SVS. Now if an MVS user codes the CATALOG parameter in an AMS command, it will
override all other catalog specifications; that much is the same as VSI and SVS. If an MVS user codes
no CATALOG parameter and does not use JOBCAT/STEPCAT, MVS will use the alias structure in MCAT
to select the catalog. IF NO ALIAS MATCHES THE FIRST LEVEL QUALIFIER, THE MCAT IS ALWAYS
CHOSEN. While not the same as VS1 or SVS§, this last mechandism is at least controllable via data set
names. Are there more differences? Yes, but to understand them, you need to understand the MVS
catalog search strategy .

MVS Catalog Search Strategy.

Searching for an entry already cataloged.
1. If the CAMLIST macro is executed directing the search to a CVOL, the CVOL is searched
as long as the CVOL still appears in the MCAT. (CVOL entries in an MVS master catalog
must be named SYSCTLG . Vxxxxxx. "xxxxxx' is usually the volume serial number of the CVOL.)

2. If the CATALOG parameter is coded in an AMS command, the specified catalog is searched.

3. IF JOBCAT/STEPCAT is present, the specified catalogs are searched in the order of their
concatenations. If the entry is found, the search is terminated and the MCAT is not searched;
‘ if the entry is not found, control passes to the next step.

STEPCAT overrides JOBCAT completely for a given step. If both JOBCAT and STEPCAT are
used in a step, only the catalogs named in the STEPCAT and it's concatenations will be used.

4, If the search argument is not a qualified name, go to the next step.

If the search argument is qualified, the first qualifier is extracted and used to scan a chain
of control blocks in the user's address space called the PCCB chain - Private Catalog Control
Block. If a user has accessed a catalog other than MCAT already, a PCCB will exist which
has a total of two names in it: the name of the catalog and the name of the alias used to
locate the catalog, if an alias was used at all. (JOBCAT/STEPCAT doesn't use aliases.)

If the argument matches the alias name or the first qualifier of the catalog name, the search
stops and the catalog named in the PCCB is utilized.

If there is no match, control goes to the next step. | might point out here that there may be
multiple alias entries in the MCAT for a single catalog - CVOL or UCAT - but only one of
those aliases appears in the PCCB. THIS HAS PERFORMANCE IMPLICATIONS, ESPECIALLY
IN TSO.

5. MCAT is now searched.

‘ If the data set named is not qualified, MCAT is searched for only data set entries and the

search terminates here with either a 'found' condition or an error.

Page 12.

If the data set name is qualified, the first level qualifier is extracted and the system tests to see if
it matches either:

- a user catalog with that single level name, or

- an alias to a user catalog, or

- analies toa CVOL.
If any of these are true, the true name of the catalog is extracted and matched against the
existing PCCB chain. If no match is found, VSAM goes to the MVS scheduler with a request
to dynamically allocate the catalog. This means that a new PCCB will be added to your chain
of existing PCCBs and it will contain the alias name as well as the true name of the catalog
if an alias was used to locate it; if an alias was not used to locate the catalog, the PCCB will
contain just one name, the true name of the catalog.

If a match is found on an existing PCCB, the existing PCCB indicates the required catalog is
already allocated to the job step, so it is simply searched.

ADDITIONAL NAMES ARE NOT PLACED IN THE PCCB; THE PCCB HAS ROOM FOR TWO
NAMES ONLY. ALL OTHER ALIAS SEARCHES MUST GO THROUGH THE MCAT!

Exceptions:

1.

As stated above, if a UCAT has a name AAA (single level), and you are searching for data set
AAA.QQQ, the proper catalog will be found.
If the name of the catalog is P.D.Q with an alias of AAA, the catalog will also be found.

However, if the name of the catalog is AAA.ZZZ(qualified name whose first qualifier matches
the argument of the search), the CATALOG WILL NOT BE FOUND. You must supply JOBCAT,
STEPCAT, or the CATALOG parameter in this case.

This is a performance consideration because if it was allowed, there could be hundreds or even
thousands of catalogs with the first qualifier of AAA, and all would then have to be searched
before an error was declared.

VSAM will permit you to catalog a GDG named A in the UCAT named A. In this situation,
it is obvious that the SDR of the UCAT contain a cluster record with the name A. This seems
like allowing duplicate names in the same catalog. Just remember that the true names of
GDG entries will be A.GxxxxVyy however which does not conflict with the name A.
(Internally, there will be a GDG base record with the name A which will have associations
with nonVSAM entries named A.GxxxxVyy. The exception is allowing the GDG base in

a catalog with the same name.)

Exceptions that affect both algorithms.
1.

You cannot put the MCAT in a list of concatenated DD statements to JOBCAT/STEPCAT,

nor can you name MCAT on the JOBCAT/STEPCAT itself.

While the DD statement containing the name of MCAT will be allocated, VSAM makes internal
checks on the name of the catalog. If it is the name of the master catalog, the position of the
DD statement in the user's jobstream is ignored and MCAT is searched according to the rules
stated above.

For an open catalog, the latest statistics are kept in a block allocated in common storage
called the CAXWA, It's contents are not written back to the catalog ontil VSARA By inished!
with the catalog, or until the catalog must be extended. For a simple UCAT, VSAM finishes
with it at end of step.

This implies a TSO user will have to log olf and on again before certain catalog operations
like changing alias entrics are known to ottier users.

L,

—

Page I3.

Searching for a catalog in which to place an entry.

1. If the CAMLIST macro is executed directed to a CVOL, the CVOL is used.
2. If the CATALOG parameter is used in an AMS command, the named catalog is used.
3. If a JOBCAT or STEPCAT is present, the named catalog is used.

Note that the JOBCAT/STEPCAT catalog is used EVEN IF THERE IS AN ALIAS IN MCAT
POINTING TO A DIFFERENT CATALOG!

This is quite different from the search used in locating an entry. If a duplicate name is
found in the JOB/STEPCAT, the catalog operation will fail, even though there is an alias
in MCAT that could have been used to find some other catalog.

4. If none of the above are true, then MCAT is searched as follows:
If the name being inserted is NOT qualified, it is cataloged in MCAT, barring some other
error such as duplicate name or lack of proper password.

If the name is qualified, extract the high level qualifier and proceed to the next step.

5. The qualifier is checked to see if it matches:
- a user catalog with a single level name, or
- an alias to a user catalog, or
- analias toa CVOL.
If any of these situations are true, a check is made on the PCCB chain in your address space
to determine if you have already allocated the required cataloy . If you have, it is used.
If not, the scheduler is used to dynamically allocate the catalog as described previously .

Exception.
If you are cataloging a GDG, VSAM realizes it must locate the correct GDG base record.
Even though you specified a JOBCAT or STEPCAT, VSAM will still perform the 'extended'

search described on pages 11 and 12 in an effort to locate the correct GDG base.
Where Are We Now ?

Recall that | was discussing the MVS catalog search algorithm problem, in the middle of which | digressed
somewhat to explain the MVS search algorithm. Turn back to page 10 and reexamine the JCL shown

there. Look carefully at statement DC. In VSI and SVS, the data set NONVSAM.FILEY was cataloged

in @ CVOL because those systems have two separate catalog structures; in MVS, by item #3 above, that
same data set will be cataloged in VSAM .USERCAT. Even if there is a duplicate entry in VSAM.USERCAT,
MVS will not go to the MCAT and search for an alias or anything else; in that case, MVS will return an
error .

Notice that the JCL does not work the same way so you are left with either changing the JCL or changing
the naming conventions. This was brought about by the fact that:

IN MVS, THE DISP=(,CATLG) PARAMETER OF JCL WILL BE AFFECTED BY THE PRESENCE OR
ABSENCE OF A JOBCAT OR STEPCAT STATEMENT.

"N MVS, THERE IS NO FUNCTION EQUIVALENT TO JOBCAT/STEPCAT FOR CVOLS.

C

Page 14,

The worst possible situation is a customer that must maintain two jobstreams, one for an MVS machine
and the other for @ nonMVS machine. There are several ways of dealing with the problem, and | am
going to show you some of them, but the point is, you must deal with it - it will not just go away .

Perhaps the best way is to disallow the use of the DISP=(, CATLG) parameter of JCL except for GDGs
(where MV'S makes an exception anyway). This implies that you have some 'group', probably your 'data
base' group, that is responsible for all allocations that require cataloging. The group does all the
allocations and so there is no need for the programmer to code DISP=(,CATLG). This also makes control
of data set naming conventions better.

One problem that you must address with this method is how are you going to test new JCL? Application
programmers 'integrating' components for the first time have a legitimate claim to putting new entries in
a catalog, yet the entries may be very short lived. This situation may be unwieldly unless the application
programmers have instant access to the catalog's control group. If you are forced to do testing at odd
hours, this idea may be unworkable.

Another approach can be to code DISP=(,PASS) and do the actual cataloging in a future step or you can
elect to set up previous steps to do the cataloging. Thus, you could recode the example of page 10 as:

..........

J/STEPXP EXEC PGM-=IEFBR14
//pC DD DSN=NONVSAM.FILEY, DISP=(, CATLG), UNIT=TAPE
//STEPX EXEC PGM=IDCAMS
//STEPCAT DD DSN=VSAM .USERCAT, DISP=SHR
//DA DD DSN=VSAM. CLUSTERA , DISP=SHR
//DB DD DSN=NONVSAM. FILEX, DISP=SHR
//pC DD DSN=NONVSAM.FILEY , DISP=SHR
W /SYSPRINT DD SYSOUT=A
//SYSIN DD .

REPRO INFILE(DB)OUTFILE(DC)
REPRO INFILE(DC)OUTFILE(DA)

This approach adds more overhead in that you have extra steps. Also, if the cataloging is done after
the data set is passed, you can complicate the recovery considerations for the job because if the job
fails before the cataloging takes place, you can have difficulty finding out where the allocations
are at the time of the failure. Furthermore, you will either have to provide for 'customizing' the
recovery JCL 'on the spot' because volume serial numbers will be needed in the JCL, or you will
have to execute IEHPROGM and/or AMS to force the required entries in the catalogs before the
recovery JCL is executed.

Another consideration is that there are certain situations (rare) in MVS where cataloging will not
occur unless you OPEN the data set. These situations involve tape data sets on dual density tape
drives where the density is not specified in the JCL. (The cases are fully described in the MVS
Conversion Notebook.) In those instances, IEFBR14 would not work as a method of precataloging,
but you could still use 1EFBR14 as a 'post processor' as you as you opened the data set in some previous
step.

Once the JCL is set up in this fashion however, it will function correctly in any system, without the
need for special accounting exits. This key advantage may far outweigh any of the disadvantages

‘ rentioned above.

Page 15.

Still a third idea involves writing a routine that scans the JCL as it comes in and disallows any JOBCAT

- or STEPCAT statements. (The exit is described in the SMF manual and is also referenced in the JES2 or
JES3 System Programmer's Guide.) The normal technique used in the exit is to set the DSN on JOBCATs
and STEPCATs to DSN=NULLFILE which has the same effect as DUMMY .

This technique can also be debated. On the 'pro' side, it is certainly automatic, requires no extra steps,
enforces data set naming standards, and, if done properly, will execute a VS1 or SVS jobstream with no
changes.

On the 'con' side, you have the fact that it is system dependent for one thing. It is possible that changes
to MVS could cause you to recode your exit. Further, you need a system programmer to implement

and maintain it. VWhat if this system programmer quits suddenly, just when a change to the exit is needed?
This may not be a factor if you have 25 system programmers, but what if you have only one?

Finally, there are certain AMS command which ABSOLUTELY require a STEPCAT to function, even in
MVS. What are you going to do if an application programmer needs to execute one of these commands

in the jobstream? Most answer this objection by stating that their exit examines other parameters such

as accounting fields before it disallows JOBCAT/STEPCAT. Of course the retort is once you let the cat
out of the bag (give the application programmer the proper accounting code), it can obviously be used
where it was not intended.

Protection is a kind of personal issue. Even if you use RACF, in the end it gets down to human beings
controlling the computer, so you will have to decide this one yourself. 1 favor the first idea (having a
control group) with some modifications to allow easy testing.
- Inform everyone about the JOBCAT/STEPCAT problem. Trying to hide it only causes more
trouble later.

W Allocate some packs for the exclusive use of program testing, with a separate UCAT for those
volumes.

- Allow JOBCAT/STEPCAT to the UCAT for the test volumes.
- Set up and enforce stiff penalties for testing using other catalogs.
The ISAM to VSAM Conversion Problem.

This is a relatively simple case at this point. In fact, it has already been covered, but it is such a
frequnt occurance that | thought it deserved special mention.
- An ISAM data set is cataloged in a CVOL with the name A.B.C, with A being an alias to
the CVOL in MCAT.
-~ The ISAM data set is converted to VSAM in order to use the ISAM interface. During testing,
the name should remain the same in case the test fails.

The problem is that A.B.C will have to be placed in a VSAM catalog, but the alias in MCAT of 'A' is
for a CVOL. Presumably, you can't change the alias because there are other data sets with the high level
qualifier of 'A"',

During testing, this forces you to use JOBCAT/STEPCAT, or change the name of the cluster.

If you use JOBCAT/STEPCAT, you face the DISP=(,CATLG) problem if you allow that in the testing

jobstreams.
~—1f you change the cluster name, you must change the JCL to agree with it.

owever distasteful, most customers end up changing the name.

Page 16.

Review of Key Catalog Concepts.

C

. Every catalog entry requires a separate entry is each keyrange. Thus, the minimum number of bytes

10.
1.

12.

. All KSDS clusters used compressed generic keys to form index entries. This has the effect of 'targeting

Since the IMBED option is forced, the catalog is 1/3, 1/4, or 1/5 larger than you might expect.
The choice of the fraction depends on the CA size.

used for a single logical entry is 512 + 47 = 559. In particular, this is also true for nonVSAM entries.

. The LKR cannot be split because un entry in the LKR is always a full CI. The HKR can and does split.

a specific HKR entry to one, and only one, Cl in the HKR. If it doesn't fit, a split in the HKR will
occur. If the split cannot be done, the catalog request will be rejected, regardless of space
availability elsewhere in the catalog. Thus the catalog can appear 'full' when in fact it isn't.

. There is no reorganization utility that will reclaim unused space in a catalog. The catalog must be

rebuilt in this case.

. The MCAT in MVS is required to hold the entries for the page and swap data sets, which are VSAM

data sets. This forces VSAM volume ownership to those volumes. This implies that ALL VSAM entities
on those particular volumes must be cataloged in MCAT.

If your choice of data set naming conventions causes entries in a VSAM catalog that are always in
sequence (ascending or descending), the generic structure of the compressed keys in the index will
not reuse space emptied by deleted entries.

It the severest case, the whole catalog can be empty except for 10 entries in the last HKR CI, yet
VSAM will try to place a sequential entry in that last HKR.

. The use of GDGs in MVS catalogs, where the GDGs are set up to continually increment the

generation number, use the catalog space as described in item #7 above.

GDGs that are set up to reset back to generation one at some point do reuse the space when fhn
reset occurs, but if you keep only the last 7 out of 365 generations, it will take a long time to
finally reuse the space.

. The use of the CATALOG parameter in AMS commands is known as forcing a 'directed' catalog

search and will override any search strategy in any system.

Use of JOBCAT/STEPCAT is required in VSI1 and SVS to use UCATSs; it is optional in MVS due to the
fact that MVS supports the use of alias entries in the MCAT to direct the search of UCATs.
If JOBCAT/STEPCAT is used in any system, it is also interpreted as a 'direct' or 'directed' search.

If JOBCAT/STEPCAT is used in MVS, it will not allow catalog management to search MCAT for
a possible alias to another catalog, WHEN PUTTING AN ENTRY INTO THE CATALOG.
It will search MCAT for possible alias entries WHEN TRYING TO LOCATE AN CNTRY .

Item # 11 becomes most serious when you consider that coding a DISP :(, CATLG) parameter on your
DD statements obeys the rulc laid down in item f11.

This produces the fact that a jobsteam using JOBCAT/STEPCAT in VSI or SVS'can cause different
results in MVS,

13.

14.

18.

20.

Page 7.

CVOLs cannot be named in JOBCAT/STEPCAT statements.

This means that the only way you can direct an entry to a CVOL is to name it correctly, use
[EHPROGM, or code your own program incorporating CAMLIST macro support.

This means data set naming conventions become vital in MVS.

You cannot make MCAT a 'temporary’ UCAT by naming it in a JOBCAT/STEPCAT. If you try, you
do not get an error; the DD statement naming the MCAT (it could be a concatenation) is ignored
for the purposes of catalog search strategy. (It is not ignored by allocation.)

. Cataloging a new generation of a GDG forms one of the major exceptions to the rules above. In this

case, the catalog management routines WILL search MCAT for alias entries EVEN IF JOBCAT or
STEPCAT statements are provided.

. When a JOBCAT or STEPCAT is used, a PCCB is used in the address space to indicate it's presence.

The PCCB can contain a maximum of two names - the true name of the catalog and one alias.

If your data set naming conventions utilize one of those two names, the catalog ~earch will end

in your PCCB chain; if some other name is utilized, MCAT will be scarched for additional alias
entries for the catalog that you already have allocated via your PCCB.

For performance, this means that you should use a naming convention that uses the same high level
qualifier in many data set names, and, that qualifier should be the one utilized to FIRST utilize

the UCAT or CVOL.

. If dynamic allocation is used in MVS instead of the JOBCAT/STEPCAT, the rules stated in item # 16

are the same.
ltems #16 and # 17 probably affect the TSO user most. An alias of the TSO userid greatly helps the
catalog search time.

A CVOL is allocated to an address space using PCCB logic just like a UCAT. Therefore, rules
governing it's usage are identical to those for UCATs with the exception that CVOLs cannot be
named in JOBCAT/STEPCAT statements.

. Certain catalog operations require the job to reach end of step before their presence will be detected

by others; deleting and redefining an alias is one example. (This has to do with the timing of the
CLOSE issued by catalog management to a catalog.)

Since a TSO session is viewed as one step, a TSO user will have to LOGOFF and then LOGON
again if these types of requests are to be immediately known to all other users of the system.

If a UCAT has a single level data set name, that name will itself act like an alias in MCAT and

data sets with the exact same first level qualifier will be directed to that catalog.

If the UCAT has a qualified name itself, it's first level qualifier will NOT act like an alias in MCAT.
You will have to physically issue the DEFINE ALIAS command and place alias entries into MCAT
yourself.

(I am not recommending single level names for anything. It is best to follow a single naming
convention consisting of qualified names for all, rather than grant this type of exception.)

Page 18.

What Can Go Wrong In A Catalog.

b Most of the problems surrounding this area revolve around the fact that many people continue to view
VSAM catalogs as u sort of extension to CVOL's, which were much less complicated internally. To
answer the question of catalog errors, one must first understand some basic facts about catalog processing.

The designers of VSAM wanted catalogs to be inherently sharable, so they did away with the VSAM

share options with respect to catalogs. That is why all catalogs show the share options as SHR(3,3) in

a listing, even though all catalogs are able to be shared among multiple systems. The basic implementation
of VSAM catalog sharing works as follows:

- VWhen the first VSAM catalog is opened in a system, a CAXWA is established in global
storage. (CAXWA - Catalog Auxiliary Work Area.) The CAXWA contains the number of
users of a catalog, the equivalent of the CCR, the location of the catalog's ACB, the location
of RPL's used to handle requests against this catalog, and information about the CRA if the
catalog is recoverable.

- The user that opened the catalog will receive a PCCB (Private Catalog Control Block) chained
to the active JSCB in the private area (partition, region, or address space).

- If additional users open the same catalog, the individual users each get a PCCB chained to
their active JSCB, but the CAXWA chain is not modified; instead, the count of the number
of users in the CAXWA is incremented.

- If a new catalog is opened, a new CAXWA is added to the CAXWA chain.

- Whenever a 'new' catalog is specified by a user, the chain of existing CAXWAs is always
searched first. If an existing CAXWA is located, only the PCCB is built in the user's private
area. In the case of JOBCAT/STEPCAT, the user's PCCBs determine the order of catalog search.

» - Special processing occurs if the user specifies the master catalog as the 'new' catalog. Since
L the name of the catalog is in the CAXWA, VSAM determines that it is the master and
NO ADDITIONAL PCCB IS GENERATED IN THE PRIVATE AREA. This implies you cannot
override the order of searching the master catalog by specifying it on a JOBCAT or STEPCAT.

Since all requests for a specific catalog funnel through the same CAXWA, VSAM can maintain read
and write integrity on a single CPU. To handle the case of multiple CPUs sharing a catalog, some
special processing is implemented:
- Device RESERVE/DEQ is automatic.
- All requests are handled in DIRECT mode, even if sequential access is required. (This accounts
for the relatively slow processing speed of LISTCAT.)
- Buffer refresh is forced (like SHR(4,4)), but CI/CA splits are allowed (unlike SHR(4,4)).
- A VERIFY is issued when the catalog is opened.
- The CCR contains RBA information which is used to update ARDBs (Address Range Definition
Blocks) in the case of HURBA (high used RBA) changes.
- A special EOV routine allows EDBs (Extent Definition Blocks) to be rebuilt in the case of
extent changes.
- If any request returns ‘invalid RBA', VERIFY is issued to update the ARDBs.
- The 'open for output' bit is not used for catalogs.

We are now in a position to discover what actions can cause catalog problems. | am going to assume

from this point on that you have backed up your catalog along the lines discussed elsewhere in this

handout, but [will explain some very special tools available to you in this section should your
““recovery turn out to be bad also. :

(T NO TIME SHOULD YOU EVER HOPE TO FIX A CATALOG PROBLEM WITHOUT BACKUP!

C

Page 19.

The Multi-CPU Problem.

If you place a VSAM catalog on a shared device, VSAM recognizes this by inspection of the flags in
the UCB and issues the necessary RESERVE/DEQ macros. If one system in a multi-CPU environment
failed to generate that UCB as shared, VSAM would fail to issue the required RESERVE/DEQ macros
on that CPU. Even though every machine still uses forced buffer refresh, the refresh on the CPU

that does not have the shared UCB is not synchronized properly, so the same free Cl can end up
being allocated to two different entries because the free Cl chain is controlled by the CCR, which
is now not being handled properly by the CPU without that shared UCB. The implecations of this
problem are:

- The problem can go unnoticed for long periods of time if all catalog operations take place
one one CPU. (While only one CPU theoretically modifies the catalog, secondary allocation
is dynamic for VSAM, and if it occurs on the badly designed CPU, you wind up with an
'intermittent' catalog failure problem.)

- It seems obvious that any system changes done to one CPU (like an I/O gen.) will have
to be done to all systems at the same time.

- Maintenance must be applied to all systems at the same time.

- VM users should treat their virtual machines as operating in a shared CPU environment
for purposes of VSAM catalog sharing.

The Maintenance Problem.
VSAM PTF and APAR corrections can change the interpretation of catalog fields, notably the CCR.

While this is usually documentated in the maintenance, is is usually NOT documented in the VSAM
SRLs or PLMs until the next release of the manual. This means that the people involved in applying

L\moinfenance need to be aware that VSAM maintenance may affect catalog operations. Either the

catalog should be rebuilt after major VSAM maintenance application (like the refresh release 7808),
or great care should be exercised to ascertain whether catalog internal operations have been changed.
The use of the CCR free Cl fields was changed years ago by preformatting all free Cls as explained

on page 6, but users still find catalogs that were built prior to that time in daily use. This can

result in the catalog appearing to to out of free Cls prematurely; this may be only an annoyance, but
anything that makes catalog operations more difficult should be corrected.

The 1/O Interruption problem.

To understand this problem, you should have some idea of the basic relations that exist in a catalog
for at least a simple KSDS. Let's list the relationships, omitting timestamp considerations:
- A total of 6 entries will exist for the KSDS - 3 LKR ClIs for the cluster, data, and index
components, and 3 HKR entries which tie the HKR to the individual LKR entries.
-~ The cluster record will contain an association field which ties it to each component
and each component will have a similiar field associating it with its cluster.
- The volume record will have its space map set of fields updated. Further, the volume record
has a special 'Data Set Directory' set of fields which associates the volume record with
the data sets on that volume.
- The CRA must have duplicate records for entries on its volume. These entries are tied back

to the catalog instead of having a scparate chain of associations within the CRAL However,
the volume record in the CRA describes space only on that volume and is not tied directly
back to the catalog volume record. -

Page 20.

It should be obvious that many 1/O operations will be necessay to DEFINE a simple KSDS cluster.
) For the Volume records, we must:

L Update the volume record in the CRA for the data component.
Update the volume record in the catalog for the data component.
Update the volume record in the CRA for the index component.
Update the volume record in the catalog for the index component.

For the Data component, we must:

Write the data record in the CRA,

Write the data record in the catalog.

Write the true name entry in the catalog's HKR.,

Update the catalog's CCR to reflect the usage of a free ClI.

For the Cluster component, we must:

Do the exact same operations as described under the Data component.

For the Index component, we must:

Do the exact same operations as described under the Data component.

S
/

Recalling that an update requires two 1/O operations, we get a total of 23 [/O requests to complete
the DEFINE. It would seem obvious that unless all 23 operations were complete, we would have an
entry that is only partially valid. Some key considerations are:

- VSAM will always check all associations in the catalog before attempting to process a cluster.
This checking is performed regardless of the type of processing that is going to be performed.
This means that VSAM WILL NOT DELETE AN ENTRY WHICH FAILS ANY ASSOCIATION
CHECK!

- VSAM does NOT validate the entries in the CRA every time the cluster is opened. This means
it is possible to have the CRA out of synch with the corresponding catalog records and not

| know it. This usually happens when someone restores a downlevel volume with IEHDASDR
and uses SUPERZAP to fix timestamp mismatches instead of using RESETCAT,

- If an operator cancels an AMS job in the midst of a DEFINE or DELETE operation, the partial
entry situation can occur. Note that this is true whether the operator used just plain CANCEL
or CANCEL FORCE in MVS,

- There is no AMS command which will 'fix' a partial entry.

- If you continue to use a catalog which has partial entries in it, various 'funny' things can
occur depending on when the /O sequence was interrupted. This specifically involves the
CCRrecord, i.e., two HKR entries can show the same LKR entry if the interruption occurs
just prior to updating a CCR.

The first question to answer is the one about setting up some sort of ESTAE or STAE environment that
will back out the damaged chains in the event of an operator cancel. First, you must remember that
only MVS allows interception of an operator cancel, and VSAM is supposed to be compatible at least
across OS/VS systems. But assuming that problem could be solved, the more serious case is that the
entire catalog processing is done in global storage. Since backout usually involves keeping multiple
records in storage until the |/O is validated, significant increases in the amount of global storage
tied up for a catalog operation would result. Further, these operations can result in mounts and/or
staging operations on the MSS unit, so OTHER USERS OF THE CATALOG MIGHT BE PREVENTED
FROM ACCESSING IT FOR SIGNIFICANT TIME PERIODS.
It should be noted that there is STAE/ESTAE processing in catalog management today, but it does not
solve all the problems mentioned above. IBM is investigating ways of improving the present facility,
Cbut as you can now see, the problem is much more complicated that first imagined.

Page 21.

The next question in this area involves making AMS noncancellable. (This is done by making an entry
in the PPT - Program Properties Table - in the nucleus.) The problem here is that catalog errors can
cauvse AMS commands to go into loops. Specifically, LISTCAT can go into a loop if certain catalog
sointers are inaccurate. Further, while an MVS user can cancel a noncancellable job by using the
FORCE option of cancel (other users will have to re-IPL), all of these techniques can introduce more
catalog errors than already exist, for VSAM never flushes any buffers on an abend much less a force
cancel or re-[PL!
Note that most of the problems involved with the interruption of the 1/O do not damage the catalog
to the extent it can no longer function; most of the errors involve not being able to DELETE o partial
entry which then prevents you from using that particular name until the catalog is repaired. What is
needed then is some sort of utility or utilities that will:

1. Identify the catalog problems.

2. Fix the catalog by overlaying records in the catalog.

| WANT TO EMPHASIZE A SECOND TIME THAT USE OF THE UTILITY TO OVERLAY CATALOG
RECORDS THAT | WILL DESCRIBE SHORTLY IS IN ITSELF VERY TIME CONSUMING BECAUSE YOU
MUST KNOW EXACTLY, DOWN TO THE BIT LEVEL, WHAT MUST BE CHANGED. THUS YOU
SHOULD ALWAYS USE CATALOG BACKUP AND RECOVERY TECHNIQUES INSTEAD OF THIS
METHOD IF AT ALL POSSIBLE.

Are there other ways a catalog can be damaged? Yes. Take a look at the next section.
The Catalog ENQ/DEQ Problem.

As described earlier, there are several ENQ macros executed by catalog management to control
sjpdates to the catalog and also to guarantee the integrity of the all important CAXWA and PCCB
chains. If you backup a catalog in the midst of some catalog update, the backup is obviously
potentially damaged depending on the exact sequence of catalog write operations.
- The REPRO command does not do ENQ on catalog resources.
- |EHDASDR does not do ENQ on catalog resources.]
- The ALTER REMOVEVOLUME command does not check to see if the controlling catalog is OPEN.

Since REPRO and IEHDASDR do not ENQ on catalog resources, it is possible for either of them to be in
execution while catalog operations are still not complete for @ DEFINE, DELETE, ALTER, etc. This can
result in the partial entry described above, even though all I/O operations complete successfully.

The ALTER REMOVEVOLUME situation means that the CAXWA chain can still state that a volume
with a catalog on it exists when in fact it does not. This in turn leads to 'catalog error' when a second
user (esp. in a TSO system) tries to access the now nonexistent catalog.

Note that both of these situations are not errors in the VSAM code as the REPRO is a data set utility,
not a catalog utility, so it opens the catalog as a data set, not as a catalog. The ALTER RVOL
command was specifically designed NOT to check for catalog activity as it is presumed that you are
trying to clean up a volume for which no catalog exists. Checking of VSAM controls in this case
would prevent ALTER RVOL from doing what it is supposed to do normally.

IEHDASDR is not @ VSAM utility, so there is no reason for it to check VSAM resources.

~Jhere are only two known methods for absolutely guaranteeing that there are no users of a catalog:

‘ -~ Re-IPL the system.
- Write a program to search the CAXWA chain.

Page 22.

Finding Out What Is Wrong With Your Catalog.

There are several aids which you can use to track catalog activity - keep an eye on it, so to speak.
“~The main idea here is that the best cure for catalog ills is preventive medicine. Here is a laundry [ist
of aids that can be used to moniter catalog activity:

LISTCAT

PRINT

[EHDASDR

LISTCRA

LOGREC

SMF

TRAP

USER PGM

IDACATCK

If it loops, skips a part of the catalog, or prints error messages, suspect a damaged
catalog.

Also, watch the high used RBA field for the catalog data component. If it gets near
the high allocated RBA, catalog full could be just around the corner.

This AMS command reads the catalog as a data set. You can use the FROMKEY
option to force it to print the HKR, or portions of the HKR, and either FROMKEY
or FROMADDR to print selected portions of the LKR,

Use SKIP(3)COUNT(1) to print the CCR. No capability to print the CRA however.

Use the print option to examine the catalogs SDR to locate catalog extents, passwords,
etc. This will also print the CRA.

Compares CRA records with the corresponding catalog entries.

Check for hardware problems on catalog volume. In MVS, can also check for
software problems in catalog management, VSAM logic, etc. routines.

Often the only source of just what was DEFINed, DELETEd, etc. All catalog
updates are logged in SMF.

A catalog trap exists to trap catalog return codes, etc. It is described in the Catalog
M'g't. PLM for MVS and in the VSAM Logic PLM for VS1 and SVS. Look under
'Debug Aids'.

Note that these traps are normally used in conjunction with GTF to diagnose really
difficult problems.

The user can write programs that access the catalog as a data set. The requirements
are listed in Options for Advanced Applications. In particular, MVS requires such
programs to be authorized.

Neat program available only through your IBM PSR. This probram is the property of
of IBM and is not considered part of the AMS utilities. Your IBM SE can assist you
in using this program. IDACATCK:
Performs the following checks.
Free chain.
Dead record. (LKR record not on any chain.)
HKR relationship to LKR.
LKR associations.
Gives you the following statistics.
Number of formatted records.
Number of records used in the HKR.
Number of entries of each type in the catalog.-
Number of 'unavailable' records - this amounts to the total number
of records available for HKR usage.

Page 23.

For those customers wishing to track the number of records available in the HKR, running IDACATCK
for its statistics alone is a worthwhile investment. However, even IDACATCK will not tell you if
g\cerfoin ranges in the HKR are full, i.e., diagnose the fact that GDGs are filling up certain ranges
in the catalog. [f your catalog is small, you might just be able to get by via IEHDASDR prints of the
HKR and use simple inspection of the printout. Anything more than that will require a user program.

IDACATCK will give you numerous error codes if it finds errors, and it will dump the records in error.
This means you can use the output of IDACATCK to fix the catalog IF, and only IF, you know how to
interpret a catalog record AND know what is SHOULD look like.

THIS IS MY THIRD WARNING. THE NEXT UTILITY DESCRIBED WILL ALLOW YOU TO FIX A BAD
CATALOG RECORD. THIS UTILITY DOES NOT, AND [S NOT INTENDED, TO REPLACE NORMAL
BACKUP AND RECOVERY PROCEDURES. DETERMINING WHAT CAUSED AN ERROR AND WHAT
IT HAS DONE TO A CATALOG CAN CONSUME MORE TIME THAN REBUILDING THE CATALOG
FROM SCRATCH.

The utility IDACATFX is a utility that is available through your IBM PSR and can be used to overlay
catalog records. This utility is the property of IBM and does not form part of the AMS component of
VSAM. There is no documentation in the form of manuals for either IDACATCK or IDACATEX; the
programs are self-documenting. Seek the assistance of your IBM SE in using these utilities, i.e.,

IDACATCK and IDACATFX,

IDACATFX will allow you to do the following:
- Display or Print any part of a catalog by RBA, Cl number, or data set name.

- Add records to the HKR.,
| - Delete records in the HKR or LKR. If the deleted record is in the LKR, it is put on the

free chain for you.

- A ZAP function by CI number or RBA. (It is almost the same as SUPERZAP, i.e., it
uses the VER/REP logic.

- A free chain rebuild, which will collect all records that are free or dead and put them
back on the free chain. '

Note:
A third utility called VSAMDIAG exists in the same manner as IDACATCK and IDACATFX, i.e., it is

IBM property and available only through your IBM PSR. VSAMDIAG does checking of KSDS clusters,
i.e., it checks each Cl in a KSDS for validity. During this check, it prints statistics as to the exact
amount of freespace available. While it was not designed for catalogs, and to my knowledge has not
been tested against catalogs, it may be of some use to you in establishing the amount of freespace in
your catalog.

Other useful catalog information.

1.

VN

L

One way to monitor the catalog full situation is to define a catalog with secondary space and then
watch for the secondary space to be allocated. While this should always be done to avoid a catalog
full condition, users complain that performance falls off as secondary extents are allocated.
However, if you suballocate a catalog, you can define secondary space for the catalog itself,

but omit it for the VSAM space itself.

The space map in the catalog is device dependent. This is true even for 3330 model 1 and 3330
model 11. This means that you cannot use IEHDASDR to 'copy' a catalog from a 3330 model 1 to a
3330 model 11, because the space map will show only half of the volume. (The space map is
always built to reflect the TOTAL number of tracks on a volume, not just the tracks available

to VSAM.)

The REPRO command of AMS will unload and reload catalogs, but during the reload, it reorganizes
the catalog only if the target catalog is empty. (Read 'reorganize' as rebuild the free chain.)

If you reload into a non-empty catalog, no rebuilding of the free chain takes place, so any

free chain errors already in the target will stay there.

The REPRO copycat function of MVS ends up by defining the source catalog as a normal KSDS

in the target catalog. If you fail to complete the procedure outlined in the AMS manual (which
involves deleting this KSDS) you wind up with two catalogs owning the same space.

If you now were to execute a DELETE UCAT FORCE against the target catalog (assuming you
decided you did something wrong and wanted to start over), the delete would delete both catalogs
and you wind up with nothing! T

MVS formats a new catalog on the first update to it. If the catalog is large, this preformatting
can take a long time. You can use a time of 30 seconds per cylinder on a 3330 as a first approx.

The catalog contains the location of the FMT1 DSCBs that define VSAM space. If you use a
program to reorganize your pack, making sure it doesn't physically move the actual VSAM space
is not enough. You have to make sure it doesn't reorganize the VTOC as well!

Remember that there is no dynamic deallocation of a catalog. In MVS, this means that if a
TSO user allocates a catalog, it will remain allocated until logoff. It also means that if a
TSO user defines a new catalog, it will not be usable to others until logoff because VSAM
CLOSE processing updates the statistics that indicate the new catalog can be processed.

(Until this is done, various pointers, such as the high used RBA, are still zero.) This explains
why a second user can 'see' the new catalog in the master catalog's type U entries, yet cannot
process it.

Page 25.
VSAM Catalog Performance.

By this time you should realize that you can get increased performance of any VSAM KSDS by getting
.ore buffers allocated to the right functions. Since a catalog is processed using direct techniques at
all times, this means that you need to get catalog management to allocate more buffers for the catalog
index records. However, there is no direct way of doing this. Let's examine the way catalog

management assigns buffers.

First, you specify the amount of bufferspace to be used in total on the BUFFERSPACE parameter in the
DEFINE for the catalog. BUFFERSPACE defaults to 3072, If you take the default, VSAM will do the
following:
Two RPLs will be set up. This allows two concurrent catalog requests. Each of these RPLs will
be associated with one index and one data buffer. Since all catalog Cls are 512 bytes,
this uses up 2048 bytes.
One index buffer will be set aside for the highest level index record.
One more buffer is set aside for a Cl split work area. Total is 3072 bytes.

The AMS manual states the maximum you can specify for BUFFERSPACE is 8192. (This is incorrect.)

If you code 8192 in BUFFERSPACE, VSAM will still set aside the one buffer for the highest level index
and the one for the Cl split work area. This would leave 7K.

However, since each catalog record is only 512 bytes, we can get 14 buffers out of the 7K.

VSAM will use those 14 buffers to support 7 RPLs, where each RPL uses a pair of buffers as described
above.

The reason the AMS manual lists 8192 as the maximum for BUFFERSPACE is that VSAM will NEVER
7 allocate more than 7 RPLs, but if BUFFERSPACE is larger than 8192, it will use the extra space for

dex buffers. If you specify 921¢, 2 extra index buffers will be available to handle the index set.
his will greatly improve catalog performance, because the only buffer available without this

specification for index set records is the high level index buffer. Thus the high level index must be

overlayed without this specification.

You can specify a value greater than 9216, but since most catalogs have only a few index set records,

it is doubtful that going much above 9K WI“ yield even greater throughput.

WARNING:

You should implement this only for NONSHARED catalogs. The reason is that for shared catalogs,
all buffers are refreshed as required. A large BUFFERSPACE value will aggravate the buffer refresh
times.

Page 19.

The easiest problem that you can 'see' without much thought is the case of a VSAM catalog shared
between two CPUs where the user has failed to define the proper UCBs as shared (or the operator
"mounts the pack on a unit that is set up deliberately nonshared). Obviously, VSAM does not execute
.any device RESERVE, so it is possible to have different HKR entries pointing to the same LKR ClI,
because the CAXWA in each machine contains information relating to the position of the next free
LKR CI. Even though VSAM forces buffer refresh for catalogs, it doesn't have to do a buffer refresh
to take multiple free LKR Cls off the chain, as in the case of allocation of a VSAM cluster. Thus,

if both machines happen to DEFINE a cluster at the same time, both cun refresh the CCR, get the
same result, and allocate the same free Cls.

LSHARING IN OS/VS VSAM

The following material assumes you are NOT going to use:

GSR Global Shered Resources

LSR Local Shared Resources

CBIC Control Blocks in Common

ICl Improved Control Interval processing.

However, a general knowledye of catalog structure is assumed for the portinon covering catalog
sharing in single and multiple CPU environments.

Page 1.
Shareoptions Support.

While all current COBOL and PL/1 compiliers support the latest version of VSAM (enhanced VSAM),

‘there are still some VSAM options which can be coded by the user only in Assembler. One example

is an MVS option called CBIC - Control Blocks In Common. Some IBM products like CICS, IMS, and

VSPC use VSAM options that would normally be available only in Assembler, but as of this writing

(June, 1979), none of these products offer any MORE sharing facilities than would be available using

normal VSAM.

[t is important that you understand that just because you use IMS or CICS, you are NOT absolved from
thinking about VSAM sharing if you intend to share the data bases with other programs. .

Preliminaries.

Why are VSAM statistics important? VSAM keeps statistics in the AMDSB - Access Method Data
Statistics Block ~ which you will find in the data and index catalog record. In the AMDSB you

will also find, at offset x'1C', the location of the highest level index record. When a VSAM cluster
is opened, the AMDSB is brought into storage and chained to it you will find:

- The first ARDB - Address Range Definition Definition Block - which, together with additional
ARDBs as required, sets up the range of allowable keys (implements the VSAM KRNG
parameter) along with the RBA values that control a particular range.

Open will cause another set of control blocks to be built as well:

- The EDBs - Extent Definition Blocks - which relate DASD extents to RBAs.

- The LPMB - Logical to Physical Mapping Blocks - which contain information about how
to convert VSAM RBAs to physical track addresses, i.e., MBBCCHHR.

b\low all of these control blocks are built in your partition, region, or address space (hereafter P,R, or AS)
and there is also a separate set for the index and data components. From this information, three critical
points emerge:
1. VSAM does not broadcast control block changes from one P, R, or AS to the others.
Whatever is done in one P, R, or AS is NOT reflected in the others.)
2. The key information for building the blocks is housed in the catalog. Unless the catalog
records are accurate, you cannot expect to process a VSAM cluster correctly.
3. The basic time that the catalog records are updated is CLOSE. There are exceptions, but
a cardinal rule will be that if a VSAM cluster is not properly closed, the integrity of that
cluster is in doubt.

Let's examine the AMDSB more closely. When a VSAM KSDS is loaded, the index Cls are sequentially
built, Thus, the first record in the index will be the sequence set for the first CA., When the second CA
is loaded, a second sequence set record is put into the index. However, at this point VSAM realizes
that a higher level index record is needed, so it writes the index set record in the third Cl in the index.
As more CAs are loaded, more sequence set records will be written in the index. When the time comes
to write a second index set record, VSAM will build a third level index record and write it in the next
available Cl in the index. (The basic rule is that if two index set records exist at a given level, a
higher level index set record must be built, so that the highest level in any index will be a single CI.)
Now the AMDSB records the position of that highest level Cl. If the AMDSB is not updated properly,
or if some older version of a catalog is used to process a VSAM cluster, whole sections of the cluster
may suddenly be nonprocessable. How can these things happen ?

Q!/ell, suppose you decide to concurrently insert records from two or more P, R, or AS and you use no

ontrol whatsoever. Now all users would start with the same copy of the control blocks because cach

Page 2.

copy is.built from the same catalog records. As Cl and CA splits are done by the various users, their
-individual control blocks will be updated, but their updates to those control blocks will not be reflected
tin any other P, R, or AS. Note in particular that if a CA split has occurred in one P, R, or AS, it

will not be reflected in others. This has become known as the read integrity issue, because records
in the CA that was split can suddenly appear to be unable to be reached due to the fact that the ARDBs
in all P, R, and AS have not been updated.
It is obvious that if the catalog records are updated by close, then the order of issuing the CLOSE
macros is important. However, there are two important exceptions to the rule that close updates the
catalog. These exceptions are:

1. The catalog is always immediately updated if additional space is allocated to the cluster.

2. The catalog is always updated immediately if the highest level index set record is split.

At this point, you might be a little confused between the catalog and the actual data in the cluster.
Remember, VSAM updates the cluster all right, but you can still get a no record found condition
after someone has done a simple Cl split. If you assume that the user that did the Cl split has written
all required Cls back to the data set, then you should be able to retricve the records he just inserted,
right? Not so. Remember that thing called buffer lookaside ? It states that VSAM will use buffers
associated with a string if they are flagged as valid. If you just happened to have that sequence set
record in storage along with the other guy, your copy still reflects the old Cl numbers. When you
go to retrieve the record, VSAM will use the old sequence set information, retrieve the 'wrong'

Cl, and declare a no record found condition.

My point here is that too many users feel that as long as just one user does all the updates, all

other users can read the cluster without implementing any controls at all and expect to be able to
retrieve every record that was there before a Cl or CA split.

‘or all requests, VSAM checks the RBA against the control blocks described on page 1, and if it's
higher than the high used RBA, the request is failed with a feedback code of x'20'. Thus CA splits

are more of a problem than Cl splits (except a Cl split in the last CA) because they cause numerous
records to be moved beyond your current high used RBA. (Later, you will see that there are ways to
solve this problem without resorting to reopening the cluster.) Secondary allocation is much more,
difficult because you need the additional EDBs that can be built only from catalog records. In gencral,
if secondary allocation has occurred, you will need to reopen the cluster.

You might think you have a way to solve all these problems - the VERIFY macro. However, the VERIFY
macro updates only the control blocks it sees in your P, R, or AS; it does not build additional control
blocks to represent the dynamically acquired extents by others.

At this juncture, you may say: "Well, just CLOSE and reOPEN. That will rebuild everything."
True. But, and this is a big but,
HOW DO YOU KNOW WHEN TO DO IT?
Here are some other interesting questions to ponder while you are at it.
1. How much reprogramming is required even if you are positive you know 'when'? Are you sure
you have covered every case? Have you informed every programmer ?
2. Can I recognize all necessary feedback codes in my language? COBOL does not return every
individual feedback code to the user. Will an Assembler interface be necessary?
3. Are you aware that some IBM products, notably IMS, open all clusters as output clusters,
whether they are going to be used for output or not? How will that affect your intended sharing?

(- ather than try to answer these questions now, let me go on with the introductory material.

Page 3.
Why doesn't VSAM update my AMDSB and ARDB, EDB, and all the others, at least as an option ?

gThis argument has come up again and again - anyone looking at VSAM sharing eventually asks the
question. Two facts contribute to the argument:
1. OS/VS updates ISAM DCBs by maintaining a list of them in SQA,
2. DOS/VS, using share option 4, maintains 'global' information about a particular ACB by
essentially putting the ACB and related CBs in it's GETVIZ area - like our PLPA.

Let's look at these arguments.
ISAM never allowed sequential insert capability and further, in the case of data set extension,
you were forced to use DISP=MOD which used exclusive control by the initiator to prevent
simultaneous anything ! VSAM allows sequential insert. Now sequential insert implies deferred
writing of buffers (as opposed to a direct update/insert which writes the buffers immediately).
For VSAM to 'broadcast' the results of sequential inserts would mean VSAM would have to somehow
quiesce ALL users of the cluster in ALL P, R or AS because those users could also be doing
deferred writes.

Secondary allocation in VSAM involves not only changes to existing CBs like the ARDBs, but also
creation of additional CBs - EDBs for example. ISAM never allowed any more blocks to be built -
in fact, ISAM never allowed any secondary allocation at all !

In MVS, any communication with another address space involves SRB scheduling (or some equivalent
function) due to the fact that no address space is addressable to any other address space. Further,
MVS supports both MP and AP processors, so functions like disablement cannot be used to 'simplify’
control block manipulation .

ISAM wasn't that good in the first place. If you were using in core indicies, ISAM did not do
a buffer flush on inserts - that was left to the user. VSAM does force index buffer flush on inserts,
and that helps. The point is, maybe you are doing more now with VSAM than you did with ISAM .
That's why most of you never even knew that ISAM doesn't flush it's in core indicies. .

There is no denying that DOS/VS will use a global concept in it's implimentation of share option 4,
but the DOS SRLs plainly state that read integrity is not guaranteed - only write integrity . Before
you begin screaming to get OS/VS to DOS/VS standards, how many times have you thought, BEFORE
the application was brought up, that read intrgrity was not important, only to find AFTER implementation
that read integrity 1S VERY IMPORTANT?

| might add here that OS/VS does support a global option, but not as a share option. In OS/VS, it's
called GSR (Global Shared Resources), but it involves much user coding. A new option in MVS
called CBIC (Control Blocks In Common) is also available which again involves considerable

coding on your part. These options, together with a third called LSR (Local Shared Resources) are
implemented in certain IBM program products, notably IMS/VS and CICS/VS, although not all
options are available in all products in every OS/VS system. For exact details, see your local 1BM
representative .

The VERIFY command vs. the VERIFY macro.

Since the AMS SRL indicates that the VERIFY command will update the catalog, most readers of the
~ Options for Advanced Applications SRL (GC26-3819) assume the VERIFY macro will do the same -
will not! The VERIFY command first OPENs the cluster, then issues the VERIFY macro, then CLOSEs
e cluster. It's the CLO-.S:ﬁ-I‘FT(;ru-T)erm the catalog, not the VERIFY macia . (The OPHEL iy the AMS
command also ignores warning fecdback codes; that' the reason the VIRIEY command will Hix!

Page 4.

cluster update timestamps and the 'opened for output' flags when the CLOSE is issued.) The VERIFY macro
1ply compares the content of your control blocks to what is supposed to be in the cluster. It does NOT
nerate additional control blocks for you, i.e., it will not 'find' additional extents.

The basic VERIFY macro processing consists of validating the location of the SEOFs - software end-of-
files. Perhaps a review of what a SEOF looks like is in order. Consider the CIDF at the end of each Cl.
It has two fields - the location of the freespace and the amount of the freespace. A valid CIDF can be
in one of only three states:

LOCATION AMOUNT
0 Max. This Cl is 100% freespace. '
X Y This Cl has some freespace.
RDF 0 This Cl has no freespace.

Notice that the combination of all zeros is theoretically not possible. Now, since VSAM initializes
all Cls to zeros when it writes a so called 'free' Cl, a free Cl will fall into the first case and its CIDF
will NOT be zero. A SEOF is 'initialized' to binary zeros just like a free Cl, but its CIDF is also zero!

Now let's take a look at where VSAM writes these SEOFs.

RRDS cluster. In the last Cl. If every Cl is now used, there is no SEOF,

ESDS cluster. In the last Cl. If every Cl is now used, there is no SEOF.

KSDS cluster. At the top of the last CA. If every CA is used, there is no SEOF. Note that the
Cls after the high used RBA in the last CA are formatted as free Cls,
not SEOFs.

If the cluster has key ranges, each range is treated separately.
The index, being a data set, is also treated separately.

rhe VERIFY macro processing consists is reading the theoretical SEOF for each key range and the index.
If the Cl read does not consist of a Cl of all zeros, including the CIDF, VERIFY assumes the component
has been extended and proceeds to find the new end of the cluster component by reading forward until it
either finds a SEOF or comes to end-of-extent. Note that for RRDS and ESDS clusters this means reading
each Cl after the one that was supposed to contain the SEOF, but for KSDS clusters, only the first Cl in
each following CA need be read, since VSAM ulways formats a KSDS cluster one CA at a time. If VERIFY
finds any discrepancy, your control blocks are updated, but of course these changes are not hroadcast! to
any other user. Remember that the VERIFY macro never updates the catalog - only CLOSL and EOV
processing does that. The VERIFY command of AMS can update the catalog (timestamps, SEOF location)
because it issues OPEN and CLOSE. VERIFY terminates immediately if the high used RBA is zero!*

By this time you should be painfully aware that if you wish to engage in concurrent update/insert activity,
you are going to have to do something about secondary allocation, because unless you agree to CLOSE
and reOPEN your cluster, there is no way for you to find out about secondary allocations caused by
other users. The VERIFY macro will not find them. The problem with CLOSE and reOPEN, as stated
earlier, is to determine WHEN to do them!
This leads to the problem of finding out when secondary allocation has occurred. You can find out that
YOU caused secondary allocation by using either the journaling exit or by checking for feedback code
x'04"' after a x'00" is returned in register 15 for a PUT request. But there is no macro, code, or exit that
will inform you that some other P, R, or AS caused secondary allocation. As stated previously, the only
way to find out if another P, R, or AS caused secondary allocation would be to either build the logic
—i-~*o your code (probably via ENQ/DEQ or a user coded SVC), or to use global shéred resources or CBIC.
Lmer of which represents a major undertaking. For that reason, you might begin to think of not allowing
secondary allocation for certain VSAM clusters at your installation.

* The high used RBA is zero during create mode. It i+ a0t set to a nonzero value until CLOSE. This means
you can't VERIFY a cluster that ‘hombed' during 1o 1!

Page 5.
VERIFY Command Processing in a Multi-CPU Environment.

he VERIFY command issues an OPEN for CNV processing in output mode. This means that to use it
nplies that the CLOSE will update the catalog. One of the fields updated is the 'opened-for-output'
flag in the catalog. Now if other users are opened for output in a single' CPU, the VSAM ENQ/DEQ
logic will detect that and the opened-for-output flag will not be reset.

Further, many IBM products, such as IMS/VS, always use SHR(1,x) or SHR(2,x) and always open clusters
for output regardless of the processing intended. In such an environment, the VERIFY command of AMS
would be prevented from executing simultaneously due to the share options (implemented by the ENQs).

But, if you are running in a multi-CPU environment, the ENQs issued in one CPU are not known to
other CPUs. Thus it is possible to run a command like VERIFY on one of the CPUs that has nothing
running against the VSAM cluster in question in which case the opened-for-output flag in the catalog
would be cleared. Of itself, this is not necessarily good or bad. Note that jobs that attempt to share
the cluster for output on the first CPU will still be prevented from executing due to the ENQs done on
that CPU. As long as all jobs terminate normally, no errors will be introduced. o

However, suppose the job running on the first CPU terminates abnormally . Under normal circumstances
later attempts to OPEN such clusters will return the feedback code x'74' warning the user that the
cluster was not properly closed. But in this multi-CPU environment where a program running in another
CPU has turned off the flag, the warning will not be issued and the user can start processing a cluster
for output which has errors in its catalog records. Naturally, this can introduce more errors into the
VSAM cluster; in fact, you should think of the VSAM cluster as permanently destroyed after such a
situation and initiate recovery processing.

LSAM ENQ/DEQ Processing.

To implement various share options, VSAM uses various combinations of names in the ENQ/DEQ macros.
The convention is:

Major name: SY SVSAM

Minor name: CCCAAAAX where
CCC ClI number of the catalog component record.
AAAA Address of the catalog's ACB.
X Has one of the following values:

I Inuse, i.e., input.
O In use, opened for output.
B Busy, i.e., in the process of being opened.

You should be aware of the following critical points:

- Separate ENQs are issued for each component of a cluster.

- An open for output will result in two ENQs, one using the 'I' and the other using the 'O’,
since a cluster opened for output can also do input functions.

- These ENQs are issued even if you code SHR(3,3) as they are used by catalog management
to prevent someone from deleting your cluster while you are still processing it. (If we didn't do
the ENQs for SHR(3,3), and someone deleted your cluster while you were still processing,
you would write over 'empty' VSAM space. If that space was reallocated, you would be
writing over another user's cluster !)

- Asstated earlier, ENQ/DEQ provides no protection in a multi-CPU environment .

Page ¢.

Now if you still intend to engage in the concurrent insert/update activity, you might want to limit a
user to the space currently owned. Remember, even if you do that, a CA split can still occur in the
Yurrent allocation. If you choose this route, remember also that you must be careful to specify no
econdary allocation for the cluster; specifying no secondary allocation for VSAM space alone will
NOT 'cancel' secondary allocation for a cluster as space will be dynamically allocated if required.

The effect of this limit would be to eliminate the need for close and reopen because no new EDBs

would ever be generated, but the VERIFY macro (or command, depending on the situation) would still
be necessary to handle the CA splits in the current space. One easy method here might be to implement
the VERIFY macro after a feedback code of x'10' on a retrieval - no record found - as part of your error
recovery. (This x'10" might be due to the fact that your record was moved to a new CA during a CA split,
but your ARDBs still reflect the old ranges.)

Note that the use of VERIFY requires CNV processing. If your ACB docs not allow CNV processing,

you would have to close and reopen it. Since the catalog is updated immediately on any change that
involves the high used RBA, this close and reopen would be sufficient and the VERIFY would be pure
overhead. If you anticipate many no record found conditions, either VERIFY with CNV processing or
close and reopen logic will be expensive. Remember, VERIFY must verify every key range and the index
component, so many |/Os may be required.

You could decide to eliminate CA splits as well, and then all of the overhead described above would bhe
eliminated. One way to do that is to use SHR(4,x), but that option in itself is costly because it forces

a buffer refresh on every direct retrieval, i.e., buffer lookaside is negated. Another approach is to
initialize your cluster yourself and then do only updates to 'existing' records. Still another method
might be to initialize your cluster and then delete.every record. Since the index is not affected by

mass deletions, you could insert records later and never cause any splits. This eliminates all thought

of freespace however.

=very one of the techniques described so far has something distasteful; it is really up to you to decide

just how far you want to go in VSAM sharing, but the net of it is that VSAM really doesn't provide

much in the way of sharing. | think that you should design applications with the idea that VSAM provides
nothing in the way of sharing facilities. Then, whatever meager crumbs you get will really look good

to you (and be quite helpful). The worst cases always involve users who thought VSAM was going to
provide everything.

End of Preliminaries.

Initiator Sharing. (DISP=OLD vs. DISP=SHR)

Since no VSAM cluster can be a temporary data set, the initiator is forced to perform data set name

enqueuve for all VSAM clusters according to whether DISP=OLD or DISP=SHR is coded. This is significant

because it means there will always be @ QCB/QEL for a VSAM cluster whether it is open or not. When

the cluster is opened, more ENQs will be issued as described on page 5. If you code DISP=OLD, the

initiator will guarantee that you are the sole user of that cluster on that CPU. This has the net effect of

forcing SHR(1,3) and assuming you will open for output. You must code DISP=SHR for the VSAM share-

options to take effect.

Note: DISP=OLD forces SHR(1,3) even if SHR(1,4) was coded. This can have drastic effects in a multi-
CPU environment. B B

Note2: If your program name appears in the program properties table - (PPT) - initiator data set name
enqueuing can be surpressed. This may allow more VSAM users to be online than you anticipated.

‘ The VSAM shareoptions can help you here, IF YOU CODED THE CORRECT ONES.

Page 7.
VSAM Cross Region Sharing. (SHAREOPTIONS)

‘ First, a review of some important points. Note that the discussion that follows is centered around KSDS
rocessing because it is the most difficult to control with regard to shareoptions. Users are advised to
consider RRDS and ESDS clusters, or combinations of all three types to simplify shared processing if
possible .

1. The AMDSB and the information to build ARDBs, EDBs, etc. resides in the catalog in the cluster's
D and | catalog records. OPEN builds control blocks in your P, R, or AS from this catalog
information; the catalog information itself is updated only by CLOSE, CLOSE TYPE=T, EQV,
secondary allocation, splits that change the high used RBA, and splits that change the number
of index levels in the index component.

2. If you open an ACB that has MACRF=(OUT, ...) coded, an 'opened for output' flag will be set
in the catalog at offset x'9D"' in the respective component. Since this flag is a single bit, it
cannot be used to determine the number of users opened for output. The QCB/QEL chain
described earlier is used with ENQ (......),RET=TEST to determine the status of current users.
Note that ENQ/DEQ is valid only in a single CPU or TCMP, never in a shared CPU environment.

3. The VERIFY macro never updates the catalog; only the CLOSE, CLOSE TYPE=T, EQV, and the
split processing described in point #1 above change catalog records. The implication is that
the VERIFY macro cannot be used to 'search' the catalog in an ottempt to locate additional
extents allocated by other users.

4. A CA split may or may not cause a catalog update. If the high-used RBA is changed, or if the
number of index levels is changed, the catalog is updated. Secondary space allocation also
L‘ causes an immediate catalog update. But CA splits that do not modify these items, i.e., a
CA split in space already allocated, not affecting the number of index levels or high-used
RBA, will NOT cause a catalog update.

5. The ENDREQ macro, in non-create mode, invalidates data buffers only associated with a string.
If updates occurred, the data buffers are written back first, and if the buffers are associated with
multiple strings, ENDREQ will wait for all other processing to complete before invalidating the
buffers. All buffers associated with the string are invalidated, not just the one associated with
the RPL indicated in the ENDREQ); if a sequential request is then directed at the string, all
buffers will be reprimed. The implication is that you cannot force VSAM to reread the sequence
set by using ENDREQ.

SHAREOPTIONS(1, x)

This option means VSAM will permit any number of read only users OR a single output, NEVER a
combination of the two. This guarantees that if you are the output User, you are the only user - period!
This option differs from initiator sharing in that if DISP=OLD is specified, the initiator will prohibit
the step from executing if there are other users; SHAREOPTIONS(1,x) will allow the step to begin
execution since presumably you coded DISP=SHR instead of DISP=OLD. The advantage is that a user
might be able to continue processing if you get a bad feedback code from OPEN by switching to a
different processing mode. The testing done by OPEN is straightforward:

- Issue an ENQ (...),RET=TEST to determine if there are other users of this cluster.

-~ If there are no other users, OPEN is successful regardless of ACB parameters.

‘ - If there are other users, check their QEL. If the name in the QEL ends in an 'O', a user is
opened for output and the request fails regardless of ACB parameters.
- If the QFEL name ends in an 'l', your request w.ill be honored only if your ACB indicates input only.

Note: Suppressing data set sharing in the PPT doe: 1 iOT affect the EMQOs issued by VYSAM,

Page ¢'.
SHAREOPTIONS(2, x)

This option permits any number of read only users AND one, and only one, output user. This option differs
‘onsiderably from either SHR(I1,x) or initiator sharing via DISP=OLD in that the cluster can be modified by
the output user while others are reading it. This has become known as the ‘read integrity issue', and | will
discuss it at some length because it's processing idiosyncrasies have ramifications in SHR(3,x) and SHR(4, x).
Implementation is similiar to that of SHR(I,x), i.e., the ENQ (...),RET=TEST is used to determine the
final letter in the QEL name of other users, but you are stopped only if that name ends in an 'O" and you
are also attempting to open for output.

If you are the output user, SHR(2,x) guarantees write integrity since there cannot be any other output
users, but if you are the input user, you have some liabilities. In reading the following, ALWAYS
ASSUME YOU ARE THE READ ONLY USER!

Case 1. Insert with no CI/CA split and no change of the high-used RBA.

Suppose some other user inserts a record into the Cl you now have in your buffer. If you request that record
you will get a no record found feedback code because VSAM performs buffer lookaside at the string level.
If you happened to have some other CI in memory, VSAM would have been forced to read the cluster and
would have obviously found the record. (Note that no sequence set modification has taken place, so it
doesn't matter if the new Cl you read is within the same CA.) If you are doing sequential processing,
there will of course be no indication of record not found because the sequence set is used only to locate
the Cl number to be processed; the keys in the records are NOT checked against the compressed keys in
the sequence set record.
You can ‘solve' this problem simply by issuing an ENDREQ macro after a no record found feedback code
Lcollowed by another GET. If the insert has been completed, you will get the record. Note that you have
10 way of knowing that the other user has completed the insert; all you are doing here is eliminating any

conflicts caused by VSAM buffer lookaside.

7

Case 2. Insert causing a Cl split, but no high~-used RBA change. (Not in the last CA.)

This case causes a change in the sequence set record, but no change in any catalog record. The problem
here is that the ENDREQ will not invalidate the sequence set buffer, so using it will be of no value, as
the reread will use the old sequence set information due to buffer lookaside.

Now there is no lookaside across strings in VSAM, so regardless of what other strings are doing, if you
position your string to a different CA, and then reposition back to the original CA, VSAM will be forced
to reread the sequence set. This suggests the possibility of using the POINT macro.

One problem here is that the user is not likely to know which CA is being processed, so it will be
difficult to determine the target for the POINT macros. To solve that, you could load the first CA with
junk records and always POINT to it and back, or you could process using BUFNI=1. If you have at least
two CAs, BUFNI=]1 combined with a direct GET will force the reread of the sequence set every time
without any POINT, because a direct GET always searches the index top down. With only a single index
buffer, VSAM would be forced to read the sequence set every time as the index set buffers would overlay
it on each request! IMBED and REPLICATE would be a must in this situation, but even so, the performance
implication here is drastic - a minimum of 2 extra 1/Os for every read !

IN ANY EVENT, BE SURE TO DOCUMENT WHAT YOU ARE DOING SO THAT SUBSEQUENT RELOADS
AND/OR JCL CHANGES TO NOT INVALIDATE YOUR WORK.

C

Page 9.
Case 3. Cl split in the last CA or insert into the last Cl but no secondary allocation. (High-used RBA change.

his case introduces a new problem in that your ARDB is now incorrect. Since VSAM checks your requests
gainst your ARDBs (one ARDB for each key range), it is possible for a read only user to get a feedback
code of x'20" -~ RBA not for any record in the cluster - even though the record actually exists.

You can use the VERIFY macro to 'solve' this case inasmuch as there has been no secondary allocation.
(Recall that the VERIFY macro uses only the control blocks you have now to perform the verify; it does
not read the catalog to find other extents.)

Be aware that CLOSE followed by OPEN may not be of much help here because as stated once before,
you have no way of knowing that the insert has taken place. Since the catalog is updated on a high-used
RBA change, a CLOSE followed by an OPEN would solve this problem, but at what price? Of course if
the programmer suspects that this is an isolated case, i.e., the programmer is aware that processing is
being done in the last CA and a CLOSE and reOPEN have not been done, then a CLOSE and re OPEN
are in order. The VERIFY macro is much faster, BUT THE VERIFY MACRO REQUIRES THE USE OF CNV
PROCESSING. If you are not already in CNV mode, you will have to CLOSE and re OPEN anyway !

The net result of this discussion is that if you intend to 'solve' the read integrity issue, CNV processing
can solve it a lot faster, but CNV processing is prohibited in high-level languages at this time.

[f you are the user doing the insert, you don't have to worry about either multiple string processing in
your ACB or the presence of other ACBs in your program. If you have multiple strings, VSAM provides
full integrity in handling them; if you have multiple ACBs, the ENQ mechandism described earlier

will catch errors in sharing a cluster within your program in the same way it catches errors between
_nrograms.,

case 4. CA split within the present allocation.
This is the same as Case 3 because there are no new EDBs, but the high-used RBA has changed.
Case 5. Any insert causing secondary allocation.

This case causes the catalog to be updated and requires a new EDB in your P, R, or AS for correct
processing. The ARDB controlling the key range in question must also be changed as it contains:

ARDHKRBA x'08' RBA of the Cl containing the highest key for this key range.
ARDHRBA x'0C! RBA of the next free Cl at the end of the key range.
ARDERBA x'10' RBA of the highest Cl allocated to the key range.

Other fields are updated also, but these are listed to convince you that attempting to process a cluster
with these fields in error can lead to all sorts of unpredictable results.

Is is vital for you to realize that one half of an old CA can become permanently unaddressable by you
because it is moved to a new CA which is not reflected in your control blocks. The VERIFY macro cannot
help you here because it checks only what it sees via your control blocks, and yours don't have the new
extent listed. At first glance, it would seem that a CLOSE followed by an OPEN would solve this case
as well as all the previous ones. Before you make that assumption, read on.

A certain user added CLOSE and re OPEN logic to a VSAM program that used SHR(2,x). To the dismay of
- all, the problem of missing records persisted. After exhaustive checking (via GTF traces), it was discovered
t the insert program did so many inserts that by the time the read only user executed the logic to
analyze the error and CLOSE and re OPEN, the insert program had forced a second CA split that caused
a second secondary allocation!

Page 10.

The user's first attempt at correcting this was to have the insert user recognize a CA split and issue an

STIMER for 500ms. , reasoning that 500ms. should be long enough for any read only user after these records
execute the CLOSE/OPEN logic. While this worked for a time, the user then implemented subtasking

1 the application (forgetting about the 500ms. timing factor). It was then discovered, or rather rediscovered,

that 500ms. was too great a time when 50 subtasks were involved.

To 'fix' this problem, the user decided to switch implementing ALL processing in the same address space,

doing away with SHR(2,x) completely. Unfortunately, this caused abends because the user forgot that

DEB checking catches a CLOSE issued to another tasks ACBs, so the user would up recoding the

application a third time. After that, everything worked. My point is that you just can't get away from

the fact that you need to know about VSAM sharing BEFORE you code your application !

Getting back to the oroblem of read integrity with CA splitting, you must understand that you are trying
to control an essentially serially reusable resource, and the time honored method of doing it is to use
ENQ/DEQ. But the problem with ENQ/DEQ is that of itself, it does not inform you that secondary
allocation has occurred. It will keep you from trying to retrieve a record while the insert is in progress,
but what happens after the insert is completed? The user must devise a method of communication that
is easy and that requires few, if any, restrictions, especially in MVS with its multiple address spaces.
One method is to use ENQ/DEQ like VSAM does, i.e., choose a name that means something to all
users. Then an ENQ (.....), RET=TEST could be issued to determine the status of the cluster. You would
issue the ENQ only if you failed to retrieve the required record, i.e., in your error recovery procedures.
While technically feasible, this idea has some major shortcomings:
- What will read only users do when the insert user completes processing and terminates, removing
all ENQs? :
- How will the read only users stop the insert user from doing an insert during the retrieval ?
- If OPEN/CLOSE logic is to be implemented in the error recovery procedures of both types
| of users, how many times will it be executed, i.e., what is the quality of the recognition
procedure to determine if an insert was done, is being done, etc.?
- If you are the insert user, how do you know that a split is in progress, or that secondary allocation
will be required to satisfy an insert?

Let us look at the last problem first because it will be of general interest. There is a control block called
the DIWA (Data Insert Work Area) chained to the AMB. At offset x'04', bits 0 and 1 respectively, there
are flags that indicate that a CA split is in progress and/or that a Cl split has been performed. There is
also another flag in the PLH at offset x'03', bit 5, but it is for Cl split indication only and a separate
bit is not available in the PLH for CA split. The problem with both the DIWA and the PLH is that
technically, these blocks are released after the Cl/CA split has been completed and are considered
meaningless by VSAM. (You can tell if the DIWA is 'in use' by examining offset x'01" - if in use it will
contain a x'FF' put there by a TS instruction. The only way to conclusively prove that a PLH is in use
is to follow the buffer chains and examine the flag settings in the BUFC.) At the time of writing, the
DIWA flag indicating CA split was not erased when control was returned to the user - it was erased on
the next entry to the split modules. Obviously, if you use this information in an application, you may
have to rewrite the application at a later date if VSAM decides to clear flags BEFORE returning to the
user .,
An alternative is the journal exit - JRNAD. This exit sets up register 1 to point to a parameter list, the
21st. byte of which contains a reason code. Reason code x'20" is a CA split, and is available to all users,
even though the VSAM Programmers' Guide indicates it appears only to users of shared resources. Now
VSAM could change the code to agree with the manual, but since the JRNAD is taken during a split,
vou can use JRNAD to examine the DIWA yourself! This would appear to be a 'safe' method of obtaining
; fact that a CA split has occurred.

Page 11.

Recalling that | have answered only one objection to the ENQ/DEQ logic, let me now continue with
that method. The only way to answer the other objections is to make some assumptions about the way
he insert user will issue ENQ/DEQ and proceed accordingly. Suppose, as an illustration only, the
asert user does the following:

1. ENQ Assume a CA split will always occur.

2. PUT This is the insert.

3. test This is a test in JRNAD for a CA split. If a CA split occurs, a user flag is set,

4. DEQ This DEQ is executed only if the flag set by JRNAD is off.

The read only user has agreed to code the following:

GET If successful, skip everything below.

2. ENDREQ Invalidate data buffer to prevent VSAM lookaside. Remember that in non-create mode,
the sequence set buffer is not invalidated.

3. VERIFY This handles the CA split with no secondary allocation problem. Recall that CNV
processing is required for this macro.

4. POINT This positions to a different CA so as to invalidate the sequence set buffer.
(Not needed if the RPL is same one used for VERIFY.)

5. flag Set a recursion flag to zero. This will prevent later loops.

6. GET This is the retry. If a no record found is indicated again, test the recursion flag.
If not zero, you came through here already and it's a valid no record found. If the

—

flag is off, turn it on and proceed.
7. ENQ If the ENQ indicates there has been no CA split, turn off the recursion flag and
indicate a valid no record found.. Otherwise, continue.
8. STIMER Allow for the insert to be completed.
9. refresh CLOSE and reOPEN your cluster.
L 10. Go to sequence 6.

Criticism.

The use of STIMER was described earlier, and while this should work in simple cases, the multi-tasking
implications were discussed previously. To net it out, STIMER is obviously time dependent.

Then there is the problem of the CNV mode required for the VERIFY . Unfortunately, you cannot OPEN
an ACB for CNV processing together with some other type, and since verification of a ditferent ACB

is meaningless, you either have to be willing to use CNV processing for the whole application or
define a second ACB that performs subtask sharing with the first ACB. (Either use the same DD card

for both ACBs or specify DSN sharing in hoth ACBs.) Otherwise, to issue VERIFY, you would have

to CLOSE and reOPEN your cluster.

One can debate the merits of CLOSE and reOPEN endlessly. They are very time consuming, and if they
must be used frequently, the application will be severely degraded. This would happen if the application
EXPECTS no record found as the normal return. (One such application might be searching files for police
records.) | must admit however that this is the exception. [f you decide that the frequency of CLOSE and
reOPEN is acceptable (theoretically, it is necessary only on secondary allocation), you might clect to
simply forget about VERIFY and use CLOSE and re OPEN for all no record found errors. In the above
sequence, you could then eliminate nos. 2,3,4,6,7,and 8. Sequence 10 would be a GET and a test
for the recursion flag.

.= The last criticism is idea of always issuing ENQ/DEQ if you are the insert user, eVen though you know
at 99% of the inserts will not cause any splits at all. Again, this is a question of timing. Unfortunately,
it doesn't matter if it's 99.999%; if the possibility exists, it must be provided for in the application.

Page 1727,

Rather than use the STIMER approach, a more positive idea is the use of a control record or control
file. As an example, suopose the first Cl is set aside as a control record and 'preformatted’ with a
Lsingle record that fills the entire Cl. The preformatting would remove any possibility that the Cl
B ould be split, and if you position this Cl at RBA 0, even a CA split will not move the Cl. This means
you can always retrieve this record using either a key of all binary zeros or an RBA of zero. Assuming
that your control record contains information about the number of extents in your cluster, a generalized
sequence for the single insert user would be:

1. ENQ This is an ENQ on the control record for exclusive control.
2. PUT This is the insert.
3. test If feedback code x'16' is returned with Reg. 15=0, a CA split has occurred.

If feedback code x'04' is returned with Reg. 15 =0, sccondary allocation was required.
If either of these feedback codes occur, update the control record.

4. DEQ This is a DEQ of the control record.

As far as the read only user is concerned, the most probably course of action would be to first try to
retrieve a record, and if successful all error recovery is naturally bypassed. If unsuccessful, the error
recovery routine can do the following:
1. ENQ This is an exclusive ENQ on the control record.
2. GET Retrieve the control record and test for new extents. |f new extents are indicated,
go to sequence 7.
(The ENQ is left outstanding to prevent the insert user from executing.)
3. VERIFY Assume error involves adding to end of key range.

4. GET This is a retry of the original request. If successful, the feedback code is zero.
If not successful the feedback code is not zero. In either case, continue below.
5. DEQ Allow the insert user to process.
/\' 6. exit This exit presumes the feedback code has either been modified by the error recovery
processing, or the feedback code has been set to zero by a successful retrieve.
7. refresh This is the CLOSE, followed by the OPEN and another GET.
8. Go to sequence #5.

Notice that the use of the control record eliminates any time dependencies. | have omitted the POINT
processing here on the assumption that the VERIFY is using the same ACB, i.e., CNV processing. If
that is not the case, you will need to position yourself after step #3. This logic was explained in the
previous example.

WARNING:

This logic assumes you do not intend to share the DASD between multiple CPUs that are loosely coupled.
If you need to use shared DASD, you will have to issue your own device RESERVE/DEQ logic. This

is covered later in this handout.

Final Comment on SHAREOPTIONS(2, x).

Regardless of what method you employ, there is bound to be some degradation in performance. The ENQ

facility is implemented by SVCs, and so is OPEN and CLOSE, so the addition of these macros to a

processing loop will obviously slow down your response time. You might make an assumption that each

of these SVCs require 50,000 instructions to execute (whether they do or not), and proceed from there.

It is better to inform users that their response time will be 7 seconds and come in at 4 then the other
—~way around ! .

C

Page 13.
SHAREOPTIONS(3, x)

IF YOU HAVE NOT READ ALL OF THE PREVIOUS PAGES OF THIS DOCUMENT, GO BACK AND
READ THEM NOW. SEVERAL OF THE PRECEEDING PRINCIPLES WILL BE APPLIED HERE !

—

The VSAM statement about this share option is quite simple and direct: VSAM offers no integrity
assistance with share option 3. This means that VSAM will allow multiple users to OPEN o VSAM
cluster and will allow those users to execute any properly coded macro against the cluster in any
sequence. If the user should care not to implement some sort of control, VSAM will allow two CA
splits to be in progress simultaneously . It would then be possible to actually destroy records by Cls
being overwritten by actions in some other P, R, or AS. In plain English, the added problem here
is that there is no write integrity and of course, no read integrity either.

BY DEFINITION OF SHARE OPTION 3, IT IS THE USERS RESPONSIBILITY TO PROVIDE INTEGRITY!

In dealing with this option, let me set up two restrictions which | will later attempt to remove.
1. There is no possibility of secondary allocation because the cluster was defined without it.
2. You loaded the cluster with FSPC(0,0) and filled all remaining CAs with 'dummy' records
in an attempt to prevent CA splits. (Cl splits would also be prevented as a whole Cl could
become available due to ERASEing all of its records, but the sequence set record is not
updated to indicate a free ClI except in the case of shortening or deletion of a spanned
record.)

Now it is really not possible to prevent CA splits by technique 2 above because the user can still
ALTER additional volumes into the definition of the cluster. Because VSAM allocates the primary
space quantity on every volume (yes, that's a change from DADSM), you could get more space
L)lloccfed to your cluster in this manner. While | admit it is insane to permit such antics in dealing
with critical clusters, my point is that there is no VSAM flag, option, or coding that will absolutely
prohibit this kind of thing. IT IS THE USERS RESPONSIBILITY TO IMPLEMENT EXTERNAL CONTROLS
AS WELL AS INTERNAL CONTROLS! If your external controls are a little weak, then you had better

examine your backup and recovery techniques - do they really work? Have you tested them?
Case 1. CA split is not possible due to restriction 2 above plus tight external controls.

First, | want to deal with the notion that putting a single 'high key' in the cluster will 'prevent’ inserts
that cause Cl and/or CA splits, a technique commonly employed in ISAM processing. Naturally this will
not work in VSAM because while a key of all x'FF's is allowed, that in no way prohibits either Cl or
CA splits.

Read that second restriction again. Even if you use FSPC(0,0), load a lot of dummy records, and then
ERASE the dummies later, remember that VSAM uses a compressed key in the index and that ERASE
does not cause recompression of the index. In general, every interval will still have its generic high
key in the sequence set after ERASE (the one exception deals with spanned records). It has been said to
me several times that this is a shortcoming of VSAM; | look at it as foresight, because if you consider
that many new laws relating to right of privacy have been passed which, in turn, means that data
processing cannot presume to use such things as social security number as an index, the idea of key
compression has materially reduced DASD space requirements already !

7~ This may lead you to believe that you now have generated the perfect cluster for $haring purposes -
o Cl or CA splits, no high level index extensions, no high used RBA changes, etc. Now, if you
do all this, is your cluster really USABLE? What abcut the time you are going to spind reorganizing
it when nced additional space?

Page 14.

Now | don't want you to feel it's invalid to limit VSAM features. What | want you to think about is

. the simple fact that limiting certain VSAM features can make sharing easier, but making sharing
easier has no effect if the application no longer does what it was intended to do. Further, the question
of performance is a serious one. If you must have absolutely the fastest possible response time in every
situation, then some limitations will have to be made, but it has been my cxperience that many
applications require the 'vltimate' in response time only because the user community perceives that
‘computers should be fast', not that the fast response time is actually required. If you are one of those
users who started with only one display tube which had instant response, which 'degraded' to 5 second
response time when you added the other 59 tubes, perhaps a little education is in order for those users
of the tubes. I'll bet that if you can guarantee consistent response time of say 2 seconds, most of your
users will accept it.

Now the first 'case' here is actually historical . ENQ/DEQ was used extensively in ISAM and BDAM
(BDAM offered to do the END/DEQ for the user in the BDAM exclusive control option) to handle the
situation of update but no insert. ISAM users quickly found out that they could not ENQ on the

record (as they had been doing in BDAM) because there were multiple records in one block, so they

used a system of double reads:
READ Read the block containing the ISAM record.

ENQ Usually on the first record so as to hold the block.

READ This always reread the block because ISAM had no lookaside at all.

update

WRITE No deferred writes were possible in ISAM READ/WRITE logic - it was all BISAM.
DEQ

| should point out that ISAM users tried to use QISAM for updates with in core indicies, but ran into
the same problems as the present VSAM user. The idea that ISAM was better that VSAM in this respect

‘ s some sort of myth.

If you have any ideas of using the two restrictions previously discussed and ENQ/DEQ to control
simple updates only, then you must clearly understand the following points:

1. You must ENQ/DEQ on a minimum of a Cl, not a record. This means you must either
know (or be able to compute) the Cl number, or enter into a system of double retrievals
as described above. You must do this because ENQs to different RBAs can still target the
same CI.

2. [f you plan to use the double read idea, you must deal with VSAM's lookaside feature.
Lookaside says that the VSAM system will first determine if the record in already in memory
in either a buffer associated with your string or in a buffer that is not associated with any
string. Since you have just read the record, it is highly probable that the record is in memory .
Thus, you will have to use ENDREQ to force VSAM to refresh your data buffer.

Then you can reread your record and expect to get the latest copy.

One of the easiest ways to get a Cl number, and thus eliminate the double reads, is to record the Cl
number as you load the cluster in some other data set. This idea is very old (when used with ISAM it
was known as DISAM - Direct ISAM), and forms the basis of most data base products. When compared
with the amount of time spent doing the double reads, it really isn't so bad at all, especially when
you consider that if the number of Cls in your cluster is reasonable, the ‘other' data set will be quite
small. You may be able to keep sizable portions of it in memory at all times.
Now there are some maintenance consequences. If your cluster is a KSDS, and if your controls are weak,
someone could ALTER in more volumes and permit CA and Cl splits. Once this happens, you would have
gb update the second data set with new Cl numbers for the records moved. You can quard against this
ossibility in a program which inadvertently perform- an insert by installing journaling; the journal exit
is NOT entered for every record that VSAM moves 1 iring a split however - it's entered only for the
record you are processing . Any other RBA changes r .15t be computed by the user !

Page 15.

| know my readers are going to question an 'inadvertant' insert - how could that possibly happen
when you are involved in something as heavy as sharing? Well, it did. The scenerio goes something
L—»like this. A large account assigned a task force to convert a major application, all in COBOL, from
ISAM to VSAM. Many programs were involved and testing proceeded in the normal manner - convert
one program, test it, convert a second, test it, integrate one and two and test it, etc. Now to
'get around' what the account thought was 'heavy' VSAM education, only two people involved in
the whole account (account numbered in the 100 programmer range) received any training in VSAM
at all. One of these people wrote COBOL source for native mode VSAM that was to be copied by all
the other programmers involved in the conversion .
Several months later, after many serious discussions with IBM representatives, the account claimed
that VSAM was losing data and because of that, and a few other problems like being over a year
behind on maintenance, the conversion to MVS was slowed. The day | got there, | was informed
that they had just discovered an 'inadvertant' insert buried in an error recovery routine in a 'read-
only' program. Why the chief programmer had not discovered this in initial testing is speculation .
In this particular case, journaling might have helped to detect the problem earlier, although | have
to admit that journaling might constitute a rather drastic step for this kind of problem.
My point here is: EVERYONE CONCERNED WITH AN APPLICATION INVOLVED WITH SHARING
OF ANY KIND, VSAM OR OTHERWISE, NEEDS TO BE INFORMED OF DECISIONS THAT YOU
MAKE THAT AFFECT SHARING. You just can't have uninformed people making assumptions about
how your company is using sharing .

To get back on the track, the reread method of old ISAM will still work if you agree to use ENDREQ
so as to stop VSAM's lookaside. Since you want VSAM to physically reread the Cl for you, BUFND
should be obviously set to the minimum - 2. (VSAM always reserves one data buffer for insert
_activity, so setting BUFND =2, which is the default, will not cause two Cls to be read every time.)
W, Since you are not doing inserts, you don't need to worry about index buffers at all, but | should

reiterate that two reads are twice as expensive as one - your overhead will double. While you

will not need to do any journaling, you might still want to at least consider the two data set approach
even though you are only updating. You might even go as far as using a KSDS to hold your Cl numbers
and an ESDS to hold the actual data - after all, you are only updating. (You can't use an ESDS jf
your update includes changing the length of a record and/or deletion. But those activities are

really forms of insert and one of our restrictions is no insert. Did you understand that no insert also
meant no record length change and no deletion?) The sequence of macros would he:

1. GET NUP If you are read only, you are finished. If not, continue below.

2 *SHOWCB Get the Cl (or CA) number.

3. ENDREQ Force VSAM to invalidate your data buffers.

4. ENQ On the Cl or CA previously obtained in step 2.

) GET UPD If you switched to a second string, be sure you issue the ENDREQ to this
string. If not, you must issue a MODCB* to switch from NUP to UPD.

6. PUT UPD Put the record back.

7. DEQ

* Frequent use of macros like SHOWCB and MODCB can be time consuming. You may want to
consider the use of the CBMMs (Control Block Manipulative Macros) described in the Options
for Advanced Applications. These are available only in Assembler and will require more effort
on your part, but the reduction in overhead is significant.

Page 16.

There are at least two ways that you can greatly simplify all of this if your sights can be lowered a bit.
First, you could divide your data set into key ranges and enqueue on a key range instead of going to
all the trouble of getting the Cl or CA. VSAM provides up to 255 key ranges so that means you could
L “NQ/DEQ on as small as 1/255 of your cluster without using actual Cls or CAs yourself.
If you decide to use key ranges, you should be aware of two things:
- A key range is defined by additional fields in your clusters' catalog records. This can
significantly increase the space requirement in a catalog.
- If you define a cluster with the KRNG attribute, the primary space quantity is allocated
on all named volumes at DEFINE time, not on an as needed basis.
(At least two accounts | know didn't realize that last point. Programmers coded CYL(50,50) and
KRNG and operations didn't know what happened to all the space on their 3350s. | don't want to
relate the whole story, but you can be sure people were mumbling: "It's that &*¢%S! VSAM again "

Second, you could simply enqueue on the whole cluster. If your update rate is low, this can be

a very reasonable approach, but remember, if you do this, and your update rate increases significantly,
you will probably have to do some recoding later. ANY recoding of anything to do with sharing is a
SIGNIFICANT change. Have you so informed your manager?

Case 2. ClI split can occur, but not a CA split. (You prohibit secondary allocation, but allow
FSPC. However, at load time, you force at least one record in every CA through
careful caleculation of space requirements.)

The only real change from Case 1 is that you must enqueue on a CA instead of a CI. This is due to the
fact that if you didn't, User A operating in one P, R, or AS could ENQ on Clx in CAx and User B,
operating in a different P, R, or AS could ENQ on Cly, also in CAx, and the ENQ would be O.K.

. ~in both instances. If both users then did a Cl split, VSAM would 'target' the same free Cl in the CA
for both users. Whichever user wrote back last would overwrite the other users data. Since the
sequence set is also written back during a split, the integrity of both the index and data components
is now compromised .

If you decide to ENQ on the CA, IT IS YOUR RESPONSIBILITY TO ENFORCE YOUR CONSTRAINTS !
Remember, you can add volumes to a VSAM cluster through the ALTER command without rewriting
the cluster.

Case 3. CA splits are allowed, but still no secondary allocation.

The problem here is more complex because any CA split can ‘target' the first available CA, so
enqueue on the CA is not effective. Thus two users could overwrite each other if both were involved
in a simultaneous CA split. This is more disasterous than Case 2, if more disasterous has any meaning.

You might be able to use the key range idea discussed in Case 1 at the top of this page, but you
will have to use the ORDERED attribute to prevent VSAM from searching for space on any volume
but the one assigned to that key range. Further, you will need non-overlapping volumes. However,
this will allow you to at least divide your cluster into parts. The only other way is to lock out the
whole cluster.
Another problem to consider is the use of index buffers. If BUFNI is sufficiently large, VSAM will
bring the entire index set into memory and leave it there. Now it is possible that a CA split
requested in a P, R, or AS other than your own could have necessitated an addition to the index set.
__If both users have all of the index set in memory, the change in the index set will not be noted
¢ by the user not requesting the split. Admittedly, this is unlikely in a controlled environment, but
s of this writing, there is no macro short of CLOSE and reOPEN that will force VSAM to refresh

Page 17/.

index set buffers. Since the VERIFY macro uses the normal index buffer algorithms, you cannot expect

it to refresh index buffers for you either. About the only legitimate method you can employ to force

VSAM to refresh index buffers is to simply set BUFNI=1. Then, whenever a direct request is issued

or retrieval, VSAM is forced (because all direct requests process index levels from the top down, even

if that will result in the same sequence set record as now occupies the buffer being reread) to read

the highest level of index into the buffer, then the intermediate, etc. You should definitely use
REPLICATE if you decide to set BUFNI=I; that will minimize DASD search time. It goes without saying
that good data set placement on the DASD volumes would greatly affect the performance of the application
as well.

Since there is no way short of CLOSE and reOPEN to force VSAM to refresh index buffers if BUFNI is
greater than 1 and you are using SHR(3,x), the only way you could permit simultaneous inserts from

multiple P, R, or AS is to use some type of ENQ/DEQ yourself and then signal all other users to
CLOSE and reOPEN.

Now between those two positions (BUFNI=1 or CLOSE/OPEN) there are probably a hundred ways to
handle concurrent update/insert |F YOU ENFORCE SOME LOCAL RESTRICTION. One example would
be to never add more records to your cluster than would fit in the existing levels of index, i.e.,

the highest level index Cl is never split. You could then think of using BUFNI=2 (STRNO=1) so as

to keep the highest level of index in memory. Your performance would be better, but you would

still need to signal everyone when you did a CA split so they could CLOSE and reOPEN, but the
signaling would have to be done only if there was a change in the highest level of index.

As you can tell, | am splitting hairs here. If you state you wish to do concurrent or simultaneous
inserts from multiple P, R, or AS, then let me reiterate what you must consider:

W 1. You must start with empty data buffers to prevent VSAM lookaside in the data component.
Normally, this is achieved with an ENDREQ.
2. You must start with the most recent version of the index. Since there is no VSAM macro
that will force index buffers to be invalidated, you must:
A. Use BUFNI=1 so as to force VSAM to reread all index levels. This works,
only in direct mode.
B. Use your own system of signaling such that you know if anyone else has

done a CA split. [f they have, you CLOSE and re OPEN.

3. VERIFY your cluster so that you will pick up high used RBA changes if only Cl splits
occurred in the last CA. (If you CLOSE and reOPEN, you obviously don't need this.)

4. Issue your ENQ. This probably means that you are going to look at some VSAM control
blocks so as to find out where the new record is targeted. If you decide to use regular
VSAM macros like SHOWCSB, then you will have to first condition VSAM by say issuing
a POINT, extracting the information, ENDREQ to free the VSAM RPL, ENQ on your
selected field, then the insert, etc.

5. After the insert is over, you must see to it that the buffers are actually written. This is
automatic in direct mode, but not in sequential. If you decide to use advanced options
like GSR or LSR, VSAM permits deferred writing of even direct inserts. Use of these
options (GSR or LSR) is beyond the scope of this section.

At this point, you should realize that the key element here is not really VSAM at all - it's that
signaling between P, R, or AS. Now you are going to need some information to signal:

Vi A. The number of active participants. .

L, B. Whether the participants received your signal.

Page 145.

The best way to handle such signaling is either with user written SVC routines or the control record
described in SHAREOPTIONS(2, x). If you use ENQ/DEQ, you must be able to answer the question
_of timing, i.e., how do users know when a particular operation is in progress, when it ends, and
“hat it did?

Assuming you decide to use BUFNI-1, a possible macro sequence is:

ENDREQ* Invalidate all data buffers from the last |/O operation.

VERIFY Make sure the high used RBA is correct.
POINT** Obtain information for next macro.
ENQ Indicate to others what you are about to do.

ENDREQ Force refresh of data buffers.
GET/PUT This is the update,/insert. If a GET,record is reread due to ENDREQ so you get the
latest copy. Because BUFNI=1, the index buffers are also refreshed.

DEQ

* This macro is just a 'safty valve' and is not necessary unless you have done an update GET
without the corresponding PUT and you use multiple ACBs with subtask sharing to do the VERIFY.

** You can obtain the RBA of the record by issuing a SHOWCB against the RPL. The high allocated
RBA and the RBA of the last used byte (not the same as the RBA of the last record) can be obtained
via SHOWCB against the ACB. You can also use the DIWA as explained on page 10. Recall that
VSAM may have invalidated your buffers after a request (GET NUP). Use of the DIWA may
involve recoding later if VSAM internal change.

If you decide to use BUFNI greater than 1, you will have to do something about forcing a refresh of the
~~'ndex buffers. (One method of doing this was indicated on page 11.) Before you do any of this, you

Lnighf want to think about using IMS or CICS instead. While | have no doubt that many of my readers

can code an application that runs faster than either IMS or CICS, | also know that many times the

effort involved is measured in man YEARS! Please - be honest with yourself - do you have that kind

of manpower? Do you believe IMS was written 'overnight'? | have called on some people who wanted

to write just an interface to data base products, and found that a 'simple’ job mushroomed into years

of work, not to mention maintenance.

Case 4. Secondary Allocation allowed.

This case was covered in SHAREOPTIONS(2,x) on page ? and following. The discussion there resulted
in the requirement for some kind of control record and the requirement of using CLOSE and re OPEN due
to the fact that many internal control blocks like the ARDB will have to be modified. Depending on the
complexity of your code, the response time can degrade severly - in one case it was 1000%, although
that was an exception. But you begin thinking in terms of 400 - 500%.

| point this out here because SHAREOPTION (4, x) described next also will degrade throughput, by
perhaps the same amount, but perhaps that will be acceptable if you realize that SHAREOPTION(3, x)
is not a lot faster if you have to handle all possible situations.

You can save a lot of trouble by restricting the number of VSAM options allowed, using combinations
of KSDS and ESDS, and perhaps even using RRDS if the application lends itself to fixed length records.
You must be able to enforce your restrictions however, and all code must be checked fo insure that no

- one inadvertantly used an option incorrectly. Finally, remember maintenance. Have you informed
hem about your restrictions ?

C

Page 19.

SHAREOPTIONS(4, x)

LThink back to the more difficult points we covered in SHR(3,x). What were they ?
CA splits.
SHR(4, x) prohibits all CA splits.
VSAM lookaside in direct processing.
SHR(4, x) always invalidates buffers in direct processing. Hence, VSAM refreshes the data

buffers for all direct processing.
Cl splits in the last CA, i.e., a high-used RBA change.
SHR(4, x) prohibits a Cl split if the high-used RBA would have to be changed.

While this may look like the perfect answer to all your problems, you should consider that:
1. SHR(4, x) will not do any ENQ/DEQ for you.
2. The forced buffer invalidation will degrade the performance significantly over other
share options. This must be taken into account if you plan to do a lot of direct processing.

The whole controversy in the field over share option 4 came about because of the different implementations
in DOS/VS and OS/VS. The DOS/VS system uses a 'track hold' feature of the DOS/VS system to handle
SHR(4,x). The DOS/VS system also uses the GETVIZ area which is similiar to our PLPA. The track hold
feature is not available in OS/VS systems and the GETVIZ idea is available only in MVS (at the time of
this writing) as an option called CBIC - Control Blocks In Common. Unfortunately, the overhead in the
OS/VS systems to handle the required internal manipulations is higher. This has led to people saying

that the DOS/VS share option 4 is 'faster' than the OS/VS version. This is true; where it turns out to

be very serious is in a DOS/VS to OS/VS conversion when the DOS/VS system made extensive use of
SHR(4,x).

\' | might point out that the DOS/VS manuals state that their internal techniques do not provide read
integrity - only write integrity. Switching to SHR(3,x) in OS/VS and doing some recoding would
provide both read and write integrity, but of course any recoding in a conversion simply adds to the
already big conversion, so it's tough to swallow. There is no easy answer to this situation.

You should understand the following points as well with respect to share option 4.

1. Since the data buffers will be automatically refreshed on all direct requests, there is little
value in using anything other than the minimum for BUFND. (The minimum is 2.)

2. If you attempt to do a CA split or a Cl split in the last CA (high-used RBA change), you will
get a return code of x'1C"' as a feedback code.

3. Even if you decide to use BUFNI greater than one so as to keep portions of the index set in

memory, there is no need to 'worry' about index splits because share option 4 prohibits high-
used RBA changes.

4. You can pick up sme performance in the direct processing arca if you elect to use CNV
processing. (To do that, you must code CNV in the MACRF field of the ACB and also in
the OPTCD field of the RPL.) If you use CNV processing, you obviously agree to process
the contents of a Cl yourself, so you obviously need some way to remember what is in each
Cl. Whatever way you choose, it's totally up to you.

5. You still need to do the ENQ/DEQ logic and if you allow inserts that do not change the high-
used RBA, you will need to ENQ on the CA, not the Cl. As described earlier, locating the
‘target' CA for an insert might be difficult. Again, that's totally up to you.

Page 20.

Before leaving share option 4, reflect on the fact that your major problem will be determining the proper
CA or Cl to enqueue upon. Since this ootion prevents CA solits and Cl solits that change the high -used
RBA, you can record the CA number of a record in a second cluster. Later, you can use this information
to control your ENG/DEQ logic. If the idea of two data sets does not appeal to you, you can use an old
BDAM trick to eliminate the second data set:
1. Load the cluster allowing 'n' dummy records to written in an agreed upon position in the
cluster - usually at the beginning in BDAM. In VSAM, you could put the dummies at the end
and use the read backward feature of VSAM to retrieve them later.

2. During the load, the CA/Cl information for each record is maintained in a table in memory .
At the conclusion of the load, the cluster is updated by writing the table into the dummics.
3. Retrieval consists of always retrieving the 'dummies' first and then using the CA/CI information

therein to perform the enqueue.
Your only 'liability* with this approach - if you can call it a liability at all, is you must code the
programs to load and maintain the table.

Final Comments on Cross Region Sharing.

You should realize by now that the complexity of cross region sharing will decrease exponentially as
you agree to limit the facilities that particular cluster will provide to the ultimate user. Further, if
you can predict the content of CAs, (by carefully organizing them with respect to CA and Cl size,
FSPC, IMBED, etc.), the difficulties that sharing anything, not just VSAM, will decrease. Make an
honest appraisal of the following:
~ Does the user really need all the facilities of VSAM or are you just trying to implement the
facility 'because it's there'?
- Would addition DASD storage alleviate the problems you run across, perhaps by allowing the
L shared clusters to reside on their own unique volume or volumes? If so, why not make the case
for more DASD space known clearly to your management. Mostly reasonable people will listen
to carefully prepared arguments, especially when you include statements about the complexity
and maintainability of the proposed sharing.
- Document everything well. This is the place for too much documentation instead of too little.
~ Don't make the mistake of assuming that VSAM is a data base - it is not; VSAM is an access
method. The type of recovery offered in an IBM product like IMS/VS is not offered in any
access method, VSAM included. You will be wasting everyone's time if you write letters to
IBM demanding backout and recovery to be put into VSAM so they work 'like IMS'.
Instead, set up your own backout and recovery procedures and test them thoroughly.

Cross System Sharing.

There are only two options for cross system sharing - SHR(x,3) and SHR(%,4). As with SHR(3,x),
SHR(x, 3) does nothing except allow the user to access a cluster now in use by another system.
Access to a cluster requires access to the cluster's catalog by the rules of volume ownership, so
the first questions to be considered here revolve around catalog sharing.

VSAM allows the UCATS (user catalogs) to be shared by multiple systems. You accomplish this by
doing an IMPORT CONNECT of the catalog name into the master catalog (MCAT) on the systems
you want to participate in the sharing. Even though the definition of a catalog does not allow the
SHR keyword, VSAM internally will allow catalogs to be shared betwcen systems by utilizing the

—~ standard shared DASD support. (This is the RESERVE support that users of shared DASD may be more
familiar with.) Note that VSAM does not offer any more than currently permitted by the shared DASD
option and there are certain restrictions. The restictions invole the MCAT. Simply stated:

Page 21.
- A single MCAT cannot be the MCAT of two or more operating systems.

This does not mean that a MCAT cannot be a user catalog to another system; it can. Thus the MCAT
‘of system 1 can be a UCAT to system 2 while the MCAT of system 2 can be a UCAT on system 1.

In the past, many users shared critical system libraries among multiple systems and so | am always
asked why VSAM has this restriction on the MCAT; the individuals asking the question always insist
that: "If | want to destroy my systems, why don't you let me?" These people should remember:

- IBM is committed to data integrity . We are not going to knowingly allow a simple command
like IMPORT CONNECT to have the power of destroying systems.

- In virtual systems, the critical page data sets are cataloged in the MCATS. In MVS, these
page (and also, for that system, the swap) data sets are themselves VSAM clusters with all
the volume ownership rules applied. Allowing a system to share another system's page data
sets would be an integrity exposure of gigantic proportions.

Cross System Share Option 3.

First of all, there cannot be a mixture of SHR(x,3) on one system and SHR(x, 4) on another due to the
principle of volume ownership. Now if you use SHR(x,3), VSAM does not issue any RESERVE macros
for you or any other macros. SHR(x,3) means you are on your own; a user claiming to be read only
could go right ahead and do a Cl or CA split with no warning to anyone.

You should realize that it is possible to define a PATH over a base cluster which forces read only

access. While this may be satisfactory for many, the PATH concept is not an absolute guarantee

because other users need not use the path - they can just as readily use the base cluster directly.

If you have a LCMP - loosely coupled multi-processor - you also have a set of instructions (read

b‘dire'cf/wrire direct) which you can use to communicate with the other processors; JES3 uses these
instructions extensively. However, even if you use JES3, VSAM does not use these special instructions;

you can use them yourself, but VSAM does not use them, period!

Thus, you the user are totally responsible for integrity in the SHR(x,3) situation. | have previous|y
described the complications of sharing on a single CPU. Not the least of these problems was finding

out what happened elsewhere. In a LCMP environment, you are totally responsible for all communications
between CPUs with respect to VSAM SHR(,3). For this reason, | recommend that you limit yourself

to read only users when implementing SHR(x,3).

Cross System Share Option 4.

As with cross region share option 4, this option prohibits CA splits and Cl splits that would change the
high-used RBA. Buffers are also refreshed for each request in direct processing. Now you are responsible
in this share option for issuing the RESERVE and RELEASE macros to control the actual DASD sharing;

VSAM DOES NOT ISSUE THE RESERVE AND RELEASE MACROS FOR YOU ! (VSAM will handle the
DASD sharing for catalogs, but not for user data sets.)

The net of this is that it works exactly like SHR(4,x) except that you are using RESERVE and RELEASE
instead of ENQ and DEQ. | might add that RESERVE and RELEASE lock out the entire volume, i.e.,
they work on a physical DASD unit basis, not a cluster basis. In practice, this means you need to
carefully control the content of the whole volume, not just the cluster, or else serious degradation

-~ €an occur., -
| see no need to reiterate all of SHR(4,x) here; the rules would be the same for SHR(x, 4) as well.
As of the time of this writing, there is no difference between SHR(3,4) and SHR(4,4) for the user.

-

Page 22.

As a final note here, you should be aware that the RESERVE macro puts flags in the UCB; it does not
modify the channel program. When the channel program is executed by 10S, the flags in the UCB are
recognized and 10S does the actual reserve. Obviously, if the channel program is not executed the
reserve is never set. At least one user tested his program by using //X DD DUMMY statements.
Since no actual 1/O is done for a DUMMY data set, the RESERVE/RELEASE logic was never tested.

When the program used real 1/O, well, you know what happened.
ESDS, RRDS, and the Share Options.

| deliberately left ESDS and RRDS clusters out of the sharing discussions so far because | wanted you
to 'get into' the problems associated with sharing a KSDS cluster. Now neither an ESDS nor an RRDS
cluster has an index component, so if you could use these types of clusters, a major part of your
coding could be simplified.

Earlier, | mentioned using two clusters handle the problem of keeping track of the location of a
record in a Cl. Well, if the cluster was an ESDS cluster, you could easily keep track of a record's
RBA by putting the record's key in a very small KSDS along with it's associated RBA. Since the KSDS
would be small, the chance of splits would be much reduced, and even if you totally lost the KSDS,
you could rebuild it quickly by simply reading the ESDS. Data base products like IMS/VS use these
techniques extensively. If the 'key' in the KSDS is compact and numeric, you could substitute RRDS
for the KSDS which would be even better since there is no index component in an RRDS.

This technique would offer you practically unlimited expansion through VSAM's powerful secondary
allocation facilities and you could also ALTER in more volumes as you need them without reorganization.
Compare that to ISAM! You would also retain the capability of using records of varying size. You

W Would lose the deletion facility of KSDS however; no deletion is possible in ESDS except a logical

deletion that you could implement through a flag of your own design. This means that if you wanted
te reclaim space occupied by deleted records, you would have to reorganize the KSDS/ESDS or
RRDS/ESDS combination. | suppose you can look upon that need for reorganization as some sort of
negative, but if you are negative to begin with, this whole paper will be a negative to you so |
need not say any more. | don't think it's a negative. In fact, if you organize you backup cycle

on reasonable terms, you reorganization can be fit in nicely into that backup cycle to produce a
neat package.

The RRDS cluster offers some interesting facilities. While you cannot use an RBA to retrieve a record
in an RRDS cluster, you can use the generic form of the relative record number because the relative
record number is treated as a key, not an RBA. You can also delete a record in an RRDS cluster.
On the other hand, the RRDS cluster is limited to true fixed length records. Note that if you used
an RRDS/ESDS combination, you could use the generic key capabilities of the RRDS cluster to aid
you in locating the RBA of the record in the ESDS cluster. Since the purpose of the RRDS in this
case is to 'index' the ESDS, all the entries in the RRDS would be fixed length - a perfect case for
RRDS.

Now both the KSDS and RRDS could need to be extended in these situations, so the rules discussed
previously about ENQ/DEQ would still apply as would all the share options. But the KSDS and RRDS
clusters should be quite small, simplifying the ENQ/DEQ logic. (You could ENQ on the whole cluster
if it's small and the number of extensions correspondingly small.) But beyond that, a major advantage

~ is that even if you lost your 'index' totally, you can rebuild it by simply reading-the ESDS!

Think about that!

Page 23.

Multi-tasking and Sharing.

Before getting into this, let me state that | am asuming that you are going to use just one string in ‘1
each ACB for the time being. This means you coded STRNO=1 in the ACB and your code doesn't ‘!
cause a dynamic string addition to be done. The actual sharing is controlled by the parameters |
DDN and DSN in the ACB. Three cases are possible. \
1. You use a single DD statement for all ACBs. The coding of DDN or DSN in the ACBs |
doesn't matter if you do this - they are equivalent.
VSAM will provide full integrity in this case. .'
2. You use multiple DD statements, but the DSN parameter on the DD statements reflects the '
same data set name. Further, you coded DSN sharing in the ACB.
VSAM provides full integrity in this case also.
3. You use multiple DD statements, but code DDN sharing in the ACB.
VSAM uses the options coded in the SHR parameter to control this situation, i.e., this
is identical to sharing cluster between P, R, or AS.
Since this was treated previously, and all the same rules apply, it will not be treated now.

Cases 1 and 2 are what most people mean when they use the term 'multi-task sharing'. The basic
implementation of multi-task sharing is to chain your AMB to the AMBs of existing users through the
AMBL. (AMB is Access Method Block and AMBL is Access Method Block List.) This is key because

in doing the chaining, the buffer pool of the original user is utilized for all of the chained AMBs.
Since the integrity flags are maintained in the BUFC, and since there is a single set of BUFCs, VSAM
can offer full integrity within the P, R, or AS.

Let us assume you are using either case 1 or case 2. Now even though you coded STRNO=1 in each

b’F your ACBs, the net effect of your sharing of the buffers is as if you had one ACB with multiple !
strings. If you keep that in mind, the rest of this will be easier. (VSAM builds all necessary control
blocks, including required BUFCs, when you OPEN the ACBs.)

One of the first things that is difficult for a beginner is the concept of dynamic string addition vs.
exclusive control of a string. When a beginner first hears about dynamic string addition, the feeling
is that 'l can't code anything wrong - if | do, VSAM's dynamic string addition will fix it for me'.
This question is more easily answered if you first consider what exclusive control means in VSAM
sharing within a P, R, or AS. Suppose you have two strings and one of them issues a direct GET for
update. The sequence set is scanned, the Cl read into an available data buffer and the BUFC associated
with that data buffer is marked 'in exclusive control'.

When the second string also requests a record for update in that Cl, the VSAM lookaside routines will
find the buffer (actually the BUFC) marked 'in exclusive control'. Since VSAM understands that to
mean that an update is going to occur for that Cl, and since reading another copy of that Cl into
memory could cause an integrity violation as described in the previous discussion of share options,
VSAM will return a feedback code to the second requestor (x'14) informing that requestor that the
record (actually the Cl) is in the process of being updated. Presumably, the application is coded

to handle such a situation.

Note that dynamic string addition cannot be used to solve this 'problem' because rereading the same
Cl into some other buffer doesn't change the fact that the Cl is in the process of being updated.
Dynamic string addition is useful only when an entirely new request is presented to VSAM - a request
that could be serviced except for the lack of buffers and associated control blocks.

C

Page 24.

The next hurdle is: "Why not let VSAM do all dynamic string addition? I'll code to handle the exclusive
control, but fet VSAM handle the STRNO automatically." When the STRNO is grater than 1, VSAM
allocates the control blocks and buffers in contiquous storage. If dynamic string addition is performed,
the extra control blocks and buffers are not necessarily contiguous with the first set. Since some ol these
control blocks, and of course the buffers themselves, must be page fixed for 1, O, the performance of
your application could be degraded due to excessive page fixing if dynamic string addition was used.
The net of this is that there is nothing like knowing what you are doing, calculating the proper
requirements, and identifying them to VSAM. This is a little off the subject | suppose because | stated
earlier that each ACB had only ore string in my example, but the technique is perfectly general so |
thought I'd review it here because | always get a lot a questions about this subject.

Are there any liabilities in multi-tasking or multiple string VSAM sharing?

Yes. When you OPEN a VSAM cluster, OPEN builds a DEB for each component of your cluster on
your task's DEB chain. Now VSAM doesn't make much use of these DEBs, but the OS/VS system expects
them to be on the proper TCB chain when you either CLOSE the cluster or abnormally terminate.
A CLOSE issued against a cluster from the wrong task will ABEND because CLOSE processing checks
to see if the DEB is properly chained to your task. The problem comes up like this:
- An old application is converted from ISAM to VSAM.
- The old application allowed everyone to define their own DCBs.
- The old application had a number of service routines provided by the main task so that
users didn't have to recode a lot of duplicate instructions. The service routines invariably
include 1/O routines.
- To OPEN and CLOSE the ISAM data sets, the users may or may not invoke the service
routines. (The usual case is that they invoke the service routine for OPEN so as to
inform the main task that they exist, but are allowed to CLOSE by issuing their own CLOSE.)
In all the cases of this | have delt with, all the users admitted that their code was poor and represented

'quick and dirty* fixes to past problems, yet VSAM was totally 'blamed* for their recading difficulties.
As a matter of fact, this is not a VSAM problem at all - it's not even a problem. [t's an operating
system that has closed some of the loopholes.

The implication here is that if you do multi-task sharing, you must CLOSE the ACB from the same
task that OPENed it. At least one user implemented a system of his own control blocks, but failed
to intercept abnormal subtask terminations. His service routines would eventually try to CLOSE the
ACB for the now non-existent task, causing an ABEND of the main task. Another user realized
that some type of inter-task communication was necessary, but he didn't want to cnde it, so he put
all the ACBs in the main task and passed their addresses to the subtasks. The main task OPENed and
CLOSEd all right, but he found that subtasks would abend leaving buffers in exclusive control.
(Since there was no DEB on the subtasks DEB chain, no CLOSE was issued in abnormal termination.)
Further, since he didn't know how many tasks were up, dynamic string addition was adding as many
as 50 extra buffers at a time. Experiments with STIMER to limit a subtask's access to the VSAM ACBs
was fruitless and the application is now run with the understanding that it will 'bomb' from time to
time. As usual, all of this trouble is blamed on VSAM.

A second concern is the area of abnormal ternination. During abnormal termination, a CLOSE function
is executed by the operating system agqainst DEBs on the subtask's DB chain. Motice Taard CLOSE
function, not CLOSE macro. The functions performed by this automatic CLOSE at abnormal termination
are not the same as those performed by the CLOSE macro issued by the vser, and ey never have been'!
i you don't believe this last statement, (and a lot of people Tmeet don't), rlymlJ»;)-fl-(Mi\—‘xiutn sequentil

data set that is blocked with the PUTX macro and AFEND before you CLOSE. See if your lnst blocks

Page 25.

that were updated but not yet written back are physically updated i.e., see if abnormal termination
writes them back. The point is that abnormal termination is not going to write back the contents of
L buffers because abnormal termination doesn't know that buffers are buffers; the buffers themselves may
have been the cause of the abnormal termination and the system has no way of knowing which buffurs
are valid and which ones are not. Obviously, if a subtask terminates abnormally and it is using VSAM,
requests marked 'in exclusive control' by the terminating subtask might not be released. This may
eventually cause the main task to abnormally terminate when dynamic string addition tries to add
strings to compensate and there are no bytes left in virtual storage to do the job.

This issue can be addressed by the main task ATTACHing the subtasks with either the ECB or ETXR
parameters on the ATTACH macro. These parameters permit the maintask to be informed of the sub-
task's abnormal termination. When so informed, the maintask can CLOSE the necessary data sets
to clean up the control blocks. To do this, the maintask must be controlling all the 1/O.

A third concern is the area of access to the ACB and related control blocks, i.e., what if DO NOT
do subtask sharing. If you elect not to use subtask sharing, then separate sets of control blocks are
built in your P, R, or AS. These will react to share situations just like SHR(3,3). The difference

is that the users don't have to code interregion communication into the program; all parts of all tasks
in a specific P, R, or AS are available to all of the tasks within that P, R, or AS. A specific example
is the ENQ/DEQ facility where users are allowed to use the SMC (system must complete) option at
the step level. (SMC is not allowed in MVS at the system level.)

Recommendations for Subtask Sharing.

If you plan to use VSAM in a significant multitasking application, you should control all the VSAM
» (and other /O too) I/O from the job step task and use the ECB and/or ETXR parameters on the ATTACH
to become informed as to how your subtasks terminated. Further, ESTAE and/or ESTAI exits in MVS
(STAE/STA! in VSI and SVS) should be employed to control error detection and handling. At the outset,

these measures appear overly complicated, but later ease in application coding will more than justify
their expense .

In the past, new users of OS/VS operating systems have reacted quite violently to these suggestions.
Some common complaints were:

"| was never told all of this."

"We didn't do any of this in our old system."

"It worked before."

"You need a lot of education to use VSAM"
The significant parts of all of these statements is the fact that most of these people assumed that:

- You could apply old techniques to VSAM.

- Sharing of anything can be accomplished by coding a parameter somewhere .

- Recoding an application so as to use sharing is a simple task.

| want to point out just one case of how this kind of thinking can lead to some really complex situations.
This user started out using what he called 'total' subtask sharing. He never checked if his definition of
subtask sharing was the same as VSAM's definition. It wasn't; his "total' was VSAM's no subtask sharing,
but this person coded a major application using this premise. Since he employed a very large machine
to test the application, it ran for some time without 'error’, although it was noticed at the time that

— much more virtual storage than anticipated was being used, and that the storage was being used by

‘ VSAM. This was chalked up as 'VSAM buffer inefficiecies’ and the application went into production.

Page 26.

In production, even more virtual storage was used. It was then found that us many as 50 tasks were
'sharing' @ VSAM data set; in the planning stages it was thought that the maximum number of tasks
would be 'around 10'. The user now decided to put all the 1/O handling (but not OPEN and CLOSE)
into the main task because he had done that in some other application and it 'saved a lot'. Now
since almost every retrieval was a retrieval with no update, and there were never any inserts of any
kind, all of these measures seemed to work for a time. At this point, the coder had no formal VSAM
training of any kind - he had 'got it outof the book'.
Then the application started abending about once per week. Investigation found the following:
- All the subtasks were supposed to do OPEN and CLOSE; all OPENed but not everyone CLOSEd.
- None of the subtasks did any error handling, nor did they use any form of ESTAE or STAE.
- Some of the subtasks were updating. Some of these updates involved record length changes
but the subtask coders had not been told that a record length change is equivalent to an
insert.

The next step was to remove all OPEN and CLOSE logic from the subtasks, put a single ACB in the
main task, and pass it's address to the subtasks which would use it to modify RPLs in there programs.
This was viewed as a significant improvement because the virtual storage was significantly reduced.
As time progressed, it was noticed that whenever subtasks abnormally terminated, it was likely that
the main task would abnormally terminate later that day with a lot of dynamic string addition
indicated. (An abnormally terminated subtask was simply reATTACHed 'until it worked'.)

When management finally got into the act (many months too late) and the facts about VSAM sharing
became known, the application was still not recoded; management felt that 'something could be done!
to salvage 'all that good code' without resorting to 'advanced techniques' like ETXR routines or ESTAE
logic. As of this writing, the final decision was to simply let the application abend and restart it
when necessary .

My point then is you can't blame VSAM for an individual's ignorance. In fairness to the individual
| described above, he inherited an application that had been designed years ago for a mode! 40
running BOS - do you even remember BOS? It used it's own roll your own T-P access method |
and was really a giant service module for an essentially uncontrolled group of users represented by
the subtasks.

Let me summarize some of the important ideas associated with subtask sharing.

1. Subtask sharing must be implemented by coding DSN in the related ACBs or using the same
DD statement for all the ACBs. If you don't do one of these two, you DO NOT use subtask
sharing .

2. If you don't use subtask sharing, then multiple ACBs in a P. R. or AS react just like SHR(3,3).
If you permit multiple uncontrolled CA splits in that kind of environments, you can and will
destroy your cluster.

3. The key resource shared is the BUFC. (Flags related to 1/ O activity are in the BUFC.)

4, If a requestor gets a feedback code of 'record held in exclusive control', dynamic string
addition will not be employed by VSAM to 'solve' this case. It is up to the user to handle
this situation .

5. VSAM maintains a DEB for each OPENed VSAM component on the propa- TCR DL chain .

All OPEN and CLOSE macros must be issued from within the nropar TCB.
6. Consider the use of CS and CDS instructions to aczhieve your own type of LNQ/DLQ processing.
7. MVS does not permit SMC in system mode; it is allowed in step mode.

Page 27/.

8. Any type of sharing is difficult code. It's no disgrace to admit you don't know how to do it
and seek help.
L 9. You should e aware that later recoding of any apnlication that uses sharing of any type
will probably be quite difficult; shun any 'quick' approaches to data set sharing.
10. Be sure management is cognizant of the essentially details of any shared data set apnlication.
11. If you elect to do less than a complete job of handling sharing, be sure to document what
you did and why you did it.

[think most of this is plain common sense. Don't you?

Other Methods ot V3AM Sharing.

Whether you are programming in VS1, SVS, or MVS, you should evaluate the address space design
philosphy of MVS before proceeding with a major VSAM sharing undertaking. In MVS, fetch protection
is standard and inter address space communication must use SRB scheduling which, in turn, requires
authorization. Further, MVS supports TCMP - Tightly Coupled Multi-Processing. This means that two
tasks can be in simultaneous execution. This means that any dependence on not using fetch protection,
concurrent task cxecution only, cte., could lead to a complex recoding job if you move to MVS later.

As stated earlier, IBM offers extensive VSAM sharing through the use of program products like IMS/VS.
These products commonly use special SVC routines to aid the sharing effort. Before you decide to o the
same thing, i.e., code your own share routines, you should seriously consider one of these products.
Isn't it more productive to use a product that shares the VSAM clusters correctly and concentrate on
organizing your own data to advantage rather than spending months developing your own sharing scheme ?
If you answered 'No!', read on.

bFirsf, it must be understood that a user SVC can issue a GETMAIN for any area, even SQA. With that in

mind, the first problem to be delt with is how to recognize when the sharing routine you coded, hereafter

termed the 'driver', is available for use. Presumably, you put the driver in the nucleus, the PLPA, or in

it's own address space. Further, you started the routine running, much like starting an IMS Control

Region. The starting of the routine can be handled by an operator start command. Remembering that an

SVC routine can run in supervisor state, key 0, and authorized, the driver can acquire storage in a common

area and set up control information that is understood to all users. One way to accomplish this is to use

the word in the CVT reserved for the user (CVTUSER) to point to a user CVT - call it UCVT - where all

required information is stored.

If a user SVC = call it SVC zzz - is used by all users to communicate with the driver, it can simply abend
the requestor if the driver is not up when the requestor makes the initial request. If the driver is up, the
initial request should identify the user to the driver so that the driver can terminate the users in the event
the driver itself fails. Our SVC zzz would now operate as follows:

1. On initial request, 'join' the network of users by filling in and/or creating additional control
blocks chained to the UCVT.
2. On subsequent request, the SVC zzz would send the |/O request to the driver. It is likely that

the SVC zzz would take care of the necessary WAIT/POST logic commonly employed in these
situations, noting that in MVS, the WAIT/POST logic would have to employ cross memory FOST.

3. Some method of indicating the final request would have to be devised so that the user's control
blocks could be freed. Unless this was done, the driver would not be able to be stopped.

http:Contr.ol

Page 28.

Of major concern in this method is the location of the ECBs that will be necessary to establish the actual
.communication between the driver and the user. These are necessary because the SVC zzz is really
'setup function; it does not set tasks dispatchable = POST performs that function. It is likely that a pair
of ECBs will be necessary - one to inform the driver that work exists {(and upon which the driver WAITs),
and a second to inform the user that the work is done (and upon which 1he user WAITs). Remember that
MVS also checks that the location of ECBs is addressable by the address space and that the ECBs have
the correct content when a WAIT is executed against them.

If you want to implement this idea, you must decide exactly how much information will be set up in the
user CVT and associated tables, where it will come from, and how you are going to get rid of it in the
event of an abnormal termination. The last item, abnormal termination, is the one frequently neglected.
Remember that your user CVT is going to indicate, by it's very presence, that a user has joined the
‘network'. Failure to delete user information will mean that at the very least, the user will not be able

to rejoin the 'network' later. It can also mean that the driver is not able to be stopped and could therefore
lead to a re=IPL!

In the event you wish to be able to terminate the user due to an incorrect request or other error condition,
you will need an ID for each user. Several VS1 users hit upon the idea of using the storage protection key
of the partition as the ID since it was unique for all user partitions in VS1. Beware ! Neither SVS nor MVS
use unique storage protection keys for individual users. It is better to extract the normal systems ID

(the one used by the operator to cancel a job) for this purpose.

IBM implements user SVC logic in HASP, JES2, JES3, TSO, TCAM, VTAM, and IMS/VS, to name a few.
In VST, the JES system also uses SVC logic, but JES in VS1 is integrated into the control program so it's
hard to see 'user' code. To write this paper, | used the TSO system because the SVC there must execute
in the user region or address space and communicates to a 'driver', much like you would have to do.

W 750 uses two SVCs to simplify the coding. You could get away with one. The TSO logic is quite plain
if you read the microfiche.

If you coded all of this, you would have developed what is called a subsystem. Basically, a subsystem
is a module or modules that establish and maintain a protocol between a user of the subsystem and the
subsystem itself for the purpose of obtaining a specific function from a generalized operating system.
Theoretically, if the generalized operating system were radically changed, you could still obtain the
desired functions by recoding only the subsystem. It's a lot of work to do it - probably thousands of
man hours. It might be worth it to you if you anticipate extensive use of the functions, but it might
also be just as financially sound to use program products, tight scheduling procedures, or new or
redesigned hardware configurations to achieve the same results. Only you can decide.

Page 29.

Common Errors.

g\jHere is a list of common errors | have experienced. By a wide margin, the reason for the errors has been
the feeling that since VSAM is an access method, no education is required to use it. Remember, you the

reader are getting education right now, but what about the rest of the people at your account? Especially,

what about junior programmers today who will become senior programmers tomorrow ? Will you afford

them the opportunity to get the same or better education as yourself, or will your account tell you to

'pass it on'? Some people just can't teach others and some of us just don't have the time to teach others,

so are you depending too heavily on that 'pass it on' idea?

¢

1.

O 0

10.

1.

12.

13.
14,
15.

Assuming that abnormal termination will 'take care of everything', including writing back
buffers that were scheduled for update.

Trying to pass the addresses of ACBs to other tasks for |/O. OPEN and CLOSE require the
same task to own the DEB and abnormal termination of a subtask operating this way can

leave a buffer in exclusive control forcing unwanted dynamic string addition later.

Failing to understand that an update that changes the record length is equivalent to a.

delete followed by an insert of the record. These kinds of updates can cause Cl and CA
splits.

Assuming that the catalog records for your cluster are maintained while you are processing.
Catalog records are maintained by the CLOSE macro.

Assuming that since the catalog must be updated by dynamic space acquisition, your AMDSB
in the catalog records for your cluster will also be updated at that time. Updating the AMDSB
is the responsibility of CLOSE or CLOSE TYPE=T.

Assuming that all index Cls, including sequence set records, can be forced into main storage
and kept there permanently. Only index set records can be kept in storage.

Failing to provide adaquate abnormal termination facilities, especially in multi-tasking
environments. This is really an enlargement of point #1 above. This means use of the ETXR
exit in the main task to capture subtask failures and the use of ESTAE or STAE for the main task.
Failure to understand that an operator cancel is considered an abnormal termination.

Failure to provide proper backup and recovery in the event of abnormal termination.

This is especially true in light of point #8 above. If an operator cancels a VSAM job,

a recovery procedure should be defined to validate the clusters that were in use by the

job. Repeated restarts without recovery can lead to loss of data.

Failure to understand that read integrity can be lost even though write integrity exists.
Failure to understand that loss of read integrity can lead to records becoming non-processable
by the program doing the reading if another program has moved the records during a CA split.
In other words, read integrity is not a performance issue - it's an integrity issue.

Assuming you can modify VSAM control blocks directly i.e., without the use of MODCB

or it's equivalent CBMM. (CBMM - Control Block Manipulative Macros - these are described
in Options for Advanced Applications.)

These macros do not just go directly to the field in question and operate on it; they start at the
block you specify and perform extensive checking to make sure, for example, that if you
change the record length, flags are set to accomodate the change.

Assuming there is no difference between the first release of VSAM and enhanced VSAM.
Assuming you can do everything that VSAM allows using the ISAM interface.

Assuming that compiliers support 100% of the VSAM capability or will in the future.

While IBM commonly enhances it's compiliers from time to time, there is never any guarantee
that the enhancement you are waiting for will ever occur. -

!
ol

Page 30.

The ISAM Interface.

%If has recently come to my attention that some customers are assuming that as long as a VSAM feature

<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>