OS/VS Sort/Merge
Programmer’s Guide

Program Number 5740-SM1

Release 5

Program Product

SC33-4035-7
File No. S370-33

OS/VS Sort/Merge
Programmer’s Guide

Program Number 5740-SM1

Release b

This publication was produced using the
IBM Document Composition Facility
(program number 5748-XX9)
and the master was printed on the
IBM 3800 Printing Subsystem.

| Eighth Edition (March 1981}

This is a major revision of, and makes obsolete, 5C33-4035-6,
and its technical newsletter, SN20-9331.

| This edition applies to Release 5, Modification 0, of IBM 0S/VS
Sort/Merge Program Product 5740-SMl, and to any subsequent
releases until otherwise indicated in new editions or technical
newsletters.

The changes for this edition are summarized under "Summary of
Amendments” following the preface. Specific changes are
indicated by a vertical bar to the left of the change. These
bars will be deleted at any subsequent republication of the page
affected. Editorial changes that hdve no technical significance
are not noted.

Changes are periodically made to the information herein; before
using this publication in connection with the operation of IBM
systems, consult the latest IBM System/370 and 4300 Processors
Bibliography, GC20-0001, for the editions that are applicable
and current.

It is possible that this material may contain reference to, or
information about, IBM products (machines and programs),
programming, or services that are not announced in your country.
Such references or information must not be construed to mean
that IBM intends to announce such IBM products, programming, or
services in your country.

Publications are not stocked at the address given belouw;
requests for IBM publications should be made to your IBM
;epr?§$ntative or to the IBM branch office serving your

ocality.

A form for reader's comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Corporation, P.0. Box 50020, Programming
Publishing, San Jose, California, U.S5.A. 95150. IBM may use or
distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever.
You may, of course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1973,
1979, 1981

PREFACE

This manual is for programmers who wish to sort or merge filaes
using 05/VS Sort/Merge Program Product No. 5740-SM1.

To use this manual, you should have a basic understanding of
0S/VS and its job control language (JCL); to take advantage of
all the options and facilities of the program, you will need the
documents listed under "Reading List."

Using this manual, you uwill be able to prepare all the input
necessary to perform a sort or merge. You will also be able to
link your own routines to the sort/merge program to perform such
services as summarizing, altering, or inserting records as they
are being sorted or merged.

ORGANIZATION OF MANUAL

This manual contains the following sections:

L "Introduction to the Program" describes the program's
relationship to the operating system, and explains the
program's functions and facilities, its hardware and storage
requirements, user inputs, and factors affecting
performance.

. "Writing a Simple Program™ describes how to write a
sort/merge program for users who are unfamiliar with the
product. It takes them, via a flow diagram, through the
steps necessary to create a sort/merge application. Also
included is an example of a sort application.

. "Calculating Storage Requirements"™ discusses the storage
davices used for intermediate storage, the factors
determining the amount of intermediate storage required for
a sort/merge program, and the program's method of selecting
a sorting technique; it also describes how to calculate main
storage requirements.

. "Program Control Statements™ describes how you use program
control statements to describe your input data, to supply
information about the control fields being used, and to
describe to the system your own routines that you wish to
use during program execution.

. "Job Control Statements"™ shows you how and what job control
statements you must write in order to have your sort/merge
program executed.

. "Program Exits and User Routines™ describes how you can
insert a routipe of your ouwn into the sort/merge program,
via program exits.

L "Initiating a Program Using System Macro Instructions®
describes how to initiate execution of the program from
within your ouwn program using a system macro instruction.

L "Improving Program Efficiency" gives hints on how you can
gat a faster sort or merge operation.

. "Appendix A. What to do if the Program Stops"™ describes, in
the first section, how to localize a problem when sort/merge
behaves in an unexpected way; the second section describes
various uses of the DEBUG control statement.

-de
-to

Preface i

EADING

ST

. "Appendix B. Data Format Examples™ gives examples of the
assembled data formats, as used with IBM System 360/370.

. “"Appendix C. Error and Information Messages®" lists,
explaings, and suggests responses to all the error messages
produced by this sort/merge program.

. "Appendix D. Examples of Control Statements for Sort/Merge
Applications "

. "Appendix E. EBCDIC and ASCII Collating Sequences™ lists
the collating sequences from low to high order for EBCDIC
and ASCII characters.

. "Appendix F. Timing Estimates™ gives tables that contain
astimated maximum total execution times for some sorting
applications using this progran.

The reading list that follows is divided according to the
:ations and facilities of the program and how you intend to use
em.

For All Applications

The following manuals supplement the JCL information given in
this guide; you may need them for reference:

05/VS1 JCL Reference, GC24-5099
0S/¥S2 JCL Reference, GC28-0692

For an explanation of SMF record type 16, which provides a way
for an installation to collect statistics from which to audit
its sort activities, generate utilization reports, develop
tuning information, etc., see:

0S/VS1 System Management Facilities (SMF), GC24-5115

0s/vVs2 MvYS §y§gg Programming Librarv: Svstem Management
gag lities (SMF), 6C28-0706 (for users of 05/VS2 MVS Release
0S/7VYS2 MVS System Programmi Library:

Facilities (SMF), 6C28-1030 (for users of OS/VSZ MVS/System
Product)

For an explanation of the options available at generation time
and estimates of storage required by the program, consult:

0S/VS _Sort/Merge Installation Guide, SC33-4034

For overall discussion of sort/merge features, see:

0S/VYS Sort/Merge General Information, GC33-4033

For quick reference, see:

0S/YS_Sort/Merge Reference Summary, SX33-8001
For compatibility of message options from 5734-SM1l, see:

0S Sort/Merge Programmer's Guide, SC33-4007

iv 0S/VS Sort/Merge Programmer's Guide

Planning Checkpoint/Restart

Complete information on the advanced checkpoint/restart facility
is contained in the publications

0S/VS1 Checkpoint/Restart, 6C26-3876
0S/VS2 MVS Checkpoint/Restart, GC26-3877

COBOL and PL/I Users

See the Programmer's Guide describing the compiler version
available at your installation.

Assembler Language Users
0S/7VS—-DOS/YS—VYM/370 Assembler lLanguage Manual, GC33-4010

Program Initiation with System Macro Instructions
0S/YS1 Supgervisor Services and Macro_Instructions, 6C24-5103

0S/7YS2 MVS ervisor Servi nd Macro structi »
GC28-0683

Data Management

0S/YS1 Data Management Macro Instructions, GC26-3872
0S7VYS2 MVS_Data Management Macro Instructions, GC26-3793
0S8/VS1 Data Management Services Guide, GC26-3874
05/VS2_MVYS Data Management Services Guide, GC26-3875

S/7VYS1 Da a for stem Programmers, GC26-3837
0S/7VS2 MVS Svys oqgrammi Library: Data Ma »
GC26-3830

Dynamic Allocation

0SsVS2 MVS System Programming lLibrary: Job Management,
GC28-0627

ASCII

0S/V¥S1 Data Management Macro Instructions, 6C26-3872
05/YS2 MVYS Data Management Macro Instructions, 6GC26-3793

USASI Tape Labels
0S/VS Tape Labels, GC26-3795

VSAM Users

0S/VS Virtual Storage Access Method) Programmer'
Guida, GC26-3838

0S7VS1 Access Method Services, GC26-3840
0S7VYS2 Access Method Services, 6C26-3841

- Preface v

For storage requirements, see

Planning for Enhanced YSAM, GC26-3842

For debugging aids, see

0S/VS1 Debugqing Guide, GC24-5093

/7VS2 MVS rogrammin ibrary: Debuggqi
Vol. 1, GC28-0708
VA'S) VS System ogrammi ibr : Debuqgi

Vol. 2, GC28-0709

vi 0S/VS Sort/Merge Programmer's Guide

| EGR 8€33-4035-7

| RELEASE 5, MODIFICATION 0

. Another standard disk sorting technique (VLR-Blockset) has
been added to improve performance when sorting Variable
Length Records.

] Ability to add to or change installed or passed user
options, using the new OPTION control statement.

. Support of 3375 DASD, a new auxiliary storage device for
initial input, final output, and intermediate work data
sets.

. Ability to produce statistical data about sort applications
executed.

. Ability to specify that format CH be translated the same as
format AQ.

. Ability to specify whether or not record counters should be
checked at the end of execution of sorting applications that
use the E35 exit routine without a SORTOUT data set.

| ® The design point is changed from 48K to 54K bytes.

FOR 8C33-4035-6

RELEASE 6, MODIFICATION 0 FROM PTF 63
. Support of 3380 DASD, a new auxiliary storage device for

initial input, final output, and intermediate work data
sets.

RELEASE 4§, MODIFICATION 0
. A further standard disk sorting technique (FLR-Blockset) has
been added to improve performance when sorting Fixed Length

Records.

. SORTIN/SORTOUT I/0 handling is enhanced to improve
performance.

U The default printing of the sort/merge specially formatted
dump is removed.

. The design point is changed from 32K to 48K bytes.

FOR _$C33-6035-5

RELEASE 3, MODIFICATION 0 FROM PTF 32

The optimum disk technique has been made standard by removal of
the remaining restrictions on its use. The other disk techniques
(BALN and CRCX) are retained for compatibility reasons and can
be forced if required.

--e
-te

Summary of Amendments v

FOR_$€33-6035-4

RELEASE 3, MODIFICATION 0
. Unless one of the nonstandard disk techniques is forced:

- The sort program's work data sets can be on a mixture of
any of the supported disk types.

- If necessary, a secondary storage allocation is
automatically made; this need not be specified in JCL.

- Unused space is automatically released; this need not be
specified in JCL.

. Program control information passed from an invoking program
in the parameter list can now be overridden by using a new
DD statement, SORTCNTL DD, to identify a data set containing
di fferent program control information.

viii 057VS Sort/Merge Programmer's Guide

section 1. Introduction to the Program

Relationship to the Operating System . e e
What the Program Will Do e e e e e e e e e e
Using the Program Efficiently e e o e o e
Limitations on Input e e e e e e e e e e
Sort Application s e e e e e e e e e e
Merge Application e e e e e e e e e e s
Limitations on Output e e e e e s e e e e
Control Fields and Collating Sequence .
Program Facilities and Options e e e e o
Machine Requirements e e e e s e e e e e e
Main Storage Requirements e e e e s e e e
Program Execution . e e e e e e e e e
Program Control Statements e e e e o o
JCL Statements e e e e e e e e e e e e e
Program Initiation e e e e e e e e e e e
Program Modi fication e e e o o e o o o o o
Return Codes
Checkpoint/Restart
Statistical Data Collection e e e e e e e
Maximum Efficiency e e e s e e e s e e e e

Section 2. Writing a Simple Program . . .

Control Statement Example e e e e e e e e e
section 3. Calculating Storage Requirements
Main Storage
Intermediate Storage t e e e e e e e e e e
Storage Devices e e e e o 4 e e e e e e
Space Requirements e e e e e e e e e e e
Tape * o s+ o s t & o s e e s s e s e e e s
Direct Access
Example .
Exceeding Intermedlate Storage Capacity
Work Storage on Disk « e e e e e e e
Work Storage on Tape e e e e e e e e e
Program Action
Section 4. Program Control Statements .
Notational Conventions e e e e e e e e
Control Statement Compatibility e e e e e
Control Statement Format . e e e
Full Coding Rules for Control Statements
Continuation Cards “ e e e
Summary of Restrictions e e o v e o s e »
SORT Control Statement e e e e e e e e e e
FIELDS
FORMAT .« e e
FILSZISIZE s e e e e s e e e s e e e e e
SKIPREC &+ & ¢ ¢ ¢ ¢ ¢ ¢ v o o o o o o o o
CKPT
EQUALSINOEQUALS e e e e e e e e s . ..
DYNALLOC (MVS only) e e e e e e e . .
SORT Statement Examples e e s e e e e e e
MERGE Control Statement e e e e e e e s . .
FIELDS
FORMAT
FILSZ|SIZE
CKPT .
MERGE Statement Example e e e e e e e .
OPTION Control Statement
FILSZ|SIZE
SKIPREC . & & ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o o o
CKPT
EQUALS | NOEQUALS e e e e s s e e e e e e
DYNALLOC (MVS only) e e e e e e e e e e
CHALTINOCHALT e e e e e e e e e e .« .
VERIFY|NOVERIFY e e e e e e e e e e e e

@ 6 o 0 6 o o o e o 0 o e o 0 & o o o 0 0

e o o o o o 6 o o o o .

¢« o

o o

e o o 0 o o o o o o o o o

e o o o o o o o 0 0 o o o

@ © o 6 o o o o e 0 0 o o o 0 e 0 s o o 0

o o o o 06 ¢ o o o o s @

e & o o 0 0 6 6 6 & & 0 o 0 e v 0 6 0 s 4 0+ s 0 0 0 o s s 00

e 6 & o & o s & & 0 0 e 6 o 0 s 6 0 0 0 0

.

o o o o 6 o o o o o o @

@ o o o o o o & 9 & ¢ 6 0 o e e 4 6 e & 4 s o e o 0+ 0 s 000

@ © 8 6 ¢ o o o o 4 0 6 o o 0 0 0 o 0 o+ 0

.

® o o o o 0 o o o o o 0

® 6 o & o o & & 4 & 6 6 e o 0 0 ¢ s e & s s o o 0 ¢ s 0 00

e o o o o o o e 0 0 e 6 o 0 s e 0 0 s 00
e © o o o 6 6 ¢ o o o o 0 & o 0 6 o o o 0
® e o o o 6 o 6 0 6 0 b+ 0 0 e o 0 o o o’ []
@ e o o o o 6 ¢ o & o s 0 s e e o o 0 e 0
@ @ o o o ¢ 6 o o 6 e o & o o 0 0 o o o0

@ o o o o
e o o o o
L] * o o o
e o o o o
e o o o o
e o o o o
e o o o o
e o o o o
e o o o o
e o e o o
e o o o o
e o o o e
e o & o o
e o o o o

@ & 6 6 6 o 0 6 & & s 0 ¢ o 6 0 s e 0 6 o s e 0 e s 0 s 00
@ 6 6 6 6 o 06 6 4 & & o 6 o e e e 0 6 6 s s e s 0 0 o 0 o0
® 0 6 0 6 6 o 6 6 6 6 6 @ & e & e 6 o 0 o 0 o o o 0+ o e+ o
@ 6 6 6 6 6 0 6 6 6 & & e 2 e e 6 0 6 0 s s 0 e s o 0 e o 0
@ 6 0 6 0 6 4 6 6 & & 2 % 4 6 6 e 0 0 s o s s e s s 0 0 00

Contents

@ @ o 0 o e 6 0 6 6 0 o o e s s s 0 0 00

HO NN NNOROARDUUUGINN ==t

ix

X

CHECK | NOCHECK e e e o o o
BLKSET|NOBLKSET e e e e e
OPTION Statement Examples
RECORD Control Statement .
TYPE e e e e e e e e e
LENGTH e e e e e e e e s
Omitting Values . . o e
RECORD Statement Examples
MODS Control Statement ..
MODS Statement Examples
ALESEQ Control Statement .
ALTSEQ Statement Examples
DEBUG Control Statement (Stand
ABEND e e e e e e e
NOABEND “ e e e e e
DUMP | NODUMP e e e .
END Control Statement

section 5. Job Control Statements
JOB Statement
EXEC Statement e e e e e e e
YSORT' Cataloged Procedure
*SORTD' Cataloged Procedure
'PARM® Field Options .
DD Statements

o o o o

o« o o o
e & ¢ 6 o e 0 o 0 e o o o

e & ¢ o o s 0 0 0 0 s 0 0
e o o 0 4 o e ¢ s 0 ¢ o o
o 6 0 o & & o o e 0 e 0 o

r

-
[
0
=

oooo’oooﬁooooooooo

U

OOCOQOQOOOOQOCOOOC
L R R I I I I I}

. . . . w. . L] L]
L I - R I R I R I)
o o o o LI o 0 0 0 0 0 s s e 0 0 0
| R I I I R S)
« o o o ro ® o o 0 0 s 0 o s 0 e

.
.
.
.

¢ o o
e o o o
“ o o o
o o o o
¢« o o o

.
.
.
.

Shared Tape Units
System DD Statements
Program DD Statements

| SORTLIB DD Statement

SORTIN DD Statement

SORTINnn DD Statement

SORTWKnn DD Statement

SORTOUT DD Statement .

SORTMODS DD Statement

SORTCKPT DD Statement

SORTCNTL DD Statement

| SORTDKnn DD Statement

saection 6. User Exit Routines
Exit Naming Convention .
Sort/Merge Program Description
Initialization Phase @
Sort (Input) Phase 1 . .

Generation Phase (VLR- Blockset only)
Key Phase (Blockset only) c e e e e
Intermediate Merge Phase 2 (Peerage and Vale
Output Phase 3 e e e e s e e e e e e e e e .
Functions of Routines at User Exits e e e e e

Linkage Conventions and Programming Languages
Opening Data Sets and Initialization “ e e e s

.
.
.
.
.
.
.

e o o @ ¢ 0 o 0 o e 0 e s 0

@ ° 6 @ o o o e 0 e 0 0 e 0 e 0 o o

e o ¢ o 0 0 0 6 o o 0 0 e 0 0 0 0 o

@ o 6 6 0 0 o 6 ¢ e 0 e 0 o 0 s 0 s 0
e ¢ 6 0 0 o 0 0 0 0 0 o 6 o 0 o s o @
¢ & 0 ¢ 6 o 4 ¢ s 0 s 6 6 ¢ e o e o ®
@ 0 4 6 0 0 s 0 0 6 0 0 0 0o s 0 0 ¢ 0
e o 6 ¢ 6 ¢ 0 0 ¢ 0 s 0 0 0 4 0 0 o 0
e @ o o 0 e 0 o o 0 6 o 0 0 0 0 s e 0
@ o @ 0 o 0 0 o s 4 e 0 o 2 e o 0+ o 0
e o o o o o 6 0 o 0 & o 6 o o 0 o 0 0
e ¢ o & o 2 4 o o 0 ¢ 0 & e 0 0 e e @

@ 0 6 ¢ o o o 0 0 0 0 s e 0

.
.

.
o o o o

o o o o 0

o o o o @
¢« o o o @

e o o o o o o
e o o o o o o
o o o o 0 o o

nl

e o O o o 0o 0o o o

. . . . SO . . L] . .

Inserting, Deleting, and Altering Records; Termina

Sort e e e e e e e o s e s e s o u
Handling Special I/O, VSAM Exlt Functions . ..
Read/Urite Error Routines e e s e e o s o s o
Read Errors s e s s s s e e e e e e e e e e
Write Errors e e s s e e s e s e e e e e e e e
VSAM Exit Functions e s e e e s e e e e e e e s
Intermediate Storage Capacity Errors « e e e e e
Modifying Control Fields e e e e s e e e e e e
Closing Data Sets e e e e e o e o o e o o o
User Exit Routines and Sort/Merge Performance . .
Preparing User Exit Routines e e b e e e e e e e e
How to Load User Exit Routines
Routines in SYSIN C e e e e e e e e e e e e
How to Link to User Exit Routines e e e e e e e e
Linkage Examples “ e e e e e e e e e e s

Ell Exit, Opening Data Sets/Inltla1121 ng Routines
E15 Exlt, Passing or Changing Records e e e e e e e
Information Supplied by Sort/Merge e e e s e
Return Codes . . c e e e e
El6 Exit, Handling Intermedlate Storage Mlscalculati
Return Codes e e s e e e b e s s e e e e e e
E1l7 Exit, Closing Data Sets e e e e e e e e e e .

0S/VS Sort/Merge Programmer's Guide

¢ & 0 0 0 0 4 0 2 6 0 e o

s Only

@ 6 0 0 4 0 0 6 0 0 0 ¢ 8 2 e 0 0 0 0 o o o o

o ¢ o o & o o

o o O e o 0o 6 06 06 ¢ 6 06 06 06 06 06 06 6 0 0 0 0o 0Fs o o 0

¢ o o o Mo 4 o 0 s 0 0 0 s s e 0 0

® 6 0 6 o o o 0 0 0 0 o 0 9+ 0 * s o 0

@ © 6 6 8 6 0 6 0 0 4 ¢ 0 e o 0 0 0 e T e e s s s 0 0 0 o 0 0

3

o o

e e @ 0 0 0 4 0 6 o s o 0

e o o o

S 6 o 6 6 0 0 0 ¢ ¢ s e & 0 0 o 0 0 0

e o & o o o 4 0 o o 0 o

e e 9 6 6 4 0 0 e 0 4 0 0 0 2 0 ¢ s 0

@ & ¢ o o * ¢ 06 e 0 0 o e e 0 0 o o

@ ¢ 6 ¢ 0 4 4 0 0 0 0 e s 0 e 0 o e+ 0

e 0 6 o 0 & 0+ o ¢ o o 0

® 6 6 6 o 6 o & e o 6 o o s s 0 s 0 0 s 0+ 0

@ ¢ & o 0 & 4 0 0 0 0 0 0 e 0 0 o o

@ 0 0 6 6 o o ¢ o 0 4 0 0 v 0 0 o s 0

o o 6 o o ¢ 0 o o o o 0

@ 8 0 6 ¢ 0 o 4 9 0 4 0 0 o 0 0 o 0 0 s o+ 0

E18

E19 Exit, Handling Output to Nork Data Sets

Exit, Handling Input Data Sets

Use with QSAM/BSAM e e e e . .
Information Your Routine Passes to Sort/Merge
Use with VSAM . .

Restrictions with VSAM

e o o o s e o+ o

Password List

)
.

.
.

e o o o o o o o o

e o o o o & o o o & e o

Exit List e e « .

Use with QSAM/BSAM e e e e

E21
E25

E27
E28
E29
E31
E32

E35

E37
E38
E39
E61

Sample Routines For Program Exits
E15: Deleting Expired Records
El6: When NMAX Exceeded, Sort Current Records

Information Your Routine Passes to]
Exit, Opening Data Sets/Initializing Routin

Exit, Changing Records
Some Uses . . .
Information Supplled by Sort/Merge
Return Codes e et e e e e e e e
Exit, Closing Data Sets .

e o & o o o

o o o o

v
’

.

o

Information Your Routine Passes to Sort/M rb
Brt/Merb

e

.

o o o o

Exit, Handling Input from Nork.Data Sets

Exit, Handling Output to Work Data Sets

Exit, Opening Data Sets

Exit, Handling Input to a Merge Only

Information Supplied by Sort/Merge
Return Codes e e s s e e e e e e e
Exit, Changing Records
Information Supplied by Sort/Merge
Return Codes e e e e e e e e s
Summarizing Records
Exit, Closing Data Sets e e e
Exit, Handling Input Data Sets
Exit, Handling Output Data Sets
Exit, Modifying Control Fields
Some Uses e e e e

e o e o e o

e o e o o o

‘e o o o o o o

e o o o o o

e o o o o s o

Information Supplled to Your Routine

.

e o o o o 9 o o o o o

o
<
(74

E35: Summarize when Control Fields Equal

E35: Deleting Racords

e e & o ¢ o o o o o o o 0

e o o s o

e e e o o o o

ooooo e o o o o e o o

section 7. Initiating a Program Using System

Instructions
System Macro Instructions
Return Codes

How

JCL DD Statements PN
Program Control Statement Images

Parameter List
Writing the Macro Instruction

Examples e e e e c e e e e
Example 1. Passtng Parameters to the Program

e o o o o o e o o

e e e e e o o

to Use the Macros .

e o e o @
s o o @
« o o @
o o o o

.
.
.
. .

SORT Statement Image Example

Examples of Parameter List

.
e o o o o o o s o o

.
o o o o o

Example 2. Coding a Parameter List

section 8. Improving Program Efficiency

Installation Options
Application Development
Efficient Control Field Sorting
Efficient Blocking e e e e e
Variable-Length Records « e .
Be Generous With Main Storage
Sorting Techniques
Disk Sorting Techniques . .
Disk Sorting Techniques for leed-Length

o o e o e e o o

* e o o o

.
.
.

.

-

.

o o o o

e o e o o o

¢ o o o o o o o

* o o o o o o o o o

o o o o o o o o

e & o o o ¢ & o o o o

o e e e

Example 3. Using the SORTCNTL DD Statement

* e o & o o o o

e o o & o o 0+ o s o 0

e o o o o o o o

o e

.

.
.
e
.
.
-]
.
.
.
.

o o o o

mo....”.’

.
.
.
.

@ o e o o o 5 6 o e 6 o o o o s s e o+ o

N

LI I A I I A S A

r

e O 6 o o ¢ o o ¢ 6 ¢ ¢ ¢ 0 o o

.
.
.
.
.
.
.
.
.
.
.
.
-
.
.
.
.
3
.
.
.
.

o o o

oooooaoonoooobooooooooooao.ooooooooooo

¢ o o o 0

Macro

o e 0 o o o o o o @

e o o ¢ o o s 0 o o
. e o o e o ¢ o o o o @
e o o o o @ o o ¢ o o o o @
e o o o o 0 o o o o 0o o o @

.
« o o o @

e ¢ o s o o o @
.

.

e o o s o s o o 0
e o o & o s o o 0

o o & o o o o e o

Recorés

4 6 o 6 6 e ¢ 6 4 o 9 6 e 4 v 0 e 6 o o 0 6 0 4 9 s o s o s o+ 0

e o o o o

e o o 6 o 0 0 o 0 o o o o @

e @ o o ¢ o o o o

Disk Sorting Techniques for Variable-Length Records
Conditions for Use of Blockset Sorting Techniques
Conditions Common to Both Blockset Techniques

FLR-Blockset Conditions e e e e e e e

VLR-Blockset Conditions

Efficient Use of Work Storage Devices
Direct Access Work Storage Devices

e o e e s e o

Bypassing the Blockset Techniques
Peerage, Vale, and Conventional Disk Sort

o e o

.
e o o o o
.
-

o o
* o

o o B0 o o o o
0

@ 6 o 0 6 6 ¢ 0 o o 2 0 9 & ° 0 e & & & 6 6 0 4 % e s o 0 s o o

e o o o o o o o o 0 e o o o & o 0 o ¢ o o o o @ e o o o o

o o e o o o o

® 6 0 6 6 & & 6 6 0 6 * 6 6 0 & 6 o & 6 ° 0 & 6 6 0 e 0 4 6 0 ° 2 0 o 0 o o

® 9 o o 6 ¢ o o ¢ o o o o 0@

e & & ¢ o o 2 o s 0 o 0 s o e 0

e o o o o 5 & o e 6 ° & 6 & 6 0+ e 8 6 o & 4 6 o 2 9 0 6 4 0 0 6 0 0 0 o o

* e 6 @ & ¢ * o e s o o e+ o

e 8 o o o 4 o o 0 o 0 o o o s 0

Contents

100

X

-de

Tapae Work Storage Devices

e & o o e o o o o o o

Device Data Transfer Rate e . .« e o
Correct Specification of Input/Output Data Set

Characteristics . e e e e e e e e . .

Simplify Control Fleld Descriptions

Data Set Size

Variable-Length Records .
Spare the Linkage Editor . .
Tape Sorting Techniques .
Forcing a Technique . .

" e o o o
« o o o

o o 0 2 o
o o o o o
o o o o o

e 0 e o o o o
¢ o e o o o
o o o o o o
e o o o o o o

o o o o

Appendix A. UWhat to Do If the Program Stops

Localizing a Problem © e e e e e s e e s e e e e e e
Is This a Program Error? . e e s e e e e e e s
Potential Problems with Routlnes at ram Exits

Use of Registers c e 4 o s e s s e s e e s e e o
Space e b e e e e e e e e e e s e o e o e o o o
Record Contents .« e e e c e e e s e e e e e e
Potential Problems With Invoklng Programs e o o o
Bypassing the Problem e e s s e e s e e e e e e e

DEBUG Control Statement e e e e e s “ e e .

Messages Produced by Using the DEBUG COntrol S atement

Messages Produced by Using the DIAG Option “ e e e e

Dumps . . e e o e s o s e s e o e e e o e e e e e
Normal ABEND Dumps e e b e e e e e e e e s c e e e o

Forcing a Specially Formatted Dump (only for Peerage

Vale) e e e e e s s e e s e e e e s e e e e e e

Appendix B. Data Format Examples . . . ¢« ¢ o« o &«

Appendix C. Error and Information Messages

Messages Produced by the Program
Control Statement Coding Errors
Message Status .
Checklist
Bypass .« e e e e
Message Format .

e o o o
« o
e o

o o

e o o o

e o o o

o o o o

o o o o

¢ o o o

o o o o o o

e ¢ o o o 0

e e o o o

e o o o o
.

e @ o o o o o

¢ o o o o o o

o o .
o o -
o o .

e o o o o o

e o o o o o @

e o o 0 o o o

e o o o o o o o o 0

e o o o o o

e o o o o o o

¢ o o o o o o o o o

* o o o o o o

e o o o o o o

o o o o

Appendix D. Examples of Control Statements for Sorts/Merge

Applications = . .
List of Examples
Sort Examples . .
MERGE Examples .

Appendix E. EBCDIC and ASCII Collating Sequences

o o o @
¢ o o o
¢« o o o
e o o O

L]
e o o o e o+ o o o
.
.

e o o o

e o o

o o
e o o o o o o e o .
e

EBCDIC e s e e e e e e
ASCII N

e o e o ¢ o e ° o+ o

® o o & o e o o e o o o ¢ e o o o o

Appendix F. Timing Estimates . e
Input/0Output Blocking . . . e . e
Interpolatton/Extrapolation of Elapsed Ti

Assumptions made in Producing Estimates
Records and Control Fields
Main Storage e e e e .
Devices Used .« e e e

e o o o o o
.

e o o o o o 0

e o
e e o o e o o o o
« o

e * & e e o

L]
.
ime
.
o o o .
.
.
me
.

ow.ooo
o-nocoo

e o o o o 0

.
.
.

* o o o o o @

e o o o o o o

Tables Showing Estimated Total Executlon Ti Seconds
Timing Estimates for Other Processors . . « e e e
Index L] L] L] ° L] L] L] L] L] L] . * [] [] L] L] L] . . [] L] L] L] L] L] L] L]

0S/VS Sort/Merge Programmer's Guide

o o o o o o o

e o 0 0 & o o o o 6 o 0 0 0

. o o o O e o o o 0 ¢ o o

121
121

124
124
124
124
124
125
126

127
127
127
128
128
128
128
128
129
129
131
133
134
134

134
137

140
140
140
140
141
141
142

159
159
161
179

183
183
185

187
187
187
187
188
188
188
188
189

190

Figure
F!gure
Figure

Figure
Figure

Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure
Figure
Figure
Figure

* o o e o

N=OoWwWoN O VLD LI
.

b o P b
w
e o 0 o o o o

.

.

.

b b ot (b Pt
oS
.

—
0
.

20.
21.

22.
23.
26.
25'

Maximum Input and Output Record Lengths . o

Control Fields
Step-by-Step Guide to Preparing Control
Statements e o o e o o s e e o s e e o o s o
Calculating Main Storage Requirements . o .
External Work Storage Requirements of the
Various Tape Techniques e e e e e s e e e s
External Work Storage Requirements of the
Various Disk Techniques e e e e e
Program Control Statements . .
Control Statement Format e e e o
Continuation Statement Format .
Input Job Stream .« e e

DD Statement Parameters Used by Sort/Merge
DCB Subparameters Used by Sort/Merge

e e o o o o o o o o e o o

.
-
e o
-

* o 0
o o o o o
o o o o o
o o o o o

Flow of Control in the 0S/VS Sort/Merge Program

Functions of Routines at Program Exits . . .
Register Conventions .« e e e o . .
Example of DD Statements for an Invoked Sort

The Parameter List when Attaching the Program

Passing Parameters to the Program c e e e o
Coding the Parameter List . . . e e e e e
Comparative Data Transfer Rates of Disk Work
Storage Devices e e . . e e e e e .

Comparative Data Transfer Rates of Tape Work
Storage Devices . e e e e e e e e e s
A Sample Set of Messages e e e e e e s
Contents of a Specially Formatted Dump

Interpreting a Formatted Dump c e e
Control Statements for Timing Estimate

Applications

....... e e o o o+ s e o o

Figures

136
187

xXii

] 0 OGRA

This section describaes the relationship of the IBM 0S/VS
Sort/Merge Program Product 5740-SM1 (hereafter referred to as
the sort/merge program—or simply sort/merge) to the operating
system; its functions and facilities; its requirements in terms
of hardware, main storage, and user input; and factors affecting
performance.

E ONSHI (] E _OPER G S EM

Sort/merge operates under the operating system control program.
Therefore, it must be initiated according to operating system
conventions: You must define any data sets used by the program
according to operating system standards. You can use the label
checking facilities of the operating system during program
exacution. (Operating system label checking facilities are

described in 0S/VS) Supervisor Services and Macro Instructions
and 0S/VS2 MVS Supervisor Services and Macro Instructions.)

Because sort/merge uses the operating system data management
facilities, you must describe all data sets (except those
allocated via the DYNALLOC parameter) necessary for program
operation in job control language data definition (DD)
statements. These statements must be placed in the operating
systeg.input stream with the job step that initiates program
execution.

T 06 ILL DO

Sort/merge has two basic functions:

. To sort records, that is, to arrange them in a given
sequence.

. To merge from 2 to 16 previously sorted record sequences
into one sequence. When you merge records, the sequences to
be merged must have been previously sorted into the same
orgert(ascending or descending) as that required for final
output.

USING THE PROGRAM EFFICIENTLY

The objective of the sort/merge program is to give as fast a
sort or merge as possible. Many factors (such as the size of the
work data sets specified, record lengths, default values in
operation) are involved in determining the efficiency of the
program. These factors are evaluated at the beginning of the
program (in phase 0), and optimization takes place in two ways:

. Optimal values are calculated for many variables, such as
buffer sizes.

U For a sort, a "sequence distribution™ technique is selected
automatically.

The program has the following components:

. Four standard disk sorting techniques named VLR-Blockset
(the new sorting technique for variable~length records),
FLR-Blockset and Peerage (for fixed-length records), and
Vale (for both fixed- and variable-length records). (Message
ICE092I or ICE0931 indicates which of these is being used.)

Section 1. Introduction to the Program 1

L Three standard tape sorting techniques named Balanced.
(BALN), Polyphase (POLY), and Oscillating (0OSCL).

. Merge only.
. Two conventional disk sorting techniques, normally not used.

Generally, a disk sort is quicker than a tape sort. If you use
tape for sorting you may find it useful to be aware of the
factors that influence the program's choice of technique. This
topic is discussed in Section 3, "Calculating Storage
Requirements" and in Section 8, "Improving Program Efficiency."

LIMITATIONS ON INPUT

sort Application

2

Sort input may be a blocked or unblocked sequential data set
containing fixed- or variable-length records on any device that
can be used with QS5AM or VYSAM. DSN=NULLFILE cannot be specified
when EXCP access method (seae 0S/VS1 Data Management for System
Programmers and 0S/VS2 MVS stem Progr ing Libr : __Data
Management) is used (this is a system restriction). QSAM input
data sets may be empty, but VSAM data sets may not. Input data
sets may be concatenated even if they are on unlike devices, as
long as the conditions described in Section 5 under “YSORTIN DD
Statemant” are met.

If a VSAM input data set is password protected, passwords can be
entered at the console or (With some restrictions) through
routines at exits E18, E38, and E39.

If any of the data sets are on tape without standard labels, vou
must specify DCB parameters on their DD cards.

The length of the records that the program can handle depends on
the amount of main storage available. In no case may the length
of any record exceed the length specified by the user as the
maximum record length.

Figure 1 shows the maximum record length the program will accept
for a given amount of main storage when fixed- or
variable-length records are used.

For spanned records, maximum lengths are slightly smaller.
Conditions such as control fields of different formats, large
numbers of control fields, or large numbers of work data sets
reduce the length of the records that may be sorted using a
given amount of storage. The minimum block length for tape work
units is 18 bytes; the minimum record length is 14 bytes.

Main Storage Intermediate storage Device
Available
(in bytes) Tape DA Devices
<64K 3,200 1,200
64K 8,500 7,000
128K 19,000 13,000
256K 32,000 32,760

Figure 1. Maximum Input and Output Record Lengths

0S/VS Sort/Merge Programmer's Guide

Merge Application

Input to the merge may be up to 16 blocked or unblocked
saquential data sets containing fixed- or variable-length
records on any device that can be used with QSAM or VSAM. The
input data sets may be either QSAM or VSAM, but not both. The
records in the input data sets must be already sorted into the
same order as that required for final output. For a given
application all records must be of the same format, but the
blocking factors may differ if the data set with the largest
block size is specified in the SORTINO1 DD statement.

LIMITATIONS ON OUTPUT

Output may be to either QSAM or VSAM data sets, regardless of
whether input was QSAM or VSAM. However, a VSAM data set used
for output must have been previously defined using the Access
Methods Service utility.

If output is a keyed-sequential VSAM data set (KSDS), then the
key must be the major control field (or the key fields must be
in the same order as the major control field). Note that most
versions of VSAM do not allow the storing of records with
duplicate keys.

The output record type (fixed or variable) must be the same as
the input record type.

CONTROL FIELDS AND COLLATING SEQUENCE

The program orders your records on the basis of one or more
control fields you specify. The first field you specify is
called the major field. The program compares the major fields of
the records and sorts them in ascending or descending order
(according to which order you have specified).

All other fields you specify are called minor fields. If the
major fields in two records are equal, the program sorts the
records according to the minor fields you have specified. If the
first minor fields in two records are equal, the program
compares the second minor fields, and so on, until it finds a

di fference, or the end of the control field is reached.

The input order of records will be preserved on the output data
set if all their control fields are identical, and the EQUALS
option is specified (see “SORT Control Statement®).

Control fields may overlap, or be contained within other control
fields. They need not be contiguous, but must be located in the
first 4092 bytes of the record.

The collected control fields of each record, arranged in order
of priority, are regarded by the program as a single control
word which can be up to 4092 bytes long.

A control word made up of four control fields is shown in
Figure 2.

Records are sorted using either the standard IBM collating
sequence (EBCDIC) or the ASCII collating sequence.

The EBCDIC sequence can be modified, for example to allow the
alphabetic collation of national characters. The modification
can be generated as a default when the program is installed; or
y:utcan :pecify it at execution time through the ALTSEQ control
statement.

You can also specify at installation time or by means of a
parameter of the OPTION control statement that both format CH
and format AQ fields should be translated using the ALTSEQ
table, or only format AQ.

Section 1. Introduction to the Program 3

AN

Control
field 3

Figure 2. Control Fields

The collating sequence for character data and binary data is
absolute; that is, character and binary fields are not
interpreted as having signs. For packed decimal, zoned decimal,
fixed-point, normalized floating-point, and the signed numeric
data formats, collating is algebraic; that is, each quantity is
interpreted as having an algebraic sign.

PROGRAM FACILITIES AND OPTIONS

Soma of the program default values depend on the specifications

made by vour system programmer when the sort/merge program was

lnstalled Sortlmerge 1ngta11atron is described in the 0S/VS
/Merge sta (o)

The following list is a summary of the sort/merge installation
daefault keywords and functions that may be set when the program
is generated.

Keyuords Functions

ALTSEQ Alters the normal EBCDIC collating sequence.

BLKSET Bypasses or selects FLR-Blockset.

CHALT Translates format CH the same as format AQ, or
translates format AQ only.

CHECK Suppresses record count checking for sorting
applications that use the E35 user exit routine without
a SORTOUT data set.

EQUALS Preserves the input order of equally collating records.

ERETINV Terminates sort/merge with a return code of 16 or an
ABEND for a dynamically invoked program.

4 0S/VS Sort/Merge Programmer's Guide

ERETJCL Terminates sort/merge with a return code of 16 or an
ABEND for an EXEC-initiated program.

EXCPVR Uses EXCPVR for SORTWK 1/0.
LIST Lists program control statements.

MAXLIM Sets an upper limit to amount of address space
available for sorting.

MINLIM Sets a minimum limit to amount of address space
available for sorting.

MSGS Controls printing of program messages.

PRINT Spacifies an alternate name for print data sets;
otherwise, SYSOUT is used.

RELEASE Releases unused work space.
RESALL Reserves storage for system and application use.

RESDNT Indicates whether sort/merge modules reside in link
pack area.

RESINV Reserves space for programs invoking sort/merge.

SECALL Allows automatic secondary allocation of temporary work

space.
SIZE Sets maximum amount of main storage.
SMF Produces SMF records.

SORTLIB Generates a SORTLIB.

sSVC Specifies a user SVC number for sort/merge.
SYSTEM Generates an 0S8, VS1, SVS, or MVS vaersion of
sort/merge.

VBLKSET Bypasses or selects VLR-Blockset.
VERIFY Verifies sequence of output records.

VIO Indicates whether virtual allocation of work data sets
is accepted.

The PARM field options of the EXEC job control statement allow
you to override some of the specifications made at sort
generation time, such as the amount of main storage allocated
for program execution and the handling of error messages.

The OPTION statement also provides vou with the ability to
override SORT statement parameters that are either in a
parameter list of a dynamically invoked sort or in the SORTIN
data set. See the OPTION control statement in Section ¢ and the
SORTCNTL DD statement in Section 5 for details.

You can also obtain certain diagnostic information for use as a
debugging aid: in the case of a disk sort, by using the DEBUG
control statement (see Appendix A); for a tape sort or merge,
through use of the PARM field of the EXEC statement (see Section
5), or through the passed parameter list.

Section 1. Introduction to the Program 5

A Ul

The program raquires the following machine equipment for
execution:

L Any System/370, 303x, 3801, or 4341 processor supported by
an 0S/VS or 0S operating system.

L Any units that are required for input and output in addition
to the above. These units must be supported by QSAM or VSAM.

. The 3880 Model 2 or 3 with the Speed Matching Buffer Feature
to permit attachment of the 3380 to systems with block
multiplexor channels with data rates less than 3 megabytes
per second.

. Any additional units required as intermediate storage for a
gor:: Ingermediate storage requirements are given in
ection 3.

MAIN STORAG EQUIREMENTS

In general, the more main storage you can make available to the
program, the better the performance. However, problems can arise
under 05/VS if an unduly large virtual region or partition is
assigned, if no maximum limit to sort storage was set at
installation time. See "Main Storage"™ in Section 8. The minimum
is 54K bytes.

Sort main storage is defined when the sort/merge program is
generated. If this is not suitable, calculate the requirements
for your particular application and override the amount
specified using the SIZE parameter on the EXEC card (see Section
5) or in the passed parameter list. To work out your
requirements, see Section 3 under "Main Storage.™

PROGRAM EXECUTION

PROGRAM CONTROL

To execute the sort/merge program, you must prepare two types of
statements: program control statements and job control language
(JCL) statements. Program control statements are processed by
the sort/merge program; they describe your records and how you
want them sorted. JCL statements are processed by the operating
system control program; among other things, they describe your
input and output data sets and your intermediate storage
requirements.

A summary of which statements are needed under what
circumstances is given in Section 2, which provides a
step-by-step guide to control statement preparation.

STATEMENTS

Eight program control statements are used by the program: the
SORT, MERGE, OPTION, MODS, RECORD, ALTSEQ, DEBUG, and END
statements. These control statements are your way of giving the
program necessary information. You will find a full discussion
of the program control statements in Section 4.

6 0S/VS Sort/Merge Programmer's Guide

JCL STATEMENTS

JCL statements are used to initiate execution of the sort/merge
program and describe to the operating system the data sets
required by the program.

A complete description of the format and of the specifications
for the JCL statements required by the program is contained in
Section 5 of this publication.

A sort usually requires intermediate storage as working space
during program execution; you must specify intermediate storage
device(s) and the work space required in certain data definition
statements—unless you use the DYNALLOC facility under MVS. The
formulas for determining space requirements are described in
Section 3. A merge does not require intermediate storage.

PROGRAM INITIATION

You can initiate execution of the program in the following ways:

. In the input stream with an EXEC job control statement using
the name of the program or the name of a cataloged
procedure, as described in Section 4 of this publication.

. In a program written in Basic Assembler Language with a
system macro instruction, as described in Section 7 of this
publication.

U In programs written in either COBOL or PL/I with a special
facility of the language. For more information, see the
programmer's guide describing the compiler version available
at your installation.

PROGRAM MODIFICATION

RETURN CODES

During execution, the program can pass control at various
points, known as program exits, to routines you have designed
and written to perform specific functions. For example, you can
write such routines to summarize, insert, delete, shorten, or
otherwise alter records as they are being sorted or merged. You
can also write your own routines to correct I/0 errors that the
control program cannot handle or to perform any necessary
abnormal end-of-task operation before the program is terminated.

You can include your routines as an object deck in the input
?tgeam at execution time, or they can reside in a private
ibrary.

The program exits and their uses are explained in Section 6.

Sort/merge returns a return code of 0 to the operating system
(or other invoking program) upon successful completion. If
completion is unsuccessful, a return code of 16 is returned or
an ABEND is issued, depending on what was specified at
installation time. See Section 7.

CHECKPOINT/RESTART

Checkpoint/restart is a facility of the operating system uwhich
permits an automatic or deferred restart if the sort/merge
program abnormally terminates. You must specify certain
parameters in the program control statements and prepare a JCL
DD statement if you wish to include this facility in a
sort/merge execution. See "CKPT"™ in Section 4.

Section 1. Introduction to the Program 7

Note: If checkpoint/restart is specified, the Blockset
techniques will be bypassed by the sort/merge program.

For more information on the checkpoint/restart facility, see

0S/VS1 Checkpoint/Restart or 0S/VS Vs C oint/

| STATISTICAL DATA COLLECTION

If yvou want to collect statistical data concerning execution
time, record distribution, and so on, yvou can use the SMF
installation option. SMF is a keyword operand of the ICEMAC

installation macro. Users who have properly installed and
initialized the sort/merge program under an MVS or VS1
programming system (SMF is not supported under 0S or SVS) have
this option available to them.

If SMF is specified, sort/merge causes an SMF record to be
written for each sort which completes successfully (return code
0). If an SMF record is desired, either a short or full SMF
record can be produced by means of the SMF keyvword on the ICEMAC
installation option. A full SMF record will only be produced by
sort/merge if requested (SMF=FULL), and only if the sorting
operation is for variable-length records.

| Notes:

1.

MAXIMUM EFFICIENCY

If you want sort/merge to produce SMF records under the MVS
programming system, a new SVC routine for sort/merge must be
installed. If SMF records under the V51 programming system
§retd§§iged, a modified SVC routine for sort/merge must be
installed.

Meaningful SMF records are produced only when sort/merge
selects Peerage, Vale, or one of the Blockset techniques. If
one of the conventional sorting techniques, such as BALN, is
selected, an SMF record will be produced without any
statistical data.

For more information concerning statistical data collection, see
0S/VS1 Syste anagement Facilities (SM or 0S/VS2 MVS System

Programmin ibrary: Syst Management Facilitie SMF) .

The specifications you make in your program control and JCL
statements affect program execution, efficiency, and speed.
Suggestions for improving the performance of a sort/merge
application are given in Section 8.

When yvou are designing your sort application, remember that the
program can use many I/0 devices for input, output, and
intermediate storage. You should assign the program a relatively
high priority to be sure that it gets control of the processor
frequently and does not tie up the I/0 devices while it waits
for processor time.

8 0S7VYS Sort/Merge Programmer's Guide

N SIMP 06

Figure 3 is a simple, step-by-step guide, including an example,
to preparing your control statements for a program application.
However, all the options and features of the program are not

covered in Figure 3 on page 10. Some of those not covered are:

. The PARM option of the EXEC statement, which permits you to
override some of the specifications made at sort generation
time, select a spacific distribution technique for tape, and
obtain special diagnostic information. The PARM option is
described in detail in Section 5.

. The program exits, whose purpose and uses are described in
Section 6.

. The checkpoint/restart facility, which permits an automatic
or deferred restart if the program terminates abnormally.
Seae checkpoint/restart in the index for more information.

. Achieving maximum program efficiency, which is explained in
Section 8.

. Initiating the program with a system macro instruction from
within one of your own assembler language programs, which is
described in Section 7.

. Use of the DEBUG control statement, which is described in
Appendix A.

When yvou have prepared your control statements, collate them as
described in Section 5, "Job Control Statements™ (Figure 10).

Section 2. Writing a Simple Program 9

Write JOB Change ::;icate on
Statement Rec. Len. CORD
Statement

I

Write SORT Write MERGE
Statement Statement

J

Write
OPTION
Statement

Write
RECORD
Statement

]

Write
ALTSEQ
Statement

Mod Coll.
Seq?

Write
MODS
Statement

‘E' in Sort
or Merge
Control Card

Mod. Ctl.
Fields

Figure 3 (Part 1 of 3). Step-by-Step Guide to Preparing Control Statements

10 0S/VS Sort/Merge Programmer's Guide

@

Figure 3 (Part 2 of 3).

Write
et Yes Libr. DD
Routines in
Lib? —» Statement
. Write
Write
Routines in "\ Yes » SoRTMODS > END
SYSIN? Statement Statement
]
. Yes Own Routines™\, Yes
Using PROC? to Link Edit?
EXEC EXEC EXEC
PGM= PROC=SORTD PROC=SORT
Write
SORTLIB
Statement
if required
SYSLIN
Own Rtns to \Yes > SYSLMOD
Link Edit? SYSUT1
SYSPRINT
Write Write
SORTIN SORTINNnn
SORTOUT SORTOUT
Statement Statement

Step-by-Step Guide to Preparing Control Statements

Saection 2. Writing a Simple Program

11

Work May
Be 7- &/or 9-trk

T

Code DYNALLOC
on SORT Statement

Work only
9-trk
Calc. Area Calc. Area
Using Figs. 5 Using Figs. 5
and 6 and 6
L]

Figure 3 (Part 3 of 3).

Divide Equally
Between Areas
if Possible

Write
SORTWKnn
Statement

Write
SYSIN
Statement

Collate
Statements

END

Step-by-Step Guide to Preparing Control Statements

12

0S/VS Sort/Merge Programmer's Guide

€o 0 X

The following example shows the JCL and sort/merge statements
required for a simple sort application. Other examples are
described in Appendix D.

/7 EXAMP JOB A402,PROGRAMMER,REGION=256K 01
/7/SRT EXEC PGM=SORT,PARM='SIZE(MAX)' 02
/7/785YSOUT DD SYSOUT=A 03
//S0RTIN DD UNIT=3380,VY0L=SER=000101,DISP=SHR,DSN=INPUT 04
//SORTOUT DD UNIT=3400-3,DSN=0UTPUT,VOL=SER=222222, 5

77 DISP=(,KEEP) 06
//7S0RTWKO1 DD UNIT=SYSDA,SPACE=(CYL,(10)) 07
/7/7S50RTWKO02 DD UNIT=SYSDA,SPACE=(CYL,(10)) 08
/7/7SYSIN DD % : 09
SORT FIELDS=(5,12,CH,A),FILSZ=E2000 10
/7%
01 The JOB statement introduces this job to the operating

system, and specifies a region of 256K bytes.

02 The EXEC statement calls the program by its alias SORT
and specifies that the program should use all the main
storage available to it.

03 The SYSOUT DD statement directs the sort messages to
system output class A.

04 The SORTIN DD statement describes an input data set named
INPUT. The data set is on a 3380 disk with the serial
number 000101. The DISP parameter indicates that the data
set is known to the operating system.

05-06 The SORTOUT DD statement describes the output data set.
Output will be recorded on a 9-track tape and will be
kept. The data set will be placed on a standard label
tape with tape volume number 222222. By default, format,
record length and block size are the same as for SORTIN.

07-08 These DD statements define temporary work data sets. The
two data sets are on SYSDA direct access devices. Ten
cylinders are specified for each data set.

09 A data set follows in the input stream.

10 SORT statement. The FIELDS operand describes one field.
It begins on byte 5 of each record, is 12 bytes long,
contains character (EBCDIC) data, and is to be sorted
into ascending order. The file size is estimated to be
2000 records.

Section 2. Writing a Simple Program 13

SECTION 3. CALCULATING STORAGE REQUIREMENTS

MAIN STORAGE

This section describes how to calculate the amount of main
storage needed to run a sort or merge. It thaen daescribes how to
calculate the amount of space which a sort may need as
intermediate storage on tape or disk.

In general, the more (virtual) main storage you make available
to the program (up to a certain limit), the better the
performance. For the program to be efficient, at least 72K bytes
of main storage should normally be used, but to obtain best
performance always try to allocate between 128K bytes and 512K
bytes of main storage, depending on file size. However, the
amount of virtual storage should be related to the amount of
real storage available to the program. As a guideline, use the
total real storage available for page frames divided by the
usual number of initiators in the system.

The amount of main storage to be made available to sort/merge is
defined when the program is installed. If for any reason this
default value is unsuitable, you can override it with the SIZE
parameter of the EXEC statement, as described in Section 5.

You can calculate the minimum main storage requirement (in
bytes) for sort/merge by using the formula:

(1.2 x MIN) + 8K + m (EXEC-initiated sort)
or

(1.%)x MIN) + 8K + m + reserved space (dynamically invoked
sor

where

MIN
is the space needed for sort itself, and is calculated
using the formula given in Figure 4. The constant 1.2
provides for space lost through fragmentation, and the
additional 8K bytes is used by the system.

is the number of bytes of main storage that your exit
routine(s) uses. It is the maximum "m" value you specified
on your MODS control statement.

reserved space
is that space required by the invoking program for data
handling. The number and size of buffers you need depends
upon what routines you have, how the data is stored, and
which access method you use.

For example, a COBOL-invoked sort requires a number of
bytes to be reserved for COBOL's use in its default or
user-written input/output routines, which are normally

ge:?ed at execution time for OPEN/CLOSE modules and for
uffers.

14 0S/VS Sort/Merge Programmer's Guide

Formula MIN = A + BLK + (C X LEN)
A BLK c LEN
SORTIN
Standard disk
sort technique 50000 (Maximum) 5
BALN (disk) 13000 input 5 Input
CRCX 20000 block IS LRECL
BALN (tape), size
POLY 13000 5
0SCL 20000 max(5,19)
SORTOUT
Standard disk
sort technique -50000 4
BALN (disk) 13000 Output IS OQutput
CRCX 20000 block IS LRECL
BALN (tape) 13000 size (IS + 1)72
POLY 13000 IS
0SCL 20000 IS
MERGE 12000 OQutput No. of input (Max) input
block size data sets block size

IS: Number of intermediate storage areas
For a Sort: Apply formula to both SORTIN and SORTOUT,

and take the greater.
For a Merge-only: Apply formula to MERGE.
Spanned records: Add space for assembling the records (=LRECL)

for each data set containing spanned records.

Figure 4.

Calculating

Main Storage Requirements

Notes:

1.
2.

5.

At

If vou are using VSAM data sets, you must allow space for
VSAM's buffer pools (maximum of input and output for a sort,
total of input and output for a merge), and for VSAM control

blocks. Refer to Planning for Enhanced VSAM for details of
how to calculate the amounts required.

least 54K bytes should be allocated to the program.

For a disk sort, if the MINLIM value specified at
installation time is larger than a given SIZE value for a
certain application, the MINLIM value will be used.

Dependent upon main storage fragmentations and system usage
in a region or partition, the System Measurement Facility
(SMF) may log more storage than was actually used.

For calculating the amount of storage necessary to execute
VLR-Blockset, see Appendix E.

Section 3. Calculating Storage Requirements 15

INTERMEDYIATE

STORAGE DEVICES

ORAGE

Most sorting applications need work space on disk or tape. Merge
applications need none. The amount of space required depends on-
the type of device on which you assign storage, the number of
records in your input data set, and the amount of main storage
assigned to the program.

You can assign intermediate storage on either mixed direct
access devices or magnetic tape, but not both.

IBM 2400 and 3400 series magnetic tape units can be used for
intermediate storage. If the sort input data set is on 7-track
tape, you can use any combination of 7-track and 9-track tapes
for intermediate storage and output, or intermediate storage and
output can be on direct-access devices. However, if 7-track tape
is not used for input, it cannot be usad for intermediate
storage or output. When 7-track tape is used for intermediate
storage, variable-length records cannot be handled.

If you assign 7-track tapes for input, you can use the data
converter. If you assign 7-track tapes for intermediate storage,
you cannot use the data converter, nor can you use the
translation feature for anything but character data.

Unless you force one of the nonstandard techniques, you can
specify a mixture of direct access devices for a given sort
application. The types of davice available for intermediate
storage are:

IBM 2314/2319 disk

IBM 333073333 series disks (Model 1 and/or Model 11)
IBM 3340/3344 disk

IBM 3350 disk

IBM 3375 disk

IBM 3380 disk

IBM 3850 MSS

Note: The 3880 Model 2 or 3 with the Speed Matching Buffer
Feature permits attachment of the 3380 to systems with block
multiglexor channels with data rates less than 3 megabytes per
second.

SPACE REQUIREMENTS

Space requirements are summarized in Figures 5 and 6.

16 0S/VS Sort/Merge Programmer's Guide

Tape Maximum | Work Storage Areas | Max.No.of

Techniques | Input Required Work Areas | Comments

Balanced 15 reels| Min=2(V+1) 32 reels Used if >3 work

tape tape units storage tapes

BALN provided and file
size not given

Polyphase 1 reel Min=3 tape units 17 reels Used if 3 work

tape POLY storage tapes
provided

Oscillating| 15 reels| Min=V+2 or 4 tape 17 reels File size must be

tapa 0SCL units, whichever given. The tape

is greater drive containing

SORTIN cannot be
used as a work
unit

Key

V No. of input volumes if blocking equals work storage blocking

Figure 5. External Work Storage Requirements of the Various Tape Techniques

TAPE

Three different techniques are available to the program: the
BALN, POLY, and 0SCL techniques. To calculate their
requirements, see Figure 5.

Note: The value you obtain for "min." is literally a minimum
value; if, for example, your input uses a more efficient
blocking factor than the sort program or is spanned, you will
need more intermediate work space.

DIRECT ACCESS
Formulas for calculating requirements are given in Figure 6.

Divide the number of tracks or cylinders evenly among the areas
you select. The formulas are based on areas of equal size, and
more tracks will be needed if you do not divide them equally.

System performance is improved if storage is specified in
cylinders rather than tracks. The number of tracks per cylinder
is 19 for the 3330 series, 20 for the 2314, 12 for the 3340, 30
for the 3350, 12 for the 3375, and 15 for the 3380. FLR-Blockset
wiil)be bypassed if space is not allocated in cylinders (MVS
only).

The program will allocate secondary extents as required on up to
12 work areas, even if not requested in the JCL, if sort/merge
has been installed with the option SECALL=YES, unless the data
set is virtual 1/0.

Tracks not required when merging begins are automatically
released if the RELEASE=YES installation option is selected
(unless work data sets have been defined as permanent rather
than temporary).

Release is not done for in-main-storage sorts or skip merge. The

sort/merge program may do an in-main-storage sort if enough main
storage is available to hold all the records.

Section 3. Calculating Storage Requirements 17

Disk Maximum Work Storage Areas |Max.No. of|Comments
Techniquas | Input Required Work Areas
Standard No areas needed if 100
(default) enough main storage lareas
disk available
techniques
No fixed If areas needed, Secondary extents
maximum minimum no. of will be automatic-
-depends tracks = ally allocated when
on ((FxS)/K)+N needed, if allowed
available at the installa-
main Allocate extents in tion. %
storage cvylinders to get
and work best performance.
storage
Balanced 3 areas 6 areas Can be forced when
direct Minimum number of 3-6 work areas
access BALN tracks= provided
C(SxN)/Z7Kx(N-1))+2N
Crisscross 6 areas 17 areas Can be forced when
direct Minimum number of 6-17 work areas
access CRCX tracks = (1.25xS)7K provided
Key
B Work storage track utilization: 7000 for 2314,2319, 12000 for 3330
series, 8000 for 3340, 18000 for 3350, 45000 for 33890
F Multiplication factor as follows:
Blockset
1.8 if >100K bytes main storage available
1.9 if <100K bytes main storage available
Peerage and Vale
1.05 1f >100K bytes main storage availableXx
1.10 if 50-100K bytes main storage availableXx
1.50 if <50K bytes main storage available
%For Blockset, always allow for secondary extents. Blockset
work space requirements can exceed the amount calculated in the
formula, depending on the randomness of the input data and the
length of the control fields.
¥%If work device types are mixed and/or input records are fixed-
length and long (more than a quarter of work track length but less
than a full track), then F should be increased towards 1.50.
K B7L (2 1; only integer part used)
(Max.) input record length which should be increased by the length
of each control field with any of the following formats:
ZD zoned decimal
AC character ASCII
AQ alternative collating sequence
or if a control field is to be modified, that is,
E is specified as the sequencing order
N No. of work areas
S No. of records to be sorted (FILSZ)
Figure 6. External Work Storage Requirements of the Various Disk Techniques
18 0S/VS Sort/Merge Programmer's Guide

Example

More space than indicated may be needed:

o If vou have a long control word. As a rule of thumb, add 5%
for every 150 bytes of control word after the first 100
bytes.

. If you have a mix of work davices. In most cases, if
intermediate storage disks are mixed, additional work space
should be allocated.

. If your application modifies control fields, requires
alternative sequencing (ALTSEQ), or uses zoned decimal
control fields, then L in the formulas in Figure 6 should
be increased by the length of such control fields.

. If you specify the CKPT operand on the SORT control
statement, 20-30% of the primary allocation of SORTWK tracks
is set aside for checkpoint processing.

Determine minimum requirements when sorting 10,700 eighty-byte
records using three areas on 3330, with 120K bytes of main
storage available to the program. Normally, the Blockset
technique will be used for fixed-length records.

K = 12,000/80 = 150
F =1.80
Min. = 1.8 x 10,700/150 + 3 = 132

Divided among three areas: 44,66,44. For greater efficiency,
allacate in cylinders, for example, three areas of two cylinders
each.

EXCEEDING INTERMEDIATE STORAGE CAPACITY

Work storage on

At the beginning of a sorting operation, the sort/merge program
estimates a maximum sorting capacity (Nmax) and generates an
informative message: ICE092I or ICE093I for a standard disk
sort, ICE0381 for a tape or nonstandard disk sort.

The message gives the approximate capacity in number of records.
With disk work space, the value is based on use of only the
first extent of work data sets. For variable-length records the
value is based on the maximum record length.

The value printed in message ICE038I is an average value rounded
down to the nearest thousand. This value assumes random input.
If you have a reversed sequenced file and tape work storage,
sort capacity may be exceeded at a lower value, because of the
higher number of partly empty end-of-string blocks.

If, during the course of sorting, the allocation of secondary
space on one of the sort work data sets fails, the system will
issue a B37 informational message. Sort/merge can recover from
this by allocating space on one of the other work data sets, if
one is available.

Disk

Since the program uses secondary extents for up to 12 work areas
even if not requested in the JCL (unless you force one of the
nonstandard techniques), the probability of exceeding
intermediate storage capacity is very low. However, if this
happens for a nonstandard disk sort, the program gives control
to your routine at exit El16, if available. This routine can
direct the program to take one of the following actions:

Section 3. Calculating Storage Requirements 19

U Continue sorting with only part of the input data set; the
remainder could be sorted later and the two results merged
to complete the application.

o Terminate the program without any further processing.

Work Storage on Tape

Program Action

Note that for magnetic tape, a tape length of 2400 feet is
assumed in calculating Nmax, so for tapes of other lengths the
figure wWwill not be correct. When tapes with mixed density are
used, the smallest density is used in the calculation.

If you specify an actual data set size, and that size is larger
than the maximum capacity estimated by the program (Nmax), the
program terminates before beginning to sort. If you specify an
estimated data set size, or none at all, and the number of
records reaches the maximum (Nmax), the program gives control to
vour routine at exit E16, if you have written and included one.
Thig routine can direct the program to take one of the following
actions:

. Continue sorting the entire input data set with available
intermediate storage. If the estimate of the input data set
size was high, enough intermediate storage may remain to
complete the application.

. Continue sorting with only part of the input data set; the
remainder could be sorted later and the two results merged
to complete the application.

. Terminate the program without any further processing.

If you do not include an El16 routine, the program continues to
process records for as long as possible. If the intermediate
storage capacity is sufficient to contain all the records in the
input data set, the sort completes normally; when intermediate
storage is not sufficient, the program terminates.

The program generates a separate message for each of the three
possible error conditions. They are:

ICE041A - N GT NMAX: Generated before sorting begins (for a
tape sort) when the exact data size supplied on a SORT control
statement is greater than Nmax.

ICE046A - SORT CAPACITY EXCEEDED: Generated when the sort has
used all available intermediate storage while processing.

ICE048I - NMAX EXCEEDED: Generated when a tape sort has
exceeded Nmax and has transferred control to a user-written El6
routine for further action.

The test for message ICE041A is made with the maximum possible
calculated value, that is, sort/merge is sure it will fail. In
case of doubt, the message will not be issued.

20 0S/VS Sort/Merge Programmer's Guide

SECTION 4. PROGRAM CONTROL STATEMENTS

This section tells you how to write the sort/merge program
control statements. In these statements, you describe the input
data, provide information about the control fields to be used,
and describe any of your own routines you wish to be used during
program execution. For a full explanation of program exits, and
how you can use your own routines during a sort/merge
application, see Section 6.

There are eight control statements:

SORT statement Provides information about control fields and
data set size. Use this statement if your
application is a sort.

MERGE statement Provides the same information as a SORT
statement. Use this statement if your
application is a merge.

OPTION statement Provides an alternate way to specify or
modify certain program options available at
installation time (such as EQUALS, CHALT,
CHECK, and VERIFY) or on the SORT control
statement (such as CKPT or DYNALLOC).

RECORD statement Provides record length and type information.
This statement is required when yvou include
user routines that change record lengths
during sort/merge execution, when there is no
SORTIN DD statement, or when input is a VSAM
data set. It can be supplied at other times
to improve efficiency.

MODS statement Links your routines with the related
sort/merge program exits. This statement is
required only when you include user routines
in a sort/merge application. A description of
how to write such routines and how they may
be used in a sort/merge application is
contained in Section 6.

ALTSEQ statement Specifies modifications to the IBM EBCDIC
collating sequence. The modified sequence
will be used for any control field whose
format is specified as AQ.

DEBUG statement For use with a disk sort when detailed
information on program execution is required
for optimization, debugging or bypassing
purposes.

END statement Signifies the end of a related group of
program control statements. This statement is
required when program control statements are
not followed immediately in the input stream
by an /% statement.

The program checks the validity of each statement before
procaessing. If the program finds an error, it issues a
diagnostic message. (See Appendix C for descriptions of
messages.)

An overview of the format and parameters of all the program
control statements is given in Figure 7.

Section 4. Program Control Statements 21

| NOTATIONAL CONVENTIONS

A uniform system of notation describes the format of tha job
control language and sort/merge control statements. This
notation is not part of the language; it simply providas a basis
for describing the structure of the commands.

The command-format illustrations in the following figure use
these conventions:

| o Brackets, [], indicate an optional parameter.

. Braces, {}, indicate a choice of entry; unless a default is
indicated, you must choose one of the entries.

L Items separated by a vertical bar, |, represent alternative
items. No more than one of the items may be selected.

L An ellipsis, ..., indicates that multiple entries of the
type immediately preceding the ellipsis are allowad.

. Other punctuation (parentheses, commas, apostrophes, etc.)
must be entered as showun.

22 05/VS Sort/Merge Programmer's Guide

Operations

Operands

sequencing

SORT |MERGE {FIELDS=(p,m,f,s5...,p,m,f,8)|
FIELDS=(p,m,s...,pP,m,S), FORMAT=f}
[,FILSZ=x],SIZE=y]
[,SKIPREC=z]
[,CKPT]
[,EQUALS|,NOEQUALS]
{,DYNALLOC=d|,DYNALLOC=(dL,n])]
Parameter Explanat ion Notes
FIELDS= Description of|Fields must be described in descending order of
control fields|significance.
P Position All fields except binary must start on a byte
within record |boundary. No field may extend past byte 4092.
m Length Acceptable control field lengths (in bytes),
and available formats are as follows:
f Format Length Format, Description
1-4092 CH (character EBCDIC, unsigned)
1-256 If CHALT=YES is specified, CH is
treated the same as AQ.
1-32 2D (zoned decimal, signed)
1-32 PD (packed decimal, signed)
1-256 FI (fixed-point, signed)
1 bit- BI (binary, unsigned)
4092
bytes
1-256 FL (floating-point, signed)
1-256 AC (character ASCII, unsigned)
2-256 csL gsigned numeric, leading separate
sign
2-256 CST gsigned numeric, trailing separate
sign
1-256 CcLo §signed numeric, leading overpunch
sign
1-256 CTO §5igned numeric, trailing overpunch
sign
2-256 ASL (signed numeric, ASCII, leading
separate sign)
2-256 AST (signed numeric, ASCII, trailing
separate sign)
1-256 AQ (character EBCDIC, alternative
collating sequence)
The sum of lengths must not exceed 4092 bytes.
For format details, see Appendix B.
s Desired Must be one of the following:

A - ascending

D - descending

E - user-modified control field that can
be sorted in ascending order

Figure 7 (Part 1 of 7).

Program Control Statements

Section 4. Program Control Statements

23

Paranmeter Explanat ion Notes
FORMAT=F Optional; may |f must be one of the available formats listed
be used when above under FIELDS=f.
all control
field data
formats are
the sanme.
FILSZ=x Optional; the |If x is an estimate, the value must be preceded
SIZE=y number of by the character E (FILSZ=Ex). If SIZE is used
records to be |instead of FILSZ, the value should represent
sorted. the number of records in the input file.
SKIPREC=z Optional; the |Ignored if specified for a merge.
program will
skip 2 records
before
sorting.
CKPT Optional; The spelling CHKPT is also accepted. Checkpoints
checkpoints cannot be taken during:
are taken. ¢ A merge-only operation with VSAM output
. égsinvoked merge handling output through
EQUALS Optional; Specifies that the order of equally collating
NOCEQUALS order of records need not be preserved from input to
equals. output. Ignored if specified for a merge.
DYNALLOC= Optional; Valid only for MVS. Ignored if specified for
dynamic a merge.
allocation of
intermediate
work storage.
d Device type. D can be any of 2314, 3330, 3330-1, 3340, 3375,
3380, 3350, 3400-3, 3400-4, 3850, 2400, 2400-3,
2600-4, or their user-assigned group name, such
as SYSDA.
n Number of Number of work data sets (up to 100).
devices (work
areas).

Figure 7 (Part 2 of 7).

Program Control Statements

26 0S/VS Sort/Merge Programmer's Guide

operation Operands

OPTION [FILSZ=x|SIZE=y]
{,SKIPREC=2]
{,CKPT]
[,EQUALS|,NOEQUALS]
[,DYNALLOC=d| ,DYNALLOC=(d[,n])]
{,CHALT|,NOCHALT]
[,VERIFY|,NOVERIFY]
[,CHECK| ,NOCHECK]
[,BLKSET|,NOBLKSET]

Parameter Explanation Notes

FILSZ=x Optional. The number If x is an estimate, the value must be

SIZE=y of records to be preceded by the character E
sorted. (FILSZ=Ex). If SIZE is used instead

of FILSZ, the value should represent
the number of records in the input
file. Overrides number in SORT state-
ment.

SKIPREC=2z Optional. The program |Ignored if specified for a merge.
will skip z records at |Overrides number in SORT statement.
the beginning of the
input data set.

CKPT Optional. Checkpoints |The spelling CHKPT is also accepted.
are taken. Checkpoints cannot be taken during

a merge-only operation with VSAM
output or during an invoked merge
handling output through E35.

EQUALS Optional. Order of Specifies that the order of equally

NOEQUALS equals. collating records need not be pre-

served from input to output. Ignored
if specified for a merge.

DYNALLOC Optional. Dynamic Valid only for MVS. Ignored if
allocation of specified for a merge.
intermediate work
storage.

d Device type. D can be any of 2314, 3330, 3330-1,
3340, 3350, 3375, 3380, 3400-3,
3400-4, 3850, 26400, 2400-3, 2400-4,
or their user-assigned group name,
such as SYSDA.
n Number of devices (work|Number of work data sets (up to 100).
areas). Overrides number in SORT statement.

CHALT Optional. Specifies Specifies that both formats AQ and CH

NOCHALT both formats AQ and CH, |control fields be translated through
or AQ only. the alternate collating sequence

(ALTSEQ) translate table (CHALT), or
only format AQ control fields
(NOCHALT). Overrides installation
values.

VERIFY Optional. Sequence Specifies that sequence checking on

NOVERIFY checking. final output record sequence should or

should not be done. Overrides
installation values.

Figure 7 (Part 3 of 7).

Program Control Statements

Section 4. Program Control Statements

25

Parameters

Explanation

Notes

CHECK
NOCHECK

Optional. Check record
counters.

Specifies that record counters should
or should not be checked at the end of
program execution. The CHECK/NOCHECK
specification is only valid for appli-
cations with output record processing
in an E35 exit routine. Overrides
installation values.

BLKSET
NOBLKSET

Optional. Attempt to
use or bypass Blockset
techniques.

Specifies that sort/merge is to
attempt to execute either the
FLR-Blockset technique (for fixed-
length records) or the VLR-Blockset
technique (for variable-length
records) or to bypass them.

Figure 7 (Part ¢ of 7).

Program Control Statements

26 0S/VS Sort/Merge Programmer's Guide

Operation Operands

RECORD TYPE=x, [LENGTH=(L1,L2,L3,L4,L5)]

Parameter When needed Value Default

TYPE=x When all records are X must be: SORTIN RECFM
supplied via exit E15 F-(fixed length),

V—-(variable-length
EBCDIC), or
D-(variable-length

ASCII)

LENGTH= (For fixed-length records)

L1 When no SORTIN DD SORTIN LRECL¥%; other-|SORTIN LRECLX.
statement supplied. wise, overridden to

that value.

L2 When length changed Length after E15. Length specified

at E15. for L1 (or
default if not
specified).

L3 When SORTOUT LRECLX SORTOUT LRECLX; SORTOUT LRECL¥;
different from SORTIN otherwise, overridden|if none exists,
and no SORTOUT LRECL* to that value. L1.
available.

LENGTH= (For variable-length records)

L1 When no SORTIN DD Maximum record length|SORTIN LRECLX
statement supplied. (plus & bytes if (plus & bytes if

input is VSAM); input is VSAM).
otherwise, overridden
to default.

L2 When maximum length Maximum record length|length specified
changed at E15. after E15 (plus 4 for L1 (or

bytes if input is default if not
VSAM). specified).

L3 When SORTOUT LRECLX SORTOUT LRECL* (plus |SORTOUT LRECLX
different from SORTIN, |4 bytes if input is (plus 4 bytes if
and no SORTOUT LRECLX VSAM); otherwise input is VSAM).
available. overridden to default

L4 Aids optimization for Minimum length (after|Length to end of
a sort; not needed for |El15), plus 4 bytes if|rightmost
a merge. input is VSAM. control field

(2 18 bytes).

LS Aids optimization for alAverage length (after
sort; not needed for a JE15), plus ¢ bytes if
merge. input is VSAM.

LS = (L2 + L4)/2
¥For a VSAM data set, the equivalent of LRECL is maximum record size
(RECSZ).

Figure 7 (Part 5 of 7).

Program Control Statements

Section 4. Program Control Statements

27

Operation |Operands
MODS exit=(n,m,sl,el)...,exit=(n,m,sl,el)
Parameter Explanation Notes
exit= The name of Must be a valid exit name (for example, E28,
an exit to be |E61). Up to 17 exit routines can be specified.
activated.
n Name of the
routine;
member name if
routine in a
library.
m Size, in
bytes, of
the routine.
s Location of Either the ddname of the data set containing
the routine. the routine, or SYSIN.
e Link-editing e must be S, T, or N3
requirements. S - routine to be link-edited separately.
T - to be link-edited with other routines
for same phase. T is the default.
N - no additional link-editing needed.
Operation |Operands
ALTSEQ CODE=(fftt,...fftt)
Parameter |Explanation Notes
CODE= Indicates that the Modifications are based on the EBCDIC
collating sequence is sequence.
to be modified.
ff The character whose Two hexadecimal digits in EBCDIC code
collating position is (for example, 2 is "E9").
to be changed.
tt The position to be Two hexadecimal digits (for example,
occupied by the "to collate after 2" would be "EA™).
characters ff.

Figure 7 (Part 6 of 7).

Program Control Statements

28 0S/VYS Sort/Merge Programmer's Guide

Operation

Operands

DEBUG ABEND | NOABEND (Only valid for disk sort)
Parameter |Explanation Notes
ABEND An unsuccessful run is |Is used only for standard disk sort.
NOABEND to: Overrides the ERETJCL and ERETINV
-terminate with ABEND. |options specified at program instal-
-terminate with return |[lation time.
code of 16.
DUMP Recognized but
NODUMP ignored.

Other parameters can be used, but are primarily intended for debugging

purposes. They are described in Appendix A.
Operation |Operands
END none

stream.

The END statement must be used when user routines or data is in the input
It must come after all other program control statements.

Figure 7 (Part 7 of 7).

CONTROL_S

ENT _C

Six other control statements (INPFIL, OUTFIL, INCLUDE, OMIT,

Program Control Statements

OUTREC, and SUM) that are used by other IBM sort/merge programs
are accepted, but not processed. Since the OPTION control
statement is now used by 05/VS sort/merge, any job streams from
other IBM sort/merge programs that still contain an OPTION
control statement will cause sort/merge to terminate unless the
parameters conform to the new OPTION control statement.

The information contained in the INPFIL and OUTFIL statements is
supplied to the program in DD statements. The functions of
INCLUDE, OMIT, OUTREC, and SUM statements must be provided by
routines at program exits.

The program will accept SORT, MERGE, RECORD, ALTSEQ, and END
statements prepared for other IBM System/360 or System/370
sort/merge programs; any obsolete parameters will be ignored.
However, because of the difference in parameter specifications,
the program will not accept other programs!' MODS control
statements, with the exception of those used by the IBM
gggzlggige Program 3605-SM-023, and Program Product Sort/Merge

Note that, although applications using the 3605-SM-023 and
5734-SM1 programs can be successfully run using the 0S/VS
program, the reverse is not necessarily true, as this program
provides facilities which the others do not.

Section 4. Program Control Statements 29

CONT STATEM OR

FULL CODING RULES FOR CONTROL STATEMENTS

All sort/merge control statements have the same general format,
shown in Figure 8.

Column 1 must be blank

unless a label is present 72 73eeerecrrcenecnenes 80
'Aabel) Operation Operand {Comments) {Sequence or

Identification)

(Continuation column)

Figure 8. Control Statement Format

The control statements are free-form; that is, the operation
definer, operand(s), and comments may appear anyuwhere in a
statement, as long as they appear in the proper order, and are
separated by one or more blank characters. Column 1 of each
control statement must be blank, unless the first field is a
label, in which case it must begin in column 1.

Label Field: If present, the label must appear first on the
card. It must begin in column 1, and must conform to the
operating system requirements for statement labels.

operation Field: This field must not extend beyond column 71 of

| the first card. It contains a word (SORT, MERGE, OPTION, RECORD,
MODS, ALTSEQ, DEBUG, or END) that identifies the statement type
to the program. It must not begin in column 1. In the example
below, the operation definer SORT is in the operation field of
the sample control statement.

operand Field: The operand field is made up of one or more
operands separated by commas. This field must follow the
operation field, and be separated from it by at least one blank.
If the statement occupies more than one card, this field must
begin on the first card. Each operand has an operand definer, or
keyword (a group of characters that identifies the operand type
to the sort/merge program). A value or values may be associated
with a keyword. The three possible operand formats are:

. keyword
. keyword=value
. keyword=(valuel,value2...,valuen)

The following example illustrates each of these formats.

SORT FIELDS=(10,30,A), FORMAT=CH,CKPT

comments Field: This field may contain any information you
desire. It is not required, but if it is present, it must be
separated from the operand field by at least one blank.

30 0S/VYS Sort/Merge Programmer's Guide

continuation column (72): Any character other than a blank in
this column indicates that the present statement is continued on
the next card. However, as long as the last character of the
operand field on a card is a comma, the program will assume that
the next card is a continuation card. The nonblank character in
column 72 is required only when a comments field is to be
continued or when a parameter is broken at column 71.

columns 73 through 80: This field may be used for any purpose
you desire.

continuation Cards

The format of the sort/merge continuation card is shoun in
Figure 9.

Column 1 must
be blank

v’

ntinued operand or comments .
Co pe Optional use

Continuation column

Figure 9. Continuation Statement Format
The continuation column and columns 73 through 80 of a
continuation card fulfill the same purpose as they do on the
first card of a control statement. Column 1 must be blank.
A continuation card is treated as a logical extension of the
preceding card. Either an operand or a comments field may begin
on one card and continue on the next. The following rules apply:
. If a comments field is broken, column 72 must contain a
nonblank character. The continuation must begin in one of
columns 2 through 16.
. If an operdnd field is broken after a comma, the
continuation column (72) can be left blank. The continuation
must begin in one of columns 2 through 16.
. If an operand is broken at column 71, column 72 must contain
a nonblank character. The continuation must then begin in
column 16.
SUMMARY OF RESTRICTIONS

The following rules apply to control statement preparation:

. Unless a label is present, column 1 of each control
statement must be blank.

L Labels must begin in column 1, and conform to operating
system requirements for statement labels.

. The whole operation definer must be contained on the first
card of a control statement.

Section 4. Program Control Statements 31

. The first operand must begin on the first card of a control
statement. The last operand in a statement must be follouwed
by at least one blank.

. Embedded blanks are not allowed in operands. Anything
following a blank is_considered part of the comments field.

. Values may contain no more than eight alphameric characters
(except for estimated data set size, which may contain nine
characters).

. Commas and blanks can be used only as delimiters. They must
not be used in values.

. Each type of program control statement may appear only once
for each execution of the sort/merge program.

Note: Control statement error conditions detected during scan

will cause sort to transfer to Peerage/Vale to rescan the
control statements.

$0 CONTROL_S EMENT

SORT {FIELDS=(p,m,f,s5...,p,m,f,s)|
FIELDS=(p,m,S...,p,m,s),FORMAT=F}
C,FILSZ=x|,SIZE=y]

[,SKIPREC=2]
L,CKPT]
[,EQUALS|,NOEQUALS]
[,DYNALLOC=d|
,DYNALLOC=(dL,n])]

The SORT control statement must be used when a sorting
application is to be performed; this statement describes the
con:rol fields in the input records on which the program will
sort.

SORT operands override options specified or generated by default
at installation time; in turn, they can be overridden by
parameters of the OPTION control statement. See also Figure 7
for a description of the format of the SORT control statement
and a summary of the parameters it can contain.

FIELDS

The program requires four facts about each control field in the
input records: the position of the field within the record, the
length of the field, the format of the data in the field, and
the sequence into which the field is to be sorted. These facts
are communicated to the program by the values of the FIELDS
operand which are represented by p, m, f, and s, in Figure 7.

All control fields must be located within the first 4092 bytes
of a record, and must not extend beyond the shortest record to
be sorted. The collected control fields (comprising the control
word) can be up to 4092 bytes long. As shown in Figure 7, the
FIELDS operand can be written in two ways.

Use the first FIELDS operand format to describe control fields

that contain different data formats; use the second format to
describe SORT fields that contain data of the same format. The

32 0S/VS Sort/Merge Programmer's Guide

second format is optional; you can always use the first format
if you prefer.

The program examines the major control field first, and it must
be specified first. The minor control fields are specified
following the major control field. In Figure 7, p, m, f, and s
describe the control fields. The specifications for the
parameters in the SORT control statement are summarized in
Figure 7. The text that follows gives these specifications in
detail.

P
specifies the beginning (high-order location) of a control
field relative to the beginning of the record which
contains the control field.

Note that the beginning of a variable-length record must
include a 4-byte record descriptor word (RDW) which
precedes the actual record. This is true even for VSAM
input records, for which the sort/merge program will supply
the necessary RDW on input to the program and remove it
again at output (if output is to a VSAM data set). You
should therefore always add four to the byte position in
variable-length records.

The first (high-order) byte in a record is byte 1, the
second is byte 2, etc. All control fields, except binary,
must begin on a byte boundary. The first byte of a
floating-point field is interpreted as a signed exponent;
the rest of the field is interpreted as the fraction.

Fields containing binary values are described in a
"bytes.bits" notation as follows:

. First, specify the byte location relative to the
beginning of the record and follow it with a period.

. Then, specify the bit location relative to the
beginning of that byte. Remember that the first
(high-order) bit of a byte is bit 0 (not bit 1); the
remaining bits are numbered 1 through 7.

Thus 1.0 represents the beginning of @ record. A binary
field beginning on the third bit of the third byte of a
record is represented as 3.2. When the beginning of a
binary field falls on a byte boundary (say, for example, on
the fourth byte), you can write it in one of three ways:

4.0
G.
A

Other examples of this notation are:

‘;:f 3.1

/. L

3.
3

Section 4. Program Control Statements 33

specifies the length of the control field. All control
fields except binary must be a whole number of bytes long.
Binary fields are expressed in the notation "bytes.

The length of a binary control field that is a whole number
(d) of bytes long can be expressed in one of three ways:

d.o
d.
d

The number of bits specified must not exceed 7. A control
field 2 bits long would be represented as 0.2.

The total number of bytes occupied by all control fields
must not exceed 4092 (or, when the EQUALS option is in
operation, 4088 bytes). When vyou determine the total, count
a binary field as occupying an entire byte if it occupies
any part of it. For example, a binary field that begins on
byte 2.6 and is 3 bits long occupies two bytes. All fields
must be completely contained within the first 4092 bytes of
the record.

This 3 bit binary control field

]

M

_

/s

NN

34

Vv
occupies 2 bytes

Figure 7 shows the maximum control field length for each
format and indicates whether the format may be signed or
unsigned.

specifies the format of the data in the control field. f
can be any one of the two or three character abbreviations
shown in the notes column in Figure 7.

If you specify more than one control field and all the
control fields contain the same type of data, you can omit
the f parameters and use the optional FORMAT operand,
described below.

All floating-point data must be normalized before the
program can collate it properly. You can use a routine of
your oun to do this at execution time, by associating it
with one of the program exits. Specify the E option for the
value of s in the FIELDS operand for each control field you
are going to modify.

Sea Appendix B for data format examples.
specifies how the control field is to be ordered. The valid
codes are:

A—ascending order

D—descending order
E—control fields to be modified

0S/7VS Sort/Merge Programmer's Guide

FORMAT

FILSZI|SIZE

Specify E if you include user routines to modify control
fields before the program sorts them. After a user routine
modifies the control fields, the program compares them
logically and then sorts them into ascending order.

For information on how to add a user routine to modify a control
field, see Section 6 of this publication.

pefault: None; parameter must be specified.

FORMAT=f
f can be used to spacify the format of the data described
in the FIELDS parameter, if yvqu specify more than one
control field and the data in all the control fields is of
the sam? format. The possible values of f are listed in
Figure 7.

If you specify more than one control field, and the data in
the several fields has different formats, you must specify
an f parameter for each field instead of using FORMAT.

Default: None; must be specified if not included in FIELDS
parameter.

This parameter should always be specified. It is especially
important if DYNALLOC is. to be used.

FILSZ=x
x is the exact number of records to be sorted; it must take
into account records to be inserted or deleted at exit El5,
or skipped by SKIPREC.

SIZE=y
y is the exact number of records to be used as input,
excluding any changes to be made at exit E15, or by SKIPREC
(that is, the number of records in the SORTIN data set).

If the actual number of records is not the same as the value
specified, the program will terminate with the value x or y
placed in the IN field of the message ICEG47A or ICE054I. This
applies to both FILSZ and SIZE.

FILSZ|SIZE=En
n is the estimated number of records to be sorted and it
must be immediately preceded by the letter E; it should in
either case be large enough to include both the SORTIN data
set and any records you may add at exit E15.

For example, if you estimate your total data set size to be
5000 records, specify FILSZ=E5000. The program will accept
either FILSZ or SIZE, but FILSZ is preferable when its use
is possible, as it allows better optimization for tape
techniques and for disk techniques, when variable-length
records are used. It should also be specified when using
dynamic allocation.

If you omit the FILSZ or SIZE operand, the program assumes that:

. If intermediate storage is tape, the input data set can be
contained on one volume at the blocking factor used by the
sort.

. If intermediate storage is direct access, the input data set

will fit into the space you have allocated (only for
nonstandard disk techniques).

Section 4. Program Control Statements 35

SKIPREC

CKPT

. If input is a VSAM data set (or sets), data set size is
equal to that given in the VSAM catalog. Always specify
E{ESZ, therefore, if you want to add or delete records at

pefault: None; optional but recommended. Can be overridden by
FILSZ|SIZE specified on the OPTION statement.

SKIPREC=z
2 is the number of records yvou want to skip before starting
to process the input data set, and will usually be used if,
on a preceding sort run, you have sorted only part of the
input data set.

A program with an input data set which exceeds intermediate
storage capacity will normally terminate unsuccessfully.
However, for a tape or nonstandard disk sort, vou can use a
routine at El6 (as described in Section 6) to instruct the
program to sort only those records already read in. It will then
print a message giving the number of records sorted. You can use
SKIPREC in a subsequent sort run to sort the remaining records,
and then merge the output from different runs to complete the
application.

Note: If SKIPREC is specified, the Blockset techniques are
bypassed by the sort/merge program.

Default: None; optional. Can be overridden if SKIPREC is
specified on OPTION statement.

CKPT (the spelling CHKPT is also accepted) causes the program to
activate the checkpoint/restart facility of the operating
system. No checkpoints can be taken:

. If an invoked merge is handling output through exit E35

L Iftoutput from a merge-only operation is to be a VSAM data
se

. In any user routine at a program exit

If this parameter is specified, the program takes the following
checkpoints:

1. Start of sort phase (all tape techniques)

2. Start of each intermediate merge phase pass (balanced and
polyphase tape technique); or at intervals during the
intermediate merge phase (oscillating tape and all disk
techniques)

3. Start of final merge phase

When you use the checkpoint/restart facility, vou must write a
JCL statement to define a data set for the checkpoint records.
How to write this JCL statement (//SORTCKPT) is described in
Section 5. In addition, you may need to specify more
intermediate storage. See Section 3.

Note: If checkpoint/restart is specified, the Blockset
techniques are bypassed by the sort/merge program.

Default: None; optional.

36 0S/VS Sort/Merge Programmer's Guide

EQUALS [NOEQUALS

The program has a facility whereby the order of identically
collating records can be preserved from input to output. Whether
or not this facility is available by default depends on the
specification made when the program was installed.

You can override the default setting by use of this parameter.

EQUALS
means the order must be preserved.

Notes:

1. When the EQUALS option is used, & bytes containing a
sequence counter are added internally to the beginning
of each record. (For variable-length records the ¢
bytes are located between the RDW (Record Descriptor
Word) and the record itself.) Because of these, SM1
internally updates the starting point of each control
field by 4 bytes. Do not specify EQUALS when
variable-length records are sorted and the RDW is part
of the control field, and a tape technique or a
nonstandard disk technique is used.

2. The total number of bytes occupied by all control
fields must not exceed 4088 when the EQUALS option is
in operation.

3. Use of EQUALS can slow down the sort.

NOEQUALS
means the order need not be preserved.

Default: Can be overridden by specification of EQUALS or
NOEQUALS on the OPTION statement, or defaults to the option
specified at installation time.

DYNALLOC (MVS ONLY)

The user can assign the task of dynamically allocating needed
work space to sort/merge. This will relieve the user from the
necessity of calculating and specifying, through JCL, the amount
of intermediate work space needed by the program. The program
will, by use of the dynamic allocation facility of the MVS
operating system, allocate work space to get the best possible
performance for the current application.

DYNALLOC=d]

DYNALLOC=(d[,n])
d can be any of the following devices: 2314, 3330, 3330-1,
3340, 3350, 3375, 3380, 2400, 2400-3, 2400-4, 3400-3,
3400-4, 3850, or their user-assigned group name, such as
SYSDA. n is the number of requested work data sets.

For disk work data sets, the total size is calculated using the
information in the FILSZ keyword or, if the FILSZ keyword is
omitted, the sort default value for dynamic allocation, 6000
blocks, is used. The block size in either case is the internal
record length or 1000 bytes, whichever is the larger. One fifth
of each work data set's primary space is specified as secondary
allocation for that work data set. The size of each work data
set is the total work area divided by n.

Dynamically allocated work data sets will not be unallocated
until the job step is finished because SMF does not log the use
of data sets that are dynamically unallocated. This means that
recursive sorts reuse the work space allocated to the first
sort. To prevent lack of space, give the first sort work space
enough to satisfy the sort with the highest space requirement.

Section 4. Program Control Statements 37

For tape work data sets, the number of volumes specified
(explicitly or by default) will be allocated to the program. The
program will request standard label tapes.

If DYNALLOC is specified under any system other than MVS, it is
ignorgd& It is also ignored if SORTWK DD statements are
provided.

With NOVIO: If your sort/merge program was installed with the
NOVIO option ("no virtual I/O0"):

. Work space will be allocated on nontemporary data sets
(DSNAME parameter specified).

L The device (d) that you specify cannot be a virtual device
unl:ss a corresponding real disk is available in your
system.

Default: If DYNALLOC is specified without the n parameter, n
defaults to 3 (n defaults to 3 even if 0 is specified). The
first parameter, d, must be specified. Can be overridden by
DYNALLOC specified on the OPTION statement.

SORT STATEMENT EXAMPLES

SORT FIELDS=(2,5,CH,A),FILSZ2=29483

SORT _Example 1. One Control Field and File Size Option

FIELDS
The control field begins on the second byte of each record
in the input data set, is five bytes long, contains
character data, and is to be sorted into ascending
sequence.

FILSZ
The data set to be sorted contains exactly 29,483 records.

SORT FIELDS=(7, 3 CH,D,1,5,

I, 98.4,7.6,B1,D,99.0,230.2,
.BI;A,452 FL A),FIL Z

A
S2o1009% CkPS DYRALLOGL (333024

SORT Example 2. Five Control Fields, Size, Chackpoint, and
Dynamic Allocation Options

FIELDS
The first four values describe the major control field. It
begins on byte 7 of each record, is 3 bytes long, contains
character (EBCDIC) data, and is to be sorted inte
descending sequence.

The next four values describe the second control field. It
begins on byte 1, is 5 bytes long, contains fixed-point
data, and is to be sorted into ascending sequence.

The third control field begins on the fifth bit (bits are
numbered 0 through 7) of byte 398. The field is 7 bytes and
6 bits long (occupies 9 bytes), and contains binary data to
be placed in descending order.

The fourth control field begins on byte 99, is 230 bytes

and 2 bits long, contains binary data, and should be sorted
into ascending order.

38 0S/VS Sort/Merge Programmer's Guide

The fifth control field begins on byte 452, is 8 bytes
long, contains normalized floating-point data, which is to
be sorted into ascending order. If the data in this field
was not normalized, you would specify E instead of A and
include your ouwn routine to normalize the field before the
program examines it.

FILSZ
The data set to be sorted contains exactly 10,693 records.

CKPT
Instructs the program to take checkpoints during this run.

Note: When CKPT is specified, Blockset is bypassed by the
sort/merge program.

DYNALLOC (MVS only)
Four work data sets will be allocated on 3330. The space on
each data set will be calculated using the FILSZ value.

SORT FIELDS=(3,8,2D,E,40,6,CH,D),FILSZ=E30000

SORT_Example 3. Two Control Fields, User Modification, Size
Option

FIELDS
The first four values describe the major control field. It
begins on byte 3 of each record, is 8 bytes long, and
contains zoned decimal data that will be modified by vour
routine before sort examines the field.

The second field begins on byte 40, is 6 bytes long,
contains character (EBCDIC) data, and will be sorted into
descending sequence.

FILSZ
The input data set contains approximately 30,000 records.

SORT FIELDS=(25,4,A,48,8,A),FORMAT=ZD, EQUALS

SORT Example 4. Two Control Fields, Format and Equals Options

FIELDS
The major control field begins on byte 25 of each record,
is 4 bytes long, contains zoned decimal data (FORMAT=2ZD),
and is to be sorted into ascending sequence.

The second control field begins on byte 48, is 8 bytes
long, has the same data format as the first field, and is
also to be sorted into ascending order.

FORMAT
The FORMAT=f option can be used because both control fields
have the same data format. It would also be correct to
write this SORT statement as follows:

SORT FIELDS=(25,4,2D,A,48,8,ZD,A),EQUALS

EQUALS
specifies that the order of equally collating records is to
be preserved from input to output.

Section 4. Program Control Statements 39

co

FIELDS

FORMAT

FILSZ|SIZE

CKPT

ENT

MERGE {FIELDS=(p,m,f,s...,p,m,f,s)]|
FIELDS=(p,m,sS...,p,m,s), FORMAT=F}
[,FILSZ=x|,SIZE=y]

[,CKPT]

The MERGE control statement must be used when a merge-only
operation is to be performed. It provides essentially the same
information to the sort/merge program for a merge as the SORT
statement does for a sort. Like SORT, MERGE parameters can be
overridden by similar parameters specified on the OPTION control
statement. The format, defaults, and specifications for the
MERGE statement are similar to the SORT statement with the
following differences:

. The operation definer is MERGE instead of SORT.
[The SKIPREC option is not used (ignored if specified).

J The EQUALSINOEQUALS option is not used (ignored if
specified).

° The DYNALLOC option is not used (ignored if specified).

L The value of the FILSZ operand is the total number of
records in all the input data sets.

See Figure 7 for a description of the format of the MERGE
contrgl statement and a summary of the parameters it can
contain.

The FIELDS operand is written exactly the same way for a merge
as it is for a sort. The meanings of p, m, f, and s are
described in the discussion of the SORT statement. The defaults
for this and the following parameters are also given there. See
also Figure 7.

ThetFORMAT operand is used in the same way for a merge as for a
sort.

The FILSZ or SIZE operand is optional. Its value can be either
exact or estimated. The value refers to the total number of
records in all the input data sets to be merged. Either FILSZ or
SIZE is acceptable. See the SORT control statement (FILSZ|SIZE).

The CKPT (or CHKPT) operand is also optional. It causes the
program to use the checkpoint facility of the operating system.
The program takes checkpoints at end of volume on the output
file, unless you supply the address of your own exit list for
the SORTOUT DCB at exit E39. If this parameter is supplied, or
if ttekoutput file takes up less than one volume, no checkpoints
are taken.

40 0S/VS Sort/Merge Programmer's Guide

MERGE STATEMENT

When you use the checkpoint/restart facility, vou must urite a
JCL statement to define a data set for the checkpoint records.
How to uwrite this JCL statement (//SORTCKPT) is described in
Section 5.

EXAMPLES

MERGE FIELDS=(2,5,CH,A),FILSZ=29483

MERGE Example 1. One Control Field, Size Option

FIELDS
The control field begins on byte 2 of each record in the
input data sets. The field is 5 bytes long, and contains
character (EBCDIC) data that has been presorted into
ascending order.

FILSZ
The input data sets contain exactly 29,483 records.

MERGE FIELDS=(3,8,2D,E,40,6,CH,D),FILSZ=E30000

MERGE Example 2. Two Control Fields, User Modification, Size
Estimate

FIELDS
The major control field begins on byte 3 of each record, is
8 bytes long, and contains zoned decimal data that will be
modi fied by your routine before the merge examines it.

The second control field begins on byte 40, is 6 bytes
lozg, and contains character data that is in descending
order.

FILSZ
The input data sets contain approximately 30,000 records.

MERGE FIELDS=(25,4,A,48,8,A),FORMAT=2ZD,CKPT

M Example 3. Two Control Fields, Format Option

FIELDS
The major control field begins on byte 25 of each record,
is 4 bytes long, and contains zoned decimal data that has
been placed in ascending sequence.

The second control field begins on byte 48, is 8 bytes
long, is also in zoned decimal format, and is also in
ascending sequence. The FORMAT parameter can be used
because both control fields have the same data format.

CKPT
Instructs the program to take checkpoints during this run.

Section 4. Program Control Statements 41

| OPTION CONTROL STATEMENT

| FILSZ|SIZE

OPTION [,FILSZ=x|SIZE=y]
[,SKIPREC=2]
[,CKPT]
[,DYNALLOC=d|
»DYNALLOC=(dL,n])]
[,CHALT|,NOCHALT]
[,VERIFY|,NOVERIFY]
[,CHECK|,NOCHECK]
[,BLKSET|,NOBLKSET]

The OPTION control statement allows you to specify or override
some of the options available with the SORT or MERGE control
statements (such as FILSZ|SIZE, SKIPREC, CKPT, EQUALS|NOEQUALS,
and DYNALLOC).

The OPTION control statement also allows you to override some of
the options available at installation time (such as EQUALS,
VERIFY, CHALT, CHECK, BLKSET, and VBLKSET).

If a parameter is not specified on the OPTION control statement,
the resulting parameter is determined by specifications made on
the SORT or MERGE control statement, or those made at
installation time. OPTION parameters used by other IBM
sort/merge programs will cause sort/merge to terminate unless
they conform to the following parameters. See also Figure 7 for
a description of the OPTION control statement and its
parameters.

The OPTION control statement can be included in the SYSIN data
set or it can be included in the SORTCNTL data set when
sort/merge is dynamically invoked by another program. If the
latter is done, the invoking program does not have to be
recompiled. See Section 5 for information on how to specify a
SORTCNTL DD statement in the JCL of the job that dynamically
invokes sort/merge.

It is recommended that this parameter always be specified. It is
especially important if DYNALLOC is to be used.

FILSZ=x
x is the exact number of records to be sorted; it must take

into account records to be inserted or deleted at exit El15,
or skipped by SKIPREC.

SIZE=y
y is the exact number of records to be used as input,
excluding any changes to be made at exit E15, or by SKIPREC
(that is, the number of records in the SORTIN data set).

If the actual number of records is not the same as the value
specified, the program will terminate with the value x or y
placed in the IN field of the message ICE047A or ICE054I. This
applies to both FILSZ and SIZE.

FILSZ|SIZE=En
n is the estimated number of records to be sorted and it
must be immediately preceded by the letter E; it should in
either case be large enough to include both the SORTIN data
set and any records you may add at exit E15.

42 0S/VS Sort/Merge Programmer's Guide

| SKIPREC

| CKPT

For example, if you estimate vour total data set size to be
5000 records, specify FILSZ=E5000. The program will accept
either FILSZ or SIZE, but FILSZ is always preferable when
its use is possible, as it allows better optimization for
tape techniques and for disk techniques, when
variable-length records are used. It should also be
specified when DYNALLOC under MVS is requested.

If you omit the FILSZ or SIZE operand, the program assumes that:

. If intermediate storage is tape, the input data set can be
con:ained on one volume at the blocking factor used by the
sort.

. If intermediate storage is direct access, the input data set
will fit into the space you have allocated (only for
nonstandard disk techniques).

o If input is a VSAM data set (or sets), data set size is
equal to that given in the VSAM catalog. Always specify
E{gSZ, therefore, if you want to add or delete records at

Default: None; optional.

SKIPREC=2z
2 is the number of records you want to skip before starting
to process the input data set, and will usually be used if,
on a preceding sort run, you have sorted only part of the
input data set.

A program with an input data set which exceeds intermediate
storage capacity will normally terminate unsuccessfully.
However, for a tape or nonstandard disk sort, vou can use a
routine at E16 (as described in Section 6) to instruct the
program to sort only those records already read in. It will then
print a message giving the number of records sorted. You can use
SKIPREC in a subsequent sort run to sort the remaining records,
and then merge the output from different runs to complete the
application.

Note: If SKIPREC is specified, the Blockset techniques are
bypassed by the sort/merge program.

Default: None; optional.

CKPT (the spelling CHKPT is also accepted) causes the program to
activate the checkpoint/restart facility of the operating
system. No checkpoints can be taken:

. If an invoked merge is handling output through exit E35

. Iftoutput from a merge-only operation is to be a VSAM data
se

. In any user routine at a program exit

If this parameter is specified, the program takes the following
checkpoints:

1. Start of sort phase (all tape techniques)
2. Start of each intermediate merge phase pass (balanced and
polyphase tape technique); or at intervals during the

intermediate merge phase (oscillating tape and all disk
techniques)

Section 4. Program Control Statements 43

| EQUALS INDEQUALS

3. Start of final merge phase

When you use the checkpoint/restart facility you must write a
JCL statement to define a data set for the checkpoint records.
gowtgo N;ite this JCL statement (//SORTCKPT) is described in
ection 5.

Note: If checkpoint/rastart is specified, the Blockset
techniques are bypassed by the sort/merge program.

Default: None; optional.

The program has a facility whereby the order of identically
collating records can bae preserved from input to output. Whaether
or not this facility is available by default depends on the
speci fication made when the program was installed. You can
override the default setting by use of this parameter.

EQUALS
means the order must be preserved.

Notes:

1. When the EQUALS option is used, 4 bytes containing a
sequence counter are added internally to the beginning
of each record. (For variable~length records, the ¢
bytes are located between the RDW (Record Descriptor
Word) and the record itself.) Because of these, SM1
internally updates the starting point of each control
field by % bytes. Do not specify EQUALS when
variable-length records are sorted and the RDW is part
of the control field, and a tape technique or
nonstandard disk technique is used.

2. The total number of bytes occupied by all control
fields must not excead 4088 when the EQUALS option is
in operation.

3. Use of EQUALS can degrade performance.

NOEQUALS
means the order need not be preserved.

pefault: If this parameter is not specified, sort/merge defaults
to the specification made on the SORT control statement or at
installation time.

| DYNALLOC (MVS ONLY)

The user can assign the task of dynamically allocating needed
work space to sort/merge. This will relieve the user from the
nacessity of calculating and specifying, through JCL, the amount
of intermediate work space needed by the program. The program
will, by use of the dynamic allocation facility of the MVS
operating system, allocate work space to get the best possible
performance for the current application.

DYNALLOC=d|

DYNALLOC=(dI,n])
d can be any of the following devices: 2314, 3330, 3330-1,
3340, 3350, 3375, 3380, 2400, 2400-3, 2400-4, 3400-3,
3400-4, 3850, or their user-assigned group name, such as
SYSDA. n is the number of requested work data sets.

For disk work data sets, the total size is calculated using the
information in the FILSZ keyword or, if the FILSZ keyword is
omitted, the sort default value for dynamic allocation, which is
6000 blocks, is used. The block size in either case is the
internal record length or 1000 bytes, whichever is the larger.
One fifth of each work data set's primary space is specified as

46 0S/VS Sort/Merge Programmer's Guide

| CHALT [NOCHALT

| VERIFY|NOVERIFY

secondary allocation for that work data set. The size of each
work data set is the total work area divided by n.

Dynamically allocated work data sets will not be unallocated
until the job is finished. This is because SMF does not log the
use of data sets that are dynamically unallocated. This means
that recursive sorts reuse the work space allocated to the first
sort. To prevent lack of space give the first sort work space
enough to satisfy the sort which has the highest space
requirement.

For tape work data sets, the number of volumes specified
(explicitly or by default) will be allocated to the program. The
program will request standard label tapes.

If DYNALLOC is specified under any system other than MVS, it is
ignoygda It is also ignored if SORTWK DD statements are
provided.

With NOVIO: If your sort/merge program was installed with the
NOVIO option ("no virtual I/0"):

. Work space will be allocated on nontemporary data sets
(DSNAME parameter specified).

) The davice (d) that you specify cannot be a virtual device
unl:ss a corresponding real disk is available in your
system.

Default: If DYNALLOC is specified without the n parameter, n
defaults to 3 (n defaults to 3 even if 0 is specified). The
first parameter, d, must be specified. If this parameter is not
specified, sort/merge defaults to the specification made on the
SORT control statement.

You can specify that you want format CH fields translated by the
ALTSEQ table as well as format AQ, or just the latter. Whether
or not this facility is available by default depends on the
specification made when the program was installed. You can
override the default setting by use of this parameter.

CHALT
means that sort/merge will translate character control
fialds with formats CH and AQ using the ALTSEQ table.

NOCHALT
means that format CH fields will not be translated.

Default: If this parameter is not specified, sort/merge defaults
to the specification made at installation time.

This parameter enables sort/merge to perform sequence checking
on the final output record sequence. Whether or not this
facility is available by default depends on the specification
made when the program was installed. You can override the
default setting by use of this parameter.

VERIFY
means that sequence checking will be performed.

NOVERIFY
means that sequence checking will not be performed.

Note: Use of VERIFY can degrade performance.

Default: If this parameter is not specified, sort/merge defaults
to the specification made at installation time.

Section 4. Program Control Statements 45

| CHECK|NOCHECK

| BLKSET |NOBLKSET

This parameter enables sort/merge to check the record counters
at the end of program execution. Whether or not this facility is
available by default depends on the specification made when the
program was installed. You can override the default setting by
use of this parameter.

CHECK
means that record counter checking will be done at the end
of program execution.

NOCHECK
means that record counter checking will not be done.

Default: If this parameter is not specified, sort/merge defaults
to the specification made at installation time.

This parameter allows sort/merge to attempt to execute one of
the Blockset techniquas. Whether or not this facility is
available by default depends on the specification made when the
program was installed. You can override the default setting by
use of this parameter.

BLKSET
means that sort/merge will try to execute one of the
Blockset techniques. However, certain conditions must be
met before sort/merge will select Blockset (see "Conditions
for Use of Blockset Sorting Techniques"™ in Section 8).

NOBLKSET
means that sort/merge will bypass the Blockset techniques.

Default: If this parameter is not specified, sort/merge defaults
to the specification made at installation time (BLKSET for
fixed-length records and VBLKSET for variable-length records).

| OPTION STATEMENT EXAMPLES

SORT FIELDS=(1,20,CH,A)
OPTION SIZE=50000,SKIPREC=5,CKPT,EQUALS,DYNALLOC=3350

OPTION Statement Example 1. One Control Field and Related
Options

FIELDS
The control field begins on the first byte of each record
in the input data set, is 20 bytes long, contains character
data, and is to be sorted into ascending order.

SIZE
The data set to be sorted contains 50,000 records.

SKIPREC
Five records will be skipped before starting to process the
input data set.

CKPT
Sort/merge takes checkpoints during this run.

Notes:

1. When CKPT or SKIPREC is specified, Blockset will be
bypassed by the sort/merge program.

46 0S/VS Sort/Merge Programmer's Guide

2. If nonconflicting parameters, such as CKPT, happen to
be coded on both the SORT and OPTION control
statements, it's a "don't care" situation, with no
advantage gained from doing so.

EQUALS
The order of equally collating records is preserved from
input to output.

DYNALLOC=3350
Three data sets (by default) are allocated on 3350 (MVS
g?ég). Ihe space on each data set is calculated using the
value.

The parameters coded on the OPTION control statement can still
be specified on the SORT or MERGE control statement, as they
were under Release 4.

SORT FIELDS=(1,2,CH,A),CKPT
OPTION EQUALS,NOCHALT,NOVERIFY,CHECK

OPTION Example 2. Illustrating the Relationships Betuween
the OPTION and SORT Control Statements
and the ICEMAC Installation Option

FIELDS
The control field begins on the first byte of each record
in the input data set, is 2 bytes long, contains character
data, and is to be sorted into ascending order.

CKPT
Sort/merge takes checkpoints during this run (see also
Notes under CKPT for Example 1l).

EQUALS
The order of equally collating records is preserved from
input to output.

NOCHALT
Only AQ fields will be translated through the ALTSEQ
translate table. (This would override CHALT=YES had that
been specified at installation time.)

NOVERIFY
No sequence check is performed on the final output records.

CHECK
Record counters are checked at the end of program
execution.

OPTION FILS52=50,SKIPREC=5,DYNALLOC=3330
SORT FIELDS=(1,2,CH,A),SKIPREC=1,SIZE=200,DYNALLOC=(3350,5)

| OPTION Example 3. Using OPTION to Override SORT

This example shows how parameters specified on the OPTION
control statement take precedence over those specified on the
SORT control statement, regardless of the order of the 2
statements.

FILSZ
Sort/merge expects 50 records on the input data set. (Note
that there is a difference in meaning between FILSZ and
SIZE, and that the OPTION specification of FILSZ will be
used in place of SIZE.)

Section 4. Program Control Statements 47

SKIPREC
Sort/merge causes five records from the beginning of the
input filg ?o be skipped. (SKIPREC=1 on the SORT statement
is ignored.

DYNALLOC
Sort/merge allocates three work data sets (by default) on a
3330 (MVS only).

FIELDS
The control field begins on the first byte of each record
in the input data set, is 2 bytes long, contains character
data, and is to be sorted in ascending order.

OPTION NOBLKSET

| OPTION Example 4. Bypassing Blockset Techniques

NOBLKSET
Sort/merge bypasses FLR-Blockset or VLR-Blockset regardless
of whether the Blockset techniques were specified at
installation time. Sort/merge uses Peerage, Vale, or some
other conventional sorting technique instead.

OPTION BLKSET

OPTION Example 5. Using OPTION to Override Specification
Made at Installation Time

BLKSET
Even if '"BLKSET=NO' (for fixed-length records) or
'"VBLKSET=NO' (for variable-length records) were specified
at installation time, 'OPTION BLKSET' would override both
and cause sort/merge to try to execute using one of the
Blockset techniques before any other technique.

RECORD CONTROL STATEMENT

48

RECORD TYPE=x,[LENGTH=(L1,L2,L3,L4,L5)]

The RECORD control statement describes the format and lengths of
the records being sorted or merged. It is required when you
change record lengths during a sort/merge program run; for a
sort invoked from a program written in assembler or PL/I; and
when input is from a VSAM data set. However, to optimize
performance when sorting variable-length records, you can use
the RECORD statement to supply the minimum and average record
lengths to the program.

See also Figure 7 for a description of the RECORD control
statement and its parameters.

0S7VYS Sort/Merge Programmer's Guide

TYPE

LENGTH

TYPE=F
indicates that the records to be sorted or merged are
fixed-length records.

TYPE=V
indicates that the records are EBCDIC variable-length.

TYPE=D
indicates that the records are ASCII variable-length.

For QSAM records, the format you specify in the TYPE operand
must be the same as the format you used in the RECFM
subparameter of the DCB parameter on the SORTIN and SORTOUT DD
statements (described in Section 5), or that given on the data
set label. If the formats are not the same or TYPE is not
specified, the program uses the one given in the data set
label/DD statement.

Default: Required for E15 input if no SORTIN RECFM; otherwise,
defaults to SORTIN RECFM.

This parameter is required when you change record lengths at one
or more exits, or when no SORTIN DD statement is supplied. You
can aid optimization by always supplying it when sorting
variable-length records.

Details of how to write the parameter are given in Figure 7.

Input record length, L1, is required and only used when no
SORTIN DD statement is supplied. L1 must be at least as large as
the maximum input record size; if it is larger than needed,
performance can suffer.

It is extremely important to specify an accurate value for L2 if
you change record lengths at E15. Note that if you have
specified a value for L1 but not for L2, the value you specified
will act as default for L2 even if the L1 value has subsequently
been overridden.

If work units are tape, the minimum length for records to be
sorted (L2) is 18 bytes.

Qutput record length, L3, can usually be supplied by default:
only if no LRECL (or maximum RECSZ, for VSAM) is available for
SORTOUT, either in the DD statement or in the label, and the L1
value is unsuitable, do you need to specify L3.

Specifying the minimum record length (L4) helps performance.
However, if you specify too large a value, the program will fail
and will issue message ICE0L5A. The default for L4 is the
minimum length needed to contain all control fields; if this
length is less than 18 bytes, then 18 bytes is used
instead—unless the records are shorter than 18 bytes, in which
case record length is used.

L5 is the average record length for variable-length records. If
the average record length is more than 350 bytes, you should
specify L5. This will enable sort/merge to select the best
technique, whether Vale or VLR-Blockset, to handle sorting. If
you don't specify L5, sort/merge will try to execute using
VLR-Blockset.

| pefault: For defaults, see RECORD in Figure 7.

Section 4. Program Control Statements 49

omitting values
Normal syntax rules apply:

o You can drop values from the right, that is,
LENGTH=(80,70,70,70).

. You can omit values from the middle or left as long as you
indicate their omission by a comma, that is,
LENGTH=(,,,30,80).

. At least one value must be given.

RECORD STATEMENT EXAMPLES

RECORD TYPE=F,LENGTH=(60,40,50)

RECORD Example 1. Fixed-Length, Three Length Values

TYPE
The input records are fixed-length.

LENGTH
The records in the input data set are each 60 bytes long.
Exit E15 is used to change the records to 40 bytes in the
sort phase and exit E35 is used to change the records to 50
bytes in the final merge phase.

RECORD TYPE=V,LENGTH=(200,175,180,50,80)

RECORD Example 2. Variable-lLength, Five Length Values

TYPE

The records in the input data set are EBCDIC variable
length.

LENGTH

The maximum length of the records in the input data set is
200 bytes. In the sort phase, you reduce the maximum record
length to 175 bytes. You add five bytes to each record in
the final merge phase, making the maximum record length in
the output data set 180 bytes. The minimum record length

| handled by the sort phase is 50 bytes and the average
record length is 80 bytes.

RECORD TYPE=V,LENGTH=(200,,,,80)

RECORD Example 3. Variable Length, Two Length Values

TYPE

The records in the input data set are EBCDIC variable
length.

LENGTH
The maximum length of the records in the input data set is
200 bytes. You do not change record lengths, so vou omit L2

gng L3; L4 is also omitted. The average record length is 80
vtes.

50 O0S/VS Sort/Merge Programmer's Guide

D TROL_STATEMEN

MODS exit=(n,m,sl,el)...,exit=(n,m,sl,el)

The MODS statement is needed only if you want the program to
pass control to your routines at program exits. The MODS
statement associates the user routine(s) uwith specific exits in
the program and provides the program with descriptions of these
routines. For details about exits from the program and how user
routines can be used, see Section 6.

See also Figure 7 for a general description of the format and
spaecifications of the MODS control statement and its parameters.

The program has exits from which control can be transferred to
vour own routines. These exits have three-character names, in
the form Exy where x is the number of the program phase in which
the exit occurs, and ¥ is the number of the exit within that
phase. (For example, E31 is the first exit in Phase 3.)

To use one of the exits, you substitute its three-character name
for the word exit in the MODS statement format example

(Figure 7). The values that follow 'exit' describe the user
routine. These values are:

n
the name of your routine (member name if your routine is in
a library). You may use any valid operating system name for
vour routine. This allows you to keep several alternative
routines with different names in the same library.

the number of bytes of main storage that your routine uses.
Include storage obtained (GETMAIN) by your routine, or on
its behalf, for example by OPEN.

either the name of the DD statement in your sort/merge job
step that defines the partitioned data set in which your
routine is located, or SYSIN if your routine is in the
input stream.

indicates the linkage editor requirements of your routine.
It must have one of the values T, S, or N.

T
means that your routine must be link-edited together
with other routines to be used in the same phase of
the program.

means that your routine requires link-editing but that
it can be link-edited separately from the other
routines you are using in a particular sort/merge
program phase. Only routines at exits Ell, E21, and
E31 are eligible for separate link-editing.

means that your routine has already been link-edited
and can be used in the sort/merge run without further
link-editing. All routines for which you specify N
must be in the same library, or in libraries defined
as a concatenated data set.

If no parameter is specified, T is assumed.

Section 4. Program Control Statements 51

Refer to "Spare the Linkage Editor™ in Section 8 for details on
how to design your routines.

When you are preparing your MODS statement, bear in mind that:

° The sort/merge program must know the amount of main storage
your routine needs so that it can allocate main storage
properly for its ouwn use. If you do not know the exact
number of bytes vour program requires (including
requirements for system services), make a slightly high
estimate. The value of m in the MODS statement is written
the same whether it is an exact figure or an estimate: you
do not precede the value by E for an estimate.

. If the routines you are using for a particular sort/merge
run are in several libraries, you need a DD statement for
each library. DD statements required for the program are
described in Section 5.

J If vour routines are in the system input stream (SYSIN), you
must arrange them in numeric order (the El1l routine before
the E15 routine, etc.). You must supply a SORTMODS DD
statement, as described in Section 5. If you use the same
routine in several sort/merge program phases, you must
provide a separate copy of the routine for each exit.

Default: All parameters must be specified except for e. If e is
not specified, the default is T.

MODS STATEMENT EXAMPLES

52

MODS E15=(ADDREC,552,MODLIB,N), E35=(ALTREC,11032,MODLIB,N)

MODS Example 1. Two Routines in a Library, No Link-Editing

E1l5 At exit E15, the program will transfer control to your oun
routine. Your routine is in the library defined by a job
control statement with the ddname MODLIB. Its member name
is ADDREC; it is 552 bytes long has been link-edited
praviously, and does not require further link-editing.

E35 At exit E35, the program will transfer control to your
routine. Your routine is in the library defined by the job
control statement with the ddname MODLIB. Its member name
is ALTREC; it is 11032 bytes long and has been link-edited
previously.

MODS E17=(CLSE,344,SYSIN)

MODS Example 2. One Routine in SYSIN, Link-Editing is Needed

E1l7 At exit El17, the program will transfer control to your
routine named CLSE. Your routine is in object form in the
system input stream and will be link-edited together with
other routines in the sort phase of the program.

MODS E16=(NMAXERR,1000,MYLIB),E21=(E210WN,552,MODLIB),
E31=(E31,456,SYSIN),E35=(SUMUP,5000,SYSIN)

0oDS ample 3. Four Routines

05/VS Sort/Merge Programmer's Guide

El16 The program will transfer control at exit E16. Your routine
is named NMAXERR, is located in the library defined by the
MYLIB DD statement, and is approximately 1000 bytes long.
It needs link-editing (together with other routines for the
same phase).

E21 At exit E21, the program will transfer control to your
routine which resides under the member name E210WN in the
library defined by the job control statement with the
ddname MODLIB. Your routine is 552 bytes long and requires
link-editing.

E31 Another of your routines is in SYSIN, and will gain control
at exit E31. It is 456 bytes long and must be link-edited
together with other routines in the same phase (the default
linkage editor specification).

E35 You have also placed a routine named SUMUP as an object
deck in the input stream. It is approximately 5000 bytes
long, must be link-edited together with other routines in
its phase (that is, the E31 routine), and will receive
control at exit E35.

MODS E11=(E11,504,MYLIB,S)

MODS Example 4. One Routine, Separate Link-Editing

Ell At exit E11 in the sort phase, the program will transfer
control to your routine Ell. It is located in a library
defined by a job control statement with the DDname MYLIB,
is 504 bytes long, and can be link-edited separately from
other routines in the sort phase. After the sort phase is
initialized, your Ell routine will be overlaid. Because you
have specified S for separate link-editing, your routine
can have no external references.

TSEQ € OL STATEMENT

ALTSEQ CODE=(fftt...,fftt)

The ALTSEQ statement is used if you wish to change the collating
sequence of EBCDIC character data. If a modified version of the
collating sequence is available by default at your installation,
the ALTSEQ statement will override it.

When you supply an ALTSEQ statement, the modified collating
sequence will be used for any control field whose format you
specify on the SORT statement as AQ. If vou specify AQ without
supplying an ALTSEQ statement, the program will use the default
available at your installation, if there is one. Otherwise, it
will use the standard EBCDIC collating sequence.

Section 4. Program Control Statements 53

CODE

TRe modifications are described in the form CODE=(fftt,fftt...),
where:

ff
represents in hexadecimal the character whose position is
to be changed, in the EBCDIC collating sequence.

tt
is the EBCDIC hexadecimal representation of the position to
which the character is to be moved.

The order in which the parameters are specified is immaterial.
Note: If CHALT is specified on the OPTION control statement or
CHALT=YES is specified at installation time, control characters
with format CH will be translated by the ALTSEQ table in
addition to those with format AQ.

Default: If this parameter is not specified, sort/merge defaults
to the specification made at installation time.

ALTSEQ STATEMENT EXAMPLES

ALTSEQ CODE=5BEA

ALTSEQ Example)

The character represented by X'5B'($ or national character) is
to collate after '2' (at position X'EA').

ALTSEQ CODE=(FOBO,F1B1,F2B2,F3B3,F4B%,F5B5,F6B6,
F7B7,F8B8,F9B9)

ALTSEQ Example 2

The numerals 0-9 are to collate before uppercase letters (but
after lowercase letters).

ALTSEQ CODE=(C180,C282,8283,C384,8385,(C486,8487,C588,8589,
C68A,868B,C78C,878D,C88E,888F,C990,8991,D192,9193,
D294,9295,D396,9397,D498,9499,D59A,959B,D69C, 969D,
D79E,979F,D8A0,98A1,D9A2,99A3,E2A4,A2A5,E3A6,A3A7,
Eggg:gggg;ESAA,ASAB,E6AC,A6AD,E7AE;A7AF;ESBO.A8BI;

14

S Exam 3

Uppercase A is to collate before lowefcase a, B before b, and so
on through to Z2z. The parameters may be specified in any order.

54 0S/VS Sort/Merge Programmer's Guide

ABEND

NOABEND

DUMP | NODUMP

T _(STANDARD DIS CHNIQUES

DEBUG ABEND|NOABEND

The DEBUG control statement cannot be used if work data sets are
on tape; if specified, it is ignored.

In normal use, only the ABEND and NOABEND parameters will be of
interest. They override the default error return settings
gERET{TVdor ERETJCL options) made when the program was
installed.

The DEBUG control statement can also be used to force a
nonstandard disk sorting technique if a problem has occurred and
a bypass is wanted. Other parameters and details of dumps
obtained are described in Appendix A.

See also Figure 7 for a general description of the format and
specifications of the DEBUG control statement.

If you specify this parameter and your sort or merge is
unsuccessful, it will ABEND with a user completion code equal to
the appropriate message number. It will also cause an ABEND if
the unsuccessful sort or merge was invoked from another program.

An unsuccessful sort or merge will terminate with a return code
of 16.

Default: This parameter is used only for standard disk sorts. It

overrides the ERETJCL and ERETINV options specified at program
installation time.

These options are recognized but ignored.

END CONTROL STATEMENT

END

The END statement marks the end of all program control
statements for a particular sort/merge run. The END statement
must be used whenever the sort/merge control statements are not
immediately followed in the input stream by a /7% or a job
control statement. For example, if you include your own routines
in the input stream, they are placed between the program control
statements and the next job control statement, so you must use
an END statement.

Section 4. Program Control Statements 55

If the END statement is used in the SORTCNTL data set and a
listing of control statements is requested, -END will not appear.

The format of the END statement is also shown in Figure 7. The
statement has no operands.

56 0S/VS Sort/Merge Programmer's Guide

ECTION 5. JOB CONTROL S EMENTS

STATEMENT

EXEC STATEMENT

This section describes the job control language (JCL) statements
vou must write for the program. You must include JCL statements
with each program application you submit for execution, to
describe your application to the operating system.

The job control statements required for a program application
include a JOB statement, an EXEC statement, and several DD

statements; these statements, their functions, and the order in

:bich t?gy are arranged in the system input stream are shouwn in
igure .

The inclusion of certain JCL statements depends on whether you
initiate the program with an EXEC statement in the input job
stream, or with a system macro instruction within vour ouwn
program. The JCL statements you include can also depend on
whether or not you wish to use program exits for routines of
vour own. These differences are noted in Figure 10. If you
intend to use system macro instructions or program exits, or
both, you should be familiar with the material in Sections 6 and
7 of this publication.

While reading this section, you may need 0S/VS1l JCL Reference or
0S/VS2 JCL Reference for supplementary information; you should
have it available for ready reference.

The JOB statement is the first JCL statement of your job. It
must contain a valid jobname in its name field and the word JOB
in its operation field. All parameters in its operand field are
optional, although your installation may make such information
as the account number and the programmer's name mandatory.

//jobname JOB accounting info,programmer's name, etc.

The EXEC statement is the first JCL statement of each step in
your job. It is also the first statement of each procedure step
in a cataloged procedure. It identifies to the operating system
the sort/merge program or the sort cataloged procedure that is
to be used. The EXEC statement is followed in the input stream
by DD statements.

This subsection describes the required and optional parameters
of the EXEC statement. These parameters include either the
program name or the name of a cataloged procedure, followed by
optional parameters. To initiate sort execution with a system
macro instruction within your own program, see Section 7.

A cataloged procedure is a set of JCL statements, including DD
statements, that has been assigned a name and placed in a
partitioned data set known as the procedure library. Two
cataloged procedures are supplied with the program: SORT and
SORTD. They are specified in the first parameter of the EXEC
statement by PROC=SORT,PROC=SORTD, or simply SORT or SORTD.

Section 5. Job Control Statements 57

1

/7jobnane JOB
Preceding job steps, if an

//stepname EXEC

//7STEPLIB DD
//S0RTLIB DD

/7/5YS0UT DD
/7/SYSLIN DpD2
/7/7SYSLMOD DD2
7/75YSUT1 DD2
/7/7SYSPRINT DD2
//DDname bD
/7/S0RTIN DD

//S0RTOUT DD
//7SO0RTWKNN DD

//S0RTMODS DD
/7/SORTCKPT DD
/7/75YSUDUMP DD
//SORTCNTL pD3

/7/7SYSIN DD *
SORT statement!?
OPTION statement?!,3
RECORD statement!,s
MODS statement!?,3

ALTSEQ statement?,3

DEBUG statement?,3
END statement?3

Object decks for your ow
7 %

Can be in any order.

not using the cataloged pr

Always needed

%
Always needed.

The following DD statements can be in any
order:

Omit when using a cataloged procedure.
SORTLIB only needed for tape sorts or
any merge-only application, or if any of
the old disk sort techniques are forced.

Library definition if you use routines
from a library.

Usually needed. For a merge-only, the
SORTINNn cards should come here in
consecutive order.

Usually needed.

Not needed for a merge-only or for sorts

in main storage. Must not be included if
you want dynamic allocation (MVS only).
(The DDname SORTDKnn is used by the program

instead of SORTWKnn if it carries out
dynamic reallocation.)

Only needed if you have routines in SYSIN.
Only needed if checkpoints are to be taken.
(or SYSABEND or SYSMDUMP) Not always needed.
Fron i dh JaditTonal Cor chongad aeet""

control statements can be read, when the
sort is invoked from another program.

(or MERGE statement) Always needed.

Used to modify the EBCDIC collating
sequence (see Section 4).

Mainly for debugging (see Appendix A).
Must be last statement.

n routines (if any).

2Include if you have routines of your own to be link-edited, and are

ocedure (SORT).

3Not always needed (see Section 4).

Fi

58

gure 10. Input Job Stream

0S/VS Sort/Merge Program

mer's Guide

The format of the EXEC statement is:

//stepname EXEC {[PGM=SORTIICEMAN]l[PROC=SORTlSORTD]|
[SORT|SORTD1}[,PARM='optionsl']
[,any other parameters]

1S5ee "'PARM' Field Options™ below.

If.you use the PROC= notation it has the same effect as simply
using the name of the procedure, but serves as a reminder that a
cataloged procedure is being used.

If you are not using a cataloged procedure, you should use PGM=
either with the actual name of the sort module (ICEMAN) or with
its alias, SORT. Check that the alias has not been changed at
your particular installation.

YSORT' CATALOGED PROCEDURE

Use the SORT cataloged procedure when yvou include user routines
that require link-editing. Because this procedure allocates
linkage editor data sets, whether or not you include user
routines, it is inefficient if vou do not include such routines.

When you specify EXEC PROC=SORT or EXEC SORT, the following JCL
statements are generated:

/7/S0RT EXEC PGM=ICEMAN 00
//STEPLIB DD DSNAME=yyy,DISP=SHR 10
//S0RTLIB DD DSNAME=xxx,DISP=SHR 20
/7/78YS0OUT DD SYSOUT=A 30
//SYSPRINT DD DUMMY 40

//5YSLMOD DD DSNAME=&GOSET,UNIT=SYSDA,SPACE=(3600,(20,20,1)) 50
//SYSLIN DD DSNAME=&LOADSET,UNIT=SYSDA,SPACE=(80,(10,10)) 60
//75YSUT] DD DSNAME=&SYSUT1,SPACE=(1024,(60,20)), 70
/7 UNIT=(SYSDA,SEP=(SORTLIB,SYSLMOD,SYSLIN)) 80

00 The stepname of the procedure is SORT. This EXEC statement
initiates the program, which is named ICEMAN. A region
gar:mffeg will probably have been added when the program was
installed.

10 The STEPLIB DD statement defines the data set containing the
sort/merge program modules that reside in a link library.
The data set is cataloged, and the data set name represented
by yyy is specified at generation time; it can be
SYS1.LINKLIB.

20 The SORTLIB DD statement defines the data set that contains
the sort/merge program modules. The data set is cataloged,
and the data set name represented by xxx was specified at
generation time; it can be SYS1.SORTLIB.

30 Defines an output data set for system use (messages). It is
directed to system output class A.

40 SYSPRINT is defined as a dummy data set because linkage
editor diagnostic output is not required.

50 Defines a data set for linkage editor output. Any system
direct access device is acceptable for the output. Space for
20 records with an average length of 3,600 bytes is
requested; this is the primary allocation. Space for 20 more
records is requested if the primary space allocation is not
sufficient; this is the secondary allocation, which is
requested each time space is exhausted. The last value is
space for a directory, which is required because SYSLMOD is
a new partitioned data set.

Section 5. Job Control Statements 59

60 The SYSLIN data set is used by the program for linkage
editor control statements. It is created on any system
direct access device, and it has space for 10 records with
an average length of 80 bytes. If the prlmary space
allocation is exhausted, additional space is requested in
blocks large enough to contain 10 records. No directory
space iS necessary.

70780 The SYSUT1 DD statement defines a work data set for the
linkage editor.

*SORTD' CATALOGED PROCEDURE
Use the SORTD cataloged procedure either (a) when you do not
include user routines or (b) when you include user routines that

do not require link-editing.

When you specify EXEC PROC=SORTD or EXEC SORTD, the follouwing
JCL statements are generated:

//SO0RT EXEC PGM=ICEMAN 00
//STEPLIB DD DSNAME=yyy,DISP=SHR 10
//SORTLIB DD DSNAME=xxx,DISP=SHR 20
//5YSOUT DD SYSOUT=A 30

00 The stepname of the SORTD procedure is SORT. A region
9ar:m?§e; will probably have been added when the program was
installed.

10 The STEPLIB DD statement defines the data set containing the
sort/merge program modules that reside in a link library.
The data set is cataloged, and the data set name represented
vyy is specified at generation time; it can be
SYSI LINKLIB.

20 Defines the data set containing sort/merge program modules.
The data set name of the program subroutine library,
represented by xxx, is specified at generation time; it can
be SYS1.SORTLIB.

30 Directs messages to system output class A.

'"PARM' FIELD OPTIONS

The options described below are keyword parameters, and can
therefore be specified in any order.

PARM='[BALN|OSCL|POLY] [,SIZE(value)|,SIZE(MAX)]
[,FLAGCI)|,FLAGC(U)|,NOFLAG] [,LIST|,NOLIST] [,DIAG]"®

BALN|OSCLIPOLY: When usihg tape work areas, you can force the
program to use a specific sorting technique. The techniques
available are:

. BALN—the balanced tape technique

. 0SCL—the oscillating tape technique

. POLY—the polyphase tape technique

If you omit this option for a tape sort, the program tries to
select the most efficient technique for your particular
application. You should therefore be extremely cautious of

forcing a specific technique, since this can result in reduced
efficiency.

60 0S/VS Sort/Merge Programmer's Guide

If you use disk work areas and specify a technique parameter in
the PARM field (BALN, PEER, or CRCX), it will be recognized but
ignored. You can then instead force a technique (for example,
Ior bzpasiing purposes) using the DEBUG statement described in
ppendix A.

For more information on choice of techniques, see Figure 6 in
Section 3, "Summary of Intermediate Storage Requirements."

SIZE(VALUE) |SIZE(MAX): You can temporarily override the main
| storage allocated to sort/merge by specifying:

) SIZE(value), where value is a decimal value representing the
number of bytes of main storage to be allocated. See Section
3 for a description of how to calculate the required amount.

. SIZE(MAX), which instructs the program to calculate the
amount of main storage available and allocate this maximum
amount, up to the MAXLIM value set when the program uwas
installed. The program will allow space (within MAX) if
needed for VSAM and its buffer pools.

Do not use SIZE(MAX) with password-protected data sets if
passuwords are to be entered through a routine at an exit,
since the program cannot then open the data sets in Phase 0
to make the necessary calculations.

If the value of SIZE is less than the MINLIM value set at
| installation time, the MINLIM value will be used.

The program also accepts the parameter CORE for this option.
SIZE and CORE may not both be specified at the same time. For
compatibility reasons, it will also accept the format
SIZE=value|SIZE=MAX.

FLAG(I)|FLAG(U) |NOFLAG: You can temporarily override the message
option specified at sort generation time, as follows:

. FLAG(I)—-All messages, informational and critical, are
Nrittfn. Critical messages also appear on the operator
console.

J FLAG(U)—-Only critical (unrecoverable) messages are written.
They also appear on the operator console.

. NOFLAG—No messages are printed; critical messages appear on
the operator console.

For compatibility reasons, the form MSG=NO|CCICP|AC|AP|PC is
also accepted. The meanings are described in the 0S _Sort/Merge
Erogcnger's Guide relating to Sort/Merge Program Product
5734-SM1.

LISTINOLIST: You can temporarily override the list option
specified at sort generation time.

. LIST means that all sort/merge control statements will be
printed on SYSOUT, preceded by a heading.

. NOLIST specifies that neither heading nor control statements
are to be printed.

DIAG: DIAG is intended as a diagnostic tool on nonstandard disk,
tape, or merge applications at execution time. You should take
care to specify it only when you actually need it, because it
can impair program performance.

This option provides a listing of the program control
statements, a module map, and a list of diagnostic messages
containing addresses of areas critical for program execution. A
complete list of the diagnostic messages is given in Appendix A.

Section 5. Job Control Statements 61

DD_STATEMENTS

If the program terminates unsuccessfully, which is indicated by
a critical message, the DIAG option causes an 0Cl abend. If you
include a SYSABEND, SYSMDUMP, or SYSUDUMP statement, you will

also receive a dump of main storage. For jnformation on abnormal

termination dumps, refer to 0S/VYS1 Debugqing Guide, or /
Debugging Handbook.

In systems with multiple console support, diagnostic messages
are printed on the system master console, unless they have been
suppressed.

Diagnostic information for standard disk techniques can be
obtaiged by using the DEBUG control statement, described in
Appendix A.

A number of DD statements must be provided. Some are system DD
statements, and will usually be supplied by the cataloged
procedure, if you use one; others, you must always supply
yourself if they are required. They are described below under
"System DD Statements™ and "Program DD Statements,"
respectively.

Required DD statement parameters are summarized in Figure 11,
and DCB subparameters in Figure 12.

If you are running under MVYS and are using conventional
techniques (that is, those that have tape work storage, or are
forcing a nonstandard disk technique), you are advised not to
use FREE=CLOSE on your DD statements.

shared Tape Units

A single tape unit may be assigned to two sort/merge data sets
when the data sets are one of the following pairs:

° Unless 0SCL is being used, the input data set and the first
intermediate storage data set (SORTWKO01)

] The input data set and the output data set

If you wish to associate the SORTIN data set with SORTWKO1l, you
could include in the DD statement for SORTWKO1 the parameter:
UNIT=AFF=SORTIN. The AFF subparameter causes the system to place
the data set on the unit occupied by the data set associated
with)the DDname following the subparameter (SORTIN, in this
case).

In the same way, you could associate SORTIN with SORTOUT by
including UNIT=AFF=SORTIN in the SORTOUT DD statement.

62 0S/VS Sort/Merge Programmer's Guide

Parameter [Condition Under Which |Summary of Parameter |[Default Value
Required Values
DSNAME When the DD statement Specifies the fully Thae system
or defines a labeled qualified or assigns a unique
DSN input data set (e.g., temporary name of the |name.
SORTIN), or when the data set.
data set being created
is to be kept or
cataloged (e.g.,
SORTOUT), or passed to
another step.
DCB Aluways required when Spacifies information |(See separate
7-track tape is used; used to fill the data |subparameters in
for input on tape control block (DCB) Figure 12)
without standard associated with the
labels; and when the data set.
default values are not
applicable.
UNIT When the input data Spacifies
set is neither (symbolically or
cataloged nor passed actually) the type
or when the data set and quantity of I/0
is being created. units required by the
data set.
SPACE When the DD statement Specifies the amount
defines a new data set |of space needed to
on direct access. contain the data set.
VOLUME When the input data Specifies information
or set is neither used to identify the
VoL cataloged nor passed, volume or volumes
for multireel input or joccupied by the data
when the output data set.
set is on direct
access and is to be
kept or cataloged.
LABEL When the default value |Specifies information |The system
is not applicable. about labeling and assumes standard
retention for the labeling.
data set.
DISP When the default value |Indicates the status The system
is not applicable. -and disposition of assumes
the data set. (NEW, DELETE).
{AMP |BUFSP)} |When password-protected|Minimum buffer pool None.
VSAM data sets are used|value given when
and the password is creating the data set.
supplied through E18,
E38 or E39.

Figure 11.

DD Statement Parameters Usad by Sort/Merge

Section 5. Job Control Statements

63

Subparameter |[Condition Under |Summary of Default value
Which Required subparameter values

DEN When the data set|{Specifies the density|800 bpi
is located on a at which the tape was
7-track recorded.
2400-series tape
unit.

TRTCH When the data set|Specifies the Converter not used,
is located on a technique used to translator not used,
7-track record 8-bit bytes onjodd parity.
2400-series tape [a 7-track tape.

RECFM Specifies the format | For OLD data sets,
of the records in the the value in the
data set. data set label.

When the DCB ¢ For NEW SORT-0UT

LRECL? parameter is Specifies the maximum data sets, the
required and the |length (in bytes) of same as for the
default value is |the logical records first SORTIN or
not suitable, in the data set. SORTINnn data
except on SORTWK . set.S

BLKSIZE? statements. Specifies the maximum|e No default if
length (in bytes) of input on unlabeled
the physical records tape, or BLP or
in the data set. NSL specified.

OPTCD When processing Specifies that the
data in ASCII tape processed is
format. in ASCII format.

BUFOFF When processing Specifies the length
data in ASCII of the buffer offset
format. or specifies that

the buffer offset is
the block length
indicator.

1 With fixed-length records, LRECL can be used in the SORTOUT DD statement
to shorten output records, if care is taken that the shortened records
still include all of the control fields. With variable-length records,
LRECL cannot be used in the SORTOUT DD statement to shorten output
records.

2 This is the only subparameter allowed for DD % data sets.

3 If you are executing SM1 in several different steps within the same job
vou are advised not to rely on the defaults for SORTOUT but to give
explicit values, as the system may not be able to keep track of the
desired values.

Figure 12.

DCB Subparameters Used by Sort/Merge

SYSTEM DD STATEMENTS

64

If you do not use a cataloged procedure to invoke the program,
you may need to include system DD statements in the input

stream.

dedicated to sort/merge,

(See also the following section for DD statements
such as SORTLIB.) The DD statements

contained in the cataloged procedure (or provided by you) are:
/7/7JOBLIB DD
7/7STEPLIB DD

or

statement will be needed to identify your program
link library if it is not already known to the
system.

/7/7SYSIN DD contains the sort/merge control statements when
sort/merge is not invoked by another program. It
can also contain user exit routines. The control

0S/VS Sort/Merge Programmer's Guide

/775YSOUT DD

//SYSPRINT DD

//5YSUT1 DD

//SYSLIN DD

/7SYSLMOD DD

//SYSUDUMP DD

PROGRAM DD STATEMENTS

data set normally resides in the input stream;
however, it can be defined as a sequential data
set or as a member of a partitioned data set. The
data set must not be defined as RECFM=U.

used as the system output data set for messages.
Always use this statement if a cataloged
procedure is not used. If you are invoking the
program from another program, check whether a
DDname other than SYSOUT was specified at
generation time. Before printing sort messages, a
skip to a new page is performed. (If you are
invoking sort from a COBOL program and using no
other DDname than SYSOUT, the use of EXHIBIT or
DISPLAY in your COBOL program can give uncertain
printing results.)

used by the linkage editor. Include this
statement when user routines that require
link-editing are included in the application.

used as a work area by the linkage editor. Use
this statement when user routines that need
link-editing are included.

defines a data set on which the sort program will
place control information for the linkage editor.
Use this statement when user routines that
require link-editing are included.

defines a data set that contains output from the
linkage editor. Include this statement when user
routines that need link-editing are included in
the application.

(or SYSABEND) defines output from a system ABEND
dump routine. Needed if an unsuccessful run is to
terminate with an ABEND dump (instead of a return
code of 16).

In addition to the standard JCL statements required for normal

program execution,

the sort/merge program may use other

dedicated JCL DD statements, as follows:

//SORTLIB DD

//SORTIN DD

//7SORTINnn DD

/7/7SORTWKnn DD

//SORTOUT DD

//50RTMODS DD

defines the data set that contains load modules
for the program. Only needed if a cataloged
procedure is not used or if you are using any
sort application with tape work areas or any
merge application, or if any of the nonstandard
disk techniques are forced.
defines the input data set for a sorting
application.

define the input data sets for a merging
application.

sets. Usually
unless dynamic

define intermediate storage data
needed for a sorting application
allocation is requested.

defines the output data set for sorting and
merging applications.

defines a temporary partitioned data set large
enough to contain all your exit routines that
appear in the input stream for a given
application. If your routines are not in the
input stream, this statement is not required. If
your routines are in libraries, DD statements
defining the libraries must be included.

Section 5. Job Control Statements 65

//7SORTCKPT DD defines a data set for checkpoint record§. If you
are not using the checkpoint facility this
statement is not required.

//7SORTCNTL DD defines the data set from which additional or
changed sort control statements can be read, when
the sort is invoked from another program.

//SORTDKnn DD is the DDname given to a VIO SORTWKnn allocation
by sort/merge if it is dynamically reallocated
(MVS only) and should never be specified in the
job stream.

| SORTLIB DD Statement

The SORTLIB DD statement defines the data set that contains
sort/merge load modules to execute the conventional sorting and
merging techniques. You need a SORTLIB if you are (1) using any
sort application with tape work areas, (2) not using a cataloged
procedure, (3) using any merge only application, or (4) forcing
any of the nonstandard techniques.

//S0RTLIB DD DSNAME=USORTLIB,DISP=(0OLD,KEEP)

| DD_Example 1. SORTLIB DD Statement

This example shows DD statement parameters that define a
previously cataloged input data set:

DSNAME
causes the system to search the catalog for a data set with
the name USORTLIB. When the data set is found, it is
associated with the DDname SORTLIB. The control program
obtains the unit assignment and volume serial number from
the catalog and writes a mounting message to the operator
if the volume is not already mounted.

DISP

indicates that the data set is passed or cataloged (OLD)
and that it should be kept after the current job step.

For information on the parameters used in the SORTLIB DD
statement, the conditions under which they are required, and the
default values assumed if a parameter is not included, see
Figure 11 on page 63. The subparameters of the DCB parameter are
described similarly in Figure 12. See your 0S/YS1 JCL Reference
or 0S/VS2 JCL Reference for more detailed information.

SORTIN DD Statement

66

The SORTIN DD statement describes the characteristics of the
@:talsettjn which the records to be sorted reside, and indicates
its location.

If you provide the address of an E15 exit that supplies all
input to sort/merge:

o No SORTIN statement is needed if you are invoking sort/merge
from another program.

. A SORTIN DD DUMMY can be used if you are initiating
sort/merge with an EXEC statement, but remember to give DCB
parameters (see Figure 12); you can omit the SORTIN
statement if you supply a LENGTH parameter on the RECORD
control statement.

0S/7VS Sort/Merge Programmer's Guide

Sort/merge will accept an empty (null) QSAM data set for
sorting, but an empty VSAM data set will cause a VSAM input
error (code 160), and sort/merge will terminate.

For information on the parameters used, the conditions under
which thaey are required, a summary of the information in the
paramaters, and the default values, see Figure 11. The
subparameters of the DCB parameter are described similarly in
Figure 12. Performance is enhanced if the LRECL subparameter of
the DCB is accurately specified for variable-length records. The
maximum input record length that you can specify for your
particular configuration is given in the "Introduction."

See your 0S/VS1 JCL Reference or 0S/VYS2 JCL Refarence for more

detailed information.

When input to the program is a concatenated data set, the
following rules apply:

. RECFM must be the same for all data sets in the
concatenation, except that FB and FBS can be mixed.

. BLKSIZE may vary, but the data set with the largest block
size must be specified on the first DD statement of the
concatenation.

J With fixed-length records, LRECL must be the same for all
data sets. With variable-length records LRECL can vary, but
the largest size must be specified for the data set
described on the first DD statement.

o If the data sets are on unlike devices you cannot use the
EXLST parameter at exit E18.

//S0RTIN DD DSNAME=INPUT,DISP=(OLD,KEEP)

DD Example 2. SORTIN DD Statement

This example shows DD statement parameters that define a
previously cataloged input data set:

DSNAME
causes the system to search the catalog for a data set with
the name INPUT. When the data set is found, it is
associated with the DDname SORTIN. The control program
obtains the unit assignment and volume serial number from
the catalog and writes a mounting message to the operator
if the volume is not already mounted.

DISP
indicates that the data set is passed or cataloged (0OLD)
and that it should be kept after the current job step.

//S0RTIN DD DSN=SORTIN,DISP=(OLD,KEEP),UNIT=3400-3,
/77 VOL=SER=(75836,79661,72945)

DD Example 3. Volume Parameter on SORTIN DD

If the input data set is contained on more than one reel of
magnetic tape, the VOLUME parameter must be included on the
SORTIN DD statement to indicate the serial numbers of the tape
reels. In this example, the input data set is on three reels
that have serial numbers 75836, 79661, and 72945.

If a data set is not on standard-labeled tape (or disk), you
must specify DCB parameters in its DD statement.

Section 5. Job Control Statements 67

SORTINNn DD Statement

The SORTINnn DD statements describe the characteristics.of the
data sets in which records to be merged reside, and indicate the
locations of these data sets; nn is any number from 01 through
16. The statements must be numbered in ascending order: SORTINO1
is the name of the first, SORTINO2 the name of the second, and
so on. No numbers can be skipped and concatenated data sets are
not supported.

SORTINnn DD statements are always needed for a merge qnless the
merge is invoked from another program, and all input is supplied
through a routine at exit E32.

The data set with the largest block size must be defined in the
SORTINO1 DD statement. The record format must be the same for
all input data sets. Logical record length must also be the same
unless the records are variable-length, in which case the
largest size must belong to the data set described in SORTINO1.

The maximum input logical record length that you can use for
yvour particular configuration is given in the Introduction under
"Limitations on Input™ (Figure 1).

The program will accept empty (null) QSAM data sets for merging,
but an empty VSAM data set will cause a VSAM input error (code
160), and the program will terminate.

For further information on the parameters used in the SORTINnn
DD statements, the conditions under which they are required, and
the default value assumed if a parameter is not included, see
Figure 11. The subparameters of the DCB parameter are described
similarly in Figure 12. See your 0S/VS1 JC eference or 0S/VS
JCL Reference for more detailed information.

Note: For MVS, FREE=CLOSE cannot be specified.

//SORTINOY DD DSNAME=MERGEL,VYOLUME=SER=000111,DISP=0LD,
Va4 LABEL=(,NL),UNIT=3400-3,

77 DCB=(RECFM=FB,LRECL=80,BLKSIZE=240)
//SORTINO2 DD DSNAME=MERGE2,VOLUME=SER=000121,DISP=0LD,
7/ LABEL=(,NL),UNIT=3400~3,

7/ DCB=(RECFM=FB,LRECL=80,BLKSIZE=240)
//SORTINO3 DD DSNAME=MERGE3,VOLUME=SER=000131,DISP=0LD,
77 LABEL=(,NL),UNIT=3400-3,

144 DCB=(RECFM=FB,LRECL=80,BLKSIZE=240)

DD Example 4. SORTINO1-03 DD Statements (Merge)

//SORTINOl DD

/77
//SORTINO2 DD
7/

DSNAME=INPUT1,VOLUME=SER=000101, X

UNIT=3330,DISP=0LD ¥DCB PARAMETERS
DSNAME=INPUT2,VOLUME=SER=000201, XSUPPLIED FROM
UNIT=3330,DISP=0LD %¥LABELS

D Exa e 5. SORTINO1-02 DD Statements (Merge)

SORTWKNN DD Statement

68

The SORTWKnn DD statements describe the characteristics of the
data sets used as intermediate storage areas for records to be
sorted; they also indicate the location of these data sets.

WHEN REQUIRED: One or more SORTWKnn statements are required for
each sort application (but not a merge), unless:

0S/7VS Sort/Merge Programmer's Guide

. Input can be contained in main storage, or

] DYNALLOC has been specified in the SORT or OPTION statement
under MVS. No SORTWK data sets should be provided if dynamic
allocation is specified.

Note: VLR-Blockset will be bypassed if no SORTWK data sets
are provided.

For information on how to calculate the amount of storage
needed, see Section 3.

DEVICES: SORTWK data sets can be on disk or on tape, but not
both, as described in Section 3. Disk types can be mixed.

Tape must be 9-track unless input is on 7-track tape, in which
case work tapes can (but need not) be 7-track.

GENERAL CODING NOTES
. In the DDname (SORTWKnn):

- Cylinder allocation is required for FLR-Blockset and is
recommendaed to improve performance for VLR-Blockset.

- With disk work areas, nn can be any decimal number from
00 through 99 and numbers can be in any order (unless a
nonstandard technique is forced, as described in
Appendix A).

- Unless the input file is very large, one or two SORTWK
data sets are usually sufficient. One or two large
SORTWK data sets are preferable to several small ones.

= With tape work areas, nn can be 01 through 32; the first
must be 01, and the rest must follow consecutively. No
numbers can be skipped.

. DD DUMMY must not be used.

. Di fferent SORTWK DD statements must not reference the same
physical data set.

. No parameters relating to ASCII data should be included,
since ASCII input is automatically translated into EBCDIC
before being moved into an intermediate storage area.

DISK CODING NOTES
. Data sets must be sequential, not partitioned.
. The SPLIT cylinder parameter must not be specified.

. If no secondary allocation is requested, a default of
one-fifth of primary space or one cylinder will be used,
whichever is larger, for work data sets. (Secondary
allocation is limited to 12 work data sets in the Peerage or
Vale sorting techniques only.) An information message
ICEgSSI is printed whenever secondary allocation has been
used.

. If the data set is allocated to VIO, there will be no
automatic secondary allocation.

. Secondary allocation can be requested for work data sets. If
more work data sets are defined they are used with only the
primary allocation. (Secondary allocation is limited to 12
wo;k ?ata sets in the Peerage and Vale sorting techniques
only.

. Primary and secondary space must be on the same volume.

Section 5. Job Control Statements 69

. If primary space is fragmented, then all but the first
fragment are handled as secondary space.

l . Release of disk work space not required may take place

automatically.

VIRTUAL I/0: If SORTWKnn data sets are specified using vir?ual
I70 undar MVS, sort normally carries out dynamic reallocation,
using the DDname SORTDKnn. However, if when sort/merge was
installed the VIO option was specified, then virtual I/0 will be
used and performance will be degraded.

EXAMPLES: The following is an example of a SORTWKnn DD statement
using a disk davice:

/7/7S0RTWKO1 DD SPACE=(CYL,(15,5)),UNIT=3380

If you use the checkpoint/restart facility and need to make a
deferred restart, you must make the following additions to the
above statement so that the sort work data set will not be lost:

DSNAME=namel,DISP=(NEW, DELETE, KEEP)

Lhus the same SORTWK DD statement for a deferred rastart would
a:’

//SORTWKO1 DD DSNAME=namel,UNIT=3380,SPACE=(CYL,(15,5)),
/77 DISP=(NEW, DELETE,KEEP)

DD Example 6. SORTWKO1l DD Statement, Disk Intermediate Storage

If the sort/merge program terminates unsuccessfully and the
above DD statement has been specified, the intermediate storage
data set will remain in the system until the step has beean
successfully rerun or until the data set has been deleted by
some other means.

The following is an example of a SORTWKnn DD statement using a
tape device:

//SORTWKO1 DD UNIT=3400-3,LABEL=(,NL)

DD _Example 7. SORTWKO1 DD Statement, Tape Intermediate Storage

These parameters specify an unlabeled data set on a 3400 series
tape unit. Because the DSNAME parameter is omitted, the system
assigns a unique name.

SORTOUT DD Statement

70

The SORTOUT DD statement describes the characteristics of the
data set in which the sorted or merged records are to be placed,
and indicates its location. The maximum output record length
(LRECL) that you can use for your particular configuration is
given in the Introduction in Figure 1.

0S/7VS Sort/Merge Programmer's Guide

If you provide the address of an E35 exit that disposes of all
output:

U A SORTOUT DD statement need not be supplied if you have
invoked sort/merge from another program.

. A SORTOUT DD statement need not be supplied as long as you
have a RECORD control statement if you have initiated
sort/merge with an EXEC statement. Alternatively, you can
use SORTOUT DD DUMMY; you can then specify unblocked format
to minimize the size of the buffers reserved by the program.

For information on the parameters used in the SORTOUT DD
statement, the conditions under which they are required, and the
default values assumed if a parameter is not included, see
Figure 11. The subparameters of the DCB parameter are similarly
described in Figure 12.

Note: If LABEL=RETPD is specified in the SORTOUT DD statement
for a standard labeled tape, the DCB parameters must also be
specified. If the DCB parameters are not specified, the tape may
be opened twice.

//SORTOUT DD DSNAME=QUTPT,UNIT=3400-3, *DCB PARAMETERS DEFAULT
Va4 DISP=(NEW,CATLG) *¥T0 THOSE OF SORTIN

DD Example 8. SORTOUT DD Statement
DSNAME The data set is to be called OUTPT.

DISP The data set is unknouwn to the operating system (NEW),
and it is to be cataloged (CATLG) under the name OUTPT.

UNIT Indicates that the data set is on a 3400-series tape
unit.

DCB The DCB parameters default to those of SORTIN.

SORTMODS DD Statement

The SORTMODS DD statement describes the characteristics of a
partitioned data set large enough to include all the user exit
routines you include in the job input stream; it also describes
the location of this data set.

The program temporarily transfers the user exit routines to the
data set defined by this DD statement before they are
link-edited for execution.

For information on the parameters used in the SORTMODS DD
statement, the conditions under which they are required, and the
gefault Xalues assumed if a parameter is not included, see

igure 11.

//SORTMODS DD UNIT=3340,SPACE=(TRK,(10,,3))

DD_Example 9. SORTMODS DD Statement
These parameters allocate ten tracks of a 3340 disk to the

SORTMODS data set. Space for three directory blocks is also
requested.

Section 5. Job Control Statements 71

SORTCKPT DD Statement

The SORTCKPT data set may be allocated on any device that
operates with the Basic Sequential Access Method (BSAM).
Processing must only be restarted from the last checkpoint
taken.

//SORTCKPT DD DSNAME=CHECK,VOLUME=SER=000123,
77 DISP=(NEW,KEEP),UNIT=3400-3

DD_Exa e . SORTCKPT DD Statement

For information on the parameters used in the SORTCKPT DD
statement, the conditions under which they are required, and the
ggfaultlzalues assumed if a parameter is not included, see

igure .

If tha CKPT operand is specified on the SORT control statement,
more intermediate storage may be required. See Section 3.

If vou wish to use the checkpoint/restart facility, refer to
0S/YS) Checkpoint/Restart or 05/VS1 MVS Checkpoint/Restart.

SORTCNTL DD Statement

The SORTCNTL data set may be used to read changed and/or
additional sort/merge control statements, when the sort is
invoked from another program (written, for example, in COBOL or
PL/I). When sort/merge is invoked, it will read and use all the
statements present (see Note 2 below), which will then
completely override corresponding statements which have been
passed in the parameter list.

//SORTCNTL DD ¥

DD_Example 11. SORTCNTL DD Statement
Notes:

1. When sort/merge is invoked from a PL/I program, the SORTCNTL

data set must not be used to supply a new RECORD control
statement.

2. If you want sort/merge to try to execute one of the Blockset
techniques, include only the OPTION control statement in the
SORTCNTL data set. Inclusion of any other control statements
(except END) will cause sort/merge to bypass Blockset and
attempt to select Peerage or Vale, where appropriate.

| SORTDKnn DD Statement

72

In an MVS system, sort work data sets can be assigned to VIO0. If
the ICEMAC parameter VIO is specified or defaults to NO, VIO
sort work data sets are deallocated and reallocated by sort with
the DD name SORTDKnn. The DD name SORTDKnn is reserved for use
by the sort/merge program.

0S/7VS Sort/Merge Programmer's Guide

At certain places in the executable code of the sort/merge
program, control can be passed to your own routines. Thesa
places are called user exits. Because each exit is located in a
particular phase of sort/merge, a genaral understanding of how
}hﬁlsort/merge program operates is necessary to understand them
ully.

The purpose of this section is to describe how you can use one
or more user exits to achieve a specific result; it also
describes the linkage conventions, register usage, and other
conventions you must follow when writing your routines. User
exit routines can be used during an execution of sort/merge to
perform a variety of functions, such as deleting, inserting,
altering, and summarizing records.

This section has two subsections. To help you use them as
efficiently as possible we give here a brief description of
their contents.

The first subsection contains the following topics:

sort/Merge Program Description
explains the different phases of the sort/merge program and
their connection with user exits.

Function of Routines at User Exits
describes the uses of routines at user exits, for instance,
opening data sets, handling special I/0, etc.

Your Routines and sorts/Merge Performance
describes how your routines can affact the performance of
the sort/merge program.

Preparing Your User Exit Routines
gives a few points to bear in mind when preparing your
routines.

Houw to Load Your User Exit Routines
explains how the sort/merge program enters your routines
and describes register conventions.

Houw to Link to User Exit Routines
describes return codes, linkage conventions, and
restrictions associated with each of the exits.

You are strongly advised to familiarize yourself with the above
background information before continuing to the second
subsection which gives return codes, linkage conventions, and
restrictions associated with each of the exits.

The second subsection discusses user exits. (Bear in mind that
if exits other than E15 and/or E35 are specified, the Blockset
techniques will not be used.) The phases that use exits are
shown below with relevant exits:

SORT (INPUT) PHASE 1
Opening Data Sets/Initializing Routines—E1ll Exit
Passing or Changing Input Records—E15 Exit
Handling Miscalculation of Intermediate Storage—El6 Exit
Closing Data Sets—E17 Exit
Handling Input Data Sets—E18 Exit
Handling Output to Work Data Sets—E19 Exit

Section 6. User Exit Routines 73

| INTERMEDIATE MERGE PHASE 2 (not used by Blockset)
Opening Data Sets/Initializing Routines—E21 Exit
Changing Records—E25 Exit
Closing Data Sets—E27 Exit
Handling Input—E28 Exit
Handling Output—E29 Exit

| MERGE (OUTPUT) PHASE 3 .
Opening Data Sets—E31 Exit .
Passing or Changing Input Records to a Merge—E32 Ex3t
Adding, Deleting, or Changing Output Records—E35 Exit
Closing Data Sets—E37 Exit
Handling Input Data Sets to a Merge—E38 Exit
Handling Output Data Sets—E39 Exot

| ALL PHASES
Modifying Control Fields—E61 Exit

| Exit Naming Convention

ORT/MERG

74

The naming convention for exits is as follows:
Exy, whaere:

X is number of phase
y is number of exit within phase

The exception is E61, which can be taken in any of Phases 1-3.

GRAM _DESCRIPTION

The sort/merge program is segmented into parts that can operate
independently. Generally, there are two levels of segmentation:

L A phase is a large program component designed to perform one
specific task (for example, final merging).

. Modules are the independent routines of which phases are
composed.

The total sort/merge program consists of two separate parts: one
for disk sorts, and one for tape sorts; both parts have a common
initialization routine. As illustrated in Figure 13, both parts
operate in at least four major phases, depending on the sorting
technique selected by sort/merge. All of the phases are used for
sorting applications, but only two for merging operations.

Figure 13 is a phase-level flowchart of sort/merge; Figure 14
shows the various user exits, and the functions of the routines
that you can write for these exits.

05/VS Sort/Merge Programmer's Guide

General
Initialization

1
Initia}ization Phase 0
Initiglize Initialize Initialize
for disk sort for tape sort for merge only
Linkage editor (if Linkage editor (if
needed for user needed for user
routines) routines)
Input Phase 1 Ph 1
<=>lexits < >
If sort is completed If sort is completed
in this phase, in this phase, go to
produce output <=>|Ph 3 exits phase 3
and end if sort
T completed
in this
phase

Intermediate Merge Phase 2

Merge Merge
strings {——|Ph 2 |———>| strings

Output.Phase 3

—> Produce output and end|<— Ph.i <—>{Produce output and end
exits

Note: In addition to Initialization Phase 0, FLR-Blockset has three
phases: Input Phase 1, where it reads the SORTIN data set; Kay

Phase 2, where it sorts the index records; and OQutput Phase 3, where it
writes the SORTOUT data set. In addition, VLR-Blockset has a
Generation phase after the Input phase where it builds code to move
variable-length records.

Figure 13. Flow of Control in the 0S5/VS Sort/Merge Program

Section 6. User Exit Routines

Exit Functions Input Inter-med | Output All
Phase 1 iate Phase 3
Merge
Phase 2%
Open user data sets/initialize Ell E21 E31
Insert records E15 E32,E35
Delete/Alter records E15 E25 E35
Terminate the program E15 E25 E35
Summarize records E25 E35
Determine action when interme- E16%
diate storage insufficient
Close user data E17 E27 E37
sets/housekeeping
Handle special I/0 conditions: E18 E28% E38x
Input (incl. handling labels,
read errors, EOF)
VSAM password insertion, E18 E38%
journaling, and other
VSAM exits
Output (incl. handling labels, E19% E29% E39 E39
write errors)
VSAM password insertion, E39
journaling, and other
VSAM exits
Modify control fields E61
¥Not valid for a standard disk
sort (ignored if specified)
¥¥Phase 2 may not always be
entered.

Figure 14. Functions of Routines

INITIALIZATION PHASE 0

at Program Exits

The initialization phase, which has no exits, reads and
interprets program control information and decides which sorting
technique will handle the application. All of the sorting
techniques use this phase.

Using information obtained from the operating system and from
JCL statements, it determines the optimum method of using the
processor and I/0 configuration available and passes control to
the linkage editor, if you have routines that need link-editing.

SORT (INPUT) PHASE 1

76

The sort (input) phase orders the input data set into sequences
and distributes them onto work data sets. There are several
methods of distribution, known as string distribution
techniques, and, unless a particular technique has beaen forced,
sort/merge attempts to choose the most efficient. All sorting
techniques use this phase. In the Peerage and Blockset sorting
techniques, indexes are created for these distributed records.

05/7VS Sort/Merge Programmer's Guide

If tape is being used for work storage, the strings can be
distributed in both ascending and descending order. This enables
the intermediate merge phase (using the read-backward feature)
to merge the strings without rewinding tapes.

A disk sort (except one using VLR-Blockset) can operate with no
intermediate storage if the input data set can be contained in
the main storage available.

The exits for this phase are shown in Figure 14.

| GENERATION PHASE (VLR-BLOCKSET ONLY)

This phase is used by VLR-Blockset to build code to move
variable-length records to output buffers.

| KEY PHASE (BLOCKSET ONLY)

This phase is used by the Blockset techniques to sort index
records.

INTERMEDIATE MERGE PHASE 2 (PEERAGE AND VALE ONLY)

OUTPUT PHASE 3

This phase is loaded and executed following completion of the
sort phase. It performs successive merges of the strings
produced by the sort phase.

The merges are carried out from work data set to work data set,
each successive merge pass decreasing the number of strings and
increasing the average string length. When only one more merge
is required to create a single long string (the output data
set), control is given to the output phase. The user exits for
this phase are shown in Figure 14.

If sufficiently few strings are produced by the sort phase, this
phase (and its associated user exit routines) may be skipped.
Also, with a disk sort, even if this phase is entered, not all
records may be handled.

The final merge (output) phase, used by all sorting techniques,
has two uses:

1. It makes the final merge pass of a sorting application, thus
creating the output data set.

2. It merges the input data sets for a merging application to
create the output data set.

Output from this phase can be on any output device supported by
QSAM or VSAM. After execution of this phase, the sort/merge
program returns control to the operating system (or invoking
program). The exits for this phase are shown in Figure 14.

When the intermediate merge phase is skipped, this phase can
sometimes also be skipped by a disk sort; if it is, the output
phase exits will be taken (if specified) when the output data
set is created in the sort (input) phase.

Section 6. User Exit Routines 77

u NS OF ROUTINES s

Figure 164 summarizes the functions of user exit routines. Refer
to it before reading the text that follows.

Note: For the Blockset techniques, use only the E15 and E35
exits. If any other exits are specified, Blockset will not be
used.

LINKAGE CONVENTIONS AND PROGRAMMING LANGUAGES

User-written routines are expected to follow standard linkgge
conventions. They can be written in any language that provides
the ability to pass the location/address of a record or
parameter list in Register 1. (COBOL and PL/I users, however,
are restricted by the facilities of the language.)

OPENING DATA SETS AND INITIALIZATION

You can write your own routines to open data sets and perform
other forms of initialization; you must associate these routines
with the E11, E21, and/or E31 exits. See Figure 14. You must
also link-edit each of them together with the other routines in
t:a same phase; otherwise, they risk being overlaid in main
storage.

To check labels on input files, use the E18, E28, and E38 exits.

INSERTING, DELETING, AND ALTERING RECORDS3 TERMINATING SORT

You can write your own routines to delete, insert, or alter
records, or to terminate the sort/merge program. You must
asg:ciate these routines with the E15, E25, E32, and/or E35
exits.

HANDLING SPECIAL I/0; VSAM EXIT FUNCTIONS

Read/urite Error Routines

Sort/merge contains six exits to handle special I/0 conditions:
E18, E28 and E38 for input, and E19, E29 and E39 for output.
They are particularly useful for a tape sort. With a standard
disk sort, all except E18 and E39 are ignored.

Note: The Blockset techniques are bypassed if any exits other
than E15 and E35 are specified.

You can use them to incorporate your own or your installation's
170 error recovery routines into the sort/merge program. When
sort/merge encounters an uncorrectable I/0 error, it passes the
same parameters as those passed by QSAM/BSAM or VSAM.

Your read and write error routines can reside in a library, or
can be placed in SYSIN. Your library or SYSIN routines are
brought into main storage with their associated phases.

If no user routines are supplied, and an uncorrectable read or
write error is encountered, sort/merge issues message ICE061A
and then terminates.

With QSAM/BSAM the following information is passed to your
synchronous error routine:

. General Registers 0 and 1 are unchanged; they contain the

information passed by QSAM/BSAM, as documented in the data
management publications.

78 0S/VS Sort/Merge Programmer's Guide

Read Errors

Urite Errors

. General Register 14 contains the return address of
sort/merge.

L General Register 15 contains the address of your error
routine.

VSAM will go direct to any routine spacified in the EXLST macro
you passed to the sort program via the E18, E38 or E39 exits, as
appropriate. Your routine must return to VSAM via Register 14.
See the 0S/VS VSAM Programmer's Guide for details.

You can uwrite your oun routines to handle I/0 read errors that
the operating system cannot correct; you must associate these
routines with the E18, E28 and/or E38 exits. They must pass
certain control block information back to the sort program to
tell it whether to accept the record as it is, skip the block,
or request termination. They may also attempt to correct the
error.

You can write your own routines to handle I/0 write errors that
the operating system cannot correct; you must associate these
routines with the E19, E29, and/or E39 exit. These routines can
perform any necessary abnormal end-of-task operations before the
sort/merge program is terminated.

VSAM Exit Functions

If you have VSAM input, E18 (for a sort) or E38 (for a merge)
can be used to insert VSAM passwords, journal a VSAM data set,
and carry out other VSAM exit functions (except EODAD), as
described in more detail below. E39 can handle these functions
for VSAM output.

INTERMEDIATE STORAGE CAPACITY ERRORS

You can write a routine to direct sort/merge program action if
sort/merge determines that insufficient intermediate storage is
available to handle the input data set; you must associate this
routine with the E16 exit for tape or nonstandard disk sorts.
For a tape sort, you can choose between sorting current records
only, trying to complete the sort, or terminating the sort/merge
program.

For more details, see "Exceeding Intermediate Storage Capacity"
in Section 3.

MODIFYING CONTROL FIELDS

You can write a routine to alter control fields before
sort/merge compares them. This allows you, for example, to
normalize floating-point control fields. It also allows you to
modify the order in which the records are finally sorted or
merged, a function for which you would usually use the ALTSEQ
program control statement instead. You must associate these
routines with the E61 exit.

Your routine will modify the extracted image of the control

fields, which is used for comparison. It does not change the
o;iginal control fields. Thus your original records are not

altered.

If this exit is used, the subsequent comparisons always arrange
the modified control fields in ascending order.

Section 6. User Exit Routines 79

CLOSING DATA SETS

You can write your oun routines to close data sets and pefform
any necessary housekeeping; you must associate these routines
with thae E17, E27, and/or E37 exit.

To write output labels, use the E19, E29, and E39 exits.

If you have an end-of-file routine which you want to use for
SORTIN, include it at the E18 exit.

USER EXIT ROUTINES AND SORT/MERGE PERFORMANCE

When you consider using user exits, you should weigh the
following factors:

o Your routines occupy main storage that would otherwise be
available to the sort/merge program. Because its main
storage is restricted, sort/merge may need to exacute extra
intermediate merge phase passes. This, of course, increases
sorting time.

. The execution of user exit routines adds time to the overall
execution time. Later, in the descriptions of the exits, you
will note that several of the exits give your routine
control once for each record until you pass a "do not
return' return code to sort/merge. You should design your
routines with this in mind. '

PREPARING USER EXIT ROUTINES

80

When preparing your routines, bear the following points in mind:

. To use the user exits (other than E15/E32 and E35 in
dynamically invoked applications), you must associate your
routine with the appropriate exits using the MODS control
statement. See "MODS Control Statement™ in Section 4.

. When the disk technique is used, the entire sort/merge
program is reenterable, provided your routines are
reenterable and do not require link-editing from sort.

. The intermediate merge phase (and, therefore, its associated
exits) may be skipped entirely if sufficiently few strings
are produced in the sort (input) phase for the sort/merge
grogramlgo proceed directly to the output phase—see

igure .

U If you are using ASCII input, remember that data presented
to your routines at user exits will be in EBCDIC format (all
data is represented internally in EBCDIC). If the E61 exit
is used to resolve ASCII collating for special alphabetic
charactars, substituted characters must be in EBCDIC, but
the sequencing result depends on the byte value of the ASCII
translation for the substituted character.

0S/VS Sort/Merge Programmer's Guide

LOAD USE ROUTINES

Each of your routines must be assembled or compiled as a
separate program and placed either in a partitioned data set
(library) or in the SYSIN input stream. The sort/merge program
then includes the names and locations of your routines in the
list of modules to be executed during each program phase. Your
routines are thus loaded and executed with their associated
program phase.

No user routine will be loaded more than once in a program
phase, but the same routine can appear in several different
phases. For example, you can use the same Read Error routine in
all three phases, but not twice in any one phase.

Only one load module will be loaded at each user exit. If vou
need more than one routine at an exit, and you do not load it
vourself, the routines must be assembled, compiled, or
link~edited as one load module. In fact, all your routines in
one phase can be placed in one partitioned data set member. The
member must have an entry point for each of the routines you
use. When the routines are arranged in this way, their
individual lengths specified on a MODS statement are not
important, but the sum of the lengths must be the total length
of the module. For example, all but one length may be specified
as tgro. and the total member length specified for the remaining
routine.

Routines in SYSIN

The routines that you place in the SYSIN input stream are copied
by the program into the SORTMODS data set; they then become
input to the linkage editor.

If a routine in SYSIN is used at more than one exit you must
supply one copy of the routine for each exit.

HOW TO LINK TO USER EXIT ROUTINES

The program uses a CALL macro instruction expansion to enter a
user exit routine. Each routine must, therefore, contain an
entry point whose name must be that of the associated program
exit.

The general registers used by the sort/merge program for linkage
and communication of parameters follow operating system
conventions; see Figure 15.

You can return control to sort/merge with a RETURN macro
instruction. You can also use this instruction to set return
codes when multiple actions are available at an exit.

Your routine must save all the general registers it uses. You
can use the SAVE macro to do this. If you save registers, vou
must also restore them; you can do this with the RETURN macro
instruction.

Linkage Examples

The CALL macro instruction used by sort/merge to link to your
routines is written as follows:

CALL Ell
This macro instruction is éxpanded to form assembler language
instructions and, when executed, places the return address in

general register 14 and your routine's entry point address in
general register 15. Sort/merge has already placed the register

Section 6. User Exit Routines 81

82

Register Use

1 Sort/merge places the address of a parameter list in
this register.

13 Sort/merge places address of a standard save area in
this register. The area may be used to save contents
of registers used by your routine. The first word of
the area contains the characters SM1 in its three
low-order bytes.

14 Contains address of sort/merge return point.

15 Contains address of your routine. May be used as base
register for your routine. This register is also used
by yvour routine to pass return codes to sort/merge.

Figure 15. Register Conventions

save area address in general register 13.

Your routine for the sort phase assignment component exit could
incorporate the following instructions:

ENTRY Ell

.

E11 SAVE (5,9)

RETURN (5,9)

This coding saves and restores the contents of general registers
5 through 9. The macro instructions are expanded into the
following assembler language code:

ENTRY El1l

E1l STM 5,9,640(13)

LM 5,9,40(13)
BR 14

If multiple actions are available at an exit, your routine sets
a return code in general register 15 to inform sort/merge of the
action it is to take. The following macro instruction could be
used to return to the program with a return code of 12 in
register 15:

RETURN RC=12

A full explanation of linkage conventions and the macro
instructions discussed in this section can be found in 05/VS1
Supervisor Services and Macro Instructions or 0S/VS2 MVS
Supervisor Services and Macro Instructions.

05/VS Sort/Merge Programmer's Guide

G_DATA SETS/INITIALIZING ROUTINES

You might use routines at this exit to open data sets needed by
vour other routines in the associated phases, or to initialize

your other routines. This routine can, if you wish, be designed
for separate link-editing. Return codes are not used.

E15 EXIT, PASSING OR _CHANGING RECORDS

The E15 exit is taken in the sort (input) phase. The E15 exit
routine receives control once for each input record, before the
record is handled by the sort. Some uses are:

. Add records to an input data set
. Pass an entire input data set to sort/merge
. Delete records from an input data set

L Change records in an input data set (but not control
fields—use E61 exit for that)

If your E15 routine is inserting records from your VSAM data
sets, you must build an extra 4-byte record descriptor word
(RDW) at the beginning of each record before the routine passes
it to sort/merge. The format of an RDW is described in the
05/VS1 Data Management Services Guide or 0S/YS2 MVS System
Programming lLibrary: Data Management. (Alternatively, you could
?ecl:;e)the records as fixed-length, and pad them to the maximum
ength.

Information supplied by Sort/Merge

Return Codes

The routine at El15 is entered each time a new record is brought
into the sort phase. Sort/merge places the address of a
parameter list in register 1. The parameter list contains the
address of the new record; it starts on a fullword boundary and
is one fullword long. The high-order byte of the word is not
used; it is represented by XX in the diagram below, which shous
the format of the parameter list.

XX Address of the new record

When sort/merge reaches the end of the input data set, it passes
an address of 2ero in the parameter list. If there are no
records in the input data set, the program passes a zero address
the first time it uses the E15 exit.

Your routine must pass one of the following return codes to
sort/merge informing it what to do with the record vou have been
examining or changing:

0 No Action/Record Altered
4 Delete Record

8 Do not Return

12 Insert Record

16 Terminate Sort/Merge

0—No Action
If you want the program to retain the record unchanged,
place the address of the record in general register 1 and
return with a zero return code.

Section 6. User Exit Routines 83

84

0—Record Altered : ’ .

If you want to change the record before passing it back to
sort/merge, your routine must move the record into a work
area, perform whatever modification you desire, place the
address of the modified record in general register 1, and
return with a zero return code. If your routine changes
record size, you must communicate that fact to sort/merge
on a RECORD statement. (See Section 4 and 05/VS1 Supervisor
Services and Macr nstructions or 05/VS2 MVYS_ Supervisor

Services and Macro Instructions for further information
about the length indicator and the record descriptor word.)

4—Delete Record
If you want the program to delete the record from the input
data .set, return with a code of 4. You need not place the
address of the record in register 1.

8—Do Not Return
The program continues to return control to the user routine
until it receives a return code of 8. After that, the exit
is closed and not used again during the sort/merge
application. You need not place an address in register 1
when you return with RC=8. Unless you are inserting records
after end-of-data set, you must pass a return code of 8
when the program indicates the end of the data set, which
it does by passing your routine a zero address in the
parameter list.

12—Insert Record '
If you want the program to add a record to the input data
set, before the record whose address was just passed to
vour routine, place the address of the record to be added
in register 1 and return to the program with a return code
of 12. The program then returns to your routine with the
same record address as before, so that your routine can
insert more records at that point or alter the current
record. You can make insertions after the last record in
the input data set (after sort places a zero address in the
parameter list). Sort/merge keeps returning to your routine
until you pass a return code of 8.

16—Terminate the Program
If you want to terminate the sort/merge program, return
with a code of 16. The program then returns to its calling
program or to the system with a return code of 16.

Notes:

1. If you use the El15 exit, the SORTIN DD statement may be
omitted, but you must include a RECORD statement in the
program control statements.

2. If you use the ATTACH, LINK, or XCTL macro instruction to
initiate sort/merge and also use the E15 exit, sort/merge
ignores the SORTIN data set. : '

3. If you omit the SORTIN DD statement, all input records will
be passed to sort/merge through vour routine at E15: the
address of each input record in turn is placed in register
1, and you return to sort/merge with a return code of 12.
When sort/merge returns to the E15 exit after last record
has been passed, E1l5 returns with RC=8 in register 15 to
indicate 'do not return’'.

4. Remember to build an RDW for variable-length VSAM records
(see 0S/VS1 Data Managem Services Guide or 0S5/VS2 MVS

Data Management Services Guide).

0S/VS Sort/Merge Programmer's Guide

Return Codes

E17 EXIT L

E STORAGE CALCULA

For a tape or nonstandard disk sort, you would use a routine at
this exit to decide what to do if sort exceeds its calculated
estimate of the number of records it can handle for a given
amount of main storage and intermediate storage. This exit is
ignored for a standard disk sort, since sort/merge defaults
secondary allocation to a total area of up to one-fifth of
primary space or one cylinder, whichaver is larger. See Section
5, under "SORTWKnn DD Statement.” See also Section 3, under
"Exceeding Intermediate Storage Capacity."

Note: When using magnetic tape, bear in mind that the system
will have used an assumed tape length of 2400 feet. If you use
tapes of a different length, the Nmax figure will not be
accurate; for shorter tapes, capacity could he exceeded before
"NMAX EXCEEDEDY is indicated.

Your routine can choose among three actions, and must use one of
the following return codes to communicate its choice to the
sort/merge program:?

0 Sort Current Records Only
4 Try to Sort Additional Records
8 Terminate the Program

0—Sort Current Records Only
If you want sort/merge to continue with only that part of
the input data set it estimates it can handle, return with
RC=0. Message ICE054I contains the number of records that
sort is continuing with. You can sort the remainder of the
data set on one or more subsequent runs, using the SKIPREC
operand on the SORT statement to skip over the records
already sorted. Then you can merge the sort outputs to
complete the operation.

4—Try to Sort Additional Records
f you want the program to continue with all of the input
data set, return with RC=4. Enough space may be available
for sort/merge to complete processing, if tapes are used.
If enough space is not available, the sort/merge program
generates a message and terminates. Refer to Section 3
under "Exceeding Intermediate Storage Capacity."

8—Terminate the Program
If you want sort/merge to terminate, return with RC=8.
Sort/merge then terminates with a return code of 16.

~

G _DAT IS

Your routine at this exit is executed once at the end of Phase
1. It can he used to close data sets used by your other routines
in :be phase or to perform any housekeeping functions for your
routines.

Section 6. User Exit Routines 85

HANDLING INPUT DAT -]

USE WITH QSAM/BSAM

Your routines at this exit can pass a parameter list containing
the specifications for three data control block fields (SYNAD,
EXLST, and EROPT) to the sort/merge program. Your E18 exit
routine can also pass a fourth DCB field (EODAD) to sort/merge.

Note: If you are using the standard disk sorting technique, the
EROPT option will be ignored.

Your routines are entered first at the beginning of each phase
so that the sort/merge program can obtain the parameter lists.
The routines are entered again during execution of the phase at
the points indicated in the parameter lists. For example, if you
choose the EXLST option, sort/merge enters your E18 exit routine
early in the sort (input) phase. Sort/merge picks up the
parameter list, including the EXLST address. Later in the phase,
sort/merge enters your routinae again at the EXLST address when
the data set is opened.

Information Your Routine Passes to Sort/Merge

86

Before returning control to sort/merge, your routine passes the
DCB fields in a parameter list, the address of which is placed
in general register 1. The parameter list must begin on a
fullword boundary and be a whole number of fullwords long. The
high-order byte of each word must contain a character code that
identifies the parameter. One or more of the words can be
omitted. A word of all zeros marks the end of the list.

If VSAM parameters are specified, they will be accepted but
ignored.

The format of the list is shown belou.

Byte 1 Byte 2 Byte 3 Byte &
01 ‘ SYNAD field
02 EXLST field
03 0 0 EROPT code
04 EODAD field
00 s 0 0 0
SYNAD

This field contains the location of your read synchronous
error routine. This routine is entered only after the
operating system has tried unsuccessfully to correct the
error. The routine must be assembled as part of your E18
routine. When the routine receives control, it must pot
store registers in the save area pointed to by register 13.

EXLST

This field contains the location of a list of pointers to
yvour routines that you want used to check labels and carry
out other tasks not handled by data management. The list,
and the routines to which it points, should be included in
vour read error routine. This parameter cannot be used at
the E18 exit if the program is reading concatenated input
on unlike devices from the SORTIN data sets.

EROPT

The EROPT code is a means whereby you can specify what
action the program should take if an uncorrectable read

0S/VS Sort/Merge Programmer's Guide

USE WITH VSAM

error is encountered. The three possible actions and the
codaes associated with thaem are:

X'80" Accept the Record (Block) as is
X'40" Skip the Record (Block)
X'20° Terminate the Program

If you include this parameter in the DCB field list, you
must place one of the above codes in byte ¢ of the word.
Bytes 2 and 3 of the word must contain zeros.

When you use the EROPT option, the SYNAD field and the
EODAD field must contain the appropriate address in bytes
2-%4; or, if no routine is available, zeros in bytes 2 and
3, and X'01' in byte 4. You can use the assembler
instruction DC AL3(1) to set up bytes 2-4.

EODAD
This field is the address of your end-of-file routina. If
you specify it, the end-of-file routine must be included in
your ouwn routine.

A full description of these DCB fields is contained in the
Sl _Data Management Macro Instructijons or 0S5/VS2 MVS Data
Management Macro Instructions.

If input to vour sort is a VSAM data set, you can use the E18
exit to perform various VSAM exit functions and to insert
passwords in VSAM input ACBs.

Your routine is entered early in Phase 1.

RESTRICTIONS WITH VSAM

If passwords are to be entered via an exit, the data set cannot
ba opened during Phase 0. This means that SIZE(MAX) must not be
used, as the program cannot make the necessary calculations.

Information Your Routine Passes to Sorts/Merge

Passuword List

When you return to sort/merge, you must place in Register 1 the
address of a parameter list:

X'05" Address of VSAM exit list

X'06" Address of password list

Fullword of zeros

If QSAM parameters are passed instead, they will be accepted but
ignored.

Either of the address entries may be omitted; if they are both
included, they may be in any order.

A password list included in your routine must have the following
format:

Section 6. User Exit Routines 87

Two bytes on halfword boundary: No. of entries in lisf.

Followed by the l6-byte entries:

8 bytes: DDname

8 bytes: Password

The last byte of the DDname field will be destroyed by the
sort/merge program. .This list should not be altered at any time
during the program. SIZE(MAX) should not be used if this .
function is used.

Exit List

The VSAM exit list must be built using the VSAM EXLST macro
giving the addresses of yvour routines handling VSAM exit
functions. VYSAM will branch direct to your routines, uhlch must
return to VSAM via Register 14.

Any VSAM exit function available for input data sets may be
used, except EODAD. If you need to do EODAD processing, uwrite a
LERAD exit and check for X'04' in the FDBK field of the RPL:
this will indicate input EOD. This field should not be altered
when returning to VSAM, as it is also needed by the sort/merge
program.

For details, see the 0S/YS VSAM Programmer's Guida.

Below is an example of code your program could use to return
control to the sort.

ENTRY E18
E18 LA . 1,PARMLST

RETURN

CNOP 0,4
PARMLST DC X'01!

DC AL3(SER)

DC Xro2'

DC AL3(LST)

DC X'03!'

DC AL3(CODE) ADDR OF EROPT CODE

bC AC0)

DC X*04"

DC AL3(QSAMEOD)

DC X'05°"

DC AL3(VSAMEXL)

DC X'06"

DC AL3(PWDLST)

DC ACO)
VSAMEXL EXLST SYNAD=USYNAD,LERAD=ULERAD
PWDLST DC H'2?

DC CL8'SORTIN' SORTIN DDNAME

DC CL8'INPASS' SORTIN PASSWORD

DC CL8'SORTOUT' SORTOUT DDNAME

DC CL8'OUTPASS® SORTOUT PASSWORD
USYNAD ‘e VSAM SYNCH ERROR RTN
ULERAD cee VSAM LOGIC ERROR RTN
SER “eo QSAM ERROR RTN
LST ce EXLST ADDRESS LIST

88 0S/VS Sort/Merge Programmer's Guide -

E DLING QUTPUT TO WORK D SETS

This exit is used to handle wrlte error conditions in Phase 1,
when the sort/merge program is unable to correct a write error
to a work data set. It cannot be used if the standard disk
sorting technique is used; if supplied, it is ignored.

USE WITH QSAM/BSAM

Your routines at this exit can pass to sort/merge a parameter
éinggontatnlng the specifications for two DCB fields (SYNAD and

Your routines are entered first early in Phase 1 so that
sort/merge can obtain the parameter lists. The routines are
entered again later in the phase at the points indicated by the
options in the parameter lists.

Information Your Routine Passes to Sorts/Merge

Before returning control to sort/merge, vour routine passes the
DCB fields in a parameter list, the address of which is placed
in register 1. The list must begin on a fullword boundary and
must be a whole number of fullwords long. The first byte of each
word must contain a character code that identifies the
parameter. Either word can be omitted. A word of all zeros
indicates the end of the list.

If VSAM parameters are passed, they are accepted but ignored.

The format is shown belouw.

Byte 1 Byte 2 Byte 3 Byte ¢
01 SYNAD field
02 EXLST field
00 0 0 0
SYNAD

This field contains the location of your write synchronous
error routine. This routine is entered only after the
operating system has unsuccessfully tried to correct the
error. It must be assembled as part of your own routine.

EXLST
The EXLST field contains the location of a list of pointers
to the routines that you want used to process labels and
carry out other tasks not handled by data management. This
list, and the routines to which it points, must be included
as part of your own routine.

A full description of these DCB fields can be found in 0S/VS1
Data Management Macro Instructron or 05,/VS2 MVS Data Management
Macro Instructions.

Section 6. User Exit Routines 89

E X1

OPENING DATA SETS/INITIALIZING ROUTI

You might use routines at this exit to open data sets needed by
yvour other routines in Phase 2, or to initialize your other
routines. This routine can, if you wish, be designed for
separate link-editing. Return codes are not used.

E25 EXIT, CHANGING RECORDS

some Uses

The E25 exit is taken in the intermediate merge phase, after the
records have been merged. Note that this phase may not always be
entered—see Figure 13.

Note also, that even when it is taken, it may not be given all
of the input records. The standard disk sort usually merges only
part of the input at each pass, and some records may never be
handled in Phase 2.

This routine can be used to:

. Change records leaving the intermediate merge phase—though
control fields may not be changed at this exit.

o Summarize and/or delete records (before the final merge,
thus improving performance).

L Tarminate sort/merge.

If the EQUALS option is used, records have been expanded 4 bytes
in this phase to contain the input sequence number of the
record: bytes 1 through 4, if fixed length, and bytes 5 through
8, if variable length.

Notes:

1. You cannot retain information .in this routine, since the
entire intermediate merge phase (including vour associated
routines) may be reloaded into main storage several times.
Any information you wish to retain, such as a counter of the
number of records processed, should therefore be carried in
the records themselves.

2. This exit cannot be used in a merge-only application, nor in
a sort which bypasses the intermediate merge phase.

3. If you want to summarize only (with no deletion), it is more
efficient to use the E35 exit instead of E25.

4. The program does not test for equal control fields before
taking the E25 exit. Therefore, if you want to summarize
records with equal control fields, you must test the fields
in your ouwn routine.

Information Supplied by Sorts/Merge

Your E25 exit routine is executed each time sort/merge prepares
to place a record (except the first record in each sequence) in
an intermediate merge output sequence. Sort/merge passes two
record addresses to your routine:

. The address of the record leaving the merge, which would
normally follow the record in the output area.

. The address of the record in the output area.

90 0S/VS Sort/Merge Programmer's Guide

Return Codes

The sort/merge program places the address of a parameter list
that contains these two record addresses in general register 1.
The parameter list starts on a fullword boundary and is two
fullwords long. The first byte of each word contains zeros. The
format of the parameter list is:

Byte 1 Bytes 2-4¢
00 Address of Record Leaving Merge
00 Address of Record in Output Area

Your routine must pass one of the following return codes to the
sort/merge program informing it what to do with the record
leaving the merge:

0 No Action/Record Altered
4 Delete Record or Summarize and Delete
16 Terminate Sort/Merge

0—No Action
If you want sort/merge to retain the record unchanged in
the intermediate merge sequence, load the address of the
record leaving the merge into register 1 and return to the
program with a zero return code. The next time sort/merge
transfers control to vour routine, the record whose address
yvou just passed will be the record in the output area.

0—Record Altered
If you want to change the record (except its control field)
before passing it back to sort/merge, move the record to a
work area, make the change, place the address of the
modi fied record in general register 1, and return to
sort/merge with a zero return code.

4—Delete Record
1f you want to delete the record leaving the merge, return
to sort/merge with a return code of 4. You need not place
an address in register 1.

4—Summarize and Delete
You can summarize records by changing the record in the
output area and then deleting the record leaving the merge.
Sort/merge then returns to your routine with a new record
(leaving the same record in the output area so that you can
summarize further).

16—Terminate Sort/Merge
If you want to terminate sort/merge, return with a code of
16. Sort/merge then returns to its calling program or the
system with a return code of 16.

E27 EXIT, CLOSING DATA SETS

Your routine at this exit is executed once at the end of Phase
2. It can be used to close data sets used by your other routines
in the phase, or to perform any housekeeping functions for your
routines.

Section 6. User Exit Routines 91

E28 EXIT ING INPUT FROM UO S

Sae "E18 Exit, Handling Input Data Sets" earlier in this section
for details of how to use E28 with QSAM/BSAM.

If you are using the standard disk sorting technique,_then 1/0
error conditions cannot be handled through the E28 exit. If you
still want to use this exit function, you must force one_of the
nonstandard disk sorting techniques (BALN or CRCX) by using the
DEBUG program control statement (see Appendix A).

29 EXI ANDLING OUTPUT TO WORK D SETS

See "E19 Exit, Handling Output to Work Data Sets" earlier in
this section for details of how to use E29 with QSAM/BSAM.

If you are using the standard disk sorting technique, then I/0
error conditions cannot be handled through the E29 exit. If you
still want to use this exit function, vou must force one of the
nonstandard disk sorting techniques (BALN or CRCX) by using the
DEBUG program control statement (see Appendix A).

E31 EXIT, OPENING DATA SETS

You might use routines at this exit to open data sets needed by
vour other routines in Phase 3, or to initialize your other
routines. This routine can, if you wish, be designed for
separate link-editing. Return codes are not used.

E32 EXIT, HANDLING INPUT TO A MERGE ONLY

This exit can only be used in a merge-only operation which is
invoked from another program, and cannot be specified on the
MODS stateament. If activated, it must supply all input to the
merge, and the parameter list passed to the program must
indicate the number of input files.

If input is variable-length VSAM records, your E32 exit routine
must build an extra 4-byte record descriptor word (RDW) at the
baginning of each record before handing it to the merge. The
format of an RDW is described in 0S/VYS1 Da Managem ervie
Guide and 0S/VS2 MVS Data Management Services Guide.
(Alternatively, you could declare the records as fixed length,
and pad them to the maximum length.)

Information Supplied by sorts/Merge

Your E32 exit routine is entered each time the merge program
requires a new input record. The program passes a two-word
parameter list to your routine. The address of the list is in
Register 1.

The parameter list has the format:

Bytes 1-4

Number of next file to be used for input

Space for your return parameter

92 0S/VS Sort/Merge Programmer's Guide

Before returning control to the merge program, you must:

. Place tha address of the next input record from the
requested data set in the second word of the parameter list.

L Put the return code in Register 15.

Return Codes

Your routine must pass one of the following return codes to the
program:

8 End of the Data Set Requested (No Record Returned)
12 Insert Record
16 End of Merge

E35 EXIT, CHANGING RECORDS

The E35 exit is taken in the output phase after the records have
been merged. Some uses are:

. Add, delete, or change records in the output data set.
. Terminate sort/merge.
Notes:

1. If you use the E35 exit, the SORTOUT DD statement may be
omitted, but you must include a RECORD statement in the
. program control statements.

2. If you use the ATTACH, LINK, or XCTL macro instruction to
initiate sort/merge and also use the E35 exit, sort/merge
ignores the SORTOUT data set. Your E35 exit routine must
dispose of all the output records by writing them out on a
data set (you must supply a DD statement defining that data
set), and returning to sort/merge with RC=4. When sort/merge
returns to your routine after you have disposed of the last
regord; return to sort with RC=8 to indicate 'do not
return’'.

3. Remember that if input records are variable length from a
VSAM data set, they will have been prefixed by a 4¢-byte
record descriptor word (RDW).

Information Supplied by Sort/Merge

Your E35 exit routine is executed each time sort/merge prepares
to place a record (including the first record) in the output
area after the final merge. Sort/merge passes two record
addresses to your routine:

. The address of the record leaving the merge which would
normally follow the record in the output area. This address
is zero.-at the end of the data set.

. The address of a record in the output area. This address is
zero the first time vour routine is entered because there is
no record in the output area at that time. It will remain
zero as long as you pass a return code of ¢ (delete record)
to sort merge; consequently, no sequence check can be
performed.

Note: If the record pointed to is variable length, it has a

record descriptor word at this point, even if output is to a
VSAM data set. '

Section 6. User Exit Routines 93

Return Codes

Sort/merge also passes your routine a third parameter, called
the sequence-check switch, which is used to control sequence
checking. In general register 1, sort/merge placas the address
of a parameter list that contains the two record addresses, and
the sequence check suwitch, which is ignored for all standard
disk sorts.

The list is three fullwords long and begins on a fullword
boundary. The high-order bytes of the first two words are not
used. The format of the parameter list is:

Byte 1 Byte 2 Byte 3 Byte &
XX Address of Record Leaving Merge
XX Address of Record in Qutput Area

Sequence check suwitch
for inserted records:
00 60 00 X'00' (check on) or
X'04' (check off)
(Ignored for standard
disk sorts)

Your routine must pass one of the following return codes to
sort/merge informing it what to do with the record leaving the
merge: i

0 No Action/Record Altered
4 Delete Record

8 Do Not Return
12 Insert Record
16 Terminate Sort/Merge

0—No Action
If you want sort/merge to retain the record as it is in the
output data set, load the address of the record leaving the

marga in registar 1 and return to sort/merge with a zero
return code.

0—Record Altered
If you want to change the record before having it placed
output data set, move the record to a work area, make the
change, load the address of the modified racord into
register 1, and return to sort/merge with a zero return
code. If you change record size, you must communicate that
fact to the sort/merge program in a RECORD statement.

4—Delete Record
Your routine can delete the record leaving the merge by

returning to sort/merge with a return code of 4. You need
not place an address in register 1.

8—Do Not Return
Sort/merge keeps returning to your routine until you pass a
return code of 8. After that, the exit is closed and not
used again during the sort/merge application. When you
return with RC=8, you need not place an address in register
1. Unless you are inserting records after the end of the
data set, vou must pass RC=8 when sort/merge indicates the
end of the data set, which it does by passing your routine
zero as the address of the record leaving the merge.

If you do not have a SORTOUT data set and would normally
return with RC=8 before EOF, you can avoid getting the
ICE025A message by specifying NOCHECK on the OPTION control
statement (if CHECK=NO had not already been specified at
installation time).

94 0S/VS Sort/Merge Programmer's Guide

12—Insert Record
If you want to add a record to the output data set before
the record leaving the merge, place the address of the new
record in register 1 and return to sort/merge with a return
code . of 12. Sort/merge returns to your routine with the
same address as before for the record leaving the merge,
and places the address of the inserted record into the
output area, so you can make more insertions at that point,
or delete the record leaving the merge. Sort/merge does not
perform sequence checking for standard disk sorts. For tape
and nonstandard disk sorts, sort/merge does not perform
sequence checking on records that you insert unless you
delete the record leaving the merge and insert a record to
replace it. If your new record will not collate properly,
set the sequence-check suitch to 4 to eliminate the
sequence check for that record.

16—Terminate Sort/Merge
If you want to terminate sort/merge, return with a code of
16. Sort/merge then returns to its calling program or the
system with a return code of 16.

summarizing Records

You can summarize records in the ouptut data set by changing the
record in the output area and then, if you desire, deleting the
record leaving the merge. Sort/merge returns to your routine
with the address of a new record leaving the merge and the same
record remains in the output area, so that you can summarize
further. If you do not dalete the record leaving the merge, that
record is added to the output area, and its address takes the
place of the address of the previous record in the output area;
sort/merge returns with the address of a new record leaving the
merge.

E37 EXIT, CLOSING DATA SETS

Your routine at this exit is executed once at the end of the
output phase. It can be used to close data sets used by your
other routines in the phase or to perform any housekeeping
functions for your routines.

E38 EXIT, HANDLING INPUT DATA SETS

Same as for E18. If you are using the standard disk sorting
technique, then I/0 error conditions cannot be handled through
E38. If you still want to use this exit function, you must force
one of the nonstandard disk sorting techniques (BALN or CRCX) by
using the DEBUG program control statement (see Appendix A).

E39 EXIT, HANDLING OUTPUT DATA SETS

Same as for E19 for BSAM/QSAM. Same as for E18 for VSAM.

Section 6. User Exit Routines 95

EX

some Uses

oD

0 IELDS

You can use a routine at this exit to lengthen, shorten or alter
any control field within a record. The E option for the s
parameter on the SORT or MERGE control statement must be
specified for control fields changed by this routine as
described in Section 4.

Your routine can normalize floating-point control fields or
change any other type of control field in any way that vou
desire. You should be familiar with the standard data formats
used by the operating system before modifying control fields.

If vou simply want to modify the collating sequence of EBCDIC
data, for example, to permit the alphabetic collation of
national characters, you can do so without the need for an E61
exit routine by use of the ALTSEQ control statement, as
described in Section 4.

Information Supplied to Your Routine by Sort/Merge

Sort/merge places the address of a parameter list in register 1.
The list begins on a fullword boundary and is three fullwords
long. It contains the number (in hexadecimal) of the control
field in the last byte of the first word; the address of the
control field in the bytes 2 through 4 of the second word; and
the length of the control field (in hexadecimal) in the bytes 3
and 4 of the third word. The control field length allows you to
write a more generalized modification routine.

The parameter list for the E61 exit is as follows:

Byte 1 Byte 2 Byte 3 Byte 4§
00 00 00 C.F. number
00 Address of Control Field Image
Not used Control Field Length 0001-0100

Thae control field address passed to your routine is that of an
extract area to which the program has moved the control field,
separate from the record. Your routine, in effect, changes an

image of the control field and not the control field itself.

For all fields except binary, the total number of bytes
sort/merge passes to your routine is equal to the length
specified in the m parameter of the SORT or MERGE statement.

All binary fields passed to your routine contain a whole number
of bytes. If a binary field does not begin and end on a byte
boundary, sort/merge pads it with zeros at the beginning and/or
end. If the control field is greater than 256 bytes in length,
sort/merge splits it up into fields of 256 bytaes each and passes
them one at a time to your routine.

Your routine cannot physically change the length of the control
field. If you must increase the length for collating purposes,
vou must previously specify that length in the m parameter of
the SORT or MERGE statement. If you must shorten the control
field, you must pad it to the specified length before returning
it to the sort/merge program. The field your routine returns to
sort/merge must contain the same number of bytes as when the
routine was entered.

96 0S/VS Sort/Merge Programmer's Guide

Modified control fields are always ordered into absolute
ascending sequence, that is, they are treated as if they were
binary fields (or character ASCII, if ASCII data is being used).
If you need some other sequence, you could modify tha fields
further; for example, if after carrying out your planned
modification, and before handing back control to the sort/merge
program, you reverse all bits, the field will in effect be
collated in absolute descending order. You will not have
affected the record itself, since it is only an extracted image
you are modifying.

Note that if E61 is used to resolve ASCII collating for special
alphabetic characters, substituted characters must be in EBCDIC,
but the sequencing result depends upon the byte value of the
ASCII translation for the substituted character.

Section 6. User Exit Routines 97

SAMPLE ROUTINES FOR PROGRAM EXITS

E15: DELETING EXPIRED RECORDS

This routine checks each record's expiration date, and deletes
records which are obsolete.

El5 CSECT
USING %,12 SET UP BASE REGISTER
SAVE (14,12) SAVE REGISTERS
LR 12,15 LOAD BASE REGISTER
ST 13,SAVEAREA+4 CHAIN BACKWARD
LR 11,13
LA 13,SAVEAREA
ST 13,8(11) CHAIN FORWARD
*
L 2,0(1) LOAD ADDR OF RECORD INTO R2
LA 2,0(,2) CLEAR FIRST BYTE
LTR 2,2 IS ADDR=0?
BZ EMPTEST YES-TEST FOR NO INPUT
CLI FIRSTIME,C'Y’ IS IT FIRST TIME THROUGH
BNE AROUND BRANCH IF NO
TIME DEC OBTAIN TODAY'S DATE
MVI FIRSTIME,C'N' INDICATE NOT FIRST TIME ANY MORE
ST 1,DATE SAVE DATE
RECDATE EQU 4
DATLEN EQU 4
RECBASE EQU 2
AROUND CLC RECDATE(DATLEN,RECBASE),DATE = CHECK EXPIRATION DATE
BNH DELETE IF OBSOLETE, DELETE RECORD
L 13,SAVEAREA+4 RESTORE R13
LM 14,12,12(13) RESTORE REGS
L 1,0C1) POINT TO REC LEAVING MERGE
gg ig,IS RC=0 (NO ACTION)
EMPTEST CLI FIRSTIME,'Y" IS THIS FIRST RECORD?
BNE NORETRET NO-END OF DATA SET
L 13,SAVEAREA+4 YES-INPUT DATA SET EMPTY
RETURN (14,12),RC=16 'TERMINATE SORT* CODE
NORETRET L 13,SAVEAREA+4 RESTORE R13
RETURN (14,12),RC=8 'NO RETURN' CODE
DELETE L 13,SAVEAREA+4 RESTORE R13
RETURN (14,12),RC=4 'DELETE' CODE
*
SAVEAREA DS 18F
DATE DS F
FIRSTIME DC cry?
END

E16: WHEN NMAX EXCEEDED, SORT CURRENT RECORDS

This routine tells the program to sort only the records it has
already read in, when it issues the message "NMAX EXCEEDED."

El6 CSECT
LA 15,0 SET RETURN CODE
BR 14
END

E35: SUMMARIZE WHEN CONTROL FIELDS EQUAL

This routine checks a control field (4 bytes starting at byte 4)
in the current record with the same control field in the
previous record. If they are equal, a 4-byte field starting at
byte 8 is summarized. If they are not, no action is taken.

98 0S/VS Sort/Merge Programmer's Guide

E35

REG2
REG3

X XK XK X

LTR
BZ
LTR
BZ
CLC
BNE
* SUNMA§IZE=
A
ST
L
RETURN
%*
NOACTRET L
LM

SR
L

BR
DONOTRET L

RETURN
*

SAVEAREA DS
END

E35: DELETING RECORDS

*¥,12
(14,12)

12,15
13,SAVEAREA+6G

11,13
13,SAVEAREA
13,8(11)
2,3,0(1)

2,2
DONOTRET
3,3
NOACTRET
4(4,2),4(3)
NOACTRET

2,8(2)
2,8(3)

2,8(3) :
13,SAVEAREA+4
(14,12),RC=4

SAVEAREA+4
12,12(13)
15

1)
13,SAVEAREA+4

UiHW =W

Ov » v

1
1
1
1
1

e

(14,12),RC=8

18F

'DO NOT RETURN?

ASSIGN BASE REGISTER
SAVE REGISTERS
LOAD BASE REGISTER

*

*

: SAVE AREA CHAINING
LOAD PARAMETER REGS

NOW HAS ADDR OF RECORD LEAVING MERGE
HAS ADDRESS OF RECORD IN OUTPUT AREA

ZERO AT END OF DATA
ZERO FIRST TIME THROUGH

COMPARE CONTROL FIELDS
IF NOT EQUAL, RETURN

25; AMT FR RECORD LEAVING MERGE
STORE IN OUTPUT RECORD

RETURN WITH 'DELETE' CODE
RESTORE REGISTERS

RC=0 (NO ACTION)
POINT TO RECORD LEAVING MERGE

CODE

This routine checks byte 5 of each record. If the byte contains

the letter 'N',

E35 CSECT

USING

| SAVE

L

LTR

BZ

cLI

BE

RETURN
NOINPUT RETURN
DELETE RETURN
SAVEAREA DS

END

R AARAD DI A X

QO et =t (M ATy v b
MDD T RO N

Section 6.

it deletes the record.

SAVE REGISTERS

R1 GETS ADDR OF REC FR PARAMLIST
IS ADDR ZERO?
YES-END OF INPUT
DOES BYTE 5 CONTAIN 'N'?
YES-DELETE RECORD

RETURN WITH 'NO ACTION' CODE
RETURN WITH 'DO NOT RETURN'
RETURN WITH 'DELETE' CODE

CODE

User Exit Routines 99

I0 . ITIATI PROG USING SYSTE CRO INSTRUCTIONS

This saction describes how you can initiate execution of the.
sort/merge program from within your own program (if written in
assembler language) with a system macro instruction, instead of
with the EXEC job control statement in the input stream.

Sort/merge can also be invoked from programs written in COBOL or
PL/I. How to do this is dascribed in the relevant COBOL and PL/I
programmer's guides. JCL requirements are, however, the same as
for assembler.

) MACRO INSTRUCTIONS

System macro instructions are macro instructions provided by IBM
for communicating service requests to the control program. You
can use these instructions only when programming in assembler
language; they are processed by the assembler program using
macro definitions supplied by IBM and were placed in the macro
library when the control program under which you operate was
generated.

You can specify one of three different system macro instructions
to pass control to the program: LINK, ATTACH, or XCTL.

When you issue one of these instructions, the first load module
of the sort/merge program is brought into main storage. The
linkage relationship between your program and the sort/merge
program differs according to which of the instructions you have
usaed. For a complete description of the macro instructions and
how to use them, you will need to refer to 0S5/VS1 Superviso
Services and Macro_ Instructions or 0S/VS2 MVS Supervisor

Services and Macro Instructions.

ETU ODES

Sort/merge returns a return code to the operating system (or
other invoking program) upon successful completion. If
completion is unsuccessful, a return code or an ABEND is issued,
depending on what was specified at installation time. This code
may be interrogated by succeeding job steps. The codes ara:

0 Successful Completion
16 Unsuccessful Completion

0—Successful Completion

When sort/merge has been successfully executed, a code of
zero is returned and the sort terminates.

16—Unsuccessful Completion
If sort/merge during execution encounters an error that
will not allow it to complete successfully, it returns a
code of 16 and terminates. Such errors include an
out-of-sequence condition or an uncorrectable I/0 error.

100 OS/VS Sort/Merge Programmer's Guide

HOW _TO USE _THE MACROS

In order to initiate execution of the sort/merge program with a
system macro instruction, you must:

[

Write the required job control language DD statements.

Write the sort/merge program control statements as operands
of assembler DC instructions.

Write a parameter list containing the addresses of the
program control statement images and other information to be
passed to the sort/merge program. You must also write a
pointer containing the address of the parameter list to pass
to sort/merge.

Prepare the macro instruction, in which you must specify the
entry point name of sort/merge.

The save area passed to sort/merge must begin on a fullword
boundary.

In addition, the following rule applies for a disk sort:

JCL DD STATEMENTS

If you are invoking sort/merge recursively (for example,
from E15 or E35 exit), you must always wait for the last
invoked sort to end before you can give control back to any
of your exits in an earlier invoked sort.

JCL DD statements of the kind shown in Figure 16 are usually
required. The statements and their necessary parameters are
described in Section 5.

Section 7. Initiating a Program Using System Macro Instructions 101

//6G0.SORTLIB!?

/7/G0.SORTIN

/7/7G0.SORTINnNn

/7/7G0.SORTWKnn

/7/7G0.name?

//G0.SORTOUT

DD (parameters)
Defines the data set containing the sort/merge program
modules.

DD (parameters)
Defines the data set to be sorted. Not needed if you
activate exit E15.

DD (parameters)
Defines data sets to be maerged (for a merge-only).
Not needed if you activate exit E32.

DD (parameters)
Defines work data sets. Needed for
most sorting applications but not for a merge-only.

DD SYSOUT=A
Defines the output data set for sort/merge messages.

DD (parameters)
Defines the output data set. Not needed if you handle
output through E35.

1The 'G0' prefixes are needed if you are assembling, linking and running
your program in one job, using the cataloged procedure for assembling,
linking and executing, as provided by IBM.

2A DDname is specified when the program is installed, for use when
initiating the program by a macro instruction. Default is SYSOUT. You
can use either (a) the name assigned at generation time, or (b) any other
valid DDname of your choice, which you must then communicate to the
program in the parameter list.

Figure 16. Example of DD Statements for an Invoked Sort

PROGRAM CONTROL STATEMENT IMAGES

The program control statements described in Section & are
usually provided in the form of character constants defined by
assembler DC instructions. Their addresses must be given in a
parameter list. The rules for preparing the program control
statements are:

. They must be in EBCDIC format.

. The SORT (or MERGE) and RECORD statements are always
required. If E15 is specified, the RECORD statement must
include the LENGTH parameter.

J The MODS statement is required only when exits other than
E15 and E35 are to be used.

. ALTSEQ can be used to modify the EBCDIC collating sequence,
as described in Section 4.

U DEBUG can be used to obtain detailed information on program

execution, as described in Appendix A.

. At least one blank must follow the operation definer (SORT,
MERGE, RECORD, ALTSEQ, DEBUG, or MODS). A control statement
must start with one or more blanks and end with at least one

blank. No other blanks are allowed.

. The content and format of the statements are as described in

Section 4, except:

- Labels are not allowed.

- No continuation character is allowed (the statements are

not specified in card image format).

102 0S/VS Sort/Merge Programmer's Guide

L No comments are permitted.

If you use ATTACH to initiate the program, vou cannot use
the checkpoint/restart facility and, therefore, should not
specify CKPT in the SORT statement image.

SORT stafement Image Example

SORTBEG DC C' SORT FIELDS=(10,15,CH,A)"
SORTEND DC C' '

This form, with a trailing blank separately defined, allows you

to refer to the last byte of the statement (SORT statement end
address) by the name SORTEND.

Section 7. Initiating a Program Using System Macro Instructions 103

Register 1

Address of pointer

HEX DEC Xr80* Pointer to beginning of the parameter list
-2 =2 Unused Number of bytes in following list!
2 2 Starting address of SORT or MERGE statement!?
6 6 X'00" Ending address of SORT or MERGE statement!
A 10 X'00° Starting address of RECORD statement!
E 14 X'00°" Ending address of RECORD statement?
12 18 X'o00° Address of E15 or E32 routine (zeros if none)!
16 22 X'00°' Address of E35 routine (zeros if none provided)!
1A 26 Xr02° Starting address of MODS statement?
1E 30 Ending address of MODS statement?
22 36 X'00°" Optional main storage value (hex)3
26 38 X'o1’ Optional reserved main storage value (hex)?
2A 42 X'03" Starting address of message DDname?d
2E 46 X104 Number of input files to a merge-only (4)3,%
32 50 X'05" Starting address of DEBUG statement3,s
36 54 Ending address of DEBUG statements,S
3A 58 X'06" Starting address of ALTSEQ statement3,®
3E 62 Ending address of ALTSEQ statement3,®
42 66 X'Fé6" Pointer to ALTSEQ translation table?
46 72 X'FE' Pointer to 104-byte STAE work area (or zeros)3
4A 74 X'FF? Message option (FLAG)3
GE 78 Optional characters for DDnames®
52 82 Characters for DIAG (diagnostic messages option)3
56 86 Optional sequence distribution characters?
l1Required entries which must appear in the relative positions shoun.
20ptional entries which, when included, must appear in the relative
positions shoun.
30ptional entries which must appear directly after the other
entries. They can appear in any order, except that those
identified by 5 and ¢ must be consecutive as shown.
4Must appear if the MERGE statement is present, and input is
supplied through E32.
SMust appear in consecutive order.
Must appear in consecutive order.

Figure 17.

104

The Parameter List when Attaching the Program

0S/7VYS Sort/Merge Programmer's Guide

PARAMETER LIST

Figure 17 shows the format of the parameter list and the pointer
containing its address which you must pass to the sort/merge

program.

Detailed specifications for each of the entries in the

parameter list follow.

Byte
-2 to -1

0 to +1

2-5

10-13

14-17

18-21

22-25

26-29

30-33

364-37

Unused. This halfword must begin on a fullword
boundary.

The byte count. This halfword contains the length of
the parameter list. The length is specified in bytes,
in hexadecimal. This halfword is not included when
counting the number of bytes occupied by the list.

The total length of the required entries is 24
(X'0018'). All optional entries are four bytes long,
except those referring to control statement images,
which are each eight bytes long.

The starting address of the SORT or MERGE statement
im?%e. zust be in the last three bytes of this
ullword.

The ending address of the SORT or MERGE statement
image. Must be in the last three bytes. The first byte
must contain X'00°'.

The starting address of the RECORD statement image.
Must be in the last three bytes. The RECORD statement
must include the LENGTH parameter if E15 is specified.
The first byte must contain X'00°,.

The ending address of the RECORD statement. Must be in
;bgo%ast three bytes. The first byte must contain

The address of your E15 or E32 routine, if any;
otherwise, all zeros. Must be in the last three bytes.
The first byte must contain X'00°'.

The address of your E35 routine, if any; otherwise,
all zeros. Must be in the last three bytes. The first
byte must contain X'00°'.

The starting address of the MODS statement image. Must
be in the last three bytes. (If present, it must be in
this location.) The first byte must contain X'02°'.

The ending address of the MODS statement image. Must
ba in the last three bytes. (If the MODS statement
image is present, this entry must be in this location
in the list.)

Main storage value (optional). The first byte must
contain X'00'. The next three bytes contain either the
characters MAX or a hexadecimal value. This value will
override the SIZE option default, provided it is
greater than the MINLIM value set at sort/merge
installation time.

Section 7. Initiating a Program Using System Macro Instructions 105

106

38-41

42-45

46-49

50-53

564-57

58-61

62-65

66-69

70-73

76-77

A reserved main storage value (optional). The first
byte must contain a hexadecimal one (X'01'). The negt
threae bytes contain a hexadecimal value that specifies
a number of bytes to be reserved. This space is
usually required for data handling by the invoking
program while sort/merge is executing. The amount of
space required depends upon what routines you have,
how the data is stored, and which access method you
use. The reserved space is not meant for the
executable code itself. This space is in addition to
the value specified in RESINV at installation time.

Message DDname (optional). The DDname for the output
data set for program messages is assigned at
generation time, either by default (in which case it
is SYSOUT) or explicitly. If you wish to use a

di fferent name, you can do so. You must then include
this parameter.

The first byte must contain X'03'. The following three
bytes contain the address of an eight-byte field
containing the name, padded with blanks if necessary.
The name can be any valid DDname. Make sure it is
unique.

Number of input files to a merge. This entry must be
present if the MERGE statement image is present and
input to the merge is being supplied through the E32
exit. The first byte must contain X'04'. The next
three bytes contain the number of files, in
hexadecimal.

The starting address of the DEBUG control statement
image. The first byte must be X'05'.

The ending address of the DEBUG control statement
image. Must be in the last three bytes.

The starting address of the ALTSEQ control statement
image. The first byte must be X'06°'.

The ending address of the ALTSEQ control statement
image. Must be in the last three bytes.

Pointer to a 256-byte translate table supplied instead
of an ALTSEQ statement. If this parameter is present,
the '06' parameter is ignored. The first byte must
contain 'F6"'.

If the first byte contains X'FE', the STAE routine you
provide will receive control. You can also include in
the last three bytes the address of a 104-byte save
area where the STAE work area will be saved;
otherwise, these bytes must contain zeros. If this
option is omitted, no STAE routine will receive
control at program failure.

The message option. The first byte must contain X'FF'.
The following three bytes contain the characters NOF,
(I), or (U). This parameter replaces the FLAG option
of the PARM field in the EXEC statement and specifies
the printing of messages as follows:

NOF No messages printed;
critical messages appear on the console.
(I) All messages printed;
critical messages also appear on the console.
(U) Only critical (uncorrectable) messages are
printed; they also appear on the console.

For compatibility reasons, the form
MSG={NOICC|CP|AC|APIPC} is accepted in place of the
flag parameter. These options may, therefore, still be
specified in the parameter list, as described in the

0S/VYS Sort/Merge Programmer's Guide

78-81

82-85

86-89

Examples of Parameter List

0S Sort/Merqe Programmer's Guide, relating to the
Program Product 5734-SMl1.

Note: In systems with multiple console support,
diagngstic messages are printed on the system master
consolaea.

Characters for DDnames (optional). You must use this
option when you dynamically invoke two or more program
applications to execute at the same time.

The four characters must all be alphameric or national
($, #, or 3). The first character must be alphabetic;
otherwise, the four characters are ignored. Note also
that you must not use characters that conflict with
other parameters: do not use PEER, BALN, 0SCL, POLY,
CRCX, or DIAG.

Example: If you use ABC# as replacement characters,
the statements SORTIN, SORTCNTL, SORTWKnn and SORTOUT
will be converted internally to ABCH#IN, ABCHCNTL,
ABC#WKnn, and ABC#OUT.

The DIAG diagnostic message option. These four bytes
contain the characters DIAG, normally specified in the
PARM field of the EXEC statement. This option is a
diagnostic aid at execution time when tape is used as
work space or for a merge only application. However,
it can impair program efficiency, so it should be
specified only when you need a debugging tool.

For details about this option see "'PARM' Field
Options" in Section 5.

Four characters defining the tape sequence
distribution technique, normally specified in the PARM
field of the EXEC statement; can contain one of the
following valid entries: BALN, 0SCL, or POLY. For
further details, see "'PARM' Field Options"™ in Section

The entries PEER and CRCX are accepted but ignored.

The following is an example of the format of the parameter list
when choosing only one option: specifying a main storage value
for program execution.

Unused X'001C*

Starting address of SORT statement

Ending address of SORT statement

Starting address of RECORD statement

Ending address of RECORD statement

Address of E15 routine

Address of E35 routine

(Hex)(Dec)
-2 =2
2 2
6 6
A 10
E 14
12 18
16 22
1A 26

X'00° Main storage value (in hexadecimal)

Section 7.

Initiating a Program Using System Macro Instructions 107

The following is an example of the format of the parameter list
when you invoke a merge, supply input through exit E32, and wish
control to be handed to the merge program's STAE routine if the
program fails.

(Hex)(Dec)

-2 =2 Unused X'0020°"

2 2 Starting address of MERGE statement

6 6 Ending address of MERGE statement

A 10 Starting address of RECORD statement
E 14 Ending address of RECORD statement

12 18 Address of E32 routine

16 22 Zeros (no E35 routine provided)
1A 26 X'04° Number of input files
1E 30 X'FE' (Zeros—no uwork area address provided)

HRITING THE MACRO INSTRUCTION

108

Nhe: writing the LINK, ATTACH, or XCTL macro instruction, you
must:

L Spacify SORT (the entry point) in the EP parameter of the
instruction. (This applies to both sorting and merging
applications.)

. Load the address of the pointer to the parameter list into
Register 1 (or pass it in the MF parameter of the
instruction).

Note: If you are using ATTACH, you will probably also need the
ECB parameter.

If you provide an E15 exit routine, the sort/merge program will
ignore the SORTIN data set; your E15 exit routine must pass all
input records to the sort program. The same applies for a merge
if you specify an exit E32 address. This means that your routine
must issue a return code of 12 ('insert record') until the input
data sg? is complete, and then a return code of 8 ('do not
return').

Similarly, the sort/merge program ignores the SORTOUT data set
if you provide an E35 exit routine. Your routine is then
responsible for disposing of all output records. It must issue a
return code of ¢ ('delete record') for each record in the output
data set. When the program has deleted all the records, your
routine issues a return code of 8 ('do not return').

When sort/merge completes execution, it passes control to the
routine that invoked it.

When a single task attaches two or more program applications,
you must modify the standard DDnames (SORTIN, SORTOUT, etc.) so
that they are unique. Do this by specifying four letters in the
parameter list passed to the sort/merge program. These
characters replace the letters SORT in the references to
standard DDnames in SMl1 program modules. See "Passing Parameters
to the Sort."

If you ATTACH more than one sort/merge application from the same
program, you wWill have to wait for the first to complete before
attaching the next, and so on—unless the application is a
standard disk sort, in which case the program is reenterable
(provided that any exit routines you use are also reenterable).

0S/VS Sort/Merge Programmer's Guide

EXAMPLES

When you initiate sort/merge via XCTL, you must give special
consideration to the area where the parameter list, address
list, optional parameters, and modification routines (if any)
are stored. This information must not reside in the module that
issues the XCTL, because the module will be overlaid by the
sort/merge program.

There are two ways to overcome this problem. First, the control
information can reside in a task that attaches the module that
issues the XCTL. Second, the module issuing the XCTL can first
issue a GETMAIN macro instruction and place the control
information in the main storage area it obtains. This area is
not overlaid when the XCTL is issued. The address of the control
infgrgatign in the area must be passed to sort/merge in general
register 1.

Three examples follow. The first illustrates passing parameters
to the sort/merge program. The second is an assembler language
coding example that shows how to set up the parameter list,
address list, and optional fields; the third example shows how
to use the SORTCNTL DD statement.

Example 1. Passing Parameters to the Program

Figure 18 shows how a parameter list might appear in main
storage.

Section 7. Initiating a Program Using System Macro Instructions 109

1004
1008
100C
1010
1014
1018
101C
1020
1024
102C

Reg 1 [00 1 00| 10| 00| (pointer to address)

1000 [80 [00' lOl 06I (address of parameter list)

/

00[{00]|00] 24 1036

00|(00|10(36 —»| 5| S|O|R p|lF|l|I|E|L|D]|S|>=
00/00|10|SB (01, 51, H|,)|
00|00}j10|5C FlIjL]|s|z]|=14]7]|8]0]|]6]®b
00{00{10]|75 1058
00{00}j20|00

00|00]30|00 105C

AlBIC|# O|R|D|B|L|E|N|[G|T|H
00]|00[65]|90 |} Optional =[1lolol,lTlYlPlEl=]|F|®
FF|00| A | C 1075

Parameter fist

Figure 18.

Passing Parameters to the Program

General register 1 contains a pointer to the address of the
parameter list, which is at location 1000. The address points to
the parameter list, which begins at location 1006. The first
halfword of the parameter list contains, right-justified in
hexadecimal, the number of bytes in the list (36 decimal).

The first two fullwords in the parameter list point to the
beginning (location 1036) and end (location 105B) of the SORT
control statement. The next two fullwords point to the beginning
(location 105C) and end (location 1075) of the RECORD statement.

The fifth and sixth fulluwords in the list contain the entry
point addresses for the E15 exit (location 2000) and E35 exit
(location 3000).

The next fullword in the list contains four characters to
replace the letters 'SORT' in the DDnames of standard DD
statements.

The next two fullwords in the list specify a main storage value
for this application and a message option.

Example 2. Coding a Parameter List

110

The example in Figure 19 shows, in assembler language coding,
how to set up the parameters and card images in Figure 18, and
how to pass control to the program.

0S/VS Sort/Merge Programmer's Guide

PARLST

ADLST
LISTBEG

LISTEND
SORTA

SORTZ
RECA
RECZ

MOD1

MoD2

LA 1,PARLST LOAD ADDR OF PARAM POINTER IN Rl
ATTACH EP=SORT INVOKE SORT
DC X'80',AL3(ADLST) POINTER FLAG/ADDRESS OF PARAM LIST
CNOP 2,4 ALIGN TO CORRECT BOUNDARY
DC AL2(LISTEND-LISTBEG) PARAM LIST LENGTH
DC A(SORTA) BEGINNING ADDRESS OF SORT STMT
DC A(SORTZ) END ADDRESS OF SORT STMT
DC A(RECA) BEGINNING ADDR OF RECORD STMT
DC A(RECZ) END ADDR OF RECORD STMT
DC A(MOD1) ADDR OF E15 RTN
DC A(MOD2) ADDR OF E35 RTN
DC CYABC#' DDNAME CHARACTERS
DC F*72000° OPTIONAL MAIN STORAGE VALUE
DC X'FF' MESSAGE OPTION FLAG BYTE
ggu crauy! MESSAGE OPTION
*
DC C' SORT FIELDS=(10,15,CH,A)," SORT CONTROL STMT
DC C'FILSZ=4780" (CONTINUED)
DC cr DELIMITER
DC C' RECORD LENGTH=100,TYPE=F' RECORD CONTROL STMT
pc ¢C' ! DELIMITER
DS OH ’
USING %,15

(routine for exit E15)

USING %,15
(routine for exit E35)

Figure 19. Coding the Parameter List

Section 7. Initiating a Program Using System Macro Instructions

111

Example 3. Using the SORTCNTL DD Statement

112

Sort/merge must be dynamically invoked to be able to use the
SORTCNTL data set. By using the SORTCNTL DD statement, you can
change or add sort/merge program control statements in an
invoked program without recompiling the invoking program.

If you want to change an existing program control statement, you
must respecify the complete statement.

For exampla, if you have a COBOL program that is invoking
sort/merge to sort on the same fields as those specified in
Figure 19, but you want to change the SORT statement to include
the EQUALS parameter, and add the DEBUG statement, your input
stream could be:

//COBSRT EXEC PGM=COBSRT
//7SYSOUT DD SYSOUT=A
/7/7SORTWKOY DD UNIT=SYSDA,SPACE=(CYL,(5))
/7/7SORTWKO2 DD UNIT=SYSDA,SPACE=(CYL,(5))
/7/75YSIN DD ¥

Input to your COBOL program

/%
//SORTCNTL DD x
SORT FIELDS=(106,15,CH,A),FILSZ=4780,EQUALS

DEBUG ABEND
/¥

By specifying only the OPTION control statement in the SORTCNTL
data set (see belowl), you can cause sort/merge to try to execute
one of the Blockset techniques rather than being restricted to
the Peerage or Vale techniques. If you specify any control
statements other than OPTION in the SORTCNTL data set, one of
the latter two techniques will be used.

77SORTCNTL DD

% OPTION FILSZ=64780,EQUALS

0S/7VS Sort/Merge Programmer's Guide

ON 8 PROV EFFX

The sort/merge program automatically optimizes performance by
analyzing the information given to it. This automatic
optimization results in setting of optimization variables (such
as buffer sizes) and selecting the proper sorting technique.

zou can aid the program's optimization toward higher performance
y:

. Avoiding installation options that are not performance

oriented

. Planning your application development (including data

formats) for efficient use of the program

Being generous with main_ storage

Trying to use the most efficient sorting technique
Planning for most efficient use of work storage devices

Specifying the input/o ut data set characteristics
correctly

| « Sparing the linkage-editor

| These techniques are described in detail below.

| INSTALLATION OPTIONS

You must be sure that the options you use do not result in
unnecessary performance degradation to the sorting done at your
installation. Specifically, BLKSET=NO, EQUALS=YES, SECALL=NO,
VBLKSET=NO, and VERIFY=YES tend to degrade performance. Use
these options only when absolutely necessary, and then by
specifying the desired option at program execution time rather
than at program installation time.

For more details on installation options and their effect on

program performance, see the 0S/VS_Sort/Merge Installation
Guide.

| APPLICATION DEVELOPMENT

You should consider several factors when you design new
applications. Some of these factors are discussed in the
following sections.

| EFFICIENT CONTROL FIELD SORTING

When you design new applications, you can improve the program's
performance if you

. Put the control fields used for subsequent sorting at the
beginning of your record in descending order of
significance, and

o Use the most efficient control field data formats and
control field descriptions.

Section 8. Improving Program Efficiency 113

Location of control Fields: The following example illustrates
the benefit of locating control fields at the beginning of a
record.

Assume that your input record has the following layout:

where: 1 = the more significant sorting control field
2 = the less significant sorting control field

Internally, the program reorganizes the record fields prior to
the actual sorting as follouws:

Upon completion of the actual sorting, the record fields are
restored to their original positions.

By designing vour record format to conform to the second
diagram, you can improve the program performance, since neither
the reorganization nor the subsequent restore operation has to
be performed by the program.

control Field Data Formats and Descriptions: Whenever possible,
. Use either EBCDIC character or binary control fields.

. Place binary control fields so as to start and end on byte
boundaries.

. Avoid using the alternative collating sequence character
translation, since this function not only increases CPU
time,dbut also increases the total length of the internal
record.

. Specify fixed-point, packed decimal, and zoned decimal
control fields (if you know they will always be positive) so
gbafdthey can be sorted as if they were binary control

jelds.

. Use packed decimal format rather than zoned decimal, since
sort/merge packs the control fields and also increases the
total length of the internal record.

U If several contiguous character or binary control fields in
the right order of significance are to be sorted in the same
gfdfg (ascending or descending), specify them as one control

jeld.

. Avoid overlapping control fields.

| EFFICIENT BLOCKING

Performance of the sort/merge program is normally improved if
you block input and output records.

114 0S/VS Sort/Merge Programmer's Guide

| VARIABLE-LENGTH

RECORDS

Ygu can help the program's optimization toward high performance
if you

° Keep the difference between the longest and the shortest
variable-length record as small as possible. By splitting
vour long logical record into several shorter physical
records, you can achieve a record length distribution that
improves the program's performance. The following two
diagrams illustrate unfavorable record length distribution
(top) and favorable record length distribution (bottom).

Number A
of input
records

> Input record length

Number A
of input
records

> Input record length

. Give the sort/merge program the correct information about
vour variable-length record sorting application. This
includes, among other things, average and minimum record
lengths.

By carefully designing your application from the beginning with
the above-mentioned considerations in mind, you will experience
improved performance for your sorting applications.

BE_GENEROUS WITH MAIN STORAGE

In general, the more (virtual) main storage you make available
to sort/merge (up to a certain limit), the better the
performance. For the sort/merge program to be efficient, at
least 72K bytes of main storage should normally be used, but to
obtain best performance always try to allocate between 128K
bytes and 512K bytes of main storage, depending on file size.
However, the amount of virtual storage should be related to the
amount of real storage available to the sort/merge program. As a
guideline, use the total real storage available for page frames
divided by the usual number of initiators in the system.

The relationship between SIZE=MAX, MAXLIM, and MINLIM (all
specified at sort/merge generation time), SIZE (a PARM field
operand), and the REGION field of the EXEC statement, might be
described as a series of checks and balances.

The most efficient way to allocate main storage is to specify
SIZE=MAX at sort/merge generation time. However, problems can
arise if SIZE=MAX is used in a very large virtual region or
partition, since the sort/merge program will attempt to use all
the available address space. This is likely to result in
excessive paging and may even cause program deactivation. To

Section 8. Improving Program Efficiency 115

| SORTI

prevent this problem, an upper limit (MAXLIM) should have been
set when the program was installed.

If you specify a value for SIZE (EXEC-initiated), it will
override SIZE=value, provided the value does not excead that
spacified for MAXLIM at installation.

If the SIZE value (EXEC-initiated) you have specified is less
than tha value specified for MINLIM, MINLIM will be used.

If, on the other hand, the MINLIM value is greater than that
specified for REGION, sort/merge will attempt to use the value
specified for MINLIM; if it fails to get the amount specified by
MINLIM, sort/merge will still try to execute, provided at least
54K bytes are available for sorting purposes.

Changing the main storage allocation on the EXEC statement can
improve system efficiency: By reducing the amount of main
storage allocated, you impair performance of the sort/merge
program in order to allow other programs to have the storage
they need to operate simultaneously; and by increasing the
allocation, you can run large sort/merge applications
efficiently at the expense of other jobs sharing the
multiprogramming environment.

The minimum amount of main storage required depends partly on
the size of the buffers needed. Thus a program with large input
blocks, or records, will need more main storage than one with
small ones. Also, an increase in the number of intermediate
stor§geddevices will increase the minimum amount of main storage
required.

A formula for calculating region size is given in Section 3
under "Main Storage."%

TECHNIQUES

Depending on whether disk or tape devices are used as
intermediate storage devices, the sort/merge program selects and
executes different sorting techniques. Whenever possible, disk
sorting techniques should be available to the sort/merge
program, since tape techniques are seldom as efficient.

Note: The Blockset techniques may require more intermediate work
space than Peerage or Vale. See "“Efficient Use of Work Storage
Devices" for more information.

| DISK SORTING TECHNIQUES

116

There are four standard disk sorting techniques available to the
sort/merge program:

. FLR-Blockset—fixed-length records

] VLR-Blockset—variable-length records

¢ Peerage—fixed-length records

. Vale—both fixed- and variable-length records

Sort/merge will select one of the Blockset techniques if all the

conditions for its use are met (see "Conditions for Use of
Blockset Sorting Techniques™).

0S/7VS Sort/Merge Programmer's Guide

| Disk Sorting Techniques for Fixed-Length Records

The sort/merge program's most efficient fixed-length record
technique, FLR-Blockset, will be used for most sorting
applications if the conditions listed in "Conditions for Use of
Blockset Techniques™ are met. If one or more of the conditions
for the FLR-Blockset technique are not met, the Peerage or Vale
technique will be used, where possible.

| pisk sorting Techniques for Variable-Length Records

The high-performance VLR-Blockset technique will be used for
sorting variable-length records if all of the requirements
listed in the following section are fulfilled. If not, the
current variable-length disk sorting technique, Vale, will
generally be used.

To enable sort/merge to attempt to select the best technique,
whether VLR-Blockset or Vale, the following guidelines may be
useful: If the average length of variable records is more than
350 bytes, you should specify the L5 operand on the RECORD
control statement. If you specify an L5 operand that is between
350 and 1,000 bytes, sort/merge uses the Vale technique when the
ratio of region size to number of records is large. When L5 is
greater than 1,000 bytes, Vale is generally used. If the working
storage is less than 100K bytes, sort/merge will attempt to
select VLR-Blockset regardless of average record length. If you
don't specify L5, sort/merge will try to use VLR-Blockset.

When used, the new VLR-Blockset technique will generally show
processing time improvement over Vale.

| CONDITIONS FOR USE OF BLOCKSET SORTING TECHNIQUES

The sort/merge program has two high-performance disk sorting
techniques, FLR-Blockset and VLR-Blockset, for fixed- and
variable-length records, respectively. The program will first
attempt to use one of these techniques, providing the follouwing
conditions are fulfilled. If they are not, one of the other
standard disk sorting techniques, Peerage or Vale, may be used
where possible (Peerage or Vale for fixed-length: records; Vale
for variable-length records).

The first list below includes conditions common to both
techniques. The second list includes conditions relevant to
FLR-Blockset only, and the third, to VLR-Blockset only.

| conditions Common to Both Blockset Techniques

. More than about 64K bytes of main storage plus additional
storage for buffers are available for sort and other
possible modules in the region/partition. The larger the
;nput/output block sizes are, the larger main storage must

a.

. No program exits other than E15 and/or E35 (without overlay
structures) provided they are prelink-edited.

. If a SORTCNTL DD statement is used, no control statements
other than OPTION should be included.

| o Tape work data set is not specified.

L Under MVS, up to 26 dynamically allocated sort work data
sets may be used, depending on the complexity of the control
field and use of SMF.

. Input or output is not a VSAM or an ASCII data set, or track
overflow record format (RECFM=FT).

Section 8. Improving Program Efficiency 117

Input is not a direct-access data set with key sequenced
organization (BDAM).

Input or output must not be a spool or dummy data set.

Output cannot be padded or truncated records, or an old data
saet residing on tape.

Multivolume disk data output is not requested.

Checkpoint is not specified.

Control fields do not exceed 248 bytes.

Control fields that do not cause the intermediate record to

expand by more than 30% of the total record length. Factors

that might expand the record are overlapping fields, decimal
fleifg. fields that require translation, or specification of
EQU

All supported control field formats except those with
leading, trailing, ovarpunched, or separate signs, or ASCII

“format control fields.

Skipping of input records is not requested.

| FLR-Blockset Conditions

SORTIN record length plus 13 bytes and any additional bytes
caused by control field expansion must not exceed the
smaiiest SORTWK track capacity or 32K bytes, whichever is
smaller.

Record length is not to be changed by program exits El15
and/or E35.

SORTWK data sets must be allocated in cylinders (MVS only).

| VLR-Blockset conditions

118

VLR-Blockset minimum storage requirements are defined by the
following computations (whichever results in the larger
value should be used, but in no case should less than 69K
bytes be used).

In computing the amount of storage necessary to execute
VLR-Blockset, use whichever one of the following
computations that results in the largest value:

1. 2§K bytes of main storage plus the largest of three
imes:

a. The maximum input block size, or
b. The maximum output block size, or
c. 2000 bytes.

2. 48K bytes of main storage plus four times the size of
the maximum record length, plus the largest of the
following:

a. The maximum input block size, or

b. The maximum output block size, or

c. 2000 bytes.

‘Maximum record length does not exceed the track length for

the SORTIN or SORTOUT disk data set, or 32000 bytes,
whichever is smaller.

0S/7VS Sort/Merge Programmer's Guide

. Input or output is not spanned, variable-length records.

o Input or output is not Format D records (vartable-length
: ASCII tape records).

o Work data sets are specified (a sort in main storage is not
supported).

. The sort/merge program is not dynamically invoked by IMS/VS
for variable-length record sorting applications.

L The control field does not overlap the record descriptﬁr
word (RDW).

) If the ratio of region size to the number of input records
is large, and if the L5 operand specified on the RECORD
control statement is greater than 350 bytes, sort/merge may,
in some cases, choose to use the Vale technique. If L5 is
not specified, sort/merge will executa VLR- Blockset if all
other conditions are met.

| BYPASSING THE BLOCKSET TECHNIQUES

You have several ways to bypass the FLR-Blockset or VLR-Blockset
techniques.

. The BLKSET=NO specification on the ICEMAC installation macro
will result in FLR-Blockset being bypassed; Peerage or Vale
will then be the default technique used for fixed-length
record sorting applications.

) The VBLKSET=NO specification on the ICEMAC installation
macro will result in VYLR-Blockset being bypassed; Vale will
then be the default technique used for variable-length
record sorting applications.

Note: The BLKSET/VBLKSET installation defaults can be
overridden by the BLKSET/NOBLKSET parameter specification on
the OPTION control statement at execution time.

. Through the DEBUG control statement, you can force other
techniques instead of the default Blockset techniques (for
example, Peerage, VYale, BALN, or CRCX).

| PEERAGE, VALE, AND CONVENTIONAL DISK SORTING TECHNIQUES

If the conditions for use of the Blockset sorting techniques are
not met, sort/merge will attempt to use Peerage or Vale. Peerage
is normally used if the following criteria are met:

Fixed-length records

Record length no greater than track length

No gz}ts to be activated other than E15, E18, E35, E39,
or

Control word not too long!?

1No figure can be given for how long the control word can be if
the Peerage technique is to be used; it depends on many
variables, such as device type for work storage and amount of
main storage available for buffers. However, the length limit is
unlikely to be reached before 256 bytes, and will usually be
considerably higher.

If any>one of the conditions mentioned above is not satisfied,
sort/merge will attempt to use Vale.

You normally need not be aware that these various standard disk
techniques exist. However, you can specify either at
installation time or at execution time (using the OPTION or
DEBUG statement) that a Blockset technique should not be used
(see "Bypassing the Blockset Techniques").

Section 8. Improving Program Efficiency 119

An informational message (ICE092I or ICE093I) states which of
the standard disk techniques has been used.

The conventional disk sorts supplied with sort/merge (BALN and
CRCX) can be forced by a parameter of the DEBUG statement. Care
should be taken that the SORTWK requirements for the forced
techniques have been met.

| EEFICIENT USE OF WORK STORAGE DEVICES

Performance is enhanced when multiple channels are available.
Performance is also improved if the device is connected so that
two channel paths exist between each device and the central
processing unit that is running the program.

The following table shows the relationship of file size and
sorting technique to the number of cylinders used by work data
sets. The numbers given are estimates of the number of SORTWK
cylinders sort will use for a particular file size when
secondary allocation is allowed. You can make primary and
secondary allocations by means of the SORTWK DD statement or job
control language (SPACE=). Automatic secondary allocation can be
specified at installation time. Houwever, even if you don't allow
for secondary allocation and you allocate fewer cylinders than
indicated in the table, the sorting technique may still run—but
performance will generally be degraded.

SORTWK Cylinders Used!
Fixed Variable
File Size

in Bytes Peerage Blockset Vale Blockset

500K 1 3 2 2

800K 2 3 2 2

iM 2 4 3 3

2M 4 7 5 7

4M 8 14 9 12

6M 11 19 14 19

M 15 24 20 24

12M 18 36 27 34

1This example is based on jobs run with a SIZE parameter of
200,000 bytes and one SORTWK data set on a 3350.

DIRECT ACCESS WORK STORAGE DEVICES'

120

Program performance is improved if you use devices, storage
areas, and channels efficiently. If you specify a particular
device type with the UNIT parameter on the DD statements that
define intermediate storage data sets (for example, UNIT=3330),
sort/merge assigns areas, and some optimization occurs
automatically. But best performance is achieved if you follow
thaese recommendations:

° If you can, assign only one data set per spindle;

. Try to use the same device type as far as possible.

| o Use two channel paths to devices whenever you can.

. All data sets should be the same size, as nearly as possible.

0S/VS Sort/Merge Programmer's Guide

o Assign SORTIN, SORTOUT, and SORTWK on different spindles and
separate channels.

. Some improvement may be gained by specifying contiguous
space for work data sets, and by making sure that there is
enough primary space so that the automatic secondary
allocation will not be needed.

input while writing to SORTWK, and write output while reading
from SORTWK. If, for example, you have two channels, the best
allocation of them is to have SORTIN and SORTOUT on one and the
SORTWKs on the other.

l Elapsed time is decreased when the sort/merge program can read

| Notes:

I 1. See Figure 6 in Section 3 for formulas used to calculate
storage requirements when using different disk techniques.

| 2. See Appendix F for tables that show estimated total
execution times for some sorting applications.

TAPE WORK STORAGE DEVICES

obtained when you use six or more tape drives of the fastest
type. As a general rule, you should use as many tapes as you
have available for intermediate storage. A larger number of
tapes increases the number of strings that can be merged in one
pass, and, therefore, decreases the number of passes required in
the intermediate merge phase. This, in turn, reduces elapsed
time and often the number of I/0 operations.

| Best performance, using tape intermediate storage, is normally

However, increasing the number of work units also has the effect
of reducing the block size used for intermediate storage; this
could become a critical factor if you have relatively little
main storage available for buffers. For example, if the

| sort/merge program has only 54K bytes in which to operate, you
will probably achieve no improvement (and may find
deterioration) if you use more than four tape work units. The
general rule—to use as many tapes as you can—should,
therefore, be taken to apply with more than, say, 100K bytes
available for sort/merge.

Note: See Figure 5 in Section 3 for information on how to
calculate storage requirements when using different tape
techniques.

| DEVICE DATA TRANSFER RATE

In general, the faster the data transfer rate of the storage
device, the faster the sort. Figure 20 and Figure 21 should
therefore be taken into consideration when planning for your
sorting applications.

Section 8. Improving Program Efficiency 121

3000 +
Scale in kilobytes
per second
2500 |
2000 |
1500
1000 |
500 L
o 2
g g Q 2 [
hg ~
L Q g 3 8 3 g
0
~— J
-

Direct Access Devices

Note: The data transfer rate of any processor is limited by the
speed of the channel to which it is attached.

The 3880 Model 2 or 3 with the Speed Matching Buffer Feature
permits attachment of the 3380 to systems with block multiplexor
channels with data rates less than 3 megabytes per second.

Figure 20. Comparative Data Transfer Rates of Disk Work Storage Devices

122 0S/VS Sort/Merge Programmer's Guide

1250

al
1200 L .
3
Scale in kilobytes per second §
1100 |
1000
900 |
-
0
)
3
800 L s
—
700 1
600 ¢
<
@
3
500 b=
400 |
™~ ~
g o
° °
s $
300 | _ o i
o
© 3
g =
200 Ve S §
(] @ ™~ =
s 0o ™
° 32 3
[= ~N 0o
10 - 3 g =
[-]] 5 -
° -)
g 3 =
| =l
04_r1] C1 1
— — o W‘-, ~ V — N\ v/ 7
2401 Tape Units 2420 Tape 3410 Tape 3420 Tape Units
Units Units

Figure 21. Comparative

Data Transfer Rates of Tape Work Storage Devices

Section 8. Improving Program Efficiency

123

| co SPEC

ION_OF INPUT/OUTPUT D SET C TERISTICS

The sort/merge program uses the information given it about the
operation it is to perform to optimize for highest efficiency.
When you do not supply information such as data set size and
record format, the program makes assumptions which, if
incorrect, lead to inefficiency. Incorrect information can also
lead to inefficiency or program termination.

SIMPLIFY CONTROL FIELD DESCRIPTIONS

DATA SET SIZE

When designing record formats, plan for sorting and merging the
records efficiently. For example, specify the location and data
formats of control fields such that they contain EBCDIC
character or binary data (beginning and ending on byte
boundaries) whenever possible—this decreases processor tima.
Fixed, packed, or zoned decimal data can be sorted as if it were
binary if you know it will always be positive; and two or more
contiguous character or binary fields may be sorted as one,
provided they are in order of significance (with the most
imzortant first), and provided they are to be sorted in the same
order.

When the sort/merge program has accurate information about data

set size, it can make the most efficient use of both main

storage and intermediate storage. This information is also

znsgrtagt)when dynamic allocation of the work files is requested
only).

If you know the exact number of records to be sorted, use that
number as the value of the FILSZ parameter in the SORT control
statement. If vou do not know the exact number, estimate it as
closely as you can.

If yvou are using a tape sort, the most important information you
can give the program is an accurate data set size in the FILSZ
parameter of the SORT statement.

| VARIABLE-LENGTH RECORDS

When the input data set consists of variable-length records, the
maximum, minimum, and average record lengths should be specified
correctly in the RECORD statement. This further enables the
program to choose the best sort or merge technique.

Care should be taken to ensure that the LRECL parameter of the
DCB corresponds to the actual maximum record length contained in
yvour data set.

SPARE THE LINKAGE EDITOR

To save execution time, you should design your own routines so
that they do not require link-editing each time they are used in
a sort/merge application.

To avoid link-editing each time sort/merge executes, the
following requirements must be met:

. Each routine must be a load module in a partitioned data set
(library). The parameter S on the MODS statement that
defines the routine must be the same as the name of the DD
statement that defines the library.

126 05/VS Sort/Merge Programmer's Guide

//MYLIB DD DSNAME=MYRTN, etc.

.

MODS E16=(MODNAME,500,MYLIB,N)

. Each routine mus{ have only one entry point, which is the
name of the exit being used (El11, El15, etc.).

¢ - The routines cannot have external references.

. All routines must be in the same library, or must be in
concatenated data sets defined with one DDname.

You should code the parameter N on the MODS statement for each
routine that meets the above requirements. This indicates that
the routine was previously link-edited and does not require
further link-editing (see Figure 7 in Section 4).

If you use routines at program exits (Ell, E21, or E31) that do
not meet the requirements for bypassing the linkage editor, you
can still save execution time by designing them for separate
link-editing. To be eligible for separate link-editing, vour
routines must meet the following requirements:

. Each routine must be separate.
] The routines cannot contain external references.

. The routines can have several entry points, but one entry
pg;?t must be the same as the exit number (for example,
E .

. The routine must be designed so that it can be overlaid
after use.

To indicate that the routine is eligible for separate
link-editing, code the parameter S for that routine on the MODS
statement (see Figure 7 in Section 4).

If your routine opens data sets or communicates with running
component routines, it will contain external references and,
therefore, cannot be link-edited separately.

When your routine cannot bypass the linkage editor or be
link-edited separately, code I (or do not code a fourth
parameter) for that routine on the MODS statement. The routine
is then link-edited together with all other routines in its
phase which do not meet the requirements. In any phase, you can
mix routines that do not require additional link-editing,
routines that can be link-edited separately, and routines that
must be link-edited together.

| TAPE SORTING TECHNIQUES

There are three standard tape sorting techniques available to
the sort/merge program:

| o Balanced (BALN)
| e Polyphase (POLY)
| o Oscillating (0SCL)

See Figure 5 in Section 3 for information on how to calculate
storage requirements when using different tape techniques.

You should be extremely cautious about forcing a technique. The
sort/merge program attempts to choose the most efficient
technique for a given application. If it is forced to use
another technique, performance is not usually as efficient.

Section 8. Improving Program Efficiency 125

| Forcing a Technique

126

If vou believe that the sort/merge program is not choosing the
most efficient tape technique for a particular application, you
can request it to use another tape technique. It will comply if
you provide enough main storage and work areas to meet the
technique's requirements (see Figure 5 in Section 3). If the
requirements are not met, the program will use another technique
rather than terminate the program.

Refer to the discussion of the EXEC statement PARM field in

Section 5 for information on how to force a technique for a tape
sort.

0S/VS Sort/Merge Programmer's Guide

LOCALXZ

0 DO ROGRAM_STOP

This appendix is intended to help you if sort/merge behaves in
an unexpected way and you want to localize the problem and, if
possible, solve or bypass it.

The first section describes how to localize a problem. The
second describes various uses of the DEBUG control statement.

PROBLE

If the sort/merge program is unable to successfully complete
sorting or merging, you will get one or more program messages,
and possibly also an ABEND code.

Appendix C gives you explanations of the various program
messages, and suggestions as to how to cope with them. It is
assumed that vyou have exhausted those explanations before
turning to this section.

IS THIS A PROGRAM ERROR?

Your first task is to decide whether or not tha problem is
caused by an error in sort/merge code.

If your installation has just installed a new release or PTF
level of sort/merge, it is worth checking that any necessary
additional alias names have been added to module ICEMAN. If they
have not, mixed levels of program modules can be executed, which
can give rise to unpredictable abnormal terminations.

Otherwise, if sort/merge is run alone in its region, problems
are unlikely to arise from the environment. If no routines of
yours were invoking sort/merge, or being used at program exits,
you can, therefore, work on the assumption that you have found a
program error, and turn to "Bypassing the Problem."

However, if you are invoking sort/merge from a program of your
own, or if you are using routines at program exits, you will
need to eliminate your own programs as sources of error. In the
example in Figure 22, for instance, one exit is used: E15.

ICE000I

~-~= CONTROL STATEMENTS/MESSAGES ---- 5740-3”1 REL. 5.0 ...

SORT FIELDS=(1,5,CH,A),EQUALS
RECORD TYPE=F,LENGTH=(1200,,1000)
MODS E15=(E15,79000,MODSLIB,N)

JICE0741 - RECORD LENGTH L1 OR L3 OVERRIDDEN

- ICE088I - SORTJOB.SORTSTEP, INPUT LRECL=1200, BLKSIZE=12000, TYPE=F
ICE093I - MAIN STORAGE = (MAX,5264288,48528), NMAX=7300, BLOCKSET
ICE039A - INSUFFICIENT MAIN STORAGE - ADD 6K BYTES ,

Figure 22. A Sample Set of Messages

Appendix A. What to Do If the Program Stops 127

POTENTIAL PROBLEMS WITH ROUTINES AT PROGRAM EXITS

Use of Registers

Space

Record Contents

The first thing to check with your routines is that they observe
the standard linkage conventions. If they change Register 12,
for example, results are unpredictable but almost certain to
result in an ABEND of some kind.

Check, too, that you are not using registers for loading or
storing that are accidentally causing overlay of sort code or
work areas. If this happens, sort/merge could work without
errors with one technique, but fail with another.

The next thing to check is whether your routines are trying to
use more space than you have allocated to them. Have you
installed a new operating system release since the last time you
used these routines? Each time you use an OPEN macro, for
example, your program takes buffer space; but the amount it
tries to take will depend upon such factors as the current
release of the operating system.

A change of operating system could, therefore, lead to an ABEND
in your own routine; or it could lead to too little space being
left for sort/merge.

You can see whether too little space was left for sorting by
studying the information in message ICE0931 (see Figure 22). The
second value following "MAIN STORAGE," 524288, shous the
defaulted value taken from the installation option MAXLIM. The
third value, 48528, tells you how much was actually left for
sort/merge after your ouwn routines have taken what they needed,
in a region or partition of only 128K bytes.

Similar situations can occur if sort/merge is dynamically
invoked using the MAX option, and a fairly large reserved value
is passed to sort/merge or taken by default. Another problem
could arise if the E15 routine issues a GETMAIN without a
corresponding FREEMAIN at the end. This can be done indirectly,
for example by leaving a data set open so that a buffer pool
remains reserved.

If the output records do not appear to contain the same data as
the input records, and either EL15 or E35 has been used, check
that vour routine is handling register 1 correctly; espectally,
check that it is correct on return to sort/merge.

If, for example, you first load register 1 and then restore all
registers (including register 1), it will probably have the
wrong contents.

Equally, if you first restore all registers and then try to load
register 1 from a changed base register, you will almost
certainly pass the wrong information to sort/merge.

POTENTIAL PROBLEMS WITH INVOKING PROGRAMS

Space can also be a problem when you invoke sort/merge from
another program, especially if you are using SIZE=MAX and
invoking exit E15 or E35 (or, from COBOL, using an Input or
Output procedure).

If yvou do this, and particularly if you open a file in yvour exit
routine, check that you specify a sufficiently large amount of
reserved storage.

128 0S/VS Sort/Merge Programmer's Guide

BYPASSING THE PROBLEM

The simplest way of bypassing a problem in the sort/merge
program is to force it to use a different technique.

Message ICE092I or ICE093I will tell you which sorting technique
has been used, as shown in Figure 20.

You can use the DEBUG control statement, described below, to
force the use or nonuse of a specific technique. Alternatively,
if the problem is with either of the Blockset techniques, you
can use the NOBLKSET parameter on the OPTION control statement
to bypass the Blockset techniques.

DEBUG CONTROL STATEMENT

This statement is only valid when the program meets the criteria
for the standard disk techniques. If it is supplied under other
circumstances, it is ignored.

The statement is not intended for regular use; only the first
two parameters are of general interest. The other parameters can
be used to provide a temporary bypass, or to supply detailed
information on program execution for use when optimizing or
debugging the standard disk sort.

DEBUG can be passed to an invoked sort by means of the SORTCNTL
DD statement, for example:

//SORTCNTL DD ¥
DEBUG PEERVALE

Note that the DD name might not always be SORTCNTL, because the
first four letters of SORT special DD statement names can be
changed for an invoked application. It might, for example, neead
to be called //TESTCNTL instead. See Section 7 on invoking
sort/merge from another program.

If a DEBUG statement is included in a SORTCNTL data set, the
Blockset techniques will not be used.

[labell DEBUG [ABEND|NOABEND]
[,DUMP|, NODUMP]
[,PEERVALE|,BALN]|,CRCX]
[,BSAM]

£,CLOCK]

[,FLAG)

[» CTRX]

ABEND|NOABEND Overrides the generated default for action to be
taken when the program encounters an
uncorrectable error, as described under "DEBUG
Control Statement"™ in Section 4.

DUMP | NODUMP Recognized but ignored.

In addition to these parameters, other parameters can be used to
provide a temporary bypass, or to supply detailed information on
program execution for use when optimizing or debugging the
standard disk sort. The parameters and their uses are:

PEERVALE With a disk sort, one of the standard techniques
(FLR-Blockset, VLR-Blockset, Peerage, or Vale) is
normally used. If you have encountered a problem
when using one of the Blockset techniques (see

Appendix A. What to Do If the Program Stops 129

130

BALN|CRCX

BSAM

CLOCK

FLAG(Q)

CTRx=value

message ICE092I or ICE093I), you can temporarily
bypass this technique by specifying PEERVALE.

With a disk sort, you can use this parameter to
force either the balanced (BALN) or crisscross
(CRCX) disk sorting technique and, therefore,
bypass the standard disk sort technique used by
the program. If either BALN or CRCX is forced,
then the following restrictions apply:

. At least three work data sets on the same
type of device are needed, with amount as
specified in Figure 5. Mixed device types
are not allowed.

. Maximum record length must be less than work
device track length.

. Allocation must be contiguous (the CONTIG
parameter is required), and only primary
extents will be used.

) Six or more work data sets are required for
the CRCX technique.

) For SORTWKNNn: nn can be any number from 01 to
32. The first number must be 01 and the
others must follow consecutively with no
gaps.

. Unused work space will not be released; the
RLSE parameter must not be specified.

With the disk sort techniques Peerage and Vale,
the EXCP access method is normally used for
SORTIN and SORTOUT. If you encounter a problem
related to this 170 activity, you can temporarily
bypass it by specifying BSAM.

(Only for Peerage and Vale.) Instructs the
program to measure elapsed and processor times
for the different phases, and to produce the
appropriate messages if FLAG is also specified.

(Only for Peerage and Vale.) Instructs the
program to print information messages
(ICE120-125). These messages are listed under
"Messages Produced by Using the DEBUG Statement.™
To gﬁt the times printed you also need to specify
CLOCK.

Specifying this parameter will force Peerage or
Vale to be used. The program will keep a count of
the input or output records. When the count
reaches the value specified, the program will
ABEND and a formatted dump will be printed.

The numbers that may be assigned to x are:

2—Count of input records being moved from
the input buffer.

3—Count of output records being moved to the
output buffer.

4—Count of input records inserted by E15.
5—Count of output records deleted by E35.

Note: When the count reaches 'value', the program will ABEND. It
Wwill also terminate with message ICE025A if the 'value' is a
number greater than the number of input records.

05/VS Sort/Merge Programmer's Guide

MESSAGES PRODUCED BY USING THE DEBUG CONTROL STATEMENT

Messages ICE120-125 are issued if the DEBUG statement is
supplied with the appropriate parameter FLAG(3) (only for
Peerage and Vale sorts).

ICE1200 RL=a B=b IlL=c 1IS=d 1IB=e RM=f EM=g BA=h IX=j O0X=k

This message relates to the optimization part of
Initialization Phase 0.

RL is the record length (within the sort);

B is the blocking factor used for work areas;

IL is the number of physical index blocks per logical
index block;

IS is index entry size;

IB is the number of indexes/physical index block;

RM is the maximum number of strings to be merged in
one pass of Phase 2;

EM is the maximum number of strings to be merged in
Phase 3;

BA is the base bin size;

IX is the number of input buffers;

0X 1is the number of final output buffers.

ICE121C ET=a CT=b BN=c X=d T0=e SN=f G6=g
This message relates to Sort (Input) Phase 1.

ET 1is the elapsed time taken in centiseconds;

CT is the processor time in centiseconds;

BN is the number of blocks handled;

X is the number of EXCPs issued;

T0 is the number of tracks put out;

SN is the number of strings produced;

G is the number of records in the record storage area.

ICE122R ET=a CT=b BN=¢c X=d ({G|RM}=e PN=f BT=g TO=h
This message relates to Intermediate Merge Phase 2.

ET is the elapsed time taken in centiseconds;

CT is the processor time in centiseconds;

BN is the number of work data set blocks handled;

X is the number of EXCPs issued;

G is the number of records in the record storage area;

RM is the maximum number of strings to be merged in
one pass of Phase 2;

PN 1is the highest partition number;

BT 1is the number of tracks handled more than once.

T0 is the number of tracks put out;

ICE123E ET=a CT=b BN=c X=d {G|EM}=e TO=f BT=g
This message relates to Output (Final Merge) Phase 3.

ET is the elapsed time taken in centiseconds;

CT is the processor time in centiseconds;

BM is the number of work data set blocks handled;

X is the number of EXCPs issued;

G is the number of records in the record storage area;

EM is the maximum number of strings to be merged in
Phase 3;

T0 is the number of tracks put out;

BT is the number of tracks handled more than once.

Appendix A. What to Do If the Program Stops 131

132

ICE124P ET=a

CT=b PE=c

RP=d CX=e CO=f C0=g CR=h G6=i

This message relates to Intermediate Merge Phase 2.

ET
CcT
PE

ICE1250 C(CT=a

is the elapsed time taken in centiseconds;
is the processor time in centiseconds;

is the 'peerage':

the number of logical strings

obtained by logically rearranging the tracks
of physical strings;

is the number
is the number
is the number
is the number
is the number
is the number
is the number

partitions;

exempt blocks;

overflow blocks;

blocks in partition 0;

blocks to be handled by partition 0;
records in the record storage area;
blocks written back to work storage.

GP=b SA=e X=d

This message relates to work I/0 and is cumulative:

it appears
cumulative

cT
GP
SA
X

after each of Phases 1-3 and shous
totals each time.

is the processor time in centiseconds;
is the number of work I/0 blocks:;

is the number of standalone seeks;

is the number of EXCPs issued.

05/VS Sort/Merge Programmer's Guide

WB=3

MESSAGES PRODUCED BY USING THE DIAG OPTION

Diagnostic messages are obtained when you specify the DIAG
option in the PARM field of the EXEC job control statement. This
-option is only available for tape techniques, a merge-only
application, or when forcing a nonstandard disk technique.

The DIAG option and its specifications are described under

"YPARM®

Field Options"™ in Section 5. Remember that the DIAG

option impairs program performance, and should be removed as
soon as it is no longer needed.

The diagnostic messages are as

follows:

ICE900I
ICE901I
ICE9021
ICE903I
ICES04I
ICE9051
ICE9061
ICE9071
ICE9038I
ICE9091
ICE9201
ICE921I
ICE9221
ICE9231I
ICE924I
ICE9251

GENERATED CORE END ADDRxx
INPUT BFR TBL ADDRxxxx
OUTPUT BFR ADDR xxxXx,Xxxx
RSA TBL ADDR xxxx

TREE ADR FROM xxxx TO xxxx
MOVE RTN ADDR xxxx

DCB TBL ADDR xxxx

0/P CCW ADDR xxxx

OUTPUT IOB ADDR xxxx

OPEN LIST ADDR xxxx
GENERATED CORE END ADDR xxxx
INPUT BFR TBL ADDR xxxx
OUTPUT BFR ADDR xxxx,XXXX
MOVE RTN ADDR xxxx

DCB TBL ADDR

0/P CCW ADDR xxxx

ICE9261
ICE927I
ICE9401
ICE9411
ICE9421
ICE9431
ICE96441
ICE9451
ICE9611

I0OB TBL ADDR xxxx

I/P CCW ADDR xxxx
GENERATED CORE END ADDR
INPUT BFR TBL ADDR xxxx
OUTPUT BFR ADDR xXxxX,xX
MOVE RTN ADDR xxxx

ECB TBL ADDR xxxx

I/P CCW ADDR xxxx
TECHNIQUE xxxx

ICE9621I NO/SIZE OF BFRS, PH x,
ICE963I MAX.SYSGEN CORE xxxx
ICE964 CALC. CORE PHI=xxxx
ICE965I MERGE ORDER=xxxx
ICE988I ICEyyy LOC. AT xxxx?
ICE989I CLOCK - xx,xx,xx?

ICE990I NO OF STRINGS PROD BY P
XXXKXKXX

XX

X» XXXX

H1

lAppears frequently;

provides the starting addresses of the program modules.

2Appears at the beginning of each phase (except Phase 0), and at the end
of the program.

Appendix A.

What to Do If the Program Stops

133

DUMPS

There are two types of failure that can cause dumps.

. Sort-program-detected uncorrectable errors which give
critical error messages.

[Sort program failures that are detected by the operating
system.

NORMAL ABEND DUMPS

The default ERETINV|ERETJCL=ABEND|RC16, which was set at
sort/merge installation time, can be overridden in a standard
disk technique sort by the DEBUG control statement (see Section
4, "DEBUG Control Statement") or, in other cases, by the PARM
field option DIAG (see Section 5, "'PARM' Field Options™). To
obtain a normal ABEND dump you must provide a SYSUDUMP,
SYSMDUMP, or SYSABEND DD statement.

FORCING A SPECIALLY FORMATTED DUMP (ONLY FOR PEERAGE AND VALE)

134

The default ERETJCL|ERETINV=ABEND|RC16, which was set at
sort/merge installation time, can be overridden in a standard
disk technique sort by the DEBUG control statement (see Section
4, "DEBUG Control Statement™).

To obtain a specially formatted dump for a sort, the CTRx=value
must be specified in the DEBUG statement. This first prints a
SNAP dump (corresponding to a normal SYSUDUMP dump), followed by
formatted information as shown in Figure 23.

0S/7VYS Sort/Merge Programmer's Guide

1 SYSTEM DUMP
SNAP dump corresponding to a normal SYSUDUMP dump.

2 FORMATTED DATA

2.1 Save areas
The standard save areas usad by different levels of
the program.

2.2 ABEND code

A fullword with the format X'"xxsssuuu', where

xx is the standard ABEND code prefix,

sss is the system completion code at program

o failure (or zeros), and

uuu is the user completion code at uncorrectable

- error (or 2zeros).

This code is equal to zero for definition
errors, and equal to the message number for
other errors (for example, '046' would represent
message ICE046A).

2.3 A fulluword containing the address of the instruction
at which failure occurred.

2,4 Ragister contents when program failure occurred: 16
fullwords giving the register contents in the order

.

2.5 Contents of ICECOMMA (sort variables) formatted when
program failure occurred, with offsets from Register
13, comments, labels, and definitions.

. 2.6 Trace of important events, in the form

X yyy

where:

x identifies the part of the progranm

vyyy identifies the segment of code entered
x can be one of the following codes:®

DEF - definition (ICEDEF)

C - creation (ICECRE, ICEVRE, ICEVRN)

id - partitioning (ICEPAR)

R - reduction (ICERED, ICEVED)

E - elimination (ICELIM, ICEVIM, ICELIV, ICEVIP)

The first event listed is the most recent;

appendage (for PCI, channel end, or end-of-extent)

the last is the first that occurred (normally, DEF ENTRY2.

routine.

*¥If one of the most recent events listed concerns an exit, the
probable cause of program failure is a programming error in the exit

Figure 23. Contents of a Specially Formatted Dump

Appendix A. What to Do If the Program Stops

135

Disptacement (in

Comment from

The data definition level:

Label from

One of the standard Content of the area

hex) from the start the source code a‘level 3’ area is always a the source PL/S data attributes, when the dump was
of ICECOMMA subset of the preceding code for example, PTR(31), taken
‘level 2’ area, and so on. meaning a fullword
pointer
DISPL. COMMENT LEVEL LABEL ATTR VALUES
0000 /% SUPERVISOR AND DM SAVE AREA¥/ 2 CSAVEOS PTR(31) 00E2D4F1
0004 000C4FBO
0606 000C91F8
000C @ 700C4E7A
0010 - 000Cé632C
0014 00000000
0018 000C9590
0030 000E2478
0004 AOODFEAC
/% LEVEL 3 ROUTINE SAVE AREA %/ 2 CSAVEL3 (::)5\
0GD8 /% ABEND - ADEND CODE */ 3 * PTR(31) £00C1000
0GOC /# ADEND - INTERRUPT PSW END %/ 3 * PTR(31) 600CAOFC
0020 /% ABEID - REGISTER O */ 3 * PTR(31) @’FFFFFFFC
00E4 /% ABEND - REGISTER 1 */ 3 * PTR(31) 00000002 Y
06£3 /% ABEND - REGISTER 2 */ 3 * PTR(31) 006000000
O0GEC /% ABCHD - REGISTER 3 */ 3 * PTR(31) 006000008
00F0 /% ABEND - REGISTER ¢4 */ 3 * PTR(31) 00004750
0674 /% ABEND - REGISTER 5 */ 3 * PTR(31) 00000204
O0GF8 /% ABLHD - REGISTER 6 #/ 3 * PTR(31) 000D4CTE
00FC /% ADEND - REGISTER 7 #/ 3 * PTR(31) 000E051C
01060 /% ABEID - REGISTER 8 */ 3 * PTR(31) 00000000 }-(::)
0104 /% ADTMD - REGISTER 9 ®/ 3 * PTR(31) 000CAOEQ
0i08 /% ALEND - REGISTER 10 */ 3 * PTR(31) 000D0D4C
016C /% ABEND - REGISTER 1l */ 3 * PTR(31) 000D1SFE
0110 /% ABEND - REGISTER 12 */ 3 * PTR(31) A00D0820
0114 /% ABLHD ~ REGISTER 13 */ 3 * PTR(31) 000C9240
0113 /% ABEND - REGISTER 14 */ 3 * PTR(31) 600601002
GllC /% ABEND - REGISTER 15 */ 3 * PTR(31) 060000000 _j
010 /% KWORK AREA */ 2 CTEMPL FIXED(31) 000C936C
/% WORK ARCA */ 3 CHORK1 FIXED(31)
/# KCRK AREA */ 4 * CHAR(1)
/% WKORK AREA *®/ 4 CTEMP124 PTR(24)
/% KORK AREA *®/ 5 CWORK124 PTR(24)
/% HCRK AREA */ * CHAR(1)
/# HCRK AREA »/ CTEMP11S FIXED(15) -
/% RORK AREA *®/ CUWORK116 FIXED(16)
/% WORK AREA ®/ * CHAR(1)
/% WORK AREA */ CTEMP108 PTR(8) .
/% KORK AREA */ CKORK108 PTR(8)

@ Save areas: The standard save
areas are allocated at the
beginning of ICECOMMA.

@ ABEND CODE: In the
example the program ended
with system completion
code X'0C1’.

Figure 24.

®
®

Last instruction: The address
of the failed instruction, in
this case X‘'OCAOFC'.

Register contents: Shows the
register contents when the
program failed.

Interpreting a Formatted Dump

ICECOMMA :Remaining
contents of ICECOMMA
are shown in the same way.
For example, field CTEMP1
{also known as CWORK1)
contained X'000C936C’
CTEMP124, a subset of the
larger area, thus contained
X'0C936C".

®

136

0S/VS Sort/Merge Programmer's Guide

PEND FORMA LES
The format descriptions refer to the assembled data formats as
used with IBM System 360/370. If, for example, a data variable
is declared in PL/I as FIXED DECIMAL, it is the compiled format
of the variable that must be given in the 'f' field of the SORT
control statement, not the PL/I declared format. In this case,
the 'f' field would be PD (packed decimal) because the PL/I
compiler converts fixed decimal to packed decimal form.
Format| Description
CH (character EBCDIC, unsigned). Each character is represented
by its 8-bit EBCDIC code.
Example: AB7 becomes
C Cc2 F7 Hexadecimal
11000001 11000010 11110111 Binary
2D (zoned decimal, signed). Each digit of the decimal number is
converted into its 8-bit EBCDIC representation. The sign
indicator replaces the first four bits of the low order byte
of the number.
Example: -247 becomes
2 4 - 7 Decimal
F2 Fé4 D7 Hexadecimal
11110010 11110100 11010111 Binary
The number +2647 becomes
F Fé c7
11110010 11110100 11000111
PD (packed decimal, signed). Each digit of the decimal number
is converted into its 4-bit binary equivalent. The sign .
indicator is put into the rightmost four bits of the number.
Example: -247 becomes
2 4 7 - Decimal
24 7D Hexadecimal
00100100 01111101 Binary
The number +247 becomes 247C in hexadecimal.
FI (fixed point, signed). The complete number is represented

by its binary equivalent in either halfword or full word
format. The sign indicator is placed in the most
significant bit position.

2 for + or 1 for -. Negative numbers are in 2's complement
orm.

Example: +247 becomes in halfword form
00F7 Hexadecimal
0000000011110111 Binary

The number -247 becomes
FF09 Hexadecimal
1111111100001001 Binary

Appendix B. Data Format Examples

137

Format

nascription

BI

(binary unsigned). Any bit pattern.

FL

(floating point, signed). The specified number is in the
two-part format of character and fraction with the sign
indicator in bit position 0.

Example: +247 becomes
0 1000010 111101110000000.......
+ chara. fraction

-247 is identical except that the sign bit is
changed to 1.

AC

(character ASCII, unsigned). This is similar to format CH
but the characters are represented with ASCII code.

Example: AB7 becomes
41 42 37 Hexadecimal
01000001 01000010 OO110111 Binary (ASCII code)

cstL

(signed number, leading separate sign). This format refers to
decimal data as punched intocards, and then assembled into
EBCDIC code.

Example: +247 punched in a card becomes
+ 2 Punched numeric data
4E F2 F4 F7 Hexadecimal

01001110 11110010 11110100 11110111 Binary EBCDIC code

-2%7 becomes
- 4 7 Punched numeric data
60 F2 F& F7 Hexadecimal

01100000 11110010 11110100 11110111 Binary EBCDIC code

CST

(signed numeric, trailing separate sign). This has the same
representation as the CSL format except that the sign
indicator is punched after the number.

Example: 247+ punched on the card becomes
F2 F4% F7 4&E Hexadecimal

CLO*

(signed numeric, leading overpunch sign). This format again
refers to decimal data punched into cards and then assembled
into EBCDIC code. The sign indicator is, however,
overpunched with the first decimal digit of the number.

Exampla: +247 with + overpunched on 2 becomes
+2 4 7 Punched numeric data
c2 F& F7 Hexadecimal

11000010 11110100 11110111 Binary EBCDIC code

Similarly =247 becomes
D2 F4¢ F7

CTO*

(signed numeric, trailing overpunch sign). This format has
the same representation as for the CLO format except that
the sign indicator is overpunched on the of the number.

Example: +247 with + overpunched on 7 becomes
F2 F4 C7 hexadecimal

%¥The overpunched sign bit is always X'C' for positive and X'D' for
negative.

138 0S/VS Sort/Merge Programmer's Guide

Format

Description

ASL

(signed numeric, ASCII, leading separate sign). Similar to
the CSL format but with decimal data assembled into ASCII
code.

Example: +247 punched into card becomes
+ 2 4 Punched numeric data
2B 32 34 37 Hexadecimal

0101011 00110010 00110100 00110111 Binary ASCII code

Similarly -247 becomes
2D 32 34 37 hexadecimal

AST

(signed numeric, ASCII, trailing separate sign). This gives
the same bit representation as the ASL format except that
the sign is punched after the number.

Example: 247+ becomes
32 34 37 2B hexadecimal

A detailed description of CH, ZD, PD, FI, BI, and FL data

formats can be found in the 0S5/VS - DOS/VSE - VM/370 Assembler

Language Manual, Section G.

Appendix B. Data Format Examples

139

ENDIX C. ERROR AND FORMATION MESSAGES

ESSAGES PRODUCED JHE_PROG

This section lists, explains, and suggests appropriate raesponses
to messages produced by the sort/merge program.

The sort/merge program generates two kinds of messages:

1. Those which result from critical error conditions, and

2. Those which give information about the program's operation.
Note: Messages produced by DEBUG and DIAG appear in Appendix A.

The printing of either all or only critical messages can be
specified at sort/merge generation. The messages can appear
either on a printer or at the appropriate console. The only
exception is ICE097I, which will appear only on the master
co:gole. and cannot be overridden with any of the message
options.

The message options set up at sort/merge generation can be
overridden on a job-step by job-step basis by coding the FLAG
parameter in the PARM field of the EXEC statement; see Section

-

CONTROL STATEMENT CODING ERRORS

MESSAGE STATUS

The sort/merge program analyzes control statements in two ways:
1. The general format (syntax) of control statements.

2. The information contained in the program control statements
and job control language statements, for content errors.
Each statement is scanned for errors. The first error
detected stops the scan for that statement. Unless the
printer output (normally SYSOUT) DD statement is in error or
missing and such a statement is required because diagnostic
messages and/or control statements are to be printed,
sort/merge prints a message and continues the scan on
successive statements.

When control statements are listed, and if an error occurs which
can be associated with a specific statement, the diagnostic
massage will follow it in the listing. If the error can be
associated with a specific operation, operand, or value, a
pointer ($) will be printed on the line below the statement,
close to the character in error.

When all control input has been analyzed and if an error has
occurred, the program terminates.

?ggsages produced by the program are all prefixed by the letters

They are all routed to the master console (routing code 2)
except for ICE061A (codes 3,4,7), which is routed to the tape,
direct-access, or unit record pool to which it applies.

They all have descriptor code 6 ('job status information'),
except for ICE061A, which has code 4 ('system status').

140 0S/VS Sort/Merge Programmer's Guide

CHECKLIST

BYPASS

If a problem should recur, make sure BEFORE CALLING IBM FOR
PROGRAMMING SUPPORT that you have available full documentation
on the failing job step:

. The associated job stream and master console log

. A list of all installation options specified at sor{/merge
generation

. Listings of all user routines being used at program exits,
and/or the program calling the sort/merge (if any)

If necessafy, raerun with:
. MSGLEVEL=(1,1) in the JOB statement.

] The FLAG(I) subparameter in thae PARM parameter of the EXEC
statement.

° The DIAG subparameter in the PARM parameter (for a tape
sort); or the DEBUG control statement with FLAG(3), CLOCK
parameters (for Peerage and Vale).

o The SIZE subparameter in the PARM parameter (if applicable).

. A SYSUDUMP DD statement is sufficient unless an I/0 error
has occurred, in which case a SYSABEND DD statement is
necessary.

Keep the input to the failing job step, in case it is necessary
to reproduce the error.

If you need a temporary bypass, a simple method may be to change
the main storage allocation (increase by at least 8K bytes); or
the intermediate storage allocation (preferably, change both
type of device and size and number of areas).

Another bypass could be to force another technique in the

program (see DEBUG Statement in Appendix A). See also "Bypassing
the Blockset Techniques"™ in Section 8.

Appendix C. Error and Information Messages 141

MESSAGE FORMAT

Component Name ICE

Program Producing Message Sort/Merge Program Product 5740-SM1.

Audience and Where Produced For programmer and/or operator: SYSOUT
data set or console (system generation
option). ‘

Message Format ICEnnns text (for messagés directed

to a printer).

ICEnnns XXXXXXXX> YYYYyyyy, text

(for messages directed to a

console).

nnn Message serial number.
s For messages 120-124, phase
indication.

For other messages,; severity

" code:

A Error message; programmer
action is required.

I Information message; no
programmer action is
required.

XXXXXXXX Jobname.
vyvvyyvyyy Job or procedure stepname (if
any).
text Message text.
Comments If a problem recurs, see "Checklist."
ICEQ00I --- CONTROL ICEOO02I DUPLICATE control STATEMENT

STATEMENTS/MESSAGES =~~~
5740-SM1 REL nn PTF XX...

Explanation: This is the heading
printed on each new page when control
statements are listed. This message
never appears on the console. nn is
the release level; xx is the PTF
number most recently applied. The date
follous.

ICE001lA TEXT BEGINS IN WRONG COLUMN

Explanationt Critical. A continuation
card following a card broken at a
comma does not begin within columns
2-16; or a continuation card following
a card broken at column 71 (with a
punch in 72) does not begin in column

.

systam Action: Termination when all
control statement scanning is
complete.

Programmer Response: Check

gontinuation cards for text beginning
in a wrong column.

142

05/VS Sort/Merge Programmer's Guide

Explanation: This message is
generated if a control statement type
appears more than once (for example,
both SORT and MERGE statements).

system Action: The program does not
analyze duplicate statements. The

first one encountered is used unless
the SORTCNTL DD statement is present.

Programmer Response: No action
necessary. For later runs, check
control statements.

ICE003A CONTINUATION CARD MISSING

Explanation: Critical. A continuation
card has been indicated by the
previous card ending with a comma, or
with a nonblank character in column
72, and no card follous.

system Action: Termination when all
control statement scanning is
complete.

Programmer Response: Check for
keypunching error, an overflow of
paramaters into column 72, or a
missing continuation card.

ICEO0GA INVALID OPERAND DELIMITER

Explanation: Critical. An operand
ends with an incorrect delimiter.

system Action: Termination when all
control statement scanning is
complete.

Programmer Responses Check for
keypunching errors.

ICE005A STATEMENT DEFINER ERROR

Explanation: A control statement does
not contain one of the seven
acceptable operation definers (SORT,
MERGE, OPTION, RECORD, MODS, ALTSEQ,
DEBUG, or END).

system Action: Termination when all
control statements scanning is
complete.

Programmer Response: Check for blank
cards in SYSIN. Check all statements
for incorrect, misplaced, or
misspelled operation definers. Check
that no definer begins in column 1 (in
which case it will have been treated
as a label). If you have a label,
check that it begins in column 1
(otheruise it will have been treated
as an operation definer). If the sort
is invoked, check that the byte count
field of the parameter list is on
halfword boundary or E15/E35 routine
starts on correct boundary (not byte
boundary).

ICEOC6A OPERAND DEFINER ERROR

Explanation: Critical. The first
operand of a control statement does
not begin on the same statement as the
operation definer.

system Action: Termination when all
control statement scanning is
complete.

Programmer Response: Check for
statements, other than the END
statement, that contain no operands.

ICE007A SYNTAX ERROR

Explanation: Critical. A control
statement contains an error in syntax.

system Action: Termination when all
control statement scanning is
complete.

Appendix C.

Programmer Response: Check the
control statements for syntax errors.
Some of the more common syntax errors
are:

o Unbalanced parenthesis

. Missing comma

. Embedded blank

ICE008A FIELD OR VALUE GT 8
CHARACTERS

Critical. A parameter of
characters has been

Explanation:
more than 8
specified.

system Action: Termination when all
control statement scanning is
complete.

Programmer Response: Check control
statements for parameters with more
than eight characters.

ICE010A NO SORT OR MERGE CONTROL
STATEMENT

Explanation: Critical. All control
statements have processed and no SORT

:r MERGE control statement has been
ound.

system Action: Termination when all
control statement scanning is
complete.

Programmer Response: Supply a SORT or
MERGE control statement.

ICEO11A DUPLICATE OR CONFLICTING
OPERANDS ON THE OPTION
STATEMENT

Explanation: Critical. On an OPTION
control statement, one of the
following errors was found:

. A keyword was specified tuwice.
and a variation of it

specified. CKPT and
variations, as are FILSZ

L A keyword
were both
CHKPT are
and SIZE.

L A keyword and its opposite were
both specified. EQUALS and
NOEQUALS are examples of this.

Note: The Blockset techniques accept a
keyword and its opposite, and use
whichever is specified last in
sequence as the intended
specification.

system Action: Termination when all
control statement scanning is
complete.

Error and Information Messages 143

Programmer Response: Check the OPTION
control statement for the errors
indicated in the explanation and
correct the errors.

ICE0O12A NO FIELD OPERAND DEFINER

Explanation: Critical. A SORT or
MERGE control statement does not
contain a control field definition.

system Action: Termination when all
control statement scanning is
complete.

Programmer Response: Check SORT or
MERGE control statement for lack of a
control field definition (FIELD
operand).

ICE0O13A INVALID SORT OR MERGE
STATEMENT OPERAND

Explanation: Critical. An invalid
keyword operand has been detected on a
SORT or MERGE control statement.

system Action: Termination when all
control statement scanning is
complete.

Programmer Response: Make sure that
the SORT or MERGE control statement
does not contain an invalid keyvword
operand. Valid keywords are FIELDS,
FORMAT, FILSZ or SIZE, CKPT or CHKPT,
SKIPREC and EQUALS or NOEQUALS.

ICEO14A DUPLICATE SORT OR MERGE
STATEMENT OPERAND

Explanation: Critical. A keyword
operand is defined twice on a SORT or
MERGE control statement.

system Action: Termination when all
control statement scanning is
complete.

Programmer Response: Check SORT or
MERGE control statement for a
duplicated keyword operand. Note that
FILSZ and SIZE count as the same, as
do CKPT and CHKPT as well as EQUALS
and NOEQUALS.

ICEO15A VARIABLE RECORD TOO SHORT
Explanation: Critical. A routine has
detected a variable-length record too

short to contain all control fields.

system Action:
terminates.

The program

Programmer Response: Check the input
in both the SORTIN data set and all
records inserted at exit E15 to see
that all records contain all control
fields. Remove any which are too

14¢ 0S/VS Sort/Merge Programmer's Guide

short. Check your E15 routine and
correct any errors.

ICEO16A INVALID FIELDS OPERAND VALUE

Explanation: Critical. An invalid
number of values is specified with a
FIELDS operand on a SORT or MERGE
control statement.

system Action: Termination when all
control statement scanning is
complete.

Programmer Response: Check for valid
formats of the FIELDS operand:

FIELDS=(location,length,format
sorder...)

or

FIELDS=(location,length,order...)
» FORMAT=format

ICE0O17A CONTROL FIELD DISPLACEMENT OR
LENGTH VALUE ERROR

Explanation: Critical. An invalid
length or displacement (position)
value is specified in a control field
definition on a SORT or MERGE control
statement.

system Action: Termination when all
control statement scanning is
complete.

Programmer Response: Make sure that
the length and position values in the
FIELDS operand of a SORT or MERGE
control statement were specified
correctly. Make sure that the length
value plus the position value does not
excead 4093; and that bit positions
and lengths are specified for binary
fields only, and do not exceed 7.

ICEO18A CONTROL FIELD ERROR

Explanation: Critical. An error in
specifying the type of control field
defined in a SORT or MERGE control
statement has been detected.

system Action: Termination when all
control statement scanning is
complete.

Programmer Response: Make sure that
all control field types are specified
as either CH; AQ, 2D, PD: FI, BI) FL'
AC, CSL, CST, CLO, CTO, ASL, or AST.

ICE019I INADEQUATE INDICATION OF
RESIDENT/NONRESIDENT MODULES

Explanation: This message is
generated for one of two reasons:

. Modules are resident but indicated
non-resident

L Modules are non-resident but
indicated resident

system Action: None.

Programmer Response: RESDNT field in

ICEAM1 should be changed. See 0S/VS
Sort/Mer stallation Guide.

ICE020A INVALID RECORD STATEMENT
OPERAND

Explanation: Critical. An invalid
keyword has been found in a RECORD
control statement.

system Action: Termination when all
control statement scanning is
complete.

Programmer Response: Check for valid
keywords: TYPE and LENGTH.

ICEO021A NO TYPE OPERAND

Explanation: Critical. A TYPE operand
is required for a tape or nonstandard
disk sort, and is not present (or the
RECORD statement is required but
missing).

system Action: Termination when all
control statement scanning is
complete.

Programmer Response: Check RECORD
control statement for TYPE operand.

ICE022A RECORD FORMAT NOT F, V OR D

Explanation: Critical. An error in

specifying the value associated with
the TYPE operand of a RECORD control
statement has been detected.

system Action: Termination when all
control statement scanning is
complete.

Programmer Response: Check RECORD
control statement for keypunching or
other errors resulting in TYPE operand
value being some character other than
F (fixed-length records), V
(variable-length records), or D
(variable-length ASCII records).

Check also for a conflict between the
SORTIN/SORTOUT DCB RECFM parameter and
the RECORD control statement.

ICEO23A NO LENGTH OPERAND

Explanation: Critical. The LENGTH
operand of a RECORD control statement
is missing, and input record length is
not otherwise available, since no DD
statement with the name SORTIN has

Appendix C.

been supplied.

system Action: Termination when all
control statement scanning is
complete.

Programmer Response: Check for
missing RECORD statement; check RECORD
control statement for lack of LENGTH
operand; check for missing SORTIN DD
statement.

ICE026A RECORD LENGTH VALUE ERROR

Explanation: Critical. An incorrect
value is associated with the LENGTH
operand of a RECORD control statement.

system Action: Termination when all
control statement scanning is
complete.

Programmer Response: Some of the more
common errors are:?

. Entry errors in length values.
(Length values must not contain
nonnumeric characters, negative
numbers, more than 8 characters, a
nonprintable character, etc.)

. Minimum length (L4) greater than
maximum length (L2) or average
length (L5).

. Average length (L5) greater than
maximum length (L2).

o No LENGTH specified, and logical
record length not specified on the
SORTIN DD statement.

ICE0O25A RECORD COUNT OFF

Explanation: Critical. The program
has compared the count of input
records and output records (shown in
message ICE0541), taken into account
the numbers inserted or deleted (shown
in message ICE055I), if any, and found
a discrepancy.

The message is issued when the whole
output data set has been written. The
message is suppressed if CHECK=NO was
specified at installation time or
NOCHECK at execution time, and you
have an E35 exit and no SORTOUT DD
statement.

system Action:
terminates.

The program

Programmer Response: The most likely
cause is that you have invoked Sort
from another program, have specified
E35, and from your E35 routine have
passed a return code of 8 (end of
file) too early, when there are still
output records left. If this is not
the cause, examine any exit routines
(especially E15, E25, and E35) for

Error and Information Messages 145

possible return code or other errors.
It is possible but less likely that
the error was caused by an internal
sort problem.

ICE026I SMF RECORD NOT WRITTEN TO THE
SMF DATA SET (RC=xx)

Explanation: Nonzero return code was
returned from the SMF record exit
IEFU83.

system Action: MWriting of the SMF
record to the SMF data set was
suppressed.

Programmer Response: Determine
whether or not your IEFU83 record exit
is correct and the SMF facility is
properly installed and initialized on
your system. Correct if necessary.

ICE027A CONTROL FIELD BEYOND RECORD

Explanation: Critical. A control
field has been defined as extending
beyond the maximum record length.

system Action: Termination when all
control statement scanning is
complete.

Programmer Response: Check SORT or
MERGE control statement for
incorrectly specified control field
displacement. Check RECORD control
statement for incorrectly specified 1
(the maximum input record length).

ICE028A TOO MANY EXITS

Explanation: Critical. An attempt has
been made to specify in the MODS
statement more than the maximum number
of program exits allowed by the
program.

system Action: Termination when all
control statement scanning is
complete.

Programmer Response: Make sure that
routines are specified for valid exits
only, and that each exit is associated
with only one routine. Exits which may
be specified in the MODS statement are
E1l, E15, Elé6, E17, E18, El19, E21,
E25, E27, E28, E29, E31, E35, E37,
E38, E39, and Eél. (Note: For a
merge-only application, only exits
E31, E35, E37, E38, E39, and E61 can
be specified.)

ICE029A IMPROPER EXIT

Explanation: Critical. This message
is generated for one of two reasons:

146 0S/VS Sort/Merge Programmer's Guide

. An incorrect exit has been
specified on a MODS control
statement.

. An exit in the sort or
intermediate merge phase of the
program has been specified for a
merge application.

system Action: Termination when all
control statement scanning is
complete.

Programmer Response: Make sure that
the MODS control statement does not
contain keypunch or other errors that
resulted in the specification of an
invalid program exit number. Numbers
which may be specified are E1l1l, E15,
El16, E17, E18, E19, E21, E25, E27,
E28, E29, E31, E35, E37, E38, E39, and
E61. (Note: For a merge-only
application, only exits E31, E35, E37,
E38, E39, and E61 are valid.)

ICE030A MULTIPLY DEFINED EXITS

Explanation: Critical. A program exit
has been defined twice in MODS control
statement.

system Actiont Termination when all
control statement scanning is
complete.

Programmer Response: Check MODS
statement for multiply defined exits.

ICEO31A INVALID MODS OP CHAR

Explanation: Critical. An invalid
character in a parameter of a MODS
control statement has been found.

system Action: Termination when all
control statement scanning is
complete.

Programmer Response: Check the
parameters of the MODS control
statement for a length field
containing something other than
numeric data, a source or name field
beginning with something other than an
alphabetic character, or containing a
special character other than $, 3, #.

ICE032A EXIT E61 REQUIRED

Explanation: Critical. A SORT or
MERGE control statement defines a
control field to be modified by a
user-written routine (this is done by
specifying E for the control field
sequence indicator), and exit E6l is
not activated by a MODS control
statement.

system Action: Termination when all
control statement scanning is
complete.

Programmer Response: Check SORT or
MERGE control statements for
keypunching errors resulting in the
specification of an E type parameter.
Check the MODS control statement for
lack of an E61 specification.

ICE033A CONTROL FIELD SEQUENCE
INDICATOR E REQUIRED

Explanation: Critical. Program exit
E61 is activated and no control fields
have been specified for user
modification (E control field sequence
parameter missing on SORT or MERGE
control statement).

system Action: Termination when all
control statement scanning is
complete.

Programmer Response: Check MODS and
SORT or MERGE control statements for
keypunching errors resulting in the
activation of exit E61 and the lack of
an E type parameter on the SORT or
MERGE control statement.

ICE03%4A MODS STATEMENT OPERAND ERROR

Explanation: Critical. An incorrect
number of parameters follows an
operand definer on a MODS control
statement, or SYSIN is specified on
the MODS statement as the source for
user-written routines, and no SORTMODS
DD statement is present.

system Action: Termination when all
control statement scanning is
complete.

Programmer Response: Make sure that
any MODS control statements have the
following format:

MODS exit=(name,size,
{DDname of libraryl
SYSIN}

[, TI,Nl,SD ...

If SYSIN has been specified, make sure
that a SORTMODS DD statement is also
included in the step.

ICEO35A DUPLICATE MODS ROUTINE
OPERAND

Explanation: Critical. The same
user-uwritten routine is being used for
more than one exit in a sort/merge
program phase, or two or more routines
have the same name.

system Action: Termination when all
control statement scanning is
complete.

Programmer Response: Make sure that
the MODS control statement does not
use duplicate names.

Appendix C.

ICE036I B = XXXXXX

Explanation: This message
communicates the blocking used by the
Sort (nonstandard techniques) for
intermediate storage records. For
fixed length records, the blocking
factor is substituted for xxxxxx in
the message text. For variable-length
records, the size of the buffer area
(= sort block size) is substituted for
xxxxxx in the message text.

system Action: None.

Programmer Response: None.

ICE037I 6

Explanation: This message
communicates the number of records
that can fit into the program's record
storage area at one time during a Sort
(old techniques). The number of
records is substituted for the xxxxxx
in the text of the message as shoun
above.

XXXXXX

system Action: None.

Programmer Response: None.

ICEO38I NMAX APPROXIMATELY = XXXXXX

Explanation: The message communicates
an estimate of the maximum number of
records that can be sorted using the
intermediate storage and main storage
available to sort/merge for the
current application.. The number
replaces the xxxxxx in the text of the
message as shown above. For magnetic
tape, Nmax is calculated assuming that
2400-foot tapes are used. For disk, no
secondary allocation is taken into
account. For variable-length records,
the value is based on maximum record
length.

system Action: None.

Programmer Response: None.

ICE039A INSUFFICIENT MAIN STORAG
[- ADD xxK BYTES] '

Explanation: Critical. There is not
enough main storage available for a
disk technique sort to execute, or
main storage is fragmented.

system Action: The program
terminates.

Programmer Response! The message

normally indicates how much more main
storage is needed. Add that amount to
the main storage already allocated to
the Sort program and recode the REGION

Error and Information Messages 147

parameter and/or the SIZE parameter in
the PARM field of the EXEC statement.
If the message does not indicate the
amount of additional storage needed,
then the reason is fragmented storage
and/or too large reserved storage
value or exit sizes compared to the
total storage available to sort/merge.
Respond according to the rules belouw.
Alternatively, use the formula for
calculating minimum storage
requirements given in Section 8 under
"Main Storage Requirements."

If routines are used at program exits,
their size should be added to this
minimum value. For efficient sorting,
allow at least 50% more storage than
the minimum required. Check also with
the information given in message
ICE092I or ICE093I.

Storage requirements can be reduced by
decreasing either the input block size
or the number of intermediate storage
areas. See also message ICE092I or
ICE093I.

ICE040A INSUFFICIENT WORK UNITS

Explanation: Critical. There are not
enough work data sets to allow program
execution. This can occur when work
data sets are on tape; and when they
are on disk, if the standard disk
technique is not being used. In a
merge-only application, this message
may be caused by incorrect
specification of one or more input
units (SORTINO1l, etc.).

system Action: Termination when all
control statement scanning is
complete.

Programmer Response: Make sure that
the DD statements do not contain
errors and that the SORTWK DD
statements are not out of order or
missing. The numbers must be in
sequence, starting with SORTWKO1. If
tape is used, make sure that at least
three work data sets were assigned to
the program. If direct-access devices
are used, make sure that at least
three areas of at least three tracks
each are assigned.

ICE0O41A N GT NMAX

Explanation: Critical. The exact
number of records specified in the
FILSZ or SIZE operand of a SORT
control statement is greater than the
maximum Sort capacity calculated by
the program (applies when the standard
disk technique is not used).

system Action:

The program
terminates.

148 0S/VS Sort/Merge Programmer's Guide

Programmer Response: Check FILSZ or
SIZE operand of SORT control statement
for error. If the operand is correct,
check DD statements for an error in
assigning intermediate storage. If DD
statements are correct, assign more
intermediate storage to the program.

ICE042A UNIT ASSIGNMENT ERROR XXXXXX

Explanation: Critical.

1. An invalid combination of input,
work, and output devices has been
assigned to sort/merge.

2. Duplicate DDnames have been
specified. xxxxxx represents the
DDname of the data set on which
the error was encountered.

3. If xxxxxx says DYNALLOC, either
wrong device type or too many work
data sets are specified.

system Action: Termination when all
control statement scanning is
complete.

Programmer Response: For case (1),
ensure that no 7-track tape units are
assigned as intermediate storage if
?-tr:ck tape units are not used as
input.

For case (2), eliminate duplicate
DDnames.

For case (3), check that the device
type specified is supported by the
program (see Section 3 under "Storage
Devices") and available at your
installation; and check whether you
have exceeded the maximum number of
areas permitted for the storage type
used (see Figure 4 in Section 3).

ICE0G3A INVALID DATA SET ATTRIBUTES
SPECIFIED xxxxxX [yyyyyyl

Explanation: Critical. Either: DD
statements that define input and
output data sets contain information
conflicting with each other, with
information on the data set labels, or
with the default values assumed for
DCB subparameters by the program (See
Figure 12 in Section 5 for a summary
of DCB subparameters); or a DD
statement for input or output
specifies a cataloged disk data set
which does not exist on the volume
pointed to by the catalog entry.

XXXxxX is the name of the DD statement
in error.

vyyvyyy is the error description.
system Action: Termination when all

control statement scanning is
complete.

Programmer Response: Check DD
statements for input and output data
sets for conflict in the BLKSIZE
(block size), RECFM (record format),
and LRECL (logical record length)
subparameters. Input and output must
have the same record type (fixed or
variable). When sorting variable
length records and no exits are used,
the maximum SORTIN LRECL must not
exceed the maximum SORTOUT LRECL.
Check the volumes of input data sets.

ICE0GGI EXIT EXX INVALID OPTION

Explanation: An invalid input/output
option was passed to the sort/merge
program at exit E18, E19, E28, E29,
E38, or E39. The xx value in the above
message text is replaced by the number
of the exit at which the error
occurred.

system Action:
ignored.

The invalid option

Programmer Response: Check the
parameter list passed by the
user-uwritten routine against the table
at the end of this appendix before
rerunning the application. An x in the
table indicates an option which is
allowed with the exit in question.

ICE045I END SORT PH

Explanation: The sort (input) phase
has been successfully executed. Only
appears when BALN or POLY tape
technique is used.

system Action: None.

Programmer Response: None.

ICE046A SORT CAPACITY EXCEEDED
[RECORD COUNT: xxxxxxX1

Explanation: Critical. Sort capacity
has been reached. The count »xxXxXxxX
is an approximation of the number of
records that sort/merge can handle
Wwith the assigned primary intermediate
storage plus the available amount of
secondary allocated extents. If
intermediate storage is on disk, and
secondary allocations have been
allowed, sort/merge will override any
system B37 abend and continue
processing; this message will only be
issued when no more space is available
on any allocated SORTWK disk pack.

system Action:
terminates.

The program

Programmer Response: If magnetic tape
is used for intermediate storage, be
sure that all reels contain
full-length tapes. (A bad tape may
appear short because of a large number

Appendix C.

of write errors.) If all reels contain
full-length tapes, rerun the
application and specify more work data
sets.

If a direct access device is used for
intermediate storage, assign more
tracks to sort/merge. Note that
reverse sequence files may require
more space. Alternatively, increase
the main storage available to
sort/merge.

If vou have difficulty assigning
sufficient disk space, check message
ICE092I or ICE0931 to see what
technique is being used. If the
message says BLOCKSET, you can save
disk space by using the DEBUG
statement to force sort/merge to use a
different technique, as described in
Appendix A.

ICEO0G47A RCD COUNT OFF, IN XXXXXXX,
OUT XXXXXXX

RECORD COUNT OFF, SPECIFIED
XXXXXXXsy RECEIVED XXXXXXX

Explanation: Critical. The number of
records entering and leaving a program
phase are not equal. The message
appears if the number of records
entering and leaving program phase 1
(and phase 2 of old technique sorts)
are not equal, provided an actual
value for the FILSZ or SIZE parameter
was specified in the SORT control
statement. The IN field will contain
the specified value for FILSZ or SIZE.
The OUT field will contain the end of
phase record count, which has been
adjusted by the number of records
inserted or deleted by user-written
routines.

If FILSZ or SIZE parameter actual
values were not specified, the check
is not made until the end of the
output phase, where an unequal compare
will cause message ICE025A to be
issued together with messages ICE054I
and ICEO055I.

The second message text is used with
the standard disk technique.

system Action:
terminates.

The program

Programmer Response: Make sure that
the value of the FILSZ (or SIZE)
parameter in the SORT control
statement is accurate. See also
message ICE025A above.

ICEO048I NHAX EXCEEDED

Explanation: Sort/merge has exceeded
the calculated sort capacity uwhile
processing the input data set, and
exit El6 is specified.

Error and Information Messages 149

system Action: The user-uritten
routine at exit E16 is entered.

Programmer Response: No response
necessary. (The number of records
sorted is equal to the NMAX calculated
by sort/merge. See message ICE038I.)

ICE049I SKIP MERGE PH

Explanation: For a tape sorting
application, it is not necessary to
execute the intermediate merge phase
because the number of sequences
created by the sort (input) phase is £
the merge order.

systam Action: Control is passed
directly from the sort (input) phase
to the final merge (output) phase.

Programmer Response: None. Note that
no E2x exits will be taken in this
case.

ICEO50I END MERGE PH

Explanation: A tape technique
program’'s intermediate merge phase
(Phase 2) has been successfully
executed.

system Action: HNone.

Programmer Response: None.

ICEO51A UNENDING MERGE

Explanation: Critical. Non-standard
technique: there is not enough
intermediate storage assigned to
successfully complete the program's
intermediate merge phase. Standard
technique: there is not enough main
storage available to merge two strings
(5 buffers required)

system Action:
terminates.

The program

Programmer Responsa: Assign more
intermediate storage or main storage
and rerun the job. Note that reverse
sequence files may require more space.

ICE052I END OF SORT/MERGE
Explanation: The program has been
executed.

system Action: Return is made to the
operating system or invoking program.

Programmer Response: None.

150 0S/VS Sort/Merge Programmer's Guide

ICEO53A OUT OF SEQUENCE

Explanation: The current record
leaving phase 2 or 3 is not in
collating sequence with the last
record blocked for output.

system Action:
terminates.

The program

Programmer Response: If a
user-written routine was modifying the
records leaving the phase at the time
this message was printed, check the
routine thoroughly. If out-of-sequence
records are to be inserted in phase 3
by yvour routine, make sure that the
correct parameter to suppress the
sequence check is returned to
sort/merge (tape and nonstandard disk
sorts only).

Check also whether the VERIFY
installation option was in effect. If
so, the problem may be a program
error, and can be bypassed by forcing
sort/merge to use a different sorting
technique. This is done with the DEBUG
control statement as described in
Appendix A. (See also 0S5/VS Sort/Merge
Installation Guide.)

ICEOSGI RECORDS = IN:IXXXXXXX,
OUT :xxXxxxX[, - END OF SORT]

Explanation: This message lists the
number of records accepted by the
sort/merge from the input data set and
the number of records in the output
data set. The numbers replace the
xxxxxxx in the text of the message as
shown above. Leading zeros are
suppressed. If an exact file size has
been specified, the number specified
appears in the IN field. (Not the
standard disk technique.) In a merging
application, if file size has not been
given the IN field is zero. If no
other message follows, the sort/merge
has been successfully terminated.
system Action: None.

Programmer Response: If vou are using
exit E15 and/or E35 and have any
reason to suspect that you are
'losing' or 'gaining' records, check
with message ICE055I. The sum of
RECORDS IN plus INSERT should always
be equal to the sum of RECORDS OUT
plus DELETE. If it is not, you should
also receive message ICE025A.

ICEOS55I INSERT XXXXXX, DELETE XXXXXX

Explanation: The number of records
inserted and/or deleted during a
sort/merge program execution replaces
the values shown as xxxxxx in the
above format.

system Action: None.

Programmer Response:
ICE0541I above.

See message

ICEOS56A SORTIN [SORTOUT] NOT DEFINED

Explanation: Critical. SORTIN and/or
SORTOUT do not appear as DDnames on DD
statements supplied to the program.
This message can also appear when DD
statements are supplied for a merge,
and a SORT control statement is given
instead of a MERGE statement.

system Action:
terminates.

The program

Programmer Response:
statements for error.

Check DD

ICEO57A SORTIN NOT SORTWKOl

Explanation: Critical. An
intermediate storage data set other
than SORTWKOl was assigned to the same
tape drive as SORTIN.

system Action:
terminates.

The program

Programmer Response:
statements for error.

Check DD

ICEOS8A SORTOUT A WORK UNIT

Explanation: Critical. SORTOUT was
specified on the same tape drive as an
intermediate storage data set.

system Action:
terminates.

The program

Programmer Response:
statements for error.

Check DD

ICE0OS59A RECORD LENGTH INVALID FOR
davice

Explanation: Critical. The record
length in the input data set(s) is
either less than 18 bytes when work
units are tape or is too large for the
assigned intermediate storage device.
For example, if a nonstandard disk
technique was used, a record which
cannot be contained on one disk track
is too large.

system Action:
terminates.

The program

Programmer Response: If the record is
too small, redefine sort/merge with a
record length of at least 18 bytes. If
the length is too large, assign a
different type of intermediate storage
device. Maximum lengths for various
devices are:

Appendix C.

Device BALN CRCX

2314 series 7284 7276

3330 series 13014 13014

3340 8364 8356

3350 19060 19052

Tape 32768 -

Tape (spanned 27400 -
records)

If EQUALS is specified the maximum
record length is reduced by 4 bytes.

ICE060A DSCB NOT DEFINED

Explanation: Critical. A DD statement
used to define a direct access
intermediate storage data set is
incorrect.

system Action:
terminates.

The program

Programmer Response: Make sure that
no DD statements are in error. Make
sure that deferred mounting of direct
access intermediate storage data sets
is not specified.

ICEO61A I/0 ERROR, jobname, stepname,
unit address, device type,
DDname, operation attempted,
error description, last seek
address or block count,
access mathod. (SYNADAF)

I/0 ERROR, DDname, DEV
address, ECB completion code,
CsW status hytes, SENSE sense
bytes.

Explanation: Critical. This message
is generated for one of following
reasons:

. The job control statements
incorrectly specify record length
or blocking information for the
data set located on the device
indicated by the 'unit address'
field in the message.

U A spanned record on SORTIN could
not be properly assembled.

. A permanent error occurred during
an I/0 operation on the indicated
device.

The most likely cause is a
hardware-related error.

system Action: If no user options are
specified, the program terminates.

Operator Responsg: If the 'error
description’' field in the message does
not contain 'WRNG. LEN. RECORD',
execute the job again with the
indicated unit offline, using an
alternative unit and/or volume in its
place during execution.

Error and Information Messages 151

Programmer Response: Make sure that
the DD statement for the data set
assigned to this device contains the
correct DCB information. In a merge
application, if the device in error
holds an input data set, make sure
that the DCB information (except for
BLKSIZE) specified in the SORTINO1l DD
statement correctly describes the data
in this device.

If the error persists, a bypass may be
obtained by forcing sort/merge to use

a different sorting technique. This is
done with the DEBUG control statement

described in Appendix A.

ICE062A LINK-EDIT ERROR

Explanation: Critical. The linkage
editor found a serious error;
execution of the sort/merge program is
impossible.

system Action:
terminates.

The program

Programmer Response: Make sure that
the DD statements used by the linkage
editor are correct and that none are
missing. If the linkage editor is
used, the SYSPRINT, SYSLIN, SYSUT1,
and SYSLMOD DD statements must be
supplied, unless the SORT cataloged
procedure is specified in the EXEC
statement. If the DD statements are
correct, make sure that all user
routines in libraries or in the system
input stream are correctly assembled
object modules or load modules, and
that modules to be link-edited
together do not contain duplicate
entry point names.

ICE063A OPEN ERROR XXXXXXXX

Explanation: Critical. An error
occurred during execution of the OPEN
routine for data set xxxxxxxx, where
xxxxxxxx represents the DDname of the
data set being opened.

system Action:
terminates.

The program

Programmer Response:
the following:

Check for any of

. A missing or invalid DD statement.

U Conflicting DCB information, for
example, fixed block records and
block size not a multiple of
record length.

. Concatenated input without the
largest block size specified for
the first data set.

. Concatenated, fixed-length input
with different LRECL
specifications.

152 0S/VS Sort/Merge Programmer's Guide

L A partitioned data set member
specified as a user exit routine
cannot be found.

ICE0O6GA DELETE ERR

Explanationt Critical. The sort/merge
program was unable to delete either
itself or a user exit routine. This
message should appear only when exit
routines are used.

system Action: The program
terminates.

Programmer Response: Make sure that
the user exit routines are not

modi fying the sort/merge program code
qng information areas, and rerun the
job.

ICE065A PROBABLE DECK STRUCTURE ERROR

Explanation: Critical. The end of the
SYSIN data set was found before all
needed user exit modules were read, or
the end of the SYSIN data set was not
fougd after all specified modules were
read.

system Action:
terminates.

The program

Programmar Response:

1. Check that the MODS statement
specifies the correct routines.

2. Be sure the SYSIN data set
contains all exit routines that
the MODS statement specifies it
will contain, and only those.

3. Check for misplaced job control
language statements, especially
preceding a user exit routine on
SYSIN.

ICEQ066I APROX RCD CNT XXXXXXXX

Explanation: Critical. Sort capacity
has been reached. The count XXXxXxXXXX
is an approximation of the number of
records the sort/merge program can
handle with the assigned intermediate
storage.

system Action:
terminates.

The program

Programmer Response: Respond as
indicated in the accompanying message,
ICEO046A.

ICE067I INVALID PARAMETER
Explanation: An error was found in

the PARM field parameters of the EXEC
statement, or in the optional

parameters of the parameter list
passed to a Sort initiated by ATTACH,
LINK, or XCTL. If a parameter is
entered more than once, the first
entry is used (if valid).

system Action: Processing continues.
Invalid parameters are ignored.

Programmer Response: No action is
necessary. For later runs, make sure
that the optional parameters are
valid. Valid parameters are described
in Section 5 under “'PARM' Field
Options."

ICE068A OUT OF SEQ SORTINXX

Explanation: Critical. During a
merge-only, a data set was found to be
out of sequence. The xx is replaced by
the data set identification (01 to
16). If input is being supplied
through exit E32, then 01 signifies
the first input file, 02 the second,
and so on.

system Action:
terminates.

The program

Programmer Response: If a
user-written routine was modifying the
records, check the routine thoroughly.
It should not modify control fields at
exit E35. If no user-written routine
is being used, make sure that all
input data sets have been sorted on
the same control fields, and that they
all have a similar format. Check
whether you have also received message
ICE072A.

If input is being supplied through
E32, check your routine to make sure
records are passed to the merge from
the correct file.

If you are reading in variable-length
VSAM records through exit E32, check
the format and accuracy of the RDW
which you are building at the
beginning of each record.

ICE069A INVALID SIGN

Explanation: Critical. The first byte
of signed numeric data with leading
separate sign, or the last byte of
signed numeric data with trailing
separate sign does not contain a valid
sign character.

system Action:
terminates.

The program

Programmer Response: Check the
description of data format in the
FIELDS or FORMAT parameter of the SORT
or MERGE statement.

Appendix C.

ICEO70I FILE SIZE XXXXXXXX

Explanation: This message appears
when the balanced disk technique is
used, and indicates that either the
input file size was not specified
(FILSZ or SIZE) in the SORT statement,
or a file size of xxxxxxxx (decimal
value) was specified.

system Action: Processing continues.
Programmer Response: No response
necessary. If xxxxxxxx is 'NOT
SPECIFIED', supply file size
information for later runs to get
better performance.

ICE071A éNVALID RETURN CODE FROM EXIT
XX

Explanation: Critical. A user routine

at the exit Exx (can be El15, E25, E32,

or E35) has returned an invalid return

code to the program, or a return code

}?10 or ¢ has been given at end of
11€.

system Action:
terminates.

The program

Programmer Response: Check the user
routine concerned thoroughly and
ensure that the return code is either
0, 4, 8, 12, or 16 (only 0, 4, or 16
for E25, and 8, 12 or 16 for E32).

Check also that:

. An E35 routine always finishes by
returning 8 (do not return) or 16
(terminate).

° If no SORTOUT DD statement is
provided, the E35 routine is
processing all records passed by
sort/merge before returning 8 (do
not return).

ICE072I CONTROL FIELD NOT WITHIN
RECORD
CONTROL FIELD NOT WITHIN
MINIMUM RECORD LENGTH

Explanation: A RECORD statement
specifies a minimum record length (L4)
which cannot contain all control
fields specified in the SORT or MERGE
statement.

system Action: The L% value is
adjusted. Processing continues.

Programmer Response: Check that the

L6 value is not smaller than the
highest control field position.

Error and Information Messages 153

ICE073A VARIABLE RECORD TOO LONG

Explanation: Critical. A deblock
routine L1 or L2 value specified (or
supplied by default) on the RECORD
statement, or, if there was no RECORD
statement, than the DCB LRECL on the
SORTIN DD statement or data set label.

system Action:
terminates.

The program

Programmer Response: Check the input
both at E15, if used, and in SORTIN.
Then either delete the extra long
records or increase the RECORD
statement L1/L2 value and/or the
SORTIN DD statement DCB LRECL value.

If you have VSAM records, remember
that they are increased in length by
the 4-byte record descriptor word
added when they enter the sort/merge
program. If you are reading input
through E15, check the format of the
RDW you are building at the beginning
of each record.

ICE0741I RECORD LENGTH L1 OR L3
OVERRIDDEN

Explanation: Either the L1 value for
the LENGTH parameter of the RECORD
statement is not the same as the LRECL
value for SORTIN or SORTINOl; and/or
the L3 value is not the same as the
SORTOUT LRECL value. For VSAM, the
equivalent of LRECL is maximum RECSZ.

system Action: Processing continues
with the L value(s) overrridden.

Programmer Response: For subsequent
runs, check all the record lengths.
Take special note of the L2 value. If
you did not specify one, it will have
defaulted to the value you specified
for L1 (and will not have been
overridden by the LRECL value). If the
L2 value is too small it can cause
program termination at any of a number
of points, and the error can be
difficult to detect.

If you have variable-length records
(shown in message ICE088I), check that
the L1 value used is actually a
maximum. The logical record length
(LRECL) of the input file is also
given in message ICE088I.

ICE075A VSAM CB ERROR (xX) AT aaaaaa

Explanation: aaaaaa represents the
storage address at which the error was
detected. xx is the VSAM return code,
in decimal, from a GENCB, MODCB,
SHOWCB, or TESTCB macro.

system Action: The program
terminates, unless the error is
detected during close, when the

154 0S/VS Sort/Merge Programmer's Guide

program will try to close all
remaining VSAM data sets before
terminating.

Programmar Response: Refer to the
0S5/VS VYSAM Programmer's Guide for the
meaning of the return code, and if
possible take appropriate action.

ICE076A VSAM INPUT ERROR i{xxx)
yyyyyyyy

Explanation: i is replaced by either
P (physical) or L (logical),
describing the type of error
encountered. xxx is the VSAM feedback
code from a GET macro, in decimal; and
vvyvyvyy is either the DDname of the
data set in error or (if available)
the VSAM SYNAD message.

system Action:
terminates.

The program

Programmar Response: Refer to the
0S/VS VSAM Programmer's Guide for the
meaning of the return code, and if
possible take appropriate action.

ICEO77A VSAM OUTPUT ERROR i(xxx)
Lyyyyyyyyl

Explanation: i is replaced by either
P (physical) or L (logical),
describing the type of error
encountered. xxx is the VSAM feedback
code from a PUT macro, in decimal.
vvvyyyyy (if available) is the VSAM
SYNAD message.

system Action:
terminates.

The program

Programmar Response: Refer to the

05/VS _VSAM Programmer's Guide for the
meaning of the return code, and if
possible take appropriate action.

ICE078A VSAM OPEN ERROR (xxx)
yyyyyyyy

Explanation: xxx is the VSAM OPEN
ERROR return code, in decimal.
yvvvyvyvvy is the DDname of the data set
on which the error was encountered.

system Action:
terminates.

The program

Programmar Response: Refer to the
0S/VS VSAM Programmer's Guide for the
meaning of the return code, and, if
possible, take appropriate action.
Check that the SORTIN and SORTOUT VSAM
data set is not the same data set.

ICEO79A VSAM CLOSE ERROR (xxx)
yyyyyyyy

Explanation: xxx is the VSAM CLOSE
ERROR return code, in decimal.
yvyvvyyyy is the DDname of the data set
on which the error was encountered.

system Action:
terminates.

The program

Programmer Response: Refer to the
VSAM Programmer's Guide for the
meaning of the return code, and if
possible take appropriate action.

ICEO80I 1IN MAIN STORAGE SORT

Explanation: All records were sorted
in main storage, that is, no sort work
areas were used.

system Action: None.

Programmer Response: None.

ICEO81A COMMUNICATION AREA NOT FULLY
ADDRESSABLE

Explanation: The program has run out
of addressability for certain dynamic
areas and routines. This situation can
only arise if a large number of
intermediate storage areas is
specified, at the same time as a very
large number of control fields; it is
more likely to occur if control fields
are not EBCDIC character (CH) or
binary (BI).

system Action:
terminates.

The program

Programmer Response: Specify fewer
intermediate storage areas; and/or
combine control fields which are
adjacent; and/or redefine control
fields as CH or BI, etc.

ICE0821 CHECKPOINT CANCELLED

Explanation: When no more work data
set tracks are available, the tracks
allocated for CKPT (if requested) are
given back to the Sort work data sets.

system Action: The program continues,
but no checkpoints are taken.

Programmer Response: Increase work
space allocation for next run.

ICEO83A UNAVAILABLE RESOURCES
DYNALLOC (xXxxXx)

Explanation: xxxx is the return code
from the MVS dynamic allocation
facility. The requested work data sets
were not available on the system.

Appendix C.

system Action:
terminates.

The program

Programmer Response: Be sure that the
requested work files can be allocated
on the available resources. See Ongsg

MVS System Programming Librarv: Jo
Management for the codes.

ICE084XI EXCP ACCESS METHOD USED FOR
XXXX
Explanation: MWritten when Peerage or

Vale disk techniques have used EXCP
for SORTIN and/or SORTOUT data sets.
FLR-Blockset and VLR-Blockset aluways
use EXCP.
system Action: None.

Programmer Response: None, unless you
have any problems reading SORTIN or
writing SORTOUT. If you do, you can
force sort/merge not to use EXCP by
use of the DEBUG control statement, as
described in Appendix A.

ICEO85I xxXx PERCENT OF PRIMARY WORK
DATA SET EXTENTS REQUIRED
[TRACKS USED FOR SECONDARY
ALLOCATICN yyl

Explanation:

1. Written for all record sorts using
one of the Blockset disk
techniques, except those done in
main storage. xxx is the
percentage required of the primary
allocated work data set extents
for the current file sorted. If
this percentage exceeds 100, then
secondary allocation was used.

2. MWritten for Peerage or Vale disk
technique sorts if secondary
allocation is used. yy is the
number of tracks used for
secondary allocation for SORTWK
areas.

system Action: None.

Programmer Response: If the

percentage is approximately 150% (or

more) or the number of secondary
allocation cylinders is approximately

50% (or more) of the number of primary

cylinders specified in the SORTWK

statement, you should consider
allocating more primary cylinders to
improve the program's performance.

ICEO087I

Explanation: Not enough pages were

available for page fixing. The program

¢ji1 use normal EXCP for its disk work
iles.

system Action:

EXCPVR CANCELLED

None.

Error and Information Messages 155

Programmer Response: None.

ICE088I jobname.stepname, INPUT
LRECL=XXXXXX, BLKSIZE=
YYYYYY, TYPE={F|V]|Vvs}

Explanation: Gives details of current
job and step information. The types
printed in the message are:

F fixed-length blocked or
unblocked records

V variable-length records
(EBCDIC or ASCII)

VS variable spanned records

system Action: None.

Programmer Response: None.

ICEO089I Jjobname.stepname, INPUT
LRECL=XXXXXX, TYPE={F|V}

Explanation: As for ICE088, but used
g?gn all records are supplied via exit

system Action: None.

Programmer Response: None.

ICEO90A CONFLICTING OPERANDS ON MODS
STATEMENT

Explanation: A routine was defined in
the MODS statement as being in SYSIN
(s parameter), and as needing no
link-editing (e parameter set to N).

system Action:

The program
terminates.

Programmer Response:
statement.

Check the MODS

ICEO91I sgggTANDARD DISK TECHNIQUE

Explanation: Usually, you have used
the DEBUG statement to force a disk
technique other than the standard. On
an exception basis, however, a
nonstandard technique might have been
salected by sort/merge if you have
excessively long control fields.

system Action: The sort/merge
continues, using a nonstandard
technique, if sufficient work space is
available.

Programmer Response: None.

ICE0921 MAINtSTORAGE = (x,y,2), NMAX
= n,

Explanation: Information related to
the sort/merge application:

156 05/VS Sort/Merge Programmer's Guide

x is the main storage (SIZE)
spacified, or supplied by default.

y is the main storage theoretically
available to sort/merge, taking
into account any MAXLIM or MINLIM
figures specified when the program
was installed.

2 is the main storage actually
available to sort/merge, after any
other program has taken what it
neaded from the partition or region
(invoking program and/or exit
routines).

n is the approximate number of
records which can be sorted in
available main storage. However,
this is true only if there are no
SORTWK data sets. If SORTWK is
specified, then n = the approximate
number of records that can be
sorted on the SORTWK data sets.

t is the technique used.

system Action: None.

Programmer Response: None, unless
sort/merge subsequently terminated
abnormally. In that case, check the z
value to see how much storage was
really available to sort/merge. If
space was the problem, you will
probably also have received message
ICE039A; but if storage was heavily
fragmented, the result could instead
be a system 80A abend in either
sort/merge or one of your ouwn
routines. Note that you could need
considerably more than the normal
minimum if the partition or region is
fragmented.

If vou have difficulty in supplying
enough main storage, check the t
value: if it says that one of the
Blockset techniques has been used, you
can save some space by forcing
sort/merge teo use a different
technique. This is done with the
OPTION control statement, as described
in Appendix A.

ICEO93I MAIN STORAGE = (MAX,y,Z),
NMAX = n,t

Explanation: Information related to
the sort/merge application:

MAX was specified or the value
specified is the same as MAXLIM.

Y is the main storage theoretically
available to sort/merge, taking
into actount any MAXLIM or MINLIM
figures specified when the
program was installed.

F is the main storage actually
available to sort/merge, after
any other program has taken what
it needed from the partition or
region (invoking program and/or
exit routines).

n is the approximate number of
records which can be sorted in
available main storage. However,
this is true only if there are no
SORTWK data sets. If SORTWK is
specified, then n = the
approximate number of records
that can be sorted on the SORTWK

data sets.
t is the technique used.

system Action: None.

Programmer Response: None, unless
sort/merge subsequently terminated
abnormally. In that case, check the z
value to see how much storage was
really available to sort/merge. If
space was the problem, you will
probably also have received message
ICE039A; but if storage was heavily
fragmented, the result could instead
be a system 80A abend in either
sort/merge or one of your ouwn
routines. Note that you could need
considerably more than the normal
minimum if the partition or region is
fragmented.

If you have difficulty in supplying
enough main storage, check the %
value: if it says that one of the
Blockset techniques has been used, you
can save some space by forcing
sort/merge to use a different
technique. This is done with the
OPTION control statement, as described
in Appendix A.

ICE094I SMHF FEATURE NOT PRESENT IN
THE SYSTEM—SMF RECORD NOT
WRITTEN

Explanation: The CVT control block
indicates that the SMF facility is not
present in the programming system.

system Action: The data collection
for the record length statistics and
the writing of the SMF record to the
SMF data set will be bypassed.

Programmer Response: Determine
whether or not the SMF facility is
properly installed and initialized on
yvour system. Correct as necessary.

ICEO9SA INVALID OPTION STATEMENT
OPERAND

Explanation: Critical. An invalid
keyword operand has been detected on
an OPTION control statement.

Appendix C.

system Action: The program terminates
when all control statement scanning is
complete.

Programmer Response: Make sure that
the OPTION control statement does not
contain an invalid keyuword operand.
See Section 4 for valid keywords.

ICE096I SUCCESSFUL RECOVERY FROM B37
ABEND(S) FOR WORK DATA SET(S)

Explanation: Sort/merge successfully
recovered from one or more B37 ABENDs
that occurred when sort attempted to
acquire more disk space than was
available on one of the work data sets
allocated by sort.

system Action: Processing continues.

Programmer Response: None.

ICE097I SORT ATTEMPTING RECOVERY FROM
B37 ABEND FOR SORTHK DATA SET

Explanation: Issued only to the
master console after a B37 ABEND that
occurred when sort attempted to
acquire more disk space than was
available on one of the work data sets
allocated by sort.

system Action: Processing continues.

Programmer Response: None.

ICEO98I AVERAGE RECORD LENGTH = xxXX
BYTES

Explanation: xxxx is the number of
bytes in the variable-length records
(including the record descriptor word)
divided by the number of sorted
records. The number of sorted records
includes all records received, added,
and/or deleted before the E35 exit is
taken.

system Action: None.

Programmer Response: If the value
xxxx is more than 350, it should be
included in the RECORD statement as
the average record length (L5
parameter) for future sorts, so that
sort/merge can optimize for the best
sorting technique.

ICE099A gégL FAILED FOR SORTIN DATA

Explanation: Critical. A bad return
code was returned from a BLDL macro
issued when SORTIN is defined as a PDS
member.

system Action:
terminates.

The program

Error and Information Messages 157

Programmer Response: Ensure that the | ICE900-990
PDS member specified as SORTIN exists. .
Explanation: Messages produced by
using the DIAG option; see Appendix A.
ICE120-125

Explanation: Messages produced by
using the DEBUG control statement; see
Appendix A.

Exitl
option E18 E1l% E28 E29 E38 E39
SYNAD X X X b X X
EXLST x2 X x X X X
EROPT X X p
EODAD X
VSAM EXLST X x3 X
VSAM PASSWORD x x3 X
lsee ICE044I for reference to this table.
iggsn::rgg_gifs ;:p;?zgtilgs?oncatenated on unlike devices.

158 0S/VS Sort/Merge Programmer's Guide

PENDIX D. EXAMPLES CONTROL. STATEMENT OR_SORT/ G N

LIST OF EXAMPLES

The table below describes the examples which are provided in
this appendix.

Appendix D. Examples of Control Statements for Sort/Merge Applications 159

No. |Description Input Output
1 Disk sort Blocked fixed-length Blocked fixed-length
records on 3350 records on 9-track
2 3330 sort, Blocked fixed-length Blocked fixed-length
with exits records on 3330 records on 3330, same
unit as input
3 3330 sort, Fixed-length unblocked Fixed-length blocked
one exit, records on a 3340 DASF records on a 3340 DASF
PROC=SORT
4 3330 sort, Variable-length records Variable-length records
tape 170, exits jon 3400 tape on 3400 tape
5 3340 sort, Variable-length ASCII Variable-length ASCII
ASCII tape I/0 records on 9-track tape records on 9-track tage
6 3380 sort, Variable-length ASCII Variable-length ASCII
ASCII tape I/0 records on 9-track tape records on 9-track tape
7 Tape sort Blocked fixed-length Blocked fixed-length
records on 9-track tape records on 9-track tape
8 Tape sort, Fixed-length blocked Fixed-length blocked
with exits records on two unlabeled |records on one 9-track
9-track volumes tape
9 Tape sort Blocked fixed-length Blocked fixed-length
7-track records on 7-track records on 7-track
unlabeled tape labeled tape
10 3350 sort, Variable-length blocked Variable~length blocked
exits records on 3350 records on 3350
11 Sort with no Fixed-length blocked Fixed-length blocked
SORTWK, 1 exit records on 3330 records on 3340
12 Concatenated A concatenation of three |Blocked fixed-length
input, dynami- data sets on 3330-1, records on 9-track tape
cally allocated |2400, and 3340
work areas
13 3330-1 sort Fixed=- or variable-length|Fixed- or variable-length
called from records records
another program
14 Merge four Blocked fixed-length Blocked fixed~length
unlabeled records on four 9-track records on one 9-track
tapes tapes tape
15 Merge two 3330 Variable-length blocked Variable-length blocked
files, exits records on 3330 records on 3330
16 Merge three Blocked fixed-length Blocked fixed-length
7-track tapes records on three 7-track |records on one 7-track
tapes tape
160 0S/VS Sort/Merge Programmer's Guide

AMP

//EXAMP1 JOB

24141 EXEC
//5YSOUT DD
//SORTIN DD

//SO0RTOUT DD

7/

//SORTWKO1 DD

//SORTWKO02 DD

//SYSIN DD
SORT FIEL

/%

A402,PROGRAMMER,REGION=256K
PGM=SORT,PARM='SIZE(MAX)"'

SYSOUT=A

UNIT=3350,V0L=SER=000101,DISP=SHR, DSN=INPUT
UNIT=3400-3,DSN=0UTPUT,VOL=SER=222222,

DISP=(,KEEP)

UNIT=SYSDA,SPACE=(CYL,(10))
UNIT=SYSDA,SPACE=(CYL,(10))

*
DS=(5,12,CH,A),FILSZ=E2000

Appendix D.

1. DISK SORT

This example is the same as that shown in Section 2.

01

02

03

04

05-06

07-08

09
10

Examples of Control Statements for Sort/Merge Applications

The JOB statement introduces this job to the operating
system, and specifies a region of 256K bytes.

The EXEC statement calls the program by its alias SORT
and specifies that the program should use all the main
storage available to it.

The SYSOUT DD statement directs the sort messages to
system output class A.

The SORTIN DD statement describes an input data set named
INPUT. The data set is on a 3350 disk with the serial

number 0003101.

The DISP parameter indicates that the data

sat is known to the operating system.

The SORTOUT DD
Output will be
kept. The data
tape with tape
record length,

These DD statements define temporary work data sets.
two data sets are on SYSDA direct access devices.

statement describes the output data set.
recorded on a 9-track tape and will be
set will be placed on a standard label
volume number 222222. By default, format,
and block size are the same as for SORTIN.

The
Ten

cvlinders are specified for each data set.

A data set follows in the input stream.

SORT statement.

The FIELDS operand describes one field.

It begins on byte 5 of each record, is 12 bytes long,
contains character (EBCDIC) data, and is to be sorted

into ascending
2000 records.

order. The file size is estimated to be

161

INPUT
ouTPUT

Blocked fixed-length records on 3330.

Blocked fixed-length records on 3330, same unit as input.

INTERMEDIATE STORAGE Three 3330 areas of 10 cylinders each.

USER ROUTINES Four: two change records lengths, one changes control

OPTIONS

/7/7EXAMP2
//STEP1
/7/S0RTIN
//
//SORTOUT
/77

/7
//S0RTWKO1
/7/
//S0RTWKO2

/7
//SORTWKO3
7/
//MODLIB
//S0RTMODS
/7/SYSIN
SORT
RECORD
MODS

END

fields, one decides what to do if Nmax is exceeded.
Estimated data set size; maximum main storage allocation.

JOB A402,PROGRAMMER

EXEC SORT,PARM='SIZE(MAX)" 01
DD UNIT=3330,VO0L=SER=000101,DISP=(OLD,DELETE), 02
DSN=INPUT 03
DD UNIT=AFF=SORTIN,VOL=SER-000101,DISP=(OLD, 04
KEEP),SPACE=CYL,(21,1)),DSN=0UTPUT, 05
DCB=(LRECL=80) 06
DD UNIT=(3330,SEP=(SORTIN,SORTOUT)), 07
SPACE=(CYL,(10),,CONTIG) 08
DD UNIT=(3330,SEP=(SORTIN,SORTOUT)), 09
SPACE=(CYL,(10),,CONTIG) 10
DD UNIT=(3330,SEP=(SORTIN,SORTOUT)), 11
SPACE=(CYL,(10),,CONTIG) 12
DD DSNAME=YOURRTNS,DISP=SHR 13
gg UNIT=2314,SPACE=(CYL,(1,,3)) ig
*
FIELDS=¢(3,8,2D,E,40,6,CH,D),FILSZ=E30000 16
TYPE=F,LENGTH=(,100,80) 17
E15=(MODREC,784,MODLIB,N),E16=(E16,1024,MODLIB,N), 18
E35=(ADDUP,912,SYSIN),E61=(CHGE,1000,SYSIN) ég

Object deck for ADDUP routine
Object deck for CHGE routine
/%

162

Example 2. 3330, PROC=SORT, EXITS

01 The EXEC statement specifies the SORT cataloged procedure

(and not the SORTD procedure) because user-written

routines that require link-editing are included in the
application. SIZE(MAX) instructs the program to allocate
the maximum amount of main storage available for program

execution.

02-03 The SORTIN DD statement describes an input data set on a
3330 DASF. DCB parameters are supplied by the system
(since DISP=0LD). The data set will be deleted after this

job step.

04-06 The SORTOUT DD statement describes the output data set.
UNIT=AFF=SORTIN means that the data set is to be placed

on the same unit as the input data set. The output

records have the same format and block size as the input
records, so these values need not be supplied. They are
shorter (see the RECORD statement), so LRECL must be

specified.

07-12 The three SORTWKnn DD statements describe two work data
sets on 3330. Each area contains 10 cvylinders. The UNIT
specification means that the intermediate storage area is
not to be located on the same device as the SORTIN and

SORTOUT data sets.

13 Defines the data set containing the load modules for the

El5 and El6 user routines.

14 Defines a data set on which the routines in SYSIN

specified in the MODS statement (ADDUP and CHGE) will be

placed.

0S/VS Sort/Merge Programmer's Guide

Appendix D.

15 A data set follows in the input stream.

16 SORT statement. The FIELDS operand describes two control
fields. The first will be changed by a user routine (at
the E61 exit—see the MODS statement) before the program
places it into ascending order. The second control field

Will not be modified and will be placed in descending

order.

17 RECORD statement. The fixed-length records in the input
data set are 120 bytes long. A user exit routine (at the

E15 exit) changes them to 100 bytes during the sort

phase. A user routine at the E35 exit again changes the

length during the final merge phase, to 80 bytes each.

18-19 MODS statement. The statement describes four user

routines. The first two are in a library that is defined

on a job control statement with the ddname MODLIB;
two routines have the member names MODREC and El6,
respectively. Neither routine requires additional

these

link-editing. The next two routines are in object form in

the input stream. Their names are ADDUP and CHGE,

respectively. They must be link-edited together with

other routines in their phases that require link-editing.

20 END statement. This statement is required because of the

user routines in the input stream.

21-22 Object decks for your user exit routines must appear in
the input stream in numerical exit number order. ADDUP is
the routine for the E35 exit, so it appears before CHGE,

the routine for the E61 exit.
23 Marks the end of the SYSIN data set.

Examples of Control Statements for Sort/Merge Applications

163

INPUT Fixaed-length unblocked records on a 3340 DASF.
OUTPUT Fixed-length blocked records on a 3340 DASF.
INTERMEDIATE STORAGE Three 3330 areas, 1 cylinder each.
USER ROUTINES E35 aexit routine shortens each record by 30 bytes
as it leaves the merge.
OPTIONS Exact data set size, maximum sort main storage option,
massage option.
/7/7EXAMP3 JOB A402,PROGRAMMER
/7/7STEP1 EXEC PROC=SORT,PARM='SIZE(MAX),NOFLAG' 01
//S0RTIN DD DSNAME=INFILE,VOL=SER=INP214,UNIT=3340, 02
Vo4 DCB=(RECFM=F,BLKSIZE=80), 03
7/ DISP=(OLD,DELETE) 04
//SORTOUT DD DSNAME=0OUTFILE,VOL=SER=DLIB02,UNIT=3340, 05
77 DCB=(RECFM=FB, LRECL=50,BLKSIZE=500), 06
7/ DISP=(NEW,KEEP),SPACE=(CYL,(8,1)) 07
/7/7S50RTWKO1 DD UNIT=3330,SPACE=(CYL, (1)) 08
/7/7S0RTWKO2 DD UNIT=3330,SPACE=(CYL, (1)) 09
//SORTWKO3 DD UNIT=3330,SPACE=(CYL,(1)) 10
/7/7USERLIB DD DSN=EX35,DISP=SHR 11
/7/7SYSIN DD *
SORT FIELDS=(10,5,CH,A),FILS2=1000 12
RECORD TYPE=F, LENGTH=(, ,50) 13
« MODS E35=(E35,536 ,USERLIB,N) 14
/

Example 3. 3330 SORT, PROC=SORT, 1 EXIT

01 Invokes the SORT cataloged procedure; specifies that the
maximum amount of main storage available is to be
allocated for the program's execution, that only critical
messages are to be produced, and that they are to appear
on the appropriate console.

02-04 The input data set consists of fixed-length unblocked
records on volume INP214 on a 3340 direct-access
facility. The data set will be deleted after this job
step.

05-07 The output data set is composed of fixed-length blocked
records that will require 8 cylinders on a 3340. Each
time space is exhausted, an additional cylinder will be
allotted. The data set will be retained.

08-10 Intermediate storage consists of three 3330 arcas of one
cylinder each.

11 Defines the library that contains the E35 module.

12 SORT statement. The FIELDS operand describes one control
field that begins on byte 10 of each record, is 5 bytes
long, and contains character (EBCDIC) data; it is to be
sorted into ascending order. The optional FILSZ operand
indicates that the input data set contains exactly 1,000
records.

13 RECORD statement. Indicates that the input data set
contains fixed-length records that will be shortened to
50 bytes each as they leave the final merge.

14 MODS statement. Describes a user routine that will
receive control at program exit E35. The name of the
routine is E35; it is 536 bytes long, is on the data set
defined in the USERLIB DD statement, and needs no further
link~editing.

166 0S/VS Sort/Merge Programmer's Guide

INPUT
OUTPUT

OPTIONS

/7/EXAMPG
//STEPN
//S0RTIN
7/

7/
/7/S0RTWKO1
//S0RTWKO2
/7/S0RTOUT
/7

//USERLIB

/7/7SYSIN
SORT
RECORD
MODS

ALTSEQ
END

Variable-length records on 3400 tapes.
Variable-length records on 3400 tapes.
INTERMEDIATE STORAGE Two 3330 areas of 15 cylinders each.
USER ROUTINES

Estimated data set size.

JoB
EXEC
DD

DD
DD
pD

DD
DD

TYPE=V,LENGTH=(120,,.,80,120)
E11=(PREPMOD,504,SYSIN,S),E16=(MODMAX, 554,
USERLIB,N)

CODE=(5BEA,7BEB,7CEC) 1

Object deck for PREPMOD routine to be used at Ell
Ve 3

Ell routine performs initialization for the E16 Nmax
routine.

B399, PROGRAMMER

SORT,REGION=128K 0l
DSNAME=XFILE,VOL=SER=000230,UNIT=3400-3, 02
DISP=0LD,DCB=(RECFM=VB,LRECL=120, 03
BLKSIZE=1200) 04
UNIT=3330,SPACE=(CYL,(15)) 05
UNIT=3330,SPACE=(CYL,(15)) 06

DSNAME=YFILE,VOL=SER=000258,UNIT=3400-3, 0
DISP=(NEW, CATLG) 0
DSNAME=MYRTNS, DISP=SHR

¥

7

8

09

10

FIELDS=(20,5,AQ,A),FILSZ=E25500 %é
13

6

5

Appendix D.

Example 4. 3330 SORT, TAPE I/0, PROC=SORT, EXITS

01

02-04

05-06

07-08

09
10
11

12

Calls the SORT cataloged procedure and indicates that a
128K-byte region is needed for program execution.

The input data set is named XFILE, resides on 9-track
standard labeled tape on a 3400 series magnetic tape unit
with the volume serial number 000230, is known to the
system, and is not to be deleted. It consists of
variable-length blocked records.

Two intermediate storage areas on 3330s are defined. Each
consists of 15 cylinders.

The output data set is named YFILE, and is to be placed
on 9-track standard-labeled tape on a 3400 series
magnetic tape unit with the volume serial number 000258.
It will contain records of the same format as the input
data set. The data set is being created in this job step
and is to be cataloged.

Defines the library that contains the El6 user routine.
Sort control statements follouw.

SORT statement. Describes one control field that begins
on byte 16 of each record data area (not byte 20, since
the record descriptor word takes 4 bytes), is 5 bytes
long, contains character data which is to be collated
according to the modified sequence described in the
ALTSEQ statement (format is AQ), and is to be sorted into
ascending sequence. The input data set contains
approximately 25,500 records.

RECORD statement. Indicates that the input data set
contains variable-length records with a maximum record
length of 120 bytes, a minimum record length of 80 bytes,
and an average length of 120 bytes. The RECORD statement
is not required for this example, but without it, the

Examples of Control Statements for Sort/Merge Applications 165

-

program would assume a minimum record length of 24 bytes
(large enough to contain the specified control field) and
an average length of 72 bytes (the average of maximum and
minimum lengths). Maximum length could have been supplied
by default.

13-14 MODS statement. Describes two user routines. The first,
PREPMOD, will receive control at exit El11. It is 504
bytes long, is included in SYSIN, and will be link-edited
separately. The second user routine, named MODMAX, will
receive control at exit El6. It is 554 bytes long. It
resides in a library called MYRTNS that is described by
the job control statement with the DDname USERLIB. It
requires no further link-editing. Because E11 and E16
user routines are being used, the VLR-Blockset technique
will not be used.

15 ALTSEQ statement. Speéifies that the three characters $,
#, and @ are to collate in that order after Z.

166 0S/VS Sort/Merge Programmer's Guide

INPUT
OUTPUT

INTERMEDIATE STORAGE

USER ROUTINES

Variable-length ASCII records on 9-track tape.
Variable-length ASCII records on 9-track tape.

None.

Two 3340 areas of 15 cylinders each and two 3330
areas of 10 cylinders each.

OPTIONS Estimated data set size.
/7/7EXAMPS JOB A432,PROGRAMMER
/7/STEPM EXEC SORTD
/7/SO0RTIN DD DSNAME=SRTFIL,DISP=(OLD,DELETE),UNIT=2400, 01
V4 : DCB=(RECFM=DB,LRECL=80,BLKSIZE=404,0PTCD=Q, 02
77 BUFOFF=L),VOL=SER=311500 03
//SORTWKO1 DD UNIT=3340,SPACE=(CYL,(15)) 04
/7/S0RTWKO02 DD UNIT=3340,SPACE=(CYL,(15)) 05
/7/7/SO0RTWKO3 DD UNIT=3330,SPACE=(CYL,(10)) 06
/7/S50RTWKO04 DD UNIT=3330,SPACE=(CYL,(10)) 07
//7SORTOUT DD DSN=0QUTFIL,UNIT=2400-3,LABEL=(,NL), 08
77/ DISP=(,KEEP),DCB=(0PTCD=Q,BUFOFF=L) 09
/7/7SYSIN DD *
SORT FIELDS=(10,8,AC,D),FILS2=E525000 10
RECORD TYPE=D,LENGTH=(,,,20,23) 11
/7%

Example 5. 3340 SORT, ASCII TAPE I/0, PROC=SORTD

01-03 The input data set SRTFIL is on a 9-track tape with the
volume serial number 311500. It is known to the system
and is deleted after this job step. It consists of
variable-length ASCII records which are blocked and have
a maximum length of 80 bytes. For this job, the buffer
offsat is the block length indicator. The records are to
be translated from ASCII to EBCDIC (OPTCD=Q).

064-07 Four intermediate storage data sets are defined, two on
3340s and two on 3330 disks.

08-09 The output data set is named OUTFIL. It will be written
on a 9-track tape with a density of 1600 bpi. It will be
kept. It has no labels. It contains records with the same
RECFM, LRECL, and BLKSIZE values as the input (by
default).

10 SORT statement. The FIELDS operand describes a control
field that begins on byte 6 of each record data area (not
byte 10, since the record descriptor word takes 4 bytes),
and is 8 bytes long. This field contains character
(ASCII) data, and will be sorted in descending order. The
input data set contains approximately 525,000 records.

11 RECORD statement. All the records in the input data sets
are ASCII records. Their maximum length is supplied by
default; the minimum is 20. The average length is 23.

Appendix D. Examples of Control Statements for Sort/Merge Applications 167

INPUT
ouTPUT

Variable-length ASCII records on 9-track tape.
Variable-length ASCII records on 9-track tape.
INTERMEDIATE STORAGE
USER ROUTINES

None.

Onae 3380 area of 6 cylinders.

06
05-06

07

08

OPTIONS Estimated data set size.
/7/7EXAMPS JOB A632,PROGRAMMER
/7/STEPM EXEC RTD
//7S0RTIN DD DSNAME=SRTFIL,DISP=(0OLD,DELETE),UNIT=2400, 01
V4 DCB=(RECFM=D,LRECL=400,BLKSIZE=404,0PTCD=Q, 02
7/ BUFOFF=L),VOL=SER=311500 03
/7/7S50RTWKO01 DD UNIT=3380,SPACE=(CYL,(4)) 04
//S0RTOUT DD DSN=QUTFIL,UNIT=2400-3,LABEL=(,NL), 05
77 DISP=(,KEEP),DCB=(0PTCD=Q,BUFOFF=L) 06
/7/75YSIN DD
SORT FIELDS=(10,8,AC,D),FILSZ=E26000 07
, RECORD TYPE=D, LENGTH=(,,,20,80) 08
/
Example 6. 3380 SORT, ASCII TAPE 1/0, PROC=SORTD
01-03 The input data set SRTFIL is on a 9-track tape with the

volume serial number 311500. It is known to the system
and is deleted after this job step. It consists of
variable-length ASCII records which are blocked and have
a maximum length of 400 bytes. For this job, tha buffer
offset is the block length indicator. The records are to
be translated from ASCII to EBCDIC (OPTCD=Q).

One intermediate storage data set is defined on a 3380.

The output data set is named OUTFIL. It will be written
on a 9-track tape with a density of 1600 bpi. It will be
kept. It has no labels. It contains records with the same
5E$F"it%RECL’ and BLKSIZE values as the input (by

efau .

SORT statement. The FIELDS operand describes a control
field that begins on byte 6 of each record data area (not
byte 10, since the record descriptor word takes ¢ bytes),
and is 8 bytes long. This field contains character
(ASCII) data, and will be sorted in descending order. The
input data set contains approximately 26,000 records.

RECORD statement. All the records in the input data sets
are ASCII records. Their maximum length is supplied by
default; the minimum is 20. The average length is 80.

168 0S/VS Sort/Merge Programmer's Guide

INPUT
OUTPUT

USER ROUTINES

OPTIONS

/7/7EXAMP?
/7/STEPL -
//78YS0UT
//SORTLIB
//S0RTIN
/77
/77
/7/SORTOUT
7/
//S0RTWKO1
//7S0RTWKO2
//50RTWKG3
/7/7S0RTWKO4G
/77SYSIN
SORT
/%

Blocked fixed-length records on 9-track tape.

Blocked fixed-length records on 9-track tape.
INTERMEDIATE STORAGE Four 9-track tapes.

None.
FORMAT=xx for control fields of like format; estimated
data set size.
JOB A402,PROGRAMMER
EXEC PGM=S0RT,REGION=64K 01
DD SYSOUT=A 02
DD DSNAME=SMO01,SORTLIB,DISP=SHR 03
DD DSNAME=INPUT,VOL=SER=000101,UNIT=2400, 04
DISP=(OLD,DELETE),DCB=(RECFM=FB, 05
LRECL=80,BLKSIZE=800) 06
DD DSNAME= OUTPUT UNIT= 2400 DISP=(NEW,CATLG), 07
VOL=SER=000102 03
DD UNIT=3400-3 09
DD UNIT=3400-3 10
DD UNIT=3400-3 11
DD UNIT=3400-3 12
DD * ,
FIELDS=(1,6,A,28,5,D),FORMAT=CH,FILSZ=E100600 13

Appendix D.

Exam

01

02
03
04-06

07-08

09-12
13

Examples of Control Statements for Sort/Merge Applications

e 7. TAPE SORT, PGM=SORT

This EXEC statement calls the program module by its

alias, SORT, and indicates that it wants a 64K region in

which to operate.

The SYSOUT DD statement directs the system output to

system output class A.

The SORTLIB DD statement defines a prlvate data set

containing the sort program modules.

The SORTIN DD statement defines an input data set on
9-track tape with fixed blocked records, on volume

000101.

The SORTOUT DD statement defines an output data set with
the same characteristics as the input data set, on volume

000102,

- The SORTWK DD statements define four work tapes.

SORT statement. The FIELDS operand describes two control
fields. The first control field begins on byte 1 of each

record, is 6 bytes long, contains character (EBCDIC)
data, and is to be sorted into ascending order.
second control field begins on byte 28 of each record,

is

5 bytes long, contains character (EBCDIC) data, and is to

be sorted into descending order. The file size is

estimated at 10,000 records.

169

INPUT Fixed-length blocked records on two unlabeled 9-track tape
volumes. _ .
OUTPUT Fixed~length blocked record: on one 9-track tape.
INTERMEDIATE STORAGE Four 3400 9-track tapes.
USER ROUTINES Four: two change record lengths, one changes control
fields, one decides what to do if Nmax is exceeded.
OPTIONS Estimated data set size; oscillating technique forced. .
/7/7EXAMP8 JOB A602,PROGRAMMER
//S5STEP1 EXEC SORT,PARM='0QSCL"® 01
/7/50RTIN DD DSNAME=INPUT,VOL=SER=(000333,000343), . 02
7/ UNIT=(2400,2),DISP=(OLD,DELETE),LABEL=(,NL), 03
/7 DCB=(RECFM=FB,LRECL=120,BLKSIZE=480) 04
//7S0RTOUT DD DSNAME=0UTPUT,UNIT=2400,DISP=(NEW,CATLG), 05
7/ VOL=SER=456,DCB=(RECFM=FB,LRECL=80, 06
/77 BLKSIZE=3200) 07
/7/750RTWKO1 DD UNIT=3400-3 08
//7S0RTWKO02 - DD UNIT=3400-3 09
7/S0RTWK03 DD UNIT=3400-3 10
/7/S0RTWK04 DD UNIT=3400~3 11
/7/MODLIB DD DSNAME=YOURRTNS,DISP=SHR 12
//50RTMODS DD UNIT=3330,SPACE=(CYL,(1,,1)) 13
/7/7SYSIN DD * 14
SORT FIELDS=(3,8,2D,E,%90,6,CH,D),FILSZ=E30000 15
RECORD TYPE=F, LENGTH=(120,100,80) . 16
MODS E15=(MODREC,784,MODLIB,N), 17
E16=(E16,1024,MODLIB,N),E35=(ADDUP,912,SYSIN), 18
E61=(CHGE,1000,SYSIN) 19
END : ' 20
Object deck for ADDUP routine 21
Object deck for CHGE routine 22
7% o

Example 8. TAPE SORT, PROC=SORT, EXITS

01 Specifies the cataloged procedure SORT. O0SCL in the PARM
field directs the program to use the oscillating tape
sequence distribution technique if it can, whether or not
this technique appears to be the most efficient in this
case.

02-04 Defines the input data set. The data set consists of
fixed-length blocked records on two 9-track tape volumes;
the UNIT parameter requests the system to provide two
tape drives, one for each volume of the data set. Since
the tape is unlabeled, DCB parameters must be supplied.

05-07 Defines the output data set, which also consists of

A : fixedflength blocked records. It is on one 9-track tape.

08-11 Define four intermediate storage data sets on 3400-series
tape units. Since the DSNAME parameter is omitted, the
system will assign unique names to the data sets.

12 Describes a data set containing the load modules of the
E15 and E16 user exit routines.

13 Defines a data set on which the ADDUP and CHGE routines
specified in the MODS statement (lines 18 and 19) will be
placed.

14 A data set follows in the input stream.

15 SORT statement. The FIELDS operand describes two control
fields. The first will be changed by a user routine (at
exit E6l; see the MODS statement) before the program

170 0S/VS Sort/Merge Programmer's Guide

places it into ascending order. The second control field
will not be modified and will be placed in descending
order. '

16 RECORD statement. The fixed-length records in the input
data set are 120 bytes long. A modification routine (at
exit E15) changes them to 100 bytes during the sort
phase. A user routine at the E35 exit again changes the
length during the final merge phase, to 80 bytes each.

17-19 MODS statement. The statement describes four user
routines. The first two are in a library that is defined
on a job control statement with the ddname MODLIB; these
two routines have the member names MODREC and E16,
respectively. Neither routine requires additional
link-editing. The next two routines are in object form in
the input stream. Their names are ADDUP and CHGE,
respectively. They must be link-edited together with
other routines in their phases that require link-editing.

20 END statement. Required because of the user routines in
the input stream.

21-22 Object decks in the input stream must be in numericsal

ggg?r of exit, so ADDUP (for E35) precedes CHGE (for

Appendix D. Examples of Control Statements for Sort/Merge Applications 171

INPUT Blocked fixed-length records on 7-track unlabeled tape.
OUTPUT Blocked fixed-length records on 7-track labeled tape.
INTERMEDIATE STORAGE Six 7-track tapes.
USER ROUTINES None.
OPTIONS FORMAT=xx for control fields of like format; estimated data
: set size.
/7/7EXAMPY JOB A402,PROGRAMMER -
//75TEP1 EXEC SORT - 01
/7/7S50RTIN DD DSNAME=INPUT,VOL=SER= 000101 UNIT=2400-2, 02
V4 DCB=(DEN=2, RECFM FB,LRECL= 80 BLKSIZE=800, .03
Vo4 TRTCH=ET),DISP=(0LD.PASS).LABEL=(,NL) 04
//S0RTOUT DD DSNAME=0UTPUT,UNIT=2400-2,DISP=(NEW,CATLG), 05
Vo4 VOL=SER=102,DCB=(DEN=2, TRTCH=ET) 06
//7S0RTWKO1 DD UNIT=2400-2,LABEL=(,NL),DCB=(DEN=2,TRTCH=ET) 07
/7/7S0RTWK02 DD UNIT=2400-2,LABEL=(,NL),DCB=(DEN=2,TRTCH=ET) 08
//S0RTWKO3 " DD UNIT=2400-2,LABEL=(,NL),DCB=(DEN=2,TRTCH=ET) 09
//7S0RTWKO04 DD UNIT=2400-2,LABEL=(,NL),DCB=(DEN=2, TRTCH=ET) 10
/7/750RTWKO05 DD UNIT=2400-2,LABEL= (NL),DCB=(DEN=2,TRTCH=ET) 11
;;ggg}gK06 Dg UNIT 2400-2, LABEL=(,NL),DCB=(DEN=2,TRTCH=ET) 12
% SORT FIELDS (1,6,A,28,5,D),FORMAT=CH,FILSZ=E10000 . 13

Example 9. TAPE SORT (7-TRACK), PROC=SORT

01 Invokes the SORT cataloged procedure. The SORTD procedure
would be more efficient for this application, since there
are no user routines that need link-editing, but SORT can
also be used.

02-04 Defines the input data set named INPUT. It is on an
unlabeled 7-track tape with serial number 000101. The DCB
subparameters indicate that the tape was recorded at a
density of 800 bpi (DEN=2), and is composed of
fixed-length blocked records. TRTCH=ET indicates that the
tape was recorded with even parity and that BCD to EBCDIC
translation is required. The DISP parameter shows that
the data set is in existence and that it should be
retained after this job step. The data set is the first
or only one of this unlabeled volume.

05-06 Defines the output data set named OUTPUT. It is recorded

- on 7-track tape on a volume with the serial number 102;
and has the same characteristics as INPUT, except that
the data set will be created in this job step and will be
cataloged. The DCB subparameters not specified are the
same as for SORTIN, by default.

07-12 Define intermediate storage for sort/merge. The storage
is on six 7-track unlabeled tapes. These tapes are to be
recorded with even parity and BCD to EBCDIC translation.

13 SORT statement. The FIELDS operand describes two fields.
The first begins on byte 1 of each record, is 6 bytes
long, contains character (EBCDIC) data, and is to be
sorted into ascending order. The second field begins on
byte 28, is 5 bytes long, contains character data, and is
to be sorted into descending order. The optional FORMAT
operand is used because both fields contain data of the
same format.

172 0S/VS Sort/Merge Programmer's Guide

INPUT
OUTPUT

Variable-

Variable-

INTERMEDIATE STORAGE
USER ROUTINES Init

OPTIONS

//EXAMP10
/7/STEPONE
//SORTIN
7/
/7/S0RTOUT
7/

//S0RTWKO1
//SORTMODS
//USERLIB
/7/5YSIN
SORT
RECORD
ALTSEQ
MODS

END

Object deck for PREPMOD
/%

erro
Message
set size
JOB A40
EXEC SOR
DD UNI
DIS
DD UNI
SPA
DD UNI
DD UNI
DD DSN
DD *
FIELDS=(2
TYPE=V,LE
CODE=(5BE
E11=(PREP
USERLIB,N

length blocked records on 3350.
length blocked records on 3350.
One 3380 area of 3 cylinders.

ialization routine at the El11l exit and an NMAX

r routine at El6.
option (critical messages only); estimated data
2,PROGRAMMER
T,PARM="FLAG(U),LIST' 01
T=3350, DSNAME=PAY413,VOL=SER=335001, 02
P=(OLD,KEEP) 03
T=3350,DSNAME=PAY414,VOL=SER=335004, 04
CE=(CYL,(15),RLSE),DISP=(NEW,KEEP) 05
T=3380,SPACE=(CYL,(6),,CONTIG) 06
T=3330-1,5PACE=(TRK,(1,1,1)) 07
AME=JIMSMODS,DISP=SHR 08
0,5,AQ,A),FILSZ=E17000 09
NGTH=(,,,80,120) 10
A,7BEB,7CEC) 11
?OD.SOQ.SYSIN.S).El6=(MODMAX,556, i%
14

Appendix D.

| Example 10. 3350 SORT, PROC=SORT, EXITS

01

| 02-03
I 04-05

| 66
07
08

09

Example

Specifies the SORT cataloged procedure. The PARM options
indicate that critical messages only are to be printed,
g$goﬁ?at program control statements are to be printed on

The name of the input data set is PAY413, and it is on
volume 335001 on a 3350. The data set is known to the
operating system and is to be retained. The program will
take the DCB parameters from the data set label. The
records are variable-length, blocked.

The output data set is called PAY41l4, and will be on
volume 335004 of a 3350. It is being created in this job
step, and is to be retained. Data set DCB parameters will
be the same as for SORTIN, by default. Unused space will
be released.

One intermediate storage data set is defined on a 3380.
Defines an area to hold the PREPMOD module.

Defines a data set called JIMSMODS which contains the
MODMAX user exit routine described on the MODS program
control statement. The data set is known to the operating
system and is not to be deleted after this job step.

SORT statement. The FIELDS operand describes one control
field that begins on byte 16 of each record data area
(not byte 20, since the record descriptor word takes ¢
bytes), is 5 bytes long, contains character data which is
to be collated according to the modified sequence
described in the ALTSEQ statement (format is AQ), and is
to be sorted into ascending sequence. The optional FILSZ
operand indicates that the input data set contains
approximately 17,000 records.

s of Control Statements for Sort/Merge Applications 173

[.. U i 4 ML B ST o e o e M T G S .

174

10

11

12-13

14

RECORD statement. Indicates that the input data set
contains variable-length records with a minimum record
length of 80 bytes, and an average length of 120 bytes.
The RECORD statement is not required for this example,
but without it, the program would assume a minimum record
length of 24 bvytes (large enough to contain the specified
control field) and an average length equal to the average
of maximum and minimum lengths.

ALTSEQ statement. Specifies that the three characters $,
#, and @ are to collate in that order after 2.

MODS statement. Describes two user routines. The first,
PREPMOD, will receive control at exit E11. It is 504
bytes long and can be link-edited separately. It is an
object deck in the SYSIN input stream. The second
routine, named MODMAX, will receive control at exit El6.
It is 554 bytes long and the library in which it resides
is described in the job control statement with the ddname
USERLIB. It has been link-edited previously and requires
no further link-editing prior to its use in this
application.

END statement. Required because the PREPMOD object deck
will follow it in SYSIN.

0S/VS Sort/Merge Programmer's Guide

INPUT Fixed-length blocked records on 3330.
OUTPUT Fixed-length blocked records on 3340.
INTERMEDIATE STORAGE

USER ROUTINES One routine shortens the records as they leave the
final merge phase.

OPTIONS Exact data set size.

//EXAMP11 JOB B600,PROGRAMMER
//STEP1 EXEC PROC=SORT,PARM='SIZE(130000)"'

//SORTIN DD g?g?ﬂg;éNPUT,UNIT=3330,VOL=SER=333001, 01
/77 =
//SO0RTOUT DD DSNAME=0UTPUT,UNIT=3340,VOL=SER=334010, 02
/77 DCB=(RECFM=FB,LRECL=50,BLKSIZE=500), 03
V4 DISP=(NEW,KEEP),SPACE=(CYL,(1,1),RLSE) 04
//ERTNLIB DD DSN=EXITS,DISP=SHR 65
/7/SYSIN DD *
SORT FIELDS=(10,5,CH,A),FILSZ=800 06
RECORD TYPE=F,LENGTH=(,,50) 07
MODS E35=(E35,534, ERTNLIB,N) 08

/%

None.

Example 11. SORT WITH NO SORTWK, PROC=SORT, 1 EXIT

No work areas are defined. If all records cannot be sorted in
main storage, the program will terminate.

0l

02-04

05
06

07

08

The input data set is named INPUT, is on a 3330 volume
333001, and consists of fixed-length records with a
length of 80 bytes. The DCB information will be taken
from the data set label.

The output data set, named OCUTPUT, will be on volume
334010 of a 3340 and will contain fixed-length blocked
records. One cylinder is requested for the data set; if
the space is exhausted, additional cylinders are to be
assigned one at a time. Unused space will be released.
Records have been shortened at E35, so DCB information is
di fferent from SORTIN and therefore has to be specified.

Defines a library which contains the E35 routine.

SORT statement. The FIELDS operand describes one control
field that begins on byte 10 of each record, is 5 bytes
long, and contains character (EBCDIC) data; it is to be
sorted into ascending order. The optional FILSZ operand
indicgtes that the input data set contains exactly 800
records.

RECORD statement. Indicates that the input data set
contains fixed-length records and that record length will
be changed to 50 bytes as records leave the final merge.

MODS statement. Describes a user exit routine that will
receive control at E35 exit. The name of the routine is
E35; it is 534 bytes long, resides in the data set
described in the ERTNLIB DD statement, and requires no
further link-editing.

Appendix D. Examples of Control Statements for Sort/Merge Applications 175

INPUT
OUTPUT

A concatenation of three data sets on 3330-1, 2400, and 3340.
Blocked fixed-length records on 9-track tape.
INTERMEDIATE STORAGE Two 3330 areas.

USER ROUTINES

OPTIONS

//7EXAMP12
/7/STEPT
/7/75YSOUT
/7/SORTLIB
/7/SO0RTIN
7/

144

/77

/77

7/

7/

7/

4
/7/SORTOUT
7/

7/SYSIN
SORT
OPTION

FORMAT parameter for control fields of like format; estimated
data set size.

Jo
EX
DD
DD
DD

DD

DD

DD
DD

None.

B A400, PROGRAMMER

EC PGM=ICEMAN,REGION=128K 01
SYSOUT=A 02
DSNAME=SYS1.SORTLIB,DISP=SHR 03
DSNAME=INP1,DISP=0LD,UNIT=3330-1, 04
DCB=(RECFM=FB,BLKSIZE=7200,LRECL=80), 05
VOL=SER=XB0001 06
DSNAME=INP2,DISP=0LD,UNIT=2400, 07

DCB=(RECFM=FB,BLKSIZE=4000,LRECL=80), 0
VOL=SER=T33333 0
DSNAME=INP3,DISP=0LD,UNIT=3340, 1
DCB=(RECFM=FB,BLKSIZE=3600,LRECL=80), 1
VOL=SER=DISKO1 1
DSNAME=0UTPUT,UNIT=3400-3,DISP=(NEW,CATLG), 1
VOL=SER=000102,DCB=(BLKSIZE=800)
*

FIELDS=(1,6,A,28,5,D),FORMAT=CH 1
FILSZ=E10000,DYNALLOC=(3330,2) 1

176

05/7VS Sort/Merge

Xa

. 2gg§gTENATED INPUT, DYNAMICALLY ALLOCATED WORK

Example 12 differs from example 7 in three respects: the input
is a concatenation of three input data sets on unlike devices;
the region specified is 128K bytes; and work storage is
dynamically allocated.

01
02

03
04-12

13-14

15

Indicates that a 128K bytes region is needed.

Sort messages are to be directed to system output class

.

Sort program modules are on SYS1.SORTLIB.

The SORTIN DD statement describes a concatenation of
three input data sets on unlike devices.

The INP1 data set is on volume XB000l of a 3330-1. It is
known to the system, and consists of fixed-length blocked
records with a record length of 80 and a block size of
7200. Note that this MUST be the largest block size of
the data sets in the concatenation.

The INP2 data set is on a 9-track tape with serial number
T33333. It is known to the system, and consists of
fixed-length blocked records with a record length of 80
and a block size of 4000.

The INP3 data set is on a 3340 disk with the serial
number DISKO1l. It is known to the system, and consists of
fixed-length blocked records with a record length of 80
and a block size of 3600.

Block size is not the same for output as for input, and
must therefore be specified.

SORT statement. The-FIELDS operand describes two control

fields. The first field begins on byte 1 of each record,
is six bytes long, contains character (EBCDIC) data

Programmer's Guide

Appendix D.

16

(FORMAT=CH), and is to be sorted into ascending order.
The second field begins on byte 28 of each record, is
five bytes long, contains character (EBCDIC) data, and is
to be sorted into descending order.

OPTION statement. Operands given on the OPTION statement
override similar operands specified on a SORT control
statement or at installation time. The FILSZ operand
indicates that the input data set contains an estimated
10,000 records. The DYNALLOC operand indicates that two
work data sets are to be dynamically allocated on 3330
(valid only when sort/merge is running under MVS).

Examples of Control Statements for Sort/Merge Applications 177

INPUT
OUTPUT

Fixed- or variable-lengtﬁ blocked records.
Fixed- or variable-length blocked records.
INTERMEDIATE STORAGE
USER -ROUTINES
OPTIONS

None.

Exact size file and alternate collating sequence for
EBCDIC fields. : :

//7EXAMP13 JOB A402,PROGRAMMER

One 3330-1 area of 5 cylinders.

//50RT1 EXEC PGM=MYPGM 01
/7/75YS0OUT DD SYSouT=A 02
/775YSPRINT DD SYSOUT=A 03
//S0RTIN DD DSN=MY.INPUT.FILE,DISK=SHR 04
//7S50RTWKO1 DD UNIT=3330-1,SPACE=(CYL,(5)) 05
//7SO0RTOUT DD DSN=MY.OUTPUT.FILE,UNIT=3330-1, 06
Vo4 SPACE(CYL,(3,2)),DISP=(NEW,CATLG) 07
//7SORTCNTL DD % 038
OPTION FILSZ2=2270,CHALT 09
/%
| Example 13. 3330-1 SORT USING SORTCNTL AND OPTION
| 01 Specifies the name of the program calling sort/merge.
02 Sort messages are to be directed to system output class
| 63 MYPGM output is to be directed to system output class A.

04 The SORTIN DD statement describes an input data set named
MY.INPUT.FILE. The DISP parameter indicates that the data
sat is known to the operating system.

05 The SORTWKOl DD statement describes a work data set on a
3330-1. The area contains five cvlinders.

06-07 The SORTOUT DD statement describes an output data set
named MY.OUTPUT.FILE. The DISP parameter indicates that
the data set is new and will be cataloged.

08 The SORTCNTL DD statement defines the data set that
contains control statements used to modify the sort
application.

09 OPTION statement. The file size is specified as exactly
2270 records and will override any size passed to sort in
the program-provided parameter list. Both CH and AQ
format record fields will be sorted as if they were AQ
format.

178 0S/VS Sorts/Merge Programmer's Guide

INPUT
OUTPUT

OPTIONS

/7/7EXAMP14

//STEP1

//SORTINOL

4
7/

//SORTINO2

Ie4

7/
/7/S0RTING3
7/

7/
//S0RTINOG
/77

/77

//S0RTOUT
/77

/7/75YSIN

/%

MERGE

Blocked fixaed-length records on four 9-track unlabeled tapes.
Blocked fixed-length records on one 9-track tape.
INTERMEDIATE STORAGE None required for a merge.

USER ROUTINES
FORMAT=CH for control fields of like format; estimated data

set size

JOB A402,PROGRAMMER

EXEC SORTD 01

DD DSNAME-MERGINO1,VOL=SER-000111,DISP=0LD, 02
LABEL=(,NL),UNIT=3400-3,DCB=(RECFM=FB, 03
LRECL=80,BLKSIZE=240) 04

DD DSNAME=MERGINO2, VOL=SER=000222,DISP=0LD, 05
LABEL=(,NL),UNIT=3400-3,DCB=(RECFM=FB, 06
LRECL=80,BLKSIZE=240) 07

DD DSNAME=MERGINO3,VOL=SER=000333,DISP=0LD, 08
LABEL=(,NL),UNIT=3400-3,DCB=(RECFM=FB, 09
LRECL=80,BLKSIZE=240) 10

DD DSNAME=MERGINO4, VOL=SER=000444%,DISP=0LD, 11
LABEL=(,NL),UNIT=3400-3,DCB=(RECFM=FB, 12
LRECL=80,BLKSIZE=240) 13

DD DSNAME=MERGOUT,VOL=SER=000101,DISP=(NEW, 14

DD KEEP), LABEL=(,NL),UNIT=2400 15
*

FIELDS=(1,6,A,28,5,D),FORMAT=CH,FILSZ=E10000 16

None

Appendix D.

Example 14. MERGE FOUR UNLABELED TAPES, PROC=SORTD

01
. 02-13

14-15

16

The EXEC statement invokes the cataloged procedure SORTD.

The SORTINnn DD statements describe the merge input data
sets. They are all on 9-track unlabeled tape and consist
of fixed-length records with a blocking factor of three.
Since they all have the same block size, the order in
which they are specified is immaterial. Had they been
different, the data set with the largest block size would
have had to be specified first.

The result of the merge is recorded on 9-track tape at
the same blocking factor and in the same format as the
first input data set (SORTINO1l), by default.

MERGE statement. The FIELDS operand describes two fields.
The first begins on byte 1 of each record, is 6 bytes
long, contains character (EBCDIC) data, and is to be
sorted into ascending order. The second field begins on
byte 28, is 5 bytes long, contains character data, and is
to be sorted into descending order. The optional FORMAT
operand is used because both fields contain data of the
same format. The input data sets contain a total of
approximately 10,000 records.

Examples of Control Statements for Sort/Merge Applications 179

INPUT
ouUTPUT

Variéble-length blocked records on 3330.
Variable-length blocked records on 3330.
INTERMEDIATE STORAGE

USER ROUTINES

OPTIONS

//EXAMP15
//STEPONE
//SORTINO1L
7/

7/
//SORTINO2
7/

7/
//S0RTOUT
Va4
7/
//USERLIB
//MODLIB
7/SYSIN
MERGE
RECORD
MODS
/%

Exact input data set size.
‘A402,PROGRAMMER
ORT

JOB
EXEC
DD

DD

DD

DD
DD
DD

FIELDS=(5,6,CH,E),FILSZ=8150 13
TYPE=V, LENGTH=(,,200) 14
E35=(CALC,800,USERLIB),E61=(MODRTN,456,MODLIB,N) 15

E35 (CALC) rou{ine shortens records; E61 (MODRTN)
routine modifies control fields.

S

DSNAME=WEEKLY,VOL=SER=000101,UNIT=3330, 02
DISP=0LD,DCB=(RECFM=VB, LRECL=240, 03
BLKSIZE=4800) 04
DSNAME=DAILY,VOL=SER=000113,UNIT=3330, 05
DISP=(OLD,DELETE),DCB=(RECFM=VB,LRECL=240, 06
BLKSIZE=1200) 07
DSNAME=WEEKA,YVOL=SER=000111,UNIT=3330, 08
DISP=(NEW,KEEP),SPACE=(TRK, (200,10)), 09
DCB=(RECFM=VB, LRECL=200,BLKSIZE=2000) 10
DSNAME=MYMODS, DISP=SHR 11
DSNAME=XYZ,DISP=SHR 12

*

None.

180

Example 15. MERGE TWO 3330 FILES; PROC=SORT, EXITS

02

02-04

05-07

08~

11

12
13

10

Calls the SORT cataloged procedure.

The first of two input data sets for the merge. The data
sat, named WEEKLY, is on a 3330 disk with the volume
serial number 000101. The data set is known to the
operating system and is to be retained. It contains
variable-length blocked records with a maximum record
length of 240 bytes and a block size of 4800.

The second input data set, which is named DAILY, is on a
3330 disk unit, with the volume serial number 000113. It
is old, will be deleted after this job step, and contains
records of the same format and length as the WEEKLY data
set; the block size is smaller.

The output from the merge will be a data set named WEEKA.
It is new and will be retained in the system on a 333¢
disk with the serial number 000111. The data set will be
recorded on 200 tracks. If this space is not sufficient,
additional space will be allotted in blocks of ten
tracks. The data set will consist of variable-length
blocked records with a maximum record length of 200 (see
1 on the RECORD statement) and a block size of 2000.

The library on which the CALC routine for exit E35
resides.

The library on which the E61 (MODRTN) routine resides.

MERGE statement. The FIELDS operand describes one control
field that will be modified (by the routine at exit E61
specified in the MODS statement) before it is examined by
the merge. The start of the control field is given as
byte 5; note that this points to the first byte of the
record data itself, since for a variable-length record
the first four bytes are occupied by the record
descriptor word. The field is six bytes long. The exact
size of the input data sets is given.

0S/VS Sorts/Merge Programmer's Guide

Appendix D.

14

15

RECORD statement. Records in the input data sets are

variable length. A modification routine (at exit E35)

ggkeg :he maximum record length in thae output data set
0 bytes.

MODS statement. A routine named CALC receives control at
exit E35. It is approximately 800 bytes long, resides in
the library defined on the job control statement with the
DDname USERLIB, and must be link-edited together with
other routines in its phase which require link-editing.
At exit E61, the program transfers control to a routine
from the library defined by the job control statement
with the ddname MODLIB. The member name of this routine
is MODRTN. It is 456 bytes long and does not need further
link~editing.

Examples of Control Statements for Sort/Merge Applications 181

INPUT
OUTPUT
INTERMEDIATE STORAGE
USER ROUTINES

Blocked fixed-length records on three 7-track tapes.

Blocked fixed-length records on one 7-track tape.

None.

None.

OPTIONS Estimated input data set size.
/7/7EXAMP16 JOB A714,PROGRAMMER
/7/STEPA EXEC SORTD 01
//S0RTINOL1 DD DSNAME=FILE1,VOL=SER=000123,UNIT=2400-2, 02
V4 DCB=(DEN=2,TRTCH=ET),DISP=(OLD,DELETE) 03
//SORTING2 DD DSNAME=FILE2,VOL=SER=000225,UNIT=2400-2, 04
V4 DCB=¢(DEN=2, TRTCH=ET),DISP=(OLD,DELETE) 05
/7/SORTINO3 DD DSNAME=FILE3,VOL=SER=000179,UNIT=2400-2, 06
Vo4 DCB=(DEN=2,TRTCH=ET),DISP=(OLD,DELETE) 07
/7/SORTOUT DD DSNAME=FILE123,VOL=SER=000111,UNIT=2400-2, 08
Va4 DCB=(DEN=2,TRTCH=ET),DISP=(NEW,KEEP) 09
/7/75YSIN DD *

MERGE FIELDS=(1,6,A,28,5,D),FORMAT=CH,FILSZ=E10000 10
/7 %

Example 16. MERGE THREE 7-TRACK TAPES, PROC=SORTD

01 Since there are no user routines, it is more efficient to
use the SORTD cataloged procedure.

02-07 The three input data sets to the merge are all on 7-track
standard~label tape (DCB information will be taken from
the data set labels). TRTCH=ET indicates that the tape
was recorded with even parity and that BCD to EBCDIC
translation is required. SORTINOl must have the greatest
block size of the three inputs.

08-09 The output data set is also to be recorded on 7-track
tape, and is to have the same characteristics as the
first input data set, by default. It is to be kept.

10 MERGE statement. Describes two control fields. The first
begins at byte 1, is six bytes long, and is to be
collated in ascending sequence; the second is five bytes
long, beginning on the 28th byte. Both are in EBCDIC
character format, so the FORMAT option is used. The file
size is estimated at 10,000 records.

182 0S/VS Sort/Merge Programmer's Guide

ENDIX E EBCDIC AND ASCII COLLATING SEQUENCES

EBCDIC

The following table shows the collating sequence for EBCDIC

character and unsigned decimal data. The collating sequence
ranges from low (00000000) to high (11111111). The bit

configurations which do not correspond to symbols (that is, 0
through 73, 81 through 89, etc.) are not shown. Some of these

gorfespond to control commands for the printer and other
evices.

Packed decimal, zoned decimal, fixed-point, and hormalized
floating-point data are collated algebraically, that is, each
quantity is interpreted as having a sign.

collating Bit

sequence configuration Symbol Meaning
0 00000000
7% 01001010 ¢ Cent sign
75 01001011 . Period, decimal point
76 01001100 < Less than sign
77 01001101 (Left parenthesis
78 01001110 + Plus sign
79 01001111 | Vertical bar, Logical OR
80 01010000 & Ampersand
90 01011010 H Exclamation point
91 01011011 $ Dollar sign
92 01011100 ¥ Asterisk
93 01011101) Right parenthesis
94 01011110 H Semicolon
95 01011111 - Logical not
96 01100000 - Minus, hyphen
97 01100001 / Slash
107 01101011 ’ Comma
108 01101100 % Percent sign
109 01101101 _ Underscore
110 01101110 > Greater than sign
111 01101111 ? Question mark
122 01111010 : Colon
123 01111011 # Number sign
124 01111100] At sign
125 01111101 * Apostrophe, prime
126 01111110 = Equals sign
127 01111111 " Quotation marks
129 10000001 a
130 10000010 b
131 10000011 c
132 10000100 d
133 10000101 e

Appendix E. EBCDIC and ASCII Collating Sequences 183

Bit
configuration Symbol

collating
sequence

configuration Symbol

Bit

Collating
Sequence

Y aEZOMLOK DEDS>INXK>N O = (M 1N O I~ 00O
OOt OO - OriOriO=-Ow O DI O O O i -4
QOO me~[OO o OOt~ OO OCOFHHOO™E~NO00O -
OCOr-irieriIr-IOO OO -HOO OOOOFrEerirteiOO -y
QOOO0OOOOO ™~ OO0 OOO ™t [-X-X-X-X-X_X_R R _X_ | -4
4 o4 v=f v=f o= =) =t =§ 4 [¥-X-¥-X—-F-N-¥—J o o= o=} o=f o=f =g v=f =] =) = -
OO OOOOOOO o o= o= o =) v~ =) =4 = of o o=f v=f = o=} o] o=f =f [
4 e=f o=f e=f o4 o=f vl =4 i = v=) o= o=l o= =4 o=f o=} ot v =) o= =) o=} o=f o= 8 1§ -y
o e o) o=} =) e=f o) = ¢ od o=d o4 o={ o e=f o=f -4 o e o) o o=t o) =4 o= o= o4 -4
COSNMTINON ONOAO=NIM OO FINO M QO 0
¢ Ottt ¢+ cNNNNMM MM D R R R R R R B 1N
NNNNNNNNN NNNNNNNN NNNNNNNNNN o
Y Lo nY~ECOCOQTL N ID>DIXDN <OOQWWLOX ™
OOt IO OO O COrEriO=OmMO OO OO~
- O Oederf OO~ OO e OO~ OO OO0~ 00
-H—-HOO OO0 mririe=- OO QOmrderi - O0O OOt - OO
OO =y OO OO0~ CO00CO0COO -
[—X~-X-X-] vl o=f v =) v=d of =i =] =i (- X-X—N-N-Y-F_N—] OO0OO0OOOOOOO
[-X-X—X—J COO0OOOOOOO ol e o] v o=t vl =)) - X-X_-¥-¥—X-N-¥—N—]
(~X - - ¥] OO0 OOO0O00O [— XX -X-N- NN N-] ot o=t owd o) o onf o=f o=f i
e i) =t =i vt i e v ot = 4 o=d e=f v =4 =] =} —{ i) et o=t o=d o=f v} = = =}

134
135
136
137

145
146
147
148
149
150
151
152
153

162
163
164
165
166
167
168
169

193
194
195
196
197
198
199
200
201

05/7VS Sort/Merge Programmer's Guide

184

ASCIIX

The following table -shows the collating sequence for ASCII,
character, and unsigned decimal data. The collating sequence
ranges from low (00000000) to high (01111111). Bit
configurations which do not correspond to symbols are not shouwn.

Packed decimal, zoned decimal, fixed-point normalized
floating-point data, and the signed numeric data formats are
collated algebraically; that is, each quantity is interpreted as
having a sign.

collating Bit

sequence configuration symbol Meaning
0 00000000 . Null

32 00100000 SP Space

33 00100001 | Logical OR

34 00100010 " Quotation mark
35 00100011 # Number sign

36 00100100 $ Dollar sign

37 00100101 % Percent

38 00100110 & Ampersand

39 00100111 ! Apostrophe, prime
40 00101000 (Opening parenthesis
41 00101001) Closing parenthesis
42 00101010 * Asterisk

43 00101011 + Plus

44 00101100 ’ Comma

45 00101101 - Hyphen, minus
46 00101110 . Period, decimal point
47 00101111 / Slant

48 60110000 0

49 00110001 1

590 00110010 2

51 00110011 3

52 00110100 4

53 00110101 5

54 00110110 6

55 00110111 7

56 00111000 8

57 00111001 9

58 00111010 : Colon

59 001110113 H Semicolon

60 00111100 < Less than

61 00111101 = Equals

62 00111110 > Greater than
63 00111111 ? Question mark
64 01000000 a Commercial At
65 01000001 A

66 01000010 B

67 01000011 c

68 01000100 D

69 01000101 £

70 01000110 F

71 01000111 G

72 01001000 H

73 01001001 I

74 01001010 J

75 01001011 K

76 01001100 L

77 01001101 M

78 01001110 N

Appendix E. EBCDIC and ASCII Collating Sequences 185

symbol Meaning

configuration

Bit

collating
sequence

Logical NOT

+

¢ o

XX - [N
oco + oeco
ogQg ~ C Mo
L= XOO S U iy 9
a2ua0L0 @ m

-~ 00 -4

QU DY U< []
COVNCE®N co¢C
—tem T L@ oo oo e ()
cCONOO > c4+ NT
>0LTQ QL O~
QUi C L Q Uedom
oOxXOODO (=& o

LN DSIX> NI/ ™ L |/ TQ0T U PL - NY~ECOQTLUNID>IXDNT—m

O A OO OO AR EHOrt OO rH O rE O~ OAOrEO~AOOHONOMOFHOEH OO OO ~O
OO rOOEH OOt rd OO A r OO rtri OO OO A~ OO~ OO OO A~ OOH=-O O
HOOOOrErrri OO OOl OOt e OO OOt A OO0t HOOOO il
HOOOOOOOOmrmrierd el O OO OOOOODE vl el e e H OO OOOOOOrmirmird vl i et
Oedrdrdedried vl el sl rl rd e d r) e A +H O O O OO OO OO OOOOOCOOO el vt vl vf vt vl vd oo d v v) v v =4
OO0 OOOOOOOROOOO O vi v v vl ei vl vei o=l o4 o) o= v o=f =d v v v o=l) o e od o o o) od o o) = = 4
e e ke ke ke R ke ke ke e e R ke R R R e R e e e R e e D ke e Rl e ke R K K B B R K R Kon Ko R Do R o s
- X-X-X-X-X-X-X-X-X-¥_-¥-¥_Y_¥_¥_-¥-F_¥-F_N-_F_Y-F_N-_N-F- YN NN NN —R_ Y NN R_N— N Y YR

ANMINONOOOANMITIINONOVOOFNMITINONORNO~SNM TN
OO0 rmrririrmiemimet=INNNNNN
Ll R R e e e e D L L L R el e e e R R R ke R ek E Rl]

126

0S/VS Sort/Merge Programmer's Guide

186

| APPEND NG ESTIMATES

The tables in this appendix contain aestimated total execution
times for some sorting applications using the 0S5/VS Sort/Merge
Program Product 5740-SMl program. They are given for planning
purposes only and could, therefore, deviate from similar actual
runs.

The figures given for elapsed time (in seconds) are for sorting
both fixed and variable-length records using the FLR- and
VLR-Blockset sorting techniques. No figures are provided for
merges.

Timing estimates are given for the 3350, 3375, and 3380 Direct
Access Storage Devices. In addition, the last table shows
multiplication factors for calculating the timing estimates for
jobs run with processors other than the IBM 3031 Processor.

| INPUT/OUTPUT BLOCKING

Input and output records were blocked and the block size used
was 4000 on the average. The average record length was 500
bytes. If your own block sizes or record lengths are different,
your results will, of course, vary from these.

| INTERPOLATION/EXTRAPOLATION OF ELAPSED TIME

Interpolations can reasonably be made for main storage
availability and for data set size.

Extrapolation for bigger data sets than are included in the
tables can be performed. Bear in mind, though, that
extrapolation will not give the same degree of accuracy as
interpolation.

| ASSUMPTIONS MADE IN PRODUCING ESTIMATES

All figures assume that the sort is not being multiprogrammed,
that is, no other task is using the processor or input/output
davices. It is also assumed that I/0 operations are error-free.
Jobs were run under a V52/MVS Release 3.8-level system. Other
assumptions are described below.

The control statements for the timing estimate applications are
shown in Figure 25.

//7xxx JOB ...
2/xxx EXEC PGM=ICEMAN,PARM='SIZE=(xxx)"',REGION=xxx
7/7xxx DD statements

SORT FIELDS=(6,4,CH,A,15,6,CH,A),FILSZ=xxx
/7%

Figure 25. Control Statements for Timing Estimate Applications

Appendix F. Timing Estimates 187

| RECORDS AND CONTROL FIELDS
| It is assumed that:

. IB? required sequence may be ascending (A) or descending

J There are two control fields, which are EBCDIC characters or
binary (on a byte boundary), up to 10 bytes long. Control
fields of any other format, number, or length might increase
elapsed time.

|

o No user exit routines are to be activated.

| MAIN STORAGE

The figures shown under "Main Storage"™ (in the tables below)
correspond to the SIZE parametaer specified on the EXEC
ftatement. The MVS region used was approximately 50K bytes
arger.

| It is assumed that:

. The sort is running in a region or partition in virtual
mode.

. The number of real pages is equal to the virtual region or
p?Itition size, so that no time for page transfers is
allowed.

| DEVICES USED

The SORTIN and SORTOUT files ana one SORTWK file reside on 3380
disk devices. The SORTWK file resides in one work area on a
volume different from those used for SORTIN and SORTOUT.

To obtain estimates for the 3350 Direct Access Storage Device,
use the figures given for the 3380 devices in the following
tables and increase them by 6¢5%.

To obtain estimates for the 3375 Direct Access Storage Device,
gge the figures given for the 3380 devices and increase them by
%.

| TABLES SHOWING ESTIMATED TOTAL EXECUTION TIMES IN SECONDS

IBM 3031 Processor using FLR-Blockset for sorting fixed-
length records

File Size

in_MB 1 4 9 14 25 50 75
Main
Storage

60K 12 45 97 148 257 498 -
230K 8 30 65 98 171 331 490
400K [20 %3 66 114 221 325

188 0S5/VS Sort/Merge Programmer's Guide

IBM 3031 Processor using VLR-Blockset for sorting variable-
length records
File Size
i B 1 4 9 14 25 50 75
Main
§ ggrage
60K 26 89 184 273 460 859 -
230K 14 47 96 143 241 451 650
400K 7 25 51 75 127 236 340

| TIMING ESTIMATES FOR OTHER PROCESSORS

To obtain timing estimates for other processors (in seconds),
multiply the entries in the above tables by the appropriate
factor from the table below.

|
| Processor VLR-Blockset FLR~Blockset
IBM System/370 Model 158 1.074 1.069
IBM System/370 Model 168 .833 .8645
IBM 3032 Processor .822 .835
IBM 3033 Processor .781 .797
IBM 4341 Processor 1.132 1.123

Appendix F. Timing Estimates

189

INDEX

A

ABEND 46,55,129
ABEND codes 135
access methods
for input and output (see QSAM, VSAM)
for work areas (see EXCP, EXCPVR)
adding records
to a merge 92,95
to a sort 83,86
address, parameter list
examples 107-112
AFF parameter 62
altering main storage
allocations 6,61,14-20
altering records 78
ALTSEQ
examples 5%
format 53
in parameter list
keyword ¢
statement 28,21
AMP 63
application
development 113
examples for sort/merge
program
ascending order 34
ASCII
collating sequence
DCB parameters 63
example 167
restriction with exit E61 97
restrictions with user exits 80
ATTACH macro instruction 100,108
checkpoint/restart facility 108
optional DD names 102
optional main storage value 105
average length 27,649,124

104

104,106

159,13

3,185

B37 information message 19
BALN parameter 17,130
binary data 23,34,3
example 38
blanks in control statements
BLKSET
keyword &
operand 46
BLKSIZE subparameter 64
blocking
efficient 114
input/output records 187
Blockset sorting techniques
bypassing 119
conditions for use 117
BSAM 72,130,78,86
BUFOFF parameter 64
BUFSP 63
bypass 141

30-32

190 0S/VS Sort/Merge Programmer's Guide

c

calculating intermediate
storage 16-20

calculating main storage 14,15
CALL macro 81

capacity exceeded 19,85
cataloged procedures 59,60

examples 162-168,170-175,179-182
CHALT
keyword ¢4
operand 45
channel paths
character data
examples 38
CHECK
keyword ¢4
operand 46
checkpoint/restart 7,36
cancelled 155
data set 72
deferred restart 70
executing a merge 40
executing a sort 36
restrictions with ATTACH
CHKPT operand (see CKPT)
CKPT operand 36
in MERGE 40
in SORT 36
when ignored 40
CLOCK parameter 130
closing data sets
COBOL 100
reserved space 14
use of SORTCNTL with 72
CODE operand (see ALTSEQ)
codes, condition 100,7
collating equal records 3
(see_also EQUALS)
collating sequence
(see also ALTSEQ statement)
ASCII 3,185
EBCDIC 3,183
modification of 3
COMMA area 135,136
comments field 30
completion codes (see condition codes)
concatenated data set, input 67
concatenation on unlike devices
(example) 176
condition codes 100
continuation card 31
continuation column 31
control field 3
(see also ALTSEQ)
lengths 23
limitations 3
modification of 79,96
rules governing 30-32
simplify descriptions
sorting, efficient 113
control statement
(see_also JCL)
coding errors 140
compatibility 29
error conditions 32
examples 13,159
format 30

120
23,4

103

80,85

124

guide to preparing 10
image 102,105-107
labels 30,102
summary 21-29
control fields ¢4
control, flow of 75
conventional sorting techniques
converter 16
CORE parameter (see SIZE)
CRCX parameter 61
critical messages option 61
CTRx parameter 130

119

cylinders, specifying intermediate

storage in

D-type records 49

data converter 16

data format 23,35
descriptions 137-139
examples 137-139

data set size 124

DCB subparameters 64

maximum acceptable record length 2

relationship to RECORD
statement 48-50
DDname
for message output 5
modifying
from SORT 106
from SYSOUT 106
DD parameters 63
DD statements 62-72
JCL 101
program 65
SORTCKPT 72
SORTCNTL 72
SORTDKnn 72

SORTIN 66
SORTINnn 68
SORTLIB 66
SORTMODS 71
SORTOUT 70
SORTWKnn 68
system 66

DEBUG statement 55,129-132,21
format 55
in parameter list 104,106
messages
user of 129

decimal data (see fixed-point data

and zoned decimal data)
default values

DDname for message output 102

for DD parameters 63
for DCB subparameters 64
record length 23,48-50
specified at sort generation
deferred restart 0
deleting records 78
with E35 93
density 64,172
DEN subparameter 64,172
descending order 34
devices
data transfer rates 122,123
direct-access 120
for input/output 2-3
for intermediate storage 16
tape 121

3-5

DIAG option
explanation 61
messages 133
specifying 60,107
diagnostic information (gee DEBUG
statement, DIAG option)
direct access device
input record limitations 2
intermediate storage 16-20
disk sorting techniques 116
DISP parameter 63
DSNAME parameter 63
DUMMY 66,71
DUMP 55,129
dumps
normal ABEND 134
specially formatted 134
DYNALLOC operand 23,24,37

EBCDIC 3,183
ECB parameter 108
efficiency, program 113-126,8
end-of-file routine 80,87
END statement 55,21
entry point 125
EODAD field 87
equal control fields
collating 3,37
summarizing records with 90
EQUALS
keyword &
operand 37,44
ERETINV keyword ¢
ERETJCL keyword 5
EROPT field 86
error
critical 61,140
handling and label checking 78
I0 86,89
messages (see messages)
read/write routines 78
examples
ALTSEQ statement 54
coding a parameter list 110
control statements
(complete) 159
data formats 137
DD statements 66-72
exit routines 98
MERGE statement 641
MODS statement 52
OPTION statement 46
RECORD statement 50
SORT statement 38
exceeding
intermediate storage 19
NMAX 98
EXCPVR keyword 5
EXEC statement 57

exits 73
El1l 83
E15 83,104

sample coding 98

used to supply all input 66
El6 85

sample coding 98

El7 85
E18 86
El9 89

Index

191

E21 90
E25 90
E27 91
E28 92
E29 92
E31 92
E32 92,104
E35 93,104

sampla coding 98,99
used for all output 71

E37 95

E38 95

E39 95

E61 96

potential problems 128
EXLST field 86,89
external references 125

F

F-type records 49
FIELDS operand
merge 40
sort 32
FILSZ operand 35,640,442
final merge phase 77
fixed-length records 1,27
fixed-point data 23,137,4
FLAG option
specifying in DEBUG statement 129
specifying in EXEC statement 60
specifying in parameter
list 104,106
floating-point data 23,138,4
FLR-Blockset sorting technique
bypassing 119
conditions 117
forcing a technique 60,126
FORMAT operand 35,40
formulas for intermediate
storage 17,18
fragmentation 70,14
function
sort/merge 1
user routines

1,116

73

G

generation phase 77

GETMAIN 51

H

hardware requirements 6
high-performance technique (see
standard disk technique)

192 0S/VYS Sort/Merge Programmer's Guide

ICECOMMA (see COMMA area)
image
control field 96
statement 102
INCLUDE statement 29
ingg;mation supplied by the program

E25 90
E32 92
E35 93

initialization phase 76
initiation
INPFIL statment 29
input

data sets 2

devices 2

final merge phase 77,92-97

intermediate merge phase 77

job stream 58

phase 73,76

records 3

sort phase 73,83-90

end-of-file routine 80,87
modifications of 83

input/output

blocking 187

data set characteristics
inserting records 85,66
installation options 4,113
intermediate merge phase 74,77

not entered 77
intermediate storage

assignment formulas, summary 17,

124

calculating requirements 17-20
capacity errors 79

data sets 68

devices 16,120

efficient use of 120

for direct access devices 120

for tape devices

formulas 17

requirements 18
I/0 errors 78

JCL 57

Job Control Language
DD statements 101
examples 159
when initiating sort with macro

JOB statement 57

JOBLIB DD 64

57

journaling VSAM data sets 78
K
key phase 77
keyed data set (see VSAM)
keywords
default ¢

operand field 30

18

102

label
checking 1,78
DCB parameters from 66
field on control statements
LABEL parameter 63
LENGTH operand 49
example 50
libraries
containing user routines
DD statements required
link library 59,60
LINK macro instruction 100,108
linkage conventions and programming
languages 78
linkage editor
examples 81
requirements for user routines 51

23,102

51,65,71
2

spare tha 124

LIST
coding a parameter 110
keyuword

PARM field option 60
load modules, user routines as 81
LRECL subparameter 6%

M

machine requirements 6
magnetic tape intermediate storage
requtrements 17
main storage
calculating requirements 14
for user routines 51
minimum 115 .
optional value in parameter
list 105
optional reserved value in
parameter list 105
upper limit to 6
major control field 3
maximum lengths for input and output
records 2,3
MAXLIM keyword 61,5

merge 3
input to 66
via E32 105,92

merge pass 77

merge phase 74

MERGE statement 60,21
examples ¢l
format 23

message option (gee FLAG option)

messages]
bypass 141
B37 19
checklist 141
DEBUG 131
description of
DIAG 133
error and information
format 142
status of 140

minimum intermediate storage 17

minimum record length 2,48

MINLIM keyword 61,5

minor control field 3

140
140

modi fying collating sequence (see
ALTSEQ)
modi fying records 79
MODS statement 51,21
examples 52
format 28
indicating link-editing in 52
modules, program 73
MSG parameter 61
(see also FLAG option)
MSGS keyword 5
multiple control fields 3
MVS 6,35,40,42

naming convention, exit 74

NMAX 20
exit 85

NOABEND 55,129

NOBLKSET 46

NOCHALT 45

NOCHECK 46

NODUMP 55,129

NOEQUALS 37,44

NOFLAG 61

NOLIST 61

nonstandard disk sortlng techniques
(see BALN, CRCX)

normalization of floating-point
data

notational conventions 22

NOVERIFY 45

NOVIO 38,45

OMIT statement 29
operand field 30
operating system, relatlonshlp to
operation field 30
OPTION statement 42,21
examples 46
format 25
OPTCD parameter 64
optimum disk sorting technique (see
standard disk sorting technique)
options, installation 113
oscillating tape technique 17
checkpoint/restart when
using 36,440,643
forcing 60
requirements 17
0SCL 60,17
in parameter list 107
05/VS (see operating system)
OUTFIL statement 29
output
data set 124
ignored 93
modification of 93
phase 74,77
OUTREC statement 29
overview
of how to use the program 9-13
of program functions

Index

1

193

p
packed decimal data 23,137,4%
parameter list 104

107,110

example of coding
RM

field options 60
in parameter list 105
passwords 2
effect on SIZE 88
PEER parameter 61
Peerage sorting technique
PEERVALE parameter
performance efficiency, improving
phase 0 76
phase t 73,76
phase 2 74,77
phase 3 74,77
program exits in each phase 73
PL/I 100
reseryed space 14§
use of SORTCNTL with 72
POLY 60
in parameter list 107
polyphase tape technique 17
checkpoint/restart when
using 36,40,43
forcing 60
requirements 17
PRINT keyword 5
problems, how to handle 127
procedures, cataloged 59-60
examples of use 159
program control statements (see
control statements) '
program DD statements 65
program description 74
program efficiency 113
program exits 73
potential problems 128
sample routines for 98
program facilities and options ¢
program failure 134,127
program initiation 7
EXEC statement 57,134
SORT cataloged procedure 59
SORTD cataloged procedure 60
with system macro
instruction 100
program modification 7
program termination 5,55

1,119

Q

QSAM 2
closing data sets 79
handling input 86
input error handling 78
output error handling 79

RDW 83
read error routines 78

194 0S/VYS Sort/Merge Programmer's Guide

113

RECFM 64
and RECORD program control
statement
record change exits
E15 83
E25 90
E35 93
record descriptor word (RDW) 83
RECORD statement 48,21
examples 50

format 27

records
addition 83,93
deletion 83,91,93
fixed-length 1,27
length

average 27,649,124
maximum 49
minimum 49
skipped 36,43,85
storage area 94
summarizing 95
types 49
variable-length 1,27,115,124
recurring problems
references, external 124
region size 6,15
register
base, for user routines 81
conventions 81
saving and restoring 81
RELEASE keyword 5
release of unused work space 70
RESALL keyword 5
RESDNT keyword 5
RESINYV kevword 5
restart 7
deferred 790

RETPD 71
return codes 7,100
exit E15 83
exit E16 85
exit E25 91
exit E32 93
exit E35 94

routines, user 51,73

save areas 135
SECALL keyword 5
secondary allocation
segments, program 73
sequence
checking 94,95
collating (see collating sequence)
separate link-editing 51,124
signed numeric data ¢
SIZE 14
input data set size (seq FILSZ)
keyword 5
main storage '
allocation 6,60,14,15,105
for maximum efficiency 115
operand 35,640,642
PARM field option 60
SIZE=MAX 115,61
skipping
input records 36,43
intermediate merge phasa 77

69,120,121

SKIPREC
operand 36,43
restrictions when merging 36
use with NMAX routine E16 85
SMF keyword
sort blocking (B) 17
sort genaration options 4-5
sort phase 73,76
exits from 75
SORT cataloged procedure 59
SORT statement 32,21
examples 38
format 23
SORTCKPT DD 72,66
exampla 72
when initiating with ATTACH

~ macro 103
SORTCNTL DD 72,66
examples 72,112

SORTD cataloged procedure 60
SORTDKnn DD 72,66
SORTIN DD 66,65

data set ignored 66,84

examples 7

modi fication 84

when initiating with macro 101
sorting techniques 1,116-119,17,18

bypassing 119

cglculating intermediate storage

or

disk 116

forcing 126,62

optimum performance 113

requirements 14

specifying in parameter list 107

tape
SORTINnn DD 68,65

examples 68

when initiating with macro 101
SORTLIB

DD statement 66,65

keyword

when initiating with macro 101
SORTMODS DD 71,65

examples 71
SORTOUT DD 70,65

data set ignored 71

example 71

when initiating with macro 101

with checkpoint 40
SORTWKnn DD 68,65

channel paths 120

examples 70

when initiating with macro 101
SPACE parameter 63,70,120

in cataloged procedure 59,60
space requirements 16

tape 17

direct-access 17
spanned records 2,17

estimated maximum size 2
speed matching buffer feature 6
split cylinder parameter 69
STAE routine
standard disk sorting technique
statistical data collection 8
STEPLIB DD 64

in cataloged procedures 59,60
storage

calculating 14

capacity exceeded 19,85,79

direct-access 120,2

intermediate 16,2

library 7

1,18

main 6,14,115
minimum main

tape 17,121

work 16,19,20,120

SUM statement 29
summarizing records 90,91,95
summary of how to use the program
SVC keyword 5
SYSABEND DD 65,134
SYNAD field 86
SYSIN DD 64

user routine in 52,81

and MODS statement 51,52

read/write error routines in 78
SYSLIN DD 65

in cataloged procedure 59,60
SYSLMOD DD 65

in cataloged procedure 59
SYSOUT DD 6

alternative name for 106

in cataloged procedure 59,60
SYSPRINT DD 65

in cataloged procedure 59,60
system

DD statements 64

macro instructions 100
SYSTEM keyword
SYSUDUMP DD 65,134
SYSUT1 DD 65

in cataloged procedure 59,60

T

tape
distribution techniques 17
efficient use
intermediate storage formulas 18
length 17
shared units 62
sorting techniques 125
sorting techniques, forcing 126
units, maximum and minimum
number 17 .
work storage on 20
techniques
(see sorting techniques)
temporary data sets
for intermediate storage 68
for user routines 73
terminating sort/merge 4,5
in E15 3
in E25 90
in E35 93
termination
1/0 errors 78
retaining intermediate storage
data sets
with DIAG 62
timing estimates 187
total tracks for intermediate
storage 17

trace 135
translation 16
TRTCH 64

example 172
TYPE operand 49
examples 50

format 27

Index

9

195

u

UNIT parameter 63,120
user-uwritten routines 7,51,73
effect on performance 80,124
examples 98
linking to 81
loading 81

v

V-type records 49
Vale sorting technique
variable-length records
input to merge 68
input to sort 66
variable-length spanned records 2
VBLKSET keyword 5
VERIFY »
keyword 5
operand 45
VIO keyword 5
virtual Iv0 70
VLR-Blockset sorting technique
bypassing 119
conditions 117
VOLUME parameter 63
VS (see operating system)
VSAM 2,3
closing data sets 87
exit functions 79
input error handling 87,78
output error handling 79,88

1,119
1,27,115,124

1,116

u

work data sets 65,68

work storage (see intermediate storage)

write error routines 78

196 0S/VS Sort/Merge Programmer's Guide

X

XCTL macro instruction

Z

.2zoned decimal data

examples 39,41

Numerals

2314 disk 16,18
efficient use of

100,108

23,137,4

120

2319 disk (as for 2314)

3330 series disk
efficient use of
3340 disk 16,18
efficient use of
3350 disk 16,18
efficient use of
3375 disk 16
efficient use of
3380 disk 16,18
efficient use of
3850 MSS 16
efficient use of
3880 Model 2 or 3
7-track tape

16,18

120
120
120
120
120
121

6,16

as intermediate storage 16

data converter for

efficient use of
9-track tape

16
121

as intermediate storage 16

efficient use of

121

Staples can cause problems __.n automated mail sorting equipment.
Please use pressure sensitive or other gummed tape to sea! this form.

Note:

00 00C00000000600000000000000000000080000000E000IEteseesstessreeessstroenocactecersoseecitiecsrsnireerorocioenetoserornsssrsrniresssessasessssecsseccnssnccs,

Reader’s

OS/VS Sort/Merge Comment
Programmer’s Guide Form
SC33-4035-7

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. This form may be used to communicate your views about this publication. They will be sent to the
author’s department for whatever review and action, if any, is deemed appropriate. Comments may be written in
your own language; use of English is not required.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation whatever. You may, of course, continue to use the information you supply.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct
any requests for copies of publications, or for assistance in using your IBM system, to your IBM representative
or to the IBM branch office serving your locality.

List TNLs here:
If you have applied any technical newsletters (TNLs) to this book, please list them here:
Last TNL

Previous TNL

Previous TNL

Fold on two lines, tape, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere,
any IBM representative will be happy to forward your comments.) Thank you for your
cooperation.

SC33-4035-7

Reader’s Comment Form

Fold and tape Please do not staple Fold and tape

® 800000000 000000000000 00 000000000000 000000e00ccscctseccnose

| || || I NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES
. .]
FIRSTCLASS PERMITNO.40 ARMONK, N.Y. ——
]
POSTAGE WILL BE PAID BY ADDRESSEE ———
]
.|
]
o .]
IBM Corporation S —
P.O. Box 50020 .]
Programming Publishing SR ——
San Jose, California 85150 —-
]
]

0000000000000 000000 0000000000000 000

Fold and tape Please do not staple Fold and tape

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N.Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591

18M Wortd Trade Europe/Middie East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., US.A. 10601

L'QSOV'SSOS "V'S'N Ul paauld ((SA/SO) ££-0LES 'ON 2114) 8pinD s,1awwelbold abia/110S SA/SO

. R
€ 0 00 0000000000000 000060006000000000000000000000060060600000000000000000000000000000000C0CCCEOIO0CC0C0CCIOC0000C00C0C0O0CC0INNONEscitssstornesosonsonerosraceosssncsccccnscsscnntsscccncen

	00000
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	replyA
	replyB
	xBack

