GC26-3813-3
File No. S370-31

OS/VS Linkage Editor
Systems and Loader

VS1 Release 3
VS2 Release 2

LB

Fourth Edition (May 1975)

This edition is a reprint of GC26-3813-2 incorporating changes released
in Technical Newsletters GN26-0774 (dated December 5, 1973) and GN26-0779
(dated June 30, 1974). GC26-3813~2 was a major revision and made
GC26-3813-1 obsolete.

This editicn applies both to Release 3 of 0S/VS1 and to Release 2 of
0S8/VS2, and to all subsequent releases of either system unless otherwise
indicated in new editions or technical newsletters.

Information in this publication is subject to significant change. Any
such changes will be published in new editions or technical newsletters.
Before using the publication, consult the latest IBM System/360 and
System/370 Bibliography, GA22-6822, and the technical newsletters that
amend the bibliography, to learn which editions and technical news-
letters are applicable and current.

Requests for copies of IBM publications should be made to the IBM
branch office that serves you.

Forms for readers' comments are provided at the back of the publication.
If the forms have been removed, comments may be addressed to IBM
Corporation, Department JOU4, 1501 California Avenue, Palo Alto, California
94304, All comments and suggestions become the property of IBM.

© Copyright International Business Machines Corporation 1972, 1973

This publication provides applications
programmers with the information necessary
to use the 0S/VS Linkage Editor and Loader
to prepare the output of a language
translator for execution. Additional
information on the operation and use of
the linkage editor and loader is directed
to the system programmer responsible for
installing and maintaining the operating
system.

The Introduction briefly defines the
functions of the linkage editor and loader
and gives recommendations for the use of
each. Part 1 describes the linkage editor,
and should be read before Part 2, which
describes the loader.

The linkage editor combines and edits
modules to produce a single module that
can be brought into storage by program
fetch for execution. It operates as a
processing program rather than as part of
the control program. The linkage editor
provides several processing facilities that
are either performed automatically or
invoked in response to control statements
prepared by the programmer.

Part 1, which consists of six chapters
and three appendixes, briefly describes the
processing facilities and operation of the
linkage editor. The introduction also
defines linkage editor terms in reference
to the source language statements that
cause them to be created.

The six chapters describe the input to
the linkage editor, the output from the
linkage editor, module editing functions,
design and specification of overlay
programs, the job control language
necessary to run a linkage editor job step,
and the linkage editor control statements.
The last two chapters are summaries of
reference information to be used after the
general information in the first four
chapters is learned. The appendixes to
Part 1 contain sample programs, a
description of the linkage editor programs,
and information on the invocation of the
linkage editor.

PREFACE

The loader program combines the basic
editing and loading functions of the
linkage editor and program fetch in one job
step. It is designed for aigh-performance
loading of modules that do not require the
special processing facilities of the
linkage editor and fetch, such as overlay.
The loader does not produce load modules
for program libraries.

Part 2 of this publication describes the
loader. The introduction to this part
describes the functional characteristics of
the loader, along with its compatibility
with the linkage editor and restrictions on
its use. The chapter on using the loader
describes the job control langquage
statements and invocation procedures for
the loader, as well as loader input and
output, and user program data. The
appendixes to Part 2 contain sample input,
a description of loader return codes, and
storage considerations. All of these items
are discussed in relation to the capabilities
of the linkage editor; therefore, the
reader must be familiar with Part 1 of this
publication.

The diagnostic messages issued by both
the linkage editor and the loader program
are described in 0S/VS Message Library:
Linkage Editor and Loader Messages, GC38-1007.
The description of each message includes an
explanation,a system action, and a problem
determination action to be taken.

TIME SHARING OPTION (TSO)

The following publication is needed to use
the linkage editor or loader under the Time
Sharing Option (TSO):

08/VS2 TSO Terminal User's Guide,
GC28-0645

This manual contains procedures for
invoking the linkage editor or loader from
the terminal and gives a brief description
of the options that can be specified under
TSO.

dii

Further information on TSO can be found
in the following two manuals:

0S/VS2 System Programming Library:
Job Management, Supervisor and TSO,
GC28-0682

0s/VS2 TSO Command Language Reference,
GC28-0646

ADDITIONAL PUBLICATIONS

Within the text, references are made to
the following publications:

0S/VS Data Management Services Guide,
GC26-3783

0S/VS2 Planning and Use Guide for
Release 2, GC28-0667

0S/VS1 Service Aids, GC28-0635

0S/VS2 System Programming Library:
Service Aids, GC28-06710

0S/VS1 Storage Estimates, GC24-5094

0S/VS2 System Programming Library:
Storage Estimates, GCZ28-060%

iv

0S/VS1 Supervisor Services and Macro
Instructions, GC2K-5703

0S/VS2 Supervisor Services and Macro
Instructions, GC28-0683

0S/VS1 System Data Areas, SY28-0605

0S/VsS2 Data Areas, SYB8-0606

0S/VS1 System Generation Reference,
GC26-379T

0S/VS2 System Programming Library:
System Generation Reference, GC26-3792

0S/VS Utilities, GC35-0005

0S/VS Message Library: 0S/VS1 System
Codes, GC38-1003

0S/VS Message Library: 0S/VS2 System
Codes, GC38-1008

0S/VS Message Library: Routing and
Descriptor Codes, GC38-100L4

0S/VS Message Library: Linkage Editor
and Loader Messages, GC38-1007

PREFACE . .« ¢ « o« o o o o =+ o o =«
INTRODUCTION . . « « o o o o o o o
PART 1., LINKAGE EDITOR « &+ ¢ « o « &

Object and Load Modules . « « « «
External Symbol Dictionary . . .
TEXt « &« o o o ¢ « o o @« o o o o
Relocation Dictionary . « « « &
End Indication ¢ ¢« « o ¢ ¢ ¢ o @

Linkage Editor Processing . « « « «

Input and Output Sources « « « «
Load Module Creation « « . o o« o
Assigning Addresses « 4 « ¢ o o
Resolving External References .

Functions of the Linkage Editor .« .
Links Modules .« . ¢ ¢ o o « o &«
Edits Modul es L] . - L] - . . . -
Accepts Additional Input Sources

Aligns Control Sections or Common

Areas on Page Boundaries
Reserves StOrage . « « « o « « &
Processes Pseudo Registers . « .
Creates Overlay Programs . . « »
Creates Multiple Load Modules .
Provides Special Processing and
Diagnostic Output Options . .« .
Assigns Load Module Attributes .
Allocates User-Specified Virtual
Storage Areas « o o o o« o ¢ o o
Stores System Status Index
Information .« « « « ¢ o ¢ o o «
Traces Processing History . . .
Lengthens Control Sections or
Named Common Sections
Assigns an Authorization Code
to Output Load Modules
Relationship to the Operating System
Time Sharing Option (TSO) . . .
Language Dependencies . .« . . o .
Assembler Language . . .
COBOL ¢ & o & o o o &
FORTRAN ¢ « o o« o« « o o
PL/LT ¢ ¢« ¢ o ¢ o s o o @

INPUT TO THE LINKAGE EDITOR . .+ « .

Primary Input Data Set « ¢ o« « « « o

Object Modules « « ¢ o ¢ o o« o o @
From CardsS « o« o« o« o o « o 6«

As a Member of a Partitioned Data

Set L] L] - - - . - . - - . - . -

Passed from a Previous Job Step

Created in a Separate Job . . .
Control Statements « « . o < o«

Object Modules and Control Statements

Control Statements in the Input

Stream ¢« « o« o « o o o o o o o @
Control Statements in a Separate
Data Set ¢« o o ¢ o o o o o o o

Automatic Call Library « « « o« o o o
SYSLIB DD Statement .« o+ « « o o @
System Call Library .« « « « o« o
Private Call Libraries
Cconcatenation of Call lerarles
Library Control Statement . . « .
Additional call Libraries . . .

s ¢ 8 o s o
.

Liid

[}

Yoo~ W

24
24
25
25
25
26

27

CONTENTS

Restricted No-Call Function . .
Never-Call Function
NCAL Option « ¢ o« o o o ¢ o o o &
Included Data Sets
Including Sequential Data Sets .
Including Library Members . . .
Including Concatenated Data Sets
OUTPUT FROM THE LINKAGE EDITOR . . .
Output Load Module « ¢« . . .

Output Module Library < « « « «
Member Name€ . « « o = « o & o« &
Alias Name€sS .« « o« « o o s s o

Entry Point . & o o o o o o o o &
Reserving Storage in the

Module &« o o ¢ o ¢ o o o o o o o
Processing Pseudo Registers . . .
Multiple Load Module Processing .
Diagnostic Output . . « « «
Diagnostic MesSSages .« o « o« s+ o o
Module Disposition Messages . .
Error/Warning Messages « « « « »

Sample Diagnostic Output
Optional Output « « « o « « « « &

Control Statement Listing . . .
Module Map ¢« « o s o o o o« « o« @
Cross-Reference Table
MODULE EDITING + « « ¢ o o o o o o &
Editing Conventions . « « . o«
Changing External Symbols . . . « .
Replacing Control Sections
Automatic Replacement .« « « . o «
Replace Statement . . « & « < « .

Deleting a Control Section or Entry
Name « o o ¢« o o o o o o o o o « o &
Ordering Control Sections or Named

Common Areas . . . « o« o . . .
Aligning Control Sections or Named

Common Areas on Page Boundaries. . .
OVERLAY PROGRAMS . . &« « o« o & « « &
Design of an Overlay Program . . « .«

Single Region Overlay Program . .
Control Section Dependency . . «
Segment Dependency . . + « « . .
Length of an Overlay Program . .
Segment Origin « . . .
Communication Between Segments .
Overlay Process

Multiple Region Overlay Program .

Specification of an Overlay Program

Segment Origin . « « .+

Region Origin « « o « « « « « «

Positioning Control Sections . . .
Using Object Decks « « « & + «
Using INCLUDE Statements
Using INSERT Statements

Special Options
OVLY Option .« « o ¢ « ¢« o« « o« &
LET OCption . . « & & & & &+ « & .

XCAL Option « o« « « o« o
Special Considerations . . .
Common Areas « « e« o « o o
Storage Requirements . . .
Overlay Communication . .

CALL Statement or CALL Macro
Instruction

Branch Instruction . « « « + «

Output Load

Segment Load (SEGLD) Macro
INsStruction e« « o« 4 ¢ « « & o o @
Segment Wait (SEGWT) Macro
INStruction .« ¢« ¢ « « ¢ « ¢ « o« @

JOB CONTROL LANGUAGE SUMMARY o o o o
EXEC Statement -- Introduction . - o
EXEC Statement -- Job Step Optlons .
Module Attributes . . .
Not Editable Attrlbute
Only Loadable Attribute
Overlay Attribute . . .
Reusability Attributes .
Refreshable Attribute . « . « « &
Test Attribute . . . « e e o o
Page Boundary Attrlbute. e e e .
Default Attributes
Incompatible Attributes .
Special Processing Options .
Exclusive Call Option . .
Let Execute Option
No Automatic Library Call Optl

" a2 * e 4
T s 0 8 &
L T T S
s 2 s o 3

Space Allocation Options . . «
SIZE Option .« + « o o o o

VALUE, e e e e e e e
Examples of Value2 DetermJnatlon ..
VALUE] « + o« + « « -« e e e e

Examples of Valuej Determlnatlon ..
DCBS OptiOn « « « o « s o o« o @
Output Options . « . e« o o @
Control Statement Llstlng Option
Module Map Cption « . .
Cross-Reference Table Option . .
Alternate Output (SYSTERM) Option
Incompatible Job Step Options « « «
EXEC Statement -- REGION Parameter
EXEC Statement -- Return Code . .
DD Statements .« « ¢ o ¢ o o o o .
Linkage Editor DD Statements . .
SYSLIN DD Statement . « « « &
SYSLIB DD Statement . o« o o o o
SYSUT1 DD Statement . .
SYSPRINT DD Statement .
SYSLMCD DD Statement . «
SYSTERM DD Statement . .
Additional DD Statements .
Cataloged Procedures . . o« o o o o o o
Linkage Editor Cataloged Procedures
Procedure LKED ¢« + ¢ « o o s o = =
Procedure LKEDG « 4 « o « s &
Overriding Cataloged Procedures
Overriding the EXEC Statement
Overriding DD Statements . . .
Adding DD Statements « « « « « « o o

e o 8 s o
¢« & s a o

s o o a3 »
.
.
.
&

e« e« & 0

LINKAGE EDITOR CONTROL STATEMENT
SUMMARY 4 o o 2 o e o o o o o o o« o« =«
General FOormat « ¢« o o« « ¢ o ¢ o @
Format Conventions . . .
Placement Information .
ALIAS Statement
CHANGE Statement « « « &
ENTRY Statement o« « « «
EXPAND Statement
IDENTIFY Statement « « o « ¢ o o &«
INCLUDE Statement . . « «

«a s s e
.
.
.
.

.
.
.

110

111
111
111
112
113
114
116
117
118
119

vi

INSERT Statement « « o ¢ « o« o o o
LIBRARY Statement « e s s s e & &
NAME Statement
ORDER Statement.
OVERLAY Statement ¢ & e e ¢ e e ® «

e« o e o o e e s s @

PAGE Statement
REPLACE Statement . .
SETSSI Statement . « . « « « + « &

APPENDIX A. SAMPLE PROGRAMS .+ « o« & o «
Sample Program COBFORT . . « « . « ¢ o
Job Control Language . . « « « o o
Linkage Editor Output .« « « « ¢ o .
Sample Program RPLACJOB . « « « o & «
Job Control Language « « « + o« o o o
Linkage Editor Control Statements .
Linkage Editor Output .« « « « « o .
Sample Program REGNOVLY . « « ¢« ¢ o« o .
Job Control Language « « « o« o o o
Linkage Editor Control Statements .
Linkage Editor Output « « « ¢ « « &
Sample Program PARTDS .« ¢« « o o o o o &
Job Control Language « « « o o o o« -«
Linkage Editor Control Statements .
Linkage Editor Output . . . « . . .

APPENDIX B: INVOCATION OF THE LINKAGE
EDITOR « 4 o o ¢ o s o ¢« o o o o o o &

APPENDIX C: STORAGE REQUIREMENTS AND

CAPACITIES .« o o « o o o o o o o o o o 4
Capacities . . . e e e e e e e .
Intermediate Data set e e e e e e e
Linkage Editor Storage Requirements

PART 2: LOADER ¢« « o ¢ ¢ o o o« s o « &
Functional Characteristics
Compatibility and Restrictions . . « .
Time Sharing Option (TS0) « o« « o .
Processing Object Modules in Virtual
StOrage « « o o ¢ ¢ o« o ¢ s o & o
Loaded Program Restrictions

o e o

USING THE LOADER ¢« + ¢ s o o s o o o o
Input for the Loade€r « ¢« « « o« o« ¢ o «
EXEC Statement « o« « o o o o o o o o
DD StatementsS « o« « ¢« o ¢ o « o o ¢ o
SYSLIN DD Statement . . o + o o o
SYSLIB DD Statement « « « ¢ ¢ o« ¢ o
SYSLOUT DD Statement . . + « « « « .
SYSTERM DD Statement « « « « o« o «
Loaded Program Data .« « « « ¢ o« ¢ « o
Invoking the Loader . . « « « ¢ o o o &
Loader OUtpPUt « « o ¢ o « o o ¢ o o o

APPENDIX D: SAMPLE INPUT FOR THE LOADER
APPENDIX E: LOADER RETURN CODES
APPENDIX F: STORAGE CONSIDERATIONS . .
APPENDIX G: LOAD MODULE FORMAT « o e .
APPENDIX H: SIZE AND REGION

PARAMETER GUIDELINES C e e e e e e
GLOSSARY e e e e e e e e e e e e e e
INDEX + & o o o o o o o o o o o o o =

120
122

. 124

125
127
129

<131

133

135
135

- 135

136
139
139
141
142
144

. 145

146
146
151
152
153
153

155

157
157
160
160

161
161

- 163

163

164
l64

165
165
165
167
168
169
169
170
170
175

177
179
181
183

185
187

. 191

ILLUSTRATIONS

FIGURES

Figure 1. Preparing a Source Module Figure 33. Common Areas Before

for Execution « « « o« ¢ ¢ ¢« o« « « « o« o« 3 Processing « « «¢ v & 4 ¢ 4 ¢ o 4 o o « . 16
Figure 2. Preparing a Source Module Figure 34. Common Areas After

for Execution and Executing the Load Processing « « « o ¢ &+ o o o & o o o o o 17
MOAULE ¢ « o s o o ¢ ¢« o &« o« « o o« o« « ¢ U Figure 35. Incompatible Job Step

Figure 3. External Names and Options for the Linkage Editor 97
External References . . . « e« s« 5 Figure 36. Statements in the LKED

Figure 4. Use of the External Symbol Cataloged Procedure 106
Dictionary « « o « s ¢« « o« « o« a o« o o« o« 7 Figure 37. Statements in the LKEDG

Figure 5. Input, Intermediate, and Cataloged Procedure . . « . . - « . . .108
output Sources for the Linkage Editor . 9 Figure 38. Overlay Structure for

Figure 6. A Load Module Produced by INSERT Statement Example 121
the Linkage EQitOr ¢« o« o« o ¢ « ¢ « o« « o 10 Figure 39. Output Load Module for ORDER
Figure 7. Linkage Editor Processing Statement Example e e e e e e s o« o« 126
-~ Module Linkage . . « e o « o o o 12 Figure 40. Overlay Structure for

Figure 8. Linkage Edltor Processing OVERLAY Statement Example128
-- Module EAiting « « « ¢ « o ¢ « o« o« o« 13 Figure 41. Output Load Module for PAGE
Figure 9. Linkage Editor Processing Statement Example 130
—-- Additional Input SOUrXCeS <« « o « « o« 13 Figure 42. Linkage Editor Output for
Figure 10. Processing of Ohe INCLUDE Sample Program COBFORT 137
Control Statement .« « « « « « « « « o « 29 Figure 43. Linkage Editor Output for
Figure 11. Processing of More than Job Step that Created SUBONE 140
One INCLUDE Control Statement . « « « « 30 Figure 44, Linkage Editor Output for
Figure 12. Diagnostic Messages issued by Sample Program RPLACJOB . + « . o+ « o . 143
the Linkage Editor . « « ¢« + ¢ & ¢+ « o o U42 Figure 45, Overlay Tree for

Figure 13. Module Map « « « « o« « « « o« U5 Multiple-Region Sample Program REGNOVLY 144
Figure 14, Cross-Reference Table . . . U5 Figure U46. Linkage Editor Output for
Figure 15. Editing a Module . « + « . . 46 Sample Program REGNOVLY 147

Figure 16. Changing an External Figure 47. Input Statements for

Reference and an Entry Point « « « « « . 48 IEBUPDTE Utility Program . . « « « « « . 151
Figure 17. Automatic Replacement of Figure 48. Macro Instruction Basic

Control SectiONS « « « « o« ¢ « o ¢« o« « &« 50 FOrmat « o« 4 o o « o « o o a & « & « o« o155
Figure 18. Replacing a Control Figure 49. Loader Processing --

Section with the REPLACE Control SYSLIB Resolution . « o+ ¢« o o o« o &« o« . 162
Statement « « ¢« « ¢ ¢ o o o o ¢ o ¢ o o 52 Figure 50. Loader Processing -- Link

Figure 19. Deleting a Control Section . 53 Pack Area and SYSLIB Resolution 162
Figure 20. Ordering Control Sections. . 55 Figure 51. Loader Processing --

Figure 21, Aligning Control Sections on Automatic Editing« 163
Page Boundaries. . . . e« « « « « + . . 56 Figure 52. Input Deck for the Loader
Figure 22, cControl Sectlon -~ Basic Format . « « « o o « « « « « 165
Dependenci€sS « « « o « o« o o o« o o« o o &« 59 Figure 53. Loader and Loaded Program
Figure 23. Single-Region Overlay Tree Data in VS1 or VS2 Input Stream « « 170
SEXUCEUYE o « « o « o o o o . « o o « « « 60 Figure 54. Macro Instruction Basic

Figure 24. Length of an Overlay Module 61 Format . « . o v o ¢ o o o =« o o « o« « o171
Figure 25. Segment Origin and Use of Figure 55. Using the LINK Macro

StOXage « o « ¢« « ¢« s o o o a o o o o o 62 Instruction To Refer to the Loader . o172
Figure 26. Inclusive and Exclusive Figure 56. Using the LOAD and CALL
SEgMENLS « o« « o o « s o« o o o o« o o s s 63 Macro Instructions to Refer to

Figure 27. Inclusive and Exclusive IEWLOADR (Loading Without

REferences « o« « « s o « o o s« » o« o o o 64 Identification)« o . . . 173
Figure 28. Location of Segment and Figure 57. Using the LOAD and CALL

Entry Tables in an Overlay Module .« « « 65 Macro Instructions to Refer to HEWLOAD
Figure 29. Control Sections Used by (Loading With Identification) . « « « . 174
Several PathsS .« « ¢ o ¢ o o ¢ ¢ ¢ o o« o 67 Figure 58. Module Map Format Example . 176
Figure 30. Overlay Tree for Figure 59. 1Input Deck for a Load Job . 177
Multiple-Region Program .« o« « « « o« o o« 67 Figure 60. Input Deck for a

Figure 31. Symbolic Segment Origin in Compile-Load Job B
Single-Region Program « « « o« « o o« o « 69 Figure 6l. Input Deck for Compilation
Figure 32. Symbolic Segment and and Loading of the Three Modules « « « 178
Region Origin in Multiple-Region Figure 62. Load Module Format 183
Program « « « « o« s« « « o s o « o o s« « 10

vii

TABLES

Table 1. System Automatic Call
Libraries
Table 2. Branch Sequences for
Overlay ProgramsS. « « « o o s s o o o =
Table 3. Use of the SEGLD Macro
Instruction

Table 4. Use of the SEGWT Macro
Instruction . . ¢ « + « o o o o e . .
Table 5. SYSUT1 and SYSLMOD Device

Type and Their Maximum Record Sizes
Table 6. Load Module Buffer Area and
SYSLMOD and SYSUT1 Record Sizes

.« .

25
80
8l
82
91

92

Table 7. Linkage Editor Return Codes
Table 8. Linkage Editor ddnames . .
Table 9. DCB Requirements for Object

Module and Control Statement Input. .
Table 10. DCB Requirements for
SYSPRINT. ¢ o ¢ o o « o o o o o« o o o
Table 11. DCB Requirements for
Additional Input Data Sets.

Table 12. Linkage Editor Capacities
for Minimal SIZE values (64K, 6K) . .
Table 13. Return Codes . « « « « « .
Table 14. Virtual Storage

Requirements. . . . « + + ¢« « « o . .

viii

. 98
- 100

. 101
. 102
<104

.158
. 179

0S/VS1 SUMMARY OF AMENDMENTS

RELEASE 3

® The appropriate figures and tables have been updated to include
specifications for the 3330-1 and 3340 disk storage devices.

e The format for the load modules produced by the linkage editor
has been included in this edition. See Appendix G.

® The "Size option" has been rewritten to make it easier for the
user to determine the correct values for the option. Appendix H
is a summary of this section.

® The load module size restriction of 512K bytes has been removed.

RELEASE 2

There are no significant system changes in 0S/VS1 Release 2. A more
efficient EXEC statement has been added for use in the LKEDG procedure
when the programmer wishes to specify the LET parameter in the LKED
step. This change applies to both 0S/VS1 and 0S/VS2.

ix

0S/VS2 SUMMARY OF AMENDMENTS

RELEASE 2

® The appropriate figures and tables have been updated to include
specifications for the 3330-1 and 3340 disk storage devices.

® The format for the load modules produced by the linkage editor
has been included in this edition. See Appendix f.

® The "Size option" has been rewritten to make it easier for the
user to determine the correct values for the option. Appendix H
is a summary of this section.

xi

INTRODUCTION

The linkage editor and the loader processing programs prepare the
output of language translators for execution. The linkage editor pre-
pares a load module that is to be brought into storage for execution by
program fetch. The loader prepares the executable program in storage
and passes control to it directly.

The linkage editor provides several processing facilities such as
creating overlay programs, and aiding program modification. (The
linkage editor is also used to build and edit system libraries.) The
loader provides high performance loading of programs that do not require
the special processing facilities of the linkage editor.

Use of the linkage editor is recommended in the following cases:

e If the program requires linkage editor services in addition to the
MAP, LET, NCAL, and SIZE options.

e If the program uses linkage editor control statements such as
INCLUDE, NAME, OVERLAY, etc.

o If a load module is to be produced for a program library.

Use of the loader is recommended if the program only requires the use of
the following linkage editor options: MAP, LET, NCAL, and SIZE.

Because of its fewer options and because it can process a job in one job
step, the loader reduces editing and loading time by about one half.

Linkage editor processing is performed in a link edit step. The
linkage editor can be used for compile-link edit-go, compile-link edit,
link edit, and link edit-go jobs., Loader processing is performed in a
load step, which is equivalent to the link edit-gc steps. The loader
can be used for compile-load and load jobs.

Introduction 1

PART 1. LINKAGE EDITOR

Linkage editor processing is a necessary step that follows the
source program assembly or compilation of any problem program. The
linkage editor is a processing program and a service program used in
association with the language translators.

Every problem program is designed to fulfill a particular purpose.
To achieve that purpose, the program can generally be divided into
logical units that perform specific functions. A logical unit of coding
that performs a function, or several related functions, is a module.
Ordinarily, separate functions should be programmed into separate
modules, a process called modular programming. Each module can be
written in the symbolic language that best suits the function to be
performed. (The symbolic languages are assembler, ALGOL, COBOL,
FCORTRAN, PL/I, and RPG.)

Each module is separately assembled or compiled by one of the
language translators. The input to a language translator is a source
module; the output from a language translator is an object module.
Before an object module can be executed, it must be processed by the
linkage editor. The cutput of the linkage editor is a lcad_mcdule
(Figure 1).

Language : Linkage
Translator . Editor

Figure 1. Preparing a Source Module for Execution

An object module is in relocatable format with unexecutable machine
code. A load module (see Appendix G) is also relocatable, but with
executable machine code. A load module is in a format that can be loaded
into virtual storage and relocated by program fetch (Figure 2).

Part 1. Linkage Editor 3

Language Linkage
Translator Editor

Figure 2. Preparing a Source Module for Execution and Executing the
Load Module

Any module is composed of one or more control sections. A control
section is a unit of coding (instructions and data) that is, in itself,
an entity. All elements of a control section are loaded and executed in
a constant relationship to one another. A control section is,
therefore, the smallest separately relocatable unit of a program.

Each module in the input to the linkage editor may contain symbolic
references to control sections in other modules; such references are
called external references. These references are made by means of
address constants (adcons). The symbol referred to by an external
reference must be either the name of a control section or the name of an
entry point in a control section. Control section names and entry nanes
are called external names. By matching an external reference with an
external name, the linkage editor resolves references between modules.
External references and external names are called external symbols
(Figure 3). An external symbol is one that is defined in one module and
can be referred to in another.

4 05/Vs Linkage Editor and Loader

CSECT Al

ENTRY A11

CALL BT

CSECT Al

External Names: ENTRY AT1

Control Section Entry Name N
All Linkage .

External B1 X Editor

Symbols CALLB1

External References:

From A1 to B1 CSECT B1 | csecrsi
From B1 to A11 .

CALLATI

CALLAT

Figure 3. External Names and External References

OBJECT AND LOAD MODULES

Object modules and load modules have the same basic logical
structure. Each consists of:

e Ccontrol dictionaries, containing the information necessary to
resolve symbolic cross references between control sections of
different modules, and to relocate address constants. Control
dictionary entries are generated when external symbols, address
constants, or control sections are processed by a language
translator. Each language translator usually produces two kinds of
control dictionaries: an external symbol dictionary (ESD) and a
relocation dictionary (RLD).

e Text, containing the instructions and data of the program.

e An end of module indication: an END statement in an object module,
an end-of-module indicator in a load module.

Each control dictionary and the text and end indication is described in
greater detail in the following text.

Both object modules and load modules can contain data used by the
linkage editor to create CSECT Identification (IDR) records. If the
language translator creating an object module supports CSECT
Identification, the input object module can contain translator data for
Identification records on the END statement. Input load modules differ
from object modules in the type of data they supply. Input load modules
can also provide HMASPZAP data, linkage editor data, and user data to
the Identification records that are built during linkage editor
processing. During the link edit step, the optional IDENTIFY control
statement is used to supply the optional user data for the CSECT
Identification records.

Part 1. Linkage Editor 5

External Symbol Dictionary

The external symbol dictionary (ESD) contains one entry for each
external symbol defined or referred to within a module. The dictionary
contains an entry for each external reference, pseudo register (external
dummy section), entry name, named or unnamed control section, and blank
or named common area. An entry name, pseudo register, or named control
section can be referred to by any control section or separately
processed module; an unnamed control section cannot.

Each entry identifies a symbol, or a symbol reference, and gives its
location, if known, within the module. Each entry in the external
symbol dictionary is classified as one of the following:

e External reference -- a symbol that is defined as an external name
in another separately processed module, but is referred to in the
module being processed. The external symbol dictionary entry
specifies the symbol; the location is unknown.

& Weak external reference -- a special type of external reference that
is not to be resolved by automatic library call unless an ordinary
external reference to the same symbol is found. The external symbol
dictionary entry specifies the symbol; the location is unknown.

s Entry name -- a name within a control section that defines an entry
point. The external symbol dictionary entry specifies the symbol
and its location, and identifies the control section to which it
belongs.

e Ccontrol section name -- the symbolic name of a control section. The
external symbol dictionary entry specifies the symbol, the length of
the control section, and its location. In this case, the location
represents the origin of the control section, which is the first
byte of the control section.

e Blank or named common area -- a control section used to reserve a
main storage area that can be referred to by other modules. The
reserved storage area can be used, for example, as a communications
region within a program or to hold data supplied at execution time.
The external symbol dictionary entry specifies the name, if present,
and the length of the area. If there is no name, the name field
contains blanks.

e Private code -- an unnamed control section. The external symbol
dictionary entry specifies the length of the control section, and
the origin. The name field contains blanks.

» Pseudo register -- a special facility (corresponding to the external
dummy section feature of Assembler F) that can be used to write
re-enterable programs. A pseudo register is a dynamically obtained
location in virtual storage that can be used as a pointer to
dynamically acquired storage; that is, the space for such areas is
not reserved in the load module but is acquired during execution.
The external symbol dictionary contains the name, length, alignment,
and displacement of the pseudo register.

When processing input modules, the linkage editor resolves references
between modules by matching the referenced symbols to defined symbols.
To do this, the linkage editor searches for the external symbol
definition in the external symbol dictionary of each input module. As

6 0S/VS Linkage Editor and Loader

shown in Figure 4, the linkage editor matches the external reference to
Bl by locating the definition for Bl in the external symbol dictionary
of Module B. In the same way, it matches the external reference to All
by locating the definition for All in the external symbol dictionary of
Module A.

ESD for A

Type Location

Control Known
Section ESD for B

Name Type Location
Entry Name Known Control Known

External Unknown ilec'b"
Reference ame =]
CSECT A1 External Unknown

Reference

ENTRY A11

CALL B1

Figure 4, Use of the External Symbol Dictionary

Text

The text contains the instructions and data of the module.

Relocation Dictionary

The relocation dictionary (RLD) contains one entry for each
relocatable address constant that must be modified before a module is
executed. An entry identifies an address constant by indicating both
its location within a control section and the external symbol whose
value must be used to compute the value of the address constant. (The
external symbol is defined in an external symbol dictionary entry in
another control section or module.)

The linkage editor uses the relocation dictionary whenever it
processes a module to adjust the address constants for references to
other control sections and modules. This dictionary is also used to
adjust these address constants again after program fetch reads an output
load module from a library and loads it into virtual storage for execution.

End Indication

The end of a load module is marked by an end-of-module indicator
(EOM). The EOM cannot, like the assembler END instruction, specify an
entry point. Therefore, whenever a load module is reprocessed by the
linkage editor, a main entry point should be specified on an ENTRY
statement. If one is not specified, the linkage editor will assign the
first byte of the first control section encountered as the entry point.

Part 1. Linkage Editor 7

LINKAGE EDITOR PROCESSING

This section discusses the input and output sources of the linkage
editor, and the way in which the linkage editor produces a load module.

INPUT AND OUTPUT SOURCES

The linkage editor can receive its input from several sources, as
follows:

e The primary input, which can contain only object modules and linkage
editor control statements (called control statements in the
following text).

e Additional user-specified input, which can contain either object
modules and control statements, or load modules. This input is
either specified by the user as input, or incorporated automatically
by the linkage editor from a call library.

During processing, the linkage editor generates intermediate data.

Intermediate data is placed on a direct access storage device when
virtual storage allocated for input data is exhausted.

output of the linkage editor is of two types:

» A load module, which is always placed in a library (a partitioned
data set) as a named member.

s Diagnostic output, which is produced as a sequential data set.

Figure 5 shows the input, intermediate, and output sources for the
linkage editor programe.

8 O0S/VS Linkage Editor and Loader

Linkage

Automatic Editor

Call

Diagnostic
Output

Figure 5. 1Input, Intermediate, and Output Sources for the Linkage
Editor

LOAD MODULE CREATION

In processing object and load modules, the linkage editor assigns
consecutive relative addresses to all control sections and resolves all
references between control sections. Object modules produced by several
different language translators can be used to form one load module.

An output load module is composed of all input object modules and
input load modules processed by the linkage editor. The control
dictionaries of an output module are therefore a composite of all the
control dictionaries in the linkage editor input. The control
dictionaries of a load module are called the composite external symbol
dictionary (CESD) and the relocation dictionary (RLD), The load module
also contains all of the text from each input module, and omne
end-of-module indicator (Figure 6). See Appendix G for the format of
a load module.

Part 1. Linkage Editor 9

Linkage
Editor

Figure 6. A Load Module Produced by the Linkage Editor

Assigning Addresses

Each module to be processed by the linkage editor has an origin that
was assigned during assembly, compilation, or a previous execution of
the linkage editor. When several modules, each with an independently
assigned origin, are to be processed by the linkage editor, the sequence
of the addresses is unpredictable; two input modules may even have the
same origin.

Each input module can be made up of one or more control sections. To
produce an executable output load module, the linkage editor assigns
relative virtual storage addresses to each control section by assigning an
origin to the first control section encountered and then assigning
addresses, relative to that origin, to all other control sections to be
included in the output load module. The value assigned as the origin of
the control section is used to relocate each address dependent item in
the control section.

Although the addresses in a load module are consecutive, they are
relative to zero. When a load module is to be executed, program fetch
prepares the module for execution by loading it at a specific virtual
storage location. The addresses in the module are then increased by
this base address. Each address constant must also be readjusted,
another function of program fetch.

Resolving External References

The linkage editor also resolves external references in the input
modules. Cross references between control sections in different modules
are symbolic. They must be resolved relative to the addresses assigned
to the load module. The linkage editor calculates the new address of
each relocatable expression in a control section and determines the
assigned origin of the item to which it refers.

10 0s/VS Linkage Editor and Loader

FUNCTIONS OF THE LINKAGE EDITOR

Linkage editor input may consist of a combination of object modules,
load modules, and control statements. The primary function of the
linkage editor is to combine these modules, in accordance with the
requirements stated on control statements, into a single output load
module. Although this linking or combining of modules is its primary
function, the linkage editor also:

e Edits modules by replacing, deleting, rearranging, and ordering
control sections as directed by control statements.

e Aligns control sections and named common areas on 2K or UK page
boundaries as directed by control statements.

e Accepts additional input modules from data sets other than the
primary input data set, either automatically, or upon request.

® Reserves storage for the common control sections generated by
assembler and FORTRAN language translators, and static external
areas generated by PL/I.

e Computes total length and assigns displacements for all pseudo
registers (external dummy sections).

e Creates overlay programs in a structure defined by control
statements.

s Creates multiple output load modules as directed by control
statements.

* Provides special processing and diagnostic output options.

¢ Assigns module attributes that describe the structure, content, and
logical format of the output load module.

e Allocates storage areas for linkage editor processing as
specified by the programmer.

e Stores system status index information in the directory of the
output module library (systems personnel only).

e Traces the processing history of a program.

®* Allows the user to lengthen a control section or named common
section without changing source code, reassembling, or recompiling.

® Allows the user to assign an authorization code to a load module
that (a) makes it a restricted resource and (b) enables it to pass
control to other restricted resources.

Each of the linkage editor functions is described briefly in the
following paragraphs.

Links Modules

Processing by the linkage editor makes it possible for the programmer
to divide his program into several modules, each containing one or more
control sections. The modules can be separately assembled or compiled.
The linkage editor combines these modules into one output load module
(Figure 7) with contiguous storage addresses. During processing by the
linkage editor, references between modules within the input are
resolved. The output module is placed in a library (partitioned data
set).

Part 1. Linkage Editor 11

Assembler COBOL
Source Compiler
Module

FORTRAN
Compiter

Assembler
Object
Module

Object
Module

Linkage
Editor

Figure 7. Linkage Editor Processing -- Module Linkage

Edits Modules

Program modification is made easier by the editing functions of the
linkage editor. When the functions of a program are changed, the
programmer modifies, then compiles and link edits again only the
affected control sections instead of the entire source module.

Control sections can be replaced, renamed, deleted, moved, or ordered
as directed by control statements. Control sections can also be
automatically replaced by the linkage editor. External symbols can also
be changed or deleted as directed by control statements.

Figure 8 illustrates the module editing function of the linkage
editor.

Aligns Control Sections or Common Areas on Page Boundaries

Control sections or named common areas in the output load module
can be aligned on either 2K or 4K page boundaries. Alignment on page
boundaries enables the programmer to use real storage more efficiently
and appreciably reduce the paging rate for the job.

Accepts Additional Input Sources

Standard subroutines can be included in the output module, thus
reducing the work in coding programs. The programmer can specify that a
subroutine be included at a particular time during the processing of his
program by using a control statement. When the linkage editor processes
a program that contains this statement, the module containing the
subroutine is retrieved from the indicated input source, and made a part
of the output module (Figure 9).

12 0S/VS Linkage Editor and Loader

Control
Statements

tinkage
Editor

Figure 8. Linkage Editor Processing -- Module Editing

= :
PRIMARY INPUT:

Control
Statements

ADDITIONAL INPUT; . ' Linkage
i ‘ Editor

Avutomatic
Call
Library
Cand D

Object
Module E

Figure 9. Linkage Editor Processing -- Additional Input Sources

Symbols that are still undefined after all input modules have been
processed cause the automatic library call mechanism to search for
modules that will resolve these references. When a module name is found
that matches the unresolved symbol, the module is processed by the
linkage editor and also becomes part of the output module (Figure 9).

Part 1. Linkage Editor 13

Note: The level F linkage editor distinguishes a special type of
external reference; the weak external reference. An unresolved weak
external reference does not cause the linkage editor to use the
automatic library call mechanism. Instead, the reference is left
unresolved, and the load module is marked as executable.

Reserves Storage

The linkage editor processes common control sections generated by the
FORTRAN and assembler language translators. The static external storage
areas generated by the PL/I compiler are processed in the same way. The
common areas are collected by the linkage editor, and a reserved virtual
storage area is provided within the output module.

Processes Pseudo Registers

Pseudo registers, like the external dummy sections of Assembler F,
aid in generating re-enterable code. The linkage editor processes
pseudo registers by accumulating the total length of storage required
for all pseudo registers and recording the displacement of each. During
execution, the program dynamically acquires the necessary storage.

Creates Overlay Programs

To minimize virtual storage requirements, the programmer can organize
his program into an overlay structure by dividing it into segments
according to the functional relationships of the control sections. Two
or more segments that need not be in virtual storage at the same time can
be assigned the same relative virtual storage addresses, and can be loaded

at different times.

The programmer uses control statements to specify the relationship of
segments within the overlay structure. The segments of the load module
are placed in a library so that the control program can load them
separately when the load module is executed.

Creates Multiple Load Modules

The linkage editor can also process its input to form more than one
load module within a single job step. Each load module is placed in the
library under a unique member name, as specified by a control statement.

Provides Special Processing and Diagnostic Output Options

The programmer can specify special processing options that negate
automatic library call or the effect of minor errors. In addition, the
linkage editor can produce a module map or cross-reference table that
shows the arrangement of control sections in the output module and
indicates how they communicate with one another. A list of the control
statements processed can also be produced.

Throughout processing, errors and possible error conditions are
logged. Serious errors cause the linkage editor to mark the output
module not executable., Additional diagnostic data is automatically
logged by the linkage editor. The data indicates the disposition of the
load module in the output module library.

14 0S/vVS Linkage Editor and Loader

Assigns Load Module Attributes

When the linkage editor generates a load module, it places an entry
for the module in the directory of the library. This entry contains
attributes that describe the structure, content, and logical format of
the load module. The control program uses these attributes to determine
how a module is to be loaded, what it contains, if it is executable,
whether it is executable more than once without reloading, and if it can
be executed by concurrent tasks. Some module attributes can be
specified by the programmer; others are specified by the linkage edijitor
as a result of information gathered during processing.

Allocates User-Specified Virtual Storage Areas

The programmer can specify the total amount of virtual storage to be
made available to the linkage editor, the amount to be used for the load
module buffer, and the buffer for the output load module.

Stores System Status Index Information

The following information is intended for systems personnel
responsible for maintaining IBM-supplied load modules. It is not
generally applicable to non-IBM load modules.

Four bytes in the library directory entry for IBM-supplied load
modules are used to store system status index information. This
information, which is used for maintenance of the modules, is placed in
the directory with a control statement.

Traces Processing History

Tracing the processing history of a program is simplified by the CSECT
Identification (IDR) records created and maintained by the linkage
editor. A CSECT Identification record can contain data that describes:

s The language translator, its level, and the translation date for
each control section.

e The most recent processing by the linkage editor.
e Any modification made to the executable code of any control section.

Optionally, user-supplied data associated with the executable code of a
control section can also be recorded.

Lengthens Control Sections or Named Common Sections

The user can lengthen control sections or named common sections
of a program to add patch space without changing the source code,
reassembling, or recompiling.

Added space, consisting of binary zeros, is put at the end of a
specified control section by using the EXPAND control statement
(see the "Control Statement Summary" section). Space cannot be
added to a private code or blank common section.

Part 1. Linkage Editor 15

Assigns an Authorization Code to Output Load Modules

An authorization code may be assigned to an output load module
that (a) makes it a restricted resource and (b) enables it to
pass control to other restricted resources. For more information
about authorization codes, refer to the discussion of the Author-
ized Program Facility (APF) in 0S/VS2 Planning and Use Guide.

RELATIONSHIP TO THE OPERATING SYSTEM

The linkage editor has the same relationship to the operating systen
as any other processing program. It can be executed either as a job
step, a subprogram, or a subtask. Control is passed to the linkage
editor in one of three ways:

s As a job step, when the linkage editor is specified on an EXEC job
control statement in the input stream.

e As a subprogram, with the execution of a CALL macro instruction
(after the execution of a LOAD macro instruction), a LINK macro
instruction, or an XCTL macro instruction.

e As a subtask, in multitasking systems, with the execution of the
ATTACH macro instruction.

Execution of the linkage editor and the data sets used by the linkage
editor are described to the system with job control language statements.
These statements describe all jobs to be performed by the system.

Note: Job control statements are not to be confused with linkage editor
control statements. Job control statements are processed before the
linkage editor is executed; linkage editor control statements are
processed during linkage editor execution.

Time Sharing Option (TSO)

When the linkage editor is used under TSO (VS2 only), it is invoked
by the linkage editor prompter program that acts as an interface between
the user, operating system, and linkage editor. Under TSO, execution
of the linkage editor and definition of data sets used by the linkage
editor are described to the system through use of the LINK command that
causes the prompter to be executed. Operands of the LINK command can
also be used to specify the linkage editor options a job requires.

16 0S/VS Linkage Editor and Loader

Complete procedures for use of the LINK command are given in the
0S/VSs2 TSO Terminal User's Guide.

LANGUAGE DEPENDENCTIES

This section defines control section, entry name, external reference,
common area, and pseudo register (external dummy section) in terms of
the source language statements that generally create them. The
languages described are assembler, COBOL, FORTRAN, and PL/I.

Note: Unless the language translator supports CSECT Identification
(IDR) Records, identification data is not produced.

Assembler Langquage

In the assembler language, a control section is defined by a CSECT
statement or a START statement. Either statement may specify a control
section name. The control section delimiter is an END statement, or
another CSECT or START statement.

An entry name is defined with an ENTRY statement.

An external reference to a data area is specified with an EXTRN
statement and an A-type address constant; an external reference to a
control section or an entry name is specified with a V-type address
constant.

A common area is specified with a COM statement.

An external dummy section (Assembler XF and Assembler H only) is
defined with a DXD instruction or a DSECT and a Q-type address constant;

a CXD instruction defines a U4-byte field that the linkage editor uses to
accumulate the length of all external dummy sections in a load module.

COBOL

In COBOL, a control section is produced for each compilation. COBOL
control sections are always named, because a name must be specified in
the PROGRAM-ID paragraph of the IDENTIFICATION DIVISION.

An entry name is defined with an ENTRY statement.

An external reference is created by the compiler when a CALL
statement is used.

COBOL does not use common areas or pseudo registers.

FORTRAN

In FORTRAN, a control section is defined with a SUBROUTINE, FUNCTION,
or BLOCK DATA statement that specifies the control section name., If the
first statement in a FORTRAN routine is not one of these, it is assumed
to begin the main routine of the program. Automatically, the statement

Part 1. Linkage Editor 17

defines a control section named MAIN, the name always assigned to the
main routine of a FORTRAN program unless the programmer has used the
NAME option to assign a name to his main routine. A control section
delimiter is an END statement.

An entry name is defined with an ENTRY statement.,

An external reference is created for an EXTERNAL statement or a
reference to a subroutine subprogram, a function subprogram, or a BLOCK
DATA subprogram.

A common area is specified with a COMMON statement. A name may be
specified, if desired.

FORTRAN does not use pseudo registers.

PL/X

In PL/I, a control section is defined by an external PROCEDURE
statement and named by the first statement label. When the MAIN option
is specified, the control section IHEMAIN, which contains the address of
the principal entry point, is created. In both cases, the contrcl
section IHENTRY is generated to provide appropriate linkage to the
library storage management modules. Control sections are also created
for each STATIC EXTERNAL or EXTERNAL declaration with initial text and
for each EXTERNAL file constant.

Note: If the labels or variable names used for control section names
exceed seven characters, PL/I generates a seven-character control
section name by concatenating the first four and the last three
characters in the label or variable name.

A control section is also created for STATIC INTERNAL storage; it
contains the items declared with their storage class attributes as well
as work areas and control blocks added by the compiler. This control
section takes its name from the name of the external procedure control
section, followed by the letter A and padded to the left with asterisks
to a length of eight characters.

An entry name is defined with an ENTRY statement.

An external reference is created for an ENTRY declaration, either
explicitly or implicity declared with the EXTERNAL attribute.
Unresolved function references or procedure calls imply EXTERNAL scope
and also cause an external reference to be generated.

A named common area is specified with a STATIC EXTERNAL or EXTERNAL
declaration when the defined area does not contain initial text. (When
the area is initialized, a control section is generated.) The name is
the name of the variable. PL/I does not use blank common areas.

A pseudo register is created for each CONTROLLED variable, for each
file declared, and for each PROCEDURE orx PROCEDURE BEGIN block or ON
unit in the prograw. The name of the pseudo register created for a
CONTROLLED EXTERNAL variable is the name of the variable. In all other
cases, the name of the pseudo register is generated from the external
procedure control section name followed by a letter (B, C, etc.) and
pradded to the left with asterisks to a length of eight characters. The
asterisks can be replaced if necessary to provide sufficient unique
names.

18 0S/VS LinkageEditor and Loader

INPUT TO THE LINKAGE EDITOR

The linkage editor accepts input from two major sources: the primary
input data set and additional data sets. The primary input data set is
made available through job control language specifications. Additional
data_sets are made available either through the automatic library call
mechanism, or through user-specified control statements. They must,

however, also be defined with job control language specifications.

Primary and additional input data sets may contain the following
types of data:

* One or more object modules.,
e One or more load modules.
e Control statements.

e Combinations of the above (restrictions on certain combinations are
noted where they apply).

Object modules and control statements may be contained in either
sequential or partitioned data sets. Load modules must be contained in

partitioned data sets.

This chapter describes the "linking" functions of the linkage editor
only; the "editing" functions are described in the chapter "Module
Editing."

PRIMARY INPUT DATA SET

The primary input data set is required for every linkage editor job
step. It must be defined by a DD statement with the ddname SYSLIN. The

primary input can be:
e A sequential data set.
e A member of a partitioned data set.

e A concatenation of sequential data sets and/or members of
partitioned data sets.

The primary input data set must contain object modules and/or control
statements. The modules and control statements are processed
sequentially and their order determines the basic order of linkage
editor processing during a given execution. However, the order of the
control sections after processing does not necessarily reflect the order
in which they appeared in the input.

In the examples that follow, only the statements necessary to define
the input to the linkage editor are shown; complete examples are shown
in Appendix A.

Input to the Linkage Editor 19

OBJECT MODULES

The primary input to the linkage editor may consist solely of one or
more object modules. The rest of this section discusses object module
input from cards, as a member of a partitioned data set, passed from a
previous job step, and created in a separate job.

From Cards

Object module input to the linkage editor may be on cards. The card
deck itself is treated as a sequential data set; the cards are placed in
the input stream, after a DD * statement, as follows:

//SYSLIN DD *

gy 1
|Object Deck A |
____________________________ ——— ———————y
|Object Deck B |
L e e e e e e o e e e e e o e e e e e e e J

The card input is followed by a /* statement.

An example of the JCL when card decks are used in addition to other
input is as follows:

//SYSLIN DD DSNAME=INPUT, « .«

// DD *

[T T T T T e e e e e e e e - ——— 1
| Object Deck A |
_________________________ ——— e e]
|Object Deck B |
b e B 4

By omitting the ddname on the second DD statement, the card input is
concatenated to the data set described on the SYSLIN DD statement.

As a Member of a Partitioned Data Set

An object module in a partitioned data set can be used as primary
input to the linkage editor by specifying its data set name and member
name on the SYSLIN DD statement. In the following example, the member
named TAXCOMP in the object module library LIBROUT is to be the primary
input; LIBROUT is a cataloged data set:

//SYSLIN DD DSNAME=LIBROUT (TAXCOMP) , DISP=(OLD, KEEP)
The library member is processed as if it were a sequential data set.

20 0S8/VS Linkage Editor and Loader

Members of partitioned data sets can be concatenated with other input
data sets, as follows:

//SYSLIN DD DSNAME=OBJLIB, DISP=(OLD, KEEP),...
7/ DD DSNAME=LIBROUT (TAXCOMP) , DISP=(OLD, KEEP)

Library member TAXCOMP is concatenated to data set OBJLIB; both must
contain object modules since they are the primary input.

Passed from a Previous Job Step

An object module to be used as input can be passed from a previous
job step to a linkage editor job step in the same job, as in a
compile-link edit job. That is, the output from the compiler is direct
input to the linkage editor. 1In the following example, an object module
that was created in a previous job step (Step A) is passed to the
linkage editor job step (Step B):

Step A: //SYSGO DD DSNAME=§ §OBJECT, DISP=(NEW, PASS) , ...

-

Step B: //SYSLIN DD DSNAME=§ §OBJECT, DISP=(OLD, DELETE)

The data set name &§&OBJECT, used in both job steps, identifies the
object module as the output of the language processor on the SYSGO DD
statement, and as the primary input to the linkage editor on the SYSLIN
DD statement.

Note: The double ampersand (&€§) in the data set name defines a
temporary data set. These data sets exist for the duration of the job
and are automatically deleted at the end of the job. If the data set is
to be preserved for longer than the duration of a single job, the double
ampersand is not used (DSNAME=OBJECT).

The method used in the preceding example can also be used to retrieve
object modules created in previous steps. If the same data set name is
used for the output of each language processor, one SYSLIN DD statement
can be used to retrieve all the object modules, as follows:

Step A: //S8Y¥SGO DD DSNAME=§ &§ OBJMOD, DISP=(NEW, PASS), ...

Step B: //SYSPUNCH DD DSNAME=§ §OBJMOD, DISP=(MOD, PASS)

Step C: //SYSLIN DD DSNAME=§§0BJMOD, DISP=(OLD, DELETE)

The two object modules from Steps A and B are placed in the same
sequential data set, §&OBJMOD. The SYSLIN DD statement in Step C causes
both object modules to be used as the primary input to the linkage
editor.

Input to the Linkage Editor 21

Another method can be used to accomplish this purpose: concatenation
of data sets. This method could be used if the object modules were
created in previous job steps with different member names, as follows:

Step A: //SY¥YSGO bD DSNAME=§&§0BJLIB(MODA) , DISP=(NEW, PASS), ...

Step B: //SYSPUNCH DD DSNAME=§ §0BJLIB(MODB) , DISP=(MCD, PASS), ...

Step C: //SYSLIN DD DSNAME=§ §OBJLIB(MODA) ,DISP=(0OLD,DELETE)
/77 DD DSNAME=§ §0BJLIB(MODB) ,DISP=(OLD, DELETE)

The object modules created in Steps A and B were placed in a partitioned
data set with different member names. The two members are concatenated
in Step C as primary input. Each member is ccnsidered to be-a
sequential data set.

Created in a Separate Job

If the only input to the linkage editor is an object module from a
previous job, the SYSLIN DD statement contains all the information
necessary to locate the object module, as follows:

//SYSLIN DD DSNAME=0OBJECT,DISP=(OLD, DELETE) , UNIT=2314,
/7 VOLUME=SER=LIB613

An object module created in a separate job may also be on cards, in
which case it is handled as described earlier.

CONTROL STATEMENTS

The primary input data set may also consist solely of control
statements. When the primary input is control statements, input modules
are specified on INCLUDE control statements (see "Included Data Sets").
The control statements may be either placed in the input stream or
stored in a permanent data set.

In the following example, the primary input consists of control
statements in the input stream:

//SYSLIN DD *

/*

22 0S8S/VS Linkage Editor and Loader

In the next exarnple, the primary input consists of control statements
stored in the member INCLUDES in the partitioned data set CTLSTMTS:

//SYSLIN DD DSNAME=CTLSTMTS (INCLUDES) , DISP=(OLD, KEEP) ;¢ ¢«

In either case, the control statements can be any of those descriked
in "Linkage Editor Control Statement Summary, " as long as the rules
given there are followed.

OBJECT MODULES AND CONTROL STATEMENTS

The primary input to the linkage editor may contain both object
modules and control statements. The okject modules and control
statements may be in either the same data set or different data sets.

If the modules and statements are in the same data set, this data set is
described on the SYSLIN DD statement as any data set is described.

If the modules and statements are in different data sets, the data

sets are concatenated. The control statements may be defined either in
the input stream Or as a separate data set.

Control Statements in the Input Stream

control statements can be placed in the input stream and concatenated
to an object module data set, as follows:

//SYSLIN DD DSNAME=§ §OBJECT, ...
/77 DD *

Another method of handling control statements in the input stream is
to use the DDNAME parameter, as follows:

//SYSLIN DD DSNAME=EEOBIECT, e o o

/7 DD DDNAME=SYSIN

//SYSIN DD *
[T T e e e 1
| Linkage Editor Control Statements |
L e e 4

/¥

Note: The linkage editor cataloged procedures use DDNAME=SYSIN for the
SYSLIN DD statement to allow the programmer to specify the primary input
data set required.

Input to the Linkage Editor 23

Ccontrol Statements in a Separate Data Set

A separate data set that contains control statements may be
concatenated to a data set that contains an object module. The control
statements for a frequently used procedure (for example, a complex
overlay structure or a series of INCLUDE statements) can be stored
permanently. In the following example, the members of data set CTLSTMTS
contain linkage editor control statements. One of the members is
concatenated to data set &§&OBJECT.

//SYSLIN DD DSNAME=§ §OBJECT, DISP=(OLD, DELETE) ;...
/7/ DD DSNAME=CTLSTMTS (OVLY) , DISP=(OLD, KEEP) ;¢ s .

The control statements in the member named OVLY of the partitioned data
set CTLSTMTS are used to structure the object module.

AUTOMATIC CALL LIBRARY

The automatic library call mechanism is used to resolve external
references that were not resolved during primary input processing.
Unresolved external references found in modules from additional data
sources are also processed by this mechanism.

Note: The following discussion of automatic library call does not apply
to unresolved weak external references; they are left unresolved.

The automatic library call mechanism involves a search of the
directory of the automatic call library for an entry that matches the
unresolved external reference., When a match is found, the entire member
is processed as input to the linkage editor.

Automatic library call can resolve an external reference when the
following conditions exist; the external reference must be (1) a member
name or an alias of a module in the call library, and (2) defined as an
external name in the external symbol dictionary of the module with that
name. If the unresolved external reference is a member name or an alias
in the library, but is not an external name in that member, the member
is processed but the external reference remains unresolved unless
subsequently defined.

The automatic library call mechanism searches the call library
defined on the SYSLIB DD statement. The call library can contain either
(1) object modules and control statements or (2) load modules; it must
not contain both.

Modules from libraries other than the SY¥SLIB call library can be
searched by the automatic library call mechanism as directed by the
LIBRARY control statement. The library specified in the control
statement is searched for member names that match specific external
references that are unresolved at the end of input processing., If any
unresolved references are found in the modules located by automatic
library call, they are resolved by another search of the library. Any
external references not specified on a LIBRARY control statement are
resolved from the library defined on the SYSLIB DD statement,

In addition, two means exist to negate the automatic library call
mechanism. The LIBRARY statement can be used to negate the automatic
library call for selected external references unresolved after input
processing; the NCAL option on the EXEC statement can be used to negate
the automatic library call for all external references unresolved after
input processing., Use of the LIBRARY control statement and the NCAL
option are discussed after the SYSLIB DD statement that follows.

24 0S/vSs Linkage Editor and Loader

SYSLIB DD STATEMENT

If the automatic library call mechanism is to be used, the call
library must be a partitioned data set described by a LD statement with
a ddname of SYSLIB. The call library may be either a system call
library or a private call library; call libraries may be concatenated.

System Call Library

Most of the system processing programs have their own automatic call
library (Table 1). This library must be defined when an object module
produced by that processor is to be link edited.

The call library may contain input/output, data conversion, and/or
other special routines that are needed to complete the module. The
processor creates an external reference for these special routines and
the linkage editor resolves the references from the appropriate call
library.

In the following example, a FORTRAN object module created in Step A
is to be link edited in Step B, and the FORTRAN automatic call library
is used to resolve external references:

Step A: //SYSOBJ DD DSNAME=§ §0BJMOD, DISP=(NEW, PASS) y e s «

Step B: //SYSLIN DD DSNAME=§ §0BJMOD, DISP=(OLD, DELETE)
//SYSLIBR DD DSNAME=SYS1.FORTLIB,DISP=SHR

The disposition of SHR on the SYSLIB DD statement means that other tasks

which may be executing concurrently with Step B may also use
S¥S1.FORTLIB.

Table 1. System Automatic Call Libraries

[r—— T —m—m s ————— B et - |
| Processing Program] Library Name |
e G o o :
| ALGOL | SYS1.ALGLIB |
| COBOL | SYS1.COBLIB [
FORTRAN	SYS1.FORTLIB
PL/I	SYS1.PL1LIB
Sort/Merge	SYS1.SORTLIB
L —_— — AL e e e . o e o o e i e ot 7 e . . . o e o o d

Private Call Libraries

The SYSLIB DD statement can also describe a private, user-written
library. In this case, the automatic library call mechanism searches
the private library for unresolved external references. In the
following example, unresolved external references are to be resolved
from a private library named PVTPROG:

//SYSLIB DD DSNAME=PVTPROG, DISP=SHR, UNIT=2314, VOLUME=SER=PVTO002

Input to the Linkage Editor 25

Concatenation of Call Libraries

System call libraries and private call libraries may be concatenated
either to themselves, and/or to each other. When libraries are
concatenated, they must all be either object module libraries or load
module libraries; they may not be mixed.

If object modules from different system processors are to be link
edited to form one load module, the call library for each must be
defined. This is accomplished by concatenating the additional call
libraries to the library defined on the SYSLIB DD statement. In the
following example, a FORTRAN object module and a COBOL object module are
to be link edited; the two system call libraries are concatenated as
follows:

//SYSLIB DD DSNAME=5YS1. FORTLIB,DISP=SHR
/7 DD DSNAME=5YS1. COBLIB, DISP=SHR

System libraries are cataloged; no unit or volume information is needed.

A system call library and a private call library can also be
concatenated in this way. For example, by adding the following
statement to the two in the preceding example, the private call library
PVTPROG, which is not cataloged, is concatenated to the two system call
libraries:

Ved DD DSNAME=PVTPROG, DISP=SHR, UNIT=2314,VOLUME=SER=PVT002

Any external references not resolved from the two system libraries
are resolved from the private library.

LIBRARY CONTROL STATEMENT

The LIBRARY control statement can be used to direct the automatic
library call mechanism to a library other than that specified in the
SYSLIB DD statement. Only external references listed on the LIBRARY
statement are resolved in this way. All other unresolved external
references are resolved from the library in the SYSLIB DD statement.

The LIBRARY statement can also be used to specify external references
that are not to be resolved by the automatic library call mechanism.
The LIBRARY statement specifies the duration of the nonresolution:
either during the current linkage editor job step, called restricted

no-call; or during this or any subsequent linkage editor job step,
called never-call.

Examples of each use of the LIBRARY statement follow; a description
of the format is given in "Linkage Editor Control Statement Summary."

26 08/VS Linkage Editor and Loader

Additional Call Libraries

If additional libraries are to be used to resolve specific
references, the LIBRARY statement contains the ddname of a DD statement
that describes the library. The LIBRARY statement also contains, in
parentheses, the external references to be resclved from the library;
i.e., the names of the members to be used from the library. If the
unresolved external reference is not a member name in the specified
library, the reference remains unresolved unless subsequently defined.

For example, two modules (DATE and TIME) from a system call library
have been rewritten. The new modules are to be tested with the calling
modules before they replace the 0ld modules. Because the automatic
library call mechanism would otherwise search the system call library
(which is needed for other modules), a LIBRARY statement is used, as
follows:

//SYSLIB DD DSNAME=SYS1l.COBLIB, DISP=SHR
//TESTLIB DD DSNAME=TEST, DISP=(OLD, KEEP) , «s «
//SYSLIN DD DSNAME=ACCTROUT, ...
/7 DD *

LIBRARY TESTLIB(DATE, TIME)
/*

Two external references, DATE and TIME, are resolved from the library
described on the TESTLIB DD statement. All other unresolved external
references are resolved from the library described on the SYSLIB DD
statement.

Restricted No-Call Function

The programmer can use the LIBRARY statement to specify those
external references in the output module for which there is to be no
library search during the current linkage editor job step. This is done
by specifying the external reference(s) in parentheses without
specifying a ddname. The reference remains unresolved but the linkage
editor marks the module executable.

For example, a program contains references to two large modules that
are called from the automatic call library. O©One of the modules has been
tested and corrected, the other is to be tested in this job step.

Rather than execute the tested module again, the restricted no-call
function is used to prevent automatic library call from processing the
module as follows:

// EXEC PGM=HEWL, PARM=LET
//SYSLIB DD DSNAME=PVTPROG, DISP=SHR,UNIT=2314 ,VOLUME=SER=PVT002

//SYSLIN DD DSNAME=§ EPAYROL, « « &
7/ DD *

LIBRARY (OVERTIME)
/ *

As a result, the external reference to OVERTIME is not resclved by
automatic library call.

Input to the Linkage Editor 27

Never-Call Function

The never-call function specifies those external references that are
not to be resolved by automatic library call during this or any
subsequent linkage editor job step. This is done by specifying an
asterisk followed by the external reference(s) in parentheses. The
reference remains unresolved but the linkage editor marks the

module executable.

For example, a certain part of a program is never executed, but it
contains an external reference to a large module (CITYTAX) which is no
longer used by this program. However, the module is in a call library
needed to resolve other references. Rather than take up storage for a
module that is never used, the never-call function is specified, as
follows:

/7 EXEC PGM=HEWL,PARM=LET
//SYSLIB DD DSNAME=PVTPROG, DISP=SHR, UNIT=2314.VOLUME=SER=PVT002

//SYSLIN DD DSNAME=TAXROUT,DISP=OLD, s«
Va4 DD *

LIBRARY *(CITYTAX)
/*

As a result, whenever program TAXROUT is executed, the external
reference to CITYTAX is not resolved by automatic library call.

NCAL OPTION

When the NCAL option is specified, no automatic library call occurs
to resolve external references that are unresolved after input
processing. The NCAL option is similar to the restricted no-call
function on the LIBRARY statement, except that the NCAL option negates
automatic library call for all unresolved external references and
restricted no-call negates automatic library call for selected
unresolved external references. With NCAL, all external referenges that
are unresolved after input processing is finished, remain unresolved.
The module is however, marked executable.

The NCAL option is a special processing parameter that is specified
on the EXEC statement as described in "No Automatic Library cCall
Option."

28 08/VS Linkage Editor and Loader

INCLUDED DATA_SETS

The INCLUDE control statement requests the linkage editor to use
additional data sets as input. These can be sequential data sets
containing object mocdules and/or control statements, or members of
partitioned data sets containing object modules and/or control
statements, or load modules.

The INCLUDE statement specifies the ddname of a DD statement that
describes the data set to be used as additional input. If the DD
statement describes a partitioned data set, the INCLUDE statement also
contains the name of each member to be used. See "Linkage Editor
Control Statement Summary" for a detailed description of the format of
the INCLUDE statement.

When an INCLUDE control statement is encountered, the linkage editor
processes the module or modules indicated. Figure 10 shows the
processing of an INCLUDE statement. In the illustration, the primary
input data set is a sequential data set named OBJMOD which contains an
INCLUDE statement. After processing the included data set, the linkage
editor processes the next primary input item. The arrows indicate the
flow of processing.

Primary Input
Data Set OBJMOD

Library OBJLIB
Member MODA

INCLUDE OBJLIB (MODA)

Figure 10. Processing of One INCLUDE Control Statement

If an included data set also contains an INCLUDE statement, this
specified module is also processed. However, any data following the
INCLUDE statement is not processed.

If the OBJMOD data set shown in Figure 10 is itself included, the

data following the INCLUDE statement for OBJLIB is not processed.
Figure 11 shows the flow of processing for this example.

Input to the Linkage Editor 29

Primary Input Sequential
Data Set SYSLIN Data Set OBJMOD

Library OBJLIB
Member MODA

\/Wv

INCLUDE OBJLIE (MODA)

| NNA

INCLUDE OBJMOD

e\

SN

not processed

Figure 11. Processing of More than One INCLUDE Control Statement

Including Sequential Data Sets

Sequential data sets containing object modules and/or control
statements can be specified by an INCLUDE control statement. In the
following example, an INCLUDE statement specifies the ddnames of two
sequential data sets to be used as additional input:

//ACCOUNTS DD DSNAME=ACCTROUT, DISP=(OLD, KEEP), ..
//INVENTRY DD DSNAME==INVENTRY, DISP=(OLD, KEEP) ;...

//SYSLIN DD DSNAME=QTREND, ...
/77 , DD *

INCLUDE ACCOUNTS, INVENTRY
/*

Each ddname could also have been specified on a separate INCLUDE
statement; with either method, a DD statement must be specified for each
ddname.

Another method of doing the preceding example is given in "Including
Concatenated Data Sets."

Including Library Members

One or more members of a partitioned data set can be specified on an
INCLUDE control statement. The member name must be specified on the
INCLUDE statement; no member name should appear on the DD statement
itself.

30 0S/vVS Linkage Editor and Loader

In the following example, one member name is specified on the INCLUDE
statement:

//PAYROLL DD DSNAME=PAYROUTS, DISP=(OLD, KEEP) ya s«
//SYSLIN DD DSNAME=§ § CHECKS, DISP=(OLD, DELETE)
/7 DD *

INCLUDE PAYROLL (FICA)
/*

If more than one member of a partitioned data set is to be included,
the INCLUDE statement specifies all the members to be used from each
library. The member names are not repeated on the DD statement.

In the following example, an INCLUDE statement specifies two members
from each of two likraries to be used as additional input:

//PAYROLL DD DSNAME=PAYROUTS, DISP=(OLD, KEEP), ...
//ATTEND DD DSNAME=ATTROUTS, DISP=(OLD, KEEP) , ¢ « «
//SYSLIN DD *

INCLUDE PAYROLL(FICA,TAX),ATTEND (ABSENCE, OVERTIME)
/%

Each library could have been specified on a separate INCLUDE statement;
with either method, a DD statement must be specified for each ddname.

Another method of doing this example is given in "Including
Concatenated Data Sets."

Including Concatenated Data Sets

Several data sets can be designated as input with one INCLUDE
statement that specifies one ddname; additional data sets are then
concatenated to the data set described on the specified LD statement.
When data sets are concatenated, all of the records must have the same
characteristics (i.e., format, record length, block size, etc.).

Sequential Data_Sets: In the following example, two sequential data
sets are concatenated and then specified as input with one INCLUDE
statement:

//CONCAT LD DSNAME=ACCTROUT, DISP=(OLD, KEEP), ...

/7 DD DSNAME=INVENTRY, DISP=(OLD, KEEP) y e ..
//S8YSLIN DD DSNAME=SALES, DISP=0LD, ...
/77 CD *
INCLUDE CONCAT
/¥

When the INCLUDE statement is recognized, the contents of the sequentiul
data sets ACCTROUT and INVENTRY are processed.

Input to the Linkage Editor 31

Library Members: Members from more than one library can be designated
as input with one ddname on an INCLUDE statement. In this case, all the
members are listed on the INCLUDE statement; the partitioned data sets
are concatenated using the ddname from the INCLUDE statement:

//CONCAT DD DSNAME="PAYROUTS, DISP=(OLD,KEEP) ;o s.

Va4 DD DSNAME=ATTROUTS, DISP=(OLD, KEEP) , ¢ « «
//SYSLIN DD DSNAME=REPORT, DISP=OLDy « ¢ «
/77 DD *
INCLUDE CONCAT(FICA,TAX,ABSENCE,OVERTIME)
/%

When the INCLUDE statement is recognized, the two libraries PAYROUTS and
ATTROUTS are searched for the four members; the members are then
processed as input.

32 0S/vS Linkage Editor and Loader

OUTPUT FROM THE LINKAGE_ EDITOR

The linkage editor produces two types of output: a load module and
diagnostic information. The principal output of the linkage editor is
the output load module. The linkage editor always places this load
module in a partitioned data set. In addition, the linkage editor
issues diagnostic information. Error and/or warning messages, module
disposition data, and optional diagnostic output are stored in the
diagnostic output data set.

OUTPUT LOAD_MODULE

The linkage editor produces one or more load modules (see Appendix G)
from the input processed. When more than one load module is produced,
the process is called multiple load module processing.

Whether or not the linkage editor produces one or more load modules,
the following apply:

e The load module is stored in a partitioned data set called the
output module library.

e The load module must have an entry point; if the programmer has not
assigned one, the linkage editor does.

e During processing, the linkage editor reserves and collects common
areas, as specified in the source language program.

e During processing, the linkage editor accumulates total length and
individual displacements for each pseudo register (external dummy
section).

e During processing, the linkage editor collects and records
identification data in the CSECT Identification (IDR) records.

OUTPUT MODULE LIBRARY

The linkage editor stores every load module it produces in the output
module library. This library is a partitioned data set that must be
described by a DD statement with the name SYSLMOD. The data set name of
the library is also specified on this DD statement. The data set can be
either temporary (defined with a double ampersand), or permanent
(defined without a double ampersand). If the data set name is either
SYS1.LINKLIB or SYS1.SVCLIB, it would be advisable to re-IPL the system
after linkage editor processing is complete, This ensures that the
corresponding Data Extent Block (DEB) is updated to reflect additional
extents if secondary allocation of direct access space was required.

Whether the data set is permanent or temporary, each module must be
assigned a unique name, called the member_ name, to distinguish one load
module from another. The output module can be assigned aliases if the
programmer wants the module either identified by more than one name or
entered for execution at several different points. Each member name and

alias in a load module library must be unique. The library member name

Ooutput from the Linkage Editor 33

and aliases for each load module appear as separate entries in the
library directory, along with the module attributes. (Some module
attributes can be assigned on the EXEC statement for each linkage editor
job step; see "Module Attributes" in "Job Control Language Summary.")

Member Name

The member name of the output load module must be unique in the
library. The member name must be specified either on the SYSLMOD DD
statement or in a NAME control statement. Either method can also be
used to replace an identically named member in the library. If the name
is omitted, the linkage editor assigns a temporary member name
(TEMPNAME) that may not be unique.

Assigned on SYSLMOD DD Statement: If the member name is assigned on the
SYSLMOD DD statement, the name is written in parentheses following the
data set name of the library. For example:

//SYSLMOD DD DSNAME=MATHLIB(SQDEV), DISP=(NEW,KEEP),UNIT=2314,
/7 SPACE=(TRK, (100,10,1)), VOLUME=SER=LIB002

The member name SQDEV is assigned to the load module, which is placed in
the new library named MATHLIB.

Assigned on NAME Control Statement: If the member name is not specified
on the SYSLMOD DD statement, it must be assigned in a NAME control
statement. For exanple:

//SYSLMCD DD DSNAME=MATHLIB, DISP=(NEW, KEEP), ...
//SYSLIN DD DSNAME=¢§ § OBJECT, DISP=(OLD, DELETE)
7/ LD *

NAME SQODEV
/ *

The member name SQDEV is assigned to the load module, which is placed in
the library named MATHLIB.,

Assigned on Both: If both the SYSLMOD DD statement and the NAME control
statement specify a member name, the names should be identical. If the
names are different, the name on the NAME control statement is used as
the member name. When using referback, if the member name on the SYSLMOD
statement is not the same as that used in the NAME statement, the

member cannot be located for execution. For example:

//LKED EXEC PGM=HEWL
//SYSLMOD DD DSNAME=§ §LOADST (GO) y DISP=(NEW, PASS) je e
//SYSLIN DD DSNAME=§ §OBJECT, DISP=(OLD, DELETE)
7/ DD *
NAME READ
VA
//GO EXEC PGM=%.,LKED.SYSLMOD

The EXEC statement of the GO step specifies that the module to be
executed is described in the LKED step in the SYSLMOD statement. The
system tries to locate a member named GO; however, the output module was
assigned the name READ.

34 08/VSs Linkage Editor and Loader

Replacing an Identically Named Library Member: An output module can
replace an identically named member in the library in either cf two
ways. The disposition field of the SYSLMOD statement contains OLD, as
follows:

//SYSLMOD DD DSNAME=MATHLIB(SQDEV) ,DISP=(OLD,KEEP) ..

Or, the NAME control statement specifies the replace function, as
follows:

NAME SQDEV (R)

In either case, the member named SQDEV is replaced with a new module of
the same name.

Alias Names

An output module can be assigned a maximum of 16 aliases, specified
with the ALIAS control statement. The aliases exist in addition to the
member name of the output module. When a module is referred to by an
alias, execution begins at the external name specified by the alias. If
the name specified by the ALIAS statement is not an external symbol
within the module, the main entry point is used.

For example, an output module is to be assigned two additional entry
points, CODE1l and CODE2. In addition, due to a misunderstanding,
calling modules have been written and tested using both ROUTONE and
ROUT1 to refer to the output module. Rather than correct the calling
modules, an alternate library member name (alias) is also assigned.

//SYSLMOD DD DSNAME=PVTLIB, DISP=0LD,UNIT=2314,

/7 VOLUME=SER=LIB001
//SYSLIN DD DSNAME=§ §60BJECT, DISP=(OLD, DELETE)
/7 DD *
ALIAS CODE1,CODE2, ROUTONE
NAME ROUT1
/*

The names CODE1, CODE2, and ROUTONE appear in the library directory
along with ROUT1, the member name., Because CODE1l and CODE2 are defined
as external symbols within the output module, when these names are used,
execution begins at these points. Control may be passed to the main
entry point by using either the member name ROUT1 or the alias ROUTONE.

ENTRY POINT

Every load module must have a main entry point. The programmer may
specify the entry point in one of two ways:

e On a linkage editor ENTRY control statement.

e On an assembler language END statement, which is the last statement
in the source program. The assembler produces an object module and
an END statement for the module. The assembler-produced END
statement contains an entry point only if the source language END
statement contained one.

Ooutput from the Linkage Editor 35

From its input, the linkage editor selects the entry point for the
load module as follows:

1. From the first ENTRY control statement in the input.

2. If there is no ENTRY control statement in the input, from the first
assembler-produced END statement that specifies an entry point.

3. If no ENTRY control statement or no assembler-produced END
statement specifies an entry point, the first byte of the first
control section of the load module is used as the entry point.

In general, the entry point should be explicitly specified because it
is not always possible to predict which control section will be first in
the output module.

When a load module is reprocessed by the linkage editor, it has no
END statement. Therefore, if the first byte of the first control
section of the load module is not a suitable entry point, the entry
point must be specified in one of two ways:

e Through an ENTRY control statement.

* Through the assembler-produced ERD statement of another input
module, which is being processed for the first time. This object
module must be the first such module to be processed by the linkage
editor.

Entry points other than the main entry point may be specified with an
ALIAS control statement. The symbol specified on the ALIAS statement
must be defined as an extermnal symbol in the load module. Any reference
to that symbol causes execution of the module to begin at that point
instead of the main entry point.

In the following example, assume that CDCHECK, CODEl, and CODEZ are
defined as external symbols in the output module:

//SYSLIN DD DSNAME=§E0OBJECT, DISP=(OLD, DELETE)
/77 DD *

ENTRY CDCHECK

ALIAS CODE1l,CODE2, ROUTONE

NAME ROUT1
/¥

As a result of the preceding control statements, CDCHECK is the main
entry point; CODEl1l and CODE2 are additional entry points. Any reference
to ROUTONE or ROUT1 causes execution to begin at CDCHECK; any reference
to CODE1l and CODE2 causes execution to begin at these points.

RESERVING STORAGE IN THE OUTPUT LOAD MODULE

In FORTRAN, assembler language, and PL/I, the programmer can create
control sections that reserve virtual storage areas that contain no data or
or instructions. These control sections are called "common" or "static
external" areas, and are produced in the object modules by the language
translators. These common areas are used, for example, as communication
regions for different parts of a program or to reserve virtual storage
areas for data supplied at execution time. These cormron areas are
either named or unnamed (blank).

36 0S8/VS Linkage Editor and Loader

Collection of Common Areas: During processing, the linkage editor
collects common areas. That is, if two or more blank common areas are
found in the input, the largest blank common area is used in the output
module; all references to a blank common area refer to the one retained.
If two or more named common areas have the same name, the largest of the
identically named common areas is used in the output module; all
references to the named common areas refer to the one area retained.

Identically Named Common Areas and Control Sections: If a control
section (as is generated from a BLOCK DATA subprogram in FORTRAN, for
example) and a named common area have the same name, the length of the
control section must be greater than or equal to the length of the named
common area. If the control section is smaller in length than the named
common area, a diagnostic message is issued. The control section is
regarded as the largest of the common areas processed with that name,
All subsequent control sections and/or common areas with the same name
are ignored.

PROCESSING PSEUDC REGISTERS

In PL/I, programmers can use pseudo registers to define storage that
will not be reserved in the load module but can be allocated dynamically
during execution. The external dummy sections generated by Assembler F
or Assembler H correspond to the pseudo registers of PL/I.

The linkage editor accumulates the total length of all pseudo
registers in the input and records the displacement of each. If two or
more pseudo registers have the same name, the one with the longest
length and the most restrictive alignment will be retained. All other
pseudo registers with the same name will be ignored; all references to
the identically named pseudo registers will refer to the one retained.

MULTIPLE LOAD MODULE PROCESSING

The linkage editor can produce more than one load module in a single
job step. A NAME control statement in the input stream is used as a
delimiter for input to a load module., If additional input modules
follow the NAME statement in the input stream, they are used in the
formation of the next load module.

Each load module that is formed has a unique name and is placed in
the same library as a separate member. When processing multiple load
modules in a single job step, the options and attributes specified in
the EXEC statement for that job step apply to all load modules created.
If the linkage editor terminates abnormally during processing of any of
the output modules, neither that module nor any of the modules yet to be
processed in the job step is processed or placed in the library. Load
modules processed before abnormal termination have already been placed
in the library.

The SYSLMOD DD statement should not specify a member name when a NAME
control statement is used to specify the name of the first load module.
However, if the SYSLMOD statement does specify a member name, the name
should be identical to that specified in either the first NAME statement
or an ALIAS statement for the first module. In either case, the NAME
statement is regarded as the last item to be processed for the preceding
load module.

output from the Linkage Editor 37

In the following example, two load modules are produced in one
linkage editor -job step:

//LKED EXEC PGM=HEWL , PARM="'MAP ,LIST'
//SYSLMOD DD DSNAME=PAYROLL (OVERTIME) ,DISP=0LD,UNIT=2314,
// VOLUME=SER=LIB002
//MODTWO DD DSNAME=¢ EOBJECT ,DISP=(OLD,DELETE)
//SYSLIN DD DSNAME=¢£EOBJECT (A) ,DISP=(OLD,DELETE)
// DD *

ENTRY INIT

NAME OVERTIME

INCLUDE MODTWO (B)

ENTRY HSKEEP

NAME VACATION
/¥

The first load module is produced from the object module in the data
set defined on.the SYSLIN DD statement. The main entry point is INIT
and the member name is OVERTIME.

The second load module is produced from the object module specified
by the INCLUDE statement. The main entry point is HSKEEP and the member
name is VACATION.

Both load modules are placed in the library PAYROLL, defined on the
SYSLMOD statement. Note that the member name specified cn the SYSLMOD
statement is identical to the name given the first load module.

The parameters on the EXEC card specify that a module map and a

control statement listing is produced for each load module. The map and
listing are discussed in detail in the next section,

DIAGNOSTIC OUTPUT

Diagnostic information is stored in the diagnostic output data set,
which must be defined by a DD statement with the name SYSPRINT. This
output is a collection of messages generated by the linkage editor, as
well as any optional output requested by the programmer.

DIAGNOSTIC MESSAGES

The linkage editor generates two types of messages: module
disposition messages and error/warning messages. Descriptions of the
error/warning messages can be found in Linkage Editor and Loader

Messages.

Module Disposition Messages

Module disposition messages of several types are printed for each
load module produced. The first message indicates the options and
attributes specified for each module. Invalid options or attributes are
replaced by INVALID in the cutput. Messages are also generated to
inform the programmer that incompatible attributes have been specified.

38 0S8/VS Linkage Editor and Loader

Disposition messages also describe the handling of the load module.
These messages are preceded by several asterisks, and are:

* member name NOW ADDED TO DATA SET.

* member name NOW REPLACED IN DATA SET.

e member name DOES NOT EXIST BUT HAS BEEN ADDED TO THE DATA SET.
(The replacemeht function was specified, but
the member did not exist in the data set; the
module is added to the data set using the

member name given,)

* alias name IS AN ALIAS FOR THIS MEMBER.

MODULE HAS BEEN MARKED NOT EXECUTABLE.

In addition, module disposition messages are used when the
re-enterable (RENT), reusable (REUS), and/or refreshable (REFR) linkage
editor options have been specified for the module. When one or more of
these module attributes has been indicated, a message informs the user
what attribute(s) have been assigned to the module. This message
indicates whether the load module has been marked re-enterable or not
re-enterable, reusable or not reusable, refreshable or not refreshable,
depending on the option or options used. (See "Reusablity Attributes"
and "Refreshable Attribute" in the job control language summary section
for more information on these options.)

The message consists of several asterisks and MODULE HAS BEEN MARKED,
followed by the attribute(s) assigned as a result cf the linkage editor
options specified. The programmer, of course, is responsible for
verifying that the module actually is re-enterable, reusable, and/or
refreshable. The following messages are examples of some possible
combinations:

e MODULE HAS BEEN MARKED REFRESHABLE.

e MODULE HAS BEEN MARKED NOT REFRESHABLE.

e MODULE HAS BEEN MARKED REUSABLE AND NOT REFRESHABLE.

¢ MODULE HAS BEEN MARKED REUSABLE AND REFRESHABLE.

When an error causes the linkage editor to mark a module not
executable, only the MODULE HAS BEEN MARKED NOT EXECUTABLE message
appears; no attribute messages are generated.

Cutput from the Linkage Editor 39

Exrror/Warning Messages

Certain conditions that are present when a module is being processed
can cause an error Or warning message to be printed. These messages
contain a message code and message text. If an error is encountered
during processing, the message code for that error is printed with the
applicable symbol or record in error. After processing is completed,
the diagnostic message associated with that code is printed. The error
warning messages have the following format:

IEWOmms message text

where:

IEWO indicates a linkage editor message

mm is the message number

S is the severity code, and may be one of the following values:

1 -- Indicates a condition that may cause an error during
execution of the output module. A module map or
cross-reference table is produced if specified by the
programmer. The output module is marked executakle.

2 -- Indicates an error that could make execution of the
output module impossible. Processing continues. When
possible, a module map or cross-reference table is
produced if specified by the programmer. The output
module is marked not executable unless the LET option is
specified on the EXEC statement.

3 -- Indicates an error that will make execution of the output
module impossible. Processing continues., When possikle,
a module map or cross-reference table is rroduced if
specified by the programmer. The output module is marked
not executable.

4 -- Indicates an error condition from which no recovery is
possible. Processing terminates. The only output is
diagnostic messages.

Note: A special severity code of zero is generated for each
control statement printed as a result of the LIST optiocn,
Severity zero does not indicate an error or warning condition.
The highest severity code encountered during processing is
multiplied by 4 to create a return code that is placed in
register 15 at the end of processing. This return code can be
tested to determine whether or not processing is to continue
(see "Job Control Language Summary").
message text contains combinations of the following:

* The message classification (either error or warning).

s Cause oOf error.

¢ Identification of the symbol, segment number (when in
overlay), or input item to which the message applies.

¢ Instructions to the programmer.

* Action taken by the linkage editor.

40 08/VvS Linkage Editor and Loader

Optionally, error/warning messages can be sent to a separate output
data set, which is defined by specifying TERM in the PARM field of the
EXEC statement and including a SYSTERM DD statement. This separate
SYSTERM data set consists of only numbered error/warning messages. It
supplements the SYSPRINT output data set, which can also include module
disposition messages and optional diagnostic output. When SYSTERM is
used, the numbered error/warning messages appear in both data sets.

Linkage Editor and Loader Messages contains a complete list
of error/warning messages.

Sample Diagnostic Cutput

Figure 12 shows the format of the diagnostic output for the
linkage editor. ©No optional output was requested other than the
list of control statements.

The letters indicate the disposition and error/warning messages as
follows:

(:) Is a module disposition message that lists the options and
attributes specified. Additional information is printed indicating
the variable and default options used.

Is a list of control statements used (IEW0000) and the message
codes (IEW0201 and IEW0461) for error/warning conditions
discovered during processing. For error/warning message codes,
the symbol in error, if necessary, is also listed (cccccccC and
BASEDUMP) .

C) Is a module disposition message (****) that indicates that the
output module (BBBBBBBB) has been added to the output module data
set.

C) Is the diagnostic message directory that contains the text of the
error codes listed in item .

Output from the Linkage Editor 41

Zh

IopeOT puer IJOATpH obejutl SA/SO

(:)-—————» F64-LEVEL LINKAGE EDITOR OPTIONS SPECIFIED LET,NCAL,XREF,OVLY,LIST
DEFAULT OPTION(S) USED-SIZE=(65536,6144)

(IEwoooo NAME BBBBBBBB
. / IEW0201

?IEWOQﬁl cccecececee

IEW0461 BASEDUMP
@D-—————» ****BBBBBBBB NOW ADDED TO DATA SET
DIAGNOSTIC MESSAGE DIRECTORY

@__, IEW0201 WARNING - OVERLAY STRUCTURE CONTAINS ONLY ONE SEGMENT -- OVERLAY OPTION
CANCELED,

IEWO461 WARNING - SYMBOL PRINTED IS AN UNRESOLVED EXTERNAL REFERENCE, NCAL WAS
SPECIFIED.

= - s o e ot . St . o e S . s e s
— — —— —— ———— —— S— — T ettt e, s

———————————— e - —————————]

Figure 12. Diagnostic Messages Issued by the Linkage Editor

OPTIONAL OUTPUT

In addition to error/warning and disposition messages, the linkage
editor can produce diagnostic output as requested by the programmer.
This optional output includes a control statement listing, a module map,
and a cross-reference table.

control Statement Listing

If the LIST option is specified on the EXEC statement, a listing of
all linkage editor control statements is produced. For each control
statement, the listing contains a special message code, IEW0000,
followed by the control statement. Item in Figure 12 contains
an example of a control statement listing.

Module Map

If the MAP option is specified on the EXEC statement, a module map of
the output load module is produced. The module map shows all control
sections in the output module and all entry names in each control
section. Named common areas are listed as control sections.

For each control section, the module map indicates its origin
(relative to zero) and length in bytes (in hexadecimal notation). For
each entry name in each control section, the module map indicates the
location at which the name is defined. These locations are also
relative to zero.

If the module is not in an overlay structure, the control sections
are arranged in ascending order according to their origins. An entry
name is listed with the control section in which it is defined.

If the module is an overlay structure, the control sections are
arranged by segment. The segments are listed as they appear in the
overlay structure, top to bottom, left to right, and region by region.
Within each segment, the control sections and their corresponding entry
names are listed in ascending order according to their assigned origins.
The number of the segment in which they appear is also listed.

In any module map, the following are identified by a dollar sign:
e Blank common area.

e Private code (unnamed control section).

* For overlay programs, the segment table and each entry table.

When the load module processed by the linkage editor does not
have an origin of zero, the linkage editor generates a one-byte
private code (unnamed control section) as the first text record. This
private code is deleted in any subsequent reprocessing of the load module
by the linkage editor.

Each control section that is obtained from a call library during
automatic library call is identified by an asterisk after the control
section name.

At the end of the module map is the entry address, that is, the
relative address of the main entry point. The entry address is followed
by the total length of the module in bytes; in the case of an overlay
module, the length is that of the longest path. Pseudo registers, if
used, also appear at the end of the module map; the name, length, and
displacement of each pseudo register is given.

output from the Linkage Editor 43

Figure 13 contains a module map with five control sections. There
are two named control sections (COBSUB and MAINMOD), one unnamed control
section (designated by $PRIVATE), and two control sections obtained from
a call library (ILBODSPO and ILBOSTPO). In addition, two entry names
are defined, SUB1 in the unnamed control section and ILBOSTP1 in control
section ILBOSTPO.

Note: The HMBLIST service aid program described in the Q0S/VS Service
Aids publication can also be used to obtain a module map.

Cross—~Reference Table

If the XREF option is specified on the EXEC statement, a cross-
reference table is produced. The cross-reference table consists of
a module map and a list of cross-references for each control section.
Fach address constant that refers to a symbol defined in another control
section is listed with its assigned location, the symbol referred to,
and the name of the control section in which the symbol is defined. In
cases where control sections are compiled together and simple address
constants are used to refer from one control section to another (instead
of using external symbols and entry names) the control section name is
listed as the symbol referred to.

For overlay programs, this information is provided for each segment;
in addition, the number of the segment in which the symbol is defined is
provided.

If a symbol is unresolved after processing by the linkage editor, it
is identified by $UNRESOLVED in the list. However, if an unresolved
symbol is marked by the never-call function (as specified on a LIRBRARY
control statement), it is identified by $NEVER-CALL., If an unresolved
symbol is a weak external reference, it is identified by $UNRESOLVED (W).

Figure 14 contains a cross-reference table for the same program whose
module map is shown in Figure 13. All of the information from the
module map is present, plus a list of cross-references for each control
section,

44 08/VS Linkage Editor and Loader

I103Tpd 9bejuTrT 9y3z woxJ 3ndino

St

CONTROL SECTIGN

NAME ORIGIN LENGTH
COBSUE co 33A

$PRIVATE 340 EF

MATNMOD 430 166
ILBODSPO* 5¢8 5E2
ILBCSTPO* EEQ 35

ENTRY ADDRESS 430
TOTAL LENGTH BBS8

2A%%GO

Figure 13. Module Map

CONTROL SECTION

NAME ORIGIN LENGTH
coBsug oc 33A

$PRIVATE 340 EF

MATNMCD 430 166
ILBOCSPO* 598 5€2
ILBOSTPO* B8O 35

LCCATION REFERS TQ SYMBOL
250 1LBASTPO
258 ILBOSTP1
478 CCBSUB

ENTRY ACCRESS 430

TOTAL LENGTH BR8

Figure 14.

IN CONTROL SECTION

Cross-Reference Table

ENTRY

NAME LQCATION NAME LOCATION

ILBOSTP1

DOES NOT EXIST BUT HAS BEEN ADDED TO DATA SET

CROSS REFERENCE TABLE

ENTRY

NAME LOCATICN NAME LOCATION

ILBOSTP1

LOCATION

ILBOSTPO 254
ILBRASTPO 45C
CCeSuB

NAME

NAME

REFERS TGO SYMBOL

ILBCDSPO
SuBl

LOCATICN NAME

LOCATIGN NAME

IN CONTRGL SECTION

1L BODSPC

LOCATION

LOCATIGN

MODULE EDITING

The linkage editor performs editing functions either automatically or
as directed by control statements. These editing functions provide for
program modification on a control section basis. That is, they make it
possible to modify a control section within an object or load module,
without recompiling the entire source program.

The editing functions can modify either an entire control section or
external symbols within a control section. Control sections can be
deleted, replaced, or arranged in sequence; external symbols can be
deleted or changed. (External symbols are control section names, entry
names, external references, named common areas, or pseudo registers.)

Whatever function is used, it is requested in reference to an input
module. The resulting output load module reflects the request. That
is, no actual change, deletion, or replacement is made to an input
module., The requested alterations are used to control linkage editor
processing (Figure 15).

//SYSLMOD DD DSNAME-=NEWLIB (MODA1A2), . ..
//MODATWO DD DSNAME:=MODA?, . . . CSECTY
//SYSUN DD DSNAME:==MODAL, ...
// oD -
ENTRY CSECT3 CSECTA
REPLACE CSECT2 (CSECTA)

CSECT1 INCLUDE ~ MODATWO

CSECT3

CSECT3

Figure 15. Editing a Module

Editing Conventions

In requesting editing functions, certain conventions should be
followed to ensure that the specified modification is processed
correctly. These conventions concern the following items:

e Entry points for the new module.

e Placement of ccntrol statements.

e Tdentical old and new symbols.

46 0S5/VS Linkage Editor and Loader

Entry Points: Each time the linkage editor reprocesses a load module,
the entry point for the output module should be specified in one of two
ways:

e Through an ENTRY control statement.

¢ Through the assembler-produced END statement of an input object
module, if one is present. If the entry point specified in the
assenmbler-produced END statement is not defined in the object
module, the entry name must be defined as an external reference.

The entry point assigned must be defined as an external name within the
resulting load module,

Placement of Control Statements: The control statement (such as CHANGE or
REPLACE) used to specify an editing function must precede either the
module to be modified, or the INCLUDE statement that specifies the

module. If an INCLUDE statement specifies several modules, the CHANGE

or REPLACE statement applies only to the first module included.

Identical 0ld and New Symbols: The same symbol should not appear as
both an old external symbol and a new external symbol in one linkage
editor run. If a control section is to be replaced by another control
section with the same name, the linkage editor handles this
automatically (see "Automatic Replacement").

CHANGING EXTERNAL SYMBOLS

The linkage editor can be directed to change an external symbol to a
new symbol while processing an input module. External references and
address constants within the module automatically refer to the new
symbol. External references from other modules to a changed external
symbol must be changed with separate control statements.

Both the old and the new symbols are specified on either a CHANGE
control statement or a REPLACE control statement. The use of the old
symbol within the module determines whether the new symbol becomes a
control section name, an entry name, or an external reference. The old
symbol appears first, followed by the new symbol in parentheses.

The CHANGE control statement changes a control section name, an entry
name, or an external reference. The REPLACE statement changes or
deletes an entry name; if the symbols on a REPLACE statement are control
section names, the entire control section is replaced or deleted (see
"Replacing Control Sections™).

In the following example, assume that SUBONE is defined as an
external reference in the input load module. A CHANGE statement is used
to change the external reference to NEWMOD (Figure 16).

//SYSLMOD DD DSNAME=PVTLIB,DISP=0OLD, UNIT=2314,VOLUME=SER=PVT002
//SYSLIN DD *

ENTRY BEGIN

CHANGE SUBONE (NEWMOD)

INCLUDE SYSLMOD(MAINROUT)

NAME MAINROUT (R)
VA

Module Editing 47

BEGIN ENTRY MAINEP ENTRY

CALL SUBONE : CALL NEWMOD
. //SYSLMOD DD DSNAME=PVTLIB,

//SYSLIN DD *

CALL SUBONE ENTRY MAINEP CALL NEWMOD
: CHANGE SUBONE (NEWMOD),BEGIN (MAINEP) .

INCLUDE SYSLMOD(MAINROUT)

NAME MAINROUT(R)

CALL SUBONE /* CALL NEWMOD

Figure 16. Changing an External Reference and an Entry Point

In the load module MAINROUT, every reference to SUBONE is changed to
NEWMOD. Note also that the INCLUDE statement specifies a ddname of
SYSLMOD. This allows a library to be used both as input and as the
output module library.

More than one change can be specified on the same control statement.
If, in the same example, the entry point is also to be changed, the two
changes can be specified at once (Figure 16).

//SYSLMOD DD DSNAME=PVTLIB,DISP=0LD,UNIT=2314,VOLUME=SER=PVT002
//SYSLIN DD *

ENTRY MAINEP

CHANGE SUBONE (NEWMOD) , BEGIN (MAINEP)

INCLUDE SYSLMOD (MAINROUT)

NAME MAINROUT (R)
/*

The main entry point is now MAINEP instead of BEGIN. The ENTRY
control statement specifies the new entry point because this is the
entry point that is entered in the library directory entry for the load
module.

REPLACING CONTROL SECTIONS

An entire control section can be replaced with a new controcl section.
control sections can be replaced either automatically or with a REPLACE
control statement. Automatic replacement acts upon all input modules;
the REPLACE statement acts only upon the module that follows it.

Note 1: Any CSECT Identification (IDR) records associated with a
particular control section are also replaced.

Note 2: (For assembler language programmers only.) When some but not
all control sections of a separately assembled module are to be
replaced, A-type address constants that refer to a deleted symbol will
be incorrectly resolved unless the entry name is at the same
displacement from the origim in both the 0ld and the new control
section. If all control sections of a separately assembled module are
replaced, no restrictions apply.

48 0S/Vs Linkage Editor and Loader

AUTOMATIC REPLACEMENT

Control sections are automatically replaced if both the old and the
new control section have the same name. The first of the identically
named control sections processed by the linkage editor is made a part of
the output module. All subsequent identically named control sections
are ignored; external references to identically named control sections
are resolved with respect to the first one processed. Therefore, to
cause automatic replacement, the new control section must have the same
name as the control section to be replaced, and must be processed before
the old control section.

Caution: Automatic replacement applies to duplicate control section
names only; if duplicate entry points exist in control sections with
different names, a REPLACE control statement must be used to specify
the entry point name. If a control section being automatically replaced
contains unresolved external references and the control section re-
placing it does not, the parameter NCAL must be specified or the un-
resolved external references must be explicitly deleted using the
REPLACE statement or marked for restricted no-call or never=-call using
the LIBRARY statement; otherwise, the unresolved external reference is
retained.

Note on overlay programs: When identically named control sections
appear in modules being placed in an overlay structure, the second and
any subsequent control sections with that name are ignored. This occurs
whether the modules are in segments in the same path or in exclusive
segments. Resolution of external references may therefore cause invalid
exclusive references. Invalid exclusive references cause the linkage
editor to mark the output module not executable unless the XCAL option
is specified on the EXEC statement.

Example 1

An object module deck contains two control sections, READ and WRITE;
member INOUT of library PVTLIB also contains a control section WRITE.

//SYSLMOD DD DSNAME=PVTLIB, DISP=OLD, UNIT=2314,VOLUME=SER=PVTO002
//SYSLIN DD *

ENTRY READIN
INCLUDE SYSLMOD (INOUT)
NAME INCUT(R)

/*

Module Editing 49

The output load module contains the new READ control section, the new
WRITE control section (replacing the old WRITE control section in member
INOUT), and all remaining control sections from INOUT.

Example 2

A large load module named PAYROLL, originally written in COBOL,
contains many control sections. Two control sections, FICA and
STATETAX, were recompiled and passed to the linkage editor job step in
the &§§0OBJECT data set. Then, by including the load module PAYROLL, a
member of the partitioned data set LIB001, as well as the output of the
language translator, the modified control sections automatically replace
the identically named control sections (Figure 17).

//SYSLMOD DD DSNAME=LIB002 (PAYROLL) ,DISP=0OLD, UNIT=2314,
/7 VOLUME=SER=LIB002

//SYSLIB DD DSNAME=5YS1.COBLIB, DISP=SHR

//0LDLOAD DD CSNAME=LIB001, DISP=(OLD, DELETE) , UNIT=2314,

/77 VOLUME=5ER=LIB001
//SYSLIN DD DSNAME=§E0BJECT, DISP=(OLD, DELETE)
V4 DD *
INCLUDE OLDLOAD(PAYROLL)
ENTRY INIT1
/*

JCL AND CONTROL STATEMENTS STATETAX

(new)

//SYSLMOD DD DSNAME=LIB0O02 (PAYROLL), ... OVERTIME
//OLDLOAD DD DSNAME=LIBOOT, ...

OVERTME] //SYSLIN DD DSNAME=380OBJECT,...

// DD *
INCLUDE OLDLOAD(PAYROLL)
ENTRY INITI
/
STATETAX
(old}

Figure 17. Automatic Replacement of Control Sections

50 05/VS Linkage Editor and Loader

The output module contains the modified FICA and STATETAX control
sections and the rest of the control sections from the old PAYROLL
module. The main entry point is INIT1, and the output module is placed
in a library named LIB002. The COBOL automatic call library is used to
resolve any external references that may be unresolved after the SYSLIN
data sets are processed.

REPLACE STATEMENT

The REPLACE statement is used to replace control sections when the
0ld and the new control sections have different names. The name of the
old control section appears first, followed by the name of the new
control section in parentheses. The REPLACE statement must immediately
precede either the input module that contains the control section to be
replaced, or the INCLUDE statement that specifies the input module. The
scope of the REPLACE statement is across the immediately following
module (object module or load module). The END record in the immediately
following object module or the end-of-module indication in the load
module terminates the action of the REPLACE statement.

An external reference to the 0ld control section from within the same
input module is resolved to the new control section. An external
reference to the 0ld control section from any other module becomes an
unresolved external reference unless one of the following occurs:

s The external reference to the old control section is changed to the
new control section with a separate CHANGE control statement.

¢ The same entry name appears in the new control section or in some
other control section in the linkage editor input.

In the following example, the REPLACE statement is used to replace
one control section with another of a different name. Assume that the
0ld control section SEARCH is in library member TBLESRCH, and that the
new control section BINSRCH is in the data set &§&OBJECT, which was
passed from a previous step (Figure 18).

//SYSLMOD DD DSNAME=SRCHRTN, DISP=0OLD, UNIT=2314,

7/ VOLUME=SER=SRCHLIB
//SYSLIN DD DSNAME=§ §OBJECT, DISP=(OLD, DELETE)
/7 DD *

ENTRY READIN

REPLACE SEARCH (BINSRCH)
INCLUDE SYSLMOD(TBLESRCH)
NAME TBLESRCH(R)

VA

Module Editing 51

BINSRCH
//SYSLMOD DD DSNAME=SRCHRTN, ... READIN ENTNﬂ

//SYSLIN DD DSNAME=&&0OBJECT,...
Db *
ENTRY READIN
REPLACE SEARCH (BINSRCH)
INCLUDE ~ SYSLMOD(TBLESRCH)
READIN ENTRY NAME TBLESRCH(R)
. S

CALL BINSRCH

CALL SEARCH

Figure 18. Replacing a Control Section with the REPLACE Control
Statement

The output module contains BINSRCH instead of SEARCH; any references
to SEARCH within the module refer to BINSRCH. Any external references
to SEARCH from other modules will not be resolved to BINSRCH.

DELETING A CONTROL SECTION OR ENTRY NAME

The REPLACE statement can be used to delete a control section or an
entry name. The REPLACE statement must immediately precede either the
module that contains the control section or entry name to be deleted or
the INCLUDE statement that specifies the module. Only one symbol
appears on the REPLACE statement; the appropriate deletion is made
depending on how the symbol is defined in the module.

If the symbol is a control section name, the entire control section
is deleted. The control section name is deleted from the external
symbol dictionary cnly if no address constants refer to the name from
within the same input module. If an address constant does refer to it,
the control section name is changed to an external reference.

The preceding is also true of an entry name to be deleted. Any
references to it from within the input module cause the entry name to be
changed to an external reference.

These editor-supplied external references, unless resolved with other
input modules, cause the automatic library call mechanism to attempt to
resolve them. Also, the deletion of a control section or an entry name
may cause external references from other input modules to be unresolved.
Either condition can cause the output load module to be marked not
executable.

If a deleted control section contains an unresolved external
reference, the reference remains.

52 0S/vs Linkage Editor and Loader

Note: When a control section is deleted, any CSECT Identification data
associated with that control section is also deleted.

In the following example, control section CODER is to be deleted
(Figure 19).

//SYSLMOD DD DSNAME=PVTLIB,DISP=0LD,UNIT=2314 ,VOLUME=SER=PVTO002
//SYSLIN DD *

ENTRY START1

REPLACE CODER

INCLUDE SYSLMOD (CODEROUT)

NAME CODEROUT (R)
/¥

The control section CODER is deleted. If no address constants refer
to CODER from other control sections in the module, the control section
name is also deleted. If address constants refer to CODER, the name is
retained as an external reference.

//SYSLMOD DD DSNAME=PVTLIB, ... ENCODE

//SYSLIN DD *
ENTRY STARTI
REPLACE CODER
INCLUDE SYSLMOD(CODEROUT)
NAME CODEROUT(R)
/*

ENCODE

DECODE

Figure 19. Deleting a Control Section

Module Editing 53

ORDERING CONTROL SECTIONS OR NAMED COMMON AREAS

The sequence of control sections or named common areas in an output
load module can be specified by using the ORDER control statement.

Individual control sections or named common areas are arranged in
the output load module according to the sequence in which they appear
on the ORDER control statement. Multiple ORDER control statements
can be used in a job step. The sequence of the ORDER statements
determines the sequence of the control sections or named common areas
in the load module.

Any control sections or named common areas that are not specified
on ORDER statements appear last in the output load module. If a control
section or named common area is changed by a CHANGE or REPLACE control
statement, the new name must be used on the ORDER statement.

In the following example, ORDER statements are used to specify the
sequence of five of the six control sections in an output load module.
A REPLACE statement is used to replace the o0ld control section SESECTA
with the new control section CSECTA from the data set &§&OBJECT, which
was passed from a previous step. Assume that the control sections to
be ordered are found in library member MAINROOT (Figure 20).

//SYSLMOD DD DSNAME=PVTLIB,DISP=0LD, UNIT=2314,VOLUME=SER=PVT002
//SYSLIN DD DSNAME=¢ £0BJECT ,DISP= (OLD,DELETE)

// DD *
ORDER MAINEP (P) ,SEGMT1,SEG2
REPLACE SESECTA (CSECTA)
ORDER CSECTA ,CSECTB (P)
INCLUDE SYSLMOD (MAINROOT)
NAME MAINROOT

/*

In the load module MAINROOT, the control sections MAINEP,SEGMT1,
SEG2, CSECTA, CSECTB are rearranged in the output load module according
to the sequence specified in the ORDER statements. A REPLACE statement
is used to replace the control section SESECTA with control section
CSECTA from the data set E&OBJECT, which was passed from a previous
step. The ORDER statement refers to the new control section CSECTA.
Control section LASTEP appears after the other control sections in the
output load module because it was not included in the ORDER statement
operands.

54 0S/VvS Linkage Editor and Loader

INPUT MODULES

&8OBJECT OUTPUT LOAD MODULE
CSECTA MAINROOT
) OK(
JCL AND CONTROL STATEMENTS MAINEP
MAINROOT // EXEC PGM=HEWL,PARM='ALIGN2' FSEGMTI
CSECTB
//SYSLMOD DD DSNAME=PVTLIB, ... SEG2
SESECTA //SYSLIN DD DSNAME=&&OBJECT, ...
// DD ¥ CSECTA
n ORDER MAINEP(P),SEGMT1,SEG2
MAINEP REPLACE SESECTA(CSECTA)
ORDER CSECTA,CSECTB(P) 2KFEsecTs
INCLUDE SYSLMOD (MAINROOT)
LASTEP NAME MAINROOT
o/ LASTEP
SEGMT1
SEG2 P
P

Figure 20. Ordering Control Sections

ALIGNING CONTROL SECTIONS OR NAMED COMMON AREAS ON PAGE BOUNDARIES

A control section or named common area can be placed on a page
boundary by using either the ORDER statement (with the P operand) or
the PAGE statement. Alignment on a page boundary can be used to
effect a lower paging rate and thus make more efficient use of
real storage.

The control section or common area to be aligned is named on either
the PAGE statement or the ORDER statement with the P operand. Either
the PAGE statement or the ORDER statement (with the P operand) causes
the linkage editor to locate the starting address of the control section
or common area on a page boundary within the load module.

The default value for the page boundary is 4K. Under VS1, the
ALIGNZ2 attribute must be specified in the PARM field of the EXEC
statement to override the default. Because a module using the 2K
page boundary alignment may suffer performance degradation if it is
moved from a VS1 system to a VS2 system, the 2K page boundary should
be used only when virtual storage is limited.

In the following example, the control sections RAREUSE and MAINRT
are aligned on 2K page boundaries by PAGE and ORDER control statements
used with the ALIGN2 attribute. Control sections CSECTA and SESECTI
are seguenced by the ORDER control statement. Assume that each control
section is 2K in length except for SESECT1 and RAREUSE (Figure 21).

Module Editing 55

//LKED EXEC PGM=HEWL ,PARM='ALIGN2,..."

.

//SYSLMOD DD DSNAME=OWNLIB,DISP=0LD,UNIT=2314,VOLUME=SER=0WNOO02
//SYSLIN DD *
PAGE RAREUSE

ORDER MAINRT(P) ,CSECTA,SESECT1
INCLUDE SYSLMOD (MAINROOT)
NAME MAINROOT

/*

The linkage editor places the control sections MAINRT and RAREUSE
on 2K page boundaries because ALIGN2 is specified on the EXEC statement.
Control sections MAINRT, CSECTA, and SESECT1 are sequenced as specified
in the ORDER statement. RAREUSE, while placed on a 2K page boundary,
appears after the control sections specified in the ORDER statement
because it was not included. The control section BOTTOM comes after
RAREUSE because it appeared after RAREUSE in the input module.

INPUT MODULE OUTPUT LOAD MODULE
MAINROOT MAINROOT
oK
CSECTA JCL AND CONTROL STATEMENTS MAINRT
//LKED EXEC PGM=HEWL,PARM='ALIGN2'
RAREUSE . 2KFcsecTa
//SYSLMOD DD DSNAME=OWNLIB, ...
SESECT1 //SYSLIN DD *
PAGE RAREUSE K
BOTTOM ORDER MAINRT(P),CSECTA ,SESECT1 SESECT1
INCLUDE SYSLMOD(MAINROOT) P
NAME MAINROOT
/*
MAINRT 6K [RAREUSE
BOTTOM
e

Figure 21. Aligning Control Sections on Page Boundaries

56 0S/VS Linkage Editor and Loader

OVERIAY PROGRAMS

Ordinarily, when a load module produced by the linkage editor is
executed, all of the control sections of the module remain in virtual
storage throughout execution. The length of the locad module is,
therefore, the sum of the lengths of all of the control sections. When
storage space is not at a premium, this is the most efficient way to
execute a program. However, if a program approaches the limits of
the virtual storage available, the programmer should consider using
the overlay facilities of the linkage editor.

In most cases, all that is needed to convert an ordinary program toO
an overlay program is the addition of control statements to structure
the module. The programmer chooses the overlayable portions of the
program, and the system arranges to load the required portions when
needed during execution of the program.

When the linkage editor overlay facility is requested, the locad
module is structured so that, at execution time, certain control
sections are loaded only when referenced. When a reference is made from
an executing control section to another, the system determines whether
or not the code required is already in virtual storage. If it is not, the
code is loaded dynamically and may overlay an unneeded part of the
module already in stcrage.

The rest of this chapter is divided into three sections that describe
the design, specification, and special considerations for overlay
programs.

DESIGN OF AN OVERLAY PROGRAM

The way in which an overlay module is structured depends on the
relationships among the control sections within the module. Two control
sections that do not have to be in storage at the same time can overlay
each other. Such control sections are independent; that is, they do not
reference each other either directly or indirectly. Independent control
sections can be assigned the same load addresses and are loaded only
when referenced. For example, control sections that handle error
conditions or unusual data may be used infrequently, and need not be
occupying storage unless in use.

control sections are grouped into segments. A segment is the
smallest functicnal unit (one or more control sections) that can be
loaded as one logical entity during execution. The control sections
required all of the time are grouped into a special segment called the
root segment. This segment remains in storage throughout execution of
an overlay program.

When a particular segment is to be executed, any segments between it
and the root segment must also be in storage. This is a path. A
reference from one segment to another segment lower in a path is a
downward reference. That is, the segment contains a reference to
another segment farther from the rocot segment. Conversely, a reference
from one segment to another segment higher in a path (closer to the root
segment) is an upward reference.

Overlay Programs 57

Therefore, a downward reference may cause overlay because the
necessary segment may not yet be in virtual storage. An upward reference
will not cause overlay because all segments between a segment and the
root segment must be present in storage.

Sometimes several paths need the same control sections. This problem
may be solved by placing the control sections in another region. In an
overlay structure, a region is a contiguous area of virtual storage within
which segments can be loaded independently of paths in other regions.

An overlay program can be designed in single or multiple regions.

SINGLE REGION OVERLAY PROGRAM

To design an overlay structure, the programmer should select those
control sections that will receive control at the beginning of
execution, plus those that should always remain in storage; these
control sections form the root segment. The rest of the structure is
developed by determining the dependencies of the remaining control
sections and how they can use the same virtual storage locations at
different times during execution.

Besides control section dependency, other topics discussed in this
section are segment dependency, the length of the overlay program,
segment origin, communication between segments, and overlay processing.

Ccontrol Section Dependency

Control section dependency is determined by the requirements of a
control section for a given routine in another control section. A
control section is dependent upon any control section from which it
receives control, or which processes its data. For example, if control
section C receives control from control section B, then C is dependent
upon B. That is, both control sections must be in storage before
execution can continue beyond a given point in the program.

A program contains seven control sections, CSA through CSG, and
exceeds the amount of storage available for its execution. Before the
program is rewritten, it is examined to see whether or not it could be
placed into an overlay structure. Figure 22 shows the groups of
dependent control sections in the program (the arrows indicate
dependencies).

58 08/VS Linkage Editor and Loader

Cs8

@%&%%%

Figure 22. Control Section Dependencies

Each dependent group is also a path. That is, if control section CSG
is to be executed, CSB and CSA must also be in storage. Because CSA and
CSB are in each path, they must be in the root segment. Control section
CSC is in two groups, and therefore is a common segment in two different
paths.

A better way to show the relationship between segments is with a tree
structure. A tree is the graphic representation that shows how segments
can use virtual storage at different times. It does not imply the order of
execution, although the root segment is the first to receive control.
Figure 23 shows the tree structure for the dependent groups shown in
Figure 22. The structure is contained in one region, and has five
segments.

Overlay Programs 59

CSA

—-— > Root Segment 1

CcsC 5 Segment 2 CSG)3 Segment 5

I 5- Segment 3 CSF > Segment 4

A J B

Figure 23. Single-Region Overlay Tree Structure

Segment Dependency

When a segment is in virtual storage, all segments in its path
are also in virtual storage. Each time a segment is loaded, all
segments in its path are loaded if they are not already in virtual
storage. In Figure 23 when segment 3 is in virtual storage, segments
1 and 2 are also in virtual storage. However, if segment 2 is in
storage, this does not imply that segment 3 or 4 is in virtual storage
since neither segment is in the path of segment 2.

The position of the segments in an overlay tree structure does not
imply the sequence in which the segments are executed. A segment can be
loaded and overlaid as many times as required by the logic of the
program. However, a segment will not be overlaid by itself. If a
segment is modified during execution, that modification remains only
until the segment is overlaid.

60 0S/VS Linkage Editor and Loader

Length of an Overlay Program

For purposes of illustration, assume that the control sections in the
sample program have the following lengths:

control Section Length (in bytes)
CSsA 3,000
CSB 2,000
CcscC 6,000
CsD 4,000
CSE 3,000
CSF 6,000
CSG 8,000

1f the program were not in overlay, it would require 32,000 bytes of
virtual storage. In overlay, however, the program requires the amount of
storage needed for the longest path. In this structure, the longest
path is formed by segments 1, 2, and 3, since, when they are all in
storage, they require 18,000 bytes, as shown in Figure 24,

T Y
CSA
3,000

Root Segment 1
5,000 bytes

2,000

bytes
~
fggo Segment 2
! 6,000 bytes CSG

8,000 Segment 5
bytes 8,000 bytes

CSDo » CSF

4,00 Segment 4

bytes 6,000

yt bytes 6,000 bytes
Segment 3
(7,000 bytes

3,000
bytes

/

Figure 24. Length of an Overlay Module

Note, however, that the length of the longest path is not the minimum
requirement for an overlay program; when a program is in overlay,
certain tables are used, and their storage requirements must also be
considered. The storage required by these tables is given in the
section "Special Considerations."

Overlay Programs 61

Segment Origin

The linkage editor assigns the relocatable origin of the root segment
(the origin of the program) at 0. The relative origin of each segment
is determined by 0 plus the length of all segments in the path. For
example, the origin of segments 3 and # is equal to 0 plus 6,000 (the
length of segment 2) plus 5,000 (the length of the root segment), or
11, 000. The origins of all the segments are as follows:

Segment Origin
1 0
2 5,000
3 11,000
4 11,000
5 5,000

The segment origin is also called the load_point, because it is the

relative location at which the segment is loaded.

Figure 25 shows the segment origin for each segment and the way
storage is used by the sample programs In the illustration, the
vertical bars indicate segment origin; any two segments with the same
origin may use the same storage area. Figure 25 also shows that the
longest path is that of segments 1, 2, and 3.

Segment 5

Root Segment 1

8,000 bytes
Segment 4

5,000 bytes

6,000 bytes

6,000 bytes _Segment 3

I S e e s A O

0 1 2 3 4 5 6 7 8 9 10 n 12 13 14 15 16 17 18 19 20

Relative Storage Location (in 1,000 byte increments)

Figure 25. Segment Origin and Use of Storage

Communication Between Segments

Segments that can be in virtual storage simultaneously are considered to
be inclusive, Segments in the same region but not in the same path are
considered to be exclusive; they cannot be in virtual storage
simultaneously. Figure 26 shows the inclusive and exclusive segments in
the sample programe.

62 0S/VS Linkage Editor and Loader

Segments upon which two or more exclusive segments are dependent are
called common segments. A segment common to two other segments is part
of the path of each segment. 1In Figure 26 segment 2 is common to
segments 3 and 4, but not to segment 5.

Root
Segment 1

|

Segment 2

Segment 5

Inclusive Segments
1,2,and 3
Segment 4 1,2,and 4

| land 5

Exclusive Segments
2and 5
3and 4
3and 5
4and 5

Segment 3

Figure 26. Inclusive and Exclusive Segments

An inclusive reference is a reference between inclusive segments;
that is, a reference from a segment in storage to an external synbol in
a segment that will not cause overlay of the calling segment. An
exclusive reference is a reference between exclusive segments; that is,
a reference from a segment in storage to an external symbol in a segment
that will cause overlay of the calling segment.

Figure 27 shows the difference between an inclusive reference and an
exclusive reference; the arrows indicate references between segments.

Inclusive References: Wherever possible, inclusive references should be
used instead of exclusive references. Inclusive references between
segments are always valid and do not require special options. When
inclusive references are used, there is also less chance for error in
structuring the overlay program correctly.

Exclusive References: An exclusive reference is made when the external
reference in the requesting segment is to a symbol defined in a segment
not in the path of the requesting segment. Exclusive references are
either valid or invalid.

An exclusive reference is valid only if there is also a reference to
the requested contrcl section in a segment common to both the segment to
be loaded and the segment to be overlaid. The same symbol must ke used
in both the common segment and the exclusive reference. In Figure 27, a
reference from segment B to segment A is valid, because there is an
inclusive reference from the common segment to segment A. (An entry
table in the common segment contains the address of segment A; the
overlay does not destroy this tables)

In the same illustration, a reference from segment A to segment B is
invalid because there is no reference from the common segment to segment
B. A reference from segment A to segment B can be made valid by
including, in the common segment, an external reference to the symbol
used in the exclusive reference to segment B.

Overlay Programs 63

Inclusive
Reference

Common Segment

Segment B

Segment A E— Exclusive
Reference

Figure 27. Inclusive and Exclusive References

Another way to eliminate exclusive references is to arrange the
program so that the references that will cause overlay are made in a
higher segment. For example, the programmer could eliminate the
exclusive reference shown in Figure 27 by writing a new module to be
placed in the common segment; the new module's only function would ke to
reference segment B. He would then change the code in segment A to
refer to the new module instead of to segment B. Control then would
pass from segment A to the common segment, where the overlay of segment
A by segment B would be initiated.

If either valid cr invalid exclusive references appear in the
program, the linkage editor considers them errors unless one of the
special options is used. These options are described later in this
section.

Notes:

e During the execution of a program written in a higher level language
such as FORTRAN, COBOL, or PL/I, an exclusive call results in
abnormal termination of the program if the requested segment
attempts to return control directly to the invoking segment that has
been overlaid.

e If a program written in COBOL includes a segment that contains a
reference to a COBOL class test or TRANSFORM table, the segment
containing the table must be either (1) the root segment or (2) a
segment that is higher in the same path than the segment containing
the reference to the table.

Overlay Process

The overlay process 1is initiated during execution of a program only
if a control section in virtual storage references a control section not
in storage. The control program determines the segment that the refer-
enced control section is in and, if necessary, loads the segment. When a
segment is loaded, it overlays any segment in storage with the same
relative origin. Any segments in storage that are lower in the path of
the overlaid segment may also be overlaid. An exclusive reference can
also cause segments higher in the path to be overlaid. If a control sec-
tion in storage references a control section in another segment already
in storage, no overlay occurs.

64 0S8/VS Linkage Editor and Loader

The portion of the control program that determines when overlay is to
occur is the overlay supervisor, which uses special tables to determine

when overlay is necessary. These tables are generated by the linkage
editor, and are part of the output load module. The special tables are
the segment table and the entry table(s), Figure 28 shows the location
of the segment and entry tables in the sample program.

Figure 28. Location of Segment and Entry Tables in an Overlay Module

Because the tables are present in every overlay module, their size
must be considered when planning the use of virtual storage. The storage
requirements for the tables are given in "Special Considerations." A
more detailed discussion of the segment and entry tables follows.

Segment Table: Each overlay program contains one segment table
(SEGTAB); this table is the first control section in the root segment.
The segment table contains information about the relationship of the
segments and regions in the program. During execution, the table also
indicates which segments are either in storage or being loaded, and
other control information.

Entry Table: Each segment that is not the last segment in a path may
contain one entry table (ENTAB); this table, when present, is the last
control section in a segment.

When overlay will be required, an entry in the table is created for a
symbol to which control is to be passed, provided (1) the symbol is used
as an external reference in the requesting segment, and (2) the symbol
is defined in another segment either lower in the path of the requesting
segment, or in another region. An ENTAB entry is not created for any

Overlay Programs 65

symbol already present in an entry table closer to the rcot segment
(higher in the path), or for a symbol defined higher in the path. (A
reference to a symbol higher in the path does not have to go through the
control program because no overlay is required.)

If an extermal reference and the symbol to which it refers are in
segments not in the same path but in the same region, an exclusive
reference was made. If the exclusive reference is valid, an ENTAB entry
for the symbol is present in the common segment. Since the common
segment is higher in the path of the requesting segment, no ENTAB entry
is created in the requesting segment. When the reference is executed,
control passes through the ENTAB entry in the common segment. That is,
a branch to the location in the ENTAB causes the overlay supervisor to
be called to load the needed segment or segments.

If the exclusive reference is invalid, no ENTAB entry is present in
the common segment. If the LET option is specified, an invalid
exclusive reference causes unpredictable results when the program is
executed. Since no ENTAB entry exists, control is passed directly to
the relative address specified in the reference, even though the
requested segment may not be in main storage.

MULTIPLE REGION OVERLAY PROGRAM

If a control section is used by several segments, it is usually
desirable to place that control section in the root segment. However,
the root segment can get so large that the benefits of overlay are lost.
If some of the control sections in the root segment could overlay each
other (except for the requirement that all segments in a path must be in
storage at the same time), the job may be a candidate for multiple
region structure. Multiple region structures can also be used to
increase segment loading efficiency: processing can continue in one
region while the next path to be executed is being loaded into another
region.

With multiple regions, a segment has access to segments that are not
in its path. Within each region, the rules for single region overlay
programs apply, but the regions are independent of each other. &
maximum of four regions can be used.

Figure 29 shows the relationship between the control sections in the
sample program and two new control sections, CSH and CSI. The two new
control sections are each used by two other control sections in
different paths. Placing CSH and CSI in the root segment makes the
segment larger than necessary because CSH and CSI can overlay each
other. The two control sections should not be duplicated in two paths
because the linkage editor automatically deletes the second pair and an

invalid exclusive reference may then result.
/

If however, the two control sections are placed in another region,
they can be in virtual storage when needed, regardless of the path being
executed in the first region. Figure 30 shows all of the control
sections in a two-region structure. Either path in regicn 2 can be in
virtual storage regardless of the path being executed in region 1;
segments in region 2 can cause segments in region 1 to be loaded
without being overlaid themselves.

66 0S/VS Linkage Editor and Loader

CSA

CSB

CsC CsG

CSE

Figure 29. Control Sections Used by Several Paths

o

Segment 7

CSH Segment 6

Figure 30. Overlay Tree for Multiple-Region Program

Overlay Programs 67

The relative origin of a second region is determined by the length of
the longest path in the first region (18,000 bytes). Region 2,
therefore, begins at 0 plus 18,000 bytes. The relative origin of a
third region would be determined by the length of the longest path in
the first region plus the longest path in the second region.

The virtual storage required for the program is determined by adding
the lengths of the longest path in each region. In Figure 30, if CSH is
4,000 bytes and CSI is 3,000 bytes, the storage required is 22,000
bytes, plus the storage required by the special overlay tables. Care
should be exercised when choosing multiple regions. There may be
some system degredation due to the overlay supervisor being unable to
optimize segment loading when multiple regions are used.

SPECIFICATION OF AN OVERLAY PROGRAM

Once the programmer has designed an overlay structure, ne must place
the module in that structure by indicating to the linkage editor the
relative positions of the segments and regions, and the contrcl sections
in each segment. Positioning is accomplished as follows:

¢ Segments are positioned by OVERLAY statements. Since segments are
not named, the programmer identifies a segment by giving its origin
(or load point) a symbolic name and then uses that name in an
OVERLAY statement to specify a symbolic origin. Each OVERLAY
statement begins a new segment.

* Regions are also positioned by OVERLAY statements. The programmer
specifies the origin of the first segment of the region, followed by
the word REGION in parentheses.

e Ccontrol sections are positioned in the segment specified by the
OVERLAY statement with which they are associated in the input
sequence. However, the sequence of the control sections within a
segment is not necessarily the order in which the control sections
are specified.

The input sequence of control statements and control sections should
reflect the sequence of the segments in the overlay structure from top
to bottom, left to right, and region by region. This sequence is
illustrated in later examples.

In addition, several special options are used with overlay programs.
These options are specified on the EXEC statement for the linkage editor
job step, and are described at the end of this section.

Note: 1If a load module in overlay structure is to be reprocessed by the
linkage editor, the OVERLAY statements and special options (such as
OVLY) must be respecified. If the statements and options are not
provided, the output load module will not be in overlay structure.

SEGMENT ORIGIN

The symbolic origin of every segment, other than the root segment,
must be specified with an OVERLAY statement. The first time a symbolic
origin is specified, a load point is created at the end of the previous
segment. That load point is logically assigned a relative address at
the doubleword boundary that follows the last byte in the preceding
segment. Subsequent use of the same symbolic origin indicates that the
next segment is to have its origin at the same load point.

68 0S/VS Linkage Editor and Loader

In the sample single-region program, the symbolic origin names ONE
and TWO are assigned to the two necessary load points, as shown in

Figure 30. Segments 2 and 5 are
at load point TWO.

at load point ONE, segments 3 and 4 are

The following sequence of OVERLAY statements will result in the
structure in Figure 31 (the control sections in each segment are

indicated by name):

control
Ccontrol
OVERLAY
control
OVERLAY
control
control
OVERLAY
control
OVERLAY
Ccontrol

section CSA
section CSB
ONE
section CSC
TWO
section CSD
section CSE
TWO
section CSF
ONE
section CSG

Note that the sequence of OVERLAY statements reflects the order of
segments in the structure from top to bottom and left to right.

-

Root Segment 1

Segment 2

Segment 5

Segment 3

Segment 4

Figure 31. Symbolic Segment Origin in Single-Region Program

Overlay Programs 69

REGION ORIGIN

The symbolic origin of every region, other than the first, wmust ke
specified with an OVERLAY statement. Once a new region is specified, a
segment origin from a previous region should not be specified.

In the sample multiple-region program, the symbolic origin THREE is
assigned to region 2, as shown in Figure 32. Segments 6 and 7 are at
load point THREE.

REGION 1 71—

Root Segment 1

ONE

Segment 2 Segment 5

T™WO

Segment 3 Segment 4

i

O 10 0 (N N N N S O 0 N O N Y O
REGION 2

Segment 6 Segment 7

Figure 32. Symbolic Segment and Region Origin in Multiple-Region
Program

If the following is added to the sequence for the single-region
program, the multiple-region structure will be produced:

OVERLAY THREE (REGION)
control section CSH
OVERLAY THREE
control section CSI

70 0S/VS Linkage Editor and Loader

POSITIONING CONTROL SECTIONS

After each OVERLAY statement, the control sections for that segment
must be specified. The control sections for a segment can be specified
in one of three ways:

e By placing the okject decks for each segment after the appropriate
OVERLAY statement.,

e By using INCLUDE control statements for the modules containing the
control sections for the segment.

e By using INSERT control statements to reposition a control section
from its position in the input stream to a particular segment.

Any control sections that precede the first OVERLAY statement are placed
in the root segment; they can be repositioned with an INSERT statement.
Control sections from the automatic call library are also placed in the
root segment. The INSERT statement can be used to place these control
sections in another specific segment. Common areas in an overlay
program are described in "Special Considerations."”

An example of each of the three methods of positioning control
sections follows. Each example results in the structure for the
single-region sample program. An example is also given of repositioning
control sections from the automatic call library.

Using Object Decks

The primary input data set for this example contains an ENTRY
statement and seven object decks, separated by OVERLAY statements:

//LKED EXEC PGM=HEWL,PARM='OVLY'

//SYSLIN DD *
ENTRY BEGIN
Object deck for CSA
Object deck for CSB
OVERLAY ONE
Object deck for CscC
OVERLAY TWO
Object deck for CSD
Object deck for CSE
OVERLAY TWO
Object deck for CSF¥
OVERLAY ONE
Object deck for CSG
VE:

The EXEC statement illustrates that the OVLY parameter must be specified
for every overlay program to be processed by the linkage editor.

Overlay Programs 71

Using INCLUDE Statements

The primary input data set for this example contains a series of
control statements. The INCLUDE statements in the primary input data
set direct the linkage editor to library members that contain the
control sections of the program.

//LKED EXEC PGM=HEWL,PARM='OVLY'
//MODLIB DD DSNAME=0BJLIB, DISP=(OLD, KEEP), ...
//SYSLIN DD *

ENTRY BEGIN

INCLUDE MODLIB(CSA,CSB)
OVERLAY ONE

INCLUDE MODLIB(CSC)
OVERLAY TWC

INCLUDE MODLIB(CSD,CSE)
OVERLAY TWO

INCLUDE MODLIB(CSF)
OVERLAY ONE

INCLUDE MODLIB(CSG)

/¥

This example differs from the previous one in that the control sections
of the program are not part of the primary input data set, but are
represented in the primary input by the INCLUDE statements. When an
INCLUDE statement is prccessed, the appropriate control section is
retrieved from the library and processed.

Using INSERT Statements

When INSERT statements are used, the INSERT and OVERLAY statements
may either follow or precede all the input modules. However, the order
of the control sections in a segment is not necessarily the same as the
order of the INSERT statements for each segment. An example of each is
given, as well as an example of repositioning automatically called
control sections.

Following All Input: The control statements can follow all the input
modules, as shown in the following example:

//LKED EXEC PGM=HEWL,PARM='OVLY'
//SYSLIN DD DSNAME=0OBJECT, DISP=(OLD, KEEP) ;. e
7/ DD *

ENTRY BEGIN
INSERT CSA,CSB
OVERLAY ONE
INSERT CSC
OVERLAY TWO
INSERT CSD,CSE
OVERLAY TWO
INSERT CSF
OVERLAY ONE
INSERT CSG
/¥

72 0S/VS Linkage Editor and Loader

The primary input data set contains the object modules for the control
sections, and the input stream is concatenated to it.

Preceding All Input: The control statements can also precede all input
modules, as shown in the following example:

//LKED EXEC PGM=HEWL,PARM='OVLY'
//MODULES ©CD DSNAME=OBJSEQ, DISP=(OLD, KEEP) , « s .
//SYSLIN DD *

ENTRY BEGIN
INSERT CSA,CSB
OVERLAY ONE
INSERT CSC
OVERLAY TWO
INSERT CSD,CSE
OVERLAY TWO
INSERT CSF
OVERLAY ONE
INSERT CSG
INCLUDE MODULES

The primary input data set contains all of the control statements for
the overlay structure and an INCLUDE statement. The data set specified
by the INCLUDE statement contains all of the object modules for the
structure, and is a sequential data set.

Repositioning Automatically Called Control Sections: The INSERT
statement can also be used to move automatically called control sections
from the root segment to the desired segment. This is helpful when
control sections from the automatic call library are used in only one
segment. By moving such control sections, the root segment will contain
only those control sections used by more than one segment.

When a program is written in a higher level language, special control
sections are called from the automatic call library. Assume that the
sample program is written in COBCL and that two control sections
(ILBOVTRO and ILBOSCHO) are called automatically from SYS1l.COBLIB.
Ordinarily, these control sections are placed in the root segment.
However, INSERT statements are used in the following example to place
these control sections in segments other than the root segment.

Overlay Programs 73

//LKED EXEC PGM=HEWL,PARM='OVLY'

//MODLIB DD DSNAME=0OBJLIB, DISP=(OLD,KEEP) ja e«
//SYSLIB DD DSNAME=SYS1.COBLIB, DISP=SHR
//SYSLIN DD *

ENTRY BEGIN
INCLUDE MODLIEB(CSA,CSB)
OVERLAY ONE
INCLUDE MODLIE(CSC)
OVERLAY TWO
INCLUDE MODLIRB(CSD,CSE)
INSERT ILBOVTRO
CVERLAY TWO
INCLUDE MODLIB(CSF)
INSERT ILBOSCHO
OVERLAY ONE
INCLUDE MODLIE(CSG)

/*

As a result, segments 3 and 4 will also contain ILBOVTRO and ILBOSCHO,
respectively.

This example also combines twc of the ways of specifying the control
sections for a segment.

SPECIAL OPTIONS

The linkage editor provides three special job step options for the
overlay prograrmer. These options are specified on the EXEC statement
for the linkage editor job step. They must be specified each time a
load module in overlay structure is reprocessed by the linkage editor.
The three options are OVLY, LET, and XCAL.

OVLY Option

The OVLY option must be specified for every overlay program. If the
option is omitted, all the OVERLAY and INSERT statements are considered
invalid. The output module is marked not executable unless the LET
option is specified. The output module is not in an overlay structure.

LET Option

With the LET option, the output module is marked executable even
though certain error conditions were found during linkage editor
processing. When LET is specified, any exclusive reference (valid or
invalid) is accepted. At execution time, a valid exclusive reference is
executed correctly; an invalid exclusive reference usually causes
unpredictable results.

Also with the LET option, unresolved external references do not
prevent the module from being marked executable. This could be helpful
when part of a large program is ready for testing; the segments to be
tested may contain references to segments not yet coded. If LET is

74 08/VSs Linkage Editor and Loader

specified, the program can be executed to test those parts that are
finished (as long as the references to the absent segments are not
executed). If the LET option is not specified, these unresolved
references will cause the module to be marked not executable,

XCAL Option

With the XCAL option, a valid exclusive call is not considered an
error, and the load module is marked executable. However, other errors
could cause the module to be marked not executable, unless the LET
option is specified; in this case, the XCAL option is not required.

SPECIAL CONSIDERATIQNS

This section discusses several special considerations that affect
overlay programs. These considerations include the handling of common
areas, special storage requirements, and overlay communication.

COMMON AREAS

When common areas {(blank or named) are encountered in an overlay
program, the common areas are collected as described previously (i.e.,
the largest blank or identically named common area is used). The final
location of the common area in the output module depends on whether
INSERT statements were used to structure the program.

If INSERT statements are used to structure the overlay program, a
named common area should either be part of the input stream in the
segment to which it belongs, or should be placed there with an INSER1T
statement.

Because INSERT statements cannot be used for blank common areas, a
blank common area should always be part of the input stream in the
segment to which it belongs.

If INSERT statemrents are not used, and the control sections for each
segment are placed or included between OVERLAY statements, the linkage
editor "promotes" the common area automatically. That is, the common
area is placed in the common segment of the paths that contain
references to it so that the common area is in storage when needed.

The position of the promoted area in relation to other control sections
within the common segment is unpredictable.

If a common area is encountered in a module from the automatic call
library, automatic promotion places the common area in the root segment.
In the case of a named common area, this may be overridden by use of the
INSERT statement.

Assume that the sample program is written in FORTRAN and that common
areas are present as shown in Figure 33. Further assume that the
overlay program is structured with INCLUDE statements between the
OVERLAY statements so that automatic promotion occurs.

Overlay Programs 75

Blank Common

Named Common B |

Figure 33. Comrmon Areas Before Processing

Segments 2 and 5 contain blank common areas, segments 3 and 4 contain
named common area A, and segments 4 and 5 contain named common area B.
During linkage editor processing, the blank common areas are collected
and the largest area is promoted to the root segment (the first common
segment in the two paths); the common areas named A are collected and
the largest area is promoted to segment 2; the common areas named B are
collected and promoted to the root segment. Figure 34 shows the
location of the common areas after processing by the linkage editor.

76 0S/VS Linkage Editor and Loader

Named Common A

Figure 34. Common Areas After Processing

STORAGE REQUIREMENTS

The virtual storage requirements for an overlay program include the
items placed in the module by the linkage editor and the overlay
supervisor necessary for execution,

Items_in the Load Module: The items that the linkage editor places in
an overlay load module are the segment table, entry tables, and other
control information. Their size must be included in the minimum
requirements for an overlay program, along with the storage required by
the longest path and any control sections from the automatic call
library.

Every overlay program has one segment table in the root segment. The
storage requirements are:

SEGTAB = U4n + 24
where:
n = the number of segments in the program

Overlay Programs 77

Some segments will have an entry table. The requirements of the
entry tables in the segments in the longest path must be added to the
storage requirements for the program. The requirements for an entry
table are:

ENTAB = 12(x + 1)
where:

x = the number of entries in the table

Finally, a NOTE list is required to execute an overlay program. The
storage requirements are:

NOTELST = 4n + 8
where:

n = the number of segments in the program

Overlay Supervisor: To the minimum requirements of the load module
itself must be added the requirements of the overlay supervisor. This
system routine is not placed in an overlay module, but, during execution
of the module, the supervisor may be called to initiate an overlay. If
called, the storage allocated for the program must be large enough for
the supervisor also.

Three overlay supervisor modules are furnished with the system: the
basic, advanced, and asychronous modules. The basic module does not
test whether a request for overlay is valid; the other two do. Neither
the basic nor advanced modules permit overlay through the SEGLD macro
instruction (see "Overlay Communication"); the asynchronous module does.
When the SEGLD macro instruction is used with the basic and advanced
modules, it is ignored. The storage requirements for the overlay
supervisor modules are:

Storage
Requirements
Module (in _bytes)
Basic (used with VS1) 436
Advanced (used with VS1) 512
Asynchronous (used with VS2) 992

OVERLAY COMMUNICATION

Several ways of communicating between segments of an overlay program
are discussed in this section. A higher level or assembler language
program may use a CALL statement or CALL macro instruction,
respectively, to cause control to be passed to a symbol defined in
another segment. The CALL may cause the segment to be loaded if it is
not already present in storage. An assembler language program may also
use three additional ways to communicate between segments:

e By a branch instruction, which causes a segment to be loaded and
control to be passed to a symbol defined in that segment.

78 08/VS Linkage Editor and Loader

e By a segment load (SEGLD) macro instruction (VS2 only), which
requests loading of a segment. Processing continues in the
requesting segment while the requested segment is being loaded.

* By a segment load and wait (SEGWT) macro instruction, which requests
loading of a segment. Processing continues in the requesting
segment only after the requested segment is loaded.

Any of the four methods may be used to make inclusive references.
Only the CALL and branch may be used to make exclusive references.
Neither the SEGLD nor SEGWT macro instruction should be used to make
exclusive references; since both imply that processing is to continue in
the requesting segment, an exclusive reference leads to erroneous
results when the program is executed.

CALL Statement or CALL Macro Instruction

A CALL statement or CALL macro instruction refers to an external name
in the segment to which control is to be passed. The external name must
be defined as an external reference in the requesting segment. 1In
assembler language, the name must be defined as a four-byte V-type
address constant; the high-order byte is reserved for use by the control
program, and must not be altered during execution of the program.

When a CALL is used, the reguested segment and any segments in its
path are loaded if they are not part of the path already in virtual
storage., After the segment is loaded, control is passed to the
requested segment at the location specified by the external name.

A CALL between inclusive segments is always valid. A return can be
made to the requesting segment by another source language statement,
such as RETURN. A CALL between exclusive segments is valid if the
conditions for a valid exclusive reference are met; a return from the
requested segment can be made only by another exclusive reference,
because the requesting segment has been overlaid.

Branch Instruction

Any of the branching conventions shown in Table 2 can be used to
request loading and branching to a segment. As a result, the requested
segment and any segments in its path are loaded if they are not part of
the path already in virtual storage. Control is then passed to the
requested segment at the location specified by the address constant
placed in general register 15,

The address constant must be a U-byte V-type address constant. The
high-order byte is reserved for use by the control program, and must not
be altered during execution of the program,

Overlay Programs 79

Table 2. Branch Sequences for Overlay Programs

[m— e ———— T——————- T e e — ————— 1
| Example | Namel | Operation | Operand2 3 |
- - Fomm e e S B sttt ettt 1
| 1 | | L | R15,=V(name) |
| | | BALR | Rn, R15 |
b= po———m - et 1
| 2 | { L | R15,ADCON |
| | | BALR | Rn, R15 |
I | [. I |
I I I . | |
| | | . | I
| | ADCCN | DC | V(name) |
pmmmm oo fommmmmmms o mm oo eI :
| 3 | | L | R15,=V(name) |
| | | BAL | Rn,0(0,R15)4 |
| fommmm oo oo G 1
| o | | L | R15, =V (namne) |
| | | BAL | Rn, 0(R15)5 |
fmmmm o pomm oo e oo]
| 56 | | L | R15,=V{(name) |
| | { BCR i 15,R15 |
pommm e pom oo oo o :
| 6°¢ | | L | R15,=V(nane) I
| | | BC] 15,0(0,R15)4 |
e pommm oo fomm o oo e 1
| 76 | | L | R15,=V(name) |
] | | BC | 15,0(R15) % |
I —— | B U 4
|iWhen the name field is blank, specification of a name is optional. |
|2R15 is the register into which is loaded a U4-byte address constant |
| that is an entry name or a control section name in the requested |
| segment. The address constant must be loaded into the standard entry|
| point register, register 15. |
|2Rn is any other register and is used to hold the return address. |
| This register is usually register 14. |
|“This may also be written so that the index register is loaded with {
| the address constant; the other fields must be zero. |
|8In this format, the base register must be loaded with the address |
| constant; the disrlacement must be zero. |
| eThis example is an unconditional branch; other conditions are also |
| allowed. |
L ——— ——— —— e e e e e e e e e e e e e e e J

A branch between inclusive segments is always valid; a return may be
made by means of the address stored in Rn. A branch between exclusive
segments is valid if the conditions for a valid exclusive reference are
met; a return can be made only by another exclusive reference.

Segment I.oad (SEGLD) Macro Instruction

The SEGLD macro instruction is used to provide overlap between
segment loading and processing within the requesting segment. As a
result of using any of the examples in Table 3, the loading of the
requested segment and any segments in its path is initiated when they
are not part of the path already in virtual storage. Processing then
resumes at the next sequential instruction in the requesting segment
while the segment or segments are being loaded. Control may be passed
to the requested segment with either a CALL or a branch, as shown in
examples 1 and 2, respectively. A SEGWT instruction can be used to

80 0S/VS Linkage Editor and Loader

ensure that the data in the control section specified by the external
name is in virtual storage before processing begins, as shown in
Example 3.

The external names specified in the SEGLD macro instruction must be
defined with a U4-byte V-type address constant. The high-order byte is
reserved for use by the control program and must not be altered during
execution of the programn.

Note: Some configurations of the control program do not have the
capability of processing the SEGLD macro instruction. When used, the
macro instruction is treated as a NOP (no operation) and the segment is
loaded when a SEGWT macro instruction or a branch is executed. If the
rules of overlay are followed, correct execution occurs.

Table 3. Use of the SEGLD Macro Instruction

[mmm o T L S B ettt 1
| Example | Namel | Operation | Operand=2 3 |
frmmmm e $ —m e 1
| 1 | | SEGLD | external name i
| | | I I
| | | CALL | external name |
pmmm - fommmmm e oo oo e .
| 2 | | SEGLD | external name |
| I I [I
| | | branch | |
pmmm - -mmmmm - 1 - T TR 1
{ 3 | | SEGLD | external name |
| I I ! I
| | | SEGWT | external name |
| | | L] Rn, =A (name) |
__________ i T | —_ -1 SRS —
| *When the name field is blank, specification of a name is optional. |
| 2External name is an entry name or a control section name in the |
| requested segment. |
|3Rn is any other register and is used to hold the return address. |
| This register is usually register 1. |
Lo e e e J

Segment Wait (SEGWT) Macro Instruction

The SEGWT macro instruction is used to stop processing in the
requesting segment until the requested segment is in virtual storage.

As a result of using any of the examples in Table 4, no further
processing takes place until the requested segment and all segments in
its path are loaded when not already in virtual storage. Processing
resumes at the next sequential instruction in the requesting segment
after the requested segment has been loaded.

If the SEGWT and SEGLD macro instructions are used together, overlap
occurs between processing and segment loading; use of the SEGWT macro
instruction serves as a check to see that the necessary information is
in storage when it is finally needed (see Example 1 in Table 4). 1In
Example 2 in Table 4, no overlap is provided; the SEGWT macro
instruction initiates loading, and processing is storped in the
requesting segment until the requested segment is in virtual storage.

Overlay Programs 81

The external name specified in the SEGWT macro instruction must be
defined with a U4-byte V-type address constant. The high-order byte is
reserved for use by the control program, and must not be altered during
execution of the program.

If the contents of a virtual storage location in the requested segment

are to be processed, the entry name of the location must be referred to
by an A-type address constant.

Table U4, Use of the SEGWT Macro Instruction

[T bt A T""""-"'_""T ———————— b Sttt et ettt h |
| Example | Namel | Operation | Operand=2 3 |
k e + B 1
1		SEGLD	external name
		I	
		SEGWT	external name
		L	Rn, ADCON
		branch	
i	ADCON	DC	A (name)
pmmm e e e T 1			
2		SEGHWT	external name
		L	Rn,=A(name)
[B NP P PR, 4			
*When the name field is blank, specification of a name is optional.			
2External name is an entry name or a control section name in the			
requested segment.			
2Rn is any other register and is used to hold the return address.			
This register is usually register 14.			
L _ —— ——— J

82 08/VS Linkage Editor and Loader

JOB_CONTROL_LANGUAGE SUMMARY

This chapter summarizes those aspects of the job control language
that pertain directly to the use of the linkage editor. The major
topics covered are the EXEC statement, DD statements, and cataloged
procedures for the linkage editor. The reader should be familiar with
the job control language as described in 0S/VS1 JCL Reference or
08/Vs2 JCL.

EXEC_STATEMENT --_ INTRODUCTION

The EXEC statement is the first statement of every job step. For the
linkage editor job step, the following topics are pertinent:

s The program name of the linkage editor.
e Linkage editor options passed to the job step.
¢ Region requirements for the linkage editor.

For an execution job step following the linkage editor job step, the
linkage editor return code is important.

The EXEC statement contains the symbolic name of the load
module to be invoked for execution. The linkage editor can
be invoked with the following program name:

HEWL

LINKEDIT is an alias name for the linkage editor and can also
be used to invoke it.

For example, the following EXEC statement causes the linkage
editor to be invoked:

//LKED EXEC PGM=HEWL
PGM=LINKEDIT could also be used
To ensure compatibility with the operating system, the linkage

editor can also be invoked by any of the following alias names:
IEWL, IEWLF440, IEWLF880, IEWLF128.

EXEC STATEMENT -- JOB STEP_ OPTIONS

The EXEC statement also contains a list of options or parameters to
be passed to the linkage editor. These options are of four types:

¢ Module attributes, which describe the characteristics of the output
load module.

e Special processing options, which affect linkage editor processing.

e Space allocation options, which affect the amount of storage used by
the linkage editor for processing and output module library buffers.

e Output options, which specify the kind of output the linkage editor
is to produce.

Job Control Language Summary 83

The rest of this section describes the options in each category. All of
the options for a particular linkage editor execution are listed in the
PARM parameter on the EXEC statement. They can be listed in any
sequence, as long as the rules for coding parameters are followed.

MODULE ATTRIBUTES

The module attributes describe the characteristics of the output
module, or modules, (If more than one load module is produced by the
same linkage editor job step, all output modules will have the
attributes assigned on the EXEC statement.) The attributes for each
load module are stored in the directory of the output module library
along with the member name. (The format of the directory entry of a
partitioned data set is gilven in 0S/VS1 System Data Areas and 0S/VS2
Data Areas.

Module attributes specify whether or not the module:

® Can ever be reprocessed by the linkage editor.

e Can be brought into virtual storage only by the LOAD macro instruction.
e Is to be in overlay format.

e Can be reused.

e Can be placed in the link pack area; i.e., is re-enterable.

e Can be replaced during execution by recovery management; i.e., is
refreshable.

e Is to be tested by the TSO TEST command under VS2.

* Is to have specified control sections aligned on page boundaries.

After the descriptions of the module attributes, the default and
incompatible attributes are discussed.

Note: The attributes for hierarchy format (HIAR) and scatter
loading (SCTR) can be specified on the EXEC statement to ensure
compatibility with the operating system. If either is specified,
the linkage editor prepares the load module accordingly; however,
hierarchy format and scatter loading are not supported by VS, and
the attributes are ignored during execution of the load module.

To assign the hierarchy format attribute, code HIAR in the PARM
field, as follows:

//LKED EXEC PGM=HEWL,PARM='HIAR,...'

To assign the scatter loading attribute, code SCTR in the PARM
field, as follows:

//LKED EXEC PGM=HEWL,PARM='SCTR,..."

The downward compatibility attribute (DC) is used to ensure that
load modules processed by the linkage editor can be reprocessed by
the level F linkage editor. This attribute would be needed under
VS only when either (1) a maximum record size of 1024 bytes is
required or (2) no grouping of control sections in output load
module records is desired.

84 0S/VS Linkage Editor and Loader

To assign the downward compatibility attribute, code DC in the
PARM field, as follows:

//LKED EXEC PGM=HEWL,PARM='DC,..."

Note: If the output module library is an existing data set, the block
size in the DSCB (data set control block) is set to 1024 only if the
current blocksize of the data set is less than 1024. For new output
module libraries, the blocksize in the DSCB is always set to 1024.
The programmer however, can override the system generated blocksize
by using the DCBS option (see 'DCBS option').

Not Editable Attribute

A load module which is marked NE (not editable) is not reprocessable
by the linkage editor. If a module map or a cross-reference table is
requested, the not editable attribute is neglected.

To assign the not editable attribute, code NE in the PARM field, as
follows:

//LKED EXEC PGM=HEWL,PARM='NE,..."

Note: The not editable attribute disables the EXPAND function for the
output load module and also limits to eighteen the number of consecu-
tive iterations of AMASPZAP (for VS2) or HMASPZAP (for VvS1). If the
EXPAND function is required or more than eighteen iterations of
AMASPZAP/HMASPZAP are required, the load module will have to be
recreated.

Only Loadable Attribute

A module with the only loadable attribute can be brought into virtual
storage only with a LOAD macro instruction. Some subsets of the control
program use a smaller control table when the load module is invoked with

a LOAD. This reduces the overall virtual storage requirements of the
module.

A module with the only loadable attribute must be entered by means of
a branch instruction or a CALL macro instruction. If an attempt is made

to enter the module with a LINK, XCTL, or ATTACH macro instruction, the
program making the attempt is terminated abnormally by the control
program.

To assign the only loadable attribute, code OL in the PARM field as
follows:

//LKED EXEC PGM=HEWL,PARM='OL,..."'

Note: The only loadable attribute is intended primarily for use by the
control program. Use of this attribute by the problem programmer can
impair the usability of the module.

Job Control Language Summary 85

Ooverlay Attribute

A program with the overlay attribute is placed in an overlay
structure as directed by the linkage editor OVERLAY control statements.
The module is suitable only for block loading; it cannot be refreshakle,
re-enterable, serially reusable, or assigned to hierarchies.

If the overlay attribute is specified and no OVERLAY control
statements are found in the linkage editor input, the attribute is
negated. The condition is considered a recoverable error; that is, if
the LET option is specified, the module is marked executable.

The overlay attribute must be specified for overlay processing. If
this attribute is omitted, the OVERLAY and INSERT statements are
considered invalid, and the module is not an overlay structure. This
condition is also recoverable; if the LET option is specified, the
module is marked executable.

To assign the overlay attribute, code OVLY in the PARM field as
follows:

//LKED EXEC PGM=HEWL,PARM='OVLY,...'

See "Overlay Programs" for information on the design and
specification of an overlay structure,

Reusability Attributes

Either one of two attributes may be specified to denote the
reusability of a module. Reusability means that the same copy of a load
module can be used by more than one task either concurrently or one at a
time. The reusability attributes are re-enterable and serially
reusable; if neither is specified, the module is not reusable and a
fresh copy must be brought into virtual storage before another task
can use the module.

The linkage editor only stores the attribute in the directory entry;
it does not check whether the module is really re-enterable or serially
reusable. A re-enterable module is automatically assigned the reusable
attribute., However, a reusable module is not also defined as
re-enterable; it is reusable only.

Re-enterable: A module with the re-enterable attribute can be executed
by more than one task at a time; that is, a task may begin executing a
re-enterable module before a previous task has finished executing it.
This type of module cannot be modified by itself or by any other module
during execution.

If a module is to be re-enterable, all of the control sections within
the module must be re-enterable. If the re-enterable attribute is
specified, and any load modules that are not re-enterable become a part
of the input to the linkage editor, the attribute is negated.

To assign the re-enterable attribute, code RENT in the PARM field, as
follows:

//LKED EXEC PGM=HEWL,PARM='RENT,...'

86 08/VS Linkage Editor and Loader

Serially Reusable: A module with the serially reusable attribute can be
executed by only one task at a time; that is, a task may not begin
executing a serially reusable module before a previous task has finished
executing it. This type of module must initialize itself and/or restore
any instructions or data in the module altered during execution.

If a module is to be serially reusable, all of its control sections
must be either serially reusable or re-enterable. If the serially
reusable attribute is specified, and any load modules that are neither
serially reusable nor re-enterable become a part of the input to the
linkage editor, the serially reusable attribute is negated.

To assign the serially reusable attribute, code REUS in the PARM
field, as follows:

//LKED EXEC PGM=HEWL,PARM='REUS,...'

Refreshable Attribute

A module with the refreshable attribute can be replaced by a new copy
during execution by a recovery management routine without changing
either the sequence or results of processing. This type of module
cannot be modified by itself or by any other module during execution.
The linkage editor only stores the attribute in the directory entry; it
does not check whether the module is refreshable.

If a module is to be refreshable, all of the control sections within
it must be refreshable. If the refreshable attribute is specified, and
any load modules that are not refreshable become a part of the input to
the linkage editor, the attribute is negated.

To assign the refreshable attribute, code REFR in the PARM field, as
follows:

//LKED EXEC PGM=HEWL,PARM='REFR,...'

Test_ Attribute

A module with the test attribute is to be tested and contains
the testing symbol tables for the TSO TEST command. The linkage
editor accepts these tables as input, and places them in the output
module. The module is marked as being under test. If the test
attribute is not specified, the symbol tables are ignored by the
linkage editor and are not placed in the output module. If the test
attribute is specified, and no symbol table input is received, the
output load module will not contain symbol tables to be used by
the TSO TEST command.

To assign the test attribute, code TEST in the PARM field, as
follows:

//LKED EXEC PGM=HEWL,PARM='TEST,..."

Note: The test attribute applies to programs using TESTRAN or the TSO
TEST command. Do not use the 'TEST' option unless the load module is
to be executed by TSO or TESTRAN.

Job Control Language Summary 87

Page Boundary Attribute

Control sections within a load module with the page boundary
attribute are aligned in storage on page boundaries. Used with
the PAGE control statement or the ORDER statement with the P
operand, this attribute causes alignment of specified control
sections on 2K boundaries. If virtual storage is limited under
VS1, alignment on 2K page boundaries reduces paging and conserves
storage; however, performance degradation may result when 2K
alignment is used under VS2.

To assign the 2K page boundary attribute, code ALIGN2 in the
PARM field, as follows:

//LKED EXEC PGM=HEWL,PARM='ALIGN2,..."
Note: If the ALIGNZ2 attribute is not coded and the PAGE statement

or ORDER statement with the P operand is used, the default boundary
alignment is UK.

Default Attributes

Unless specific module attributes are_ indicated by the programmer,
the output module is not in an overlay structure, and it is not tested
(assembler only). The module is in block format, not refreshable,
not re-enterable, and not serially reusable. Its control sections
are aligned on 4K page boundaries if page boundary alignment is requested.

One other attribute is specified by the linkage editor after
processing is finished. 1If, during processing, severity 2 errors were
found that would prevent the output module from being executed
successfully, the linkage editor assigns the not executable attribute.
The control program will not load a module with this attribute.

If the LET option is specified, the output module is marked

executable even if severity 2 errors occur. The LET option is discussed
later in this section.

Incompatible Attributes

Of the module attributes that the programmer may specify,
several are mutually exclusive. When mutually exclusive attributes
are specified for a load module, the linkage editor ignores the
less significant attributes. For example, if both OVLY and RENT are
specified, the module will be in an overlay structure and will not be
re-enterable.

Certain attributes are also incompatible with other job step options.

For convenience, all job step options are shown in Figure 35 at the end
of this chapter along with those options that are incompatible.

88 O0S/VS Linkage Editor and Loader

SPECIAL PROCESSING OPTIONS

The special processing options affect the executability of the output
module and the use of the automatic library call mechanism. These
options are the exclusive call option, the let execute option, and the
no automatic call option.

Exclusive Call Option

When the exclusive call option is specified, the linkage editor marks
the output module as executable when valid exclusive references have
been made between segments. However, a warning message is given for
each valid exclusive reference.

To specify the exclusive call option, code XCAL in the PARM field as
follows:

//LKED EXEC PGM=HEWL,PARM='XCAL,OVLY,..."
The OVLY attribute must also be specified for an overlay program.

Note: Other errors may cause the module to be marked not executable
unless the let execute option is specified.

Let Execute Option

When the let execute option is specified, the linkage editor marks
the output module as executable even though a severity 2 error condition
was found during processing. (A severity 2 error condition could make
execution of the output load module impossible.) Some examples of
severity 2 errors are:

e Unresolved external references.

e Valid or invalid exclusive calls in an overlay program.

e Exrror on a linkage editor control statement.

e A library module that cannot be found.

e No available space in the directory of the output module library.

Job Control Language Summary 89

To specify the let execute option, code LET in the PARM field as
follows:

//LKED EXEC PGM=HEWL,PARM='LET,...'

Note: If LET is specified, XCAL need not be specified.

No Automatic Library Call Option

When the no automatic library call option is specified, the linkage
editor library call mechanism does not call library members to resolve
external references. The output module is marked executable even though
unresolved external references are present. If this option is ‘
specified, the LIBRARY statement cannot be used to negate the automatic
library call for selected external references. Also, with this option,
a SYSLIB DD statement need not be supplied.

To specify the no automatic library call option, code NCAL in the
PARM field, as follows:

//LKED EXEC PGM=HEWL,PARM='NCAL,...'

Note: Other errors may cause the module to be marked not executable
unless the LET option is also specified.

SPACE ALLOCATION OPTIONS

These options allow the programmer to specify the storage available
to the linkage editor, and to specify the blocksize for the output
module.

SIZE Option

The programmer can specify, through the size option, the amount of
virtual storage to be used by the level F linkage editor and the por-
tion of that storage to be used as the load module buffer.

Default values for the size option are chosen during system genera-
tion. The default values are used if one or both of the values are not
specified correctly, or not specified at all. These defaults should be
made adequate for most link edits, relieving the programmer from having
to specify the size option for each link edit. For details on how to
establish default values, see the publication 0S/VS1 System Generation

Reference or 0S/VS2 System Programming Library: System Generation
Reference.

Format: The format of the SIZE option is:

SIZE=(value1,value
S1ZE=(value.,)
SIZ2E=(value,,)
SIZE=(,value2)
SIZE=(,)

When coded in the PARM field, the expression is enclosed in single
quotes, as follows:

2)

//LKED EXEC PGM=HEWL,PARM='SIZE=(va1ue1, valuez),...'

Both value, and value, may be expressed as integers specifying the
number of bytes of virtu%l storage or as Nk where N represents the
number of 1k (1024 bytes) of virtual storage.

When determining the values for the size option, it is best to
establish value2 first, then value1.

90 0S8/VS Linkage Editor and Loader

VALUE;

Value, specifies the number of bytes of storage to be allocated
as the mGdule buffer. The allocation specified by value2 is a part of
the virtual storage specified by Value1.

The actual minimum for value, is 6144 (6k) or the length of the largest
input load_module text record, whithever is larger. If a value less than
6144 (6k) is specified, the default value for value2 is used.

The space allocated by value, is used as: the buffer into which the
input load module text is read,“the buffer from which load module text
is written to the intermediate data set, the buffer into which the load
module text is read from the intermediate data set, and the buffers
from which the load module text is written to the output data set.
Therefore the determination of value, requires that the programmer con-
sider the record sizes of the data séts from which any load module text
records are to be read (SYSLIB, any data set referenced by an INCLUDE,
any library data set), the record size for the intermediate data set
(SYSUT1), and the record size for the output load module data set
(SYSLMOD) .

Table 5 lists the direct access devices that may contain data sets
that are the source of input load module text, the intermediate data set,
and the output load module data set, and lists the maximum record size
used for each device by the linkage editor. These maximum record sizes
may always be used in specifying value2 or, if the programmer can deter-
mine them, exact sizes can be used.

Table 5. SYSUT1 and SYSLMOD Device Type and Their Maximum Record Sizes

Device Maximum record size
2305 13312 or 13K
2314 6144 or 6K
2319 6144 or 6K
3330 12288 or 12K
3340 12288 or 12K

The programmer must specify value, so that the linkage editor has
sufficient space to allocate buffers“that are compatible with the record
sizes for the intermediate data set and the output load module data set.

The linkage editor optimizes the record size for the device type of
the input load module data set unless one of the following conditions
exists.

1) The programmer has specified PARM='..DC...', forcing the linkage
editor to write records having a maximum size of 1024 (1K) bytes.

2) The programmer has specified PARM=',..DCBS...', and the SYSLMOD DD
statement contains a BLKSIZE subparameter in the DCB parameter,
forcing the linkage editor to write records having a maximum length
equal to the BLKSIZE specification.

3) The output load module data set is an existing data set having a
block size less than the optimum record size, forcing the linkage
editor to write records no longer than that block size.

4) The programmer has specified a value., less than twice the maximum
record size for the output load modu%e data set, forcing the linkage
editor to write records having a maximum size of one half valuez.

5) The intermediate data set and the output load module data set have
dissimilar record sizes, forcing the linkage editor to write records
having a maximum size determined for compatibility between the two
data sets.

Job Control Language Summary 91

The linkage editor optimizes the record size of the output load module
data set for its device type but selects a record size compatible with the
intermediate data set (see restrictions above). Therefore, use of the
load module buffer is optimized if the intermediate data set and the out-
put load module data set reside on the same device type. The performance
of the linkage editor is improved if the data sets are on different units
of the same type.

Table 6 shows the record sizes used for compatibility between every
combination of device types for the intermediate and output load module
data sets.

Value, is, minimally, twice the record size for the output load module
data set. If value, can be made larger than twice the record size for the
output load module“data set, the increase should be the larger of the
record sizes for the intermediate and output load module data sets.

The maximum for value, is 102400 (100K). The practical maximum however,
is the length of the loag module to be built, plus 4K if the length of the
load module to be built is equal to or greater than 40960 (40K). Any space
allocated to the load module buffer above this amount is not used and need
not be allocated to value?.

4

If a value greater than the maximum for value, is specified, the default
value for value, is used. If a va'lue2 is specifiéd that cannot be accomo-
dated in the available storage, valu€, is reduced to the next lower 2K
multiple of storage that is available. This reduction, however, never
decreases value2 to less than the minimum, 6144 (6K).

Table 6. Load Module Buffer Area and SYSLMOD and SYSUT1 Record Sizes

r SYSLMOD Record Size —T SYSUT1 Record Size :{Minimum _}
r—F—-—"7 - - —"—- —-—/— - = = - T - — = Load Module
| Device | Maximum Record : Device ; Maximum Record | Buffer Area |
| Used | Size Produced | Used | Size Produced : (valuep) |
S S Saes 1T e T h T T
| IBM 2314 | ' 2314,2319 | 6K b1k |
| IBM 2319 | 6K | 3330,3330-1 12K l
| | | 3340 : 6K2 : |
P — == == = = 2 ettt - S ety -
T_ | 2305 | 12K2 I |
IBM 3330 | 2314,2319 | 6K | 20K |
IBM 3330-1, 12K 3330,3330-1 | 12K |
L | i_33uo | 6K 2 | |
————— - = — —t = = — = = === — = —
| L__7-58 ___le2sos | 7.sk?) 1Sk |
: IBM 3340 L 6K | 2314,2319 | 6K I 12K |
| L 7.5K 1_3330,3330—1 7.5K2 [: 15K ‘1
| | 7.5K | 3340 | 7.5K | 15K |
T T T T T T T T Taaes sk U ek |
vt i U 4 - - -y
: IBM 2305 | 12K1 |_2314,2319 | 6K | 24K |
| I 12K1 1 3330,3330-11: 12K I 2K]
! " 12k] 173340 6K ™ ik |
F———_—d - 4 L S S -

TThe SYSLMOD record size is reduced to less than the maximum to make !
I it compatible with the SYSUT1 record size. |
I 2The SYSUT1 record size is reduced to less than the maximum to make it!
L_compatible with the SYSLMOD record size.

92 08/VS Linkage Editor and Loader

The optimal value., is the practical maximum, as explained above.
If the entire load m8dule is contained in storage, the performance of the
linkage editor is improved and the use of the intermediate data set may
be eliminated.

Examples of Valuep Determination

(1) A load module of between 21K and 22K is to be built. The load module
data set is a new data set on a 3330. The intermediate data set is
allocated to a 2314, A SYSLIB data set is to be used, residing on
a 3330. The entire load module could be contained in the load module
buffer if value; were 22K (the load module size). The minimum for
value2 would be 12K (the size of the largest possible input load
module text record from the SYSLIB data set). However, valuep must
be at least as large as two records to be written to the load module
data set (i.e., 24K). There is a reconciliation necessary in this
case between the two dissimilar device types for the intermediate
and output load module data sets; but the record size of the output
load module data set is an even multiple of the record size of the
intermediate data set so no adjustment of the record sizes is made.
Therefore, the minimum, as well as the maximum and optimal, value,
in this case is 2UK.

(2) A load module of more than 50K is to be re-~link-edited; however, a
maximum of 40K is available to be allocated to value,. The output
load module data set is an old data set residing on a 2314, written
with maximum record size. The intermediate data set is allocated to
a 2305. The link-edit involves a control section in the SYSLIN data
set that will replace a control section in the old load module, fol-
lowed by an include statement naming the o0ld load module on the
SYSLMOD data set. The maximum for valuej cannot be satisfied, since
only 40K is available. The size of two maximum records written to a
2314 would be 12K. However, the size of one record to be written or
to be read from the intermediate data set is 12K. Therefore, the
minimum for valuep in this case is 12K. This is sufficient space for
one input load module text record or one record written to or to be
read from the intermediate data set or two records written to the
output load module data set. The optimum value,; in this case is 36K;
the minimum, 12K, plus two increments of the larger of the record
sizes for the intermediate data set and the output load module data
set, 12K.

(3) The output load module data set resides on a 2305. The intermediate
data set is allocated to a 3330. All load module input comes from
a 3330. Value, in this case is 2UK, because the input load module text
records are, at mos%, 12K, the records written to and read from the
intermediate data set are 12K, and the records written to the output
load module data set are 12K. The maximum record size of 13K for the
2305 is reduced to 12K for this link-edit in order to be compatible
with the intermediate data set.

An alternative for value, in the above example is 12K. 12K is ade-
quate for the input load module text records and the records
written to and read from the intermediate data set. 12K forces a
maximum record size of 6K to be written to the output load module
data set. At 6K each, two records can be written on a 2305 track
while, as in the above example, only one record of 12K can be writ-
ten on a 2305 track.

Job Control Language Summary 93

(4) A load module of 10K is to be link-edited. The output load module
data set resides on a 2305. The input load module libraries all
reside on 2314s. The intermediate data set is allocated to a 2314.
The programmer has specified the linkage editor parameter DC. The
minimum for value; of 6K is adequate &n this case, since 6K is suf-
ficient for input and intermediate data set records and the output
load foddle data set records have a maximum size of 1K.

(5) The output load module data set is a new data set allocated to a
3330. The programmer has specified the linkage editor parameter
DCBS and the SYSLMOD DD statement contains
'...DCB=(...BLKSIZE=3072,...),..."'. The only load module input
comes from a data set created previously in a similar manner. The
intermediate data set is allocated to a 2314. The minimum for
value, in this case is 6K; the input load module records are 3K
at most, the intermediate data set records are 6K at most, and, as
directed by the programmer, the linkage editor produces records
having a maximum size of 3K on the output load module data set.

VALUE1

Valueq specifies the number bytes of virtual storage available to the
linkage editor, regardless of the region or partition size. The storage
specified by valueq includes the allocation specified by valuej.

The minimum for valueq is the design point of the linkage editor, 6UK.
If a value less than the minimum for valueq is specified, the default
options for both valueq and valuep are used.

The practical minimum valueq is 65536 (6U4K) plus any excess in valuejp
over 6144 (6K), plus any additional space required to support the blocking
factor for the SYSLIN, object module library, and SYSPRINT data sets.

The design point of the linkage editor provides for the minimum load
module buffer - 6144 (6K) bytes of virtual storage. If a load module
buffer larger than 6144 (6K) is specified in value2, valueq must be
increased by the excess of that valuej over 614l (6K).

The linkage editor supports three different blocking factors for the
SYSLIN, object module library, and SYSPRINT data sets; they are 5, 10,
and 40 to 1. The requirement for additional space depends upon the
blocking factor that is to be supported. The following table shows the
additional space required to support each blocking factor.

Space Requirement for Blocking Factor Support

rBlo;iizb—Ea;Z6£— ________ 1
— e — = - — - === —

I5to 1 | _10tol_ ___ . 40 to1_ __

| 0 or OK 18432 or 18K L 28672 or 28K |

Blocking factors of 1 through 4, 6 through 9, and 11 through 39 are
treated as blocking factors of 5, 10, and 40, respectively. Blocking
factors greater than 40 are invalid.

The additional space requirement is determined by the largest blocking
factor among the affected data sets.

The blocking factor supported is dependent upon space available after
value, has been allocated to the load module buffer out of valueq. There-
fore, if the space provided in value1 is insufficient, the link-edit
will be terminated with an error message to that effect.

94 0S8/VS Linkage Editor and Loader

The maximum for valueq is 999999 (999K) or, the region or partition
whichever size is smaller. (See "EXEC Statement - Region Parameter"
below.) If a valueq is specified greater than the region or partition
size, the editor may use some of the storage intended for data manage-
ment and other system functions required by the linkage editor. This
lack of storage will result in the abnormal termination of the link-edit.

Valuel should be as large as possible. The performance of the linkage
editor is improved when additional storage is allocated by valueq.

Examples of Valueq Determination

(1) An optimum valuep of 36K has already been determined for the link-
edit. An appropriate valueq is 94K, since an additional 30K, above
the minimum of 64K, is needed to support the allocation of 36K to
valuey and no additional storage is required to support the blocking
factors for SYSLIN, SYSPRINT, and any object module libraries.

(2) The minimum for value, (6K) is being used. All of the object module
libraries are blocked 5-to-1, except one that is blocked 10-to-1. The
SYSLIN and SYSPRINT data sets are assigned blocking factors of 5. An
appropriate valueq for this link-edit is 82K, the minimum plus the
18K needed to support the blocking factor of 10-to-1 on the object
module library.

(3) The same situation exists as in example 2. However, in this case the
minimum region size is 100K. A more appropriate valueq, under these
circumstances, is 90K. Since extra space is available, it is possible
to optimize use of the region allocated and to increase valuejs to
18K, the optimum for this case.

DCBS_Option

The DCBS option allows the programmer to specify the blocksize for
the SYSIMOD data set in the DCB parameter of the DD statement. If the
data set is new, the blocksize specified by the programmer will be used
unless it is larger than the maximum record size for the device. 1In
this case, the linkage editor will use the maximum record size. If the
data set is old, either the blocksize specified by the programmer or
the existing blocksize, whichever is larger, will be used. However, if
the blocksize specified by the programmer is larger than the maximum
record size for the device, the linkage editor will use the maximum
record size.

The following example shows the use of the DCBS option for a 2314
disk:

//LKED EXEC PGM=HEWL,PARM='XREF,DCBS'
//SYSLMOD DD DSNAME=LOADMOD (TEST), DISP=(NEW, KEEP) ,
7/ DCB=(BLKSIZE=3072)yee.

As a result, the linkage editor uses a 3K blocksize for the output
module library.

Note: When the DCBS option is used, a blocksize must be specified in
the DCB parameter of the SYSLMOD DD statement.

Job Control Language Summary 95

OUTPUT OPTIONS

These options control the optional diagnostic output produced by the
linkage editor. The programmer can request that the linkage editor
produce a list of all control statements and a module map or
cross-reference table to help in testing a program. The format of each
is described in the chapter "Output from the Linkage Editor."

In addition, the programmer can request that the numbered

error/warning messages generated by the linkage editor should appear on
the SYSTERM data set as well as on the SYSPRINT data set.

control Statement Listing Option

To request a control statement listing, code LIST in the PARM field,
as follows:

//LKED EXEC PGM=HEWL,PARM='LIST,...'

When the LIST option is specified, all control statements processed
by the linkage editor are listed in card-image format on the diagnostic

output data set.

Module Map Option

To request a module map, code MAP in the PARM field, as follows:

//LKED EXEC PGM=HEWL,PARM='MAP,...'

When the MAP option is specified, the linkage editor produces a
module map of the output module on the diagnostic output data set.

Cross—Reference Table Option

To request a cross-reference table, code XREF in the PARM field, as
follows:

//LKED EXEC PGM=HEWL,PARM='XREF,...'
When the XREF option is specified, the linkage editor produces a
cross-reference table of the output module on the diagnostic output data

set. The cross-reference table includes a module map; the;efore, both
XREF and MAP need not be specified for one linkage editor job step.

Alternate Output (SYSTERM) Option

To regquest that the numbered linkage editor error/warning messages be
generated on the data set defined by a SYSTERM DD statement, code TERM

in the PARM field, as follows:

//LKED EXEC PGM=HEWL,PARM='TERM,...'

When the TERM option is specified, a SYSTERM DD statement must be
provided. If it is not, the TERM option is negated.

output specified by the TERM option supplements printed diagnostic
information; when TERM is used, linkage editor error/warning messages

appear in both output data sets.

96 0S/VS Linkage Editor and Loader

INCOMPATIBLE JOB STEP OPTIONS

When mutually exclusive job step options are specified for a linkage
editor execution, the linkage editor ignores the less significant
options. Figure 35 illustrates the significance of those options that
are incompatible. When an X appears at an intersection, the options are
incompatible. The option that appears higher in the list is selected.

For example, to check the compatibility of XREF and NE, follow the
XREF column down and the NE row across until they intersect. Since an X
appears where they intersect, they are incompatible; XREF is selected,
NE is negated.

If incorrect values are Specified for the SIZE parameter, the default
values are used. If incompatible options are detected, the message

*%% OPTIONS INCOMPATIBLE ***

is printed. This message follows the standard module disposition
message.

&
4»‘*&‘<
\4
Na
X &
WV
é\
&
X
&
X X
‘;‘o
X V‘\'
e
X X <
NG
X X X ‘;C,V
OV
<
X
X é§ $H
>
ﬁi////
(&

Figure 35. Incompatible Job Step Options for the Linkage Editor

EXEC_STATEMENT -- REGION PARAMETER

If the SIZE option is specified, the partition size in VS1 must be
10K larger than valueq.If VS2 is used, the default or specified region
size must be 10K larger than value,.

For example, if SIZE+(200K,36K) is coded when using the 88K design
size, the REGION specified must be the same as valueq, that is REGION=200K.

Job Control Language Summary 97

EXEC STATEMENT -- RETURN CODE

The linkage editor passes a return code to the control program upon
completion of the job step. The return code reflects the highest
severity code recorded in any iteration of the linkage editor within
that job step. The highest severity code encountered during processing
is multiplied by 4 to create the return code; this code is placed into
register 15 at the end of linkage editor processing. Table 7 contains
the return codes, the corresponding severity code, and a description of
each.

The programmer may use this return code to determine whether or not
the load module is to be executed by using the condition parameter
(COND) on the EXEC statement for the load module. The control program
compares the return code with the values specified in the COND
parameter, and the results of the comparisons are used to determine
subsequent action. The COND parameter may be specified either in the
JOB statement or the EXEC statement (see the publication 0S/VS JCL
Reference).

Table 7. Linkage Editor Return Codes

- Yoo T T T T T T T e s === 1
|Return|Severity| |
| Code | Code | Description

e e

| 00 | 0 | Normal conclusion.

4
I
s RO & - -- i
| Warning messages have been listed, execution should |
| be successful. For example, if the overlay option is|
| specified and the overlay structure contains only one|
| segment, a return code of 04 is issued. |
fom e e - 1
| Exrror messages have been listed, execution may fail. |
| The module is marked not executable unless the LET |
| option is specified. For example, if the blocksize |
| |
[I
¥ 1
| |
I |
| I

4

|

|

I

|

4

of a specified library data set cannot be handled by
the linkage editor, a return code of 08 is issued.
Severe errors have occurred, execution is impossible.
For example, if an invalid entry point has been
specified, a return code of 12 is issued.

L

T

| Terminal errors have occurred, the processing has
| terminated. For example, if the linkage editor

| cannot handle the blocking factor requested for

| SYSPRINT, a return code of 16 is issued.

L

o et e o o e e e e e e e

DD _STATEMENTS

Every data set used by the linkage editor must be described with a DD
statement. Each DD statement must have a name, unless data sets are
concatenated. The LD statements for data sets required by the linkage
editor have pre-assigned names; those for additional input data sets
have user-assigned names; those for concatenated data sets (after the
first) have no names.

In addition to the name, the DD statement provides the control
program with information about the input/output device on which the data

98 08/VS Linkage Editor and Loader

set resides, and a description of the data set itself. All of the job
control language facilities for device description are available to the
users of the linkage editor.

Besides information about the device, the DD statement also contains
a data set description, which includes the data set name and its
disposition. Information for the data control block (DCB) may also be
given,

General information pertinent to the linkage editor on the data set
name and DCB information follows; information on disposition is given in
the discussion for each data set.

DATA SET NAME: The linkage editor uses either sequential or partitioned
data sets. For sequential data sets, only the name of the data set is
specified; for partitioned data sets, the member name must also be
specified either on the DD statement or with a control statement.

When input data sets are passed from a previous job step, or when the
output load module is being tested, a recommended practice is to use
temporary data set names (i.e., €&&dsname)., Use of temporary names
ensures that there are no duplicate data sets with out-of-date modules.
A data set with a temporary name is automatically deleted at the end of
the job. When a module is to be stored permanently, a data set name
without ampersands is used.

DCB_INFORMATION: Before a data set can be used for input, information

describing the data set must be placed in the data control block (DCB).
If this information does not exist in the DCB or header label, or if no
labels are used (magnetic tape does not require labels), the programmer
must specify it in the DCB parameter on the DD statement.

Record format (RECFM), logical record size (LRECL), and blocksize
(BLKSIZE) subparameters of the DCB parameter are discussed as they apply
to the linkage editor. Specific information on each as it applies to
the linkage editor data sets is given in the description of the data set
which follows later in this section. Other DCB information (tape
recording technique, density, and so forth) is described in the
publication 0S/VS JCL Reference.

Record Format: The following record formats are used with the linkage
editor:

F -- The records are fixed length.

FB -- The records are fixed length, and blocked.

FBA -- The records are fixed length, blocked, and contain
ANSI control characters.

FBS -- The records are fixed length, blocked, and written in
standard blocks.

FA -- The records are fixed length and contain ANSI control
characters.

FS -- The records are fixed length and written in standard blocks.

U -- The records are undefined length.

Job Control Language Summary 929

UA -- The records are undefined length and contain ANSI control
characters.

A record format of FS or FBS must be used with caution. All blocks
in the data set must be the same size. This size must be equal to the
specified blocksize. A truncated block can occur only as the last
block in the data set.

Note: Track overflow is never used by the linkage editor. When moving
or copying load modules, it is recommended that the track overflow
feature not be used on the target data set as errors may occur in
fetching the load modules for execution.

Logical Record and Blocksize: Blocking is allowed for input object
module data sets and the diagnostic output data set. The blocking
factors used to determine buffer allocations are 10 and 40. The
BLKSIZE must therefore be a multiple of LRECL. See the description
of blocking factors in the discussion of the SIZE option.

Also, a blocksize may be specified for the output load module
library when the DCBS option is specified (see "SYSLMOD DD Statement"
later in this section.)

LINKAGE EDITOR DD STATEMENTS
The linkage editor uses six data sets; of these, four are required.
The DD statements for these data sets must use the preassigned ddnames

given in Table 8. The descriptions that follow give pertinent device
and data set information for each linkage editor data set.

Table 8. Linkage Editor ddnames

| S T T I . -==) |
| Data Set | ddname | Required |
I fommmmmom oo 1
| Primary input data set | SYSLIN | Yes |
I I I |
| Automatic call library | SYSLIB | Only if the automatic library|
| | | call mechanism is used |
| I I |
Intermediate data set	sysuTi	Yes
	I	
Diagnostic output data set	SYSPRINT	Yes
I I		
Output mcdule library	SYSLMOD	Yes
! I		
Alternate output data set	SYSTERM	Only if the TERM option is
		specified
SR PR I b e e e e P

SYSLIN DD Statement

The SYSLIN DD statement is always required; it describes the primary
input data set which can be assigned to a direct-access device, a
magnetic tape unit, or the card reader. The data set may be either
sequential or partitioned; in the latter case, a member name must be
specified.

If SYSLIN is assigned to a card reader or "pseudo card reader," input

records must be unblocked and 80-bytes long. (A pseudo card reader is
defined as input from a tape or direct-access device in card reader mode.)

100 0S/VS Linkage Editor and Loader

This data set must contain object modules and/cr control statements.
Load modules used in the primary input data set are considered a
severity U4 error.

The recommended disposition for the primary input data set is SHR or
OLD.

The DCB requirements are shown in Table 9.

Table 9. DCB Requirements for Object Module and Control
Statement Input

e 1
| DCB Requirements |
------------- R Bttt
| LRECL | BLKSIZE | RECFM |
—— e L 1
| | 80 I F,FS |
| 80 e oo 1
| | 800,3200% i FB, FBS i
f—————— e - R L
: ese are € maximum ocksizes allowed. Whic

| #Th th i blocksi 11 d hich !
| maximum is applicable depends on the values given to i
| value, and value, of the SIZE option. {
L —_— ———— — AL

SYSLIB DD Statement

The SYSLIB DD statement is required when the automatic library call
mechanism is to be used. This DD statement describes the automatic call
library, which must be assigned to a direct-access device. The data set
must be partitioned, but member names should not be specified.

The recommended disposition for the call library is SHR or OLD.

If concatenated call libraries are used, object and load module
libraries must not be mixed. If only object modules are used, the call
library may also contain control statements.

The DCB requirements for object module call libraries are given in
Table 9. The DCB requirement for load module call libraries is a
record format of U; the blocksize used for storage allocation is equal
to the maximum for the device used, not the record read.

SYSUT1 DD Statement

The SYSUT1 DD statement is always required; it describes the
intermediate data set, which is a sequential data set assigned to a
direct-access device. Space must be allocated for this data set but the
DCB requirements are supplied by the linkage editor.

Job Control Language Summary 101

SYSPRINT DD Statement

The SYSPRINT DD statement is always required; it describes the
diagnostic output data set, which is a sequential data set assigned to a
printer or an intermediate storage device. If an intermediate storage
device is used, the data records contain a carriage control character as
the first byte.

The usual specification for this data set is SYSOUT=A. The programmer
may assign a blocksize if he is running under a V81 or VS2 system. The
record format assigned by the linkage editor depends on whether blocking
is used or not.

Table 10 shows the DCB requirements for SYSPRINT. The shaded areas
represent information supplied by the linkage editor. The only informa-
tion that can be supplied by the programmer is the blocksize.

Table 10. DCB Requirements for SYSPRINT

" —————— e 1
| DCB Requirements |

n x 121 where n

2

ote: |
The value specified for BLKSIZE, either on the DCB :
parameter of the SYSPRINT DD statement or in the DSCB
(data set control block) of an existing data set, |
must be a multiple of 121; if it is not, the linkage i
|
|
i

| editor issues a message to the operator's console
| and terminates processing.
t

SYSLMOD DD_Statement

The SYSLMOD DD statement is always required; it describes the output
module library, which must be a partitioned data set assigned to a
direct-access device. A member name must be specified, either on the
SYSLMOD DD statement or on a NAME control statement.

If the member is to replace an identically named member in an existing
library, the disposition may be OLD or SHR. If the member is to be added
to an existing library, the disposition should be MOD, OLD, or SHR. If no
library exists and the member is the first to be added to a new library,
the disposition should be NEW or MOD. If the member is to be added to an
existing library that may be used concurrently in another region or
partition, the disposition should be SHR.

102 0S/VS Linkage Editor and Loader

The linkage editor assigns a blocksize by:
1. Finding the smallest of the following values:
*

The maximum track size for the device

®* The value of the BLKSIZE subparameter in the DCB parameter on
the SYSLMOD DD statement, if the DCBS option was specified

® 1024, if the DC option was specified

®* The actual output buffer length (half the number specified for
value; of the SIZE option)

2. Comparing the smallest value above to the value currently
in the DSCB. The greater value is assigned as the blocksize.

In the following example, the SYSLMOD DD statement specifies a
permanent library on an IBM 2314 Disk Storage Device:
//SYSLMOD DD DSNAME=USERLIB(TAXES), DISP=MOD, UNIT=2314,...

The linkage editor assigns a record format of U, and a logical record
and blocksize of 6K, the maximum for a 2314. However, consider the
following example:

//LKED EXEC PGM=HEWL,PARM="'XREF,DCBS'
//SYSLMOD DD DSNAME=USERLIB (TAXES) , DISP=MOD, UNIT=2314,
// DCB=(BLKSIZE=3072),...

The linkage editor still assigns a record format of U, but the logical
record and blocksize are now 3K rather than 6K, due to the use of the
DCBS option.

SYSTERM DD_Statement

The SYSTERM DD statement is optional; it describes a data set that is
used only for numbered error/warning messages. Although intended to
define the terminal data set when the linkage editor is being used under
the Time Sharing Option (TSO) of VS2, the SYSTERM DD statement can be
used in any environment to define a data set consisting of numbered
error/warning messages that supplements the SYSPRINT data set.

SYSTERM output is defined by including a SYSTERM DD statement and
specifying TERM in the PARM field of the EXEC statement. When SYSTERM
output is defined, numbered messages are then written to both the
SYSTERM and SYSPRINT data sets.

Job Control Language Summary 103

The following example shows how the SYSTERM DD statement could be
used to specify the system output unit:

//SYSTERM DD SYSOUT=A

The DCB requirements foxr SYSTERM (LRECL=121, BLKSIZE=121 and RECFM=FBA
are supplied by the linkage editor. If necessary, the linkage editor
will modify the DSCB (data set control block) of an existing data set to
reflect these values.

ADDITIONAL DD STATEMENTS

Each ddname specified on an INCLUDE or LIBRARY control statement must
also be described with a DD statement. These DD statements describe
sequential or partitioned data sets, assigned to magnetic tape units or
direct—-access devices.

The ddnames are specified by the user along with any other necessary
information. The DCB requirements for these data sets are shown in

Table 11.

When concatenated data sets are included, each data set must contain
records of the same format, record size, and blocksize. If the data
sets reside on magnetic tape, the tape recording technique and density
must also be identical.

Table 11. DCB Requirements for Additional Input Data Sets

ettt et 1
| | DCB Requirements |
I Toomm———————— S 1
| Data Set Contents | LRECL | BLKSIZE | RECFM |
e . e fommm e e :
| Object mcdules and/or | 80 | 80 | F,FS |
I control statements | | i |
e - e pommmm - 1
| Load modules | 1K | 1K | U |
T PO oo frmmmmmmm e pmmmmmm 1
| Object modules ands/or | | 80 | F,FS |
| control statements | 80 ————————— -
! [| 400,800,3200%| FB,FBS |
[mmmmm e m oo fommmmmom e pommmmmm- 1
i Load modules | maximum | equal to | U |
| | for device, | LRECL | |
[| or one-half| | |
| | of value,, | |]
! | whichever | | |
[| is smaller | |
R A S L]
| *These are the maximum blocksizes allowed. Which [
| maximum is applicable depends on the values given |
| to value; and value, of the SIZE option. J
e e e -

104 0S/VS Linkage Editor and Loader

CATALOGED PROCEDURES

To facilitate the operation of the system, the control program allows
the programmer to store EXEC and DD statements under a unique member
name in a procedure library. Such a series of job control language
statements is called a cataloged procedure. These job control language
statements can be recalled at any time to specify the requirements for a
job. To request this procedure, the programmer places an EXEC statement
in the input stream. The EXEC statement specifies the unique member
name of the procedure desired.

The specifications in a cataloged procedure can be temporarily
overridden, and DD statements can be added. The information altered by
the programmer is in effect only for the duration of the job step; the
cataloged procedures themselves are not altered permanently. Any
additional DD statements supplied by the programmer must follow those
that override the cataloged procedure.

LINKAGE EDITOR CATALOGED PROCEDURES

Two linkage editor cataloged procedures are provided: a single-step
procedure that link edits the input and produces a load module
(procedure LKED), and a two-step procedure that link edits the input,
produces a load module, and executes that module (procedure LKEDG).
Many of the cataloged procedures provided for language translators also
contain linkage editor steps. The EXEC and DD statement specifications
in these steps are similar to the specifications in the cataloged
procedures described in the following paragraphs.

Procedure LKED

The cataloged procedure named LKED is a single-step procedure that
link edits the input, produces a load module, and passes the load module
to another step in the same job. The statements in this procedure are
shown in Figure 36; the following is a description of those statements.

Statement Numbers: The 8-digit numbers on the right-hand side of each
- statement are used to identify each statement and would be used, for
example, when permanently modifying the cataloged procedure with the
system utility program IEBUPDTE. For a description of this utility
program, see the publication 0S/VS Utilities.

EXEC _Statement: The PARM field specifies the XREF, LIST, LET, and NCAL
options. If the automatic library call mechanism is to be used, the
NCAL option must be overridden, and a SYSLIB DD statement must be added.
Overriding and adding DD statements is discussed later in this section.

SYSPRINT Statement: The SYSPRINT DD statement specifies the SYSOUT
class A, which is either a printer or an intermediate storage device.
If an intermediate storage device is used, a carriage control character
precedes the data. The carriage control characters are ANSI for the
editor.

Job Control Language Summary 105

SYSLIN Statement: The specification of DDNAME=SYSIN allows the
programmer to specify any input data set as long as it fulfills the
requirements for linkage editor input. The input data set must be
defined with a DD statement with the ddname SYSIN. This data set may be
either in the input stream or residing on a separate volume.

If the data set is in the input stream, the following SYSIN statement
is used:

//LKED.SYSIN CD *

If this SYSIN statement is used, it may be anywhere in the job step DD
statements as long as it follows all overriding DD statements. The object
module decks and/or control statements should follow the SYSIN state-
ment, with a delimiter statement (/*) at the end of the input.

If the data set resides on a separate volume, the following SYSIN
statement is used:

//LKED. SYSIN LD parameters describing an input data set

If this SYSIN statement is used, it may be anywhere in the job step DD
statements as long as it follows all overriding DD statements. Several
data sets may be concatenated as described in the chapter "Input to the
Linkage Editor."

SYSLMOD Statement: The SYSLMOD DD statement specifies a temporary data
set and a general space allocation. The disposition allows the next job
step to execute the load module. If the load module is to reside
permanently in a library, these general specifications must be
overridden.

SYSUT1 Statement: The SYSUT1 DD statement specifies that the
intermediate data set is to reside on a direct-access device, but not
the same device as either the SYSLMOD or the SYSLIN data sets. Again, a
general space allocation is given.

SYSLIB Statement: Note that there is no SYSLIB DD statement. If the
automatic library call mechanism is to be used with a cataloged
procedure, a SYSLIB DD statement must be added; also, the NCAL option in
the PARM field of the EXEC statement must be negated.

r

| //LKED EXEC PGM=HEWL, PARM="'XREF, LIST, LET, NCAL', REGION=96K 00020000|
| //SYSPRINT DD SYSOUT=A 00040000
|//SYSLIN DD DLONAME=SYSIN 00060000 |
|//SYSLMOD DD DSNAME=§&GOSET(GO) , SPACE=(1024, (50,20,1)), C00080000]|
|77 UNIT=SYSDA, DISP=(MOD, PASS) 00100000 |
| //SYSUT1 DD UNIT=(SYSDA, SEP=(SYSLMOD,SYSLIN)), 00120000 |
|77 SPACE=(1024, (200,20)) 00Lu0000|

S . ———— e — e ————

Figure 36. Statements in the LKED Cataloged Procedure

106 0S/VS Linkage Editor and Loader

Invoking the LKED_Procedure: To invoke the LKED procedure, code the
following EXEC statement:

//stepname EXEC LKED

where stepname is optional and is the name of the job step.
The following example shows the use of the SYSIN DD * statement:
Step A: //LESTEP EXEC LKED

|0verr1d1ng and additional DD statements for the |
|LKED step, each beginning //LKED.ddname... |

/*
Step B: //EXSTEP EXEC PGM=*, LESTEP. LKED. SYSLMOD

|DD statements and data for load module execution

S - _— - 4

If data is supplied for the execution step, the data must be followed by
a /* delimiter statement.

Step A invokes the LKED procedure and Step B executes the load module
produced in Step A. The job control language statements for these two
steps are combined in LKEDG cataloged procedure.

Procedure LKEDG

The cataloged procedure named LKEDG is a two-step procedure that link
edits the input, produces a load module, and executes that load module.
The statements in this procedure are shown in Figure 37. The two steps
are named LKED and GO. The specifications in the statements in the LKED
step are identical to the specifications in the LKED procedure.

GO _Step: The EXEC statement specifies that the program to be executed
is the load module produced in the LKED step of this job. This module
was stored in the data set described on the SYSLMOD DD statement in that
step. (If a NAME statement was used to specify a member name other than
that used on the SYSLMOD statement, use the LKED procedure.)

The condition parameter specifies that the execution step is bypassed
if the return code issued by the LKED step is greater than 4.

Job Control Language Summary 107

r
| 7/LKED EXEC PGM=HEWL, PARM='XREF,LIST, NCAL' REGION=96K
| //SYSPRINT DD SYSOUT=A

| //SYSLIN DD DDNAME=SYSIN

| 7/SYSLMOD DD DSNAME=§ §GOSET (GO) , SPACE=(1024, (50, 20,1)),
{77 UNIT=SYSDA, DISP=(MOD, PASS)

| //SYSUT1 DD UNIT=(SYSDA, SEP=(SYSLMOD,SYSLIN)),

|77/ SPACE=(1024, (200, 20))

| 7/7GO EXEC PGM=#*,LKED.SYSLMOD, COND=(4,LT,LKED)

Figure 37. Statements in the LKEDG Cataloged Procedure

Invoking the LKEDG Procedure: To invoke the LKEDG procedure,
following EXEC statement:

//stepname EXEC LKEDG

where stepname is optional and is the name of the job step.

00020000|
00040000
00060000|
€00080000|
00100000 |
€00120000]
00140000 |
00160000[

code the

The following example shows the use of the SYSIN DD * statement with

the LKED procedure:

//TWOSTEP EXEC LKEDG

[————————————

|Overr1d1ng and additional DD statements for the LKED step,
|beglnn1ng //LKED.ddname ...

- —— e

|DD statements for the GO step, each beginning //GO.ddname ... |

e e e e e e e e e e e e e e oy e e e i et o e o e e o e e o e i o ot e

//GQO.S8YSIN DD *

OVERRIDING CATALOGED PROCEDURES

The programmer may override any of the EXEC or DD statement
specifications in a cataloged procedure. These new specifications
remain in effect only for the duration of the job step. For a detailed
description of overriding cataloged procedures, see the publication

0S/VS JCL Reference.

Qverriding the EXEC Statement

The EXEC statement in a cataloged procedure is overridden by
specifying the changes and additions on the EXEC statement that invokes

108 0S/VS Linkage Editor and Loader

the cataloged procedure. The stepname should be specified when
overriding the EXEC statement parameters.

For example, the REGION parameter can be increased as follows:

//LESTEP EXEC LKED,REGION.LKED=136K

The rest of the specifications on the EXEC statement of procedure LKED
remain in effect.

If the PARM field is to be overridden, all of the options specified
in the cataloged procedure are negated. That is, if XREF, LIST, or
NCAL is desired when overriding the PARM field, they must be
respecified. In the following example, the OVLY option is added and the
NCAL option is negatead:

//LESTEP EXEC LKED,PARM.LKED='OVLY,XREF,LIST'
As a result, the XREF and LIST options are retained, but the NCAL option
is negated; when NCAL is negated, a SYSLIB DD statement must be added.
If you use the LKEDG procedure and want to execute the load module

just built, an efficient way is to specify the parameter LET in the LKED
step and invoke the LKEDG procedure with the following EXEC statement:

//stepname EXEC LKEDG,PARM.LKED='XREF,LIST,NCAL,LET',
COND.GO=(8,LT,LKED)

Overriding DD Statements

Any of the DD statements in the cataloged procedures can be
overridden as long as the overriding DD statements are in the same order
as they appear in the procedure. If any DD statements are not
overridden, or overriding DD statements are included but are not in
sequence, the specifications in the cataloged procedure are used.

Only those parameters specified on the overriding DD statement are
affected; the rest of the parameters remain as specified in the
procedure. In the following example, the output load module is to be
placed in a permanent library:

//LIBUPDTE EXEC LKED
//LKED. SYSLMOD DD DSNAME=LOADLIB(PAYROLL) , DISP=0LD
//LKED. SYSIN DD DSNAME=0OBJMOD, DISP=(OLD, DELETE)

Unit and volume information should be given if these data sets are not
cataloged.

As a result of the statements in the example, the LKED procedure is
used to process the object module in the OBJMOD data set. The output
load module is stored in the data set LOADLIB with the name PAYROLL.
The SPACE parameter on the SYSLMOD DD statement and the other
specifications in the procedure remain in effect.

Job Control Language Summary 109

ADDING DD STATEMENTS

The DD statements for additional data sets can be supplied when using

cataloged procedures, These additional DD statements must follow any
overriding DD statements.

In the following example, the automatic library call mechanism is to

be used along with the LKEDG procedure:

//CPSTEP EXEC LKEDG, PARM. LKED='ZXREF,LIST'

//LKED. SYSLMOD bD DSNAME=LOADLIB(TESTER) ,DISP=0LD, ...
//LKED.SYSLIB DD DSNAME=SYSl1. PL1LIB,DISP=SHR

//LKED. SYSIN DD *

|Ob]ect module decks and/or control statements]

/*

//G0O.SYSIN DD *
__ a4
|Data for execution step |
| I . —— — ———— J
/*

The NCAL option is negated, and a SYSLIB DD statement is added between
the overriding SYSLMOD DD statement and the SYSIN DD statement.

110

0S/VSs Linkage Editor and Loader

LINKAGE EDITOR_CONTROL_ STATEMENT SUMMARY

This chapter summarizes the linkage editor control statements. The
description of each statement includes:

e What the statement does

e The format of the statement

e Placement of the statement in the input

* Notes on use, if any

¢ One or more examples that include job control language statements,
when necessary.

The control statements are described in alphabetical order. Before
using this chapter, the user should be familiar with the following
information on general format, format conventions, and placement.

Note: If the control statement to specify hierarchy format (HIARCHY)
is specified for VS, the linkage editor prepares the load module
accordingly. However, hierarchy format is not supported by VS, and
it is ignored during execution of the load module.

General Format

or more operands. Nothing must be written preceding the operation,
which must begin in or after column 2. The operation must be separated
from the operand by one or more blanks.

A control statement can be continued on as many cards as necessary by
terminating the operand at a comma, and by placing a nonblank character
in column 72 of the card. cContinuation must begin in column 16 of the
next card. A symbol cannot be split; that is, it cannot begin on one
card and be continued on the next.

Format Conventions

The following conventions are used in the formats to describe the
coding of the linkage editor control statements:

e Upper-case letters and words must be coded exactly as shown.

e Lower-case letters and words represent variables for which specified
information is substituted.

s Parentheses, commas, and asterisks, when shown, are required.

e Items within braces, { }, are required and must be specified.

Linkage Editor Control Statement Summary 111

e Items within brackets, [1, are optional and may be omitted.

e Stacked items, enclosed in either braces or brackets, represent
alternative items; only one item should be specified.

* The ellipsis (...) indicates that the preceding unit may occur
once, or any number of times in succession.

Placement Information

Linkage editor control statements are placed before, between, or
after modules., They can be grouped, but they cannot be placed within a
module. However, specific placement restrictions may be imposed by the
nature of the functions being requested by the control statement. Any
placenment restrictions are noted.

112 0S/vVS Linkage Editor and Loader ‘

ALIAS Statement

The ALIAS statement specifies additional names for the output library
member, and can alsoc specify names of alternative entry points. Up to
16 names can be specified on one ALIAS statement, or separate ALIAS
statements for one library member. The names are entered in the
directory of the partitioned data set in addition to the member name.

Format: The format of the ALIAS statement is:

r——="=—=" T T I -

| | { symbol , Symbol |
|ALIAS i] |
|
4

| | (external name « €xternal name
L L

symbol
specifies an alternate name for the load module. When the module

is executed, the main entry point is used as the starting point for
execution.

external name
specifies a name that is defined as a control section name or entry
name in the output module. When the module is called for
execution, execution begins at the external name referred to.

Placement: An ALIAS statement can be placed before, between, or after
object modules or other control statements. It must precede a NAME
statement used to specify the member name, if one is present.

Notes:

e In an overlay program, an external name specified by the ALIAS
statement must be in the root segment.

No more than 16 alias names can be assigned to one output module.

Each alias specified for a load module is retained in the directory
entry for the module; the linkage editor does not delete an old
alias. Therefore, each alias that is specified must be unique;
assigning the same alias to more than one load module can cause
incorrect module reference.

® Obsolete alias names should be deleted from the PDS directory using
a system utility such as IEHPROGM, to avoid future name conflicts.

e If the replace option is in effect for the output load module (that
is, the load module built in this link edit does or may replace an

identically named load module in the output module library), the replace

option is in effect for each ALIAS name for the load module as well
as the primary name.

Example: An output module, ROUT1, is to be assigned two alternate entry
points, CODEl and CODE2. In addition, calling modules have been written
using both ROUT1 and ROUTONE to refer to the output module. Rather than
correct the calling modules, an alternative library member name is also
assigned.

ALIAS CODE1, CODE2, ROUTONE
NAME ROUT1

Since CODE1l and CODE2 are entry names in the output module, when these
names are used to call the module, execution begins at the point
referred to. The modules that call the output module with the name
ROUTONE now correctly refer to ROUT1 at its main entry point. The names
CODEl, CODE2, and ROUTONE appear in the library directory along with
ROUT1.

Linkage Editor Control Statement Summary 113

CHANGE Statement

The CHANGE statement causes an external symbol to be replaced by the
symbol in parentheses following the external symbol. The external
symbol to be changed can be a control section name, an entry name, or an
external reference. More than one such substitution may be specified in
one CHANGE statement.

Format: The format of the CHANGE statement is:

| sttty ettt btk 1
| Operation|Operand |
_________________ - ———————————
| CHANGE | externalsymbol (newsymbol) [, externalsymbol (newsymbol) Jua. |
S Y e 4
externalsymbol

is the control section name, entry name, or external reference that
is to be changed.

newsymbol
is the name to which the external symbol is to be changed.

Placement: The CHANGE control statement must be placed immediately
before either the module containing the external symbol to be changed,
or the INCLUDE control statement specifying the module.

Notes:

e External references from other modules to a changed control section
name oOx entry name remain unresolved unless further action is taken.

e If the symbol specified on the CHANGE statement is inadvertently
misspelled, the symbol will not be changed. Linkage editor output,
such as the cross-reference listing or module map, can be used to
verify each change.

Example 1: Two control sections in different modules have the name
TAXROUT. Since both modules are to be link edited together, one of the
control section names must be changed. The module to be changed is
defined with a DD statement named OBJMOD. The control section name
could be changed as follows:

//0BJMOD DD DSNAME=TAXES, DISP=(OLD, KEEP) , « « &
//SYSLIN DD *

CHANGE TAXROUT(STATETAX)

INCLUDE OBJMOD
7%

As a result, the name of control section TAXROUT in module TAXES is
changed to STATETAX. Any references to TAXROUT from other modules are
not affected.

114 0S/VS Linkage Editor and Loader v

Example 2: A load module contains references to TAXROUT that must now
be changed to STATETAX. This module is defined with a DD statement
named LOADMOD. The external references could be changed at the same
time the control section name is changed, as follows:

//0BJMOD DD DSNAME=TAXES, DISP=(QOLD,DELETE),...
//LOADMOD DD DSNAME=LOADLIB, DISP=0LD, ¢« «
//SYSLIN DD *

CHANGE TAXROUT (STATETAX)

INCLUDE OBJMOD

CHANGE TAXROUT (STATETAX)

INCLUDE LOADMOD (INVENTRY)
/¥

As a result, control section name TAXROUT in module TAXES and external
reference TAXROUT in module INVENTRY are both changed to STATETAX. Any
references to TAXROUT from other modules are not affected.

Linkage Editor Control Statement Summary 115

ENTRY Statement

The ENTRY statement specifies the symbolic name of the first
instruction to be executed when the program is called by its module name
for execution. An ENTRY statement should be used whenever a module is
reprocessed by the linkage editor. If more than one ENTRY statement is
encountered, the first statement specifies the main entry point; all
other ENTRY statements are ignored.

Format: The format of the ENTRY statement is:

[———————— T T T T T T T e e e e e —————— == 1
|Operation|Operand }
| ENTRY |externalname |
L e 4
externalname

is defined as either a control section name or an entry name in a
linkage editoxr input module.

Placement: An ENTRY statement can be placed before, between, or after
object modules or other control statements. It must precede the NAME
statement for the module, if one is present.

Notes:

e In an overlay program, the first instruction to be executed must be
in the root segment.

e The external name specified must be the name of an instruction, not
a data name.

Example: In the following example, the main entry point is INIT1:

//LOADLIB DD DSNAME=LOADLIB,DISP=0LD, + ..
//SYSLIN DD *

ENTRY INIT1

INCLUDE LOADLIB(READ,WRITE)

ENTRY READIN
/%

INIT1 must be either a control section name or an entry name in the
linkage editor input. The entry point specification of READIN is
ignored.

116 0S/VS Linkage Editor and Loader

EXPAND Statement

The EXPAND statement lengthens control sections or named common
sections by a specified number of bytes.

Format: The format of an EXPAND statement is

name
is the symbolic name of a common section or control section
whose length is to be increased.

XXXX
is the decimal number of bytes to be added to the length of
a common section. Binary zeros will be added for an expanded

control section. The maximum is 4095 for each section indicated.

Placement: An EXPAND statement can be placed before, between, or
after other control statements or object modules. However, the
statement must follow the module containing the control or named

common section to which it refers. If the control section or named

common section is entered as the result of an INCLUDE statement,
the EXPAND statement must follow the INCLUDE statement.

Note: EXPAND should be used with caution so as not to increase

the length of a program beyond its own design limitations. For
example, if space is added to a control section beyond the range of
its base register addressability, that space is unusable.

Example: In the following example EXPAND statements add a 250-byte
patch area (initialized to zeros) at the end of control section
CSECT1 and increase the length of named common section COM1 by

400 bytes.

//LKED EXEC PGM=HEWL

//SYSPRINT DD SYSOUT=A

//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK, (10,4))

//SYSLMOD DD DSNAME=PDSX,DISP=0LD

//SYSLIN DD DSNAME=&&LOADSET,DISP=(OLD,PASS) ,UNIT=SYSDA

DD *
EXPAND CSECTL1 (250)
EXPAND COM1 (400)
NAME MOD1 (R)

/*

Linkage Editor Control Statement Summary

IDENTIFY Statement

The IDENTIFY statement specifies any data supplied by the user to be
entered into the CSECT Identification (IDR) records for a particular
control section. The statement can be used either to supply descriptive
data for a control section or to provide a means of associating
system-supplied data with executable code.

Format: The format of the IDENTIFY statement is:

ittt Sttt - T T T T T T T T T e e e 1
|Operation|Operand |

| IDENTIFY |csectname('data')[,csectname('data‘')l... |
Lt 1

csectname
is the symbolic name of the control section to be identified.

data
specifies up to 40 EBCDIC characters of identifying information.
The user may supply any information desired for identification purposes.

Placement: An IDENTIFY statement can be placed before, between, or
after other control statements or object modules. The IDENTIFY
statement must follow the module containing the control section to be
identified or the INCLUDE statement specifying the module.

Example: In the following example, IDENTIFY statements are used to
identify the source level of a control section, a PTF application to a
control section, and the functions of several control sections.

//LKED EXEC PGM=HEWL
//SYSPRINT DD SYSOUT=A
//SYSUT1 LD UNIT=SYSDA, SPACE=(TRK, (10, 5))
//SYSLMOD DD DSNAME=LOADSET, DISP=0OLD
//0LDMOD DD DSNAME=QLD.LOADSET, DISP=0LD
//PTFMOD DD DSNAME=PTF.OBJECT, DISP=0LD
//SYSLIN DD *

(input object deck for a control section named FORT)
IDENTIFY FORT('LEVEL 03')
INCLUDE PTFMOD (CSECTU)
IDENTIFY CSECTLU('PTF99999")
INCLUDE OLDMOD (PROG1)
IDENTIFY CSECT1('I/0O ROUTINE'),CSECT2('SORT ROUTINE'), X

CSECT3(*SCAN ROUTINE')
/%

Execution of this example produces IDR records containing the following
identification data:

e The name of the linkage editor that produced the load module, the
linkage editor version and modification level, and the date of the
current linkage editor processing of the module. This information
is provided automatically.

° Userfsupplied data describing the functions of several control
sections in the module, as indicated on the third IDENTIFY statement.

e If the language translator used supports IDR, the Identification
records produced by the linkage editor also contain the name of the
translator that produced the object module, its version and
modification level, and the date of compilation.

The IDR records created by the linkage editor can be referenced by using
the LISTIDE function of the service aid program HMBLIST for VS1 or

AMBLIST for VS2. For instructions on how to use HMBLIST, see 0S/VS1 Ser-
vice Aids. For instructions on how to use AMBLIST, see 0S/VS2 System
Programming Library: Service Aids.

118 08/VS Linkage Editor and Loader

INCLUDE Statement

The INCLUDE statement specifies sequential data sets and/or libraries
that are to be sources of additional input for the linkage editor.
INCLUDE statements are processed in the order in which they arpear in
the input. However, the sequence of data sets and modules within the
output load module does not necessarily follow the order of the INCLUDE
statements.

.

Format: The format of the INCLUDE statement is:

=== T T T T T T T T S e e e e e —— s —m—— - 1
|Operation|Operand i
L +

b e e 1
| INCLUDE |ddname [(membername [, membernamel...)] |
| | ([, ddname((membername [, membernamel...)l...] |
L 4 J
ddname

is the name of a DD statement that describes either a sequential or
a partitioned data set to be used as additional input to the
linkage editor. For a sequential data set, ddname is all that must
be specified. For a partitioned data set, at least one member name
must also be specified.

membername
is the name of or an alias for a member of the library defined in
the specified DD statement. The membername must not be specified
again on the DD statement.

Placement: An INCLUDE statement can be placed before, between, or after
object modules or other control statements.

Note: A NAME statement in any data set specified in an INCLUDE
statement is invalid; the NAME statement is ignored. All other control
statements are processed.

Example 1: In the following example, an INCLUDE statement specifies two
data sets to be the input to the linkage editor:

//0BJMOD DD DSNAME=§ §OBJECT, DISP=(OLD, DELETE)
//LOADMOD DD DSNAME=LOADLIB,DISP=SHR, ...
//SYSLIN DD *

INCLUDE OBJMOD, LOADMOD (TESTMOD, READMOD)
/%

Note that a DD statement must be supplied for every ddname specified in
an INCLUDE statement.

Example 2: Two separate INCLUDE statements could have been used in the
preceding example, as follows:

INCLUDE OBJMCD
INCLUDE LOADMOD (TESTMOD, READMOD)

Linkage Editor Control Statement Summary 119

INSERT Statement

The INSERT statement repositions a control section from its position
in the input sequence to a segment in an overlay structure. However,
the sequence of control sections within a segment is not necessarily the
order of the INSERT statements.

If a symbol specified in the operand field of an INSERT statement is
not present in the external symbol dictionary, it is entered as an
external reference. If the reference has not been resolved at the end
of primary input processing, the automatic library call mechanism
attempts to resolve it.

Format: The format of the INSERT statement is:

r R S — ———— e
|Operation|Operand }
| INSERT Jcsectname(, csectnamel... |
L e e —_—d
csectname

is the name of the control section to be repositioned. A
particular control section can appear only once within a load
module,

Placement: The INSERT statement must be placed in the input sequence
following the OVERLAY statement that specifies the origin of the segment
in which the control section is to be positioned. If the control
section is to be positioned in the root segment, the INSERT statement
must be placed before the first OVERLAY statement.

Note: Control sections that are positioned in a segment must contain
all address constants to be used during execution unless:

e The A-type address constants are located in a segment in the path.

e The V-type address constants used to pass control to another segment
are located in the path. If an exclusive reference is made, the
V-type address constant must be in a common segment.

e The V-type address constants used with the SEGLD and SEGWT macro
instructions are located in the segment.

120 0S8/VS Linkage Editor and Loader

Example: The following INSERT (and OVERLAY) statements specify the
overlay structure shown in Figure 38:

7/ EXEC PGM=HEWL,PARM='QOVLY,XREF,LIST'
//SYSLIN DD *

INSERT CSA

INSERT CSB

OVERLAY ALPHA
INSERT CSC,CSD
OVERLAY ALPHA

INSERT CSE
CSA
CSB
ALPHA
CsC
CSE
—r
Csb

Figure 38. Overlay Structure for INSERT Statement Example

Linkage Editor Control Statement Summary

121

LIBRARY Statement

The LIBRARY statement can be used to specify:

e Additional automatic call libraries, which contain modules used to
resolve external references found in the program.

e Restricted no-call function: External references that are not to be
resolved by the automatic library call mechanism during the current
linkage editor job step.

e Never-call function: External references that are not to be
resolved by the automatic library call mechanism during any linkage
editor job step.

Combinations of these functions can be written in the same LIBRARY
statement.

Format: The format of the LIBRARY statement is:

r T - - K
|Operation|Operand |
T T 1

| { ddname (membername [, membernamel...) |
| LIBRARY |¢ (externalreferencel,externalreferencel.es) P ee. |
| | {*(externalreferencel, externalreferencel...) |
__________________ T —— J

ddname
is the name of a DD statement that defines a library.

membername
is the name of or an alias for a member of the specified library.
Only those members specified are used to resolve references.

externalreference
is an external reference that may be unresolved after primary input
processing. The external reference is not to be resolved by
automatic library call.

indicates that the external reference is never to be resolved; if
the * (asterisk) is missing, the reference is left unresolved only
during the current linkage editor run.

Placement: A LIBRARY statement can be placed before, between, or after
object modules or other control statements.

Notes:
e If the unresolved external symbol is not a member name in the
library specified, the external reference remains unresolved unless
defined in another input module.

e If the NCAL option is specified, the LIBRARY statement cannot be
used to specify additional call libraries.

122 08/VS Linkage Editor and Loader

® Members called by automatic library call are placed in the root
segment of an overlay program, unless they are repositioned with an
INSERT statement.

® Specifying an external reference for restricted no-call or
never-call by means of the LIBRARY statement prevents the
external reference from being resolved by automatic inclusion
of the necessary module from an automatic call library; it does
not prevent the external reference from being resolved if the
module necessary to resolve the reference is specifically included
or is included as part of an input module.

Example: The following example shows all three uses of the LIBRARY
statement:

7/ EXEC PGM=HEWL,PARM='LET,XREF,LIST'
//TESTLIB DD DSNAME=TEST,DISP=SHR, « ..
//SYSLIN DD *

LIBRARY TESTLIB(DATA,TIME), (FICACOMP) , * (STATETAX)
/%

As a result, members DATE and TIME from the additional library TEST are
used to resolve external references. FICACOMP and STATETAX are not
resolved; however, because the references remain unresolved, the LET
option must be specified on the EXEC statement if the module is to be
marked executable. In addition, STATETAX will not be resolved in any
subsequent reprocessing by the linkage editor.

Linkage Editor Control Statement Summary 123

NAME Statement

The NAME statement specifies the name of the load module created from
the preceding input modules, and serves as a delimiter for input to the
load module. As a delimiter, the NAME statement allows multiple load
module processing in one linkage editor job step. The NAME statement
can also indicate that the load module replaces an identically named
module in the output module library.

Format: The format of the NAME statement is:

___ _1
|Operatlon|0perand

__ ___4
| NAME | membername [(R)] |
Lo A J
membername

is the name to be assigned to the load module that is created from
the preceding input modules..

(R)
indicates that this load module replaces an identically named

module in the output module library. If the module is not a
replacement, the parenthesized value (R) should not be specified.

Placement: The NAME statement is placed after the last input module or
control statement that is to be used for the output module.

Notes:

e Any ALIAS statement used must precede the NAME statement.

e A NAME statement found in a data set other than the primary input
data set is invalid. The statement is ignored.

Example: In the following example, two load modules, RDMOD and WRTMOD,
are produced by the linkage editor in one job step:

//SYSLMOD DD DSNAME=AUXMODS ,DISP=MOD, ...

//NEWMOD DD DSNAME=§ EWRTMOD , DISP=0LD
//SYSLIN DD DSNAME=§ §RDMOD , DISP=0LD
// DD *

NAME RDMOD (R)
INCLUDE NEWMOD
NAME WRTMOD

/*

As a result, the first module is named RDMOD and replaces an identically
named module in the output module library AUXMODS; the second module is

named WRTMOD and is added to the library.

124 0S/VS Linkage Editor and Loader

ORDER Statement

The ORDER statement indicates the sequence in which control sections or
named common areas appear in the output load module. The control
sections or named common areas appear in the sequence in which they

are specified on the ORDER statement. When multiple ORDER statements
are used, their sequence further determines the sequence of the

control sections or named common areas in the output load module;

those named on the first statement appear first, and so forth.

Format: The format of the ORDER statement is:

| Operation | oOperand T 1
beDER : common area name common area hame]
| | (e [£0:2] I A |
L. _y\cséctname J ___ Ltlesectname) _ 4 _ _ 4

common area name
is the name of the common area to be sequenced.

csectname
is the name of the control section to be sequenced.

(P)
indicates that the starting address of the control section or named
common area is to be on a page boundary within the load module. The
control sections or common areas are aligned on 4K page boundaries
unless the ALIGN2 attribute is specified on the EXEC statement.

Placement: An ORDER statement can be placed before, between, or after
object modules or other control statements.

Notes:

® A control section or common area can be named on only one ORDER
statement. If the same name is used more than once, except when it
is the last operand on one ORDER statement and the first operand
on the next, the name is ignored, as is the balance of the control
statement on which it appears.

® The control sections and common areas named as operands can appear
in either the primary input or the automatic call library, or
both.

e If a control section or named common area is changed by a CHANGE
or REPLACE control statement and sequencing is desired, specify
the new name on the ORDER statement.

EXamEle: In this example, the control sections in the load module LDMOD
are arranged by the linkage editor according to the sequence specified
on ORDER statements. The page boundary alignments and the control
section sequence made as a result of these statements are shown in
Figure 39. Assume each control section is 1K in length.

Note: The control section name PART1 is changed by a CHANGE statement

to FSTPART. The ORDER statement refers to the control section by its
new name.

Linkage Editor Control Statement Summary 125

JCL AND CONTROL STATEMENTS OUTPUT LOAD MODULE

LDMOD
//SYSLMOD DD DSNAME=PVTLIB,DISP=OLD,... OK
7/SYSLIN DD * ROOTSEG
ORDER ROOTSEG(P),MAINSEG,SEGT,SEG2
ORDER SEG3(P), ENTRY] MAINSEG
CHANGE PARTI (FSTPART)
ORDER FSTPART,SESECTA,SESECTB(P)
INCLUDE SYSLMOD(LDMOD) SEGT
SEG2
4K
SEG3
ENTRY
FSTPART
Ve
SESECTA
8KIsEsecTs
| /

Figure 39. Output Load Module for ORDER Statement Example

126 08/VS Linkage Editor and Loader

OVERLAY Statement

The OVERLAY statement indicates either the beginning of an overlay

segment, or the beginning of an overlay region. Since a segment or a
region is not named, the programmer identifies it by giving its origin
(or load point) a symbolic name. This name is then used on an OVERLAY
statement to signify the start of a new segment or region.

Format: The format of the OVERLAY statement is:

|Operation|Operand

I
L

4 +
OVERLAY |symbol [(REGION)]

——— - -—

e e e e

________ e e e o o e e e i o e 2 o i e e e e i e o e e e

symbol

is the symbolic name assigned to the origin of a segment. This
symbol is not related to external symbols in a module.

(REGION)

specifies the origin of a new region.

Placement: The OVERLAY statement must precede the first module of the
next segment, the INCLUDE statement specifying the first module of the
segment, or the INSERT statement specifying the control sections to be
positioned in the segment.

Notes:

¢ The OVLY option must be specified on the EXEC statement when OVERLAY
statements are to be used.

¢ The sequence of OVERLAY statements should reflect the order of the
segments in the overlay structure from top to bottom, left to right,
and region by region.

¢ No OVERLAY statement should precede the root segment.

Linkage Editor Control Statement Summary 127

Example: The following OVERLAY and INSERT statements specify the
overlay structure in Figure 40.

7’/ EXEC PGM=HEWL,PARM='OVLY,XREF,LIST'

//SYSLIN DD DSNAME=&EOBJ, s o »
7/ DD *
INSERT CSA
OVERLAY ONE
INSERT CSB
OVERLAY TWO
INSERT CSC
OVERLAY TWO
INSERT CSD
OVERLAY ONE
INSERT CSE, CSF
OVERLAY THREE (REGION)

INSERT CSH
OVERLAY THREE
INSERT CSI
/%
REGION 1 T
7A
ONE
[™o l :£
csc csp _J_

1 1
R

THREE
C5H CSt

4 4

REGION 2

Figure 40. Overlay Structure for OVERLAY Statement Example

128 0S/VS Linkage Editor and Loader

PAGE Statement

The PAGE statement aligns a control section or named common area on a
4K page boundary in the load module. If the ALIGN2 attribute is
specified on the EXEC statement for the linkage editor job step, use
of the PAGE statement aligns the specified control sections or common
areas on 2K page boundaries within the load module. However, page
boundary alignment in the executing module can occur only when the
operating system supervisor includes support for fetch on a page
boundary. This support is available only with vs2.

Format: The format of the PAGE statement is:

Operation

— e e i . et o

PAGE

Operand]

—— e o T e S o . e, o S S S o o] T S — T — —— — — e e e S

common area name common area name
, e
csectname csectname

e s e v o e i, v S e S T —— o Y S o, e e ek ot S e, s i i et i . St . i, Wl S, e

common area name
is the name of the common area to be aligned on a page boundary.
csectname

is the name of the control section to be aligned on a page
boundary.

Placement: The PAGE statement can be placed before, between, or after
object modules or other control statements.

Notes:
e If a control section or named common area is changed by a CHANGE
or REPLACE control statement and page alignment is desired, specify
the new name in the PAGE statement.

e The control sections and common areas named as operands can appear
in either the primary input or the automatic call library, or both.

Linkage Editor Control Statement Summary 129

Example: In this example, the control sections in the load module LDMOD
are aligned on page boundaries as specified in the following PAGE
statement:

PAGE ALIGN,BNDRY4K,EIGHTK
The job control statements and control statements as well as the output

load module are shown in Figure 41. Assume each control section is 3K
in length.

JCL AND CONTROL STATEMENTS OUTPUT LOAD MODULE

//LKED EXEC PGM=HEWL,PARM='ALIGN2,..." LDMOD

0K
. @IGN
//SYSLMOD DD DSNAME=PVTLIB,DISP=OLD, ...
/SYSLIN' DD *
PAGE ALIGN,BNDRY 4K, EIGHTK
INCLUDE SYSLMOD(LDMOD)
*

Empty Space ’
Due to Boundary
Alignment

BNDRY4K

Empty
Due to Boundary
Alignment

EIGHTK

-

Figure 41. Output Load Module for PAGE Statement Example

130 0S/vVS Linkage Editor and Loader

REPLACE Statement

The REPLACE statement specifies one of the following:
e The replacement of one control section with another.
o The deletion of a control section.

* The deletion of an entry name.

A REPLACE statement can specify more than one function.

When a control section is replaced, all references within the input
module to the o0ld control section are changed to the new control
section. Any external references to the old control section from other
modules are unresolved unless changed.

When a control section is deleted, the control section name is also
deleted from the external symbol dictionary unless references are made
to the control section from within the input module. If there are any
such references, the control section name is changed to an external
reference. External references from other modules to a deleted control
section also remain unresolved.

When deleting an entry name, the entry name is changed to an external

reference if there are any references to it within the same input
module,

Format: The format of the REPLACE statement is:

|
L
T
| | (csectname-1[(csectname-2)1]
| REPLACE |
| I

1

I

csectname
is the name of a control section. If only csectname-1 is used, the
control section is deleted; if csectname-2 is also used, the first
control section is replaced with the second.

entry name
is the entry name to be deleted.

Placement: The REPLACE statement must immediately precede either (1)

the module containing the control section or entry name to be replaced
or deleted, or (2) the INCLUDE statement specifying the module. The
scope of the REPLACE statement is across the immediately following
module (object module or load module). The END record in the immediately
following object module or the end-of-module indication in the load
module terminates the action of the REPLACE statement.

Notes:
e Unresolved external references are not deleted from the output

module even though a deleted control section contains the only
reference to a symbol.

Linkage Editor Control Statement Summary 131

e When some but not all control sections of a separately assembled
module are to be replaced, A-type address constants that refer to a
deleted symbol will be incorrectly resolved, unless the entry name
is at the same displacement from the origin in both the old and the
new control sections.

e If the control section specified on the REPLACE statement is
inadvertently misspelled, the control section will not be replaced
or deleted. Linkage editor output, such as the cross-reference
listing and module map, can be used to verify each change.

Example: In the following example, assume that control section INT7 is
in member LOANCOMP and that control section INT8, which is to replace
INT7, is in data set EENEWINT. Also assume that control section PRIME
in member LOANCOMP is to be deleted.

/ /NEWMOD DD DSNAME=§ ENEWINT, DISP=(OLD, DELETE)
//0LDMOD DD DSNAME=PVTLIB, DISP=0OLD, «s .
//SYSLIN DD *

ENTRY MAINENT

INCLUDE NEWMOD

REPLACE INT7(INT8), PRIME

INCLUDE OLDMOD (LOANCOMP)
Ve

As a result, INT7 is removed from the input module described by the
OLDMOD DD statement, and INT8 replaces INT7. All references to INT7 in
the input module now refer to INT8. Any references to INT7 from other
modules remain unresolved. Control section PRIME is deleted; the
control section name is also deleted from the external symbol dictionary
if there are no references to PRIME in LOANCOMP.

132 08/VS Linkage Editor and Loader

SETSSI Statement

The SETSSI statement specifies hexadecimal information to be placed
in the system status index of the directory entry for the output module.

Format: The format for the SETSSI statement is:

o T - e 1
|Operation|Operand |
e — e y
| SETSSI | KXXXXXKX |
b A - _— 4
XXXXXXXX

represents eight hexadecimal characters (0 through 9 and A through
F) to be placed in the U4-byte system status index of the output
module library directory entry.

Placement: The SETSSI statement can be placed before, between, or after
object modules or other control statements. It must precede the NAME
statement for the module, if one is present.

Note: A SETSSI statement must be provided whenever an IBM-supplied load
module is reprocessed by the linkage editor. If the statement is
omitted, no system status index information is present,

Linkage Editor Control Statement Summary 133

APPENDIX A. _SAMPLE PROGRAMS

This appendix contains sample linkage editor programs. The material
presented for each program includes a description of the program, the
job control language necessary for the linkage editor job step, linkage
editor control statements (if any), and the linkage editor output. The
sample programs are:

e Link editing a COBOL and a FORTRAN object module (COBFORT).

¢ Replacing one control section with another by using the REPLACE
statement (RPLACJOB).

* Creating a multiple-region overlay program (REGNOVLY).

e Placing the control statements for the multiple region overlay
program in a partitioned data set, and using them (PARTDS).

The output for each program includes a cross-reference table and module
map, and a control statement listing and diagnostic messages, if any.

SAMPLE PROGRAM COBFORT

Sample program COBFORT link edits a COBOL object module and a FORTRAN
object module to form one load module. The source programs were
compiled in two steps previous to the linkage editor job step, and the
output from each compilation was placed in data set §&0OBJMOD.

Job Control Language

The job control language for the linkage editor job step of this
sample program is:

//LKED EXEC PGM=HEWL,PARM='XREF'
//5YSUT1 DD DSNAME=§§&UT1, UNIT=SYSDA, SPACE=(TRK, (100,10))
//SYSLIB DD DSNAME=SYS1.COBLIB,DISP=SHR

// DD DSNAME=SYS1., FORTLIB, DISP=SHR
//SYSLMOD DD DSNAME=§§ LOADMD (GO) , UNIT=SYSDA, DISP=(NEW, PASS),
7/ SPACE=(TRK, (100,10, 1))
//SYSPRINT DD SYSOUT=A
//SYSLIN DD DSNAME=§ §0BJMOD, DISP=(OLD, DELETE)
Statement Explanation ‘
EXEC Causes the execution of the linkage editor. The PARM

field option requests a cross-reference table and a
module map to be produced on the diagnostic output
data set.

SYSUT1 Defines a temporary direct-access data set to be used as
the intermediate data set.

Appendix A: Sample Programs 135

Statement Explanation

SYSLIB Defines the automatic call library; the call libraries for
COBOL and FORTRAN are concatenated; both are used to
resolve external references.

SYSLMOD Defines a temporary data set to be used as the output
module library; the load module is assigned a member name
of GO, and is passed to a subsequent step for execution.

SYSPRINT Defines the diagnostic output data set, which is assigned
to output class A,

SYSLIN Defines the primary input data set, &8§0OBJMOD, which
contains both input object modules; this data set was
passed from a previous job step and is to be deleted at the
end of this job step.

Linkage Editor OQutput

Figure 42 shows the linkage editor output for COBFORT. The listin
header indicates the options specified (XREF,LIST), and the SIZE option
values used in decimal (65536 for value; and 6144 for value,). Because
XREF is specified, the heading CROSS REFERENCE TABLE precedes the rest
of the output.

Part 1 of Figure 42 shows the module map for COBFORT. MAINMOD and
FORTSU are the names of the input control sections. The rest of the
control sections are either from the COBOL automatic call library orx
from the FORTRAN automatic call library. (They can be distinguished by
the initial three letters; ILB indicates a COBOL control section, IHC a
FORTRAN control section.) The origin and length (in hexadecimal) of
ceach control section follows the name.

To the right of each control section is a list of the entry names
defined in each control section. The location (in hexadecimal) of each
entry name is also given. For example, in control section IHCCOMH2 (the
asterisk is not a part of the name; it indicates that the control
section is from the automatic call library), entry name SEQDASD is
defined at location 1728.

Part 2 of Figure 42 shows the cross-reference table for COBFORT. The
table contains the location of any address constant that refers to a
symbol defined in another control section. The symbol that the address
constant refers to is also listed, along with the control section in
which the symbol is defined., For example, at location 250 in control
section MAINMOD (determined by using the module map; 250 falls between
origin 00 and origin 330), an address constant refers to symbol
ILBOSTPO, defined in control section ILBOSTPO.

The entry address is 00 and the total length of the load module is
5808. Note that the length of the module is rounded up to a doubleword
boundary.

The disposition message at the end of the output in Figure 42
indicates that the load module GO has been added tc the ocutput module
library. The library did not contain any other module with that name.
The four asterisks identify the message.

136 0S/VS Linkage Editor and Loader

'y xTpuaddy

surexboxg oTdures

L

LE

Fo4—LEVEL LINKAGE EDITOR OPTIONS SPECIFIED XREF

DEFAULT CPTION(S)

CONTROL SECTICN

NAME ORIGIN LENGTH
IPCT30 00 360
TX6E2F 360 1E0
THCFCOMH=* 540 cD9
IHCCOMH2* 1220 434
IHDFDI SP*
IHCFCVTH=*

1658 626
1C 80 1190

IHCF INTH=* 2E20 39E

IHCFIQSH* 31C0

THCUOPT =
IHC TRCH *

41 D0
4108

IHCUATBL* 4480

Figure 42,
(Part 1 of 2)

USED = SIZE=(196608s65536)

CROSS REFERENCE TABLE

ENTRY

NA ME LOCATION NAME LOCATION

IBCOM# FLIOCS#

SEQDASD

ADCON#
FCVIOUTP

FCVAQUTP
FCVEOUTP

1D2A
27BA

AR ITH# ADJSWTCH 3008

FIOC S#

IHCERRM

Linkage Editor Output for Sample Program COBFORT

NAME

INTSWTCH

FCVLOUTP
FCVCOUTP

LOCAT ION

11FE

1DBA
29&

MAME

FCVZOUTP
TNT&SWCH

LOCATIDN

I9peoT pue I03TPE 96eNUTT SA/SO 8€l

LOCATICN REFERS TO SYMBOL IN CONTROL SECTICN LOCATION REFERS TO SYMBOL IN CONTROL SECTION
1FO IHDFDISP IHDFDISP 1F4 TX652F TX652F
410 IBCOM# IHCFC OMH SFC SEQDASD THCCOMHZ
1108 ADCON# THCFCVTH 1100 FIOCS# ITHCFIOSH
11C AR T TH# IHCFINTH 112C ADJSWTCH IMCFINTH
1128 IHCUOPT IHC UOPT 1110 FCVEOUTP THCFCVTH
1114 FCVLCUTP IHCFCVTH 1118 FC vIOUTP THCFCVTH
111C FCvCcoute IHCFCVTH 1120 FCVADUTP THCFCVTH
1124 FCVZOUTP IHCFCVTH 10EQ IHCCCMH2 THCCOMH2
10E4 IHCERRM THCTRCH 14A9 THCFCOMH THCFC OMH
14AC IHCFCOMH THCFCOMH 1268 IHCERRM THCTRCH
1264 IBCOM# IHCFCOMH 2C7C IBCOM# THCFCOMH
2C78 IHCERRM IHCTRCH 311C IBCOM# THCFCOMH
3120 INTSWTCH THCFCOMH 30D4 INT6SWCH THCFCVTH
3000 IHCUCPT IHCuoPY 3128 ADCONg THCFCVTH
2124 FIOCS# IHCFIQSH 32F8 IHCERRM ITHCTRCH
3FF8 THCUATBL THCUATBL 4004 IBCOM# THCFCOMH
43D0 IBCOM# IHCFCOMH 4304 ADC ON# THCFCYTH
43D 8 F10C S# IHCFIOSH
ENTRY ACDRESS ce

TOTAL LENGTH 4 AEB

€x%%50 DOES NOT EXIST BUT HAS BEEN ADDED TC DATA SET
AUTHORIZATION CODE IS 0.

Figure 42, Linkage Editor Output for Sample Program COBFORT
(Part 2 of 2)

SAMPLE PROGRAM RPLACJOB

Sample program RPLACJOB shows the use of the REPLACE statement to
replace one control section with anothexr. The source program for the
new control section (NEWMOD) is processed in a previous job step and
passed to the linkage editor job step. The control section (SUBONE) to
be replaced is in an existing load module. Figure 43 shows the linkage
editor output for the job step that created this load module. Note that
the entry address is FO which is the location of the entry point MAINMOD
(specified on the ENTRY control statement).

Job control Language

The job control language for the replacement job step of this sample
program is:

//LKED EXEC PGM=HEWL,PARM='XREF,LIST'
//5YSUT1 DD UNIT=SYSDA,SPACE=(TRK, (100,10))
//INPUTX DD DSNAME=LOADLIB, DISP=0OLD, UNIT=SYSDA,VOL=SER=SCRTCH
//SYSLMOD DD DSNAME=LOADLIB(GO) ,DISP=0LD,UNIT=SYSDA,
/7 VOL=SER=SCRTCH
//SYSPRINT DD SYSOUT=A
//SYSLIN DD DSNAME=§ §OBJMOD, DISP=(OLD, DELETE), UNIT=SYSDA
DD *

e et e e i e e i 2 e e e o i e e e e e 1

Appendix A: Sample Programs 139

IopeoT pue Io3TPE SBENUTT SA/SO OflL

Fb64~-LEVEL LINKAGE EDITOR OPTIONS SPECIFIED XREF,LIST
DEFAULT OPTION(S) USED - SIZE=1196608,¢t5530)
IEW0000 ENTRY MAINMOD

CROSS REFERENCE TABLE

CONTROL SECTION ENTRY

NAME ORIGIN LENGTH NAME LOCATION NAME LOCATION

SL3ONE Q0 EF
SUBL 00

MAINMOD FO 146

LOCATION REFERS TO SYMBOL IN CUNTROL SECTION LOCATION REFERS T(SYMBOL
11cC SUBOUNE SUBONE
ENTRY ADDRESS FO

TOTAL LENGTH 238
*#4kG0 DOES NOT EXIST BUT HAS BEEN ADDED TOQ DATA SET
AUTHORIZATION CODE IS 0.

Figure 43. Linkage Editor Output for Job Step that Created SUBONE

LOCAT ION NAME

IN CONTROL SECTION

LOCATION

Statement

Explanation

EXEC

SYSUT1

INPUTX

SYSLMOD

SYSPRINT

SYSLIN

Causes the execution of the linkage editor. The PARM
field options request a cross-reference table and a
module map (XREF), and a control statement listing
(LIST) to be produced on the diagnostic output data
set.

Defines a temporary direct-access data set to be used as
the intermediate data set.

Defines a permanent data set, used later as additional
linkage editor input.

Defines a permanent data set to be used as the output
module library. Note that it is the same data set that was
described on the INPUTX DD statement. The output load
module is added to the data set, under the member name GO.

Defines the diagnostic output data set, which is assigned
to output class A.

Defines the primary input data set, &§§O0OBJMOD, which
contains the object module for the replacement control
section., This data set is temporary and was passed from a
previous job step; it is to be deleted at the end of this
job. This statement also concatenates the input stream to
the primary input data set. The input stream contains
linkage editor control statements that may be followed by
a /* statement.

Linkage Editor Control Statements

The input stream contains the linkage editor control statements that
are necessary for the replacement of SUBONE with NEWMOD. The control

statements are:

ENTRY MATINMOD
REPLACE SUBONE (NEWMOD)
INCLUDE INPUTX(GO)

Specifies that the entry point is to be MAINMOD.

Specifies that control section SUBONE in the module that
follows the REPLACE statement is to be replaced by control

Statement Explanation
ENTRY
REPLACE

section NEWMOD.
INCLUDE

Specifies additional input: member GO of the data set
described on the INPUTX DD statement. This library member
contains the control section to be replaced. Since this
member name is identical to that specified on the SYSLMOD
DD statement, the output load module replaces the existing

library member.

Appendix A: Sample Programs 141

Linkage Editor Qutput

Figure 44 shows the linkage editor output for sample program
RPLACJOB. The listing header indicates the options specified
(XREF and LIST), and the SIZE option values used (65536 for value,
and 6144 for value,).

Because the LIST option is specified, a control statement listing is
produced, Each control statement is preceded by a special message
number, IEW0000. Because XREF is specified, the heading CROSS REFERENCE
TABLE precedes the rest of the output.

The module map shows that control section NEWMOD is now part of the
load module, and that control section SUBONE has been deleted. The new
entry address is F8, because NEWMOD is longer than SUBONE. The total
length of the load module is 240 bytes.

The cross-reference table indicates that at location 124 in MAINMOD,
an address constant refers to symbol NEWMOD, defined in control section
NEWMOD. Note that before the replacement occurred, the address constant
in MAINMOD referred to SUBONE, defined in control section SUBONE (Figure
43). WwWhen the REPLACE statement is used to replace a control section,
references to the old control section from within the same input module
are also changed.

The disposition message indicates that the output load module (GO)
has been added to the output module library.

142 0S/VS Linkage Editor and Loader

¥ xtpueddy

swexboxg oTdures

enl

F64-LEVEL LINKAGE EDITOR OPTIONS SPECIFIED XREFsLIST
DEFAULT OPTION(S) USED - SIZE=(1966(8,¢5536)

1EW0000 ENTRY MAINMOD

1EW0000 REPLACE SUBCNE(NEWMOD)

IEW0000 INCLUDE INPUTX(GO)

CROSS REFERENCE TABLE

CONTROL SECTION ENTRY

NAME ORIGIN LENGTH NAME LOCAT ION NAME
NEWMOD 00 Fl
MATNMOD F8 146

LOCATION REFERS TO SYMBOL IN CONTROL SECTION LOCATION
124 NEWMOD NEWMOD
ENTRY ADDRESS F8

TOTAL LENGTH 240

*xxxG0 NOW REPLACED IN DATA SET
AUTHORIZATION CODE IS 0.

Figure 44. Linkage Editor Output for Sample Program RPLACJOB

LOCATION NAME

REFERS TO SYMBOL

LOCATION NAME

IN CONTROL SECTION

LOCATION

SAMPLE PROGRAM REGNOVLY

Sample program REGNOVLY creates a multiple-region overlay structure.
The structure produced is shown in Figure 45. In this program, some of
the references between control sections are:

CSA to CSE
CSB to CSE
CSB to CSD
CSD to CsC

The reference from CSB to CSE is a valid exclusive call because there is
a reference to CSE in the segment common to both CSB and CSE; the
reference from CSD to CSC is invalid because there is no reference to
CSC in the common segment.

The source programs for all the control sections were compiled in
previous job steps. All of the object modules were placed in the same
data set, which was passed to the linkage editor job steg.

REGION 1

CSA r Root Segment 1

CSB Segment 2 CSE Segment 5

1

BETA

csC Segment 3 csD Segment 4

¢ ORG T TR O N OO N G AN OO U N SN D0 NN NN NN U OO NN (N NN NN A S U BN NN NN AN 5O NN NN AN) O B NN U S N 000 G0 00 N N B O A RN BN N A OV
REGION 2 CAMMA

CSF Segment & CsG Segment 7

Figure 45. Overlay Tree for Multiple-Region Sample Program REGNOVLY

144 O0S/VS Linkage Editor and Loader

Job Control Lanquage

The job control language for the linkage editor job step of this
sample program is:

//LKED
//8SYSUT1
//SYSLIB
//SYSLMOD
/77
//SYSPRINT
//SYSLIN
/77

Statement
EXEC

SYSUT1

SYSLIB

SYSLMOD

SYSPRINT

SYSLIN

EXEC PGM=HEWL,PARM='XREF,LIST,OVLY,LET"

DD DSNAME=§ §UT1, UNIT=SYSDA, SPACE=(TRK, (100,10))

DD DSNAME=SYS1.COBLIB,DISP=SHR

DD DSNAME=§§OVLYJB(GO) , UNIT=SYSDA, DISP=(NEW, PASS) ,
SPACE=(TRK, (100,10,1))

DD SYSOUT=A

DD DSNAME= € § OBIMOD , DISP= (OLD, DELETE)

DD *

_______ ——— ——————————y

Explanation

Causes the execution of the linkage editor. The PARM
field options request a cross-reference table and a
module map (XREF), and a control statement listing (LIST)
to be produced on the diagnostic output data set. The
module is to be assigned the overlay attribute (OVLY),
and marked executable in spite of severity 2 errors (LET).
The LET option is specified to permit testing of the
output module, even though an invalid exclusive call is
present. The XCAL option allows only valid exclusive
calls. .

Defines a temporary direct-access data set to be used as
the intermediate data set.

Defines the automatic call library (SY¥S1l.COBLIB) to be used
to resolve external references. All control sections from
this library are placed in the root segment; they remain
there unless they are repositioned.

Defines a temporary data set to be used as the output
module library; the load module is assigned the member name
GO and is passed to a subsequent step for execution.

Defines the diagnostic output data set, which is assigned
to output class A.

Defines the primary input data set, &§&0OBJIMOD, which
contains the object modules for the overlay structure.

This data set is temporary and was passed from a previous
job step; it is to be deleted at the end of this job. This
statement also concatenates the input stream to the primary
input data set. The input stream contains linkage editor
control statements, which must be delimited by a /*
statement,

Appendix A: Sample Programs 145

Linkage Editor Control Statements

The input stream contains the linkage editor control statements that
structure the overlay program. The control statements are:

INSERT CSA
ENTRY CSA
OVERLAY ALPHA
INSERT CSB
OVERLAY BETA
INSERT CSC
OVERLAY BETA
INSERT CSD
OVERLAY ALPHA
INSERT CSE
OVERLAY GAMMA (REGION)
INSERT CSF
OVERLAY GAMMA
INSERT CSG

Linkage Editor Output

Figure 46 shows the linkage editor output for sample program
REGNOVLY. The listing header indicates the options specified (XREF,
LIST, OVLY, and LET), and the SIZE option values used (65536 for value
and 6144 for value;).

Because the LIST option was specified, the control statement listing
is produced. Each control statement is preceded by a special message
number, IEW0000.

The control statement listing is followed by two diagnostic message
numbers (IEW0172 and IEW0182). The explanation of the messages and the
information following each message is given at the end of the output in
the diagnostic message directory.

The output for each segment contains a module map and a
cross-reference table. The segments are listed as they appear in the
overlay structure, top to bottom, left to right, and region by region.
(Note that this is also the sequence in which the OVERLAY and INSERT
statements must be given.)

146 OS/VS Linkage Editor and Loader

v xTpuaddy

swerboxg sTdureg

fil

F64-LEVEL LINKAGE EDITOR OPTIONS SPECIFIED XREF,LIST,OVLY,LET
DEFAULT OPTION(S) USED - SIZE=(1966(85£5536)

TEWCO000 INSERT CSA

IEWO000 ENTRY CSA

IEWOCOO OVERLAY ALPHA

1EWO000 INSERT CSB

1EW0000 OVERLAY BETA

IEWOO0CO INSERT CSC

T1EWQ000 OVERLAY BETA

IEW0000 INSERT CSD

IEWCCOO OVERLAY ALPHA

IEWO000 INSERT CSE

IEWJ000 JVERLAY GAMMA(REGION)

IEWOCOO0 INSERT CSF

IEW0000 OVERLAY GAMMA

IEW0000 INSERT CSG.

TEWC1T2 CSE

IEWO182 csc

CROSS REFERENCE TABLE

f CONTROL SECTION ENTRY

NAME ORIGIN LENGTH NC. NAME LOCATION NAME LOCATION NAME LOCAT ION NAME LOCATI2N
$ SEGTAB 00 34
CSA 38 3€¢
ILBODSPO* 340 6F8
ILBOSTPO* A98 35
ILBGSTP1

$ENT AB ADO 30
ROOT

SEGMENT
1

LOCATION REFERS TO SYMBOL IN CGNTROL SECTICN SEG. NO. LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEGe MO
2C0 ILBODSPO ILBODS PO 1 2C4 ILBOSTPN ILBOSTPO]
2C8 CSsG CSG 7 2CC CSE CSE
200 csB csB 2 204 ILBOSTPL ILBROSTPD

_

Figure 46. Linkage Editor Output for Sample Program REGNOVLY
(Part 1 of 3)

8hl

IopeOT pue JIO3IpH =bejurT SA/SO

SEGMENT
2

SEGMENT
3

<

SEGMENT
4

Figure 46,
(Part 2 of 3)

CONTROL SECTION

NAME ORIGIN
CsB BQO
$ENTAB E60

LOCATION REFERS

ORIGIN
ET8

LOCATION
10CC
1000

REFER S

CONTROL SECTION

NA ME
CSD

ORIGIN
E78

LOCATION REFERS

10CC
L 10D4

ENTRY
LENGTH SEGe. LOCAT IDN
360 2
18 2

NAME

TO SYMBCL 1IN CONTROL SECTION SEGe. NO.
ILBODSPO 1LBODSPO
CSE CSE

CcSD CsD

ENTRY

LENGTH SEG. NAME LOCAT ION

336 3

TO SYMBOL 1IN CONTROL SECTION SEGe NO.
ILeopseo ILBODSPO 1
ILBOSTPL ILBOSTPO 1

ENTRY

LENGTH SEG. NAME LOCAT ION

362 4

TO SYMBOL 1IN CONTROL SECTION SEGe.
ILBODSPO ILBCDSPO
ILBOSTP1 ILBOST PO

NG«

NAME LOCATION NAME LOCATION MAME

IN COMTROL SECTION
ILR3STPC
ILROST P2

LOCATION REFERS T3 SYMBIL
D50 ILBOSTPQ
D60 ILBOSTPI

NAME LOCATION NAME LOCATION

IM CONTPOL SECTIDN
ILBOSTPD

LOCATION REFERS TO SYMBOL
10C8 ILBOSTPC

NAME LOCATION N AME LJCB TICON NAME

IN CONTROL SECTION
ILBOSTPO
cscC

LOCAT ION REFERS TO SYMBOL
10C8 iLBostPO
1000 csc

Linkage Editor Output for Sample Program REGNOVLY

LOCATION

SEGe NOo
1
1

LOCATION

SEGe NQO,
1

LOCATION

SECe MQOo

¥ xTpuaddy

swexboxg s1duwes

6hlL

CCONTRQOL SECTICN

NA ME
CSE

ORIGIN
800

LOCATION REFERS
D54

D58

N
(" CONTROL SECTION

NA ME
CSF

SEGMENTC | gcATION
é 1430

ORIGIN
11EOQ

REFERS

CONTROL SECTICN

NAME
CSG

ORIGIN
11E0

SEGMENT
7

LOCATION
1434
1438

L- cNTRY ADDRESS

REFERS

TOTAL LENGTH
**%¥G0 DOES
AUTHORIZATICN CGDE

IEW0172 ERROR -
IEW0182 ERROR -

Figure U46.
(Part 3 of 3)

ENTRY

LENGTH SEG.
336 5

NAME LOCAT ION

TO SYMBOL 1IN CONTROL SECTION SEG. NO.
ILBODSPC ILBODSPO
ILBOSTP1 ILBOSTPO

ENTRY
LENGTH SEGe NO.
2FA [

TO SYMBOL IN CCONTRCL SECTION
ILBOSTPO

NAME LOCAT ION

SEG. NO.
ILBOSTPO. 1

ENTRY

LENGTH SEG.
336 7

NAME LOCATION

TO SYMBOL IN CONTROL SECTION SEG. NOe
ILBODSPO ILBODSPO 1
ILBOSTP1 I1LBOSTPO 1
38

1518
NOT EXIST BUT HeS BEEN ADDED TO DATA SET
1S O

NAME

"LOCATION

D50

NAME

LOCATION
1434

NAME

LOCATION
1430

LOCATIIN

LOCATIIN

LOCATION

NAME LOCATIOM MAME

REFERS TO SYMBOL
ILBOSTPC

IN CONTROL SECTION
ILBOSTPD

NAME LOCATION NAME

REFERS TO SyYMBOL
ILBISTP1

IN CONTROL SECTION
ILRISTPO

NAME LOCAT ION NAME

REFERS TO SYMBOL
ILBISTPO

IN CONTROL SECTION
ILROSTPO

DIAGNDSTIC MESSAGE DIRECTORY
EXCLUSIVE CALL FROM SEGMENT NUMBER PRINTED TO SYMBOL PRINTED.
INVALID EXCLUSIVE CALL FROM SEGMENT NUMBER PRINTED TO SYMBOL PRINTED.

Linkage Editor Output for Sample Program REGNOVLY

LOCATION

LOCATION

SEGe NOo
1

LOCATION

ascending sequence according to their assigned origin. The origin,
length, and segment number is listed for each control section, along
with any entry names and the location where each entry name is defined.
For example, the root segment has five control sections: $SEGTAB, which
is always the first control section in the root segment; CSA, which is
from the object module input; ILBODSP0 and ILBOSTPO, which are from the
automatic call library and were not repositioned; and $ENTAB, which,
when present, is always the last control section in any segment (as also
in segment 2). One entry name is defined, ILBOSTP1 at location AB6 in
control section ILROSTPO.

The cross-reference table for each segment contains all of the
address constants that refer to symbols defined in other control
sections. The location of the address constant is followed by the
symbol referred to, the control section in which the symbol is defined,
and the segment in which the control section is located, For example,
in the root segment, an address constant at location 298 refers to
symbol CSG, which is defined in control section CSG in segment 7.
Although the region is not given, the overlay tree in Figure 45 shows
that segment 7 is in region 2.

At the end of the output for all the segments is the entry address
and total length. The entry address is 38, which is the origin of CSA,
the specified entry point. The total length given refers to main
storage used, not device storage. The length given, therefore, is that
of the longest path. The longest path is that formed by the root
segment and segments 2, 4, and 7; the length given is 14DO0.

However, if the given lengths of the control sections in each segment
are added, the result is 14D3. The discrepancy exists because the given
lengths do not include the padding bytes mecessary to make control
sections begin on a doubleword address (multiple of 8). For example, in
the root segment, the length of $SEGTAB is 34; however, the origin of
CSA which follows $SEGTAB is 38 (decimal 56). Four additional bytes are
needed so that the origin of CSA is a multiple of 8.

The disposition message indicates that the load module GO has been
added to the output module library. The library did not contain any
other module by that name. The four asterisks identify the message.

message _directory. The directory contains the text for the message
numbers listed after the control statement 1listing., The directory must
be correlated to the information following the number to interpret the
message.

For example, message IEW0172 is an error message which indicates that
an exclusive call was made from the segment number printed (2) following
the message number to the symbol printed (CSE). The output for segment
2 indicates that this call is at location D68 in control section CSE,
and the symbol is defined in control section CSE in segment 5. This is
the valid exclusive call from CSB to CSE described earlier. (If XCAL
were specified, a warning message is issued instead of an error
message.)

If an invalid exclusive call is detected, message IEW0182 appears as
shown. This is also an error message; it indicates that an invalid
exclusive call was made from segment 4 to symbol CSC. This call is at
location 10CQ0 in control section CSD, and the symbol is defined in
control section CSC in segment 3. This is the invalid exclusive call
from CSD to CSC, also described earlier.

150 0S/VS Linkage Editor and Loader

SAMPLE PROGRAM PARTDS

Sample program PARTDS illustrates that linkage editor control
statements can be placed in a separate data set and then used as input.
For convenience, the control statements are those for sample program
REGNOVLY, described previously. These control statements are placed in
a partitioned data set. When the member that contains the control
statements is referenced, the linkage editor uses the control statements
to produce the overlay structure shown earlier in Figure 45,

Figure 47 shows the input statements for the IEBUPDTE utility program
used to place the control statements in a partitioned data set.

The source programs for all the control sections were compiled in
previous job steps. All the object modules were placed in the same data
set, which was passed to the linkage editor job step. The input modules
are those used for sample program REGNOVLY,

S S
I

.
//PARTDS JOB , SMITH,MSGLEVEL(2,0) I

| //CTLG EXEC PGM=IEBUPDTE, PARM=(NEW) 1
|//SYSUT2 DD DSNAME=OVLYLIB,UNIT=2314,VOL=SER=DA028,DISP=NEW, |
V24 SPACE=(TRK, (10,5,2)) ,DCB=(LRECL=80, BLKSIZE=80, RECFN=F) |
| //SYSPRINT DD SYSOUT=A |
| //SYSIN DD * |
|./ ADD NAME=OVLY,LEVEL=00, SOURCE=00, LIST=ALL I
./ NUMBER NEW1=10, INCR=5 I
| INSERT CSA [
| ENTRY CSA |
| OVERLAY ALPHA |
| INSERT CSB |
| OVERLAY BETA |
| INSERT CSC |
| OVERLAY BETA |
| INSERT CSD |
| OVERLAY ALPHA |
| INSERT CSE [
| OVERLAY GAMMA(REGION) I
| INSERT CSF [
| OVERLAY GAMMA I
| INSERT CSG |
|/ ENDUP |
| 7* |
4

Figure 47. Input Statements for IEBUPDTE Utility Program

Appendix A: Sample Programs 151

Job Control Language

The job control language for the overlay program job step of this
sample program is:

//LKED EXEC PGM=HEWL,PARM='XREF,LIST,OVLY,LET'

//SYSUTL DD DSNAME=§&UT1, UNIT=SYSDA, SPACE=(TRK, (100,10))
//0VLYCDS DD DSNAME=OVLYLIB, UNIT=SYSDA,VOL=SER=SCRTCH, DISP=0LD
//SYSLIB DD DSNAME=SYS1.COBLIB, DISP=SHR

//SYSLMOD DD DSNAME=§§OVLYJB(GO) , UNIT=SYSDA, DISP=(NEW, PASS),
7/ SPACE=(TRK, (100,10,1))

//SYSPRINT DD SYSOUT=A

//SYSLIN DD DSNAME=§ £€OBJMOD, DISP=(OLD, DELETE)

Va4 DD *

/¥

Statement

Explanation

EXEC

SYSUT1

OVLYCDS

SYSLIB

SYSLMOD

SYSPRINT

SYSLIN

Causes the execution of the linkage editor. The PARM field
options request a cross-reference table and a module map
(XREF) , and a control statement listing (LIST) to be
produced on the diagnostic output data set. The output
load module is to be assigned the overlay attribute (OVLY),
and is to be marked executable despite severity 2 errors
(LET) .

Defines a temporary direct-access data set to be used as
the intermediate data set.

Defines a permanent data set to be used later as additional
input; this is the partitioned data set which was created
by IERUPDTE and contains the control statements for
structuring the overlay program.

Defines the automatic call library (SYS1.COBLIB) to be used
to resolve external references. All control sections from
this library are placed in the root segment; they remain
there unless they are repositioned.

Defines a temporary data set to be used as the output
module library; the load module is to be assigned the
member name GO, and is passed to a subsequent step for
execution.

Defines the diagnostic output data set, which is assigned
to output class A.

Defines the primary input data set, §&80BJMOD, which
contains the object modules for the overlay structure.

This data set is temporary and was passed from a previous
job step; it is to be deleted at the end of this job. This
statement also concatenates the input stream to the primary
input data set. The input stream contains linkage editor
contrcl statements that must be delimited by a /%
statement.

152 0S/VS Linkage Editor and Loader

Linkage Editor Control Statements

The input stream contains an INCLUDE statement, as follows:

INCLUDE OVLYCDS(OVLY)

This statement causes the control statements to be read from the
partitioned data set described on the OVLYCDS DD statement. The member
name of the statements is OVLY, the same name used in the ADD statement
for the utility program.

Linkage Editor Output

The output for this sample program is identical to the output from
the REGNOVLY sample program, with one exception. The list of control
statements begins with the statement

IEW0000 INCLUDE OVLYCDS(OVLY)

This statement is followed by a list of the control statements read from
the additional input data set specified in this INCLUDE statement. The
rest of the output is identical to that shown in Figure 46,

Appendix A: Sample Programs 153

APPENDIX_B:__INVOCATION OF THE_LINKAGE_EDITOR

The linkage editor can be invoked by a problem program at execution
time through the use of the ATTACH, LINK, LOAD, or XCTL macro
instruction. Figure 48 shows the basic format of these macro
instructions.

T N Sttt s e et i bttt 1
| Name |Operation |Operand |
T pom—mmm- $- e 1
| [symbol] | { LINK } | EP=1inkedi tname, I
| | |ATTACH | PARAM=(optionlist[,ddnamelist]l),VL=1 |
| e e 1
[| { LOAD } |EP=1inkeditname |
| | LXCTL | |
I _— e 1

Figure 48. Macro Instruction Basic Format

EP=linkeditname
specifies the symbolic name of the linkage editor. The entry point
at which execution is to begin is determined by the control program
(from the library directory entry).

PARAM
specifies, as a sublist, address parameters to be passed from the
problem program to the linkage editor. The first fullword in the
address parameter list contains the address of the option and
attribute list for the load module. The second fullword contains
the address of the ddname list. If standard ddnames are to be
used, this list may be omitted.

optionlist
specifies the address of a variable length list containing the
options and attributes., This address must be written even though
no list is procvided.

The option list must begin on a halfword boundary. The two
high-order bytes contain a count of the number of bytes in the
remainder of the list. If no options or attributes are specified,
the count must be zero. The option list is free form with each
field separated by a comma. No blanks or zeros should appear in
the list.

ddnamelist
specifies the address of a variable length list containing
alternative ddnames for the data sets used during linkage editor
processing., If standard ddnames are used, this operand may be
omitted.

The ddname list must begin on a halfword boundary. The two
high-order bytes contain a count of the number of bytes in the
remainder of the list. Each name of less than 8 bytes must be left
justified and padded with blanks. If an alternate ddname is
omitted from the list, the standard name will be assumed. If the
name is omitted within the list, the 8-byte entry must contain
binary zeros. Names can be omitted from the end by merely
shortening the list.

Appendix B: Invocation of the Linkage Editor 155

The sequence of the 8-byte entries in the ddnamelist is as follows:

Entry

Alternate_ Name_For:

1
2

RPovoNoutesw

N

VL

=
-

SYSLIN

member name (the name under which the output
load module is stored in the SYSLMOD data
set; this entry is used if the name is not
specified on the SYSLMOD DD statement or if
there is no NAME control statement)

SYSLMOD

SYSLIB

not applicable

SYSPRINT

not applicable

SYSUT1

not applicable

SYSTERM

specifies that the sign bit is to be set to 1 in the last fullword
of the address parameter list.

When the linkage editor completes processing, a condition code is
returned in register 15 (see "Linkage Editor Return Code").

156 0S/VS Linkage Editor and Loader

APPENDIX C: STORAGE REQUIREMENTS AND CAPACITIES

This appendix describes the record-processing capacities of the
linkage editor, the types of devices that can be used for the
intermediate data set (SYSUT1), and the amount of virtual storage that
the linkage editor requires.

Capacities

The minimum storage requirement and processing capacities for the
linkage editor program are described in Table 12. To increase the
capacity for processing external symbol dictionary records, intermediate
text records, relocation dictionary records, and identification records,
increase value; and/or value, of the SIZE option. Output text record
length can be increased by increasing the SIZE option values, but in no
case can the record length ever exceed the track length for the device.
The number of overlay segments and regions that can be processed is not
affected by increasing the storage available.

For the composite external symbol dictionary, the number of entries
permitted can be computed by subtracting, from the maximum number
given in Table 12, one entry for each of the following:

A data definition name (ddname) specified in LIBRARY statements.
A data definition name (ddname) specified in INCLUDE statements.
An ALIAS statement.

A symbol in REPLACE or CHANGE statements that are in the largest
group of such statements preceding a single object module in the
input to the linkage editor.

The segment table (SEGTAB) in an overlay program.

e An entry table (ENTAB) in an overlay program.

To compute the number of intermediate_text records that will be
produced during processing of either program, add one record for each
group of x bytes within each control section, where x is the record size
for the intermediate data set. The minimum value for X is 1024; a
maximum is chosen depending on the amount of storage available to
the linkage editor and the devices allocated for the intermediate
and output data sets.

The number of text records that can be handled by a linkage editor
program is less than the maximums given in Table 12 if the text of one
or more control sections is not in sequence by address in the input to
the linkage editor.

To compute the number of relocation dictionary records in either
program, add one record for each group of 30 relocatable address
constants within each control section. In determining the number of
records, add one record for a remainder of less than 30 address
constants,

11K = 1,024 bytes

Appendix C: Storage Requirements and Capacities 157

Table 12. Linkage Editor Capacities for Minimal SIZE Values (64K,6K)

| Function _J_ Capacity
Lyirtual storage allocated (in bytes) | 64K

lMaximum number of entries in composite
I__external symbol dictionary (CESD)

| Maximum number of intermediate test
|records

Maximum number of relocation dictionary |

| (RLD) records 192
S S

| Maximum number of segments per program | 255

I—;aximum number of overlay regions |

|per program

IMaximum blocking factor for input object |
modules (number of 80-column card images |
per physical record)

IMaximum blocking factor for SYSPRINT I
output (number of 121-character logical |
I

Irecords per physical record) |

r— Ton 1BM 2314, 2319 _T) |
| Storage Facility 3072 |
| output text g g S|
Irecord length | On IBM 2305 Fixed Head | 2 |
I(in bytes) | Storage Facility | 3072 [
I r_On IBM 3330 Disk Storage { 2]
| \Faciliey _ __ _ _ __ joser2® | |
| : On IBM 3340 Disk Storage i 2 }
| Facilit 3072
fp————— —_ = .y_ ________ A e e e q
|1From 74K to 9999K for value; of the SIZE option, the blocking |
| .factor for input object modules and SYSPRINT output is 40, ‘|
|2The maximum output text record length is achieved when value, of I
| the SIZE parameter is at least twice the record length size. For |
example, on a 3330, 12288 byte records are written when value, is |
L at least 24576.]

158 0S/VS Linkage Editor and Loader

There is no maximum limit to the number of CSECT Identification

records
editor.

associated with a load module produced by the linkage
To determine the number of bytes of identification data

contained in a particular load module, use the following formula:

SIZE = 269 + 16A + 31B + 2C + I(n + 6)

where:

A=

the number of compilations or. assemblies by a processor
supporting CSECT Identification that produced the object code
for the module.

B = the number of pre-processor compiler compilations by a processor
supporting CSECT Identification that produced the object code
for the module.

C = the number of control sections in the module with END statements
that contain identification data.

I = the number of control sections in the module that contain
user-supplied data supplied during link editing by the optional
IDENTIFY control statement.

n = the average number of characters in the data specified by
IDENTIFY control statements.

Notes:

The size computed by the formula includes space for recording up
to 19 HMASPZAP modifications. When 75% of this space has been
used, a new 251-byte record is created the next time the module
is reprocessed by the linkage editor,

To determine the approximate number of records involved, divide
the computed size of the identification data by 256.

Example: A module contains 100 control sections produced by 20
unique compilations. Each control section is identified during link
editing by 8 characters of user data specified by the IDENTIFY
control statement., The size of the identification data is computed
as follows:

A = 20
I =100
n =28

269 + 320 + 1400 = 1989 bytes

If the optional user data specified on the IDENTIFY control
statements is omitted, the size can be reduced considerably, as
computed below:

269 + 320 = 589 bytes

The maximum number of downward calls made from a segment to other
segments lower in its path can never exceed 340. To compute the
maximum number of downward calls allowed, subtract 12 from the
SYSLMOD record size and then divide the difference by 12. Examples
of maximum downward calls are 84 for a SYSLMOD record size of 1024
bytes and 340 for a SYSLMOD record size of 6144 bytes.

Appendix C: Storage Requirements and Capacities 159

Intermediate Data Set

The intermediate data set (SYSUT1) is used by the linkage editor
to hold intermediate data records during processing. The linkage
editor places intermediate data in this data set when storage
allocated for input data or certain forms of out-of-sequence text
is exhausted.

The following direct-access devices, if supported by the system, can
be used for this data set:

IBM 2314 Storage Facility

IBM 2319 Storage Facility

IBM 2305 Fixed Head Storage Facility
IBM 3330 Disk Storage Facility

IBM 3330-1 Disk Storage Facility
IBM 3340 Disk Storage Facility

Linkage Editor Storage Requirements

The linkage editor requires a minimum of 74K of storage for execution.

The linkage editor program is in overlay format and uses the overlay
supervisor. For VS1, the storage required by the overlay supervisor must
be added to the minimum real storage requirement for the linkage editor.
The storage requirement for the overlay supervisor is 512 bytes.

The storage requirement given above is for VS1 and includes the
storage required by the access method modules used by the linkage editor.
The linkage editor uses the basic sequential and basic partitioned access
methods (BSAM and BPAM, respectively).

Since the overlay supervisor is in the link pack area in VS2, the

storage requirements for the overlay supervisor should not be included
when determining the size of the editor's region.

160 0S/VS Linkage Editor and Loader

PART 2: LOADER

The Loader is a processing program. It combines basic editing and
loading functions of the linkage editor and program fetch in one job
step. Therefore, the load function is equivalent to the link edit-go
function. The loader can be used for compile-load and load jobs.

The loader will load object modules produced by a language processor
and load modules produced by the linkage editor into virtual storage
for execution. Optionally, it will search a call library (SYSLIB) or
a resident link pack area, or both, to resolve external references.

The loader does not produce load modules for program libraries.

The functional characteristics, compatibility and restrictions,
performance considerations, and storage considerations of the loader are
described in the following sections.

FUNCTIONAL CHARACTERISTICS

The loader can be used with VS1 and vS2. The loader is re-enterable
and, therefore, can reside in the resident link pack area.

The loader combines the following basic functions of the linkage
editor and program fetch:

1. Resolution of external references between program modules.

2, Optional inclusion of modules from a call library (SYSLIB) or from
a link pack area, or from both (Figures 49 and 50). (Inclusion of
modules from a call library or the link pack area is performed, if
requested, when external references remain unresolved after
processing the primary input to the loader. If both are requested,
the 1link pack area is searched first.)

3. Automatic deletion of duplicate copies of program modules (Figure
51). (The first copy is loaded and all succeeding requests use
that copy.)

4, Relocation of all address constants so that control may be passed
directly to the assigned entry point in virtual storage.

The diagnostics produced by the loader are similar to those of the
linkage editor.

Loader 161

Object and/or
Load Madules

Object or
Load Modules

Figure 49, Loader Processing -- SYSLIB Resolution

User's Regi
Object and/or ser's Region

Load Modules

Object or Link Pack Area
Load Modules t

Figure 50. Loader Processing =-- Link Pack Area and SYSLIB Resolution

162 0S/VS Linkage Editor and Loader

Obiject and/or
Load Modules

Loader

Figure 51. Loader Processing -- Automatic Editing

COMPATIBILITY AND RESTRICTIONS

The loader accepts the same basic input as the linkage editor:

1. All object modules that can be processed by the linkage editor can
be input to the loader.

2. All load modules produced by the linkage editor can be input to the
loader (except load modules edited with the NE option).

The loader supports the following linkage editor options: MAP, LEI,
NCAL, SIZE, and TERM. All other linkage editor options and attributes
are not supported, but, if used, they will not be considered as errors.
A message will be listed on SYSLOUT indicating that they are not
supported. The supported options are specified in the PARM field of the
EXEC statement, or with the LINK, ATTACH, LOAD, or XCTL macro
instruction. 1In addition to the supported linkage editor options, the
loader provides several other options. All loader options are described
under "EXEC Statement" in the section "Using the Loaderx."

The loader does not process linkage editor control statements (for
example, INCLUDE, NAME, OVERLAY, etc.). If they are used, they will not
be treated as errors and a message will be listed on SYSLOUT indicating
that the control statements are not supported.

The loader and the linkage editor are bound by the same input
conventions. (These conventions are discussed in Part 1 of this
publication.) In addition, the loader can accept load modules in the
SYSLIN data set and object modules from a data area in virtual storage.

The loader does not use auxiliary storage space for work areas; that

is, there is no loader function corresponding to the linkage editor's
creation of intermediate work data sets or output load modules.

Time Sharing Option (TSO)

When the loader is used under TSO (VS2 only), it is invoked by the loader
prompter, a program that acts as an interface between the user and the
operating system and the loader. Under TSO, execution of the loader and
definition of the data sets used by the loader are described to the
system through use of the LOADGO command that causes the prompter to be
executed. Operands of the LOADGO command can also be used to specify
the loader options a job requires.

Loader 163

Complete procedures for using the LOADGO command to load and execute
an object module are given in the VS2 TSO Terminal User's Guide.

Processing Object Modules in Virtual Storage

The loader can act as an interface with a compiler that has the
ability to construct a data area of one or more object modules in virtual
storage as an alternative to a data set on a secondary storage volume
(such as a tape or disk). Such a compiler passes the loader a
description of the internal data area, which the loader then processes
as primary input. This internal data area replaces external SYSLIN data
set input to the loader.

Instead of placing text records for the object module in the intermnal
data area, the compiler can pass pointers to preloaded text. The loader
can then perform its relocation and linkage functions dn the preloaded
text itself; text is not moved during processing.

Loaded Program Restrictions

Any loaded program that issues an XCTL macro instruction or an
IDENTIFY macro instruction in a VS1 environmment will not execute
properly. It is recommended that any such program be processed by the
linkage editor.

If an IDENTIFY macro instruction is issued by the loaded program,
IDENTIFY returns a '0C' code in register 15. This code means that the
entry point address is not within an eligible load module and that the
entry point was not added.

In a VS1 environment, any data set opened by a loaded program should
be closed by the program before execution is complete.

164 0S/VS Linkage Editor and Loader

USING THE_LOADER

This section discusses how to prepare an input deck for the loader and
how to invoke the loader; it also describes the output from the loader.

INPUT FOR THE LOADER

The input deck for the loader must contain job control language
statements for the loader and, optionally, for the loaded program
(Figure 52).

Only the EXEC statement and the SYSLIN DD statement are required for
a loader step. The JOB statement is required if the loader is the first
step in the job.

g 1
| 7/name JOB parameters (optional) |
| 7/name EXEC PGM=LOADER, PARM=(parameters) |
|//SYSLIN DD parameters |
| 7//SYSLIB DD parameters (optional) |
| 7/SY¥SLOUT DD parameters (optional) |
| 7/ SYSTERM DD parameters (optional) |
\77 (optional DD statements and data required for loaded program) |
L —— —_— - e e e o 2 e e e e e e b . e e e e e e e e 4
Figure 52. Input Deck for the Loader -- Basic Format

EXEC STATEMENT

The EXEC statement is used to call the loader and to specify options
for the loader and for the loaded program. The loader is called by
specifying PGM=IEWLDRGO or PGM=LOADER (see "Invoking the Loader").
Loader and loaded program options are specified in the PARM field of the
EXEC statement. The PARM field must have the following format:

 PARM=" [loaderoptionl[, loaderoptionle..]
{/programoptionl, programoptionl... 1"

Note that the loaded program options, if any, must be separated from the
loader options by a slash (/). If there are no loader options, the
program options must begin with a slash. The entire PARM field may be
omitted if there are no loader or loaded program options.

Parameters must be enclosed in single quotes when special characters
(/ and =) are used.

Using the Loader 165

The loader options are:

MAP
The loader produces a map of the loaded program that lists external
names and their absolute storage addresses on the SYSLOUT data set.
(If the SYSLOUT DD statement is not used in the input deck, this
option is ignored.) The module map is described in "Loader Output"
in this section.

NOMAP
A map is not produced.

RES
An automatic search of the link pack area queue is to be made.
This search is always made after processing the primary input
(SYSLIN), and before searching the SYSLIB data set. When this
option is specified, the CALL option is automatically set.

NORES
No automatic search of the link pack area queue is to be made.

CALL
An automatic search of the SYSLIB data set is to be made. (If the
SYSLIB DD statement is not included in the input deck, this option
is ignored.)

NOCALL

or NCAL
An automatic search of the SYSLIB data set will not be made. When
this option is specified, the NORES option is automatically set.

LET
The loader will try to execute the object program even though a
severity 2 error condition is found. (A severity 2 error condition
is one that could make execution of the loaded program impossible.)

NOLET
The loader will not try to execute the loaded program if a severity
2 error condition is found.

SIZE=size
specifies the size, in bytes, of dynamic virtual storage that can be
used by the loader (see Appendix F).

EP=name
specifies the external name to be assigned as the entry point of
the loaded program. This parameter must be specified if the entry
point of the loaded program is in an input load module. For
FORTRAN, ALGOL, and PL/I, these entry points must be MAIN,
IHIFSAIN, and IHENTRY, respectively, unless changed by compiler options.

NAME=name
specifies the name to be used to identify the loaded program to the
system. If this parameter is not used, the loaded program will be
named *#*GO,

PRINT
Informational and diagnostic messages are produced on the SYSLOUT
data set.

NOPRINT

Informational and diagnostic messages are not produced on the
SYSLOUT data set. SYSLOUT is not opened.

166 0S/VS Linkage Editor and Loader

TERM
Numbered diagnostic messages are to be sent to the SYSTERM data
set. Although intended to be used@ when operating under the Time
Sharing Option (TSO), the SYSTERM data set can be used to replace
or supplement the SYSLOUT data set at any time. (If the SYSTERM DD
statement is not included in the input deck, this option is
ignored.)

NOTERM

Numbered diagnostic messages are not to be sent to the SYSTERM data
set.

The default options are: NOMAP, RES, CALL, NOLET, SIZE=100K, PRINT,
NAME=**GO and NOTERM. For VSl, the default options NOMAP, RES, CALL,
NOLET, SIZE=100K, and PRINT may be changed during system generation by
using the LOADER macro instruction.

The following are examples of the EXEC statement. In these examples,
X and Y are parameters required by the loaded program.

//LOAD EXEC PGM=LOADER

//LOAD EXEC PGM=HEWLDRGO , PARM="'MAP, EP=FIRST/X, Y'
//LOAD EXEC PGM=LOADER, PARM="' /X, Y*!

//LOAD EXEC PGM=LOADER, PARM=NOPRINT

//LOAD EXEC PGM=LOADER,PARM= (MAP,LET)

//LOAD EXEC PGM=LOADER, PARM="' NAME=NEWPROG, TERM, NOPRINT"

For further details in coding the EXEC statement refer to 0S/VS1
JCL Reference and 0S/VS2 JCL.

DD STATEMENTS

The loader uses four DD statements named SYSLIN, SYSLIB, SYSLOUT, and
SYSTERM. (For VS1l, these ddnames can be changed during system generation
with the LOADER macro instruction.) The SYSLIN DD statement must be used
in every loader job. The other three are optional.

The following considerations apply to the DCB parameter of SYSLIN,
SYSLIB, and SYSLOUT.

o For better performance, BLKSIZE and BUFNO can be specified.
e If BUFNO is omitted, BUFNO=2 is assumed.

e Any value given to BUFNO is assumed for NCP (number of channel
programns) .

e If RECFM=U is specified, BUFNO=2 is assumed, and BLKSIZE and LRECL
are ignored.

e RECFM=V is not accepted.

Using the Loader 167

e If RECFM is omitted, RECFM=F is assumed for SYSLIN and SYSLIE.
e If BLKSIZE is omitted, the wvalue given to LRECL is assumed.

¢ LRECL=121 is assumed for SYSLOUT unless the loader is operating
under the Time Sharing Option (TSO), when LRECL=81 is assumed.

e If LRECL is omitted, LRECL=80 is assumed for SYSLIN and SYSLIB.

e If OPTCD=C is used to specify chained scheduling, an additional 2K
(2048 bytes) of virtual storage is needed in the user's region if
the necessary data management routines are not resident.

Note: The SYSTERM data set will always consist of unblocked
81-character records with BUFNO=2 and RECFM=FSA. Because these values
are fixed, the DCB parameter need not be used.

In addition to the DD statements used by the loader, any DD
statements and data required by the loaded program must be included in
the input deck.

SYSLIN DD Statement

The SYSLIN DD statement defines the input data for the loader. This
input can be either object modules produced by a language translator, or
load modules produced by the linkage editor, or both. The data sets
defined by the SYSLIN DD statement can be either sequential data sets,
or members of a partitioned data set, or both. The DSNAME parameter for
a partitioned data set must indicate the member name, that is,
DSNAME=dsname (membername). Concatenation can be used to include more
than one module in SYSLIN,

The following are examples of the SYSLIN DD statement. The first
example defines a member of a previously cataloged partitioned data set:

//SYSLIN DD DSNAME=0OUTPUT. FORT(MOD12) , DISP=0LD,
// DCB=BLKSIZE=3200

The second example defines a sequential data set on magnetic tape:

//SYSLIN DD DSNAME=PROG15, UNIT=2400,DISP=(OLD, KEEP),
Vo4 VOLUME=(PRIVATE, RETAIN, SER=MCS167)

The third example defines a data set which was the output of a
previous step in the same job:

//SYSLIN DD DSNAME=%, COBOL. SYSLIN, DISP=(OLD, DELETE)

The fourth example shows the concatenation of three data sets. The
first two data sets are members of different partitioned data sets; the
first is an object module and the second is a load module. The third
data set is in the input stream following a SYSIN DD statement (see
"Loaded Program Data" in this section).

//SYSLIN DD DSNAME=PGMLIB. SET1 (RF51), DISP=0LD,

/7 DCB=(BLKSIZE=3200, RECFM=FB)

/77 DD DSNAME=PGMLIB.SET2 (ABC5) , DISP=0LD, DCB=RECFM=U
/7 DD DDNAME=SYSIN

168 0S/VS Linkage Editor and Loader

SYSLIB DD Statement

The SYSLIB data set contains IBM-supplied or user-written library
routines to be included in the loaded program. The data set is searched
when unresolved references remain after processing SYSLIN and optionally
searching the link pack area.

The SYSLIB data set is used to resolve an external reference when the
following conditions exist: the external reference must be (1) a member
name or an alias of a module in the data set, and (2) defined as an
external name in the external symbol dictionary of the module with that
name. If the unresolved external reference is a member name or an alias
in the library, but is not an external name in that member, the member
is processed but the external reference remains unresolved unless
subsequently defined.

The data set defined by the SYSLIB DD statement must be a partitioned
data set that contains either object modules or load modules, but not
both., Concatenation may be used to include more partitioned data sets
in SYSLIB. All concatenated data sets must contain the same type of
modules (object or load).

The following are examples of the SYSLIB DD statement. The first
example defines a cataloged partitioned data set that can be shared by
other steps:

//SYSLIB DD DSNAME=SYS1.ALGLIB,DISP=SHR
The second example shows the concatenation of two data sets:

//SYSLIB DD DSNAME=SYS1. PL1LIB, DISP=SHR
7/ DD DSNAME=LIBMOD.MATH, DISP=0LD

SYSLOUT DD_Statement

The SYSLOUT DD statement is used for error and warning messages and
for an optional map of external references (see "Loader Output" in this
section). The data set defined by this DD statement must be a
sequential data set. The DCB parameter can be used to specify the
blocking factor (BLKSIZE) of this data set. For better performance, the
number of buffers (BUFNO) to be allocated to SYSLOUT can also be
specified.

The following are examples of the SYSLOUT DD statement. The first
example specifies the system output unit:

//SYSLOUT DD SYSOUT=A
The second example defines a sequential data set on a 1443 printer:

//SYSLOUT DD UNIT=1443, DCB=(BLKSIZE=121, BUFNO=U4)

SYSTERM DD _Statement

The SYSTERM DD statement defines a data set that is used for numbered
diagnostic messages only. When the loader is being used under the Time

Using the Loader 169

Sharing Option (TSO) (VS2 only) of the operating system, the SYSTERM
DD statement defines the terminal output data set. However, SYSTERM
can also be used at any time to replace or supplement the SYSLOUT data
set. Because the SYSTERM data set is not opened unless the loader
must issue a diagnostic message, using SYSTERM instead of SYSLOUT can
reduce loader processing time.

When the SYSTERM data set replaces the SYSLOUT data set, the numbered
messages in the SYSTERM data set are the only diagnostic output; when
SYSTERM supplements the SYSLOUT data set, the numbered messages appear
in both data sets, and optional diagnostic and informational output,
such as a list of options or a module map, can be obtained on SYSLOUT

The DCB parameters for SYSTERM are fixed and need not be specified.
The SYSTERM data set always consists of unblocked 8l-character records
with BUFNO=2 and RECFM=FSA.

The following example shows the SYSTERM DD statement when used to
specify the system output unit:

//SYSTERM DD SYSOUT=A

LLOADED PROGRAM DATA

Loaded program data and loader data can both be specified in the
input reader in VS1 and VS2. Loaded program data can be defined by a
DD statement following the loader data.

Figure 53 shows the loading of a previously compiled FORTRAN problem
program. The program to be loaded (loader data) follows the SYSLIN
DD statement. The loaded program data follows the FTO05F001 DD
statement.

. - _— e e e et e
| //LOAD JOB MSGLEVEL=1

| //LDR EXEC PGM=LOADER, PARM=MAP

| //SYSLIB DD DSNAME=SYS1, FORTLIB, DISP=SHR

| 7/SYSLOUT DD SYSOUT=A

|#7/FT06F001 DD SYSOUT=A

| //SYSLIN DD *

| (Loader data)

I 7*

| //FTO05F001 DD *

| (Loaded program data)

| 7*

L e

Figure 53. Loader and Loaded Program Data in VS] or VS2 Input Stream

e e e s — — — e — e o e s}

INVOKING THE LOADER

The loader can be referred to by either its program name, IEWLDRGO,
or its alias, LOADER. The loader can be invoked through the EXEC
statement, as described in "Input for the Loader," or through the LOAD,
ATTACH, LINK, or XCTL macro instruction. Figure 54 shows the basic
format for the macro instruction.

170 0S/VS Linkage Editor and Loader

=== F———————-- o= -
| Name |Operation|Operand |

T
|
|
|
[}
|
1

-+
|
{
|
|
|
[}
{
[}
{
|
|
|
|
{
|
{
|
{
|
|
|
|
|
|
I
|
I
|
1
|
i
|
|
|
|
|
1
|
|
|
|
|
{
|
[}
]
]
{
]
i
1
[}
[}
i
|
]
1
|
]
i

| | EP=1loadername
[symboll| fLINK } | PARAM=(optionlist[,ddname 1listl)
{1ATTACHS |VI=1

t +
{LOAD} |EP=loadername

|
| \XCTL [
________ N IO S -

Figure 54. Macro Instruction Basic Format

.

EP
specifies the symbolic name of the loader. The entry point at
which execution is to begin is determined by the control program
from the library directory entry.

PARAM

specifies, as a sublist, address parameters to be passed to the
loader. The first fullword in the address parameter list contains
the address of the option list for the loader and/or loaded
program. The second fullword contains the address of the ddname
list. If standard ddnames are to be used, this list may be
omitted.

option list
specifies the address of a variable length list containing the
loader and loaded program options. This address must be written
even though no list is provided.

The option list must begin on a halfword boundary. The two
high-order bytes contain a count of the number of bytes in the
remainder of the list. If no options are specified, the count must
be zero.

The option list is free form, with the loader and loaded program
options separated by a slash (/), and with each option separated by
a comma. No blanks or zeros should appear in the 1list.

ddname list
specifies the address of a variable length list containing
alternative ddnames for the data sets used during loader
processing. If the standard ddnames are used, this operand may be
omitted.

The format of the ddname list is identical to the format of the
ddname list for invoking the linkage editor; the 8-byte entries in
the list are as follows:

Entry Alternate Name For:

1 SYSLIN

2 not applicable

3 not applicable

4 SYSLIB

5 not applicable

6

7

1

SYSLOUT
-11 not applicable
2 SYSTERM

VL

specifies that the sign bit is to be set to 1 in the last fullword
of the address parameter list.

Using the Loader 171

Figure 55 shows an assembler language program that uses the LINK
macro instruction to refer to the loader.

St ——— e e e 1
| SAVE (14,12) initialize -- save |
| . registers and point |
| . to new save area |
| . I
I LA 13, SAVEAREA |
| . I
| . |
I . |
| LINK EP=LOADER, PARAM= (PARM) , VL=1 I
| . |
| . |
I . |
| L 13,4¢(13) |
| RETURN (14,12),T |
| . I
I . |
| . |
| DS OH |
| PARM DC AL2(LENGTH) length of options |
| OPTIONS DC C'NOPRINT,CALL/X,Y,Z" loader and loaded program |
| LENGTH EQU *-OPTIONS options |
| SAVEAREA DS 18F save area |
| . |
| . |
I . |
| END |
L S _— _—— —

Figure 55. ©Using the LINK Macro Instruction To Refer to the Loader

If desired, the loader may be used to process a program but not
execute it. To invoke just the portion of the loader that processes
input data, specify either the name HEWLOAD or the name HEWLOADR with a
LOAD and CALL macro instruction.

HEWLOAD, which is used with VS2 only, will both load and identify the
program. HEWLOAD returns the address of an 8-character name in register
1. This name can be used with an ATTACH, LINK, LOAD, or XCTL macro
instruction to invoke the loaded program. A user program that is going
to attach a loaded program, should avoid specifying SZERO=NO in its
ATTACH macro. If SZERO=NO must be specified, the user program should
issue a LOAD for the loaded program before performing the ATTACH and a
DELETE for the loaded program after the ATTACH.

HEWLOADR, which can be used with VS1 or VS2, will load the program
but will not identify it. HEWLOADR returns the entry point of the
loaded program in register 0. Register 1 points to two full words: the
first points to the beginning of storage occupied by the loaded program;
the second contains the size of the loaded program. This location and
size can then be used in a FREEMAIN macro instruction to free the
storage occupied by the loaded program when it is no longer needed.

Figure 56 shows an assembler language program that uses the LOAD and
CALL macro instructions to refer to HEWLOADR. Figure 57 shows an
assembler language program that uses the LOAD and CALL macro
instructions to refer to HEWLOAD.

For further information on the use of these macro instructions, refgr
to 0S/VS1 Supervisor Services and Macro Instructions and 0S/VS2 Supervisor
Services and Macro Instructions.

172 08/Vs Linkage Editor and Loader

*

*

FREE

PARM1
OPTIONS1
LENGTH1

PARM2
OPTIONS2
LENGTH2
SAVEAREA

[— s — . S . e, T o e e, S e S i, WO . S St W i, — S, T e . e . . S e, S e . i e — o, . S, s, St . S S

Figure 56.

(14,12), T
ST 13, SAVEAREA+4
LA 13, SAVEAREA
LOAD EP=HEWLOADR
LR 15,0
CALL (15), (PARM1), VL
LR 7,15
LR 5,0
LR 6,1
DELETE EP=HEWLOADR
CH 7,=H'4"
BH FREE
LR 15,5
CALL (15), (PARM2) , VL
L 0,4(6)
L 1,0(6)

FREEMAIN R,LV=(0),A=(1)

L 13,u4(13)
RETURN (14,12),T
Ds OH

DC AL2(LENGTH1)
DC C'NOPRINT, CALL'
EQU #-OPTIONS1

DS OH

DC AL2(LENGTH2)
DC C'X,Y,2°

EQU *-OPTIONS2

DS 18F

initialize -- save registers and|
point to new save area

load the loader
get its entry point address
invoke the loader

save return code

save entry to loaded program
save pointer to list containing

start address and length
delete loader
verify successful loading
negative branch

loading successful -- get entry

point address for CALL
invoke program

get length into register 0
get start address
delete loaded program

length of loader options
loader options

length of loaded program options

loaded program options

save area

I
|
|
I
I
I
|
|
|
I
|
I
I
|
|
|
|
I
|
|
I
I
|
|
|
I
I
I
|
|
I
|
[
I
|
I
I
|
|
I
|
|
|
|
|
I
|
J

Using the LOAD and CALL Macro Instructions to Refer to
HEWLOADR (Loading Without Identification)

Using the Loader

173

*

*

*

PARM1
OPTIONS1
LENGTH1

PARM2
OPTIONS2
LENGTH2
SAVEAREA
PGMNAM

. e e o e . e, S e, e s S i S e, O i, ot i S i . e e B o S e, S . IS s T 2}

Figure 57.

LOAD
LR
CALL
LR

MVC
DELETE
CH

BH

LINK

L
RETURN
DS
DC
DC
EQU
DS
DC
DC
EQU
DS
DS

END

(14,12),T initialize -- save registers and
point to new save area

-l

13, SAVEAREA+4
13, SAVEAREA

EP=HEWLOAD load the loader

15,0 get its entry point address
(15), (PARM1) ,VL invoke the loader

7,15 save the return code
PGMNAM(8),0(1) save program name
EP=HEWLOAD delete the loader

7,=H'4" verify successful loading
ERROR negative branch

EPLOC=PGMNAM, PARM=(PARM2),VL=1 loading successful,
invoke program

13,4(13)

(14,12), T

0H

AL2 (LENGTH1) length of loader options
c'map! loader options
*-OPTIONS1

OH

AL2 (LENGTH2) length of loaded program options
c'X,Y,72* loaded program options
*-OPTIONS2

18F save area

2F program name

L e s e . S e . — —— ——— A — —— T — — —T— —n, S —— T, S i SO s, D s, S it S e, SO .

Using the LOAD and CALL Macro Instructions to Refer to
HEWLOAD (Loading With Identification)

174 0S/VS Linkage Editor and Loader

LOADER OUTPUT

Loader output consists of a collection of diagnostics and error
messages, and of an optional storage map of the loaded program. This
output is produced in the data set defined by the SYSLOUT DD and SYSTERM
DD statements. If these are omitted, no loader output is produced.

SYSLOUT output includes a loader heading, and the list of options and
defaults requested through the PARM field of the EXEC statement. The
SIZE stated is the size obtained, and not necessarily the size regquested
in the PARM field. Error messages are written when the errors are
detected. After processing is complete an explanation of the error is
written. Loader error messages are similar to those of the linkage
editor and are listed in the 0S/VS Message Library: Linkage Editor and
Loader Messages.

SYSTERM output includes only numbered warning and error messages.
These messages are written when the errors are detected. After
processing is complete, an explanation of each error is written.

The storage map includes the name and absolute address of each
control section and entry point defined in the loaded program. Each map
entry marked with an asterisk (*) comes from the data set specified on
the SYSLIB DD statement. Two asterisks (**) indicate the entry was
found in the link pack area; three asterisks (***) indicate the entry
comes from text that was preloaded by a compiler. The TYPE column indicates
what each entry on the map is used for; SD-control section, LR-label
reference, and PR-pseudo register.

The map is written as the input to the loader is processed, so all
map entries appear in the same sequence in which the input ESD items are
defined. The total size and storage extent of the loaded program are
also included. For PL/I programs, a list is written showing
pseudo-registers with their addresses assigned relative to zero. Figure
58 shows an example of a module map.

In a VS2 environment, the loader issues an informational message
when the loaded program terminates abnormally.

Using the Loader 175

9ILT

I8peoT pue I03TPH °HeMNUTT SA/SO

0S/360 LOADER

OPTIONS USED - PRINT,MAP,NOLET,CALL,NORES,SIZE=424176

NAME TYPE ADDR

SAMPL2B
SYSIN
IHEDIA
IHEVPA
IHEVPCA
IHEDNC
IHEDMA
IHEVFAA
IHEIOB
IHESARC
IHEBEGA
IHEERRA
IHEITAZ
IHEDCNB
IHEVTB

IHEQINV
SYSIN

IHEQLW3
IHEQFVD
THEQEVT
IHEQSFC

IEW1001
IEW1001
IEW1001
IEW1001
IEW1001
IEW1001
IEW1001
IEW1001
IEW1001
IEW1001
IEW1001
IEW1001
IEW1001
IEW1001
IEW1001
IEW1001
IEW1001
IEW1001

TOTAL L

SD
sD
sD
sD
LR
SD
sD
LR
sD
LR
LR
LR
LR
LR
SD

£ B B CBE B CRE K B N N

PR
PR
PR
PR
PR
PR

IHEUPBA
IHEUPAA
IHETERA
IHEM91C
IHEM91B
IHEM91A
IHEDDOD
IHEVPFA
IHEVPDA
IHEDBNA
IHEVSFA
IHEVSBA
IHEVCAA
IHEVSAA
IHEDNBA
IHEUPBB
IHEUPAB
IHEVSEB

ENGTH

ENTRY ADDRESS

IEW1001

Figure 58. Module Map Format Example

WARNING - UNRESOLVED EXTERNAL REFERENCE (NOCALL SPECIFIED)

161E0
17D48
183C0
18870
189F8
18CB8
19010
19160
19488
1A9CS8
1AE28
1AE86
1B81E
1B862
1BCFO

5068
17D00

NAME TYPE ADDR

.SAMPL2BA

IHEVQC
IHEDIAA
IHEVPAA
IHEVFE
IHEDNCA

IHEDMAA ¥

IHEVPB
IHEIOBA
IHESADD
TIHEERR
IHEERRE
IHEITAX
IHEIOD
IHEVTBA

IHEQERR
IHEQLSA
IHEQLWY
THEQCFL
IHEQSLA

SD
SD
LR
LR
SD
LR
LR
SD
LR
LR
SD
LR
LR
SD
LR

16EC8
17D80
183C0
18870
18BES8
18CB8
19010
19248
19488
1A9DE
1AE68
1B4E2
1B82A
1BAS0
1BCFO

NAME

IHEMAIN
IHEVQCA
THEDIAB
IHEVFC
TIHEVFEA
THEDOA
IHEVFD
IHEVPBA
IHEIOBB
IHESAFF
IHEERRD
IHEIOF
IHEITAA
IHEIODG
IHEVQA

SAMPL2BB
THEQLWO
THEQLWE
IHEQFOP
IHEQSAR

NAME

IHENTRY
THEVQB
THEVPE
IHEVFCA
THEVSC
IHEDOAA
IHEVFDA
IHEXIS
IHEIOBC
IHEPRT
IHEERRC
IHEIOFB
IHEDCN
IHEIODP
THEVQAA

SAMPL2BC
IHEQLW1
IHEQLCA
THEQADC
IHEQLWF

LR SN B N R B BE R B NE R

NAME

IHESPRT
IHEVQBA
IHEVPEA
IHEVPC

IHEVSCA
IHEDOAB
IHEVFA

IHEXISO
IHEIORBRD
IHEPRTA
IHEERRB
IHEIOFA
IHEDCNA
IHEIODT

IHEQSPR
IHEQLW2
IHEQVDA
IHEQXLV
ITHEQRTC

LR IR TR CRE CRE R R IR R YA

APPENDIX D: SAMPLE INPUT_FOR_THE LOADER

Figure 59 shows an input deck for a load job. A previously assembled
program, MASTER, is to be loaded. The SYSLOUT, SYSLIB, and SYSTERM DD
statements are not used.

r
| 7/LOAD JOB MSGLEVEL=1
\77 EXEC PGM=LOADER
| //SYSLIN DD DSNAME=MASTER, DISP=0LD

(DD statements and data required for execution of MASTER)

%
L

e e o o e e e 0]

Figure 59, Input Deck for a Load Job

Figure 60 shows an input deck for a compile-load job. The COBOL F
(IEQCBLO00) compiler is used for the compile step. The loaded program
requires the SYSOUT, TAXRATE, and SYSIN DD statements.

(Data for lLoaded Program)

[e e e e e e e e e e e e e e e — - — 1
|7730B JOB 22,MCS,MSGLEVEL=1 |
| 7/COBOL EXEC PGM=IEQCBL00, PARM=MAP,REGION=86K, RD=R |
| //SYSPRINT DD SYSOUT=A |
|#//SYSPUNCH DD UNIT=SYSCP |
| 77SYSUT1 DD UNIT=SYSDA, SPACE=(TRK, (100,10)) |
| 7/SYSUT2 DD UNIT=SYSDA, SPACE=(TRK, (100,10)) |
| //5YSUT3 DD UNIT=SYSDA, SPACE=(TRK, (100,10)) |
| 7/SYSUTU DD UNIT=SYSDA, SPACE=(TRK, (100,10)) |
|//SYSLIN DD DSNAME=§ §LOADSET, DISP=(MOD, PASS), |
|77 UNIT=SYSSQ, SPACE=(TRK, (30,10)) |
| 7/SYSIN DD * |
| (source program) |
| 7% |
| 7/LOAD EXEC PGM=LOADER, PARM='MAP, LET',COND=(5, LT, COBOL) |
|//SYSLIN DD DSNAME=#%, COBOL.SYSLIN, DISP=(OLD, DELETE) |
| 7/SYSLOUT DD SYSOUT=A |
| 7/SYSLIB DD DSNAME=SYS1.COBLIB, DISP=SHR |
|7/S¥souT DD SYSOUT=A |
| 7//TAXRATE DD DSNAME=TAXRATE, DISP=OLD |
| //SYSIN DD * I

!

L/e

Figure 60. Input Deck for a Compile-Load Job

Appendix D: Sample Input for the Loader 177

Figure 61 shows the compilation and loading of three modules. 1In the
first three steps, the FORTRAN H (IEKAAO00) compiler is used to compile a
main program, MAIN, and two subprograms, SUBL and SUB2, Each of the
object modules is placed in a sequential data set by the compiler and
passed to the loader job step. In addition to the FORTRAN library, a
private library, MYLIB, is used to resolve external references. 1In the
loader job step, MYLIB is concatenated with the SYSLIB DD statement.
SUB1 and SUB2 are included in the program to be loaded by concatenating
them with the SYSLIN DD statement. The SYSTERM statement is used to
define the diagnostic output data set. The loaded program requires the
FT01F001 and FT10F001 DD statements for execution, and it does not
require data in the input stream.

//J0BX JOB

|7//STEP1 EXEC PGM=IEKAA00,PARM='NAME=MAIN, LOAD'
| .

} L]

| //SYSLIN DD DSNAME=§§GOFILE, DISP=(, PASS) , UNIT=SYSSQ
| //SYSIN DD *

| (Source module for MAIN)

R — U -
I

|7*

|7/STEP2 EXEC PGM=IEKAA(00,PARM='NAME=SUB1, LOAD'

| .

: .

|//SYSLIN DD DSNAME=§ § SUBPROG1, DISP=(, PASS), UNIT=SYSSQ
| 7/SYSIN DD %

| (Source module for SUR1)

|/*

| 7/STEP3 EXEC PGM=IEKAAO00, PARM='NAME=SUB2, LOAD"'

| .

| .

| «

| //SYSLIN DD DSNAME=§ §SUBPROG2, DISP=(, PASS), UNIT=SYSSQ
| 7/SYSIN DD *

| (Source module for SUB2)

[/*

| //STEP4 EXEC PGM=LOADER

| //SYSTERM DD SYSOUT=A
|//SYSLIB DD DSNAME=SYS1. FORTLIB, DISP=OLD

|77 DD DSNAME=MYLIB,DISP=OLD

|//SYSLIN DD DSNAME=*. STEP1. SYSLIN, DISP=0OLD
\ 77 DD DSNAME=#%, STEP2. SYSLIN, DISP=0OLD
|77 DD DSNAME=*. STEP3. SYSLIN, DISP=0OLD

|//FT01F001 DD DSNAME=PARAMS, DISP=0LD
|//FT10F001 DD SYSOUT=A
| 7%

e e e e e o e e —— s . . — . — . — S e e, . . s ot s . s e s . 8

Figure 61. Input Deck for Compilation and Loading of the Three Modules

178 0S/VS Linkage Editor and Loader

APPENDIX E: LOADER RETURN_ CODES

The return ccde of a loader step is determined by the return codes
resulting from loader processing and from loaded program processing.

The return code indicates whether errors occurred during the
execution of the loader or of the loaded program. The return code can
be tested through the COND parameter of the JOB statement specified for
this job and/or the COND parameter of the EXEC statement specified in
any succeeding job step. (For details, see the publication 0S/VS
JCL Reference.) Table 13 shows the return codes.

Table 13. Return Codes (Part 1 of 2)
r=———-= N Jo—————- T T T T T e 1
| | | Loaded |

| | Loader |Program|
|Return|Return |Return |

| Code | Codel | Code Conclusion or Meaning

e — e o ———— —

|
i ST G e S
| | 0 | 0 | Program loaded successfully, and execution of
| | | | the loaded program was successful.
| I - o
(V	L	0	The loader found a condition that may cause an
e -	error during execution, but no error occurred		
	8 (LET)	0	during execution of the loaded program.
b - fommmo T 1			
			Program loaded successfully, and an error
	0	4	occurred during execution of the loaded
	I	program.	
I e T 1			
	4	4	The loader found a condition that may cause an]
- -	error during execution, and an error did		
	8 (LET)	4	occur during execution of the loaded program.
b $- ——- + o			
			Program loaded successfully, and an error
	0	8	occurred during execution of the loaded
I !		program. I	
—— e T I 1			
	4	8	The loader found a condition that may cause an
8	- —4--	error during execution, and an error did	
	8 (LET)	8	occur during execution of the loaded program.
pmm - e T T 1			
			The loader found a condition that could make
	8		execution impossible. The loaded program was
I I		not executed.	
I Ao s T e 1			
*Error diagnostics (SYSLOUT and/or SYSTERM data set) for the loader			
will show the severity of errors found by the loader.			
L J

Appendix E: Loader Return Codes 179

Table 13. Return Codes (Part 2 of 2)

r T - T I ettt 1
| [| Loaded | [
i | Loader |Programil |
|Return|Return |Return | |
| code | Coder | Code | Conclusion or Meaning |
[1 —— i 4 4
r T T T |
I | | | Program loaded successfully, and an error |
| | 0 | 12 | occurred during execution of the loaded |
| | | | program. |
| b e P I 1
| | 4 | 12 | The loader found a condition that may cause an|
] 12 p-————— | error during execution, and an error did |
| |8 (LET)| 12 | occur during execution of the loaded program. |
| b - f--mo- b
| | 12 | | The loader could not load the program |
| | | | successfully, execution impossible. |
b 4 S S s U
r T

| | 0 | 16 | Program loaded successfully, and the loaded |
| | | | program found a terminating error. |
| pomm— - bt o 1
| | 4 | 16 | The loader found a condition that may cause an|
| - tm————- | error during execution, and a terminating

| 16 |8 (LET)| 16 | error was found during execution of the loaded|
| | | | program.

| p-mmmmm -~ e -

| | 16 | | The loader could not load program, execution

| |] | impossible.

p-———— L 1__ L _—

| tExrror diagnostics (SYSLOUT and/or SYSTERM data set) for the loader
| will show the severity of errors found by the loader.

L

b e o e s e

180 0S/VS Linkage Editor and Loader

APPENDIX F: STORAGE CONSIDERATIONS

The loader requires virtual storage space for the following items:
e Loader code.
e Data management access methods.
e Buffers and tables used by the loader (dynamic storage).

¢ Loaded program (dynamic storage).

Region size includes all four of the above items; the SIZE option
refers to the last two items.

For the SIZE option, the minimum required virtual storage is 4K
plus the size of the loaded program. This minimum requirement grows
to accommodate the extra table entries needed by the program being
loaded. For example: FORTRAN requires at least 3K plus the size of
the loaded program, and PL/I needs at least 8K plus the size of the
loaded program. Buffer number (BUFNO) and blocksize (BLKSIZE) could
also increase this minimum size. Table 14 shows the appropriate
storage requirements in bytes.

The maximum virtual storage that can be used is whatever virtual
storage is available up to 8192K.

All or part of the storage required is obtained from user storage.
If the access methods are made resident at IPL time, they are
allocated in system storage. However, 6K is always reserved for
system use.

In a VS2 environment the loader code could also be made resident in
the link pack area. If so, it requires the following space: HEWLDRGO,
the control/interface module (alias LOADER), approximately 700 bytes;
HEWLOADR, the loader processing portion, approximately 13,664 bytes.

The size of the loaded program is the same as if the program had been
processed by the linkage editor and program fetch.

The loader does not use auxiliary storage space for work areas.

Appendix F: Storage Considerations 181

Table 14.

Virtual Storage Requirements

e B Sttt
| | Approximate
| | Virtual Storage
| | Requirements
| consideration | (in bytes)
- B ettt -
| | Control | 700 Vsi
|Loader | | 2000 vVvs2
|Code p-————————————— 4 —————————————
| | Processing 13664 VS1
] I {14000 VS2
prm——————— B fomm e
|Data Management | 6K
_________________________ Fomr e
|Object Module Buffers | BUFNO(BLKSIZE + 2U4)
|and DECBs |
| |
| I
| |
_______________________ o
| Load Module Buffer | 304
|and DECBs |
______________________ oo
| SYSTERM DCB | 312
|Buffers, and DECBs |
______________________ N T T T
| SYSLOUT Buffers |BUFNO(BLKSIZE + 2U4)
{and DECBs |
| |
| I
________________________ oo
|Size of program being |Program Size
|loaded |
| :
) |
fo———— e ——mmmm e ——
|Each external relocation]| 8
|dictionary entry |
! - oo
| Each external symbol | 20
pmomomm e fomm oo
| Largest ESD number | 4n
|ln is the largest ESD
| |number in any input
| |module
pommmm oo S e
|Fixed Loader Table Size | 1260
I |
T frmmm oo
|Condensed Symbol | 12n
| Table In is the total number
| |of control sections
| |and common areas in
| |the loaded program
pmmmm oo oo e
| System | 1600 VS1
| Requirements | 4000 Vvs2
L —— 4 - e e e e e e e e s e

182

0S/VS Linkage Editor and Loader

B

——— e —— —
1
1

+_—
| w
I
[
=
|
1
|
{
|
|
|
|
|
|
|
|
|
|
{
|
|
|
i
-

|Concatenation of |
|different BLKSIZE and |
| BUFNO must be |
| considered. (Minimum |
| BUFNO=2) |

{Allocated if TERM |
|option is specified |
|Buffer size rounded up
|to integral number of

| double words.

| (Minimum BUFNO=2)
o
| Program size is
|restricted only by
lavailable virtual

| storage

e, e e . —) — . . — e . — — — e adn.

Allocated in increments|
of 32 entries |

| Subtract 88 if NOPRINT |
|is specified |
|Built only if TSO is
|operating and space

|is available

|

I
R
|

I
L

APPENDIX G: LOAD MODULE FORMAT

The format of a load module built by the linkage editor is shown in
Figure 62.

In writing the output load module to the SYSLMOD data set, the link-
age editor does not use the track overflow feature. When moving or copy-
ing load modules, it is recommended that the track overflow feature not

be used on the target data set, as errors may occur in fetching the
load modules for execution.

TTR-P, if TEST option and SYM records present

TTR-P, if no TEST option TTR-T, if OVLY option used TTR~T, if no OVLY option
L l +TTR-Ns, if SCTR option ///
L, SYM Jl CESD | IDR | |CTL |1 SEGTAB || SCTR]| CTL 'l 1st TXT | L ENTAB | (continued)
TPresent if TEST 1Present if OVLY Present if SCTR Present if OVLY option
option and SYM option and more option is used. used and more than
records present. than 1 segment.

1 segment.

Present if OS Release 21.0
or later linkage editor
created load module

TTR-Ns, if OVLY option
+and more than 1 segment

{ RLD I lCTL,RLD,‘:-CTL,RLD,TXT,ENTABJ L,RLD | | CTL J| TXT | | TTR |
Carries EOS if Carries EOM $Carries EDM Present if OVLY option
following ENTAB if this is RLD if no RLSs

and more than 1 segment
for Last TXT for Last TXT

Figure 62. Load Module Format.

Appendix G: Load Module Format 183

APPENDIX H: SIZE AND REGION PARAMETER GUIDELINES

This appendix gives guidelines for determining an appropriate REGION
parameter value and SIZE parameter values for a linkage editor job step.

First - determine Value2 of the SIZE parameter.

Valuepy = 6K < a+b < a+b
6144 - cxd -
J c X e
bl

where: a is the length of the load module to be built
b is 0 , if the length of the load module to be

. . 40K
built is < [40960] or
4R .
4096 if the length of the load module to
. 40K
be built g [uogso]

is an integer 2 2
is the track capacity of the SYSLMOD device
is the block size of the SYSLMOD data set

g o0 & Q

is the length of the largest text record in load
module input

£ is the track capacity of the SYSUT1 device

Second - determine Valueq of the SIZE parameter

Valueq = £ + g + h Value1 must range between f and [gggggg]

where: £ is the design point of the Linkage Editor being used:

¢ _[6ux
~l65536
6K

g is the excess of Value2 over 6144

6K

h is the additional storage required to support the blocking
factor for SYSLIN, any object module libraries, and SYSPRINT:

Folu 5 to 1 10 to 1 40 to 1

_ 18K 28K
18432 28672

Third - determine the REGION parameter.

REGION = Valueq + 10K
10240

Appendix H: Size and Region Parameter Guidelines 185

GLOSSARY

IBM is grateful to the American National Standards Institute (ANSI) for
permission to reprint its definitions from the American National
Standard Vocabulary for Information Processing (ANSI X3.12-1970), which
was prepared by Subcommittee X3.5 on Terminology and Glossary of
American National Standards Committee X3. ANSI definitions are preceded
py an asterisk.

*address: An identification, as represented by a name, label, or
number, for a register, location in storage, or any other data source
or destination such as the location of a station in a communication
network; any part of an instruction that specifies the location of an
operand for the instruction.

address constant: A value, Or an expression representing a value, used
in the calculation of storage addresses; can be used for branching or
retrieving data.

address translation: The process of changing the address of a data
item or an instruction from its virtual address to the real storage
address of the location where it will reside. See also dynamic address
translation.

alias name: An alternate name or entry point for a load module that is
also entered in the ocutput module library directory entry along with
the member name.

automatic library call mechanism: The process whereby control sections
are processed by the linkage editor or loader to resolve external
references to members of partitioned data sets not resolved by primary
input processing.

auxiliary storage: Data storage other than virtual storage; for
example, storage on magnetic tape or direct-access devices.

common _area: A control section used to reserve a virtual storage area
that can be referred to by other modules; may be either named or
unnamed (blank).

common segment: A segment upon which two exclusive segments are
dependent.

control section: That part of a program (instructions and data)
specified by the programmer to be a relocatable unit, all elements of
which are to be loaded into adjoining storage locations for execution.
Abbreviated CSECT.

control section name: The symbolic name of a control section.

demand paging: Transfer of a page from external page storage to real
storage at the time it is needed for execution.

downward reference: A reference made from a segment to another segment
lower in the same path; i.e., farther from the root segment.

dynamic address translation (DAT): (1) The change of a virtual storage
address to a real storage address during execution of an instruction.
See also address translation. (2) A hardware feature that performs the
translation.

entry name: A name within a control section that defines an entry
point, and can be referred to for execution by any control section.

Glossary 187

exclusive reference: A reference between exclusive segments; that is,
a reference from a segment in storage to an external symbol in a
segment that will cause overlay of the calling segment.

exclusive segments: Segments in the same region of an overlay program,
neither of which is in the path of the other; they cannot be in virtual
storage simultaneously.

external name: A name that can be referred to by any control section
or separately assembled or compiled module; i.e., a control section
name Or an entry name.

external page storage: The portion of auxiliary storage that is used
to contailn pages.

external reference: (1) A reference to a symbol that is defined as an
external name in another module. (2) An external symbol that is
defined in another module; that which is defined in the assembler
language by an EXTRN statement or by a V-type address constant, and is
resolved during linkage editing. See also weak external reference.

external symbol: A control section name, entry point name, or external
reference that is defined or referred to in a particular module. A
symbol contained in the external symbol dictionary.

inclusive reference: A reference between inclusive segments; that is,
a reference from a segment in storage to an external symbol in a
segment that will not cause overlay of the calling segment.

inclusive segments: Segments in the same region of an overlay program
that are in the same path; they can be in virtual storage simultaneously.

invalid exclusive reference: An exclusive reference in which a common
segment does not contain a reference to the symbol used in the
exclusive reference.

library: In this publication, it is a partitioned data set that always
contains named members.

load module: The output of the linkage editor; a program in a format

suitable for loading into virtual storage for execution.

load module buffer: An entity of virtual storage used by the linkage
editor to read input load module text records and possibly to retain
the text information in storage for subsequent writing of the output
load module text records.

*module: A program unit that is discregﬁ and identifiable with respect
to compiling, combining with other units, and loading, for example, the
input to, or output from, an assembler, compiler, linkage editor, or
executive routine.

multiple load module processing: A method of processing whereby two or
more load modules can be produced in a single linkage editor job step.

*object module: A module that is the output of an assembler or compiler
and is input to a linkage editor.

overlay program: A program in which certain control sections can use
the same storage locations at different times during execution.

*overlay supervisor: A routine that controls the proper sequencing and
positioning of segments of computer programs in limited storage during
their execution.

188 0S/VS Linkage Editor and Loader

overlay tree: A graphic representation showing the relationships of
segments of an overlay program and how the segments are arranged to use
the same main storage area at different times.

page: (1) A fixed-length block of instructions, data, or both, that
can be transferred between real storage and external page storage.
(2) To transfer instructions, data, or both between real storage and
external page storage.

age fault: A program interruption that occurs when a page that is
marked "mot in real storage" is referred to by an active page.

paging: The process of transferring pages between real storage and
external page storage.

path: All of the segments in an overlay tree between a given segment
and the root segment, inclusive.

private code: An unnamed control section.

program: A logically self-contained sequence of operations or
instructions that, when followed in some predetermined sequence, will
produce a specified result; a sequence of instructions to be performed
by an electronic computer; one or more modules, in source language or
relocatable object code, or one module in executable code, that are a
logically self-contained process.

program fetch: A program that prepares load modules for execution by
loading them at specific storage locations; it also readjusts each
address constant.

pseudo register: In PL/I, a location in virtual storage that is used as
a pointer to dynamically acquired virtual storage. It enables the PL/I
compiler to generate re-enterable code. External dummy sections give
the programmer using Assembler F or Assembler H the same facility.

real storage: The storage of System/370 from which the central
processing unit can directly obtain instructions and data, and to which
it can directly return results.,

re-enterable load module: A module that can be used concurrently by
more than one task.

refreshable load module: A load module that cannot be modified by
itself or by any other module during execution; can be replaced by a
new copy during execution by a recovery management routine without
changing either the sequence or results of processing.

region: 1In an overlay structure, it is a contiguous area of virtual
storage within which segments can be loaded independently of paths in
other regions. Only one path within a region can be in virtual storage
at any one time.

relocation: The modification of address constants required to

compensate for a change of origin of a module, program, or control
section.

root segment: That segment of an overlay program that remains in virtual
storage at all times during the execution of the overlay program; the
first segment in an overlay program.

scatter format: A load module attribute that permits the programmer or
the control program to dynamically load control sections into
noncontiguous areas of virtual storage.

Glossary 189

segment: The smallest functional unit (one or more control sections)
that can be loaded as one logical entity during execution of an overlay
programe.

serially reusable load module: A module that cannot be used by a
second task until the first task has finished using it.

source module: The source statements that constitute the input to a
language translator for a particular translation,

storage block: A 2K block of real storage to which a storage key can
be assigned.

upward reference: A reference made from a segment to another segment
higher in the same path; i.e., closer to the root segment.

valid exclusive reference: BAn exclusive reference in which a common
segment contains a reference to the symbol used in the exclusive
reference,

virtual address: An address that refers to virtual storage and must,
therefore, be translated into a real storage address when it is used.

virtual storage: Addressable space that appears to the user as real
storage, from which instructions and data are mapped into real storage
locations. The size of virtual storage is limited by the addressing
scheme of the computing system and the amount of auxiliary storage
available, rather than by the actual number of real storage locations.

weak external reference: An external reference that does not have to
be resolved during linkage editing. If it is not resolved, it appears
as though its value was resolved to zero. Abbreviated WXTRN,

190 0S/VS Linkage Editor and Loader

INDEX

For additional information about any subject listed in this index, refer to the
publications that are listed under the same subject in either 0S/VS1 Master

Index, GC24-5104, or 0S/VS2 Master Index, GC28-0693.

$SPRIVATE 44
**GO 166

A-type address constant
replacing control sections 145
SEGWT macro instruction 81
adcons (see address constant)
additional call libraries 27
additional input sources

automatic call library 24-28
general description of 20-21, 12-13
included data sets 29-32

libraries 27
processing of 24-25, 28-29
specification of
automatic call library
INCLUDE statement 29-32
LIBRARY statement 26-28, 122-123
address
assignment 10
defined 187
of main entry point
in module map 43
address constant 4
(see also A-type, Q-type, V-type address
constant)
defined 187
resolution of 7
advanced overlay supervisor 78
alias 33
alias name 35
defined 187
for the linkage editor 83
for the loader 170
specification of 35, 36
ALIAS statement 35,36
summary 112
alternate output data set
set)
assembler language dependencies 17
asynchronous overlay supervisor 78
attributes, module (see module attributes)
authorization codes 16
automatic call library for linkage
editor 24-28
negating 27-28

25-26

35-36

(see SYSTERM data

automatic call library for loader
DD statement for 168
description of 161, 162
negating 166
options for use 166
automatic deletion of modules 161, 163
automatic library call mechanism
defined 187
(see also automatic call library for
linkage editor, loader)
automatic replacement
control sections
modules 35
overlay note 49
automatic search of link pack area 166
auxiliary storage
defined 187

basic overlay supervisor 78

blank common area
collection of
defined 6
in module map 43

BLKSIZE subparameter 99

block size 99

blocking factors 94

branch instructions
in overlay programs 79-80

buffer, load module (see load module

buffer)

buffer numbers, for loader data sets 167

call library, linkage editor
additional libraries 27
concatenating 26
ddname 25
NCAL option 28
never—-call 28
restricted no-call 27
specification of 24-28
call library, loader
DD statement for 168
description 161, 162
options for use 166

48-51

36-37, 75-76

24-28

Index 191

CALL loader option 166
CALL macro instruction 79

to invoke the loader 172

with only loadable modules 85
CALL statement 79

capacities of the linkage editor 157-160
cataloged procedure

defined 105

for the linkage editor 105~110

LKED 105-107
LKEDG 107-110
how to add DD statements 110
how to override 108-109
CESD (see composite external symbol

dictionary
CHANGE statement 47-48, 54
summary 114-115

changing external symbols 47-48
class test table 64
COBOL language dependencies 17
collection of common areas 37-38
common areas
blank 6
collection of
defined 187, 6
definition
Assembler 17
FORTRAN 18
PL/TI 18
in module map 43
lengthen named 15, 117
named 6
ordering named 54

36-37, 75-76

reserving storage for 36-37
common segment

defined 79, 187

in exclusive references 63-64

in promotion of common areas

comparison of linkage editor and
loader 163
compatibility
of linkage editor and loader 163
composite external symbol dictionary
number of entries 157
concatenation of call libraries 26
concatenation of input data sets
linkage editor 31-32
restriction 104
loader 168
COND parameter 98
condition parameter, in LKEDG 107
constant (see address constant)
control dictionaries 5
control section
aligning on page boundary
defined 4, 187

55-56

definition
Assembler 17
COBOL 17
FORTRAN 17-18
PL/I 18

external symbol dictionary 6
how to delete 52-53
how to lengthen 15, 117

192 08/vVS Linkage Editor and Loader

75-76

9

how to position 71-74
how to replace 48-52
in module map 43
ordering of 54
control section name
defined 187
external symbol dictionary 6
changing 47-48
control statements
continuation of 111
format conventions
general format 111
as input 22-23, 24
listing 43, 45
listing option 96
placement information 112
summary list 113-133
cross-reference table 44
sample 45
cross-reference table option 96
CSECT identification records
function 16
in object and load modules 5
storage required 159-160
use of IDENTIFY 118

data definition statements
statements)
data for loaded program 169
data set
concatenation of 26, 168
linkage editor
input 19-32
output 33-45
loader 167-170
DC attribute 84
DCB information
linkage editor
loader 167
DCBS option 95
DD statements
general description 98-99
linkage editor data sets
ddnames 100

111-112

99-100

SYSLIB 25-26, 101
SYSLIN 100-101
SYSLMOD 102-103
SYSPRINT 102
sysuTl 101

loader data sets
ddnames 167-170, 171
SYSLIB 168
SYSLIN 167-168

SYSLOUT 169
ddname list 155
ddnames
linkage editor 100
specifying alternate names
loader
automatic call library 168

(see DD

98-104

155

diagnostic data set 169-170 - ENTRY statement 35

input data set 167-168 summary 116
specifying alternate names 171 entry table 65-66
default module attributes 88 EOM (end of module indication) 7, 5
deleting EP loader option 166
control section 52-53 error condition (see severity code)
entry name 52-53 error messages (see diagnostic messages)
diagnostic messages ESD (external symbol dictionary) 5-7
linkage editor exclusive call option 89
directory 40-42 exclusive reference 63~64
format 38~40 defined 188
loader entry table 65-66
format 175 restriction 64
diagnostic output saegment table 65
linkage editor 38-45 XCAL option 89
messages 38-42 exclusive segments 62-64
optional 33-35 defined 188
options, summary 14 EXEC statement
loader linkage editor 83=98
data set 169 introduction 83
format 175 job step options 84-97
options 166 program name 83
dictionaries REGION parameter 927
composite external symbol 9, 157 return code 98
external symbol 5-7 loader
relocation 5, 7, 157 desoription 165-167
directory entry, output module 14, 33 examples 167
disposition messages 38-39 executable module 89
downward call (see downward reference) EXPAND statement 117
downward compatible attribute 84 external dummy section
downward reference 57 Agssembler definition of 17
defined 187 defined 189
maximum number 157, 158 processing of 14, 37

(see also pseudo reglster)
external name 4, 5
defined 185

(see also control section name; entry
name)
external reference 4
editing, module 46-55 changing 47-48
editing conventions 46 defined 184
end of module indication 7, 5 definition, language
END statement Assembler 17
object module 5 COoBOL 17
specifies entry point 35-36 FORTRAN 18
ENTAB (entry table) 71-72 PL/T 18
entry address, in module map 43 in ESD 5-6
entry name reseolving 24, 10
defined 187 weak 6, 13
definition, language with automatic library call 24
Assembler 17 in cross~reference table 44
COBOL 17 external symbol 4, 5
FORTRAN 18 changing 47-48
PL/I 18 defined 189
in ESD 6 external symbol dictionary 5-7
how to change 47-48
how to delete 52-53
in module map 43
entry point 35-36

of loaded program 166

specification of FORTRAN language dependencies 17-18
END statement 35-36 fun6§lons _
ENTRY statement 35, 116 linkage editor 11~-153
EP loader option 166 loader 161

Index 193

HEWL 83, 105

HEWLOAD 172, 174

HEWLOADR 172, 173

HIAR attribute 84

how to
add DD statements to cataloged
procedure 110
change entry names in ESD
delete control sections 52-53
delete entry names from ESD 52-53
include library members 30-31
include members of a partitioned
data set 30-31
invoke the linkage editor
invoke the loader 170-174
override cataloged procedures 108-109
position control sections 71-73
replace control sections 48-52
specify alternate ddnames
linkage editor 156
loader 171

47-48

155-156

IDENTIFY macro instruction, as input to
loader 164

IDENTIFY statement summary 118

IDR (see CSECT identification records)

IEBUPDTE, input statements 151

IEW0000 51

IMBMDMAP program 44

INCLUDE statement 29-32
summary 119
included data sets 29-32

concatenated data sets 29-32
library members 30-31
sequential data sets 30

inclusive reference 63
defined 188

inclusive segments
defined 188

incompatible job step options 97

incompatible module attributes 88, 97

input data sets
linkage editor 19-32

type of data 19
loader 167-168

input processing 19

input sources
linkage editor 8-9

62-64

loader 165, 167-168
INSERT statement 72-74
summary 120-121

intermediate data set
linkage editor
ddname 100
description 8-9, 157
devices supported 160
use of SIZE option 91

194 0S/VS Linkage Editor and Loader

when used 160
loader 163
intermediate text records
number produced 157
internal data area 164
invalid attributes or options 38

invalid exclusive reference 63-64
defined 188

invocation of
linkage editor 155-156
loader 170~174

job control language summary 83-110

job control statements
linkage editor 83-110
loader processing
basic format 165
compile-load job 177
load job 177
multiple compilations 178
job step options, on EXEC statement

language dependencies
Assembler 17
COBOL 17
FORTRAN 17-18
PL/I 18
let execute option 89
LET option
for the linkage editor 89
for the loader 163, 166
for overlay programs 73-74
library, defined 188
library call (see automatic call library
for linkage editor, loader; call library)
library members
how to include

83-96

30-31

as input to the linkage editor 20-21
as input to the loader 167-168

LIBRARY statement 28-30
additional call libraries 27
with NCAL 89
never-call function 28
restricted no-call function 27
summary 122-123

LINK command
function of 16

LINK macro instruction
to invoke the linkage editor 155-156
to invoke the loader 170, 172

link pack area resolution by the

loader 166-167

linkage editor
cataloged procedures 105-110
compared to loader 1, 161
control statement summary 111-133

DD statements 100-104

functions 11-16
input 19-32
how to invoke 155-156
output 33-45
processing 8-10
relationship to operating system 15-16
storage requirements 157-160
when to use 1
LINKEDIT 83
linking modules 11-12
LIST option 96, 43
LKED procedure 105-107,109
LKEDG 107-109
LOAD macro instruction
to invoke the loader 170-174
with only loadable modules 85
load module
attributes 84-88
buffer 90-94
defined 3, 184
entry point 35-36
as input
to the linkage editor 19
to the loader 163
as linkage editor output 33-38
multiple processing of 37-38
size restriction 16
structure 5
load module attribute assignment
summary 14-15
load module buffer 90-95
defined 188
load module creation 9-10
load point 62, 68-69
load step 1, 161
loaded program
data 170
in module map 175
options 165
restrictions 164
return code 179-180
loader
abnormal termination message (VS2) 175
alias name 170
compared to linkage editor 1, 163
compatibility with linkage editor 163
data sets 167-170
input 161, 163
invocation of 170-174
options 166
output 175-176
program name 165
restrictions on use 163
return code 179-180
LOADGO command
function of 164
loading
with identification 172, 174
without identification 172, 173
logical record length
linkage editor data sets
blocking factors 100
diagnostic output 102
input 100-101

SIZE option 90-95
LRECL 100
(see also logical record length)

macro instruction, basic format 155
MAP option
linkage editor 95
loader 166, 163
maximum record size for device types 91
member, partitioned data set
how to include 30-31
as input to the linkage editor 20-21
as input to the loader 167-168
member name 34-35
defined 33
messages
disposition 38-39
examples 42
format 40-41
text 40
unnumbered 38-39
modular programming 3
module, defined 3, 188
(see also load module; module
attributes; object module)
module attributes 84-88
default attributes 88
downward compatible 84
hierarchy format 84
incompatible attributes 88, 97
not editable 85
not executable 88
only loadable 85
overlay 86
refreshable 87
reusability
re-enterable 86
serially reusable 87
scatter format 84
test 87
module disposition messages 38-39
module editing 48-53
summary 12-13
module linking 11~12
module map
linkage editor
description 43-44
example 45
MAP option 96
loader
description 175
example 176
specification 166
module map option 96
multiple load module processing 37-38
defined 188
multiple region overlay program 66-68
specification 69-70

Index 195

Name option 166
NAME statement 34
in multiple load module processing 35
replace function 35
summary 124
with SYSLMOD DD
named common area
aligning on page boundary 55
collection of 36-37, 75-76
defined 6
in module map 43
NCAL option
linkage editor
loader 166, 163
NE attribute 85
negation of
automatic library call

37-38

31, 9a

linkage editor 27-28
loader 166
loader

diagnostic output 166
module map 166
search of 1link pack area 166
not editable attribute 85
not executable attribute 88
re-enterable attribute 86
refreshable attribute 87
serially reusable 87
never-call function 28
in cross-reference table 44
no automatic library call option 90
no-call 27
NOCALL loader option 166
node point (see load point)
NOLET loader option 166, 163
NOMAP loader option 166
NOPRINT loader option 166
NORES loader option 166
NOTERM loader option 166
not editable attribute
linkage editor 85
loader 163
not executable attribute 104

object module
defined 3, 188
input to linkage editor
with control statements
input to the loader 167-170
structure 5
in virtual storage 164
OL attribute 85-86
only loadable attribute 85
optional output 43-45
options, linkage editor
module attributes 84-88
output 96

20-23
23-24

196 0S/VS Linkage Editor and Loader

space allocation 90-95
special processing 89-90
ORDER statement 54-56
summary 125-126
origin
of control section in module map
of region 70
of segments 62
output of linkage editor
diagnostic messages
load module 33-38
optional output 43-45
output module library
output options 96
output of the loader
messages 175
module map 175, 176
specification of 166
output module library 33-35
output text record length 157, 158
overlap of loading and processing of
overlay segments 80-82
overlay attribute 86
with hierarchy attribute 84
overlay program
communication
defined 188
design 57-68
module map 43
multiple region
process 64-66
region origin 70
respecifying control statements
sample program 144-153
segment origin 68-69, 62
single region 58-66

38-42

33-35

78-82

66-68

special considerations 75-82

specification 68-75

storage requirements 77-78
OVERLAY statement 68-70

summary 127-128

overlay supervisor 65
defined 188
storage requirements 160
overlay tree 59-60
defined 189
overriding cataloged procedures
EXEC statement 108-109
DD statements 109
OVLY attribute 102

page boundary
aligning control sections or
named common areas 55, 56
attribute 88
PAGE statement
aligning control sections
summary 129-130
partitioned data set
as input

55, 56

43

68

to linkage editor 20-21
to loader 167-168
as output of linkage editor 33-35
path, in overlay programs 57-58
defined 189
PL/I language dependencies 8 ,
placement of control statements 112
positioning control sections 71-74
preloaded text 164, 175
primary input data set 19-24
control statements 22-23, 23-24
object modules 20-22, 23-24
PRINT loader option 166
private call libraries 25
private code
defined 6, 189
in module map 43
procedure LKED 105-107
procedure LKEDG 107-108
program
processing history, tracing 16
defined 189
program fetch
defined 189
functions 10
program name
on EXEC statement 96
prompter, linkage editor
function of 16
prompter, loader
function of 164
pseudo register
defined 6, 189
in module map 43
PL/I definition of 18
processing of 14, 37

Q-type address constant 17

real storage requirements 160
RECFM (see record format)
record format (RECFM) 99-100
linkage editor data sets
diagnostic output 102
input 100-101
load modules 102-103
loader data sets 167
record size, maximum for device type
re-enterable attribute 86
re-enterable load module
defined 189
module attribute 86
REFR attribute 87
refreshable attribute 87
refreshable load module
defined 189

module attribute 87
region, in overlay programs 66-67, 70
defined 189
region, virtual storage
for linkage editor
cataloged procedures 105
requirements 160
with SIZE option 97
for loader 171
relocating a load module 3-4
relocation
defined 189
relocation dictionary 7
number of entries 157
RENT attribute 86
replace function 35
REPLACE statement 48-49, 54
sample program 139-143
summary 131-132
replacing control sections 48-52
assembler language note 48
replacing external symbols (see CHANGE
statement; changing external symbols)
replacing load modules with the same
name 35
repositioning control statements 71-74
from automatic call library 73-74
INSERT statement 120-121
reprocessing load modules
compatibility 84
entry point assignment 36
not editable attribute 85
RES loader option 166
reserving storage 36-37
resolving external references 24, 10
restricted no-call function 27
restrictions, loaded program 164
return code
linkage editor 98
loader 179-180
testing 179
severity code 40
REUS attribute 86
reusability attributes 86
re-enterable 86
serially reusable 87
RLD (see relocation dictionary)
root segments 57-58
defined 189
with OVERLAY 68
and segment table 65-66

sample programs 135-153
scatter format attribute
defined 189
with hierarchy attribute 84
scatter loading 84
SCTR attribute 84
SEGLD macro instruction 79-80
segment
communication 62-64

Index 197

defined 190
dependency 60
origin 62
(see also exclusive, inclusive, root
segments)
segment load macro instruction 80-81
segment table 64-66
segment wait macro instruction 81-82
with SEGLD 80-81
SEGTAB (segment table) 70-72
SEGWT macro instruction 81-82
with SEGLD 80-81
sequential data set
as input to the linkage editor 19
as input to the loader 167-168
with INCLUDE statement 30-32
serially reusable
attribute 87
defined 190
SETSSI statement 133
severity code
linkage editor messages 40
return code 98
severity 0, 2 errors 40
SIZE option
linkage editor 90-95

loader
description 163, 166
size restriction, load modules 16

source module
defined 190
space allocation options 90-95
DCBS option 95
maximum values 91,94
minimum values 91,94
SIZE option 90-95
special processing options 89-90
summary 14
static external areas 36-37
storage hierarchy assignment
summary 15
(see also hierarchy assignment)

storage requirements (see also real storage
requirements; virtual storage requirements)

SYSLIB DD statement
for the linkage editor 101
(see also automatic call library)
for the loader 168
SYSLIN DD Statement
for the linkage editor 100-101
(see also primary input data set)
for the loader 167-168
SYSLMOD DD statement 102-103
(see also output module library)
NAME statement 37-38
SYSPRINT DD statement 102
(see also diagnostic output)
system call library 25
list of 25
system status index information
storage of 15
SYSTERM data set
linkage editor 103, 96, 41
loader 169-170, 167, 175

198 0S/VS Linkage Editor and Loader

SYSTERM DD statement
linkage editor 103, 96, 41
loader 169-170

SYSUT1 DD statement 101
(see also intermediate data set)

tasking options of PL/I, use with
loader 163
TEMPNAME 34
temporary data set 21, 33
TERM option
linkage editor 103, 96, 41
loader 167
TEST attribute 87
text 5, 7
text, message 40
time sharing option (see TSO)
tracing processing history 16
TRANSFORM table 64
tree structure 59-60
overlay tree, defined 189
TSO (time sharing option)
linkage editor 16
SYSTERM data set 103, 96
TERM option 41

loader
SYSTERM data set 169-170, 167,175

TERM option 167
TXT 13, 15

unnumbered messages 38-39
unresolved references
automatic library call, resolving with
in cross-reference table 44
upward reference 57
defined 190
user-specified
input 8
storage 15
user-written library (see private call
libraries)

V-type address constant
branch instruction, overlay 79
with CALL 79
with SEGLD 81
with SEGWT 82

valid exclusive reference 69-70
defined 190

virtual storage requirements 157
linkage editor 160
loader 181-182
overlay programs 76-=77

24

wait for loading of segment 81-82

warning messages 40-42, 38

weak external reference 13
with automatic library call 24
in cross-reference table 44
defined 6, 190

XCAL option 89
XCTL macro instruction

as input to the loader 163

to invoke the loader 170-172
XREF option 96

(see also cross-reference table)

Index 199

OS/VS Linkage Editor and Loader Reader's
GC26-3813-3 Comment
Form

Your comments about this publication will help us to improve it for you.
Comment in the space below, giving specific page and paragraph references
whenever possible. All comments become the property of IBM.

Please do not use this form to ask technical questions about IBM systems and
programs or to request copies of publications. Rather, direct such questions or
requests to your local IBM representative.

If you would like a reply, please provide your name, job title, and business
address (including ZIP code).

Fold on two lines, staple, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere,
any IBM representative will be happy to forward your comments.) Thank you for your
cooperation.

GC26-3813-3

Fold and Staple

First Class Permit
Number 439
Palo Alto, California

Business Reply Mail

No postage necessary if mailed in the U.S.A.

Postage will be paid by:

IBM Corporation

System Development Division
LDF Publishing—Department JO4
1501 California Avenue

Palo Alto, California 94304

Fold and Staple

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.S5.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

13peo] pue 101p3 ebexu SA/SO

(L£-0LES "ON 2li4)

£-€18€-920D 'V'S'N Ul pauld

GC26-3813-3

LB

®

International Business Machines Corporatien

Data Processing Division

1133 Westchester Aveniue, White Plains, New York 10804
(U.S.A. only)

1EM World Trade Corporation

821 United Nations Plaza, New York, New York 10017
(International)

1apeo] pue J011p3 abexul] SA/SO

(1€-0LES ON 2jid)

€-€18€-9209 V'SN ul psiulid

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	replyA
	replyB
	xBack

